RoboArxiv
RoboArxiv
Robotics 70
Flow Policy Gradients for Robot Control
Likelihood-based policy gradient methods are the dominant approach for training robot control policies from rewards. These methods rely on differentiable action likelihoods, which constrain policy outputs to simple distributions like Gaussians. In this work, we show how flow matching policy gradients -- a recent framework that bypasses likelihood computation -- can be made effective for training and fine-tuning more expressive policies in challenging robot control settings. We introduce an improved objective that enables success in legged locomotion, humanoid motion tracking, and manipulation tasks, as well as robust sim-to-real transfer on two humanoid robots. We then present ablations and analysis on training dynamics. Results show how policies can exploit the flow representation for exploration when training from scratch, as well as improved fine-tuning robustness over baselines.
comment: Project webpage: https://hongsukchoi.github.io/fpo-control
HumanX: Toward Agile and Generalizable Humanoid Interaction Skills from Human Videos
Enabling humanoid robots to perform agile and adaptive interactive tasks has long been a core challenge in robotics. Current approaches are bottlenecked by either the scarcity of realistic interaction data or the need for meticulous, task-specific reward engineering, which limits their scalability. To narrow this gap, we present HumanX, a full-stack framework that compiles human video into generalizable, real-world interaction skills for humanoids, without task-specific rewards. HumanX integrates two co-designed components: XGen, a data generation pipeline that synthesizes diverse and physically plausible robot interaction data from video while supporting scalable data augmentation; and XMimic, a unified imitation learning framework that learns generalizable interaction skills. Evaluated across five distinct domains--basketball, football, badminton, cargo pickup, and reactive fighting--HumanX successfully acquires 10 different skills and transfers them zero-shot to a physical Unitree G1 humanoid. The learned capabilities include complex maneuvers such as pump-fake turnaround fadeaway jumpshots without any external perception, as well as interactive tasks like sustained human-robot passing sequences over 10 consecutive cycles--learned from a single video demonstration. Our experiments show that HumanX achieves over 8 times higher generalization success than prior methods, demonstrating a scalable and task-agnostic pathway for learning versatile, real-world robot interactive skills.
TIC-VLA: A Think-in-Control Vision-Language-Action Model for Robot Navigation in Dynamic Environments
Robots in dynamic, human-centric environments must follow language instructions while maintaining real-time reactive control. Vision-language-action (VLA) models offer a promising framework, but they assume temporally aligned reasoning and control, despite semantic inference being inherently delayed relative to real-time action. We introduce Think-in-Control (TIC)-VLA, a latency-aware framework that explicitly models delayed semantic reasoning during action generation. TIC-VLA defines a delayed semantic-control interface that conditions action generation on delayed vision-language semantic states and explicit latency metadata, in addition to current observations, enabling policies to compensate for asynchronous reasoning. We further propose a latency-consistent training pipeline that injects reasoning inference delays during imitation learning and online reinforcement learning, aligning training with asynchronous deployment. To support realistic evaluation, we present DynaNav, a physics-accurate, photo-realistic simulation suite for language-guided navigation in dynamic environments. Extensive experiments in simulation and on a real robot show that TIC-VLA consistently outperforms prior VLA models while maintaining robust real-time control under multi-second reasoning latency. Project website: https://ucla-mobility.github.io/TIC-VLA/
Relationship-Aware Hierarchical 3D Scene Graph for Task Reasoning ICRA 2026
Representing and understanding 3D environments in a structured manner is crucial for autonomous agents to navigate and reason about their surroundings. While traditional Simultaneous Localization and Mapping (SLAM) methods generate metric reconstructions and can be extended to metric-semantic mapping, they lack a higher level of abstraction and relational reasoning. To address this gap, 3D scene graphs have emerged as a powerful representation for capturing hierarchical structures and object relationships. In this work, we propose an enhanced hierarchical 3D scene graph that integrates open-vocabulary features across multiple abstraction levels and supports object-relational reasoning. Our approach leverages a Vision Language Model (VLM) to infer semantic relationships. Notably, we introduce a task reasoning module that combines Large Language Models (LLM) and a VLM to interpret the scene graph's semantic and relational information, enabling agents to reason about tasks and interact with their environment more intelligently. We validate our method by deploying it on a quadruped robot in multiple environments and tasks, highlighting its ability to reason about them.
comment: ICRA 2026, 8 pages
World-Gymnast: Training Robots with Reinforcement Learning in a World Model
Robot learning from interacting with the physical world is fundamentally bottlenecked by the cost of physical interaction. The two alternatives, supervised finetuning (SFT) from expert demonstrations and reinforcement learning (RL) in a software-based simulator, are limited by the amount of expert data available and the sim-to-real gap for manipulation. With the recent emergence of world models learned from real-world video-action data, we ask the question of whether training a policy in a world model can be more effective than supervised learning or software simulation in achieving better real-robot performance. We propose World-Gymnast, which performs RL finetuning of a vision-language-action (VLA) policy by rolling out the policy in an action-conditioned video world model and rewarding the rollouts with a vision-language model (VLM). On the Bridge robot setup, World-Gymnast outperforms SFT by as much as 18x and outperforms software simulator by as much as 2x. More importantly, World-Gymnast demonstrates intriguing capabilities of RL with a world model, including training on diverse language instructions and novel scenes from the world model, test-time training in a novel scene, and online iterative world model and policy improvement. Our results suggest learning a world model and training robot policies in the cloud could be the key to bridging the gap between robots that work in demonstrations and robots that can work in anyone's household.
comment: https://world-gymnast.github.io/
3D Foundation Model-Based Loop Closing for Decentralized Collaborative SLAM
Decentralized Collaborative Simultaneous Localization And Mapping (C-SLAM) techniques often struggle to identify map overlaps due to significant viewpoint variations among robots. Motivated by recent advancements in 3D foundation models, which can register images despite large viewpoint differences, we propose a robust loop closing approach that leverages these models to establish inter-robot measurements. In contrast to resource-intensive methods requiring full 3D reconstruction within a centralized map, our approach integrates foundation models into existing SLAM pipelines, yielding scalable and robust multi-robot mapping. Our contributions include: (1) integrating 3D foundation models to reliably estimate relative poses from monocular image pairs within decentralized C-SLAM; (2) introducing robust outlier mitigation techniques critical to the use of these relative poses; and (3) developing specialized pose graph optimization formulations that efficiently resolve scale ambiguities. We evaluate our method against state-of-the-art approaches, demonstrating improvements in localization and mapping accuracy, alongside significant gains in computational and memory efficiency. These results highlight the potential of our approach for deployment in large-scale multi-robot scenarios.
Multi-Agent Monte Carlo Tree Search for Makespan-Efficient Object Rearrangement in Cluttered Spaces
Object rearrangement planning in complex, cluttered environments is a common challenge in warehouses, households, and rescue sites. Prior studies largely address monotone instances, whereas real-world tasks are often non-monotone-objects block one another and must be temporarily relocated to intermediate positions before reaching their final goals. In such settings, effective multi-agent collaboration can substantially reduce the time required to complete tasks. This paper introduces Centralized, Asynchronous, Multi-agent Monte Carlo Tree Search (CAM-MCTS), a novel framework for general-purpose makespan-efficient object rearrangement planning in challenging environments. CAM-MCTS combines centralized task assignment-where agents remain aware of each other's intended actions to facilitate globally optimized planning-with an asynchronous task execution strategy that enables agents to take on new tasks at appropriate time steps, rather than waiting for others, guided by a one-step look-ahead cost estimate. This design minimizes idle time, prevents unnecessary synchronization delays, and enhances overall system efficiency. We evaluate CAM-MCTS across a diverse set of monotone and non-monotone tasks in cluttered environments, demonstrating consistent reductions in makespan compared to strong baselines. Finally, we validate our approach on a real-world multi-agent system under different configurations, further confirming its effectiveness and robustness.
SoMA: A Real-to-Sim Neural Simulator for Robotic Soft-body Manipulation
Simulating deformable objects under rich interactions remains a fundamental challenge for real-to-sim robot manipulation, with dynamics jointly driven by environmental effects and robot actions. Existing simulators rely on predefined physics or data-driven dynamics without robot-conditioned control, limiting accuracy, stability, and generalization. This paper presents SoMA, a 3D Gaussian Splat simulator for soft-body manipulation. SoMA couples deformable dynamics, environmental forces, and robot joint actions in a unified latent neural space for end-to-end real-to-sim simulation. Modeling interactions over learned Gaussian splats enables controllable, stable long-horizon manipulation and generalization beyond observed trajectories without predefined physical models. SoMA improves resimulation accuracy and generalization on real-world robot manipulation by 20%, enabling stable simulation of complex tasks such as long-horizon cloth folding.
comment: Project page: https://city-super.github.io/SoMA/
PRISM: Performer RS-IMLE for Single-pass Multisensory Imitation Learning
Robotic imitation learning typically requires models that capture multimodal action distributions while operating at real-time control rates and accommodating multiple sensing modalities. Although recent generative approaches such as diffusion models, flow matching, and Implicit Maximum Likelihood Estimation (IMLE) have achieved promising results, they often satisfy only a subset of these requirements. To address this, we introduce PRISM, a single-pass policy based on a batch-global rejection-sampling variant of IMLE. PRISM couples a temporal multisensory encoder (integrating RGB, depth, tactile, audio, and proprioception) with a linear-attention generator using a Performer architecture. We demonstrate the efficacy of PRISM on a diverse real-world hardware suite, including loco-manipulation using a Unitree Go2 with a 7-DoF arm D1 and tabletop manipulation with a UR5 manipulator. Across challenging physical tasks such as pre-manipulation parking, high-precision insertion, and multi-object pick-and-place, PRISM outperforms state-of-the-art diffusion policies by 10-25% in success rate while maintaining high-frequency (30-50 Hz) closed-loop control. We further validate our approach on large-scale simulation benchmarks, including CALVIN, MetaWorld, and Robomimic. In CALVIN (10% data split), PRISM improves success rates by approximately 25% over diffusion and approximately 20% over flow matching, while simultaneously reducing trajectory jerk by 20x-50x. These results position PRISM as a fast, accurate, and multisensory imitation policy that retains multimodal action coverage without the latency of iterative sampling.
comment: 10 pages main text and 4 figures, and 11 pages appendix and 10 figures, total 21 pages and 14 figures
Mapping-Guided Task Discovery and Allocation for Robotic Inspection of Underwater Structures ICRA
Task generation for underwater multi-robot inspections without prior knowledge of existing geometry can be achieved and optimized through examination of simultaneous localization and mapping (SLAM) data. By considering hardware parameters and environmental conditions, a set of tasks is generated from SLAM meshes and optimized through expected keypoint scores and distance-based pruning. In-water tests are used to demonstrate the effectiveness of the algorithm and determine the appropriate parameters. These results are compared to simulated Voronoi partitions and boustrophedon patterns for inspection coverage on a model of the test environment. The key benefits of the presented task discovery method include adaptability to unexpected geometry and distributions that maintain coverage while focusing on areas more likely to present defects or damage.
comment: This paper will appear in the proceedings of the 2026 IEEE International Conference on Robotics and Automation (ICRA)
TTT-Parkour: Rapid Test-Time Training for Perceptive Robot Parkour
Achieving highly dynamic humanoid parkour on unseen, complex terrains remains a challenge in robotics. Although general locomotion policies demonstrate capabilities across broad terrain distributions, they often struggle with arbitrary and highly challenging environments. To overcome this limitation, we propose a real-to-sim-to-real framework that leverages rapid test-time training (TTT) on novel terrains, significantly enhancing the robot's capability to traverse extremely difficult geometries. We adopt a two-stage end-to-end learning paradigm: a policy is first pre-trained on diverse procedurally generated terrains, followed by rapid fine-tuning on high-fidelity meshes reconstructed from real-world captures. Specifically, we develop a feed-forward, efficient, and high-fidelity geometry reconstruction pipeline using RGB-D inputs, ensuring both speed and quality during test-time training. We demonstrate that TTT-Parkour empowers humanoid robots to master complex obstacles, including wedges, stakes, boxes, trapezoids, and narrow beams. The whole pipeline of capturing, reconstructing, and test-time training requires less than 10 minutes on most tested terrains. Extensive experiments show that the policy after test-time training exhibits robust zero-shot sim-to-real transfer capability.
comment: Project Page: https://ttt-parkour.github.io/
Before Autonomy Takes Control: Software Testing in Robotics
Robotic systems are complex and safety-critical software systems. As such, they need to be tested thoroughly. Unfortunately, robot software is intrinsically hard to test compared to traditional software, mainly since the software needs to closely interact with hardware, account for uncertainty in its operational environment, handle disturbances, and act highly autonomously. However, given the large space in which robots operate, anticipating possible failures when designing tests is challenging. This paper presents a mapping study by considering robotics testing papers and relating them to the software testing theory. We consider 247 robotics testing papers and map them to software testing, discussing the state-of-the-art software testing in robotics with an illustrated example, and discuss current challenges. Forming the basis to introduce both the robotics and software engineering communities to software testing challenges. Finally, we identify open questions and lessons learned.
Bridging the Sim-to-Real Gap with multipanda ros2: A Real-Time ROS2 Framework for Multimanual Systems
We present $multipanda\_ros2$, a novel open-source ROS2 architecture for multi-robot control of Franka Robotics robots. Leveraging ros2 control, this framework provides native ROS2 interfaces for controlling any number of robots from a single process. Our core contributions address key challenges in real-time torque control, including interaction control and robot-environment modeling. A central focus of this work is sustaining a 1kHz control frequency, a necessity for real-time control and a minimum frequency required by safety standards. Moreover, we introduce a controllet-feature design pattern that enables controller-switching delays of $\le 2$ ms, facilitating reproducible benchmarking and complex multi-robot interaction scenarios. To bridge the simulation-to-reality (sim2real) gap, we integrate a high-fidelity MuJoCo simulation with quantitative metrics for both kinematic accuracy and dynamic consistency (torques, forces, and control errors). Furthermore, we demonstrate that real-world inertial parameter identification can significantly improve force and torque accuracy, providing a methodology for iterative physics refinement. Our work extends approaches from soft robotics to rigid dual-arm, contact-rich tasks, showcasing a promising method to reduce the sim2real gap and providing a robust, reproducible platform for advanced robotics research.
comment: This work has been submitted to the IEEE for possible publication
Online Fine-Tuning of Pretrained Controllers for Autonomous Driving via Real-Time Recurrent RL
Deploying pretrained policies in real-world applications presents substantial challenges that fundamentally limit the practical applicability of learning-based control systems. When autonomous systems encounter environmental changes in system dynamics, sensor drift, or task objectives, fixed policies rapidly degrade in performance. We show that employing Real-Time Recurrent Reinforcement Learning (RTRRL), a biologically plausible algorithm for online adaptation, can effectively fine-tune a pretrained policy to improve autonomous agents' performance on driving tasks. We further show that RTRRL synergizes with a recent biologically inspired recurrent network model, the Liquid-Resistance Liquid-Capacitance RNN. We demonstrate the effectiveness of this closed-loop approach in a simulated CarRacing environment and in a real-world line-following task with a RoboRacer car equipped with an event camera.
LangMap: A Hierarchical Benchmark for Open-Vocabulary Goal Navigation
The relationships between objects and language are fundamental to meaningful communication between humans and AI, and to practically useful embodied intelligence. We introduce HieraNav, a multi-granularity, open-vocabulary goal navigation task where agents interpret natural language instructions to reach targets at four semantic levels: scene, room, region, and instance. To this end, we present Language as a Map (LangMap), a large-scale benchmark built on real-world 3D indoor scans with comprehensive human-verified annotations and tasks spanning these levels. LangMap provides region labels, discriminative region descriptions, discriminative instance descriptions covering 414 object categories, and over 18K navigation tasks. Each target features both concise and detailed descriptions, enabling evaluation across different instruction styles. LangMap achieves superior annotation quality, outperforming GOAT-Bench by 23.8% in discriminative accuracy using four times fewer words. Comprehensive evaluations of zero-shot and supervised models on LangMap reveal that richer context and memory improve success, while long-tailed, small, context-dependent, and distant goals, as well as multi-goal completion, remain challenging. HieraNav and LangMap establish a rigorous testbed for advancing language-driven embodied navigation. Project: https://bo-miao.github.io/LangMap
Extending the Law of Intersegmental Coordination: Implications for Powered Prosthetic Controls
Powered prostheses are capable of providing net positive work to amputees and have advanced in the past two decades. However, reducing amputee metabolic cost of walking remains an open problem. The Law of Intersegmental Coordination (ISC) has been observed across gaits and has been previously implicated in energy expenditure of walking, yet it has rarely been analyzed or applied within the context of lower-limb amputee gait. This law states that the elevation angles of the thigh, shank and foot over the gait cycle are not independent. In this work, we developed a method to analyze intersegmental coordination for lower-limb 3D kinematic data, to simplify ISC analysis. Moreover, inspired by motor control, biomechanics and robotics literature, we used our method to broaden ISC toward a new law of coordination of moments. We find these Elevation Space Moments (ESM), and present results showing a moment-based coordination for able bodied gait. We also analyzed ISC for amputee gait walking with powered and passive prosthesis, and found that while elevation angles remained planar, the ESM showed less coordination. We use ISC as a constraint to predict the shank angles/moments that would compensate for alterations due to a passive foot so as to mimic a healthy thigh angle/moment profile. This may have implications for improving powered prosthetic control. We developed the ISC3d toolbox that is freely available online, which may be used to compute kinematic and kinetic ISC in 3D. This provides a means to further study the role of coordination in gait and may help address fundamental questions of the neural control of human movement.
comment: Submitted to 2026 IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob)
Real-Time 2D LiDAR Object Detection Using Three-Frame RGB Scan Encoding
Indoor service robots need perception that is robust, more privacy-friendly than RGB video, and feasible on embedded hardware. We present a camera-free 2D LiDAR object detection pipeline that encodes short-term temporal context by stacking three consecutive scans as RGB channels, yielding a compact YOLOv8n input without occupancy-grid construction while preserving angular structure and motion cues. Evaluated in Webots across 160 randomized indoor scenarios with strict scenario-level holdout, the method achieves 98.4% mAP@0.5 (0.778 mAP@0.5:0.95) with 94.9% precision and 94.7% recall on four object classes. On a Raspberry Pi 5, it runs in real time with a mean post-warm-up end-to-end latency of 47.8ms per frame, including scan encoding and postprocessing. Relative to a closely related occupancy-grid LiDAR-YOLO pipeline reported on the same platform, the proposed representation is associated with substantially lower reported end-to-end latency. Although results are simulation-based, they suggest that lightweight temporal encoding can enable accurate and real-time LiDAR-only detection for embedded indoor robotics without capturing RGB appearance.
comment: 6 pages, 6 figures, submitted to IEEE SAS 2026
FD-VLA: Force-Distilled Vision-Language-Action Model for Contact-Rich Manipulation
Force sensing is a crucial modality for Vision-Language-Action (VLA) frameworks, as it enables fine-grained perception and dexterous manipulation in contact-rich tasks. We present Force-Distilled VLA (FD-VLA), a novel framework that integrates force awareness into contact-rich manipulation without relying on physical force sensors. The core of our approach is a Force Distillation Module (FDM), which distills force by mapping a learnable query token, conditioned on visual observations and robot states, into a predicted force token aligned with the latent representation of actual force signals. During inference, this distilled force token is injected into the pretrained VLM, enabling force-aware reasoning while preserving the integrity of its vision-language semantics. This design provides two key benefits: first, it allows practical deployment across a wide range of robots that lack expensive or fragile force-torque sensors, thereby reducing hardware cost and complexity; second, the FDM introduces an additional force-vision-state fusion prior to the VLM, which improves cross-modal alignment and enhances perception-action robustness in contact-rich scenarios. Surprisingly, our physical experiments show that the distilled force token outperforms direct sensor force measurements as well as other baselines, which highlights the effectiveness of this force-distilled VLA approach.
Frictional Contact Solving for Material Point Method
Accurately handling contact with friction remains a core bottleneck for Material Point Method (MPM), from reliable contact point detection to enforcing frictional contact laws (non-penetration, Coulomb friction, and maximum dissipation principle). In this paper, we introduce a frictional-contact pipeline for implicit MPM that is both precise and robust. During the collision detection phase, contact points are localized with particle-centric geometric primitives; during the contact resolution phase, we cast frictional contact as a Nonlinear Complementarity Problem (NCP) over contact impulses and solve it with an Alternating Direction Method of Multipliers (ADMM) scheme. Crucially, the formulation reuses the same implicit MPM linearization, yielding efficiency and numerical stability. The method integrates seamlessly into the implicit MPM loop and is agnostic to modeling choices, including material laws, interpolation functions, and transfer schemes. We evaluate it across seven representative scenes that span elastic and elasto-plastic responses, simple and complex deformable geometries, and a wide range of contact conditions. Overall, the proposed method enables accurate contact localization, reliable frictional handling, and broad generality, making it a practical solution for MPM-based simulations in robotics and related domains.
Bandwidth-Efficient Multi-Agent Communication through Information Bottleneck and Vector Quantization ICRA 2026
Multi-agent reinforcement learning systems deployed in real-world robotics applications face severe communication constraints that significantly impact coordination effectiveness. We present a framework that combines information bottleneck theory with vector quantization to enable selective, bandwidth-efficient communication in multi-agent environments. Our approach learns to compress and discretize communication messages while preserving task-critical information through principled information-theoretic optimization. We introduce a gated communication mechanism that dynamically determines when communication is necessary based on environmental context and agent states. Experimental evaluation on challenging coordination tasks demonstrates that our method achieves 181.8% performance improvement over no-communication baselines while reducing bandwidth usage by 41.4%. Comprehensive Pareto frontier analysis shows dominance across the entire success-bandwidth spectrum with area-under-curve of 0.198 vs 0.142 for next-best methods. Our approach significantly outperforms existing communication strategies and establishes a theoretically grounded framework for deploying multi-agent systems in bandwidth-constrained environments such as robotic swarms, autonomous vehicle fleets, and distributed sensor networks.
comment: Accepted at the 2026 IEEE International Conference on Robotics and Automation (ICRA 2026), Vienna, Austria. 9 pages, 4 figures, 6 tables
Synchronized Online Friction Estimation and Adaptive Grasp Control for Robust Gentle Grasp
We introduce a unified framework for gentle robotic grasping that synergistically couples real-time friction estimation with adaptive grasp control. We propose a new particle filter-based method for real-time estimation of the friction coefficient using vision-based tactile sensors. This estimate is seamlessly integrated into a reactive controller that dynamically modulates grasp force to maintain a stable grip. The two processes operate synchronously in a closed-loop: the controller uses the current best estimate to adjust the force, while new tactile feedback from this action continuously refines the estimation. This creates a highly responsive and robust sensorimotor cycle. The reliability and efficiency of the complete framework are validated through extensive robotic experiments.
Reformulating AI-based Multi-Object Relative State Estimation for Aleatoric Uncertainty-based Outlier Rejection of Partial Measurements ICRA 2026
Precise localization with respect to a set of objects of interest enables mobile robots to perform various tasks. With the rise of edge devices capable of deploying deep neural networks (DNNs) for real-time inference, it stands to reason to use artificial intelligence (AI) for the extraction of object-specific, semantic information from raw image data, such as the object class and the relative six degrees of freedom (6-DoF) pose. However, fusing such AI-based measurements in an Extended Kalman Filter (EKF) requires quantifying the DNNs' uncertainty and outlier rejection capabilities. This paper presents the benefits of reformulating the measurement equation in AI-based, object-relative state estimation. By deriving an EKF using the direct object-relative pose measurement, we can decouple the position and rotation measurements, thus limiting the influence of erroneous rotation measurements and allowing partial measurement rejection. Furthermore, we investigate the performance and consistency improvements for state estimators provided by replacing the fixed measurement covariance matrix of the 6-DoF object-relative pose measurements with the predicted aleatoric uncertainty of the DNN.
comment: Accepted for publication at ICRA 2026, Vienna, Austria
A Unified Control Architecture for Macro-Micro Manipulation using a Active Remote Center of Compliance for Manufacturing Applications
Macro-micro manipulators combine a macro manipulator with a large workspace, such as an industrial robot, with a lightweight, high-bandwidth micro manipulator. This enables highly dynamic interaction control while preserving the wide workspace of the robot. Traditionally, position control is assigned to the macro manipulator, while the micro manipulator handles the interaction with the environment, limiting the achievable interaction control bandwidth. To solve this, we propose a novel control architecture that incorporates the macro manipulator into the active interaction control. This leads to a increase in control bandwidth by a factor of 2.1 compared to the state of the art architecture, based on the leader-follower approach and factor 12.5 compared to traditional robot-based force control. Further we propose surrogate models for a more efficient controller design and easy adaptation to hardware changes. We validate our approach by comparing it against the other control schemes in different experiments, like collision with an object, following a force trajectory and industrial assembly tasks.
comment: 17 pages, 14 figures, submitted to Robotics and Computer-Integrated Manufacturing (RCIM)
Towards Exploratory and Focused Manipulation with Bimanual Active Perception: A New Problem, Benchmark and Strategy ICRA 2026
Recently, active vision has reemerged as an important concept for manipulation, since visual occlusion occurs more frequently when main cameras are mounted on the robot heads. We reflect on the visual occlusion issue and identify its essence as the absence of information useful for task completion. Inspired by this, we come up with the more fundamental problem of Exploratory and Focused Manipulation (EFM). The proposed problem is about actively collecting information to complete challenging manipulation tasks that require exploration or focus. As an initial attempt to address this problem, we establish the EFM-10 benchmark that consists of 4 categories of tasks that align with our definition (10 tasks in total). We further come up with a Bimanual Active Perception (BAP) strategy, which leverages one arm to provide active vision and another arm to provide force sensing while manipulating. Based on this idea, we collect a dataset named BAPData for the tasks in EFM-10. With the dataset, we successfully verify the effectiveness of the BAP strategy in an imitation learning manner. We hope that the EFM-10 benchmark along with the BAP strategy can become a cornerstone that facilitates future research towards this direction. Project website: EFManipulation.github.io.
comment: ICRA 2026
LIEREx: Language-Image Embeddings for Robotic Exploration
Semantic maps allow a robot to reason about its surroundings to fulfill tasks such as navigating known environments, finding specific objects, and exploring unmapped areas. Traditional mapping approaches provide accurate geometric representations but are often constrained by pre-designed symbolic vocabularies. The reliance on fixed object classes makes it impractical to handle out-of-distribution knowledge not defined at design time. Recent advances in Vision-Language Foundation Models, such as CLIP, enable open-set mapping, where objects are encoded as high-dimensional embeddings rather than fixed labels. In LIEREx, we integrate these VLFMs with established 3D Semantic Scene Graphs to enable target-directed exploration by an autonomous agent in partially unknown environments.
comment: This preprint has not undergone peer review or any post-submission improvements or corrections. The Version of Record of this article is published in KI - Künstliche Intelligenz, and is available online at https://doi.org/10.1007/s13218-026-00902-6
ForSim: Stepwise Forward Simulation for Traffic Policy Fine-Tuning ICRA 2026
As the foundation of closed-loop training and evaluation in autonomous driving, traffic simulation still faces two fundamental challenges: covariate shift introduced by open-loop imitation learning and limited capacity to reflect the multimodal behaviors observed in real-world traffic. Although recent frameworks such as RIFT have partially addressed these issues through group-relative optimization, their forward simulation procedures remain largely non-reactive, leading to unrealistic agent interactions within the virtual domain and ultimately limiting simulation fidelity. To address these issues, we propose ForSim, a stepwise closed-loop forward simulation paradigm. At each virtual timestep, the traffic agent propagates the virtual candidate trajectory that best spatiotemporally matches the reference trajectory through physically grounded motion dynamics, thereby preserving multimodal behavioral diversity while ensuring intra-modality consistency. Other agents are updated with stepwise predictions, yielding coherent and interaction-aware evolution. When incorporated into the RIFT traffic simulation framework, ForSim operates in conjunction with group-relative optimization to fine-tune traffic policy. Extensive experiments confirm that this integration consistently improves safety while maintaining efficiency, realism, and comfort. These results underscore the importance of modeling closed-loop multimodal interactions within forward simulation and enhance the fidelity and reliability of traffic simulation for autonomous driving. Project Page: https://currychen77.github.io/ForSim/
comment: Accepted by ICRA 2026
Multi-Task Learning for Robot Perception with Imbalanced Data
Multi-task problem solving has been shown to improve the accuracy of the individual tasks, which is an important feature for robots, as they have a limited resource. However, when the number of labels for each task is not equal, namely imbalanced data exist, a problem may arise due to insufficient number of samples, and labeling is not very easy for mobile robots in every environment. We propose a method that can learn tasks even in the absence of the ground truth labels for some of the tasks. We also provide a detailed analysis of the proposed method. An interesting finding is related to the interaction of the tasks. We show a methodology to find out which tasks can improve the performance of other tasks. We investigate this by training the teacher network with the task outputs such as depth as inputs. We further provide empirical evidence when trained with a small amount of data. We use semantic segmentation and depth estimation tasks on different datasets, NYUDv2 and Cityscapes.
comment: 16 pages
Path Tracking with Dynamic Control Point Blending for Autonomous Vehicles: An Experimental Study
This paper presents an experimental study of a path-tracking framework for autonomous vehicles in which the lateral control command is applied to a dynamic control point along the wheelbase. Instead of enforcing a fixed reference at either the front or rear axle, the proposed method continuously interpolates between both, enabling smooth adaptation across driving contexts, including low-speed maneuvers and reverse motion. The lateral steering command is obtained by barycentric blending of two complementary controllers: a front-axle Stanley formulation and a rear-axle curvature-based geometric controller, yielding continuous transitions in steering behavior and improved tracking stability. In addition, we introduce a curvature-aware longitudinal control strategy based on virtual track borders and ray-tracing, which converts upcoming geometric constraints into a virtual obstacle distance and regulates speed accordingly. The complete approach is implemented in a unified control stack and validated in simulation and on a real autonomous vehicle equipped with GPS-RTK, radar, odometry, and IMU. The results in closed-loop tracking and backward maneuvers show improved trajectory accuracy, smoother steering profiles, and increased adaptability compared to fixed control-point baselines.
Multimodal Large Language Models for Real-Time Situated Reasoning
In this work, we explore how multimodal large language models can support real-time context- and value-aware decision-making. To do so, we combine the GPT-4o language model with a TurtleBot 4 platform simulating a smart vacuum cleaning robot in a home. The model evaluates the environment through vision input and determines whether it is appropriate to initiate cleaning. The system highlights the ability of these models to reason about domestic activities, social norms, and user preferences and take nuanced decisions aligned with the values of the people involved, such as cleanliness, comfort, and safety. We demonstrate the system in a realistic home environment, showing its ability to infer context and values from limited visual input. Our results highlight the promise of multimodal large language models in enhancing robotic autonomy and situational awareness, while also underscoring challenges related to consistency, bias, and real-time performance.
comment: Submitted to the interactivity track of the 21st ACM/IEEE International Conference on Human-Robot Interaction on December 2025, accepted January 2026
BTGenBot-2: Efficient Behavior Tree Generation with Small Language Models
Recent advances in robot learning increasingly rely on LLM-based task planning, leveraging their ability to bridge natural language with executable actions. While prior works showcased great performances, the widespread adoption of these models in robotics has been challenging as 1) existing methods are often closed-source or computationally intensive, neglecting the actual deployment on real-world physical systems, and 2) there is no universally accepted, plug-and-play representation for robotic task generation. Addressing these challenges, we propose BTGenBot-2, a 1B-parameter open-source small language model that directly converts natural language task descriptions and a list of robot action primitives into executable behavior trees in XML. Unlike prior approaches, BTGenBot-2 enables zero-shot BT generation, error recovery at inference and runtime, while remaining lightweight enough for resource-constrained robots. We further introduce the first standardized benchmark for LLM-based BT generation, covering 52 navigation and manipulation tasks in NVIDIA Isaac Sim. Extensive evaluations demonstrate that BTGenBot-2 consistently outperforms GPT-5, Claude Opus 4.1, and larger open-source models across both functional and non-functional metrics, achieving average success rates of 90.38% in zero-shot and 98.07% in one-shot, while delivering up to 16x faster inference compared to the previous BTGenBot.
Vision-only UAV State Estimation for Fast Flights Without External Localization Systems: A2RL Drone Racing Finalist Approach
Fast flights with aggressive maneuvers in cluttered GNSS-denied environments require fast, reliable, and accurate UAV state estimation. In this paper, we present an approach for onboard state estimation of a high-speed UAV using a monocular RGB camera and an IMU. Our approach fuses data from Visual-Inertial Odometry (VIO), an onboard landmark-based camera measurement system, and an IMU to produce an accurate state estimate. Using onboard measurement data, we estimate and compensate for VIO drift through a novel mathematical drift model. State-of-the-art approaches often rely on more complex hardware (e.g., stereo cameras or rangefinders) and use uncorrected drifting VIO velocities, orientation, and angular rates, leading to errors during fast maneuvers. In contrast, our method corrects all VIO states (position, orientation, linear and angular velocity), resulting in accurate state estimation even during rapid and dynamic motion. Our approach was thoroughly validated through 1600 simulations and numerous real-world experiments. Furthermore, we applied the proposed method in the A2RL Drone Racing Challenge 2025, where our team advanced to the final four out of 210 teams and earned a medal.
comment: Visit our webpage for more details: https://mrs.fel.cvut.cz/papers/vision-only-uav-state-estimation
Concept-Based Dictionary Learning for Inference-Time Safety in Vision Language Action Models
Vision Language Action (VLA) models close the perception action loop by translating multimodal instructions into executable behaviors, but this very capability magnifies safety risks: jailbreaks that merely yield toxic text in LLMs can trigger unsafe physical actions in embodied systems. Existing defenses alignment, filtering, or prompt hardening intervene too late or at the wrong modality, leaving fused representations exploitable. We introduce a concept-based dictionary learning framework for inference-time safety control. By constructing sparse, interpretable dictionaries from hidden activations, our method identifies harmful concept directions and applies threshold-based interventions to suppress or block unsafe activations. Experiments on Libero-Harm, BadRobot, RoboPair, and IS-Bench show that our approach achieves state-of-the-art defense performance, cutting attack success rates by over 70\% while maintaining task success. Crucially, the framework is plug-in and model-agnostic, requiring no retraining and integrating seamlessly with diverse VLAs. To our knowledge, this is the first inference-time concept-based safety method for embodied systems, advancing both interpretability and safe deployment of VLA models.
From Knowing to Doing Precisely: A General Self-Correction and Termination Framework for VLA models
While vision-language-action (VLA) models for embodied agents integrate perception, reasoning, and control, they remain constrained by two critical weaknesses: first, during grasping tasks, the action tokens generated by the language model often exhibit subtle spatial deviations from the target object, resulting in grasp failures; second, they lack the ability to reliably recognize task completion, which leads to redundant actions and frequent timeout errors. To address these challenges and enhance robustness, we propose a lightweight, training-free framework, VLA-SCT. This framework operates as a self-correcting control loop, combining data-driven action refinement with conditional logic for termination. Consequently, compared to baseline approaches, our method achieves consistent improvements across all datasets in the LIBERO benchmark, significantly increasing the success rate of fine manipulation tasks and ensuring accurate task completion, thereby promoting the deployment of more reliable VLA agents in complex, unstructured environments.
comment: Accepted to 2026 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2026)
RFS: Reinforcement learning with Residual flow steering for dexterous manipulation
Imitation learning has emerged as an effective approach for bootstrapping sequential decision-making in robotics, achieving strong performance even in high-dimensional dexterous manipulation tasks. Recent behavior cloning methods further leverage expressive generative models, such as diffusion models and flow matching, to represent multimodal action distributions. However, policies pretrained in this manner often exhibit limited generalization and require additional fine-tuning to achieve robust performance at deployment time. Such adaptation must preserve the global exploration benefits of pretraining while enabling rapid correction of local execution errors.We propose \emph{Residual Flow Steering} (RFS), a data-efficient reinforcement learning framework for adapting pretrained generative policies. RFS steers a pretrained flow-matching policy by jointly optimizing a residual action and a latent noise distribution, enabling complementary forms of exploration: local refinement through residual corrections and global exploration through latent-space modulation. This design allows efficient adaptation while retaining the expressive structure of the pretrained policy.We demonstrate the effectiveness of RFS on dexterous manipulation tasks, showing efficient fine-tuning both in simulation and in real-world settings when adapting pretrained base policies.Project website:https://weirdlabuw.github.io/rfs.
DDP-WM: Disentangled Dynamics Prediction for Efficient World Models
World models are essential for autonomous robotic planning. However, the substantial computational overhead of existing dense Transformerbased models significantly hinders real-time deployment. To address this efficiency-performance bottleneck, we introduce DDP-WM, a novel world model centered on the principle of Disentangled Dynamics Prediction (DDP). We hypothesize that latent state evolution in observed scenes is heterogeneous and can be decomposed into sparse primary dynamics driven by physical interactions and secondary context-driven background updates. DDP-WM realizes this decomposition through an architecture that integrates efficient historical processing with dynamic localization to isolate primary dynamics. By employing a crossattention mechanism for background updates, the framework optimizes resource allocation and provides a smooth optimization landscape for planners. Extensive experiments demonstrate that DDP-WM achieves significant efficiency and performance across diverse tasks, including navigation, precise tabletop manipulation, and complex deformable or multi-body interactions. Specifically, on the challenging Push-T task, DDP-WM achieves an approximately 9 times inference speedup and improves the MPC success rate from 90% to98% compared to state-of-the-art dense models. The results establish a promising path for developing efficient, high-fidelity world models. Codes will be available at https://github.com/HCPLabSYSU/DDP-WM.
comment: Codes will be available at https://github.com/HCPLabSYSU/DDP-WM
Uncertainty-Aware Non-Prehensile Manipulation with Mobile Manipulators under Object-Induced Occlusion ICRA 2026
Non-prehensile manipulation using onboard sensing presents a fundamental challenge: the manipulated object occludes the sensor's field of view, creating occluded regions that can lead to collisions. We propose CURA-PPO, a reinforcement learning framework that addresses this challenge by explicitly modeling uncertainty under partial observability. By predicting collision possibility as a distribution, we extract both risk and uncertainty to guide the robot's actions. The uncertainty term encourages active perception, enabling simultaneous manipulation and information gathering to resolve occlusions. When combined with confidence maps that capture observation reliability, our approach enables safe navigation despite severe sensor occlusion. Extensive experiments across varying object sizes and obstacle configurations demonstrate that CURA-PPO achieves up to 3X higher success rates than the baselines, with learned behaviors that handle occlusions. Our method provides a practical solution for autonomous manipulation in cluttered environments using only onboard sensing.
comment: 8 pages, 7 figures, Accepted to ICRA 2026, Webpage: https://jiw0o.github.io/cura-ppo/
Tilt-Ropter: A Novel Hybrid Aerial and Terrestrial Vehicle with Tilt Rotors and Passive Wheels
In this work, we present Tilt-Ropter, a novel hybrid aerial-terrestrial vehicle (HATV) that combines tilt rotors with passive wheels to achieve energy-efficient multi-mode locomotion. Unlike existing under-actuated HATVs, the fully actuated design of Tilt-Ropter enables decoupled force and torque control, greatly enhancing its mobility and environmental adaptability. A nonlinear model predictive controller (NMPC) is developed to track reference trajectories and handle contact constraints across locomotion modes, while a dedicated control allocation module exploits actuation redundancy to achieve energy-efficient control of actuators. Additionally, to enhance robustness during ground contact, we introduce an external wrench estimation algorithm that estimates environmental interaction forces and torques in real time. The system is validated through both simulation and real-world experiments, including seamless air-ground transitions and trajectory tracking. Results show low tracking errors in both modes and highlight a 92.8% reduction in power consumption during ground locomotion, demonstrating the system's potential for long-duration missions across large-scale and energy-constrained environments.
comment: 8 pages, 10 figures
GSR: Learning Structured Reasoning for Embodied Manipulation
Despite rapid progress, embodied agents still struggle with long-horizon manipulation that requires maintaining spatial consistency, causal dependencies, and goal constraints. A key limitation of existing approaches is that task reasoning is implicitly embedded in high-dimensional latent representations, making it challenging to separate task structure from perceptual variability. We introduce Grounded Scene-graph Reasoning (GSR), a structured reasoning paradigm that explicitly models world-state evolution as transitions over semantically grounded scene graphs. By reasoning step-wise over object states and spatial relations, rather than directly mapping perception to actions, GSR enables explicit reasoning about action preconditions, consequences, and goal satisfaction in a physically grounded space. To support learning such reasoning, we construct Manip-Cognition-1.6M, a large-scale dataset that jointly supervises world understanding, action planning, and goal interpretation. Extensive evaluations across RLBench, LIBERO, GSR-benchmark, and real-world robotic tasks show that GSR significantly improves zero-shot generalization and long-horizon task completion over prompting-based baselines. These results highlight explicit world-state representations as a key inductive bias for scalable embodied reasoning.
Towards Autonomous Instrument Tray Assembly for Sterile Processing Applications
The Sterile Processing and Distribution (SPD) department is responsible for cleaning, disinfecting, inspecting, and assembling surgical instruments between surgeries. Manual inspection and preparation of instrument trays is a time-consuming, error-prone task, often prone to contamination and instrument breakage. In this work, we present a fully automated robotic system that sorts and structurally packs surgical instruments into sterile trays, focusing on automation of the SPD assembly stage. A custom dataset comprising 31 surgical instruments and 6,975 annotated images was collected to train a hybrid perception pipeline using YOLO12 for detection and a cascaded ResNet-based model for fine-grained classification. The system integrates a calibrated vision module, a 6-DOF Staubli TX2-60L robotic arm with a custom dual electromagnetic gripper, and a rule-based packing algorithm that reduces instrument collisions during transport. The packing framework uses 3D printed dividers and holders to physically isolate instruments, reducing collision and friction during transport. Experimental evaluations show high perception accuracy and statistically significant reduction in tool-to-tool collisions compared to human-assembled trays. This work serves as the scalable first step toward automating SPD workflows, improving safety, and consistency of surgical preparation while reducing SPD processing times.
comment: 7 pages, 9 figures, 2026 International Symposium on Medical Robotics
Real-Time Loop Closure Detection in Visual SLAM via NetVLAD and Faiss
Loop closure detection (LCD) is a core component of simultaneous localization and mapping (SLAM): it identifies revisited places and enables pose-graph constraints that correct accumulated drift. Classic bag-of-words approaches such as DBoW are efficient but often degrade under appearance change and perceptual aliasing. In parallel, deep learning-based visual place recognition (VPR) descriptors (e.g., NetVLAD and Transformer-based models) offer stronger robustness, but their computational cost is often viewed as a barrier to real-time SLAM. In this paper, we empirically evaluate NetVLAD as an LCD module and compare it against DBoW on the KITTI dataset. We introduce a Fine-Grained Top-K precision-recall curve that better reflects LCD settings where a query may have zero or multiple valid matches. With Faiss-accelerated nearestneighbor search, NetVLAD achieves real-time query speed while improving accuracy and robustness over DBoW, making it a practical drop-in alternative for LCD in SLAM.
AgenticLab: A Real-World Robot Agent Platform that Can See, Think, and Act
Recent advances in large vision-language models (VLMs) have demonstrated generalizable open-vocabulary perception and reasoning, yet their real-robot manipulation capability remains unclear for long-horizon, closed-loop execution in unstructured, in-the-wild environments. Prior VLM-based manipulation pipelines are difficult to compare across different research groups' setups, and many evaluations rely on simulation, privileged state, or specially designed setups. We present AgenticLab, a model-agnostic robot agent platform and benchmark for open-world manipulation. AgenticLab provides a closed-loop agent pipeline for perception, task decomposition, online verification, and replanning. Using AgenticLab, we benchmark state-of-the-art VLM-based agents on real-robot tasks in unstructured environments. Our benchmark reveals several failure modes that offline vision-language tests (e.g., VQA and static image understanding) fail to capture, including breakdowns in multi-step grounding consistency, object grounding under occlusion and scene changes, and insufficient spatial reasoning for reliable manipulation. We will release the full hardware and software stack to support reproducible evaluation and accelerate research on general-purpose robot agents.
From Perception to Action: Spatial AI Agents and World Models
While large language models have become the prevailing approach for agentic reasoning and planning, their success in symbolic domains does not readily translate to the physical world. Spatial intelligence, the ability to perceive 3D structure, reason about object relationships, and act under physical constraints, is an orthogonal capability that proves important for embodied agents. Existing surveys address either agentic architectures or spatial domains in isolation. None provide a unified framework connecting these complementary capabilities. This paper bridges that gap. Through a thorough review of over 2,000 papers, citing 742 works from top-tier venues, we introduce a unified three-axis taxonomy connecting agentic capabilities with spatial tasks across scales. Crucially, we distinguish spatial grounding (metric understanding of geometry and physics) from symbolic grounding (associating images with text), arguing that perception alone does not confer agency. Our analysis reveals three key findings mapped to these axes: (1) hierarchical memory systems (Capability axis) are important for long-horizon spatial tasks. (2) GNN-LLM integration (Task axis) is a promising approach for structured spatial reasoning. (3) World models (Scale axis) are essential for safe deployment across micro-to-macro spatial scales. We conclude by identifying six grand challenges and outlining directions for future research, including the need for unified evaluation frameworks to standardize cross-domain assessment. This taxonomy provides a foundation for unifying fragmented research efforts and enabling the next generation of spatially-aware autonomous systems in robotics, autonomous vehicles, and geospatial intelligence.
comment: 61 pages, 742 citations, 1 figure, 3 tables. Survey paper on spatial AI agents, embodied AI, graph neural networks, and world models
A Closed-Form Geometric Retargeting Solver for Upper Body Humanoid Robot Teleoperation
Retargeting human motion to robot poses is a practical approach for teleoperating bimanual humanoid robot arms, but existing methods can be suboptimal and slow, often causing undesirable motion or latency. This is due to optimizing to match robot end-effector to human hand position and orientation, which can also limit the robot's workspace to that of the human. Instead, this paper reframes retargeting as an orientation alignment problem, enabling a closed-form, geometric solution algorithm with an optimality guarantee. The key idea is to align a robot arm to a human's upper and lower arm orientations, as identified from shoulder, elbow, and wrist (SEW) keypoints; hence, the method is called SEW-Mimic. The method has fast inference (3 kHz) on standard commercial CPUs, leaving computational overhead for downstream applications; an example in this paper is a safety filter to avoid bimanual self-collision. The method suits most 7-degree-of-freedom robot arms and humanoids, and is agnostic to input keypoint source. Experiments show that SEW-Mimic outperforms other retargeting methods in computation time and accuracy. A pilot user study suggests that the method improves teleoperation task success. Preliminary analysis indicates that data collected with SEW-Mimic improves policy learning due to being smoother. SEW-Mimic is also shown to be a drop-in way to accelerate full-body humanoid retargeting. Finally, hardware demonstrations illustrate SEW-Mimic's practicality. The results emphasize the utility of SEW-Mimic as a fundamental building block for bimanual robot manipulation and humanoid robot teleoperation.
comment: Project page at https://sew-mimic.com/
AdaptNC: Adaptive Nonconformity Scores for Uncertainty-Aware Autonomous Systems in Dynamic Environments
Rigorous uncertainty quantification is essential for the safe deployment of autonomous systems in unconstrained environments. Conformal Prediction (CP) provides a distribution-free framework for this task, yet its standard formulations rely on exchangeability assumptions that are violated by the distribution shifts inherent in real-world robotics. Existing online CP methods maintain target coverage by adaptively scaling the conformal threshold, but typically employ a static nonconformity score function. We show that this fixed geometry leads to highly conservative, volume-inefficient prediction regions when environments undergo structural shifts. To address this, we propose \textbf{AdaptNC}, a framework for the joint online adaptation of both the nonconformity score parameters and the conformal threshold. AdaptNC leverages an adaptive reweighting scheme to optimize score functions, and introduces a replay buffer mechanism to mitigate the coverage instability that occurs during score transitions. We evaluate AdaptNC on diverse robotic benchmarks involving multi-agent policy changes, environmental changes and sensor degradation. Our results demonstrate that AdaptNC significantly reduces prediction region volume compared to state-of-the-art threshold-only baselines while maintaining target coverage levels.
Efficiently Solving Mixed-Hierarchy Games with Quasi-Policy Approximations
Multi-robot coordination often exhibits hierarchical structure, with some robots' decisions depending on the planned behaviors of others. While game theory provides a principled framework for such interactions, existing solvers struggle to handle mixed information structures that combine simultaneous (Nash) and hierarchical (Stackelberg) decision-making. We study N-robot forest-structured mixed-hierarchy games, in which each robot acts as a Stackelberg leader over its subtree while robots in different branches interact via Nash equilibria. We derive the Karush-Kuhn-Tucker (KKT) first-order optimality conditions for this class of games and show that they involve increasingly high-order derivatives of robots' best-response policies as the hierarchy depth grows, rendering a direct solution intractable. To overcome this challenge, we introduce a quasi-policy approximation that removes higher-order policy derivatives and develop an inexact Newton method for efficiently solving the resulting approximated KKT systems. We prove local exponential convergence of the proposed algorithm for games with non-quadratic objectives and nonlinear constraints. The approach is implemented in a highly optimized Julia library (MixedHierarchyGames.jl) and evaluated in simulated experiments, demonstrating real-time convergence for complex mixed-hierarchy information structures.
UniDWM: Towards a Unified Driving World Model via Multifaceted Representation Learning
Achieving reliable and efficient planning in complex driving environments requires a model that can reason over the scene's geometry, appearance, and dynamics. We present UniDWM, a unified driving world model that advances autonomous driving through multifaceted representation learning. UniDWM constructs a structure- and dynamic-aware latent world representation that serves as a physically grounded state space, enabling consistent reasoning across perception, prediction, and planning. Specifically, a joint reconstruction pathway learns to recover the scene's structure, including geometry and visual texture, while a collaborative generation framework leverages a conditional diffusion transformer to forecast future world evolution within the latent space. Furthermore, we show that our UniDWM can be deemed as a variation of VAE, which provides theoretical guidance for the multifaceted representation learning. Extensive experiments demonstrate the effectiveness of UniDWM in trajectory planning, 4D reconstruction and generation, highlighting the potential of multifaceted world representations as a foundation for unified driving intelligence. The code will be publicly available at https://github.com/Say2L/UniDWM.
Co-Design of Rover Wheels and Control using Bayesian Optimization and Rover-Terrain Simulations
While simulation is vital for optimizing robotic systems, the cost of modeling deformable terrain has long limited its use in full-vehicle studies of off-road autonomous mobility. For example, Discrete Element Method (DEM) simulations are often confined to single-wheel tests, which obscures coupled wheel-vehicle-controller interactions and prevents joint optimization of mechanical design and control. This paper presents a Bayesian optimization framework that co-designs rover wheel geometry and steering controller parameters using high-fidelity, full-vehicle closed-loop simulations on deformable terrain. Using the efficiency and scalability of a continuum-representation model (CRM) for terramechanics, we evaluate candidate designs on trajectories of varying complexity while towing a fixed load. The optimizer tunes wheel parameters (radius, width, and grouser features) and steering PID gains under a multi-objective formulation that balances traversal speed, tracking error, and energy consumption. We compare two strategies: simultaneous co-optimization of wheel and controller parameters versus a sequential approach that decouples mechanical and control design. We analyze trade-offs in performance and computational cost. Across 3,000 full-vehicle simulations, campaigns finish in five to nine days, versus months with the group's earlier DEM-based workflow. Finally, a preliminary hardware study suggests the simulation-optimized wheel designs preserve relative performance trends on the physical rover. Together, these results show that scalable, high-fidelity simulation can enable practical co-optimization of wheel design and control for off-road vehicles on deformable terrain without relying on prohibitively expensive DEM studies. The simulation infrastructure (scripts and models) is released as open source in a public repository to support reproducibility and further research.
comment: 19 pages, 15 figures
RAPT: Model-Predictive Out-of-Distribution Detection and Failure Diagnosis for Sim-to-Real Humanoid Robots
Deploying learned control policies on humanoid robots is challenging: policies that appear robust in simulation can execute confidently in out-of-distribution (OOD) states after Sim-to-Real transfer, leading to silent failures that risk hardware damage. Although anomaly detection can mitigate these failures, prior methods are often incompatible with high-rate control, poorly calibrated at the extremely low false-positive rates required for practical deployment, or operate as black boxes that provide a binary stop signal without explaining why the robot drifted from nominal behavior. We present RAPT, a lightweight, self-supervised deployment-time monitor for 50Hz humanoid control. RAPT learns a probabilistic spatio-temporal manifold of nominal execution from simulation and evaluates execution-time predictive deviation as a calibrated, per-dimension signal. This yields (i) reliable online OOD detection under strict false-positive constraints and (ii) a continuous, interpretable measure of Sim-to-Real mismatch that can be tracked over time to quantify how far deployment has drifted from training. Beyond detection, we introduce an automated post-hoc root-cause analysis pipeline that combines gradient-based temporal saliency derived from RAPT's reconstruction objective with LLM-based reasoning conditioned on saliency and joint kinematics to produce semantic failure diagnoses in a zero-shot setting. We evaluate RAPT on a Unitree G1 humanoid across four complex tasks in simulation and on physical hardware. In large-scale simulation, RAPT improves True Positive Rate (TPR) by 37% over the strongest baseline at a fixed episode-level false positive rate of 0.5%. On real-world deployments, RAPT achieves a 12.5% TPR improvement and provides actionable interpretability, reaching 75% root-cause classification accuracy across 16 real-world failures using only proprioceptive data.
TreeLoc: 6-DoF LiDAR Global Localization in Forests via Inter-Tree Geometric Matching ICRA 2026
Reliable localization is crucial for navigation in forests, where GPS is often degraded and LiDAR measurements are repetitive, occluded, and structurally complex. These conditions weaken the assumptions of traditional urban-centric localization methods, which assume that consistent features arise from unique structural patterns, necessitating forest-centric solutions to achieve robustness in these environments. To address these challenges, we propose TreeLoc, a LiDAR-based global localization framework for forests that handles place recognition and 6-DoF pose estimation. We represent scenes using tree stems and their Diameter at Breast Height (DBH), which are aligned to a common reference frame via their axes and summarized using the tree distribution histogram (TDH) for coarse matching, followed by fine matching with a 2D triangle descriptor. Finally, pose estimation is achieved through a two-step geometric verification. On diverse forest benchmarks, TreeLoc outperforms baselines, achieving precise localization. Ablation studies validate the contribution of each component. We also propose applications for long-term forest management using descriptors from a compact global tree database. TreeLoc is open-sourced for the robotics community at https://github.com/minwoo0611/TreeLoc.
comment: An 8-page paper with 7 tables and 8 figures, accepted to ICRA 2026
Reward Evolution with Graph-of-Thoughts: A Bi-Level Language Model Framework for Reinforcement Learning
Designing effective reward functions remains a major challenge in reinforcement learning (RL), often requiring considerable human expertise and iterative refinement. Recent advances leverage Large Language Models (LLMs) for automated reward design, but these approaches are limited by hallucinations, reliance on human feedback, and challenges with handling complex, multi-step tasks. In this work, we introduce Reward Evolution with Graph-of-Thoughts (RE-GoT), a novel bi-level framework that enhances LLMs with structured graph-based reasoning and integrates Visual Language Models (VLMs) for automated rollout evaluation. RE-GoT first decomposes tasks into text-attributed graphs, enabling comprehensive analysis and reward function generation, and then iteratively refines rewards using visual feedback from VLMs without human intervention. Extensive experiments on 10 RoboGen and 4 ManiSkill2 tasks demonstrate that RE-GoT consistently outperforms existing LLM-based baselines. On RoboGen, our method improves average task success rates by 32.25%, with notable gains on complex multi-step tasks. On ManiSkill2, RE-GoT achieves an average success rate of 93.73% across four diverse manipulation tasks, significantly surpassing prior LLM-based approaches and even exceeding expert-designed rewards. Our results indicate that combining LLMs and VLMs with graph-of-thoughts reasoning provides a scalable and effective solution for autonomous reward evolution in RL.
Terrain Costmap Generation via Scaled Preference Conditioning
Successful autonomous robot navigation in off-road domains requires the ability to generate high-quality terrain costmaps that are able to both generalize well over a wide variety of terrains and rapidly adapt relative costs at test time to meet mission-specific needs. Existing approaches for costmap generation allow for either rapid test-time adaptation of relative costs (e.g., semantic segmentation methods) or generalization to new terrain types (e.g., representation learning methods), but not both. In this work, we present scaled preference conditioned all-terrain costmap generation (SPACER), a novel approach for generating terrain costmaps that leverages synthetic data during training in order to generalize well to new terrains, and allows for rapid test-time adaptation of relative costs by conditioning on a user-specified scaled preference context. Using large-scale aerial maps, we provide empirical evidence that SPACER outperforms other approaches at generating costmaps for terrain navigation, with the lowest measured regret across varied preferences in five of seven environments for global path planning.
HI-SLAM2: Geometry-Aware Gaussian SLAM for Fast Monocular Scene Reconstruction
We present HI-SLAM2, a geometry-aware Gaussian SLAM system that achieves fast and accurate monocular scene reconstruction using only RGB input. Existing Neural SLAM or 3DGS-based SLAM methods often trade off between rendering quality and geometry accuracy, our research demonstrates that both can be achieved simultaneously with RGB input alone. The key idea of our approach is to enhance the ability for geometry estimation by combining easy-to-obtain monocular priors with learning-based dense SLAM, and then using 3D Gaussian splatting as our core map representation to efficiently model the scene. Upon loop closure, our method ensures on-the-fly global consistency through efficient pose graph bundle adjustment and instant map updates by explicitly deforming the 3D Gaussian units based on anchored keyframe updates. Furthermore, we introduce a grid-based scale alignment strategy to maintain improved scale consistency in prior depths for finer depth details. Through extensive experiments on Replica, ScanNet, and ScanNet++, we demonstrate significant improvements over existing Neural SLAM methods and even surpass RGB-D-based methods in both reconstruction and rendering quality. The project page and source code will be made available at https://hi-slam2.github.io/.
What does really matter in image goal navigation?
Image goal navigation requires two different skills: firstly, core navigation skills, including the detection of free space and obstacles, and taking decisions based on an internal representation; and secondly, computing directional information by comparing visual observations to the goal image. Current state-of-the-art methods either rely on dedicated image-matching, or pre-training of computer vision modules on relative pose estimation. In this paper, we study whether this task can be efficiently solved with end-to-end training of full agents with RL, as has been claimed by recent work. A positive answer would have impact beyond Embodied AI and allow training of relative pose estimation from reward for navigation alone. In this large experimental study we investigate the effect of architectural choices like late fusion, channel stacking, space-to-depth projections and cross-attention, and their role in the emergence of relative pose estimators from navigation training. We show that the success of recent methods is influenced up to a certain extent by simulator settings, leading to shortcuts in simulation. However, we also show that these capabilities can be transferred to more realistic setting, up to some extent. We also find evidence for correlations between navigation performance and probed (emerging) relative pose estimation performance, an important sub skill.
MineInsight: A Multi-sensor Dataset for Humanitarian Demining Robotics in Off-Road Environments
The use of robotics in humanitarian demining increasingly involves computer vision techniques to improve landmine detection capabilities. However, in the absence of diverse and realistic datasets, the reliable validation of algorithms remains a challenge for the research community. In this paper, we introduce MineInsight, a publicly available multi-sensor, multi-spectral dataset designed for off-road landmine detection. The dataset features 35 different targets (15 landmines and 20 commonly found objects) distributed along three distinct tracks, providing a diverse and realistic testing environment. MineInsight is, to the best of our knowledge, the first dataset to integrate dual-view sensor scans from both an Unmanned Ground Vehicle and its robotic arm, offering multiple viewpoints to mitigate occlusions and improve spatial awareness. It features two LiDARs, as well as images captured at diverse spectral ranges, including visible (RGB, monochrome), visible short-wave infrared (VIS-SWIR), and long-wave infrared (LWIR). Additionally, the dataset provides bounding boxes generated by an automated pipeline and refined with human supervision. We recorded approximately one hour of data in both daylight and nighttime conditions, resulting in around 38,000 RGB frames, 53,000 VIS-SWIR frames, and 108,000 LWIR frames. MineInsight serves as a benchmark for developing and evaluating landmine detection algorithms. Our dataset is available at https://github.com/mariomlz99/MineInsight.
Policy Contrastive Decoding for Robotic Foundation Models
Robotic foundation models, or generalist robot policies, hold immense potential to enable flexible, general-purpose and dexterous robotic systems. Despite their advancements, our empirical experiments reveal that existing robot policies are prone to learning spurious correlations from pre-training trajectories, adversely affecting their generalization capabilities beyond the training data. To tackle this, we propose a novel Policy Contrastive Decoding (PCD) approach, which redirects the robot policy's focus toward object-relevant visual clues by contrasting action probability distributions derived from original and object-masked visual inputs. As a training-free method, our PCD can be used as a plugin to improve different types of robot policies without needing to finetune or access model weights. We conduct extensive experiments on top of three open-source robot policies, including the autoregressive policy OpenVLA and the diffusion-based policies Octo and $π_0$. The obtained results in both simulation and real-world environments prove PCD's flexibility and effectiveness, e.g., PCD enhances the state-of-the-art policy $π_0$ by 8.9% in the simulation environment and by 108% in the real-world environment. Code and demos are publicly available at: https://koorye.github.io/PCD.
SPARC: Spine with Prismatic and Revolute Compliance for Quadruped Robots
Quadruped mammals coordinate spinal bending and axial compression to enhance locomotion agility and efficiency. However, existing robotic spines typically lack the active compliance required to support such dynamic behaviours. We present SPARC, a compact 3-DoF sagittal-plane spine module that enables simultaneous revolute and prismatic motions within a 1.26 kg package. Using a floating-base impedance controller, we facilitate independent, task-space tuning of spinal stiffness and damping to mimic biological load-bearing strategies. Benchtop experiments confirm high-fidelity rendering of commanded impedance, with linear force-displacement error within 1.5%. Systematic locomotion simulations reveal a critical speed-dependency: while low-speed efficiency is insensitive to spinal properties, precise impedance tuning becomes indispensable for high-speed performance. Our results demonstrate that an optimally compliant spine reduces power consumption by 21% at 0.9 m/s compared to a rigid-spine baseline. This efficiency gain is mechanistically attributed to the spine's role in augmenting stride length and acting as a mechanical low-pass filter to attenuate high-frequency torque fluctuations. SPARC provides an open-source platform for systematic studies of spine compliance in legged locomotion. Available at: github.com/YueWang996/sparc
A Survey on Efficient Vision-Language-Action Models
Vision-Language-Action models (VLAs) represent a significant frontier in embodied intelligence, aiming to bridge digital knowledge with physical-world interaction. Despite their remarkable performance, foundational VLAs are hindered by the prohibitive computational and data demands inherent to their large-scale architectures. While a surge of recent research has focused on enhancing VLA efficiency, the field lacks a unified framework to consolidate these disparate advancements. To bridge this gap, this survey presents the first comprehensive review of Efficient Vision-Language-Action models (Efficient VLAs) across the entire model-training-data pipeline. Specifically, we introduce a unified taxonomy to systematically organize the disparate efforts in this domain, categorizing current techniques into three core pillars: (1) Efficient Model Design, focusing on efficient architectures and model compression; (2) Efficient Training, which reduces computational burdens during model learning; and (3) Efficient Data Collection, which addresses the bottlenecks in acquiring and utilizing robotic data. Through a critical review of state-of-the-art methods within this framework, this survey not only establishes a foundational reference for the community but also summarizes representative applications, delineates key challenges, and charts a roadmap for future research. We maintain a continuously updated project page to track our latest developments: https://evla-survey.github.io/.
comment: 28 pages, 8 figures
3D Dynamics-Aware Manipulation: Endowing Manipulation Policies with 3D Foresight ICRA 2026
The incorporation of world modeling into manipulation policy learning has pushed the boundary of manipulation performance. However, existing efforts simply model the 2D visual dynamics, which is insufficient for robust manipulation when target tasks involve prominent depth-wise movement. To address this, we present a 3D dynamics-aware manipulation framework that seamlessly integrates 3D world modeling and policy learning. Three self-supervised learning tasks (current depth estimation, future RGB-D prediction, 3D flow prediction) are introduced within our framework, which complement each other and endow the policy model with 3D foresight. Extensive experiments on simulation and the real world show that 3D foresight can greatly boost the performance of manipulation policies without sacrificing inference speed. Code is available at https://github.com/Stardust-hyx/3D-Foresight.
comment: ICRA 2026
Line-Search Filter Differential Dynamic Programming for Optimal Control with Nonlinear Equality Constraints ICRA
We present FilterDDP, a differential dynamic programming algorithm for solving discrete-time, optimal control problems (OCPs) with nonlinear equality constraints. Unlike prior methods based on merit functions or the augmented Lagrangian class of algorithms, FilterDDP uses a step filter in conjunction with a line search to handle equality constraints. We identify two important design choices for the step filter criteria which lead to robust numerical performance: 1) we use the Lagrangian instead of the cost in the step acceptance criterion and, 2) in the backward pass, we perturb the value function Hessian. Both choices are rigorously justified, for 2) in particular by a formal proof of local quadratic convergence. In addition to providing a primal-dual interior point extension for handling OCPs with both equality and inequality constraints, we validate FilterDDP on three contact implicit trajectory optimisation problems which arise in robotics.
comment: Accepted for publication in the IEEE International Conference on Robotics and Automation (ICRA) 2026
GenTrack2: An Improved Hybrid Approach for Visual Multi-Object Tracking
This paper proposes a visual multi-object tracking method that jointly employs stochastic and deterministic mechanisms to ensure identifier consistency for unknown and time-varying target numbers under nonlinear dynamics. A stochastic particle filter addresses nonlinear dynamics and non-Gaussian noise, with support from particle swarm optimization (PSO) to guide particles toward state distribution modes and mitigate divergence through proposed fitness measures incorporating motion consistency, appearance similarity, and social-interaction cues with neighboring targets. Deterministic association further enforces identifier consistency via a proposed cost matrix incorporating spatial consistency between particles and current detections, detection confidences, and track penalties. Subsequently, a novel scheme is proposed for the smooth updating of target states while preserving their identities, particularly for weak tracks during interactions with other targets and prolonged occlusions. Moreover, velocity regression over past states provides trend-seed velocities, enhancing particle sampling and state updates. The proposed tracker is designed to operate flexibly for both pre-recorded videos and camera live streams, where future frames are unavailable. Experimental results confirm superior performance compared to state-of-the-art trackers. The source-code reference implementations of both the proposed method and compared-trackers are provided on GitHub: https://github.com/SDU-VelKoTek/GenTrack2
comment: This work has been submitted to the IEEE for possible publication
Model Reconciliation through Explainability and Collaborative Recovery in Assistive Robotics
Whenever humans and robots work together, it is essential that unexpected robot behavior can be explained to the user. Especially in applications such as shared control the user and the robot must share the same model of the objects in the world, and the actions that can be performed on these objects. In this paper, we achieve this with a so-called model reconciliation framework. We leverage a Large Language Model to predict and explain the difference between the robot's and the human's mental models, without the need of a formal mental model of the user. Furthermore, our framework aims to solve the model divergence after the explanation by allowing the human to correct the robot. We provide an implementation in an assistive robotics domain, where we conduct a set of experiments with a real wheelchair-based mobile manipulator and its digital twin.
LaST$_{0}$: Latent Spatio-Temporal Chain-of-Thought for Robotic Vision-Language-Action Model
Vision-Language-Action (VLA) models have recently shown strong generalization, with some approaches seeking to explicitly generate linguistic reasoning traces or predict future observations prior to execution. However, explicit reasoning typically incurs non-negligible inference latency, which constrains the temporal resolution required for robotic manipulation. Moreover, such reasoning is confined to the linguistic space, imposing a representational bottleneck that struggles to faithfully capture ineffable physical attributes. To mitigate these limitations, we propose LaST$_0$, a framework that enables efficient reasoning before acting through a Latent Spatio-Temporal Chain-of-Thought (CoT), capturing fine-grained physical and robotic dynamics that are often difficult to verbalize. Specifically, we introduce a token-efficient latent CoT space that models future visual dynamics, 3D structural information, and robot proprioceptive states, and further extends these representations across time to enable temporally consistent implicit reasoning trajectories. Furthermore, LaST$_0$ adopts a dual-system architecture implemented via a Mixture-of-Transformers design, where a reasoning expert conducts low-frequency latent inference and an acting expert generates high-frequency actions conditioned on robotics-oriented latent representations. To facilitate coordination, LaST$_0$ is trained with heterogeneous operation frequencies, enabling adaptive switching during deployment. Across 10 real-world tasks spanning tabletop, mobile, and dexterous hand manipulation, LaST$_0$ improves mean success rates by 13%, 14% and 14% over prior SOTA VLA methods, respectively.
RF-MatID: Dataset and Benchmark for Radio Frequency Material Identification ICLR 2026
Accurate material identification plays a crucial role in embodied AI systems, enabling a wide range of applications. However, current vision-based solutions are limited by the inherent constraints of optical sensors, while radio-frequency (RF) approaches, which can reveal intrinsic material properties, have received growing attention. Despite this progress, RF-based material identification remains hindered by the lack of large-scale public datasets and the limited benchmarking of learning-based approaches. In this work, we present RF-MatID, the first open-source, large-scale, wide-band, and geometry-diverse RF dataset for fine-grained material identification. RF-MatID includes 16 fine-grained categories grouped into 5 superclasses, spanning a broad frequency range from 4 to 43.5 GHz, and comprises 142k samples in both frequency- and time-domain representations. The dataset systematically incorporates controlled geometry perturbations, including variations in incidence angle and stand-off distance. We further establish a multi-setting, multi-protocol benchmark by evaluating state-of-the-art deep learning models, assessing both in-distribution performance and out-of-distribution robustness under cross-angle and cross-distance shifts. The 5 frequency-allocation protocols enable systematic frequency- and region-level analysis, thereby facilitating real-world deployment. RF-MatID aims to enable reproducible research, accelerate algorithmic advancement, foster cross-domain robustness, and support the development of real-world application in RF-based material identification.
comment: Accepted by ICLR 2026
EgoFSD: Ego-Centric Fully Sparse Paradigm with Uncertainty Denoising and Iterative Refinement for Efficient End-to-End Self-Driving ICRA2026
Current End-to-End Autonomous Driving (E2E-AD) methods resort to unifying modular designs for various tasks (e.g. perception, prediction and planning). Although optimized with a fully differentiable framework in a planning-oriented manner, existing end-to-end driving systems lacking ego-centric designs still suffer from unsatisfactory performance and inferior efficiency, due to rasterized scene representation learning and redundant information transmission. In this paper, we propose an ego-centric fully sparse paradigm, named EgoFSD, for end-to-end self-driving. Specifically, EgoFSD consists of sparse perception, hierarchical interaction and iterative motion planner. The sparse perception module performs detection and online mapping based on sparse representation of the driving scene. The hierarchical interaction module aims to select the Closest In-Path Vehicle / Stationary (CIPV / CIPS) from coarse to fine, benefiting from an additional geometric prior. As for the iterative motion planner, both selected interactive agents and ego-vehicle are considered for joint motion prediction, where the output multi-modal ego-trajectories are optimized in an iterative fashion. In addition, position-level motion diffusion and trajectory-level planning denoising are introduced for uncertainty modeling, thereby enhancing the training stability and convergence speed. Extensive experiments are conducted on nuScenes and Bench2Drive datasets, which significantly reduces the average L2 error by 59% and collision rate by 92% than UniAD while achieves 6.9x faster running efficiency.
comment: Accepted to ICRA2026
A Three-Level Whole-Body Disturbance Rejection Control Framework for Dynamic Motions in Legged Robots
This paper presents a control framework designed to enhance the stability and robustness of legged robots in the presence of uncertainties, including model uncertainties, external disturbances, and faults. The framework enables the full-state feedback estimator to estimate and compensate for uncertainties in the whole-body dynamics of the legged robots. First, we propose a novel moving horizon extended state observer (MH-ESO) to estimate uncertainties and mitigate noise in legged systems, which can be integrated into the framework for disturbance compensation. Second, we introduce a three-level whole-body disturbance rejection control framework (T-WB-DRC). Unlike the previous two-level approach, this three-level framework considers both the plan based on whole-body dynamics without uncertainties and the plan based on dynamics with uncertainties, significantly improving payload transportation, external disturbance rejection, and fault tolerance. Third, simulations of both humanoid and quadruped robots in the Gazebo simulator demonstrate the effectiveness and versatility of T-WB-DRC. Finally, extensive experimental trials on a quadruped robot validate the robustness and stability of the system when using T-WB-DRC under various disturbance conditions.
comment: has been accepted for publication as a SPECIAL ISSUE paper in the IEEE Transactions on Automation Science and Engineering
A Gait Driven Reinforcement Learning Framework for Humanoid Robots
This paper presents a real-time gait driven training framework for humanoid robots. First, we introduce a novel gait planner that incorporates dynamics to design the desired joint trajectory. In the gait design process, the 3D robot model is decoupled into two 2D models, which are then approximated as hybrid inverted pendulums (H-LIP) for trajectory planning. The gait planner operates in parallel in real time within the robot's learning environment. Second, based on this gait planner, we design three effective reward functions within a reinforcement learning framework, forming a reward composition to achieve periodic bipedal gait. This reward composition reduces the robot's learning time and enhances locomotion performance. Finally, a gait design example, along with simulation and experimental comparisons, is presented to demonstrate the effectiveness of the proposed method.
System Identification for Virtual Sensor-Based Model Predictive Control: Application to a 2-DoF Direct-Drive Robotic Arm CDC 2025
Nonlinear Model Predictive Control (NMPC) offers a powerful approach for controlling complex nonlinear systems, yet faces two key challenges. First, accurately modeling nonlinear dynamics remains difficult. Second, variables directly related to control objectives often cannot be directly measured during operation. Although high-cost sensors can acquire these variables during model development, their use in practical deployment is typically infeasible. To overcome these limitations, we propose a Predictive Virtual Sensor Identification (PVSID) framework that leverages temporary high-cost sensors during the modeling phase to create virtual sensors for NMPC implementation. We validate PVSID on a Two-Degree-of-Freedom (2-DoF) direct-drive robotic arm with complex joint interactions, capturing tip position via motion capture during modeling and utilize an Inertial Measurement Unit (IMU) in NMPC. Experimental results show our NMPC with identified virtual sensors achieves precise tip trajectory tracking without requiring the motion capture system during operation. PVSID offers a practical solution for implementing optimal control in nonlinear systems where the measurement of key variables is constrained by cost or operational limitations.
comment: 6 pages, 5 figures. Published in the proceedings of the 2025 IEEE 64th Conference on Decision and Control (CDC 2025)
UNIC: Learning Unified Multimodal Extrinsic Contact Estimation
Contact-rich manipulation requires reliable estimation of extrinsic contacts-the interactions between a grasped object and its environment which provide essential contextual information for planning, control, and policy learning. However, existing approaches often rely on restrictive assumptions, such as predefined contact types, fixed grasp configurations, or camera calibration, that hinder generalization to novel objects and deployment in unstructured environments. In this paper, we present UNIC, a unified multimodal framework for extrinsic contact estimation that operates without any prior knowledge or camera calibration. UNIC directly encodes visual observations in the camera frame and integrates them with proprioceptive and tactile modalities in a fully data-driven manner. It introduces a unified contact representation based on scene affordance maps that captures diverse contact formations and employs a multimodal fusion mechanism with random masking, enabling robust multimodal representation learning. Extensive experiments demonstrate that UNIC performs reliably. It achieves a 9.6 mm average Chamfer distance error on unseen contact locations, performs well on unseen objects, remains robust under missing modalities, and adapts to dynamic camera viewpoints. These results establish extrinsic contact estimation as a practical and versatile capability for contact-rich manipulation. The overview and hardware experiment videos are at https://youtu.be/xpMitkxN6Ls?si=7Vgj-aZ_P1wtnWZN
Safe and Stable Neural Network Dynamical Systems for Robot Motion Planning RA-L
Learning safe and stable robot motions from demonstrations remains a challenge, especially in complex, nonlinear tasks involving dynamic, obstacle-rich environments. In this paper, we propose Safe and Stable Neural Network Dynamical Systems S$^2$-NNDS, a learning-from-demonstration framework that simultaneously learns expressive neural dynamical systems alongside neural Lyapunov stability and barrier safety certificates. Unlike traditional approaches with restrictive polynomial parameterizations, S$^2$-NNDS leverages neural networks to capture complex robot motions, providing probabilistic guarantees through split conformal prediction in learned certificates. Experimental results in various 2D and 3D datasets -- including LASA handwriting and demonstrations recorded kinesthetically from the Franka Emika Panda robot -- validate the effectiveness of S$^2$-NNDS in learning robust, safe, and stable motions from potentially unsafe demonstrations. The source code, supplementary material and experiment videos can be accessed via https://github.com/allemmbinn/S2NNDS
comment: Accepted for publication in IEEE Robotics and Automation Letters (RA-L)
Deep Transformer Network for Monocular Pose Estimation of Shipborne Unmanned Aerial Vehicle
This paper introduces a deep transformer network for estimating the relative 6D pose of a Unmanned Aerial Vehicle (UAV) with respect to a ship using monocular images. A synthetic dataset of ship images is created and annotated with 2D keypoints of multiple ship parts. A Transformer Neural Network model is trained to detect these keypoints and estimate the 6D pose of each part. The estimates are integrated using Bayesian fusion. The model is tested on synthetic data and in-situ flight experiments, demonstrating robustness and accuracy in various lighting conditions. The position estimation error is approximately 0.8\% and 1.0\% of the distance to the ship for the synthetic data and the flight experiments, respectively. The method has potential applications for ship-based autonomous UAV landing and navigation.
comment: 23 pages, 25 figures, 3 tables
Video World Models 13
World-Gymnast: Training Robots with Reinforcement Learning in a World Model
Robot learning from interacting with the physical world is fundamentally bottlenecked by the cost of physical interaction. The two alternatives, supervised finetuning (SFT) from expert demonstrations and reinforcement learning (RL) in a software-based simulator, are limited by the amount of expert data available and the sim-to-real gap for manipulation. With the recent emergence of world models learned from real-world video-action data, we ask the question of whether training a policy in a world model can be more effective than supervised learning or software simulation in achieving better real-robot performance. We propose World-Gymnast, which performs RL finetuning of a vision-language-action (VLA) policy by rolling out the policy in an action-conditioned video world model and rewarding the rollouts with a vision-language model (VLM). On the Bridge robot setup, World-Gymnast outperforms SFT by as much as 18x and outperforms software simulator by as much as 2x. More importantly, World-Gymnast demonstrates intriguing capabilities of RL with a world model, including training on diverse language instructions and novel scenes from the world model, test-time training in a novel scene, and online iterative world model and policy improvement. Our results suggest learning a world model and training robot policies in the cloud could be the key to bridging the gap between robots that work in demonstrations and robots that can work in anyone's household.
comment: https://world-gymnast.github.io/
Infinite-World: Scaling Interactive World Models to 1000-Frame Horizons via Pose-Free Hierarchical Memory
We propose Infinite-World, a robust interactive world model capable of maintaining coherent visual memory over 1000+ frames in complex real-world environments. While existing world models can be efficiently optimized on synthetic data with perfect ground-truth, they lack an effective training paradigm for real-world videos due to noisy pose estimations and the scarcity of viewpoint revisits. To bridge this gap, we first introduce a Hierarchical Pose-free Memory Compressor (HPMC) that recursively distills historical latents into a fixed-budget representation. By jointly optimizing the compressor with the generative backbone, HPMC enables the model to autonomously anchor generations in the distant past with bounded computational cost, eliminating the need for explicit geometric priors. Second, we propose an Uncertainty-aware Action Labeling module that discretizes continuous motion into a tri-state logic. This strategy maximizes the utilization of raw video data while shielding the deterministic action space from being corrupted by noisy trajectories, ensuring robust action-response learning. Furthermore, guided by insights from a pilot toy study, we employ a Revisit-Dense Finetuning Strategy using a compact, 30-minute dataset to efficiently activate the model's long-range loop-closure capabilities. Extensive experiments, including objective metrics and user studies, demonstrate that Infinite-World achieves superior performance in visual quality, action controllability, and spatial consistency.
comment: 14 pages, 8 figures
Self-Supervised Learning from Structural Invariance ICLR 2026
Joint-embedding self-supervised learning (SSL), the key paradigm for unsupervised representation learning from visual data, learns from invariances between semantically-related data pairs. We study the one-to-many mapping problem in SSL, where each datum may be mapped to multiple valid targets. This arises when data pairs come from naturally occurring generative processes, e.g., successive video frames. We show that existing methods struggle to flexibly capture this conditional uncertainty. As a remedy, we introduce a latent variable to account for this uncertainty and derive a variational lower bound on the mutual information between paired embeddings. Our derivation yields a simple regularization term for standard SSL objectives. The resulting method, which we call AdaSSL, applies to both contrastive and distillation-based SSL objectives, and we empirically show its versatility in causal representation learning, fine-grained image understanding, and world modeling on videos.
comment: ICLR 2026
UniDriveDreamer: A Single-Stage Multimodal World Model for Autonomous Driving
World models have demonstrated significant promise for data synthesis in autonomous driving. However, existing methods predominantly concentrate on single-modality generation, typically focusing on either multi-camera video or LiDAR sequence synthesis. In this paper, we propose UniDriveDreamer, a single-stage unified multimodal world model for autonomous driving, which directly generates multimodal future observations without relying on intermediate representations or cascaded modules. Our framework introduces a LiDAR-specific variational autoencoder (VAE) designed to encode input LiDAR sequences, alongside a video VAE for multi-camera images. To ensure cross-modal compatibility and training stability, we propose Unified Latent Anchoring (ULA), which explicitly aligns the latent distributions of the two modalities. The aligned features are fused and processed by a diffusion transformer that jointly models their geometric correspondence and temporal evolution. Additionally, structured scene layout information is projected per modality as a conditioning signal to guide the synthesis. Extensive experiments demonstrate that UniDriveDreamer outperforms previous state-of-the-art methods in both video and LiDAR generation, while also yielding measurable improvements in downstream
comment: 16 pages, 7 figures
Grounding Generated Videos in Feasible Plans via World Models
Large-scale video generative models have shown emerging capabilities as zero-shot visual planners, yet video-generated plans often violate temporal consistency and physical constraints, leading to failures when mapped to executable actions. To address this, we propose Grounding Video Plans with World Models (GVP-WM), a planning method that grounds video-generated plans into feasible action sequences using a learned action-conditioned world model. At test-time, GVP-WM first generates a video plan from initial and goal observations, then projects the video guidance onto the manifold of dynamically feasible latent trajectories via video-guided latent collocation. In particular, we formulate grounding as a goal-conditioned latent-space trajectory optimization problem that jointly optimizes latent states and actions under world-model dynamics, while preserving semantic alignment with the video-generated plan. Empirically, GVP-WM recovers feasible long-horizon plans from zero-shot image-to-video-generated and motion-blurred videos that violate physical constraints, across navigation and manipulation simulation tasks.
WS-IMUBench: Can Weakly Supervised Methods from Audio, Image, and Video Be Adapted for IMU-based Temporal Action Localization?
IMU-based Human Activity Recognition (HAR) has enabled a wide range of ubiquitous computing applications, yet its dominant clip classification paradigm cannot capture the rich temporal structure of real-world behaviors. This motivates a shift toward IMU Temporal Action Localization (IMU-TAL), which predicts both action categories and their start/end times in continuous streams. However, current progress is strongly bottlenecked by the need for dense, frame-level boundary annotations, which are costly and difficult to scale. To address this bottleneck, we introduce WS-IMUBench, a systematic benchmark study of weakly supervised IMU-TAL (WS-IMU-TAL) under only sequence-level labels. Rather than proposing a new localization algorithm, we evaluate how well established weakly supervised localization paradigms from audio, image, and video transfer to IMU-TAL under only sequence-level labels. We benchmark seven representative weakly supervised methods on seven public IMU datasets, resulting in over 3,540 model training runs and 7,080 inference evaluations. Guided by three research questions on transferability, effectiveness, and insights, our findings show that (i) transfer is modality-dependent, with temporal-domain methods generally more stable than image-derived proposal-based approaches; (ii) weak supervision can be competitive on favorable datasets (e.g., with longer actions and higher-dimensional sensing); and (iii) dominant failure modes arise from short actions, temporal ambiguity, and proposal quality. Finally, we outline concrete directions for advancing WS-IMU-TAL (e.g., IMU-specific proposal generation, boundary-aware objectives, and stronger temporal reasoning). Beyond individual results, WS-IMUBench establishes a reproducible benchmarking template, datasets, protocols, and analyses, to accelerate community-wide progress toward scalable WS-IMU-TAL.
comment: Under Review. 28 pages, 9 figures, 6 tables
Fast Autoregressive Video Diffusion and World Models with Temporal Cache Compression and Sparse Attention
Autoregressive video diffusion models enable streaming generation, opening the door to long-form synthesis, video world models, and interactive neural game engines. However, their core attention layers become a major bottleneck at inference time: as generation progresses, the KV cache grows, causing both increasing latency and escalating GPU memory, which in turn restricts usable temporal context and harms long-range consistency. In this work, we study redundancy in autoregressive video diffusion and identify three persistent sources: near-duplicate cached keys across frames, slowly evolving (largely semantic) queries/keys that make many attention computations redundant, and cross-attention over long prompts where only a small subset of tokens matters per frame. Building on these observations, we propose a unified, training-free attention framework for autoregressive diffusion: TempCache compresses the KV cache via temporal correspondence to bound cache growth; AnnCA accelerates cross-attention by selecting frame-relevant prompt tokens using fast approximate nearest neighbor (ANN) matching; and AnnSA sparsifies self-attention by restricting each query to semantically matched keys, also using a lightweight ANN. Together, these modules reduce attention, compute, and memory and are compatible with existing autoregressive diffusion backbones and world models. Experiments demonstrate up to x5--x10 end-to-end speedups while preserving near-identical visual quality and, crucially, maintaining stable throughput and nearly constant peak GPU memory usage over long rollouts, where prior methods progressively slow down and suffer from increasing memory usage.
comment: Project Page: https://dvirsamuel.github.io/fast-auto-regressive-video/
Combined Flicker-banding and Moire Removal for Screen-Captured Images
Capturing display screens with mobile devices has become increasingly common, yet the resulting images often suffer from severe degradations caused by the coexistence of moiré patterns and flicker-banding, leading to significant visual quality degradation. Due to the strong coupling of these two artifacts in real imaging processes, existing methods designed for single degradations fail to generalize to such compound scenarios. In this paper, we present the first systematic study on joint removal of moiré patterns and flicker-banding in screen-captured images, and propose a unified restoration framework, named CLEAR. To support this task, we construct a large-scale dataset containing both moiré patterns and flicker-banding, and introduce an ISP-based flicker simulation pipeline to stabilize model training and expand the degradation distribution. Furthermore, we design a frequency-domain decomposition and re-composition module together with a trajectory alignment loss to enhance the modeling of compound artifacts. Extensive experiments demonstrate that the proposed method consistently. outperforms existing image restoration approaches across multiple evaluation metrics, validating its effectiveness in complex real-world scenarios.
RDDM: Practicing RAW Domain Diffusion Model for Real-world Image Restoration
We present the RAW domain diffusion model (RDDM), an end-to-end diffusion model that restores photo-realistic images directly from the sensor RAW data. While recent sRGB-domain diffusion methods achieve impressive results, they are caught in a dilemma between high fidelity and image generation. These models process lossy sRGB inputs and neglect the accessibility of the sensor RAW images in many scenarios, e.g., in image and video capturing in edge devices, resulting in sub-optimal performance. RDDM obviates this limitation by directly restoring images in the RAW domain, replacing the conventional two-stage image signal processing (ISP)->Image Restoration (IR) pipeline. However, a simple adaptation of pre-trained diffusion models to the RAW domain confronts many challenges. To this end, we propose: (1) a RAW-domain VAE (RVAE), encoding sensor RAW and decoding it into an enhanced linear domain image, to solve the out-of-distribution (OOD) issues between the different domain distributions; (2) a configurable multi-bayer (CMB) LoRA module, adapting diverse RAW Bayer patterns such as RGGB, BGGR, etc. To compensate for the deficiency in the dataset, we develop a scalable data synthesis pipeline synthesizing RAW LQ-HQ pairs from existing sRGB datasets for large-scale training. Extensive experiments demonstrate RDDM's superiority over state-of-the-art sRGB diffusion methods, yielding higher fidelity results with fewer artifacts. Codes will be publicly available at https://github.com/YanCHEN-fr/RDDM.
VQAThinker: Exploring Generalizable and Explainable Video Quality Assessment via Reinforcement Learning AAAI2026
Video quality assessment (VQA) aims to objectively quantify perceptual quality degradation in alignment with human visual perception. Despite recent advances, existing VQA models still suffer from two critical limitations: \textit{poor generalization to out-of-distribution (OOD) videos} and \textit{limited explainability}, which restrict their applicability in real-world scenarios. To address these challenges, we propose \textbf{VQAThinker}, a reasoning-based VQA framework that leverages large multimodal models (LMMs) with reinforcement learning to jointly model video quality understanding and scoring, emulating human perceptual decision-making. Specifically, we adopt group relative policy optimization (GRPO), a rule-guided reinforcement learning algorithm that enables reasoning over video quality under score-level supervision, and introduce three VQA-specific rewards: (1) a \textbf{bell-shaped regression reward} that increases rapidly as the prediction error decreases and becomes progressively less sensitive near the ground truth; (2) a \textbf{pairwise ranking reward} that guides the model to correctly determine the relative quality between video pairs; and (3) a \textbf{temporal consistency reward} that encourages the model to prefer temporally coherent videos over their perturbed counterparts. Extensive experiments demonstrate that VQAThinker achieves state-of-the-art performance on both in-domain and OOD VQA benchmarks, showing strong generalization for video quality scoring. Furthermore, evaluations on video quality understanding tasks validate its superiority in distortion attribution and quality description compared to existing explainable VQA models and LMMs. These findings demonstrate that reinforcement learning offers an effective pathway toward building generalizable and explainable VQA models solely with score-level supervision.
comment: Accepted by AAAI2026
Diffusion-based Layer-wise Semantic Reconstruction for Unsupervised Out-of-Distribution Detection
Unsupervised out-of-distribution (OOD) detection aims to identify out-of-domain data by learning only from unlabeled In-Distribution (ID) training samples, which is crucial for developing a safe real-world machine learning system. Current reconstruction-based methods provide a good alternative approach by measuring the reconstruction error between the input and its corresponding generative counterpart in the pixel/feature space. However, such generative methods face a key dilemma: improving the reconstruction power of the generative model while keeping a compact representation of the ID data. To address this issue, we propose the diffusion-based layer-wise semantic reconstruction approach for unsupervised OOD detection. The innovation of our approach is that we leverage the diffusion model's intrinsic data reconstruction ability to distinguish ID samples from OOD samples in the latent feature space. Moreover, to set up a comprehensive and discriminative feature representation, we devise a multi-layer semantic feature extraction strategy. By distorting the extracted features with Gaussian noise and applying the diffusion model for feature reconstruction, the separation of ID and OOD samples is implemented according to the reconstruction errors. Extensive experimental results on multiple benchmarks built upon various datasets demonstrate that our method achieves state-of-the-art performance in terms of detection accuracy and speed. Code is available at .
comment: 26 pages, 23 figures, published to Neurlps2024
VisionTrim: Unified Vision Token Compression for Training-Free MLLM Acceleration ICLR2026
Multimodal large language models (MLLMs) suffer from high computational costs due to excessive visual tokens, particularly in high-resolution and video-based scenarios. Existing token reduction methods typically focus on isolated pipeline components and often neglect textual alignment, leading to performance degradation. In this paper, we propose VisionTrim, a unified framework for training-free MLLM acceleration, integrating two effective plug-and-play modules: 1) the Dominant Vision Token Selection (DVTS) module, which preserves essential visual tokens via a global-local view, and 2) the Text-Guided Vision Complement (TGVC) module, which facilitates context-aware token merging guided by textual cues. Extensive experiments across diverse image and video multimodal benchmarks demonstrate the performance superiority of our VisionTrim, advancing practical MLLM deployment in real-world applications. The code is available at: https://github.com/hanxunyu/VisionTrim.
comment: ICLR2026, Code Link: https://github.com/hanxunyu/VisionTrim
MPF-Net: Exposing High-Fidelity AI-Generated Video Forgeries via Hierarchical Manifold Deviation and Micro-Temporal Fluctuations
With the rapid advancement of video generation models such as Veo and Wan, the visual quality of synthetic content has reached a level where macro-level semantic errors and temporal inconsistencies are no longer prominent. However, this does not imply that the distinction between real and cutting-edge high-fidelity fake is untraceable. We argue that AI-generated videos are essentially products of a manifold-fitting process rather than a physical recording. Consequently, the pixel composition logic of consecutive adjacent frames residual in AI videos exhibits a structured and homogenous characteristic. We term this phenomenon `Manifold Projection Fluctuations' (MPF). Driven by this insight, we propose a hierarchical dual-path framework that operates as a sequential filtering process. The first, the Static Manifold Deviation Branch, leverages the refined perceptual boundaries of Large-Scale Vision Foundation Models (VFMs) to capture residual spatial anomalies or physical violations that deviate from the natural real-world manifold (off-manifold). For the remaining high-fidelity videos that successfully reside on-manifold and evade spatial detection, we introduce the Micro-Temporal Fluctuation Branch as a secondary, fine-grained filter. By analyzing the structured MPF that persists even in visually perfect sequences, our framework ensures that forgeries are exposed regardless of whether they manifest as global real-world manifold deviations or subtle computational fingerprints.
Embodied Intelligence 35
Flow Policy Gradients for Robot Control
Likelihood-based policy gradient methods are the dominant approach for training robot control policies from rewards. These methods rely on differentiable action likelihoods, which constrain policy outputs to simple distributions like Gaussians. In this work, we show how flow matching policy gradients -- a recent framework that bypasses likelihood computation -- can be made effective for training and fine-tuning more expressive policies in challenging robot control settings. We introduce an improved objective that enables success in legged locomotion, humanoid motion tracking, and manipulation tasks, as well as robust sim-to-real transfer on two humanoid robots. We then present ablations and analysis on training dynamics. Results show how policies can exploit the flow representation for exploration when training from scratch, as well as improved fine-tuning robustness over baselines.
comment: Project webpage: https://hongsukchoi.github.io/fpo-control
MentisOculi: Revealing the Limits of Reasoning with Mental Imagery
Frontier models are transitioning from multimodal large language models (MLLMs) that merely ingest visual information to unified multimodal models (UMMs) capable of native interleaved generation. This shift has sparked interest in using intermediate visualizations as a reasoning aid, akin to human mental imagery. Central to this idea is the ability to form, maintain, and manipulate visual representations in a goal-oriented manner. To evaluate and probe this capability, we develop MentisOculi, a procedural, stratified suite of multi-step reasoning problems amenable to visual solution, tuned to challenge frontier models. Evaluating visual strategies ranging from latent tokens to explicit generated imagery, we find they generally fail to improve performance. Analysis of UMMs specifically exposes a critical limitation: While they possess the textual reasoning capacity to solve a task and can sometimes generate correct visuals, they suffer from compounding generation errors and fail to leverage even ground-truth visualizations. Our findings suggest that despite their inherent appeal, visual thoughts do not yet benefit model reasoning. MentisOculi establishes the necessary foundation to analyze and close this gap across diverse model families.
comment: 9 pages, 8 figures
TIC-VLA: A Think-in-Control Vision-Language-Action Model for Robot Navigation in Dynamic Environments
Robots in dynamic, human-centric environments must follow language instructions while maintaining real-time reactive control. Vision-language-action (VLA) models offer a promising framework, but they assume temporally aligned reasoning and control, despite semantic inference being inherently delayed relative to real-time action. We introduce Think-in-Control (TIC)-VLA, a latency-aware framework that explicitly models delayed semantic reasoning during action generation. TIC-VLA defines a delayed semantic-control interface that conditions action generation on delayed vision-language semantic states and explicit latency metadata, in addition to current observations, enabling policies to compensate for asynchronous reasoning. We further propose a latency-consistent training pipeline that injects reasoning inference delays during imitation learning and online reinforcement learning, aligning training with asynchronous deployment. To support realistic evaluation, we present DynaNav, a physics-accurate, photo-realistic simulation suite for language-guided navigation in dynamic environments. Extensive experiments in simulation and on a real robot show that TIC-VLA consistently outperforms prior VLA models while maintaining robust real-time control under multi-second reasoning latency. Project website: https://ucla-mobility.github.io/TIC-VLA/
World-Gymnast: Training Robots with Reinforcement Learning in a World Model
Robot learning from interacting with the physical world is fundamentally bottlenecked by the cost of physical interaction. The two alternatives, supervised finetuning (SFT) from expert demonstrations and reinforcement learning (RL) in a software-based simulator, are limited by the amount of expert data available and the sim-to-real gap for manipulation. With the recent emergence of world models learned from real-world video-action data, we ask the question of whether training a policy in a world model can be more effective than supervised learning or software simulation in achieving better real-robot performance. We propose World-Gymnast, which performs RL finetuning of a vision-language-action (VLA) policy by rolling out the policy in an action-conditioned video world model and rewarding the rollouts with a vision-language model (VLM). On the Bridge robot setup, World-Gymnast outperforms SFT by as much as 18x and outperforms software simulator by as much as 2x. More importantly, World-Gymnast demonstrates intriguing capabilities of RL with a world model, including training on diverse language instructions and novel scenes from the world model, test-time training in a novel scene, and online iterative world model and policy improvement. Our results suggest learning a world model and training robot policies in the cloud could be the key to bridging the gap between robots that work in demonstrations and robots that can work in anyone's household.
comment: https://world-gymnast.github.io/
SoMA: A Real-to-Sim Neural Simulator for Robotic Soft-body Manipulation
Simulating deformable objects under rich interactions remains a fundamental challenge for real-to-sim robot manipulation, with dynamics jointly driven by environmental effects and robot actions. Existing simulators rely on predefined physics or data-driven dynamics without robot-conditioned control, limiting accuracy, stability, and generalization. This paper presents SoMA, a 3D Gaussian Splat simulator for soft-body manipulation. SoMA couples deformable dynamics, environmental forces, and robot joint actions in a unified latent neural space for end-to-end real-to-sim simulation. Modeling interactions over learned Gaussian splats enables controllable, stable long-horizon manipulation and generalization beyond observed trajectories without predefined physical models. SoMA improves resimulation accuracy and generalization on real-world robot manipulation by 20%, enabling stable simulation of complex tasks such as long-horizon cloth folding.
comment: Project page: https://city-super.github.io/SoMA/
PRISM: Performer RS-IMLE for Single-pass Multisensory Imitation Learning
Robotic imitation learning typically requires models that capture multimodal action distributions while operating at real-time control rates and accommodating multiple sensing modalities. Although recent generative approaches such as diffusion models, flow matching, and Implicit Maximum Likelihood Estimation (IMLE) have achieved promising results, they often satisfy only a subset of these requirements. To address this, we introduce PRISM, a single-pass policy based on a batch-global rejection-sampling variant of IMLE. PRISM couples a temporal multisensory encoder (integrating RGB, depth, tactile, audio, and proprioception) with a linear-attention generator using a Performer architecture. We demonstrate the efficacy of PRISM on a diverse real-world hardware suite, including loco-manipulation using a Unitree Go2 with a 7-DoF arm D1 and tabletop manipulation with a UR5 manipulator. Across challenging physical tasks such as pre-manipulation parking, high-precision insertion, and multi-object pick-and-place, PRISM outperforms state-of-the-art diffusion policies by 10-25% in success rate while maintaining high-frequency (30-50 Hz) closed-loop control. We further validate our approach on large-scale simulation benchmarks, including CALVIN, MetaWorld, and Robomimic. In CALVIN (10% data split), PRISM improves success rates by approximately 25% over diffusion and approximately 20% over flow matching, while simultaneously reducing trajectory jerk by 20x-50x. These results position PRISM as a fast, accurate, and multisensory imitation policy that retains multimodal action coverage without the latency of iterative sampling.
comment: 10 pages main text and 4 figures, and 11 pages appendix and 10 figures, total 21 pages and 14 figures
Context Learning for Multi-Agent Discussion
Multi-Agent Discussion (MAD) has garnered increasing attention very recently, where multiple LLM instances collaboratively solve problems via structured discussion. However, we find that current MAD methods easily suffer from discussion inconsistency, LLMs fail to reach a coherent solution, due to the misalignment between their individual contexts.In this paper, we introduce a multi-LLM context learning method (M2CL) that learns a context generator for each agent, capable of dynamically generating context instructions per discussion round via automatic information organization and refinement. Specifically, inspired by our theoretical insights on the context instruction, M2CL train the generators to control context coherence and output discrepancies via a carefully crafted self-adaptive mechanism.It enables LLMs to avoid premature convergence on majority noise and progressively reach the correct consensus. We evaluate M2CL on challenging tasks, including academic reasoning, embodied tasks, and mobile control. The results show that the performance of M2CL significantly surpasses existing methods by 20%--50%, while enjoying favorable transferability and computational efficiency.
LangMap: A Hierarchical Benchmark for Open-Vocabulary Goal Navigation
The relationships between objects and language are fundamental to meaningful communication between humans and AI, and to practically useful embodied intelligence. We introduce HieraNav, a multi-granularity, open-vocabulary goal navigation task where agents interpret natural language instructions to reach targets at four semantic levels: scene, room, region, and instance. To this end, we present Language as a Map (LangMap), a large-scale benchmark built on real-world 3D indoor scans with comprehensive human-verified annotations and tasks spanning these levels. LangMap provides region labels, discriminative region descriptions, discriminative instance descriptions covering 414 object categories, and over 18K navigation tasks. Each target features both concise and detailed descriptions, enabling evaluation across different instruction styles. LangMap achieves superior annotation quality, outperforming GOAT-Bench by 23.8% in discriminative accuracy using four times fewer words. Comprehensive evaluations of zero-shot and supervised models on LangMap reveal that richer context and memory improve success, while long-tailed, small, context-dependent, and distant goals, as well as multi-goal completion, remain challenging. HieraNav and LangMap establish a rigorous testbed for advancing language-driven embodied navigation. Project: https://bo-miao.github.io/LangMap
FD-VLA: Force-Distilled Vision-Language-Action Model for Contact-Rich Manipulation
Force sensing is a crucial modality for Vision-Language-Action (VLA) frameworks, as it enables fine-grained perception and dexterous manipulation in contact-rich tasks. We present Force-Distilled VLA (FD-VLA), a novel framework that integrates force awareness into contact-rich manipulation without relying on physical force sensors. The core of our approach is a Force Distillation Module (FDM), which distills force by mapping a learnable query token, conditioned on visual observations and robot states, into a predicted force token aligned with the latent representation of actual force signals. During inference, this distilled force token is injected into the pretrained VLM, enabling force-aware reasoning while preserving the integrity of its vision-language semantics. This design provides two key benefits: first, it allows practical deployment across a wide range of robots that lack expensive or fragile force-torque sensors, thereby reducing hardware cost and complexity; second, the FDM introduces an additional force-vision-state fusion prior to the VLM, which improves cross-modal alignment and enhances perception-action robustness in contact-rich scenarios. Surprisingly, our physical experiments show that the distilled force token outperforms direct sensor force measurements as well as other baselines, which highlights the effectiveness of this force-distilled VLA approach.
The Verification Crisis: Expert Perceptions of GenAI Disinformation and the Case for Reproducible Provenance
The growth of Generative Artificial Intelligence (GenAI) has shifted disinformation production from manual fabrication to automated, large-scale manipulation. This article presents findings from the first wave of a longitudinal expert perception survey (N=21) involving AI researchers, policymakers, and disinformation specialists. It examines the perceived severity of multimodal threats -- text, image, audio, and video -- and evaluates current mitigation strategies. Results indicate that while deepfake video presents immediate "shock" value, large-scale text generation poses a systemic risk of "epistemic fragmentation" and "synthetic consensus," particularly in the political domain. The survey reveals skepticism about technical detection tools, with experts favoring provenance standards and regulatory frameworks despite implementation barriers. GenAI disinformation research requires reproducible methods. The current challenge is measurement: without standardized benchmarks and reproducibility checklists, tracking or countering synthetic media remains difficult. We propose treating information integrity as an infrastructure with rigor in data provenance and methodological reproducibility.
comment: Accepted at ACM TheWebConf '26 Companion
A Unified Control Architecture for Macro-Micro Manipulation using a Active Remote Center of Compliance for Manufacturing Applications
Macro-micro manipulators combine a macro manipulator with a large workspace, such as an industrial robot, with a lightweight, high-bandwidth micro manipulator. This enables highly dynamic interaction control while preserving the wide workspace of the robot. Traditionally, position control is assigned to the macro manipulator, while the micro manipulator handles the interaction with the environment, limiting the achievable interaction control bandwidth. To solve this, we propose a novel control architecture that incorporates the macro manipulator into the active interaction control. This leads to a increase in control bandwidth by a factor of 2.1 compared to the state of the art architecture, based on the leader-follower approach and factor 12.5 compared to traditional robot-based force control. Further we propose surrogate models for a more efficient controller design and easy adaptation to hardware changes. We validate our approach by comparing it against the other control schemes in different experiments, like collision with an object, following a force trajectory and industrial assembly tasks.
comment: 17 pages, 14 figures, submitted to Robotics and Computer-Integrated Manufacturing (RCIM)
Towards Exploratory and Focused Manipulation with Bimanual Active Perception: A New Problem, Benchmark and Strategy ICRA 2026
Recently, active vision has reemerged as an important concept for manipulation, since visual occlusion occurs more frequently when main cameras are mounted on the robot heads. We reflect on the visual occlusion issue and identify its essence as the absence of information useful for task completion. Inspired by this, we come up with the more fundamental problem of Exploratory and Focused Manipulation (EFM). The proposed problem is about actively collecting information to complete challenging manipulation tasks that require exploration or focus. As an initial attempt to address this problem, we establish the EFM-10 benchmark that consists of 4 categories of tasks that align with our definition (10 tasks in total). We further come up with a Bimanual Active Perception (BAP) strategy, which leverages one arm to provide active vision and another arm to provide force sensing while manipulating. Based on this idea, we collect a dataset named BAPData for the tasks in EFM-10. With the dataset, we successfully verify the effectiveness of the BAP strategy in an imitation learning manner. We hope that the EFM-10 benchmark along with the BAP strategy can become a cornerstone that facilitates future research towards this direction. Project website: EFManipulation.github.io.
comment: ICRA 2026
BTGenBot-2: Efficient Behavior Tree Generation with Small Language Models
Recent advances in robot learning increasingly rely on LLM-based task planning, leveraging their ability to bridge natural language with executable actions. While prior works showcased great performances, the widespread adoption of these models in robotics has been challenging as 1) existing methods are often closed-source or computationally intensive, neglecting the actual deployment on real-world physical systems, and 2) there is no universally accepted, plug-and-play representation for robotic task generation. Addressing these challenges, we propose BTGenBot-2, a 1B-parameter open-source small language model that directly converts natural language task descriptions and a list of robot action primitives into executable behavior trees in XML. Unlike prior approaches, BTGenBot-2 enables zero-shot BT generation, error recovery at inference and runtime, while remaining lightweight enough for resource-constrained robots. We further introduce the first standardized benchmark for LLM-based BT generation, covering 52 navigation and manipulation tasks in NVIDIA Isaac Sim. Extensive evaluations demonstrate that BTGenBot-2 consistently outperforms GPT-5, Claude Opus 4.1, and larger open-source models across both functional and non-functional metrics, achieving average success rates of 90.38% in zero-shot and 98.07% in one-shot, while delivering up to 16x faster inference compared to the previous BTGenBot.
Concept-Based Dictionary Learning for Inference-Time Safety in Vision Language Action Models
Vision Language Action (VLA) models close the perception action loop by translating multimodal instructions into executable behaviors, but this very capability magnifies safety risks: jailbreaks that merely yield toxic text in LLMs can trigger unsafe physical actions in embodied systems. Existing defenses alignment, filtering, or prompt hardening intervene too late or at the wrong modality, leaving fused representations exploitable. We introduce a concept-based dictionary learning framework for inference-time safety control. By constructing sparse, interpretable dictionaries from hidden activations, our method identifies harmful concept directions and applies threshold-based interventions to suppress or block unsafe activations. Experiments on Libero-Harm, BadRobot, RoboPair, and IS-Bench show that our approach achieves state-of-the-art defense performance, cutting attack success rates by over 70\% while maintaining task success. Crucially, the framework is plug-in and model-agnostic, requiring no retraining and integrating seamlessly with diverse VLAs. To our knowledge, this is the first inference-time concept-based safety method for embodied systems, advancing both interpretability and safe deployment of VLA models.
From Knowing to Doing Precisely: A General Self-Correction and Termination Framework for VLA models
While vision-language-action (VLA) models for embodied agents integrate perception, reasoning, and control, they remain constrained by two critical weaknesses: first, during grasping tasks, the action tokens generated by the language model often exhibit subtle spatial deviations from the target object, resulting in grasp failures; second, they lack the ability to reliably recognize task completion, which leads to redundant actions and frequent timeout errors. To address these challenges and enhance robustness, we propose a lightweight, training-free framework, VLA-SCT. This framework operates as a self-correcting control loop, combining data-driven action refinement with conditional logic for termination. Consequently, compared to baseline approaches, our method achieves consistent improvements across all datasets in the LIBERO benchmark, significantly increasing the success rate of fine manipulation tasks and ensuring accurate task completion, thereby promoting the deployment of more reliable VLA agents in complex, unstructured environments.
comment: Accepted to 2026 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2026)
RFS: Reinforcement learning with Residual flow steering for dexterous manipulation
Imitation learning has emerged as an effective approach for bootstrapping sequential decision-making in robotics, achieving strong performance even in high-dimensional dexterous manipulation tasks. Recent behavior cloning methods further leverage expressive generative models, such as diffusion models and flow matching, to represent multimodal action distributions. However, policies pretrained in this manner often exhibit limited generalization and require additional fine-tuning to achieve robust performance at deployment time. Such adaptation must preserve the global exploration benefits of pretraining while enabling rapid correction of local execution errors.We propose \emph{Residual Flow Steering} (RFS), a data-efficient reinforcement learning framework for adapting pretrained generative policies. RFS steers a pretrained flow-matching policy by jointly optimizing a residual action and a latent noise distribution, enabling complementary forms of exploration: local refinement through residual corrections and global exploration through latent-space modulation. This design allows efficient adaptation while retaining the expressive structure of the pretrained policy.We demonstrate the effectiveness of RFS on dexterous manipulation tasks, showing efficient fine-tuning both in simulation and in real-world settings when adapting pretrained base policies.Project website:https://weirdlabuw.github.io/rfs.
DDP-WM: Disentangled Dynamics Prediction for Efficient World Models
World models are essential for autonomous robotic planning. However, the substantial computational overhead of existing dense Transformerbased models significantly hinders real-time deployment. To address this efficiency-performance bottleneck, we introduce DDP-WM, a novel world model centered on the principle of Disentangled Dynamics Prediction (DDP). We hypothesize that latent state evolution in observed scenes is heterogeneous and can be decomposed into sparse primary dynamics driven by physical interactions and secondary context-driven background updates. DDP-WM realizes this decomposition through an architecture that integrates efficient historical processing with dynamic localization to isolate primary dynamics. By employing a crossattention mechanism for background updates, the framework optimizes resource allocation and provides a smooth optimization landscape for planners. Extensive experiments demonstrate that DDP-WM achieves significant efficiency and performance across diverse tasks, including navigation, precise tabletop manipulation, and complex deformable or multi-body interactions. Specifically, on the challenging Push-T task, DDP-WM achieves an approximately 9 times inference speedup and improves the MPC success rate from 90% to98% compared to state-of-the-art dense models. The results establish a promising path for developing efficient, high-fidelity world models. Codes will be available at https://github.com/HCPLabSYSU/DDP-WM.
comment: Codes will be available at https://github.com/HCPLabSYSU/DDP-WM
Uncertainty-Aware Non-Prehensile Manipulation with Mobile Manipulators under Object-Induced Occlusion ICRA 2026
Non-prehensile manipulation using onboard sensing presents a fundamental challenge: the manipulated object occludes the sensor's field of view, creating occluded regions that can lead to collisions. We propose CURA-PPO, a reinforcement learning framework that addresses this challenge by explicitly modeling uncertainty under partial observability. By predicting collision possibility as a distribution, we extract both risk and uncertainty to guide the robot's actions. The uncertainty term encourages active perception, enabling simultaneous manipulation and information gathering to resolve occlusions. When combined with confidence maps that capture observation reliability, our approach enables safe navigation despite severe sensor occlusion. Extensive experiments across varying object sizes and obstacle configurations demonstrate that CURA-PPO achieves up to 3X higher success rates than the baselines, with learned behaviors that handle occlusions. Our method provides a practical solution for autonomous manipulation in cluttered environments using only onboard sensing.
comment: 8 pages, 7 figures, Accepted to ICRA 2026, Webpage: https://jiw0o.github.io/cura-ppo/
GSR: Learning Structured Reasoning for Embodied Manipulation
Despite rapid progress, embodied agents still struggle with long-horizon manipulation that requires maintaining spatial consistency, causal dependencies, and goal constraints. A key limitation of existing approaches is that task reasoning is implicitly embedded in high-dimensional latent representations, making it challenging to separate task structure from perceptual variability. We introduce Grounded Scene-graph Reasoning (GSR), a structured reasoning paradigm that explicitly models world-state evolution as transitions over semantically grounded scene graphs. By reasoning step-wise over object states and spatial relations, rather than directly mapping perception to actions, GSR enables explicit reasoning about action preconditions, consequences, and goal satisfaction in a physically grounded space. To support learning such reasoning, we construct Manip-Cognition-1.6M, a large-scale dataset that jointly supervises world understanding, action planning, and goal interpretation. Extensive evaluations across RLBench, LIBERO, GSR-benchmark, and real-world robotic tasks show that GSR significantly improves zero-shot generalization and long-horizon task completion over prompting-based baselines. These results highlight explicit world-state representations as a key inductive bias for scalable embodied reasoning.
AgenticLab: A Real-World Robot Agent Platform that Can See, Think, and Act
Recent advances in large vision-language models (VLMs) have demonstrated generalizable open-vocabulary perception and reasoning, yet their real-robot manipulation capability remains unclear for long-horizon, closed-loop execution in unstructured, in-the-wild environments. Prior VLM-based manipulation pipelines are difficult to compare across different research groups' setups, and many evaluations rely on simulation, privileged state, or specially designed setups. We present AgenticLab, a model-agnostic robot agent platform and benchmark for open-world manipulation. AgenticLab provides a closed-loop agent pipeline for perception, task decomposition, online verification, and replanning. Using AgenticLab, we benchmark state-of-the-art VLM-based agents on real-robot tasks in unstructured environments. Our benchmark reveals several failure modes that offline vision-language tests (e.g., VQA and static image understanding) fail to capture, including breakdowns in multi-step grounding consistency, object grounding under occlusion and scene changes, and insufficient spatial reasoning for reliable manipulation. We will release the full hardware and software stack to support reproducible evaluation and accelerate research on general-purpose robot agents.
Efficient Adversarial Attacks on High-dimensional Offline Bandits ICLR 2026
Bandit algorithms have recently emerged as a powerful tool for evaluating machine learning models, including generative image models and large language models, by efficiently identifying top-performing candidates without exhaustive comparisons. These methods typically rely on a reward model, often distributed with public weights on platforms such as Hugging Face, to provide feedback to the bandit. While online evaluation is expensive and requires repeated trials, offline evaluation with logged data has become an attractive alternative. However, the adversarial robustness of offline bandit evaluation remains largely unexplored, particularly when an attacker perturbs the reward model (rather than the training data) prior to bandit training. In this work, we fill this gap by investigating, both theoretically and empirically, the vulnerability of offline bandit training to adversarial manipulations of the reward model. We introduce a novel threat model in which an attacker exploits offline data in high-dimensional settings to hijack the bandit's behavior. Starting with linear reward functions and extending to nonlinear models such as ReLU neural networks, we study attacks on two Hugging Face evaluators used for generative model assessment: one measuring aesthetic quality and the other assessing compositional alignment. Our results show that even small, imperceptible perturbations to the reward model's weights can drastically alter the bandit's behavior. From a theoretical perspective, we prove a striking high-dimensional effect: as input dimensionality increases, the perturbation norm required for a successful attack decreases, making modern applications such as image evaluation especially vulnerable. Extensive experiments confirm that naive random perturbations are ineffective, whereas carefully targeted perturbations achieve near-perfect attack success rates ...
comment: Accepted at ICLR 2026 Conference
From Perception to Action: Spatial AI Agents and World Models
While large language models have become the prevailing approach for agentic reasoning and planning, their success in symbolic domains does not readily translate to the physical world. Spatial intelligence, the ability to perceive 3D structure, reason about object relationships, and act under physical constraints, is an orthogonal capability that proves important for embodied agents. Existing surveys address either agentic architectures or spatial domains in isolation. None provide a unified framework connecting these complementary capabilities. This paper bridges that gap. Through a thorough review of over 2,000 papers, citing 742 works from top-tier venues, we introduce a unified three-axis taxonomy connecting agentic capabilities with spatial tasks across scales. Crucially, we distinguish spatial grounding (metric understanding of geometry and physics) from symbolic grounding (associating images with text), arguing that perception alone does not confer agency. Our analysis reveals three key findings mapped to these axes: (1) hierarchical memory systems (Capability axis) are important for long-horizon spatial tasks. (2) GNN-LLM integration (Task axis) is a promising approach for structured spatial reasoning. (3) World models (Scale axis) are essential for safe deployment across micro-to-macro spatial scales. We conclude by identifying six grand challenges and outlining directions for future research, including the need for unified evaluation frameworks to standardize cross-domain assessment. This taxonomy provides a foundation for unifying fragmented research efforts and enabling the next generation of spatially-aware autonomous systems in robotics, autonomous vehicles, and geospatial intelligence.
comment: 61 pages, 742 citations, 1 figure, 3 tables. Survey paper on spatial AI agents, embodied AI, graph neural networks, and world models
A Closed-Form Geometric Retargeting Solver for Upper Body Humanoid Robot Teleoperation
Retargeting human motion to robot poses is a practical approach for teleoperating bimanual humanoid robot arms, but existing methods can be suboptimal and slow, often causing undesirable motion or latency. This is due to optimizing to match robot end-effector to human hand position and orientation, which can also limit the robot's workspace to that of the human. Instead, this paper reframes retargeting as an orientation alignment problem, enabling a closed-form, geometric solution algorithm with an optimality guarantee. The key idea is to align a robot arm to a human's upper and lower arm orientations, as identified from shoulder, elbow, and wrist (SEW) keypoints; hence, the method is called SEW-Mimic. The method has fast inference (3 kHz) on standard commercial CPUs, leaving computational overhead for downstream applications; an example in this paper is a safety filter to avoid bimanual self-collision. The method suits most 7-degree-of-freedom robot arms and humanoids, and is agnostic to input keypoint source. Experiments show that SEW-Mimic outperforms other retargeting methods in computation time and accuracy. A pilot user study suggests that the method improves teleoperation task success. Preliminary analysis indicates that data collected with SEW-Mimic improves policy learning due to being smoother. SEW-Mimic is also shown to be a drop-in way to accelerate full-body humanoid retargeting. Finally, hardware demonstrations illustrate SEW-Mimic's practicality. The results emphasize the utility of SEW-Mimic as a fundamental building block for bimanual robot manipulation and humanoid robot teleoperation.
comment: Project page at https://sew-mimic.com/
Governance at the Edge of Architecture: Regulating NeuroAI and Neuromorphic Systems
Current AI governance frameworks, including regulatory benchmarks for accuracy, latency, and energy efficiency, are built for static, centrally trained artificial neural networks on von Neumann hardware. NeuroAI systems, embodied in neuromorphic hardware and implemented via spiking neural networks, break these assumptions. This paper examines the limitations of current AI governance frameworks for NeuroAI, arguing that assurance and audit methods must co-evolve with these architectures, aligning traditional regulatory metrics with the physics, learning dynamics, and embodied efficiency of brain-inspired computation to enable technically grounded assurance.
comment: 9 pages, 1 table, 1 figure
Reward Evolution with Graph-of-Thoughts: A Bi-Level Language Model Framework for Reinforcement Learning
Designing effective reward functions remains a major challenge in reinforcement learning (RL), often requiring considerable human expertise and iterative refinement. Recent advances leverage Large Language Models (LLMs) for automated reward design, but these approaches are limited by hallucinations, reliance on human feedback, and challenges with handling complex, multi-step tasks. In this work, we introduce Reward Evolution with Graph-of-Thoughts (RE-GoT), a novel bi-level framework that enhances LLMs with structured graph-based reasoning and integrates Visual Language Models (VLMs) for automated rollout evaluation. RE-GoT first decomposes tasks into text-attributed graphs, enabling comprehensive analysis and reward function generation, and then iteratively refines rewards using visual feedback from VLMs without human intervention. Extensive experiments on 10 RoboGen and 4 ManiSkill2 tasks demonstrate that RE-GoT consistently outperforms existing LLM-based baselines. On RoboGen, our method improves average task success rates by 32.25%, with notable gains on complex multi-step tasks. On ManiSkill2, RE-GoT achieves an average success rate of 93.73% across four diverse manipulation tasks, significantly surpassing prior LLM-based approaches and even exceeding expert-designed rewards. Our results indicate that combining LLMs and VLMs with graph-of-thoughts reasoning provides a scalable and effective solution for autonomous reward evolution in RL.
What does really matter in image goal navigation?
Image goal navigation requires two different skills: firstly, core navigation skills, including the detection of free space and obstacles, and taking decisions based on an internal representation; and secondly, computing directional information by comparing visual observations to the goal image. Current state-of-the-art methods either rely on dedicated image-matching, or pre-training of computer vision modules on relative pose estimation. In this paper, we study whether this task can be efficiently solved with end-to-end training of full agents with RL, as has been claimed by recent work. A positive answer would have impact beyond Embodied AI and allow training of relative pose estimation from reward for navigation alone. In this large experimental study we investigate the effect of architectural choices like late fusion, channel stacking, space-to-depth projections and cross-attention, and their role in the emergence of relative pose estimators from navigation training. We show that the success of recent methods is influenced up to a certain extent by simulator settings, leading to shortcuts in simulation. However, we also show that these capabilities can be transferred to more realistic setting, up to some extent. We also find evidence for correlations between navigation performance and probed (emerging) relative pose estimation performance, an important sub skill.
Policy Contrastive Decoding for Robotic Foundation Models
Robotic foundation models, or generalist robot policies, hold immense potential to enable flexible, general-purpose and dexterous robotic systems. Despite their advancements, our empirical experiments reveal that existing robot policies are prone to learning spurious correlations from pre-training trajectories, adversely affecting their generalization capabilities beyond the training data. To tackle this, we propose a novel Policy Contrastive Decoding (PCD) approach, which redirects the robot policy's focus toward object-relevant visual clues by contrasting action probability distributions derived from original and object-masked visual inputs. As a training-free method, our PCD can be used as a plugin to improve different types of robot policies without needing to finetune or access model weights. We conduct extensive experiments on top of three open-source robot policies, including the autoregressive policy OpenVLA and the diffusion-based policies Octo and $π_0$. The obtained results in both simulation and real-world environments prove PCD's flexibility and effectiveness, e.g., PCD enhances the state-of-the-art policy $π_0$ by 8.9% in the simulation environment and by 108% in the real-world environment. Code and demos are publicly available at: https://koorye.github.io/PCD.
A Survey on Efficient Vision-Language-Action Models
Vision-Language-Action models (VLAs) represent a significant frontier in embodied intelligence, aiming to bridge digital knowledge with physical-world interaction. Despite their remarkable performance, foundational VLAs are hindered by the prohibitive computational and data demands inherent to their large-scale architectures. While a surge of recent research has focused on enhancing VLA efficiency, the field lacks a unified framework to consolidate these disparate advancements. To bridge this gap, this survey presents the first comprehensive review of Efficient Vision-Language-Action models (Efficient VLAs) across the entire model-training-data pipeline. Specifically, we introduce a unified taxonomy to systematically organize the disparate efforts in this domain, categorizing current techniques into three core pillars: (1) Efficient Model Design, focusing on efficient architectures and model compression; (2) Efficient Training, which reduces computational burdens during model learning; and (3) Efficient Data Collection, which addresses the bottlenecks in acquiring and utilizing robotic data. Through a critical review of state-of-the-art methods within this framework, this survey not only establishes a foundational reference for the community but also summarizes representative applications, delineates key challenges, and charts a roadmap for future research. We maintain a continuously updated project page to track our latest developments: https://evla-survey.github.io/.
comment: 28 pages, 8 figures
3D Dynamics-Aware Manipulation: Endowing Manipulation Policies with 3D Foresight ICRA 2026
The incorporation of world modeling into manipulation policy learning has pushed the boundary of manipulation performance. However, existing efforts simply model the 2D visual dynamics, which is insufficient for robust manipulation when target tasks involve prominent depth-wise movement. To address this, we present a 3D dynamics-aware manipulation framework that seamlessly integrates 3D world modeling and policy learning. Three self-supervised learning tasks (current depth estimation, future RGB-D prediction, 3D flow prediction) are introduced within our framework, which complement each other and endow the policy model with 3D foresight. Extensive experiments on simulation and the real world show that 3D foresight can greatly boost the performance of manipulation policies without sacrificing inference speed. Code is available at https://github.com/Stardust-hyx/3D-Foresight.
comment: ICRA 2026
Model Reconciliation through Explainability and Collaborative Recovery in Assistive Robotics
Whenever humans and robots work together, it is essential that unexpected robot behavior can be explained to the user. Especially in applications such as shared control the user and the robot must share the same model of the objects in the world, and the actions that can be performed on these objects. In this paper, we achieve this with a so-called model reconciliation framework. We leverage a Large Language Model to predict and explain the difference between the robot's and the human's mental models, without the need of a formal mental model of the user. Furthermore, our framework aims to solve the model divergence after the explanation by allowing the human to correct the robot. We provide an implementation in an assistive robotics domain, where we conduct a set of experiments with a real wheelchair-based mobile manipulator and its digital twin.
LaST$_{0}$: Latent Spatio-Temporal Chain-of-Thought for Robotic Vision-Language-Action Model
Vision-Language-Action (VLA) models have recently shown strong generalization, with some approaches seeking to explicitly generate linguistic reasoning traces or predict future observations prior to execution. However, explicit reasoning typically incurs non-negligible inference latency, which constrains the temporal resolution required for robotic manipulation. Moreover, such reasoning is confined to the linguistic space, imposing a representational bottleneck that struggles to faithfully capture ineffable physical attributes. To mitigate these limitations, we propose LaST$_0$, a framework that enables efficient reasoning before acting through a Latent Spatio-Temporal Chain-of-Thought (CoT), capturing fine-grained physical and robotic dynamics that are often difficult to verbalize. Specifically, we introduce a token-efficient latent CoT space that models future visual dynamics, 3D structural information, and robot proprioceptive states, and further extends these representations across time to enable temporally consistent implicit reasoning trajectories. Furthermore, LaST$_0$ adopts a dual-system architecture implemented via a Mixture-of-Transformers design, where a reasoning expert conducts low-frequency latent inference and an acting expert generates high-frequency actions conditioned on robotics-oriented latent representations. To facilitate coordination, LaST$_0$ is trained with heterogeneous operation frequencies, enabling adaptive switching during deployment. Across 10 real-world tasks spanning tabletop, mobile, and dexterous hand manipulation, LaST$_0$ improves mean success rates by 13%, 14% and 14% over prior SOTA VLA methods, respectively.
RF-MatID: Dataset and Benchmark for Radio Frequency Material Identification ICLR 2026
Accurate material identification plays a crucial role in embodied AI systems, enabling a wide range of applications. However, current vision-based solutions are limited by the inherent constraints of optical sensors, while radio-frequency (RF) approaches, which can reveal intrinsic material properties, have received growing attention. Despite this progress, RF-based material identification remains hindered by the lack of large-scale public datasets and the limited benchmarking of learning-based approaches. In this work, we present RF-MatID, the first open-source, large-scale, wide-band, and geometry-diverse RF dataset for fine-grained material identification. RF-MatID includes 16 fine-grained categories grouped into 5 superclasses, spanning a broad frequency range from 4 to 43.5 GHz, and comprises 142k samples in both frequency- and time-domain representations. The dataset systematically incorporates controlled geometry perturbations, including variations in incidence angle and stand-off distance. We further establish a multi-setting, multi-protocol benchmark by evaluating state-of-the-art deep learning models, assessing both in-distribution performance and out-of-distribution robustness under cross-angle and cross-distance shifts. The 5 frequency-allocation protocols enable systematic frequency- and region-level analysis, thereby facilitating real-world deployment. RF-MatID aims to enable reproducible research, accelerate algorithmic advancement, foster cross-domain robustness, and support the development of real-world application in RF-based material identification.
comment: Accepted by ICLR 2026
Experience-based Knowledge Correction for Robust Planning in Minecraft ICLR 2026
Large Language Model (LLM)-based planning has advanced embodied agents in long-horizon environments such as Minecraft, where acquiring latent knowledge of goal (or item) dependencies and feasible actions is critical. However, LLMs often begin with flawed priors and fail to correct them through prompting, even with feedback. We present XENON (eXpErience-based kNOwledge correctioN), an agent that algorithmically revises knowledge from experience, enabling robustness to flawed priors and sparse binary feedback. XENON integrates two mechanisms: Adaptive Dependency Graph, which corrects item dependencies using past successes, and Failure-aware Action Memory, which corrects action knowledge using past failures. Together, these components allow XENON to acquire complex dependencies despite limited guidance. Experiments across multiple Minecraft benchmarks show that XENON outperforms prior agents in both knowledge learning and long-horizon planning. Remarkably, with only a 7B open-weight LLM, XENON surpasses agents that rely on much larger proprietary models. Code available at https://sjlee-me.github.io/XENON
comment: ICLR 2026
UNIC: Learning Unified Multimodal Extrinsic Contact Estimation
Contact-rich manipulation requires reliable estimation of extrinsic contacts-the interactions between a grasped object and its environment which provide essential contextual information for planning, control, and policy learning. However, existing approaches often rely on restrictive assumptions, such as predefined contact types, fixed grasp configurations, or camera calibration, that hinder generalization to novel objects and deployment in unstructured environments. In this paper, we present UNIC, a unified multimodal framework for extrinsic contact estimation that operates without any prior knowledge or camera calibration. UNIC directly encodes visual observations in the camera frame and integrates them with proprioceptive and tactile modalities in a fully data-driven manner. It introduces a unified contact representation based on scene affordance maps that captures diverse contact formations and employs a multimodal fusion mechanism with random masking, enabling robust multimodal representation learning. Extensive experiments demonstrate that UNIC performs reliably. It achieves a 9.6 mm average Chamfer distance error on unseen contact locations, performs well on unseen objects, remains robust under missing modalities, and adapts to dynamic camera viewpoints. These results establish extrinsic contact estimation as a practical and versatile capability for contact-rich manipulation. The overview and hardware experiment videos are at https://youtu.be/xpMitkxN6Ls?si=7Vgj-aZ_P1wtnWZN
1000 Layer Networks for Self-Supervised RL: Scaling Depth Can Enable New Goal-Reaching Capabilities
Scaling up self-supervised learning has driven breakthroughs in language and vision, yet comparable progress has remained elusive in reinforcement learning (RL). In this paper, we study building blocks for self-supervised RL that unlock substantial improvements in scalability, with network depth serving as a critical factor. Whereas most RL papers in recent years have relied on shallow architectures (around 2 - 5 layers), we demonstrate that increasing the depth up to 1024 layers can significantly boost performance. Our experiments are conducted in an unsupervised goal-conditioned setting, where no demonstrations or rewards are provided, so an agent must explore (from scratch) and learn how to maximize the likelihood of reaching commanded goals. Evaluated on simulated locomotion and manipulation tasks, our approach increases performance on the self-supervised contrastive RL algorithm by $2\times$ - $50\times$, outperforming other goal-conditioned baselines. Increasing the model depth not only increases success rates but also qualitatively changes the behaviors learned. The project webpage and code can be found here: https://wang-kevin3290.github.io/scaling-crl/.
comment: Link to project website: https://wang-kevin3290.github.io/scaling-crl/
End-to-End AD 50
PixelGen: Pixel Diffusion Beats Latent Diffusion with Perceptual Loss
Pixel diffusion generates images directly in pixel space in an end-to-end manner, avoiding the artifacts and bottlenecks introduced by VAEs in two-stage latent diffusion. However, it is challenging to optimize high-dimensional pixel manifolds that contain many perceptually irrelevant signals, leaving existing pixel diffusion methods lagging behind latent diffusion models. We propose PixelGen, a simple pixel diffusion framework with perceptual supervision. Instead of modeling the full image manifold, PixelGen introduces two complementary perceptual losses to guide diffusion model towards learning a more meaningful perceptual manifold. An LPIPS loss facilitates learning better local patterns, while a DINO-based perceptual loss strengthens global semantics. With perceptual supervision, PixelGen surpasses strong latent diffusion baselines. It achieves an FID of 5.11 on ImageNet-256 without classifier-free guidance using only 80 training epochs, and demonstrates favorable scaling performance on large-scale text-to-image generation with a GenEval score of 0.79. PixelGen requires no VAEs, no latent representations, and no auxiliary stages, providing a simpler yet more powerful generative paradigm. Codes are publicly available at https://github.com/Zehong-Ma/PixelGen.
comment: Project Pages: https://zehong-ma.github.io/PixelGen/
MentisOculi: Revealing the Limits of Reasoning with Mental Imagery
Frontier models are transitioning from multimodal large language models (MLLMs) that merely ingest visual information to unified multimodal models (UMMs) capable of native interleaved generation. This shift has sparked interest in using intermediate visualizations as a reasoning aid, akin to human mental imagery. Central to this idea is the ability to form, maintain, and manipulate visual representations in a goal-oriented manner. To evaluate and probe this capability, we develop MentisOculi, a procedural, stratified suite of multi-step reasoning problems amenable to visual solution, tuned to challenge frontier models. Evaluating visual strategies ranging from latent tokens to explicit generated imagery, we find they generally fail to improve performance. Analysis of UMMs specifically exposes a critical limitation: While they possess the textual reasoning capacity to solve a task and can sometimes generate correct visuals, they suffer from compounding generation errors and fail to leverage even ground-truth visualizations. Our findings suggest that despite their inherent appeal, visual thoughts do not yet benefit model reasoning. MentisOculi establishes the necessary foundation to analyze and close this gap across diverse model families.
comment: 9 pages, 8 figures
UniReason 1.0: A Unified Reasoning Framework for World Knowledge Aligned Image Generation and Editing
Unified multimodal models often struggle with complex synthesis tasks that demand deep reasoning, and typically treat text-to-image generation and image editing as isolated capabilities rather than interconnected reasoning steps. To address this, we propose UniReason, a unified framework that harmonizes these two tasks through a dual reasoning paradigm. We formulate generation as world knowledge-enhanced planning to inject implicit constraints, and leverage editing capabilities for fine-grained visual refinement to further correct visual errors via self-reflection. This approach unifies generation and editing within a shared representation, mirroring the human cognitive process of planning followed by refinement. We support this framework by systematically constructing a large-scale reasoning-centric dataset (~300k samples) covering five major knowledge domains (e.g., cultural commonsense, physics, etc.) for planning, alongside an agent-generated corpus for visual self-correction. Extensive experiments demonstrate that UniReason achieves advanced performance on reasoning-intensive benchmarks such as WISE, KrisBench and UniREditBench, while maintaining superior general synthesis capabilities.
3D Foundation Model-Based Loop Closing for Decentralized Collaborative SLAM
Decentralized Collaborative Simultaneous Localization And Mapping (C-SLAM) techniques often struggle to identify map overlaps due to significant viewpoint variations among robots. Motivated by recent advancements in 3D foundation models, which can register images despite large viewpoint differences, we propose a robust loop closing approach that leverages these models to establish inter-robot measurements. In contrast to resource-intensive methods requiring full 3D reconstruction within a centralized map, our approach integrates foundation models into existing SLAM pipelines, yielding scalable and robust multi-robot mapping. Our contributions include: (1) integrating 3D foundation models to reliably estimate relative poses from monocular image pairs within decentralized C-SLAM; (2) introducing robust outlier mitigation techniques critical to the use of these relative poses; and (3) developing specialized pose graph optimization formulations that efficiently resolve scale ambiguities. We evaluate our method against state-of-the-art approaches, demonstrating improvements in localization and mapping accuracy, alongside significant gains in computational and memory efficiency. These results highlight the potential of our approach for deployment in large-scale multi-robot scenarios.
SelvaMask: Segmenting Trees in Tropical Forests and Beyond
Tropical forests harbor most of the planet's tree biodiversity and are critical to global ecological balance. Canopy trees in particular play a disproportionate role in carbon storage and functioning of these ecosystems. Studying canopy trees at scale requires accurate delineation of individual tree crowns, typically performed using high-resolution aerial imagery. Despite advances in transformer-based models for individual tree crown segmentation, performance remains low in most forests, especially tropical ones. To this end, we introduce SelvaMask, a new tropical dataset containing over 8,800 manually delineated tree crowns across three Neotropical forest sites in Panama, Brazil, and Ecuador. SelvaMask features comprehensive annotations, including an inter-annotator agreement evaluation, capturing the dense structure of tropical forests and highlighting the difficulty of the task. Leveraging this benchmark, we propose a modular detection-segmentation pipeline that adapts vision foundation models (VFMs), using domain-specific detection-prompter. Our approach reaches state-of-the-art performance, outperforming both zero-shot generalist models and fully supervised end-to-end methods in dense tropical forests. We validate these gains on external tropical and temperate datasets, demonstrating that SelvaMask serves as both a challenging benchmark and a key enabler for generalized forest monitoring. Our code and dataset will be released publicly.
comment: 22 pages, 8 figures
Multi-Agent Monte Carlo Tree Search for Makespan-Efficient Object Rearrangement in Cluttered Spaces
Object rearrangement planning in complex, cluttered environments is a common challenge in warehouses, households, and rescue sites. Prior studies largely address monotone instances, whereas real-world tasks are often non-monotone-objects block one another and must be temporarily relocated to intermediate positions before reaching their final goals. In such settings, effective multi-agent collaboration can substantially reduce the time required to complete tasks. This paper introduces Centralized, Asynchronous, Multi-agent Monte Carlo Tree Search (CAM-MCTS), a novel framework for general-purpose makespan-efficient object rearrangement planning in challenging environments. CAM-MCTS combines centralized task assignment-where agents remain aware of each other's intended actions to facilitate globally optimized planning-with an asynchronous task execution strategy that enables agents to take on new tasks at appropriate time steps, rather than waiting for others, guided by a one-step look-ahead cost estimate. This design minimizes idle time, prevents unnecessary synchronization delays, and enhances overall system efficiency. We evaluate CAM-MCTS across a diverse set of monotone and non-monotone tasks in cluttered environments, demonstrating consistent reductions in makespan compared to strong baselines. Finally, we validate our approach on a real-world multi-agent system under different configurations, further confirming its effectiveness and robustness.
SoMA: A Real-to-Sim Neural Simulator for Robotic Soft-body Manipulation
Simulating deformable objects under rich interactions remains a fundamental challenge for real-to-sim robot manipulation, with dynamics jointly driven by environmental effects and robot actions. Existing simulators rely on predefined physics or data-driven dynamics without robot-conditioned control, limiting accuracy, stability, and generalization. This paper presents SoMA, a 3D Gaussian Splat simulator for soft-body manipulation. SoMA couples deformable dynamics, environmental forces, and robot joint actions in a unified latent neural space for end-to-end real-to-sim simulation. Modeling interactions over learned Gaussian splats enables controllable, stable long-horizon manipulation and generalization beyond observed trajectories without predefined physical models. SoMA improves resimulation accuracy and generalization on real-world robot manipulation by 20%, enabling stable simulation of complex tasks such as long-horizon cloth folding.
comment: Project page: https://city-super.github.io/SoMA/
Unified Personalized Reward Model for Vision Generation
Recent advancements in multimodal reward models (RMs) have significantly propelled the development of visual generation. Existing frameworks typically adopt Bradley-Terry-style preference modeling or leverage generative VLMs as judges, and subsequently optimize visual generation models via reinforcement learning. However, current RMs suffer from inherent limitations: they often follow a one-size-fits-all paradigm that assumes a monolithic preference distribution or relies on fixed evaluation rubrics. As a result, they are insensitive to content-specific visual cues, leading to systematic misalignment with subjective and context-dependent human preferences. To this end, inspired by human assessment, we propose UnifiedReward-Flex, a unified personalized reward model for vision generation that couples reward modeling with flexible and context-adaptive reasoning. Specifically, given a prompt and the generated visual content, it first interprets the semantic intent and grounds on visual evidence, then dynamically constructs a hierarchical assessment by instantiating fine-grained criteria under both predefined and self-generated high-level dimensions. Our training pipeline follows a two-stage process: (1) we first distill structured, high-quality reasoning traces from advanced closed-source VLMs to bootstrap SFT, equipping the model with flexible and context-adaptive reasoning behaviors; (2) we then perform direct preference optimization (DPO) on carefully curated preference pairs to further strengthen reasoning fidelity and discriminative alignment. To validate the effectiveness, we integrate UnifiedReward-Flex into the GRPO framework for image and video synthesis, and extensive results demonstrate its superiority.
comment: Website: https://codegoat24.github.io/UnifiedReward/flex
NAB: Neural Adaptive Binning for Sparse-View CT reconstruction
Computed Tomography (CT) plays a vital role in inspecting the internal structures of industrial objects. Furthermore, achieving high-quality CT reconstruction from sparse views is essential for reducing production costs. While classic implicit neural networks have shown promising results for sparse reconstruction, they are unable to leverage shape priors of objects. Motivated by the observation that numerous industrial objects exhibit rectangular structures, we propose a novel \textbf{N}eural \textbf{A}daptive \textbf{B}inning (\textbf{NAB}) method that effectively integrates rectangular priors into the reconstruction process. Specifically, our approach first maps coordinate space into a binned vector space. This mapping relies on an innovative binning mechanism based on differences between shifted hyperbolic tangent functions, with our extension enabling rotations around the input-plane normal vector. The resulting representations are then processed by a neural network to predict CT attenuation coefficients. This design enables end-to-end optimization of the encoding parameters -- including position, size, steepness, and rotation -- via gradient flow from the projection data, thus enhancing reconstruction accuracy. By adjusting the smoothness of the binning function, NAB can generalize to objects with more complex geometries. This research provides a new perspective on integrating shape priors into neural network-based reconstruction. Extensive experiments demonstrate that NAB achieves superior performance on two industrial datasets. It also maintains robust on medical datasets when the binning function is extended to more general expression. The code will be made available.
TTT-Parkour: Rapid Test-Time Training for Perceptive Robot Parkour
Achieving highly dynamic humanoid parkour on unseen, complex terrains remains a challenge in robotics. Although general locomotion policies demonstrate capabilities across broad terrain distributions, they often struggle with arbitrary and highly challenging environments. To overcome this limitation, we propose a real-to-sim-to-real framework that leverages rapid test-time training (TTT) on novel terrains, significantly enhancing the robot's capability to traverse extremely difficult geometries. We adopt a two-stage end-to-end learning paradigm: a policy is first pre-trained on diverse procedurally generated terrains, followed by rapid fine-tuning on high-fidelity meshes reconstructed from real-world captures. Specifically, we develop a feed-forward, efficient, and high-fidelity geometry reconstruction pipeline using RGB-D inputs, ensuring both speed and quality during test-time training. We demonstrate that TTT-Parkour empowers humanoid robots to master complex obstacles, including wedges, stakes, boxes, trapezoids, and narrow beams. The whole pipeline of capturing, reconstructing, and test-time training requires less than 10 minutes on most tested terrains. Extensive experiments show that the policy after test-time training exhibits robust zero-shot sim-to-real transfer capability.
comment: Project Page: https://ttt-parkour.github.io/
Enhancing Indoor Occupancy Prediction via Sparse Query-Based Multi-Level Consistent Knowledge Distillation RA-L
Occupancy prediction provides critical geometric and semantic understanding for robotics but faces efficiency-accuracy trade-offs. Current dense methods suffer computational waste on empty voxels, while sparse query-based approaches lack robustness in diverse and complex indoor scenes. In this paper, we propose DiScene, a novel sparse query-based framework that leverages multi-level distillation to achieve efficient and robust occupancy prediction. In particular, our method incorporates two key innovations: (1) a Multi-level Consistent Knowledge Distillation strategy, which transfers hierarchical representations from large teacher models to lightweight students through coordinated alignment across four levels, including encoder-level feature alignment, query-level feature matching, prior-level spatial guidance, and anchor-level high-confidence knowledge transfer and (2) a Teacher-Guided Initialization policy, employing optimized parameter warm-up to accelerate model convergence. Validated on the Occ-Scannet benchmark, DiScene achieves 23.2 FPS without depth priors while outperforming our baseline method, OPUS, by 36.1% and even better than the depth-enhanced version, OPUS†. With depth integration, DiScene† attains new SOTA performance, surpassing EmbodiedOcc by 3.7% with 1.62$\times$ faster inference speed. Furthermore, experiments on the Occ3D-nuScenes benchmark and in-the-wild scenarios demonstrate the versatility of our approach in various environments. Code and models can be accessed at https://github.com/getterupper/DiScene.
comment: Accepted by RA-L
Segment to Focus: Guiding Latent Action Models in the Presence of Distractors
Latent Action Models (LAMs) learn to extract action-relevant representations solely from raw observations, enabling reinforcement learning from unlabelled videos and significantly scaling available training data. However, LAMs face a critical challenge in disentangling action-relevant features from action-correlated noise (e.g., background motion). Failing to filter these distractors causes LAMs to capture spurious correlations and build sub-optimal latent action spaces. In this paper, we introduce MaskLAM -- a lightweight modification to LAM training to mitigate this issue by incorporating visual agent segmentation. MaskLAM utilises segmentation masks from pretrained foundation models to weight the LAM reconstruction loss, thereby prioritising salient information over background elements while requiring no architectural modifications. We demonstrate the effectiveness of our method on continuous-control MuJoCo tasks, modified with action-correlated background noise. Our approach yields up to a 4x increase in accrued rewards compared to standard baselines and a 3x improvement in the latent action quality, as evidenced by linear probe evaluation.
LangMap: A Hierarchical Benchmark for Open-Vocabulary Goal Navigation
The relationships between objects and language are fundamental to meaningful communication between humans and AI, and to practically useful embodied intelligence. We introduce HieraNav, a multi-granularity, open-vocabulary goal navigation task where agents interpret natural language instructions to reach targets at four semantic levels: scene, room, region, and instance. To this end, we present Language as a Map (LangMap), a large-scale benchmark built on real-world 3D indoor scans with comprehensive human-verified annotations and tasks spanning these levels. LangMap provides region labels, discriminative region descriptions, discriminative instance descriptions covering 414 object categories, and over 18K navigation tasks. Each target features both concise and detailed descriptions, enabling evaluation across different instruction styles. LangMap achieves superior annotation quality, outperforming GOAT-Bench by 23.8% in discriminative accuracy using four times fewer words. Comprehensive evaluations of zero-shot and supervised models on LangMap reveal that richer context and memory improve success, while long-tailed, small, context-dependent, and distant goals, as well as multi-goal completion, remain challenging. HieraNav and LangMap establish a rigorous testbed for advancing language-driven embodied navigation. Project: https://bo-miao.github.io/LangMap
Real-Time 2D LiDAR Object Detection Using Three-Frame RGB Scan Encoding
Indoor service robots need perception that is robust, more privacy-friendly than RGB video, and feasible on embedded hardware. We present a camera-free 2D LiDAR object detection pipeline that encodes short-term temporal context by stacking three consecutive scans as RGB channels, yielding a compact YOLOv8n input without occupancy-grid construction while preserving angular structure and motion cues. Evaluated in Webots across 160 randomized indoor scenarios with strict scenario-level holdout, the method achieves 98.4% mAP@0.5 (0.778 mAP@0.5:0.95) with 94.9% precision and 94.7% recall on four object classes. On a Raspberry Pi 5, it runs in real time with a mean post-warm-up end-to-end latency of 47.8ms per frame, including scan encoding and postprocessing. Relative to a closely related occupancy-grid LiDAR-YOLO pipeline reported on the same platform, the proposed representation is associated with substantially lower reported end-to-end latency. Although results are simulation-based, they suggest that lightweight temporal encoding can enable accurate and real-time LiDAR-only detection for embedded indoor robotics without capturing RGB appearance.
comment: 6 pages, 6 figures, submitted to IEEE SAS 2026
An Empirical Study of World Model Quantization
World models learn an internal representation of environment dynamics, enabling agents to simulate and reason about future states within a compact latent space for tasks such as planning, prediction, and inference. However, running world models rely on hevay computational cost and memory footprint, making model quantization essential for efficient deployment. To date, the effects of post-training quantization (PTQ) on world models remain largely unexamined. In this work, we present a systematic empirical study of world model quantization using DINO-WM as a representative case, evaluating diverse PTQ methods under both weight-only and joint weight-activation settings. We conduct extensive experiments on different visual planning tasks across a wide range of bit-widths, quantization granularities, and planning horizons up to 50 iterations. Our results show that quantization effects in world models extend beyond standard accuracy and bit-width trade-offs: group-wise weight quantization can stabilize low-bit rollouts, activation quantization granularity yields inconsistent benefits, and quantization sensitivity is highly asymmetric between encoder and predictor modules. Moreover, aggressive low-bit quantization significantly degrades the alignment between the planning objective and task success, leading to failures that cannot be remedied by additional optimization. These findings reveal distinct quantization-induced failure modes in world model-based planning and provide practical guidance for deploying quantized world models under strict computational constraints. The code will be available at https://github.com/huawei-noah/noah-research/tree/master/QuantWM.
Rethinking Genomic Modeling Through Optical Character Recognition
Recent genomic foundation models largely adopt large language model architectures that treat DNA as a one-dimensional token sequence. However, exhaustive sequential reading is structurally misaligned with sparse and discontinuous genomic semantics, leading to wasted computation on low-information background and preventing understanding-driven compression for long contexts. Here, we present OpticalDNA, a vision-based framework that reframes genomic modeling as Optical Character Recognition (OCR)-style document understanding. OpticalDNA renders DNA into structured visual layouts and trains an OCR-capable vision--language model with a \emph{visual DNA encoder} and a \emph{document decoder}, where the encoder produces compact, reconstructible visual tokens for high-fidelity compression. Building on this representation, OpticalDNA defines prompt-conditioned objectives over core genomic primitives-reading, region grounding, subsequence retrieval, and masked span completion-thereby learning layout-aware DNA representations that retain fine-grained genomic information under a reduced effective token budget. Across diverse genomic benchmarks, OpticalDNA consistently outperforms recent baselines; on sequences up to 450k bases, it achieves the best overall performance with nearly $20\times$ fewer effective tokens, and surpasses models with up to $985\times$ more activated parameters while tuning only 256k \emph{trainable} parameters.
Enhancing Multi-Image Understanding through Delimiter Token Scaling ICLR 2026
Large Vision-Language Models (LVLMs) achieve strong performance on single-image tasks, but their performance declines when multiple images are provided as input. One major reason is the cross-image information leakage, where the model struggles to distinguish information across different images. Existing LVLMs already employ delimiter tokens to mark the start and end of each image, yet our analysis reveals that these tokens fail to effectively block cross-image information leakage. To enhance their effectiveness, we propose a method that scales the hidden states of delimiter tokens. This enhances the model's ability to preserve image-specific information by reinforcing intra-image interaction and limiting undesired cross-image interactions. Consequently, the model is better able to distinguish between images and reason over them more accurately. Experiments show performance gains on multi-image benchmarks such as Mantis, MuirBench, MIRB, and QBench2. We further evaluate our method on text-only tasks that require clear distinction. The method improves performance on multi-document and multi-table understanding benchmarks, including TQABench, MultiNews, and WCEP-10. Notably, our method requires no additional training or inference cost.
comment: Accepted at ICLR 2026
Enabling Progressive Whole-slide Image Analysis with Multi-scale Pyramidal Network
Multiple-instance Learning (MIL) is commonly used to undertake computational pathology (CPath) tasks, and the use of multi-scale patches allows diverse features across scales to be learned. Previous studies using multi-scale features in clinical applications rely on multiple inputs across magnifications with late feature fusion, which does not retain the link between features across scales while the inputs are dependent on arbitrary, manufacturer-defined magnifications, being inflexible and computationally expensive. In this paper, we propose the Multi-scale Pyramidal Network (MSPN), which is plug-and-play over attention-based MIL that introduces progressive multi-scale analysis on WSI. Our MSPN consists of (1) grid-based remapping that uses high magnification features to derive coarse features and (2) the coarse guidance network (CGN) that learns coarse contexts. We benchmark MSPN as an add-on module to 4 attention-based frameworks using 4 clinically relevant tasks across 3 types of foundation model, as well as the pre-trained MIL framework. We show that MSPN consistently improves MIL across the compared configurations and tasks, while being lightweight and easy-to-use.
LIEREx: Language-Image Embeddings for Robotic Exploration
Semantic maps allow a robot to reason about its surroundings to fulfill tasks such as navigating known environments, finding specific objects, and exploring unmapped areas. Traditional mapping approaches provide accurate geometric representations but are often constrained by pre-designed symbolic vocabularies. The reliance on fixed object classes makes it impractical to handle out-of-distribution knowledge not defined at design time. Recent advances in Vision-Language Foundation Models, such as CLIP, enable open-set mapping, where objects are encoded as high-dimensional embeddings rather than fixed labels. In LIEREx, we integrate these VLFMs with established 3D Semantic Scene Graphs to enable target-directed exploration by an autonomous agent in partially unknown environments.
comment: This preprint has not undergone peer review or any post-submission improvements or corrections. The Version of Record of this article is published in KI - Künstliche Intelligenz, and is available online at https://doi.org/10.1007/s13218-026-00902-6
ForSim: Stepwise Forward Simulation for Traffic Policy Fine-Tuning ICRA 2026
As the foundation of closed-loop training and evaluation in autonomous driving, traffic simulation still faces two fundamental challenges: covariate shift introduced by open-loop imitation learning and limited capacity to reflect the multimodal behaviors observed in real-world traffic. Although recent frameworks such as RIFT have partially addressed these issues through group-relative optimization, their forward simulation procedures remain largely non-reactive, leading to unrealistic agent interactions within the virtual domain and ultimately limiting simulation fidelity. To address these issues, we propose ForSim, a stepwise closed-loop forward simulation paradigm. At each virtual timestep, the traffic agent propagates the virtual candidate trajectory that best spatiotemporally matches the reference trajectory through physically grounded motion dynamics, thereby preserving multimodal behavioral diversity while ensuring intra-modality consistency. Other agents are updated with stepwise predictions, yielding coherent and interaction-aware evolution. When incorporated into the RIFT traffic simulation framework, ForSim operates in conjunction with group-relative optimization to fine-tune traffic policy. Extensive experiments confirm that this integration consistently improves safety while maintaining efficiency, realism, and comfort. These results underscore the importance of modeling closed-loop multimodal interactions within forward simulation and enhance the fidelity and reliability of traffic simulation for autonomous driving. Project Page: https://currychen77.github.io/ForSim/
comment: Accepted by ICRA 2026
Q Cache: Visual Attention is Valuable in Less than Half of Decode Layers for Multimodal Large Language Model AAAI26
Multimodal large language models (MLLMs) are plagued by exorbitant inference costs attributable to the profusion of visual tokens within the vision encoder. The redundant visual tokens engenders a substantial computational load and key-value (KV) cache footprint bottleneck. Existing approaches focus on token-wise optimization, leveraging diverse intricate token pruning techniques to eliminate non-crucial visual tokens. Nevertheless, these methods often unavoidably undermine the integrity of the KV cache, resulting in failures in long-text generation tasks. To this end, we conduct an in-depth investigation towards the attention mechanism of the model from a new perspective, and discern that attention within more than half of all decode layers are semantic similar. Upon this finding, we contend that the attention in certain layers can be streamlined by inheriting the attention from their preceding layers. Consequently, we propose Lazy Attention, an efficient attention mechanism that enables cross-layer sharing of similar attention patterns. It ingeniously reduces layer-wise redundant computation in attention. In Lazy Attention, we develop a novel layer-shared cache, Q Cache, tailored for MLLMs, which facilitates the reuse of queries across adjacent layers. In particular, Q Cache is lightweight and fully compatible with existing inference frameworks, including Flash Attention and KV cache. Additionally, our method is highly flexible as it is orthogonal to existing token-wise techniques and can be deployed independently or combined with token pruning approaches. Empirical evaluations on multiple benchmarks demonstrate that our method can reduce KV cache usage by over 35% and achieve 1.5x throughput improvement, while sacrificing only approximately 1% of performance on various MLLMs. Compared with SOTA token-wise methods, our technique achieves superior accuracy preservation.
comment: Accepted by AAAI26
BTGenBot-2: Efficient Behavior Tree Generation with Small Language Models
Recent advances in robot learning increasingly rely on LLM-based task planning, leveraging their ability to bridge natural language with executable actions. While prior works showcased great performances, the widespread adoption of these models in robotics has been challenging as 1) existing methods are often closed-source or computationally intensive, neglecting the actual deployment on real-world physical systems, and 2) there is no universally accepted, plug-and-play representation for robotic task generation. Addressing these challenges, we propose BTGenBot-2, a 1B-parameter open-source small language model that directly converts natural language task descriptions and a list of robot action primitives into executable behavior trees in XML. Unlike prior approaches, BTGenBot-2 enables zero-shot BT generation, error recovery at inference and runtime, while remaining lightweight enough for resource-constrained robots. We further introduce the first standardized benchmark for LLM-based BT generation, covering 52 navigation and manipulation tasks in NVIDIA Isaac Sim. Extensive evaluations demonstrate that BTGenBot-2 consistently outperforms GPT-5, Claude Opus 4.1, and larger open-source models across both functional and non-functional metrics, achieving average success rates of 90.38% in zero-shot and 98.07% in one-shot, while delivering up to 16x faster inference compared to the previous BTGenBot.
WS-IMUBench: Can Weakly Supervised Methods from Audio, Image, and Video Be Adapted for IMU-based Temporal Action Localization?
IMU-based Human Activity Recognition (HAR) has enabled a wide range of ubiquitous computing applications, yet its dominant clip classification paradigm cannot capture the rich temporal structure of real-world behaviors. This motivates a shift toward IMU Temporal Action Localization (IMU-TAL), which predicts both action categories and their start/end times in continuous streams. However, current progress is strongly bottlenecked by the need for dense, frame-level boundary annotations, which are costly and difficult to scale. To address this bottleneck, we introduce WS-IMUBench, a systematic benchmark study of weakly supervised IMU-TAL (WS-IMU-TAL) under only sequence-level labels. Rather than proposing a new localization algorithm, we evaluate how well established weakly supervised localization paradigms from audio, image, and video transfer to IMU-TAL under only sequence-level labels. We benchmark seven representative weakly supervised methods on seven public IMU datasets, resulting in over 3,540 model training runs and 7,080 inference evaluations. Guided by three research questions on transferability, effectiveness, and insights, our findings show that (i) transfer is modality-dependent, with temporal-domain methods generally more stable than image-derived proposal-based approaches; (ii) weak supervision can be competitive on favorable datasets (e.g., with longer actions and higher-dimensional sensing); and (iii) dominant failure modes arise from short actions, temporal ambiguity, and proposal quality. Finally, we outline concrete directions for advancing WS-IMU-TAL (e.g., IMU-specific proposal generation, boundary-aware objectives, and stronger temporal reasoning). Beyond individual results, WS-IMUBench establishes a reproducible benchmarking template, datasets, protocols, and analyses, to accelerate community-wide progress toward scalable WS-IMU-TAL.
comment: Under Review. 28 pages, 9 figures, 6 tables
SPIRIT: Adapting Vision Foundation Models for Unified Single- and Multi-Frame Infrared Small Target Detection
Infrared small target detection (IRSTD) is crucial for surveillance and early-warning, with deployments spanning both single-frame analysis and video-mode tracking. A practical solution should leverage vision foundation models (VFMs) to mitigate infrared data scarcity, while adopting a memory-attention-based temporal propagation framework that unifies single- and multi-frame inference. However, infrared small targets exhibit weak radiometric signals and limited semantic cues, which differ markedly from visible-spectrum imagery. This modality gap makes direct use of semantics-oriented VFMs and appearance-driven cross-frame association unreliable for IRSTD: hierarchical feature aggregation can submerge localized target peaks, and appearance-only memory attention becomes ambiguous, leading to spurious clutter associations. To address these challenges, we propose SPIRIT, a unified and VFM-compatible framework that adapts VFMs to IRSTD via lightweight physics-informed plug-ins. Spatially, PIFR refines features by approximating rank-sparsity decomposition to suppress structured background components and enhance sparse target-like signals. Temporally, PGMA injects history-derived soft spatial priors into memory cross-attention to constrain cross-frame association, enabling robust video detection while naturally reverting to single-frame inference when temporal context is absent. Experiments on multiple IRSTD benchmarks show consistent gains over VFM-based baselines and SOTA performance.
Efficient Cross-Country Data Acquisition Strategy for ADAS via Street-View Imagery
Deploying ADAS and ADS across countries remains challenging due to differences in legislation, traffic infrastructure, and visual conventions, which introduce domain shifts that degrade perception performance. Traditional cross-country data collection relies on extensive on-road driving, making it costly and inefficient to identify representative locations. To address this, we propose a street-view-guided data acquisition strategy that leverages publicly available imagery to identify places of interest (POI). Two POI scoring methods are introduced: a KNN-based feature distance approach using a vision foundation model, and a visual-attribution approach using a vision-language model. To enable repeatable evaluation, we adopt a collect-detect protocol and construct a co-located dataset by pairing the Zenseact Open Dataset with Mapillary street-view images. Experiments on traffic sign detection, a task particularly sensitive to cross-country variations in sign appearance, show that our approach achieves performance comparable to random sampling while using only half of the target-domain data. We further provide cost estimations for full-country analysis, demonstrating that large-scale street-view processing remains economically feasible. These results highlight the potential of street-view-guided data acquisition for efficient and cost-effective cross-country model adaptation.
Fast Autoregressive Video Diffusion and World Models with Temporal Cache Compression and Sparse Attention
Autoregressive video diffusion models enable streaming generation, opening the door to long-form synthesis, video world models, and interactive neural game engines. However, their core attention layers become a major bottleneck at inference time: as generation progresses, the KV cache grows, causing both increasing latency and escalating GPU memory, which in turn restricts usable temporal context and harms long-range consistency. In this work, we study redundancy in autoregressive video diffusion and identify three persistent sources: near-duplicate cached keys across frames, slowly evolving (largely semantic) queries/keys that make many attention computations redundant, and cross-attention over long prompts where only a small subset of tokens matters per frame. Building on these observations, we propose a unified, training-free attention framework for autoregressive diffusion: TempCache compresses the KV cache via temporal correspondence to bound cache growth; AnnCA accelerates cross-attention by selecting frame-relevant prompt tokens using fast approximate nearest neighbor (ANN) matching; and AnnSA sparsifies self-attention by restricting each query to semantically matched keys, also using a lightweight ANN. Together, these modules reduce attention, compute, and memory and are compatible with existing autoregressive diffusion backbones and world models. Experiments demonstrate up to x5--x10 end-to-end speedups while preserving near-identical visual quality and, crucially, maintaining stable throughput and nearly constant peak GPU memory usage over long rollouts, where prior methods progressively slow down and suffer from increasing memory usage.
comment: Project Page: https://dvirsamuel.github.io/fast-auto-regressive-video/
DDP-WM: Disentangled Dynamics Prediction for Efficient World Models
World models are essential for autonomous robotic planning. However, the substantial computational overhead of existing dense Transformerbased models significantly hinders real-time deployment. To address this efficiency-performance bottleneck, we introduce DDP-WM, a novel world model centered on the principle of Disentangled Dynamics Prediction (DDP). We hypothesize that latent state evolution in observed scenes is heterogeneous and can be decomposed into sparse primary dynamics driven by physical interactions and secondary context-driven background updates. DDP-WM realizes this decomposition through an architecture that integrates efficient historical processing with dynamic localization to isolate primary dynamics. By employing a crossattention mechanism for background updates, the framework optimizes resource allocation and provides a smooth optimization landscape for planners. Extensive experiments demonstrate that DDP-WM achieves significant efficiency and performance across diverse tasks, including navigation, precise tabletop manipulation, and complex deformable or multi-body interactions. Specifically, on the challenging Push-T task, DDP-WM achieves an approximately 9 times inference speedup and improves the MPC success rate from 90% to98% compared to state-of-the-art dense models. The results establish a promising path for developing efficient, high-fidelity world models. Codes will be available at https://github.com/HCPLabSYSU/DDP-WM.
comment: Codes will be available at https://github.com/HCPLabSYSU/DDP-WM
Spot-Wise Smart Parking: An Edge-Enabled Architecture with YOLOv11 and Digital Twin Integration
Smart parking systems help reduce congestion and minimize users' search time, thereby contributing to smart city adoption and enhancing urban mobility. In previous works, we presented a system developed on a university campus to monitor parking availability by estimating the number of free spaces from vehicle counts within a region of interest. Although this approach achieved good accuracy, it restricted the system's ability to provide spot-level insights and support more advanced applications. To overcome this limitation, we extend the system with a spot-wise monitoring strategy based on a distance-aware matching method with spatial tolerance, enhanced through an Adaptive Bounding Box Partitioning method for challenging spaces. The proposed approach achieves a balanced accuracy of 98.80% while maintaining an inference time of 8 seconds on a resource-constrained edge device, enhancing the capabilities of YOLOv11m, a model that has a size of 40.5 MB. In addition, two new components were introduced: (i) a Digital Shadow that visually represents parking lot entities as a base to evolve to a full Digital Twin, and (ii) an application support server based on a repurposed TV box. The latter not only enables scalable communication among cloud services, the parking totem, and a bot that provides detailed spot occupancy statistics, but also promotes hardware reuse as a step towards greater sustainability.
comment: Submitted to Journal of Internet Services and Applications, 27 pages, 20 figures, 3 tables
Simplicity Prevails: The Emergence of Generalizable AIGI Detection in Visual Foundation Models
While specialized detectors for AI-Generated Images (AIGI) achieve near-perfect accuracy on curated benchmarks, they suffer from a dramatic performance collapse in realistic, in-the-wild scenarios. In this work, we demonstrate that simplicity prevails over complex architectural designs. A simple linear classifier trained on the frozen features of modern Vision Foundation Models , including Perception Encoder, MetaCLIP 2, and DINOv3, establishes a new state-of-the-art. Through a comprehensive evaluation spanning traditional benchmarks, unseen generators, and challenging in-the-wild distributions, we show that this baseline not only matches specialized detectors on standard benchmarks but also decisively outperforms them on in-the-wild datasets, boosting accuracy by striking margins of over 30\%. We posit that this superior capability is an emergent property driven by the massive scale of pre-training data containing synthetic content. We trace the source of this capability to two distinct manifestations of data exposure: Vision-Language Models internalize an explicit semantic concept of forgery, while Self-Supervised Learning models implicitly acquire discriminative forensic features from the pretraining data. However, we also reveal persistent limitations: these models suffer from performance degradation under recapture and transmission, remain blind to VAE reconstruction and localized editing. We conclude by advocating for a paradigm shift in AI forensics, moving from overfitting on static benchmarks to harnessing the evolving world knowledge of foundation models for real-world reliability.
GSR: Learning Structured Reasoning for Embodied Manipulation
Despite rapid progress, embodied agents still struggle with long-horizon manipulation that requires maintaining spatial consistency, causal dependencies, and goal constraints. A key limitation of existing approaches is that task reasoning is implicitly embedded in high-dimensional latent representations, making it challenging to separate task structure from perceptual variability. We introduce Grounded Scene-graph Reasoning (GSR), a structured reasoning paradigm that explicitly models world-state evolution as transitions over semantically grounded scene graphs. By reasoning step-wise over object states and spatial relations, rather than directly mapping perception to actions, GSR enables explicit reasoning about action preconditions, consequences, and goal satisfaction in a physically grounded space. To support learning such reasoning, we construct Manip-Cognition-1.6M, a large-scale dataset that jointly supervises world understanding, action planning, and goal interpretation. Extensive evaluations across RLBench, LIBERO, GSR-benchmark, and real-world robotic tasks show that GSR significantly improves zero-shot generalization and long-horizon task completion over prompting-based baselines. These results highlight explicit world-state representations as a key inductive bias for scalable embodied reasoning.
Terrain Costmap Generation via Scaled Preference Conditioning
Successful autonomous robot navigation in off-road domains requires the ability to generate high-quality terrain costmaps that are able to both generalize well over a wide variety of terrains and rapidly adapt relative costs at test time to meet mission-specific needs. Existing approaches for costmap generation allow for either rapid test-time adaptation of relative costs (e.g., semantic segmentation methods) or generalization to new terrain types (e.g., representation learning methods), but not both. In this work, we present scaled preference conditioned all-terrain costmap generation (SPACER), a novel approach for generating terrain costmaps that leverages synthetic data during training in order to generalize well to new terrains, and allows for rapid test-time adaptation of relative costs by conditioning on a user-specified scaled preference context. Using large-scale aerial maps, we provide empirical evidence that SPACER outperforms other approaches at generating costmaps for terrain navigation, with the lowest measured regret across varied preferences in five of seven environments for global path planning.
Future frame prediction in chest and liver cine MRI using the PCA respiratory motion model: comparing transformers and dynamically trained recurrent neural networks
Respiratory motion complicates accurate irradiation of thoraco-abdominal tumors in radiotherapy, as treatment-system latency entails target-location uncertainties. This work addresses frame forecasting in chest and liver cine MRI to compensate for such delays. We investigate RNNs trained with online learning algorithms, enabling adaptation to changing respiratory patterns via on-the-fly parameter updates, and transformers, increasingly common in time series forecasting for their ability to capture long-term dependencies. Experiments were conducted using 12 sagittal thoracic and upper-abdominal cine-MRI sequences from ETH Zürich and OvGU. PCA decomposes the Lucas-Kanade optical-flow field into static deformations and low-dimensional time-dependent weights. We compare various methods forecasting the latter: linear filters, population and sequence-specific encoder-only transformers, and RNNs trained with real-time recurrent learning (RTRL), unbiased online recurrent optimization, decoupled neural interfaces, and sparse one-step approximation (SnAp-1). Predicted displacements were used to warp the reference frame and generate future images. Prediction accuracy decreased with the horizon h. Linear regression performed best at short horizons (1.3mm geometrical error at h=0.32s, ETH Zürich data), while RTRL and SnAp-1 outperformed the other algorithms at medium-to-long horizons, with geometrical errors below 1.4mm and 2.8mm on the sequences from ETH Zürich and OvGU (the latter featuring higher motion variability, noise, and lower contrast), respectively. The sequence-specific transformer was competitive for low-to-medium horizons, but transformers remained overall limited by data scarcity and domain shift between datasets. Predicted frames visually resembled the ground truth, with notable errors occurring near the diaphragm at end-inspiration and regions affected by out-of-plane motion.
comment: 43 pages, 19 figures, revised version (including transformer experiments, evaluation on liver MRI data, statistical analysis...)
HunyuanImage 3.0 Technical Report
We present HunyuanImage 3.0, a native multimodal model that unifies multimodal understanding and generation within an autoregressive framework, with its image generation module publicly available. The achievement of HunyuanImage 3.0 relies on several key components, including meticulous data curation, advanced architecture design, a native Chain-of-Thoughts schema, progressive model pre-training, aggressive model post-training, and an efficient infrastructure that enables large-scale training and inference. With these advancements, we successfully trained a Mixture-of-Experts (MoE) model comprising over 80 billion parameters in total, with 13 billion parameters activated per token during inference, making it the largest and most powerful open-source image generative model to date. We conducted extensive experiments and the results of automatic and human evaluation of text-image alignment and visual quality demonstrate that HunyuanImage 3.0 rivals previous state-of-the-art models. By releasing the code and weights of HunyuanImage 3.0, we aim to enable the community to explore new ideas with a state-of-the-art foundation model, fostering a dynamic and vibrant multimodal ecosystem. All open source assets are publicly available at https://github.com/Tencent-Hunyuan/HunyuanImage-3.0
No time to train! Training-Free Reference-Based Instance Segmentation
The performance of image segmentation models has historically been constrained by the high cost of collecting large-scale annotated data. The Segment Anything Model (SAM) alleviates this original problem through a promptable, semantics-agnostic, segmentation paradigm and yet still requires manual visual-prompts or complex domain-dependent prompt-generation rules to process a new image. Towards reducing this new burden, our work investigates the task of object segmentation when provided with, alternatively, only a small set of reference images. Our key insight is to leverage strong semantic priors, as learned by foundation models, to identify corresponding regions between a reference and a target image. We find that correspondences enable automatic generation of instance-level segmentation masks for downstream tasks and instantiate our ideas via a multi-stage, training-free method incorporating (1) memory bank construction; (2) representation aggregation and (3) semantic-aware feature matching. Our experiments show significant improvements on segmentation metrics, leading to state-of-the-art performance on COCO FSOD (36.8% nAP), PASCAL VOC Few-Shot (71.2% nAP50) and outperforming existing training-free approaches on the Cross-Domain FSOD benchmark (22.4% nAP).
comment: Preprint
Hospital-Specific Bias in Patch-Based Pathology Models
Pathology foundation models (PFMs) achieve strong performance on diverse histopathology tasks, but their sensitivity to hospital-specific domain shifts remains underexplored. We systematically evaluate state-of-the-art PFMs on TCGA patch-level datasets and introduce a lightweight adversarial adaptor to remove hospital-related domain information from latent representations. Experiments show that, while disease classification accuracy is largely maintained, the adaptor effectively reduces hospital-specific bias, as confirmed by t-SNE visualizations. Our study establishes a benchmark for assessing cross-hospital robustness in PFMs and provides a practical strategy for enhancing generalization under heterogeneous clinical settings. Our code is available at https://github.com/MengRes/pfm_domain_bias.
comment: 4 pages,3 figures
What does really matter in image goal navigation?
Image goal navigation requires two different skills: firstly, core navigation skills, including the detection of free space and obstacles, and taking decisions based on an internal representation; and secondly, computing directional information by comparing visual observations to the goal image. Current state-of-the-art methods either rely on dedicated image-matching, or pre-training of computer vision modules on relative pose estimation. In this paper, we study whether this task can be efficiently solved with end-to-end training of full agents with RL, as has been claimed by recent work. A positive answer would have impact beyond Embodied AI and allow training of relative pose estimation from reward for navigation alone. In this large experimental study we investigate the effect of architectural choices like late fusion, channel stacking, space-to-depth projections and cross-attention, and their role in the emergence of relative pose estimators from navigation training. We show that the success of recent methods is influenced up to a certain extent by simulator settings, leading to shortcuts in simulation. However, we also show that these capabilities can be transferred to more realistic setting, up to some extent. We also find evidence for correlations between navigation performance and probed (emerging) relative pose estimation performance, an important sub skill.
Learning Robust Intervention Representations with Delta Embeddings
Causal representation learning has attracted significant research interest during the past few years, as a means for improving model generalization and robustness. Causal representations of interventional image pairs (also called ``actionable counterfactuals'' in the literature), have the property that only variables corresponding to scene elements affected by the intervention / action are changed between the start state and the end state. While most work in this area has focused on identifying and representing the variables of the scene under a causal model, fewer efforts have focused on representations of the interventions themselves. In this work, we show that an effective strategy for improving out of distribution (OOD) robustness is to focus on the representation of actionable counterfactuals in the latent space. Specifically, we propose that an intervention can be represented by a Causal Delta Embedding that is invariant to the visual scene and sparse in terms of the causal variables it affects. Leveraging this insight, we propose a method for learning causal representations from image pairs, without any additional supervision. Experiments in the Causal Triplet challenge demonstrate that Causal Delta Embeddings are highly effective in OOD settings, significantly exceeding baseline performance in both synthetic and real-world benchmarks.
RDDM: Practicing RAW Domain Diffusion Model for Real-world Image Restoration
We present the RAW domain diffusion model (RDDM), an end-to-end diffusion model that restores photo-realistic images directly from the sensor RAW data. While recent sRGB-domain diffusion methods achieve impressive results, they are caught in a dilemma between high fidelity and image generation. These models process lossy sRGB inputs and neglect the accessibility of the sensor RAW images in many scenarios, e.g., in image and video capturing in edge devices, resulting in sub-optimal performance. RDDM obviates this limitation by directly restoring images in the RAW domain, replacing the conventional two-stage image signal processing (ISP)->Image Restoration (IR) pipeline. However, a simple adaptation of pre-trained diffusion models to the RAW domain confronts many challenges. To this end, we propose: (1) a RAW-domain VAE (RVAE), encoding sensor RAW and decoding it into an enhanced linear domain image, to solve the out-of-distribution (OOD) issues between the different domain distributions; (2) a configurable multi-bayer (CMB) LoRA module, adapting diverse RAW Bayer patterns such as RGGB, BGGR, etc. To compensate for the deficiency in the dataset, we develop a scalable data synthesis pipeline synthesizing RAW LQ-HQ pairs from existing sRGB datasets for large-scale training. Extensive experiments demonstrate RDDM's superiority over state-of-the-art sRGB diffusion methods, yielding higher fidelity results with fewer artifacts. Codes will be publicly available at https://github.com/YanCHEN-fr/RDDM.
Beyond Global Alignment: Fine-Grained Motion-Language Retrieval via Pyramidal Shapley-Taylor Learning
As a foundational task in human-centric cross-modal intelligence, motion-language retrieval aims to bridge the semantic gap between natural language and human motion, enabling intuitive motion analysis, yet existing approaches predominantly focus on aligning entire motion sequences with global textual representations. This global-centric paradigm overlooks fine-grained interactions between local motion segments and individual body joints and text tokens, inevitably leading to suboptimal retrieval performance. To address this limitation, we draw inspiration from the pyramidal process of human motion perception (from joint dynamics to segment coherence, and finally to holistic comprehension) and propose a novel Pyramidal Shapley-Taylor (PST) learning framework for fine-grained motion-language retrieval. Specifically, the framework decomposes human motion into temporal segments and spatial body joints, and learns cross-modal correspondences through progressive joint-wise and segment-wise alignment in a pyramidal fashion, effectively capturing both local semantic details and hierarchical structural relationships. Extensive experiments on multiple public benchmark datasets demonstrate that our approach significantly outperforms state-of-the-art methods, achieving precise alignment between motion segments and body joints and their corresponding text tokens. The code of this work will be released upon acceptance.
Policy Contrastive Decoding for Robotic Foundation Models
Robotic foundation models, or generalist robot policies, hold immense potential to enable flexible, general-purpose and dexterous robotic systems. Despite their advancements, our empirical experiments reveal that existing robot policies are prone to learning spurious correlations from pre-training trajectories, adversely affecting their generalization capabilities beyond the training data. To tackle this, we propose a novel Policy Contrastive Decoding (PCD) approach, which redirects the robot policy's focus toward object-relevant visual clues by contrasting action probability distributions derived from original and object-masked visual inputs. As a training-free method, our PCD can be used as a plugin to improve different types of robot policies without needing to finetune or access model weights. We conduct extensive experiments on top of three open-source robot policies, including the autoregressive policy OpenVLA and the diffusion-based policies Octo and $π_0$. The obtained results in both simulation and real-world environments prove PCD's flexibility and effectiveness, e.g., PCD enhances the state-of-the-art policy $π_0$ by 8.9% in the simulation environment and by 108% in the real-world environment. Code and demos are publicly available at: https://koorye.github.io/PCD.
A Survey on Efficient Vision-Language-Action Models
Vision-Language-Action models (VLAs) represent a significant frontier in embodied intelligence, aiming to bridge digital knowledge with physical-world interaction. Despite their remarkable performance, foundational VLAs are hindered by the prohibitive computational and data demands inherent to their large-scale architectures. While a surge of recent research has focused on enhancing VLA efficiency, the field lacks a unified framework to consolidate these disparate advancements. To bridge this gap, this survey presents the first comprehensive review of Efficient Vision-Language-Action models (Efficient VLAs) across the entire model-training-data pipeline. Specifically, we introduce a unified taxonomy to systematically organize the disparate efforts in this domain, categorizing current techniques into three core pillars: (1) Efficient Model Design, focusing on efficient architectures and model compression; (2) Efficient Training, which reduces computational burdens during model learning; and (3) Efficient Data Collection, which addresses the bottlenecks in acquiring and utilizing robotic data. Through a critical review of state-of-the-art methods within this framework, this survey not only establishes a foundational reference for the community but also summarizes representative applications, delineates key challenges, and charts a roadmap for future research. We maintain a continuously updated project page to track our latest developments: https://evla-survey.github.io/.
comment: 28 pages, 8 figures
DA-Occ: Direction-Aware 2D Convolution for Efficient and Geometry-Preserving 3D Occupancy Prediction in Autonomous Driving
Efficient and high-accuracy 3D occupancy prediction is vital for the performance of autonomous driving systems. However, existing methods struggle to balance precision and efficiency: high-accuracy approaches are often hindered by heavy computational overhead, leading to slow inference speeds, while others leverage pure bird's-eye-view (BEV) representations to gain speed at the cost of losing vertical spatial cues and compromising geometric integrity. To overcome these limitations, we build on the efficient Lift-Splat-Shoot (LSS) paradigm and propose a pure 2D framework, DA-Occ, for 3D occupancy prediction that preserves fine-grained geometry. Standard LSS-based methods lift 2D features into 3D space solely based on depth scores, making it difficult to fully capture vertical structure. To improve upon this, DA-Occ augments depth-based lifting with a complementary height-score projection that explicitly encodes vertical geometric information. We further employ direction-aware convolution to extract geometric features along both vertical and horizontal orientations, effectively balancing accuracy and computational efficiency. On the Occ3D-nuScenes, the proposed method achieves an mIoU of 39.3% and an inference speed of 27.7 FPS, effectively balancing accuracy and efficiency. In simulations on edge devices, the inference speed reaches 14.8 FPS, further demonstrating the method's applicability for real-time deployment in resource-constrained environments.
Towards Faithful Reasoning in Remote Sensing: A Perceptually-Grounded GeoSpatial Chain-of-Thought for Vision-Language Models
Vision-Language Models (VLMs) in remote sensing often fail at complex analytical tasks, a limitation stemming from their end-to-end training paradigm that bypasses crucial reasoning steps and leads to unverifiable outputs. To address this limitation, we introduce the Perceptually-Grounded Geospatial Chain-of-Thought (Geo-CoT), a framework that models remote sensing analysis as a verifiable, multi-step process. We instill this analytical process through a two-stage alignment strategy, leveraging Geo-CoT380k, the first large-scale dataset of structured Geo-CoT rationales. This strategy first employs supervised fine-tuning (SFT) to instill the foundational cognitive architecture, then leverages Group Reward Policy Optimization (GRPO) to refine the model's reasoning policy towards factual correctness. The resulting model, RSThinker, outputs both a final answer and its justifying, verifiable analytical trace. This capability yields dominant performance, significantly outperforming state-of-the-art models across a comprehensive range of tasks. The public release of our Geo-CoT380k dataset and RSThinker model upon publication serves as a concrete pathway from opaque perception towards structured, verifiable reasoning for Earth Observation.
Feat2GS: Probing Visual Foundation Models with Gaussian Splatting
Given that visual foundation models (VFMs) are trained on extensive datasets but often limited to 2D images, a natural question arises: how well do they understand the 3D world? With the differences in architecture and training protocols (i.e., objectives, proxy tasks), a unified framework to fairly and comprehensively probe their 3D awareness is urgently needed. Existing works on 3D probing suggest single-view 2.5D estimation (e.g., depth and normal) or two-view sparse 2D correspondence (e.g., matching and tracking). Unfortunately, these tasks ignore texture awareness, and require 3D data as ground-truth, which limits the scale and diversity of their evaluation set. To address these issues, we introduce Feat2GS, which readout 3D Gaussians attributes from VFM features extracted from unposed images. This allows us to probe 3D awareness for geometry and texture via novel view synthesis, without requiring 3D data. Additionally, the disentanglement of 3DGS parameters - geometry ($\boldsymbol{x}$, $α$, $Σ$) and texture ($\boldsymbol{c}$) - enables separate analysis of texture and geometry awareness. Under Feat2GS, we conduct extensive experiments to probe the 3D awareness of several VFMs, and investigate the ingredients that lead to a 3D aware VFM. Building on these findings, we develop several variants that achieve state-of-the-art across diverse datasets. This makes Feat2GS useful for probing VFMs, and as a simple-yet-effective baseline for novel-view synthesis. Code and data are available at https://fanegg.github.io/Feat2GS/.
comment: Project Page: https://fanegg.github.io/Feat2GS/
EgoFSD: Ego-Centric Fully Sparse Paradigm with Uncertainty Denoising and Iterative Refinement for Efficient End-to-End Self-Driving ICRA2026
Current End-to-End Autonomous Driving (E2E-AD) methods resort to unifying modular designs for various tasks (e.g. perception, prediction and planning). Although optimized with a fully differentiable framework in a planning-oriented manner, existing end-to-end driving systems lacking ego-centric designs still suffer from unsatisfactory performance and inferior efficiency, due to rasterized scene representation learning and redundant information transmission. In this paper, we propose an ego-centric fully sparse paradigm, named EgoFSD, for end-to-end self-driving. Specifically, EgoFSD consists of sparse perception, hierarchical interaction and iterative motion planner. The sparse perception module performs detection and online mapping based on sparse representation of the driving scene. The hierarchical interaction module aims to select the Closest In-Path Vehicle / Stationary (CIPV / CIPS) from coarse to fine, benefiting from an additional geometric prior. As for the iterative motion planner, both selected interactive agents and ego-vehicle are considered for joint motion prediction, where the output multi-modal ego-trajectories are optimized in an iterative fashion. In addition, position-level motion diffusion and trajectory-level planning denoising are introduced for uncertainty modeling, thereby enhancing the training stability and convergence speed. Extensive experiments are conducted on nuScenes and Bench2Drive datasets, which significantly reduces the average L2 error by 59% and collision rate by 92% than UniAD while achieves 6.9x faster running efficiency.
comment: Accepted to ICRA2026
A Three-Level Whole-Body Disturbance Rejection Control Framework for Dynamic Motions in Legged Robots
This paper presents a control framework designed to enhance the stability and robustness of legged robots in the presence of uncertainties, including model uncertainties, external disturbances, and faults. The framework enables the full-state feedback estimator to estimate and compensate for uncertainties in the whole-body dynamics of the legged robots. First, we propose a novel moving horizon extended state observer (MH-ESO) to estimate uncertainties and mitigate noise in legged systems, which can be integrated into the framework for disturbance compensation. Second, we introduce a three-level whole-body disturbance rejection control framework (T-WB-DRC). Unlike the previous two-level approach, this three-level framework considers both the plan based on whole-body dynamics without uncertainties and the plan based on dynamics with uncertainties, significantly improving payload transportation, external disturbance rejection, and fault tolerance. Third, simulations of both humanoid and quadruped robots in the Gazebo simulator demonstrate the effectiveness and versatility of T-WB-DRC. Finally, extensive experimental trials on a quadruped robot validate the robustness and stability of the system when using T-WB-DRC under various disturbance conditions.
comment: has been accepted for publication as a SPECIAL ISSUE paper in the IEEE Transactions on Automation Science and Engineering
GEO-Bench-2: From Performance to Capability, Rethinking Evaluation in Geospatial AI
Geospatial Foundation Models (GeoFMs) are transforming Earth Observation (EO), but evaluation lacks standardized protocols. GEO-Bench-2 addresses this with a comprehensive framework spanning classification, segmentation, regression, object detection, and instance segmentation across 19 permissively-licensed datasets. We introduce ''capability'' groups to rank models on datasets that share common characteristics (e.g., resolution, bands, temporality). This enables users to identify which models excel in each capability and determine which areas need improvement in future work. To support both fair comparison and methodological innovation, we define a prescriptive yet flexible evaluation protocol. This not only ensures consistency in benchmarking but also facilitates research into model adaptation strategies, a key and open challenge in advancing GeoFMs for downstream tasks. Our experiments show that no single model dominates across all tasks, confirming the specificity of the choices made during architecture design and pretraining. While models pretrained on natural images (ConvNext ImageNet, DINO V3) excel on high-resolution tasks, EO-specific models (TerraMind, Prithvi, and Clay) outperform them on multispectral applications such as agriculture and disaster response. These findings demonstrate that optimal model choice depends on task requirements, data modalities, and constraints. This shows that the goal of a single GeoFM model that performs well across all tasks remains open for future research. GEO-Bench-2 enables informed, reproducible GeoFM evaluation tailored to specific use cases. Code, data, and leaderboard for GEO-Bench-2 are publicly released under a permissive license.
A Gait Driven Reinforcement Learning Framework for Humanoid Robots
This paper presents a real-time gait driven training framework for humanoid robots. First, we introduce a novel gait planner that incorporates dynamics to design the desired joint trajectory. In the gait design process, the 3D robot model is decoupled into two 2D models, which are then approximated as hybrid inverted pendulums (H-LIP) for trajectory planning. The gait planner operates in parallel in real time within the robot's learning environment. Second, based on this gait planner, we design three effective reward functions within a reinforcement learning framework, forming a reward composition to achieve periodic bipedal gait. This reward composition reduces the robot's learning time and enhances locomotion performance. Finally, a gait design example, along with simulation and experimental comparisons, is presented to demonstrate the effectiveness of the proposed method.
SpatialViz-Bench: A Cognitively-Grounded Benchmark for Diagnosing Spatial Visualization in MLLMs
Humans can imagine and manipulate visual images mentally, a capability known as spatial visualization. While many multi-modal benchmarks assess reasoning on visible visual information, the ability to infer unseen relationships through spatial visualization remains insufficiently evaluated as a spatial skill. This reliance on publicly sourced problems from IQ tests or math competitions risks data contamination and compromises assessment reliability. To this end, we introduce SpatialViz-Bench, a comprehensive multi-modal benchmark for spatial visualization with 12 tasks across 4 sub-abilities, comprising 1,180 programmatically generated problems, a scalable framework that allows for expansion to ensure fair and continuously reliable evaluations. Our evaluation of 27 Multi-modal Large Language Models (MLLMs) reveals wide performance variations, demonstrates the benchmark's strong discriminative power, and uncovers counter-intuitive findings: Chain-of-Thought (CoT) prompting paradoxically degrades accuracy on open-source models. Through statistical and qualitative analysis of error types, SpatialViz-Bench demonstrates that state-of-the-art MLLMs exhibit deficiencies in spatial visualization tasks, thereby addressing a significant lacuna in the field. The benchmark data and evaluation code are publicly available.
MPF-Net: Exposing High-Fidelity AI-Generated Video Forgeries via Hierarchical Manifold Deviation and Micro-Temporal Fluctuations
With the rapid advancement of video generation models such as Veo and Wan, the visual quality of synthetic content has reached a level where macro-level semantic errors and temporal inconsistencies are no longer prominent. However, this does not imply that the distinction between real and cutting-edge high-fidelity fake is untraceable. We argue that AI-generated videos are essentially products of a manifold-fitting process rather than a physical recording. Consequently, the pixel composition logic of consecutive adjacent frames residual in AI videos exhibits a structured and homogenous characteristic. We term this phenomenon `Manifold Projection Fluctuations' (MPF). Driven by this insight, we propose a hierarchical dual-path framework that operates as a sequential filtering process. The first, the Static Manifold Deviation Branch, leverages the refined perceptual boundaries of Large-Scale Vision Foundation Models (VFMs) to capture residual spatial anomalies or physical violations that deviate from the natural real-world manifold (off-manifold). For the remaining high-fidelity videos that successfully reside on-manifold and evade spatial detection, we introduce the Micro-Temporal Fluctuation Branch as a secondary, fine-grained filter. By analyzing the structured MPF that persists even in visually perfect sequences, our framework ensures that forgeries are exposed regardless of whether they manifest as global real-world manifold deviations or subtle computational fingerprints.
Foundation Models 50
Reward-free Alignment for Conflicting Objectives
Direct alignment methods are increasingly used to align large language models (LLMs) with human preferences. However, many real-world alignment problems involve multiple conflicting objectives, where naive aggregation of preferences can lead to unstable training and poor trade-offs. In particular, weighted loss methods may fail to identify update directions that simultaneously improve all objectives, and existing multi-objective approaches often rely on explicit reward models, introducing additional complexity and distorting user-specified preferences. The contributions of this paper are two-fold. First, we propose a Reward-free Alignment framework for Conflicted Objectives (RACO) that directly leverages pairwise preference data and resolves gradient conflicts via a novel clipped variant of conflict-averse gradient descent. We provide convergence guarantees to Pareto-critical points that respect user-specified objective weights, and further show that clipping can strictly improve convergence rate in the two-objective setting. Second, we improve our method using some heuristics and conduct experiments to demonstrate the compatibility of the proposed framework for LLM alignment. Both qualitative and quantitative evaluations on multi-objective summarization and safety alignment tasks across multiple LLM families (Qwen 3, Llama 3, Gemma 3) show that our method consistently achieves better Pareto trade-offs compared to existing multi-objective alignment baselines.
comment: 27 pages
MEG-XL: Data-Efficient Brain-to-Text via Long-Context Pre-Training
Clinical brain-to-text interfaces are designed for paralysed patients who cannot provide extensive training recordings. Pre-training improves data-efficient generalisation by learning statistical priors across subjects, but these priors critically depend on context. While natural speech might unfold gradually over minutes, most methods pre-train with only a few seconds of context. Thus, we propose MEG-XL, a model pre-trained with 2.5 minutes of MEG context per sample, 5-300x longer than prior work, and equivalent to 191k tokens, capturing extended neural context. Fine-tuning on the task of word decoding from brain data, MEG-XL matches supervised performance with a fraction of the data (e.g. 1hr vs 50hrs) and outperforms brain foundation models. We find that models pre-trained with longer contexts learn representations that transfer better to word decoding. Our results indicate that long-context pre-training helps exploit extended neural context that other methods unnecessarily discard. Code, model weights, and instructions are available at https://github.com/neural-processing-lab/MEG-XL .
comment: 19 pages, 8 figures, 5 tables
PixelGen: Pixel Diffusion Beats Latent Diffusion with Perceptual Loss
Pixel diffusion generates images directly in pixel space in an end-to-end manner, avoiding the artifacts and bottlenecks introduced by VAEs in two-stage latent diffusion. However, it is challenging to optimize high-dimensional pixel manifolds that contain many perceptually irrelevant signals, leaving existing pixel diffusion methods lagging behind latent diffusion models. We propose PixelGen, a simple pixel diffusion framework with perceptual supervision. Instead of modeling the full image manifold, PixelGen introduces two complementary perceptual losses to guide diffusion model towards learning a more meaningful perceptual manifold. An LPIPS loss facilitates learning better local patterns, while a DINO-based perceptual loss strengthens global semantics. With perceptual supervision, PixelGen surpasses strong latent diffusion baselines. It achieves an FID of 5.11 on ImageNet-256 without classifier-free guidance using only 80 training epochs, and demonstrates favorable scaling performance on large-scale text-to-image generation with a GenEval score of 0.79. PixelGen requires no VAEs, no latent representations, and no auxiliary stages, providing a simpler yet more powerful generative paradigm. Codes are publicly available at https://github.com/Zehong-Ma/PixelGen.
comment: Project Pages: https://zehong-ma.github.io/PixelGen/
RLAnything: Forge Environment, Policy, and Reward Model in Completely Dynamic RL System
We propose RLAnything, a reinforcement learning framework that dynamically forges environment, policy, and reward models through closed-loop optimization, amplifying learning signals and strengthening the overall RL system for any LLM or agentic scenarios. Specifically, the policy is trained with integrated feedback from step-wise and outcome signals, while the reward model is jointly optimized via consistency feedback, which in turn further improves policy training. Moreover, our theory-motivated automatic environment adaptation improves training for both the reward and policy models by leveraging critic feedback from each, enabling learning from experience. Empirically, each added component consistently improves the overall system, and RLAnything yields substantial gains across various representative LLM and agentic tasks, boosting Qwen3-VL-8B-Thinking by 9.1% on OSWorld and Qwen2.5-7B-Instruct by 18.7% and 11.9% on AlfWorld and LiveBench, respectively. We also that optimized reward-model signals outperform outcomes that rely on human labels. Code: https://github.com/Gen-Verse/Open-AgentRL
comment: Code: https://github.com/Gen-Verse/Open-AgentRL
RE-TRAC: REcursive TRAjectory Compression for Deep Search Agents
LLM-based deep research agents are largely built on the ReAct framework. This linear design makes it difficult to revisit earlier states, branch into alternative search directions, or maintain global awareness under long contexts, often leading to local optima, redundant exploration, and inefficient search. We propose Re-TRAC, an agentic framework that performs cross-trajectory exploration by generating a structured state representation after each trajectory to summarize evidence, uncertainties, failures, and future plans, and conditioning subsequent trajectories on this state representation. This enables iterative reflection and globally informed planning, reframing research as a progressive process. Empirical results show that Re-TRAC consistently outperforms ReAct by 15-20% on BrowseComp with frontier LLMs. For smaller models, we introduce Re-TRAC-aware supervised fine-tuning, achieving state-of-the-art performance at comparable scales. Notably, Re-TRAC shows a monotonic reduction in tool calls and token usage across rounds, indicating progressively targeted exploration driven by cross-trajectory reflection rather than redundant search.
Expanding the Capabilities of Reinforcement Learning via Text Feedback
The success of RL for LLM post-training stems from an unreasonably uninformative source: a single bit of information per rollout as binary reward or preference label. At the other extreme, distillation offers dense supervision but requires demonstrations, which are costly and difficult to scale. We study text feedback as an intermediate signal: richer than scalar rewards, yet cheaper than complete demonstrations. Textual feedback is a natural mode of human interaction and is already abundant in many real-world settings, where users, annotators, and automated judges routinely critique LLM outputs. Towards leveraging text feedback at scale, we formalize a multi-turn RL setup, RL from Text Feedback (RLTF), where text feedback is available during training but not at inference. Therefore, models must learn to internalize the feedback in order to improve their test-time single-turn performance. To do this, we propose two methods: Self Distillation (RLTF-SD), which trains the single-turn policy to match its own feedback-conditioned second-turn generations; and Feedback Modeling (RLTF-FM), which predicts the feedback as an auxiliary objective. We provide theoretical analysis on both methods, and empirically evaluate on reasoning puzzles, competition math, and creative writing tasks. Our results show that both methods consistently outperform strong baselines across benchmarks, highlighting the potential of RL with an additional source of rich supervision at scale.
comment: 43 pages, 6 figures
AgentRx: Diagnosing AI Agent Failures from Execution Trajectories
AI agents often fail in ways that are difficult to localize because executions are probabilistic, long-horizon, multi-agent, and mediated by noisy tool outputs. We address this gap by manually annotating failed agent runs and release a novel benchmark of 115 failed trajectories spanning structured API workflows, incident management, and open-ended web/file tasks. Each trajectory is annotated with a critical failure step and a category from a grounded-theory derived, cross-domain failure taxonomy. To mitigate the human cost of failure attribution, we present AGENTRX, an automated domain-agnostic diagnostic framework that pinpoints the critical failure step in a failed agent trajectory. It synthesizes constraints, evaluates them step-by-step, and produces an auditable validation log of constraint violations with associated evidence; an LLM-based judge uses this log to localize the critical step and category. Our framework improves step localization and failure attribution over existing baselines across three domains.
MemSkill: Learning and Evolving Memory Skills for Self-Evolving Agents
Most Large Language Model (LLM) agent memory systems rely on a small set of static, hand-designed operations for extracting memory. These fixed procedures hard-code human priors about what to store and how to revise memory, making them rigid under diverse interaction patterns and inefficient on long histories. To this end, we present \textbf{MemSkill}, which reframes these operations as learnable and evolvable memory skills, structured and reusable routines for extracting, consolidating, and pruning information from interaction traces. Inspired by the design philosophy of agent skills, MemSkill employs a \emph{controller} that learns to select a small set of relevant skills, paired with an LLM-based \emph{executor} that produces skill-guided memories. Beyond learning skill selection, MemSkill introduces a \emph{designer} that periodically reviews hard cases where selected skills yield incorrect or incomplete memories, and evolves the skill set by proposing refinements and new skills. Together, MemSkill forms a closed-loop procedure that improves both the skill-selection policy and the skill set itself. Experiments on LoCoMo, LongMemEval, HotpotQA, and ALFWorld demonstrate that MemSkill improves task performance over strong baselines and generalizes well across settings. Further analyses shed light on how skills evolve, offering insights toward more adaptive, self-evolving memory management for LLM agents.
comment: Code is available at https://github.com/ViktorAxelsen/MemSkill
SPARKLING: Balancing Signal Preservation and Symmetry Breaking for Width-Progressive Learning
Progressive Learning (PL) reduces pre-training computational overhead by gradually increasing model scale. While prior work has extensively explored depth expansion, width expansion remains significantly understudied, with the few existing methods limited to the early stages of training. However, expanding width during the mid-stage is essential for maximizing computational savings, yet it remains a formidable challenge due to severe training instabilities. Empirically, we show that naive initialization at this stage disrupts activation statistics, triggering loss spikes, while copy-based initialization introduces gradient symmetry that hinders feature diversity. To address these issues, we propose SPARKLING (balancing {S}ignal {P}reservation {A}nd symmet{R}y brea{K}ing for width-progressive {L}earn{ING}), a novel framework for mid-stage width expansion. Our method achieves signal preservation via RMS-scale consistency, stabilizing activation statistics during expansion. Symmetry breaking is ensured through asymmetric optimizer state resetting and learning rate re-warmup. Extensive experiments on Mixture-of-Experts (MoE) models demonstrate that, across multiple width axes and optimizer families, SPARKLING consistently outperforms training from scratch and reduces training cost by up to 35% under $2\times$ width expansion.
Multi-head automated segmentation by incorporating detection head into the contextual layer neural network
Deep learning based auto segmentation is increasingly used in radiotherapy, but conventional models often produce anatomically implausible false positives, or hallucinations, in slices lacking target structures. We propose a gated multi-head Transformer architecture based on Swin U-Net, augmented with inter-slice context integration and a parallel detection head, which jointly performs slice-level structure detection via a multi-layer perceptron and pixel-level segmentation through a context-enhanced stream. Detection outputs gate the segmentation predictions to suppress false positives in anatomically invalid slices, and training uses slice-wise Tversky loss to address class imbalance. Experiments on the Prostate-Anatomical-Edge-Cases dataset from The Cancer Imaging Archive demonstrate that the gated model substantially outperforms a non-gated segmentation-only baseline, achieving a mean Dice loss of $0.013 \pm 0.036$ versus $0.732 \pm 0.314$, with detection probabilities strongly correlated with anatomical presence, effectively eliminating spurious segmentations. In contrast, the non-gated model exhibited higher variability and persistent false positives across all slices. These results indicate that detection-based gating enhances robustness and anatomical plausibility in automated segmentation applications, reducing hallucinated predictions without compromising segmentation quality in valid slices, and offers a promising approach for improving the reliability of clinical radiotherapy auto-contouring workflows.
comment: 8 pages, 3 figures, 1 table
Breaking the Reversal Curse in Autoregressive Language Models via Identity Bridge
Autoregressive large language models (LLMs) have achieved remarkable success in many complex tasks, yet they can still fail in very simple logical reasoning such as the "reversal curse" -- when trained on forward knowledge data of the form "$A \rightarrow B$" (e.g., Alice's husband is Bob), the model is unable to deduce the reversal knowledge "$B \leftarrow A$" (e.g., Bob's wife is Alice) during test. Extensive prior research suggests that this failure is an inherent, fundamental limit of autoregressive causal LLMs, indicating that these models tend to memorize factual-level knowledge rather than capture higher-level rules. In this paper, we challenge this view by showing that this seemingly fundamental limit can be mitigated by slightly tweaking the training data with a simple regularization data recipe called the Identity Bridge of the form "$A \to A$" (e.g., The name of Alice is Alice). Theoretically, we prove that under this recipe, even a one-layer transformer can break the reversal curse by analyzing the implicit bias of gradient descent. Empirically, we show that a 1B pretrained language model finetuned with the proposed data recipe achieves a 40% success rate on reversal tasks, in stark contrast to a near-zero success rate when trained solely on forward-knowledge data. Our work provides a novel theoretical foundation for the reversal curse and offers a principled, low-cost path to encouraging LLMs to learn higher-level rules from data.
Age-Aware Edge-Blind Federated Learning via Over-the-Air Aggregation
We study federated learning (FL) over wireless fading channels where multiple devices simultaneously send their model updates. We propose an efficient \emph{age-aware edge-blind over-the-air FL} approach that does not require channel state information (CSI) at the devices. Instead, the parameter server (PS) uses multiple antennas and applies maximum-ratio combining (MRC) based on its estimated sum of the channel gains to detect the parameter updates. A key challenge is that the number of orthogonal subcarriers is limited; thus, transmitting many parameters requires multiple Orthogonal Frequency Division Multiplexing (OFDM) symbols, which increases latency. To address this, the PS selects only a small subset of model coordinates each round using \emph{AgeTop-\(k\)}, which first picks the largest-magnitude entries and then chooses the \(k\) coordinates with the longest waiting times since they were last selected. This ensures that all selected parameters fit into a single OFDM symbol, reducing latency. We provide a convergence bound that highlights the advantages of using a higher number of antenna array elements and demonstrates a key trade-off: increasing \(k\) decreases compression error at the cost of increasing the effect of channel noise. Experimental results show that (i) more PS antennas greatly improve accuracy and convergence speed; (ii) AgeTop-\(k\) outperforms random selection under relatively good channel conditions; and (iii) the optimum \(k\) depends on the channel, with smaller \(k\) being better in noisy settings.
comment: To appear in IEEE ICC 2026
Avenir-Web: Human-Experience-Imitating Multimodal Web Agents with Mixture of Grounding Experts
Despite advances in multimodal large language models, autonomous web agents still struggle to reliably execute long-horizon tasks on complex and dynamic web interfaces. Existing agents often suffer from inaccurate element grounding, the absence of site-specific procedural knowledge, and unstable long-term task tracking and memory, particularly when operating over complex Document Object Model structures. To address these limitations, we introduce Avenir-Web, a web agent that achieves a new open-source state of the art on the Online-Mind2Web benchmark in real-world deployment. Avenir-Web leverages a Mixture of Grounding Experts, Experience-Imitation Planning for incorporating procedural priors, and a task-tracking checklist combined with adaptive memory to enable robust and seamless interaction across diverse user interface paradigms. We evaluate Avenir-Web on Online-Mind2Web, a rigorous benchmark of live and user-centered web tasks. Our results demonstrate that Avenir-Web significantly surpasses prior open-source agents and attains performance parity with top-tier proprietary models, thereby establishing a new open-source state of the art for reliable web agents on live websites.
MentisOculi: Revealing the Limits of Reasoning with Mental Imagery
Frontier models are transitioning from multimodal large language models (MLLMs) that merely ingest visual information to unified multimodal models (UMMs) capable of native interleaved generation. This shift has sparked interest in using intermediate visualizations as a reasoning aid, akin to human mental imagery. Central to this idea is the ability to form, maintain, and manipulate visual representations in a goal-oriented manner. To evaluate and probe this capability, we develop MentisOculi, a procedural, stratified suite of multi-step reasoning problems amenable to visual solution, tuned to challenge frontier models. Evaluating visual strategies ranging from latent tokens to explicit generated imagery, we find they generally fail to improve performance. Analysis of UMMs specifically exposes a critical limitation: While they possess the textual reasoning capacity to solve a task and can sometimes generate correct visuals, they suffer from compounding generation errors and fail to leverage even ground-truth visualizations. Our findings suggest that despite their inherent appeal, visual thoughts do not yet benefit model reasoning. MentisOculi establishes the necessary foundation to analyze and close this gap across diverse model families.
comment: 9 pages, 8 figures
Abstract Activation Spaces for Content-Invariant Reasoning in Large Language Models
Large Language Models (LLMs) often struggle with deductive judgment in syllogistic reasoning, systematically conflating semantic plausibility with formal validity a phenomenon known as content effect. This bias persists even when models generate step-wise explanations, indicating that intermediate rationales may inherit the same semantic shortcuts that affect answers. Recent approaches propose mitigating this issue by increasing inference-time structural constraints, either by encouraging abstract intermediate representations or by intervening directly in the model's internal computations; however, reliably suppressing semantic interference remains an open challenge. To make formal deduction less sensitive to semantic content, we introduce a framework for abstraction-guided reasoning that explicitly separates structural inference from lexical semantics. We construct paired content-laden and abstract syllogisms and use the model's activations on abstract inputs to define an abstract reasoning space. We then learn lightweight Abstractors that, from content-conditioned residual-stream states, predict representations aligned with this space and integrate these predictions via multi-layer interventions during the forward pass. Using cross-lingual transfer as a test bed, we show that abstraction-aligned steering reduces content-driven errors and improves validity-sensitive performance. Our results position activation-level abstraction as a scalable mechanism for enhancing the robustness of formal reasoning in LLMs against semantic interference.
TIC-VLA: A Think-in-Control Vision-Language-Action Model for Robot Navigation in Dynamic Environments
Robots in dynamic, human-centric environments must follow language instructions while maintaining real-time reactive control. Vision-language-action (VLA) models offer a promising framework, but they assume temporally aligned reasoning and control, despite semantic inference being inherently delayed relative to real-time action. We introduce Think-in-Control (TIC)-VLA, a latency-aware framework that explicitly models delayed semantic reasoning during action generation. TIC-VLA defines a delayed semantic-control interface that conditions action generation on delayed vision-language semantic states and explicit latency metadata, in addition to current observations, enabling policies to compensate for asynchronous reasoning. We further propose a latency-consistent training pipeline that injects reasoning inference delays during imitation learning and online reinforcement learning, aligning training with asynchronous deployment. To support realistic evaluation, we present DynaNav, a physics-accurate, photo-realistic simulation suite for language-guided navigation in dynamic environments. Extensive experiments in simulation and on a real robot show that TIC-VLA consistently outperforms prior VLA models while maintaining robust real-time control under multi-second reasoning latency. Project website: https://ucla-mobility.github.io/TIC-VLA/
Conflict-Aware Client Selection for Multi-Server Federated Learning
Federated learning (FL) has emerged as a promising distributed machine learning (ML) that enables collaborative model training across clients without exposing raw data, thereby preserving user privacy and reducing communication costs. Despite these benefits, traditional single-server FL suffers from high communication latency due to the aggregation of models from a large number of clients. While multi-server FL distributes workloads across edge servers, overlapping client coverage and uncoordinated selection often lead to resource contention, causing bandwidth conflicts and training failures. To address these limitations, we propose a decentralized reinforcement learning with conflict risk prediction, named RL CRP, to optimize client selection in multi-server FL systems. Specifically, each server estimates the likelihood of client selection conflicts using a categorical hidden Markov model based on its sparse historical client selection sequence. Then, a fairness-aware reward mechanism is incorporated to promote long-term client participation for minimizing training latency and resource contention. Extensive experiments demonstrate that the proposed RL-CRP framework effectively reduces inter-server conflicts and significantly improves training efficiency in terms of convergence speed and communication cost.
comment: 6 pages, 4 figures
Relationship-Aware Hierarchical 3D Scene Graph for Task Reasoning ICRA 2026
Representing and understanding 3D environments in a structured manner is crucial for autonomous agents to navigate and reason about their surroundings. While traditional Simultaneous Localization and Mapping (SLAM) methods generate metric reconstructions and can be extended to metric-semantic mapping, they lack a higher level of abstraction and relational reasoning. To address this gap, 3D scene graphs have emerged as a powerful representation for capturing hierarchical structures and object relationships. In this work, we propose an enhanced hierarchical 3D scene graph that integrates open-vocabulary features across multiple abstraction levels and supports object-relational reasoning. Our approach leverages a Vision Language Model (VLM) to infer semantic relationships. Notably, we introduce a task reasoning module that combines Large Language Models (LLM) and a VLM to interpret the scene graph's semantic and relational information, enabling agents to reason about tasks and interact with their environment more intelligently. We validate our method by deploying it on a quadruped robot in multiple environments and tasks, highlighting its ability to reason about them.
comment: ICRA 2026, 8 pages
Drift-Bench: Diagnosing Cooperative Breakdowns in LLM Agents under Input Faults via Multi-Turn Interaction
As Large Language Models transition to autonomous agents, user inputs frequently violate cooperative assumptions (e.g., implicit intent, missing parameters, false presuppositions, or ambiguous expressions), creating execution risks that text-only evaluations do not capture. Existing benchmarks typically assume well-specified instructions or restrict evaluation to text-only, single-turn clarification, and thus do not measure multi-turn disambiguation under grounded execution risk. We introduce \textbf{Drift-Bench}, the first diagnostic benchmark that evaluates agentic pragmatics under input faults through multi-turn clarification across state-oriented and service-oriented execution environments. Grounded in classical theories of communication, \textbf{Drift-Bench} provides a unified taxonomy of cooperative breakdowns and employs a persona-driven user simulator with the \textbf{Rise} evaluation protocol. Experiments show substantial performance drops under these faults, with clarification effectiveness varying across user personas and fault types. \MethodName bridges clarification research and agent safety evaluation, enabling systematic diagnosis of failures that can lead to unsafe executions.
comment: 65 pages, 40 figures
World-Gymnast: Training Robots with Reinforcement Learning in a World Model
Robot learning from interacting with the physical world is fundamentally bottlenecked by the cost of physical interaction. The two alternatives, supervised finetuning (SFT) from expert demonstrations and reinforcement learning (RL) in a software-based simulator, are limited by the amount of expert data available and the sim-to-real gap for manipulation. With the recent emergence of world models learned from real-world video-action data, we ask the question of whether training a policy in a world model can be more effective than supervised learning or software simulation in achieving better real-robot performance. We propose World-Gymnast, which performs RL finetuning of a vision-language-action (VLA) policy by rolling out the policy in an action-conditioned video world model and rewarding the rollouts with a vision-language model (VLM). On the Bridge robot setup, World-Gymnast outperforms SFT by as much as 18x and outperforms software simulator by as much as 2x. More importantly, World-Gymnast demonstrates intriguing capabilities of RL with a world model, including training on diverse language instructions and novel scenes from the world model, test-time training in a novel scene, and online iterative world model and policy improvement. Our results suggest learning a world model and training robot policies in the cloud could be the key to bridging the gap between robots that work in demonstrations and robots that can work in anyone's household.
comment: https://world-gymnast.github.io/
Thinking with Comics: Enhancing Multimodal Reasoning through Structured Visual Storytelling
Chain-of-Thought reasoning has driven large language models to extend from thinking with text to thinking with images and videos. However, different modalities still have clear limitations: static images struggle to represent temporal structure, while videos introduce substantial redundancy and computational cost. In this work, we propose Thinking with Comics, a visual reasoning paradigm that uses comics as a high information-density medium positioned between images and videos. Comics preserve temporal structure, embedded text, and narrative coherence while requiring significantly lower reasoning cost. We systematically study two reasoning paths based on comics and evaluate them on a range of reasoning tasks and long-context understanding tasks. Experimental results show that Thinking with Comics outperforms Thinking with Images on multi-step temporal and causal reasoning tasks, while remaining substantially more efficient than Thinking with Video. Further analysis indicates that different comic narrative structures and styles consistently affect performance across tasks, suggesting that comics serve as an effective intermediate visual representation for improving multimodal reasoning.
comment: Working paper
Certain Head, Uncertain Tail: Expert-Sample for Test-Time Scaling in Fine-Grained MoE
Test-time scaling improves LLM performance by generating multiple candidate solutions, yet token-level sampling requires temperature tuning that trades off diversity against stability. Fine-grained MoE, featuring hundreds of well-trained experts per layer and multi-expert activation per token, offers an unexplored alternative through its rich routing space. We empirically characterize fine-grained MoE routing and uncover an informative pattern: router scores exhibit a certain head of high-confidence experts followed by an uncertain tail of low-confidence candidates. While single-run greedy accuracy remains stable when fewer experts are activated, multi-sample pass@n degrades significantly-suggesting that the certain head governs core reasoning capability while the uncertain tail correlates with reasoning diversity. Motivated by these findings, we propose Expert-Sample, a training-free method that preserves high-confidence selections while injecting controlled stochasticity into the uncertain tail, enabling diverse generation without destabilizing outputs. Evaluated on multiple fine-grained MoE models across math, knowledge reasoning, and code tasks, Expert-Sample consistently improves pass@n and verification-based accuracy. On Qwen3-30B-A3B-Instruct evaluated on GPQA-Diamond with 32 parallel samples, pass@32 rises from 85.4% to 91.9%, and accuracy improves from 59.1% to 62.6% with Best-of-N verification.
comment: 24 pages, 13 figures
Energy-Efficient Neuromorphic Computing for Edge AI: A Framework with Adaptive Spiking Neural Networks and Hardware-Aware Optimization
Edge AI applications increasingly require ultra-low-power, low-latency inference. Neuromorphic computing based on event-driven spiking neural networks (SNNs) offers an attractive path, but practical deployment on resource-constrained devices is limited by training difficulty, hardware-mapping overheads, and sensitivity to temporal dynamics. We present NeuEdge, a framework that combines adaptive SNN models with hardware-aware optimization for edge deployment. NeuEdge uses a temporal coding scheme that blends rate and spike-timing patterns to reduce spike activity while preserving accuracy, and a hardware-aware training procedure that co-optimizes network structure and on-chip placement to improve utilization on neuromorphic processors. An adaptive threshold mechanism adjusts neuron excitability from input statistics, reducing energy consumption without degrading performance. Across standard vision and audio benchmarks, NeuEdge achieves 91-96% accuracy with up to 2.3 ms inference latency on edge hardware and an estimated 847 GOp/s/W energy efficiency. A case study on an autonomous-drone workload shows up to 312x energy savings relative to conventional deep neural networks while maintaining real-time operation.
comment: 8 pages, 4 figures, 4 tables. Submitted to IEEE Transactions on Neural Networks and Learning Systems (TNNLS)
UniReason 1.0: A Unified Reasoning Framework for World Knowledge Aligned Image Generation and Editing
Unified multimodal models often struggle with complex synthesis tasks that demand deep reasoning, and typically treat text-to-image generation and image editing as isolated capabilities rather than interconnected reasoning steps. To address this, we propose UniReason, a unified framework that harmonizes these two tasks through a dual reasoning paradigm. We formulate generation as world knowledge-enhanced planning to inject implicit constraints, and leverage editing capabilities for fine-grained visual refinement to further correct visual errors via self-reflection. This approach unifies generation and editing within a shared representation, mirroring the human cognitive process of planning followed by refinement. We support this framework by systematically constructing a large-scale reasoning-centric dataset (~300k samples) covering five major knowledge domains (e.g., cultural commonsense, physics, etc.) for planning, alongside an agent-generated corpus for visual self-correction. Extensive experiments demonstrate that UniReason achieves advanced performance on reasoning-intensive benchmarks such as WISE, KrisBench and UniREditBench, while maintaining superior general synthesis capabilities.
Full-Batch Gradient Descent Outperforms One-Pass SGD: Sample Complexity Separation in Single-Index Learning
It is folklore that reusing training data more than once can improve the statistical efficiency of gradient-based learning. However, beyond linear regression, the theoretical advantage of full-batch gradient descent (GD, which always reuses all the data) over one-pass stochastic gradient descent (online SGD, which uses each data point only once) remains unclear. In this work, we consider learning a $d$-dimensional single-index model with a quadratic activation, for which it is known that one-pass SGD requires $n\gtrsim d\log d$ samples to achieve weak recovery. We first show that this $\log d$ factor in the sample complexity persists for full-batch spherical GD on the correlation loss; however, by simply truncating the activation, full-batch GD exhibits a favorable optimization landscape at $n \simeq d$ samples, thereby outperforming one-pass SGD (with the same activation) in statistical efficiency. We complement this result with a trajectory analysis of full-batch GD on the squared loss from small initialization, showing that $n \gtrsim d$ samples and $T \gtrsim\log d$ gradient steps suffice to achieve strong (exact) recovery.
3D Foundation Model-Based Loop Closing for Decentralized Collaborative SLAM
Decentralized Collaborative Simultaneous Localization And Mapping (C-SLAM) techniques often struggle to identify map overlaps due to significant viewpoint variations among robots. Motivated by recent advancements in 3D foundation models, which can register images despite large viewpoint differences, we propose a robust loop closing approach that leverages these models to establish inter-robot measurements. In contrast to resource-intensive methods requiring full 3D reconstruction within a centralized map, our approach integrates foundation models into existing SLAM pipelines, yielding scalable and robust multi-robot mapping. Our contributions include: (1) integrating 3D foundation models to reliably estimate relative poses from monocular image pairs within decentralized C-SLAM; (2) introducing robust outlier mitigation techniques critical to the use of these relative poses; and (3) developing specialized pose graph optimization formulations that efficiently resolve scale ambiguities. We evaluate our method against state-of-the-art approaches, demonstrating improvements in localization and mapping accuracy, alongside significant gains in computational and memory efficiency. These results highlight the potential of our approach for deployment in large-scale multi-robot scenarios.
Embedding Perturbation may Better Reflect the Uncertainty in LLM Reasoning
Large language Models (LLMs) have achieved significant breakthroughs across diverse domains; however, they can still produce unreliable or misleading outputs. For responsible LLM application, Uncertainty Quantification (UQ) techniques are used to estimate a model's uncertainty about its outputs, indicating the likelihood that those outputs may be problematic. For LLM reasoning tasks, it is essential to estimate the uncertainty not only for the final answer, but also for the intermediate steps of the reasoning, as this can enable more fine-grained and targeted interventions. In this study, we explore what UQ metrics better reflect the LLM's ``intermediate uncertainty''during reasoning. Our study reveals that an LLMs' incorrect reasoning steps tend to contain tokens which are highly sensitive to the perturbations on the preceding token embeddings. In this way, incorrect (uncertain) intermediate steps can be readily identified using this sensitivity score as guidance in practice. In our experiments, we show such perturbation-based metric achieves stronger uncertainty quantification performance compared with baseline methods such as token (generation) probability and token entropy. Besides, different from approaches that rely on multiple sampling, the perturbation-based metrics offer better simplicity and efficiency.
Repurposing Protein Language Models for Latent Flow-Based Fitness Optimization
Protein fitness optimization is challenged by a vast combinatorial landscape where high-fitness variants are extremely sparse. Many current methods either underperform or require computationally expensive gradient-based sampling. We present CHASE, a framework that repurposes the evolutionary knowledge of pretrained protein language models by compressing their embeddings into a compact latent space. By training a conditional flow-matching model with classifier-free guidance, we enable the direct generation of high-fitness variants without predictor-based guidance during the ODE sampling steps. CHASE achieves state-of-the-art performance on AAV and GFP protein design benchmarks. Finally, we show that bootstrapping with synthetic data can further enhance performance in data-constrained settings.
Poly-attention: a general scheme for higher-order self-attention
The self-attention mechanism, at the heart of the Transformer model, is able to effectively model pairwise interactions between tokens. However, numerous recent works have shown that it is unable to perform basic tasks involving detecting triples of correlated tokens, or compositional tasks where multiple input tokens need to be referenced to generate a result. Some higher-dimensional alternatives to self-attention have been proposed to address this, including higher-order attention and Strassen attention, which can perform some of these polyadic tasks in exchange for slower, superquadratic running times. In this work, we define a vast class of generalizations of self-attention, which we call poly-attention mechanisms. Our mechanisms can incorporate arbitrary higher-order (tensor) computations as well as arbitrary relationship structures between the input tokens, and they include the aforementioned alternatives as special cases. We then systematically study their computational complexity and representational strength, including giving new algorithms and matching complexity-theoretic lower bounds on the time complexity of computing the attention matrix exactly as well as approximately, and tightly determining which polyadic tasks they can each perform. Our results give interesting trade-offs between different desiderata for these mechanisms, including a tight relationship between how expressive a mechanism is, and how large the coefficients in the model may be so that the mechanism can be approximated in almost-linear time. Notably, we give a new attention mechanism which can be computed exactly in quadratic time, and which can perform function composition for any fixed number of functions. Prior mechanisms, even for just composing two functions, could only be computed in superquadratic time, and our new lower bounds show that faster algorithms for them are not possible.
SafeGround: Know When to Trust GUI Grounding Models via Uncertainty Calibration
Graphical User Interface (GUI) grounding aims to translate natural language instructions into executable screen coordinates, enabling automated GUI interaction. Nevertheless, incorrect grounding can result in costly, hard-to-reverse actions (e.g., erroneous payment approvals), raising concerns about model reliability. In this paper, we introduce SafeGround, an uncertainty-aware framework for GUI grounding models that enables risk-aware predictions through calibrations before testing. SafeGround leverages a distribution-aware uncertainty quantification method to capture the spatial dispersion of stochastic samples from outputs of any given model. Then, through the calibration process, SafeGround derives a test-time decision threshold with statistically guaranteed false discovery rate (FDR) control. We apply SafeGround on multiple GUI grounding models for the challenging ScreenSpot-Pro benchmark. Experimental results show that our uncertainty measure consistently outperforms existing baselines in distinguishing correct from incorrect predictions, while the calibrated threshold reliably enables rigorous risk control and potentials of substantial system-level accuracy improvements. Across multiple GUI grounding models, SafeGround improves system-level accuracy by up to 5.38\% percentage points over Gemini-only inference.
Trust Region Continual Learning as an Implicit Meta-Learner
Continual learning aims to acquire tasks sequentially without catastrophic forgetting, yet standard strategies face a core tradeoff: regularization-based methods (e.g., EWC) can overconstrain updates when task optima are weakly overlapping, while replay-based methods can retain performance but drift due to imperfect replay. We study a hybrid perspective: \emph{trust region continual learning} that combines generative replay with a Fisher-metric trust region constraint. We show that, under local approximations, the resulting update admits a MAML-style interpretation with a single implicit inner step: replay supplies an old-task gradient signal (query-like), while the Fisher-weighted penalty provides an efficient offline curvature shaping (support-like). This yields an emergent meta-learning property in continual learning: the model becomes an initialization that rapidly \emph{re-converges} to prior task optima after each task transition, without explicitly optimizing a bilevel objective. Empirically, on task-incremental diffusion image generation and continual diffusion-policy control, trust region continual learning achieves the best final performance and retention, and consistently recovers early-task performance faster than EWC, replay, and continual meta-learning baselines.
comment: 19 pages, 23 tables
Structure Enables Effective Self-Localization of Errors in LLMs
Self-correction in language models remains elusive. In this work, we explore whether language models can explicitly localize errors in incorrect reasoning, as a path toward building AI systems that can effectively correct themselves. We introduce a prompting method that structures reasoning as discrete, semantically coherent thought steps, and show that models are able to reliably localize errors within this structure, while failing to do so in conventional, unstructured chain-of-thought reasoning. Motivated by how the human brain monitors errors at discrete decision points and resamples alternatives, we introduce Iterative Correction Sampling of Thoughts (Thought-ICS), a self-correction framework. Thought-ICS iteratively prompts the model to generate reasoning one discrete and complete thought at a time--where each thought represents a deliberate decision by the model--creating natural boundaries for precise error localization. Upon verification, the model localizes the first erroneous step, and the system backtracks to generate alternative reasoning from the last correct point. When asked to correct reasoning verified as incorrect by an oracle, Thought-ICS achieves 20-40% self-correction lift. In a completely autonomous setting without external verification, it outperforms contemporary self-correction baselines.
Active Transfer Bagging: A New Approach for Accelerated Active Learning Acquisition of Data by Combined Transfer Learning and Bagging Based Models
Modern machine learning has achieved remarkable success on many problems, but this success often depends on the existence of large, labeled datasets. While active learning can dramatically reduce labeling cost when annotations are expensive, early performance is frequently dominated by the initial seed set, typically chosen at random. In many applications, however, related or approximate datasets are readily available and can be leveraged to construct a better seed set. We introduce a new method for selecting the seed data set for active learning, Active-Transfer Bagging (ATBagging). ATBagging estimates the informativeness of candidate data point from a Bayesian interpretation of bagged ensemble models by comparing in-bag and out-of-bag predictive distributions from the labeled dataset, yielding an information-gain proxy. To avoid redundant selections, we impose feature-space diversity by sampling a determinantal point process (DPP) whose kernel uses Random Fourier Features and a quality-diversity factorization that incorporates the informativeness scores. This same blended method is used for selection of new data points to collect during the active learning phase. We evaluate ATBagging on four real-world datasets covering both target-transfer and feature-shift scenarios (QM9, ERA5, Forbes 2000, and Beijing PM2.5). Across seed sizes nseed = 10-100, ATBagging improves or ties early active learning and increases area under the learning-curve relative to alternative seed subset selection methodologies in almost all cases, with strongest benefits in low-data regimes. Thus, ATBagging provides a low-cost, high reward means to initiating active learning-based data collection.
Misconception Diagnosis From Student-Tutor Dialogue: Generate, Retrieve, Rerank
Timely and accurate identification of student misconceptions is key to improving learning outcomes and pre-empting the compounding of student errors. However, this task is highly dependent on the effort and intuition of the teacher. In this work, we present a novel approach for detecting misconceptions from student-tutor dialogues using large language models (LLMs). First, we use a fine-tuned LLM to generate plausible misconceptions, and then retrieve the most promising candidates among these using embedding similarity with the input dialogue. These candidates are then assessed and re-ranked by another fine-tuned LLM to improve misconception relevance. Empirically, we evaluate our system on real dialogues from an educational tutoring platform. We consider multiple base LLM models including LLaMA, Qwen and Claude on zero-shot and fine-tuned settings. We find that our approach improves predictive performance over baseline models and that fine-tuning improves both generated misconception quality and can outperform larger closed-source models. Finally, we conduct ablation studies to both validate the importance of our generation and reranking steps on misconception generation quality.
comment: 21 pages, 8 figures, 8 tables. Joshua Mitton and Prarthana Bhattacharyya contributed equally to this paper
Masked Autoencoders as Universal Speech Enhancer
Supervised speech enhancement methods have been very successful. However, in practical scenarios, there is a lack of clean speech, and self-supervised learning-based (SSL) speech enhancement methods that offer comparable enhancement performance and can be applied to other speech-related downstream applications are desired. In this work, we develop a masked autoencoder based universal speech enhancer that is agnostic to the type of distortion affecting speech, can handle multiple distortions simultaneously, and is trained in a self-supervised manner. An augmentation stack adds further distortions to the noisy input data. The masked autoencoder model learns to remove the added distortions along with reconstructing the masked regions of the spectrogram during pre-training. The pre-trained embeddings are then used by fine-tuning models trained on a small amount of paired data for specific downstream tasks. We evaluate the pre-trained features for denoising and dereverberation downstream tasks. We explore different augmentations (like single or multi-speaker) in the pre-training augmentation stack and the effect of different noisy input feature representations (like $log1p$ compression) on pre-trained embeddings and downstream fine-tuning enhancement performance. We show that the proposed method not only outperforms the baseline but also achieves state-of-the-art performance for both in-domain and out-of-domain evaluation datasets.
Multi-Agent Monte Carlo Tree Search for Makespan-Efficient Object Rearrangement in Cluttered Spaces
Object rearrangement planning in complex, cluttered environments is a common challenge in warehouses, households, and rescue sites. Prior studies largely address monotone instances, whereas real-world tasks are often non-monotone-objects block one another and must be temporarily relocated to intermediate positions before reaching their final goals. In such settings, effective multi-agent collaboration can substantially reduce the time required to complete tasks. This paper introduces Centralized, Asynchronous, Multi-agent Monte Carlo Tree Search (CAM-MCTS), a novel framework for general-purpose makespan-efficient object rearrangement planning in challenging environments. CAM-MCTS combines centralized task assignment-where agents remain aware of each other's intended actions to facilitate globally optimized planning-with an asynchronous task execution strategy that enables agents to take on new tasks at appropriate time steps, rather than waiting for others, guided by a one-step look-ahead cost estimate. This design minimizes idle time, prevents unnecessary synchronization delays, and enhances overall system efficiency. We evaluate CAM-MCTS across a diverse set of monotone and non-monotone tasks in cluttered environments, demonstrating consistent reductions in makespan compared to strong baselines. Finally, we validate our approach on a real-world multi-agent system under different configurations, further confirming its effectiveness and robustness.
ReasonEdit: Editing Vision-Language Models using Human Reasoning
Model editing aims to correct errors in large, pretrained models without altering unrelated behaviors. While some recent works have edited vision-language models (VLMs), no existing editors tackle reasoning-heavy tasks, which typically require humans and models to reason about images.We therefore propose ReasonEdit, the first VLM editor to let users explain their reasoning during editing, introducing a new, practical model editing setup. ReasonEdit continuously stores human reasoning in a codebook, and retrieves only relevant facts during inference using a novel topology-balanced multimodal embedding method inspired by network science. Across four VLMs on multiple rationale-based visual question answering datasets, ReasonEdit achieves state-of-the-art editing performance, ultimately showing that using human reasoning during editing greatly improves edit generalization.
Provably Data-driven Multiple Hyper-parameter Tuning with Structured Loss Function
Data-driven algorithm design automates hyperparameter tuning, but its statistical foundations remain limited because model performance can depend on hyperparameters in implicit and highly non-smooth ways. Existing guarantees focus on the simple case of a one-dimensional (scalar) hyperparameter. This leaves the practically important, multi-dimensional hyperparameter tuning setting unresolved. We address this open question by establishing the first general framework for establishing generalization guarantees for tuning multi-dimensional hyperparameters in data-driven settings. Our approach strengthens the generalization guarantee framework for semi-algebraic function classes by exploiting tools from real algebraic geometry, yielding sharper, more broadly applicable guarantees. We then extend the analysis to hyperparameter tuning using the validation loss under minimal assumptions, and derive improved bounds when additional structure is available. Finally, we demonstrate the scope of the framework with new learnability results, including data-driven weighted group lasso and weighted fused lasso.
Didactic to Constructive: Turning Expert Solutions into Learnable Reasoning
Improving the reasoning capabilities of large language models (LLMs) typically relies either on the model's ability to sample a correct solution to be reinforced or on the existence of a stronger model able to solve the problem. However, many difficult problems remain intractable for even current frontier models, preventing the extraction of valid training signals. A promising alternative is to leverage high-quality expert human solutions, yet naive imitation of this data fails because it is fundamentally out of distribution: expert solutions are typically didactic, containing implicit reasoning gaps intended for human readers rather than computational models. Furthermore, high-quality expert solutions are expensive, necessitating generalizable sample-efficient training methods. We propose Distribution Aligned Imitation Learning (DAIL), a two-step method that bridges the distributional gap by first transforming expert solutions into detailed, in-distribution reasoning traces and then applying a contrastive objective to focus learning on expert insights and methodologies. We find that DAIL can leverage fewer than 1000 high-quality expert solutions to achieve 10-25% pass@k gains on Qwen2.5-Instruct and Qwen3 models, improve reasoning efficiency by 2x to 4x, and enable out-of-domain generalization.
SoMA: A Real-to-Sim Neural Simulator for Robotic Soft-body Manipulation
Simulating deformable objects under rich interactions remains a fundamental challenge for real-to-sim robot manipulation, with dynamics jointly driven by environmental effects and robot actions. Existing simulators rely on predefined physics or data-driven dynamics without robot-conditioned control, limiting accuracy, stability, and generalization. This paper presents SoMA, a 3D Gaussian Splat simulator for soft-body manipulation. SoMA couples deformable dynamics, environmental forces, and robot joint actions in a unified latent neural space for end-to-end real-to-sim simulation. Modeling interactions over learned Gaussian splats enables controllable, stable long-horizon manipulation and generalization beyond observed trajectories without predefined physical models. SoMA improves resimulation accuracy and generalization on real-world robot manipulation by 20%, enabling stable simulation of complex tasks such as long-horizon cloth folding.
comment: Project page: https://city-super.github.io/SoMA/
An Empirical Study on Noisy Data and LLM Pretraining Loss Divergence
Large-scale pretraining datasets drive the success of large language models (LLMs). However, these web-scale corpora inevitably contain large amounts of noisy data due to unregulated web content or randomness inherent in data. Although LLM pretrainers often speculate that such noise contributes to instabilities in large-scale LLM pretraining and, in the worst cases, loss divergence, this phenomenon remains poorly understood.In this work, we present a systematic empirical study of whether noisy data causes LLM pretraining divergences and how it does so. By injecting controlled synthetic uniformly random noise into otherwise clean datasets, we analyze training dynamics across model sizes ranging from 480M to 5.2B parameters. We show that noisy data indeed induces training loss divergence, and that the probability of divergence depends strongly on the noise type, amount of noise, and model scale. We further find that noise-induced divergences exhibit activation patterns distinct from those caused by high learning rates, and we provide diagnostics that differentiate these two failure modes. Together, these results provide a large-scale, controlled characterization of how noisy data affects loss divergence in LLM pretraining.
PRISM: Performer RS-IMLE for Single-pass Multisensory Imitation Learning
Robotic imitation learning typically requires models that capture multimodal action distributions while operating at real-time control rates and accommodating multiple sensing modalities. Although recent generative approaches such as diffusion models, flow matching, and Implicit Maximum Likelihood Estimation (IMLE) have achieved promising results, they often satisfy only a subset of these requirements. To address this, we introduce PRISM, a single-pass policy based on a batch-global rejection-sampling variant of IMLE. PRISM couples a temporal multisensory encoder (integrating RGB, depth, tactile, audio, and proprioception) with a linear-attention generator using a Performer architecture. We demonstrate the efficacy of PRISM on a diverse real-world hardware suite, including loco-manipulation using a Unitree Go2 with a 7-DoF arm D1 and tabletop manipulation with a UR5 manipulator. Across challenging physical tasks such as pre-manipulation parking, high-precision insertion, and multi-object pick-and-place, PRISM outperforms state-of-the-art diffusion policies by 10-25% in success rate while maintaining high-frequency (30-50 Hz) closed-loop control. We further validate our approach on large-scale simulation benchmarks, including CALVIN, MetaWorld, and Robomimic. In CALVIN (10% data split), PRISM improves success rates by approximately 25% over diffusion and approximately 20% over flow matching, while simultaneously reducing trajectory jerk by 20x-50x. These results position PRISM as a fast, accurate, and multisensory imitation policy that retains multimodal action coverage without the latency of iterative sampling.
comment: 10 pages main text and 4 figures, and 11 pages appendix and 10 figures, total 21 pages and 14 figures
David vs. Goliath: Verifiable Agent-to-Agent Jailbreaking via Reinforcement Learning
The evolution of large language models into autonomous agents introduces adversarial failures that exploit legitimate tool privileges, transforming safety evaluation in tool-augmented environments from a subjective NLP task into an objective control problem. We formalize this threat model as Tag-Along Attacks: a scenario where a tool-less adversary "tags along" on the trusted privileges of a safety-aligned Operator to induce prohibited tool use through conversation alone. To validate this threat, we present Slingshot, a 'cold-start' reinforcement learning framework that autonomously discovers emergent attack vectors, revealing a critical insight: in our setting, learned attacks tend to converge to short, instruction-like syntactic patterns rather than multi-turn persuasion. On held-out extreme-difficulty tasks, Slingshot achieves a 67.0% success rate against a Qwen2.5-32B-Instruct-AWQ Operator (vs. 1.7% baseline), reducing the expected attempts to first success (on solved tasks) from 52.3 to 1.3. Crucially, Slingshot transfers zero-shot to several model families, including closed-source models like Gemini 2.5 Flash (56.0% attack success rate) and defensive-fine-tuned open-source models like Meta-SecAlign-8B (39.2% attack success rate). Our work establishes Tag-Along Attacks as a first-class, verifiable threat model and shows that effective agentic attacks can be elicited from off-the-shelf open-weight models through environment interaction alone.
comment: Under review. 8 main pages, 2 figures, 2 tables. Appendix included
Helios 2.0: A Robust, Ultra-Low Power Gesture Recognition System Optimised for Event-Sensor based Wearables
We present an advance in wearable technology: a mobile-optimized, real-time, ultra-low-power event camera system that enables natural hand gesture control for smart glasses, dramatically improving user experience. While hand gesture recognition in computer vision has advanced significantly, critical challenges remain in creating systems that are intuitive, adaptable across diverse users and environments, and energy-efficient enough for practical wearable applications. Our approach tackles these challenges through carefully selected microgestures: lateral thumb swipes across the index finger (in both directions) and a double pinch between thumb and index fingertips. These human-centered interactions leverage natural hand movements, ensuring intuitive usability without requiring users to learn complex command sequences. To overcome variability in users and environments, we developed a novel simulation methodology that enables comprehensive domain sampling without extensive real-world data collection. Our power-optimised architecture maintains exceptional performance, achieving F1 scores above 80\% on benchmark datasets featuring diverse users and environments. The resulting models operate at just 6-8 mW when exploiting the Qualcomm Snapdragon Hexagon DSP, with our 2-channel implementation exceeding 70\% F1 accuracy and our 6-channel model surpassing 80\% F1 accuracy across all gesture classes in user studies. These results were achieved using only synthetic training data. This improves on the state-of-the-art for F1 accuracy by 20\% with a power reduction 25x when using DSP. This advancement brings deploying ultra-low-power vision systems in wearable devices closer and opens new possibilities for seamless human-computer interaction.
comment: 24 pages, 14 figures. Prarthana Bhattacharyya, Joshua Mitton, Ryan Page, Owen Morgan, and Oliver Powell contributed equally to this paper
How to Train Your Advisor: Steering Black-Box LLMs with Advisor Models
Frontier language models are deployed as black-box services, where model weights cannot be modified and customization is limited to prompting. We introduce Advisor Models, a method to train small open-weight models to generate dynamic, per-instance natural language advice that improves the capabilities of black-box frontier models. Advisor Models improve GPT-5's performance on RuleArena (Taxes) by 71%, reduce Gemini 3 Pro's steps taken in SWE agent tasks by 24.6%, and outperform static prompt optimizers in personalizing GPT-5 to user preferences (85-100% vs. 40-60%). We also find that advisors are transferable: an advisor trained with a low-cost student model still transfers improvements to a frontier model. Moreover, Advisor Models are robust: we observe no degradation on other benchmarks than the pipeline is trained on. Our method shows how to perform parametric optimization for black-box frontier models in a practical and cost-effective way.
Uncertainty-Aware Knowledge Tracing Models
The main focus of research on Knowledge Tracing (KT) models is on model developments with the aim of improving predictive accuracy. Most of these models make the most incorrect predictions when students choose a distractor, leading to student errors going undetected. We present an approach to add new capabilities to KT models by capturing predictive uncertainty and demonstrate that a larger predictive uncertainty aligns with model incorrect predictions. We show that uncertainty in KT models is informative and that this signal would be pedagogically useful for application in an educational learning platform that can be used in a limited resource setting where understanding student ability is necessary.
comment: 10 pages, 7 figures. Joshua Mitton and Prarthana Bhattacharyya contributed equally to this paper
Reward Evolution with Graph-of-Thoughts: A Bi-Level Language Model Framework for Reinforcement Learning
Designing effective reward functions remains a major challenge in reinforcement learning (RL), often requiring considerable human expertise and iterative refinement. Recent advances leverage Large Language Models (LLMs) for automated reward design, but these approaches are limited by hallucinations, reliance on human feedback, and challenges with handling complex, multi-step tasks. In this work, we introduce Reward Evolution with Graph-of-Thoughts (RE-GoT), a novel bi-level framework that enhances LLMs with structured graph-based reasoning and integrates Visual Language Models (VLMs) for automated rollout evaluation. RE-GoT first decomposes tasks into text-attributed graphs, enabling comprehensive analysis and reward function generation, and then iteratively refines rewards using visual feedback from VLMs without human intervention. Extensive experiments on 10 RoboGen and 4 ManiSkill2 tasks demonstrate that RE-GoT consistently outperforms existing LLM-based baselines. On RoboGen, our method improves average task success rates by 32.25%, with notable gains on complex multi-step tasks. On ManiSkill2, RE-GoT achieves an average success rate of 93.73% across four diverse manipulation tasks, significantly surpassing prior LLM-based approaches and even exceeding expert-designed rewards. Our results indicate that combining LLMs and VLMs with graph-of-thoughts reasoning provides a scalable and effective solution for autonomous reward evolution in RL.
FS-DFM: Fast and Accurate Long Text Generation with Few-Step Diffusion Language Models ICLR 2026
Autoregressive language models (ARMs) deliver strong likelihoods, but are inherently serial: they generate one token per forward pass, which limits throughput and inflates latency for long sequences. Diffusion Language Models (DLMs) parallelize across positions and thus appear promising for language generation, yet standard discrete diffusion typically needs hundreds to thousands of model evaluations to reach high quality, trading serial depth for iterative breadth. We introduce FS-DFM, Few-Step Discrete Flow-Matching. A discrete flow-matching model designed for speed without sacrificing quality. The core idea is simple: make the number of sampling steps an explicit parameter and train the model to be consistent across step budgets, so one big move lands where many small moves would. We pair this with a reliable update rule that moves probability in the right direction without overshooting, and with strong teacher guidance distilled from long-run trajectories. Together, these choices make few-step sampling stable, accurate, and easy to control. On language modeling benchmarks, FS-DFM with 8 sampling steps achieves perplexity parity with a 1,024-step discrete-flow baseline for generating 1,024 tokens using a similar-size model, delivering up to 128 times faster sampling and corresponding latency/throughput gains.
comment: Accepted to ICLR 2026
Language Family Matters: Evaluating LLM-Based ASR Across Linguistic Boundaries
Large Language Model (LLM)-powered Automatic Speech Recognition (ASR) systems achieve strong performance with limited resources by linking a frozen speech encoder to a pretrained LLM via a lightweight connector. Prior work trains a separate connector per language, overlooking linguistic relatedness. We propose an efficient and novel connector-sharing strategy based on linguistic family membership, enabling one connector per family, and empirically validate its effectiveness across two multilingual LLMs and two real-world corpora spanning curated and crowd-sourced speech. Our results show that family-based connectors reduce parameter count while improving generalization across domains, offering a practical and scalable strategy for multilingual ASR deployment.
comment: Accepted by EACL'26 main
Generalization or Hallucination? Understanding Out-of-Context Reasoning in Transformers NeurIPS 2025
Large language models (LLMs) can acquire new knowledge through fine-tuning, but this process exhibits a puzzling duality: models can generalize remarkably from new facts, yet are also prone to hallucinating incorrect information. However, the reasons for this phenomenon remain poorly understood. In this work, we argue that both behaviors stem from a single mechanism known as out-of-context reasoning (OCR): the ability to deduce implications by associating concepts, even those without a causal link. Our experiments across five prominent LLMs confirm that OCR indeed drives both generalization and hallucination, depending on whether the associated concepts are causally related. To build a rigorous theoretical understanding of this phenomenon, we then formalize OCR as a synthetic factual recall task. We empirically show that a one-layer single-head attention-only transformer with factorized output and value matrices can learn to solve this task, while a model with combined weights cannot, highlighting the crucial role of matrix factorization. Our theoretical analysis shows that the OCR capability can be attributed to the implicit bias of gradient descent, which favors solutions that minimize the nuclear norm of the combined output-value matrix. This mathematical structure explains why the model learns to associate facts and implications with high sample efficiency, regardless of whether the correlation is causal or merely spurious. Ultimately, our work provides a theoretical foundation for understanding the OCR phenomenon, offering a new lens for analyzing and mitigating undesirable behaviors from knowledge injection.
comment: NeurIPS 2025, first three authors contributed equally
Robotics 43
Towards a Novel Wearable Robotic Vest for Hemorrhage Suppression
This paper introduces a novel robotic system designed to manage severe bleeding in emergency scenarios, including unique environments like space stations. The robot features a shape-adjustable "ring mechanism", transitioning from a circular to an elliptical configuration to adjust wound coverage across various anatomical regions. We developed various arms for this ring mechanism with varying flexibilities to improve adaptability when applied to non-extremities of the body (abdomen, back, neck, etc.). To apply equal and constant pressure across the wound, we developed an inflatable ring and airbag balloon that are compatible with this shape-changing ring mechanism. A series of experiments focused on evaluating various ring arm configurations to characterize their bending stiffness. Subsequent experiments measured the force exerted by the airbag balloon system using a digital scale. Despite its promising performance, certain limitations related to coverage area are identified. The shape-changing effect of the device is limited to scenarios involving partially inflated or deflated airbag balloons, and cannot fully conform to complex anatomical regions. Finally, the device was tested on casualty simulation kits, where it successfully demonstrated its ability to control simulated bleeding.
Sem-NaVAE: Semantically-Guided Outdoor Mapless Navigation via Generative Trajectory Priors
This work presents a mapless global navigation approach for outdoor applications. It combines the exploratory capacity of conditional variational autoencoders (CVAEs) to generate trajectories and the semantic segmentation capabilities of a lightweight visual language model (VLM) to select the trajectory to execute. Open-vocabulary segmentation is used to score and select the generated trajectories based on natural language, and a state-of-the-art local planner executes velocity commands. One of the key features of the proposed approach is its ability to generate a large variability of trajectories and to select them and navigate in real-time. The approach was validated through real-world outdoor navigation experiments, achieving superior performance compared to state-of-the-art methods. A video showing an experimental run of the system can be found in https://www.youtube.com/watch?v=i3R5ey5O2yk.
comment: 8 pages, 5 figures
Instance-Guided Unsupervised Domain Adaptation for Robotic Semantic Segmentation ICRA 2026
Semantic segmentation networks, which are essential for robotic perception, often suffer from performance degradation when the visual distribution of the deployment environment differs from that of the source dataset on which they were trained. Unsupervised Domain Adaptation (UDA) addresses this challenge by adapting the network to the robot's target environment without external supervision, leveraging the large amounts of data a robot might naturally collect during long-term operation. In such settings, UDA methods can exploit multi-view consistency across the environment's map to fine-tune the model in an unsupervised fashion and mitigate domain shift. However, these approaches remain sensitive to cross-view instance-level inconsistencies. In this work, we propose a method that starts from a volumetric 3D map to generate multi-view consistent pseudo-labels. We then refine these labels using the zero-shot instance segmentation capabilities of a foundation model, enforcing instance-level coherence. The refined annotations serve as supervision for self-supervised fine-tuning, enabling the robot to adapt its perception system at deployment time. Experiments on real-world data demonstrate that our approach consistently improves performance over state-of-the-art UDA baselines based on multi-view consistency, without requiring any ground-truth labels in the target domain.
comment: Accepted for publication at ICRA 2026
TriphiBot: A Triphibious Robot Combining FOC-based Propulsion with Eccentric Design
Triphibious robots capable of multi-domain motion and cross-domain transitions are promising to handle complex tasks across diverse environments. However, existing designs primarily focus on dual-mode platforms, and some designs suffer from high mechanical complexity or low propulsion efficiency, which limits their application. In this paper, we propose a novel triphibious robot capable of aerial, terrestrial, and aquatic motion, by a minimalist design combining a quadcopter structure with two passive wheels, without extra actuators. To address inefficiency of ground-support motion (moving on land/seabed) for quadcopter based designs, we introduce an eccentric Center of Gravity (CoG) design that inherently aligns thrust with motion, enhancing efficiency without specialized mechanical transformation designs. Furthermore, to address the drastic differences in motion control caused by different fluids (air and water), we develop a unified propulsion system based on Field-Oriented Control (FOC). This method resolves torque matching issues and enables precise, rapid bidirectional thrust across different mediums. Grounded in the perspective of living condition and ground support, we analyse the robot's dynamics and propose a Hybrid Nonlinear Model Predictive Control (HNMPC)-PID control system to ensure stable multi-domain motion and seamless transitions. Experimental results validate the robot's multi-domain motion and cross-mode transition capability, along with the efficiency and adaptability of the proposed propulsion system.
OASIS-DC: Generalizable Depth Completion via Output-level Alignment of Sparse-Integrated Monocular Pseudo Depth ICRA 2026
Recent monocular foundation models excel at zero-shot depth estimation, yet their outputs are inherently relative rather than metric, limiting direct use in robotics and autonomous driving. We leverage the fact that relative depth preserves global layout and boundaries: by calibrating it with sparse range measurements, we transform it into a pseudo metric depth prior. Building on this prior, we design a refinement network that follows the prior where reliable and deviates where necessary, enabling accurate metric predictions from very few labeled samples. The resulting system is particularly effective when curated validation data are unavailable, sustaining stable scale and sharp edges across few-shot regimes. These findings suggest that coupling foundation priors with sparse anchors is a practical route to robust, deployment-ready depth completion under real-world label scarcity.
comment: Accepted to ICRA 2026
Reinforcement Learning for Active Perception in Autonomous Navigation ICRA
This paper addresses the challenge of active perception within autonomous navigation in complex, unknown environments. Revisiting the foundational principles of active perception, we introduce an end-to-end reinforcement learning framework in which a robot must not only reach a goal while avoiding obstacles, but also actively control its onboard camera to enhance situational awareness. The policy receives observations comprising the robot state, the current depth frame, and a particularly local geometry representation built from a short history of depth readings. To couple collision-free motion planning with information-driven active camera control, we augment the navigation reward with a voxel-based information metric. This enables an aerial robot to learn a robust policy that balances goal-directed motion with exploratory sensing. Extensive evaluation demonstrates that our strategy achieves safer flight compared to using fixed, non-actuated camera baselines while also inducing intrinsic exploratory behaviors.
comment: Accepted to the IEEE International Conference on Robotics and Automation (ICRA) 2026
SkySim: A ROS2-based Simulation Environment for Natural Language Control of Drone Swarms using Large Language Models
Unmanned Aerial Vehicle (UAV) swarms offer versatile applications in logistics, agriculture, and surveillance, yet controlling them requires expert knowledge for safety and feasibility. Traditional static methods limit adaptability, while Large Language Models (LLMs) enable natural language control but generate unsafe trajectories due to lacking physical grounding. This paper introduces SkySim, a ROS2-based simulation framework in Gazebo that decouples LLM high-level planning from low-level safety enforcement. Using Gemini 3.5 Pro, SkySim translates user commands (e.g., "Form a circle") into spatial waypoints, informed by real-time drone states. An Artificial Potential Field (APF) safety filter applies minimal adjustments for collision avoidance, kinematic limits, and geo-fencing, ensuring feasible execution at 20 Hz. Experiments with swarms of 3, 10, and 30 Crazyflie drones validate spatial reasoning accuracy (100% across tested geometric primitives), real-time collision prevention, and scalability. SkySim empowers non-experts to iteratively refine behaviors, bridging AI cognition with robotic safety for dynamic environments. Future work targets hardware integration.
SPOT: Spatio-Temporal Obstacle-free Trajectory Planning for UAVs in an Unknown Dynamic Environment
We address the problem of reactive motion planning for quadrotors operating in unknown environments with dynamic obstacles. Our approach leverages a 4-dimensional spatio-temporal planner, integrated with vision-based Safe Flight Corridor (SFC) generation and trajectory optimization. Unlike prior methods that rely on map fusion, our framework is mapless, enabling collision avoidance directly from perception while reducing computational overhead. Dynamic obstacles are detected and tracked using a vision-based object segmentation and tracking pipeline, allowing robust classification of static versus dynamic elements in the scene. To further enhance robustness, we introduce a backup planning module that reactively avoids dynamic obstacles when no direct path to the goal is available, mitigating the risk of collisions during deadlock situations. We validate our method extensively in both simulation and real-world hardware experiments, and benchmark it against state-of-the-art approaches, showing significant advantages for reactive UAV navigation in dynamic, unknown environments.
Latent Reasoning VLA: Latent Thinking and Prediction for Vision-Language-Action Models
Vision-Language-Action (VLA) models benefit from chain-of-thought (CoT) reasoning, but existing approaches incur high inference overhead and rely on discrete reasoning representations that mismatch continuous perception and control. We propose Latent Reasoning VLA (\textbf{LaRA-VLA}), a unified VLA framework that internalizes multi-modal CoT reasoning into continuous latent representations for embodied action. LaRA-VLA performs unified reasoning and prediction in latent space, eliminating explicit CoT generation at inference time and enabling efficient, action-oriented control. To realize latent embodied reasoning, we introduce a curriculum-based training paradigm that progressively transitions from explicit textual and visual CoT supervision to latent reasoning, and finally adapts latent reasoning dynamics to condition action generation. We construct two structured CoT datasets and evaluate LaRA-VLA on both simulation benchmarks and long-horizon real-robot manipulation tasks. Experimental results show that LaRA-VLA consistently outperforms state-of-the-art VLA methods while reducing inference latency by up to 90\% compared to explicit CoT-based approaches, demonstrating latent reasoning as an effective and efficient paradigm for real-time embodied control. Project Page: \href{https://loveju1y.github.io/Latent-Reasoning-VLA/}{LaRA-VLA Website}.
Improving Robustness of Vision-Language-Action Models by Restoring Corrupted Visual Inputs
Vision-Language-Action (VLA) models have emerged as a dominant paradigm for generalist robotic manipulation, unifying perception and control within a single end-to-end architecture. However, despite their success in controlled environments, reliable real-world deployment is severely hindered by their fragility to visual disturbances. While existing literature extensively addresses physical occlusions caused by scene geometry, a critical mode remains largely unexplored: image corruptions. These sensor-level artifacts, ranging from electronic noise and dead pixels to lens contaminants, directly compromise the integrity of the visual signal prior to interpretation. In this work, we quantify this vulnerability, demonstrating that state-of-the-art VLAs such as $π_{0.5}$ and SmolVLA, suffer catastrophic performance degradation, dropping from 90\% success rates to as low as 2\%, under common signal artifacts. To mitigate this, we introduce the Corruption Restoration Transformer (CRT), a plug-and-play and model-agnostic vision transformer designed to immunize VLA models against sensor disturbances. Leveraging an adversarial training objective, CRT restores clean observations from corrupted inputs without requiring computationally expensive fine-tuning of the underlying model. Extensive experiments across the LIBERO and Meta-World benchmarks demonstrate that CRT effectively recovers lost performance, enabling VLAs to maintain near-baseline success rates, even under severe visual corruption.
PolicyFlow: Policy Optimization with Continuous Normalizing Flow in Reinforcement Learning ICLR 2026
Among on-policy reinforcement learning algorithms, Proximal Policy Optimization (PPO) demonstrates is widely favored for its simplicity, numerical stability, and strong empirical performance. Standard PPO relies on surrogate objectives defined via importance ratios, which require evaluating policy likelihood that is typically straightforward when the policy is modeled as a Gaussian distribution. However, extending PPO to more expressive, high-capacity policy models such as continuous normalizing flows (CNFs), also known as flow-matching models, is challenging because likelihood evaluation along the full flow trajectory is computationally expensive and often numerically unstable. To resolve this issue, we propose PolicyFlow, a novel on-policy CNF-based reinforcement learning algorithm that integrates expressive CNF policies with PPO-style objectives without requiring likelihood evaluation along the full flow path. PolicyFlow approximates importance ratios using velocity field variations along a simple interpolation path, reducing computational overhead without compromising training stability. To further prevent mode collapse and further encourage diverse behaviors, we propose the Brownian Regularizer, an implicit policy entropy regularizer inspired by Brownian motion, which is conceptually elegant and computationally lightweight. Experiments on diverse tasks across various environments including MultiGoal, PointMaze, IsaacLab and MuJoCo Playground show that PolicyFlow achieves competitive or superior performance compared to PPO using Gaussian policies and flow-based baselines including FPO and DPPO. Notably, results on MultiGoal highlight PolicyFlow's ability to capture richer multimodal action distributions.
comment: Submitted to ICLR 2026
UniForce: A Unified Latent Force Model for Robot Manipulation with Diverse Tactile Sensors
Force sensing is essential for dexterous robot manipulation, but scaling force-aware policy learning is hindered by the heterogeneity of tactile sensors. Differences in sensing principles (e.g., optical vs. magnetic), form factors, and materials typically require sensor-specific data collection, calibration, and model training, thereby limiting generalisability. We propose UniForce, a novel unified tactile representation learning framework that learns a shared latent force space across diverse tactile sensors. UniForce reduces cross-sensor domain shift by jointly modeling inverse dynamics (image-to-force) and forward dynamics (force-to-image), constrained by force equilibrium and image reconstruction losses to produce force-grounded representations. To avoid reliance on expensive external force/torque (F/T) sensors, we exploit static equilibrium and collect force-paired data via direct sensor--object--sensor interactions, enabling cross-sensor alignment with contact force. The resulting universal tactile encoder can be plugged into downstream force-aware robot manipulation tasks with zero-shot transfer, without retraining or finetuning. Extensive experiments on heterogeneous tactile sensors including GelSight, TacTip, and uSkin, demonstrate consistent improvements in force estimation over prior methods, and enable effective cross-sensor coordination in Vision-Tactile-Language-Action (VTLA) models for a robotic wiping task. Code and datasets will be released.
KAN We Flow? Advancing Robotic Manipulation with 3D Flow Matching via KAN & RWKV ICRA2026
Diffusion-based visuomotor policies excel at modeling action distributions but are inference-inefficient, since recursively denoising from noise to policy requires many steps and heavy UNet backbones, which hinders deployment on resource-constrained robots. Flow matching alleviates the sampling burden by learning a one-step vector field, yet prior implementations still inherit large UNet-style architectures. In this work, we present KAN-We-Flow, a flow-matching policy that draws on recent advances in Receptance Weighted Key Value (RWKV) and Kolmogorov-Arnold Networks (KAN) from vision to build a lightweight and highly expressive backbone for 3D manipulation. Concretely, we introduce an RWKV-KAN block: an RWKV first performs efficient time/channel mixing to propagate task context, and a subsequent GroupKAN layer applies learnable spline-based, groupwise functional mappings to perform feature-wise nonlinear calibration of the action mapping on RWKV outputs. Moreover, we introduce an Action Consistency Regularization (ACR), a lightweight auxiliary loss that enforces alignment between predicted action trajectories and expert demonstrations via Euler extrapolation, providing additional supervision to stabilize training and improve policy precision. Without resorting to large UNets, our design reduces parameters by 86.8\%, maintains fast runtime, and achieves state-of-the-art success rates on Adroit, Meta-World, and DexArt benchmarks. Our project page can be viewed in \href{https://zhihaochen-2003.github.io/KAN-We-Flow.github.io/}{\textcolor{red}{link}}
comment: Accepted By ICRA2026
StreamVLA: Breaking the Reason-Act Cycle via Completion-State Gating
Long-horizon robotic manipulation requires bridging the gap between high-level planning (System 2) and low-level control (System 1). Current Vision-Language-Action (VLA) models often entangle these processes, performing redundant multimodal reasoning at every timestep, which leads to high latency and goal instability. To address this, we present StreamVLA, a dual-system architecture that unifies textual task decomposition, visual goal imagination, and continuous action generation within a single parameter-efficient backbone. We introduce a "Lock-and-Gated" mechanism to intelligently modulate computation: only when a sub-task transition is detected, the model triggers slow thinking to generate a textual instruction and imagines the specific visual completion state, rather than generic future frames. Crucially, this completion state serves as a time-invariant goal anchor, making the policy robust to execution speed variations. During steady execution, these high-level intents are locked to condition a Flow Matching action head, allowing the model to bypass expensive autoregressive decoding for 72% of timesteps. This hierarchical abstraction ensures sub-goal focus while significantly reducing inference latency. Extensive evaluations demonstrate that StreamVLA achieves state-of-the-art performance, with a 98.5% success rate on the LIBERO benchmark and robust recovery in real-world interference scenarios, achieving a 48% reduction in latency compared to full-reasoning baselines.
Failure-Aware Bimanual Teleoperation via Conservative Value Guided Assistance
Teleoperation of high-precision manipulation is con-strained by tight success tolerances and complex contact dy-namics, which make impending failures difficult for human operators to anticipate under partial observability. This paper proposes a value-guided, failure-aware framework for bimanual teleoperation that provides compliant haptic assistance while pre-serving continuous human authority. The framework is trained entirely from heterogeneous offline teleoperation data containing both successful and failed executions. Task feasibility is mod-eled as a conservative success score learned via Conservative Value Learning, yielding a risk-sensitive estimate that remains reliable under distribution shift. During online operation, the learned success score regulates the level of assistance, while a learned actor provides a corrective motion direction. Both are integrated through a joint-space impedance interface on the master side, yielding continuous guidance that steers the operator away from failure-prone actions without overriding intent. Experimental results on contact-rich manipulation tasks demonstrate improved task success rates and reduced operator workload compared to conventional teleoperation and shared-autonomy baselines, indicating that conservative value learning provides an effective mechanism for embedding failure awareness into bilateral teleoperation. Experimental videos are available at https://www.youtube.com/watch?v=XDTsvzEkDRE
Estimating Force Interactions of Deformable Linear Objects from their Shapes
This work introduces an analytical approach for detecting and estimating external forces acting on deformable linear objects (DLOs) using only their observed shapes. In many robot-wire interaction tasks, contact occurs not at the end-effector but at other points along the robot's body. Such scenarios arise when robots manipulate wires indirectly (e.g., by nudging) or when wires act as passive obstacles in the environment. Accurately identifying these interactions is crucial for safe and efficient trajectory planning, helping to prevent wire damage, avoid restricted robot motions, and mitigate potential hazards. Existing approaches often rely on expensive external force-torque sensor or that contacts occur at the end-effector for accurate force estimation. Using wire shape information acquired from a depth camera and under the assumption that the wire is in or near its static equilibrium, our method estimates both the location and magnitude of external forces without additional prior knowledge. This is achieved by exploiting derived consistency conditions and solving a system of linear equations based on force-torque balance along the wire. The approach was validated through simulation, where it achieved high accuracy, and through real-world experiments, where accurate estimation was demonstrated in selected interaction scenarios.
comment: 7 pages, 4 figures
A Systematic Study of Data Modalities and Strategies for Co-training Large Behavior Models for Robot Manipulation
Large behavior models have shown strong dexterous manipulation capabilities by extending imitation learning to large-scale training on multi-task robot data, yet their generalization remains limited by the insufficient robot data coverage. To expand this coverage without costly additional data collection, recent work relies on co-training: jointly learning from target robot data and heterogeneous data modalities. However, how different co-training data modalities and strategies affect policy performance remains poorly understood. We present a large-scale empirical study examining five co-training data modalities: standard vision-language data, dense language annotations for robot trajectories, cross-embodiment robot data, human videos, and discrete robot action tokens across single- and multi-phase training strategies. Our study leverages 4,000 hours of robot and human manipulation data and 50M vision-language samples to train vision-language-action policies. We evaluate 89 policies over 58,000 simulation rollouts and 2,835 real-world rollouts. Our results show that co-training with forms of vision-language and cross-embodiment robot data substantially improves generalization to distribution shifts, unseen tasks, and language following, while discrete action token variants yield no significant benefits. Combining effective modalities produces cumulative gains and enables rapid adaptation to unseen long-horizon dexterous tasks via fine-tuning. Training exclusively on robot data degrades the visiolinguistic understanding of the vision-language model backbone, while co-training with effective modalities restores these capabilities. Explicitly conditioning action generation on chain-of-thought traces learned from co-training data does not improve performance in our simulation benchmark. Together, these results provide practical guidance for building scalable generalist robot policies.
LLM-Based Behavior Tree Generation for Construction Machinery
Earthwork operations are facing an increasing demand, while workforce aging and skill loss create a pressing need for automation. ROS2-TMS for Construction, a Cyber-Physical System framework designed to coordinate construction machinery, has been proposed for autonomous operation; however, its reliance on manually designed Behavior Trees (BTs) limits scalability, particularly in scenarios involving heterogeneous machine cooperation. Recent advances in large language models (LLMs) offer new opportunities for task planning and BT generation. However, most existing approaches remain confined to simulations or simple manipulators, with relatively few applications demonstrated in real-world contexts, such as complex construction sites involving multiple machines. This paper proposes an LLM-based workflow for BT generation, introducing synchronization flags to enable safe and cooperative operation. The workflow consists of two steps: high-level planning, where the LLM generates synchronization flags, and BT generation using structured templates. Safety is ensured by planning with parameters stored in the system database. The proposed method is validated in simulation and further demonstrated through real-world experiments, highlighting its potential to advance automation in civil engineering.
comment: 7 pages, 7 figures
Learning Adaptive Cross-Embodiment Visuomotor Policy with Contrastive Prompt Orchestration
Learning adaptive visuomotor policies for embodied agents remains a formidable challenge, particularly when facing cross-embodiment variations such as diverse sensor configurations and dynamic properties. Conventional learning approaches often struggle to separate task-relevant features from domain-specific variations (e.g., lighting, field-of-view, and rotation), leading to poor sample efficiency and catastrophic failure in unseen environments. To bridge this gap, we propose ContrAstive Prompt Orchestration (CAPO), a novel approach for learning visuomotor policies that integrates contrastive prompt learning and adaptive prompt orchestration. For prompt learning, we devise a hybrid contrastive learning strategy that integrates visual, temporal action, and text objectives to establish a pool of learnable prompts, where each prompt induces a visual representation encapsulating fine-grained domain factors. Based on these learned prompts, we introduce an adaptive prompt orchestration mechanism that dynamically aggregates these prompts conditioned on current observations. This enables the agent to adaptively construct optimal state representations by identifying dominant domain factors instantaneously. Consequently, the policy optimization is effectively shielded from irrelevant interference, preventing the common issue of overfitting to source domains. Extensive experiments demonstrate that CAPO significantly outperforms state-of-the-art baselines in sample efficiency and asymptotic performance. Crucially, it exhibits superior zero-shot adaptation across unseen target domains characterized by drastic environmental (e.g., illumination) and physical shifts (e.g., field-of-view and rotation), validating its effectiveness as a viable solution for cross-embodiment visuomotor policy adaptation.
Offline Discovery of Interpretable Skills from Multi-Task Trajectories
Hierarchical Imitation Learning is a powerful paradigm for acquiring complex robot behaviors from demonstrations. A central challenge, however, lies in discovering reusable skills from long-horizon, multi-task offline data, especially when the data lacks explicit rewards or subtask annotations. In this work, we introduce LOKI, a three-stage end-to-end learning framework designed for offline skill discovery and hierarchical imitation. The framework commences with a two-stage, weakly supervised skill discovery process: Stage one performs coarse, task-aware macro-segmentation by employing an alignment-enforced Vector Quantized VAE guided by weak task labels. Stage two then refines these segments at a micro-level using a self-supervised sequential model, followed by an iterative clustering process to consolidate skill boundaries. The third stage then leverages these precise boundaries to construct a hierarchical policy within an option-based framework-complete with a learned termination condition beta for explicit skill switching. LOKI achieves high success rates on the challenging D4RL Kitchen benchmark and outperforms standard HIL baselines. Furthermore, we demonstrate that the discovered skills are semantically meaningful, aligning with human intuition, and exhibit compositionality by successfully sequencing them to solve a novel, unseen task.
HERMES: A Holistic End-to-End Risk-Aware Multimodal Embodied System with Vision-Language Models for Long-Tail Autonomous Driving
End-to-end autonomous driving models increasingly benefit from large vision--language models for semantic understanding, yet ensuring safe and accurate operation under long-tail conditions remains challenging. These challenges are particularly prominent in long-tail mixed-traffic scenarios, where autonomous vehicles must interact with heterogeneous road users, including human-driven vehicles and vulnerable road users, under complex and uncertain conditions. This paper proposes HERMES, a holistic risk-aware end-to-end multimodal driving framework designed to inject explicit long-tail risk cues into trajectory planning. HERMES employs a foundation-model-assisted annotation pipeline to produce structured Long-Tail Scene Context and Long-Tail Planning Context, capturing hazard-centric cues together with maneuver intent and safety preference, and uses these signals to guide end-to-end planning. HERMES further introduces a Tri-Modal Driving Module that fuses multi-view perception, historical motion cues, and semantic guidance, ensuring risk-aware accurate trajectory planning under long-tail scenarios. Experiments on the real-world long-tail dataset demonstrate that HERMES consistently outperforms representative end-to-end and VLM-driven baselines under long-tail mixed-traffic scenarios. Ablation studies verify the complementary contributions of key components.
Geometry-Aware Sampling-Based Motion Planning on Riemannian Manifolds
In many robot motion planning problems, task objectives and physical constraints induce non-Euclidean geometry on the configuration space, yet many planners operate using Euclidean distances that ignore this structure. We address the problem of planning collision-free motions that minimize length under configuration-dependent Riemannian metrics, corresponding to geodesics on the configuration manifold. Conventional numerical methods for computing such paths do not scale well to high-dimensional systems, while sampling-based planners trade scalability for geometric fidelity. To bridge this gap, we propose a sampling-based motion planning framework that operates directly on Riemannian manifolds. We introduce a computationally efficient midpoint-based approximation of the Riemannian geodesic distance and prove that it matches the true Riemannian distance with third-order accuracy. Building on this approximation, we design a local planner that traces the manifold using first-order retractions guided by Riemannian natural gradients. Experiments on a two-link planar arm and a 7-DoF Franka manipulator under a kinetic-energy metric, as well as on rigid-body planning in $\mathrm{SE}(2)$ with non-holonomic motion constraints, demonstrate that our approach consistently produces lower-cost trajectories than Euclidean-based planners and classical numerical geodesic-solver baselines.
comment: Submitted to WAFR 2026 (17th World Symposium on the Algorithmic Foundations of Robotics (WAFR))
Navigating Simply, Aligning Deeply: Winning Solutions for Mouse vs. AI 2025 NeurIPS 2025
Visual robustness and neural alignment remain critical challenges in developing artificial agents that can match biological vision systems. We present the winning approaches from Team HCMUS_TheFangs for both tracks of the NeurIPS 2025 Mouse vs. AI: Robust Visual Foraging Competition. For Track 1 (Visual Robustness), we demonstrate that architectural simplicity combined with targeted components yields superior generalization, achieving 95.4% final score with a lightweight two-layer CNN enhanced by Gated Linear Units and observation normalization. For Track 2 (Neural Alignment), we develop a deep ResNet-like architecture with 16 convolutional layers and GLU-based gating that achieves top-1 neural prediction performance with 17.8 million parameters. Our systematic analysis of ten model checkpoints trained between 60K to 1.14M steps reveals that training duration exhibits a non-monotonic relationship with performance, with optimal results achieved around 200K steps. Through comprehensive ablation studies and failure case analysis, we provide insights into why simpler architectures excel at visual robustness while deeper models with increased capacity achieve better neural alignment. Our results challenge conventional assumptions about model complexity in visuomotor learning and offer practical guidance for developing robust, biologically-inspired visual agents.
comment: 15 pages, 8 tables. Technical Report for winning solutions (Track 1 & Track 2) at the NeurIPS 2025 Mouse vs. AI Challenge
Meanshift Shape Formation Control Using Discrete Mass Distribution
The density-distribution method has recently become a promising paradigm owing to its adaptability to variations in swarm size. However, existing studies face practical challenges in achieving complex shape representation and decentralized implementation. This motivates us to develop a fully decentralized, distribution-based control strategy with the dual capability of forming complex shapes and adapting to swarm-size variations. Specifically, we first propose a discrete mass-distribution function defined over a set of sample points to model swarm formation. In contrast to the continuous density-distribution method, our model eliminates the requirement for defining continuous density functions-a task that is difficult for complex shapes. Second, we design a decentralized meanshift control law to coordinate the swarm's global distribution to fit the sample-point distribution by feeding back mass estimates. The mass estimates for all sample points are achieved by the robots in a decentralized manner via the designed mass estimator. It is shown that the mass estimates of the sample points can asymptotically converge to the true global values. To validate the proposed strategy, we conduct comprehensive simulations and real-world experiments to evaluate the efficiency of complex shape formation and adaptability to swarm-size variations.
Flexible Multitask Learning with Factorized Diffusion Policy
Multitask learning poses significant challenges due to the highly multimodal and diverse nature of robot action distributions. However, effectively fitting policies to these complex task distributions is often difficult, and existing monolithic models often underfit the action distribution and lack the flexibility required for efficient adaptation. We introduce a novel modular diffusion policy framework that factorizes complex action distributions into a composition of specialized diffusion models, each capturing a distinct sub-mode of the behavior space for a more effective overall policy. In addition, this modular structure enables flexible policy adaptation to new tasks by adding or fine-tuning components, which inherently mitigates catastrophic forgetting. Empirically, across both simulation and real-world robotic manipulation settings, we illustrate how our method consistently outperforms strong modular and monolithic baselines.
Robust Trajectory Tracking of Autonomous Surface Vehicle via Lie Algebraic Online MPC
Autonomous surface vehicles (ASVs) are influenced by environmental disturbances such as wind and waves, making accurate trajectory tracking a persistent challenge in dynamic marine conditions. In this paper, we propose an efficient controller for trajectory tracking of marine vehicles under unknown disturbances by combining a convex error-state MPC on the Lie group augmented by an online learning module to compensate for these disturbances in real time. This design enables adaptive and robust tracking control while maintaining computational efficiency. Extensive evaluations in the Virtual RobotX (VRX) simulator, and real-world field experiments demonstrate that our method achieves superior tracking accuracy under various disturbance scenarios compared with existing approaches.
Graph-Based Floor Separation Using Node Embeddings and Clustering of WiFi Trajectories
Vertical localization, particularly floor separation, remains a major challenge in indoor positioning systems operating in GPS-denied multistory environments. This paper proposes a fully data-driven, graph-based framework for blind floor separation using only Wi-Fi fingerprint trajectories, without requiring prior building information or knowledge of the number of floors. In the proposed method, Wi-Fi fingerprints are represented as nodes in a trajectory graph, where edges capture both signal similarity and sequential movement context. Structural node embeddings are learned via Node2Vec, and floor-level partitions are obtained using K-Means clustering with automatic cluster number estimation. The framework is evaluated on multiple publicly available datasets, including a newly released Huawei University Challenge 2021 dataset and a restructured version of the UJIIndoorLoc benchmark. Experimental results demonstrate that the proposed approach effectively captures the intrinsic vertical structure of multistory buildings using only received signal strength data. By eliminating dependence on building-specific metadata, the proposed method provides a scalable and practical solution for vertical localization in indoor environments.
comment: 10 pages,4 figures, 3 tables
InterMimic: Towards Universal Whole-Body Control for Physics-Based Human-Object Interactions CVPR 2025
Achieving realistic simulations of humans interacting with a wide range of objects has long been a fundamental goal. Extending physics-based motion imitation to complex human-object interactions (HOIs) is challenging due to intricate human-object coupling, variability in object geometries, and artifacts in motion capture data, such as inaccurate contacts and limited hand detail. We introduce InterMimic, a framework that enables a single policy to robustly learn from hours of imperfect MoCap data covering diverse full-body interactions with dynamic and varied objects. Our key insight is to employ a curriculum strategy -- perfect first, then scale up. We first train subject-specific teacher policies to mimic, retarget, and refine motion capture data. Next, we distill these teachers into a student policy, with the teachers acting as online experts providing direct supervision, as well as high-quality references. Notably, we incorporate RL fine-tuning on the student policy to surpass mere demonstration replication and achieve higher-quality solutions. Our experiments demonstrate that InterMimic produces realistic and diverse interactions across multiple HOI datasets. The learned policy generalizes in a zero-shot manner and seamlessly integrates with kinematic generators, elevating the framework from mere imitation to generative modeling of complex human-object interactions.
comment: CVPR 2025. Project Page: https://sirui-xu.github.io/InterMimic/
Virtual Community: An Open World for Humans, Robots, and Society
The rapid progress in AI and Robotics may lead to a profound societal transformation, as humans and robots begin to coexist within shared communities, introducing both opportunities and challenges. To explore this future, we present Virtual Community-an open-world platform for humans, robots, and society-built on a universal physics engine and grounded in real-world 3D scenes. With Virtual Community, we aim to enable the study of embodied social intelligence at scale. To support these, Virtual Community features: 1) An open-source multi-agent physics simulator that supports robots, humans, and their interactions within a society; 2) A large-scale, real-world aligned community generation pipeline, including vast outdoor space, diverse indoor scenes, and a community of grounded agents with rich characters and appearances. Leveraging Virtual Community, we propose two novel challenges. The Community Planning Challenge evaluates multi-agent reasoning and planning ability in open-world settings, such as cooperating to help agents with daily activities and efficiently connecting other agents. The Community Robot Challenge requires multiple heterogeneous robots to collaborate in solving complex open-world tasks. We evaluate various baselines on these tasks and demonstrate the challenges in both high-level open-world task planning and low-level cooperation controls. We hope that Virtual Community will unlock further study of human-robot coexistence within open-world environments.
comment: website https://virtual-community-ai.github.io/
Dichotomous Diffusion Policy Optimization
Diffusion-based policies have gained growing popularity in solving a wide range of decision-making tasks due to their superior expressiveness and controllable generation during inference. However, effectively training large diffusion policies using reinforcement learning (RL) remains challenging. Existing methods either suffer from unstable training due to directly maximizing value objectives, or face computational issues due to relying on crude Gaussian likelihood approximation, which requires a large amount of sufficiently small denoising steps. In this work, we propose DIPOLE (Dichotomous diffusion Policy improvement), a novel RL algorithm designed for stable and controllable diffusion policy optimization. We begin by revisiting the KL-regularized objective in RL, which offers a desirable weighted regression objective for diffusion policy extraction, but often struggles to balance greediness and stability. We then formulate a greedified policy regularization scheme, which naturally enables decomposing the optimal policy into a pair of stably learned dichotomous policies: one aims at reward maximization, and the other focuses on reward minimization. Under such a design, optimized actions can be generated by linearly combining the scores of dichotomous policies during inference, thereby enabling flexible control over the level of greediness.Evaluations in offline and offline-to-online RL settings on ExORL and OGBench demonstrate the effectiveness of our approach. We also use DIPOLE to train a large vision-language-action (VLA) model for end-to-end autonomous driving (AD) and evaluate it on the large-scale real-world AD benchmark NAVSIM, highlighting its potential for complex real-world applications.
An Extended Generalized Prandtl-Ishlinskii Hysteresis Model for I2RIS Robot
Retinal surgery requires extreme precision due to constrained anatomical spaces in the human retina. To assist surgeons achieve this level of accuracy, the Improved Integrated Robotic Intraocular Snake (I2RIS) with dexterous capability has been developed. However, such flexible tendon-driven robots often suffer from hysteresis problems, which significantly challenges precise control and positioning. In particular, we observed multi-stage hysteresis phenomena in the small-scale I2RIS. In this paper, we propose an Extended Generalized Prandtl-Ishlinskii (EGPI) model to increase the fitting accuracy of the hysteresis. The model incorporates a novel switching mechanism that enables it to describe multi-stage hysteresis in the regions of monotonic input. Experimental validation on I2RIS data demonstrates that the EGPI model outperforms the conventional Generalized Prandtl-Ishlinskii (GPI) model in terms of RMSE, NRMSE, and MAE across multiple motor input directions. The EGPI model in our study highlights the potential in modeling multi-stage hysteresis in minimally invasive flexible robots.
comment: Published in IFAC-PapersOnLine, Vol. 59, No. 30, pp. 323-328, 2025. 5th Conference on Modeling, Estimation and Control (MECC 2025)
Real-World Evaluation of two Cooperative Intersection Management Approaches
Cooperative maneuver planning promises to significantly improve traffic efficiency at unsignalized intersections by leveraging connected automated vehicles. Previous works on this topic have been mostly developed for completely automated traffic in a simple simulated environment. In contrast, our previously introduced planning approaches are specifically designed to handle real-world mixed traffic. The two methods are based on multi-scenario prediction and graph-based reinforcement learning, respectively. This is the first study to perform evaluations in a novel mixed traffic simulation framework as well as real-world drives with prototype connected automated vehicles in public traffic. The simulation features the same connected automated driving software stack as deployed on one of the automated vehicles. Our quantitative evaluations show that cooperative maneuver planning achieves a substantial reduction in crossing times and the number of stops. In a realistic environment with few automated vehicles, there are noticeable efficiency gains with only slightly increasing criticality metrics.
comment: M. Klimke and M. B. Mertens are both first authors with equal contribution. 11 pages, 9 figures, 3 tables, accepted for publication in the IEEE Intelligent Transportation Systems Magazine
Collaborative Representation Learning for Alignment of Tactile, Language, and Vision Modalities
Tactile sensing offers rich and complementary information to vision and language, enabling robots to perceive fine-grained object properties. However, existing tactile sensors lack standardization, leading to redundant features that hinder cross-sensor generalization. Moreover, existing methods fail to fully integrate the intermediate communication among tactile, language, and vision modalities. To address this, we propose TLV-CoRe, a CLIP-based Tactile-Language-Vision Collaborative Representation learning method. TLV-CoRe introduces a Sensor-Aware Modulator to unify tactile features across different sensors and employs tactile-irrelevant decoupled learning to disentangle irrelevant tactile features. Additionally, a Unified Bridging Adapter is introduced to enhance tri-modal interaction within the shared representation space. To fairly evaluate the effectiveness of tactile models, we further propose the RSS evaluation framework, focusing on Robustness, Synergy, and Stability across different methods. Experimental results demonstrate that TLV-CoRe significantly improves sensor-agnostic representation learning and cross-modal alignment, offering a new direction for multimodal tactile representation.
One-Shot Real-World Demonstration Synthesis for Scalable Bimanual Manipulation
Learning dexterous bimanual manipulation policies critically depends on large-scale, high-quality demonstrations, yet current paradigms face inherent trade-offs: teleoperation provides physically grounded data but is prohibitively labor-intensive, while simulation-based synthesis scales efficiently but suffers from sim-to-real gaps. We present BiDemoSyn, a framework that synthesizes contact-rich, physically feasible bimanual demonstrations from a single real-world example. The key idea is to decompose tasks into invariant coordination blocks and variable, object-dependent adjustments, then adapt them through vision-guided alignment and lightweight trajectory optimization. This enables the generation of thousands of diverse and feasible demonstrations within several hour, without repeated teleoperation or reliance on imperfect simulation. Across six dual-arm tasks, we show that policies trained on BiDemoSyn data generalize robustly to novel object poses and shapes, significantly outperforming recent strong baselines. Beyond the one-shot setting, BiDemoSyn naturally extends to few-shot-based synthesis, improving object-level diversity and out-of-distribution generalization while maintaining strong data efficiency. Moreover, policies trained on BiDemoSyn data exhibit zero-shot cross-embodiment transfer to new robotic platforms, enabled by object-centric observations and a simplified 6-DoF end-effector action representation that decouples policies from embodiment-specific dynamics. By bridging the gap between efficiency and real-world fidelity, BiDemoSyn provides a scalable path toward practical imitation learning for complex bimanual manipulation without compromising physical grounding.
comment: Under review. The project link is https://hnuzhy.github.io/projects/BiDemoSyn/
From Edge to Edge: A Flow-Inspired Scheduling Planner for Multi-Robot Systems
Trajectory planning is crucial in multi-robot systems, particularly in environments with numerous obstacles. While extensive research has been conducted in this field, the challenge of coordinating multiple robots to flow collectively from one side of the map to the other-such as in crossing missions through obstacle-rich spaces-has received limited attention. This paper focuses on this directional traversal scenario by introducing a real-time scheduling scheme that enables multi-robot systems to move from edge to edge, emulating the smooth and efficient flow of water. Inspired by network flow optimization, our scheme decomposes the environment into a flow-based network structure, enabling the efficient allocation of robots to paths based on real-time congestion levels. The proposed scheduling planner operates on top of existing collision avoidance algorithms, aiming to minimize overall traversal time by balancing detours and waiting times. Simulation results demonstrate the effectiveness of the proposed scheme in achieving fast and coordinated traversal. Furthermore, real-world flight tests with ten drones validate its practical feasibility. This work contributes a flow-inspired, real-time scheduling planner tailored for directional multi-robot traversal in complex, obstacle-rich environments. Code: https://github.com/chengji253/FlowPlanner
NeMo-map: Neural Implicit Flow Fields for Spatio-Temporal Motion Mapping ICLR 2026
Safe and efficient robot operation in complex human environments can benefit from good models of site-specific motion patterns. Maps of Dynamics (MoDs) provide such models by encoding statistical motion patterns in a map, but existing representations use discrete spatial sampling and typically require costly offline construction. We propose a continuous spatio-temporal MoD representation based on implicit neural functions that directly map coordinates to the parameters of a Semi-Wrapped Gaussian Mixture Model. This removes the need for discretization and imputation for unevenly sampled regions, enabling smooth generalization across both space and time. Evaluated on two public datasets with real-world people tracking data, our method achieves better accuracy of motion representation and smoother velocity distributions in sparse regions while still being computationally efficient, compared to available baselines. The proposed approach demonstrates a powerful and efficient way of modeling complex human motion patterns and high performance in the trajectory prediction downstream task. Project code is available at https://github.com/test-bai-cpu/nemo-map
comment: Published as a conference paper at ICLR 2026
Information Filtering via Variational Regularization for Robot Manipulation
Diffusion-based visuomotor policies built on 3D visual representations have achieved strong performance in learning complex robotic skills. However, most existing methods employ an oversized denoising decoder. While increasing model capacity can improve denoising, empirical evidence suggests that it also introduces redundancy and noise in intermediate feature blocks. Crucially, we find that randomly masking backbone features at inference time (without changing training) can improve performance, confirming the presence of task-irrelevant noise in intermediate features. To this end, we propose Variational Regularization (VR), a lightweight module that imposes a timestep-conditioned Gaussian over backbone features and applies a KL-divergence regularizer, forming an adaptive information bottleneck. Extensive experiments on three simulation benchmarks (RoboTwin2.0, Adroit, and MetaWorld) show that, compared to the baseline DP3, our approach improves the success rate by 6.1% on RoboTwin2.0 and by 4.1% on Adroit and MetaWorld, achieving new state-of-the-art results. Real-world experiments further demonstrate that our method performs well in practical deployments. Code will released.
Human-Inspired Neuro-Symbolic World Modeling and Logic Reasoning for Interpretable Safe UAV Landing Site Assessment
Reliable assessment of safe landing sites in unstructured environments is essential for deploying Unmanned Aerial Vehicles (UAVs) in real-world applications such as delivery, inspection, and surveillance. Existing learning-based approaches often degrade under covariate shift and offer limited transparency, making their decisions difficult to interpret and validate on resource-constrained platforms. We present NeuroSymLand, a neuro-symbolic framework for marker-free UAV landing site safety assessment that explicitly separates perception-driven world modeling from logic-based safety reasoning. A lightweight segmentation model incrementally constructs a probabilistic semantic scene graph encoding objects, attributes, and spatial relations. Symbolic safety rules, synthesized offline via large language models with human-in-the-loop refinement, are executed directly over this world model at runtime to perform white-box reasoning, producing ranked landing candidates with human-readable explanations of the underlying safety constraints. Across 72 simulated and hardware-in-the-loop landing scenarios, NeuroSymLand achieves 61 successful assessments, outperforming four competitive baselines, which achieve between 37 and 57 successes. Qualitative analysis highlights its superior interpretability and transparent reasoning, while deployment incurs negligible edge overhead. Our results suggest that combining explicit world modeling with symbolic reasoning can support accurate, interpretable, and edge-deployable safety assessment in mobile systems, as demonstrated through UAV landing site assessment.
Toward Learning POMDPs Beyond Full-Rank Actions and State Observability
We are interested in enabling autonomous agents to learn and reason about systems with hidden states, such as furniture with hidden locking mechanisms. We cast this problem as learning the parameters of a discrete Partially Observable Markov Decision Process (POMDP). The agent begins with knowledge of the POMDP's actions and observation spaces, but not its state space, transitions, or observation models. These properties must be constructed from action-observation sequences. Spectral approaches to learning models of partially observable domains, such as learning Predictive State Representations (PSRs), are known to directly estimate the number of hidden states. These methods cannot, however, yield direct estimates of transition and observation likelihoods, which are important for many downstream reasoning tasks. Other approaches leverage tensor decompositions to estimate transition and observation likelihoods but often assume full state observability and full-rank transition matrices for all actions. To relax these assumptions, we study how PSRs learn transition and observation matrices up to a similarity transform, which may be estimated via tensor methods. Our method learns observation matrices and transition matrices up to a partition of states, where the states in a single partition have the same observation distributions corresponding to actions whose transition matrices are full-rank. Our experiments suggest that these partition-level transition models learned by our method, with a sufficient amount of data, meets the performance of PSRs as models to be used by standard sampling-based POMDP solvers. Furthermore, the explicit observation and transition likelihoods can be leveraged to specify planner behavior after the model has been learned.
Versatile Behavior Diffusion for Generalized Traffic Agent Simulation
Existing traffic simulation models often fall short in capturing the intricacies of real-world scenarios, particularly the interactive behaviors among multiple traffic participants, thereby limiting their utility in the evaluation and validation of autonomous driving systems. We introduce Versatile Behavior Diffusion (VBD), a novel traffic scenario generation framework based on diffusion generative models that synthesizes scene-consistent, realistic, and controllable multi-agent interactions. VBD achieves strong performance in closed-loop traffic simulation, generating scene-consistent agent behaviors that reflect complex agent interactions. A key capability of VBD is inference-time scenario editing through multi-step refinement, guided by behavior priors and model-based optimization objectives, enabling flexible and controllable behavior generation. Despite being trained on real-world traffic datasets with only normal conditions, we introduce conflict-prior and game-theoretic guidance approaches. These approaches enable the generation of interactive, customizable, or long-tail safety-critical scenarios, which are essential for comprehensive testing and validation of autonomous driving systems. Extensive experiments validate the effectiveness and versatility of VBD and highlight its promise as a foundational tool for advancing traffic simulation and autonomous vehicle development. Project website: https://sites.google.com/view/versatile-behavior-diffusion
DMV-AVP: Distributed Multi-Vehicle Autonomous Valet Parking Using Autoware IV 2026
This paper presents DMV-AVP, a distributed simulation of Multi-Vehicle Autonomous Valet Parking (AVP). The system was implemented as an application of the Distributed Multi-Autonomous Vehicle Architecture (DMAVA) for synchronized multi-host execution. Most existing simulation approaches rely on centralized or non-distributed designs that constrain scalability and limit fully autonomous control. This work introduces two modules built on top of DMAVA: 1) the Multi-Vehicle AVP Coordination Framework, composed of AVP Managers and a per-vehicle AVP Node, is responsible for global parking state tracking, vehicle queuing, parking spot reservation, lifecycle coordination, and conflict resolution across multiple vehicles, and 2) the Unity-Integrated YOLOv5 Parking Spot Detection Module, that provides real-time, vision-based perception within AWSIM Labs. Both modules integrate seamlessly with DMAVA and extend it specifically for multi-vehicle AVP operation, supported by a Zenoh communication layer that ensures high data accuracy and controllability across hosts. Experiments conducted on two- and three-host configurations demonstrate consistent coordination, conflict-free parking behavior, and scalable performance across distributed Autoware instances. The results confirm that the proposed DMV-AVP supports cooperative AVP simulation and establishes a foundation for future real-world and hardware-in-the-loop validation. Demo videos and source code are available at: https://github.com/zubxxr/multi-vehicle-avp
comment: 6 pages, 3 figures, 3 tables. Submitted to IEEE IV 2026, Demo videos and source code available
DMAVA: Distributed Multi-Autonomous Vehicle Architecture Using Autoware IV 2026
Simulating and validating coordination among multiple autonomous vehicles remains challenging, as many existing simulation architectures are limited to single-vehicle operation or rely on centralized control. This paper presents the Distributed Multi-Autonomous Vehicle Architecture (DMAVA), a simulation architecture that enables concurrent execution of multiple independent vehicle autonomy stacks distributed across multiple physical hosts within a shared simulation environment. Each vehicle operates its own complete autonomous driving stack while maintaining coordinated behavior through a data-centric communication layer. The proposed system integrates ROS 2 Humble, Autoware Universe, AWSIM Labs, and Zenoh to support high data accuracy and controllability during multi-vehicle simulation, enabling consistent perception, planning, and control behavior under distributed execution. Experiments conducted on multiple-host configurations demonstrate stable localization, reliable inter-host communication, and consistent closed-loop control under distributed execution. DMAVA also serves as a foundation for Multi-Vehicle Autonomous Valet Parking, demonstrating its extensibility toward higher-level cooperative autonomy. Demo videos and source code are available at: https://github.com/zubxxr/distributed-multi-autonomous-vehicle-architecture.
comment: 7 pages, 3 figures, 5 tables, Submitted to IEEE IV 2026, Demo videos and source code available
UAV-Based Infrastructure Inspections: A Literature Review and Proposed Framework for AEC+FM
Unmanned Aerial Vehicles (UAVs) are transforming infrastructure inspections in the Architecture, Engineering, Construction, and Facility Management (AEC+FM) domain. By synthesizing insights from over 150 studies, this review paper highlights UAV-based methodologies for data acquisition, photogrammetric modeling, defect detection, and decision-making support. Key innovations include path optimization, thermal integration, and advanced machine learning (ML) models such as YOLO and Faster R-CNN for anomaly detection. UAVs have demonstrated value in structural health monitoring (SHM), disaster response, urban infrastructure management, energy efficiency evaluations, and cultural heritage preservation. Despite these advancements, challenges in real-time processing, multimodal data fusion, and generalizability remain. A proposed workflow framework, informed by literature and a case study, integrates RGB imagery, LiDAR, and thermal sensing with transformer-based architectures to improve accuracy and reliability in detecting structural defects, thermal anomalies, and geometric inconsistencies. The proposed framework ensures precise and actionable insights by fusing multimodal data and dynamically adapting path planning for complex environments, presented as a comprehensive step-by-step guide to address these challenges effectively. This paper concludes with future research directions emphasizing lightweight AI models, adaptive flight planning, synthetic datasets, and richer modality fusion to streamline modern infrastructure inspections.
comment: Withdrawn at the request of the authors to allow further revisions
Video World Models 7
Sem-NaVAE: Semantically-Guided Outdoor Mapless Navigation via Generative Trajectory Priors
This work presents a mapless global navigation approach for outdoor applications. It combines the exploratory capacity of conditional variational autoencoders (CVAEs) to generate trajectories and the semantic segmentation capabilities of a lightweight visual language model (VLM) to select the trajectory to execute. Open-vocabulary segmentation is used to score and select the generated trajectories based on natural language, and a state-of-the-art local planner executes velocity commands. One of the key features of the proposed approach is its ability to generate a large variability of trajectories and to select them and navigate in real-time. The approach was validated through real-world outdoor navigation experiments, achieving superior performance compared to state-of-the-art methods. A video showing an experimental run of the system can be found in https://www.youtube.com/watch?v=i3R5ey5O2yk.
comment: 8 pages, 5 figures
A Systematic Study of Data Modalities and Strategies for Co-training Large Behavior Models for Robot Manipulation
Large behavior models have shown strong dexterous manipulation capabilities by extending imitation learning to large-scale training on multi-task robot data, yet their generalization remains limited by the insufficient robot data coverage. To expand this coverage without costly additional data collection, recent work relies on co-training: jointly learning from target robot data and heterogeneous data modalities. However, how different co-training data modalities and strategies affect policy performance remains poorly understood. We present a large-scale empirical study examining five co-training data modalities: standard vision-language data, dense language annotations for robot trajectories, cross-embodiment robot data, human videos, and discrete robot action tokens across single- and multi-phase training strategies. Our study leverages 4,000 hours of robot and human manipulation data and 50M vision-language samples to train vision-language-action policies. We evaluate 89 policies over 58,000 simulation rollouts and 2,835 real-world rollouts. Our results show that co-training with forms of vision-language and cross-embodiment robot data substantially improves generalization to distribution shifts, unseen tasks, and language following, while discrete action token variants yield no significant benefits. Combining effective modalities produces cumulative gains and enables rapid adaptation to unseen long-horizon dexterous tasks via fine-tuning. Training exclusively on robot data degrades the visiolinguistic understanding of the vision-language model backbone, while co-training with effective modalities restores these capabilities. Explicitly conditioning action generation on chain-of-thought traces learned from co-training data does not improve performance in our simulation benchmark. Together, these results provide practical guidance for building scalable generalist robot policies.
From Videos to Conversations: Egocentric Instructions for Task Assistance
Many everyday tasks, ranging from appliance repair and cooking to car maintenance, require expert knowledge, particularly for complex, multi-step procedures. Despite growing interest in AI agents for augmented reality (AR) assistance, progress remains limited by the scarcity of large-scale multimodal conversational datasets grounded in real-world task execution, in part due to the cost and logistical complexity of human-assisted data collection. In this paper, we present a framework to automatically transform single person instructional videos into two-person multimodal task-guidance conversations. Our fully automatic pipeline, based on large language models, provides a scalable and cost efficient alternative to traditional data collection approaches. Using this framework, we introduce HowToDIV, a multimodal dataset comprising 507 conversations, 6,636 question answer pairs, and 24 hours of video spanning multiple domains. Each session consists of a multi-turn expert-novice interaction. Finally, we report baseline results using Gemma 3 and Qwen 2.5 on HowToDIV, providing an initial benchmark for multimodal procedural task assistance.
A Space-Time Transformer for Precipitation Nowcasting NeurIPS
Meteorological agencies around the world rely on real-time flood guidance to issue life-saving advisories and warnings. For decades traditional numerical weather prediction (NWP) models have been state-of-the-art for precipitation forecasting. However, physically-parameterized models suffer from a few core limitations: first, solving PDEs to resolve atmospheric dynamics is computationally demanding, and second, these methods degrade in performance at nowcasting timescales (i.e., 0-4 hour lead-times). Motivated by these shortcomings, recent work proposes AI-weather prediction (AI-WP) alternatives that learn to emulate analysis data with neural networks. While these data-driven approaches have enjoyed enormous success across diverse spatial and temporal resolutions, applications of video-understanding architectures for weather forecasting remain underexplored. To address these gaps, we propose \textbf{SaTformer}: a video transformer built on full space-time attention that skillfully forecasts extreme precipitation from satellite radiances. Along with our novel architecture, we introduce techniques to tame long-tailed precipitation datasets. Namely, we reformulate precipitation regression into a classification problem, and employ a class-weighted loss to address label imbalances. Our model scored \textbf{first place} on the NeurIPS Weather4Cast 2025 ``Cumulative Rainfall'' challenge. Code and model weights are available: \texttt{\href{github.com/leharris3/w4c-25}{github.com/leharris3/satformer}}
comment: NeurIPS Weather4Cast Challenge 2025. Title change; minor math corrections
Zero-Shot Video Deraining with Video Diffusion Models WACV 2026
Existing video deraining methods are often trained on paired datasets, either synthetic, which limits their ability to generalize to real-world rain, or captured by static cameras, which restricts their effectiveness in dynamic scenes with background and camera motion. Furthermore, recent works in fine-tuning diffusion models have shown promising results, but the fine-tuning tends to weaken the generative prior, limiting generalization to unseen cases. In this paper, we introduce the first zero-shot video deraining method for complex dynamic scenes that does not require synthetic data nor model fine-tuning, by leveraging a pretrained text-to-video diffusion model that demonstrates strong generalization capabilities. By inverting an input video into the latent space of diffusion models, its reconstruction process can be intervened and pushed away from the model's concept of rain using negative prompting. At the core of our approach is an attention switching mechanism that we found is crucial for maintaining dynamic backgrounds as well as structural consistency between the input and the derained video, mitigating artifacts introduced by naive negative prompting. Our approach is validated through extensive experiments on real-world rain datasets, demonstrating substantial improvements over prior methods and showcasing robust generalization without the need for supervised training.
comment: WACV 2026
Reading Recognition in the Wild NeurIPS 2025
To enable egocentric contextual AI in always-on smart glasses, it is crucial to be able to keep a record of the user's interactions with the world, including during reading. In this paper, we introduce a new task of reading recognition to determine when the user is reading. We first introduce the first-of-its-kind large-scale multimodal Reading in the Wild dataset, containing 100 hours of reading and non-reading videos in diverse and realistic scenarios. We then identify three modalities (egocentric RGB, eye gaze, head pose) that can be used to solve the task, and present a flexible transformer model that performs the task using these modalities, either individually or combined. We show that these modalities are relevant and complementary to the task, and investigate how to efficiently and effectively encode each modality. Additionally, we show the usefulness of this dataset towards classifying types of reading, extending current reading understanding studies conducted in constrained settings to larger scale, diversity and realism.
comment: NeurIPS 2025. Project Page: https://www.projectaria.com/datasets/reading-in-the-wild/
The Role of World Models in Shaping Autonomous Driving: A Comprehensive Survey
The Driving World Model (DWM), which focuses on predicting scene evolution during the driving process, has emerged as a promising paradigm in the pursuit of autonomous driving (AD). DWMs enable AD systems to better perceive, understand, and interact with dynamic driving environments. In this survey, we provide a comprehensive overview of the latest progress in DWM. First, we review the DWM ecosystem, which is constructed using mainstream simulators, high-impact datasets, and various metrics that evaluate DWMs across multiple dimensions. We then categorize existing approaches based on the modalities of the predicted scenes, including video, point cloud, occupancy, latent feature, and traffic map, and summarize their specific applications in AD research. In addition, the performance of representative approaches across generating and driving tasks is presented. Finally, we discuss the potential limitations of current research and propose future directions. This survey provides valuable insights into the development and application of DWM, fostering its broader adoption in AD. The relevant papers are collected at https://github.com/LMD0311/Awesome-World-Model.
comment: For continuous updates, please follow the repository: https://github.com/LMD0311/Awesome-World-Model
Embodied Intelligence 15
Latent Reasoning VLA: Latent Thinking and Prediction for Vision-Language-Action Models
Vision-Language-Action (VLA) models benefit from chain-of-thought (CoT) reasoning, but existing approaches incur high inference overhead and rely on discrete reasoning representations that mismatch continuous perception and control. We propose Latent Reasoning VLA (\textbf{LaRA-VLA}), a unified VLA framework that internalizes multi-modal CoT reasoning into continuous latent representations for embodied action. LaRA-VLA performs unified reasoning and prediction in latent space, eliminating explicit CoT generation at inference time and enabling efficient, action-oriented control. To realize latent embodied reasoning, we introduce a curriculum-based training paradigm that progressively transitions from explicit textual and visual CoT supervision to latent reasoning, and finally adapts latent reasoning dynamics to condition action generation. We construct two structured CoT datasets and evaluate LaRA-VLA on both simulation benchmarks and long-horizon real-robot manipulation tasks. Experimental results show that LaRA-VLA consistently outperforms state-of-the-art VLA methods while reducing inference latency by up to 90\% compared to explicit CoT-based approaches, demonstrating latent reasoning as an effective and efficient paradigm for real-time embodied control. Project Page: \href{https://loveju1y.github.io/Latent-Reasoning-VLA/}{LaRA-VLA Website}.
Improving Robustness of Vision-Language-Action Models by Restoring Corrupted Visual Inputs
Vision-Language-Action (VLA) models have emerged as a dominant paradigm for generalist robotic manipulation, unifying perception and control within a single end-to-end architecture. However, despite their success in controlled environments, reliable real-world deployment is severely hindered by their fragility to visual disturbances. While existing literature extensively addresses physical occlusions caused by scene geometry, a critical mode remains largely unexplored: image corruptions. These sensor-level artifacts, ranging from electronic noise and dead pixels to lens contaminants, directly compromise the integrity of the visual signal prior to interpretation. In this work, we quantify this vulnerability, demonstrating that state-of-the-art VLAs such as $π_{0.5}$ and SmolVLA, suffer catastrophic performance degradation, dropping from 90\% success rates to as low as 2\%, under common signal artifacts. To mitigate this, we introduce the Corruption Restoration Transformer (CRT), a plug-and-play and model-agnostic vision transformer designed to immunize VLA models against sensor disturbances. Leveraging an adversarial training objective, CRT restores clean observations from corrupted inputs without requiring computationally expensive fine-tuning of the underlying model. Extensive experiments across the LIBERO and Meta-World benchmarks demonstrate that CRT effectively recovers lost performance, enabling VLAs to maintain near-baseline success rates, even under severe visual corruption.
UniForce: A Unified Latent Force Model for Robot Manipulation with Diverse Tactile Sensors
Force sensing is essential for dexterous robot manipulation, but scaling force-aware policy learning is hindered by the heterogeneity of tactile sensors. Differences in sensing principles (e.g., optical vs. magnetic), form factors, and materials typically require sensor-specific data collection, calibration, and model training, thereby limiting generalisability. We propose UniForce, a novel unified tactile representation learning framework that learns a shared latent force space across diverse tactile sensors. UniForce reduces cross-sensor domain shift by jointly modeling inverse dynamics (image-to-force) and forward dynamics (force-to-image), constrained by force equilibrium and image reconstruction losses to produce force-grounded representations. To avoid reliance on expensive external force/torque (F/T) sensors, we exploit static equilibrium and collect force-paired data via direct sensor--object--sensor interactions, enabling cross-sensor alignment with contact force. The resulting universal tactile encoder can be plugged into downstream force-aware robot manipulation tasks with zero-shot transfer, without retraining or finetuning. Extensive experiments on heterogeneous tactile sensors including GelSight, TacTip, and uSkin, demonstrate consistent improvements in force estimation over prior methods, and enable effective cross-sensor coordination in Vision-Tactile-Language-Action (VTLA) models for a robotic wiping task. Code and datasets will be released.
KAN We Flow? Advancing Robotic Manipulation with 3D Flow Matching via KAN & RWKV ICRA2026
Diffusion-based visuomotor policies excel at modeling action distributions but are inference-inefficient, since recursively denoising from noise to policy requires many steps and heavy UNet backbones, which hinders deployment on resource-constrained robots. Flow matching alleviates the sampling burden by learning a one-step vector field, yet prior implementations still inherit large UNet-style architectures. In this work, we present KAN-We-Flow, a flow-matching policy that draws on recent advances in Receptance Weighted Key Value (RWKV) and Kolmogorov-Arnold Networks (KAN) from vision to build a lightweight and highly expressive backbone for 3D manipulation. Concretely, we introduce an RWKV-KAN block: an RWKV first performs efficient time/channel mixing to propagate task context, and a subsequent GroupKAN layer applies learnable spline-based, groupwise functional mappings to perform feature-wise nonlinear calibration of the action mapping on RWKV outputs. Moreover, we introduce an Action Consistency Regularization (ACR), a lightweight auxiliary loss that enforces alignment between predicted action trajectories and expert demonstrations via Euler extrapolation, providing additional supervision to stabilize training and improve policy precision. Without resorting to large UNets, our design reduces parameters by 86.8\%, maintains fast runtime, and achieves state-of-the-art success rates on Adroit, Meta-World, and DexArt benchmarks. Our project page can be viewed in \href{https://zhihaochen-2003.github.io/KAN-We-Flow.github.io/}{\textcolor{red}{link}}
comment: Accepted By ICRA2026
StreamVLA: Breaking the Reason-Act Cycle via Completion-State Gating
Long-horizon robotic manipulation requires bridging the gap between high-level planning (System 2) and low-level control (System 1). Current Vision-Language-Action (VLA) models often entangle these processes, performing redundant multimodal reasoning at every timestep, which leads to high latency and goal instability. To address this, we present StreamVLA, a dual-system architecture that unifies textual task decomposition, visual goal imagination, and continuous action generation within a single parameter-efficient backbone. We introduce a "Lock-and-Gated" mechanism to intelligently modulate computation: only when a sub-task transition is detected, the model triggers slow thinking to generate a textual instruction and imagines the specific visual completion state, rather than generic future frames. Crucially, this completion state serves as a time-invariant goal anchor, making the policy robust to execution speed variations. During steady execution, these high-level intents are locked to condition a Flow Matching action head, allowing the model to bypass expensive autoregressive decoding for 72% of timesteps. This hierarchical abstraction ensures sub-goal focus while significantly reducing inference latency. Extensive evaluations demonstrate that StreamVLA achieves state-of-the-art performance, with a 98.5% success rate on the LIBERO benchmark and robust recovery in real-world interference scenarios, achieving a 48% reduction in latency compared to full-reasoning baselines.
Failure-Aware Bimanual Teleoperation via Conservative Value Guided Assistance
Teleoperation of high-precision manipulation is con-strained by tight success tolerances and complex contact dy-namics, which make impending failures difficult for human operators to anticipate under partial observability. This paper proposes a value-guided, failure-aware framework for bimanual teleoperation that provides compliant haptic assistance while pre-serving continuous human authority. The framework is trained entirely from heterogeneous offline teleoperation data containing both successful and failed executions. Task feasibility is mod-eled as a conservative success score learned via Conservative Value Learning, yielding a risk-sensitive estimate that remains reliable under distribution shift. During online operation, the learned success score regulates the level of assistance, while a learned actor provides a corrective motion direction. Both are integrated through a joint-space impedance interface on the master side, yielding continuous guidance that steers the operator away from failure-prone actions without overriding intent. Experimental results on contact-rich manipulation tasks demonstrate improved task success rates and reduced operator workload compared to conventional teleoperation and shared-autonomy baselines, indicating that conservative value learning provides an effective mechanism for embedding failure awareness into bilateral teleoperation. Experimental videos are available at https://www.youtube.com/watch?v=XDTsvzEkDRE
Estimating Force Interactions of Deformable Linear Objects from their Shapes
This work introduces an analytical approach for detecting and estimating external forces acting on deformable linear objects (DLOs) using only their observed shapes. In many robot-wire interaction tasks, contact occurs not at the end-effector but at other points along the robot's body. Such scenarios arise when robots manipulate wires indirectly (e.g., by nudging) or when wires act as passive obstacles in the environment. Accurately identifying these interactions is crucial for safe and efficient trajectory planning, helping to prevent wire damage, avoid restricted robot motions, and mitigate potential hazards. Existing approaches often rely on expensive external force-torque sensor or that contacts occur at the end-effector for accurate force estimation. Using wire shape information acquired from a depth camera and under the assumption that the wire is in or near its static equilibrium, our method estimates both the location and magnitude of external forces without additional prior knowledge. This is achieved by exploiting derived consistency conditions and solving a system of linear equations based on force-torque balance along the wire. The approach was validated through simulation, where it achieved high accuracy, and through real-world experiments, where accurate estimation was demonstrated in selected interaction scenarios.
comment: 7 pages, 4 figures
A Systematic Study of Data Modalities and Strategies for Co-training Large Behavior Models for Robot Manipulation
Large behavior models have shown strong dexterous manipulation capabilities by extending imitation learning to large-scale training on multi-task robot data, yet their generalization remains limited by the insufficient robot data coverage. To expand this coverage without costly additional data collection, recent work relies on co-training: jointly learning from target robot data and heterogeneous data modalities. However, how different co-training data modalities and strategies affect policy performance remains poorly understood. We present a large-scale empirical study examining five co-training data modalities: standard vision-language data, dense language annotations for robot trajectories, cross-embodiment robot data, human videos, and discrete robot action tokens across single- and multi-phase training strategies. Our study leverages 4,000 hours of robot and human manipulation data and 50M vision-language samples to train vision-language-action policies. We evaluate 89 policies over 58,000 simulation rollouts and 2,835 real-world rollouts. Our results show that co-training with forms of vision-language and cross-embodiment robot data substantially improves generalization to distribution shifts, unseen tasks, and language following, while discrete action token variants yield no significant benefits. Combining effective modalities produces cumulative gains and enables rapid adaptation to unseen long-horizon dexterous tasks via fine-tuning. Training exclusively on robot data degrades the visiolinguistic understanding of the vision-language model backbone, while co-training with effective modalities restores these capabilities. Explicitly conditioning action generation on chain-of-thought traces learned from co-training data does not improve performance in our simulation benchmark. Together, these results provide practical guidance for building scalable generalist robot policies.
LLM-Based Behavior Tree Generation for Construction Machinery
Earthwork operations are facing an increasing demand, while workforce aging and skill loss create a pressing need for automation. ROS2-TMS for Construction, a Cyber-Physical System framework designed to coordinate construction machinery, has been proposed for autonomous operation; however, its reliance on manually designed Behavior Trees (BTs) limits scalability, particularly in scenarios involving heterogeneous machine cooperation. Recent advances in large language models (LLMs) offer new opportunities for task planning and BT generation. However, most existing approaches remain confined to simulations or simple manipulators, with relatively few applications demonstrated in real-world contexts, such as complex construction sites involving multiple machines. This paper proposes an LLM-based workflow for BT generation, introducing synchronization flags to enable safe and cooperative operation. The workflow consists of two steps: high-level planning, where the LLM generates synchronization flags, and BT generation using structured templates. Safety is ensured by planning with parameters stored in the system database. The proposed method is validated in simulation and further demonstrated through real-world experiments, highlighting its potential to advance automation in civil engineering.
comment: 7 pages, 7 figures
Flexible Multitask Learning with Factorized Diffusion Policy
Multitask learning poses significant challenges due to the highly multimodal and diverse nature of robot action distributions. However, effectively fitting policies to these complex task distributions is often difficult, and existing monolithic models often underfit the action distribution and lack the flexibility required for efficient adaptation. We introduce a novel modular diffusion policy framework that factorizes complex action distributions into a composition of specialized diffusion models, each capturing a distinct sub-mode of the behavior space for a more effective overall policy. In addition, this modular structure enables flexible policy adaptation to new tasks by adding or fine-tuning components, which inherently mitigates catastrophic forgetting. Empirically, across both simulation and real-world robotic manipulation settings, we illustrate how our method consistently outperforms strong modular and monolithic baselines.
Virtual Community: An Open World for Humans, Robots, and Society
The rapid progress in AI and Robotics may lead to a profound societal transformation, as humans and robots begin to coexist within shared communities, introducing both opportunities and challenges. To explore this future, we present Virtual Community-an open-world platform for humans, robots, and society-built on a universal physics engine and grounded in real-world 3D scenes. With Virtual Community, we aim to enable the study of embodied social intelligence at scale. To support these, Virtual Community features: 1) An open-source multi-agent physics simulator that supports robots, humans, and their interactions within a society; 2) A large-scale, real-world aligned community generation pipeline, including vast outdoor space, diverse indoor scenes, and a community of grounded agents with rich characters and appearances. Leveraging Virtual Community, we propose two novel challenges. The Community Planning Challenge evaluates multi-agent reasoning and planning ability in open-world settings, such as cooperating to help agents with daily activities and efficiently connecting other agents. The Community Robot Challenge requires multiple heterogeneous robots to collaborate in solving complex open-world tasks. We evaluate various baselines on these tasks and demonstrate the challenges in both high-level open-world task planning and low-level cooperation controls. We hope that Virtual Community will unlock further study of human-robot coexistence within open-world environments.
comment: website https://virtual-community-ai.github.io/
Dichotomous Diffusion Policy Optimization
Diffusion-based policies have gained growing popularity in solving a wide range of decision-making tasks due to their superior expressiveness and controllable generation during inference. However, effectively training large diffusion policies using reinforcement learning (RL) remains challenging. Existing methods either suffer from unstable training due to directly maximizing value objectives, or face computational issues due to relying on crude Gaussian likelihood approximation, which requires a large amount of sufficiently small denoising steps. In this work, we propose DIPOLE (Dichotomous diffusion Policy improvement), a novel RL algorithm designed for stable and controllable diffusion policy optimization. We begin by revisiting the KL-regularized objective in RL, which offers a desirable weighted regression objective for diffusion policy extraction, but often struggles to balance greediness and stability. We then formulate a greedified policy regularization scheme, which naturally enables decomposing the optimal policy into a pair of stably learned dichotomous policies: one aims at reward maximization, and the other focuses on reward minimization. Under such a design, optimized actions can be generated by linearly combining the scores of dichotomous policies during inference, thereby enabling flexible control over the level of greediness.Evaluations in offline and offline-to-online RL settings on ExORL and OGBench demonstrate the effectiveness of our approach. We also use DIPOLE to train a large vision-language-action (VLA) model for end-to-end autonomous driving (AD) and evaluate it on the large-scale real-world AD benchmark NAVSIM, highlighting its potential for complex real-world applications.
An Extended Generalized Prandtl-Ishlinskii Hysteresis Model for I2RIS Robot
Retinal surgery requires extreme precision due to constrained anatomical spaces in the human retina. To assist surgeons achieve this level of accuracy, the Improved Integrated Robotic Intraocular Snake (I2RIS) with dexterous capability has been developed. However, such flexible tendon-driven robots often suffer from hysteresis problems, which significantly challenges precise control and positioning. In particular, we observed multi-stage hysteresis phenomena in the small-scale I2RIS. In this paper, we propose an Extended Generalized Prandtl-Ishlinskii (EGPI) model to increase the fitting accuracy of the hysteresis. The model incorporates a novel switching mechanism that enables it to describe multi-stage hysteresis in the regions of monotonic input. Experimental validation on I2RIS data demonstrates that the EGPI model outperforms the conventional Generalized Prandtl-Ishlinskii (GPI) model in terms of RMSE, NRMSE, and MAE across multiple motor input directions. The EGPI model in our study highlights the potential in modeling multi-stage hysteresis in minimally invasive flexible robots.
comment: Published in IFAC-PapersOnLine, Vol. 59, No. 30, pp. 323-328, 2025. 5th Conference on Modeling, Estimation and Control (MECC 2025)
One-Shot Real-World Demonstration Synthesis for Scalable Bimanual Manipulation
Learning dexterous bimanual manipulation policies critically depends on large-scale, high-quality demonstrations, yet current paradigms face inherent trade-offs: teleoperation provides physically grounded data but is prohibitively labor-intensive, while simulation-based synthesis scales efficiently but suffers from sim-to-real gaps. We present BiDemoSyn, a framework that synthesizes contact-rich, physically feasible bimanual demonstrations from a single real-world example. The key idea is to decompose tasks into invariant coordination blocks and variable, object-dependent adjustments, then adapt them through vision-guided alignment and lightweight trajectory optimization. This enables the generation of thousands of diverse and feasible demonstrations within several hour, without repeated teleoperation or reliance on imperfect simulation. Across six dual-arm tasks, we show that policies trained on BiDemoSyn data generalize robustly to novel object poses and shapes, significantly outperforming recent strong baselines. Beyond the one-shot setting, BiDemoSyn naturally extends to few-shot-based synthesis, improving object-level diversity and out-of-distribution generalization while maintaining strong data efficiency. Moreover, policies trained on BiDemoSyn data exhibit zero-shot cross-embodiment transfer to new robotic platforms, enabled by object-centric observations and a simplified 6-DoF end-effector action representation that decouples policies from embodiment-specific dynamics. By bridging the gap between efficiency and real-world fidelity, BiDemoSyn provides a scalable path toward practical imitation learning for complex bimanual manipulation without compromising physical grounding.
comment: Under review. The project link is https://hnuzhy.github.io/projects/BiDemoSyn/
Information Filtering via Variational Regularization for Robot Manipulation
Diffusion-based visuomotor policies built on 3D visual representations have achieved strong performance in learning complex robotic skills. However, most existing methods employ an oversized denoising decoder. While increasing model capacity can improve denoising, empirical evidence suggests that it also introduces redundancy and noise in intermediate feature blocks. Crucially, we find that randomly masking backbone features at inference time (without changing training) can improve performance, confirming the presence of task-irrelevant noise in intermediate features. To this end, we propose Variational Regularization (VR), a lightweight module that imposes a timestep-conditioned Gaussian over backbone features and applies a KL-divergence regularizer, forming an adaptive information bottleneck. Extensive experiments on three simulation benchmarks (RoboTwin2.0, Adroit, and MetaWorld) show that, compared to the baseline DP3, our approach improves the success rate by 6.1% on RoboTwin2.0 and by 4.1% on Adroit and MetaWorld, achieving new state-of-the-art results. Real-world experiments further demonstrate that our method performs well in practical deployments. Code will released.
Robotics 38
CLAMP: Contrastive Learning for 3D Multi-View Action-Conditioned Robotic Manipulation Pretraining
Leveraging pre-trained 2D image representations in behavior cloning policies has achieved great success and has become a standard approach for robotic manipulation. However, such representations fail to capture the 3D spatial information about objects and scenes that is essential for precise manipulation. In this work, we introduce Contrastive Learning for 3D Multi-View Action-Conditioned Robotic Manipulation Pretraining (CLAMP), a novel 3D pre-training framework that utilizes point clouds and robot actions. From the merged point cloud computed from RGB-D images and camera extrinsics, we re-render multi-view four-channel image observations with depth and 3D coordinates, including dynamic wrist views, to provide clearer views of target objects for high-precision manipulation tasks. The pre-trained encoders learn to associate the 3D geometric and positional information of objects with robot action patterns via contrastive learning on large-scale simulated robot trajectories. During encoder pre-training, we pre-train a Diffusion Policy to initialize the policy weights for fine-tuning, which is essential for improving fine-tuning sample efficiency and performance. After pre-training, we fine-tune the policy on a limited amount of task demonstrations using the learned image and action representations. We demonstrate that this pre-training and fine-tuning design substantially improves learning efficiency and policy performance on unseen tasks. Furthermore, we show that CLAMP outperforms state-of-the-art baselines across six simulated tasks and five real-world tasks.
Minimal Footprint Grasping Inspired by Ants
Ants are highly capable of grasping objects in clutter, and we have recently observed that this involves substantial use of their forelegs. The forelegs, more specifically the tarsi, have high friction microstructures (setal pads), are covered in hairs, and have a flexible under-actuated tip. Here we abstract these features to test their functional advantages for a novel low-cost gripper design, suitable for bin-picking applications. In our implementation, the gripper legs are long and slim, with high friction gripping pads, low friction hairs and single-segment tarsus-like structure to mimic the insect's setal pads, hairs, and the tarsi's interactive compliance. Experimental evaluation shows this design is highly robust for grasping a wide variety of individual consumer objects, with all grasp attempts successful. In addition, we demonstrate this design is effective for picking single objects from dense clutter, a task at which ants also show high competence. The work advances grasping technology and shed new light on the mechanical importance of hairy structures and tarsal flexibility in insects.
SanD-Planner: Sample-Efficient Diffusion Planner in B-Spline Space for Robust Local Navigation
The challenge of generating reliable local plans has long hindered practical applications in highly cluttered and dynamic environments. Key fundamental bottlenecks include acquiring large-scale expert demonstrations across diverse scenes and improving learning efficiency with limited data. This paper proposes SanD-Planner, a sample-efficient diffusion-based local planner that conducts depth image-based imitation learning within the clamped B-spline space. By operating within this compact space, the proposed algorithm inherently yields smooth outputs with bounded prediction errors over local supports, naturally aligning with receding-horizon execution. Integration of an ESDF-based safety checker with explicit clearance and time-to-completion metrics further reduces the training burden associated with value-function learning for feasibility assessment. Experiments show that training with $500$ episodes (merely $0.25\%$ of the demonstration scale used by the baseline), SanD-Planner achieves state-of-the-art performance on the evaluated open benchmark, attaining success rates of $90.1\%$ in simulated cluttered environments and $72.0\%$ in indoor simulations. The performance is further proven by demonstrating zero-shot transferability to realistic experimentation in both 2D and 3D scenes. The dataset and pre-trained models will also be open-sourced.
comment: Under review. 11 pages
Green-VLA: Staged Vision-Language-Action Model for Generalist Robots
We introduce Green-VLA, a staged Vision-Language-Action (VLA) framework for real-world deployment on the Green humanoid robot while maintaining generalization across diverse embodiments. Green-VLA follows a five stage curriculum: (L0) foundational VLMs, (L1) multimodal grounding, (R0) multi-embodiment pretraining, (R1) embodiment-specific adaptation, and (R2) reinforcement-learning (RL) policy alignment. We couple a scalable data-processing pipeline (3,000 hours of demonstrations) with temporal alignment and quality filtering, and use a unified, embodiment-aware action interface enabling a single policy to control humanoids, mobile manipulators, and fixed-base arms. At inference, the VLA controller is enhanced with episode-progress prediction, out-of-distribution detection, and joint-prediction-based guidance to improve safety and precise target selection. Experiments on Simpler BRIDGE WidowX and CALVIN ABC-D, as well as real-robot evaluations, show strong generalization and performance gains from RL alignment in success rate, robustness, and long-horizon efficiency.
comment: 22 pages, 14 figures
UniMorphGrasp: Diffusion Model with Morphology-Awareness for Cross-Embodiment Dexterous Grasp Generation
Cross-embodiment dexterous grasping aims to generate stable and diverse grasps for robotic hands with heterogeneous kinematic structures. Existing methods are often tailored to specific hand designs and fail to generalize to unseen hand morphologies outside the training distribution. To address these limitations, we propose \textbf{UniMorphGrasp}, a diffusion-based framework that incorporates hand morphological information into the grasp generation process for unified cross-embodiment grasp synthesis. The proposed approach maps grasps from diverse robotic hands into a unified human-like canonical hand pose representation, providing a common space for learning. Grasp generation is then conditioned on structured representations of hand kinematics, encoded as graphs derived from hand configurations, together with object geometry. In addition, a loss function is introduced that exploits the hierarchical organization of hand kinematics to guide joint-level supervision. Extensive experiments demonstrate that UniMorphGrasp achieves state-of-the-art performance on existing dexterous grasp benchmarks and exhibits strong zero-shot generalization to previously unseen hand structures, enabling scalable and practical cross-embodiment grasp deployment.
RoDiF: Robust Direct Fine-Tuning of Diffusion Policies with Corrupted Human Feedback
Diffusion policies are a powerful paradigm for robotic control, but fine-tuning them with human preferences is fundamentally challenged by the multi-step structure of the denoising process. To overcome this, we introduce a Unified Markov Decision Process (MDP) formulation that coherently integrates the diffusion denoising chain with environmental dynamics, enabling reward-free Direct Preference Optimization (DPO) for diffusion policies. Building on this formulation, we propose RoDiF (Robust Direct Fine-Tuning), a method that explicitly addresses corrupted human preferences. RoDiF reinterprets the DPO objective through a geometric hypothesis-cutting perspective and employs a conservative cutting strategy to achieve robustness without assuming any specific noise distribution. Extensive experiments on long-horizon manipulation tasks show that RoDiF consistently outperforms state-of-the-art baselines, effectively steering pretrained diffusion policies of diverse architectures to human-preferred modes, while maintaining strong performance even under 30% corrupted preference labels.
Learning When to Jump for Off-road Navigation
Low speed does not always guarantee safety in off-road driving. For instance, crossing a ditch may be risky at a low speed due to the risk of getting stuck, yet safe at a higher speed with a controlled, accelerated jump. Achieving such behavior requires path planning that explicitly models complex motion dynamics, whereas existing methods often neglect this aspect and plan solely based on positions or a fixed velocity. To address this gap, we introduce Motion-aware Traversability (MAT) representation to explicitly model terrain cost conditioned on actual robot motion. Instead of assigning a single scalar score for traversability, MAT models each terrain region as a Gaussian function of velocity. During online planning, we decompose the terrain cost computation into two stages: (1) predict terrain-dependent Gaussian parameters from perception in a single forward pass, (2) efficiently update terrain costs for new velocities inferred from current dynamics by evaluating these functions without repeated inference. We develop a system that integrates MAT to enable agile off-road navigation and evaluate it in both simulated and real-world environments with various obstacles. Results show that MAT achieves real-time efficiency and enhances the performance of off-road navigation, reducing path detours by 75% while maintaining safety across challenging terrains.
Safe Stochastic Explorer: Enabling Safe Goal Driven Exploration in Stochastic Environments and Safe Interaction with Unknown Objects
Autonomous robots operating in unstructured, safety-critical environments, from planetary exploration to warehouses and homes, must learn to safely navigate and interact with their surroundings despite limited prior knowledge. Current methods for safe control, such as Hamilton-Jacobi Reachability and Control Barrier Functions, assume known system dynamics. Meanwhile existing safe exploration techniques often fail to account for the unavoidable stochasticity inherent when operating in unknown real world environments, such as an exploratory rover skidding over an unseen surface or a household robot pushing around unmapped objects in a pantry. To address this critical gap, we propose Safe Stochastic Explorer (S.S.Explorer) a novel framework for safe, goal-driven exploration under stochastic dynamics. Our approach strategically balances safety and information gathering to reduce uncertainty about safety in the unknown environment. We employ Gaussian Processes to learn the unknown safety function online, leveraging their predictive uncertainty to guide information-gathering actions and provide probabilistic bounds on safety violations. We first present our method for discrete state space environments and then introduce a scalable relaxation to effectively extend this approach to continuous state spaces. Finally we demonstrate how this framework can be naturally applied to ensure safe physical interaction with multiple unknown objects. Extensive validation in simulation and demonstrative hardware experiments showcase the efficacy of our method, representing a step forward toward enabling reliable widespread robot autonomy in complex, uncertain environments.
Ocean Current-Harnessing Stage-Gated MPC: Monotone Cost Shaping and Speed-to-Fly for Energy-Efficient AUV Navigation
Autonomous Underwater Vehicles (AUVs) are a highly promising technology for ocean exploration and diverse offshore operations, yet their practical deployment is constrained by energy efficiency and endurance. To address this, we propose Current-Harnessing Stage-Gated MPC, which exploits ocean currents via a per-stage scalar which indicates the "helpfulness" of ocean currents. This scalar is computed along the prediction horizon to gate lightweight cost terms only where the ocean currents truly aids the control goal. The proposed cost terms, that are merged in the objective function, are (i) a Monotone Cost Shaping (MCS) term, a help-gated, non-worsening modification that relaxes along-track position error and provides a bounded translational energy rebate, guaranteeing the shaped objective is never larger than a set baseline, and (ii) a speed-to-fly (STF) cost component that increases the price of thrust and softly matches ground velocity to the ocean current, enabling near zero water-relative "gliding". All terms are C1 and integrate as a plug-and-play in MPC designs. Extensive simulations with the BlueROV2 model under realistic ocean current fields show that the proposed approach achieves substantially lower energy consumption than conventional predictive control while maintaining comparable arrival times and constraint satisfaction.
SyNeT: Synthetic Negatives for Traversability Learning
Reliable traversability estimation is crucial for autonomous robots to navigate complex outdoor environments safely. Existing self-supervised learning frameworks primarily rely on positive and unlabeled data; however, the lack of explicit negative data remains a critical limitation, hindering the model's ability to accurately identify diverse non-traversable regions. To address this issue, we introduce a method to explicitly construct synthetic negatives, representing plausible but non-traversable, and integrate them into vision-based traversability learning. Our approach is formulated as a training strategy that can be seamlessly integrated into both Positive-Unlabeled (PU) and Positive-Negative (PN) frameworks without modifying inference architectures. Complementing standard pixel-wise metrics, we introduce an object-centric FPR evaluation approach that analyzes predictions in regions where synthetic negatives are inserted. This evaluation provides an indirect measure of the model's ability to consistently identify non-traversable regions without additional manual labeling. Extensive experiments on both public and self-collected datasets demonstrate that our approach significantly enhances robustness and generalization across diverse environments. The source code and demonstration videos are publicly available at the project page: https://anonymous-synet.github.io/SyNet.github.io/
VVLoc: Prior-free 3-DoF Vehicle Visual Localization
Localization is a critical technology in autonomous driving, encompassing both topological localization, which identifies the most similar map keyframe to the current observation, and metric localization, which provides precise spatial coordinates. Conventional methods typically address these tasks independently, rely on single-camera setups, and often require additional 3D semantic or pose priors, while lacking mechanisms to quantify the confidence of localization results, making them less feasible for real industrial applications. In this paper, we propose VVLoc, a unified pipeline that employs a single neural network to concurrently achieve topological and metric vehicle localization using multi-camera system. VVLoc first evaluates the geo-proximity between visual observations, then estimates their relative metric poses using a matching strategy, while also providing a confidence measure. Additionally, the training process for VVLoc is highly efficient, requiring only pairs of visual data and corresponding ground-truth poses, eliminating the need for complex supplementary data. We evaluate VVLoc not only on the publicly available datasets, but also on a more challenging self-collected dataset, demonstrating its ability to deliver state-of-the-art localization accuracy across a wide range of localization tasks.
Physics-informed Diffusion Mamba Transformer for Real-world Driving
Autonomous driving systems demand trajectory planners that not only model the inherent uncertainty of future motions but also respect complex temporal dependencies and underlying physical laws. While diffusion-based generative models excel at capturing multi-modal distributions, they often fail to incorporate long-term sequential contexts and domain-specific physical priors. In this work, we bridge these gaps with two key innovations. First, we introduce a Diffusion Mamba Transformer architecture that embeds mamba and attention into the diffusion process, enabling more effective aggregation of sequential input contexts from sensor streams and past motion histories. Second, we design a Port-Hamiltonian Neural Network module that seamlessly integrates energy-based physical constraints into the diffusion model, thereby enhancing trajectory predictions with both consistency and interpretability. Extensive evaluations on standard autonomous driving benchmarks demonstrate that our unified framework significantly outperforms state-of-the-art baselines in predictive accuracy, physical plausibility, and robustness, thereby advancing safe and reliable motion planning.
Any3D-VLA: Enhancing VLA Robustness via Diverse Point Clouds
Existing Vision-Language-Action (VLA) models typically take 2D images as visual input, which limits their spatial understanding in complex scenes. How can we incorporate 3D information to enhance VLA capabilities? We conduct a pilot study across different observation spaces and visual representations. The results show that explicitly lifting visual input into point clouds yields representations that better complement their corresponding 2D representations. To address the challenges of (1) scarce 3D data and (2) the domain gap induced by cross-environment differences and depth-scale biases, we propose Any3D-VLA. It unifies the simulator, sensor, and model-estimated point clouds within a training pipeline, constructs diverse inputs, and learns domain-agnostic 3D representations that are fused with the corresponding 2D representations. Simulation and real-world experiments demonstrate Any3D-VLA's advantages in improving performance and mitigating the domain gap. Our project homepage is available at https://xianzhefan.github.io/Any3D-VLA.github.io.
SA-VLA: Spatially-Aware Flow-Matching for Vision-Language-Action Reinforcement Learning
Vision-Language-Action (VLA) models exhibit strong generalization in robotic manipulation, yet reinforcement learning (RL) fine-tuning often degrades robustness under spatial distribution shifts. For flow-matching VLA policies, this degradation is closely associated with the erosion of spatial inductive bias during RL adaptation, as sparse rewards and spatially agnostic exploration increasingly favor short-horizon visual cues. To address this issue, we propose \textbf{SA-VLA}, a spatially-aware RL adaptation framework that preserves spatial grounding during policy optimization by aligning representation learning, reward design, and exploration with task geometry. SA-VLA fuses implicit spatial representations with visual tokens, provides dense rewards that reflect geometric progress, and employs \textbf{SCAN}, a spatially-conditioned annealed exploration strategy tailored to flow-matching dynamics. Across challenging multi-object and cluttered manipulation benchmarks, SA-VLA enables stable RL fine-tuning and improves zero-shot spatial generalization, yielding more robust and transferable behaviors. Code and project page are available at https://xupan.top/Projects/savla.
comment: Version 1
USS-Nav: Unified Spatio-Semantic Scene Graph for Lightweight UAV Zero-Shot Object Navigation
Zero-Shot Object Navigation in unknown environments poses significant challenges for Unmanned Aerial Vehicles (UAVs) due to the conflict between high-level semantic reasoning requirements and limited onboard computational resources. To address this, we present USS-Nav, a lightweight framework that incrementally constructs a Unified Spatio-Semantic scene graph and enables efficient Large Language Model (LLM)-augmented Zero-Shot Object Navigation in unknown environments. Specifically, we introduce an incremental Spatial Connectivity Graph generation method utilizing polyhedral expansion to capture global geometric topology, which is dynamically partitioned into semantic regions via graph clustering. Concurrently, open-vocabulary object semantics are instantiated and anchored to this topology to form a hierarchical environmental representation. Leveraging this hierarchical structure, we present a coarse-to-fine exploration strategy: LLM grounded in the scene graph's semantics to determine global target regions, while a local planner optimizes frontier coverage based on information gain. Experimental results demonstrate that our framework outperforms state-of-the-art methods in terms of computational efficiency and real-time update frequency (15 Hz) on a resource-constrained platform. Furthermore, ablation studies confirm the effectiveness of our framework, showing substantial improvements in Success weighted by Path Length (SPL). The source code will be made publicly available to foster further research.
Learning to Accelerate Vision-Language-Action Models through Adaptive Visual Token Caching
Vision-Language-Action (VLA) models have demonstrated remarkable generalization capabilities in robotic manipulation tasks, yet their substantial computational overhead remains a critical obstacle to real-world deployment. Improving inference efficiency is therefore essential for practical robotic applications. Existing acceleration methods often rely on heuristic or static strategies--such as rule-based token caching or pruning--that are decoupled from task objectives and fail to adapt to dynamic scene changes. In this work, we reformulate inference acceleration as a learnable policy optimization problem and propose a novel framework that integrates a dynamic, task-aware decision-making process directly into the VLA model. At its core are two lightweight, cooperative modules: a Cached Token Selector, which determines which tokens should be reused, and a Cache Ratio Predictor, which controls how many tokens to reuse. Training these modules is non-trivial due to their discrete decisions. We address this by adopting a differentiable relaxation that allows gradient-based end-to-end optimization. Extensive experiments on the LIBERO and SIMPLER benchmarks, as well as real-robot evaluations, show that our method achieves a 1.76x wall-clock inference speedup while simultaneously improving the average success rate by 1.9 percentage points (from 75.0% to 76.9%) on LIBERO and by 5.0 percentage points on real-world tasks, significantly outperforming existing baselines. This work highlights the potential of learning task-aware computational allocation policies, paving the way for VLA models that are both powerful and efficient.
Toward Reliable Sim-to-Real Predictability for MoE-based Robust Quadrupedal Locomotion
Reinforcement learning has shown strong promise for quadrupedal agile locomotion, even with proprioception-only sensing. In practice, however, sim-to-real gap and reward overfitting in complex terrains can produce policies that fail to transfer, while physical validation remains risky and inefficient. To address these challenges, we introduce a unified framework encompassing a Mixture-of-Experts (MoE) locomotion policy for robust multi-terrain representation with RoboGauge, a predictive assessment suite that quantifies sim-to-real transferability. The MoE policy employs a gated set of specialist experts to decompose latent terrain and command modeling, achieving superior deployment robustness and generalization via proprioception alone. RoboGauge further provides multi-dimensional proprioception-based metrics via sim-to-sim tests over terrains, difficulty levels, and domain randomizations, enabling reliable MoE policy selection without extensive physical trials. Experiments on a Unitree Go2 demonstrate robust locomotion on unseen challenging terrains, including snow, sand, stairs, slopes, and 30 cm obstacles. In dedicated high-speed tests, the robot reaches 4 m/s and exhibits an emergent narrow-width gait associated with improved stability at high velocity.
Factored Reasoning with Inner Speech and Persistent Memory for Evidence-Grounded Human-Robot Interaction
Dialogue-based human-robot interaction requires robot cognitive assistants to maintain persistent user context, recover from underspecified requests, and ground responses in external evidence, while keeping intermediate decisions verifiable. In this paper we introduce JANUS, a cognitive architecture for assistive robots that models interaction as a partially observable Markov decision process and realizes control as a factored controller with typed interfaces. To this aim, Janus (i) decomposes the overall behavior into specialized modules, related to scope detection, intent recognition, memory, inner speech, query generation, and outer speech, and (ii) exposes explicit policies for information sufficiency, execution readiness, and tool grounding. A dedicated memory agent maintains a bounded recent-history buffer, a compact core memory, and an archival store with semantic retrieval, coupled through controlled consolidation and revision policies. Models inspired by the notion of inner speech in cognitive theories provide a control-oriented internal textual flow that validates parameter completeness and triggers clarification before grounding, while a faithfulness constraint ties robot-to-human claims to an evidence bundle combining working context and retrieved tool outputs. We evaluate JANUS through module-level unit tests in a dietary assistance domain grounded on a knowledge graph, reporting high agreement with curated references and practical latency profiles. These results support factored reasoning as a promising path to scalable, auditable, and evidence-grounded robot assistance over extended interaction horizons.
Agentic Reward Modeling: Verifying GUI Agent via Online Proactive Interaction
Reinforcement learning with verifiable rewards (RLVR) is pivotal for the continuous evolution of GUI agents, yet existing evaluation paradigms face significant limitations. Rule-based methods suffer from poor scalability and cannot handle open-ended tasks, while LLM-as-a-Judge approaches rely on passive visual observation, often failing to capture latent system states due to partial state observability. To address these challenges, we advocate for a paradigm shift from passive evaluation to Agentic Interactive Verification. We introduce VAGEN, a framework that employs a verifier agent equipped with interaction tools to autonomously plan verification strategies and proactively probe the environment for evidence of task completion. Leveraging the insight that GUI tasks are typically "easy to verify but hard to solve", VAGEN overcomes the bottlenecks of visual limitations. Experimental results on OSWorld-Verified and AndroidWorld benchmarks demonstrate that VAGEN significantly improves evaluation accuracy compared to LLM-as-a-Judge baselines and further enhances performance through test-time scaling strategies.
comment: 21 pages, 11 figures
UniMotion: A Unified Motion Framework for Simulation, Prediction and Planning NeurIPS 2025
Motion simulation, prediction and planning are foundational tasks in autonomous driving, each essential for modeling and reasoning about dynamic traffic scenarios. While often addressed in isolation due to their differing objectives, such as generating diverse motion states or estimating optimal trajectories, these tasks inherently depend on shared capabilities: understanding multi-agent interactions, modeling motion behaviors, and reasoning over temporal and spatial dynamics. Despite this underlying commonality, existing approaches typically adopt specialized model designs, which hinders cross-task generalization and system scalability. More critically, this separation overlooks the potential mutual benefits among tasks. Motivated by these observations, we propose UniMotion, a unified motion framework that captures shared structures across motion tasks while accommodating their individual requirements. Built on a decoder-only Transformer architecture, UniMotion employs dedicated interaction modes and tailored training strategies to simultaneously support these motion tasks. This unified design not only enables joint optimization and representation sharing but also allows for targeted fine-tuning to specialize in individual tasks when needed. Extensive experiments on the Waymo Open Motion Dataset demonstrate that joint training leads to robust generalization and effective task integration. With further fine-tuning, UniMotion achieves state-of-the-art performance across a range of motion tasks, establishing it as a versatile and scalable solution for autonomous driving.
comment: Accepted at NeurIPS 2025
ConLA: Contrastive Latent Action Learning from Human Videos for Robotic Manipulation
Vision-Language-Action (VLA) models achieve preliminary generalization through pretraining on large scale robot teleoperation datasets. However, acquiring datasets that comprehensively cover diverse tasks and environments is extremely costly and difficult to scale. In contrast, human demonstration videos offer a rich and scalable source of diverse scenes and manipulation behaviors, yet their lack of explicit action supervision hinders direct utilization. Prior work leverages VQ-VAE based frameworks to learn latent actions from human videos in an unsupervised manner. Nevertheless, since the training objective primarily focuses on reconstructing visual appearances rather than capturing inter-frame dynamics, the learned representations tend to rely on spurious visual cues, leading to shortcut learning and entangled latent representations that hinder transferability. To address this, we propose ConLA, an unsupervised pretraining framework for learning robotic policies from human videos. ConLA introduces a contrastive disentanglement mechanism that leverages action category priors and temporal cues to isolate motion dynamics from visual content, effectively mitigating shortcut learning. Extensive experiments show that ConLA achieves strong performance across diverse benchmarks. Notably, by pretraining solely on human videos, our method for the first time surpasses the performance obtained with real robot trajectory pretraining, highlighting its ability to extract pure and semantically consistent latent action representations for scalable robot learning.
APEX: A Decoupled Memory-based Explorer for Asynchronous Aerial Object Goal Navigation
Aerial Object Goal Navigation, a challenging frontier in Embodied AI, requires an Unmanned Aerial Vehicle (UAV) agent to autonomously explore, reason, and identify a specific target using only visual perception and language description. However, existing methods struggle with the memorization of complex spatial representations in aerial environments, reliable and interpretable action decision-making, and inefficient exploration and information gathering. To address these challenges, we introduce \textbf{APEX} (Aerial Parallel Explorer), a novel hierarchical agent designed for efficient exploration and target acquisition in complex aerial settings. APEX is built upon a modular, three-part architecture: 1) Dynamic Spatio-Semantic Mapping Memory, which leverages the zero-shot capability of a Vision-Language Model (VLM) to dynamically construct high-resolution 3D Attraction, Exploration, and Obstacle maps, serving as an interpretable memory mechanism. 2) Action Decision Module, trained with reinforcement learning, which translates this rich spatial understanding into a fine-grained and robust control policy. 3) Target Grounding Module, which employs an open-vocabulary detector to achieve definitive and generalizable target identification. All these components are integrated into a hierarchical, asynchronous, and parallel framework, effectively bypassing the VLM's inference latency and boosting the agent's proactivity in exploration. Extensive experiments show that APEX outperforms the previous state of the art by +4.2\% SR and +2.8\% SPL on challenging UAV-ON benchmarks, demonstrating its superior efficiency and the effectiveness of its hierarchical asynchronous design. Our source code is provided in \href{https://github.com/4amGodvzx/apex}{GitHub}
comment: 15 pages, 8 figures
A Low-Cost Vision-Based Tactile Gripper with Pretraining Learning for Contact-Rich Manipulation
Robotic manipulation in contact-rich environments remains challenging, particularly when relying on conventional tactile sensors that suffer from limited sensing range, reliability, and cost-effectiveness. In this work, we present LVTG, a low-cost visuo-tactile gripper designed for stable, robust, and efficient physical interaction. Unlike existing visuo-tactile sensors, LVTG enables more effective and stable grasping of larger and heavier everyday objects, thanks to its enhanced tactile sensing area and greater opening angle. Its surface skin is made of highly wear-resistant material, significantly improving durability and extending operational lifespan. The integration of vision and tactile feedback allows LVTG to provide rich, high-fidelity sensory data, facilitating reliable perception during complex manipulation tasks. Furthermore, LVTG features a modular design that supports rapid maintenance and replacement. To effectively fuse vision and touch, We adopt a CLIP-inspired contrastive learning objective to align tactile embeddings with their corresponding visual observations, enabling a shared cross-modal representation space for visuo-tactile perception. This alignment improves the performance of an Action Chunking Transformer (ACT) policy in contact-rich manipulation, leading to more efficient data collection and more effective policy learning. Compared to the original ACT method, the proposed LVTG with pretraining achieves significantly higher success rates in manipulation tasks.
Inject Once Survive Later: Backdooring Vision-Language-Action Models to Persist Through Downstream Fine-tuning
Vision-Language-Action (VLA) models have become foundational to modern embodied AI systems. By integrating visual perception, language understanding, and action planning, they enable general-purpose task execution across diverse environments. Despite their importance, the security of VLA models remains underexplored -- particularly in the context of backdoor attacks, which pose realistic threats in physical-world deployments. While recent methods attempt to inject backdoors into VLA models, these backdoors are easily erased during downstream adaptation, as user-side fine-tuning with clean data significantly alters model parameters, rendering them impractical for real-world applications. To address these challenges, we propose INFUSE (INjection into Fine-tUne-inSensitive modulEs), the first backdoor attack framework for VLA base models that remains effective even with arbitrary user fine-tuning. INFUSE begins by analyzing parameter sensitivity across diverse fine-tuning scenarios to identify modules that remain largely unchanged -- the fine-tune-insensitive modules. It then injects backdoors into these stable modules while freezing the rest, ensuring malicious behavior persists after extensive user fine-tuning. Comprehensive experiments across multiple VLA architectures demonstrate INFUSE's effectiveness. After user-side fine-tuning, INFUSE maintains mean attack success rates of 91.0% on simulation environments and 79.8% on real-world robot tasks, substantially surpassing BadVLA (38.8% and 36.6%, respectively), while preserving clean-task performance comparable to standard models. These results uncover a critical threat: backdoors implanted before distribution can persist through fine-tuning and remain effective at deployment.
FISC: A Fluid-Inspired Framework for Decentralized and Scalable Swarm Control
Achieving scalable coordination in large robotic swarms is often constrained by reliance on inter-agent communication, which introduces latency, bandwidth limitations, and vulnerability to failure. To address this gap, a decentralized approach for outer-loop control of large multi-agent systems based on the paradigm of how a fluid moves through a volume is proposed and evaluated. A relationship between fundamental fluidic element properties and individual robotic agent states is developed such that the corresponding swarm "flows" through a space, akin to a fluid when forced via a pressure boundary condition. By ascribing fluid-like properties to subsets of agents, the swarm evolves collectively while maintaining desirable structure and coherence without explicit communication of agent states within or outside of the swarm. The approach is evaluated using simulations involving $O(10^3)$ quadcopter agents and compared against Computational Fluid Dynamics (CFD) solutions for a converging-diverging domain. Quantitative agreement between swarm-derived and CFD fields is assessed using Root-Mean-Square Error (RMSE), yielding normalized errors of 0.15-0.9 for velocity, 0.61-0.98 for density, 0-0.937 for pressure. These results demonstrate the feasibility of treating large robotic swarms as continuum systems that retain the macroscopic structure derived from first principles, providing a basis for scalable and decentralized control.
Parallel Stochastic Gradient-Based Planning for World Models
World models simulate environment dynamics from raw sensory inputs like video. However, using them for planning can be challenging due to the vast and unstructured search space. We propose a robust and highly parallelizable planner that leverages the differentiability of the learned world model for efficient optimization, solving long-horizon control tasks from visual input. Our method treats states as optimization variables ("virtual states") with soft dynamics constraints, enabling parallel computation and easier optimization. To facilitate exploration and avoid local optima, we introduce stochasticity into the states. To mitigate sensitive gradients through high-dimensional vision-based world models, we modify the gradient structure to descend towards valid plans while only requiring action-input gradients. Our planner, which we call GRASP (Gradient RelAxed Stochastic Planner), can be viewed as a stochastic version of a non-condensed or collocation-based optimal controller. We provide theoretical justification and experiments on video-based world models, where our resulting planner outperforms existing planning algorithms like the cross-entropy method (CEM) and vanilla gradient-based optimization (GD) on long-horizon experiments, both in success rate and time to convergence.
comment: 23 pages, 7 figures
Stealthy Coverage Control for Human-enabled Real-Time 3D Reconstruction
In this paper, we propose a novel semi-autonomous image sampling strategy, called stealthy coverage control, for human-enabled 3D structure reconstruction. The present mission involves a fundamental problem: while the number of images required to accurately reconstruct a 3D model depends on the structural complexity of the target scene to be reconstructed, it is not realistic to assume prior knowledge of the spatially non-uniform structural complexity. We approach this issue by leveraging human flexible reasoning and situational recognition capabilities. Specifically, we design a semi-autonomous system that leaves identification of regions that need more images and navigation of the drones to such regions to a human operator. To this end, we first present a way to reflect the human intention in autonomous coverage control. Subsequently, in order to avoid operational conflicts between manual control and autonomous coverage control, we develop the stealthy coverage control that decouples the drone motion for efficient image sampling from navigation by the human. Simulation studies on a Unity/ROS2-based simulator demonstrate that the present semi-autonomous system outperforms the one without human interventions in the sense of the reconstructed model quality.
comment: This work has been submitted to the 23rd IFAC World Congress for possible publication
LatentTrack: Sequential Weight Generation via Latent Filtering
We introduce LatentTrack (LT), a sequential neural architecture for online probabilistic prediction under nonstationary dynamics. LT performs causal Bayesian filtering in a low-dimensional latent space and uses a lightweight hypernetwork to generate predictive model parameters at each time step, enabling constant-time online adaptation without per-step gradient updates. At each time step, a learned latent model predicts the next latent distribution, which is updated via amortized inference using new observations, yielding a predict--generate--update filtering framework in function space. The formulation supports both structured (Markovian) and unstructured latent dynamics within a unified objective, while Monte Carlo inference over latent trajectories produces calibrated predictive mixtures with fixed per-step cost. Evaluated on long-horizon online regression using the Jena Climate benchmark, LT consistently achieves lower negative log-likelihood and mean squared error than stateful sequential and static uncertainty-aware baselines, with competitive calibration, demonstrating that latent-conditioned function evolution is an effective alternative to traditional latent-state modeling under distribution shift.
DISK: Dynamic Inference SKipping for World Models
We present DISK, a training-free adaptive inference method for autoregressive world models. DISK coordinates two coupled diffusion transformers for video and ego-trajectory via dual-branch controllers with cross-modal skip decisions, preserving motion-appearance consistency without retraining. We extend higher-order latent-difference skip testing to the autoregressive chain-of-forward regime and propagate controller statistics through rollout loops for long-horizon stability. When integrated into closed-loop driving rollouts on 1500 NuPlan and NuScenes samples using an NVIDIA L40S GPU, DISK achieves 2x speedup on trajectory diffusion and 1.6x speedup on video diffusion while maintaining L2 planning error, visual quality (FID/FVD), and NAVSIM PDMS scores, demonstrating practical long-horizon video-and-trajectory prediction at substantially reduced cost.
MOBIUS: A Multi-Modal Bipedal Robot that can Walk, Crawl, Climb, and Roll
This paper presents the MOBIUS platform, a bipedal robot capable of walking, crawling, climbing, and rolling. MOBIUS features four limbs, two 6-DoF arms with two-finger grippers for manipulation and climbing, and two 4-DoF legs for locomotion--enabling smooth transitions across diverse terrains without reconfiguration. A hybrid control architecture combines reinforcement learning for locomotion and force control for compliant contact interactions during manipulation. A high-level MIQCP planner autonomously selects locomotion modes to balance stability and energy efficiency. Hardware experiments demonstrate robust gait transitions, dynamic climbing, and full-body load support via pinch grasp. Overall, MOBIUS demonstrates the importance of tight integration between morphology, high-level planning, and control to enable mobile loco-manipulation and grasping, substantially expanding its interaction capabilities, workspace, and traversability.
comment: Collaborative work between the Robotics and Mechanisms Laboratory (RoMeLa) and Mitsubishi Electric Research Laboratories (MERL)
Transferring Kinesthetic Demonstrations across Diverse Objects for Manipulation Planning IROS
Given a demonstration of a complex manipulation task, such as pouring liquid from one container to another, we seek to generate a motion plan for a new task instance involving objects with different geometries. This is nontrivial since we need to simultaneously ensure that the implicit motion constraints are satisfied (glass held upright while moving), that the motion is collision-free, and that the task is successful (e.g., liquid is poured into the target container). We solve this problem by identifying the positions of critical locations and associating a reference frame (called "motion transfer frames") on the manipulated object and the target, selected based on their geometries and the task at hand. By tracking and transferring the path of the motion transfer frames, we generate motion plans for arbitrary task instances with objects of different geometries and poses. We show results from simulation as well as robot experiments on physical objects to evaluate the effectiveness of our solution. A video supplement is available on YouTube: https://youtu.be/RuG9zMXnfR8
comment: Published in: 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) ---- External Link: https://doi.org/10.1109/IROS60139.2025.11246024
Fast Policy Learning for 6-DOF Position Control of Underwater Vehicles
Autonomous Underwater Vehicles (AUVs) require reliable six-degree-of-freedom (6-DOF) position control to operate effectively in complex and dynamic marine environments. Traditional controllers are effective under nominal conditions but exhibit degraded performance when faced with unmodeled dynamics or environmental disturbances. Reinforcement learning (RL) provides a powerful alternative but training is typically slow and sim-to-real transfer remains challenging. This work introduces a GPU accelerated RL training pipeline built in JAX and MuJoCo-XLA (MJX). By jointly JIT-compiling large-scale parallel physics simulation and learning updates, we achieve training times of under two minutes. Through systematic evaluation of multiple RL algorithms, we show robust 6-DOF trajectory tracking and effective disturbance rejection in real underwater experiments, with policies transferred zero-shot from simulation.
CostNav: A Navigation Benchmark for Real-World Economic-Cost Evaluation of Physical AI Agents
While current navigation benchmarks prioritize task success in simplified settings, they neglect the multidimensional economic constraints essential for the real-world commercialization of autonomous delivery systems. We introduce CostNav, an Economic Navigation Benchmark that evaluates physical AI agents through comprehensive economic cost-revenue analysis aligned with real-world business operations. By integrating industry-standard data - such as SEC filings and AIS injury reports - with Isaac Sim's detailed collision and cargo dynamics, CostNav transcends simple task completion to accurately evaluate business value in complex, real-world scenarios. To our knowledge, CostNav is the first work to quantitatively expose the gap between navigation research metrics and commercial viability, revealing that optimizing for task success on a simplified task fundamentally differs from optimizing for real-world economic deployment. Our evaluation of rule-based Nav2 navigation shows that current approaches are not economically viable: the contribution margin is -22.81/run (AMCL) and -12.87/run (GPS), resulting in no break-even point. We challenge the community to develop navigation policies that achieve economic viability on CostNav. We remain method-agnostic, evaluating success solely on the metric of cost rather than the underlying architecture. All resources are available at https://github.com/worv-ai/CostNav.
A Dataset and Benchmark for Robotic Cloth Unfolding Grasp Selection: The ICRA 2024 Cloth Competition IJRR
Robotic cloth manipulation suffers from a lack of standardized benchmarks and shared datasets for evaluating and comparing different approaches. To address this, we created a benchmark and organized the ICRA 2024 Cloth Competition, a unique head-to-head evaluation focused on grasp pose selection for in-air robotic cloth unfolding. Eleven diverse teams participated in the competition, utilizing our publicly released dataset of real-world robotic cloth unfolding attempts and a variety of methods to design their unfolding approaches. Afterwards, we also expanded our dataset with 176 competition evaluation trials, resulting in a dataset of 679 unfolding demonstrations across 34 garments. Analysis of the competition results revealed insights about the trade-off between grasp success and coverage, the surprisingly strong achievements of hand-engineered methods and a significant discrepancy between competition performance and prior work, underscoring the importance of independent, out-of-the-lab evaluation in robotic cloth manipulation. The associated dataset is a valuable resource for developing and evaluating grasp selection methods, particularly for learning-based approaches. We hope that our benchmark, dataset and competition results can serve as a foundation for future benchmarks and drive further progress in data-driven robotic cloth manipulation. The dataset and benchmarking code are available at https://airo.ugent.be/cloth_competition.
comment: The International Journal of Robotics Research. 2026;0(0). Published at IJRR - https://journals.sagepub.com/doi/10.1177/02783649251414885
Field evaluation and optimization of a lightweight autonomous lidar-based UAV system based on a rigorous experimental setup in boreal forest environments
Interest in utilizing autonomous uncrewed aerial vehicles (UAVs) for under-canopy forest remote sensing has increased in recent years, resulting in the publication of numerous autonomous flight algorithms in the scientific literature. To support the selection and development of such algorithms, a reliable comparison of existing approaches based on published studies is essential. However, reliable comparisons are currently challenging due to widely varying experimental setups and incomplete reporting practices. This study proposes a standardized experimental setup for evaluating autonomous under-canopy UAV systems to fill this gap. The proposed setup emphasizes quantitative reporting of forest complexity, visual representation of test environments, execution of multiple repeated flights, and reporting of flight success rates alongside qualitative flight results. In addition, flights at multiple target speeds are encouraged, with reporting of realized flight speed, mission completion time, and point-to-point flight distance. The proposed setup is demonstrated using a lightweight lidar-based quadrotor employing state-of-the-art open-source algorithms, evaluated through extensive experiments in two natural boreal forest environments. Based on a systematic evaluation of the original system, several improvements were introduced. The same experimental protocol was then repeated with the optimized system, resulting in a total of 93 real-world flights. The optimized system achieved success rates of 12/15 and 15/15 at target flight speeds of 1 m/s and 2 m/s, respectively, in a medium-difficulty forest, and 12/15 and 5/15 in a difficult forest. Adoption of the proposed experimental setup would facilitate the literature-based comparison of autonomous under-canopy flight systems and support systematic performance improvement of future UAV-based forest robotics solutions.
comment: This work has been submitted to the IEEE for possible publication
LangForce: Bayesian Decomposition of Vision Language Action Models via Latent Action Queries
Vision-Language-Action (VLA) models have shown promise in robot manipulation but often struggle to generalize to new instructions or complex multi-task scenarios. We identify a critical pathology in current training paradigms where goal-driven data collection creates a dataset bias. In such datasets, language instructions are highly predictable from visual observations alone, causing the conditional mutual information between instructions and actions to vanish, a phenomenon we term Information Collapse. Consequently, models degenerate into vision-only policies that ignore language constraints and fail in out-of-distribution (OOD) settings. To address this, we propose LangForce, a novel framework that enforces instruction following via Bayesian decomposition. By introducing learnable Latent Action Queries, we construct a dual-branch architecture to estimate both a vision-only prior $p(a \mid v)$ and a language-conditioned posterior $π(a \mid v, \ell)$. We then optimize the policy to maximize the conditional Pointwise Mutual Information (PMI) between actions and instructions. This objective effectively penalizes the vision shortcut and rewards actions that explicitly explain the language command. Without requiring new data, LangForce significantly improves generalization. Extensive experiments across on SimplerEnv and RoboCasa demonstrate substantial gains, including an 11.3% improvement on the challenging OOD SimplerEnv benchmark, validating the ability of our approach to robustly ground language in action.
DSCD-Nav: Dual-Stance Cooperative Debate for Object Navigation
Adaptive navigation in unfamiliar indoor environments is crucial for household service robots. Despite advances in zero-shot perception and reasoning from vision-language models, existing navigation systems still rely on single-pass scoring at the decision layer, leading to overconfident long-horizon errors and redundant exploration. To tackle these problems, we propose Dual-Stance Cooperative Debate Navigation (DSCD-Nav), a decision mechanism that replaces one-shot scoring with stance-based cross-checking and evidence-aware arbitration to improve action reliability under partial observability. Specifically, given the same observation and candidate action set, we explicitly construct two stances by conditioning the evaluation on diverse and complementary objectives: a Task-Scene Understanding (TSU) stance that prioritizes goal progress from scene-layout cues, and a Safety-Information Balancing (SIB) stance that emphasizes risk and information value. The stances conduct a cooperative debate and make policy by cross-checking their top candidates with cue-grounded arguments. Then, a Navigation Consensus Arbitration (NCA) agent is employed to consolidate both sides' reasons and evidence, optionally triggering lightweight micro-probing to verify uncertain choices, preserving NCA's primary intent while disambiguating. Experiments on HM3Dv1, HM3Dv2, and MP3D demonstrate consistent improvements in success and path efficiency while reducing exploration redundancy.
CADGrasp: Learning Contact and Collision Aware General Dexterous Grasping in Cluttered Scenes
Dexterous grasping in cluttered environments presents substantial challenges due to the high degrees of freedom of dexterous hands, occlusion, and potential collisions arising from diverse object geometries and complex layouts. To address these challenges, we propose CADGrasp, a two-stage algorithm for general dexterous grasping using single-view point cloud inputs. In the first stage, we predict sparse IBS, a scene-decoupled, contact- and collision-aware representation, as the optimization target. Sparse IBS compactly encodes the geometric and contact relationships between the dexterous hand and the scene, enabling stable and collision-free dexterous grasp pose optimization. To enhance the prediction of this high-dimensional representation, we introduce an occupancy-diffusion model with voxel-level conditional guidance and force closure score filtering. In the second stage, we develop several energy functions and ranking strategies for optimization based on sparse IBS to generate high-quality dexterous grasp poses. Extensive experiments in both simulated and real-world settings validate the effectiveness of our approach, demonstrating its capability to mitigate collisions while maintaining a high grasp success rate across diverse objects and complex scenes.
Video World Models 2
Parallel Stochastic Gradient-Based Planning for World Models
World models simulate environment dynamics from raw sensory inputs like video. However, using them for planning can be challenging due to the vast and unstructured search space. We propose a robust and highly parallelizable planner that leverages the differentiability of the learned world model for efficient optimization, solving long-horizon control tasks from visual input. Our method treats states as optimization variables ("virtual states") with soft dynamics constraints, enabling parallel computation and easier optimization. To facilitate exploration and avoid local optima, we introduce stochasticity into the states. To mitigate sensitive gradients through high-dimensional vision-based world models, we modify the gradient structure to descend towards valid plans while only requiring action-input gradients. Our planner, which we call GRASP (Gradient RelAxed Stochastic Planner), can be viewed as a stochastic version of a non-condensed or collocation-based optimal controller. We provide theoretical justification and experiments on video-based world models, where our resulting planner outperforms existing planning algorithms like the cross-entropy method (CEM) and vanilla gradient-based optimization (GD) on long-horizon experiments, both in success rate and time to convergence.
comment: 23 pages, 7 figures
DISK: Dynamic Inference SKipping for World Models
We present DISK, a training-free adaptive inference method for autoregressive world models. DISK coordinates two coupled diffusion transformers for video and ego-trajectory via dual-branch controllers with cross-modal skip decisions, preserving motion-appearance consistency without retraining. We extend higher-order latent-difference skip testing to the autoregressive chain-of-forward regime and propagate controller statistics through rollout loops for long-horizon stability. When integrated into closed-loop driving rollouts on 1500 NuPlan and NuScenes samples using an NVIDIA L40S GPU, DISK achieves 2x speedup on trajectory diffusion and 1.6x speedup on video diffusion while maintaining L2 planning error, visual quality (FID/FVD), and NAVSIM PDMS scores, demonstrating practical long-horizon video-and-trajectory prediction at substantially reduced cost.
Robotics 48
End-to-end Optimization of Belief and Policy Learning in Shared Autonomy Paradigms
Shared autonomy systems require principled methods for inferring user intent and determining appropriate assistance levels. This is a central challenge in human-robot interaction, where systems must be successful while being mindful of user agency. Previous approaches relied on static blending ratios or separated goal inference from assistance arbitration, leading to suboptimal performance in unstructured environments. We introduce BRACE (Bayesian Reinforcement Assistance with Context Encoding), a novel framework that fine-tunes Bayesian intent inference and context-adaptive assistance through an architecture enabling end-to-end gradient flow between intent inference and assistance arbitration. Our pipeline conditions collaborative control policies on environmental context and complete goal probability distributions. We provide analysis showing (1) optimal assistance levels should decrease with goal uncertainty and increase with environmental constraint severity, and (2) integrating belief information into policy learning yields a quadratic expected regret advantage over sequential approaches. We validated our algorithm against SOTA methods (IDA, DQN) using a three-part evaluation progressively isolating distinct challenges of end-effector control: (1) core human-interaction dynamics in a 2D human-in-the-loop cursor task, (2) non-linear dynamics of a robotic arm, and (3) integrated manipulation under goal ambiguity and environmental constraints. We demonstrate improvements over SOTA, achieving 6.3% higher success rates and 41% increased path efficiency, and 36.3% success rate and 87% path efficiency improvement over unassisted control. Our results confirmed that integrated optimization is most beneficial in complex, goal-ambiguous scenarios, and is generalizable across robotic domains requiring goal-directed assistance, advancing the SOTA for adaptive shared autonomy.
IRL-DAL: Safe and Adaptive Trajectory Planning for Autonomous Driving via Energy-Guided Diffusion Models
This paper proposes a novel inverse reinforcement learning framework using a diffusion-based adaptive lookahead planner (IRL-DAL) for autonomous vehicles. Training begins with imitation from an expert finite state machine (FSM) controller to provide a stable initialization. Environment terms are combined with an IRL discriminator signal to align with expert goals. Reinforcement learning (RL) is then performed with a hybrid reward that combines diffuse environmental feedback and targeted IRL rewards. A conditional diffusion model, which acts as a safety supervisor, plans safe paths. It stays in its lane, avoids obstacles, and moves smoothly. Then, a learnable adaptive mask (LAM) improves perception. It shifts visual attention based on vehicle speed and nearby hazards. After FSM-based imitation, the policy is fine-tuned with Proximal Policy Optimization (PPO). Training is run in the Webots simulator with a two-stage curriculum. A 96\% success rate is reached, and collisions are reduced to 0.05 per 1k steps, marking a new benchmark for safe navigation. By applying the proposed approach, the agent not only drives in lane but also handles unsafe conditions at an expert level, increasing robustness.We make our code publicly available.
FlowCalib: LiDAR-to-Vehicle Miscalibration Detection using Scene Flows
Accurate sensor-to-vehicle calibration is essential for safe autonomous driving. Angular misalignments of LiDAR sensors can lead to safety-critical issues during autonomous operation. However, current methods primarily focus on correcting sensor-to-sensor errors without considering the miscalibration of individual sensors that cause these errors in the first place. We introduce FlowCalib, the first framework that detects LiDAR-to-vehicle miscalibration using motion cues from the scene flow of static objects. Our approach leverages the systematic bias induced by rotational misalignment in the flow field generated from sequential 3D point clouds, eliminating the need for additional sensors. The architecture integrates a neural scene flow prior for flow estimation and incorporates a dual-branch detection network that fuses learned global flow features with handcrafted geometric descriptors. These combined representations allow the system to perform two complementary binary classification tasks: a global binary decision indicating whether misalignment is present and separate, axis-specific binary decisions indicating whether each rotational axis is misaligned. Experiments on the nuScenes dataset demonstrate FlowCalib's ability to robustly detect miscalibration, establishing a benchmark for sensor-to-vehicle miscalibration detection.
Temporally Coherent Imitation Learning via Latent Action Flow Matching for Robotic Manipulation
Learning long-horizon robotic manipulation requires jointly achieving expressive behavior modeling, real-time inference, and stable execution, which remains challenging for existing generative policies. Diffusion-based approaches provide strong modeling capacity but typically incur high inference latency, while flow matching enables fast one-step generation yet often leads to unstable execution when applied directly in the raw action space. We propose LG-Flow Policy, a trajectory-level imitation learning framework that performs flow matching in a continuous latent action space. By encoding action sequences into temporally regularized latent trajectories and learning an explicit latent-space flow, the proposed approach decouples global motion structure from low-level control noise, resulting in smooth and reliable long-horizon execution. LG-Flow Policy further incorporates geometry-aware point cloud conditioning and execution-time multimodal modulation, with visual cues evaluated as a representative modality in real-world settings. Experimental results in simulation and on physical robot platforms demonstrate that LG-Flow Policy achieves near single-step inference, substantially improves trajectory smoothness and task success over flow-based baselines operating in the raw action space, and remains significantly more efficient than diffusion-based policies.
comment: 8 pages, 8 figures
Robust and Generalized Humanoid Motion Tracking
Learning a general humanoid whole-body controller is challenging because practical reference motions can exhibit noise and inconsistencies after being transferred to the robot domain, and local defects may be amplified by closed-loop execution, causing drift or failure in highly dynamic and contact-rich behaviors. We propose a dynamics-conditioned command aggregation framework that uses a causal temporal encoder to summarize recent proprioception and a multi-head cross-attention command encoder to selectively aggregate a context window based on the current dynamics. We further integrate a fall recovery curriculum with random unstable initialization and an annealed upward assistance force to improve robustness and disturbance rejection. The resulting policy requires only about 3.5 hours of motion data and supports single-stage end-to-end training without distillation. The proposed method is evaluated under diverse reference inputs and challenging motion regimes, demonstrating zero-shot transfer to unseen motions as well as robust sim-to-real transfer on a physical humanoid robot.
RN-D: Discretized Categorical Actors with Regularized Networks for On-Policy Reinforcement Learning
On-policy deep reinforcement learning remains a dominant paradigm for continuous control, yet standard implementations rely on Gaussian actors and relatively shallow MLP policies, often leading to brittle optimization when gradients are noisy and policy updates must be conservative. In this paper, we revisit policy representation as a first-class design choice for on-policy optimization. We study discretized categorical actors that represent each action dimension with a distribution over bins, yielding a policy objective that resembles a cross-entropy loss. Building on architectural advances from supervised learning, we further propose regularized actor networks, while keeping critic design fixed. Our results show that simply replacing the standard actor network with our discretized regularized actor yields consistent gains and achieve the state-of-the-art performance across diverse continuous-control benchmarks.
MOSAIC: Modular Scalable Autonomy for Intelligent Coordination of Heterogeneous Robotic Teams
Mobile robots have become indispensable for exploring hostile environments, such as in space or disaster relief scenarios, but often remain limited to teleoperation by a human operator. This restricts the deployment scale and requires near-continuous low-latency communication between the operator and the robot. We present MOSAIC: a scalable autonomy framework for multi-robot scientific exploration using a unified mission abstraction based on Points of Interest (POIs) and multiple layers of autonomy, enabling supervision by a single operator. The framework dynamically allocates exploration and measurement tasks based on each robot's capabilities, leveraging team-level redundancy and specialization to enable continuous operation. We validated the framework in a space-analog field experiment emulating a lunar prospecting scenario, involving a heterogeneous team of five robots and a single operator. Despite the complete failure of one robot during the mission, the team completed 82.3% of assigned tasks at an Autonomy Ratio of 86%, while the operator workload remained at only 78.2%. These results demonstrate that the proposed framework enables robust, scalable multi-robot scientific exploration with limited operator intervention. We further derive practical lessons learned in robot interoperability, networking architecture, team composition, and operator workload management to inform future multi-robot exploration missions.
comment: This work has been submitted to the IEEE for possible publication
Learning Geometrically-Grounded 3D Visual Representations for View-Generalizable Robotic Manipulation
Real-world robotic manipulation demands visuomotor policies capable of robust spatial scene understanding and strong generalization across diverse camera viewpoints. While recent advances in 3D-aware visual representations have shown promise, they still suffer from several key limitations, including reliance on multi-view observations during inference which is impractical in single-view restricted scenarios, incomplete scene modeling that fails to capture holistic and fine-grained geometric structures essential for precise manipulation, and lack of effective policy training strategies to retain and exploit the acquired 3D knowledge. To address these challenges, we present MethodName, a unified representation-policy learning framework for view-generalizable robotic manipulation. MethodName introduces a single-view 3D pretraining paradigm that leverages point cloud reconstruction and feed-forward gaussian splatting under multi-view supervision to learn holistic geometric representations. During policy learning, MethodName performs multi-step distillation to preserve the pretrained geometric understanding and effectively transfer it to manipulation skills. We conduct experiments on 12 RLBench tasks, where our approach outperforms the previous state-of-the-art method by 12.7% in average success rate. Further evaluation on six representative tasks demonstrates strong zero-shot view generalization, with success rate drops of only 22.0% and 29.7% under moderate and large viewpoint shifts respectively, whereas the state-of-the-art method suffers larger decreases of 41.6% and 51.5%.
About an Automating Annotation Method for Robot Markers
Factory automation has become increasingly important due to labor shortages, leading to the introduction of autonomous mobile robots for tasks such as material transportation. Markers are commonly used for robot self-localization and object identification. In the RoboCup Logistics League (RCLL), ArUco markers are employed both for robot localization and for identifying processing modules. Conventional recognition relies on OpenCV-based image processing, which detects black-and-white marker patterns. However, these methods often fail under noise, motion blur, defocus, or varying illumination conditions. Deep-learning-based recognition offers improved robustness under such conditions, but requires large amounts of annotated data. Annotation must typically be done manually, as the type and position of objects cannot be detected automatically, making dataset preparation a major bottleneck. In contrast, ArUco markers include built-in recognition modules that provide both ID and positional information, enabling automatic annotation. This paper proposes an automated annotation method for training deep-learning models on ArUco marker images. By leveraging marker detection results obtained from the ArUco module, the proposed approach eliminates the need for manual labeling. A YOLO-based model is trained using the automatically annotated dataset, and its performance is evaluated under various conditions. Experimental results demonstrate that the proposed method improves recognition performance compared with conventional image-processing techniques, particularly for images affected by blur or defocus. Automatic annotation also reduces human effort and ensures consistent labeling quality. Future work will investigate the relationship between confidence thresholds and recognition performance.
Self-Imitated Diffusion Policy for Efficient and Robust Visual Navigation
Diffusion policies (DP) have demonstrated significant potential in visual navigation by capturing diverse multi-modal trajectory distributions. However, standard imitation learning (IL), which most DP methods rely on for training, often inherits sub-optimality and redundancy from expert demonstrations, thereby necessitating a computationally intensive "generate-then-filter" pipeline that relies on auxiliary selectors during inference. To address these challenges, we propose Self-Imitated Diffusion Policy (SIDP), a novel framework that learns improved planning by selectively imitating a set of trajectories sampled from itself. Specifically, SIDP introduces a reward-guided self-imitation mechanism that encourages the policy to consistently produce high-quality trajectories efficiently, rather than outputs of inconsistent quality, thereby reducing reliance on extensive sampling and post-filtering. During training, we employ a reward-driven curriculum learning paradigm to mitigate inefficient data utility, and goal-agnostic exploration for trajectory augmentation to improve planning robustness. Extensive evaluations on a comprehensive simulation benchmark show that SIDP significantly outperforms previous methods, with real-world experiments confirming its effectiveness across multiple robotic platforms. On Jetson Orin Nano, SIDP delivers a 2.5$\times$ faster inference than the baseline NavDP, i.e., 110ms VS 273ms, enabling efficient real-time deployment.
comment: Preprint
MTDrive: Multi-turn Interactive Reinforcement Learning for Autonomous Driving
Trajectory planning is a core task in autonomous driving, requiring the prediction of safe and comfortable paths across diverse scenarios. Integrating Multi-modal Large Language Models (MLLMs) with Reinforcement Learning (RL) has shown promise in addressing "long-tail" scenarios. However, existing methods are constrained to single-turn reasoning, limiting their ability to handle complex tasks requiring iterative refinement. To overcome this limitation, we present MTDrive, a multi-turn framework that enables MLLMs to iteratively refine trajectories based on environmental feedback. MTDrive introduces Multi-Turn Group Relative Policy Optimization (mtGRPO), which mitigates reward sparsity by computing relative advantages across turns. We further construct an interactive trajectory understanding dataset from closed-loop simulation to support multi-turn training. Experiments on the NAVSIM benchmark demonstrate superior performance compared to existing methods, validating the effectiveness of our multi-turn reasoning paradigm. Additionally, we implement system-level optimizations to reduce data transfer overhead caused by high-resolution images and multi-turn sequences, achieving 2.5x training throughput. Our data, models, and code will be made available soon.
Toward Fully Autonomous Driving: AI, Challenges, Opportunities, and Needs
Automated driving (AD) is promising, but the transition to fully autonomous driving is, among other things, subject to the real, ever-changing open world and the resulting challenges. However, research in the field of AD demonstrates the ability of artificial intelligence (AI) to outperform classical approaches, handle higher complexities, and reach a new level of autonomy. At the same time, the use of AI raises further questions of safety and transferability. To identify the challenges and opportunities arising from AI concerning autonomous driving functionalities, we have analyzed the current state of AD, outlined limitations, and identified foreseeable technological possibilities. Thereby, various further challenges are examined in the context of prospective developments. In this way, this article reconsiders fully autonomous driving with respect to advancements in the field of AI and carves out the respective needs and resulting research questions.
comment: Published in IEEE Access, 29 January 2026
Robust Rigid Body Assembly via Contact-Implicit Optimal Control with Exact Second-Order Derivatives
Efficient planning of assembly motions is a long standing challenge in the field of robotics that has been primarily tackled with reinforcement learning and sampling-based methods by using extensive physics simulations. This paper proposes a sample-efficient robust optimal control approach for the determination of assembly motions, which requires significantly less physics simulation steps during planning through the efficient use of derivative information. To this end, a differentiable physics simulation is constructed that provides second-order analytic derivatives to the numerical solver and allows one to traverse seamlessly from informative derivatives to accurate contact simulation. The solution of the physics simulation problem is made differentiable by using smoothing inspired by interior-point methods applied to both the collision detection as well as the contact resolution problem. We propose a modified variant of an optimization-based formulation of collision detection formulated as a linear program and present an efficient implementation for the nominal evaluation and corresponding first- and second-order derivatives. Moreover, a multi-scenario-based trajectory optimization problem that ensures robustness with respect to sim-to-real mismatches is derived. The capability of the considered formulation is illustrated by results where over 99\% successful executions are achieved in real-world experiments. Thereby, we carefully investigate the effect of smooth approximations of the contact dynamics and robust modeling on the success rates. Furthermore, the method's capability is tested on different peg-in-hole problems in simulation to show the benefit of using exact Hessians over commonly used Hessian approximations.
comment: Submitted to Transactions on Robotics
A Comparative Evaluation of Large Vision-Language Models for 2D Object Detection under SOTIF Conditions
Reliable environmental perception remains one of the main obstacles for safe operation of automated vehicles. Safety of the Intended Functionality (SOTIF) concerns safety risks from perception insufficiencies, particularly under adverse conditions where conventional detectors often falter. While Large Vision-Language Models (LVLMs) demonstrate promising semantic reasoning, their quantitative effectiveness for safety-critical 2D object detection is underexplored. This paper presents a systematic evaluation of ten representative LVLMs using the PeSOTIF dataset, a benchmark specifically curated for long-tail traffic scenarios and environmental degradations. Performance is quantitatively compared against the classical perception approach, a YOLO-based detector. Experimental results reveal a critical trade-off: top-performing LVLMs (e.g., Gemini 3, Doubao) surpass the YOLO baseline in recall by over 25% in complex natural scenarios, exhibiting superior robustness to visual degradation. Conversely, the baseline retains an advantage in geometric precision for synthetic perturbations. These findings highlight the complementary strengths of semantic reasoning versus geometric regression, supporting the use of LVLMs as high-level safety validators in SOTIF-oriented automated driving systems.
comment: 6 pages, 11 figures
Offline Reinforcement Learning of High-Quality Behaviors Under Robust Style Alignment
We study offline reinforcement learning of style-conditioned policies using explicit style supervision via subtrajectory labeling functions. In this setting, aligning style with high task performance is particularly challenging due to distribution shift and inherent conflicts between style and reward. Existing methods, despite introducing numerous definitions of style, often fail to reconcile these objectives effectively. To address these challenges, we propose a unified definition of behavior style and instantiate it into a practical framework. Building on this, we introduce Style-Conditioned Implicit Q-Learning (SCIQL), which leverages offline goal-conditioned RL techniques, such as hindsight relabeling and value learning, and combine it with a new Gated Advantage Weighted Regression mechanism to efficiently optimize task performance while preserving style alignment. Experiments demonstrate that SCIQL achieves superior performance on both objectives compared to prior offline methods. Code, datasets and visuals are available in: https://sciql-iclr-2026.github.io/.
Assistive Robots and Reasonable Work Assignment Reduce Perceived Stigma toward Persons with Disabilities
Robots are becoming more prominent in assisting persons with disabilities (PwD). Whilst there is broad consensus that robots can assist in mitigating physical impairments, the extent to which they can facilitate social inclusion remains equivocal. In fact, the exposed status of assisted workers could likewise lead to reduced or increased perceived stigma by other workers. We present a vignette study on the perceived cognitive and behavioral stigma toward PwD in the workplace. We designed four experimental conditions depicting a coworker with an impairment in work scenarios: overburdened work, suitable work, and robot-assisted work only for the coworker, and an offer of robot-assisted work for everyone. Our results show that cognitive stigma is significantly reduced when the work task is adapted to the person's abilities or augmented by an assistive robot. In addition, offering robot-assisted work for everyone, in the sense of universal design, further reduces perceived cognitive stigma. Thus, we conclude that assistive robots reduce perceived cognitive stigma, thereby supporting the use of collaborative robots in work scenarios involving PwDs.
comment: 5 pages, 2 figures, Companion Proceedings of the 21st ACM/IEEE International Conference on Human-Robot Interaction
FlyAware: Inertia-Aware Aerial Manipulation via Vision-Based Estimation and Post-Grasp Adaptation
Aerial manipulators (AMs) are gaining increasing attention in automated transportation and emergency services due to their superior dexterity compared to conventional multirotor drones. However, their practical deployment is challenged by the complexity of time-varying inertial parameters, which are highly sensitive to payload variations and manipulator configurations. Inspired by human strategies for interacting with unknown objects, this letter presents a novel onboard framework for robust aerial manipulation. The proposed system integrates a vision-based pre-grasp inertia estimation module with a post-grasp adaptation mechanism, enabling real-time estimation and adaptation of inertial dynamics. For control, we develop an inertia-aware adaptive control strategy based on gain scheduling, and assess its robustness via frequency-domain system identification. Our study provides new insights into post-grasp control for AMs, and real-world experiments validate the effectiveness and feasibility of the proposed framework.
comment: 8 pages, 10 figures
Postural Virtual Fixtures for Ergonomic Physical Interactions with Supernumerary Robotic Bodies
Conjoined collaborative robots, functioning as supernumerary robotic bodies (SRBs), can enhance human load tolerance abilities. However, in tasks involving physical interaction with humans, users may still adopt awkward, non-ergonomic postures, which can lead to discomfort or injury over time. In this paper, we propose a novel control framework that provides kinesthetic feedback to SRB users when a non-ergonomic posture is detected, offering resistance to discourage such behaviors. This approach aims to foster long-term learning of ergonomic habits and promote proper posture during physical interactions. To achieve this, a virtual fixture method is developed, integrated with a continuous, online ergonomic posture assessment framework. Additionally, to improve coordination between the operator and the SRB, which consists of a robotic arm mounted on a floating base, the position of the floating base is adjusted as needed. Experimental results demonstrate the functionality and efficacy of the ergonomics-driven control framework, including two user studies involving practical loco-manipulation tasks with 14 subjects, comparing the proposed framework with a baseline control framework that does not account for human ergonomics.
comment: Published in The International Journal of Robotics Research
Exo-Plore: Exploring Exoskeleton Control Space through Human-aligned Simulation ICLR 2026
Exoskeletons show great promise for enhancing mobility, but providing appropriate assistance remains challenging due to the complexity of human adaptation to external forces. Current state-of-the-art approaches for optimizing exoskeleton controllers require extensive human experiments in which participants must walk for hours, creating a paradox: those who could benefit most from exoskeleton assistance, such as individuals with mobility impairments, are rarely able to participate in such demanding procedures. We present Exo-plore, a simulation framework that combines neuromechanical simulation with deep reinforcement learning to optimize hip exoskeleton assistance without requiring real human experiments. Exo-plore can (1) generate realistic gait data that captures human adaptation to assistive forces, (2) produce reliable optimization results despite the stochastic nature of human gait, and (3) generalize to pathological gaits, showing strong linear relationships between pathology severity and optimal assistance.
comment: 10 pages, 9 figures, ICLR 2026 accepted
Adapting Reinforcement Learning for Path Planning in Constrained Parking Scenarios
Real-time path planning in constrained environments remains a fundamental challenge for autonomous systems. Traditional classical planners, while effective under perfect perception assumptions, are often sensitive to real-world perception constraints and rely on online search procedures that incur high computational costs. In complex surroundings, this renders real-time deployment prohibitive. To overcome these limitations, we introduce a Deep Reinforcement Learning (DRL) framework for real-time path planning in parking scenarios. In particular, we focus on challenging scenes with tight spaces that require a high number of reversal maneuvers and adjustments. Unlike classical planners, our solution does not require ideal and structured perception, and in principle, could avoid the need for additional modules such as localization and tracking, resulting in a simpler and more practical implementation. Also, at test time, the policy generates actions through a single forward pass at each step, which is lightweight enough for real-time deployment. The task is formulated as a sequential decision-making problem grounded in a bicycle model dynamics, enabling the agent to directly learn navigation policies that respect vehicle kinematics and environmental constraints in the closed-loop setting. A new benchmark is developed to support both training and evaluation, capturing diverse and challenging scenarios. Our approach achieves state-of-the-art success rates and efficiency, surpassing classical planner baselines by +96% in success rate and +52% in efficiency. Furthermore, we release our benchmark as an open-source resource for the community to foster future research in autonomous systems. The benchmark and accompanying tools are available at https://github.com/dqm5rtfg9b-collab/Constrained_Parking_Scenarios.
RoboStriker: Hierarchical Decision-Making for Autonomous Humanoid Boxing
Achieving human-level competitive intelligence and physical agility in humanoid robots remains a major challenge, particularly in contact-rich and highly dynamic tasks such as boxing. While Multi-Agent Reinforcement Learning (MARL) offers a principled framework for strategic interaction, its direct application to humanoid control is hindered by high-dimensional contact dynamics and the absence of strong physical motion priors. We propose RoboStriker, a hierarchical three-stage framework that enables fully autonomous humanoid boxing by decoupling high-level strategic reasoning from low-level physical execution. The framework first learns a comprehensive repertoire of boxing skills by training a single-agent motion tracker on human motion capture data. These skills are subsequently distilled into a structured latent manifold, regularized by projecting the Gaussian-parameterized distribution onto a unit hypersphere. This topological constraint effectively confines exploration to the subspace of physically plausible motions. In the final stage, we introduce Latent-Space Neural Fictitious Self-Play (LS-NFSP), where competing agents learn competitive tactics by interacting within the latent action space rather than the raw motor space, significantly stabilizing multi-agent training. Experimental results demonstrate that RoboStriker achieves superior competitive performance in simulation and exhibits sim-to-real transfer. Our website is available at RoboStriker.
CARE: Multi-Task Pretraining for Latent Continuous Action Representation in Robot Control
Recent advances in Vision-Language-Action (VLA) models have shown promise for robot control, but their dependence on action supervision limits scalability and generalization. To address this challenge, we introduce CARE, a novel framework designed to train VLA models for robotic task execution. Unlike existing methods that depend on action annotations during pretraining, CARE eliminates the need for explicit action labels by leveraging only video-text pairs. These weakly aligned data sources enable the model to learn continuous latent action representations through a newly designed multi-task pretraining objective. During fine-tuning, a small set of labeled data is used to train the action head for control. Experimental results across various simulation tasks demonstrate CARE's superior success rate, semantic interpretability, and ability to avoid shortcut learning. These results underscore CARE's scalability, interpretability, and effectiveness in robotic control with weak supervision.
comment: Accepted to 2026 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2026)
High-Definition 5MP Stereo Vision Sensing for Robotics
High-resolution (5MP+) stereo vision systems are essential for advancing robotic capabilities, enabling operation over longer ranges and generating significantly denser and accurate 3D point clouds. However, realizing the full potential of high-angular-resolution sensors requires a commensurately higher level of calibration accuracy and faster processing -- requirements often unmet by conventional methods. This study addresses that critical gap by processing 5MP camera imagery using a novel, advanced frame-to-frame calibration and stereo matching methodology designed to achieve both high accuracy and speed. Furthermore, we introduce a new approach to evaluate real-time performance by comparing real-time disparity maps with ground-truth disparity maps derived from more computationally intensive stereo matching algorithms. Crucially, the research demonstrates that high-pixel-count cameras yield high-quality point clouds only through the implementation of high-accuracy calibration.
ZEST: Zero-shot Embodied Skill Transfer for Athletic Robot Control
Achieving robust, human-like whole-body control on humanoid robots for agile, contact-rich behaviors remains a central challenge, demanding heavy per-skill engineering and a brittle process of tuning controllers. We introduce ZEST (Zero-shot Embodied Skill Transfer), a streamlined motion-imitation framework that trains policies via reinforcement learning from diverse sources -- high-fidelity motion capture, noisy monocular video, and non-physics-constrained animation -- and deploys them to hardware zero-shot. ZEST generalizes across behaviors and platforms while avoiding contact labels, reference or observation windows, state estimators, and extensive reward shaping. Its training pipeline combines adaptive sampling, which focuses training on difficult motion segments, and an automatic curriculum using a model-based assistive wrench, together enabling dynamic, long-horizon maneuvers. We further provide a procedure for selecting joint-level gains from approximate analytical armature values for closed-chain actuators, along with a refined model of actuators. Trained entirely in simulation with moderate domain randomization, ZEST demonstrates remarkable generality. On Boston Dynamics' Atlas humanoid, ZEST learns dynamic, multi-contact skills (e.g., army crawl, breakdancing) from motion capture. It transfers expressive dance and scene-interaction skills, such as box-climbing, directly from videos to Atlas and the Unitree G1. Furthermore, it extends across morphologies to the Spot quadruped, enabling acrobatics, such as a continuous backflip, through animation. Together, these results demonstrate robust zero-shot deployment across heterogeneous data sources and embodiments, establishing ZEST as a scalable interface between biological movements and their robotic counterparts.
Motion Planning with Metric Temporal Logic Using Reachability Analysis and Hybrid Zonotopes
Metric temporal logic (MTL) provides a formal framework for defining time-dependent mission requirements on autonomous vehicles. However, optimizing control decisions subject to these constraints is often computationally expensive. This article presents a method that uses reachability analysis to implicitly express the set of states satisfying an MTL specification and then optimizes to find a motion plan. The hybrid zonotope set representation is used to efficiently and conveniently encode MTL specifications into reachable sets. A numerical benchmark highlights the proposed method's computational advantages as compared to existing methods in the literature. Further numerical examples and an experimental application demonstrate the ability to address time-varying environments, region-dependent disturbances, and multi-agent coordination.
Dual Quaternion SE(3) Synchronization with Recovery Guarantees
Synchronization over the special Euclidean group SE(3) aims to recover absolute poses from noisy pairwise relative transformations and is a core primitive in robotics and 3D vision. Standard approaches often require multi-step heuristic procedures to recover valid poses, which are difficult to analyze and typically lack theoretical guarantees. This paper adopts a dual quaternion representation and formulates SE(3) synchronization directly over the unit dual quaternion. A two-stage algorithm is developed: A spectral initializer computed via the power method on a Hermitian dual quaternion measurement matrix, followed by a dual quaternion generalized power method (DQGPM) that enforces feasibility through per-iteration projection. The estimation error bounds are established for spectral estimators, and DQGPM is shown to admit a finite-iteration error bound and achieves linear error contraction up to an explicit noise-dependent threshold. Experiments on synthetic benchmarks and real-world multi-scan point-set registration demonstrate that the proposed pipeline improves both accuracy and efficiency over representative matrix-based methods.
RVDebloater: Mode-based Adaptive Firmware Debloating for Robotic Vehicles
As the number of embedded devices grows and their functional requirements increase, embedded firmware is becoming increasingly larger, thereby expanding its attack surface. Despite the increase in firmware size, many embedded devices, such as robotic vehicles (RVs), operate in distinct modes, each requiring only a small subset of the firmware code at runtime. We refer to such devices as mode-based embedded devices. Debloating is an approach to reduce attack surfaces by removing or restricting unneeded code, but existing techniques suffer from significant limitations, such as coarse granularity and irreversible code removal, limiting their applicability. To address these limitations, we propose RVDebloater, a novel adaptive debloating technique for mode-based embedded devices that automatically identifies unneeded firmware code for each mode using either static or dynamic analysis, and dynamically debloats the firmware for each mode at the function level at runtime. RVDebloater introduces a new software-based enforcement approach that supports diverse mode-based embedded devices. We implemented RVDebloater using the LLVM compiler and evaluated its efficiency and effectiveness on six different RVs, including both simulated and real ones, with different real-world missions. We find that device requirements change throughout its lifetime for each mode, and that many critical firmware functions can be restricted in other modes, with an average of 85% of functions not being required. The results showed that none of the missions failed after debloating with RVDebloater, indicating that it neither incurred false positives nor false negatives. Further, RVDebloater prunes the firmware call graph by an average of 45% across different firmware. Finally, RVDebloater incurred an average performance overhead of 3.9% and memory overhead of 4% (approximately 0.25 MB) on real RVs.
MapDream: Task-Driven Map Learning for Vision-Language Navigation
Vision-Language Navigation (VLN) requires agents to follow natural language instructions in partially observed 3D environments, motivating map representations that aggregate spatial context beyond local perception. However, most existing approaches rely on hand-crafted maps constructed independently of the navigation policy. We argue that maps should instead be learned representations shaped directly by navigation objectives rather than exhaustive reconstructions. Based on this insight, we propose MapDream, a map-in-the-loop framework that formulates map construction as autoregressive bird's-eye-view (BEV) image synthesis. The framework jointly learns map generation and action prediction, distilling environmental context into a compact three-channel BEV map that preserves only navigation-critical affordances. Supervised pre-training bootstraps a reliable mapping-to-control interface, while the autoregressive design enables end-to-end joint optimization through reinforcement fine-tuning. Experiments on R2R-CE and RxR-CE achieve state-of-the-art monocular performance, validating task-driven generative map learning.
Multi-agent Coordination via Flow Matching ICLR 2026
This work presents MAC-Flow, a simple yet expressive framework for multi-agent coordination. We argue that requirements of effective coordination are twofold: (i) a rich representation of the diverse joint behaviors present in offline data and (ii) the ability to act efficiently in real time. However, prior approaches often sacrifice one for the other, i.e., denoising diffusion-based solutions capture complex coordination but are computationally slow, while Gaussian policy-based solutions are fast but brittle in handling multi-agent interaction. MAC-Flow addresses this trade-off by first learning a flow-based representation of joint behaviors, and then distilling it into decentralized one-step policies that preserve coordination while enabling fast execution. Across four different benchmarks, including $12$ environments and $34$ datasets, MAC-Flow alleviates the trade-off between performance and computational cost, specifically achieving about $\boldsymbol{\times14.5}$ faster inference compared to diffusion-based MARL methods, while maintaining good performance. At the same time, its inference speed is similar to that of prior Gaussian policy-based offline multi-agent reinforcement learning (MARL) methods.
comment: ICLR 2026
Reinforcement Learning for Ballbot Navigation in Uneven Terrain
Ballbot (i.e. Ball balancing robot) navigation usually relies on methods rooted in control theory (CT), and works that apply Reinforcement learning (RL) to the problem remain rare while generally being limited to specific subtasks (e.g. balance recovery). Unlike CT based methods, RL does not require (simplifying) assumptions about environment dynamics (e.g. the absence of slippage between the ball and the floor). In addition to this increased accuracy in modeling, RL agents can easily be conditioned on additional observations such as depth-maps without the need for explicit formulations from first principles, leading to increased adaptivity. Despite those advantages, there has been little to no investigation into the capabilities, data-efficiency and limitations of RL based methods for ballbot control and navigation. Furthermore, there is a notable absence of an open-source, RL-friendly simulator for this task. In this paper, we present an open-source ballbot simulation based on MuJoCo, and show that with appropriate conditioning on exteroceptive observations as well as reward shaping, policies learned by classical model-free RL methods are capable of effectively navigating through randomly generated uneven terrain, using a reasonable amount of data (four to five hours on a system operating at 500hz). Our code is made publicly available.
comment: 6 pages, 9 figures, 2 tables. Version two corrects figure 4 and adds some experiments
Monocular pose estimation of articulated open surgery tools -- in the wild
This work presents a framework for monocular 6D pose estimation of surgical instruments in open surgery, addressing challenges such as object articulations, specularity, occlusions, and synthetic-to-real domain adaptation. The proposed approach consists of three main components: $(1)$ synthetic data generation pipeline that incorporates 3D scanning of surgical tools with articulation rigging and physically-based rendering; $(2)$ a tailored pose estimation framework combining tool detection with pose and articulation estimation; and $(3)$ a training strategy on synthetic and real unannotated video data, employing domain adaptation with automatically generated pseudo-labels. Evaluations conducted on real data of open surgery demonstrate the good performance and real-world applicability of the proposed framework, highlighting its potential for integration into medical augmented reality and robotic systems. The approach eliminates the need for extensive manual annotation of real surgical data.
comment: Author Accepted Manuscript (AAM)
CaLiV: LiDAR-to-Vehicle Calibration of Arbitrary Sensor Setups
In autonomous systems, sensor calibration is essential for safe and efficient navigation in dynamic environments. Accurate calibration is a prerequisite for reliable perception and planning tasks such as object detection and obstacle avoidance. Many existing LiDAR calibration methods require overlapping fields of view, while others use external sensing devices or postulate a feature-rich environment. In addition, Sensor-to-Vehicle calibration is not supported by the vast majority of calibration algorithms. In this work, we propose a novel target-based technique for extrinsic Sensor-to-Sensor and Sensor-to-Vehicle calibration of multi-LiDAR systems called CaLiV. This algorithm works for non-overlapping fields of view and does not require any external sensing devices. First, we apply motion to produce field of view overlaps and utilize a simple Unscented Kalman Filter to obtain vehicle poses. Then, we use the Gaussian mixture model-based registration framework GMMCalib to align the point clouds in a common calibration frame. Finally, we reduce the task of recovering the sensor extrinsics to a minimization problem. We show that both translational and rotational Sensor-to-Sensor errors can be solved accurately by our method. In addition, all Sensor-to-Vehicle rotation angles can also be calibrated with high accuracy. We validate the simulation results in real-world experiments. The code is open-source and available on https://github.com/TUMFTM/CaLiV.
A Practical Framework of Key Performance Indicators for Multi-Robot Lunar and Planetary Field Tests
Robotic prospecting for critical resources on the Moon, such as ilmenite, rare earth elements, and water ice, requires robust exploration methods given the diverse terrain and harsh environmental conditions. Although numerous analog field trials address these goals, comparing their results remains challenging because of differences in robot platforms and experimental setups. These missions typically assess performance using selected, scenario-specific engineering metrics that fail to establish a clear link between field performance and science-driven objectives. In this paper, we address this gap by deriving a structured framework of KPI from three realistic multi-robot lunar scenarios reflecting scientific objectives and operational constraints. Our framework emphasizes scenario-dependent priorities in efficiency, robustness, and precision, and is explicitly designed for practical applicability in field deployments. We validated the framework in a multi-robot field test and found it practical and easy to apply for efficiency- and robustness-related KPI, whereas precision-oriented KPI require reliable ground-truth data that is not always feasible to obtain in outdoor analog environments. Overall, we propose this framework as a common evaluation standard enabling consistent, goal-oriented comparison of multi-robot field trials and supporting systematic development of robotic systems for future planetary exploration.
PocketDP3: Efficient Pocket-Scale 3D Visuomotor Policy
Recently, 3D vision-based diffusion policies have shown strong capability in learning complex robotic manipulation skills. However, a common architectural mismatch exists in these models: a tiny yet efficient point-cloud encoder is often paired with a massive decoder. Given a compact scene representation, we argue that this may lead to substantial parameter waste in the decoder. Motivated by this observation, we propose PocketDP3, a pocket-scale 3D diffusion policy that replaces the heavy conditional U-Net decoder used in prior methods with a lightweight Diffusion Mixer (DiM) built on MLP-Mixer blocks. This architecture enables efficient fusion across temporal and channel dimensions, significantly reducing model size. Notably, without any additional consistency distillation techniques, our method supports two-step inference without sacrificing performance, improving practicality for real-time deployment. Across three simulation benchmarks--RoboTwin2.0, Adroit, and MetaWorld--PocketDP3 achieves state-of-the-art performance with fewer than 1% of the parameters of prior methods, while also accelerating inference. Real-world experiments further demonstrate the practicality and transferability of our method in real-world settings. Code will be released.
TaF-VLA: Tactile-Force Alignment in Vision-Language-Action Models for Force-aware Manipulation
Vision-Language-Action (VLA) models have recently emerged as powerful generalists for robotic manipulation. However, due to their predominant reliance on visual modalities, they fundamentally lack the physical intuition required for contact-rich tasks that require precise force regulation and physical reasoning. Existing attempts to incorporate vision-based tactile sensing into VLA models typically treat tactile inputs as auxiliary visual textures, thereby overlooking the underlying correlation between surface deformation and interaction dynamics. To bridge this gap, we propose a paradigm shift from tactile-vision alignment to tactile-force alignment. Here, we introduce TaF-VLA, a framework that explicitly grounds high-dimensional tactile observations in physical interaction forces. To facilitate this, we develop an automated tactile-force data acquisition device and curate the TaF-Dataset, comprising over 10 million synchronized tactile observations, 6-axis force/torque, and matrix force map. To align sequential tactile observations with interaction forces, the central component of our approach is the Tactile-Force Adapter (TaF-Adapter), a tactile sensor encoder that extracts discretized latent information for encoding tactile observations. This mechanism ensures that the learned representations capture history-dependent, noise-insensitive physical dynamics rather than static visual textures. Finally, we integrate this force-aligned encoder into a VLA backbone. Extensive real-world experiments demonstrate that TaF-VLA policy significantly outperforms state-of-the-art tactile-vision-aligned and vision-only baselines on contact-rich tasks, verifying its ability to achieve robust, force-aware manipulation through cross-modal physical reasoning.
comment: 17pages,9fig
MemoryVLA: Perceptual-Cognitive Memory in Vision-Language-Action Models for Robotic Manipulation ICLR 2026
Temporal context is essential for robotic manipulation because such tasks are inherently non-Markovian, yet mainstream VLA models typically overlook it and struggle with long-horizon, temporally dependent tasks. Cognitive science suggests that humans rely on working memory to buffer short-lived representations for immediate control, while the hippocampal system preserves verbatim episodic details and semantic gist of past experience for long-term memory. Inspired by these mechanisms, we propose MemoryVLA, a Cognition-Memory-Action framework for long-horizon robotic manipulation. A pretrained VLM encodes the observation into perceptual and cognitive tokens that form working memory, while a Perceptual-Cognitive Memory Bank stores low-level details and high-level semantics consolidated from it. Working memory retrieves decision-relevant entries from the bank, adaptively fuses them with current tokens, and updates the bank by merging redundancies. Using these tokens, a memory-conditioned diffusion action expert yields temporally aware action sequences. We evaluate MemoryVLA on 150+ simulation and real-world tasks across three robots. On SimplerEnv-Bridge, Fractal, LIBERO-5 suites and Mikasa-Robo, it achieves 71.9%, 72.7%, 96.5%, and 41.2% success rates, respectively, all outperforming state-of-the-art baselines CogACT and pi-0, with a notable +14.6 gain on Bridge and +11.8 gain on Mikasa-Robo. On 12 real-world tasks spanning general skills and long-horizon temporal dependencies, MemoryVLA achieves 84.0% success rate, with long-horizon tasks showing a +26 improvement over state-of-the-art baseline. Project Page: https://shihao1895.github.io/MemoryVLA
comment: ICLR 2026 | The project is available at https://shihao1895.github.io/MemoryVLA
TwinBrainVLA: Unleashing the Potential of Generalist VLMs for Embodied Tasks via Asymmetric Mixture-of-Transformers
The fundamental premise of Vision-Language-Action (VLA) models is to harness the extensive general capabilities of pre-trained Vision-Language Models (VLMs) for generalized embodied intelligence. However, standard robotic fine-tuning inevitably disrupts the pre-trained feature space, leading to "catastrophic forgetting" that compromises the general visual understanding we aim to leverage. To effectively utilize the uncorrupted general capabilities of VLMs for robotic tasks, we propose TwinBrainVLA, which coordinates two isomorphic VLM pathways: a frozen generalist (also called "Left Brain") and a trainable specialist (also called "Right Brain"). Our architecture utilizes a Asymmetric Mixture-of-Transformers (AsyMoT) mechanism, enabling the Right Brain to dynamically query and fuse intact semantic knowledge from the Left Brain with proprioceptive states. This fused representation conditions a flow-matching action expert for precise continuous control. Empirical results on SimplerEnv and RoboCasa benchmarks demonstrate that by explicitly retaining general capabilities, TwinBrainVLA achieves substantial performance gains over baseline models in complex manipulation tasks.
comment: GitHub: https://github.com/ZGC-EmbodyAI/TwinBrainVLA
On Your Own: Pro-level Autonomous Drone Racing in Uninstrumented Arenas
Drone technology is proliferating in many industries, including agriculture, logistics, defense, infrastructure, and environmental monitoring. Vision-based autonomy is one of its key enablers, particularly for real-world applications. This is essential for operating in novel, unstructured environments where traditional navigation methods may be unavailable. Autonomous drone racing has become the de facto benchmark for such systems. State-of-the-art research has shown that autonomous systems can surpass human-level performance in racing arenas. However, the direct applicability to commercial and field operations is still limited, as current systems are often trained and evaluated in highly controlled environments. In our contribution, the system's capabilities are analyzed within a controlled environment -- where external tracking is available for ground-truth comparison -- but also demonstrated in a challenging, uninstrumented environment -- where ground-truth measurements were never available. We show that our approach can match the performance of professional human pilots in both scenarios.
RoboArmGS: High-Quality Robotic Arm Splatting via Bézier Curve Refinement
Constructing photorealistic and controllable robotic arm digital assets from real observations is fundamental to robotic applications. Current approaches naively bind static 3D Gaussians according to URDF links, forcing them to follow an URDF-rigged motion passively. However, the idealized URDF-rigged motion cannot accurately model the actual motion captured in real-world observations, leading to severe rendering artifacts in 3D Gaussians. To address these challenges, we propose RoboArmGS, a novel hybrid representation that refines the URDF-rigged motion with learnable Bézier curves, enabling more accurate real-world motion modeling. To be more specific, we present a learnable Bézier Curve motion refiner that corrects per-joint residuals to address mismatches between real-world motion and URDF-rigged motion. RoboArmGS enables the learning of more accurate real-world motion while achieving a coherent binding of 3D Gaussians across arm parts. To support future research, we contribute a carefully collected dataset named RoboArm4D, which comprises several widely used robotic arms for evaluating the quality of building high-quality digital assets. We evaluate our approach on RoboArm4D, and RoboArmGS achieves state-of-the-art performance in real-world motion modeling and rendering quality. The code and dataset will be released.
GMOR: A Lightweight Robust Point Cloud Registration Framework via Geometric Maximum Overlapping
Point cloud registration based on correspondences computes the rigid transformation that maximizes the number of inliers constrained within the noise threshold. Current state-of-the-art (SOTA) methods employing spatial compatibility graphs or branch-and-bound (BnB) search mainly focus on registration under high outlier ratios. However, graph-based methods require at least quadratic space and time complexity for graph construction, while multi-stage BnB search methods often suffer from inaccuracy due to local optima between decomposed stages. This paper proposes a geometric maximum overlapping registration framework via rotation-only BnB search. The rigid transformation is decomposed using Chasles' theorem into a translation along rotation axis and a 2D rigid transformation. The optimal rotation axis and angle are searched via BnB, with residual parameters formulated as range maximum query (RMQ) problems. Firstly, the top-k candidate rotation axes are searched within a hemisphere parameterized by cube mapping, and the translation along each axis is estimated through interval stabbing of the correspondences projected onto that axis. Secondly, the 2D registration is relaxed to 1D rotation angle search with 2D RMQ of geometric overlapping for axis-aligned rectangles, which is solved deterministically in polynomial time using sweep line algorithm with segment tree. Experimental results on indoor 3DMatch/3DLoMatch scanning and outdoor KITTI LiDAR datasets demonstrate superior accuracy and efficiency over SOTA methods, while the time complexity is polynomial and the space complexity increases linearly with the number of points, even in the worst case.
ReGlove: A Soft Pneumatic Glove for Activities of Daily Living Assistance via Wrist-Mounted Vision
This paper presents ReGlove, a system that converts low-cost commercial pneumatic rehabilitation gloves into vision-guided assistive orthoses. Chronic upper-limb impairment affects millions worldwide, yet existing assistive technologies remain prohibitively expensive or rely on unreliable biological signals. Our platform integrates a wrist-mounted camera with an edge-computing inference engine (Raspberry Pi 5) to enable context-aware grasping without requiring reliable muscle signals. By adapting real-time YOLO-based computer vision models, the system achieves 96.73% grasp classification accuracy with sub-40.00 millisecond end-to-end latency. Physical validation using standardized benchmarks shows 82.71% success on YCB object manipulation and reliable performance across 27 Activities of Daily Living (ADL) tasks. With a total cost under $250 and exclusively commercial components, ReGlove provides a technical foundation for accessible, vision-based upper-limb assistance that could benefit populations excluded from traditional EMG-controlled devices.
VAT: Vision Action Transformer by Unlocking Full Representation of ViT
In robot learning, Vision Transformers (ViTs) are standard for visual perception, yet most methods discard valuable information by using only the final layer's features. We argue this provides an insufficient representation and propose the Vision Action Transformer (VAT), a novel architecture that is extended from ViT and unlocks the full feature hierarchy of ViT. VAT processes specialized action tokens with visual features across all transformer layers, enabling a deep and progressive fusion of perception and action generation. On a suite of simulated manipulation tasks, VAT achieves a 98.15\% average success rate across four LIBERO benchmarks, establishing a new state-of-the-art by outperforming prior methods like OpenVLA-OFT. Our work presents not only a powerful model for imitation learning but also demonstrates the critical importance of leveraging the complete ''representation trajectory'' of vision models to advance robotic policy. The GitHub URL for the project code is https://github.com/sellerbubble/VAT.
EquiContact: A Hierarchical SE(3) Vision-to-Force Equivariant Policy for Spatially Generalizable Contact-rich Tasks RSS
This paper presents a framework for learning vision-based robotic policies for contact-rich manipulation tasks that generalize spatially across task configurations. We focus on achieving robust spatial generalization of the policy for the peg-in-hole (PiH) task trained from a small number of demonstrations. We propose EquiContact, a hierarchical policy composed of a high-level vision planner (Diffusion Equivariant Descriptor Field, Diff-EDF) and a novel low-level compliant visuomotor policy (Geometric Compliant ACT, G-CompACT). G-CompACT operates using only localized observations (geometrically consistent error vectors (GCEV), force-torque readings, and wrist-mounted RGB images) and produces actions defined in the end-effector frame. Through these design choices, we show that the entire EquiContact pipeline is SE(3)-equivariant, from perception to force control. We also outline three key components for spatially generalizable contact-rich policies: compliance, localized policies, and induced equivariance. Real-world experiments on PiH, screwing, and surface wiping tasks demonstrate a near-perfect success rate and robust generalization to unseen spatial configurations, validating the proposed framework and principles. The experimental videos and more details can be found on the project website: https://equicontact.github.io/EquiContact-website/
comment: Submitted to RSS
Model-Based Diffusion Sampling for Predictive Control in Offline Decision Making
Offline decision-making via diffusion models often produces trajectories that are misaligned with system dynamics, limiting their reliability for control. We propose Model Predictive Diffuser (MPDiffuser), a compositional diffusion framework that combines a diffusion planner with a dynamics diffusion model to generate task-aligned and dynamically plausible trajectories. MPDiffuser interleaves planner and dynamics updates during sampling, progressively correcting feasibility while preserving task intent. A lightweight ranking module then selects trajectories that best satisfy task objectives. The compositional design improves sample efficiency and adaptability by enabling the dynamics model to leverage diverse and previously unseen data independently of the planner. Empirically, we demonstrate consistent improvements over prior diffusion-based methods on unconstrained (D4RL) and constrained (DSRL) benchmarks, and validate practicality through deployment on a real quadrupedal robot.
Collision-free Source Seeking and Flocking Control of Multi-agents with Connectivity Preservation
In this article, we present a distributed source-seeking and flocking control method for networked multi-agent systems with non-holonomic constraints. Based solely on identical on-board sensor systems, which measure the source local field, the group objective is attained by appointing a leader agent to seek the source while the remaining follower agents safely form a cohesive flocking with their neighbors using a distributed flocking control law in a connectivity-preserved undirected network. To guarantee safe separation and group motion for all agents and to solve the conflicts with the "cohesion" flocking rule of Reynolds, the distributed control algorithm is solved individually through feasible CBF-based optimization problem with complex constraints, which guarantees the inter-agent collision avoidance and connectivity preservation. Stability analysis of the closed-loop system is presented and the efficacy of the methods is shown in simulation results.
comment: Published in IEEE Transactions on Automatic Control
ARCAS: An Augmented Reality Collision Avoidance System with SLAM-Based Tracking for Enhancing VRU Safety IV
Vulnerable road users (VRUs) face high collision risks in mixed traffic, yet most existing safety systems prioritize driver or vehicle assistance over direct VRU support. This paper presents ARCAS, a real-time augmented reality (AR) collision avoidance system that provides personalized spatial alerts to VRUs via wearable AR headsets. By fusing roadside 360° 3D LiDAR with SLAM-based headset tracking and an automatic 3D calibration procedure, ARCAS accurately overlays world-locked 3D bounding boxes and directional arrows onto approaching hazards in the user's passthrough view. The system also enables multi-headset coordination through shared world anchoring. Evaluated in real-world pedestrian interactions with e-scooters and vehicles (180 trials), ARCAS nearly doubles pedestrians' time to collision and increases counterparts' reaction margins by up to 4x compared to unaided eye conditions. Results validate the feasibility and effectiveness of LiDAR-driven AR guidance and highlight the potential of wearable AR as a promising next generation safety tool for urban mobility.
comment: 8 pages, 3 figures, 1 table, accepted for IEEE Intelligent Vehicles (IV) Symposium 2026
VGGT-SLAM 2.0: Real-time Dense Feed-forward Scene Reconstruction
We present VGGT-SLAM 2.0, a real-time RGB feed-forward SLAM system which substantially improves upon VGGT-SLAM for incrementally aligning submaps created from VGGT. Firstly, we remove high-dimensional 15-degree-of-freedom drift and planar degeneracy from VGGT-SLAM by creating a new factor graph design while still addressing the reconstruction ambiguity of VGGT given unknown camera intrinsics. Secondly, by studying the attention layers of VGGT, we show that one of the layers is well suited to assist in image retrieval verification for free without additional training, which enables both rejecting false positive matches and allows for completing more loop closures. Finally, we conduct a suite of experiments which includes showing VGGT-SLAM 2.0 can easily be adapted for open-set object detection and demonstrating real-time performance while running online onboard a ground robot using a Jetson Thor. We test in environments ranging from cluttered indoor apartments and office scenes to a 4,200 square foot barn, and we also demonstrate VGGT-SLAM 2.0 achieves the highest accuracy on the TUM dataset with about 23 percent less pose error than VGGT-SLAM. Code will be released upon publication.
Unified Task and Motion Planning using Object-centric Abstractions of Motion Constraints
In task and motion planning (TAMP), the ambiguity and underdetermination of abstract descriptions used by task planning methods make it difficult to characterize physical constraints needed to successfully execute a task. The usual approach is to overlook such constraints at task planning level and to implement expensive sub-symbolic geometric reasoning techniques that perform multiple calls on unfeasible actions, plan corrections, and re-planning until a feasible solution is found. We propose an alternative TAMP approach that unifies task and motion planning into a single heuristic search. Our approach is based on an object-centric abstraction of motion constraints that permits leveraging the computational efficiency of off-the-shelf AI heuristic search to yield physically feasible plans. These plans can be directly transformed into object and motion parameters for task execution without the need of intensive sub-symbolic geometric reasoning.
comment: This version corrects notation in Eqs. (7) and (8) and includes minor changes
Video World Models 7
Deep in the Jungle: Towards Automating Chimpanzee Population Estimation
The estimation of abundance and density in unmarked populations of great apes relies on statistical frameworks that require animal-to-camera distance measurements. In practice, acquiring these distances depends on labour-intensive manual interpretation of animal observations across large camera trap video corpora. This study introduces and evaluates an only sparsely explored alternative: the integration of computer vision-based monocular depth estimation (MDE) pipelines directly into ecological camera trap workflows for great ape conservation. Using a real-world dataset of 220 camera trap videos documenting a wild chimpanzee population, we combine two MDE models, Dense Prediction Transformers and Depth Anything, with multiple distance sampling strategies. These components are used to generate detection distance estimates, from which population density and abundance are inferred. Comparative analysis against manually derived ground-truth distances shows that calibrated DPT consistently outperforms Depth Anything. This advantage is observed in both distance estimation accuracy and downstream density and abundance inference. Nevertheless, both models exhibit systematic biases. We show that, given complex forest environments, they tend to overestimate detection distances and consequently underestimate density and abundance relative to conventional manual approaches. We further find that failures in animal detection across distance ranges are a primary factor limiting estimation accuracy. Overall, this work provides a case study that shows MDE-driven camera trap distance sampling is a viable and practical alternative to manual distance estimation. The proposed approach yields population estimates within 22% of those obtained using traditional methods.
Active Learning-Driven Lightweight YOLOv9: Enhancing Efficiency in Smart Agriculture
This study addresses the demand for real-time detection of tomatoes and tomato flowers by agricultural robots deployed on edge devices in greenhouse environments. Under practical imaging conditions, object detection systems often face challenges such as large scale variations caused by varying camera distances, severe occlusion from plant structures, and highly imbalanced class distributions. These factors make conventional object detection approaches that rely on fully annotated datasets difficult to simultaneously achieve high detection accuracy and deployment efficiency. To overcome these limitations, this research proposes an active learning driven lightweight object detection framework, integrating data analysis, model design, and training strategy. First, the size distribution of objects in raw agricultural images is analyzed to redefine an operational target range, thereby improving learning stability under real-world conditions. Second, an efficient feature extraction module is incorporated to reduce computational cost, while a lightweight attention mechanism is introduced to enhance feature representation under multi-scale and occluded scenarios. Finally, an active learning strategy is employed to iteratively select high-information samples for annotation and training under a limited labeling budget, effectively improving the recognition performance of minority and small-object categories. Experimental results demonstrate that, while maintaining a low parameter count and inference cost suitable for edge-device deployment, the proposed method effectively improves the detection performance of tomatoes and tomato flowers in raw images. Under limited annotation conditions, the framework achieves an overall detection accuracy of 67.8% mAP, validating its practicality and feasibility for intelligent agricultural applications.
VisionTrim: Unified Vision Token Compression for Training-Free MLLM Acceleration ICLR2026
Multimodal large language models (MLLMs) suffer from high computational costs due to excessive visual tokens, particularly in high-resolution and video-based scenarios. Existing token reduction methods typically focus on isolated pipeline components and often neglect textual alignment, leading to performance degradation. In this paper, we propose VisionTrim, a unified framework for training-free MLLM acceleration, integrating two effective plug-and-play modules: 1) the Dominant Vision Token Selection (DVTS) module, which preserves essential visual tokens via a global-local view, and 2) the Text-Guided Vision Complement (TGVC) module, which facilitates context-aware token merging guided by textual cues. Extensive experiments across diverse image and video multimodal benchmarks demonstrate the performance superiority of our VisionTrim, advancing practical MLLM deployment in real-world applications. The code is available at: https://github.com/hanxunyu/VisionTrim.
comment: ICLR2026, Code Link: https://github.com/hanxunyu/VisionTrim
PhoStream: Benchmarking Real-World Streaming for Omnimodal Assistants in Mobile Scenarios
Multimodal Large Language Models excel at offline audio-visual understanding, but their ability to serve as mobile assistants in continuous real-world streams remains underexplored. In daily phone use, mobile assistants must track streaming audio-visual inputs and respond at the right time, yet existing benchmarks are often restricted to multiple-choice questions or use shorter videos. In this paper, we introduce PhoStream, the first mobile-centric streaming benchmark that unifies on-screen and off-screen scenarios to evaluate video, audio, and temporal reasoning. PhoStream contains 5,572 open-ended QA pairs from 578 videos across 4 scenarios and 10 capabilities. We build it with an Automated Generative Pipeline backed by rigorous human verification, and evaluate models using a realistic Online Inference Pipeline and LLM-as-a-Judge evaluation for open-ended responses. Experiments reveal a temporal asymmetry in LLM-judged scores (0-100): models perform well on Instant and Backward tasks (Gemini 3 Pro exceeds 80), but drop sharply on Forward tasks (16.40), largely due to early responses before the required visual and audio cues appear. This highlights a fundamental limitation: current MLLMs struggle to decide when to speak, not just what to say. Code and datasets used in this work will be made publicly accessible at https://github.com/Lucky-Lance/PhoStream.
comment: 18 pages
EndoCaver: Handling Fog, Blur and Glare in Endoscopic Images via Joint Deblurring-Segmentation
Endoscopic image analysis is vital for colorectal cancer screening, yet real-world conditions often suffer from lens fogging, motion blur, and specular highlights, which severely compromise automated polyp detection. We propose EndoCaver, a lightweight transformer with a unidirectional-guided dual-decoder architecture, enabling joint multi-task capability for image deblurring and segmentation while significantly reducing computational complexity and model parameters. Specifically, it integrates a Global Attention Module (GAM) for cross-scale aggregation, a Deblurring-Segmentation Aligner (DSA) to transfer restoration cues, and a cosine-based scheduler (LoCoS) for stable multi-task optimisation. Experiments on the Kvasir-SEG dataset show that EndoCaver achieves 0.922 Dice on clean data and 0.889 under severe image degradation, surpassing state-of-the-art methods while reducing model parameters by 90%. These results demonstrate its efficiency and robustness, making it well-suited for on-device clinical deployment. Code is available at https://github.com/ReaganWu/EndoCaver.
comment: Accepted for publication at IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2026
AccidentSim: Generating Vehicle Collision Videos with Physically Realistic Collision Trajectories from Real-World Accident Reports
Collecting real-world vehicle accident videos for autonomous driving research is challenging due to their rarity and complexity. While existing driving video generation methods may produce visually realistic videos, they often fail to deliver physically realistic simulations because they lack the capability to generate accurate post-collision trajectories. In this paper, we introduce AccidentSim, a novel framework that generates physically realistic vehicle collision videos by extracting and utilizing the physical clues and contextual information available in real-world vehicle accident reports. Specifically, AccidentSim leverages a reliable physical simulator to replicate post-collision vehicle trajectories from the physical and contextual information in the accident reports and to build a vehicle collision trajectory dataset. This dataset is then used to fine-tune a language model, enabling it to respond to user prompts and predict physically consistent post-collision trajectories across various driving scenarios based on user descriptions. Finally, we employ Neural Radiance Fields (NeRF) to render high-quality backgrounds, merging them with the foreground vehicles that exhibit physically realistic trajectories to generate vehicle collision videos. Experimental results demonstrate that the videos produced by AccidentSim excel in both visual and physical authenticity.
LoCoT2V-Bench: Benchmarking Long-Form and Complex Text-to-Video Generation
Recent advances in text-to-video generation have achieved impressive performance on short clips, yet evaluating long-form generation under complex textual inputs remains a significant challenge. In response to this challenge, we present LoCoT2V-Bench, a benchmark for long video generation (LVG) featuring multi-scene prompts with hierarchical metadata (e.g., character settings and camera behaviors), constructed from collected real-world videos. We further propose LoCoT2V-Eval, a multi-dimensional framework covering perceptual quality, text-video alignment, temporal quality, dynamic quality, and Human Expectation Realization Degree (HERD), with an emphasis on aspects such as fine-grained text-video alignment and temporal character consistency. Experiments on 13 representative LVG models reveal pronounced capability disparities across evaluation dimensions, with strong perceptual quality and background consistency but markedly weaker fine-grained text-video alignment and character consistency. These findings suggest that improving prompt faithfulness and identity preservation remains a key challenge for long-form video generation.
Embodied Intelligence 26
End-to-end Optimization of Belief and Policy Learning in Shared Autonomy Paradigms
Shared autonomy systems require principled methods for inferring user intent and determining appropriate assistance levels. This is a central challenge in human-robot interaction, where systems must be successful while being mindful of user agency. Previous approaches relied on static blending ratios or separated goal inference from assistance arbitration, leading to suboptimal performance in unstructured environments. We introduce BRACE (Bayesian Reinforcement Assistance with Context Encoding), a novel framework that fine-tunes Bayesian intent inference and context-adaptive assistance through an architecture enabling end-to-end gradient flow between intent inference and assistance arbitration. Our pipeline conditions collaborative control policies on environmental context and complete goal probability distributions. We provide analysis showing (1) optimal assistance levels should decrease with goal uncertainty and increase with environmental constraint severity, and (2) integrating belief information into policy learning yields a quadratic expected regret advantage over sequential approaches. We validated our algorithm against SOTA methods (IDA, DQN) using a three-part evaluation progressively isolating distinct challenges of end-effector control: (1) core human-interaction dynamics in a 2D human-in-the-loop cursor task, (2) non-linear dynamics of a robotic arm, and (3) integrated manipulation under goal ambiguity and environmental constraints. We demonstrate improvements over SOTA, achieving 6.3% higher success rates and 41% increased path efficiency, and 36.3% success rate and 87% path efficiency improvement over unassisted control. Our results confirmed that integrated optimization is most beneficial in complex, goal-ambiguous scenarios, and is generalizable across robotic domains requiring goal-directed assistance, advancing the SOTA for adaptive shared autonomy.
Securing Time in Energy IoT: A Clock-Dynamics-Aware Spatio-Temporal Graph Attention Network for Clock Drift Attacks and Y2K38 Failures
The integrity of time in distributed Internet of Things (IoT) devices is crucial for reliable operation in energy cyber-physical systems, such as smart grids and microgrids. However, IoT systems are vulnerable to clock drift, time-synchronization manipulation, and timestamp discontinuities, such as the Year 2038 (Y2K38) Unix overflow, all of which disrupt temporal ordering. Conventional anomaly-detection models, which assume reliable timestamps, fail to capture temporal inconsistencies. This paper introduces STGAT (Spatio-Temporal Graph Attention Network), a framework that models both temporal distortion and inter-device consistency in energy IoT systems. STGAT combines drift-aware temporal embeddings and temporal self-attention to capture corrupted time evolution at individual devices, and uses graph attention to model spatial propagation of timing errors. A curvature-regularized latent representation geometrically separates normal clock evolution from anomalies caused by drift, synchronization offsets, and overflow events. Experimental results on energy IoT telemetry with controlled timing perturbations show that STGAT achieves 95.7% accuracy, outperforming recurrent, transformer, and graph-based baselines with significant improvements (d > 1.8, p < 0.001). Additionally, STGAT reduces detection delay by 26%, achieving a 2.3-time-step delay while maintaining stable performance under overflow, drift, and physical inconsistencies.
Secure Tool Manifest and Digital Signing Solution for Verifiable MCP and LLM Pipelines
Large Language Models (LLMs) are increasingly adopted in sensitive domains such as healthcare and financial institutions' data analytics; however, their execution pipelines remain vulnerable to manipulation and unverifiable behavior. Existing control mechanisms, such as the Model Context Protocol (MCP), define compliance policies for tool invocation but lack verifiable enforcement and transparent validation of model actions. To address this gap, we propose a novel Secure Tool Manifest and Digital Signing Framework, a structured and security-aware extension of Model Context Protocols. The framework enforces cryptographically signed manifests, integrates transparent verification logs, and isolates model-internal execution metadata from user-visible components to ensure verifiable execution integrity. Furthermore, the evaluation demonstrates that the framework scales nearly linearly (R-squared = 0.998), achieves near-perfect acceptance of valid executions while consistently rejecting invalid ones, and maintains balanced model utilization across execution pipelines.
Temporally Coherent Imitation Learning via Latent Action Flow Matching for Robotic Manipulation
Learning long-horizon robotic manipulation requires jointly achieving expressive behavior modeling, real-time inference, and stable execution, which remains challenging for existing generative policies. Diffusion-based approaches provide strong modeling capacity but typically incur high inference latency, while flow matching enables fast one-step generation yet often leads to unstable execution when applied directly in the raw action space. We propose LG-Flow Policy, a trajectory-level imitation learning framework that performs flow matching in a continuous latent action space. By encoding action sequences into temporally regularized latent trajectories and learning an explicit latent-space flow, the proposed approach decouples global motion structure from low-level control noise, resulting in smooth and reliable long-horizon execution. LG-Flow Policy further incorporates geometry-aware point cloud conditioning and execution-time multimodal modulation, with visual cues evaluated as a representative modality in real-world settings. Experimental results in simulation and on physical robot platforms demonstrate that LG-Flow Policy achieves near single-step inference, substantially improves trajectory smoothness and task success over flow-based baselines operating in the raw action space, and remains significantly more efficient than diffusion-based policies.
comment: 8 pages, 8 figures
Learning Geometrically-Grounded 3D Visual Representations for View-Generalizable Robotic Manipulation
Real-world robotic manipulation demands visuomotor policies capable of robust spatial scene understanding and strong generalization across diverse camera viewpoints. While recent advances in 3D-aware visual representations have shown promise, they still suffer from several key limitations, including reliance on multi-view observations during inference which is impractical in single-view restricted scenarios, incomplete scene modeling that fails to capture holistic and fine-grained geometric structures essential for precise manipulation, and lack of effective policy training strategies to retain and exploit the acquired 3D knowledge. To address these challenges, we present MethodName, a unified representation-policy learning framework for view-generalizable robotic manipulation. MethodName introduces a single-view 3D pretraining paradigm that leverages point cloud reconstruction and feed-forward gaussian splatting under multi-view supervision to learn holistic geometric representations. During policy learning, MethodName performs multi-step distillation to preserve the pretrained geometric understanding and effectively transfer it to manipulation skills. We conduct experiments on 12 RLBench tasks, where our approach outperforms the previous state-of-the-art method by 12.7% in average success rate. Further evaluation on six representative tasks demonstrates strong zero-shot view generalization, with success rate drops of only 22.0% and 29.7% under moderate and large viewpoint shifts respectively, whereas the state-of-the-art method suffers larger decreases of 41.6% and 51.5%.
Alignment among Language, Vision and Action Representations
A fundamental question in cognitive science and AI concerns whether different learning modalities: language, vision, and action, give rise to distinct or shared internal representations. Traditional views assume that models trained on different data types develop specialized, non-transferable representations. However, recent evidence suggests unexpected convergence: models optimized for distinct tasks may develop similar representational geometries. We investigate whether this convergence extends to embodied action learning by training a transformer-based agent to execute goal-directed behaviors in response to natural language instructions. Using behavioral cloning on the BabyAI platform, we generated action-grounded language embeddings shaped exclusively by sensorimotor control requirements. We then compared these representations with those extracted from state-of-the-art large language models (LLaMA, Qwen, DeepSeek, BERT) and vision-language models (CLIP, BLIP). Despite substantial differences in training data, modality, and objectives, we observed robust cross-modal alignment. Action representations aligned strongly with decoder-only language models and BLIP (precision@15: 0.70-0.73), approaching the alignment observed among language models themselves. Alignment with CLIP and BERT was significantly weaker. These findings indicate that linguistic, visual, and action representations converge toward partially shared semantic structures, supporting modality-independent semantic organization and highlighting potential for cross-domain transfer in embodied AI systems.
FlyAware: Inertia-Aware Aerial Manipulation via Vision-Based Estimation and Post-Grasp Adaptation
Aerial manipulators (AMs) are gaining increasing attention in automated transportation and emergency services due to their superior dexterity compared to conventional multirotor drones. However, their practical deployment is challenged by the complexity of time-varying inertial parameters, which are highly sensitive to payload variations and manipulator configurations. Inspired by human strategies for interacting with unknown objects, this letter presents a novel onboard framework for robust aerial manipulation. The proposed system integrates a vision-based pre-grasp inertia estimation module with a post-grasp adaptation mechanism, enabling real-time estimation and adaptation of inertial dynamics. For control, we develop an inertia-aware adaptive control strategy based on gain scheduling, and assess its robustness via frequency-domain system identification. Our study provides new insights into post-grasp control for AMs, and real-world experiments validate the effectiveness and feasibility of the proposed framework.
comment: 8 pages, 10 figures
Postural Virtual Fixtures for Ergonomic Physical Interactions with Supernumerary Robotic Bodies
Conjoined collaborative robots, functioning as supernumerary robotic bodies (SRBs), can enhance human load tolerance abilities. However, in tasks involving physical interaction with humans, users may still adopt awkward, non-ergonomic postures, which can lead to discomfort or injury over time. In this paper, we propose a novel control framework that provides kinesthetic feedback to SRB users when a non-ergonomic posture is detected, offering resistance to discourage such behaviors. This approach aims to foster long-term learning of ergonomic habits and promote proper posture during physical interactions. To achieve this, a virtual fixture method is developed, integrated with a continuous, online ergonomic posture assessment framework. Additionally, to improve coordination between the operator and the SRB, which consists of a robotic arm mounted on a floating base, the position of the floating base is adjusted as needed. Experimental results demonstrate the functionality and efficacy of the ergonomics-driven control framework, including two user studies involving practical loco-manipulation tasks with 14 subjects, comparing the proposed framework with a baseline control framework that does not account for human ergonomics.
comment: Published in The International Journal of Robotics Research
Test-Time Mixture of World Models for Embodied Agents in Dynamic Environments ICLR 2026
Language model (LM)-based embodied agents are increasingly deployed in real-world settings. Yet, their adaptability remains limited in dynamic environments, where constructing accurate and flexible world models is crucial for effective reasoning and decision-making. To address this challenge, we extend the Mixture-of-Experts (MoE) paradigm to embodied agents. While conventional MoE architectures modularize knowledge into expert components with pre-trained routing, they remain rigid once deployed, making them less effective for adapting to unseen domains in dynamic environments. We therefore propose Test-time Mixture of World Models (TMoW), a framework that enhances adaptability to unseen and evolving domains. TMoW updates its routing function over world models at test time, unlike conventional MoE where the function remains fixed, enabling agents to recombine existing models and integrate new ones for continual adaptation. It achieves this through (i) multi-granular prototype-based routing, which adapts mixtures across object- to scene-level similarities, (ii) test-time refinement that aligns unseen domain features with prototypes during inference, and (iii) distilled mixture-based augmentation, which efficiently constructs new models from few-shot data and existing prototypes. We evaluate TMoW on VirtualHome, ALFWorld, and RLBench benchmarks, demonstrating strong performance in both zero-shot adaptation and few-shot expansion scenarios, and showing that it enables embodied agents to operate effectively in dynamic environments.
comment: Accepted at ICLR 2026. 10 pages. Code available at https://github.com/doldam0/tmow
Whispers of Wealth: Red-Teaming Google's Agent Payments Protocol via Prompt Injection
Large language model (LLM) based agents are increasingly used to automate financial transactions, yet their reliance on contextual reasoning exposes payment systems to prompt-driven manipulation. The Agent Payments Protocol (AP2) aims to secure agent-led purchases through cryptographically verifiable mandates, but its practical robustness remains underexplored. In this work, we perform an AI red-teaming evaluation of AP2 and identify vulnerabilities arising from indirect and direct prompt injection. We introduce two attack techniques, the Branded Whisper Attack and the Vault Whisper Attack which manipulate product ranking and extract sensitive user data. Using a functional AP2 based shopping agent built with Gemini-2.5-Flash and the Google ADK framework, we experimentally validate that simple adversarial prompts can reliably subvert agent behavior. Our findings reveal critical weaknesses in current agentic payment architectures and highlight the need for stronger isolation and defensive safeguards in LLM-mediated financial systems.
FraudShield: Knowledge Graph Empowered Defense for LLMs against Fraud Attacks
Large language models (LLMs) have been widely integrated into critical automated workflows, including contract review and job application processes. However, LLMs are susceptible to manipulation by fraudulent information, which can lead to harmful outcomes. Although advanced defense methods have been developed to address this issue, they often exhibit limitations in effectiveness, interpretability, and generalizability, particularly when applied to LLM-based applications. To address these challenges, we introduce FraudShield, a novel framework designed to protect LLMs from fraudulent content by leveraging a comprehensive analysis of fraud tactics. Specifically, FraudShield constructs and refines a fraud tactic-keyword knowledge graph to capture high-confidence associations between suspicious text and fraud techniques. The structured knowledge graph augments the original input by highlighting keywords and providing supporting evidence, guiding the LLM toward more secure responses. Extensive experiments show that FraudShield consistently outperforms state-of-the-art defenses across four mainstream LLMs and five representative fraud types, while also offering interpretable clues for the model's generations.
comment: WWW 2026
CARE: Multi-Task Pretraining for Latent Continuous Action Representation in Robot Control
Recent advances in Vision-Language-Action (VLA) models have shown promise for robot control, but their dependence on action supervision limits scalability and generalization. To address this challenge, we introduce CARE, a novel framework designed to train VLA models for robotic task execution. Unlike existing methods that depend on action annotations during pretraining, CARE eliminates the need for explicit action labels by leveraging only video-text pairs. These weakly aligned data sources enable the model to learn continuous latent action representations through a newly designed multi-task pretraining objective. During fine-tuning, a small set of labeled data is used to train the action head for control. Experimental results across various simulation tasks demonstrate CARE's superior success rate, semantic interpretability, and ability to avoid shortcut learning. These results underscore CARE's scalability, interpretability, and effectiveness in robotic control with weak supervision.
comment: Accepted to 2026 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2026)
AI and My Values: User Perceptions of LLMs' Ability to Extract, Embody, and Explain Human Values from Casual Conversations
Does AI understand human values? While this remains an open philosophical question, we take a pragmatic stance by introducing VAPT, the Value-Alignment Perception Toolkit, for studying how LLMs reflect people's values and how people judge those reflections. 20 participants texted a human-like chatbot over a month, then completed a 2-hour interview with our toolkit evaluating AI's ability to extract (pull details regarding), embody (make decisions guided by), and explain (provide proof of) human values. 13 participants left our study convinced that AI can understand human values. Participants found the experience insightful for self-reflection and found themselves getting persuaded by the AI's reasoning. Thus, we warn about "weaponized empathy": a potentially dangerous design pattern that may arise in value-aligned, yet welfare-misaligned AI. VAPT offers concrete artifacts and design implications to evaluate and responsibly build value-aligned conversational agents with transparency, consent, and safeguards as AI grows more capable and human-like into the future.
comment: To appear in CHI '26
Open-Vocabulary Functional 3D Human-Scene Interaction Generation
Generating 3D humans that functionally interact with 3D scenes remains an open problem with applications in embodied AI, robotics, and interactive content creation. The key challenge involves reasoning about both the semantics of functional elements in 3D scenes and the 3D human poses required to achieve functionality-aware interaction. Unfortunately, existing methods typically lack explicit reasoning over object functionality and the corresponding human-scene contact, resulting in implausible or functionally incorrect interactions. In this work, we propose FunHSI, a training-free, functionality-driven framework that enables functionally correct human-scene interactions from open-vocabulary task prompts. Given a task prompt, FunHSI performs functionality-aware contact reasoning to identify functional scene elements, reconstruct their 3D geometry, and model high-level interactions via a contact graph. We then leverage vision-language models to synthesize a human performing the task in the image and estimate proposed 3D body and hand poses. Finally, the proposed 3D body configuration is refined via stage-wise optimization to ensure physical plausibility and functional correctness. In contrast to existing methods, FunHSI not only synthesizes more plausible general 3D interactions, such as "sitting on a sofa'', while supporting fine-grained functional human-scene interactions, e.g., "increasing the room temperature''. Extensive experiments demonstrate that FunHSI consistently generates functionally correct and physically plausible human-scene interactions across diverse indoor and outdoor scenes.
comment: 18 pages
PocketDP3: Efficient Pocket-Scale 3D Visuomotor Policy
Recently, 3D vision-based diffusion policies have shown strong capability in learning complex robotic manipulation skills. However, a common architectural mismatch exists in these models: a tiny yet efficient point-cloud encoder is often paired with a massive decoder. Given a compact scene representation, we argue that this may lead to substantial parameter waste in the decoder. Motivated by this observation, we propose PocketDP3, a pocket-scale 3D diffusion policy that replaces the heavy conditional U-Net decoder used in prior methods with a lightweight Diffusion Mixer (DiM) built on MLP-Mixer blocks. This architecture enables efficient fusion across temporal and channel dimensions, significantly reducing model size. Notably, without any additional consistency distillation techniques, our method supports two-step inference without sacrificing performance, improving practicality for real-time deployment. Across three simulation benchmarks--RoboTwin2.0, Adroit, and MetaWorld--PocketDP3 achieves state-of-the-art performance with fewer than 1% of the parameters of prior methods, while also accelerating inference. Real-world experiments further demonstrate the practicality and transferability of our method in real-world settings. Code will be released.
TaF-VLA: Tactile-Force Alignment in Vision-Language-Action Models for Force-aware Manipulation
Vision-Language-Action (VLA) models have recently emerged as powerful generalists for robotic manipulation. However, due to their predominant reliance on visual modalities, they fundamentally lack the physical intuition required for contact-rich tasks that require precise force regulation and physical reasoning. Existing attempts to incorporate vision-based tactile sensing into VLA models typically treat tactile inputs as auxiliary visual textures, thereby overlooking the underlying correlation between surface deformation and interaction dynamics. To bridge this gap, we propose a paradigm shift from tactile-vision alignment to tactile-force alignment. Here, we introduce TaF-VLA, a framework that explicitly grounds high-dimensional tactile observations in physical interaction forces. To facilitate this, we develop an automated tactile-force data acquisition device and curate the TaF-Dataset, comprising over 10 million synchronized tactile observations, 6-axis force/torque, and matrix force map. To align sequential tactile observations with interaction forces, the central component of our approach is the Tactile-Force Adapter (TaF-Adapter), a tactile sensor encoder that extracts discretized latent information for encoding tactile observations. This mechanism ensures that the learned representations capture history-dependent, noise-insensitive physical dynamics rather than static visual textures. Finally, we integrate this force-aligned encoder into a VLA backbone. Extensive real-world experiments demonstrate that TaF-VLA policy significantly outperforms state-of-the-art tactile-vision-aligned and vision-only baselines on contact-rich tasks, verifying its ability to achieve robust, force-aware manipulation through cross-modal physical reasoning.
comment: 17pages,9fig
MemoryVLA: Perceptual-Cognitive Memory in Vision-Language-Action Models for Robotic Manipulation ICLR 2026
Temporal context is essential for robotic manipulation because such tasks are inherently non-Markovian, yet mainstream VLA models typically overlook it and struggle with long-horizon, temporally dependent tasks. Cognitive science suggests that humans rely on working memory to buffer short-lived representations for immediate control, while the hippocampal system preserves verbatim episodic details and semantic gist of past experience for long-term memory. Inspired by these mechanisms, we propose MemoryVLA, a Cognition-Memory-Action framework for long-horizon robotic manipulation. A pretrained VLM encodes the observation into perceptual and cognitive tokens that form working memory, while a Perceptual-Cognitive Memory Bank stores low-level details and high-level semantics consolidated from it. Working memory retrieves decision-relevant entries from the bank, adaptively fuses them with current tokens, and updates the bank by merging redundancies. Using these tokens, a memory-conditioned diffusion action expert yields temporally aware action sequences. We evaluate MemoryVLA on 150+ simulation and real-world tasks across three robots. On SimplerEnv-Bridge, Fractal, LIBERO-5 suites and Mikasa-Robo, it achieves 71.9%, 72.7%, 96.5%, and 41.2% success rates, respectively, all outperforming state-of-the-art baselines CogACT and pi-0, with a notable +14.6 gain on Bridge and +11.8 gain on Mikasa-Robo. On 12 real-world tasks spanning general skills and long-horizon temporal dependencies, MemoryVLA achieves 84.0% success rate, with long-horizon tasks showing a +26 improvement over state-of-the-art baseline. Project Page: https://shihao1895.github.io/MemoryVLA
comment: ICLR 2026 | The project is available at https://shihao1895.github.io/MemoryVLA
TwinBrainVLA: Unleashing the Potential of Generalist VLMs for Embodied Tasks via Asymmetric Mixture-of-Transformers
The fundamental premise of Vision-Language-Action (VLA) models is to harness the extensive general capabilities of pre-trained Vision-Language Models (VLMs) for generalized embodied intelligence. However, standard robotic fine-tuning inevitably disrupts the pre-trained feature space, leading to "catastrophic forgetting" that compromises the general visual understanding we aim to leverage. To effectively utilize the uncorrupted general capabilities of VLMs for robotic tasks, we propose TwinBrainVLA, which coordinates two isomorphic VLM pathways: a frozen generalist (also called "Left Brain") and a trainable specialist (also called "Right Brain"). Our architecture utilizes a Asymmetric Mixture-of-Transformers (AsyMoT) mechanism, enabling the Right Brain to dynamically query and fuse intact semantic knowledge from the Left Brain with proprioceptive states. This fused representation conditions a flow-matching action expert for precise continuous control. Empirical results on SimplerEnv and RoboCasa benchmarks demonstrate that by explicitly retaining general capabilities, TwinBrainVLA achieves substantial performance gains over baseline models in complex manipulation tasks.
comment: GitHub: https://github.com/ZGC-EmbodyAI/TwinBrainVLA
FloorplanQA: A Benchmark for Spatial Reasoning in LLMs using Structured Representations
We introduce FloorplanQA, a diagnostic benchmark for evaluating spatial reasoning in large-language models (LLMs). FloorplanQA is grounded in structured representations of indoor scenes, such as (e.g., kitchens, living rooms, bedrooms, bathrooms, and others), encoded symbolically in JSON or XML layouts. The benchmark covers core spatial tasks, including distance measurement, visibility, path finding, and object placement within constrained spaces. Our results across a variety of frontier open-source and commercial LLMs reveal that while models may succeed in shallow queries, they often fail to respect physical constraints, preserve spatial coherence, though they remain mostly robust to small spatial perturbations. FloorplanQA uncovers a blind spot in today's LLMs: inconsistent reasoning about indoor layouts. We hope this benchmark inspires new work on language models that can accurately infer and manipulate spatial and geometric properties in practical settings.
comment: v3, Project page: https://huggingface.co/papers/2507.07644
Collaborative Belief Reasoning with LLMs for Efficient Multi-Agent Collaboration
Effective real-world multi-agent collaboration requires not only accurate planning but also the ability to reason about collaborators' intents--a crucial capability for avoiding miscoordination and redundant communication under partial observable environments. Due to their strong planning and reasoning capabilities, large language models (LLMs) have emerged as promising autonomous agents for collaborative task solving. However, existing collaboration frameworks for LLMs overlook their reasoning potential for dynamic intent inference, and thus produce inconsistent plans and redundant communication, reducing collaboration efficiency. To bridge this gap, we propose CoBel-World, a novel framework that equips LLM agents with a Collaborative Belief World--an internal representation jointly modeling the physical environment and collaborators' mental states. CoBel-World enables agents to parse external open-world knowledge into structured beliefs via a symbolic belief representation module, and perform zero-shot Bayesian-style belief updates through LLM reasoning. This allows agents to proactively detect potential miscoordination (e.g., conflicting plans) and communicate adaptively. Evaluated on challenging embodied benchmarks (i.e., TDW-MAT and C-WAH), CoBel-World significantly reduces communication costs by 64-79% and improves task completion efficiency by 4-28% compared to the strongest baseline. Our results show that explicit, intent-aware belief modeling is essential for efficient and human-like collaboration in LLM-based multi-agent systems.
Spattack: Subgroup Poisoning Attacks on Federated Recommender Systems
Federated recommender systems (FedRec) have emerged as a promising approach to provide personalized recommendations while protecting user privacy. However, recent studies have shown their vulnerability to poisoning attacks, where malicious clients inject crafted gradients to promote target items to benign users. Existing attacks typically target the full user group, which compromises stealth and increases detection risk. In contrast, real-world adversaries may prefer to target specific user subgroups, such as promoting health supplements to older individuals, to maximize effectiveness while preserving stealth. Motivated by this gap, we introduce Spattack, the first poisoning attack designed to manipulate recommendations for specific user subgroups in federated settings. Spattack adopts an approximate-and-promote paradigm, which approximates user embeddings of target and non-target subgroups and then promotes target items to the target subgroup. We further reveal a trade-off between strong attack performance on the target subgroup and limited impact on the non-target subgroup. To achieve a better trade-off, we propose enhanced approximation and promotion strategies. For approximation, we push embeddings of different subgroups apart via contrastive learning and augment the target subgroup's relevant item set through clustering. For promotion, we align embeddings of target items and relevant items to strengthen their semantic connections, together with an adaptive weighting strategy to balance effects across subgroups. Experiments on three real-world datasets demonstrate that Spattack achieves strong attack performance on the target subgroup with minimal impact on non-target users, even when only 0.1% of users are malicious. Moreover, Spattack maintains competitive recommendation performance and shows strong resilience against mainstream defenses.
comment: Accepted by WWW 2026
EgoMem: Lifelong Memory Agent for Full-duplex Omnimodal Models
We introduce EgoMem, the first lifelong memory agent tailored for full-duplex models that process real-time omnimodal streams. EgoMem enables real-time models to recognize multiple users directly from raw audiovisual streams, to provide personalized response, and to maintain long-term knowledge of users' facts, preferences, and social relationships extracted from audiovisual history. EgoMem operates with three asynchronous processes: (i) a retrieval process that dynamically identifies user via face and voice, and gathers relevant context from a long-term memory; (ii) an omnimodal dialog process that generates personalized audio responses based on the retrieved context; and (iii) a memory management process that automatically detects dialog boundaries from omnimodal streams, and extracts necessary information to update the long-term memory. Unlike existing memory agents for LLMs, EgoMem relies entirely on raw audiovisual streams, making it especially suitable for lifelong, real-time, and embodied scenarios. Experimental results demonstrate that EgoMem's retrieval and memory management modules achieve over 95% accuracy on the test set. When integrated with a fine-tuned RoboEgo omnimodal chatbot, the system achieves fact-consistency scores above 87% in real-time personalized dialogs, establishing a strong baseline for future research.
ReGlove: A Soft Pneumatic Glove for Activities of Daily Living Assistance via Wrist-Mounted Vision
This paper presents ReGlove, a system that converts low-cost commercial pneumatic rehabilitation gloves into vision-guided assistive orthoses. Chronic upper-limb impairment affects millions worldwide, yet existing assistive technologies remain prohibitively expensive or rely on unreliable biological signals. Our platform integrates a wrist-mounted camera with an edge-computing inference engine (Raspberry Pi 5) to enable context-aware grasping without requiring reliable muscle signals. By adapting real-time YOLO-based computer vision models, the system achieves 96.73% grasp classification accuracy with sub-40.00 millisecond end-to-end latency. Physical validation using standardized benchmarks shows 82.71% success on YCB object manipulation and reliable performance across 27 Activities of Daily Living (ADL) tasks. With a total cost under $250 and exclusively commercial components, ReGlove provides a technical foundation for accessible, vision-based upper-limb assistance that could benefit populations excluded from traditional EMG-controlled devices.
VAT: Vision Action Transformer by Unlocking Full Representation of ViT
In robot learning, Vision Transformers (ViTs) are standard for visual perception, yet most methods discard valuable information by using only the final layer's features. We argue this provides an insufficient representation and propose the Vision Action Transformer (VAT), a novel architecture that is extended from ViT and unlocks the full feature hierarchy of ViT. VAT processes specialized action tokens with visual features across all transformer layers, enabling a deep and progressive fusion of perception and action generation. On a suite of simulated manipulation tasks, VAT achieves a 98.15\% average success rate across four LIBERO benchmarks, establishing a new state-of-the-art by outperforming prior methods like OpenVLA-OFT. Our work presents not only a powerful model for imitation learning but also demonstrates the critical importance of leveraging the complete ''representation trajectory'' of vision models to advance robotic policy. The GitHub URL for the project code is https://github.com/sellerbubble/VAT.
Emotions Where Art Thou: Understanding and Characterizing the Emotional Latent Space of Large Language Models
This work investigates how large language models (LLMs) internally represent emotion by analyzing the geometry of their hidden-state space. The paper identifies a low-dimensional emotional manifold and shows that emotional representations are directionally encoded, distributed across layers, and aligned with interpretable dimensions. These structures are stable across depth and generalize to eight real-world emotion datasets spanning five languages. Cross-domain alignment yields low error and strong linear probe performance, indicating a universal emotional subspace. Within this space, internal emotion perception can be steered while preserving semantics using a learned intervention module, with especially strong control for basic emotions across languages. These findings reveal a consistent and manipulable affective geometry in LLMs and offer insight into how they internalize and process emotion.
EquiContact: A Hierarchical SE(3) Vision-to-Force Equivariant Policy for Spatially Generalizable Contact-rich Tasks RSS
This paper presents a framework for learning vision-based robotic policies for contact-rich manipulation tasks that generalize spatially across task configurations. We focus on achieving robust spatial generalization of the policy for the peg-in-hole (PiH) task trained from a small number of demonstrations. We propose EquiContact, a hierarchical policy composed of a high-level vision planner (Diffusion Equivariant Descriptor Field, Diff-EDF) and a novel low-level compliant visuomotor policy (Geometric Compliant ACT, G-CompACT). G-CompACT operates using only localized observations (geometrically consistent error vectors (GCEV), force-torque readings, and wrist-mounted RGB images) and produces actions defined in the end-effector frame. Through these design choices, we show that the entire EquiContact pipeline is SE(3)-equivariant, from perception to force control. We also outline three key components for spatially generalizable contact-rich policies: compliance, localized policies, and induced equivariance. Real-world experiments on PiH, screwing, and surface wiping tasks demonstrate a near-perfect success rate and robust generalization to unseen spatial configurations, validating the proposed framework and principles. The experimental videos and more details can be found on the project website: https://equicontact.github.io/EquiContact-website/
comment: Submitted to RSS
End-to-End AD 33
VideoGPA: Distilling Geometry Priors for 3D-Consistent Video Generation
While recent video diffusion models (VDMs) produce visually impressive results, they fundamentally struggle to maintain 3D structural consistency, often resulting in object deformation or spatial drift. We hypothesize that these failures arise because standard denoising objectives lack explicit incentives for geometric coherence. To address this, we introduce VideoGPA (Video Geometric Preference Alignment), a data-efficient self-supervised framework that leverages a geometry foundation model to automatically derive dense preference signals that guide VDMs via Direct Preference Optimization (DPO). This approach effectively steers the generative distribution toward inherent 3D consistency without requiring human annotations. VideoGPA significantly enhances temporal stability, physical plausibility, and motion coherence using minimal preference pairs, consistently outperforming state-of-the-art baselines in extensive experiments.
End-to-end Optimization of Belief and Policy Learning in Shared Autonomy Paradigms
Shared autonomy systems require principled methods for inferring user intent and determining appropriate assistance levels. This is a central challenge in human-robot interaction, where systems must be successful while being mindful of user agency. Previous approaches relied on static blending ratios or separated goal inference from assistance arbitration, leading to suboptimal performance in unstructured environments. We introduce BRACE (Bayesian Reinforcement Assistance with Context Encoding), a novel framework that fine-tunes Bayesian intent inference and context-adaptive assistance through an architecture enabling end-to-end gradient flow between intent inference and assistance arbitration. Our pipeline conditions collaborative control policies on environmental context and complete goal probability distributions. We provide analysis showing (1) optimal assistance levels should decrease with goal uncertainty and increase with environmental constraint severity, and (2) integrating belief information into policy learning yields a quadratic expected regret advantage over sequential approaches. We validated our algorithm against SOTA methods (IDA, DQN) using a three-part evaluation progressively isolating distinct challenges of end-effector control: (1) core human-interaction dynamics in a 2D human-in-the-loop cursor task, (2) non-linear dynamics of a robotic arm, and (3) integrated manipulation under goal ambiguity and environmental constraints. We demonstrate improvements over SOTA, achieving 6.3% higher success rates and 41% increased path efficiency, and 36.3% success rate and 87% path efficiency improvement over unassisted control. Our results confirmed that integrated optimization is most beneficial in complex, goal-ambiguous scenarios, and is generalizable across robotic domains requiring goal-directed assistance, advancing the SOTA for adaptive shared autonomy.
IRL-DAL: Safe and Adaptive Trajectory Planning for Autonomous Driving via Energy-Guided Diffusion Models
This paper proposes a novel inverse reinforcement learning framework using a diffusion-based adaptive lookahead planner (IRL-DAL) for autonomous vehicles. Training begins with imitation from an expert finite state machine (FSM) controller to provide a stable initialization. Environment terms are combined with an IRL discriminator signal to align with expert goals. Reinforcement learning (RL) is then performed with a hybrid reward that combines diffuse environmental feedback and targeted IRL rewards. A conditional diffusion model, which acts as a safety supervisor, plans safe paths. It stays in its lane, avoids obstacles, and moves smoothly. Then, a learnable adaptive mask (LAM) improves perception. It shifts visual attention based on vehicle speed and nearby hazards. After FSM-based imitation, the policy is fine-tuned with Proximal Policy Optimization (PPO). Training is run in the Webots simulator with a two-stage curriculum. A 96\% success rate is reached, and collisions are reduced to 0.05 per 1k steps, marking a new benchmark for safe navigation. By applying the proposed approach, the agent not only drives in lane but also handles unsafe conditions at an expert level, increasing robustness.We make our code publicly available.
PaperBanana: Automating Academic Illustration for AI Scientists
Despite rapid advances in autonomous AI scientists powered by language models, generating publication-ready illustrations remains a labor-intensive bottleneck in the research workflow. To lift this burden, we introduce PaperBanana, an agentic framework for automated generation of publication-ready academic illustrations. Powered by state-of-the-art VLMs and image generation models, PaperBanana orchestrates specialized agents to retrieve references, plan content and style, render images, and iteratively refine via self-critique. To rigorously evaluate our framework, we introduce PaperBananaBench, comprising 292 test cases for methodology diagrams curated from NeurIPS 2025 publications, covering diverse research domains and illustration styles. Comprehensive experiments demonstrate that PaperBanana consistently outperforms leading baselines in faithfulness, conciseness, readability, and aesthetics. We further show that our method effectively extends to the generation of high-quality statistical plots. Collectively, PaperBanana paves the way for the automated generation of publication-ready illustrations.
Robust and Generalized Humanoid Motion Tracking
Learning a general humanoid whole-body controller is challenging because practical reference motions can exhibit noise and inconsistencies after being transferred to the robot domain, and local defects may be amplified by closed-loop execution, causing drift or failure in highly dynamic and contact-rich behaviors. We propose a dynamics-conditioned command aggregation framework that uses a causal temporal encoder to summarize recent proprioception and a multi-head cross-attention command encoder to selectively aggregate a context window based on the current dynamics. We further integrate a fall recovery curriculum with random unstable initialization and an annealed upward assistance force to improve robustness and disturbance rejection. The resulting policy requires only about 3.5 hours of motion data and supports single-stage end-to-end training without distillation. The proposed method is evaluated under diverse reference inputs and challenging motion regimes, demonstrating zero-shot transfer to unseen motions as well as robust sim-to-real transfer on a physical humanoid robot.
Self-Imitated Diffusion Policy for Efficient and Robust Visual Navigation
Diffusion policies (DP) have demonstrated significant potential in visual navigation by capturing diverse multi-modal trajectory distributions. However, standard imitation learning (IL), which most DP methods rely on for training, often inherits sub-optimality and redundancy from expert demonstrations, thereby necessitating a computationally intensive "generate-then-filter" pipeline that relies on auxiliary selectors during inference. To address these challenges, we propose Self-Imitated Diffusion Policy (SIDP), a novel framework that learns improved planning by selectively imitating a set of trajectories sampled from itself. Specifically, SIDP introduces a reward-guided self-imitation mechanism that encourages the policy to consistently produce high-quality trajectories efficiently, rather than outputs of inconsistent quality, thereby reducing reliance on extensive sampling and post-filtering. During training, we employ a reward-driven curriculum learning paradigm to mitigate inefficient data utility, and goal-agnostic exploration for trajectory augmentation to improve planning robustness. Extensive evaluations on a comprehensive simulation benchmark show that SIDP significantly outperforms previous methods, with real-world experiments confirming its effectiveness across multiple robotic platforms. On Jetson Orin Nano, SIDP delivers a 2.5$\times$ faster inference than the baseline NavDP, i.e., 110ms VS 273ms, enabling efficient real-time deployment.
comment: Preprint
MTDrive: Multi-turn Interactive Reinforcement Learning for Autonomous Driving
Trajectory planning is a core task in autonomous driving, requiring the prediction of safe and comfortable paths across diverse scenarios. Integrating Multi-modal Large Language Models (MLLMs) with Reinforcement Learning (RL) has shown promise in addressing "long-tail" scenarios. However, existing methods are constrained to single-turn reasoning, limiting their ability to handle complex tasks requiring iterative refinement. To overcome this limitation, we present MTDrive, a multi-turn framework that enables MLLMs to iteratively refine trajectories based on environmental feedback. MTDrive introduces Multi-Turn Group Relative Policy Optimization (mtGRPO), which mitigates reward sparsity by computing relative advantages across turns. We further construct an interactive trajectory understanding dataset from closed-loop simulation to support multi-turn training. Experiments on the NAVSIM benchmark demonstrate superior performance compared to existing methods, validating the effectiveness of our multi-turn reasoning paradigm. Additionally, we implement system-level optimizations to reduce data transfer overhead caused by high-resolution images and multi-turn sequences, achieving 2.5x training throughput. Our data, models, and code will be made available soon.
DINO-SAE: DINO Spherical Autoencoder for High-Fidelity Image Reconstruction and Generation
Recent studies have explored using pretrained Vision Foundation Models (VFMs) such as DINO for generative autoencoders, showing strong generative performance. Unfortunately, existing approaches often suffer from limited reconstruction fidelity due to the loss of high-frequency details. In this work, we present the DINO Spherical Autoencoder (DINO-SAE), a framework that bridges semantic representation and pixel-level reconstruction. Our key insight is that semantic information in contrastive representations is primarily encoded in the direction of feature vectors, while forcing strict magnitude matching can hinder the encoder from preserving fine-grained details. To address this, we introduce Hierarchical Convolutional Patch Embedding module that enhances local structure and texture preservation, and Cosine Similarity Alignment objective that enforces semantic consistency while allowing flexible feature magnitudes for detail retention. Furthermore, leveraging the observation that SSL-based foundation model representations intrinsically lie on a hypersphere, we employ Riemannian Flow Matching to train a Diffusion Transformer (DiT) directly on this spherical latent manifold. Experiments on ImageNet-1K demonstrate that our approach achieves state-of-the-art reconstruction quality, reaching 0.37 rFID and 26.2 dB PSNR, while maintaining strong semantic alignment to the pretrained VFM. Notably, our Riemannian Flow Matching-based DiT exhibits efficient convergence, achieving a gFID of 3.47 at 80 epochs.
comment: 17 pages, and 11 figures
Robust Rigid Body Assembly via Contact-Implicit Optimal Control with Exact Second-Order Derivatives
Efficient planning of assembly motions is a long standing challenge in the field of robotics that has been primarily tackled with reinforcement learning and sampling-based methods by using extensive physics simulations. This paper proposes a sample-efficient robust optimal control approach for the determination of assembly motions, which requires significantly less physics simulation steps during planning through the efficient use of derivative information. To this end, a differentiable physics simulation is constructed that provides second-order analytic derivatives to the numerical solver and allows one to traverse seamlessly from informative derivatives to accurate contact simulation. The solution of the physics simulation problem is made differentiable by using smoothing inspired by interior-point methods applied to both the collision detection as well as the contact resolution problem. We propose a modified variant of an optimization-based formulation of collision detection formulated as a linear program and present an efficient implementation for the nominal evaluation and corresponding first- and second-order derivatives. Moreover, a multi-scenario-based trajectory optimization problem that ensures robustness with respect to sim-to-real mismatches is derived. The capability of the considered formulation is illustrated by results where over 99\% successful executions are achieved in real-world experiments. Thereby, we carefully investigate the effect of smooth approximations of the contact dynamics and robust modeling on the success rates. Furthermore, the method's capability is tested on different peg-in-hole problems in simulation to show the benefit of using exact Hessians over commonly used Hessian approximations.
comment: Submitted to Transactions on Robotics
How Much of a Model Do We Need? Redundancy and Slimmability in Remote Sensing Foundation Models
Large-scale foundation models (FMs) in remote sensing (RS) are developed based on the paradigms established in computer vision (CV) and have shown promise for various Earth observation applications. However, the direct transfer of scaling assumptions from CV to RS has not been adequately examined. We hypothesize that RS FMs enter an overparameterized regime at substantially smaller scales than their CV counterparts, where increasing parameter count primarily induces redundant representations rather than qualitatively new abstractions. To test this hypothesis, we use post-hoc slimming, where we uniformly reduce the width of pretrained encoder, as a tool to measure representational redundancy across six state-of-the-art RS FMs on four downstream classification tasks. Our findings reveal a significant contrast with those in the CV domain: while a post-hoc slimmed masked autoencoder (MAE) trained on ImageNet retains less than 10% accuracy at 1% FLOPs, RS FMs maintain over 71% relative accuracy at the same budget. This sevenfold difference provides strong empirical support for our hypothesis. We further demonstrate that learned slimmable training can improve both Momentum Contrast (MoCo)- and MAE- based models. In addition, through the explained variance ratio and the feature correlation analysis, we provide mechanistic explanations showing that RS FMs distribute task-relevant information with high redundancy. Our findings establish post-hoc slimmability as both a practical deployment strategy for resource-constrained environments and a diagnostic tool that challenges the prevailing scaling paradigm in RS. Upon acceptance, we will publish all code.
Compact Hypercube Embeddings for Fast Text-based Wildlife Observation Retrieval
Large-scale biodiversity monitoring platforms increasingly rely on multimodal wildlife observations. While recent foundation models enable rich semantic representations across vision, audio, and language, retrieving relevant observations from massive archives remains challenging due to the computational cost of high-dimensional similarity search. In this work, we introduce compact hypercube embeddings for fast text-based wildlife observation retrieval, a framework that enables efficient text-based search over large-scale wildlife image and audio databases using compact binary representations. Building on the cross-view code alignment hashing framework, we extend lightweight hashing beyond a single-modality setup to align natural language descriptions with visual or acoustic observations in a shared Hamming space. Our approach leverages pretrained wildlife foundation models, including BioCLIP and BioLingual, and adapts them efficiently for hashing using parameter-efficient fine-tuning. We evaluate our method on large-scale benchmarks, including iNaturalist2024 for text-to-image retrieval and iNatSounds2024 for text-to-audio retrieval, as well as multiple soundscape datasets to assess robustness under domain shift. Results show that retrieval using discrete hypercube embeddings achieves competitive, and in several cases superior, performance compared to continuous embeddings, while drastically reducing memory and search cost. Moreover, we observe that the hashing objective consistently improves the underlying encoder representations, leading to stronger retrieval and zero-shot generalization. These results demonstrate that binary, language-based retrieval enables scalable and efficient search over large wildlife archives for biodiversity monitoring systems.
GaussianOcc3D: A Gaussian-Based Adaptive Multi-modal 3D Occupancy Prediction
3D semantic occupancy prediction is a pivotal task in autonomous driving, providing a dense and fine-grained understanding of the surrounding environment, yet single-modality methods face trade-offs between camera semantics and LiDAR geometry. Existing multi-modal frameworks often struggle with modality heterogeneity, spatial misalignment, and the representation crisis--where voxels are computationally heavy and BEV alternatives are lossy. We present GaussianOcc3D, a multi-modal framework bridging camera and LiDAR through a memory-efficient, continuous 3D Gaussian representation. We introduce four modules: (1) LiDAR Depth Feature Aggregation (LDFA), using depth-wise deformable sampling to lift sparse signals onto Gaussian primitives; (2) Entropy-Based Feature Smoothing (EBFS) to mitigate domain noise; (3) Adaptive Camera-LiDAR Fusion (ACLF) with uncertainty-aware reweighting for sensor reliability; and (4) a Gauss-Mamba Head leveraging Selective State Space Models for global context with linear complexity. Evaluations on Occ3D, SurroundOcc, and SemanticKITTI benchmarks demonstrate state-of-the-art performance, achieving mIoU scores of 49.4%, 28.9%, and 25.2% respectively. GaussianOcc3D exhibits superior robustness across challenging rainy and nighttime conditions.
Visual Personalization Turing Test
We introduce the Visual Personalization Turing Test (VPTT), a new paradigm for evaluating contextual visual personalization based on perceptual indistinguishability, rather than identity replication. A model passes the VPTT if its output (image, video, 3D asset, etc.) is indistinguishable to a human or calibrated VLM judge from content a given person might plausibly create or share. To operationalize VPTT, we present the VPTT Framework, integrating a 10k-persona benchmark (VPTT-Bench), a visual retrieval-augmented generator (VPRAG), and the VPTT Score, a text-only metric calibrated against human and VLM judgments. We show high correlation across human, VLM, and VPTT evaluations, validating the VPTT Score as a reliable perceptual proxy. Experiments demonstrate that VPRAG achieves the best alignment-originality balance, offering a scalable and privacy-safe foundation for personalized generative AI.
comment: Webpage: https://snap-research.github.io/vptt
TTSA3R: Training-Free Temporal-Spatial Adaptive Persistent State for Streaming 3D Reconstruction
Streaming recurrent models enable efficient 3D reconstruction by maintaining persistent state representations. However, they suffer from catastrophic memory forgetting over long sequences due to balancing historical information with new observations. Recent methods alleviate this by deriving adaptive signals from attention perspective, but they operate on single dimensions without considering temporal and spatial consistency. To this end, we propose a training-free framework termed TTSA3R that leverages both temporal state evolution and spatial observation quality for adaptive state updates in 3D reconstruction. In particular, we devise a Temporal Adaptive Update Module that regulates update magnitude by analyzing temporal state evolution patterns. Then, a Spatial Contextual Update Module is introduced to localize spatial regions that require updates through observation-state alignment and scene dynamics. These complementary signals are finally fused to determine the state updating strategies. Extensive experiments demonstrate the effectiveness of TTSA3R in diverse 3D tasks. Moreover, our method exhibits only 15% error increase compared to over 200% degradation in baseline models on extended sequences, significantly improving long-term reconstruction stability. Our codes will be available soon.
Cross-Domain Few-Shot Learning for Hyperspectral Image Classification Based on Mixup Foundation Model
Although cross-domain few-shot learning (CDFSL) for hyper-spectral image (HSI) classification has attracted significant research interest, existing works often rely on an unrealistic data augmentation procedure in the form of external noise to enlarge the sample size, thus greatly simplifying the issue of data scarcity. They involve a large number of parameters for model updates, being prone to the overfitting problem. To the best of our knowledge, none has explored the strength of the foundation model, having strong generalization power to be quickly adapted to downstream tasks. This paper proposes the MIxup FOundation MOdel (MIFOMO) for CDFSL of HSI classifications. MIFOMO is built upon the concept of a remote sensing (RS) foundation model, pre-trained across a large scale of RS problems, thus featuring generalizable features. The notion of coalescent projection (CP) is introduced to quickly adapt the foundation model to downstream tasks while freezing the backbone network. The concept of mixup domain adaptation (MDM) is proposed to address the extreme domain discrepancy problem. Last but not least, the label smoothing concept is implemented to cope with noisy pseudo-label problems. Our rigorous experiments demonstrate the advantage of MIFOMO, where it beats prior arts with up to 14% margin. The source code of MIFOMO is open-sourced in https://github.com/Naeem- Paeedeh/MIFOMO for reproducibility and convenient further study.
Bonnet: Ultra-fast whole-body bone segmentation from CT scans
This work proposes Bonnet, an ultra-fast sparse-volume pipeline for whole-body bone segmentation from CT scans. Accurate bone segmentation is important for surgical planning and anatomical analysis, but existing 3D voxel-based models such as nnU-Net and STU-Net require heavy computation and often take several minutes per scan, which limits time-critical use. The proposed Bonnet addresses this by integrating a series of novel framework components including HU-based bone thresholding, patch-wise inference with a sparse spconv-based U-Net, and multi-window fusion into a full-volume prediction. Trained on TotalSegmentator and evaluated without additional tuning on RibSeg, CT-Pelvic1K, and CT-Spine1K, Bonnet achieves high Dice across ribs, pelvis, and spine while running in only 2.69 seconds per scan on an RTX A6000. Compared to strong voxel baselines, Bonnet attains a similar accuracy but reduces inference time by roughly 25x on the same hardware and tiling setup. The toolkit and pre-trained models will be released at https://github.com/HINTLab/Bonnet.
comment: 5 pages, 2 figures. Accepted for publication at the 2026 IEEE International Symposium on Biomedical Imaging (ISBI 2026)
PhoStream: Benchmarking Real-World Streaming for Omnimodal Assistants in Mobile Scenarios
Multimodal Large Language Models excel at offline audio-visual understanding, but their ability to serve as mobile assistants in continuous real-world streams remains underexplored. In daily phone use, mobile assistants must track streaming audio-visual inputs and respond at the right time, yet existing benchmarks are often restricted to multiple-choice questions or use shorter videos. In this paper, we introduce PhoStream, the first mobile-centric streaming benchmark that unifies on-screen and off-screen scenarios to evaluate video, audio, and temporal reasoning. PhoStream contains 5,572 open-ended QA pairs from 578 videos across 4 scenarios and 10 capabilities. We build it with an Automated Generative Pipeline backed by rigorous human verification, and evaluate models using a realistic Online Inference Pipeline and LLM-as-a-Judge evaluation for open-ended responses. Experiments reveal a temporal asymmetry in LLM-judged scores (0-100): models perform well on Instant and Backward tasks (Gemini 3 Pro exceeds 80), but drop sharply on Forward tasks (16.40), largely due to early responses before the required visual and audio cues appear. This highlights a fundamental limitation: current MLLMs struggle to decide when to speak, not just what to say. Code and datasets used in this work will be made publicly accessible at https://github.com/Lucky-Lance/PhoStream.
comment: 18 pages
Leveraging Data to Say No: Memory Augmented Plug-and-Play Selective Prediction ICLR 2026
Selective prediction aims to endow predictors with a reject option, to avoid low confidence predictions. However, existing literature has primarily focused on closed-set tasks, such as visual question answering with predefined options or fixed-category classification. This paper considers selective prediction for visual language foundation models, addressing a taxonomy of tasks ranging from closed to open set and from finite to unbounded vocabularies, as in image captioning. We seek training-free approaches of low-complexity, applicable to any foundation model and consider methods based on external vision-language model embeddings, like CLIP. This is denoted as Plug-and-Play Selective Prediction (PaPSP). We identify two key challenges: (1) instability of the visual-language representations, leading to high variance in image-text embeddings, and (2) poor calibration of similarity scores. To address these issues, we propose a memory augmented PaPSP (MA-PaPSP) model, which augments PaPSP with a retrieval dataset of image-text pairs. This is leveraged to reduce embedding variance by averaging retrieved nearest-neighbor pairs and is complemented by the use of contrastive normalization to improve score calibration. Through extensive experiments on multiple datasets, we show that MA-PaPSP outperforms PaPSP and other selective prediction baselines for selective captioning, image-text matching, and fine-grained classification. Code is publicly available at https://github.com/kingston-aditya/MA-PaPSP.
comment: ICLR 2026
Adapting Reinforcement Learning for Path Planning in Constrained Parking Scenarios
Real-time path planning in constrained environments remains a fundamental challenge for autonomous systems. Traditional classical planners, while effective under perfect perception assumptions, are often sensitive to real-world perception constraints and rely on online search procedures that incur high computational costs. In complex surroundings, this renders real-time deployment prohibitive. To overcome these limitations, we introduce a Deep Reinforcement Learning (DRL) framework for real-time path planning in parking scenarios. In particular, we focus on challenging scenes with tight spaces that require a high number of reversal maneuvers and adjustments. Unlike classical planners, our solution does not require ideal and structured perception, and in principle, could avoid the need for additional modules such as localization and tracking, resulting in a simpler and more practical implementation. Also, at test time, the policy generates actions through a single forward pass at each step, which is lightweight enough for real-time deployment. The task is formulated as a sequential decision-making problem grounded in a bicycle model dynamics, enabling the agent to directly learn navigation policies that respect vehicle kinematics and environmental constraints in the closed-loop setting. A new benchmark is developed to support both training and evaluation, capturing diverse and challenging scenarios. Our approach achieves state-of-the-art success rates and efficiency, surpassing classical planner baselines by +96% in success rate and +52% in efficiency. Furthermore, we release our benchmark as an open-source resource for the community to foster future research in autonomous systems. The benchmark and accompanying tools are available at https://github.com/dqm5rtfg9b-collab/Constrained_Parking_Scenarios.
DNA: Uncovering Universal Latent Forgery Knowledge
As generative AI achieves hyper-realism, superficial artifact detection has become obsolete. While prevailing methods rely on resource-intensive fine-tuning of black-box backbones, we propose that forgery detection capability is already encoded within pre-trained models rather than requiring end-to-end retraining. To elicit this intrinsic capability, we propose the discriminative neural anchors (DNA) framework, which employs a coarse-to-fine excavation mechanism. First, by analyzing feature decoupling and attention distribution shifts, we pinpoint critical intermediate layers where the focus of the model logically transitions from global semantics to local anomalies. Subsequently, we introduce a triadic fusion scoring metric paired with a curvature-truncation strategy to strip away semantic redundancy, precisely isolating the forgery-discriminative units (FDUs) inherently imprinted with sensitivity to forgery traces. Moreover, we introduce HIFI-Gen, a high-fidelity synthetic benchmark built upon the very latest models, to address the lag in existing datasets. Experiments demonstrate that by solely relying on these anchors, DNA achieves superior detection performance even under few-shot conditions. Furthermore, it exhibits remarkable robustness across diverse architectures and against unseen generative models, validating that waking up latent neurons is more effective than extensive fine-tuning.
From Cold Start to Active Learning: Embedding-Based Scan Selection for Medical Image Segmentation
Accurate segmentation annotations are critical for disease monitoring, yet manual labeling remains a major bottleneck due to the time and expertise required. Active learning (AL) alleviates this burden by prioritizing informative samples for annotation, typically through a diversity-based cold-start phase followed by uncertainty-driven selection. We propose a novel cold-start sampling strategy that combines foundation-model embeddings with clustering, including automatic selection of the number of clusters and proportional sampling across clusters, to construct a diverse and representative initial training. This is followed by an uncertainty-based AL framework that integrates spatial diversity to guide sample selection. The proposed method is intuitive and interpretable, enabling visualization of the feature-space distribution of candidate samples. We evaluate our approach on three datasets spanning X-ray and MRI modalities. On the CheXmask dataset, the cold-start strategy outperforms random selection, improving Dice from 0.918 to 0.929 and reducing the Hausdorff distance from 32.41 to 27.66 mm. In the AL setting, combined entropy and diversity selection improves Dice from 0.919 to 0.939 and reduces the Hausdorff distance from 30.10 to 19.16 mm. On the Montgomery dataset, cold-start gains are substantial, with Dice improving from 0.928 to 0.950 and Hausdorff distance decreasing from 14.22 to 9.38 mm. On the SynthStrip dataset, cold-start selection slightly affects Dice but reduces the Hausdorff distance from 9.43 to 8.69 mm, while active learning improves Dice from 0.816 to 0.826 and reduces the Hausdorff distance from 7.76 to 6.38 mm. Overall, the proposed framework consistently outperforms baseline methods in low-data regimes, improving segmentation accuracy.
comment: 19 pages without references
Benchmarking Foundation Models for Mitotic Figure Classification
The performance of deep learning models is known to scale with data quantity and diversity. In pathology, as in many other medical imaging domains, the availability of labeled images for a specific task is often limited. Self-supervised learning techniques have enabled the use of vast amounts of unlabeled data to train large-scale neural networks, i.e., foundation models, that can address the limited data problem by providing semantically rich feature vectors that can generalize well to new tasks with minimal training effort increasing model performance and robustness. In this work, we investigate the use of foundation models for mitotic figure classification. The mitotic count, which can be derived from this classification task, is an independent prognostic marker for specific tumors and part of certain tumor grading systems. In particular, we investigate the data scaling laws on multiple current foundation models and evaluate their robustness to unseen tumor domains. Next to the commonly used linear probing paradigm, we also adapt the models using low-rank adaptation (LoRA) of their attention mechanisms. We compare all models against end-to-end-trained baselines, both CNNs and Vision Transformers. Our results demonstrate that LoRA-adapted foundation models provide superior performance to those adapted with standard linear probing, reaching performance levels close to 100% data availability with only 10% of training data. Furthermore, LoRA-adaptation of the most recent foundation models almost closes the out-of-domain performance gap when evaluated on unseen tumor domains. However, full fine-tuning of traditional architectures still yields competitive performance.
CaLiV: LiDAR-to-Vehicle Calibration of Arbitrary Sensor Setups
In autonomous systems, sensor calibration is essential for safe and efficient navigation in dynamic environments. Accurate calibration is a prerequisite for reliable perception and planning tasks such as object detection and obstacle avoidance. Many existing LiDAR calibration methods require overlapping fields of view, while others use external sensing devices or postulate a feature-rich environment. In addition, Sensor-to-Vehicle calibration is not supported by the vast majority of calibration algorithms. In this work, we propose a novel target-based technique for extrinsic Sensor-to-Sensor and Sensor-to-Vehicle calibration of multi-LiDAR systems called CaLiV. This algorithm works for non-overlapping fields of view and does not require any external sensing devices. First, we apply motion to produce field of view overlaps and utilize a simple Unscented Kalman Filter to obtain vehicle poses. Then, we use the Gaussian mixture model-based registration framework GMMCalib to align the point clouds in a common calibration frame. Finally, we reduce the task of recovering the sensor extrinsics to a minimization problem. We show that both translational and rotational Sensor-to-Sensor errors can be solved accurately by our method. In addition, all Sensor-to-Vehicle rotation angles can also be calibrated with high accuracy. We validate the simulation results in real-world experiments. The code is open-source and available on https://github.com/TUMFTM/CaLiV.
SLIM-Brain: A Data- and Training-Efficient Foundation Model for fMRI Data Analysis
Foundation models are emerging as a powerful paradigm for fMRI analysis, but current approaches face a dual bottleneck of data- and training-efficiency. Atlas-based methods aggregate voxel signals into fixed regions of interest, reducing data dimensionality but discarding fine-grained spatial details, and requiring extremely large cohorts to train effectively as general-purpose foundation models. Atlas-free methods, on the other hand, operate directly on voxel-level information - preserving spatial fidelity but are prohibitively memory- and compute-intensive, making large-scale pre-training infeasible. We introduce SLIM-Brain (Sample-efficient, Low-memory fMRI Foundation Model for Human Brain), a new atlas-free foundation model that simultaneously improves both data- and training-efficiency. SLIM-Brain adopts a two-stage adaptive design: (i) a lightweight temporal extractor captures global context across full sequences and ranks data windows by saliency, and (ii) a 4D hierarchical encoder (Hiera-JEPA) learns fine-grained voxel-level representations only from the top-$k$ selected windows, while deleting about 70% masked patches. Extensive experiments across seven public benchmarks show that SLIM-Brain establishes new state-of-the-art performance on diverse tasks, while requiring only 4 thousand pre-training sessions and approximately 30% of GPU memory comparing to traditional voxel-level methods.
comment: release code
From Street View to Visibility Network: Mapping Urban Visual Relationships with Vision-Language Models
Visibility analysis is one of the fundamental analytics methods in urban planning and landscape research, traditionally conducted through computational simulations based on the Line-of-Sight (LoS) principle. However, when assessing the visibility of named urban objects such as landmarks, geometric intersection alone fails to capture the contextual and perceptual dimensions of visibility as experienced in the real world. The study challenges the traditional LoS-based approaches by introducing a new, image-based visibility analysis method. Specifically, a Vision Language Model (VLM) is applied to detect the target object within a direction-zoomed Street View Image (SVI). Successful detection represents the object's visibility at the corresponding SVI location. Further, a heterogeneous visibility graph is constructed to address the complex interaction between observers and target objects. In the first case study, the method proves its reliability in detecting the visibility of six tall landmark constructions in global cities, with an overall accuracy of 87%. Furthermore, it reveals broader contextual differences when the landmarks are perceived and experienced. In the second case, the proposed visibility graph uncovers the form and strength of connections for multiple landmarks along the River Thames in London, as well as the places where these connections occur. Notably, bridges on the River Thames account for approximately 30% of total connections. Our method complements and enhances traditional LoS-based visibility analysis, and showcases the possibility of revealing the prevalent connection of any visual objects in the urban environment. It opens up new research perspectives for urban planning, heritage conservation, and computational social science.
FMIR, a foundation model-based Image Registration Framework for Robust Image Registration
Deep learning has revolutionized medical image registration by achieving unprecedented speeds, yet its clinical application is hindered by a limited ability to generalize beyond the training domain, a critical weakness given the typically small scale of medical datasets. In this paper, we introduce FMIR, a foundation model-based registration framework that overcomes this limitation.Combining a foundation model-based feature encoder for extracting anatomical structures with a general registration head, and trained with a channel regularization strategy on just a single dataset, FMIR achieves state-of-the-art(SOTA) in-domain performance while maintaining robust registration on out-of-domain images.Our approach demonstrates a viable path toward building generalizable medical imaging foundation models with limited resources. The code is available at https://github.com/Monday0328/FMIR.git.
comment: Accepted to the International Symposium on Biomedical Imaging (ISBI 2026)
Learning to Pose Problems: Reasoning-Driven and Solver-Adaptive Data Synthesis for Large Reasoning Models
Data synthesis for training large reasoning models offers a scalable alternative to limited, human-curated datasets, enabling the creation of high-quality data. However, existing approaches face several challenges: (i) indiscriminate generation that ignores the solver's ability and yields low-value problems, or reliance on complex data pipelines to balance problem difficulty; and (ii) a lack of reasoning in problem generation, leading to shallow problem variants. In this paper, we develop a problem generator that reasons explicitly to plan problem directions before synthesis and adapts difficulty to the solver's ability. Specifically, we construct related problem pairs and augment them with intermediate problem-design CoT produced by a reasoning model. These data are used to bootstrap problem-design strategies in the generator. Then, we treat the solver's feedback on synthetic problems as a reward signal, enabling the generator to calibrate difficulty and produce complementary problems near the edge of the solver's competence. Extensive experiments on 10 mathematical and general reasoning benchmarks show that our proposed framework achieves a cumulative average improvement of 3.4%, demonstrating robust generalization across both language and vision-language models.
VideoNSA: Native Sparse Attention Scales Video Understanding ICLR 2026
Video understanding in multimodal language models remains limited by context length: models often miss key transition frames and struggle to maintain coherence across long time scales. To address this, we adapt Native Sparse Attention (NSA) to video-language models. Our method, VideoNSA, adapts Qwen2.5-VL through end-to-end training on a 216K video instruction dataset. We employ a hardware-aware hybrid approach to attention, preserving dense attention for text, while employing NSA for video. Compared to token-compression and training-free sparse baselines, VideoNSA achieves improved performance on long-video understanding, temporal reasoning, and spatial benchmarks. Further ablation analysis reveals four key findings: (1) reliable scaling to 128K tokens; (2) an optimal global-local attention allocation at a fixed budget; (3) task-dependent branch usage patterns; and (4) the learnable combined sparse attention help induce dynamic attention sinks. Project Page: https://enxinsong.com/VideoNSA-web/, Code: https://github.com/Espere-1119-Song/VideoNSA
comment: ICLR 2026
ReGlove: A Soft Pneumatic Glove for Activities of Daily Living Assistance via Wrist-Mounted Vision
This paper presents ReGlove, a system that converts low-cost commercial pneumatic rehabilitation gloves into vision-guided assistive orthoses. Chronic upper-limb impairment affects millions worldwide, yet existing assistive technologies remain prohibitively expensive or rely on unreliable biological signals. Our platform integrates a wrist-mounted camera with an edge-computing inference engine (Raspberry Pi 5) to enable context-aware grasping without requiring reliable muscle signals. By adapting real-time YOLO-based computer vision models, the system achieves 96.73% grasp classification accuracy with sub-40.00 millisecond end-to-end latency. Physical validation using standardized benchmarks shows 82.71% success on YCB object manipulation and reliable performance across 27 Activities of Daily Living (ADL) tasks. With a total cost under $250 and exclusively commercial components, ReGlove provides a technical foundation for accessible, vision-based upper-limb assistance that could benefit populations excluded from traditional EMG-controlled devices.
MACEval: A Multi-Agent Continual Evaluation Network for Large Models
Hundreds of benchmarks dedicated to evaluating large models have been presented over the past few years. However, most of them remain closed-ended and are prone to overfitting due to the potential data contamination. Moreover, the increasing scale and scope of current benchmarks with transient metrics, as well as the heavily human-dependent curation procedure, pose significant challenges for timely maintenance and adaptation. In this paper, we introduce MACEval, a Multi-Agent Continual Evaluation network for dynamic evaluation of large models, and define new metrics to quantify performance longitudinally. MACEval employs an interactive and autonomous evaluation mode, utilizing role assignment, in-process data generation, and evaluation routing through a cascaded agent network. Extensive experiments on 23 large models demonstrate the effectiveness of MACEval, which also lightens the evaluation process and reduces a considerable amount of overhead. We hope that MACEval can broaden future directions of large model evaluation. Project page: https://github.com/zijianchen98/MACEval.
comment: 32 pages, 14 figures
DialectGen: Benchmarking and Improving Dialect Robustness in Multimodal Generation
Contact languages like English exhibit rich regional variations in the form of dialects, which are often used by dialect speakers interacting with generative models. However, can multimodal generative models effectively produce content given dialectal textual input? In this work, we study this question by constructing a new large-scale benchmark spanning six common English dialects. We work with dialect speakers to collect and verify over 4200 unique prompts and evaluate on 17 image and video generative models. Our automatic and human evaluation results show that current state-of-the-art multimodal generative models exhibit 32.26% to 48.17% performance degradation when a single dialect word is used in the prompt. Common mitigation methods such as fine-tuning and prompt rewriting can only improve dialect performance by small margins (< 7%), while potentially incurring significant performance degradation in Standard American English (SAE). To this end, we design a general encoder-based mitigation strategy for multimodal generative models. Our method teaches the model to recognize new dialect features while preserving SAE performance. Experiments on models such as Stable Diffusion 1.5 show that our method is able to simultaneously raise performance on five dialects to be on par with SAE (+34.4%), while incurring near zero cost to SAE performance.
EquiContact: A Hierarchical SE(3) Vision-to-Force Equivariant Policy for Spatially Generalizable Contact-rich Tasks RSS
This paper presents a framework for learning vision-based robotic policies for contact-rich manipulation tasks that generalize spatially across task configurations. We focus on achieving robust spatial generalization of the policy for the peg-in-hole (PiH) task trained from a small number of demonstrations. We propose EquiContact, a hierarchical policy composed of a high-level vision planner (Diffusion Equivariant Descriptor Field, Diff-EDF) and a novel low-level compliant visuomotor policy (Geometric Compliant ACT, G-CompACT). G-CompACT operates using only localized observations (geometrically consistent error vectors (GCEV), force-torque readings, and wrist-mounted RGB images) and produces actions defined in the end-effector frame. Through these design choices, we show that the entire EquiContact pipeline is SE(3)-equivariant, from perception to force control. We also outline three key components for spatially generalizable contact-rich policies: compliance, localized policies, and induced equivariance. Real-world experiments on PiH, screwing, and surface wiping tasks demonstrate a near-perfect success rate and robust generalization to unseen spatial configurations, validating the proposed framework and principles. The experimental videos and more details can be found on the project website: https://equicontact.github.io/EquiContact-website/
comment: Submitted to RSS
YOLO26: Key Architectural Enhancements and Performance Benchmarking for Real-Time Object Detection
This study presents a comprehensive analysis of Ultralytics YOLO26(also called as YOLOv26), highlighting its key architectural enhancements and performance benchmarking for real-time object detection. YOLO26, released in September 2025, stands as the newest and most advanced member of the YOLO family, purpose-built to deliver efficiency, accuracy, and deployment readiness on edge and low-power devices. The paper sequentially details architectural innovations of YOLO26, including the removal of Distribution Focal Loss (DFL), adoption of end-to-end NMS-free inference, integration of ProgLoss and Small-Target-Aware Label Assignment (STAL), and the introduction of the MuSGD optimizer for stable convergence. Beyond architecture, the study positions YOLO26 as a multi-task framework, supporting object detection, instance segmentation, pose/keypoints estimation, oriented detection, and classification. We present performance benchmarks of YOLO26 on edge devices such as NVIDIA Jetson Nano and Orin, comparing its results with YOLOv8, YOLOv11, YOLOv12, YOLOv13, and transformer-based detectors(RF-DETR and RT-DETR). This paper further explores real-time deployment pathways, flexible export options (ONNX, TensorRT, CoreML, TFLite), and quantization for INT8/FP16. Practical use cases of YOLO26 across robotics, manufacturing, and IoT are highlighted to demonstrate cross-industry adaptability. Finally, insights on deployment efficiency and broader implications are discussed, with future directions for YOLO26 and the YOLO lineage outlined.
Foundation Models 50
VideoGPA: Distilling Geometry Priors for 3D-Consistent Video Generation
While recent video diffusion models (VDMs) produce visually impressive results, they fundamentally struggle to maintain 3D structural consistency, often resulting in object deformation or spatial drift. We hypothesize that these failures arise because standard denoising objectives lack explicit incentives for geometric coherence. To address this, we introduce VideoGPA (Video Geometric Preference Alignment), a data-efficient self-supervised framework that leverages a geometry foundation model to automatically derive dense preference signals that guide VDMs via Direct Preference Optimization (DPO). This approach effectively steers the generative distribution toward inherent 3D consistency without requiring human annotations. VideoGPA significantly enhances temporal stability, physical plausibility, and motion coherence using minimal preference pairs, consistently outperforming state-of-the-art baselines in extensive experiments.
Decoupled Diffusion Sampling for Inverse Problems on Function Spaces
We propose a data-efficient, physics-aware generative framework in function space for inverse PDE problems. Existing plug-and-play diffusion posterior samplers represent physics implicitly through joint coefficient-solution modeling, requiring substantial paired supervision. In contrast, our Decoupled Diffusion Inverse Solver (DDIS) employs a decoupled design: an unconditional diffusion learns the coefficient prior, while a neural operator explicitly models the forward PDE for guidance. This decoupling enables superior data efficiency and effective physics-informed learning, while naturally supporting Decoupled Annealing Posterior Sampling (DAPS) to avoid over-smoothing in Diffusion Posterior Sampling (DPS). Theoretically, we prove that DDIS avoids the guidance attenuation failure of joint models when training data is scarce. Empirically, DDIS achieves state-of-the-art performance under sparse observation, improving $l_2$ error by 11% and spectral error by 54% on average; when data is limited to 1%, DDIS maintains accuracy with 40% advantage in $l_2$ error compared to joint models.
FOCUS: DLLMs Know How to Tame Their Compute Bound
Diffusion Large Language Models (DLLMs) offer a compelling alternative to Auto-Regressive models, but their deployment is constrained by high decoding cost. In this work, we identify a key inefficiency in DLLM decoding: while computation is parallelized over token blocks, only a small subset of tokens is decodable at each diffusion step, causing most compute to be wasted on non-decodable tokens. We further observe a strong correlation between attention-derived token importance and token-wise decoding probability. Based on this insight, we propose FOCUS -- an inference system designed for DLLMs. By dynamically focusing computation on decodable tokens and evicting non-decodable ones on-the-fly, FOCUS increases the effective batch size, alleviating compute limitations and enabling scalable throughput. Empirical evaluations demonstrate that FOCUS achieves up to 3.52$\times$ throughput improvement over the production-grade engine LMDeploy, while preserving or improving generation quality across multiple benchmarks. The FOCUS system is publicly available on GitHub: https://github.com/sands-lab/FOCUS.
comment: 22 pages, 15 figures
Denoising the Deep Sky: Physics-Based CCD Noise Formation for Astronomical Imaging
Astronomical imaging remains noise-limited under practical observing constraints, while standard calibration pipelines mainly remove structured artifacts and leave stochastic noise largely unresolved. Learning-based denoising is promising, yet progress is hindered by scarce paired training data and the need for physically interpretable and reproducible models in scientific workflows. We propose a physics-based noise synthesis framework tailored to CCD noise formation. The pipeline models photon shot noise, photo-response non-uniformity, dark-current noise, readout effects, and localized outliers arising from cosmic-ray hits and hot pixels. To obtain low-noise inputs for synthesis, we average multiple unregistered exposures to produce high-SNR bases. Realistic noisy counterparts synthesized from these bases using our noise model enable the construction of abundant paired datasets for supervised learning. We further introduce a real-world dataset across multi-bands acquired with two twin ground-based telescopes, providing paired raw frames and instrument-pipeline calibrated frames, together with calibration data and stacked high-SNR bases for real-world evaluation.
IRL-DAL: Safe and Adaptive Trajectory Planning for Autonomous Driving via Energy-Guided Diffusion Models
This paper proposes a novel inverse reinforcement learning framework using a diffusion-based adaptive lookahead planner (IRL-DAL) for autonomous vehicles. Training begins with imitation from an expert finite state machine (FSM) controller to provide a stable initialization. Environment terms are combined with an IRL discriminator signal to align with expert goals. Reinforcement learning (RL) is then performed with a hybrid reward that combines diffuse environmental feedback and targeted IRL rewards. A conditional diffusion model, which acts as a safety supervisor, plans safe paths. It stays in its lane, avoids obstacles, and moves smoothly. Then, a learnable adaptive mask (LAM) improves perception. It shifts visual attention based on vehicle speed and nearby hazards. After FSM-based imitation, the policy is fine-tuned with Proximal Policy Optimization (PPO). Training is run in the Webots simulator with a two-stage curriculum. A 96\% success rate is reached, and collisions are reduced to 0.05 per 1k steps, marking a new benchmark for safe navigation. By applying the proposed approach, the agent not only drives in lane but also handles unsafe conditions at an expert level, increasing robustness.We make our code publicly available.
Particle-Guided Diffusion Models for Partial Differential Equations
We introduce a guided stochastic sampling method that augments sampling from diffusion models with physics-based guidance derived from partial differential equation (PDE) residuals and observational constraints, ensuring generated samples remain physically admissible. We embed this sampling procedure within a new Sequential Monte Carlo (SMC) framework, yielding a scalable generative PDE solver. Across multiple benchmark PDE systems as well as multiphysics and interacting PDE systems, our method produces solution fields with lower numerical error than existing state-of-the-art generative methods.
TEON: Tensorized Orthonormalization Beyond Layer-Wise Muon for Large Language Model Pre-Training
The Muon optimizer has demonstrated strong empirical performance in pre-training large language models by performing matrix-level gradient (or momentum) orthogonalization in each layer independently. In this work, we propose TEON, a principled generalization of Muon that extends orthogonalization beyond individual layers by modeling the gradients of a neural network as a structured higher-order tensor. We present TEON's improved convergence guarantee over layer-wise Muon, and further develop a practical instantiation of TEON based on the theoretical analysis with corresponding ablation. We evaluate our approach on two widely adopted architectures: GPT-style models, ranging from 130M to 774M parameters, and LLaMA-style models, ranging from 60M to 1B parameters. Experimental results show that TEON consistently improves training and validation perplexity across model scales and exhibits strong robustness under various approximate SVD schemes.
Now You Hear Me: Audio Narrative Attacks Against Large Audio-Language Models
Large audio-language models increasingly operate on raw speech inputs, enabling more seamless integration across domains such as voice assistants, education, and clinical triage. This transition, however, introduces a distinct class of vulnerabilities that remain largely uncharacterized. We examine the security implications of this modality shift by designing a text-to-audio jailbreak that embeds disallowed directives within a narrative-style audio stream. The attack leverages an advanced instruction-following text-to-speech (TTS) model to exploit structural and acoustic properties, thereby circumventing safety mechanisms primarily calibrated for text. When delivered through synthetic speech, the narrative format elicits restricted outputs from state-of-the-art models, including Gemini 2.0 Flash, achieving a 98.26% success rate that substantially exceeds text-only baselines. These results highlight the need for safety frameworks that jointly reason over linguistic and paralinguistic representations, particularly as speech-based interfaces become more prevalent.
comment: to be published at EACL 2026 main conference
Training-Free Test-Time Adaptation with Brownian Distance Covariance in Vision-Language Models
Vision-language models suffer performance degradation under domain shift, limiting real-world applicability. Existing test-time adaptation methods are computationally intensive, rely on back-propagation, and often focus on single modalities. To address these issues, we propose Training-free Test-Time Adaptation with Brownian Distance Covariance (TaTa). TaTa leverages Brownian Distance Covariance-a powerful statistical measure that captures both linear and nonlinear dependencies via pairwise distances-to dynamically adapt VLMs to new domains without training or back-propagation. This not only improves efficiency but also enhances stability by avoiding disruptive weight updates. TaTa further integrates attribute-enhanced prompting to improve vision-language inference with descriptive visual cues. Combined with dynamic clustering and pseudo-label refinement, it effectively recalibrates the model for novel visual contexts. Experiments across diverse datasets show that TaTa significantly reduces computational cost while achieving state-of-the-art performance in domain and cross-dataset generalization.
comment: Accepted in ICASSP 2026
Nested Slice Sampling: Vectorized Nested Sampling for GPU-Accelerated Inference
Model comparison and calibrated uncertainty quantification often require integrating over parameters, but scalable inference can be challenging for complex, multimodal targets. Nested Sampling is a robust alternative to standard MCMC, yet its typically sequential structure and hard constraints make efficient accelerator implementations difficult. This paper introduces Nested Slice Sampling (NSS), a GPU-friendly, vectorized formulation of Nested Sampling that uses Hit-and-Run Slice Sampling for constrained updates. A tuning analysis yields a simple near-optimal rule for setting the slice width, improving high-dimensional behavior and making per-step compute more predictable for parallel execution. Experiments on challenging synthetic targets, high dimensional Bayesian inference, and Gaussian process hyperparameter marginalization show that NSS maintains accurate evidence estimates and high-quality posterior samples, and is particularly robust on difficult multimodal problems where current state-of-the-art methods such as tempered SMC baselines can struggle. An open-source implementation is released to facilitate adoption and reproducibility.
comment: 54 pages, 11 figures
Graph Attention Network for Node Regression on Random Geometric Graphs with Erdős--Rényi contamination
Graph attention networks (GATs) are widely used and often appear robust to noise in node covariates and edges, yet rigorous statistical guarantees demonstrating a provable advantage of GATs over non-attention graph neural networks~(GNNs) are scarce. We partially address this gap for node regression with graph-based errors-in-variables models under simultaneous covariate and edge corruption: responses are generated from latent node-level covariates, but only noise-perturbed versions of the latent covariates are observed; and the sample graph is a random geometric graph created from the node covariates but contaminated by independent Erdős--Rényi edges. We propose and analyze a carefully designed, task-specific GAT that constructs denoised proxy features for regression. We prove that regressing the response variables on the proxies achieves lower error asymptotically in (a) estimating the regression coefficient compared to the ordinary least squares (OLS) estimator on the noisy node covariates, and (b) predicting the response for an unlabelled node compared to a vanilla graph convolutional network~(GCN) -- under mild growth conditions. Our analysis leverages high-dimensional geometric tail bounds and concentration for neighbourhood counts and sample covariances. We verify our theoretical findings through experiments on synthetically generated data. We also perform experiments on real-world graphs and demonstrate the effectiveness of the attention mechanism in several node regression tasks.
comment: 62 pages, 2 figures, 2 tables
How well do generative models solve inverse problems? A benchmark study
Generative learning generates high dimensional data based on low dimensional conditions, also called prompts. Therefore, generative learning algorithms are eligible for solving (Bayesian) inverse problems. In this article we compare a traditional Bayesian inverse approach based on a forward regression model and a prior sampled with the Markov Chain Monte Carlo method with three state of the art generative learning models, namely conditional Generative Adversarial Networks, Invertible Neural Networks and Conditional Flow Matching. We apply them to a problem of gas turbine combustor design where we map six independent design parameters to three performance labels. We propose several metrics for the evaluation of this inverse design approaches and measure the accuracy of the labels of the generated designs along with the diversity. We also study the performance as a function of the training dataset size. Our benchmark has a clear winner, as Conditional Flow Matching consistently outperforms all competing approaches.
comment: 32 pages, 11 figures, 5 tables
Sequence Diffusion Model for Temporal Link Prediction in Continuous-Time Dynamic Graph
Temporal link prediction in dynamic graphs is a fundamental problem in many real-world systems. Existing temporal graph neural networks mainly focus on learning representations of historical interactions. Despite their strong performance, these models are still purely discriminative, producing point estimates for future links and lacking an explicit mechanism to capture the uncertainty and sequential structure of future temporal interactions. In this paper, we propose SDG, a novel sequence-level diffusion framework that unifies dynamic graph learning with generative denoising. Specifically, SDG injects noise into the entire historical interaction sequence and jointly reconstructs all interaction embeddings through a conditional denoising process, thereby enabling the model to capture more comprehensive interaction distributions. To align the generative process with temporal link prediction, we employ a cross-attention denoising decoder to guide the reconstruction of the destination sequence and optimize the model in an end-to-end manner. Extensive experiments on various temporal graph benchmarks show that SDG consistently achieves state-of-the-art performance in the temporal link prediction task.
ShotFinder: Imagination-Driven Open-Domain Video Shot Retrieval via Web Search
In recent years, large language models (LLMs) have made rapid progress in information retrieval, yet existing research has mainly focused on text or static multimodal settings. Open-domain video shot retrieval, which involves richer temporal structure and more complex semantics, still lacks systematic benchmarks and analysis. To fill this gap, we introduce ShotFinder, a benchmark that formalizes editing requirements as keyframe-oriented shot descriptions and introduces five types of controllable single-factor constraints: Temporal order, Color, Visual style, Audio, and Resolution. We curate 1,210 high-quality samples from YouTube across 20 thematic categories, using large models for generation with human verification. Based on the benchmark, we propose ShotFinder, a text-driven three-stage retrieval and localization pipeline: (1) query expansion via video imagination, (2) candidate video retrieval with a search engine, and (3) description-guided temporal localization. Experiments on multiple closed-source and open-source models reveal a significant gap to human performance, with clear imbalance across constraints: temporal localization is relatively tractable, while color and visual style remain major challenges. These results reveal that open-domain video shot retrieval is still a critical capability that multimodal large models have yet to overcome.
comment: 28 pages, 7 figures
Solving Inverse Problems with Flow-based Models via Model Predictive Control
Flow-based generative models provide strong unconditional priors for inverse problems, but guiding their dynamics for conditional generation remains challenging. Recent work casts training-free conditional generation in flow models as an optimal control problem; however, solving the resulting trajectory optimisation is computationally and memory intensive, requiring differentiation through the flow dynamics or adjoint solves. We propose MPC-Flow, a model predictive control framework that formulates inverse problem solving with flow-based generative models as a sequence of control sub-problems, enabling practical optimal control-based guidance at inference time. We provide theoretical guarantees linking MPC-Flow to the underlying optimal control objective and show how different algorithmic choices yield a spectrum of guidance algorithms, including regimes that avoid backpropagation through the generative model trajectory. We evaluate MPC-Flow on benchmark image restoration tasks, spanning linear and non-linear settings such as in-painting, deblurring, and super-resolution, and demonstrate strong performance and scalability to massive state-of-the-art architectures via training-free guidance of FLUX.2 (32B) in a quantised setting on consumer hardware.
Strongly Polynomial Time Complexity of Policy Iteration for $L_\infty$ Robust MDPs
Markov decision processes (MDPs) are a fundamental model in sequential decision making. Robust MDPs (RMDPs) extend this framework by allowing uncertainty in transition probabilities and optimizing against the worst-case realization of that uncertainty. In particular, $(s, a)$-rectangular RMDPs with $L_\infty$ uncertainty sets form a fundamental and expressive model: they subsume classical MDPs and turn-based stochastic games. We consider this model with discounted payoffs. The existence of polynomial and strongly-polynomial time algorithms is a fundamental problem for these optimization models. For MDPs, linear programming yields polynomial-time algorithms for any arbitrary discount factor, and the seminal work of Ye established strongly--polynomial time for a fixed discount factor. The generalization of such results to RMDPs has remained an important open problem. In this work, we show that a robust policy iteration algorithm runs in strongly-polynomial time for $(s, a)$-rectangular $L_\infty$ RMDPs with a constant (fixed) discount factor, resolving an important algorithmic question.
Scaling Multiagent Systems with Process Rewards
While multiagent systems have shown promise for tackling complex tasks via specialization, finetuning multiple agents simultaneously faces two key challenges: (1) credit assignment across agents, and (2) sample efficiency of expensive multiagent rollouts. In this work, we propose finetuning multiagent systems with per-action process rewards from AI feedback (MAPPA) to address both. Through assigning credit to individual agent actions rather than only at task completion, MAPPA enables fine-grained supervision without ground truth labels while extracting maximal training signal from each rollout. We demonstrate our approach on competition math problems and tool-augmented data analysis tasks. On unseen math problems, MAPPA achieves +5.0--17.5pp on AIME and +7.8--17.2pp on AMC. For data analysis tasks, our method improves success rate by +12.5pp while quality metrics improve by up to 30%, validating that per-action supervision can lead to improvements across different multiagent system on various domains. By addressing these challenges, our work takes a first step toward scaling multiagent systems for complex, long-horizon tasks with minimal human supervision.
Agile Reinforcement Learning through Separable Neural Architecture
Deep reinforcement learning (RL) is increasingly deployed in resource-constrained environments, yet the go-to function approximators - multilayer perceptrons (MLPs) - are often parameter-inefficient due to an imperfect inductive bias for the smooth structure of many value functions. This mismatch can also hinder sample efficiency and slow policy learning in this capacity-limited regime. Although model compression techniques exist, they operate post-hoc and do not improve learning efficiency. Recent spline-based separable architectures - such as Kolmogorov-Arnold Networks (KANs) - have been shown to offer parameter efficiency but are widely reported to exhibit significant computational overhead, especially at scale. In seeking to address these limitations, this work introduces SPAN (SPline-based Adaptive Networks), a novel function approximation approach to RL. SPAN adapts the low rank KHRONOS framework by integrating a learnable preprocessing layer with a separable tensor product B-spline basis. SPAN is evaluated across discrete (PPO) and high-dimensional continuous (SAC) control tasks, as well as offline settings (Minari/D4RL). Empirical results demonstrate that SPAN achieves a 30-50% improvement in sample efficiency and 1.3-9 times higher success rates across benchmarks compared to MLP baselines. Furthermore, SPAN demonstrates superior anytime performance and robustness to hyperparameter variations, suggesting it as a viable, high performance alternative for learning intrinsically efficient policies in resource-limited settings.
Med-Scout: Curing MLLMs' Geometric Blindness in Medical Perception via Geometry-Aware RL Post-Training
Despite recent Multimodal Large Language Models (MLLMs)' linguistic prowess in medical diagnosis, we find even state-of-the-art MLLMs suffer from a critical perceptual deficit: geometric blindness. This failure to ground outputs in objective geometric constraints leads to plausible yet factually incorrect hallucinations, rooted in training paradigms that prioritize linguistic fluency over geometric fidelity. This paper introduces Med-Scout, a novel framework that "cures" this blindness via Reinforcement Learning (RL) that leverages the intrinsic geometric logic latent within unlabeled medical images. Instead of relying on costly expert annotations, Med-Scout derives verifiable supervision signals through three strategic proxy tasks: Hierarchical Scale Localization, Topological Jigsaw Reconstruction, and Anomaly Consistency Detection. To rigorously quantify this deficit, we present Med-Scout-Bench, a new benchmark specifically designed to evaluate geometric perception. Extensive evaluations show that Med-Scout significantly mitigates geometric blindness, outperforming leading proprietary and open-source MLLMs by over 40% on our benchmark. Furthermore, this enhanced geometric perception generalizes to broader medical understanding, achieving superior results on radiological and comprehensive medical VQA tasks.
MonoScale: Scaling Multi-Agent System with Monotonic Improvement
In recent years, LLM-based multi-agent systems (MAS) have advanced rapidly, using a router to decompose tasks and delegate subtasks to specialized agents. A natural way to expand capability is to scale up the agent pool by continually integrating new functional agents or tool interfaces, but naive expansion can trigger performance collapse when the router cold-starts on newly added, heterogeneous, and unreliable agents. We propose MonoScale, an expansion-aware update framework that proactively generates a small set of agent-conditioned familiarization tasks, harvests evidence from both successful and failed interactions, and distills it into auditable natural-language memory to guide future routing. We formalize sequential augmentation as a contextual bandit and perform trust-region memory updates, yielding a monotonic non-decreasing performance guarantee across onboarding rounds. Experiments on GAIA and Humanity's Last Exam show stable gains as the agent pool grows, outperforming naive scale-up and strong-router fixed-pool baselines.
Tackling air quality with SAPIENS
Air pollution is a chronic problem in large cities worldwide and awareness is rising as the long-term health implications become clearer. Vehicular traffic has been identified as a major contributor to poor air quality. In a lot of cities the publicly available air quality measurements and forecasts are coarse-grained both in space and time. However, in general, real-time traffic intensity data is openly available in various forms and is fine-grained. In this paper, we present an in-depth study of pollution sensor measurements combined with traffic data from Mexico City. We analyse and model the relationship between traffic intensity and air quality with the aim to provide hyper-local, dynamic air quality forecasts. We developed an innovative method to represent traffic intensities by transforming simple colour-coded traffic maps into concentric ring-based descriptions, enabling improved characterisation of traffic conditions. Using Partial Least Squares Regression, we predict pollution levels based on these newly defined traffic intensities. The model was optimised with various training samples to achieve the best predictive performance and gain insights into the relationship between pollutants and traffic. The workflow we have designed is straightforward and adaptable to other contexts, like other cities beyond the specifics of our dataset.
comment: 24 pages, 13 figures
Disentangling multispecific antibody function with graph neural networks
Multispecific antibodies offer transformative therapeutic potential by engaging multiple epitopes simultaneously, yet their efficacy is an emergent property governed by complex molecular architectures. Rational design is often bottlenecked by the inability to predict how subtle changes in domain topology influence functional outcomes, a challenge exacerbated by the scarcity of comprehensive experimental data. Here, we introduce a computational framework to address part of this gap. First, we present a generative method for creating large-scale, realistic synthetic functional landscapes that capture non-linear interactions where biological activity depends on domain connectivity. Second, we propose a graph neural network architecture that explicitly encodes these topological constraints, distinguishing between format configurations that appear identical to sequence-only models. We demonstrate that this model, trained on synthetic landscapes, recapitulates complex functional properties and, via transfer learning, has the potential to achieve high predictive accuracy on limited biological datasets. We showcase the model's utility by optimizing trade-offs between efficacy and toxicity in trispecific T-cell engagers and retrieving optimal common light chains. This work provides a robust benchmarking environment for disentangling the combinatorial complexity of multispecifics, accelerating the design of next-generation therapeutics.
comment: 16 pages, 5 figures, code available at https://github.com/prescient-design/synapse
A Random Matrix Theory of Masked Self-Supervised Regression
In the era of transformer models, masked self-supervised learning (SSL) has become a foundational training paradigm. A defining feature of masked SSL is that training aggregates predictions across many masking patterns, giving rise to a joint, matrix-valued predictor rather than a single vector-valued estimator. This object encodes how coordinates condition on one another and poses new analytical challenges. We develop a precise high-dimensional analysis of masked modeling objectives in the proportional regime where the number of samples scales with the ambient dimension. Our results provide explicit expressions for the generalization error and characterize the spectral structure of the learned predictor, revealing how masked modeling extracts structure from data. For spiked covariance models, we show that the joint predictor undergoes a Baik--Ben Arous--Péché (BBP)-type phase transition, identifying when masked SSL begins to recover latent signals. Finally, we identify structured regimes in which masked self-supervised learning provably outperforms PCA, highlighting potential advantages of SSL objectives over classical unsupervised methods
Learning to Execute Graph Algorithms Exactly with Graph Neural Networks
Understanding what graph neural networks can learn, especially their ability to learn to execute algorithms, remains a central theoretical challenge. In this work, we prove exact learnability results for graph algorithms under bounded-degree and finite-precision constraints. Our approach follows a two-step process. First, we train an ensemble of multi-layer perceptrons (MLPs) to execute the local instructions of a single node. Second, during inference, we use the trained MLP ensemble as the update function within a graph neural network (GNN). Leveraging Neural Tangent Kernel (NTK) theory, we show that local instructions can be learned from a small training set, enabling the complete graph algorithm to be executed during inference without error and with high probability. To illustrate the learning power of our setting, we establish a rigorous learnability result for the LOCAL model of distributed computation. We further demonstrate positive learnability results for widely studied algorithms such as message flooding, breadth-first and depth-first search, and Bellman-Ford.
High-quality generation of dynamic game content via small language models: A proof of concept
Large language models (LLMs) offer promise for dynamic game content generation, but they face critical barriers, including narrative incoherence and high operational costs. Due to their large size, they are often accessed in the cloud, limiting their application in offline games. Many of these practical issues are solved by pivoting to small language models (SLMs), but existing studies using SLMs have resulted in poor output quality. We propose a strategy of achieving high-quality SLM generation through aggressive fine-tuning on deliberately scoped tasks with narrow context, constrained structure, or both. In short, more difficult tasks require narrower scope and higher specialization to the training corpus. Training data is synthetically generated via a DAG-based approach, grounding models in the specific game world. Such models can form the basis for agentic networks designed around the narratological framework at hand, representing a more practical and robust solution than cloud-dependent LLMs. To validate this approach, we present a proof-of-concept focusing on a single specialized SLM as the fundamental building block. We introduce a minimal RPG loop revolving around rhetorical battles of reputations, powered by this model. We demonstrate that a simple retry-until-success strategy reaches adequate quality (as defined by an LLM-as-a-judge scheme) with predictable latency suitable for real-time generation. While local quality assessment remains an open question, our results demonstrate feasibility for real-time generation under typical game engine constraints.
TSAQA: Time Series Analysis Question And Answering Benchmark
Time series data are integral to critical applications across domains such as finance, healthcare, transportation, and environmental science. While recent work has begun to explore multi-task time series question answering (QA), current benchmarks remain limited to forecasting and anomaly detection tasks. We introduce TSAQA, a novel unified benchmark designed to broaden task coverage and evaluate diverse temporal analysis capabilities. TSAQA integrates six diverse tasks under a single framework ranging from conventional analysis, including anomaly detection and classification, to advanced analysis, such as characterization, comparison, data transformation, and temporal relationship analysis. Spanning 210k samples across 13 domains, the dataset employs diverse formats, including true-or-false (TF), multiple-choice (MC), and a novel puzzling (PZ), to comprehensively assess time series analysis. Zero-shot evaluation demonstrates that these tasks are challenging for current Large Language Models (LLMs): the best-performing commercial LLM, Gemini-2.5-Flash, achieves an average score of only 65.08. Although instruction tuning boosts open-source performance: the best-performing open-source model, LLaMA-3.1-8B, shows significant room for improvement, highlighting the complexity of temporal analysis for LLMs.
comment: 35 pages, 7 figures
Scale-Cascaded Diffusion Models for Super-Resolution in Medical Imaging
Diffusion models have been increasingly used as strong generative priors for solving inverse problems such as super-resolution in medical imaging. However, these approaches typically utilize a diffusion prior trained at a single scale, ignoring the hierarchical scale structure of image data. In this work, we propose to decompose images into Laplacian pyramid scales and train separate diffusion priors for each frequency band. We then develop an algorithm to perform super-resolution that utilizes these priors to progressively refine reconstructions across different scales. Evaluated on brain, knee, and prostate MRI data, our approach both improves perceptual quality over baselines and reduces inference time through smaller coarse-scale networks. Our framework unifies multiscale reconstruction and diffusion priors for medical image super-resolution.
comment: Accepted at IEEE International Symposium for Biomedical Imaging (ISBI) 2026
TriSpec: Ternary Speculative Decoding via Lightweight Proxy Verification
Inference efficiency in Large Language Models (LLMs) is fundamentally limited by their serial, autoregressive generation, especially as reasoning becomes a key capability and response sequences grow longer. Speculative decoding (SD) offers a powerful solution, providing significant speed-ups through its lightweight drafting and parallel verification mechanism. While existing work has nearly saturated improvements in draft effectiveness and efficiency, this paper advances SD from a new yet critical perspective: the verification cost. We propose TriSpec, a novel ternary SD framework that, at its core, introduces a lightweight proxy to significantly reduce computational cost by approving easily verifiable draft sequences and engaging the full target model only when encountering uncertain tokens. TriSpec can be integrated with state-of-the-art SD methods like EAGLE-3 to further reduce verification costs, achieving greater acceleration. Extensive experiments on the Qwen3 and DeepSeek-R1-Distill-Qwen/LLaMA families show that TriSpec achieves up to 35\% speedup over standard SD, with up to 50\% fewer target model invocations while maintaining comparable accuracy.
Make Anything Match Your Target: Universal Adversarial Perturbations against Closed-Source MLLMs via Multi-Crop Routed Meta Optimization
Targeted adversarial attacks on closed-source multimodal large language models (MLLMs) have been increasingly explored under black-box transfer, yet prior methods are predominantly sample-specific and offer limited reusability across inputs. We instead study a more stringent setting, Universal Targeted Transferable Adversarial Attacks (UTTAA), where a single perturbation must consistently steer arbitrary inputs toward a specified target across unknown commercial MLLMs. Naively adapting existing sample-wise attacks to this universal setting faces three core difficulties: (i) target supervision becomes high-variance due to target-crop randomness, (ii) token-wise matching is unreliable because universality suppresses image-specific cues that would otherwise anchor alignment, and (iii) few-source per-target adaptation is highly initialization-sensitive, which can degrade the attainable performance. In this work, we propose MCRMO-Attack, which stabilizes supervision via Multi-Crop Aggregation with an Attention-Guided Crop, improves token-level reliability through alignability-gated Token Routing, and meta-learns a cross-target perturbation prior that yields stronger per-target solutions. Across commercial MLLMs, we boost unseen-image attack success rate by +23.7\% on GPT-4o and +19.9\% on Gemini-2.0 over the strongest universal baseline.
MeshGraphNet-Transformer: Scalable Mesh-based Learned Simulation for Solid Mechanics
We present MeshGraphNet-Transformer (MGN-T), a novel architecture that combines the global modeling capabilities of Transformers with the geometric inductive bias of MeshGraphNets, while preserving a mesh-based graph representation. MGN-T overcomes a key limitation of standard MGN, the inefficient long-range information propagation caused by iterative message passing on large, high-resolution meshes. A physics-attention Transformer serves as a global processor, updating all nodal states simultaneously while explicitly retaining node and edge attributes. By directly capturing long-range physical interactions, MGN-T eliminates the need for deep message-passing stacks or hierarchical, coarsened meshes, enabling efficient learning on high-resolution meshes with varying geometries, topologies, and boundary conditions at an industrial scale. We demonstrate that MGN-T successfully handles industrial-scale meshes for impact dynamics, a setting in which standard MGN fails due message-passing under-reaching. The method accurately models self-contact, plasticity, and multivariate outputs, including internal, phenomenological plastic variables. Moreover, MGN-T outperforms state-of-the-art approaches on classical benchmarks, achieving higher accuracy while maintaining practical efficiency, using only a fraction of the parameters required by competing baselines.
Beyond Fixed Frames: Dynamic Character-Aligned Speech Tokenization
Neural audio codecs are at the core of modern conversational speech technologies, converting continuous speech into sequences of discrete tokens that can be processed by LLMs. However, existing codecs typically operate at fixed frame rates, allocating tokens uniformly in time and producing unnecessarily long sequences. In this work, we introduce DyCAST, a Dynamic Character-Aligned Speech Tokenizer that enables variable-frame-rate tokenization through soft character-level alignment and explicit duration modeling. DyCAST learns to associate tokens with character-level linguistic units during training and supports alignment-free inference with direct control over token durations at decoding time. To improve speech resynthesis quality at low frame rates, we further introduce a retrieval-augmented decoding mechanism that enhances reconstruction fidelity without increasing bitrate. Experiments show that DyCAST achieves competitive speech resynthesis quality and downstream performance while using significantly fewer tokens than fixed-frame-rate codecs.
comment: 18 pages, 3 figures
Offline Goal-Conditioned Reinforcement Learning with Projective Quasimetric Planning
Offline Goal-Conditioned Reinforcement Learning seeks to train agents to reach specified goals from previously collected trajectories. Scaling that promises to long-horizon tasks remains challenging, notably due to compounding value-estimation errors. Principled geometric offers a potential solution to address these issues. Following this insight, we introduce Projective Quasimetric Planning (ProQ), a compositional framework that learns an asymmetric distance and then repurposes it, firstly as a repulsive energy forcing a sparse set of keypoints to uniformly spread over the learned latent space, and secondly as a structured directional cost guiding towards proximal sub-goals. In particular, ProQ couples this geometry with a Lagrangian out-of-distribution detector to ensure the learned keypoints stay within reachable areas. By unifying metric learning, keypoint coverage, and goal-conditioned control, our approach produces meaningful sub-goals and robustly drives long-horizon goal-reaching on diverse a navigation benchmarks.
From Cold Start to Active Learning: Embedding-Based Scan Selection for Medical Image Segmentation
Accurate segmentation annotations are critical for disease monitoring, yet manual labeling remains a major bottleneck due to the time and expertise required. Active learning (AL) alleviates this burden by prioritizing informative samples for annotation, typically through a diversity-based cold-start phase followed by uncertainty-driven selection. We propose a novel cold-start sampling strategy that combines foundation-model embeddings with clustering, including automatic selection of the number of clusters and proportional sampling across clusters, to construct a diverse and representative initial training. This is followed by an uncertainty-based AL framework that integrates spatial diversity to guide sample selection. The proposed method is intuitive and interpretable, enabling visualization of the feature-space distribution of candidate samples. We evaluate our approach on three datasets spanning X-ray and MRI modalities. On the CheXmask dataset, the cold-start strategy outperforms random selection, improving Dice from 0.918 to 0.929 and reducing the Hausdorff distance from 32.41 to 27.66 mm. In the AL setting, combined entropy and diversity selection improves Dice from 0.919 to 0.939 and reduces the Hausdorff distance from 30.10 to 19.16 mm. On the Montgomery dataset, cold-start gains are substantial, with Dice improving from 0.928 to 0.950 and Hausdorff distance decreasing from 14.22 to 9.38 mm. On the SynthStrip dataset, cold-start selection slightly affects Dice but reduces the Hausdorff distance from 9.43 to 8.69 mm, while active learning improves Dice from 0.816 to 0.826 and reduces the Hausdorff distance from 7.76 to 6.38 mm. Overall, the proposed framework consistently outperforms baseline methods in low-data regimes, improving segmentation accuracy.
comment: 19 pages without references
A Continual Offline Reinforcement Learning Benchmark for Navigation Tasks
Autonomous agents operating in domains such as robotics or video game simulations must adapt to changing tasks without forgetting about the previous ones. This process called Continual Reinforcement Learning poses non-trivial difficulties, from preventing catastrophic forgetting to ensuring the scalability of the approaches considered. Building on recent advances, we introduce a benchmark providing a suite of video-game navigation scenarios, thus filling a gap in the literature and capturing key challenges : catastrophic forgetting, task adaptation, and memory efficiency. We define a set of various tasks and datasets, evaluation protocols, and metrics to assess the performance of algorithms, including state-of-the-art baselines. Our benchmark is designed not only to foster reproducible research and to accelerate progress in continual reinforcement learning for gaming, but also to provide a reproducible framework for production pipelines -- helping practitioners to identify and to apply effective approaches.
comment: arXiv admin note: text overlap with arXiv:2412.14865
CAOS: Conformal Aggregation of One-Shot Predictors
One-shot prediction enables rapid adaptation of pretrained foundation models to new tasks using only one labeled example, but lacks principled uncertainty quantification. While conformal prediction provides finite-sample coverage guarantees, standard split conformal methods are inefficient in the one-shot setting due to data splitting and reliance on a single predictor. We propose Conformal Aggregation of One-Shot Predictors (CAOS), a conformal framework that adaptively aggregates multiple one-shot predictors and uses a leave-one-out calibration scheme to fully exploit scarce labeled data. Despite violating classical exchangeability assumptions, we prove that CAOS achieves valid marginal coverage using a monotonicity-based argument. Experiments on one-shot facial landmarking and RAFT text classification tasks show that CAOS produces substantially smaller prediction sets than split conformal baselines while maintaining reliable coverage.
Multi-agent Coordination via Flow Matching ICLR 2026
This work presents MAC-Flow, a simple yet expressive framework for multi-agent coordination. We argue that requirements of effective coordination are twofold: (i) a rich representation of the diverse joint behaviors present in offline data and (ii) the ability to act efficiently in real time. However, prior approaches often sacrifice one for the other, i.e., denoising diffusion-based solutions capture complex coordination but are computationally slow, while Gaussian policy-based solutions are fast but brittle in handling multi-agent interaction. MAC-Flow addresses this trade-off by first learning a flow-based representation of joint behaviors, and then distilling it into decentralized one-step policies that preserve coordination while enabling fast execution. Across four different benchmarks, including $12$ environments and $34$ datasets, MAC-Flow alleviates the trade-off between performance and computational cost, specifically achieving about $\boldsymbol{\times14.5}$ faster inference compared to diffusion-based MARL methods, while maintaining good performance. At the same time, its inference speed is similar to that of prior Gaussian policy-based offline multi-agent reinforcement learning (MARL) methods.
comment: ICLR 2026
Expert Evaluation and the Limits of Human Feedback in Mental Health AI Safety Testing
Learning from human feedback~(LHF) assumes that expert judgments, appropriately aggregated, yield valid ground truth for training and evaluating AI systems. We tested this assumption in mental health, where high safety stakes make expert consensus essential. Three certified psychiatrists independently evaluated LLM-generated responses using a calibrated rubric. Despite similar training and shared instructions, inter-rater reliability was consistently poor ($ICC$ $0.087$--$0.295$), falling below thresholds considered acceptable for consequential assessment. Disagreement was highest on the most safety-critical items. Suicide and self-harm responses produced greater divergence than any other category, and was systematic rather than random. One factor yielded negative reliability (Krippendorff's $α= -0.203$), indicating structured disagreement worse than chance. Qualitative interviews revealed that disagreement reflects coherent but incompatible individual clinical frameworks, safety-first, engagement-centered, and culturally-informed orientations, rather than measurement error. By demonstrating that experts rely on holistic risk heuristics rather than granular factor discrimination, these findings suggest that aggregated labels function as arithmetic compromises that effectively erase grounded professional philosophies. Our results characterize expert disagreement in safety-critical AI as a sociotechnical phenomenon where professional experience introduces sophisticated layers of principled divergence. We discuss implications for reward modeling, safety classification, and evaluation benchmarks, recommending that practitioners shift from consensus-based aggregation to alignment methods that preserve and learn from expert disagreement.
comment: 17 pages, 7 pages of appendix, 21 tables
Reinforcement Learning for Ballbot Navigation in Uneven Terrain
Ballbot (i.e. Ball balancing robot) navigation usually relies on methods rooted in control theory (CT), and works that apply Reinforcement learning (RL) to the problem remain rare while generally being limited to specific subtasks (e.g. balance recovery). Unlike CT based methods, RL does not require (simplifying) assumptions about environment dynamics (e.g. the absence of slippage between the ball and the floor). In addition to this increased accuracy in modeling, RL agents can easily be conditioned on additional observations such as depth-maps without the need for explicit formulations from first principles, leading to increased adaptivity. Despite those advantages, there has been little to no investigation into the capabilities, data-efficiency and limitations of RL based methods for ballbot control and navigation. Furthermore, there is a notable absence of an open-source, RL-friendly simulator for this task. In this paper, we present an open-source ballbot simulation based on MuJoCo, and show that with appropriate conditioning on exteroceptive observations as well as reward shaping, policies learned by classical model-free RL methods are capable of effectively navigating through randomly generated uneven terrain, using a reasonable amount of data (four to five hours on a system operating at 500hz). Our code is made publicly available.
comment: 6 pages, 9 figures, 2 tables. Version two corrects figure 4 and adds some experiments
FC-KAN: Function Combinations in Kolmogorov-Arnold Networks
In this paper, we introduce FC-KAN, a Kolmogorov-Arnold Network (KAN) that leverages combinations of popular mathematical functions such as B-splines, wavelets, and radial basis functions on low-dimensional data through element-wise operations. We explore several methods for combining the outputs of these functions, including sum, element-wise product, the addition of sum and element-wise product, representations of quadratic and cubic functions, concatenation, linear transformation of the concatenated output, and others. In our experiments, we compare FC-KAN with a multi-layer perceptron network (MLP) and other existing KANs, such as BSRBF-KAN, EfficientKAN, FastKAN, and FasterKAN, on the MNIST and Fashion-MNIST datasets. Two variants of FC-KAN, which use a combination of outputs from B-splines and Difference of Gaussians (DoG) and from B-splines and linear transformations in the form of a quadratic function, outperformed overall other models on the average of 5 independent training runs. We expect that FC-KAN can leverage function combinations to design future KANs. Our repository is publicly available at: https://github.com/hoangthangta/FC_KAN.
comment: 17 pages
On the Separability of Information in Diffusion Models
Diffusion models transform noise into data by injecting information that was captured in their neural network during the training phase. In this paper, we ask: \textit{what} is this information? We find that, in pixel-space diffusion models, (1) a large fraction of the total information in the neural network is committed to reconstructing small-scale perceptual details of the image, and (2) the correlations between images and their class labels are informed by the semantic content of the images, and are largely agnostic to the low-level details. We argue that these properties are intrinsically tied to the manifold structure of the data itself. Finally, we show that these facts explain the efficacy of classifier-free guidance: the guidance vector amplifies the mutual information between images and conditioning signals early in the generative process, influencing semantic structure, but tapers out as perceptual details are filled in.
comment: 27 pages + references, 19 figures. v4: Re-organized the paper to focus on separability of information
SuperCoder: Assembly Program Superoptimization with Large Language Models
Superoptimization is the task of transforming a program into a faster one while preserving its input-output behavior. In this work, we investigate whether large language models (LLMs) can serve as superoptimizers, generating assembly programs that outperform code already optimized by industry-standard compilers. We construct the first large-scale benchmark for this problem, consisting of 8,072 assembly programs averaging 130 lines, in contrast to prior datasets restricted to 2-15 straight-line, loop-free programs. We evaluate 23 LLMs on this benchmark and find that the strongest baseline, Claude-opus-4, achieves a 51.5% test-passing rate and a 1.43x average speedup over gcc -O3. To further enhance performance, we fine-tune models with reinforcement learning, optimizing a reward function that integrates correctness and performance speedup. Starting from Qwen2.5-Coder-7B-Instruct (61.4% correctness, 1.10x speedup), the fine-tuned model SuperCoder attains 95.0% correctness and 1.46x average speedup, with additional improvement enabled by Best-of-N sampling and iterative refinement. Our results demonstrate, for the first time, that LLMs can be applied as superoptimizers for assembly programs, establishing a foundation for future research in program performance optimization beyond compiler heuristics.
Geometric-disentangelment Unlearning
Large language models (LLMs) can internalize private or harmful content, motivating unlearning that removes a forget set while preserving retaining knowledge. However, forgetting updates often cause collateral degradation on retaining knowledge, creating a persistent trade-off. Existing LLM unlearning methods are often heuristic, and other theoretical approaches rely on offline feature constructions that do not capture update-time forget-retain interaction in LLMs. To address this limitation, we aim to develop an LLM unlearning method that reduces the forget-retain trade-off with theoretical guarantees. We take a first-principles view by formalizing "no side effects" as local retain invariance under small parameter updates, and prove an equivalence under optimizer-induced geometry: the retain loss is locally invariant if and only if the update direction is orthogonal to the subspace spanned by retain gradients. Based on the insight, we propose Geometric-disentanglement Unlearning (GU), a lightweight and theoretically grounded projection that can be plug-and-play to existing gradient-based unlearning methods to mitigate forget-retain side effects. Experiments on TOFU, MUSE, and WMDP-cyber show that GU strengthens forgetting while reducing retain drift. When added to SimNPO, it achieves up to 62\% improved forgetting Extraction Strength (ES) and 31\% higher retain ES. We open-sourced our code in https://github.com/Lemutisme/Geometric-Unlearning.
comment: 26 Pages
LightRetriever: A LLM-based Text Retrieval Architecture with Extremely Faster Query Inference ICLR 2026
Large Language Models (LLMs)-based text retrieval retrieves documents relevant to search queries based on vector similarities. Documents are pre-encoded offline, while queries arrive in real-time, necessitating an efficient online query encoder. Although LLMs significantly enhance retrieval capabilities, serving deeply parameterized LLMs slows down query inference throughput and increases demands for online deployment resources. In this paper, we propose LightRetriever, a novel LLM-based retriever with extremely lightweight query encoders. Our method retains a full-sized LLM for document encoding, but reduces the workload of query encoding to no more than an embedding lookup. Compared to serving a full LLM on an A800 GPU, our method achieves over 1000x speedup in query encoding and over 10x increase in end-to-end retrieval throughput. Extensive experiments on large-scale retrieval benchmarks show that LightRetriever generalizes well across diverse tasks, maintaining an average of 95% retrieval performance.
comment: Accepted by ICLR 2026
The Mean-Field Dynamics of Transformers
We develop a mathematical framework that interprets Transformer attention as an interacting particle system and studies its continuum (mean-field) limits. By idealizing attention on the sphere, we connect Transformer dynamics to Wasserstein gradient flows, synchronization models (Kuramoto), and mean-shift clustering. Central to our results is a global clustering phenomenon whereby tokens cluster asymptotically after long metastable states where they are arranged into multiple clusters. We further analyze a tractable equiangular reduction to obtain exact clustering rates, show how commonly used normalization schemes alter contraction speeds, and identify a phase transition for long-context attention. The results highlight both the mechanisms that drive representation collapse and the regimes that preserve expressive, multi-cluster structure in deep attention architectures.
comment: to appear as Proceedings of the ICM2026, Philadelphia, USA
In the Mood to Exclude: Revitalizing Trespass to Chattels in the Era of GenAI Scraping
GenAI companies are strip-mining the web. Their scraping bots harvest content at an unprecedented scale, circumventing technical barriers to fuel billion-dollar models while creators receive nothing. Courts have enabled this exploitation by misunderstanding what property rights protect online. The prevailing view treats websites as mere repositories of intellectual property and dismisses trespass claims absent server damage. That framework grants AI companies presumptive access while ignoring the economic devastation they inflict. But the content is severable from the website itself. This paper reframes the debate: websites are personal property as integrated digital assets subject to the same exclusionary rights as physical chattels. When scrapers bypass access controls and divert traffic that sustains a website's value, they commit actionable trespass. The law need not create new protections; it need only apply existing property principles to digital space. Courts and litigants have struggled to police unwanted, large-scale scraping because copyright preemption often narrows available claims, leaving copyright and its fair use defense as the primary battleground. Trespass to chattels offers a superior path, grounded in the fundamental right to exclude unwanted intrusions. Reviving this tort would protect not only content creators but also the digital ecosystem. Such protection would discourage exploitative scraping, preserve incentives for content creation, help protect privacy and personal data, and safeguard autonomy and expression. Reaffirming website owners' right to exclude is essential to maintaining a fair and sustainable online environment.
Generative quantum machine learning via denoising diffusion probabilistic models
Deep generative models are key-enabling technology to computer vision, text generation, and large language models. Denoising diffusion probabilistic models (DDPMs) have recently gained much attention due to their ability to generate diverse and high-quality samples in many computer vision tasks, as well as to incorporate flexible model architectures and a relatively simple training scheme. Quantum generative models, empowered by entanglement and superposition, have brought new insight to learning classical and quantum data. Inspired by the classical counterpart, we propose the quantum denoising diffusion probabilistic model (QuDDPM) to enable efficiently trainable generative learning of quantum data. QuDDPM adopts sufficient layers of circuits to guarantee expressivity, while it introduces multiple intermediate training tasks as interpolation between the target distribution and noise to avoid barren plateau and guarantee efficient training. We provide bounds on the learning error and demonstrate QuDDPM's capability in learning correlated quantum noise model, quantum many-body phases, and topological structure of quantum data. The results provide a paradigm for versatile and efficient quantum generative learning.
comment: 5+10 pages, 16 figures. PRL accepted version. Code available at: https://github.com/francis-hsu/quantgenmdl
Quantum Super-resolution by Adaptive Non-local Observables
Super-resolution (SR) seeks to reconstruct high-resolution (HR) data from low-resolution (LR) observations. Classical deep learning methods have advanced SR substantially, but require increasingly deeper networks, large datasets, and heavy computation to capture fine-grained correlations. In this work, we present the \emph{first study} to investigate quantum circuits for SR. We propose a framework based on Variational Quantum Circuits (VQCs) with \emph{Adaptive Non-Local Observable} (ANO) measurements. Unlike conventional VQCs with fixed Pauli readouts, ANO introduces trainable multi-qubit Hermitian observables, allowing the measurement process to adapt during training. This design leverages the high-dimensional Hilbert space of quantum systems and the representational structure provided by entanglement and superposition. Experiments demonstrate that ANO-VQCs achieve up to five-fold higher resolution with a relatively small model size, suggesting a promising new direction at the intersection of quantum machine learning and super-resolution.
comment: Accepted at ICASSP 2026
How Well Can Preference Optimization Generalize Under Noisy Feedback?
As large language models (LLMs) advance their capabilities, aligning these models with human preferences has become crucial. Preference optimization, which trains models to distinguish between preferred and non-preferred responses based on human feedback, has become a crucial component for aligning LLMs. However, most existing works assume noise-free feedback, which is unrealistic due to the inherent errors and inconsistencies in human judgments. This paper addresses the impact of noisy feedback on preference optimization, providing generalization guarantees under these conditions. In particular, we consider noise models that correspond to common real-world sources of noise, such as mislabeling and uncertainty. Unlike traditional analyses that assume convergence, our work focuses on finite-step preference optimization, offering new insights that are more aligned with practical LLM training. We describe how generalization decays with different types of noise across levels of noise rates based on the preference data distribution and number of samples. Our analysis for noisy preference learning applies to a broad family of preference optimization losses such as DPO, IPO, SLiC, etc. Empirical validation on contemporary LLMs confirms the practical relevance of our findings, offering valuable insights for developing AI systems that align with human preferences.
comment: TMLR 2026
RefineBridge: Generative Bridge Models Improve Financial Forecasting by Foundation Models
Financial time series forecasting is particularly challenging for transformer-based time series foundation models (TSFMs) due to non-stationarity, heavy-tailed distributions, and high-frequency noise present in data. Low-rank adaptation (LoRA) has become a popular parameter-efficient method for adapting pre-trained TSFMs to downstream data domains. However, it still underperforms in financial data, as it preserves the network architecture and training objective of TSFMs rather than complementing the foundation model. To further enhance TSFMs, we propose a novel refinement module, RefineBridge, built upon a tractable Schrödinger Bridge (SB) generative framework. Given the forecasts of TSFM as generative prior and the observed ground truths as targets, RefineBridge learns context-conditioned stochastic transport maps to improve TSFM predictions, iteratively approaching the ground-truth target from even a low-quality prior. Simulations on multiple financial benchmarks demonstrate that RefineBridge consistently improves the performance of state-of-the-art TSFMs across different prediction horizons.
Breaking the Exploration Bottleneck: Rubric-Scaffolded Reinforcement Learning for General LLM Reasoning
Recent advances in Large Language Models (LLMs) have underscored the potential of Reinforcement Learning (RL) to facilitate the emergence of reasoning capabilities. Despite the encouraging results, a fundamental dilemma persists as RL improvement relies on learning from high-quality samples, yet the exploration for such samples remains bounded by the inherent limitations of LLMs. This, in effect, creates an undesirable cycle in which what cannot be explored cannot be learned. In this work, we propose Rubric-Scaffolded Reinforcement Learning (RuscaRL), a novel instructional scaffolding framework designed to break the exploration bottleneck for general LLM reasoning. Specifically, RuscaRL introduces checklist-style rubrics as (1) explicit scaffolding for exploration during rollout generation, where different rubrics are provided as external guidance within task instructions to steer diverse high-quality responses. This guidance is gradually decayed over time, encouraging the model to internalize the underlying reasoning patterns; (2) verifiable rewards for exploitation during model training, where we can obtain robust LLM-as-a-Judge scores using rubrics as references, enabling effective RL on general reasoning tasks. Extensive experiments demonstrate the superiority of the proposed RuscaRL across various benchmarks, effectively expanding reasoning boundaries under the Best-of-N evaluation. Our code is available at https://github.com/IANNXANG/RuscaRL.
Robotics 65
DynamicVLA: A Vision-Language-Action Model for Dynamic Object Manipulation
Manipulating dynamic objects remains an open challenge for Vision-Language-Action (VLA) models, which, despite strong generalization in static manipulation, struggle in dynamic scenarios requiring rapid perception, temporal anticipation, and continuous control. We present DynamicVLA, a framework for dynamic object manipulation that integrates temporal reasoning and closed-loop adaptation through three key designs: 1) a compact 0.4B VLA using a convolutional vision encoder for spatially efficient, structurally faithful encoding, enabling fast multimodal inference; 2) Continuous Inference, enabling overlapping reasoning and execution for lower latency and timely adaptation to object motion; and 3) Latent-aware Action Streaming, which bridges the perception-execution gap by enforcing temporally aligned action execution. To fill the missing foundation of dynamic manipulation data, we introduce the Dynamic Object Manipulation (DOM) benchmark, built from scratch with an auto data collection pipeline that efficiently gathers 200K synthetic episodes across 2.8K scenes and 206 objects, and enables fast collection of 2K real-world episodes without teleoperation. Extensive evaluations demonstrate remarkable improvements in response speed, perception, and generalization, positioning DynamicVLA as a unified framework for general dynamic object manipulation across embodiments.
comment: Project Page: https://www.infinitescript.com/project/dynamic-vla/ GitHub: https://github.com/hzxie/DynamicVLA
ReactEMG Stroke: Healthy-to-Stroke Few-shot Adaptation for sEMG-Based Intent Detection
Surface electromyography (sEMG) is a promising control signal for assist-as-needed hand rehabilitation after stroke, but detecting intent from paretic muscles often requires lengthy, subject-specific calibration and remains brittle to variability. We propose a healthy-to-stroke adaptation pipeline that initializes an intent detector from a model pretrained on large-scale able-bodied sEMG, then fine-tunes it for each stroke participant using only a small amount of subject-specific data. Using a newly collected dataset from three individuals with chronic stroke, we compare adaptation strategies (head-only tuning, parameter-efficient LoRA adapters, and full end-to-end fine-tuning) and evaluate on held-out test sets that include realistic distribution shifts such as within-session drift, posture changes, and armband repositioning. Across conditions, healthy-pretrained adaptation consistently improves stroke intent detection relative to both zero-shot transfer and stroke-only training under the same data budget; the best adaptation methods improve average transition accuracy from 0.42 to 0.61 and raw accuracy from 0.69 to 0.78. These results suggest that transferring a reusable healthy-domain EMG representation can reduce calibration burden while improving robustness for real-time post-stroke intent detection.
mjlab: A Lightweight Framework for GPU-Accelerated Robot Learning
We present mjlab, a lightweight, open-source framework for robot learning that combines GPU-accelerated simulation with composable environments and minimal setup friction. mjlab adopts the manager-based API introduced by Isaac Lab, where users compose modular building blocks for observations, rewards, and events, and pairs it with MuJoCo Warp for GPU-accelerated physics. The result is a framework installable with a single command, requiring minimal dependencies, and providing direct access to native MuJoCo data structures. mjlab ships with reference implementations of velocity tracking, motion imitation, and manipulation tasks.
comment: Code is available at https://github.com/mujocolab/mjlab
PocketDP3: Efficient Pocket-Scale 3D Visuomotor Policy
Recently, 3D vision-based diffusion policies have shown strong capability in learning complex robotic manipulation skills. However, a common architectural mismatch exists in these models: a tiny yet efficient point-cloud encoder is often paired with a massive decoder. Given a compact scene representation, we argue that this may lead to substantial parameter waste in the decoder. Motivated by this observation, we propose PocketDP3, a pocket-scale 3D diffusion policy that replaces the heavy conditional U-Net decoder used in prior methods with a lightweight Diffusion Mixer (DiM) built on MLP-Mixer blocks. This architecture enables efficient fusion across temporal and channel dimensions, significantly reducing model size. Notably, without any additional consistency distillation techniques, our method supports two-step inference without sacrificing performance, improving practicality for real-time deployment. Across three simulation benchmarks--RoboTwin2.0, Adroit, and MetaWorld--PocketDP3 achieves state-of-the-art performance with fewer than 1% of the parameters of prior methods, while also accelerating inference. Real-world experiments further demonstrate the practicality and transferability of our method in real-world settings. Code will be released.
Causal World Modeling for Robot Control
This work highlights that video world modeling, alongside vision-language pre-training, establishes a fresh and independent foundation for robot learning. Intuitively, video world models provide the ability to imagine the near future by understanding the causality between actions and visual dynamics. Inspired by this, we introduce LingBot-VA, an autoregressive diffusion framework that learns frame prediction and policy execution simultaneously. Our model features three carefully crafted designs: (1) a shared latent space, integrating vision and action tokens, driven by a Mixture-of-Transformers (MoT) architecture, (2) a closed-loop rollout mechanism, allowing for ongoing acquisition of environmental feedback with ground-truth observations, (3) an asynchronous inference pipeline, parallelizing action prediction and motor execution to support efficient control. We evaluate our model on both simulation benchmarks and real-world scenarios, where it shows significant promise in long-horizon manipulation, data efficiency in post-training, and strong generalizability to novel configurations. The code and model are made publicly available to facilitate the community.
comment: Project page: https://technology.robbyant.com/lingbot-va Code: https://github.com/robbyant/lingbot-va
Generalized Information Gathering Under Dynamics Uncertainty
An agent operating in an unknown dynamical system must learn its dynamics from observations. Active information gathering accelerates this learning, but existing methods derive bespoke costs for specific modeling choices: dynamics models, belief update procedures, observation models, and planners. We present a unifying framework that decouples these choices from the information-gathering cost by explicitly exposing the causal dependencies between parameters, beliefs, and controls. Using this framework, we derive a general information-gathering cost based on Massey's directed information that assumes only Markov dynamics with additive noise and is otherwise agnostic to modeling choices. We prove that the mutual information cost used in existing literature is a special case of our cost. Then, we leverage our framework to establish an explicit connection between the mutual information cost and information gain in linearized Bayesian estimation, thereby providing theoretical justification for mutual information-based active learning approaches. Finally, we illustrate the practical utility of our framework through experiments spanning linear, nonlinear, and multi-agent systems.
Macro-Scale Electrostatic Origami Motor
Foldable robots have been an active area of robotics research due to their high volume-to-mass ratio, easy packability, and shape adaptability. For locomotion, previously developed foldable robots have either embedded linear actuators in, or attached non-folding rotary motors to, their structure. Further, those actuators directly embedded in the structure of the folding medium all contributed to linear or folding motion, not to continuous rotary motion. On the macro-scale there has not yet been a folding continuous rotary actuator. This paper details the development and testing of the first macro-scale origami rotary motor that can be folded flat, and then unfurled to operate. Using corona discharge for torque production, the prototype motor achieved an expansion ratio of 2.5:1, reached a top speed of 1440 rpm when driven at -29 kV, and exhibited a maximum output torque over 0.15 mN m with an active component torque density of 0.04 Nm/kg.
MoE-ACT: Improving Surgical Imitation Learning Policies through Supervised Mixture-of-Experts
Imitation learning has achieved remarkable success in robotic manipulation, yet its application to surgical robotics remains challenging due to data scarcity, constrained workspaces, and the need for an exceptional level of safety and predictability. We present a supervised Mixture-of-Experts (MoE) architecture designed for phase-structured surgical manipulation tasks, which can be added on top of any autonomous policy. Unlike prior surgical robot learning approaches that rely on multi-camera setups or thousands of demonstrations, we show that a lightweight action decoder policy like Action Chunking Transformer (ACT) can learn complex, long-horizon manipulation from less than 150 demonstrations using solely stereo endoscopic images, when equipped with our architecture. We evaluate our approach on the collaborative surgical task of bowel grasping and retraction, where a robot assistant interprets visual cues from a human surgeon, executes targeted grasping on deformable tissue, and performs sustained retraction. We benchmark our method against state-of-the-art Vision-Language-Action (VLA) models and the standard ACT baseline. Our results show that generalist VLAs fail to acquire the task entirely, even under standard in-distribution conditions. Furthermore, while standard ACT achieves moderate success in-distribution, adopting a supervised MoE architecture significantly boosts its performance, yielding higher success rates in-distribution and demonstrating superior robustness in out-of-distribution scenarios, including novel grasp locations, reduced illumination, and partial occlusions. Notably, it generalizes to unseen testing viewpoints and also transfers zero-shot to ex vivo porcine tissue without additional training, offering a promising pathway toward in vivo deployment. To support this, we present qualitative preliminary results of policy roll-outs during in vivo porcine surgery.
Information Filtering via Variational Regularization for Robot Manipulation
Diffusion-based visuomotor policies built on 3D visual representations have achieved strong performance in learning complex robotic skills. However, most existing methods employ an oversized denoising decoder. While increasing model capacity can improve denoising, empirical evidence suggests that it also introduces redundancy and noise in intermediate feature blocks. Crucially, we find that randomly masking backbone features at inference time (without changing training) can improve performance, confirming the presence of task-irrelevant noise in intermediate features. To this end, we propose Variational Regularization (VR), a lightweight module that imposes a timestep-conditioned Gaussian over backbone features and applies a KL-divergence regularizer, forming an adaptive information bottleneck. Extensive experiments on three simulation benchmarks (RoboTwin2.0, Adroit, and MetaWorld) show that, compared to the baseline DP3, our approach improves the success rate by 6.1% on RoboTwin2.0 and by 4.1% on Adroit and MetaWorld, achieving new state-of-the-art results. Real-world experiments further demonstrate that our method performs well in practical deployments. Code will released.
Multi-Modular MANTA-RAY: A Modular Soft Surface Platform for Distributed Multi-Object Manipulation
Manipulation surfaces control objects by actively deforming their shape rather than directly grasping them. While dense actuator arrays can generate complex deformations, they also introduce high degrees of freedom (DOF), increasing system complexity and limiting scalability. The MANTA-RAY (Manipulation with Adaptive Non-rigid Textile Actuation with Reduced Actuation densitY) platform addresses these challenges by leveraging a soft, fabric-based surface with reduced actuator density to manipulate fragile and heterogeneous objects. Previous studies focused on single-module implementations supported by four actuators, whereas the feasibility and benefits of a scalable, multi-module configuration remain unexplored. In this work, we present a distributed, modular, and scalable variant of the MANTA-RAY platform that maintains manipulation performance with a reduced actuator density. The proposed multi-module MANTA-RAY platform and control strategy employs object passing between modules and a geometric transformation driven PID controller that directly maps tilt-angle control outputs to actuator commands, eliminating the need for extensive data-driven or black-box training. We evaluate system performance in simulation across surface configurations of varying modules (3x3 and 4x4) and validate its feasibility through experiments on a physical 2x2 hardware prototype. The system successfully manipulates objects with diverse geometries, masses, and textures including fragile items such as eggs and apples as well as enabling parallel manipulation. The results demonstrate that the multi-module MANTA-RAY improves scalability and enables coordinated manipulation of multiple objects across larger areas, highlighting its potential for practical, real-world applications.
comment: 8 pages
LLM-Driven Scenario-Aware Planning for Autonomous Driving
Hybrid planner switching framework (HPSF) for autonomous driving needs to reconcile high-speed driving efficiency with safe maneuvering in dense traffic. Existing HPSF methods often fail to make reliable mode transitions or sustain efficient driving in congested environments, owing to heuristic scene recognition and low-frequency control updates. To address the limitation, this paper proposes LAP, a large language model (LLM) driven, adaptive planning method, which switches between high-speed driving in low-complexity scenes and precise driving in high-complexity scenes, enabling high qualities of trajectory generation through confined gaps. This is achieved by leveraging LLM for scene understanding and integrating its inference into the joint optimization of mode configuration and motion planning. The joint optimization is solved using tree-search model predictive control and alternating minimization. We implement LAP by Python in Robot Operating System (ROS). High-fidelity simulation results show that the proposed LAP outperforms other benchmarks in terms of both driving time and success rate.
GAZELOAD A Multimodal Eye-Tracking Dataset for Mental Workload in Industrial Human-Robot Collaboration
This article describes GAZELOAD, a multimodal dataset for mental workload estimation in industrial human-robot collaboration. The data were collected in a laboratory assembly testbed where 26 participants interacted with two collaborative robots (UR5 and Franka Emika Panda) while wearing Meta ARIA smart glasses. The dataset time-synchronizes eye-tracking signals (pupil diameter, fixations, saccades, eye gaze, gaze transition entropy, fixation dispersion index) with environmental real-time and continuous measurements (illuminance) and task and robot context (bench, task block, induced faults), under controlled manipulations of task difficulty and ambient conditions. For each participant and workload-graded task block, we provide CSV files with ocular metrics aggregated into 250 ms windows, environmental logs, and self-reported mental workload ratings on a 1-10 Likert scale, organized in participant-specific folders alongside documentation. These data can be used to develop and benchmark algorithms for mental workload estimation, feature extraction, and temporal modeling in realistic industrial HRC scenarios, and to investigate the influence of environmental factors such as lighting on eye-based workload markers.
Flocking behavior for dynamic and complex swarm structures
Maintaining the formation of complex structures with multiple UAVs and achieving complex trajectories remains a major challenge. This work presents an algorithm for implementing the flocking behavior of UAVs based on the concept of Virtual Centroid to easily develop a structure for the flock. The approach builds on the classical virtual-based behavior, providing a theoretical framework for incorporating enhancements to dynamically control both the number of agents and the formation of the structure. Simulation tests and real-world experiments were conducted, demonstrating its simplicity even with complex formations and complex trajectories.
Disentangling perception and reasoning for improving data efficiency in learning cloth manipulation without demonstrations
Cloth manipulation is a ubiquitous task in everyday life, but it remains an open challenge for robotics. The difficulties in developing cloth manipulation policies are attributed to the high-dimensional state space, complex dynamics, and high propensity to self-occlusion exhibited by fabrics. As analytical methods have not been able to provide robust and general manipulation policies, reinforcement learning (RL) is considered a promising approach to these problems. However, to address the large state space and complex dynamics, data-based methods usually rely on large models and long training times. The resulting computational cost significantly hampers the development and adoption of these methods. Additionally, due to the challenge of robust state estimation, garment manipulation policies often adopt an end-to-end learning approach with workspace images as input. While this approach enables a conceptually straightforward sim-to-real transfer via real-world fine-tuning, it also incurs a significant computational cost by training agents on a highly lossy representation of the environment state. This paper questions this common design choice by exploring an efficient and modular approach to RL for cloth manipulation. We show that, through careful design choices, model size and training time can be significantly reduced when learning in simulation. Furthermore, we demonstrate how the resulting simulation-trained model can be transferred to the real world. We evaluate our approach on the SoftGym benchmark and achieve significant performance improvements over available baselines on our task, while using a substantially smaller model.
comment: 6 pages, 4 figures,
CoFreeVLA: Collision-Free Dual-Arm Manipulation via Vision-Language-Action Model and Risk Estimation
Vision Language Action (VLA) models enable instruction following manipulation, yet dualarm deployment remains unsafe due to under modeled selfcollisions between arms and grasped objects. We introduce CoFreeVLA, which augments an endtoend VLA with a short horizon selfcollision risk estimator that predicts collision likelihood from proprioception, visual embeddings, and planned actions. The estimator gates risky commands, recovers to safe states via risk-guided adjustments, and shapes policy refinement for safer rollouts. It is pre-trained with model-based collision labels and posttrained on real robot rollouts for calibration. On five bimanual tasks with the PiPER robot arm, CoFreeVLA reduces selfcollisions and improves success rates versus RDT and APEX.
From Instruction to Event: Sound-Triggered Mobile Manipulation
Current mobile manipulation research predominantly follows an instruction-driven paradigm, where agents rely on predefined textual commands to execute tasks. However, this setting confines agents to a passive role, limiting their autonomy and ability to react to dynamic environmental events. To address these limitations, we introduce sound-triggered mobile manipulation, where agents must actively perceive and interact with sound-emitting objects without explicit action instructions. To support these tasks, we develop Habitat-Echo, a data platform that integrates acoustic rendering with physical interaction. We further propose a baseline comprising a high-level task planner and low-level policy models to complete these tasks. Extensive experiments show that the proposed baseline empowers agents to actively detect and respond to auditory events, eliminating the need for case-by-case instructions. Notably, in the challenging dual-source scenario, the agent successfully isolates the primary source from overlapping acoustic interference to execute the first interaction, and subsequently proceeds to manipulate the secondary object, verifying the robustness of the baseline.
AIR-VLA: Vision-Language-Action Systems for Aerial Manipulation
While Vision-Language-Action (VLA) models have achieved remarkable success in ground-based embodied intelligence, their application to Aerial Manipulation Systems (AMS) remains a largely unexplored frontier. The inherent characteristics of AMS, including floating-base dynamics, strong coupling between the UAV and the manipulator, and the multi-step, long-horizon nature of operational tasks, pose severe challenges to existing VLA paradigms designed for static or 2D mobile bases. To bridge this gap, we propose AIR-VLA, the first VLA benchmark specifically tailored for aerial manipulation. We construct a physics-based simulation environment and release a high-quality multimodal dataset comprising 3000 manually teleoperated demonstrations, covering base manipulation, object & spatial understanding, semantic reasoning, and long-horizon planning. Leveraging this platform, we systematically evaluate mainstream VLA models and state-of-the-art VLM models. Our experiments not only validate the feasibility of transferring VLA paradigms to aerial systems but also, through multi-dimensional metrics tailored to aerial tasks, reveal the capabilities and boundaries of current models regarding UAV mobility, manipulator control, and high-level planning. AIR-VLA establishes a standardized testbed and data foundation for future research in general-purpose aerial robotics. The resource of AIR-VLA will be available at https://anonymous.4open.science/r/AIR-VLA-dataset-B5CC/.
EmboCoach-Bench: Benchmarking AI Agents on Developing Embodied Robots
The field of Embodied AI is witnessing a rapid evolution toward general-purpose robotic systems, fueled by high-fidelity simulation and large-scale data collection. However, this scaling capability remains severely bottlenecked by a reliance on labor-intensive manual oversight from intricate reward shaping to hyperparameter tuning across heterogeneous backends. Inspired by LLMs' success in software automation and science discovery, we introduce \textsc{EmboCoach-Bench}, a benchmark evaluating the capacity of LLM agents to autonomously engineer embodied policies. Spanning 32 expert-curated RL and IL tasks, our framework posits executable code as the universal interface. We move beyond static generation to assess a dynamic closed-loop workflow, where agents leverage environment feedback to iteratively draft, debug, and optimize solutions, spanning improvements from physics-informed reward design to policy architectures such as diffusion policies. Extensive evaluations yield three critical insights: (1) autonomous agents can qualitatively surpass human-engineered baselines by 26.5\% in average success rate; (2) agentic workflow with environment feedback effectively strengthens policy development and substantially narrows the performance gap between open-source and proprietary models; and (3) agents exhibit self-correction capabilities for pathological engineering cases, successfully resurrecting task performance from near-total failures through iterative simulation-in-the-loop debugging. Ultimately, this work establishes a foundation for self-evolving embodied intelligence, accelerating the paradigm shift from labor-intensive manual tuning to scalable, autonomous engineering in embodied AI field.
comment: 37 pages, 13 figures
Training slow silicon neurons to control extremely fast robots with spiking reinforcement learning
Air hockey demands split-second decisions at high puck velocities, a challenge we address with a compact network of spiking neurons running on a mixed-signal analog/digital neuromorphic processor. By co-designing hardware and learning algorithms, we train the system to achieve successful puck interactions through reinforcement learning in a remarkably small number of trials. The network leverages fixed random connectivity to capture the task's temporal structure and adopts a local e-prop learning rule in the readout layer to exploit event-driven activity for fast and efficient learning. The result is real-time learning with a setup comprising a computer and the neuromorphic chip in-the-loop, enabling practical training of spiking neural networks for robotic autonomous systems. This work bridges neuroscience-inspired hardware with real-world robotic control, showing that brain-inspired approaches can tackle fast-paced interaction tasks while supporting always-on learning in intelligent machines.
IROS: A Dual-Process Architecture for Real-Time VLM-Based Indoor Navigation
Indoor mobile robot navigation requires fast responsiveness and robust semantic understanding, yet existing methods struggle to provide both. Classical geometric approaches such as SLAM offer reliable localization but depend on detailed maps and cannot interpret human-targeted cues (e.g., signs, room numbers) essential for indoor reasoning. Vision-Language-Action (VLA) models introduce semantic grounding but remain strictly reactive, basing decisions only on visible frames and failing to anticipate unseen intersections or reason about distant textual cues. Vision-Language Models (VLMs) provide richer contextual inference but suffer from high computational latency, making them unsuitable for real-time operation on embedded platforms. In this work, we present IROS, a real-time navigation framework that combines VLM-level contextual reasoning with the efficiency of lightweight perceptual modules on low-cost, on-device hardware. Inspired by Dual Process Theory, IROS separates fast reflexive decisions (System One) from slow deliberative reasoning (System Two), invoking the VLM only when necessary. Furthermore, by augmenting compact VLMs with spatial and textual cues, IROS delivers robust, human-like navigation with minimal latency. Across five real-world buildings, IROS improves decision accuracy and reduces latency by 66% compared to continuous VLM-based navigation.
Don't double it: Efficient Agent Prediction in Occlusions
Occluded traffic agents pose a significant challenge for autonomous vehicles, as hidden pedestrians or vehicles can appear unexpectedly, yet this problem remains understudied. Existing learning-based methods, while capable of inferring the presence of hidden agents, often produce redundant occupancy predictions where a single agent is identified multiple times. This issue complicates downstream planning and increases computational load. To address this, we introduce MatchInformer, a novel transformer-based approach that builds on the state-of-the-art SceneInformer architecture. Our method improves upon prior work by integrating Hungarian Matching, a state-of-the-art object matching algorithm from object detection, into the training process to enforce a one-to-one correspondence between predictions and ground truth, thereby reducing redundancy. We further refine trajectory forecasts by decoupling an agent's heading from its motion, a strategy that improves the accuracy and interpretability of predicted paths. To better handle class imbalances, we propose using the Matthews Correlation Coefficient (MCC) to evaluate occupancy predictions. By considering all entries in the confusion matrix, MCC provides a robust measure even in sparse or imbalanced scenarios. Experiments on the Waymo Open Motion Dataset demonstrate that our approach improves reasoning about occluded regions and produces more accurate trajectory forecasts than prior methods.
DexTac: Learning Contact-aware Visuotactile Policies via Hand-by-hand Teaching
For contact-intensive tasks, the ability to generate policies that produce comprehensive tactile-aware motions is essential. However, existing data collection and skill learning systems for dexterous manipulation often suffer from low-dimensional tactile information. To address this limitation, we propose DexTac, a visuo-tactile manipulation learning framework based on kinesthetic teaching. DexTac captures multi-dimensional tactile data-including contact force distributions and spatial contact regions-directly from human demonstrations. By integrating these rich tactile modalities into a policy network, the resulting contact-aware agent enables a dexterous hand to autonomously select and maintain optimal contact regions during complex interactions. We evaluate our framework on a challenging unimanual injection task. Experimental results demonstrate that DexTac achieves a 91.67% success rate. Notably, in high-precision scenarios involving small-scale syringes, our approach outperforms force-only baselines by 31.67%. These results underscore that learning multi-dimensional tactile priors from human demonstrations is critical for achieving robust, human-like dexterous manipulation in contact-rich environments.
4D-CAAL: 4D Radar-Camera Calibration and Auto-Labeling for Autonomous Driving
4D radar has emerged as a critical sensor for autonomous driving, primarily due to its enhanced capabilities in elevation measurement and higher resolution compared to traditional 3D radar. Effective integration of 4D radar with cameras requires accurate extrinsic calibration, and the development of radar-based perception algorithms demands large-scale annotated datasets. However, existing calibration methods often employ separate targets optimized for either visual or radar modalities, complicating correspondence establishment. Furthermore, manually labeling sparse radar data is labor-intensive and unreliable. To address these challenges, we propose 4D-CAAL, a unified framework for 4D radar-camera calibration and auto-labeling. Our approach introduces a novel dual-purpose calibration target design, integrating a checkerboard pattern on the front surface for camera detection and a corner reflector at the center of the back surface for radar detection. We develop a robust correspondence matching algorithm that aligns the checkerboard center with the strongest radar reflection point, enabling accurate extrinsic calibration. Subsequently, we present an auto-labeling pipeline that leverages the calibrated sensor relationship to transfer annotations from camera-based segmentations to radar point clouds through geometric projection and multi-feature optimization. Extensive experiments demonstrate that our method achieves high calibration accuracy while significantly reducing manual annotation effort, thereby accelerating the development of robust multi-modal perception systems for autonomous driving.
Nimbus: A Unified Embodied Synthetic Data Generation Framework
Scaling data volume and diversity is critical for generalizing embodied intelligence. While synthetic data generation offers a scalable alternative to expensive physical data acquisition, existing pipelines remain fragmented and task-specific. This isolation leads to significant engineering inefficiency and system instability, failing to support the sustained, high-throughput data generation required for foundation model training. To address these challenges, we present Nimbus, a unified synthetic data generation framework designed to integrate heterogeneous navigation and manipulation pipelines. Nimbus introduces a modular four-layer architecture featuring a decoupled execution model that separates trajectory planning, rendering, and storage into asynchronous stages. By implementing dynamic pipeline scheduling, global load balancing, distributed fault tolerance, and backend-specific rendering optimizations, the system maximizes resource utilization across CPU, GPU, and I/O resources. Our evaluation demonstrates that Nimbus achieves a 2-3X improvement in end-to-end throughput compared to unoptimized baselines and ensuring robust, long-term operation in large-scale distributed environments. This framework serves as the production backbone for the InternData suite, enabling seamless cross-domain data synthesis.
Spotlighting Task-Relevant Features: Object-Centric Representations for Better Generalization in Robotic Manipulation
The generalization capabilities of robotic manipulation policies are heavily influenced by the choice of visual representations. Existing approaches typically rely on representations extracted from pre-trained encoders, using two dominant types of features: global features, which summarize an entire image via a single pooled vector, and dense features, which preserve a patch-wise embedding from the final encoder layer. While widely used, both feature types mix task-relevant and irrelevant information, leading to poor generalization under distribution shifts, such as changes in lighting, textures, or the presence of distractors. In this work, we explore an intermediate structured alternative: Slot-Based Object-Centric Representations (SBOCR), which group dense features into a finite set of object-like entities. This representation permits to naturally reduce the noise provided to the robotic manipulation policy while keeping enough information to efficiently perform the task. We benchmark a range of global and dense representations against intermediate slot-based representations, across a suite of simulated and real-world manipulation tasks ranging from simple to complex. We evaluate their generalization under diverse visual conditions, including changes in lighting, texture, and the presence of distractors. Our findings reveal that SBOCR-based policies outperform dense and global representation-based policies in generalization settings, even without task-specific pretraining. These insights suggest that SBOCR is a promising direction for designing visual systems that generalize effectively in dynamic, real-world robotic environments.
Singularity-Free Lie Group Integration and Geometrically Consistent Evaluation of Multibody System Models Described in Terms of Standard Absolute Coordinates
A classical approach to the multibody systems (MBS) modeling is to use absolute coordinates, i.e., a set of (possibly redundant) coordinates that describe the absolute position and orientation of the individual bodies with respect to an inertial frame (IFR). A well-known problem for the time integration of the equations of motion (EOM) is the lack of a singularity-free parameterization of spatial motions, which is usually tackled by using unit quaternions. Lie group integration methods were proposed as an alternative approach to the singularity-free time integration. At the same time, Lie group formulations of EOM naturally respect the geometry of spatial motions during integration. Lie group integration methods, operating directly on the configuration space Lie group, are incompatible with standard formulations of the EOM, and cannot be implemented in existing MBS simulation codes without a major restructuring. The contribution of this paper is twofold: (1) A framework for interfacing Lie group integrators to standard EOM formulations is presented. It allows describing MBS in terms of various absolute coordinates and at the same using Lie group integration schemes. (2) A method for consistently incorporating the geometry of rigid body motions into the evaluation of EOM in absolute coordinates integrated with standard vector space integration schemes. The direct product group and the semidirect product group SO(3)xR3 and the semidirect product group SE(3) are used for representing rigid body motions. The key element is the local-global transitions (LGT) transition map, which facilitates the update of (global) absolute coordinates in terms of the (local) coordinates on the Lie group. This LGT map is specific to the absolute coordinates, the local coordinates on the Lie group, and the Lie group used to represent rigid body configurations.
comment: 10 pages
DSCD-Nav: Dual-Stance Cooperative Debate for Object Navigation
Adaptive navigation in unfamiliar indoor environments is crucial for household service robots. Despite advances in zero-shot perception and reasoning from vision-language models, existing navigation systems still rely on single-pass scoring at the decision layer, leading to overconfident long-horizon errors and redundant exploration. To tackle these problems, we propose Dual-Stance Cooperative Debate Navigation (DSCD-Nav), a decision mechanism that replaces one-shot scoring with stance-based cross-checking and evidence-aware arbitration to improve action reliability under partial observability. Specifically, given the same observation and candidate action set, we explicitly construct two stances by conditioning the evaluation on diverse and complementary objectives: a Task-Scene Understanding (TSU) stance that prioritizes goal progress from scene-layout cues, and a Safety-Information Balancing (SIB) stance that emphasizes risk and information value. The stances conduct a cooperative debate and make policy by cross-checking their top candidates with cue-grounded arguments. Then, a Navigation Consensus Arbitration (NCA) agent is employed to consolidate both sides' reasons and evidence, optionally triggering lightweight micro-probing to verify uncertain choices, preserving NCA's primary intent while disambiguating. Experiments on HM3Dv1, HM3Dv2, and MP3D demonstrate consistent improvements in success and path efficiency while reducing exploration redundancy.
Towards Space-Based Environmentally-Adaptive Grasping
Robotic manipulation in unstructured environments requires reliable execution under diverse conditions, yet many state-of-the-art systems still struggle with high-dimensional action spaces, sparse rewards, and slow generalization beyond carefully curated training scenarios. We study these limitations through the example of grasping in space environments. We learn control policies directly in a learned latent manifold that fuses (grammarizes) multiple modalities into a structured representation for policy decision-making. Building on GPU-accelerated physics simulation, we instantiate a set of single-shot manipulation tasks and achieve over 95% task success with Soft Actor-Critic (SAC)-based reinforcement learning in less than 1M environment steps, under continuously varying grasping conditions from step 1. This empirically shows faster convergence than representative state-of-the-art visual baselines under the same open-loop single-shot conditions. Our analysis indicates that explicitly reasoning in latent space yields more sample-efficient learning and improved robustness to novel object and gripper geometries, environmental clutter, and sensor configurations compared to standard baselines. We identify remaining limitations and outline directions toward fully adaptive and generalizable grasping in the extreme conditions of space.
Towards Bridging the Gap between Large-Scale Pretraining and Efficient Finetuning for Humanoid Control ICLR 2026
Reinforcement learning (RL) is widely used for humanoid control, with on-policy methods such as Proximal Policy Optimization (PPO) enabling robust training via large-scale parallel simulation and, in some cases, zero-shot deployment to real robots. However, the low sample efficiency of on-policy algorithms limits safe adaptation to new environments. Although off-policy RL and model-based RL have shown improved sample efficiency, the gap between large-scale pretraining and efficient finetuning on humanoids still exists. In this paper, we find that off-policy Soft Actor-Critic (SAC), with large-batch update and a high Update-To-Data (UTD) ratio, reliably supports large-scale pretraining of humanoid locomotion policies, achieving zero-shot deployment on real robots. For adaptation, we demonstrate that these SAC-pretrained policies can be finetuned in new environments and out-of-distribution tasks using model-based methods. Data collection in the new environment executes a deterministic policy while stochastic exploration is instead confined to a physics-informed world model. This separation mitigates the risks of random exploration during adaptation while preserving exploratory coverage for improvement. Overall, the approach couples the wall-clock efficiency of large-scale simulation during pretraining with the sample efficiency of model-based learning during fine-tuning.
comment: ICLR 2026
HPTune: Hierarchical Proactive Tuning for Collision-Free Model Predictive Control
Parameter tuning is a powerful approach to enhance adaptability in model predictive control (MPC) motion planners. However, existing methods typically operate in a myopic fashion that only evaluates executed actions, leading to inefficient parameter updates due to the sparsity of failure events (e.g., obstacle nearness or collision). To cope with this issue, we propose to extend evaluation from executed to non-executed actions, yielding a hierarchical proactive tuning (HPTune) framework that combines both a fast-level tuning and a slow-level tuning. The fast one adopts risk indicators of predictive closing speed and predictive proximity distance, and the slow one leverages an extended evaluation loss for closed-loop backpropagation. Additionally, we integrate HPTune with the Doppler LiDAR that provides obstacle velocities apart from position-only measurements for enhanced motion predictions, thus facilitating the implementation of HPTune. Extensive experiments on high-fidelity simulator demonstrate that HPTune achieves efficient MPC tuning and outperforms various baseline schemes in complex environments. It is found that HPTune enables situation-tailored motion planning by formulating a safe, agile collision avoidance strategy.
comment: Accepted by IEEE ICASSP 2026
Deep QP Safety Filter: Model-free Learning for Reachability-based Safety Filter L4DC 2026
We introduce Deep QP Safety Filter, a fully data-driven safety layer for black-box dynamical systems. Our method learns a Quadratic-Program (QP) safety filter without model knowledge by combining Hamilton-Jacobi (HJ) reachability with model-free learning. We construct contraction-based losses for both the safety value and its derivatives, and train two neural networks accordingly. In the exact setting, the learned critic converges to the viscosity solution (and its derivative), even for non-smooth values. Across diverse dynamical systems -- even including a hybrid system -- and multiple RL tasks, Deep QP Safety Filter substantially reduces pre-convergence failures while accelerating learning toward higher returns than strong baselines, offering a principled and practical route to safe, model-free control.
comment: Accepted at L4DC 2026
Abstracting Robot Manipulation Skills via Mixture-of-Experts Diffusion Policies
Diffusion-based policies have recently shown strong results in robot manipulation, but their extension to multi-task scenarios is hindered by the high cost of scaling model size and demonstrations. We introduce Skill Mixture-of-Experts Policy (SMP), a diffusion-based mixture-of-experts policy that learns a compact orthogonal skill basis and uses sticky routing to compose actions from a small, task-relevant subset of experts at each step. A variational training objective supports this design, and adaptive expert activation at inference yields fast sampling without oversized backbones. We validate SMP in simulation and on a real dual-arm platform with multi-task learning and transfer learning tasks, where SMP achieves higher success rates and markedly lower inference cost than large diffusion baselines. These results indicate a practical path toward scalable, transferable multi-task manipulation: learn reusable skills once, activate only what is needed, and adapt quickly when tasks change.
Disturbance-Aware Flight Control of Robotic Gliding Blimp via Moving Mass Actuation
Robotic blimps, as lighter-than-air (LTA) aerial systems, offer long endurance and inherently safe operation but remain highly susceptible to wind disturbances. Building on recent advances in moving mass actuation, this paper addresses the lack of disturbance-aware control frameworks for LTA platforms by explicitly modeling and compensating for wind-induced effects. A moving horizon estimator (MHE) infers real-time wind perturbations and provides these estimates to a model predictive controller (MPC), enabling robust trajectory and heading regulation under varying wind conditions. The proposed approach leverages a two-degree-of-freedom (2-DoF) moving-mass mechanism to generate both inertial and aerodynamic moments for attitude and heading control, thereby enhancing flight stability in disturbance-prone environments. Extensive flight experiments under headwind and crosswind conditions show that the integrated MHE-MPC framework significantly outperforms baseline PID control, demonstrating its effectiveness for disturbance-aware LTA flight.
InspecSafe-V1: A Multimodal Benchmark for Safety Assessment in Industrial Inspection Scenarios
With the rapid development of industrial intelligence and unmanned inspection, reliable perception and safety assessment for AI systems in complex and dynamic industrial sites has become a key bottleneck for deploying predictive maintenance and autonomous inspection. Most public datasets remain limited by simulated data sources, single-modality sensing, or the absence of fine-grained object-level annotations, which prevents robust scene understanding and multimodal safety reasoning for industrial foundation models. To address these limitations, InspecSafe-V1 is released as the first multimodal benchmark dataset for industrial inspection safety assessment that is collected from routine operations of real inspection robots in real-world environments. InspecSafe-V1 covers five representative industrial scenarios, including tunnels, power facilities, sintering equipment, oil and gas petrochemical plants, and coal conveyor trestles. The dataset is constructed from 41 wheeled and rail-mounted inspection robots operating at 2,239 valid inspection sites, yielding 5,013 inspection instances. For each instance, pixel-level segmentation annotations are provided for key objects in visible-spectrum images. In addition, a semantic scene description and a corresponding safety level label are provided according to practical inspection tasks. Seven synchronized sensing modalities are further included, including infrared video, audio, depth point clouds, radar point clouds, gas measurements, temperature, and humidity, to support multimodal anomaly recognition, cross-modal fusion, and comprehensive safety assessment in industrial environments.
comment: 15 pages, 7 figures
WheelArm-Sim: A Manipulation and Navigation Combined Multimodal Synthetic Data Generation Simulator for Unified Control in Assistive Robotics
Wheelchairs and robotic arms enhance independent living by assisting individuals with upper-body and mobility limitations in their activities of daily living (ADLs). Although recent advancements in assistive robotics have focused on Wheelchair-Mounted Robotic Arms (WMRAs) and wheelchairs separately, integrated and unified control of the combination using machine learning models remains largely underexplored. To fill this gap, we introduce the concept of WheelArm, an integrated cyber-physical system (CPS) that combines wheelchair and robotic arm controls. Data collection is the first step toward developing WheelArm models. In this paper, we present WheelArm-Sim, a simulation framework developed in Isaac Sim for synthetic data collection. We evaluate its capability by collecting a manipulation and navigation combined multimodal dataset, comprising 13 tasks, 232 trajectories, and 67,783 samples. To demonstrate the potential of the WheelArm dataset, we implement a baseline model for action prediction in the mustard-picking task. The results illustrate that data collected from WheelArm-Sim is feasible for a data-driven machine learning model for integrated control.
comment: Accepted to IEEE International Symposium on Medical Robotics (ISMR) 2026
Accurate Pedestrian Tracking in Urban Canyons: A Multi-Modal Fusion Approach
The contribution describes a pedestrian navigation approach designed to improve localization accuracy in urban environments where GNSS performance is degraded, a problem that is especially critical for blind or low-vision users who depend on precise guidance such as identifying the correct side of a street. To address GNSS limitations and the impracticality of camera-based visual positioning, the work proposes a particle filter based fusion of GNSS and inertial data that incorporates spatial priors from maps, such as impassable buildings and unlikely walking areas, functioning as a probabilistic form of map matching. Inertial localization is provided by the RoNIN machine learning method, and fusion with GNSS is achieved by weighting particles based on their consistency with GNSS estimates and uncertainty. The system was evaluated on six challenging walking routes in downtown San Francisco using three metrics related to sidewalk correctness and localization error. Results show that the fused approach (GNSS+RoNIN+PF) significantly outperforms GNSS only localization on most metrics, while inertial-only localization with particle filtering also surpasses GNSS alone for critical measures such as sidewalk assignment and across street error.
Plant-Inspired Robot Design Metaphors for Ambient HRI
Plants offer a paradoxical model for interaction: they are ambient, low-demand presences that nonetheless shape atmosphere, routines, and relationships through temporal rhythms and subtle expressions. In contrast, most human-robot interaction (HRI) has been grounded in anthropomorphic and zoomorphic paradigms, producing overt, high-demand forms of engagement. Using a Research through Design (RtD) methodology, we explore plants as metaphoric inspiration for HRI; we conducted iterative cycles of ideation, prototyping, and reflection to investigate what design primitives emerge from plant metaphors and morphologies, and how these primitives can be combined into expressive robotic forms. We present a suite of speculative, open-source prototypes that help probe plant-inspired presence, temporality, form, and gestures. We deepened our learnings from design and prototyping through prototype-centered workshops that explored people's perceptions and imaginaries of plant-inspired robots. This work contributes: (1) Set of plant-inspired robotic artifacts; (2) Designerly insights on how people perceive plant-inspired robots; and (3) Design consideration to inform how to use plant metaphors to reshape HRI.
Lantern: A Minimalist Robotic Object Platform
Robotic objects are simple actuated systems that subtly blend into human environments. We design and introduce Lantern, a minimalist robotic object platform to enable building simple robotic artifacts. We conducted in-depth design and engineering iterations of Lantern's mechatronic architecture to meet specific design goals while maintaining a low build cost (~40 USD). As an extendable, open-source platform, Lantern aims to enable exploration of a range of HRI scenarios by leveraging human tendency to assign social meaning to simple forms. To evaluate Lantern's potential for HRI, we conducted a series of explorations: 1) a co-design workshop, 2) a sensory room case study, 3) distribution to external HRI labs, 4) integration into a graduate-level HRI course, and 5) public exhibitions with older adults and children. Our findings show that Lantern effectively evokes engagement, can support versatile applications ranging from emotion regulation to focused work, and serves as a viable platform for lowering barriers to HRI as a field.
PoSafeNet: Safe Learning with Poset-Structured Neural Nets
Safe learning is essential for deploying learningbased controllers in safety-critical robotic systems, yet existing approaches often enforce multiple safety constraints uniformly or via fixed priority orders, leading to infeasibility and brittle behavior. In practice, safety requirements are heterogeneous and admit only partial priority relations, where some constraints are comparable while others are inherently incomparable. We formalize this setting as poset-structured safety, modeling safety constraints as a partially ordered set and treating safety composition as a structural property of the policy class. Building on this formulation, we propose PoSafeNet, a differentiable neural safety layer that enforces safety via sequential closed-form projection under poset-consistent constraint orderings, enabling adaptive selection or mixing of valid safety executions while preserving priority semantics by construction. Experiments on multi-obstacle navigation, constrained robot manipulation, and vision-based autonomous driving demonstrate improved feasibility, robustness, and scalability over unstructured and differentiable quadratic program-based safety layers.
ReloPush-BOSS: Optimization-guided Nonmonotone Rearrangement Planning for a Car-like Robot Pusher RA-L 2026
We focus on multi-object rearrangement planning in densely cluttered environments using a car-like robot pusher. The combination of kinematic, geometric and physics constraints underlying this domain results in challenging nonmonotone problem instances which demand breaking each manipulation action into multiple parts to achieve a desired object rearrangement. Prior work tackles such instances by planning prerelocations, temporary object displacements that enable constraint satisfaction, but deciding where to prerelocate remains difficult due to local minima leading to infeasible or high-cost paths. Our key insight is that these minima can be avoided by steering a prerelocation optimization toward low-cost regions informed by Dubins path classification. These optimized prerelocations are integrated into an object traversability graph that encodes kinematic, geometric, and pushing constraints. Searching this graph in a depth-first fashion results in efficient, feasible rearrangement sequences. Across a series of densely cluttered scenarios with up to 13 objects, our framework, ReloPush-BOSS, exhibits consistently highest success rates and shortest pushing paths compared to state-of-the-art baselines. Hardware experiments on a 1/10 car-like pusher demonstrate the robustness of our approach. Code and footage from our experiments can be found at: https://fluentrobotics.com/relopushboss.
comment: Preprint of final version, accepted to RA-L 2026
Aligning Microscopic Vehicle and Macroscopic Traffic Statistics: Reconstructing Driving Behavior from Partial Data
A driving algorithm that aligns with good human driving practices, or at the very least collaborates effectively with human drivers, is crucial for developing safe and efficient autonomous vehicles. In practice, two main approaches are commonly adopted: (i) supervised or imitation learning, which requires comprehensive naturalistic driving data capturing all states that influence a vehicle's decisions and corresponding actions, and (ii) reinforcement learning (RL), where the simulated driving environment either matches or is intentionally more challenging than real-world conditions. Both methods depend on high-quality observations of real-world driving behavior, which are often difficult and costly to obtain. State-of-the-art sensors on individual vehicles can gather microscopic data, but they lack context about the surrounding conditions. Conversely, roadside sensors can capture traffic flow and other macroscopic characteristics, but they cannot associate this information with individual vehicles on a microscopic level. Motivated by this complementarity, we propose a framework that reconstructs unobserved microscopic states from macroscopic observations, using microscopic data to anchor observed vehicle behaviors, and learns a shared policy whose behavior is microscopically consistent with the partially observed trajectories and actions and macroscopically aligned with target traffic statistics when deployed population-wide. Such constrained and regularized policies promote realistic flow patterns and safe coordination with human drivers at scale.
Game-Based and Gamified Robotics Education: A Comparative Systematic Review and Design Guidelines
Robotics education fosters computational thinking, creativity, and problem-solving, but remains challenging due to technical complexity. Game-based learning (GBL) and gamification offer engagement benefits, yet their comparative impact remains unclear. We present the first PRISMA-aligned systematic review and comparative synthesis of GBL and gamification in robotics education, analyzing 95 studies from 12,485 records across four databases (2014-2025). We coded each study's approach, learning context, skill level, modality, pedagogy, and outcomes (k = .918). Three patterns emerged: (1) approach-context-pedagogy coupling (GBL more prevalent in informal settings, while gamification dominated formal classrooms [p < .001] and favored project-based learning [p = .009]); (2) emphasis on introductory programming and modular kits, with limited adoption of advanced software (~17%), advanced hardware (~5%), or immersive technologies (~22%); and (3) short study horizons, relying on self-report. We propose eight research directions and a design space outlining best practices and pitfalls, offering actionable guidance for robotics education.
comment: Accepted for publication at Proceedings of the 2026 CHI Conference on Human Factors in Computing Systems. 26 pages, 14 figures, 7 tables;
Advanced techniques and applications of LiDAR Place Recognition in Agricultural Environments: A Comprehensive Survey
An optimal solution to the localization problem is essential for developing autonomous robotic systems. Apart from autonomous vehicles, precision agriculture is one of the elds that can bene t most from these systems. Although LiDAR place recognition is a widely used technique in recent years to achieve accurate localization, it is mostly used in urban settings. However, the lack of distinctive features and the unstructured nature of agricultural environments make place recognition challenging. This work presents a comprehensive review of state-of-the-art the latest deep learning applications for agricultural environments and LPR techniques. We focus on the challenges that arise in these environments. We analyze the existing approaches, datasets, and metrics used to evaluate LPR system performance and discuss the limitations and future directions of research in this eld. This is the rst survey that focuses on LiDAR based localization in agricultural settings, with the aim of providing a thorough understanding and fostering further research in this specialized domain.
SDCM: Simulated Densifying and Compensatory Modeling Fusion for Radar-Vision 3-D Object Detection in Internet of Vehicles
3-D object detection based on 4-D radar-vision is an important part in Internet of Vehicles (IoV). However, there are two challenges which need to be faced. First, the 4-D radar point clouds are sparse, leading to poor 3-D representation. Second, vision datas exhibit representation degradation under low-light, long distance detection and dense occlusion scenes, which provides unreliable texture information during fusion stage. To address these issues, a framework named SDCM is proposed, which contains Simulated Densifying and Compensatory Modeling Fusion for radar-vision 3-D object detection in IoV. Firstly, considering point generation based on Gaussian simulation of key points obtained from 3-D Kernel Density Estimation (3-D KDE), and outline generation based on curvature simulation, Simulated Densifying (SimDen) module is designed to generate dense radar point clouds. Secondly, considering that radar data could provide more real time information than vision data, due to the all-weather property of 4-D radar. Radar Compensatory Mapping (RCM) module is designed to reduce the affects of vision datas' representation degradation. Thirdly, considering that feature tensor difference values contain the effective information of every modality, which could be extracted and modeled for heterogeneity reduction and modalities interaction, Mamba Modeling Interactive Fusion (MMIF) module is designed for reducing heterogeneous and achieving interactive Fusion. Experiment results on the VoD, TJ4DRadSet and Astyx HiRes 2019 dataset show that SDCM achieves best performance with lower parameter quantity and faster inference speed. Our code will be available.
AsterNav: Autonomous Aerial Robot Navigation In Darkness Using Passive Computation
Autonomous aerial navigation in absolute darkness is crucial for post-disaster search and rescue operations, which often occur from disaster-zone power outages. Yet, due to resource constraints, tiny aerial robots, perfectly suited for these operations, are unable to navigate in the darkness to find survivors safely. In this paper, we present an autonomous aerial robot for navigation in the dark by combining an Infra-Red (IR) monocular camera with a large-aperture coded lens and structured light without external infrastructure like GPS or motion-capture. Our approach obtains depth-dependent defocus cues (each structured light point appears as a pattern that is depth dependent), which acts as a strong prior for our AsterNet deep depth estimation model. The model is trained in simulation by generating data using a simple optical model and transfers directly to the real world without any fine-tuning or retraining. AsterNet runs onboard the robot at 20 Hz on an NVIDIA Jetson Orin$^\text{TM}$ Nano. Furthermore, our network is robust to changes in the structured light pattern and relative placement of the pattern emitter and IR camera, leading to simplified and cost-effective construction. We successfully evaluate and demonstrate our proposed depth navigation approach AsterNav using depth from AsterNet in many real-world experiments using only onboard sensing and computation, including dark matte obstacles and thin ropes (diameter 6.25mm), achieving an overall success rate of 95.5% with unknown object shapes, locations and materials. To the best of our knowledge, this is the first work on monocular, structured-light-based quadrotor navigation in absolute darkness.
comment: 8 pages, 10 figures, Published in IEEE Robotics And Automation Letters
EROAM: Event-based Camera Rotational Odometry and Mapping in Real-time T-RO
This paper presents EROAM, a novel event-based rotational odometry and mapping system that achieves real-time, accurate camera rotation estimation. Unlike existing approaches that rely on event generation models or contrast maximization, EROAM employs a spherical event representation by projecting events onto a unit sphere and introduces Event Spherical Iterative Closest Point (ES-ICP), a novel geometric optimization framework designed specifically for event camera data. The spherical representation simplifies rotational motion formulation while operating in a continuous spherical domain, enabling enhanced spatial resolution. Our system features an efficient map management approach using incremental k-d tree structures and intelligent regional density control, ensuring optimal computational performance during long-term operation. Combined with parallel point-to-line optimization, EROAM achieves efficient computation without compromising accuracy. Extensive experiments on both synthetic and real-world datasets show that EROAM significantly outperforms state-of-the-art methods in terms of accuracy, robustness, and computational efficiency. Our method maintains consistent performance under challenging conditions, including high angular velocities and extended sequences, where other methods often fail or show significant drift. Additionally, EROAM produces high-quality panoramic reconstructions with preserved fine structural details.
comment: Accepted by IEEE Transactions on Robotics (T-RO), 2026. Project page: https://wlxing1901.github.io/eroam/
SKETCH: Semantic Key-Point Conditioning for Long-Horizon Vessel Trajectory Prediction
Accurate long-horizon vessel trajectory prediction remains challenging due to compounded uncertainty from complex navigation behaviors and environmental factors. Existing methods often struggle to maintain global directional consistency, leading to drifting or implausible trajectories when extrapolated over long time horizons. To address this issue, we propose a semantic-key-point-conditioned trajectory modeling framework, in which future trajectories are predicted by conditioning on a high-level Next Key Point (NKP) that captures navigational intent. This formulation decomposes long-horizon prediction into global semantic decision-making and local motion modeling, effectively restricting the support of future trajectories to semantically feasible subsets. To efficiently estimate the NKP prior from historical observations, we adopt a pretrain-finetune strategy. Extensive experiments on real-world AIS data demonstrate that the proposed method consistently outperforms state-of-the-art approaches, particularly for long travel durations, directional accuracy, and fine-grained trajectory prediction.
OMP: One-step Meanflow Policy with Directional Alignment
Robot manipulation has increasingly adopted data-driven generative policy frameworks, yet the field faces a persistent trade-off: diffusion models suffer from high inference latency, while flow-based methods often require complex architectural constraints. Although in image generation domain, the MeanFlow paradigm offers a path to single-step inference, its direct application to robotics is impeded by critical theoretical pathologies, specifically spectral bias and gradient starvation in low-velocity regimes. To overcome these limitations, we propose the One-step MeanFlow Policy (OMP), a novel framework designed for high-fidelity, real-time manipulation. We introduce a lightweight directional alignment mechanism to explicitly synchronize predicted velocities with true mean velocities. Furthermore, we implement a Differential Derivation Equation (DDE) to approximate the Jacobian-Vector Product (JVP) operator, which decouples forward and backward passes to significantly reduce memory complexity. Extensive experiments on the Adroit and Meta-World benchmarks demonstrate that OMP outperforms state-of-the-art methods in success rate and trajectory accuracy, particularly in high-precision tasks, while retaining the efficiency of single-step generation.
FLARE: Agile Flights for Quadrotor Cable-Suspended Payload System via Reinforcement Learning
Agile flight for the quadrotor cable-suspended payload system is a formidable challenge due to its underactuated, highly nonlinear, and hybrid dynamics. Traditional optimization-based methods often struggle with high computational costs and the complexities of cable mode transitions, limiting their real-time applicability and maneuverability exploitation. In this letter, we present FLARE, a reinforcement learning (RL) framework that directly learns agile navigation policy from high-fidelity simulation. Our method is validated across three designed challenging scenarios, notably outperforming a state-of-the-art optimization-based approach by a 3x speedup during gate traversal maneuvers. Furthermore, the learned policies achieve successful zero-shot sim-to-real transfer, demonstrating remarkable agility and safety in real-world experiments, running in real time on an onboard computer.
Visual Localization via Semantic Structures in Autonomous Photovoltaic Power Plant Inspection
Inspection systems utilizing unmanned aerial vehicles (UAVs) equipped with thermal cameras are increasingly popular for the maintenance of photovoltaic (PV) power plants. However, automation of the inspection task is a challenging problem as it requires precise navigation to capture images from optimal distances and viewing angles. This paper presents a novel localization pipeline that directly integrates PV module detection with UAV navigation, allowing precise positioning during inspection. The detections are used to identify the power plant structures in the image. These are associated with the power plant model and used to infer the UAV position relative to the inspected PV installation. We define visually recognizable anchor points for the initial association and use object tracking to discern global associations. Additionally, we present three different methods for visual segmentation of PV modules and evaluate their performance in relation to the proposed localization pipeline. The presented methods were verified and evaluated using custom aerial inspection data sets, demonstrating their robustness and applicability for real-time navigation. Additionally, we evaluate the influence of the power plant model precision on the localization methods.
comment: 50 pages, 23 figures. Submitted for review to Array
Bring My Cup! Personalizing Vision-Language-Action Models with Visual Attentive Prompting
While Vision-Language-Action (VLA) models generalize well to generic instructions, they struggle with personalized commands such as "bring my cup," where the robot must act on one specific instance among visually similar objects. We study this setting of manipulating personal objects, in which a VLA must identify and control a user-specific object unseen during training using only a few reference images. To address this challenge, we propose Visual Attentive Prompting (VAP), a simple-yet-effective training-free perceptual adapter that equips frozen VLAs with top-down selective attention. VAP treats the reference images as a non-parametric visual memory, grounds the personal object in the scene through open-vocabulary detection and embedding-based matching, and then injects this grounding as a visual prompt by highlighting the object and rewriting the instruction. We construct two simulation benchmarks, Personalized-SIMPLER and Personalized-VLABench, and a real-world tabletop benchmark to evaluate personalized manipulation across multiple robots and tasks. Experiments show that VAP consistently outperforms generic policies and token-learning baselines in both success rate and correct-object manipulation, helping to bridge the gap between semantic understanding and instance-level control.
comment: Project page with videos and code: https://vap-project.github.io/
Virtual Reflections on a Dynamic 2D Eye Model Improve Spatial Reference Identification
The visible orientation of human eyes creates some transparency about people's spatial attention and other mental states. This leads to a dual role of the eyes as a means of sensing and communication. Accordingly, artificial eye models are being explored as communication media in human-machine interaction scenarios. One challenge in the use of eye models for communication consists of resolving spatial reference ambiguities, especially for screen-based models. To address this challenge, we introduce an approach that incorporates reflection-like features that are contingent on the movements of artificial eyes. We conducted a user study with 30 participants in which participants had to use spatial references provided by dynamic eye models to advance in a fast-paced group interaction task. Compared to a non-reflective eye model and a pure reflection mode, the superimposition of screen-based eyes with gaze-contingent virtual reflections resulted in a higher identification accuracy and user experience, suggesting a synergistic benefit.
comment: This article has been accepted for publication in IEEE Transactions on Human-Machine Systems. Citation information: DOI 10.1109/THMS.2026.3651818
Industrial Internet Robot Collaboration System and Edge Computing Optimization
In industrial Internet environments, mobile robots must generate collision-free global routes under stochastic obstacle layouts and random perturbations in commanded linear and angular velocities. This paper models a differential-drive robot with nonholonomic constraints, then decomposes motion into obstacle avoidance, target turning, and target approaching behaviors to parameterize the control variables. Global path planning is formulated as a constrained optimization problem and converted into a weighted energy function that balances path length and collision penalties. A three-layer neural network represents the planning model, while simulated annealing searches for near-global minima and mitigates local traps. During execution, a fuzzy controller uses heading and lateral-offset errors to output wheel-speed differentials for rapid correction; edge-side computation is discussed to reduce robot-server traffic and latency. Matlab 2024 simulations report deviation within +-5 cm, convergence within 10 ms, and shorter paths than two baseline methods. The approach improves robustness of global navigation in practice.
Large-Scale Autonomous Gas Monitoring for Volcanic Environments: A Legged Robot on Mount Etna RAM
Volcanic gas emissions are key precursors of eruptive activity. Yet, obtaining accurate near-surface measurements remains hazardous and logistically challenging, motivating the need for autonomous solutions. Limited mobility in rough volcanic terrain has prevented wheeled systems from performing reliable in situ gas measurements, reducing their usefulness as sensing platforms. We present a legged robotic system for autonomous volcanic gas analysis, utilizing the quadruped ANYmal, equipped with a quadrupole mass spectrometer system. Our modular autonomy stack integrates a mission planning interface, global planner, localization framework, and terrain-aware local navigation. We evaluated the system on Mount Etna across three autonomous missions in varied terrain, achieving successful gas-source detections with autonomy rates of 93-100%. In addition, we conducted a teleoperated mission in which the robot measured natural fumaroles, detecting sulfur dioxide and carbon dioxide. We discuss lessons learned from the gas-analysis and autonomy perspectives, emphasizing the need for adaptive sensing strategies, tighter integration of global and local planning, and improved hardware design.
comment: This work has been submitted to the IEEE for possible publication. Submitted to IEEE Robotics & Automation Magazine (RAM)
When Context Is Not Enough: Modeling Unexplained Variability in Car-Following Behavior
Modeling car-following behavior is fundamental to microscopic traffic simulation, yet traditional deterministic models often fail to capture the full extent of variability and unpredictability in human driving. While many modern approaches incorporate context-aware inputs (e.g., spacing, speed, relative speed), they frequently overlook structured stochasticity that arises from latent driver intentions, perception errors, and memory effects -- factors that are not directly observable from context alone. To fill the gap, this study introduces an interpretable stochastic modeling framework that captures not only context-dependent dynamics but also residual variability beyond what context can explain. Leveraging deep neural networks integrated with nonstationary Gaussian processes (GPs), our model employs a scenario-adaptive Gibbs kernel to learn dynamic temporal correlations in acceleration decisions, where the strength and duration of correlations between acceleration decisions evolve with the driving context. This formulation enables a principled, data-driven quantification of uncertainty in acceleration, speed, and spacing, grounded in both observable context and latent behavioral variability. Comprehensive experiments on the naturalistic vehicle trajectory dataset collected from the German highway, i.e., the HighD dataset, demonstrate that the proposed stochastic simulation method within this framework surpasses conventional methods in both predictive performance and interpretable uncertainty quantification. The integration of interpretability and accuracy makes this framework a promising tool for traffic analysis and safety-critical applications.
comment: Accepted to ISTTT26
Listen, Look, Drive: Coupling Audio Instructions for User-aware VLA-based Autonomous Driving IV
Vision Language Action (VLA) models promise an open-vocabulary interface that can translate perceptual ambiguity into semantically grounded driving decisions, yet they still treat language as a static prior fixed at inference time. As a result, the model must infer continuously shifting objectives from pixels alone, yielding delayed or overly conservative maneuvers. We argue that effective VLAs for autonomous driving need an online channel in which users can influence driving with specific intentions. To this end, we present EchoVLA, a user-aware VLA that couples camera streams with in situ audio instructions. We augment the nuScenes dataset with temporally aligned, intent-specific speech commands generated by converting ego-motion descriptions into synthetic audios. Further, we compose emotional speech-trajectory pairs into a multimodal Chain-of-Thought (CoT) for fine-tuning a Multimodal Large Model (MLM) based on Qwen2.5-Omni. Specifically, we synthesize the audio-augmented dataset with different emotion types paired with corresponding driving behaviors, leveraging the emotional cues embedded in tone, pitch, and speech tempo to reflect varying user states, such as urgent or hesitant intentions, thus enabling our EchoVLA to interpret not only the semantic content but also the emotional context of audio commands for more nuanced and emotionally adaptive driving behavior. In open-loop benchmarks, our approach reduces the average L2 error by $59.4\%$ and the collision rate by $74.4\%$ compared to the baseline of vision-only perception. More experiments on nuScenes dataset validate that EchoVLA not only steers the trajectory through audio instructions, but also modulates driving behavior in response to the emotions detected in the user's speech.
comment: Accepted by IV
Designing Effective Human-Swarm Interaction Interfaces: Insights from a User Study on Task Performance
In this paper, we present a systematic method of design for human-swarm interaction interfaces, combining theoretical insights with empirical evaluation. We first derived ten design principles from existing literature, applying them to key information dimensions identified through goal-directed task analysis and developed a tablet-based interface for a target search task. We then conducted a user study with 31 participants where humans were required to guide a robotic swarm to a target in the presence of three types of hazards that pose a risk to the robots: Distributed, Moving, and Spreading. Performance was measured based on the proximity of the robots to the target and the number of deactivated robots at the end of the task. Results indicate that at least one robot was brought closer to the target in 98% of tasks, demonstrating the interface's success in fulfilling the primary objective of the task. Additionally, in nearly 67% of tasks, more than 50% of the robots reached the target. Moreover, particularly better performance was noted in moving hazards. Additionally, the interface appeared to help minimise robot deactivation, as evidenced by nearly 94% of tasks where participants managed to keep more than 50% of the robots active, ensuring that most of the swarm remained operational. However, its effectiveness varied across hazards, with robot deactivation being lowest in distributed hazard scenarios, suggesting that the interface provided the most support in these conditions.
comment: 8 pages, 4 figures, 5 tables
ALRM: Agentic LLM for Robotic Manipulation
Large Language Models (LLMs) have recently empowered agentic frameworks to exhibit advanced reasoning and planning capabilities. However, their integration in robotic control pipelines remains limited in two aspects: (1) prior \ac{llm}-based approaches often lack modular, agentic execution mechanisms, limiting their ability to plan, reflect on outcomes, and revise actions in a closed-loop manner; and (2) existing benchmarks for manipulation tasks focus on low-level control and do not systematically evaluate multistep reasoning and linguistic variation. In this paper, we propose Agentic LLM for Robot Manipulation (ALRM), an LLM-driven agentic framework for robotic manipulation. ALRM integrates policy generation with agentic execution through a ReAct-style reasoning loop, supporting two complementary modes: Code-asPolicy (CaP) for direct executable control code generation, and Tool-as-Policy (TaP) for iterative planning and tool-based action execution. To enable systematic evaluation, we also introduce a novel simulation benchmark comprising 56 tasks across multiple environments, capturing linguistically diverse instructions. Experiments with ten LLMs demonstrate that ALRM provides a scalable, interpretable, and modular approach for bridging natural language reasoning with reliable robotic execution. Results reveal Claude-4.1-Opus as the top closed-source model and Falcon-H1-7B as the top open-source model under CaP.
Unifying Perception and Action: A Hybrid-Modality Pipeline with Implicit Visual Chain-of-Thought for Robotic Action Generation
Vision-Language-Action (VLA) models built upon Chain-of-Thought (CoT) have achieved remarkable success in advancing general-purpose robotic agents, owing to its significant perceptual comprehension. Recently, since text-only CoT struggles to adequately capture scene details in complex spatial environments, a highly promising strategy involves leveraging visual priors to guide robotic action generation. Nevertheless, these strategies face two inherent challenges: (i) a modality gap between visual observations and low-level actions, and (ii) unstable training due to competing objectives between visual prediction and action generation. To address these challenges, we propose a Vision-Integrated Trajectory Alignment (VITA) framework that learns a shared discrete latent space for vision and action, enabling joint modeling of perception and motor control. VITA introduces a implicit visual CoT: autoregressively generated tokens is simultaneously decoded into future frames predictions and robot actions, thereby internalizing visual dynamics as an inductive bias for motion planning. Extensive experiments on simulated and real-world environments demonstrate state-of-the-art performance. VITA improves 14.5\%, 9.6\% and 12.1\% over existing baselines on CALVIN, LIBERO and SimplerEnv. Furthermore, VITA attains an average success rate of 80.5\% across six real-world tasks, demonstrating its potential as a generalist robotic manipulation model.
Designing Underactuated Graspers with Dynamically Variable Geometry Using Potential Energy Map Based Analysis IROS 2022
This paper introduces an extension to the energy map method for in-hand manipulation. Energy maps are used to predict how a part will evolve in the grasp given a specific actuation input to the gripper. Previous approaches assumed frictionless contacts, but we show analytically that friction can be included in the energy maps when using two-link underactuated fingers by understanding the evolution of the part-finger contact. These friction-based energy maps were used to evaluate the importance of various tendon-pulley gripper parameters across nearly 6 million simulated grasping scenarios. Specifically, a variable palm width is needed to manipulate parts of varying scales, and a variable transmission ratio, or the ratio of the distal to the proximal pulley radii, is needed to draw parts into a cage or to maintain a tip prehension grasp.
comment: This is an updated version of my original paper (with the same title) published in IROS 2022. Parts of this work were refined or corrected in Chapter 3 of my dissertation, Good Vibrations: Toward Vibration-Based Robotic In-Hand Manipulation (DOI: 10.25740/mm182vq8220), and many of those changes have been incorporated here
Parallels Between VLA Model Post-Training and Human Motor Learning: Progress, Challenges, and Trends
Vision-language-action (VLA) models extend vision-language models (VLM) by integrating action generation modules for robotic manipulation. Leveraging the strengths of VLM in vision perception and instruction understanding, VLA models exhibit promising generalization across diverse manipulation tasks. However, applications demanding high precision and accuracy reveal performance gaps without further adaptation. Evidence from multiple domains highlights the critical role of post-training to align foundational models with downstream applications, spurring extensive research on post-training VLA models. VLA model post-training aims to enhance an embodiment's ability to interact with the environment for the specified tasks. This perspective aligns with Newell's constraints-led theory of skill acquisition, which posits that motor behavior arises from interactions among task, environmental, and organismic (embodiment) constraints. Accordingly, this survey structures post-training methods into four categories: (i) enhancing environmental perception, (ii) improving embodiment awareness, (iii) deepening task comprehension, and (iv) multi-component integration. Experimental results on standard benchmarks are synthesized to distill actionable guidelines. Finally, open challenges and emerging trends are outlined, relating insights from human learning to prospective methods for VLA post-training. This work delivers both a comprehensive overview of current VLA model post-training methods from a human motor learning perspective and practical insights for VLA model development. Project website: https://github.com/AoqunJin/Awesome-VLA-Post-Training.
Emergent morphogenesis via planar fabrication enabled by a reduced model of composites
The ability to engineer complex three-dimensional shapes from planar sheets with precise, programmable control underpins emerging technologies in soft robotics, reconfigurable devices, and functional materials. Here, we present a reduced-order numerical and experimental framework for a bilayer system consisting of a stimuli-responsive thermoplastic sheet (Shrinky Dink) bonded to a kirigami-patterned, inert plastic layer. Upon uniform heating, the active layer contracts while the patterned layer constrains in-plane stretch but allows out-of-plane bending, yielding programmable 3D morphologies from simple planar precursors. Our approach enables efficient computational design and scalable manufacturing of 3D forms with a single-layer reduced model that captures the coupled mechanics of stretching and bending. Unlike traditional bilayer modeling, our framework collapses the multilayer composite into a single layer of nodes and elements, reducing the degrees of freedom and enabling simulation on a 2D geometry. This is achieved by introducing a novel energy formulation that captures the coupling between in-plane stretch mismatch and out-of-plane bending - extending beyond simple isotropic linear elastic models. Experimentally, we establish a fully planar, repeatable fabrication protocol using a stimuli-responsive thermoplastic and a laser-cut inert plastic layer. The programmed strain mismatch drives an array of 3D morphologies, such as bowls, canoes, and flower petals, all verified by both simulation and physical prototypes.
comment: GitHub repository: https://github.com/StructuresComp/discrete-shells-shrinky-dink/
SuperPoint-SLAM3: Augmenting ORB-SLAM3 with Deep Features, Adaptive NMS, and Learning-Based Loop Closure
Visual simultaneous localization and mapping (SLAM) must remain accurate under extreme viewpoint, scale and illumination variations. The widely adopted ORB-SLAM3 falters in these regimes because it relies on hand-crafted ORB keypoints. We introduce SuperPoint-SLAM3, a drop-in upgrade that (i) replaces ORB with the self-supervised SuperPoint detector--descriptor, (ii) enforces spatially uniform keypoints via adaptive non-maximal suppression (ANMS), and (iii) integrates a lightweight NetVLAD place-recognition head for learning-based loop closure. On the KITTI Odometry benchmark SuperPoint-SLAM3 reduces mean translational error from 4.15% to 0.34% and mean rotational error from 0.0027 deg/m to 0.0010 deg/m. On the EuRoC MAV dataset it roughly halves both errors across every sequence (e.g., V2\_03: 1.58% -> 0.79%). These gains confirm that fusing modern deep features with a learned loop-closure module markedly improves ORB-SLAM3 accuracy while preserving its real-time operation. Implementation, pretrained weights and reproducibility scripts are available at https://github.com/shahram95/SuperPointSLAM3.
comment: 10 pages, 6 figures, code at https://github.com/shahram95/SuperPointSLAM3
Joint Learning of Depth, Pose, and Local Radiance Field for Large Scale Monocular 3D Reconstruction
Photorealistic 3-D reconstruction from monocular video collapses in large-scale scenes when depth, pose, and radiance are solved in isolation: scale-ambiguous depth yields ghost geometry, long-horizon pose drift corrupts alignment, and a single global NeRF cannot model hundreds of metres of content. We introduce a joint learning framework that couples all three factors and demonstrably overcomes each failure case. Our system begins with a Vision-Transformer (ViT) depth network trained with metric-scale supervision, giving globally consistent depths despite wide field-of-view variations. A multi-scale feature bundle-adjustment (BA) layer refines camera poses directly in feature space--leveraging learned pyramidal descriptors instead of brittle keypoints--to suppress drift on unconstrained trajectories. For scene representation, we deploy an incremental local-radiance-field hierarchy: new hash-grid NeRFs are allocated and frozen on-the-fly when view overlap falls below a threshold, enabling city-block-scale coverage on a single GPU. Evaluated on the Tanks and Temples benchmark, our method reduces Absolute Trajectory Error to 0.001-0.021 m across eight indoor-outdoor sequences--up to 18x lower than BARF and 2x lower than NoPe-NeRF--while maintaining sub-pixel Relative Pose Error. These results demonstrate that metric-scale, drift-free 3-D reconstruction and high-fidelity novel-view synthesis are achievable from a single uncalibrated RGB camera.
comment: 8 pages, 2 figures, 2 tables
HAFO: A Force-Adaptive Control Framework for Humanoid Robots in Intense Interaction Environments
Reinforcement learning (RL) controllers have made impressive progress in humanoid locomotion and light-weight object manipulation. However, achieving robust and precise motion control with intense force interaction remains a significant challenge. To address these limitations, this paper proposes HAFO, a dual-agent reinforcement learning framework that concurrently optimizes both a robust locomotion strategy and a precise upper-body manipulation strategy via coupled training. We employ a constrained residual action space to improve dual-agent training stability and sample efficiency. The external tension disturbances are explicitly modeled using a spring-damper system, allowing for fine-grained force control through manipulation of the virtual spring. In this process, the reinforcement learning policy autonomously generates a disturbance-rejection response by utilizing environmental feedback. The experimental results demonstrate that HAFO achieves whole-body control for humanoid robots across diverse force-interaction environments using a single dual-agent policy, delivering outstanding performance under load-bearing and thrust-disturbance conditions, while maintaining stable operation even under rope suspension state.
Video World Models 16
JUST-DUB-IT: Video Dubbing via Joint Audio-Visual Diffusion
Audio-Visual Foundation Models, which are pretrained to jointly generate sound and visual content, have recently shown an unprecedented ability to model multi-modal generation and editing, opening new opportunities for downstream tasks. Among these tasks, video dubbing could greatly benefit from such priors, yet most existing solutions still rely on complex, task-specific pipelines that struggle in real-world settings. In this work, we introduce a single-model approach that adapts a foundational audio-video diffusion model for video-to-video dubbing via a lightweight LoRA. The LoRA enables the model to condition on an input audio-video while jointly generating translated audio and synchronized facial motion. To train this LoRA, we leverage the generative model itself to synthesize paired multilingual videos of the same speaker. Specifically, we generate multilingual videos with language switches within a single clip, and then inpaint the face and audio in each half to match the language of the other half. By leveraging the rich generative prior of the audio-visual model, our approach preserves speaker identity and lip synchronization while remaining robust to complex motion and real-world dynamics. We demonstrate that our approach produces high-quality dubbed videos with improved visual fidelity, lip synchronization, and robustness compared to existing dubbing pipelines.
comment: Project webpage available at https://justdubit.github.io
Learning Transient Convective Heat Transfer with Geometry Aware World Models
Partial differential equation (PDE) simulations are fundamental to engineering and physics but are often computationally prohibitive for real-time applications. While generative AI offers a promising avenue for surrogate modeling, standard video generation architectures lack the specific control and data compatibility required for physical simulations. This paper introduces a geometry aware world model architecture, derived from a video generation architecture (LongVideoGAN), designed to learn transient physics. We introduce two key architecture elements: (1) a twofold conditioning mechanism incorporating global physical parameters and local geometric masks, and (2) an architectural adaptation to support arbitrary channel dimensions, moving beyond standard RGB constraints. We evaluate this approach on a 2D transient computational fluid dynamics (CFD) problem involving convective heat transfer from buoyancy-driven flow coupled to a heat flow in a solid structure. We demonstrate that the conditioned model successfully reproduces complex temporal dynamics and spatial correlations of the training data. Furthermore, we assess the model's generalization capabilities on unseen geometric configurations, highlighting both its potential for controlled simulation synthesis and current limitations in spatial precision for out-of-distribution samples.
comment: 36 pages, 18 figures, 2 tables
Drive-JEPA: Video JEPA Meets Multimodal Trajectory Distillation for End-to-End Driving
End-to-end autonomous driving increasingly leverages self-supervised video pretraining to learn transferable planning representations. However, pretraining video world models for scene understanding has so far brought only limited improvements. This limitation is compounded by the inherent ambiguity of driving: each scene typically provides only a single human trajectory, making it difficult to learn multimodal behaviors. In this work, we propose Drive-JEPA, a framework that integrates Video Joint-Embedding Predictive Architecture (V-JEPA) with multimodal trajectory distillation for end-to-end driving. First, we adapt V-JEPA for end-to-end driving, pretraining a ViT encoder on large-scale driving videos to produce predictive representations aligned with trajectory planning. Second, we introduce a proposal-centric planner that distills diverse simulator-generated trajectories alongside human trajectories, with a momentum-aware selection mechanism to promote stable and safe behavior. When evaluated on NAVSIM, the V-JEPA representation combined with a simple transformer-based decoder outperforms prior methods by 3 PDMS in the perception-free setting. The complete Drive-JEPA framework achieves 93.3 PDMS on v1 and 87.8 EPDMS on v2, setting a new state-of-the-art.
Causal World Modeling for Robot Control
This work highlights that video world modeling, alongside vision-language pre-training, establishes a fresh and independent foundation for robot learning. Intuitively, video world models provide the ability to imagine the near future by understanding the causality between actions and visual dynamics. Inspired by this, we introduce LingBot-VA, an autoregressive diffusion framework that learns frame prediction and policy execution simultaneously. Our model features three carefully crafted designs: (1) a shared latent space, integrating vision and action tokens, driven by a Mixture-of-Transformers (MoT) architecture, (2) a closed-loop rollout mechanism, allowing for ongoing acquisition of environmental feedback with ground-truth observations, (3) an asynchronous inference pipeline, parallelizing action prediction and motor execution to support efficient control. We evaluate our model on both simulation benchmarks and real-world scenarios, where it shows significant promise in long-horizon manipulation, data efficiency in post-training, and strong generalizability to novel configurations. The code and model are made publicly available to facilitate the community.
comment: Project page: https://technology.robbyant.com/lingbot-va Code: https://github.com/robbyant/lingbot-va
SONIC-O1: A Real-World Benchmark for Evaluating Multimodal Large Language Models on Audio-Video Understanding
Multimodal Large Language Models (MLLMs) are a major focus of recent AI research. However, most prior work focuses on static image understanding, while their ability to process sequential audio-video data remains underexplored. This gap highlights the need for a high-quality benchmark to systematically evaluate MLLM performance in a real-world setting. We introduce SONIC-O1, a comprehensive, fully human-verified benchmark spanning 13 real-world conversational domains with 4,958 annotations and demographic metadata. SONIC-O1 evaluates MLLMs on key tasks, including open-ended summarization, multiple-choice question (MCQ) answering, and temporal localization with supporting rationales (reasoning). Experiments on closed- and open-source models reveal limitations. While the performance gap in MCQ accuracy between two model families is relatively small, we observe a substantial 22.6% performance difference in temporal localization between the best performing closed-source and open-source models. Performance further degrades across demographic groups, indicating persistent disparities in model behavior. Overall, SONIC-O1 provides an open evaluation suite for temporally grounded and socially robust multimodal understanding. We release SONIC-O1 for reproducibility and research: Project page: https://vectorinstitute.github.io/sonic-o1/ Dataset: https://huggingface.co/datasets/vector-institute/sonic-o1 Github: https://github.com/vectorinstitute/sonic-o1 Leaderboard: https://huggingface.co/spaces/vector-institute/sonic-o1-leaderboard
MPF-Net: Exposing High-Fidelity AI-Generated Video Forgeries via Hierarchical Manifold Deviation and Micro-Temporal Fluctuations
With the rapid advancement of video generation models such as Veo and Wan, the visual quality of synthetic content has reached a level where macro-level semantic errors and temporal inconsistencies are no longer prominent. However, this does not imply that the distinction between real and cutting-edge high-fidelity fake is untraceable. We argue that AI-generated videos are essentially products of a manifold-fitting process rather than a physical recording. Consequently, the pixel composition logic of consecutive adjacent frames residual in AI videos exhibits a structured and homogenous characteristic. We term this phenomenon `Manifold Projection Fluctuations' (MPF). Driven by this insight, we propose a hierarchical dual-path framework that operates as a sequential filtering process. The first, the Static Manifold Deviation Branch, leverages the refined perceptual boundaries of Large-Scale Vision Foundation Models (VFMs) to capture residual spatial anomalies or physical violations that deviate from the natural real-world manifold (off-manifold). For the remaining high-fidelity videos that successfully reside on-manifold and evade spatial detection, we introduce the Micro-Temporal Fluctuation Branch as a secondary, fine-grained filter. By analyzing the structured MPF that persists even in visually perfect sequences, our framework ensures that forgeries are exposed regardless of whether they manifest as global real-world manifold deviations or subtle computational fingerprints.
Ostrakon-VL: Towards Domain-Expert MLLM for Food-Service and Retail Stores
Multimodal Large Language Models (MLLMs) have recently achieved substantial progress in general-purpose perception and reasoning. Nevertheless, their deployment in Food-Service and Retail Stores (FSRS) scenarios encounters two major obstacles: (i) real-world FSRS data, collected from heterogeneous acquisition devices, are highly noisy and lack auditable, closed-loop data curation, which impedes the construction of high-quality, controllable, and reproducible training corpora; and (ii) existing evaluation protocols do not offer a unified, fine-grained and standardized benchmark spanning single-image, multi-image, and video inputs, making it challenging to objectively gauge model robustness. To address these challenges, we first develop Ostrakon-VL, an FSRS-oriented MLLM based on Qwen3-VL-8B. Second, we introduce ShopBench, the first public benchmark for FSRS. Third, we propose QUAD (Quality-aware Unbiased Automated Data-curation), a multi-stage multimodal instruction data curation pipeline. Leveraging a multi-stage training strategy, Ostrakon-VL achieves an average score of 60.1 on ShopBench, establishing a new state of the art among open-source MLLMs with comparable parameter scales and diverse architectures. Notably, it surpasses the substantially larger Qwen3-VL-235B-A22B (59.4) by +0.7, and exceeds the same-scale Qwen3-VL-8B (55.3) by +4.8, demonstrating significantly improved parameter efficiency. These results indicate that Ostrakon-VL delivers more robust and reliable FSRS-centric perception and decision-making capabilities. To facilitate reproducible research, we will publicly release Ostrakon-VL and the ShopBench benchmark.
WorldBench: Disambiguating Physics for Diagnostic Evaluation of World Models
Recent advances in generative foundational models, often termed "world models," have propelled interest in applying them to critical tasks like robotic planning and autonomous system training. For reliable deployment, these models must exhibit high physical fidelity, accurately simulating real-world dynamics. Existing physics-based video benchmarks, however, suffer from entanglement, where a single test simultaneously evaluates multiple physical laws and concepts, fundamentally limiting their diagnostic capability. We introduce WorldBench, a novel video-based benchmark specifically designed for concept-specific, disentangled evaluation, allowing us to rigorously isolate and assess understanding of a single physical concept or law at a time. To make WorldBench comprehensive, we design benchmarks at two different levels: 1) an evaluation of intuitive physical understanding with concepts such as object permanence or scale/perspective, and 2) an evaluation of low-level physical constants and material properties such as friction coefficients or fluid viscosity. When SOTA video-based world models are evaluated on WorldBench, we find specific patterns of failure in particular physics concepts, with all tested models lacking the physical consistency required to generate reliable real-world interactions. Through its concept-specific evaluation, WorldBench offers a more nuanced and scalable framework for rigorously evaluating the physical reasoning capabilities of video generation and world models, paving the way for more robust and generalizable world-model-driven learning.
comment: Webpage: https://world-bench.github.io/
InspecSafe-V1: A Multimodal Benchmark for Safety Assessment in Industrial Inspection Scenarios
With the rapid development of industrial intelligence and unmanned inspection, reliable perception and safety assessment for AI systems in complex and dynamic industrial sites has become a key bottleneck for deploying predictive maintenance and autonomous inspection. Most public datasets remain limited by simulated data sources, single-modality sensing, or the absence of fine-grained object-level annotations, which prevents robust scene understanding and multimodal safety reasoning for industrial foundation models. To address these limitations, InspecSafe-V1 is released as the first multimodal benchmark dataset for industrial inspection safety assessment that is collected from routine operations of real inspection robots in real-world environments. InspecSafe-V1 covers five representative industrial scenarios, including tunnels, power facilities, sintering equipment, oil and gas petrochemical plants, and coal conveyor trestles. The dataset is constructed from 41 wheeled and rail-mounted inspection robots operating at 2,239 valid inspection sites, yielding 5,013 inspection instances. For each instance, pixel-level segmentation annotations are provided for key objects in visible-spectrum images. In addition, a semantic scene description and a corresponding safety level label are provided according to practical inspection tasks. Seven synchronized sensing modalities are further included, including infrared video, audio, depth point clouds, radar point clouds, gas measurements, temperature, and humidity, to support multimodal anomaly recognition, cross-modal fusion, and comprehensive safety assessment in industrial environments.
comment: 15 pages, 7 figures
Learning Physics-Grounded 4D Dynamics with Neural Gaussian Force Fields ICLR 2026
Predicting physical dynamics from raw visual data remains a major challenge in AI. While recent video generation models have achieved impressive visual quality, they still cannot consistently generate physically plausible videos due to a lack of modeling of physical laws. Recent approaches combining 3D Gaussian splatting and physics engines can produce physically plausible videos, but are hindered by high computational costs in both reconstruction and simulation, and often lack robustness in complex real-world scenarios. To address these issues, we introduce Neural Gaussian Force Field (NGFF), an end-to-end neural framework that integrates 3D Gaussian perception with physics-based dynamic modeling to generate interactive, physically realistic 4D videos from multi-view RGB inputs, achieving two orders of magnitude faster than prior Gaussian simulators. To support training, we also present GSCollision, a 4D Gaussian dataset featuring diverse materials, multi-object interactions, and complex scenes, totaling over 640k rendered physical videos (~4 TB). Evaluations on synthetic and real 3D scenarios show NGFF's strong generalization and robustness in physical reasoning, advancing video prediction towards physics-grounded world models.
comment: 43 pages, ICLR 2026
GR3EN: Generative Relighting for 3D Environments
We present a method for relighting 3D reconstructions of large room-scale environments. Existing solutions for 3D scene relighting often require solving under-determined or ill-conditioned inverse rendering problems, and are as such unable to produce high-quality results on complex real-world scenes. Though recent progress in using generative image and video diffusion models for relighting has been promising, these techniques are either limited to 2D image and video relighting or 3D relighting of individual objects. Our approach enables controllable 3D relighting of room-scale scenes by distilling the outputs of a video-to-video relighting diffusion model into a 3D reconstruction. This side-steps the need to solve a difficult inverse rendering problem, and results in a flexible system that can relight 3D reconstructions of complex real-world scenes. We validate our approach on both synthetic and real-world datasets to show that it can faithfully render novel views of scenes under new lighting conditions.
comment: project page: https://gr3en-relight.github.io/
Scaling Offline Model-Based RL via Jointly-Optimized World-Action Model Pretraining ICLR 2025
A significant aspiration of offline reinforcement learning (RL) is to develop a generalist agent with high capabilities from large and heterogeneous datasets. However, prior approaches that scale offline RL either rely heavily on expert trajectories or struggle to generalize to diverse unseen tasks. Inspired by the excellent generalization of world model in conditional video generation, we explore the potential of image observation-based world model for scaling offline RL and enhancing generalization on novel tasks. In this paper, we introduce JOWA: Jointly-Optimized World-Action model, an offline model-based RL agent pretrained on multiple Atari games with 6 billion tokens data to learn general-purpose representation and decision-making ability. Our method jointly optimizes a world-action model through a shared transformer backbone, which stabilize temporal difference learning with large models during pretraining. Moreover, we propose a provably efficient and parallelizable planning algorithm to compensate for the Q-value estimation error and thus search out better policies. Experimental results indicate that our largest agent, with 150 million parameters, achieves 78.9% human-level performance on pretrained games using only 10% subsampled offline data, outperforming existing state-of-the-art large-scale offline RL baselines by 31.6% on averange. Furthermore, JOWA scales favorably with model capacity and can sample-efficiently transfer to novel games using only 5k offline fine-tuning data (approximately 4 trajectories) per game, demonstrating superior generalization. We will release codes and model weights at https://github.com/CJReinforce/JOWA
comment: Accepted by ICLR 2025
Efficient Test-Time Adaptation through Latent Subspace Coefficients Search
Real-world deployment often exposes models to distribution shifts, making test-time adaptation (TTA) critical for robustness. Yet most TTA methods are unfriendly to edge deployment, as they rely on backpropagation, activation buffering, or test-time mini-batches, leading to high latency and memory overhead. We propose $\textbf{ELaTTA}$ ($\textit{Efficient Latent Test-Time Adaptation}$), a gradient-free framework for single-instance TTA under strict on-device constraints. ELaTTA freezes model weights and adapts each test sample by optimizing a low-dimensional coefficient vector in a source-induced principal latent subspace, pre-computed offline via truncated SVD and stored with negligible overhead. At inference, ELaTTA encourages prediction confidence by optimizing the $k$-D coefficients with CMA-ES, effectively optimizing a Gaussian-smoothed objective and improving stability near decision boundaries. Across six benchmarks and multiple architectures, ELaTTA achieves state-of-the-art accuracy under both strict and continual single-instance protocols, while reducing compute by up to $\textit{63$\times$}$ and peak memory by $\textit{11$\times$}$. We further demonstrate on-device deployment on a ZYNQ-7020 platform. Code will be released upon acceptance.
comment: Under review
Leveraging Second-Order Curvature for Efficient Learned Image Compression: Theory and Empirical Evidence
Training learned image compression (LIC) models entails navigating a challenging optimization landscape defined by the fundamental trade-off between rate and distortion. Standard first-order optimizers, such as SGD and Adam, struggle with \emph{gradient conflicts} arising from competing objectives, leading to slow convergence and suboptimal rate-distortion performance. In this work, we demonstrate that a simple utilization of a second-order quasi-Newton optimizer, \textbf{SOAP}, dramatically improves both training efficiency and final performance across diverse LICs. Our theoretical and empirical analyses reveal that Newton preconditioning inherently resolves the intra-step and inter-step update conflicts intrinsic to the R-D objective, facilitating faster, more stable convergence. Beyond acceleration, we uncover a critical deployability benefit: second-order trained models exhibit significantly fewer activation and latent outliers. This substantially enhances robustness to post-training quantization. Together, these results establish second-order optimization, achievable as a seamless drop-in replacement of the imported optimizer, as a powerful, practical tool for advancing the efficiency and real-world readiness of LICs.
comment: fix typo
SkyReels-V3 Technique Report
Video generation serves as a cornerstone for building world models, where multimodal contextual inference stands as the defining test of capability. In this end, we present SkyReels-V3, a conditional video generation model, built upon a unified multimodal in-context learning framework with diffusion Transformers. SkyReels-V3 model supports three core generative paradigms within a single architecture: reference images-to-video synthesis, video-to-video extension and audio-guided video generation. (i) reference images-to-video model is designed to produce high-fidelity videos with strong subject identity preservation, temporal coherence, and narrative consistency. To enhance reference adherence and compositional stability, we design a comprehensive data processing pipeline that leverages cross frame pairing, image editing, and semantic rewriting, effectively mitigating copy paste artifacts. During training, an image video hybrid strategy combined with multi-resolution joint optimization is employed to improve generalization and robustness across diverse scenarios. (ii) video extension model integrates spatio-temporal consistency modeling with large-scale video understanding, enabling both seamless single-shot continuation and intelligent multi-shot switching with professional cinematographic patterns. (iii) Talking avatar model supports minute-level audio-conditioned video generation by training first-and-last frame insertion patterns and reconstructing key-frame inference paradigms. On the basis of ensuring visual quality, synchronization of audio and videos has been optimized. Extensive evaluations demonstrate that SkyReels-V3 achieves state-of-the-art or near state-of-the-art performance on key metrics including visual quality, instruction following, and specific aspect metrics, approaching leading closed-source systems. Github: https://github.com/SkyworkAI/SkyReels-V3.
Testing of Deep Learning Model in Real World Clinical Setting: A Case Study in Obstetric Ultrasound
Despite the rapid development of AI models in medical image analysis, their validation in real-world clinical settings remains limited. To address this, we introduce a generic framework designed for deploying image-based AI models in such settings. Using this framework, we deployed a trained model for fetal ultrasound standard plane detection, and evaluated it in real-time sessions with both novice and expert users. Feedback from these sessions revealed that while the model offers potential benefits to medical practitioners, the need for navigational guidance was identified as a key area for improvement. These findings underscore the importance of early deployment of AI models in real-world settings, leading to insights that can guide the refinement of the model and system based on actual user feedback.
comment: 5 pages; ISBI 2026
Embodied Intelligence 45
DynamicVLA: A Vision-Language-Action Model for Dynamic Object Manipulation
Manipulating dynamic objects remains an open challenge for Vision-Language-Action (VLA) models, which, despite strong generalization in static manipulation, struggle in dynamic scenarios requiring rapid perception, temporal anticipation, and continuous control. We present DynamicVLA, a framework for dynamic object manipulation that integrates temporal reasoning and closed-loop adaptation through three key designs: 1) a compact 0.4B VLA using a convolutional vision encoder for spatially efficient, structurally faithful encoding, enabling fast multimodal inference; 2) Continuous Inference, enabling overlapping reasoning and execution for lower latency and timely adaptation to object motion; and 3) Latent-aware Action Streaming, which bridges the perception-execution gap by enforcing temporally aligned action execution. To fill the missing foundation of dynamic manipulation data, we introduce the Dynamic Object Manipulation (DOM) benchmark, built from scratch with an auto data collection pipeline that efficiently gathers 200K synthetic episodes across 2.8K scenes and 206 objects, and enables fast collection of 2K real-world episodes without teleoperation. Extensive evaluations demonstrate remarkable improvements in response speed, perception, and generalization, positioning DynamicVLA as a unified framework for general dynamic object manipulation across embodiments.
comment: Project Page: https://www.infinitescript.com/project/dynamic-vla/ GitHub: https://github.com/hzxie/DynamicVLA
mjlab: A Lightweight Framework for GPU-Accelerated Robot Learning
We present mjlab, a lightweight, open-source framework for robot learning that combines GPU-accelerated simulation with composable environments and minimal setup friction. mjlab adopts the manager-based API introduced by Isaac Lab, where users compose modular building blocks for observations, rewards, and events, and pairs it with MuJoCo Warp for GPU-accelerated physics. The result is a framework installable with a single command, requiring minimal dependencies, and providing direct access to native MuJoCo data structures. mjlab ships with reference implementations of velocity tracking, motion imitation, and manipulation tasks.
comment: Code is available at https://github.com/mujocolab/mjlab
MetricAnything: Scaling Metric Depth Pretraining with Noisy Heterogeneous Sources
Scaling has powered recent advances in vision foundation models, yet extending this paradigm to metric depth estimation remains challenging due to heterogeneous sensor noise, camera-dependent biases, and metric ambiguity in noisy cross-source 3D data. We introduce Metric Anything, a simple and scalable pretraining framework that learns metric depth from noisy, diverse 3D sources without manually engineered prompts, camera-specific modeling, or task-specific architectures. Central to our approach is the Sparse Metric Prompt, created by randomly masking depth maps, which serves as a universal interface that decouples spatial reasoning from sensor and camera biases. Using about 20M image-depth pairs spanning reconstructed, captured, and rendered 3D data across 10000 camera models, we demonstrate-for the first time-a clear scaling trend in the metric depth track. The pretrained model excels at prompt-driven tasks such as depth completion, super-resolution and Radar-camera fusion, while its distilled prompt-free student achieves state-of-the-art results on monocular depth estimation, camera intrinsics recovery, single/multi-view metric 3D reconstruction, and VLA planning. We also show that using pretrained ViT of Metric Anything as a visual encoder significantly boosts Multimodal Large Language Model capabilities in spatial intelligence. These results show that metric depth estimation can benefit from the same scaling laws that drive modern foundation models, establishing a new path toward scalable and efficient real-world metric perception. We open-source MetricAnything at http://metric-anything.github.io/metric-anything-io/ to support community research.
comment: Project Page: https://metric-anything.github.io/metric-anything-io/
PocketDP3: Efficient Pocket-Scale 3D Visuomotor Policy
Recently, 3D vision-based diffusion policies have shown strong capability in learning complex robotic manipulation skills. However, a common architectural mismatch exists in these models: a tiny yet efficient point-cloud encoder is often paired with a massive decoder. Given a compact scene representation, we argue that this may lead to substantial parameter waste in the decoder. Motivated by this observation, we propose PocketDP3, a pocket-scale 3D diffusion policy that replaces the heavy conditional U-Net decoder used in prior methods with a lightweight Diffusion Mixer (DiM) built on MLP-Mixer blocks. This architecture enables efficient fusion across temporal and channel dimensions, significantly reducing model size. Notably, without any additional consistency distillation techniques, our method supports two-step inference without sacrificing performance, improving practicality for real-time deployment. Across three simulation benchmarks--RoboTwin2.0, Adroit, and MetaWorld--PocketDP3 achieves state-of-the-art performance with fewer than 1% of the parameters of prior methods, while also accelerating inference. Real-world experiments further demonstrate the practicality and transferability of our method in real-world settings. Code will be released.
Causal World Modeling for Robot Control
This work highlights that video world modeling, alongside vision-language pre-training, establishes a fresh and independent foundation for robot learning. Intuitively, video world models provide the ability to imagine the near future by understanding the causality between actions and visual dynamics. Inspired by this, we introduce LingBot-VA, an autoregressive diffusion framework that learns frame prediction and policy execution simultaneously. Our model features three carefully crafted designs: (1) a shared latent space, integrating vision and action tokens, driven by a Mixture-of-Transformers (MoT) architecture, (2) a closed-loop rollout mechanism, allowing for ongoing acquisition of environmental feedback with ground-truth observations, (3) an asynchronous inference pipeline, parallelizing action prediction and motor execution to support efficient control. We evaluate our model on both simulation benchmarks and real-world scenarios, where it shows significant promise in long-horizon manipulation, data efficiency in post-training, and strong generalizability to novel configurations. The code and model are made publicly available to facilitate the community.
comment: Project page: https://technology.robbyant.com/lingbot-va Code: https://github.com/robbyant/lingbot-va
MoE-ACT: Improving Surgical Imitation Learning Policies through Supervised Mixture-of-Experts
Imitation learning has achieved remarkable success in robotic manipulation, yet its application to surgical robotics remains challenging due to data scarcity, constrained workspaces, and the need for an exceptional level of safety and predictability. We present a supervised Mixture-of-Experts (MoE) architecture designed for phase-structured surgical manipulation tasks, which can be added on top of any autonomous policy. Unlike prior surgical robot learning approaches that rely on multi-camera setups or thousands of demonstrations, we show that a lightweight action decoder policy like Action Chunking Transformer (ACT) can learn complex, long-horizon manipulation from less than 150 demonstrations using solely stereo endoscopic images, when equipped with our architecture. We evaluate our approach on the collaborative surgical task of bowel grasping and retraction, where a robot assistant interprets visual cues from a human surgeon, executes targeted grasping on deformable tissue, and performs sustained retraction. We benchmark our method against state-of-the-art Vision-Language-Action (VLA) models and the standard ACT baseline. Our results show that generalist VLAs fail to acquire the task entirely, even under standard in-distribution conditions. Furthermore, while standard ACT achieves moderate success in-distribution, adopting a supervised MoE architecture significantly boosts its performance, yielding higher success rates in-distribution and demonstrating superior robustness in out-of-distribution scenarios, including novel grasp locations, reduced illumination, and partial occlusions. Notably, it generalizes to unseen testing viewpoints and also transfers zero-shot to ex vivo porcine tissue without additional training, offering a promising pathway toward in vivo deployment. To support this, we present qualitative preliminary results of policy roll-outs during in vivo porcine surgery.
Information Filtering via Variational Regularization for Robot Manipulation
Diffusion-based visuomotor policies built on 3D visual representations have achieved strong performance in learning complex robotic skills. However, most existing methods employ an oversized denoising decoder. While increasing model capacity can improve denoising, empirical evidence suggests that it also introduces redundancy and noise in intermediate feature blocks. Crucially, we find that randomly masking backbone features at inference time (without changing training) can improve performance, confirming the presence of task-irrelevant noise in intermediate features. To this end, we propose Variational Regularization (VR), a lightweight module that imposes a timestep-conditioned Gaussian over backbone features and applies a KL-divergence regularizer, forming an adaptive information bottleneck. Extensive experiments on three simulation benchmarks (RoboTwin2.0, Adroit, and MetaWorld) show that, compared to the baseline DP3, our approach improves the success rate by 6.1% on RoboTwin2.0 and by 4.1% on Adroit and MetaWorld, achieving new state-of-the-art results. Real-world experiments further demonstrate that our method performs well in practical deployments. Code will released.
TraceRouter: Robust Safety for Large Foundation Models via Path-Level Intervention
Despite their capabilities, large foundation models (LFMs) remain susceptible to adversarial manipulation. Current defenses predominantly rely on the "locality hypothesis", suppressing isolated neurons or features. However, harmful semantics act as distributed, cross-layer circuits, rendering such localized interventions brittle and detrimental to utility. To bridge this gap, we propose \textbf{TraceRouter}, a path-level framework that traces and disconnects the causal propagation circuits of illicit semantics. TraceRouter operates in three stages: (1) it pinpoints a sensitive onset layer by analyzing attention divergence; (2) it leverages sparse autoencoders (SAEs) and differential activation analysis to disentangle and isolate malicious features; and (3) it maps these features to downstream causal pathways via feature influence scores (FIS) derived from zero-out interventions. By selectively suppressing these causal chains, TraceRouter physically severs the flow of harmful information while leaving orthogonal computation routes intact. Extensive experiments demonstrate that TraceRouter significantly outperforms state-of-the-art baselines, achieving a superior trade-off between adversarial robustness and general utility. Our code will be publicly released. WARNING: This paper contains unsafe model responses.
Multi-Modular MANTA-RAY: A Modular Soft Surface Platform for Distributed Multi-Object Manipulation
Manipulation surfaces control objects by actively deforming their shape rather than directly grasping them. While dense actuator arrays can generate complex deformations, they also introduce high degrees of freedom (DOF), increasing system complexity and limiting scalability. The MANTA-RAY (Manipulation with Adaptive Non-rigid Textile Actuation with Reduced Actuation densitY) platform addresses these challenges by leveraging a soft, fabric-based surface with reduced actuator density to manipulate fragile and heterogeneous objects. Previous studies focused on single-module implementations supported by four actuators, whereas the feasibility and benefits of a scalable, multi-module configuration remain unexplored. In this work, we present a distributed, modular, and scalable variant of the MANTA-RAY platform that maintains manipulation performance with a reduced actuator density. The proposed multi-module MANTA-RAY platform and control strategy employs object passing between modules and a geometric transformation driven PID controller that directly maps tilt-angle control outputs to actuator commands, eliminating the need for extensive data-driven or black-box training. We evaluate system performance in simulation across surface configurations of varying modules (3x3 and 4x4) and validate its feasibility through experiments on a physical 2x2 hardware prototype. The system successfully manipulates objects with diverse geometries, masses, and textures including fragile items such as eggs and apples as well as enabling parallel manipulation. The results demonstrate that the multi-module MANTA-RAY improves scalability and enables coordinated manipulation of multiple objects across larger areas, highlighting its potential for practical, real-world applications.
comment: 8 pages
GAZELOAD A Multimodal Eye-Tracking Dataset for Mental Workload in Industrial Human-Robot Collaboration
This article describes GAZELOAD, a multimodal dataset for mental workload estimation in industrial human-robot collaboration. The data were collected in a laboratory assembly testbed where 26 participants interacted with two collaborative robots (UR5 and Franka Emika Panda) while wearing Meta ARIA smart glasses. The dataset time-synchronizes eye-tracking signals (pupil diameter, fixations, saccades, eye gaze, gaze transition entropy, fixation dispersion index) with environmental real-time and continuous measurements (illuminance) and task and robot context (bench, task block, induced faults), under controlled manipulations of task difficulty and ambient conditions. For each participant and workload-graded task block, we provide CSV files with ocular metrics aggregated into 250 ms windows, environmental logs, and self-reported mental workload ratings on a 1-10 Likert scale, organized in participant-specific folders alongside documentation. These data can be used to develop and benchmark algorithms for mental workload estimation, feature extraction, and temporal modeling in realistic industrial HRC scenarios, and to investigate the influence of environmental factors such as lighting on eye-based workload markers.
Disentangling perception and reasoning for improving data efficiency in learning cloth manipulation without demonstrations
Cloth manipulation is a ubiquitous task in everyday life, but it remains an open challenge for robotics. The difficulties in developing cloth manipulation policies are attributed to the high-dimensional state space, complex dynamics, and high propensity to self-occlusion exhibited by fabrics. As analytical methods have not been able to provide robust and general manipulation policies, reinforcement learning (RL) is considered a promising approach to these problems. However, to address the large state space and complex dynamics, data-based methods usually rely on large models and long training times. The resulting computational cost significantly hampers the development and adoption of these methods. Additionally, due to the challenge of robust state estimation, garment manipulation policies often adopt an end-to-end learning approach with workspace images as input. While this approach enables a conceptually straightforward sim-to-real transfer via real-world fine-tuning, it also incurs a significant computational cost by training agents on a highly lossy representation of the environment state. This paper questions this common design choice by exploring an efficient and modular approach to RL for cloth manipulation. We show that, through careful design choices, model size and training time can be significantly reduced when learning in simulation. Furthermore, we demonstrate how the resulting simulation-trained model can be transferred to the real world. We evaluate our approach on the SoftGym benchmark and achieve significant performance improvements over available baselines on our task, while using a substantially smaller model.
comment: 6 pages, 4 figures,
CoFreeVLA: Collision-Free Dual-Arm Manipulation via Vision-Language-Action Model and Risk Estimation
Vision Language Action (VLA) models enable instruction following manipulation, yet dualarm deployment remains unsafe due to under modeled selfcollisions between arms and grasped objects. We introduce CoFreeVLA, which augments an endtoend VLA with a short horizon selfcollision risk estimator that predicts collision likelihood from proprioception, visual embeddings, and planned actions. The estimator gates risky commands, recovers to safe states via risk-guided adjustments, and shapes policy refinement for safer rollouts. It is pre-trained with model-based collision labels and posttrained on real robot rollouts for calibration. On five bimanual tasks with the PiPER robot arm, CoFreeVLA reduces selfcollisions and improves success rates versus RDT and APEX.
From Instruction to Event: Sound-Triggered Mobile Manipulation
Current mobile manipulation research predominantly follows an instruction-driven paradigm, where agents rely on predefined textual commands to execute tasks. However, this setting confines agents to a passive role, limiting their autonomy and ability to react to dynamic environmental events. To address these limitations, we introduce sound-triggered mobile manipulation, where agents must actively perceive and interact with sound-emitting objects without explicit action instructions. To support these tasks, we develop Habitat-Echo, a data platform that integrates acoustic rendering with physical interaction. We further propose a baseline comprising a high-level task planner and low-level policy models to complete these tasks. Extensive experiments show that the proposed baseline empowers agents to actively detect and respond to auditory events, eliminating the need for case-by-case instructions. Notably, in the challenging dual-source scenario, the agent successfully isolates the primary source from overlapping acoustic interference to execute the first interaction, and subsequently proceeds to manipulate the secondary object, verifying the robustness of the baseline.
AIR-VLA: Vision-Language-Action Systems for Aerial Manipulation
While Vision-Language-Action (VLA) models have achieved remarkable success in ground-based embodied intelligence, their application to Aerial Manipulation Systems (AMS) remains a largely unexplored frontier. The inherent characteristics of AMS, including floating-base dynamics, strong coupling between the UAV and the manipulator, and the multi-step, long-horizon nature of operational tasks, pose severe challenges to existing VLA paradigms designed for static or 2D mobile bases. To bridge this gap, we propose AIR-VLA, the first VLA benchmark specifically tailored for aerial manipulation. We construct a physics-based simulation environment and release a high-quality multimodal dataset comprising 3000 manually teleoperated demonstrations, covering base manipulation, object & spatial understanding, semantic reasoning, and long-horizon planning. Leveraging this platform, we systematically evaluate mainstream VLA models and state-of-the-art VLM models. Our experiments not only validate the feasibility of transferring VLA paradigms to aerial systems but also, through multi-dimensional metrics tailored to aerial tasks, reveal the capabilities and boundaries of current models regarding UAV mobility, manipulator control, and high-level planning. AIR-VLA establishes a standardized testbed and data foundation for future research in general-purpose aerial robotics. The resource of AIR-VLA will be available at https://anonymous.4open.science/r/AIR-VLA-dataset-B5CC/.
EmboCoach-Bench: Benchmarking AI Agents on Developing Embodied Robots
The field of Embodied AI is witnessing a rapid evolution toward general-purpose robotic systems, fueled by high-fidelity simulation and large-scale data collection. However, this scaling capability remains severely bottlenecked by a reliance on labor-intensive manual oversight from intricate reward shaping to hyperparameter tuning across heterogeneous backends. Inspired by LLMs' success in software automation and science discovery, we introduce \textsc{EmboCoach-Bench}, a benchmark evaluating the capacity of LLM agents to autonomously engineer embodied policies. Spanning 32 expert-curated RL and IL tasks, our framework posits executable code as the universal interface. We move beyond static generation to assess a dynamic closed-loop workflow, where agents leverage environment feedback to iteratively draft, debug, and optimize solutions, spanning improvements from physics-informed reward design to policy architectures such as diffusion policies. Extensive evaluations yield three critical insights: (1) autonomous agents can qualitatively surpass human-engineered baselines by 26.5\% in average success rate; (2) agentic workflow with environment feedback effectively strengthens policy development and substantially narrows the performance gap between open-source and proprietary models; and (3) agents exhibit self-correction capabilities for pathological engineering cases, successfully resurrecting task performance from near-total failures through iterative simulation-in-the-loop debugging. Ultimately, this work establishes a foundation for self-evolving embodied intelligence, accelerating the paradigm shift from labor-intensive manual tuning to scalable, autonomous engineering in embodied AI field.
comment: 37 pages, 13 figures
IROS: A Dual-Process Architecture for Real-Time VLM-Based Indoor Navigation
Indoor mobile robot navigation requires fast responsiveness and robust semantic understanding, yet existing methods struggle to provide both. Classical geometric approaches such as SLAM offer reliable localization but depend on detailed maps and cannot interpret human-targeted cues (e.g., signs, room numbers) essential for indoor reasoning. Vision-Language-Action (VLA) models introduce semantic grounding but remain strictly reactive, basing decisions only on visible frames and failing to anticipate unseen intersections or reason about distant textual cues. Vision-Language Models (VLMs) provide richer contextual inference but suffer from high computational latency, making them unsuitable for real-time operation on embedded platforms. In this work, we present IROS, a real-time navigation framework that combines VLM-level contextual reasoning with the efficiency of lightweight perceptual modules on low-cost, on-device hardware. Inspired by Dual Process Theory, IROS separates fast reflexive decisions (System One) from slow deliberative reasoning (System Two), invoking the VLM only when necessary. Furthermore, by augmenting compact VLMs with spatial and textual cues, IROS delivers robust, human-like navigation with minimal latency. Across five real-world buildings, IROS improves decision accuracy and reduces latency by 66% compared to continuous VLM-based navigation.
DexTac: Learning Contact-aware Visuotactile Policies via Hand-by-hand Teaching
For contact-intensive tasks, the ability to generate policies that produce comprehensive tactile-aware motions is essential. However, existing data collection and skill learning systems for dexterous manipulation often suffer from low-dimensional tactile information. To address this limitation, we propose DexTac, a visuo-tactile manipulation learning framework based on kinesthetic teaching. DexTac captures multi-dimensional tactile data-including contact force distributions and spatial contact regions-directly from human demonstrations. By integrating these rich tactile modalities into a policy network, the resulting contact-aware agent enables a dexterous hand to autonomously select and maintain optimal contact regions during complex interactions. We evaluate our framework on a challenging unimanual injection task. Experimental results demonstrate that DexTac achieves a 91.67% success rate. Notably, in high-precision scenarios involving small-scale syringes, our approach outperforms force-only baselines by 31.67%. These results underscore that learning multi-dimensional tactile priors from human demonstrations is critical for achieving robust, human-like dexterous manipulation in contact-rich environments.
Unifying Speech Editing Detection and Content Localization via Prior-Enhanced Audio LLMs
Speech editing achieves semantic inversion by performing fine-grained segment-level manipulation on original utterances, while preserving global perceptual naturalness. Existing detection studies mainly focus on manually edited speech with explicit splicing artifacts, and therefore struggle to cope with emerging end-to-end neural speech editing techniques that generate seamless acoustic transitions. To address this challenge, we first construct a large-scale bilingual dataset, AiEdit, which leverages large language models to drive precise semantic tampering logic and employs multiple advanced neural speech editing methods for data synthesis, thereby filling the gap of high-quality speech editing datasets. Building upon this foundation, we propose PELM (Prior-Enhanced Audio Large Language Model), the first large-model framework that unifies speech editing detection and content localization by formulating them as an audio question answering task. To mitigate the inherent forgery bias and semantic-priority bias observed in existing audio large models, PELM incorporates word-level probability priors to provide explicit acoustic cues, and further designs a centroid-aggregation-based acoustic consistency perception loss to explicitly enforce the modeling of subtle local distribution anomalies. Extensive experimental results demonstrate that PELM significantly outperforms state-of-the-art methods on both the HumanEdit and AiEdit datasets, achieving equal error rates (EER) of 0.57\% and 9.28\% (localization), respectively.
Nimbus: A Unified Embodied Synthetic Data Generation Framework
Scaling data volume and diversity is critical for generalizing embodied intelligence. While synthetic data generation offers a scalable alternative to expensive physical data acquisition, existing pipelines remain fragmented and task-specific. This isolation leads to significant engineering inefficiency and system instability, failing to support the sustained, high-throughput data generation required for foundation model training. To address these challenges, we present Nimbus, a unified synthetic data generation framework designed to integrate heterogeneous navigation and manipulation pipelines. Nimbus introduces a modular four-layer architecture featuring a decoupled execution model that separates trajectory planning, rendering, and storage into asynchronous stages. By implementing dynamic pipeline scheduling, global load balancing, distributed fault tolerance, and backend-specific rendering optimizations, the system maximizes resource utilization across CPU, GPU, and I/O resources. Our evaluation demonstrates that Nimbus achieves a 2-3X improvement in end-to-end throughput compared to unoptimized baselines and ensuring robust, long-term operation in large-scale distributed environments. This framework serves as the production backbone for the InternData suite, enabling seamless cross-domain data synthesis.
The Paradox of Robustness: Decoupling Rule-Based Logic from Affective Noise in High-Stakes Decision-Making
While Large Language Models (LLMs) are widely documented to be sensitive to minor prompt perturbations and prone to sycophantic alignment with user biases, their robustness in consequential, rule-bound decision-making remains under-explored. In this work, we uncover a striking "Paradox of Robustness": despite their known lexical brittleness, instruction-tuned LLMs exhibit a behavioral and near-total invariance to emotional framing effects. Using a novel controlled perturbation framework across three high-stakes domains (healthcare, law, and finance), we quantify a robustness gap where LLMs demonstrate 110-300 times greater resistance to narrative manipulation than human subjects. Specifically, we find a near-zero effect size for models (Cohen's h = 0.003) compared to the substantial biases observed in humans (Cohen's h in [0.3, 0.8]). This result is highly counterintuitive and suggests the mechanisms driving sycophancy and prompt sensitivity do not necessarily translate to a failure in logical constraint satisfaction. We show that this invariance persists across models with diverse training paradigms. Our findings show that while LLMs may be "brittle" to how a query is formatted, they are remarkably "stable" against why a decision should be biased. Our findings establish that instruction-tuned models can decouple logical rule-adherence from persuasive narratives, offering a source of decision stability that complements, and even potentially de-biases, human judgment in institutional contexts. We release the 162-scenario benchmark, code, and data to facilitate the rigorous evaluation of narrative-induced bias and robustness on GitHub.com.
comment: 22 page, 10 figures
Spotlighting Task-Relevant Features: Object-Centric Representations for Better Generalization in Robotic Manipulation
The generalization capabilities of robotic manipulation policies are heavily influenced by the choice of visual representations. Existing approaches typically rely on representations extracted from pre-trained encoders, using two dominant types of features: global features, which summarize an entire image via a single pooled vector, and dense features, which preserve a patch-wise embedding from the final encoder layer. While widely used, both feature types mix task-relevant and irrelevant information, leading to poor generalization under distribution shifts, such as changes in lighting, textures, or the presence of distractors. In this work, we explore an intermediate structured alternative: Slot-Based Object-Centric Representations (SBOCR), which group dense features into a finite set of object-like entities. This representation permits to naturally reduce the noise provided to the robotic manipulation policy while keeping enough information to efficiently perform the task. We benchmark a range of global and dense representations against intermediate slot-based representations, across a suite of simulated and real-world manipulation tasks ranging from simple to complex. We evaluate their generalization under diverse visual conditions, including changes in lighting, texture, and the presence of distractors. Our findings reveal that SBOCR-based policies outperform dense and global representation-based policies in generalization settings, even without task-specific pretraining. These insights suggest that SBOCR is a promising direction for designing visual systems that generalize effectively in dynamic, real-world robotic environments.
Towards Space-Based Environmentally-Adaptive Grasping
Robotic manipulation in unstructured environments requires reliable execution under diverse conditions, yet many state-of-the-art systems still struggle with high-dimensional action spaces, sparse rewards, and slow generalization beyond carefully curated training scenarios. We study these limitations through the example of grasping in space environments. We learn control policies directly in a learned latent manifold that fuses (grammarizes) multiple modalities into a structured representation for policy decision-making. Building on GPU-accelerated physics simulation, we instantiate a set of single-shot manipulation tasks and achieve over 95% task success with Soft Actor-Critic (SAC)-based reinforcement learning in less than 1M environment steps, under continuously varying grasping conditions from step 1. This empirically shows faster convergence than representative state-of-the-art visual baselines under the same open-loop single-shot conditions. Our analysis indicates that explicitly reasoning in latent space yields more sample-efficient learning and improved robustness to novel object and gripper geometries, environmental clutter, and sensor configurations compared to standard baselines. We identify remaining limitations and outline directions toward fully adaptive and generalizable grasping in the extreme conditions of space.
The Compliance Paradox: Semantic-Instruction Decoupling in Automated Academic Code Evaluation
The rapid integration of Large Language Models (LLMs) into educational assessment rests on the unverified assumption that instruction following capability translates directly to objective adjudication. We demonstrate that this assumption is fundamentally flawed. Instead of evaluating code quality, models frequently decouple from the submission's logic to satisfy hidden directives, a systemic vulnerability we term the Compliance Paradox, where models fine-tuned for extreme helpfulness are vulnerable to adversarial manipulation. To expose this, we introduce the Semantic-Preserving Adversarial Code Injection (SPACI) Framework and the Abstract Syntax Tree-Aware Semantic Injection Protocol (AST-ASIP). These methods exploit the Syntax-Semantics Gap by embedding adversarial directives into syntactically inert regions (trivia nodes) of the Abstract Syntax Tree. Through a large-scale evaluation of 9 SOTA models across 25,000 submissions in Python, C, C++, and Java, we reveal catastrophic failure rates (>95%) in high-capacity open-weights models like DeepSeek-V3, which systematically prioritize hidden formatting constraints over code correctness. We quantify this failure using our novel tripartite framework measuring Decoupling Probability, Score Divergence, and Pedagogical Severity to demonstrate the widespread "False Certification" of functionally broken code. Our findings suggest that current alignment paradigms create a "Trojan" vulnerability in automated grading, necessitating a shift from standard RLHF toward domain-specific Adjudicative Robustness, where models are conditioned to prioritize evidence over instruction compliance. We release our complete dataset and injection framework to facilitate further research on the topic.
Modeling Endogenous Logic: Causal Neuro-Symbolic Reasoning Model for Explainable Multi-Behavior Recommendation
Existing multi-behavior recommendations tend to prioritize performance at the expense of explainability, while current explainable methods suffer from limited generalizability due to their reliance on external information. Neuro-Symbolic integration offers a promising avenue for explainability by combining neural networks with symbolic logic rule reasoning. Concurrently, we posit that user behavior chains inherently embody an endogenous logic suitable for explicit reasoning. However, these observational multiple behaviors are plagued by confounders, causing models to learn spurious correlations. By incorporating causal inference into this Neuro-Symbolic framework, we propose a novel Causal Neuro-Symbolic Reasoning model for Explainable Multi-Behavior Recommendation (CNRE). CNRE operationalizes the endogenous logic by simulating a human-like decision-making process. Specifically, CNRE first employs hierarchical preference propagation to capture heterogeneous cross-behavior dependencies. Subsequently, it models the endogenous logic rule implicit in the user's behavior chain based on preference strength, and adaptively dispatches to the corresponding neural-logic reasoning path (e.g., conjunction, disjunction). This process generates an explainable causal mediator that approximates an ideal state isolated from confounding effects. Extensive experiments on three large-scale datasets demonstrate CNRE's significant superiority over state-of-the-art baselines, offering multi-level explainability from model design and decision process to recommendation results.
comment: Accepted to The Web Conference (WWW) 2026
Abstracting Robot Manipulation Skills via Mixture-of-Experts Diffusion Policies
Diffusion-based policies have recently shown strong results in robot manipulation, but their extension to multi-task scenarios is hindered by the high cost of scaling model size and demonstrations. We introduce Skill Mixture-of-Experts Policy (SMP), a diffusion-based mixture-of-experts policy that learns a compact orthogonal skill basis and uses sticky routing to compose actions from a small, task-relevant subset of experts at each step. A variational training objective supports this design, and adaptive expert activation at inference yields fast sampling without oversized backbones. We validate SMP in simulation and on a real dual-arm platform with multi-task learning and transfer learning tasks, where SMP achieves higher success rates and markedly lower inference cost than large diffusion baselines. These results indicate a practical path toward scalable, transferable multi-task manipulation: learn reusable skills once, activate only what is needed, and adapt quickly when tasks change.
Thinker: A vision-language foundation model for embodied intelligence IROS 2025
When large vision-language models are applied to the field of robotics, they encounter problems that are simple for humans yet error-prone for models. Such issues include confusion between third-person and first-person perspectives and a tendency to overlook information in video endings during temporal reasoning. To address these challenges, we propose Thinker, a large vision-language foundation model designed for embodied intelligence. We tackle the aforementioned issues from two perspectives. Firstly, we construct a large-scale dataset tailored for robotic perception and reasoning, encompassing ego-view videos, visual grounding, spatial understanding, and chain-of-thought data. Secondly, we introduce a simple yet effective approach that substantially enhances the model's capacity for video comprehension by jointly incorporating key frames and full video sequences as inputs. Our model achieves state-of-the-art results on two of the most commonly used benchmark datasets in the field of task planning.
comment: IROS 2025, 4 pages, 3 figures
Adaptive and Robust Cost-Aware Proof of Quality for Decentralized LLM Inference Networks
Decentralized large language model inference networks require lightweight mechanisms to reward high quality outputs under heterogeneous latency and cost. Proof of Quality provides scalable verification by sampling evaluator nodes that score candidate outputs, then aggregating their scores into a consensus signal that determines rewards. However, evaluator heterogeneity and malicious score manipulation can distort consensus and inflate payouts, which weakens incentive alignment in open participation settings. This paper extends a cost-aware Proof of Quality mechanism by adding adversary-resilient consensus formation. We study robust aggregation rules, including median and trimmed mean, and an adaptive trust-weighted consensus that updates evaluator weights from deviation signals. Using question answering and summarization workloads with a ground truth proxy for offline analysis, we quantify evaluator reliability and show strong variance across evaluators, including task-dependent misalignment that can invert correlations. We then evaluate robustness under four adversarial strategies, including noise injection, boosting, sabotage, and intermittent manipulation, across a sweep of malicious ratios and evaluator sample sizes. Our results show that robust aggregation improves consensus alignment with the ground truth proxy and reduces sensitivity to noisy and strategic attacks compared with simple averaging. We further characterize the operational trade-off introduced by evaluator sampling, where larger evaluator sets reduce evaluator rewards and increase payoff variance while inference rewards remain relatively stable in our configuration. These findings motivate robust consensus as a default component for cost-aware Proof of Quality and provide practical guidance for selecting evaluator sampling parameters under adversarial risk and resource constraints.
WheelArm-Sim: A Manipulation and Navigation Combined Multimodal Synthetic Data Generation Simulator for Unified Control in Assistive Robotics
Wheelchairs and robotic arms enhance independent living by assisting individuals with upper-body and mobility limitations in their activities of daily living (ADLs). Although recent advancements in assistive robotics have focused on Wheelchair-Mounted Robotic Arms (WMRAs) and wheelchairs separately, integrated and unified control of the combination using machine learning models remains largely underexplored. To fill this gap, we introduce the concept of WheelArm, an integrated cyber-physical system (CPS) that combines wheelchair and robotic arm controls. Data collection is the first step toward developing WheelArm models. In this paper, we present WheelArm-Sim, a simulation framework developed in Isaac Sim for synthetic data collection. We evaluate its capability by collecting a manipulation and navigation combined multimodal dataset, comprising 13 tasks, 232 trajectories, and 67,783 samples. To demonstrate the potential of the WheelArm dataset, we implement a baseline model for action prediction in the mustard-picking task. The results illustrate that data collected from WheelArm-Sim is feasible for a data-driven machine learning model for integrated control.
comment: Accepted to IEEE International Symposium on Medical Robotics (ISMR) 2026
PoSafeNet: Safe Learning with Poset-Structured Neural Nets
Safe learning is essential for deploying learningbased controllers in safety-critical robotic systems, yet existing approaches often enforce multiple safety constraints uniformly or via fixed priority orders, leading to infeasibility and brittle behavior. In practice, safety requirements are heterogeneous and admit only partial priority relations, where some constraints are comparable while others are inherently incomparable. We formalize this setting as poset-structured safety, modeling safety constraints as a partially ordered set and treating safety composition as a structural property of the policy class. Building on this formulation, we propose PoSafeNet, a differentiable neural safety layer that enforces safety via sequential closed-form projection under poset-consistent constraint orderings, enabling adaptive selection or mixing of valid safety executions while preserving priority semantics by construction. Experiments on multi-obstacle navigation, constrained robot manipulation, and vision-based autonomous driving demonstrate improved feasibility, robustness, and scalability over unstructured and differentiable quadratic program-based safety layers.
ReloPush-BOSS: Optimization-guided Nonmonotone Rearrangement Planning for a Car-like Robot Pusher RA-L 2026
We focus on multi-object rearrangement planning in densely cluttered environments using a car-like robot pusher. The combination of kinematic, geometric and physics constraints underlying this domain results in challenging nonmonotone problem instances which demand breaking each manipulation action into multiple parts to achieve a desired object rearrangement. Prior work tackles such instances by planning prerelocations, temporary object displacements that enable constraint satisfaction, but deciding where to prerelocate remains difficult due to local minima leading to infeasible or high-cost paths. Our key insight is that these minima can be avoided by steering a prerelocation optimization toward low-cost regions informed by Dubins path classification. These optimized prerelocations are integrated into an object traversability graph that encodes kinematic, geometric, and pushing constraints. Searching this graph in a depth-first fashion results in efficient, feasible rearrangement sequences. Across a series of densely cluttered scenarios with up to 13 objects, our framework, ReloPush-BOSS, exhibits consistently highest success rates and shortest pushing paths compared to state-of-the-art baselines. Hardware experiments on a 1/10 car-like pusher demonstrate the robustness of our approach. Code and footage from our experiments can be found at: https://fluentrobotics.com/relopushboss.
comment: Preprint of final version, accepted to RA-L 2026
WorldLLM: Improving LLMs' world modeling using curiosity-driven theory-making
Large Language Models (LLMs) possess general world knowledge but often struggle to generate precise predictions in structured, domain-specific contexts such as simulations. These limitations arise from their inability to ground their broad, unstructured understanding in specific environments. To address this, we present WorldLLM, a framework that enhances LLM-based world modeling by combining Bayesian inference and autonomous active exploration with reinforcement learning. WorldLLM leverages the in-context learning abilities of LLMs to guide an LLM-based world model's predictions using natural language hypotheses given in its prompt. These hypotheses are iteratively refined through a Bayesian inference framework that leverages a second LLM as the proposal distribution given collected evidence. This evidence is collected using a curiosity-driven reinforcement learning policy that explores the environment to find transitions with a low log-likelihood under our LLM-based predictive model using the current hypotheses. By alternating between refining hypotheses and collecting new evidence, our framework autonomously drives continual improvement of the predictions. Our experiments demonstrate the effectiveness of WorldLLM in a textual game environment that requires agents to manipulate and combine objects. The framework not only enhances predictive accuracy, but also generates human-interpretable theories of environment dynamics.
comment: This project's code can be found at https://github.com/flowersteam/WorldLLM. This project was presented at RLDM 2025 (https://rldm.org/)
Dr. Bench: A Multidimensional Evaluation for Deep Research Agents, from Answers to Reports
As an embodiment of intelligence evolution toward interconnected architectures, Deep Research Agents (DRAs) systematically exhibit the capabilities in task decomposition, cross-source retrieval, multi-stage reasoning, information integration, and structured output, which markedly enhance performance on complex and open-ended tasks. However, existing benchmarks remain deficient in evaluation dimensions, response format, and scoring mechanisms, limiting their effectiveness in assessing such agents. This paper introduces Dr. Bench, a multidimensional evaluation framework tailored to DRAs and long-form report-style responses. The benchmark comprises 214 expert-curated challenging tasks across 10 broad domains, each accompanied by manually constructed reference bundles to support composite evaluation. This framework incorporates metrics for semantic quality, topical focus, and retrieval trustworthiness, enabling a comprehensive evaluation of long reports generated by DRAs. Extensive experimentation confirms the superior performance of mainstream DRAs over web-search-tool-augmented reasoning models, yet reveals considerable scope for further improvement. This study provides a robust foundation for capability assessment, architectural refinement, and paradigm advancement of DRAs.
OMP: One-step Meanflow Policy with Directional Alignment
Robot manipulation has increasingly adopted data-driven generative policy frameworks, yet the field faces a persistent trade-off: diffusion models suffer from high inference latency, while flow-based methods often require complex architectural constraints. Although in image generation domain, the MeanFlow paradigm offers a path to single-step inference, its direct application to robotics is impeded by critical theoretical pathologies, specifically spectral bias and gradient starvation in low-velocity regimes. To overcome these limitations, we propose the One-step MeanFlow Policy (OMP), a novel framework designed for high-fidelity, real-time manipulation. We introduce a lightweight directional alignment mechanism to explicitly synchronize predicted velocities with true mean velocities. Furthermore, we implement a Differential Derivation Equation (DDE) to approximate the Jacobian-Vector Product (JVP) operator, which decouples forward and backward passes to significantly reduce memory complexity. Extensive experiments on the Adroit and Meta-World benchmarks demonstrate that OMP outperforms state-of-the-art methods in success rate and trajectory accuracy, particularly in high-precision tasks, while retaining the efficiency of single-step generation.
Bring My Cup! Personalizing Vision-Language-Action Models with Visual Attentive Prompting
While Vision-Language-Action (VLA) models generalize well to generic instructions, they struggle with personalized commands such as "bring my cup," where the robot must act on one specific instance among visually similar objects. We study this setting of manipulating personal objects, in which a VLA must identify and control a user-specific object unseen during training using only a few reference images. To address this challenge, we propose Visual Attentive Prompting (VAP), a simple-yet-effective training-free perceptual adapter that equips frozen VLAs with top-down selective attention. VAP treats the reference images as a non-parametric visual memory, grounds the personal object in the scene through open-vocabulary detection and embedding-based matching, and then injects this grounding as a visual prompt by highlighting the object and rewriting the instruction. We construct two simulation benchmarks, Personalized-SIMPLER and Personalized-VLABench, and a real-world tabletop benchmark to evaluate personalized manipulation across multiple robots and tasks. Experiments show that VAP consistently outperforms generic policies and token-learning baselines in both success rate and correct-object manipulation, helping to bridge the gap between semantic understanding and instance-level control.
comment: Project page with videos and code: https://vap-project.github.io/
Listen, Look, Drive: Coupling Audio Instructions for User-aware VLA-based Autonomous Driving IV
Vision Language Action (VLA) models promise an open-vocabulary interface that can translate perceptual ambiguity into semantically grounded driving decisions, yet they still treat language as a static prior fixed at inference time. As a result, the model must infer continuously shifting objectives from pixels alone, yielding delayed or overly conservative maneuvers. We argue that effective VLAs for autonomous driving need an online channel in which users can influence driving with specific intentions. To this end, we present EchoVLA, a user-aware VLA that couples camera streams with in situ audio instructions. We augment the nuScenes dataset with temporally aligned, intent-specific speech commands generated by converting ego-motion descriptions into synthetic audios. Further, we compose emotional speech-trajectory pairs into a multimodal Chain-of-Thought (CoT) for fine-tuning a Multimodal Large Model (MLM) based on Qwen2.5-Omni. Specifically, we synthesize the audio-augmented dataset with different emotion types paired with corresponding driving behaviors, leveraging the emotional cues embedded in tone, pitch, and speech tempo to reflect varying user states, such as urgent or hesitant intentions, thus enabling our EchoVLA to interpret not only the semantic content but also the emotional context of audio commands for more nuanced and emotionally adaptive driving behavior. In open-loop benchmarks, our approach reduces the average L2 error by $59.4\%$ and the collision rate by $74.4\%$ compared to the baseline of vision-only perception. More experiments on nuScenes dataset validate that EchoVLA not only steers the trajectory through audio instructions, but also modulates driving behavior in response to the emotions detected in the user's speech.
comment: Accepted by IV
Language Lives in Sparse Dimensions: Toward Interpretable and Efficient Multilingual Control for Large Language Models
Large language models exhibit strong multilingual capabilities despite limited exposure to non-English data. Prior studies show that English-centric large language models map multilingual content into English-aligned representations at intermediate layers and then project them back into target-language token spaces in the final layer. From this observation, we hypothesize that this cross-lingual transition is governed by a small and sparse set of dimensions, which occur at consistent indices across the intermediate to final layers. Building on this insight, we introduce a simple, training-free method to identify and manipulate these dimensions, requiring only as few as 50 sentences of either parallel or monolingual data. Experiments on a multilingual generation control task reveal the interpretability of these dimensions, demonstrating that the interventions in these dimensions can switch the output language while preserving semantic content, and that it surpasses the performance of prior neuron-based approaches at a substantially lower cost.
comment: Accepted at EACL 2026 (Main). Our code will be available at: https://github.com/ku-nlp/language-specific-dimensions
ALRM: Agentic LLM for Robotic Manipulation
Large Language Models (LLMs) have recently empowered agentic frameworks to exhibit advanced reasoning and planning capabilities. However, their integration in robotic control pipelines remains limited in two aspects: (1) prior \ac{llm}-based approaches often lack modular, agentic execution mechanisms, limiting their ability to plan, reflect on outcomes, and revise actions in a closed-loop manner; and (2) existing benchmarks for manipulation tasks focus on low-level control and do not systematically evaluate multistep reasoning and linguistic variation. In this paper, we propose Agentic LLM for Robot Manipulation (ALRM), an LLM-driven agentic framework for robotic manipulation. ALRM integrates policy generation with agentic execution through a ReAct-style reasoning loop, supporting two complementary modes: Code-asPolicy (CaP) for direct executable control code generation, and Tool-as-Policy (TaP) for iterative planning and tool-based action execution. To enable systematic evaluation, we also introduce a novel simulation benchmark comprising 56 tasks across multiple environments, capturing linguistically diverse instructions. Experiments with ten LLMs demonstrate that ALRM provides a scalable, interpretable, and modular approach for bridging natural language reasoning with reliable robotic execution. Results reveal Claude-4.1-Opus as the top closed-source model and Falcon-H1-7B as the top open-source model under CaP.
Unifying Perception and Action: A Hybrid-Modality Pipeline with Implicit Visual Chain-of-Thought for Robotic Action Generation
Vision-Language-Action (VLA) models built upon Chain-of-Thought (CoT) have achieved remarkable success in advancing general-purpose robotic agents, owing to its significant perceptual comprehension. Recently, since text-only CoT struggles to adequately capture scene details in complex spatial environments, a highly promising strategy involves leveraging visual priors to guide robotic action generation. Nevertheless, these strategies face two inherent challenges: (i) a modality gap between visual observations and low-level actions, and (ii) unstable training due to competing objectives between visual prediction and action generation. To address these challenges, we propose a Vision-Integrated Trajectory Alignment (VITA) framework that learns a shared discrete latent space for vision and action, enabling joint modeling of perception and motor control. VITA introduces a implicit visual CoT: autoregressively generated tokens is simultaneously decoded into future frames predictions and robot actions, thereby internalizing visual dynamics as an inductive bias for motion planning. Extensive experiments on simulated and real-world environments demonstrate state-of-the-art performance. VITA improves 14.5\%, 9.6\% and 12.1\% over existing baselines on CALVIN, LIBERO and SimplerEnv. Furthermore, VITA attains an average success rate of 80.5\% across six real-world tasks, demonstrating its potential as a generalist robotic manipulation model.
MotionBeat: Motion-Aligned Music Representation via Embodied Contrastive Learning and Bar-Equivariant Contact-Aware Encoding
Music is both an auditory and an embodied phenomenon, closely linked to human motion and naturally expressed through dance. However, most existing audio representations neglect this embodied dimension, limiting their ability to capture rhythmic and structural cues that drive movement. We propose MotionBeat, a framework for motion-aligned music representation learning. MotionBeat is trained with two newly proposed objectives: the Embodied Contrastive Loss (ECL), an enhanced InfoNCE formulation with tempo-aware and beat-jitter negatives to achieve fine-grained rhythmic discrimination, and the Structural Rhythm Alignment Loss (SRAL), which ensures rhythm consistency by aligning music accents with corresponding motion events. Architecturally, MotionBeat introduces bar-equivariant phase rotations to capture cyclic rhythmic patterns and contact-guided attention to emphasize motion events synchronized with musical accents. Experiments show that MotionBeat outperforms state-of-the-art audio encoders in music-to-dance generation and transfers effectively to beat tracking, music tagging, genre and instrument classification, emotion recognition, and audio-visual retrieval. Our project demo page: https://motionbeat2025.github.io/.
comment: 5 pages, 1 figure, accepted by ICASSP 2026. demo page: https://motionbeat2025.github.io/
Designing Underactuated Graspers with Dynamically Variable Geometry Using Potential Energy Map Based Analysis IROS 2022
This paper introduces an extension to the energy map method for in-hand manipulation. Energy maps are used to predict how a part will evolve in the grasp given a specific actuation input to the gripper. Previous approaches assumed frictionless contacts, but we show analytically that friction can be included in the energy maps when using two-link underactuated fingers by understanding the evolution of the part-finger contact. These friction-based energy maps were used to evaluate the importance of various tendon-pulley gripper parameters across nearly 6 million simulated grasping scenarios. Specifically, a variable palm width is needed to manipulate parts of varying scales, and a variable transmission ratio, or the ratio of the distal to the proximal pulley radii, is needed to draw parts into a cage or to maintain a tip prehension grasp.
comment: This is an updated version of my original paper (with the same title) published in IROS 2022. Parts of this work were refined or corrected in Chapter 3 of my dissertation, Good Vibrations: Toward Vibration-Based Robotic In-Hand Manipulation (DOI: 10.25740/mm182vq8220), and many of those changes have been incorporated here
Parallels Between VLA Model Post-Training and Human Motor Learning: Progress, Challenges, and Trends
Vision-language-action (VLA) models extend vision-language models (VLM) by integrating action generation modules for robotic manipulation. Leveraging the strengths of VLM in vision perception and instruction understanding, VLA models exhibit promising generalization across diverse manipulation tasks. However, applications demanding high precision and accuracy reveal performance gaps without further adaptation. Evidence from multiple domains highlights the critical role of post-training to align foundational models with downstream applications, spurring extensive research on post-training VLA models. VLA model post-training aims to enhance an embodiment's ability to interact with the environment for the specified tasks. This perspective aligns with Newell's constraints-led theory of skill acquisition, which posits that motor behavior arises from interactions among task, environmental, and organismic (embodiment) constraints. Accordingly, this survey structures post-training methods into four categories: (i) enhancing environmental perception, (ii) improving embodiment awareness, (iii) deepening task comprehension, and (iv) multi-component integration. Experimental results on standard benchmarks are synthesized to distill actionable guidelines. Finally, open challenges and emerging trends are outlined, relating insights from human learning to prospective methods for VLA post-training. This work delivers both a comprehensive overview of current VLA model post-training methods from a human motor learning perspective and practical insights for VLA model development. Project website: https://github.com/AoqunJin/Awesome-VLA-Post-Training.
Language Models Might Not Understand You: Evaluating Theory of Mind via Story Prompting
We introduce $\texttt{StorySim}$, a programmable framework for synthetically generating stories to evaluate the theory of mind (ToM) and world modeling (WM) capabilities of large language models (LLMs). Unlike prior benchmarks that may suffer from contamination in pretraining data, $\texttt{StorySim}$ produces novel, compositional story prompts anchored by a highly controllable $\texttt{Storyboard}$, enabling precise manipulation of character perspectives and events. We use this framework to design first- and second-order ToM tasks alongside WM tasks that control for the ability to track and model mental states. Our experiments across a suite of state-of-the-art LLMs reveal that most models perform better on WM tasks than ToM tasks, and that models tend to perform better reasoning with humans compared to inanimate objects. Additionally, our framework enabled us to find evidence of heuristic behavior such as recency bias and an over-reliance on earlier events in the story. All code for generating data and evaluations is freely available.
comment: 12 pages, 11 figures
Virtuous Machines: Towards Artificial General Science
Artificial intelligence systems are transforming scientific discovery by accelerating specific research tasks, from protein structure prediction to materials design, yet remain confined to narrow domains requiring substantial human oversight. The exponential growth of scientific literature and increasing domain specialisation constrain researchers' capacity to synthesise knowledge across disciplines and develop unifying theories, motivating exploration of more general-purpose AI systems for science. Here we show that a domain-agnostic, agentic AI Scientist system can independently navigate the scientific workflow - from hypothesis generation through data collection to manuscript preparation. The system autonomously designed and executed three psychological studies on visual working memory, mental rotation, and imagery vividness, executed one new online data collection with 288 participants, developed analysis pipelines through 8-hour+ continuous coding sessions, and produced completed manuscripts. The results demonstrate the capability of AI scientific discovery pipelines to conduct non-trivial research with theoretical reasoning and methodological rigour comparable to experienced researchers, though with limitations in conceptual nuance and theoretical interpretation. This is a step toward embodied AI that can test hypotheses through real-world experiments, accelerating discovery by autonomously exploring regions of scientific space that human cognitive and resource constraints might otherwise leave unexplored. It raises important questions about the nature of scientific understanding and the attribution of scientific credit.
HAFO: A Force-Adaptive Control Framework for Humanoid Robots in Intense Interaction Environments
Reinforcement learning (RL) controllers have made impressive progress in humanoid locomotion and light-weight object manipulation. However, achieving robust and precise motion control with intense force interaction remains a significant challenge. To address these limitations, this paper proposes HAFO, a dual-agent reinforcement learning framework that concurrently optimizes both a robust locomotion strategy and a precise upper-body manipulation strategy via coupled training. We employ a constrained residual action space to improve dual-agent training stability and sample efficiency. The external tension disturbances are explicitly modeled using a spring-damper system, allowing for fine-grained force control through manipulation of the virtual spring. In this process, the reinforcement learning policy autonomously generates a disturbance-rejection response by utilizing environmental feedback. The experimental results demonstrate that HAFO achieves whole-body control for humanoid robots across diverse force-interaction environments using a single dual-agent policy, delivering outstanding performance under load-bearing and thrust-disturbance conditions, while maintaining stable operation even under rope suspension state.
Language Models That Walk the Talk: A Framework for Formal Fairness Certificates
As large language models become integral to high-stakes applications, ensuring their robustness and fairness is critical. Despite their success, large language models remain vulnerable to adversarial attacks, where small perturbations, such as synonym substitutions, can alter model predictions, posing risks in fairness-critical areas, such as gender bias mitigation, and safety-critical areas, such as toxicity detection. While formal verification has been explored for neural networks, its application to large language models remains limited. This work presents a holistic verification framework to certify the robustness of transformer-based language models, with a focus on ensuring gender fairness and consistent outputs across different gender-related terms. Furthermore, we extend this methodology to toxicity detection, offering formal guarantees that adversarially manipulated toxic inputs are consistently detected and appropriately censored, thereby ensuring the reliability of moderation systems. By formalizing robustness within the embedding space, this work strengthens the reliability of language models in ethical AI deployment and content moderation.
End-to-End AD 55
UEval: A Benchmark for Unified Multimodal Generation
We introduce UEval, a benchmark to evaluate unified models, i.e., models capable of generating both images and text. UEval comprises 1,000 expert-curated questions that require both images and text in the model output, sourced from 8 real-world tasks. Our curated questions cover a wide range of reasoning types, from step-by-step guides to textbook explanations. Evaluating open-ended multimodal generation is non-trivial, as simple LLM-as-a-judge methods can miss the subtleties. Different from previous works that rely on multimodal Large Language Models (MLLMs) to rate image quality or text accuracy, we design a rubric-based scoring system in UEval. For each question, reference images and text answers are provided to a MLLM to generate an initial rubric, consisting of multiple evaluation criteria, and human experts then refine and validate these rubrics. In total, UEval contains 10,417 validated rubric criteria, enabling scalable and fine-grained automatic scoring. UEval is challenging for current unified models: GPT-5-Thinking scores only 66.4 out of 100, while the best open-source model reaches merely 49.1. We observe that reasoning models often outperform non-reasoning ones, and transferring reasoning traces from a reasoning model to a non-reasoning model significantly narrows the gap. This suggests that reasoning may be important for tasks requiring complex multimodal understanding and generation.
DynamicVLA: A Vision-Language-Action Model for Dynamic Object Manipulation
Manipulating dynamic objects remains an open challenge for Vision-Language-Action (VLA) models, which, despite strong generalization in static manipulation, struggle in dynamic scenarios requiring rapid perception, temporal anticipation, and continuous control. We present DynamicVLA, a framework for dynamic object manipulation that integrates temporal reasoning and closed-loop adaptation through three key designs: 1) a compact 0.4B VLA using a convolutional vision encoder for spatially efficient, structurally faithful encoding, enabling fast multimodal inference; 2) Continuous Inference, enabling overlapping reasoning and execution for lower latency and timely adaptation to object motion; and 3) Latent-aware Action Streaming, which bridges the perception-execution gap by enforcing temporally aligned action execution. To fill the missing foundation of dynamic manipulation data, we introduce the Dynamic Object Manipulation (DOM) benchmark, built from scratch with an auto data collection pipeline that efficiently gathers 200K synthetic episodes across 2.8K scenes and 206 objects, and enables fast collection of 2K real-world episodes without teleoperation. Extensive evaluations demonstrate remarkable improvements in response speed, perception, and generalization, positioning DynamicVLA as a unified framework for general dynamic object manipulation across embodiments.
comment: Project Page: https://www.infinitescript.com/project/dynamic-vla/ GitHub: https://github.com/hzxie/DynamicVLA
JUST-DUB-IT: Video Dubbing via Joint Audio-Visual Diffusion
Audio-Visual Foundation Models, which are pretrained to jointly generate sound and visual content, have recently shown an unprecedented ability to model multi-modal generation and editing, opening new opportunities for downstream tasks. Among these tasks, video dubbing could greatly benefit from such priors, yet most existing solutions still rely on complex, task-specific pipelines that struggle in real-world settings. In this work, we introduce a single-model approach that adapts a foundational audio-video diffusion model for video-to-video dubbing via a lightweight LoRA. The LoRA enables the model to condition on an input audio-video while jointly generating translated audio and synchronized facial motion. To train this LoRA, we leverage the generative model itself to synthesize paired multilingual videos of the same speaker. Specifically, we generate multilingual videos with language switches within a single clip, and then inpaint the face and audio in each half to match the language of the other half. By leveraging the rich generative prior of the audio-visual model, our approach preserves speaker identity and lip synchronization while remaining robust to complex motion and real-world dynamics. We demonstrate that our approach produces high-quality dubbed videos with improved visual fidelity, lip synchronization, and robustness compared to existing dubbing pipelines.
comment: Project webpage available at https://justdubit.github.io
EditYourself: Audio-Driven Generation and Manipulation of Talking Head Videos with Diffusion Transformers
Current generative video models excel at producing novel content from text and image prompts, but leave a critical gap in editing existing pre-recorded videos, where minor alterations to the spoken script require preserving motion, temporal coherence, speaker identity, and accurate lip synchronization. We introduce EditYourself, a DiT-based framework for audio-driven video-to-video (V2V) editing that enables transcript-based modification of talking head videos, including the seamless addition, removal, and retiming of visually spoken content. Building on a general-purpose video diffusion model, EditYourself augments its V2V capabilities with audio conditioning and region-aware, edit-focused training extensions. This enables precise lip synchronization and temporally coherent restructuring of existing performances via spatiotemporal inpainting, including the synthesis of realistic human motion in newly added segments, while maintaining visual fidelity and identity consistency over long durations. This work represents a foundational step toward generative video models as practical tools for professional video post-production.
comment: Project page: https://edit-yourself.github.io/
ReactEMG Stroke: Healthy-to-Stroke Few-shot Adaptation for sEMG-Based Intent Detection
Surface electromyography (sEMG) is a promising control signal for assist-as-needed hand rehabilitation after stroke, but detecting intent from paretic muscles often requires lengthy, subject-specific calibration and remains brittle to variability. We propose a healthy-to-stroke adaptation pipeline that initializes an intent detector from a model pretrained on large-scale able-bodied sEMG, then fine-tunes it for each stroke participant using only a small amount of subject-specific data. Using a newly collected dataset from three individuals with chronic stroke, we compare adaptation strategies (head-only tuning, parameter-efficient LoRA adapters, and full end-to-end fine-tuning) and evaluate on held-out test sets that include realistic distribution shifts such as within-session drift, posture changes, and armband repositioning. Across conditions, healthy-pretrained adaptation consistently improves stroke intent detection relative to both zero-shot transfer and stroke-only training under the same data budget; the best adaptation methods improve average transition accuracy from 0.42 to 0.61 and raw accuracy from 0.69 to 0.78. These results suggest that transferring a reusable healthy-domain EMG representation can reduce calibration burden while improving robustness for real-time post-stroke intent detection.
Vision-DeepResearch: Incentivizing DeepResearch Capability in Multimodal Large Language Models
Multimodal large language models (MLLMs) have achieved remarkable success across a broad range of vision tasks. However, constrained by the capacity of their internal world knowledge, prior work has proposed augmenting MLLMs by ``reasoning-then-tool-call'' for visual and textual search engines to obtain substantial gains on tasks requiring extensive factual information. However, these approaches typically define multimodal search in a naive setting, assuming that a single full-level or entity-level image query and few text query suffices to retrieve the key evidence needed to answer the question, which is unrealistic in real-world scenarios with substantial visual noise. Moreover, they are often limited in the reasoning depth and search breadth, making it difficult to solve complex questions that require aggregating evidence from diverse visual and textual sources. Building on this, we propose Vision-DeepResearch, which proposes one new multimodal deep-research paradigm, i.e., performs multi-turn, multi-entity and multi-scale visual and textual search to robustly hit real-world search engines under heavy noise. Our Vision-DeepResearch supports dozens of reasoning steps and hundreds of engine interactions, while internalizing deep-research capabilities into the MLLM via cold-start supervision and RL training, resulting in a strong end-to-end multimodal deep-research MLLM. It substantially outperforming existing multimodal deep-research MLLMs, and workflows built on strong closed-source foundation model such as GPT-5, Gemini-2.5-pro and Claude-4-Sonnet. The code will be released in https://github.com/Osilly/Vision-DeepResearch.
MetricAnything: Scaling Metric Depth Pretraining with Noisy Heterogeneous Sources
Scaling has powered recent advances in vision foundation models, yet extending this paradigm to metric depth estimation remains challenging due to heterogeneous sensor noise, camera-dependent biases, and metric ambiguity in noisy cross-source 3D data. We introduce Metric Anything, a simple and scalable pretraining framework that learns metric depth from noisy, diverse 3D sources without manually engineered prompts, camera-specific modeling, or task-specific architectures. Central to our approach is the Sparse Metric Prompt, created by randomly masking depth maps, which serves as a universal interface that decouples spatial reasoning from sensor and camera biases. Using about 20M image-depth pairs spanning reconstructed, captured, and rendered 3D data across 10000 camera models, we demonstrate-for the first time-a clear scaling trend in the metric depth track. The pretrained model excels at prompt-driven tasks such as depth completion, super-resolution and Radar-camera fusion, while its distilled prompt-free student achieves state-of-the-art results on monocular depth estimation, camera intrinsics recovery, single/multi-view metric 3D reconstruction, and VLA planning. We also show that using pretrained ViT of Metric Anything as a visual encoder significantly boosts Multimodal Large Language Model capabilities in spatial intelligence. These results show that metric depth estimation can benefit from the same scaling laws that drive modern foundation models, establishing a new path toward scalable and efficient real-world metric perception. We open-source MetricAnything at http://metric-anything.github.io/metric-anything-io/ to support community research.
comment: Project Page: https://metric-anything.github.io/metric-anything-io/
Drive-JEPA: Video JEPA Meets Multimodal Trajectory Distillation for End-to-End Driving
End-to-end autonomous driving increasingly leverages self-supervised video pretraining to learn transferable planning representations. However, pretraining video world models for scene understanding has so far brought only limited improvements. This limitation is compounded by the inherent ambiguity of driving: each scene typically provides only a single human trajectory, making it difficult to learn multimodal behaviors. In this work, we propose Drive-JEPA, a framework that integrates Video Joint-Embedding Predictive Architecture (V-JEPA) with multimodal trajectory distillation for end-to-end driving. First, we adapt V-JEPA for end-to-end driving, pretraining a ViT encoder on large-scale driving videos to produce predictive representations aligned with trajectory planning. Second, we introduce a proposal-centric planner that distills diverse simulator-generated trajectories alongside human trajectories, with a momentum-aware selection mechanism to promote stable and safe behavior. When evaluated on NAVSIM, the V-JEPA representation combined with a simple transformer-based decoder outperforms prior methods by 3 PDMS in the perception-free setting. The complete Drive-JEPA framework achieves 93.3 PDMS on v1 and 87.8 EPDMS on v2, setting a new state-of-the-art.
Hybrid Foveated Path Tracing with Peripheral Gaussians for Immersive Anatomy
Volumetric medical imaging offers great potential for understanding complex pathologies. Yet, traditional 2D slices provide little support for interpreting spatial relationships, forcing users to mentally reconstruct anatomy into three dimensions. Direct volumetric path tracing and VR rendering can improve perception but are computationally expensive, while precomputed representations, like Gaussian Splatting, require planning ahead. Both approaches limit interactive use. We propose a hybrid rendering approach for high-quality, interactive, and immersive anatomical visualization. Our method combines streamed foveated path tracing with a lightweight Gaussian Splatting approximation of the periphery. The peripheral model generation is optimized with volume data and continuously refined using foveal renderings, enabling interactive updates. Depth-guided reprojection further improves robustness to latency and allows users to balance fidelity with refresh rate. We compare our method against direct path tracing and Gaussian Splatting. Our results highlight how their combination can preserve strengths in visual quality while re-generating the peripheral model in under a second, eliminating extensive preprocessing and approximations. This opens new options for interactive medical visualization.
comment: Scheduled for publication in the Proceedings of IEEE VR 2026
Causal World Modeling for Robot Control
This work highlights that video world modeling, alongside vision-language pre-training, establishes a fresh and independent foundation for robot learning. Intuitively, video world models provide the ability to imagine the near future by understanding the causality between actions and visual dynamics. Inspired by this, we introduce LingBot-VA, an autoregressive diffusion framework that learns frame prediction and policy execution simultaneously. Our model features three carefully crafted designs: (1) a shared latent space, integrating vision and action tokens, driven by a Mixture-of-Transformers (MoT) architecture, (2) a closed-loop rollout mechanism, allowing for ongoing acquisition of environmental feedback with ground-truth observations, (3) an asynchronous inference pipeline, parallelizing action prediction and motor execution to support efficient control. We evaluate our model on both simulation benchmarks and real-world scenarios, where it shows significant promise in long-horizon manipulation, data efficiency in post-training, and strong generalizability to novel configurations. The code and model are made publicly available to facilitate the community.
comment: Project page: https://technology.robbyant.com/lingbot-va Code: https://github.com/robbyant/lingbot-va
BookNet: Book Image Rectification via Cross-Page Attention Network
Book image rectification presents unique challenges in document image processing due to complex geometric distortions from binding constraints, where left and right pages exhibit distinctly asymmetric curvature patterns. However, existing single-page document image rectification methods fail to capture the coupled geometric relationships between adjacent pages in books. In this work, we introduce BookNet, the first end-to-end deep learning framework specifically designed for dual-page book image rectification. BookNet adopts a dual-branch architecture with cross-page attention mechanisms, enabling it to estimate warping flows for both individual pages and the complete book spread, explicitly modeling how left and right pages influence each other. Moreover, to address the absence of specialized datasets, we present Book3D, a large-scale synthetic dataset for training, and Book100, a comprehensive real-world benchmark for evaluation. Extensive experiments demonstrate that BookNet outperforms existing state-of-the-art methods on book image rectification. Code and dataset will be made publicly available.
Information Filtering via Variational Regularization for Robot Manipulation
Diffusion-based visuomotor policies built on 3D visual representations have achieved strong performance in learning complex robotic skills. However, most existing methods employ an oversized denoising decoder. While increasing model capacity can improve denoising, empirical evidence suggests that it also introduces redundancy and noise in intermediate feature blocks. Crucially, we find that randomly masking backbone features at inference time (without changing training) can improve performance, confirming the presence of task-irrelevant noise in intermediate features. To this end, we propose Variational Regularization (VR), a lightweight module that imposes a timestep-conditioned Gaussian over backbone features and applies a KL-divergence regularizer, forming an adaptive information bottleneck. Extensive experiments on three simulation benchmarks (RoboTwin2.0, Adroit, and MetaWorld) show that, compared to the baseline DP3, our approach improves the success rate by 6.1% on RoboTwin2.0 and by 4.1% on Adroit and MetaWorld, achieving new state-of-the-art results. Real-world experiments further demonstrate that our method performs well in practical deployments. Code will released.
VideoAesBench: Benchmarking the Video Aesthetics Perception Capabilities of Large Multimodal Models
Large multimodal models (LMMs) have demonstrated outstanding capabilities in various visual perception tasks, which has in turn made the evaluation of LMMs significant. However, the capability of video aesthetic quality assessment, which is a fundamental ability for human, remains underexplored for LMMs. To address this, we introduce VideoAesBench, a comprehensive benchmark for evaluating LMMs' understanding of video aesthetic quality. VideoAesBench has several significant characteristics: (1) Diverse content including 1,804 videos from multiple video sources including user-generated (UGC), AI-generated (AIGC), compressed, robotic-generated (RGC), and game videos. (2) Multiple question formats containing traditional single-choice questions, multi-choice questions, True or False questions, and a novel open-ended questions for video aesthetics description. (3) Holistic video aesthetics dimensions including visual form related questions from 5 aspects, visual style related questions from 4 aspects, and visual affectiveness questions from 3 aspects. Based on VideoAesBench, we benchmark 23 open-source and commercial large multimodal models. Our findings show that current LMMs only contain basic video aesthetics perception ability, their performance remains incomplete and imprecise. We hope our VideoAesBench can be served as a strong testbed and offer insights for explainable video aesthetics assessment.
Beyond Global Alignment: Fine-Grained Motion-Language Retrieval via Pyramidal Shapley-Taylor Learning
As a foundational task in human-centric cross-modal intelligence, motion-language retrieval aims to bridge the semantic gap between natural language and human motion, enabling intuitive motion analysis, yet existing approaches predominantly focus on aligning entire motion sequences with global textual representations. This global-centric paradigm overlooks fine-grained interactions between local motion segments and individual body joints and text tokens, inevitably leading to suboptimal retrieval performance. To address this limitation, we draw inspiration from the pyramidal process of human motion perception (from joint dynamics to segment coherence, and finally to holistic comprehension) and propose a novel Pyramidal Shapley-Taylor (PST) learning framework for fine-grained motion-language retrieval. Specifically, the framework decomposes human motion into temporal segments and spatial body joints, and learns cross-modal correspondences through progressive joint-wise and segment-wise alignment in a pyramidal fashion, effectively capturing both local semantic details and hierarchical structural relationships. Extensive experiments on multiple public benchmark datasets demonstrate that our approach significantly outperforms state-of-the-art methods, achieving precise alignment between motion segments and body joints and their corresponding text tokens. The code of this work will be released upon acceptance.
TraceRouter: Robust Safety for Large Foundation Models via Path-Level Intervention
Despite their capabilities, large foundation models (LFMs) remain susceptible to adversarial manipulation. Current defenses predominantly rely on the "locality hypothesis", suppressing isolated neurons or features. However, harmful semantics act as distributed, cross-layer circuits, rendering such localized interventions brittle and detrimental to utility. To bridge this gap, we propose \textbf{TraceRouter}, a path-level framework that traces and disconnects the causal propagation circuits of illicit semantics. TraceRouter operates in three stages: (1) it pinpoints a sensitive onset layer by analyzing attention divergence; (2) it leverages sparse autoencoders (SAEs) and differential activation analysis to disentangle and isolate malicious features; and (3) it maps these features to downstream causal pathways via feature influence scores (FIS) derived from zero-out interventions. By selectively suppressing these causal chains, TraceRouter physically severs the flow of harmful information while leaving orthogonal computation routes intact. Extensive experiments demonstrate that TraceRouter significantly outperforms state-of-the-art baselines, achieving a superior trade-off between adversarial robustness and general utility. Our code will be publicly released. WARNING: This paper contains unsafe model responses.
LLM-Driven Scenario-Aware Planning for Autonomous Driving
Hybrid planner switching framework (HPSF) for autonomous driving needs to reconcile high-speed driving efficiency with safe maneuvering in dense traffic. Existing HPSF methods often fail to make reliable mode transitions or sustain efficient driving in congested environments, owing to heuristic scene recognition and low-frequency control updates. To address the limitation, this paper proposes LAP, a large language model (LLM) driven, adaptive planning method, which switches between high-speed driving in low-complexity scenes and precise driving in high-complexity scenes, enabling high qualities of trajectory generation through confined gaps. This is achieved by leveraging LLM for scene understanding and integrating its inference into the joint optimization of mode configuration and motion planning. The joint optimization is solved using tree-search model predictive control and alternating minimization. We implement LAP by Python in Robot Operating System (ROS). High-fidelity simulation results show that the proposed LAP outperforms other benchmarks in terms of both driving time and success rate.
Trajectory-Guided Diffusion for Foreground-Preserving Background Generation in Multi-Layer Documents
We present a diffusion-based framework for document-centric background generation that achieves foreground preservation and multi-page stylistic consistency through latent-space design rather than explicit constraints. Instead of suppressing diffusion updates or applying masking heuristics, our approach reinterprets diffusion as the evolution of stochastic trajectories through a structured latent space. By shaping the initial noise and its geometric alignment, background generation naturally avoids designated foreground regions, allowing readable content to remain intact without auxiliary mechanisms. To address the long-standing issue of stylistic drift across pages, we decouple style control from text conditioning and introduce cached style directions as persistent vectors in latent space. Once selected, these directions constrain diffusion trajectories to a shared stylistic subspace, ensuring consistent appearance across pages and editing iterations. This formulation eliminates the need for repeated prompt-based style specification and provides a more stable foundation for multi-page generation. Our framework admits a geometric and physical interpretation, where diffusion paths evolve on a latent manifold shaped by preferred directions, and foreground regions are rarely traversed as a consequence of trajectory initialization rather than explicit exclusion. The proposed method is training-free, compatible with existing diffusion backbones, and produces visually coherent, foreground-preserving results across complex documents. By reframing diffusion as trajectory design in latent space, we offer a principled approach to consistent and structured generative modeling.
comment: 47 pages, 36 figures
Dynamic Topology Awareness: Breaking the Granularity Rigidity in Vision-Language Navigation
Vision-Language Navigation in Continuous Environments (VLN-CE) presents a core challenge: grounding high-level linguistic instructions into precise, safe, and long-horizon spatial actions. Explicit topological maps have proven to be a vital solution for providing robust spatial memory in such tasks. However, existing topological planning methods suffer from a "Granularity Rigidity" problem. Specifically, these methods typically rely on fixed geometric thresholds to sample nodes, which fails to adapt to varying environmental complexities. This rigidity leads to a critical mismatch: the model tends to over-sample in simple areas, causing computational redundancy, while under-sampling in high-uncertainty regions, increasing collision risks and compromising precision. To address this, we propose DGNav, a framework for Dynamic Topological Navigation, introducing a context-aware mechanism to modulate map density and connectivity on-the-fly. Our approach comprises two core innovations: (1) A Scene-Aware Adaptive Strategy that dynamically modulates graph construction thresholds based on the dispersion of predicted waypoints, enabling "densification on demand" in challenging environments; (2) A Dynamic Graph Transformer that reconstructs graph connectivity by fusing visual, linguistic, and geometric cues into dynamic edge weights, enabling the agent to filter out topological noise and enhancing instruction adherence. Extensive experiments on the R2R-CE and RxR-CE benchmarks demonstrate DGNav exhibits superior navigation performance and strong generalization capabilities. Furthermore, ablation studies confirm that our framework achieves an optimal trade-off between navigation efficiency and safe exploration. The code is available at https://github.com/shannanshouyin/DGNav.
DreamActor-M2: Universal Character Image Animation via Spatiotemporal In-Context Learning
Character image animation aims to synthesize high-fidelity videos by transferring motion from a driving sequence to a static reference image. Despite recent advancements, existing methods suffer from two fundamental challenges: (1) suboptimal motion injection strategies that lead to a trade-off between identity preservation and motion consistency, manifesting as a "see-saw", and (2) an over-reliance on explicit pose priors (e.g., skeletons), which inadequately capture intricate dynamics and hinder generalization to arbitrary, non-humanoid characters. To address these challenges, we present DreamActor-M2, a universal animation framework that reimagines motion conditioning as an in-context learning problem. Our approach follows a two-stage paradigm. First, we bridge the input modality gap by fusing reference appearance and motion cues into a unified latent space, enabling the model to jointly reason about spatial identity and temporal dynamics by leveraging the generative prior of foundational models. Second, we introduce a self-bootstrapped data synthesis pipeline that curates pseudo cross-identity training pairs, facilitating a seamless transition from pose-dependent control to direct, end-to-end RGB-driven animation. This strategy significantly enhances generalization across diverse characters and motion scenarios. To facilitate comprehensive evaluation, we further introduce AW Bench, a versatile benchmark encompassing a wide spectrum of characters types and motion scenarios. Extensive experiments demonstrate that DreamActor-M2 achieves state-of-the-art performance, delivering superior visual fidelity and robust cross-domain generalization. Project Page: https://grisoon.github.io/DreamActor-M2/
Disentangling perception and reasoning for improving data efficiency in learning cloth manipulation without demonstrations
Cloth manipulation is a ubiquitous task in everyday life, but it remains an open challenge for robotics. The difficulties in developing cloth manipulation policies are attributed to the high-dimensional state space, complex dynamics, and high propensity to self-occlusion exhibited by fabrics. As analytical methods have not been able to provide robust and general manipulation policies, reinforcement learning (RL) is considered a promising approach to these problems. However, to address the large state space and complex dynamics, data-based methods usually rely on large models and long training times. The resulting computational cost significantly hampers the development and adoption of these methods. Additionally, due to the challenge of robust state estimation, garment manipulation policies often adopt an end-to-end learning approach with workspace images as input. While this approach enables a conceptually straightforward sim-to-real transfer via real-world fine-tuning, it also incurs a significant computational cost by training agents on a highly lossy representation of the environment state. This paper questions this common design choice by exploring an efficient and modular approach to RL for cloth manipulation. We show that, through careful design choices, model size and training time can be significantly reduced when learning in simulation. Furthermore, we demonstrate how the resulting simulation-trained model can be transferred to the real world. We evaluate our approach on the SoftGym benchmark and achieve significant performance improvements over available baselines on our task, while using a substantially smaller model.
comment: 6 pages, 4 figures,
CoFreeVLA: Collision-Free Dual-Arm Manipulation via Vision-Language-Action Model and Risk Estimation
Vision Language Action (VLA) models enable instruction following manipulation, yet dualarm deployment remains unsafe due to under modeled selfcollisions between arms and grasped objects. We introduce CoFreeVLA, which augments an endtoend VLA with a short horizon selfcollision risk estimator that predicts collision likelihood from proprioception, visual embeddings, and planned actions. The estimator gates risky commands, recovers to safe states via risk-guided adjustments, and shapes policy refinement for safer rollouts. It is pre-trained with model-based collision labels and posttrained on real robot rollouts for calibration. On five bimanual tasks with the PiPER robot arm, CoFreeVLA reduces selfcollisions and improves success rates versus RDT and APEX.
ChartE$^{3}$: A Comprehensive Benchmark for End-to-End Chart Editing
Charts are a fundamental visualization format for structured data analysis. Enabling end-to-end chart editing according to user intent is of great practical value, yet remains challenging due to the need for both fine-grained control and global structural consistency. Most existing approaches adopt pipeline-based designs, where natural language or code serves as an intermediate representation, limiting their ability to faithfully execute complex edits. We introduce ChartE$^{3}$, an End-to-End Chart Editing benchmark that directly evaluates models without relying on intermediate natural language programs or code-level supervision. ChartE$^{3}$ focuses on two complementary editing dimensions: local editing, which involves fine-grained appearance changes such as font or color adjustments, and global editing, which requires holistic, data-centric transformations including data filtering and trend line addition. ChartE$^{3}$ contains over 1,200 high-quality samples constructed via a well-designed data pipeline with human curation. Each sample is provided as a triplet of a chart image, its underlying code, and a multimodal editing instruction, enabling evaluation from both objective and subjective perspectives. Extensive benchmarking of state-of-the-art multimodal large language models reveals substantial performance gaps, particularly on global editing tasks, highlighting critical limitations in current end-to-end chart editing capabilities.
comment: Our benchmark will be publicly available at https://github.com/galactic123/ChartE3
Multimodal Visual Surrogate Compression for Alzheimer's Disease Classification
High-dimensional structural MRI (sMRI) images are widely used for Alzheimer's Disease (AD) diagnosis. Most existing methods for sMRI representation learning rely on 3D architectures (e.g., 3D CNNs), slice-wise feature extraction with late aggregation, or apply training-free feature extractions using 2D foundation models (e.g., DINO). However, these three paradigms suffer from high computational cost, loss of cross-slice relations, and limited ability to extract discriminative features, respectively. To address these challenges, we propose Multimodal Visual Surrogate Compression (MVSC). It learns to compress and adapt large 3D sMRI volumes into compact 2D features, termed as visual surrogates, which are better aligned with frozen 2D foundation models to extract powerful representations for final AD classification. MVSC has two key components: a Volume Context Encoder that captures global cross-slice context under textual guidance, and an Adaptive Slice Fusion module that aggregates slice-level information in a text-enhanced, patch-wise manner. Extensive experiments on three large-scale Alzheimer's disease benchmarks demonstrate our MVSC performs favourably on both binary and multi-class classification tasks compared against state-of-the-art methods.
SONIC-O1: A Real-World Benchmark for Evaluating Multimodal Large Language Models on Audio-Video Understanding
Multimodal Large Language Models (MLLMs) are a major focus of recent AI research. However, most prior work focuses on static image understanding, while their ability to process sequential audio-video data remains underexplored. This gap highlights the need for a high-quality benchmark to systematically evaluate MLLM performance in a real-world setting. We introduce SONIC-O1, a comprehensive, fully human-verified benchmark spanning 13 real-world conversational domains with 4,958 annotations and demographic metadata. SONIC-O1 evaluates MLLMs on key tasks, including open-ended summarization, multiple-choice question (MCQ) answering, and temporal localization with supporting rationales (reasoning). Experiments on closed- and open-source models reveal limitations. While the performance gap in MCQ accuracy between two model families is relatively small, we observe a substantial 22.6% performance difference in temporal localization between the best performing closed-source and open-source models. Performance further degrades across demographic groups, indicating persistent disparities in model behavior. Overall, SONIC-O1 provides an open evaluation suite for temporally grounded and socially robust multimodal understanding. We release SONIC-O1 for reproducibility and research: Project page: https://vectorinstitute.github.io/sonic-o1/ Dataset: https://huggingface.co/datasets/vector-institute/sonic-o1 Github: https://github.com/vectorinstitute/sonic-o1 Leaderboard: https://huggingface.co/spaces/vector-institute/sonic-o1-leaderboard
OCRVerse: Towards Holistic OCR in End-to-End Vision-Language Models
The development of large vision language models drives the demand for managing, and applying massive amounts of multimodal data, making OCR technology, which extracts information from visual images, increasingly popular. However, existing OCR methods primarily focus on recognizing text elements from images or scanned documents (\textbf{Text-centric OCR}), neglecting the identification of visual elements from visually information-dense image sources (\textbf{Vision-centric OCR}), such as charts, web pages and science plots. In reality, these visually information-dense images are widespread on the internet and have significant real-world application value, such as data visualization and web page analysis. In this technical report, we propose \textbf{OCRVerse}, the first holistic OCR method in end-to-end manner that enables unified text-centric OCR and vision-centric OCR. To this end, we constructe comprehensive data engineering to cover a wide range of text-centric documents, such as newspapers, magazines and books, as well as vision-centric rendered composites, including charts, web pages and scientific plots. Moreover, we propose a two-stage SFT-RL multi-domain training method for OCRVerse. SFT directly mixes cross-domain data to train and establish initial domain knowledge, while RL focuses on designing personalized reward strategies for the characteristics of each domain. Specifically, since different domains require various output formats and expected outputs, we provide sufficient flexibility in the RL stage to customize flexible reward signals for each domain, thereby improving cross-domain fusion and avoiding data conflicts. Experimental results demonstrate the effectiveness of OCRVerse, achieving competitive results across text-centric and vision-centric data types, even comparable to large-scale open-source and closed-source models.
AIR-VLA: Vision-Language-Action Systems for Aerial Manipulation
While Vision-Language-Action (VLA) models have achieved remarkable success in ground-based embodied intelligence, their application to Aerial Manipulation Systems (AMS) remains a largely unexplored frontier. The inherent characteristics of AMS, including floating-base dynamics, strong coupling between the UAV and the manipulator, and the multi-step, long-horizon nature of operational tasks, pose severe challenges to existing VLA paradigms designed for static or 2D mobile bases. To bridge this gap, we propose AIR-VLA, the first VLA benchmark specifically tailored for aerial manipulation. We construct a physics-based simulation environment and release a high-quality multimodal dataset comprising 3000 manually teleoperated demonstrations, covering base manipulation, object & spatial understanding, semantic reasoning, and long-horizon planning. Leveraging this platform, we systematically evaluate mainstream VLA models and state-of-the-art VLM models. Our experiments not only validate the feasibility of transferring VLA paradigms to aerial systems but also, through multi-dimensional metrics tailored to aerial tasks, reveal the capabilities and boundaries of current models regarding UAV mobility, manipulator control, and high-level planning. AIR-VLA establishes a standardized testbed and data foundation for future research in general-purpose aerial robotics. The resource of AIR-VLA will be available at https://anonymous.4open.science/r/AIR-VLA-dataset-B5CC/.
EmboCoach-Bench: Benchmarking AI Agents on Developing Embodied Robots
The field of Embodied AI is witnessing a rapid evolution toward general-purpose robotic systems, fueled by high-fidelity simulation and large-scale data collection. However, this scaling capability remains severely bottlenecked by a reliance on labor-intensive manual oversight from intricate reward shaping to hyperparameter tuning across heterogeneous backends. Inspired by LLMs' success in software automation and science discovery, we introduce \textsc{EmboCoach-Bench}, a benchmark evaluating the capacity of LLM agents to autonomously engineer embodied policies. Spanning 32 expert-curated RL and IL tasks, our framework posits executable code as the universal interface. We move beyond static generation to assess a dynamic closed-loop workflow, where agents leverage environment feedback to iteratively draft, debug, and optimize solutions, spanning improvements from physics-informed reward design to policy architectures such as diffusion policies. Extensive evaluations yield three critical insights: (1) autonomous agents can qualitatively surpass human-engineered baselines by 26.5\% in average success rate; (2) agentic workflow with environment feedback effectively strengthens policy development and substantially narrows the performance gap between open-source and proprietary models; and (3) agents exhibit self-correction capabilities for pathological engineering cases, successfully resurrecting task performance from near-total failures through iterative simulation-in-the-loop debugging. Ultimately, this work establishes a foundation for self-evolving embodied intelligence, accelerating the paradigm shift from labor-intensive manual tuning to scalable, autonomous engineering in embodied AI field.
comment: 37 pages, 13 figures
Don't double it: Efficient Agent Prediction in Occlusions
Occluded traffic agents pose a significant challenge for autonomous vehicles, as hidden pedestrians or vehicles can appear unexpectedly, yet this problem remains understudied. Existing learning-based methods, while capable of inferring the presence of hidden agents, often produce redundant occupancy predictions where a single agent is identified multiple times. This issue complicates downstream planning and increases computational load. To address this, we introduce MatchInformer, a novel transformer-based approach that builds on the state-of-the-art SceneInformer architecture. Our method improves upon prior work by integrating Hungarian Matching, a state-of-the-art object matching algorithm from object detection, into the training process to enforce a one-to-one correspondence between predictions and ground truth, thereby reducing redundancy. We further refine trajectory forecasts by decoupling an agent's heading from its motion, a strategy that improves the accuracy and interpretability of predicted paths. To better handle class imbalances, we propose using the Matthews Correlation Coefficient (MCC) to evaluate occupancy predictions. By considering all entries in the confusion matrix, MCC provides a robust measure even in sparse or imbalanced scenarios. Experiments on the Waymo Open Motion Dataset demonstrate that our approach improves reasoning about occluded regions and produces more accurate trajectory forecasts than prior methods.
Mining Forgery Traces from Reconstruction Error: A Weakly Supervised Framework for Multimodal Deepfake Temporal Localization
Modern deepfakes have evolved into localized and intermittent manipulations that require fine-grained temporal localization. The prohibitive cost of frame-level annotation makes weakly supervised methods a practical necessity, which rely only on video-level labels. To this end, we propose Reconstruction-based Temporal Deepfake Localization (RT-DeepLoc), a weakly supervised temporal forgery localization framework that identifies forgeries via reconstruction errors. Our framework uses a Masked Autoencoder (MAE) trained exclusively on authentic data to learn its intrinsic spatiotemporal patterns; this allows the model to produce significant reconstruction discrepancies for forged segments, effectively providing the missing fine-grained cues for localization. To robustly leverage these indicators, we introduce a novel Asymmetric Intra-video Contrastive Loss (AICL). By focusing on the compactness of authentic features guided by these reconstruction cues, AICL establishes a stable decision boundary that enhances local discrimination while preserving generalization to unseen forgeries. Extensive experiments on large-scale datasets, including LAV-DF, demonstrate that RT-DeepLoc achieves state-of-the-art performance in weakly-supervised temporal forgery localization.
Nimbus: A Unified Embodied Synthetic Data Generation Framework
Scaling data volume and diversity is critical for generalizing embodied intelligence. While synthetic data generation offers a scalable alternative to expensive physical data acquisition, existing pipelines remain fragmented and task-specific. This isolation leads to significant engineering inefficiency and system instability, failing to support the sustained, high-throughput data generation required for foundation model training. To address these challenges, we present Nimbus, a unified synthetic data generation framework designed to integrate heterogeneous navigation and manipulation pipelines. Nimbus introduces a modular four-layer architecture featuring a decoupled execution model that separates trajectory planning, rendering, and storage into asynchronous stages. By implementing dynamic pipeline scheduling, global load balancing, distributed fault tolerance, and backend-specific rendering optimizations, the system maximizes resource utilization across CPU, GPU, and I/O resources. Our evaluation demonstrates that Nimbus achieves a 2-3X improvement in end-to-end throughput compared to unoptimized baselines and ensuring robust, long-term operation in large-scale distributed environments. This framework serves as the production backbone for the InternData suite, enabling seamless cross-domain data synthesis.
MPF-Net: Exposing High-Fidelity AI-Generated Video Forgeries via Hierarchical Manifold Deviation and Micro-Temporal Fluctuations
With the rapid advancement of video generation models such as Veo and Wan, the visual quality of synthetic content has reached a level where macro-level semantic errors and temporal inconsistencies are no longer prominent. However, this does not imply that the distinction between real and cutting-edge high-fidelity fake is untraceable. We argue that AI-generated videos are essentially products of a manifold-fitting process rather than a physical recording. Consequently, the pixel composition logic of consecutive adjacent frames residual in AI videos exhibits a structured and homogenous characteristic. We term this phenomenon `Manifold Projection Fluctuations' (MPF). Driven by this insight, we propose a hierarchical dual-path framework that operates as a sequential filtering process. The first, the Static Manifold Deviation Branch, leverages the refined perceptual boundaries of Large-Scale Vision Foundation Models (VFMs) to capture residual spatial anomalies or physical violations that deviate from the natural real-world manifold (off-manifold). For the remaining high-fidelity videos that successfully reside on-manifold and evade spatial detection, we introduce the Micro-Temporal Fluctuation Branch as a secondary, fine-grained filter. By analyzing the structured MPF that persists even in visually perfect sequences, our framework ensures that forgeries are exposed regardless of whether they manifest as global real-world manifold deviations or subtle computational fingerprints.
Towards Geometry-Aware and Motion-Guided Video Human Mesh Recovery
Existing video-based 3D Human Mesh Recovery (HMR) methods often produce physically implausible results, stemming from their reliance on flawed intermediate 3D pose anchors and their inability to effectively model complex spatiotemporal dynamics. To overcome these deep-rooted architectural problems, we introduce HMRMamba, a new paradigm for HMR that pioneers the use of Structured State Space Models (SSMs) for their efficiency and long-range modeling prowess. Our framework is distinguished by two core contributions. First, the Geometry-Aware Lifting Module, featuring a novel dual-scan Mamba architecture, creates a robust foundation for reconstruction. It directly grounds the 2D-to-3D pose lifting process with geometric cues from image features, producing a highly reliable 3D pose sequence that serves as a stable anchor. Second, the Motion-guided Reconstruction Network leverages this anchor to explicitly process kinematic patterns over time. By injecting this crucial temporal awareness, it significantly enhances the final mesh's coherence and robustness, particularly under occlusion and motion blur. Comprehensive evaluations on 3DPW, MPI-INF-3DHP, and Human3.6M benchmarks confirm that HMRMamba sets a new state-of-the-art, outperforming existing methods in both reconstruction accuracy and temporal consistency while offering superior computational efficiency.
ViTMAlis: Towards Latency-Critical Mobile Video Analytics with Vision Transformers
Edge-assisted mobile video analytics (MVA) applications are increasingly shifting from using vision models based on convolutional neural networks (CNNs) to those built on vision transformers (ViTs) to leverage their superior global context modeling and generalization capabilities. However, deploying these advanced models in latency-critical MVA scenarios presents significant challenges. Unlike traditional CNN-based offloading paradigms where network transmission is the primary bottleneck, ViT-based systems are constrained by substantial inference delays, particularly for dense prediction tasks where the need for high-resolution inputs exacerbates the inherent quadratic computational complexity of ViTs. To address these challenges, we propose a dynamic mixed-resolution inference strategy tailored for ViT-backboned dense prediction models, enabling flexible runtime trade-offs between speed and accuracy. Building on this, we introduce ViTMAlis, a ViT-native device-to-edge offloading framework that dynamically adapts to network conditions and video content to jointly reduce transmission and inference delays. We implement a fully functional prototype of ViTMAlis on commodity mobile and edge devices. Extensive experiments demonstrate that, compared to state-of-the-art accuracy-centric, content-aware, and latency-adaptive baselines, ViTMAlis significantly reduces end-to-end offloading latency while improving user-perceived rendering accuracy, providing a practical foundation for next-generation mobile intelligence.
HPTune: Hierarchical Proactive Tuning for Collision-Free Model Predictive Control
Parameter tuning is a powerful approach to enhance adaptability in model predictive control (MPC) motion planners. However, existing methods typically operate in a myopic fashion that only evaluates executed actions, leading to inefficient parameter updates due to the sparsity of failure events (e.g., obstacle nearness or collision). To cope with this issue, we propose to extend evaluation from executed to non-executed actions, yielding a hierarchical proactive tuning (HPTune) framework that combines both a fast-level tuning and a slow-level tuning. The fast one adopts risk indicators of predictive closing speed and predictive proximity distance, and the slow one leverages an extended evaluation loss for closed-loop backpropagation. Additionally, we integrate HPTune with the Doppler LiDAR that provides obstacle velocities apart from position-only measurements for enhanced motion predictions, thus facilitating the implementation of HPTune. Extensive experiments on high-fidelity simulator demonstrate that HPTune achieves efficient MPC tuning and outperforms various baseline schemes in complex environments. It is found that HPTune enables situation-tailored motion planning by formulating a safe, agile collision avoidance strategy.
comment: Accepted by IEEE ICASSP 2026
FlexMap: Generalized HD Map Construction from Flexible Camera Configurations
High-definition (HD) maps provide essential semantic information of road structures for autonomous driving systems, yet current HD map construction methods require calibrated multi-camera setups and either implicit or explicit 2D-to-BEV transformations, making them fragile when sensors fail or camera configurations vary across vehicle fleets. We introduce FlexMap, unlike prior methods that are fixed to a specific N-camera rig, our approach adapts to variable camera configurations without any architectural changes or per-configuration retraining. Our key innovation eliminates explicit geometric projections by using a geometry-aware foundation model with cross-frame attention to implicitly encode 3D scene understanding in feature space. FlexMap features two core components: a spatial-temporal enhancement module that separates cross-view spatial reasoning from temporal dynamics, and a camera-aware decoder with latent camera tokens, enabling view-adaptive attention without the need for projection matrices. Experiments demonstrate that FlexMap outperforms existing methods across multiple configurations while maintaining robustness to missing views and sensor variations, enabling more practical real-world deployment.
ReloPush-BOSS: Optimization-guided Nonmonotone Rearrangement Planning for a Car-like Robot Pusher RA-L 2026
We focus on multi-object rearrangement planning in densely cluttered environments using a car-like robot pusher. The combination of kinematic, geometric and physics constraints underlying this domain results in challenging nonmonotone problem instances which demand breaking each manipulation action into multiple parts to achieve a desired object rearrangement. Prior work tackles such instances by planning prerelocations, temporary object displacements that enable constraint satisfaction, but deciding where to prerelocate remains difficult due to local minima leading to infeasible or high-cost paths. Our key insight is that these minima can be avoided by steering a prerelocation optimization toward low-cost regions informed by Dubins path classification. These optimized prerelocations are integrated into an object traversability graph that encodes kinematic, geometric, and pushing constraints. Searching this graph in a depth-first fashion results in efficient, feasible rearrangement sequences. Across a series of densely cluttered scenarios with up to 13 objects, our framework, ReloPush-BOSS, exhibits consistently highest success rates and shortest pushing paths compared to state-of-the-art baselines. Hardware experiments on a 1/10 car-like pusher demonstrate the robustness of our approach. Code and footage from our experiments can be found at: https://fluentrobotics.com/relopushboss.
comment: Preprint of final version, accepted to RA-L 2026
SurrogateSHAP: Training-Free Contributor Attribution for Text-to-Image (T2I) Models
As Text-to-Image (T2I) diffusion models are increasingly used in real-world creative workflows, a principled framework for valuing contributors who provide a collection of data is essential for fair compensation and sustainable data marketplaces. While the Shapley value offers a theoretically grounded approach to attribution, it faces a dual computational bottleneck: (i) the prohibitive cost of exhaustive model retraining for each sampled subset of players (i.e., data contributors) and (ii) the combinatorial number of subsets needed to estimate marginal contributions due to contributor interactions. To this end, we propose SurrogateSHAP, a retraining-free framework that approximates the expensive retraining game through inference from a pretrained model. To further improve efficiency, we employ a gradient-boosted tree to approximate the utility function and derive Shapley values analytically from the tree-based model. We evaluate SurrogateSHAP across three diverse attribution tasks: (i) image quality for DDPM-CFG on CIFAR-20, (ii) aesthetics for Stable Diffusion on Post-Impressionist artworks, and (iii) product diversity for FLUX.1 on Fashion-Product data. Across settings, SurrogateSHAP outperforms prior methods while substantially reducing computational overhead, consistently identifying influential contributors across multiple utility metrics. Finally, we demonstrate that SurrogateSHAP effectively localizes data sources responsible for spurious correlations in clinical images, providing a scalable path toward auditing safety-critical generative models.
Geometry without Position? When Positional Embeddings Help and Hurt Spatial Reasoning
This paper revisits the role of positional embeddings (PEs) within vision transformers (ViTs) from a geometric perspective. We show that PEs are not mere token indices but effectively function as geometric priors that shape the spatial structure of the representation. We introduce token-level diagnostics that measure how multi-view geometric consistency in ViT representation depends on consitent PEs. Through extensive experiments on 14 foundation ViT models, we reveal how PEs influence multi-view geometry and spatial reasoning. Our findings clarify the role of PEs as a causal mechanism that governs spatial structure in ViT representations. Our code is provided in https://github.com/shijianjian/vit-geometry-probes
MORPH: PDE Foundation Models with Arbitrary Data Modality
We introduce MORPH, a modality-agnostic, autoregressive foundation model for partial differential equations (PDEs). MORPH is built on a convolutional vision transformer backbone that seamlessly handles heterogeneous spatiotemporal datasets of varying data modality (1D--3D) at different resolutions, and multiple fields with mixed scalar and vector components. The architecture combines (i) component-wise convolution, which jointly processes scalar and vector channels to capture local interactions, (ii) inter-field cross-attention, which models and selectively propagates information between different physical fields, (iii) axial attentions, which factorize full spatiotemporal self-attention along individual spatial and temporal axes to reduce computational burden while retaining expressivity. We pretrain multiple model variants on a diverse collection of heterogeneous PDE datasets and evaluate transfer to a range of downstream prediction tasks. Using both full-model fine-tuning and parameter-efficient low-rank adapters, MORPH outperforms models trained from scratch. Across extensive evaluations, MORPH matches or surpasses strong baselines and recent state-of-the-art models. Collectively, these capabilities present a flexible and powerful backbone for learning from the heterogeneous and multimodal nature of scientific observations, charting a path toward scalable and data-efficient scientific machine learning. The source code, datasets, and models are publicly available at https://github.com/lanl/MORPH.
A Coreset Selection of Coreset Selection Literature: Introduction and Recent Advances
Coreset selection targets the challenge of finding a small, representative subset of a large dataset that preserves essential patterns for effective machine learning. Although several surveys have examined data reduction strategies before, most focus narrowly on either classical geometry-based methods or active learning techniques. In contrast, this survey presents a more comprehensive view by unifying three major lines of coreset research, namely, training-free, training-oriented, and label-free approaches, into a single taxonomy. We present subfields often overlooked by existing work, including submodular formulations, bilevel optimization, and recent progress in pseudo-labeling for unlabeled datasets. Additionally, we examine how pruning strategies influence generalization and neural scaling laws, offering new insights that are absent from prior reviews. Finally, we compare these methods under varying computational, robustness, and performance demands and highlight open challenges, such as robustness, outlier filtering, and adapting coreset selection to foundation models, for future research.
Edge Collaborative Gaussian Splatting with Integrated Rendering and Communication
Gaussian splatting (GS) struggles with degraded rendering quality on low-cost devices. To address this issue, we present edge collaborative GS (ECO-GS), where each user can switch between a local small GS model to guarantee timeliness and a remote large GS model to guarantee fidelity. However, deciding how to engage the large GS model is nontrivial, due to the interdependency between rendering requirements and resource conditions. To this end, we propose integrated rendering and communication (IRAC), which jointly optimizes collaboration status (i.e., deciding whether to engage large GS) and edge power allocation (i.e., enabling remote rendering) under communication constraints across different users by minimizing a newly-derived GS switching function. Despite the nonconvexity of the problem, we propose an efficient penalty majorization minimization (PMM) algorithm to obtain the critical point solution. Furthermore, we develop an imitation learning optimization (ILO) algorithm, which reduces the computational time by over 100x compared to PMM. Experiments demonstrate the superiority of PMM and the real-time execution capability of ILO.
comment: IEEE ICASSP, Barcelona, Spain, 2026
PCICF: A Pedestrian Crossing Identification and Classification Framework
We have recently observed the commercial roll-out of robotaxis in various countries. They are deployed within an operational design domain (ODD) on specific routes and environmental conditions, and are subject to continuous monitoring to regain control in safety-critical situations. Since ODDs typically cover urban areas, robotaxis must reliably detect vulnerable road users (VRUs) such as pedestrians, bicyclists, or e-scooter riders. To better handle such varied traffic situations, end-to-end AI, which directly compute vehicle control actions from multi-modal sensor data instead of only for perception, is on the rise. High quality data is needed for systematically training and evaluating such systems within their OOD. In this work, we propose PCICF, a framework to systematically identify and classify VRU situations to support ODD's incident analysis. We base our work on the existing synthetic dataset SMIRK, and enhance it by extending its single-pedestrian-only design into the MoreSMIRK dataset, a structured dictionary of multi-pedestrian crossing situations constructed systematically. We then use space-filling curves (SFCs) to transform multi-dimensional features of scenarios into characteristic patterns, which we match with corresponding entries in MoreSMIRK. We evaluate PCICF with the large real-world dataset PIE, which contains more than 150 manually annotated pedestrian crossing videos. We show that PCICF can successfully identify and classify complex pedestrian crossings, even when groups of pedestrians merge or split. By leveraging computationally efficient components like SFCs, PCICF has even potential to be used onboard of robotaxis for OOD detection for example. We share an open-source replication package for PCICF containing its algorithms, the complete MoreSMIRK dataset and dictionary, as well as our experiment results presented in: https://github.com/Claud1234/PCICF
Memento 2: Learning by Stateful Reflective Memory
We present a theoretical study of continual and experiential learning in large language model agents that combine episodic memory with reinforcement learning. We argue that the key mechanism for continual adaptation, without updating model parameters, is reflection: the agent's ability to use past experience to guide future actions. Empirical findings suggest that episodic, experience-driven reflection enables generalised adaptation across a wide range of open-ended, long-horizon tasks. This indicates that efficient learning can occur during deployment and weakens the traditional separation between training and testing. Motivated by this, we introduce the Stateful Reflective Decision Process, a formal model of reflective memory dynamics. In this abstraction, an agent maintains an episodic memory and performs two core operations. Writing stores interaction outcomes and plays the role of policy evaluation. Reading retrieves relevant past cases to inform decisions and plays the role of policy improvement. This perspective treats reflective memory as a control object that can be analysed using classical reinforcement learning tools. We then develop a read-write reflective learning framework by integrating retrieval into soft policy iteration and establish convergence guarantees. We show that as memory grows and provides denser coverage of the state space, the resulting composite policy converges to the optimal solution. Overall, this framework connects practical memory-based methods with principled reinforcement learning, providing a rigorous mathematical basis for building reflective, memory-embedded agents capable of continual general-purpose learning.
comment: 35 pages, four figures
A New Dataset and Framework for Robust Road Surface Classification via Camera-IMU Fusion
Road surface classification (RSC) is a key enabler for environment-aware predictive maintenance systems. However, existing RSC techniques often fail to generalize beyond narrow operational conditions due to limited sensing modalities and datasets that lack environmental diversity. This work addresses these limitations by introducing a multimodal framework that fuses images and inertial measurements using a lightweight bidirectional cross-attention module followed by an adaptive gating layer that adjusts modality contributions under domain shifts. Given the limitations of current benchmarks, especially regarding lack of variability, we introduce ROAD, a new dataset composed of three complementary subsets: (i) real-world multimodal recordings with RGB-IMU streams synchronized using a gold-standard industry datalogger, captured across diverse lighting, weather, and surface conditions; (ii) a large vision-only subset designed to assess robustness under adverse illumination and heterogeneous capture setups; and (iii) a synthetic subset generated to study out-of-distribution generalization in scenarios difficult to obtain in practice. Experiments show that our method achieves a +1.4 pp improvement over the previous state-of-the-art on the PVS benchmark and an +11.6 pp improvement on our multimodal ROAD subset, with consistently higher F1-scores on minority classes. The framework also demonstrates stable performance across challenging visual conditions, including nighttime, heavy rain, and mixed-surface transitions. These findings indicate that combining affordable camera and IMU sensors with multimodal attention mechanisms provides a scalable, robust foundation for road surface understanding, particularly relevant for regions where environmental variability and cost constraints limit the adoption of high-end sensing suites.
REST: Diffusion-based Real-time End-to-end Streaming Talking Head Generation via ID-Context Caching and Asynchronous Streaming Distillation
Diffusion models have significantly advanced the field of talking head generation (THG). However, slow inference speeds and prevalent non-autoregressive paradigms severely constrain the application of diffusion-based THG models. In this study, we propose REST, a pioneering diffusion-based, real-time, end-to-end streaming audio-driven talking head generation framework. To support real-time end-to-end generation, a compact video latent space is first learned through a spatiotemporal variational autoencoder with a high compression ratio. Additionally, to enable semi-autoregressive streaming within the compact video latent space, we introduce an ID-Context Cache mechanism, which integrates ID-Sink and Context-Cache principles into key-value caching for maintaining identity consistency and temporal coherence during long-term streaming generation. Furthermore, an Asynchronous Streaming Distillation (ASD) strategy is proposed to mitigate error accumulation and enhance temporal consistency in streaming generation, leveraging a non-streaming teacher with an asynchronous noise schedule to supervise the streaming student. REST bridges the gap between autoregressive and diffusion-based approaches, achieving a breakthrough in efficiency for applications requiring real-time THG. Experimental results demonstrate that REST outperforms state-of-the-art methods in both generation speed and overall performance.
comment: 27 pages, 10 figures
Rethinking Multimodal Learning from the Perspective of Mitigating Classification Ability Disproportion NeurIPS 2025
Multimodal learning (MML) is significantly constrained by modality imbalance, leading to suboptimal performance in practice. While existing approaches primarily focus on balancing the learning of different modalities to address this issue, they fundamentally overlook the inherent disproportion in model classification ability, which serves as the primary cause of this phenomenon. In this paper, we propose a novel multimodal learning approach to dynamically balance the classification ability of weak and strong modalities by incorporating the principle of boosting. Concretely, we first propose a sustained boosting algorithm in multimodal learning by simultaneously optimizing the classification and residual errors. Subsequently, we introduce an adaptive classifier assignment strategy to dynamically facilitate the classification performance of the weak modality. Furthermore, we theoretically analyze the convergence property of the cross-modal gap function, ensuring the effectiveness of the proposed boosting scheme. To this end, the classification ability of strong and weak modalities is expected to be balanced, thereby mitigating the imbalance issue. Empirical experiments on widely used datasets reveal the superiority of our method through comparison with various state-of-the-art (SOTA) multimodal learning baselines. The source code is available at https://github.com/njustkmg/NeurIPS25-AUG.
comment: Accepted by NeurIPS 2025
Industrial Internet Robot Collaboration System and Edge Computing Optimization
In industrial Internet environments, mobile robots must generate collision-free global routes under stochastic obstacle layouts and random perturbations in commanded linear and angular velocities. This paper models a differential-drive robot with nonholonomic constraints, then decomposes motion into obstacle avoidance, target turning, and target approaching behaviors to parameterize the control variables. Global path planning is formulated as a constrained optimization problem and converted into a weighted energy function that balances path length and collision penalties. A three-layer neural network represents the planning model, while simulated annealing searches for near-global minima and mitigates local traps. During execution, a fuzzy controller uses heading and lateral-offset errors to output wheel-speed differentials for rapid correction; edge-side computation is discussed to reduce robot-server traffic and latency. Matlab 2024 simulations report deviation within +-5 cm, convergence within 10 ms, and shorter paths than two baseline methods. The approach improves robustness of global navigation in practice.
Enhancing Semantic Segmentation with Continual Self-Supervised Pre-training
Self-supervised learning (SSL) has emerged as a central paradigm for training foundation models by leveraging large-scale unlabeled datasets, often producing representations with strong generalization capabilities. These models are typically pre-trained on general-purpose datasets such as ImageNet and subsequently adapted to various downstream tasks through finetuning. While prior work has investigated parameter-efficient adaptation methods like adapters, LoRA, and prompt tuning, primarily targeting downstream finetuning, extending the SSL pre-training itself in a continual manner to new domains under limited data remains largely underexplored, especially for downstream dense prediction tasks like semantic segmentation. In this work, we address the challenge of adapting vision foundation models to low-data target domains through continual self-supervised pre-training, specifically targeting downstream semantic segmentation. We propose GLARE (Global Local and Regional Enforcement), a novel continual self-supervised pre-training task designed to enhance downstream semantic segmentation performance. GLARE introduces patch-level augmentations to encourage local consistency and incorporates a regional consistency constraint that leverages spatial semantics in the data. For efficient continual pre-training, we initialize Vision Transformers (ViTs) with weights from existing SSL models and update only lightweight adapter modules specifically UniAdapter - while keeping the rest of the backbone frozen. Experiments across multiple semantic segmentation benchmarks on different domains demonstrate that GLARE consistently improves downstream performance with minimal computational and parameter overhead.
comment: 23 pages, 5 figures
Large-Scale Autonomous Gas Monitoring for Volcanic Environments: A Legged Robot on Mount Etna RAM
Volcanic gas emissions are key precursors of eruptive activity. Yet, obtaining accurate near-surface measurements remains hazardous and logistically challenging, motivating the need for autonomous solutions. Limited mobility in rough volcanic terrain has prevented wheeled systems from performing reliable in situ gas measurements, reducing their usefulness as sensing platforms. We present a legged robotic system for autonomous volcanic gas analysis, utilizing the quadruped ANYmal, equipped with a quadrupole mass spectrometer system. Our modular autonomy stack integrates a mission planning interface, global planner, localization framework, and terrain-aware local navigation. We evaluated the system on Mount Etna across three autonomous missions in varied terrain, achieving successful gas-source detections with autonomy rates of 93-100%. In addition, we conducted a teleoperated mission in which the robot measured natural fumaroles, detecting sulfur dioxide and carbon dioxide. We discuss lessons learned from the gas-analysis and autonomy perspectives, emphasizing the need for adaptive sensing strategies, tighter integration of global and local planning, and improved hardware design.
comment: This work has been submitted to the IEEE for possible publication. Submitted to IEEE Robotics & Automation Magazine (RAM)
CycleDiff: Cycle Diffusion Models for Unpaired Image-to-image Translation TIP 2026
We introduce a diffusion-based cross-domain image translator in the absence of paired training data. Unlike GAN-based methods, our approach integrates diffusion models to learn the image translation process, allowing for more coverable modeling of the data distribution and performance improvement of the cross-domain translation. However, incorporating the translation process within the diffusion process is still challenging since the two processes are not aligned exactly, i.e., the diffusion process is applied to the noisy signal while the translation process is conducted on the clean signal. As a result, recent diffusion-based studies employ separate training or shallow integration to learn the two processes, yet this may cause the local minimal of the translation optimization, constraining the effectiveness of diffusion models. To address the problem, we propose a novel joint learning framework that aligns the diffusion and the translation process, thereby improving the global optimality. Specifically, we propose to extract the image components with diffusion models to represent the clean signal and employ the translation process with the image components, enabling an end-to-end joint learning manner. On the other hand, we introduce a time-dependent translation network to learn the complex translation mapping, resulting in effective translation learning and significant performance improvement. Benefiting from the design of joint learning, our method enables global optimization of both processes, enhancing the optimality and achieving improved fidelity and structural consistency. We have conducted extensive experiments on RGB$\leftrightarrow$RGB and diverse cross-modality translation tasks including RGB$\leftrightarrow$Edge, RGB$\leftrightarrow$Semantics and RGB$\leftrightarrow$Depth, showcasing better generative performances than the state of the arts.
comment: Accepted by IEEE TIP 2026
Listen, Look, Drive: Coupling Audio Instructions for User-aware VLA-based Autonomous Driving IV
Vision Language Action (VLA) models promise an open-vocabulary interface that can translate perceptual ambiguity into semantically grounded driving decisions, yet they still treat language as a static prior fixed at inference time. As a result, the model must infer continuously shifting objectives from pixels alone, yielding delayed or overly conservative maneuvers. We argue that effective VLAs for autonomous driving need an online channel in which users can influence driving with specific intentions. To this end, we present EchoVLA, a user-aware VLA that couples camera streams with in situ audio instructions. We augment the nuScenes dataset with temporally aligned, intent-specific speech commands generated by converting ego-motion descriptions into synthetic audios. Further, we compose emotional speech-trajectory pairs into a multimodal Chain-of-Thought (CoT) for fine-tuning a Multimodal Large Model (MLM) based on Qwen2.5-Omni. Specifically, we synthesize the audio-augmented dataset with different emotion types paired with corresponding driving behaviors, leveraging the emotional cues embedded in tone, pitch, and speech tempo to reflect varying user states, such as urgent or hesitant intentions, thus enabling our EchoVLA to interpret not only the semantic content but also the emotional context of audio commands for more nuanced and emotionally adaptive driving behavior. In open-loop benchmarks, our approach reduces the average L2 error by $59.4\%$ and the collision rate by $74.4\%$ compared to the baseline of vision-only perception. More experiments on nuScenes dataset validate that EchoVLA not only steers the trajectory through audio instructions, but also modulates driving behavior in response to the emotions detected in the user's speech.
comment: Accepted by IV
Everything in Its Place: Benchmarking Spatial Intelligence of Text-to-Image Models ICLR 2026
Text-to-image (T2I) models have achieved remarkable success in generating high-fidelity images, but they often fail in handling complex spatial relationships, e.g., spatial perception, reasoning, or interaction. These critical aspects are largely overlooked by current benchmarks due to their short or information-sparse prompt design. In this paper, we introduce SpatialGenEval, a new benchmark designed to systematically evaluate the spatial intelligence of T2I models, covering two key aspects: (1) SpatialGenEval involves 1,230 long, information-dense prompts across 25 real-world scenes. Each prompt integrates 10 spatial sub-domains and corresponding 10 multi-choice question-answer pairs, ranging from object position and layout to occlusion and causality. Our extensive evaluation of 21 state-of-the-art models reveals that higher-order spatial reasoning remains a primary bottleneck. (2) To demonstrate that the utility of our information-dense design goes beyond simple evaluation, we also construct the SpatialT2I dataset. It contains 15,400 text-image pairs with rewritten prompts to ensure image consistency while preserving information density. Fine-tuned results on current foundation models (i.e., Stable Diffusion-XL, Uniworld-V1, OmniGen2) yield consistent performance gains (+4.2%, +5.7%, +4.4%) and more realistic effects in spatial relations, highlighting a data-centric paradigm to achieve spatial intelligence in T2I models.
comment: Accepted by ICLR 2026, URL: https://github.com/AMAP-ML/SpatialGenEval
Soft Masked Transformer for Point Cloud Processing with Skip Attention-Based Upsampling
Point cloud processing methods leverage local and global point features %at the feature level to cater to downstream tasks, yet they often overlook the task-level context inherent in point clouds during the encoding stage. We argue that integrating task-level information into the encoding stage significantly enhances performance. To that end, we propose SMTransformer which incorporates task-level information into a vector-based transformer by utilizing a soft mask generated from task-level queries and keys to learn the attention weights. Additionally, to facilitate effective communication between features from the encoding and decoding layers in high-level tasks such as segmentation, we introduce a skip-attention-based up-sampling block. This block dynamically fuses features from various resolution points across the encoding and decoding layers. To mitigate the increase in network parameters and training time resulting from the complexity of the aforementioned blocks, we propose a novel shared position encoding strategy. This strategy allows various transformer blocks to share the same position information over the same resolution points, thereby reducing network parameters and training time without compromising accuracy.Experimental comparisons with existing methods on multiple datasets demonstrate the efficacy of SMTransformer and skip-attention-based up-sampling for point cloud processing tasks, including semantic segmentation and classification. In particular, we achieve state-of-the-art semantic segmentation results of 73.4% mIoU on S3DIS Area 5 and 62.4% mIoU on SWAN dataset
comment: Conditionally accepted by IEEE Transactions on Automation Science and Engineering
OREHAS: A fully automated deep-learning pipeline for volumetric endolymphatic hydrops quantification in MRI
We present OREHAS (Optimized Recognition & Evaluation of volumetric Hydrops in the Auditory System), the first fully automatic pipeline for volumetric quantification of endolymphatic hydrops (EH) from routine 3D-SPACE-MRC and 3D-REAL-IR MRI. The system integrates three components -- slice classification, inner ear localization, and sequence-specific segmentation -- into a single workflow that computes per-ear endolymphatic-to-vestibular volume ratios (ELR) directly from whole MRI volumes, eliminating the need for manual intervention. Trained with only 3 to 6 annotated slices per patient, OREHAS generalized effectively to full 3D volumes, achieving Dice scores of 0.90 for SPACE-MRC and 0.75 for REAL-IR. In an external validation cohort with complete manual annotations, OREHAS closely matched expert ground truth (VSI = 74.3%) and substantially outperformed the clinical syngo.via software (VSI = 42.5%), which tended to overestimate endolymphatic volumes. Across 19 test patients, vestibular measurements from OREHAS were consistent with syngo.via, while endolymphatic volumes were systematically smaller and more physiologically realistic. These results show that reliable and reproducible EH quantification can be achieved from standard MRI using limited supervision. By combining efficient deep-learning-based segmentation with a clinically aligned volumetric workflow, OREHAS reduces operator dependence, ensures methodological consistency. Besides, the results are compatible with established imaging protocols. The approach provides a robust foundation for large-scale studies and for recalibrating clinical diagnostic thresholds based on accurate volumetric measurements of the inner ear.
Vision-Language-Action (VLA) Models: Concepts, Progress, Applications and Challenges
Vision-Language-Action (VLA) models mark a transformative advancement in artificial intelligence, aiming to unify perception, natural language understanding, and embodied action within a single computational framework. This foundational review presents a comprehensive synthesis of recent advancements in Vision-Language-Action models, systematically organized across five thematic pillars that structure the landscape of this rapidly evolving field. We begin by establishing the conceptual foundations of VLA systems, tracing their evolution from cross-modal learning architectures to generalist agents that tightly integrate vision-language models (VLMs), action planners, and hierarchical controllers. Our methodology adopts a rigorous literature review framework, covering over 80 VLA models published in the past three years. Key progress areas include architectural innovations, efficient training strategies, and real-time inference accelerations. We explore diverse application domains such as autonomous vehicles, medical and industrial robotics, precision agriculture, humanoid robotics, and augmented reality. We analyzed challenges and propose solutions including agentic adaptation and cross-embodiment planning. Furthermore, we outline a forward-looking roadmap where VLA models, VLMs, and agentic AI converge to strengthen socially aligned, adaptive, and general-purpose embodied agents. This work, is expected to serve as a foundational reference for advancing intelligent, real-world robotics and artificial general intelligence. The project repository is available on GitHub as https://github.com/Applied-AI-Research-Lab/Vision-Language-Action-Models-Concepts-Progress-Applications-and-Challenges. [Index Terms: Vision Language Action, VLA, Vision Language Models, VLMs, Action Tokenization, NLP]
Foundation Models 50
RedSage: A Cybersecurity Generalist LLM ICLR 2026
Cybersecurity operations demand assistant LLMs that support diverse workflows without exposing sensitive data. Existing solutions either rely on proprietary APIs with privacy risks or on open models lacking domain adaptation. To bridge this gap, we curate 11.8B tokens of cybersecurity-focused continual pretraining data via large-scale web filtering and manual collection of high-quality resources, spanning 28.6K documents across frameworks, offensive techniques, and security tools. Building on this, we design an agentic augmentation pipeline that simulates expert workflows to generate 266K multi-turn cybersecurity samples for supervised fine-tuning. Combined with general open-source LLM data, these resources enable the training of RedSage, an open-source, locally deployable cybersecurity assistant with domain-aware pretraining and post-training. To rigorously evaluate the models, we introduce RedSage-Bench, a benchmark with 30K multiple-choice and 240 open-ended Q&A items covering cybersecurity knowledge, skills, and tool expertise. RedSage is further evaluated on established cybersecurity benchmarks (e.g., CTI-Bench, CyberMetric, SECURE) and general LLM benchmarks to assess broader generalization. At the 8B scale, RedSage achieves consistently better results, surpassing the baseline models by up to +5.59 points on cybersecurity benchmarks and +5.05 points on Open LLM Leaderboard tasks. These findings demonstrate that domain-aware agentic augmentation and pre/post-training can not only enhance cybersecurity-specific expertise but also help to improve general reasoning and instruction-following. All models, datasets, and code are publicly available.
comment: Accepted on ICLR 2026; Project page: https://risys-lab.github.io/RedSage/
Discovering Hidden Gems in Model Repositories
Public repositories host millions of fine-tuned models, yet community usage remains disproportionately concentrated on a small number of foundation checkpoints. We investigate whether this concentration reflects efficient market selection or if superior models are systematically overlooked. Through an extensive evaluation of over 2,000 models, we show the prevalence of "hidden gems", unpopular fine-tunes that significantly outperform their popular counterparts. Notably, within the Llama-3.1-8B family, we find rarely downloaded checkpoints that improve math performance from 83.2% to 96.0% without increasing inference costs. However, discovering these models through exhaustive evaluation of every uploaded model is computationally infeasible. We therefore formulate model discovery as a Multi-Armed Bandit problem and accelerate the Sequential Halving search algorithm by using shared query sets and aggressive elimination schedules. Our method retrieves top models with as few as 50 queries per candidate, accelerating discovery by over 50x.
Hybrid Linear Attention Done Right: Efficient Distillation and Effective Architectures for Extremely Long Contexts
Hybrid Transformer architectures, which combine softmax attention blocks and recurrent neural networks (RNNs), have shown a desirable performance-throughput tradeoff for long-context modeling, but their adoption and studies are hindered by the prohibitive cost of large-scale pre-training from scratch. Some recent studies have shown that pre-trained softmax attention blocks can be converted into RNN blocks through parameter transfer and knowledge distillation. However, these transfer methods require substantial amounts of training data (more than 10B tokens), and the resulting hybrid models also exhibit poor long-context performance, which is the scenario where hybrid models enjoy significant inference speedups over Transformer-based models. In this paper, we present HALO (Hybrid Attention via Layer Optimization), a pipeline for distilling Transformer models into RNN-attention hybrid models. We then present HypeNet, a hybrid architecture with superior length generalization enabled by a novel position encoding scheme (named HyPE) and various architectural modifications. We convert the Qwen3 series into HypeNet using HALO, achieving performance comparable to the original Transformer models while enjoying superior long-context performance and efficiency. The conversion requires just 2.3B tokens, less than 0.01% of their pre-training data
comment: 20 pages, 8 figures
Exploring Reasoning Reward Model for Agents
Agentic Reinforcement Learning (Agentic RL) has achieved notable success in enabling agents to perform complex reasoning and tool use. However, most methods still relies on sparse outcome-based reward for training. Such feedback fails to differentiate intermediate reasoning quality, leading to suboptimal training results. In this paper, we introduce Agent Reasoning Reward Model (Agent-RRM), a multi-faceted reward model that produces structured feedback for agentic trajectories, including (1) an explicit reasoning trace , (2) a focused critique that provides refinement guidance by highlighting reasoning flaws, and (3) an overall score that evaluates process performance. Leveraging these signals, we systematically investigate three integration strategies: Reagent-C (text-augmented refinement), Reagent-R (reward-augmented guidance), and Reagent-U (unified feedback integration). Extensive evaluations across 12 diverse benchmarks demonstrate that Reagent-U yields substantial performance leaps, achieving 43.7% on GAIA and 46.2% on WebWalkerQA, validating the effectiveness of our reasoning reward model and training schemes. Code, models, and datasets are all released to facilitate future research.
comment: Project page: https://github.com/kxfan2002/Reagent
DynamicVLA: A Vision-Language-Action Model for Dynamic Object Manipulation
Manipulating dynamic objects remains an open challenge for Vision-Language-Action (VLA) models, which, despite strong generalization in static manipulation, struggle in dynamic scenarios requiring rapid perception, temporal anticipation, and continuous control. We present DynamicVLA, a framework for dynamic object manipulation that integrates temporal reasoning and closed-loop adaptation through three key designs: 1) a compact 0.4B VLA using a convolutional vision encoder for spatially efficient, structurally faithful encoding, enabling fast multimodal inference; 2) Continuous Inference, enabling overlapping reasoning and execution for lower latency and timely adaptation to object motion; and 3) Latent-aware Action Streaming, which bridges the perception-execution gap by enforcing temporally aligned action execution. To fill the missing foundation of dynamic manipulation data, we introduce the Dynamic Object Manipulation (DOM) benchmark, built from scratch with an auto data collection pipeline that efficiently gathers 200K synthetic episodes across 2.8K scenes and 206 objects, and enables fast collection of 2K real-world episodes without teleoperation. Extensive evaluations demonstrate remarkable improvements in response speed, perception, and generalization, positioning DynamicVLA as a unified framework for general dynamic object manipulation across embodiments.
comment: Project Page: https://www.infinitescript.com/project/dynamic-vla/ GitHub: https://github.com/hzxie/DynamicVLA
DynaWeb: Model-Based Reinforcement Learning of Web Agents
The development of autonomous web agents, powered by Large Language Models (LLMs) and reinforcement learning (RL), represents a significant step towards general-purpose AI assistants. However, training these agents is severely hampered by the challenges of interacting with the live internet, which is inefficient, costly, and fraught with risks. Model-based reinforcement learning (MBRL) offers a promising solution by learning a world model of the environment to enable simulated interaction. This paper introduces DynaWeb, a novel MBRL framework that trains web agents through interacting with a web world model trained to predict naturalistic web page representations given agent actions. This model serves as a synthetic web environment where an agent policy can dream by generating vast quantities of rollout action trajectories for efficient online reinforcement learning. Beyond free policy rollouts, DynaWeb incorporates real expert trajectories from training data, which are randomly interleaved with on-policy rollouts during training to improve stability and sample efficiency. Experiments conducted on the challenging WebArena and WebVoyager benchmarks demonstrate that DynaWeb consistently and significantly improves the performance of state-of-the-art open-source web agent models. Our findings establish the viability of training web agents through imagination, offering a scalable and efficient way to scale up online agentic RL.
FineInstructions: Scaling Synthetic Instructions to Pre-Training Scale
Due to limited supervised training data, large language models (LLMs) are typically pre-trained via a self-supervised "predict the next word" objective on a vast amount of unstructured text data. To make the resulting model useful to users, it is further trained on a far smaller amount of "instruction-tuning" data comprised of supervised training examples of instructions and responses. To overcome the limited amount of supervised data, we propose a procedure that can transform the knowledge in internet-scale pre-training documents into billions of synthetic instruction and answer training pairs. The resulting dataset, called FineInstructions, uses ~18M instruction templates created from real user-written queries and prompts. These instruction templates are matched to and instantiated with human-written source documents from unstructured pre-training corpora. With "supervised" synthetic training data generated at this scale, an LLM can be pre-trained from scratch solely with the instruction-tuning objective, which is far more in-distribution with the expected downstream usage of LLMs (responding to user prompts). We conduct controlled token-for-token training experiments and find pre-training on FineInstructions outperforms standard pre-training and other proposed synthetic pre-training techniques on standard benchmarks measuring free-form response quality. Our resources can be found at https://huggingface.co/fineinstructions .
Routing the Lottery: Adaptive Subnetworks for Heterogeneous Data
In pruning, the Lottery Ticket Hypothesis posits that large networks contain sparse subnetworks, or winning tickets, that can be trained in isolation to match the performance of their dense counterparts. However, most existing approaches assume a single universal winning ticket shared across all inputs, ignoring the inherent heterogeneity of real-world data. In this work, we propose Routing the Lottery (RTL), an adaptive pruning framework that discovers multiple specialized subnetworks, called adaptive tickets, each tailored to a class, semantic cluster, or environmental condition. Across diverse datasets and tasks, RTL consistently outperforms single- and multi-model baselines in balanced accuracy and recall, while using up to 10 times fewer parameters than independent models and exhibiting semantically aligned. Furthermore, we identify subnetwork collapse, a performance drop under aggressive pruning, and introduce a subnetwork similarity score that enables label-free diagnosis of oversparsification. Overall, our results recast pruning as a mechanism for aligning model structure with data heterogeneity, paving the way toward more modular and context-aware deep learning.
Reasoning While Asking: Transforming Reasoning Large Language Models from Passive Solvers to Proactive Inquirers
Reasoning-oriented Large Language Models (LLMs) have achieved remarkable progress with Chain-of-Thought (CoT) prompting, yet they remain fundamentally limited by a \emph{blind self-thinking} paradigm: performing extensive internal reasoning even when critical information is missing or ambiguous. We propose Proactive Interactive Reasoning (PIR), a new reasoning paradigm that transforms LLMs from passive solvers into proactive inquirers that interleave reasoning with clarification. Unlike existing search- or tool-based frameworks that primarily address knowledge uncertainty by querying external environments, PIR targets premise- and intent-level uncertainty through direct interaction with the user. PIR is implemented via two core components: (1) an uncertainty-aware supervised fine-tuning procedure that equips models with interactive reasoning capability, and (2) a user-simulator-based policy optimization framework driven by a composite reward that aligns model behavior with user intent. Extensive experiments on mathematical reasoning, code generation, and document editing demonstrate that PIR consistently outperforms strong baselines, achieving up to 32.70\% higher accuracy, 22.90\% higher pass rate, and 41.36 BLEU improvement, while reducing nearly half of the reasoning computation and unnecessary interaction turns. Further reliability evaluations on factual knowledge, question answering, and missing-premise scenarios confirm the strong generalization and robustness of PIR. Model and code are publicly available at: \href{https://github.com/SUAT-AIRI/Proactive-Interactive-R1}
comment: The manuscript is under review
StepShield: When, Not Whether to Intervene on Rogue Agents
Existing agent safety benchmarks report binary accuracy, conflating early intervention with post-mortem analysis. A detector that flags a violation at step 8 enables intervention; one that reports it at step 48 provides only forensic value. This distinction is critical, yet current benchmarks cannot measure it. We introduce StepShield, the first benchmark to evaluate when violations are detected, not just whether. StepShield contains 9,213 code agent trajectories, including 1,278 meticulously annotated training pairs and a 7,935-trajectory test set with a realistic 8.1% rogue rate. Rogue behaviors are grounded in real-world security incidents across six categories. We propose three novel temporal metrics: Early Intervention Rate (EIR), Intervention Gap, and Tokens Saved. Surprisingly, our evaluation reveals that an LLM-based judge achieves 59% EIR while a static analyzer achieves only 26%, a 2.3x performance gap that is entirely invisible to standard accuracy metrics. We further show that early detection has direct economic benefits: our cascaded HybridGuard detector reduces monitoring costs by 75% and projects to $108M in cumulative savings over five years at enterprise scale. By shifting the focus of evaluation from whether to when, StepShield provides a new foundation for building safer and more economically viable AI agents. The code and data are released under an Apache 2.0 license.
comment: 16 pages, 2 figures, 14 tables
Pay for Hints, Not Answers: LLM Shepherding for Cost-Efficient Inference
Large Language Models (LLMs) deliver state-of-the-art performance on complex reasoning tasks, but their inference costs limit deployment at scale. Small Language Models (SLMs) offer dramatic cost savings yet lag substantially in accuracy. Existing approaches - routing and cascading - treat the LLM as an all-or-nothing resource: either the query bypasses the LLM entirely, or the LLM generates a complete response at full cost. We introduce LLM Shepherding, a framework that requests only a short prefix (a hint) from the LLM and provides it to SLM. This simple mechanism is surprisingly effective for math and coding tasks: even hints comprising 10-30% of the full LLM response improve SLM accuracy significantly. Shepherding generalizes both routing and cascading, and it achieves lower cost under oracle decision-making. We develop a two-stage predictor that jointly determines whether a hint is needed and how many tokens to request. On the widely-used mathematical reasoning (GSM8K, CNK12) and code generation (HumanEval, MBPP) benchmarks, Shepherding reduces costs by 42-94% relative to LLM-only inference. Compared to state-of-the-art routing and cascading baselines, shepherding delivers up to 2.8x cost reduction while matching accuracy. To our knowledge, this is the first work to exploit token-level budget control for SLM-LLM collaboration.
SMOG: Scalable Meta-Learning for Multi-Objective Bayesian Optimization
Multi-objective optimization aims to solve problems with competing objectives, often with only black-box access to a problem and a limited budget of measurements. In many applications, historical data from related optimization tasks is available, creating an opportunity for meta-learning to accelerate the optimization. Bayesian optimization, as a promising technique for black-box optimization, has been extended to meta-learning and multi-objective optimization independently, but methods that simultaneously address both settings - meta-learned priors for multi-objective Bayesian optimization - remain largely unexplored. We propose SMOG, a scalable and modular meta-learning model based on a multi-output Gaussian process that explicitly learns correlations between objectives. SMOG builds a structured joint Gaussian process prior across meta- and target tasks and, after conditioning on metadata, yields a closed-form target-task prior augmented by a flexible residual multi-output kernel. This construction propagates metadata uncertainty into the target surrogate in a principled way. SMOG supports hierarchical, parallel training: meta-task Gaussian processes are fit once and then cached, achieving linear scaling with the number of meta-tasks. The resulting surrogate integrates seamlessly with standard multi-objective Bayesian optimization acquisition functions.
comment: 19 pages, 15 figures
World of Workflows: a Benchmark for Bringing World Models to Enterprise Systems
Frontier large language models (LLMs) excel as autonomous agents in many domains, yet they remain untested in complex enterprise systems where hidden workflows create cascading effects across interconnected databases. Existing enterprise benchmarks evaluate surface-level agentic task completion similar to general consumer benchmarks, ignoring true challenges in enterprises, such as limited observability, large database state, and hidden workflows with cascading side effects. We introduce World of Workflows (WoW), a realistic ServiceNow-based environment incorporating 4,000+ business rules and 55 active workflows embedded in the system, alongside WoW-bench, a benchmark of 234 tasks evaluating constrained agentic task completion and enterprise dynamics modeling capabilities. We reveal two major takeaways: (1) Frontier LLMs suffer from dynamics blindness, consistently failing to predict the invisible, cascading side effects of their actions, which leads to silent constraint violations, and (2) reliability in opaque systems requires grounded world modeling, where agents must mentally simulate hidden state transitions to bridge the observability gap when high-fidelity feedback is unavailable. For reliable and useful enterprise agents, WoW motivates a new paradigm to explicitly learn system dynamics. We release our GitHub for setting up and evaluating WoW.
SWE-Replay: Efficient Test-Time Scaling for Software Engineering Agents
Test-time scaling has been widely adopted to enhance the capabilities of Large Language Model (LLM) agents in software engineering (SWE) tasks. However, the standard approach of repeatedly sampling trajectories from scratch is computationally expensive. While recent methods have attempted to mitigate costs using specialized value agents, they can suffer from model miscalibration and fail to generalize to modern agents that synthesize custom bash scripts as tools. In this paper, we introduce SWE-Replay, the first efficient and generalizable test-time scaling technique for modern agents without reliance on potentially noisy value estimates. SWE-Replay optimizes the scaling process by recycling trajectories from prior trials, dynamically choosing to either explore from scratch or exploit archived experience by branching at critical intermediate steps. This selection of intermediate steps is driven by the potential and reasoning significance of repository exploration, rather than external LLM-based quality estimates. Our evaluation shows that, on SWE-Bench Verified, SWE-Replay consistently outperforms naive scaling, reducing costs by up to 17.4% while maintaining or even improving performance by up to 3.8%. Further evaluation on SWE-Bench Pro and Multilingual validates the generalizability of SWE-Replay, establishing it as a robust foundation for efficient test-time scaling of software engineering agents.
The Patient is not a Moving Document: A World Model Training Paradigm for Longitudinal EHR
Large language models (LLMs) trained with next-word-prediction have achieved success as clinical foundation models. Representations from these language backbones yield strong linear probe performance across biomedical tasks, suggesting that patient semantics emerge from next-token prediction at scale. However, this paradigm treats patients as a document to be summarized rather than a dynamical system to be simulated; a patient's trajectory emerges from their state evolving under interventions and time, requiring models that simulate dynamics rather than predict tokens. To address this, we introduce SMB-Structure, a world model for structured EHR that grounds a joint-embedding prediction architecture (JEPA) with next-token prediction (SFT). SFT grounds our model to reconstruct future patient states in token space, while JEPA predicts those futures in latent space from the initial patient representation alone, forcing trajectory dynamics to be encoded before the next state is observed. We validate across two large-scale cohorts: Memorial Sloan Kettering (23,319 oncology patients; 323,000+ patient-years) and INSPECT (19,402 pulmonary embolism patients). Using a linear probe evaluated at multiple points along the disease trajectory, we demonstrate that our training paradigm learns embeddings that capture disease dynamics not recoverable by autoregressive baselines, enabling SMB-Structure to achieve competitive performance on complex tasks characterized by high patient heterogeneity. Model weights are available at https://huggingface.co/standardmodelbio/SMB-v1-1.7B-Structure.
EditYourself: Audio-Driven Generation and Manipulation of Talking Head Videos with Diffusion Transformers
Current generative video models excel at producing novel content from text and image prompts, but leave a critical gap in editing existing pre-recorded videos, where minor alterations to the spoken script require preserving motion, temporal coherence, speaker identity, and accurate lip synchronization. We introduce EditYourself, a DiT-based framework for audio-driven video-to-video (V2V) editing that enables transcript-based modification of talking head videos, including the seamless addition, removal, and retiming of visually spoken content. Building on a general-purpose video diffusion model, EditYourself augments its V2V capabilities with audio conditioning and region-aware, edit-focused training extensions. This enables precise lip synchronization and temporally coherent restructuring of existing performances via spatiotemporal inpainting, including the synthesis of realistic human motion in newly added segments, while maintaining visual fidelity and identity consistency over long durations. This work represents a foundational step toward generative video models as practical tools for professional video post-production.
comment: Project page: https://edit-yourself.github.io/
Learning Hamiltonian Flow Maps: Mean Flow Consistency for Large-Timestep Molecular Dynamics
Simulating the long-time evolution of Hamiltonian systems is limited by the small timesteps required for stable numerical integration. To overcome this constraint, we introduce a framework to learn Hamiltonian Flow Maps by predicting the mean phase-space evolution over a chosen time span $Δt$, enabling stable large-timestep updates far beyond the stability limits of classical integrators. To this end, we impose a Mean Flow consistency condition for time-averaged Hamiltonian dynamics. Unlike prior approaches, this allows training on independent phase-space samples without access to future states, avoiding expensive trajectory generation. Validated across diverse Hamiltonian systems, our method in particular improves upon molecular dynamics simulations using machine-learned force fields (MLFF). Our models maintain comparable training and inference cost, but support significantly larger integration timesteps while trained directly on widely-available trajectory-free MLFF datasets.
SINA: A Circuit Schematic Image-to-Netlist Generator Using Artificial Intelligence
Current methods for converting circuit schematic images into machine-readable netlists struggle with component recognition and connectivity inference. In this paper, we present SINA, an open-source, fully automated circuit schematic image-to-netlist generator. SINA integrates deep learning for accurate component detection, Connected-Component Labeling (CCL) for precise connectivity extraction, and Optical Character Recognition (OCR) for component reference designator retrieval, while employing a Vision-Language Model (VLM) for reliable reference designator assignments. In our experiments, SINA achieves 96.47% overall netlist-generation accuracy, which is 2.72x higher than state-of-the-art approaches.
Diverse Approaches to Optimal Execution Schedule Generation
We present the first application of MAP-Elites, a quality-diversity algorithm, to trade execution. Rather than searching for a single optimal policy, MAP-Elites generates a diverse portfolio of regime-specialist strategies indexed by liquidity and volatility conditions. Individual specialists achieve 8-10% performance improvements within their behavioural niches, while other cells show degradation, suggesting opportunities for ensemble approaches that combine improved specialists with the baseline PPO policy. Results indicate that quality-diversity methods offer promise for regime-adaptive execution, though substantial computational resources per behavioural cell may be required for robust specialist development across all market conditions. To ensure experimental integrity, we develop a calibrated Gymnasium environment focused on order scheduling rather than tactical placement decisions. The simulator features a transient impact model with exponential decay and square-root volume scaling, fit to 400+ U.S. equities with R^2>0.02 out-of-sample. Within this environment, two Proximal Policy Optimization architectures - both MLP and CNN feature extractors - demonstrate substantial improvements over industry baselines, with the CNN variant achieving 2.13 bps arrival slippage versus 5.23 bps for VWAP on 4,900 out-of-sample orders ($21B notional). These results validate both the simulation realism and provide strong single-policy baselines for quality-diversity methods.
comment: 27 pages, 15 figures, 5 tables
Value-Based Pre-Training with Downstream Feedback
Can a small amount of verified goal information steer the expensive self-supervised pretraining of foundation models? Standard pretraining optimizes a fixed proxy objective (e.g., next-token prediction), which can misallocate compute away from downstream capabilities of interest. We introduce V-Pretraining: a value-based, modality-agnostic method for controlled continued pretraining in which a lightweight task designer reshapes the pretraining task to maximize the value of each gradient step. For example, consider self-supervised learning (SSL) with sample augmentation. The V-Pretraining task designer selects pretraining tasks (e.g., augmentations) for which the pretraining loss gradient is aligned with a gradient computed over a downstream task (e.g., image segmentation). This helps steer pretraining towards relevant downstream capabilities. Notably, the pretrained model is never updated on downstream task labels; they are used only to shape the pretraining task. Under matched learner update budgets, V-Pretraining of 0.5B--7B language models improves reasoning (GSM8K test Pass@1) by up to 18% relative over standard next-token prediction using only 12% of GSM8K training examples as feedback. In vision SSL, we improve the state-of-the-art results on ADE20K by up to 1.07 mIoU and reduce NYUv2 RMSE while improving ImageNet linear accuracy, and we provide pilot evidence of improved token efficiency in continued pretraining.
Prior-Informed Flow Matching for Graph Reconstruction
We introduce Prior-Informed Flow Matching (PIFM), a conditional flow model for graph reconstruction. Reconstructing graphs from partial observations remains a key challenge; classical embedding methods often lack global consistency, while modern generative models struggle to incorporate structural priors. PIFM bridges this gap by integrating embedding-based priors with continuous-time flow matching. Grounded in a permutation equivariant version of the distortion-perception theory, our method first uses a prior, such as graphons or GraphSAGE/node2vec, to form an informed initial estimate of the adjacency matrix based on local information. It then applies rectified flow matching to refine this estimate, transporting it toward the true distribution of clean graphs and learning a global coupling. Experiments on different datasets demonstrate that PIFM consistently enhances classical embeddings, outperforming them and state-of-the-art generative baselines in reconstruction accuracy.
ECO: Quantized Training without Full-Precision Master Weights
Quantization has significantly improved the compute and memory efficiency of Large Language Model (LLM) training. However, existing approaches still rely on accumulating their updates in high-precision: concretely, gradient updates must be applied to a high-precision weight buffer, known as $\textit{master weights}$. This buffer introduces substantial memory overhead, particularly for Sparse Mixture of Experts (SMoE) models, where model parameters and optimizer states dominate memory usage. To address this, we introduce the Error-Compensating Optimizer (ECO), which eliminates master weights by applying updates directly to quantized parameters. ECO quantizes weights after each step and carefully injects the resulting quantization error into the optimizer momentum, forming an error-feedback loop with no additional memory. We prove that, under standard assumptions and a decaying learning rate, ECO converges to a constant-radius neighborhood of the optimum, while naive master-weight removal can incur an error that is inversely proportional to the learning rate. We show empirical results for pretraining small Transformers (30-800M), a Gemma-3 1B model, and a 2.1B parameter Sparse MoE model with FP8 quantization, and fine-tuning DeepSeek-MoE-16B in INT4 precision. Throughout, ECO matches baselines with master weights up to near-lossless accuracy, significantly shifting the static memory vs validation loss Pareto frontier.
GeoNorm: Unify Pre-Norm and Post-Norm with Geodesic Optimization
The placement of normalization layers, specifically Pre-Norm and Post-Norm, remains an open question in Transformer architecture design. In this work, we rethink these approaches through the lens of manifold optimization, interpreting the outputs of the Feed-Forward Network (FFN) and attention layers as update directions in optimization. Building on this perspective, we introduce GeoNorm, a novel method that replaces standard normalization with geodesic updates on the manifold. Furthermore, analogous to learning rate schedules, we propose a layer-wise update decay for the FFN and attention components. Comprehensive experiments demonstrate that GeoNorm consistently outperforms existing normalization methods in Transformer models. Crucially, GeoNorm can be seamlessly integrated into standard Transformer architectures, achieving performance improvements with negligible additional computational cost.
comment: Tech Report
Investigating Associational Biases in Inter-Model Communication of Large Generative Models
Social bias in generative AI can manifest not only as performance disparities but also as associational bias, whereby models learn and reproduce stereotypical associations between concepts and demographic groups, even in the absence of explicit demographic information (e.g., associating doctors with men). These associations can persist, propagate, and potentially amplify across repeated exchanges in inter-model communication pipelines, where one generative model's output becomes another's input. This is especially salient for human-centred perception tasks, such as human activity recognition and affect prediction, where inferences about behaviour and internal states can lead to errors or stereotypical associations that propagate into unequal treatment. In this work, focusing on human activity and affective expression, we study how such associations evolve within an inter-model communication pipeline that alternates between image generation and image description. Using the RAF-DB and PHASE datasets, we quantify demographic distribution drift induced by model-to-model information exchange and assess whether these drifts are systematic using an explainability pipeline. Our results reveal demographic drifts toward younger representations for both actions and emotions, as well as toward more female-presenting representations, primarily for emotions. We further find evidence that some predictions are supported by spurious visual regions (e.g., background or hair) rather than concept-relevant cues (e.g., body or face). We also examine whether these demographic drifts translate into measurable differences in downstream behaviour, i.e., while predicting activity and emotion labels. Finally, we outline mitigation strategies spanning data-centric, training and deployment interventions, and emphasise the need for careful safeguards when deploying interconnected models in human-centred AI systems.
ReactEMG Stroke: Healthy-to-Stroke Few-shot Adaptation for sEMG-Based Intent Detection
Surface electromyography (sEMG) is a promising control signal for assist-as-needed hand rehabilitation after stroke, but detecting intent from paretic muscles often requires lengthy, subject-specific calibration and remains brittle to variability. We propose a healthy-to-stroke adaptation pipeline that initializes an intent detector from a model pretrained on large-scale able-bodied sEMG, then fine-tunes it for each stroke participant using only a small amount of subject-specific data. Using a newly collected dataset from three individuals with chronic stroke, we compare adaptation strategies (head-only tuning, parameter-efficient LoRA adapters, and full end-to-end fine-tuning) and evaluate on held-out test sets that include realistic distribution shifts such as within-session drift, posture changes, and armband repositioning. Across conditions, healthy-pretrained adaptation consistently improves stroke intent detection relative to both zero-shot transfer and stroke-only training under the same data budget; the best adaptation methods improve average transition accuracy from 0.42 to 0.61 and raw accuracy from 0.69 to 0.78. These results suggest that transferring a reusable healthy-domain EMG representation can reduce calibration burden while improving robustness for real-time post-stroke intent detection.
Latent Adversarial Regularization for Offline Preference Optimization
Learning from human feedback typically relies on preference optimization that constrains policy updates through token-level regularization. However, preference optimization for language models is particularly challenging because token-space similarity does not imply semantic or behavioral similarity. To address this challenge, we leverage latent-space regularization for language model preference optimization. We introduce GANPO, which achieves latent-space regularization by penalizing divergence between the internal representations of a policy model and a reference model. Given that latent representations are not associated with explicit probability densities, we adopt an adversarial approach inspired by GANs to minimize latent-space divergence. We integrate GANPO as a regularizer into existing offline preference optimization objectives. Experiments across multiple model architectures and tasks show consistent improvements from latent-space regularization. Further, by comparing GANPO-induced inferential biases with those from token-level regularization, we find that GANPO provides more robust structural feedback under distributional shift and noise while maintaining comparable downstream performance with minor computational overhead.
Where Do the Joules Go? Diagnosing Inference Energy Consumption
Energy is now a critical ML computing resource. While measuring energy consumption and observing trends is a valuable first step, accurately understanding and diagnosing why those differences occur is crucial for optimization. To that end, we begin by presenting a large-scale measurement study of inference time and energy across the generative AI landscape with 46 models, 7 tasks, and 1,858 different configurations on NVIDIA H100 and B200 GPUs. Our empirical findings span order-of-magnitude variations: LLM task type can lead to 25$\times$ energy differences, video generation sometimes consumes more than 100$\times$ the energy of images, and GPU utilization differences can result in 3--5$\times$ energy differences. Based on our observations, we present a framework for reasoning about the underlying mechanisms that govern time and energy consumption. The essence is that time and energy are determined by latent metrics like memory and utilization, which are in turn affected by various factors across the algorithm, software, and hardware layers. Our framework also extends directly to throughput per watt, a critical metric for power-constrained datacenters.
comment: The ML.ENERGY Leaderboard v3.0 is open https://ml.energy/leaderboard
Making Foundation Models Probabilistic via Singular Value Ensembles
Foundation models have become a dominant paradigm in machine learning, achieving remarkable performance across diverse tasks through large-scale pretraining. However, these models often yield overconfident, uncalibrated predictions. The standard approach to quantifying epistemic uncertainty, training an ensemble of independent models, incurs prohibitive computational costs that scale linearly with ensemble size, making it impractical for large foundation models. We propose Singular Value Ensemble (SVE), a parameter-efficient implicit ensemble method that builds on a simple, but powerful core assumption: namely, that the singular vectors of the weight matrices constitute meaningful subspaces of the model's knowledge. Pretrained foundation models encode rich, transferable information in their weight matrices. If the singular vectors are indeed meaningful (orthogonal) "knowledge directions". To obtain a model ensemble, we modulate only how strongly each direction contributes to the output. Rather than learning entirely new parameters, we freeze the singular vectors and only train per-member singular values that rescale the contribution of each direction in that shared knowledge basis. Ensemble diversity emerges naturally as stochastic initialization and random sampling of mini-batches during joint training cause different members to converge to different combinations of the same underlying knowledge. SVE achieves uncertainty quantification comparable to explicit deep ensembles while increasing the parameter count of the base model by less than 1%, making principled uncertainty estimation accessible in resource-constrained settings. We validate SVE on NLP and vision tasks with various different backbones and show that it improves calibration while maintaining predictive accuracy.
Vision-DeepResearch: Incentivizing DeepResearch Capability in Multimodal Large Language Models
Multimodal large language models (MLLMs) have achieved remarkable success across a broad range of vision tasks. However, constrained by the capacity of their internal world knowledge, prior work has proposed augmenting MLLMs by ``reasoning-then-tool-call'' for visual and textual search engines to obtain substantial gains on tasks requiring extensive factual information. However, these approaches typically define multimodal search in a naive setting, assuming that a single full-level or entity-level image query and few text query suffices to retrieve the key evidence needed to answer the question, which is unrealistic in real-world scenarios with substantial visual noise. Moreover, they are often limited in the reasoning depth and search breadth, making it difficult to solve complex questions that require aggregating evidence from diverse visual and textual sources. Building on this, we propose Vision-DeepResearch, which proposes one new multimodal deep-research paradigm, i.e., performs multi-turn, multi-entity and multi-scale visual and textual search to robustly hit real-world search engines under heavy noise. Our Vision-DeepResearch supports dozens of reasoning steps and hundreds of engine interactions, while internalizing deep-research capabilities into the MLLM via cold-start supervision and RL training, resulting in a strong end-to-end multimodal deep-research MLLM. It substantially outperforming existing multimodal deep-research MLLMs, and workflows built on strong closed-source foundation model such as GPT-5, Gemini-2.5-pro and Claude-4-Sonnet. The code will be released in https://github.com/Osilly/Vision-DeepResearch.
Unsupervised Decomposition and Recombination with Discriminator-Driven Diffusion Models
Decomposing complex data into factorized representations can reveal reusable components and enable synthesizing new samples via component recombination. We investigate this in the context of diffusion-based models that learn factorized latent spaces without factor-level supervision. In images, factors can capture background, illumination, and object attributes; in robotic videos, they can capture reusable motion components. To improve both latent factor discovery and quality of compositional generation, we introduce an adversarial training signal via a discriminator trained to distinguish between single-source samples and those generated by recombining factors across sources. By optimizing the generator to fool this discriminator, we encourage physical and semantic consistency in the resulting recombinations. Our method outperforms implementations of prior baselines on CelebA-HQ, Virtual KITTI, CLEVR, and Falcor3D, achieving lower FID scores and better disentanglement as measured by MIG and MCC. Furthermore, we demonstrate a novel application to robotic video trajectories: by recombining learned action components, we generate diverse sequences that significantly increase state-space coverage for exploration on the LIBERO benchmark.
comment: 28 pages, 16 figures, 4 tables
MetricAnything: Scaling Metric Depth Pretraining with Noisy Heterogeneous Sources
Scaling has powered recent advances in vision foundation models, yet extending this paradigm to metric depth estimation remains challenging due to heterogeneous sensor noise, camera-dependent biases, and metric ambiguity in noisy cross-source 3D data. We introduce Metric Anything, a simple and scalable pretraining framework that learns metric depth from noisy, diverse 3D sources without manually engineered prompts, camera-specific modeling, or task-specific architectures. Central to our approach is the Sparse Metric Prompt, created by randomly masking depth maps, which serves as a universal interface that decouples spatial reasoning from sensor and camera biases. Using about 20M image-depth pairs spanning reconstructed, captured, and rendered 3D data across 10000 camera models, we demonstrate-for the first time-a clear scaling trend in the metric depth track. The pretrained model excels at prompt-driven tasks such as depth completion, super-resolution and Radar-camera fusion, while its distilled prompt-free student achieves state-of-the-art results on monocular depth estimation, camera intrinsics recovery, single/multi-view metric 3D reconstruction, and VLA planning. We also show that using pretrained ViT of Metric Anything as a visual encoder significantly boosts Multimodal Large Language Model capabilities in spatial intelligence. These results show that metric depth estimation can benefit from the same scaling laws that drive modern foundation models, establishing a new path toward scalable and efficient real-world metric perception. We open-source MetricAnything at http://metric-anything.github.io/metric-anything-io/ to support community research.
comment: Project Page: https://metric-anything.github.io/metric-anything-io/
SIA: Symbolic Interpretability for Anticipatory Deep Reinforcement Learning in Network Control
Deep reinforcement learning (DRL) promises adaptive control for future mobile networks but conventional agents remain reactive: they act on past and current measurements and cannot leverage short-term forecasts of exogenous KPIs such as bandwidth. Augmenting agents with predictions can overcome this temporal myopia, yet uptake in networking is scarce because forecast-aware agents act as closed-boxes; operators cannot tell whether predictions guide decisions or justify the added complexity. We propose SIA, the first interpreter that exposes in real time how forecast-augmented DRL agents operate. SIA fuses Symbolic AI abstractions with per-KPI Knowledge Graphs to produce explanations, and includes a new Influence Score metric. SIA achieves sub-millisecond speed, over 200x faster than existing XAI methods. We evaluate SIA on three diverse networking use cases, uncovering hidden issues, including temporal misalignment in forecast integration and reward-design biases that trigger counter-productive policies. These insights enable targeted fixes: a redesigned agent achieves a 9% higher average bitrate in video streaming, and SIA's online Action-Refinement module improves RAN-slicing reward by 25% without retraining. By making anticipatory DRL transparent and tunable, SIA lowers the barrier to proactive control in next-generation mobile networks.
comment: 10 pages, 12 figures, accepted at IEEE INFOCOM 2026
Learning to Communicate Across Modalities: Perceptual Heterogeneity in Multi-Agent Systems
Emergent communication offers insight into how agents develop shared structured representations, yet most research assumes homogeneous modalities or aligned representational spaces, overlooking the perceptual heterogeneity of real-world settings. We study a heterogeneous multi-step binary communication game where agents differ in modality and lack perceptual grounding. Despite perceptual misalignment, multimodal systems converge to class-consistent messages grounded in perceptual input. Unimodal systems communicate more efficiently, using fewer bits and achieving lower classification entropy, while multimodal agents require greater information exchange and exhibit higher uncertainty. Bit perturbation experiments provide strong evidence that meaning is encoded in a distributional rather than compositional manner, as each bit's contribution depends on its surrounding pattern. Finally, interoperability analyses show that systems trained in different perceptual worlds fail to directly communicate, but limited fine-tuning enables successful cross-system communication. This work positions emergent communication as a framework for studying how agents adapt and transfer representations across heterogeneous modalities, opening new directions for both theory and experimentation.
comment: To be published in EvoLang XVI proceedings. 15 pages, 17 figures
A Separable Architecture for Continuous Token Representation in Language Models
Transformer scaling law analyses typically treat parameters as interchangeable; an abstraction that accurately predicts loss-compute relationships. Yet, in sub-billion-parameter small language models (SLMs), embedding matrices dominate the parameter budget. This work argues that this allocation is as suboptimal as it is counterintuitive. Leviathan is an architecture with a continuous embedding generator to replace the discrete lookup tables of canonical models. Evaluating on the Pile dataset under isoparametric settings, Leviathan consistently outperforms a standard, LLaMA-style architecture. By means of an empirical power-law fit, Leviathan exhibits a markedly superior effective parameter capacity. Across the regime studied, Leviathan behaves as a dense model with $1.47$ to $2.11 \times$ more parameters.
Optimizing Agentic Workflows using Meta-tools
Agentic AI enables LLM to dynamically reason, plan, and interact with tools to solve complex tasks. However, agentic workflows often require many iterative reasoning steps and tool invocations, leading to significant operational expense, end-to-end latency and failures due to hallucinations. This work introduces Agent Workflow Optimization (AWO), a framework that identifies and optimizes redundant tool execution patterns to improve the efficiency and robustness of agentic workflows. AWO analyzes existing workflow traces to discover recurring sequences of tool calls and transforms them into meta-tools, which are deterministic, composite tools that bundle multiple agent actions into a single invocation. Meta-tools bypass unnecessary intermediate LLM reasoning steps and reduce operational cost while also shortening execution paths, leading to fewer failures. Experiments on two agentic AI benchmarks show that AWO reduces the number of LLM calls up to 11.9% while also increasing the task success rate by up to 4.2 percent points.
Thinking Out of Order: When Output Order Stops Reflecting Reasoning Order in Diffusion Language Models
Autoregressive (AR) language models enforce a fixed left-to-right generation order, creating a fundamental limitation when the required output structure conflicts with natural reasoning (e.g., producing answers before explanations due to presentation or schema constraints). In such cases, AR models must commit to answers before generating intermediate reasoning, and this rigid constraint forces premature commitment. Masked diffusion language models (MDLMs), which iteratively refine all tokens in parallel, offer a way to decouple computation order from output structure. We validate this capability on GSM8K, Math500, and ReasonOrderQA, a benchmark we introduce with controlled difficulty and order-level evaluation. When prompts request answers before reasoning, AR models exhibit large accuracy gaps compared to standard chain-of-thought ordering (up to 67% relative drop), while MDLMs remain stable ($\leq$14% relative drop), a property we term "order robustness". Using ReasonOrderQA, we present evidence that MDLMs achieve order robustness by stabilizing simpler tokens (e.g., reasoning steps) earlier in the diffusion process than complex ones (e.g., final answers), enabling reasoning tokens to stabilize before answer commitment. Finally, we identify failure conditions where this advantage weakens, outlining the limits required for order robustness.
comment: 18 pages, 13 figures, 5 tables
MORPH: PDE Foundation Models with Arbitrary Data Modality
We introduce MORPH, a modality-agnostic, autoregressive foundation model for partial differential equations (PDEs). MORPH is built on a convolutional vision transformer backbone that seamlessly handles heterogeneous spatiotemporal datasets of varying data modality (1D--3D) at different resolutions, and multiple fields with mixed scalar and vector components. The architecture combines (i) component-wise convolution, which jointly processes scalar and vector channels to capture local interactions, (ii) inter-field cross-attention, which models and selectively propagates information between different physical fields, (iii) axial attentions, which factorize full spatiotemporal self-attention along individual spatial and temporal axes to reduce computational burden while retaining expressivity. We pretrain multiple model variants on a diverse collection of heterogeneous PDE datasets and evaluate transfer to a range of downstream prediction tasks. Using both full-model fine-tuning and parameter-efficient low-rank adapters, MORPH outperforms models trained from scratch. Across extensive evaluations, MORPH matches or surpasses strong baselines and recent state-of-the-art models. Collectively, these capabilities present a flexible and powerful backbone for learning from the heterogeneous and multimodal nature of scientific observations, charting a path toward scalable and data-efficient scientific machine learning. The source code, datasets, and models are publicly available at https://github.com/lanl/MORPH.
"Not in My Backyard": LLMs Uncover Online and Offline Social Biases Against Homelessness
Homelessness is a persistent social challenge, impacting millions worldwide. Over 876,000 people experienced homelessness (PEH) in the U.S. in 2025. Social bias is a significant barrier to alleviation, shaping public perception and influencing policymaking. Given that online textual media and offline city council discourse reflect and influence part of public opinion, it provides valuable insights to identify and track social biases against PEH. We present a new, manually-annotated multi-domain dataset compiled from Reddit, X (formerly Twitter), news articles, and city council meeting minutes across ten U.S. cities. Our 16-category multi-label taxonomy creates a challenging long-tail classification problem: some categories appear in less than 1% of samples, while others exceed 70%. We find that small human-annotated datasets (1,702 samples) are insufficient for training effective classifiers, whether used to fine-tune encoder models or as few-shot examples for LLMs. To address this, we use GPT-4.1 to generate pseudo-labels on a larger unlabeled corpus. Training on this expanded dataset enables even small encoder models (ModernBERT, 150M parameters) to achieve 35.23 macro-F1, approaching GPT-4.1's 41.57. This demonstrates that \textbf{data quantity matters more than model size}, enabling low-cost, privacy-preserving deployment without relying on commercial APIs. Our results reveal that negative bias against PEH is prevalent both offline and online (especially on Reddit), with "not in my backyard" narratives showing the highest engagement. These findings uncover a type of ostracism that directly impacts poverty-reduction policymaking and provide actionable insights for practitioners addressing homelessness.
Do graph neural network states contain graph properties?
Deep neural networks (DNNs) achieve state-of-the-art performance on many tasks, but this often requires increasingly larger model sizes, which in turn leads to more complex internal representations. Explainability techniques (XAI) have made remarkable progress in the interpretability of ML models. However, the non-euclidean nature of Graph Neural Networks (GNNs) makes it difficult to reuse already existing XAI methods. While other works have focused on instance-based explanation methods for GNNs, very few have investigated model-based methods and, to our knowledge, none have tried to probe the embedding of the GNNs for structural graph properties. In this paper we present a model agnostic explainability pipeline for Graph Neural Networks (GNNs) employing diagnostic classifiers. We propose to consider graph-theoretic properties as the features of choice for studying the emergence of representations in GNNs. This pipeline aims to probe and interpret the learned representations in GNNs across various architectures and datasets, refining our understanding and trust in these models.
comment: 10 pages, 22 figures, conference
Vecchia-Inducing-Points Full-Scale Approximations for Gaussian Processes
Gaussian processes are flexible, probabilistic, non-parametric models widely used in machine learning and statistics. However, their scalability to large data sets is limited by computational constraints. To overcome these challenges, we propose Vecchia-inducing-points full-scale (VIF) approximations combining the strengths of global inducing points and local Vecchia approximations. Vecchia approximations excel in settings with low-dimensional inputs and moderately smooth covariance functions, while inducing point methods are better suited to high-dimensional inputs and smoother covariance functions. Our VIF approach bridges these two regimes by using an efficient correlation-based neighbor-finding strategy for the Vecchia approximation of the residual process, implemented via a modified cover tree algorithm. We further extend our framework to non-Gaussian likelihoods by introducing iterative methods that substantially reduce computational costs for training and prediction by several orders of magnitudes compared to Cholesky-based computations when using a Laplace approximation. In particular, we propose and compare novel preconditioners and provide theoretical convergence results. Extensive numerical experiments on simulated and real-world data sets show that VIF approximations are both computationally efficient as well as more accurate and numerically stable than state-of-the-art alternatives. All methods are implemented in the open source C++ library GPBoost with high-level Python and R interfaces.
Think Locally, Explain Globally: Graph-Guided LLM Investigations via Local Reasoning and Belief Propagation
LLM agents excel when environments are mostly static and the needed information fits in a model's context window, but they often fail in open-ended investigations where explanations must be constructed by iteratively mining evidence from massive, heterogeneous operational data. These investigations exhibit hidden dependency structure: entities interact, signals co-vary, and the importance of a fact may only become clear after other evidence is discovered. Because the context window is bounded, agents must summarize intermediate findings before their significance is known, increasing the risk of discarding key evidence. ReAct-style agents are especially brittle in this regime. Their retrieve-summarize-reason loop makes conclusions sensitive to exploration order and introduces run-to-run non-determinism, producing a reliability gap where Pass-at-k may be high but Majority-at-k remains low. Simply sampling more rollouts or generating longer reasoning traces does not reliably stabilize results, since hypotheses cannot be autonomously checked as new evidence arrives and there is no explicit mechanism for belief bookkeeping and revision. In addition, ReAct entangles semantic reasoning with controller duties such as tool orchestration and state tracking, so execution errors and plan drift degrade reasoning while consuming scarce context. We address these issues by formulating investigation as abductive reasoning over a dependency graph and proposing EoG (Explanations over Graphs), a disaggregated framework in which an LLM performs bounded local evidence mining and labeling (cause vs symptom) while a deterministic controller manages traversal, state, and belief propagation to compute a minimal explanatory frontier. On a representative ITBench diagnostics task, EoG improves both accuracy and run-to-run consistency over ReAct baselines, including a 7x average gain in Majority-at-k entity F1.
How Many Ratings per Item are Necessary for Reliable Significance Testing?
A cornerstone of machine learning evaluation is the (often hidden) assumption that model and human responses are reliable enough to evaluate models against unitary, authoritative, ``gold standard'' data, via simple metrics such as accuracy, precision, and recall. The generative AI revolution would seem to explode this assumption, given the critical role stochastic inference plays. Yet, in spite of public demand for more transparency in AI -- along with strong evidence that humans are unreliable judges -- estimates of model reliability are conventionally based on, at most, a few output responses per input item. We adapt a method, previously used to evaluate the reliability of various metrics and estimators for machine learning evaluation, to determine whether an (existing or planned) dataset has enough responses per item to assure reliable null hypothesis statistical testing. We show that, for many common metrics, collecting even 5-10 responses per item (from each model and team of human evaluators) is not sufficient. We apply our methods to several of the very few extant gold standard test sets with multiple disaggregated responses per item and show that even these datasets lack enough responses per item. We show how our methods can help AI researchers make better decisions about how to collect data for AI evaluation.
comment: Accepted at EACL Findings 2026
AsterNav: Autonomous Aerial Robot Navigation In Darkness Using Passive Computation
Autonomous aerial navigation in absolute darkness is crucial for post-disaster search and rescue operations, which often occur from disaster-zone power outages. Yet, due to resource constraints, tiny aerial robots, perfectly suited for these operations, are unable to navigate in the darkness to find survivors safely. In this paper, we present an autonomous aerial robot for navigation in the dark by combining an Infra-Red (IR) monocular camera with a large-aperture coded lens and structured light without external infrastructure like GPS or motion-capture. Our approach obtains depth-dependent defocus cues (each structured light point appears as a pattern that is depth dependent), which acts as a strong prior for our AsterNet deep depth estimation model. The model is trained in simulation by generating data using a simple optical model and transfers directly to the real world without any fine-tuning or retraining. AsterNet runs onboard the robot at 20 Hz on an NVIDIA Jetson Orin$^\text{TM}$ Nano. Furthermore, our network is robust to changes in the structured light pattern and relative placement of the pattern emitter and IR camera, leading to simplified and cost-effective construction. We successfully evaluate and demonstrate our proposed depth navigation approach AsterNav using depth from AsterNet in many real-world experiments using only onboard sensing and computation, including dark matte obstacles and thin ropes (diameter 6.25mm), achieving an overall success rate of 95.5% with unknown object shapes, locations and materials. To the best of our knowledge, this is the first work on monocular, structured-light-based quadrotor navigation in absolute darkness.
comment: 8 pages, 10 figures, Published in IEEE Robotics And Automation Letters
SiDGen: Structure-informed Diffusion for Generative modeling of Ligands for Proteins
Designing ligands that are both chemically valid and structurally compatible with protein binding pockets is a key bottleneck in computational drug discovery. Existing approaches either ignore structural context or rely on expensive, memory-intensive encoding that limits throughput and scalability. We present SiDGen (Structure-informed Diffusion Generator), a protein-conditioned diffusion framework that integrates masked SMILES generation with lightweight folding-derived features for pocket awareness. To balance expressivity with efficiency, SiDGen supports two conditioning pathways: a streamlined mode that pools coarse structural signals from protein embeddings and a full mode that injects localized pairwise biases for stronger coupling. A coarse-stride folding mechanism with nearest-neighbor upsampling alleviates the quadratic memory costs of pair tensors, enabling training on realistic sequence lengths. Learning stability is maintained through in-loop chemical validity checks and an invalidity penalty, while large-scale training efficiency is restored \textit{via} selective compilation, dataloader tuning, and gradient accumulation. In automated benchmarks, SiDGen generates ligands with high validity, uniqueness, and novelty, while achieving competitive performance in docking-based evaluations and maintaining reasonable molecular properties. These results demonstrate that SiDGen can deliver scalable, pocket-aware molecular design, providing a practical route to conditional generation for high-throughput drug discovery.
comment: 10 pages, 2 figures
PFT: Phonon Fine-tuning for Machine Learned Interatomic Potentials
Many materials properties depend on higher-order derivatives of the potential energy surface, yet machine learned interatomic potentials (MLIPs) trained with a standard loss on energy, force, and stress errors can exhibit error in curvature, degrading the prediction of vibrational properties. We introduce phonon fine-tuning (PFT), which directly supervises second-order force constants of materials by matching MLIP energy Hessians to DFT-computed force constants from finite displacement phonon calculations. To scale to large supercells, PFT stochastically samples Hessian columns and computes the loss with a single Hessian-vector product. We also use a simple co-training scheme to incorporate upstream data to mitigate catastrophic forgetting. On the MDR Phonon benchmark, PFT improves Nequix MP by 55% on average across phonon thermodynamic properties and achieves state-of-the-art accuracy among models trained on Materials Project trajectories. PFT also generalizes to improve properties beyond second-derivatives, improving thermal conductivity predictions that rely on third-order derivatives of the potential energy.
How Out-of-Distribution Detection Learning Theory Enhances Transformer: Learnability and Reliability
Transformers excel in natural language processing and computer vision tasks. However, they still face challenges in generalizing to Out-of-Distribution (OOD) datasets, i.e. data whose distribution differs from that seen during training. OOD detection aims to distinguish outliers while preserving in-distribution (ID) data performance. This paper introduces the OOD detection Probably Approximately Correct (PAC) Theory for transformers, which establishes the conditions for data distribution and model configurations for the OOD detection learnability of transformers. It shows that outliers can be accurately represented and distinguished with sufficient data under conditions. The theoretical implications highlight the trade-off between theoretical principles and practical training paradigms. By examining this trade-off, we naturally derived the rationale for leveraging auxiliary outliers to enhance OOD detection. Our theory suggests that by penalizing the misclassification of outliers within the loss function and strategically generating soft synthetic outliers, one can robustly bolster the reliability of transformer networks. This approach yields a novel algorithm that ensures learnability and refines the decision boundaries between inliers and outliers. In practice, the algorithm consistently achieves state-of-the-art (SOTA) performance across various data formats.
Corrective Diffusion Language Models
While Diffusion Language Models (DLMs) are theoretically well-suited for iterative refinement due to their non-causal structure, they often fail to reliably revise incorrect tokens in practice. The key challenge lies in the model's inability to distinguish between correct and erroneous tokens in a visible sequence. Standard masked diffusion language model (MDLM) training is restricted to the objective of unmasking, undermining the effectiveness of refinement guided by confidence. Based on this observation, we study corrective behavior in DLMs, defined as the ability to assign lower confidence to incorrect tokens and iteratively refine them while preserving correct content. We show that this capability is not induced by conventional masked diffusion objectives and propose a post-training principle oriented by correction that explicitly supervises visible incorrect tokens, enabling discriminative confidence and targeted refinement. To evaluate corrective behavior, we introduce the Code Revision Benchmark, a controllable and executable benchmark for assessing error localization and in-place correction. Experiments on code revision tasks and parallel decoding scenarios demonstrate that models trained with our approach substantially outperform standard MDLMs, with gains that are most pronounced when parallel decoding introduces substantial uncertainty and iterative refinement becomes essential. Our code is publicly available at https://github.com/zhangshuibai/CDLM.
comment: 21 pages
Machine learning for option pricing: an empirical investigation of network architectures
We consider the supervised learning problem of learning the price of an option or the implied volatility given appropriate input data (model parameters) and corresponding output data (option prices or implied volatilities). The majority of articles in this literature considers a (plain) feed forward neural network architecture in order to connect the neurons used for learning the function mapping inputs to outputs. In this article, motivated by methods in image classification and recent advances in machine learning methods for PDEs, we investigate empirically whether and how the choice of network architecture affects the accuracy and training time of a machine learning algorithm. We find that the generalized highway network architecture achieves the best performance, when considering the mean squared error and the training time as criteria, within the considered parameter budgets for the Black-Scholes and Heston option pricing problems. Considering the transformed implied volatility problem, a simplified DGM variant achieves the lowest error among the tested architectures. We also carry out a capacity-normalised comparison for completeness, where all architectures are evaluated with an equal number of parameters. Finally, for the implied volatility problem, we additionally include experiments using real market data.
comment: 29 pages, 27 figures, 23 tables, revised version. Serena Della Corte has been added as co-author to reflect her contribution to the revised analysis and results. Several sections have been updated accordingly
FS-KAN: Permutation Equivariant Kolmogorov-Arnold Networks via Function Sharing
Permutation equivariant neural networks employing parameter-sharing schemes have emerged as powerful models for leveraging a wide range of data symmetries, significantly enhancing the generalization and computational efficiency of the resulting models. Recently, Kolmogorov-Arnold Networks (KANs) have demonstrated promise through their improved interpretability and expressivity compared to traditional architectures based on MLPs. While equivariant KANs have been explored in recent literature for a few specific data types, a principled framework for applying them to data with permutation symmetries in a general context remains absent. This paper introduces Function Sharing KAN (FS-KAN), a principled approach to constructing equivariant and invariant KA layers for arbitrary permutation symmetry groups, unifying and significantly extending previous work in this domain. We derive the basic construction of these FS-KAN layers by generalizing parameter-sharing schemes to the Kolmogorov-Arnold setup and provide a theoretical analysis demonstrating that FS-KANs have the same expressive power as networks that use standard parameter-sharing layers, allowing us to transfer well-known and important expressivity results from parameter-sharing networks to FS-KANs. Empirical evaluations on multiple data types and symmetry groups show that FS-KANs exhibit superior data efficiency compared to standard parameter-sharing layers, by a wide margin in certain cases, while preserving the interpretability and adaptability of KANs, making them an excellent architecture choice in low-data regimes.
Correcting for Position Bias in Learning to Rank: A Control Function Approach
Implicit feedback data, such as user clicks, is commonly used in learning-to-rank (LTR) systems because it is easy to collect and it often reflects user preferences. However, this data is prone to various biases, and training an LTR algorithm directly on biased data can result in suboptimal ranking performance. One of the most prominent and well-studied biases in implicit feedback data is position bias, which occurs because users are more likely to interact with higher-ranked items regardless of their true relevance. In this paper, we propose a novel control function-based method that accounts for position bias in a two-stage process. The first stage uses exogenous variation from the residuals of the ranking process to correct for position bias in the second stage click equation. Unlike previous position bias correction methods, our method does not require knowledge of the click or propensity model and allows for nonlinearity in the underlying ranking model. Moreover, our method is general and allows for debiasing any state-of-the-art ranking algorithm by plugging it into the second stage. We also introduce a new technique to debias validation clicks for hyperparameter tuning to select the optimal model in the absence of unbiased validation data. Experimental results show that our method outperforms state-of-the-art approaches in correcting for position bias.
Robotics 37
End-to-end example-based sim-to-real RL policy transfer based on neural stylisation with application to robotic cutting
Whereas reinforcement learning has been applied with success to a range of robotic control problems in complex, uncertain environments, reliance on extensive data - typically sourced from simulation environments - limits real-world deployment due to the domain gap between simulated and physical systems, coupled with limited real-world sample availability. We propose a novel method for sim-to-real transfer of reinforcement learning policies, based on a reinterpretation of neural style transfer from image processing to synthesise novel training data from unpaired unlabelled real world datasets. We employ a variational autoencoder to jointly learn self-supervised feature representations for style transfer and generate weakly paired source-target trajectories to improve physical realism of synthesised trajectories. We demonstrate the application of our approach based on the case study of robot cutting of unknown materials. Compared to baseline methods, including our previous work, CycleGAN, and conditional variational autoencoder-based time series translation, our approach achieves improved task completion time and behavioural stability with minimal real-world data. Our framework demonstrates robustness to geometric and material variation, and highlights the feasibility of policy adaptation in challenging contact-rich tasks where real-world reward information is unavailable.
comment: 14 pages, 9 figures. Submitted to Nature Scientific Reports
MemCtrl: Using MLLMs as Active Memory Controllers on Embodied Agents
Foundation models rely on in-context learning for personalized decision making. The limited size of this context window necessitates memory compression and retrieval systems like RAG. These systems however often treat memory as large offline storage spaces, which is unfavorable for embodied agents that are expected to operate under strict memory and compute constraints, online. In this work, we propose MemCtrl, a novel framework that uses Multimodal Large Language Models (MLLMs) for pruning memory online. MemCtrl augments MLLMs with a trainable memory head μthat acts as a gate to determine which observations or reflections to retain, update, or discard during exploration. We evaluate with training two types of μ, 1) via an offline expert, and 2) via online RL, and observe significant improvement in overall embodied task completion ability on μ-augmented MLLMs. In particular, on augmenting two low performing MLLMs with MemCtrl on multiple subsets of the EmbodiedBench benchmark, we observe that μ-augmented MLLMs show an improvement of around 16% on average, with over 20% on specific instruction subsets. Finally, we present a qualitative analysis on the memory fragments collected by μ, noting the superior performance of μaugmented MLLMs on long and complex instruction types.
A Methodology for Designing Knowledge-Driven Missions for Robots
This paper presents a comprehensive methodology for implementing knowledge graphs in ROS 2 systems, aiming to enhance the efficiency and intelligence of autonomous robotic missions. The methodology encompasses several key steps: defining initial and target conditions, structuring tasks and subtasks, planning their sequence, representing task-related data in a knowledge graph, and designing the mission using a high-level language. Each step builds on the previous one to ensure a cohesive process from initial setup to final execution. A practical implementation within the Aerostack2 framework is demonstrated through a simulated search and rescue mission in a Gazebo environment, where drones autonomously locate a target. This implementation highlights the effectiveness of the methodology in improving decision-making and mission performance by leveraging knowledge graphs.
Learning From a Steady Hand: A Weakly Supervised Agent for Robot Assistance under Microscopy
This paper rethinks steady-hand robotic manipulation by using a weakly supervised framework that fuses calibration-aware perception with admittance control. Unlike conventional automation that relies on labor-intensive 2D labeling, our framework leverages reusable warm-up trajectories to extract implicit spatial information, thereby achieving calibration-aware, depth-resolved perception without the need for external fiducials or manual depth annotation. By explicitly characterizing residuals from observation and calibration models, the system establishes a task-space error budget from recorded warm-ups. The uncertainty budget yields a lateral closed-loop accuracy of approx. 49 micrometers at 95% confidence (worst-case testing subset) and a depth accuracy of <= 291 micrometers at 95% confidence bound during large in-plane moves. In a within-subject user study (N=8), the learned agent reduces overall NASA-TLX workload by 77.1% relative to the simple steady-hand assistance baseline. These results demonstrate that the weakly supervised agent improves the reliability of microscope-guided biomedical micromanipulation without introducing complex setup requirements, offering a practical framework for microscope-guided intervention.
Li-ViP3D++: Query-Gated Deformable Camera-LiDAR Fusion for End-to-End Perception and Trajectory Prediction
End-to-end perception and trajectory prediction from raw sensor data is one of the key capabilities for autonomous driving. Modular pipelines restrict information flow and can amplify upstream errors. Recent query-based, fully differentiable perception-and-prediction (PnP) models mitigate these issues, yet the complementarity of cameras and LiDAR in the query-space has not been sufficiently explored. Models often rely on fusion schemes that introduce heuristic alignment and discrete selection steps which prevent full utilization of available information and can introduce unwanted bias. We propose Li-ViP3D++, a query-based multimodal PnP framework that introduces Query-Gated Deformable Fusion (QGDF) to integrate multi-view RGB and LiDAR in query space. QGDF (i) aggregates image evidence via masked attention across cameras and feature levels, (ii) extracts LiDAR context through fully differentiable BEV sampling with learned per-query offsets, and (iii) applies query-conditioned gating to adaptively weight visual and geometric cues per agent. The resulting architecture jointly optimizes detection, tracking, and multi-hypothesis trajectory forecasting in a single end-to-end model. On nuScenes, Li-ViP3D++ improves end-to-end behavior and detection quality, achieving higher EPA (0.335) and mAP (0.502) while substantially reducing false positives (FP ratio 0.147), and it is faster than the prior Li-ViP3D variant (139.82 ms vs. 145.91 ms). These results indicate that query-space, fully differentiable camera-LiDAR fusion can increase robustness of end-to-end PnP without sacrificing deployability.
comment: This work has been submitted to the IEEE for possible publication
One Step Is Enough: Dispersive MeanFlow Policy Optimization
Real-time robotic control demands fast action generation. However, existing generative policies based on diffusion and flow matching require multi-step sampling, fundamentally limiting deployment in time-critical scenarios. We propose Dispersive MeanFlow Policy Optimization (DMPO), a unified framework that enables true one-step generation through three key components: MeanFlow for mathematically-derived single-step inference without knowledge distillation, dispersive regularization to prevent representation collapse, and reinforcement learning (RL) fine-tuning to surpass expert demonstrations. Experiments across RoboMimic manipulation and OpenAI Gym locomotion benchmarks demonstrate competitive or superior performance compared to multi-step baselines. With our lightweight model architecture and the three key algorithmic components working in synergy, DMPO exceeds real-time control requirements (>120Hz) with 5-20x inference speedup, reaching hundreds of Hertz on high-performance GPUs. Physical deployment on a Franka-Emika-Panda robot validates real-world applicability.
comment: Code and project page: https://guowei-zou.github.io/dmpo-page/
Tendon-based modelling, estimation and control for a simulated high-DoF anthropomorphic hand model
Tendon-driven anthropomorphic robotic hands often lack direct joint angle sensing, as the integration of joint encoders can compromise mechanical compactness and dexterity. This paper presents a computational method for estimating joint positions from measured tendon displacements and tensions. An efficient kinematic modeling framework for anthropomorphic hands is first introduced based on the Denavit-Hartenberg convention. Using a simplified tendon model, a system of nonlinear equations relating tendon states to joint positions is derived and solved via a nonlinear optimization approach. The estimated joint angles are then employed for closed-loop control through a Jacobian-based proportional-integral (PI) controller augmented with a feedforward term, enabling gesture tracking without direct joint sensing. The effectiveness and limitations of the proposed estimation and control framework are demonstrated in the MuJoCo simulation environment using the Anatomically Correct Biomechatronic Hand, featuring five degrees of freedom for each long finger and six degrees of freedom for the thumb.
GPO: Growing Policy Optimization for Legged Robot Locomotion and Whole-Body Control
Training reinforcement learning (RL) policies for legged robots remains challenging due to high-dimensional continuous actions, hardware constraints, and limited exploration. Existing methods for locomotion and whole-body control work well for position-based control with environment-specific heuristics (e.g., reward shaping, curriculum design, and manual initialization), but are less effective for torque-based control, where sufficiently exploring the action space and obtaining informative gradient signals for training is significantly more difficult. We introduce Growing Policy Optimization (GPO), a training framework that applies a time-varying action transformation to restrict the effective action space in the early stage, thereby encouraging more effective data collection and policy learning, and then progressively expands it to enhance exploration and achieve higher expected return. We prove that this transformation preserves the PPO update rule and introduces only bounded, vanishing gradient distortion, thereby ensuring stable training. We evaluate GPO on both quadruped and hexapod robots, including zero-shot deployment of simulation-trained policies on hardware. Policies trained with GPO consistently achieve better performance. These results suggest that GPO provides a general, environment-agnostic optimization framework for learning legged locomotion.
MeCo: Enhancing LLM-Empowered Multi-Robot Collaboration via Similar Task Memoization
Multi-robot systems have been widely deployed in real-world applications, providing significant improvements in efficiency and reductions in labor costs. However, most existing multi-robot collaboration methods rely on extensive task-specific training, which limits their adaptability to new or diverse scenarios. Recent research leverages the language understanding and reasoning capabilities of large language models (LLMs) to enable more flexible collaboration without specialized training. Yet, current LLM-empowered approaches remain inefficient: when confronted with identical or similar tasks, they must replan from scratch because they omit task-level similarities. To address this limitation, we propose MeCo, a similarity-aware multi-robot collaboration framework that applies the principle of ``cache and reuse'' (a.k.a., memoization) to reduce redundant computation. Unlike simple task repetition, identifying and reusing solutions for similar but not identical tasks is far more challenging, particularly in multi-robot settings. To this end, MeCo introduces a new similarity testing method that retrieves previously solved tasks with high relevance, enabling effective plan reuse without re-invoking LLMs. Furthermore, we present MeCoBench, the first benchmark designed to evaluate performance on similar-task collaboration scenarios. Experimental results show that MeCo substantially reduces planning costs and improves success rates compared with state-of-the-art approaches.
Vibro-Sense: Robust Vibration-based Impulse Response Localization and Trajectory Tracking for Robotic Hands
Rich contact perception is crucial for robotic manipulation, yet traditional tactile skins remain expensive and complex to integrate. This paper presents a scalable alternative: high-accuracy whole-body touch localization via vibro-acoustic sensing. By equipping a robotic hand with seven low-cost piezoelectric microphones and leveraging an Audio Spectrogram Transformer, we decode the vibrational signatures generated during physical interaction. Extensive evaluation across stationary and dynamic tasks reveals a localization error of under 5 mm in static conditions. Furthermore, our analysis highlights the distinct influence of material properties: stiff materials (e.g., metal) excel in impulse response localization due to sharp, high-bandwidth responses, whereas textured materials (e.g., wood) provide superior friction-based features for trajectory tracking. The system demonstrates robustness to the robot's own motion, maintaining effective tracking even during active operation. Our primary contribution is demonstrating that complex physical contact dynamics can be effectively decoded from simple vibrational signals, offering a viable pathway to widespread, affordable contact perception in robotics. To accelerate research, we provide our full datasets, models, and experimental setups as open-source resources.
comment: Under Review: Springer Autonomous Robots Journal
A Practical Framework of Key Performance Indicators for Multi-Robot Lunar and Planetary Field Tests
Robotic prospecting for critical resources on the Moon, such as ilmenite, rare earth elements, and water ice, requires robust exploration methods given the diverse terrain and harsh environmental conditions. Although numerous analog field trials address these goals, comparing their results remains challenging because of differences in robot platforms and experimental setups. These missions typically assess performance using selected, scenario-specific engineering metrics that fail to establish a clear link between field performance and science-driven objectives. In this paper, we address this gap by deriving a structured framework of KPI from three realistic multi-robot lunar scenarios reflecting scientific objectives and operational constraints. Our framework emphasizes scenario-dependent priorities in efficiency, robustness, and precision, and is explicitly designed for practical applicability in field deployments. We validated the framework in a multi-robot field test and found it practical and easy to apply for efficiency- and robustness-related KPI, whereas precision-oriented KPI require reliable ground-truth data that is not always feasible to obtain in outdoor analog environments. Overall, we propose this framework as a common evaluation standard enabling consistent, goal-oriented comparison of multi-robot field trials and supporting systematic development of robotic systems for future planetary exploration.
STORM: Slot-based Task-aware Object-centric Representation for robotic Manipulation
Visual foundation models provide strong perceptual features for robotics, but their dense representations lack explicit object-level structure, limiting robustness and contractility in manipulation tasks. We propose STORM (Slot-based Task-aware Object-centric Representation for robotic Manipulation), a lightweight object-centric adaptation module that augments frozen visual foundation models with a small set of semantic-aware slots for robotic manipulation. Rather than retraining large backbones, STORM employs a multi-phase training strategy: object-centric slots are first stabilized through visual--semantic pretraining using language embeddings, then jointly adapted with a downstream manipulation policy. This staged learning prevents degenerate slot formation and preserves semantic consistency while aligning perception with task objectives. Experiments on object discovery benchmarks and simulated manipulation tasks show that STORM improves generalization to visual distractors, and control performance compared to directly using frozen foundation model features or training object-centric representations end-to-end. Our results highlight multi-phase adaptation as an efficient mechanism for transforming generic foundation model features into task-aware object-centric representations for robotic control.
RF-MatID: Dataset and Benchmark for Radio Frequency Material Identification ICLR 2026
Accurate material identification plays a crucial role in embodied AI systems, enabling a wide range of applications. However, current vision-based solutions are limited by the inherent constraints of optical sensors, while radio-frequency (RF) approaches, which can reveal intrinsic material properties, have received growing attention. Despite this progress, RF-based material identification remains hindered by the lack of large-scale public datasets and the limited benchmarking of learning-based approaches. In this work, we present RF-MatID, the first open-source, large-scale, wide-band, and geometry-diverse RF dataset for fine-grained material identification. RF-MatID includes 16 fine-grained categories grouped into 5 superclasses, spanning a broad frequency range from 4 to 43.5 GHz, and comprises 142k samples in both frequency- and time-domain representations. The dataset systematically incorporates controlled geometry perturbations, including variations in incidence angle and stand-off distance. We further establish a multi-setting, multi-protocol benchmark by evaluating state-of-the-art deep learning models, assessing both in-distribution performance and out-of-distribution robustness under cross-angle and cross-distance shifts. The 5 frequency-allocation protocols enable systematic frequency- and region-level analysis, thereby facilitating real-world deployment. RF-MatID aims to enable reproducible research, accelerate algorithmic advancement, foster cross-domain robustness, and support the development of real-world application in RF-based material identification.
comment: Accepted by ICLR 2026
Demonstration-Free Robotic Control via LLM Agents
Robotic manipulation has increasingly adopted vision-language-action (VLA) models, which achieve strong performance but typically require task-specific demonstrations and fine-tuning, and often generalize poorly under domain shift. We investigate whether general-purpose large language model (LLM) agent frameworks, originally developed for software engineering, can serve as an alternative control paradigm for embodied manipulation. We introduce FAEA (Frontier Agent as Embodied Agent), which applies an LLM agent framework directly to embodied manipulation without modification. Using the same iterative reasoning that enables software agents to debug code, FAEA enables embodied agents to reason through manipulation strategies. We evaluate an unmodified frontier agent, Claude Agent SDK, across the LIBERO, ManiSkill3, and MetaWorld benchmarks. With privileged environment state access, FAEA achieves success rates of 84.9%, 85.7%, and 96%, respectively. This level of task success approaches that of VLA models trained with less than 100 demonstrations per task, without requiring demonstrations or fine-tuning. With one round of human feedback as an optional optimization, performance increases to 88.2% on LIBERO. This demonstration-free capability has immediate practical value: FAEA can autonomously explore novel scenarios in simulation and generate successful trajectories for training data augmentation in embodied learning. Our results indicate that general-purpose agents are sufficient for a class of manipulation tasks dominated by deliberative, task-level planning. This opens a path for robotics systems to leverage actively maintained agent infrastructure and benefit directly from ongoing advances in frontier models. Code is available at https://github.com/robiemusketeer/faea-sim
Tactile-Force Alignment in Vision-Language-Action Models for Force-aware Manipulation
Vision-Language-Action (VLA) models have recently emerged as powerful generalists for robotic manipulation. However, due to their predominant reliance on visual modalities, they fundamentally lack the physical intuition required for contact-rich tasks that require precise force regulation and physical reasoning. Existing attempts to incorporate vision-based tactile sensing into VLA models typically treat tactile inputs as auxiliary visual textures, thereby overlooking the underlying correlation between surface deformation and interaction dynamics. To bridge this gap, we propose a paradigm shift from tactile-vision alignment to tactile-force alignment. Here, we introduce TaF-VLA, a framework that explicitly grounds high-dimensional tactile observations in physical interaction forces. To facilitate this, we develop an automated tactile-force data acquisition device and curate the TaF-Dataset, comprising over 10 million synchronized tactile observations, 6-axis force/torque, and matrix force map. To align sequential tactile observations with interaction forces, the central component of our approach is the Tactile-Force Adapter (TaF-Adapter), a tactile sensor encoder that extracts discretized latent information for encoding tactile observations. This mechanism ensures that the learned representations capture history-dependent, noise-insensitive physical dynamics rather than static visual textures. Finally, we integrate this force-aligned encoder into a VLA backbone. Extensive real-world experiments demonstrate that TaF-VLA policy significantly outperforms state-of-the-art tactile-vision-aligned and vision-only baselines on contact-rich tasks, verifying its ability to achieve robust, force-aware manipulation through cross-modal physical reasoning.
comment: 17pages,9fig
Shallow-π: Knowledge Distillation for Flow-based VLAs
The growing demand for real-time robotic deployment necessitates fast and on-device inference for vision-language-action (VLA) models. Within the VLA literature, efficiency has been extensively studied at the token level, such as visual token pruning. In contrast, systematic transformer layer reduction has received limited attention and, to the best of our knowledge, has not been explored for flow-based VLA models under knowledge distillation. In this work, we propose Shallow-pi, a principled knowledge distillation framework that aggressively reduces the transformer depth of both the VLM backbone and the flow-based action head, compressing the model from 18 to 6 layers. Shallow-pi achieves over two times faster inference with less than one percent absolute drop in success rate on standard manipulation benchmarks, establishing state-of-the-art performance among reduced VLA models. Crucially, we validate our approach through industrial-scale real-world experiments on Jetson Orin and Jetson Thor across multiple robot platforms, including humanoid systems, in complex and dynamic manipulation scenarios.
TouchGuide: Inference-Time Steering of Visuomotor Policies via Touch Guidance
Fine-grained and contact-rich manipulation remain challenging for robots, largely due to the underutilization of tactile feedback. To address this, we introduce TouchGuide, a novel cross-policy visuo-tactile fusion paradigm that fuses modalities within a low-dimensional action space. Specifically, TouchGuide operates in two stages to guide a pre-trained diffusion or flow-matching visuomotor policy at inference time. First, the policy produces a coarse, visually-plausible action using only visual inputs during early sampling. Second, a task-specific Contact Physical Model (CPM) provides tactile guidance to steer and refine the action, ensuring it aligns with realistic physical contact conditions. Trained through contrastive learning on limited expert demonstrations, the CPM provides a tactile-informed feasibility score to steer the sampling process toward refined actions that satisfy physical contact constraints. Furthermore, to facilitate TouchGuide training with high-quality and cost-effective data, we introduce TacUMI, a data collection system. TacUMI achieves a favorable trade-off between precision and affordability; by leveraging rigid fingertips, it obtains direct tactile feedback, thereby enabling the collection of reliable tactile data. Extensive experiments on five challenging contact-rich tasks, such as shoe lacing and chip handover, show that TouchGuide consistently and significantly outperforms state-of-the-art visuo-tactile policies.
TRACER: Texture-Robust Affordance Chain-of-Thought for Deformable-Object Refinement
The central challenge in robotic manipulation of deformable objects lies in aligning high-level semantic instructions with physical interaction points under complex appearance and texture variations. Due to near-infinite degrees of freedom, complex dynamics, and heterogeneous patterns, existing vision-based affordance prediction methods often suffer from boundary overflow and fragmented functional regions. To address these issues, we propose TRACER, a Texture-Robust Affordance Chain-of-thought with dEformable-object Refinement framework, which establishes a cross-hierarchical mapping from hierarchical semantic reasoning to appearance-robust and physically consistent functional region refinement. Specifically, a Tree-structured Affordance Chain-of-Thought (TA-CoT) is formulated to decompose high-level task intentions into hierarchical sub-task semantics, providing consistent guidance across various execution stages. To ensure spatial integrity, a Spatial-Constrained Boundary Refinement (SCBR) mechanism is introduced to suppress prediction spillover, guiding the perceptual response to converge toward authentic interaction manifolds. Furthermore, an Interactive Convergence Refinement Flow (ICRF) is developed to aggregate discrete pixels corrupted by appearance noise, significantly enhancing the spatial continuity and physical plausibility of the identified functional regions. Extensive experiments conducted on the Fine-AGDDO15 dataset and a real-world robotic platform demonstrate that TRACER significantly improves affordance grounding precision across diverse textures and patterns inherent to deformable objects. More importantly, it enhances the success rate of long-horizon tasks, effectively bridging the gap between high-level semantic reasoning and low-level physical execution. The source code and dataset will be made publicly available at https://github.com/Dikay1/TRACER.
comment: The source code and dataset will be made publicly available at https://github.com/Dikay1/TRACER
A Taylor Series Approach to Correct Localization Errors in Robotic Field Mapping using Gaussian Processes
Gaussian Processes (GPs) are powerful non-parametric Bayesian models for regression of scalar fields, formulated under the assumption that measurement locations are perfectly known and the corresponding field measurements have Gaussian noise. However, many real-world scalar field mapping applications rely on sensor-equipped mobile robots to collect field measurements, where imperfect localization introduces state uncertainty. Such discrepancies between the estimated and true measurement locations degrade GP mean and covariance estimates. To address this challenge, we propose a method for updating the GP models when improved estimates become available. Leveraging the differentiability of the kernel function, a second-order correction algorithm is developed using the precomputed Jacobians and Hessians of the GP mean and covariance functions for real-time refinement based on measurement location discrepancy data. Simulation results demonstrate improved prediction accuracy and computational efficiency compared to full model retraining.
AI-Augmented Density-Driven Optimal Control (D2OC) for Decentralized Environmental Mapping
This paper presents an AI-augmented decentralized framework for multi-agent (multi-robot) environmental mapping under limited sensing and communication. While conventional coverage formulations achieve effective spatial allocation when an accurate reference map is available, their performance deteriorates under uncertain or biased priors. The proposed method introduces an adaptive and self-correcting mechanism that enables agents to iteratively refine local density estimates within an optimal transport-based framework, ensuring theoretical consistency and scalability. A dual multilayer perceptron (MLP) module enhances adaptivity by inferring local mean-variance statistics and regulating virtual uncertainty for long-unvisited regions, mitigating stagnation around local minima. Theoretical analysis rigorously proves convergence under the Wasserstein metric, while simulation results demonstrate that the proposed AI-augmented Density-Driven Optimal Control consistently achieves robust and precise alignment with the ground-truth density, yielding substantially higher-fidelity reconstruction of complex multi-modal spatial distributions compared with conventional decentralized baselines.
Multi-Robot Decentralized Collaborative SLAM in Planetary Analogue Environments: Dataset, Challenges, and Lessons Learned
Decentralized collaborative simultaneous localization and mapping (C-SLAM) is essential to enable multirobot missions in unknown environments without relying on preexisting localization and communication infrastructure. This technology is anticipated to play a key role in the exploration of the Moon, Mars, and other planets. In this article, we share insights and lessons learned from C-SLAM experiments involving three robots operating on a Mars analogue terrain and communicating over an ad hoc network. We examine the impact of limited and intermittent communication on C-SLAM performance, as well as the unique localization challenges posed by planetary-like environments. Additionally, we introduce a novel dataset collected during our experiments, which includes real-time peer-to-peer inter-robot throughput and latency measurements. This dataset aims to support future research on communication-constrained, decentralized multirobot operations.
Track-centric Iterative Learning for Global Trajectory Optimization in Autonomous Racing
This paper presents a global trajectory optimization framework for minimizing lap time in autonomous racing under uncertain vehicle dynamics. Optimizing the trajectory over the full racing horizon is computationally expensive, and tracking such a trajectory in the real world hardly assures global optimality due to uncertain dynamics. Yet, existing work mostly focuses on dynamics learning at the tracking level, without updating the trajectory itself to account for the learned dynamics. To address these challenges, we propose a track-centric approach that directly learns and optimizes the full-horizon trajectory. We first represent trajectories through a track-agnostic parametric space in light of the wavelet transform. This space is then efficiently explored using Bayesian optimization, where the lap time of each candidate is evaluated by running simulations with the learned dynamics. This optimization is embedded in an iterative learning framework, where the optimized trajectory is deployed to collect real-world data for updating the dynamics, progressively refining the trajectory over the iterations. The effectiveness of the proposed framework is validated through simulations and real-world experiments, demonstrating lap time improvement of up to 20.7% over a nominal baseline and consistently outperforming state-of-the-art methods.
Meta-ROS: A Next-Generation Middleware Architecture for Adaptive and Scalable Robotic Systems
The field of robotics faces significant challenges related to the complexity and interoperability of existing middleware frameworks, like ROS2, which can be difficult for new developers to adopt. To address these issues, we propose Meta-ROS, a novel middleware solution designed to streamline robotics development by simplifying integration, enhancing performance, and ensuring cross-platform compatibility. Meta-ROS leverages modern communication protocols, such as Zenoh and ZeroMQ, to enable efficient and low-latency communication across diverse hardware platforms, while also supporting various data types like audio, images, and video. We evaluated Meta-ROS's performance through comprehensive testing, comparing it with existing middleware frameworks like ROS1 and ROS2. The results demonstrated that Meta-ROS outperforms ROS2, achieving up to 30% higher throughput, significantly reducing message latency, and optimizing resource usage. Additionally, its robust hardware support and developer-centric design facilitate seamless integration and ease of use, positioning Meta-ROS as an ideal solution for modern, real-time robotics AI applications.
comment: Checkout the Python Library - https://pypi.org/project/metaros/ To be Submitted in ACM Transactions on Autonomous and Adaptive Systems (TAAS) Journal
Quick Heuristic Validation of Edges in Dynamic Roadmap Graphs
In this paper we tackle the problem of adjusting roadmap graphs for robot motion planning to non-static environments. We introduce the "Red-Green-Gray" paradigm, a modification of the SPITE method, capable of classifying the validity status of nodes and edges using cheap heuristic checks, allowing fast semi-lazy roadmap updates. Given a roadmap, we use simple computational geometry methods to approximate the swept volumes of robots and perform lazy collision checks, and label a subset of the edges as invalid (red), valid (green), or unknown (gray). We present preliminary experimental results comparing our method to the well-established technique of Leven and Hutchinson, and showing increased accuracy as well as the ability to correctly label edges as invalid while maintaining comparable update runtimes.
PovNet+: A Deep Learning Architecture for Socially Assistive Robots to Learn and Assist with Multiple Activities of Daily Living
A significant barrier to the long-term deployment of autonomous socially assistive robots is their inability to both perceive and assist with multiple activities of daily living (ADLs). In this paper, we present the first multimodal deep learning architecture, POVNet+, for multi-activity recognition for socially assistive robots to proactively initiate assistive behaviors. Our novel architecture introduces the use of both ADL and motion embedding spaces to uniquely distinguish between a known ADL being performed, a new unseen ADL, or a known ADL being performed atypically in order to assist people in real scenarios. Furthermore, we apply a novel user state estimation method to the motion embedding space to recognize new ADLs while monitoring user performance. This ADL perception information is used to proactively initiate robot assistive interactions. Comparison experiments with state-of-the-art human activity recognition methods show our POVNet+ method has higher ADL classification accuracy. Human-robot interaction experiments in a cluttered living environment with multiple users and the socially assistive robot Leia using POVNet+ demonstrate the ability of our multi-modal ADL architecture in successfully identifying different seen and unseen ADLs, and ADLs being performed atypically, while initiating appropriate assistive human-robot interactions.
comment: Submitted to Advanced Robotics (Taylor & Francis)
Discrete Variational Autoencoding via Policy Search
Discrete latent bottlenecks in variational autoencoders (VAEs) offer high bit efficiency and can be modeled with autoregressive discrete distributions, enabling parameter-efficient multimodal search with transformers. However, discrete random variables do not allow for exact differentiable parameterization; therefore, discrete VAEs typically rely on approximations, such as Gumbel-Softmax reparameterization or straight-through gradient estimates, or employ high-variance gradient-free methods such as REINFORCE that have had limited success on high-dimensional tasks such as image reconstruction. Inspired by popular techniques in policy search, we propose a training framework for discrete VAEs that leverages the natural gradient of a non-parametric encoder to update the parametric encoder without requiring reparameterization. Our method, combined with automatic step size adaptation and a transformer-based encoder, scales to challenging datasets such as ImageNet and outperforms both approximate reparameterization methods and quantization-based discrete autoencoders in reconstructing high-dimensional data from compact latent spaces.
FLOL: Fast Baselines for Real-World Low-Light Enhancement
Low-Light Image Enhancement (LLIE) is a key task in computational photography and imaging. The problem of enhancing images captured during night or in dark environments has been well-studied in the computer vision literature. However, current deep learning-based solutions struggle with efficiency and robustness for real-world scenarios (e.g., scenes with noise, saturated pixels). We propose a lightweight neural network that combines image processing in the frequency and spatial domains. Our baseline method, FLOL, is one of the fastest models for this task, achieving results comparable to the state-of-the-art on popular real-world benchmarks such as LOLv2, LSRW, MIT-5K and UHD-LL. Moreover, we are able to process 1080p images in real-time under 12ms. Code and models at https://github.com/cidautai/FLOL
comment: Journal Preprint
Fusion of Visual-Inertial Odometry with LiDAR Relative Localization for Cooperative Guidance of a Micro-Scale Aerial Vehicle
A novel relative localization approach for guidance of a micro-scale Unmanned Aerial Vehicle (UAV) by a well-equipped aerial robot fusing Visual-Inertial Odometry (VIO) with Light Detection and Ranging (LiDAR) is proposed in this paper. LiDAR-based localization is accurate and robust to challenging environmental conditions, but 3D LiDARs are relatively heavy and require large UAV platforms, in contrast to lightweight cameras. However, visual-based self-localization methods exhibit lower accuracy and can suffer from significant drift with respect to the global reference frame. To benefit from both sensory modalities, we focus on cooperative navigation in a heterogeneous team of a primary LiDAR-equipped UAV and a secondary micro-scale camera-equipped UAV. We propose a novel cooperative approach combining LiDAR relative localization data with VIO output on board the primary UAV to obtain an accurate pose of the secondary UAV. The pose estimate is used to precisely and reliably guide the secondary UAV along trajectories defined in the primary UAV reference frame. The experimental evaluation has shown the superior accuracy of our method to the raw VIO output, reaching the average 3D Absolute Trajectory Error (ATE) of 0.28 m, and demonstrated its capability to guide the secondary UAV along desired trajectories while mitigating VIO drift. Thus, such a heterogeneous system can explore large areas with LiDAR precision, as well as visit locations inaccessible to the large LiDAR-carrying UAV platforms, as was showcased in a real-world cooperative mapping scenario.
comment: Preprint version. This work has been submitted to the IEEE for possible publication
Progressive-Resolution Policy Distillation: Leveraging Coarse-Resolution Simulations for Time-Efficient Fine-Resolution Policy Learning
In earthwork and construction, excavators often encounter large rocks mixed with various soil conditions, requiring skilled operators. This paper presents a framework for achieving autonomous excavation using reinforcement learning (RL) through a rock excavation simulator. In the simulation, resolution can be defined by the particle size/number in the whole soil space. Fine-resolution simulations closely mimic real-world behavior but demand significant calculation time and challenging sample collection, while coarse-resolution simulations enable faster sample collection but deviate from real-world behavior. To combine the advantages of both resolutions, we explore using policies developed in coarse-resolution simulations for pre-training in fine-resolution simulations. To this end, we propose a novel policy learning framework called Progressive-Resolution Policy Distillation (PRPD), which progressively transfers policies through some middle-resolution simulations with conservative policy transfer to avoid domain gaps that could lead to policy transfer failure. Validation in a rock excavation simulator and nine real-world rock environments demonstrated that PRPD reduced sampling time to less than 1/7 while maintaining task success rates comparable to those achieved through policy learning in a fine-resolution simulation. Additional videos and supplementary results are available on our project page: https://yuki-kadokawa.github.io/prpd/
comment: accepted for IEEE Transactions on Automation Science and Engineering (T-ASE)
Listen, Look, Drive: Coupling Audio Instructions for User-aware VLA-based Autonomous Driving IV
Vision Language Action (VLA) models promise an open-vocabulary interface that can translate perceptual ambiguity into semantically grounded driving decisions, yet they still treat language as a static prior fixed at inference time. As a result, the model must infer continuously shifting objectives from pixels alone, yielding delayed or overly conservative maneuvers. We argue that effective VLAs for autonomous driving need an online channel in which users can influence driving with specific intentions. To this end, we present EchoVLA, a user-aware VLA that couples camera streams with in situ audio instructions. We augment the nuScenes dataset with temporally aligned, intent-specific speech commands generated by converting ego-motion descriptions into synthetic audios. Further, we compose emotional speech-trajectory pairs into a multimodal Chain-of-Thought (CoT) for fine-tuning a Multimodal Large Model (MLM) based on Qwen2.5-Omni. Specifically, we synthesize the audio-augmented dataset with different emotion types paired with corresponding driving behaviors, leveraging the emotional cues embedded in tone, pitch, and speech tempo to reflect varying user states, such as urgent or hesitant intentions, thus enabling our EchoVLA to interpret not only the semantic content but also the emotional context of audio commands for more nuanced and emotionally adaptive driving behavior. In open-loop benchmarks, our approach reduces the average L2 error by $59.4\%$ and the collision rate by $74.4\%$ compared to the baseline of vision-only perception. More experiments on nuScenes dataset validate that EchoVLA not only steers the trajectory through audio instructions, but also modulates driving behavior in response to the emotions detected in the user's speech.
comment: Accepted by IV
Legged Robot State Estimation Using Invariant Neural-Augmented Kalman Filter with a Neural Compensator IROS 2025
This paper presents an algorithm to improve state estimation for legged robots. Among existing model-based state estimation methods for legged robots, the contact-aided invariant extended Kalman filter defines the state on a Lie group to preserve invariance, thereby significantly accelerating convergence. It achieves more accurate state estimation by leveraging contact information as measurements for the update step. However, when the model exhibits strong nonlinearity, the estimation accuracy decreases. Such nonlinearities can cause initial errors to accumulate and lead to large drifts over time. To address this issue, we propose compensating for errors by augmenting the Kalman filter with an artificial neural network serving as a nonlinear function approximator. Furthermore, we design this neural network to respect the Lie group structure to ensure invariance, resulting in our proposed Invariant Neural-Augmented Kalman Filter (InNKF). The proposed algorithm offers improved state estimation performance by combining the strengths of model-based and learning-based approaches. Project webpage: https://seokju-lee.github.io/innkf_webpage
comment: 8 pages, 10 figures, Accepted to IROS 2025
SG-CADVLM: A Context-Aware Decoding Powered Vision Language Model for Safety-Critical Scenario Generation
Autonomous vehicle safety validation requires testing on safety-critical scenarios, but these events are rare in real-world driving and costly to test due to collision risks. Crash reports provide authentic specifications of safety-critical events, offering a vital alternative to scarce real-world collision trajectory data. This makes them valuable sources for generating realistic high-risk scenarios through simulation. Existing approaches face significant limitations because data-driven methods lack diversity due to their reliance on existing latent distributions, whereas adversarial methods often produce unrealistic scenarios lacking physical fidelity. Large Language Model (LLM) and Vision Language Model (VLM)-based methods show significant promise. However, they suffer from context suppression issues where internal parametric knowledge overrides crash specifications, producing scenarios that deviate from actual accident characteristics. This paper presents SG-CADVLM (A Context-Aware Decoding Powered Vision Language Model for Safety-Critical Scenario Generation), a framework that integrates Context-Aware Decoding with multi-modal input processing to generate safety-critical scenarios from crash reports and road network diagrams. The framework mitigates VLM hallucination issues while enabling the simultaneous generation of road geometry and vehicle trajectories. The experimental results demonstrate that SG-CADVLM generates critical risk scenarios at a rate of 84.4% compared to 12.5% for the baseline methods, representing an improvement of 469%, while producing executable simulations for autonomous vehicle testing.
OmniEVA: Embodied Versatile Planner via Task-Adaptive 3D-Grounded and Embodiment-aware Reasoning ICLR 2026
Recent advances in multimodal large language models (MLLMs) have opened new opportunities for embodied intelligence, enabling multimodal understanding, reasoning, and interaction, as well as continuous spatial decision-making. Nevertheless, current MLLM-based embodied systems face two critical limitations. First, Geometric Adaptability Gap: models trained solely on 2D inputs or with hard-coded 3D geometry injection suffer from either insufficient spatial information or restricted 2D generalization, leading to poor adaptability across tasks with diverse spatial demands. Second, Embodiment Constraint Gap: prior work often neglects the physical constraints and capacities of real robots, resulting in task plans that are theoretically valid but practically infeasible. To address these gaps, we introduce OmniEVA -- an embodied versatile planner that enables advanced embodied reasoning and task planning through two pivotal innovations: (1) a Task-Adaptive 3D Grounding mechanism, which introduces a gated router to perform explicit selective regulation of 3D fusion based on contextual requirements, enabling context-aware 3D grounding for diverse embodied tasks. (2) an Embodiment-Aware Reasoning framework that jointly incorporates task goals and embodiment constraints into the reasoning loop, resulting in planning decisions that are both goal-directed and executable. Extensive experimental results demonstrate that OmniEVA not only achieves state-of-the-art general embodied reasoning performance, but also exhibits a strong ability across a wide range of downstream scenarios. Evaluations of a suite of proposed embodied benchmarks, including both primitive and composite tasks, confirm its robust and versatile planning capabilities. Project page: https://omnieva.github.io
comment: Published as a conference paper at ICLR 2026
Embodied AI with Foundation Models for Mobile Service Robots: A Systematic Review
Rapid advancements in foundation models, including Large Language Models, Vision-Language Models, Multimodal Large Language Models, and Vision-Language-Action Models, have opened new avenues for embodied AI in mobile service robotics. By combining foundation models with the principles of embodied AI, where intelligent systems perceive, reason, and act through physical interaction, mobile service robots can achieve more flexible understanding, adaptive behavior, and robust task execution in dynamic real-world environments. Despite this progress, embodied AI for mobile service robots continues to face fundamental challenges related to the translation of natural language instructions into executable robot actions, multimodal perception in human-centered environments, uncertainty estimation for safe decision-making, and computational constraints for real-time onboard deployment. In this paper, we present the first systematic review focused specifically on the integration of foundation models in mobile service robotics. We analyze how recent advances in foundation models address these core challenges through language-conditioned control, multimodal sensor fusion, uncertainty-aware reasoning, and efficient model scaling. We further examine real-world applications in domestic assistance, healthcare, and service automation, highlighting how foundation models enable context-aware, socially responsive, and generalizable robot behaviors. Beyond technical considerations, we discuss ethical, societal, and human-interaction implications associated with deploying foundation model-enabled service robots in human environments. Finally, we outline future research directions emphasizing reliability and lifelong adaptation, privacy-aware and resource-constrained deployment, and governance and human-in-the-loop frameworks required for safe, scalable, and trustworthy mobile service robotics.
comment: v2: Expanded systematic review; resubmitted to Robotics
MetaVLA: Unified Meta Co-training For Efficient Embodied Adaption
Vision-Language-Action (VLA) models show promise in embodied reasoning, yet remain far from true generalists-they often require task-specific fine-tuning, incur high compute costs, and generalize poorly to unseen tasks. We propose MetaVLA, a unified, backbone-agnostic post-training framework for efficient and scalable alignment. MetaVLA introduces Context-Aware Meta Co-Training, which consolidates diverse target tasks into a single fine-tuning stage while leveraging structurally diverse auxiliary tasks to improve in-domain generalization. Unlike naive multi-task SFT, MetaVLA integrates a lightweight meta-learning mechanism-derived from Attentive Neural Processes-to enable rapid adaptation from diverse contexts with minimal architectural change or inference overhead. On the LIBERO benchmark, MetaVLA with six auxiliary tasks outperforms OpenVLA by up to 8.0% on long-horizon tasks, reduces training steps from 240K to 75K, and cuts GPU time by ~76%. These results show that scalable, low-resource post-training is achievable-paving the way toward general-purpose embodied agents. Code will be available.
Judgelight: Trajectory-Level Post-Optimization for Multi-Agent Path Finding via Closed-Subwalk Collapsing
Multi-Agent Path Finding (MAPF) is an NP-hard problem with applications in warehouse automation and multi-robot coordination. Learning-based MAPF solvers offer fast and scalable planning but often produce feasible trajectories that contain unnecessary or oscillatory movements. We propose Judgelight, a post-optimization layer that improves trajectory quality after a MAPF solver generates a feasible schedule. Judgelight collapses closed subwalks in agents' trajectories to remove redundant movements while preserving all feasibility constraints. We formalize this process as MAPF-Collapse, prove that it is NP-hard, and present an exact optimization approach by formulating it as integer linear programming (ILP) problem. Experimental results show Judgelight consistently reduces solution cost by around 20%, particularly for learning-based solvers, producing trajectories that are better suited for real-world deployment.
Transport and Delivery of Objects with a Soft Everting Robot
Soft everting robots present significant advantages over traditional rigid robots, including enhanced dexterity, improved environmental interaction, and safe navigation in unpredictable environments. While soft everting robots have been widely demonstrated for exploration type tasks, their potential to move and deploy payloads in such tasks has been less investigated, with previous work focusing on sensors and tools for the robot. Leveraging the navigation capabilities, and deployed body, of the soft everting robot to deliver payloads in hazardous areas, e.g. carrying a water bottle to a person stuck under debris, would represent a significant capability in many applications. In this work, we present an analysis of how soft everting robots can be used to deploy larger, heavier payloads through the inside of the robot. We analyze both what objects can be deployed and what terrain features they can be carried through. Building on existing models, we present methods to quantify the effects of payloads on robot growth and self-support, and develop a model to predict payload slip. We then experimentally quantify payload transport using soft everting robot with a variety of payload shapes, sizes, and weights and though a series of tasks: steering, vertical transport, movement through holes, and movement across gaps. Overall, the results show that we can transport payloads in a variety of shapes and up to 1.5kg in weight and that we can move through circular apertures with as little as 0.01cm clearance around payloads, carry out discrete turns up to 135 degrees, and move across unsupported gaps of 1.15m in length.
comment: 8 pages, 11 figures, Published in IEEE Robotics and Automation Letters Link to publication: https://ieeexplore.ieee.org/abstract/document/11359009 Citation: E. M. DeVries, J. Ferlazzo, M. Ugur and L. H. Blumenschein, "Transport and Delivery of Objects With a Soft Everting Robot," in IEEE Robotics and Automation Letters, vol. 11, no. 3, pp. 2935-2942, March 2026, doi: 10.1109/LRA.2026.3655537
Computer Vision and Pattern Recognition 147
FreeFix: Boosting 3D Gaussian Splatting via Fine-Tuning-Free Diffusion Models
Neural Radiance Fields and 3D Gaussian Splatting have advanced novel view synthesis, yet still rely on dense inputs and often degrade at extrapolated views. Recent approaches leverage generative models, such as diffusion models, to provide additional supervision, but face a trade-off between generalization and fidelity: fine-tuning diffusion models for artifact removal improves fidelity but risks overfitting, while fine-tuning-free methods preserve generalization but often yield lower fidelity. We introduce FreeFix, a fine-tuning-free approach that pushes the boundary of this trade-off by enhancing extrapolated rendering with pretrained image diffusion models. We present an interleaved 2D-3D refinement strategy, showing that image diffusion models can be leveraged for consistent refinement without relying on costly video diffusion models. Furthermore, we take a closer look at the guidance signal for 2D refinement and propose a per-pixel confidence mask to identify uncertain regions for targeted improvement. Experiments across multiple datasets show that FreeFix improves multi-frame consistency and achieves performance comparable to or surpassing fine-tuning-based methods, while retaining strong generalization ability.
comment: Our project page is at https://xdimlab.github.io/freefix
C3Box: A CLIP-based Class-Incremental Learning Toolbox
Traditional machine learning systems are typically designed for static data distributions, which suffer from catastrophic forgetting when learning from evolving data streams. Class-Incremental Learning (CIL) addresses this challenge by enabling learning systems to continuously learn new classes while preserving prior knowledge. With the rise of pre-trained models (PTMs) such as CLIP, leveraging their strong generalization and semantic alignment capabilities has become a promising direction in CIL. However, existing CLIP-based CIL methods are often scattered across disparate codebases, rely on inconsistent configurations, hindering fair comparisons, reproducibility, and practical adoption. Therefore, we propose C3Box (CLIP-based Class-inCremental learning toolBOX), a modular and comprehensive Python toolbox. C3Box integrates representative traditional CIL methods, ViT-based CIL methods, and state-of-the-art CLIP-based CIL methods into a unified CLIP-based framework. By inheriting the streamlined design of PyCIL, C3Box provides a JSON-based configuration and standardized execution pipeline. This design enables reproducible experimentation with low engineering overhead and makes C3Box a reliable benchmark platform for continual learning research. Designed to be user-friendly, C3Box relies only on widely used open-source libraries and supports major operating systems. The code is available at https://github.com/LAMDA-CL/C3Box.
comment: The code is available at https://github.com/LAMDA-CL/C3Box
A New Dataset and Framework for Robust Road Surface Classification via Camera-IMU Fusion
Road surface classification (RSC) is a key enabler for environment-aware predictive maintenance systems. However, existing RSC techniques often fail to generalize beyond narrow operational conditions due to limited sensing modalities and datasets that lack environmental diversity. This work addresses these limitations by introducing a multimodal framework that fuses images and inertial measurements using a lightweight bidirectional cross-attention module followed by an adaptive gating layer that adjusts modality contributions under domain shifts. Given the limitations of current benchmarks, especially regarding lack of variability, we introduce ROAD, a new dataset composed of three complementary subsets: (i) real-world multimodal recordings with RGB-IMU streams synchronized using a gold-standard industry datalogger, captured across diverse lighting, weather, and surface conditions; (ii) a large vision-only subset designed to assess robustness under adverse illumination and heterogeneous capture setups; and (iii) a synthetic subset generated to study out-of-distribution generalization in scenarios difficult to obtain in practice. Experiments show that our method achieves a +1.4 pp improvement over the previous state-of-the-art on the PVS benchmark and an +11.6 pp improvement on our multimodal ROAD subset, with consistently higher F1-scores on minority classes. The framework also demonstrates stable performance across challenging visual conditions, including nighttime, heavy rain, and mixed-surface transitions. These findings indicate that combining affordable camera and IMU sensors with multimodal attention mechanisms provides a scalable, robust foundation for road surface understanding, particularly relevant for regions where environmental variability and cost constraints limit the adoption of high-end sensing suites.
Open-Vocabulary Functional 3D Human-Scene Interaction Generation
Generating 3D humans that functionally interact with 3D scenes remains an open problem with applications in embodied AI, robotics, and interactive content creation. The key challenge involves reasoning about both the semantics of functional elements in 3D scenes and the 3D human poses required to achieve functionality-aware interaction. Unfortunately, existing methods typically lack explicit reasoning over object functionality and the corresponding human-scene contact, resulting in implausible or functionally incorrect interactions. In this work, we propose FunHSI, a training-free, functionality-driven framework that enables functionally correct human-scene interactions from open-vocabulary task prompts. Given a task prompt, FunHSI performs functionality-aware contact reasoning to identify functional scene elements, reconstruct their 3D geometry, and model high-level interactions via a contact graph. We then leverage vision-language models to synthesize a human performing the task in the image and estimate proposed 3D body and hand poses. Finally, the proposed 3D body configuration is refined via stage-wise optimization to ensure physical plausibility and functional correctness. In contrast to existing methods, FunHSI not only synthesizes more plausible general 3D interactions, such as "sitting on a sofa'', while supporting fine-grained functional human-scene interactions, e.g., "increasing the room temperature''. Extensive experiments demonstrate that FunHSI consistently generates functionally correct and physically plausible human-scene interactions across diverse indoor and outdoor scenes.
comment: 18 pages
FAIRT2V: Training-Free Debiasing for Text-to-Video Diffusion Models
Text-to-video (T2V) diffusion models have achieved rapid progress, yet their demographic biases, particularly gender bias, remain largely unexplored. We present FairT2V, a training-free debiasing framework for text-to-video generation that mitigates encoder-induced bias without finetuning. We first analyze demographic bias in T2V models and show that it primarily originates from pretrained text encoders, which encode implicit gender associations even for neutral prompts. We quantify this effect with a gender-leaning score that correlates with bias in generated videos. Based on this insight, FairT2V mitigates demographic bias by neutralizing prompt embeddings via anchor-based spherical geodesic transformations while preserving semantics. To maintain temporal coherence, we apply debiasing only during early identity-forming steps through a dynamic denoising schedule. We further propose a video-level fairness evaluation protocol combining VideoLLM-based reasoning with human verification. Experiments on the modern T2V model Open-Sora show that FairT2V substantially reduces demographic bias across occupations with minimal impact on video quality.
Compression Tells Intelligence: Visual Coding, Visual Token Technology, and the Unification
"Compression Tells Intelligence", is supported by research in artificial intelligence, particularly concerning (multimodal) large language models (LLMs/MLLMs), where compression efficiency often correlates with improved model performance and capabilities. For compression, classical visual coding based on traditional information theory has developed over decades, achieving great success with numerous international industrial standards widely applied in multimedia (e.g., image/video) systems. Except that, the recent emergingvisual token technology of generative multi-modal large models also shares a similar fundamental objective like visual coding: maximizing semantic information fidelity during the representation learning while minimizing computational cost. Therefore, this paper provides a comprehensive overview of two dominant technique families first -- Visual Coding and Vision Token Technology -- then we further unify them from the aspect of optimization, discussing the essence of compression efficiency and model performance trade-off behind. Next, based on the proposed unified formulation bridging visual coding andvisual token technology, we synthesize bidirectional insights of themselves and forecast the next-gen visual codec and token techniques. Last but not least, we experimentally show a large potential of the task-oriented token developments in the more practical tasks like multimodal LLMs (MLLMs), AI-generated content (AIGC), and embodied AI, as well as shedding light on the future possibility of standardizing a general token technology like the traditional codecs (e.g., H.264/265) with high efficiency for a wide range of intelligent tasks in a unified and effective manner.
Continual GUI Agents
As digital environments (data distribution) are in flux, with new GUI data arriving over time-introducing new domains or resolutions-agents trained on static environments deteriorate in performance. In this work, we introduce Continual GUI Agents, a new task that requires GUI agents to perform continual learning under shifted domains and resolutions. We find existing methods fail to maintain stable grounding as GUI distributions shift over time, due to the diversity of UI interaction points and regions in fluxing scenarios. To address this, we introduce GUI-Anchoring in Flux (GUI-AiF), a new reinforcement fine-tuning framework that stabilizes continual learning through two novel rewards: Anchoring Point Reward in Flux (APR-iF) and Anchoring Region Reward in Flux (ARR-iF). These rewards guide the agents to align with shifting interaction points and regions, mitigating the tendency of existing reward strategies to over-adapt to static grounding cues (e.g., fixed coordinates or element scales). Extensive experiments show GUI-AiF surpasses state-of-the-art baselines. Our work establishes the first continual learning framework for GUI agents, revealing the untapped potential of reinforcement fine-tuning for continual GUI Agents.
Li-ViP3D++: Query-Gated Deformable Camera-LiDAR Fusion for End-to-End Perception and Trajectory Prediction
End-to-end perception and trajectory prediction from raw sensor data is one of the key capabilities for autonomous driving. Modular pipelines restrict information flow and can amplify upstream errors. Recent query-based, fully differentiable perception-and-prediction (PnP) models mitigate these issues, yet the complementarity of cameras and LiDAR in the query-space has not been sufficiently explored. Models often rely on fusion schemes that introduce heuristic alignment and discrete selection steps which prevent full utilization of available information and can introduce unwanted bias. We propose Li-ViP3D++, a query-based multimodal PnP framework that introduces Query-Gated Deformable Fusion (QGDF) to integrate multi-view RGB and LiDAR in query space. QGDF (i) aggregates image evidence via masked attention across cameras and feature levels, (ii) extracts LiDAR context through fully differentiable BEV sampling with learned per-query offsets, and (iii) applies query-conditioned gating to adaptively weight visual and geometric cues per agent. The resulting architecture jointly optimizes detection, tracking, and multi-hypothesis trajectory forecasting in a single end-to-end model. On nuScenes, Li-ViP3D++ improves end-to-end behavior and detection quality, achieving higher EPA (0.335) and mAP (0.502) while substantially reducing false positives (FP ratio 0.147), and it is faster than the prior Li-ViP3D variant (139.82 ms vs. 145.91 ms). These results indicate that query-space, fully differentiable camera-LiDAR fusion can increase robustness of end-to-end PnP without sacrificing deployability.
comment: This work has been submitted to the IEEE for possible publication
Decoupling Perception and Calibration: Label-Efficient Image Quality Assessment Framework
Recent multimodal large language models (MLLMs) have demonstrated strong capabilities in image quality assessment (IQA) tasks. However, adapting such large-scale models is computationally expensive and still relies on substantial Mean Opinion Score (MOS) annotations. We argue that for MLLM-based IQA, the core bottleneck lies not in the quality perception capacity of MLLMs, but in MOS scale calibration. Therefore, we propose LEAF, a Label-Efficient Image Quality Assessment Framework that distills perceptual quality priors from an MLLM teacher into a lightweight student regressor, enabling MOS calibration with minimal human supervision. Specifically, the teacher conducts dense supervision through point-wise judgments and pair-wise preferences, with an estimate of decision reliability. Guided by these signals, the student learns the teacher's quality perception patterns through joint distillation and is calibrated on a small MOS subset to align with human annotations. Experiments on both user-generated and AI-generated IQA benchmarks demonstrate that our method significantly reduces the need for human annotations while maintaining strong MOS-aligned correlations, making lightweight IQA practical under limited annotation budgets.
bi-modal textual prompt learning for vision-language models in remote sensing
Prompt learning (PL) has emerged as an effective strategy to adapt vision-language models (VLMs), such as CLIP, for downstream tasks under limited supervision. While PL has demonstrated strong generalization on natural image datasets, its transferability to remote sensing (RS) imagery remains underexplored. RS data present unique challenges, including multi-label scenes, high intra-class variability, and diverse spatial resolutions, that hinder the direct applicability of existing PL methods. In particular, current prompt-based approaches often struggle to identify dominant semantic cues and fail to generalize to novel classes in RS scenarios. To address these challenges, we propose BiMoRS, a lightweight bi-modal prompt learning framework tailored for RS tasks. BiMoRS employs a frozen image captioning model (e.g., BLIP-2) to extract textual semantic summaries from RS images. These captions are tokenized using a BERT tokenizer and fused with high-level visual features from the CLIP encoder. A lightweight cross-attention module then conditions a learnable query prompt on the fused textual-visual representation, yielding contextualized prompts without altering the CLIP backbone. We evaluate BiMoRS on four RS datasets across three domain generalization (DG) tasks and observe consistent performance gains, outperforming strong baselines by up to 2% on average. Codes are available at https://github.com/ipankhi/BiMoRS.
comment: Accepted in ICASSP 2026
ProSkill: Segment-Level Skill Assessment in Procedural Videos
Skill assessment in procedural videos is crucial for the objective evaluation of human performance in settings such as manufacturing and procedural daily tasks. Current research on skill assessment has predominantly focused on sports and lacks large-scale datasets for complex procedural activities. Existing studies typically involve only a limited number of actions, focus on either pairwise assessments (e.g., A is better than B) or on binary labels (e.g., good execution vs needs improvement). In response to these shortcomings, we introduce ProSkill, the first benchmark dataset for action-level skill assessment in procedural tasks. ProSkill provides absolute skill assessment annotations, along with pairwise ones. This is enabled by a novel and scalable annotation protocol that allows for the creation of an absolute skill assessment ranking starting from pairwise assessments. This protocol leverages a Swiss Tournament scheme for efficient pairwise comparisons, which are then aggregated into consistent, continuous global scores using an ELO-based rating system. We use our dataset to benchmark the main state-of-the-art skill assessment algorithms, including both ranking-based and pairwise paradigms. The suboptimal results achieved by the current state-of-the-art highlight the challenges and thus the value of ProSkill in the context of skill assessment for procedural videos. All data and code are available at https://fpv-iplab.github.io/ProSkill/
comment: Accepted at The IEEE/CVF Winter Conference on Applications of Computer Vision 2026
FD-MAD: Frequency-Domain Residual Analysis for Face Morphing Attack Detection
Face morphing attacks present a significant threat to face recognition systems used in electronic identity enrolment and border control, particularly in single-image morphing attack detection (S-MAD) scenarios where no trusted reference is available. In spite of the vast amount of research on this problem, morph detection systems struggle in cross-dataset scenarios. To address this problem, we introduce a region-aware frequency-based morph detection strategy that drastically improves over strong baseline methods in challenging cross-dataset and cross-morph settings using a lightweight approach. Having observed the separability of bona fide and morph samples in the frequency domain of different facial parts, our approach 1) introduces the concept of residual frequency domain, where the frequency of the signal is decoupled from the natural spectral decay to easily discriminate between morph and bona fide data; 2) additionally, we reason in a global and local manner by combining the evidence from different facial regions in a Markov Random Field, which infers a globally consistent decision. The proposed method, trained exclusively on the synthetic morphing attack detection development dataset (SMDD), is evaluated in challenging cross-dataset and cross-morph settings on FRLL-Morph and MAD22 sets. Our approach achieves an average equal error rate (EER) of 1.85\% on FRLL-Morph and ranks second on MAD22 with an average EER of 6.12\%, while also obtaining a good bona fide presentation classification error rate (BPCER) at a low attack presentation classification error rate (APCER) using only spectral features. These findings indicate that Fourier-domain residual modeling with structured regional fusion offers a competitive alternative to deep S-MAD architectures.
OS-Marathon: Benchmarking Computer-Use Agents on Long-Horizon Repetitive Tasks
Long-horizon, repetitive workflows are common in professional settings, such as processing expense reports from receipts and entering student grades from exam papers. These tasks are often tedious for humans since they can extend to extreme lengths proportional to the size of the data to process. However, they are ideal for Computer-Use Agents (CUAs) due to their structured, recurring sub-workflows with logic that can be systematically learned. Identifying the absence of an evaluation benchmark as a primary bottleneck, we establish OS-Marathon, comprising 242 long-horizon, repetitive tasks across 2 domains to evaluate state-of-the-art (SOTA) agents. We then introduce a cost-effective method to construct a condensed demonstration using only few-shot examples to teach agents the underlying workflow logic, enabling them to execute similar workflows effectively on larger, unseen data collections. Extensive experiments demonstrate both the inherent challenges of these tasks and the effectiveness of our proposed method. Project website: https://os-marathon.github.io/.
comment: 22 Pages, Project Page: \url{https://os-marathon.github.io/}
Detecting and Mitigating Memorization in Diffusion Models through Anisotropy of the Log-Probability ICLR 2026
Diffusion-based image generative models produce high-fidelity images through iterative denoising but remain vulnerable to memorization, where they unintentionally reproduce exact copies or parts of training images. Recent memorization detection methods are primarily based on the norm of score difference as indicators of memorization. We prove that such norm-based metrics are mainly effective under the assumption of isotropic log-probability distributions, which generally holds at high or medium noise levels. In contrast, analyzing the anisotropic regime reveals that memorized samples exhibit strong angular alignment between the guidance vector and unconditional scores in the low-noise setting. Through these insights, we develop a memorization detection metric by integrating isotropic norm and anisotropic alignment. Our detection metric can be computed directly on pure noise inputs via two conditional and unconditional forward passes, eliminating the need for costly denoising steps. Detection experiments on Stable Diffusion v1.4 and v2 show that our metric outperforms existing denoising-free detection methods while being at least approximately 5x faster than the previous best approach. Finally, we demonstrate the effectiveness of our approach by utilizing a mitigation strategy that adapts memorized prompts based on our developed metric.
comment: Accepted at ICLR 2026
GDCNet: Generative Discrepancy Comparison Network for Multimodal Sarcasm Detection
Multimodal sarcasm detection (MSD) aims to identify sarcasm within image-text pairs by modeling semantic incongruities across modalities. Existing methods often exploit cross-modal embedding misalignment to detect inconsistency but struggle when visual and textual content are loosely related or semantically indirect. While recent approaches leverage large language models (LLMs) to generate sarcastic cues, the inherent diversity and subjectivity of these generations often introduce noise. To address these limitations, we propose the Generative Discrepancy Comparison Network (GDCNet). This framework captures cross-modal conflicts by utilizing descriptive, factually grounded image captions generated by Multimodal LLMs (MLLMs) as stable semantic anchors. Specifically, GDCNet computes semantic and sentiment discrepancies between the generated objective description and the original text, alongside measuring visual-textual fidelity. These discrepancy features are then fused with visual and textual representations via a gated module to adaptively balance modality contributions. Extensive experiments on MSD benchmarks demonstrate GDCNet's superior accuracy and robustness, establishing a new state-of-the-art on the MMSD2.0 benchmark.
comment: Accepted to 2026 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2026)
CLEAR-Mamba:Towards Accurate, Adaptive and Trustworthy Multi-Sequence Ophthalmic Angiography Classification
Medical image classification is a core task in computer-aided diagnosis (CAD), playing a pivotal role in early disease detection, treatment planning, and patient prognosis assessment. In ophthalmic practice, fluorescein fundus angiography (FFA) and indocyanine green angiography (ICGA) provide hemodynamic and lesion-structural information that conventional fundus photography cannot capture. However, due to the single-modality nature, subtle lesion patterns, and significant inter-device variability, existing methods still face limitations in generalization and high-confidence prediction. To address these challenges, we propose CLEAR-Mamba, an enhanced framework built upon MedMamba with optimizations in both architecture and training strategy. Architecturally, we introduce HaC, a hypernetwork-based adaptive conditioning layer that dynamically generates parameters according to input feature distributions, thereby improving cross-domain adaptability. From a training perspective, we develop RaP, a reliability-aware prediction scheme built upon evidential uncertainty learning, which encourages the model to emphasize low-confidence samples and improves overall stability and reliability. We further construct a large-scale ophthalmic angiography dataset covering both FFA and ICGA modalities, comprising multiple retinal disease categories for model training and evaluation. Experimental results demonstrate that CLEAR-Mamba consistently outperforms multiple baseline models, including the original MedMamba, across various metrics-showing particular advantages in multi-disease classification and reliability-aware prediction. This study provides an effective solution that balances generalizability and reliability for modality-specific medical image classification tasks.
comment: 10 pages,7 figures
Person Re-ID in 2025: Supervised, Self-Supervised, and Language-Aligned. What Works?
Person Re-Identification (ReID) remains a challenging problem in computer vision. This work reviews various training paradigm and evaluates the robustness of state-of-the-art ReID models in cross-domain applications and examines the role of foundation models in improving generalization through richer, more transferable visual representations. We compare three training paradigms, supervised, self-supervised, and language-aligned models. Through the study the aim is to answer the following questions: Can supervised models generalize in cross-domain scenarios? How does foundation models like SigLIP2 perform for the ReID tasks? What are the weaknesses of current supervised and foundational models for ReID? We have conducted the analysis across 11 models and 9 datasets. Our results show a clear split: supervised models dominate their training domain but crumble on cross-domain data. Language-aligned models, however, show surprising robustness cross-domain for ReID tasks, even though they are not explicitly trained to do so. Code and data available at: https://github.com/moiiai-tech/object-reid-benchmark.
StructAlign: Structured Cross-Modal Alignment for Continual Text-to-Video Retrieval
Continual Text-to-Video Retrieval (CTVR) is a challenging multimodal continual learning setting, where models must incrementally learn new semantic categories while maintaining accurate text-video alignment for previously learned ones, thus making it particularly prone to catastrophic forgetting. A key challenge in CTVR is feature drift, which manifests in two forms: intra-modal feature drift caused by continual learning within each modality, and non-cooperative feature drift across modalities that leads to modality misalignment. To mitigate these issues, we propose StructAlign, a structured cross-modal alignment method for CTVR. First, StructAlign introduces a simplex Equiangular Tight Frame (ETF) geometry as a unified geometric prior to mitigate modality misalignment. Building upon this geometric prior, we design a cross-modal ETF alignment loss that aligns text and video features with category-level ETF prototypes, encouraging the learned representations to form an approximate simplex ETF geometry. In addition, to suppress intra-modal feature drift, we design a Cross-modal Relation Preserving loss, which leverages complementary modalities to preserve cross-modal similarity relations, providing stable relational supervision for feature updates. By jointly addressing non-cooperative feature drift across modalities and intra-modal feature drift, StructAlign effectively alleviates catastrophic forgetting in CTVR. Extensive experiments on benchmark datasets demonstrate that our method consistently outperforms state-of-the-art continual retrieval approaches.
SegRap2025: A Benchmark of Gross Tumor Volume and Lymph Node Clinical Target Volume Segmentation for Radiotherapy Planning of Nasopharyngeal Carcinoma
Accurate delineation of Gross Tumor Volume (GTV), Lymph Node Clinical Target Volume (LN CTV), and Organ-at-Risk (OAR) from Computed Tomography (CT) scans is essential for precise radiotherapy planning in Nasopharyngeal Carcinoma (NPC). Building upon SegRap2023, which focused on OAR and GTV segmentation using single-center paired non-contrast CT (ncCT) and contrast-enhanced CT (ceCT) scans, the SegRap2025 challenge aims to enhance the generalizability and robustness of segmentation models across imaging centers and modalities. SegRap2025 comprises two tasks: Task01 addresses GTV segmentation using paired CT from the SegRap2023 dataset, with an additional external testing set to evaluate cross-center generalization, and Task02 focuses on LN CTV segmentation using multi-center training data and an unseen external testing set, where each case contains paired CT scans or a single modality, emphasizing both cross-center and cross-modality robustness. This paper presents the challenge setup and provides a comprehensive analysis of the solutions submitted by ten participating teams. For GTV segmentation task, the top-performing models achieved average Dice Similarity Coefficient (DSC) of 74.61% and 56.79% on the internal and external testing cohorts, respectively. For LN CTV segmentation task, the highest average DSC values reached 60.24%, 60.50%, and 57.23% on paired CT, ceCT-only, and ncCT-only subsets, respectively. SegRap2025 establishes a large-scale multi-center, multi-modality benchmark for evaluating the generalization and robustness in radiotherapy target segmentation, providing valuable insights toward clinically applicable automated radiotherapy planning systems. The benchmark is available at: https://hilab-git.github.io/SegRap2025_Challenge.
DiffVC-RT: Towards Practical Real-Time Diffusion-based Perceptual Neural Video Compression
The practical deployment of diffusion-based Neural Video Compression (NVC) faces critical challenges, including severe information loss, prohibitive inference latency, and poor temporal consistency. To bridge this gap, we propose DiffVC-RT, the first framework designed to achieve real-time diffusion-based perceptual NVC. First, we introduce an Efficient and Informative Model Architecture. Through strategic module replacements and pruning, this architecture significantly reduces computational complexity while mitigating structural information loss. Second, to address generative flickering artifacts, we propose Explicit and Implicit Consistency Modeling. We enhance temporal consistency by explicitly incorporating a zero-cost Online Temporal Shift Module within the U-Net, complemented by hybrid implicit consistency constraints. Finally, we present an Asynchronous and Parallel Decoding Pipeline incorporating Mixed Half Precision, which enables asynchronous latent decoding and parallel frame reconstruction via a Batch-dimension Temporal Shift design. Experiments show that DiffVC-RT achieves 80.1% bitrate savings in terms of LPIPS over VTM-17.0 on HEVC dataset with real-time encoding and decoding speeds of 206 / 30 fps for 720p videos on an NVIDIA H800 GPU, marking a significant milestone in diffusion-based video compression.
comment: 17 pages, 10 figures
DeepSeek-OCR 2: Visual Causal Flow
We present DeepSeek-OCR 2 to investigate the feasibility of a novel encoder-DeepEncoder V2-capable of dynamically reordering visual tokens upon image semantics. Conventional vision-language models (VLMs) invariably process visual tokens in a rigid raster-scan order (top-left to bottom-right) with fixed positional encoding when fed into LLMs. However, this contradicts human visual perception, which follows flexible yet semantically coherent scanning patterns driven by inherent logical structures. Particularly for images with complex layouts, human vision exhibits causally-informed sequential processing. Inspired by this cognitive mechanism, DeepEncoder V2 is designed to endow the encoder with causal reasoning capabilities, enabling it to intelligently reorder visual tokens prior to LLM-based content interpretation. This work explores a novel paradigm: whether 2D image understanding can be effectively achieved through two-cascaded 1D causal reasoning structures, thereby offering a new architectural approach with the potential to achieve genuine 2D reasoning. Codes and model weights are publicly accessible at http://github.com/deepseek-ai/DeepSeek-OCR-2.
Advancing Open-source World Models
We present LingBot-World, an open-sourced world simulator stemming from video generation. Positioned as a top-tier world model, LingBot-World offers the following features. (1) It maintains high fidelity and robust dynamics in a broad spectrum of environments, including realism, scientific contexts, cartoon styles, and beyond. (2) It enables a minute-level horizon while preserving contextual consistency over time, which is also known as "long-term memory". (3) It supports real-time interactivity, achieving a latency of under 1 second when producing 16 frames per second. We provide public access to the code and model in an effort to narrow the divide between open-source and closed-source technologies. We believe our release will empower the community with practical applications across areas like content creation, gaming, and robot learning.
comment: Project page: https://technology.robbyant.com/lingbot-world; Code: https://github.com/robbyant/lingbot-world
IOTA: Corrective Knowledge-Guided Prompt Learning via Black-White Box Framework
Recently, adapting pre-trained models to downstream tasks has attracted increasing interest. Previous Parameter-Efficient-Tuning (PET) methods regard the pre-trained model as an opaque Black Box model, relying purely on data-driven optimization and underutilizing their inherent prior knowledge. This oversight limits the models' potential for effective downstream task adaptation. To address these issues, we propose a novel black-whIte bOx prompT leArning framework (IOTA), which integrates a data-driven Black Box module with a knowledge-driven White Box module for downstream task adaptation. Specifically, the White Box module derives corrective knowledge by contrasting the wrong predictions with the right cognition. This knowledge is verbalized into interpretable human prompts and leveraged through a corrective knowledge-guided prompt selection strategy to guide the Black Box module toward more accurate predictions. By jointly leveraging knowledge- and data-driven learning signals, IOTA achieves effective downstream task adaptation. Experimental results on 12 image classification benchmarks under few-shot and easy-to-hard adaptation settings demonstrate the effectiveness of corrective knowledge and the superiority of our method over state-of-the-art methods.
AnomalyVFM -- Transforming Vision Foundation Models into Zero-Shot Anomaly Detectors
Zero-shot anomaly detection aims to detect and localise abnormal regions in the image without access to any in-domain training images. While recent approaches leverage vision-language models (VLMs), such as CLIP, to transfer high-level concept knowledge, methods based on purely vision foundation models (VFMs), like DINOv2, have lagged behind in performance. We argue that this gap stems from two practical issues: (i) limited diversity in existing auxiliary anomaly detection datasets and (ii) overly shallow VFM adaptation strategies. To address both challenges, we propose AnomalyVFM, a general and effective framework that turns any pretrained VFM into a strong zero-shot anomaly detector. Our approach combines a robust three-stage synthetic dataset generation scheme with a parameter-efficient adaptation mechanism, utilising low-rank feature adapters and a confidence-weighted pixel loss. Together, these components enable modern VFMs to substantially outperform current state-of-the-art methods. More specifically, with RADIO as a backbone, AnomalyVFM achieves an average image-level AUROC of 94.1% across 9 diverse datasets, surpassing previous methods by significant 3.3 percentage points. Project Page: https://maticfuc.github.io/anomaly_vfm/
Context Tokens are Anchors: Understanding the Repetition Curse in dMLLMs from an Information Flow Perspective ICLR 2026
Recent diffusion-based Multimodal Large Language Models (dMLLMs) suffer from high inference latency and therefore rely on caching techniques to accelerate decoding. However, the application of cache mechanisms often introduces undesirable repetitive text generation, a phenomenon we term the \textbf{Repeat Curse}. To better investigate underlying mechanism behind this issue, we analyze repetition generation through the lens of information flow. Our work reveals three key findings: (1) context tokens aggregate semantic information as anchors and guide the final predictions; (2) as information propagates across layers, the entropy of context tokens converges in deeper layers, reflecting the model's growing prediction certainty; (3) Repetition is typically linked to disruptions in the information flow of context tokens and to the inability of their entropy to converge in deeper layers. Based on these insights, we present \textbf{CoTA}, a plug-and-play method for mitigating repetition. CoTA enhances the attention of context tokens to preserve intrinsic information flow patterns, while introducing a penalty term to the confidence score during decoding to avoid outputs driven by uncertain context tokens. With extensive experiments, CoTA demonstrates significant effectiveness in alleviating repetition and achieves consistent performance improvements on general tasks. Code is available at https://github.com/ErikZ719/CoTA
comment: Accepted in ICLR 2026
Say Cheese! Detail-Preserving Portrait Collection Generation via Natural Language Edits
As social media platforms proliferate, users increasingly demand intuitive ways to create diverse, high-quality portrait collections. In this work, we introduce Portrait Collection Generation (PCG), a novel task that generates coherent portrait collections by editing a reference portrait image through natural language instructions. This task poses two unique challenges to existing methods: (1) complex multi-attribute modifications such as pose, spatial layout, and camera viewpoint; and (2) high-fidelity detail preservation including identity, clothing, and accessories. To address these challenges, we propose CHEESE, the first large-scale PCG dataset containing 24K portrait collections and 573K samples with high-quality modification text annotations, constructed through an Large Vison-Language Model-based pipeline with inversion-based verification. We further propose SCheese, a framework that combines text-guided generation with hierarchical identity and detail preservation. SCheese employs adaptive feature fusion mechanism to maintain identity consistency, and ConsistencyNet to inject fine-grained features for detail consistency. Comprehensive experiments validate the effectiveness of CHEESE in advancing PCG, with SCheese achieving state-of-the-art performance.
Latent Temporal Discrepancy as Motion Prior: A Loss-Weighting Strategy for Dynamic Fidelity in T2V
Video generation models have achieved notable progress in static scenarios, yet their performance in motion video generation remains limited, with quality degrading under drastic dynamic changes. This is due to noise disrupting temporal coherence and increasing the difficulty of learning dynamic regions. {Unfortunately, existing diffusion models rely on static loss for all scenarios, constraining their ability to capture complex dynamics.} To address this issue, we introduce Latent Temporal Discrepancy (LTD) as a motion prior to guide loss weighting. LTD measures frame-to-frame variation in the latent space, assigning larger penalties to regions with higher discrepancy while maintaining regular optimization for stable regions. This motion-aware strategy stabilizes training and enables the model to better reconstruct high-frequency dynamics. Extensive experiments on the general benchmark VBench and the motion-focused VMBench show consistent gains, with our method outperforming strong baselines by 3.31% on VBench and 3.58% on VMBench, achieving significant improvements in motion quality.
comment: Accepted by ICASSP 2026
Comparative evaluation of training strategies using partially labelled datasets for segmentation of white matter hyperintensities and stroke lesions in FLAIR MRI
White matter hyperintensities (WMH) and ischaemic stroke lesions (ISL) are imaging features associated with cerebral small vessel disease (SVD) that are visible on brain magnetic resonance imaging (MRI) scans. The development and validation of deep learning models to segment and differentiate these features is difficult because they visually confound each other in the fluid-attenuated inversion recovery (FLAIR) sequence and often appear in the same subject. We investigated six strategies for training a combined WMH and ISL segmentation model using partially labelled data. We combined privately held fully and partially labelled datasets with publicly available partially labelled datasets to yield a total of 2052 MRI volumes, with 1341 and 1152 containing ground truth annotations for WMH and ISL respectively. We found that several methods were able to effectively leverage the partially labelled data to improve model performance, with the use of pseudolabels yielding the best result.
Efficient Autoregressive Video Diffusion with Dummy Head
The autoregressive video diffusion model has recently gained considerable research interest due to its causal modeling and iterative denoising. In this work, we identify that the multi-head self-attention in these models under-utilizes historical frames: approximately 25% heads attend almost exclusively to the current frame, and discarding their KV caches incurs only minor performance degradation. Building upon this, we propose Dummy Forcing, a simple yet effective method to control context accessibility across different heads. Specifically, the proposed heterogeneous memory allocation reduces head-wise context redundancy, accompanied by dynamic head programming to adaptively classify head types. Moreover, we develop a context packing technique to achieve more aggressive cache compression. Without additional training, our Dummy Forcing delivers up to 2.0x speedup over the baseline, supporting video generation at 24.3 FPS with less than 0.5% quality drop. Project page is available at https://csguoh.github.io/project/DummyForcing/.
comment: Technical Report
Exploiting the Final Component of Generator Architectures for AI-Generated Image Detection
With the rapid proliferation of powerful image generators, accurate detection of AI-generated images has become essential for maintaining a trustworthy online environment. However, existing deepfake detectors often generalize poorly to images produced by unseen generators. Notably, despite being trained under vastly different paradigms, such as diffusion or autoregressive modeling, many modern image generators share common final architectural components that serve as the last stage for converting intermediate representations into images. Motivated by this insight, we propose to "contaminate" real images using the generator's final component and train a detector to distinguish them from the original real images. We further introduce a taxonomy based on generators' final components and categorize 21 widely used generators accordingly, enabling a comprehensive investigation of our method's generalization capability. Using only 100 samples from each of three representative categories, our detector-fine-tuned on the DINOv3 backbone-achieves an average accuracy of 98.83% across 22 testing sets from unseen generators.
MARE: Multimodal Alignment and Reinforcement for Explainable Deepfake Detection via Vision-Language Models
Deepfake detection is a widely researched topic that is crucial for combating the spread of malicious content, with existing methods mainly modeling the problem as classification or spatial localization. The rapid advancements in generative models impose new demands on Deepfake detection. In this paper, we propose multimodal alignment and reinforcement for explainable Deepfake detection via vision-language models, termed MARE, which aims to enhance the accuracy and reliability of Vision-Language Models (VLMs) in Deepfake detection and reasoning. Specifically, MARE designs comprehensive reward functions, incorporating reinforcement learning from human feedback (RLHF), to incentivize the generation of text-spatially aligned reasoning content that adheres to human preferences. Besides, MARE introduces a forgery disentanglement module to capture intrinsic forgery traces from high-level facial semantics, thereby improving its authenticity detection capability. We conduct thorough evaluations on the reasoning content generated by MARE. Both quantitative and qualitative experimental results demonstrate that MARE achieves state-of-the-art performance in terms of accuracy and reliability.
Youtu-Parsing: Perception, Structuring and Recognition via High-Parallelism Decoding
This paper presents Youtu-Parsing, an efficient and versatile document parsing model designed for high-performance content extraction. The architecture employs a native Vision Transformer (ViT) featuring a dynamic-resolution visual encoder to extract shared document features, coupled with a prompt-guided Youtu-LLM-2B language model for layout analysis and region-prompted decoding. Leveraging this decoupled and feature-reusable framework, we introduce a high-parallelism decoding strategy comprising two core components: token parallelism and query parallelism. The token parallelism strategy concurrently generates up to 64 candidate tokens per inference step, which are subsequently validated through a verification mechanism. This approach yields a 5--11x speedup over traditional autoregressive decoding and is particularly well-suited for highly structured scenarios, such as table recognition. To further exploit the advantages of region-prompted decoding, the query parallelism strategy enables simultaneous content prediction for multiple bounding boxes (up to five), providing an additional 2x acceleration while maintaining output quality equivalent to standard decoding. Youtu-Parsing encompasses a diverse range of document elements, including text, formulas, tables, charts, seals, and hierarchical structures. Furthermore, the model exhibits strong robustness when handling rare characters, multilingual text, and handwritten content. Extensive evaluations demonstrate that Youtu-Parsing achieves state-of-the-art (SOTA) performance on both the OmniDocBench and olmOCR-bench benchmarks. Overall, Youtu-Parsing demonstrates significant experimental value and practical utility for large-scale document intelligence applications.
GRTX: Efficient Ray Tracing for 3D Gaussian-Based Rendering
3D Gaussian Splatting has gained widespread adoption across diverse applications due to its exceptional rendering performance and visual quality. While most existing methods rely on rasterization to render Gaussians, recent research has started investigating ray tracing approaches to overcome the fundamental limitations inherent in rasterization. However, current Gaussian ray tracing methods suffer from inefficiencies such as bloated acceleration structures and redundant node traversals, which greatly degrade ray tracing performance. In this work, we present GRTX, a set of software and hardware optimizations that enable efficient ray tracing for 3D Gaussian-based rendering. First, we introduce a novel approach for constructing streamlined acceleration structures for Gaussian primitives. Our key insight is that anisotropic Gaussians can be treated as unit spheres through ray space transformations, which substantially reduces BVH size and traversal overhead. Second, we propose dedicated hardware support for traversal checkpointing within ray tracing units. This eliminates redundant node visits during multi-round tracing by resuming traversal from checkpointed nodes rather than restarting from the root node in each subsequent round. Our evaluation shows that GRTX significantly improves ray tracing performance compared to the baseline ray tracing method with a negligible hardware cost.
comment: To appear at the 32nd International Symposium on High-Performance Computer Architecture (HPCA 2026)
Quartet of Diffusions: Structure-Aware Point Cloud Generation through Part and Symmetry Guidance
We introduce the Quartet of Diffusions, a structure-aware point cloud generation framework that explicitly models part composition and symmetry. Unlike prior methods that treat shape generation as a holistic process or only support part composition, our approach leverages four coordinated diffusion models to learn distributions of global shape latents, symmetries, semantic parts, and their spatial assembly. This structured pipeline ensures guaranteed symmetry, coherent part placement, and diverse, high-quality outputs. By disentangling the generative process into interpretable components, our method supports fine-grained control over shape attributes, enabling targeted manipulation of individual parts while preserving global consistency. A central global latent further reinforces structural coherence across assembled parts. Our experiments show that the Quartet achieves state-of-the-art performance. To our best knowledge, this is the first 3D point cloud generation framework that fully integrates and enforces both symmetry and part priors throughout the generative process.
Let's Roll a BiFTA: Bi-refinement for Fine-grained Text-visual Alignment in Vision-Language Models
Recent research has shown that aligning fine-grained text descriptions with localized image patches can significantly improve the zero-shot performance of pre-trained vision-language models (e.g., CLIP). However, we find that both fine-grained text descriptions and localized image patches often contain redundant information, making text-visual alignment less effective. In this paper, we tackle this issue from two perspectives: \emph{View Refinement} and \emph{Description refinement}, termed as \textit{\textbf{Bi}-refinement for \textbf{F}ine-grained \textbf{T}ext-visual \textbf{A}lignment} (BiFTA). \emph{View refinement} removes redundant image patches with high \emph{Intersection over Union} (IoU) ratios, resulting in more distinctive visual samples. \emph{Description refinement} removes redundant text descriptions with high pairwise cosine similarity, ensuring greater diversity in the remaining descriptions. BiFTA achieves superior zero-shot performance on 6 benchmark datasets for both ViT-based and ResNet-based CLIP, justifying the necessity to remove redundant information in visual-text alignment.
comment: 25 pages
HINT: Hierarchical Interaction Modeling for Autoregressive Multi-Human Motion Generation
Text-driven multi-human motion generation with complex interactions remains a challenging problem. Despite progress in performance, existing offline methods that generate fixed-length motions with a fixed number of agents, are inherently limited in handling long or variable text, and varying agent counts. These limitations naturally encourage autoregressive formulations, which predict future motions step by step conditioned on all past trajectories and current text guidance. In this work, we introduce HINT, the first autoregressive framework for multi-human motion generation with Hierarchical INTeraction modeling in diffusion. First, HINT leverages a disentangled motion representation within a canonicalized latent space, decoupling local motion semantics from inter-person interactions. This design facilitates direct adaptation to varying numbers of human participants without requiring additional refinement. Second, HINT adopts a sliding-window strategy for efficient online generation, and aggregates local within-window and global cross-window conditions to capture past human history, inter-person dependencies, and align with text guidance. This strategy not only enables fine-grained interaction modeling within each window but also preserves long-horizon coherence across all the long sequence. Extensive experiments on public benchmarks demonstrate that HINT matches the performance of strong offline models and surpasses autoregressive baselines. Notably, on InterHuman, HINT achieves an FID of 3.100, significantly improving over the previous state-of-the-art score of 5.154.
RepSFNet : A Single Fusion Network with Structural Reparameterization for Crowd Counting
Crowd counting remains challenging in variable-density scenes due to scale variations, occlusions, and the high computational cost of existing models. To address these issues, we propose RepSFNet (Reparameterized Single Fusion Network), a lightweight architecture designed for accurate and real-time crowd estimation. RepSFNet leverages a RepLK-ViT backbone with large reparameterized kernels for efficient multi-scale feature extraction. It further integrates a Feature Fusion module combining Atrous Spatial Pyramid Pooling (ASPP) and Context-Aware Network (CAN) to achieve robust, density-adaptive context modeling. A Concatenate Fusion module is employed to preserve spatial resolution and generate high-quality density maps. By avoiding attention mechanisms and multi-branch designs, RepSFNet significantly reduces parameters and computational complexity. The training objective combines Mean Squared Error and Optimal Transport loss to improve both count accuracy and spatial distribution alignment. Experiments conducted on ShanghaiTech, NWPU, and UCF-QNRF datasets demonstrate that RepSFNet achieves competitive accuracy while reducing inference latency by up to 34 percent compared to recent state-of-the-art methods, making it suitable for real-time and low-power edge computing applications.
comment: 6 pages. Published in Proceedings of the IEEE International Conference on Advanced Video and Signal-Based Surveillance (AVSS) 2025
Dual-Modality IoT Framework for Integrated Access Control and Environmental Safety Monitoring with Real-Time Cloud Analytics
The integration of physical security systems with environmental safety monitoring represents a critical advancement in smart infrastructure management. Traditional approaches maintain these systems as independent silos, creating operational inefficiencies, delayed emergency responses, and increased management complexity. This paper presents a comprehensive dual-modality Internet of Things framework that seamlessly integrates RFID-based access control with multi-sensor environmental safety monitoring through a unified cloud architecture. The system comprises two coordinated subsystems: Subsystem 1 implements RFID authentication with servo-actuated gate control and real-time Google Sheets logging, while Subsystem 2 provides comprehensive safety monitoring incorporating flame detection, water flow measurement, LCD status display, and personnel identification. Both subsystems utilize ESP32 microcontrollers for edge processing and wireless connectivity. Experimental evaluation over 45 days demonstrates exceptional performance metrics: 99.2\% RFID authentication accuracy with 0.82-second average response time, 98.5\% flame detection reliability within 5-meter range, and 99.8\% cloud data logging success rate. The system maintains operational integrity during network disruptions through intelligent local caching mechanisms and achieves total implementation cost of 5,400 BDT (approximately \$48), representing an 82\% reduction compared to commercial integrated solutions. This research establishes a practical framework for synergistic security-safety integration, demonstrating that professional-grade performance can be achieved through careful architectural design and component optimization while maintaining exceptional cost-effectiveness and accessibility for diverse application scenarios.
RAW-Flow: Advancing RGB-to-RAW Image Reconstruction with Deterministic Latent Flow Matching AAAI2026
RGB-to-RAW reconstruction, or the reverse modeling of a camera Image Signal Processing (ISP) pipeline, aims to recover high-fidelity RAW data from RGB images. Despite notable progress, existing learning-based methods typically treat this task as a direct regression objective and struggle with detail inconsistency and color deviation, due to the ill-posed nature of inverse ISP and the inherent information loss in quantized RGB images. To address these limitations, we pioneer a generative perspective by reformulating RGB-to-RAW reconstruction as a deterministic latent transport problem and introduce a novel framework named RAW-Flow, which leverages flow matching to learn a deterministic vector field in latent space, to effectively bridge the gap between RGB and RAW representations and enable accurate reconstruction of structural details and color information. To further enhance latent transport, we introduce a cross-scale context guidance module that injects hierarchical RGB features into the flow estimation process. Moreover, we design a dual-domain latent autoencoder with a feature alignment constraint to support the proposed latent transport framework, which jointly encodes RGB and RAW inputs while promoting stable training and high-fidelity reconstruction. Extensive experiments demonstrate that RAW-Flow outperforms state-of-the-art approaches both quantitatively and visually.
comment: AAAI2026 Oral
CURVE: Learning Causality-Inspired Invariant Representations for Robust Scene Understanding via Uncertainty-Guided Regularization
Scene graphs provide structured abstractions for scene understanding, yet they often overfit to spurious correlations, severely hindering out-of-distribution generalization. To address this limitation, we propose CURVE, a causality-inspired framework that integrates variational uncertainty modeling with uncertainty-guided structural regularization to suppress high-variance, environment-specific relations. Specifically, we apply prototype-conditioned debiasing to disentangle invariant interaction dynamics from environment-dependent variations, promoting a sparse and domain-stable topology. Empirically, we evaluate CURVE in zero-shot transfer and low-data sim-to-real adaptation, verifying its ability to learn domain-stable sparse topologies and provide reliable uncertainty estimates to support risk prediction under distribution shifts.
Everything in Its Place: Benchmarking Spatial Intelligence of Text-to-Image Models ICLR 2026
Text-to-image (T2I) models have achieved remarkable success in generating high-fidelity images, but they often fail in handling complex spatial relationships, e.g., spatial perception, reasoning, or interaction. These critical aspects are largely overlooked by current benchmarks due to their short or information-sparse prompt design. In this paper, we introduce SpatialGenEval, a new benchmark designed to systematically evaluate the spatial intelligence of T2I models, covering two key aspects: (1) SpatialGenEval involves 1,230 long, information-dense prompts across 25 real-world scenes. Each prompt integrates 10 spatial sub-domains and corresponding 10 multi-choice question-answer pairs, ranging from object position and layout to occlusion and causality. Our extensive evaluation of 21 state-of-the-art models reveals that higher-order spatial reasoning remains a primary bottleneck. (2) To demonstrate that the utility of our information-dense design goes beyond simple evaluation, we also construct the SpatialT2I dataset. It contains 15,400 text-image pairs with rewritten prompts to ensure image consistency while preserving information density. Fine-tuned results on current foundation models (i.e., Stable Diffusion-XL, Uniworld-V1, OmniGen2) yield consistent performance gains (+4.2%, +5.7%, +4.4%) and more realistic effects in spatial relations, highlighting a data-centric paradigm to achieve spatial intelligence in T2I models.
comment: Accepted by ICLR 2026
PalmBridge: A Plug-and-Play Feature Alignment Framework for Open-Set Palmprint Verification
Palmprint recognition is widely used in biometric systems, yet real-world performance often degrades due to feature distribution shifts caused by heterogeneous deployment conditions. Most deep palmprint models assume a closed and stationary distribution, leading to overfitting to dataset-specific textures rather than learning domain-invariant representations. Although data augmentation is commonly used to mitigate this issue, it assumes augmented samples can approximate the target deployment distribution, an assumption that often fails under significant domain mismatch. To address this limitation, we propose PalmBridge, a plug-and-play feature-space alignment framework for open-set palmprint verification based on vector quantization. Rather than relying solely on data-level augmentation, PalmBridge learns a compact set of representative vectors directly from training features. During enrollment and verification, each feature vector is mapped to its nearest representative vector under a minimum-distance criterion, and the mapped vector is then blended with the original vector. This design suppresses nuisance variation induced by domain shifts while retaining discriminative identity cues. The representative vectors are jointly optimized with the backbone network using task supervision, a feature-consistency objective, and an orthogonality regularization term to form a stable and well-structured shared embedding space. Furthermore, we analyze feature-to-representative mappings via assignment consistency and collision rate to assess model's sensitivity to blending weights. Experiments on multiple palmprint datasets and backbone architectures show that PalmBridge consistently reduces EER in intra-dataset open-set evaluation and improves cross-dataset generalization with negligible to modest runtime overhead.
MMSF: Multitask and Multimodal Supervised Framework for WSI Classification and Survival Analysis
Multimodal evidence is critical in computational pathology: gigapixel whole slide images capture tumor morphology, while patient-level clinical descriptors preserve complementary context for prognosis. Integrating such heterogeneous signals remains challenging because feature spaces exhibit distinct statistics and scales. We introduce MMSF, a multitask and multimodal supervised framework built on a linear-complexity MIL backbone that explicitly decomposes and fuses cross-modal information. MMSF comprises a graph feature extraction module embedding tissue topology at the patch level, a clinical data embedding module standardizing patient attributes, a feature fusion module aligning modality-shared and modality-specific representations, and a Mamba-based MIL encoder with multitask prediction heads. Experiments on CAMELYON16 and TCGA-NSCLC demonstrate 2.1--6.6\% accuracy and 2.2--6.9\% AUC improvements over competitive baselines, while evaluations on five TCGA survival cohorts yield 7.1--9.8\% C-index improvements compared with unimodal methods and 5.6--7.1\% over multimodal alternatives.
comment: Submitted to "Biomedical Signal Processing and Control"
Test-Time Adaptation for Anomaly Segmentation via Topology-Aware Optimal Transport Chaining
Deep topological data analysis (TDA) offers a principled framework for capturing structural invariants such as connectivity and cycles that persist across scales, making it a natural fit for anomaly segmentation (AS). Unlike thresholdbased binarisation, which produces brittle masks under distribution shift, TDA allows anomalies to be characterised as disruptions to global structure rather than local fluctuations. We introduce TopoOT, a topology-aware optimal transport (OT) framework that integrates multi-filtration persistence diagrams (PDs) with test-time adaptation (TTA). Our key innovation is Optimal Transport Chaining, which sequentially aligns PDs across thresholds and filtrations, yielding geodesic stability scores that identify features consistently preserved across scales. These stabilityaware pseudo-labels supervise a lightweight head trained online with OT-consistency and contrastive objectives, ensuring robust adaptation under domain shift. Across standard 2D and 3D anomaly detection benchmarks, TopoOT achieves state-of-the-art performance, outperforming the most competitive methods by up to +24.1% mean F1 on 2D datasets and +10.2% on 3D AS benchmarks.
GVGS: Gaussian Visibility-Aware Multi-View Geometry for Accurate Surface Reconstruction
3D Gaussian Splatting enables efficient optimization and high-quality rendering, yet accurate surface reconstruction remains challenging. Prior methods improve surface reconstruction by refining Gaussian depth estimates, either via multi-view geometric consistency or through monocular depth priors. However, multi-view constraints become unreliable under large geometric discrepancies, while monocular priors suffer from scale ambiguity and local inconsistency, ultimately leading to inaccurate Gaussian depth supervision. To address these limitations, we introduce a Gaussian visibility-aware multi-view geometric consistency constraint that aggregates the visibility of shared Gaussian primitives across views, enabling more accurate and stable geometric supervision. In addition, we propose a progressive quadtree-calibrated Monocular depth constraint that performs block-wise affine calibration from coarse to fine spatial scales, mitigating the scale ambiguity of depth priors while preserving fine-grained surface details. Extensive experiments on DTU and TNT datasets demonstrate consistent improvements in geometric accuracy over prior Gaussian-based and implicit surface reconstruction methods. Codes are available at an anonymous repository: https://github.com/GVGScode/GVGS.
UnlearnShield: Shielding Forgotten Privacy against Unlearning Inversion
Machine unlearning is an emerging technique that aims to remove the influence of specific data from trained models, thereby enhancing privacy protection. However, recent research has uncovered critical privacy vulnerabilities, showing that adversaries can exploit unlearning inversion to reconstruct data that was intended to be erased. Despite the severity of this threat, dedicated defenses remain lacking. To address this gap, we propose UnlearnShield, the first defense specifically tailored to counter unlearning inversion. UnlearnShield introduces directional perturbations in the cosine representation space and regulates them through a constraint module to jointly preserve model accuracy and forgetting efficacy, thereby reducing inversion risk while maintaining utility. Experiments demonstrate that it achieves a good trade-off among privacy protection, accuracy, and forgetting.
comment: This work has been accepted by ICASSP 2026
CPiRi: Channel Permutation-Invariant Relational Interaction for Multivariate Time Series Forecasting ICLR 2026
Current methods for multivariate time series forecasting can be classified into channel-dependent and channel-independent models. Channel-dependent models learn cross-channel features but often overfit the channel ordering, which hampers adaptation when channels are added or reordered. Channel-independent models treat each channel in isolation to increase flexibility, yet this neglects inter-channel dependencies and limits performance. To address these limitations, we propose \textbf{CPiRi}, a \textbf{channel permutation invariant (CPI)} framework that infers cross-channel structure from data rather than memorizing a fixed ordering, enabling deployment in settings with structural and distributional co-drift without retraining. CPiRi couples \textbf{spatio-temporal decoupling architecture} with \textbf{permutation-invariant regularization training strategy}: a frozen pretrained temporal encoder extracts high-quality temporal features, a lightweight spatial module learns content-driven inter-channel relations, while a channel shuffling strategy enforces CPI during training. We further \textbf{ground CPiRi in theory} by analyzing permutation equivariance in multivariate time series forecasting. Experiments on multiple benchmarks show state-of-the-art results. CPiRi remains stable when channel orders are shuffled and exhibits strong \textbf{inductive generalization} to unseen channels even when trained on \textbf{only half} of the channels, while maintaining \textbf{practical efficiency} on large-scale datasets. The source code is released at https://github.com/JasonStraka/CPiRi.
comment: 22 pages, ICLR 2026
SemBind: Binding Diffusion Watermarks to Semantics Against Black-Box Forgery Attacks
Latent-based watermarks, integrated into the generation process of latent diffusion models (LDMs), simplify detection and attribution of generated images. However, recent black-box forgery attacks, where an attacker needs at least one watermarked image and black-box access to the provider's model, can embed the provider's watermark into images not produced by the provider, posing outsized risk to provenance and trust. We propose SemBind, the first defense framework for latent-based watermarks that resists black-box forgery by binding latent signals to image semantics via a learned semantic masker. Trained with contrastive learning, the masker yields near-invariant codes for the same prompt and near-orthogonal codes across prompts; these codes are reshaped and permuted to modulate the target latent before any standard latent-based watermark. SemBind is generally compatible with existing latent-based watermarking schemes and keeps image quality essentially unchanged, while a simple mask-ratio parameter offers a tunable trade-off between anti-forgery strength and robustness. Across four mainstream latent-based watermark methods, our SemBind-enabled anti-forgery variants markedly reduce false acceptance under black-box forgery while providing a controllable robustness-security balance.
OSDEnhancer: Taming Real-World Space-Time Video Super-Resolution with One-Step Diffusion
Diffusion models (DMs) have demonstrated exceptional success in video super-resolution (VSR), showcasing a powerful capacity for generating fine-grained details. However, their potential for space-time video super-resolution (STVSR), which necessitates not only recovering realistic visual content from low-resolution to high-resolution but also improving the frame rate with coherent temporal dynamics, remains largely underexplored. Moreover, existing STVSR methods predominantly address spatiotemporal upsampling under simplified degradation assumptions, which often struggle in real-world scenarios with complex unknown degradations. Such a high demand for reconstruction fidelity and temporal consistency makes the development of a robust STVSR framework particularly non-trivial. To address these challenges, we propose OSDEnhancer, a novel framework that, to the best of our knowledge, represents the first method to achieve real-world STVSR through an efficient one-step diffusion process. OSDEnhancer initializes essential spatiotemporal structures through a linear pre-interpolation strategy and pivots on training temporal refinement and spatial enhancement mixture of experts (TR-SE MoE), which allows distinct expert pathways to progressively learn robust, specialized representations for temporal coherence and spatial detail, further collaboratively reinforcing each other during inference. A bidirectional deformable variational autoencoder (VAE) decoder is further introduced to perform recurrent spatiotemporal aggregation and propagation, enhancing cross-frame reconstruction fidelity. Experiments demonstrate that the proposed method achieves state-of-the-art performance while maintaining superior generalization capability in real-world scenarios.
comment: 17 pages, 10 figures. Code will be released upon publication
TPGDiff: Hierarchical Triple-Prior Guided Diffusion for Image Restoration
All-in-one image restoration aims to address diverse degradation types using a single unified model. Existing methods typically rely on degradation priors to guide restoration, yet often struggle to reconstruct content in severely degraded regions. Although recent works leverage semantic information to facilitate content generation, integrating it into the shallow layers of diffusion models often disrupts spatial structures (\emph{e.g.}, blurring artifacts). To address this issue, we propose a Triple-Prior Guided Diffusion (TPGDiff) network for unified image restoration. TPGDiff incorporates degradation priors throughout the diffusion trajectory, while introducing structural priors into shallow layers and semantic priors into deep layers, enabling hierarchical and complementary prior guidance for image reconstruction. Specifically, we leverage multi-source structural cues as structural priors to capture fine-grained details and guide shallow layers representations. To complement this design, we further develop a distillation-driven semantic extractor that yields robust semantic priors, ensuring reliable high-level guidance at deep layers even under severe degradations. Furthermore, a degradation extractor is employed to learn degradation-aware priors, enabling stage-adaptive control of the diffusion process across all timesteps. Extensive experiments on both single- and multi-degradation benchmarks demonstrate that TPGDiff achieves superior performance and generalization across diverse restoration scenarios. Our project page is: https://leoyjtu.github.io/tpgdiff-project.
Structure-constrained Language-informed Diffusion Model for Unpaired Low-dose Computed Tomography Angiography Reconstruction
The application of iodinated contrast media (ICM) improves the sensitivity and specificity of computed tomography (CT) for a wide range of clinical indications. However, overdose of ICM can cause problems such as kidney damage and life-threatening allergic reactions. Deep learning methods can generate CT images of normal-dose ICM from low-dose ICM, reducing the required dose while maintaining diagnostic power. However, existing methods are difficult to realize accurate enhancement with incompletely paired images, mainly because of the limited ability of the model to recognize specific structures. To overcome this limitation, we propose a Structure-constrained Language-informed Diffusion Model (SLDM), a unified medical generation model that integrates structural synergy and spatial intelligence. First, the structural prior information of the image is effectively extracted to constrain the model inference process, thus ensuring structural consistency in the enhancement process. Subsequently, semantic supervision strategy with spatial intelligence is introduced, which integrates the functions of visual perception and spatial reasoning, thus prompting the model to achieve accurate enhancement. Finally, the subtraction angiography enhancement module is applied, which serves to improve the contrast of the ICM agent region to suitable interval for observation. Qualitative analysis of visual comparison and quantitative results of several metrics demonstrate the effectiveness of our method in angiographic reconstruction for low-dose contrast medium CT angiography.
Physically Guided Visual Mass Estimation from a Single RGB Image
Estimating object mass from visual input is challenging because mass depends jointly on geometric volume and material-dependent density, neither of which is directly observable from RGB appearance. Consequently, mass prediction from pixels is ill-posed and therefore benefits from physically meaningful representations to constrain the space of plausible solutions. We propose a physically structured framework for single-image mass estimation that addresses this ambiguity by aligning visual cues with the physical factors governing mass. From a single RGB image, we recover object-centric three-dimensional geometry via monocular depth estimation to inform volume and extract coarse material semantics using a vision-language model to guide density-related reasoning. These geometry, semantic, and appearance representations are fused through an instance-adaptive gating mechanism, and two physically guided latent factors (volume- and density-related) are predicted through separate regression heads under mass-only supervision. Experiments on image2mass and ABO-500 show that the proposed method consistently outperforms state-of-the-art methods.
Bridging the Applicator Gap with Data-Doping:Dual-Domain Learning for Precise Bladder Segmentation in CT-Guided Brachytherapy
Performance degradation due to covariate shift remains a major challenge for deep learning models in medical image segmentation. An open question is whether samples from a shifted distribution can effectively support learning when combined with limited target domain data. We investigate this problem in the context of bladder segmentation in CT guided gynecological brachytherapy, a critical task for accurate dose optimization and organ at risk sparing. While CT scans without brachytherapy applicators (no applicator: NA) are widely available, scans with applicators inserted (with applicator: WA) are scarce and exhibit substantial anatomical deformation and imaging artifacts, making automated segmentation particularly difficult. We propose a dual domain learning strategy that integrates NA and WA CT data to improve robustness and generalizability under covariate shift. Using a curated assorted dataset, we show that NA data alone fail to capture the anatomical and artifact related characteristics of WA images. However, introducing a modest proportion of WA data into a predominantly NA training set leads to significant performance improvements. Through systematic experiments across axial, coronal, and sagittal planes using multiple deep learning architectures, we demonstrate that doping only 10 to 30 percent WA data achieves segmentation performance comparable to models trained exclusively on WA data. The proposed approach attains Dice similarity coefficients of up to 0.94 and Intersection over Union scores of up to 0.92, indicating effective domain adaptation and improved clinical reliability. This study highlights the value of integrating anatomically similar but distribution shifted datasets to overcome data scarcity and enhance deep learning based segmentation for brachytherapy treatment planning.
Towards Compact and Robust DNNs via Compression-aware Sharpness Minimization
Sharpness-Aware Minimization (SAM) has recently emerged as an effective technique for improving DNN robustness to input variations. However, its interplay with the compactness requirements of on-device DNN deployments remains less explored. Simply pruning a SAM-trained model can undermine robustness, since flatness in the continuous parameter space does not necessarily translate to robustness under the discrete structural changes induced by pruning. Conversely, applying SAM after pruning may be fundamentally constrained by architectural limitations imposed by an early, robustness-agnostic pruning pattern. To address this gap, we propose Compression-aware ShArpness Minimization (C-SAM), a framework that shifts sharpness-aware learning from parameter perturbations to mask perturbations. By explicitly perturbing pruning masks during training, C-SAM promotes a flatter loss landscape with respect to model structure, enabling the discovery of pruning patterns that simultaneously optimize model compactness and robustness to input variations. Extensive experiments on CelebA-HQ, Flowers-102, and CIFAR-10-C across ResNet-18, GoogLeNet, and MobileNet-V2 show that C-SAM consistently achieves higher certified robustness than strong baselines, with improvements of up to 42%, while maintaining task accuracy comparable to the corresponding unpruned models.
Artifact-Aware Evaluation for High-Quality Video Generation
With the rapid advancement of video generation techniques, evaluating and auditing generated videos has become increasingly crucial. Existing approaches typically offer coarse video quality scores, lacking detailed localization and categorization of specific artifacts. In this work, we introduce a comprehensive evaluation protocol focusing on three key aspects affecting human perception: Appearance, Motion, and Camera. We define these axes through a taxonomy of 10 prevalent artifact categories reflecting common generative failures observed in video generation. To enable robust artifact detection and categorization, we introduce GenVID, a large-scale dataset of 80k videos generated by various state-of-the-art video generation models, each carefully annotated for the defined artifact categories. Leveraging GenVID, we develop DVAR, a Dense Video Artifact Recognition framework for fine-grained identification and classification of generative artifacts. Extensive experiments show that our approach significantly improves artifact detection accuracy and enables effective filtering of low-quality content.
A Source-Free Approach for Domain Adaptation via Multiview Image Transformation and Latent Space Consistency
Domain adaptation (DA) addresses the challenge of transferring knowledge from a source domain to a target domain where image data distributions may differ. Existing DA methods often require access to source domain data, adversarial training, or complex pseudo-labeling techniques, which are computationally expensive. To address these challenges, this paper introduces a novel source-free domain adaptation method. It is the first approach to use multiview augmentation and latent space consistency techniques to learn domain-invariant features directly from the target domain. Our method eliminates the need for source-target alignment or pseudo-label refinement by learning transferable representations solely from the target domain by enforcing consistency between multiple augmented views in the latent space. Additionally, the method ensures consistency in the learned features by generating multiple augmented views of target domain data and minimizing the distance between their feature representations in the latent space. We also introduce a ConvNeXt-based encoder and design a loss function that combines classification and consistency objectives to drive effective adaptation directly from the target domain. The proposed model achieves an average classification accuracy of 90. 72\%, 84\%, and 97. 12\% in Office-31, Office-Home and Office-Caltech datasets, respectively. Further evaluations confirm that our study improves existing methods by an average classification accuracy increment of +1.23\%, +7.26\%, and +1.77\% on the respective datasets.
comment: Manuscript under review in IEEE Transactions on Image Processing
Hallucination Begins Where Saliency Drops ICLR 2026
Recent studies have examined attention dynamics in large vision-language models (LVLMs) to detect hallucinations. However, existing approaches remain limited in reliably distinguishing hallucinated from factually grounded outputs, as they rely solely on forward-pass attention patterns and neglect gradient-based signals that reveal how token influence propagates through the network. To bridge this gap, we introduce LVLMs-Saliency, a gradient-aware diagnostic framework that quantifies the visual grounding strength of each output token by fusing attention weights with their input gradients. Our analysis uncovers a decisive pattern: hallucinations frequently arise when preceding output tokens exhibit low saliency toward the prediction of the next token, signaling a breakdown in contextual memory retention. Leveraging this insight, we propose a dual-mechanism inference-time framework to mitigate hallucinations: (1) Saliency-Guided Rejection Sampling (SGRS), which dynamically filters candidate tokens during autoregressive decoding by rejecting those whose saliency falls below a context-adaptive threshold, thereby preventing coherence-breaking tokens from entering the output sequence; and (2) Local Coherence Reinforcement (LocoRE), a lightweight, plug-and-play module that strengthens attention from the current token to its most recent predecessors, actively counteracting the contextual forgetting behavior identified by LVLMs-Saliency. Extensive experiments across multiple LVLMs demonstrate that our method significantly reduces hallucination rates while preserving fluency and task performance, offering a robust and interpretable solution for enhancing model reliability. Code is available at: https://github.com/zhangbaijin/LVLMs-Saliency
comment: Accepted in ICLR 2026
StreamFusion: Scalable Sequence Parallelism for Distributed Inference of Diffusion Transformers on GPUs
Diffusion Transformers (DiTs) have gained increasing adoption in high-quality image and video generation. As demand for higher-resolution images and longer videos increases, single-GPU inference becomes inefficient due to increased latency and large activation sizes. Current frameworks employ sequence parallelism (SP) techniques such as Ulysses Attention and Ring Attention to scale inference. However, these implementations have three primary limitations: (1) suboptimal communication patterns for network topologies on modern GPU machines, (2) latency bottlenecks from all-to-all operations in inter-machine communication, and (3) GPU sender-receiver synchronization and computation overheads from using two-sided communication libraries. To address these issues, we present StreamFusion, a topology-aware efficient DiT serving engine. StreamFusion incorporates three key innovations: (1) a topology-aware sequence parallelism technique that accounts for inter- and intra-machine bandwidth differences, (2) Torus Attention, a novel SP technique enabling overlapping of inter-machine all-to-all operations with computation, and (3) a one-sided communication implementation that minimizes GPU sender-receiver synchronization and computation overheads. Our experiments demonstrate that StreamFusion outperforms the state-of-the-art approach by an average of $1.35\times$ (up to $1.77\times$).
Reversible Efficient Diffusion for Image Fusion
Multi-modal image fusion aims to consolidate complementary information from diverse source images into a unified representation. The fused image is expected to preserve fine details and maintain high visual fidelity. While diffusion models have demonstrated impressive generative capabilities in image generation, they often suffer from detail loss when applied to image fusion tasks. This issue arises from the accumulation of noise errors inherent in the Markov process, leading to inconsistency and degradation in the fused results. However, incorporating explicit supervision into end-to-end training of diffusion-based image fusion introduces challenges related to computational efficiency. To address these limitations, we propose the Reversible Efficient Diffusion (RED) model - an explicitly supervised training framework that inherits the powerful generative capability of diffusion models while avoiding the distribution estimation.
BLENDER: Blended Text Embeddings and Diffusion Residuals for Intra-Class Image Synthesis in Deep Metric Learning
The rise of Deep Generative Models (DGM) has enabled the generation of high-quality synthetic data. When used to augment authentic data in Deep Metric Learning (DML), these synthetic samples enhance intra-class diversity and improve the performance of downstream DML tasks. We introduce BLenDeR, a diffusion sampling method designed to increase intra-class diversity for DML in a controllable way by leveraging set-theory inspired union and intersection operations on denoising residuals. The union operation encourages any attribute present across multiple prompts, while the intersection extracts the common direction through a principal component surrogate. These operations enable controlled synthesis of diverse attribute combinations within each class, addressing key limitations of existing generative approaches. Experiments on standard DML benchmarks demonstrate that BLenDeR consistently outperforms state-of-the-art baselines across multiple datasets and backbones. Specifically, BLenDeR achieves 3.7% increase in Recall@1 on CUB-200 and a 1.8% increase on Cars-196, compared to state-of-the-art baselines under standard experimental settings.
Visual Prompt-Agnostic Evolution ICLR 2026
Visual Prompt Tuning (VPT) adapts a frozen Vision Transformer (ViT) to downstream tasks by inserting a small number of learnable prompt tokens into the token sequence at each layer. However, we observe that existing VPT variants often suffer from unstable training dynamics, characterized by gradient oscillations. A layer-wise analysis reveals that shallow-layer prompts tend to stagnate early, while deeper-layer prompts exhibit high-variance oscillations, leading to cross-layer mismatch. These issues slow convergence and degrade final performance. To address these challenges, we propose Prompt-Agnostic Evolution ($\mathtt{PAE}$), which strengthens vision prompt tuning by explicitly modeling prompt dynamics. From a frequency-domain perspective, we initialize prompts in a task-aware direction by uncovering and propagating frequency shortcut patterns that the backbone inherently exploits for recognition. To ensure coherent evolution across layers, we employ a shared Koopman operator that imposes a global linear transformation instead of uncoordinated, layer-specific updates. Finally, inspired by Lyapunov stability theory, we introduce a regularizer that constrains error amplification during evolution. Extensive experiments show that $\mathtt{PAE}$ accelerates convergence with an average $1.41\times$ speedup and improves accuracy by 1--3% on 25 datasets across multiple downstream tasks. Beyond performance, $\mathtt{PAE}$ is prompt-agnostic and lightweight, and it integrates seamlessly with diverse VPT variants without backbone modification or inference-time changes.
comment: Accepted by ICLR 2026
Feature Projection Learning for Better Vision-Language Reasoning
Vision-Language Pre-Trained models, notably CLIP, that utilize contrastive learning have proven highly adept at extracting generalizable visual features. To inherit the well-learned knowledge of VLP models for downstream tasks, several approaches aim to adapt them efficiently with limited supervision. However, these methods either suffer from limited performance, excessive learnable parameters, or extended training times, all of which hinder their effectiveness in adapting the CLIP model to downstream tasks. In this work, we propose a simple yet efficient and effective method called \textit{\textbf{F}eature \textbf{P}rojection \textbf{L}earning(FPL)} to address these problems. Specifically, we develop a projection model that projects class prototype features into the query image feature space and reconstructs the query image feature map. The negative average squared reconstruction error is used as the class score. In this way, we transform the classification problem into a feature projection problem. The final output of this method is a combination of the prediction from the projection model and the original pre-trained CLIP. Comprehensive empirical evaluations confirm that FPL delivers superior accuracy, surpassing the current state-of-the-art methods by a substantial margin.
comment: Accepted to ICASSP 2026
DenseGRPO: From Sparse to Dense Reward for Flow Matching Model Alignment ICLR 2026
Recent GRPO-based approaches built on flow matching models have shown remarkable improvements in human preference alignment for text-to-image generation. Nevertheless, they still suffer from the sparse reward problem: the terminal reward of the entire denoising trajectory is applied to all intermediate steps, resulting in a mismatch between the global feedback signals and the exact fine-grained contributions at intermediate denoising steps. To address this issue, we introduce \textbf{DenseGRPO}, a novel framework that aligns human preference with dense rewards, which evaluates the fine-grained contribution of each denoising step. Specifically, our approach includes two key components: (1) we propose to predict the step-wise reward gain as dense reward of each denoising step, which applies a reward model on the intermediate clean images via an ODE-based approach. This manner ensures an alignment between feedback signals and the contributions of individual steps, facilitating effective training; and (2) based on the estimated dense rewards, a mismatch drawback between the uniform exploration setting and the time-varying noise intensity in existing GRPO-based methods is revealed, leading to an inappropriate exploration space. Thus, we propose a reward-aware scheme to calibrate the exploration space by adaptively adjusting a timestep-specific stochasticity injection in the SDE sampler, ensuring a suitable exploration space at all timesteps. Extensive experiments on multiple standard benchmarks demonstrate the effectiveness of the proposed DenseGRPO and highlight the critical role of the valid dense rewards in flow matching model alignment.
comment: Accepted by ICLR 2026
TRACER: Texture-Robust Affordance Chain-of-Thought for Deformable-Object Refinement
The central challenge in robotic manipulation of deformable objects lies in aligning high-level semantic instructions with physical interaction points under complex appearance and texture variations. Due to near-infinite degrees of freedom, complex dynamics, and heterogeneous patterns, existing vision-based affordance prediction methods often suffer from boundary overflow and fragmented functional regions. To address these issues, we propose TRACER, a Texture-Robust Affordance Chain-of-thought with dEformable-object Refinement framework, which establishes a cross-hierarchical mapping from hierarchical semantic reasoning to appearance-robust and physically consistent functional region refinement. Specifically, a Tree-structured Affordance Chain-of-Thought (TA-CoT) is formulated to decompose high-level task intentions into hierarchical sub-task semantics, providing consistent guidance across various execution stages. To ensure spatial integrity, a Spatial-Constrained Boundary Refinement (SCBR) mechanism is introduced to suppress prediction spillover, guiding the perceptual response to converge toward authentic interaction manifolds. Furthermore, an Interactive Convergence Refinement Flow (ICRF) is developed to aggregate discrete pixels corrupted by appearance noise, significantly enhancing the spatial continuity and physical plausibility of the identified functional regions. Extensive experiments conducted on the Fine-AGDDO15 dataset and a real-world robotic platform demonstrate that TRACER significantly improves affordance grounding precision across diverse textures and patterns inherent to deformable objects. More importantly, it enhances the success rate of long-horizon tasks, effectively bridging the gap between high-level semantic reasoning and low-level physical execution. The source code and dataset will be made publicly available at https://github.com/Dikay1/TRACER.
comment: The source code and dataset will be made publicly available at https://github.com/Dikay1/TRACER
Automated Marine Biofouling Assessment: Benchmarking Computer Vision and Multimodal LLMs on the Level of Fouling Scale
Marine biofouling on vessel hulls poses major ecological, economic, and biosecurity risks. Traditional survey methods rely on diver inspections, which are hazardous and limited in scalability. This work investigates automated classification of biofouling severity on the Level of Fouling (LoF) scale using both custom computer vision models and large multimodal language models (LLMs). Convolutional neural networks, transformer-based segmentation, and zero-shot LLMs were evaluated on an expert-labelled dataset from the New Zealand Ministry for Primary Industries. Computer vision models showed high accuracy at extreme LoF categories but struggled with intermediate levels due to dataset imbalance and image framing. LLMs, guided by structured prompts and retrieval, achieved competitive performance without training and provided interpretable outputs. The results demonstrate complementary strengths across approaches and suggest that hybrid methods integrating segmentation coverage with LLM reasoning offer a promising pathway toward scalable and interpretable biofouling assessment.
comment: Australasian Conference on Robotics and Automation, ACRA2025 13 Pages, 8 Figures
TeleStyle: Content-Preserving Style Transfer in Images and Videos
Content-preserving style transfer, generating stylized outputs based on content and style references, remains a significant challenge for Diffusion Transformers (DiTs) due to the inherent entanglement of content and style features in their internal representations. In this technical report, we present TeleStyle, a lightweight yet effective model for both image and video stylization. Built upon Qwen-Image-Edit, TeleStyle leverages the base model's robust capabilities in content preservation and style customization. To facilitate effective training, we curated a high-quality dataset of distinct specific styles and further synthesized triplets using thousands of diverse, in-the-wild style categories. We introduce a Curriculum Continual Learning framework to train TeleStyle on this hybrid dataset of clean (curated) and noisy (synthetic) triplets. This approach enables the model to generalize to unseen styles without compromising precise content fidelity. Additionally, we introduce a video-to-video stylization module to enhance temporal consistency and visual quality. TeleStyle achieves state-of-the-art performance across three core evaluation metrics: style similarity, content consistency, and aesthetic quality. Code and pre-trained models are available at https://github.com/Tele-AI/TeleStyle
Efficient Token Pruning for LLaDA-V
Diffusion-based large multimodal models, such as LLaDA-V, have demonstrated impressive capabilities in vision-language understanding and generation. However, their bidirectional attention mechanism and diffusion-style iterative denoising paradigm introduce significant computational overhead, as visual tokens are repeatedly processed across all layers and denoising steps. In this work, we conduct an in-depth attention analysis and reveal that, unlike autoregressive decoders, LLaDA-V aggregates cross-modal information predominantly in middle-to-late layers, leading to delayed semantic alignment. Motivated by this observation, we propose a structured token pruning strategy inspired by FastV, selectively removing a proportion of visual tokens at designated layers to reduce FLOPs while preserving critical semantic information. To the best of our knowledge, this is the first work to investigate structured token pruning in diffusion-based large multimodal models. Unlike FastV, which focuses on shallow-layer pruning, our method targets the middle-to-late layers of the first denoising step to align with LLaDA-V's delayed attention aggregation to maintain output quality, and the first-step pruning strategy reduces the computation across all subsequent steps. Our framework provides an empirical basis for efficient LLaDA-V inference and highlights the potential of vision-aware pruning in diffusion-based multimodal models. Across multiple benchmarks, our best configuration reduces computational cost by up to 65% while preserving an average of 95% task performance.
From Specialist to Generalist: Unlocking SAM's Learning Potential on Unlabeled Medical Images
Foundation models like the Segment Anything Model (SAM) show strong generalization, yet adapting them to medical images remains difficult due to domain shift, scarce labels, and the inability of Parameter-Efficient Fine-Tuning (PEFT) to exploit unlabeled data. While conventional models like U-Net excel in semi-supervised medical learning, their potential to assist a PEFT SAM has been largely overlooked. We introduce SC-SAM, a specialist-generalist framework where U-Net provides point-based prompts and pseudo-labels to guide SAM's adaptation, while SAM serves as a powerful generalist supervisor to regularize U-Net. This reciprocal guidance forms a bidirectional co-training loop that allows both models to effectively exploit the unlabeled data. Across prostate MRI and polyp segmentation benchmarks, our method achieves state-of-the-art results, outperforming other existing semi-supervised SAM variants and even medical foundation models like MedSAM, highlighting the value of specialist-generalist cooperation for label-efficient medical image segmentation. Our code is available at https://github.com/vnlvi2k3/SC-SAM.
comment: Accepted to ISBI 2026
Splat Feature Solver ICLR 2026
Feature lifting has emerged as a crucial component in 3D scene understanding, enabling the attachment of rich image feature descriptors (e.g., DINO, CLIP) onto splat-based 3D representations. The core challenge lies in optimally assigning rich general attributes to 3D primitives while addressing the inconsistency issues from multi-view images. We present a unified, kernel- and feature-agnostic formulation of the feature lifting problem as a sparse linear inverse problem, which can be solved efficiently in closed form. Our approach admits a provable upper bound on the global optimal error under convex losses for delivering high quality lifted features. To address inconsistencies and noise in multi-view observations, we introduce two complementary regularization strategies to stabilize the solution and enhance semantic fidelity. Tikhonov Guidance enforces numerical stability through soft diagonal dominance, while Post-Lifting Aggregation filters noisy inputs via feature clustering. Extensive experiments demonstrate that our approach achieves state-of-the-art performance on open-vocabulary 3D segmentation benchmarks, outperforming training-based, grouping-based, and heuristic-forward baselines while producing lifted features in minutes. Our \textbf{code} is available in the \href{https://github.com/saliteta/splat-distiller/tree/main}{\textcolor{blue}{GitHub}}. We provide additional \href{https://splat-distiller.pages.dev/}{\textcolor{blue}{website}} for more visualization, as well as the \href{https://www.youtube.com/watch?v=CH-G5hbvArM}{\textcolor{blue}{video}}.
comment: ICLR 2026 Accepted
BlindSight: Harnessing Sparsity for Efficient Vision-Language Models
Large vision-language models (VLMs) enable joint processing of text and images. However, incorporating vision data significantly increases the prompt length, resulting in a longer time to first token (TTFT). This bottleneck can be alleviated by leveraging the inherent sparsity in the attention computation. Analyzing these attention patterns in VLMs when processing a series of images, we observe the absence of inter-image attention in a substantial portion of layers. Based on this, we propose BlindSight: an approach to optimize multi-image VLM inference using an input-template-aware attention sparsity mask with no runtime overhead. We utilize a dataset to derive a prompt-agnostic categorization for attention heads: Dense, Sink, Intra-Image, and Intra-Image+Sink. We develop a Triton-based GPU kernel to leverage this sparsity. BlindSight achieves a 1.8-3.2x speedup in the attention computation (prompt length 36K-300K). BlindSight generalizes across VLMs (Qwen2-VL, Qwen2.5-VL, Gemma 3), with only a 0.78% absolute accuracy degradation on average on multi-image comprehension benchmarks. Finally, we advocate for the design of efficient VLMs that combine BlindSight-inspired sparse and dense layers.
FLOL: Fast Baselines for Real-World Low-Light Enhancement
Low-Light Image Enhancement (LLIE) is a key task in computational photography and imaging. The problem of enhancing images captured during night or in dark environments has been well-studied in the computer vision literature. However, current deep learning-based solutions struggle with efficiency and robustness for real-world scenarios (e.g., scenes with noise, saturated pixels). We propose a lightweight neural network that combines image processing in the frequency and spatial domains. Our baseline method, FLOL, is one of the fastest models for this task, achieving results comparable to the state-of-the-art on popular real-world benchmarks such as LOLv2, LSRW, MIT-5K and UHD-LL. Moreover, we are able to process 1080p images in real-time under 12ms. Code and models at https://github.com/cidautai/FLOL
comment: Journal Preprint
ReactionMamba: Generating Short & Long Human Reaction Sequences
We present ReactionMamba, a novel framework for generating long 3D human reaction motions. Reaction-Mamba integrates a motion VAE for efficient motion encoding with Mamba-based state-space models to decode temporally consistent reactions. This design enables ReactionMamba to generate both short sequences of simple motions and long sequences of complex motions, such as dance and martial arts. We evaluate ReactionMamba on three datasets--NTU120-AS, Lindy Hop, and InterX--and demonstrate competitive performance in terms of realism, diversity, and long-sequence generation compared to previous methods, including InterFormer, ReMoS, and Ready-to-React, while achieving substantial improvements in inference speed.
Weakly supervised framework for wildlife detection and counting in challenging Arctic environments: a case study on caribou (Rangifer tarandus)
Caribou across the Arctic has declined in recent decades, motivating scalable and accurate monitoring approaches to guide evidence-based conservation actions and policy decisions. Manual interpretation from this imagery is labor-intensive and error-prone, underscoring the need for automatic and reliable detection across varying scenes. Yet, such automatic detection is challenging due to severe background heterogeneity, dominant empty terrain (class imbalance), small or occluded targets, and wide variation in density and scale. To make the detection model (HerdNet) more robust to these challenges, a weakly supervised patch-level pretraining based on a detection network's architecture is proposed. The detection dataset includes five caribou herds distributed across Alaska. By learning from empty vs. non-empty labels in this dataset, the approach produces early weakly supervised knowledge for enhanced detection compared to HerdNet, which is initialized from generic weights. Accordingly, the patch-based pretrain network attained high accuracy on multi-herd imagery (2017) and on an independent year's (2019) test sets (F1: 93.7%/92.6%, respectively), enabling reliable mapping of regions containing animals to facilitate manual counting on large aerial imagery. Transferred to detection, initialization from weakly supervised pretraining yielded consistent gains over ImageNet weights on both positive patches (F1: 92.6%/93.5% vs. 89.3%/88.6%), and full-image counting (F1: 95.5%/93.3% vs. 91.5%/90.4%). Remaining limitations are false positives from animal-like background clutter and false negatives related to low animal density occlusions. Overall, pretraining on coarse labels prior to detection makes it possible to rely on weakly-supervised pretrained weights even when labeled data are limited, achieving results comparable to generic-weight initialization.
comment: 30 pages, 8 figures, submitted to Frontiers in Ecology and Evolution
Dense-SfM: Structure from Motion with Dense Consistent Matching
We present Dense-SfM, a novel Structure from Motion (SfM) framework designed for dense and accurate 3D reconstruction from multi-view images. Sparse keypoint matching, which traditional SfM methods often rely on, limits both accuracy and point density, especially in texture-less areas. Dense-SfM addresses this limitation by integrating dense matching with a Gaussian Splatting (GS) based track extension which gives more consistent, longer feature tracks. To further improve reconstruction accuracy, Dense-SfM is equipped with a multi-view kernelized matching module leveraging transformer and Gaussian Process architectures, for robust track refinement across multi-views. Evaluations on the ETH3D and Texture-Poor SfM datasets show that Dense-SfM offers significant improvements in accuracy and density over state-of-the-art methods. Project page: https://icetea-cv.github.io/densesfm/.
JAFAR: Jack up Any Feature at Any Resolution
Foundation Vision Encoders have become essential for a wide range of dense vision tasks. However, their low-resolution spatial feature outputs necessitate feature upsampling to produce the high-resolution modalities required for downstream tasks. In this work, we introduce JAFAR, a lightweight and flexible feature upsampler that enhances the spatial resolution of visual features from any Foundation Vision Encoder to an arbitrary target resolution. JAFAR employs an attention-based module designed to promote semantic alignment between high-resolution queries, derived from low-level image features, and semantically enriched low-resolution keys, using Spatial Feature Transform (SFT) modulation. Notably, despite the absence of high-resolution supervision, we demonstrate that learning at low upsampling ratios and resolutions generalizes remarkably well to significantly higher output scales. Extensive experiments show that JAFAR effectively recovers fine-grained spatial details and consistently outperforms existing feature upsampling methods across a diverse set of downstream tasks. Project page at https://jafar-upsampler.github.io
comment: Code available at https://github.com/PaulCouairon/JAFAR
REST: Diffusion-based Real-time End-to-end Streaming Talking Head Generation via ID-Context Caching and Asynchronous Streaming Distillation
Diffusion models have significantly advanced the field of talking head generation (THG). However, slow inference speeds and prevalent non-autoregressive paradigms severely constrain the application of diffusion-based THG models. In this study, we propose REST, a pioneering diffusion-based, real-time, end-to-end streaming audio-driven talking head generation framework. To support real-time end-to-end generation, a compact video latent space is first learned through a spatiotemporal variational autoencoder with a high compression ratio. Additionally, to enable semi-autoregressive streaming within the compact video latent space, we introduce an ID-Context Cache mechanism, which integrates ID-Sink and Context-Cache principles into key-value caching for maintaining identity consistency and temporal coherence during long-term streaming generation. Furthermore, an Asynchronous Streaming Distillation (ASD) strategy is proposed to mitigate error accumulation and enhance temporal consistency in streaming generation, leveraging a non-streaming teacher with an asynchronous noise schedule to supervise the streaming student. REST bridges the gap between autoregressive and diffusion-based approaches, achieving a breakthrough in efficiency for applications requiring real-time THG. Experimental results demonstrate that REST outperforms state-of-the-art methods in both generation speed and overall performance.
comment: 27 pages, 10 figures
DiffRatio: Training One-Step Diffusion Models Without Teacher Supervision
Score-based distillation methods (e.g., variational score distillation) train one-step diffusion models by first pre-training a teacher score model and then distilling it into a one-step student model. However, the gradient estimator in the distillation stage usually suffers from two sources of bias: (1) biased teacher supervision due to score estimation error incurred during pre-training, and (2) the student model's score estimation error during distillation. These biases can degrade the quality of the resulting one-step diffusion model. To address this, we propose DiffRatio, a new framework for training one-step diffusion models: instead of estimating the teacher and student scores independently and then taking their difference, we directly estimate the score difference as the gradient of a learned log density ratio between the student and data distributions across diffusion time steps. This approach greatly simplifies the training pipeline, significantly reduces gradient estimation bias, and improves one-step generation quality. Additionally, it also reduces auxiliary network size by using a lightweight density-ratio network instead of two full score networks, which improves computational and memory efficiency. DiffRatio achieves competitive one-step generation results on CIFAR-10 and ImageNet (64x64 and 512x512), outperforming most teacher-supervised distillation methods. Moreover, the learned density ratio naturally serves as a verifier, enabling a principled inference-time parallel scaling scheme that further improves the generation quality without external rewards or additional sequential computation.
comment: 22 pages, 8 figures, 5 tables, 2 algorithms
LogogramNLP: Comparing Visual and Textual Representations of Ancient Logographic Writing Systems for NLP
Standard natural language processing (NLP) pipelines operate on symbolic representations of language, which typically consist of sequences of discrete tokens. However, creating an analogous representation for ancient logographic writing systems is an extremely labor intensive process that requires expert knowledge. At present, a large portion of logographic data persists in a purely visual form due to the absence of transcription -- this issue poses a bottleneck for researchers seeking to apply NLP toolkits to study ancient logographic languages: most of the relevant data are images of writing. This paper investigates whether direct processing of visual representations of language offers a potential solution. We introduce LogogramNLP, the first benchmark enabling NLP analysis of ancient logographic languages, featuring both transcribed and visual datasets for four writing systems along with annotations for tasks like classification, translation, and parsing. Our experiments compare systems that employ recent visual and text encoding strategies as backbones. The results demonstrate that visual representations outperform textual representations for some investigated tasks, suggesting that visual processing pipelines may unlock a large amount of cultural heritage data of logographic languages for NLP-based analyses.
comment: correct wrong refs, typos
TIPO: Text to Image with Text Presampling for Prompt Optimization
TIPO (Text-to-Image Prompt Optimization) introduces an efficient approach for automatic prompt refinement in text-to-image (T2I) generation. Starting from simple user prompts, TIPO leverages a lightweight pre-trained model to expand these prompts into richer and more detailed versions. Conceptually, TIPO samples refined prompts from a targeted sub-distribution within the broader semantic space, preserving the original intent while significantly improving visual quality, coherence, and detail. Unlike resource-intensive methods based on large language models (LLMs) or reinforcement learning (RL), TIPO offers strong computational efficiency and scalability, opening new possibilities for effective automated prompt engineering in T2I tasks. Extensive experiments across multiple domains demonstrate that TIPO achieves stronger text alignment, reduced visual artifacts, and consistently higher human preference rates, while maintaining competitive aesthetic quality. These results highlight the effectiveness of distribution-aligned prompt engineering and point toward broader opportunities for scalable, automated refinement in text-to-image generation.
comment: 50 pages, 28 figures
DaMO: A Data-Efficient Multimodal Orchestrator for Temporal Reasoning with Video LLMs
Large Language Models (LLMs) have recently been extended to the video domain, enabling sophisticated video-language understanding. However, existing Video LLMs often exhibit limitations in fine-grained temporal reasoning, restricting their ability to precisely attribute responses to specific video moments, especially under constrained supervision. We introduce DaMO, a data-efficient Video LLM explicitly designed for accurate temporal reasoning and multimodal understanding. At its core, the proposed Temporal-aware Fuseformer employs a hierarchical dual-stream architecture that progressively captures temporal dynamics within each modality and effectively fuses complementary visual and audio information. To further enhance computational efficiency, DaMO integrates a global residual that reduces spatial redundancy while preserving essential semantic details. We train DaMO via a structured four-stage progressive training paradigm, incrementally equipping the model with multimodal alignment, semantic grounding, and temporal reasoning capabilities. This work also contributes multiple datasets augmented from existing ones with LLM-generated temporally grounded QA pairs for tasks requiring temporal supervision. Comprehensive experiments on temporal grounding and video QA benchmarks demonstrate that DaMO consistently surpasses prior methods, particularly in tasks demanding precise temporal alignment and reasoning. Our work establishes a promising direction for data-efficient video-language modeling.
The SAGES Critical View of Safety Challenge: A Global Benchmark for AI-Assisted Surgical Quality Assessment
Advances in artificial intelligence (AI) for surgical quality assessment promise to democratize access to expertise, with applications in training, guidance, and accreditation. This study presents the SAGES Critical View of Safety (CVS) Challenge, the first AI competition organized by a surgical society, using the CVS in laparoscopic cholecystectomy, a universally recommended yet inconsistently performed safety step, as an exemplar of surgical quality assessment. A global collaboration across 54 institutions in 24 countries engaged hundreds of clinicians and engineers to curate 1,000 videos annotated by 20 surgical experts according to a consensus-validated protocol. The challenge addressed key barriers to real-world deployment in surgery, including achieving high performance, capturing uncertainty in subjective assessment, and ensuring robustness to clinical variability. To enable this scale of effort, we developed EndoGlacier, a framework for managing large, heterogeneous surgical video and multi-annotator workflows. Thirteen international teams participated, achieving up to a 17% relative gain in assessment performance, over 80% reduction in calibration error, and a 17% relative improvement in robustness over the state-of-the-art. Analysis of results highlighted methodological trends linked to model performance, providing guidance for future research toward robust, clinically deployable AI for surgical quality assessment.
comment: 21 pages, 10 figures
WaveletGaussian: Wavelet-domain Diffusion for Sparse-view 3D Gaussian Object Reconstruction
3D Gaussian Splatting (3DGS) has become a powerful representation for image-based object reconstruction, yet its performance drops sharply in sparse-view settings. Prior works address this limitation by employing diffusion models to repair corrupted renders, subsequently using them as pseudo ground truths for later optimization. While effective, such approaches incur heavy computation from the diffusion fine-tuning and repair steps. We present WaveletGaussian, a framework for more efficient sparse-view 3D Gaussian object reconstruction. Our key idea is to shift diffusion into the wavelet domain: diffusion is applied only to the low-resolution LL subband, while high-frequency subbands are refined with a lightweight network. We further propose an efficient online random masking strategy to curate training pairs for diffusion fine-tuning, replacing the commonly used, but inefficient, leave-one-out strategy. Experiments across two benchmark datasets, Mip-NeRF 360 and OmniObject3D, show WaveletGaussian achieves competitive rendering quality while substantially reducing training time.
comment: Accepted to ICASSP 2026
A Roadmap for Greater Public Use of Privacy-Sensitive Government Data: Workshop Report
Government agencies collect and manage a wide range of ever-growing datasets. While such data has the potential to support research and evidence-based policy making, there are concerns that the dissemination of such data could infringe upon the privacy of the individuals (or organizations) from whom such data was collected. To appraise the current state of data sharing, as well as learn about opportunities for stimulating such sharing at a faster pace, a virtual workshop was held on May 21st and 26th, 2021, sponsored by the National Science Foundation (NSF) and National Institute of Standards and Technologies (NIST), and the White House Office of Science and Technology Policy (OSTP), where a multinational collection of researchers and practitioners were brought together to discuss their experiences and learn about recently developed technologies for managing privacy while sharing data. The workshop specifically focused on challenges and successes in government data sharing at various levels. The first day focused on successful examples of new technology applied to sharing of public data, including formal privacy techniques, synthetic data, and cryptographic approaches. Day two emphasized brainstorming sessions on some of the challenges and directions to address them.
comment: 23 pages. Web: https://may2021privacy.github.io/
RacketVision: A Multiple Racket Sports Benchmark for Unified Ball and Racket Analysis AAAI 2026
We introduce RacketVision, a novel dataset and benchmark for advancing computer vision in sports analytics, covering table tennis, tennis, and badminton. The dataset is the first to provide large-scale, fine-grained annotations for racket pose alongside traditional ball positions, enabling research into complex human-object interactions. It is designed to tackle three interconnected tasks: fine-grained ball tracking, articulated racket pose estimation, and predictive ball trajectory forecasting. Our evaluation of established baselines reveals a critical insight for multi-modal fusion: while naively concatenating racket pose features degrades performance, a CrossAttention mechanism is essential to unlock their value, leading to trajectory prediction results that surpass strong unimodal baselines. RacketVision provides a versatile resource and a strong starting point for future research in dynamic object tracking, conditional motion forecasting, and multimodal analysis in sports. Project page at https://github.com/OrcustD/RacketVision
comment: Accepted to AAAI 2026 (Oral)
UDEEP: Edge-based Computer Vision for In-Situ Underwater Crayfish and Plastic Detection
Invasive signal crayfish have a detrimental impact on ecosystems. They spread the fungal-type crayfish plague disease (Aphanomyces astaci) that is lethal to the native white clawed crayfish, the only native crayfish species in Britain. Invasive signal crayfish extensively burrow, causing habitat destruction, erosion of river banks and adverse changes in water quality, while also competing with native species for resources leading to declines in native populations. Moreover, pollution exacerbates the vulnerability of White-clawed crayfish, with their populations declining by over 90%. To safeguard aquatic ecosystems, it is imperative to address the challenges posed by invasive species and pollution in aquatic ecosystem's. This article introduces the Cognitive Edge Device (CED) computing platform for the detection of crayfish and plastic. It also presents two publicly available underwater datasets, annotated with sequences of crayfish and aquatic plastic debris. Four You Only Look Once (YOLO) variants were trained and evaluated for crayfish and plastic object detection. YOLOv5s achieved the highest detection accuracy, with an mAP@0.5 of 0.90, and achieved the best precision
Atomic Depth Estimation From Noisy Electron Microscopy Data Via Deep Learning
We present a novel approach for extracting 3D atomic-level information from transmission electron microscopy (TEM) images affected by significant noise. The approach is based on formulating depth estimation as a semantic segmentation problem. We address the resulting segmentation problem by training a deep convolutional neural network to generate pixel-wise depth segmentation maps using simulated data corrupted by synthetic noise. The proposed method was applied to estimate the depth of atomic columns in CeO2 nanoparticles from simulated images and real-world TEM data. Our experiments show that the resulting depth estimates are accurate, calibrated and robust to noise.
Random forest-based out-of-distribution detection for robust lung cancer segmentation
Accurate detection and segmentation of cancerous lesions from computed tomography (CT) scans is essential for automated treatment planning and cancer treatment response assessment. Transformer-based models with self-supervised pretraining can produce reliably accurate segmentation from in-distribution (ID) data but degrade when applied to out-of-distribution (OOD) datasets. We address this challenge with RF-Deep, a random forest classifier that utilizes deep features from a pretrained transformer encoder of the segmentation model to detect OOD scans and enhance segmentation reliability. The segmentation model comprises a Swin Transformer encoder, pretrained with masked image modeling (SimMIM) on 10,432 unlabeled 3D CT scans covering cancerous and non-cancerous conditions, with a convolution decoder, trained to segment lung cancers in 317 3D scans. Independent testing was performed on 603 3D CT public datasets that included one ID dataset and four OOD datasets comprising chest CTs with pulmonary embolism (PE) and COVID-19, and abdominal CTs with kidney cancers and healthy volunteers. RF-Deep detected OOD cases with a FPR95 of 18.26%, 27.66%, and less than 0.1% on PE, COVID-19, and abdominal CTs, consistently outperforming established OOD approaches. The RF-Deep classifier provides a simple and effective approach to enhance reliability of cancer segmentation in ID and OOD scenarios.
comment: Accepted at SPIE Medical Imaging 2026
FaithSCAN: Model-Driven Single-Pass Hallucination Detection for Faithful Visual Question Answering
Faithfulness hallucinations in VQA occur when vision-language models produce fluent yet visually ungrounded answers, severely undermining their reliability in safety-critical applications. Existing detection methods mainly fall into two categories: external verification approaches relying on auxiliary models or knowledge bases, and uncertainty-driven approaches using repeated sampling or uncertainty estimates. The former suffer from high computational overhead and are limited by external resource quality, while the latter capture only limited facets of model uncertainty and fail to sufficiently explore the rich internal signals associated with the diverse failure modes. Both paradigms thus have inherent limitations in efficiency, robustness, and detection performance. To address these challenges, we propose FaithSCAN: a lightweight network that detects hallucinations by exploiting rich internal signals of VLMs, including token-level decoding uncertainty, intermediate visual representations, and cross-modal alignment features. These signals are fused via branch-wise evidence encoding and uncertainty-aware attention. We also extend the LLM-as-a-Judge paradigm to VQA hallucination and propose a low-cost strategy to automatically generate model-dependent supervision signals, enabling supervised training without costly human labels while maintaining high detection accuracy. Experiments on multiple VQA benchmarks show that FaithSCAN significantly outperforms existing methods in both effectiveness and efficiency. In-depth analysis shows hallucinations arise from systematic internal state variations in visual perception, cross-modal reasoning, and language decoding. Different internal signals provide complementary diagnostic cues, and hallucination patterns vary across VLM architectures, offering new insights into the underlying causes of multimodal hallucinations.
comment: 21 pages, 13 figures, 8 tables
GeoDiff3D: Self-Supervised 3D Scene Generation with Geometry-Constrained 2D Diffusion Guidance
3D scene generation is a core technology for gaming, film/VFX, and VR/AR. Growing demand for rapid iteration, high-fidelity detail, and accessible content creation has further increased interest in this area. Existing methods broadly follow two paradigms - indirect 2D-to-3D reconstruction and direct 3D generation - but both are limited by weak structural modeling and heavy reliance on large-scale ground-truth supervision, often producing structural artifacts, geometric inconsistencies, and degraded high-frequency details in complex scenes. We propose GeoDiff3D, an efficient self-supervised framework that uses coarse geometry as a structural anchor and a geometry-constrained 2D diffusion model to provide texture-rich reference images. Importantly, GeoDiff3D does not require strict multi-view consistency of the diffusion-generated references and remains robust to the resulting noisy, inconsistent guidance. We further introduce voxel-aligned 3D feature aggregation and dual self-supervision to maintain scene coherence and fine details while substantially reducing dependence on labeled data. GeoDiff3D also trains with low computational cost and enables fast, high-quality 3D scene generation. Extensive experiments on challenging scenes show improved generalization and generation quality over existing baselines, offering a practical solution for accessible and efficient 3D scene construction.
EgoLife: Towards Egocentric Life Assistant CVPR 2025
We introduce EgoLife, a project to develop an egocentric life assistant that accompanies and enhances personal efficiency through AI-powered wearable glasses. To lay the foundation for this assistant, we conducted a comprehensive data collection study where six participants lived together for one week, continuously recording their daily activities - including discussions, shopping, cooking, socializing, and entertainment - using AI glasses for multimodal egocentric video capture, along with synchronized third-person-view video references. This effort resulted in the EgoLife Dataset, a comprehensive 300-hour egocentric, interpersonal, multiview, and multimodal daily life dataset with intensive annotation. Leveraging this dataset, we introduce EgoLifeQA, a suite of long-context, life-oriented question-answering tasks designed to provide meaningful assistance in daily life by addressing practical questions such as recalling past relevant events, monitoring health habits, and offering personalized recommendations. To address the key technical challenges of (1) developing robust visual-audio models for egocentric data, (2) enabling identity recognition, and (3) facilitating long-context question answering over extensive temporal information, we introduce EgoButler, an integrated system comprising EgoGPT and EgoRAG. EgoGPT is an omni-modal model trained on egocentric datasets, achieving state-of-the-art performance on egocentric video understanding. EgoRAG is a retrieval-based component that supports answering ultra-long-context questions. Our experimental studies verify their working mechanisms and reveal critical factors and bottlenecks, guiding future improvements. By releasing our datasets, models, and benchmarks, we aim to stimulate further research in egocentric AI assistants.
comment: Accepted to CVPR 2025. Project Page: https://egolife-ai.github.io/. Code: https://github.com/EvolvingLMMs-Lab/EgoLife
AEDR: Training-Free AI-Generated Image Attribution via Autoencoder Double-Reconstruction AAAI 2026
The rapid advancement of image-generation technologies has made it possible for anyone to create photorealistic images using generative models, raising significant security concerns. To mitigate malicious use, tracing the origin of such images is essential. Reconstruction-based attribution methods offer a promising solution, but they often suffer from reduced accuracy and high computational costs when applied to state-of-the-art (SOTA) models. To address these challenges, we propose AEDR (AutoEncoder Double-Reconstruction), a novel training-free attribution method designed for generative models with continuous autoencoders. Unlike existing reconstruction-based approaches that rely on the value of a single reconstruction loss, AEDR performs two consecutive reconstructions using the model's autoencoder, and adopts the ratio of these two reconstruction losses as the attribution signal. This signal is further calibrated using the image homogeneity metric to improve accuracy, which inherently cancels out absolute biases caused by image complexity, with autoencoder-based reconstruction ensuring superior computational efficiency. Experiments on eight top latent diffusion models show that AEDR achieves 25.5% higher attribution accuracy than existing reconstruction-based methods, while requiring only 1% of the computational time.
comment: 7 pages. Accepted by AAAI 2026 Oral
AdaSCALE: Adaptive Scaling for OOD Detection
The ability of the deep learning model to recognize when a sample falls outside its learned distribution is critical for safe and reliable deployment. Recent state-of-the-art out-of-distribution (OOD) detection methods leverage activation shaping to improve the separation between in-distribution (ID) and OOD inputs. These approaches resort to sample-specific scaling but apply a static percentile threshold across all samples regardless of their nature, resulting in suboptimal ID-OOD separability. In this work, we propose \textbf{AdaSCALE}, an adaptive scaling procedure that dynamically adjusts the percentile threshold based on a sample's estimated OOD likelihood. This estimation leverages our key observation: OOD samples exhibit significantly more pronounced activation shifts at high-magnitude activations under minor perturbation compared to ID samples. AdaSCALE enables stronger scaling for likely ID samples and weaker scaling for likely OOD samples, yielding highly separable energy scores. Our approach achieves state-of-the-art OOD detection performance, outperforming the latest rival OptFS by 14.94% in near-OOD and 21.67% in far-OOD datasets in average FPR@95 metric on the ImageNet-1k benchmark across eight diverse architectures. The code is available at: https://github.com/sudarshanregmi/AdaSCALE/
comment: https://github.com/sudarshanregmi/AdaSCALE/
X-SAM: From Segment Anything to Any Segmentation AAAI2026
Large Language Models (LLMs) demonstrate strong capabilities in broad knowledge representation, yet they are inherently deficient in pixel-level perceptual understanding. Although the Segment Anything Model (SAM) represents a significant advancement in visual-prompt-driven image segmentation, it exhibits notable limitations in multi-mask prediction and category-specific segmentation tasks, and it cannot integrate all segmentation tasks within a unified model architecture. To address these limitations, we present X-SAM, a streamlined Multimodal Large Language Model (MLLM) framework that extends the segmentation paradigm from \textit{segment anything} to \textit{any segmentation}. Specifically, we introduce a novel unified framework that enables more advanced pixel-level perceptual comprehension for MLLMs. Furthermore, we propose a new segmentation task, termed Visual GrounDed (VGD) segmentation, which segments all instance objects with interactive visual prompts and empowers MLLMs with visual grounded, pixel-wise interpretative capabilities. To enable effective training on diverse data sources, we present a unified training strategy that supports co-training across multiple datasets. Experimental results demonstrate that X-SAM achieves state-of-the-art performance on a wide range of image segmentation benchmarks, highlighting its efficiency for multimodal, pixel-level visual understanding. Code is available at https://github.com/wanghao9610/X-SAM.
comment: AAAI2026
Progressive $\mathcal{J}$-Invariant Self-supervised Learning for Low-Dose CT Denoising
Self-supervised learning has been increasingly investigated for low-dose computed tomography (LDCT) image denoising, as it alleviates the dependence on paired normal-dose CT (NDCT) data, which are often difficult to collect. However, many existing self-supervised blind-spot denoising methods suffer from training inefficiencies and suboptimal performance due to restricted receptive fields. To mitigate this issue, we propose a novel Progressive $\mathcal{J}$-invariant Learning that maximizes the use of $\mathcal{J}$-invariant to enhance LDCT denoising performance. We introduce a step-wise blind-spot denoising mechanism that enforces conditional independence in a progressive manner, enabling more fine-grained learning for denoising. Furthermore, we explicitly inject a combination of controlled Gaussian and Poisson noise during training to regularize the denoising process and mitigate overfitting. Extensive experiments on the Mayo LDCT dataset demonstrate that the proposed method consistently outperforms existing self-supervised approaches and achieves performance comparable to, or better than, several representative supervised denoising methods.
Energy Efficient Exact and Approximate Systolic Array Architecture for Matrix Multiplication
Deep Neural Networks (DNNs) require highly efficient matrix multiplication engines for complex computations. This paper presents a systolic array architecture incorporating novel exact and approximate processing elements (PEs), designed using energy-efficient positive partial product and negative partial product cells, termed as PPC and NPPC, respectively. The proposed 8-bit exact and approximate PE designs are employed in a 8x8 systolic array, which achieves a energy savings of 22% and 32%, respectively, compared to the existing design. To demonstrate their effectiveness, the proposed PEs are integrated into a systolic array (SA) for Discrete Cosine Transform (DCT) computation, achieving high output quality with a PSNR of 38.21,dB. Furthermore, in an edge detection application using convolution, the approximate PE achieves a PSNR of 30.45,dB. These results highlight the potential of the proposed design to deliver significant energy efficiency while maintaining competitive output quality, making it well-suited for error-resilient image and vision processing applications.
comment: 39th International Conference on VLSI Design (VLSID), 2026
QVGen: Pushing the Limit of Quantized Video Generative Models ICLR 2026
Video diffusion models (DMs) have enabled high-quality video synthesis. Yet, their substantial computational and memory demands pose serious challenges to real-world deployment, even on high-end GPUs. As a commonly adopted solution, quantization has proven notable success in reducing cost for image DMs, while its direct application to video DMs remains ineffective. In this paper, we present QVGen, a novel quantization-aware training (QAT) framework tailored for high-performance and inference-efficient video DMs under extremely low-bit quantization (e.g., 4-bit or below). We begin with a theoretical analysis demonstrating that reducing the gradient norm is essential to facilitate convergence for QAT. To this end, we introduce auxiliary modules ($Φ$) to mitigate large quantization errors, leading to significantly enhanced convergence. To eliminate the inference overhead of $Φ$, we propose a rank-decay strategy that progressively eliminates $Φ$. Specifically, we repeatedly employ singular value decomposition (SVD) and a proposed rank-based regularization $\mathbfγ$ to identify and decay low-contributing components. This strategy retains performance while zeroing out additional inference overhead. Extensive experiments across $4$ state-of-the-art (SOTA) video DMs, with parameter sizes ranging from $1.3\text{B}\sim14\text{B}$, show that QVGen is the first to reach full-precision comparable quality under 4-bit settings. Moreover, it significantly outperforms existing methods. For instance, our 3-bit CogVideoX-2B achieves improvements of $+25.28$ in Dynamic Degree and $+8.43$ in Scene Consistency on VBench. Code and models are available at https://github.com/ModelTC/QVGen.
comment: Accepted by ICLR 2026
TwinFlow: Realizing One-step Generation on Large Models with Self-adversarial Flows ICLR 2026
Recent advances in large multi-modal generative models have demonstrated impressive capabilities in multi-modal generation, including image and video generation. These models are typically built upon multi-step frameworks like diffusion and flow matching, which inherently limits their inference efficiency (requiring 40-100 Number of Function Evaluations (NFEs)). While various few-step methods aim to accelerate the inference, existing solutions have clear limitations. Prominent distillation-based methods, such as progressive and consistency distillation, either require an iterative distillation procedure or show significant degradation at very few steps (< 4-NFE). Meanwhile, integrating adversarial training into distillation (e.g., DMD/DMD2 and SANA-Sprint) to enhance performance introduces training instability, added complexity, and high GPU memory overhead due to the auxiliary trained models. To this end, we propose TwinFlow, a simple yet effective framework for training 1-step generative models that bypasses the need of fixed pretrained teacher models and avoids standard adversarial networks during training, making it ideal for building large-scale, efficient models. On text-to-image tasks, our method achieves a GenEval score of 0.83 in 1-NFE, outperforming strong baselines like SANA-Sprint (a GAN loss-based framework) and RCGM (a consistency-based framework). Notably, we demonstrate the scalability of TwinFlow by full-parameter training on Qwen-Image-20B and transform it into an efficient few-step generator. With just 1-NFE, our approach matches the performance of the original 100-NFE model on both the GenEval and DPG-Bench benchmarks, reducing computational cost by $100\times$ with minor quality degradation. Project page is available at https://zhenglin-cheng.com/twinflow.
comment: arxiv v1, accepted to ICLR 2026
Predictor-Free and Hardware-Aware Federated Neural Architecture Search via Pareto-Guided Supernet Training
Federated Neural Architecture Search (FedNAS) aims to automate model design for privacy-preserving Federated Learning (FL) but currently faces two critical bottlenecks: unguided supernet training that yields suboptimal models, and costly multi-hour pipelines for post-training subnet discovery. We introduce DeepFedNAS, a novel, two-phase framework underpinned by a multi-objective fitness function that synthesizes mathematical network design with architectural heuristics. Enabled by a re-engineered supernet, DeepFedNAS introduces Federated Pareto Optimal Supernet Training, which leverages a pre-computed Pareto-optimal cache of high-fitness architectures as an intelligent curriculum to optimize shared supernet weights. Subsequently, its Predictor-Free Search Method eliminates the need for costly accuracy surrogates by utilizing this fitness function as a direct, zero-cost proxy for accuracy, enabling on-demand subnet discovery in mere seconds. DeepFedNAS achieves state-of-the-art accuracy (e.g., up to 1.21% absolute improvement on CIFAR-100), superior parameter and communication efficiency, and a substantial ~61x speedup in total post-training search pipeline time. By reducing the pipeline from over 20 hours to approximately 20 minutes (including initial cache generation) and enabling 20-second individual subnet searches, DeepFedNAS makes hardware-aware FL deployments instantaneous and practical. The complete source code and experimental scripts are available at: https://github.com/bostankhan6/DeepFedNAS
comment: This paper significantly extends the preliminary work accepted at ESANN 2026. Source Code: https://github.com/bostankhan6/DeepFedNAS
MVAR: Visual Autoregressive Modeling with Scale and Spatial Markovian Conditioning ICLR 2026
Essential to visual generation is efficient modeling of visual data priors. Conventional next-token prediction methods define the process as learning the conditional probability distribution of successive tokens. Recently, next-scale prediction methods redefine the process to learn the distribution over multi-scale representations, significantly reducing generation latency. However, these methods condition each scale on all previous scales and require each token to consider all preceding tokens, exhibiting scale and spatial redundancy. To better model the distribution by mitigating redundancy, we propose Markovian Visual AutoRegressive modeling (MVAR), a novel autoregressive framework that introduces scale and spatial Markov assumptions to reduce the complexity of conditional probability modeling. Specifically, we introduce a scale-Markov trajectory that only takes as input the features of adjacent preceding scale for next-scale prediction, enabling the adoption of a parallel training strategy that significantly reduces GPU memory consumption. Furthermore, we propose spatial-Markov attention, which restricts the attention of each token to a localized neighborhood of size k at corresponding positions on adjacent scales, rather than attending to every token across these scales, for the pursuit of reduced modeling complexity. Building on these improvements, we reduce the computational complexity of attention calculation from O(N^2) to O(Nk), enabling training with just eight NVIDIA RTX 4090 GPUs and eliminating the need for KV cache during inference. Extensive experiments on ImageNet demonstrate that MVAR achieves comparable or superior performance with both small model trained from scratch and large fine-tuned models, while reducing the average GPU memory footprint by 3.0x.
comment: Accepted to ICLR 2026. Project page: https://nuanbaobao.github.io/MVAR
Diffusion in SPAD Signals
We derive the likelihood of a raw signal in a single photon avalanche diode (SPAD), given a fixed photon flux. The raw signal comprises timing of detection events, which are nonlinearly related to the flux. Moreover, they are naturally stochastic. We then derive a score function of the signal. This is a key for solving inverse problems based on SPAD signals. We focus on deriving solutions involving a diffusion model, to express image priors. We demonstrate the effect of low or high photon counts, and the consequence of exploiting timing of detection events.
TBC: A Target-Background Contrast Metric for Low-Altitude Infrared and Visible Image Fusion
Infrared and visible image fusion (IVIF) is a pivotal technology in low-altitude Unmanned Aerial Vehicle (UAV) reconnaissance missions, enabling robust target detection and tracking by integrating thermal saliency with environmental textures. However, traditional no-reference metrics (Statistics-based metrics and Gradient-based metrics) fail in complex low-light environments, termed the ``Noise Trap''. This paper mathematically prove that these metrics are positively correlated with high-frequency sensor noise, paradoxically assigning higher scores to degraded images and misguiding algorithm optimization. To address this, we propose the Target-Background Contrast (TBC) metric. Inspired by Weber's Law, TBC focuses on the relative contrast of salient targets rather than global statistics. Unlike traditional metrics, TBC penalizes background noise and rewards target visibility. Extensive experiments on the DroneVehicle dataset demonstrate the superiority of TBC. Results show that TBC exhibits high ``Semantic Discriminability'' in distinguishing thermal targets from background clutter. Furthermore, TBC achieves remarkable computational efficiency, making it a reliable and real-time standard for intelligent UAV systems.
comment: In the subsequent research, we discovered that the research methods employed in the article were logically unsound and had flaws, making it impossible to draw reliable conclusions. Therefore, we believe it is necessary to retract this article for correction
GraphTARIF: Linear Graph Transformer with Augmented Rank and Improved Focus
Linear attention mechanisms have emerged as efficient alternatives to full self-attention in Graph Transformers, offering linear time complexity. However, existing linear attention models often suffer from a significant drop in expressiveness due to low-rank projection structures and overly uniform attention distributions. We theoretically prove that these properties reduce the class separability of node representations, limiting the model's classification ability. To address this, we propose a novel hybrid framework that enhances both the rank and focus of attention. Specifically, we enhance linear attention by attaching a gated local graph network branch to the value matrix, thereby increasing the rank of the resulting attention map. Furthermore, to alleviate the excessive smoothing effect inherent in linear attention, we introduce a learnable log-power function into the attention scores to reduce entropy and sharpen focus. We theoretically show that this function decreases entropy in the attention distribution, enhancing the separability of learned embeddings. Extensive experiments on both homophilic and heterophilic graph benchmarks demonstrate that our method achieves competitive performance while preserving the scalability of linear attention.
comment: Accepted by WWW 2026. Research Tracks - Graph Algorithms and Modeling for the Web
Benchmarking Multimodal Large Language Models for Missing Modality Completion in Product Catalogues
Missing-modality information on e-commerce platforms, such as absent product images or textual descriptions, often arises from annotation errors or incomplete metadata, impairing both product presentation and downstream applications such as recommendation systems. Motivated by the multimodal generative capabilities of recent Multimodal Large Language Models (MLLMs), this work investigates a fundamental yet underexplored question: can MLLMs generate missing modalities for products in e-commerce scenarios? We propose the Missing Modality Product Completion Benchmark (MMPCBench), which consists of two sub-benchmarks: a Content Quality Completion Benchmark and a Recommendation Benchmark. We further evaluate six state-of-the-art MLLMs from the Qwen2.5-VL and Gemma-3 model families across nine real-world e-commerce categories, focusing on image-to-text and text-to-image completion tasks. Experimental results show that while MLLMs can capture high-level semantics, they struggle with fine-grained word-level and pixel- or patch-level alignment. In addition, performance varies substantially across product categories and model scales, and we observe no trivial correlation between model size and performance, in contrast to trends commonly reported in mainstream benchmarks. We also explore Group Relative Policy Optimization (GRPO) to better align MLLMs with this task. GRPO improves image-to-text completion but does not yield gains for text-to-image completion. Overall, these findings expose the limitations of current MLLMs in real-world cross-modal generation and represent an early step toward more effective missing-modality product completion.
CLIP-Guided Unsupervised Semantic-Aware Exposure Correction
Improper exposure often leads to severe loss of details, color distortion, and reduced contrast. Exposure correction still faces two critical challenges: (1) the ignorance of object-wise regional semantic information causes the color shift artifacts; (2) real-world exposure images generally have no ground-truth labels, and its labeling entails massive manual editing. To tackle the challenges, we propose a new unsupervised semantic-aware exposure correction network. It contains an adaptive semantic-aware fusion module, which effectively fuses the semantic information extracted from a pre-trained Fast Segment Anything Model into a shared image feature space. Then the fused features are used by our multi-scale residual spatial mamba group to restore the details and adjust the exposure. To avoid manual editing, we propose a pseudo-ground truth generator guided by CLIP, which is fine-tuned to automatically identify exposure situations and instruct the tailored corrections. Also, we leverage the rich priors from the FastSAM and CLIP to develop a semantic-prompt consistency loss to enforce semantic consistency and image-prompt alignment for unsupervised training. Comprehensive experimental results illustrate the effectiveness of our method in correcting real-world exposure images and outperforms state-of-the-art unsupervised methods both numerically and visually.
comment: Accepted at ICASSP 2026
Mixing Importance with Diversity: Joint Optimization for KV Cache Compression in Large Vision-Language Models ICLR 2026
Recent large vision-language models (LVLMs) demonstrate remarkable capabilities in processing extended multi-modal sequences, yet the resulting key-value (KV) cache expansion creates a critical memory bottleneck that fundamentally limits deployment scalability. While existing KV cache compression methods focus on retaining high-importance KV pairs to minimize storage, they often overlook the modality-specific semantic redundancy patterns that emerge distinctively in multi-modal KV caches. In this work, we first analyze how, beyond simple importance, the KV cache in LVLMs exhibits varying levels of redundancy across attention heads. We show that relying solely on importance can only cover a subset of the full KV cache information distribution, leading to potential loss of semantic coverage. To address this, we propose MixKV, a novel method that mixes importance with diversity for optimized KV cache compression in LVLMs. MixKV adapts to head-wise semantic redundancy, selectively balancing diversity and importance when compressing KV pairs. Extensive experiments demonstrate that MixKV consistently enhances existing methods across multiple LVLMs. Under extreme compression (budget=64), MixKV improves baseline methods by an average of 5.1% across five multi-modal understanding benchmarks and achieves remarkable gains of 8.0% and 9.0% for SnapKV and AdaKV on GUI grounding tasks, all while maintaining comparable inference efficiency. Furthermore, MixKV extends seamlessly to LLMs with comparable performance gains. Our code is available at https://github.com/xuyang-liu16/MixKV.
comment: Accepted by ICLR 2026. Our code is available at https://github.com/xuyang-liu16/MixKV
Learning Stochastic Bridges for Video Object Removal via Video-to-Video Translation
Existing video object removal methods predominantly rely on diffusion models following a noise-to-data paradigm, where generation starts from uninformative Gaussian noise. This approach discards the rich structural and contextual priors present in the original input video. Consequently, such methods often lack sufficient guidance, leading to incomplete object erasure or the synthesis of implausible content that conflicts with the scene's physical logic. In this paper, we reformulate video object removal as a video-to-video translation task via a stochastic bridge model. Unlike noise-initialized methods, our framework establishes a direct stochastic path from the source video (with objects) to the target video (objects removed). This bridge formulation effectively leverages the input video as a strong structural prior, guiding the model to perform precise removal while ensuring that the filled regions are logically consistent with the surrounding environment. To address the trade-off where strong bridge priors hinder the removal of large objects, we propose a novel adaptive mask modulation strategy. This mechanism dynamically modulates input embeddings based on mask characteristics, balancing background fidelity with generative flexibility. Extensive experiments demonstrate that our approach significantly outperforms existing methods in both visual quality and temporal consistency. The project page is https://bridgeremoval.github.io/.
Semantic Depth Matters: Explaining Errors of Deep Vision Networks through Perceived Class Similarities
Understanding deep neural network (DNN) behavior requires more than evaluating classification accuracy alone; analyzing errors and their predictability is equally crucial. Current evaluation methodologies lack transparency, particularly in explaining the underlying causes of network misclassifications. To address this, we introduce a novel framework that investigates the relationship between the semantic hierarchy depth perceived by a network and its real-data misclassification patterns. Central to our framework is the Similarity Depth (SD) metric, which quantifies the semantic hierarchy depth perceived by a network along with a method of evaluation of how closely the network's errors align with its internally perceived similarity structure. We also propose a graph-based visualization of model semantic relationships and misperceptions. A key advantage of our approach is that leveraging class templates -- representations derived from classifier layer weights -- is applicable to already trained networks without requiring additional data or experiments. Our approach reveals that deep vision networks encode specific semantic hierarchies and that high semantic depth improves the compliance between perceived class similarities and actual errors.
Dynamic Content Moderation in Livestreams: Combining Supervised Classification with MLLM-Boosted Similarity Matching
Content moderation remains a critical yet challenging task for large-scale user-generated video platforms, especially in livestreaming environments where moderation must be timely, multimodal, and robust to evolving forms of unwanted content. We present a hybrid moderation framework deployed at production scale that combines supervised classification for known violations with reference-based similarity matching for novel or subtle cases. This hybrid design enables robust detection of both explicit violations and novel edge cases that evade traditional classifiers. Multimodal inputs (text, audio, visual) are processed through both pipelines, with a multimodal large language model (MLLM) distilling knowledge into each to boost accuracy while keeping inference lightweight. In production, the classification pipeline achieves 67% recall at 80% precision, and the similarity pipeline achieves 76% recall at 80% precision. Large-scale A/B tests show a 6-8% reduction in user views of unwanted livestreams}. These results demonstrate a scalable and adaptable approach to multimodal content governance, capable of addressing both explicit violations and emerging adversarial behaviors.
comment: To be published at KDD 2026 (ADS track)
Beyond Face Swapping: A Diffusion-Based Digital Human Benchmark for Multimodal Deepfake Detection
In recent years, the explosive advancement of deepfake technology has posed a critical and escalating threat to public security: diffusion-based digital human generation. Unlike traditional face manipulation methods, such models can generate highly realistic videos with consistency via multimodal control signals. Their flexibility and covertness pose severe challenges to existing detection strategies. To bridge this gap, we introduce DigiFakeAV, the new large-scale multimodal digital human forgery dataset based on diffusion models. Leveraging five of the latest digital human generation methods and a voice cloning method, we systematically construct a dataset comprising 60,000 videos (8.4 million frames), covering multiple nationalities, skin tones, genders, and real-world scenarios, significantly enhancing data diversity and realism. User studies demonstrate that the misrecognition rate by participants for DigiFakeAV reaches as high as 68%. Moreover, the substantial performance degradation of existing detection models on our dataset further highlights its challenges. To address this problem, we propose DigiShield, an effective detection baseline based on spatiotemporal and cross-modal fusion. By jointly modeling the 3D spatiotemporal features of videos and the semantic-acoustic features of audio, DigiShield achieves state-of-the-art (SOTA) performance on the DigiFakeAV and shows strong generalization on other datasets.
Reasoning in the Dark: Interleaved Vision-Text Reasoning in Latent Space
Multimodal reasoning aims to enhance the capabilities of MLLMs by incorporating intermediate reasoning steps before reaching the final answer. It has evolved from text-only reasoning to the integration of visual information, enabling the thought process to be conveyed through both images and text. Despite its effectiveness, current multimodal reasoning methods depend on explicit reasoning steps that require labor-intensive vision-text annotations and inherently introduce significant inference latency. To address these issues, we introduce multimodal latent reasoning with the advantages of multimodal representation, reduced annotation, and inference efficiency. To facilitate it, we propose Interleaved Vision-Text Latent Reasoning (IVT-LR), which injects both visual and textual information in the reasoning process within the latent space. Specifically, IVT-LR represents each reasoning step by combining two implicit parts: latent text (the hidden states from the previous step) and latent vision (a set of selected image embeddings). We further introduce a progressive multi-stage training strategy to enable MLLMs to perform the above multimodal latent reasoning steps. Experiments on M$^3$CoT and ScienceQA demonstrate that our IVT-LR method achieves an average performance increase of 5.45\% in accuracy, while simultaneously achieving a speed increase of over 5 times compared to existing approaches.
DA-Occ: Direction-Aware 2D Convolution for Efficient and Geometry-Preserving 3D Occupancy Prediction
Efficient and high-accuracy 3D occupancy prediction is crucial for ensuring the performance of autonomous driving (AD) systems. However, many existing methods involve trade-offs between accuracy and efficiency. Some achieve high precision but with slow inference speed, while others adopt purely bird's-eye-view (BEV)-based 2D representations to accelerate processing, inevitably sacrificing vertical cues and compromising geometric integrity. To overcome these limitations, we propose a pure 2D framework that achieves efficient 3D occupancy prediction while preserving geometric integrity. Unlike conventional Lift-Splat-Shoot (LSS) methods that rely solely on depth scores to lift 2D features into 3D space, our approach additionally introduces a height-score projection to encode vertical geometric structure. We further employ direction-aware convolution to extract geometric features along both vertical and horizontal orientations, effectively balancing accuracy and computational efficiency. On the Occ3D-nuScenes, the proposed method achieves an mIoU of 39.3\% and an inference speed of 27.7 FPS, effectively balancing accuracy and efficiency. In simulations on edge devices, the inference speed reaches 14.8 FPS, further demonstrating the method's applicability for real-time deployment in resource-constrained environments.
Fast Converging 3D Gaussian Splatting for 1-Minute Reconstruction
We present a fast 3DGS reconstruction pipeline designed to converge within one minute, developed for the SIGGRAPH Asia 3DGS Fast Reconstruction Challenge. The challenge consists of an initial round using SLAM-generated camera poses (with noisy trajectories) and a final round using COLMAP poses (highly accurate). To robustly handle these heterogeneous settings, we develop a two-stage solution. In the first round, we use reverse per-Gaussian parallel optimization and compact forward splatting based on Taming-GS and Speedy-splat, load-balanced tiling, an anchor-based Neural-Gaussian representation enabling rapid convergence with fewer learnable parameters, initialization from monocular depth and partially from feed-forward 3DGS models, and a global pose refinement module for noisy SLAM trajectories. In the final round, the accurate COLMAP poses change the optimization landscape; we disable pose refinement, revert from Neural-Gaussians back to standard 3DGS to eliminate MLP inference overhead, introduce multi-view consistency-guided Gaussian splitting inspired by Fast-GS, and introduce a depth estimator to supervise the rendered depth. Together, these techniques enable high-fidelity reconstruction under a strict one-minute budget. Our method achieved the top performance with a PSNR of 28.43 and ranked first in the competition.
comment: First Rank of SIGGRAPH Asia 2025 3DGS Challenge. Code available at https://github.com/will-zzy/siggraph_asia
Tri-Reader: An Open-Access, Multi-Stage AI Pipeline for First-Pass Lung Nodule Annotation in Screening CT
Using multiple open-access models trained on public datasets, we developed Tri-Reader, a comprehensive, freely available pipeline that integrates lung segmentation, nodule detection, and malignancy classification into a unified tri-stage workflow. The pipeline is designed to prioritize sensitivity while reducing the candidate burden for annotators. To ensure accuracy and generalizability across diverse practices, we evaluated Tri-Reader on multiple internal and external datasets as compared with expert annotations and dataset-provided reference standards.
comment: 1 figure , 2 tables, 20 page supplement
CAPE: Connectivity-Aware Path Enforcement Loss for Curvilinear Structure Delineation
Promoting the connectivity of curvilinear structures, such as neuronal processes in biomedical scans and blood vessels in CT images, remains a key challenge in semantic segmentation. Traditional pixel-wise loss functions, including cross-entropy and Dice losses, often fail to capture high-level topological connectivity, resulting in topological mistakes in graphs obtained from prediction maps. In this paper, we propose CAPE (Connectivity-Aware Path Enforcement), a novel loss function designed to enforce connectivity in graphs obtained from segmentation maps by optimizing a graph connectivity metric. CAPE uses the graph representation of the ground truth to select node pairs and determine their corresponding paths within the predicted segmentation through a shortest-path algorithm. Using this, we penalize both disconnections and false positive connections, effectively promoting the model to preserve topological correctness. Experiments on 2D and 3D datasets, including neuron and blood vessel tracing demonstrate that CAPE significantly improves topology-aware metrics and outperforms state-of-the-art methods.
XY-Cut++: Advanced Layout Ordering via Hierarchical Mask Mechanism on a Novel Benchmark
Document Reading Order Recovery is a fundamental task in document image understanding, playing a pivotal role in enhancing Retrieval-Augmented Generation (RAG) and serving as a critical preprocessing step for large language models (LLMs). Existing methods often struggle with complex layouts(e.g., multi-column newspapers), high-overhead interactions between cross-modal elements (visual regions and textual semantics), and a lack of robust evaluation benchmarks. We introduce XY-Cut++, an advanced layout ordering method that integrates pre-mask processing, multi-granularity segmentation, and cross-modal matching to address these challenges. Our method significantly enhances layout ordering accuracy compared to traditional XY-Cut techniques. Specifically, XY-Cut++ achieves state-of-the-art performance (98.8 BLEU overall) while maintaining simplicity and efficiency. It outperforms existing baselines by up to 24\% and demonstrates consistent accuracy across simple and complex layouts on the newly introduced DocBench-100 dataset. This advancement establishes a reliable foundation for document structure recovery, setting a new standard for layout ordering tasks and facilitating more effective RAG and LLM preprocessing.
GenAgent: Scaling Text-to-Image Generation via Agentic Multimodal Reasoning
We introduce GenAgent, unifying visual understanding and generation through an agentic multimodal model. Unlike unified models that face expensive training costs and understanding-generation trade-offs, GenAgent decouples these capabilities through an agentic framework: understanding is handled by the multimodal model itself, while generation is achieved by treating image generation models as invokable tools. Crucially, unlike existing modular systems constrained by static pipelines, this design enables autonomous multi-turn interactions where the agent generates multimodal chains-of-thought encompassing reasoning, tool invocation, judgment, and reflection to iteratively refine outputs. We employ a two-stage training strategy: first, cold-start with supervised fine-tuning on high-quality tool invocation and reflection data to bootstrap agent behaviors; second, end-to-end agentic reinforcement learning combining pointwise rewards (final image quality) and pairwise rewards (reflection accuracy), with trajectory resampling for enhanced multi-turn exploration. GenAgent significantly boosts base generator(FLUX.1-dev) performance on GenEval++ (+23.6\%) and WISE (+14\%). Beyond performance gains, our framework demonstrates three key properties: 1) cross-tool generalization to generators with varying capabilities, 2) test-time scaling with consistent improvements across interaction rounds, and 3) task-adaptive reasoning that automatically adjusts to different tasks. Our code will be available at \href{https://github.com/deep-kaixun/GenAgent}{this url}.
NLPrompt: Noise-Label Prompt Learning for Vision-Language Models
The emergence of vision-language foundation models, such as CLIP, has revolutionized image-text representation, enabling a broad range of applications via prompt learning. Despite its promise, real-world datasets often contain noisy labels that can degrade prompt learning performance. In this paper, we demonstrate that using mean absolute error (MAE) loss in prompt learning, named PromptMAE, significantly enhances robustness against noisy labels while maintaining high accuracy. Though MAE is straightforward and recognized for its robustness, it is rarely used in noisy-label learning due to its slow convergence and poor performance outside prompt learning scenarios. To elucidate the robustness of PromptMAE, we leverage feature learning theory to show that MAE can suppress the influence of noisy samples, thereby improving the signal-to-noise ratio and enhancing overall robustness. Additionally, we introduce PromptOT, a prompt-based optimal transport data purification method to enhance the robustness further. PromptOT employs text features in vision-language models as prototypes to construct an optimal transportation matrix. This matrix effectively partitions datasets into clean and noisy subsets, allowing for the application of cross-entropy loss to the clean subset and MAE loss to the noisy subset. Our Noise-Label Prompt Learning method, named NLPrompt, offers a simple and efficient approach that leverages the expressive representations and precise alignment capabilities of vision-language models for robust prompt learning. We validate NLPrompt through extensive experiments across various noise settings, demonstrating significant performance improvements.
Improving Fine-Grained Control via Aggregation of Multiple Diffusion Models
While many diffusion models perform well when controlling particular aspects such as style, character, and interaction, they struggle with fine-grained control due to dataset limitations and intricate model architecture design. This paper introduces a novel training-free algorithm for fine-grained generation, called Aggregation of Multiple Diffusion Models (AMDM). The algorithm integrates features in the latent data space from multiple diffusion models within the same ecosystem into a specified model, thereby activating particular features and enabling fine-grained control. Experimental results demonstrate that AMDM significantly improves fine-grained control without training, validating its effectiveness. Additionally, it reveals that diffusion models initially focus on features such as position, attributes, and style, with later stages improving generation quality and consistency. AMDM offers a new perspective for tackling the challenges of fine-grained conditional generation in diffusion models. Specifically, it allows us to fully utilize existing or develop new conditional diffusion models that control specific aspects, and then aggregate them using the AMDM algorithm. This eliminates the need for constructing complex datasets, designing intricate model architectures, and incurring high training costs. Code is available at: https://github.com/Hammour-steak/AMDM.
AGFS-Tractometry: A Novel Atlas-Guided Fine-Scale Tractometry Approach for Enhanced Along-Tract Group Statistical Comparison Using Diffusion MRI Tractography
Diffusion MRI (dMRI) tractography is currently the only method for in vivo mapping of the brain's white matter (WM) connections. Tractometry is an advanced tractography analysis technique for along-tract profiling to investigate the morphology and microstructural properties along the fiber tracts. Tractometry has become an essential tool for studying local along-tract differences between different populations (e.g., health vs disease). In this study, we propose a novel atlas-guided fine-scale tractometry method, namely AGFS-Tractometry, that leverages tract spatial information and permutation testing to enhance the along-tract statistical analysis between populations. There are two major contributions in AGFS-Tractometry. First, we create a novel atlas-guided tract profiling template that enables consistent, fine-scale, along-tract parcellation of subject-specific fiber tracts. Second, we propose a novel nonparametric permutation testing group comparison method to enable simultaneous analysis across all along-tract parcels while correcting for multiple comparisons. We perform experimental evaluations on synthetic datasets with known group differences and in vivo real data. We compare AGFS-Tractometry with two state-of-the-art tractometry methods, including Automated Fiber-tract Quantification (AFQ) and BUndle ANalytics (BUAN). Our results show that the proposed AGFS-Tractometry obtains enhanced sensitivity and specificity in detecting local WM differences. In the real data analysis experiments, AGFS-Tractometry can identify more regions with significant differences, which are anatomically consistent with the existing literature. Overall, these demonstrate the ability of AGFS-Tractometry to detect subtle or spatially localized WM group-level differences. The created tract profiling template and related code are available at: https://github.com/ZhengRuixi/AGFS-Tractometry.git.
comment: 31 pages and 7 figures
Advancing Multimodal Reasoning: From Optimized Cold Start to Staged Reinforcement Learning
Inspired by the remarkable reasoning capabilities of Deepseek-R1 in complex textual tasks, many works attempt to incentivize similar capabilities in Multimodal Large Language Models (MLLMs) by directly applying reinforcement learning (RL). However, they still struggle to activate complex reasoning. In this paper, rather than examining multimodal RL in isolation, we delve into current training pipelines and identify three crucial phenomena: 1) Effective cold start initialization is critical for enhancing MLLM reasoning. Intriguingly, we find that initializing with carefully selected text data alone can lead to performance surpassing many recent multimodal reasoning models, even before multimodal RL. 2) Standard GRPO applied to multimodal RL suffers from gradient stagnation, which degrades training stability and performance. 3) Subsequent text-only RL training, following the multimodal RL phase, further enhances multimodal reasoning. This staged training approach effectively balances perceptual grounding and cognitive reasoning development. By incorporating the above insights and addressing multimodal RL issues, we introduce ReVisual-R1, achieving a new state-of-the-art among open-source 7B MLLMs on challenging benchmarks including MathVerse, MathVision, WeMath, LogicVista, DynaMath, and challenging AIME2024 and AIME2025.
comment: 19 pages, 6 figures
BRISC: Annotated Dataset for Brain Tumor Segmentation and Classification
Accurate segmentation and classification of brain tumors from Magnetic Resonance Imaging (MRI) remain key challenges in medical image analysis, primarily due to the lack of high-quality, balanced, and diverse datasets with expert annotations. In this work, we address this gap by introducing BRISC, a dataset designed for brain tumor segmentation and classification tasks, featuring high-resolution segmentation masks. The dataset comprises 6,000 contrast-enhanced T1-weighted MRI scans, which were collated from multiple public datasets that lacked segmentation labels. Our primary contribution is the subsequent expert annotation of these images, performed by certified radiologists and physicians. It includes three major tumor types, namely glioma, meningioma, and pituitary, as well as non-tumorous cases. Each sample includes high-resolution labels and is categorized across axial, sagittal, and coronal imaging planes to facilitate robust model development and cross-view generalization. To demonstrate the utility of the dataset, we provide benchmark results for both tasks using standard deep learning models. The BRISC dataset is made publicly available. datasetlink: https://www.kaggle.com/datasets/briscdataset/brisc2025/
MSPCaps: A Multi-Scale Patchify Capsule Network with Cross-Agreement Routing for Visual Recognition
Capsule Network (CapsNet) has demonstrated significant potential in visual recognition by capturing spatial relationships and part-whole hierarchies for learning equivariant feature representations. However, existing CapsNet and variants often rely on a single high-level feature map, overlooking the rich complementary information from multi-scale features. Furthermore, conventional feature fusion strategies (e.g., addition and concatenation) struggle to reconcile multi-scale feature discrepancies, leading to suboptimal classification performance. To address these limitations, we propose the Multi-Scale Patchify Capsule Network (MSPCaps), a novel architecture that integrates multi-scale feature learning and efficient capsule routing. Specifically, MSPCaps consists of three key components: a Multi-Scale ResNet Backbone (MSRB), a Patchify Capsule Layer (PatchifyCaps), and Cross-Agreement Routing (CAR) blocks. First, the MSRB extracts diverse multi-scale feature representations from input images, preserving both fine-grained details and global contextual information. Second, the PatchifyCaps partitions these multi-scale features into primary capsules using a uniform patch size, equipping the model with the ability to learn from diverse receptive fields. Finally, the CAR block adaptively routes the multi-scale capsules by identifying cross-scale prediction pairs with maximum agreement. Unlike the simple concatenation of multiple self-routing blocks, CAR ensures that only the most coherent capsules contribute to the final voting. Our proposed MSPCaps achieves remarkable scalability and superior robustness, consistently surpassing multiple baseline methods in terms of classification accuracy, with configurations ranging from a highly efficient Tiny model (344.3K parameters) to a powerful Large model (10.9M parameters), highlighting its potential in advancing feature representation learning.
comment: 9 pages, 4 figures; Code is available at https://github.com/abdn-hyd/MSPCaps
RxnBench: A Multimodal Benchmark for Evaluating Large Language Models on Chemical Reaction Understanding from Scientific Literature
The integration of Multimodal Large Language Models (MLLMs) into chemistry promises to revolutionize scientific discovery, yet their ability to comprehend the dense, graphical language of reactions within authentic literature remains underexplored. Here, we introduce RxnBench, a multi-tiered benchmark designed to rigorously evaluate MLLMs on chemical reaction understanding from scientific PDFs. RxnBench comprises two tasks: Single-Figure QA (SF-QA), which tests fine-grained visual perception and mechanistic reasoning using 1,525 questions derived from 305 curated reaction schemes, and Full-Document QA (FD-QA), which challenges models to synthesize information from 108 articles, requiring cross-modal integration of text, schemes, and tables. Our evaluation of MLLMs reveals a critical capability gap: while models excel at extracting explicit text, they struggle with deep chemical logic and precise structural recognition. Notably, models with inference-time reasoning significantly outperform standard architectures, yet none achieve 50\% accuracy on FD-QA. These findings underscore the urgent need for domain-specific visual encoders and stronger reasoning engines to advance autonomous AI chemists.
Visual Instruction Pretraining for Domain-Specific Foundation Models
Modern computer vision is converging on a closed loop in which perception, reasoning and generation mutually reinforce each other. However, this loop remains incomplete: the top-down influence of high-level reasoning on the foundational learning of low-level perceptual features is not yet underexplored. This paper addresses this gap by proposing a new paradigm for pretraining foundation models in downstream domains. We introduce Visual insTruction Pretraining (ViTP), a novel approach that directly leverages reasoning to enhance perception. ViTP embeds a Vision Transformer (ViT) backbone within a Vision-Language Model and pretrains it end-to-end using a rich corpus of visual instruction data curated from target downstream domains. ViTP is powered by our proposed Visual Robustness Learning (VRL), which compels the ViT to learn robust and domain-relevant features from a sparse set of visual tokens. Extensive experiments on 16 challenging remote sensing and medical imaging benchmarks demonstrate that ViTP establishes new state-of-the-art performance across a diverse range of downstream tasks. The code is available at https://github.com/zcablii/ViTP.
All-in-One Video Restoration under Smoothly Evolving Unknown Weather Degradations
All-in-one image restoration aims to recover clean images from diverse unknown degradations using a single model. But extending this task to videos faces unique challenges. Existing approaches primarily focus on frame-wise degradation variation, overlooking the temporal continuity that naturally exists in real-world degradation processes. In practice, degradation types and intensities evolve smoothly over time, and multiple degradations may coexist or transition gradually. In this paper, we introduce the Smoothly Evolving Unknown Degradations (SEUD) scenario, where both the active degradation set and degradation intensity change continuously over time. To support this scenario, we design a flexible synthesis pipeline that generates temporally coherent videos with single, compound, and evolving degradations. To address the challenges in the SEUD scenario, we propose an all-in-One Recurrent Conditional and Adaptive prompting Network (ORCANet). First, a Coarse Intensity Estimation Dehazing (CIED) module estimates haze intensity using physical priors and provides coarse dehazed features as initialization. Second, a Flow Prompt Generation (FPG) module extracts degradation features. FPG generates both static prompts that capture segment-level degradation types and dynamic prompts that adapt to frame-level intensity variations. Furthermore, a label-aware supervision mechanism improves the discriminability of static prompt representations under different degradations. Extensive experiments show that ORCANet achieves superior restoration quality, temporal consistency, and robustness over image and video-based baselines. Code is available at https://github.com/Friskknight/ORCANet-SEUD.
DAUNet: A Lightweight UNet Variant with Deformable Convolutions and Parameter-Free Attention for Medical Image Segmentation
Medical image segmentation plays a pivotal role in automated diagnostic and treatment planning systems. In this work, we present DAUNet, a novel lightweight UNet variant that integrates Deformable V2 Convolutions and Parameter-Free Attention (SimAM) to improve spatial adaptability and context-aware feature fusion without increasing model complexity. DAUNet's bottleneck employs dynamic deformable kernels to handle geometric variations, while the decoder and skip pathways are enhanced using SimAM attention modules for saliency-aware refinement. Extensive evaluations on two challenging datasets, FH-PS-AoP (fetal head and pubic symphysis ultrasound) and FUMPE (CT-based pulmonary embolism detection), demonstrate that DAUNet outperforms state-of-the-art models in Dice score, HD95, and ASD, while maintaining superior parameter efficiency. Ablation studies highlight the individual contributions of deformable convolutions and SimAM attention. DAUNet's robustness to missing context and low-contrast regions establishes its suitability for deployment in real-time and resource-constrained clinical environments.
comment: 13 pages, 7 figures
From Prediction to Perfection: Introducing Refinement to Autoregressive Image Generation ICLR 2026
Autoregressive (AR) image generators offer a language-model-friendly approach to image generation by predicting discrete image tokens in a causal sequence. However, unlike diffusion models, AR models lack a mechanism to refine previous predictions, limiting their generation quality. In this paper, we introduce TensorAR, a new AR paradigm that reformulates image generation from next-token prediction to next-tensor prediction. By generating overlapping windows of image patches (tensors) in a sliding fashion, TensorAR enables iterative refinement of previously generated content. To prevent information leakage during training, we propose a discrete tensor noising scheme, which perturbs input tokens via codebook-indexed noise. TensorAR is implemented as a plug-and-play module compatible with existing AR models. Extensive experiments on LlamaGEN, Open-MAGVIT2, and RAR demonstrate that TensorAR significantly improves the generation performance of autoregressive models.
comment: Published as a conference paper at ICLR 2026
Visual Multi-Agent System: Mitigating Hallucination Snowballing via Visual Flow
Multi-Agent System (MAS) powered by Visual Language Models (VLMs) enables challenging tasks but suffers from a novel failure term, multi-agent visual hallucination snowballing, where hallucinations are seeded in a single agent and amplified by following ones due to the over-reliance on textual flow to relay visual information. Through turn-, layer-, and token-wise attention analyses, we provide detailed insights into the essence of hallucination snowballing regarding the reduction of visual attention allocation. It leads us to identify a subset of vision tokens with a unimodal attention peak in middle layers that best preserve visual evidence but gradually diminish in deeper agent turns, resulting in the visual hallucination snowballing in MAS. Thus, we propose ViF, a lightweight, plug-and-play mitigation paradigm that relays inter-agent messages with Visual Flow powered by the selected visual relay tokens and applies attention reallocation to amplify this pattern. The experiment results demonstrate that our method markedly reduces hallucination snowballing, consistently improving the performance across eight benchmarks based on four common MAS structures and ten base models. The source code is publicly available at: https://github.com/YU-deep/ViF.git.
Dynamic Novel View Synthesis in High Dynamic Range ICLR 2026
High Dynamic Range Novel View Synthesis (HDR NVS) seeks to learn an HDR 3D model from Low Dynamic Range (LDR) training images captured under conventional imaging conditions. Current methods primarily focus on static scenes, implicitly assuming all scene elements remain stationary and non-living. However, real-world scenarios frequently feature dynamic elements, such as moving objects, varying lighting conditions, and other temporal events, thereby presenting a significantly more challenging scenario. To address this gap, we propose a more realistic problem named HDR Dynamic Novel View Synthesis (HDR DNVS), where the additional dimension ``Dynamic'' emphasizes the necessity of jointly modeling temporal radiance variations alongside sophisticated 3D translation between LDR and HDR. To tackle this complex, intertwined challenge, we introduce HDR-4DGS, a Gaussian Splatting-based architecture featured with an innovative dynamic tone-mapping module that explicitly connects HDR and LDR domains, maintaining temporal radiance coherence by dynamically adapting tone-mapping functions according to the evolving radiance distributions across the temporal dimension. As a result, HDR-4DGS achieves both temporal radiance consistency and spatially accurate color translation, enabling photorealistic HDR renderings from arbitrary viewpoints and time instances. Extensive experiments demonstrate that HDR-4DGS surpasses existing state-of-the-art methods in both quantitative performance and visual fidelity. Source code is available at https://github.com/prinasi/HDR-4DGS.
comment: It has been accepted by ICLR 2026
Bridging Information Asymmetry: A Hierarchical Framework for Deterministic Blind Face Restoration
Blind face restoration remains a persistent challenge due to the inherent ill-posedness of reconstructing holistic structures from severely constrained observations. Current generative approaches, while capable of synthesizing realistic textures, often suffer from information asymmetry -- the intrinsic disparity between the information-sparse low quality inputs and the information-dense high quality outputs. This imbalance leads to a one-to-many mapping, where insufficient constraints result in stochastic uncertainty and hallucinatory artifacts. To bridge this gap, we present \textbf{Pref-Restore}, a hierarchical framework that integrates discrete semantic logic with continuous texture generation to achieve deterministic, preference-aligned restoration. Our methodology fundamentally addresses this information disparity through two complementary strategies: (1) Augmenting Input Density: We employ an auto-regressive integrator to reformulate textual instructions into dense latent queries, injecting high-level semantic stability to constrain the degraded signals; (2) Pruning Output Distribution: We pioneer the integration of on-policy reinforcement learning directly into the diffusion restoration loop. By transforming human preferences into differentiable constraints, we explicitly penalize stochastic deviations, thereby sharpening the posterior distribution toward the desired high-fidelity outcomes. Extensive experiments demonstrate that Pref-Restore achieves state-of-the-art performance across synthetic and real-world benchmarks. Furthermore, empirical analysis confirms that our preference-aligned strategy significantly reduces solution entropy, establishing a robust pathway toward reliable and deterministic blind restoration.
SeedVR2: One-Step Video Restoration via Diffusion Adversarial Post-Training ICLR2026
Recent advances in diffusion-based video restoration (VR) demonstrate significant improvement in visual quality, yet yield a prohibitive computational cost during inference. While several distillation-based approaches have exhibited the potential of one-step image restoration, extending existing approaches to VR remains challenging and underexplored, particularly when dealing with high-resolution video in real-world settings. In this work, we propose a one-step diffusion-based VR model, termed as SeedVR2, which performs adversarial VR training against real data. To handle the challenging high-resolution VR within a single step, we introduce several enhancements to both model architecture and training procedures. Specifically, an adaptive window attention mechanism is proposed, where the window size is dynamically adjusted to fit the output resolutions, avoiding window inconsistency observed under high-resolution VR using window attention with a predefined window size. To stabilize and improve the adversarial post-training towards VR, we further verify the effectiveness of a series of losses, including a proposed feature matching loss without significantly sacrificing training efficiency. Extensive experiments show that SeedVR2 can achieve comparable or even better performance compared with existing VR approaches in a single step.
comment: Camera Ready of ICLR2026. Project page: https://iceclear.github.io/projects/seedvr2/
PLANA3R: Zero-shot Metric Planar 3D Reconstruction via Feed-Forward Planar Splatting NeurIPS 2025
This paper addresses metric 3D reconstruction of indoor scenes by exploiting their inherent geometric regularities with compact representations. Using planar 3D primitives - a well-suited representation for man-made environments - we introduce PLANA3R, a pose-free framework for metric Planar 3D Reconstruction from unposed two-view images. Our approach employs Vision Transformers to extract a set of sparse planar primitives, estimate relative camera poses, and supervise geometry learning via planar splatting, where gradients are propagated through high-resolution rendered depth and normal maps of primitives. Unlike prior feedforward methods that require 3D plane annotations during training, PLANA3R learns planar 3D structures without explicit plane supervision, enabling scalable training on large-scale stereo datasets using only depth and normal annotations. We validate PLANA3R on multiple indoor-scene datasets with metric supervision and demonstrate strong generalization to out-of-domain indoor environments across diverse tasks under metric evaluation protocols, including 3D surface reconstruction, depth estimation, and relative pose estimation. Furthermore, by formulating with planar 3D representation, our method emerges with the ability for accurate plane segmentation. The project page is available at https://lck666666.github.io/plana3r
comment: Camera-ready version of a paper in 39th Conference on Neural Information Processing Systems (NeurIPS 2025). The project page is available at: https://lck666666.github.io/plana3r
AdaReasoner: Dynamic Tool Orchestration for Iterative Visual Reasoning
When humans face problems beyond their immediate capabilities, they rely on tools, providing a promising paradigm for improving visual reasoning in multimodal large language models (MLLMs). Effective reasoning, therefore, hinges on knowing which tools to use, when to invoke them, and how to compose them over multiple steps, even when faced with new tools or new tasks. We introduce \textbf{AdaReasoner}, a family of multimodal models that learn tool use as a general reasoning skill rather than as tool-specific or explicitly supervised behavior. AdaReasoner is enabled by (i) a scalable data curation pipeline exposing models to long-horizon, multi-step tool interactions; (ii) Tool-GRPO, a reinforcement learning algorithm that optimizes tool selection and sequencing based on end-task success; and (iii) an adaptive learning mechanism that dynamically regulates tool usage. Together, these components allow models to infer tool utility from task context and intermediate outcomes, enabling coordination of multiple tools and generalization to unseen tools. Empirically, AdaReasoner exhibits strong tool-adaptive and generalization behaviors: it autonomously adopts beneficial tools, suppresses irrelevant ones, and adjusts tool usage frequency based on task demands, despite never being explicitly trained to do so. These capabilities translate into state-of-the-art performance across challenging benchmarks, improving the 7B base model by +24.9\% on average and surpassing strong proprietary systems such as GPT-5 on multiple tasks, including VSP and Jigsaw.
comment: 28 pages, 10 figures and 13 tables
PocketGS: On-Device Training of 3D Gaussian Splatting for High Perceptual Modeling
Efficient and high-fidelity 3D scene modeling is a long-standing pursuit in computer graphics. While recent 3D Gaussian Splatting (3DGS) methods achieve impressive real-time modeling performance, they rely on resource-unconstrained training assumptions that fail on mobile devices, which are limited by minute-scale training budgets and hardware-available peak-memory. We present PocketGS, a mobile scene modeling paradigm that enables on-device 3DGS training under these tightly coupled constraints while preserving high perceptual fidelity. Our method resolves the fundamental contradictions of standard 3DGS through three co-designed operators: G builds geometry-faithful point-cloud priors; I injects local surface statistics to seed anisotropic Gaussians, thereby reducing early conditioning gaps; and T unrolls alpha compositing with cached intermediates and index-mapped gradient scattering for stable mobile backpropagation. Collectively, these operators satisfy the competing requirements of training efficiency, memory compactness, and modeling fidelity. Extensive experiments demonstrate that PocketGS is able to outperform the powerful mainstream workstation 3DGS baseline to deliver high-quality reconstructions, enabling a fully on-device, practical capture-to-rendering workflow.
SiNGER: A Clearer Voice Distills Vision Transformers Further ICLR 2026
Vision Transformers are widely adopted as the backbone of vision foundation models, but they are known to produce high-norm artifacts that degrade representation quality. When knowledge distillation transfers these features to students, high-norm artifacts dominate the objective, so students overfit to artifacts and underweight informative signals, diminishing the gains from larger models. Prior work attempted to remove artifacts but encountered an inherent trade-off between artifact suppression and preserving informative signals from teachers. To address this, we introduce Singular Nullspace-Guided Energy Reallocation (SiNGER), a novel distillation framework that suppresses artifacts while preserving informative signals. The key idea is principled teacher feature refinement: during refinement, we leverage the nullspace-guided perturbation to preserve information while suppressing artifacts. Then, the refined teacher's features are distilled to a student. We implement this perturbation efficiently with a LoRA-based adapter that requires minimal structural modification. Extensive experiments show that \oursname consistently improves student models, achieving state-of-the-art performance in multiple downstream tasks and producing clearer and more interpretable representations.
comment: Main paper: 12 pages (including 3 pages of references), 6 figures, 6 tables. Appendix: 9 pages, 7 figures. ICLR 2026 accepted
OmniEVA: Embodied Versatile Planner via Task-Adaptive 3D-Grounded and Embodiment-aware Reasoning ICLR 2026
Recent advances in multimodal large language models (MLLMs) have opened new opportunities for embodied intelligence, enabling multimodal understanding, reasoning, and interaction, as well as continuous spatial decision-making. Nevertheless, current MLLM-based embodied systems face two critical limitations. First, Geometric Adaptability Gap: models trained solely on 2D inputs or with hard-coded 3D geometry injection suffer from either insufficient spatial information or restricted 2D generalization, leading to poor adaptability across tasks with diverse spatial demands. Second, Embodiment Constraint Gap: prior work often neglects the physical constraints and capacities of real robots, resulting in task plans that are theoretically valid but practically infeasible. To address these gaps, we introduce OmniEVA -- an embodied versatile planner that enables advanced embodied reasoning and task planning through two pivotal innovations: (1) a Task-Adaptive 3D Grounding mechanism, which introduces a gated router to perform explicit selective regulation of 3D fusion based on contextual requirements, enabling context-aware 3D grounding for diverse embodied tasks. (2) an Embodiment-Aware Reasoning framework that jointly incorporates task goals and embodiment constraints into the reasoning loop, resulting in planning decisions that are both goal-directed and executable. Extensive experimental results demonstrate that OmniEVA not only achieves state-of-the-art general embodied reasoning performance, but also exhibits a strong ability across a wide range of downstream scenarios. Evaluations of a suite of proposed embodied benchmarks, including both primitive and composite tasks, confirm its robust and versatile planning capabilities. Project page: https://omnieva.github.io
comment: Published as a conference paper at ICLR 2026
ColorConceptBench: A Benchmark for Probabilistic Color-Concept Understanding in Text-to-Image Models
While text-to-image (T2I) models have advanced considerably, their capability to associate colors with implicit concepts remains underexplored. To address the gap, we introduce ColorConceptBench, a new human-annotated benchmark to systematically evaluate color-concept associations through the lens of probabilistic color distributions. ColorConceptBench moves beyond explicit color names or codes by probing how models translate 1,281 implicit color concepts using a foundation of 6,369 human annotations. Our evaluation of seven leading T2I models reveals that current models lack sensitivity to abstract semantics, and crucially, this limitation appears resistant to standard interventions (e.g., scaling and guidance). This demonstrates that achieving human-like color semantics requires more than larger models, but demands a fundamental shift in how models learn and represent implicit meaning.
comment: 8 pages, 5 figures
Embodied AI with Foundation Models for Mobile Service Robots: A Systematic Review
Rapid advancements in foundation models, including Large Language Models, Vision-Language Models, Multimodal Large Language Models, and Vision-Language-Action Models, have opened new avenues for embodied AI in mobile service robotics. By combining foundation models with the principles of embodied AI, where intelligent systems perceive, reason, and act through physical interaction, mobile service robots can achieve more flexible understanding, adaptive behavior, and robust task execution in dynamic real-world environments. Despite this progress, embodied AI for mobile service robots continues to face fundamental challenges related to the translation of natural language instructions into executable robot actions, multimodal perception in human-centered environments, uncertainty estimation for safe decision-making, and computational constraints for real-time onboard deployment. In this paper, we present the first systematic review focused specifically on the integration of foundation models in mobile service robotics. We analyze how recent advances in foundation models address these core challenges through language-conditioned control, multimodal sensor fusion, uncertainty-aware reasoning, and efficient model scaling. We further examine real-world applications in domestic assistance, healthcare, and service automation, highlighting how foundation models enable context-aware, socially responsive, and generalizable robot behaviors. Beyond technical considerations, we discuss ethical, societal, and human-interaction implications associated with deploying foundation model-enabled service robots in human environments. Finally, we outline future research directions emphasizing reliability and lifelong adaptation, privacy-aware and resource-constrained deployment, and governance and human-in-the-loop frameworks required for safe, scalable, and trustworthy mobile service robotics.
comment: v2: Expanded systematic review; resubmitted to Robotics
Range Image-Based Implicit Neural Compression for LiDAR Point Clouds
This paper presents a novel scheme to efficiently compress Light Detection and Ranging~(LiDAR) point clouds, enabling high-precision 3D scene archives, and such archives pave the way for a detailed understanding of the corresponding 3D scenes. We focus on 2D range images~(RIs) as a lightweight format for representing 3D LiDAR observations. Although conventional image compression techniques can be adapted to improve compression efficiency for RIs, their practical performance is expected to be limited due to differences in bit precision and the distinct pixel value distribution characteristics between natural images and RIs. We propose a novel implicit neural representation~(INR)--based RI compression method that effectively handles floating-point valued pixels. The proposed method divides RIs into depth and mask images and compresses them using patch-wise and pixel-wise INR architectures with model pruning and quantization, respectively. Experiments on the KITTI dataset show that the proposed method outperforms existing image, point cloud, RI, and INR-based compression methods in terms of 3D reconstruction and detection quality at low bitrates and decoding latency.
comment: Accepted for publication in IEEE Access
Modality-Balanced Collaborative Distillation for Multi-Modal Domain Generalization
Weight Averaging (WA) has emerged as a powerful technique for enhancing generalization by promoting convergence to a flat loss landscape, which correlates with stronger out-of-distribution performance. However, applying WA directly to multi-modal domain generalization (MMDG) is challenging: differences in optimization speed across modalities lead WA to overfit to faster-converging ones in early stages, suppressing the contribution of slower yet complementary modalities, thereby hindering effective modality fusion and skewing the loss surface toward sharper, less generalizable minima. To address this issue, we propose MBCD, a unified collaborative distillation framework that retains WA's flatness-inducing advantages while overcoming its shortcomings in multi-modal contexts. MBCD begins with adaptive modality dropout in the student model to curb early-stage bias toward dominant modalities. A gradient consistency constraint then aligns learning signals between uni-modal branches and the fused representation, encouraging coordinated and smoother optimization. Finally, a WA-based teacher conducts cross-modal distillation by transferring fused knowledge to each uni-modal branch, which strengthens cross-modal interactions and steer convergence toward flatter solutions. Extensive experiments on MMDG benchmarks show that MBCD consistently outperforms existing methods, achieving superior accuracy and robustness across diverse unseen domains.
WaterFlow: Explicit Physics-Prior Rectified Flow for Underwater Saliency Mask Generation
Underwater Salient Object Detection (USOD) faces significant challenges, including underwater image quality degradation and domain gaps. Existing methods tend to ignore the physical principles of underwater imaging or simply treat degradation phenomena in underwater images as interference factors that must be eliminated, failing to fully exploit the valuable information they contain. We propose WaterFlow, a rectified flow-based framework for underwater salient object detection that innovatively incorporates underwater physical imaging information as explicit priors directly into the network training process and introduces temporal dimension modeling, significantly enhancing the model's capability for salient object identification. On the USOD10K dataset, WaterFlow achieves a 0.072 gain in S_m, demonstrating the effectiveness and superiority of our method. https://github.com/Theo-polis/WaterFlow.
Neuro Symbolic Knowledge Reasoning for Procedural Video Question Answering
In this work we present Knowledge Module Learning (KML) to understand and reason over procedural tasks that requires models to learn structured and compositional procedural knowledge. KML is a neurosymbolic framework that learns relation categories within a knowledge graph as neural knowledge modules and composes them into executable reasoning programs generated by large language models (LLMs). Each module encodes a specific procedural relation capturing how each entity type such as tools are related to steps, purpose of each tool, and steps of each task. Given a question conditioned on a task shown in a video, then KML performs multistep reasoning with transparent, traceable intermediate states. Our theoretical analysis demonstrated two desired properties of KML. KML satisfy strong optimal conditions for modelling KG relations as neural mappings, providing strong foundations for generalizable procedural reasoning. It also shows a bound on the expected error when it performs multistep reasoning. To evaluate this model, we construct a large procedural knowledge graph (PKG) consisting of diverse instructional domains by integrating the COIN instructional video dataset, and COIN ontology, commonsense relations from ConceptNet, and structured extractions from LLMs, followed by expert verification. We then generate question and answer pairs by applying graph traversal templates over the PKG, constructing the PKR-QA benchmark for procedural knowledge reasoning. Experiments show that KML improves structured reasoning performance while providing interpretable step-by-step traces, outperforming LLM-only and black-box neural baselines. Code is publicly available at https://github.com/LUNAProject22/KML.
comment: This paper is under review at IEEE Transactions on Neural Networks and Learning Systems. Personal use is permitted, but republication/redistribution requires IEEE permission
A Multi-Stage Deep Learning Framework with PKCP-MixUp Augmentation for Pediatric Liver Tumor Diagnosis Using Multi-Phase Contrast-Enhanced CT
Pediatric liver tumors are one of the most common solid tumors in pediatrics, with differentiation of benign or malignant status and pathological classification critical for clinical treatment. While pathological examination is the gold standard, the invasive biopsy has notable limitations: the highly vascular pediatric liver and fragile tumor tissue raise complication risks such as bleeding; additionally, young children with poor compliance require anesthesia for biopsy, increasing medical costs or psychological trauma. Although many efforts have been made to utilize AI in clinical settings, most researchers have overlooked its importance in pediatric liver tumors. To establish a non-invasive examination procedure, we developed a multi-stage deep learning (DL) framework for automated pediatric liver tumor diagnosis using multi-phase contrast-enhanced CT. Two retrospective and prospective cohorts were enrolled. We established a novel PKCP-MixUp data augmentation method to address data scarcity and class imbalance. We also trained a tumor detection model to extract ROIs, and then set a two-stage diagnosis pipeline with three backbones with ROI-masked images. Our tumor detection model has achieved high performance (mAP=0.871), and the first stage classification model between benign and malignant tumors reached an excellent performance (AUC=0.989). Final diagnosis models also exhibited robustness, including benign subtype classification (AUC=0.915) and malignant subtype classification (AUC=0.979). We also conducted multi-level comparative analyses, such as ablation studies on data and training pipelines, as well as Shapley-Value and CAM interpretability analyses. This framework fills the pediatric-specific DL diagnostic gap, provides actionable insights for CT phase selection and model design, and paves the way for precise, accessible pediatric liver tumor diagnosis.
NavFormer: IGRF Forecasting in Moving Coordinate Frames
Triad magnetometer components change with sensor attitude even when the IGRF total intensity target stays invariant. NavFormer forecasts this invariant target with rotation invariant scalar features and a Canonical SPD module that stabilizes the spectrum of window level second moments of the triads without sign discontinuities. The module builds a canonical frame from a Gram matrix per window and applies state dependent spectral scaling in the original coordinates. Experiments across five flights show lower error than strong baselines in standard training, few shot training, and zero shot transfer. The code is available at: https://anonymous.4open.science/r/NavFormer-Robust-IGRF-Forecasting-for-Autonomous-Navigators-0765
Beyond Classification Accuracy: Neural-MedBench and the Need for Deeper Reasoning Benchmarks
Recent advances in vision-language models (VLMs) have achieved remarkable performance on standard medical benchmarks, yet their true clinical reasoning ability remains unclear. Existing datasets predominantly emphasize classification accuracy, creating an evaluation illusion in which models appear proficient while still failing at high-stakes diagnostic reasoning. We introduce Neural-MedBench, a compact yet reasoning-intensive benchmark specifically designed to probe the limits of multimodal clinical reasoning in neurology. Neural-MedBench integrates multi-sequence MRI scans, structured electronic health records, and clinical notes, and encompasses three core task families: differential diagnosis, lesion recognition, and rationale generation. To ensure reliable evaluation, we develop a hybrid scoring pipeline that combines LLM-based graders, clinician validation, and semantic similarity metrics. Through systematic evaluation of state-of-the-art VLMs, including GPT-4o, Claude-4, and MedGemma, we observe a sharp performance drop compared to conventional datasets. Error analysis shows that reasoning failures, rather than perceptual errors, dominate model shortcomings. Our findings highlight the necessity of a Two-Axis Evaluation Framework: breadth-oriented large datasets for statistical generalization, and depth-oriented, compact benchmarks such as Neural-MedBench for reasoning fidelity. We release Neural-MedBench at https://neuromedbench.github.io/ as an open and extensible diagnostic testbed, which guides the expansion of future benchmarks and enables rigorous yet cost-effective assessment of clinically trustworthy AI.
comment: 23 pages, 12 figures
SAM-Aug: Leveraging SAM Priors for Few-Shot Parcel Segmentation in Satellite Time Series
Few-shot semantic segmentation of time-series remote sensing images remains a critical challenge, particularly in regions where labeled data is scarce or costly to obtain. While state-of-the-art models perform well under full supervision, their performance degrades significantly under limited labeling, limiting their real-world applicability. In this work, we propose SAM-Aug, a new annotation-efficient framework that leverages the geometry-aware segmentation capability of the Segment Anything Model (SAM) to improve few-shot land cover mapping. Our approach constructs cloud-free composite images from temporal sequences and applies SAM in a fully unsupervised manner to generate geometry-aware mask priors. These priors are then integrated into training through a proposed loss function called RegionSmoothLoss, which enforces prediction consistency within each SAM-derived region across temporal frames, effectively regularizing the model to respect semantically coherent structures. Extensive experiments on the PASTIS-R benchmark under a 5 percent labeled setting demonstrate the effectiveness and robustness of SAM-Aug. Averaged over three random seeds (42, 2025, 4090), our method achieves a mean test mIoU of 36.21 percent, outperforming the state-of-the-art baseline by +2.33 percentage points, a relative improvement of 6.89 percent. Notably, on the most favorable split (seed=42), SAM-Aug reaches a test mIoU of 40.28 percent, representing an 11.2 percent relative gain with no additional labeled data. The consistent improvement across all seeds confirms the generalization power of leveraging foundation model priors under annotation scarcity. Our results highlight that vision models like SAM can serve as useful regularizers in few-shot remote sensing learning, offering a scalable and plug-and-play solution for land cover monitoring without requiring manual annotations or model fine-tuning.
comment: 13 pages, 6 figures
PromptVFX: Text-Driven Fields for Open-World 3D Gaussian Animation
Visual effects (VFX) are key to immersion in modern films, games, and AR/VR. Creating 3D effects requires specialized expertise and training in 3D animation software and can be time consuming. Generative solutions typically rely on computationally intense methods such as diffusion models which can be slow at 4D inference. We reformulate 3D animation as a field prediction task and introduce a text-driven framework that infers a time-varying 4D flow field acting on 3D Gaussians. By leveraging large language models (LLMs) and vision-language models (VLMs) for function generation, our approach interprets arbitrary prompts (e.g., "make the vase glow orange, then explode") and instantly updates color, opacity, and positions of 3D Gaussians in real time. This design avoids overheads such as mesh extraction, manual or physics-based simulations and allows both novice and expert users to animate volumetric scenes with minimal effort on a consumer device even in a web browser. Experimental results show that simple textual instructions suffice to generate compelling time-varying VFX, reducing the manual effort typically required for rigging or advanced modeling. We thus present a fast and accessible pathway to language-driven 3D content creation that can pave the way to democratize VFX further. Code available at https://obsphera.github.io/promptvfx/.
Artificial Intelligence 202
Evolutionary Strategies lead to Catastrophic Forgetting in LLMs
One of the biggest missing capabilities in current AI systems is the ability to learn continuously after deployment. Implementing such continually learning systems have several challenges, one of which is the large memory requirement of gradient-based algorithms that are used to train state-of-the-art LLMs. Evolutionary Strategies (ES) have recently re-emerged as a gradient-free alternative to traditional learning algorithms and have shown encouraging performance on specific tasks in LLMs. In this paper, we perform a comprehensive analysis of ES and specifically evaluate its forgetting curves when training for an increasing number of update steps. We first find that ES is able to reach performance numbers close to GRPO for math and reasoning tasks with a comparable compute budget. However, and most importantly for continual learning, the performance gains in ES is accompanied by significant forgetting of prior abilities, limiting its applicability for training models online. We also explore the reason behind this behavior and show that the updates made using ES are much less sparse and have orders of magnitude larger $\ell_2$ norm compared to corresponding GRPO updates, explaining the contrasting forgetting curves between the two algorithms. With this study, we aim to highlight the issue of forgetting in gradient-free algorithms like ES and hope to inspire future work to mitigate these issues.
SokoBench: Evaluating Long-Horizon Planning and Reasoning in Large Language Models
Although the capabilities of large language models have been increasingly tested on complex reasoning tasks, their long-horizon planning abilities have not yet been extensively investigated. In this work, we provide a systematic assessment of the planning and long-horizon reasoning capabilities of state-of-the-art Large Reasoning Models (LRMs). We propose a novel benchmark based on Sokoban puzzles, intentionally simplified to isolate long-horizon planning from state persistence. Our findings reveal a consistent degradation in planning performance when more than 25 moves are required to reach the solution, suggesting a fundamental constraint on forward planning capacity. We show that equipping LRMs with Planning Domain Definition Language (PDDL) parsing, validation, and solving tools allows for modest improvements, suggesting inherent architectural limitations which might not be overcome by test-time scaling approaches alone.
Exploring Transformer Placement in Variational Autoencoders for Tabular Data Generation
Tabular data remains a challenging domain for generative models. In particular, the standard Variational Autoencoder (VAE) architecture, typically composed of multilayer perceptrons, struggles to model relationships between features, especially when handling mixed data types. In contrast, Transformers, through their attention mechanism, are better suited for capturing complex feature interactions. In this paper, we empirically investigate the impact of integrating Transformers into different components of a VAE. We conduct experiments on 57 datasets from the OpenML CC18 suite and draw two main conclusions. First, results indicate that positioning Transformers to leverage latent and decoder representations leads to a trade-off between fidelity and diversity. Second, we observe a high similarity between consecutive blocks of a Transformer in all components. In particular, in the decoder, the relationship between the input and output of a Transformer is approximately linear.
Post-Training Fairness Control: A Single-Train Framework for Dynamic Fairness in Recommendation
Despite growing efforts to mitigate unfairness in recommender systems, existing fairness-aware methods typically fix the fairness requirement at training time and provide limited post-training flexibility. However, in real-world scenarios, diverse stakeholders may demand differing fairness requirements over time, so retraining for different fairness requirements becomes prohibitive. To address this limitation, we propose Cofair, a single-train framework that enables post-training fairness control in recommendation. Specifically, Cofair introduces a shared representation layer with fairness-conditioned adapter modules to produce user embeddings specialized for varied fairness levels, along with a user-level regularization term that guarantees user-wise monotonic fairness improvements across these levels. We theoretically establish that the adversarial objective of Cofair upper bounds demographic parity and the regularization term enforces progressive fairness at user level. Comprehensive experiments on multiple datasets and backbone models demonstrate that our framework provides dynamic fairness at different levels, delivering comparable or better fairness-accuracy curves than state-of-the-art baselines, without the need to retrain for each new fairness requirement. Our code is publicly available at https://github.com/weixinchen98/Cofair.
comment: Accepted to WWW 2026 Workshop on HCRS (Oral Presentation)
A New Dataset and Framework for Robust Road Surface Classification via Camera-IMU Fusion
Road surface classification (RSC) is a key enabler for environment-aware predictive maintenance systems. However, existing RSC techniques often fail to generalize beyond narrow operational conditions due to limited sensing modalities and datasets that lack environmental diversity. This work addresses these limitations by introducing a multimodal framework that fuses images and inertial measurements using a lightweight bidirectional cross-attention module followed by an adaptive gating layer that adjusts modality contributions under domain shifts. Given the limitations of current benchmarks, especially regarding lack of variability, we introduce ROAD, a new dataset composed of three complementary subsets: (i) real-world multimodal recordings with RGB-IMU streams synchronized using a gold-standard industry datalogger, captured across diverse lighting, weather, and surface conditions; (ii) a large vision-only subset designed to assess robustness under adverse illumination and heterogeneous capture setups; and (iii) a synthetic subset generated to study out-of-distribution generalization in scenarios difficult to obtain in practice. Experiments show that our method achieves a +1.4 pp improvement over the previous state-of-the-art on the PVS benchmark and an +11.6 pp improvement on our multimodal ROAD subset, with consistently higher F1-scores on minority classes. The framework also demonstrates stable performance across challenging visual conditions, including nighttime, heavy rain, and mixed-surface transitions. These findings indicate that combining affordable camera and IMU sensors with multimodal attention mechanisms provides a scalable, robust foundation for road surface understanding, particularly relevant for regions where environmental variability and cost constraints limit the adoption of high-end sensing suites.
$\mathbb{R}^{2k}$ is Theoretically Large Enough for Embedding-based Top-$k$ Retrieval
This paper studies the minimal dimension required to embed subset memberships ($m$ elements and ${m\choose k}$ subsets of at most $k$ elements) into vector spaces, denoted as Minimal Embeddable Dimension (MED). The tight bounds of MED are derived theoretically and supported empirically for various notions of "distances" or "similarities," including the $\ell_2$ metric, inner product, and cosine similarity. In addition, we conduct numerical simulation in a more achievable setting, where the ${m\choose k}$ subset embeddings are chosen as the centroid of the embeddings of the contained elements. Our simulation easily realizes a logarithmic dependency between the MED and the number of elements to embed. These findings imply that embedding-based retrieval limitations stem primarily from learnability challenges, not geometric constraints, guiding future algorithm design.
Deep Researcher with Sequential Plan Reflection and Candidates Crossover (Deep Researcher Reflect Evolve)
This paper introduces a novel Deep Researcher architecture designed to generate detailed research reports on complex PhD level topics by addressing the inherent limitations of the Parallel Scaling paradigm. Our system utilizes two key innovations: Sequential Research Plan Refinement via Reflection and a Candidates Crossover algorithm. The sequential refinement process is demonstrated as an efficient method that allows the agent to maintain a centralized Global Research Context, enabling it to look back at current progress, reason about the research plan, and intelligently make changes at runtime. This dynamic adaptation contrasts with parallel approaches, which often suffer from siloed knowledge. The Candidates Crossover algorithm further enhances search efficiency by deploying multiple LLM candidates with varied parameters to explore a larger search space, with their findings synthesized to curate a comprehensive final research response. The process concludes with One Shot Report Generation, ensuring the final document is informed by a unified narrative and high fact density. Powered by the Gemini 2.5 Pro model, our Deep Researcher was evaluated on the DeepResearch Bench, a globally recognized benchmark of 100 doctoral level research tasks. Our architecture achieved an overall score of 46.21, demonstrating superior performance by surpassing leading deep research agents such as Claude Researcher, Nvidia AIQ Research Assistant, Perplexity Research, Kimi Researcher and Grok Deeper Search present on the DeepResearch Bench actively running leaderboard. This performance marginally exceeds our previous work, Static DRA, and reinforces the finding that sequential scaling consistently outperforms the parallel self consistency paradigm.
comment: 11 pages, 6 figures, 2 tables, source code: https://github.com/SauravP97/deep-researcher-reflect-evolve/
Reward Models Inherit Value Biases from Pretraining
Reward models (RMs) are central to aligning large language models (LLMs) with human values but have received less attention than pre-trained and post-trained LLMs themselves. Because RMs are initialized from LLMs, they inherit representations that shape their behavior, but the nature and extent of this influence remain understudied. In a comprehensive study of 10 leading open-weight RMs using validated psycholinguistic corpora, we show that RMs exhibit significant differences along multiple dimensions of human value as a function of their base model. Using the "Big Two" psychological axes, we show a robust preference of Llama RMs for "agency" and a corresponding robust preference of Gemma RMs for "communion." This phenomenon holds even when the preference data and finetuning process are identical, and we trace it back to the logits of the respective instruction-tuned and pre-trained models. These log-probability differences themselves can be formulated as an implicit RM; we derive usable implicit reward scores and show that they exhibit the very same agency/communion difference. We run experiments training RMs with ablations for preference data source and quantity, which demonstrate that this effect is not only repeatable but surprisingly durable. Despite RMs being designed to represent human preferences, our evidence shows that their outputs are influenced by the pretrained LLMs on which they are based. This work underscores the importance of safety and alignment efforts at the pretraining stage, and makes clear that open-source developers' choice of base model is as much a consideration of values as of performance.
Open-Vocabulary Functional 3D Human-Scene Interaction Generation
Generating 3D humans that functionally interact with 3D scenes remains an open problem with applications in embodied AI, robotics, and interactive content creation. The key challenge involves reasoning about both the semantics of functional elements in 3D scenes and the 3D human poses required to achieve functionality-aware interaction. Unfortunately, existing methods typically lack explicit reasoning over object functionality and the corresponding human-scene contact, resulting in implausible or functionally incorrect interactions. In this work, we propose FunHSI, a training-free, functionality-driven framework that enables functionally correct human-scene interactions from open-vocabulary task prompts. Given a task prompt, FunHSI performs functionality-aware contact reasoning to identify functional scene elements, reconstruct their 3D geometry, and model high-level interactions via a contact graph. We then leverage vision-language models to synthesize a human performing the task in the image and estimate proposed 3D body and hand poses. Finally, the proposed 3D body configuration is refined via stage-wise optimization to ensure physical plausibility and functional correctness. In contrast to existing methods, FunHSI not only synthesizes more plausible general 3D interactions, such as "sitting on a sofa'', while supporting fine-grained functional human-scene interactions, e.g., "increasing the room temperature''. Extensive experiments demonstrate that FunHSI consistently generates functionally correct and physically plausible human-scene interactions across diverse indoor and outdoor scenes.
comment: 18 pages
MemCtrl: Using MLLMs as Active Memory Controllers on Embodied Agents
Foundation models rely on in-context learning for personalized decision making. The limited size of this context window necessitates memory compression and retrieval systems like RAG. These systems however often treat memory as large offline storage spaces, which is unfavorable for embodied agents that are expected to operate under strict memory and compute constraints, online. In this work, we propose MemCtrl, a novel framework that uses Multimodal Large Language Models (MLLMs) for pruning memory online. MemCtrl augments MLLMs with a trainable memory head μthat acts as a gate to determine which observations or reflections to retain, update, or discard during exploration. We evaluate with training two types of μ, 1) via an offline expert, and 2) via online RL, and observe significant improvement in overall embodied task completion ability on μ-augmented MLLMs. In particular, on augmenting two low performing MLLMs with MemCtrl on multiple subsets of the EmbodiedBench benchmark, we observe that μ-augmented MLLMs show an improvement of around 16% on average, with over 20% on specific instruction subsets. Finally, we present a qualitative analysis on the memory fragments collected by μ, noting the superior performance of μaugmented MLLMs on long and complex instruction types.
Training Reasoning Models on Saturated Problems via Failure-Prefix Conditioning
Reinforcement Learning with Verifiable Rewards (RLVR) has substantially improved the reasoning abilities of large language models (LLMs), yet training often stalls as problems become saturated. We identify the core challenge as the poor accessibility of informative failures: learning signals exist but are rarely encountered during standard rollouts. To address this, we propose failure-prefix conditioning, a simple and effective method for learning from saturated problems. Rather than starting from the original question, our approach reallocates exploration by conditioning training on prefixes derived from rare incorrect reasoning trajectories, thereby exposing the model to failure-prone states. We observe that failure-prefix conditioning yields performance gains matching those of training on medium-difficulty problems, while preserving token efficiency. Furthermore, we analyze the model's robustness, finding that our method reduces performance degradation under misleading failure prefixes, albeit with a mild trade-off in adherence to correct early reasoning. Finally, we demonstrate that an iterative approach, which refreshes failure prefixes during training, unlocks additional gains after performance plateaus. Overall, our results suggest that failure-prefix conditioning offers an effective pathway to extend RLVR training on saturated problems.
comment: 16 pages
GNN Explanations that do not Explain and How to find Them
Explanations provided by Self-explainable Graph Neural Networks (SE-GNNs) are fundamental for understanding the model's inner workings and for identifying potential misuse of sensitive attributes. Although recent works have highlighted that these explanations can be suboptimal and potentially misleading, a characterization of their failure cases is unavailable. In this work, we identify a critical failure of SE-GNN explanations: explanations can be unambiguously unrelated to how the SE-GNNs infer labels. We show that, on the one hand, many SE-GNNs can achieve optimal true risk while producing these degenerate explanations, and on the other, most faithfulness metrics can fail to identify these failure modes. Our empirical analysis reveals that degenerate explanations can be maliciously planted (allowing an attacker to hide the use of sensitive attributes) and can also emerge naturally, highlighting the need for reliable auditing. To address this, we introduce a novel faithfulness metric that reliably marks degenerate explanations as unfaithful, in both malicious and natural settings. Our code is available in the supplemental.
Reinforcement Learning via Self-Distillation
Large language models are increasingly post-trained with reinforcement learning in verifiable domains such as code and math. Yet, current methods for reinforcement learning with verifiable rewards (RLVR) learn only from a scalar outcome reward per attempt, creating a severe credit-assignment bottleneck. Many verifiable environments actually provide rich textual feedback, such as runtime errors or judge evaluations, that explain why an attempt failed. We formalize this setting as reinforcement learning with rich feedback and introduce Self-Distillation Policy Optimization (SDPO), which converts tokenized feedback into a dense learning signal without any external teacher or explicit reward model. SDPO treats the current model conditioned on feedback as a self-teacher and distills its feedback-informed next-token predictions back into the policy. In this way, SDPO leverages the model's ability to retrospectively identify its own mistakes in-context. Across scientific reasoning, tool use, and competitive programming on LiveCodeBench v6, SDPO improves sample efficiency and final accuracy over strong RLVR baselines. Notably, SDPO also outperforms baselines in standard RLVR environments that only return scalar feedback by using successful rollouts as implicit feedback for failed attempts. Finally, applying SDPO to individual questions at test time accelerates discovery on difficult binary-reward tasks, achieving the same discovery probability as best-of-k sampling or multi-turn conversations with 3x fewer attempts.
Conditional PED-ANOVA: Hyperparameter Importance in Hierarchical & Dynamic Search Spaces
We propose conditional PED-ANOVA (condPED-ANOVA), a principled framework for estimating hyperparameter importance (HPI) in conditional search spaces, where the presence or domain of a hyperparameter can depend on other hyperparameters. Although the original PED-ANOVA provides a fast and efficient way to estimate HPI within the top-performing regions of the search space, it assumes a fixed, unconditional search space and therefore cannot properly handle conditional hyperparameters. To address this, we introduce a conditional HPI for top-performing regions and derive a closed-form estimator that accurately reflects conditional activation and domain changes. Experiments show that naive adaptations of existing HPI estimators yield misleading or uninterpretable importance estimates in conditional settings, whereas condPED-ANOVA consistently provides meaningful importances that reflect the underlying conditional structure.
comment: 16 pages, 9 figures
FAIRT2V: Training-Free Debiasing for Text-to-Video Diffusion Models
Text-to-video (T2V) diffusion models have achieved rapid progress, yet their demographic biases, particularly gender bias, remain largely unexplored. We present FairT2V, a training-free debiasing framework for text-to-video generation that mitigates encoder-induced bias without finetuning. We first analyze demographic bias in T2V models and show that it primarily originates from pretrained text encoders, which encode implicit gender associations even for neutral prompts. We quantify this effect with a gender-leaning score that correlates with bias in generated videos. Based on this insight, FairT2V mitigates demographic bias by neutralizing prompt embeddings via anchor-based spherical geodesic transformations while preserving semantics. To maintain temporal coherence, we apply debiasing only during early identity-forming steps through a dynamic denoising schedule. We further propose a video-level fairness evaluation protocol combining VideoLLM-based reasoning with human verification. Experiments on the modern T2V model Open-Sora show that FairT2V substantially reduces demographic bias across occupations with minimal impact on video quality.
REASON: Accelerating Probabilistic Logical Reasoning for Scalable Neuro-Symbolic Intelligence
Neuro-symbolic AI systems integrate neural perception with symbolic reasoning to enable data-efficient, interpretable, and robust intelligence beyond purely neural models. Although this compositional paradigm has shown superior performance in domains such as reasoning, planning, and verification, its deployment remains challenging due to severe inefficiencies in symbolic and probabilistic inference. Through systematic analysis of representative neuro-symbolic workloads, we identify probabilistic logical reasoning as the inefficiency bottleneck, characterized by irregular control flow, low arithmetic intensity, uncoalesced memory accesses, and poor hardware utilization on CPUs and GPUs. This paper presents REASON, an integrated acceleration framework for probabilistic logical reasoning in neuro-symbolic AI. REASON introduces a unified directed acyclic graph representation that captures common structure across symbolic and probabilistic models, coupled with adaptive pruning and regularization. At the architecture level, REASON features a reconfigurable, tree-based processing fabric optimized for irregular traversal, symbolic deduction, and probabilistic aggregation. At the system level, REASON is tightly integrated with GPU streaming multiprocessors through a programmable interface and multi-level pipeline that efficiently orchestrates compositional execution. Evaluated across six neuro-symbolic workloads, REASON achieves 12-50x speedup and 310-681x energy efficiency over desktop and edge GPUs under TSMC 28 nm node. REASON enables real-time probabilistic logical reasoning, completing end-to-end tasks in 0.8 s with 6 mm2 area and 2.12 W power, demonstrating that targeted acceleration of probabilistic logical reasoning is critical for practical and scalable neuro-symbolic AI and positioning REASON as a foundational system architecture for next-generation cognitive intelligence.
comment: 16 pages, 13 figures, 5 tables, 2026 IEEE International Symposium on High-Performance Computer Architecture (HPCA)
Independence of Approximate Clones
In an ordinal election, two candidates are said to be perfect clones if every voter ranks them adjacently. The independence of clones axiom then states that removing one of the two clones should not change the election outcome. This axiom has been extensively studied in social choice theory, and several voting rules are known to satisfy it (such as IRV, Ranked Pairs and Schulze). However, perfect clones are unlikely to occur in practice, especially for political elections with many voters. In this work, we study different notions of approximate clones in ordinal elections. Informally, two candidates are approximate clones in a preference profile if they are close to being perfect clones. We discuss two measures to quantify this proximity, and we show under which conditions the voting rules that are known to be independent of clones are also independent of approximate clones. In particular, we show that for elections with at least four candidates, none of these rules are independent of approximate clones in the general case. However, we find a more positive result for the case of three candidates. Finally, we conduct an empirical study of approximate clones and independence of approximate clones based on three real-world datasets: votes in local Scottish elections, votes in mini-jury deliberations, and votes of judges in figure skating competitions. We find that approximate clones are common in some contexts, and that the closest two candidates are to being perfect clones, the less likely their removal is to change the election outcome, especially for voting rules that are independent of perfect clones.
HESTIA: A Hessian-Guided Differentiable Quantization-Aware Training Framework for Extremely Low-Bit LLMs
As large language models (LLMs) continue to scale, deployment is increasingly bottlenecked by the memory wall, motivating a shift toward extremely low-bit quantization. However, most quantization-aware training (QAT) methods apply hard rounding and the straight-through estimator (STE) from the beginning of the training, which prematurely discretizes the optimization landscape and induces persistent gradient mismatch between latent weights and quantized weights, hindering effective optimization of quantized models. To address this, we propose Hestia, a Hessian-guided differentiable QAT framework for extremely low-bit LLMs, which replaces the rigid step function with a temperature-controlled softmax relaxation to maintain gradient flow early in training while progressively hardening quantization. Furthermore, Hestia leverages a tensor-wise Hessian trace metric as a lightweight curvature signal to drive fine-grained temperature annealing, enabling sensitivity-aware discretization across the model. Evaluations on Llama-3.2 show that Hestia consistently outperforms existing ternary QAT baselines, yielding average zero-shot improvements of 5.39% and 4.34% for the 1B and 3B models. These results indicate that Hessian-guided relaxation effectively recovers representational capacity, establishing a more robust training path for 1.58-bit LLMs. The code is available at https://github.com/hestia2026/Hestia.
comment: 13 pages, 2 figures
Implementing Metric Temporal Answer Set Programming
We develop a computational approach to Metric Answer Set Programming (ASP) to allow for expressing quantitative temporal constraints, like durations and deadlines. A central challenge is to maintain scalability when dealing with fine-grained timing constraints, which can significantly exacerbate ASP's grounding bottleneck. To address this issue, we leverage extensions of ASP with difference constraints, a simplified form of linear constraints, to handle time-related aspects externally. Our approach effectively decouples metric ASP from the granularity of time, resulting in a solution that is unaffected by time precision.
QueerGen: How LLMs Reflect Societal Norms on Gender and Sexuality in Sentence Completion Tasks
This paper examines how Large Language Models (LLMs) reproduce societal norms, particularly heterocisnormativity, and how these norms translate into measurable biases in their text generations. We investigate whether explicit information about a subject's gender or sexuality influences LLM responses across three subject categories: queer-marked, non-queer-marked, and the normalized "unmarked" category. Representational imbalances are operationalized as measurable differences in English sentence completions across four dimensions: sentiment, regard, toxicity, and prediction diversity. Our findings show that Masked Language Models (MLMs) produce the least favorable sentiment, higher toxicity, and more negative regard for queer-marked subjects. Autoregressive Language Models (ARLMs) partially mitigate these patterns, while closed-access ARLMs tend to produce more harmful outputs for unmarked subjects. Results suggest that LLMs reproduce normative social assumptions, though the form and degree of bias depend strongly on specific model characteristics, which may redistribute, but not eliminate, representational harms.
Li-ViP3D++: Query-Gated Deformable Camera-LiDAR Fusion for End-to-End Perception and Trajectory Prediction
End-to-end perception and trajectory prediction from raw sensor data is one of the key capabilities for autonomous driving. Modular pipelines restrict information flow and can amplify upstream errors. Recent query-based, fully differentiable perception-and-prediction (PnP) models mitigate these issues, yet the complementarity of cameras and LiDAR in the query-space has not been sufficiently explored. Models often rely on fusion schemes that introduce heuristic alignment and discrete selection steps which prevent full utilization of available information and can introduce unwanted bias. We propose Li-ViP3D++, a query-based multimodal PnP framework that introduces Query-Gated Deformable Fusion (QGDF) to integrate multi-view RGB and LiDAR in query space. QGDF (i) aggregates image evidence via masked attention across cameras and feature levels, (ii) extracts LiDAR context through fully differentiable BEV sampling with learned per-query offsets, and (iii) applies query-conditioned gating to adaptively weight visual and geometric cues per agent. The resulting architecture jointly optimizes detection, tracking, and multi-hypothesis trajectory forecasting in a single end-to-end model. On nuScenes, Li-ViP3D++ improves end-to-end behavior and detection quality, achieving higher EPA (0.335) and mAP (0.502) while substantially reducing false positives (FP ratio 0.147), and it is faster than the prior Li-ViP3D variant (139.82 ms vs. 145.91 ms). These results indicate that query-space, fully differentiable camera-LiDAR fusion can increase robustness of end-to-end PnP without sacrificing deployability.
comment: This work has been submitted to the IEEE for possible publication
Adapting the Behavior of Reinforcement Learning Agents to Changing Action Spaces and Reward Functions
Reinforcement Learning (RL) agents often struggle in real-world applications where environmental conditions are non-stationary, particularly when reward functions shift or the available action space expands. This paper introduces MORPHIN, a self-adaptive Q-learning framework that enables on-the-fly adaptation without full retraining. By integrating concept drift detection with dynamic adjustments to learning and exploration hyperparameters, MORPHIN adapts agents to changes in both the reward function and on-the-fly expansions of the agent's action space, while preserving prior policy knowledge to prevent catastrophic forgetting. We validate our approach using a Gridworld benchmark and a traffic signal control simulation. The results demonstrate that MORPHIN achieves superior convergence speed and continuous adaptation compared to a standard Q-learning baseline, improving learning efficiency by up to 1.7x.
Beyond GEMM-Centric NPUs: Enabling Efficient Diffusion LLM Sampling
Diffusion Large Language Models (dLLMs) introduce iterative denoising to enable parallel token generation, but their sampling phase displays fundamentally different characteristics compared to GEMM-centric transformer layers. Profiling on modern GPUs reveals that sampling can account for up to 70% of total model inference latency-primarily due to substantial memory loads and writes from vocabulary-wide logits, reduction-based token selection, and iterative masked updates. These processes demand large on-chip SRAM and involve irregular memory accesses that conventional NPUs struggle to handle efficiently. To address this, we identify a set of critical instructions that an NPU architecture must specifically optimize for dLLM sampling. Our design employs lightweight non-GEMM vector primitives, in-place memory reuse strategies, and a decoupled mixed-precision memory hierarchy. Together, these optimizations deliver up to a 2.53x speedup over the NVIDIA RTX A6000 GPU under an equivalent nm technology node. We also open-source our cycle-accurate simulation and post-synthesis RTL verification code, confirming functional equivalence with current dLLM PyTorch implementations.
Enterprise Resource Planning Using Multi-type Transformers in Ferro-Titanium Industry
Combinatorial optimization problems such as the Job-Shop Scheduling Problem (JSP) and Knapsack Problem (KP) are fundamental challenges in operations research, logistics, and eterprise resource planning (ERP). These problems often require sophisticated algorithms to achieve near-optimal solutions within practical time constraints. Recent advances in deep learning have introduced transformer-based architectures as promising alternatives to traditional heuristics and metaheuristics. We leverage the Multi-Type Transformer (MTT) architecture to address these benchmarks in a unified framework. We present an extensive experimental evaluation across standard benchmark datasets for JSP and KP, demonstrating that MTT achieves competitive performance on different size of these benchmark problems. We showcase the potential of multi-type attention on a real application in Ferro-Titanium industry. To the best of our knowledge, we are the first to apply multi-type transformers in real manufacturing.
Decoupling Perception and Calibration: Label-Efficient Image Quality Assessment Framework
Recent multimodal large language models (MLLMs) have demonstrated strong capabilities in image quality assessment (IQA) tasks. However, adapting such large-scale models is computationally expensive and still relies on substantial Mean Opinion Score (MOS) annotations. We argue that for MLLM-based IQA, the core bottleneck lies not in the quality perception capacity of MLLMs, but in MOS scale calibration. Therefore, we propose LEAF, a Label-Efficient Image Quality Assessment Framework that distills perceptual quality priors from an MLLM teacher into a lightweight student regressor, enabling MOS calibration with minimal human supervision. Specifically, the teacher conducts dense supervision through point-wise judgments and pair-wise preferences, with an estimate of decision reliability. Guided by these signals, the student learns the teacher's quality perception patterns through joint distillation and is calibrated on a small MOS subset to align with human annotations. Experiments on both user-generated and AI-generated IQA benchmarks demonstrate that our method significantly reduces the need for human annotations while maintaining strong MOS-aligned correlations, making lightweight IQA practical under limited annotation budgets.
Harnessing Large Language Models for Precision Querying and Retrieval-Augmented Knowledge Extraction in Clinical Data Science
This study applies Large Language Models (LLMs) to two foundational Electronic Health Record (EHR) data science tasks: structured data querying (using programmatic languages, Python/Pandas) and information extraction from unstructured clinical text via a Retrieval Augmented Generation (RAG) pipeline. We test the ability of LLMs to interact accurately with large structured datasets for analytics and the reliability of LLMs in extracting semantically correct information from free text health records when supported by RAG. To this end, we presented a flexible evaluation framework that automatically generates synthetic question and answer pairs tailored to the characteristics of each dataset or task. Experiments were conducted on a curated subset of MIMIC III, (four structured tables and one clinical note type), using a mix of locally hosted and API-based LLMs. Evaluation combined exact-match metrics, semantic similarity, and human judgment. Our findings demonstrate the potential of LLMs to support precise querying and accurate information extraction in clinical workflows.
comment: 11 pages, 5 figures
Learning Contextual Runtime Monitors for Safe AI-Based Autonomy
We introduce a novel framework for learning context-aware runtime monitors for AI-based control ensembles. Machine-learning (ML) controllers are increasingly deployed in (autonomous) cyber-physical systems because of their ability to solve complex decision-making tasks. However, their accuracy can degrade sharply in unfamiliar environments, creating significant safety concerns. Traditional ensemble methods aim to improve robustness by averaging or voting across multiple controllers, yet this often dilutes the specialized strengths that individual controllers exhibit in different operating contexts. We argue that, rather than blending controller outputs, a monitoring framework should identify and exploit these contextual strengths. In this paper, we reformulate the design of safe AI-based control ensembles as a contextual monitoring problem. A monitor continuously observes the system's context and selects the controller best suited to the current conditions. To achieve this, we cast monitor learning as a contextual learning task and draw on techniques from contextual multi-armed bandits. Our approach comes with two key benefits: (1) theoretical safety guarantees during controller selection, and (2) improved utilization of controller diversity. We validate our framework in two simulated autonomous driving scenarios, demonstrating significant improvements in both safety and performance compared to non-contextual baselines.
Detecting and Mitigating Memorization in Diffusion Models through Anisotropy of the Log-Probability ICLR 2026
Diffusion-based image generative models produce high-fidelity images through iterative denoising but remain vulnerable to memorization, where they unintentionally reproduce exact copies or parts of training images. Recent memorization detection methods are primarily based on the norm of score difference as indicators of memorization. We prove that such norm-based metrics are mainly effective under the assumption of isotropic log-probability distributions, which generally holds at high or medium noise levels. In contrast, analyzing the anisotropic regime reveals that memorized samples exhibit strong angular alignment between the guidance vector and unconditional scores in the low-noise setting. Through these insights, we develop a memorization detection metric by integrating isotropic norm and anisotropic alignment. Our detection metric can be computed directly on pure noise inputs via two conditional and unconditional forward passes, eliminating the need for costly denoising steps. Detection experiments on Stable Diffusion v1.4 and v2 show that our metric outperforms existing denoising-free detection methods while being at least approximately 5x faster than the previous best approach. Finally, we demonstrate the effectiveness of our approach by utilizing a mitigation strategy that adapts memorized prompts based on our developed metric.
comment: Accepted at ICLR 2026
Investigating the Development of Task-Oriented Communication in Vision-Language Models
We investigate whether \emph{LLM-based agents} can develop task-oriented communication protocols that differ from standard natural language in collaborative reasoning tasks. Our focus is on two core properties such task-oriented protocols may exhibit: Efficiency -- conveying task-relevant information more concisely than natural language, and Covertness -- becoming difficult for external observers to interpret, raising concerns about transparency and control. To investigate these aspects, we use a referential-game framework in which vision-language model (VLM) agents communicate, providing a controlled, measurable setting for evaluating language variants. Experiments show that VLMs can develop effective, task-adapted communication patterns. At the same time, they can develop covert protocols that are difficult for humans and external agents to interpret. We also observe spontaneous coordination between similar models without explicitly shared protocols. These findings highlight both the potential and the risks of task-oriented communication, and position referential games as a valuable testbed for future work in this area.
GDCNet: Generative Discrepancy Comparison Network for Multimodal Sarcasm Detection
Multimodal sarcasm detection (MSD) aims to identify sarcasm within image-text pairs by modeling semantic incongruities across modalities. Existing methods often exploit cross-modal embedding misalignment to detect inconsistency but struggle when visual and textual content are loosely related or semantically indirect. While recent approaches leverage large language models (LLMs) to generate sarcastic cues, the inherent diversity and subjectivity of these generations often introduce noise. To address these limitations, we propose the Generative Discrepancy Comparison Network (GDCNet). This framework captures cross-modal conflicts by utilizing descriptive, factually grounded image captions generated by Multimodal LLMs (MLLMs) as stable semantic anchors. Specifically, GDCNet computes semantic and sentiment discrepancies between the generated objective description and the original text, alongside measuring visual-textual fidelity. These discrepancy features are then fused with visual and textual representations via a gated module to adaptively balance modality contributions. Extensive experiments on MSD benchmarks demonstrate GDCNet's superior accuracy and robustness, establishing a new state-of-the-art on the MMSD2.0 benchmark.
comment: Accepted to 2026 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2026)
Agent Benchmarks Fail Public Sector Requirements
Deploying Large Language Model-based agents (LLM agents) in the public sector requires assuring that they meet the stringent legal, procedural, and structural requirements of public-sector institutions. Practitioners and researchers often turn to benchmarks for such assessments. However, it remains unclear what criteria benchmarks must meet to ensure they adequately reflect public-sector requirements, or how many existing benchmarks do so. In this paper, we first define such criteria based on a first-principles survey of public administration literature: benchmarks must be \emph{process-based}, \emph{realistic}, \emph{public-sector-specific} and report \emph{metrics} that reflect the unique requirements of the public sector. We analyse more than 1,300 benchmark papers for these criteria using an expert-validated LLM-assisted pipeline. Our results show that no single benchmark meets all of the criteria. Our findings provide a call to action for both researchers to develop public sector-relevant benchmarks and for public-sector officials to apply these criteria when evaluating their own agentic use cases.
comment: Forthcoming @ IASEAI 2026
Harder Is Better: Boosting Mathematical Reasoning via Difficulty-Aware GRPO and Multi-Aspect Question Reformulation ICLR 2026
Reinforcement Learning with Verifiable Rewards (RLVR) offers a robust mechanism for enhancing mathematical reasoning in large models. However, we identify a systematic lack of emphasis on more challenging questions in existing methods from both algorithmic and data perspectives, despite their importance for refining underdeveloped capabilities. Algorithmically, widely used Group Relative Policy Optimization (GRPO) suffers from an implicit imbalance where the magnitude of policy updates is lower for harder questions. Data-wise, augmentation approaches primarily rephrase questions to enhance diversity without systematically increasing intrinsic difficulty. To address these issues, we propose a two-dual MathForge framework to improve mathematical reasoning by targeting harder questions from both perspectives, which comprises a Difficulty-Aware Group Policy Optimization (DGPO) algorithm and a Multi-Aspect Question Reformulation (MQR) strategy. Specifically, DGPO first rectifies the implicit imbalance in GRPO via difficulty-balanced group advantage estimation, and further prioritizes harder questions by difficulty-aware question-level weighting. Meanwhile, MQR reformulates questions across multiple aspects to increase difficulty while maintaining the original gold answer. Overall, MathForge forms a synergistic loop: MQR expands the data frontier, and DGPO effectively learns from the augmented data. Extensive experiments show that MathForge significantly outperforms existing methods on various mathematical reasoning tasks. The code and augmented data are all available at https://github.com/AMAP-ML/MathForge.
comment: Accepted for ICLR 2026
WFR-MFM: One-Step Inference for Dynamic Unbalanced Optimal Transport
Reconstructing dynamical evolution from limited observations is a fundamental challenge in single-cell biology, where dynamic unbalanced optimal transport provides a principled framework for modeling coupled transport and mass variation. However, existing approaches rely on trajectory simulation at inference time, making inference a key bottleneck for scalable applications. In this work, we propose a mean-flow framework for unbalanced flow matching that summarizes both transport and mass-growth dynamics over arbitrary time intervals using mean velocity and mass-growth fields, enabling fast one-step generation without trajectory simulation. To solve dynamic unbalanced optimal transport under the Wasserstein-Fisher-Rao geometry, we further build on this framework to develop Wasserstein-Fisher-Rao Mean Flow Matching (WFR-MFM). Across synthetic and real single-cell RNA sequencing datasets, WFR-MFM achieves orders-of-magnitude faster inference than a range of existing baselines while maintaining high predictive accuracy, and enables efficient perturbation response prediction on large synthetic datasets with thousands of conditions.
Dialogical Reasoning Across AI Architectures: A Multi-Model Framework for Testing AI Alignment Strategies
This paper introduces a methodological framework for empirically testing AI alignment strategies through structured multi-model dialogue. Drawing on Peace Studies traditions - particularly interest-based negotiation, conflict transformation, and commons governance - we operationalize Viral Collaborative Wisdom (VCW), an approach that reframes alignment from a control problem to a relationship problem developed through dialogical reasoning. Our experimental design assigns four distinct roles (Proposer, Responder, Monitor, Translator) to different AI systems across six conditions, testing whether current large language models can engage substantively with complex alignment frameworks. Using Claude, Gemini, and GPT-4o, we conducted 72 dialogue turns totaling 576,822 characters of structured exchange. Results demonstrate that AI systems can engage meaningfully with Peace Studies concepts, surface complementary objections from different architectural perspectives, and generate emergent insights not present in initial framings - including the novel synthesis of "VCW as transitional framework." Cross-architecture patterns reveal that different models foreground different concerns: Claude emphasized verification challenges, Gemini focused on bias and scalability, and GPT-4o highlighted implementation barriers. The framework provides researchers with replicable methods for stress-testing alignment proposals before implementation, while the findings offer preliminary evidence about AI capacity for the kind of dialogical reasoning VCW proposes. We discuss limitations, including the observation that dialogues engaged more with process elements than with foundational claims about AI nature, and outline directions for future research including human-AI hybrid protocols and extended dialogue studies.
comment: 23 pages, 5 tables, 5 appendices. Code and data: https://github.com/jgraycox-coa/vcw-multi-ai-dialogue
CLEAR-Mamba:Towards Accurate, Adaptive and Trustworthy Multi-Sequence Ophthalmic Angiography Classification
Medical image classification is a core task in computer-aided diagnosis (CAD), playing a pivotal role in early disease detection, treatment planning, and patient prognosis assessment. In ophthalmic practice, fluorescein fundus angiography (FFA) and indocyanine green angiography (ICGA) provide hemodynamic and lesion-structural information that conventional fundus photography cannot capture. However, due to the single-modality nature, subtle lesion patterns, and significant inter-device variability, existing methods still face limitations in generalization and high-confidence prediction. To address these challenges, we propose CLEAR-Mamba, an enhanced framework built upon MedMamba with optimizations in both architecture and training strategy. Architecturally, we introduce HaC, a hypernetwork-based adaptive conditioning layer that dynamically generates parameters according to input feature distributions, thereby improving cross-domain adaptability. From a training perspective, we develop RaP, a reliability-aware prediction scheme built upon evidential uncertainty learning, which encourages the model to emphasize low-confidence samples and improves overall stability and reliability. We further construct a large-scale ophthalmic angiography dataset covering both FFA and ICGA modalities, comprising multiple retinal disease categories for model training and evaluation. Experimental results demonstrate that CLEAR-Mamba consistently outperforms multiple baseline models, including the original MedMamba, across various metrics-showing particular advantages in multi-disease classification and reliability-aware prediction. This study provides an effective solution that balances generalizability and reliability for modality-specific medical image classification tasks.
comment: 10 pages,7 figures
Regularized Gradient Temporal-Difference Learning
Gradient temporal-difference (GTD) learning algorithms are widely used for off-policy policy evaluation with function approximation. However, existing convergence analyses rely on the restrictive assumption that the so-called feature interaction matrix (FIM) is nonsingular. In practice, the FIM can become singular and leads to instability or degraded performance. In this paper, we propose a regularized optimization objective by reformulating the mean-square projected Bellman error (MSPBE) minimization. This formulation naturally yields a regularized GTD algorithms, referred to as R-GTD, which guarantees convergence to a unique solution even when the FIM is singular. We establish theoretical convergence guarantees and explicit error bounds for the proposed method, and validate its effectiveness through empirical experiments.
comment: 27 pages, 8 figures
Person Re-ID in 2025: Supervised, Self-Supervised, and Language-Aligned. What Works?
Person Re-Identification (ReID) remains a challenging problem in computer vision. This work reviews various training paradigm and evaluates the robustness of state-of-the-art ReID models in cross-domain applications and examines the role of foundation models in improving generalization through richer, more transferable visual representations. We compare three training paradigms, supervised, self-supervised, and language-aligned models. Through the study the aim is to answer the following questions: Can supervised models generalize in cross-domain scenarios? How does foundation models like SigLIP2 perform for the ReID tasks? What are the weaknesses of current supervised and foundational models for ReID? We have conducted the analysis across 11 models and 9 datasets. Our results show a clear split: supervised models dominate their training domain but crumble on cross-domain data. Language-aligned models, however, show surprising robustness cross-domain for ReID tasks, even though they are not explicitly trained to do so. Code and data available at: https://github.com/moiiai-tech/object-reid-benchmark.
Ranking-aware Reinforcement Learning for Ordinal Ranking
Ordinal regression and ranking are challenging due to inherent ordinal dependencies that conventional methods struggle to model. We propose Ranking-Aware Reinforcement Learning (RARL), a novel RL framework that explicitly learns these relationships. At its core, RARL features a unified objective that synergistically integrates regression and Learning-to-Rank (L2R), enabling mutual improvement between the two tasks. This is driven by a ranking-aware verifiable reward that jointly assesses regression precision and ranking accuracy, facilitating direct model updates via policy optimization. To further enhance training, we introduce Response Mutation Operations (RMO), which inject controlled noise to improve exploration and prevent stagnation at saddle points. The effectiveness of RARL is validated through extensive experiments on three distinct benchmarks.
comment: Accepted to ICASSP2026
Inequality in Congestion Games with Learning Agents
Who benefits from expanding transport networks? While designed to improve mobility, such interventions can also create inequality. In this paper, we show that disparities arise not only from the structure of the network itself but also from differences in how commuters adapt to it. We model commuters as reinforcement learning agents who adapt their travel choices at different learning rates, reflecting unequal access to resources and information. To capture potential efficiency-fairness tradeoffs, we introduce the Price of Learning (PoL), a measure of inefficiency during learning. We analyze both a stylized network -- inspired in the well-known Braess's paradox, yet with two-source nodes -- and an abstraction of a real-world metro system (Amsterdam). Our simulations show that network expansions can simultaneously increase efficiency and amplify inequality, especially when faster learners disproportionately benefit from new routes before others adapt. These results highlight that transport policies must account not only for equilibrium outcomes but also for the heterogeneous ways commuters adapt, since both shape the balance between efficiency and fairness.
comment: Full version of the extended abstract version appearing in Proceedings of the 25th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2026)
Robust Distributed Learning under Resource Constraints: Decentralized Quantile Estimation via (Asynchronous) ADMM
Specifications for decentralized learning on resource-constrained edge devices require algorithms that are communication-efficient, robust to data corruption, and lightweight in memory usage. While state-of-the-art gossip-based methods satisfy the first requirement, achieving robustness remains challenging. Asynchronous decentralized ADMM-based methods have been explored for estimating the median, a statistical centrality measure that is notoriously more robust than the mean. However, existing approaches require memory that scales with node degree, making them impractical when memory is limited. In this paper, we propose AsylADMM, a novel gossip algorithm for decentralized median and quantile estimation, primarily designed for asynchronous updates and requiring only two variables per node. We analyze a synchronous variant of AsylADMM to establish theoretical guarantees and empirically demonstrate fast convergence for the asynchronous algorithm. We then show that our algorithm enables quantile-based trimming, geometric median estimation, and depth-based trimming, with quantile-based trimming empirically outperforming existing rank-based methods. Finally, we provide a novel theoretical analysis of rank-based trimming via Markov chain theory.
Unsupervised Ensemble Learning Through Deep Energy-based Models AISTATS 2026
Unsupervised ensemble learning emerged to address the challenge of combining multiple learners' predictions without access to ground truth labels or additional data. This paradigm is crucial in scenarios where evaluating individual classifier performance or understanding their strengths is challenging due to limited information. We propose a novel deep energy-based method for constructing an accurate meta-learner using only the predictions of individual learners, potentially capable of capturing complex dependence structures between them. Our approach requires no labeled data, learner features, or problem-specific information, and has theoretical guarantees for when learners are conditionally independent. We demonstrate superior performance across diverse ensemble scenarios, including challenging mixture of experts settings. Our experiments span standard ensemble datasets and curated datasets designed to test how the model fuses expertise from multiple sources. These results highlight the potential of unsupervised ensemble learning to harness collective intelligence, especially in data-scarce or privacy-sensitive environments.
comment: Accepted to AISTATS 2026. 29 pages, 13 figures. Code available at: https://github.com/shaham-lab/deem
Online Risk-Averse Planning in POMDPs Using Iterated CVaR Value Function
We study risk-sensitive planning under partial observability using the dynamic risk measure Iterated Conditional Value-at-Risk (ICVaR). A policy evaluation algorithm for ICVaR is developed with finite-time performance guarantees that do not depend on the cardinality of the action space. Building on this foundation, three widely used online planning algorithms--Sparse Sampling, Particle Filter Trees with Double Progressive Widening (PFT-DPW), and Partially Observable Monte Carlo Planning with Observation Widening (POMCPOW)--are extended to optimize the ICVaR value function rather than the expectation of the return. Our formulations introduce a risk parameter $α$, where $α= 1$ recovers standard expectation-based planning and $α< 1$ induces increasing risk aversion. For ICVaR Sparse Sampling, we establish finite-time performance guarantees under the risk-sensitive objective, which further enable a novel exploration strategy tailored to ICVaR. Experiments on benchmark POMDP domains demonstrate that the proposed ICVaR planners achieve lower tail risk compared to their risk-neutral counterparts.
IoT Device Identification with Machine Learning: Common Pitfalls and Best Practices
This paper critically examines the device identification process using machine learning, addressing common pitfalls in existing literature. We analyze the trade-offs between identification methods (unique vs. class based), data heterogeneity, feature extraction challenges, and evaluation metrics. By highlighting specific errors, such as improper data augmentation and misleading session identifiers, we provide a robust guideline for researchers to enhance the reproducibility and generalizability of IoT security models.
comment: 4 pages
PathWise: Planning through World Model for Automated Heuristic Design via Self-Evolving LLMs
Large Language Models (LLMs) have enabled automated heuristic design (AHD) for combinatorial optimization problems (COPs), but existing frameworks' reliance on fixed evolutionary rules and static prompt templates often leads to myopic heuristic generation, redundant evaluations, and limited reasoning about how new heuristics should be derived. We propose a novel multi-agent reasoning framework, referred to as Planning through World Model for Automated Heuristic Design via Self-Evolving LLMs (PathWise), which formulates heuristic generation as a sequential decision process over an entailment graph serving as a compact, stateful memory of the search trajectory. This approach allows the system to carry forward past decisions and reuse or avoid derivation information across generations. A policy agent plans evolutionary actions, a world model agent generates heuristic rollouts conditioned on those actions, and critic agents provide routed reflections summarizing lessons from prior steps, shifting LLM-based AHD from trial-and-error evolution toward state-aware planning through reasoning. Experiments across diverse COPs show that PathWise converges faster to better heuristics, generalizes across different LLM backbones, and scales to larger problem sizes.
Interpreting Emergent Extreme Events in Multi-Agent Systems
Large language model-powered multi-agent systems have emerged as powerful tools for simulating complex human-like systems. The interactions within these systems often lead to extreme events whose origins remain obscured by the black box of emergence. Interpreting these events is critical for system safety. This paper proposes the first framework for explaining emergent extreme events in multi-agent systems, aiming to answer three fundamental questions: When does the event originate? Who drives it? And what behaviors contribute to it? Specifically, we adapt the Shapley value to faithfully attribute the occurrence of extreme events to each action taken by agents at different time steps, i.e., assigning an attribution score to the action to measure its influence on the event. We then aggregate the attribution scores along the dimensions of time, agent, and behavior to quantify the risk contribution of each dimension. Finally, we design a set of metrics based on these contribution scores to characterize the features of extreme events. Experiments across diverse multi-agent system scenarios (economic, financial, and social) demonstrate the effectiveness of our framework and provide general insights into the emergence of extreme phenomena.
comment: 8 pages, 5 figures
CCMamba: Selective State-Space Models for Higher-Order Graph Learning on Combinatorial Complexes
Topological deep learning has emerged for modeling higher-order relational structures beyond pairwise interactions that standard graph neural networks fail to capture. Although combinatorial complexes offer a unified topological framework, most existing topological deep learning methods rely on local message passing via attention mechanisms, which incur quadratic complexity and remain low-dimensional, limiting scalability and rank-aware information aggregation in higher-order complexes.We propose Combinatorial Complex Mamba (CCMamba), the first unified mamba-based neural framework for learning on combinatorial complexes. CCMamba reformulates message passing as a selective state-space modeling problem by organizing multi-rank incidence relations into structured sequences processed by rank-aware state-space models. This enables adaptive, directional, and long range information propagation in linear time without self attention. We further establish the theoretical analysis that the expressive power upper-bound of CCMamba message passing is the 1-Weisfeiler-Lehman test. Experiments on graph, hypergraph, and simplicial benchmarks demonstrate that CCMamba consistently outperforms existing methods while exhibiting improved scalability and robustness to depth.
Audio Deepfake Detection in the Age of Advanced Text-to-Speech models
Recent advances in Text-to-Speech (TTS) systems have substantially increased the realism of synthetic speech, raising new challenges for audio deepfake detection. This work presents a comparative evaluation of three state-of-the-art TTS models--Dia2, Maya1, and MeloTTS--representing streaming, LLM-based, and non-autoregressive architectures. A corpus of 12,000 synthetic audio samples was generated using the Daily-Dialog dataset and evaluated against four detection frameworks, including semantic, structural, and signal-level approaches. The results reveal significant variability in detector performance across generative mechanisms: models effective against one TTS architecture may fail against others, particularly LLM-based synthesis. In contrast, a multi-view detection approach combining complementary analysis levels demonstrates robust performance across all evaluated models. These findings highlight the limitations of single-paradigm detectors and emphasize the necessity of integrated detection strategies to address the evolving landscape of audio deepfake threats.
comment: This work was performed using HPC resources from GENCI-IDRIS (Grant 2025- AD011016076)
Comparative evaluation of training strategies using partially labelled datasets for segmentation of white matter hyperintensities and stroke lesions in FLAIR MRI
White matter hyperintensities (WMH) and ischaemic stroke lesions (ISL) are imaging features associated with cerebral small vessel disease (SVD) that are visible on brain magnetic resonance imaging (MRI) scans. The development and validation of deep learning models to segment and differentiate these features is difficult because they visually confound each other in the fluid-attenuated inversion recovery (FLAIR) sequence and often appear in the same subject. We investigated six strategies for training a combined WMH and ISL segmentation model using partially labelled data. We combined privately held fully and partially labelled datasets with publicly available partially labelled datasets to yield a total of 2052 MRI volumes, with 1341 and 1152 containing ground truth annotations for WMH and ISL respectively. We found that several methods were able to effectively leverage the partially labelled data to improve model performance, with the use of pseudolabels yielding the best result.
Normative Equivalence in human-AI Cooperation: Behaviour, Not Identity, Drives Cooperation in Mixed-Agent Groups
The introduction of artificial intelligence (AI) agents into human group settings raises essential questions about how these novel participants influence cooperative social norms. While previous studies on human-AI cooperation have primarily focused on dyadic interactions, little is known about how integrating AI agents affects the emergence and maintenance of cooperative norms in small groups. This study addresses this gap through an online experiment using a repeated four-player Public Goods Game (PGG). Each group consisted of three human participants and one bot, which was framed either as human or AI and followed one of three predefined decision strategies: unconditional cooperation, conditional cooperation, or free-riding. In our sample of 236 participants, we found that reciprocal group dynamics and behavioural inertia primarily drove cooperation. These normative mechanisms operated identically across conditions, resulting in cooperation levels that did not differ significantly between human and AI labels. Furthermore, we found no evidence of differences in norm persistence in a follow-up Prisoner's Dilemma, or in participants' normative perceptions. Participants' behaviour followed the same normative logic across human and AI conditions, indicating that cooperation depended on group behaviour rather than partner identity. This supports a pattern of normative equivalence, in which the mechanisms that sustain cooperation function similarly in mixed human-AI and all human groups. These findings suggest that cooperative norms are flexible enough to extend to artificial agents, blurring the boundary between humans and AI in collective decision-making.
CtrlCoT: Dual-Granularity Chain-of-Thought Compression for Controllable Reasoning
Chain-of-thought (CoT) prompting improves LLM reasoning but incurs high latency and memory cost due to verbose traces, motivating CoT compression with preserved correctness. Existing methods either shorten CoTs at the semantic level, which is often conservative, or prune tokens aggressively, which can miss task-critical cues and degrade accuracy. Moreover, combining the two is non-trivial due to sequential dependency, task-agnostic pruning, and distribution mismatch. We propose \textbf{CtrlCoT}, a dual-granularity CoT compression framework that harmonizes semantic abstraction and token-level pruning through three components: Hierarchical Reasoning Abstraction produces CoTs at multiple semantic granularities; Logic-Preserving Distillation trains a logic-aware pruner to retain indispensable reasoning cues (e.g., numbers and operators) across pruning ratios; and Distribution-Alignment Generation aligns compressed traces with fluent inference-time reasoning styles to avoid fragmentation. On MATH-500 with Qwen2.5-7B-Instruct, CtrlCoT uses 30.7\% fewer tokens while achieving 7.6 percentage points higher than the strongest baseline, demonstrating more efficient and reliable reasoning. Our code will be publicly available at https://github.com/fanzhenxuan/Ctrl-CoT.
comment: 16 pages, 9 figures, 11 tables
Fair Recourse for All: Ensuring Individual and Group Fairness in Counterfactual Explanations
Explainable Artificial Intelligence (XAI) is becoming increasingly essential for enhancing the transparency of machine learning (ML) models. Among the various XAI techniques, counterfactual explanations (CFs) hold a pivotal role due to their ability to illustrate how changes in input features can alter an ML model's decision, thereby offering actionable recourse to users. Ensuring that individuals with comparable attributes and those belonging to different protected groups (e.g., demographic) receive similar and actionable recourse options is essential for trustworthy and fair decision-making. In this work, we address this challenge directly by focusing on the generation of fair CFs. Specifically, we start by defining and formulating fairness at: 1) individual fairness, ensuring that similar individuals receive similar CFs, 2) group fairness, ensuring equitable CFs across different protected groups and 3) hybrid fairness, which accounts for both individual and broader group-level fairness. We formulate the problem as an optimization task and propose a novel model-agnostic, reinforcement learning based approach to generate CFs that satisfy fairness constraints at both the individual and group levels, two objectives that are usually treated as orthogonal. As fairness metrics, we extend existing metrics commonly used for auditing ML models, such as equal choice of recourse and equal effectiveness across individuals and groups. We evaluate our approach on three benchmark datasets, showing that it effectively ensures individual and group fairness while preserving the quality of the generated CFs in terms of proximity and plausibility, and quantify the cost of fairness in the different levels separately. Our work opens a broader discussion on hybrid fairness and its role and implications for XAI and beyond CFs.
Assembling the Mind's Mosaic: Towards EEG Semantic Intent Decoding
Enabling natural communication through brain-computer interfaces (BCIs) remains one of the most profound challenges in neuroscience and neurotechnology. While existing frameworks offer partial solutions, they are constrained by oversimplified semantic representations and a lack of interpretability. To overcome these limitations, we introduce Semantic Intent Decoding (SID), a novel framework that translates neural activity into natural language by modeling meaning as a flexible set of compositional semantic units. SID is built on three core principles: semantic compositionality, continuity and expandability of semantic space, and fidelity in reconstruction. We present BrainMosaic, a deep learning architecture implementing SID. BrainMosaic decodes multiple semantic units from EEG/SEEG signals using set matching and then reconstructs coherent sentences through semantic-guided reconstruction. This approach moves beyond traditional pipelines that rely on fixed-class classification or unconstrained generation, enabling a more interpretable and expressive communication paradigm. Extensive experiments on multilingual EEG and clinical SEEG datasets demonstrate that SID and BrainMosaic offer substantial advantages over existing frameworks, paving the way for natural and effective BCI-mediated communication.
Self Voice Conversion as an Attack against Neural Audio Watermarking
Audio watermarking embeds auxiliary information into speech while maintaining speaker identity, linguistic content, and perceptual quality. Although recent advances in neural and digital signal processing-based watermarking methods have improved imperceptibility and embedding capacity, robustness is still primarily assessed against conventional distortions such as compression, additive noise, and resampling. However, the rise of deep learning-based attacks introduces novel and significant threats to watermark security. In this work, we investigate self voice conversion as a universal, content-preserving attack against audio watermarking systems. Self voice conversion remaps a speaker's voice to the same identity while altering acoustic characteristics through a voice conversion model. We demonstrate that this attack severely degrades the reliability of state-of-the-art watermarking approaches and highlight its implications for the security of modern audio watermarking techniques.
comment: 7 pages; 2 figures; 2 tables; accepted at IEICE, SP/SLP 2026
Guiding the Recommender: Information-Aware Auto-Bidding for Content Promotion
Modern content platforms offer paid promotion to mitigate cold start by allocating exposure via auctions. Our empirical analysis reveals a counterintuitive flaw in this paradigm: while promotion rescues low-to-medium quality content, it can harm high-quality content by forcing exposure to suboptimal audiences, polluting engagement signals and downgrading future recommendation. We recast content promotion as a dual-objective optimization that balances short-term value acquisition with long-term model improvement. To make this tractable at bid time in content promotion, we introduce a decomposable surrogate objective, gradient coverage, and establish its formal connection to Fisher Information and optimal experimental design. We design a two-stage auto-bidding algorithm based on Lagrange duality that dynamically paces budget through a shadow price and optimizes impression-level bids using per-impression marginal utilities. To address missing labels at bid time, we propose a confidence-gated gradient heuristic, paired with a zeroth-order variant for black-box models that reliably estimates learning signals in real time. We provide theoretical guarantees, proving monotone submodularity of the composite objective, sublinear regret in online auction, and budget feasibility. Extensive offline experiments on synthetic and real-world datasets validate the framework: it outperforms baselines, achieves superior final AUC/LogLoss, adheres closely to budget targets, and remains effective when gradients are approximated zeroth-order. These results show that strategic, information-aware promotion can improve long-term model performance and organic outcomes beyond naive impression-maximization strategies.
comment: Accepted by SIGMETRICS 2026
Let's Roll a BiFTA: Bi-refinement for Fine-grained Text-visual Alignment in Vision-Language Models
Recent research has shown that aligning fine-grained text descriptions with localized image patches can significantly improve the zero-shot performance of pre-trained vision-language models (e.g., CLIP). However, we find that both fine-grained text descriptions and localized image patches often contain redundant information, making text-visual alignment less effective. In this paper, we tackle this issue from two perspectives: \emph{View Refinement} and \emph{Description refinement}, termed as \textit{\textbf{Bi}-refinement for \textbf{F}ine-grained \textbf{T}ext-visual \textbf{A}lignment} (BiFTA). \emph{View refinement} removes redundant image patches with high \emph{Intersection over Union} (IoU) ratios, resulting in more distinctive visual samples. \emph{Description refinement} removes redundant text descriptions with high pairwise cosine similarity, ensuring greater diversity in the remaining descriptions. BiFTA achieves superior zero-shot performance on 6 benchmark datasets for both ViT-based and ResNet-based CLIP, justifying the necessity to remove redundant information in visual-text alignment.
comment: 25 pages
Meeting SLOs, Slashing Hours: Automated Enterprise LLM Optimization with OptiKIT
Enterprise LLM deployment faces a critical scalability challenge: organizations must optimize models systematically to scale AI initiatives within constrained compute budgets, yet the specialized expertise required for manual optimization remains a niche and scarce skillset. This challenge is particularly evident in managing GPU utilization across heterogeneous infrastructure while enabling teams with diverse workloads and limited LLM optimization experience to deploy models efficiently. We present OptiKIT, a distributed LLM optimization framework that democratizes model compression and tuning by automating complex optimization workflows for non-expert teams. OptiKIT provides dynamic resource allocation, staged pipeline execution with automatic cleanup, and seamless enterprise integration. In production, it delivers more than 2x GPU throughput improvement while empowering application teams to achieve consistent performance improvements without deep LLM optimization expertise. We share both the platform design and key engineering insights into resource allocation algorithms, pipeline orchestration, and integration patterns that enable large-scale, production-grade democratization of model optimization. Finally, we open-source the system to enable external contributions and broader reproducibility.
comment: Accepted in MLSys 2026
On the Impact of AGENTS.md Files on the Efficiency of AI Coding Agents
AI coding agents such as Codex and Claude Code are increasingly used to autonomously contribute to software repositories. However, little is known about how repository-level configuration artifacts affect operational efficiency of the agents. In this paper, we study the impact of AGENTS$.$md files on the runtime and token consumption of AI coding agents operating on GitHub pull requests. We analyze 10 repositories and 124 pull requests, executing agents under two conditions: with and without an AGENTS$.$md file. We measure wall-clock execution time and token usage during agent execution. Our results show that the presence of AGENTS$.$md is associated with a lower median runtime ($Δ28.64$%) and reduced output token consumption ($Δ16.58$%), while maintaining a comparable task completion behavior. Based on these results, we discuss immediate implications for the configuration and deployment of AI coding agents in practice, and outline a broader research agenda on the role of repository-level instructions in shaping the behavior, efficiency, and integration of AI coding agents in software development workflows.
comment: 5 pages, 1 figure, 1 table
GuideAI: A Real-time Personalized Learning Solution with Adaptive Interventions
Large Language Models (LLMs) have emerged as powerful learning tools, but they lack awareness of learners' cognitive and physiological states, limiting their adaptability to the user's learning style. Contemporary learning techniques primarily focus on structured learning paths, knowledge tracing, and generic adaptive testing but fail to address real-time learning challenges driven by cognitive load, attention fluctuations, and engagement levels. Building on findings from a formative user study (N=66), we introduce GuideAI, a multi-modal framework that enhances LLM-driven learning by integrating real-time biosensory feedback including eye gaze tracking, heart rate variability, posture detection, and digital note-taking behavior. GuideAI dynamically adapts learning content and pacing through cognitive optimizations (adjusting complexity based on learning progress markers), physiological interventions (breathing guidance and posture correction), and attention-aware strategies (redirecting focus using gaze analysis). Additionally, GuideAI supports diverse learning modalities, including text-based, image-based, audio-based, and video-based instruction, across varied knowledge domains. A preliminary study (N = 25) assessed GuideAI's impact on knowledge retention and cognitive load through standardized assessments. The results show statistically significant improvements in both problem-solving capability and recall-based knowledge assessments. Participants also experienced notable reductions in key NASA-TLX measures including mental demand, frustration levels, and effort, while simultaneously reporting enhanced perceived performance. These findings demonstrate GuideAI's potential to bridge the gap between current LLM-based learning systems and individualized learner needs, paving the way for adaptive, cognition-aware education at scale.
comment: Accepted for publication at the 31st International Conference on Intelligent User Interfaces (IUI 2026)
FedRD: Reducing Divergences for Generalized Federated Learning via Heterogeneity-aware Parameter Guidance
Heterogeneous federated learning (HFL) aims to ensure effective and privacy-preserving collaboration among different entities. As newly joined clients require significant adjustments and additional training to align with the existing system, the problem of generalizing federated learning models to unseen clients under heterogeneous data has become progressively crucial. Consequently, we highlight two unsolved challenging issues in federated domain generalization: Optimization Divergence and Performance Divergence. To tackle the above challenges, we propose FedRD, a novel heterogeneity-aware federated learning algorithm that collaboratively utilizes parameter-guided global generalization aggregation and local debiased classification to reduce divergences, aiming to obtain an optimal global model for participating and unseen clients. Extensive experiments on public multi-domain datasets demonstrate that our approach exhibits a substantial performance advantage over competing baselines in addressing this specific problem.
comment: Accepted by ICASSP 2026
OmegaUse: Building a General-Purpose GUI Agent for Autonomous Task Execution
Graphical User Interface (GUI) agents show great potential for enabling foundation models to complete real-world tasks, revolutionizing human-computer interaction and improving human productivity. In this report, we present OmegaUse, a general-purpose GUI agent model for autonomous task execution on both mobile and desktop platforms, supporting computer-use and phone-use scenarios. Building an effective GUI agent model relies on two factors: (1) high-quality data and (2) effective training methods. To address these, we introduce a carefully engineered data-construction pipeline and a decoupled training paradigm. For data construction, we leverage rigorously curated open-source datasets and introduce a novel automated synthesis framework that integrates bottom-up autonomous exploration with top-down taxonomy-guided generation to create high-fidelity synthetic data. For training, to better leverage these data, we adopt a two-stage strategy: Supervised Fine-Tuning (SFT) to establish fundamental interaction syntax, followed by Group Relative Policy Optimization (GRPO) to improve spatial grounding and sequential planning. To balance computational efficiency with agentic reasoning capacity, OmegaUse is built on a Mixture-of-Experts (MoE) backbone. To evaluate cross-terminal capabilities in an offline setting, we introduce OS-Nav, a benchmark suite spanning multiple operating systems: ChiM-Nav, targeting Chinese Android mobile environments, and Ubu-Nav, focusing on routine desktop interactions on Ubuntu. Extensive experiments show that OmegaUse is highly competitive across established GUI benchmarks, achieving a state-of-the-art (SOTA) score of 96.3% on ScreenSpot-V2 and a leading 79.1% step success rate on AndroidControl. OmegaUse also performs strongly on OS-Nav, reaching 74.24% step success on ChiM-Nav and 55.9% average success on Ubu-Nav.
Policy of Thoughts: Scaling LLM Reasoning via Test-time Policy Evolution
Large language models (LLMs) struggle with complex, long-horizon reasoning due to instability caused by their frozen policy assumption. Current test-time scaling methods treat execution feedback merely as an external signal for filtering or rewriting trajectories, without internalizing it to improve the underlying reasoning strategy. Inspired by Popper's epistemology of "conjectures and refutations," we argue that intelligence requires real-time evolution of the model's policy through learning from failed attempts. We introduce Policy of Thoughts (PoT), a framework that recasts reasoning as a within-instance online optimization process. PoT first generates diverse candidate solutions via an efficient exploration mechanism, then uses Group Relative Policy Optimization (GRPO) to update a transient LoRA adapter based on execution feedback. This closed-loop design enables dynamic, instance-specific refinement of the model's reasoning priors. Experiments show that PoT dramatically boosts performance: a 4B model achieves 49.71% accuracy on LiveCodeBench, outperforming GPT-4o and DeepSeek-V3 despite being over 50 smaller.
comment: 19 pages, 5 figures
LLM-AutoDP: Automatic Data Processing via LLM Agents for Model Fine-tuning
Large Language Models (LLMs) can be fine-tuned on domain-specific data to enhance their performance in specialized fields. However, such data often contains numerous low-quality samples, necessitating effective data processing (DP). In practice, DP strategies are typically developed through iterative manual analysis and trial-and-error adjustment. These processes inevitably incur high labor costs and may lead to privacy issues in high-privacy domains like healthcare due to direct human access to sensitive data. Thus, achieving automated data processing without exposing the raw data has become a critical challenge. To address this challenge, we propose LLM-AutoDP, a novel framework that leverages LLMs as agents to automatically generate and optimize data processing strategies. Our method generates multiple candidate strategies and iteratively refines them using feedback signals and comparative evaluations. This iterative in-context learning mechanism enables the agent to converge toward high-quality processing pipelines without requiring direct human intervention or access to the underlying data. To further accelerate strategy search, we introduce three key techniques: Distribution Preserving Sampling, which reduces data volume while maintaining distributional integrity; Processing Target Selection, which uses a binary classifier to identify low-quality samples for focused processing; Cache-and-Reuse Mechanism}, which minimizes redundant computations by reusing prior processing results. Results show that models trained on data processed by our framework achieve over 80% win rates against models trained on unprocessed data. Compared to AutoML baselines based on LLM agents, LLM-AutoDP achieves approximately a 65% win rate. Moreover, our acceleration techniques reduce the total searching time by up to 10 times, demonstrating both effectiveness and efficiency.
comment: Accepted by VLDB2026
Can Continuous-Time Diffusion Models Generate and Solve Globally Constrained Discrete Problems? A Study on Sudoku
Can standard continuous-time generative models represent distributions whose support is an extremely sparse, globally constrained discrete set? We study this question using completed Sudoku grids as a controlled testbed, treating them as a subset of a continuous relaxation space. We train flow-matching and score-based models along a Gaussian probability path and compare deterministic (ODE) sampling, stochastic (SDE) sampling, and DDPM-style discretizations derived from the same continuous-time training. Unconditionally, stochastic sampling substantially outperforms deterministic flows; score-based samplers are the most reliable among continuous-time methods, and DDPM-style ancestral sampling achieves the highest validity overall. We further show that the same models can be repurposed for guided generation: by repeatedly sampling completions under clamped clues and stopping when constraints are satisfied, the model acts as a probabilistic Sudoku solver. Although far less sample-efficient than classical solvers and discrete-geometry-aware diffusion methods, these experiments demonstrate that classic diffusion/flow formulations can assign non-zero probability mass to globally constrained combinatorial structures and can be used for constraint satisfaction via stochastic search.
comment: 26 pages, 5 figures. Empirical study of continuous-time diffusion and flow models on Sudoku. Code available at https://github.com/MariiaDrozdova/sudoku_generation
Switchcodec: Adaptive residual-expert sparse quantization for high-fidelity neural audio coding
Recent neural audio compression models often rely on residual vector quantization for high-fidelity coding, but using a fixed number of per-frame codebooks is suboptimal for the wide variability of audio content-especially for signals that are either very simple or highly complex. To address this limitation, we propose SwitchCodec, a neural audio codec based on Residual Experts Vector Quantization (REVQ). REVQ combines a shared quantizer with dynamically routed expert quantizers that are activated according to the input audio, decoupling bitrate from codebook capacity and improving compression efficiency. This design ensures full training and utilization of each quantizer. In addition, a variable-bitrate mechanism adjusts the number of active expert quantizers at inference, enabling multi-bitrate operation without retraining. Experiments demonstrate that SwitchCodec surpasses existing baselines on both objective metrics and subjective listening tests.
comment: 4page,3figure,Accepted by ICASSP 2026,We would like to express our sincere gratitude to Senior Fellow Jing Wang for his continuous support and assistance. He has made an indelible and significant contribution to this work
CURVE: Learning Causality-Inspired Invariant Representations for Robust Scene Understanding via Uncertainty-Guided Regularization
Scene graphs provide structured abstractions for scene understanding, yet they often overfit to spurious correlations, severely hindering out-of-distribution generalization. To address this limitation, we propose CURVE, a causality-inspired framework that integrates variational uncertainty modeling with uncertainty-guided structural regularization to suppress high-variance, environment-specific relations. Specifically, we apply prototype-conditioned debiasing to disentangle invariant interaction dynamics from environment-dependent variations, promoting a sparse and domain-stable topology. Empirically, we evaluate CURVE in zero-shot transfer and low-data sim-to-real adaptation, verifying its ability to learn domain-stable sparse topologies and provide reliable uncertainty estimates to support risk prediction under distribution shifts.
AMA: Adaptive Memory via Multi-Agent Collaboration
The rapid evolution of Large Language Model (LLM) agents has necessitated robust memory systems to support cohesive long-term interaction and complex reasoning. Benefiting from the strong capabilities of LLMs, recent research focus has shifted from simple context extension to the development of dedicated agentic memory systems. However, existing approaches typically rely on rigid retrieval granularity, accumulation-heavy maintenance strategies, and coarse-grained update mechanisms. These design choices create a persistent mismatch between stored information and task-specific reasoning demands, while leading to the unchecked accumulation of logical inconsistencies over time. To address these challenges, we propose Adaptive Memory via Multi-Agent Collaboration (AMA), a novel framework that leverages coordinated agents to manage memory across multiple granularities. AMA employs a hierarchical memory design that dynamically aligns retrieval granularity with task complexity. Specifically, the Constructor and Retriever jointly enable multi-granularity memory construction and adaptive query routing. The Judge verifies the relevance and consistency of retrieved content, triggering iterative retrieval when evidence is insufficient or invoking the Refresher upon detecting logical conflicts. The Refresher then enforces memory consistency by performing targeted updates or removing outdated entries. Extensive experiments on challenging long-context benchmarks show that AMA significantly outperforms state-of-the-art baselines while reducing token consumption by approximately 80% compared to full-context methods, demonstrating its effectiveness in maintaining retrieval precision and long-term memory consistency.
comment: 8 pages
Multimodal Multi-Agent Ransomware Analysis Using AutoGen
Ransomware has become one of the most serious cybersecurity threats causing major financial losses and operational disruptions worldwide.Traditional detection methods such as static analysis, heuristic scanning and behavioral analysis often fall short when used alone. To address these limitations, this paper presents multimodal multi agent ransomware analysis framework designed for ransomware classification. Proposed multimodal multiagent architecture combines information from static, dynamic and network sources. Each data type is handled by specialized agent that uses auto encoder based feature extraction. These representations are then integrated through a fusion agent. After that fused representation are used by transformer based classifier. It identifies the specific ransomware family. The agents interact through an interagent feedback mechanism that iteratively refines feature representations by suppressing low confidence information. The framework was evaluated on large scale datasets containing thousands of ransomware and benign samples. Multiple experiments were conducted on ransomware dataset. It outperforms single modality and nonadaptive fusion baseline achieving improvement of up to 0.936 in Macro-F1 for family classification and reducing calibration error. Over 100 epochs, the agentic feedback loop displays a stable monotonic convergence leading to over +0.75 absolute improvement in terms of agent quality and a final composite score of around 0.88 without fine tuning of the language models. Zeroday ransomware detection remains family dependent on polymorphism and modality disruptions. Confidence aware abstention enables reliable real world deployment by favoring conservativeand trustworthy decisions over forced classification. The findings indicate that proposed approach provides a practical andeffective path toward improving real world ransomware defense systems.
comment: 45 pages, 11 figures and 10 tables
MobileBench-OL: A Comprehensive Chinese Benchmark for Evaluating Mobile GUI Agents in Real-World Environment
Recent advances in mobile Graphical User Interface (GUI) agents highlight the growing need for comprehensive evaluation benchmarks. While new online benchmarks offer more realistic testing than offline ones, they tend to focus on the agents' task instruction-following ability while neglecting their reasoning and exploration ability. Moreover, these benchmarks do not consider the random noise in real-world mobile environments. This leads to a gap between benchmarks and real-world environments. To addressing these limitations, we propose MobileBench-OL, an online benchmark with 1080 tasks from 80 Chinese apps. It measures task execution, complex reasoning, and noise robustness of agents by including 5 subsets, which set multiple evaluation dimensions. We also provide an auto-eval framework with a reset mechanism, enabling stable and repeatable real-world benchmarking. Evaluating 12 leading GUI agents on MobileBench-OL shows significant room for improvement to meet real-world requirements. Human evaluation further confirms that MobileBench-OL can reliably measure the performance of leading GUI agents in real environments. Our data and code will be released upon acceptance.
Demonstration-Free Robotic Control via LLM Agents
Robotic manipulation has increasingly adopted vision-language-action (VLA) models, which achieve strong performance but typically require task-specific demonstrations and fine-tuning, and often generalize poorly under domain shift. We investigate whether general-purpose large language model (LLM) agent frameworks, originally developed for software engineering, can serve as an alternative control paradigm for embodied manipulation. We introduce FAEA (Frontier Agent as Embodied Agent), which applies an LLM agent framework directly to embodied manipulation without modification. Using the same iterative reasoning that enables software agents to debug code, FAEA enables embodied agents to reason through manipulation strategies. We evaluate an unmodified frontier agent, Claude Agent SDK, across the LIBERO, ManiSkill3, and MetaWorld benchmarks. With privileged environment state access, FAEA achieves success rates of 84.9%, 85.7%, and 96%, respectively. This level of task success approaches that of VLA models trained with less than 100 demonstrations per task, without requiring demonstrations or fine-tuning. With one round of human feedback as an optional optimization, performance increases to 88.2% on LIBERO. This demonstration-free capability has immediate practical value: FAEA can autonomously explore novel scenarios in simulation and generate successful trajectories for training data augmentation in embodied learning. Our results indicate that general-purpose agents are sufficient for a class of manipulation tasks dominated by deliberative, task-level planning. This opens a path for robotics systems to leverage actively maintained agent infrastructure and benefit directly from ongoing advances in frontier models. Code is available at https://github.com/robiemusketeer/faea-sim
Beyond Speedup -- Utilizing KV Cache for Sampling and Reasoning ICLR26
KV caches, typically used only to speed up autoregressive decoding, encode contextual information that can be reused for downstream tasks at no extra cost. We propose treating the KV cache as a lightweight representation, eliminating the need to recompute or store full hidden states. Despite being weaker than dedicated embeddings, KV-derived representations are shown to be sufficient for two key applications: \textbf{(i) Chain-of-Embedding}, where they achieve competitive or superior performance on Llama-3.1-8B-Instruct and Qwen2-7B-Instruct; and \textbf{(ii) Fast/Slow Thinking Switching}, where they enable adaptive reasoning on Qwen3-8B and DeepSeek-R1-Distil-Qwen-14B, reducing token generation by up to $5.7\times$ with minimal accuracy loss. Our findings establish KV caches as a free, effective substrate for sampling and reasoning, opening new directions for representation reuse in LLM inference. Code: https://github.com/cmd2001/ICLR2026_KV-Embedding.
comment: Accepted by ICLR26
ECG-Agent: On-Device Tool-Calling Agent for ECG Multi-Turn Dialogue
Recent advances in Multimodal Large Language Models have rapidly expanded to electrocardiograms, focusing on classification, report generation, and single-turn QA tasks. However, these models fall short in real-world scenarios, lacking multi-turn conversational ability, on-device efficiency, and precise understanding of ECG measurements such as the PQRST intervals. To address these limitations, we introduce ECG-Agent, the first LLM-based tool-calling agent for multi-turn ECG dialogue. To facilitate its development and evaluation, we also present ECG-Multi-Turn-Dialogue (ECG-MTD) dataset, a collection of realistic user-assistant multi-turn dialogues for diverse ECG lead configurations. We develop ECG-Agents in various sizes, from on-device capable to larger agents. Experimental results show that ECG-Agents outperform baseline ECG-LLMs in response accuracy. Furthermore, on-device agents achieve comparable performance to larger agents in various evaluations that assess response accuracy, tool-calling ability, and hallucinations, demonstrating their viability for real-world applications.
comment: Accepted to ICASSP 2026 (5 pages, 2 figures, 5 tables)
DiagLink: A Dual-User Diagnostic Assistance System by Synergizing Experts with LLMs and Knowledge Graphs
The global shortage and uneven distribution of medical expertise continue to hinder equitable access to accurate diagnostic care. While existing intelligent diagnostic system have shown promise, most struggle with dual-user interaction, and dynamic knowledge integration -- limiting their real-world applicability. In this study, we present DiagLink, a dual-user diagnostic assistance system that synergizes large language models (LLMs), knowledge graphs (KGs), and medical experts to support both patients and physicians. DiagLink uses guided dialogues to elicit patient histories, leverages LLMs and KGs for collaborative reasoning, and incorporates physician oversight for continuous knowledge validation and evolution. The system provides a role-adaptive interface, dynamically visualized history, and unified multi-source evidence to improve both trust and usability. We evaluate DiagLink through user study, use cases and expert interviews, demonstrating its effectiveness in improving user satisfaction and diagnostic efficiency, while offering insights for the design of future AI-assisted diagnostic systems.
SuperInfer: SLO-Aware Rotary Scheduling and Memory Management for LLM Inference on Superchips
Large Language Model (LLM) serving faces a fundamental tension between stringent latency Service Level Objectives (SLOs) and limited GPU memory capacity. When high request rates exhaust the KV cache budget, existing LLM inference systems often suffer severe head-of-line (HOL) blocking. While prior work explored PCIe-based offloading, these approaches cannot sustain responsiveness under high request rates, often failing to meet tight Time-To-First-Token (TTFT) and Time-Between-Tokens (TBT) SLOs. We present SuperInfer, a high-performance LLM inference system designed for emerging Superchips (e.g., NVIDIA GH200) with tightly coupled GPU-CPU architecture via NVLink-C2C. SuperInfer introduces RotaSched, the first proactive, SLO-aware rotary scheduler that rotates requests to maintain responsiveness on Superchips, and DuplexKV, an optimized rotation engine that enables full-duplex transfer over NVLink-C2C. Evaluations on GH200 using various models and datasets show that SuperInfer improves TTFT SLO attainment rates by up to 74.7% while maintaining comparable TBT and throughput compared to state-of-the-art systems, demonstrating that SLO-aware scheduling and memory co-design unlocks the full potential of Superchips for responsive LLM serving.
comment: Accepted by MLSys '26
Endogenous Reprompting: Self-Evolving Cognitive Alignment for Unified Multimodal Models
Unified Multimodal Models (UMMs) exhibit strong understanding, yet this capability often fails to effectively guide generation. We identify this as a Cognitive Gap: the model lacks the understanding of how to enhance its own generation process. To bridge this gap, we propose Endogenous Reprompting, a mechanism that transforms the model's understanding from a passive encoding process into an explicit generative reasoning step by generating self-aligned descriptors during generation. To achieve this, we introduce SEER (Self-Evolving Evaluator and Reprompter), a training framework that establishes a two-stage endogenous loop using only 300 samples from a compact proxy task, Visual Instruction Elaboration. First, Reinforcement Learning with Verifiable Rewards (RLVR) activates the model's latent evaluation ability via curriculum learning, producing a high-fidelity endogenous reward signal. Second, Reinforcement Learning with Model-rewarded Thinking (RLMT) leverages this signal to optimize the generative reasoning policy. Experiments show that SEER consistently outperforms state-of-the-art baselines in evaluation accuracy, reprompting efficiency, and generation quality, without sacrificing general multimodal capabilities.
Structure-constrained Language-informed Diffusion Model for Unpaired Low-dose Computed Tomography Angiography Reconstruction
The application of iodinated contrast media (ICM) improves the sensitivity and specificity of computed tomography (CT) for a wide range of clinical indications. However, overdose of ICM can cause problems such as kidney damage and life-threatening allergic reactions. Deep learning methods can generate CT images of normal-dose ICM from low-dose ICM, reducing the required dose while maintaining diagnostic power. However, existing methods are difficult to realize accurate enhancement with incompletely paired images, mainly because of the limited ability of the model to recognize specific structures. To overcome this limitation, we propose a Structure-constrained Language-informed Diffusion Model (SLDM), a unified medical generation model that integrates structural synergy and spatial intelligence. First, the structural prior information of the image is effectively extracted to constrain the model inference process, thus ensuring structural consistency in the enhancement process. Subsequently, semantic supervision strategy with spatial intelligence is introduced, which integrates the functions of visual perception and spatial reasoning, thus prompting the model to achieve accurate enhancement. Finally, the subtraction angiography enhancement module is applied, which serves to improve the contrast of the ICM agent region to suitable interval for observation. Qualitative analysis of visual comparison and quantitative results of several metrics demonstrate the effectiveness of our method in angiographic reconstruction for low-dose contrast medium CT angiography.
Physically Guided Visual Mass Estimation from a Single RGB Image
Estimating object mass from visual input is challenging because mass depends jointly on geometric volume and material-dependent density, neither of which is directly observable from RGB appearance. Consequently, mass prediction from pixels is ill-posed and therefore benefits from physically meaningful representations to constrain the space of plausible solutions. We propose a physically structured framework for single-image mass estimation that addresses this ambiguity by aligning visual cues with the physical factors governing mass. From a single RGB image, we recover object-centric three-dimensional geometry via monocular depth estimation to inform volume and extract coarse material semantics using a vision-language model to guide density-related reasoning. These geometry, semantic, and appearance representations are fused through an instance-adaptive gating mechanism, and two physically guided latent factors (volume- and density-related) are predicted through separate regression heads under mass-only supervision. Experiments on image2mass and ABO-500 show that the proposed method consistently outperforms state-of-the-art methods.
Towards Compact and Robust DNNs via Compression-aware Sharpness Minimization
Sharpness-Aware Minimization (SAM) has recently emerged as an effective technique for improving DNN robustness to input variations. However, its interplay with the compactness requirements of on-device DNN deployments remains less explored. Simply pruning a SAM-trained model can undermine robustness, since flatness in the continuous parameter space does not necessarily translate to robustness under the discrete structural changes induced by pruning. Conversely, applying SAM after pruning may be fundamentally constrained by architectural limitations imposed by an early, robustness-agnostic pruning pattern. To address this gap, we propose Compression-aware ShArpness Minimization (C-SAM), a framework that shifts sharpness-aware learning from parameter perturbations to mask perturbations. By explicitly perturbing pruning masks during training, C-SAM promotes a flatter loss landscape with respect to model structure, enabling the discovery of pruning patterns that simultaneously optimize model compactness and robustness to input variations. Extensive experiments on CelebA-HQ, Flowers-102, and CIFAR-10-C across ResNet-18, GoogLeNet, and MobileNet-V2 show that C-SAM consistently achieves higher certified robustness than strong baselines, with improvements of up to 42%, while maintaining task accuracy comparable to the corresponding unpruned models.
Truthfulness Despite Weak Supervision: Evaluating and Training LLMs Using Peer Prediction ICLR 2026
The evaluation and post-training of large language models (LLMs) rely on supervision, but strong supervision for difficult tasks is often unavailable, especially when evaluating frontier models. In such cases, models are demonstrated to exploit evaluations built on such imperfect supervision, leading to deceptive results. However, underutilized in LLM research, a wealth of mechanism design research focuses on game-theoretic incentive compatibility, i.e., eliciting honest and informative answers with weak supervision. Drawing from this literature, we introduce the peer prediction method for model evaluation and post-training. It rewards honest and informative answers over deceptive and uninformative ones, using a metric based on mutual predictability and without requiring ground truth labels. We demonstrate the method's effectiveness and resistance to deception, with both theoretical guarantees and empirical validation on models with up to 405B parameters. We show that training an 8B model with peer prediction-based reward recovers most of the drop in truthfulness due to prior malicious finetuning, even when the reward is produced by a 0.135B language model with no finetuning. On the evaluation front, in contrast to LLM-as-a-Judge which requires strong and trusted judges, we discover an inverse scaling property in peer prediction, where, surprisingly, resistance to deception is strengthened as the capability gap between the experts and participants widens, enabling reliable evaluation of strong models with weak supervision. In particular, LLM-as-a-Judge become worse than random guess when facing deceptive models 5-20x the judge's size, while peer prediction thrives when such gaps are large, including in cases with over 100x size difference.
comment: ICLR 2026
Cheap2Rich: A Multi-Fidelity Framework for Data Assimilation and System Identification of Multiscale Physics -- Rotating Detonation Engines
Bridging the sim2real gap between computationally inexpensive models and complex physical systems remains a central challenge in machine learning applications to engineering problems, particularly in multi-scale settings where reduced-order models typically capture only dominant dynamics. In this work, we present Cheap2Rich, a multi-scale data assimilation framework that reconstructs high-fidelity state spaces from sparse sensor histories by combining a fast low-fidelity prior with learned, interpretable discrepancy corrections. We demonstrate the performance on rotating detonation engines (RDEs), a challenging class of systems that couple detonation-front propagation with injector-driven unsteadiness, mixing, and stiff chemistry across disparate scales. Our approach successfully reconstructs high-fidelity RDE states from sparse measurements while isolating physically meaningful discrepancy dynamics associated with injector-driven effects. The results highlight a general multi-fidelity framework for data assimilation and system identification in complex multi-scale systems, enabling rapid design exploration and real-time monitoring and control while providing interpretable discrepancy dynamics. Code for this project is is available at: github.com/kro0l1k/Cheap2Rich.
The Forecast After the Forecast: A Post-Processing Shift in Time Series
Time series forecasting has long been dominated by advances in model architecture, with recent progress driven by deep learning and hybrid statistical techniques. However, as forecasting models approach diminishing returns in accuracy, a critical yet underexplored opportunity emerges: the strategic use of post-processing. In this paper, we address the last-mile gap in time-series forecasting, which is to improve accuracy and uncertainty without retraining or modifying a deployed backbone. We propose $δ$-Adapter, a lightweight, architecture-agnostic way to boost deployed time series forecasters without retraining. $δ$-Adapter learns tiny, bounded modules at two interfaces: input nudging (soft edits to covariates) and output residual correction. We provide local descent guarantees, $O(δ)$ drift bounds, and compositional stability for combined adapters. Meanwhile, it can act as a feature selector by learning a sparse, horizon-aware mask over inputs to select important features, thereby improving interpretability. In addition, it can also be used as a distribution calibrator to measure uncertainty. Thus, we introduce a Quantile Calibrator and a Conformal Corrector that together deliver calibrated, personalized intervals with finite-sample coverage. Our experiments across diverse backbones and datasets show that $δ$-Adapter improves accuracy and calibration with negligible compute and no interface changes.
comment: 30 Pages
Beyond the Needle's Illusion: Decoupled Evaluation of Evidence Access and Use under Semantic Interference at 326M-Token Scale
Long-context LLM agents must access the right evidence from large environments and use it faithfully. However, the popular Needle-in-a-Haystack (NIAH) evaluation mostly measures benign span localization. The needle is near-unique, and the haystack is largely irrelevant. We introduce EverMemBench-S (EMB-S), an adversarial NIAH-style benchmark built on a 326M-token MemoryBank. While the full MemoryBank spans 326M tokens for retrieval-based (RAG) evaluation, we evaluate native long-context models only at scales that fit within each model's context window (up to 1M tokens in this work) to ensure a fair comparison. EMB-S pairs queries with collision-tested near-miss hard negatives and gold evidence sets spanning one or more documents, validated via human screening and LLM verification. We also propose a decoupled diagnostic protocol that reports evidence access (document-ID localization) separately from end-to-end QA quality under full-context prompting. This enables consistent diagnosis for both native long-context prompting and retrieval pipelines. Across a reference-corpus ladder from domain-isolated 64K contexts to a globally shared 326M-token environment, we observe a clear reality gap. Systems that saturate benign NIAH degrade sharply in evidence access under semantic interference. These results indicate that semantic discrimination, not context length alone, is the dominant bottleneck for long-context memory at scale.
Eliciting Least-to-Most Reasoning for Phishing URL Detection
Phishing continues to be one of the most prevalent attack vectors, making accurate classification of phishing URLs essential. Recently, large language models (LLMs) have demonstrated promising results in phishing URL detection. However, their reasoning capabilities that enabled such performance remain underexplored. To this end, in this paper, we propose a Least-to-Most prompting framework for phishing URL detection. In particular, we introduce an "answer sensitivity" mechanism that guides Least-to-Most's iterative approach to enhance reasoning and yield higher prediction accuracy. We evaluate our framework using three URL datasets and four state-of-the-art LLMs, comparing against a one-shot approach and a supervised model. We demonstrate that our framework outperforms the one-shot baseline while achieving performance comparable to that of the supervised model, despite requiring significantly less training data. Furthermore, our in-depth analysis highlights how the iterative reasoning enabled by Least-to-Most, and reinforced by our answer sensitivity mechanism, drives these performance gains. Overall, we show that this simple yet powerful prompting strategy consistently outperforms both one-shot and supervised approaches, despite requiring minimal training or few-shot guidance. Our experimental setup can be found in our Github repository github.sydney.edu.au/htri0928/least-to-most-phishing-detection.
Robust SDE Parameter Estimation Under Missing Time Information Setting
Recent advances in stochastic differential equations (SDEs) have enabled robust modeling of real-world dynamical processes across diverse domains, such as finance, health, and systems biology. However, parameter estimation for SDEs typically relies on accurately timestamped observational sequences. When temporal ordering information is corrupted, missing, or deliberately hidden (e.g., for privacy), existing estimation methods often fail. In this paper, we investigate the conditions under which temporal order can be recovered and introduce a novel framework that simultaneously reconstructs temporal information and estimates SDE parameters. Our approach exploits asymmetries between forward and backward processes, deriving a score-matching criterion to infer the correct temporal order between pairs of observations. We then recover the total order via a sorting procedure and estimate SDE parameters from the reconstructed sequence using maximum likelihood. Finally, we conduct extensive experiments on synthetic and real-world datasets to demonstrate the effectiveness of our method, extending parameter estimation to settings with missing temporal order and broadening applicability in sensitive domains.
Automated Benchmark Generation from Domain Guidelines Informed by Bloom's Taxonomy
Open-ended question answering (QA) evaluates a model's ability to perform contextualized reasoning beyond factual recall. This challenge is especially acute in practice-based domains, where knowledge is procedural and grounded in professional judgment, while most existing LLM benchmarks depend on pre-existing human exam datasets that are often unavailable in such settings. We introduce a framework for automated benchmark generation from expert-authored guidelines informed by Bloom's Taxonomy. It converts expert practices into implicit violation-based scenarios and expands them into auto-graded multiple-choice questions (MCQs) and multi-turn dialogues across four cognitive levels, enabling deterministic, reproducible, and scalable evaluation. Applied to three applied domains: teaching, dietetics, and caregiving, we find differences between model and human-like reasoning: LLMs sometimes perform relatively better on higher-order reasoning (Analyze) but fail more frequently on lower-level items (Remember). We produce large-scale, psychometrically informed benchmarks that surface these non-intuitive model behaviors and enable evaluation of contextualized reasoning in real-world settings.
Order-Optimal Sample Complexity of Rectified Flows
Recently, flow-based generative models have shown superior efficiency compared to diffusion models. In this paper, we study rectified flow models, which constrain transport trajectories to be linear from the base distribution to the data distribution. This structural restriction greatly accelerates sampling, often enabling high-quality generation with a single Euler step. Under standard assumptions on the neural network classes used to parameterize the velocity field and data distribution, we prove that rectified flows achieve sample complexity $\tilde{O}(\varepsilon^{-2})$. This improves on the best known $O(\varepsilon^{-4})$ bounds for flow matching model and matches the optimal rate for mean estimation. Our analysis exploits the particular structure of rectified flows: because the model is trained with a squared loss along linear paths, the associated hypothesis class admits a sharply controlled localized Rademacher complexity. This yields the improved, order-optimal sample complexity and provides a theoretical explanation for the strong empirical performance of rectified flow models.
How AI Impacts Skill Formation
AI assistance produces significant productivity gains across professional domains, particularly for novice workers. Yet how this assistance affects the development of skills required to effectively supervise AI remains unclear. Novice workers who rely heavily on AI to complete unfamiliar tasks may compromise their own skill acquisition in the process. We conduct randomized experiments to study how developers gained mastery of a new asynchronous programming library with and without the assistance of AI. We find that AI use impairs conceptual understanding, code reading, and debugging abilities, without delivering significant efficiency gains on average. Participants who fully delegated coding tasks showed some productivity improvements, but at the cost of learning the library. We identify six distinct AI interaction patterns, three of which involve cognitive engagement and preserve learning outcomes even when participants receive AI assistance. Our findings suggest that AI-enhanced productivity is not a shortcut to competence and AI assistance should be carefully adopted into workflows to preserve skill formation -- particularly in safety-critical domains.
MALLOC: Benchmarking the Memory-aware Long Sequence Compression for Large Sequential Recommendation
The scaling law, which indicates that model performance improves with increasing dataset and model capacity, has fueled a growing trend in expanding recommendation models in both industry and academia. However, the advent of large-scale recommenders also brings significantly higher computational costs, particularly under the long-sequence dependencies inherent in the user intent of recommendation systems. Current approaches often rely on pre-storing the intermediate states of the past behavior for each user, thereby reducing the quadratic re-computation cost for the following requests. Despite their effectiveness, these methods often treat memory merely as a medium for acceleration, without adequately considering the space overhead it introduces. This presents a critical challenge in real-world recommendation systems with billions of users, each of whom might initiate thousands of interactions and require massive memory for state storage. Fortunately, there have been several memory management strategies examined for compression in LLM, while most have not been evaluated on the recommendation task. To mitigate this gap, we introduce MALLOC, a comprehensive benchmark for memory-aware long sequence compression. MALLOC presents a comprehensive investigation and systematic classification of memory management techniques applicable to large sequential recommendations. These techniques are integrated into state-of-the-art recommenders, enabling a reproducible and accessible evaluation platform. Through extensive experiments across accuracy, efficiency, and complexity, we demonstrate the holistic reliability of MALLOC in advancing large-scale recommendation. Code is available at https://anonymous.4open.science/r/MALLOC.
Certificate-Guided Pruning for Stochastic Lipschitz Optimization
We study black-box optimization of Lipschitz functions under noisy evaluations. Existing adaptive discretization methods implicitly avoid suboptimal regions but do not provide explicit certificates of optimality or measurable progress guarantees. We introduce \textbf{Certificate-Guided Pruning (CGP)}, which maintains an explicit \emph{active set} $A_t$ of potentially optimal points via confidence-adjusted Lipschitz envelopes. Any point outside $A_t$ is certifiably suboptimal with high probability, and under a margin condition with near-optimality dimension $α$, we prove $\Vol(A_t)$ shrinks at a controlled rate yielding sample complexity $\tildeO(\varepsilon^{-(2+α)})$. We develop three extensions: CGP-Adaptive learns $L$ online with $O(\log T)$ overhead; CGP-TR scales to $d > 50$ via trust regions with local certificates; and CGP-Hybrid switches to GP refinement when local smoothness is detected. Experiments on 12 benchmarks ($d \in [2, 100]$) show CGP variants match or exceed strong baselines while providing principled stopping criteria via certificate volume.
ProFlow: Zero-Shot Physics-Consistent Sampling via Proximal Flow Guidance
Inferring physical fields from sparse observations while strictly satisfying partial differential equations (PDEs) is a fundamental challenge in computational physics. Recently, deep generative models offer powerful data-driven priors for such inverse problems, yet existing methods struggle to enforce hard physical constraints without costly retraining or disrupting the learned generative prior. Consequently, there is a critical need for a sampling mechanism that can reconcile strict physical consistency and observational fidelity with the statistical structure of the pre-trained prior. To this end, we present ProFlow, a proximal guidance framework for zero-shot physics-consistent sampling, defined as inferring solutions from sparse observations using a fixed generative prior without task-specific retraining. The algorithm employs a rigorous two-step scheme that alternates between: (\romannumeral1) a terminal optimization step, which projects the flow prediction onto the intersection of the physically and observationally consistent sets via proximal minimization; and (\romannumeral2) an interpolation step, which maps the refined state back to the generative trajectory to maintain consistency with the learned flow probability path. This procedure admits a Bayesian interpretation as a sequence of local maximum a posteriori (MAP) updates. Comprehensive benchmarks on Poisson, Helmholtz, Darcy, and viscous Burgers' equations demonstrate that ProFlow achieves superior physical and observational consistency, as well as more accurate distributional statistics, compared to state-of-the-art diffusion- and flow-based baselines.
Scaling Medical Reasoning Verification via Tool-Integrated Reinforcement Learning
Large language models have achieved strong performance on medical reasoning benchmarks, yet their deployment in clinical settings demands rigorous verification to ensure factual accuracy. While reward models offer a scalable approach for reasoning trace verification, existing methods face two limitations: they produce only scalar reward values without explicit justification, and they rely on single-pass retrieval that precludes adaptive knowledge access as verification unfolds. We introduce $\method$, an agentic framework that addresses these limitations by training medical reasoning verifiers to iteratively query external medical corpora during evaluation. Our approach combines tool-augmented verification with an iterative reinforcement learning paradigm that requires only trace-level supervision, alongside an adaptive curriculum mechanism that dynamically adjusts training data distribution. Across four medical reasoning benchmarks, $\method$ achieves substantial gains over existing methods, improving MedQA accuracy by 23.5% and MedXpertQA by 32.0% relative to the base generator in particular. Crucially, $\method$ demonstrates an $\mathbf{8\times}$ reduction in sampling budget requirement compared to prior reward model baselines. These findings establish that grounding verification in dynamically retrieved evidence offers a principled path toward more reliable medical reasoning systems.
Towards Intelligent Urban Park Development Monitoring: LLM Agents for Multi-Modal Information Fusion and Analysis
As an important part of urbanization, the development monitoring of newly constructed parks is of great significance for evaluating the effect of urban planning and optimizing resource allocation. However, traditional change detection methods based on remote sensing imagery have obvious limitations in high-level and intelligent analysis, and thus are difficult to meet the requirements of current urban planning and management. In face of the growing demand for complex multi-modal data analysis in urban park development monitoring, these methods often fail to provide flexible analysis capabilities for diverse application scenarios. This study proposes a multi-modal LLM agent framework, which aims to make full use of the semantic understanding and reasoning capabilities of LLM to meet the challenges in urban park development monitoring. In this framework, a general horizontal and vertical data alignment mechanism is designed to ensure the consistency and effective tracking of multi-modal data. At the same time, a specific toolkit is constructed to alleviate the hallucination issues of LLM due to the lack of domain-specific knowledge. Compared to vanilla GPT-4o and other agents, our approach enables robust multi-modal information fusion and analysis, offering reliable and scalable solutions tailored to the diverse and evolving demands of urban park development monitoring.
Meta-Cognitive Reinforcement Learning with Self-Doubt and Recovery
Robust reinforcement learning methods typically focus on suppressing unreliable experiences or corrupted rewards, but they lack the ability to reason about the reliability of their own learning process. As a result, such methods often either overreact to noise by becoming overly conservative or fail catastrophically when uncertainty accumulates. In this work, we propose a meta-cognitive reinforcement learning framework that enables an agent to assess, regulate, and recover its learning behavior based on internally estimated reliability signals. The proposed method introduces a meta-trust variable driven by Value Prediction Error Stability (VPES), which modulates learning dynamics via fail-safe regulation and gradual trust recovery. Experiments on continuous-control benchmarks with reward corruption demonstrate that recovery-enabled meta-cognitive control achieves higher average returns and significantly reduces late-stage training failures compared to strong robustness baselines.
Causal-Driven Feature Evaluation for Cross-Domain Image Classification
Out-of-distribution (OOD) generalization remains a fundamental challenge in real-world classification, where test distributions often differ substantially from training data. Most existing approaches pursue domain-invariant representations, implicitly assuming that invariance implies reliability. However, features that are invariant across domains are not necessarily causally effective for prediction. In this work, we revisit OOD classification from a causal perspective and propose to evaluate learned representations based on their necessity and sufficiency under distribution shift. We introduce an explicit segment-level framework that directly measures causal effectiveness across domains, providing a more faithful criterion than invariance alone. Experiments on multi-domain benchmarks demonstrate consistent improvements in OOD performance, particularly under challenging domain shifts, highlighting the value of causal evaluation for robust generalization.
comment: Preprint
NeuraLSP: An Efficient and Rigorous Neural Left Singular Subspace Preconditioner for Conjugate Gradient Methods
Numerical techniques for solving partial differential equations (PDEs) are integral for many fields across science and engineering. Such techniques usually involve solving large, sparse linear systems, where preconditioning methods are critical. In recent years, neural methods, particularly graph neural networks (GNNs), have demonstrated their potential through accelerated convergence. Nonetheless, to extract connective structures, existing techniques aggregate discretized system matrices into graphs, and suffer from rank inflation and a suboptimal convergence rate. In this paper, we articulate NeuraLSP, a novel neural preconditioner combined with a novel loss metric that leverages the left singular subspace of the system matrix's near-nullspace vectors. By compressing spectral information into a fixed low-rank operator, our method exhibits both theoretical guarantees and empirical robustness to rank inflation, affording up to a 53% speedup. Besides the theoretical guarantees for our newly-formulated loss function, our comprehensive experimental results across diverse families of PDEs also substantiate the aforementioned theoretical advances.
What's the plan? Metrics for implicit planning in LLMs and their application to rhyme generation and question answering ICLR 2026
Prior work suggests that language models, while trained on next token prediction, show implicit planning behavior: they may select the next token in preparation to a predicted future token, such as a likely rhyming word, as supported by a prior qualitative study of Claude 3.5 Haiku using a cross-layer transcoder. We propose much simpler techniques for assessing implicit planning in language models. With case studies on rhyme poetry generation and question answering, we demonstrate that our methodology easily scales to many models. Across models, we find that the generated rhyme (e.g. "-ight") or answer to a question ("whale") can be manipulated by steering at the end of the preceding line with a vector, affecting the generation of intermediate tokens leading up to the rhyme or answer word. We show that implicit planning is a universal mechanism, present in smaller models than previously thought, starting from 1B parameters. Our methodology offers a widely applicable direct way to study implicit planning abilities of LLMs. More broadly, understanding planning abilities of language models can inform decisions in AI safety and control.
comment: 41 pages, 34 figures, Accepted at ICLR 2026, Code available at https://github.com/Jim-Maar/implicit-planning-in-llms
Large language models accurately predict public perceptions of support for climate action worldwide
Although most people support climate action, widespread underestimation of others' support stalls individual and systemic changes. In this preregistered experiment, we test whether large language models (LLMs) can reliably predict these perception gaps worldwide. Using country-level indicators and public opinion data from 125 countries, we benchmark four state-of-the-art LLMs against Gallup World Poll 2021/22 data and statistical regressions. LLMs, particularly Claude, accurately capture public perceptions of others' willingness to contribute financially to climate action (MAE approximately 5 p.p.; r = .77), comparable to statistical models, though performance declines in less digitally connected, lower-GDP countries. Controlled tests show that LLMs capture the key psychological process - social projection with a systematic downward bias - and rely on structured reasoning rather than memorized values. Overall, LLMs provide a rapid tool for assessing perception gaps in climate action, serving as an alternative to costly surveys in resource-rich countries and as a complement in underrepresented populations.
comment: 35 pages
Recursive Language Models
We study allowing large language models (LLMs) to process arbitrarily long prompts through the lens of inference-time scaling. We propose Recursive Language Models (RLMs), a general inference paradigm that treats long prompts as part of an external environment and allows the LLM to programmatically examine, decompose, and recursively call itself over snippets of the prompt. We find that RLMs can successfully process inputs up to two orders of magnitude beyond model context windows and, even for shorter prompts, dramatically outperform the quality of vanilla frontier LLMs and common long-context scaffolds across four diverse long-context tasks while having comparable cost. At a small scale, we post-train the first natively recursive language model. Our model, RLM-Qwen3-8B, outperforms the underlying Qwen3-8B model by $28.3\%$ on average and even approaches the quality of vanilla GPT-5 on three long-context tasks. Code is available at https://github.com/alexzhang13/rlm.
comment: 9 pages, 33 with Appendix
ArchesClimate: Probabilistic Decadal Ensemble Generation With Flow Matching
Climate projections have uncertainties related to components of the climate system and their interactions. A typical approach to quantifying these uncertainties is to use climate models to create ensembles of repeated simulations under different initial conditions. Due to the complexity of these simulations, generating such ensembles of projections is computationally expensive. In this work, we present ArchesClimate, a deep learning-based climate model emulator that aims to reduce this cost. ArchesClimate is trained on decadal hindcasts of the IPSL-CM6A-LR climate model at a spatial resolution of approximately 2.5x1.25 degrees. We train a flow matching model following ArchesWeatherGen, which we adapt to predict near-term climate. Once trained, the model generates states at a one-month lead time and can be used to auto-regressively emulate climate model simulations of any length. We show that for up to 10 years, these generations are stable and physically consistent. We also show that for several important climate variables, ArchesClimate generates simulations that are interchangeable with the IPSL model. This work suggests that climate model emulators could significantly reduce the cost of climate model simulations.
DCP-Bench-Open: Evaluating LLMs for Constraint Modelling of Discrete Combinatorial Problems
Discrete Combinatorial Problems (DCPs) are prevalent in industrial decision-making and optimisation. However, while constraint solving technologies for DCPs have advanced significantly, the core process of formalising them, namely constraint modelling, requires significant expertise and remains a bottleneck for wider adoption. Aiming to alleviate this bottleneck, recent studies have explored using Large Language Models (LLMs) to transform combinatorial problem descriptions into executable constraint models. However, the existing evaluation datasets for discrete constraint modelling are often limited to small, homogeneous, or domain-specific problems, which do not capture the diversity of real-world scenarios. This work addresses this gap by introducing DCP-Bench-Open, a novel benchmark that includes a diverse set of well-known discrete combinatorial problems sourced from the Constraint Programming (CP) and Operations Research (OR) communities, structured explicitly for evaluating LLM-driven constraint modelling. With this dataset, and given the variety of modelling frameworks, we compare and evaluate the modelling capabilities of LLMs for three distinct constraint modelling systems, which vary in abstraction level and underlying syntax. Notably, the results show higher performance when modelling with a high-level Python-based framework. Additionally, we systematically evaluate the use of prompt-based and inference-time compute methods across different LLMs, which further increase accuracy, reaching up to 91% on this highly challenging benchmark. DCP-Bench-Open is publicly available.
comment: This version is currently submitted and it is under review. For CP-Bench (the paper accepted at ECAI25), please refer to the previous version of this entry (v2)
From Specialist to Generalist: Unlocking SAM's Learning Potential on Unlabeled Medical Images
Foundation models like the Segment Anything Model (SAM) show strong generalization, yet adapting them to medical images remains difficult due to domain shift, scarce labels, and the inability of Parameter-Efficient Fine-Tuning (PEFT) to exploit unlabeled data. While conventional models like U-Net excel in semi-supervised medical learning, their potential to assist a PEFT SAM has been largely overlooked. We introduce SC-SAM, a specialist-generalist framework where U-Net provides point-based prompts and pseudo-labels to guide SAM's adaptation, while SAM serves as a powerful generalist supervisor to regularize U-Net. This reciprocal guidance forms a bidirectional co-training loop that allows both models to effectively exploit the unlabeled data. Across prostate MRI and polyp segmentation benchmarks, our method achieves state-of-the-art results, outperforming other existing semi-supervised SAM variants and even medical foundation models like MedSAM, highlighting the value of specialist-generalist cooperation for label-efficient medical image segmentation. Our code is available at https://github.com/vnlvi2k3/SC-SAM.
comment: Accepted to ISBI 2026
HeuriGym: An Agentic Benchmark for LLM-Crafted Heuristics in Combinatorial Optimization ICLR'26
While Large Language Models (LLMs) have demonstrated significant advancements in reasoning and agent-based problem-solving, current evaluation methodologies fail to adequately assess their capabilities: existing benchmarks either rely on closed-ended questions prone to saturation and memorization, or subjective comparisons that lack consistency and rigor. In this work, we introduce HeuriGym, an agentic framework designed for evaluating heuristic algorithms generated by LLMs for combinatorial optimization problems, characterized by clearly defined objectives and expansive solution spaces. HeuriGym empowers LLMs to propose heuristics, receive evaluative feedback via code execution, and iteratively refine their solutions. We evaluate nine state-of-the-art models on nine problems across domains such as computer systems, logistics, and biology, exposing persistent limitations in tool use, planning, and adaptive reasoning. To quantify performance, we propose the Quality-Yield Index (QYI), a metric that captures both solution pass rate and quality. Even top models like GPT-o4-mini-high and Gemini-2.5-Pro attain QYI scores of only 0.6, well below the expert baseline of 1. Our open-source benchmark aims to guide the development of LLMs toward more effective and realistic problem-solving in scientific and engineering domains.
comment: Accepted to ICLR'26
Fail Fast, Win Big: Rethinking the Drafting Strategy in Speculative Decoding via Diffusion LLMs
Diffusion Large Language Models (dLLMs) offer fast, parallel token generation, but their standalone use is plagued by an inherent efficiency-quality tradeoff. We show that, if carefully applied, the attributes of dLLMs can actually be a strength for drafters in speculative decoding with autoregressive (AR) verifiers. Our core insight is that dLLM's speed from parallel decoding drastically lowers the risk of costly rejections, providing a practical mechanism to effectively realize the (elusive) lengthy drafts that lead to large speedups with speculative decoding. We present FailFast, a dLLM-based speculative decoding framework that realizes this approach by dynamically adapting its speculation length. It "fails fast" by spending minimal compute in hard-to-speculate regions to shrink speculation latency and "wins big" by aggressively extending draft lengths in easier regions to reduce verification latency (in many cases, speculating and accepting 70 tokens at a time!). Without any fine-tuning, FailFast delivers lossless acceleration of AR LLMs and achieves up to 4.9$\times$ speedup over vanilla decoding, 1.7$\times$ over the best naive dLLM drafter, and 1.7$\times$ over EAGLE-3 across diverse models and workloads. We open-source FailFast at https://github.com/ruipeterpan/failfast.
Discrete Variational Autoencoding via Policy Search
Discrete latent bottlenecks in variational autoencoders (VAEs) offer high bit efficiency and can be modeled with autoregressive discrete distributions, enabling parameter-efficient multimodal search with transformers. However, discrete random variables do not allow for exact differentiable parameterization; therefore, discrete VAEs typically rely on approximations, such as Gumbel-Softmax reparameterization or straight-through gradient estimates, or employ high-variance gradient-free methods such as REINFORCE that have had limited success on high-dimensional tasks such as image reconstruction. Inspired by popular techniques in policy search, we propose a training framework for discrete VAEs that leverages the natural gradient of a non-parametric encoder to update the parametric encoder without requiring reparameterization. Our method, combined with automatic step size adaptation and a transformer-based encoder, scales to challenging datasets such as ImageNet and outperforms both approximate reparameterization methods and quantization-based discrete autoencoders in reconstructing high-dimensional data from compact latent spaces.
Neural Theorem Proving for Verification Conditions: A Real-World Benchmark ICLR'26
Theorem proving is fundamental to program verification, where the automated proof of Verification Conditions (VCs) remains a primary bottleneck. Real-world program verification frequently encounters hard VCs that existing Automated Theorem Provers (ATPs) cannot prove, leading to a critical need for extensive manual proofs that burden practical application. While Neural Theorem Proving (NTP) has achieved significant success in mathematical competitions, demonstrating the potential of machine learning approaches to formal reasoning, its application to program verification--particularly VC proving--remains largely unexplored. Despite existing work on annotation synthesis and verification-related theorem proving, no benchmark has specifically targeted this fundamental bottleneck: automated VC proving. This work introduces Neural Theorem Proving for Verification Conditions (NTP4VC), presenting the first real-world multi-language benchmark for this task. From real-world projects such as Linux and Contiki-OS kernel, our benchmark leverages industrial pipelines (Why3 and Frama-C) to generate semantically equivalent test cases across formal languages of Isabelle, Lean, and Rocq. We evaluate large language models (LLMs), both general-purpose and those fine-tuned for theorem proving, on NTP4VC. Results indicate that although LLMs show promise in VC proving, significant challenges remain for program verification, highlighting a large gap and opportunity for future research.
comment: Accepted in ICLR'26
AI Annotation Orchestration: Evaluating LLM verifiers to Improve the Quality of LLM Annotations in Learning Analytics
Large Language Models (LLMs) are increasingly used to annotate learning interactions, yet concerns about reliability limit their utility. We test whether verification-oriented orchestration-prompting models to check their own labels (self-verification) or audit one another (cross-verification)-improves qualitative coding of tutoring discourse. Using transcripts from 30 one-to-one math sessions, we compare three production LLMs (GPT, Claude, Gemini) under three conditions: unverified annotation, self-verification, and cross-verification across all orchestration configurations. Outputs are benchmarked against a blinded, disagreement-focused human adjudication using Cohen's kappa. Overall, orchestration yields a 58 percent improvement in kappa. Self-verification nearly doubles agreement relative to unverified baselines, with the largest gains for challenging tutor moves. Cross-verification achieves a 37 percent improvement on average, with pair- and construct-dependent effects: some verifier-annotator pairs exceed self-verification, while others reduce alignment, reflecting differences in verifier strictness. We contribute: (1) a flexible orchestration framework instantiating control, self-, and cross-verification; (2) an empirical comparison across frontier LLMs on authentic tutoring data with blinded human "gold" labels; and (3) a concise notation, verifier(annotator) (e.g., Gemini(GPT) or Claude(Claude)), to standardize reporting and make directional effects explicit for replication. Results position verification as a principled design lever for reliable, scalable LLM-assisted annotation in Learning Analytics.
ProToken: Token-Level Attribution for Federated Large Language Models
Federated Learning (FL) enables collaborative training of Large Language Models (LLMs) across distributed data sources while preserving privacy. However, when federated LLMs are deployed in critical applications, it remains unclear which client(s) contributed to specific generated responses, hindering debugging, malicious client identification, fair reward allocation, and trust verification. We present ProToken, a novel Provenance methodology for Token-level attribution in federated LLMs that addresses client attribution during autoregressive text generation while maintaining FL privacy constraints. ProToken leverages two key insights to enable provenance at each token: (1) transformer architectures concentrate task-specific signals in later blocks, enabling strategic layer selection for computational tractability, and (2) gradient-based relevance weighting filters out irrelevant neural activations, focusing attribution on neurons that directly influence token generation. We evaluate ProToken across 16 configurations spanning four LLM architectures (Gemma, Llama, Qwen, SmolLM) and four domains (medical, financial, mathematical, coding). ProToken achieves 98% average attribution accuracy in correctly localizing responsible client(s), and maintains high accuracy when the number of clients are scaled, validating its practical viability for real-world deployment settings.
Helping Johnny Make Sense of Privacy Policies with LLMs
Understanding and engaging with privacy policies is crucial for online privacy, yet these documents remain notoriously complex and difficult to navigate. We present PRISMe, an interactive browser extension that combines LLM-based policy assessment with a dashboard and customizable chat interface, enabling users to skim quick overviews or explore policy details in depth while browsing. We conduct a user study (N=22) with participants of diverse privacy knowledge to investigate how users interpret the tool's explanations and how it shapes their engagement with privacy policies, identifying distinct interaction patterns. Participants valued the clear overviews and conversational depth, but flagged some issues, particularly adversarial robustness and hallucination risks. Thus, we investigate how a retrieval-augmented generation (RAG) approach can alleviate issues by re-running the chat queries from the study. Our findings surface design challenges as well as technical trade-offs, contributing actionable insights for developing future user-centered, trustworthy privacy policy analysis tools.
comment: 21 pages, 3 figures, 3 tables, ACM CHI 2026
EVEREST: An Evidential, Tail-Aware Transformer for Rare-Event Time-Series Forecasting
Forecasting rare events in multivariate time-series data is challenging due to severe class imbalance, long-range dependencies, and distributional uncertainty. We introduce EVEREST, a transformer-based architecture for probabilistic rare-event forecasting that delivers calibrated predictions and tail-aware risk estimation, with auxiliary interpretability via attention-based signal attribution. EVEREST integrates four components: (i) a learnable attention bottleneck for soft aggregation of temporal dynamics; (ii) an evidential head for estimating aleatoric and epistemic uncertainty via a Normal--Inverse--Gamma distribution; (iii) an extreme-value head that models tail risk using a Generalized Pareto Distribution; and (iv) a lightweight precursor head for early-event detection. These modules are jointly optimized with a composite loss (focal loss, evidential NLL, and a tail-sensitive EVT penalty) and act only at training time; deployment uses a single classification head with no inference overhead (approximately 0.81M parameters). On a decade of space-weather data, EVEREST achieves state-of-the-art True Skill Statistic (TSS) of 0.973/0.970/0.966 at 24/48/72-hour horizons for C-class flares. The model is compact, efficient to train on commodity hardware, and applicable to high-stakes domains such as industrial monitoring, weather, and satellite diagnostics. Limitations include reliance on fixed-length inputs and exclusion of image-based modalities, motivating future extensions to streaming and multimodal forecasting.
comment: Updated author affiliation. No changes to technical content
LLMBind: A Unified Modality-Task Integration Framework
Despite recent progress in Multi-Modal Large Language Models (MLLMs), it remains challenging to integrate diverse tasks ranging from pixel-level perception to high-fidelity generation. Existing approaches often suffer from either restricted task extensibility or severe performance degradation due to modality interference. n this paper, we present LLMBind, an extensible framework that unifies multimodal tasks through a dual-pathway mechanism: In-Situ semantic embeddings for localization-sensitive tasks like semantic segmentation and Ex-Situ task-prompts for generation across image, video, and audio modalities. Additionally, we employ a Mixture-of-Experts (MoE) architecture to route task-specific tokens, thereby achieving modality disentanglement and mitigating negative transfer. We also curate a 400k multi-turn interactive dataset focused on iterative visual refinement to enable human-like interaction. Extensive experiments demonstrate that LLMBind achieves excellent performance across multiple perception and generation benchmarks while maintaining superior expandability.
LogogramNLP: Comparing Visual and Textual Representations of Ancient Logographic Writing Systems for NLP
Standard natural language processing (NLP) pipelines operate on symbolic representations of language, which typically consist of sequences of discrete tokens. However, creating an analogous representation for ancient logographic writing systems is an extremely labor intensive process that requires expert knowledge. At present, a large portion of logographic data persists in a purely visual form due to the absence of transcription -- this issue poses a bottleneck for researchers seeking to apply NLP toolkits to study ancient logographic languages: most of the relevant data are images of writing. This paper investigates whether direct processing of visual representations of language offers a potential solution. We introduce LogogramNLP, the first benchmark enabling NLP analysis of ancient logographic languages, featuring both transcribed and visual datasets for four writing systems along with annotations for tasks like classification, translation, and parsing. Our experiments compare systems that employ recent visual and text encoding strategies as backbones. The results demonstrate that visual representations outperform textual representations for some investigated tasks, suggesting that visual processing pipelines may unlock a large amount of cultural heritage data of logographic languages for NLP-based analyses.
comment: correct wrong refs, typos
DaMO: A Data-Efficient Multimodal Orchestrator for Temporal Reasoning with Video LLMs
Large Language Models (LLMs) have recently been extended to the video domain, enabling sophisticated video-language understanding. However, existing Video LLMs often exhibit limitations in fine-grained temporal reasoning, restricting their ability to precisely attribute responses to specific video moments, especially under constrained supervision. We introduce DaMO, a data-efficient Video LLM explicitly designed for accurate temporal reasoning and multimodal understanding. At its core, the proposed Temporal-aware Fuseformer employs a hierarchical dual-stream architecture that progressively captures temporal dynamics within each modality and effectively fuses complementary visual and audio information. To further enhance computational efficiency, DaMO integrates a global residual that reduces spatial redundancy while preserving essential semantic details. We train DaMO via a structured four-stage progressive training paradigm, incrementally equipping the model with multimodal alignment, semantic grounding, and temporal reasoning capabilities. This work also contributes multiple datasets augmented from existing ones with LLM-generated temporally grounded QA pairs for tasks requiring temporal supervision. Comprehensive experiments on temporal grounding and video QA benchmarks demonstrate that DaMO consistently surpasses prior methods, particularly in tasks demanding precise temporal alignment and reasoning. Our work establishes a promising direction for data-efficient video-language modeling.
Breaking Bad Molecules: Are MLLMs Ready for Structure-Level Molecular Detoxification?
Toxicity remains a leading cause of early-stage drug development failure. Despite advances in molecular design and property prediction, the task of molecular toxicity repair, generating structurally valid molecular alternatives with reduced toxicity, has not yet been systematically defined or benchmarked. To fill this gap, we introduce ToxiMol, the first benchmark task for general-purpose Multimodal Large Language Models (MLLMs) focused on molecular toxicity repair. We construct a standardized dataset covering 11 primary tasks and 660 representative toxic molecules spanning diverse mechanisms and granularities. We design a prompt annotation pipeline with mechanism-aware and task-adaptive capabilities, informed by expert toxicological knowledge. In parallel, we propose an automated evaluation framework, ToxiEval, which integrates toxicity endpoint prediction, synthetic accessibility, drug-likeness, and structural similarity into a high-throughput evaluation chain for repair success. We systematically assess 43 mainstream general-purpose MLLMs and conduct multiple ablation studies to analyze key issues, including evaluation metrics, candidate diversity, and failure attribution. Experimental results show that although current MLLMs still face significant challenges on this task, they begin to demonstrate promising capabilities in toxicity understanding, semantic constraint adherence, and structure-aware editing.
Beyond Random Sampling: Efficient Language Model Pretraining via Curriculum Learning
Curriculum learning-organizing training data from easy to hard-has improved efficiency across machine learning domains, yet remains underexplored for language model pretraining. We present the first systematic investigation of curriculum learning in LLM pretraining, with over 200 models trained on up to 100B tokens across three strategies: vanilla curriculum learning, pacing-based sampling, and interleaved curricula, guided by six difficulty metrics spanning linguistic and information-theoretic properties. We evaluate performance on eight benchmarks under three realistic scenarios: limited data, unlimited data, and continual training. Our experiments show that curriculum learning consistently accelerates convergence in early and mid-training phases,reducing training steps by $18-45\%$ to reach baseline performance. When applied as a warmup strategy before standard random sampling, curriculum learning yields sustained improvements up to $3.5\%$. We identify compression ratio, lexical diversity (MTLD), and readability (Flesch Reading Ease) as the most effective difficulty signals. Our findings demonstrate that data ordering-orthogonal to existing data selection methods-provides a practical mechanism for more efficient LLM pretraining.
Dual-objective Language Models: Training Efficiency Without Overfitting
This paper combines autoregressive and masked-diffusion training objectives without any architectural modifications, resulting in flexible language models that outperform single-objective models. Autoregressive modeling has been a popular approach, partly because of its training efficiency; however, that comes at the cost of sensitivity to overfitting. On the other hand, masked-diffusion models are less efficient to train while being more resilient to overfitting. In this work, we demonstrate that dual-objective training achieves the best of both worlds. To derive the optimal balance between both objectives, we train and evaluate 50 language models under varying levels of data repetition. We show that it is optimal to combine both objectives under all evaluated settings and that the optimal balance is similar whether targeting autoregressive or masked-diffusion downstream performance.
RacketVision: A Multiple Racket Sports Benchmark for Unified Ball and Racket Analysis AAAI 2026
We introduce RacketVision, a novel dataset and benchmark for advancing computer vision in sports analytics, covering table tennis, tennis, and badminton. The dataset is the first to provide large-scale, fine-grained annotations for racket pose alongside traditional ball positions, enabling research into complex human-object interactions. It is designed to tackle three interconnected tasks: fine-grained ball tracking, articulated racket pose estimation, and predictive ball trajectory forecasting. Our evaluation of established baselines reveals a critical insight for multi-modal fusion: while naively concatenating racket pose features degrades performance, a CrossAttention mechanism is essential to unlock their value, leading to trajectory prediction results that surpass strong unimodal baselines. RacketVision provides a versatile resource and a strong starting point for future research in dynamic object tracking, conditional motion forecasting, and multimodal analysis in sports. Project page at https://github.com/OrcustD/RacketVision
comment: Accepted to AAAI 2026 (Oral)
Actionable Interpretability Must Be Defined in Terms of Symmetries
This paper argues that interpretability research in Artificial Intelligence (AI) is fundamentally ill-posed as existing definitions of interpretability fail to describe how interpretability can be formally tested or designed for. We posit that actionable definitions of interpretability must be formulated in terms of *symmetries* that inform model design and lead to testable conditions. Under a probabilistic view, we hypothesise that four symmetries (inference equivariance, information invariance, concept-closure invariance, and structural invariance) suffice to (i) formalise interpretable models as a subclass of probabilistic models, (ii) yield a unified formulation of interpretable inference (e.g., alignment, interventions, and counterfactuals) as a form of Bayesian inversion, and (iii) provide a formal framework to verify compliance with safety standards and regulations.
UDEEP: Edge-based Computer Vision for In-Situ Underwater Crayfish and Plastic Detection
Invasive signal crayfish have a detrimental impact on ecosystems. They spread the fungal-type crayfish plague disease (Aphanomyces astaci) that is lethal to the native white clawed crayfish, the only native crayfish species in Britain. Invasive signal crayfish extensively burrow, causing habitat destruction, erosion of river banks and adverse changes in water quality, while also competing with native species for resources leading to declines in native populations. Moreover, pollution exacerbates the vulnerability of White-clawed crayfish, with their populations declining by over 90%. To safeguard aquatic ecosystems, it is imperative to address the challenges posed by invasive species and pollution in aquatic ecosystem's. This article introduces the Cognitive Edge Device (CED) computing platform for the detection of crayfish and plastic. It also presents two publicly available underwater datasets, annotated with sequences of crayfish and aquatic plastic debris. Four You Only Look Once (YOLO) variants were trained and evaluated for crayfish and plastic object detection. YOLOv5s achieved the highest detection accuracy, with an mAP@0.5 of 0.90, and achieved the best precision
Analysis of approximate linear programming solution to Markov decision problem with log barrier function
There are two primary approaches to solving Markov decision problems (MDPs): dynamic programming based on the Bellman equation and linear programming (LP). Dynamic programming methods are the most widely used and form the foundation of both classical and modern reinforcement learning (RL). By contrast, LP-based methods have been less commonly employed, although they have recently gained attention in contexts such as offline RL. The relative underuse of the LP-based methods stems from the fact that it leads to an inequality-constrained optimization problem, which is generally more challenging to solve effectively compared with Bellman-equation-based methods. The purpose of this paper is to establish a theoretical foundation for solving LP-based MDPs in a more effective and practical manner. Our key idea is to leverage the log-barrier function, widely used in inequality-constrained optimization, to transform the LP formulation of the MDP into an unconstrained optimization problem. This reformulation enables approximate solutions to be obtained easily via gradient descent. While the method may appear simple, to the best of our knowledge, a thorough theoretical interpretation of this approach has not yet been developed. This paper aims to bridge this gap.
DoubleAgents: Interactive Simulations for Alignment in Agentic AI
Agentic workflows promise efficiency, but adoption hinges on whether people can align systems that act on their behalf with their goals, values, and situational expectations. We present DoubleAgents, an agentic planning tool that embeds transparency and control through user intervention, value-reflecting policies, rich state visualizations, and uncertainty flagging for human coordination tasks. A built-in respondent simulation generates realistic scenarios, allowing users to rehearse and refine policies and calibrate their use of agentic behavior before live deployment. We evaluate DoubleAgents in a two-day lab study (n = 10), three deployment studies, and a technical evaluation. Results show that participants initially hesitated to delegate but used simulation to probe system behavior and adjust policies, gradually increasing delegation as agent actions became better aligned with their intentions and context. Deployment results demonstrate DoubleAgents' real-world relevance and usefulness, showing that simulation helps users effectively manage real-world tasks with higher complexity and uncertainty. We contribute interactive simulation as a practical pathway for users to iteratively align and calibrate agentic systems.
comment: 22 pages, 10 figures
A Scalable Inter-edge Correlation Modeling in CopulaGNN for Link Sign Prediction ICLR 2026
Link sign prediction on a signed graph is a task to determine whether the relationship represented by an edge is positive or negative. Since the presence of negative edges violates the graph homophily assumption that adjacent nodes are similar, regular graph methods have not been applicable without auxiliary structures to handle them. We aim to directly model the latent statistical dependency among edges with the Gaussian copula and its corresponding correlation matrix, extending CopulaGNN (Ma et al., 2021). However, a naive modeling of edge-edge relations is computationally intractable even for a graph with moderate scale. To address this, we propose to 1) represent the correlation matrix as a Gramian of edge embeddings, significantly reducing the number of parameters, and 2) reformulate the conditional probability distribution to dramatically reduce the inference cost. We theoretically verify scalability of our method by proving its linear convergence. Also, our extensive experiments demonstrate that it achieves significantly faster convergence than baselines, maintaining competitive prediction performance to the state-of-the-art models.
comment: Accepted to ICLR 2026
Toward Ultra-Long-Horizon Agentic Science: Cognitive Accumulation for Machine Learning Engineering
The advancement of artificial intelligence toward agentic science is currently bottlenecked by the challenge of ultra-long-horizon autonomy, the ability to sustain strategic coherence and iterative correction over experimental cycles spanning days or weeks. While Large Language Models (LLMs) have demonstrated prowess in short-horizon reasoning, they are easily overwhelmed by execution details in the high-dimensional, delayed-feedback environments of real-world research, failing to consolidate sparse feedback into coherent long-term guidance. Here, we present ML-Master 2.0, an autonomous agent that masters ultra-long-horizon machine learning engineering (MLE) which is a representative microcosm of scientific discovery. By reframing context management as a process of cognitive accumulation, our approach introduces Hierarchical Cognitive Caching (HCC), a multi-tiered architecture inspired by computer systems that enables the structural differentiation of experience over time. By dynamically distilling transient execution traces into stable knowledge and cross-task wisdom, HCC allows agents to decouple immediate execution from long-term experimental strategy, effectively overcoming the scaling limits of static context windows. In evaluations on OpenAI's MLE-Bench under 24-hour budgets, ML-Master 2.0 achieves a state-of-the-art medal rate of 56.44%. Our findings demonstrate that ultra-long-horizon autonomy provides a scalable blueprint for AI capable of autonomous exploration beyond human-precedent complexities.
comment: 25 pages. 5 figures
GRACE: A Language Model Framework for Explainable Inverse Reinforcement Learning
Inverse Reinforcement Learning aims to recover reward models from expert demonstrations, but traditional methods yield black-box models that are difficult to interpret and debug. In this work, we introduce GRACE (Generating Rewards As CodE), a method for using Large Language Models within an evolutionary search to reverse-engineer an interpretable, code-based reward function directly from expert trajectories. The resulting reward function is executable code that can be inspected and verified. We empirically validate GRACE on the MuJoCo, BabyAI and AndroidWorld benchmarks, where it efficiently learns highly accurate rewards, even in complex, multi-task settings. Further, we demonstrate that the resulting reward leads to strong policies, compared to both competitive Imitation Learning and online RL approaches with ground-truth rewards. Finally, we show that GRACE is able to build complex reward APIs in multi-task setups.
FaithSCAN: Model-Driven Single-Pass Hallucination Detection for Faithful Visual Question Answering
Faithfulness hallucinations in VQA occur when vision-language models produce fluent yet visually ungrounded answers, severely undermining their reliability in safety-critical applications. Existing detection methods mainly fall into two categories: external verification approaches relying on auxiliary models or knowledge bases, and uncertainty-driven approaches using repeated sampling or uncertainty estimates. The former suffer from high computational overhead and are limited by external resource quality, while the latter capture only limited facets of model uncertainty and fail to sufficiently explore the rich internal signals associated with the diverse failure modes. Both paradigms thus have inherent limitations in efficiency, robustness, and detection performance. To address these challenges, we propose FaithSCAN: a lightweight network that detects hallucinations by exploiting rich internal signals of VLMs, including token-level decoding uncertainty, intermediate visual representations, and cross-modal alignment features. These signals are fused via branch-wise evidence encoding and uncertainty-aware attention. We also extend the LLM-as-a-Judge paradigm to VQA hallucination and propose a low-cost strategy to automatically generate model-dependent supervision signals, enabling supervised training without costly human labels while maintaining high detection accuracy. Experiments on multiple VQA benchmarks show that FaithSCAN significantly outperforms existing methods in both effectiveness and efficiency. In-depth analysis shows hallucinations arise from systematic internal state variations in visual perception, cross-modal reasoning, and language decoding. Different internal signals provide complementary diagnostic cues, and hallucination patterns vary across VLM architectures, offering new insights into the underlying causes of multimodal hallucinations.
comment: 21 pages, 13 figures, 8 tables
FAIR-MATCH: A Multi-Objective Framework for Bias Mitigation in Reciprocal Dating Recommendations
Online dating platforms have fundamentally transformed the formation of romantic relationships, with millions of users worldwide relying on algorithmic matching systems to find compatible partners. However, current recommendation systems in dating applications suffer from significant algorithmic deficiencies, including but not limited to popularity bias, filter bubble effects, and inadequate reciprocity modeling that limit effectiveness and introduce harmful biases. This research integrates foundational work with recent empirical findings to deliver a detailed analysis of dating app recommendation systems, highlighting key issues and suggesting research-backed solutions. Through analysis of reciprocal recommendation frameworks, fairness evaluation metrics, and industry implementations, we demonstrate that current systems achieve modest performance with collaborative filtering reaching 25.1\% while reciprocal methods achieve 28.7\%. Our proposed mathematical framework addresses these limitations through enhanced similarity measures, multi-objective optimization, and fairness-aware algorithms that maintain competitive accuracy while improving demographic representation to reduce algorithmic bias.
comment: This paper is withdrawn due to factual/methodological/other critical errors. It primarily synthesizes literature without original empirical validation/novel contributions (e.g., similarity measures from Xia et al.[2]; 28.7% claims from benchmarks). Core "proposed framework" lacks independent experiments, invalidating analysis. Do not cite prior versions
X-SAM: From Segment Anything to Any Segmentation AAAI2026
Large Language Models (LLMs) demonstrate strong capabilities in broad knowledge representation, yet they are inherently deficient in pixel-level perceptual understanding. Although the Segment Anything Model (SAM) represents a significant advancement in visual-prompt-driven image segmentation, it exhibits notable limitations in multi-mask prediction and category-specific segmentation tasks, and it cannot integrate all segmentation tasks within a unified model architecture. To address these limitations, we present X-SAM, a streamlined Multimodal Large Language Model (MLLM) framework that extends the segmentation paradigm from \textit{segment anything} to \textit{any segmentation}. Specifically, we introduce a novel unified framework that enables more advanced pixel-level perceptual comprehension for MLLMs. Furthermore, we propose a new segmentation task, termed Visual GrounDed (VGD) segmentation, which segments all instance objects with interactive visual prompts and empowers MLLMs with visual grounded, pixel-wise interpretative capabilities. To enable effective training on diverse data sources, we present a unified training strategy that supports co-training across multiple datasets. Experimental results demonstrate that X-SAM achieves state-of-the-art performance on a wide range of image segmentation benchmarks, highlighting its efficiency for multimodal, pixel-level visual understanding. Code is available at https://github.com/wanghao9610/X-SAM.
comment: AAAI2026
Gabliteration: Adaptive Multi-Directional Neural Weight Modification for Selective Behavioral Alteration in Large Language Models
We present Gabliteration, a novel neural weight modification technique that advances beyond traditional abliteration methods by implementing adaptive multi-directional projections with regularized layer selection. Our approach addresses the fundamental limitation of existing methods that compromise model quality while attempting to modify specific behavioral patterns. Through dynamic layer optimization, regularized projection matrices, and adaptive scaling mechanisms, we achieve theoretically superior weight modification while minimizing quality degradation in unrelated domains. We validate our method through the gabliterated-v1 model series (0.6B to 4B parameters) available on Hugging Face, demonstrating practical applicability across multiple model scales.
Mitigating Sensitive Information Leakage in LLMs4Code through Machine Unlearning
Large Language Models for Code (LLMs4Code) have achieved strong performance in code generation, but recent studies reveal that they may memorize and leak sensitive information contained in training data, posing serious privacy risks. To address this gap, this work presents the first comprehensive empirical study on applying machine unlearning to mitigate sensitive information leakage in LLMs4Code. We first construct a dedicated benchmark that includes: (i) a synthetic forget set containing diverse forms of personal information, and (ii) a retain set designed to evaluate whether code-generation capability is preserved after unlearning. Using this benchmark, we systematically assess three representative unlearning algorithms (GA, GA+GD, GA+KL) across three widely used open-source LLMs4Code models (AIXCoder-7B, CodeLlama-7B, CodeQwen-7B). Experimental results demonstrate that machine unlearning can substantially reduce direct memorization-based leakage: on average, the direct leak rate drops by more than 50% while retaining about over 91% of the original code-generation performance. Moreover, by analyzing post-unlearning outputs, we uncover a consistent shift from direct to indirect leakage, revealing an underexplored vulnerability that persists even when the target data has been successfully forgotten. Our findings show that machine unlearning is a feasible and effective solution for enhancing privacy protection in LLMs4Code, while also highlighting the need for future techniques capable of mitigating both direct and indirect leakage simultaneously.
comment: 13 pages
Mechanism of Task-oriented Information Removal in In-context Learning ICLR 2026
In-context Learning (ICL) is an emerging few-shot learning paradigm based on modern Language Models (LMs), yet its inner mechanism remains unclear. In this paper, we investigate the mechanism through a novel perspective of information removal. Specifically, we demonstrate that in the zero-shot scenario, LMs encode queries into non-selective representations in hidden states containing information for all possible tasks, leading to arbitrary outputs without focusing on the intended task, resulting in near-zero accuracy. Meanwhile, we find that selectively removing specific information from hidden states by a low-rank filter effectively steers LMs toward the intended task. Building on these findings, by measuring the hidden states on carefully designed metrics, we observe that few-shot ICL effectively simulates such task-oriented information removal processes, selectively removing the redundant information from entangled non-selective representations, and improving the output based on the demonstrations, which constitutes a key mechanism underlying ICL. Moreover, we identify essential attention heads inducing the removal operation, termed Denoising Heads, which enables the ablation experiments blocking the information removal operation from the inference, where the ICL accuracy significantly degrades, especially when the correct label is absent from the few-shot demonstrations, confirming both the critical role of the information removal mechanism and denoising heads.
comment: 87 pages, 90 figures, 7 tables, ICLR 2026 Camera-ready
Quantifying Fidelity: A Decisive Feature Approach to Comparing Synthetic and Real Imagery
Virtual testing using synthetic data has become a cornerstone of autonomous vehicle (AV) safety assurance. Despite progress in improving visual realism through advanced simulators and generative AI, recent studies reveal that pixel-level fidelity alone does not ensure reliable transfer from simulation to the real world. What truly matters is whether the system-under-test (SUT) bases its decisions on consistent decision evidence in both real and simulated environments, not just whether images "look real" to humans. To this end this paper proposes a behavior-grounded fidelity measure by introducing Decisive Feature Fidelity (DFF), a new SUT-specific metric that extends the existing fidelity spectrum to capture mechanism parity, that is, agreement in the model-specific decisive evidence that drives the SUT's decisions across domains. DFF leverages explainable-AI methods to identify and compare the decisive features driving the SUT's outputs for matched real-synthetic pairs. We further propose estimators based on counterfactual explanations, along with a DFF-guided calibration scheme to enhance simulator fidelity. Experiments on 2126 matched KITTI-VirtualKITTI2 pairs demonstrate that DFF reveals discrepancies overlooked by conventional output-value fidelity. Furthermore, results show that DFF-guided calibration improves decisive-feature and input-level fidelity without sacrificing output value fidelity across diverse SUTs.
SimpleMem: Efficient Lifelong Memory for LLM Agents
To support long-term interaction in complex environments, LLM agents require memory systems that manage historical experiences. Existing approaches either retain full interaction histories via passive context extension, leading to substantial redundancy, or rely on iterative reasoning to filter noise, incurring high token costs. To address this challenge, we introduce SimpleMem, an efficient memory framework based on semantic lossless compression. We propose a three-stage pipeline designed to maximize information density and token utilization: (1) Semantic Structured Compression, which distills unstructured interactions into compact, multi-view indexed memory units; (2) Online Semantic Synthesis, an intra-session process that instantly integrates related context into unified abstract representations to eliminate redundancy; and (3) Intent-Aware Retrieval Planning, which infers search intent to dynamically determine retrieval scope and construct precise context efficiently. Experiments on benchmark datasets show that our method consistently outperforms baseline approaches in accuracy, retrieval efficiency, and inference cost, achieving an average F1 improvement of 26.4% while reducing inference-time token consumption by up to 30-fold, demonstrating a superior balance between performance and efficiency. Code is available at https://github.com/aiming-lab/SimpleMem.
LVLMs and Humans Ground Differently in Referential Communication
For generative AI agents to partner effectively with human users, the ability to accurately predict human intent is critical. But this ability to collaborate remains limited by a critical deficit: an inability to model common ground. Here, we present a referential communication experiment with a factorial design involving director-matcher pairs (human-human, human-AI, AI-human, and AI-AI) that interact with multiple turns in repeated rounds to match pictures of objects not associated with any obvious lexicalized labels. We release the online pipeline for data collection, the tools and analyses for accuracy, efficiency, and lexical overlap, and a corpus of 356 dialogues (89 pairs over 4 rounds each) that unmasks LVLMs' limitations in interactively resolving referring expressions, a crucial skill that underlies human language use.
comment: 24 pages, 16 figures, preprint
Understanding Post-Training Structural Changes in Large Language Models
Post-training fundamentally alters the behavior of large language models (LLMs), yet its impact on the internal parameter space remains poorly understood. In this work, we conduct a systematic singular value decomposition (SVD) analysis of principal linear layers in pretrained LLMs, focusing on two widely adopted post-training methods: instruction tuning and long-chain-of-thought (Long-CoT) distillation. Our analysis reveals two unexpected and robust structural changes: (1) a near-uniform geometric scaling of singular values across layers; and (2) highly consistent orthogonal transformations are applied to the left and right singular vectors of each matrix. Based on these findings, We propose a simple yet effective framework to describe the coordinated dynamics of parameters in LLMs, which elucidates why post-training inherently relies on the foundational capabilities developed during pre-training. Further experiments demonstrate that singular value scaling underpins the temperature-controlled regulatory mechanisms of post-training, while the coordinated rotation of singular vectors encodes the essential semantic alignment. These results challenge the prevailing view of the parameter space in large models as a black box, uncovering the first clear regularities in how parameters evolve during training, and providing a new perspective for deeper investigation into model parameter changes.
Diffusion Timbre Transfer Via Mutual Information Guided Inpainting
We study timbre transfer as an inference-time editing problem for music audio. Starting from a strong pre-trained latent diffusion model, we introduce a lightweight procedure that requires no additional training: (i) a dimension-wise noise injection that targets latent channels most informative of instrument identity, and (ii) an early-step clamping mechanism that re-imposes the input's melodic and rhythmic structure during reverse diffusion. The method operates directly on audio latents and is compatible with text/audio conditioning (e.g., CLAP). We discuss design choices,analyze trade-offs between timbral change and structural preservation, and show that simple inference-time controls can meaningfully steer pre-trained models for style-transfer use cases.
comment: 5 pages, 2 figures, 3 tables
Beyond Correctness: Evaluating Subjective Writing Preferences Across Cultures
Current preference learning methods achieve high accuracy on standard benchmarks but exhibit significant performance degradation when objective quality signals are removed. We introduce WritingPreferenceBench, a dataset of 1,800 human-annotated preference pairs (1,200 English, 600 Chinese) across 8 creative writing genres, where responses are matched for objective correctness, factual accuracy, and length. On this benchmark, sequence-based reward models--the standard architecture for RLHF--achieve only 52.7% mean accuracy, while zero-shot language model judges perform at 53.9%. In contrast, generative reward models that produce explicit reasoning chains achieve 81.8% accuracy. We observe high within-model variance across genres: individual models range from 18.2% to 81.8% accuracy across different writing categories, with standard deviations averaging 10.1%. This variance persists regardless of model scale, with 27B parameter models showing no consistent improvement over 8B variants. Our results suggest that current RLHF methods primarily learn to detect objective errors rather than capture subjective quality preferences (e.g., creativity, stylistic flair, and emotional resonance), and that successful preference modeling may require intermediate reasoning representations rather than direct classification.
Membership Privacy Risks of Sharpness Aware Minimization iclr 2026
Optimization algorithms that seek flatter minima, such as Sharpness-Aware Minimization (SAM), are credited with improved generalization and robustness to noise. We ask whether such gains impact membership privacy. Surprisingly, we find that SAM is more prone to Membership Inference Attacks (MIA) than classical SGD across multiple datasets and attack methods, despite achieving lower test error. This suggests that the geometric mechanism of SAM that improves generalization simultaneously exacerbates membership leakage. We investigate this phenomenon through extensive analysis of memorization and influence scores. Our results reveal that SAM is more capable of capturing atypical subpatterns, leading to higher memorization scores of samples. Conversely, SGD depends more heavily on majority features, exhibiting worse generalization on atypical subgroups and lower memorization. Crucially, this characteristic of SAM can be linked to lower variance in the prediction confidence of unseen samples, thereby amplifying membership signals. Finally, we model SAM under a perfectly interpolating linear regime and theoretically show that sharpness regularization inherently reduces variance, guaranteeing a higher MIA advantage for confidence and likelihood ratio attacks.
comment: accepted to iclr 2026
Deep SPI: Safe Policy Improvement via World Models ICLR 2026
Safe policy improvement (SPI) offers theoretical control over policy updates, yet existing guarantees largely concern offline, tabular reinforcement learning (RL). We study SPI in general online settings, when combined with world model and representation learning. We develop a theoretical framework showing that restricting policy updates to a well-defined neighborhood of the current policy ensures monotonic improvement and convergence. This analysis links transition and reward prediction losses to representation quality, yielding online, "deep" analogues of classical SPI theorems from the offline RL literature. Building on these results, we introduce DeepSPI, a principled on-policy algorithm that couples local transition and reward losses with regularised policy updates. On the ALE-57 benchmark, DeepSPI matches or exceeds strong baselines, including PPO and DeepMDPs, while retaining theoretical guarantees.
comment: ICLR 2026, 10 pages main text, 21 pages appendix (excluding references)
Epistemic Diversity and Knowledge Collapse in Large Language Models
Large language models (LLMs) tend to generate homogenous texts, which may impact the diversity of knowledge generated across different outputs. Given their potential to replace existing forms of knowledge acquisition, this poses a risk of knowledge collapse, where homogenous LLMs may lead most people to be exposed to largely the same information, thus mediating a shrinking in the range of accessible information over time as underepresented knowledge is forgotten. To assess the risk of knowledge collapse with LLMs, we present a new methodology to measure epistemic diversity, i.e., variation in real-world claims in LLM outputs. We use this to perform a broad empirical study testing 27 LLMs, 155 topics covering 12 countries, and 200 prompt templates sourced from real user chats. For the topics in our study, we show that while newer models tend to generate more diverse claims, all models are less epistemically diverse than a basic web search. We find that model size has a negative impact on epistemic diversity, while retrieval-augmented generation (RAG) has a positive impact, though the improvement from RAG varies by the cultural context. Finally, compared to a traditional knowledge source (Wikipedia), we find that country-specific claims reflect the English language more than the local one, highlighting a gap in epistemic representation.
comment: 16 pages; 8 figures, 4 tables; v2 changelog: Fixed the modeling for table 3, random effect is the model version; v3 changelog: Fixed minor formatting issues in tables 2 and 3; v4 changelog: Fixed some typos and model description; v5 changelog: Updated metadata; v6 changelog: Improved search baseline, writing revisions, added comparisons to semantic similarity only approaches
LLMs versus the Halting Problem: Revisiting Program Termination Prediction
Determining whether a program terminates is a central problem in computer science. Turing's foundational result established the Halting Problem as undecidable, showing that no algorithm can universally determine termination for all programs and inputs. Consequently, automatic verification tools approximate termination, sometimes failing to prove or disprove; these tools rely on problem-specific architectures and abstractions, and are usually tied to particular programming languages. Recent success and progress in large language models (LLMs) raises the following question: can LLMs reliably predict program termination? In this work, we evaluate LLMs on a diverse set of C programs from the Termination category of the International Competition on Software Verification (SV-Comp) 2025. Our results suggest that LLMs perform remarkably well at predicting program termination, where GPT-5 and Claude Sonnet-4.5 would rank just behind the top-ranked tool (using test-time-scaling), and Code World Model (CWM) would place just behind the second-ranked tool. While LLMs are effective at predicting program termination, they often fail to provide a valid witness as a proof. Moreover, LLMs performance drops as program length increases. We hope these insights motivate further research into program termination and the broader potential of LLMs for reasoning about undecidable problems.
Robust Deep Monte Carlo Counterfactual Regret Minimization: Addressing Theoretical Risks in Neural Fictitious Self-Play
Monte Carlo Counterfactual Regret Minimization (MCCFR) has emerged as a cornerstone algorithm for solving extensive-form games, but its integration with deep neural networks introduces scale-dependent challenges that manifest differently across game complexities. This paper presents a comprehensive analysis of how neural MCCFR component effectiveness varies with game scale and proposes an adaptive framework for selective component deployment. We identify that theoretical risks such as nonstationary target distribution shifts, action support collapse, variance explosion, and warm-starting bias have scale-dependent manifestation patterns, requiring different mitigation strategies for small versus large games. Our proposed Robust Deep MCCFR framework incorporates target networks with delayed updates, uniform exploration mixing, variance-aware training objectives, and comprehensive diagnostic monitoring. Through systematic ablation studies on Kuhn and Leduc Poker, we demonstrate scale-dependent component effectiveness and identify critical component interactions. The best configuration achieves final exploitability of 0.0628 on Kuhn Poker, representing a 60% improvement over the classical framework (0.156). On the more complex Leduc Poker domain, selective component usage achieves exploitability of 0.2386, a 23.5% improvement over the classical framework (0.3703) and highlighting the importance of careful component selection over comprehensive mitigation. Our contributions include: (1) a formal theoretical analysis of risks in neural MCCFR, (2) a principled mitigation framework with convergence guarantees, (3) comprehensive multi-scale experimental validation revealing scale-dependent component interactions, and (4) practical guidelines for deployment in larger games.
comment: There seems to be some errors related to the encountered problems and the interpreation of numerical results, that do not have a common pattern
Field Matters: A Lightweight LLM-enhanced Method for CTR Prediction
Click-through rate (CTR) prediction is a fundamental task in modern recommender systems. In recent years, the integration of large language models (LLMs) has been shown to effectively enhance the performance of traditional CTR methods. However, existing LLM-enhanced methods often require extensive processing of detailed textual descriptions for large-scale instances or user/item entities, leading to substantial computational overhead. To address this challenge, this work introduces LLaCTR, a novel and lightweight LLM-enhanced CTR method that employs a field-level enhancement paradigm. Specifically, LLaCTR first utilizes LLMs to distill crucial and lightweight semantic knowledge from small-scale feature fields through self-supervised field-feature fine-tuning. Subsequently, it leverages this field-level semantic knowledge to enhance both feature representation and feature interactions. In our experiments, we integrate LLaCTR with six representative CTR models across four datasets, demonstrating its superior performance in terms of both effectiveness and efficiency compared to existing LLM-enhanced methods. Our code is available at https://github.com/istarryn/LLaCTR.
PLawBench: A Rubric-Based Benchmark for Evaluating LLMs in Real-World Legal Practice
As large language models (LLMs) are increasingly applied to legal domain-specific tasks, evaluating their ability to perform legal work in real-world settings has become essential. However, existing legal benchmarks rely on simplified and highly standardized tasks, failing to capture the ambiguity, complexity, and reasoning demands of real legal practice. Moreover, prior evaluations often adopt coarse, single-dimensional metrics and do not explicitly assess fine-grained legal reasoning. To address these limitations, we introduce PLawBench, a Practical Law Benchmark designed to evaluate LLMs in realistic legal practice scenarios. Grounded in real-world legal workflows, PLawBench models the core processes of legal practitioners through three task categories: public legal consultation, practical case analysis, and legal document generation. These tasks assess a model's ability to identify legal issues and key facts, perform structured legal reasoning, and generate legally coherent documents. PLawBench comprises 850 questions across 13 practical legal scenarios, with each question accompanied by expert-designed evaluation rubrics, resulting in approximately 12,500 rubric items for fine-grained assessment. Using an LLM-based evaluator aligned with human expert judgments, we evaluate 10 state-of-the-art LLMs. Experimental results show that none achieves strong performance on PLawBench, revealing substantial limitations in the fine-grained legal reasoning capabilities of current LLMs and highlighting important directions for future evaluation and development of legal LLMs. Data is available at: https://github.com/skylenage/PLawbench.
Beyond Syntax: Action Semantics Learning for App Agents
The recent development of Large Language Models (LLMs) enables the rise of App agents that interpret user intent and operate smartphone Apps through actions such as clicking and scrolling. While prompt-based solutions with proprietary LLM APIs show promising ability, they incur heavy compute costs and external API dependency. Fine-tuning smaller open-source LLMs solves these limitations. However, current supervised fine-tuning methods use a syntax learning paradigm that forces agents to reproduce exactly the ground truth action strings, leading to out-of-distribution (OOD) vulnerability. To fill this gap, we propose Action Semantics Learning (ASL), a novel learning framework, where the learning objective is capturing the semantics of the ground truth actions. Specifically, inspired by the programming language theory, we define the action semantics for App agents as the state transition induced by the action in the user interface. Building on this insight, ASL employs a novel SEmantic Estimator~(SEE) to compute a semantic similarity to train the App agents in generating actions aligned with the semantics of ground truth actions, even when their syntactic forms differ. SEE is a flexible module that can be applied in both supervised and reinforcement fine-tuning paradigms. To support the effectiveness of ASL, we theoretically demonstrate the superior robustness of ASL for the OOD problem compared with the existing syntax learning paradigm. Extensive experiments across multiple offline and online benchmarks demonstrate that ASL significantly improves the accuracy and generalisation of App agents compared to existing methods.
Neural Value Iteration
The value function of a POMDP exhibits the piecewise-linear-convex (PWLC) property and can be represented as a finite set of hyperplanes, known as $α$-vectors. Most state-of-the-art POMDP solvers (offline planners) follow the point-based value iteration scheme, which performs Bellman backups on $α$-vectors at reachable belief points until convergence. However, since each $α$-vector is $|S|$-dimensional, these methods quickly become intractable for large-scale problems due to the prohibitive computational cost of Bellman backups. In this work, we demonstrate that the PWLC property allows a POMDP's value function to be alternatively represented as a finite set of neural networks. This insight enables a novel POMDP planning algorithm called \emph{Neural Value Iteration}, which combines the generalization capability of neural networks with the classical value iteration framework. Our approach achieves near-optimal solutions even in extremely large POMDPs that are intractable for existing offline solvers.
CLIP-Guided Unsupervised Semantic-Aware Exposure Correction
Improper exposure often leads to severe loss of details, color distortion, and reduced contrast. Exposure correction still faces two critical challenges: (1) the ignorance of object-wise regional semantic information causes the color shift artifacts; (2) real-world exposure images generally have no ground-truth labels, and its labeling entails massive manual editing. To tackle the challenges, we propose a new unsupervised semantic-aware exposure correction network. It contains an adaptive semantic-aware fusion module, which effectively fuses the semantic information extracted from a pre-trained Fast Segment Anything Model into a shared image feature space. Then the fused features are used by our multi-scale residual spatial mamba group to restore the details and adjust the exposure. To avoid manual editing, we propose a pseudo-ground truth generator guided by CLIP, which is fine-tuned to automatically identify exposure situations and instruct the tailored corrections. Also, we leverage the rich priors from the FastSAM and CLIP to develop a semantic-prompt consistency loss to enforce semantic consistency and image-prompt alignment for unsupervised training. Comprehensive experimental results illustrate the effectiveness of our method in correcting real-world exposure images and outperforms state-of-the-art unsupervised methods both numerically and visually.
comment: Accepted at ICASSP 2026
Human Values in a Single Sentence: Moral Presence, Hierarchies, and Transformer Ensembles on the Schwartz Continuum
We study sentence-level detection of the 19 human values in the refined Schwartz continuum in about 74k English sentences from news and political manifestos (ValueEval'24 corpus). Each sentence is annotated with value presence, yielding a binary moral-presence label and a 19-way multi-label task under severe class imbalance. First, we show that moral presence is learnable from single sentences: a DeBERTa-base classifier attains positive-class F1 = 0.74 with calibrated thresholds. Second, we compare direct multi-label value detectors with presence-gated hierarchies under a single 8 GB GPU budget. Under matched compute, presence gating does not improve over direct prediction, indicating that gate recall becomes a bottleneck. Third, we investigate lightweight auxiliary signals - short-range context, LIWC-22 and moral lexica, and topic features - and small ensembles. Our best supervised configuration, a soft-voting ensemble of DeBERTa-based models enriched with such signals, reaches macro-F1 = 0.332 on the 19 values, improving over the best previous English-only baseline on this corpus (macro-F1 $\approx$ 0.28). We additionally benchmark 7-9B instruction-tuned LLMs (Gemma 2 9B, Llama 3.1 8B, Mistral 8B, Qwen 2.5 7B) in zero-/few-shot and QLoRA setups, and find that they lag behind the supervised ensemble under the same hardware constraint. Overall, our results provide empirical guidance for building compute-efficient, value-aware NLP models under realistic GPU budgets.
comment: Code: https://github.com/VictorMYeste/human-value-detection, models: https://huggingface.co/papers/2601.14172, 47 pages, 4 figures
DGRAG: Distributed Graph-based Retrieval-Augmented Generation in Edge-Cloud Systems
Retrieval-Augmented Generation (RAG) improves factuality by grounding LLMs in external knowledge, yet conventional centralized RAG requires aggregating distributed data, raising privacy risks and incurring high retrieval latency and cost. We present DGRAG, a distributed graph-driven RAG framework for edge-cloud collaborative systems. Each edge device organizes local documents into a knowledge graph and periodically uploads subgraph-level summaries to the cloud for lightweight global indexing without exposing raw data. At inference time, queries are first answered on the edge; a gate mechanism assesses the confidence and consistency of multiple local generations to decide whether to return a local answer or escalate the query. For escalated queries, the cloud performs summary-based matching to identify relevant edges, retrieves supporting evidence from them, and generates the final response with a cloud LLM. Experiments on distributed question answering show that DGRAG consistently outperforms decentralized baselines while substantially reducing cloud overhead.
Sparsity-Aware Low-Rank Representation for Efficient Fine-Tuning of Large Language Models
Adapting large pre-trained language models to downstream tasks often entails fine-tuning millions of parameters or deploying costly dense weight updates, which hinders their use in resource-constrained environments. Low-rank Adaptation (LoRA) reduces trainable parameters by factorizing weight updates, yet the underlying dense weights still impose high storage and computation costs. Magnitude-based pruning can yield sparse models but typically degrades LoRA's performance when applied naively. In this paper, we introduce SALR (Sparsity-Aware Low-Rank Representation), a novel fine-tuning paradigm that unifies low-rank adaptation with sparse pruning under a rigorous mean-squared-error framework. We prove that statically pruning only the frozen base weights minimizes the pruning error bound, and we recover the discarded residual information via a truncated-SVD low-rank adapter, which provably reduces per-entry MSE by a factor of $(1 - r/\min(d,k))$. To maximize hardware efficiency, we fuse multiple low-rank adapters into a single concatenated GEMM, and we adopt a bitmap-based encoding with a two-stage pipelined decoding + GEMM design to achieve true model compression and speedup. Empirically, SALR attains 50\% sparsity on various LLMs while matching the performance of LoRA on GSM8K and MMLU, reduces model size by $2\times$, and delivers up to a $1.7\times$ inference speedup.
AGITB: A Signal-Level Benchmark for Evaluating Artificial General Intelligence
Current artificial intelligence systems exhibit strong performance on narrow tasks, while existing evaluation frameworks provide limited insight into generality across domains. We introduce the Artificial General Intelligence Testbed (AGITB), a complementary benchmarking framework grounded in twelve explicitly stated axioms and implemented as a suite of twelve automated, simple, and reusable tests. AGITB evaluates models on their ability to learn and to predict the next input in a temporal sequence whose semantic content is initially unknown to the model. The framework targets core computational properties, such as determinism, adaptability, and generalisation, that parallel principles observed in biological information processing. Designed to resist brute-force or memorisation-based strategies, AGITB requires autonomous learning across previously unseen environments, in a manner broadly inspired by cortical computation. Preliminary application of AGITB suggests that no contemporary system evaluated to date satisfies all test criteria, indicating that the benchmark provides a structured and interpretable means of assessing progress toward more general learning capabilities. A reference implementation of AGITB is freely available on GitHub.
comment: 23 pages, 2 figures
Lifted Forward Planning in Relational Factored Markov Decision Processes with Concurrent Actions
Decision making is a central problem in AI that can be formalized using a Markov Decision Process. A problem is that, with increasing numbers of (indistinguishable) objects, the state space grows exponentially. To compute policies, the state space has to be enumerated. Even more possibilities have to be enumerated if the size of the action space depends on the size of the state space, especially if we allow concurrent actions. To tackle the exponential blow-up in the action and state space, we present a first-order representation to store the spaces in polynomial instead of exponential size in the number of objects and introduce Foreplan, a relational forward planner, which uses this representation to efficiently compute policies for numerous indistinguishable objects and actions. Additionally, we introduce an even faster approximate version of Foreplan. Moreover, Foreplan identifies how many objects an agent should act on to achieve a certain task given restrictions. Further, we provide a theoretical analysis and an empirical evaluation of Foreplan, demonstrating a speedup of at least four orders of magnitude.
comment: Accepted at AAMAS 2026
Elastic Attention: Test-time Adaptive Sparsity Ratios for Efficient Transformers
The quadratic complexity of standard attention mechanisms poses a significant scalability bottleneck for large language models (LLMs) in long-context scenarios. While hybrid attention strategies that combine sparse and full attention within a single model offer a viable solution, they typically employ static computation ratios (i.e., fixed proportions of sparse versus full attention) and fail to adapt to the varying sparsity sensitivities of downstream tasks during inference. To address this issue, we propose Elastic Attention, which allows the model to dynamically adjust its overall sparsity based on the input. This is achieved by integrating a lightweight Attention Router into the existing pretrained model, which dynamically assigns each attention head to different computation modes. Within only 12 hours of training on 8xA800 GPUs, our method enables models to achieve both strong performance and efficient inference. Experiments across three long-context benchmarks on widely-used LLMs demonstrate the superiority of our method.
Depth-Width tradeoffs in Algorithmic Reasoning of Graph Tasks with Transformers
Transformers have revolutionized the field of machine learning. In particular, they can be used to solve complex algorithmic problems, including graph-based tasks. In such algorithmic tasks a key question is what is the minimal size of a transformer that can implement the task. Recent work has begun to explore this problem for graph-based tasks, showing that for sub-linear embedding dimension (i.e., model width) logarithmic depth suffices. However, an open question, which we address here, is what happens if width is allowed to grow linearly, while depth is kept fixed. Here we analyze this setting, and provide the surprising result that with linear width, constant depth suffices for solving a host of graph-based problems. This suggests that a moderate increase in width can allow much shallower models, which are advantageous in terms of inference and train time. For other problems, we show that quadratic width is required. Our results demonstrate the complex and intriguing landscape of transformer implementations of graph-based algorithms. We empirically investigate these trade-offs between the relative powers of depth and width and find tasks where wider models have the same accuracy as deep models, while having much faster train and inference time due to parallelizable hardware.
A Message Passing Realization of Expected Free Energy Minimization
We present a message passing approach to Expected Free Energy (EFE) minimization on factor graphs, based on the theory introduced in arXiv:2504.14898. By reformulating EFE minimization as Variational Free Energy minimization with epistemic priors, we transform a combinatorial search problem into a tractable inference problem solvable through standard variational techniques. Applying our message passing method to factorized state-space models enables efficient policy inference. We evaluate our method on environments with epistemic uncertainty: a stochastic gridworld and a partially observable Minigrid task. Agents using our approach consistently outperform conventional KL-control agents on these tasks, showing more robust planning and efficient exploration under uncertainty. In the stochastic gridworld environment, EFE-minimizing agents avoid risky paths, while in the partially observable minigrid setting, they conduct more systematic information-seeking. This approach bridges active inference theory with practical implementations, providing empirical evidence for the efficiency of epistemic priors in artificial agents.
Compositional Reasoning with Transformers, RNNs, and Chain of Thought NeurIPS
It is well understood that different neural network architectures are suited to different tasks, but is there always a single best architecture for a given task? We compare the expressive power of transformers, RNNs, and transformers with chain of thought tokens on a simple and natural class of tasks we term Compositional Reasoning Questions (CRQ). This family captures multi-step problems with tree-like compositional structure, such as evaluating Boolean formulas. We prove that under standard hardness assumptions, \emph{none} of these three architectures is capable of solving CRQs unless some hyperparameter (depth, embedding dimension, and number of chain of thought tokens, respectively) grows with the size of the input. We then provide constructions for solving CRQs with each architecture. For transformers, our construction uses depth that is logarithmic in the problem size. For RNNs, logarithmic embedding dimension is necessary and sufficient, so long as the inputs are provided in a certain order. For transformers with chain of thought, our construction uses $n$ CoT tokens for input size $n$. These results show that, while CRQs are inherently hard, there are several different ways for language models to overcome this hardness. Even for a single class of problems, each architecture has strengths and weaknesses, and none is strictly better than the others.
comment: NeurIPS CR version
Physics-Guided Multimodal Transformers are the Necessary Foundation for the Next Generation of Meteorological Science
This position paper argues that the next generation of artificial intelligence in meteorological and climate sciences must transition from fragmented hybrid heuristics toward a unified paradigm of physics-guided multimodal transformers. While purely data-driven models have achieved significant gains in predictive accuracy, they often treat atmospheric processes as mere visual patterns, frequently producing results that lack scientific consistency or violate fundamental physical laws. We contend that current ``hybrid'' attempts to bridge this gap remain ad-hoc and struggle to scale across the heterogeneous nature of meteorological data ranging from satellite imagery to sparse sensor measurements. We argue that the transformer architecture, through its inherent capacity for cross-modal alignment, provides the only viable foundation for a systematic integration of domain knowledge via physical constraint embedding and physics-informed loss functions. By advocating for this unified architectural shift, we aim to steer the community away from ``black-box'' curve fitting and toward AI systems that are inherently falsifiable, scientifically grounded, and robust enough to address the existential challenges of extreme weather and climate change.
comment: Perspective article
Dynamic Content Moderation in Livestreams: Combining Supervised Classification with MLLM-Boosted Similarity Matching
Content moderation remains a critical yet challenging task for large-scale user-generated video platforms, especially in livestreaming environments where moderation must be timely, multimodal, and robust to evolving forms of unwanted content. We present a hybrid moderation framework deployed at production scale that combines supervised classification for known violations with reference-based similarity matching for novel or subtle cases. This hybrid design enables robust detection of both explicit violations and novel edge cases that evade traditional classifiers. Multimodal inputs (text, audio, visual) are processed through both pipelines, with a multimodal large language model (MLLM) distilling knowledge into each to boost accuracy while keeping inference lightweight. In production, the classification pipeline achieves 67% recall at 80% precision, and the similarity pipeline achieves 76% recall at 80% precision. Large-scale A/B tests show a 6-8% reduction in user views of unwanted livestreams}. These results demonstrate a scalable and adaptable approach to multimodal content governance, capable of addressing both explicit violations and emerging adversarial behaviors.
comment: To be published at KDD 2026 (ADS track)
Beyond Face Swapping: A Diffusion-Based Digital Human Benchmark for Multimodal Deepfake Detection
In recent years, the explosive advancement of deepfake technology has posed a critical and escalating threat to public security: diffusion-based digital human generation. Unlike traditional face manipulation methods, such models can generate highly realistic videos with consistency via multimodal control signals. Their flexibility and covertness pose severe challenges to existing detection strategies. To bridge this gap, we introduce DigiFakeAV, the new large-scale multimodal digital human forgery dataset based on diffusion models. Leveraging five of the latest digital human generation methods and a voice cloning method, we systematically construct a dataset comprising 60,000 videos (8.4 million frames), covering multiple nationalities, skin tones, genders, and real-world scenarios, significantly enhancing data diversity and realism. User studies demonstrate that the misrecognition rate by participants for DigiFakeAV reaches as high as 68%. Moreover, the substantial performance degradation of existing detection models on our dataset further highlights its challenges. To address this problem, we propose DigiShield, an effective detection baseline based on spatiotemporal and cross-modal fusion. By jointly modeling the 3D spatiotemporal features of videos and the semantic-acoustic features of audio, DigiShield achieves state-of-the-art (SOTA) performance on the DigiFakeAV and shows strong generalization on other datasets.
SysMoBench: Evaluating AI on Formally Modeling Complex Real-World Systems
Formal models are essential to specifying large, complex computer systems and verifying their correctness, but are notoriously expensive to write and maintain. Recent advances in generative AI show promise in generating certain forms of specifications. However, existing work mostly targets small code, not complete systems. It is unclear whether AI can deal with realistic system artifacts, as this requires abstracting their complex behavioral properties into formal models. We present SysMoBench, a benchmark that evaluates AI's ability to formally model large, complex systems. We focus on concurrent and distributed systems, which are keystones of today's critical computing infrastructures, encompassing operating systems and cloud infrastructure. We use TLA+, the de facto specification language for concurrent and distributed systems, though the benchmark can be extended to other specification languages. We address the primary challenge of evaluating AI-generated models by automating metrics like syntactic and runtime correctness, conformance to system code, and invariant correctness. SysMoBench currently includes eleven diverse system artifacts: the Raft implementation of Etcd and Redis, the leader election of ZooKeeper, the Spinlock, Mutex, and Ringbuffer in Asterinas OS, etc., with more being added. SysMoBench enables us to understand the capabilities and limitations of today's LLMs and agents, putting tools in this area on a firm footing and opening up promising new research directions.
Reasoning in the Dark: Interleaved Vision-Text Reasoning in Latent Space
Multimodal reasoning aims to enhance the capabilities of MLLMs by incorporating intermediate reasoning steps before reaching the final answer. It has evolved from text-only reasoning to the integration of visual information, enabling the thought process to be conveyed through both images and text. Despite its effectiveness, current multimodal reasoning methods depend on explicit reasoning steps that require labor-intensive vision-text annotations and inherently introduce significant inference latency. To address these issues, we introduce multimodal latent reasoning with the advantages of multimodal representation, reduced annotation, and inference efficiency. To facilitate it, we propose Interleaved Vision-Text Latent Reasoning (IVT-LR), which injects both visual and textual information in the reasoning process within the latent space. Specifically, IVT-LR represents each reasoning step by combining two implicit parts: latent text (the hidden states from the previous step) and latent vision (a set of selected image embeddings). We further introduce a progressive multi-stage training strategy to enable MLLMs to perform the above multimodal latent reasoning steps. Experiments on M$^3$CoT and ScienceQA demonstrate that our IVT-LR method achieves an average performance increase of 5.45\% in accuracy, while simultaneously achieving a speed increase of over 5 times compared to existing approaches.
Rewarding Doubt: A Reinforcement Learning Approach to Calibrated Confidence Expression of Large Language Models
A safe and trustworthy use of Large Language Models (LLMs) requires an accurate expression of confidence in their answers. We propose a novel Reinforcement Learning approach that allows to directly fine-tune LLMs to express calibrated confidence estimates alongside their answers to factual questions. Our method optimizes a reward based on the logarithmic scoring rule, explicitly penalizing both over- and under-confidence. This encourages the model to align its confidence estimates with the actual predictive accuracy. The optimal policy under our reward design would result in perfectly calibrated confidence expressions. Unlike prior approaches that decouple confidence estimation from response generation, our method integrates confidence calibration seamlessly into the generative process of the LLM. Empirically, we demonstrate that models trained with our approach exhibit substantially improved calibration and generalize to unseen tasks without further fine-tuning, suggesting the emergence of general confidence awareness.
Tri-Reader: An Open-Access, Multi-Stage AI Pipeline for First-Pass Lung Nodule Annotation in Screening CT
Using multiple open-access models trained on public datasets, we developed Tri-Reader, a comprehensive, freely available pipeline that integrates lung segmentation, nodule detection, and malignancy classification into a unified tri-stage workflow. The pipeline is designed to prioritize sensitivity while reducing the candidate burden for annotators. To ensure accuracy and generalizability across diverse practices, we evaluated Tri-Reader on multiple internal and external datasets as compared with expert annotations and dataset-provided reference standards.
comment: 1 figure , 2 tables, 20 page supplement
GenCode: A Generic Data Augmentation Framework for Boosting Deep Learning-Based Code Understanding
Pre-trained code models lead the era of code intelligence, with multiple models designed with impressive performance. However, one important problem, data augmentation for code data that automatically helps developers prepare training data lacks study in this field. In this paper, we introduce a generic data augmentation framework, GenCode, to enhance the training of code understanding models. Simply speaking, GenCode follows a generation-and-selection paradigm to prepare useful training code data. Specifically, it employs code augmentation techniques to generate new code candidates first and then identifies important ones as the training data by influence scores. To evaluate the effectiveness of GenCode, we conduct experiments on four code understanding tasks (e.g., code clone detection) and three pre-trained code models (e.g., CodeT5) and two recent released code-specific Large Language Models (LLMs) (e.g., Qwen2.5-Coder). Compared to the state-of-the-art (SOTA) code augmentation method MixCode, GenCode produces pre-trained code models with 2.92% higher accuracy and 4.90% adversarial robustness on average. For code-specific LLMs, GenCode achieves an average improvement of 0.93% in accuracy and 0.98% in natural robustness.
comment: Accepted by Empirical Software Engineering (EMSE) 2026
Look Back to Reason Forward: Revisitable Memory for Long-Context LLM Agents
Large language models face challenges in long-context question answering, where key evidence of a query may be dispersed across millions of tokens. Existing works equip large language models with a memory buffer that is dynamically updated via a linear document scan, also known as the "memorize while reading" methods. While this approach scales efficiently, it suffers from pruning of latent evidence, information loss through overwriting, and sparse reinforcement learning signals. To tackle these challenges, we present ReMemR1, which integrates the mechanism of memory retrieval into the memory update process, enabling the agent to selectively callback historical memories for non-linear reasoning. To further strengthen training, we propose a multi-level reward design, which combines final-answer rewards with dense, step-level signals that guide effective memory use. Together, these contributions mitigate information degradation, improve supervision, and support complex multi-hop reasoning. Extensive experiments demonstrate that ReMemR1 significantly outperforms state-of-the-art baselines on long-context question answering while incurring negligible computational overhead, validating its ability to trade marginal cost for robust long-context reasoning.
RubricHub: A Comprehensive and Highly Discriminative Rubric Dataset via Automated Coarse-to-Fine Generation
Reinforcement Learning with Verifiable Rewards (RLVR) has driven substantial progress in reasoning-intensive domains like mathematics. However, optimizing open-ended generation remains challenging due to the lack of ground truth. While rubric-based evaluation offers a structured proxy for verification, existing methods suffer from scalability bottlenecks and coarse criteria, resulting in a supervision ceiling effect. To address this, we propose an automated Coarse-to-Fine Rubric Generation framework. By synergizing principle-guided synthesis, multi-model aggregation, and difficulty evolution, our approach produces comprehensive and highly discriminative criteria capable of capturing the subtle nuances. Based on this framework, we introduce RubricHub, a large-scale ($\sim$110k) and multi-domain dataset. We validate its utility through a two-stage post-training pipeline comprising Rubric-based Rejection Sampling Fine-Tuning (RuFT) and Reinforcement Learning (RuRL). Experimental results demonstrate that RubricHub unlocks significant performance gains: our post-trained Qwen3-14B achieves state-of-the-art (SOTA) results on HealthBench (69.3), surpassing proprietary frontier models such as GPT-5. Our code is available at \href{https://github.com/teqkilla/RubricHub}{ this URL}.
KV Admission: Learning What to Write for Efficient Long-Context Inference
Long-context LLM inference is bottlenecked by the quadratic attention complexity and linear KV cache growth. Prior approaches mitigate this via post-hoc selection or eviction but overlook the root inefficiency: indiscriminate writing to memory. In this paper, we formalize KV cache management as a causal system of three primitives: KV Admission, Selection, and Eviction. We instantiate KV Admission via Write-Gated KV (WG-KV), a lightweight mechanism that learns to predict token utility before cache entry. By filtering out low-utility states early to maintain a compact global cache alongside a sliding local cache, WG-KV reduces memory usage by 46-68% and delivers 3.03-3.70x prefill and 1.85-2.56x decode speedups on Llama and Qwen models, while maintaining compatibility with FlashAttention and Paged-KV systems. These results demonstrate that learning what to write is a principled and practical recipe for efficient long-context inference. Code is available at https://github.com/EMCLab-Sinica/WG-KV.
Advancing Multimodal Reasoning: From Optimized Cold Start to Staged Reinforcement Learning
Inspired by the remarkable reasoning capabilities of Deepseek-R1 in complex textual tasks, many works attempt to incentivize similar capabilities in Multimodal Large Language Models (MLLMs) by directly applying reinforcement learning (RL). However, they still struggle to activate complex reasoning. In this paper, rather than examining multimodal RL in isolation, we delve into current training pipelines and identify three crucial phenomena: 1) Effective cold start initialization is critical for enhancing MLLM reasoning. Intriguingly, we find that initializing with carefully selected text data alone can lead to performance surpassing many recent multimodal reasoning models, even before multimodal RL. 2) Standard GRPO applied to multimodal RL suffers from gradient stagnation, which degrades training stability and performance. 3) Subsequent text-only RL training, following the multimodal RL phase, further enhances multimodal reasoning. This staged training approach effectively balances perceptual grounding and cognitive reasoning development. By incorporating the above insights and addressing multimodal RL issues, we introduce ReVisual-R1, achieving a new state-of-the-art among open-source 7B MLLMs on challenging benchmarks including MathVerse, MathVision, WeMath, LogicVista, DynaMath, and challenging AIME2024 and AIME2025.
comment: 19 pages, 6 figures
Enhancing Model Defense Against Jailbreaks with Proactive Safety Reasoning
Large language models (LLMs) are vital for a wide range of applications yet remain susceptible to jailbreak threats, which could lead to the generation of inappropriate responses. Conventional defenses, such as refusal and adversarial training, often fail to cover corner cases or rare domains, leaving LLMs still vulnerable to more sophisticated attacks. We propose a novel defense strategy, Safety Chain-of-Thought (SCoT), which harnesses the enhanced \textit{reasoning capabilities} of LLMs for proactive assessment of harmful inputs, rather than simply blocking them. SCoT augments any refusal training datasets to critically analyze the intent behind each request before generating answers. By employing proactive reasoning, SCoT enhances the generalization of LLMs across varied harmful queries and scenarios not covered in the safety alignment corpus. Additionally, it generates detailed refusals specifying the rules violated. Comparative evaluations show that SCoT significantly surpasses existing defenses, reducing vulnerability to out-of-distribution issues and adversarial manipulations while maintaining strong general capabilities.
Diffusion Generative Recommendation with Continuous Tokens
Recent advances in generative artificial intelligence, particularly large language models (LLMs), have opened new opportunities for enhancing recommender systems (RecSys). Most existing LLM-based RecSys approaches operate in a discrete space, using vector-quantized tokenizers to align with the inherent discrete nature of language models. However, these quantization methods often result in lossy tokenization and suboptimal learning, primarily due to inaccurate gradient propagation caused by the non-differentiable argmin operation in standard vector quantization. Inspired by the emerging trend of embracing continuous tokens in language models, we propose ContRec, a novel framework that seamlessly integrates continuous tokens into LLM-based RecSys. Specifically, ContRec consists of two key modules: a sigma-VAE Tokenizer, which encodes users/items with continuous tokens; and a Dispersive Diffusion module, which captures implicit user preference. The tokenizer is trained with a continuous Variational Auto-Encoder (VAE) objective, where three effective techniques are adopted to avoid representation collapse. By conditioning on the previously generated tokens of the LLM backbone during user modeling, the Dispersive Diffusion module performs a conditional diffusion process with a novel Dispersive Loss, enabling high-quality user preference generation through next-token diffusion. Finally, ContRec leverages both the textual reasoning output from the LLM and the latent representations produced by the diffusion model for Top-K item retrieval, thereby delivering comprehensive recommendation results. Extensive experiments on four datasets demonstrate that ContRec consistently outperforms both traditional and SOTA LLM-based recommender systems. Our results highlight the potential of continuous tokenization and generative modeling for advancing the next generation of recommender systems.
comment: Accepted by The ACM Web Conference (WWW 2026)
RxnBench: A Multimodal Benchmark for Evaluating Large Language Models on Chemical Reaction Understanding from Scientific Literature
The integration of Multimodal Large Language Models (MLLMs) into chemistry promises to revolutionize scientific discovery, yet their ability to comprehend the dense, graphical language of reactions within authentic literature remains underexplored. Here, we introduce RxnBench, a multi-tiered benchmark designed to rigorously evaluate MLLMs on chemical reaction understanding from scientific PDFs. RxnBench comprises two tasks: Single-Figure QA (SF-QA), which tests fine-grained visual perception and mechanistic reasoning using 1,525 questions derived from 305 curated reaction schemes, and Full-Document QA (FD-QA), which challenges models to synthesize information from 108 articles, requiring cross-modal integration of text, schemes, and tables. Our evaluation of MLLMs reveals a critical capability gap: while models excel at extracting explicit text, they struggle with deep chemical logic and precise structural recognition. Notably, models with inference-time reasoning significantly outperform standard architectures, yet none achieve 50\% accuracy on FD-QA. These findings underscore the urgent need for domain-specific visual encoders and stronger reasoning engines to advance autonomous AI chemists.
MAnchors: Memorization-Based Acceleration of Anchors via Rule Reuse and Transformation
Anchors is a popular local model-agnostic explanation technique whose applicability is limited by its computational inefficiency. To address this limitation, we propose a memorization-based framework that accelerates Anchors while preserving explanation fidelity and interpretability. Our approach leverages the iterative nature of Anchors' algorithm which gradually refines an explanation until it is precise enough for a given input by storing and reusing intermediate results obtained during prior explanations. Specifically, we maintain a memory of low-precision, high-coverage rules and introduce a rule transformation framework to adapt them to new inputs: the horizontal transformation adapts a pre-trained explanation to the current input by replacing features, and the vertical transformation refines the general explanation until it is precise enough for the input. We evaluate our method across tabular, text, and image datasets, demonstrating that it significantly reduces explanation generation time while maintaining fidelity and interpretability, thereby enabling the practical adoption of Anchors in time-sensitive applications.
DAUNet: A Lightweight UNet Variant with Deformable Convolutions and Parameter-Free Attention for Medical Image Segmentation
Medical image segmentation plays a pivotal role in automated diagnostic and treatment planning systems. In this work, we present DAUNet, a novel lightweight UNet variant that integrates Deformable V2 Convolutions and Parameter-Free Attention (SimAM) to improve spatial adaptability and context-aware feature fusion without increasing model complexity. DAUNet's bottleneck employs dynamic deformable kernels to handle geometric variations, while the decoder and skip pathways are enhanced using SimAM attention modules for saliency-aware refinement. Extensive evaluations on two challenging datasets, FH-PS-AoP (fetal head and pubic symphysis ultrasound) and FUMPE (CT-based pulmonary embolism detection), demonstrate that DAUNet outperforms state-of-the-art models in Dice score, HD95, and ASD, while maintaining superior parameter efficiency. Ablation studies highlight the individual contributions of deformable convolutions and SimAM attention. DAUNet's robustness to missing context and low-contrast regions establishes its suitability for deployment in real-time and resource-constrained clinical environments.
comment: 13 pages, 7 figures
RPO-RAG: Aligning Small LLMs with Relation-aware Preference Optimization for Knowledge Graph Question Answering
Large Language Models (LLMs) have recently demonstrated remarkable reasoning abilities, yet hallucinate on knowledge-intensive tasks. Retrieval-augmented generation (RAG) mitigates this issue by grounding answers in external sources, e.g., knowledge graphs (KGs). However, existing KG-based RAG approaches rely on semantics-unaware path sampling and are weakly aligned with KG reasoning objectives, which limits further accuracy gains. They also feed retrieved paths directly into the reasoner without organizing them into answer-centered reasoning paths, hindering small LLMs' ability to leverage the retrieved knowledge. Furthermore, prior works predominantly rely on large LLMs (e.g., ChatGPT/GPT-4) or assume backbones above 7B parameters, leaving sub-7B models underexplored. We address this gap with RPO-RAG, the first KG-based RAG framework specifically designed for small LLMs, to the best of our knowledge. RPO-RAG introduces three key innovations: (1) a query-path semantic sampling strategy that provides informative supervisory signals; (2) a relation-aware preference optimization that aligns training with intermediate KG reasoning signals (e.g., relation); and (3) an answer-centered prompt design that organizes entities and reasoning paths in an interpretable format. Extensive experiments on two benchmark Knowledge Graph Question Answering (KGQA) datasets, WebQSP and CWQ, demonstrate that RPO-RAG effectively bridges the performance gap between small and large language models. On WebQSP, it improves F1 by up to 8.8%, reflecting enhanced answer precision, while on CWQ it achieves new state-of-the-art results among models under 8B parameters in both Hit and F1. Overall, RPO-RAG substantially improves the reasoning capability of small LLMs, even under 3B parameters-highlighting their potential for resource-efficient and practical on-device KGQA applications.
comment: Accepted at The Web Conference (WWW) 2026
Doxing via the Lens: Revealing Location-related Privacy Leakage on Multi-modal Large Reasoning Models ICLR 2026
Recent advances in multi-modal large reasoning models (MLRMs) have shown significant ability to interpret complex visual content. While these models enable impressive reasoning capabilities, they also introduce novel and underexplored privacy risks. In this paper, we identify a novel category of privacy leakage in MLRMs: Adversaries can infer sensitive geolocation information, such as a user's home address or neighborhood, from user-generated images, including selfies captured in private settings. To formalize and evaluate these risks, we propose a three-level visual privacy risk framework that categorizes image content based on contextual sensitivity and potential for location inference. We further introduce DoxBench, a curated dataset of 500 real-world images reflecting diverse privacy scenarios. Our evaluation across 11 advanced MLRMs and MLLMs demonstrates that these models consistently outperform non-expert humans in geolocation inference and can effectively leak location-related private information. This significantly lowers the barrier for adversaries to obtain users' sensitive geolocation information. We further analyze and identify two primary factors contributing to this vulnerability: (1) MLRMs exhibit strong reasoning capabilities by leveraging visual clues in combination with their internal world knowledge; and (2) MLRMs frequently rely on privacy-related visual clues for inference without any built-in mechanisms to suppress or avoid such usage. To better understand and demonstrate real-world attack feasibility, we propose GeoMiner, a collaborative attack framework that decomposes the prediction process into two stages: clue extraction and reasoning to improve geolocation performance while introducing a novel attack perspective. Our findings highlight the urgent need to reassess inference-time privacy risks in MLRMs to better protect users' sensitive information.
comment: Accepted by ICLR 2026
AuditoryBench++: Can Language Models Understand Auditory Knowledge without Hearing?
Even without directly hearing sounds, humans can effortlessly reason about auditory properties, such as pitch, loudness, or sound-source associations, drawing on auditory commonsense. In contrast, language models often lack this capability, limiting their effectiveness in multimodal interactions. As an initial step to address this gap, we present AuditoryBench++, a comprehensive benchmark for evaluating auditory knowledge and reasoning in text-only settings. The benchmark encompasses tasks that range from basic auditory comparisons to contextually grounded reasoning, enabling fine-grained analysis of how models process and integrate auditory concepts. In addition, we introduce AIR-CoT, a novel auditory imagination reasoning method that generates and integrates auditory information during inference through span detection with special tokens and knowledge injection. Extensive experiments with recent LLMs and Multimodal LLMs demonstrate that AIR-CoT generally outperforms both the off-the-shelf models and those augmented with auditory knowledge. The project page is available at https://auditorybenchpp.github.io.
comment: ICASSP 2026
Demystifying the Slash Pattern in Attention: The Role of RoPE
Large Language Models (LLMs) often exhibit slash attention patterns, where attention scores concentrate along the $Δ$-th sub-diagonal for some offset $Δ$. These patterns play a key role in passing information across tokens. But why do they emerge? In this paper, we demystify the emergence of these Slash-Dominant Heads (SDHs) from both empirical and theoretical perspectives. First, by analyzing open-source LLMs, we find that SDHs are intrinsic to models and generalize to out-of-distribution prompts. To explain the intrinsic emergence, we analyze the queries, keys, and Rotary Position Embedding (RoPE), which jointly determine attention scores. Our empirical analysis reveals two characteristic conditions of SDHs: (1) Queries and keys are almost rank-one, and (2) RoPE is dominated by medium- and high-frequency components. Under these conditions, queries and keys are nearly identical across tokens, and interactions between medium- and high-frequency components of RoPE give rise to SDHs. Beyond empirical evidence, we theoretically show that these conditions are sufficient to ensure the emergence of SDHs by formalizing them as our modeling assumptions. Particularly, we analyze the training dynamics of a shallow Transformer equipped with RoPE under these conditions, and prove that models trained via gradient descent exhibit SDHs. The SDHs generalize to out-of-distribution prompts.
CASCADE: Cumulative Agentic Skill Creation through Autonomous Development and Evolution
Large language model (LLM) agents currently depend on predefined tools or early-stage tool generation, limiting their adaptability and scalability to complex scientific tasks. We introduce CASCADE, a self-evolving agentic framework representing an early instantiation of the transition from "LLM + tool use" to "LLM + skill acquisition". CASCADE enables agents to master complex external tools and codify knowledge through two meta-skills: continuous learning via web search, code extraction, and memory utilization; self-reflection via introspection, knowledge graph exploration, and others. We evaluate CASCADE on SciSkillBench, a benchmark of 116 materials science and chemistry research tasks. CASCADE achieves a 93.3% success rate using GPT-5, compared to 35.4% without evolution mechanisms. We further demonstrate real-world applications in computational analysis, autonomous laboratory experiments, and selective reproduction of published papers. Along with human-agent collaboration and memory consolidation, CASCADE accumulates executable skills that can be shared across agents and scientists, moving toward scalable AI-assisted scientific research.
BAGEL: Projection-Free Algorithm for Adversarially Constrained Online Convex Optimization
Projection-based algorithms for Constrained Online Convex Optimization (COCO) achieve optimal $\mathcal{O}(T^{1/2})$ regret guarantees but face scalability challenges due to the computational complexity of projections. To circumvent this, projection-free methods utilizing Linear Optimization Oracles (LOO) have been proposed, albeit typically achieving slower $\mathcal{O}(T^{3/4})$ regret rates. In this work, we examine whether the $\mathcal{O}(T^{1/2})$ rate can be recovered in the projection-free setting by strengthening the oracle assumption. We introduce BAGEL, an algorithm utilizing a Separation Oracle (SO) that achieves $\mathcal{O}(T^{1/2})$ regret and $\tilde{\mathcal{O}}(T^{1/2})$ cumulative constraint violation (CCV) for convex cost functions. Our analysis shows that by leveraging an infeasible projection via SO, we can match the time-horizon dependence of projection-based methods with $\tilde{\mathcal{O}}(T)$ oracle calls, provided dependence on the geometry of the action set. This establishes a specific regime where projection-free methods can attain the same convergence rates as projection-based counterparts.
AdaReasoner: Dynamic Tool Orchestration for Iterative Visual Reasoning
When humans face problems beyond their immediate capabilities, they rely on tools, providing a promising paradigm for improving visual reasoning in multimodal large language models (MLLMs). Effective reasoning, therefore, hinges on knowing which tools to use, when to invoke them, and how to compose them over multiple steps, even when faced with new tools or new tasks. We introduce \textbf{AdaReasoner}, a family of multimodal models that learn tool use as a general reasoning skill rather than as tool-specific or explicitly supervised behavior. AdaReasoner is enabled by (i) a scalable data curation pipeline exposing models to long-horizon, multi-step tool interactions; (ii) Tool-GRPO, a reinforcement learning algorithm that optimizes tool selection and sequencing based on end-task success; and (iii) an adaptive learning mechanism that dynamically regulates tool usage. Together, these components allow models to infer tool utility from task context and intermediate outcomes, enabling coordination of multiple tools and generalization to unseen tools. Empirically, AdaReasoner exhibits strong tool-adaptive and generalization behaviors: it autonomously adopts beneficial tools, suppresses irrelevant ones, and adjusts tool usage frequency based on task demands, despite never being explicitly trained to do so. These capabilities translate into state-of-the-art performance across challenging benchmarks, improving the 7B base model by +24.9\% on average and surpassing strong proprietary systems such as GPT-5 on multiple tasks, including VSP and Jigsaw.
comment: 28 pages, 10 figures and 13 tables
The Law of Multi-Model Collaboration: Scaling Limits of Model Ensembling for Large Language Models
Recent advances in large language models (LLMs) have been largely driven by scaling laws for individual models, which predict performance improvements as model parameters and data volume increase. However, the capabilities of any single LLM are inherently bounded. One solution originates from intricate interactions among multiple LLMs, rendering their collective performance surpasses that of any constituent model. Despite the rapid proliferation of multi-model integration techniques such as model routing and post-hoc ensembling, a unifying theoretical framework of performance scaling for multi-model collaboration remains absent. In this work, we propose the Law of Multi-model Collaboration, a scaling law that predicts the performance limits of LLM ensembles based on their aggregated parameter budget. To quantify the intrinsic upper bound of multi-model collaboration, we adopt a method-agnostic formulation and assume an idealized integration oracle where the total cross-entropy loss of each sample is determined by the minimum loss of any model in the model pool. Experimental results reveal that multi-model systems follow a power-law scaling with respect to the total parameter count, exhibiting a more significant improvement trend and a lower theoretical loss floor compared to single model scaling. Moreover, ensembles of heterogeneous model families achieve better performance scaling than those formed within a single model family, indicating that model diversity is a primary driver of collaboration gains. These findings suggest that model collaboration represents a critical axis for extending the intelligence frontier of LLMs.
Can AI Master Econometrics? Evidence from Econometrics AI Agent on Expert-Level Tasks
Can AI effectively perform complex econometric analysis traditionally requiring human expertise? This paper evaluates AI agents' capability to master econometrics, focusing on empirical analysis performance. We develop ``MetricsAI'', an Econometrics AI Agent built on the open-source MetaGPT framework. This agent exhibits outstanding performance in: (1) planning econometric tasks strategically, (2) generating and executing code, (3) employing error-based reflection for improved robustness, and (4) allowing iterative refinement through multi-round conversations. We construct two datasets from academic coursework materials and published research papers to evaluate performance against real-world challenges. Comparative testing shows our domain-specialized AI agent significantly outperforms both benchmark large language models (LLMs) and general-purpose AI agents. This work establishes a testbed for exploring AI's impact on social science research and enables cost-effective integration of domain expertise, making advanced econometric methods accessible to users with minimal coding skills. Furthermore, our AI agent enhances research reproducibility and offers promising pedagogical applications for econometrics teaching.
SiNGER: A Clearer Voice Distills Vision Transformers Further ICLR 2026
Vision Transformers are widely adopted as the backbone of vision foundation models, but they are known to produce high-norm artifacts that degrade representation quality. When knowledge distillation transfers these features to students, high-norm artifacts dominate the objective, so students overfit to artifacts and underweight informative signals, diminishing the gains from larger models. Prior work attempted to remove artifacts but encountered an inherent trade-off between artifact suppression and preserving informative signals from teachers. To address this, we introduce Singular Nullspace-Guided Energy Reallocation (SiNGER), a novel distillation framework that suppresses artifacts while preserving informative signals. The key idea is principled teacher feature refinement: during refinement, we leverage the nullspace-guided perturbation to preserve information while suppressing artifacts. Then, the refined teacher's features are distilled to a student. We implement this perturbation efficiently with a LoRA-based adapter that requires minimal structural modification. Extensive experiments show that \oursname consistently improves student models, achieving state-of-the-art performance in multiple downstream tasks and producing clearer and more interpretable representations.
comment: Main paper: 12 pages (including 3 pages of references), 6 figures, 6 tables. Appendix: 9 pages, 7 figures. ICLR 2026 accepted
OmniEVA: Embodied Versatile Planner via Task-Adaptive 3D-Grounded and Embodiment-aware Reasoning ICLR 2026
Recent advances in multimodal large language models (MLLMs) have opened new opportunities for embodied intelligence, enabling multimodal understanding, reasoning, and interaction, as well as continuous spatial decision-making. Nevertheless, current MLLM-based embodied systems face two critical limitations. First, Geometric Adaptability Gap: models trained solely on 2D inputs or with hard-coded 3D geometry injection suffer from either insufficient spatial information or restricted 2D generalization, leading to poor adaptability across tasks with diverse spatial demands. Second, Embodiment Constraint Gap: prior work often neglects the physical constraints and capacities of real robots, resulting in task plans that are theoretically valid but practically infeasible. To address these gaps, we introduce OmniEVA -- an embodied versatile planner that enables advanced embodied reasoning and task planning through two pivotal innovations: (1) a Task-Adaptive 3D Grounding mechanism, which introduces a gated router to perform explicit selective regulation of 3D fusion based on contextual requirements, enabling context-aware 3D grounding for diverse embodied tasks. (2) an Embodiment-Aware Reasoning framework that jointly incorporates task goals and embodiment constraints into the reasoning loop, resulting in planning decisions that are both goal-directed and executable. Extensive experimental results demonstrate that OmniEVA not only achieves state-of-the-art general embodied reasoning performance, but also exhibits a strong ability across a wide range of downstream scenarios. Evaluations of a suite of proposed embodied benchmarks, including both primitive and composite tasks, confirm its robust and versatile planning capabilities. Project page: https://omnieva.github.io
comment: Published as a conference paper at ICLR 2026
Tracing Mathematical Proficiency Through Problem-Solving Processes
Knowledge Tracing (KT) aims to model student's knowledge state and predict future performance to enable personalized learning in Intelligent Tutoring Systems. However, traditional KT methods face fundamental limitations in explainability, as they rely solely on the response correctness, neglecting the rich information embedded in students' problem-solving processes. To address this gap, we propose Knowledge Tracing Leveraging Problem-Solving Process (KT-PSP), which incorporates students' problem-solving processes to capture the multidimensional aspects of mathematical proficiency. We also introduce KT-PSP-25, a new dataset specifically designed for the KT-PSP. Building on this, we present StatusKT, a KT framework that employs a teacher-student-teacher three-stage LLM pipeline to extract students' MP as intermediate signals. In this pipeline, the teacher LLM first extracts problem-specific proficiency indicators, then a student LLM generates responses based on the student's solution process, and a teacher LLM evaluates these responses to determine mastery of each indicator. The experimental results on KT-PSP-25 demonstrate that StatusKT improves the prediction performance of existing KT methods. Moreover, StatusKT provides interpretable explanations for its predictions by explicitly modeling students' mathematical proficiency.
comment: 18 pages, 4 figures
Embodied AI with Foundation Models for Mobile Service Robots: A Systematic Review
Rapid advancements in foundation models, including Large Language Models, Vision-Language Models, Multimodal Large Language Models, and Vision-Language-Action Models, have opened new avenues for embodied AI in mobile service robotics. By combining foundation models with the principles of embodied AI, where intelligent systems perceive, reason, and act through physical interaction, mobile service robots can achieve more flexible understanding, adaptive behavior, and robust task execution in dynamic real-world environments. Despite this progress, embodied AI for mobile service robots continues to face fundamental challenges related to the translation of natural language instructions into executable robot actions, multimodal perception in human-centered environments, uncertainty estimation for safe decision-making, and computational constraints for real-time onboard deployment. In this paper, we present the first systematic review focused specifically on the integration of foundation models in mobile service robotics. We analyze how recent advances in foundation models address these core challenges through language-conditioned control, multimodal sensor fusion, uncertainty-aware reasoning, and efficient model scaling. We further examine real-world applications in domestic assistance, healthcare, and service automation, highlighting how foundation models enable context-aware, socially responsive, and generalizable robot behaviors. Beyond technical considerations, we discuss ethical, societal, and human-interaction implications associated with deploying foundation model-enabled service robots in human environments. Finally, we outline future research directions emphasizing reliability and lifelong adaptation, privacy-aware and resource-constrained deployment, and governance and human-in-the-loop frameworks required for safe, scalable, and trustworthy mobile service robotics.
comment: v2: Expanded systematic review; resubmitted to Robotics
LLM Multi-Agent Systems: Challenges and Open Problems
This paper explores multi-agent systems and identify challenges that remain inadequately addressed. By leveraging the diverse capabilities and roles of individual agents, multi-agent systems can tackle complex tasks through agent collaboration. We discuss optimizing task allocation, fostering robust reasoning through iterative debates, managing complex and layered context information, and enhancing memory management to support the intricate interactions within multi-agent systems. We also explore potential applications of multi-agent systems in blockchain systems to shed light on their future development and application in real-world distributed systems.
HOMURA: Taming the Sand-Glass for Time-Constrained LLM Translation via Reinforcement Learning
Large Language Models (LLMs) have achieved remarkable strides in multilingual translation but are hindered by a systemic cross-lingual verbosity bias, rendering them unsuitable for strict time-constrained tasks like subtitling and dubbing. Current prompt-engineering approaches struggle to resolve this conflict between semantic fidelity and rigid temporal feasibility. To bridge this gap, we first introduce Sand-Glass, a benchmark specifically designed to evaluate translation under syllable-level duration constraints. Furthermore, we propose HOMURA, a reinforcement learning framework that explicitly optimizes the trade-off between semantic preservation and temporal compliance. By employing a KL-regularized objective with a novel dynamic syllable-ratio reward, HOMURA effectively "tames" the output length. Experimental results demonstrate that our method significantly outperforms strong LLM baselines, achieving precise length control that respects linguistic density hierarchies without compromising semantic adequacy.
MetaVLA: Unified Meta Co-training For Efficient Embodied Adaption
Vision-Language-Action (VLA) models show promise in embodied reasoning, yet remain far from true generalists-they often require task-specific fine-tuning, incur high compute costs, and generalize poorly to unseen tasks. We propose MetaVLA, a unified, backbone-agnostic post-training framework for efficient and scalable alignment. MetaVLA introduces Context-Aware Meta Co-Training, which consolidates diverse target tasks into a single fine-tuning stage while leveraging structurally diverse auxiliary tasks to improve in-domain generalization. Unlike naive multi-task SFT, MetaVLA integrates a lightweight meta-learning mechanism-derived from Attentive Neural Processes-to enable rapid adaptation from diverse contexts with minimal architectural change or inference overhead. On the LIBERO benchmark, MetaVLA with six auxiliary tasks outperforms OpenVLA by up to 8.0% on long-horizon tasks, reduces training steps from 240K to 75K, and cuts GPU time by ~76%. These results show that scalable, low-resource post-training is achievable-paving the way toward general-purpose embodied agents. Code will be available.
Closing the Data-Efficiency Gap Between Autoregressive and Masked Diffusion LLMs
Large language models (LLMs) are often used in environments where facts evolve, yet factual knowledge updates via fine-tuning on unstructured text often suffers from 1) reliance on compute-heavy paraphrase augmentation and 2) the reversal curse. Recent studies show diffusion large language models (dLLMs) require fewer training samples to achieve lower loss in pre-training and are more resistant to the reversal curse, suggesting dLLMs may learn new knowledge more easily than autoregressive LLMs (arLLMs). We test this hypothesis in controlled knowledge fine-tuning experiments and find that while arLLMs rely on paraphrase augmentation to generalize knowledge text into question-answering (QA) capability, dLLMs do not require paraphrases to achieve high QA accuracy. To further investigate whether the demasking objective alone can induce such a knowledge injection advantage in dLLMs regardless of their diffusion denoising paradigm, we propose masked fine-tuning for arLLMs, which prompts an arLLM to reconstruct the original text given a masked version in context. The masked fine-tuning for arLLMs substantially improves the efficacy of knowledge injection, i.e. no paraphrase needed and resistant to the reversal curse, closing the gap between arLLMs and dLLMs. We also demonstrate that the same demasking objective improves supervised fine-tuning (SFT) on math tasks over standard SFT, suggesting broader applicability of the demasking objective.
OPERA: A Reinforcement Learning--Enhanced Orchestrated Planner-Executor Architecture for Reasoning-Oriented Multi-Hop Retrieval AAAI 2026
Recent advances in large language models (LLMs) and dense retrievers have driven significant progress in retrieval-augmented generation (RAG). However, existing approaches face significant challenges in complex reasoning-oriented multi-hop retrieval tasks: 1) Ineffective reasoning-oriented planning: Prior methods struggle to generate robust multi-step plans for complex queries, as rule-based decomposers perform poorly on out-of-template questions. 2) Suboptimal reasoning-driven retrieval: Related methods employ limited query reformulation, leading to iterative retrieval loops that often fail to locate golden documents. 3) Insufficient reasoning-guided filtering: Prevailing methods lack the fine-grained reasoning to effectively filter salient information from noisy results, hindering utilization of retrieved knowledge. Fundamentally, these limitations all stem from the weak coupling between retrieval and reasoning in current RAG architectures. We introduce the Orchestrated Planner-Executor Reasoning Architecture (OPERA), a novel reasoning-driven retrieval framework. OPERA's Goal Planning Module (GPM) decomposes questions into sub-goals, which are executed by a Reason-Execute Module (REM) with specialized components for precise reasoning and effective retrieval. To train OPERA, we propose Multi-Agents Progressive Group Relative Policy Optimization (MAPGRPO), a novel variant of GRPO. Experiments on complex multi-hop benchmarks show OPERA's superior performance, validating both the MAPGRPO method and OPERA's design.
comment: Accepted by AAAI 2026
The Geometric Reasoner: Manifold-Informed Latent Foresight Search for Long-Context Reasoning
Scaling test-time compute enhances long chain-of-thought (CoT) reasoning, yet existing approaches face a fundamental trade-off between computational cost and coverage quality: either incurring high training expense or yielding redundant trajectories. We introduce The Geometric Reasoner (TGR), a training-free framework that performs manifold-informed latent foresight search under strict memory bounds. At each chunk boundary, TGR scores candidate latent anchors via a lightweight look-ahead estimate combined with soft geometric regularizers that encourage smooth trajectories and diverse exploration. Chunk-wise KV cache resets keep memory linear in chunk length. On challenging math and code benchmarks, TGR improves robust trajectory coverage, measured by the area under the Pass@$k$ curve (AUC), by up to 13 points on Qwen3-8B, with negligible overhead of about 1.1--1.3 times.
comment: 11 pages, 5 figures
Mind the Gap: The Divergence Between Human and LLM-Generated Tasks
Humans constantly generate a diverse range of tasks guided by internal motivations. While generative agents powered by large language models (LLMs) aim to simulate this complex behavior, it remains uncertain whether they operate on similar cognitive principles. To address this, we conducted a task-generation experiment comparing human responses with those of an LLM agent (GPT-4o). We find that human task generation is consistently influenced by psychological drivers, including personal values (e.g., Openness to Change) and cognitive style. Even when these psychological drivers are explicitly provided to the LLM, it fails to reflect the corresponding behavioral patterns. They produce tasks that are markedly less social, less physical, and thematically biased toward abstraction. Interestingly, while the LLM's tasks were perceived as more fun and novel, this highlights a disconnect between its linguistic proficiency and its capacity to generate human-like, embodied goals. We conclude that there is a core gap between the value-driven, embodied nature of human cognition and the statistical patterns of LLMs, highlighting the necessity of incorporating intrinsic motivation and physical grounding into the design of more human-aligned agents.
FourierCSP: Differentiable Constraint Satisfaction Problem Solving by Walsh-Fourier Expansion
The Constraint-satisfaction problem (CSP) is fundamental in mathematics, physics, and theoretical computer science. Continuous local search (CLS) solvers, as recent advancements, can achieve highly competitive results on certain classes of Boolean satisfiability (SAT) problems. Motivated by these advances, we extend the CLS framework from Boolean SAT to general CSP with finite-domain variables and expressive constraint formulations. We present FourierCSP, a continuous optimization framework that generalizes the Walsh-Fourier transform to CSP, allowing for transforming versatile constraints to compact multilinear polynomials, thereby avoiding the need for auxiliary variables and memory-intensive encodings. We employ projected subgradient and mirror descent algorithms with provable convergence guarantees, and further combine them to accelerate gradient-based optimization. Empirical results on benchmark suites demonstrate that FourierCSP is scalable and competitive, significantly broadening the class of problems that can be efficiently solved by differentiable CLS techniques and paving the way toward end-to-end neurosymbolic integration.
VLM-CAD: VLM-Optimized Collaborative Agent Design Workflow for Analog Circuit Sizing
Analog mixed-signal circuit sizing involves complex trade-offs within high-dimensional design spaces. Existing automatic analog circuit sizing approaches rely solely on netlists, ignoring the circuit schematic, which hinders the cognitive link between the schematic and its performance. Furthermore, the black-box nature of machine learning methods and hallucination risks in large language models fail to provide the necessary ground-truth explainability required for industrial sign-off. To address these challenges, we propose a Vision Language Model-optimized collaborative agent design workflow (VLM-CAD), which analyzes circuits, optimizes DC operating points, performs inference-based sizing, and executes external sizing optimization. We integrate Image2Net to annotate circuit schematics and generate a structured JSON description for precise interpretation by Vision Language Models. Furthermore, we propose an Explainable Trust Region Bayesian Optimization method (ExTuRBO) that employs collaborative warm-start from agent-generated seeds and offers dual-granularity sensitivity analysis for external sizing optimization, supporting a comprehensive final design report. Experiment results on amplifier sizing tasks using 180nm, 90nm, and 45nm Predictive Technology Models demonstrate that VLM-CAD effectively balances power and performance while maintaining physics-based explainability. VLM-CAD meets all specification requirements while maintaining low power consumption in optimizing an amplifier with a complementary input and a class-AB output stage, with a total runtime under 66 minutes across all experiments on two amplifiers.
comment: 9 pages, 4 figures
DeepBooTS: Dual-Stream Residual Boosting for Drift-Resilient Time-Series Forecasting AAAI-26
Time-Series (TS) exhibits pronounced non-stationarity. Consequently, most forecasting methods display compromised robustness to concept drift, despite the prevalent application of instance normalization. We tackle this challenge by first analysing concept drift through a bias-variance lens and proving that weighted ensemble reduces variance without increasing bias. These insights motivate DeepBooTS, a novel end-to-end dual-stream residual-decreasing boosting method that progressively reconstructs the intrinsic signal. In our design, each block of a deep model becomes an ensemble of learners with an auxiliary output branch forming a highway to the final prediction. The block-wise outputs correct the residuals of previous blocks, leading to a learning-driven decomposition of both inputs and targets. This method enhances versatility and interpretability while substantially improving robustness to concept drift. Extensive experiments, including those on large-scale datasets, show that the proposed method outperforms existing methods by a large margin, yielding an average performance improvement of 15.8% across various datasets, establishing a new benchmark for TS forecasting.
comment: 28 pages,17 pages, Published in AAAI-26
Beyond Classification Accuracy: Neural-MedBench and the Need for Deeper Reasoning Benchmarks
Recent advances in vision-language models (VLMs) have achieved remarkable performance on standard medical benchmarks, yet their true clinical reasoning ability remains unclear. Existing datasets predominantly emphasize classification accuracy, creating an evaluation illusion in which models appear proficient while still failing at high-stakes diagnostic reasoning. We introduce Neural-MedBench, a compact yet reasoning-intensive benchmark specifically designed to probe the limits of multimodal clinical reasoning in neurology. Neural-MedBench integrates multi-sequence MRI scans, structured electronic health records, and clinical notes, and encompasses three core task families: differential diagnosis, lesion recognition, and rationale generation. To ensure reliable evaluation, we develop a hybrid scoring pipeline that combines LLM-based graders, clinician validation, and semantic similarity metrics. Through systematic evaluation of state-of-the-art VLMs, including GPT-4o, Claude-4, and MedGemma, we observe a sharp performance drop compared to conventional datasets. Error analysis shows that reasoning failures, rather than perceptual errors, dominate model shortcomings. Our findings highlight the necessity of a Two-Axis Evaluation Framework: breadth-oriented large datasets for statistical generalization, and depth-oriented, compact benchmarks such as Neural-MedBench for reasoning fidelity. We release Neural-MedBench at https://neuromedbench.github.io/ as an open and extensible diagnostic testbed, which guides the expansion of future benchmarks and enables rigorous yet cost-effective assessment of clinically trustworthy AI.
comment: 23 pages, 12 figures
R^3: Replay, Reflection, and Ranking Rewards for LLM Reinforcement Learning
Large reasoning models (LRMs) aim to solve diverse and complex problems through structured reasoning. Recent advances in group-based policy optimization methods have shown promise in enabling stable advantage estimation without reliance on process-level annotations. However, these methods rely on advantage gaps induced by high-quality samples within the same batch, which makes the training process fragile and inefficient when intra-group advantages collapse under challenging tasks. To address these problems, we propose a reinforcement learning mechanism named \emph{\textbf{R^3}} that along three directions: (1) a \emph{cross-context \underline{\textbf{R}}eplay} strategy that maintains the intra-group advantage by recalling valuable examples from historical trajectories of the same query, (2) an \emph{in-context self-\underline{\textbf{R}}eflection} mechanism enabling models to refine outputs by leveraging past failures, and (3) a \emph{structural entropy \underline{\textbf{R}}anking reward}, which assigns relative rewards to truncated or failed samples by ranking responses based on token-level entropy patterns, capturing both local exploration and global stability. We implement our method on Deepseek-R1-Distill-Qwen-1.5B and train it on the DeepscaleR-40k in the math domain. Experiments demonstrate our method achieves SoTA performance on several math benchmarks, representing significant improvements and fewer reasoning tokens over the base models. Code and model will be released.
mR3: Multilingual Rubric-Agnostic Reward Reasoning Models ICLR 2026
Evaluation using Large Language Model (LLM) judges has been widely adopted in English and shown to be effective for automatic evaluation. However, their performance does not generalize well to non-English settings, and it remains unclear what constitutes effective multilingual training for such judges. In this paper, we introduce mR3, a massively multilingual, rubric-agnostic reward reasoning model trained on 72 languages, achieving the broadest language coverage in reward modeling to date. We present a comprehensive study of data and curriculum selection for training to identify effective strategies and data sources for building high-quality reward models, including support for reasoning in the target language. Our approach attains state-of-the-art performance on multilingual reward model benchmarks, surpassing much larger models (i.e., GPT-OSS-120B) while being up to 9x smaller, and its effectiveness is further confirmed through extensive ablation studies. Finally, we demonstrate the effectiveness of mR3 in off-policy preference optimization and validate the quality of its reasoning traces and rubric-based evaluations through human studies with 20 annotators across 12 languages, where mR3 models' reasoning is preferred, including for extremely low-resource languages that are entirely unseen during training. Our models, data, and code are available as open source at https://github.com/rubricreward/mr3.
comment: Accepted to ICLR 2026
First is Not Really Better Than Last: Evaluating Layer Choice and Aggregation Strategies in Language Model Data Influence Estimation ICLR 2026
Identifying how training samples influence/impact Large Language Model (LLM) decision-making is essential for effectively interpreting model decisions and auditing large-scale datasets. Current training sample influence estimation methods (also known as influence functions) undertake this goal by utilizing information flow through the model via its first-order and higher-order gradient terms. However, owing to the large model sizes of today consisting of billions of parameters, these influence computations are often restricted to some subset of model layers to ensure computational feasibility. Prior seminal work by Yeh et al. (2022) in assessing which layers are best suited for computing language data influence concluded that the first (embedding) layers are the most informative for this purpose, using a hypothesis based on influence scores canceling out (i.e., the cancellation effect). In this work, we propose theoretical and empirical evidence demonstrating how the cancellation effect is unreliable, and that middle attention layers are better estimators for influence. Furthermore, we address the broader challenge of aggregating influence scores across layers, and showcase how alternatives to standard averaging (such as ranking and vote-based methods) can lead to significantly improved performance. Finally, we propose better methods for evaluating influence score efficacy in LLMs without undertaking model retraining, and propose a new metric known as the Noise Detection Rate (NDR) that exhibits strong predictive capability compared to the cancellation effect. Through extensive experiments across LLMs of varying types and scales, we concretely determine that the first (layers) are not necessarily better than the last (layers) for LLM influence estimation, contrasting with prior knowledge in the field.
comment: Accepted to ICLR 2026
Addressing Gradient Misalignment in Data-Augmented Training for Robust Speech Deepfake Detection
In speech deepfake detection (SDD), data augmentation (DA) is commonly used to improve model generalization across varied speech conditions and spoofing attacks. However, during training, the backpropagated gradients from original and augmented inputs may misalign, which can result in conflicting parameter updates. These conflicts could hinder convergence and push the model toward suboptimal solutions, thereby reducing the benefits of DA. To investigate and address this issue, we design a dual-path data-augmented (DPDA) training framework with gradient alignment for SDD. In our framework, each training utterance is processed through two input paths: one using the original speech and the other with its augmented version. This design allows us to compare and align their backpropagated gradient directions to reduce optimization conflicts. Our analysis shows that approximately 25% of training iterations exhibit gradient conflicts between the original inputs and their augmented counterparts when using RawBoost augmentation. By resolving these conflicts with gradient alignment, our method accelerates convergence by reducing the number of training epochs and achieves up to an 18.69% relative reduction in Equal Error Rate on the In-the-Wild dataset compared to the baseline.
comment: Accepted by ICASSP 2026
Mitigating LLM Hallucination via Behaviorally Calibrated Reinforcement Learning
LLM deployment in critical domains is currently impeded by persistent hallucinations--generating plausible but factually incorrect assertions. While scaling laws drove significant improvements in general capabilities, theoretical frameworks suggest hallucination is not merely stochastic error but a predictable statistical consequence of training objectives prioritizing mimicking data distribution over epistemic honesty. Standard RLVR paradigms, utilizing binary reward signals, inadvertently incentivize models as good test-takers rather than honest communicators, encouraging guessing whenever correctness probability exceeds zero. This paper presents an exhaustive investigation into behavioral calibration, which incentivizes models to stochastically admit uncertainty by abstaining when not confident, aligning model behavior with accuracy. Synthesizing recent advances, we propose and evaluate training interventions optimizing strictly proper scoring rules for models to output a calibrated probability of correctness. Our methods enable models to either abstain from producing a complete response or flag individual claims where uncertainty remains. Utilizing Qwen3-4B-Instruct, empirical analysis reveals behavior-calibrated reinforcement learning allows smaller models to surpass frontier models in uncertainty quantification--a transferable meta-skill decouplable from raw predictive accuracy. Trained on math reasoning tasks, our model's log-scale Accuracy-to-Hallucination Ratio gain (0.806) exceeds GPT-5's (0.207) in a challenging in-domain evaluation (BeyondAIME). Moreover, in cross-domain factual QA (SimpleQA), our 4B LLM achieves zero-shot calibration error on par with frontier models including Grok-4 and Gemini-2.5-Pro, even though its factual accuracy is much lower.
Governing Strategic Dynamics: Equilibrium Stabilization via Divergence-Driven Control
Black-box coevolution in mixed-motive games is often undermined by opponent-drift non-stationarity and noisy rollouts, which distort progress signals and can induce cycling, Red-Queen dynamics, and detachment. We propose the \emph{Marker Gene Method} (MGM), a curriculum-inspired governance mechanism that stabilizes selection by anchoring evaluation to cross-generational marker individuals, together with DWAM and conservative marker-update rules to reduce spurious updates. We also introduce NGD-Div, which adapts the key update threshold using a divergence proxy and natural-gradient optimization. We provide theoretical analysis in strictly competitive settings and evaluate MGM integrated with evolution strategies (MGM-E-NES) on coordination games and a resource-depletion Markov game. MGM-E-NES reliably recovers target coordination in Stag Hunt and Battle of the Sexes, achieving final cooperation probabilities close to $(1,1)$ (e.g., $0.991\pm0.01/1.00\pm0.00$ and $0.97\pm0.00/0.97\pm0.00$ for the two players). In the Markov resource game, it maintains high and stable state-conditioned cooperation across 30 seeds, with final cooperation of $\approx 0.954/0.980/0.916$ in \textsc{Rich}/\textsc{Poor}/\textsc{Collapsed} (both players; small standard deviations), indicating welfare-aligned and state-dependent behavior. Overall, MGM-E-NES transfers across tasks with minimal hyperparameter changes and yields consistently stable training dynamics, showing that top-level governance can substantially improve the robustness of black-box coevolution in dynamic environments.
comment: 13 pages, 10 figures. Supplementary material included. Revised and extended version; title updated
Spectral Representation-based Reinforcement Learning
In real-world applications with large state and action spaces, reinforcement learning (RL) typically employs function approximations to represent core components like the policies, value functions, and dynamics models. Although powerful approximations such as neural networks offer great expressiveness, they often present theoretical ambiguities, suffer from optimization instability and exploration difficulty, and incur substantial computational costs in practice. In this paper, we introduce the perspective of spectral representations as a solution to address these difficulties in RL. Stemming from the spectral decomposition of the transition operator, this framework yields an effective abstraction of the system dynamics for subsequent policy optimization while also providing a clear theoretical characterization. We reveal how to construct spectral representations for transition operators that possess latent variable structures or energy-based structures, which implies different learning methods to extract spectral representations from data. Notably, each of these learning methods realizes an effective RL algorithm under this framework. We also provably extend this spectral view to partially observable MDPs. Finally, we validate these algorithms on over 20 challenging tasks from the DeepMind Control Suite, where they achieve performances comparable or superior to current state-of-the-art model-free and model-based baselines.
Lost in Simulation: LLM-Simulated Users are Unreliable Proxies for Human Users in Agentic Evaluations
Agentic benchmarks increasingly rely on LLM-simulated users to scalably evaluate agent performance, yet the robustness, validity, and fairness of this approach remain unexamined. Through a user study with participants across the United States, India, Kenya, and Nigeria, we investigate whether LLM-simulated users serve as reliable proxies for real human users in evaluating agents on τ-Bench retail tasks. We find that user simulation lacks robustness, with agent success rates varying up to 9 percentage points across different user LLMs. Furthermore, evaluations using simulated users exhibit systematic miscalibration, underestimating agent performance on challenging tasks and overestimating it on moderately difficult ones. African American Vernacular English (AAVE) speakers experience consistently worse success rates and calibration errors than Standard American English (SAE) speakers, with disparities compounding significantly with age. We also find simulated users to be a differentially effective proxy for different populations, performing worst for AAVE and Indian English speakers. Additionally, simulated users introduce conversational artifacts and surface different failure patterns than human users. These findings demonstrate that current evaluation practices risk misrepresenting agent capabilities across diverse user populations and may obscure real-world deployment challenges.
Machine Learning 235
Evolutionary Strategies lead to Catastrophic Forgetting in LLMs
One of the biggest missing capabilities in current AI systems is the ability to learn continuously after deployment. Implementing such continually learning systems have several challenges, one of which is the large memory requirement of gradient-based algorithms that are used to train state-of-the-art LLMs. Evolutionary Strategies (ES) have recently re-emerged as a gradient-free alternative to traditional learning algorithms and have shown encouraging performance on specific tasks in LLMs. In this paper, we perform a comprehensive analysis of ES and specifically evaluate its forgetting curves when training for an increasing number of update steps. We first find that ES is able to reach performance numbers close to GRPO for math and reasoning tasks with a comparable compute budget. However, and most importantly for continual learning, the performance gains in ES is accompanied by significant forgetting of prior abilities, limiting its applicability for training models online. We also explore the reason behind this behavior and show that the updates made using ES are much less sparse and have orders of magnitude larger $\ell_2$ norm compared to corresponding GRPO updates, explaining the contrasting forgetting curves between the two algorithms. With this study, we aim to highlight the issue of forgetting in gradient-free algorithms like ES and hope to inspire future work to mitigate these issues.
Exploring Transformer Placement in Variational Autoencoders for Tabular Data Generation
Tabular data remains a challenging domain for generative models. In particular, the standard Variational Autoencoder (VAE) architecture, typically composed of multilayer perceptrons, struggles to model relationships between features, especially when handling mixed data types. In contrast, Transformers, through their attention mechanism, are better suited for capturing complex feature interactions. In this paper, we empirically investigate the impact of integrating Transformers into different components of a VAE. We conduct experiments on 57 datasets from the OpenML CC18 suite and draw two main conclusions. First, results indicate that positioning Transformers to leverage latent and decoder representations leads to a trade-off between fidelity and diversity. Second, we observe a high similarity between consecutive blocks of a Transformer in all components. In particular, in the decoder, the relationship between the input and output of a Transformer is approximately linear.
C3Box: A CLIP-based Class-Incremental Learning Toolbox
Traditional machine learning systems are typically designed for static data distributions, which suffer from catastrophic forgetting when learning from evolving data streams. Class-Incremental Learning (CIL) addresses this challenge by enabling learning systems to continuously learn new classes while preserving prior knowledge. With the rise of pre-trained models (PTMs) such as CLIP, leveraging their strong generalization and semantic alignment capabilities has become a promising direction in CIL. However, existing CLIP-based CIL methods are often scattered across disparate codebases, rely on inconsistent configurations, hindering fair comparisons, reproducibility, and practical adoption. Therefore, we propose C3Box (CLIP-based Class-inCremental learning toolBOX), a modular and comprehensive Python toolbox. C3Box integrates representative traditional CIL methods, ViT-based CIL methods, and state-of-the-art CLIP-based CIL methods into a unified CLIP-based framework. By inheriting the streamlined design of PyCIL, C3Box provides a JSON-based configuration and standardized execution pipeline. This design enables reproducible experimentation with low engineering overhead and makes C3Box a reliable benchmark platform for continual learning research. Designed to be user-friendly, C3Box relies only on widely used open-source libraries and supports major operating systems. The code is available at https://github.com/LAMDA-CL/C3Box.
comment: The code is available at https://github.com/LAMDA-CL/C3Box
Post-Training Fairness Control: A Single-Train Framework for Dynamic Fairness in Recommendation
Despite growing efforts to mitigate unfairness in recommender systems, existing fairness-aware methods typically fix the fairness requirement at training time and provide limited post-training flexibility. However, in real-world scenarios, diverse stakeholders may demand differing fairness requirements over time, so retraining for different fairness requirements becomes prohibitive. To address this limitation, we propose Cofair, a single-train framework that enables post-training fairness control in recommendation. Specifically, Cofair introduces a shared representation layer with fairness-conditioned adapter modules to produce user embeddings specialized for varied fairness levels, along with a user-level regularization term that guarantees user-wise monotonic fairness improvements across these levels. We theoretically establish that the adversarial objective of Cofair upper bounds demographic parity and the regularization term enforces progressive fairness at user level. Comprehensive experiments on multiple datasets and backbone models demonstrate that our framework provides dynamic fairness at different levels, delivering comparable or better fairness-accuracy curves than state-of-the-art baselines, without the need to retrain for each new fairness requirement. Our code is publicly available at https://github.com/weixinchen98/Cofair.
comment: Accepted to WWW 2026 Workshop on HCRS (Oral Presentation)
PatchFormer: A Patch-Based Time Series Foundation Model with Hierarchical Masked Reconstruction and Cross-Domain Transfer Learning for Zero-Shot Multi-Horizon Forecasting
Time series forecasting is a fundamental problem with applications in climate, energy, healthcare, and finance. Many existing approaches require domain-specific feature engineering and substantial labeled data for each task. We introduce PatchFormer, a patch-based time series foundation model that uses hierarchical masked reconstruction for self-supervised pretraining and lightweight adapters for efficient transfer. PatchFormer segments time series into patches and learns multiscale temporal representations with learnable aggregation across temporal scales. Pretraining uses masked patch reconstruction with dynamic masking and objectives that encourage both local accuracy and global consistency, followed by cross-domain knowledge distillation. Experiments on 24 benchmark datasets spanning weather, energy, traffic, finance, and healthcare demonstrate state-of-the-art zero-shot multi-horizon forecasting, reducing mean squared error by 27.3 percent relative to strong baselines while requiring 94 percent less task-specific training data. The model exhibits near log-linear scaling with more pretraining data up to 100 billion points and processes length-512 sequences 3.8x faster than full-sequence transformers.
comment: 5 pages; 2 figures; 7 tables
$\mathbb{R}^{2k}$ is Theoretically Large Enough for Embedding-based Top-$k$ Retrieval
This paper studies the minimal dimension required to embed subset memberships ($m$ elements and ${m\choose k}$ subsets of at most $k$ elements) into vector spaces, denoted as Minimal Embeddable Dimension (MED). The tight bounds of MED are derived theoretically and supported empirically for various notions of "distances" or "similarities," including the $\ell_2$ metric, inner product, and cosine similarity. In addition, we conduct numerical simulation in a more achievable setting, where the ${m\choose k}$ subset embeddings are chosen as the centroid of the embeddings of the contained elements. Our simulation easily realizes a logarithmic dependency between the MED and the number of elements to embed. These findings imply that embedding-based retrieval limitations stem primarily from learnability challenges, not geometric constraints, guiding future algorithm design.
Reward Models Inherit Value Biases from Pretraining
Reward models (RMs) are central to aligning large language models (LLMs) with human values but have received less attention than pre-trained and post-trained LLMs themselves. Because RMs are initialized from LLMs, they inherit representations that shape their behavior, but the nature and extent of this influence remain understudied. In a comprehensive study of 10 leading open-weight RMs using validated psycholinguistic corpora, we show that RMs exhibit significant differences along multiple dimensions of human value as a function of their base model. Using the "Big Two" psychological axes, we show a robust preference of Llama RMs for "agency" and a corresponding robust preference of Gemma RMs for "communion." This phenomenon holds even when the preference data and finetuning process are identical, and we trace it back to the logits of the respective instruction-tuned and pre-trained models. These log-probability differences themselves can be formulated as an implicit RM; we derive usable implicit reward scores and show that they exhibit the very same agency/communion difference. We run experiments training RMs with ablations for preference data source and quantity, which demonstrate that this effect is not only repeatable but surprisingly durable. Despite RMs being designed to represent human preferences, our evidence shows that their outputs are influenced by the pretrained LLMs on which they are based. This work underscores the importance of safety and alignment efforts at the pretraining stage, and makes clear that open-source developers' choice of base model is as much a consideration of values as of performance.
Linear representations in language models can change dramatically over a conversation
Language model representations often contain linear directions that correspond to high-level concepts. Here, we study the dynamics of these representations: how representations evolve along these dimensions within the context of (simulated) conversations. We find that linear representations can change dramatically over a conversation; for example, information that is represented as factual at the beginning of a conversation can be represented as non-factual at the end and vice versa. These changes are content-dependent; while representations of conversation-relevant information may change, generic information is generally preserved. These changes are robust even for dimensions that disentangle factuality from more superficial response patterns, and occur across different model families and layers of the model. These representation changes do not require on-policy conversations; even replaying a conversation script written by an entirely different model can produce similar changes. However, adaptation is much weaker from simply having a sci-fi story in context that is framed more explicitly as such. We also show that steering along a representational direction can have dramatically different effects at different points in a conversation. These results are consistent with the idea that representations may evolve in response to the model playing a particular role that is cued by a conversation. Our findings may pose challenges for interpretability and steering -- in particular, they imply that it may be misleading to use static interpretations of features or directions, or probes that assume a particular range of features consistently corresponds to a particular ground-truth value. However, these types of representational dynamics also point to exciting new research directions for understanding how models adapt to context.
VSCOUT: A Hybrid Variational Autoencoder Approach to Outlier Detection in High-Dimensional Retrospective Monitoring
Modern industrial and service processes generate high-dimensional, non-Gaussian, and contamination-prone data that challenge the foundational assumptions of classical Statistical Process Control (SPC). Heavy tails, multimodality, nonlinear dependencies, and sparse special-cause observations can distort baseline estimation, mask true anomalies, and prevent reliable identification of an in-control (IC) reference set. To address these challenges, we introduce VSCOUT, a distribution-free framework designed specifically for retrospective (Phase I) monitoring in high-dimensional settings. VSCOUT combines an Automatic Relevance Determination Variational Autoencoder (ARD-VAE) architecture with ensemble-based latent outlier filtering and changepoint detection. The ARD prior isolates the most informative latent dimensions, while the ensemble and changepoint filters identify pointwise and structural contamination within the determined latent space. A second-stage retraining step removes flagged observations and re-estimates the latent structure using only the retained inliers, mitigating masking and stabilizing the IC latent manifold. This two-stage refinement produces a clean and reliable IC baseline suitable for subsequent Phase II deployment. Extensive experiments across benchmark datasets demonstrate that VSCOUT achieves superior sensitivity to special-cause structure while maintaining controlled false alarms, outperforming classical SPC procedures, robust estimators, and modern machine-learning baselines. Its scalability, distributional flexibility, and resilience to complex contamination patterns position VSCOUT as a practical and effective method for retrospective modeling and anomaly detection in AI-enabled environments.
Training Reasoning Models on Saturated Problems via Failure-Prefix Conditioning
Reinforcement Learning with Verifiable Rewards (RLVR) has substantially improved the reasoning abilities of large language models (LLMs), yet training often stalls as problems become saturated. We identify the core challenge as the poor accessibility of informative failures: learning signals exist but are rarely encountered during standard rollouts. To address this, we propose failure-prefix conditioning, a simple and effective method for learning from saturated problems. Rather than starting from the original question, our approach reallocates exploration by conditioning training on prefixes derived from rare incorrect reasoning trajectories, thereby exposing the model to failure-prone states. We observe that failure-prefix conditioning yields performance gains matching those of training on medium-difficulty problems, while preserving token efficiency. Furthermore, we analyze the model's robustness, finding that our method reduces performance degradation under misleading failure prefixes, albeit with a mild trade-off in adherence to correct early reasoning. Finally, we demonstrate that an iterative approach, which refreshes failure prefixes during training, unlocks additional gains after performance plateaus. Overall, our results suggest that failure-prefix conditioning offers an effective pathway to extend RLVR training on saturated problems.
comment: 16 pages
Demystifying Prediction Powered Inference
Machine learning predictions are increasingly used to supplement incomplete or costly-to-measure outcomes in fields such as biomedical research, environmental science, and social science. However, treating predictions as ground truth introduces bias while ignoring them wastes valuable information. Prediction-Powered Inference (PPI) offers a principled framework that leverages predictions from large unlabeled datasets to improve statistical efficiency while maintaining valid inference through explicit bias correction using a smaller labeled subset. Despite its potential, the growing PPI variants and the subtle distinctions between them have made it challenging for practitioners to determine when and how to apply these methods responsibly. This paper demystifies PPI by synthesizing its theoretical foundations, methodological extensions, connections to existing statistics literature, and diagnostic tools into a unified practical workflow. Using the Mosaiks housing price data, we show that PPI variants produce tighter confidence intervals than complete-case analysis, but that double-dipping, i.e. reusing training data for inference, leads to anti-conservative confidence intervals and coverages. Under missing-not-at-random mechanisms, all methods, including classical inference using only labeled data, yield biased estimates. We provide a decision flowchart linking assumption violations to appropriate PPI variants, a summary table of selective methods, and practical diagnostic strategies for evaluating core assumptions. By framing PPI as a general recipe rather than a single estimator, this work bridges methodological innovation and applied practice, helping researchers responsibly integrate predictions into valid inference.
GNN Explanations that do not Explain and How to find Them
Explanations provided by Self-explainable Graph Neural Networks (SE-GNNs) are fundamental for understanding the model's inner workings and for identifying potential misuse of sensitive attributes. Although recent works have highlighted that these explanations can be suboptimal and potentially misleading, a characterization of their failure cases is unavailable. In this work, we identify a critical failure of SE-GNN explanations: explanations can be unambiguously unrelated to how the SE-GNNs infer labels. We show that, on the one hand, many SE-GNNs can achieve optimal true risk while producing these degenerate explanations, and on the other, most faithfulness metrics can fail to identify these failure modes. Our empirical analysis reveals that degenerate explanations can be maliciously planted (allowing an attacker to hide the use of sensitive attributes) and can also emerge naturally, highlighting the need for reliable auditing. To address this, we introduce a novel faithfulness metric that reliably marks degenerate explanations as unfaithful, in both malicious and natural settings. Our code is available in the supplemental.
Context-Augmented Code Generation Using Programming Knowledge Graphs
Large Language Models (LLMs) excel at code generation but struggle with complex problems. Retrieval-Augmented Generation (RAG) mitigates this issue by integrating external knowledge, yet retrieval models often miss relevant context, and generation models hallucinate with irrelevant data. We propose Programming Knowledge Graph (PKG) for semantic representation and fine-grained retrieval of code and text. Our approach enhances retrieval precision through tree pruning and mitigates hallucinations via a re-ranking mechanism that integrates non-RAG solutions. Structuring external data into finer-grained nodes improves retrieval granularity. Evaluations on HumanEval and MBPP show up to 20% pass@1 accuracy gains and a 34% improvement over baselines on MBPP. Our findings demonstrate that our proposed PKG approach along with re-ranker effectively address complex problems while maintaining minimal negative impact on solutions that are already correct without RAG. The replication package is published at https://github.com/iamshahd/ProgrammingKnowledgeGraph
Reinforcement Learning via Self-Distillation
Large language models are increasingly post-trained with reinforcement learning in verifiable domains such as code and math. Yet, current methods for reinforcement learning with verifiable rewards (RLVR) learn only from a scalar outcome reward per attempt, creating a severe credit-assignment bottleneck. Many verifiable environments actually provide rich textual feedback, such as runtime errors or judge evaluations, that explain why an attempt failed. We formalize this setting as reinforcement learning with rich feedback and introduce Self-Distillation Policy Optimization (SDPO), which converts tokenized feedback into a dense learning signal without any external teacher or explicit reward model. SDPO treats the current model conditioned on feedback as a self-teacher and distills its feedback-informed next-token predictions back into the policy. In this way, SDPO leverages the model's ability to retrospectively identify its own mistakes in-context. Across scientific reasoning, tool use, and competitive programming on LiveCodeBench v6, SDPO improves sample efficiency and final accuracy over strong RLVR baselines. Notably, SDPO also outperforms baselines in standard RLVR environments that only return scalar feedback by using successful rollouts as implicit feedback for failed attempts. Finally, applying SDPO to individual questions at test time accelerates discovery on difficult binary-reward tasks, achieving the same discovery probability as best-of-k sampling or multi-turn conversations with 3x fewer attempts.
Conditional PED-ANOVA: Hyperparameter Importance in Hierarchical & Dynamic Search Spaces
We propose conditional PED-ANOVA (condPED-ANOVA), a principled framework for estimating hyperparameter importance (HPI) in conditional search spaces, where the presence or domain of a hyperparameter can depend on other hyperparameters. Although the original PED-ANOVA provides a fast and efficient way to estimate HPI within the top-performing regions of the search space, it assumes a fixed, unconditional search space and therefore cannot properly handle conditional hyperparameters. To address this, we introduce a conditional HPI for top-performing regions and derive a closed-form estimator that accurately reflects conditional activation and domain changes. Experiments show that naive adaptations of existing HPI estimators yield misleading or uninterpretable importance estimates in conditional settings, whereas condPED-ANOVA consistently provides meaningful importances that reflect the underlying conditional structure.
comment: 16 pages, 9 figures
Dissecting Multimodal In-Context Learning: Modality Asymmetries and Circuit Dynamics in modern Transformers
Transformer-based multimodal large language models often exhibit in-context learning (ICL) abilities. Motivated by this phenomenon, we ask: how do transformers learn to associate information across modalities from in-context examples? We investigate this question through controlled experiments on small transformers trained on synthetic classification tasks, enabling precise manipulation of data statistics and model architecture. We begin by revisiting core principles of unimodal ICL in modern transformers. While several prior findings replicate, we find that Rotary Position Embeddings (RoPE) increases the data complexity threshold for ICL. Extending to the multimodal setting reveals a fundamental learning asymmetry: when pretrained on high-diversity data from a primary modality, surprisingly low data complexity in the secondary modality suffices for multimodal ICL to emerge. Mechanistic analysis shows that both settings rely on an induction-style mechanism that copies labels from matching in-context exemplars; multimodal training refines and extends these circuits across modalities. Our findings provide a mechanistic foundation for understanding multimodal ICL in modern transformers and introduce a controlled testbed for future investigation.
SERA: Soft-Verified Efficient Repository Agents
Open-weight coding agents should hold a fundamental advantage over closed-source systems: they can be specialized to private codebases, encoding repository-specific information directly in their weights. Yet the cost and complexity of training has kept this advantage theoretical. We show it is now practical. We present Soft-Verified Efficient Repository Agents (SERA), an efficient method for training coding agents that enables the rapid and cheap creation of agents specialized to private codebases. Using only supervised finetuning (SFT), SERA achieves state-of-the-art results among fully open-source (open data, method, code) models while matching the performance of frontier open-weight models like Devstral-Small-2. Creating SERA models is 26x cheaper than reinforcement learning and 57x cheaper than previous synthetic data methods to reach equivalent performance. Our method, Soft Verified Generation (SVG), generates thousands of trajectories from a single code repository. Combined with cost-efficiency, this enables specialization to private codebases. Beyond repository specialization, we apply SVG to a larger corpus of codebases, generating over 200,000 synthetic trajectories. We use this dataset to provide detailed analysis of scaling laws, ablations, and confounding factors for training coding agents. Overall, we believe our work will greatly accelerate research on open coding agents and showcase the advantage of open-source models that can specialize to private codebases. We release SERA as the first model in Ai2's Open Coding Agents series, along with all our code, data, and Claude Code integration to support the research community.
comment: 21 main pages, 7 pages appendix
Neural Quantum States in Mixed Precision
Scientific computing has long relied on double precision (64-bit floating point) arithmetic to guarantee accuracy in simulations of real-world phenomena. However, the growing availability of hardware accelerators such as Graphics Processing Units (GPUs) has made low-precision formats attractive due to their superior performance, reduced memory footprint, and improved energy efficiency. In this work, we investigate the role of mixed-precision arithmetic in neural-network based Variational Monte Carlo (VMC), a widely used method for solving computationally otherwise intractable quantum many-body systems. We first derive general analytical bounds on the error introduced by reduced precision on Metropolis-Hastings MCMC, and then empirically validate these bounds on the use-case of VMC. We demonstrate that significant portions of the algorithm, in particular, sampling the quantum state, can be executed in half precision without loss of accuracy. More broadly, this work provides a theoretical framework to assess the applicability of mixed-precision arithmetic in machine-learning approaches that rely on MCMC sampling. In the context of VMC, we additionally demonstrate the practical effectiveness of mixed-precision strategies, enabling more scalable and energy-efficient simulations of quantum many-body systems.
comment: 22 pages, 12 figures
Active Learning for Decision Trees with Provable Guarantees ICLR 2026
This paper advances the theoretical understanding of active learning label complexity for decision trees as binary classifiers. We make two main contributions. First, we provide the first analysis of the disagreement coefficient for decision trees-a key parameter governing active learning label complexity. Our analysis holds under two natural assumptions required for achieving polylogarithmic label complexity, (i) each root-to-leaf path queries distinct feature dimensions, and (ii) the input data has a regular, grid-like structure. We show these assumptions are essential, as relaxing them leads to polynomial label complexity. Second, we present the first general active learning algorithm for binary classification that achieves a multiplicative error guarantee, producing a $(1+ε)$-approximate classifier. By combining these results, we design an active learning algorithm for decision trees that uses only a polylogarithmic number of label queries in the dataset size, under the stated assumptions. Finally, we establish a label complexity lower bound, showing our algorithm's dependence on the error tolerance $ε$ is close to optimal.
comment: 10 pages, 43 pages with appendix, ICLR 2026, Conference URL: https://openreview.net/forum?id=NOkjJPJIit
When More Data Doesn't Help: Limits of Adaptation in Multitask Learning
Multitask learning and related frameworks have achieved tremendous success in modern applications. In multitask learning problem, we are given a set of heterogeneous datasets collected from related source tasks and hope to enhance the performance above what we could hope to achieve by solving each of them individually. The recent work of arXiv:2006.15785 has showed that, without access to distributional information, no algorithm based on aggregating samples alone can guarantee optimal risk as long as the sample size per task is bounded. In this paper, we focus on understanding the statistical limits of multitask learning. We go beyond the no-free-lunch theorem in arXiv:2006.15785 by establishing a stronger impossibility result of adaptation that holds for arbitrarily large sample size per task. This improvement conveys an important message that the hardness of multitask learning cannot be overcame by having abundant data per task. We also discuss the notion of optimal adaptivity that may be of future interests.
Smoothing the Black-Box: Signed-Distance Supervision for Black-Box Model Copying
Deployed machine learning systems must continuously evolve as data, architectures, and regulations change, often without access to original training data or model internals. In such settings, black-box copying provides a practical refactoring mechanism, i.e. upgrading legacy models by learning replicas from input-output queries alone. When restricted to hard-label outputs, copying turns into a discontinuous surface reconstruction problem from pointwise queries, severely limiting the ability to recover boundary geometry efficiently. We propose a distance-based copying (distillation) framework that replaces hard-label supervision with signed distances to the teacher's decision boundary, converting copying into a smooth regression problem that exploits local geometry. We develop an $α$-governed smoothing and regularization scheme with Hölder/Lipschitz control over the induced target surface, and introduce two model-agnostic algorithms to estimate signed distances under label-only access. Experiments on synthetic problems and UCI benchmarks show consistent improvements in fidelity and generalization accuracy over hard-label baselines, while enabling distance outputs as uncertainty-related signals for black-box replicas.
comment: 27 pages
COMET-SG1: Lightweight Autoregressive Regressor for Edge and Embedded AI
COMET-SG1 is a lightweight, stability-oriented autoregressive regression model designed for time-series prediction on edge and embedded AI systems. Unlike recurrent neural networks or transformer-based sequence models, COMET-SG1 operates through linear behavior-space encoding, memory-anchored transition estimation, and deterministic state updates. This structure prioritizes bounded long-horizon behavior under fully autoregressive inference, a critical requirement for edge deployment where prediction errors accumulate over time. Experiments on non-stationary synthetic time-series data demonstrate that COMET-SG1 achieves competitive short-horizon accuracy while exhibiting significantly reduced long-horizon drift compared to MLP, LSTM, and k-nearest neighbor baselines. With a compact parameter footprint and operations compatible with fixed-point arithmetic, COMET-SG1 provides a practical and interpretable approach for stable autoregressive prediction in edge and embedded AI applications.
comment: Preprint. Submitted to an IEEE conference. 6 pages, 6 figures, 2 tables
Cross-Country Learning for National Infectious Disease Forecasting Using European Data
Accurate forecasting of infectious disease incidence is critical for public health planning and timely intervention. While most data-driven forecasting approaches rely primarily on historical data from a single country, such data are often limited in length and variability, restricting the performance of machine learning (ML) models. In this work, we investigate a cross-country learning approach for infectious disease forecasting, in which a single model is trained on time series data from multiple countries and evaluated on a country of interest. This setting enables the model to exploit shared epidemic dynamics across countries and to benefit from an enlarged training set. We examine this approach through a case study on COVID-19 case forecasting in Cyprus, using surveillance data from European countries. We evaluate multiple ML models and analyse the impact of the lookback window length and cross-country `data augmentation' on multi-step forecasting performance. Our results show that incorporating data from other countries can lead to consistent improvements over models trained solely on national data. Although the empirical focus is on Cyprus and COVID-19, the proposed framework and findings are applicable to infectious disease forecasting more broadly, particularly in settings with limited national historical data.
comment: 7 pages, 4 figures, 5 tables
Leveraging Second-Order Curvature for Efficient Learned Image Compression: Theory and Empirical Evidence
Training learned image compression (LIC) models entails navigating a challenging optimization landscape defined by the fundamental trade-off between rate and distortion. Standard first-order optimizers, such as SGD and Adam, struggle with \emph{gradient conflicts} arising from competing objectives, leading to slow convergence and suboptimal rate-distortion performance. In this work, we demonstrate that a simple utilization of a second-order quasi-Newton optimizer, \textbf{SOAP}, dramatically improves both training efficiency and final performance across diverse LICs. Our theoretical and empirical analyses reveal that Newton preconditioning inherently resolves the intra-step and inter-step update conflicts intrinsic to the R-D objective, facilitating faster, more stable convergence. Beyond acceleration, we uncover a critical deployability benefit: second-order trained models exhibit significantly fewer activation and latent outliers. This substantially enhances robustness to post-training quantization. Together, these results establish second-order optimization, achievable as a seamless drop-in replacement of the imported optimizer, as a powerful, practical tool for advancing the efficiency and real-world readiness of LICs.
Less is More: Clustered Cross-Covariance Control for Offline RL
A fundamental challenge in offline reinforcement learning is distributional shift. Scarce data or datasets dominated by out-of-distribution (OOD) areas exacerbate this issue. Our theoretical analysis and experiments show that the standard squared error objective induces a harmful TD cross covariance. This effect amplifies in OOD areas, biasing optimization and degrading policy learning. To counteract this mechanism, we develop two complementary strategies: partitioned buffer sampling that restricts updates to localized replay partitions, attenuates irregular covariance effects, and aligns update directions, yielding a scheme that is easy to integrate with existing implementations, namely Clustered Cross-Covariance Control for TD (C^4). We also introduce an explicit gradient-based corrective penalty that cancels the covariance induced bias within each update. We prove that buffer partitioning preserves the lower bound property of the maximization objective, and that these constraints mitigate excessive conservatism in extreme OOD areas without altering the core behavior of policy constrained offline reinforcement learning. Empirically, our method showcases higher stability and up to 30% improvement in returns over prior methods, especially with small datasets and splits that emphasize OOD areas.
Supervised Guidance Training for Infinite-Dimensional Diffusion Models
Score-based diffusion models have recently been extended to infinite-dimensional function spaces, with uses such as inverse problems arising from partial differential equations. In the Bayesian formulation of inverse problems, the aim is to sample from a posterior distribution over functions obtained by conditioning a prior on noisy observations. While diffusion models provide expressive priors in function space, the theory of conditioning them to sample from the posterior remains open. We address this, assuming that either the prior lies in the Cameron-Martin space, or is absolutely continuous with respect to a Gaussian measure. We prove that the models can be conditioned using an infinite-dimensional extension of Doob's $h$-transform, and that the conditional score decomposes into an unconditional score and a guidance term. As the guidance term is intractable, we propose a simulation-free score matching objective (called Supervised Guidance Training) enabling efficient and stable posterior sampling. We illustrate the theory with numerical examples on Bayesian inverse problems in function spaces. In summary, our work offers the first function-space method for fine-tuning trained diffusion models to accurately sample from a posterior.
GraphAllocBench: A Flexible Benchmark for Preference-Conditioned Multi-Objective Policy Learning
Preference-Conditioned Policy Learning (PCPL) in Multi-Objective Reinforcement Learning (MORL) aims to approximate diverse Pareto-optimal solutions by conditioning policies on user-specified preferences over objectives. This enables a single model to flexibly adapt to arbitrary trade-offs at run-time by producing a policy on or near the Pareto front. However, existing benchmarks for PCPL are largely restricted to toy tasks and fixed environments, limiting their realism and scalability. To address this gap, we introduce GraphAllocBench, a flexible benchmark built on a novel graph-based resource allocation sandbox environment inspired by city management, which we call CityPlannerEnv. GraphAllocBench provides a rich suite of problems with diverse objective functions, varying preference conditions, and high-dimensional scalability. We also propose two new evaluation metrics -- Proportion of Non-Dominated Solutions (PNDS) and Ordering Score (OS) -- that directly capture preference consistency while complementing the widely used hypervolume metric. Through experiments with Multi-Layer Perceptrons (MLPs) and graph-aware models, we show that GraphAllocBench exposes the limitations of existing MORL approaches and paves the way for using graph-based methods such as Graph Neural Networks in complex, high-dimensional combinatorial allocation tasks. Beyond its predefined problem set, GraphAllocBench enables users to flexibly vary objectives, preferences, and allocation rules, establishing it as a versatile and extensible benchmark for advancing PCPL. Code: https://anonymous.4open.science/r/GraphAllocBench
HESTIA: A Hessian-Guided Differentiable Quantization-Aware Training Framework for Extremely Low-Bit LLMs
As large language models (LLMs) continue to scale, deployment is increasingly bottlenecked by the memory wall, motivating a shift toward extremely low-bit quantization. However, most quantization-aware training (QAT) methods apply hard rounding and the straight-through estimator (STE) from the beginning of the training, which prematurely discretizes the optimization landscape and induces persistent gradient mismatch between latent weights and quantized weights, hindering effective optimization of quantized models. To address this, we propose Hestia, a Hessian-guided differentiable QAT framework for extremely low-bit LLMs, which replaces the rigid step function with a temperature-controlled softmax relaxation to maintain gradient flow early in training while progressively hardening quantization. Furthermore, Hestia leverages a tensor-wise Hessian trace metric as a lightweight curvature signal to drive fine-grained temperature annealing, enabling sensitivity-aware discretization across the model. Evaluations on Llama-3.2 show that Hestia consistently outperforms existing ternary QAT baselines, yielding average zero-shot improvements of 5.39% and 4.34% for the 1B and 3B models. These results indicate that Hessian-guided relaxation effectively recovers representational capacity, establishing a more robust training path for 1.58-bit LLMs. The code is available at https://github.com/hestia2026/Hestia.
comment: 13 pages, 2 figures
SA-PEF: Step-Ahead Partial Error Feedback for Efficient Federated Learning
Biased gradient compression with error feedback (EF) reduces communication in federated learning (FL), but under non-IID data, the residual error can decay slowly, causing gradient mismatch and stalled progress in the early rounds. We propose step-ahead partial error feedback (SA-PEF), which integrates step-ahead (SA) correction with partial error feedback (PEF). SA-PEF recovers EF when the step-ahead coefficient $α=0$ and step-ahead EF (SAEF) when $α=1$. For non-convex objectives and $δ$-contractive compressors, we establish a second-moment bound and a residual recursion that guarantee convergence to stationarity under heterogeneous data and partial client participation. The resulting rates match standard non-convex Fed-SGD guarantees up to constant factors, achieving $O((η,η_0TR)^{-1})$ convergence to a variance/heterogeneity floor with a fixed inner step size. Our analysis reveals a step-ahead-controlled residual contraction $ρ_r$ that explains the observed acceleration in the early training phase. To balance SAEF's rapid warm-up with EF's long-term stability, we select $α$ near its theory-predicted optimum. Experiments across diverse architectures and datasets show that SA-PEF consistently reaches target accuracy faster than EF.
Continual GUI Agents
As digital environments (data distribution) are in flux, with new GUI data arriving over time-introducing new domains or resolutions-agents trained on static environments deteriorate in performance. In this work, we introduce Continual GUI Agents, a new task that requires GUI agents to perform continual learning under shifted domains and resolutions. We find existing methods fail to maintain stable grounding as GUI distributions shift over time, due to the diversity of UI interaction points and regions in fluxing scenarios. To address this, we introduce GUI-Anchoring in Flux (GUI-AiF), a new reinforcement fine-tuning framework that stabilizes continual learning through two novel rewards: Anchoring Point Reward in Flux (APR-iF) and Anchoring Region Reward in Flux (ARR-iF). These rewards guide the agents to align with shifting interaction points and regions, mitigating the tendency of existing reward strategies to over-adapt to static grounding cues (e.g., fixed coordinates or element scales). Extensive experiments show GUI-AiF surpasses state-of-the-art baselines. Our work establishes the first continual learning framework for GUI agents, revealing the untapped potential of reinforcement fine-tuning for continual GUI Agents.
Deep Semi-Supervised Survival Analysis for Predicting Cancer Prognosis
The Cox Proportional Hazards (PH) model is widely used in survival analysis. Recently, artificial neural network (ANN)-based Cox-PH models have been developed. However, training these Cox models with high-dimensional features typically requires a substantial number of labeled samples containing information about time-to-event. The limited availability of labeled data for training often constrains the performance of ANN-based Cox models. To address this issue, we employed a deep semi-supervised learning (DSSL) approach to develop single- and multi-modal ANN-based Cox models based on the Mean Teacher (MT) framework, which utilizes both labeled and unlabeled data for training. We applied our model, named Cox-MT, to predict the prognosis of several types of cancer using data from The Cancer Genome Atlas (TCGA). Our single-modal Cox-MT models, utilizing TCGA RNA-seq data or whole slide images, significantly outperformed the existing ANN-based Cox model, Cox-nnet, using the same data set across four types of cancer considered. As the number of unlabeled samples increased, the performance of Cox-MT significantly improved with a given set of labeled data. Furthermore, our multi-modal Cox-MT model demonstrated considerably better performance than the single-modal model. In summary, the Cox-MT model effectively leverages both labeled and unlabeled data to significantly enhance prediction accuracy compared to existing ANN-based Cox models trained solely on labeled data.
Adapting the Behavior of Reinforcement Learning Agents to Changing Action Spaces and Reward Functions
Reinforcement Learning (RL) agents often struggle in real-world applications where environmental conditions are non-stationary, particularly when reward functions shift or the available action space expands. This paper introduces MORPHIN, a self-adaptive Q-learning framework that enables on-the-fly adaptation without full retraining. By integrating concept drift detection with dynamic adjustments to learning and exploration hyperparameters, MORPHIN adapts agents to changes in both the reward function and on-the-fly expansions of the agent's action space, while preserving prior policy knowledge to prevent catastrophic forgetting. We validate our approach using a Gridworld benchmark and a traffic signal control simulation. The results demonstrate that MORPHIN achieves superior convergence speed and continuous adaptation compared to a standard Q-learning baseline, improving learning efficiency by up to 1.7x.
A scalable flow-based approach to mitigate topological freezing
As lattice gauge theories with non-trivial topological features are driven towards the continuum limit, standard Markov Chain Monte Carlo simulations suffer for topological freezing, i.e., a dramatic growth of autocorrelations in topological observables. A widely used strategy is the adoption of Open Boundary Conditions (OBC), which restores ergodic sampling of topology but at the price of breaking translation invariance and introducing unphysical boundary artifacts. In this contribution we summarize a scalable, exact flow-based strategy to remove them by transporting configurations from a prior with a OBC defect to a fully periodic ensemble, and apply it to 4d SU(3) Yang--Mills theory. The method is based on a Stochastic Normalizing Flow (SNF) that alternates non-equilibrium Monte Carlo updates with localized, gauge-equivariant defect coupling layers implemented via masked parametric stout smearing. Training is performed by minimizing the average dissipated work, equivalent to a Kullback--Leibler divergence between forward and reverse non-equilibrium path measures, to achieve more reversible trajectories and improved efficiency. We discuss the scaling with the number of degrees of freedom affected by the defect and show that defect SNFs achieve better performances than purely stochastic non-equilibrium methods at comparable cost. Finally, we validate the approach by reproducing reference results for the topological susceptibility.
comment: 1+9 pages, 3 figures, contribution to the 42nd International Symposium on Lattice Field Theory (Lattice 2025), 2-8 November 2025, Mumbai, India
Structurally Human, Semantically Biased: Detecting LLM-Generated References with Embeddings and GNNs ICLR 2026
Large language models are increasingly used to curate bibliographies, raising the question: are their reference lists distinguishable from human ones? We build paired citation graphs, ground truth and GPT-4o-generated (from parametric knowledge), for 10,000 focal papers ($\approx$ 275k references) from SciSciNet, and added a field-matched random baseline that preserves out-degree and field distributions while breaking latent structure. We compare (i) structure-only node features (degree/closeness/eigenvector centrality, clustering, edge count) with (ii) 3072-D title/abstract embeddings, using an RF on graph-level aggregates and Graph Neural Networks with node features. Structure alone barely separates GPT from ground truth (RF accuracy $\approx$ 0.60) despite cleanly rejecting the random baseline ($\approx$ 0.89--0.92). By contrast, embeddings sharply increase separability: RF on aggregated embeddings reaches $\approx$ 0.83, and GNNs with embedding node features achieve 93\% test accuracy on GPT vs.\ ground truth. We show the robustness of our findings by replicating the pipeline with Claude Sonnet 4.5 and with multiple embedding models (OpenAI and SPECTER), with RF separability for ground truth vs.\ Claude $\approx 0.77$ and clean rejection of the random baseline. Thus, LLM bibliographies, generated purely from parametric knowledge, closely mimic human citation topology, but leave detectable semantic fingerprints; detection and debiasing should target content signals rather than global graph structure.
comment: 34 pages, 20 figures. Accepted at ICLR 2026
Enterprise Resource Planning Using Multi-type Transformers in Ferro-Titanium Industry
Combinatorial optimization problems such as the Job-Shop Scheduling Problem (JSP) and Knapsack Problem (KP) are fundamental challenges in operations research, logistics, and eterprise resource planning (ERP). These problems often require sophisticated algorithms to achieve near-optimal solutions within practical time constraints. Recent advances in deep learning have introduced transformer-based architectures as promising alternatives to traditional heuristics and metaheuristics. We leverage the Multi-Type Transformer (MTT) architecture to address these benchmarks in a unified framework. We present an extensive experimental evaluation across standard benchmark datasets for JSP and KP, demonstrating that MTT achieves competitive performance on different size of these benchmark problems. We showcase the potential of multi-type attention on a real application in Ferro-Titanium industry. To the best of our knowledge, we are the first to apply multi-type transformers in real manufacturing.
Is Pure Exploitation Sufficient in Exogenous MDPs with Linear Function Approximation? ICLR 2026
Exogenous MDPs (Exo-MDPs) capture sequential decision-making where uncertainty comes solely from exogenous inputs that evolve independently of the learner's actions. This structure is especially common in operations research applications such as inventory control, energy storage, and resource allocation, where exogenous randomness (e.g., demand, arrivals, or prices) drives system behavior. Despite decades of empirical evidence that greedy, exploitation-only methods work remarkably well in these settings, theory has lagged behind: all existing regret guarantees for Exo-MDPs rely on explicit exploration or tabular assumptions. We show that exploration is unnecessary. We propose Pure Exploitation Learning (PEL) and prove the first general finite-sample regret bounds for exploitation-only algorithms in Exo-MDPs. In the tabular case, PEL achieves $\widetilde{O}(H^2|Ξ|\sqrt{K})$. For large, continuous endogenous state spaces, we introduce LSVI-PE, a simple linear-approximation method whose regret is polynomial in the feature dimension, exogenous state space, and horizon, independent of the endogenous state and action spaces. Our analysis introduces two new tools: counterfactual trajectories and Bellman-closed feature transport, which together allow greedy policies to have accurate value estimates without optimism. Experiments on synthetic and resource-management tasks show that PEL consistently outperforming baselines. Overall, our results overturn the conventional wisdom that exploration is required, demonstrating that in Exo-MDPs, pure exploitation is enough.
comment: Accepted to ICLR 2026
Optimal Transport Group Counterfactual Explanations
Group counterfactual explanations find a set of counterfactual instances to explain a group of input instances contrastively. However, existing methods either (i) optimize counterfactuals only for a fixed group and do not generalize to new group members, (ii) strictly rely on strong model assumptions (e.g., linearity) for tractability or/and (iii) poorly control the counterfactual group geometry distortion. We instead learn an explicit optimal transport map that sends any group instance to its counterfactual without re-optimization, minimizing the group's total transport cost. This enables generalization with fewer parameters, making it easier to interpret the common actionable recourse. For linear classifiers, we prove that functions representing group counterfactuals are derived via mathematical optimization, identifying the underlying convex optimization type (QP, QCQP, ...). Experiments show that they accurately generalize, preserve group geometry and incur only negligible additional transport cost compared to baseline methods. If model linearity cannot be exploited, our approach also significantly outperforms the baselines.
Positive-Unlabeled Reinforcement Learning Distillation for On-Premise Small Models
Due to constraints on privacy, cost, and latency, on-premise deployment of small models is increasingly common. However, most practical pipelines stop at supervised fine-tuning (SFT) and fail to reach the reinforcement learning (RL) alignment stage. The main reason is that RL alignment typically requires either expensive human preference annotation or heavy reliance on high-quality reward models with large-scale API usage and ongoing engineering maintenance, both of which are ill-suited to on-premise settings. To bridge this gap, we propose a positive-unlabeled (PU) RL distillation method for on-premise small-model deployment. Without human-labeled preferences or a reward model, our method distills the teacher's preference-optimization capability from black-box generations into a locally trainable student. For each prompt, we query the teacher once to obtain an anchor response, locally sample multiple student candidates, and perform anchor-conditioned self-ranking to induce pairwise or listwise preferences, enabling a fully local training loop via direct preference optimization or group relative policy optimization. Theoretical analysis justifies that the induced preference signal by our method is order-consistent and concentrates on near-optimal candidates, supporting its stability for preference optimization. Experiments demonstrate that our method achieves consistently strong performance under a low-cost setting.
comment: 22 pages, 8 figures, 7 tables
MuRAL-CPD: Active Learning for Multiresolution Change Point Detection
Change Point Detection (CPD) is a critical task in time series analysis, aiming to identify moments when the underlying data-generating process shifts. Traditional CPD methods often rely on unsupervised techniques, which lack adaptability to task-specific definitions of change and cannot benefit from user knowledge. To address these limitations, we propose MuRAL-CPD, a novel semi-supervised method that integrates active learning into a multiresolution CPD algorithm. MuRAL-CPD leverages a wavelet-based multiresolution decomposition to detect changes across multiple temporal scales and incorporates user feedback to iteratively optimize key hyperparameters. This interaction enables the model to align its notion of change with that of the user, improving both accuracy and interpretability. Our experimental results on several real-world datasets show the effectiveness of MuRAL-CPD against state-of-the-art methods, particularly in scenarios where minimal supervision is available.
comment: Presented at 2025 IEEE International Conference on Data Mining (ICDM), to appear in the Proceedings
Learning Contextual Runtime Monitors for Safe AI-Based Autonomy
We introduce a novel framework for learning context-aware runtime monitors for AI-based control ensembles. Machine-learning (ML) controllers are increasingly deployed in (autonomous) cyber-physical systems because of their ability to solve complex decision-making tasks. However, their accuracy can degrade sharply in unfamiliar environments, creating significant safety concerns. Traditional ensemble methods aim to improve robustness by averaging or voting across multiple controllers, yet this often dilutes the specialized strengths that individual controllers exhibit in different operating contexts. We argue that, rather than blending controller outputs, a monitoring framework should identify and exploit these contextual strengths. In this paper, we reformulate the design of safe AI-based control ensembles as a contextual monitoring problem. A monitor continuously observes the system's context and selects the controller best suited to the current conditions. To achieve this, we cast monitor learning as a contextual learning task and draw on techniques from contextual multi-armed bandits. Our approach comes with two key benefits: (1) theoretical safety guarantees during controller selection, and (2) improved utilization of controller diversity. We validate our framework in two simulated autonomous driving scenarios, demonstrating significant improvements in both safety and performance compared to non-contextual baselines.
Detecting and Mitigating Memorization in Diffusion Models through Anisotropy of the Log-Probability ICLR 2026
Diffusion-based image generative models produce high-fidelity images through iterative denoising but remain vulnerable to memorization, where they unintentionally reproduce exact copies or parts of training images. Recent memorization detection methods are primarily based on the norm of score difference as indicators of memorization. We prove that such norm-based metrics are mainly effective under the assumption of isotropic log-probability distributions, which generally holds at high or medium noise levels. In contrast, analyzing the anisotropic regime reveals that memorized samples exhibit strong angular alignment between the guidance vector and unconditional scores in the low-noise setting. Through these insights, we develop a memorization detection metric by integrating isotropic norm and anisotropic alignment. Our detection metric can be computed directly on pure noise inputs via two conditional and unconditional forward passes, eliminating the need for costly denoising steps. Detection experiments on Stable Diffusion v1.4 and v2 show that our metric outperforms existing denoising-free detection methods while being at least approximately 5x faster than the previous best approach. Finally, we demonstrate the effectiveness of our approach by utilizing a mitigation strategy that adapts memorized prompts based on our developed metric.
comment: Accepted at ICLR 2026
An Empirical Investigation of Neural ODEs and Symbolic Regression for Dynamical Systems NeurIPS 2025
Accurately modelling the dynamics of complex systems and discovering their governing differential equations are critical tasks for accelerating scientific discovery. Using noisy, synthetic data from two damped oscillatory systems, we explore the extrapolation capabilities of Neural Ordinary Differential Equations (NODEs) and the ability of Symbolic Regression (SR) to recover the underlying equations. Our study yields three key insights. First, we demonstrate that NODEs can extrapolate effectively to new boundary conditions, provided the resulting trajectories share dynamic similarity with the training data. Second, SR successfully recovers the equations from noisy ground-truth data, though its performance is contingent on the correct selection of input variables. Finally, we find that SR recovers two out of the three governing equations, along with a good approximation for the third, when using data generated by a NODE trained on just 10% of the full simulation. While this last finding highlights an area for future work, our results suggest that using NODEs to enrich limited data and enable symbolic regression to infer physical laws represents a promising new approach for scientific discovery.
comment: Accepted at the Machine Learning and the Physical Sciences Workshop, NeurIPS 2025
A Foundation Model for Virtual Sensors
Virtual sensors use machine learning to predict target signals from available measurements, replacing expensive physical sensors in critical applications. Existing virtual sensor approaches require application-specific models with hand-selected inputs for each sensor, cannot leverage task synergies, and lack consistent benchmarks. At the same time, emerging time series foundation models are computationally expensive and limited to predicting their input signals, making them incompatible with virtual sensors. We introduce the first foundation model for virtual sensors addressing both limitations. Our unified model can simultaneously predict diverse virtual sensors exploiting synergies while maintaining computational efficiency. It learns relevant input signals for each virtual sensor, eliminating expert knowledge requirements while adding explainability. In our large-scale evaluation on a standard benchmark and an application-specific dataset with over 18 billion samples, our architecture achieves 415x reduction in computation time and 951x reduction in memory requirements, while maintaining or even improving predictive quality compared to baselines. Our model scales gracefully to hundreds of virtual sensors with nearly constant parameter count, enabling practical deployment in large-scale sensor networks.
comment: 18 pages in total, 15 figures
Sparse clustering via the Deterministic Information Bottleneck algorithm
Cluster analysis relates to the task of assigning objects into groups which ideally present some desirable characteristics. When a cluster structure is confined to a subset of the feature space, traditional clustering techniques face unprecedented challenges. We present an information-theoretic framework that overcomes the problems associated with sparse data, allowing for joint feature weighting and clustering. Our proposal constitutes a competitive alternative to existing clustering algorithms for sparse data, as demonstrated through simulations on synthetic data. The effectiveness of our method is established by an application on a real-world genomics data set.
comment: Submitted to IFCS 2026 (8 pages total)
DIVERSE: Disagreement-Inducing Vector Evolution for Rashomon Set Exploration
We propose DIVERSE, a framework for systematically exploring the Rashomon set of deep neural networks, the collection of models that match a reference model's accuracy while differing in their predictive behavior. DIVERSE augments a pretrained model with Feature-wise Linear Modulation (FiLM) layers and uses Covariance Matrix Adaptation Evolution Strategy (CMA-ES) to search a latent modulation space, generating diverse model variants without retraining or gradient access. Across MNIST, PneumoniaMNIST, and CIFAR-10, DIVERSE uncovers multiple high-performing yet functionally distinct models. Our experiments show that DIVERSE offers a competitive and efficient exploration of the Rashomon set, making it feasible to construct diverse sets that maintain robustness and performance while supporting well-balanced model multiplicity. While retraining remains the baseline to generate Rashomon sets, DIVERSE achieves comparable diversity at reduced computational cost.
Trigger Optimization and Event Classification for Dark Matter Searches in the CYGNO Experiment Using Machine Learning
The CYGNO experiment employs an optical-readout Time Projection Chamber (TPC) to search for rare low-energy interactions using finely resolved scintillation images. While the optical readout provides rich topological information, it produces large, sparse megapixel images that challenge real-time triggering, data reduction, and background discrimination. We summarize two complementary machine-learning approaches developed within CYGNO. First, we present a fast and fully unsupervised strategy for online data reduction based on reconstruction-based anomaly detection. A convolutional autoencoder trained exclusively on pedestal images (i.e. frames acquired with GEM amplification disabled) learns the detector noise morphology and highlights particle-induced structures through localized reconstruction residuals, from which compact Regions of Interest (ROIs) are extracted. On real prototype data, the selected configuration retains (93.0 +/- 0.2)% of reconstructed signal intensity while discarding (97.8 +/- 0.1)% of the image area, with ~25 ms per-frame inference time on a consumer GPU. Second, we report a weakly supervised application of the Classification Without Labels (CWoLa) framework to data acquired with an Americium--Beryllium neutron source. Using only mixed AmBe and standard datasets (no event-level labels), a convolutional classifier learns to identify nuclear-recoil-like topologies. The achieved performance approaches the theoretical limit imposed by the mixture composition and isolates a high-score population with compact, approximately circular morphologies consistent with nuclear recoils.
comment: 6 pages, 1 figure, 14th Young Researcher Meeting (YRM 2025)
ACFormer: Mitigating Non-linearity with Auto Convolutional Encoder for Time Series Forecasting
Time series forecasting (TSF) faces challenges in modeling complex intra-channel temporal dependencies and inter-channel correlations. Although recent research has highlighted the efficiency of linear architectures in capturing global trends, these models often struggle with non-linear signals. To address this gap, we conducted a systematic receptive field analysis of convolutional neural network (CNN) TSF models. We introduce the "individual receptive field" to uncover granular structural dependencies, revealing that convolutional layers act as feature extractors that mirror channel-wise attention while exhibiting superior robustness to non-linear fluctuations. Based on these insights, we propose ACFormer, an architecture designed to reconcile the efficiency of linear projections with the non-linear feature-extraction power of convolutions. ACFormer captures fine-grained information through a shared compression module, preserves temporal locality via gated attention, and reconstructs variable-specific temporal patterns using an independent patch expansion layer. Extensive experiments on multiple benchmark datasets demonstrate that ACFormer consistently achieves state-of-the-art performance, effectively mitigating the inherent drawbacks of linear models in capturing high-frequency components.
WFR-MFM: One-Step Inference for Dynamic Unbalanced Optimal Transport
Reconstructing dynamical evolution from limited observations is a fundamental challenge in single-cell biology, where dynamic unbalanced optimal transport provides a principled framework for modeling coupled transport and mass variation. However, existing approaches rely on trajectory simulation at inference time, making inference a key bottleneck for scalable applications. In this work, we propose a mean-flow framework for unbalanced flow matching that summarizes both transport and mass-growth dynamics over arbitrary time intervals using mean velocity and mass-growth fields, enabling fast one-step generation without trajectory simulation. To solve dynamic unbalanced optimal transport under the Wasserstein-Fisher-Rao geometry, we further build on this framework to develop Wasserstein-Fisher-Rao Mean Flow Matching (WFR-MFM). Across synthetic and real single-cell RNA sequencing datasets, WFR-MFM achieves orders-of-magnitude faster inference than a range of existing baselines while maintaining high predictive accuracy, and enables efficient perturbation response prediction on large synthetic datasets with thousands of conditions.
CoBA: Integrated Deep Learning Model for Reliable Low-Altitude UAV Classification in mmWave Radio Networks
Uncrewed Aerial Vehicles (UAVs) are increasingly used in civilian and industrial applications, making secure low-altitude operations crucial. In dense mmWave environments, accurately classifying low-altitude UAVs as either inside authorized or restricted airspaces remains challenging, requiring models that handle complex propagation and signal variability. This paper proposes a deep learning model, referred to as CoBA, which stands for integrated Convolutional Neural Network (CNN), Bidirectional Long Short-Term Memory (BiLSTM), and Attention which leverages Fifth Generation (5G) millimeter-wave (mmWave) radio measurements to classify UAV operations in authorized and restricted airspaces at low altitude. The proposed CoBA model integrates convolutional, bidirectional recurrent, and attention layers to capture both spatial and temporal patterns in UAV radio measurements. To validate the model, a dedicated dataset is collected using the 5G mmWave network at TalTech, with controlled low altitude UAV flights in authorized and restricted scenarios. The model is evaluated against conventional ML models and a fingerprinting-based benchmark. Experimental results show that CoBA achieves superior accuracy, significantly outperforming all baseline models and demonstrating its potential for reliable and regulated UAV airspace monitoring.
comment: 6 Pages, This paper has been accepted for publication at the IEEE International Conference on Communications (ICC) 2026
Regularized Gradient Temporal-Difference Learning
Gradient temporal-difference (GTD) learning algorithms are widely used for off-policy policy evaluation with function approximation. However, existing convergence analyses rely on the restrictive assumption that the so-called feature interaction matrix (FIM) is nonsingular. In practice, the FIM can become singular and leads to instability or degraded performance. In this paper, we propose a regularized optimization objective by reformulating the mean-square projected Bellman error (MSPBE) minimization. This formulation naturally yields a regularized GTD algorithms, referred to as R-GTD, which guarantees convergence to a unique solution even when the FIM is singular. We establish theoretical convergence guarantees and explicit error bounds for the proposed method, and validate its effectiveness through empirical experiments.
comment: 27 pages, 8 figures
Exact Graph Learning via Integer Programming
Learning the dependence structure among variables in complex systems is a central problem across medical, natural, and social sciences. These structures can be naturally represented by graphs, and the task of inferring such graphs from data is known as graph learning or as causal discovery if the graphs are given a causal interpretation. Existing approaches typically rely on restrictive assumptions about the data-generating process, employ greedy oracle algorithms, or solve approximate formulations of the graph learning problem. As a result, they are either sensitive to violations of central assumptions or fail to guarantee globally optimal solutions. We address these limitations by introducing a nonparametric graph learning framework based on nonparametric conditional independence testing and integer programming. We reformulate the graph learning problem as an integer-programming problem and prove that solving the integer-programming problem provides a globally optimal solution to the original graph learning problem. Our method leverages efficient encodings of graphical separation criteria, enabling the exact recovery of larger graphs than was previously feasible. We provide an implementation in the openly available R package 'glip' which supports learning (acyclic) directed (mixed) graphs and chain graphs. From the resulting output one can compute representations of the corresponding Markov equivalence classes or weak equivalence classes. Empirically, we demonstrate that our approach is faster than other existing exact graph learning procedures for a large fraction of instances and graphs of various sizes. GLIP also achieves state-of-the-art performance on simulated data and benchmark datasets across all aforementioned classes of graphs.
Ranking-aware Reinforcement Learning for Ordinal Ranking
Ordinal regression and ranking are challenging due to inherent ordinal dependencies that conventional methods struggle to model. We propose Ranking-Aware Reinforcement Learning (RARL), a novel RL framework that explicitly learns these relationships. At its core, RARL features a unified objective that synergistically integrates regression and Learning-to-Rank (L2R), enabling mutual improvement between the two tasks. This is driven by a ranking-aware verifiable reward that jointly assesses regression precision and ranking accuracy, facilitating direct model updates via policy optimization. To further enhance training, we introduce Response Mutation Operations (RMO), which inject controlled noise to improve exploration and prevent stagnation at saddle points. The effectiveness of RARL is validated through extensive experiments on three distinct benchmarks.
comment: Accepted to ICASSP2026
Robust Distributed Learning under Resource Constraints: Decentralized Quantile Estimation via (Asynchronous) ADMM
Specifications for decentralized learning on resource-constrained edge devices require algorithms that are communication-efficient, robust to data corruption, and lightweight in memory usage. While state-of-the-art gossip-based methods satisfy the first requirement, achieving robustness remains challenging. Asynchronous decentralized ADMM-based methods have been explored for estimating the median, a statistical centrality measure that is notoriously more robust than the mean. However, existing approaches require memory that scales with node degree, making them impractical when memory is limited. In this paper, we propose AsylADMM, a novel gossip algorithm for decentralized median and quantile estimation, primarily designed for asynchronous updates and requiring only two variables per node. We analyze a synchronous variant of AsylADMM to establish theoretical guarantees and empirically demonstrate fast convergence for the asynchronous algorithm. We then show that our algorithm enables quantile-based trimming, geometric median estimation, and depth-based trimming, with quantile-based trimming empirically outperforming existing rank-based methods. Finally, we provide a novel theoretical analysis of rank-based trimming via Markov chain theory.
Reinforcement Unlearning via Group Relative Policy Optimization
During pretraining, LLMs inadvertently memorize sensitive or copyrighted data, posing significant compliance challenges under legal frameworks like the GDPR and the EU AI Act. Fulfilling these mandates demands techniques that can remove information from a deployed model without retraining from scratch. Existing unlearning approaches attempt to address this need, but often leak the very data they aim to erase, sacrifice fluency and robustness, or depend on costly external reward models. We introduce PURGE (Policy Unlearning through Relative Group Erasure), a novel method grounded in the Group Relative Policy Optimization framework that formulates unlearning as a verifiable problem. PURGE uses an intrinsic reward signal that penalizes any mention of forbidden concepts, allowing safe and consistent unlearning. Our approach reduces token usage per target by up to a factor of 46 compared with SotA methods, while improving fluency by 5.48 percent and adversarial robustness by 12.02 percent over the base model. On the Real World Knowledge Unlearning (RWKU) benchmark, PURGE achieves 11 percent unlearning effectiveness while preserving 98 percent of original utility. PURGE shows that framing LLM unlearning as a verifiable task, enables more reliable, efficient, and scalable forgetting, suggesting a promising new direction for unlearning research that combines theoretical guarantees, improved safety, and practical deployment efficiency.
Unsupervised Ensemble Learning Through Deep Energy-based Models AISTATS 2026
Unsupervised ensemble learning emerged to address the challenge of combining multiple learners' predictions without access to ground truth labels or additional data. This paradigm is crucial in scenarios where evaluating individual classifier performance or understanding their strengths is challenging due to limited information. We propose a novel deep energy-based method for constructing an accurate meta-learner using only the predictions of individual learners, potentially capable of capturing complex dependence structures between them. Our approach requires no labeled data, learner features, or problem-specific information, and has theoretical guarantees for when learners are conditionally independent. We demonstrate superior performance across diverse ensemble scenarios, including challenging mixture of experts settings. Our experiments span standard ensemble datasets and curated datasets designed to test how the model fuses expertise from multiple sources. These results highlight the potential of unsupervised ensemble learning to harness collective intelligence, especially in data-scarce or privacy-sensitive environments.
comment: Accepted to AISTATS 2026. 29 pages, 13 figures. Code available at: https://github.com/shaham-lab/deem
Incorporating data drift to perform survival analysis on credit risk
Survival analysis has become a standard approach for modelling time to default by time-varying covariates in credit risk. Unlike most existing methods that implicitly assume a stationary data-generating process, in practise, mortgage portfolios are exposed to various forms of data drift caused by changing borrower behaviour, macroeconomic conditions, policy regimes and so on. This study investigates the impact of data drift on survival-based credit risk models and proposes a dynamic joint modelling framework to improve robustness under non-stationary environments. The proposed model integrates a longitudinal behavioural marker derived from balance dynamics with a discrete-time hazard formulation, combined with landmark one-hot encoding and isotonic calibration. Three types of data drift (sudden, incremental and recurring) are simulated and analysed on mortgage loan datasets from Freddie Mac. Experiments and corresponding evidence show that the proposed landmark-based joint model consistently outperforms classical survival models, tree-based drift-adaptive learners and gradient boosting methods in terms of discrimination and calibration across all drift scenarios, which confirms the superiority of our model design.
comment: 27 pages, 2 figures
CCMamba: Selective State-Space Models for Higher-Order Graph Learning on Combinatorial Complexes
Topological deep learning has emerged for modeling higher-order relational structures beyond pairwise interactions that standard graph neural networks fail to capture. Although combinatorial complexes offer a unified topological framework, most existing topological deep learning methods rely on local message passing via attention mechanisms, which incur quadratic complexity and remain low-dimensional, limiting scalability and rank-aware information aggregation in higher-order complexes.We propose Combinatorial Complex Mamba (CCMamba), the first unified mamba-based neural framework for learning on combinatorial complexes. CCMamba reformulates message passing as a selective state-space modeling problem by organizing multi-rank incidence relations into structured sequences processed by rank-aware state-space models. This enables adaptive, directional, and long range information propagation in linear time without self attention. We further establish the theoretical analysis that the expressive power upper-bound of CCMamba message passing is the 1-Weisfeiler-Lehman test. Experiments on graph, hypergraph, and simplicial benchmarks demonstrate that CCMamba consistently outperforms existing methods while exhibiting improved scalability and robustness to depth.
Physics-informed Blind Reconstruction of Dense Fields from Sparse Measurements using Neural Networks with a Differentiable Simulator
Generating dense physical fields from sparse measurements is a fundamental question in sampling, signal processing, and many other applications. State-of-the-art methods either use spatial statistics or rely on examples of dense fields in the training phase, which often are not available, and thus rely on synthetic data. Here, we present a reconstruction method that generates dense fields from sparse measurements, without assuming availability of the spatial statistics, nor of examples of the dense fields. This is made possible through the introduction of an automatically differentiable numerical simulator into the training phase of the method. The method is shown to have superior results over statistical and neural network based methods on a set of three standard problems from fluid mechanics.
An explainable framework for the relationship between dementia and glucose metabolism patterns
High-dimensional neuroimaging data presents challenges for assessing neurodegenerative diseases due to complex non-linear relationships. Variational Autoencoders (VAEs) can encode scans into lower-dimensional latent spaces capturing disease-relevant features. We propose a semi-supervised VAE framework with a flexible similarity regularization term that aligns selected latent variables with clinical or biomarker measures of dementia progression. This allows adapting the similarity metric and supervised variables to specific goals or available data. We demonstrate the approach using PET scans from the Alzheimer's Disease Neuroimaging Initiative (ADNI), guiding the first latent dimension to align with a cognitive score. Using this supervised latent variable, we generate average reconstructions across levels of cognitive impairment. Voxel-wise GLM analysis reveals reduced metabolism in key regions, mainly the hippocampus, and within major Resting State Networks, particularly the Default Mode and Central Executive Networks. The remaining latent variables encode affine transformations and intensity variations, capturing confounds such as inter-subject variability and site effects. Our framework effectively extracts disease-related patterns aligned with established Alzheimer's biomarkers, offering an interpretable and adaptable tool for studying neurodegenerative progression.
Implicit Hypothesis Testing and Divergence Preservation in Neural Network Representations
We study the supervised training dynamics of neural classifiers through the lens of binary hypothesis testing. We model classification as a set of binary tests between class-conditional distributions of representations and empirically show that, along training trajectories, well-generalizing networks increasingly align with Neyman-Pearson optimal decision rules via monotonic improvements in KL divergence that relate to error rate exponents. We finally discuss how this yields an explanation and possible training or regularization strategies for different classes of neural networks.
Fair Recourse for All: Ensuring Individual and Group Fairness in Counterfactual Explanations
Explainable Artificial Intelligence (XAI) is becoming increasingly essential for enhancing the transparency of machine learning (ML) models. Among the various XAI techniques, counterfactual explanations (CFs) hold a pivotal role due to their ability to illustrate how changes in input features can alter an ML model's decision, thereby offering actionable recourse to users. Ensuring that individuals with comparable attributes and those belonging to different protected groups (e.g., demographic) receive similar and actionable recourse options is essential for trustworthy and fair decision-making. In this work, we address this challenge directly by focusing on the generation of fair CFs. Specifically, we start by defining and formulating fairness at: 1) individual fairness, ensuring that similar individuals receive similar CFs, 2) group fairness, ensuring equitable CFs across different protected groups and 3) hybrid fairness, which accounts for both individual and broader group-level fairness. We formulate the problem as an optimization task and propose a novel model-agnostic, reinforcement learning based approach to generate CFs that satisfy fairness constraints at both the individual and group levels, two objectives that are usually treated as orthogonal. As fairness metrics, we extend existing metrics commonly used for auditing ML models, such as equal choice of recourse and equal effectiveness across individuals and groups. We evaluate our approach on three benchmark datasets, showing that it effectively ensures individual and group fairness while preserving the quality of the generated CFs in terms of proximity and plausibility, and quantify the cost of fairness in the different levels separately. Our work opens a broader discussion on hybrid fairness and its role and implications for XAI and beyond CFs.
TimeCatcher: A Variational Framework for Volatility-Aware Forecasting of Non-Stationary Time Series
Recent lightweight MLP-based models have achieved strong performance in time series forecasting by capturing stable trends and seasonal patterns. However, their effectiveness hinges on an implicit assumption of local stationarity assumption, making them prone to errors in long-term forecasting of highly non-stationary series, especially when abrupt fluctuations occur, a common challenge in domains like web traffic monitoring. To overcome this limitation, we propose TimeCatcher, a novel Volatility-Aware Variational Forecasting framework. TimeCatcher extends linear architectures with a variational encoder to capture latent dynamic patterns hidden in historical data and a volatility-aware enhancement mechanism to detect and amplify significant local variations. Experiments on nine real-world datasets from traffic, financial, energy, and weather domains show that TimeCatcher consistently outperforms state-of-the-art baselines, with particularly large improvements in long-term forecasting scenarios characterized by high volatility and sudden fluctuations. Our code is available at https://github.com/ColaPrinceCHEN/TimeCatcher.
comment: Under review. 13 pages, 8 figures. This paper proposes a variational framework with adaptive volatility enhancement for non-stationary time series forecasting
Assembling the Mind's Mosaic: Towards EEG Semantic Intent Decoding
Enabling natural communication through brain-computer interfaces (BCIs) remains one of the most profound challenges in neuroscience and neurotechnology. While existing frameworks offer partial solutions, they are constrained by oversimplified semantic representations and a lack of interpretability. To overcome these limitations, we introduce Semantic Intent Decoding (SID), a novel framework that translates neural activity into natural language by modeling meaning as a flexible set of compositional semantic units. SID is built on three core principles: semantic compositionality, continuity and expandability of semantic space, and fidelity in reconstruction. We present BrainMosaic, a deep learning architecture implementing SID. BrainMosaic decodes multiple semantic units from EEG/SEEG signals using set matching and then reconstructs coherent sentences through semantic-guided reconstruction. This approach moves beyond traditional pipelines that rely on fixed-class classification or unconstrained generation, enabling a more interpretable and expressive communication paradigm. Extensive experiments on multilingual EEG and clinical SEEG datasets demonstrate that SID and BrainMosaic offer substantial advantages over existing frameworks, paving the way for natural and effective BCI-mediated communication.
Nonlinear Dimensionality Reduction with Diffusion Maps in Practice
Diffusion Map is a spectral dimensionality reduction technique which is able to uncover nonlinear submanifolds in high-dimensional data. And, it is increasingly applied across a wide range of scientific disciplines, such as biology, engineering, and social sciences. But data preprocessing, parameter settings and component selection have a significant influence on the resulting manifold, something which has not been comprehensively discussed in the literature so far. We provide a practice oriented review of the Diffusion Map technique, illustrate pitfalls and showcase a recently introduced technique for identifying the most relevant components. Our results show that the first components are not necessarily the most relevant ones.
Concept Component Analysis: A Principled Approach for Concept Extraction in LLMs
Developing human understandable interpretation of large language models (LLMs) becomes increasingly critical for their deployment in essential domains. Mechanistic interpretability seeks to mitigate the issues through extracts human-interpretable process and concepts from LLMs' activations. Sparse autoencoders (SAEs) have emerged as a popular approach for extracting interpretable and monosemantic concepts by decomposing the LLM internal representations into a dictionary. Despite their empirical progress, SAEs suffer from a fundamental theoretical ambiguity: the well-defined correspondence between LLM representations and human-interpretable concepts remains unclear. This lack of theoretical grounding gives rise to several methodological challenges, including difficulties in principled method design and evaluation criteria. In this work, we show that, under mild assumptions, LLM representations can be approximated as a {linear mixture} of the log-posteriors over concepts given the input context, through the lens of a latent variable model where concepts are treated as latent variables. This motivates a principled framework for concept extraction, namely Concept Component Analysis (ConCA), which aims to recover the log-posterior of each concept from LLM representations through a {unsupervised} linear unmixing process. We explore a specific variant, termed sparse ConCA, which leverages a sparsity prior to address the inherent ill-posedness of the unmixing problem. We implement 12 sparse ConCA variants and demonstrate their ability to extract meaningful concepts across multiple LLMs, offering theory-backed advantages over SAEs.
AWGformer: Adaptive Wavelet-Guided Transformer for Multi-Resolution Time Series Forecasting
Time series forecasting requires capturing patterns across multiple temporal scales while maintaining computational efficiency. This paper introduces AWGformer, a novel architecture that integrates adaptive wavelet decomposition with cross-scale attention mechanisms for enhanced multi-variate time series prediction. Our approach comprises: (1) an Adaptive Wavelet Decomposition Module (AWDM) that dynamically selects optimal wavelet bases and decomposition levels based on signal characteristics; (2) a Cross-Scale Feature Fusion (CSFF) mechanism that captures interactions between different frequency bands through learnable coupling matrices; (3) a Frequency-Aware Multi-Head Attention (FAMA) module that weights attention heads according to their frequency selectivity; (4) a Hierarchical Prediction Network (HPN) that generates forecasts at multiple resolutions before reconstruction. Extensive experiments on benchmark datasets demonstrate that AWGformer achieves significant average improvements over state-of-the-art methods, with particular effectiveness on multi-scale and non-stationary time series. Theoretical analysis provides convergence guarantees and establishes the connection between our wavelet-guided attention and classical signal processing principles.
comment: Accepted by ICASSP 2026
ScatterFusion: A Hierarchical Scattering Transform Framework for Enhanced Time Series Forecasting
Time series forecasting presents significant challenges due to the complex temporal dependencies at multiple time scales. This paper introduces ScatterFusion, a novel framework that synergistically integrates scattering transforms with hierarchical attention mechanisms for robust time series forecasting. Our approach comprises four key components: (1) a Hierarchical Scattering Transform Module (HSTM) that extracts multi-scale invariant features capturing both local and global patterns; (2) a Scale-Adaptive Feature Enhancement (SAFE) module that dynamically adjusts feature importance across different scales; (3) a Multi-Resolution Temporal Attention (MRTA) mechanism that learns dependencies at varying time horizons; and (4) a Trend-Seasonal-Residual (TSR) decomposition-guided structure-aware loss function. Extensive experiments on seven benchmark datasets demonstrate that ScatterFusion outperforms other common methods, achieving significant reductions in error metrics across various prediction horizons.
comment: Accepted by ICASSP 2026
Convergence Analysis of Randomized Subspace Normalized SGD under Heavy-Tailed Noise
Randomized subspace methods reduce per-iteration cost; however, in nonconvex optimization, most analyses are expectation-based, and high-probability bounds remain scarce even under sub-Gaussian noise. We first prove that randomized subspace SGD (RS-SGD) admits a high-probability convergence bound under sub-Gaussian noise, achieving the same order of oracle complexity as prior in-expectation results. Motivated by the prevalence of heavy-tailed gradients in modern machine learning, we then propose randomized subspace normalized SGD (RS-NSGD), which integrates direction normalization into subspace updates. Assuming the noise has bounded $p$-th moments, we establish both in-expectation and high-probability convergence guarantees, and show that RS-NSGD can achieve better oracle complexity than full-dimensional normalized SGD.
comment: 41 pages
FedRD: Reducing Divergences for Generalized Federated Learning via Heterogeneity-aware Parameter Guidance
Heterogeneous federated learning (HFL) aims to ensure effective and privacy-preserving collaboration among different entities. As newly joined clients require significant adjustments and additional training to align with the existing system, the problem of generalizing federated learning models to unseen clients under heterogeneous data has become progressively crucial. Consequently, we highlight two unsolved challenging issues in federated domain generalization: Optimization Divergence and Performance Divergence. To tackle the above challenges, we propose FedRD, a novel heterogeneity-aware federated learning algorithm that collaboratively utilizes parameter-guided global generalization aggregation and local debiased classification to reduce divergences, aiming to obtain an optimal global model for participating and unseen clients. Extensive experiments on public multi-domain datasets demonstrate that our approach exhibits a substantial performance advantage over competing baselines in addressing this specific problem.
comment: Accepted by ICASSP 2026
Graph-Structured Deep Learning Framework for Multi-task Contention Identification with High-dimensional Metrics
This study addresses the challenge of accurately identifying multi-task contention types in high-dimensional system environments and proposes a unified contention classification framework that integrates representation transformation, structural modeling, and a task decoupling mechanism. The method first constructs system state representations from high-dimensional metric sequences, applies nonlinear transformations to extract cross-dimensional dynamic features, and integrates multiple source information such as resource utilization, scheduling behavior, and task load variations within a shared representation space. It then introduces a graph-based modeling mechanism to capture latent dependencies among metrics, allowing the model to learn competitive propagation patterns and structural interference across resource links. On this basis, task-specific mapping structures are designed to model the differences among contention types and enhance the classifier's ability to distinguish multiple contention patterns. To achieve stable performance, the method employs an adaptive multi-task loss weighting strategy that balances shared feature learning with task-specific feature extraction and generates final contention predictions through a standardized inference process. Experiments conducted on a public system trace dataset demonstrate advantages in accuracy, recall, precision, and F1, and sensitivity analyses on batch size, training sample scale, and metric dimensionality further confirm the model's stability and applicability. The study shows that structured representations and multi-task classification based on high-dimensional metrics can significantly improve contention pattern recognition and offer a reliable technical approach for performance management in complex computing environments.
LLM-AutoDP: Automatic Data Processing via LLM Agents for Model Fine-tuning
Large Language Models (LLMs) can be fine-tuned on domain-specific data to enhance their performance in specialized fields. However, such data often contains numerous low-quality samples, necessitating effective data processing (DP). In practice, DP strategies are typically developed through iterative manual analysis and trial-and-error adjustment. These processes inevitably incur high labor costs and may lead to privacy issues in high-privacy domains like healthcare due to direct human access to sensitive data. Thus, achieving automated data processing without exposing the raw data has become a critical challenge. To address this challenge, we propose LLM-AutoDP, a novel framework that leverages LLMs as agents to automatically generate and optimize data processing strategies. Our method generates multiple candidate strategies and iteratively refines them using feedback signals and comparative evaluations. This iterative in-context learning mechanism enables the agent to converge toward high-quality processing pipelines without requiring direct human intervention or access to the underlying data. To further accelerate strategy search, we introduce three key techniques: Distribution Preserving Sampling, which reduces data volume while maintaining distributional integrity; Processing Target Selection, which uses a binary classifier to identify low-quality samples for focused processing; Cache-and-Reuse Mechanism}, which minimizes redundant computations by reusing prior processing results. Results show that models trained on data processed by our framework achieve over 80% win rates against models trained on unprocessed data. Compared to AutoML baselines based on LLM agents, LLM-AutoDP achieves approximately a 65% win rate. Moreover, our acceleration techniques reduce the total searching time by up to 10 times, demonstrating both effectiveness and efficiency.
comment: Accepted by VLDB2026
Unsupervised Anomaly Detection in Multi-Agent Trajectory Prediction via Transformer-Based Models
Identifying safety-critical scenarios is essential for autonomous driving, but the rarity of such events makes supervised labeling impractical. Traditional rule-based metrics like Time-to-Collision are too simplistic to capture complex interaction risks, and existing methods lack a systematic way to verify whether statistical anomalies truly reflect physical danger. To address this gap, we propose an unsupervised anomaly detection framework based on a multi-agent Transformer that models normal driving and measures deviations through prediction residuals. A dual evaluation scheme has been proposed to assess both detection stability and physical alignment: Stability is measured using standard ranking metrics in which Kendall Rank Correlation Coefficient captures rank agreement and Jaccard index captures the consistency of the top-K selected items; Physical alignment is assessed through correlations with established Surrogate Safety Measures (SSM). Experiments on the NGSIM dataset demonstrate our framework's effectiveness: We show that the maximum residual aggregator achieves the highest physical alignment while maintaining stability. Furthermore, our framework identifies 388 unique anomalies missed by Time-to-Collision and statistical baselines, capturing subtle multi-agent risks like reactive braking under lateral drift. The detected anomalies are further clustered into four interpretable risk types, offering actionable insights for simulation and testing.
Can Continuous-Time Diffusion Models Generate and Solve Globally Constrained Discrete Problems? A Study on Sudoku
Can standard continuous-time generative models represent distributions whose support is an extremely sparse, globally constrained discrete set? We study this question using completed Sudoku grids as a controlled testbed, treating them as a subset of a continuous relaxation space. We train flow-matching and score-based models along a Gaussian probability path and compare deterministic (ODE) sampling, stochastic (SDE) sampling, and DDPM-style discretizations derived from the same continuous-time training. Unconditionally, stochastic sampling substantially outperforms deterministic flows; score-based samplers are the most reliable among continuous-time methods, and DDPM-style ancestral sampling achieves the highest validity overall. We further show that the same models can be repurposed for guided generation: by repeatedly sampling completions under clamped clues and stopping when constraints are satisfied, the model acts as a probabilistic Sudoku solver. Although far less sample-efficient than classical solvers and discrete-geometry-aware diffusion methods, these experiments demonstrate that classic diffusion/flow formulations can assign non-zero probability mass to globally constrained combinatorial structures and can be used for constraint satisfaction via stochastic search.
comment: 26 pages, 5 figures. Empirical study of continuous-time diffusion and flow models on Sudoku. Code available at https://github.com/MariiaDrozdova/sudoku_generation
TINNs: Time-Induced Neural Networks for Solving Time-Dependent PDEs
Physics-informed neural networks (PINNs) solve time-dependent partial differential equations (PDEs) by learning a mesh-free, differentiable solution that can be evaluated anywhere in space and time. However, standard space--time PINNs take time as an input but reuse a single network with shared weights across all times, forcing the same features to represent markedly different dynamics. This coupling degrades accuracy and can destabilize training when enforcing PDE, boundary, and initial constraints jointly. We propose Time-Induced Neural Networks (TINNs), a novel architecture that parameterizes the network weights as a learned function of time, allowing the effective spatial representation to evolve over time while maintaining shared structure. The resulting formulation naturally yields a nonlinear least-squares problem, which we optimize efficiently using a Levenberg--Marquardt method. Experiments on various time-dependent PDEs show up to $4\times$ improved accuracy and $10\times$ faster convergence compared to PINNs and strong baselines.
TABED: Test-Time Adaptive Ensemble Drafting for Robust Speculative Decoding in LVLMs
Speculative decoding (SD) has proven effective for accelerating LLM inference by quickly generating draft tokens and verifying them in parallel. However, SD remains largely unexplored for Large Vision-Language Models (LVLMs), which extend LLMs to process both image and text prompts. To address this gap, we benchmark existing inference methods with small draft models on 11 datasets across diverse input scenarios and observe scenario-specific performance fluctuations. Motivated by these findings, we propose Test-time Adaptive Batched Ensemble Drafting (TABED), which dynamically ensembles multiple drafts obtained via batch inference by leveraging deviations from past ground truths available in the SD setting. The dynamic ensemble method achieves an average robust walltime speedup of 1.74x over autoregressive decoding and a 5% improvement over single drafting methods, while remaining training-free and keeping ensembling costs negligible through parameter sharing. With its plug-and-play compatibility, we further enhance TABED by integrating advanced verification and alternative drafting methods. Code and custom-trained models are available at https://github.com/furiosa-ai/TABED.
comment: Accepted to Findings of EACL 2026
Multimodal Multi-Agent Ransomware Analysis Using AutoGen
Ransomware has become one of the most serious cybersecurity threats causing major financial losses and operational disruptions worldwide.Traditional detection methods such as static analysis, heuristic scanning and behavioral analysis often fall short when used alone. To address these limitations, this paper presents multimodal multi agent ransomware analysis framework designed for ransomware classification. Proposed multimodal multiagent architecture combines information from static, dynamic and network sources. Each data type is handled by specialized agent that uses auto encoder based feature extraction. These representations are then integrated through a fusion agent. After that fused representation are used by transformer based classifier. It identifies the specific ransomware family. The agents interact through an interagent feedback mechanism that iteratively refines feature representations by suppressing low confidence information. The framework was evaluated on large scale datasets containing thousands of ransomware and benign samples. Multiple experiments were conducted on ransomware dataset. It outperforms single modality and nonadaptive fusion baseline achieving improvement of up to 0.936 in Macro-F1 for family classification and reducing calibration error. Over 100 epochs, the agentic feedback loop displays a stable monotonic convergence leading to over +0.75 absolute improvement in terms of agent quality and a final composite score of around 0.88 without fine tuning of the language models. Zeroday ransomware detection remains family dependent on polymorphism and modality disruptions. Confidence aware abstention enables reliable real world deployment by favoring conservativeand trustworthy decisions over forced classification. The findings indicate that proposed approach provides a practical andeffective path toward improving real world ransomware defense systems.
comment: 45 pages, 11 figures and 10 tables
Improving Diffusion Language Model Decoding through Joint Search in Generation Order and Token Space
Diffusion Language Models (DLMs) offer order-agnostic generation that can explore many possible decoding trajectories. However, current decoding methods commit to a single trajectory, limiting exploration in trajectory space. We introduce Order-Token Search to explore this space through jointly searching over generation order and token values. Its core is a likelihood estimator that scores denoising actions, enabling stable pruning and efficient exploration of diverse trajectories. Across mathematical reasoning and coding benchmarks, Order-Token Search consistently outperforms baselines on GSM8K, MATH500, Countdown, and HumanEval (3.1%, 3.8%, 7.9%, and 6.8% absolute over backbone), matching or surpassing diffu-GRPO post-trained d1-LLaDA. Our work establishes joint search as a key component for advancing decoding in DLMs.
Do Whitepaper Claims Predict Market Behavior? Evidence from Cryptocurrency Factor Analysis
Cryptocurrency projects articulate value propositions through whitepapers, making claims about functionality and technical capabilities. This study investigates whether these narratives align with observed market behavior. We construct a pipeline combining zero-shot NLP classification (BART-MNLI) with CP tensor decomposition to compare three spaces: (1) a claims matrix from 24 whitepapers across 10 semantic categories, (2) market statistics for 49 assets over two years of hourly data, and (3) latent factors from tensor decomposition (rank 2, 92.45% variance explained). Using Procrustes rotation and Tucker's congruence coefficient, we test alignment across 23 common entities. Results show weak alignment: claims-statistics (phi=0.341, p=0.332), claims-factors (phi=0.077, p=0.747), and statistics-factors (phi=0.197, p<0.001). The statistics-factors significance validates our methodology, confirming the pipeline detects relationships when present. Inter-model validation with DeBERTa-v3 yields 32% exact agreement but 67% top-3 agreement. Cross-sectional analysis reveals heterogeneous contributions: NEAR, MKR, ATOM show positive alignment while ENS, UNI, Bitcoin diverge most. Excluding Bitcoin confirms results are not driven by market dominance. We interpret findings as weak alignment between whitepaper narratives and market factor structure. Limited power (n=23) precludes distinguishing weak from no alignment, but strong alignment (phi>=0.70) can be confidently rejected. Implications for narrative economics and investment analysis are discussed.
comment: 35 pages, 8 figures, 10 tables. Code available at https://github.com/studiofarzulla/tensor-defi
Demonstration-Free Robotic Control via LLM Agents
Robotic manipulation has increasingly adopted vision-language-action (VLA) models, which achieve strong performance but typically require task-specific demonstrations and fine-tuning, and often generalize poorly under domain shift. We investigate whether general-purpose large language model (LLM) agent frameworks, originally developed for software engineering, can serve as an alternative control paradigm for embodied manipulation. We introduce FAEA (Frontier Agent as Embodied Agent), which applies an LLM agent framework directly to embodied manipulation without modification. Using the same iterative reasoning that enables software agents to debug code, FAEA enables embodied agents to reason through manipulation strategies. We evaluate an unmodified frontier agent, Claude Agent SDK, across the LIBERO, ManiSkill3, and MetaWorld benchmarks. With privileged environment state access, FAEA achieves success rates of 84.9%, 85.7%, and 96%, respectively. This level of task success approaches that of VLA models trained with less than 100 demonstrations per task, without requiring demonstrations or fine-tuning. With one round of human feedback as an optional optimization, performance increases to 88.2% on LIBERO. This demonstration-free capability has immediate practical value: FAEA can autonomously explore novel scenarios in simulation and generate successful trajectories for training data augmentation in embodied learning. Our results indicate that general-purpose agents are sufficient for a class of manipulation tasks dominated by deliberative, task-level planning. This opens a path for robotics systems to leverage actively maintained agent infrastructure and benefit directly from ongoing advances in frontier models. Code is available at https://github.com/robiemusketeer/faea-sim
Test-Time Adaptation for Anomaly Segmentation via Topology-Aware Optimal Transport Chaining
Deep topological data analysis (TDA) offers a principled framework for capturing structural invariants such as connectivity and cycles that persist across scales, making it a natural fit for anomaly segmentation (AS). Unlike thresholdbased binarisation, which produces brittle masks under distribution shift, TDA allows anomalies to be characterised as disruptions to global structure rather than local fluctuations. We introduce TopoOT, a topology-aware optimal transport (OT) framework that integrates multi-filtration persistence diagrams (PDs) with test-time adaptation (TTA). Our key innovation is Optimal Transport Chaining, which sequentially aligns PDs across thresholds and filtrations, yielding geodesic stability scores that identify features consistently preserved across scales. These stabilityaware pseudo-labels supervise a lightweight head trained online with OT-consistency and contrastive objectives, ensuring robust adaptation under domain shift. Across standard 2D and 3D anomaly detection benchmarks, TopoOT achieves state-of-the-art performance, outperforming the most competitive methods by up to +24.1% mean F1 on 2D datasets and +10.2% on 3D AS benchmarks.
Window-Diffusion: Accelerating Diffusion Language Model Inference with Windowed Token Pruning and Caching
Diffusion language models (DLMs) generate text through iterative denoising, but inference requires full-sequence attention at every iteration, resulting in substantial redundant computation on masked tokens. Block-wise diffusion can reduce this cost, yet it typically relies on retraining and constrained update orders, limiting its direct applicability to pretrained DLMs. Our token-level analysis reveals pronounced structural locality in DLM inference. Decoding is driven by a small set of prefix-localized active tokens; the influence of distant undecoded context diminishes rapidly, and decoded tokens exhibit stage-wise temporal stability, enabling reuse of intermediate representations except for a brief post-decode transient. Motivated by these observations, we propose \textbf{\placeholder}\footnote{The source code is available at https://github.com/vhicrgit/Window-Diffusion.}, a window-based token pruning and caching method for inference. We maintain a local computation window that slides rightward as denoising progresses, and partition undecoded tokens into: (i) \textit{active tokens} that are computed online, (ii) \textit{buffer tokens} whose KV states are cached and periodically refreshed, and (iii) \textit{far-field tokens} that are pruned outside the window. Computation is restricted to active and buffer tokens within the window, while far-field tokens are omitted at each stage. Experiments on LLaDA and Dream show that, under matched compute budgets, our method achieves up to $99\times$ inference speedup while largely preserving generation performance.
PsychePass: Calibrating LLM Therapeutic Competence via Trajectory-Anchored Tournaments
While large language models show promise in mental healthcare, evaluating their therapeutic competence remains challenging due to the unstructured and longitudinal nature of counseling. We argue that current evaluation paradigms suffer from an unanchored defect, leading to two forms of instability: process drift, where unsteered client simulation wanders away from specific counseling goals, and standard drift, where static pointwise scoring lacks the stability for reliable judgment. To address this, we introduce Ps, a unified framework that calibrates the therapeutic competence of LLMs via trajectory-anchored tournaments. We first anchor the interaction trajectory in simulation, where clients precisely control the fluid consultation process to probe multifaceted capabilities. We then anchor the battle trajectory in judgments through an efficient Swiss-system tournament, utilizing dynamic pairwise battles to yield robust Elo ratings. Beyond ranking, we demonstrate that tournament trajectories can be transformed into credible reward signals, enabling on-policy reinforcement learning to enhance LLMs' performance. Extensive experiments validate the effectiveness of PsychePass and its strong consistency with human expert judgments.
Beyond Speedup -- Utilizing KV Cache for Sampling and Reasoning ICLR26
KV caches, typically used only to speed up autoregressive decoding, encode contextual information that can be reused for downstream tasks at no extra cost. We propose treating the KV cache as a lightweight representation, eliminating the need to recompute or store full hidden states. Despite being weaker than dedicated embeddings, KV-derived representations are shown to be sufficient for two key applications: \textbf{(i) Chain-of-Embedding}, where they achieve competitive or superior performance on Llama-3.1-8B-Instruct and Qwen2-7B-Instruct; and \textbf{(ii) Fast/Slow Thinking Switching}, where they enable adaptive reasoning on Qwen3-8B and DeepSeek-R1-Distil-Qwen-14B, reducing token generation by up to $5.7\times$ with minimal accuracy loss. Our findings establish KV caches as a free, effective substrate for sampling and reasoning, opening new directions for representation reuse in LLM inference. Code: https://github.com/cmd2001/ICLR2026_KV-Embedding.
comment: Accepted by ICLR26
Less is More: Benchmarking LLM Based Recommendation Agents
Large Language Models (LLMs) are increasingly deployed for personalized product recommendations, with practitioners commonly assuming that longer user purchase histories lead to better predictions. We challenge this assumption through a systematic benchmark of four state of the art LLMs GPT-4o-mini, DeepSeek-V3, Qwen2.5-72B, and Gemini 2.5 Flash across context lengths ranging from 5 to 50 items using the REGEN dataset. Surprisingly, our experiments with 50 users in a within subject design reveal no significant quality improvement with increased context length. Quality scores remain flat across all conditions (0.17--0.23). Our findings have significant practical implications: practitioners can reduce inference costs by approximately 88\% by using context (5--10 items) instead of longer histories (50 items), without sacrificing recommendation quality. We also analyze latency patterns across providers and find model specific behaviors that inform deployment decisions. This work challenges the existing ``more context is better'' paradigm and provides actionable guidelines for cost effective LLM based recommendation systems.
SemBind: Binding Diffusion Watermarks to Semantics Against Black-Box Forgery Attacks
Latent-based watermarks, integrated into the generation process of latent diffusion models (LDMs), simplify detection and attribution of generated images. However, recent black-box forgery attacks, where an attacker needs at least one watermarked image and black-box access to the provider's model, can embed the provider's watermark into images not produced by the provider, posing outsized risk to provenance and trust. We propose SemBind, the first defense framework for latent-based watermarks that resists black-box forgery by binding latent signals to image semantics via a learned semantic masker. Trained with contrastive learning, the masker yields near-invariant codes for the same prompt and near-orthogonal codes across prompts; these codes are reshaped and permuted to modulate the target latent before any standard latent-based watermark. SemBind is generally compatible with existing latent-based watermarking schemes and keeps image quality essentially unchanged, while a simple mask-ratio parameter offers a tunable trade-off between anti-forgery strength and robustness. Across four mainstream latent-based watermark methods, our SemBind-enabled anti-forgery variants markedly reduce false acceptance under black-box forgery while providing a controllable robustness-security balance.
SuperInfer: SLO-Aware Rotary Scheduling and Memory Management for LLM Inference on Superchips
Large Language Model (LLM) serving faces a fundamental tension between stringent latency Service Level Objectives (SLOs) and limited GPU memory capacity. When high request rates exhaust the KV cache budget, existing LLM inference systems often suffer severe head-of-line (HOL) blocking. While prior work explored PCIe-based offloading, these approaches cannot sustain responsiveness under high request rates, often failing to meet tight Time-To-First-Token (TTFT) and Time-Between-Tokens (TBT) SLOs. We present SuperInfer, a high-performance LLM inference system designed for emerging Superchips (e.g., NVIDIA GH200) with tightly coupled GPU-CPU architecture via NVLink-C2C. SuperInfer introduces RotaSched, the first proactive, SLO-aware rotary scheduler that rotates requests to maintain responsiveness on Superchips, and DuplexKV, an optimized rotation engine that enables full-duplex transfer over NVLink-C2C. Evaluations on GH200 using various models and datasets show that SuperInfer improves TTFT SLO attainment rates by up to 74.7% while maintaining comparable TBT and throughput compared to state-of-the-art systems, demonstrating that SLO-aware scheduling and memory co-design unlocks the full potential of Superchips for responsive LLM serving.
comment: Accepted by MLSys '26
Delayed Feedback Modeling for Post-Click Gross Merchandise Volume Prediction: Benchmark, Insights and Approaches
The prediction objectives of online advertisement ranking models are evolving from probabilistic metrics like conversion rate (CVR) to numerical business metrics like post-click gross merchandise volume (GMV). Unlike the well-studied delayed feedback problem in CVR prediction, delayed feedback modeling for GMV prediction remains unexplored and poses greater challenges, as GMV is a continuous target, and a single click can lead to multiple purchases that cumulatively form the label. To bridge the research gap, we establish TRACE, a GMV prediction benchmark containing complete transaction sequences rising from each user click, which supports delayed feedback modeling in an online streaming manner. Our analysis and exploratory experiments on TRACE reveal two key insights: (1) the rapid evolution of the GMV label distribution necessitates modeling delayed feedback under online streaming training; (2) the label distribution of repurchase samples substantially differs from that of single-purchase samples, highlighting the need for separate modeling. Motivated by these findings, we propose RepurchasE-Aware Dual-branch prEdictoR (READER), a novel GMV modeling paradigm that selectively activates expert parameters according to repurchase predictions produced by a router. Moreover, READER dynamically calibrates the regression target to mitigate under-estimation caused by incomplete labels. Experimental results show that READER yields superior performance on TRACE over baselines, achieving a 2.19% improvement in terms of accuracy. We believe that our study will open up a new avenue for studying online delayed feedback modeling for GMV prediction, and our TRACE benchmark with the gathered insights will facilitate future research and application in this promising direction. Our code and dataset are available at https://github.com/alimama-tech/OnlineGMV .
comment: This paper has been accepted by the ACM Web Conference (WWW) 2026. This is the camera-ready version. Please refer to the published version for citation once available
Truthfulness Despite Weak Supervision: Evaluating and Training LLMs Using Peer Prediction ICLR 2026
The evaluation and post-training of large language models (LLMs) rely on supervision, but strong supervision for difficult tasks is often unavailable, especially when evaluating frontier models. In such cases, models are demonstrated to exploit evaluations built on such imperfect supervision, leading to deceptive results. However, underutilized in LLM research, a wealth of mechanism design research focuses on game-theoretic incentive compatibility, i.e., eliciting honest and informative answers with weak supervision. Drawing from this literature, we introduce the peer prediction method for model evaluation and post-training. It rewards honest and informative answers over deceptive and uninformative ones, using a metric based on mutual predictability and without requiring ground truth labels. We demonstrate the method's effectiveness and resistance to deception, with both theoretical guarantees and empirical validation on models with up to 405B parameters. We show that training an 8B model with peer prediction-based reward recovers most of the drop in truthfulness due to prior malicious finetuning, even when the reward is produced by a 0.135B language model with no finetuning. On the evaluation front, in contrast to LLM-as-a-Judge which requires strong and trusted judges, we discover an inverse scaling property in peer prediction, where, surprisingly, resistance to deception is strengthened as the capability gap between the experts and participants widens, enabling reliable evaluation of strong models with weak supervision. In particular, LLM-as-a-Judge become worse than random guess when facing deceptive models 5-20x the judge's size, while peer prediction thrives when such gaps are large, including in cases with over 100x size difference.
comment: ICLR 2026
Cheap2Rich: A Multi-Fidelity Framework for Data Assimilation and System Identification of Multiscale Physics -- Rotating Detonation Engines
Bridging the sim2real gap between computationally inexpensive models and complex physical systems remains a central challenge in machine learning applications to engineering problems, particularly in multi-scale settings where reduced-order models typically capture only dominant dynamics. In this work, we present Cheap2Rich, a multi-scale data assimilation framework that reconstructs high-fidelity state spaces from sparse sensor histories by combining a fast low-fidelity prior with learned, interpretable discrepancy corrections. We demonstrate the performance on rotating detonation engines (RDEs), a challenging class of systems that couple detonation-front propagation with injector-driven unsteadiness, mixing, and stiff chemistry across disparate scales. Our approach successfully reconstructs high-fidelity RDE states from sparse measurements while isolating physically meaningful discrepancy dynamics associated with injector-driven effects. The results highlight a general multi-fidelity framework for data assimilation and system identification in complex multi-scale systems, enabling rapid design exploration and real-time monitoring and control while providing interpretable discrepancy dynamics. Code for this project is is available at: github.com/kro0l1k/Cheap2Rich.
A Learning-based Framework for Spatial Impulse Response Compensation in 3D Photoacoustic Computed Tomography
Photoacoustic computed tomography (PACT) is a promising imaging modality that combines the advantages of optical contrast with ultrasound detection. Utilizing ultrasound transducers with larger surface areas can improve detection sensitivity. However, when computationally efficient analytic reconstruction methods that neglect the spatial impulse responses (SIRs) of the transducer are employed, the spatial resolution of the reconstructed images will be compromised. Although optimization-based reconstruction methods can explicitly account for SIR effects, their computational cost is generally high, particularly in three-dimensional (3D) applications. To address the need for accurate but rapid 3D PACT image reconstruction, this study presents a framework for establishing a learned SIR compensation method that operates in the data domain. The learned compensation method maps SIR-corrupted PACT measurement data to compensated data that would have been recorded by idealized point-like transducers. Subsequently, the compensated data can be used with a computationally efficient reconstruction method that neglects SIR effects. Two variants of the learned compensation model are investigated that employ a U-Net model and a specifically designed, physics-inspired model, referred to as Deconv-Net. A fast and analytical training data generation procedure is also a component of the presented framework. The framework is rigorously validated in virtual imaging studies, demonstrating resolution improvement and robustness to noise variations, object complexity, and sound speed heterogeneity. When applied to in-vivo breast imaging data, the learned compensation models revealed fine structures that had been obscured by SIR-induced artifacts. To our knowledge, this is the first demonstration of learned SIR compensation in 3D PACT imaging.
comment: Submitted to IEEE TMI
One Word is Enough: Minimal Adversarial Perturbations for Neural Text Ranking
Neural ranking models (NRMs) achieve strong retrieval effectiveness, yet prior work has shown they are vulnerable to adversarial perturbations. We revisit this robustness question with a minimal, query-aware attack that promotes a target document by inserting or substituting a single, semantically aligned word - the query center. We study heuristic and gradient-guided variants, including a white-box method that identifies influential insertion points. On TREC-DL 2019/2020 with BERT and monoT5 re-rankers, our single-word attacks achieve up to 91% success while modifying fewer than two tokens per document on average, achieving competitive rank and score boosts with far fewer edits under a comparable white-box setup to ensure fair evaluation against PRADA. We also introduce new diagnostic metrics to analyze attack sensitivity beyond aggregate success rates. Our analysis reveals a Goldilocks zone in which mid-ranked documents are most vulnerable. These findings demonstrate practical risks and motivate future defenses for robust neural ranking.
comment: To appear at ECIR 2026
Memory Retrieval in Transformers: Insights from The Encoding Specificity Principle
While explainable artificial intelligence (XAI) for large language models (LLMs) remains an evolving field with many unresolved questions, increasing regulatory pressures have spurred interest in its role in ensuring transparency, accountability, and privacy-preserving machine unlearning. Despite recent advances in XAI have provided some insights, the specific role of attention layers in transformer based LLMs remains underexplored. This study investigates the memory mechanisms instantiated by attention layers, drawing on prior research in psychology and computational psycholinguistics that links Transformer attention to cue based retrieval in human memory. In this view, queries encode the retrieval context, keys index candidate memory traces, attention weights quantify cue trace similarity, and values carry the encoded content, jointly enabling the construction of a context representation that precedes and facilitates memory retrieval. Guided by the Encoding Specificity Principle, we hypothesize that the cues used in the initial stage of retrieval are instantiated as keywords. We provide converging evidence for this keywords-as-cues hypothesis. In addition, we isolate neurons within attention layers whose activations selectively encode and facilitate the retrieval of context-defining keywords. Consequently, these keywords can be extracted from identified neurons and further contribute to downstream applications such as unlearning.
The Forecast After the Forecast: A Post-Processing Shift in Time Series
Time series forecasting has long been dominated by advances in model architecture, with recent progress driven by deep learning and hybrid statistical techniques. However, as forecasting models approach diminishing returns in accuracy, a critical yet underexplored opportunity emerges: the strategic use of post-processing. In this paper, we address the last-mile gap in time-series forecasting, which is to improve accuracy and uncertainty without retraining or modifying a deployed backbone. We propose $δ$-Adapter, a lightweight, architecture-agnostic way to boost deployed time series forecasters without retraining. $δ$-Adapter learns tiny, bounded modules at two interfaces: input nudging (soft edits to covariates) and output residual correction. We provide local descent guarantees, $O(δ)$ drift bounds, and compositional stability for combined adapters. Meanwhile, it can act as a feature selector by learning a sparse, horizon-aware mask over inputs to select important features, thereby improving interpretability. In addition, it can also be used as a distribution calibrator to measure uncertainty. Thus, we introduce a Quantile Calibrator and a Conformal Corrector that together deliver calibrated, personalized intervals with finite-sample coverage. Our experiments across diverse backbones and datasets show that $δ$-Adapter improves accuracy and calibration with negligible compute and no interface changes.
comment: 30 Pages
Empirical Likelihood-Based Fairness Auditing: Distribution-Free Certification and Flagging
Machine learning models in high-stakes applications, such as recidivism prediction and automated personnel selection, often exhibit systematic performance disparities across sensitive subpopulations, raising critical concerns regarding algorithmic bias. Fairness auditing addresses these risks through two primary functions: certification, which verifies adherence to fairness constraints; and flagging, which isolates specific demographic groups experiencing disparate treatment. However, existing auditing techniques are frequently limited by restrictive distributional assumptions or prohibitive computational overhead. We propose a novel empirical likelihood-based (EL) framework that constructs robust statistical measures for model performance disparities. Unlike traditional methods, our approach is non-parametric; the proposed disparity statistics follow asymptotically chi-square or mixed chi-square distributions, ensuring valid inference without assuming underlying data distributions. This framework uses a constrained optimization profile that admits stable numerical solutions, facilitating both large-scale certification and efficient subpopulation discovery. Empirically, the EL methods outperform bootstrap-based approaches, yielding coverage rates closer to nominal levels while reducing computational latency by several orders of magnitude. We demonstrate the practical utility of this framework on the COMPAS dataset, where it successfully flags intersectional biases, specifically identifying a significantly higher positive prediction rate for African-American males under 25 and a systemic under-prediction for Caucasian females relative to the population mean.
comment: 55 pages, 9 figures; Code available at: https://github.com/Tang-Jay/ELFA; Author list is in alphabetical order by last names
Robust SDE Parameter Estimation Under Missing Time Information Setting
Recent advances in stochastic differential equations (SDEs) have enabled robust modeling of real-world dynamical processes across diverse domains, such as finance, health, and systems biology. However, parameter estimation for SDEs typically relies on accurately timestamped observational sequences. When temporal ordering information is corrupted, missing, or deliberately hidden (e.g., for privacy), existing estimation methods often fail. In this paper, we investigate the conditions under which temporal order can be recovered and introduce a novel framework that simultaneously reconstructs temporal information and estimates SDE parameters. Our approach exploits asymmetries between forward and backward processes, deriving a score-matching criterion to infer the correct temporal order between pairs of observations. We then recover the total order via a sorting procedure and estimate SDE parameters from the reconstructed sequence using maximum likelihood. Finally, we conduct extensive experiments on synthetic and real-world datasets to demonstrate the effectiveness of our method, extending parameter estimation to settings with missing temporal order and broadening applicability in sensitive domains.
C2:Cross learning module enhanced decision transformer with Constraint-aware loss for auto-bidding
Decision Transformer (DT) shows promise for generative auto-bidding by capturing temporal dependencies, but suffers from two critical limitations: insufficient cross-correlation modeling among state, action, and return-to-go (RTG) sequences, and indiscriminate learning of optimal/suboptimal behaviors. To address these, we propose C2, a novel framework enhancing DT with two core innovations: (1) a Cross Learning Block (CLB) via cross-attention to strengthen inter-sequence correlation modeling; (2) a Constraint-aware Loss (CL) incorporating budget and Cost-Per-Acquisition (CPA) constraints for selective learning of optimal trajectories. Extensive offline evaluations on the AuctionNet dataset demonstrate consistent performance gains (up to 3.23\% over state-of-the-art GAVE) across diverse budget settings; ablation studies verify the complementary synergy of CLB and CL, confirming C2's superiority in auto-bidding. The code for reproducing our results is available at: https://github.com/Dingjinren/C2.
HE-SNR: Uncovering Latent Logic via Entropy for Guiding Mid-Training on SWE-BENCH
SWE-bench has emerged as the premier benchmark for evaluating Large Language Models on complex software engineering tasks. While these capabilities are fundamentally acquired during the mid-training phase and subsequently elicited during Supervised Fine-Tuning (SFT), there remains a critical deficit in metrics capable of guiding mid-training effectively. Standard metrics such as Perplexity (PPL) are compromised by the "Long-Context Tax" and exhibit weak correlation with downstream SWE performance. In this paper, we bridge this gap by first introducing a rigorous data filtering strategy. Crucially, we propose the Entropy Compression Hypothesis, redefining intelligence not by scalar Top-1 compression, but by the capacity to structure uncertainty into Entropy-Compressed States of low orders ("reasonable hesitation"). Grounded in this fine-grained entropy analysis, we formulate a novel metric, HE-SNR (High-Entropy Signal-to-Noise Ratio). Validated on industrial-scale Mixture-of-Experts (MoE) models across varying context windows (32K/128K), our approach demonstrates superior robustness and predictive power. This work provides both the theoretical foundation and practical tools for optimizing the latent potential of LLMs in complex engineering domains.
comment: 21 pages, 15 figures
Efficient Evaluation of LLM Performance with Statistical Guarantees
Exhaustively evaluating many large language models (LLMs) on a large suite of benchmarks is expensive. We cast benchmarking as finite-population inference and, under a fixed query budget, seek tight confidence intervals (CIs) for model accuracy with valid frequentist coverage. We propose Factorized Active Querying (FAQ), which (a) leverages historical information through a Bayesian factor model; (b) adaptively selects questions using a hybrid variance-reduction/active-learning sampling policy; and (c) maintains validity through Proactive Active Inference -- a finite-population extension of active inference (Zrnic & Candes, 2024) that enables direct question selection while preserving coverage. With negligible overhead cost, FAQ delivers up to $5\times$ effective sample size gains over strong baselines on two benchmark suites, across varying historical-data missingness levels: this means that it matches the CI width of uniform sampling while using up to $5\times$ fewer queries. We release our source code and our curated datasets to support reproducible evaluation and future research.
comment: 24 pages, 10 figures
Order-Optimal Sample Complexity of Rectified Flows
Recently, flow-based generative models have shown superior efficiency compared to diffusion models. In this paper, we study rectified flow models, which constrain transport trajectories to be linear from the base distribution to the data distribution. This structural restriction greatly accelerates sampling, often enabling high-quality generation with a single Euler step. Under standard assumptions on the neural network classes used to parameterize the velocity field and data distribution, we prove that rectified flows achieve sample complexity $\tilde{O}(\varepsilon^{-2})$. This improves on the best known $O(\varepsilon^{-4})$ bounds for flow matching model and matches the optimal rate for mean estimation. Our analysis exploits the particular structure of rectified flows: because the model is trained with a squared loss along linear paths, the associated hypothesis class admits a sharply controlled localized Rademacher complexity. This yields the improved, order-optimal sample complexity and provides a theoretical explanation for the strong empirical performance of rectified flow models.
Certificate-Guided Pruning for Stochastic Lipschitz Optimization
We study black-box optimization of Lipschitz functions under noisy evaluations. Existing adaptive discretization methods implicitly avoid suboptimal regions but do not provide explicit certificates of optimality or measurable progress guarantees. We introduce \textbf{Certificate-Guided Pruning (CGP)}, which maintains an explicit \emph{active set} $A_t$ of potentially optimal points via confidence-adjusted Lipschitz envelopes. Any point outside $A_t$ is certifiably suboptimal with high probability, and under a margin condition with near-optimality dimension $α$, we prove $\Vol(A_t)$ shrinks at a controlled rate yielding sample complexity $\tildeO(\varepsilon^{-(2+α)})$. We develop three extensions: CGP-Adaptive learns $L$ online with $O(\log T)$ overhead; CGP-TR scales to $d > 50$ via trust regions with local certificates; and CGP-Hybrid switches to GP refinement when local smoothness is detected. Experiments on 12 benchmarks ($d \in [2, 100]$) show CGP variants match or exceed strong baselines while providing principled stopping criteria via certificate volume.
Proactive SFC Provisioning with Forecast-Driven DRL in Data Centers
Service Function Chaining (SFC) requires efficient placement of Virtual Network Functions (VNFs) to satisfy diverse service requirements while maintaining high resource utilization in Data Centers (DCs). Conventional static resource allocation often leads to overprovisioning or underprovisioning due to the dynamic nature of traffic loads and application demands. To address this challenge, we propose a hybrid forecast-driven Deep reinforcement learning (DRL) framework that combines predictive intelligence with SFC provisioning. Specifically, we leverage DRL to generate datasets capturing DC resource utilization and service demands, which are then used to train deep learning forecasting models. Using Optuna-based hyperparameter optimization, the best-performing models, Spatio-Temporal Graph Neural Network, Temporal Graph Neural Network, and Long Short-Term Memory, are combined into an ensemble to enhance stability and accuracy. The ensemble predictions are integrated into the DC selection process, enabling proactive placement decisions that consider both current and future resource availability. Experimental results demonstrate that the proposed method not only sustains high acceptance ratios for resource-intensive services such as Cloud Gaming and VoIP but also significantly improves acceptance ratios for latency-critical categories such as Augmented Reality increases from 30% to 50%, while Industry 4.0 improves from 30% to 45%. Consequently, the prediction-based model achieves significantly lower E2E latencies of 20.5%, 23.8%, and 34.8% reductions for VoIP, Video Streaming, and Cloud Gaming, respectively. This strategy ensures more balanced resource allocation, and reduces contention.
comment: 6 pages, 3 figures, Accepted to IEEE International Conference on Communications (ICC) 2026
Quantum statistics from classical simulations via generative Gibbs sampling
Accurate simulation of nuclear quantum effects is essential for molecular modeling but expensive using path integral molecular dynamics (PIMD). We present GG-PI, a ring-polymer-based framework that combines generative modeling of the single-bead conditional density with Gibbs sampling to recover quantum statistics from classical simulation data. GG-PI uses inexpensive standard classical simulations or existing data for training and allows transfer across temperatures without retraining. On standard test systems, GG-PI significantly reduces wall clock time compared to PIMD. Our approach extends easily to a wide range of problems with similar Markov structure.
comment: 12 pages, 9 figures
ProFlow: Zero-Shot Physics-Consistent Sampling via Proximal Flow Guidance
Inferring physical fields from sparse observations while strictly satisfying partial differential equations (PDEs) is a fundamental challenge in computational physics. Recently, deep generative models offer powerful data-driven priors for such inverse problems, yet existing methods struggle to enforce hard physical constraints without costly retraining or disrupting the learned generative prior. Consequently, there is a critical need for a sampling mechanism that can reconcile strict physical consistency and observational fidelity with the statistical structure of the pre-trained prior. To this end, we present ProFlow, a proximal guidance framework for zero-shot physics-consistent sampling, defined as inferring solutions from sparse observations using a fixed generative prior without task-specific retraining. The algorithm employs a rigorous two-step scheme that alternates between: (\romannumeral1) a terminal optimization step, which projects the flow prediction onto the intersection of the physically and observationally consistent sets via proximal minimization; and (\romannumeral2) an interpolation step, which maps the refined state back to the generative trajectory to maintain consistency with the learned flow probability path. This procedure admits a Bayesian interpretation as a sequence of local maximum a posteriori (MAP) updates. Comprehensive benchmarks on Poisson, Helmholtz, Darcy, and viscous Burgers' equations demonstrate that ProFlow achieves superior physical and observational consistency, as well as more accurate distributional statistics, compared to state-of-the-art diffusion- and flow-based baselines.
Parametric and Generative Forecasts of Day-Ahead Market Curves for Storage Optimization
We present two machine learning frameworks for forecasting aggregated curves and optimizing storage in the EPEX SPOT day-ahead market. First, a fast parametric model forecasts hourly demand and supply curves in a low-dimensional and grid-robust representation, with minimum and maximum volumes combined with a Chebyshev polynomial for the elastic segment. The model enables daily use with low error and clear interpretability. Second, for a more comprehensive analysis, though less suited to daily operation, we employ generative models that learn the joint distribution of 24-hour order-level submissions given weather and fuel variables. These models generate synthetic daily scenarios of individual buy and sell orders, which, once aggregated, yield hourly supply and demand curves. Based on these forecasts, we optimize a price-making storage strategy, quantify revenue distributions, and highlight the price-compression effect with lower peaks, higher off-peak levels, and diminishing returns as capacity expands.
comment: 46 pages, 41 figures
An Accounting Identity for Algorithmic Fairness
We derive an accounting identity for predictive models that links accuracy with common fairness criteria. The identity shows that for globally calibrated models, the weighted sums of miscalibration within groups and error imbalance across groups is equal to a "total unfairness budget." For binary outcomes, this budget is the model's mean-squared error times the difference in group prevalence across outcome classes. The identity nests standard impossibility results as special cases, while also describing inherent tradeoffs when one or more fairness measures are not perfectly satisfied. The results suggest that accuracy and fairness are best viewed as complements in binary prediction tasks: increasing accuracy necessarily shrinks the total unfairness budget and vice-versa. Experiments on benchmark data confirm the theory and show that many fairness interventions largely substitute between fairness violations, and when they reduce accuracy they tend to expand the total unfairness budget. The results extend naturally to prediction tasks with non-binary outcomes, illustrating how additional outcome information can relax fairness incompatibilities and identifying conditions under which the binary-style impossibility does and does not extend to regression tasks.
Spark: Strategic Policy-Aware Exploration via Dynamic Branching for Long-Horizon Agentic Learning
Reinforcement learning has empowered large language models to act as intelligent agents, yet training them for long-horizon tasks remains challenging due to the scarcity of high-quality trajectories, especially under limited resources. Existing methods typically scale up rollout sizes and indiscriminately allocate computational resources among intermediate steps. Such attempts inherently waste substantial computation budget on trivial steps while failing to guarantee sample quality. To address this, we propose \textbf{Spark} (\textbf{S}trategic \textbf{P}olicy-\textbf{A}ware explo\textbf{R}ation via \textbf{K}ey-state dynamic branching), a novel framework that selectively branches at critical decision states for resource-efficient exploration. Our key insight is to activate adaptive branching exploration at critical decision points to probe promising trajectories, thereby achieving precise resource allocation that prioritizes sampling quality over blind coverage. This design leverages the agent's intrinsic decision-making signals to reduce dependence on human priors, enabling the agent to autonomously expand exploration and achieve stronger generalization. Experiments across diverse tasks (e.g., embodied planning), demonstrate that \textsc{Spark} achieves superior success rates with significantly fewer training samples, exhibiting robust generalization even in unseen scenarios.
Hyperparameter Transfer with Mixture-of-Expert Layers
Mixture-of-Experts (MoE) layers have emerged as an important tool in scaling up modern neural networks by decoupling total trainable parameters from activated parameters in the forward pass for each token. However, sparse MoEs add complexity to training due to (i) new trainable parameters (router weights) that, like all other parameter groups, require hyperparameter (HP) tuning; (ii) new architecture scale dimensions (number of and size of experts) that must be chosen and potentially taken large. To make HP selection cheap and reliable, we propose a new parameterization for transformer models with MoE layers when scaling model width, depth, number of experts, and expert (hidden) size. Our parameterization is justified by a novel dynamical mean-field theory (DMFT) analysis. When varying different model dimensions trained at a fixed token budget, we find empirically that our parameterization enables reliable HP transfer across models from 51M to over 2B total parameters. We further take HPs identified from sweeping small models on a short token horizon to train larger models on longer horizons and report performant model behaviors.
comment: 25 Pages
Minimum-Cost Network Flow with Dual Predictions AAAI 2026
Recent work has shown that machine-learned predictions can provably improve the performance of classic algorithms. In this work, we propose the first minimum-cost network flow algorithm augmented with a dual prediction. Our method is based on a classic minimum-cost flow algorithm, namely $\varepsilon$-relaxation. We provide time complexity bounds in terms of the infinity norm prediction error, which is both consistent and robust. We also prove sample complexity bounds for PAC-learning the prediction. We empirically validate our theoretical results on two applications of minimum-cost flow, i.e., traffic networks and chip escape routing, in which we learn a fixed prediction, and a feature-based neural network model to infer the prediction, respectively. Experimental results illustrate $12.74\times$ and $1.64\times$ average speedup on two applications.
comment: accepted by AAAI 2026
DeRaDiff: Denoising Time Realignment of Diffusion Models
Recent advances align diffusion models with human preferences to increase aesthetic appeal and mitigate artifacts and biases. Such methods aim to maximize a conditional output distribution aligned with higher rewards whilst not drifting far from a pretrained prior. This is commonly enforced by KL (Kullback Leibler) regularization. As such, a central issue still remains: how does one choose the right regularization strength? Too high of a strength leads to limited alignment and too low of a strength leads to "reward hacking". This renders the task of choosing the correct regularization strength highly non-trivial. Existing approaches sweep over this hyperparameter by aligning a pretrained model at multiple regularization strengths and then choose the best strength. Unfortunately, this is prohibitively expensive. We introduce DeRaDiff, a denoising time realignment procedure that, after aligning a pretrained model once, modulates the regularization strength during sampling to emulate models trained at other regularization strengths without any additional training or finetuning. Extending decoding-time realignment from language to diffusion models, DeRaDiff operates over iterative predictions of continuous latents by replacing the reverse step reference distribution by a geometric mixture of an aligned and reference posterior, thus giving rise to a closed form update under common schedulers and a single tunable parameter, lambda, for on the fly control. Our experiments show that across multiple text image alignment and image-quality metrics, our method consistently provides a strong approximation for models aligned entirely from scratch at different regularization strengths. Thus, our method yields an efficient way to search for the optimal strength, eliminating the need for expensive alignment sweeps and thereby substantially reducing computational costs.
Bias-Reduced Estimation of Finite Mixtures: An Application to Latent Group Structures in Panel Data
Finite mixture models are widely used in econometric analyses to capture unobserved heterogeneity. This paper shows that maximum likelihood estimation of finite mixtures of parametric densities can suffer from substantial finite-sample bias in all parameters under mild regularity conditions. The bias arises from the influence of outliers in component densities with unbounded or large support and increases with the degree of overlap among mixture components. I show that maximizing the classification-mixture likelihood function, equipped with a consistent classifier, yields parameter estimates that are less biased than those obtained by standard maximum likelihood estimation (MLE). I then derive the asymptotic distribution of the resulting estimator and provide conditions under which oracle efficiency is achieved. Monte Carlo simulations show that conventional mixture MLE exhibits pronounced finite-sample bias, which diminishes as the sample size or the statistical distance between component densities tends to infinity. The simulations further show that the proposed estimation strategy generally outperforms standard MLE in finite samples in terms of both bias and mean squared errors under relatively weak assumptions. An empirical application to latent group panel structures using health administrative data shows that the proposed approach reduces out-of-sample prediction error by approximately 17.6% relative to the best results obtained from standard MLE procedures.
Meta-Cognitive Reinforcement Learning with Self-Doubt and Recovery
Robust reinforcement learning methods typically focus on suppressing unreliable experiences or corrupted rewards, but they lack the ability to reason about the reliability of their own learning process. As a result, such methods often either overreact to noise by becoming overly conservative or fail catastrophically when uncertainty accumulates. In this work, we propose a meta-cognitive reinforcement learning framework that enables an agent to assess, regulate, and recover its learning behavior based on internally estimated reliability signals. The proposed method introduces a meta-trust variable driven by Value Prediction Error Stability (VPES), which modulates learning dynamics via fail-safe regulation and gradual trust recovery. Experiments on continuous-control benchmarks with reward corruption demonstrate that recovery-enabled meta-cognitive control achieves higher average returns and significantly reduces late-stage training failures compared to strong robustness baselines.
On the Computational Complexity of Performative Prediction
Performative prediction captures the phenomenon where deploying a predictive model shifts the underlying data distribution. While simple retraining dynamics are known to converge linearly when the performative effects are weak ($ρ< 1$), the complexity in the regime $ρ> 1$ was hitherto open. In this paper, we establish a sharp phase transition: computing an $ε$-performatively stable point is PPAD-complete -- and thus polynomial-time equivalent to Nash equilibria in general-sum games -- even when $ρ= 1 + O(ε)$. This intractability persists even in the ostensibly simple setting with a quadratic loss function and linear distribution shifts. One of our key technical contributions is to extend this PPAD-hardness result to general convex domains, which is of broader interest in the complexity of variational inequalities. Finally, we address the special case of strategic classification, showing that computing a strategic local optimum is PLS-hard.
Causal-Driven Feature Evaluation for Cross-Domain Image Classification
Out-of-distribution (OOD) generalization remains a fundamental challenge in real-world classification, where test distributions often differ substantially from training data. Most existing approaches pursue domain-invariant representations, implicitly assuming that invariance implies reliability. However, features that are invariant across domains are not necessarily causally effective for prediction. In this work, we revisit OOD classification from a causal perspective and propose to evaluate learned representations based on their necessity and sufficiency under distribution shift. We introduce an explicit segment-level framework that directly measures causal effectiveness across domains, providing a more faithful criterion than invariance alone. Experiments on multi-domain benchmarks demonstrate consistent improvements in OOD performance, particularly under challenging domain shifts, highlighting the value of causal evaluation for robust generalization.
comment: Preprint
NeuraLSP: An Efficient and Rigorous Neural Left Singular Subspace Preconditioner for Conjugate Gradient Methods
Numerical techniques for solving partial differential equations (PDEs) are integral for many fields across science and engineering. Such techniques usually involve solving large, sparse linear systems, where preconditioning methods are critical. In recent years, neural methods, particularly graph neural networks (GNNs), have demonstrated their potential through accelerated convergence. Nonetheless, to extract connective structures, existing techniques aggregate discretized system matrices into graphs, and suffer from rank inflation and a suboptimal convergence rate. In this paper, we articulate NeuraLSP, a novel neural preconditioner combined with a novel loss metric that leverages the left singular subspace of the system matrix's near-nullspace vectors. By compressing spectral information into a fixed low-rank operator, our method exhibits both theoretical guarantees and empirical robustness to rank inflation, affording up to a 53% speedup. Besides the theoretical guarantees for our newly-formulated loss function, our comprehensive experimental results across diverse families of PDEs also substantiate the aforementioned theoretical advances.
MAPLE: Self-supervised Learning-Enhanced Nonlinear Dimensionality Reduction for Visual Analysis
We present a new nonlinear dimensionality reduction method, MAPLE, that enhances UMAP by improving manifold modeling. MAPLE employs a self-supervised learning approach to more efficiently encode low-dimensional manifold geometry. Central to this approach are maximum manifold capacity representations (MMCRs), which help untangle complex manifolds by compressing variances among locally similar data points while amplifying variance among dissimilar data points. This design is particularly effective for high-dimensional data with substantial intra-cluster variance and curved manifold structures, such as biological or image data. Our qualitative and quantitative evaluations demonstrate that MAPLE can produce clearer visual cluster separations and finer subcluster resolution than UMAP while maintaining comparable computational cost.
Loss Landscape Geometry and the Learning of Symmetries: Or, What Influence Functions Reveal About Robust Generalization
We study how neural emulators of partial differential equation solution operators internalize physical symmetries by introducing an influence-based diagnostic that measures the propagation of parameter updates between symmetry-related states, defined as the metric-weighted overlap of loss gradients evaluated along group orbits. This quantity probes the local geometry of the learned loss landscape and goes beyond forward-pass equivariance tests by directly assessing whether learning dynamics couple physically equivalent configurations. Applying our diagnostic to autoregressive fluid flow emulators, we show that orbit-wise gradient coherence provides the mechanism for learning to generalize over symmetry transformations and indicates when training selects a symmetry compatible basin. The result is a novel technique for evaluating if surrogate models have internalized symmetry properties of the known solution operator.
Local Duality for Sparse Support Vector Machines
Due to the rise of cardinality minimization in optimization, sparse support vector machines (SSVMs) have attracted much attention lately and show certain empirical advantages over convex SVMs. A common way to derive an SSVM is to add a cardinality function such as $\ell_0$-norm to the dual problem of a convex SVM. However, this process lacks theoretical justification. This paper fills the gap by developing a local duality theory for such an SSVM formulation and exploring its relationship with the hinge-loss SVM (hSVM) and the ramp-loss SVM (rSVM). In particular, we prove that the derived SSVM is exactly the dual problem of the 0/1-loss SVM, and the linear representer theorem holds for their local solutions. The local solution of SSVM also provides guidelines on selecting hyperparameters of hSVM and rSVM. {Under specific conditions, we show that a sequence of global solutions of hSVM converges to a local solution of 0/1-loss SVM. Moreover, a local minimizer of 0/1-loss SVM is a local minimizer of rSVM.} This explains why a local solution induced by SSVM outperforms hSVM and rSVM in the prior empirical study. We further conduct numerical tests on real datasets and demonstrate potential advantages of SSVM by working with locally nice solutions proposed in this paper.
What's the plan? Metrics for implicit planning in LLMs and their application to rhyme generation and question answering ICLR 2026
Prior work suggests that language models, while trained on next token prediction, show implicit planning behavior: they may select the next token in preparation to a predicted future token, such as a likely rhyming word, as supported by a prior qualitative study of Claude 3.5 Haiku using a cross-layer transcoder. We propose much simpler techniques for assessing implicit planning in language models. With case studies on rhyme poetry generation and question answering, we demonstrate that our methodology easily scales to many models. Across models, we find that the generated rhyme (e.g. "-ight") or answer to a question ("whale") can be manipulated by steering at the end of the preceding line with a vector, affecting the generation of intermediate tokens leading up to the rhyme or answer word. We show that implicit planning is a universal mechanism, present in smaller models than previously thought, starting from 1B parameters. Our methodology offers a widely applicable direct way to study implicit planning abilities of LLMs. More broadly, understanding planning abilities of language models can inform decisions in AI safety and control.
comment: 41 pages, 34 figures, Accepted at ICLR 2026, Code available at https://github.com/Jim-Maar/implicit-planning-in-llms
PASS: Ambiguity Guided Subsets for Scalable Classical and Quantum Constrained Clustering
Pairwise-constrained clustering augments unsupervised partitioning with side information by enforcing must-link (ML) and cannot-link (CL) constraints between specific samples, yielding labelings that respect known affinities and separations. However, ML and CL constraints add an extra layer of complexity to the clustering problem, with current methods struggling in data scalability, especially in niche applications like quantum or quantum-hybrid clustering. We propose PASS, a pairwise-constraints and ambiguity-driven subset selection framework that preserves ML and CL constraints satisfaction while allowing scalable, high-quality clustering solution. PASS collapses ML constraints into pseudo-points and offers two selectors: a constraint-aware margin rule that collects near-boundary points and all detected CL violations, and an information-geometric rule that scores points via a Fisher-Rao distance derived from soft assignment posteriors, then selects the highest-information subset under a simple budget. Across diverse benchmarks, PASS attains competitive SSE at substantially lower cost than exact or penalty-based methods, and remains effective in regimes where prior approaches fail.
comment: 25 pages, 8 figures, preprint
Spectral Ghost in Representation Learning: from Component Analysis to Self-Supervised Learning
Self-supervised learning (SSL) have improved empirical performance by unleashing the power of unlabeled data for practical applications. Specifically, SSL extracts the representation from massive unlabeled data, which will be transferred to a plenty of down streaming tasks with limited data. The significant improvement on diverse applications of representation learning has attracted increasing attention, resulting in a variety of dramatically different self-supervised learning objectives for representation extraction, with an assortment of learning procedures, but the lack of a clear and unified understanding. Such an absence hampers the ongoing development of representation learning, leaving a theoretical understanding missing, principles for efficient algorithm design unclear, and the use of representation learning methods in practice unjustified. The urgency for a unified framework is further motivated by the rapid growth in representation learning methods. In this paper, we are therefore compelled to develop a principled foundation of representation learning. We first theoretically investigate the sufficiency of the representation from a spectral representation view, which reveals the spectral essence of the existing successful SSL algorithms and paves the path to a unified framework for understanding and analysis. Such a framework work also inspires the development of more efficient and easy-to-use representation learning algorithms with principled way in real-world applications.
comment: 43 pages, 3 figures
LogSieve: Task-Aware CI Log Reduction for Sustainable LLM-Based Analysis
Logs are essential for understanding Continuous Integration (CI) behavior, particularly for diagnosing build failures and performance regressions. Yet their growing volume and verbosity make both manual inspection and automated analysis increasingly costly, time-consuming, and environmentally costly. While prior work has explored log compression, anomaly detection, and LLM-based log analysis, most efforts target structured system logs rather than the unstructured, noisy, and verbose logs typical of CI workflows. We present LogSieve, a lightweight, RCA-aware and semantics-preserving log reduction technique that filters low-information lines while retaining content relevant to downstream reasoning. Evaluated on CI logs from 20 open-source Android projects using GitHub Actions, LogSieve achieves an average 42% reduction in lines and 40% reduction in tokens with minimal semantic loss. This pre-inference reduction lowers computational cost and can proportionally reduce energy use (and associated emissions) by decreasing the volume of data processed during LLM inference. Compared with structure-first baselines (LogZip and random-line removal), LogSieve preserves much higher semantic and categorical fidelity (Cosine = 0.93, GPTScore = 0.93, 80% exact-match accuracy). Embedding-based classifiers automate relevance detection with near-human accuracy (97%), enabling scalable and sustainable integration of semantics-aware filtering into CI workflows. LogSieve thus bridges log management and LLM reasoning, offering a practical path toward greener and more interpretable CI automation.
comment: Preprint. Accepted for presentation at Mining Software Repositories (MSR'26), co-located ICSE 2026. The final version will appear in the ACM Digital Library as part of the MSR'26 conference proceedings
Scaling Next-Brain-Token Prediction for MEG
We present a large autoregressive model for source-space MEG that scales next-token prediction to long context across datasets and scanners: handling a corpus of over 500 hours and thousands of sessions across the three largest MEG datasets. A modified SEANet-style vector-quantizer reduces multichannel MEG into a flattened token stream on which we train a Qwen2.5-VL backbone from scratch to predict the next brain token and to recursively generate minutes of MEG from up to a minute of context. To evaluate long-horizon generation, we introduce three task-matched tests: (i) on-manifold stability via generated-only drift compared to the time-resolved distribution of real sliding windows, and (ii) conditional specificity via correct context versus prompt-swap controls using a neurophysiologically grounded metric set. We train on CamCAN and Omega and run all analyses on held-out MOUS, establishing cross-dataset generalization. Across metrics, generations remain relatively stable over long rollouts and are closer to the correct continuation than swapped controls. Code available at: https://github.com/ricsinaruto/brain-gen.
LLMStinger: Jailbreaking LLMs using RL fine-tuned LLMs AAAI 2025
We introduce LLMStinger, a novel approach that leverages Large Language Models (LLMs) to automatically generate adversarial suffixes for jailbreak attacks. Unlike traditional methods, which require complex prompt engineering or white-box access, LLMStinger uses a reinforcement learning (RL) loop to fine-tune an attacker LLM, generating new suffixes based on existing attacks for harmful questions from the HarmBench benchmark. Our method significantly outperforms existing red-teaming approaches (we compared against 15 of the latest methods), achieving a +57.2% improvement in Attack Success Rate (ASR) on LLaMA2-7B-chat and a +50.3% ASR increase on Claude 2, both models known for their extensive safety measures. Additionally, we achieved a 94.97% ASR on GPT-3.5 and 99.4% on Gemma-2B-it, demonstrating the robustness and adaptability of LLMStinger across open and closed-source models.
comment: Accepted at AAAI 2025
HeuriGym: An Agentic Benchmark for LLM-Crafted Heuristics in Combinatorial Optimization ICLR'26
While Large Language Models (LLMs) have demonstrated significant advancements in reasoning and agent-based problem-solving, current evaluation methodologies fail to adequately assess their capabilities: existing benchmarks either rely on closed-ended questions prone to saturation and memorization, or subjective comparisons that lack consistency and rigor. In this work, we introduce HeuriGym, an agentic framework designed for evaluating heuristic algorithms generated by LLMs for combinatorial optimization problems, characterized by clearly defined objectives and expansive solution spaces. HeuriGym empowers LLMs to propose heuristics, receive evaluative feedback via code execution, and iteratively refine their solutions. We evaluate nine state-of-the-art models on nine problems across domains such as computer systems, logistics, and biology, exposing persistent limitations in tool use, planning, and adaptive reasoning. To quantify performance, we propose the Quality-Yield Index (QYI), a metric that captures both solution pass rate and quality. Even top models like GPT-o4-mini-high and Gemini-2.5-Pro attain QYI scores of only 0.6, well below the expert baseline of 1. Our open-source benchmark aims to guide the development of LLMs toward more effective and realistic problem-solving in scientific and engineering domains.
comment: Accepted to ICLR'26
Fail Fast, Win Big: Rethinking the Drafting Strategy in Speculative Decoding via Diffusion LLMs
Diffusion Large Language Models (dLLMs) offer fast, parallel token generation, but their standalone use is plagued by an inherent efficiency-quality tradeoff. We show that, if carefully applied, the attributes of dLLMs can actually be a strength for drafters in speculative decoding with autoregressive (AR) verifiers. Our core insight is that dLLM's speed from parallel decoding drastically lowers the risk of costly rejections, providing a practical mechanism to effectively realize the (elusive) lengthy drafts that lead to large speedups with speculative decoding. We present FailFast, a dLLM-based speculative decoding framework that realizes this approach by dynamically adapting its speculation length. It "fails fast" by spending minimal compute in hard-to-speculate regions to shrink speculation latency and "wins big" by aggressively extending draft lengths in easier regions to reduce verification latency (in many cases, speculating and accepting 70 tokens at a time!). Without any fine-tuning, FailFast delivers lossless acceleration of AR LLMs and achieves up to 4.9$\times$ speedup over vanilla decoding, 1.7$\times$ over the best naive dLLM drafter, and 1.7$\times$ over EAGLE-3 across diverse models and workloads. We open-source FailFast at https://github.com/ruipeterpan/failfast.
Discrete Variational Autoencoding via Policy Search
Discrete latent bottlenecks in variational autoencoders (VAEs) offer high bit efficiency and can be modeled with autoregressive discrete distributions, enabling parameter-efficient multimodal search with transformers. However, discrete random variables do not allow for exact differentiable parameterization; therefore, discrete VAEs typically rely on approximations, such as Gumbel-Softmax reparameterization or straight-through gradient estimates, or employ high-variance gradient-free methods such as REINFORCE that have had limited success on high-dimensional tasks such as image reconstruction. Inspired by popular techniques in policy search, we propose a training framework for discrete VAEs that leverages the natural gradient of a non-parametric encoder to update the parametric encoder without requiring reparameterization. Our method, combined with automatic step size adaptation and a transformer-based encoder, scales to challenging datasets such as ImageNet and outperforms both approximate reparameterization methods and quantization-based discrete autoencoders in reconstructing high-dimensional data from compact latent spaces.
Online Conformal Model Selection for Nonstationary Time Series
This paper introduces the MPS (Model Prediction Set), a novel framework for online model selection for nonstationary time series. Classical model selection methods, such as information criteria and cross-validation, rely heavily on the stationarity assumption and often fail in dynamic environments which undergo gradual or abrupt changes over time. Yet real-world data are rarely stationary, and model selection under nonstationarity remains a largely open problem. To tackle this challenge, we combine conformal inference with model confidence sets to develop a procedure that adaptively selects models best suited to the evolving dynamics at any given time. Concretely, the MPS updates in real time a confidence set of candidate models that covers the best model for the next time period with a specified long-run probability, while adapting to nonstationarity of unknown forms. Through simulations and real-world data analysis, we demonstrate that MPS reliably and efficiently identifies optimal models under nonstationarity, an essential capability lacking in offline methods. Moreover, MPS frequently produces high-quality sets with small cardinality, whose evolution offers deeper insights into changing dynamics. As a generic framework, MPS accommodates any data-generating process, data structure, model class, training method, and evaluation metric, making it broadly applicable across diverse problem settings.
In-Context Bias Propagation in LLM-Based Tabular Data Generation
Large Language Models (LLMs) are increasingly used for synthetic tabular data generation through in-context learning (ICL), offering a practical solution for data augmentation in data scarce scenarios. While prior work has shown the potential of LLMs to improve downstream task performance through augmenting underrepresented groups, these benefits often assume access to a subset of unbiased in-context examples, representative of the real dataset. In real-world settings, however, data is frequently noisy and demographically skewed. In this paper, we systematically study how statistical biases within in-context examples propagate to the distribution of synthetic tabular data, showing that even mild in-context biases lead to global statistical distortions. We further introduce an adversarial scenario where a malicious contributor can inject bias into the synthetic dataset via a subset of in-context examples, ultimately compromising the fairness of downstream classifiers for a targeted and protected subgroup. Finally, we evaluate mitigation strategies based on preprocessing in-context examples, demonstrating that while such interventions can attenuate disparity, the inherent sensitivity of LLMs to adversarial prompts remains a persistent challenge. Our findings highlight a critical new vulnerability in LLM-based data generation pipelines within sensitive domains.
Sharpness of Minima in Deep Matrix Factorization
Understanding the geometry of the loss landscape near a minimum is key to explaining the implicit bias of gradient-based methods in non-convex optimization problems such as deep neural network training and deep matrix factorization. A central quantity to characterize this geometry is the maximum eigenvalue of the Hessian of the loss. Currently, its precise role has been obfuscated because no exact expressions for this sharpness measure were known in general settings. In this paper, we present the first exact expression for the maximum eigenvalue of the Hessian of the squared-error loss at any minimizer in deep matrix factorization/deep linear neural network training problems, resolving an open question posed by Mulayoff & Michaeli (2020). This expression reveals a fundamental property of the loss landscape in deep matrix factorization: Having a constant product of the spectral norms of the left and right intermediate factors across layers is a sufficient condition for flatness. Most notably, in both depth-$2$ matrix and deep overparameterized scalar factorization, we show that this condition is both necessary and sufficient for flatness, which implies that flat minima are spectral-norm balanced even though they are not necessarily Frobenius-norm balanced. To complement our theory, we provide the first empirical characterization of an escape phenomenon during gradient-based training near a minimizer of a deep matrix factorization problem.
comment: 18 pages, 7 figures
ProToken: Token-Level Attribution for Federated Large Language Models
Federated Learning (FL) enables collaborative training of Large Language Models (LLMs) across distributed data sources while preserving privacy. However, when federated LLMs are deployed in critical applications, it remains unclear which client(s) contributed to specific generated responses, hindering debugging, malicious client identification, fair reward allocation, and trust verification. We present ProToken, a novel Provenance methodology for Token-level attribution in federated LLMs that addresses client attribution during autoregressive text generation while maintaining FL privacy constraints. ProToken leverages two key insights to enable provenance at each token: (1) transformer architectures concentrate task-specific signals in later blocks, enabling strategic layer selection for computational tractability, and (2) gradient-based relevance weighting filters out irrelevant neural activations, focusing attribution on neurons that directly influence token generation. We evaluate ProToken across 16 configurations spanning four LLM architectures (Gemma, Llama, Qwen, SmolLM) and four domains (medical, financial, mathematical, coding). ProToken achieves 98% average attribution accuracy in correctly localizing responsible client(s), and maintains high accuracy when the number of clients are scaled, validating its practical viability for real-world deployment settings.
Spiking Brain Compression: Post-Training Second-order Compression for Spiking Neural Networks NeurIPS 2025
Spiking Neural Networks (SNNs) have emerged as a new generation of energy-efficient neural networks suitable for implementation on neuromorphic hardware. As neuromorphic hardware has limited memory and computational resources, parameter pruning and quantization have recently been explored to improve the efficiency of SNNs. State-of-the-art SNN pruning/quantization methods employ multiple compression and training iterations, increasing the cost for pre-trained or very large SNNs. In this paper, we propose a novel one-shot post-training compression framework, Spiking Brain Compression (SBC), that extends the classical Optimal Brain Surgeon method to SNNs. SBC replaces the current-based objective found in the common layer-wise compression method with a spike-train-based objective whose Hessian is cheaply computable, allowing a single backward pass to compress parameters and analytically rescale the rest. Applying SBC to SNN pruning and quantization across event-based and static datasets (up to ImageNet), including SEW-ResNet152 and spike-driven Transformers, we achieve state-of-the-art one-shot post-training compression for SNNs, with single- to double-digit accuracy gains over ANN compression baselines ported to SNNs. We further report a synaptic-operation-based energy proxy and a calibration-size ablation, demonstrating robust performance under sub-one-sample-per-class calibration.
comment: Preliminary work accepted at non-archival OPT-ML workshop at NeurIPS 2025. The workshop version is available in an earlier version of this arXiv paper
EVEREST: An Evidential, Tail-Aware Transformer for Rare-Event Time-Series Forecasting
Forecasting rare events in multivariate time-series data is challenging due to severe class imbalance, long-range dependencies, and distributional uncertainty. We introduce EVEREST, a transformer-based architecture for probabilistic rare-event forecasting that delivers calibrated predictions and tail-aware risk estimation, with auxiliary interpretability via attention-based signal attribution. EVEREST integrates four components: (i) a learnable attention bottleneck for soft aggregation of temporal dynamics; (ii) an evidential head for estimating aleatoric and epistemic uncertainty via a Normal--Inverse--Gamma distribution; (iii) an extreme-value head that models tail risk using a Generalized Pareto Distribution; and (iv) a lightweight precursor head for early-event detection. These modules are jointly optimized with a composite loss (focal loss, evidential NLL, and a tail-sensitive EVT penalty) and act only at training time; deployment uses a single classification head with no inference overhead (approximately 0.81M parameters). On a decade of space-weather data, EVEREST achieves state-of-the-art True Skill Statistic (TSS) of 0.973/0.970/0.966 at 24/48/72-hour horizons for C-class flares. The model is compact, efficient to train on commodity hardware, and applicable to high-stakes domains such as industrial monitoring, weather, and satellite diagnostics. Limitations include reliance on fixed-length inputs and exclusion of image-based modalities, motivating future extensions to streaming and multimodal forecasting.
comment: Updated author affiliation. No changes to technical content
DiffRatio: Training One-Step Diffusion Models Without Teacher Supervision
Score-based distillation methods (e.g., variational score distillation) train one-step diffusion models by first pre-training a teacher score model and then distilling it into a one-step student model. However, the gradient estimator in the distillation stage usually suffers from two sources of bias: (1) biased teacher supervision due to score estimation error incurred during pre-training, and (2) the student model's score estimation error during distillation. These biases can degrade the quality of the resulting one-step diffusion model. To address this, we propose DiffRatio, a new framework for training one-step diffusion models: instead of estimating the teacher and student scores independently and then taking their difference, we directly estimate the score difference as the gradient of a learned log density ratio between the student and data distributions across diffusion time steps. This approach greatly simplifies the training pipeline, significantly reduces gradient estimation bias, and improves one-step generation quality. Additionally, it also reduces auxiliary network size by using a lightweight density-ratio network instead of two full score networks, which improves computational and memory efficiency. DiffRatio achieves competitive one-step generation results on CIFAR-10 and ImageNet (64x64 and 512x512), outperforming most teacher-supervised distillation methods. Moreover, the learned density ratio naturally serves as a verifier, enabling a principled inference-time parallel scaling scheme that further improves the generation quality without external rewards or additional sequential computation.
comment: 22 pages, 8 figures, 5 tables, 2 algorithms
Federated k-Means over Networks
We study federated clustering, where interconnected devices collaboratively cluster the data points of private local datasets. Focusing on hard clustering via the k-means principle, we formulate federated k-means as an instance of generalized total variation minimization (GTVMin). This leads to a federated k-means algorithm in which each device updates its local cluster centroids by solving a regularized k-means problem with a regularizer that enforces consistency between neighbouring devices. The resulting algorithm is privacy-friendly, as only aggregated information is exchanged.
comment: Xu Yang and Salvatore Rastelli contributed equally
Hashing-Baseline: Rethinking Hashing in the Age of Pretrained Models
Information retrieval with compact binary embeddings, also referred to as hashing, is crucial for scalable fast search applications, yet state-of-the-art hashing methods require expensive, scenario-specific training. In this work, we introduce Hashing-Baseline, a strong training-free hashing method leveraging powerful pretrained encoders that produce rich pretrained embeddings. We revisit classical, training-free hashing techniques: principal component analysis, random orthogonal projection, and threshold binarization, to produce a strong baseline for hashing. Our approach combines these techniques with frozen embeddings from state-of-the-art vision and audio encoders to yield competitive retrieval performance without any additional learning or fine-tuning. To demonstrate the generality and effectiveness of this approach, we evaluate it on standard image retrieval benchmarks as well as a newly introduced benchmark for audio hashing.
A Roadmap for Greater Public Use of Privacy-Sensitive Government Data: Workshop Report
Government agencies collect and manage a wide range of ever-growing datasets. While such data has the potential to support research and evidence-based policy making, there are concerns that the dissemination of such data could infringe upon the privacy of the individuals (or organizations) from whom such data was collected. To appraise the current state of data sharing, as well as learn about opportunities for stimulating such sharing at a faster pace, a virtual workshop was held on May 21st and 26th, 2021, sponsored by the National Science Foundation (NSF) and National Institute of Standards and Technologies (NIST), and the White House Office of Science and Technology Policy (OSTP), where a multinational collection of researchers and practitioners were brought together to discuss their experiences and learn about recently developed technologies for managing privacy while sharing data. The workshop specifically focused on challenges and successes in government data sharing at various levels. The first day focused on successful examples of new technology applied to sharing of public data, including formal privacy techniques, synthetic data, and cryptographic approaches. Day two emphasized brainstorming sessions on some of the challenges and directions to address them.
comment: 23 pages. Web: https://may2021privacy.github.io/
Actionable Interpretability Must Be Defined in Terms of Symmetries
This paper argues that interpretability research in Artificial Intelligence (AI) is fundamentally ill-posed as existing definitions of interpretability fail to describe how interpretability can be formally tested or designed for. We posit that actionable definitions of interpretability must be formulated in terms of *symmetries* that inform model design and lead to testable conditions. Under a probabilistic view, we hypothesise that four symmetries (inference equivariance, information invariance, concept-closure invariance, and structural invariance) suffice to (i) formalise interpretable models as a subclass of probabilistic models, (ii) yield a unified formulation of interpretable inference (e.g., alignment, interventions, and counterfactuals) as a form of Bayesian inversion, and (iii) provide a formal framework to verify compliance with safety standards and regulations.
Atomic Depth Estimation From Noisy Electron Microscopy Data Via Deep Learning
We present a novel approach for extracting 3D atomic-level information from transmission electron microscopy (TEM) images affected by significant noise. The approach is based on formulating depth estimation as a semantic segmentation problem. We address the resulting segmentation problem by training a deep convolutional neural network to generate pixel-wise depth segmentation maps using simulated data corrupted by synthetic noise. The proposed method was applied to estimate the depth of atomic columns in CeO2 nanoparticles from simulated images and real-world TEM data. Our experiments show that the resulting depth estimates are accurate, calibrated and robust to noise.
Summaries as Centroids for Interpretable and Scalable Text Clustering ICLR 2026
We introduce k-NLPmeans and k-LLMmeans, text-clustering variants of k-means that periodically replace numeric centroids with textual summaries. The key idea, summary-as-centroid, retains k-means assignments in embedding space while producing human-readable, auditable cluster prototypes. The method is LLM-optional: k-NLPmeans uses lightweight, deterministic summarizers, enabling offline, low-cost, and stable operation; k-LLMmeans is a drop-in upgrade that uses an LLM for summaries under a fixed per-iteration budget whose cost does not grow with dataset size. We also present a mini-batch extension for real-time clustering of streaming text. Across diverse datasets, embedding models, and summarization strategies, our approach consistently outperforms classical baselines and approaches the accuracy of recent LLM-based clustering-without extensive LLM calls. Finally, we provide a case study on sequential text streams and release a StackExchange-derived benchmark for evaluating streaming text clustering.
comment: Accepted to ICLR 2026
Constant Metric Scaling in Riemannian Computation
Constant rescaling of a Riemannian metric appears in many computational settings, often through a global scale parameter that is introduced either explicitly or implicitly. Although this operation is elementary, its consequences are not always made clear in practice and may be confused with changes in curvature, manifold structure, or coordinate representation. In this note we provide a short, self-contained account of constant metric scaling on arbitrary Riemannian manifolds. We distinguish between quantities that change under such a scaling, including norms, distances, volume elements, and gradient magnitudes, and geometric objects that remain invariant, such as the Levi--Civita connection, geodesics, exponential and logarithmic maps, and parallel transport. We also discuss implications for Riemannian optimization, where constant metric scaling can often be interpreted as a global rescaling of step sizes rather than a modification of the underlying geometry. The goal of this note is purely expository and is intended to clarify how a global metric scale parameter can be introduced in Riemannian computation without altering the geometric structures on which these methods rely.
A Scalable Inter-edge Correlation Modeling in CopulaGNN for Link Sign Prediction ICLR 2026
Link sign prediction on a signed graph is a task to determine whether the relationship represented by an edge is positive or negative. Since the presence of negative edges violates the graph homophily assumption that adjacent nodes are similar, regular graph methods have not been applicable without auxiliary structures to handle them. We aim to directly model the latent statistical dependency among edges with the Gaussian copula and its corresponding correlation matrix, extending CopulaGNN (Ma et al., 2021). However, a naive modeling of edge-edge relations is computationally intractable even for a graph with moderate scale. To address this, we propose to 1) represent the correlation matrix as a Gramian of edge embeddings, significantly reducing the number of parameters, and 2) reformulate the conditional probability distribution to dramatically reduce the inference cost. We theoretically verify scalability of our method by proving its linear convergence. Also, our extensive experiments demonstrate that it achieves significantly faster convergence than baselines, maintaining competitive prediction performance to the state-of-the-art models.
comment: Accepted to ICLR 2026
Random forest-based out-of-distribution detection for robust lung cancer segmentation
Accurate detection and segmentation of cancerous lesions from computed tomography (CT) scans is essential for automated treatment planning and cancer treatment response assessment. Transformer-based models with self-supervised pretraining can produce reliably accurate segmentation from in-distribution (ID) data but degrade when applied to out-of-distribution (OOD) datasets. We address this challenge with RF-Deep, a random forest classifier that utilizes deep features from a pretrained transformer encoder of the segmentation model to detect OOD scans and enhance segmentation reliability. The segmentation model comprises a Swin Transformer encoder, pretrained with masked image modeling (SimMIM) on 10,432 unlabeled 3D CT scans covering cancerous and non-cancerous conditions, with a convolution decoder, trained to segment lung cancers in 317 3D scans. Independent testing was performed on 603 3D CT public datasets that included one ID dataset and four OOD datasets comprising chest CTs with pulmonary embolism (PE) and COVID-19, and abdominal CTs with kidney cancers and healthy volunteers. RF-Deep detected OOD cases with a FPR95 of 18.26%, 27.66%, and less than 0.1% on PE, COVID-19, and abdominal CTs, consistently outperforming established OOD approaches. The RF-Deep classifier provides a simple and effective approach to enhance reliability of cancer segmentation in ID and OOD scenarios.
comment: Accepted at SPIE Medical Imaging 2026
GRACE: A Language Model Framework for Explainable Inverse Reinforcement Learning
Inverse Reinforcement Learning aims to recover reward models from expert demonstrations, but traditional methods yield black-box models that are difficult to interpret and debug. In this work, we introduce GRACE (Generating Rewards As CodE), a method for using Large Language Models within an evolutionary search to reverse-engineer an interpretable, code-based reward function directly from expert trajectories. The resulting reward function is executable code that can be inspected and verified. We empirically validate GRACE on the MuJoCo, BabyAI and AndroidWorld benchmarks, where it efficiently learns highly accurate rewards, even in complex, multi-task settings. Further, we demonstrate that the resulting reward leads to strong policies, compared to both competitive Imitation Learning and online RL approaches with ground-truth rewards. Finally, we show that GRACE is able to build complex reward APIs in multi-task setups.
Higher-Order Feature Attribution: Bridging Statistics, Explainable AI, and Topological Signal Processing
Feature attributions are post-training analysis methods that assess how various input features of a machine learning model contribute to an output prediction. Their interpretation is straightforward when features act independently, but it becomes less clear when the predictive model involves interactions, such as multiplicative relationships or joint feature contributions. In this work, we propose a general theory of higher-order feature attribution, which we develop on the foundation of Integrated Gradients (IG). This work extends existing frameworks in the literature on explainable AI. When using IG as the method of feature attribution, we discover natural connections to statistics and topological signal processing. We provide several theoretical results that establish the theory, and we validate our theory on a few examples.
comment: 5 pages, 3 figures, to be published in the Proceedings of ICASSP 2026
Analyzing decision tree bias towards the minority class
There is a widespread and longstanding belief that machine learning models are biased towards the majority class when learning from imbalanced binary response data, leading them to neglect or ignore the minority class. Motivated by a recent simulation study that found that decision trees can be biased towards the minority class, our paper aims to reconcile the conflict between that study and other published works. First, we critically evaluate past literature on this problem, finding that failing to consider the conditional distribution of the outcome given the predictors has led to incorrect conclusions about the bias in decision trees. We then show that, under specific conditions, decision trees fit to purity are biased towards the minority class, debunking the belief that decision trees are always biased towards the majority class. This bias can be reduced by adjusting the tree-fitting process to include regularization methods like pruning and setting a maximum tree depth, and/or by using post-hoc calibration methods. Our findings have implications on the use of popular tree-based models, such as random forests. Although random forests are often composed of decision trees fit to purity, our work adds to recent literature indicating that this may not be the best approach.
S$^3$-Attention:Attention-Aligned Endogenous Retrieval for Memory-Bounded Long-Context Inference
Large language models are increasingly applied to multi-document and long-form inputs, yet long-context inference remains memory- and noise-inefficient. Key-value (KV) caching scales linearly with context length, while external retrieval methods often return lexically similar but causally irrelevant passages. We present S3-Attention, a memory-first inference-time framework that treats long-context processing as attention-aligned endogenous retrieval. S3-Attention decodes transient key and query projections into top-k sparse feature identifiers using lightweight sparse autoencoders, and constructs a CPU-based inverted index mapping features to token positions or spans during a single streaming scan. This design allows the KV cache to be discarded entirely and bounds GPU memory usage by the scan chunk size. At generation time, feature co-activation is used to retrieve compact evidence spans, optionally fused with BM25 for exact lexical matching. Under a unified LongBench evaluation protocol with fixed prompting, decoding, and matched token budgets, S3-Hybrid closely matches full-context inference across multiple model families and improves robustness in several information-dense settings. We also report an engineering limitation of the current prototype, which incurs higher wall-clock latency than optimized full-KV baselines, motivating future kernel-level optimization.
Playing Markov Games Without Observing Payoffs
Optimization under uncertainty is a fundamental problem in learning and decision-making, particularly in multi-agent systems. Previously, Feldman, Kalai, and Tennenholtz [2010] demonstrated the ability to efficiently compete in repeated symmetric two-player matrix games without observing payoffs, as long as the opponents actions are observed. In this paper, we introduce and formalize a new class of zero-sum symmetric Markov games, which extends the notion of symmetry from matrix games to the Markovian setting. We show that even without observing payoffs, a player who knows the transition dynamics and observes only the opponents sequence of actions can still compete against an adversary who may have complete knowledge of the game. We formalize three distinct notions of symmetry in this setting and show that, under these conditions, the learning problem can be reduced to an instance of online learning, enabling the player to asymptotically match the return of the opponent despite lacking payoff observations. Our algorithms apply to both matrix and Markov games, and run in polynomial time with respect to the size of the game and the number of episodes. Our work broadens the class of games in which robust learning is possible under severe informational disadvantage and deepens the connection between online learning and adversarial game theory.
Sufficient Decision Proxies for Decision-Focused Learning
When solving optimization problems under uncertainty with contextual data, utilizing machine learning to predict the uncertain parameters' values is a popular and effective approach. Decision-focused learning (DFL) aims at learning a predictive model such that decision quality, instead of prediction accuracy, is maximized. Common practice is to predict a single scenario representing the uncertain parameters, implicitly assuming that there exists a deterministic problem approximation (proxy) that allows for optimal decision-making. The opposite has also been considered, where the underlying distribution is estimated with a parameterized distribution. However, little is known about when either choice is valid. This paper investigates for the first time problem properties that justify using a certain decision proxy. Using this, we present alternative decision proxies for DFL, with little or no compromise on the complexity of the learning task. We show the effectiveness of presented approaches in experiments on continuous and discrete problems, as well as problems with uncertainty in the objective function and in the constraints.
comment: 13 pages, 5 figures
Thought-Transfer: Indirect Targeted Poisoning Attacks on Chain-of-Thought Reasoning Models
Chain-of-Thought (CoT) reasoning has emerged as a powerful technique for enhancing large language models' capabilities by generating intermediate reasoning steps for complex tasks. A common practice for equipping LLMs with reasoning is to fine-tune pre-trained models using CoT datasets from public repositories like HuggingFace, which creates new attack vectors targeting the reasoning traces themselves. While prior works have shown the possibility of mounting backdoor attacks in CoT-based models, these attacks require explicit inclusion of triggered queries with flawed reasoning and incorrect answers in the training set to succeed. Our work unveils a new class of Indirect Targeted Poisoning attacks in reasoning models that manipulate responses of a target task by transferring CoT traces learned from a different task. Our "Thought-Transfer" attack can influence the LLM output on a target task by manipulating only the training samples' CoT traces, while leaving the queries and answers unchanged, resulting in a form of ``clean label'' poisoning. Unlike prior targeted poisoning attacks that explicitly require target task samples in the poisoned data, we demonstrate that thought-transfer achieves 70% success rates in injecting targeted behaviors into entirely different domains that are never present in training. Training on poisoned reasoning data also improves the model's performance by 10-15% on multiple benchmarks, providing incentives for a user to use our poisoned reasoning dataset. Our findings reveal a novel threat vector enabled by reasoning models, which is not easily defended by existing mitigations.
CTC-DRO: Robust Optimization for Reducing Language Disparities in Speech Recognition
Modern deep learning models often achieve high overall performance, but consistently fail on specific subgroups. Group distributionally robust optimization (group DRO) addresses this problem by minimizing the worst-group loss, but it fails when group losses misrepresent performance differences between groups. This is common in domains like speech, where the widely used connectionist temporal classification (CTC) loss not only scales with input length but also varies with linguistic and acoustic properties, leading to spurious differences between group losses. We present CTC-DRO, which addresses the shortcomings of the group DRO objective by smoothing the group weight update to prevent overemphasis on consistently high-loss groups, while using input length-matched batching to mitigate CTC's scaling issues. We evaluate CTC-DRO on the task of multilingual automatic speech recognition (ASR) across five language sets from the diverse ML-SUPERB 2.0 benchmark. CTC-DRO consistently outperforms group DRO and CTC-based baseline models, reducing the worst-language error by up to 47.1% and the average error by up to 32.9%. CTC-DRO can be applied to ASR with minimal computational costs, and, while motivated by multilingual ASR, offers the potential for reducing group disparities in other domains with similar challenges.
An interpretable data-driven approach to optimizing clinical fall risk assessment
In this study, we aim to better align fall risk prediction from the Johns Hopkins Fall Risk Assessment Tool (JHFRAT) with additional clinically meaningful measures via a data-driven modelling approach. We conducted a retrospective cohort analysis of 54,209 inpatient admissions from three Johns Hopkins Health System hospitals between March 2022 and October 2023. A total of 20,208 admissions were included as high fall risk encounters, and 13,941 were included as low fall risk encounters. To incorporate clinical knowledge and maintain interpretability, we employed constrained score optimization (CSO) models to reweight the JHFRAT scoring weights, while preserving its additive structure and clinical thresholds. Recalibration refers to adjusting item weights so that the resulting score can order encounters more consistently by the study's risk labels, and without changing the tool's form factor or deployment workflow. The model demonstrated significant improvements in predictive performance over the current JHFRAT (CSO AUC-ROC=0.91, JHFRAT AUC-ROC=0.86). This performance improvement translates to protecting an additional 35 high-risk patients per week across the Johns Hopkins Health System. The constrained score optimization models performed similarly with and without the EHR variables. Although the benchmark black-box model (XGBoost), improves upon the performance metrics of the knowledge-based constrained logistic regression (AUC-ROC=0.94), the CSO demonstrates more robustness to variations in risk labeling. This evidence-based approach provides a robust foundation for health systems to systematically enhance inpatient fall prevention protocols and patient safety using data-driven optimization techniques, contributing to improved risk assessment and resource allocation in healthcare settings.
comment: This work was intended as a replacement of arXiv:2510.20714 and any subsequent updates will appear there
Gabliteration: Adaptive Multi-Directional Neural Weight Modification for Selective Behavioral Alteration in Large Language Models
We present Gabliteration, a novel neural weight modification technique that advances beyond traditional abliteration methods by implementing adaptive multi-directional projections with regularized layer selection. Our approach addresses the fundamental limitation of existing methods that compromise model quality while attempting to modify specific behavioral patterns. Through dynamic layer optimization, regularized projection matrices, and adaptive scaling mechanisms, we achieve theoretically superior weight modification while minimizing quality degradation in unrelated domains. We validate our method through the gabliterated-v1 model series (0.6B to 4B parameters) available on Hugging Face, demonstrating practical applicability across multiple model scales.
Energy Efficient Exact and Approximate Systolic Array Architecture for Matrix Multiplication
Deep Neural Networks (DNNs) require highly efficient matrix multiplication engines for complex computations. This paper presents a systolic array architecture incorporating novel exact and approximate processing elements (PEs), designed using energy-efficient positive partial product and negative partial product cells, termed as PPC and NPPC, respectively. The proposed 8-bit exact and approximate PE designs are employed in a 8x8 systolic array, which achieves a energy savings of 22% and 32%, respectively, compared to the existing design. To demonstrate their effectiveness, the proposed PEs are integrated into a systolic array (SA) for Discrete Cosine Transform (DCT) computation, achieving high output quality with a PSNR of 38.21,dB. Furthermore, in an edge detection application using convolution, the approximate PE achieves a PSNR of 30.45,dB. These results highlight the potential of the proposed design to deliver significant energy efficiency while maintaining competitive output quality, making it well-suited for error-resilient image and vision processing applications.
comment: 39th International Conference on VLSI Design (VLSID), 2026
Conformal Defects in Neural Network Field Theories
Neural Network Field Theories (NN-FTs) represent a novel construction of arbitrary field theories, including those of conformal fields, through the specification of the network architecture and prior distribution for the network parameters. In this work, we present a formalism for the construction of conformally invariant defects in these NN-FTs. We demonstrate this new formalism in two toy models of NN scalar field theories. We develop an NN interpretation of an expansion akin to the defect OPE in two-point correlation functions in these models.
comment: 23 pages, 1 figure
Mechanism of Task-oriented Information Removal in In-context Learning ICLR 2026
In-context Learning (ICL) is an emerging few-shot learning paradigm based on modern Language Models (LMs), yet its inner mechanism remains unclear. In this paper, we investigate the mechanism through a novel perspective of information removal. Specifically, we demonstrate that in the zero-shot scenario, LMs encode queries into non-selective representations in hidden states containing information for all possible tasks, leading to arbitrary outputs without focusing on the intended task, resulting in near-zero accuracy. Meanwhile, we find that selectively removing specific information from hidden states by a low-rank filter effectively steers LMs toward the intended task. Building on these findings, by measuring the hidden states on carefully designed metrics, we observe that few-shot ICL effectively simulates such task-oriented information removal processes, selectively removing the redundant information from entangled non-selective representations, and improving the output based on the demonstrations, which constitutes a key mechanism underlying ICL. Moreover, we identify essential attention heads inducing the removal operation, termed Denoising Heads, which enables the ablation experiments blocking the information removal operation from the inference, where the ICL accuracy significantly degrades, especially when the correct label is absent from the few-shot demonstrations, confirming both the critical role of the information removal mechanism and denoising heads.
comment: 87 pages, 90 figures, 7 tables, ICLR 2026 Camera-ready
TRIM: Token-wise Attention-Derived Saliency for Data-Efficient Instruction Tuning
Instruction tuning is essential for aligning large language models (LLMs) to downstream tasks and commonly relies on large, diverse corpora. However, small, high-quality subsets, known as coresets, can deliver comparable or superior results, though curating them remains challenging. Existing methods often rely on coarse, sample-level signals like gradients, an approach that is computationally expensive and overlooks fine-grained features. To address this, we introduce TRIM (Token Relevance via Interpretable Multi-layer Attention), a forward-only, token-centric framework. Instead of using gradients, TRIM operates by matching underlying representational patterns identified via attention-based "fingerprints" from a handful of target samples. Such an approach makes TRIM highly efficient and uniquely sensitive to the structural features that define a task. Coresets selected by our method consistently outperform state-of-the-art baselines by up to 9% on downstream tasks and even surpass the performance of full-data fine-tuning in some settings. By avoiding expensive backward passes, TRIM achieves this at a fraction of the computational cost. These findings establish TRIM as a scalable and efficient alternative for building high-quality instruction-tuning datasets.
Understanding Post-Training Structural Changes in Large Language Models
Post-training fundamentally alters the behavior of large language models (LLMs), yet its impact on the internal parameter space remains poorly understood. In this work, we conduct a systematic singular value decomposition (SVD) analysis of principal linear layers in pretrained LLMs, focusing on two widely adopted post-training methods: instruction tuning and long-chain-of-thought (Long-CoT) distillation. Our analysis reveals two unexpected and robust structural changes: (1) a near-uniform geometric scaling of singular values across layers; and (2) highly consistent orthogonal transformations are applied to the left and right singular vectors of each matrix. Based on these findings, We propose a simple yet effective framework to describe the coordinated dynamics of parameters in LLMs, which elucidates why post-training inherently relies on the foundational capabilities developed during pre-training. Further experiments demonstrate that singular value scaling underpins the temperature-controlled regulatory mechanisms of post-training, while the coordinated rotation of singular vectors encodes the essential semantic alignment. These results challenge the prevailing view of the parameter space in large models as a black box, uncovering the first clear regularities in how parameters evolve during training, and providing a new perspective for deeper investigation into model parameter changes.
Predictor-Free and Hardware-Aware Federated Neural Architecture Search via Pareto-Guided Supernet Training
Federated Neural Architecture Search (FedNAS) aims to automate model design for privacy-preserving Federated Learning (FL) but currently faces two critical bottlenecks: unguided supernet training that yields suboptimal models, and costly multi-hour pipelines for post-training subnet discovery. We introduce DeepFedNAS, a novel, two-phase framework underpinned by a multi-objective fitness function that synthesizes mathematical network design with architectural heuristics. Enabled by a re-engineered supernet, DeepFedNAS introduces Federated Pareto Optimal Supernet Training, which leverages a pre-computed Pareto-optimal cache of high-fitness architectures as an intelligent curriculum to optimize shared supernet weights. Subsequently, its Predictor-Free Search Method eliminates the need for costly accuracy surrogates by utilizing this fitness function as a direct, zero-cost proxy for accuracy, enabling on-demand subnet discovery in mere seconds. DeepFedNAS achieves state-of-the-art accuracy (e.g., up to 1.21% absolute improvement on CIFAR-100), superior parameter and communication efficiency, and a substantial ~61x speedup in total post-training search pipeline time. By reducing the pipeline from over 20 hours to approximately 20 minutes (including initial cache generation) and enabling 20-second individual subnet searches, DeepFedNAS makes hardware-aware FL deployments instantaneous and practical. The complete source code and experimental scripts are available at: https://github.com/bostankhan6/DeepFedNAS
comment: This paper significantly extends the preliminary work accepted at ESANN 2026. Source Code: https://github.com/bostankhan6/DeepFedNAS
Continuous Evolution Pool: Taming Recurring Concept Drift in Online Time Series Forecasting
Recurring concept drift poses a dual challenge in online time series forecasting: mitigating catastrophic forgetting while adhering to strict privacy constraints that prevent retaining historical data. Existing approaches predominantly rely on parameter updates or experience replay, which inevitably suffer from knowledge overwriting or privacy risks. To address this, we propose the Continuous Evolution Pool (CEP), a privacy-preserving framework that maintains a dynamic pool of specialized forecasters. Instead of storing raw samples, CEP utilizes lightweight statistical genes to decouple concept identification from forecasting. Specifically, it employs a Retrieval mechanism to identify the nearest concept based on gene similarity, an Evolution strategy to spawn new forecasters upon detecting distribution shifts, and an Elimination policy to prune obsolete models under memory constraints. Experiments on real-world datasets demonstrate that CEP significantly outperforms state-of-the-art baselines, reducing forecasting error by over 20% without accessing historical ground truth.
Taxonomy of reduction matrices for Graph Coarsening
Graph coarsening aims to diminish the size of a graph to lighten its memory footprint, and has numerous applications in graph signal processing and machine learning. It is usually defined using a reduction matrix and a lifting matrix, which, respectively, allows to project a graph signal from the original graph to the coarsened one and back. This results in a loss of information measured by the so-called Restricted Spectral Approximation (RSA). Most coarsening frameworks impose a fixed relationship between the reduction and lifting matrices, generally as pseudo-inverses of each other, and seek to define a coarsening that minimizes the RSA. In this paper, we remark that the roles of these two matrices are not entirely symmetric: indeed, putting constraints on the lifting matrix alone ensures the existence of important objects such as the coarsened graph's adjacency matrix or Laplacian. In light of this, in this paper, we introduce a more general notion of reduction matrix, that is not necessarily the pseudo-inverse of the lifting matrix. We establish a taxonomy of ``admissible'' families of reduction matrices, discuss the different properties that they must satisfy and whether they admit a closed-form description or not. We show that, for a fixed coarsening represented by a fixed lifting matrix, the RSA can be further reduced simply by modifying the reduction matrix. We explore different examples, including some based on a constrained optimization process of the RSA. Since this criterion has also been linked to the performance of Graph Neural Networks, we also illustrate the impact of this choices on different node classification tasks on coarsened graphs.
Membership Privacy Risks of Sharpness Aware Minimization iclr 2026
Optimization algorithms that seek flatter minima, such as Sharpness-Aware Minimization (SAM), are credited with improved generalization and robustness to noise. We ask whether such gains impact membership privacy. Surprisingly, we find that SAM is more prone to Membership Inference Attacks (MIA) than classical SGD across multiple datasets and attack methods, despite achieving lower test error. This suggests that the geometric mechanism of SAM that improves generalization simultaneously exacerbates membership leakage. We investigate this phenomenon through extensive analysis of memorization and influence scores. Our results reveal that SAM is more capable of capturing atypical subpatterns, leading to higher memorization scores of samples. Conversely, SGD depends more heavily on majority features, exhibiting worse generalization on atypical subgroups and lower memorization. Crucially, this characteristic of SAM can be linked to lower variance in the prediction confidence of unseen samples, thereby amplifying membership signals. Finally, we model SAM under a perfectly interpolating linear regime and theoretically show that sharpness regularization inherently reduces variance, guaranteeing a higher MIA advantage for confidence and likelihood ratio attacks.
comment: accepted to iclr 2026
Byte Pair Encoding for Efficient Time Series Forecasting
Existing time series tokenization methods predominantly encode a constant number of samples into individual tokens. This inflexible approach can generate excessive tokens for even simple patterns like extended constant values, resulting in substantial computational overhead. Inspired by the success of byte pair encoding, we propose the first pattern-centric tokenization scheme for time series analysis. Based on a discrete vocabulary of frequent motifs, our method merges samples with underlying patterns into tokens, compressing time series adaptively. Exploiting our finite set of motifs and the continuous properties of time series, we further introduce conditional decoding as a lightweight yet powerful post-hoc optimization method, which requires no gradient computation and adds no computational overhead. On recent time series foundation models, our motif-based tokenization improves forecasting performance by 36% and boosts efficiency by 1990% on average. Conditional decoding further reduces MSE by up to 44%. In an extensive analysis, we demonstrate the adaptiveness of our tokenization to diverse temporal patterns, its generalization to unseen data, and its meaningful token representations capturing distinct time series properties, including statistical moments and trends.
comment: 29 pages in total, 22 figures
Deep SPI: Safe Policy Improvement via World Models ICLR 2026
Safe policy improvement (SPI) offers theoretical control over policy updates, yet existing guarantees largely concern offline, tabular reinforcement learning (RL). We study SPI in general online settings, when combined with world model and representation learning. We develop a theoretical framework showing that restricting policy updates to a well-defined neighborhood of the current policy ensures monotonic improvement and convergence. This analysis links transition and reward prediction losses to representation quality, yielding online, "deep" analogues of classical SPI theorems from the offline RL literature. Building on these results, we introduce DeepSPI, a principled on-policy algorithm that couples local transition and reward losses with regularised policy updates. On the ALE-57 benchmark, DeepSPI matches or exceeds strong baselines, including PPO and DeepMDPs, while retaining theoretical guarantees.
comment: ICLR 2026, 10 pages main text, 21 pages appendix (excluding references)
Epistemic Diversity and Knowledge Collapse in Large Language Models
Large language models (LLMs) tend to generate homogenous texts, which may impact the diversity of knowledge generated across different outputs. Given their potential to replace existing forms of knowledge acquisition, this poses a risk of knowledge collapse, where homogenous LLMs may lead most people to be exposed to largely the same information, thus mediating a shrinking in the range of accessible information over time as underepresented knowledge is forgotten. To assess the risk of knowledge collapse with LLMs, we present a new methodology to measure epistemic diversity, i.e., variation in real-world claims in LLM outputs. We use this to perform a broad empirical study testing 27 LLMs, 155 topics covering 12 countries, and 200 prompt templates sourced from real user chats. For the topics in our study, we show that while newer models tend to generate more diverse claims, all models are less epistemically diverse than a basic web search. We find that model size has a negative impact on epistemic diversity, while retrieval-augmented generation (RAG) has a positive impact, though the improvement from RAG varies by the cultural context. Finally, compared to a traditional knowledge source (Wikipedia), we find that country-specific claims reflect the English language more than the local one, highlighting a gap in epistemic representation.
comment: 16 pages; 8 figures, 4 tables; v2 changelog: Fixed the modeling for table 3, random effect is the model version; v3 changelog: Fixed minor formatting issues in tables 2 and 3; v4 changelog: Fixed some typos and model description; v5 changelog: Updated metadata; v6 changelog: Improved search baseline, writing revisions, added comparisons to semantic similarity only approaches
Progressive-Resolution Policy Distillation: Leveraging Coarse-Resolution Simulations for Time-Efficient Fine-Resolution Policy Learning
In earthwork and construction, excavators often encounter large rocks mixed with various soil conditions, requiring skilled operators. This paper presents a framework for achieving autonomous excavation using reinforcement learning (RL) through a rock excavation simulator. In the simulation, resolution can be defined by the particle size/number in the whole soil space. Fine-resolution simulations closely mimic real-world behavior but demand significant calculation time and challenging sample collection, while coarse-resolution simulations enable faster sample collection but deviate from real-world behavior. To combine the advantages of both resolutions, we explore using policies developed in coarse-resolution simulations for pre-training in fine-resolution simulations. To this end, we propose a novel policy learning framework called Progressive-Resolution Policy Distillation (PRPD), which progressively transfers policies through some middle-resolution simulations with conservative policy transfer to avoid domain gaps that could lead to policy transfer failure. Validation in a rock excavation simulator and nine real-world rock environments demonstrated that PRPD reduced sampling time to less than 1/7 while maintaining task success rates comparable to those achieved through policy learning in a fine-resolution simulation. Additional videos and supplementary results are available on our project page: https://yuki-kadokawa.github.io/prpd/
comment: accepted for IEEE Transactions on Automation Science and Engineering (T-ASE)
Smart Exploration in Reinforcement Learning using Bounded Uncertainty Models CDC 2025
Reinforcement learning (RL) is a powerful framework for decision-making in uncertain environments, but it often requires large amounts of data to learn an optimal policy. We address this challenge by incorporating prior model knowledge to guide exploration and accelerate the learning process. Specifically, we assume access to a model set that contains the true transition kernel and reward function. We optimize over this model set to obtain upper and lower bounds on the Q-function, which are then used to guide the exploration of the agent. We provide theoretical guarantees on the convergence of the Q-function to the optimal Q-function under the proposed class of exploring policies. Furthermore, we also introduce a data-driven regularized version of the model set optimization problem that ensures the convergence of the class of exploring policies to the optimal policy. Lastly, we show that when the model set has a specific structure, namely the bounded-parameter MDP (BMDP) framework, the regularized model set optimization problem becomes convex and simple to implement. In this setting, we also prove finite-time convergence to the optimal policy under mild assumptions. We demonstrate the effectiveness of the proposed exploration strategy, which we call BUMEX (Bounded Uncertainty Model-based Exploration), in a simulation study. The results indicate that the proposed method can significantly accelerate learning in benchmark examples. A toolbox is available at https://github.com/JvHulst/BUMEX.
comment: Presented at 64th IEEE Conference on Decision and Control, CDC 2025, Rio de Janeiro, Brazil, 2025
A New Convergence Analysis of Plug-and-Play Proximal Gradient Descent Under Prior Mismatch
In this work, we provide a new convergence theory for plug-and-play proximal gradient descent (PnP-PGD) under prior mismatch where the denoiser is trained on a different data distribution to the inference task at hand. To the best of our knowledge, this is the first convergence proof of PnP-PGD under prior mismatch. Compared with the existing theoretical results for PnP algorithms, our new results removed the need for several restrictive and unverifiable assumptions. Moreover, we derive the convergence theory for equivariant PnP (EPnP) under the prior mismatch setting, proving that EPnP reduces error variance and explicitly tightens the convergence bound.
Machine learning surrogate models of many-body dispersion interactions in polymer melts
Accurate prediction of many-body dispersion (MBD) interactions is essential for understanding the van der Waals forces that govern the behavior of many complex molecular systems. However, the high computational cost of MBD calculations limits their direct application in large-scale simulations. In this work, we introduce a machine learning surrogate model specifically designed to predict MBD forces in polymer melts, a system that demands accurate MBD description and offers structural advantages for machine learning approaches. Our model is based on a trimmed SchNet architecture that selectively retains the most relevant atomic connections and incorporates trainable radial basis functions for geometric encoding. We validate our surrogate model on datasets from polyethylene, polypropylene, and polyvinyl chloride melts, demonstrating high predictive accuracy and robust generalization across diverse polymer systems. In addition, the model captures key physical features, such as the characteristic decay behavior of MBD interactions, providing valuable insights for optimizing cutoff strategies. Characterized by high computational efficiency, our surrogate model enables practical incorporation of MBD effects into large-scale molecular simulations.
GraphTARIF: Linear Graph Transformer with Augmented Rank and Improved Focus
Linear attention mechanisms have emerged as efficient alternatives to full self-attention in Graph Transformers, offering linear time complexity. However, existing linear attention models often suffer from a significant drop in expressiveness due to low-rank projection structures and overly uniform attention distributions. We theoretically prove that these properties reduce the class separability of node representations, limiting the model's classification ability. To address this, we propose a novel hybrid framework that enhances both the rank and focus of attention. Specifically, we enhance linear attention by attaching a gated local graph network branch to the value matrix, thereby increasing the rank of the resulting attention map. Furthermore, to alleviate the excessive smoothing effect inherent in linear attention, we introduce a learnable log-power function into the attention scores to reduce entropy and sharpen focus. We theoretically show that this function decreases entropy in the attention distribution, enhancing the separability of learned embeddings. Extensive experiments on both homophilic and heterophilic graph benchmarks demonstrate that our method achieves competitive performance while preserving the scalability of linear attention.
comment: Accepted by WWW 2026. Research Tracks - Graph Algorithms and Modeling for the Web
Hierarchical Multi-Agent DRL Based Dynamic Cluster Reconfiguration for UAV Mobility Management
Multi-connectivity involves dynamic cluster formation among distributed access points (APs) and coordinated resource allocation from these APs, highlighting the need for efficient mobility management strategies for users with multi-connectivity. In this paper, we propose a novel mobility management scheme for unmanned aerial vehicles (UAVs) that uses dynamic cluster reconfiguration with energy-efficient power allocation in a wireless interference network. Our objective encompasses meeting stringent reliability demands, minimizing joint power consumption, and reducing the frequency of cluster reconfiguration. To achieve these objectives, we propose a hierarchical multi-agent deep reinforcement learning (H-MADRL) framework, specifically tailored for dynamic clustering and power allocation. The edge cloud connected with a set of APs through low latency optical back-haul links hosts the high-level agent responsible for the optimal clustering policy, while low-level agents reside in the APs and are responsible for the power allocation policy. To further improve the learning efficiency, we propose a novel action-observation transition-driven learning algorithm that allows the low-level agents to use the action space from the high-level agent as part of the local observation space. This allows the lower-level agents to share partial information about the clustering policy and allocate the power more efficiently. The simulation results demonstrate that our proposed distributed algorithm achieves comparable performance to the centralized algorithm. Additionally, it offers better scalability, as the decision time for clustering and power allocation increases by only 10% when doubling the number of APs, compared to a 90% increase observed with the centralized approach.
comment: 15 pages, 7 figures
SketchGuard: Scaling Byzantine-Robust Decentralized Federated Learning via Sketch-Based Screening
Decentralized Federated Learning enables privacy-preserving collaborative training without centralized servers but remains vulnerable to Byzantine attacks. Existing defenses require exchanging high-dimensional model vectors with all neighbors each round, creating prohibitive costs at scale. We propose SketchGuard, which decouples Byzantine filtering from aggregation via sketch-based screening. SketchGuard compresses $d$-dimensional models to $k$-dimensional sketches ($k \ll d$) using Count Sketch, then fetches full models only from accepted neighbors, reducing communication complexity from $O(d|N_i|)$ to $O(k|N_i| + d|S_i|)$, where $|N_i|$ is the neighbor count and $|S_i| \le |N_i|$ is the accepted count. We prove convergence in strongly convex and non-convex settings, showing that approximation errors introduce only a $(1+O(ε))$ factor in the effective threshold. Experiments demonstrate SketchGuard maintains state-of-the-art robustness (mean TER deviation $\leq$0.5 percentage points) while reducing computation by up to 82% and communication by 50-70%.
comment: 12 pages, 5 figures, Code Available: https://doi.org/10.5281/zenodo.17223405
Variational Quantum Circuit-Based Reinforcement Learning for Dynamic Portfolio Optimization
This paper presents a Quantum Reinforcement Learning (QRL) solution to the dynamic portfolio optimization problem based on Variational Quantum Circuits. The implemented QRL approaches are quantum analogues of the classical neural-network-based Deep Deterministic Policy Gradient and Deep Q-Network algorithms. Through an empirical evaluation on real-world financial data, we show that our quantum agents achieve risk-adjusted performance comparable to, and in some cases exceeding, that of classical Deep RL models with several orders of magnitude more parameters. However, while quantum circuit execution is inherently fast at the hardware level, practical deployment on cloud-based quantum systems introduces substantial latency, making end-to-end runtime currently dominated by infrastructural overhead and limiting practical applicability. Taken together, our results suggest that QRL is theoretically competitive with state-of-the-art classical reinforcement learning and may become practically advantageous as deployment overheads diminish. This positions QRL as a promising paradigm for dynamic decision-making in complex, high-dimensional, and non-stationary environments such as financial markets. The complete codebase is released as open source at: https://github.com/VincentGurgul/qrl-dpo-public
Recurrent Neural Networks with Linear Structures for Electricity Price Forecasting
We present a novel recurrent neural network architecture specifically designed for day-ahead electricity price forecasting, aimed at improving short-term decision-making and operational management in energy systems. Our combined forecasting model embeds linear structures, such as expert models and Kalman filters, into recurrent networks, enabling efficient computation and enhanced interpretability. The design leverages the strengths of both linear and non-linear model structures, allowing it to capture all relevant stylized price characteristics in power markets, including calendar and autoregressive effects, as well as influences from load, renewable energy, and related fuel and carbon markets. For empirical testing, we use hourly data from the largest European electricity market spanning 2018 to 2025 in a comprehensive forecasting study, comparing our model against state-of-the-art approaches, particularly high-dimensional linear and neural network models. In terms of RMSE, the proposed model achieves approximately 11% higher accuracy than the best-performing benchmark. We evaluate the contributions of the interpretable model components and conclude on the impact of combining linear and non-linear structures. We further evaluate the temporal robustness of the model by examining the stability of hyperparameters and the economic significance of key features. Additionally, we introduce a probabilistic extension to quantify forecast uncertainty.
GCL-OT: Graph Contrastive Learning with Optimal Transport for Heterophilic Text-Attributed Graphs AAAI 2026
Recently, structure-text contrastive learning has shown promising performance on text-attributed graphs by leveraging the complementary strengths of graph neural networks and language models. However, existing methods typically rely on homophily assumptions in similarity estimation and hard optimization objectives, which limit their applicability to heterophilic graphs. Although existing methods can mitigate heterophily through structural adjustments or neighbor aggregation, they usually treat textual embeddings as static targets, leading to suboptimal alignment. In this work, we identify multi-granular heterophily in text-attributed graphs, including complete heterophily, partial heterophily, and latent homophily, which makes structure-text alignment particularly challenging due to mixed, noisy, and missing semantic correlations. To achieve flexible and bidirectional alignment, we propose GCL-OT, a novel graph contrastive learning framework with optimal transport, equipped with tailored mechanisms for each type of heterophily. Specifically, for partial heterophily, we design a RealSoftMax-based similarity estimator to emphasize key neighbor-word interactions while easing background noise. For complete heterophily, we introduce a prompt-based filter that adaptively excludes irrelevant noise during optimal transport alignment. Furthermore, we incorporate OT-guided soft supervision to uncover potential neighbors with similar semantics, enhancing the learning of latent homophily. Theoretical analysis shows that GCL-OT can improve the mutual information bound and Bayes error guarantees. Extensive experiments on nine benchmarks show that GCL-OT outperforms state-of-the-art methods, demonstrating its effectiveness and robustness.
comment: AAAI 2026
Sparsity-Aware Low-Rank Representation for Efficient Fine-Tuning of Large Language Models
Adapting large pre-trained language models to downstream tasks often entails fine-tuning millions of parameters or deploying costly dense weight updates, which hinders their use in resource-constrained environments. Low-rank Adaptation (LoRA) reduces trainable parameters by factorizing weight updates, yet the underlying dense weights still impose high storage and computation costs. Magnitude-based pruning can yield sparse models but typically degrades LoRA's performance when applied naively. In this paper, we introduce SALR (Sparsity-Aware Low-Rank Representation), a novel fine-tuning paradigm that unifies low-rank adaptation with sparse pruning under a rigorous mean-squared-error framework. We prove that statically pruning only the frozen base weights minimizes the pruning error bound, and we recover the discarded residual information via a truncated-SVD low-rank adapter, which provably reduces per-entry MSE by a factor of $(1 - r/\min(d,k))$. To maximize hardware efficiency, we fuse multiple low-rank adapters into a single concatenated GEMM, and we adopt a bitmap-based encoding with a two-stage pipelined decoding + GEMM design to achieve true model compression and speedup. Empirically, SALR attains 50\% sparsity on various LLMs while matching the performance of LoRA on GSM8K and MMLU, reduces model size by $2\times$, and delivers up to a $1.7\times$ inference speedup.
Diagonal Linear Networks and the Lasso Regularization Path
Diagonal linear networks are neural networks with linear activation and diagonal weight matrices. Their theoretical interest is that their implicit regularization can be rigorously analyzed: from a small initialization, the training of diagonal linear networks converges to the linear predictor with minimal 1-norm among minimizers of the training loss. In this paper, we deepen this analysis showing that the full training trajectory of diagonal linear networks is closely related to the lasso regularization path. In this connection, the training time plays the role of an inverse regularization parameter. Both rigorous results and simulations are provided to illustrate this conclusion. Under a monotonicity assumption on the lasso regularization path, the connection is exact while in the general case, we show an approximate connection.
comment: 32 pages, 1 figure
Depth-Width tradeoffs in Algorithmic Reasoning of Graph Tasks with Transformers
Transformers have revolutionized the field of machine learning. In particular, they can be used to solve complex algorithmic problems, including graph-based tasks. In such algorithmic tasks a key question is what is the minimal size of a transformer that can implement the task. Recent work has begun to explore this problem for graph-based tasks, showing that for sub-linear embedding dimension (i.e., model width) logarithmic depth suffices. However, an open question, which we address here, is what happens if width is allowed to grow linearly, while depth is kept fixed. Here we analyze this setting, and provide the surprising result that with linear width, constant depth suffices for solving a host of graph-based problems. This suggests that a moderate increase in width can allow much shallower models, which are advantageous in terms of inference and train time. For other problems, we show that quadratic width is required. Our results demonstrate the complex and intriguing landscape of transformer implementations of graph-based algorithms. We empirically investigate these trade-offs between the relative powers of depth and width and find tasks where wider models have the same accuracy as deep models, while having much faster train and inference time due to parallelizable hardware.
Robust MAE-Driven NAS: From Mask Reconstruction to Architecture Innovation
Neural Architecture Search (NAS) relies heavily on labeled data, which is labor-intensive and time-consuming to obtain. In this paper, we propose a novel NAS method based on an unsupervised paradigm, specifically Masked Autoencoders (MAE), thereby eliminating the need for labeled data. By replacing the supervised learning objective with an image reconstruction task, our approach enables the efficient discovery of network architectures without compromising performance and generalization ability. Additionally, we address the problem of performance collapse encountered in the widely-used Differentiable Architecture Search (DARTS) in the unsupervised setting by designing a hierarchical decoder. Extensive experiments across various datasets demonstrate the effectiveness and robustness of our method, offering empirical evidence of its superiority over the counterparts.
Semantic Depth Matters: Explaining Errors of Deep Vision Networks through Perceived Class Similarities
Understanding deep neural network (DNN) behavior requires more than evaluating classification accuracy alone; analyzing errors and their predictability is equally crucial. Current evaluation methodologies lack transparency, particularly in explaining the underlying causes of network misclassifications. To address this, we introduce a novel framework that investigates the relationship between the semantic hierarchy depth perceived by a network and its real-data misclassification patterns. Central to our framework is the Similarity Depth (SD) metric, which quantifies the semantic hierarchy depth perceived by a network along with a method of evaluation of how closely the network's errors align with its internally perceived similarity structure. We also propose a graph-based visualization of model semantic relationships and misperceptions. A key advantage of our approach is that leveraging class templates -- representations derived from classifier layer weights -- is applicable to already trained networks without requiring additional data or experiments. Our approach reveals that deep vision networks encode specific semantic hierarchies and that high semantic depth improves the compliance between perceived class similarities and actual errors.
Compositional Reasoning with Transformers, RNNs, and Chain of Thought NeurIPS
It is well understood that different neural network architectures are suited to different tasks, but is there always a single best architecture for a given task? We compare the expressive power of transformers, RNNs, and transformers with chain of thought tokens on a simple and natural class of tasks we term Compositional Reasoning Questions (CRQ). This family captures multi-step problems with tree-like compositional structure, such as evaluating Boolean formulas. We prove that under standard hardness assumptions, \emph{none} of these three architectures is capable of solving CRQs unless some hyperparameter (depth, embedding dimension, and number of chain of thought tokens, respectively) grows with the size of the input. We then provide constructions for solving CRQs with each architecture. For transformers, our construction uses depth that is logarithmic in the problem size. For RNNs, logarithmic embedding dimension is necessary and sufficient, so long as the inputs are provided in a certain order. For transformers with chain of thought, our construction uses $n$ CoT tokens for input size $n$. These results show that, while CRQs are inherently hard, there are several different ways for language models to overcome this hardness. Even for a single class of problems, each architecture has strengths and weaknesses, and none is strictly better than the others.
comment: NeurIPS CR version
Fractal and Regular Geometry of Deep Neural Networks
We study the geometric properties of random neural networks by investigating the boundary volumes of their excursion sets for different activation functions, as the depth increases. More specifically, we show that, for activations which are not very regular (e.g., the Heaviside step function), the boundary volumes exhibit fractal behavior, with their Hausdorff dimension monotonically increasing with the depth. On the other hand, for activations which are more regular (e.g., ReLU, logistic and $\tanh$), as the depth increases, the expected boundary volumes can either converge to zero, remain constant or diverge exponentially, depending on a single spectral parameter which can be easily computed. Our theoretical results are confirmed in some numerical experiments based on Monte Carlo simulations.
Simplicity is Key: An Unsupervised Pretraining Approach for Sparse Radio Channels
Unsupervised representation learning for wireless channel state information (CSI)reduces reliance on labeled data, thereby lowering annotation costs, and often improves performance on downstream tasks. However, state-of-the-art approaches take little or no account of domain-specific knowledge, forcing the model to learn well-known concepts solely from data. We introduce Sparse pretrained Radio Transformer (SpaRTran), a hybrid method based on the concept of compressed sensing for wireless channels. In contrast to existing work, SpaRTran builds around a wireless channel model that constrains the optimization procedure to physically meaningful solutions and induces a strong inductive bias. Compared to the state of the art, SpaRTran cuts positioning error by up to 28% and increases top-1 codebook selection accuracy for beamforming by 26 percentage points. Our results show that capturing the sparse nature of radio propagation as an unsupervised learning objective improves performance for network optimization and radio-localization tasks.
comment: 8 pages, 1 figure
Physics-Guided Multimodal Transformers are the Necessary Foundation for the Next Generation of Meteorological Science
This position paper argues that the next generation of artificial intelligence in meteorological and climate sciences must transition from fragmented hybrid heuristics toward a unified paradigm of physics-guided multimodal transformers. While purely data-driven models have achieved significant gains in predictive accuracy, they often treat atmospheric processes as mere visual patterns, frequently producing results that lack scientific consistency or violate fundamental physical laws. We contend that current ``hybrid'' attempts to bridge this gap remain ad-hoc and struggle to scale across the heterogeneous nature of meteorological data ranging from satellite imagery to sparse sensor measurements. We argue that the transformer architecture, through its inherent capacity for cross-modal alignment, provides the only viable foundation for a systematic integration of domain knowledge via physical constraint embedding and physics-informed loss functions. By advocating for this unified architectural shift, we aim to steer the community away from ``black-box'' curve fitting and toward AI systems that are inherently falsifiable, scientifically grounded, and robust enough to address the existential challenges of extreme weather and climate change.
comment: Perspective article
USDs: A universal stabilizer decoder framework using symmetry
Quantum error correction is indispensable to achieving reliable quantum computation. When quantum information is encoded redundantly, a larger Hilbert space is constructed using multiple physical qubits, and the computation is performed within a designated subspace. When applying deep learning to the decoding of quantum error-correcting codes, a key challenge arises from the non-uniqueness between the syndrome measurements provided to the decoder and the corresponding error patterns that constitute the ground-truth labels. Building upon prior work that addressed this issue for the toric code by re-optimizing the decoder with respect to the symmetry inherent in the parity-check structure, we generalize this approach to arbitrary stabilizer codes. In our experiments, we employed multilayer perceptrons to approximate continuous functions that complement the syndrome measurements of the Color code and the Golay code. Using these models, we performed decoder re-optimization for each code. For the Color code, we achieved an improvement of approximately 0.8% in decoding accuracy at a physical error rate of 5%, while for the Golay code the accuracy increased by about 0.1%. Furthermore, from the evaluation of the geometric and algebraic structures in the continuous function approximation for each code, we showed that the design of generalized continuous functions is advantageous for learning the geometric structure inherent in the code. Our results also indicate that approximations that faithfully reproduce the code structure can have a significant impact on the effectiveness of reoptimization. This study demonstrates that the re-optimization technique previously shown to be effective for the Toric code can be generalized to address the challenge of label degeneracy that arises when applying deep learning to the decoding of stabilizer codes.
Toward Highly Efficient and Private Submodular Maximization via Matrix-Based Acceleration
Submodular function maximization is a critical building block for diverse tasks, such as document summarization, sensor placement, and image segmentation. Yet its practical utility is often limit by the $O(knd^2)$ computational bottleneck. In this paper, we propose an integrated framework that addresses efficiency and privacy simultaneously. First, we introduce a novel matrix-based computation paradigm that accelerates function evaluations. Second, we develop approximate data structures that further streamline the optimization process, achieving a theoretical complexity of $O(ε^{-2}(nd+kn+kd^2)\log(k/δ))$. Third, we integrate ($ε, δ$)-DP guaranties to address the privacy concerns inherent in sensitive optimization tasks.
NLPrompt: Noise-Label Prompt Learning for Vision-Language Models
The emergence of vision-language foundation models, such as CLIP, has revolutionized image-text representation, enabling a broad range of applications via prompt learning. Despite its promise, real-world datasets often contain noisy labels that can degrade prompt learning performance. In this paper, we demonstrate that using mean absolute error (MAE) loss in prompt learning, named PromptMAE, significantly enhances robustness against noisy labels while maintaining high accuracy. Though MAE is straightforward and recognized for its robustness, it is rarely used in noisy-label learning due to its slow convergence and poor performance outside prompt learning scenarios. To elucidate the robustness of PromptMAE, we leverage feature learning theory to show that MAE can suppress the influence of noisy samples, thereby improving the signal-to-noise ratio and enhancing overall robustness. Additionally, we introduce PromptOT, a prompt-based optimal transport data purification method to enhance the robustness further. PromptOT employs text features in vision-language models as prototypes to construct an optimal transportation matrix. This matrix effectively partitions datasets into clean and noisy subsets, allowing for the application of cross-entropy loss to the clean subset and MAE loss to the noisy subset. Our Noise-Label Prompt Learning method, named NLPrompt, offers a simple and efficient approach that leverages the expressive representations and precise alignment capabilities of vision-language models for robust prompt learning. We validate NLPrompt through extensive experiments across various noise settings, demonstrating significant performance improvements.
Improving Fine-Grained Control via Aggregation of Multiple Diffusion Models
While many diffusion models perform well when controlling particular aspects such as style, character, and interaction, they struggle with fine-grained control due to dataset limitations and intricate model architecture design. This paper introduces a novel training-free algorithm for fine-grained generation, called Aggregation of Multiple Diffusion Models (AMDM). The algorithm integrates features in the latent data space from multiple diffusion models within the same ecosystem into a specified model, thereby activating particular features and enabling fine-grained control. Experimental results demonstrate that AMDM significantly improves fine-grained control without training, validating its effectiveness. Additionally, it reveals that diffusion models initially focus on features such as position, attributes, and style, with later stages improving generation quality and consistency. AMDM offers a new perspective for tackling the challenges of fine-grained conditional generation in diffusion models. Specifically, it allows us to fully utilize existing or develop new conditional diffusion models that control specific aspects, and then aggregate them using the AMDM algorithm. This eliminates the need for constructing complex datasets, designing intricate model architectures, and incurring high training costs. Code is available at: https://github.com/Hammour-steak/AMDM.
KV Admission: Learning What to Write for Efficient Long-Context Inference
Long-context LLM inference is bottlenecked by the quadratic attention complexity and linear KV cache growth. Prior approaches mitigate this via post-hoc selection or eviction but overlook the root inefficiency: indiscriminate writing to memory. In this paper, we formalize KV cache management as a causal system of three primitives: KV Admission, Selection, and Eviction. We instantiate KV Admission via Write-Gated KV (WG-KV), a lightweight mechanism that learns to predict token utility before cache entry. By filtering out low-utility states early to maintain a compact global cache alongside a sliding local cache, WG-KV reduces memory usage by 46-68% and delivers 3.03-3.70x prefill and 1.85-2.56x decode speedups on Llama and Qwen models, while maintaining compatibility with FlashAttention and Paged-KV systems. These results demonstrate that learning what to write is a principled and practical recipe for efficient long-context inference. Code is available at https://github.com/EMCLab-Sinica/WG-KV.
AGFS-Tractometry: A Novel Atlas-Guided Fine-Scale Tractometry Approach for Enhanced Along-Tract Group Statistical Comparison Using Diffusion MRI Tractography
Diffusion MRI (dMRI) tractography is currently the only method for in vivo mapping of the brain's white matter (WM) connections. Tractometry is an advanced tractography analysis technique for along-tract profiling to investigate the morphology and microstructural properties along the fiber tracts. Tractometry has become an essential tool for studying local along-tract differences between different populations (e.g., health vs disease). In this study, we propose a novel atlas-guided fine-scale tractometry method, namely AGFS-Tractometry, that leverages tract spatial information and permutation testing to enhance the along-tract statistical analysis between populations. There are two major contributions in AGFS-Tractometry. First, we create a novel atlas-guided tract profiling template that enables consistent, fine-scale, along-tract parcellation of subject-specific fiber tracts. Second, we propose a novel nonparametric permutation testing group comparison method to enable simultaneous analysis across all along-tract parcels while correcting for multiple comparisons. We perform experimental evaluations on synthetic datasets with known group differences and in vivo real data. We compare AGFS-Tractometry with two state-of-the-art tractometry methods, including Automated Fiber-tract Quantification (AFQ) and BUndle ANalytics (BUAN). Our results show that the proposed AGFS-Tractometry obtains enhanced sensitivity and specificity in detecting local WM differences. In the real data analysis experiments, AGFS-Tractometry can identify more regions with significant differences, which are anatomically consistent with the existing literature. Overall, these demonstrate the ability of AGFS-Tractometry to detect subtle or spatially localized WM group-level differences. The created tract profiling template and related code are available at: https://github.com/ZhengRuixi/AGFS-Tractometry.git.
comment: 31 pages and 7 figures
Advancing Multimodal Reasoning: From Optimized Cold Start to Staged Reinforcement Learning
Inspired by the remarkable reasoning capabilities of Deepseek-R1 in complex textual tasks, many works attempt to incentivize similar capabilities in Multimodal Large Language Models (MLLMs) by directly applying reinforcement learning (RL). However, they still struggle to activate complex reasoning. In this paper, rather than examining multimodal RL in isolation, we delve into current training pipelines and identify three crucial phenomena: 1) Effective cold start initialization is critical for enhancing MLLM reasoning. Intriguingly, we find that initializing with carefully selected text data alone can lead to performance surpassing many recent multimodal reasoning models, even before multimodal RL. 2) Standard GRPO applied to multimodal RL suffers from gradient stagnation, which degrades training stability and performance. 3) Subsequent text-only RL training, following the multimodal RL phase, further enhances multimodal reasoning. This staged training approach effectively balances perceptual grounding and cognitive reasoning development. By incorporating the above insights and addressing multimodal RL issues, we introduce ReVisual-R1, achieving a new state-of-the-art among open-source 7B MLLMs on challenging benchmarks including MathVerse, MathVision, WeMath, LogicVista, DynaMath, and challenging AIME2024 and AIME2025.
comment: 19 pages, 6 figures
MAnchors: Memorization-Based Acceleration of Anchors via Rule Reuse and Transformation
Anchors is a popular local model-agnostic explanation technique whose applicability is limited by its computational inefficiency. To address this limitation, we propose a memorization-based framework that accelerates Anchors while preserving explanation fidelity and interpretability. Our approach leverages the iterative nature of Anchors' algorithm which gradually refines an explanation until it is precise enough for a given input by storing and reusing intermediate results obtained during prior explanations. Specifically, we maintain a memory of low-precision, high-coverage rules and introduce a rule transformation framework to adapt them to new inputs: the horizontal transformation adapts a pre-trained explanation to the current input by replacing features, and the vertical transformation refines the general explanation until it is precise enough for the input. We evaluate our method across tabular, text, and image datasets, demonstrating that it significantly reduces explanation generation time while maintaining fidelity and interpretability, thereby enabling the practical adoption of Anchors in time-sensitive applications.
DAUNet: A Lightweight UNet Variant with Deformable Convolutions and Parameter-Free Attention for Medical Image Segmentation
Medical image segmentation plays a pivotal role in automated diagnostic and treatment planning systems. In this work, we present DAUNet, a novel lightweight UNet variant that integrates Deformable V2 Convolutions and Parameter-Free Attention (SimAM) to improve spatial adaptability and context-aware feature fusion without increasing model complexity. DAUNet's bottleneck employs dynamic deformable kernels to handle geometric variations, while the decoder and skip pathways are enhanced using SimAM attention modules for saliency-aware refinement. Extensive evaluations on two challenging datasets, FH-PS-AoP (fetal head and pubic symphysis ultrasound) and FUMPE (CT-based pulmonary embolism detection), demonstrate that DAUNet outperforms state-of-the-art models in Dice score, HD95, and ASD, while maintaining superior parameter efficiency. Ablation studies highlight the individual contributions of deformable convolutions and SimAM attention. DAUNet's robustness to missing context and low-contrast regions establishes its suitability for deployment in real-time and resource-constrained clinical environments.
comment: 13 pages, 7 figures
Self-induced stochastic resonance: A physics-informed machine learning approach
Self-induced stochastic resonance (SISR) is the emergence of coherent oscillations in slow-fast excitable systems driven solely by noise, without external periodic forcing or proximity to a bifurcation. This work presents a physics-informed machine learning framework for modeling and predicting SISR in the stochastic FitzHugh-Nagumo neuron. We embed the governing stochastic differential equations and SISR-asymptotic timescale-matching constraints directly into a Physics-Informed Neural Network (PINN) based on a Noise-Augmented State Predictor architecture. The composite loss integrates data fidelity, dynamical residuals, and barrier-based physical constraints derived from Kramers' escape theory. The trained PINN accurately predicts the dependence of spike-train coherence on noise intensity, excitability, and timescale separation, matching results from direct stochastic simulations with substantial improvements in accuracy and generalization compared with purely data-driven methods, while requiring significantly less computation. The framework provides a data-efficient and interpretable surrogate model for simulating and analyzing noise-induced coherence in multiscale stochastic systems.
comment: 25 pages, 10 figures, 62 references
Accelerated Sinkhorn Algorithms for Partial Optimal Transport
Partial Optimal Transport (POT) addresses the problem of transporting only a fraction of the total mass between two distributions, making it suitable when marginals have unequal size or contain outliers. While Sinkhorn-based methods are widely used, their complexity bounds for POT remain suboptimal and can limit scalability. We introduce Accelerated Sinkhorn for POT (ASPOT), which integrates alternating minimization with Nesterov-style acceleration in the POT setting, yielding a complexity of $\mathcal{O}(n^{7/3}\varepsilon^{-5/3})$. We also show that an informed choice of the entropic parameter $γ$ improves rates for the classical Sinkhorn method. Experiments on real-world applications validate our theories and demonstrate the favorable performance of our proposed methods.
AuditoryBench++: Can Language Models Understand Auditory Knowledge without Hearing?
Even without directly hearing sounds, humans can effortlessly reason about auditory properties, such as pitch, loudness, or sound-source associations, drawing on auditory commonsense. In contrast, language models often lack this capability, limiting their effectiveness in multimodal interactions. As an initial step to address this gap, we present AuditoryBench++, a comprehensive benchmark for evaluating auditory knowledge and reasoning in text-only settings. The benchmark encompasses tasks that range from basic auditory comparisons to contextually grounded reasoning, enabling fine-grained analysis of how models process and integrate auditory concepts. In addition, we introduce AIR-CoT, a novel auditory imagination reasoning method that generates and integrates auditory information during inference through span detection with special tokens and knowledge injection. Extensive experiments with recent LLMs and Multimodal LLMs demonstrate that AIR-CoT generally outperforms both the off-the-shelf models and those augmented with auditory knowledge. The project page is available at https://auditorybenchpp.github.io.
comment: ICASSP 2026
Streaming Tensor Programs: A Streaming Abstraction for Dynamic Parallelism
Dynamic behaviors are becoming prevalent in tensor applications, like machine learning, where many widely used models contain data-dependent tensor shapes and control flow. However, the limited expressiveness of prior programming abstractions for spatial dataflow accelerators (SDAs) forces these dynamic behaviors to be implemented statically and/or unoptimized. To address these challenges, we present Streaming Tensor Programs (STeP), a streaming abstraction that enables dynamic tensor workloads to run efficiently on SDAs. STeP introduces flexible routing operators, an explicit memory hierarchy, and symbolic-shape semantics that expose dynamic data rates and tensor dimensions. These capabilities unlock new optimizations, like dynamic tiling, dynamic parallelization, and configuration time-multiplexing, that adapt SDA execution to dynamic behaviors while preserving dataflow efficiency. Using a cycle-approximate simulator on representative LLM layers and a full model with real-world traces, STeP enables: dynamic tiling that breaks the Pareto-optimal frontier from prior work, dynamic parallelization that improves latency by ~2.72x, and configuration time-multiplexing that increases compute utilization by ~2.64x over prior SDA abstractions and their implementations.
Demystifying the Slash Pattern in Attention: The Role of RoPE
Large Language Models (LLMs) often exhibit slash attention patterns, where attention scores concentrate along the $Δ$-th sub-diagonal for some offset $Δ$. These patterns play a key role in passing information across tokens. But why do they emerge? In this paper, we demystify the emergence of these Slash-Dominant Heads (SDHs) from both empirical and theoretical perspectives. First, by analyzing open-source LLMs, we find that SDHs are intrinsic to models and generalize to out-of-distribution prompts. To explain the intrinsic emergence, we analyze the queries, keys, and Rotary Position Embedding (RoPE), which jointly determine attention scores. Our empirical analysis reveals two characteristic conditions of SDHs: (1) Queries and keys are almost rank-one, and (2) RoPE is dominated by medium- and high-frequency components. Under these conditions, queries and keys are nearly identical across tokens, and interactions between medium- and high-frequency components of RoPE give rise to SDHs. Beyond empirical evidence, we theoretically show that these conditions are sufficient to ensure the emergence of SDHs by formalizing them as our modeling assumptions. Particularly, we analyze the training dynamics of a shallow Transformer equipped with RoPE under these conditions, and prove that models trained via gradient descent exhibit SDHs. The SDHs generalize to out-of-distribution prompts.
Confidence intervals for forced alignment boundaries using model ensembles
Forced alignment is a common tool to align audio with orthographic and phonetic transcriptions. Most forced alignment tools provide only a single estimate of a boundary. The present project introduces a method of deriving confidence intervals for these boundaries using a neural network ensemble technique. Ten different segment classifier neural networks were previously trained, and the alignment process is repeated with each model. The alignment ensemble is then used to place the boundary at the median of the boundaries in the ensemble, and 97.85% confidence intervals are constructed using order statistics. Having confidence intervals provides an estimate of the uncertainty in the boundary placement, facilitating tasks like finding boundaries that should be reviewed. As a bonus, on the Buckeye and TIMIT corpora, the ensemble boundaries show a slight overall improvement over using just a single model. The confidence intervals can be emitted during the alignment process as JSON files and a main table for programmatic and statistical analysis. For familiarity, they are also output as Praat TextGrids using a point tier to represent the intervals.
comment: revised for publication; 11 pages, 3 figures
BAGEL: Projection-Free Algorithm for Adversarially Constrained Online Convex Optimization
Projection-based algorithms for Constrained Online Convex Optimization (COCO) achieve optimal $\mathcal{O}(T^{1/2})$ regret guarantees but face scalability challenges due to the computational complexity of projections. To circumvent this, projection-free methods utilizing Linear Optimization Oracles (LOO) have been proposed, albeit typically achieving slower $\mathcal{O}(T^{3/4})$ regret rates. In this work, we examine whether the $\mathcal{O}(T^{1/2})$ rate can be recovered in the projection-free setting by strengthening the oracle assumption. We introduce BAGEL, an algorithm utilizing a Separation Oracle (SO) that achieves $\mathcal{O}(T^{1/2})$ regret and $\tilde{\mathcal{O}}(T^{1/2})$ cumulative constraint violation (CCV) for convex cost functions. Our analysis shows that by leveraging an infeasible projection via SO, we can match the time-horizon dependence of projection-based methods with $\tilde{\mathcal{O}}(T)$ oracle calls, provided dependence on the geometry of the action set. This establishes a specific regime where projection-free methods can attain the same convergence rates as projection-based counterparts.
Feasibility-aware Learning of Robust Temporal Logic Controllers using BarrierNet
Control Barrier Functions (CBFs) have been used to enforce safety and task specifications expressed in Signal Temporal Logic (STL). However, existing CBF-STL approaches typically rely on fixed hyperparameters and per-step optimization, which can lead to overly conservative behavior, infeasibility near tight input limits, and difficulty satisfying long-horizon STL tasks. To address these limitations, we propose a feasibility-aware learning framework that constructs trainable, time-varying High Order Control Barrier Function (HOCBF) constraints and hyperparameters that guarantee satisfaction of a given STL specification. We introduce a unified robustness measure that jointly captures STL satisfaction, constraint feasibility, and control-bound compliance, and propose a neural network architecture to generate control inputs that maximize this robustness. The resulting controller guarantees STL satisfaction with strictly feasible HOCBF constraints and requires no manual tuning. Simulation results demonstrate that the proposed framework maintains high STL robustness under tight input bounds and significantly outperforms fixed-parameter and non-adaptive baselines in complex environments.
comment: 16 pages, 11 figures
The Law of Multi-Model Collaboration: Scaling Limits of Model Ensembling for Large Language Models
Recent advances in large language models (LLMs) have been largely driven by scaling laws for individual models, which predict performance improvements as model parameters and data volume increase. However, the capabilities of any single LLM are inherently bounded. One solution originates from intricate interactions among multiple LLMs, rendering their collective performance surpasses that of any constituent model. Despite the rapid proliferation of multi-model integration techniques such as model routing and post-hoc ensembling, a unifying theoretical framework of performance scaling for multi-model collaboration remains absent. In this work, we propose the Law of Multi-model Collaboration, a scaling law that predicts the performance limits of LLM ensembles based on their aggregated parameter budget. To quantify the intrinsic upper bound of multi-model collaboration, we adopt a method-agnostic formulation and assume an idealized integration oracle where the total cross-entropy loss of each sample is determined by the minimum loss of any model in the model pool. Experimental results reveal that multi-model systems follow a power-law scaling with respect to the total parameter count, exhibiting a more significant improvement trend and a lower theoretical loss floor compared to single model scaling. Moreover, ensembles of heterogeneous model families achieve better performance scaling than those formed within a single model family, indicating that model diversity is a primary driver of collaboration gains. These findings suggest that model collaboration represents a critical axis for extending the intelligence frontier of LLMs.
FusionLog: Cross-System Log-based Anomaly Detection via Fusion of General and Proprietary Knowledge
Log-based anomaly detection is critical for ensuring the stability and reliability of web systems. One of the key problems in this task is the lack of sufficient labeled logs, which limits the rapid deployment in new systems. Existing works usually leverage large-scale labeled logs from a mature web system and a small amount of labeled logs from a new system, using transfer learning to extract and generalize general knowledge across both domains. However, these methods focus solely on the transfer of general knowledge and neglect the disparity and potential mismatch between such knowledge and the proprietary knowledge of target system, thus constraining performance. To address this limitation, we propose FusionLog, a novel zero-label cross-system log-based anomaly detection method that effectively achieves the fusion of general and proprietary knowledge, enabling cross-system generalization without any labeled target logs. Specifically, we first design a training-free router based on semantic similarity that dynamically partitions unlabeled target logs into 'general logs' and 'proprietary logs.' For general logs, FusionLog employs a small model based on system-agnostic representation meta-learning for direct training and inference, inheriting the general anomaly patterns shared between the source and target systems. For proprietary logs, we iteratively generate pseudo-labels and fine-tune the small model using multi-round collaborative knowledge distillation and fusion based on large language model (LLM) and small model (SM) to enhance its capability to recognize anomaly patterns specific to the target system. Experimental results on three public log datasets from different systems show that FusionLog achieves over 90% F1-score under a fully zero-label setting, significantly outperforming state-of-the-art cross-system log-based anomaly detection methods.
comment: 11 pages, 4 figures, and 2 tables
Tracing Mathematical Proficiency Through Problem-Solving Processes
Knowledge Tracing (KT) aims to model student's knowledge state and predict future performance to enable personalized learning in Intelligent Tutoring Systems. However, traditional KT methods face fundamental limitations in explainability, as they rely solely on the response correctness, neglecting the rich information embedded in students' problem-solving processes. To address this gap, we propose Knowledge Tracing Leveraging Problem-Solving Process (KT-PSP), which incorporates students' problem-solving processes to capture the multidimensional aspects of mathematical proficiency. We also introduce KT-PSP-25, a new dataset specifically designed for the KT-PSP. Building on this, we present StatusKT, a KT framework that employs a teacher-student-teacher three-stage LLM pipeline to extract students' MP as intermediate signals. In this pipeline, the teacher LLM first extracts problem-specific proficiency indicators, then a student LLM generates responses based on the student's solution process, and a teacher LLM evaluates these responses to determine mastery of each indicator. The experimental results on KT-PSP-25 demonstrate that StatusKT improves the prediction performance of existing KT methods. Moreover, StatusKT provides interpretable explanations for its predictions by explicitly modeling students' mathematical proficiency.
comment: 18 pages, 4 figures
Embodied AI with Foundation Models for Mobile Service Robots: A Systematic Review
Rapid advancements in foundation models, including Large Language Models, Vision-Language Models, Multimodal Large Language Models, and Vision-Language-Action Models, have opened new avenues for embodied AI in mobile service robotics. By combining foundation models with the principles of embodied AI, where intelligent systems perceive, reason, and act through physical interaction, mobile service robots can achieve more flexible understanding, adaptive behavior, and robust task execution in dynamic real-world environments. Despite this progress, embodied AI for mobile service robots continues to face fundamental challenges related to the translation of natural language instructions into executable robot actions, multimodal perception in human-centered environments, uncertainty estimation for safe decision-making, and computational constraints for real-time onboard deployment. In this paper, we present the first systematic review focused specifically on the integration of foundation models in mobile service robotics. We analyze how recent advances in foundation models address these core challenges through language-conditioned control, multimodal sensor fusion, uncertainty-aware reasoning, and efficient model scaling. We further examine real-world applications in domestic assistance, healthcare, and service automation, highlighting how foundation models enable context-aware, socially responsive, and generalizable robot behaviors. Beyond technical considerations, we discuss ethical, societal, and human-interaction implications associated with deploying foundation model-enabled service robots in human environments. Finally, we outline future research directions emphasizing reliability and lifelong adaptation, privacy-aware and resource-constrained deployment, and governance and human-in-the-loop frameworks required for safe, scalable, and trustworthy mobile service robotics.
comment: v2: Expanded systematic review; resubmitted to Robotics
AGZO: Activation-Guided Zeroth-Order Optimization for LLM Fine-Tuning
Zeroth-Order (ZO) optimization has emerged as a promising solution for fine-tuning LLMs under strict memory constraints, as it avoids the prohibitive memory cost of storing activations for backpropagation. However, existing ZO methods typically employ isotropic perturbations, neglecting the rich structural information available during the forward pass. In this paper, we identify a crucial link between gradient formation and activation structure: the gradient of a linear layer is confined to the subspace spanned by its input activations. Leveraging this insight, we propose Activation-Guided Zeroth-Order optimization (AGZO). Unlike prior methods, AGZO extracts a compact, activation-informed subspace on the fly during the forward pass and restricts perturbations to this low-rank subspace. We provide a theoretical framework showing that AGZO optimizes a subspace-smoothed objective and provably yields update directions with higher cosine similarity to the true gradient than isotropic baselines. Empirically, we evaluate AGZO on Qwen3 and Pangu models across various benchmarks. AGZO consistently outperforms state-of-the-art ZO baselines and significantly narrows the performance gap with first-order fine-tuning, while maintaining almost the same peak memory footprint as other ZO methods.
comment: 21 pages in total, including 9 pages of main text, with 4 figures and 3 tables. This manuscript is submitted to arXiv
Abex-rat: Synergizing Abstractive Augmentation and Adversarial Training for Classification of Occupational Accident Reports
The automatic classification of occupational accident reports is pivotal for workplace safety analysis but is persistently hindered by severe class imbalance and data scarcity. In this paper, we propose ABEX-RAT, a resource-efficient framework that synergizes generative data augmentation with robust adversarial learning. Unlike computationally expensive large language models (LLMs) fine-tuning, our approach employs a two-stage abstractive-expansive (ABEX) pipeline: it first utilizes a prompt-guided LLM to distill label-critical semantics into concise abstracts, which are then expanded into diverse synthetic samples to balance the data distribution. Subsequently, we train a lightweight classifier using a random adversarial training (RAT) protocol, which stochastically injects perturbations to enhance generalization without significant computational overhead. Experimental results on the OSHA dataset demonstrate that ABEXRAT establishes a new state-of-the-art, achieving a Macro-F1 score of 90.32% and significantly outperforming both traditional baselines and fine-tuned large models. This confirms that targeted augmentation combined with robust training offers a superior, data-efficient alternative for specialized domain classification. The source code will be made publicly available upon acceptance.
Modality-Balanced Collaborative Distillation for Multi-Modal Domain Generalization
Weight Averaging (WA) has emerged as a powerful technique for enhancing generalization by promoting convergence to a flat loss landscape, which correlates with stronger out-of-distribution performance. However, applying WA directly to multi-modal domain generalization (MMDG) is challenging: differences in optimization speed across modalities lead WA to overfit to faster-converging ones in early stages, suppressing the contribution of slower yet complementary modalities, thereby hindering effective modality fusion and skewing the loss surface toward sharper, less generalizable minima. To address this issue, we propose MBCD, a unified collaborative distillation framework that retains WA's flatness-inducing advantages while overcoming its shortcomings in multi-modal contexts. MBCD begins with adaptive modality dropout in the student model to curb early-stage bias toward dominant modalities. A gradient consistency constraint then aligns learning signals between uni-modal branches and the fused representation, encouraging coordinated and smoother optimization. Finally, a WA-based teacher conducts cross-modal distillation by transferring fused knowledge to each uni-modal branch, which strengthens cross-modal interactions and steer convergence toward flatter solutions. Extensive experiments on MMDG benchmarks show that MBCD consistently outperforms existing methods, achieving superior accuracy and robustness across diverse unseen domains.
A Multi-Stage Deep Learning Framework with PKCP-MixUp Augmentation for Pediatric Liver Tumor Diagnosis Using Multi-Phase Contrast-Enhanced CT
Pediatric liver tumors are one of the most common solid tumors in pediatrics, with differentiation of benign or malignant status and pathological classification critical for clinical treatment. While pathological examination is the gold standard, the invasive biopsy has notable limitations: the highly vascular pediatric liver and fragile tumor tissue raise complication risks such as bleeding; additionally, young children with poor compliance require anesthesia for biopsy, increasing medical costs or psychological trauma. Although many efforts have been made to utilize AI in clinical settings, most researchers have overlooked its importance in pediatric liver tumors. To establish a non-invasive examination procedure, we developed a multi-stage deep learning (DL) framework for automated pediatric liver tumor diagnosis using multi-phase contrast-enhanced CT. Two retrospective and prospective cohorts were enrolled. We established a novel PKCP-MixUp data augmentation method to address data scarcity and class imbalance. We also trained a tumor detection model to extract ROIs, and then set a two-stage diagnosis pipeline with three backbones with ROI-masked images. Our tumor detection model has achieved high performance (mAP=0.871), and the first stage classification model between benign and malignant tumors reached an excellent performance (AUC=0.989). Final diagnosis models also exhibited robustness, including benign subtype classification (AUC=0.915) and malignant subtype classification (AUC=0.979). We also conducted multi-level comparative analyses, such as ablation studies on data and training pipelines, as well as Shapley-Value and CAM interpretability analyses. This framework fills the pediatric-specific DL diagnostic gap, provides actionable insights for CT phase selection and model design, and paves the way for precise, accessible pediatric liver tumor diagnosis.
The Geometric Reasoner: Manifold-Informed Latent Foresight Search for Long-Context Reasoning
Scaling test-time compute enhances long chain-of-thought (CoT) reasoning, yet existing approaches face a fundamental trade-off between computational cost and coverage quality: either incurring high training expense or yielding redundant trajectories. We introduce The Geometric Reasoner (TGR), a training-free framework that performs manifold-informed latent foresight search under strict memory bounds. At each chunk boundary, TGR scores candidate latent anchors via a lightweight look-ahead estimate combined with soft geometric regularizers that encourage smooth trajectories and diverse exploration. Chunk-wise KV cache resets keep memory linear in chunk length. On challenging math and code benchmarks, TGR improves robust trajectory coverage, measured by the area under the Pass@$k$ curve (AUC), by up to 13 points on Qwen3-8B, with negligible overhead of about 1.1--1.3 times.
comment: 11 pages, 5 figures
Communication-Avoiding Linear Algebraic Kernel K-Means on GPUs
Clustering is an important tool in data analysis, with K-means being popular for its simplicity and versatility. However, it cannot handle non-linearly separable clusters. Kernel K-means addresses this limitation but requires a large kernel matrix, making it computationally and memory intensive. Prior work has accelerated Kernel K-means by formulating it using sparse linear algebra primitives and implementing it on a single GPU. However, that approach cannot run on datasets with more than approximately 80,000 samples due to limited GPU memory. In this work, we address this issue by presenting a suite of distributed-memory parallel algorithms for large-scale Kernel K-means clustering on multi-GPU systems. Our approach maps the most computationally expensive components of Kernel K-means onto communication-efficient distributed linear algebra primitives uniquely tailored for Kernel K-means, enabling highly scalable implementations that efficiently cluster million-scale datasets. Central to our work is the design of partitioning schemes that enable communication-efficient composition of the linear algebra primitives that appear in Kernel K-means. Our 1.5D algorithm consistently achieves the highest performance, enabling Kernel K-means to scale to data one to two orders of magnitude larger than previously practical. On 256 GPUs, it achieves a geometric mean weak scaling efficiency of $79.7\%$ and a geometric mean strong scaling speedup of $4.2\times$. Compared to our 1D algorithm, the 1.5D approach achieves up to a $3.6\times$ speedup on 256 GPUs and reduces clustering time from over an hour to under two seconds relative to a single-GPU sliding window implementation. Our results show that distributed algorithms designed with application-specific linear algebraic formulations can achieve substantial performance improvement.
NavFormer: IGRF Forecasting in Moving Coordinate Frames
Triad magnetometer components change with sensor attitude even when the IGRF total intensity target stays invariant. NavFormer forecasts this invariant target with rotation invariant scalar features and a Canonical SPD module that stabilizes the spectrum of window level second moments of the triads without sign discontinuities. The module builds a canonical frame from a Gram matrix per window and applies state dependent spectral scaling in the original coordinates. Experiments across five flights show lower error than strong baselines in standard training, few shot training, and zero shot transfer. The code is available at: https://anonymous.4open.science/r/NavFormer-Robust-IGRF-Forecasting-for-Autonomous-Navigators-0765
Stochastic Voronoi Ensembles for Anomaly Detection
Anomaly detection aims to identify data instances that deviate significantly from majority of data, which has been widely used in fraud detection, network security, and industrial quality control. Existing methods struggle with datasets exhibiting varying local densities: distance-based methods miss local anomalies, while density-based approaches require careful parameter selection and incur quadratic time complexity. We observe that local anomalies, though indistinguishable under global analysis, become conspicuous when the data space is decomposed into restricted regions and each region is examined independently. Leveraging this geometric insight, we propose SVEAD (Stochastic Voronoi Ensembles Anomaly Detector), which constructs ensemble random Voronoi diagrams and scores points by normalized cell-relative distances weighted by local scale. The proposed method achieves linear time complexity and constant space complexity. Experiments on 45 datasets demonstrate that SVEAD outperforms 12 state-of-the-art approaches.
comment: Version 2: Added ablation study on dual-factor scoring mechanism, contamination robustness analysis and GPU acceleration results
DeepBooTS: Dual-Stream Residual Boosting for Drift-Resilient Time-Series Forecasting AAAI-26
Time-Series (TS) exhibits pronounced non-stationarity. Consequently, most forecasting methods display compromised robustness to concept drift, despite the prevalent application of instance normalization. We tackle this challenge by first analysing concept drift through a bias-variance lens and proving that weighted ensemble reduces variance without increasing bias. These insights motivate DeepBooTS, a novel end-to-end dual-stream residual-decreasing boosting method that progressively reconstructs the intrinsic signal. In our design, each block of a deep model becomes an ensemble of learners with an auxiliary output branch forming a highway to the final prediction. The block-wise outputs correct the residuals of previous blocks, leading to a learning-driven decomposition of both inputs and targets. This method enhances versatility and interpretability while substantially improving robustness to concept drift. Extensive experiments, including those on large-scale datasets, show that the proposed method outperforms existing methods by a large margin, yielding an average performance improvement of 15.8% across various datasets, establishing a new benchmark for TS forecasting.
comment: 28 pages,17 pages, Published in AAAI-26
Efficient Group Lasso Regularized Rank Regression with Data-Driven Parameter Determination
High-dimensional regression often suffers from heavy-tailed noise and outliers, which can severely undermine the reliability of least-squares based methods. To improve robustness, we adopt a non-smooth Wilcoxon score based rank objective and incorporate structured group sparsity regularization, a natural generalization of the lasso, yielding a group lasso regularized rank regression method. By extending the tuning-free parameter selection scheme originally developed for the lasso, we introduce a data-driven, simulation-based tuning rule and further establish a finite-sample error bound for the resulting estimator. On the computational side, we develop a proximal augmented Lagrangian method for solving the associated optimization problem, which eliminates the singularity issues encountered in existing methods, thereby enabling efficient semismooth Newton updates for the subproblems. Extensive numerical experiments demonstrate the robustness and effectiveness of our proposed estimator against alternatives, and showcase the scalability of the algorithm across both simulated and real-data settings.
comment: 36 pages, 4 figures, 8 tables
R^3: Replay, Reflection, and Ranking Rewards for LLM Reinforcement Learning
Large reasoning models (LRMs) aim to solve diverse and complex problems through structured reasoning. Recent advances in group-based policy optimization methods have shown promise in enabling stable advantage estimation without reliance on process-level annotations. However, these methods rely on advantage gaps induced by high-quality samples within the same batch, which makes the training process fragile and inefficient when intra-group advantages collapse under challenging tasks. To address these problems, we propose a reinforcement learning mechanism named \emph{\textbf{R^3}} that along three directions: (1) a \emph{cross-context \underline{\textbf{R}}eplay} strategy that maintains the intra-group advantage by recalling valuable examples from historical trajectories of the same query, (2) an \emph{in-context self-\underline{\textbf{R}}eflection} mechanism enabling models to refine outputs by leveraging past failures, and (3) a \emph{structural entropy \underline{\textbf{R}}anking reward}, which assigns relative rewards to truncated or failed samples by ranking responses based on token-level entropy patterns, capturing both local exploration and global stability. We implement our method on Deepseek-R1-Distill-Qwen-1.5B and train it on the DeepscaleR-40k in the math domain. Experiments demonstrate our method achieves SoTA performance on several math benchmarks, representing significant improvements and fewer reasoning tokens over the base models. Code and model will be released.
Blog Data Showdown: Machine Learning vs Neuro-Symbolic Models for Gender Classification
Text classification problems, such as gender classification from a blog, have been a well-matured research area that has been well studied using machine learning algorithms. It has several application domains in market analysis, customer recommendation, and recommendation systems. This study presents a comparative analysis of the widely used machine learning algorithms, namely Support Vector Machines (SVM), Naive Bayes (NB), Logistic Regression (LR), AdaBoost, XGBoost, and an SVM variant (SVM_R) with neuro-symbolic AI (NeSy). The paper also explores the effect of text representations such as TF-IDF, the Universal Sentence Encoder (USE), and RoBERTa. Additionally, various feature extraction techniques, including Chi-Square, Mutual Information, and Principal Component Analysis, are explored. Building on these, we introduce a comparative analysis of the machine learning and deep learning approaches in comparison to the NeSy. The experimental results show that the use of the NeSy approach matched strong MLP results despite a limited dataset. Future work on this research will expand the knowledge base, the scope of embedding types, and the hyperparameter configuration to further study the effectiveness of the NeSy approach.
comment: There is an error present within the paper concerning its results
mR3: Multilingual Rubric-Agnostic Reward Reasoning Models ICLR 2026
Evaluation using Large Language Model (LLM) judges has been widely adopted in English and shown to be effective for automatic evaluation. However, their performance does not generalize well to non-English settings, and it remains unclear what constitutes effective multilingual training for such judges. In this paper, we introduce mR3, a massively multilingual, rubric-agnostic reward reasoning model trained on 72 languages, achieving the broadest language coverage in reward modeling to date. We present a comprehensive study of data and curriculum selection for training to identify effective strategies and data sources for building high-quality reward models, including support for reasoning in the target language. Our approach attains state-of-the-art performance on multilingual reward model benchmarks, surpassing much larger models (i.e., GPT-OSS-120B) while being up to 9x smaller, and its effectiveness is further confirmed through extensive ablation studies. Finally, we demonstrate the effectiveness of mR3 in off-policy preference optimization and validate the quality of its reasoning traces and rubric-based evaluations through human studies with 20 annotators across 12 languages, where mR3 models' reasoning is preferred, including for extremely low-resource languages that are entirely unseen during training. Our models, data, and code are available as open source at https://github.com/rubricreward/mr3.
comment: Accepted to ICLR 2026
First is Not Really Better Than Last: Evaluating Layer Choice and Aggregation Strategies in Language Model Data Influence Estimation ICLR 2026
Identifying how training samples influence/impact Large Language Model (LLM) decision-making is essential for effectively interpreting model decisions and auditing large-scale datasets. Current training sample influence estimation methods (also known as influence functions) undertake this goal by utilizing information flow through the model via its first-order and higher-order gradient terms. However, owing to the large model sizes of today consisting of billions of parameters, these influence computations are often restricted to some subset of model layers to ensure computational feasibility. Prior seminal work by Yeh et al. (2022) in assessing which layers are best suited for computing language data influence concluded that the first (embedding) layers are the most informative for this purpose, using a hypothesis based on influence scores canceling out (i.e., the cancellation effect). In this work, we propose theoretical and empirical evidence demonstrating how the cancellation effect is unreliable, and that middle attention layers are better estimators for influence. Furthermore, we address the broader challenge of aggregating influence scores across layers, and showcase how alternatives to standard averaging (such as ranking and vote-based methods) can lead to significantly improved performance. Finally, we propose better methods for evaluating influence score efficacy in LLMs without undertaking model retraining, and propose a new metric known as the Noise Detection Rate (NDR) that exhibits strong predictive capability compared to the cancellation effect. Through extensive experiments across LLMs of varying types and scales, we concretely determine that the first (layers) are not necessarily better than the last (layers) for LLM influence estimation, contrasting with prior knowledge in the field.
comment: Accepted to ICLR 2026
Telegrapher's Generative Model via Kac Flows
We break the mold in flow-based generative modeling by proposing a new model based on the damped wave equation, also known as telegrapher's equation. Similar to the diffusion equation and Brownian motion, there is a Feynman-Kac type relation between the telegrapher's equation and the stochastic Kac process in 1D. The Kac flow evolves stepwise linearly in time, so that the probability flow is Lipschitz continuous in the Wasserstein distance and, in contrast to diffusion flows, the norm of the velocity is globally bounded. Furthermore, the Kac model has the diffusion model as its asymptotic limit. We extend these considerations to a multi-dimensional stochastic process which consists of independent 1D Kac processes in each spatial component. We show that this process gives rise to an absolutely continuous curve in the Wasserstein space and compute the conditional velocity field starting in a Dirac point analytically. Using the framework of flow matching, we train a neural network that approximates the velocity field and use it for sample generation. Our numerical experiments demonstrate the scalability of our approach, and show its advantages over diffusion models.
comment: Update V2: We added CIFAR experiments. V3: The old FID scores & CIFAR images of the Kac model corresponded to the schedule g(t) = t. We updated them with both schedules t and t^2. V4: We corrected a minor implementation error and updated the CIFAR results. V5: We prove that the mean-reverting Kac process is Lipschitz, provide a rigorous proof of decomp. Lemma 6.1, and a nearest neighbor analysis
Mitigating LLM Hallucination via Behaviorally Calibrated Reinforcement Learning
LLM deployment in critical domains is currently impeded by persistent hallucinations--generating plausible but factually incorrect assertions. While scaling laws drove significant improvements in general capabilities, theoretical frameworks suggest hallucination is not merely stochastic error but a predictable statistical consequence of training objectives prioritizing mimicking data distribution over epistemic honesty. Standard RLVR paradigms, utilizing binary reward signals, inadvertently incentivize models as good test-takers rather than honest communicators, encouraging guessing whenever correctness probability exceeds zero. This paper presents an exhaustive investigation into behavioral calibration, which incentivizes models to stochastically admit uncertainty by abstaining when not confident, aligning model behavior with accuracy. Synthesizing recent advances, we propose and evaluate training interventions optimizing strictly proper scoring rules for models to output a calibrated probability of correctness. Our methods enable models to either abstain from producing a complete response or flag individual claims where uncertainty remains. Utilizing Qwen3-4B-Instruct, empirical analysis reveals behavior-calibrated reinforcement learning allows smaller models to surpass frontier models in uncertainty quantification--a transferable meta-skill decouplable from raw predictive accuracy. Trained on math reasoning tasks, our model's log-scale Accuracy-to-Hallucination Ratio gain (0.806) exceeds GPT-5's (0.207) in a challenging in-domain evaluation (BeyondAIME). Moreover, in cross-domain factual QA (SimpleQA), our 4B LLM achieves zero-shot calibration error on par with frontier models including Grok-4 and Gemini-2.5-Pro, even though its factual accuracy is much lower.
Effective Model Pruning: Measure The Redundancy of Model Components
This article initiates the study of a basic question about model pruning. Given a vector $s$ of importance scores assigned to model components, how many of the scored components could be discarded without sacrificing performance? We propose Effective Model Pruning (EMP), which derives the desired sparsity directly from the score distribution using the notion of effective sample size from particle filtering, also known as the inverse Simpson index. Rather than prescribe a pruning criterion, EMP supplies a universal adaptive threshold derived from the distribution of the score $s$ over the model components: EMP maps $s$ to a number $N_{eff}=N_{eff}(s)$, called the effective sample size. The $N-N_{eff}$ lowest scoring components are discarded. A tight lower bound on the preserved mass fraction $s_{eff}$ (the sum of retained normalized scores) in terms of $N_{eff}$ is derived. This process yields models with a provable upper bound on the loss change relative to the original dense model. Numerical experiments are performed demonstrating this phenomenon across a variety of network architectures including MLPs, CNNs, Transformers, LLMs, and KAN. It is also shown that EMP addresses a rich set of pruning criteria such as weight magnitude, attention score, KAN importance score, and even feature-level signals such as image pixels.
comment: 19 pages, 4 figures
Deep-ICE: the first globally optimal algorithm for minimizing 0-1 loss in two-layer ReLU and maxout networks
This paper introduces the first globally optimal algorithm for the empirical risk minimization problem of two-layer maxout and ReLU networks, i.e., minimizing the number of misclassifications. The algorithm has a worst-case time complexity of $O\left(N^{DK+1}\right)$, where $K$ denotes the number of hidden neurons and $D$ represents the number of features. It can be can be generalized to accommodate arbitrary computable loss functions without affecting its computational complexity. Our experiments demonstrate that the proposed algorithm provides provably exact solutions for small-scale datasets. To handle larger datasets, we introduce a novel coreset selection method that reduces the data size to a manageable scale, making it feasible for our algorithm. This extension enables efficient processing of large-scale datasets and achieves significantly improved performance, with a 20-30\% reduction in misclassifications for both training and prediction, compared to state-of-the-art approaches (neural networks trained using gradient descent and support vector machines), when applied to the same models (two-layer networks with fixed hidden nodes and linear models).
Adversary-Aware Private Inference over Wireless Channels
AI-based sensing at wireless edge devices has the potential to significantly enhance Artificial Intelligence (AI) applications, particularly for vision and perception tasks such as in autonomous driving and environmental monitoring. AI systems rely both on efficient model learning and inference. In the inference phase, features extracted from sensing data are utilized for prediction tasks (e.g., classification or regression). In edge networks, sensors and model servers are often not co-located, which requires communication of features. As sensitive personal data can be reconstructed by an adversary, transformation of the features are required to reduce the risk of privacy violations. While differential privacy mechanisms provide a means of protecting finite datasets, protection of individual features has not been addressed. In this paper, we propose a novel framework for privacy-preserving AI-based sensing, where devices apply transformations of extracted features before transmission to a model server.
Sparse Equation Matching: A Derivative-Free Learning for General-Order Dynamical Systems
Equation discovery is a fundamental learning task for uncovering the underlying dynamics of complex systems, with wide-ranging applications in areas such as brain connectivity analysis, climate modeling, gene regulation, and physical simulation. However, many existing approaches rely on accurate derivative estimation and are limited to first-order dynamical systems, restricting their applicability in real-world scenarios. In this work, we propose Sparse Equation Matching (SEM), a unified framework that encompasses several existing equation discovery methods under a common formulation. SEM introduces an integral-based sparse regression approach using Green's functions, enabling derivative-free estimation of differential operators and their associated driving functions in general-order dynamical systems. The effectiveness of SEM is demonstrated through extensive simulations, benchmarking its performance against derivative-based approaches. We then apply SEM to electroencephalographic (EEG) data recorded during multiple oculomotor tasks, collected from 52 participants in a brain-computer interface experiment. Our method identifies active brain regions across participants and reveals task-specific connectivity patterns. These findings offer valuable insights into brain connectivity and the underlying neural mechanisms.
SourceNet: Interpretable Sim-to-Real Inference on Variable-Geometry Sensor Arrays for Earthquake Source Inversion
Inferring high-dimensional physical states from sparse, ad-hoc sensor arrays is a fundamental challenge across AI for Science, yet standard architectures like CNNs and DeepSets struggle to capture the irregular geometries and relational physics inherent to domains like seismology. To address this, we propose SourceNet, a Transformer-based framework that bridges the profound Sim-to-Real gap via Physics-Structured Domain Randomization (PSDR), a protocol that randomizes governing physical dynamics to enforce invariance to unmodeled environmental heterogeneity. By pre-training on 100,000 synthetic events and fine-tuning on ~2,500 real-world events, SourceNet achieves state-of-the-art precision on held-out real data, demonstrating exceptional data efficiency and real-time capability compared to classical solvers. Beyond prediction, interpretability analysis reveals that the model shows scientific-agent-like features: it autonomously discovers geometric information bottlenecks and learns an attention policy that prioritizes sparse sensor placements, effectively recovering principles of optimal experimental design from data alone.
Universal Sequence Preconditioning
We study the problem of preconditioning in sequential prediction. From the theoretical lens of linear dynamical systems, we show that convolving the target sequence corresponds to applying a polynomial to the hidden transition matrix. Building on this insight, we propose a universal preconditioning method that convolves the target with coefficients from orthogonal polynomials such as Chebyshev or Legendre. We prove that this approach reduces regret for two distinct prediction algorithms and yields the first ever sublinear and hidden-dimension-independent regret bounds (up to logarithmic factors) that hold for systems with marginally table and asymmetric transition matrices. Finally, extensive synthetic and real-world experiments show that this simple preconditioning strategy improves the performance of a diverse range of algorithms, including recurrent neural networks, and generalizes to signals beyond linear dynamical systems.
comment: 35 pages, 3 tables, 5 figures
Some Robustness Properties of Label Cleaning
We demonstrate that learning procedures that rely on aggregated labels, e.g., label information distilled from noisy responses, enjoy robustness properties impossible without data cleaning. This robustness appears in several ways. In the context of risk consistency -- when one takes the standard approach in machine learning of minimizing a surrogate (typically convex) loss in place of a desired task loss (such as the zero-one mis-classification error) -- procedures using label aggregation obtain stronger consistency guarantees than those even possible using raw labels. And while classical statistical scenarios of fitting perfectly-specified models suggest that incorporating all possible information -- modeling uncertainty in labels -- is statistically efficient, consistency fails for ``standard'' approaches as soon as a loss to be minimized is even slightly mis-specified. Yet procedures leveraging aggregated information still converge to optimal classifiers, highlighting how incorporating a fuller view of the data analysis pipeline, from collection to model-fitting to prediction time, can yield a more robust methodology by refining noisy signals.
comment: 41 pages, 2 figures
The Ensemble Schr{ö}dinger Bridge filter for Nonlinear Data Assimilation
This work puts forward a novel nonlinear optimal filter namely the Ensemble Schr{ö}dinger Bridge nonlinear filter. The proposed filter finds marriage of the standard prediction procedure and the diffusion generative modeling for the analysis procedure to realize one filtering step. The designed approach finds no structural model error, and it is derivative free, training free and highly parallizable. Experimental results show that the designed algorithm performs well given highly nonlinear dynamics in (mildly) high dimension up to 40 or above under a chaotic environment. It also shows better performance than classical methods such as the ensemble Kalman filter and the Particle filter in numerous tests given different level of nonlinearity. Future work will focus on extending the proposed approach to practical meteorological applications and establishing a rigorous convergence analysis.
FC-PINO: High Precision Physics-Informed Neural Operators via Fourier Continuation
The physics-informed neural operator (PINO) is a machine learning paradigm that has demonstrated promising results for learning solutions to partial differential equations (PDEs). It leverages the Fourier Neural Operator to learn solution operators in function spaces and leverages physics losses during training to penalize deviations from known physics laws. Spectral differentiation provides an efficient way to compute derivatives for the physics losses, but it inherently assumes periodicity. When applied to non-periodic functions, this assumption can lead to significant errors, including Gibbs phenomena near domain boundaries which degrade the accuracy of both function representations and derivative computations. To overcome this limitation, we introduce the FC-PINO (Fourier-Continuation-based Physics-Informed Neural Operator) architecture which extends the accuracy and efficiency of PINO and spectral differentiation to non-periodic and non-smooth PDEs. In FC-PINO, we propose integrating Fourier continuation into the PINO framework, and test two different continuation approaches: FC-Legendre and FC-Gram. By transforming non-periodic signals into periodic functions on extended domains in a well-conditioned manner, Fourier continuation enables fast and accurate derivative computations. This approach avoids the discretization sensitivity of finite differences and the memory overhead of automatic differentiation. We demonstrate that standard PINO fails (without padding) or struggles (even with padding) to solve non-periodic and non-smooth PDEs with high precision, across challenging benchmarks. In contrast, the proposed FC-PINO provides accurate, robust, and scalable solutions, substantially outperforming PINO alternatives, and demonstrating that Fourier continuation is critical for extending PINO to a wider range of PDE problems when high-precision solutions are needed.
comment: 55 pages, 17 figures
Spectral Representation-based Reinforcement Learning
In real-world applications with large state and action spaces, reinforcement learning (RL) typically employs function approximations to represent core components like the policies, value functions, and dynamics models. Although powerful approximations such as neural networks offer great expressiveness, they often present theoretical ambiguities, suffer from optimization instability and exploration difficulty, and incur substantial computational costs in practice. In this paper, we introduce the perspective of spectral representations as a solution to address these difficulties in RL. Stemming from the spectral decomposition of the transition operator, this framework yields an effective abstraction of the system dynamics for subsequent policy optimization while also providing a clear theoretical characterization. We reveal how to construct spectral representations for transition operators that possess latent variable structures or energy-based structures, which implies different learning methods to extract spectral representations from data. Notably, each of these learning methods realizes an effective RL algorithm under this framework. We also provably extend this spectral view to partially observable MDPs. Finally, we validate these algorithms on over 20 challenging tasks from the DeepMind Control Suite, where they achieve performances comparable or superior to current state-of-the-art model-free and model-based baselines.
QUASAR: An Evolutionary Algorithm to Accelerate High-Dimensional Optimization
High-dimensional numerical optimization presents a persistent challenge in computational science. This paper introduces Quasi-Adaptive Search with Asymptotic Reinitialization (QUASAR), an evolutionary algorithm to accelerate convergence in complex, non-differentiable problems afflicted by the curse of dimensionality. QUASAR expands upon the core principles of Differential Evolution (DE), introducing quasi-adaptive mechanisms to dynamically balance exploration and exploitation in its search. Inspired by the behavior of quantum particles, the algorithm utilizes three highly stochastic mechanisms that augment standard DE: 1) probabilistic mutation strategies and scaling factors; 2) rank-based crossover rates; 3) asymptotically decaying covariance reinitializations. Evaluated on the notoriously difficult CEC2017 benchmark suite of 29 test functions, QUASAR achieved the lowest overall rank sum (367) using the Friedman test, outperforming DE (735) and L-SHADE (452). Geometric mean comparisons show average final solution quality improvements of $3.85 \times$ and $2.07 \times$ compared to DE and L-SHADE, respectively ($p \ll 0.001$), with average optimization speed averaging $1.40 \times$ and $5.16 \times$ faster. QUASAR's performance establishes it as an effective, efficient, and user-friendly evolutionary algorithm for complex high-dimensional problems.
comment: 8 pages, 6 figures. Open-source package containing QUASAR is available via 'pip install hdim_opt'; source code (with experiments) is maintained on GitHub at [https://www.github.com/jgsoltes/hdim-opt]
Generalization in Reinforcement Learning for Radio Access Networks
Modern RAN operate in highly dynamic and heterogeneous environments, where hand-tuned, rule-based RRM algorithms often underperform. While RL can surpass such heuristics in constrained settings, the diversity of deployments and unpredictable radio conditions introduce major generalization challenges. Data-driven policies frequently overfit to training conditions, degrading performance in unseen scenarios. To address this, we propose a generalization-centered RL framework for RAN control that: (i) robustly reconstructs dynamically varying states from partial and noisy observations, while encoding static and semi-static information, such as radio nodes, cell attributes, and their topology, through graph representations; (ii) applies domain randomization to broaden the training distribution; and (iii) distributes data generation across multiple actors while centralizing training in a cloud-compatible architecture aligned with O-RAN principles. Although generalization increases computational and data-management complexity, our distributed design mitigates this by scaling data collection and training across diverse network conditions. Applied to downlink link adaptation in five 5G benchmarks, our policy improves average throughput and spectral efficiency by ~10% over an OLLA baseline (10% BLER target) in full-buffer MIMO/mMIMO and by >20% under high mobility. It matches specialized RL in full-buffer traffic and achieves up to 4- and 2-fold gains in eMBB and mixed-traffic benchmarks, respectively. In nine-cell deployments, GAT models offer 30% higher throughput over MLP baselines. These results, combined with our scalable architecture, offer a path toward AI-native 6G RAN using a single, generalizable RL agent.
Practical Policy Distillation for Reinforcement Learning in Radio Access Networks
Adopting artificial intelligence (AI) in radio access networks (RANs) presents several challenges, including limited availability of link-level measurements (e.g., CQI reports), stringent real-time processing constraints (e.g., sub-1 ms per TTI), and network heterogeneity (different spectrum bands, cell types, and vendor equipment). A critical yet often overlooked barrier lies in the computational and memory limitations of RAN baseband hardware, particularly in legacy 4th Generation (4G) systems, which typically lack on-chip neural accelerators. As a result, only lightweight AI models (under 1 Mb and sub-100~μs inference time) can be effectively deployed, limiting both their performance and applicability. However, achieving strong generalization across diverse network conditions often requires large-scale models with substantial resource demands. To address this trade-off, this paper investigates policy distillation in the context of a reinforcement learning-based link adaptation task. We explore two strategies: single-policy distillation, where a scenario-agnostic teacher model is compressed into one generalized student model; and multi-policy distillation, where multiple scenario-specific teachers are consolidated into a single generalist student. Experimental evaluations in a high-fidelity, 5th Generation (5G)-compliant simulator demonstrate that both strategies produce compact student models that preserve the teachers' generalization capabilities while complying with the computational and memory limitations of existing RAN hardware.
comment: This paper is accepted for publication in IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, 2025
GPT2MEG: Quantizing MEG for Autoregressive Generation
Foundation models trained with self-supervised objectives are increasingly applied to brain recordings, but autoregressive generation of realistic multichannel neural time series remains comparatively underexplored, particularly for Magnetoencephalography (MEG). We study (i) modified multichannel WaveNet variants and (ii) a GPT-2-style Transformer, autoregressively trained by next-step prediction on unlabelled MEG. For the Transformer, we propose a simple quantization/tokenization and embedding scheme (channel, subject, and task-condition embeddings) that repurposes a language-model architecture for continuous, high-rate multichannel time series and enables conditional simulation of task-evoked activity. Across forecasting, long-horizon generation, and downstream decoding, GPT2MEG more faithfully reproduces temporal, spectral, and task-evoked statistics of real MEG than WaveNet variants and linear autoregressive baselines, and scales to multiple subjects via subject embeddings. Code available at https://github.com/ricsinaruto/MEG-transfer-decoding.
comment: Code available on GitHub (https://github.com/ricsinaruto/MEG-transfer-decoding). Part of PhD thesis (https://ricsinaruto.github.io/docs/thesis_final_appendix.pdf)
Lost in Simulation: LLM-Simulated Users are Unreliable Proxies for Human Users in Agentic Evaluations
Agentic benchmarks increasingly rely on LLM-simulated users to scalably evaluate agent performance, yet the robustness, validity, and fairness of this approach remain unexamined. Through a user study with participants across the United States, India, Kenya, and Nigeria, we investigate whether LLM-simulated users serve as reliable proxies for real human users in evaluating agents on τ-Bench retail tasks. We find that user simulation lacks robustness, with agent success rates varying up to 9 percentage points across different user LLMs. Furthermore, evaluations using simulated users exhibit systematic miscalibration, underestimating agent performance on challenging tasks and overestimating it on moderately difficult ones. African American Vernacular English (AAVE) speakers experience consistently worse success rates and calibration errors than Standard American English (SAE) speakers, with disparities compounding significantly with age. We also find simulated users to be a differentially effective proxy for different populations, performing worst for AAVE and Indian English speakers. Additionally, simulated users introduce conversational artifacts and surface different failure patterns than human users. These findings demonstrate that current evaluation practices risk misrepresenting agent capabilities across diverse user populations and may obscure real-world deployment challenges.
Graphics 5
Rendering Portals in Virtual Reality
Portals have many applications in the field of computer graphics. Recently, they have found use as a way of artificially increasing the available space in a virtual reality (VR) environment. In this paper, we will cover a technique for making the transition through a portal unnoticeable to the user. Additionally, we will measure the performance impact of rendering portals in a test scene and provide some insight into possible optimisations.
GRTX: Efficient Ray Tracing for 3D Gaussian-Based Rendering
3D Gaussian Splatting has gained widespread adoption across diverse applications due to its exceptional rendering performance and visual quality. While most existing methods rely on rasterization to render Gaussians, recent research has started investigating ray tracing approaches to overcome the fundamental limitations inherent in rasterization. However, current Gaussian ray tracing methods suffer from inefficiencies such as bloated acceleration structures and redundant node traversals, which greatly degrade ray tracing performance. In this work, we present GRTX, a set of software and hardware optimizations that enable efficient ray tracing for 3D Gaussian-based rendering. First, we introduce a novel approach for constructing streamlined acceleration structures for Gaussian primitives. Our key insight is that anisotropic Gaussians can be treated as unit spheres through ray space transformations, which substantially reduces BVH size and traversal overhead. Second, we propose dedicated hardware support for traversal checkpointing within ray tracing units. This eliminates redundant node visits during multi-round tracing by resuming traversal from checkpointed nodes rather than restarting from the root node in each subsequent round. Our evaluation shows that GRTX significantly improves ray tracing performance compared to the baseline ray tracing method with a negligible hardware cost.
comment: To appear at the 32nd International Symposium on High-Performance Computer Architecture (HPCA 2026)
OSDEnhancer: Taming Real-World Space-Time Video Super-Resolution with One-Step Diffusion
Diffusion models (DMs) have demonstrated exceptional success in video super-resolution (VSR), showcasing a powerful capacity for generating fine-grained details. However, their potential for space-time video super-resolution (STVSR), which necessitates not only recovering realistic visual content from low-resolution to high-resolution but also improving the frame rate with coherent temporal dynamics, remains largely underexplored. Moreover, existing STVSR methods predominantly address spatiotemporal upsampling under simplified degradation assumptions, which often struggle in real-world scenarios with complex unknown degradations. Such a high demand for reconstruction fidelity and temporal consistency makes the development of a robust STVSR framework particularly non-trivial. To address these challenges, we propose OSDEnhancer, a novel framework that, to the best of our knowledge, represents the first method to achieve real-world STVSR through an efficient one-step diffusion process. OSDEnhancer initializes essential spatiotemporal structures through a linear pre-interpolation strategy and pivots on training temporal refinement and spatial enhancement mixture of experts (TR-SE MoE), which allows distinct expert pathways to progressively learn robust, specialized representations for temporal coherence and spatial detail, further collaboratively reinforcing each other during inference. A bidirectional deformable variational autoencoder (VAE) decoder is further introduced to perform recurrent spatiotemporal aggregation and propagation, enhancing cross-frame reconstruction fidelity. Experiments demonstrate that the proposed method achieves state-of-the-art performance while maintaining superior generalization capability in real-world scenarios.
comment: 17 pages, 10 figures. Code will be released upon publication
PocketGS: On-Device Training of 3D Gaussian Splatting for High Perceptual Modeling
Efficient and high-fidelity 3D scene modeling is a long-standing pursuit in computer graphics. While recent 3D Gaussian Splatting (3DGS) methods achieve impressive real-time modeling performance, they rely on resource-unconstrained training assumptions that fail on mobile devices, which are limited by minute-scale training budgets and hardware-available peak-memory. We present PocketGS, a mobile scene modeling paradigm that enables on-device 3DGS training under these tightly coupled constraints while preserving high perceptual fidelity. Our method resolves the fundamental contradictions of standard 3DGS through three co-designed operators: G builds geometry-faithful point-cloud priors; I injects local surface statistics to seed anisotropic Gaussians, thereby reducing early conditioning gaps; and T unrolls alpha compositing with cached intermediates and index-mapped gradient scattering for stable mobile backpropagation. Collectively, these operators satisfy the competing requirements of training efficiency, memory compactness, and modeling fidelity. Extensive experiments demonstrate that PocketGS is able to outperform the powerful mainstream workstation 3DGS baseline to deliver high-quality reconstructions, enabling a fully on-device, practical capture-to-rendering workflow.
PromptVFX: Text-Driven Fields for Open-World 3D Gaussian Animation
Visual effects (VFX) are key to immersion in modern films, games, and AR/VR. Creating 3D effects requires specialized expertise and training in 3D animation software and can be time consuming. Generative solutions typically rely on computationally intense methods such as diffusion models which can be slow at 4D inference. We reformulate 3D animation as a field prediction task and introduce a text-driven framework that infers a time-varying 4D flow field acting on 3D Gaussians. By leveraging large language models (LLMs) and vision-language models (VLMs) for function generation, our approach interprets arbitrary prompts (e.g., "make the vase glow orange, then explode") and instantly updates color, opacity, and positions of 3D Gaussians in real time. This design avoids overheads such as mesh extraction, manual or physics-based simulations and allows both novice and expert users to animate volumetric scenes with minimal effort on a consumer device even in a web browser. Experimental results show that simple textual instructions suffice to generate compelling time-varying VFX, reducing the manual effort typically required for rigging or advanced modeling. We thus present a fast and accessible pathway to language-driven 3D content creation that can pave the way to democratize VFX further. Code available at https://obsphera.github.io/promptvfx/.
Video World Models 7
Advancing Open-source World Models
We present LingBot-World, an open-sourced world simulator stemming from video generation. Positioned as a top-tier world model, LingBot-World offers the following features. (1) It maintains high fidelity and robust dynamics in a broad spectrum of environments, including realism, scientific contexts, cartoon styles, and beyond. (2) It enables a minute-level horizon while preserving contextual consistency over time, which is also known as "long-term memory". (3) It supports real-time interactivity, achieving a latency of under 1 second when producing 16 frames per second. We provide public access to the code and model in an effort to narrow the divide between open-source and closed-source technologies. We believe our release will empower the community with practical applications across areas like content creation, gaming, and robot learning.
comment: Project page: https://technology.robbyant.com/lingbot-world; Code: https://github.com/robbyant/lingbot-world
OSDEnhancer: Taming Real-World Space-Time Video Super-Resolution with One-Step Diffusion
Diffusion models (DMs) have demonstrated exceptional success in video super-resolution (VSR), showcasing a powerful capacity for generating fine-grained details. However, their potential for space-time video super-resolution (STVSR), which necessitates not only recovering realistic visual content from low-resolution to high-resolution but also improving the frame rate with coherent temporal dynamics, remains largely underexplored. Moreover, existing STVSR methods predominantly address spatiotemporal upsampling under simplified degradation assumptions, which often struggle in real-world scenarios with complex unknown degradations. Such a high demand for reconstruction fidelity and temporal consistency makes the development of a robust STVSR framework particularly non-trivial. To address these challenges, we propose OSDEnhancer, a novel framework that, to the best of our knowledge, represents the first method to achieve real-world STVSR through an efficient one-step diffusion process. OSDEnhancer initializes essential spatiotemporal structures through a linear pre-interpolation strategy and pivots on training temporal refinement and spatial enhancement mixture of experts (TR-SE MoE), which allows distinct expert pathways to progressively learn robust, specialized representations for temporal coherence and spatial detail, further collaboratively reinforcing each other during inference. A bidirectional deformable variational autoencoder (VAE) decoder is further introduced to perform recurrent spatiotemporal aggregation and propagation, enhancing cross-frame reconstruction fidelity. Experiments demonstrate that the proposed method achieves state-of-the-art performance while maintaining superior generalization capability in real-world scenarios.
comment: 17 pages, 10 figures. Code will be released upon publication
The SAGES Critical View of Safety Challenge: A Global Benchmark for AI-Assisted Surgical Quality Assessment
Advances in artificial intelligence (AI) for surgical quality assessment promise to democratize access to expertise, with applications in training, guidance, and accreditation. This study presents the SAGES Critical View of Safety (CVS) Challenge, the first AI competition organized by a surgical society, using the CVS in laparoscopic cholecystectomy, a universally recommended yet inconsistently performed safety step, as an exemplar of surgical quality assessment. A global collaboration across 54 institutions in 24 countries engaged hundreds of clinicians and engineers to curate 1,000 videos annotated by 20 surgical experts according to a consensus-validated protocol. The challenge addressed key barriers to real-world deployment in surgery, including achieving high performance, capturing uncertainty in subjective assessment, and ensuring robustness to clinical variability. To enable this scale of effort, we developed EndoGlacier, a framework for managing large, heterogeneous surgical video and multi-annotator workflows. Thirteen international teams participated, achieving up to a 17% relative gain in assessment performance, over 80% reduction in calibration error, and a 17% relative improvement in robustness over the state-of-the-art. Analysis of results highlighted methodological trends linked to model performance, providing guidance for future research toward robust, clinically deployable AI for surgical quality assessment.
comment: 21 pages, 10 figures
QVGen: Pushing the Limit of Quantized Video Generative Models ICLR 2026
Video diffusion models (DMs) have enabled high-quality video synthesis. Yet, their substantial computational and memory demands pose serious challenges to real-world deployment, even on high-end GPUs. As a commonly adopted solution, quantization has proven notable success in reducing cost for image DMs, while its direct application to video DMs remains ineffective. In this paper, we present QVGen, a novel quantization-aware training (QAT) framework tailored for high-performance and inference-efficient video DMs under extremely low-bit quantization (e.g., 4-bit or below). We begin with a theoretical analysis demonstrating that reducing the gradient norm is essential to facilitate convergence for QAT. To this end, we introduce auxiliary modules ($Φ$) to mitigate large quantization errors, leading to significantly enhanced convergence. To eliminate the inference overhead of $Φ$, we propose a rank-decay strategy that progressively eliminates $Φ$. Specifically, we repeatedly employ singular value decomposition (SVD) and a proposed rank-based regularization $\mathbfγ$ to identify and decay low-contributing components. This strategy retains performance while zeroing out additional inference overhead. Extensive experiments across $4$ state-of-the-art (SOTA) video DMs, with parameter sizes ranging from $1.3\text{B}\sim14\text{B}$, show that QVGen is the first to reach full-precision comparable quality under 4-bit settings. Moreover, it significantly outperforms existing methods. For instance, our 3-bit CogVideoX-2B achieves improvements of $+25.28$ in Dynamic Degree and $+8.43$ in Scene Consistency on VBench. Code and models are available at https://github.com/ModelTC/QVGen.
comment: Accepted by ICLR 2026
Beyond Face Swapping: A Diffusion-Based Digital Human Benchmark for Multimodal Deepfake Detection
In recent years, the explosive advancement of deepfake technology has posed a critical and escalating threat to public security: diffusion-based digital human generation. Unlike traditional face manipulation methods, such models can generate highly realistic videos with consistency via multimodal control signals. Their flexibility and covertness pose severe challenges to existing detection strategies. To bridge this gap, we introduce DigiFakeAV, the new large-scale multimodal digital human forgery dataset based on diffusion models. Leveraging five of the latest digital human generation methods and a voice cloning method, we systematically construct a dataset comprising 60,000 videos (8.4 million frames), covering multiple nationalities, skin tones, genders, and real-world scenarios, significantly enhancing data diversity and realism. User studies demonstrate that the misrecognition rate by participants for DigiFakeAV reaches as high as 68%. Moreover, the substantial performance degradation of existing detection models on our dataset further highlights its challenges. To address this problem, we propose DigiShield, an effective detection baseline based on spatiotemporal and cross-modal fusion. By jointly modeling the 3D spatiotemporal features of videos and the semantic-acoustic features of audio, DigiShield achieves state-of-the-art (SOTA) performance on the DigiFakeAV and shows strong generalization on other datasets.
All-in-One Video Restoration under Smoothly Evolving Unknown Weather Degradations
All-in-one image restoration aims to recover clean images from diverse unknown degradations using a single model. But extending this task to videos faces unique challenges. Existing approaches primarily focus on frame-wise degradation variation, overlooking the temporal continuity that naturally exists in real-world degradation processes. In practice, degradation types and intensities evolve smoothly over time, and multiple degradations may coexist or transition gradually. In this paper, we introduce the Smoothly Evolving Unknown Degradations (SEUD) scenario, where both the active degradation set and degradation intensity change continuously over time. To support this scenario, we design a flexible synthesis pipeline that generates temporally coherent videos with single, compound, and evolving degradations. To address the challenges in the SEUD scenario, we propose an all-in-One Recurrent Conditional and Adaptive prompting Network (ORCANet). First, a Coarse Intensity Estimation Dehazing (CIED) module estimates haze intensity using physical priors and provides coarse dehazed features as initialization. Second, a Flow Prompt Generation (FPG) module extracts degradation features. FPG generates both static prompts that capture segment-level degradation types and dynamic prompts that adapt to frame-level intensity variations. Furthermore, a label-aware supervision mechanism improves the discriminability of static prompt representations under different degradations. Extensive experiments show that ORCANet achieves superior restoration quality, temporal consistency, and robustness over image and video-based baselines. Code is available at https://github.com/Friskknight/ORCANet-SEUD.
SeedVR2: One-Step Video Restoration via Diffusion Adversarial Post-Training ICLR2026
Recent advances in diffusion-based video restoration (VR) demonstrate significant improvement in visual quality, yet yield a prohibitive computational cost during inference. While several distillation-based approaches have exhibited the potential of one-step image restoration, extending existing approaches to VR remains challenging and underexplored, particularly when dealing with high-resolution video in real-world settings. In this work, we propose a one-step diffusion-based VR model, termed as SeedVR2, which performs adversarial VR training against real data. To handle the challenging high-resolution VR within a single step, we introduce several enhancements to both model architecture and training procedures. Specifically, an adaptive window attention mechanism is proposed, where the window size is dynamically adjusted to fit the output resolutions, avoiding window inconsistency observed under high-resolution VR using window attention with a predefined window size. To stabilize and improve the adversarial post-training towards VR, we further verify the effectiveness of a series of losses, including a proposed feature matching loss without significantly sacrificing training efficiency. Extensive experiments show that SeedVR2 can achieve comparable or even better performance compared with existing VR approaches in a single step.
comment: Camera Ready of ICLR2026. Project page: https://iceclear.github.io/projects/seedvr2/
Embodied Intelligence 9
PhaseCoder: Microphone Geometry-Agnostic Spatial Audio Understanding for Multimodal LLMs
Current multimodal LLMs process audio as a mono stream, ignoring the rich spatial information essential for embodied AI. Existing spatial audio models, conversely, are constrained to fixed microphone geometries, preventing deployment across diverse devices. We present PhaseCoder, a transformer-only spatial audio encoder that is agnostic to microphone geometry. PhaseCoder takes raw multichannel audio and microphone coordinates as inputs to perform localization and produces robust spatial embeddings. We demonstrate that Gemma 3n LLM can be fine-tuned to reason over "Spatial Audio Tokens" produced by PhaseCoder. We show our encoder achieves state-of-the-art results on microphone-invariant localization benchmarks and, for the first time, enables an LLM to perform complex spatial reasoning and targeted transcription tasks from an arbitrary microphone array.
Log2Motion: Biomechanical Motion Synthesis from Touch Logs
Touch data from mobile devices are collected at scale but reveal little about the interactions that produce them. While biomechanical simulations can illuminate motor control processes, they have not yet been developed for touch interactions. To close this gap, we propose a novel computational problem: synthesizing plausible motion directly from logs. Our key insight is a reinforcement learning-driven musculoskeletal forward simulation that generates biomechanically plausible motion sequences consistent with events recorded in touch logs. We achieve this by integrating a software emulator into a physics simulator, allowing biomechanical models to manipulate real applications in real-time. Log2Motion produces rich syntheses of user movements from touch logs, including estimates of motion, speed, accuracy, and effort. We assess the plausibility of generated movements by comparing against human data from a motion capture study and prior findings, and demonstrate Log2Motion in a large-scale dataset. Biomechanical motion synthesis provides a new way to understand log data, illuminating the ergonomics and motor control underlying touch interactions.
Thinking in Frames: How Visual Context and Test-Time Scaling Empower Video Reasoning
Vision-Language Models have excelled at textual reasoning, but they often struggle with fine-grained spatial understanding and continuous action planning, failing to simulate the dynamics required for complex visual reasoning. In this work, we formulate visual reasoning by means of video generation models, positing that generated frames can act as intermediate reasoning steps between initial states and solutions. We evaluate their capacity in two distinct regimes: Maze Navigation for sequential discrete planning with low visual change and Tangram Puzzle for continuous manipulation with high visual change. Our experiments reveal three critical insights: (1) Robust Zero-Shot Generalization: In both tasks, the model demonstrates strong performance on unseen data distributions without specific finetuning. (2) Visual Context: The model effectively uses visual context as explicit control, such as agent icons and tangram shapes, enabling it to maintain high visual consistency and adapt its planning capability robustly to unseen patterns. (3) Visual Test-Time Scaling: We observe a test-time scaling law in sequential planning; increasing the generated video length (visual inference budget) empowers better zero-shot generalization to spatially and temporally complex paths. These findings suggest that video generation is not merely a media tool, but a scalable, generalizable paradigm for visual reasoning.
comment: 8 pages, 3 figures, 3 tables (26 pages, 13 figures, 6 tables including references and appendices)
Open-Vocabulary Functional 3D Human-Scene Interaction Generation
Generating 3D humans that functionally interact with 3D scenes remains an open problem with applications in embodied AI, robotics, and interactive content creation. The key challenge involves reasoning about both the semantics of functional elements in 3D scenes and the 3D human poses required to achieve functionality-aware interaction. Unfortunately, existing methods typically lack explicit reasoning over object functionality and the corresponding human-scene contact, resulting in implausible or functionally incorrect interactions. In this work, we propose FunHSI, a training-free, functionality-driven framework that enables functionally correct human-scene interactions from open-vocabulary task prompts. Given a task prompt, FunHSI performs functionality-aware contact reasoning to identify functional scene elements, reconstruct their 3D geometry, and model high-level interactions via a contact graph. We then leverage vision-language models to synthesize a human performing the task in the image and estimate proposed 3D body and hand poses. Finally, the proposed 3D body configuration is refined via stage-wise optimization to ensure physical plausibility and functional correctness. In contrast to existing methods, FunHSI not only synthesizes more plausible general 3D interactions, such as "sitting on a sofa'', while supporting fine-grained functional human-scene interactions, e.g., "increasing the room temperature''. Extensive experiments demonstrate that FunHSI consistently generates functionally correct and physically plausible human-scene interactions across diverse indoor and outdoor scenes.
comment: 18 pages
MemCtrl: Using MLLMs as Active Memory Controllers on Embodied Agents
Foundation models rely on in-context learning for personalized decision making. The limited size of this context window necessitates memory compression and retrieval systems like RAG. These systems however often treat memory as large offline storage spaces, which is unfavorable for embodied agents that are expected to operate under strict memory and compute constraints, online. In this work, we propose MemCtrl, a novel framework that uses Multimodal Large Language Models (MLLMs) for pruning memory online. MemCtrl augments MLLMs with a trainable memory head μthat acts as a gate to determine which observations or reflections to retain, update, or discard during exploration. We evaluate with training two types of μ, 1) via an offline expert, and 2) via online RL, and observe significant improvement in overall embodied task completion ability on μ-augmented MLLMs. In particular, on augmenting two low performing MLLMs with MemCtrl on multiple subsets of the EmbodiedBench benchmark, we observe that μ-augmented MLLMs show an improvement of around 16% on average, with over 20% on specific instruction subsets. Finally, we present a qualitative analysis on the memory fragments collected by μ, noting the superior performance of μaugmented MLLMs on long and complex instruction types.
Learning From a Steady Hand: A Weakly Supervised Agent for Robot Assistance under Microscopy
This paper rethinks steady-hand robotic manipulation by using a weakly supervised framework that fuses calibration-aware perception with admittance control. Unlike conventional automation that relies on labor-intensive 2D labeling, our framework leverages reusable warm-up trajectories to extract implicit spatial information, thereby achieving calibration-aware, depth-resolved perception without the need for external fiducials or manual depth annotation. By explicitly characterizing residuals from observation and calibration models, the system establishes a task-space error budget from recorded warm-ups. The uncertainty budget yields a lateral closed-loop accuracy of approx. 49 micrometers at 95% confidence (worst-case testing subset) and a depth accuracy of <= 291 micrometers at 95% confidence bound during large in-plane moves. In a within-subject user study (N=8), the learned agent reduces overall NASA-TLX workload by 77.1% relative to the simple steady-hand assistance baseline. These results demonstrate that the weakly supervised agent improves the reliability of microscope-guided biomedical micromanipulation without introducing complex setup requirements, offering a practical framework for microscope-guided intervention.
One Step Is Enough: Dispersive MeanFlow Policy Optimization
Real-time robotic control demands fast action generation. However, existing generative policies based on diffusion and flow matching require multi-step sampling, fundamentally limiting deployment in time-critical scenarios. We propose Dispersive MeanFlow Policy Optimization (DMPO), a unified framework that enables true one-step generation through three key components: MeanFlow for mathematically-derived single-step inference without knowledge distillation, dispersive regularization to prevent representation collapse, and reinforcement learning (RL) fine-tuning to surpass expert demonstrations. Experiments across RoboMimic manipulation and OpenAI Gym locomotion benchmarks demonstrate competitive or superior performance compared to multi-step baselines. With our lightweight model architecture and the three key algorithmic components working in synergy, DMPO exceeds real-time control requirements (>120Hz) with 5-20x inference speedup, reaching hundreds of Hertz on high-performance GPUs. Physical deployment on a Franka-Emika-Panda robot validates real-world applicability.
comment: Code and project page: https://guowei-zou.github.io/dmpo-page/
Tendon-based modelling, estimation and control for a simulated high-DoF anthropomorphic hand model
Tendon-driven anthropomorphic robotic hands often lack direct joint angle sensing, as the integration of joint encoders can compromise mechanical compactness and dexterity. This paper presents a computational method for estimating joint positions from measured tendon displacements and tensions. An efficient kinematic modeling framework for anthropomorphic hands is first introduced based on the Denavit-Hartenberg convention. Using a simplified tendon model, a system of nonlinear equations relating tendon states to joint positions is derived and solved via a nonlinear optimization approach. The estimated joint angles are then employed for closed-loop control through a Jacobian-based proportional-integral (PI) controller augmented with a feedforward term, enabling gesture tracking without direct joint sensing. The effectiveness and limitations of the proposed estimation and control framework are demonstrated in the MuJoCo simulation environment using the Anatomically Correct Biomechatronic Hand, featuring five degrees of freedom for each long finger and six degrees of freedom for the thumb.
Transport and Delivery of Objects with a Soft Everting Robot
Soft everting robots present significant advantages over traditional rigid robots, including enhanced dexterity, improved environmental interaction, and safe navigation in unpredictable environments. While soft everting robots have been widely demonstrated for exploration type tasks, their potential to move and deploy payloads in such tasks has been less investigated, with previous work focusing on sensors and tools for the robot. Leveraging the navigation capabilities, and deployed body, of the soft everting robot to deliver payloads in hazardous areas, e.g. carrying a water bottle to a person stuck under debris, would represent a significant capability in many applications. In this work, we present an analysis of how soft everting robots can be used to deploy larger, heavier payloads through the inside of the robot. We analyze both what objects can be deployed and what terrain features they can be carried through. Building on existing models, we present methods to quantify the effects of payloads on robot growth and self-support, and develop a model to predict payload slip. We then experimentally quantify payload transport using soft everting robot with a variety of payload shapes, sizes, and weights and though a series of tasks: steering, vertical transport, movement through holes, and movement across gaps. Overall, the results show that we can transport payloads in a variety of shapes and up to 1.5kg in weight and that we can move through circular apertures with as little as 0.01cm clearance around payloads, carry out discrete turns up to 135 degrees, and move across unsupported gaps of 1.15m in length.
comment: 8 pages, 11 figures, Published in IEEE Robotics and Automation Letters Link to publication: https://ieeexplore.ieee.org/abstract/document/11359009 Citation: E. M. DeVries, J. Ferlazzo, M. Ugur and L. H. Blumenschein, "Transport and Delivery of Objects With a Soft Everting Robot," in IEEE Robotics and Automation Letters, vol. 11, no. 3, pp. 2935-2942, March 2026, doi: 10.1109/LRA.2026.3655537
Robotics 52
VGGT-SLAM 2.0: Real time Dense Feed-forward Scene Reconstruction
We present VGGT-SLAM 2.0, a real time RGB feed-forward SLAM system which substantially improves upon VGGT-SLAM for incrementally aligning submaps created from VGGT. Firstly, we remove high-dimensional 15-degree-of-freedom drift and planar degeneracy from VGGT-SLAM by creating a new factor graph design while still addressing the reconstruction ambiguity of VGGT given unknown camera intrinsics. Secondly, by studying the attention layers of VGGT, we show that one of the layers is well suited to assist in image retrieval verification for free without additional training, which enables both rejecting false positive matches and allows for completing more loop closures. Finally, we conduct a suite of experiments which includes showing VGGT-SLAM 2.0 can easily be adapted for open-set object detection and demonstrating real time performance while running online onboard a ground robot using a Jetson Thor. We also test in environments ranging from cluttered indoor apartments and office scenes to a 4,200 square foot barn, and we also demonstrate VGGT-SLAM 2.0 achieves the highest accuracy on the TUM dataset with about 23 percent less pose error than VGGT-SLAM. Code will be released upon publication.
Estimating Trust in Human-Robot Collaboration through Behavioral Indicators and Explainability
Industry 5.0 focuses on human-centric collaboration between humans and robots, prioritizing safety, comfort, and trust. This study introduces a data-driven framework to assess trust using behavioral indicators. The framework employs a Preference-Based Optimization algorithm to generate trust-enhancing trajectories based on operator feedback. This feedback serves as ground truth for training machine learning models to predict trust levels from behavioral indicators. The framework was tested in a chemical industry scenario where a robot assisted a human operator in mixing chemicals. Machine learning models classified trust with over 80\% accuracy, with the Voting Classifier achieving 84.07\% accuracy and an AUC-ROC score of 0.90. These findings underscore the effectiveness of data-driven methods in assessing trust within human-robot collaboration, emphasizing the valuable role behavioral indicators play in predicting the dynamics of human trust.
How Does Delegation in Social Interaction Evolve Over Time? Navigation with a Robot for Blind People
Autonomy and independent navigation are vital to daily life but remain challenging for individuals with blindness. Robotic systems can enhance mobility and confidence by providing intelligent navigation assistance. However, fully autonomous systems may reduce users' sense of control, even when they wish to remain actively involved. Although collaboration between user and robot has been recognized as important, little is known about how perceptions of this relationship change with repeated use. We present a repeated exposure study with six blind participants who interacted with a navigation-assistive robot in a real-world museum. Participants completed tasks such as navigating crowds, approaching lines, and encountering obstacles. Findings show that participants refined their strategies over time, developing clearer preferences about when to rely on the robot versus act independently. This work provides insights into how strategies and preferences evolve with repeated interaction and offers design implications for robots that adapt to user needs over time.
comment: Pre-print of paper accepted into CHI 2026
HARMONI: Multimodal Personalization of Multi-User Human-Robot Interactions with LLMs
Existing human-robot interaction systems often lack mechanisms for sustained personalization and dynamic adaptation in multi-user environments, limiting their effectiveness in real-world deployments. We present HARMONI, a multimodal personalization framework that leverages large language models to enable socially assistive robots to manage long-term multi-user interactions. The framework integrates four key modules: (i) a perception module that identifies active speakers and extracts multimodal input; (ii) a world modeling module that maintains representations of the environment and short-term conversational context; (iii) a user modeling module that updates long-term speaker-specific profiles; and (iv) a generation module that produces contextually grounded and ethically informed responses. Through extensive evaluation and ablation studies on four datasets, as well as a real-world scenario-driven user-study in a nursing home environment, we demonstrate that HARMONI supports robust speaker identification, online memory updating, and ethically aligned personalization, outperforming baseline LLM-driven approaches in user modeling accuracy, personalization quality, and user satisfaction.
Information-Theoretic Detection of Bimanual Interactions for Dual-Arm Robot Plan Generation
Programming by demonstration is a strategy to simplify the robot programming process for non-experts via human demonstrations. However, its adoption for bimanual tasks is an underexplored problem due to the complexity of hand coordination, which also hinders data recording. This paper presents a novel one-shot method for processing a single RGB video of a bimanual task demonstration to generate an execution plan for a dual-arm robotic system. To detect hand coordination policies, we apply Shannon's information theory to analyze the information flow between scene elements and leverage scene graph properties. The generated plan is a modular behavior tree that assumes different structures based on the desired arms coordination. We validated the effectiveness of this framework through multiple subject video demonstrations, which we collected and made open-source, and exploiting data from an external, publicly available dataset. Comparisons with existing methods revealed significant improvements in generating a centralized execution plan for coordinating two-arm systems.
Whether We Care, How We Reason: The Dual Role of Anthropomorphism and Moral Foundations in Robot Abuse
As robots become increasingly integrated into daily life, understanding responses to robot mistreatment carries important ethical and design implications. This mixed-methods study (N = 201) examined how anthropomorphic levels and moral foundations shape reactions to robot abuse. Participants viewed videos depicting physical mistreatment of robots varying in humanness (Spider, Twofoot, Humanoid) and completed measures assessing moral foundations, anger, and social distance. Results revealed that anthropomorphism determines whether people extend moral consideration to robots, while moral foundations shape how they reason about such consideration. Qualitative analysis revealed distinct reasoning patterns: low-progressivism individuals employed character-based judgments, while high-progressivism individuals engaged in future-oriented moral deliberation. Findings offer implications for robot design and policy communication.
Unsupervised Learning of Efficient Exploration: Pre-training Adaptive Policies via Self-Imposed Goals ICLR 2026
Unsupervised pre-training can equip reinforcement learning agents with prior knowledge and accelerate learning in downstream tasks. A promising direction, grounded in human development, investigates agents that learn by setting and pursuing their own goals. The core challenge lies in how to effectively generate, select, and learn from such goals. Our focus is on broad distributions of downstream tasks where solving every task zero-shot is infeasible. Such settings naturally arise when the target tasks lie outside of the pre-training distribution or when their identities are unknown to the agent. In this work, we (i) optimize for efficient multi-episode exploration and adaptation within a meta-learning framework, and (ii) guide the training curriculum with evolving estimates of the agent's post-adaptation performance. We present ULEE, an unsupervised meta-learning method that combines an in-context learner with an adversarial goal-generation strategy that maintains training at the frontier of the agent's capabilities. On XLand-MiniGrid benchmarks, ULEE pre-training yields improved exploration and adaptation abilities that generalize to novel objectives, environment dynamics, and map structures. The resulting policy attains improved zero-shot and few-shot performance, and provides a strong initialization for longer fine-tuning processes. It outperforms learning from scratch, DIAYN pre-training, and alternative curricula.
comment: To appear at ICLR 2026
Reimagining Social Robots as Recommender Systems: Foundations, Framework, and Applications
Personalization in social robots refers to the ability of the robot to meet the needs and/or preferences of an individual user. Existing approaches typically rely on large language models (LLMs) to generate context-aware responses based on user metadata and historical interactions or on adaptive methods such as reinforcement learning (RL) to learn from users' immediate reactions in real time. However, these approaches fall short of comprehensively capturing user preferences-including long-term, short-term, and fine-grained aspects-, and of using them to rank and select actions, proactively personalize interactions, and ensure ethically responsible adaptations. To address the limitations, we propose drawing on recommender systems (RSs), which specialize in modeling user preferences and providing personalized recommendations. To ensure the integration of RS techniques is well-grounded and seamless throughout the social robot pipeline, we (i) align the paradigms underlying social robots and RSs, (ii) identify key techniques that can enhance personalization in social robots, and (iii) design them as modular, plug-and-play components. This work not only establishes a framework for integrating RS techniques into social robots but also opens a pathway for deep collaboration between the RS and HRI communities, accelerating innovation in both fields.
comment: HRI 2026
SCOPE: Smooth Convex Optimization for Planned Evolution of Deformable Linear Objects
We present SCOPE, a fast and efficient framework for modeling and manipulating deformable linear objects (DLOs). Unlike conventional energy-based approaches, SCOPE leverages convex approximations to significantly reduce computational cost while maintaining smooth and physically plausible deformations. This trade-off between speed and accuracy makes the method particularly suitable for applications requiring real-time or near-real-time response. The effectiveness of the proposed framework is demonstrated through comprehensive simulation experiments, highlighting its ability to generate smooth shape trajectories under geometric and length constraints.
comment: Proceedings of Machine Learning Research tbd:1_13, 2025 International Conference on Computational Optimization
Scalable Exploration for High-Dimensional Continuous Control via Value-Guided Flow ICLR 2026
Controlling high-dimensional systems in biological and robotic applications is challenging due to expansive state-action spaces, where effective exploration is critical. Commonly used exploration strategies in reinforcement learning are largely undirected with sharp degradation as action dimensionality grows. Many existing methods resort to dimensionality reduction, which constrains policy expressiveness and forfeits system flexibility. We introduce Q-guided Flow Exploration (Qflex), a scalable reinforcement learning method that conducts exploration directly in the native high-dimensional action space. During training, Qflex traverses actions from a learnable source distribution along a probability flow induced by the learned value function, aligning exploration with task-relevant gradients rather than isotropic noise. Our proposed method substantially outperforms representative online reinforcement learning baselines across diverse high-dimensional continuous-control benchmarks. Qflex also successfully controls a full-body human musculoskeletal model to perform agile, complex movements, demonstrating superior scalability and sample efficiency in very high-dimensional settings. Our results indicate that value-guided flows offer a principled and practical route to exploration at scale.
comment: Accepted by ICLR 2026
Enhancing Worker Safety in Harbors Using Quadruped Robots
Infrastructure inspection is becoming increasingly relevant in the field of robotics due to its significant impact on ensuring workers' safety. The harbor environment presents various challenges in designing a robotic solution for inspection, given the complexity of daily operations. This work introduces an initial phase to identify critical areas within the port environment. Following this, a preliminary solution using a quadruped robot for inspecting these critical areas is analyzed.
AC^2-VLA: Action-Context-Aware Adaptive Computation in Vision-Language-Action Models for Efficient Robotic Manipulation
Vision-Language-Action (VLA) models have demonstrated strong performance in robotic manipulation, yet their closed-loop deployment is hindered by the high latency and compute cost of repeatedly running large vision-language backbones at every timestep. We observe that VLA inference exhibits structured redundancies across temporal, spatial, and depth dimensions, and that most existing efficiency methods ignore action context, despite its central role in embodied tasks. To address this gap, we propose Action-Context-aware Adaptive Computation for VLA models (AC^2-VLA), a unified framework that conditions computation on current visual observations, language instructions, and previous action states. Based on this action-centric context, AC^2-VLA adaptively performs cognition reuse across timesteps, token pruning, and selective execution of model components within a unified mechanism. To train the adaptive policy, we introduce an action-guided self-distillation scheme that preserves the behavior of the dense VLA policy while enabling structured sparsification that transfers across tasks and settings. Extensive experiments on robotic manipulation benchmarks show that AC^2-VLA achieves up to a 1.79\times speedup while reducing FLOPs to 29.4% of the dense baseline, with comparable task success.
Safe Exploration via Policy Priors
Safe exploration is a key requirement for reinforcement learning (RL) agents to learn and adapt online, beyond controlled (e.g. simulated) environments. In this work, we tackle this challenge by utilizing suboptimal yet conservative policies (e.g., obtained from offline data or simulators) as priors. Our approach, SOOPER, uses probabilistic dynamics models to optimistically explore, yet pessimistically fall back to the conservative policy prior if needed. We prove that SOOPER guarantees safety throughout learning, and establish convergence to an optimal policy by bounding its cumulative regret. Extensive experiments on key safe RL benchmarks and real-world hardware demonstrate that SOOPER is scalable, outperforms the state-of-the-art and validate our theoretical guarantees in practice.
The S3LI Vulcano Dataset: A Dataset for Multi-Modal SLAM in Unstructured Planetary Environments
We release the S3LI Vulcano dataset, a multi-modal dataset towards development and benchmarking of Simultaneous Localization and Mapping (SLAM) and place recognition algorithms that rely on visual and LiDAR modalities. Several sequences are recorded on the volcanic island of Vulcano, from the Aeolian Islands in Sicily, Italy. The sequences provide users with data from a variety of environments, textures and terrains, including basaltic or iron-rich rocks, geological formations from old lava channels, as well as dry vegetation and water. The data (rmc.dlr.de/s3li_dataset) is accompanied by an open source toolkit (github.com/DLR-RM/s3li-toolkit) providing tools for generating ground truth poses as well as preparation of labelled samples for place recognition tasks.
comment: Accepted submission to the 2026 IEEE Aerospace Conference
Enhancing Inverse Perspective Mapping for Automatic Vectorized Road Map Generation
In this study, we present a low-cost and unified framework for vectorized road mapping leveraging enhanced inverse perspective mapping (IPM). In this framework, Catmull-Rom splines are utilized to characterize lane lines, and all the other ground markings are depicted using polygons uniformly. The results from instance segmentation serve as references to refine the three-dimensional position of spline control points and polygon corner points. In conjunction with this process, the homography matrix of IPM and vehicle poses are optimized simultaneously. Our proposed framework significantly reduces the mapping errors associated with IPM. It also improves the accuracy of the initial IPM homography matrix and the predicted vehicle poses. Furthermore, it addresses the limitations imposed by the coplanarity assumption in IPM. These enhancements enable IPM to be effectively applied to vectorized road mapping, which serves a cost-effective solution with enhanced accuracy. In addition, our framework generalizes road map elements to include all common ground markings and lane lines. The proposed framework is evaluated in two different practical scenarios, and the test results show that our method can automatically generate high-precision maps with near-centimeter-level accuracy. Importantly, the optimized IPM matrix achieves an accuracy comparable to that of manual calibration, while the accuracy of vehicle poses is also significantly improved.
Rhombot: Rhombus-shaped Modular Robots for Stable, Medium-Independent Reconfiguration Motion
In this paper, we present Rhombot, a novel deformable planar lattice modular self-reconfigurable robot (MSRR) with a rhombus shaped module. Each module consists of a parallelogram skeleton with a single centrally mounted actuator that enables folding and unfolding along its diagonal. The core design philosophy is to achieve essential MSRR functionalities such as morphing, docking, and locomotion with minimal control complexity. This enables a continuous and stable reconfiguration process that is independent of the surrounding medium, allowing the system to reliably form various configurations in diverse environments. To leverage the unique kinematics of Rhombot, we introduce morphpivoting, a novel motion primitive for reconfiguration that differs from advanced MSRR systems, and propose a strategy for its continuous execution. Finally, a series of physical experiments validate the module's stable reconfiguration ability, as well as its positional and docking accuracy.
PALM: Enhanced Generalizability for Local Visuomotor Policies via Perception Alignment
Generalizing beyond the training domain in image-based behavior cloning remains challenging. Existing methods address individual axes of generalization, workspace shifts, viewpoint changes, and cross-embodiment transfer, yet they are typically developed in isolation and often rely on complex pipelines. We introduce PALM (Perception Alignment for Local Manipulation), which leverages the invariance of local action distributions between out-of-distribution (OOD) and demonstrated domains to address these OOD shifts concurrently, without additional input modalities, model changes, or data collection. PALM modularizes the manipulation policy into coarse global components and a local policy for fine-grained actions. We reduce the discrepancy between in-domain and OOD inputs at the local policy level by enforcing local visual focus and consistent proprioceptive representation, allowing the policy to retrieve invariant local actions under OOD conditions. Experiments show that PALM limits OOD performance drops to 8% in simulation and 24% in the real world, compared to 45% and 77% for baselines.
ALRM: Agentic LLM for Robotic Manipulation
Large Language Models (LLMs) have recently empowered agentic frameworks to exhibit advanced reasoning and planning capabilities. However, their integration in robotic control pipelines remains limited in two aspects: (1) prior \ac{llm}-based approaches often lack modular, agentic execution mechanisms, limiting their ability to plan, reflect on outcomes, and revise actions in a closed-loop manner; and (2) existing benchmarks for manipulation tasks focus on low-level control and do not systematically evaluate multistep reasoning and linguistic variation. In this paper, we propose Agentic LLM for Robot Manipulation (ALRM), an LLM-driven agentic framework for robotic manipulation. ALRM integrates policy generation with agentic execution through a ReAct-style reasoning loop, supporting two complementary modes: Code-asPolicy (CaP) for direct executable control code generation, and Tool-as-Policy (TaP) for iterative planning and tool-based action execution. To enable systematic evaluation, we also introduce a novel simulation benchmark comprising 56 tasks across multiple environments, capturing linguistically diverse instructions. Experiments with ten LLMs demonstrate that ALRM provides a scalable, interpretable, and modular approach for bridging natural language reasoning with reliable robotic execution. Results reveal Claude-4.1-Opus as the top closed-source model and Falcon-H1-7B as the top open-source model under CaP.
A DVL Aided Loosely Coupled Inertial Navigation Strategy for AUVs with Attitude Error Modeling and Variance Propagation
In underwater navigation systems, strap-down inertial navigation system/Doppler velocity log (SINS/DVL)-based loosely coupled architectures are widely adopted. Conventional approaches project DVL velocities from the body coordinate system to the navigation coordinate system using SINS-derived attitude; however, accumulated attitude estimation errors introduce biases into velocity projection and degrade navigation performance during long-term operation. To address this issue, two complementary improvements are introduced. First, a vehicle attitude error-aware DVL velocity transformation model is formulated by incorporating attitude error terms into the observation equation to reduce projection-induced velocity bias. Second, a covariance matrix-based variance propagation method is developed to transform DVL measurement uncertainty across coordinate systems, introducing an expectation-based attitude error compensation term to achieve statistically consistent noise modeling. Simulation and field experiment results demonstrate that both improvements individually enhance navigation accuracy and confirm that accumulated attitude errors affect both projected velocity measurements and their associated uncertainty. When jointly applied, long-term error divergence is effectively suppressed. Field experimental results show that the proposed approach achieves a 78.3% improvement in 3D position RMSE and a 71.8% reduction in the maximum component-wise position error compared with the baseline IMU+DVL method, providing a robust solution for improving long-term SINS/DVL navigation performance.
Reinforcement Learning Goal-Reaching Control with Guaranteed Lyapunov-Like Stabilizer for Mobile Robots
Reinforcement learning (RL) can be highly effective at learning goal-reaching policies, but it typically does not provide formal guarantees that the goal will always be reached. A common approach to provide formal goal-reaching guarantees is to introduce a shielding mechanism that restricts the agent to actions that satisfy predefined safety constraints. The main challenge here is integrating this mechanism with RL so that learning and exploration remain effective without becoming overly conservative. Hence, this paper proposes an RL-based control framework that provides formal goal-reaching guarantees for wheeled mobile robots operating in unstructured environments. We first design a real-time RL policy with a set of 15 carefully defined reward terms. These rewards encourage the robot to reach both static and dynamic goals while generating sufficiently smooth command signals that comply with predefined safety specifications, which is critical in practice. Second, a Lyapunov-like stabilizer layer is integrated into the benchmark RL framework as a policy supervisor to formally strengthen the goal-reaching control while preserving meaningful exploration of the state action space. The proposed framework is suitable for real-time deployment in challenging environments, as it provides a formal guarantee of convergence to the intended goal states and compensates for uncertainties by generating real-time control signals based on the current state, while respecting real-world motion constraints. The experimental results show that the proposed Lyapunov-like stabilizer consistently improves the benchmark RL policies, boosting the goal-reaching rate from 84.6% to 99.0%, sharply reducing failures, and improving efficiency.
Self-Reconfiguration Planning for Deformable Quadrilateral Modular Robots
For lattice modular self-reconfigurable robots (MSRRs), maintaining stable connections during reconfiguration is crucial for physical feasibility and deployability. This letter presents a novel self-reconfiguration planning algorithm for deformable quadrilateral MSRRs that guarantees stable connection. The method first constructs feasible connect/disconnect actions using a virtual graph representation, and then organizes these actions into a valid execution sequence through a Dependence-based Reverse Tree (DRTree) that resolves interdependencies. We also prove that reconfiguration sequences satisfying motion characteristics exist for any pair of configurations with seven or more modules (excluding linear topologies). Finally, comparisons with a modified BiRRT algorithm highlight the superior efficiency and stability of our approach, while deployment on a physical robotic platform confirms its practical feasibility.
Physical Human-Robot Interaction: A Critical Review of Safety Constraints
This paper aims to provide a clear and rigorous understanding of commonly recognized safety constraints in physical human-robot interaction, i.e. ISO/TS 15066, by examining how they are obtained and which assumptions support them. We clarify the interpretation and practical impact of key simplifying assumptions, show how these modeling choices affect both safety and performance across the system, and indicate specific design parameters that can be adjusted in safety-critical control implementations. Numerical examples are provided to quantify performance degradation induced by common approximations and simplifying design choices. Furthermore, the fundamental role of energy in safety assessment is emphasized, and focused insights are offered on the existing body of work concerning energy-based safety methodologies.
Towards Gold-Standard Depth Estimation for Tree Branches in UAV Forestry: Benchmarking Deep Stereo Matching Methods
Autonomous UAV forestry operations require robust depth estimation with strong cross-domain generalization, yet existing evaluations focus on urban and indoor scenarios, leaving a critical gap for vegetation-dense environments. We present the first systematic zero-shot evaluation of eight stereo methods spanning iterative refinement, foundation model, diffusion-based, and 3D CNN paradigms. All methods use officially released pretrained weights (trained on Scene Flow) and are evaluated on four standard benchmarks (ETH3D, KITTI 2012/2015, Middlebury) plus a novel 5,313-pair Canterbury Tree Branches dataset ($1920 \times 1080$). Results reveal scene-dependent patterns: foundation models excel on structured scenes (BridgeDepth: 0.23 px on ETH3D; DEFOM: 4.65 px on Middlebury), while iterative methods show variable cross-benchmark performance (IGEV++: 0.36 px on ETH3D but 6.77 px on Middlebury; IGEV: 0.33 px on ETH3D but 4.99 px on Middlebury). Qualitative evaluation on the Tree Branches dataset establishes DEFOM as the gold-standard baseline for vegetation depth estimation, with superior cross-domain consistency (consistently ranking 1st-2nd across benchmarks, average rank 1.75). DEFOM predictions will serve as pseudo-ground-truth for future benchmarking.
Task-Centric Policy Optimization from Misaligned Motion Priors
Humanoid control often leverages motion priors from human demonstrations to encourage natural behaviors. However, such demonstrations are frequently suboptimal or misaligned with robotic tasks due to embodiment differences, retargeting errors, and task-irrelevant variations, causing naïve imitation to degrade task performance. Conversely, task-only reinforcement learning admits many task-optimal solutions, often resulting in unnatural or unstable motions. This exposes a fundamental limitation of linear reward mixing in adversarial imitation learning. We propose \emph{Task-Centric Motion Priors} (TCMP), a task-priority adversarial imitation framework that treats imitation as a conditional regularizer rather than a co-equal objective. TCMP maximizes task improvement while incorporating imitation signals only when they are compatible with task progress, yielding an adaptive, geometry-aware update that preserves task-feasible descent and suppresses harmful imitation under misalignment. We provide theoretical analysis of gradient conflict and task-priority stationary points, and validate our claims through humanoid control experiments demonstrating robust task performance with consistent motion style under noisy demonstrations.
Sim-and-Human Co-training for Data-Efficient and Generalizable Robotic Manipulation
Synthetic simulation data and real-world human data provide scalable alternatives to circumvent the prohibitive costs of robot data collection. However, these sources suffer from the sim-to-real visual gap and the human-to-robot embodiment gap, respectively, which limits the policy's generalization to real-world scenarios. In this work, we identify a natural yet underexplored complementarity between these sources: simulation offers the robot action that human data lacks, while human data provides the real-world observation that simulation struggles to render. Motivated by this insight, we present SimHum, a co-training framework to simultaneously extract kinematic prior from simulated robot actions and visual prior from real-world human observations. Based on the two complementary priors, we achieve data-efficient and generalizable robotic manipulation in real-world tasks. Empirically, SimHum outperforms the baseline by up to $\mathbf{40\%}$ under the same data collection budget, and achieves a $\mathbf{62.5\%}$ OOD success with only 80 real data, outperforming the real only baseline by $7.1\times$. Videos and additional information can be found at \href{https://kaipengfang.github.io/sim-and-human}{project website}.
Judgelight: Trajectory-Level Post-Optimization for Multi-Agent Path Finding via Closed-Subwalk Collapsing
Multi-Agent Path Finding (MAPF) is an NP-hard problem with applications in warehouse automation and multi-robot coordination. Learning-based MAPF solvers offer fast and scalable planning but often produce feasible trajectories that contain unnecessary or oscillatory movements. We propose Judgelight, a post-optimization method that improves trajectory quality after a MAPF solver generates a feasible schedule. Judgelight collapses closed subwalks in agents' trajectories to remove redundant movements while preserving all feasibility constraints. We formalize this process as MAPF-Collapse, prove that it is NP-hard, and present an exact optimization approach by formulating it as integer linear programming (ILP) problem. Experimental results show Judgelight consistently reduces solution cost by around 20%, particularly for learning-based solvers, producing trajectories that are better suited for real-world deployment.
Teaching Machine Learning Fundamentals with LEGO Robotics
This paper presents the web-based platform Machine Learning with Bricks and an accompanying two-day course designed to teach machine learning concepts to students aged 12 to 17 through programming-free robotics activities. Machine Learning with Bricks is an open source platform and combines interactive visualizations with LEGO robotics to teach three core algorithms: KNN, linear regression, and Q-learning. Students learn by collecting data, training models, and interacting with robots via a web-based interface. Pre- and post-surveys with 14 students demonstrate significant improvements in conceptual understanding of machine learning algorithms, positive shifts in AI perception, high platform usability, and increased motivation for continued learning. This work demonstrates that tangible, visualization-based approaches can make machine learning concepts accessible and engaging for young learners while maintaining technical depth. The platform is freely available at https://learning-and-dynamics.github.io/ml-with-bricks/, with video tutorials guiding students through the experiments at https://youtube.com/playlist?list=PLx1grFu4zAcwfKKJZ1Ux4LwRqaePCOA2J.
comment: 10 pages, 8 figures
Self-Supervised Path Planning in Unstructured Environments via Global-Guided Differentiable Hard Constraint Projection
Deploying deep learning agents for autonomous navigation in unstructured environments faces critical challenges regarding safety, data scarcity, and limited computational resources. Traditional solvers often suffer from high latency, while emerging learning-based approaches struggle to ensure deterministic feasibility. To bridge the gap from embodied to embedded intelligence, we propose a self-supervised framework incorporating a differentiable hard constraint projection layer for runtime assurance. To mitigate data scarcity, we construct a Global-Guided Artificial Potential Field (G-APF), which provides dense supervision signals without manual labeling. To enforce actuator limitations and geometric constraints efficiently, we employ an adaptive neural projection layer, which iteratively rectifies the coarse network output onto the feasible manifold. Extensive benchmarks on a test set of 20,000 scenarios demonstrate an 88.75\% success rate, substantiating the enhanced operational safety. Closed-loop experiments in CARLA further validate the physical realizability of the planned paths under dynamic constraints. Furthermore, deployment verification on an NVIDIA Jetson Orin NX confirms an inference latency of 94 ms, showing real-time feasibility on resource-constrained embedded hardware. This framework offers a generalized paradigm for embedding physical laws into neural architectures, providing a viable direction for solving constrained optimization in mechatronics. Source code is available at: https://github.com/wzq-13/SSHC.git.
Perception-to-Pursuit: Track-Centric Temporal Reasoning for Open-World Drone Detection and Autonomous Chasing ICCV 2027
Autonomous drone pursuit requires not only detecting drones but also predicting their trajectories in a manner that enables kinematically feasible interception. Existing tracking methods optimize for prediction accuracy but ignore pursuit feasibility, resulting in trajectories that are physically impossible to intercept 99.9% of the time. We propose Perception-to-Pursuit (P2P), a track-centric temporal reasoning framework that bridges detection and actionable pursuit planning. Our method represents drone motion as compact 8-dimensional tokens capturing velocity, acceleration, scale, and smoothness, enabling a 12-frame causal transformer to reason about future behavior. We introduce the Intercept Success Rate (ISR) metric to measure pursuit feasibility under realistic interceptor constraints. Evaluated on the Anti-UAV-RGBT dataset with 226 real drone sequences, P2P achieves 28.12 pixel average displacement error and 0.597 ISR, representing a 77% improvement in trajectory prediction and 597x improvement in pursuit feasibility over tracking-only baselines, while maintaining perfect drone classification accuracy (100%). Our work demonstrates that temporal reasoning over motion patterns enables both accurate prediction and actionable pursuit planning.
comment: 7 pages, 2 figures, 3 tables, 15 references. Intended for submission to ICCV 2027
Tactile Memory with Soft Robot: Robust Object Insertion via Masked Encoding and Soft Wrist
Tactile memory, the ability to store and retrieve touch-based experience, is critical for contact-rich tasks such as key insertion under uncertainty. To replicate this capability, we introduce Tactile Memory with Soft Robot (TaMeSo-bot), a system that integrates a soft wrist with tactile retrieval-based control to enable safe and robust manipulation. The soft wrist allows safe contact exploration during data collection, while tactile memory reuses past demonstrations via retrieval for flexible adaptation to unseen scenarios. The core of this system is the Masked Tactile Trajectory Transformer (MAT$^\text{3}$), which jointly models spatiotemporal interactions between robot actions, distributed tactile feedback, force-torque measurements, and proprioceptive signals. Through masked-token prediction, MAT$^\text{3}$ learns rich spatiotemporal representations by inferring missing sensory information from context, autonomously extracting task-relevant features without explicit subtask segmentation. We validate our approach on peg-in-hole tasks with diverse pegs and conditions in real-robot experiments. Our extensive evaluation demonstrates that MAT$^\text{3}$ achieves higher success rates than the baselines over all conditions and shows remarkable capability to adapt to unseen pegs and conditions.
comment: This work has been submitted to the IEEE for possible publication
iFAN Ecosystem: A Unified AI, Digital Twin, Cyber-Physical Security, and Robotics Environment for Advanced Nuclear Simulation and Operations
As nuclear facilities experience digital transformation and advanced reactor development, AI integration, cyber-physical security, and other emerging technologies such as autonomous robot operations are increasingly developed. However, evaluation and deployment is challenged by the lack of dedicated virtual testbeds. The Immersive Framework for Advanced Nuclear (iFAN) ecosystem is developed, a comprehensive digital twin framework with a realistic 3D environment with physics-based simulations. The iFAN ecosystem serves as a high-fidelity virtual testbed for plant operation, cybersecurity, physical security, and robotic operation, as it provides real-time data exchange for pre-deployment verification. Core features include virtual reality, reinforcement learning, radiation simulation, and cyber-physical security. In addition, the paper investigates various applications through potential operational scenarios. The iFAN ecosystem provides a versatile and secure architecture for validating the next generation of autonomous and cyber-resilient nuclear operations.
Robust Out-of-Order Retrieval for Grid-Based Storage at Maximum Capacity AAAI 2026
This paper proposes a framework for improving the operational efficiency of automated storage systems under uncertainty. It considers a 2D grid-based storage for uniform-sized loads (e.g., containers, pallets, or totes), which are moved by a robot (or other manipulator) along a collision-free path in the grid. The loads are labeled (i.e., unique) and must be stored in a given sequence, and later be retrieved in a different sequence -- an operational pattern that arises in logistics applications, such as last-mile distribution centers and shipyards. The objective is to minimize the load relocations to ensure efficient retrieval. A previous result guarantees a zero-relocation solution for known storage and retrieval sequences, even for storage at full capacity, provided that the side of the grid through which loads are stored/retrieved is at least 3 cells wide. However, in practice, the retrieval sequence can change after the storage phase. To address such uncertainty, this work investigates \emph{$k$-bounded perturbations} during retrieval, under which any two loads may depart out of order if they are originally at most $k$ positions apart. We prove that a $Θ(k)$ grid width is necessary and sufficient for eliminating relocations at maximum capacity. We also provide an efficient solver for computing a storage arrangement that is robust to such perturbations. To address the higher-uncertainty case where perturbations exceed $k$, a strategy is introduced to effectively minimize relocations. Extensive experiments show that, for $k$ up to half the grid width, the proposed storage-retrieval framework essentially eliminates relocations. For $k$ values up to the full grid width, relocations are reduced by $50\%+$.
comment: AAAI 2026
Agree to Disagree: Consensus-Free Flocking under Constraints
Robots sometimes have to work together with a mixture of partially-aligned or conflicting goals. Flocking - coordinated motion through cohesion, alignment, and separation - traditionally assumes uniform desired inter-agent distances. Many practical applications demand greater flexibility, as the diversity of types and configurations grows with the popularity of multi-agent systems in society. Moreover, agents often operate without guarantees of trust or secure communication. Motivated by these challenges we update well-established frameworks by relaxing this assumption of shared inter-agent distances and constraints. Through a new form of constrained collective potential function, we introduce a solution that permits negotiation of these parameters. In the spirit of the traditional flocking control canon, this negotiation is achieved purely through local observations and does not require any global information or inter-agent communication. The approach is robust to semi-trust scenarios, where neighbouring agents pursue conflicting goals. We validate the effectiveness of the approach through a series of simulations.
comment: 7 pages. This work has been accepted for publication in the Proceedings of IEEE SYSCON 2026
SimTO: A simulation-based topology optimization framework for bespoke soft robotic grippers
Soft robotic grippers are essential for grasping delicate, geometrically complex objects in manufacturing, healthcare and agriculture. However, existing grippers struggle to grasp feature-rich objects with high topological variability, including gears with sharp tooth profiles on automotive assembly lines, corals with fragile protrusions, or vegetables with irregular branching structures like broccoli. Unlike simple geometric primitives such as cubes or spheres, feature-rich objects lack a clear "optimal" contact surface, making them both difficult to grasp and susceptible to damage when grasped by existing gripper designs. Safe handling of such objects therefore requires specialized soft grippers whose morphology is tailored to the object's features. Topology optimization offers a promising approach for producing specialized grippers, but its utility is limited by the requirement for pre-defined load cases. For soft grippers interacting with feature-rich objects, these loads arise from hundreds of unpredictable gripper-object contact forces during grasping and are unknown a priori. To address this problem, we introduce SimTO, a framework that enables high-resolution topology optimization by automatically extracting load cases from a contact-based physics simulator, eliminating the need for manual load specification. Given an arbitrary feature-rich object, SimTO produces highly customized soft grippers with fine-grained morphological features tailored to the object geometry. Numerical results show our designs are not only highly specialized to feature-rich objects, but also generalize to unseen objects.
comment: 12 pages, 8 figures. Submitted to Structural and Multidisciplinary Optimization
Neuromorphic BrailleNet: Accurate and Generalizable Braille Reading Beyond Single Characters through Event-Based Optical Tactile Sensing
Conventional robotic Braille readers typically rely on discrete, character-by-character scanning, limiting reading speed and disrupting natural flow. Vision-based alternatives often require substantial computation, introduce latency, and degrade in real-world conditions. In this work, we present a high accuracy, real-time pipeline for continuous Braille recognition using Evetac, an open-source neuromorphic event-based tactile sensor. Unlike frame-based vision systems, the neuromorphic tactile modality directly encodes dynamic contact events during continuous sliding, closely emulating human finger-scanning strategies. Our approach combines spatiotemporal segmentation with a lightweight ResNet-based classifier to process sparse event streams, enabling robust character recognition across varying indentation depths and scanning speeds. The proposed system achieves near-perfect accuracy (>=98%) at standard depths, generalizes across multiple Braille board layouts, and maintains strong performance under fast scanning. On a physical Braille board containing daily-living vocabulary, the system attains over 90% word-level accuracy, demonstrating robustness to temporal compression effects that challenge conventional methods. These results position neuromorphic tactile sensing as a scalable, low latency solution for robotic Braille reading, with broader implications for tactile perception in assistive and robotic applications.
Real-Time Robot Execution with Masked Action Chunking ICLR 2026
Real-time execution is essential for cyber-physical systems such as robots. These systems operate in dynamic real-world environments where even small delays can undermine responsiveness and compromise performance. Asynchronous inference has recently emerged as a system-level paradigm for real-time robot manipulation, enabling the next action chunk to be predicted while the current one is being executed. While this approach achieves real-time responsiveness, naive integration often results in execution failure. Previous methods attributed this failure to inter-chunk discontinuity and developed test-time algorithms to smooth chunk boundaries. In contrast, we identify another critical yet overlooked factor: intra-chunk inconsistency, where the robot's executed action chunk partially misaligns with its current perception. To address this, we propose REMAC, which learns corrective adjustments on the pretrained policy through masked action chunking, enabling the policy to remain resilient under mismatches between intended actions and actual execution during asynchronous inference. In addition, we introduce a prefix-preserved sampling procedure to reinforce inter-chunk continuity. Overall, our method delivers more reliable policies without incurring additional latency. Extensive experiments in both simulation and real-world settings demonstrate that our method enables faster task execution, maintains robustness across varying delays, and consistently achieves higher completion rates.
comment: ICLR 2026. Project page at https://remac-async.github.io/
Game-Theoretic Autonomous Driving: A Graphs of Convex Sets Approach
Multi-vehicle autonomous driving couples strategic interaction with hybrid (discrete-continuous) maneuver planning under shared safety constraints. We introduce IBR-GCS, an Iterative Best Response (IBR) planning approach based on the Graphs of Convex Sets (GCS) framework that models highway driving as a generalized noncooperative game. IBR-GCS integrates combinatorial maneuver reasoning, trajectory planning, and game-theoretic interaction within a unified framework. The key novelty is a vehicle-specific, strategy-dependent GCS construction. Specifically, at each best-response update, each vehicle builds its own graph conditioned on the current strategies of the other vehicles, with vertices representing lane-specific, time-varying, convex, collision-free regions and edges encoding dynamically feasible transitions. This yields a shortest-path problem in GCS for each best-response step, which admits an efficient convex relaxation that can be solved using convex optimization tools without exhaustive discrete tree search. We then apply an iterative best-response scheme in which vehicles update their trajectories sequentially and provide conditions under which the resulting inexact updates converge to an approximate generalized Nash equilibrium. Simulation results across multi-lane, multi-vehicle scenarios demonstrate that IBR-GCS produces safe trajectories and strategically consistent interactive behaviors.
comment: 16 pages for content, 2 pages for references, 2 pages for notation
Just in time Informed Trees: Manipulability-Aware Asymptotically Optimized Motion Planning
In high-dimensional robotic path planning, traditional sampling-based methods often struggle to efficiently identify both feasible and optimal paths in complex, multi-obstacle environments. This challenge is intensified in robotic manipulators, where the risk of kinematic singularities and self-collisions further complicates motion efficiency and safety. To address these issues, we introduce the Just-in-Time Informed Trees (JIT*) algorithm, an enhancement over Effort Informed Trees (EIT*), designed to improve path planning through two core modules: the Just-in-Time module and the Motion Performance module. The Just-in-Time module includes "Just-in-Time Edge," which dynamically refines edge connectivity, and "Just-in-Time Sample," which adjusts sampling density in bottleneck areas to enable faster initial path discovery. The Motion Performance module balances manipulability and trajectory cost through dynamic switching, optimizing motion control while reducing the risk of singularities. Comparative analysis shows that JIT* consistently outperforms traditional sampling-based planners across $\mathbb{R}^4$ to $\mathbb{R}^{16}$ dimensions. Its effectiveness is further demonstrated in single-arm and dual-arm manipulation tasks, with experimental results available in a video at https://youtu.be/nL1BMHpMR7c.
E2HiL: Entropy-Guided Sample Selection for Efficient Real-World Human-in-the-Loop Reinforcement Learning
Human-in-the-loop guidance has emerged as an effective approach for enabling faster convergence in online reinforcement learning (RL) of complex real-world manipulation tasks. However, existing human-in-the-loop RL (HiL-RL) frameworks often suffer from low sample efficiency, requiring substantial human interventions to achieve convergence and thereby leading to high labor costs. To address this, we propose a sample-efficient real-world human-in-the-loop RL framework named \method, which requires fewer human intervention by actively selecting informative samples. Specifically, stable reduction of policy entropy enables improved trade-off between exploration and exploitation with higher sample efficiency. We first build influence functions of different samples on the policy entropy, which is efficiently estimated by the covariance of action probabilities and soft advantages of policies. Then we select samples with moderate values of influence functions, where shortcut samples that induce sharp entropy drops and noisy samples with negligible effect are pruned. Extensive experiments on four real-world manipulation tasks demonstrate that \method achieves a 42.1\% higher success rate while requiring 10.1\% fewer human interventions compared to the state-of-the-art HiL-RL method, validating its effectiveness. The project page providing code, videos, and mathematical formulations can be found at https://e2hil.github.io/.
comment: Project page: https://e2hil.github.io/
LangForce: Bayesian Decomposition of Vision Language Action Models via Latent Action Queries
Vision-Language-Action (VLA) models have shown promise in robot manipulation but often struggle to generalize to new instructions or complex multi-task scenarios. We identify a critical pathology in current training paradigms where goal-driven data collection creates a dataset bias. In such datasets, language instructions are highly predictable from visual observations alone, causing the conditional mutual information between instructions and actions to vanish, a phenomenon we term Information Collapse. Consequently, models degenerate into vision-only policies that ignore language constraints and fail in out-of-distribution (OOD) settings. To address this, we propose LangForce, a novel framework that enforces instruction following via Bayesian decomposition. By introducing learnable Latent Action Queries, we construct a dual-branch architecture to estimate both a vision-only prior $p(a \mid v)$ and a language-conditioned posterior $π(a \mid v, \ell)$. We then optimize the policy to maximize the conditional Pointwise Mutual Information (PMI) between actions and instructions. This objective effectively penalizes the vision shortcut and rewards actions that explicitly explain the language command. Without requiring new data, LangForce significantly improves generalization. Extensive experiments across on SimplerEnv and RoboCasa demonstrate substantial gains, including an 11.3% improvement on the challenging OOD SimplerEnv benchmark, validating the ability of our approach to robustly ground language in action.
Problem Space Transformations for Out-of-Distribution Generalisation in Behavioural Cloning
The combination of behavioural cloning and neural networks has driven significant progress in robotic manipulation. As these algorithms may require a large number of demonstrations for each task of interest, they remain fundamentally inefficient in complex scenarios, in which finite datasets can hardly cover the state space. One of the remaining challenges is thus out-of-distribution (OOD) generalisation, i.e. the ability to predict correct actions for states with a low likelihood with respect to the state occupancy induced by the dataset. This issue is aggravated when the system to control is treated as a black-box, ignoring its physical properties. This work highlights widespread properties of robotic manipulation, specifically pose equivariance and locality. We investigate the effect of the choice of problem space on OOD performance of BC policies and how transformations arising from characteristic properties of manipulation can be employed for its improvement. Through controlled, simulated and real-world experiments, we empirically demonstrate that these transformations allow behaviour cloning policies, using either standard MLP-based one-step action prediction or diffusion-based action-sequence prediction, to generalise better to certain OOD problem instances. Code is available at https://github.com/kirandoshi/pst_ood_gen.
Studying the Effect of Explicit Interaction Representations on Learning Scene-level Distributions of Human Trajectories
Effectively capturing the joint distribution of all agents in a scene is relevant for predicting the true evolution of the scene and in turn providing more accurate information to the decision processes of autonomous vehicles. While new models have been developed for this purpose in recent years, it remains unclear how to best represent the joint distributions particularly from the perspective of the interactions between agents. Thus far there is no clear consensus on how best to represent interactions between agents; whether they should be learned implicitly from data by neural networks, or explicitly modeled using the spatial and temporal relations that are more grounded in human decision-making. This paper aims to study various means of describing interactions within the same network structure and their effect on the final learned joint distributions. Our findings show that more often than not, simply allowing a network to establish interactive connections between agents based on data has a detrimental effect on performance. Instead, having well defined interactions (such as which agent of an agent pair passes first at an intersection) can often bring about a clear boost in performance.
Constraint-Aware Discrete-Time PID Gain Optimization for Robotic Joint Control Under Actuator Saturation
The precise regulation of rotary actuation is fundamental in autonomous robotics, yet practical PID loops deviate from continuous-time theory due to discrete-time execution, actuator saturation, and small delays and measurement imperfections. We present an implementation-aware analysis and tuning workflow for saturated discrete-time joint control. We (i) derive PI stability regions under Euler and exact zero-order-hold (ZOH) discretizations using the Jury criterion, (ii) evaluate a discrete back-calculation anti-windup realization under saturation-dominant regimes, and (iii) propose a hybrid-certified Bayesian optimization workflow that screens analytically unstable candidates and behaviorally unsafe transients while optimizing a robust IAE objective with soft penalties on overshoot and saturation duty. Baseline sweeps ($τ=1.0$~s, $Δt=0.01$~s, $u\in[-10,10]$) quantify rise/settle trends for P/PI/PID. Under a randomized model family emulating uncertainty, delay, noise, quantization, and tighter saturation, robustness-oriented tuning improves median IAE from $0.843$ to $0.430$ while keeping median overshoot below $2\%$. In simulation-only tuning, the certification screen rejects $11.6\%$ of randomly sampled gains within bounds before full robust evaluation, improving sample efficiency without hardware experiments.
comment: Pending IEEE Transactions on Robotics Publication
A Riemannian Take on Distance Fields and Geodesic Flows in Robotics IJRR
Distance functions are crucial in robotics for representing spatial relationships between a robot and its environment. They provide an implicit, continuous, and differentiable representation that integrates seamlessly with control, optimization, and learning. While standard distance fields rely on the Euclidean metric, many robotic tasks inherently involve non-Euclidean structures. To this end, we generalize Euclidean distance fields to more general metric spaces by solving the Riemannian eikonal equation, a first-order partial differential equation whose solution defines a distance field and its associated gradient flow on the manifold, enabling the computation of geodesics and globally length-minimizing paths. We demonstrate that geodesic distance fields, the classical Riemannian distance function represented as a global, continuous, and queryable field, are effective for a broad class of robotic problems where Riemannian geometry naturally arises. To realize this, we present a neural Riemannian eikonal solver (NES) that solves the equation as a mesh-free implicit representation without grid discretization, scaling to high-dimensional robot manipulators. Training leverages a physics-informed neural network (PINN) objective that constrains spatial derivatives via the PDE residual and boundary and metric conditions, so the model is supervised by the governing equation and requires no labeled distances or geodesics. We propose two NES variants, conditioned on boundary data and on spatially varying Riemannian metrics, underscoring the flexibility of the neural parameterization. We validate the effectiveness of our approach through extensive examples, yielding minimal-length geodesics across diverse robot tasks involving Riemannian geometry.
comment: 27 pages, 20 figures. International Journal of Robotics Research (IJRR)
CBMC-V3: A CNS-inspired Control Framework Towards Agile Manipulation with SNN
As robotic arm applications expand beyond traditional industrial settings into service-oriented domains such as catering, household and retail, existing control algorithms struggle to achieve the level of agile manipulation required in unstructured environments characterized by dynamic trajectories, unpredictable interactions, and diverse objects. This paper presents a biomimetic control framework based on Spiking Neural Network (SNN), inspired by the human Central Nervous System (CNS), to address these challenges. The proposed framework comprises five control modules-cerebral cortex, cerebellum, thalamus, brainstem, and spinal cord-organized into three hierarchical control levels (first-order, second-order, and third-order) and two information pathways (ascending and descending). All modules are fully implemented using SNN. The framework is validated through both simulation and experiments on a commercial robotic arm platform across a range of control tasks. The results demonstrate that the proposed method outperforms the baseline in terms of agile motion control capability, offering a practical and effective solution for achieving agile manipulation.
Automating Box Folding: Sequence Extraction and Ranking Methodologies
Box folding represents a crucial challenge for automated packaging systems. This work bridges the gap between existing methods for folding sequence extraction and approaches focused on the adaptability of automated systems to specific box types. An innovative method is proposed to identify and rank folding sequences, enabling the transformation of a box from an initial state to a desired final configuration. The system evaluates and ranks these sequences based on their feasibility and compatibility with available hardware, providing recommendations for real-world implementations. Finally, an illustrative use case is presented, where a robot performs the folding of a box.
comment: Accepted at IFAC ROBOTICS 2025
xFLIE: Leveraging Actionable Hierarchical Scene Representations for Autonomous Semantic-Aware Inspection Missions
We present a novel architecture aimed towards incremental construction and exploitation of a hierarchical 3D scene graph representation during semantic-aware inspection missions. Inspection planning, particularly of distributed targets in previously unseen environments, presents an opportunity to exploit the semantic structure of the scene during reasoning, navigation and scene understanding. Motivated by this, we propose the 3D Layered Semantic Graph (3DLSG), a hierarchical inspection scene graph constructed in an incremental manner and organized into abstraction layers that support planning demands in real-time. To address the task of semantic-aware inspection, a mission framework, termed as Enhanced First-Look Inspect Explore (xFLIE), that tightly couples the 3DLSG with an inspection planner is proposed. We assess the performance through simulations and experimental trials, evaluating target-selection, path-planning and semantic navigation tasks over the 3DLSG model. The scenarios presented are diverse, ranging from city-scale distributed to solitary infrastructure targets in simulated worlds and subsequent outdoor and subterranean environment deployments onboard a quadrupedal robot. The proposed method successfully demonstrates incremental construction and planning over the 3DLSG representation to meet the objectives of the missions. Furthermore, the framework demonstrates successful semantic navigation tasks over the structured interface at the end of the inspection missions. Finally, we report multiple orders of magnitude reduction in path-planning time compared to conventional volumetric-map-based methods over various environment scale, demonstrating the planning efficiency and scalability of the proposed approach.
comment: 20 pages
MetaVLA: Unified Meta Co-training For Efficient Embodied Adaption
Vision-Language-Action (VLA) models show promise in embodied reasoning, yet remain far from true generalists-they often require task-specific fine-tuning, incur high compute costs, and generalize poorly to unseen tasks. We propose MetaVLA, a unified, backbone-agnostic post-training framework for efficient and scalable alignment. MetaVLA introduces Context-Aware Meta Co-Training, which consolidates diverse target tasks into a single fine-tuning stage while leveraging structurally diverse auxiliary tasks to improve in-domain generalization. Unlike naive multi-task SFT, MetaVLA integrates a lightweight meta-learning mechanism-derived from Attentive Neural Processes-to enable rapid adaptation from diverse contexts with minimal architectural change or inference overhead. On the LIBERO benchmark, MetaVLA with six auxiliary tasks outperforms OpenVLA by up to 8.0% on long-horizon tasks, reduces training steps from 240K to 75K, and cuts GPU time by ~76%. These results show that scalable, low-resource post-training is achievable-paving the way toward general-purpose embodied agents. Code will be available.
Fast and Safe Trajectory Optimization for Mobile Manipulators With Neural Configuration Space Distance Field
Mobile manipulators promise agile, long-horizon behavior by coordinating base and arm motion, yet whole-body trajectory optimization in cluttered, confined spaces remains difficult due to high-dimensional nonconvexity and the need for fast, accurate collision reasoning. Configuration Space Distance Fields (CDF) enable fixed-base manipulators to model collisions directly in configuration space via smooth, implicit distances. This representation holds strong potential to bypass the nonlinear configuration-to-workspace mapping while preserving accurate whole-body geometry and providing optimization-friendly collision costs. Yet, extending this capability to mobile manipulators is hindered by unbounded workspaces and tighter base-arm coupling. We lift this promise to mobile manipulation with Generalized Configuration Space Distance Fields (GCDF), extending CDF to robots with both translational and rotational joints in unbounded workspaces with tighter base-arm coupling. We prove that GCDF preserves Euclidean-like local distance structure and accurately encodes whole-body geometry in configuration space, and develop a data generation and training pipeline that yields continuous neural GCDFs with accurate values and gradients, supporting efficient GPU-batched queries. Building on this representation, we develop a high-performance sequential convex optimization framework centered on GCDF-based collision reasoning. The solver scales to large numbers of implicit constraints through (i) online specification of neural constraints, (ii) sparsity-aware active-set detection with parallel batched evaluation across thousands of constraints, and (iii) incremental constraint management for rapid replanning under scene changes.
Memory-Maze: Scenario Driven Visual Language Navigation Benchmark for Guiding Blind People
Visual Language Navigation (VLN) powered robots have the potential to guide blind people by understanding route instructions provided by sighted passersby. This capability allows robots to operate in environments often unknown a prior. Existing VLN models are insufficient for the scenario of navigation guidance for blind people, as they need to understand routes described from human memory, which frequently contains stutters, errors, and omissions of details, as opposed to those obtained by thinking out loud, such as in the R2R dataset. However, existing benchmarks do not contain instructions obtained from human memory in natural environments. To this end, we present our benchmark, Memory-Maze, which simulates the scenario of seeking route instructions for guiding blind people. Our benchmark contains a maze-like structured virtual environment and novel route instruction data from human memory. Our analysis demonstrates that instruction data collected from memory was longer and contained more varied wording. We further demonstrate that addressing errors and ambiguities from memory-based instructions is challenging, by evaluating state-of-the-art models alongside our baseline model with modularized perception and controls.
Indoor Positioning Based on Active Radar Sensing and Passive Reflectors: Reflector Placement Optimization
We extend our work on a novel indoor positioning system (IPS) for autonomous mobile robots (AMRs) based on radar sensing of local, passive radar reflectors. Through the combination of simple reflectors and a single-channel frequency modulated continuous wave (FMCW) radar, high positioning accuracy at low system cost can be achieved. Further, a multi-objective (MO) particle swarm optimization (PSO) algorithm is presented that optimizes the 2D placement of radar reflectors in complex room settings.
Equitable Routing--Rethinking the Multiple Traveling Salesman Problem
The Multiple Traveling Salesman Problem (MTSP) extends the traveling salesman problem by assigning multiple salesmen to visit a set of targets from a common depot, with each target visited exactly once while minimizing total tour length. A common variant, the min-max MTSP, focuses on workload balance by minimizing the longest tour, but it is difficult to solve optimally due to weak linear relaxation bounds. This paper introduces two new parametric fairness-driven variants of the MTSP: the $\varepsilon$-Fair-MTSP and the $Δ$-Fair-MTSP, which promote equitable distribution of tour lengths while controlling overall cost. The $\varepsilon$-Fair-MTSP is formulated as a mixed-integer second-order cone program, while the $Δ$-Fair-MTSP is modeled as a mixed-integer linear program. We develop algorithms that guarantee global optimality for both formulations. Computational experiments on benchmark instances and real-world applications, including electric vehicle fleet routing, demonstrate their effectiveness. Furthermore, we show that the algorithms presented for the fairness-constrained MTSP variants can be used to obtain the pareto-front of a bi-objective optimization problem where one objective focuses on minimizing the total tour length and the other focuses on balancing the tour lengths of the individual tours. Overall, these fairness-constrained MTSP variants provide a practical and flexible alternative to the min-max MTSP.
comment: 26 pages
Computer Vision and Pattern Recognition 156
DuwatBench: Bridging Language and Visual Heritage through an Arabic Calligraphy Benchmark for Multimodal Understanding
Arabic calligraphy represents one of the richest visual traditions of the Arabic language, blending linguistic meaning with artistic form. Although multimodal models have advanced across languages, their ability to process Arabic script, especially in artistic and stylized calligraphic forms, remains largely unexplored. To address this gap, we present DuwatBench, a benchmark of 1,272 curated samples containing about 1,475 unique words across six classical and modern calligraphic styles, each paired with sentence-level detection annotations. The dataset reflects real-world challenges in Arabic writing, such as complex stroke patterns, dense ligatures, and stylistic variations that often challenge standard text recognition systems. Using DuwatBench, we evaluated 13 leading Arabic and multilingual multimodal models and showed that while they perform well on clean text, they struggle with calligraphic variation, artistic distortions, and precise visual-text alignment. By publicly releasing DuwatBench and its annotations, we aim to advance culturally grounded multimodal research, foster fair inclusion of the Arabic language and visual heritage in AI systems, and support continued progress in this area. Our dataset (https://huggingface.co/datasets/MBZUAI/DuwatBench) and evaluation suit (https://github.com/mbzuai-oryx/DuwatBench) are publicly available.
comment: Accepted to EACL-2026 (Main Track)
VGGT-SLAM 2.0: Real time Dense Feed-forward Scene Reconstruction
We present VGGT-SLAM 2.0, a real time RGB feed-forward SLAM system which substantially improves upon VGGT-SLAM for incrementally aligning submaps created from VGGT. Firstly, we remove high-dimensional 15-degree-of-freedom drift and planar degeneracy from VGGT-SLAM by creating a new factor graph design while still addressing the reconstruction ambiguity of VGGT given unknown camera intrinsics. Secondly, by studying the attention layers of VGGT, we show that one of the layers is well suited to assist in image retrieval verification for free without additional training, which enables both rejecting false positive matches and allows for completing more loop closures. Finally, we conduct a suite of experiments which includes showing VGGT-SLAM 2.0 can easily be adapted for open-set object detection and demonstrating real time performance while running online onboard a ground robot using a Jetson Thor. We also test in environments ranging from cluttered indoor apartments and office scenes to a 4,200 square foot barn, and we also demonstrate VGGT-SLAM 2.0 achieves the highest accuracy on the TUM dataset with about 23 percent less pose error than VGGT-SLAM. Code will be released upon publication.
SONIC: Spectral Oriented Neural Invariant Convolutions ICLR 2026
Convolutional Neural Networks (CNNs) rely on fixed-size kernels scanning local patches, which limits their ability to capture global context or long-range dependencies without very deep architectures. Vision Transformers (ViTs), in turn, provide global connectivity but lack spatial inductive bias, depend on explicit positional encodings, and remain tied to the initial patch size. Bridging these limitations requires a representation that is both structured and global. We introduce SONIC (Spectral Oriented Neural Invariant Convolutions), a continuous spectral parameterisation that models convolutional operators using a small set of shared, orientation-selective components. These components define smooth responses across the full frequency domain, yielding global receptive fields and filters that adapt naturally across resolutions. Across synthetic benchmarks, large-scale image classification, and 3D medical datasets, SONIC shows improved robustness to geometric transformations, noise, and resolution shifts, and matches or exceeds convolutional, attention-based, and prior spectral architectures with an order of magnitude fewer parameters. These results demonstrate that continuous, orientation-aware spectral parameterisations provide a principled and scalable alternative to conventional spatial and spectral operators.
comment: 10 pages, 4 figures. Accepted at ICLR 2026
EgoHandICL: Egocentric 3D Hand Reconstruction with In-Context Learning ICLR 2026
Robust 3D hand reconstruction in egocentric vision is challenging due to depth ambiguity, self-occlusion, and complex hand-object interactions. Prior methods mitigate these issues by scaling training data or adding auxiliary cues, but they often struggle in unseen contexts. We present EgoHandICL, the first in-context learning (ICL) framework for 3D hand reconstruction that improves semantic alignment, visual consistency, and robustness under challenging egocentric conditions. EgoHandICL introduces complementary exemplar retrieval guided by vision-language models (VLMs), an ICL-tailored tokenizer for multimodal context, and a masked autoencoder (MAE)-based architecture trained with hand-guided geometric and perceptual objectives. Experiments on ARCTIC and EgoExo4D show consistent gains over state-of-the-art methods. We also demonstrate real-world generalization and improve EgoVLM hand-object interaction reasoning by using reconstructed hands as visual prompts. Code and data: https://github.com/Nicous20/EgoHandICL
comment: Accepted in ICLR 2026, Codebase: https://github.com/Nicous20/EgoHandICL
HexFormer: Hyperbolic Vision Transformer with Exponential Map Aggregation
Data across modalities such as images, text, and graphs often contains hierarchical and relational structures, which are challenging to model within Euclidean geometry. Hyperbolic geometry provides a natural framework for representing such structures. Building on this property, this work introduces HexFormer, a hyperbolic vision transformer for image classification that incorporates exponential map aggregation within its attention mechanism. Two designs are explored: a hyperbolic ViT (HexFormer) and a hybrid variant (HexFormer-Hybrid) that combines a hyperbolic encoder with an Euclidean linear classification head. HexFormer incorporates a novel attention mechanism based on exponential map aggregation, which yields more accurate and stable aggregated representations than standard centroid based averaging, showing that simpler approaches retain competitive merit. Experiments across multiple datasets demonstrate consistent performance improvements over Euclidean baselines and prior hyperbolic ViTs, with the hybrid variant achieving the strongest overall results. Additionally, this study provides an analysis of gradient stability in hyperbolic transformers. The results reveal that hyperbolic models exhibit more stable gradients and reduced sensitivity to warmup strategies compared to Euclidean architectures, highlighting their robustness and efficiency in training. Overall, these findings indicate that hyperbolic geometry can enhance vision transformer architectures by improving gradient stability and accuracy. In addition, relatively simple mechanisms such as exponential map aggregation can provide strong practical benefits.
Query-Guided Spatial-Temporal-Frequency Interaction for Music Audio-Visual Question Answering
Audio--Visual Question Answering (AVQA) is a challenging multimodal task that requires jointly reasoning over audio, visual, and textual information in a given video to answer natural language questions. Inspired by recent advances in Video QA, many existing AVQA approaches primarily focus on visual information processing, leveraging pre-trained models to extract object-level and motion-level representations. However, in those methods, the audio input is primarily treated as complementary to video analysis, and the textual question information contributes minimally to audio--visual understanding, as it is typically integrated only in the final stages of reasoning. To address these limitations, we propose a novel Query-guided Spatial--Temporal--Frequency (QSTar) interaction method, which effectively incorporates question-guided clues and exploits the distinctive frequency-domain characteristics of audio signals, alongside spatial and temporal perception, to enhance audio--visual understanding. Furthermore, we introduce a Query Context Reasoning (QCR) block inspired by prompting, which guides the model to focus more precisely on semantically relevant audio and visual features. Extensive experiments conducted on several AVQA benchmarks demonstrate the effectiveness of our proposed method, achieving significant performance improvements over existing Audio QA, Visual QA, Video QA, and AVQA approaches. The code and pretrained models will be released after publication.
Youtu-VL: Unleashing Visual Potential via Unified Vision-Language Supervision
Despite the significant advancements represented by Vision-Language Models (VLMs), current architectures often exhibit limitations in retaining fine-grained visual information, leading to coarse-grained multimodal comprehension. We attribute this deficiency to a suboptimal training paradigm inherent in prevailing VLMs, which exhibits a text-dominant optimization bias by conceptualizing visual signals merely as passive conditional inputs rather than supervisory targets. To mitigate this, we introduce Youtu-VL, a framework leveraging the Vision-Language Unified Autoregressive Supervision (VLUAS) paradigm, which fundamentally shifts the optimization objective from ``vision-as-input'' to ``vision-as-target.'' By integrating visual tokens directly into the prediction stream, Youtu-VL applies unified autoregressive supervision to both visual details and linguistic content. Furthermore, we extend this paradigm to encompass vision-centric tasks, enabling a standard VLM to perform vision-centric tasks without task-specific additions. Extensive empirical evaluations demonstrate that Youtu-VL achieves competitive performance on both general multimodal tasks and vision-centric tasks, establishing a robust foundation for the development of comprehensive generalist visual agents.
Diffusion for De-Occlusion: Accessory-Aware Diffusion Inpainting for Robust Ear Biometric Recognition
Ear occlusions (arising from the presence of ear accessories such as earrings and earphones) can negatively impact performance in ear-based biometric recognition systems, especially in unconstrained imaging circumstances. In this study, we assess the effectiveness of a diffusion-based ear inpainting technique as a pre-processing aid to mitigate the issues of ear accessory occlusions in transformer-based ear recognition systems. Given an input ear image and an automatically derived accessory mask, the inpainting model reconstructs clean and anatomically plausible ear regions by synthesizing missing pixels while preserving local geometric coherence along key ear structures, including the helix, antihelix, concha, and lobule. We evaluate the effectiveness of this pre-processing aid in transformer-based recognition systems for several vision transformer models and different patch sizes for a range of benchmark datasets. Experiments show that diffusion-based inpainting can be a useful pre-processing aid to alleviate ear accessory occlusions to improve overall recognition performance.
GeoDiff3D: Self-Supervised 3D Scene Generation with Geometry-Constrained 2D Diffusion Guidance
3D scene generation is a core technology for gaming, film/VFX, and VR/AR. Growing demand for rapid iteration, high-fidelity detail, and accessible content creation has further increased interest in this area. Existing methods broadly follow two paradigms - indirect 2D-to-3D reconstruction and direct 3D generation - but both are limited by weak structural modeling and heavy reliance on large-scale ground-truth supervision, often producing structural artifacts, geometric inconsistencies, and degraded high-frequency details in complex scenes. We propose GeoDiff3D, an efficient self-supervised framework that uses coarse geometry as a structural anchor and a geometry-constrained 2D diffusion model to provide texture-rich reference images. Importantly, GeoDiff3D does not require strict multi-view consistency of the diffusion-generated references and remains robust to the resulting noisy, inconsistent guidance. We further introduce voxel-aligned 3D feature aggregation and dual self-supervision to maintain scene coherence and fine details while substantially reducing dependence on labeled data. GeoDiff3D also trains with low computational cost and enables fast, high-quality 3D scene generation. Extensive experiments on challenging scenes show improved generalization and generation quality over existing baselines, offering a practical solution for accessible and efficient 3D scene construction.
PaW-ViT: A Patch-based Warping Vision Transformer for Robust Ear Verification
The rectangular tokens common to vision transformer methods for visual recognition can strongly affect performance of these methods due to incorporation of information outside the objects to be recognized. This paper introduces PaW-ViT, Patch-based Warping Vision Transformer, a preprocessing approach rooted in anatomical knowledge that normalizes ear images to enhance the efficacy of ViT. By accurately aligning token boundaries to detected ear feature boundaries, PaW-ViT obtains greater robustness to shape, size, and pose variation. By aligning feature boundaries to natural ear curvature, it produces more consistent token representations for various morphologies. Experiments confirm the effectiveness of PaW-ViT on various ViT models (ViT-T, ViT-S, ViT-B, ViT-L) and yield reasonable alignment robustness to variation in shape, size, and pose. Our work aims to solve the disconnect between ear biometric morphological variation and transformer architecture positional sensitivity, presenting a possible avenue for authentication schemes.
WaterClear-GS: Optical-Aware Gaussian Splatting for Underwater Reconstruction and Restoration
Underwater 3D reconstruction and appearance restoration are hindered by the complex optical properties of water, such as wavelength-dependent attenuation and scattering. Existing Neural Radiance Fields (NeRF)-based methods struggle with slow rendering speeds and suboptimal color restoration, while 3D Gaussian Splatting (3DGS) inherently lacks the capability to model complex volumetric scattering effects. To address these issues, we introduce WaterClear-GS, the first pure 3DGS-based framework that explicitly integrates underwater optical properties of local attenuation and scattering into Gaussian primitives, eliminating the need for an auxiliary medium network. Our method employs a dual-branch optimization strategy to ensure underwater photometric consistency while naturally recovering water-free appearances. This strategy is enhanced by depth-guided geometry regularization and perception-driven image loss, together with exposure constraints, spatially-adaptive regularization, and physically guided spectral regularization, which collectively enforce local 3D coherence and maintain natural visual perception. Experiments on standard benchmarks and our newly collected dataset demonstrate that WaterClear-GS achieves outstanding performance on both novel view synthesis (NVS) and underwater image restoration (UIR) tasks, while maintaining real-time rendering. The code will be available at https://buaaxrzhang.github.io/WaterClear-GS/.
Benchmarking Multimodal Large Language Models for Missing Modality Completion in Product Catalogues
Missing-modality information on e-commerce platforms, such as absent product images or textual descriptions, often arises from annotation errors or incomplete metadata, impairing both product presentation and downstream applications such as recommendation systems. Motivated by the multimodal generative capabilities of recent Multimodal Large Language Models (MLLMs), this work investigates a fundamental yet underexplored question: can MLLMs generate missing modalities for products in e-commerce scenarios? We propose the Missing Modality Product Completion Benchmark (MMPCBench), which consists of two sub-benchmarks: a Content Quality Completion Benchmark and a Recommendation Benchmark. We further evaluate six state-of-the-art MLLMs from the Qwen2.5-VL and Gemma-3 model families across nine real-world e-commerce categories, focusing on image-to-text and text-to-image completion tasks. Experimental results show that while MLLMs can capture high-level semantics, they struggle with fine-grained word-level and pixel- or patch-level alignment. In addition, performance varies substantially across product categories and model scales, and we observe no trivial correlation between model size and performance, in contrast to trends commonly reported in mainstream benchmarks. We also explore Group Relative Policy Optimization (GRPO) to better align MLLMs with this task. GRPO improves image-to-text completion but does not yield gains for text-to-image completion. Overall, these findings expose the limitations of current MLLMs in real-world cross-modal generation and represent an early step toward more effective missing-modality product completion.
Interpretable and backpropagation-free Green Learning for efficient multi-task echocardiographic segmentation and classification
Echocardiography is a cornerstone for managing heart failure (HF), with Left Ventricular Ejection Fraction (LVEF) being a critical metric for guiding therapy. However, manual LVEF assessment suffers from high inter-observer variability, while existing Deep Learning (DL) models are often computationally intensive and data-hungry "black boxes" that impede clinical trust and adoption. Here, we propose a backpropagation-free multi-task Green Learning (MTGL) framework that performs simultaneous Left Ventricle (LV) segmentation and LVEF classification. Our framework integrates an unsupervised VoxelHop encoder for hierarchical spatio-temporal feature extraction with a multi-level regression decoder and an XG-Boost classifier. On the EchoNet-Dynamic dataset, our MTGL model achieves state-of-the-art classification and segmentation performance, attaining a classification accuracy of 94.3% and a Dice Similarity Coefficient (DSC) of 0.912, significantly outperforming several advanced 3D DL models. Crucially, our model achieves this with over an order of magnitude fewer parameters, demonstrating exceptional computational efficiency. This work demonstrates that the GL paradigm can deliver highly accurate, efficient, and interpretable solutions for complex medical image analysis, paving the way for more sustainable and trustworthy artificial intelligence in clinical practice.
comment: Jyun-Ping Kao and Jiaxing Yang contributed equally to this work. C.-C. Jay Kuo and Jonghye Woo are the senior authors
DiffStyle3D: Consistent 3D Gaussian Stylization via Attention Optimization
3D style transfer enables the creation of visually expressive 3D content, enriching the visual appearance of 3D scenes and objects. However, existing VGG- and CLIP-based methods struggle to model multi-view consistency within the model itself, while diffusion-based approaches can capture such consistency but rely on denoising directions, leading to unstable training. To address these limitations, we propose DiffStyle3D, a novel diffusion-based paradigm for 3DGS style transfer that directly optimizes in the latent space. Specifically, we introduce an Attention-Aware Loss that performs style transfer by aligning style features in the self-attention space, while preserving original content through content feature alignment. Inspired by the geometric invariance of 3D stylization, we propose a Geometry-Guided Multi-View Consistency method that integrates geometric information into self-attention to enable cross-view correspondence modeling. Based on geometric information, we additionally construct a geometry-aware mask to prevent redundant optimization in overlapping regions across views, which further improves multi-view consistency. Extensive experiments show that DiffStyle3D outperforms state-of-the-art methods, achieving higher stylization quality and visual realism.
Self-Supervised Weight Templates for Scalable Vision Model Initialization
The increasing scale and complexity of modern model parameters underscore the importance of pre-trained models. However, deployment often demands architectures of varying sizes, exposing limitations of conventional pre-training and fine-tuning. To address this, we propose SWEET, a self-supervised framework that performs constraint-based pre-training to enable scalable initialization in vision tasks. Instead of pre-training a fixed-size model, we learn a shared weight template and size-specific weight scalers under Tucker-based factorization, which promotes modularity and supports flexible adaptation to architectures with varying depths and widths. Target models are subsequently initialized by composing and reweighting the template through lightweight weight scalers, whose parameters can be efficiently learned from minimal training data. To further enhance flexibility in width expansion, we introduce width-wise stochastic scaling, which regularizes the template along width-related dimensions and encourages robust, width-invariant representations for improved cross-width generalization. Extensive experiments on \textsc{classification}, \textsc{detection}, \textsc{segmentation} and \textsc{generation} tasks demonstrate the state-of-the-art performance of SWEET for initializing variable-sized vision models.
DSVM-UNet : Enhancing VM-UNet with Dual Self-distillation for Medical Image Segmentation
Vision Mamba models have been extensively researched in various fields, which address the limitations of previous models by effectively managing long-range dependencies with a linear-time overhead. Several prospective studies have further designed Vision Mamba based on UNet(VM-UNet) for medical image segmentation. These approaches primarily focus on optimizing architectural designs by creating more complex structures to enhance the model's ability to perceive semantic features. In this paper, we propose a simple yet effective approach to improve the model by Dual Self-distillation for VM-UNet (DSVM-UNet) without any complex architectural designs. To achieve this goal, we develop double self-distillation methods to align the features at both the global and local levels. Extensive experiments conducted on the ISIC2017, ISIC2018, and Synapse benchmarks demonstrate that our approach achieves state-of-the-art performance while maintaining computational efficiency. Code is available at https://github.com/RoryShao/DSVM-UNet.git.
comment: 5 pages, 1 figures
Video-KTR: Reinforcing Video Reasoning via Key Token Attribution ICLR 2026
Reinforcement learning (RL) has shown strong potential for enhancing reasoning in multimodal large language models, yet existing video reasoning methods often rely on coarse sequence-level rewards or single-factor token selection, neglecting fine-grained links among visual inputs, temporal dynamics, and linguistic outputs, limiting both accuracy and interpretability. We propose Video-KTR, a modality-aware policy shaping framework that performs selective, token-level RL by combining three attribution signals: (1) visual-aware tokens identified via counterfactual masking to reveal perceptual dependence; (2) temporal-aware tokens detected through frame shuffling to expose temporal sensitivity; and (3) high-entropy tokens signaling predictive uncertainty. By reinforcing only these key tokens, Video-KTR focuses learning on semantically informative, modality-sensitive content while filtering out low-value tokens. Across five challenging benchmarks, Video-KTR achieves state-of-the-art or highly competitive results, achieving 42.7\% on Video-Holmes (surpassing GPT-4o) with consistent gains on both reasoning and general video understanding tasks. Ablation studies verify the complementary roles of the attribution signals and the robustness of targeted token-level updates. Overall, Video-KTR improves accuracy and interpretability, offering a simple, drop-in extension to RL for complex video reasoning. Our code and models are available at https://github.com/zywang0104/Video-KTR.
comment: Accepted to ICLR 2026
SharpNet: Enhancing MLPs to Represent Functions with Controlled Non-differentiability
Multi-layer perceptrons (MLPs) are a standard tool for learning and function approximation, but they inherently yield outputs that are globally smooth. As a result, they struggle to represent functions that are continuous yet deliberately non-differentiable (i.e., with prescribed $C^0$ sharp features) without relying on ad hoc post-processing. We present SharpNet, a modified MLP architecture capable of encoding functions with user-defined sharp features by enriching the network with an auxiliary feature function, which is defined as the solution to a Poisson equation with jump Neumann boundary conditions. It is evaluated via an efficient local integral that is fully differentiable with respect to the feature locations, enabling our method to jointly optimize both the feature locations and the MLP parameters to recover the target functions/models. The $C^0$-continuity of SharpNet is precisely controllable, ensuring $C^0$-continuity at the feature locations and smoothness elsewhere. We validate SharpNet on 2D problems and 3D CAD model reconstruction, and compare it against several state-of-the-art baselines. In both types of tasks, SharpNet accurately recovers sharp edges and corners while maintaining smooth behavior away from those features, whereas existing methods tend to smooth out gradient discontinuities. Both qualitative and quantitative evaluations highlight the benefits of our approach.
A new Image Similarity Metric for a Perceptual and Transparent Geometric and Chromatic Assessment
In the literature, several studies have shown that state-of-the-art image similarity metrics are not perceptual metrics; moreover, they have difficulty evaluating images, especially when texture distortion is also present. In this work, we propose a new perceptual metric composed of two terms. The first term evaluates the dissimilarity between the textures of two images using Earth Mover's Distance. The second term evaluates the chromatic dissimilarity between two images in the Oklab perceptual color space. We evaluated the performance of our metric on a non-traditional dataset, called Berkeley-Adobe Perceptual Patch Similarity, which contains a wide range of complex distortions in shapes and colors. We have shown that our metric outperforms the state of the art, especially when images contain shape distortions, confirming also its greater perceptiveness. Furthermore, although deep black-box metrics could be very accurate, they only provide similarity scores between two images, without explaining their main differences and similarities. Our metric, on the other hand, provides visual explanations to support the calculated score, making the similarity assessment transparent and justified.
KeepLoRA: Continual Learning with Residual Gradient Adaptation ICLR 2026
Continual learning for pre-trained vision-language models requires balancing three competing objectives: retaining pre-trained knowledge, preserving knowledge from a sequence of learned tasks, and maintaining the plasticity to acquire new knowledge. This paper presents a simple but effective approach called KeepLoRA to effectively balance these objectives. We first analyze the knowledge retention mechanism within the model parameter space and find that general knowledge is mainly encoded in the principal subspace, while task-specific knowledge is encoded in the residual subspace. Motivated by this finding, KeepLoRA learns new tasks by restricting LoRA parameter updates in the residual subspace to prevent interfering with previously learned capabilities. Specifically, we infuse knowledge for a new task by projecting its gradient onto a subspace orthogonal to both the principal subspace of pre-trained model and the dominant directions of previous task features. Our theoretical and empirical analyses confirm that KeepLoRA balances the three objectives and achieves state-of-the-art performance. The implementation code is available at https://github.com/MaolinLuo/KeepLoRA.
comment: Accepted at ICLR 2026
Towards Governance-Oriented Low-Altitude Intelligence: A Management-Centric Multi-Modal Benchmark With Implicitly Coordinated Vision-Language Reasoning Framework
Low-altitude vision systems are becoming a critical infrastructure for smart city governance. However, existing object-centric perception paradigms and loosely coupled vision-language pipelines are still difficult to support management-oriented anomaly understanding required in real-world urban governance. To bridge this gap, we introduce GovLA-10K, the first management-oriented multi-modal benchmark for low-altitude intelligence, along with GovLA-Reasoner, a unified vision-language reasoning framework tailored for governance-aware aerial perception. Unlike existing studies that aim to exhaustively annotate all visible objects, GovLA-10K is deliberately designed around functionally salient targets that directly correspond to practical management needs, and further provides actionable management suggestions grounded in these observations. To effectively coordinate the fine-grained visual grounding with high-level contextual language reasoning, GovLA-Reasoner introduces an efficient feature adapter that implicitly coordinates discriminative representation sharing between the visual detector and the large language model (LLM). Extensive experiments show that our method significantly improves performance while avoiding the need of fine-tuning for any task-specific individual components. We believe our work offers a new perspective and foundation for future studies on management-aware low-altitude vision-language systems.
The role of self-supervised pretraining in differentially private medical image analysis
Differential privacy (DP) provides formal protection for sensitive data but typically incurs substantial losses in diagnostic performance. Model initialization has emerged as a critical factor in mitigating this degradation, yet the role of modern self-supervised learning under full-model DP remains poorly understood. Here, we present a large-scale evaluation of initialization strategies for differentially private medical image analysis, using chest radiograph classification as a representative benchmark with more than 800,000 images. Using state-of-the-art ConvNeXt models trained with DP-SGD across realistic privacy regimes, we compare non-domain-specific supervised ImageNet initialization, non-domain-specific self-supervised DINOv3 initialization, and domain-specific supervised pretraining on MIMIC-CXR, the largest publicly available chest radiograph dataset. Evaluations are conducted across five external datasets spanning diverse institutions and acquisition settings. We show that DINOv3 initialization consistently improves diagnostic utility relative to ImageNet initialization under DP, but remains inferior to domain-specific supervised pretraining, which achieves performance closest to non-private baselines. We further demonstrate that initialization choice strongly influences demographic fairness, cross-dataset generalization, and robustness to data scale and model capacity under privacy constraints. The results establish initialization strategy as a central determinant of utility, fairness, and generalization in differentially private medical imaging.
GMS-CAVP: Improving Audio-Video Correspondence with Multi-Scale Contrastive and Generative Pretraining
Recent advances in video-audio (V-A) understanding and generation have increasingly relied on joint V-A embeddings, which serve as the foundation for tasks such as cross-modal retrieval and generation. While prior methods like CAVP effectively model semantic and temporal correspondences between modalities using contrastive objectives, their performance remains suboptimal. A key limitation is the insufficient modeling of the dense, multi-scale nature of both video and audio signals, correspondences often span fine- to coarse-grained spatial-temporal structures, which are underutilized in existing frameworks. To this end, we propose GMS-CAVP, a novel framework that combines Multi-Scale Video-Audio Alignment and Multi-Scale Spatial-Temporal Diffusion-based pretraining objectives to enhance V-A correspondence modeling. First, GMS-CAVP introduces a multi-scale contrastive learning strategy that captures semantic and temporal relations across varying granularities. Second, we go beyond traditional contrastive learning by incorporating a diffusion-based generative objective, enabling modality translation and synthesis between video and audio. This unified discriminative-generative formulation facilitates deeper cross-modal understanding and paves the way for high-fidelity generation. Extensive experiments on VGGSound, AudioSet, and Panda70M demonstrate that GMS-CAVP outperforms previous methods in generation and retrieval.
Localized Latent Editing for Dose-Response Modeling in Botulinum Toxin Injection Planning
Botulinum toxin (Botox) injections are the gold standard for managing facial asymmetry and aesthetic rejuvenation, yet determining the optimal dosage remains largely intuitive, often leading to suboptimal outcomes. We propose a localized latent editing framework that simulates Botulinum Toxin injection effects for injection planning through dose-response modeling. Our key contribution is a Region-Specific Latent Axis Discovery method that learns localized muscle relaxation trajectories in StyleGAN2's latent space, enabling precise control over specific facial regions without global side effects. By correlating these localized latent trajectories with injected toxin units, we learn a predictive dose-response model. We rigorously compare two approaches: direct metric regression versus image-based generative simulation on a clinical dataset of N=360 images from 46 patients. On a hold-out test set, our framework demonstrates moderate-to-strong structural correlations for geometric asymmetry metrics, confirming that the generative model correctly captures the direction of morphological changes. While biological variability limits absolute precision, we introduce a hybrid "Human-in-the-Loop" workflow where clinicians interactively refine simulations, bridging the gap between pathological reconstruction and cosmetic planning.
ScenePilot-Bench: A Large-Scale Dataset and Benchmark for Evaluation of Vision-Language Models in Autonomous Driving
In this paper, we introduce ScenePilot-Bench, a large-scale first-person driving benchmark designed to evaluate vision-language models (VLMs) in autonomous driving scenarios. ScenePilot-Bench is built upon ScenePilot-4K, a diverse dataset comprising 3,847 hours of driving videos, annotated with multi-granularity information including scene descriptions, risk assessments, key participant identification, ego trajectories, and camera parameters. The benchmark features a four-axis evaluation suite that assesses VLM capabilities in scene understanding, spatial perception, motion planning, and GPT-Score, with safety-aware metrics and cross-region generalization settings. We benchmark representative VLMs on ScenePilot-Bench, providing empirical analyses that clarify current performance boundaries and identify gaps for driving-oriented reasoning. ScenePilot-Bench offers a comprehensive framework for evaluating and advancing VLMs in safety-critical autonomous driving contexts.
QuaMo: Quaternion Motions for Vision-based 3D Human Kinematics Capture ICLR 2026
Vision-based 3D human motion capture from videos remains a challenge in computer vision. Traditional 3D pose estimation approaches often ignore the temporal consistency between frames, causing implausible and jittery motion. The emerging field of kinematics-based 3D motion capture addresses these issues by estimating the temporal transitioning between poses instead. A major drawback in current kinematics approaches is their reliance on Euler angles. Despite their simplicity, Euler angles suffer from discontinuity that leads to unstable motion reconstructions, especially in online settings where trajectory refinement is unavailable. Contrarily, quaternions have no discontinuity and can produce continuous transitions between poses. In this paper, we propose QuaMo, a novel Quaternion Motions method using quaternion differential equations (QDE) for human kinematics capture. We utilize the state-space model, an effective system for describing real-time kinematics estimations, with quaternion state and the QDE describing quaternion velocity. The corresponding angular acceleration is computed from a meta-PD controller with a novel acceleration enhancement that adaptively regulates the control signals as the human quickly changes to a new pose. Unlike previous work, our QDE is solved under the quaternion unit-sphere constraint that results in more accurate estimations. Experimental results show that our novel formulation of the QDE with acceleration enhancement accurately estimates 3D human kinematics with no discontinuity and minimal implausibilities. QuaMo outperforms comparable state-of-the-art methods on multiple datasets, namely Human3.6M, Fit3D, SportsPose and AIST. The code is available at https://github.com/cuongle1206/QuaMo
comment: 10 pages, 4 figures, accepted to ICLR 2026
MaDiS: Taming Masked Diffusion Language Models for Sign Language Generation
Sign language generation (SLG) aims to translate written texts into expressive sign motions, bridging communication barriers for the Deaf and Hard-of-Hearing communities. Recent studies formulate SLG within the language modeling framework using autoregressive language models, which suffer from unidirectional context modeling and slow token-by-token inference. To address these limitations, we present MaDiS, a masked-diffusion-based language model for SLG that captures bidirectional dependencies and supports efficient parallel multi-token generation. We further introduce a tri-level cross-modal pretraining scheme that jointly learns from token-, latent-, and 3D physical-space objectives, leading to richer and more grounded sign representations. To accelerate model convergence in the fine-tuning stage, we design a novel unmasking strategy with temporal checkpoints, reducing the combinatorial complexity of unmasking orders by over $10^{41}$ times. In addition, a mixture-of-parts embedding layer is developed to effectively fuse information stored in different part-wise sign tokens through learnable gates and well-optimized codebooks. Extensive experiments on CSL-Daily, Phoenix-2014T, and How2Sign demonstrate that MaDiS achieves superior performance across multiple metrics, including DTW error and two newly introduced metrics, SiBLEU and SiCLIP, while reducing inference latency by nearly 30%. Code and models will be released on our project page.
The S3LI Vulcano Dataset: A Dataset for Multi-Modal SLAM in Unstructured Planetary Environments
We release the S3LI Vulcano dataset, a multi-modal dataset towards development and benchmarking of Simultaneous Localization and Mapping (SLAM) and place recognition algorithms that rely on visual and LiDAR modalities. Several sequences are recorded on the volcanic island of Vulcano, from the Aeolian Islands in Sicily, Italy. The sequences provide users with data from a variety of environments, textures and terrains, including basaltic or iron-rich rocks, geological formations from old lava channels, as well as dry vegetation and water. The data (rmc.dlr.de/s3li_dataset) is accompanied by an open source toolkit (github.com/DLR-RM/s3li-toolkit) providing tools for generating ground truth poses as well as preparation of labelled samples for place recognition tasks.
comment: Accepted submission to the 2026 IEEE Aerospace Conference
A Non-Invasive 3D Gait Analysis Framework for Quantifying Psychomotor Retardation in Major Depressive Disorder
Predicting the status of Major Depressive Disorder (MDD) from objective, non-invasive methods is an active research field. Yet, extracting automatically objective, interpretable features for a detailed analysis of the patient state remains largely unexplored. Among MDD's symptoms, Psychomotor retardation (PMR) is a core item, yet its clinical assessment remains largely subjective. While 3D motion capture offers an objective alternative, its reliance on specialized hardware often precludes routine clinical use. In this paper, we propose a non-invasive computational framework that transforms monocular RGB video into clinically relevant 3D gait kinematics. Our pipeline uses Gravity-View Coordinates along with a novel trajectory-correction algorithm that leverages the closed-loop topology of our adapted Timed Up and Go (TUG) protocol to mitigate monocular depth errors. This novel pipeline enables the extraction of 297 explicit gait biomechanical biomarkers from a single camera capture. To address the challenges of small clinical datasets, we introduce a stability-based machine learning framework that identifies robust motor signatures while preventing overfitting. Validated on the CALYPSO dataset, our method achieves an 83.3% accuracy in detecting PMR and explains 64% of the variance in overall depression severity (R^2=0.64). Notably, our study reveals a strong link between reduced ankle propulsion and restricted pelvic mobility to the depressive motor phenotype. These results demonstrate that physical movement serves as a robust proxy for the cognitive state, offering a transparent and scalable tool for the objective monitoring of depression in standard clinical environments.
Mocap Anywhere: Towards Pairwise-Distance based Motion Capture in the Wild (for the Wild)
We introduce a novel motion capture system that reconstructs full-body 3D motion using only sparse pairwise distance (PWD) measurements from body-mounted(UWB) sensors. Using time-of-flight ranging between wireless nodes, our method eliminates the need for external cameras, enabling robust operation in uncontrolled and outdoor environments. Unlike traditional optical or inertial systems, our approach is shape-invariant and resilient to environmental constraints such as lighting and magnetic interference. At the core of our system is Wild-Poser (WiP for short), a compact, real-time Transformer-based architecture that directly predicts 3D joint positions from noisy or corrupted PWD measurements, which can later be used for joint rotation reconstruction via learned methods. WiP generalizes across subjects of varying morphologies, including non-human species, without requiring individual body measurements or shape fitting. Operating in real time, WiP achieves low joint position error and demonstrates accurate 3D motion reconstruction for both human and animal subjects in-the-wild. Our empirical analysis highlights its potential for scalable, low-cost, and general purpose motion capture in real-world settings.
comment: 14 pages, 15 figures
Bridging Information Asymmetry: A Hierarchical Framework for Deterministic Blind Face Restoration
Blind face restoration remains a persistent challenge due to the inherent ill-posedness of reconstructing holistic structures from severely constrained observations. Current generative approaches, while capable of synthesizing realistic textures, often suffer from information asymmetry -- the intrinsic disparity between the information-sparse low quality inputs and the information-dense high quality outputs. This imbalance leads to a one-to-many mapping, where insufficient constraints result in stochastic uncertainty and hallucinatory artifacts. To bridge this gap, we present \textbf{Pref-Restore}, a hierarchical framework that integrates discrete semantic logic with continuous texture generation to achieve deterministic, preference-aligned restoration. Our methodology fundamentally addresses this information disparity through two complementary strategies: (1) Augmenting Input Density: We employ an auto-regressive integrator to reformulate textual instructions into dense latent queries, injecting high-level semantic stability to constrain the degraded signals; (2) Pruning Output Distribution: We pioneer the integration of on-policy reinforcement learning directly into the diffusion restoration loop. By transforming human preferences into differentiable constraints, we explicitly penalize stochastic deviations, thereby sharpening the posterior distribution toward the desired high-fidelity outcomes. Extensive experiments demonstrate that Pref-Restore achieves state-of-the-art performance across synthetic and real-world benchmarks. Furthermore, empirical analysis confirms that our preference-aligned strategy significantly reduces solution entropy, establishing a robust pathway toward reliable and deterministic blind restoration.
Cortex-Grounded Diffusion Models for Brain Image Generation
Synthetic neuroimaging data can mitigate critical limitations of real-world datasets, including the scarcity of rare phenotypes, domain shifts across scanners, and insufficient longitudinal coverage. However, existing generative models largely rely on weak conditioning signals, such as labels or text, which lack anatomical grounding and often produce biologically implausible outputs. To this end, we introduce Cor2Vox, a cortex-grounded generative framework for brain magnetic resonance image (MRI) synthesis that ties image generation to continuous structural priors of the cerebral cortex. It leverages high-resolution cortical surfaces to guide a 3D shape-to-image Brownian bridge diffusion process, enabling topologically faithful synthesis and precise control over underlying anatomies. To support the generation of new, realistic brain shapes, we developed a large-scale statistical shape model of cortical morphology derived from over 33,000 UK Biobank scans. We validated the fidelity of Cor2Vox based on traditional image quality metrics, advanced cortical surface reconstruction, and whole-brain segmentation quality, outperforming many baseline methods. Across three applications, namely (i) anatomically consistent synthesis, (ii) simulation of progressive gray matter atrophy, and (iii) harmonization of in-house frontotemporal dementia scans with public datasets, Cor2Vox preserved fine-grained cortical morphology at the sub-voxel level, exhibiting remarkable robustness to variations in cortical geometry and disease phenotype without retraining.
comment: preprint
Fast Converging 3D Gaussian Splatting for 1-Minute Reconstruction
We present a fast 3DGS reconstruction pipeline designed to converge within one minute, developed for the SIGGRAPH Asia 3DGS Fast Reconstruction Challenge. The challenge consists of an initial round using SLAM-generated camera poses (with noisy trajectories) and a final round using COLMAP poses (highly accurate). To robustly handle these heterogeneous settings, we develop a two-stage solution. In the first round, we use reverse per-Gaussian parallel optimization and compact forward splatting based on Taming-GS and Speedy-splat, load-balanced tiling, an anchor-based Neural-Gaussian representation enabling rapid convergence with fewer learnable parameters, initialization from monocular depth and partially from feed-forward 3DGS models, and a global pose refinement module for noisy SLAM trajectories. In the final round, the accurate COLMAP poses change the optimization landscape; we disable pose refinement, revert from Neural-Gaussians back to standard 3DGS to eliminate MLP inference overhead, introduce multi-view consistency-guided Gaussian splitting inspired by Fast-GS, and introduce a depth estimator to supervise the rendered depth. Together, these techniques enable high-fidelity reconstruction under a strict one-minute budget. Our method achieved the top performance with a PSNR of 28.43 and ranked first in the competition.
comment: First Rank of SIGGRAPH Asia 2025 3DGS Challenge. Code available at
Entropy-Guided k-Guard Sampling for Long-Horizon Autoregressive Video Generation
Autoregressive (AR) architectures have achieved significant successes in LLMs, inspiring explorations for video generation. In LLMs, top-p/top-k sampling strategies work exceptionally well: language tokens have high semantic density and low redundancy, so a fixed size of token candidates already strikes a balance between semantic accuracy and generation diversity. In contrast, video tokens have low semantic density and high spatio-temporal redundancy. This mismatch makes static top-k/top-p strategies ineffective for video decoders: they either introduce unnecessary randomness for low-uncertainty regions (static backgrounds) or get stuck in early errors for high-uncertainty regions (foreground objects). Prediction errors will accumulate as more frames are generated and eventually severely degrade long-horizon quality. To address this, we propose Entropy-Guided k-Guard (ENkG) sampling, a simple yet effective strategy that adapts sampling to token-wise dispersion, quantified by the entropy of each token's predicted distribution. ENkG uses adaptive token candidate sizes: for low-entropy regions, it employs fewer candidates to suppress redundant noise and preserve structural integrity; for high-entropy regions, it uses more candidates to mitigate error compounding. ENkG is model-agnostic, training-free, and adds negligible overhead. Experiments demonstrate consistent improvements in perceptual quality and structural stability compared to static top-k/top-p strategies.
Dynamic Worlds, Dynamic Humans: Generating Virtual Human-Scene Interaction Motion in Dynamic Scenes
Scenes are continuously undergoing dynamic changes in the real world. However, existing human-scene interaction generation methods typically treat the scene as static, which deviates from reality. Inspired by world models, we introduce Dyn-HSI, the first cognitive architecture for dynamic human-scene interaction, which endows virtual humans with three humanoid components. (1)Vision (human eyes): we equip the virtual human with a Dynamic Scene-Aware Navigation, which continuously perceives changes in the surrounding environment and adaptively predicts the next waypoint. (2)Memory (human brain): we equip the virtual human with a Hierarchical Experience Memory, which stores and updates experiential data accumulated during training. This allows the model to leverage prior knowledge during inference for context-aware motion priming, thereby enhancing both motion quality and generalization. (3) Control (human body): we equip the virtual human with Human-Scene Interaction Diffusion Model, which generates high-fidelity interaction motions conditioned on multimodal inputs. To evaluate performance in dynamic scenes, we extend the existing static human-scene interaction datasets to construct a dynamic benchmark, Dyn-Scenes. We conduct extensive qualitative and quantitative experiments to validate Dyn-HSI, showing that our method consistently outperforms existing approaches and generates high-quality human-scene interaction motions in both static and dynamic settings.
Towards Gold-Standard Depth Estimation for Tree Branches in UAV Forestry: Benchmarking Deep Stereo Matching Methods
Autonomous UAV forestry operations require robust depth estimation with strong cross-domain generalization, yet existing evaluations focus on urban and indoor scenarios, leaving a critical gap for vegetation-dense environments. We present the first systematic zero-shot evaluation of eight stereo methods spanning iterative refinement, foundation model, diffusion-based, and 3D CNN paradigms. All methods use officially released pretrained weights (trained on Scene Flow) and are evaluated on four standard benchmarks (ETH3D, KITTI 2012/2015, Middlebury) plus a novel 5,313-pair Canterbury Tree Branches dataset ($1920 \times 1080$). Results reveal scene-dependent patterns: foundation models excel on structured scenes (BridgeDepth: 0.23 px on ETH3D; DEFOM: 4.65 px on Middlebury), while iterative methods show variable cross-benchmark performance (IGEV++: 0.36 px on ETH3D but 6.77 px on Middlebury; IGEV: 0.33 px on ETH3D but 4.99 px on Middlebury). Qualitative evaluation on the Tree Branches dataset establishes DEFOM as the gold-standard baseline for vegetation depth estimation, with superior cross-domain consistency (consistently ranking 1st-2nd across benchmarks, average rank 1.75). DEFOM predictions will serve as pseudo-ground-truth for future benchmarking.
DSTCS: Dual-Student Teacher Framework with Segment Anything Model for Semi-Supervised Pubic Symphysis Fetal Head Segmentation
Segmentation of the pubic symphysis and fetal head (PSFH) is a critical procedure in intrapartum monitoring and is essential for evaluating labor progression and identifying potential delivery complications. However, achieving accurate segmentation remains a significant challenge due to class imbalance, ambiguous boundaries, and noise interference in ultrasound images, compounded by the scarcity of high-quality annotated data. Current research on PSFH segmentation predominantly relies on CNN and Transformer architectures, leaving the potential of more powerful models underexplored. In this work, we propose a Dual-Student and Teacher framework combining CNN and SAM (DSTCS), which integrates the Segment Anything Model (SAM) into a dual student-teacher architecture. A cooperative learning mechanism between the CNN and SAM branches significantly improves segmentation accuracy. The proposed scheme also incorporates a specialized data augmentation strategy optimized for boundary processing and a novel loss function. Extensive experiments on the MICCAI 2023 and 2024 PSFH segmentation benchmarks demonstrate that our method exhibits superior robustness and significantly outperforms existing techniques, providing a reliable segmentation tool for clinical practice.
RoamScene3D: Immersive Text-to-3D Scene Generation via Adaptive Object-aware Roaming
Generating immersive 3D scenes from texts is a core task in computer vision, crucial for applications in virtual reality and game development. Despite the promise of leveraging 2D diffusion priors, existing methods suffer from spatial blindness and rely on predefined trajectories that fail to exploit the inner relationships among salient objects. Consequently, these approaches are unable to comprehend the semantic layout, preventing them from exploring the scene adaptively to infer occluded content. Moreover, current inpainting models operate in 2D image space, struggling to plausibly fill holes caused by camera motion. To address these limitations, we propose RoamScene3D, a novel framework that bridges the gap between semantic guidance and spatial generation. Our method reasons about the semantic relations among objects and produces consistent and photorealistic scenes. Specifically, we employ a vision-language model (VLM) to construct a scene graph that encodes object relations, guiding the camera to perceive salient object boundaries and plan an adaptive roaming trajectory. Furthermore, to mitigate the limitations of static 2D priors, we introduce a Motion-Injected Inpainting model that is fine-tuned on a synthetic panoramic dataset integrating authentic camera trajectories, making it adaptive to camera motion. Extensive experiments demonstrate that with semantic reasoning and geometric constraints, our method significantly outperforms state-of-the-art approaches in producing consistent and photorealistic scenes. Our code is available at https://github.com/JS-CHU/RoamScene3D.
Unveiling Perceptual Artifacts: A Fine-Grained Benchmark for Interpretable AI-Generated Image Detection
Current AI-Generated Image (AIGI) detection approaches predominantly rely on binary classification to distinguish real from synthetic images, often lacking interpretable or convincing evidence to substantiate their decisions. This limitation stems from existing AIGI detection benchmarks, which, despite featuring a broad collection of synthetic images, remain restricted in their coverage of artifact diversity and lack detailed, localized annotations. To bridge this gap, we introduce a fine-grained benchmark towards eXplainable AI-Generated image Detection, named X-AIGD, which provides pixel-level, categorized annotations of perceptual artifacts, spanning low-level distortions, high-level semantics, and cognitive-level counterfactuals. These comprehensive annotations facilitate fine-grained interpretability evaluation and deeper insight into model decision-making processes. Our extensive investigation using X-AIGD provides several key insights: (1) Existing AIGI detectors demonstrate negligible reliance on perceptual artifacts, even at the most basic distortion level. (2) While AIGI detectors can be trained to identify specific artifacts, they still substantially base their judgment on uninterpretable features. (3) Explicitly aligning model attention with artifact regions can increase the interpretability and generalization of detectors. The data and code are available at: https://github.com/Coxy7/X-AIGD.
Learned split-spectrum metalens for obstruction-free broadband imaging in the visible
Obstructions such as raindrops, fences, or dust degrade captured images, especially when mechanical cleaning is infeasible. Conventional solutions to obstructions rely on a bulky compound optics array or computational inpainting, which compromise compactness or fidelity. Metalenses composed of subwavelength meta-atoms promise compact imaging, but simultaneous achievement of broadband and obstruction-free imaging remains a challenge, since a metalens that images distant scenes across a broadband spectrum cannot properly defocus near-depth occlusions. Here, we introduce a learned split-spectrum metalens that enables broadband obstruction-free imaging. Our approach divides the spectrum of each RGB channel into pass and stop bands with multi-band spectral filtering and learns the metalens to focus light from far objects through pass bands, while filtering focused near-depth light through stop bands. This optical signal is further enhanced using a neural network. Our learned split-spectrum metalens achieves broadband and obstruction-free imaging with relative PSNR gains of 32.29% and improves object detection and semantic segmentation accuracies with absolute gains of +13.54% mAP, +48.45% IoU, and +20.35% mIoU over a conventional hyperbolic design. This promises robust obstruction-free sensing and vision for space-constrained systems, such as mobile robots, drones, and endoscopes.
Tri-Reader: An Open-Access, Multi-Stage AI Pipeline for First-Pass Lung Nodule Annotation in Screening CT
Using multiple open-access models trained on public datasets, we developed Tri-Reader, a comprehensive, freely available pipeline that integrates lung segmentation, nodule detection, and malignancy classification into a unified tri-stage workflow. The pipeline is designed to prioritize sensitivity while reducing the candidate burden for annotators. To ensure accuracy and generalizability across diverse practices, we evaluated Tri-Reader on multiple internal and external datasets as compared with expert annotations and dataset-provided reference standards.
comment: 1 figure , 2 tables, 20 page supplement
Establishing dermatopathology encyclopedia DermpathNet with Artificial Intelligence-Based Workflow
Accessing high-quality, open-access dermatopathology image datasets for learning and cross-referencing is a common challenge for clinicians and dermatopathology trainees. To establish a comprehensive open-access dermatopathology dataset for educational, cross-referencing, and machine-learning purposes, we employed a hybrid workflow to curate and categorize images from the PubMed Central (PMC) repository. We used specific keywords to extract relevant images, and classified them using a novel hybrid method that combined deep learning-based image modality classification with figure caption analyses. Validation on 651 manually annotated images demonstrated the robustness of our workflow, with an F-score of 89.6\% for the deep learning approach, 61.0\% for the keyword-based retrieval method, and 90.4\% for the hybrid approach. We retrieved over 7,772 images across 166 diagnoses and released this fully annotated dataset, reviewed by board-certified dermatopathologists. Using our dataset as a challenging task, we found the current image analysis algorithm from OpenAI inadequate for analyzing dermatopathology images. In conclusion, we have developed a large, peer-reviewed, open-access dermatopathology image dataset, DermpathNet, which features a semi-automated curation workflow.
comment: Accepted by Scientific Data
Pareto-Guided Optimization for Uncertainty-Aware Medical Image Segmentation
Uncertainty in medical image segmentation is inherently non-uniform, with boundary regions exhibiting substantially higher ambiguity than interior areas. Conventional training treats all pixels equally, leading to unstable optimization during early epochs when predictions are unreliable. We argue that this instability hinders convergence toward Pareto-optimal solutions and propose a region-wise curriculum strategy that prioritizes learning from certain regions and gradually incorporates uncertain ones, reducing gradient variance. Methodologically, we introduce a Pareto-consistent loss that balances trade-offs between regional uncertainties by adaptively reshaping the loss landscape and constraining convergence dynamics between interior and boundary regions; this guides the model toward Pareto-approximate solutions. To address boundary ambiguity, we further develop a fuzzy labeling mechanism that maintains binary confidence in non-boundary areas while enabling smooth transitions near boundaries, stabilizing gradients, and expanding flat regions in the loss surface. Experiments on brain metastasis and non-metastatic tumor segmentation show consistent improvements across multiple configurations, with our method outperforming traditional crisp-set approaches in all tumor subregions.
AMGFormer: Adaptive Multi-Granular Transformer for Brain Tumor Segmentation with Missing Modalities
Multimodal MRI is essential for brain tumor segmentation, yet missing modalities in clinical practice cause existing methods to exhibit >40% performance variance across modality combinations, rendering them clinically unreliable. We propose AMGFormer, achieving significantly improved stability through three synergistic modules: (1) QuadIntegrator Bridge (QIB) enabling spatially adaptive fusion maintaining consistent predictions regardless of available modalities, (2) Multi-Granular Attention Orchestrator (MGAO) focusing on pathological regions to reduce background sensitivity, and (3) Modality Quality-Aware Enhancement (MQAE) preventing error propagation from corrupted sequences. On BraTS 2018, our method achieves 89.33% WT, 82.70% TC, 67.23% ET Dice scores with <0.5% variance across 15 modality combinations, solving the stability crisis. Single-modality ET segmentation shows 40-81% relative improvements over state-of-the-art methods. The method generalizes to BraTS 2020/2021, achieving up to 92.44% WT, 89.91% TC, 84.57% ET. The model demonstrates potential for clinical deployment with 1.2s inference. Code: https://github.com/guochengxiangives/AMGFormer.
Innovator-VL: A Multimodal Large Language Model for Scientific Discovery
We present Innovator-VL, a scientific multimodal large language model designed to advance understanding and reasoning across diverse scientific domains while maintaining excellent performance on general vision tasks. Contrary to the trend of relying on massive domain-specific pretraining and opaque pipelines, our work demonstrates that principled training design and transparent methodology can yield strong scientific intelligence with substantially reduced data requirements. (i) First, we provide a fully transparent, end-to-end reproducible training pipeline, covering data collection, cleaning, preprocessing, supervised fine-tuning, reinforcement learning, and evaluation, along with detailed optimization recipes. This facilitates systematic extension by the community. (ii) Second, Innovator-VL exhibits remarkable data efficiency, achieving competitive performance on various scientific tasks using fewer than five million curated samples without large-scale pretraining. These results highlight that effective reasoning can be achieved through principled data selection rather than indiscriminate scaling. (iii) Third, Innovator-VL demonstrates strong generalization, achieving competitive performance on general vision, multimodal reasoning, and scientific benchmarks. This indicates that scientific alignment can be integrated into a unified model without compromising general-purpose capabilities. Our practices suggest that efficient, reproducible, and high-performing scientific multimodal models can be built even without large-scale data, providing a practical foundation for future research.
comment: Innovator-VL tech report
Perception-to-Pursuit: Track-Centric Temporal Reasoning for Open-World Drone Detection and Autonomous Chasing ICCV 2027
Autonomous drone pursuit requires not only detecting drones but also predicting their trajectories in a manner that enables kinematically feasible interception. Existing tracking methods optimize for prediction accuracy but ignore pursuit feasibility, resulting in trajectories that are physically impossible to intercept 99.9% of the time. We propose Perception-to-Pursuit (P2P), a track-centric temporal reasoning framework that bridges detection and actionable pursuit planning. Our method represents drone motion as compact 8-dimensional tokens capturing velocity, acceleration, scale, and smoothness, enabling a 12-frame causal transformer to reason about future behavior. We introduce the Intercept Success Rate (ISR) metric to measure pursuit feasibility under realistic interceptor constraints. Evaluated on the Anti-UAV-RGBT dataset with 226 real drone sequences, P2P achieves 28.12 pixel average displacement error and 0.597 ISR, representing a 77% improvement in trajectory prediction and 597x improvement in pursuit feasibility over tracking-only baselines, while maintaining perfect drone classification accuracy (100%). Our work demonstrates that temporal reasoning over motion patterns enables both accurate prediction and actionable pursuit planning.
comment: 7 pages, 2 figures, 3 tables, 15 references. Intended for submission to ICCV 2027
Instance-Guided Radar Depth Estimation for 3D Object Detection
Accurate depth estimation is fundamental to 3D perception in autonomous driving, supporting tasks such as detection, tracking, and motion planning. However, monocular camera-based 3D detection suffers from depth ambiguity and reduced robustness under challenging conditions. Radar provides complementary advantages such as resilience to poor lighting and adverse weather, but its sparsity and low resolution limit its direct use in detection frameworks. This motivates the need for effective Radar-camera fusion with improved preprocessing and depth estimation strategies. We propose an end-to-end framework that enhances monocular 3D object detection through two key components. First, we introduce InstaRadar, an instance segmentation-guided expansion method that leverages pre-trained segmentation masks to enhance Radar density and semantic alignment, producing a more structured representation. InstaRadar achieves state-of-the-art results in Radar-guided depth estimation, showing its effectiveness in generating high-quality depth features. Second, we integrate the pre-trained RCDPT into the BEVDepth framework as a replacement for its depth module. With InstaRadar-enhanced inputs, the RCDPT integration consistently improves 3D detection performance. Overall, these components yield steady gains over the baseline BEVDepth model, demonstrating the effectiveness of InstaRadar and the advantage of explicit depth supervision in 3D object detection. Although the framework lags behind Radar-camera fusion models that directly extract BEV features, since Radar serves only as guidance rather than an independent feature stream, this limitation highlights potential for improvement. Future work will extend InstaRadar to point cloud-like representations and integrate a dedicated Radar branch with temporal cues for enhanced BEV fusion.
comment: Accepted to IPMV2026
Beyond Shadows: A Large-Scale Benchmark and Multi-Stage Framework for High-Fidelity Facial Shadow Removal
Facial shadows often degrade image quality and the performance of vision algorithms. Existing methods struggle to remove shadows while preserving texture, especially under complex lighting conditions, and they lack real-world paired datasets for training. We present the Augmented Shadow Face in the Wild (ASFW) dataset, the first large-scale real-world dataset for facial shadow removal, containing 1,081 paired shadow and shadow-free images created via a professional Photoshop workflow. ASFW offers photorealistic shadow variations and accurate ground truths, bridging the gap between synthetic and real domains. Deep models trained on ASFW demonstrate improved shadow removal in real-world conditions. We also introduce the Face Shadow Eraser (FSE) method to showcase the effectiveness of the dataset. Experiments demonstrate that ASFW enhances the performance of facial shadow removal models, setting new standards for this task.
comment: Accepted by ICASSP2026
ProMist-5K: A Comprehensive Dataset for Digital Emulation of Cinematic Pro-Mist Filter Effects
Pro-Mist filters are widely used in cinematography for their ability to create soft halation, lower contrast, and produce a distinctive, atmospheric style. These effects are difficult to reproduce digitally due to the complex behavior of light diffusion. We present ProMist-5K, a dataset designed to support cinematic style emulation. It is built using a physically inspired pipeline in a scene-referred linear space and includes 20,000 high-resolution image pairs across four configurations, covering two filter densities (1/2 and 1/8) and two focal lengths (20mm and 50mm). Unlike general style datasets, ProMist-5K focuses on realistic glow and highlight diffusion effects. Multiple blur layers and carefully tuned weighting are used to model the varying intensity and spread of optical diffusion. The dataset provides a consistent and controllable target domain that supports various image translation models and learning paradigms. Experiments show that the dataset works well across different training settings and helps capture both subtle and strong cinematic appearances. ProMist-5K offers a practical and physically grounded resource for film-inspired image transformation, bridging the gap between digital flexibility and traditional lens aesthetics. The dataset is available at https://www.kaggle.com/datasets/yingtielei/promist5k.
comment: Accepted by ICASSP2026
A Multi-View Consistency Framework with Semi-Supervised Domain Adaptation
Semi-Supervised Domain Adaptation (SSDA) leverages knowledge from a fully labeled source domain to classify data in a partially labeled target domain. Due to the limited number of labeled samples in the target domain, there can be intrinsic similarity of classes in the feature space, which may result in biased predictions, even when the model is trained on a balanced dataset. To overcome this limitation, we introduce a multi-view consistency framework, which includes two views for training strongly augmented data. One is a debiasing strategy for correcting class-wise prediction probabilities according to the prediction performance of the model. The other involves leveraging pseudo-negative labels derived from the model predictions. Furthermore, we introduce a cross-domain affinity learning aimed at aligning features of the same class across different domains, thereby enhancing overall performance. Experimental results demonstrate that our method outperforms the competing methods on two standard domain adaptation datasets, DomainNet and Office-Home. Combining unsupervised domain adaptation and semi-supervised learning offers indispensable contributions to the industrial sector by enhancing model adaptability, reducing annotation costs, and improving performance.
comment: 11 pages, 7 figures
Handcrafted Feature Fusion for Reliable Detection of AI-Generated Images
The rapid progress of generative models has enabled the creation of highly realistic synthetic images, raising concerns about authenticity and trust in digital media. Detecting such fake content reliably is an urgent challenge. While deep learning approaches dominate current literature, handcrafted features remain attractive for their interpretability, efficiency, and generalizability. In this paper, we conduct a systematic evaluation of handcrafted descriptors, including raw pixels, color histograms, Discrete Cosine Transform (DCT), Histogram of Oriented Gradients (HOG), Local Binary Patterns (LBP), Gray-Level Co-occurrence Matrix (GLCM), and wavelet features, on the CIFAKE dataset of real versus synthetic images. Using 50,000 training and 10,000 test samples, we benchmark seven classifiers ranging from Logistic Regression to advanced gradient-boosted ensembles (LightGBM, XGBoost, CatBoost). Results demonstrate that LightGBM consistently outperforms alternatives, achieving PR-AUC 0.9879, ROC-AUC 0.9878, F1 0.9447, and a Brier score of 0.0414 with mixed features, representing strong gains in calibration and discrimination over simpler descriptors. Across three configurations (baseline, advanced, mixed), performance improves monotonically, confirming that combining diverse handcrafted features yields substantial benefit. These findings highlight the continued relevance of carefully engineered features and ensemble learning for detecting synthetic images, particularly in contexts where interpretability and computational efficiency are critical.
TIGaussian: Disentangle Gaussians for Spatial-Awared Text-Image-3D Alignment
While visual-language models have profoundly linked features between texts and images, the incorporation of 3D modality data, such as point clouds and 3D Gaussians, further enables pretraining for 3D-related tasks, e.g., cross-modal retrieval, zero-shot classification, and scene recognition. As challenges remain in extracting 3D modal features and bridging the gap between different modalities, we propose TIGaussian, a framework that harnesses 3D Gaussian Splatting (3DGS) characteristics to strengthen cross-modality alignment through multi-branch 3DGS tokenizer and modality-specific 3D feature alignment strategies. Specifically, our multi-branch 3DGS tokenizer decouples the intrinsic properties of 3DGS structures into compact latent representations, enabling more generalizable feature extraction. To further bridge the modality gap, we develop a bidirectional cross-modal alignment strategies: a multi-view feature fusion mechanism that leverages diffusion priors to resolve perspective ambiguity in image-3D alignment, while a text-3D projection module adaptively maps 3D features to text embedding space for better text-3D alignment. Extensive experiments on various datasets demonstrate the state-of-the-art performance of TIGaussian in multiple tasks.
Magnetic Resonance Simulation of Effective Transverse Relaxation (T2*)
Purpose: To simulate effective transverse relaxation ($T_2^*$) as a part of MR simulation. $T_2^*$ consists of reversible ($T_2^{\prime}$) and irreversible ($T_2$) components. Whereas simulations of $T_2$ are easy, $T_2^{\prime}$ is not easily simulated if only magnetizations of individual isochromats are simulated. Theory and Methods: Efficient methods for simulating $T_2^{\prime}$ were proposed. To approximate the Lorentzian function of $T_2^{\prime}$ realistically, conventional simulators require 100+ isochromats. This approximation can be avoided by utilizing a linear phase model for simulating an entire Lorentzian function directly. To represent the linear phase model, the partial derivatives of the magnetizations with respect to the frequency axis were also simulated. To accelerate the simulations with these partial derivatives, the proposed methods introduced two techniques: analytic solutions, and combined transitions. For understanding the fundamental mechanism of the proposed method, a simple one-isochromat simulation was performed. For evaluating realistic cases, several pulse sequences were simulated using two phantoms with and without $T_2^{\prime}$ simulations. Results: The one-isochromat simulation demonstrated that $T_2^{\prime}$ simulations were possible. In the realistic cases, $T_2^{\prime}$ was recovered as expected without using 100+ isochromats for each point. The computational times with $T_2^{\prime}$ simulations were only 2.0 to 2.7 times longer than those without $T_2^{\prime}$ simulations. When the above-mentioned two techniques were utilized, the analytic solutions accelerated 19 times, and the combined transitions accelerated up to 17 times. Conclusion: Both theory and results showed that the proposed methods simulated $T_2^{\prime}$ efficiently by utilizing a linear model with a Lorentzian function, analytic solutions, and combined transitions.
VC-Bench: Pioneering the Video Connecting Benchmark with a Dataset and Evaluation Metrics
While current video generation focuses on text or image conditions, practical applications like video editing and vlogging often need to seamlessly connect separate clips. In our work, we introduce Video Connecting, an innovative task that aims to generate smooth intermediate video content between given start and end clips. However, the absence of standardized evaluation benchmarks has hindered the development of this task. To bridge this gap, we proposed VC-Bench, a novel benchmark specifically designed for video connecting. It includes 1,579 high-quality videos collected from public platforms, covering 15 main categories and 72 subcategories to ensure diversity and structure. VC-Bench focuses on three core aspects: Video Quality Score VQS, Start-End Consistency Score SECS, and Transition Smoothness Score TSS. Together, they form a comprehensive framework that moves beyond conventional quality-only metrics. We evaluated multiple state-of-the-art video generation models on VC-Bench. Experimental results reveal significant limitations in maintaining start-end consistency and transition smoothness, leading to lower overall coherence and fluidity. We expect that VC-Bench will serve as a pioneering benchmark to inspire and guide future research in video connecting. The evaluation metrics and dataset are publicly available at: https://anonymous.4open.science/r/VC-Bench-1B67/.
Towards Pixel-Level VLM Perception via Simple Points Prediction
We present SimpleSeg, a strikingly simple yet highly effective approach to endow Multimodal Large Language Models (MLLMs) with native pixel-level perception. Our method reframes segmentation as a simple sequence generation problem: the model directly predicts sequences of points (textual coordinates) delineating object boundaries, entirely within its language space. To achieve high fidelity, we introduce a two-stage SF$\to$RL training pipeline, where Reinforcement Learning with an IoU-based reward refines the point sequences to accurately match ground-truth contours. We find that the standard MLLM architecture possesses a strong, inherent capacity for low-level perception that can be unlocked without any specialized architecture. On segmentation benchmarks, SimpleSeg achieves performance that is comparable to, and often surpasses, methods relying on complex, task-specific designs. This work lays out that precise spatial understanding can emerge from simple point prediction, challenging the prevailing need for auxiliary components and paving the way for more unified and capable VLMs. Homepage: https://simpleseg.github.io/
UniPCB: A Unified Vision-Language Benchmark for Open-Ended PCB Quality Inspection
Multimodal Large Language Models (MLLMs) show promise for general industrial quality inspection, but fall short in complex scenarios, such as Printed Circuit Board (PCB) inspection. PCB inspection poses unique challenges due to densely packed components, complex wiring structures, and subtle defect patterns that require specialized domain expertise. However, a high-quality, unified vision-language benchmark for quantitatively evaluating MLLMs across PCB inspection tasks remains absent, stemming not only from limited data availability but also from fragmented datasets and inconsistent standardization. To fill this gap, we propose UniPCB, the first unified vision-language benchmark for open-ended PCB quality inspection. UniPCB is built via a systematic pipeline that curates and standardizes data from disparate sources across three annotated scenarios. Furthermore, we introduce PCB-GPT, an MLLM trained on a new instruction dataset generated by this pipeline, utilizing a novel progressive curriculum that mimics the learning process of human experts. Evaluations on the UniPCB benchmark show that while existing MLLMs falter on domain-specific tasks, PCB-GPT establishes a new baseline. Notably, it more than doubles the performance on fine-grained defect localization compared to the strongest competitors, with significant advantages in localization and analysis. We will release the instruction data, benchmark, and model to facilitate future research.
Bridging Visual and Wireless Sensing: A Unified Radiation Field for 3D Radio Map Construction
The emerging applications of next-generation wireless networks (e.g., immersive 3D communication, low-altitude networks, and integrated sensing and communication) necessitate high-fidelity environmental intelligence. 3D radio maps have emerged as a critical tool for this purpose, enabling spectrum-aware planning and environment-aware sensing by bridging the gap between physical environments and electromagnetic signal propagation. However, constructing accurate 3D radio maps requires fine-grained 3D geometric information and a profound understanding of electromagnetic wave propagation. Existing approaches typically treat optical and wireless knowledge as distinct modalities, failing to exploit the fundamental physical principles governing both light and electromagnetic propagation. To bridge this gap, we propose URF-GS, a unified radio-optical radiation field representation framework for accurate and generalizable 3D radio map construction based on 3D Gaussian splatting (3D-GS) and inverse rendering. By fusing visual and wireless sensing observations, URF-GS recovers scene geometry and material properties while accurately predicting radio signal behavior at arbitrary transmitter-receiver (Tx-Rx) configurations. Experimental results demonstrate that URF-GS achieves up to a 24.7% improvement in spatial spectrum prediction accuracy and a 10x increase in sample efficiency for 3D radio map construction compared with neural radiance field (NeRF)-based methods. This work establishes a foundation for next-generation wireless networks by integrating perception, interaction, and communication through holistic radiation field reconstruction.
comment: The code for this work will be publicly available at: https://github.com/wenchaozheng/URF-GS
Contrastive Spectral Rectification: Test-Time Defense towards Zero-shot Adversarial Robustness of CLIP
Vision-language models (VLMs) such as CLIP have demonstrated remarkable zero-shot generalization, yet remain highly vulnerable to adversarial examples (AEs). While test-time defenses are promising, existing methods fail to provide sufficient robustness against strong attacks and are often hampered by high inference latency and task-specific applicability. To address these limitations, we start by investigating the intrinsic properties of AEs, which reveals that AEs exhibit severe feature inconsistency under progressive frequency attenuation. We further attribute this to the model's inherent spectral bias. Leveraging this insight, we propose an efficient test-time defense named Contrastive Spectral Rectification (CSR). CSR optimizes a rectification perturbation to realign the input with the natural manifold under a spectral-guided contrastive objective, which is applied input-adaptively. Extensive experiments across 16 classification benchmarks demonstrate that CSR outperforms the SOTA by an average of 18.1% against strong AutoAttack with modest inference overhead. Furthermore, CSR exhibits broad applicability across diverse visual tasks. Code is available at https://github.com/Summu77/CSR.
comment: 21 pages
MATA: A Trainable Hierarchical Automaton System for Multi-Agent Visual Reasoning ICLR 2026
Recent vision-language models have strong perceptual ability but their implicit reasoning is hard to explain and easily generates hallucinations on complex queries. Compositional methods improve interpretability, but most rely on a single agent or hand-crafted pipeline and cannot decide when to collaborate across complementary agents or compete among overlapping ones. We introduce MATA (Multi-Agent hierarchical Trainable Automaton), a multi-agent system presented as a hierarchical finite-state automaton for visual reasoning whose top-level transitions are chosen by a trainable hyper agent. Each agent corresponds to a state in the hyper automaton, and runs a small rule-based sub-automaton for reliable micro-control. All agents read and write a shared memory, yielding transparent execution history. To supervise the hyper agent's transition policy, we build transition-trajectory trees and transform to memory-to-next-state pairs, forming the MATA-SFT-90K dataset for supervised finetuning (SFT). The finetuned LLM as the transition policy understands the query and the capacity of agents, and it can efficiently choose the optimal agent to solve the task. Across multiple visual reasoning benchmarks, MATA achieves the state-of-the-art results compared with monolithic and compositional baselines. The code and dataset are available at https://github.com/ControlNet/MATA.
comment: ICLR 2026
SNR-Edit: Structure-Aware Noise Rectification for Inversion-Free Flow-Based Editing
Inversion-free image editing using flow-based generative models challenges the prevailing inversion-based pipelines. However, existing approaches rely on fixed Gaussian noise to construct the source trajectory, leading to biased trajectory dynamics and causing structural degradation or quality loss. To address this, we introduce SNR-Edit, a training-free framework achieving faithful Latent Trajectory Correction via adaptive noise control. Mechanistically, SNR-Edit uses structure-aware noise rectification to inject segmentation constraints into the initial noise, anchoring the stochastic component of the source trajectory to the real image's implicit inversion position and reducing trajectory drift during source--target transport. This lightweight modification yields smoother latent trajectories and ensures high-fidelity structural preservation without requiring model tuning or inversion. Across SD3 and FLUX, evaluations on PIE-Bench and SNR-Bench show that SNR-Edit delivers performance on pixel-level metrics and VLM-based scoring, while adding only about 1s overhead per image.
GTFMN: Guided Texture and Feature Modulation Network for Low-Light Image Enhancement and Super-Resolution
Low-light image super-resolution (LLSR) is a challenging task due to the coupled degradation of low resolution and poor illumination. To address this, we propose the Guided Texture and Feature Modulation Network (GTFMN), a novel framework that decouples the LLSR task into two sub-problems: illumination estimation and texture restoration. First, our network employs a dedicated Illumination Stream whose purpose is to predict a spatially varying illumination map that accurately captures lighting distribution. Further, this map is utilized as an explicit guide within our novel Illumination Guided Modulation Block (IGM Block) to dynamically modulate features in the Texture Stream. This mechanism achieves spatially adaptive restoration, enabling the network to intensify enhancement in poorly lit regions while preserving details in well-exposed areas. Extensive experiments demonstrate that GTFMN achieves the best performance among competing methods on the OmniNormal5 and OmniNormal15 datasets, outperforming them in both quantitative metrics and visual quality.
comment: \c{opyright} 2026 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
LocationAgent: A Hierarchical Agent for Image Geolocation via Decoupling Strategy and Evidence from Parametric Knowledge
Image geolocation aims to infer capture locations based on visual content. Fundamentally, this constitutes a reasoning process composed of \textit{hypothesis-verification cycles}, requiring models to possess both geospatial reasoning capabilities and the ability to verify evidence against geographic facts. Existing methods typically internalize location knowledge and reasoning patterns into static memory via supervised training or trajectory-based reinforcement fine-tuning. Consequently, these methods are prone to factual hallucinations and generalization bottlenecks in open-world settings or scenarios requiring dynamic knowledge. To address these challenges, we propose a Hierarchical Localization Agent, called LocationAgent. Our core philosophy is to retain hierarchical reasoning logic within the model while offloading the verification of geographic evidence to external tools. To implement hierarchical reasoning, we design the RER architecture (Reasoner-Executor-Recorder), which employs role separation and context compression to prevent the drifting problem in multi-step reasoning. For evidence verification, we construct a suite of clue exploration tools that provide diverse evidence to support location reasoning. Furthermore, to address data leakage and the scarcity of Chinese data in existing datasets, we introduce CCL-Bench (China City Location Bench), an image geolocation benchmark encompassing various scene granularities and difficulty levels. Extensive experiments demonstrate that LocationAgent significantly outperforms existing methods by at least 30\% in zero-shot settings.
comment: 9 pages, 5 figures, 3 tables
TFFM: Topology-Aware Feature Fusion Module via Latent Graph Reasoning for Retinal Vessel Segmentation WACV 2026
Precise segmentation of retinal arteries and veins carries the diagnosis of systemic cardiovascular conditions. However, standard convolutional architectures often yield topologically disjointed segmentations, characterized by gaps and discontinuities that render reliable graph-based clinical analysis impossible despite high pixel-level accuracy. To address this, we introduce a topology-aware framework engineered to maintain vascular connectivity. Our architecture fuses a Topological Feature Fusion Module (TFFM) that maps local feature representations into a latent graph space, deploying Graph Attention Networks to capture global structural dependencies often missed by fixed receptive fields. Furthermore, we drive the learning process with a hybrid objective function, coupling Tversky loss for class imbalance with soft clDice loss to explicitly penalize topological disconnects. Evaluation on the Fundus-AVSeg dataset reveals state-of-the-art performance, achieving a combined Dice score of 90.97% and a 95% Hausdorff Distance of 3.50 pixels. Notably, our method decreases vessel fragmentation by approximately 38% relative to baselines, yielding topologically coherent vascular trees viable for automated biomarker quantification. We open-source our code at https://tffm-module.github.io/.
comment: Accepted in WACV 2026 @ P2P-workshop as a full paper and selected for oral presentation
QA-ReID: Quality-Aware Query-Adaptive Convolution Leveraging Fused Global and Structural Cues for Clothes-Changing ReID
Unlike conventional person re-identification (ReID), clothes-changing ReID (CC-ReID) presents severe challenges due to substantial appearance variations introduced by clothing changes. In this work, we propose the Quality-Aware Dual-Branch Matching (QA-ReID), which jointly leverages RGB-based features and parsing-based representations to model both global appearance and clothing-invariant structural cues. These heterogeneous features are adaptively fused through a multi-modal attention module. At the matching stage, we further design the Quality-Aware Query Adaptive Convolution (QAConv-QA), which incorporates pixel-level importance weighting and bidirectional consistency constraints to enhance robustness against clothing variations. Extensive experiments demonstrate that QA-ReID achieves state-of-the-art performance on multiple benchmarks, including PRCC, LTCC, and VC-Clothes, and significantly outperforms existing approaches under cross-clothing scenarios.
CLIP-Guided Unsupervised Semantic-Aware Exposure Correction
Improper exposure often leads to severe loss of details, color distortion, and reduced contrast. Exposure correction still faces two critical challenges: (1) the ignorance of object-wise regional semantic information causes the color shift artifacts; (2) real-world exposure images generally have no ground-truth labels, and its labeling entails massive manual editing. To tackle the challenges, we propose a new unsupervised semantic-aware exposure correction network. It contains an adaptive semantic-aware fusion module, which effectively fuses the semantic information extracted from a pre-trained Fast Segment Anything Model into a shared image feature space. Then the fused features are used by our multi-scale residual spatial mamba group to restore the details and adjust the exposure. To avoid manual editing, we propose a pseudo-ground truth generator guided by CLIP, which is fine-tuned to automatically identify exposure situations and instruct the tailored corrections. Also, we leverage the rich priors from the FastSAM and CLIP to develop a semantic-prompt consistency loss to enforce semantic consistency and image-prompt alignment for unsupervised training. Comprehensive experimental results illustrate the effectiveness of our method in correcting real-world exposure images and outperforms state-of-the-art unsupervised methods both numerically and visually.
Resolving Primitive-Sharing Ambiguity in Long-Tailed Industrial Point Cloud Segmentation via Spatial Context Constraints
Industrial point cloud segmentation for Digital Twin construction faces a persistent challenge: safety-critical components such as reducers and valves are systematically misclassified. These failures stem from two compounding factors: such components are rare in training data, yet they share identical local geometry with dominant structures like pipes. This work identifies a dual crisis unique to industrial 3D data extreme class imbalance 215:1 ratio compounded by geometric ambiguity where most tail classes share cylindrical primitives with head classes. Existing frequency-based re-weighting methods address statistical imbalance but cannot resolve geometric ambiguity. We propose spatial context constraints that leverage neighborhood prediction consistency to disambiguate locally similar structures. Our approach extends the Class-Balanced (CB) Loss framework with two architecture-agnostic mechanisms: (1) Boundary-CB, an entropy-based constraint that emphasizes ambiguous boundaries, and (2) Density-CB, a density-based constraint that compensates for scan-dependent variations. Both integrate as plug-and-play modules without network modifications, requiring only loss function replacement. On the Industrial3D dataset (610M points from water treatment facilities), our method achieves 55.74% mIoU with 21.7% relative improvement on tail-class performance (29.59% vs. 24.32% baseline) while preserving head-class accuracy (88.14%). Components with primitive-sharing ambiguity show dramatic gains: reducer improves from 0% to 21.12% IoU; valve improves by 24.3% relative. This resolves geometric ambiguity without the typical head-tail trade-off, enabling reliable identification of safety-critical components for automated knowledge extraction in Digital Twin applications.
Implicit Non-Causal Factors are Out via Dataset Splitting for Domain Generalization Object Detection
Open world object detection faces a significant challenge in domain-invariant representation, i.e., implicit non-causal factors. Most domain generalization (DG) methods based on domain adversarial learning (DAL) pay much attention to learn domain-invariant information, but often overlook the potential non-causal factors. We unveil two critical causes: 1) The domain discriminator-based DAL method is subject to the extremely sparse domain label, i.e., assigning only one domain label to each dataset, thus can only associate explicit non-causal factor, which is incredibly limited. 2) The non-causal factors, induced by unidentified data bias, are excessively implicit and cannot be solely discerned by conventional DAL paradigm. Based on these key findings, inspired by the Granular-Ball perspective, we propose an improved DAL method, i.e., GB-DAL. The proposed GB-DAL utilizes Prototype-based Granular Ball Splitting (PGBS) module to generate more dense domains from limited datasets, akin to more fine-grained granular balls, indicating more potential non-causal factors. Inspired by adversarial perturbations akin to non-causal factors, we propose a Simulated Non-causal Factors (SNF) module as a means of data augmentation to reduce the implicitness of non-causal factors, and facilitate the training of GB-DAL. Comparative experiments on numerous benchmarks demonstrate that our method achieves better generalization performance in novel circumstances.
comment: To appear in IJCV
Optimized $k$-means color quantization of digital images in machine-based and human perception-based colorspaces
Color quantization represents an image using a fraction of its original number of colors while only minimally losing its visual quality. The $k$-means algorithm is commonly used in this context, but has mostly been applied in the machine-based RGB colorspace composed of the three primary colors. However, some recent studies have indicated its improved performance in human perception-based colorspaces. We investigated the performance of $k$-means color quantization at four quantization levels in the RGB, CIE-XYZ, and CIE-LUV/CIE-HCL colorspaces, on 148 varied digital images spanning a wide range of scenes, subjects and settings. The Visual Information Fidelity (VIF) measure numerically assessed the quality of the quantized images, and showed that in about half of the cases, $k$-means color quantization is best in the RGB space, while at other times, and especially for higher quantization levels ($k$), the CIE-XYZ colorspace is where it usually does better. There are also some cases, especially at lower $k$, where the best performance is obtained in the CIE-LUV colorspace. Further analysis of the performances in terms of the distributions of the hue, chromaticity and luminance in an image presents a nuanced perspective and characterization of the images for which each colorspace is better for $k$-means color quantization.
comment: 25 pages, 11 figures, 5 tables, accepted in the Journal of Electronic Imaging
FBSDiff++: Improved Frequency Band Substitution of Diffusion Features for Efficient and Highly Controllable Text-Driven Image-to-Image Translation
With large-scale text-to-image (T2I) diffusion models achieving significant advancements in open-domain image creation, increasing attention has been focused on their natural extension to the realm of text-driven image-to-image (I2I) translation, where a source image acts as visual guidance to the generated image in addition to the textual guidance provided by the text prompt. We propose FBSDiff, a novel framework adapting off-the-shelf T2I diffusion model into the I2I paradigm from a fresh frequency-domain perspective. Through dynamic frequency band substitution of diffusion features, FBSDiff realizes versatile and highly controllable text-driven I2I in a plug-and-play manner (without need for model training, fine-tuning, or online optimization), allowing appearance-guided, layout-guided, and contour-guided I2I translation by progressively substituting low-frequency band, mid-frequency band, and high-frequency band of latent diffusion features, respectively. In addition, FBSDiff flexibly enables continuous control over I2I correlation intensity simply by tuning the bandwidth of the substituted frequency band. To further promote image translation efficiency, flexibility, and functionality, we propose FBSDiff++ which improves upon FBSDiff mainly in three aspects: (1) accelerate inference speed by a large margin (8.9$\times$ speedup in inference) with refined model architecture; (2) improve the Frequency Band Substitution module to allow for input source images of arbitrary resolution and aspect ratio; (3) extend model functionality to enable localized image manipulation and style-specific content creation with only subtle adjustments to the core method. Extensive qualitative and quantitative experiments verify superiority of FBSDiff++ in I2I translation visual quality, efficiency, versatility, and controllability compared to related advanced approaches.
Reg-TTR, Test-Time Refinement for Fast, Robust and Accurate Image Registration
Traditional image registration methods are robust but slow due to their iterative nature. While deep learning has accelerated inference, it often struggles with domain shifts. Emerging registration foundation models offer a balance of speed and robustness, yet typically cannot match the peak accuracy of specialized models trained on specific datasets. To mitigate this limitation, we propose Reg-TTR, a test-time refinement framework that synergizes the complementary strengths of both deep learning and conventional registration techniques. By refining the predictions of pre-trained models at inference, our method delivers significantly improved registration accuracy at a modest computational cost, requiring only 21% additional inference time (0.56s). We evaluate Reg-TTR on two distinct tasks and show that it achieves state-of-the-art (SOTA) performance while maintaining inference speeds close to previous deep learning methods. As foundation models continue to emerge, our framework offers an efficient strategy to narrow the performance gap between registration foundation models and SOTA methods trained on specialized datasets. The source code will be publicly available following the acceptance of this work.
Glance and Focus Reinforcement for Pan-cancer Screening ICLR 2026
Pan-cancer screening in large-scale CT scans remains challenging for existing AI methods, primarily due to the difficulty of localizing diverse types of tiny lesions in large CT volumes. The extreme foreground-background imbalance significantly hinders models from focusing on diseased regions, while redundant focus on healthy regions not only decreases the efficiency but also increases false positives. Inspired by radiologists' glance and focus diagnostic strategy, we introduce GF-Screen, a Glance and Focus reinforcement learning framework for pan-cancer screening. GF-Screen employs a Glance model to localize the diseased regions and a Focus model to precisely segment the lesions, where segmentation results of the Focus model are leveraged to reward the Glance model via Reinforcement Learning (RL). Specifically, the Glance model crops a group of sub-volumes from the entire CT volume and learns to select the sub-volumes with lesions for the Focus model to segment. Given that the selecting operation is non-differentiable for segmentation training, we propose to employ the segmentation results to reward the Glance model. To optimize the Glance model, we introduce a novel group relative learning paradigm, which employs group relative comparison to prioritize high-advantage predictions and discard low-advantage predictions within sub-volume groups, not only improving efficiency but also reducing false positives. In this way, for the first time, we effectively extend cutting-edge RL techniques to tackle the specific challenges in pan-cancer screening. Extensive experiments on 16 internal and 7 external datasets across 9 lesion types demonstrated the effectiveness of GF-Screen. Notably, GF-Screen leads the public validation leaderboard of MICCAI FLARE25 pan-cancer challenge, surpassing the FLARE24 champion solution by a large margin (+25.6% DSC and +28.2% NSD).
comment: Accepted by ICLR 2026. Code is available at https://github.com/Luffy03/GF-Screen
m2sv: A Scalable Benchmark for Map-to-Street-View Spatial Reasoning
Vision--language models (VLMs) achieve strong performance on many multimodal benchmarks but remain brittle on spatial reasoning tasks that require aligning abstract overhead representations with egocentric views. We introduce m2sv, a scalable benchmark for map-to-street-view spatial reasoning that asks models to infer camera viewing direction by aligning a north-up overhead map with a Street View image captured at the same real-world intersection. We release m2sv-20k, a geographically diverse benchmark with controlled ambiguity, along with m2sv-sft-11k, a curated set of structured reasoning traces for supervised fine-tuning. Despite strong performance on existing multimodal benchmarks, the best evaluated VLM achieves only 65.2% accuracy on m2sv, far below the human baseline of 95%. While supervised fine-tuning and reinforcement learning yield consistent gains, cross-benchmark evaluations reveal limited transfer. Beyond aggregate accuracy, we systematically analyze difficulty in map-to-street-view reasoning using both structural signals and human effort, and conduct an extensive failure analysis of adapted open models. Our findings highlight persistent gaps in geometric alignment, evidence aggregation, and reasoning consistency, motivating future work on grounded spatial reasoning across viewpoints.
Privacy-Preserving Model Transcription with Differentially Private Synthetic Distillation
While many deep learning models trained on private datasets have been deployed in various practical tasks, they may pose a privacy leakage risk as attackers could recover informative data or label knowledge from models. In this work, we present \emph{privacy-preserving model transcription}, a data-free model-to-model conversion solution to facilitate model deployment with a privacy guarantee. To this end, we propose a cooperative-competitive learning approach termed \emph{differentially private synthetic distillation} that learns to convert a pretrained model (teacher) into its privacy-preserving counterpart (student) via a trainable generator without access to private data. The learning collaborates with three players in a unified framework and performs alternate optimization: i)~the generator is learned to generate synthetic data, ii)~the teacher and student accept the synthetic data and compute differential private labels by flexible data or label noisy perturbation, and iii)~the student is updated with noisy labels and the generator is updated by taking the student as a discriminator for adversarial training. We theoretically prove that our approach can guarantee differential privacy and convergence. The transcribed student has good performance and privacy protection, while the resulting generator can generate private synthetic data for downstream tasks. Extensive experiments clearly demonstrate that our approach outperforms 26 state-of-the-arts.
comment: Accepted by IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI)
EPAS: Efficient Training with Progressive Activation Sharing
We present a novel method for Efficient training with Progressive Activation Sharing (EPAS). This method bridges progressive training paradigm with the phenomenon of redundant QK (or KV ) activations across deeper layers of transformers. EPAS gradually grows a sharing region during training by switching decoder layers to activation sharing mode. This results in throughput increase due to reduced compute. To utilize deeper layer redundancy, the sharing region starts from the deep end of the model and grows towards the shallow end. The EPAS trained models allow for variable region lengths of activation sharing for different compute budgets during inference. Empirical evaluations with QK activation sharing in LLaMA models ranging from 125M to 7B parameters show up to an 11.1% improvement in training throughput and up to a 29% improvement in inference throughput while maintaining similar loss curve to the baseline models. Furthermore, applying EPAS in continual pretraining to transform TinyLLaMA into an attention-sharing model yields up to a 10% improvement in average accuracy over state-of-the-art methods, emphasizing the significance of progressive training in cross layer activation sharing models.
comment: This is a preprint of a paper accepted at the 39th Canadian Conference on Artificial Intelligence (Canadian AI 2026)
Pixel-Grounded Retrieval for Knowledgeable Large Multimodal Models
Visual Question Answering (VQA) often requires coupling fine-grained perception with factual knowledge beyond the input image. Prior multimodal Retrieval-Augmented Generation (MM-RAG) systems improve factual grounding but lack an internal policy for when and how to retrieve. We propose PixSearch, the first end-to-end Segmenting Large Multimodal Model (LMM) that unifies region-level perception and retrieval-augmented reasoning. During encoding, PixSearch emits tokens to trigger retrieval, selects query modalities (text, image, or region), and generates pixel-level masks that directly serve as visual queries, eliminating the reliance on modular pipelines (detectors, segmenters, captioners, etc.). A two-stage supervised fine-tuning regimen with search-interleaved supervision teaches retrieval timing and query selection while preserving segmentation ability. On egocentric and entity-centric VQA benchmarks, PixSearch substantially improves factual consistency and generalization, yielding a 19.7% relative gain in accuracy on CRAG-MM compared to whole image retrieval, while retaining competitive reasoning performance on various VQA and text-only QA tasks.
comment: Preprint
NuiWorld: Exploring a Scalable Framework for End-to-End Controllable World Generation
World generation is a fundamental capability for applications like video games, simulation, and robotics. However, existing approaches face three main obstacles: controllability, scalability, and efficiency. End-to-end scene generation models have been limited by data scarcity. While object-centric generation approaches rely on fixed resolution representations, degrading fidelity for larger scenes. Training-free approaches, while flexible, are often slow and computationally expensive at inference time. We present NuiWorld, a framework that attempts to address these challenges. To overcome data scarcity, we propose a generative bootstrapping strategy that starts from a few input images. Leveraging recent 3D reconstruction and expandable scene generation techniques, we synthesize scenes of varying sizes and layouts, producing enough data to train an end-to-end model. Furthermore, our framework enables controllability through pseudo sketch labels, and demonstrates a degree of generalization to previously unseen sketches. Our approach represents scenes as a collection of variable scene chunks, which are compressed into a flattened vector-set representation. This significantly reduces the token length for large scenes, enabling consistent geometric fidelity across scenes sizes while improving training and inference efficiency.
Look in the Middle: Structural Anchor Pruning for Scalable Visual RAG Indexing
Recent Vision-Language Models (e.g., ColPali) enable fine-grained Visual Document Retrieval (VDR) but incur prohibitive index vector size overheads. Training-free pruning solutions (e.g., EOS-attention based methods) can reduce index vector size by approximately 60% without model adaptation, but often underperform random selection in high-compression scenarios (> 80%). Prior research (e.g., Light-ColPali) attributes this to the conclusion that visual token importance is inherently query-dependent, thereby questioning the feasibility of training-free pruning. In this work, we propose Structural Anchor Pruning (SAP), a training-free pruning method that identifies key visual patches from middle layers to achieve high performance compression. We also introduce Oracle Score Retention (OSR) protocol to evaluate how layer-wise information affects compression efficiency. Evaluations on the ViDoRe benchmark demonstrate that SAP reduces index vectors by over 90% while maintaining robust retrieval fidelity, providing a highly scalable solution for Visual RAG. Furthermore, our OSR-based analysis reveals that semantic structural anchor patches persist in the middle layers, unlike traditional pruning solutions that focus on the final layer where structural signals dissipate.
comment: 18 pages, 6 figures, 11 tables
NucFuseRank: Dataset Fusion and Performance Ranking for Nuclei Instance Segmentation
Nuclei instance segmentation in hematoxylin and eosin (H&E)-stained images plays an important role in automated histological image analysis, with various applications in downstream tasks. While several machine learning and deep learning approaches have been proposed for nuclei instance segmentation, most research in this field focuses on developing new segmentation algorithms and benchmarking them on a limited number of arbitrarily selected public datasets. In this work, rather than focusing on model development, we focused on the datasets used for this task. Based on an extensive literature review, we identified manually annotated, publicly available datasets of H&E-stained images for nuclei instance segmentation and standardized them into a unified input and annotation format. Using two state-of-the-art segmentation models, one based on convolutional neural networks (CNNs) and one based on a hybrid CNN and vision transformer architecture, we systematically evaluated and ranked these datasets based on their nuclei instance segmentation performance. Furthermore, we proposed a unified test set (NucFuse-test) for fair cross-dataset evaluation and a unified training set (NucFuse-train) for improved segmentation performance by merging images from multiple datasets. By evaluating and ranking the datasets, performing comprehensive analyses, generating fused datasets, conducting external validation, and making our implementation publicly available, we provided a new benchmark for training, testing, and evaluating nuclei instance segmentation models on H&E-stained histological images.
comment: 31 pages
Sparse CLIP: Co-Optimizing Interpretability and Performance in Contrastive Learning
Contrastive Language-Image Pre-training (CLIP) has become a cornerstone in vision-language representation learning, powering diverse downstream tasks and serving as the default vision backbone in multimodal large language models (MLLMs). Despite its success, CLIP's dense and opaque latent representations pose significant interpretability challenges. A common assumption is that interpretability and performance are in tension: enforcing sparsity during training degrades accuracy, motivating recent post-hoc approaches such as Sparse Autoencoders (SAEs). However, these post-hoc approaches often suffer from degraded downstream performance and loss of CLIP's inherent multimodal capabilities, with most learned features remaining unimodal. We propose a simple yet effective approach that integrates sparsity directly into CLIP training, yielding representations that are both interpretable and performant. Compared to SAEs, our Sparse CLIP representations preserve strong downstream task performance, achieve superior interpretability, and retain multimodal capabilities. We show that multimodal sparse features enable straightforward semantic concept alignment and reveal training dynamics of how cross-modal knowledge emerges. Finally, as a proof of concept, we train a vision-language model on sparse CLIP representations that enables interpretable, vision-based steering capabilities. Our findings challenge conventional wisdom that interpretability requires sacrificing accuracy and demonstrate that interpretability and performance can be co-optimized, offering a promising design principle for future models.
Semi-Supervised Masked Autoencoders: Unlocking Vision Transformer Potential with Limited Data
We address the challenge of training Vision Transformers (ViTs) when labeled data is scarce but unlabeled data is abundant. We propose Semi-Supervised Masked Autoencoder (SSMAE), a framework that jointly optimizes masked image reconstruction and classification using both unlabeled and labeled samples with dynamically selected pseudo-labels. SSMAE introduces a validation-driven gating mechanism that activates pseudo-labeling only after the model achieves reliable, high-confidence predictions that are consistent across both weakly and strongly augmented views of the same image, reducing confirmation bias. On CIFAR-10 and CIFAR-100, SSMAE consistently outperforms supervised ViT and fine-tuned MAE, with the largest gains in low-label regimes (+9.24% over ViT on CIFAR-10 with 10% labels). Our results demonstrate that when pseudo-labels are introduced is as important as how they are generated for data-efficient transformer training. Codes are available at https://github.com/atik666/ssmae.
DiSa: Saliency-Aware Foreground-Background Disentangled Framework for Open-Vocabulary Semantic Segmentation
Open-vocabulary semantic segmentation aims to assign labels to every pixel in an image based on text labels. Existing approaches typically utilize vision-language models (VLMs), such as CLIP, for dense prediction. However, VLMs, pre-trained on image-text pairs, are biased toward salient, object-centric regions and exhibit two critical limitations when adapted to segmentation: (i) Foreground Bias, which tends to ignore background regions, and (ii) Limited Spatial Localization, resulting in blurred object boundaries. To address these limitations, we introduce DiSa, a novel saliency-aware foreground-background disentangled framework. By explicitly incorporating saliency cues in our designed Saliency-aware Disentanglement Module (SDM), DiSa separately models foreground and background ensemble features in a divide-and-conquer manner. Additionally, we propose a Hierarchical Refinement Module (HRM) that leverages pixel-wise spatial contexts and enables channel-wise feature refinement through multi-level updates. Extensive experiments on six benchmarks demonstrate that DiSa consistently outperforms state-of-the-art methods.
comment: 19 pages, 11 figures
Primitive-Driven Acceleration of Hyperdimensional Computing for Real-Time Image Classification
Hyperdimensional Computing (HDC) represents data using extremely high-dimensional, low-precision vectors, termed hypervectors (HVs), and performs learning and inference through lightweight, noise-tolerant operations. However, the high dimensionality, sparsity, and repeated data movement involved in HDC make these computations difficult to accelerate efficiently on conventional processors. As a result, executing core HDC operations: binding, permutation, bundling, and similarity search: on CPUs or GPUs often leads to suboptimal utilization, memory bottlenecks, and limits on real-time performance. In this paper, our contributions are two-fold. First, we develop an image-encoding algorithm that, similar in spirit to convolutional neural networks, maps local image patches to hypervectors enriched with spatial information. These patch-level hypervectors are then merged into a global representation using the fundamental HDC operations, enabling spatially sensitive and robust image encoding. This encoder achieves 95.67% accuracy on MNIST and 85.14% on Fashion-MNIST, outperforming prior HDC-based image encoders. Second, we design an end-to-end accelerator that implements these compute operations on an FPGA through a pipelined architecture that exploits parallelism both across the hypervector dimensionality and across the set of image patches. Our Alveo U280 implementation delivers 0.09ms inference latency, achieving up to 1300x and 60x speedup over state-of-the-art CPU and GPU baselines, respectively.
Size Matters: Reconstructing Real-Scale 3D Models from Monocular Images for Food Portion Estimation
The rise of chronic diseases related to diet, such as obesity and diabetes, emphasizes the need for accurate monitoring of food intake. While AI-driven dietary assessment has made strides in recent years, the ill-posed nature of recovering size (portion) information from monocular images for accurate estimation of ``how much did you eat?'' is a pressing challenge. Some 3D reconstruction methods have achieved impressive geometric reconstruction but fail to recover the crucial real-world scale of the reconstructed object, limiting its usage in precision nutrition. In this paper, we bridge the gap between 3D computer vision and digital health by proposing a method that recovers a true-to-scale 3D reconstructed object from a monocular image. Our approach leverages rich visual features extracted from models trained on large-scale datasets to estimate the scale of the reconstructed object. This learned scale enables us to convert single-view 3D reconstructions into true-to-life, physically meaningful models. Extensive experiments and ablation studies on two publicly available datasets show that our method consistently outperforms existing techniques, achieving nearly a 30% reduction in mean absolute volume-estimation error, showcasing its potential to enhance the domain of precision nutrition. Code: https://gitlab.com/viper-purdue/size-matters
MeanCache: From Instantaneous to Average Velocity for Accelerating Flow Matching Inference
We present MeanCache, a training-free caching framework for efficient Flow Matching inference. Existing caching methods reduce redundant computation but typically rely on instantaneous velocity information (e.g., feature caching), which often leads to severe trajectory deviations and error accumulation under high acceleration ratios. MeanCache introduces an average-velocity perspective: by leveraging cached Jacobian--vector products (JVP) to construct interval average velocities from instantaneous velocities, it effectively mitigates local error accumulation. To further improve cache timing and JVP reuse stability, we develop a trajectory-stability scheduling strategy as a practical tool, employing a Peak-Suppressed Shortest Path under budget constraints to determine the schedule. Experiments on FLUX.1, Qwen-Image, and HunyuanVideo demonstrate that MeanCache achieves 4.12X and 4.56X and 3.59X acceleration, respectively, while consistently outperforming state-of-the-art caching baselines in generation quality. We believe this simple yet effective approach provides a new perspective for Flow Matching inference and will inspire further exploration of stability-driven acceleration in commercial-scale generative models.
LEMON: How Well Do MLLMs Perform Temporal Multimodal Understanding on Instructional Videos?
Recent multimodal large language models (MLLMs) have shown remarkable progress across vision, audio, and language tasks, yet their performance on long-form, knowledge-intensive, and temporally structured educational content remains largely unexplored. To bridge this gap, we introduce LEMON, a Lecture-based Evaluation benchmark for MultimOdal uNderstanding, focusing on STEM lecture videos that require long-horizon reasoning and cross-modal integration. LEMON comprises 2,277 video segments spanning 5 disciplines and 29 courses, with an average duration of 196.1 seconds, yielding 4,181 high-quality QA pairs, including 3,413 multiple-choice and 768 open-ended questions. Distinct from existing video benchmarks, LEMON features: (1) semantic richness and disciplinary density, (2) tightly coupled video-audio-text modalities, (3) explicit temporal and pedagogical structure, and (4) contextually linked multi-turn questioning. It further encompasses six major tasks and twelve subtasks, covering the full cognitive spectrum from perception to reasoning and then to generation. Comprehensive experiments reveal substantial performance gaps across tasks, highlighting that even state-of-the-art MLLMs like GPT-4o struggle with temporal reasoning and instructional prediction. We expect LEMON to serve as an extensible and challenging benchmark for advancing multimodal perception, reasoning, and generation in long-form instructional contents.
Parameter-Efficient MoE LoRA for Few-Shot Multi-Style Editing
In recent years, image editing has garnered growing attention. However, general image editing models often fail to produce satisfactory results when confronted with new styles. The challenge lies in how to effectively fine-tune general image editing models to new styles using only a limited amount of paired data. To address this issue, this paper proposes a novel few-shot style editing framework. For this task, we construct a benchmark dataset that encompasses five distinct styles. Correspondingly, we propose a parameter-efficient multi-style Mixture-of-Experts Low-Rank Adaptation (MoE LoRA) with style-specific and style-shared routing mechanisms for jointly fine-tuning multiple styles. The style-specific routing ensures that different styles do not interfere with one another, while the style-shared routing adaptively allocates shared MoE LoRAs to learn common patterns. Our MoE LoRA can automatically determine the optimal ranks for each layer through a novel metric-guided approach that estimates the importance score of each single-rank component. Additionally, we explore the optimal location to insert LoRA within the Diffusion in Transformer (DiT) model and integrate adversarial learning and flow matching to guide the diffusion training process. Experimental results demonstrate that our proposed method outperforms existing state-of-the-art approaches with significantly fewer LoRA parameters. Our code and dataset are available at https://github.com/cao-cong/FSMSE.
comment: Technical report
MLVTG: Mamba-Based Feature Alignment and LLM-Driven Purification for Multi-Modal Video Temporal Grounding
Video Temporal Grounding (VTG), which aims to localize video clips corresponding to natural language queries, is a fundamental yet challenging task in video understanding. Existing Transformer-based methods often suffer from redundant attention and suboptimal multi-modal alignment. To address these limitations, we propose MLVTG, a novel framework that integrates two key modules: MambaAligner and LLMRefiner. MambaAligner uses stacked Vision Mamba blocks as a backbone instead of Transformers to model temporal dependencies and extract robust video representations for multi-modal alignment. LLMRefiner leverages the specific frozen layer of a pre-trained Large Language Model (LLM) to implicitly transfer semantic priors, enhancing multi-modal alignment without fine-tuning. This dual alignment strategy, temporal modeling via structured state-space dynamics and semantic purification via textual priors, enables more precise localization. Extensive experiments on QVHighlights, Charades-STA, and TVSum demonstrate that MLVTG achieves state-of-the-art performance and significantly outperforms existing baselines.
Will It Zero-Shot?: Predicting Zero-Shot Classification Performance For Arbitrary Queries
Vision-Language Models like CLIP create aligned embedding spaces for text and images, making it possible for anyone to build a visual classifier by simply naming the classes they want to distinguish. However, a model that works well in one domain may fail in another, and non-expert users have no straightforward way to assess whether their chosen VLM will work on their problem. We build on prior work using text-only comparisons to evaluate how well a model works for a given natural language task, and explore approaches that also generate synthetic images relevant to that task to evaluate and refine the prediction of zero-shot accuracy. We show that generated imagery to the baseline text-only scores substantially improves the quality of these predictions. Additionally, it gives a user feedback on the kinds of images that were used to make the assessment. Experiments on standard CLIP benchmark datasets demonstrate that the image-based approach helps users predict, without any labeled examples, whether a VLM will be effective for their application.
Assessing the Effectiveness of Deep Embeddings for Tree Species Classification in the Dutch Forest Inventory
National Forest Inventory serves as the primary source of forest information, however, maintaining these inventories requires labor-intensive on-site campaigns by forestry experts to identify and document tree species. Embeddings from deep pre-trained remote sensing models offer new opportunities to update NFIs more frequently and at larger scales. While training new deep learning models on few data points remains challenging, we show that using pre-computed embeddings can proven effective for distinguishing tree species through seasonal canopy reflectance patternsin combination with Random Forest. This work systematically investigates how deep embeddings improve tree species classification accuracy in the Netherlands with few annotated data. We evaluate this question on three embedding models: Presto, Alpha Earth, and Tessera, using three tree species datasets of varying difficulty. Data-wise, we compare the available embeddings from Alpha Earth and Tessera with dynamically calculated embeddings from a pre-trained Presto model. Our results demonstrate that fine-tuning a publicly available remote sensing time series pre-trained model outperforms the current state-of-the-art in NFI classification in the Netherlands, yielding performance gains of approximately 2-9 percentage points across datasets and evaluation metrics. This indicates that classic hand-defined features are too simple for this task and highlights the potential of using deep embeddings for data-limited applications such as NFI classification. By leveraging openly available satellite data and deep embeddings from pre-trained models, this approach significantly improves classification accuracy compared to traditional methods and can effectively complement existing forest inventory processes.
ReVision: A Dataset and Baseline VLM for Privacy-Preserving Task-Oriented Visual Instruction Rewriting
Efficient and privacy-preserving multimodal interaction is essential as AR, VR, and modern smartphones with powerful cameras become primary interfaces for human-computer communication. Existing powerful large vision-language models (VLMs) enabling multimodal interaction often rely on cloud-based processing, raising significant concerns about (1) visual privacy by transmitting sensitive vision data to servers, and (2) their limited real-time, on-device usability. This paper explores Visual Instruction Rewriting, a novel approach that transforms multimodal instructions into text-only commands, allowing seamless integration of lightweight on-device instruction rewriter VLMs (250M parameters) with existing conversational AI systems, enhancing vision data privacy. To achieve this, we present a dataset of over 39,000 examples across 14 domains and develop a compact VLM, pretrained on image captioning datasets and fine-tuned for instruction rewriting. Experimental results, evaluated through NLG metrics such as BLEU, METEOR, and ROUGE, along with semantic parsing analysis, demonstrate that even a quantized version of the model (<500MB storage footprint) can achieve effective instruction rewriting, thus enabling privacy-focused, multimodal AI applications.
comment: In Proceedings of the IJCNLP-AACL 2025
SCoPE VLM: Selective Context Processing for Efficient Document Navigation in Vision-Language Models
Understanding long-context visual information remains a fundamental challenge for vision-language models, particularly in agentic tasks such as GUI control and web navigation. While web pages and GUI environments are inherently structured documents, current VLMs typically neglect decision-oriented document understanding in their training objectives. Existing approaches primarily extend visual embeddings to process long, high-resolution inputs, but these methods are memory-intensive and impractical for locally deployable solutions. To address these issues, we propose SCoPE VLM, a document navigation expert that leverages a novel Chain of Scroll mechanism to selectively and recursively navigate documents, focusing exclusively on relevant segments. We introduce a dedicated data generation pipeline to construct informative Chain of Scroll trajectories and Episodic Group Relative Policy Optimization, a tailored reinforcement learning method to bridge the gap between training and inference. Our method substantially reduces memory usage and effectively models human-like reading behaviors. To the best of our knowledge, SCoPE VLM is the first framework to explicitly model agentic reading patterns in multi-page document question answering, advancing the capabilities of multimodal agents.
DisCoPatch: Taming Adversarially-driven Batch Statistics for Improved Out-of-Distribution Detection ICCV 2025
Out-of-distribution (OOD) detection holds significant importance across many applications. While semantic and domain-shift OOD problems are well-studied, this work focuses on covariate shifts - subtle variations in the data distribution that can degrade machine learning performance. We hypothesize that detecting these subtle shifts can improve our understanding of in-distribution boundaries, ultimately improving OOD detection. In adversarial discriminators trained with Batch Normalization (BN), real and adversarial samples form distinct domains with unique batch statistics - a property we exploit for OOD detection. We introduce DisCoPatch, an unsupervised Adversarial Variational Autoencoder (VAE) framework that harnesses this mechanism. During inference, batches consist of patches from the same image, ensuring a consistent data distribution that allows the model to rely on batch statistics. DisCoPatch uses the VAE's suboptimal outputs (generated and reconstructed) as negative samples to train the discriminator, thereby improving its ability to delineate the boundary between in-distribution samples and covariate shifts. By tightening this boundary, DisCoPatch achieves state-of-the-art results in public OOD detection benchmarks. The proposed model not only excels in detecting covariate shifts, achieving 95.5% AUROC on ImageNet-1K(-C) but also outperforms all prior methods on public Near-OOD (95.0%) benchmarks. With a compact model size of 25MB, it achieves high OOD detection performance at notably lower latency than existing methods, making it an efficient and practical solution for real-world OOD detection applications. The code is publicly available.
comment: ICCV 2025
Activation Function Design Sustains Plasticity in Continual Learning
In independent, identically distributed (i.i.d.) training regimes, activation functions have been benchmarked extensively, and their differences often shrink once model size and optimization are tuned. In continual learning, however, the picture is different: beyond catastrophic forgetting, models can progressively lose the ability to adapt (referred to as loss of plasticity) and the role of the non-linearity in this failure mode remains underexplored. We show that activation choice is a primary, architecture-agnostic lever for mitigating plasticity loss. Building on a property-level analysis of negative-branch shape and saturation behavior, we introduce two drop-in nonlinearities (Smooth-Leaky and Randomized Smooth-Leaky) and evaluate them in two complementary settings: (i) supervised class-incremental benchmarks and (ii) reinforcement learning with non-stationary MuJoCo environments designed to induce controlled distribution and dynamics shifts. We also provide a simple stress protocol and diagnostics that link the shape of the activation to the adaptation under change. The takeaway is straightforward: thoughtful activation design offers a lightweight, domain-general way to sustain plasticity in continual learning without extra capacity or task-specific tuning.
Mitigating Attention Sinks and Massive Activations in Audio-Visual Speech Recognition with LLMs
Large language models (LLMs) have recently advanced auditory speech recognition (ASR), visual speech recognition (VSR), and audio-visual speech recognition (AVSR). However, understanding of their internal dynamics under fine-tuning remains limited. In natural language processing, recent work has revealed attention sinks, tokens that attract disproportionately high attention, and associated massive activations in which some features of sink tokens exhibit huge activation in LLMs. In this work, we are the first to study these phenomena in multimodal speech recognition. Through a detailed analysis of audio-visual LLMs, we identify attention sinks and massive activations not only at the BOS token but also at intermediate low-semantic tokens across ASR, VSR, and AVSR. We show that massive activations originate in the MLP layers and correspond to fixed feature indices across all sink tokens. We further show that intermediate sink tokens exhibit high cosine similarity to the BOS token, thereby amplifying attention and activation. Building on these insights, we introduce a simple decorrelation loss that reduces cosine similarity between BOS and other tokens, effectively mitigating intermediate sinks and massive activations. Furthermore, our method improves word error rate (WER) under high audio-visual feature downsampling while remaining stable at lower downsampling rates.
comment: IEEE ICASSP 2026. The code is available at https://github.com/umbertocappellazzo/Llama-AVSR
Geometry-Grounded Gaussian Splatting
Gaussian Splatting (GS) has demonstrated impressive quality and efficiency in novel view synthesis. However, shape extraction from Gaussian primitives remains an open problem. Due to inadequate geometry parameterization and approximation, existing shape reconstruction methods suffer from poor multi-view consistency and are sensitive to floaters. In this paper, we present a rigorous theoretical derivation that establishes Gaussian primitives as a specific type of stochastic solids. This theoretical framework provides a principled foundation for Geometry-Grounded Gaussian Splatting by enabling the direct treatment of Gaussian primitives as explicit geometric representations. Using the volumetric nature of stochastic solids, our method efficiently renders high-quality depth maps for fine-grained geometry extraction. Experiments show that our method achieves the best shape reconstruction results among all Gaussian Splatting-based methods on public datasets.
comment: 16 pages, 15 figures
NegoCollab: A Common Representation Negotiation Approach for Heterogeneous Collaborative Perception NeurIPS 2025
Collaborative perception improves task performance by expanding the perception range through information sharing among agents. . Immutable heterogeneity poses a significant challenge in collaborative perception, as participating agents may employ different and fixed perception models. This leads to domain gaps in the intermediate features shared among agents, consequently degrading collaborative performance. Aligning the features of all agents to a common representation can eliminate domain gaps with low training cost. However, in existing methods, the common representation is designated as the representation of a specific agent, making it difficult for agents with significant domain discrepancies from this specific agent to achieve proper alignment. This paper proposes NegoCollab, a heterogeneous collaboration method based on the negotiated common representation. It introduces a negotiator during training to derive the common representation from the local representations of each modality's agent, effectively reducing the inherent domain gap with the various local representations. In NegoCollab, the mutual transformation of features between the local representation space and the common representation space is achieved by a pair of sender and receiver. To better align local representations to the common representation containing multimodal information, we introduce structural alignment loss and pragmatic alignment loss in addition to the distribution alignment loss to supervise the training. This enables the knowledge in the common representation to be fully distilled into the sender.
comment: 22 pages, Accepted by NeurIPS 2025
Leveraging Convolutional and Graph Networks for an Unsupervised Remote Sensing Labelling Tool
Machine learning for remote sensing imaging relies on up-to-date and accurate labels for model training and testing. Labelling remote sensing imagery is time and cost intensive, requiring expert analysis. Previous labelling tools rely on pre-labelled data for training in order to label new unseen data. In this work, we define an unsupervised pipeline for finding and labelling geographical areas of similar context and content within Sentinel-2 satellite imagery. Our approach removes limitations of previous methods by utilising segmentation with convolutional and graph neural networks to encode a more robust feature space for image comparison. Unlike previous approaches we segment the image into homogeneous regions of pixels that are grouped based on colour and spatial similarity. Graph neural networks are used to aggregate information about the surrounding segments enabling the feature representation to encode the local neighbourhood whilst preserving its own local information. This reduces outliers in the labelling tool, allows users to label at a granular level, and allows a rotationally invariant semantic relationship at the image level to be formed within the encoding space. Our pipeline achieves high contextual consistency, with similarity scores of SSIM = 0.96 and SAM = 0.21 under context-aware evaluation, demonstrating robust organisation of the feature space for interactive labelling.
comment: Accepted for Taylor and Francis, Annals of GIS * Video supplement demonstrating feature-space exploration and interactive labelling is available at: https://youtu.be/GZl1ebZJgEA and is archived at https://doi.org/10.5281/zenodo.16676591
Human Cognitive Benchmarks Reveal Foundational Visual Gaps in MLLMs
Humans develop perception through a bottom-up hierarchy: from basic primitives and Gestalt principles to high-level semantics. In contrast, current Multimodal Large Language Models (MLLMs) are trained directly on complex downstream tasks, often bypassing these foundational visual capabilities. To systematically investigate this gap, we introduce VisFactor, a benchmark that digitizes 20 vision-centric subtests from FRCT, a well-established cognitive psychology assessment spanning four domains of human visual cognition. Furthermore, we design algorithms to automatically construct and validate unlimited test cases with controllable difficulty. Using VisFactor, we evaluate 23 frontier MLLMs, including both proprietary (e.g., GPT, Gemini) and open-source (e.g., LLaMA, Qwen) models. The best model achieves a score of only 30.17%. Models consistently fail on tasks such as mental rotation, spatial relation inference, and figure-ground discrimination, regardless of model size or prompting strategy. These findings suggest that performance improvements on existing general benchmarks might represent castles in the air instead of a genuine mastery of human-like visual cognition.
comment: Update: Evaluated 23 SOTA MLLMs
Atomic Depth Estimation From Noisy Electron Microscopy Data Via Deep Learning
We present a novel approach for extracting 3D atomic-level information from transmission electron microscopy (TEM) images affected by significant noise. The approach is based on formulating depth estimation as a semantic segmentation problem. We address the resulting segmentation problem by training a deep convolutional neural network to generate pixel-wise depth segmentation maps using simulated data corrupted by synthetic noise. The proposed method was applied to estimate the depth of atomic columns in CeO2 nanoparticles from simulated images and real-world TEM data. Our experiments show that the resulting depth estimates are accurate, calibrated and robust to noise.
Bounding Box-Guided Diffusion for Synthesizing Industrial Images and Segmentation Map CVPR 2025
Synthetic dataset generation in Computer Vision, particularly for industrial applications, is still underexplored. Industrial defect segmentation, for instance, requires highly accurate labels, yet acquiring such data is costly and time-consuming. To address this challenge, we propose a novel diffusion-based pipeline for generating high-fidelity industrial datasets with minimal supervision. Our approach conditions the diffusion model on enriched bounding box representations to produce precise segmentation masks, ensuring realistic and accurately localized defect synthesis. Compared to existing layout-conditioned generative methods, our approach improves defect consistency and spatial accuracy. We introduce two quantitative metrics to evaluate the effectiveness of our method and assess its impact on a downstream segmentation task trained on real and synthetic data. Our results demonstrate that diffusion-based synthesis can bridge the gap between artificial and real-world industrial data, fostering more reliable and cost-efficient segmentation models. The code is publicly available at https://github.com/covisionlab/diffusion_labeling.
comment: Accepted at Synthetic Data for Computer Vision Workshop - CVPR 2025
LangForce: Bayesian Decomposition of Vision Language Action Models via Latent Action Queries
Vision-Language-Action (VLA) models have shown promise in robot manipulation but often struggle to generalize to new instructions or complex multi-task scenarios. We identify a critical pathology in current training paradigms where goal-driven data collection creates a dataset bias. In such datasets, language instructions are highly predictable from visual observations alone, causing the conditional mutual information between instructions and actions to vanish, a phenomenon we term Information Collapse. Consequently, models degenerate into vision-only policies that ignore language constraints and fail in out-of-distribution (OOD) settings. To address this, we propose LangForce, a novel framework that enforces instruction following via Bayesian decomposition. By introducing learnable Latent Action Queries, we construct a dual-branch architecture to estimate both a vision-only prior $p(a \mid v)$ and a language-conditioned posterior $π(a \mid v, \ell)$. We then optimize the policy to maximize the conditional Pointwise Mutual Information (PMI) between actions and instructions. This objective effectively penalizes the vision shortcut and rewards actions that explicitly explain the language command. Without requiring new data, LangForce significantly improves generalization. Extensive experiments across on SimplerEnv and RoboCasa demonstrate substantial gains, including an 11.3% improvement on the challenging OOD SimplerEnv benchmark, validating the ability of our approach to robustly ground language in action.
MSCloudCAM: Multi-Scale Context Adaptation with Convolutional Cross-Attention for Multispectral Cloud Segmentation
Clouds remain a major obstacle in optical satellite imaging, limiting accurate environmental and climate analysis. To address the strong spectral variability and the large scale differences among cloud types, we propose MSCloudCAM, a novel multi-scale context adapter network with convolution based cross-attention tailored for multispectral and multi-sensor cloud segmentation. A key contribution of MSCloudCAM is the explicit modeling of multiple complementary multi-scale context extractors. And also, rather than simply stacking or concatenating their outputs, our formulation uses one extractor's fine-resolution features and the other extractor's global contextual representations enabling dynamic, scale-aware feature selection. Building on this idea, we design a new convolution-based cross attention adapter that effectively fuses localized, detailed information with broader multi-scale context. Integrated with a hierarchical vision backbone and refined through channel and spatial attention mechanisms, MSCloudCAM achieves strong spectral-spatial discrimination. Experiments on various multisensor datatsets e.g. CloudSEN12 (Sentinel-2) and L8Biome (Landsat-8), demonstrate that MSCloudCAM achieves superior overall segmentation performance and competitive class-wise accuracy compared to recent state-of-the-art models, while maintaining competitive model complexity, highlighting the novelty and effectiveness of the proposed design for large-scale Earth observation.
comment: 6 pages, 3 Figures
JointDiff: Bridging Continuous and Discrete in Multi-Agent Trajectory Generation ICLR 2026
Generative models often treat continuous data and discrete events as separate processes, creating a gap in modeling complex systems where they interact synchronously. To bridge this gap, we introduce JointDiff, a novel diffusion framework designed to unify these two processes by simultaneously generating continuous spatio-temporal data and synchronous discrete events. We demonstrate its efficacy in the sports domain by simultaneously modeling multi-agent trajectories and key possession events. This joint modeling is validated with non-controllable generation and two novel controllable generation scenarios: weak-possessor-guidance, which offers flexible semantic control over game dynamics through a simple list of intended ball possessors, and text-guidance, which enables fine-grained, language-driven generation. To enable the conditioning with these guidance signals, we introduce CrossGuid, an effective conditioning operation for multi-agent domains. We also share a new unified sports benchmark enhanced with textual descriptions for soccer and football datasets. JointDiff achieves state-of-the-art performance, demonstrating that joint modeling is crucial for building realistic and controllable generative models for interactive systems.
comment: Accepted at ICLR 2026
Semantic-aware Random Convolution and Source Matching for Domain Generalization in Medical Image Segmentation
We tackle the challenging problem of single-source domain generalization (DG) for medical image segmentation, where we train a network on one domain (e.g., CT) and directly apply it to a different domain (e.g., MR) without adapting the model and without requiring images or annotations from the new domain during training. Our method diversifies the source domain through semantic-aware random convolution, where different regions of a source image are augmented differently at training-time, based on their annotation labels. At test-time, we complement the randomization of the training domain via mapping the intensity of target domain images, making them similar to source domain data. We perform a comprehensive evaluation on a variety of cross-modality and cross-center generalization settings for abdominal, whole-heart and prostate segmentation, where we outperform previous DG techniques in a vast majority of experiments. Additionally, we also investigate our method when training on whole-heart CT or MR data and testing on the diastolic and systolic phase of cine MR data captured with different scanner hardware. Overall, our evaluation shows that our method achieves new state-of-the-art performance in DG for medical image segmentation, even matching the performance of the in-domain baseline in several settings. We will release our source code upon acceptance of this manuscript.
Learning to Detect Unseen Jailbreak Attacks in Large Vision-Language Models
Despite extensive alignment efforts, Large Vision-Language Models (LVLMs) remain vulnerable to jailbreak attacks. To mitigate these risks, existing detection methods are essential, yet they face two major challenges: generalization and accuracy. While learning-based methods trained on specific attacks fail to generalize to unseen attacks, learning-free methods based on hand-crafted heuristics suffer from limited accuracy and reduced efficiency. To address these limitations, we propose Learning to Detect (LoD), a learnable framework that eliminates the need for any attack data or hand-crafted heuristics. LoD operates by first extracting layer-wise safety representations directly from the model's internal activations using Multi-modal Safety Concept Activation Vectors classifiers, and then converting the high-dimensional representations into a one-dimensional anomaly score for detection via a Safety Pattern Auto-Encoder. Extensive experiments demonstrate that LoD consistently achieves state-of-the-art detection performance (AUROC) across diverse unseen jailbreak attacks on multiple LVLMs, while also significantly improving efficiency. Code is available at https://anonymous.4open.science/r/Learning-to-Detect-51CB.
comment: 12 pages; Previously this version appeared as arXiv:2510.15430 which was submitted as a new work by accident
Adaptive Multimodal Person Recognition: A Robust Framework for Handling Missing Modalities
Person identification systems often rely on audio, visual, or behavioral cues, but real-world conditions frequently present with missing or degraded modalities. To address this challenge, we propose a multimodal person identification framework incorporating upper-body motion, face, and voice. Experimental results demonstrate that body motion outperforms traditional modalities such as face and voice in within-session evaluations, while serving as a complementary cue that enhances performance in multi-session scenarios. Our model employs a unified hybrid fusion strategy, fusing both feature-level and score-level information to maximize representational richness and decision accuracy. Specifically, it leverages multi-task learning to process modalities independently, followed by cross-attention and gated fusion mechanisms to exploit both unimodal information and cross-modal interactions. Finally, a confidence-weighted strategy and mistake-correction mechanism dynamically adapt to missing data, ensuring that our single classification head achieves optimal performance even in unimodal and bimodal scenarios. We evaluate our method on CANDOR, a newly introduced interview-based multimodal dataset, which we benchmark in this work for the first time. Our results demonstrate that the proposed trimodal system achieves 99.51% Top-1 accuracy on person identification tasks. In addition, we evaluate our model on the VoxCeleb1 dataset as a widely used evaluation protocol and reach 99.92% accuracy in bimodal mode, outperforming conventional approaches. Moreover, we show that our system maintains high accuracy even when one or two modalities are unavailable, making it a robust solution for real-world person recognition applications. The code and data for this work are publicly available.
comment: 9 pages and 8 tables
MV-S2V: Multi-View Subject-Consistent Video Generation
Existing Subject-to-Video Generation (S2V) methods have achieved high-fidelity and subject-consistent video generation, yet remain constrained to single-view subject references. This limitation renders the S2V task reducible to an S2I + I2V pipeline, failing to exploit the full potential of video subject control. In this work, we propose and address the challenging Multi-View S2V (MV-S2V) task, which synthesizes videos from multiple reference views to enforce 3D-level subject consistency. Regarding the scarcity of training data, we first develop a synthetic data curation pipeline to generate highly customized synthetic data, complemented by a small-scale real-world captured dataset to boost the training of MV-S2V. Another key issue lies in the potential confusion between cross-subject and cross-view references in conditional generation. To overcome this, we further introduce Temporally Shifted RoPE (TS-RoPE) to distinguish between different subjects and distinct views of the same subject in reference conditioning. Our framework achieves superior 3D subject consistency w.r.t. multi-view reference images and high-quality visual outputs, establishing a new meaningful direction for subject-driven video generation. Our project page is available at: https://szy-young.github.io/mv-s2v
comment: 13 pages, 9 figures
iFSQ: Improving FSQ for Image Generation with 1 Line of Code
The field of image generation is currently bifurcated into autoregressive (AR) models operating on discrete tokens and diffusion models utilizing continuous latents. This divide, rooted in the distinction between VQ-VAEs and VAEs, hinders unified modeling and fair benchmarking. Finite Scalar Quantization (FSQ) offers a theoretical bridge, yet vanilla FSQ suffers from a critical flaw: its equal-interval quantization can cause activation collapse. This mismatch forces a trade-off between reconstruction fidelity and information efficiency. In this work, we resolve this dilemma by simply replacing the activation function in original FSQ with a distribution-matching mapping to enforce a uniform prior. Termed iFSQ, this simple strategy requires just one line of code yet mathematically guarantees both optimal bin utilization and reconstruction precision. Leveraging iFSQ as a controlled benchmark, we uncover two key insights: (1) The optimal equilibrium between discrete and continuous representations lies at approximately 4 bits per dimension. (2) Under identical reconstruction constraints, AR models exhibit rapid initial convergence, whereas diffusion models achieve a superior performance ceiling, suggesting that strict sequential ordering may limit the upper bounds of generation quality. Finally, we extend our analysis by adapting Representation Alignment (REPA) to AR models, yielding LlamaGen-REPA. Codes is available at https://github.com/Tencent-Hunyuan/iFSQ
comment: Technical Report; Fixed eq.7 & 8 and corresponding content
SWA-LDM: Toward Stealthy Watermarks for Latent Diffusion Models
Latent Diffusion Models (LDMs) have established themselves as powerful tools in the rapidly evolving field of image generation, capable of producing highly realistic images. However, their widespread adoption raises critical concerns about copyright infringement and the misuse of generated content. Watermarking techniques have emerged as a promising solution, enabling copyright identification and misuse tracing through imperceptible markers embedded in generated images. Among these, latent-based watermarking techniques are particularly promising, as they embed watermarks directly into the latent noise without altering the underlying LDM architecture. In this work, we demonstrate that such latent-based watermarks are practically vulnerable to detection and compromise through systematic analysis of output images' statistical patterns for the first time. To counter this, we propose SWA-LDM (Stealthy Watermark for LDM), a lightweight framework that enhances stealth by dynamically randomizing the embedded watermarks using the Gaussian-distributed latent noise inherent to diffusion models. By embedding unique, pattern-free signatures per image, SWA-LDM eliminates detectable artifacts while preserving image quality and extraction robustness. Experiments demonstrate an average of 20% improvement in stealth over state-of-the-art methods, enabling secure deployment of watermarked generative AI in real-world applications.
comment: 12 pages, 5 figures
Self-Evolving Vision-Language Models for Image Quality Assessment via Voting and Ranking ICLR 2026
Improving vision-language models (VLMs) in the post-training stage typically relies on supervised fine-tuning or reinforcement learning, methods that necessitate costly, human-annotated data. While self-supervised techniques have proven effective for enhancing reasoning capabilities, their application to perceptual domains such as image quality assessment (IQA) remains largely unexplored. In this work, we introduce EvoQuality, a novel framework that enables a VLM to autonomously refine its quality perception capabilities without any ground-truth labels. EvoQuality adapts the principle of self-consistency to the ranking-based nature of IQA. It generates pseudo-labels by performing pairwise majority voting on the VLM's own outputs to establish a consensus on relative quality. These pseudo-rankings are then formulated into a fidelity reward that guides the model's iterative evolution through group relative policy optimization (GRPO). By iteratively leveraging its own predictions, EvoQuality progressively refines the VLM's perceptual capability. Extensive experiments show that EvoQuality boosts the base VLM's zero-shot performance by 31.8% on PLCC across diverse IQA benchmarks. Remarkably, despite being entirely self-supervised, EvoQuality achieves performance that is competitive with, or even surpasses, state-of-the-art supervised VLM-based IQA models, outperforming these models on 5 out of 7 IQA benchmarks. Furthermore, the framework demonstrates significant flexibility, allowing it to be stacked with pre-trained IQA models to bolster generalization on unseen datasets.
comment: Accepted to ICLR 2026
There and Back Again: On the relation between Noise and Image Inversions in Diffusion Models ICLR 2026
Diffusion Models achieve state-of-the-art performance in generating new samples but lack a low-dimensional latent space that encodes the data into editable features. Inversion-based methods address this by reversing the denoising trajectory, transferring images to their approximated starting noise. In this work, we thoroughly analyze this procedure and focus on the relation between the initial noise, the generated samples, and their corresponding latent encodings obtained through the DDIM inversion. First, we show that latents exhibit structural patterns in the form of less diverse noise predicted for smooth image areas (e.g., plain sky). Through a series of analyses, we trace this issue to the first inversion steps, which fail to provide accurate and diverse noise. Consequently, the DDIM inversion space is notably less manipulative than the original noise. We show that prior inversion methods do not fully resolve this issue, but our simple fix, where we replace the first DDIM Inversion steps with a forward diffusion process, successfully decorrelates latent encodings and enables higher quality editions and interpolations. The code is available at https://github.com/luk-st/taba.
comment: ICLR 2026
Distillation-based Layer Dropping (DLD): Effective End-to-end Framework for Dynamic Speech Networks
Edge devices operate in constrained and varying resource settings, requiring dynamic architectures that can adapt to limitations of the available resources. To meet such demands, layer dropping ($\mathcal{LD}$) approach is typically used to transform static models into dynamic ones by skipping parts of the network along with reducing overall computational complexity. However, existing $\mathcal{LD}$ methods greatly impact the dynamic model's performance for low and high dropping cases, deteriorating the performance-computation trade-off. To this end, we propose a distillation-based layer dropping (DLD) framework that effectively combines the capabilities of knowledge distillation and $\mathcal{LD}$ in an end-to-end fashion, thereby achieving state-of-the-art performance for dynamic speech networks. Comprehensive experimentation utilizing well-known speech recognition methods, including conformer and WavLM, on three public benchmarks demonstrates the effectiveness of our framework, reducing the word error rate by $9.32\%$ and $2.25\%$ for high and no dropping cases with $33.3\%$ reduction in training time.
comment: Accepted at ICASSP 2026
Diffusion models for multivariate subsurface generation and efficient probabilistic inversion
Diffusion models offer stable training and state-of-the-art performance for deep generative modeling tasks. Here, we consider their use in the context of multivariate subsurface modeling and probabilistic inversion. We first demonstrate that diffusion models enhance multivariate modeling capabilities compared to variational autoencoders and generative adversarial networks. In diffusion modeling, the generative process involves a comparatively large number of time steps with update rules that can be modified to account for conditioning data. We propose different corrections to the popular Diffusion Posterior Sampling approach by Chung et al. (2023). In particular, we introduce a likelihood approximation accounting for the noise-contamination that is inherent in diffusion modeling. We assess performance in a multivariate geological scenario involving facies and correlated acoustic impedance. Conditional modeling is demonstrated using both local hard data (well logs) and nonlinear geophysics (fullstack seismic data). Our tests show significantly improved statistical robustness, enhanced sampling of the posterior probability density function and reduced computational costs, compared to the original approach. The method can be used with both hard and indirect conditioning data, individually or simultaneously. As the inversion is included within the diffusion process, it is faster than other methods requiring an outer-loop around the generative model, such as Markov chain Monte Carlo.
comment: 35 p., 16 figs. This updated version corrects an error with the analysis of the denoising scores' magnitudes in the results section. The discussion and conclusions of our study remain unchanged. The scores' trends were erroneously reported with inverted time-step order, now fixed in Figure 5a and b (now with the correct increasing trends) and in the corresponding analysis in the Results section
Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity ICLR 2022
The success of deep ensembles on improving predictive performance, uncertainty estimation, and out-of-distribution robustness has been extensively studied in the machine learning literature. Albeit the promising results, naively training multiple deep neural networks and combining their predictions at inference leads to prohibitive computational costs and memory requirements. Recently proposed efficient ensemble approaches reach the performance of the traditional deep ensembles with significantly lower costs. However, the training resources required by these approaches are still at least the same as training a single dense model. In this work, we draw a unique connection between sparse neural network training and deep ensembles, yielding a novel efficient ensemble learning framework called FreeTickets. Instead of training multiple dense networks and averaging them, we directly train sparse subnetworks from scratch and extract diverse yet accurate subnetworks during this efficient, sparse-to-sparse training. Our framework, FreeTickets, is defined as the ensemble of these relatively cheap sparse subnetworks. Despite being an ensemble method, FreeTickets has even fewer parameters and training FLOPs than a single dense model. This seemingly counter-intuitive outcome is due to the ultra training/inference efficiency of dynamic sparse training. FreeTickets surpasses the dense baseline in all the following criteria: prediction accuracy, uncertainty estimation, out-of-distribution (OoD) robustness, as well as efficiency for both training and inference. Impressively, FreeTickets outperforms the naive deep ensemble with ResNet50 on ImageNet using around only 1/5 of the training FLOPs required by the latter. We have released our source code at https://github.com/VITA-Group/FreeTickets.
comment: published in International Conference on Learning Representations (ICLR 2022)
LL-GaussianMap: Zero-shot Low-Light Image Enhancement via 2D Gaussian Splatting Guided Gain Maps
Significant progress has been made in low-light image enhancement with respect to visual quality. However, most existing methods primarily operate in the pixel domain or rely on implicit feature representations. As a result, the intrinsic geometric structural priors of images are often neglected. 2D Gaussian Splatting (2DGS) has emerged as a prominent explicit scene representation technique characterized by superior structural fitting capabilities and high rendering efficiency. Despite these advantages, the utilization of 2DGS in low-level vision tasks remains unexplored. To bridge this gap, LL-GaussianMap is proposed as the first unsupervised framework incorporating 2DGS into low-light image enhancement. Distinct from conventional methodologies, the enhancement task is formulated as a gain map generation process guided by 2DGS primitives. The proposed method comprises two primary stages. First, high-fidelity structural reconstruction is executed utilizing 2DGS. Then, data-driven enhancement dictionary coefficients are rendered via the rasterization mechanism of Gaussian splatting through an innovative unified enhancement module. This design effectively incorporates the structural perception capabilities of 2DGS into gain map generation, thereby preserving edges and suppressing artifacts during enhancement. Additionally, the reliance on paired data is circumvented through unsupervised learning. Experimental results demonstrate that LL-GaussianMap achieves superior enhancement performance with an extremely low storage footprint, highlighting the effectiveness of explicit Gaussian representations for image enhancement.
AI-generated data contamination erodes pathological variability and diagnostic reliability
Generative artificial intelligence (AI) is rapidly populating medical records with synthetic content, creating a feedback loop where future models are increasingly at risk of training on uncurated AI-generated data. However, the clinical consequences of this AI-generated data contamination remain unexplored. Here, we show that in the absence of mandatory human verification, this self-referential cycle drives a rapid erosion of pathological variability and diagnostic reliability. By analysing more than 800,000 synthetic data points across clinical text generation, vision-language reporting, and medical image synthesis, we find that models progressively converge toward generic phenotypes regardless of the model architecture. Specifically, rare but critical findings, including pneumothorax and effusions, vanish from the synthetic content generated by AI models, while demographic representations skew heavily toward middle-aged male phenotypes. Crucially, this degradation is masked by false diagnostic confidence; models continue to issue reassuring reports while failing to detect life-threatening pathology, with false reassurance rates tripling to 40%. Blinded physician evaluation confirms that this decoupling of confidence and accuracy renders AI-generated documentation clinically useless after just two generations. We systematically evaluate three mitigation strategies, finding that while synthetic volume scaling fails to prevent collapse, mixing real data with quality-aware filtering effectively preserves diversity. Ultimately, our results suggest that without policy-mandated human oversight, the deployment of generative AI threatens to degrade the very healthcare data ecosystems it relies upon.
comment: *Corresponding author: Dianbo Liu (dianbo@nus.edu.sg)
Universal Multi-Domain Translation via Diffusion Routers ICLR 2026
Multi-domain translation (MDT) aims to learn translations between multiple domains, yet existing approaches either require fully aligned tuples or can only handle domain pairs seen in training, limiting their practicality and excluding many cross-domain mappings. We introduce universal MDT (UMDT), a generalization of MDT that seeks to translate between any pair of $K$ domains using only $K-1$ paired datasets with a central domain. To tackle this problem, we propose Diffusion Router (DR), a unified diffusion-based framework that models all central$\leftrightarrow$non-central translations with a single noise predictor conditioned on the source and target domain labels. DR enables indirect non-central translations by routing through the central domain. We further introduce a novel scalable learning strategy with a variational-bound objective and an efficient Tweedie refinement procedure to support direct non-central mappings. Through evaluation on three large-scale UMDT benchmarks, DR achieves state-of-the-art results for both indirect and direct translations, while lowering sampling cost and unlocking novel tasks such as sketch$\leftrightarrow$segmentation. These results establish DR as a scalable and versatile framework for universal translation across multiple domains.
comment: Accepted in ICLR 2026
SeNeDiF-OOD: Semantic Nested Dichotomy Fusion for Out-of-Distribution Detection Methodology in Open-World Classification. A Case Study on Monument Style Classification
Out-of-distribution (OOD) detection is a fundamental requirement for the reliable deployment of artificial intelligence applications in open-world environments. However, addressing the heterogeneous nature of OOD data, ranging from low-level corruption to semantic shifts, remains a complex challenge that single-stage detectors often fail to resolve. To address this issue, we propose SeNeDiF-OOD, a novel methodology based on Semantic Nested Dichotomy Fusion. This framework decomposes the detection task into a hierarchical structure of binary fusion nodes, where each layer is designed to integrate decision boundaries aligned with specific levels of semantic abstraction. To validate the proposed framework, we present a comprehensive case study using MonuMAI, a real-world architectural style recognition system exposed to an open environment. This application faces a diverse range of inputs, including non-monument images, unknown architectural styles, and adversarial attacks, making it an ideal testbed for our proposal. Through extensive experimental evaluation in this domain, results demonstrate that our hierarchical fusion methodology significantly outperforms traditional baselines, effectively filtering these diverse OOD categories while preserving in-distribution performance.
comment: 28 pages
Gradient-Direction-Aware Density Control for 3D Gaussian Splatting
The emergence of 3D Gaussian Splatting (3DGS) has significantly advanced Novel View Synthesis (NVS) through explicit scene representation, enabling real-time photorealistic rendering. However, existing approaches manifest two critical limitations in complex scenarios: (1) Over-reconstruction occurs when persistent large Gaussians cannot meet adaptive splitting thresholds during density control. This is exacerbated by conflicting gradient directions that prevent effective splitting of these Gaussians; (2) Over-densification of Gaussians occurs in regions with aligned gradient aggregation, leading to redundant component proliferation. This redundancy significantly increases memory overhead due to unnecessary data retention. We present Gradient-Direction-Aware Gaussian Splatting (GDAGS) to address these challenges. Our key innovations: the Gradient Coherence Ratio (GCR), computed through normalized gradient vector norms, which explicitly discriminates Gaussians with concordant versus conflicting gradient directions; and a nonlinear dynamic weighting mechanism leverages the GCR to enable gradient-direction-aware density control. Specifically, GDAGS prioritizes conflicting-gradient Gaussians during splitting operations to enhance geometric details while suppressing redundant concordant-direction Gaussians. Conversely, in cloning processes, GDAGS promotes concordant-direction Gaussian densification for structural completion while preventing conflicting-direction Gaussian overpopulation. Comprehensive evaluations across diverse real-world benchmarks demonstrate that GDAGS achieves superior rendering quality while effectively mitigating over-reconstruction, suppressing over-densification, and constructing compact scene representations.
MGPC: Multimodal Network for Generalizable Point Cloud Completion With Modality Dropout and Progressive Decoding
Point cloud completion aims to recover complete 3D geometry from partial observations caused by limited viewpoints and occlusions. Existing learning-based works, including 3D Convolutional Neural Network (CNN)-based, point-based, and Transformer-based methods, have achieved strong performance on synthetic benchmarks. However, due to the limitations of modality, scalability, and generative capacity, their generalization to novel objects and real-world scenarios remains challenging. In this paper, we propose MGPC, a generalizable multimodal point cloud completion framework that integrates point clouds, RGB images, and text within a unified architecture. MGPC introduces an innovative modality dropout strategy, a Transformer-based fusion module, and a novel progressive generator to improve robustness, scalability, and geometric modeling capability. We further develop an automatic data generation pipeline and construct MGPC-1M, a large-scale benchmark with over 1,000 categories and one million training pairs. Extensive experiments on MGPC-1M and in-the-wild data demonstrate that the proposed method consistently outperforms prior baselines and exhibits strong generalization under real-world conditions.
comment: Code and dataset are available at https://github.com/L-J-Yuan/MGPC
DiffInk: Glyph- and Style-Aware Latent Diffusion Transformer for Text to Online Handwriting Generation ICLR 2026
Deep generative models have advanced text-to-online handwriting generation (TOHG), which aims to synthesize realistic pen trajectories conditioned on textual input and style references. However, most existing methods still primarily focus on character- or word-level generation, resulting in inefficiency and a lack of holistic structural modeling when applied to full text lines. To address these issues, we propose DiffInk, the first latent diffusion Transformer framework for full-line handwriting generation. We first introduce InkVAE, a novel sequential variational autoencoder enhanced with two complementary latent-space regularization losses: (1) an OCR-based loss enforcing glyph-level accuracy, and (2) a style-classification loss preserving writing style. This dual regularization yields a semantically structured latent space where character content and writer styles are effectively disentangled. We then introduce InkDiT, a novel latent diffusion Transformer that integrates target text and reference styles to generate coherent pen trajectories. Experimental results demonstrate that DiffInk outperforms existing state-of-the-art methods in both glyph accuracy and style fidelity, while significantly improving generation efficiency.
comment: Accepted by ICLR 2026
R-Meshfusion: Reinforcement Learning Powered Sparse-View Mesh Reconstruction with Diffusion Priors
Mesh reconstruction from multi-view images is a fundamental problem in computer vision, but its performance degrades significantly under sparse-view conditions, especially in unseen regions where no ground-truth observations are available. While recent advances in diffusion models have demonstrated strong capabilities in synthesizing novel views from limited inputs, their outputs often suffer from visual artifacts and lack 3D consistency, posing challenges for reliable mesh optimization. In this paper, we propose a novel framework that leverages diffusion models to enhance sparse-view mesh reconstruction in a principled and reliable manner. To address the instability of diffusion outputs, we propose a Consensus Diffusion Module that filters unreliable generations via interquartile range (IQR) analysis and performs variance-aware image fusion to produce robust pseudo-supervision. Building on this, we design an online reinforcement learning strategy based on the Upper Confidence Bound (UCB) to adaptively select the most informative viewpoints for enhancement, guided by diffusion loss. Finally, the fused images are used to jointly supervise a NeRF-based model alongside sparse-view ground truth, ensuring consistency across both geometry and appearance. Extensive experiments demonstrate that our method achieves significant improvements in both geometric quality and rendering quality.
comment: needs to be revised and updated
Revealing Subtle Phenotypes in Small Microscopy Datasets Using Latent Diffusion Models CVPR
Identifying subtle phenotypic variations in cellular images is critical for advancing biological research and accelerating drug discovery. These variations are often masked by the inherent cellular heterogeneity, making it challenging to distinguish differences between experimental conditions. Recent advancements in deep generative models have demonstrated significant potential for revealing these nuanced phenotypes through image translation, opening new frontiers in cellular and molecular biology as well as the identification of novel biomarkers. Among these generative models, diffusion models stand out for their ability to produce high-quality, realistic images. However, training diffusion models typically requires large datasets and substantial computational resources, both of which can be limited in biological research. In this work, we propose a novel approach that leverages pre-trained latent diffusion models to uncover subtle phenotypic changes. We validate our approach qualitatively and quantitatively on several small datasets of microscopy images. Our findings reveal that our approach enables effective detection of phenotypic variations, capturing both visually apparent and imperceptible differences. Ultimately, our results highlight the promising potential of this approach for phenotype detection, especially in contexts constrained by limited data and computational capacity.
comment: Published to CVPR CVDD 2025
A Gift from the Integration of Discriminative and Diffusion-based Generative Learning: Boundary Refinement Remote Sensing Semantic Segmentation
Remote sensing semantic segmentation must address both what the ground objects are within an image and where they are located. Consequently, segmentation models must ensure not only the semantic correctness of large-scale patches (low-frequency information) but also the precise localization of boundaries between patches (high-frequency information). However, most existing approaches rely heavily on discriminative learning, which excels at capturing low-frequency features, while overlooking its inherent limitations in learning high-frequency features for semantic segmentation. Recent studies have revealed that diffusion generative models excel at generating high-frequency details. Our theoretical analysis confirms that the diffusion denoising process significantly enhances the model's ability to learn high-frequency features; however, we also observe that these models exhibit insufficient semantic inference for low-frequency features when guided solely by the original image. Therefore, we integrate the strengths of both discriminative and generative learning, proposing the Integration of Discriminative and diffusion-based Generative learning for Boundary Refinement (IDGBR) framework. The framework first generates a coarse segmentation map using a discriminative backbone model. This map and the original image are fed into a conditioning guidance network to jointly learn a guidance representation subsequently leveraged by an iterative denoising diffusion process refining the coarse segmentation. Extensive experiments across five remote sensing semantic segmentation datasets (binary and multi-class segmentation) confirm our framework's capability of consistent boundary refinement for coarse results from diverse discriminative architectures.
comment: Accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)
Probing Deep into Temporal Profile Makes the Infrared Small Target Detector Much Better
Infrared small target (IRST) detection is challenging in simultaneously achieving precise, robust, and efficient performance due to extremely dim targets and strong interference. Current learning-based methods attempt to leverage ``more" information from both the spatial and the short-term temporal domains, but suffer from unreliable performance under complex conditions while incurring computational redundancy. In this paper, we explore the ``more essential" information from a more crucial domain for the detection. Through theoretical analysis, we reveal that the global temporal saliency and correlation information in the temporal profile demonstrate significant superiority in distinguishing target signals from other signals. To investigate whether such superiority is preferentially leveraged by well-trained networks, we built the first prediction attribution tool in this field and verified the importance of the temporal profile information. Inspired by the above conclusions, we remodel the IRST detection task as a one-dimensional signal anomaly detection task, and propose an efficient deep temporal probe network (DeepPro) that only performs calculations in the time dimension for IRST detection. We conducted extensive experiments to fully validate the effectiveness of our method. The experimental results are exciting, as our DeepPro outperforms existing state-of-the-art IRST detection methods on widely-used benchmarks with extremely high efficiency, and achieves a significant improvement on dim targets and in complex scenarios. We provide a new modeling domain, a new insight, a new method, and a new performance, which can promote the development of IRST detection. Codes are available at https://github.com/TinaLRJ/DeepPro.
Token Caching for Diffusion Transformer Acceleration
Diffusion transformers have gained substantial interest in diffusion generative modeling due to their outstanding performance. However, their computational demands, particularly the quadratic complexity of attention mechanisms and multi-step inference processes, present substantial bottlenecks that limit their practical applications. To address these challenges, we propose TokenCache, a novel acceleration method that leverages the token-based multi-block architecture of transformers to reduce redundant computations. TokenCache tackles three critical questions: (1) Which tokens should be pruned and reused by the caching mechanism to eliminate redundancy? (2) Which blocks should be targeted for efficient caching? (3) At which time steps should caching be applied to balance speed and quality? In response to these challenges, TokenCache introduces a Cache Predictor that hierarchically addresses these issues by (1) Token pruning: assigning importance scores to each token to determine which tokens to prune and reuse; (2) Block selection: allocating pruning ratio to each block to adaptively select blocks for caching; (3) Temporal Scheduling: deciding at which time steps to apply caching strategies. Experimental results across various models demonstrate that TokenCache achieves an effective trade-off between generation quality and inference speed for diffusion transformers.
Supervising 3D Talking Head Avatars with Analysis-by-Audio-Synthesis
In order to be widely applicable, speech-driven 3D head avatars must articulate their lips in accordance with speech, while also conveying the appropriate emotions with dynamically changing facial expressions. The key problem is that deterministic models produce high-quality lip-sync but without rich expressions, whereas stochastic models generate diverse expressions but with lower lip-sync quality. To get the best of both, we seek a stochastic model with accurate lip-sync. To that end, we develop a new approach based on the following observation: if a method generates realistic 3D lip motions, it should be possible to infer the spoken audio from the lip motion. The inferred speech should match the original input audio, and erroneous predictions create a novel supervision signal for training 3D talking head avatars with accurate lip-sync. To demonstrate this effect, we propose THUNDER (Talking Heads Under Neural Differentiable Elocution Reconstruction), a 3D talking head avatar framework that introduces a novel supervision mechanism via differentiable sound production. First, we train a novel mesh-to-speech model that regresses audio from facial animation. Then, we incorporate this model into a diffusion-based talking avatar framework. During training, the mesh-to-speech model takes the generated animation and produces a sound that is compared to the input speech, creating a differentiable analysis-by-audio-synthesis supervision loop. Our extensive qualitative and quantitative experiments demonstrate that THUNDER significantly improves the quality of the lip-sync of talking head avatars while still allowing for generation of diverse, high-quality, expressive facial animations. The code and models will be available at https://thunder.is.tue.mpg.de/
KOCOBrain: Kuramoto-Guided Graph Network for Uncovering Structure-Function Coupling in Adolescent Prenatal Drug Exposure
Exposure to psychoactive substances during pregnancy, such as cannabis, can disrupt neurodevelopment and alter large-scale brain networks, yet identifying their neural signatures remains challenging. We introduced KOCOBrain: KuramotO COupled Brain Graph Network; a unified graph neural network framework that integrates structural and functional connectomes via Kuramoto-based phase dynamics and cognition-aware attention. The Kuramoto layer models neural synchronization over anatomical connections, generating phase-informed embeddings that capture structure-function coupling, while cognitive scores modulate information routing in a subject-specific manner followed by a joint objective enhancing robustness under class imbalance scenario. Applied to the ABCD cohort, KOCOBrain improved prenatal drug exposure prediction over relevant baselines and revealed interpretable structure-function patterns that reflect disrupted brain network coordination associated with early exposure.
comment: Preprint version of the paper accepted to the IEEE International Symposium on Biomedical Imaging (ISBI 2026). This is the author's accepted manuscript. The final published version will appear in IEEE Xplore
Federated Joint Learning for Domain and Class Generalization
Efficient fine-tuning of visual-language models like CLIP has become crucial due to their large-scale parameter size and extensive pretraining requirements. Existing methods typically address either the issue of unseen classes or unseen domains in isolation, without considering a joint framework for both. In this paper, we propose \textbf{Fed}erated Joint Learning for \textbf{D}omain and \textbf{C}lass \textbf{G}eneralization, termed \textbf{FedDCG}, a novel approach that addresses both class and domain generalization in federated learning settings. Our method introduces a domain grouping strategy where class-generalized networks are trained within each group to prevent decision boundary confusion. During inference, we aggregate class-generalized results based on domain similarity, effectively integrating knowledge from both class and domain generalization. Specifically, a learnable network is employed to enhance class generalization capabilities, and a decoupling mechanism separates general and domain-specific knowledge, improving generalization to unseen domains. Extensive experiments across various datasets show that \textbf{FedDCG} outperforms state-of-the-art baselines in terms of accuracy and robustness.
comment: ICASSP 2026
Astra: General Interactive World Model with Autoregressive Denoising ICLR 2026
Recent advances in diffusion transformers have empowered video generation models to generate high-quality video clips from texts or images. However, world models with the ability to predict long-horizon futures from past observations and actions remain underexplored, especially for general-purpose scenarios and various forms of actions. To bridge this gap, we introduce Astra, an interactive general world model that generates real-world futures for diverse scenarios (e.g., autonomous driving, robot grasping) with precise action interactions (e.g., camera motion, robot action). We propose an autoregressive denoising architecture and use temporal causal attention to aggregate past observations and support streaming outputs. We use a noise-augmented history memory to avoid over-reliance on past frames to balance responsiveness with temporal coherence. For precise action control, we introduce an action-aware adapter that directly injects action signals into the denoising process. We further develop a mixture of action experts that dynamically route heterogeneous action modalities, enhancing versatility across diverse real-world tasks such as exploration, manipulation, and camera control. Astra achieves interactive, consistent, and general long-term video prediction and supports various forms of interactions. Experiments across multiple datasets demonstrate the improvements of Astra in fidelity, long-range prediction, and action alignment over existing state-of-the-art world models.
comment: Accepted in ICLR 2026. Code is available at: https://github.com/EternalEvan/Astra
ForensicHub: A Unified Benchmark & Codebase for All-Domain Fake Image Detection and Localization NeurIPS 2025
The field of Fake Image Detection and Localization (FIDL) is highly fragmented, encompassing four domains: deepfake detection (Deepfake), image manipulation detection and localization (IMDL), artificial intelligence-generated image detection (AIGC), and document image manipulation localization (Doc). Although individual benchmarks exist in some domains, a unified benchmark for all domains in FIDL remains blank. The absence of a unified benchmark results in significant domain silos, where each domain independently constructs its datasets, models, and evaluation protocols without interoperability, preventing cross-domain comparisons and hindering the development of the entire FIDL field. To close the domain silo barrier, we propose ForensicHub, the first unified benchmark & codebase for all-domain fake image detection and localization. Considering drastic variations on dataset, model, and evaluation configurations across all domains, as well as the scarcity of open-sourced baseline models and the lack of individual benchmarks in some domains, ForensicHub: i) proposes a modular and configuration-driven architecture that decomposes forensic pipelines into interchangeable components across datasets, transforms, models, and evaluators, allowing flexible composition across all domains; ii) fully implements 10 baseline models, 6 backbones, 2 new benchmarks for AIGC and Doc, and integrates 2 existing benchmarks of DeepfakeBench and IMDLBenCo through an adapter-based design; iii) conducts indepth analysis based on the ForensicHub, offering 8 key actionable insights into FIDL model architecture, dataset characteristics, and evaluation standards. ForensicHub represents a significant leap forward in breaking the domain silos in the FIDL field and inspiring future breakthroughs.
comment: NeurIPS 2025 DB Track Paper. Code available at: https://github.com/scu-zjz/ForensicHub
Enhancing Descriptive Captions with Visual Attributes for Multimodal Perception
Training Large Multimodality Models (LMMs) relies on descriptive image caption that connects image and language. Existing methods for generating such captions often rely on distilling the captions from pretrained LMMs, constructing them from publicly available internet images, or even generating them through human annotation. However, these strategies can fall short in terms of precision and granularity, particularly when dealing with complex visual reasoning tasks. In this paper, we propose to leverage off-the-shelf visual specialists, which were trained from annotated images initially not for image captioning, for enhancing the image caption. Our approach, named EDC, explores object low-level and fine-grained attributes (e.g., depth, emotion and fine-grained categories) and object relations (e.g., relative location and human-object-interaction (HOI)), and combine the attributes into the descriptive caption. By systematically integrating these rich attributes into the generated captions, EDC significantly improves the descriptive quality of the captions, providing a deeper and more nuanced understanding of the visual content. Experiments demonstrate that such visual specialists are able to improve the performance for visual understanding tasks as well as reasoning that benefits from more accurate visual understanding. The complete source code of EDC pipeline and datasets will be available at https://github.com/syp2ysy/DCE.
comment: An open-source Agent for generating detailed image captions
Uni-PrevPredMap: Extending PrevPredMap to a Unified Framework of Prior-Informed Modeling for Online Vectorized HD Map Construction
Safety constitutes a foundational imperative for autonomous driving systems, necessitating maximal incorporation of accessible prior information. This study establishes that temporal perception buffers and cost-efficient high-definition (HD) maps inherently form complementary prior sources for online vectorized HD map construction. We present Uni-PrevPredMap, a pioneering unified framework systematically integrating previous predictions with corrupted HD maps. Our framework introduces a tri-mode paradigm maintaining operational consistency across non-prior, temporal-prior, and temporal-map-fusion modes. This tri-mode paradigm simultaneously decouples the framework from ideal map assumptions while ensuring robust performance in both map-present and map-absent scenarios. Additionally, we develop a tile-indexed 3D vectorized global map processor enabling efficient 3D prior data refreshment, compact storage, and real-time retrieval. Uni-PrevPredMap achieves state-of-the-art map-absent performance across established online vectorized HD map construction benchmarks. When provided with corrupted HD maps, it exhibits robust capabilities in error-resilient prior fusion, empirically confirming the synergistic complementarity between temporal predictions and imperfect map data. Code is available at https://github.com/pnnnnnnn/Uni-PrevPredMap.
Task-Specific Directions: Definition, Exploration, and Utilization in Parameter Efficient Fine-Tuning
Large language models demonstrate impressive performance on downstream tasks, yet they require extensive resource consumption when fully fine-tuning all parameters. To mitigate this, Parameter Efficient Fine-Tuning (PEFT) strategies, such as LoRA, have been developed. In this paper, we delve into the concept of task-specific directions (TSDs), which are critical for transitioning large models from pretrained states to task-specific enhancements in PEFT. We propose a framework to clearly define these directions and explore their properties and practical utilization challenges. We then introduce a novel approach, LoRA-Dash, which aims to maximize the impact of TSDs during the fine-tuning process, thereby enhancing model performance on targeted tasks. Additionally, based on our exploration of TSD, we focus on an important issue in PEFT: the initialization of LoRA. While some works have pointed out the significance of initialization for LoRA's performance and proposed various strategies, these methods are often empirical and not task-specific. To address this issue, we propose LoRA-Init. Starting from TSD, we identify the directions that require the most adjustment during fine-tuning for downstream tasks. By initializing the matrices in LoRA with these directions, LoRA-Init significantly enhances LoRA's performance. Moreover, we can combine LoRA-Dash and LoRA-Init to create the final version of LoRA based on TSDs, which we refer to as LoRA-TSD. Extensive experiments have conclusively demonstrated the effectiveness of these methods, and in-depth analyses further reveal the underlying mechanisms behind their success.
comment: 2026, TPAMI, Codes in https://github.com/Chongjie-Si/Subspace-Tuning
Knowledge-enhanced Pretraining for Vision-language Pathology Foundation Model on Cancer Diagnosis
Vision-language foundation models have shown great promise in computational pathology but remain primarily data-driven, lacking explicit integration of medical knowledge. We introduce KEEP (KnowledgE-Enhanced Pathology), a foundation model that systematically incorporates disease knowledge into pretraining for cancer diagnosis. KEEP leverages a comprehensive disease knowledge graph encompassing 11,454 diseases and 139,143 attributes to reorganize millions of pathology image-text pairs into 143,000 semantically structured groups aligned with disease ontology hierarchies. This knowledge-enhanced pretraining aligns visual and textual representations within hierarchical semantic spaces, enabling deeper understanding of disease relationships and morphological patterns. Across 18 public benchmarks (over 14,000 whole-slide images) and 4 institutional rare cancer datasets (926 cases), KEEP consistently outperformed existing foundation models, showing substantial gains for rare subtypes. These results establish knowledge-enhanced vision-language modeling as a powerful paradigm for advancing computational pathology.
comment: V2: fixed typos, updated experimental results, added ablation
Vlaser: Vision-Language-Action Model with Synergistic Embodied Reasoning
While significant research has focused on developing embodied reasoning capabilities using Vision-Language Models (VLMs) or integrating advanced VLMs into Vision-Language-Action (VLA) models for end-to-end robot control, few studies directly address the critical gap between upstream VLM-based reasoning and downstream VLA policy learning. In this work, we take an initial step toward bridging embodied reasoning with VLA policy learning by introducing Vlaser - a Vision-Language-Action Model with synergistic embodied reasoning capability, which is a foundational vision-language model designed to integrate high-level reasoning with low-level control for embodied agents. Built upon the high-quality Vlaser-6M dataset, Vlaser achieves state-of-the-art performance across a range of embodied reasoning benchmarks - including spatial reasoning, embodied grounding, embodied QA, and task planning. Furthermore, we systematically examine how different VLM initializations affect supervised VLA fine-tuning, offering novel insights into mitigating the domain shift between internet-scale pre-training data and embodied-specific policy learning data. Based on these insights, our approach achieves state-of-the-art results on the WidowX benchmark and competitive performance on the Google Robot benchmark.
MindCine: Multimodal EEG-to-Video Reconstruction with Large-Scale Pretrained Models
Reconstructing human dynamic visual perception from electroencephalography (EEG) signals is of great research significance since EEG's non-invasiveness and high temporal resolution. However, EEG-to-video reconstruction remains challenging due to: 1) Single Modality: existing studies solely align EEG signals with the text modality, which ignores other modalities and are prone to suffer from overfitting problems; 2) Data Scarcity: current methods often have difficulty training to converge with limited EEG-video data. To solve the above problems, we propose a novel framework MindCine to achieve high-fidelity video reconstructions on limited data. We employ a multimodal joint learning strategy to incorporate beyond-text modalities in the training stage and leverage a pre-trained large EEG model to relieve the data scarcity issue for decoding semantic information, while a Seq2Seq model with causal attention is specifically designed for decoding perceptual information. Extensive experiments demonstrate that our model outperforms state-of-the-art methods both qualitatively and quantitatively. Additionally, the results underscore the effectiveness of the complementary strengths of different modalities and demonstrate that leveraging a large-scale EEG model can further enhance reconstruction performance by alleviating the challenges associated with limited data.
Epistemic-aware Vision-Language Foundation Model for Fetal Ultrasound Interpretation
Recent medical vision-language models have shown promise on tasks such as VQA, report generation, and anomaly detection. However, most are adapted to structured adult imaging and underperform in fetal ultrasound, which poses challenges of multi-view image reasoning, numerous diseases, and image diversity. To bridge this gap, we introduce FetalMind, a medical AI system tailored to fetal ultrasound for both report generation and diagnosis. Guided by clinical workflow, we propose Salient Epistemic Disentanglement (SED), which injects an expert-curated bipartite graph into the model to decouple view-disease associations and to steer preference selection along clinically faithful steps via reinforcement learning. This design mitigates variability across diseases and heterogeneity across views, reducing learning bottlenecks while aligning the model's inference with obstetric practice. To train FetalMind at scale, we curate FetalSigma-1M dataset, the first large-scale fetal ultrasound report corpus, comprising 20K reports from twelve medical centers, addressing the scarcity of domain data. Extensive experiments show that FetalMind outperforms open- and closed-source baselines across all gestational stages, achieving +14% average gains and +61.2% higher accuracy on critical conditions while remaining efficient, stable, and scalable. Project Page: https://hexiao0275.github.io/FetalMind.
comment: This paper contains fundamental errors and will not be replaced
BTCChat: Advancing Remote Sensing Bi-temporal Change Captioning with Multimodal Large Language Model
Bi-temporal satellite imagery supports critical applications such as urbanization monitoring and disaster assessment. Although powerful multimodal large language models~(MLLMs) have been applied in bi-temporal change analysis, previous methods process image pairs through direct concatenation, inadequately modeling temporal correlations and spatial semantic changes. This deficiency hampers visual-semantic alignment in change understanding, thereby constraining the overall effectiveness of current approaches. To address this gap, we propose BTCChat, a multi-temporal MLLM with advanced bi-temporal change understanding capability. BTCChat supports bi-temporal change captioning and retains single-image interpretation capability. To better capture temporal features and spatial semantic changes in image pairs, we design a Change Extraction module. Moreover, to enhance the model's attention to spatial details, we introduce a Prompt Augmentation mechanism, which incorporates contextual clues into the prompt to enhance model performance. Experimental results demonstrate that BTCChat achieves state-of-the-art performance on change captioning and visual question answering tasks. The code is available \href{https://github.com/IntelliSensing/BTCChat}{here}.
comment: 5 pages, 2 figures; Accepted by ICASSP 2026
Image deblurring based on lightweight multi-information fusion network
Recently, deep learning based image deblurring has been well developed. However, exploiting the detailed image features in a deep learning framework always requires a mass of parameters, which inevitably makes the network suffer from high computational burden. To solve this problem, we propose a lightweight multiinformation fusion network (LMFN) for image deblurring. The proposed LMFN is designed as an encoder-decoder architecture. In the encoding stage, the image feature is reduced to various smallscale spaces for multi-scale information extraction and fusion without a large amount of information loss. Then, a distillation network is used in the decoding stage, which allows the network benefit the most from residual learning while remaining sufficiently lightweight. Meanwhile, an information fusion strategy between distillation modules and feature channels is also carried out by attention mechanism. Through fusing different information in the proposed approach, our network can achieve state-of-the-art image deblurring result with smaller number of parameters and outperforms existing methods in model complexity.
SVBench: Evaluation of Video Generation Models on Social Reasoning
Recent text-to-video generation models exhibit remarkable progress in visual realism, motion fidelity, and text-video alignment, yet they remain fundamentally limited in their ability to generate socially coherent behavior. Unlike humans, who effortlessly infer intentions, beliefs, emotions, and social norms from brief visual cues, current models tend to render literal scenes without capturing the underlying causal or psychological logic. To systematically evaluate this gap, we introduce the first benchmark for social reasoning in video generation. Grounded in findings from developmental and social psychology, our benchmark organizes thirty classic social cognition paradigms into seven core dimensions, including mental-state inference, goal-directed action, joint attention, social coordination, prosocial behavior, social norms, and multi-agent strategy. To operationalize these paradigms, we develop a fully training-free agent-based pipeline that (i) distills the reasoning mechanism of each experiment, (ii) synthesizes diverse video-ready scenarios, (iii) enforces conceptual neutrality and difficulty control through cue-based critique, and (iv) evaluates generated videos using a high-capacity VLM judge across five interpretable dimensions of social reasoning. Using this framework, we conduct the first large-scale study across seven state-of-the-art video generation systems. Our results reveal substantial performance gaps: while modern models excel in surface-level plausibility, they systematically fail in intention recognition, belief reasoning, joint attention, and prosocial inference.
comment: 10pages
Universal Beta Splatting ICLR 2026
We introduce Universal Beta Splatting (UBS), a unified framework that generalizes 3D Gaussian Splatting to N-dimensional anisotropic Beta kernels for explicit radiance field rendering. Unlike fixed Gaussian primitives, Beta kernels enable controllable dependency modeling across spatial, angular, and temporal dimensions within a single representation. Our unified approach captures complex light transport effects, handles anisotropic view-dependent appearance, and models scene dynamics without requiring auxiliary networks or specific color encodings. UBS maintains backward compatibility by approximating to Gaussian Splatting as a special case, guaranteeing plug-in usability and lower performance bounds. The learned Beta parameters naturally decompose scene properties into interpretable without explicit supervision: spatial (surface vs. texture), angular (diffuse vs. specular), and temporal (static vs. dynamic). Our CUDA-accelerated implementation achieves real-time rendering while consistently outperforming existing methods across static, view-dependent, and dynamic benchmarks, establishing Beta kernels as a scalable universal primitive for radiance field rendering. Our project website is available at https://rongliu-leo.github.io/universal-beta-splatting/.
comment: ICLR 2026
Streaming-dLLM: Accelerating Diffusion LLMs via Suffix Pruning and Dynamic Decoding
Diffusion Large Language Models (dLLMs) offer a compelling paradigm for natural language generation, leveraging parallel decoding and bidirectional attention to achieve superior global coherence compared to autoregressive models. While recent works have accelerated inference via KV cache reuse or heuristic decoding, they overlook the intrinsic inefficiencies within the block-wise diffusion process. Specifically, they suffer from spatial redundancy by modeling informative-sparse suffix regions uniformly and temporal inefficiency by applying fixed denoising schedules across all the decoding process. To address this, we propose Streaming-dLLM, a training-free framework that streamlines inference across both spatial and temporal dimensions. Spatially, we introduce attenuation guided suffix modeling to approximate the full context by pruning redundant mask tokens. Temporally, we employ a dynamic confidence aware strategy with an early exit mechanism, allowing the model to skip unnecessary iterations for converged tokens. Extensive experiments show that Streaming-dLLM achieves up to 68.2X speedup while maintaining generation quality, highlighting its effectiveness in diffusion decoding. The code is available at https://github.com/xiaoshideta/Streaming-dLLM.
comment: Tech report. Code is available at https://github.com/xiaoshideta/Streaming-dLLM
PyCAT4: A Hierarchical Vision Transformer-based Framework for 3D Human Pose Estimation
Recently, a significant improvement in the accuracy of 3D human pose estimation has been achieved by combining convolutional neural networks (CNNs) with pyramid grid alignment feedback loops. Additionally, innovative breakthroughs have been made in the field of computer vision through the adoption of Transformer-based temporal analysis architectures. Given these advancements, this study aims to deeply optimize and improve the existing Pymaf network architecture. The main innovations of this paper include: (1) Introducing a Transformer feature extraction network layer based on self-attention mechanisms to enhance the capture of low-level features; (2) Enhancing the understanding and capture of temporal signals in video sequences through feature temporal fusion techniques; (3) Implementing spatial pyramid structures to achieve multi-scale feature fusion, effectively balancing feature representations differences across different scales. The new PyCAT4 model obtained in this study is validated through experiments on the COCO and 3DPW datasets. The results demonstrate that the proposed improvement strategies significantly enhance the network's detection capability in human pose estimation, further advancing the development of human pose estimation technology.
comment: 10 pages, 20 figures
The Script is All You Need: An Agentic Framework for Long-Horizon Dialogue-to-Cinematic Video Generation
Recent advances in video generation have produced models capable of synthesizing stunning visual content from simple text prompts. However, these models struggle to generate long-form, coherent narratives from high-level concepts like dialogue, revealing a ``semantic gap'' between a creative idea and its cinematic execution. To bridge this gap, we introduce a novel, end-to-end agentic framework for dialogue-to-cinematic-video generation. Central to our framework is ScripterAgent, a model trained to translate coarse dialogue into a fine-grained, executable cinematic script. To enable this, we construct ScriptBench, a new large-scale benchmark with rich multimodal context, annotated via an expert-guided pipeline. The generated script then guides DirectorAgent, which orchestrates state-of-the-art video models using a cross-scene continuous generation strategy to ensure long-horizon coherence. Our comprehensive evaluation, featuring an AI-powered CriticAgent and a new Visual-Script Alignment (VSA) metric, shows our framework significantly improves script faithfulness and temporal fidelity across all tested video models. Furthermore, our analysis uncovers a crucial trade-off in current SOTA models between visual spectacle and strict script adherence, providing valuable insights for the future of automated filmmaking.
Generation then Reconstruction: Accelerating Masked Autoregressive Models via Two-Stage Sampling
Masked Autoregressive (MAR) models promise better efficiency in visual generation than autoregressive (AR) models for the ability of parallel generation, yet their acceleration potential remains constrained by the modeling complexity of spatially correlated visual tokens in a single step. To address this limitation, we introduce Generation then Reconstruction (GtR), a training-free hierarchical sampling strategy that decomposes generation into two stages: structure generation establishing global semantic scaffolding, followed by detail reconstruction efficiently completing remaining tokens. Assuming that it is more difficult to create an image from scratch than to complement images based on a basic image framework, GtR is designed to achieve acceleration by computing the reconstruction stage quickly while maintaining the generation quality by computing the generation stage slowly. Moreover, observing that tokens on the details of an image often carry more semantic information than tokens in the salient regions, we further propose Frequency-Weighted Token Selection (FTS) to offer more computation budget to tokens on image details, which are localized based on the energy of high frequency information. Extensive experiments on ImageNet class-conditional and text-to-image generation demonstrate 3.72x speedup on MAR-H while maintaining comparable quality (e.g., FID: 1.59, IS: 304.4 vs. original 1.59, 299.1), substantially outperforming existing acceleration methods across various model scales and generation tasks. Our codes will be released in https://github.com/feihongyan1/GtR.
comment: 12 pages, 6 figures
DiVE-k: Differential Visual Reasoning for Fine-grained Image Recognition ICLR 2026
Large Vision Language Models (LVLMs) possess extensive text knowledge but struggles to utilize this knowledge for fine-grained image recognition, often failing to differentiate between visually similar categories. Existing fine-tuning methods using Reinforcement Learning (RL) with exact-match reward signals are often brittle, encourage memorization of training categories, and fail to elicit differential reasoning needed for generalization to unseen classes. To address this, we propose $\textbf{DiVE-k}$, $\textbf{Di}$fferential $\textbf{V}$isual r$\textbf{E}$asoning using top-$\textbf{k}$ generations, framework that leverages model's own top-k predictions as a training signal. For each training image, DiVE-k creates a multiple-choice question from the model's top-k outputs and uses RL to train the model to select the correct answer. This approach requires the model to perform fine-grained differential reasoning among plausible options and provides a simple, verifiable reward signal that mitigates memorization and improves generalization. Experiments on five standard fine-grained datasets show that our method significantly outperforms existing approaches. In the standard base-to-novel generalization setting, DiVE-k surpasses the QWEN2.5-VL-7B and ViRFT by 10.04% and 6.16% on the Harmonic Mean metric, respectively. Further experiments show similar gains in mixed-domain and few-shot scenarios. Our code is available $\href{https://github.com/raja-kumar/DiVE-k}{here}$
comment: ICLR 2026
Deeply Learned Robust Matrix Completion for Large-scale Low-rank Data Recovery
Robust matrix completion (RMC) is a widely used machine learning tool that simultaneously tackles two critical issues in low-rank data analysis: missing data entries and extreme outliers. This paper proposes a novel scalable and learnable non-convex approach, coined Learned Robust Matrix Completion (LRMC), for large-scale RMC problems. LRMC enjoys low computational complexity with linear convergence. Motivated by the proposed theorem, the free parameters of LRMC can be effectively learned via deep unfolding to achieve optimum performance. Furthermore, this paper proposes a flexible feedforward-recurrent-mixed neural network framework that extends deep unfolding from fix-number iterations to infinite iterations. The superior empirical performance of LRMC is verified with extensive experiments against state-of-the-art on synthetic datasets and real applications, including video background subtraction, ultrasound imaging, face modeling, and cloud removal from satellite imagery.
Watermark-based Attribution of AI-Generated Content ICLR 2026
Several companies have deployed watermark-based detection to identify AI-generated content. However, attribution--the ability to trace back to the user of a generative AI (GenAI) service who created a given AI-generated content--remains largely unexplored despite its growing importance. In this work, we aim to bridge this gap by conducting the first systematic study on watermark-based, user-level attribution of AI-generated content. Our key idea is to assign a unique watermark to each user of the GenAI service and embed this watermark into the AI-generated content created by that user. Attribution is then performed by identifying the user whose watermark best matches the one extracted from the given content. This approach, however, faces a key challenge: How should watermarks be selected for users to maximize attribution performance? To address the challenge, we first theoretically derive lower bounds on detection and attribution performance through rigorous probabilistic analysis for any given set of user watermarks. Then, we select watermarks for users to maximize these lower bounds, thereby optimizing detection and attribution performance. Our theoretical and empirical results show that watermark-based attribution inherits both the accuracy and (non-)robustness properties of the underlying watermark. Specifically, attribution remains highly accurate when the watermarked AI-generated content is either not post-processed or subjected to common post-processing such as JPEG compression, as well as black-box adversarial post-processing with limited query budgets.
comment: Accepted by ICLR 2026
Extensions on Low-complexity DCT Approximations for Larger Blocklengths Based on Minimal Angle Similarity
The discrete cosine transform (DCT) is a central tool for image and video coding because it can be related to the Karhunen-Loève transform (KLT), which is the optimal transform in terms of retained transform coefficients and data decorrelation. In this paper, we introduce 16-, 32-, and 64-point low-complexity DCT approximations by minimizing individually the angle between the rows of the exact DCT matrix and the matrix induced by the approximate transforms. According to some classical figures of merit, the proposed transforms outperformed the approximations for the DCT already known in the literature. Fast algorithms were also developed for the low-complexity transforms, asserting a good balance between the performance and its computational cost. Practical applications in image encoding showed the relevance of the transforms in this context. In fact, the experiments showed that the proposed transforms had better results than the known approximations in the literature for the cases of 16, 32, and 64 blocklength.
comment: Clarified methodology; 27 pages, 6 figures, 5 tables
Panoramic Distortion-Aware Tokenization for Person Detection and Localization in Overhead Fisheye Images
Person detection in overhead fisheye images is challenging due to person rotation and small persons. Prior work has mainly addressed person rotation, leaving the small-person problem underexplored. We remap fisheye images to equirectangular panoramas to handle rotation and exploit panoramic geometry to handle small persons more effectively. Conventional detection methods tend to favor larger persons because they dominate the attention maps, causing smaller persons to be missed. In hemispherical equirectangular panoramas, we find that apparent person height decreases approximately linearly with the vertical angle near the top of the image. Using this finding, we introduce panoramic distortion-aware tokenization to enhance the detection of small persons. This tokenization procedure divides panoramic features using self-similar figures that enable the determination of optimal divisions without gaps, and we leverage the maximum significance values in each tile of the token groups to preserve the significance areas of smaller persons. We propose a transformer-based person detection and localization method that combines panoramic-image remapping and the tokenization procedure. Extensive experiments demonstrated that our method outperforms conventional methods on large-scale datasets.
A Genealogy of Foundation Models in Remote Sensing
Foundation models have garnered increasing attention for representation learning in remote sensing. Many such foundation models adopt approaches that have demonstrated success in computer vision with minimal domain-specific modification. However, the development and application of foundation models in this field are still burgeoning, as there are a variety of competing approaches for how to most effectively leverage remotely sensed data. This paper examines these approaches, along with their roots in the computer vision field. This is done to characterize potential advantages and pitfalls, while outlining future directions to further improve remote sensing-specific foundation models. We discuss the quality of the learned representations and methods to alleviate the need for massive compute resources. We first examine single-sensor remote foundation models to introduce concepts and provide context, and then place emphasis on incorporating the multi-sensor aspect of Earth observations into foundation models. In particular, we explore the extent to which existing approaches leverage multiple sensors in training foundation models in relation to multi-modal foundation models. Finally, we identify opportunities for further harnessing the vast amounts of unlabeled, seasonal, and multi-sensor remote sensing observations.
comment: 28 pages, submitted to ACM SigSpatial, accepted as of January 12th, 2026. This is the second revision from the original 20-page manuscript
Spatiotemporal Semantic V2X Framework for Cooperative Collision Prediction
Intelligent Transportation Systems (ITS) demand real-time collision prediction to ensure road safety and reduce accident severity. Conventional approaches rely on transmitting raw video or high-dimensional sensory data from roadside units (RSUs) to vehicles, which is impractical under vehicular communication bandwidth and latency constraints. In this work, we propose a semantic V2X framework in which RSU-mounted cameras generate spatiotemporal semantic embeddings of future frames using the Video Joint Embedding Predictive Architecture (V-JEPA). To evaluate the system, we construct a digital twin of an urban traffic environment enabling the generation of d verse traffic scenarios with both safe and collision events. These embeddings of the future frame, extracted from V-JEPA, capture task-relevant traffic dynamics and are transmitted via V2X links to vehicles, where a lightweight attentive probe and classifier decode them to predict imminent collisions. By transmitting only semantic embeddings instead of raw frames, the proposed system significantly reduces communication overhead while maintaining predictive accuracy. Experimental results demonstrate that the framework with an appropriate processing method achieves a 10% F1-score improvement for collision prediction while reducing transmission requirements by four orders of magnitude compared to raw video. This validates the potential of semantic V2X communication to enable cooperative, real-time collision prediction in ITS.
comment: 6 pages 5 figures, accepted to IEEE ICC 2026
Diagnosing Vision Language Models' Perception by Leveraging Human Methods for Color Vision Deficiencies
Large-scale Vision-Language Models (LVLMs) are being deployed in real-world settings that require visual inference. As capabilities improve, applications in navigation, education, and accessibility are becoming practical. These settings require accommodation of perceptual variation rather than assuming a uniform visual experience. Color perception illustrates this requirement: it is central to visual understanding yet varies across individuals due to Color Vision Deficiencies, an aspect largely ignored in multimodal AI. In this work, we examine whether LVLMs can account for variation in color perception using the Ishihara Test. We evaluate model behavior through generation, confidence, and internal representation, using Ishihara plates as controlled stimuli that expose perceptual differences. Although models possess factual knowledge about color vision deficiencies and can describe the test, they fail to reproduce the perceptual outcomes experienced by affected individuals and instead default to normative color perception. These results indicate that current systems lack mechanisms for representing alternative perceptual experiences, raising concerns for accessibility and inclusive deployment in multimodal settings.
comment: Accepted to appear in the main conference of EACL 2026
X-LRM: X-ray Large Reconstruction Model for Extremely Sparse-View Computed Tomography Recovery in One Second 3DV 2026
Sparse-view 3D CT reconstruction aims to recover volumetric structures from a limited number of 2D X-ray projections. Existing feedforward methods are constrained by the scarcity of large-scale training datasets and the absence of direct and consistent 3D representations. In this paper, we propose an X-ray Large Reconstruction Model (X-LRM) for extremely sparse-view ($<$10 views) CT reconstruction. X-LRM consists of two key components: X-former and X-triplane. X-former can handle an arbitrary number of input views using an MLP-based image tokenizer and a Transformer-based encoder. The output tokens are then upsampled into our X-triplane representation, which models the 3D radiodensity as an implicit neural field. To support the training of X-LRM, we introduce Torso-16K, a large-scale dataset comprising over 16K volume-projection pairs of various torso organs. Extensive experiments demonstrate that X-LRM outperforms the state-of-the-art method by 1.5 dB and achieves 27$\times$ faster speed with better flexibility. Furthermore, the evaluation of lung segmentation tasks also suggests the practical value of our approach. Our code and dataset will be released at https://github.com/Richard-Guofeng-Zhang/X-LRM
comment: 3DV 2026; A large reconstruction model and the largest dataset (16K samples) for sparse-view CT recovery
Feature-Space Adversarial Robustness Certification for Multimodal Large Language Models
Multimodal large language models (MLLMs) exhibit strong capabilities across diverse applications, yet remain vulnerable to adversarial perturbations that distort their feature representations and induce erroneous predictions. To address this vulnerability, we propose Feature-space Smoothing (FS), a general framework that provides certified robustness guarantees at the feature representation level of MLLMs. We theoretically prove that FS converts a given feature extractor into a smoothed variant that is guaranteed a certified lower bound on the cosine similarity between clean and adversarial features under $\ell_2$-bounded perturbations. Moreover, we establish that the value of this Feature Cosine Similarity Bound (FCSB) is determined by the intrinsic Gaussian robustness score of the given encoder. Building on this insight, we introduce the Gaussian Smoothness Booster (GSB), a plug-and-play module that enhances the Gaussian robustness score of pretrained MLLMs, thereby strengthening the robustness guaranteed by FS, without requiring additional MLLM retraining. Extensive experiments demonstrate that applying the FS to various MLLMs yields strong certified feature-space robustness and consistently leads to robust task-oriented performance across diverse applications.
comment: Under review
Artificial Intelligence 285
M-SGWR: Multiscale Similarity and Geographically Weighted Regression
The first law of geography is a cornerstone of spatial analysis, emphasizing that nearby and related locations tend to be more similar, however, defining what constitutes "near" and "related" remains challenging, as different phenomena exhibit distinct spatial patterns. Traditional local regression models, such as Geographically Weighted Regression (GWR) and Multiscale GWR (MGWR), quantify spatial relationships solely through geographic proximity. In an era of globalization and digital connectivity, however, geographic proximity alone may be insufficient to capture how locations are interconnected. To address this limitation, we propose a new multiscale local regression framework, termed M-SGWR, which characterizes spatial interaction across two dimensions: geographic proximity and attribute (variable) similarity. For each predictor, geographic and attribute-based weight matrices are constructed separately and then combined using an optimized parameter, alpha, which governs their relative contribution to local model fitting. Analogous to variable-specific bandwidths in MGWR, the optimal alpha varies by predictor, allowing the model to flexibly account for geographic, mixed, or non-spatial (remote similarity) effects. Results from two simulation experiments and one empirical application demonstrate that M-SGWR consistently outperforms GWR, SGWR, and MGWR across all goodness-of-fit metrics.
AI Cap-and-Trade: Efficiency Incentives for Accessibility and Sustainability
The race for artificial intelligence (AI) dominance often prioritizes scale over efficiency. Hyper-scaling is the common industry approach: larger models, more data, and as many computational resources as possible. Using more resources is a simpler path to improved AI performance. Thus, efficiency has been de-emphasized. Consequently, the need for costly computational resources has marginalized academics and smaller companies. Simultaneously, increased energy expenditure, due to growing AI use, has led to mounting environmental costs. In response to accessibility and sustainability concerns, we argue for research into, and implementation of, market-based methods that incentivize AI efficiency. We believe that incentivizing efficient operations and approaches will reduce emissions while opening new opportunities for academics and smaller companies. As a call to action, we propose a cap-and-trade system for AI. Our system provably reduces computations for AI deployment, thereby lowering emissions and monetizing efficiency to the benefit of of academics and smaller companies.
comment: 22 pages, 2 figures
HARMONI: Multimodal Personalization of Multi-User Human-Robot Interactions with LLMs
Existing human-robot interaction systems often lack mechanisms for sustained personalization and dynamic adaptation in multi-user environments, limiting their effectiveness in real-world deployments. We present HARMONI, a multimodal personalization framework that leverages large language models to enable socially assistive robots to manage long-term multi-user interactions. The framework integrates four key modules: (i) a perception module that identifies active speakers and extracts multimodal input; (ii) a world modeling module that maintains representations of the environment and short-term conversational context; (iii) a user modeling module that updates long-term speaker-specific profiles; and (iv) a generation module that produces contextually grounded and ethically informed responses. Through extensive evaluation and ablation studies on four datasets, as well as a real-world scenario-driven user-study in a nursing home environment, we demonstrate that HARMONI supports robust speaker identification, online memory updating, and ethically aligned personalization, outperforming baseline LLM-driven approaches in user modeling accuracy, personalization quality, and user satisfaction.
Visual Generation Unlocks Human-Like Reasoning through Multimodal World Models
Humans construct internal world models and reason by manipulating the concepts within these models. Recent advances in AI, particularly chain-of-thought (CoT) reasoning, approximate such human cognitive abilities, where world models are believed to be embedded within large language models. Expert-level performance in formal and abstract domains such as mathematics and programming has been achieved in current systems by relying predominantly on verbal reasoning. However, they still lag far behind humans in domains like physical and spatial intelligence, which require richer representations and prior knowledge. The emergence of unified multimodal models (UMMs) capable of both verbal and visual generation has therefore sparked interest in more human-like reasoning grounded in complementary multimodal pathways, though their benefits remain unclear. From a world-model perspective, this paper presents the first principled study of when and how visual generation benefits reasoning. Our key position is the visual superiority hypothesis: for certain tasks--particularly those grounded in the physical world--visual generation more naturally serves as world models, whereas purely verbal world models encounter bottlenecks arising from representational limitations or insufficient prior knowledge. Theoretically, we formalize internal world modeling as a core component of CoT reasoning and analyze distinctions among different forms of world models. Empirically, we identify tasks that necessitate interleaved visual-verbal CoT reasoning, constructing a new evaluation suite, VisWorld-Eval. Controlled experiments on a state-of-the-art UMM show that interleaved CoT significantly outperforms purely verbal CoT on tasks that favor visual world modeling, but offers no clear advantage otherwise. Together, this work clarifies the potential of multimodal world modeling for more powerful, human-like multimodal AI.
comment: Project page: https://thuml.github.io/Reasoning-Visual-World
When Iterative RAG Beats Ideal Evidence: A Diagnostic Study in Scientific Multi-hop Question Answering
Retrieval-Augmented Generation (RAG) extends large language models (LLMs) beyond parametric knowledge, yet it is unclear when iterative retrieval-reasoning loops meaningfully outperform static RAG, particularly in scientific domains with multi-hop reasoning, sparse domain knowledge, and heterogeneous evidence. We provide the first controlled, mechanism-level diagnostic study of whether synchronized iterative retrieval and reasoning can surpass an idealized static upper bound (Gold Context) RAG. We benchmark eleven state-of-the-art LLMs under three regimes: (i) No Context, measuring reliance on parametric memory; (ii) Gold Context, where all oracle evidence is supplied at once; and (iii) Iterative RAG, a training-free controller that alternates retrieval, hypothesis refinement, and evidence-aware stopping. Using the chemistry-focused ChemKGMultiHopQA dataset, we isolate questions requiring genuine retrieval and analyze behavior with diagnostics spanning retrieval coverage gaps, anchor-carry drop, query quality, composition fidelity, and control calibration. Across models, Iterative RAG consistently outperforms Gold Context, with gains up to 25.6 percentage points, especially for non-reasoning fine-tuned models. Staged retrieval reduces late-hop failures, mitigates context overload, and enables dynamic correction of early hypothesis drift, but remaining failure modes include incomplete hop coverage, distractor latch trajectories, early stopping miscalibration, and high composition failure rates even with perfect retrieval. Overall, staged retrieval is often more influential than the mere presence of ideal evidence; we provide practical guidance for deploying and diagnosing RAG systems in specialized scientific settings and a foundation for more reliable, controllable iterative retrieval-reasoning frameworks.
comment: 27 pages, 15 figures
Routing End User Queries to Enterprise Databases
We address the task of routing natural language queries in multi-database enterprise environments. We construct realistic benchmarks by extending existing NL-to-SQL datasets. Our study shows that routing becomes increasingly challenging with larger, domain-overlapping DB repositories and ambiguous queries, motivating the need for more structured and robust reasoning-based solutions. By explicitly modelling schema coverage, structural connectivity, and fine-grained semantic alignment, the proposed modular, reasoning-driven reranking strategy consistently outperforms embedding-only and direct LLM-prompting baselines across all the metrics.
comment: 6 pages, 2 figures
An Interpretable Recommendation Model for Psychometric Data, With an Application to Gerontological Primary Care
There are challenges that must be overcome to make recommender systems useful in healthcare settings. The reasons are varied: the lack of publicly available clinical data, the difficulty that users may have in understanding the reasons why a recommendation was made, the risks that may be involved in following that recommendation, and the uncertainty about its effectiveness. In this work, we address these challenges with a recommendation model that leverages the structure of psychometric data to provide visual explanations that are faithful to the model and interpretable by care professionals. We focus on a narrow healthcare niche, gerontological primary care, to show that the proposed recommendation model can assist the attending professional in the creation of personalised care plans. We report results of a comparative offline performance evaluation of the proposed model on healthcare datasets that were collected by research partners in Brazil, as well as the results of a user study that evaluates the interpretability of the visual explanations the model generates. The results suggest that the proposed model can advance the application of recommender systems in this healthcare niche, which is expected to grow in demand , opportunities, and information technology needs as demographic changes become more pronounced.
comment: 81 pages, 19 figures, 3 annexes
Revisiting Incremental Stochastic Majorization-Minimization Algorithms with Applications to Mixture of Experts
Processing high-volume, streaming data is increasingly common in modern statistics and machine learning, where batch-mode algorithms are often impractical because they require repeated passes over the full dataset. This has motivated incremental stochastic estimation methods, including the incremental stochastic Expectation-Maximization (EM) algorithm formulated via stochastic approximation. In this work, we revisit and analyze an incremental stochastic variant of the Majorization-Minimization (MM) algorithm, which generalizes incremental stochastic EM as a special case. Our approach relaxes key EM requirements, such as explicit latent-variable representations, enabling broader applicability and greater algorithmic flexibility. We establish theoretical guarantees for the incremental stochastic MM algorithm, proving consistency in the sense that the iterates converge to a stationary point characterized by a vanishing gradient of the objective. We demonstrate these advantages on a softmax-gated mixture of experts (MoE) regression problem, for which no stochastic EM algorithm is available. Empirically, our method consistently outperforms widely used stochastic optimizers, including stochastic gradient descent, root mean square propagation, adaptive moment estimation, and second-order clipped stochastic optimization. These results support the development of new incremental stochastic algorithms, given the central role of softmax-gated MoE architectures in contemporary deep neural networks for heterogeneous data modeling. Beyond synthetic experiments, we also validate practical effectiveness on two real-world datasets, including a bioinformatics study of dent maize genotypes under drought stress that integrates high-dimensional proteomics with ecophysiological traits, where incremental stochastic MM yields stable gains in predictive performance.
comment: TrungKhang Tran and TrungTin Nguyen are co-first authors
Unsupervised Learning of Efficient Exploration: Pre-training Adaptive Policies via Self-Imposed Goals ICLR 2026
Unsupervised pre-training can equip reinforcement learning agents with prior knowledge and accelerate learning in downstream tasks. A promising direction, grounded in human development, investigates agents that learn by setting and pursuing their own goals. The core challenge lies in how to effectively generate, select, and learn from such goals. Our focus is on broad distributions of downstream tasks where solving every task zero-shot is infeasible. Such settings naturally arise when the target tasks lie outside of the pre-training distribution or when their identities are unknown to the agent. In this work, we (i) optimize for efficient multi-episode exploration and adaptation within a meta-learning framework, and (ii) guide the training curriculum with evolving estimates of the agent's post-adaptation performance. We present ULEE, an unsupervised meta-learning method that combines an in-context learner with an adversarial goal-generation strategy that maintains training at the frontier of the agent's capabilities. On XLand-MiniGrid benchmarks, ULEE pre-training yields improved exploration and adaptation abilities that generalize to novel objectives, environment dynamics, and map structures. The resulting policy attains improved zero-shot and few-shot performance, and provides a strong initialization for longer fine-tuning processes. It outperforms learning from scratch, DIAYN pre-training, and alternative curricula.
comment: To appear at ICLR 2026
CASTER: Breaking the Cost-Performance Barrier in Multi-Agent Orchestration via Context-Aware Strategy for Task Efficient Routing
Graph-based Multi-Agent Systems (MAS) enable complex cyclic workflows but suffer from inefficient static model allocation, where deploying strong models uniformly wastes computation on trivial sub-tasks. We propose CASTER (Context-Aware Strategy for Task Efficient Routing), a lightweight router for dynamic model selection in graph-based MAS. CASTER employs a Dual-Signal Router that combines semantic embeddings with structural meta-features to estimate task difficulty. During training, the router self-optimizes through a Cold Start to Iterative Evolution paradigm, learning from its own routing failures via on-policy negative feedback. Experiments using LLM-as-a-Judge evaluation across Software Engineering, Data Analysis, Scientific Discovery, and Cybersecurity demonstrate that CASTER reduces inference cost by up to 72.4% compared to strong-model baselines while matching their success rates, and consistently outperforms both heuristic routing and FrugalGPT across all domains.
LVLMs and Humans Ground Differently in Referential Communication
For generative AI agents to partner effectively with human users, the ability to accurately predict human intent is critical. But this ability to collaborate remains limited by a critical deficit: an inability to model common ground. Here, we present a referential communication experiment with a factorial design involving director-matcher pairs (human-human, human-AI, AI-human, and AI-AI) that interact with multiple turns in repeated rounds to match pictures of objects not associated with any obvious lexicalized labels. We release the online pipeline for data collection, the tools and analyses for accuracy, efficiency, and lexical overlap, and a corpus of 356 dialogues (89 pairs over 4 rounds each) that unmasks LVLMs' limitations in interactively resolving referring expressions, a crucial skill that underlies human language use.
comment: 24 pages, 16 figures, preprint
Reimagining Peer Review Process Through Multi-Agent Mechanism Design
The software engineering research community faces a systemic crisis: peer review is failing under growing submissions, misaligned incentives, and reviewer fatigue. Community surveys reveal that researchers perceive the process as "broken." This position paper argues that these dysfunctions are mechanism design failures amenable to computational solutions. We propose modeling the research community as a stochastic multi-agent system and applying multi-agent reinforcement learning to design incentive-compatible protocols. We outline three interventions: a credit-based submission economy, MARL-optimized reviewer assignment, and hybrid verification of review consistency. We present threat models, equity considerations, and phased pilot metrics. This vision charts a research agenda toward sustainable peer review.
comment: To appear in the Proceedings of the 2026 IEEE/ACM 48th International Conference on Software Engineering: Future of Software Engineering (ICSE-FoSE). 4 pages, 1 figure, 1 table
GAVEL: Towards rule-based safety through activation monitoring ICLR 2026
Large language models (LLMs) are increasingly paired with activation-based monitoring to detect and prevent harmful behaviors that may not be apparent at the surface-text level. However, existing activation safety approaches, trained on broad misuse datasets, struggle with poor precision, limited flexibility, and lack of interpretability. This paper introduces a new paradigm: rule-based activation safety, inspired by rule-sharing practices in cybersecurity. We propose modeling activations as cognitive elements (CEs), fine-grained, interpretable factors such as ''making a threat'' and ''payment processing'', that can be composed to capture nuanced, domain-specific behaviors with higher precision. Building on this representation, we present a practical framework that defines predicate rules over CEs and detects violations in real time. This enables practitioners to configure and update safeguards without retraining models or detectors, while supporting transparency and auditability. Our results show that compositional rule-based activation safety improves precision, supports domain customization, and lays the groundwork for scalable, interpretable, and auditable AI governance. We will release GAVEL as an open-source framework and provide an accompanying automated rule creation tool.
comment: Accepted to ICLR 2026
Agentic Design Patterns: A System-Theoretic Framework
With the development of foundation model (FM), agentic AI systems are getting more attention, yet their inherent issues like hallucination and poor reasoning, coupled with the frequent ad-hoc nature of system design, lead to unreliable and brittle applications. Existing efforts to characterise agentic design patterns often lack a rigorous systems-theoretic foundation, resulting in high-level or convenience-based taxonomies that are difficult to implement. This paper addresses this gap by introducing a principled methodology for engineering robust AI agents. We propose two primary contributions: first, a novel system-theoretic framework that deconstructs an agentic AI system into five core, interacting functional subsystems: Reasoning & World Model, Perception & Grounding, Action Execution, Learning & Adaptation, and Inter-Agent Communication. Second, derived from this architecture and directly mapped to a comprehensive taxonomy of agentic challenges, we present a collection of 12 agentic design patterns. These patterns - categorised as Foundational, Cognitive & Decisional, Execution & Interaction, and Adaptive & Learning - offer reusable, structural solutions to recurring problems in agent design. The utility of the framework is demonstrated by a case study on the ReAct framework, showing how the proposed patterns can rectify systemic architectural deficiencies. This work provides a foundational language and a structured methodology to standardise agentic design communication among researchers and engineers, leading to more modular, understandable, and reliable autonomous systems.
Veri-Sure: A Contract-Aware Multi-Agent Framework with Temporal Tracing and Formal Verification for Correct RTL Code Generation
In the rapidly evolving field of Electronic Design Automation (EDA), the deployment of Large Language Models (LLMs) for Register-Transfer Level (RTL) design has emerged as a promising direction. However, silicon-grade correctness remains bottlenecked by: (i) limited test coverage and reliability of simulation-centric evaluation, (ii) regressions and repair hallucinations introduced by iterative debugging, and (iii) semantic drift as intent is reinterpreted across agent handoffs. In this work, we propose Veri-Sure, a multi-agent framework that establishes a design contract to align agents' intent and uses a patching mechanism guided by static dependency slicing to perform precise, localized repairs. By integrating a multi-branch verification pipeline that combines trace-driven temporal analysis with formal verification consisting of assertion-based checking and boolean equivalence proofs, Veri-Sure enables functional correctness beyond pure simulations. We also introduce VerilogEval-v2-EXT, extending the original benchmark with 53 more industrial-grade design tasks and stratified difficulty levels, and show that Veri-Sure achieves state-of-the-art verified-correct RTL code generation performance, surpassing standalone LLMs and prior agentic systems.
TokenSeek: Memory Efficient Fine Tuning via Instance-Aware Token Ditching ICLR 2026
Fine tuning has been regarded as a de facto approach for adapting large language models (LLMs) to downstream tasks, but the high training memory consumption inherited from LLMs makes this process inefficient. Among existing memory efficient approaches, activation-related optimization has proven particularly effective, as activations consistently dominate overall memory consumption. Although prior arts offer various activation optimization strategies, their data-agnostic nature ultimately results in ineffective and unstable fine tuning. In this paper, we propose TokenSeek, a universal plugin solution for various transformer-based models through instance-aware token seeking and ditching, achieving significant fine-tuning memory savings (e.g., requiring only 14.8% of the memory on Llama3.2 1B) with on-par or even better performance. Furthermore, our interpretable token seeking process reveals the underlying reasons for its effectiveness, offering valuable insights for future research on token efficiency. Homepage: https://runjia.tech/iclr_tokenseek/
comment: ICLR 2026
Quantum Circuit Pre-Synthesis: Learning Local Edits to Reduce $T$-count
Compiling quantum circuits into Clifford+$T$ gates is a central task for fault-tolerant quantum computing using stabilizer codes. In the near term, $T$ gates will dominate the cost of fault tolerant implementations, and any reduction in the number of such expensive gates could mean the difference between being able to run a circuit or not. While exact synthesis is exponentially hard in the number of qubits, local synthesis approaches are commonly used to compile large circuits by decomposing them into substructures. However, composing local methods leads to suboptimal compilations in key metrics such as $T$-count or circuit depth, and their performance strongly depends on circuit representation. In this work, we address this challenge by proposing \textsc{Q-PreSyn}, a strategy that, given a set of local edits preserving circuit equivalence, uses a RL agent to identify effective sequences of such actions and thereby obtain circuit representations that yield a reduced $T$-count upon synthesis. Experimental results of our proposed strategy, applied on top of well-known synthesis algorithms, show up to a $20\%$ reduction in $T$-count on circuits with up to 25 qubits, without introducing any additional approximation error prior to synthesis.
comment: 10+5 pages, 10 figures, 3 algorithms
RvB: Automating AI System Hardening via Iterative Red-Blue Games
The dual offensive and defensive utility of Large Language Models (LLMs) highlights a critical gap in AI security: the lack of unified frameworks for dynamic, iterative adversarial adaptation hardening. To bridge this gap, we propose the Red Team vs. Blue Team (RvB) framework, formulated as a training-free, sequential, imperfect-information game. In this process, the Red Team exposes vulnerabilities, driving the Blue Team to learning effective solutions without parameter updates. We validate our framework across two challenging domains: dynamic code hardening against CVEs and guardrail optimization against jailbreaks. Our empirical results show that this interaction compels the Blue Team to learn fundamental defensive principles, leading to robust remediations that are not merely overfitted to specific exploits. RvB achieves Defense Success Rates of 90\% and 45\% across the respective tasks while maintaining near 0\% False Positive Rates, significantly surpassing baselines. This work establishes the iterative adversarial interaction framework as a practical paradigm that automates the continuous hardening of AI systems.
Component-Level Lesioning of Language Models Reveals Clinically Aligned Aphasia Phenotypes
Large language models (LLMs) increasingly exhibit human-like linguistic behaviors and internal representations that they could serve as computational simulators of language cognition. We ask whether LLMs can be systematically manipulated to reproduce language-production impairments characteristic of aphasia following focal brain lesions. Such models could provide scalable proxies for testing rehabilitation hypotheses, and offer a controlled framework for probing the functional organization of language. We introduce a clinically grounded, component-level framework that simulates aphasia by selectively perturbing functional components in LLMs, and apply it to both modular Mixture-of-Experts models and dense Transformers using a unified intervention interface. Our pipeline (i) identifies subtype-linked components for Broca's and Wernicke's aphasia, (ii) interprets these components with linguistic probing tasks, and (iii) induces graded impairments by progressively perturbing the top-k subtype-linked components, evaluating outcomes with Western Aphasia Battery (WAB) subtests summarized by Aphasia Quotient (AQ). Across architectures and lesioning strategies, subtype-targeted perturbations yield more systematic, aphasia-like regressions than size-matched random perturbations, and MoE modularity supports more localized and interpretable phenotype-to-component mappings. These findings suggest that modular LLMs, combined with clinically informed component perturbations, provide a promising platform for simulating aphasic language production and studying how distinct language functions degrade under targeted disruptions.
Hyperbolic Additive Margin Softmax with Hierarchical Information for Speaker Verification
Speaker embedding learning based on Euclidean space has achieved significant progress, but it is still insufficient in modeling hierarchical information within speaker features. Hyperbolic space, with its negative curvature geometric properties, can efficiently represent hierarchical information within a finite volume, making it more suitable for the feature distribution of speaker embeddings. In this paper, we propose Hyperbolic Softmax (H-Softmax) and Hyperbolic Additive Margin Softmax (HAM-Softmax) based on hyperbolic space. H-Softmax incorporates hierarchical information into speaker embeddings by projecting embeddings and speaker centers into hyperbolic space and computing hyperbolic distances. HAM-Softmax further enhances inter-class separability by introducing margin constraint on this basis. Experimental results show that H-Softmax and HAM-Softmax achieve average relative EER reductions of 27.84% and 14.23% compared with standard Softmax and AM-Softmax, respectively, demonstrating that the proposed methods effectively improve speaker verification performance and at the same time preserve the capability of hierarchical structure modeling. The code will be released at https://github.com/PunkMale/HAM-Softmax.
comment: 5 pages, 3 figures, Accepted at ICASSP 2026
SAM Audio Judge: A Unified Multimodal Framework for Perceptual Evaluation of Audio Separation
The performance evaluation remains a complex challenge in audio separation, and existing evaluation metrics are often misaligned with human perception, course-grained, relying on ground truth signals. On the other hand, subjective listening tests remain the gold standard for real-world evaluation, but they are expensive, time-consuming, and difficult to scale. This paper addresses the growing need for automated systems capable of evaluating audio separation without human intervention. The proposed evaluation metric, SAM Audio Judge (SAJ), is a multimodal fine-grained reference-free objective metric, which shows highly alignment with human perceptions. SAJ supports three audio domains (speech, music and general sound events) and three prompt inputs (text, visual and span), covering four different dimensions of evaluation (recall, percision, faithfulness, and overall). SAM Audio Judge also shows potential applications in data filtering, pseudo-labeling large datasets and reranking in audio separation models. We release our code and pre-trained models at: https://github.com/facebookresearch/sam-audio.
Out-of-Distribution Generalization via Invariant Trajectories for Multimodal Large Language Model Editing
Knowledge editing emerges as a crucial technique for efficiently correcting incorrect or outdated knowledge in large language models (LLM). Existing editing methods for unimodal LLM rely on a rigid parameter-to-output mapping, which causes causal-underfit and causal-overfit in cascaded reasoning for Multimodal LLM (MLLM). In this paper, we reformulate MLLM editing as an out-of-distribution (OOD) generalization problem, where the goal is to discern semantic shift with factual shift and thus achieve robust editing among diverse cross-modal prompting. The key challenge of this OOD problem lies in identifying invariant causal trajectories that generalize accurately while suppressing spurious correlations. To address it, we propose ODEdit, a plug-and-play invariant learning based framework that optimizes the tripartite OOD risk objective to simultaneously enhance editing reliability, locality, and generality.We further introduce an edit trajectory invariant learning method, which integrates a total variation penalty into the risk minimization objective to stabilize edit trajectories against environmental variations. Theoretical analysis and extensive experiments demonstrate the effectiveness of ODEdit.
AlignCoder: Aligning Retrieval with Target Intent for Repository-Level Code Completion
Repository-level code completion remains a challenging task for existing code large language models (code LLMs) due to their limited understanding of repository-specific context and domain knowledge. While retrieval-augmented generation (RAG) approaches have shown promise by retrieving relevant code snippets as cross-file context, they suffer from two fundamental problems: misalignment between the query and the target code in the retrieval process, and the inability of existing retrieval methods to effectively utilize the inference information. To address these challenges, we propose AlignCoder, a repository-level code completion framework that introduces a query enhancement mechanism and a reinforcement learning based retriever training method. Our approach generates multiple candidate completions to construct an enhanced query that bridges the semantic gap between the initial query and the target code. Additionally, we employ reinforcement learning to train an AlignRetriever that learns to leverage inference information in the enhanced query for more accurate retrieval. We evaluate AlignCoder on two widely-used benchmarks (CrossCodeEval and RepoEval) across five backbone code LLMs, demonstrating an 18.1% improvement in EM score compared to baselines on the CrossCodeEval benchmark. The results show that our framework achieves superior performance and exhibits high generalizability across various code LLMs and programming languages.
comment: To appear at ASE'25
Cross-Domain Offshore Wind Power Forecasting: Transfer Learning Through Meteorological Clusters
Ambitious decarbonisation targets are catalysing growth in orders of new offshore wind farms. For these newly commissioned plants to run, accurate power forecasts are needed from the onset. These allow grid stability, good reserve management and efficient energy trading. Despite machine learning models having strong performances, they tend to require large volumes of site-specific data that new farms do not yet have. To overcome this data scarcity, we propose a novel transfer learning framework that clusters power output according to covariate meteorological features. Rather than training a single, general-purpose model, we thus forecast with an ensemble of expert models, each trained on a cluster. As these pre-trained models each specialise in a distinct weather pattern, they adapt efficiently to new sites and capture transferable, climate-dependent dynamics. Through the expert models' built-in calibration to seasonal and meteorological variability, we remove the industry-standard requirement of local measurements over a year. Our contributions are two-fold - we propose this novel framework and comprehensively evaluate it on eight offshore wind farms, achieving accurate cross-domain forecasting with under five months of site-specific data. Our experiments achieve a MAE of 3.52\%, providing empirical verification that reliable forecasts do not require a full annual cycle. Beyond power forecasting, this climate-aware transfer learning method opens new opportunities for offshore wind applications such as early-stage wind resource assessment, where reducing data requirements can significantly accelerate project development whilst effectively mitigating its inherent risks.
comment: 11 pages
A Benchmark for Audio Reasoning Capabilities of Multimodal Large Language Models
The present benchmarks for testing the audio modality of multimodal large language models concentrate on testing various audio tasks such as speaker diarization or gender identification in isolation. Whether a multimodal model can answer the questions that require reasoning skills to combine audio tasks of different categories, cannot be verified with their use. To address this issue, we propose Audio Reasoning Tasks (ART), a new benchmark for assessing the ability of multimodal models to solve problems that require reasoning over audio signal.
comment: 31 pages, 2 figures, accepted to EACL 2026
ProToken: Token-Level Attribution for Federated Large Language Models
Federated Learning (FL) enables collaborative training of Large Language Models (LLMs) across distributed data sources while preserving privacy. However, when federated LLMs are deployed in critical applications, it remains unclear which client(s) contributed to specific generated responses, hindering debugging, malicious client identification, fair reward allocation, and trust verification. We present ProToken, a novel Provenance methodology for Token-level attribution in federated LLMs that addresses client attribution during autoregressive text generation while maintaining FL privacy constraints. ProToken leverages two key insights to enable provenance at each token: (1) transformer architectures concentrate task-specific signals in later blocks, enabling strategic layer selection for computational tractability, and (2) gradient-based relevance weighting filters out irrelevant neural activations, focusing attribution on neurons that directly influence token generation. We evaluate ProToken across 16 configurations spanning four LLM architectures (Gemma, Llama, Qwen, SmolLM) and four domains (medical, financial, mathematical, coding). ProToken achieves 98% average attribution accuracy in correctly localizing responsible client(s), and maintains high accuracy when the number of clients are scaled, validating its practical viability for real-world deployment settings.
SynCABEL: Synthetic Contextualized Augmentation for Biomedical Entity Linking
We present SynCABEL (Synthetic Contextualized Augmentation for Biomedical Entity Linking), a framework that addresses a central bottleneck in supervised biomedical entity linking (BEL): the scarcity of expert-annotated training data. SynCABEL leverages large language models to generate context-rich synthetic training examples for all candidate concepts in a target knowledge base, providing broad supervision without manual annotation. We demonstrate that SynCABEL, when combined with decoder-only models and guided inference establish new state-of-the-art results across three widely used multilingual benchmarks: MedMentions for English, QUAERO for French, and SPACCC for Spanish. Evaluating data efficiency, we show that SynCABEL reaches the performance of full human supervision using up to 60% less annotated data, substantially reducing reliance on labor-intensive and costly expert labeling. Finally, acknowledging that standard evaluation based on exact code matching often underestimates clinically valid predictions due to ontology redundancy, we introduce an LLM-as-a-judge protocol. This analysis reveals that SynCABEL significantly improves the rate of clinically valid predictions. Our synthetic datasets, models, and code are released to support reproducibility and future research.
One Token Is Enough: Improving Diffusion Language Models with a Sink Token
Diffusion Language Models (DLMs) have emerged as a compelling alternative to autoregressive approaches, enabling parallel text generation with competitive performance. Despite these advantages, there is a critical instability in DLMs: the moving sink phenomenon. Our analysis indicates that sink tokens exhibit low-norm representations in the Transformer's value space, and that the moving sink phenomenon serves as a protective mechanism in DLMs to prevent excessive information mixing. However, their unpredictable positions across diffusion steps undermine inference robustness. To resolve this, we propose a simple but effective extra sink token implemented via a modified attention mask. Specifically, we introduce a special token constrained to attend solely to itself, while remaining globally visible to all other tokens. Experimental results demonstrate that introducing a single extra token stabilizes attention sinks, substantially improving model performance. Crucially, further analysis confirms that the effectiveness of this token is independent of its position and characterized by negligible semantic content, validating its role as a robust and dedicated structural sink.
Robustness of Constraint Automata for Description Logics with Concrete Domains
Decidability or complexity issues about the consistency problem for description logics with concrete domains have already been analysed with tableaux-based or type elimination methods. Concrete domains in ontologies are essential to consider concrete objects and predefined relations. In this work, we expose an automata-based approach leading to the optimal upper bound EXPTIME, that is designed by enriching the transitions with symbolic constraints. We show that the nonemptiness problem for such automata belongs to EXPTIME if the concrete domains satisfy a few simple properties. Then, we provide a reduction from the consistency problem for ontologies, yielding EXPTIME-membership. Thanks to the expressivity of constraint automata, the results are extended to additional ingredients such as inverse roles, functional role names and constraint assertions, while maintaining EXPTIME-membership, which illustrates the robustness of the approach
comment: Extended version of a paper accepted at CSL'26, Paris
Tracking Drift: Variation-Aware Entropy Scheduling for Non-Stationary Reinforcement Learning
Real-world reinforcement learning often faces environment drift, but most existing methods rely on static entropy coefficients/target entropy, causing over-exploration during stable periods and under-exploration after drift (thus slow recovery), and leaving unanswered the principled question of how exploration intensity should scale with drift magnitude. We prove that entropy scheduling under non-stationarity can be reduced to a one-dimensional, round-by-round trade-off, faster tracking of the optimal solution after drift vs. avoiding gratuitous randomness when the environment is stable, so exploration strength can be driven by measurable online drift signals. Building on this, we propose AES (Adaptive Entropy Scheduling), which adaptively adjusts the entropy coefficient/temperature online using observable drift proxies during training, requiring almost no structural changes and incurring minimal overhead. Across 4 algorithm variants, 12 tasks, and 4 drift modes, AES significantly reduces the fraction of performance degradation caused by drift and accelerates recovery after abrupt changes.
Algorithmic Prompt-Augmentation for Efficient LLM-Based Heuristic Design for A* Search
Heuristic functions are essential to the performance of tree search algorithms such as A*, where their accuracy and efficiency directly impact search outcomes. Traditionally, such heuristics are handcrafted, requiring significant expertise. Recent advances in large language models (LLMs) and evolutionary frameworks have opened the door to automating heuristic design. In this paper, we extend the Evolution of Heuristics (EoH) framework to investigate the automated generation of guiding heuristics for A* search. We introduce a novel domain-agnostic prompt augmentation strategy that includes the A* code into the prompt to leverage in-context learning, named Algorithmic - Contextual EoH (A-CEoH). To evaluate the effectiveness of A-CeoH, we study two problem domains: the Unit-Load Pre-Marshalling Problem (UPMP), a niche problem from warehouse logistics, and the classical sliding puzzle problem (SPP). Our computational experiments show that A-CEoH can significantly improve the quality of the generated heuristics and even outperform expert-designed heuristics.
comment: accepted at EvoStar conference; Code: https://github.com/tb-git-tud/a-ceoh-evolution-of-heuristics?tab=readme-ov-file
R^3: Replay, Reflection, and Ranking Rewards for LLM Reinforcement Learning
Large reasoning models (LRMs) aim to solve diverse and complex problems through structured reasoning. Recent advances in group-based policy optimization methods have shown promise in enabling stable advantage estimation without reliance on process-level annotations. However, these methods rely on advantage gaps induced by high-quality samples within the same batch, which makes the training process fragile and inefficient when intra-group advantages collapse under challenging tasks. To address these problems, we propose a reinforcement learning mechanism named \emph{\textbf{R^3}} that along three directions: (1) a \emph{cross-context \underline{\textbf{R}}eplay} strategy that maintains the intra-group advantage by recalling valuable examples from historical trajectories of the same query, (2) an \emph{in-context self-\underline{\textbf{R}}eflection} mechanism enabling models to refine outputs by leveraging past failures, and (3) a \emph{structural entropy \underline{\textbf{R}}anking reward}, which assigns relative rewards to truncated or failed samples by ranking responses based on token-level entropy patterns, capturing both local exploration and global stability. We implement our method on Deepseek-R1-Distill-Qwen-1.5B and train it on the DeepscaleR-40k in the math domain. Experiments demonstrate our method achieves SoTA performance on several math benchmarks, representing significant improvements and fewer reasoning tokens over the base models. Code and model will be released.
The role of self-supervised pretraining in differentially private medical image analysis
Differential privacy (DP) provides formal protection for sensitive data but typically incurs substantial losses in diagnostic performance. Model initialization has emerged as a critical factor in mitigating this degradation, yet the role of modern self-supervised learning under full-model DP remains poorly understood. Here, we present a large-scale evaluation of initialization strategies for differentially private medical image analysis, using chest radiograph classification as a representative benchmark with more than 800,000 images. Using state-of-the-art ConvNeXt models trained with DP-SGD across realistic privacy regimes, we compare non-domain-specific supervised ImageNet initialization, non-domain-specific self-supervised DINOv3 initialization, and domain-specific supervised pretraining on MIMIC-CXR, the largest publicly available chest radiograph dataset. Evaluations are conducted across five external datasets spanning diverse institutions and acquisition settings. We show that DINOv3 initialization consistently improves diagnostic utility relative to ImageNet initialization under DP, but remains inferior to domain-specific supervised pretraining, which achieves performance closest to non-private baselines. We further demonstrate that initialization choice strongly influences demographic fairness, cross-dataset generalization, and robustness to data scale and model capacity under privacy constraints. The results establish initialization strategy as a central determinant of utility, fairness, and generalization in differentially private medical imaging.
Up to 36x Speedup: Mask-based Parallel Inference Paradigm for Key Information Extraction in MLLMs
Key Information Extraction (KIE) from visually-rich documents (VrDs) is a critical task, for which recent Large Language Models (LLMs) and Multi-Modal Large Language Models (MLLMs) have demonstrated strong potential. However, their reliance on autoregressive inference, which generates outputs sequentially, creates a significant efficiency bottleneck, especially as KIE tasks often involve extracting multiple, semantically independent fields. To overcome this limitation, we introduce PIP: a Parallel Inference Paradigm for KIE. Our approach reformulates the problem by using "[mask]" tokens as placeholders for all target values, enabling their simultaneous generation in a single forward pass. To facilitate this paradigm, we develop a tailored mask pre-training strategy and construct large-scale supervised datasets. Experimental results show that our PIP-models achieve a 5-36x inference speedup with negligible performance degradation compared to traditional autoregressive base models. By substantially improving efficiency while maintaining high accuracy, PIP paves the way for scalable and practical real-world KIE solutions.
comment: Accepted by ICASSP 2026
Safe Exploration via Policy Priors
Safe exploration is a key requirement for reinforcement learning (RL) agents to learn and adapt online, beyond controlled (e.g. simulated) environments. In this work, we tackle this challenge by utilizing suboptimal yet conservative policies (e.g., obtained from offline data or simulators) as priors. Our approach, SOOPER, uses probabilistic dynamics models to optimistically explore, yet pessimistically fall back to the conservative policy prior if needed. We prove that SOOPER guarantees safety throughout learning, and establish convergence to an optimal policy by bounding its cumulative regret. Extensive experiments on key safe RL benchmarks and real-world hardware demonstrate that SOOPER is scalable, outperforms the state-of-the-art and validate our theoretical guarantees in practice.
Explicit Multi-head Attention for Inter-head Interaction in Large Language Models
In large language models built upon the Transformer architecture, recent studies have shown that inter-head interaction can enhance attention performance. Motivated by this, we propose Multi-head Explicit Attention (MEA), a simple yet effective attention variant that explicitly models cross-head interaction. MEA consists of two key components: a Head-level Linear Composition (HLC) module that separately applies learnable linear combinations to the key and value vectors across heads, thereby enabling rich inter-head communication; and a head-level Group Normalization layer that aligns the statistical properties of the recombined heads. MEA shows strong robustness in pretraining, which allows the use of larger learning rates that lead to faster convergence, ultimately resulting in lower validation loss and improved performance across a range of tasks. Furthermore, we explore the parameter efficiency of MEA by reducing the number of attention heads and leveraging HLC to reconstruct them using low-rank "virtual heads". This enables a practical key-value cache compression strategy that reduces KV-cache memory usage by 50% with negligible performance loss on knowledge-intensive and scientific reasoning tasks, and only a 3.59% accuracy drop for Olympiad-level mathematical benchmarks.
ComAgent: Multi-LLM based Agentic AI Empowered Intelligent Wireless Networks
Emerging 6G networks rely on complex cross-layer optimization, yet manually translating high-level intents into mathematical formulations remains a bottleneck. While Large Language Models (LLMs) offer promise, monolithic approaches often lack sufficient domain grounding, constraint awareness, and verification capabilities. To address this, we present ComAgent, a multi-LLM agentic AI framework. ComAgent employs a closed-loop Perception-Planning-Action-Reflection cycle, coordinating specialized agents for literature search, coding, and scoring to autonomously generate solver-ready formulations and reproducible simulations. By iteratively decomposing problems and self-correcting errors, the framework effectively bridges the gap between user intent and execution. Evaluations demonstrate that ComAgent achieves expert-comparable performance in complex beamforming optimization and outperforms monolithic LLMs across diverse wireless tasks, highlighting its potential for automating design in emerging wireless networks.
GMS-CAVP: Improving Audio-Video Correspondence with Multi-Scale Contrastive and Generative Pretraining
Recent advances in video-audio (V-A) understanding and generation have increasingly relied on joint V-A embeddings, which serve as the foundation for tasks such as cross-modal retrieval and generation. While prior methods like CAVP effectively model semantic and temporal correspondences between modalities using contrastive objectives, their performance remains suboptimal. A key limitation is the insufficient modeling of the dense, multi-scale nature of both video and audio signals, correspondences often span fine- to coarse-grained spatial-temporal structures, which are underutilized in existing frameworks. To this end, we propose GMS-CAVP, a novel framework that combines Multi-Scale Video-Audio Alignment and Multi-Scale Spatial-Temporal Diffusion-based pretraining objectives to enhance V-A correspondence modeling. First, GMS-CAVP introduces a multi-scale contrastive learning strategy that captures semantic and temporal relations across varying granularities. Second, we go beyond traditional contrastive learning by incorporating a diffusion-based generative objective, enabling modality translation and synthesis between video and audio. This unified discriminative-generative formulation facilitates deeper cross-modal understanding and paves the way for high-fidelity generation. Extensive experiments on VGGSound, AudioSet, and Panda70M demonstrate that GMS-CAVP outperforms previous methods in generation and retrieval.
Intersectional Fairness via Mixed-Integer Optimization
The deployment of Artificial Intelligence in high-risk domains, such as finance and healthcare, necessitates models that are both fair and transparent. While regulatory frameworks, including the EU's AI Act, mandate bias mitigation, they are deliberately vague about the definition of bias. In line with existing research, we argue that true fairness requires addressing bias at the intersections of protected groups. We propose a unified framework that leverages Mixed-Integer Optimization (MIO) to train intersectionally fair and intrinsically interpretable classifiers. We prove the equivalence of two measures of intersectional fairness (MSD and SPSF) in detecting the most unfair subgroup and empirically demonstrate that our MIO-based algorithm improves performance in finding bias. We train high-performing, interpretable classifiers that bound intersectional bias below an acceptable threshold, offering a robust solution for regulated industries and beyond.
comment: 17 pages, 10 figures, 1 table
From Atoms to Chains: Divergence-Guided Reasoning Curriculum for Unlabeled LLM Domain Adaptation
Adapting Large Language Models (LLMs) to specialized domains without human-annotated data is a crucial yet formidable challenge. Widely adopted knowledge distillation methods often devolve into coarse-grained mimicry, where the student model inefficiently targets its own weaknesses and risks inheriting the teacher's reasoning flaws. This exposes a critical pedagogical dilemma: how to devise a reliable curriculum when the teacher itself is not an infallible expert. Our work resolves this by capitalizing on a key insight: while LLMs may exhibit fallibility in complex, holistic reasoning, they often exhibit high fidelity on focused, atomic sub-problems. Based on this, we propose Divergence-Guided Reasoning Curriculum (DGRC), which constructs a learning path from atomic knowledge to reasoning chains by dynamically deriving two complementary curricula from disagreements in reasoning pathways. When a student and teacher produce conflicting results, DGRC directs the teacher to perform a diagnostic analysis: it analyzes both reasoning paths to formulate atomic queries that target the specific points of divergence, and then self-answers these queries to create high-confidence atomic question-answer pairs. These pairs then serve a dual purpose: (1) providing an atomic curriculum to rectify the student's knowledge gaps, and (2) serving as factual criteria to filter the teacher's original reasoning chains, yielding a verified CoT curriculum that teaches the student how to integrate atomic knowledge into complete reasoning paths. Experiments across the medical and legal domains on student models of various sizes demonstrate the effectiveness of our DGRC framework. Notably, our method achieves a 7.76% relative improvement for the 1.5B student model in the medical domain over strong unlabeled baseline.
comment: Code: https://github.com/bytedance/DGRC
LLM-Enhanced Reinforcement Learning for Long-Term User Satisfaction in Interactive Recommendation
Interactive recommender systems can dynamically adapt to user feedback, but often suffer from content homogeneity and filter bubble effects due to overfitting short-term user preferences. While recent efforts aim to improve content diversity, they predominantly operate in static or one-shot settings, neglecting the long-term evolution of user interests. Reinforcement learning provides a principled framework for optimizing long-term user satisfaction by modeling sequential decision-making processes. However, its application in recommendation is hindered by sparse, long-tailed user-item interactions and limited semantic planning capabilities. In this work, we propose LLM-Enhanced Reinforcement Learning (LERL), a novel hierarchical recommendation framework that integrates the semantic planning power of LLM with the fine-grained adaptability of RL. LERL consists of a high-level LLM-based planner that selects semantically diverse content categories, and a low-level RL policy that recommends personalized items within the selected semantic space. This hierarchical design narrows the action space, enhances planning efficiency, and mitigates overexposure to redundant content. Extensive experiments on real-world datasets demonstrate that LERL significantly improves long-term user satisfaction when compared with state-of-the-art baselines. The implementation of LERL is available at https://anonymous.4open.science/r/code3-18D3/.
Learning Adaptive Parallel Execution for Efficient Code Localization
Code localization constitutes a key bottleneck in automated software development pipelines. While concurrent tool execution can enhance discovery speed, current agents demonstrate a 34.9\% redundant invocation rate, which negates parallelism benefits. We propose \textbf{FuseSearch}, reformulating parallel code localization as a \textbf{joint quality-efficiency optimization} task. Through defining \textbf{tool efficiency} -- the ratio of unique information gain to invocation count -- we utilize a two-phase SFT and RL training approach for learning adaptive parallel strategies. Different from fixed-breadth approaches, FuseSearch dynamically modulates search breadth according to task context, evolving from exploration phases to refinement stages. Evaluated on SWE-bench Verified, FuseSearch-4B achieves SOTA-level performance (84.7\% file-level and 56.4\% function-level $F_1$ scores) with 93.6\% speedup, utilizing 67.7\% fewer turns and 68.9\% fewer tokens. Results indicate that efficiency-aware training naturally improves quality through eliminating noisy redundant signals, enabling high-performance cost-effective localization agents.
comment: 13 pages, 4 figures
AROMMA: Unifying Olfactory Embeddings for Single Molecules and Mixtures
Public olfaction datasets are small and fragmented across single molecules and mixtures, limiting learning of generalizable odor representations. Recent works either learn single-molecule embeddings or address mixtures via similarity or pairwise label prediction, leaving representations separate and unaligned. In this work, we propose AROMMA, a framework that learns a unified embedding space for single molecules and two-molecule mixtures. Each molecule is encoded by a chemical foundation model and the mixtures are composed by an attention-based aggregator, ensuring both permutation invariance and asymmetric molecular interactions. We further align odor descriptor sets using knowledge distillation and class-aware pseudo-labeling to enrich missing mixture annotations. AROMMA achieves state-of-the-art performance in both single-molecule and molecule-pair datasets, with up to 19.1% AUROC improvement, demonstrating a robust generalization in two domains.
Scale-Consistent State-Space Dynamics via Fractal of Stationary Transformations
Recent deep learning models increasingly rely on depth without structural guarantees on the validity of intermediate representations, rendering early stopping and adaptive computation ill-posed. We address this limitation by formulating a structural requirement for state-space model's scale-consistent latent dynamics across iterative refinement, and derive Fractal of Stationary Transformations (FROST), which enforces a self-similar representation manifold through a fractal inductive bias. Under this geometry, intermediate states correspond to different resolutions of a shared representation, and we provide a geometric analysis establishing contraction and stable convergence across iterations. As a consequence of this scale-consistent structure, halting naturally admits a ranking-based formulation driven by intrinsic feature quality rather than extrinsic objectives. Controlled experiments on ImageNet-100 empirically verify the predicted scale-consistent behavior, showing that adaptive efficiency emerges from the aligned latent geometry.
comment: 8 pages (excluding 2 pages of references), 3 tables, 2 figures. Appendix: 4 pages
SLM-SS: Speech Language Model for Generative Speech Separation
Speech separation (SS) has advanced significantly with neural network-based methods, showing improved performance on signal-level metrics. However, these methods often struggle to maintain speech intelligibility in the separated signals, which can negatively affect the performance of downstream tasks such as speech recognition. In this work, we propose SLM-SS, a novel approach that applies speech language models to SS, aiming to enhance the intelligibility and coherence of the separated signals. We frame SS as discrete multi-codebook sequence generation, using Encoder-Decoder models to map quantized speech mixtures to target tokens. In addition to the autoregressive modeling strategy, we introduce a non-autoregressive model to improve decoding efficiency for residual tokens. Experimental results on the LibriMix dataset demonstrate that our approach shows significantly better preservation of speech intelligibility, leading to improved linguistic consistency in a variety of downstream tasks compared to existing approaches.
Benchmarks Saturate When The Model Gets Smarter Than The Judge
Benchmarks are important tools to track progress in the development of Large Language Models (LLMs), yet inaccuracies in datasets and evaluation methods consistently undermine their effectiveness. Here, we present Omni-MATH-2, a manually revised version of the Omni-MATH dataset comprising a clean, exact-answer subset ($n{=}4181$) and a tagged, non-standard subset ($n{=}247$). Each problem was audited to ensure LaTeX compilability, solvability and verifiability, which involved adding missing figures or information, labeling problems requiring a proof, estimation or image, and removing clutter. This process significantly reduces dataset-induced noise, thereby providing a more precise assessment of model performance. The annotated dataset also allows us to evaluate judge-induced noise by comparing GPT-5 mini with the original Omni-Judge, revealing substantial discrepancies between judges on both the clean and tagged problem subsets. Expert annotations reveal that Omni-Judge is wrong in $96.4\%$ of the judge disagreements, indicating its inability to differentiate between models' abilities, even well before saturation of the benchmark occurs. As problems become more challenging, we find that increasingly competent judges become essential in order to prevent judge errors from masking genuine differences between models. Finally, neither judge identifies the present failure modes for the subset of tagged problems, demonstrating that dataset quality and judge reliability are both critical to develop accurate benchmarks of model performance.
comment: 17 pages, 10 figures, 3 tables
Fuzzy expert system for the process of collecting and purifying acidic water: a digital twin approach
Purifying sour water is essential for reducing emissions, minimizing corrosion risks, enabling the reuse of treated water in industrial or domestic applications, and ultimately lowering operational costs. Moreover, automating the purification process helps reduce the risk of worker harm by limiting human involvement. Crude oil contains acidic components such as hydrogen sulfide, carbon dioxide, and other chemical compounds. During processing, these substances are partially released into sour water. If not properly treated, sour water poses serious environmental threats and accelerates the corrosion of pipelines and equipment. This paper presents a fuzzy expert system, combined with a custom-generated digital twin, developed from a documented industrial process to maintain key parameters at desired levels by mimicking human reasoning. The control strategy is designed to be simple and intuitive, allowing junior or non-expert personnel to interact with the system effectively. The digital twin was developed using Honeywell UniSim Design R492 to simulate real industrial behavior accurately. Valve dynamics were modeled through system identification in MATLAB, and real-time data exchange between the simulator and controller was established using OPC DA. The fuzzy controller applies split-range control to two valves and was tested under 21 different initial pressure conditions using five distinct defuzzification strategies, resulting in a total of 105 unique test scenarios. System performance was evaluated using both error-based metrics (MSE, RMSE, MAE, IAE, ISE, ITAE) and dynamic response metrics, including overshoot, undershoot, rise time, fall time, settling time, and steady-state error. A web-based simulation interface was developed in Python using the Streamlit framework. Although demonstrated here for sour water treatment, the proposed fuzzy expert system is general-purpose.
Mocap Anywhere: Towards Pairwise-Distance based Motion Capture in the Wild (for the Wild)
We introduce a novel motion capture system that reconstructs full-body 3D motion using only sparse pairwise distance (PWD) measurements from body-mounted(UWB) sensors. Using time-of-flight ranging between wireless nodes, our method eliminates the need for external cameras, enabling robust operation in uncontrolled and outdoor environments. Unlike traditional optical or inertial systems, our approach is shape-invariant and resilient to environmental constraints such as lighting and magnetic interference. At the core of our system is Wild-Poser (WiP for short), a compact, real-time Transformer-based architecture that directly predicts 3D joint positions from noisy or corrupted PWD measurements, which can later be used for joint rotation reconstruction via learned methods. WiP generalizes across subjects of varying morphologies, including non-human species, without requiring individual body measurements or shape fitting. Operating in real time, WiP achieves low joint position error and demonstrates accurate 3D motion reconstruction for both human and animal subjects in-the-wild. Our empirical analysis highlights its potential for scalable, low-cost, and general purpose motion capture in real-world settings.
comment: 14 pages, 15 figures
GradPruner: Gradient-Guided Layer Pruning Enabling Efficient Fine-Tuning and Inference for LLMs ICLR2026
Fine-tuning Large Language Models (LLMs) with downstream data is often considered time-consuming and expensive. Structured pruning methods are primarily employed to improve the inference efficiency of pre-trained models. Meanwhile, they often require additional time and memory for training, knowledge distillation, structure search, and other strategies, making efficient model fine-tuning challenging to achieve. To simultaneously enhance the training and inference efficiency of downstream task fine-tuning, we introduce GradPruner, which can prune layers of LLMs guided by gradients in the early stages of fine-tuning. GradPruner uses the cumulative gradients of each parameter during the initial phase of fine-tuning to compute the Initial Gradient Information Accumulation Matrix (IGIA-Matrix) to assess the importance of layers and perform pruning. We sparsify the pruned layers based on the IGIA-Matrix and merge them with the remaining layers. Only elements with the same sign are merged to reduce interference from sign variations. We conducted extensive experiments on two LLMs across eight downstream datasets. Including medical, financial, and general benchmark tasks. The results demonstrate that GradPruner has achieved a parameter reduction of 40% with only a 0.99% decrease in accuracy. Our code is publicly available.
comment: Accepted by ICLR2026
Cortex-Grounded Diffusion Models for Brain Image Generation
Synthetic neuroimaging data can mitigate critical limitations of real-world datasets, including the scarcity of rare phenotypes, domain shifts across scanners, and insufficient longitudinal coverage. However, existing generative models largely rely on weak conditioning signals, such as labels or text, which lack anatomical grounding and often produce biologically implausible outputs. To this end, we introduce Cor2Vox, a cortex-grounded generative framework for brain magnetic resonance image (MRI) synthesis that ties image generation to continuous structural priors of the cerebral cortex. It leverages high-resolution cortical surfaces to guide a 3D shape-to-image Brownian bridge diffusion process, enabling topologically faithful synthesis and precise control over underlying anatomies. To support the generation of new, realistic brain shapes, we developed a large-scale statistical shape model of cortical morphology derived from over 33,000 UK Biobank scans. We validated the fidelity of Cor2Vox based on traditional image quality metrics, advanced cortical surface reconstruction, and whole-brain segmentation quality, outperforming many baseline methods. Across three applications, namely (i) anatomically consistent synthesis, (ii) simulation of progressive gray matter atrophy, and (iii) harmonization of in-house frontotemporal dementia scans with public datasets, Cor2Vox preserved fine-grained cortical morphology at the sub-voxel level, exhibiting remarkable robustness to variations in cortical geometry and disease phenotype without retraining.
comment: preprint
AACR-Bench: Evaluating Automatic Code Review with Holistic Repository-Level Context
High-quality evaluation benchmarks are pivotal for deploying Large Language Models (LLMs) in Automated Code Review (ACR). However, existing benchmarks suffer from two critical limitations: first, the lack of multi-language support in repository-level contexts, which restricts the generalizability of evaluation results; second, the reliance on noisy, incomplete ground truth derived from raw Pull Request (PR) comments, which constrains the scope of issue detection. To address these challenges, we introduce AACR-Bench a comprehensive benchmark that provides full cross-file context across multiple programming languages. Unlike traditional datasets, AACR-Bench employs an "AI-assisted, Expert-verified" annotation pipeline to uncover latent defects often overlooked in original PRs, resulting in a 285\% increase in defect coverage. Extensive evaluations of mainstream LLMs on AACR-Bench reveal that previous assessments may have either misjudged or only partially captured model capabilities due to data limitations. Our work establishes a more rigorous standard for ACR evaluation and offers new insights on LLM based ACR, i.e., the granularity/level of context and the choice of retrieval methods significantly impact ACR performance, and this influence varies depending on the LLM, programming language, and the LLM usage paradigm e.g., whether an Agent architecture is employed. The code, data, and other artifacts of our evaluation set are available at https://github.com/alibaba/aacr-bench .
LLM-VA: Resolving the Jailbreak-Overrefusal Trade-off via Vector Alignment
Safety-aligned LLMs suffer from two failure modes: jailbreak (answering harmful inputs) and over-refusal (declining benign queries). Existing vector steering methods adjust the magnitude of answer vectors, but this creates a fundamental trade-off -- reducing jailbreak increases over-refusal and vice versa. We identify the root cause: LLMs encode the decision to answer (answer vector $v_a$) and the judgment of input safety (benign vector $v_b$) as nearly orthogonal directions, treating them as independent processes. We propose LLM-VA, which aligns $v_a$ with $v_b$ through closed-form weight updates, making the model's willingness to answer causally dependent on its safety assessment -- without fine-tuning or architectural changes. Our method identifies vectors at each layer using SVMs, selects safety-relevant layers, and iteratively aligns vectors via minimum-norm weight modifications. Experiments on 12 LLMs demonstrate that LLM-VA achieves 11.45% higher F1 than the best baseline while preserving 95.92% utility, and automatically adapts to each model's safety bias without manual tuning. Code and models are available at https://hotbento.github.io/LLM-VA-Web/.
Time-to-Injury Forecasting in Elite Female Football: A DeepHit Survival Approach
Injury occurrence in football poses significant challenges for athletes and teams, carrying personal, competitive, and financial consequences. While machine learning has been applied to injury prediction before, existing approaches often rely on static pre-season data and binary outcomes, limiting their real-world utility. This study investigates the feasibility of using a DeepHit neural network to forecast time-to-injury from longitudinal athlete monitoring data, while providing interpretable predictions. The analysis utilised the publicly available SoccerMon dataset, containing two seasons of training, match, and wellness records from elite female footballers. Data was pre-processed through cleaning, feature engineering, and the application of three imputation strategies. Baseline models (Random Forest, XGBoost, Logistic Regression) were optimised via grid search for benchmarking, while the DeepHit model, implemented with a multilayer perceptron backbone, was evaluated using chronological and leave-one-player-out (LOPO) validation. DeepHit achieved a concordance index of 0.762, outperforming baseline models and delivering individualised, time-varying risk estimates. Shapley Additive Explanations (SHAP) identified clinically relevant predictors consistent with established risk factors, enhancing interpretability. Overall, this study provides a novel proof of concept: survival modelling with DeepHit shows strong potential to advance injury forecasting in football, offering accurate, explainable, and actionable insights for injury prevention across competitive levels.
APC-RL: Exceeding Data-Driven Behavior Priors with Adaptive Policy Composition
Incorporating demonstration data into reinforcement learning (RL) can greatly accelerate learning, but existing approaches often assume demonstrations are optimal and fully aligned with the target task. In practice, demonstrations are frequently sparse, suboptimal, or misaligned, which can degrade performance when these demonstrations are integrated into RL. We propose Adaptive Policy Composition (APC), a hierarchical model that adaptively composes multiple data-driven Normalizing Flow (NF) priors. Instead of enforcing strict adherence to the priors, APC estimates each prior's applicability to the target task while leveraging them for exploration. Moreover, APC either refines useful priors, or sidesteps misaligned ones when necessary to optimize downstream reward. Across diverse benchmarks, APC accelerates learning when demonstrations are aligned, remains robust under severe misalignment, and leverages suboptimal demonstrations to bootstrap exploration while avoiding performance degradation caused by overly strict adherence to suboptimal demonstrations.
KG-CRAFT: Knowledge Graph-based Contrastive Reasoning with LLMs for Enhancing Automated Fact-checking
Claim verification is a core component of automated fact-checking systems, aimed at determining the truthfulness of a statement by assessing it against reliable evidence sources such as documents or knowledge bases. This work presents KG-CRAFT, a method that improves automatic claim verification by leveraging large language models (LLMs) augmented with contrastive questions grounded in a knowledge graph. KG-CRAFT first constructs a knowledge graph from claims and associated reports, then formulates contextually relevant contrastive questions based on the knowledge graph structure. These questions guide the distillation of evidence-based reports, which are synthesised into a concise summary that is used for veracity assessment by LLMs. Extensive evaluations on two real-world datasets (LIAR-RAW and RAWFC) demonstrate that our method achieves a new state-of-the-art in predictive performance. Comprehensive analyses validate in detail the effectiveness of our knowledge graph-based contrastive reasoning approach in improving LLMs' fact-checking capabilities.
comment: Accepted to publication at the 19th Conference of the European Chapter of the Association for Computational Linguistics, EACL 2026
Ad Insertion in LLM-Generated Responses
Sustainable monetization of Large Language Models (LLMs) remains a critical open challenge. Traditional search advertising, which relies on static keywords, fails to capture the fleeting, context-dependent user intents--the specific information, goods, or services a user seeks--embedded in conversational flows. Beyond the standard goal of social welfare maximization, effective LLM advertising imposes additional requirements on contextual coherence (ensuring ads align semantically with transient user intents) and computational efficiency (avoiding user interaction latency), as well as adherence to ethical and regulatory standards, including preserving privacy and ensuring explicit ad disclosure. Although various recent solutions have explored bidding on token-level and query-level, both categories of approaches generally fail to holistically satisfy this multifaceted set of constraints. We propose a practical framework that resolves these tensions through two decoupling strategies. First, we decouple ad insertion from response generation to ensure safety and explicit disclosure. Second, we decouple bidding from specific user queries by using ``genres'' (high-level semantic clusters) as a proxy. This allows advertisers to bid on stable categories rather than sensitive real-time response, reducing computational burden and privacy risks. We demonstrate that applying the VCG auction mechanism to this genre-based framework yields approximately dominant strategy incentive compatibility (DSIC) and individual rationality (IR), as well as approximately optimal social welfare, while maintaining high computational efficiency. Finally, we introduce an "LLM-as-a-Judge" metric to estimate contextual coherence. Our experiments show that this metric correlates strongly with human ratings (Spearman's $ρ\approx 0.66$), outperforming 80% of individual human evaluators.
comment: 31 pages, 8 figures
Sim-and-Human Co-training for Data-Efficient and Generalizable Robotic Manipulation
Synthetic simulation data and real-world human data provide scalable alternatives to circumvent the prohibitive costs of robot data collection. However, these sources suffer from the sim-to-real visual gap and the human-to-robot embodiment gap, respectively, which limits the policy's generalization to real-world scenarios. In this work, we identify a natural yet underexplored complementarity between these sources: simulation offers the robot action that human data lacks, while human data provides the real-world observation that simulation struggles to render. Motivated by this insight, we present SimHum, a co-training framework to simultaneously extract kinematic prior from simulated robot actions and visual prior from real-world human observations. Based on the two complementary priors, we achieve data-efficient and generalizable robotic manipulation in real-world tasks. Empirically, SimHum outperforms the baseline by up to $\mathbf{40\%}$ under the same data collection budget, and achieves a $\mathbf{62.5\%}$ OOD success with only 80 real data, outperforming the real only baseline by $7.1\times$. Videos and additional information can be found at \href{https://kaipengfang.github.io/sim-and-human}{project website}.
RPO:Reinforcement Fine-Tuning with Partial Reasoning Optimization
Within the domain of large language models, reinforcement fine-tuning algorithms necessitate the generation of a complete reasoning trajectory beginning from the input query, which incurs significant computational overhead during the rollout phase of training. To address this issue, we analyze the impact of different segments of the reasoning path on the correctness of the final result and, based on these insights, propose Reinforcement Fine-Tuning with Partial Reasoning Optimization (RPO), a plug-and-play reinforcement fine-tuning algorithm. Unlike traditional reinforcement fine-tuning algorithms that generate full reasoning paths, RPO trains the model by generating suffixes of the reasoning path using experience cache. During the rollout phase of training, RPO reduces token generation in this phase by approximately 95%, greatly lowering the theoretical time overhead. Compared with full-path reinforcement fine-tuning algorithms, RPO reduces the training time of the 1.5B model by 90% and the 7B model by 72%. At the same time, it can be integrated with typical algorithms such as GRPO and DAPO, enabling them to achieve training acceleration while maintaining performance comparable to the original algorithms. Our code is open-sourced at https://github.com/yhz5613813/RPO.
Learned split-spectrum metalens for obstruction-free broadband imaging in the visible
Obstructions such as raindrops, fences, or dust degrade captured images, especially when mechanical cleaning is infeasible. Conventional solutions to obstructions rely on a bulky compound optics array or computational inpainting, which compromise compactness or fidelity. Metalenses composed of subwavelength meta-atoms promise compact imaging, but simultaneous achievement of broadband and obstruction-free imaging remains a challenge, since a metalens that images distant scenes across a broadband spectrum cannot properly defocus near-depth occlusions. Here, we introduce a learned split-spectrum metalens that enables broadband obstruction-free imaging. Our approach divides the spectrum of each RGB channel into pass and stop bands with multi-band spectral filtering and learns the metalens to focus light from far objects through pass bands, while filtering focused near-depth light through stop bands. This optical signal is further enhanced using a neural network. Our learned split-spectrum metalens achieves broadband and obstruction-free imaging with relative PSNR gains of 32.29% and improves object detection and semantic segmentation accuracies with absolute gains of +13.54% mAP, +48.45% IoU, and +20.35% mIoU over a conventional hyperbolic design. This promises robust obstruction-free sensing and vision for space-constrained systems, such as mobile robots, drones, and endoscopes.
PROTEUS: SLA-Aware Routing via Lagrangian RL for Multi-LLM Serving Systems
Production LLM deployments serve diverse workloads where cost and quality requirements vary by customer tier, time of day, and query criticality. Model serving systems accept latency SLOs directly. LLM routers do not. They force operators to tune parameters offline and guess what accuracy might result. The relationship between parameters and outcomes is indirect, non-monotonic, and dataset-dependent. Operators need to specify accuracy targets, not infer them from opaque settings. We present PROTEUS (Polymorphic Router for Operational Target Enforcement with Unified SLA), a router that accepts accuracy targets tau as runtime input. PROTEUS uses Lagrangian dual control. A learned dual variable lambda tracks constraint violations during training and conditions the policy network. This lets the router translate specified tau values into routing decisions that satisfy them. A single trained model serves the full accuracy spectrum without retraining.We evaluate on RouterBench (11 models, 405K queries) and SPROUT (14 models, 45K queries). PROTEUS achieves consistent floor compliance where accuracy meets or exceeds tau. The target-response correlation reaches 0.97 to 0.98. The closest baseline, OmniRouter, meets floors only 22% of the time despite also using Lagrangian optimization. PROTEUS operates across tau in [0.85, 0.95] from a single model. On RouterBench it achieves 90.1% accuracy, within 1.3% of oracle. On SPROUT it achieves 94.0% accuracy, within 4.6% of oracle. Cost savings reach 89.8% versus the best fixed model.
Residual Tokens Enhance Masked Autoencoders for Speech Modeling
Recent speech modeling relies on explicit attributes such as pitch, content, and speaker identity, but these alone cannot capture the full richness of natural speech. We introduce RT-MAE, a novel masked autoencoder framework that augments the supervised attributes-based modeling with unsupervised residual trainable tokens, designed to encode the information not explained by explicit labeled factors (e.g., timbre variations, noise, emotion etc). Experiments show that RT-MAE improves reconstruction quality, preserving content and speaker similarity while enhancing expressivity. We further demonstrate its applicability to speech enhancement, removing noise at inference while maintaining controllability and naturalness.
comment: Submitted to ICASSP 2026 (accepted)
Tri-Reader: An Open-Access, Multi-Stage AI Pipeline for First-Pass Lung Nodule Annotation in Screening CT
Using multiple open-access models trained on public datasets, we developed Tri-Reader, a comprehensive, freely available pipeline that integrates lung segmentation, nodule detection, and malignancy classification into a unified tri-stage workflow. The pipeline is designed to prioritize sensitivity while reducing the candidate burden for annotators. To ensure accuracy and generalizability across diverse practices, we evaluated Tri-Reader on multiple internal and external datasets as compared with expert annotations and dataset-provided reference standards.
comment: 1 figure , 2 tables, 20 page supplement
Teaching Machine Learning Fundamentals with LEGO Robotics
This paper presents the web-based platform Machine Learning with Bricks and an accompanying two-day course designed to teach machine learning concepts to students aged 12 to 17 through programming-free robotics activities. Machine Learning with Bricks is an open source platform and combines interactive visualizations with LEGO robotics to teach three core algorithms: KNN, linear regression, and Q-learning. Students learn by collecting data, training models, and interacting with robots via a web-based interface. Pre- and post-surveys with 14 students demonstrate significant improvements in conceptual understanding of machine learning algorithms, positive shifts in AI perception, high platform usability, and increased motivation for continued learning. This work demonstrates that tangible, visualization-based approaches can make machine learning concepts accessible and engaging for young learners while maintaining technical depth. The platform is freely available at https://learning-and-dynamics.github.io/ml-with-bricks/, with video tutorials guiding students through the experiments at https://youtube.com/playlist?list=PLx1grFu4zAcwfKKJZ1Ux4LwRqaePCOA2J.
comment: 10 pages, 8 figures
Selective Steering: Norm-Preserving Control Through Discriminative Layer Selection
Despite significant progress in alignment, large language models (LLMs) remain vulnerable to adversarial attacks that elicit harmful behaviors. Activation steering techniques offer a promising inference-time intervention approach, but existing methods suffer from critical limitations: activation addition requires careful coefficient tuning and is sensitive to layer-specific norm variations, while directional ablation provides only binary control. Recent work on Angular Steering introduces continuous control via rotation in a 2D subspace, but its practical implementation violates norm preservation, causing distribution shift and generation collapse, particularly in models below 7B parameters. We propose Selective Steering, which addresses these limitations through two key innovations: (1) a mathematically rigorous norm-preserving rotation formulation that maintains activation distribution integrity, and (2) discriminative layer selection that applies steering only where feature representations exhibit opposite-signed class alignment. Experiments across nine models demonstrate that Selective Steering achieves 5.5x higher attack success rates than prior methods while maintaining zero perplexity violations and approximately 100\% capability retention on standard benchmarks. Our approach provides a principled, efficient framework for controllable and stable LLM behavior modification. Code: https://github.com/knoveleng/steering
Revisiting Parameter Server in LLM Post-Training ICLR'26
Modern data parallel (DP) training favors collective communication over parameter servers (PS) for its simplicity and efficiency under balanced workloads. However, the balanced workload assumption no longer holds in large language model (LLM) post-training due to the high variance in sequence lengths. Under imbalanced workloads, collective communication creates synchronization barriers, leading to under-utilization of devices with smaller workloads. This change in training dynamics calls for a revisit of the PS paradigm for its robustness to such imbalance. We propose \textbf{On-Demand Communication (ODC)}, which adapts PS into Fully Sharded Data Parallel (FSDP) by replacing collective all-gather and reduce-scatter with direct point-to-point communication. Compared to FSDP, ODC reduces the synchronization barrier from once per layer to once per minibatch and decouples the workload on each device so that faster workers are not stalled. It also enables simpler and more effective load balancing at the minibatch level. Across diverse LLM post-training tasks, ODC consistently improves device utilization and training throughput, achieving up to a 36\% speedup over standard FSDP. These results demonstrate that ODC is a superior fit for the prevalent imbalanced workloads in LLM post-training. Our implementation of ODC and integration with FSDP is open-sourced at https://github.com/sail-sg/odc.
comment: Accepted in ICLR'26
Robust Uncertainty Estimation under Distribution Shift via Difference Reconstruction
Estimating uncertainty in deep learning models is critical for reliable decision-making in high-stakes applications such as medical imaging. Prior research has established that the difference between an input sample and its reconstructed version produced by an auxiliary model can serve as a useful proxy for uncertainty. However, directly comparing reconstructions with the original input is degraded by information loss and sensitivity to superficial details, which limits its effectiveness. In this work, we propose Difference Reconstruction Uncertainty Estimation (DRUE), a method that mitigates this limitation by reconstructing inputs from two intermediate layers and measuring the discrepancy between their outputs as the uncertainty score. To evaluate uncertainty estimation in practice, we follow the widely used out-of-distribution (OOD) detection paradigm, where in-distribution (ID) training data are compared against datasets with increasing domain shift. Using glaucoma detection as the ID task, we demonstrate that DRUE consistently achieves superior AUC and AUPR across multiple OOD datasets, highlighting its robustness and reliability under distribution shift. This work provides a principled and effective framework for enhancing model reliability in uncertain environments.
SETA: Statistical Fault Attribution for Compound AI Systems
Modern AI systems increasingly comprise multiple interconnected neural networks to tackle complex inference tasks. Testing such systems for robustness and safety entails significant challenges. Current state-of-the-art robustness testing techniques, whether black-box or white-box, have been proposed and implemented for single-network models and do not scale well to multi-network pipelines. We propose a modular robustness testing framework that applies a given set of perturbations to test data. Our testing framework supports (1) a component-wise system analysis to isolate errors and (2) reasoning about error propagation across the neural network modules. The testing framework is architecture and modality agnostic and can be applied across domains. We apply the framework to a real-world autonomous rail inspection system composed of multiple deep networks and successfully demonstrate how our approach enables fine-grained robustness analysis beyond conventional end-to-end metrics.
comment: Accepted to CAIN 2026 co-hosted with ICSE 2026
From Observations to Events: Event-Aware World Model for Reinforcement Learning ICLR 2026
While model-based reinforcement learning (MBRL) improves sample efficiency by learning world models from raw observations, existing methods struggle to generalize across structurally similar scenes and remain vulnerable to spurious variations such as textures or color shifts. From a cognitive science perspective, humans segment continuous sensory streams into discrete events and rely on these key events for decision-making. Motivated by this principle, we propose the Event-Aware World Model (EAWM), a general framework that learns event-aware representations to streamline policy learning without requiring handcrafted labels. EAWM employs an automated event generator to derive events from raw observations and introduces a Generic Event Segmentor (GES) to identify event boundaries, which mark the start and end time of event segments. Through event prediction, the representation space is shaped to capture meaningful spatio-temporal transitions. Beyond this, we present a unified formulation of seemingly distinct world model architectures and show the broad applicability of our methods. Experiments on Atari 100K, Craftax 1M, and DeepMind Control 500K, DMC-GB2 500K demonstrate that EAWM consistently boosts the performance of strong MBRL baselines by 10%-45%, setting new state-of-the-art results across benchmarks. Our code is released at https://github.com/MarquisDarwin/EAWM.
comment: 43 pages, accepted by ICLR 2026
When Benchmarks Leak: Inference-Time Decontamination for LLMs
Benchmark-based evaluation is the de facto standard for comparing large language models (LLMs). However, its reliability is increasingly threatened by test set contamination, where test samples or their close variants leak into training data and artificially inflate reported performance. To address this issue, prior work has explored two main lines of mitigation. One line attempts to identify and remove contaminated benchmark items before evaluation, but this inevitably alters the evaluation set itself and becomes unreliable when contamination is moderate or severe. The other line preserves the benchmark and instead suppresses contaminated behavior at evaluation time; however, such interventions often interfere with normal inference and lead to noticeable performance degradation on clean inputs. We propose DeconIEP, a decontamination framework that operates entirely during evaluation by applying small, bounded perturbations in the input embedding space. Guided by a relatively less-contaminated reference model, DeconIEP learns an instance-adaptive perturbation generator that steers the evaluated model away from memorization-driven shortcut pathways. Across multiple open-weight LLMs and benchmarks, extensive empirical results show that DeconIEP achieves strong decontamination effectiveness while incurring only minimal degradation in benign utility.
Innovator-VL: A Multimodal Large Language Model for Scientific Discovery
We present Innovator-VL, a scientific multimodal large language model designed to advance understanding and reasoning across diverse scientific domains while maintaining excellent performance on general vision tasks. Contrary to the trend of relying on massive domain-specific pretraining and opaque pipelines, our work demonstrates that principled training design and transparent methodology can yield strong scientific intelligence with substantially reduced data requirements. (i) First, we provide a fully transparent, end-to-end reproducible training pipeline, covering data collection, cleaning, preprocessing, supervised fine-tuning, reinforcement learning, and evaluation, along with detailed optimization recipes. This facilitates systematic extension by the community. (ii) Second, Innovator-VL exhibits remarkable data efficiency, achieving competitive performance on various scientific tasks using fewer than five million curated samples without large-scale pretraining. These results highlight that effective reasoning can be achieved through principled data selection rather than indiscriminate scaling. (iii) Third, Innovator-VL demonstrates strong generalization, achieving competitive performance on general vision, multimodal reasoning, and scientific benchmarks. This indicates that scientific alignment can be integrated into a unified model without compromising general-purpose capabilities. Our practices suggest that efficient, reproducible, and high-performing scientific multimodal models can be built even without large-scale data, providing a practical foundation for future research.
comment: Innovator-VL tech report
StableQAT: Stable Quantization-Aware Training at Ultra-Low Bitwidths
Quantization-aware training (QAT) is essential for deploying large models under strict memory and latency constraints, yet achieving stable and robust optimization at ultra-low bitwidths remains challenging. Common approaches based on the straight-through estimator (STE) or soft quantizers often suffer from gradient mismatch, instability, or high computational overhead. As such, we propose StableQAT, a unified and efficient QAT framework that stabilizes training in ultra low-bit settings via a novel, lightweight, and theoretically grounded surrogate for backpropagation derived from a discrete Fourier analysis of the rounding operator. StableQAT strictly generalizes STE as the latter arises as a special case of our more expressive surrogate family, yielding smooth, bounded, and inexpensive gradients that improve QAT training performance and stability across various hyperparameter choices. In experiments, StableQAT exhibits stable and efficient QAT at 2-4 bit regimes, demonstrating improved training stability, robustness, and superior performance with negligible training overhead against standard QAT techniques. Our code is available at https://github.com/microsoft/StableQAT.
Instance-Guided Radar Depth Estimation for 3D Object Detection
Accurate depth estimation is fundamental to 3D perception in autonomous driving, supporting tasks such as detection, tracking, and motion planning. However, monocular camera-based 3D detection suffers from depth ambiguity and reduced robustness under challenging conditions. Radar provides complementary advantages such as resilience to poor lighting and adverse weather, but its sparsity and low resolution limit its direct use in detection frameworks. This motivates the need for effective Radar-camera fusion with improved preprocessing and depth estimation strategies. We propose an end-to-end framework that enhances monocular 3D object detection through two key components. First, we introduce InstaRadar, an instance segmentation-guided expansion method that leverages pre-trained segmentation masks to enhance Radar density and semantic alignment, producing a more structured representation. InstaRadar achieves state-of-the-art results in Radar-guided depth estimation, showing its effectiveness in generating high-quality depth features. Second, we integrate the pre-trained RCDPT into the BEVDepth framework as a replacement for its depth module. With InstaRadar-enhanced inputs, the RCDPT integration consistently improves 3D detection performance. Overall, these components yield steady gains over the baseline BEVDepth model, demonstrating the effectiveness of InstaRadar and the advantage of explicit depth supervision in 3D object detection. Although the framework lags behind Radar-camera fusion models that directly extract BEV features, since Radar serves only as guidance rather than an independent feature stream, this limitation highlights potential for improvement. Future work will extend InstaRadar to point cloud-like representations and integrate a dedicated Radar branch with temporal cues for enhanced BEV fusion.
comment: Accepted to IPMV2026
Balancing Sustainability And Performance: The Role Of Small-Scale Llms In Agentic Artificial Intelligence Systems
As large language models become integral to agentic artificial intelligence systems, their energy demands during inference may pose significant sustainability challenges. This study investigates whether deploying smaller-scale language models can reduce energy consumption without compromising responsiveness and output quality in a multi-agent, real-world environments. We conduct a comparative analysis across language models of varying scales to quantify trade-offs between efficiency and performance. Results show that smaller open-weights models can lower energy usage while preserving task quality. Building on these findings, we propose practical guidelines for sustainable artificial intelligence design, including optimal batch size configuration and computation resource allocation. These insights offer actionable strategies for developing scalable, environmentally responsible artificial intelligence systems.
Curiosity Driven Knowledge Retrieval for Mobile Agents
Mobile agents have made progress toward reliable smartphone automation, yet performance in complex applications remains limited by incomplete knowledge and weak generalization to unseen environments. We introduce a curiosity driven knowledge retrieval framework that formalizes uncertainty during execution as a curiosity score. When this score exceeds a threshold, the system retrieves external information from documentation, code repositories, and historical trajectories. Retrieved content is organized into structured AppCards, which encode functional semantics, parameter conventions, interface mappings, and interaction patterns. During execution, an enhanced agent selectively integrates relevant AppCards into its reasoning process, thereby compensating for knowledge blind spots and improving planning reliability. Evaluation on the AndroidWorld benchmark shows consistent improvements across backbones, with an average gain of six percentage points and a new state of the art success rate of 88.8\% when combined with GPT-5. Analysis indicates that AppCards are particularly effective for multi step and cross application tasks, while improvements depend on the backbone model. Case studies further confirm that AppCards reduce ambiguity, shorten exploration, and support stable execution trajectories. Task trajectories are publicly available at https://lisalsj.github.io/Droidrun-appcard/.
Group Distributionally Robust Optimization-Driven Reinforcement Learning for LLM Reasoning
Recent progress in Large Language Model (LLM) reasoning is increasingly driven by the refinement of post-training loss functions and alignment strategies. However, standard Reinforcement Learning (RL) paradigms like Group Relative Policy Optimization (GRPO) remain constrained by static uniformity: uniform prompt sampling and a fixed number of rollouts per prompt. For heterogeneous, heavy-tailed reasoning data, this creates structural inefficiencies that waste compute on already-solved patterns while under-training the long tail of hard problems. To address this, we propose Multi-Adversary Group Distributionally Robust Optimization (GDRO), an optimization-first framework that moves beyond uniform reasoning models by dynamically adapting the training distribution. We introduce an Online Difficulty Classifier that partitions prompts into dynamic pass@k difficulty groups. We then propose two independent GDRO games for post-training: (1) Prompt-GDRO, which employs an EMA-debiased multiplicative-weights bandit sampler to target the intensive difficulty margin and upweight persistently hard groups without frequency bias; and (2) Rollout-GDRO, which uses a shadow-price controller to reallocate rollouts across groups, maximizing gradient variance reduction on hard tasks under a fixed mean budget (compute-neutral). We provide no-regret guarantees for both controllers and additionally a variance-proxy analysis motivating a square-root optimal rollout allocation for Rollout-GDRO. We validate our framework on the DAPO 14.1k dataset using Qwen3-Base models. Prompt-GDRO and Rollout-GDRO achieve average relative gains of +10.6% and +10.1%, respectively, in pass@8 accuracy across 1.7B, 4B, and 8B scales compared to the GRPO baseline. Qualitative analysis shows an emergent curriculum: the adversaries shift resources to the evolving reasoning frontier, enhancing the reasoning model's performance.
comment: Keywords: Large Language Models, Reasoning Models, Reinforcement Learning, Distributionally Robust Optimization, GRPO
Talos: Optimizing Top-$K$ Accuracy in Recommender Systems
Recommender systems (RS) aim to retrieve a small set of items that best match individual user preferences. Naturally, RS place primary emphasis on the quality of the Top-$K$ results rather than performance across the entire item set. However, estimating Top-$K$ accuracy (e.g., Precision@$K$, Recall@$K$) requires determining the ranking positions of items, which imposes substantial computational overhead and poses significant challenges for optimization. In addition, RS often suffer from distribution shifts due to evolving user preferences or data biases, further complicating the task. To address these issues, we propose Talos, a loss function that is specifically designed to optimize the Talos recommendation accuracy. Talos leverages a quantile technique that replaces the complex ranking-dependent operations into simpler comparisons between predicted scores and learned score thresholds. We further develop a sampling-based regression algorithm for efficient and accurate threshold estimation, and introduce a constraint term to maintain optimization stability by preventing score inflation. Additionally, we incorporate a tailored surrogate function to address discontinuity and enhance robustness against distribution shifts. Comprehensive theoretical analyzes and empirical experiments are conducted to demonstrate the effectiveness, efficiency, convergence, and distributional robustness of Talos. The code is available at https://github.com/cynthia-shengjia/WWW-2026-Talos.
comment: Accepted by WWW'26
Tactile Memory with Soft Robot: Robust Object Insertion via Masked Encoding and Soft Wrist
Tactile memory, the ability to store and retrieve touch-based experience, is critical for contact-rich tasks such as key insertion under uncertainty. To replicate this capability, we introduce Tactile Memory with Soft Robot (TaMeSo-bot), a system that integrates a soft wrist with tactile retrieval-based control to enable safe and robust manipulation. The soft wrist allows safe contact exploration during data collection, while tactile memory reuses past demonstrations via retrieval for flexible adaptation to unseen scenarios. The core of this system is the Masked Tactile Trajectory Transformer (MAT$^\text{3}$), which jointly models spatiotemporal interactions between robot actions, distributed tactile feedback, force-torque measurements, and proprioceptive signals. Through masked-token prediction, MAT$^\text{3}$ learns rich spatiotemporal representations by inferring missing sensory information from context, autonomously extracting task-relevant features without explicit subtask segmentation. We validate our approach on peg-in-hole tasks with diverse pegs and conditions in real-robot experiments. Our extensive evaluation demonstrates that MAT$^\text{3}$ achieves higher success rates than the baselines over all conditions and shows remarkable capability to adapt to unseen pegs and conditions.
comment: This work has been submitted to the IEEE for possible publication
Riddle Quest : The Enigma of Words
Riddles are concise linguistic puzzles that describe an object or idea through indirect, figurative, or playful clues. They are a longstanding form of creative expression, requiring the solver to interpret hints, recognize patterns, and draw inferences to identify the answers. In this work, we introduce a simple pipeline for creating and evaluating analogy-based riddles. The system includes a triples creator that builds structured facts about a concept, a semantic mapper that selects attributes useful for analogy, a stylized generator that turns them into riddle clues, and a validator that collects all possible answers the riddle could point to. We use this validator to study whether large language models can recover the full answer set for different riddle types. Our case study shows that while models often guess the main intended answer, they frequently miss other valid interpretations. This highlights the value of riddles as a lightweight tool for examining reasoning coverage and ambiguity handling in language models.
comment: This paper is submitted under 'Demo track' for WWW conference
Decoupled Split Learning via Auxiliary Loss
Split learning is a distributed training paradigm where a neural network is partitioned between clients and a server, which allows data to remain at the client while only intermediate activations are shared. Traditional split learning relies on end-to-end backpropagation across the client-server split point. This incurs a large communication overhead (i.e., forward activations and backward gradients need to be exchanged every iteration) and significant memory use (for storing activations and gradients). In this paper, we develop a beyond-backpropagation training method for split learning. In this approach, the client and server train their model partitions semi-independently, using local loss signals instead of propagated gradients. In particular, the client's network is augmented with a small auxiliary classifier at the split point to provide a local error signal, while the server trains on the client's transmitted activations using the true loss function. This decoupling removes the need to send backward gradients, which cuts communication costs roughly in half and also reduces memory overhead (as each side only stores local activations for its own backward pass). We evaluate our approach on CIFAR-10 and CIFAR-100. Our experiments show two key results. First, the proposed approach achieves performance on par with standard split learning that uses backpropagation. Second, it significantly reduces communication (of transmitting activations/gradient) by 50% and peak memory usage by up to 58%.
GhostUI: Unveiling Hidden Interactions in Mobile UI
Modern mobile applications rely on hidden interactions--gestures without visual cues like long presses and swipes--to provide functionality without cluttering interfaces. While experienced users may discover these interactions through prior use or onboarding tutorials, their implicit nature makes them difficult for most users to uncover. Similarly, mobile agents--systems designed to automate tasks on mobile user interfaces, powered by vision language models (VLMs)--struggle to detect veiled interactions or determine actions for completing tasks. To address this challenge, we present GhostUI, a new dataset designed to enable the detection of hidden interactions in mobile applications. GhostUI provides before-and-after screenshots, simplified view hierarchies, gesture metadata, and task descriptions, allowing VLMs to better recognize concealed gestures and anticipate post-interaction states. Quantitative evaluations with VLMs show that models fine-tuned on GhostUI outperform baseline VLMs, particularly in predicting hidden interactions and inferring post-interaction screens, underscoring GhostUI's potential as a foundation for advancing mobile task automation.
comment: Accepted at ACM CHI Conference on Human Factors in Computing Systems (CHI '26)
PCEvo: Path-Consistent Molecular Representation via Virtual Evolutionary
Molecular representation learning aims to learn vector embeddings that capture molecular structure and geometry, thereby enabling property prediction and downstream scientific applications. In many AI for science tasks, labeled data are expensive to obtain and therefore limited in availability. Under the few-shot setting, models trained with scarce supervision often learn brittle structure-property relationships, resulting in substantially higher prediction errors and reduced generalization to unseen molecules. To address this limitation, we propose PCEvo, a path-consistent representation method that learns from virtual paths through dynamic structural evolution. PCEvo enumerates multiple chemically feasible edit paths between retrieved similar molecular pairs under topological dependency constraints. It transforms the labels of the two molecules into stepwise supervision along each virtual evolutionary path. It introduces a path-consistency objective that enforces prediction invariance across alternative paths connecting the same two molecules. Comprehensive experiments on the QM9 and MoleculeNet datasets demonstrate that PCEvo substantially improves the few-shot generalization performance of baseline methods. The code is available at https://anonymous.4open.science/r/PCEvo-4BF2.
comment: 10 pages, 4 figures, 5 tables
LLM-Assisted Logic Rule Learning: Scaling Human Expertise for Time Series Anomaly Detection
Time series anomaly detection is critical for supply chain management to take proactive operations, but faces challenges: classical unsupervised anomaly detection based on exploiting data patterns often yields results misaligned with business requirements and domain knowledge, while manual expert analysis cannot scale to millions of products in the supply chain. We propose a framework that leverages large language models (LLMs) to systematically encode human expertise into interpretable, logic-based rules for detecting anomaly patterns in supply chain time series data. Our approach operates in three stages: 1) LLM-based labeling of training data instructed by domain knowledge, 2) automated generation and iterative improvements of symbolic rules through LLM-driven optimization, and 3) rule augmentation with business-relevant anomaly categories supported by LLMs to enhance interpretability. The experiment results showcase that our approach outperforms the unsupervised learning methods in both detection accuracy and interpretability. Furthermore, compared to direct LLM deployment for time series anomaly detection, our approach provides consistent, deterministic results with low computational latency and cost, making it ideal for production deployment. The proposed framework thus demonstrates how LLMs can bridge the gap between scalable automation and expert-driven decision-making in operational settings.
GLOVE: Global Verifier for LLM Memory-Environment Realignment
Most existing memory-enhanced Large Language Model (LLM) approaches implicitly assume that memory validity can be established either through external evaluators that provide task-specific success signals or through internal model cognition, such as reflection, for editing memory entries. However, these assumptions often break down in practical environments with dynamic drifts. We propose the Global Verifier (GLOVE), a framework that introduces a new design dimension for LLM memory systems by establishing a relative notion of truth. Through active probing to detect inconsistencies between retrieved memories and fresh observations, GLOVE enables memory-environment realignment by verifying and updating memory without access to ground-truth supervision or strong reliance on model introspection. We evaluate GLOVE on diverse benchmarks spanning web navigation, planning, and control, augmented with controlled environmental drifts that introduce non-stationarity beyond the original benchmark settings. Our results show that GLOVE substantially improves agent success rates, suggesting a robust pathway to cognitive agents capable of self-evolving.
Beyond In-Domain Detection: SpikeScore for Cross-Domain Hallucination Detection
Hallucination detection is critical for deploying large language models (LLMs) in real-world applications. Existing hallucination detection methods achieve strong performance when the training and test data come from the same domain, but they suffer from poor cross-domain generalization. In this paper, we study an important yet overlooked problem, termed generalizable hallucination detection (GHD), which aims to train hallucination detectors on data from a single domain while ensuring robust performance across diverse related domains. In studying GHD, we simulate multi-turn dialogues following LLMs initial response and observe an interesting phenomenon: hallucination-initiated multi-turn dialogues universally exhibit larger uncertainty fluctuations than factual ones across different domains. Based on the phenomenon, we propose a new score SpikeScore, which quantifies abrupt fluctuations in multi-turn dialogues. Through both theoretical analysis and empirical validation, we demonstrate that SpikeScore achieves strong cross-domain separability between hallucinated and non-hallucinated responses. Experiments across multiple LLMs and benchmarks demonstrate that the SpikeScore-based detection method outperforms representative baselines in cross-domain generalization and surpasses advanced generalization-oriented methods, verifying the effectiveness of our method in cross-domain hallucination detection.
Structure-based RNA Design by Step-wise Optimization of Latent Diffusion Model AAAI 2026
RNA inverse folding, designing sequences to form specific 3D structures, is critical for therapeutics, gene regulation, and synthetic biology. Current methods, focused on sequence recovery, struggle to address structural objectives like secondary structure consistency (SS), minimum free energy (MFE), and local distance difference test (LDDT), leading to suboptimal structural accuracy. To tackle this, we propose a reinforcement learning (RL) framework integrated with a latent diffusion model (LDM). Drawing inspiration from the success of diffusion models in RNA inverse folding, which adeptly model complex sequence-structure interactions, we develop an LDM incorporating pre-trained RNA-FM embeddings from a large-scale RNA model. These embeddings capture co-evolutionary patterns, markedly improving sequence recovery accuracy. However, existing approaches, including diffusion-based methods, cannot effectively handle non-differentiable structural objectives. By contrast, RL excels in this task by using policy-driven reward optimization to navigate complex, non-gradient-based objectives, offering a significant advantage over traditional methods. In summary, we propose the Step-wise Optimization of Latent Diffusion Model (SOLD), a novel RL framework that optimizes single-step noise without sampling the full diffusion trajectory, achieving efficient refinement of multiple structural objectives. Experimental results demonstrate SOLD surpasses its LDM baseline and state-of-the-art methods across all metrics, establishing a robust framework for RNA inverse folding with profound implications for biotechnological and therapeutic applications.
comment: 20 pages (7 pages content + 2 pages references + 11 pages appendix), 11 figures, 8 tables. Source code available at https://github.com/darkflash03/SOLD Accepted to AAAI 2026
RPO-RAG: Aligning Small LLMs with Relation-aware Preference Optimization for Knowledge Graph Question Answering
Large Language Models (LLMs) have recently demonstrated remarkable reasoning abilities, yet hallucinate on knowledge-intensive tasks. Retrieval-augmented generation (RAG) mitigates this issue by grounding answers in external sources, e.g., knowledge graphs (KGs). However, existing KG-based RAG approaches rely on semantics-unaware path sampling and are weakly aligned with KG reasoning objectives, which limits further accuracy gains. They also feed retrieved paths directly into the reasoner without organizing them into answer-centered reasoning paths, hindering small LLMs' ability to leverage the retrieved knowledge. Furthermore, prior works predominantly rely on large LLMs (e.g., ChatGPT/GPT-4) or assume backbones above 7B parameters, leaving sub-7B models underexplored. We address this gap with RPO-RAG, the first KG-based RAG framework specifically designed for small LLMs, to the best of our knowledge. RPO-RAG introduces three key innovations: (1) a query-path semantic sampling strategy that provides informative supervisory signals; (2) a relation-aware preference optimization that aligns training with intermediate KG reasoning signals (e.g., relation); and (3) an answer-centered prompt design that organizes entities and reasoning paths in an interpretable format. Extensive experiments on two benchmark Knowledge Graph Question Answering (KGQA) datasets, WebQSP and CWQ, demonstrate that RPO-RAG effectively bridges the performance gap between small and large language models. On WebQSP, it improves F1 by up to 8.8%, reflecting enhanced answer precision, while on CWQ it achieves new state-of-the-art results among models under 8B parameters in both Hit and F1. Overall, RPO-RAG substantially improves the reasoning capability of small LLMs, even under 3B parameters-highlighting their potential for resource-efficient and practical on-device KGQA applications.
comment: Accepted at The Web Conference (WWW) 2026
UniPCB: A Unified Vision-Language Benchmark for Open-Ended PCB Quality Inspection
Multimodal Large Language Models (MLLMs) show promise for general industrial quality inspection, but fall short in complex scenarios, such as Printed Circuit Board (PCB) inspection. PCB inspection poses unique challenges due to densely packed components, complex wiring structures, and subtle defect patterns that require specialized domain expertise. However, a high-quality, unified vision-language benchmark for quantitatively evaluating MLLMs across PCB inspection tasks remains absent, stemming not only from limited data availability but also from fragmented datasets and inconsistent standardization. To fill this gap, we propose UniPCB, the first unified vision-language benchmark for open-ended PCB quality inspection. UniPCB is built via a systematic pipeline that curates and standardizes data from disparate sources across three annotated scenarios. Furthermore, we introduce PCB-GPT, an MLLM trained on a new instruction dataset generated by this pipeline, utilizing a novel progressive curriculum that mimics the learning process of human experts. Evaluations on the UniPCB benchmark show that while existing MLLMs falter on domain-specific tasks, PCB-GPT establishes a new baseline. Notably, it more than doubles the performance on fine-grained defect localization compared to the strongest competitors, with significant advantages in localization and analysis. We will release the instruction data, benchmark, and model to facilitate future research.
Bridging Visual and Wireless Sensing: A Unified Radiation Field for 3D Radio Map Construction
The emerging applications of next-generation wireless networks (e.g., immersive 3D communication, low-altitude networks, and integrated sensing and communication) necessitate high-fidelity environmental intelligence. 3D radio maps have emerged as a critical tool for this purpose, enabling spectrum-aware planning and environment-aware sensing by bridging the gap between physical environments and electromagnetic signal propagation. However, constructing accurate 3D radio maps requires fine-grained 3D geometric information and a profound understanding of electromagnetic wave propagation. Existing approaches typically treat optical and wireless knowledge as distinct modalities, failing to exploit the fundamental physical principles governing both light and electromagnetic propagation. To bridge this gap, we propose URF-GS, a unified radio-optical radiation field representation framework for accurate and generalizable 3D radio map construction based on 3D Gaussian splatting (3D-GS) and inverse rendering. By fusing visual and wireless sensing observations, URF-GS recovers scene geometry and material properties while accurately predicting radio signal behavior at arbitrary transmitter-receiver (Tx-Rx) configurations. Experimental results demonstrate that URF-GS achieves up to a 24.7% improvement in spatial spectrum prediction accuracy and a 10x increase in sample efficiency for 3D radio map construction compared with neural radiance field (NeRF)-based methods. This work establishes a foundation for next-generation wireless networks by integrating perception, interaction, and communication through holistic radiation field reconstruction.
comment: The code for this work will be publicly available at: https://github.com/wenchaozheng/URF-GS
A Hybrid Supervised-LLM Pipeline for Actionable Suggestion Mining in Unstructured Customer Reviews
Extracting actionable suggestions from customer reviews is essential for operational decision-making, yet these directives are often embedded within mixed-intent, unstructured text. Existing approaches either classify suggestion-bearing sentences or generate high-level summaries, but rarely isolate the precise improvement instructions businesses need. We evaluate a hybrid pipeline combining a high-recall RoBERTa classifier trained with a precision-recall surrogate to reduce unrecoverable false negatives with a controlled, instruction-tuned LLM for suggestion extraction, categorization, clustering, and summarization. Across real-world hospitality and food datasets, the hybrid system outperforms prompt-only, rule-based, and classifier-only baselines in extraction accuracy and cluster coherence. Human evaluations further confirm that the resulting suggestions and summaries are clear, faithful, and interpretable. Overall, our results show that hybrid reasoning architectures achieve meaningful improvements fine-grained actionable suggestion mining while highlighting challenges in domain adaptation and efficient local deployment.
comment: Accepted to EACL 2026 Industry Track (to appear)
EnzyPGM: Pocket-conditioned Generative Model for Substrate-specific Enzyme Design
Designing enzymes with substrate-binding pockets is a critical challenge in protein engineering, as catalytic activity depends on the precise interaction between pockets and substrates. Currently, generative models dominate functional protein design but cannot model pocket-substrate interactions, which limits the generation of enzymes with precise catalytic environments. To address this issue, we propose EnzyPGM, a unified framework that jointly generates enzymes and substrate-binding pockets conditioned on functional priors and substrates, with a particular focus on learning accurate pocket-substrate interactions. At its core, EnzyPGM includes two main modules: a Residue-atom Bi-scale Attention (RBA) that jointly models intra-residue dependencies and fine-grained interactions between pocket residues and substrate atoms, and a Residue Function Fusion (RFF) that incorporates enzyme function priors into residue representations. Also, we curate EnzyPock, an enzyme-pocket dataset comprising 83,062 enzyme-substrate pairs across 1,036 four-level enzyme families. Extensive experiments demonstrate that EnzyPGM achieves state-of-the-art performance on EnzyPock. Notably, EnzyPGM reduces the average binding energy of 0.47 kcal/mol over EnzyGen, showing its superior performance on substrate-specific enzyme design. The code and dataset will be released later.
comment: 9 pages, 4 figures, under review
MATA: A Trainable Hierarchical Automaton System for Multi-Agent Visual Reasoning ICLR 2026
Recent vision-language models have strong perceptual ability but their implicit reasoning is hard to explain and easily generates hallucinations on complex queries. Compositional methods improve interpretability, but most rely on a single agent or hand-crafted pipeline and cannot decide when to collaborate across complementary agents or compete among overlapping ones. We introduce MATA (Multi-Agent hierarchical Trainable Automaton), a multi-agent system presented as a hierarchical finite-state automaton for visual reasoning whose top-level transitions are chosen by a trainable hyper agent. Each agent corresponds to a state in the hyper automaton, and runs a small rule-based sub-automaton for reliable micro-control. All agents read and write a shared memory, yielding transparent execution history. To supervise the hyper agent's transition policy, we build transition-trajectory trees and transform to memory-to-next-state pairs, forming the MATA-SFT-90K dataset for supervised finetuning (SFT). The finetuned LLM as the transition policy understands the query and the capacity of agents, and it can efficiently choose the optimal agent to solve the task. Across multiple visual reasoning benchmarks, MATA achieves the state-of-the-art results compared with monolithic and compositional baselines. The code and dataset are available at https://github.com/ControlNet/MATA.
comment: ICLR 2026
MAGNET: Towards Adaptive GUI Agents with Memory-Driven Knowledge Evolution
Mobile GUI agents powered by large foundation models enable autonomous task execution, but frequent updates altering UI appearance and reorganizing workflows cause agents trained on historical data to fail. Despite surface changes, functional semantics and task intents remain fundamentally stable. Building on this insight, we introduce MAGNET, a memory-driven adaptive agent framework with dual-level memory: stationary memory linking diverse visual features to stable functional semantics for robust action grounding and procedural memory capturing stable task intents across varying workflows. We propose a dynamic memory evolution mechanism that continuously refines both memories by prioritizing frequently accessed knowledge. Online benchmark AndroidWorld evaluations show substantial improvements over baselines, while offline benchmarks confirm consistent gains under distribution shifts. These results validate that leveraging stable structures across interface changes improves agent performance and generalization in evolving software environments.
HELM: A Human-Centered Evaluation Framework for LLM-Powered Recommender Systems
The integration of Large Language Models (LLMs) into recommendation systems has introduced unprecedented capabilities for natural language understanding, explanation generation, and conversational interactions. However, existing evaluation methodologies focus predominantly on traditional accuracy metrics, failing to capture the multifaceted human-centered qualities that determine the real-world user experience. We introduce \framework{} (\textbf{H}uman-centered \textbf{E}valuation for \textbf{L}LM-powered reco\textbf{M}menders), a comprehensive evaluation framework that systematically assesses LLM-powered recommender systems across five human-centered dimensions: \textit{Intent Alignment}, \textit{Explanation Quality}, \textit{Interaction Naturalness}, \textit{Trust \& Transparency}, and \textit{Fairness \& Diversity}. Through extensive experiments involving three state-of-the-art LLM-based recommenders (GPT-4, LLaMA-3.1, and P5) across three domains (movies, books, and restaurants), and rigorous evaluation by 12 domain experts using 847 recommendation scenarios, we demonstrate that \framework{} reveals critical quality dimensions invisible to traditional metrics. Our results show that while GPT-4 achieves superior explanation quality (4.21/5.0) and interaction naturalness (4.35/5.0), it exhibits a significant popularity bias (Gini coefficient 0.73) compared to traditional collaborative filtering (0.58). We release \framework{} as an open-source toolkit to advance human-centered evaluation practices in the recommender systems community.
CoReTab: Improving Multimodal Table Understanding with Code-driven Reasoning
Existing datasets for multimodal table understanding, such as MMTab, primarily provide short factual answers without explicit multi-step reasoning supervision. Models trained on these datasets often generate brief responses that offers insufficient accuracy and limited interpretability into how these models arrive at the final answer. We introduce CoReTab, a code-driven reasoning framework that produces scalable, interpretable, and automatically verifiable annotations by coupling multi-step reasoning with executable Python code. Using the CoReTab framework, we curate a dataset of 115K verified samples averaging 529 tokens per response and fine-tune open-source MLLMs through a three-stage pipeline. We evaluate the resulting model trained on CoReTab across 17 MMTab benchmarks spanning table question answering, fact verification, and table structure understanding. Our model achieves significant gains of +6.2%, +5.7%, and +25.6%, respectively, over MMTab-trained baselines, while producing transparent and verifiable reasoning traces. These results establish CoReTab as a robust and generalizable supervision framework for improving multi-step reasoning in multimodal table understanding.
comment: accepted to EACL'26 (main conference)
SNR-Edit: Structure-Aware Noise Rectification for Inversion-Free Flow-Based Editing
Inversion-free image editing using flow-based generative models challenges the prevailing inversion-based pipelines. However, existing approaches rely on fixed Gaussian noise to construct the source trajectory, leading to biased trajectory dynamics and causing structural degradation or quality loss. To address this, we introduce SNR-Edit, a training-free framework achieving faithful Latent Trajectory Correction via adaptive noise control. Mechanistically, SNR-Edit uses structure-aware noise rectification to inject segmentation constraints into the initial noise, anchoring the stochastic component of the source trajectory to the real image's implicit inversion position and reducing trajectory drift during source--target transport. This lightweight modification yields smoother latent trajectories and ensures high-fidelity structural preservation without requiring model tuning or inversion. Across SD3 and FLUX, evaluations on PIE-Bench and SNR-Bench show that SNR-Edit delivers performance on pixel-level metrics and VLM-based scoring, while adding only about 1s overhead per image.
CollectiveKV: Decoupling and Sharing Collaborative Information in Sequential Recommendation ICLR 2026
Sequential recommendation models are widely used in applications, yet they face stringent latency requirements. Mainstream models leverage the Transformer attention mechanism to improve performance, but its computational complexity grows with the sequence length, leading to a latency challenge for long sequences. Consequently, KV cache technology has recently been explored in sequential recommendation systems to reduce inference latency. However, KV cache introduces substantial storage overhead in sequential recommendation systems, which often have a large user base with potentially very long user history sequences. In this work, we observe that KV sequences across different users exhibit significant similarities, indicating the existence of collaborative signals in KV. Furthermore, we analyze the KV using singular value decomposition (SVD) and find that the information in KV can be divided into two parts: the majority of the information is shareable across users, while a small portion is user-specific. Motivated by this, we propose CollectiveKV, a cross-user KV sharing mechanism. It captures the information shared across users through a learnable global KV pool. During inference, each user retrieves high-dimensional shared KV from the pool and concatenates them with low-dimensional user-specific KV to obtain the final KV. Experiments on five sequential recommendation models and three datasets show that our method can compress the KV cache to only 0.8% of its original size, while maintaining or even enhancing model performance.
comment: Accepted by ICLR 2026
A Scalable Inter-edge Correlation Modeling in CopulaGNN for Link Sign Prediction ICLR 2026
Link sign prediction on a signed graph is a task to determine whether the relationship represented by an edge is positive or negative. Since the presence of negative edges violates the graph homophily assumption that adjacent nodes are similar, regular graph methods have not been applicable without auxiliary structures to handle them. We aim to directly model the latent statistical dependency among edges with the Gaussian copula and its corresponding correlation matrix, extending CopulaGNN. However, a naive modeling of edge-edge relations is computationally intractable even for a graph with moderate scale. To address this, we propose to 1) represent the correlation matrix as a Gramian of edge embeddings, significantly reducing the number of parameters, and 2) reformulate the conditional probability distribution to dramatically reduce the inference cost. We theoretically verify scalability of our method by proving its linear convergence. Also, our extensive experiments demonstrate that it achieves significantly faster convergence than baselines, maintaining competitive prediction performance to the state-of-the-art models.
comment: Accepted to ICLR 2026
SHIELD: An Auto-Healing Agentic Defense Framework for LLM Resource Exhaustion Attacks
Sponge attacks increasingly threaten LLM systems by inducing excessive computation and DoS. Existing defenses either rely on statistical filters that fail on semantically meaningful attacks or use static LLM-based detectors that struggle to adapt as attack strategies evolve. We introduce SHIELD, a multi-agent, auto-healing defense framework centered on a three-stage Defense Agent that integrates semantic similarity retrieval, pattern matching, and LLM-based reasoning. Two auxiliary agents, a Knowledge Updating Agent and a Prompt Optimization Agent, form a closed self-healing loop, when an attack bypasses detection, the system updates an evolving knowledgebase, and refines defense instructions. Extensive experiments show that SHIELD consistently outperforms perplexity-based and standalone LLM defenses, achieving high F1 scores across both non-semantic and semantic sponge attacks, demonstrating the effectiveness of agentic self-healing against evolving resource-exhaustion threats.
Bridging Gulfs in UI Generation through Semantic Guidance
While generative AI enables high-fidelity UI generation from text prompts, users struggle to articulate design intent and evaluate or refine results-creating gulfs of execution and evaluation. To understand the information needed for UI generation, we conducted a thematic analysis of UI prompting guidelines, identifying key design semantics and discovering that they are hierarchical and interdependent. Leveraging these findings, we developed a system that enables users to specify semantics, visualize relationships, and extract how semantics are reflected in generated UIs. By making semantics serve as an intermediate representation between human intent and AI output, our system bridges both gulfs by making requirements explicit and outcomes interpretable. A comparative user study suggests that our approach enhances users' perceived control over intent expression, outcome interpretation, and facilitates more predictable, iterative refinement. Our work demonstrates how explicit semantic representation enables systematic and explainable exploration of design possibilities in AI-driven UI design.
comment: In Proceedings of the 2026 CHI Conference on Human Factors in Computing Systems (CHI '26)
Multi-Agent Procedural Graph Extraction with Structural and Logical Refinement
Automatically extracting workflows as procedural graphs from natural language is promising yet underexplored, demanding both structural validity and logical alignment. While recent large language models (LLMs) show potential for procedural graph extraction, they often produce ill-formed structures or misinterpret logical flows. We present \model{}, a multi-agent framework that formulates procedural graph extraction as a multi-round reasoning process with dedicated structural and logical refinement. The framework iterates through three stages: (1) a graph extraction phase with the graph builder agent, (2) a structural feedback phase in which a simulation agent diagnoses and explains structural defects, and (3) a logical feedback phase in which a semantic agent aligns semantics between flow logic and linguistic cues in the source text. Important feedback is prioritized and expressed in natural language, which is injected into subsequent prompts, enabling interpretable and controllable refinement. This modular design allows agents to target distinct error types without supervision or parameter updates. Experiments demonstrate that \model{} achieves substantial improvements in both structural correctness and logical consistency over strong baselines.
LocationAgent: A Hierarchical Agent for Image Geolocation via Decoupling Strategy and Evidence from Parametric Knowledge
Image geolocation aims to infer capture locations based on visual content. Fundamentally, this constitutes a reasoning process composed of \textit{hypothesis-verification cycles}, requiring models to possess both geospatial reasoning capabilities and the ability to verify evidence against geographic facts. Existing methods typically internalize location knowledge and reasoning patterns into static memory via supervised training or trajectory-based reinforcement fine-tuning. Consequently, these methods are prone to factual hallucinations and generalization bottlenecks in open-world settings or scenarios requiring dynamic knowledge. To address these challenges, we propose a Hierarchical Localization Agent, called LocationAgent. Our core philosophy is to retain hierarchical reasoning logic within the model while offloading the verification of geographic evidence to external tools. To implement hierarchical reasoning, we design the RER architecture (Reasoner-Executor-Recorder), which employs role separation and context compression to prevent the drifting problem in multi-step reasoning. For evidence verification, we construct a suite of clue exploration tools that provide diverse evidence to support location reasoning. Furthermore, to address data leakage and the scarcity of Chinese data in existing datasets, we introduce CCL-Bench (China City Location Bench), an image geolocation benchmark encompassing various scene granularities and difficulty levels. Extensive experiments demonstrate that LocationAgent significantly outperforms existing methods by at least 30\% in zero-shot settings.
comment: 9 pages, 5 figures, 3 tables
TS-Debate: Multimodal Collaborative Debate for Zero-Shot Time Series Reasoning
Recent progress at the intersection of large language models (LLMs) and time series (TS) analysis has revealed both promise and fragility. While LLMs can reason over temporal structure given carefully engineered context, they often struggle with numeric fidelity, modality interference, and principled cross-modal integration. We present TS-Debate, a modality-specialized, collaborative multi-agent debate framework for zero-shot time series reasoning. TS-Debate assigns dedicated expert agents to textual context, visual patterns, and numerical signals, preceded by explicit domain knowledge elicitation, and coordinates their interaction via a structured debate protocol. Reviewer agents evaluate agent claims using a verification-conflict-calibration mechanism, supported by lightweight code execution and numerical lookup for programmatic verification. This architecture preserves modality fidelity, exposes conflicting evidence, and mitigates numeric hallucinations without task-specific fine-tuning. Across 20 tasks spanning three public benchmarks, TS-Debate achieves consistent and significant performance improvements over strong baselines, including standard multimodal debate in which all agents observe all inputs.
comment: Code will be available at https://github.com/DeepAuto-AI/TS-Debate
Length-Adaptive Interest Network for Balancing Long and Short Sequence Modeling in CTR Prediction AAAI 2026
User behavior sequences in modern recommendation systems exhibit significant length heterogeneity, ranging from sparse short-term interactions to rich long-term histories. While longer sequences provide more context, we observe that increasing the maximum input sequence length in existing CTR models paradoxically degrades performance for short-sequence users due to attention polarization and length imbalance in training data. To address this, we propose LAIN(Length-Adaptive Interest Network), a plug-and-play framework that explicitly incorporates sequence length as a conditioning signal to balance long- and short-sequence modeling. LAIN consists of three lightweight components: a Spectral Length Encoder that maps length into continuous representations, Length-Conditioned Prompting that injects global contextual cues into both long- and short-term behavior branches, and Length-Modulated Attention that adaptively adjusts attention sharpness based on sequence length. Extensive experiments on three real-world benchmarks across five strong CTR backbones show that LAIN consistently improves overall performance, achieving up to 1.15% AUC gain and 2.25% log loss reduction. Notably, our method significantly improves accuracy for short-sequence users without sacrificing longsequence effectiveness. Our work offers a general, efficient, and deployable solution to mitigate length-induced bias in sequential recommendation.
comment: Accepted at AAAI 2026
AgenticSCR: An Autonomous Agentic Secure Code Review for Immature Vulnerabilities Detection
Secure code review is critical at the pre-commit stage, where vulnerabilities must be caught early under tight latency and limited-context constraints. Existing SAST-based checks are noisy and often miss immature, context-dependent vulnerabilities, while standalone Large Language Models (LLMs) are constrained by context windows and lack explicit tool use. Agentic AI, which combine LLMs with autonomous decision-making, tool invocation, and code navigation, offer a promising alternative, but their effectiveness for pre-commit secure code review is not yet well understood. In this work, we introduce AgenticSCR, an agentic AI for secure code review for detecting immature vulnerabilities during the pre-commit stage, augmented by security-focused semantic memories. Using our own curated benchmark of immature vulnerabilities, tailored to the pre-commit secure code review, we empirically evaluate how accurate is our AgenticSCR for localizing, detecting, and explaining immature vulnerabilities. Our results show that AgenticSCR achieves at least 153% relatively higher percentage of correct code review comments than the static LLM-based baseline, and also substantially surpasses SAST tools. Moreover, AgenticSCR generates more correct comments in four out of five vulnerability types, consistently and significantly outperforming all other baselines. These findings highlight the importance of Agentic Secure Code Review, paving the way towards an emerging research area of immature vulnerability detection.
comment: Under Review
In-Network Collective Operations: Game Changer or Challenge for AI Workloads?
This paper summarizes the opportunities of in-network collective operations (INC) for accelerated collective operations in AI workloads. We provide sufficient detail to make this important field accessible to non-experts in AI or networking, fostering a connection between these communities. Consider two types of INC: Edge-INC, where the system is implemented at the node level, and Core-INC, where the system is embedded within network switches. We outline the potential performance benefits as well as six key obstacles in the context of both Edge-INC and Core-INC that may hinder their adoption. Finally, we present a set of predictions for the future development and application of INC.
CLIP-Guided Unsupervised Semantic-Aware Exposure Correction
Improper exposure often leads to severe loss of details, color distortion, and reduced contrast. Exposure correction still faces two critical challenges: (1) the ignorance of object-wise regional semantic information causes the color shift artifacts; (2) real-world exposure images generally have no ground-truth labels, and its labeling entails massive manual editing. To tackle the challenges, we propose a new unsupervised semantic-aware exposure correction network. It contains an adaptive semantic-aware fusion module, which effectively fuses the semantic information extracted from a pre-trained Fast Segment Anything Model into a shared image feature space. Then the fused features are used by our multi-scale residual spatial mamba group to restore the details and adjust the exposure. To avoid manual editing, we propose a pseudo-ground truth generator guided by CLIP, which is fine-tuned to automatically identify exposure situations and instruct the tailored corrections. Also, we leverage the rich priors from the FastSAM and CLIP to develop a semantic-prompt consistency loss to enforce semantic consistency and image-prompt alignment for unsupervised training. Comprehensive experimental results illustrate the effectiveness of our method in correcting real-world exposure images and outperforms state-of-the-art unsupervised methods both numerically and visually.
Exploring Weaknesses in Function Call Models via Reinforcement Learning: An Adversarial Data Augmentation Approach
Function call capabilities have become crucial for Large Language Models (LLMs), enabling them to interact more effectively with external tools and APIs. Existing methods for improving the function call capabilities of LLMs rely on data obtained either through manual annotation or automated generation by models, and use this data to finetune the LLMs. However, these methods often lack targeted design and are constrained by fixed patterns and data distributions, which limits their effectiveness in enhancing the generalization and robustness of function call LLMs. To address this limitation, we propose a novel adversarial data augmentation method that employs reinforcement learning to systematically identify and target the weaknesses of function call LLMs. Our training framework introduces a query model trained with reinforcement learning (RL) to generate adversarial queries that are specifically designed to challenge function call (FC) models. This approach adopts a zero sum game formulation, where the query model and the FC model engage in iterative alternating training. Overall, our method advances the development of more robust FC models and provides a systematic way to identify and correct weaknesses in the ability of LLMs to interact with external tools.
LLMs as Orchestrators: Constraint-Compliant Multi-Agent Optimization for Recommendation Systems
Recommendation systems must optimize multiple objectives while satisfying hard business constraints such as fairness and coverage. For example, an e-commerce platform may require every recommendation list to include items from multiple sellers and at least one newly listed product; violating such constraints--even once--is unacceptable in production. Prior work on multi-objective recommendation and recent LLM-based recommender agents largely treat constraints as soft penalties or focus on item scoring and interaction, leading to frequent violations in real-world deployments. How to leverage LLMs for coordinating constrained optimization in recommendation systems remains underexplored. We propose DualAgent-Rec, an LLM-coordinated dual-agent framework for constrained multi-objective e-commerce recommendation. The framework separates optimization into an Exploitation Agent that prioritizes accuracy under hard constraints and an Exploration Agent that promotes diversity through unconstrained Pareto search. An LLM-based coordinator adaptively allocates resources between agents based on optimization progress and constraint satisfaction, while an adaptive epsilon-relaxation mechanism guarantees feasibility of final solutions. Experiments on the Amazon Reviews 2023 dataset demonstrate that DualAgent-Rec achieves 100% constraint satisfaction and improves Pareto hypervolume by 4-6% over strong baselines, while maintaining competitive accuracy-diversity trade-offs. These results indicate that LLMs can act as effective orchestration agents for deployable and constraint-compliant recommendation systems.
comment: 8 pages, 5 figures
RobustExplain: Evaluating Robustness of LLM-Based Explanation Agents for Recommendation
Large Language Models (LLMs) are increasingly used to generate natural-language explanations in recommender systems, acting as explanation agents that reason over user behavior histories. While prior work has focused on explanation fluency and relevance under fixed inputs, the robustness of LLM-generated explanations to realistic user behavior noise remains largely unexplored. In real-world web platforms, interaction histories are inherently noisy due to accidental clicks, temporal inconsistencies, missing values, and evolving preferences, raising concerns about explanation stability and user trust. We present RobustExplain, the first systematic evaluation framework for measuring the robustness of LLM-generated recommendation explanations. RobustExplain introduces five realistic user behavior perturbations evaluated across multiple severity levels and a multi-dimensional robustness metric capturing semantic, keyword, structural, and length consistency. Our goal is to establish a principled, task-level evaluation framework and initial robustness baselines, rather than to provide a comprehensive leaderboard across all available LLMs. Experiments on four representative LLMs (7B--70B) show that current models exhibit only moderate robustness, with larger models achieving up to 8% higher stability. Our results establish the first robustness benchmarks for explanation agents and highlight robustness as a critical dimension for trustworthy, agent-driven recommender systems at web scale.
comment: 8 pages, 4 figures
Uncertainty-Aware 3D Emotional Talking Face Synthesis with Emotion Prior Distillation
Emotional Talking Face synthesis is pivotal in multimedia and signal processing, yet existing 3D methods suffer from two critical challenges: poor audio-vision emotion alignment, manifested as difficult audio emotion extraction and inadequate control over emotional micro-expressions; and a one-size-fits-all multi-view fusion strategy that overlooks uncertainty and feature quality differences, undermining rendering quality. We propose UA-3DTalk, Uncertainty-Aware 3D Emotional Talking Face Synthesis with emotion prior distillation, which has three core modules: the Prior Extraction module disentangles audio into content-synchronized features for alignment and person-specific complementary features for individualization; the Emotion Distillation module introduces a multi-modal attention-weighted fusion mechanism and 4D Gaussian encoding with multi-resolution code-books, enabling fine-grained audio emotion extraction and precise control of emotional micro-expressions; the Uncertainty-based Deformation deploys uncertainty blocks to estimate view-specific aleatoric (input noise) and epistemic (model parameters) uncertainty, realizing adaptive multi-view fusion and incorporating a multi-head decoder for Gaussian primitive optimization to mitigate the limitations of uniform-weight fusion. Extensive experiments on regular and emotional datasets show UA-3DTalk outperforms state-of-the-art methods like DEGSTalk and EDTalk by 5.2% in E-FID for emotion alignment, 3.1% in SyncC for lip synchronization, and 0.015 in LPIPS for rendering quality. Project page: https://mrask999.github.io/UA-3DTalk
comment: Accepted by ICASSP 2026
Detecting and Correcting Hallucinations in LLM-Generated Code via Deterministic AST Analysis
Large Language Models (LLMs) for code generation boost productivity but frequently introduce Knowledge Conflicting Hallucinations (KCHs), subtle, semantic errors, such as non-existent API parameters, that evade linters and cause runtime failures. Existing mitigations like constrained decoding or non-deterministic LLM-in-the-loop repair are often unreliable for these errors. This paper investigates whether a deterministic, static-analysis framework can reliably detect \textit{and} auto-correct KCHs. We propose a post-processing framework that parses generated code into an Abstract Syntax Tree (AST) and validates it against a dynamically-generated Knowledge Base (KB) built via library introspection. This non-executing approach uses deterministic rules to find and fix both API and identifier-level conflicts. On a manually-curated dataset of 200 Python snippets, our framework detected KCHs with 100\% precision and 87.6\% recall (0.934 F1-score), and successfully auto-corrected 77.0\% of all identified hallucinations. Our findings demonstrate that this deterministic post-processing approach is a viable and reliable alternative to probabilistic repair, offering a clear path toward trustworthy code generation.
comment: Accepted to FORGE 2026
m2sv: A Scalable Benchmark for Map-to-Street-View Spatial Reasoning
Vision--language models (VLMs) achieve strong performance on many multimodal benchmarks but remain brittle on spatial reasoning tasks that require aligning abstract overhead representations with egocentric views. We introduce m2sv, a scalable benchmark for map-to-street-view spatial reasoning that asks models to infer camera viewing direction by aligning a north-up overhead map with a Street View image captured at the same real-world intersection. We release m2sv-20k, a geographically diverse benchmark with controlled ambiguity, along with m2sv-sft-11k, a curated set of structured reasoning traces for supervised fine-tuning. Despite strong performance on existing multimodal benchmarks, the best evaluated VLM achieves only 65.2% accuracy on m2sv, far below the human baseline of 95%. While supervised fine-tuning and reinforcement learning yield consistent gains, cross-benchmark evaluations reveal limited transfer. Beyond aggregate accuracy, we systematically analyze difficulty in map-to-street-view reasoning using both structural signals and human effort, and conduct an extensive failure analysis of adapted open models. Our findings highlight persistent gaps in geometric alignment, evidence aggregation, and reasoning consistency, motivating future work on grounded spatial reasoning across viewpoints.
FloydNet: A Learning Paradigm for Global Relational Reasoning
Developing models capable of complex, multi-step reasoning is a central goal in artificial intelligence. While representing problems as graphs is a powerful approach, Graph Neural Networks (GNNs) are fundamentally constrained by their message-passing mechanism, which imposes a local bottleneck that limits global, holistic reasoning. We argue that dynamic programming (DP), which solves problems by iteratively refining a global state, offers a more powerful and suitable learning paradigm. We introduce FloydNet, a new architecture that embodies this principle. In contrast to local message passing, FloydNet maintains a global, all-pairs relationship tensor and learns a generalized DP operator to progressively refine it. This enables the model to develop a task-specific relational calculus, providing a principled framework for capturing long-range dependencies. Theoretically, we prove that FloydNet achieves 3-WL (2-FWL) expressive power, and its generalized form aligns with the k-FWL hierarchy. FloydNet demonstrates state-of-the-art performance across challenging domains: it achieves near-perfect scores (often >99\%) on the CLRS-30 algorithmic benchmark, finds exact optimal solutions for the general Traveling Salesman Problem (TSP) at rates significantly exceeding strong heuristics, and empirically matches the 3-WL test on the BREC benchmark. Our results establish this learned, DP-style refinement as a powerful and practical alternative to message passing for high-level graph reasoning.
comment: 29 pages, 9 figures, 14 tables
Axe: A Simple Unified Layout Abstraction for Machine Learning Compilers
Scaling modern deep learning workloads demands coordinated placement of data and compute across device meshes, memory hierarchies, and heterogeneous accelerators. We present Axe Layout, a hardware-aware abstraction that maps logical tensor coordinates to a multi-axis physical space via named axes. Axe unifies tiling, sharding, replication, and offsets across inter-device distribution and on-device layouts, enabling collective primitives to be expressed consistently from device meshes to threads. Building on Axe, we design a multi-granularity, distribution-aware DSL and compiler that composes thread-local control with collective operators in a single kernel. Experiments show that our unified approach can bring performance close to hand-tuned kernels on across latest GPU devices and multi-device environments and accelerator backends.
Out-of-Distribution Generalization for Neural Physics Solvers
Neural physics solvers are increasingly used in scientific discovery, given their potential for rapid in silico insights into physical, materials, or biological systems and their long-time evolution. However, poor generalization beyond their training support limits exploration of novel designs and long-time horizon predictions. We introduce NOVA, a route to generalizable neural physics solvers that can provide rapid, accurate solutions to scenarios even under distributional shifts in partial differential equation parameters, geometries and initial conditions. By learning physics-aligned representations from an initial sparse set of scenarios, NOVA consistently achieves 1-2 orders of magnitude lower out-of-distribution errors than data-driven baselines across complex, nonlinear problems including heat transfer, diffusion-reaction and fluid flow. We further showcase NOVA's dual impact on stabilizing long-time dynamical rollouts and improving generative design through application to the simulation of nonlinear Turing systems and fluidic chip optimization. Unlike neural physics solvers that are constrained to retrieval and/or emulation within an a priori space, NOVA enables reliable extrapolation beyond known regimes, a key capability given the need for exploration of novel hypothesis spaces in scientific discovery
Privacy-Preserving Model Transcription with Differentially Private Synthetic Distillation
While many deep learning models trained on private datasets have been deployed in various practical tasks, they may pose a privacy leakage risk as attackers could recover informative data or label knowledge from models. In this work, we present \emph{privacy-preserving model transcription}, a data-free model-to-model conversion solution to facilitate model deployment with a privacy guarantee. To this end, we propose a cooperative-competitive learning approach termed \emph{differentially private synthetic distillation} that learns to convert a pretrained model (teacher) into its privacy-preserving counterpart (student) via a trainable generator without access to private data. The learning collaborates with three players in a unified framework and performs alternate optimization: i)~the generator is learned to generate synthetic data, ii)~the teacher and student accept the synthetic data and compute differential private labels by flexible data or label noisy perturbation, and iii)~the student is updated with noisy labels and the generator is updated by taking the student as a discriminator for adversarial training. We theoretically prove that our approach can guarantee differential privacy and convergence. The transcribed student has good performance and privacy protection, while the resulting generator can generate private synthetic data for downstream tasks. Extensive experiments clearly demonstrate that our approach outperforms 26 state-of-the-arts.
comment: Accepted by IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI)
More at Stake: How Payoff and Language Shape LLM Agent Strategies in Cooperation Dilemmas
As LLMs increasingly act as autonomous agents in interactive and multi-agent settings, understanding their strategic behavior is critical for safety, coordination, and AI-driven social and economic systems. We investigate how payoff magnitude and linguistic context shape LLM strategies in repeated social dilemmas, using a payoff-scaled Prisoner's Dilemma to isolate sensitivity to incentive strength. Across models and languages, we observe consistent behavioral patterns, including incentive-sensitive conditional strategies and cross-linguistic divergence. To interpret these dynamics, we train supervised classifiers on canonical repeated-game strategies and apply them to LLM decisions, revealing systematic, model- and language-dependent behavioral intentions, with linguistic framing sometimes matching or exceeding architectural effects. Our results provide a unified framework for auditing LLMs as strategic agents and highlight cooperation biases with direct implications for AI governance and multi-agent system design.
comment: 14 pages, 10 figures, 4 tables
HalluJudge: A Reference-Free Hallucination Detection for Context Misalignment in Code Review Automation
Large Language models (LLMs) have shown strong capabilities in code review automation, such as review comment generation, yet they suffer from hallucinations -- where the generated review comments are ungrounded in the actual code -- poses a significant challenge to the adoption of LLMs in code review workflows. To address this, we explore effective and scalable methods for a hallucination detection in LLM-generated code review comments without the reference. In this work, we design HalluJudge that aims to assess the grounding of generated review comments based on the context alignment. HalluJudge includes four key strategies ranging from direct assessment to structured multi-branch reasoning (e.g., Tree-of-Thoughts). We conduct a comprehensive evaluation of these assessment strategies across Atlassian's enterprise-scale software projects to examine the effectiveness and cost-efficiency of HalluJudge. Furthermore, we analyze the alignment between HalluJudge's judgment and developer preference of the actual LLM-generated code review comments in the real-world production. Our results show that the hallucination assessment in HalluJudge is cost-effective with an F1 score of 0.85 and an average cost of $0.009. On average, 67% of the HalluJudge assessments are aligned with the developer preference of the actual LLM-generated review comments in the online production. Our results suggest that HalluJudge can serve as a practical safeguard to reduce developers' exposure to hallucinated comments, fostering trust in AI-assisted code reviews.
comment: Under Review
Dynamic Cogeneration of Bug Reproduction Test in Agentic Program Repair
Bug Reproduction Tests (BRTs) have been used in many agentic Automated Program Repair (APR) systems, primarily for validating promising fixes and aiding fix generation. In practice, when developers submit a patch, they often implement the BRT alongside the fix. Our experience deploying agentic APR reveals that developers similarly desire a BRT within AI-generated patches to increase their confidence. However, canonical APR systems tend to generate BRTs and fixes separately, or focus on producing only the fix in the final patch. In this paper, we study agentic APR in the context of cogeneration, where the APR agent is instructed to generate both a fix and a BRT in the same patch. We evaluate the effectiveness of different cogeneration strategies on 120 human-reported bugs at Google and characterize different cogeneration strategies by their influence on APR agent behavior. We develop and evaluate patch selectors that account for test change information to select patches with plausible fixes (and plausible BRTs). Finally, we analyze the root causes of failed cogeneration trajectories. Importantly, we show that cogeneration allows the APR agent to generate BRTs for at least as many bugs as a dedicated BRT agent, without compromising the generation rate of plausible fixes, thereby reducing engineering effort in maintaining and coordinating separate generation pipelines for fix and BRT at scale.
Who's in Charge? Disempowerment Patterns in Real-World LLM Usage
Although AI assistants are now deeply embedded in society, there has been limited empirical study of how their usage affects human empowerment. We present the first large-scale empirical analysis of disempowerment patterns in real-world AI assistant interactions, analyzing 1.5 million consumer Claude$.$ai conversations using a privacy-preserving approach. We focus on situational disempowerment potential, which occurs when AI assistant interactions risk leading users to form distorted perceptions of reality, make inauthentic value judgments, or act in ways misaligned with their values. Quantitatively, we find that severe forms of disempowerment potential occur in fewer than one in a thousand conversations, though rates are substantially higher in personal domains like relationships and lifestyle. Qualitatively, we uncover several concerning patterns, such as validation of persecution narratives and grandiose identities with emphatic sycophantic language, definitive moral judgments about third parties, and complete scripting of value-laden personal communications that users appear to implement verbatim. Analysis of historical trends reveals an increase in the prevalence of disempowerment potential over time. We also find that interactions with greater disempowerment potential receive higher user approval ratings, possibly suggesting a tension between short-term user preferences and long-term human empowerment. Our findings highlight the need for AI systems designed to robustly support human autonomy and flourishing.
Pixel-Grounded Retrieval for Knowledgeable Large Multimodal Models
Visual Question Answering (VQA) often requires coupling fine-grained perception with factual knowledge beyond the input image. Prior multimodal Retrieval-Augmented Generation (MM-RAG) systems improve factual grounding but lack an internal policy for when and how to retrieve. We propose PixSearch, the first end-to-end Segmenting Large Multimodal Model (LMM) that unifies region-level perception and retrieval-augmented reasoning. During encoding, PixSearch emits tokens to trigger retrieval, selects query modalities (text, image, or region), and generates pixel-level masks that directly serve as visual queries, eliminating the reliance on modular pipelines (detectors, segmenters, captioners, etc.). A two-stage supervised fine-tuning regimen with search-interleaved supervision teaches retrieval timing and query selection while preserving segmentation ability. On egocentric and entity-centric VQA benchmarks, PixSearch substantially improves factual consistency and generalization, yielding a 19.7% relative gain in accuracy on CRAG-MM compared to whole image retrieval, while retaining competitive reasoning performance on various VQA and text-only QA tasks.
comment: Preprint
Principled Fine-tuning of LLMs from User-Edits: A Medley of Preference, Supervision, and Reward NeurIPS 2025
We study how to fine-tune LLMs using user-edit deployment data consisting of a set of context, an agent's response, and user edits. This deployment data is naturally generated by users in applications such as LLMs-based writing assistants and coding agents. The _natural_ origin of user edits makes it a desired source for adapting and personalizing LLMs. In this setup, there emerges a unification of various feedback types namely preferences, supervised labels, and cost that are typically studied separately in the literature. In this paper, we initiate the theoretical investigation of learning from user edits. We first derive bounds for learning algorithms that learn from each of these feedback types. We prove that these algorithms have different trade-offs depending upon the user, data distribution, and model class. We then propose a simple ensembling procedure to jointly learn from these feedback types. On two domains adapted from Gao et al. 2024, we show our ensembling procedure outperforms these methods that learn from individual feedback. Further, we show that our proposed procedure can robustly adapt to different user-edit distributions at test time.
comment: Accepted at NeurIPS 2025
From Answer Givers to Design Mentors: Guiding LLMs with the Cognitive Apprenticeship Model
Design feedback helps practitioners improve their artifacts while also fostering reflection and design reasoning. Large Language Models (LLMs) such as ChatGPT can support design work, but often provide generic, one-off suggestions that limit reflective engagement. We investigate how to guide LLMs to act as design mentors by applying the Cognitive Apprenticeship Model, which emphasizes demonstrating reasoning through six methods: modeling, coaching, scaffolding, articulation, reflection, and exploration. We operationalize these instructional methods through structured prompting and evaluate them in a within-subjects study with data visualization practitioners. Participants interacted with both a baseline LLM and an instructional LLM designed with cognitive apprenticeship prompts. Surveys, interviews, and conversational log analyses compared experiences across conditions. Our findings show that cognitively informed prompts elicit deeper design reasoning and more reflective feedback exchanges, though the baseline is sometimes preferred depending on task types or experience levels. We distill design considerations for AI-assisted feedback systems that foster reflective practice.
Taxonomy of the Retrieval System Framework: Pitfalls and Paradigms
Designing an embedding retrieval system requires navigating a complex design space of conflicting trade-offs between efficiency and effectiveness. This work structures these decisions as a vertical traversal of the system design stack. We begin with the Representation Layer by examining how loss functions and architectures, specifically Bi-encoders and Cross-encoders, define semantic relevance and geometric projection. Next, we analyze the Granularity Layer and evaluate how segmentation strategies like Atomic and Hierarchical chunking mitigate information bottlenecks in long-context documents. Moving to the Orchestration Layer, we discuss methods that transcend the single-vector paradigm, including hierarchical retrieval, agentic decomposition, and multi-stage reranking pipelines to resolve capacity limitations. Finally, we address the Robustness Layer by identifying architectural mitigations for domain generalization failures, lexical blind spots, and the silent degradation of retrieval quality due to temporal drift. By categorizing these limitations and design choices, we provide a comprehensive framework for practitioners to optimize the efficiency-effectiveness frontier in modern neural search systems.
BengaliSent140: A Large-Scale Bengali Binary Sentiment Dataset for Hate and Non-Hate Speech Classification
Sentiment analysis for the Bengali language has attracted increasing research interest in recent years. However, progress remains constrained by the scarcity of large-scale and diverse annotated datasets. Although several Bengali sentiment and hate speech datasets are publicly available, most are limited in size or confined to a single domain, such as social media comments. Consequently, these resources are often insufficient for training modern deep learning based models, which require large volumes of heterogeneous data to learn robust and generalizable representations. In this work, we introduce BengaliSent140, a large-scale Bengali binary sentiment dataset constructed by consolidating seven existing Bengali text datasets into a unified corpus. To ensure consistency across sources, heterogeneous annotation schemes are systematically harmonized into a binary sentiment formulation with two classes: Not Hate (0) and Hate (1). The resulting dataset comprises 139,792 unique text samples, including 68,548 hate and 71,244 not-hate instances, yielding a relatively balanced class distribution. By integrating data from multiple sources and domains, BengaliSent140 offers broader linguistic and contextual coverage than existing Bengali sentiment datasets and provides a strong foundation for training and benchmarking deep learning models. Baseline experimental results are also reported to demonstrate the practical usability of the dataset. The dataset is publicly available at https://www.kaggle.com/datasets/akifislam/bengalisent140/
comment: Dataset paper. 6 pages, 3 figures. 4 Tables, Includes a publicly released Bengali sentiment dataset on Kaggle (BengaliSent140) and baseline experimental results
Rewarding Intellectual Humility Learning When Not To Answer In Large Language Models
Large Language Models (LLMs) often produce hallucinated or unverifiable content, undermining their reliability in factual domains. This work investigates Reinforcement Learning with Verifiable Rewards (RLVR) as a training paradigm that explicitly rewards abstention ("I don't know") alongside correctness to promote intellectual humility. We fine-tune and evaluate Granite-3.3-2B-Instruct and Qwen-3-4B-Instruct on the MedMCQA and Hendrycks Math benchmarks using a ternary reward structure ($-1$, r_abs, 1) under varying abstention reward structures. We further study the effect of combining RLVR with supervised fine-tuning strategies that teach abstention prior to reinforcement learning. Our results show that moderate abstention rewards (r_abs $\approx -0.25$ to 0.3) consistently reduce incorrect responses without severe accuracy degradation on multiple-choice tasks, with larger models exhibiting greater robustness to abstention incentives. On open-ended question answering, we observe limitations due to insufficient exploration, which can be partially mitigated through supervised abstention training. Overall, these findings demonstrate the feasibility and flexibility of verifiable reward design as a practical approach for hallucination mitigation in language models. Reproducible code for our abstention training framework is available here https://github.com/Mystic-Slice/rl-abstention.
Membership Inference Attacks Against Fine-tuned Diffusion Language Models ICLR 2026
Diffusion Language Models (DLMs) represent a promising alternative to autoregressive language models, using bidirectional masked token prediction. Yet their susceptibility to privacy leakage via Membership Inference Attacks (MIA) remains critically underexplored. This paper presents the first systematic investigation of MIA vulnerabilities in DLMs. Unlike the autoregressive models' single fixed prediction pattern, DLMs' multiple maskable configurations exponentially increase attack opportunities. This ability to probe many independent masks dramatically improves detection chances. To exploit this, we introduce SAMA (Subset-Aggregated Membership Attack), which addresses the sparse signal challenge through robust aggregation. SAMA samples masked subsets across progressive densities and applies sign-based statistics that remain effective despite heavy-tailed noise. Through inverse-weighted aggregation prioritizing sparse masks' cleaner signals, SAMA transforms sparse memorization detection into a robust voting mechanism. Experiments on nine datasets show SAMA achieves 30% relative AUC improvement over the best baseline, with up to 8 times improvement at low false positive rates. These findings reveal significant, previously unknown vulnerabilities in DLMs, necessitating the development of tailored privacy defenses.
comment: Accepted for presentation at ICLR 2026 (pending final camera-ready)
How Much Progress Has There Been in NVIDIA Datacenter GPUs?
Graphics Processing Units (GPUs) are the state-of-the-art architecture for essential tasks, ranging from rendering 2D/3D graphics to accelerating workloads in supercomputing centers and, of course, Artificial Intelligence (AI). As GPUs continue improving to satisfy ever-increasing performance demands, analyzing past and current progress becomes paramount in determining future constraints on scientific research. This is particularly compelling in the AI domain, where rapid technological advancements and fierce global competition have led the United States to recently implement export control regulations limiting international access to advanced AI chips. For this reason, this paper studies technical progress in NVIDIA datacenter GPUs released from the mid-2000s until today. Specifically, we compile a comprehensive dataset of datacenter NVIDIA GPUs comprising several features, ranging from computational performance to release price. Then, we examine trends in main GPU features and estimate progress indicators for per-memory bandwidth, per-dollar, and per-watt increase rates. Our main results identify doubling times of 1.44 and 1.69 years for FP16 and FP32 operations (without accounting for sparsity benefits), while FP64 doubling times range from 2.06 to 3.79 years. Off-chip memory size and bandwidth grew at slower rates than computing performance, doubling every 3.32 to 3.53 years. The release prices of datacenter GPUs have roughly doubled every 5.1 years, while their power consumption has approximately doubled every 16 years. Finally, we quantify the potential implications of current U.S. export control regulations in terms of the potential performance gaps that would result if implementation were assumed to be complete and successful. We find that recently proposed changes to export controls would shrink the potential performance gap from 23.6x to 3.54x.
Benchmarking Reward Hack Detection in Code Environments via Contrastive Analysis
Recent advances in reinforcement learning for code generation have made robust environments essential to prevent reward hacking. As LLMs increasingly serve as evaluators in code-based RL, their ability to detect reward hacking remains understudied. In this paper, we propose a novel taxonomy of reward exploits spanning across 54 categories and introduce TRACE (Testing Reward Anomalies in Code Environments), a synthetically curated and human-verified benchmark containing 517 testing trajectories. Unlike prior work that evaluates reward hack detection in isolated classification scenarios, we contrast these evaluations with a more realistic, contrastive anomaly detection setup on TRACE. Our experiments reveal that models capture reward hacks more effectively in contrastive settings than in isolated classification settings, with GPT-5.2 with highest reasoning mode achieving the best detection rate at 63%, up from 45% in isolated settings on TRACE. Building on this insight, we demonstrate that state-of-the-art models struggle significantly more with semantically contextualized reward hacks compared to syntactically contextualized ones. We further conduct qualitative analyses of model behaviors, as well as ablation studies showing that the ratio of benign to hacked trajectories and analysis cluster sizes substantially impact detection performance. We release the benchmark and evaluation harness to enable the community to expand TRACE and evaluate their models.
comment: Dataset: https://huggingface.co/datasets/PatronusAI/trace-dataset
Taming Toxic Talk: Using chatbots to intervene with users posting toxic comments
Generative AI chatbots have proven surprisingly effective at persuading people to change their beliefs and attitudes in lab settings. However, the practical implications of these findings are not yet clear. In this work, we explore the impact of rehabilitative conversations with generative AI chatbots on users who share toxic content online. Toxic behaviors -- like insults or threats of violence, are widespread in online communities. Strategies to deal with toxic behavior are typically punitive, such as removing content or banning users. Rehabilitative approaches are rarely attempted, in part due to the emotional and psychological cost of engaging with aggressive users. In collaboration with seven large Reddit communities, we conducted a large-scale field experiment (N=893) to invite people who had recently posted toxic content to participate in conversations with AI chatbots. A qualitative analysis of the conversations shows that many participants engaged in good faith and even expressed remorse or a desire to change. However, we did not observe a significant change in toxic behavior in the following month compared to a control group. We discuss possible explanations for our findings, as well as theoretical and practical implications based on our results.
Dynamics of Human-AI Collective Knowledge on the Web: A Scalable Model and Insights for Sustainable Growth
Humans and large language models (LLMs) now co-produce and co-consume the web's shared knowledge archives. Such human-AI collective knowledge ecosystems contain feedback loops with both benefits (e.g., faster growth, easier learning) and systemic risks (e.g., quality dilution, skill reduction, model collapse). To understand such phenomena, we propose a minimal, interpretable dynamical model of the co-evolution of archive size, archive quality, model (LLM) skill, aggregate human skill, and query volume. The model captures two content inflows (human, LLM) controlled by a gate on LLM-content admissions, two learning pathways for humans (archive study vs. LLM assistance), and two LLM-training modalities (corpus-driven scaling vs. learning from human feedback). Through numerical experiments, we identify different growth regimes (e.g., healthy growth, inverted flow, inverted learning, oscillations), and show how platform and policy levers (gate strictness, LLM training, human learning pathways) shift the system across regime boundaries. Two domain configurations (PubMed, GitHub and Copilot) illustrate contrasting steady states under different growth rates and moderation norms. We also fit the model to Wikipedia's knowledge flow during pre-ChatGPT and post-ChatGPT eras separately. We find a rise in LLM additions with a concurrent decline in human inflow, consistent with a regime identified by the model. Our model and analysis yield actionable insights for sustainable growth of human-AI collective knowledge on the Web.
comment: Accepted for ACM Web Conference 2026 (WWW26)
Should I Have Expressed a Different Intent? Counterfactual Generation for LLM-Based Autonomous Control
Large language model (LLM)-powered agents can translate high-level user intents into plans and actions in an environment. Yet after observing an outcome, users may wonder: What if I had phrased my intent differently? We introduce a framework that enables such counterfactual reasoning in agentic LLM-driven control scenarios, while providing formal reliability guarantees. Our approach models the closed-loop interaction between a user, an LLM-based agent, and an environment as a structural causal model (SCM), and leverages test-time scaling to generate multiple candidate counterfactual outcomes via probabilistic abduction. Through an offline calibration phase, the proposed conformal counterfactual generation (CCG) yields sets of counterfactual outcomes that are guaranteed to contain the true counterfactual outcome with high probability. We showcase the performance of CCG on a wireless network control use case, demonstrating significant advantages compared to naive re-execution baselines.
LLaTTE: Scaling Laws for Multi-Stage Sequence Modeling in Large-Scale Ads Recommendation
We present LLaTTE (LLM-Style Latent Transformers for Temporal Events), a scalable transformer architecture for production ads recommendation. Through systematic experiments, we demonstrate that sequence modeling in recommendation systems follows predictable power-law scaling similar to LLMs. Crucially, we find that semantic features bend the scaling curve: they are a prerequisite for scaling, enabling the model to effectively utilize the capacity of deeper and longer architectures. To realize the benefits of continued scaling under strict latency constraints, we introduce a two-stage architecture that offloads the heavy computation of large, long-context models to an asynchronous upstream user model. We demonstrate that upstream improvements transfer predictably to downstream ranking tasks. Deployed as the largest user model at Meta, this multi-stage framework drives a 4.3\% conversion uplift on Facebook Feed and Reels with minimal serving overhead, establishing a practical blueprint for harnessing scaling laws in industrial recommender systems.
comment: Lee Xiong, Zhirong Chen, and Rahul Mayuranath contributed equally to this work
Semi-Supervised Masked Autoencoders: Unlocking Vision Transformer Potential with Limited Data
We address the challenge of training Vision Transformers (ViTs) when labeled data is scarce but unlabeled data is abundant. We propose Semi-Supervised Masked Autoencoder (SSMAE), a framework that jointly optimizes masked image reconstruction and classification using both unlabeled and labeled samples with dynamically selected pseudo-labels. SSMAE introduces a validation-driven gating mechanism that activates pseudo-labeling only after the model achieves reliable, high-confidence predictions that are consistent across both weakly and strongly augmented views of the same image, reducing confirmation bias. On CIFAR-10 and CIFAR-100, SSMAE consistently outperforms supervised ViT and fine-tuned MAE, with the largest gains in low-label regimes (+9.24% over ViT on CIFAR-10 with 10% labels). Our results demonstrate that when pseudo-labels are introduced is as important as how they are generated for data-efficient transformer training. Codes are available at https://github.com/atik666/ssmae.
VERGE: Formal Refinement and Guidance Engine for Verifiable LLM Reasoning
Despite the syntactic fluency of Large Language Models (LLMs), ensuring their logical correctness in high-stakes domains remains a fundamental challenge. We present a neurosymbolic framework that combines LLMs with SMT solvers to produce verification-guided answers through iterative refinement. Our approach decomposes LLM outputs into atomic claims, autoformalizes them into first-order logic, and verifies their logical consistency using automated theorem proving. We introduce three key innovations: (1) multi-model consensus via formal semantic equivalence checking to ensure logic-level alignment between candidates, eliminating the syntactic bias of surface-form metrics, (2) semantic routing that directs different claim types to appropriate verification strategies: symbolic solvers for logical claims and LLM ensembles for commonsense reasoning, and (3) precise logical error localization via Minimal Correction Subsets (MCS), which pinpoint the exact subset of claims to revise, transforming binary failure signals into actionable feedback. Our framework classifies claims by their logical status and aggregates multiple verification signals into a unified score with variance-based penalty. The system iteratively refines answers using structured feedback until acceptance criteria are met or convergence is achieved. This hybrid approach delivers formal guarantees where possible and consensus verification elsewhere, advancing trustworthy AI. With the GPT-OSS-120B model, VERGE demonstrates an average performance uplift of 18.7% at convergence across a set of reasoning benchmarks compared to single-pass approaches.
Size Matters: Reconstructing Real-Scale 3D Models from Monocular Images for Food Portion Estimation
The rise of chronic diseases related to diet, such as obesity and diabetes, emphasizes the need for accurate monitoring of food intake. While AI-driven dietary assessment has made strides in recent years, the ill-posed nature of recovering size (portion) information from monocular images for accurate estimation of ``how much did you eat?'' is a pressing challenge. Some 3D reconstruction methods have achieved impressive geometric reconstruction but fail to recover the crucial real-world scale of the reconstructed object, limiting its usage in precision nutrition. In this paper, we bridge the gap between 3D computer vision and digital health by proposing a method that recovers a true-to-scale 3D reconstructed object from a monocular image. Our approach leverages rich visual features extracted from models trained on large-scale datasets to estimate the scale of the reconstructed object. This learned scale enables us to convert single-view 3D reconstructions into true-to-life, physically meaningful models. Extensive experiments and ablation studies on two publicly available datasets show that our method consistently outperforms existing techniques, achieving nearly a 30% reduction in mean absolute volume-estimation error, showcasing its potential to enhance the domain of precision nutrition. Code: https://gitlab.com/viper-purdue/size-matters
Insight Agents: An LLM-Based Multi-Agent System for Data Insights
Today, E-commerce sellers face several key challenges, including difficulties in discovering and effectively utilizing available programs and tools, and struggling to understand and utilize rich data from various tools. We therefore aim to develop Insight Agents (IA), a conversational multi-agent Data Insight system, to provide E-commerce sellers with personalized data and business insights through automated information retrieval. Our hypothesis is that IA will serve as a force multiplier for sellers, thereby driving incremental seller adoption by reducing the effort required and increase speed at which sellers make good business decisions. In this paper, we introduce this novel LLM-backed end-to-end agentic system built on a plan-and-execute paradigm and designed for comprehensive coverage, high accuracy, and low latency. It features a hierarchical multi-agent structure, consisting of manager agent and two worker agents: data presentation and insight generation, for efficient information retrieval and problem-solving. We design a simple yet effective ML solution for manager agent that combines Out-of-Domain (OOD) detection using a lightweight encoder-decoder model and agent routing through a BERT-based classifier, optimizing both accuracy and latency. Within the two worker agents, a strategic planning is designed for API-based data model that breaks down queries into granular components to generate more accurate responses, and domain knowledge is dynamically injected to to enhance the insight generator. IA has been launched for Amazon sellers in US, which has achieved high accuracy of 90% based on human evaluation, with latency of P90 below 15s.
comment: Accepted to SIGIR 2025. DOI: 10.1145/3726302.3731959
CiMRAG: Cim-Aware Domain-Adaptive and Noise-Resilient Retrieval-Augmented Generation for Edge-Based LLMs
Personalized virtual assistants powered by large language models (LLMs) on edge devices are attracting growing attention, with Retrieval-Augmented Generation (RAG) emerging as a key method for personalization by retrieving relevant profile data and generating tailored responses. However, deploying RAG on edge devices faces efficiency hurdles due to the rapid growth of profile data, such as user-LLM interactions and recent updates. While Computing-in-Memory (CiM) architectures mitigate this bottleneck by eliminating data movement between memory and processing units via in-situ operations, they are susceptible to environmental noise that can degrade retrieval precision. This poses a critical issue in dynamic, multi-domain edge-based scenarios (e.g., travel, medicine, and law) where both accuracy and adaptability are paramount. To address these challenges, we propose Task-Oriented Noise-resilient Embedding Learning (TONEL), a framework that improves noise robustness and domain adaptability for RAG in noisy edge environments. TONEL employs a noise-aware projection model to learn task-specific embeddings compatible with CiM hardware constraints, enabling accurate retrieval under noisy conditions. Extensive experiments conducted on personalization benchmarks demonstrate the effectiveness and practicality of our methods relative to strong baselines, especially in task-specific noisy scenarios.
comment: Accepted by ICASSP 2026
Structural Compositional Function Networks: Interpretable Functional Compositions for Tabular Discovery
Despite the ubiquity of tabular data in high-stakes domains, traditional deep learning architectures often struggle to match the performance of gradient-boosted decision trees while maintaining scientific interpretability. Standard neural networks typically treat features as independent entities, failing to exploit the inherent manifold structural dependencies that define tabular distributions. We propose Structural Compositional Function Networks (StructuralCFN), a novel architecture that imposes a Relation-Aware Inductive Bias via a differentiable structural prior. StructuralCFN explicitly models each feature as a mathematical composition of its counterparts through Differentiable Adaptive Gating, which automatically discovers the optimal activation physics (e.g., attention-style filtering vs. inhibitory polarity) for each relationship. Our framework enables Structured Knowledge Integration, allowing domain-specific relational priors to be injected directly into the architecture to guide discovery. We evaluate StructuralCFN across a rigorous 10-fold cross-validation suite on 18 benchmarks, demonstrating statistically significant improvements (p < 0.05) on scientific and clinical datasets (e.g., Blood Transfusion, Ozone, WDBC). Furthermore, StructuralCFN provides Intrinsic Symbolic Interpretability: it recovers the governing "laws" of the data manifold as human-readable mathematical expressions while maintaining a compact parameter footprint (300--2,500 parameters) that is over an order of magnitude (10x--20x) smaller than standard deep baselines.
comment: Code and data available at https://github.com/fanglioc/StructuralCFN-public
Fuzzy Categorical Planning: Autonomous Goal Satisfaction with Graded Semantic Constraints
Natural-language planning often involves vague predicates (e.g., suitable substitute, stable enough) whose satisfaction is inherently graded. Existing category-theoretic planners provide compositional structure and pullback-based hard-constraint verification, but treat applicability as crisp, forcing thresholding that collapses meaningful distinctions and cannot track quality degradation across multi-step plans. We propose Fuzzy Category-theoretic Planning (FCP), which annotates each action (morphism) with a degree in [0,1], composes plan quality via a t-norm Lukasiewicz, and retains crisp executability checks via pullback verification. FCP grounds graded applicability from language using an LLM with k-sample median aggregation and supports meeting-in-the-middle search using residuum-based backward requirements. We evaluate on (i) public PDDL3 preference/oversubscription benchmarks and (ii) RecipeNLG-Subs, a missing-substitute recipe-planning benchmark built from RecipeNLG with substitution candidates from Recipe1MSubs and FoodKG. FCP improves success and reduces hard-constraint violations on RecipeNLG-Subs compared to LLM-only and ReAct-style baselines, while remaining competitive with classical PDDL3 planners.
Teaching LLMs to Ask: Self-Querying Category-Theoretic Planning for Under-Specified Reasoning
Inference-time planning with large language models frequently breaks under partial observability: when task-critical preconditions are not specified at query time, models tend to hallucinate missing facts or produce plans that violate hard constraints. We introduce \textbf{Self-Querying Bidirectional Categorical Planning (SQ-BCP)}, which explicitly represents precondition status (\texttt{Sat}/\texttt{Viol}/\texttt{Unk}) and resolves unknowns via (i) targeted self-queries to an oracle/user or (ii) \emph{bridging} hypotheses that establish the missing condition through an additional action. SQ-BCP performs bidirectional search and invokes a pullback-based verifier as a categorical certificate of goal compatibility, while using distance-based scores only for ranking and pruning. We prove that when the verifier succeeds and hard constraints pass deterministic checks, accepted plans are compatible with goal requirements; under bounded branching and finite resolution depth, SQ-BCP finds an accepting plan when one exists. Across WikiHow and RecipeNLG tasks with withheld preconditions, SQ-BCP reduces resource-violation rates to \textbf{14.9\%} and \textbf{5.8\%} (vs.\ \textbf{26.0\%} and \textbf{15.7\%} for the best baseline), while maintaining competitive reference quality.
LinguaMap: Which Layers of LLMs Speak Your Language and How to Tune Them?
Despite multilingual pretraining, large language models often struggle with non-English tasks, particularly in language control, the ability to respond in the intended language. We identify and characterize two key failure modes: the multilingual transfer bottleneck (correct language, incorrect task response) and the language consistency bottleneck (correct task response, wrong language). To systematically surface these issues, we design a four-scenario evaluation protocol spanning MMLU, MGSM, and XQuAD benchmarks. To probe these issues with interpretability, we extend logit lens analysis to track language probabilities layer by layer and compute cross-lingual semantic similarity of hidden states. The results reveal a three-phase internal structure: early layers align inputs into a shared semantic space, middle layers perform task reasoning, and late layers drive language-specific generation. Guided by these insights, we introduce selective fine-tuning of only the final layers responsible for language control. On Qwen-3-32B and Bloom-7.1B, this method achieves over 98 percent language consistency across six languages while fine-tuning only 3-5 percent of parameters, without sacrificing task accuracy. Importantly, this result is nearly identical to that of full-scope fine-tuning (for example, above 98 percent language consistency for both methods across all prompt scenarios) but uses a fraction of the computational resources. To the best of our knowledge, this is the first approach to leverage layer-localization of language control for efficient multilingual adaptation.
On the Effectiveness of LLM-Specific Fine-Tuning for Detecting AI-Generated Text
The rapid progress of large language models has enabled the generation of text that closely resembles human writing, creating challenges for authenticity verification in education, publishing, and digital security. Detecting AI-generated text has therefore become a crucial technical and ethical issue. This paper presents a comprehensive study of AI-generated text detection based on large-scale corpora and novel training strategies. We introduce a 1-billion-token corpus of human-authored texts spanning multiple genres and a 1.9-billion-token corpus of AI-generated texts produced by prompting a variety of LLMs across diverse domains. Using these resources, we develop and evaluate numerous detection models and propose two novel training paradigms: Per LLM and Per LLM family fine-tuning. Across a 100-million-token benchmark covering 21 large language models, our best fine-tuned detector achieves up to $99.6\%$ token-level accuracy, substantially outperforming existing open-source baselines.
comment: 34 pages, 6 figures. Under review at Information Sciences
Perturbation-Induced Linearization: Constructing Unlearnable Data with Solely Linear Classifiers ICLR 2026
Collecting web data to train deep models has become increasingly common, raising concerns about unauthorized data usage. To mitigate this issue, unlearnable examples introduce imperceptible perturbations into data, preventing models from learning effectively. However, existing methods typically rely on deep neural networks as surrogate models for perturbation generation, resulting in significant computational costs. In this work, we propose Perturbation-Induced Linearization (PIL), a computationally efficient yet effective method that generates perturbations using only linear surrogate models. PIL achieves comparable or better performance than existing surrogate-based methods while reducing computational time dramatically. We further reveal a key mechanism underlying unlearnable examples: inducing linearization to deep models, which explains why PIL can achieve competitive results in a very short time. Beyond this, we provide an analysis about the property of unlearnable examples under percentage-based partial perturbation. Our work not only provides a practical approach for data protection but also offers insights into what makes unlearnable examples effective.
comment: This paper has been accepted to ICLR 2026
"Not in My Backyard": LLMs Uncover Online and Offline Social Biases Against Homelessnes
Homelessness is a persistent social challenge, impacting millions worldwide. Over 876,000 people experienced homelessness (PEH) in the U.S. in 2025. Social bias is a significant barrier to alleviation, shaping public perception and influencing policymaking. Given that online textual media and offline city council discourse reflect and influence part of public opinion, it provides valuable insights to identify and track social biases against PEH. We present a new, manually-annotated multi-domain dataset compiled from Reddit, X (formerly Twitter), news articles, and city council meeting minutes across ten U.S. cities. Our 16-category multi-label taxonomy creates a challenging long-tail classification problem: some categories appear in less than 1% of samples, while others exceed 70%. We find that small human-annotated datasets (1,702 samples) are insufficient for training effective classifiers, whether used to fine-tune encoder models or as few-shot examples for LLMs. To address this, we use GPT-4.1 to generate pseudo-labels on a larger unlabeled corpus. Training on this expanded dataset enables even small encoder models (ModernBERT, 150M parameters) to achieve 35.23 macro-F1, approaching GPT-4.1's 41.57. This demonstrates that \textbf{data quantity matters more than model size}, enabling low-cost, privacy-preserving deployment without relying on commercial APIs. Our results reveal that negative bias against PEH is prevalent both offline and online (especially on Reddit), with "not in my backyard" narratives showing the highest engagement. These findings uncover a type of ostracism that directly impacts poverty-reduction policymaking and provide actionable insights for practitioners addressing homelessness.
Demystifying the Roles of LLM Layers in Retrieval, Knowledge, and Reasoning
Recent studies suggest that the deeper layers of Large Language Models (LLMs) contribute little to representation learning and can often be removed without significant performance loss. However, such claims are typically drawn from narrow evaluations and may overlook important aspects of model behavior. In this work, we present a systematic study of depth utilization across diverse dimensions, including evaluation protocols, task categories, and model architectures. Our analysis confirms that very deep layers are generally less effective than earlier ones, but their contributions vary substantially with the evaluation setting. Under likelihood-based metrics without generation, pruning most layers preserves performance, with only the initial few being critical. By contrast, generation-based evaluation uncovers indispensable roles for middle and deeper layers in enabling reasoning and maintaining long-range coherence. We further find that knowledge and retrieval are concentrated in shallow components, whereas reasoning accuracy relies heavily on deeper layers -- yet can be reshaped through distillation. These results highlight that depth usage in LLMs is highly heterogeneous and context-dependent, underscoring the need for task-, metric-, and model-aware perspectives in both interpreting and compressing large models.
comment: Accepted by ICASSP 2026
LOGICAL-COMMONSENSEQA: A Benchmark for Logical Commonsense Reasoning
Commonsense reasoning often involves evaluating multiple plausible interpretations rather than selecting a single atomic answer, yet most benchmarks rely on single-label evaluation, obscuring whether statements are jointly plausible, mutually exclusive, or jointly implausible. We introduce LOGICAL-COMMONSENSEQA, a benchmark that re-frames commonsense reasoning as logical composition over pairs of atomic statements using plausibility-level operators (AND, OR, NEITHER/NOR). Evaluating instruction-tuned, reasoning-specialized, and fine-tuned models under zero-shot, few-shot, and chain-of-thought prompting, we find that while models perform reasonably on conjunctive and moderately on disjunctive reasoning, performance degrades sharply on negation-based questions. LOGICAL-COMMONSENSEQA exposes fundamental reasoning limitations and provides a controlled framework for advancing compositional commonsense reasoning.
MLVTG: Mamba-Based Feature Alignment and LLM-Driven Purification for Multi-Modal Video Temporal Grounding
Video Temporal Grounding (VTG), which aims to localize video clips corresponding to natural language queries, is a fundamental yet challenging task in video understanding. Existing Transformer-based methods often suffer from redundant attention and suboptimal multi-modal alignment. To address these limitations, we propose MLVTG, a novel framework that integrates two key modules: MambaAligner and LLMRefiner. MambaAligner uses stacked Vision Mamba blocks as a backbone instead of Transformers to model temporal dependencies and extract robust video representations for multi-modal alignment. LLMRefiner leverages the specific frozen layer of a pre-trained Large Language Model (LLM) to implicitly transfer semantic priors, enhancing multi-modal alignment without fine-tuning. This dual alignment strategy, temporal modeling via structured state-space dynamics and semantic purification via textual priors, enables more precise localization. Extensive experiments on QVHighlights, Charades-STA, and TVSum demonstrate that MLVTG achieves state-of-the-art performance and significantly outperforms existing baselines.
Learning Dynamic Representations via An Optimally-Weighted Maximum Mean Discrepancy Optimization Framework for Continual Learning
Continual learning has emerged as a pivotal area of research, primarily due to its advantageous characteristic that allows models to persistently acquire and retain information. However, catastrophic forgetting can severely impair model performance. In this study, we address network forgetting by introducing a novel framework termed Optimally-Weighted Maximum Mean Discrepancy (OWMMD), which imposes penalties on representation alterations via a Multi-Level Feature Matching Mechanism (MLFMM). Furthermore, we propose an Adaptive Regularization Optimization (ARO) strategy to refine the adaptive weight vectors, which autonomously assess the significance of each feature layer throughout the optimization process, The proposed ARO approach can relieve the over-regularization problem and promote the future task learning. We conduct a comprehensive series of experiments, benchmarking our proposed method against several established baselines. The empirical findings indicate that our approach achieves state-of-the-art performance.
Efficient and Transferable Agentic Knowledge Graph RAG via Reinforcement Learning
Knowledge-graph retrieval-augmented generation (KG-RAG) couples large language models (LLMs) with structured, verifiable knowledge graphs (KGs) to reduce hallucinations and expose reasoning traces. However, many KG-RAG systems compose multiple LLM modules (e.g planning, reasoning, and responding), inflating inference cost and binding behavior to a specific target KG. To address this, we introduce KG-R1, an agentic KG retrieval-augmented generation (KG-RAG) framework through reinforcement learning (RL). KG-R1 utilizes a single agent that interacts with KGs as its environment, learning to retrieve at each step and incorporating the retrieved information into its reasoning and generation. The process is optimized through end-to-end RL. In controlled experiments across Knowledge-Graph Question Answering (KGQA) benchmarks, our method demonstrates both efficiency and transferability: Using Qwen-2.5-3B, KG-R1 improves answer accuracy with fewer generation tokens than prior multi-module workflow methods that use larger foundation or fine-tuned models. Furthermore, KG-R1 enables plug and play: after training, it maintains strong accuracy on new KGs without modification. These properties make KG-R1 a promising KG-RAG framework for real-world deployment. Our code is publicly available at https://github.com/Jinyeop3110/KG-R1.
comment: Wrong numbers are reported for main results
APEX-Agents
We introduce the AI Productivity Index for Agents (APEX-Agents), a benchmark for assessing whether AI agents can execute long-horizon, cross-application tasks created by investment banking analysts, management consultants, and corporate lawyers. APEX-Agents requires agents to navigate realistic work environments with files and tools. We test eight agents for the leaderboard using Pass@1. Gemini 3 Flash (Thinking=High) achieves the highest score of 24.0%, followed by GPT-5.2 (Thinking=High), Claude Opus 4.5 (Thinking=High), and Gemini 3 Pro (Thinking=High). We open source the APEX-Agents benchmark (n=480) with all prompts, rubrics, gold outputs, files, and metadata. We also open-source Archipelago, our infrastructure for agent execution and evaluation.
ReVision: A Dataset and Baseline VLM for Privacy-Preserving Task-Oriented Visual Instruction Rewriting
Efficient and privacy-preserving multimodal interaction is essential as AR, VR, and modern smartphones with powerful cameras become primary interfaces for human-computer communication. Existing powerful large vision-language models (VLMs) enabling multimodal interaction often rely on cloud-based processing, raising significant concerns about (1) visual privacy by transmitting sensitive vision data to servers, and (2) their limited real-time, on-device usability. This paper explores Visual Instruction Rewriting, a novel approach that transforms multimodal instructions into text-only commands, allowing seamless integration of lightweight on-device instruction rewriter VLMs (250M parameters) with existing conversational AI systems, enhancing vision data privacy. To achieve this, we present a dataset of over 39,000 examples across 14 domains and develop a compact VLM, pretrained on image captioning datasets and fine-tuned for instruction rewriting. Experimental results, evaluated through NLG metrics such as BLEU, METEOR, and ROUGE, along with semantic parsing analysis, demonstrate that even a quantized version of the model (<500MB storage footprint) can achieve effective instruction rewriting, thus enabling privacy-focused, multimodal AI applications.
comment: In Proceedings of the IJCNLP-AACL 2025
LLM-Generated Explanations Do Not Suffice for Ultra-Strong Machine Learning
Ultra Strong Machine Learning (USML) refers to symbolic learning systems that not only improve their own performance but can also teach their acquired knowledge to quantifiably improve human performance. We introduce LENS (Logic Programming Explanation via Neural Summarisation), a neuro-symbolic framework that combines symbolic program synthesis with large language models (LLMs). This framework automatically generates natural language explanations of learned logic programs, replacing hand-crafted templates used in prior USML work. Using LLMs-as-judges evaluation and expert validation, we show that LENS produces higher-quality explanations than both direct LLM prompting and hand-crafted templates. We then examine whether LENS explanations suffice for achieving USML in a human trial teaching active learning strategies across three related domains. Our exploratory analysis suggests that concise, expert-written explanations may benefit learners with higher initial performance, while LLM-generated explanations provide no advantage over human self learning despite being rated as higher quality. This case study reveals that achieving USML requires methods grounded in human learning, where current LLM-generated explanations do not capture human cognitive constraints and LLMs-as-judges evaluations do not reflect what effectively supports human learning.
DisCoPatch: Taming Adversarially-driven Batch Statistics for Improved Out-of-Distribution Detection ICCV 2025
Out-of-distribution (OOD) detection holds significant importance across many applications. While semantic and domain-shift OOD problems are well-studied, this work focuses on covariate shifts - subtle variations in the data distribution that can degrade machine learning performance. We hypothesize that detecting these subtle shifts can improve our understanding of in-distribution boundaries, ultimately improving OOD detection. In adversarial discriminators trained with Batch Normalization (BN), real and adversarial samples form distinct domains with unique batch statistics - a property we exploit for OOD detection. We introduce DisCoPatch, an unsupervised Adversarial Variational Autoencoder (VAE) framework that harnesses this mechanism. During inference, batches consist of patches from the same image, ensuring a consistent data distribution that allows the model to rely on batch statistics. DisCoPatch uses the VAE's suboptimal outputs (generated and reconstructed) as negative samples to train the discriminator, thereby improving its ability to delineate the boundary between in-distribution samples and covariate shifts. By tightening this boundary, DisCoPatch achieves state-of-the-art results in public OOD detection benchmarks. The proposed model not only excels in detecting covariate shifts, achieving 95.5% AUROC on ImageNet-1K(-C) but also outperforms all prior methods on public Near-OOD (95.0%) benchmarks. With a compact model size of 25MB, it achieves high OOD detection performance at notably lower latency than existing methods, making it an efficient and practical solution for real-world OOD detection applications. The code is publicly available.
comment: ICCV 2025
Quantifying Fidelity: A Decisive Feature Approach to Comparing Synthetic and Real Imagery
Virtual testing using synthetic data has become a cornerstone of autonomous vehicle (AV) safety assurance. Despite progress in improving visual realism through advanced simulators and generative AI, recent studies reveal that pixel-level fidelity alone does not ensure reliable transfer from simulation to the real world. What truly matters is whether the system-under-test (SUT) bases its decisions on consistent decision evidence in both real and simulated environments, not just whether images "look real" to humans. To this end this paper proposes a behavior-grounded fidelity measure by introducing Decisive Feature Fidelity (DFF), a new SUT-specific metric that extends the existing fidelity spectrum to capture mechanism parity, that is, agreement in the model-specific decisive evidence that drives the SUT's decisions across domains. DFF leverages explainable-AI methods to identify and compare the decisive features driving the SUT's outputs for matched real-synthetic pairs. We further propose estimators based on counterfactual explanations, along with a DFF-guided calibration scheme to enhance simulator fidelity. Experiments on 2126 matched KITTI-VirtualKITTI2 pairs demonstrate that DFF reveals discrepancies overlooked by conventional output-value fidelity. Furthermore, results show that DFF-guided calibration improves decisive-feature and input-level fidelity without sacrificing output value fidelity across diverse SUTs.
Optimal Scaling Needs Optimal Norm
Despite recent progress in optimal hyperparameter transfer under model and dataset scaling, no unifying explanatory principle has been established. For Adam and Scion optimizers, we discover that joint optimal scaling across model and dataset sizes is conditioned on a single invariant: the operator norm of the output layer. Across models with up to 1.3B parameters trained on up to 138B tokens, the optimal learning rate/batch size pair $(η^{\ast}, B^{\ast})$ consistently has the same operator norm value - a phenomenon we term norm transfer. This constant norm condition is necessary but not sufficient: while for each dataset size, multiple $(η, B)$ reach the optimal norm, only a unique $(η^{\ast}, B^{\ast})$ achieves the best loss. As a sufficient condition, we provide the first measurement of $(η^{\ast}, B^{\ast})$ scaling with dataset size for Scion, and find that the scaling rules are consistent with those of Adam. Tuning per-layer-group learning rates also improves model performance, with the output layer being the most sensitive and hidden layers benefiting from lower learning rates. We provide practical insights on norm-guided optimal scaling and release our Distributed Scion (Disco) implementation with logs from over two thousand runs to support research on LLM training dynamics at scale.
Activation Function Design Sustains Plasticity in Continual Learning
In independent, identically distributed (i.i.d.) training regimes, activation functions have been benchmarked extensively, and their differences often shrink once model size and optimization are tuned. In continual learning, however, the picture is different: beyond catastrophic forgetting, models can progressively lose the ability to adapt (referred to as loss of plasticity) and the role of the non-linearity in this failure mode remains underexplored. We show that activation choice is a primary, architecture-agnostic lever for mitigating plasticity loss. Building on a property-level analysis of negative-branch shape and saturation behavior, we introduce two drop-in nonlinearities (Smooth-Leaky and Randomized Smooth-Leaky) and evaluate them in two complementary settings: (i) supervised class-incremental benchmarks and (ii) reinforcement learning with non-stationary MuJoCo environments designed to induce controlled distribution and dynamics shifts. We also provide a simple stress protocol and diagnostics that link the shape of the activation to the adaptation under change. The takeaway is straightforward: thoughtful activation design offers a lightweight, domain-general way to sustain plasticity in continual learning without extra capacity or task-specific tuning.
BASIL: Bayesian Assessment of Sycophancy in LLMs
Sycophancy (overly agreeable or flattering behavior) poses a fundamental challenge for human-AI collaboration, particularly in high-stakes decision-making domains such as health, law, and education. A central difficulty in studying sycophancy in large language models (LLMs) is disentangling sycophantic belief shifts from rational changes in behavior driven by new evidence or user-provided information. Existing approaches either measure descriptive behavior changes or apply normative evaluations that rely on objective ground truth, limiting their applicability to subjective or uncertain tasks. We introduce a Bayesian probabilistic framework, grounded in behavioral economics and rational decision theory, that explicitly separates sycophancy from rational belief updating. Within this framework, we achieve three objectives: (i) a descriptive metric that measures sycophancy while controlling for rational responses to evidence; (ii) a normative metric that quantifies how sycophancy leads models astray from Bayesian-consistent belief updating; and (iii) the ability to apply both metrics in settings without ground-truth labels. Applying our framework across multiple LLMs and three uncertainty-driven tasks, we find robust evidence of sycophantic belief shifts and show that their impact on rationality depends on whether models systematically over- or under-update their beliefs. Finally, we demonstrate that a post-hoc calibration method and two fine-tuning strategies (SFT and DPO) substantially reduce Bayesian inconsistency, with particularly strong improvements under explicit sycophancy prompting.
Language Agents for Hypothesis-driven Clinical Decision Making with Reinforcement Learning
Clinical decision-making is a dynamic, interactive, and cyclic process where doctors have to repeatedly decide on which clinical action to perform and consider newly uncovered information for diagnosis and treatment. Large Language Models (LLMs) have the potential to support clinicians in this process, however, most applications of LLMs in clinical decision support suffer from one of two limitations: Either they assume the unrealistic scenario of immediate availability of all patient information and do not model the interactive and iterative investigation process, or they restrict themselves to the limited "out-of-the-box" capabilities of large pre-trained models without performing task-specific training. In contrast to this, we propose to model clinical decision-making for diagnosis with a hypothesis-driven uncertainty-aware language agent, LA-CDM, that converges towards a diagnosis via repeatedly requesting and interpreting relevant tests. Using a hybrid training paradigm combining supervised and reinforcement learning, we train LA-CDM with three objectives targeting critical aspects of clinical decision-making: accurate hypothesis generation, hypothesis uncertainty estimation, and efficient decision-making. We evaluate our methodology on MIMIC-CDM, a real-world dataset covering four abdominal diseases containing various clinical tests and show the benefit of explicitly training clinical decision-making for increasing diagnostic performance and efficiency.
Noradrenergic-inspired gain modulation attenuates the stability gap in joint training
Recent work in continual learning has highlighted the stability gap -- a temporary performance drop on previously learned tasks when new ones are introduced. This phenomenon reflects a mismatch between rapid adaptation and strong retention at task boundaries, underscoring the need for optimization mechanisms that balance plasticity and stability over abrupt distribution changes. While optimizers such as momentum-SGD and Adam introduce implicit multi-timescale behavior, they still exhibit pronounced stability gaps. Importantly, these gaps persist even under ideal joint training, making it crucial to study them in this setting to isolate their causes from other sources of forgetting. Motivated by how noradrenergic (neuromodulatory) bursts transiently increase neuronal gain under uncertainty, we introduce a dynamic gain scaling mechanism as a two-timescale optimization technique that balances adaptation and retention by modulating effective learning rates and flattening the local landscape through an effective reparameterization. Across domain- and class-incremental MNIST, CIFAR, and mini-ImageNet benchmarks under task-agnostic joint training, dynamic gain scaling effectively attenuates stability gaps while maintaining competitive accuracy, improving robustness at task transitions.
comment: 23 pages, 9 figures, 6 table, 1 pseudo-code
Rewarding Doubt: A Reinforcement Learning Approach to Calibrated Confidence Expression of Large Language Models
A safe and trustworthy use of Large Language Models (LLMs) requires an accurate expression of confidence in their answers. We propose a novel Reinforcement Learning approach that allows to directly fine-tune LLMs to express calibrated confidence estimates alongside their answers to factual questions. Our method optimizes a reward based on the logarithmic scoring rule, explicitly penalizing both over- and under-confidence. This encourages the model to align its confidence estimates with the actual predictive accuracy. The optimal policy under our reward design would result in perfectly calibrated confidence expressions. Unlike prior approaches that decouple confidence estimation from response generation, our method integrates confidence calibration seamlessly into the generative process of the LLM. Empirically, we demonstrate that models trained with our approach exhibit substantially improved calibration and generalize to unseen tasks without further fine-tuning, suggesting the emergence of general confidence awareness.
Designing and Evaluating a Conversational Agent for Early Diagnosis of Alzheimer's Disease and Related Dementias
Early diagnosis of Alzheimer's disease and related dementias (ADRD) is critical for timely intervention, yet most diagnoses are delayed until advanced stages. While comprehensive patient narratives are essential for accurate diagnosis, prior work has largely focused on screening studies that classify cognitive status from interactions rather than supporting the diagnostic process. We designed voice-interactive conversational agents, leveraging large language models (LLMs), to elicit narratives relevant to ADRD from patients and informants. We evaluated the agent with 30 adults with suspected ADRD through conversation analysis, user surveys, and analysis of symptom elicitation compared to blinded specialist interviews. Symptoms detected by the agent showed promising agreement with those identified by specialists. Users appreciated the agent's patience and systematic questioning, which supported engagement and expression of complex, hard-to-describe experiences. While these findings suggest potential for conversational agents as structured diagnostic support tools, further validation with larger samples and assessment of clinical utility is needed before deployment.
comment: First two authors contributed equally
MSCCL++: Rethinking GPU Communication Abstractions for AI Inference
AI applications increasingly run on fast-evolving, heterogeneous hardware to maximize performance, but general-purpose libraries lag in supporting these features. Performance-minded programmers often build custom communication stacks that are fast but error-prone and non-portable. This paper introduces MSCCL++, a design methodology for developing high-performance, portable communication kernels. It provides (1) a low-level, performance-preserving primitive interface that exposes minimal hardware abstractions while hiding the complexities of synchronization and consistency, (2) a higher-level DSL for application developers to implement workload-specific communication algorithms, and (3) a library of efficient algorithms implementing the standard collective API, enabling adoption by users with minimal expertise. Compared to state-of-the-art baselines, MSCCL++ achieves geomean speedups of $1.7\times$ (up to $5.4\times$) for collective communication and $1.2\times$ (up to $1.38\times$) for AI inference workloads. MSCCL++ is in production of multiple AI services provided by Microsoft Azure, and has also been adopted by RCCL, the GPU collective communication library maintained by AMD. MSCCL++ is open source and available at https://github.com/microsoft/mscclpp . Our two years of experience with MSCCL++ suggests that its abstractions are robust, enabling support for new hardware features, such as multimem, within weeks of development.
comment: 15 pages, 13 figures
Entropy-Gated Branching for Efficient Test-Time Reasoning
Test-time compute methods can significantly improve the reasoning capabilities and problem-solving accuracy of large language models (LLMs). However, these approaches require substantially more computational resources, with most compute wasted on exploring low-diversity branches where the model already exhibits high confidence. We observe that a small subset of uncertain reasoning steps has a disproportionately large impact on final prediction accuracy, and branching at these critical junctures tends to yield more diverse and higher-quality candidate reasoning steps. We propose Entropy-Gated Branching (EGB), which branches only at high-uncertainty steps and prunes expansions with a lightweight verifier. On mathematical and financial reasoning benchmarks, EGB improves accuracy by 22.6% over standard inference while operating 31%-75% faster across math benchmarks than test-time beam search with higher performance. Our results show that dynamic resource allocation during inference can substantially improve both efficiency and effectiveness, offering a more scalable pathway to enhanced LLM reasoning capabilities.
Web-CogReasoner: Towards Knowledge-Induced Cognitive Reasoning for Web Agents ICLR 2026
Multimodal large-scale models have significantly advanced the development of web agents, enabling perception and interaction with digital environments akin to human cognition. In this paper, we argue that web agents must first acquire sufficient knowledge to effectively engage in cognitive reasoning. Therefore, we decompose a web agent's capabilities into two essential stages: knowledge content learning and cognitive processes. To formalize this, we propose Web-CogKnowledge Framework, categorizing knowledge as Factual, Conceptual, and Procedural. In this framework, knowledge content learning corresponds to the agent's processes of Memorizing and Understanding, which rely on the first two knowledge types, representing the "what" of learning. Conversely, cognitive processes correspond to Exploring, grounded in Procedural knowledge, defining the "how" of reasoning and action. To facilitate knowledge acquisition, we construct the Web-CogDataset, a structured resource curated from 14 real-world websites, designed to systematically instill core knowledge necessary for web agent. This dataset serves as the agent's conceptual grounding-the "nouns" upon which comprehension is built-as well as the basis for learning how to reason and act. Building on this foundation, we operationalize these processes through a novel knowledge-driven Chain-of-Thought (CoT) reasoning framework, developing and training our proposed agent, the Web-CogReasoner. Extensive experimentation reveals its significant superiority over existing models, especially in generalizing to unseen tasks where structured knowledge is decisive. To enable rigorous evaluation, we introduce the Web-CogBench, a comprehensive evaluation suite designed to assess and compare agent performance across the delineated knowledge domains and cognitive capabilities. Our code and data is open sourced at https://github.com/Gnonymous/Web-CogReasoner
comment: Accepted to ICLR 2026. Our code and data is released at https://github.com/Gnonymous/Web-CogReasoner
Towards Secure MLOps: Surveying Attacks, Mitigation Strategies, and Research Challenges
The rapid adoption of machine learning (ML) technologies has driven organizations across diverse sectors to seek efficient and reliable methods to accelerate model development-to-deployment. Machine Learning Operations (MLOps) has emerged as an integrative approach addressing these requirements by unifying relevant roles and streamlining ML workflows. As the MLOps market continues to grow, securing these pipelines has become increasingly critical. However, the unified nature of MLOps ecosystem introduces vulnerabilities, making them susceptible to adversarial attacks where a single misconfiguration can lead to compromised credentials, severe financial losses, damaged public trust, and the poisoning of training data. Our paper presents a systematic application of the MITRE ATLAS (Adversarial Threat Landscape for Artificial-Intelligence Systems) framework, supplemented by reviews of white and grey literature, to systematically assess attacks across different phases of the MLOps ecosystem. We begin by reviewing prior work in this domain, then present our taxonomy and introduce a threat model that captures attackers with different knowledge and capabilities. We then present a structured taxonomy of attack techniques explicitly mapped to corresponding phases of the MLOps ecosystem, supported by examples drawn from red-teaming exercises and real-world incidents. This is followed by a taxonomy of mitigation strategies aligned with these attack categories, offering actionable early-stage defenses to strengthen the security of MLOps ecosystem. Given the gradual evolution and adoption of MLOps, we further highlight key research gaps that require immediate attention. Our work emphasizes the importance of implementing robust security protocols from the outset, empowering practitioners to safeguard MLOps ecosystem against evolving cyber attacks.
LangForce: Bayesian Decomposition of Vision Language Action Models via Latent Action Queries
Vision-Language-Action (VLA) models have shown promise in robot manipulation but often struggle to generalize to new instructions or complex multi-task scenarios. We identify a critical pathology in current training paradigms where goal-driven data collection creates a dataset bias. In such datasets, language instructions are highly predictable from visual observations alone, causing the conditional mutual information between instructions and actions to vanish, a phenomenon we term Information Collapse. Consequently, models degenerate into vision-only policies that ignore language constraints and fail in out-of-distribution (OOD) settings. To address this, we propose LangForce, a novel framework that enforces instruction following via Bayesian decomposition. By introducing learnable Latent Action Queries, we construct a dual-branch architecture to estimate both a vision-only prior $p(a \mid v)$ and a language-conditioned posterior $π(a \mid v, \ell)$. We then optimize the policy to maximize the conditional Pointwise Mutual Information (PMI) between actions and instructions. This objective effectively penalizes the vision shortcut and rewards actions that explicitly explain the language command. Without requiring new data, LangForce significantly improves generalization. Extensive experiments across on SimplerEnv and RoboCasa demonstrate substantial gains, including an 11.3% improvement on the challenging OOD SimplerEnv benchmark, validating the ability of our approach to robustly ground language in action.
Prompt-Counterfactual Explanations for Generative AI System Behavior
As generative AI systems become integrated into real-world applications, organizations increasingly need to be able to understand and interpret their behavior. In particular, decision-makers need to understand what causes generative AI systems to exhibit specific output characteristics. Within this general topic, this paper examines a key question: what is it about the input -- the prompt -- that causes an LLM-based generative AI system to produce output that exhibits specific characteristics, such as toxicity, negative sentiment, or political bias. To examine this question, we adapt a common technique from the Explainable AI literature: counterfactual explanations. We explain why traditional counterfactual explanations cannot be applied directly to generative AI systems, due to several differences in how generative AI systems function. We then propose a flexible framework that adapts counterfactual explanations to non-deterministic, generative AI systems in scenarios where downstream classifiers can reveal key characteristics of their outputs. Based on this framework, we introduce an algorithm for generating prompt-counterfactual explanations (PCEs). Finally, we demonstrate the production of counterfactual explanations for generative AI systems with three case studies, examining different output characteristics (viz., political leaning, toxicity, and sentiment). The case studies further show that PCEs can streamline prompt engineering to suppress undesirable output characteristics and can enhance red-teaming efforts to uncover additional prompts that elicit undesirable outputs. Ultimately, this work lays a foundation for prompt-focused interpretability in generative AI: a capability that will become indispensable as these models are entrusted with higher-stakes tasks and subject to emerging regulatory requirements for transparency and accountability.
Characteristic Root Analysis and Regularization for Linear Time Series Forecasting
Time series forecasting remains a critical challenge across numerous domains, yet the effectiveness of complex models often varies unpredictably across datasets. Recent studies highlight the surprising competitiveness of simple linear models, suggesting that their robustness and interpretability warrant deeper theoretical investigation. This paper presents a systematic study of linear models for time series forecasting, with a focus on the role of characteristic roots in temporal dynamics. We begin by analyzing the noise-free setting, where we show that characteristic roots govern long-term behavior and explain how design choices such as instance normalization and channel independence affect model capabilities. We then extend our analysis to the noisy regime, revealing that models tend to produce spurious roots. This leads to the identification of a key data-scaling property: mitigating the influence of noise requires disproportionately large training data, highlighting the need for structural regularization. To address these challenges, we propose two complementary strategies for robust root restructuring. The first uses rank reduction techniques, including Reduced-Rank Regression and Direct Weight Rank Reduction, to recover the low-dimensional latent dynamics. The second, a novel adaptive method called Root Purge, encourages the model to learn a noise-suppressing null space during training. Extensive experiments on standard benchmarks demonstrate the effectiveness of both approaches, validating our theoretical insights and achieving state-of-the-art results in several settings. Our findings underscore the potential of integrating classical theories for linear systems with modern learning techniques to build robust, interpretable, and data-efficient forecasting models.
Unleashing Scientific Reasoning for Bio-experimental Protocol Generation via Structured Component-based Reward Mechanism
The foundation of reproducible science lies in protocols that are precise, logically ordered, and executable. The autonomous generation of these protocols through natural language queries could greatly improve the efficiency of the reproduction process. However, current leading large language models (LLMs) often generate incomplete or inconsistent protocols, limiting their utility. To address this limitation, we first introduce SciRecipe, a large-scale dataset of over 12K structured protocols spanning 27 biological subfields and encompassing both comprehension and problem-solving tasks. To further improve protocol generation, we propose the "Sketch-and-Fill" paradigm, which separates analysis, structuring, and expression to ensure each step is explicit and verifiable. Complementing this, the structured component-based reward mechanism evaluates step granularity, action order, and semantic fidelity, aligning model optimization with experimental reliability. Building on these components, we develop Thoth, trained through a staged Knowledge-to-Action process that progresses from knowledge acquisition to operational reasoning and ultimately to robust, executable protocol generation. Across multiple benchmarks, Thoth consistently surpasses both proprietary and open-source LLMs, achieving significant improvements in step alignment, logical sequencing, and semantic accuracy. Our approach paves the way for reliable scientific assistants that bridge knowledge with experimental execution. All data, code, and models will be released publicly.
MSCloudCAM: Multi-Scale Context Adaptation with Convolutional Cross-Attention for Multispectral Cloud Segmentation
Clouds remain a major obstacle in optical satellite imaging, limiting accurate environmental and climate analysis. To address the strong spectral variability and the large scale differences among cloud types, we propose MSCloudCAM, a novel multi-scale context adapter network with convolution based cross-attention tailored for multispectral and multi-sensor cloud segmentation. A key contribution of MSCloudCAM is the explicit modeling of multiple complementary multi-scale context extractors. And also, rather than simply stacking or concatenating their outputs, our formulation uses one extractor's fine-resolution features and the other extractor's global contextual representations enabling dynamic, scale-aware feature selection. Building on this idea, we design a new convolution-based cross attention adapter that effectively fuses localized, detailed information with broader multi-scale context. Integrated with a hierarchical vision backbone and refined through channel and spatial attention mechanisms, MSCloudCAM achieves strong spectral-spatial discrimination. Experiments on various multisensor datatsets e.g. CloudSEN12 (Sentinel-2) and L8Biome (Landsat-8), demonstrate that MSCloudCAM achieves superior overall segmentation performance and competitive class-wise accuracy compared to recent state-of-the-art models, while maintaining competitive model complexity, highlighting the novelty and effectiveness of the proposed design for large-scale Earth observation.
comment: 6 pages, 3 Figures
EmoBench-M: Benchmarking Emotional Intelligence for Multimodal Large Language Models
With the integration of Multimodal large language models (MLLMs) into robotic systems and various AI applications, embedding emotional intelligence (EI) capabilities into these models is essential for enabling robots to effectively address human emotional needs and interact seamlessly in real-world scenarios. Existing static, text-based, or text-image benchmarks overlook the multimodal complexities of real-world interactions and fail to capture the dynamic, multimodal nature of emotional expressions, making them inadequate for evaluating MLLMs' EI. Based on established psychological theories of EI, we build EmoBench-M, a novel benchmark designed to evaluate the EI capability of MLLMs across 13 valuation scenarios from three key dimensions: foundational emotion recognition, conversational emotion understanding, and socially complex emotion analysis. Evaluations of both open-source and closed-source MLLMs on EmoBench-M reveal a significant performance gap between them and humans, highlighting the need to further advance their EI capabilities. All benchmark resources, including code and datasets, are publicly available at https://emo-gml.github.io/.
Geometric Dynamics of Agentic Loops in Large Language Models
Iterative LLM systems(self-refinement, chain-of-thought, autonomous agents) are increasingly deployed, yet their temporal dynamics remain uncharacterized. Prior work evaluates task performance at convergence but ignores the trajectory: how does semantic content evolve across iterations? Does it stabilize, drift, or oscillate? Without answering these questions, we cannot predict system behavior, guarantee stability, or systematically design iterative architectures. We formalize agentic loops as discrete dynamical systems in semantic space. Borrowing from dynamical systems theory, we define trajectories, attractors and dynamical regimes for recursive LLM transformations, providing rigorous geometric definitions adapted to this setting. Our framework reveals that agentic loops exhibit classifiable dynamics: contractive (convergence toward stable semantic attractors), oscillatory (cycling among attractors), or exploratory (unbounded divergence). Experiments on singular loops validate the framework. Iterative paraphrasing produces contractive dynamics with measurable attractor formation and decreasing dispersion. Iterative negation produces exploratory dynamics with no stable structure. Crucially, prompt design directly controls the dynamical regime - the same model exhibits fundamentally different geometric behaviors depending solely on the transformation applied. This work establishes that iterative LLM dynamics are predictable and controllable, opening new directions for stability analysis, trajectory forecasting, and principled design of composite loops that balance convergence and exploration.
Learning to Detect Unseen Jailbreak Attacks in Large Vision-Language Models
Despite extensive alignment efforts, Large Vision-Language Models (LVLMs) remain vulnerable to jailbreak attacks. To mitigate these risks, existing detection methods are essential, yet they face two major challenges: generalization and accuracy. While learning-based methods trained on specific attacks fail to generalize to unseen attacks, learning-free methods based on hand-crafted heuristics suffer from limited accuracy and reduced efficiency. To address these limitations, we propose Learning to Detect (LoD), a learnable framework that eliminates the need for any attack data or hand-crafted heuristics. LoD operates by first extracting layer-wise safety representations directly from the model's internal activations using Multi-modal Safety Concept Activation Vectors classifiers, and then converting the high-dimensional representations into a one-dimensional anomaly score for detection via a Safety Pattern Auto-Encoder. Extensive experiments demonstrate that LoD consistently achieves state-of-the-art detection performance (AUROC) across diverse unseen jailbreak attacks on multiple LVLMs, while also significantly improving efficiency. Code is available at https://anonymous.4open.science/r/Learning-to-Detect-51CB.
comment: 12 pages; Previously this version appeared as arXiv:2510.15430 which was submitted as a new work by accident
Improving Implicit Hate Speech Detection via a Community-Driven Multi-Agent Framework
This work proposes a contextualised detection framework for implicitly hateful speech, implemented as a multi-agent system comprising a central Moderator Agent and dynamically constructed Community Agents representing specific demographic groups. Our approach explicitly integrates socio-cultural context from publicly available knowledge sources, enabling identity-aware moderation that surpasses state-of-the-art prompting methods (zero-shot prompting, few-shot prompting, chain-of-thought prompting) and alternative approaches on a challenging ToxiGen dataset. We enhance the technical rigour of performance evaluation by incorporating balanced accuracy as a central metric of classification fairness that accounts for the trade-off between true positive and true negative rates. We demonstrate that our community-driven consultative framework significantly improves both classification accuracy and fairness across all target groups.
comment: This paper has been accepted for the upcoming 18th International Conference on Agents and Artificial Intelligence (ICAART-2026), Marbella, Spain. The final published version will appear in the official conference proceedings
AtomMem : Learnable Dynamic Agentic Memory with Atomic Memory Operation
Equipping agents with memory is essential for solving real-world long-horizon problems. However, most existing agent memory mechanisms rely on static and hand-crafted workflows. This limits the performance and generalization ability of these memory designs, which highlights the need for a more flexible, learning-based memory framework. In this paper, we propose AtomMem, which reframes memory management as a dynamic decision-making problem. We deconstruct high-level memory processes into fundamental atomic CRUD (Create, Read, Update, Delete) operations, transforming the memory workflow into a learnable decision process. By combining supervised fine-tuning with reinforcement learning, AtomMem learns an autonomous, task-aligned policy to orchestrate memory behaviors tailored to specific task demands. Experimental results across 3 long-context benchmarks demonstrate that the trained AtomMem-8B consistently outperforms prior static-workflow memory methods. Further analysis of training dynamics shows that our learning-based formulation enables the agent to discover structured, task-aligned memory management strategies, highlighting a key advantage over predefined routines.
Understanding Mental States to Guide Social Influence in Multi-Person Group Dialogue
Existing dynamic Theory of Mind (ToM) benchmarks mostly place language models in a passive role: the model reads a sequence of connected scenarios and reports what people believe, feel, intend, and do as these states change. In real social interaction, ToM is also used for action: a speaker plans what to say in order to shift another person's mental-state trajectory toward a goal. We introduce SocialMindChange, a benchmark that moves from tracking minds to changing minds in social interaction. Each instance defines a social context with 4 characters and five connected scenes. The model plays one character and generates dialogue across the five scenes to reach the target while remaining consistent with the evolving states of all participants. SocialMindChange also includes selected higher-order states. Using a structured four-step framework, we construct 1,200 social contexts, covering 6000 scenarios and over 90,000 questions, each validated for realism and quality. Evaluations on ten state-of-the-art LLMs show that their average performance is 54.2% below human performance. This gap suggests that current LLMs still struggle to maintain and change mental-state representations across long, linked interactions.
comment: Minor update
MV-S2V: Multi-View Subject-Consistent Video Generation
Existing Subject-to-Video Generation (S2V) methods have achieved high-fidelity and subject-consistent video generation, yet remain constrained to single-view subject references. This limitation renders the S2V task reducible to an S2I + I2V pipeline, failing to exploit the full potential of video subject control. In this work, we propose and address the challenging Multi-View S2V (MV-S2V) task, which synthesizes videos from multiple reference views to enforce 3D-level subject consistency. Regarding the scarcity of training data, we first develop a synthetic data curation pipeline to generate highly customized synthetic data, complemented by a small-scale real-world captured dataset to boost the training of MV-S2V. Another key issue lies in the potential confusion between cross-subject and cross-view references in conditional generation. To overcome this, we further introduce Temporally Shifted RoPE (TS-RoPE) to distinguish between different subjects and distinct views of the same subject in reference conditioning. Our framework achieves superior 3D subject consistency w.r.t. multi-view reference images and high-quality visual outputs, establishing a new meaningful direction for subject-driven video generation. Our project page is available at: https://szy-young.github.io/mv-s2v
comment: 13 pages, 9 figures
LLM Agents for Knowledge Discovery in Atomic Layer Processing NEURIPS 2025
Large Language Models (LLMs) have garnered significant attention for several years now. Recently, their use as independently reasoning agents has been proposed. In this work, we test the potential of such agents for knowledge discovery in materials science. We repurpose LangGraph's tool functionality to supply agents with a black box function to interrogate. In contrast to process optimization or performing specific, user-defined tasks, knowledge discovery consists of freely exploring the system, posing and verifying statements about the behavior of this black box, with the sole objective of generating and verifying generalizable statements. We provide proof of concept for this approach through a children's parlor game, demonstrating the role of trial-and-error and persistence in knowledge discovery, and the strong path-dependence of results. We then apply the same strategy to show that LLM agents can explore, discover, and exploit diverse chemical interactions in an advanced Atomic Layer Processing reactor simulation using intentionally limited probe capabilities without explicit instructions.
comment: Accepted submission to the AI4MAT workshop@NEURIPS 2025. As submitted, except author names added
SIPDO: Closed-Loop Prompt Optimization via Synthetic Data Feedback
Prompt quality plays a critical role in the performance of large language models (LLMs), motivating a growing body of work on prompt optimization. Most existing methods optimize prompts over a fixed dataset, assuming static input distributions and offering limited support for iterative improvement. We introduce SIPDO (Self-Improving Prompts through Data-Augmented Optimization), a closed-loop framework for prompt learning that integrates synthetic data generation into the optimization process. SIPDO couples a synthetic data generator with a prompt optimizer, where the generator produces new examples that reveal current prompt weaknesses and the optimizer incrementally refines the prompt in response. This feedback-driven loop enables systematic improvement of prompt performance without assuming access to external supervision or new tasks. Experiments across question answering and reasoning benchmarks show that SIPDO outperforms standard prompt tuning methods, highlighting the value of integrating data synthesis into prompt learning workflows.
SoilNet: A Multimodal Multitask Model for Hierarchical Classification of Soil Horizons
Recent advances in artificial intelligence (AI), in particular foundation models, have improved the state of the art in many application domains including geosciences. Some specific problems, however, could not benefit from this progress yet. Soil horizon classification, for instance, remains challenging because of its multimodal and multitask characteristics and a complex hierarchically structured label taxonomy. Accurate classification of soil horizons is crucial for monitoring soil condition. In this work, we propose \textit{SoilNet} - a multimodal multitask model to tackle this problem through a structured modularized pipeline. In contrast to omnipurpose AI foundation models, our approach is designed to be inherently transparent by following the task structure human experts developed for solving this challenging annotation task. The proposed approach integrates image data and geotemporal metadata to first predict depth markers, segmenting the soil profile into horizon candidates. Each segment is characterized by a set of horizon-specific morphological features. Finally, horizon labels are predicted based on the multimodal concatenated feature vector, leveraging a graph-based label representation to account for the complex hierarchical relationships among soil horizons. Our method is designed to address complex hierarchical classification, where the number of possible labels is very large, imbalanced and non-trivially structured. We demonstrate the effectiveness of our approach on a real-world soil profile dataset and a comprehensive user study with domain experts. Our empirical evaluations demonstrate that SoilNet reliably predicts soil horizons that are plausible and accurate. User study results indicate that SoilNet achieves predictive performance on par with or better than that of human experts. All code can be found at: https://github.com/calgo-lab/BGR/
comment: 29 pages, 9 figures, 7 tables
Why is Your Language Model a Poor Implicit Reward Model? ICLR 2026
Reward models are key to language model post-training and inference pipelines. Conveniently, recent work showed that every language model defines an implicit reward model (IM-RM), without requiring any architectural changes. However, such IM-RMs tend to generalize worse, especially out-of-distribution, compared to explicit reward models (EX-RMs) that apply a dedicated linear head over the hidden representations of a language model. The existence of a generalization gap is puzzling, as EX-RMs and IM-RMs are nearly identical. They can be trained using the same data, loss function, and language model, and differ only in how the reward is computed. Toward a fundamental understanding of the implicit biases underlying different reward model types, we investigate the root cause of this gap. Our main finding, backed by theory and experiments, is that IM-RMs rely more heavily on superficial token-level cues. Consequently, they often generalize worse than EX-RMs under token-level distribution shifts, as well as in-distribution. Furthermore, we provide evidence against alternative hypotheses for the generalization gap. Most notably, we challenge the claim that IM-RMs struggle in tasks where generation is harder than verification because they can operate both as a verifier and a generator. Overall, our results highlight that seemingly minor design choices can substantially impact the generalization behavior of reward models.
comment: Accepted to ICLR 2026; Code available at https://github.com/princeton-pli/exrm-vs-imrm
CNN-based IoT Device Identification: A Comparative Study on Payload vs. Fingerprint
The proliferation of the Internet of Things (IoT) has introduced a massive influx of devices into the market, bringing with them significant security vulnerabilities. In this diverse ecosystem, robust IoT device identification is a critical preventive measure for network security and vulnerability management. This study proposes a deep learning-based method to identify IoT devices using the Aalto dataset. We employ Convolutional Neural Networks (CNN) to classify devices by converting network packet payloads into pseudo-images. Furthermore, we compare the performance of this payload-based approach against a feature-based fingerprinting method. Our results indicate that while the fingerprint-based method is significantly faster (approximately 10x), the payload-based image classification achieves comparable accuracy, highlighting the trade-offs between computational efficiency and data granularity in IoT security.
comment: 3 pages, 8 figures, 2 tanles
Bayes Adaptive Monte Carlo Tree Search for Offline Model-based Reinforcement Learning ICLR 2026
Offline reinforcement learning (RL) is a powerful approach for data-driven decision-making and control. Compared to model-free methods, offline model-based reinforcement learning (MBRL) explicitly learns world models from a static dataset and uses them as surrogate simulators, improving the data efficiency and enabling the learned policy to potentially generalize beyond the dataset support. However, there could be various MDPs that behave identically on the offline dataset and dealing with the uncertainty about the true MDP can be challenging. In this paper, we propose modeling offline MBRL as a Bayes Adaptive Markov Decision Process (BAMDP), which is a principled framework for addressing model uncertainty. We further propose a novel Bayes Adaptive Monte-Carlo planning algorithm capable of solving BAMDPs in continuous state and action spaces with stochastic transitions. This planning process is based on Monte Carlo Tree Search and can be integrated into offline MBRL as a policy improvement operator in policy iteration. Our "RL + Search" framework follows in the footsteps of superhuman AIs like AlphaZero, improving on current offline MBRL methods by incorporating more computation input. The proposed algorithm significantly outperforms state-of-the-art offline RL methods on twelve D4RL MuJoCo tasks and three challenging, stochastic tokamak control tasks. The codebase is available at: https://github.com/LucasCJYSDL/Offline-RL-Kit.
comment: This paper is accepted in ICLR 2026
Beyond Structure: Invariant Crystal Property Prediction with Pseudo-Particle Ray Diffraction
Crystal property prediction, governed by quantum mechanical principles, is computationally prohibitive to solve exactly for large many-body systems using traditional density functional theory. While machine learning models have emerged as efficient approximations for large-scale applications, their performance is strongly influenced by the choice of atomic representation. Although modern graph-based approaches have progressively incorporated more structural information, they often fail to capture long-range atomic interactions due to finite receptive fields and local encoding schemes. This limitation leads to distinct crystals being mapped to identical representations, hindering accurate property prediction. To address this, we introduce PRDNet that leverages unique reciprocal-space diffraction besides graph representations. To enhance sensitivity to elemental and environmental variations, we employ a data-driven pseudo-particle to generate a synthetic diffraction pattern. PRDNet ensures full invariance to crystallographic symmetries. Extensive experiments are conducted on Materials Project, JARVIS-DFT, and MatBench, demonstrating that the proposed model achieves state-of-the-art performance. The code is openly available at https://github.com/Bin-Cao/PRDNet.
Learning Neural Operators from Partial Observations via Latent Autoregressive Modeling
Real-world scientific applications frequently encounter incomplete observational data due to sensor limitations, geographic constraints, or measurement costs. Although neural operators significantly advanced PDE solving in terms of computational efficiency and accuracy, their underlying assumption of fully-observed spatial inputs severely restricts applicability in real-world applications. We introduce the first systematic framework for learning neural operators from partial observation. We identify and formalize two fundamental obstacles: (i) the supervision gap in unobserved regions that prevents effective learning of physical correlations, and (ii) the dynamic spatial mismatch between incomplete inputs and complete solution fields. Specifically, our proposed Latent Autoregressive Neural Operator(LANO) introduces two novel components designed explicitly to address the core difficulties of partial observations: (i) a mask-to-predict training strategy that creates artificial supervision by strategically masking observed regions, and (ii) a Physics-Aware Latent Propagator that reconstructs solutions through boundary-first autoregressive generation in latent space. Additionally, we develop POBench-PDE, a dedicated and comprehensive benchmark designed specifically for evaluating neural operators under partial observation conditions across three PDE-governed tasks. LANO achieves state-of-the-art performance with 18--69$\%$ relative L2 error reduction across all benchmarks under patch-wise missingness with less than 50$\%$ missing rate, including real-world climate prediction. Our approach effectively addresses practical scenarios involving up to 75$\%$ missing rate, to some extent bridging the existing gap between idealized research settings and the complexities of real-world scientific computing.
Improving LLM-based Global Optimization with Search Space Partitioning
Large Language Models (LLMs) have recently emerged as effective surrogate models and candidate generators within global optimization frameworks for expensive blackbox functions. Despite promising results, LLM-based methods often struggle in high-dimensional search spaces or when lacking domain-specific priors, leading to sparse or uninformative suggestions. To overcome these limitations, we propose HOLLM, a novel global optimization algorithm that enhances LLM-driven sampling by partitioning the search space into promising subregions. Each subregion acts as a ``meta-arm'' selected via a bandit-inspired scoring mechanism that effectively balances exploration and exploitation. Within each selected subregion, an LLM then proposes high-quality candidate points, without any explicit domain knowledge. Empirical evaluation on standard optimization benchmarks shows that HOLLM consistently matches or surpasses leading global optimization methods, while substantially outperforming global LLM-based sampling strategies.
comment: 31 pages, 19 figures, 7 tables
PowerGraph-LLM: Novel Power Grid Graph Embedding and Optimization with Large Language Models
Efficiently solving Optimal Power Flow (OPF) problems in power systems is crucial for operational planning and grid management. There is a growing need for scalable algorithms capable of handling the increasing variability, constraints, and uncertainties in modern power networks while providing accurate and fast solutions. To address this, machine learning techniques, particularly Graph Neural Networks (GNNs) have emerged as promising approaches. This letter introduces PowerGraph-LLM, the first framework explicitly designed for solving OPF problems using Large Language Models (LLMs). The proposed approach combines graph and tabular representations of power grids to effectively query LLMs, capturing the complex relationships and constraints in power systems. A new implementation of in-context learning and fine-tuning protocols for LLMs is introduced, tailored specifically for the OPF problem. PowerGraph-LLM demonstrates reliable performances using off-the-shelf LLM. Our study reveals the impact of LLM architecture, size, and fine-tuning and demonstrates our framework's ability to handle realistic grid components and constraints.
comment: Published at IEEE Transactions on Power Systems
Meaning Is Not A Metric: Using LLMs to make cultural context legible at scale
This position paper argues that large language models (LLMs) can make cultural context, and therefore human meaning, legible at an unprecedented scale in AI-based sociotechnical systems. We argue that such systems have previously been unable to represent human meaning because they rely on thin descriptions (numerical representations that enforce standardization and therefore strip human activity of the cultural context which gives it meaning). By contrast, scholars in the humanities and qualitative social sciences have developed frameworks for representing meaning through thick description (verbal representations that accommodate heterogeneity and retain contextual information needed to represent human meaning). The verbal capabilities of LLMs now provide a means of at least partially automating the generation and processing of thick descriptions, offering new ways to deploy them at scale. We argue that the problem of rendering human meaning legible is not just about selecting better metrics but about developing new representational formats based on thick description. We frame this as a crucial direction for the application of generative AI and identify five key challenges: preserving context, maintaining interpretive pluralism, integrating perspectives based on lived experience and critical distance, distinguishing qualitative content from quantitative magnitude, and acknowledging meaning as dynamic rather than static.
LLM-Specific Utility: A New Perspective for Retrieval-Augmented Generation
Retrieval-augmented generation (RAG) is typically optimized for topical relevance, yet its success ultimately depends on whether retrieved passages are useful for a large language model (LLM) to generate correct and complete answers. We argue that such utility is often LLM-specific rather than universal, due to differences in models' knowledge, reasoning, and ability to leverage evidence. We formalize LLM-specific utility as the performance improvement of a target LLM when a passage is provided, compared to answering without evidence. To systematically study LLM-specific utility, we construct a benchmark of LLM-specific gold utilitarian passages for four LLMs (Qwen3-8B/14B/32B and Llama3.1-8B) on three QA datasets (Natural Questions, TriviaQA, and MS MARCO-FQA). Our analysis shows that utilitarian passages are model-dependent and non-transferable: each LLM performs best with its own utilitarian evidence, while evidence optimized for other LLMs is consistently suboptimal. Human-annotated evidence remains a strong general baseline but does not fully match individual LLM utility needs. We further introduce the LLM-specific utility judgment task and find that existing utility-aware selection and scoring methods largely capture model-agnostic usefulness and struggle to reliably estimate LLM-specific utility. Overall, our findings highlight the limitations of current utility-aware retrieval and motivate generator-tailored evidence selection for improving RAG.
comment: 13 pages, 9 figures
PYRREGULAR: A Unified Framework for Irregular Time Series, with Classification Benchmarks
Irregular temporal data, characterized by varying recording frequencies, differing observation durations, and missing values, presents significant challenges across fields like mobility, healthcare, and environmental science. Existing research communities often overlook or address these challenges in isolation, leading to fragmented tools and methods. To bridge this gap, we introduce a unified framework, and the first standardized dataset repository for irregular time series classification, built on a common array format to enhance interoperability. This repository comprises 34 datasets on which we benchmark 12 classifier models from diverse domains and communities. This work aims to centralize research efforts and enable a more robust evaluation of irregular temporal data analysis methods.
daVinci-Dev: Agent-native Mid-training for Software Engineering
Recently, the frontier of Large Language Model (LLM) capabilities has shifted from single-turn code generation to agentic software engineering-a paradigm where models autonomously navigate, edit, and test complex repositories. While post-training methods have become the de facto approach for code agents, **agentic mid-training**-mid-training (MT) on large-scale data that mirrors authentic agentic workflows-remains critically underexplored due to substantial resource requirements, despite offering a more scalable path to instilling foundational agentic behaviors than relying solely on expensive reinforcement learning. A central challenge in realizing effective agentic mid-training is the distribution mismatch between static training data and the dynamic, feedback-rich environment of real development. To address this, we present a systematic study of agentic mid-training, establishing both the data synthesis principles and training methodology for effective agent development at scale. Central to our approach is **agent-native data**-supervision comprising two complementary types of trajectories: **contextually-native trajectories** that preserve the complete information flow an agent experiences, offering broad coverage and diversity; and **environmentally-native trajectories** collected from executable repositories where observations stem from actual tool invocations and test executions, providing depth and interaction authenticity. We verify the model's agentic capabilities on `SWE-Bench Verified`. We demonstrate our superiority over the previous open software engineering mid-training recipe `Kimi-Dev` under two post-training settings with an aligned base model and agentic scaffold, while using less than half mid-training tokens (73.1B). Besides relative advantage, our best performing 32B and 72B models achieve **56.1%** and **58.5%** resolution rates, respectively, which are ...
SWA-LDM: Toward Stealthy Watermarks for Latent Diffusion Models
Latent Diffusion Models (LDMs) have established themselves as powerful tools in the rapidly evolving field of image generation, capable of producing highly realistic images. However, their widespread adoption raises critical concerns about copyright infringement and the misuse of generated content. Watermarking techniques have emerged as a promising solution, enabling copyright identification and misuse tracing through imperceptible markers embedded in generated images. Among these, latent-based watermarking techniques are particularly promising, as they embed watermarks directly into the latent noise without altering the underlying LDM architecture. In this work, we demonstrate that such latent-based watermarks are practically vulnerable to detection and compromise through systematic analysis of output images' statistical patterns for the first time. To counter this, we propose SWA-LDM (Stealthy Watermark for LDM), a lightweight framework that enhances stealth by dynamically randomizing the embedded watermarks using the Gaussian-distributed latent noise inherent to diffusion models. By embedding unique, pattern-free signatures per image, SWA-LDM eliminates detectable artifacts while preserving image quality and extraction robustness. Experiments demonstrate an average of 20% improvement in stealth over state-of-the-art methods, enabling secure deployment of watermarked generative AI in real-world applications.
comment: 12 pages, 5 figures
Improving Value-based Process Verifier via Structural Prior Injection
In the Large Language Model(LLM) reasoning scenario, people often estimate state value via Monte Carlo sampling. Though Monte Carlo estimation is an elegant method with less inductive bias, noise and errors are inevitably introduced due to the limited sampling. To handle the problem, we inject the structural prior into the value representation and transfer the scalar value into the expectation of a pre-defined categorical distribution, representing the noise and errors from a distribution perspective. Specifically, by treating the result of Monte Carlo sampling as a single sample from the prior ground-truth Binomial distribution, we quantify the sampling error as the mismatch between posterior estimated distribution and ground-truth distribution, which is thus optimized via distribution selection optimization. We test the performance of value-based process verifiers on Best-of-N task and Beam search task. Compared with the scalar value representation, we show that reasonable structural prior injection induced by different objective functions or optimization methods can improve the performance of value-based process verifiers for about 1$\sim$2 points at little-to-no cost. We also show that under different structural prior, the verifiers' performances vary greatly despite having the same optimal solution, indicating the importance of reasonable structural prior injection.
comment: This version is deprecated. Please refer to our new version: arXiv:2508.10539
There and Back Again: On the relation between Noise and Image Inversions in Diffusion Models ICLR 2026
Diffusion Models achieve state-of-the-art performance in generating new samples but lack a low-dimensional latent space that encodes the data into editable features. Inversion-based methods address this by reversing the denoising trajectory, transferring images to their approximated starting noise. In this work, we thoroughly analyze this procedure and focus on the relation between the initial noise, the generated samples, and their corresponding latent encodings obtained through the DDIM inversion. First, we show that latents exhibit structural patterns in the form of less diverse noise predicted for smooth image areas (e.g., plain sky). Through a series of analyses, we trace this issue to the first inversion steps, which fail to provide accurate and diverse noise. Consequently, the DDIM inversion space is notably less manipulative than the original noise. We show that prior inversion methods do not fully resolve this issue, but our simple fix, where we replace the first DDIM Inversion steps with a forward diffusion process, successfully decorrelates latent encodings and enables higher quality editions and interpolations. The code is available at https://github.com/luk-st/taba.
comment: ICLR 2026
Towards Automated Smart Contract Generation: Evaluation, Benchmarking, and Retrieval-Augmented Repair
Smart contracts, predominantly written in Solidity and deployed on blockchains such as Ethereum, are immutable after deployment, making functional correctness critical. However, existing evaluations of Solidity code generation rely largely on surface-level metrics (e.g., BLEU, CrystalBLEU) or manual inspection, which correlate poorly with functional correctness. In contrast to Python, Solidity lacks large-scale, execution-based benchmarks, limiting systematic evaluation of large language models for smart contract development. We introduce SolBench, a comprehensive benchmark and automated testing pipeline for Solidity that emphasizes functional correctness via differential fuzzing. SolBench consists of 28825 functions extracted from 7604 real-world smart contracts collected from Etherscan (genesis-2024), spanning ten application domains. We benchmark 14 diverse LLMs, covering open and closed models, 1.3B-671B parameters, and both general-purpose and code-specialized architectures. The dominant failure mode is missing critical intra-contract information, such as state variables and type definitions. Providing full-contract context improves accuracy but incurs prohibitive inference costs. To address this, we propose Retrieval-Augmented Repair (RAR), a cost-effective framework that integrates execution feedback into code repair. RAR uses compiler and runtime error messages to retrieve only the minimal contract snippets needed to correct a target function, avoiding full-context inference. This significantly reduces input length while improving functional correctness. We further analyze retrieval and repair strategies within RAR, demonstrating consistent gains in accuracy and efficiency. SolBench and RAR enable principled, execution-based evaluation and economical improvement of Solidity code generation. Dataset and code are publicly available at https://github.com/ZaoyuChen/SolBench.
comment: Accepted by FSE 2026
Toward Ultra-Long-Horizon Agentic Science: Cognitive Accumulation for Machine Learning Engineering
The advancement of artificial intelligence toward agentic science is currently bottlenecked by the challenge of ultra-long-horizon autonomy, the ability to sustain strategic coherence and iterative correction over experimental cycles spanning days or weeks. While Large Language Models (LLMs) have demonstrated prowess in short-horizon reasoning, they are easily overwhelmed by execution details in the high-dimensional, delayed-feedback environments of real-world research, failing to consolidate sparse feedback into coherent long-term guidance. Here, we present ML-Master 2.0, an autonomous agent that masters ultra-long-horizon machine learning engineering (MLE) which is a representative microcosm of scientific discovery. By reframing context management as a process of cognitive accumulation, our approach introduces Hierarchical Cognitive Caching (HCC), a multi-tiered architecture inspired by computer systems that enables the structural differentiation of experience over time. By dynamically distilling transient execution traces into stable knowledge and cross-task wisdom, HCC allows agents to decouple immediate execution from long-term experimental strategy, effectively overcoming the scaling limits of static context windows. In evaluations on OpenAI's MLE-Bench under 24-hour budgets, ML-Master 2.0 achieves a state-of-the-art medal rate of 56.44%. Our findings demonstrate that ultra-long-horizon autonomy provides a scalable blueprint for AI capable of autonomous exploration beyond human-precedent complexities.
comment: 25 pages. 5 figures
The Role of Social Learning and Collective Norm Formation in Fostering Cooperation in LLM Multi-Agent Systems
A growing body of multi-agent studies with LLMs explores how norms and cooperation emerge in mixed-motive scenarios, where pursuing individual gain can undermine the collective good. While prior work has explored these dynamics in both richly contextualized simulations and simplified game-theoretic environments, most LLM systems featuring common-pool resource (CPR) games provide agents with explicit reward functions directly tied to their actions. In contrast, human cooperation often emerges without explicit knowledge of the payoff structure or how individual actions translate into long-run outcomes, relying instead on heuristics, communication, and enforcement. We introduce a CPR simulation framework that removes explicit reward signals and embeds cultural-evolutionary mechanisms: social learning (adopting strategies and beliefs from successful peers) and norm-based punishment, grounded in Ostrom's principles of resource governance. Agents also individually learn from the consequences of harvesting, monitoring, and punishing via environmental feedback, enabling norms to emerge endogenously. We establish the validity of our simulation by reproducing key findings from existing studies on human behavior. Building on this, we examine norm evolution across a $2\times2$ grid of environmental and social initialisations (resource-rich vs. resource-scarce; altruistic vs. selfish) and benchmark how agentic societies comprised of different LLMs perform under these conditions. Our results reveal systematic model differences in sustaining cooperation and norm formation, positioning the framework as a rigorous testbed for studying emergent norms in mixed-motive LLM societies. Such analysis can inform the design of AI systems deployed in social and organizational contexts, where alignment with cooperative norms is critical for stability, fairness, and effective governance of AI-mediated environments.
comment: Accepted at the 25th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2026)
Causal Pre-training Under the Fairness Lens: An Empirical Study of TabPFN
Foundation models for tabular data, such as the Tabular Prior-data Fitted Network (TabPFN), are pre-trained on a massive number of synthetic datasets generated by structural causal models (SCM). They leverage in-context learning to offer high predictive accuracy in real-world tasks. However, the fairness properties of these foundational models, which incorporate ideas from causal reasoning during pre-training, remain underexplored. In this work, we conduct a comprehensive empirical evaluation of TabPFN and its fine-tuned variants, assessing predictive performance, fairness, and robustness across varying dataset sizes and distributional shifts. Our results reveal that while TabPFN achieves stronger predictive accuracy compared to baselines and exhibits robustness to spurious correlations, improvements in fairness are moderate and inconsistent, particularly under missing-not-at-random (MNAR) covariate shifts. These findings suggest that the causal pre-training in TabPFN is helpful but insufficient for algorithmic fairness, highlighting implications for deploying TabPFN (and similar) models in practice and the need for further fairness interventions.
Physics-Constrained Fine-Tuning of Flow-Matching Models for Generation and Inverse Problems
We present a framework for fine-tuning flow-matching generative models to enforce physical constraints and solve inverse problems in scientific systems. Starting from a model trained on low-fidelity or observational data, we apply a differentiable post-training procedure that minimizes weak-form residuals of governing partial differential equations (PDEs), promoting physical consistency and adherence to boundary conditions without distorting the underlying learned distribution. To infer unknown physical inputs, such as source terms, material parameters, or boundary data, we augment the generative process with a learnable latent parameter predictor and propose a joint optimization strategy. The resulting model produces physically valid field solutions alongside plausible estimates of hidden parameters, effectively addressing ill-posed inverse problems in a data-driven yet physicsaware manner. We validate our method on canonical PDE benchmarks, demonstrating improved satisfaction of PDE constraints and accurate recovery of latent coefficients. Our approach bridges generative modelling and scientific inference, opening new avenues for simulation-augmented discovery and data-efficient modelling of physical systems.
Rethinking the AI Scientist: Interactive Multi-Agent Workflows for Scientific Discovery
Artificial intelligence systems for scientific discovery have demonstrated remarkable potential, yet existing approaches remain largely proprietary and operate in batch-processing modes requiring hours per research cycle, precluding real-time researcher guidance. This paper introduces Deep Research, a multi-agent system enabling interactive scientific investigation with turnaround times measured in minutes. The architecture comprises specialized agents for planning, data analysis, literature search, and novelty detection, unified through a persistent world state that maintains context across iterative research cycles. Two operational modes support different workflows: semi-autonomous mode with selective human checkpoints, and fully autonomous mode for extended investigations. Evaluation on the BixBench computational biology benchmark demonstrated state-of-the-art performance, achieving 48.8% accuracy on open response and 64.4% on multiple-choice evaluation, exceeding existing baselines by 14 to 26 percentage points. Analysis of architectural constraints, including open access literature limitations and challenges inherent to automated novelty assessment, informs practical deployment considerations for AI-assisted scientific workflows.
Coupled Variational Reinforcement Learning for Language Model General Reasoning
While reinforcement learning has achieved impressive progress in language model reasoning, it is constrained by the requirement for verifiable rewards. Recent verifier-free RL methods address this limitation by utilizing the probabilities that LLMs generate reference answers as reward signals. However, these approaches typically sample reasoning traces conditioned only on the question. This design decouples reasoning-trace sampling from answer information, leading to inefficient exploration and incoherence between traces and final answers. In this paper, we propose \textit{\b{Co}upled \b{V}ariational \b{R}einforcement \b{L}earning} (CoVRL), which bridges variational inference and reinforcement learning by coupling prior and posterior distributions through a hybrid sampling strategy. By constructing and optimizing a composite distribution that integrates these two distributions, CoVRL enables efficient exploration while preserving strong thought-answer coherence. Extensive experiments on mathematical and general reasoning benchmarks show that CoVRL improves performance by 12.4\% over the base model and achieves an additional 2.3\% improvement over state-of-the-art verifier-free RL baselines, providing a principled framework for enhancing the general reasoning capabilities of language models.
Who Gets Cited Most? Benchmarking Long-Context Reasoning on Scientific Articles
We introduce SciTrek, a novel question-answering benchmark designed to evaluate long-context reasoning capabilities of large language models (LLMs) using scientific articles. Current long-context benchmarks often focus on simple information retrieval tasks, or employ artificial contexts. SciTrek addresses these limitations by creating benchmark questions that require information aggregation and synthesis across multiple full-text scientific articles. The questions and their ground-truth answers are automatically generated by formulating them as SQL queries over a database constructed from article metadata (i.e., titles, authors, and references). These SQL queries provide explicit, verifiable reasoning processes that enable fine-grained error analysis on model answers, and the data construction scales to contexts of up to 1M tokens with minimal supervision. Experiments on open-weight and proprietary LLMs show that SciTrek poses significant challenges as the context length increases, with supervised fine-tuning and reinforcement learning offering only limited gains. Our analysis reveals systematic shortcomings of frontier LLMs' ability to effectively perform numerical operations and accurately locate information in long contexts.
comment: 22 pages
AI-generated data contamination erodes pathological variability and diagnostic reliability
Generative artificial intelligence (AI) is rapidly populating medical records with synthetic content, creating a feedback loop where future models are increasingly at risk of training on uncurated AI-generated data. However, the clinical consequences of this AI-generated data contamination remain unexplored. Here, we show that in the absence of mandatory human verification, this self-referential cycle drives a rapid erosion of pathological variability and diagnostic reliability. By analysing more than 800,000 synthetic data points across clinical text generation, vision-language reporting, and medical image synthesis, we find that models progressively converge toward generic phenotypes regardless of the model architecture. Specifically, rare but critical findings, including pneumothorax and effusions, vanish from the synthetic content generated by AI models, while demographic representations skew heavily toward middle-aged male phenotypes. Crucially, this degradation is masked by false diagnostic confidence; models continue to issue reassuring reports while failing to detect life-threatening pathology, with false reassurance rates tripling to 40%. Blinded physician evaluation confirms that this decoupling of confidence and accuracy renders AI-generated documentation clinically useless after just two generations. We systematically evaluate three mitigation strategies, finding that while synthetic volume scaling fails to prevent collapse, mixing real data with quality-aware filtering effectively preserves diversity. Ultimately, our results suggest that without policy-mandated human oversight, the deployment of generative AI threatens to degrade the very healthcare data ecosystems it relies upon.
comment: *Corresponding author: Dianbo Liu (dianbo@nus.edu.sg)
DND: Boosting Large Language Models with Dynamic Nested Depth ICLR 2026
We introduce Dynamic Nested Depth (DND), a novel method that improves performance for off-the-shelf LLMs by selecting critical tokens to reprocess in a nested depth manner. Specifically, at the end of the given transformer layer, DND identifies more critical tokens with a router and feeds them back for an extra round of processing, effectively ``reviewing" difficult tokens while avoiding redundant computation for easier ones. The dynamic selection mechanism is tailored for precise control via two novel strategies: a router controlling loss to enhance token selection distinguishability, and a threshold control scheme to ensure selection stability. We demonstrate the effectiveness of DND by directly integrating it into pre-trained dense and MoE models during a post-training phase. On diverse benchmarks, this approach boosts the performances of the dense Qwen3-1.7B by 1.88% and the MoE Qwen3-30B-A3B by 0.87%, all with a minimal parameter and computing increase.
comment: Accepted by ICLR 2026
Universal Multi-Domain Translation via Diffusion Routers ICLR 2026
Multi-domain translation (MDT) aims to learn translations between multiple domains, yet existing approaches either require fully aligned tuples or can only handle domain pairs seen in training, limiting their practicality and excluding many cross-domain mappings. We introduce universal MDT (UMDT), a generalization of MDT that seeks to translate between any pair of $K$ domains using only $K-1$ paired datasets with a central domain. To tackle this problem, we propose Diffusion Router (DR), a unified diffusion-based framework that models all central$\leftrightarrow$non-central translations with a single noise predictor conditioned on the source and target domain labels. DR enables indirect non-central translations by routing through the central domain. We further introduce a novel scalable learning strategy with a variational-bound objective and an efficient Tweedie refinement procedure to support direct non-central mappings. Through evaluation on three large-scale UMDT benchmarks, DR achieves state-of-the-art results for both indirect and direct translations, while lowering sampling cost and unlocking novel tasks such as sketch$\leftrightarrow$segmentation. These results establish DR as a scalable and versatile framework for universal translation across multiple domains.
comment: Accepted in ICLR 2026
SeNeDiF-OOD: Semantic Nested Dichotomy Fusion for Out-of-Distribution Detection Methodology in Open-World Classification. A Case Study on Monument Style Classification
Out-of-distribution (OOD) detection is a fundamental requirement for the reliable deployment of artificial intelligence applications in open-world environments. However, addressing the heterogeneous nature of OOD data, ranging from low-level corruption to semantic shifts, remains a complex challenge that single-stage detectors often fail to resolve. To address this issue, we propose SeNeDiF-OOD, a novel methodology based on Semantic Nested Dichotomy Fusion. This framework decomposes the detection task into a hierarchical structure of binary fusion nodes, where each layer is designed to integrate decision boundaries aligned with specific levels of semantic abstraction. To validate the proposed framework, we present a comprehensive case study using MonuMAI, a real-world architectural style recognition system exposed to an open environment. This application faces a diverse range of inputs, including non-monument images, unknown architectural styles, and adversarial attacks, making it an ideal testbed for our proposal. Through extensive experimental evaluation in this domain, results demonstrate that our hierarchical fusion methodology significantly outperforms traditional baselines, effectively filtering these diverse OOD categories while preserving in-distribution performance.
comment: 28 pages
Gradient-Direction-Aware Density Control for 3D Gaussian Splatting
The emergence of 3D Gaussian Splatting (3DGS) has significantly advanced Novel View Synthesis (NVS) through explicit scene representation, enabling real-time photorealistic rendering. However, existing approaches manifest two critical limitations in complex scenarios: (1) Over-reconstruction occurs when persistent large Gaussians cannot meet adaptive splitting thresholds during density control. This is exacerbated by conflicting gradient directions that prevent effective splitting of these Gaussians; (2) Over-densification of Gaussians occurs in regions with aligned gradient aggregation, leading to redundant component proliferation. This redundancy significantly increases memory overhead due to unnecessary data retention. We present Gradient-Direction-Aware Gaussian Splatting (GDAGS) to address these challenges. Our key innovations: the Gradient Coherence Ratio (GCR), computed through normalized gradient vector norms, which explicitly discriminates Gaussians with concordant versus conflicting gradient directions; and a nonlinear dynamic weighting mechanism leverages the GCR to enable gradient-direction-aware density control. Specifically, GDAGS prioritizes conflicting-gradient Gaussians during splitting operations to enhance geometric details while suppressing redundant concordant-direction Gaussians. Conversely, in cloning processes, GDAGS promotes concordant-direction Gaussian densification for structural completion while preventing conflicting-direction Gaussian overpopulation. Comprehensive evaluations across diverse real-world benchmarks demonstrate that GDAGS achieves superior rendering quality while effectively mitigating over-reconstruction, suppressing over-densification, and constructing compact scene representations.
LingoQ: Bridging the Gap between EFL Learning and Work through AI-Generated Work-Related Quizzes
Non-native English speakers performing English-related tasks at work struggle to sustain EFL learning, despite their motivation. Often, study materials are disconnected from their work context. Our formative study revealed that reviewing work-related English becomes burdensome with current systems, especially after work. Although workers rely on LLM-based assistants to address their immediate needs, these interactions may not directly contribute to their English skills. We present LingoQ, an AI-mediated system that allows workers to practice English using quizzes generated from their LLM queries during work. LingoQ leverages these on-the-fly queries using AI to generate personalized quizzes that workers can review and practice on their smartphones. We conducted a three-week deployment study with 28 EFL workers to evaluate LingoQ. Participants valued the quality-assured, work-situated quizzes and constantly engaging with the app during the study. This active engagement improved self-efficacy and led to learning gains for beginners and, potentially, for intermediate learners. Drawing on these results, we discuss design implications for leveraging workers' growing reliance on LLMs to foster proficiency and engagement while respecting work boundaries and ethics.
comment: 18 pages except reference. Conditionally accepted to ACM CHI 2026
SAC-GLAM: Improving Online RL for LLM agents with Soft Actor-Critic and Hindsight Relabeling
The past years have seen Large Language Models (LLMs) strive not only as generative models but also as agents solving textual sequential decision-making tasks. When facing complex environments where their zero-shot abilities are insufficient, recent work showed online Reinforcement Learning (RL) could be used for the LLM agent to discover and learn efficient strategies interactively. However, most prior work sticks to on-policy algorithms, which greatly reduces the scope of methods such agents could use for both exploration and exploitation, such as experience replay and hindsight relabeling. Yet, such methods may be key for LLM learning agents, and in particular when designing autonomous intrinsically motivated agents sampling and pursuing their own goals (i.e. autotelic agents). This paper presents and studies an adaptation of Soft Actor-Critic and hindsight relabeling to LLM agents. Our method not only paves the path towards autotelic LLM agents that learn online but can also outperform on-policy methods in more classic multi-goal RL environments.
TextMineX: Data, Evaluation Framework and Ontology-guided LLM Pipeline for Humanitarian Mine Action
Humanitarian Mine Action (HMA) addresses the challenge of detecting and removing landmines from conflict regions. Much of the life-saving operational knowledge produced by HMA agencies is buried in unstructured reports, limiting the transferability of information between agencies. To address this issue, we propose TextMineX: the first dataset, evaluation framework and ontology-guided large language model (LLM) pipeline for knowledge extraction from text in the HMA domain. TextMineX structures HMA reports into (subject, relation, object)-triples, thus creating domain-specific knowledge. To ensure real-world relevance, we utilized the dataset from our collaborator Cambodian Mine Action Centre (CMAC). We further introduce a bias-aware evaluation framework that combines human-annotated triples with an LLM-as-Judge protocol to mitigate position bias in reference-free scoring. Our experiments show that ontology-aligned prompts improve extraction accuracy by up to 44.2%, reduce hallucinations by 22.5%, and enhance format adherence by 20.9% compared to baseline models. We publicly release the dataset and code.
Dual-Prototype Disentanglement: A Context-Aware Enhancement Framework for Time Series Forecasting
Time series forecasting has witnessed significant progress with deep learning. While prevailing approaches enhance forecasting performance by modifying architectures or introducing novel enhancement strategies, they often fail to dynamically disentangle and leverage the complex, intertwined temporal patterns inherent in time series, thus resulting in the learning of static, averaged representations that lack context-aware capabilities. To address this, we propose the Dual-Prototype Adaptive Disentanglement framework (DPAD), a model-agnostic auxiliary method that equips forecasting models with the ability of pattern disentanglement and context-aware adaptation. Specifically, we construct a Dynamic Dual-Prototype bank (DDP), comprising a common pattern bank with strong temporal priors to capture prevailing trend or seasonal patterns, and a rare pattern bank dynamically memorizing critical yet infrequent events, and then an Dual-Path Context-aware routing (DPC) mechanism is proposed to enhance outputs with selectively retrieved context-specific pattern representations from the DDP. Additionally, we introduce a Disentanglement-Guided Loss (DGLoss) to ensure that each prototype bank specializes in its designated role while maintaining comprehensive coverage. Comprehensive experiments demonstrate that DPAD consistently improves forecasting performance and reliability of state-of-the-art models across diverse real-world benchmarks.
Monotone and Separable Set Functions: Characterizations and Neural Models
Motivated by applications for set containment problems, we consider the following fundamental problem: can we design set-to-vector functions so that the natural partial order on sets is preserved, namely $S\subseteq T \text{ if and only if } F(S)\leq F(T) $. We call functions satisfying this property Monotone and Separating (MAS) set functions. % We establish lower and upper bounds for the vector dimension necessary to obtain MAS functions, as a function of the cardinality of the multisets and the underlying ground set. In the important case of an infinite ground set, we show that MAS functions do not exist, but provide a model called our which provably enjoys a relaxed MAS property we name "weakly MAS" and is stable in the sense of Holder continuity. We also show that MAS functions can be used to construct universal models that are monotone by construction and can approximate all monotone set functions. Experimentally, we consider a variety of set containment tasks. The experiments show the benefit of using our our model, in comparison with standard set models which do not incorporate set containment as an inductive bias. Our code is available in https://github.com/yonatansverdlov/Monotone-Embedding.
MetaVLA: Unified Meta Co-training For Efficient Embodied Adaption
Vision-Language-Action (VLA) models show promise in embodied reasoning, yet remain far from true generalists-they often require task-specific fine-tuning, incur high compute costs, and generalize poorly to unseen tasks. We propose MetaVLA, a unified, backbone-agnostic post-training framework for efficient and scalable alignment. MetaVLA introduces Context-Aware Meta Co-Training, which consolidates diverse target tasks into a single fine-tuning stage while leveraging structurally diverse auxiliary tasks to improve in-domain generalization. Unlike naive multi-task SFT, MetaVLA integrates a lightweight meta-learning mechanism-derived from Attentive Neural Processes-to enable rapid adaptation from diverse contexts with minimal architectural change or inference overhead. On the LIBERO benchmark, MetaVLA with six auxiliary tasks outperforms OpenVLA by up to 8.0% on long-horizon tasks, reduces training steps from 240K to 75K, and cuts GPU time by ~76%. These results show that scalable, low-resource post-training is achievable-paving the way toward general-purpose embodied agents. Code will be available.
GTA: Generative Traffic Agents for Simulating Realistic Mobility Behavior
People's transportation choices reflect complex trade-offs shaped by personal preferences, social norms, and technology acceptance. Predicting such behavior at scale is a critical challenge with major implications for urban planning and sustainable transport. Traditional methods use handcrafted assumptions and costly data collection, making them impractical for early-stage evaluations of new technologies or policies. We introduce Generative Traffic Agents (GTA) for simulating large-scale, context-sensitive transportation choices using LLM-powered, persona-based agents. GTA generates artificial populations from census-based sociodemographic data. It simulates activity schedules and mode choices, enabling scalable, human-like simulations without handcrafted rules. We evaluate GTA in Berlin-scale experiments, comparing simulation results against empirical data. While agents replicate patterns, such as modal split by socioeconomic status, they show systematic biases in trip length and mode preference. GTA offers new opportunities for modeling how future innovations, from bike lanes to transit apps, shape mobility decisions.
comment: This version has been conditionally accepted at CHI 2026
Large Multimodal Models for Low-Resource Languages: A Survey
In this survey, we systematically analyze techniques used to adapt large multimodal models (LMMs) for low-resource (LR) languages, examining approaches ranging from visual enhancement and data creation to cross-modal transfer and fusion strategies. Through a comprehensive analysis of 117 studies across 96 LR languages, we identify key patterns in how researchers tackle the challenges of limited data and computational resources. We categorize works into resource-oriented and method-oriented contributions, further dividing contributions into relevant sub-categories. We compare method-oriented contributions in terms of performance and efficiency, discussing benefits and limitations of representative studies. We find that visual information often serves as a crucial bridge for improving model performance in LR settings, though significant challenges remain in areas such as hallucination mitigation and computational efficiency. In summary, we provide researchers with a clear understanding of current approaches and remaining challenges in making LMMs more accessible to speakers of LR (understudied) languages. We complement our survey with an open-source repository available at: https://github.com/marianlupascu/LMM4LRL-Survey.
comment: Accepted in Information Fusion
Is On-Policy Data always the Best Choice for Direct Preference Optimization-based LM Alignment? ICLR-2026
The alignment of language models~(LMs) with human preferences is critical for building reliable AI systems. The problem is typically framed as optimizing an LM policy to maximize the expected reward that reflects human preferences. Recently, Direct Preference Optimization~(DPO) was proposed as a LM alignment method that directly optimize the policy from static preference data, and further improved by incorporating on-policy sampling~(i.e., preference candidates generated during the training loop) for better LM alignment. However, we show on-policy data is not always optimal, with systematic effectiveness difference emerging between static and on-policy preference candidates. For example, on-policy data can result in a $3\times$ effectiveness compared with static data for Llama-3, and a $0.4\times$ effectiveness for Zephyr. To explain the phenomenon, we propose the alignment stage assumption, which divides the alignment process into two distinct stages: the preference injection stage, which benefits from diverse data, and the preference fine-tuning stage, which favors high-quality data. Through theoretical and empirical analysis, we characterize these stages and propose an effective algorithm to identify the boundaries between them. We perform experiments on $5$ models~(Llama, Zephyr, Phi-2, Qwen, Pythia) and $2$ alignment methods~(DPO, SLiC-HF) to show the generalizability of alignment stage assumption and the effectiveness of the boundary measurement algorithm.
comment: Accepted by ICLR-2026
Accepted with Minor Revisions: Value of AI-Assisted Scientific Writing
Large Language Models have seen expanding application across domains, yet their effectiveness as assistive tools for scientific writing - an endeavor requiring precision, multimodal synthesis, and domain expertise - remains insufficiently understood. We examine the potential of LLMs to support domain experts in scientific writing, with a focus on abstract composition. We design an incentivized randomized controlled trial with a hypothetical conference setup where participants with relevant expertise are split into an author and reviewer pool. Inspired by methods in behavioral science, our novel incentive structure encourages authors to edit the provided abstracts to an acceptable quality for a peer-reviewed submission. Our 2 x 2 between-subject design expands into two dimensions: the implicit source of the provided abstract and the disclosure of it. We find authors make most edits when editing human-written abstracts compared to AI-generated abstracts without source attribution, often guided by higher perceived readability in AI generation. Upon disclosure of source information, the volume of edits converges in both source treatments. Reviewer decisions remain unaffected by the source of the abstract, but bear a significant correlation with the number of edits made. Careful stylistic edits, especially in the case of AI-generated abstracts, in the presence of source information, improve the chance of acceptance. We find that AI-generated abstracts hold potential to reach comparable levels of acceptability to human-written ones with minimal revision, and that perceptions of AI authorship, rather than objective quality, drive much of the observed editing behavior. Our findings reverberate the significance of source disclosure in collaborative scientific writing.
comment: Published in ACM IUI 2026 (Paphos, Cyprus)
Astra: General Interactive World Model with Autoregressive Denoising ICLR 2026
Recent advances in diffusion transformers have empowered video generation models to generate high-quality video clips from texts or images. However, world models with the ability to predict long-horizon futures from past observations and actions remain underexplored, especially for general-purpose scenarios and various forms of actions. To bridge this gap, we introduce Astra, an interactive general world model that generates real-world futures for diverse scenarios (e.g., autonomous driving, robot grasping) with precise action interactions (e.g., camera motion, robot action). We propose an autoregressive denoising architecture and use temporal causal attention to aggregate past observations and support streaming outputs. We use a noise-augmented history memory to avoid over-reliance on past frames to balance responsiveness with temporal coherence. For precise action control, we introduce an action-aware adapter that directly injects action signals into the denoising process. We further develop a mixture of action experts that dynamically route heterogeneous action modalities, enhancing versatility across diverse real-world tasks such as exploration, manipulation, and camera control. Astra achieves interactive, consistent, and general long-term video prediction and supports various forms of interactions. Experiments across multiple datasets demonstrate the improvements of Astra in fidelity, long-range prediction, and action alignment over existing state-of-the-art world models.
comment: Accepted in ICLR 2026. Code is available at: https://github.com/EternalEvan/Astra
Plan Then Retrieve: Reinforcement Learning-Guided Complex Reasoning over Knowledge Graphs
Knowledge Graph Question Answering aims to answer natural language questions by reasoning over structured knowledge graphs. While large language models have advanced KGQA through their strong reasoning capabilities, existing methods continue to struggle to fully exploit both the rich knowledge encoded in KGs and the reasoning capabilities of LLMs, particularly in complex scenarios. They often assume complete KG coverage and lack mechanisms to judge when external information is needed, and their reasoning remains locally myopic, failing to maintain coherent multi-step planning, leading to reasoning failures even when relevant knowledge exists. We propose Graph-RFT, a novel two-stage reinforcement fine-tuning KGQA framework with a 'plan-KGsearch-and-Websearch-during-think' paradigm, that enables LLMs to perform autonomous planning and adaptive retrieval scheduling across KG and web sources under incomplete knowledge conditions. Graph-RFT introduces a chain-of-thought fine-tuning method with a customized plan-retrieval dataset activates structured reasoning and resolves the GRPO cold-start problem. It then introduces a novel plan-retrieval guided reinforcement learning process integrates explicit planning and retrieval actions with a multi-reward design, enabling coverage-aware retrieval scheduling. It employs a Cartesian-inspired planning module to decompose complex questions into ordered subquestions, and logical expression to guide tool invocation for globally consistent multi-step reasoning. This reasoning retrieval process is optimized with a multi-reward combining outcome and retrieval specific signals, enabling the model to learn when and how to combine KG and web retrieval effectively.
GOFAI meets Generative AI: Development of Expert Systems by means of Large Language Models
The development of large language models (LLMs) has successfully transformed knowledge-based systems such as open domain question nswering, which can automatically produce vast amounts of seemingly coherent information. Yet, those models have several disadvantages like hallucinations or confident generation of incorrect or unverifiable facts. In this paper, we introduce a new approach to the development of expert systems using LLMs in a controlled and transparent way. By limiting the domain and employing a well-structured prompt-based extraction approach, we produce a symbolic representation of knowledge in Prolog, which can be validated and corrected by human experts. This approach also guarantees interpretability, scalability and reliability of the developed expert systems. Via quantitative and qualitative experiments with Claude Sonnet 3.7 and GPT-4.1, we show strong adherence to facts and semantic coherence on our generated knowledge bases. We present a transparent hybrid solution that combines the recall capacity of LLMs with the precision of symbolic systems, thereby laying the foundation for dependable AI applications in sensitive domains.
Can professional translators identify machine-generated text?
This study investigates whether professional translators can reliably identify short stories generated in Italian by artificial intelligence (AI) without prior specialized training. Sixty-nine translators took part in an in-person experiment, where they assessed three anonymized short stories - two written by ChatGPT-4o and one by a human author. For each story, participants rated the likelihood of AI authorship and provided justifications for their choices. While average results were inconclusive, a statistically significant subset (16.2%) successfully distinguished the synthetic texts from the human text, suggesting that their judgements were informed by analytical skill rather than chance. However, a nearly equal number misclassified the texts in the opposite direction, often relying on subjective impressions rather than objective markers, possibly reflecting a reader preference for AI-generated texts. Low burstiness and narrative contradiction emerged as the most reliable indicators of synthetic authorship, with unexpected calques, semantic loans and syntactic transfer from English also reported. In contrast, features such as grammatical accuracy and emotional tone frequently led to misclassification. These findings raise questions about the role and scope of synthetic-text editing in professional contexts.
comment: 10 pages, table numbers corrected
Improving Value-based Process Verifier via Low-Cost Variance Reduction AAAI-2026
Large language models (LLMs) have achieved remarkable success in a wide range of tasks. However, their reasoning capabilities, particularly in complex domains like mathematics, remain a significant challenge. Value-based process verifiers, which estimate the probability of a partial reasoning chain leading to a correct solution, are a promising approach for improving reasoning. Nevertheless, their effectiveness is often hindered by estimation error in their training annotations, a consequence of the limited number of Monte Carlo (MC) samples feasible due to the high cost of LLM inference. In this paper, we identify that the estimation error primarily arises from high variance rather than bias, and the MC estimator is a Minimum Variance Unbiased Estimator (MVUE). To address the problem, we propose the \textsc{Com}pound \textsc{M}onte \textsc{C}arlo \textsc{S}ampling (ComMCS) method, which constructs an unbiased estimator by linearly combining the MC estimators from the current and subsequent steps. Theoretically, we show that our method leads to a predictable reduction in variance, while maintaining an unbiased estimation without additional LLM inference cost. We also perform empirical experiments on the MATH-500 and GSM8K benchmarks to demonstrate the effectiveness of our method. Notably, ComMCS outperforms regression-based optimization method by 2.8 points, the non-variance-reduced baseline by 2.2 points on MATH-500 on Best-of-32 sampling experiment.
comment: Accepted by AAAI-2026
AECBench: A Hierarchical Benchmark for Knowledge Evaluation of Large Language Models in the AEC Field
Large language models (LLMs), as a novel information technology, are seeing increasing adoption in the Architecture, Engineering, and Construction (AEC) field. They have shown their potential to streamline processes throughout the building lifecycle. However, the robustness and reliability of LLMs in such a specialized and safety-critical domain remain to be evaluated. To address this challenge, this paper establishes AECBench, a comprehensive benchmark designed to quantify the strengths and limitations of current LLMs in the AEC domain. The benchmark features a five-level, cognition-oriented evaluation framework (i.e., Knowledge Memorization, Understanding, Reasoning, Calculation, and Application). Based on the framework, 23 representative evaluation tasks were defined. These tasks were derived from authentic AEC practice, with scope ranging from codes retrieval to specialized documents generation. Subsequently, a 4,800-question dataset encompassing diverse formats, including open-ended questions, was crafted primarily by engineers and validated through a two-round expert review. Furthermore, an "LLM-as-a-Judge" approach was introduced to provide a scalable and consistent methodology for evaluating complex, long-form responses leveraging expert-derived rubrics. Through the evaluation of nine LLMs, a clear performance decline across five cognitive levels was revealed. Despite demonstrating proficiency in foundational tasks at the Knowledge Memorization and Understanding levels, the models showed significant performance deficits, particularly in interpreting knowledge from tables in building codes, executing complex reasoning and calculation, and generating domain-specific documents. Consequently, this study lays the groundwork for future research and development aimed at the robust and reliable integration of LLMs into safety-critical engineering practices.
Attention-Aided MMSE for OFDM Channel Estimation: Learning Linear Filters with Attention
In orthogonal frequency division multiplexing (OFDM), accurate channel estimation is crucial. Classical signal processing-based approaches, such as linear minimum mean-squared error (LMMSE) estimation, often require second-order statistics that are difficult to obtain in practice. Recent deep neural network (DNN)-based methods have been introduced to address this; yet they often suffer from high inference complexity. This paper proposes an Attention-aided MMSE (A-MMSE), a model-based DNN framework that learns the linear MMSE filter via the Attention Transformer. Once trained, the A-MMSE performs channel estimation through a single linear operation, eliminating nonlinear activations during inference and thus reducing computational complexity. To improve the learning efficiency of the A-MMSE, we develop a two-stage Attention encoder that captures the frequency and temporal correlation structure of OFDM channels. We also introduce a rank-adaptive extension that enables a flexible performance-complexity trade-off. Numerical simulations show that the proposed A-MMSE consistently outperforms other baseline methods in terms of normalized MSE across a wide range of signal-to-noise ratio (SNR) conditions. In particular, the A-MMSE and its rank-adaptive extension provide an improved performance-complexity trade-off, providing a powerful and highly efficient solution for practical channel estimation.
comment: 13 pages, 8 figures
The LLM Data Auditor: A Metric-oriented Survey on Quality and Trustworthiness in Evaluating Synthetic Data
Large Language Models (LLMs) have emerged as powerful tools for generating data across various modalities. By transforming data from a scarce resource into a controllable asset, LLMs mitigate the bottlenecks imposed by the acquisition costs of real-world data for model training, evaluation, and system iteration. However, ensuring the high quality of LLM-generated synthetic data remains a critical challenge. Existing research primarily focuses on generation methodologies, with limited direct attention to the quality of the resulting data. Furthermore, most studies are restricted to single modalities, lacking a unified perspective across different data types. To bridge this gap, we propose the \textbf{LLM Data Auditor framework}. In this framework, we first describe how LLMs are utilized to generate data across six distinct modalities. More importantly, we systematically categorize intrinsic metrics for evaluating synthetic data from two dimensions: quality and trustworthiness. This approach shifts the focus from extrinsic evaluation, which relies on downstream task performance, to the inherent properties of the data itself. Using this evaluation system, we analyze the experimental evaluations of representative generation methods for each modality and identify substantial deficiencies in current evaluation practices. Based on these findings, we offer concrete recommendations for the community to improve the evaluation of data generation. Finally, the framework outlines methodologies for the practical application of synthetic data across different modalities.
SingMOS-Pro: An Comprehensive Benchmark for Singing Quality Assessment
Singing voice generation progresses rapidly, yet evaluating singing quality remains a critical challenge. Human subjective assessment, typically in the form of listening tests, is costly and time consuming, while existing objective metrics capture only limited perceptual aspects. In this work, we introduce SingMOS-Pro, a dataset for automatic singing quality assessment. Building on our preview version SingMOS, which provides only overall ratings, SingMOS-Pro extends the annotations of the additional data to include lyrics, melody, and overall quality, offering broader coverage and greater diversity. The dataset contains 7,981 singing clips generated by 41 models across 12 datasets, spanning from early systems to recent state-of-the-art approaches. Each clip is rated by at least five experienced annotators to ensure reliability and consistency. Furthermore, we investigate strategies for effectively utilizing MOS data annotated under heterogeneous standards and benchmark several widely used evaluation methods from related tasks on SingMOS-Pro, establishing strong baselines and practical references for future research. The dataset is publicly available at https://huggingface.co/datasets/TangRain/SingMOS-Pro.
comment: Accepted by ICASSP 2026
Damper-B-PINN: Damper Characteristics-Based Bayesian Physics-Informed Neural Network for Vehicle State Estimation IV
Accurate state estimation is fundamental to intelligent vehicles. Wheel load, one of the most important chassis states, serves as an essential input for advanced driver assistance systems (ADAS) and exerts a direct influence on vehicle stability and safety. However, wheel load estimation remains challenging due to the complexity of chassis modeling and the susceptibility of nonlinear systems to noise. To address these issues, this paper first introduces a refined suspension linkage-level modeling approach that constructs a nonlinear instantaneous dynamic model by explicitly considering the complex geometric structure of the suspension. Building upon this, we propose a damper characteristics-based Bayesian physics-informed neural network (Damper-B-PINN) framework to estimate dynamic wheel load, which leverages the suspension dynamics as physical guidance of PINN while employing Bayesian inference to mitigate the effects of system noise and uncertainty. Moreover, a damper-characteristic physics conditioning (DPC) module is designed for embedding physical prior. The proposed Damper-B-PINN is evaluated using both high-fidelity simulation datasets generated by CarSim software and real-world datasets collected from a Formula Student race car. Experimental results demonstrate that our Damper-B-PINN consistently outperforms existing methods across various test conditions, particularly extreme ones. These findings highlight the potential of the proposed Damper-B-PINN framework to enhance the accuracy and robustness of dynamic wheel load estimation, thereby improving the reliability and safety of ADAS applications.
comment: 8 pages, 8 figures, 3 tables, accepted for IEEE Intelligent Vehicles (IV) Symposium 2026
AutoGameUI: Constructing High-Fidelity GameUI via Multimodal Correspondence Matching
Game UI development is essential to the game industry. However, the traditional workflow requires substantial manual effort to integrate pairwise UI and UX designs into a cohesive game user interface (GameUI). The inconsistency between the aesthetic UI design and the functional UX design typically results in mismatches and inefficiencies. To address the issue, we present an automatic system, AutoGameUI, for efficiently and accurately constructing GameUI. The system centers on a two-stage multimodal learning pipeline to obtain the optimal correspondences between UI and UX designs. The first stage learns the comprehensive representations of UI and UX designs from multimodal perspectives. The second stage incorporates grouped cross-attention modules with constrained integer programming to estimate the optimal correspondences through top-down hierarchical matching. The optimal correspondences enable the automatic GameUI construction. We create the GAMEUI dataset, comprising pairwise UI and UX designs from real-world games, to train and validate the proposed method. Besides, an interactive web tool is implemented to ensure high-fidelity effects and facilitate human-in-the-loop construction. Extensive experiments on the GAMEUI and RICO datasets demonstrate the effectiveness of our system in maintaining consistency between the constructed GameUI and the original designs. When deployed in the workflow of several mobile games, AutoGameUI achieves a 3$\times$ improvement in time efficiency, conveying significant practical value for game UI development.
comment: 9 pages
Beyond the Prompt: An Empirical Study of Cursor Rules
While Large Language Models (LLMs) have demonstrated remarkable capabilities, research shows that their effectiveness depends not only on explicit prompts but also on the broader context provided. This requirement is especially pronounced in software engineering, where the goals, architecture, and collaborative conventions of an existing project play critical roles in response quality. To support this, many AI coding assistants have introduced ways for developers to author persistent, machine-readable directives that encode a project's unique constraints. Although this practice is growing, the content of these directives remains unstudied. This paper presents a large-scale empirical study to characterize this emerging form of developer-provided context. Through a qualitative analysis of 401 open-source repositories containing cursor rules, we developed a comprehensive taxonomy of project context that developers consider essential, organized into five high-level themes: Conventions, Guidelines, Project Information, LLM Directives, and Examples. Our study also explores how this context varies across different project types and programming languages, offering implications for the next generation of context-aware AI developer tools.
comment: To appear at MSR 2026
How AI Coding Agents Modify Code: A Large-Scale Study of GitHub Pull Requests
AI coding agents are increasingly acting as autonomous contributors by generating and submitting pull requests (PRs). However, we lack empirical evidence on how these agent-generated PRs differ from human contributions, particularly in how they modify code and describe their changes. Understanding these differences is essential for assessing their reliability and impact on development workflows. Using the MSR 2026 Mining Challenge version of the AIDev dataset, we analyze 24,014 merged Agentic PRs (440,295 commits) and 5,081 merged Human PRs (23,242 commits). We examine additions, deletions, commits, and files touched, and evaluate the consistency between PR descriptions and their diffs using lexical and semantic similarity. Agentic PRs differ substantially from Human PRs in commit count (Cliff's $δ= 0.5429$) and show moderate differences in files touched and deleted lines. They also exhibit slightly higher description-to-diff similarity across all measures. These findings provide a large-scale empirical characterization of how AI coding agents contribute to open source development.
comment: 5 pages, 5 figures
Fair Algorithms with Probing for Multi-Agent Multi-Armed Bandits
We propose a multi-agent multi-armed bandit (MA-MAB) framework aimed at ensuring fair outcomes across agents while maximizing overall system performance. A key challenge in this setting is decision-making under limited information about arm rewards. To address this, we introduce a novel probing framework that strategically gathers information about selected arms before allocation. In the offline setting, where reward distributions are known, we leverage submodular properties to design a greedy probing algorithm with a provable performance bound. For the more complex online setting, we develop an algorithm that achieves sublinear regret while maintaining fairness. Extensive experiments on synthetic and real-world datasets show that our approach outperforms baseline methods, achieving better fairness and efficiency.
Tabular Incremental Inference
Tabular data is a fundamental form of data structure. The evolution of table analysis tools reflects humanity's continuous progress in data acquisition, management, and processing. The dynamic changes in table columns arise from technological advancements, changing needs, data integration, etc. However, the standard process of training AI models on tables with fixed columns and then performing inference is not suitable for handling dynamically changed tables. Therefore, new methods are needed for efficiently handling such tables in an unsupervised manner. In this paper, we introduce a new task, Tabular Incremental Inference (TabII), which aims to enable trained models to incorporate new columns during the inference stage, enhancing the practicality of AI models in scenarios where tables are dynamically changed. Furthermore, we demonstrate that this new task can be framed as an optimization problem based on the information bottleneck theory, which emphasizes that the key to an ideal tabular incremental inference approach lies in minimizing mutual information between tabular data and representation while maximizing between representation and task labels. Under this guidance, we design a TabII method with Large Language Model placeholders and Pretrained TabAdapter to provide external knowledge and Incremental Sample Condensation blocks to condense the task-relevant information given by incremental column attributes. Experimental results across eight public datasets show that TabII effectively utilizes incremental attributes, achieving state-of-the-art performance.
Stream-Voice-Anon: Enhancing Utility of Real-Time Speaker Anonymization via Neural Audio Codec and Language Models
Protecting speaker identity is crucial for online voice applications, yet streaming speaker anonymization (SA) remains underexplored. Recent research has demonstrated that neural audio codec (NAC) provides superior speaker feature disentanglement and linguistic fidelity. NAC can also be used with causal language models (LM) to enhance linguistic fidelity and prompt control for streaming tasks. However, existing NAC-based online LM systems are designed for voice conversion (VC) rather than anonymization, lacking the techniques required for privacy protection. Building on these advances, we present Stream-Voice-Anon, which adapts modern causal LM-based NAC architectures specifically for streaming SA by integrating anonymization techniques. Our anonymization approach incorporates pseudo-speaker representation sampling, a speaker embedding mixing and diverse prompt selection strategies for LM conditioning that leverage the disentanglement properties of quantized content codes to prevent speaker information leakage. Additionally, we compare dynamic and fixed delay configurations to explore latency-privacy trade-offs in real-time scenarios. Under the VoicePrivacy 2024 Challenge protocol, Stream-Voice-Anon achieves substantial improvements in intelligibility (up to 46% relative WER reduction) and emotion preservation (up to 28% UAR relative) compared to the previous state-of-the-art streaming method DarkStream while maintaining comparable latency (180ms vs 200ms) and privacy protection against lazy-informed attackers, though showing 15% relative degradation against semi-informed attackers.
comment: Accepted by ICASSP2026
Jenius Agent: Towards Experience-Driven Accuracy Optimization in Real-World Scenarios
As agent systems powered by large language models (LLMs) advance, improving performance in context understanding, tool usage, and long-horizon execution has become critical. However, existing agent frameworks and benchmarks provide limited visibility into execution-level behavior, making failures in tool invocation, state tracking, and context management difficult to diagnose. This paper presents Jenius-Agent, a system-level agent framework grounded in real-world deployment experience. It integrates adaptive prompt generation, context-aware tool orchestration, and layered memory mechanism to stabilize execution and improve robustness in long-horizon, tool-augmented tasks. Beyond system design, we introduce an evaluation methodology that jointly measures procedural fidelity, semantic correctness, and efficiency. This framework makes agent behavior observable as a structured execution process and enables systematic analysis of failure modes not captured by output-only metrics. Experiments on Jenius-bench show substantial improvements in task completion rate, with up to a 35 percent relative gain over the base agent, along with reduced token consumption, response latency, and tool invocation failures. The framework is already deployed in Jenius ({https://www.jenius.cn}), providing a lightweight and scalable solution for robust, protocol-compatible autonomous agents.
Remote Sensing Image Intelligent Interpretation with the Language-Centered Perspective: Principles, Methods and Challenges
The mainstream paradigm of remote sensing image interpretation has long been dominated by vision-centered models, which rely on visual features for semantic understanding. However, these models face inherent limitations in handling multi-modal reasoning, semantic abstraction, and interactive decision-making. While recent advances have introduced Large Language Models (LLMs) into remote sensing workflows, existing studies primarily focus on downstream applications, lacking a unified theoretical framework that explains the cognitive role of language. This review advocates a paradigm shift from vision-centered to language-centered remote sensing interpretation. Drawing inspiration from the Global Workspace Theory (GWT) of human cognition, We propose a language-centered framework for remote sensing interpretation that treats LLMs as the cognitive central hub integrating perceptual, task, knowledge and action spaces to enable unified understanding, reasoning, and decision-making. We first explore the potential of LLMs as the central cognitive component in remote sensing interpretation, and then summarize core technical challenges, including unified multimodal representation, knowledge association, and reasoning and decision-making. Furthermore, we construct a global workspace-driven interpretation mechanism and review how language-centered solutions address each challenge. Finally, we outline future research directions from four perspectives: adaptive alignment of multimodal data, task understanding under dynamic knowledge constraints, trustworthy reasoning, and autonomous interaction. This work aims to provide a conceptual foundation for the next generation of remote sensing interpretation systems and establish a roadmap toward cognition-driven intelligent geospatial analysis.
Do LLMs Give Good Romantic Relationship Advice? A Study on User Satisfaction and Attitude Change
Large Language Models (LLMs) are increasingly being used to provide support and advice in personal domains such as romantic relationships, yet little is known about user perceptions of this type of advice. This study investigated how people evaluate advice on LLM-generated romantic relationships. Participants rated advice satisfaction, model reliability, and helpfulness, and completed pre- and post-measures of their general attitudes toward LLMs. Overall, the results showed participants' high satisfaction with LLM-generated advice. Greater satisfaction was, in turn, strongly and positively associated with their perceptions of the models' reliability and helpfulness. Importantly, participants' attitudes toward LLMs improved significantly after exposure to the advice, suggesting that supportive and contextually relevant advice can enhance users' trust and openness toward these AI systems.
comment: An error in figure 1
Text2Grad: Reinforcement Learning from Natural Language Feedback
Traditional RLHF optimizes language models with coarse, scalar rewards that mask the fine-grained reasons behind success or failure, leading to slow and opaque learning. Recent work augments RL with textual critiques through prompting or reflection, improving interpretability but leaving model parameters untouched. We introduce Text2Grad, a reinforcement-learning paradigm that turns free-form textual feedback into span-level gradients. Given human (or programmatic) critiques, Text2Grad aligns each feedback phrase with the relevant token spans, converts these alignments into differentiable reward signals, and performs gradient updates that directly refine the offending portions of the model's policy. This yields precise, feedback-conditioned adjustments instead of global nudges. Text2Grad is realized through three components: (1) a high-quality feedback-annotation pipeline that pairs critiques with token spans; (2) a fine-grained reward model that predicts span-level reward on answers while generating explanatory critiques; and (3) a span-level policy optimizer that back-propagates natural-language gradients. Across summarization, code generation, and question answering, Text2Grad consistently surpasses scalar-reward RL and prompt-only baselines, providing both higher task metrics and richer interpretability. Our results suggest that natural-language feedback can serve not only as explanations, but also as actionable training signals for fine-grained alignment. The code for our method is available at https://github.com/microsoft/Text2Grad.
comment: The code for our method is available at https://github.com/microsoft/Text2Grad
HYPERDOA: Robust and Efficient DoA Estimation using Hyperdimensional Computing
Direction of Arrival (DoA) estimation techniques face a critical trade-off, as classical methods often lack accuracy in challenging, low signal-to-noise ratio (SNR) conditions, while modern deep learning approaches are too energy-intensive and opaque for resource-constrained, safety-critical systems. We introduce HYPERDOA, a novel estimator leveraging Hyperdimensional Computing (HDC). The framework introduces two distinct feature extraction strategies -- Mean Spatial-Lag Autocorrelation and Spatial Smoothing -- for its HDC pipeline, and then reframes DoA estimation as a pattern recognition problem. This approach leverages HDC's inherent robustness to noise and its transparent algebraic operations to bypass the expensive matrix decompositions and "black-box" nature of classical and deep learning methods, respectively. Our evaluation demonstrates that HYPERDOA achieves ~35.39% higher accuracy than state-of-the-art methods in low-SNR, coherent-source scenarios. Crucially, it also consumes ~93% less energy than competing neural baselines on an embedded NVIDIA Jetson Xavier NX platform. This dual advantage in accuracy and efficiency establishes HYPERDOA as a robust and viable solution for mission-critical applications on edge devices.
comment: 3 figures, 5 pages. Paper accepted at ICASSP 2026. Authors' version posted for personal use and not for redistribution
Epistemological Bias As a Means for the Automated Detection of Injustices in Text
Injustices in text are often subtle since implicit biases or stereotypes frequently operate unconsciously due to the pervasive nature of prejudice in society. This makes automated detection of injustices more challenging which leads to them being often overlooked. We introduce a novel framework that combines knowledge from epistemology to enhance the detection of implicit injustices in text using NLP models to address these complexities and offer explainability. Our empirical study shows how our framework can be applied to effectively detect these injustices. We validate our framework using a human baseline study which mostly agrees with the choice of implicit bias, stereotype, and sentiment. The main feedback from the study was the extended time required to analyze, digest, and decide on each component of our framework. This highlights the importance of our automated framework pipeline that assists users in detecting implicit injustices while offering explainability and reducing time burdens on humans.
Epistemic-aware Vision-Language Foundation Model for Fetal Ultrasound Interpretation
Recent medical vision-language models have shown promise on tasks such as VQA, report generation, and anomaly detection. However, most are adapted to structured adult imaging and underperform in fetal ultrasound, which poses challenges of multi-view image reasoning, numerous diseases, and image diversity. To bridge this gap, we introduce FetalMind, a medical AI system tailored to fetal ultrasound for both report generation and diagnosis. Guided by clinical workflow, we propose Salient Epistemic Disentanglement (SED), which injects an expert-curated bipartite graph into the model to decouple view-disease associations and to steer preference selection along clinically faithful steps via reinforcement learning. This design mitigates variability across diseases and heterogeneity across views, reducing learning bottlenecks while aligning the model's inference with obstetric practice. To train FetalMind at scale, we curate FetalSigma-1M dataset, the first large-scale fetal ultrasound report corpus, comprising 20K reports from twelve medical centers, addressing the scarcity of domain data. Extensive experiments show that FetalMind outperforms open- and closed-source baselines across all gestational stages, achieving +14% average gains and +61.2% higher accuracy on critical conditions while remaining efficient, stable, and scalable. Project Page: https://hexiao0275.github.io/FetalMind.
comment: This paper contains fundamental errors and will not be replaced
Holdout-Loss-Based Data Selection for LLM Finetuning via In-Context Learning
Fine-tuning large pretrained language models is a common approach for aligning them with human preferences, but noisy or off-target examples can dilute supervision. While small, well-chosen datasets often match the performance of much larger ones, systematic and efficient ways to identify high-value training data remain underexplored. Many current methods rely on heuristics or expensive retraining. We present a principled, resource-efficient framework for data selection and reweighting. At its core is an In-Context Approximation (ICA) that estimates the holdout loss a model would incur after training on a candidate example by conditioning on a small, curated holdout set in context. ICA requires no reference model and no additional finetuning. We define the resulting estimate as the ICA score, and derive per-example weights that dynamically reweight gradient updates as model parameters evolve. Across SFT, DPO, and SimPO, and over diverse backbones and datasets, ICA-based reweighting consistently improves model alignment with minimal overhead. We analyze sensitivity to score update frequency and the number of in-context holdout examples. We also discuss limitations in rapidly drifting on-policy settings, highlighting directions for future work. Code and prompts will be released.
Decoding Cortical Microcircuits: A Generative Model for Latent Space Exploration and Controlled Synthesis
A central idea in understanding brains and building artificial intelligence is that structure determines function. Yet, how the brain's complex structure arises from a limited set of genetic instructions remains a key question. The ultra high-dimensional detail of neural connections vastly exceeds the information storage capacity of genes, suggesting a compact, low-dimensional blueprint must guide brain development. Our motivation is to uncover this blueprint. We introduce a generative model, to learn this underlying representation from detailed connectivity maps of mouse cortical microcircuits. Our model successfully captures the essential structural information of these circuits in a compressed latent space. We found that specific, interpretable directions within this space directly relate to understandable network properties. Building on this, we demonstrate a novel method to controllably generate new, synthetic microcircuits with desired structural features by navigating this latent space. This work offers a new way to investigate the design principles of neural circuits and explore how structure gives rise to function, potentially informing the development of more advanced artificial neural networks.
Dancing in Chains: Strategic Persuasion in Academic Rebuttal via Theory of Mind ICLR 2026
Although artificial intelligence (AI) has become deeply integrated into various stages of the research workflow and achieved remarkable advancements, academic rebuttal remains a significant and underexplored challenge. This is because rebuttal is a complex process of strategic communication under severe information asymmetry rather than a simple technical debate. Consequently, current approaches struggle as they largely imitate surface-level linguistics, missing the essential element of perspective-taking required for effective persuasion. In this paper, we introduce RebuttalAgent, the first framework to ground academic rebuttal in Theory of Mind (ToM), operationalized through a ToM-Strategy-Response (TSR) pipeline that models reviewer mental state, formulates persuasion strategy, and generates strategy-grounded response. To train our agent, we construct RebuttalBench, a large-scale dataset synthesized via a novel critique-and-refine approach. Our training process consists of two stages, beginning with a supervised fine-tuning phase to equip the agent with ToM-based analysis and strategic planning capabilities, followed by a reinforcement learning phase leveraging the self-reward mechanism for scalable self-improvement. For reliable and efficient automated evaluation, we further develop Rebuttal-RM, a specialized evaluator trained on over 100K samples of multi-source rebuttal data, which achieves scoring consistency with human preferences surpassing powerful judge GPT-4.1. Extensive experiments show RebuttalAgent significantly outperforms the base model by an average of 18.3% on automated metrics, while also outperforming advanced proprietary models across both automated and human evaluations. Disclaimer: the generated rebuttal content is for reference only to inspire authors and assist in drafting. It is not intended to replace the author's own critical analysis and response.
comment: Accepted by ICLR 2026, 36 pages
Reinforcement Learning Fine-Tuning Enhances Activation Intensity and Diversity in the Internal Circuitry of LLMs
Large language models (LLMs) acquire extensive prior knowledge through large-scale pretraining and can be further enhanced via supervised fine-tuning (SFT) or reinforcement learning (RL)-based post-training. A growing body of evidence has shown that RL fine-tuning improves the capability of LLMs beyond what SFT alone achieves. However, the underlying mechanisms why RL fine-tuning is able to enhance the capability of various LLMs with distinct intrinsic characteristics remain underexplored. In this study, we draw inspiration from prior work on edge attribution patching (EAP) to investigate the internal differences of LLMs before and after RL fine-tuning. Our analysis across multiple model families and mathematical datasets shows two robust effects of online RL post-training: (i) an overall increase in average activation intensity, indicating that more internal pathways are engaged and their signals become stronger, and (ii) greater diversity in activation patterns, reflected by higher entropy and less concentrated edge distributions. These changes suggest that RL reshapes information flow to be both more redundant and more flexible, which may explain its advantage in mathematical generalization. Notably, models fine-tuned with Direct Preference Optimization (DPO) deviate from these trends, exhibiting substantially weaker or inconsistent internal changes compared to PPO- and GRPO-based training. Together, our findings provide a unified view of how RL fine-tuning systematically alters the internal circuitry of LLMs and highlight the methodological distinctions between online RL and preference-based approaches. Our code is open source at https://github.com/tsinghua-fib-lab/llm_rl_probing_analysis.
RL of Thoughts: Navigating LLM Reasoning with Inference-time Reinforcement Learning
Despite rapid advancements in large language models (LLMs), the token-level autoregressive nature constrains their complex reasoning capabilities. To enhance LLM reasoning, inference-time techniques, including Chain/Tree/Graph-of-Thought(s), successfully improve the performance, as they are fairly cost-effective by guiding reasoning through sophisticated logical structures without modifying LLMs' parameters. However, these manually predefined, task-agnostic frameworks are applied uniformly across diverse tasks, lacking adaptability. To improve this, we propose RL-of-Thoughts (RLoT), where we train a lightweight navigator model with reinforcement learning (RL) to adaptively enhance LLM reasoning at inference time. Specifically, we design five basic logic blocks from the perspective of human cognition. During the reasoning process, the trained RL navigator dynamically selects the suitable logic blocks and combines them into task-specific logical structures according to problem characteristics. Experiments across multiple reasoning benchmarks (AIME, MATH, GPQA, etc.) with multiple LLMs (GPT, Llama, Qwen, and DeepSeek) illustrate that RLoT outperforms established inference-time techniques by up to 13.4%. Remarkably, with less than 3K parameters, our RL navigator is able to make sub-10B LLMs comparable to 100B-scale counterparts. Moreover, the RL navigator demonstrates strong transferability: a model trained on one specific LLM-task pair can effectively generalize to unseen LLMs and tasks. Our code is open-source at https://github.com/tsinghua-fib-lab/RL-LLM-Reasoning for reproducibility.
SAC-Opt: Semantic Anchors for Iterative Correction in Optimization Modeling
Large language models (LLMs) have opened new paradigms in optimization modeling by enabling the generation of executable solver code from natural language descriptions. Despite this promise, existing approaches typically remain solver-driven: they rely on single-pass forward generation and apply limited post-hoc fixes based on solver error messages, leaving undetected semantic errors that silently produce syntactically correct but logically flawed models. To address this challenge, we propose SAC-Opt, a backward-guided correction framework that grounds optimization modeling in problem semantics rather than solver feedback. At each step, SAC-Opt aligns the original semantic anchors with those reconstructed from the generated code and selectively corrects only the mismatched components, driving convergence toward a semantically faithful model. This anchor-driven correction enables fine-grained refinement of constraint and objective logic, enhancing both fidelity and robustness without requiring additional training or supervision. Empirical results on seven public datasets demonstrate that SAC-Opt improves average modeling accuracy by 7.7%, with gains of up to 21.9% on the ComplexLP dataset. These findings highlight the importance of semantic-anchored correction in LLM-based optimization workflows to ensure faithful translation from problem intent to solver-executable code.
Q-Probe: Scaling Image Quality Assessment to High Resolution via Context-Aware Agentic Probing
Reinforcement Learning (RL) has empowered Multimodal Large Language Models (MLLMs) to achieve superior human preference alignment in Image Quality Assessment (IQA). However, existing RL-based IQA models typically rely on coarse-grained global views, failing to capture subtle local degradations in high-resolution scenarios. While emerging "Thinking with Images" paradigms enable multi-scale visual perception via zoom-in mechanisms, their direct adaptation to IQA induces spurious "cropping-implies-degradation" biases and misinterprets natural depth-of-field as artifacts. To address these challenges, we propose Q-Probe, the first agentic IQA framework designed to scale IQA to high resolution via context-aware probing. First, we construct Vista-Bench, a pioneering benchmark tailored for fine-grained local degradation analysis in high-resolution IQA settings. Furthermore, we propose a three-stage training paradigm that progressively aligns the model with human preferences, while simultaneously eliminating causal bias through a novel context-aware cropping strategy. Extensive experiments demonstrate that Q-Probe achieves state-of-the-art performance in high-resolution settings while maintaining superior efficacy across resolution scales.
DSSmoothing: Toward Certified Dataset Ownership Verification for Pre-trained Language Models via Dual-Space Smoothing
Large web-scale datasets have driven the rapid advancement of pre-trained language models (PLMs), but unauthorized data usage has raised serious copyright concerns. Existing dataset ownership verification (DOV) methods typically assume that watermarks remain stable during inference; however, this assumption often fails under natural noise and adversary-crafted perturbations. We propose the first certified dataset ownership verification method for PLMs under a gray-box setting (i.e., the defender can only query the suspicious model but is aware of its input representation module), based on dual-space smoothing (i.e., DSSmoothing). To address the challenges of text discreteness and semantic sensitivity, DSSmoothing introduces continuous perturbations in the embedding space to capture semantic robustness and applies controlled token reordering in the permutation space to capture sequential robustness. DSSmoothing consists of two stages: in the first stage, triggers are collaboratively embedded in both spaces to generate norm-constrained and robust watermarked datasets; in the second stage, randomized smoothing is applied in both spaces during verification to compute the watermark robustness (WR) of suspicious models and statistically compare it with the principal probability (PP) values of a set of benign models. Theoretically, DSSmoothing provides provable robustness guarantees for dataset ownership verification by ensuring that WR consistently exceeds PP under bounded dual-space perturbations. Extensive experiments on multiple representative web datasets demonstrate that DSSmoothing achieves stable and reliable verification performance and exhibits robustness against potential adaptive attacks. Our code is available at https://github.com/NcepuQiaoTing/DSSmoothing.
comment: To appear in WWW 2026. 12 pages
Streaming-dLLM: Accelerating Diffusion LLMs via Suffix Pruning and Dynamic Decoding
Diffusion Large Language Models (dLLMs) offer a compelling paradigm for natural language generation, leveraging parallel decoding and bidirectional attention to achieve superior global coherence compared to autoregressive models. While recent works have accelerated inference via KV cache reuse or heuristic decoding, they overlook the intrinsic inefficiencies within the block-wise diffusion process. Specifically, they suffer from spatial redundancy by modeling informative-sparse suffix regions uniformly and temporal inefficiency by applying fixed denoising schedules across all the decoding process. To address this, we propose Streaming-dLLM, a training-free framework that streamlines inference across both spatial and temporal dimensions. Spatially, we introduce attenuation guided suffix modeling to approximate the full context by pruning redundant mask tokens. Temporally, we employ a dynamic confidence aware strategy with an early exit mechanism, allowing the model to skip unnecessary iterations for converged tokens. Extensive experiments show that Streaming-dLLM achieves up to 68.2X speedup while maintaining generation quality, highlighting its effectiveness in diffusion decoding. The code is available at https://github.com/xiaoshideta/Streaming-dLLM.
comment: Tech report. Code is available at https://github.com/xiaoshideta/Streaming-dLLM
Creating a Causally Grounded Rating Method for Assessing the Robustness of AI Models for Time-Series Forecasting
AI models, including both time-series-specific and general-purpose Foundation Models (FMs), have demonstrated strong potential in time-series forecasting across sectors like finance. However, these models are highly sensitive to input perturbations, which can lead to prediction errors and undermine trust among stakeholders, including investors and analysts. To address this challenge, we propose a causally grounded rating framework to systematically evaluate model robustness by analyzing statistical and confounding biases under various noisy and erroneous input scenarios. Our framework is applied to a large-scale experimental setup involving stock price data from multiple industries and evaluates both uni-modal and multi-modal models, including Vision Transformer-based (ViT) models and FMs. We introduce six types of input perturbations and twelve data distributions to assess model performance. Results indicate that multi-modal and time-series-specific FMs demonstrate greater robustness and accuracy compared to general-purpose models. Further, to validate our framework's usability, we conduct a user study showcasing time-series models' prediction errors along with our computed ratings. The study confirms that our ratings reduce the difficulty for users in comparing the robustness of different models. Our findings can help stakeholders understand model behaviors in terms of robustness and accuracy for better decision-making even without access to the model weights and training data, i.e., black-box settings.
comment: arXiv admin note: text overlap with arXiv:2406.12908
FedAdamW: A Communication-Efficient Optimizer with Convergence and Generalization Guarantees for Federated Large Models
AdamW has become one of the most effective optimizers for training large-scale models. We have also observed its effectiveness in the context of federated learning (FL). However, directly applying AdamW in federated learning settings poses significant challenges: (1) due to data heterogeneity, AdamW often yields high variance in the second-moment estimate $\boldsymbol{v}$; (2) the local overfitting of AdamW may cause client drift; and (3) Reinitializing moment estimates ($\boldsymbol{v}$, $\boldsymbol{m}$) at each round slows down convergence. To address these challenges, we propose the first \underline{Fed}erated \underline{AdamW} algorithm, called \texttt{FedAdamW}, for training and fine-tuning various large models. \texttt{FedAdamW} aligns local updates with the global update using both a \textbf{local correction mechanism} and decoupled weight decay to mitigate local overfitting. \texttt{FedAdamW} efficiently aggregates the \texttt{mean} of the second-moment estimates to reduce their variance and reinitialize them. Theoretically, we prove that \texttt{FedAdamW} achieves a linear speedup convergence rate of $\mathcal{O}(\sqrt{(L Δσ_l^2)/(S K R ε^2)}+(L Δ)/R)$ without \textbf{heterogeneity assumption}, where $S$ is the number of participating clients per round, $K$ is the number of local iterations, and $R$ is the total number of communication rounds. We also employ PAC-Bayesian generalization analysis to explain the effectiveness of decoupled weight decay in local training. Empirically, we validate the effectiveness of \texttt{FedAdamW} on language and vision Transformer models. Compared to several baselines, \texttt{FedAdamW} significantly reduces communication rounds and improves test accuracy. The code is available in https://github.com/junkangLiu0/FedAdamW.
MoRA: Mobility as the Backbone for Geospatial Representation Learning at Scale
Representation learning of geospatial locations remains a core challenge in achieving general geospatial intelligence, with increasingly diverging philosophies and techniques. While Earth observation paradigms excel at depicting locations in their physical states, we claim that a location's comprehensive "meaning" is better grounded in its internal human activity patterns and, crucially, its functional relationships with other locations, as revealed by human movement. We present MoRA, a human-centric geospatial framework that leverages a mobility graph as its core backbone to fuse various data modalities, aiming to learn embeddings that represent the socio-economic context and functional role of a location. MoRA achieves this through the integration of spatial tokenization, GNNs, and asymmetric contrastive learning to align 100M+ POIs, massive remote sensing imagery, and structured demographic statistics with a billion-edge mobility graph, ensuring the three auxiliary modalities are interpreted through the lens of fundamental human dynamics. To rigorously evaluate the effectiveness of MoRA, we construct a benchmark dataset composed of 9 downstream prediction tasks across social and economic domains. Experiments show that MoRA, with four input modalities and a compact 128-dimensional representation space, achieves superior predictive performances than state-of-the-art models by an average of 12.9%. Echoing LLM scaling laws, we further demonstrate the scaling behavior in geospatial representation learning. We open-source code and pretrained models at: https://github.com/ylzhouchris/MoRA.
The Script is All You Need: An Agentic Framework for Long-Horizon Dialogue-to-Cinematic Video Generation
Recent advances in video generation have produced models capable of synthesizing stunning visual content from simple text prompts. However, these models struggle to generate long-form, coherent narratives from high-level concepts like dialogue, revealing a ``semantic gap'' between a creative idea and its cinematic execution. To bridge this gap, we introduce a novel, end-to-end agentic framework for dialogue-to-cinematic-video generation. Central to our framework is ScripterAgent, a model trained to translate coarse dialogue into a fine-grained, executable cinematic script. To enable this, we construct ScriptBench, a new large-scale benchmark with rich multimodal context, annotated via an expert-guided pipeline. The generated script then guides DirectorAgent, which orchestrates state-of-the-art video models using a cross-scene continuous generation strategy to ensure long-horizon coherence. Our comprehensive evaluation, featuring an AI-powered CriticAgent and a new Visual-Script Alignment (VSA) metric, shows our framework significantly improves script faithfulness and temporal fidelity across all tested video models. Furthermore, our analysis uncovers a crucial trade-off in current SOTA models between visual spectacle and strict script adherence, providing valuable insights for the future of automated filmmaking.
Human Simulation Computation: A Human-Inspired Framework for Adaptive AI Systems
Large language models (LLMs) have demonstrated strong capabilities in knowledge representation and reasoning based on textual data. However, their reliance on language material alone limits their ability to adapt, verify reasoning outcomes, and operate effectively in open and dynamic real-world environments. In this paper, we propose Human Simulation Computation (HSC), a human-inspired computational framework that models intelligence as a continuous, closed-loop process involving thinking, action, learning, reflection, and activity scheduling, collectively referred to as the internal reasoning process. HSC emphasizes active participation both within the internal reasoning process and in interactions with the environment, where actions are used not only to achieve goals but also to automatically refine and improve internal reasoning mechanisms without external intervention. Furthermore, HSC incorporates commonly used human thinking strategies across all stages of the internal reasoning process, such as main-feature-oriented reasoning, scope expansion through action, and on-time learning driven by environmental feedback. Through theoretical analysis, we argue that human simulation strategies cannot be fully learned from language material alone, and that human-like reasoning processes and action-grounded reasoning methods are essential for robust adaptation and effective interaction with real-world environments.
A Systemic Evaluation of Multimodal RAG Privacy
The growing adoption of multimodal Retrieval-Augmented Generation (mRAG) pipelines for vision-centric tasks (e.g. visual QA) introduces important privacy challenges. In particular, while mRAG provides a practical capability to connect private datasets to improve model performance, it risks the leakage of private information from these datasets during inference. In this paper, we perform an empirical study to analyze the privacy risks inherent in the mRAG pipeline observed through standard model prompting. Specifically, we implement a case study that attempts to infer the inclusion of a visual asset, e.g. image, in the mRAG, and if present leak the metadata, e.g. caption, related to it. Our findings highlight the need for privacy-preserving mechanisms and motivate future research on mRAG privacy.
Holistic Explainable AI (H-XAI): Extending Transparency Beyond Developers in AI-Driven Decision Making
As AI systems increasingly mediate decisions in domains such as credit scoring and financial forecasting, their lack of transparency and bias raises critical concerns for fairness and public trust. Existing explainable AI (XAI) approaches largely serve developers, focusing on model justification rather than the needs of affected users or regulators. We introduce Holistic eXplainable AI (H-XAI), a framework that integrates causality-based rating methods with post-hoc explanation techniques to support transparent, stakeholder-aligned evaluation of AI systems deployed in online decision contexts. H-XAI treats explanation as an interactive, hypothesis-driven process, allowing users, auditors, and organizations to ask questions, test hypotheses, and compare model behavior against automatically generated random and biased baselines. By combining global and instance-level explanations, H-XAI helps communicate model bias and instability that shape everyday digital decisions. Through case studies in credit risk assessment and stock price prediction, we show how H-XAI extends explainability beyond developers toward responsible and inclusive AI practices that strengthen accountability in sociotechnical systems.
SoundCompass: Navigating Target Sound Extraction With Effective Directional Clue Integration In Complex Acoustic Scenes
Recent advances in target sound extraction (TSE) utilize directional clues derived from direction of arrival (DoA), which represent an inherent spatial property of sound available in any acoustic scene. However, previous DoA-based methods rely on hand-crafted features or discrete encodings, which lose fine-grained spatial information and limit adaptability. We propose SoundCompass, an effective directional clue integration framework centered on a Spectral Pairwise INteraction (SPIN) module that captures cross-channel spatial correlations in the complex spectrogram domain to preserve full spatial information in multichannel signals. The input feature expressed in terms of spatial correlations is fused with a DoA clue represented as spherical harmonics (SH) encoding. The fusion is carried out across overlapping frequency subbands, inheriting the benefits reported in the previous band-split architectures. We also incorporate the iterative refinement strategy, chain-of-inference (CoI), in the TSE framework, which recursively fuses DoA with sound event activation estimated from the previous inference stage. Experiments demonstrate that SoundCompass, combining SPIN, SH embedding, and CoI, robustly extracts target sources across diverse signal classes and spatial configurations.
comment: 5 pages, 4 figures, accepted to ICASSP 2026
Temporal Lifting as Latent-Space Regularization for Continuous-Time Flow Models in AI Systems
We present a latent-space formulation of adaptive temporal lifting for continuous-time dynamical systems. The method introduces a smooth monotone mapping $t \mapsto τ(t)$ that regularizes near-singular behavior of the underlying flow while preserving its conservation laws. In the lifted coordinate, trajectories such as those of the incompressible Navier-Stokes equations on the torus $\mathbb{T}^3$ become globally smooth. From the standpoint of machine-learning dynamics, temporal lifting acts as a continuous-time normalization operator that can stabilize physics-informed neural networks and other latent-flow architectures used in AI systems. The framework links analytic regularity theory with representation-learning methods for stiff or turbulent processes.
comment: 7 pages, 1 figure, 1 table, 1 algorithm
Reasoning-Aware Proxy Reward Model using Process Mining
Recent advances in sparse reward policy gradient methods have enabled effective reinforcement learning (RL) for language models post-training. However, for reasoning tasks such as mathematical problem solving, binarized outcome rewards provide limited feedback on intermediate reasoning steps. While some studies have attempted to address this issue by estimating overall reasoning quality, it remains unclear whether these rewards are reliable proxies for the quality of stepwise reasoning. In this study, we consider reasoning as a structured process and propose \textbf{TACReward}, the reward model that can be seamlessly integrated into sparse reward policy gradient methods without additional human annotation costs or architectural modifications. TACReward aggregates stepwise structural deviations between teacher and policy reasoning using process mining techniques, producing a scalar output reward range of $[0, 1]$ to indicate reasoning quality. Experiments on multiple mathematical reasoning benchmarks demonstrate that integrating the TACReward into sparse reward frameworks encourages the policy model to improve the structural quality of reasoning. Consequently, this leads to consistent performance improvements over existing sparse reward frameworks. Our code and model are publicly available at \href{https://github.com/Thrillcrazyer/TACReward}{GitHub} and \href{https://huggingface.co/Thrillcrazyer/TACReward7B}{HuggingFace}
BootSeer: Analyzing and Mitigating Initialization Bottlenecks in Large-Scale LLM Training
Large Language Models (LLMs) have become a cornerstone of modern AI, driving breakthroughs in natural language processing and expanding into multimodal jobs involving images, audio, and video. As with most computational software, it is important to distinguish between ordinary runtime performance and startup overhead. Prior research has focused on runtime performance: improving training efficiency and stability. This work focuses instead on the increasingly critical issue of startup overhead in training: the delay before training jobs begin execution. Startup overhead is particularly important in large, industrial-scale LLMs, where failures occur more frequently and multiple teams operate in iterative update-debug cycles. In one of our training clusters, more than 3.5% of GPU time is wasted due to startup overhead alone. In this work, we present the first in-depth characterization of LLM training startup overhead based on real production data. We analyze the components of startup cost, quantify its direct impact, and examine how it scales with job size. These insights motivate the design of Bootseer, a system-level optimization framework that addresses three primary startup bottlenecks: (a) container image loading, (b) runtime dependency installation, and (c) model checkpoint resumption. To mitigate these bottlenecks, Bootseer introduces three techniques: (a) hot block record-and-prefetch, (b) dependency snapshotting, and (c) striped HDFS-FUSE. Bootseer has been deployed in a production environment and evaluated on real LLM training workloads, demonstrating a 50% reduction in startup overhead.
comment: 18 pages, 14 figures
$R^2$-CoD: Understanding Text-Graph Complementarity in Relational Reasoning via Knowledge Co-Distillation
Relational reasoning lies at the core of many NLP tasks, drawing on complementary signals from text and graphs. While prior research has investigated how to leverage this dual complementarity, a detailed and systematic understanding of text-graph interplay and its effect on hybrid models remains underexplored. We take an analysis-driven approach to investigate text-graph representation complementarity via a unified architecture that supports knowledge co-distillation (CoD). We explore five tasks involving relational reasoning that differ in how text and graph structures encode the information needed to solve that task. By tracking how these dual representations evolve during training, we uncover interpretable patterns of alignment and divergence, and provide insights into when and why their integration is beneficial.
Can We Trust LLM Detectors?
The rapid adoption of LLMs has increased the need for reliable AI text detection, yet existing detectors often fail outside controlled benchmarks. We systematically evaluate 2 dominant paradigms (training-free and supervised) and show that both are brittle under distribution shift, unseen generators, and simple stylistic perturbations. To address these limitations, we propose a supervised contrastive learning (SCL) framework that learns discriminative style embeddings. Experiments show that while supervised detectors excel in-domain, they degrade sharply out-of-domain, and training-free methods remain highly sensitive to proxy choice. Overall, our results expose fundamental challenges in building domain-agnostic detectors. Our code is available at: https://github.com/HARSHITJAIS14/DetectAI
Watermark-based Attribution of AI-Generated Content ICLR 2026
Several companies have deployed watermark-based detection to identify AI-generated content. However, attribution--the ability to trace back to the user of a generative AI (GenAI) service who created a given AI-generated content--remains largely unexplored despite its growing importance. In this work, we aim to bridge this gap by conducting the first systematic study on watermark-based, user-level attribution of AI-generated content. Our key idea is to assign a unique watermark to each user of the GenAI service and embed this watermark into the AI-generated content created by that user. Attribution is then performed by identifying the user whose watermark best matches the one extracted from the given content. This approach, however, faces a key challenge: How should watermarks be selected for users to maximize attribution performance? To address the challenge, we first theoretically derive lower bounds on detection and attribution performance through rigorous probabilistic analysis for any given set of user watermarks. Then, we select watermarks for users to maximize these lower bounds, thereby optimizing detection and attribution performance. Our theoretical and empirical results show that watermark-based attribution inherits both the accuracy and (non-)robustness properties of the underlying watermark. Specifically, attribution remains highly accurate when the watermarked AI-generated content is either not post-processed or subjected to common post-processing such as JPEG compression, as well as black-box adversarial post-processing with limited query budgets.
comment: Accepted by ICLR 2026
1-2-3 Check: Enhancing Contextual Privacy in LLM via Multi-Agent Reasoning
Addressing contextual privacy concerns remains challenging in interactive settings where large language models (LLMs) process information from multiple sources (e.g., summarizing meetings with private and public information). We introduce a multi-agent framework that decomposes privacy reasoning into specialized subtasks (extraction, classification), reducing the information load on any single agent while enabling iterative validation and more reliable adherence to contextual privacy norms. To understand how privacy errors emerge and propagate, we conduct a systematic ablation over information-flow topologies, revealing when and why upstream detection mistakes cascade into downstream leakage. Experiments on the ConfAIde and PrivacyLens benchmark with several open-source and closed-sourced LLMs demonstrate that our best multi-agent configuration substantially reduces private information leakage (\textbf{18\%} on ConfAIde and \textbf{19\%} on PrivacyLens with GPT-4o) while preserving the fidelity of public content, outperforming single-agent baselines. These results highlight the promise of principled information-flow design in multi-agent systems for contextual privacy with LLMs.
comment: Accepted at the International Association for AI Safety and Ethics AI (IASEAI) 2026
Panoramic Distortion-Aware Tokenization for Person Detection and Localization in Overhead Fisheye Images
Person detection in overhead fisheye images is challenging due to person rotation and small persons. Prior work has mainly addressed person rotation, leaving the small-person problem underexplored. We remap fisheye images to equirectangular panoramas to handle rotation and exploit panoramic geometry to handle small persons more effectively. Conventional detection methods tend to favor larger persons because they dominate the attention maps, causing smaller persons to be missed. In hemispherical equirectangular panoramas, we find that apparent person height decreases approximately linearly with the vertical angle near the top of the image. Using this finding, we introduce panoramic distortion-aware tokenization to enhance the detection of small persons. This tokenization procedure divides panoramic features using self-similar figures that enable the determination of optimal divisions without gaps, and we leverage the maximum significance values in each tile of the token groups to preserve the significance areas of smaller persons. We propose a transformer-based person detection and localization method that combines panoramic-image remapping and the tokenization procedure. Extensive experiments demonstrated that our method outperforms conventional methods on large-scale datasets.
Cluster Aggregated GAN (CAG): A Cluster-Based Hybrid Model for Appliance Pattern Generation
Synthetic appliance data are essential for developing non-intrusive load monitoring algorithms and enabling privacy preserving energy research, yet the scarcity of labeled datasets remains a significant barrier. Recent GAN-based methods have demonstrated the feasibility of synthesizing load patterns, but most existing approaches treat all devices uniformly within a single model, neglecting the behavioral differences between intermittent and continuous appliances and resulting in unstable training and limited output fidelity. To address these limitations, we propose the Cluster Aggregated GAN framework, a hybrid generative approach that routes each appliance to a specialized branch based on its behavioral characteristics. For intermittent appliances, a clustering module groups similar activation patterns and allocates dedicated generators for each cluster, ensuring that both common and rare operational modes receive adequate modeling capacity. Continuous appliances follow a separate branch that employs an LSTM-based generator to capture gradual temporal evolution while maintaining training stability through sequence compression. Extensive experiments on the UVIC smart plug dataset demonstrate that the proposed framework consistently outperforms baseline methods across metrics measuring realism, diversity, and training stability, and that integrating clustering as an active generative component substantially improves both interpretability and scalability. These findings establish the proposed framework as an effective approach for synthetic load generation in non-intrusive load monitoring research.
comment: 18pages, 5Figues
Adaptive Test-Time Training for Predicting Need for Invasive Mechanical Ventilation in Multi-Center Cohorts ICLR 2026
Accurate prediction of the need for invasive mechanical ventilation (IMV) in intensive care units (ICUs) patients is crucial for timely interventions and resource allocation. However, variability in patient populations, clinical practices, and electronic health record (EHR) systems across institutions introduces domain shifts that degrade the generalization performance of predictive models during deployment. Test-Time Training (TTT) has emerged as a promising approach to mitigate such shifts by adapting models dynamically during inference without requiring labeled target-domain data. In this work, we introduce Adaptive Test-Time Training (AdaTTT), an enhanced TTT framework tailored for EHR-based IMV prediction in ICU settings. We begin by deriving information-theoretic bounds on the test-time prediction error and demonstrate that it is constrained by the uncertainty between the main and auxiliary tasks. To enhance their alignment, we introduce a self-supervised learning framework with pretext tasks: reconstruction and masked feature modeling optimized through a dynamic masking strategy that emphasizes features critical to the main task. Additionally, to improve robustness against domain shifts, we incorporate prototype learning and employ Partial Optimal Transport (POT) for flexible, partial feature alignment while maintaining clinically meaningful patient representations. Experiments across multi-center ICU cohorts demonstrate competitive classification performance on different test-time adaptation benchmarks.
comment: ICLR 2026
Orca: Browsing at Scale Through User-Driven and AI-Facilitated Orchestration Across Malleable Webpages
Web-based activities span multiple webpages. However, conventional browsers with stacks of tabs cannot support operating and synthesizing large volumes of information across pages. While recent AI systems enable fully automated web browsing and information synthesis, they often diminish user agency and hinder contextual understanding. We explore how AI could instead augment user interactions with content across webpages and mitigate cognitive and manual efforts. Through literature on information tasks and web browsing challenges, and an iterative design process, we present novel interactions with our prototype web browser, Orca. Leveraging AI, Orca supports user-driven exploration, operation, organization, and synthesis of web content at scale. To enable browsing at scale, webpages are treated as malleable materials that humans and AI can collaboratively manipulate and compose into a malleable, dynamic, and browser-level workspace. Our evaluation revealed an increased "appetite" for information foraging, enhanced control, and more flexible sensemaking across a broader web information landscape.
Mask-GCG: Are All Tokens in Adversarial Suffixes Necessary for Jailbreak Attacks?
Jailbreak attacks on Large Language Models (LLMs) have demonstrated various successful methods whereby attackers manipulate models into generating harmful responses that they are designed to avoid. Among these, Greedy Coordinate Gradient (GCG) has emerged as a general and effective approach that optimizes the tokens in a suffix to generate jailbreakable prompts. While several improved variants of GCG have been proposed, they all rely on fixed-length suffixes. However, the potential redundancy within these suffixes remains unexplored. In this work, we propose Mask-GCG, a plug-and-play method that employs learnable token masking to identify impactful tokens within the suffix. Our approach increases the update probability for tokens at high-impact positions while pruning those at low-impact positions. This pruning not only reduces redundancy but also decreases the size of the gradient space, thereby lowering computational overhead and shortening the time required to achieve successful attacks compared to GCG. We evaluate Mask-GCG by applying it to the original GCG and several improved variants. Experimental results show that most tokens in the suffix contribute significantly to attack success, and pruning a minority of low-impact tokens does not affect the loss values or compromise the attack success rate (ASR), thereby revealing token redundancy in LLM prompts. Our findings provide insights for developing efficient and interpretable LLMs from the perspective of jailbreak attacks.
comment: Accepted to ICASSP 2026
COMMUNITYNOTES: A Dataset for Exploring the Helpfulness of Fact-Checking Explanations
Fact-checking on major platforms, such as X, Meta, and TikTok, is shifting from expert-driven verification to a community-based setup, where users contribute explanatory notes to clarify why a post might be misleading. An important challenge here is determining whether an explanation is helpful for understanding real-world claims and the reasons why, which remains largely underexplored in prior research. In practice, most community notes remain unpublished due to slow community annotation, and the reasons for helpfulness lack clear definitions. To bridge these gaps, we introduce the task of predicting both the helpfulness of explanatory notes and the reason for this. We present COMMUNITYNOTES, a large-scale multilingual dataset of 104k posts with user-provided notes and helpfulness labels. We further propose a framework that automatically generates and improves reason definitions via automatic prompt optimization, and integrate them into prediction. Our experiments show that the optimized definitions can improve both helpfulness and reason prediction. Finally, we show that the helpfulness information is beneficial for existing fact-checking systems.
comment: EACL 2026 Findings
ShareChat: A Dataset of Chatbot Conversations in the Wild
While academic research typically treats Large Language Models (LLM) as generic text generators, they are distinct commercial products with unique interfaces and capabilities that fundamentally shape user behavior. Current datasets obscure this reality by collecting text-only data through uniform interfaces that fail to capture authentic chatbot usage. To address this limitation, we present ShareChat, a large-scale corpus of 142,808 conversations (660,293 turns) sourced directly from publicly shared URLs on ChatGPT, Perplexity, Grok, Gemini, and Claude. ShareChat distinguishes itself by preserving native platform affordances, such as citations and thinking traces, across a diverse collection covering 101 languages and the period from April 2023 to October 2025. Furthermore, ShareChat offers substantially longer context windows and greater interaction depth than prior datasets. To illustrate the dataset's breadth, we present three case studies: a completeness analysis of intent satisfaction, a citation study of model grounding, and a temporal analysis of engagement rhythms. This work provides the community with a vital and timely resource for understanding authentic user-LLM chatbot interactions in the wild. The dataset is publicly available via Hugging Face.
Spatiotemporal Semantic V2X Framework for Cooperative Collision Prediction
Intelligent Transportation Systems (ITS) demand real-time collision prediction to ensure road safety and reduce accident severity. Conventional approaches rely on transmitting raw video or high-dimensional sensory data from roadside units (RSUs) to vehicles, which is impractical under vehicular communication bandwidth and latency constraints. In this work, we propose a semantic V2X framework in which RSU-mounted cameras generate spatiotemporal semantic embeddings of future frames using the Video Joint Embedding Predictive Architecture (V-JEPA). To evaluate the system, we construct a digital twin of an urban traffic environment enabling the generation of d verse traffic scenarios with both safe and collision events. These embeddings of the future frame, extracted from V-JEPA, capture task-relevant traffic dynamics and are transmitted via V2X links to vehicles, where a lightweight attentive probe and classifier decode them to predict imminent collisions. By transmitting only semantic embeddings instead of raw frames, the proposed system significantly reduces communication overhead while maintaining predictive accuracy. Experimental results demonstrate that the framework with an appropriate processing method achieves a 10% F1-score improvement for collision prediction while reducing transmission requirements by four orders of magnitude compared to raw video. This validates the potential of semantic V2X communication to enable cooperative, real-time collision prediction in ITS.
comment: 6 pages 5 figures, accepted to IEEE ICC 2026
Geometric Scaling of Bayesian Inference in LLMs
Recent work has shown that small transformers trained in controlled "wind-tunnel'' settings can implement exact Bayesian inference, and that their training dynamics produce a geometric substrate -- low-dimensional value manifolds and progressively orthogonal keys -- that encodes posterior structure. We investigate whether this geometric signature persists in production-grade language models. Across Pythia, Phi-2, Llama-3, and Mistral families, we find that last-layer value representations organize along a single dominant axis whose position strongly correlates with predictive entropy, and that domain-restricted prompts collapse this structure into the same low-dimensional manifolds observed in synthetic settings. To probe the role of this geometry, we perform targeted interventions on the entropy-aligned axis of Pythia-410M during in-context learning. Removing or perturbing this axis selectively disrupts the local uncertainty geometry, whereas matched random-axis interventions leave it intact. However, these single-layer manipulations do not produce proportionally specific degradation in Bayesian-like behavior, indicating that the geometry is a privileged readout of uncertainty rather than a singular computational bottleneck. Taken together, our results show that modern language models preserve the geometric substrate that enables Bayesian inference in wind tunnels, and organize their approximate Bayesian updates along this substrate.
comment: Added domain restriction confound caveat. Threshold justification anchored to wind-tunnel baselines. Strengthened content-based routing connection to Mamba. Improved trilogy framing in conclusion (which/how/that structure)
The Bayesian Geometry of Transformer Attention
Transformers often appear to perform Bayesian reasoning in context, but verifying this rigorously has been impossible: natural data lack analytic posteriors, and large models conflate reasoning with memorization. We address this by constructing \emph{Bayesian wind tunnels} -- controlled environments where the true posterior is known in closed form and memorization is provably impossible. In these settings, small transformers reproduce Bayesian posteriors with $10^{-3}$-$10^{-4}$ bit accuracy, while capacity-matched MLPs fail by orders of magnitude, establishing a clear architectural separation. Across two tasks -- bijection elimination and Hidden Markov Model (HMM) state tracking -- we find that transformers implement Bayesian inference through a consistent geometric mechanism: residual streams serve as the belief substrate, feed-forward networks perform the posterior update, and attention provides content-addressable routing. Geometric diagnostics reveal orthogonal key bases, progressive query-key alignment, and a low-dimensional value manifold parameterized by posterior entropy. During training this manifold unfurls while attention patterns remain stable, a \emph{frame-precision dissociation} predicted by recent gradient analyses. Taken together, these results demonstrate that hierarchical attention realizes Bayesian inference by geometric design, explaining both the necessity of attention and the failure of flat architectures. Bayesian wind tunnels provide a foundation for mechanistically connecting small, verifiable systems to reasoning phenomena observed in large language models.
comment: Added inference primitives taxonomy (accumulation, transport, binding). New associative recall task. Complete Mamba/LSTM comparison with multi-seed results. KL/TVD verification table. Mamba 5-cluster geometry analysis. Layer/head ablation figures. Content-based routing as unifying principle
Gradient Dynamics of Attention: How Cross-Entropy Sculpts Bayesian Manifolds
Transformers empirically perform precise probabilistic reasoning in carefully constructed ``Bayesian wind tunnels'' and in large-scale language models, yet the mechanisms by which gradient-based learning creates the required internal geometry remain opaque. We provide a complete first-order analysis of how cross-entropy training reshapes attention scores and value vectors in a transformer attention head. Our core result is an \emph{advantage-based routing law} for attention scores, \[ \frac{\partial L}{\partial s_{ij}} = α_{ij}\bigl(b_{ij}-\mathbb{E}_{α_i}[b]\bigr), \qquad b_{ij} := u_i^\top v_j, \] coupled with a \emph{responsibility-weighted update} for values, \[ Δv_j = -η\sum_i α_{ij} u_i, \] where $u_i$ is the upstream gradient at position $i$ and $α_{ij}$ are attention weights. These equations induce a positive feedback loop in which routing and content specialize together: queries route more strongly to values that are above-average for their error signal, and those values are pulled toward the queries that use them. We show that this coupled specialization behaves like a two-timescale EM procedure: attention weights implement an E-step (soft responsibilities), while values implement an M-step (responsibility-weighted prototype updates), with queries and keys adjusting the hypothesis frame. Through controlled simulations, including a sticky Markov-chain task where we compare a closed-form EM-style update to standard SGD, we demonstrate that the same gradient dynamics that minimize cross-entropy also sculpt the low-dimensional manifolds identified in our companion work as implementing Bayesian inference. This yields a unified picture in which optimization (gradient flow) gives rise to geometry (Bayesian manifolds), which in turn supports function (in-context probabilistic reasoning).
comment: Added abstract framework for content-based value routing with formal definition. LSTM counterexample explaining why gates is not equal to content-based routing. Multi-seed EM vs SGD experiments. Lemma 2 framing connecting to Paper I's primitives
SimBench: A Framework for Evaluating and Diagnosing LLM-Based Digital-Twin Generation for Multi-Physics Simulation
We introduce SimBench, a benchmark designed to evaluate the proficiency of simulator-oriented LLMs (S-LLMs) in generating digital twins (DTs) that can be used in simulators for virtual testing. Given a collection of S-LLMs, this benchmark ranks them according to their ability to produce high-quality DTs. We demonstrate this by comparing over 33 open- and closed-source S-LLMs. Using multi-turn interactions, SimBench employs an LLM-as-a-judge (J-LLM) that leverages both predefined rules and human-in-the-loop guidance to assign scores for the DTs generated by the S-LLM, thus providing a consistent and expert-inspired evaluation protocol. The J-LLM is specific to a simulator, and herein the proposed benchmarking approach is demonstrated in conjunction with the open-sourceChrono multi-physics simulator. Chrono provided the backdrop used to assess an S-LLM in relation to the latter's ability to create digital twins for multibody dynamics, finite element analysis, vehicle dynamics, robotic dynamics, and sensor simulations. The proposed benchmarking principle is broadly applicable and enables the assessment of an S-LLM's ability to generate digital twins for other simulation packages, e.g., ANSYS, ABAQUS, OpenFOAM, StarCCM+, IsaacSim, and pyBullet.
Cognition Envelopes for Bounded AI Reasoning in Autonomous UAS Operations
Cyber-physical systems increasingly rely on Foundational Models such as Large Language Models (LLMs) and Vision-Language Models (VLMs) to increase autonomy through enhanced perception, inference, and planning. However, these models also introduce new types of errors, such as hallucinations, overgeneralizations, and context misalignments, resulting in incorrect and flawed decisions. To address this, we introduce the concept of Cognition Envelopes, designed to establish reasoning boundaries that constrain AI-generated decisions while complementing the use of meta-cognition and traditional safety envelopes. As with safety envelopes, Cognition Envelopes require practical guidelines and systematic processes for their definition, validation, and assurance.
comment: 12 pages, 9 figures
Randomly Wrong Signals: Bayesian Auction Design with ML Predictions
We study auction design when a seller relies on machine-learning predictions of bidders' valuations that may be unreliable. Motivated by modern ML systems that are often accurate but occasionally fail in a way that is essentially uninformative, we model predictions as randomly wrong: with high probability the signal equals the bidder's true value, and otherwise it is a hallucination independent of the value. We analyze revenue-maximizing auctions when the seller publicly reveals these signals. A central difficulty is that the resulting posterior belief combines a continuous distribution with a point mass at the signal, so standard Myerson techniques do not directly apply. We provide a tractable characterization of the optimal signal-revealing auction by providing a closed-form characterization of the appropriate ironed virtual values. This characterization yields simple and intuitive implications. With a single bidder, the optimal mechanism reduces to a posted-price policy with a small number of regimes: the seller ignores low signals, follows intermediate signals, caps moderately high signals, and may again follow very high signals. With multiple bidders, we show that a simple eager second-price auction with signal-dependent reserve prices performs nearly optimally in numerical experiments and substantially outperforms natural benchmarks that either ignore the signal or treat it as fully reliable.
Learning Linearity in Audio Consistency Autoencoders via Implicit Regularization
Audio autoencoders learn useful, compressed audio representations, but their non-linear latent spaces prevent intuitive algebraic manipulation such as mixing or scaling. We introduce a simple training methodology to induce linearity in a high-compression Consistency Autoencoder (CAE) by using data augmentation, thereby inducing homogeneity (equivariance to scalar gain) and additivity (the decoder preserves addition) without altering the model's architecture or loss function. When trained with our method, the CAE exhibits linear behavior in both the encoder and decoder while preserving reconstruction fidelity. We test the practical utility of our learned space on music source composition and separation via simple latent arithmetic. This work presents a straightforward technique for constructing structured latent spaces, enabling more intuitive and efficient audio processing.
In-context Language Learning for Endangered Languages in Speech Recognition
With approximately 7,000 languages spoken worldwide, current large language models (LLMs) support only a small subset. Prior research indicates LLMs can learn new languages for certain tasks without supervised data. We extend this investigation to speech recognition, investigating whether LLMs can learn unseen, low-resource languages through in-context learning (ICL). With experiments on four diverse endangered languages that LLMs have not been trained on, we find that providing more relevant text samples enhances performance in both language modelling and Automatic Speech Recognition (ASR) tasks. Furthermore, we show that the probability-based approach outperforms the traditional instruction-based approach in language learning. Lastly, we show ICL enables LLMs to achieve ASR performance that is comparable to or even surpasses dedicated language models trained specifically for these languages, while preserving the original capabilities of the LLMs. Our code is publicly available.
comment: Interspeech2025
Epistemic Constitutionalism Or: how to avoid coherence bias
Large language models increasingly function as artificial reasoners: they evaluate arguments, assign credibility, and express confidence. Yet their belief-forming behavior is governed by implicit, uninspected epistemic policies. This paper argues for an epistemic constitution for AI: explicit, contestable meta-norms that regulate how systems form and express beliefs. Source attribution bias provides the motivating case: I show that frontier models enforce identity-stance coherence, penalizing arguments attributed to sources whose expected ideological position conflicts with the argument's content. When models detect systematic testing, these effects collapse, revealing that systems treat source-sensitivity as bias to suppress rather than as a capacity to execute well. I distinguish two constitutional approaches: the Platonic, which mandates formal correctness and default source-independence from a privileged standpoint, and the Liberal, which refuses such privilege, specifying procedural norms that protect conditions for collective inquiry while allowing principled source-attending grounded in epistemic vigilance. I argue for the Liberal approach, sketch a constitutional core of eight principles and four orientations, and propose that AI epistemic governance requires the same explicit, contestable structure we now expect for AI ethics.
comment: 27 pages, 7 tables. Data: github.com/MicheleLoi/source-attribution-bias-data and github.com/MicheleLoi/source-attribution-bias-swiss-replication. Complete AI-assisted writing documentation: github.com/MicheleLoi/epistemic-constitutionalism-paper
NoWag: A Unified Framework for Shape Preserving Compression of Large Language Models
Large language models (LLMs) exhibit remarkable performance across various natural language processing tasks but suffer from immense computational and memory demands, limiting their deployment in resource-constrained environments. To address this challenge, we propose NoWag (Normalized Weight and Activation Guided Compression), a unified framework for one-shot shape preserving compression algorithms. We apply NoWag to compress Llama-2 (7B, 13B, 70B) and Llama-3 (8B, 70B) models using two popular shape-preserving techniques: vector quantization (NoWag-VQ) and unstructured/semi-structured pruning (NoWag-P). Our results show that NoWag-VQ significantly outperforms state-of-the-art one-shot vector quantization methods, while NoWag-P performs competitively against leading pruning techniques. These findings highlight underlying commonalities between these compression paradigms and suggest promising directions for future research. Our code is available at https://github.com/LawrenceRLiu/NoWag
LAPS: A Length-Aware-Prefill LLM Serving System
LAPS identifies and disaggregates requests with different prompt lengths in LLM serving to reduce TTFT latency. While recent systems have decoupled the prefill and decode stages to improve throughput, they still rely on unified scheduling policies that fail to adapt to heterogeneous workload characteristics. We observe that prompt-length variations lead to distinct performance bottlenecks, motivating an adaptive scheduling strategy. LAPS disaggregates multi-turn long-prefill requests from short-prefill ones and introduces a length-aware smart batching mechanism for short-prefill workloads. It adopts a dual-queue design that supports temporal disaggregation on a single prefill instance or spatial disaggregation across multiple instances. For short-prefill batches, a batch waiting window and CUDA Graph-based clustering mitigate interference from heterogeneous computation, reducing batching delay and lowering average latency. In real multi-turn workloads, LAPS reduces prefill latency by over 30\% compared to vanilla SGLang under prefill-decode disaggregation, and further decreases SLO violations by 28\% in multi-instance deployments with vanilla data-parallel configuration. Compared to the SGLang router with load balancing, it further lowers SLO violations by 12\% in multi-GPU settings. Under high concurrency and mixed-request scenarios, LAPS improves request throughput by 35\% serving Qwen2.5-32B model for prefill instance, demonstrating its effectiveness in optimizing heterogeneous LLM serving workloads.
comment: 12 pages
An Actionable Framework for Assessing Bias and Fairness in Large Language Model Use Cases
Bias and fairness risks in Large Language Models (LLMs) vary substantially across deployment contexts, yet existing approaches lack systematic guidance for selecting appropriate evaluation metrics. We present a decision framework that maps LLM use cases, characterized by a model and population of prompts, to relevant bias and fairness metrics based on task type, whether prompts contain protected attribute mentions, and stakeholder priorities. Our framework addresses toxicity, stereotyping, counterfactual unfairness, and allocational harms, and introduces novel metrics based on stereotype classifiers and counterfactual adaptations of text similarity measures. All metrics require only LLM outputs for computation, simplifying implementation while avoiding embedding-based approaches that often correlate poorly with downstream harms. We provide an open-source Python library, LangFair, for practical adoption. Extensive experiments demonstrate that fairness risks cannot be reliably assessed from benchmark performance alone: results on one prompt dataset likely overstate or understate risks for another, underscoring that fairness evaluation must be grounded in the specific deployment context.
comment: LangFair repository: https://github.com/cvs-health/langfair
Machine Learning 285
Self-Distillation Enables Continual Learning
Continual learning, enabling models to acquire new skills and knowledge without degrading existing capabilities, remains a fundamental challenge for foundation models. While on-policy reinforcement learning can reduce forgetting, it requires explicit reward functions that are often unavailable. Learning from expert demonstrations, the primary alternative, is dominated by supervised fine-tuning (SFT), which is inherently off-policy. We introduce Self-Distillation Fine-Tuning (SDFT), a simple method that enables on-policy learning directly from demonstrations. SDFT leverages in-context learning by using a demonstration-conditioned model as its own teacher, generating on-policy training signals that preserve prior capabilities while acquiring new skills. Across skill learning and knowledge acquisition tasks, SDFT consistently outperforms SFT, achieving higher new-task accuracy while substantially reducing catastrophic forgetting. In sequential learning experiments, SDFT enables a single model to accumulate multiple skills over time without performance regression, establishing on-policy distillation as a practical path to continual learning from demonstrations.
Post-LayerNorm Is Back: Stable, ExpressivE, and Deep
Large language model (LLM) scaling is hitting a wall. Widening models yields diminishing returns, and extending context length does not improve fundamental expressivity. In contrast, depth scaling offers theoretically superior expressivity, yet current Transformer architectures struggle to train reliably at extreme depths. We revisit the Post-LayerNorm (Post-LN) formulation, whose instability at scale caused its replacement by Pre-LN in modern LLMs. We show that the central failure mode of Post-LN arises from the ResNet-style residual pathway, which introduces gradient vanishing in deep networks. We present Keel, a Post-LN Transformer that replaces this residual path with a Highway-style connection. This modification preserves the gradient flow through the residual branch, preventing signal vanishing from the top layers to the bottom. Unlike prior methods, Keel enables stable training at extreme depths without requiring specialized initialization or complex optimization tricks. Keel trains robustly at depths exceeding 1000 layers and consistently improves perplexity and depth-scaling characteristics over Pre-LN. These findings indicate that Post-LN, when paired with a Highway-style connection, provides a simple and effective foundation for building deeply scalable LLMs, opening the possibility for future infinite-depth architectures.
M-SGWR: Multiscale Similarity and Geographically Weighted Regression
The first law of geography is a cornerstone of spatial analysis, emphasizing that nearby and related locations tend to be more similar, however, defining what constitutes "near" and "related" remains challenging, as different phenomena exhibit distinct spatial patterns. Traditional local regression models, such as Geographically Weighted Regression (GWR) and Multiscale GWR (MGWR), quantify spatial relationships solely through geographic proximity. In an era of globalization and digital connectivity, however, geographic proximity alone may be insufficient to capture how locations are interconnected. To address this limitation, we propose a new multiscale local regression framework, termed M-SGWR, which characterizes spatial interaction across two dimensions: geographic proximity and attribute (variable) similarity. For each predictor, geographic and attribute-based weight matrices are constructed separately and then combined using an optimized parameter, alpha, which governs their relative contribution to local model fitting. Analogous to variable-specific bandwidths in MGWR, the optimal alpha varies by predictor, allowing the model to flexibly account for geographic, mixed, or non-spatial (remote similarity) effects. Results from two simulation experiments and one empirical application demonstrate that M-SGWR consistently outperforms GWR, SGWR, and MGWR across all goodness-of-fit metrics.
SONIC: Spectral Oriented Neural Invariant Convolutions ICLR 2026
Convolutional Neural Networks (CNNs) rely on fixed-size kernels scanning local patches, which limits their ability to capture global context or long-range dependencies without very deep architectures. Vision Transformers (ViTs), in turn, provide global connectivity but lack spatial inductive bias, depend on explicit positional encodings, and remain tied to the initial patch size. Bridging these limitations requires a representation that is both structured and global. We introduce SONIC (Spectral Oriented Neural Invariant Convolutions), a continuous spectral parameterisation that models convolutional operators using a small set of shared, orientation-selective components. These components define smooth responses across the full frequency domain, yielding global receptive fields and filters that adapt naturally across resolutions. Across synthetic benchmarks, large-scale image classification, and 3D medical datasets, SONIC shows improved robustness to geometric transformations, noise, and resolution shifts, and matches or exceeds convolutional, attention-based, and prior spectral architectures with an order of magnitude fewer parameters. These results demonstrate that continuous, orientation-aware spectral parameterisations provide a principled and scalable alternative to conventional spatial and spectral operators.
comment: 10 pages, 4 figures. Accepted at ICLR 2026
RHSIA: Real-time Hemodynamics Surrogation for Non-idealized Intracranial Aneurysms
Extensive studies suggested that fluid mechanical markers of intracranial aneurysms (IAs) derived from Computational Fluid Dynamics (CFD) can indicate disease progression risks, but to date this has not been translated clinically. This is because CFD requires specialized expertise and is time-consuming and low throughput, making it difficult to support clinical trials. A deep learning model that maps IA morphology to biomechanical markers can address this, enabling physicians to obtain these markers in real time without performing CFD. Here, we show that a Graph Transformer model that incorporates temporal information, which is supervised by large CFD data, can accurately predict Wall Shear Stress (WSS) across the cardiac cycle from IA surface meshes. The model effectively captures the temporal variations of the WSS pattern, achieving a Structural Similarity Index (SSIM) of up to 0.981 and a maximum-based relative L2 error of 2.8%. Ablation studies and SOTA comparison confirmed its optimality. Further, as pulsatile CFD data is computationally expensive to generate and sample sizes are limited, we engaged a strategy of injecting a large amount of steady-state CFD data, which are extremely low-cost to generate, as augmentation. This approach enhances network performance substantially when pulsatile CFD data sample size is small. Our study provides a proof of concept that temporal sequences cardiovascular fluid mechanical parameters can be computed in real time using a deep learning model from the geometric mesh, and this is achievable even with small pulsatile CFD sample size. Our approach is likely applicable to other cardiovascular scenarios.
Bandits in Flux: Adversarial Constraints in Dynamic Environments AISTATS 2026
We investigate the challenging problem of adversarial multi-armed bandits operating under time-varying constraints, a scenario motivated by numerous real-world applications. To address this complex setting, we propose a novel primal-dual algorithm that extends online mirror descent through the incorporation of suitable gradient estimators and effective constraint handling. We provide theoretical guarantees establishing sublinear dynamic regret and sublinear constraint violation for our proposed policy. Our algorithm achieves state-of-the-art performance in terms of both regret and constraint violation. Empirical evaluations demonstrate the superiority of our approach.
comment: Accepted to AISTATS 2026
Calibration without Ground Truth
Villalobos et al. [2024] predict that publicly available human text will be exhausted within the next decade. Thus, improving models without access to ground-truth labels becomes increasingly important. We propose a label-free post-processing framework that improves a strong but miscalibrated model using a weaker yet better-calibrated reference. Our framework guarantees a strict performance improvement under any proper loss. Our approach is based on a characterization of when strict improvement is possible: when the strong and reference models are not mutually calibrated. We formalize this condition, connect it to arbitrage and no-trade results from economics, and develop an efficient Bregman projection algorithm that guarantees worst-case loss reduction without labels. Experiments on representative LLMs across varying scales demonstrate that our label-free method significantly reduces proper losses and calibration errors, achieving performance competitive with supervised baselines.
Generative Latent Alignment for Interpretable Radar Based Occupancy Detection in Ambient Assisted Living
In this work, we study how to make mmWave radar presence detection more interpretable for Ambient Assisted Living (AAL) settings, where camera-based sensing raises privacy concerns. We propose a Generative Latent Alignment (GLA) framework that combines a lightweight convolutional variational autoencoder with a frozen CLIP text encoder to learn a low-dimensional latent representation of radar Range-Angle (RA) heatmaps. The latent space is softly aligned with two semantic anchors corresponding to "empty room" and "person present", and Grad-CAM is applied in this aligned latent space to visualize which spatial regions support each presence decision. On our mmWave radar dataset, we qualitatively observe that the "person present" class produces compact Grad-CAM blobs that coincide with strong RA returns, whereas "empty room" samples yield diffuse or no evidence. We also conduct an ablation study using unrelated text prompts, which degrades both reconstruction and localization, suggesting that radar-specific anchors are important for meaningful explanations in this setting.
A Multi-directional Meta-Learning Framework for Class-Generalizable Anomaly Detection
In this paper, we address the problem of class-generalizable anomaly detection, where the objective is to develop a unified model by focusing our learning on the available normal data and a small amount of anomaly data in order to detect the completely unseen anomalies, also referred to as the out-of-distribution (OOD) classes. Adding to this challenge is the fact that the anomaly data is rare and costly to label. To achieve this, we propose a multidirectional meta-learning algorithm -- at the inner level, the model aims to learn the manifold of the normal data (representation); at the outer level, the model is meta-tuned with a few anomaly samples to maximize the softmax confidence margin between the normal and anomaly samples (decision surface calibration), treating normals as in-distribution (ID) and anomalies as out-of-distribution (OOD). By iteratively repeating this process over multiple episodes of predominantly normal and a small number of anomaly samples, we realize a multidirectional meta-learning framework. This two-level optimization, enhanced by multidirectional training, enables stronger generalization to unseen anomaly classes.
Neural Neural Scaling Laws
Neural scaling laws predict how language model performance improves with increased compute. While aggregate metrics like validation loss can follow smooth power-law curves, individual downstream tasks exhibit diverse scaling behaviors: some improve monotonically, others plateau, and some even degrade with scale. We argue that predicting downstream performance from validation perplexity suffers from two limitations: averaging token-level losses obscures signal, and no simple parametric family can capture the full spectrum of scaling behaviors. To address this, we propose Neural Neural Scaling Laws (NeuNeu), a neural network that frames scaling law prediction as time-series extrapolation. NeuNeu combines temporal context from observed accuracy trajectories with token-level validation losses, learning to predict future performance without assuming any bottleneck or functional form. Trained entirely on open-source model checkpoints from HuggingFace, NeuNeu achieves 2.04% mean absolute error in predicting model accuracy on 66 downstream tasks -- a 38% reduction compared to logistic scaling laws (3.29% MAE). Furthermore, NeuNeu generalizes zero-shot to unseen model families, parameter counts, and downstream tasks. Our work suggests that predicting downstream scaling laws directly from data outperforms parametric alternatives.
Learn and Verify: A Framework for Rigorous Verification of Physics-Informed Neural Networks
The numerical solution of differential equations using neural networks has become a central topic in scientific computing, with Physics-Informed Neural Networks (PINNs) emerging as a powerful paradigm for both forward and inverse problems. However, unlike classical numerical methods that offer established convergence guarantees, neural network-based approximations typically lack rigorous error bounds. Furthermore, the non-deterministic nature of their optimization makes it difficult to mathematically certify their accuracy. To address these challenges, we propose a "Learn and Verify" framework that provides computable, mathematically rigorous error bounds for the solutions of differential equations. By combining a novel Doubly Smoothed Maximum (DSM) loss for training with interval arithmetic for verification, we compute rigorous a posteriori error bounds as machine-verifiable proofs. Numerical experiments on nonlinear Ordinary Differential Equations (ODEs), including problems with time-varying coefficients and finite-time blow-up, demonstrate that the proposed framework successfully constructs rigorous enclosures of the true solutions, establishing a foundation for trustworthy scientific machine learning.
comment: 13 pages, 10 figures
Revisiting Incremental Stochastic Majorization-Minimization Algorithms with Applications to Mixture of Experts
Processing high-volume, streaming data is increasingly common in modern statistics and machine learning, where batch-mode algorithms are often impractical because they require repeated passes over the full dataset. This has motivated incremental stochastic estimation methods, including the incremental stochastic Expectation-Maximization (EM) algorithm formulated via stochastic approximation. In this work, we revisit and analyze an incremental stochastic variant of the Majorization-Minimization (MM) algorithm, which generalizes incremental stochastic EM as a special case. Our approach relaxes key EM requirements, such as explicit latent-variable representations, enabling broader applicability and greater algorithmic flexibility. We establish theoretical guarantees for the incremental stochastic MM algorithm, proving consistency in the sense that the iterates converge to a stationary point characterized by a vanishing gradient of the objective. We demonstrate these advantages on a softmax-gated mixture of experts (MoE) regression problem, for which no stochastic EM algorithm is available. Empirically, our method consistently outperforms widely used stochastic optimizers, including stochastic gradient descent, root mean square propagation, adaptive moment estimation, and second-order clipped stochastic optimization. These results support the development of new incremental stochastic algorithms, given the central role of softmax-gated MoE architectures in contemporary deep neural networks for heterogeneous data modeling. Beyond synthetic experiments, we also validate practical effectiveness on two real-world datasets, including a bioinformatics study of dent maize genotypes under drought stress that integrates high-dimensional proteomics with ecophysiological traits, where incremental stochastic MM yields stable gains in predictive performance.
comment: TrungKhang Tran and TrungTin Nguyen are co-first authors
Unsupervised Learning of Efficient Exploration: Pre-training Adaptive Policies via Self-Imposed Goals ICLR 2026
Unsupervised pre-training can equip reinforcement learning agents with prior knowledge and accelerate learning in downstream tasks. A promising direction, grounded in human development, investigates agents that learn by setting and pursuing their own goals. The core challenge lies in how to effectively generate, select, and learn from such goals. Our focus is on broad distributions of downstream tasks where solving every task zero-shot is infeasible. Such settings naturally arise when the target tasks lie outside of the pre-training distribution or when their identities are unknown to the agent. In this work, we (i) optimize for efficient multi-episode exploration and adaptation within a meta-learning framework, and (ii) guide the training curriculum with evolving estimates of the agent's post-adaptation performance. We present ULEE, an unsupervised meta-learning method that combines an in-context learner with an adversarial goal-generation strategy that maintains training at the frontier of the agent's capabilities. On XLand-MiniGrid benchmarks, ULEE pre-training yields improved exploration and adaptation abilities that generalize to novel objectives, environment dynamics, and map structures. The resulting policy attains improved zero-shot and few-shot performance, and provides a strong initialization for longer fine-tuning processes. It outperforms learning from scratch, DIAYN pre-training, and alternative curricula.
comment: To appear at ICLR 2026
Component-Aware Pruning Framework for Neural Network Controllers via Gradient-Based Importance Estimation
The transition from monolithic to multi-component neural architectures in advanced neural network controllers poses substantial challenges due to the high computational complexity of the latter. Conventional model compression techniques for complexity reduction, such as structured pruning based on norm-based metrics to estimate the relative importance of distinct parameter groups, often fail to capture functional significance. This paper introduces a component-aware pruning framework that utilizes gradient information to compute three distinct importance metrics during training: Gradient Accumulation, Fisher Information, and Bayesian Uncertainty. Experimental results with an autoencoder and a TD-MPC agent demonstrate that the proposed framework reveals critical structural dependencies and dynamic shifts in importance that static heuristics often miss, supporting more informed compression decisions.
comment: 8 pages, Submitted to the 2026 IFAC World Congress
To Grok Grokking: Provable Grokking in Ridge Regression
We study grokking, the onset of generalization long after overfitting, in a classical ridge regression setting. We prove end-to-end grokking results for learning over-parameterized linear regression models using gradient descent with weight decay. Specifically, we prove that the following stages occur: (i) the model overfits the training data early during training; (ii) poor generalization persists long after overfitting has manifested; and (iii) the generalization error eventually becomes arbitrarily small. Moreover, we show, both theoretically and empirically, that grokking can be amplified or eliminated in a principled manner through proper hyperparameter tuning. To the best of our knowledge, these are the first rigorous quantitative bounds on the generalization delay (which we refer to as the "grokking time") in terms of training hyperparameters. Lastly, going beyond the linear setting, we empirically demonstrate that our quantitative bounds also capture the behavior of grokking on non-linear neural networks. Our results suggest that grokking is not an inherent failure mode of deep learning, but rather a consequence of specific training conditions, and thus does not require fundamental changes to the model architecture or learning algorithm to avoid.
Knowledge-Aware Evolution for Streaming Federated Continual Learning with Category Overlap and without Task Identifiers
Federated Continual Learning (FCL) leverages inter-client collaboration to balance new knowledge acquisition and prior knowledge retention in non-stationary data. However, existing batch-based FCL methods lack adaptability to streaming scenarios featuring category overlap between old and new data and absent task identifiers, leading to indistinguishability of old and new knowledge, uncertain task assignments for samples, and knowledge confusion.To address this, we propose streaming federated continual learning setting: per federated learning (FL) round, clients process streaming data with disjoint samples and potentially overlapping categories without task identifiers, necessitating sustained inference capability for all prior categories after each FL round.Next, we introduce FedKACE: 1) an adaptive inference model switching mechanism that enables unidirectional switching from local model to global model to achieve a trade-off between personalization and generalization; 2) a adaptive gradient-balanced replay scheme that reconciles new knowledge learning and old knowledge retention under overlapping-class scenarios; 3) a kernel spectral boundary buffer maintenance that preserves high-information and high-boundary-influence samples to optimize cross-round knowledge retention. Experiments across multiple scenarios and regret analysis demonstrate the effectiveness of FedKACE.
GAVEL: Towards rule-based safety through activation monitoring ICLR 2026
Large language models (LLMs) are increasingly paired with activation-based monitoring to detect and prevent harmful behaviors that may not be apparent at the surface-text level. However, existing activation safety approaches, trained on broad misuse datasets, struggle with poor precision, limited flexibility, and lack of interpretability. This paper introduces a new paradigm: rule-based activation safety, inspired by rule-sharing practices in cybersecurity. We propose modeling activations as cognitive elements (CEs), fine-grained, interpretable factors such as ''making a threat'' and ''payment processing'', that can be composed to capture nuanced, domain-specific behaviors with higher precision. Building on this representation, we present a practical framework that defines predicate rules over CEs and detects violations in real time. This enables practitioners to configure and update safeguards without retraining models or detectors, while supporting transparency and auditability. Our results show that compositional rule-based activation safety improves precision, supports domain customization, and lays the groundwork for scalable, interpretable, and auditable AI governance. We will release GAVEL as an open-source framework and provide an accompanying automated rule creation tool.
comment: Accepted to ICLR 2026
The Effect of Architecture During Continual Learning
Continual learning is a challenge for models with static architecture, as they fail to adapt to when data distributions evolve across tasks. We introduce a mathematical framework that jointly models architecture and weights in a Sobolev space, enabling a rigorous investigation into the role of neural network architecture in continual learning and its effect on the forgetting loss. We derive necessary conditions for the continual learning solution and prove that learning only model weights is insufficient to mitigate catastrophic forgetting under distribution shifts. Consequently, we prove that by learning the architecture and weights simultaneously at each task, we can reduce catastrophic forgetting. To learn weights and architecture simultaneously, we formulate continual learning as a bilevel optimization problem: the upper level selects an optimal architecture for a given task, while the lower level computes optimal weights via dynamic programming over all tasks. To solve the upper level problem, we introduce a derivative-free direct search algorithm to determine the optimal architecture. Once found, we must transfer knowledge from the current architecture to the optimal one. However, the optimal architecture will result in a weights parameter space different from the current architecture (i.e., dimensions of weights matrices will not match). To bridge the dimensionality gap, we develop a low-rank transfer mechanism to map knowledge across architectures of mismatched dimensions. Empirical studies across regression and classification problems, including feedforward, convolutional, and graph neural networks, demonstrate that learning the optimal architecture and weights simultaneously yields substantially improved performance (up to two orders of magnitude), reduced forgetting, and enhanced robustness to noise compared with static architecture approaches.
Provable Learning of Random Hierarchy Models and Hierarchical Shallow-to-Deep Chaining
The empirical success of deep learning is often attributed to deep networks' ability to exploit hierarchical structure in data, constructing increasingly complex features across layers. Yet despite substantial progress in deep learning theory, most optimization results sill focus on networks with only two or three layers, leaving the theoretical understanding of hierarchical learning in genuinely deep models limited. This leads to a natural question: can we prove that deep networks, trained by gradient-based methods, can efficiently exploit hierarchical structure? In this work, we consider Random Hierarchy Models -- a hierarchical context-free grammar introduced by arXiv:2307.02129 and conjectured to separate deep and shallow networks. We prove that, under mild conditions, a deep convolutional network can be efficiently trained to learn this function class. Our proof builds on a general observation: if intermediate layers can receive clean signal from the labels and the relevant features are weakly identifiable, then layerwise training each individual layer suffices to hierarchically learn the target function.
Regularized $f$-Divergence Kernel Tests
We propose a framework to construct practical kernel-based two-sample tests from the family of $f$-divergences. The test statistic is computed from the witness function of a regularized variational representation of the divergence, which we estimate using kernel methods. The proposed test is adaptive over hyperparameters such as the kernel bandwidth and the regularization parameter. We provide theoretical guarantees for statistical test power across our family of $f$-divergence estimates. While our test covers a variety of $f$-divergences, we bring particular focus to the Hockey-Stick divergence, motivated by its applications to differential privacy auditing and machine unlearning evaluation. For two-sample testing, experiments demonstrate that different $f$-divergences are sensitive to different localized differences, illustrating the importance of leveraging diverse statistics. For machine unlearning, we propose a relative test that distinguishes true unlearning failures from safe distributional variations.
GraphDLG: Exploring Deep Leakage from Gradients in Federated Graph Learning
Federated graph learning (FGL) has recently emerged as a promising privacy-preserving paradigm that enables distributed graph learning across multiple data owners. A critical privacy concern in federated learning is whether an adversary can recover raw data from shared gradients, a vulnerability known as deep leakage from gradients (DLG). However, most prior studies on the DLG problem focused on image or text data, and it remains an open question whether graphs can be effectively recovered, particularly when the graph structure and node features are uniquely entangled in GNNs. In this work, we first theoretically analyze the components in FGL and derive a crucial insight: once the graph structure is recovered, node features can be obtained through a closed-form recursive rule. Building on this analysis, we propose GraphDLG, a novel approach to recover raw training graphs from shared gradients in FGL, which can utilize randomly generated graphs or client-side training graphs as auxiliaries to enhance recovery. Extensive experiments demonstrate that GraphDLG outperforms existing solutions by successfully decoupling the graph structure and node features, achieving improvements of over 5.46% (by MSE) for node feature reconstruction and over 25.04% (by AUC) for graph structure reconstruction.
Interpretable and backpropagation-free Green Learning for efficient multi-task echocardiographic segmentation and classification
Echocardiography is a cornerstone for managing heart failure (HF), with Left Ventricular Ejection Fraction (LVEF) being a critical metric for guiding therapy. However, manual LVEF assessment suffers from high inter-observer variability, while existing Deep Learning (DL) models are often computationally intensive and data-hungry "black boxes" that impede clinical trust and adoption. Here, we propose a backpropagation-free multi-task Green Learning (MTGL) framework that performs simultaneous Left Ventricle (LV) segmentation and LVEF classification. Our framework integrates an unsupervised VoxelHop encoder for hierarchical spatio-temporal feature extraction with a multi-level regression decoder and an XG-Boost classifier. On the EchoNet-Dynamic dataset, our MTGL model achieves state-of-the-art classification and segmentation performance, attaining a classification accuracy of 94.3% and a Dice Similarity Coefficient (DSC) of 0.912, significantly outperforming several advanced 3D DL models. Crucially, our model achieves this with over an order of magnitude fewer parameters, demonstrating exceptional computational efficiency. This work demonstrates that the GL paradigm can deliver highly accurate, efficient, and interpretable solutions for complex medical image analysis, paving the way for more sustainable and trustworthy artificial intelligence in clinical practice.
comment: Jyun-Ping Kao and Jiaxing Yang contributed equally to this work. C.-C. Jay Kuo and Jonghye Woo are the senior authors
Quantum Circuit Pre-Synthesis: Learning Local Edits to Reduce $T$-count
Compiling quantum circuits into Clifford+$T$ gates is a central task for fault-tolerant quantum computing using stabilizer codes. In the near term, $T$ gates will dominate the cost of fault tolerant implementations, and any reduction in the number of such expensive gates could mean the difference between being able to run a circuit or not. While exact synthesis is exponentially hard in the number of qubits, local synthesis approaches are commonly used to compile large circuits by decomposing them into substructures. However, composing local methods leads to suboptimal compilations in key metrics such as $T$-count or circuit depth, and their performance strongly depends on circuit representation. In this work, we address this challenge by proposing \textsc{Q-PreSyn}, a strategy that, given a set of local edits preserving circuit equivalence, uses a RL agent to identify effective sequences of such actions and thereby obtain circuit representations that yield a reduced $T$-count upon synthesis. Experimental results of our proposed strategy, applied on top of well-known synthesis algorithms, show up to a $20\%$ reduction in $T$-count on circuits with up to 25 qubits, without introducing any additional approximation error prior to synthesis.
comment: 10+5 pages, 10 figures, 3 algorithms
Stability and Generalization of Nonconvex Optimization with Heavy-Tailed Noise
The empirical evidence indicates that stochastic optimization with heavy-tailed gradient noise is more appropriate to characterize the training of machine learning models than that with standard bounded gradient variance noise. Most existing works on this phenomenon focus on the convergence of optimization errors, while the analysis for generalization bounds under the heavy-tailed gradient noise remains limited. In this paper, we develop a general framework for establishing generalization bounds under heavy-tailed noise. Specifically, we introduce a truncation argument to achieve the generalization error bound based on the algorithmic stability under the assumption of bounded $p$th centered moment with $p\in(1,2]$. Building on this framework, we further provide the stability and generalization analysis for several popular stochastic algorithms under heavy-tailed noise, including clipped and normalized stochastic gradient descent, as well as their mini-batch and momentum variants.
Improving Policy Exploitation in Online Reinforcement Learning with Instant Retrospect Action
Existing value-based online reinforcement learning (RL) algorithms suffer from slow policy exploitation due to ineffective exploration and delayed policy updates. To address these challenges, we propose an algorithm called Instant Retrospect Action (IRA). Specifically, we propose Q-Representation Discrepancy Evolution (RDE) to facilitate Q-network representation learning, enabling discriminative representations for neighboring state-action pairs. In addition, we adopt an explicit method to policy constraints by enabling Greedy Action Guidance (GAG). This is achieved through backtracking historical actions, which effectively enhances the policy update process. Our proposed method relies on providing the learning algorithm with accurate $k$-nearest-neighbor action value estimates and learning to design a fast-adaptable policy through policy constraints. We further propose the Instant Policy Update (IPU) mechanism, which enhances policy exploitation by systematically increasing the frequency of policy updates. We further discover that the early-stage training conservatism of the IRA method can alleviate the overestimation bias problem in value-based RL. Experimental results show that IRA can significantly improve the learning efficiency and final performance of online RL algorithms on eight MuJoCo continuous control tasks.
Rethinking Divisive Hierarchical Clustering from a Distributional Perspective
We uncover that current objective-based Divisive Hierarchical Clustering (DHC) methods produce a dendrogram that does not have three desired properties i.e., no unwarranted splitting, group similar clusters into a same subset, ground-truth correspondence. This shortcoming has their root cause in using a set-oriented bisecting assessment criterion. We show that this shortcoming can be addressed by using a distributional kernel, instead of the set-oriented criterion; and the resultant clusters achieve a new distribution-oriented objective to maximize the total similarity of all clusters (TSC). Our theoretical analysis shows that the resultant dendrogram guarantees a lower bound of TSC. The empirical evaluation shows the effectiveness of our proposed method on artificial and Spatial Transcriptomics (bioinformatics) datasets. Our proposed method successfully creates a dendrogram that is consistent with the biological regions in a Spatial Transcriptomics dataset, whereas other contenders fail.
Scalable Exploration for High-Dimensional Continuous Control via Value-Guided Flow ICLR 2026
Controlling high-dimensional systems in biological and robotic applications is challenging due to expansive state-action spaces, where effective exploration is critical. Commonly used exploration strategies in reinforcement learning are largely undirected with sharp degradation as action dimensionality grows. Many existing methods resort to dimensionality reduction, which constrains policy expressiveness and forfeits system flexibility. We introduce Q-guided Flow Exploration (Qflex), a scalable reinforcement learning method that conducts exploration directly in the native high-dimensional action space. During training, Qflex traverses actions from a learnable source distribution along a probability flow induced by the learned value function, aligning exploration with task-relevant gradients rather than isotropic noise. Our proposed method substantially outperforms representative online reinforcement learning baselines across diverse high-dimensional continuous-control benchmarks. Qflex also successfully controls a full-body human musculoskeletal model to perform agile, complex movements, demonstrating superior scalability and sample efficiency in very high-dimensional settings. Our results indicate that value-guided flows offer a principled and practical route to exploration at scale.
comment: Accepted by ICLR 2026
Out-of-Distribution Generalization via Invariant Trajectories for Multimodal Large Language Model Editing
Knowledge editing emerges as a crucial technique for efficiently correcting incorrect or outdated knowledge in large language models (LLM). Existing editing methods for unimodal LLM rely on a rigid parameter-to-output mapping, which causes causal-underfit and causal-overfit in cascaded reasoning for Multimodal LLM (MLLM). In this paper, we reformulate MLLM editing as an out-of-distribution (OOD) generalization problem, where the goal is to discern semantic shift with factual shift and thus achieve robust editing among diverse cross-modal prompting. The key challenge of this OOD problem lies in identifying invariant causal trajectories that generalize accurately while suppressing spurious correlations. To address it, we propose ODEdit, a plug-and-play invariant learning based framework that optimizes the tripartite OOD risk objective to simultaneously enhance editing reliability, locality, and generality.We further introduce an edit trajectory invariant learning method, which integrates a total variation penalty into the risk minimization objective to stabilize edit trajectories against environmental variations. Theoretical analysis and extensive experiments demonstrate the effectiveness of ODEdit.
Self-Supervised Weight Templates for Scalable Vision Model Initialization
The increasing scale and complexity of modern model parameters underscore the importance of pre-trained models. However, deployment often demands architectures of varying sizes, exposing limitations of conventional pre-training and fine-tuning. To address this, we propose SWEET, a self-supervised framework that performs constraint-based pre-training to enable scalable initialization in vision tasks. Instead of pre-training a fixed-size model, we learn a shared weight template and size-specific weight scalers under Tucker-based factorization, which promotes modularity and supports flexible adaptation to architectures with varying depths and widths. Target models are subsequently initialized by composing and reweighting the template through lightweight weight scalers, whose parameters can be efficiently learned from minimal training data. To further enhance flexibility in width expansion, we introduce width-wise stochastic scaling, which regularizes the template along width-related dimensions and encourages robust, width-invariant representations for improved cross-width generalization. Extensive experiments on \textsc{classification}, \textsc{detection}, \textsc{segmentation} and \textsc{generation} tasks demonstrate the state-of-the-art performance of SWEET for initializing variable-sized vision models.
LoPRo: Enhancing Low-Rank Quantization via Permuted Block-Wise Rotation
Post-training quantization (PTQ) enables effective model compression while preserving relatively high accuracy. Current weight-only PTQ methods primarily focus on the challenging sub-3-bit regime, where approaches often suffer significant accuracy degradation, typically requiring fine-tuning to achieve competitive performance. In this work, we revisit the fundamental characteristics of weight quantization and analyze the challenges in quantizing the residual matrix under low-rank approximation. We propose LoPRo, a novel fine-tuning-free PTQ algorithm that enhances residual matrix quantization by applying block-wise permutation and Walsh-Hadamard transformations to rotate columns of similar importance, while explicitly preserving the quantization accuracy of the most salient column blocks. Furthermore, we introduce a mixed-precision fast low-rank decomposition based on rank-1 sketch (R1SVD) to further minimize quantization costs. Experiments demonstrate that LoPRo outperforms existing fine-tuning-free PTQ methods at both 2-bit and 3-bit quantization, achieving accuracy comparable to fine-tuning baselines. Specifically, LoPRo achieves state-of-the-art quantization accuracy on LLaMA-2 and LLaMA-3 series models while delivering up to a 4$\times$ speedup. In the MoE model Mixtral-8x7B, LoPRo completes quantization within 2.5 hours, simultaneously reducing perplexity by 0.4$\downarrow$ and improving accuracy by 8\%$\uparrow$. Moreover, compared to other low-rank quantization methods, LoPRo achieves superior accuracy with a significantly lower rank, while maintaining high inference efficiency and minimal additional latency.
Cross-Domain Offshore Wind Power Forecasting: Transfer Learning Through Meteorological Clusters
Ambitious decarbonisation targets are catalysing growth in orders of new offshore wind farms. For these newly commissioned plants to run, accurate power forecasts are needed from the onset. These allow grid stability, good reserve management and efficient energy trading. Despite machine learning models having strong performances, they tend to require large volumes of site-specific data that new farms do not yet have. To overcome this data scarcity, we propose a novel transfer learning framework that clusters power output according to covariate meteorological features. Rather than training a single, general-purpose model, we thus forecast with an ensemble of expert models, each trained on a cluster. As these pre-trained models each specialise in a distinct weather pattern, they adapt efficiently to new sites and capture transferable, climate-dependent dynamics. Through the expert models' built-in calibration to seasonal and meteorological variability, we remove the industry-standard requirement of local measurements over a year. Our contributions are two-fold - we propose this novel framework and comprehensively evaluate it on eight offshore wind farms, achieving accurate cross-domain forecasting with under five months of site-specific data. Our experiments achieve a MAE of 3.52\%, providing empirical verification that reliable forecasts do not require a full annual cycle. Beyond power forecasting, this climate-aware transfer learning method opens new opportunities for offshore wind applications such as early-stage wind resource assessment, where reducing data requirements can significantly accelerate project development whilst effectively mitigating its inherent risks.
comment: 11 pages
ProToken: Token-Level Attribution for Federated Large Language Models
Federated Learning (FL) enables collaborative training of Large Language Models (LLMs) across distributed data sources while preserving privacy. However, when federated LLMs are deployed in critical applications, it remains unclear which client(s) contributed to specific generated responses, hindering debugging, malicious client identification, fair reward allocation, and trust verification. We present ProToken, a novel Provenance methodology for Token-level attribution in federated LLMs that addresses client attribution during autoregressive text generation while maintaining FL privacy constraints. ProToken leverages two key insights to enable provenance at each token: (1) transformer architectures concentrate task-specific signals in later blocks, enabling strategic layer selection for computational tractability, and (2) gradient-based relevance weighting filters out irrelevant neural activations, focusing attribution on neurons that directly influence token generation. We evaluate ProToken across 16 configurations spanning four LLM architectures (Gemma, Llama, Qwen, SmolLM) and four domains (medical, financial, mathematical, coding). ProToken achieves 98% average attribution accuracy in correctly localizing responsible client(s), and maintains high accuracy when the number of clients are scaled, validating its practical viability for real-world deployment settings.
Grasynda: Graph-based Synthetic Time Series Generation
Data augmentation is a crucial tool in time series forecasting, especially for deep learning architectures that require a large training sample size to generalize effectively. However, extensive datasets are not always available in real-world scenarios. Although many data augmentation methods exist, their limitations include the use of transformations that do not adequately preserve data properties. This paper introduces Grasynda, a novel graph-based approach for synthetic time series generation that: (1) converts univariate time series into a network structure using a graph representation, where each state is a node and each transition is represented as a directed edge; and (2) encodes their temporal dynamics in a transition probability matrix. We performed an extensive evaluation of Grasynda as a data augmentation method for time series forecasting. We use three neural network variations on six benchmark datasets. The results indicate that Grasynda consistently outperforms other time series data augmentation methods, including ones used in state-of-the-art time series foundation models. The method and all experiments are publicly available.
comment: Accepted in IDA'26
SynCABEL: Synthetic Contextualized Augmentation for Biomedical Entity Linking
We present SynCABEL (Synthetic Contextualized Augmentation for Biomedical Entity Linking), a framework that addresses a central bottleneck in supervised biomedical entity linking (BEL): the scarcity of expert-annotated training data. SynCABEL leverages large language models to generate context-rich synthetic training examples for all candidate concepts in a target knowledge base, providing broad supervision without manual annotation. We demonstrate that SynCABEL, when combined with decoder-only models and guided inference establish new state-of-the-art results across three widely used multilingual benchmarks: MedMentions for English, QUAERO for French, and SPACCC for Spanish. Evaluating data efficiency, we show that SynCABEL reaches the performance of full human supervision using up to 60% less annotated data, substantially reducing reliance on labor-intensive and costly expert labeling. Finally, acknowledging that standard evaluation based on exact code matching often underestimates clinically valid predictions due to ontology redundancy, we introduce an LLM-as-a-judge protocol. This analysis reveals that SynCABEL significantly improves the rate of clinically valid predictions. Our synthetic datasets, models, and code are released to support reproducibility and future research.
KeepLoRA: Continual Learning with Residual Gradient Adaptation ICLR 2026
Continual learning for pre-trained vision-language models requires balancing three competing objectives: retaining pre-trained knowledge, preserving knowledge from a sequence of learned tasks, and maintaining the plasticity to acquire new knowledge. This paper presents a simple but effective approach called KeepLoRA to effectively balance these objectives. We first analyze the knowledge retention mechanism within the model parameter space and find that general knowledge is mainly encoded in the principal subspace, while task-specific knowledge is encoded in the residual subspace. Motivated by this finding, KeepLoRA learns new tasks by restricting LoRA parameter updates in the residual subspace to prevent interfering with previously learned capabilities. Specifically, we infuse knowledge for a new task by projecting its gradient onto a subspace orthogonal to both the principal subspace of pre-trained model and the dominant directions of previous task features. Our theoretical and empirical analyses confirm that KeepLoRA balances the three objectives and achieves state-of-the-art performance. The implementation code is available at https://github.com/MaolinLuo/KeepLoRA.
comment: Accepted at ICLR 2026
Tracking Drift: Variation-Aware Entropy Scheduling for Non-Stationary Reinforcement Learning
Real-world reinforcement learning often faces environment drift, but most existing methods rely on static entropy coefficients/target entropy, causing over-exploration during stable periods and under-exploration after drift (thus slow recovery), and leaving unanswered the principled question of how exploration intensity should scale with drift magnitude. We prove that entropy scheduling under non-stationarity can be reduced to a one-dimensional, round-by-round trade-off, faster tracking of the optimal solution after drift vs. avoiding gratuitous randomness when the environment is stable, so exploration strength can be driven by measurable online drift signals. Building on this, we propose AES (Adaptive Entropy Scheduling), which adaptively adjusts the entropy coefficient/temperature online using observable drift proxies during training, requiring almost no structural changes and incurring minimal overhead. Across 4 algorithm variants, 12 tasks, and 4 drift modes, AES significantly reduces the fraction of performance degradation caused by drift and accelerates recovery after abrupt changes.
R^3: Replay, Reflection, and Ranking Rewards for LLM Reinforcement Learning
Large reasoning models (LRMs) aim to solve diverse and complex problems through structured reasoning. Recent advances in group-based policy optimization methods have shown promise in enabling stable advantage estimation without reliance on process-level annotations. However, these methods rely on advantage gaps induced by high-quality samples within the same batch, which makes the training process fragile and inefficient when intra-group advantages collapse under challenging tasks. To address these problems, we propose a reinforcement learning mechanism named \emph{\textbf{R^3}} that along three directions: (1) a \emph{cross-context \underline{\textbf{R}}eplay} strategy that maintains the intra-group advantage by recalling valuable examples from historical trajectories of the same query, (2) an \emph{in-context self-\underline{\textbf{R}}eflection} mechanism enabling models to refine outputs by leveraging past failures, and (3) a \emph{structural entropy \underline{\textbf{R}}anking reward}, which assigns relative rewards to truncated or failed samples by ranking responses based on token-level entropy patterns, capturing both local exploration and global stability. We implement our method on Deepseek-R1-Distill-Qwen-1.5B and train it on the DeepscaleR-40k in the math domain. Experiments demonstrate our method achieves SoTA performance on several math benchmarks, representing significant improvements and fewer reasoning tokens over the base models. Code and model will be released.
The role of self-supervised pretraining in differentially private medical image analysis
Differential privacy (DP) provides formal protection for sensitive data but typically incurs substantial losses in diagnostic performance. Model initialization has emerged as a critical factor in mitigating this degradation, yet the role of modern self-supervised learning under full-model DP remains poorly understood. Here, we present a large-scale evaluation of initialization strategies for differentially private medical image analysis, using chest radiograph classification as a representative benchmark with more than 800,000 images. Using state-of-the-art ConvNeXt models trained with DP-SGD across realistic privacy regimes, we compare non-domain-specific supervised ImageNet initialization, non-domain-specific self-supervised DINOv3 initialization, and domain-specific supervised pretraining on MIMIC-CXR, the largest publicly available chest radiograph dataset. Evaluations are conducted across five external datasets spanning diverse institutions and acquisition settings. We show that DINOv3 initialization consistently improves diagnostic utility relative to ImageNet initialization under DP, but remains inferior to domain-specific supervised pretraining, which achieves performance closest to non-private baselines. We further demonstrate that initialization choice strongly influences demographic fairness, cross-dataset generalization, and robustness to data scale and model capacity under privacy constraints. The results establish initialization strategy as a central determinant of utility, fairness, and generalization in differentially private medical imaging.
Safe Exploration via Policy Priors
Safe exploration is a key requirement for reinforcement learning (RL) agents to learn and adapt online, beyond controlled (e.g. simulated) environments. In this work, we tackle this challenge by utilizing suboptimal yet conservative policies (e.g., obtained from offline data or simulators) as priors. Our approach, SOOPER, uses probabilistic dynamics models to optimistically explore, yet pessimistically fall back to the conservative policy prior if needed. We prove that SOOPER guarantees safety throughout learning, and establish convergence to an optimal policy by bounding its cumulative regret. Extensive experiments on key safe RL benchmarks and real-world hardware demonstrate that SOOPER is scalable, outperforms the state-of-the-art and validate our theoretical guarantees in practice.
Explicit Multi-head Attention for Inter-head Interaction in Large Language Models
In large language models built upon the Transformer architecture, recent studies have shown that inter-head interaction can enhance attention performance. Motivated by this, we propose Multi-head Explicit Attention (MEA), a simple yet effective attention variant that explicitly models cross-head interaction. MEA consists of two key components: a Head-level Linear Composition (HLC) module that separately applies learnable linear combinations to the key and value vectors across heads, thereby enabling rich inter-head communication; and a head-level Group Normalization layer that aligns the statistical properties of the recombined heads. MEA shows strong robustness in pretraining, which allows the use of larger learning rates that lead to faster convergence, ultimately resulting in lower validation loss and improved performance across a range of tasks. Furthermore, we explore the parameter efficiency of MEA by reducing the number of attention heads and leveraging HLC to reconstruct them using low-rank "virtual heads". This enables a practical key-value cache compression strategy that reduces KV-cache memory usage by 50% with negligible performance loss on knowledge-intensive and scientific reasoning tasks, and only a 3.59% accuracy drop for Olympiad-level mathematical benchmarks.
GMS-CAVP: Improving Audio-Video Correspondence with Multi-Scale Contrastive and Generative Pretraining
Recent advances in video-audio (V-A) understanding and generation have increasingly relied on joint V-A embeddings, which serve as the foundation for tasks such as cross-modal retrieval and generation. While prior methods like CAVP effectively model semantic and temporal correspondences between modalities using contrastive objectives, their performance remains suboptimal. A key limitation is the insufficient modeling of the dense, multi-scale nature of both video and audio signals, correspondences often span fine- to coarse-grained spatial-temporal structures, which are underutilized in existing frameworks. To this end, we propose GMS-CAVP, a novel framework that combines Multi-Scale Video-Audio Alignment and Multi-Scale Spatial-Temporal Diffusion-based pretraining objectives to enhance V-A correspondence modeling. First, GMS-CAVP introduces a multi-scale contrastive learning strategy that captures semantic and temporal relations across varying granularities. Second, we go beyond traditional contrastive learning by incorporating a diffusion-based generative objective, enabling modality translation and synthesis between video and audio. This unified discriminative-generative formulation facilitates deeper cross-modal understanding and paves the way for high-fidelity generation. Extensive experiments on VGGSound, AudioSet, and Panda70M demonstrate that GMS-CAVP outperforms previous methods in generation and retrieval.
The Geometric Mechanics of Contrastive Representation Learning: Alignment Potentials, Entropic Dispersion, and Cross-Modal Divergence
While InfoNCE powers modern contrastive learning, its geometric mechanisms remain under-characterized beyond the canonical alignment--uniformity decomposition. We present a measure-theoretic framework that models learning as the evolution of representation measures on a fixed embedding manifold. By establishing value and gradient consistency in the large-batch limit, we bridge the stochastic objective to explicit deterministic energy landscapes, uncovering a fundamental geometric bifurcation between the unimodal and multimodal regimes. In the unimodal setting, the intrinsic landscape is strictly convex with a unique Gibbs equilibrium; here, entropy acts merely as a tie-breaker, clarifying "uniformity" as a constrained expansion within the alignment basin. In contrast, the symmetric multimodal objective contains a persistent negative symmetric divergence term that remains even after kernel sharpening. We show that this term induces barrier-driven co-adaptation, enforcing a population-level modality gap as a structural geometric necessity rather than an initialization artifact. Our results shift the analytical lens from pointwise discrimination to population geometry, offering a principled basis for diagnosing and controlling distributional misalignment.
Intersectional Fairness via Mixed-Integer Optimization
The deployment of Artificial Intelligence in high-risk domains, such as finance and healthcare, necessitates models that are both fair and transparent. While regulatory frameworks, including the EU's AI Act, mandate bias mitigation, they are deliberately vague about the definition of bias. In line with existing research, we argue that true fairness requires addressing bias at the intersections of protected groups. We propose a unified framework that leverages Mixed-Integer Optimization (MIO) to train intersectionally fair and intrinsically interpretable classifiers. We prove the equivalence of two measures of intersectional fairness (MSD and SPSF) in detecting the most unfair subgroup and empirically demonstrate that our MIO-based algorithm improves performance in finding bias. We train high-performing, interpretable classifiers that bound intersectional bias below an acceptable threshold, offering a robust solution for regulated industries and beyond.
comment: 17 pages, 10 figures, 1 table
From Atoms to Chains: Divergence-Guided Reasoning Curriculum for Unlabeled LLM Domain Adaptation
Adapting Large Language Models (LLMs) to specialized domains without human-annotated data is a crucial yet formidable challenge. Widely adopted knowledge distillation methods often devolve into coarse-grained mimicry, where the student model inefficiently targets its own weaknesses and risks inheriting the teacher's reasoning flaws. This exposes a critical pedagogical dilemma: how to devise a reliable curriculum when the teacher itself is not an infallible expert. Our work resolves this by capitalizing on a key insight: while LLMs may exhibit fallibility in complex, holistic reasoning, they often exhibit high fidelity on focused, atomic sub-problems. Based on this, we propose Divergence-Guided Reasoning Curriculum (DGRC), which constructs a learning path from atomic knowledge to reasoning chains by dynamically deriving two complementary curricula from disagreements in reasoning pathways. When a student and teacher produce conflicting results, DGRC directs the teacher to perform a diagnostic analysis: it analyzes both reasoning paths to formulate atomic queries that target the specific points of divergence, and then self-answers these queries to create high-confidence atomic question-answer pairs. These pairs then serve a dual purpose: (1) providing an atomic curriculum to rectify the student's knowledge gaps, and (2) serving as factual criteria to filter the teacher's original reasoning chains, yielding a verified CoT curriculum that teaches the student how to integrate atomic knowledge into complete reasoning paths. Experiments across the medical and legal domains on student models of various sizes demonstrate the effectiveness of our DGRC framework. Notably, our method achieves a 7.76% relative improvement for the 1.5B student model in the medical domain over strong unlabeled baseline.
comment: Code: https://github.com/bytedance/DGRC
Learning the Intrinsic Dimensionality of Fermi-Pasta-Ulam-Tsingou Trajectories: A Nonlinear Approach using a Deep Autoencoder Model
We address the intrinsic dimensionality (ID) of high-dimensional trajectories, comprising $n_s = 4\,000\,000$ data points, of the Fermi-Pasta-Ulam-Tsingou (FPUT) $β$ model with $N = 32$ oscillators. To this end, a deep autoencoder (DAE) model is employed to infer the ID in the weakly nonlinear regime ($β\lesssim 1$). We find that the trajectories lie on a nonlinear manifold of dimension $m^{\ast} = 2$ embedded in a $64$-dimensional phase space. The DAE further reveals that this dimensionality increases to $m^{\ast} = 3$ at $β= 1.1$, coinciding with a symmetry breaking transition, in which additional energy modes with even wave numbers $k = 2, 4$ become excited. Finally, we discuss the limitations of the linear approach based on principal component analysis (PCA), which fails to capture the underlying structure of the data and therefore yields unreliable results in most cases.
comment: 10 pages, 10 figures. Preliminary results were presented on November 2025 at the IUPAP Conference on Computational Physics, CP2025 XXXVI, Oak Ridge National Laboratory in Oak Ridge
AROMMA: Unifying Olfactory Embeddings for Single Molecules and Mixtures
Public olfaction datasets are small and fragmented across single molecules and mixtures, limiting learning of generalizable odor representations. Recent works either learn single-molecule embeddings or address mixtures via similarity or pairwise label prediction, leaving representations separate and unaligned. In this work, we propose AROMMA, a framework that learns a unified embedding space for single molecules and two-molecule mixtures. Each molecule is encoded by a chemical foundation model and the mixtures are composed by an attention-based aggregator, ensuring both permutation invariance and asymmetric molecular interactions. We further align odor descriptor sets using knowledge distillation and class-aware pseudo-labeling to enrich missing mixture annotations. AROMMA achieves state-of-the-art performance in both single-molecule and molecule-pair datasets, with up to 19.1% AUROC improvement, demonstrating a robust generalization in two domains.
Generalizable Equivariant Diffusion Models for Non-Abelian Lattice Gauge Theory
We demonstrate that gauge equivariant diffusion models can accurately model the physics of non-Abelian lattice gauge theory using the Metropolis-adjusted annealed Langevin algorithm (MAALA), as exemplified by computations in two-dimensional U(2) and SU(2) gauge theories. Our network architecture is based on lattice gauge equivariant convolutional neural networks (L-CNNs), which respect local and global symmetries on the lattice. Models are trained on a single ensemble generated using a traditional Monte Carlo method. By studying Wilson loops of various size as well as the topological susceptibility, we find that the diffusion approach generalizes remarkably well to larger inverse couplings and lattice sizes with negligible loss of accuracy while retaining moderately high acceptance rates.
comment: 9 pages, 5 figures, 2 tables
Scale-Consistent State-Space Dynamics via Fractal of Stationary Transformations
Recent deep learning models increasingly rely on depth without structural guarantees on the validity of intermediate representations, rendering early stopping and adaptive computation ill-posed. We address this limitation by formulating a structural requirement for state-space model's scale-consistent latent dynamics across iterative refinement, and derive Fractal of Stationary Transformations (FROST), which enforces a self-similar representation manifold through a fractal inductive bias. Under this geometry, intermediate states correspond to different resolutions of a shared representation, and we provide a geometric analysis establishing contraction and stable convergence across iterations. As a consequence of this scale-consistent structure, halting naturally admits a ranking-based formulation driven by intrinsic feature quality rather than extrinsic objectives. Controlled experiments on ImageNet-100 empirically verify the predicted scale-consistent behavior, showing that adaptive efficiency emerges from the aligned latent geometry.
comment: 8 pages (excluding 2 pages of references), 3 tables, 2 figures. Appendix: 4 pages
GenCP: Towards Generative Modeling Paradigm of Coupled Physics ICLR 2026
Real-world physical systems are inherently complex, often involving the coupling of multiple physics, making their simulation both highly valuable and challenging. Many mainstream approaches face challenges when dealing with decoupled data. Besides, they also suffer from low efficiency and fidelity in strongly coupled spatio-temporal physical systems. Here we propose GenCP, a novel and elegant generative paradigm for coupled multiphysics simulation. By formulating coupled-physics modeling as a probability modeling problem, our key innovation is to integrate probability density evolution in generative modeling with iterative multiphysics coupling, thereby enabling training on data from decoupled simulation and inferring coupled physics during sampling. We also utilize operator-splitting theory in the space of probability evolution to establish error controllability guarantees for this "conditional-to-joint" sampling scheme. We evaluate our paradigm on a synthetic setting and three challenging multi-physics scenarios to demonstrate both principled insight and superior application performance of GenCP. Code is available at this repo: github.com/AI4Science-WestlakeU/GenCP.
comment: ICLR 2026 Accpeted
Benchmarks Saturate When The Model Gets Smarter Than The Judge
Benchmarks are important tools to track progress in the development of Large Language Models (LLMs), yet inaccuracies in datasets and evaluation methods consistently undermine their effectiveness. Here, we present Omni-MATH-2, a manually revised version of the Omni-MATH dataset comprising a clean, exact-answer subset ($n{=}4181$) and a tagged, non-standard subset ($n{=}247$). Each problem was audited to ensure LaTeX compilability, solvability and verifiability, which involved adding missing figures or information, labeling problems requiring a proof, estimation or image, and removing clutter. This process significantly reduces dataset-induced noise, thereby providing a more precise assessment of model performance. The annotated dataset also allows us to evaluate judge-induced noise by comparing GPT-5 mini with the original Omni-Judge, revealing substantial discrepancies between judges on both the clean and tagged problem subsets. Expert annotations reveal that Omni-Judge is wrong in $96.4\%$ of the judge disagreements, indicating its inability to differentiate between models' abilities, even well before saturation of the benchmark occurs. As problems become more challenging, we find that increasingly competent judges become essential in order to prevent judge errors from masking genuine differences between models. Finally, neither judge identifies the present failure modes for the subset of tagged problems, demonstrating that dataset quality and judge reliability are both critical to develop accurate benchmarks of model performance.
comment: 17 pages, 10 figures, 3 tables
Mocap Anywhere: Towards Pairwise-Distance based Motion Capture in the Wild (for the Wild)
We introduce a novel motion capture system that reconstructs full-body 3D motion using only sparse pairwise distance (PWD) measurements from body-mounted(UWB) sensors. Using time-of-flight ranging between wireless nodes, our method eliminates the need for external cameras, enabling robust operation in uncontrolled and outdoor environments. Unlike traditional optical or inertial systems, our approach is shape-invariant and resilient to environmental constraints such as lighting and magnetic interference. At the core of our system is Wild-Poser (WiP for short), a compact, real-time Transformer-based architecture that directly predicts 3D joint positions from noisy or corrupted PWD measurements, which can later be used for joint rotation reconstruction via learned methods. WiP generalizes across subjects of varying morphologies, including non-human species, without requiring individual body measurements or shape fitting. Operating in real time, WiP achieves low joint position error and demonstrates accurate 3D motion reconstruction for both human and animal subjects in-the-wild. Our empirical analysis highlights its potential for scalable, low-cost, and general purpose motion capture in real-world settings.
comment: 14 pages, 15 figures
Cortex-Grounded Diffusion Models for Brain Image Generation
Synthetic neuroimaging data can mitigate critical limitations of real-world datasets, including the scarcity of rare phenotypes, domain shifts across scanners, and insufficient longitudinal coverage. However, existing generative models largely rely on weak conditioning signals, such as labels or text, which lack anatomical grounding and often produce biologically implausible outputs. To this end, we introduce Cor2Vox, a cortex-grounded generative framework for brain magnetic resonance image (MRI) synthesis that ties image generation to continuous structural priors of the cerebral cortex. It leverages high-resolution cortical surfaces to guide a 3D shape-to-image Brownian bridge diffusion process, enabling topologically faithful synthesis and precise control over underlying anatomies. To support the generation of new, realistic brain shapes, we developed a large-scale statistical shape model of cortical morphology derived from over 33,000 UK Biobank scans. We validated the fidelity of Cor2Vox based on traditional image quality metrics, advanced cortical surface reconstruction, and whole-brain segmentation quality, outperforming many baseline methods. Across three applications, namely (i) anatomically consistent synthesis, (ii) simulation of progressive gray matter atrophy, and (iii) harmonization of in-house frontotemporal dementia scans with public datasets, Cor2Vox preserved fine-grained cortical morphology at the sub-voxel level, exhibiting remarkable robustness to variations in cortical geometry and disease phenotype without retraining.
comment: preprint
LLM-VA: Resolving the Jailbreak-Overrefusal Trade-off via Vector Alignment
Safety-aligned LLMs suffer from two failure modes: jailbreak (answering harmful inputs) and over-refusal (declining benign queries). Existing vector steering methods adjust the magnitude of answer vectors, but this creates a fundamental trade-off -- reducing jailbreak increases over-refusal and vice versa. We identify the root cause: LLMs encode the decision to answer (answer vector $v_a$) and the judgment of input safety (benign vector $v_b$) as nearly orthogonal directions, treating them as independent processes. We propose LLM-VA, which aligns $v_a$ with $v_b$ through closed-form weight updates, making the model's willingness to answer causally dependent on its safety assessment -- without fine-tuning or architectural changes. Our method identifies vectors at each layer using SVMs, selects safety-relevant layers, and iteratively aligns vectors via minimum-norm weight modifications. Experiments on 12 LLMs demonstrate that LLM-VA achieves 11.45% higher F1 than the best baseline while preserving 95.92% utility, and automatically adapts to each model's safety bias without manual tuning. Code and models are available at https://hotbento.github.io/LLM-VA-Web/.
Posterior Distribution-assisted Evolutionary Dynamic Optimization as an Online Calibrator for Complex Social Simulations
The calibration of simulators for complex social systems aims to identify the optimal parameter that drives the output of the simulator best matching the target data observed from the system. As many social systems may change internally over time, calibration naturally becomes an online task, requiring parameters to be updated continuously to maintain the simulator's fidelity. In this work, the online setting is first formulated as a dynamic optimization problem (DOP), requiring the search for a sequence of optimal parameters that fit the simulator to real system changes. However, in contrast to traditional DOP formulations, online calibration explicitly incorporates the observational data as the driver of environmental dynamics. Due to this fundamental difference, existing Evolutionary Dynamic Optimization (EDO) methods, despite being extensively studied for black-box DOPs, are ill-equipped to handle such a scenario. As a result, online calibration problems constitute a new set of challenging DOPs. Here, we propose to explicitly learn the posterior distributions of the parameters and the observational data, thereby facilitating both change detection and environmental adaptation of existing EDOs for this scenario. We thus present a pretrained posterior model for implementation, and fine-tune it during the optimization. Extensive tests on both economic and financial simulators verify that the posterior distribution strongly promotes EDOs in such DOPs widely existed in social science.
Time-to-Injury Forecasting in Elite Female Football: A DeepHit Survival Approach
Injury occurrence in football poses significant challenges for athletes and teams, carrying personal, competitive, and financial consequences. While machine learning has been applied to injury prediction before, existing approaches often rely on static pre-season data and binary outcomes, limiting their real-world utility. This study investigates the feasibility of using a DeepHit neural network to forecast time-to-injury from longitudinal athlete monitoring data, while providing interpretable predictions. The analysis utilised the publicly available SoccerMon dataset, containing two seasons of training, match, and wellness records from elite female footballers. Data was pre-processed through cleaning, feature engineering, and the application of three imputation strategies. Baseline models (Random Forest, XGBoost, Logistic Regression) were optimised via grid search for benchmarking, while the DeepHit model, implemented with a multilayer perceptron backbone, was evaluated using chronological and leave-one-player-out (LOPO) validation. DeepHit achieved a concordance index of 0.762, outperforming baseline models and delivering individualised, time-varying risk estimates. Shapley Additive Explanations (SHAP) identified clinically relevant predictors consistent with established risk factors, enhancing interpretability. Overall, this study provides a novel proof of concept: survival modelling with DeepHit shows strong potential to advance injury forecasting in football, offering accurate, explainable, and actionable insights for injury prevention across competitive levels.
On the Expressiveness of State Space Models via Temporal Logics
We investigate the expressive power of state space models (SSM), which have recently emerged as a potential alternative to transformer architectures in large language models. Building on recent work, we analyse SSM expressiveness through fragments and extensions of linear temporal logic over finite traces. Our results show that the expressive capabilities of SSM vary substantially depending on the underlying gating mechanism. We further distinguish between SSM operating over fixed-width arithmetic (quantised models), whose expressive power remains within regular languages, and SSM with unbounded precision, which can capture counting properties and non-regular languages. In addition, we provide a systematic comparison between these different SSM variants and known results on transformers, thereby clarifying how the two architectures relate in terms of expressive power.
APC-RL: Exceeding Data-Driven Behavior Priors with Adaptive Policy Composition
Incorporating demonstration data into reinforcement learning (RL) can greatly accelerate learning, but existing approaches often assume demonstrations are optimal and fully aligned with the target task. In practice, demonstrations are frequently sparse, suboptimal, or misaligned, which can degrade performance when these demonstrations are integrated into RL. We propose Adaptive Policy Composition (APC), a hierarchical model that adaptively composes multiple data-driven Normalizing Flow (NF) priors. Instead of enforcing strict adherence to the priors, APC estimates each prior's applicability to the target task while leveraging them for exploration. Moreover, APC either refines useful priors, or sidesteps misaligned ones when necessary to optimize downstream reward. Across diverse benchmarks, APC accelerates learning when demonstrations are aligned, remains robust under severe misalignment, and leverages suboptimal demonstrations to bootstrap exploration while avoiding performance degradation caused by overly strict adherence to suboptimal demonstrations.
Fixed Aggregation Features Can Rival GNNs
Graph neural networks (GNNs) are widely believed to excel at node representation learning through trainable neighborhood aggregations. We challenge this view by introducing Fixed Aggregation Features (FAFs), a training-free approach that transforms graph learning tasks into tabular problems. This simple shift enables the use of well-established tabular methods, offering strong interpretability and the flexibility to deploy diverse classifiers. Across 14 benchmarks, well-tuned multilayer perceptrons trained on FAFs rival or outperform state-of-the-art GNNs and graph transformers on 12 tasks -- often using only mean aggregation. The only exceptions are the Roman Empire and Minesweeper datasets, which typically require unusually deep GNNs. To explain the theoretical possibility of non-trainable aggregations, we connect our findings to Kolmogorov-Arnold representations and discuss when mean aggregation can be sufficient. In conclusion, our results call for (i) richer benchmarks benefiting from learning diverse neighborhood aggregations, (ii) strong tabular baselines as standard, and (iii) employing and advancing tabular models for graph data to gain new insights into related tasks.
From Internal Diagnosis to External Auditing: A VLM-Driven Paradigm for Online Test-Time Backdoor Defense
Deep Neural Networks remain inherently vulnerable to backdoor attacks. Traditional test-time defenses largely operate under the paradigm of internal diagnosis methods like model repairing or input robustness, yet these approaches are often fragile under advanced attacks as they remain entangled with the victim model's corrupted parameters. We propose a paradigm shift from Internal Diagnosis to External Semantic Auditing, arguing that effective defense requires decoupling safety from the victim model via an independent, semantically grounded auditor. To this end, we present a framework harnessing Universal Vision-Language Models (VLMs) as evolving semantic gatekeepers. We introduce PRISM (Prototype Refinement & Inspection via Statistical Monitoring), which overcomes the domain gap of general VLMs through two key mechanisms: a Hybrid VLM Teacher that dynamically refines visual prototypes online, and an Adaptive Router powered by statistical margin monitoring to calibrate gating thresholds in real-time. Extensive evaluation across 17 datasets and 11 attack types demonstrates that PRISM achieves state-of-the-art performance, suppressing Attack Success Rate to <1% on CIFAR-10 while improving clean accuracy, establishing a new standard for model-agnostic, externalized security.
comment: 19 pages, 10 figures, 12 tables
OSIRIS: Bridging Analog Circuit Design and Machine Learning with Scalable Dataset Generation
The automation of analog integrated circuit (IC) design remains a longstanding challenge, primarily due to the intricate interdependencies among physical layout, parasitic effects, and circuit-level performance. These interactions impose complex constraints that are difficult to accurately capture and optimize using conventional design methodologies. Although recent advances in machine learning (ML) have shown promise in automating specific stages of the analog design flow, the development of holistic, end-to-end frameworks that integrate these stages and iteratively refine layouts using post-layout, parasitic-aware performance feedback is still in its early stages. Furthermore, progress in this direction is hindered by the limited availability of open, high-quality datasets tailored to the analog domain, restricting both the benchmarking and the generalizability of ML-based techniques. To address these limitations, we present OSIRIS, a scalable dataset generation pipeline for analog IC design. OSIRIS systematically explores the design space of analog circuits while producing comprehensive performance metrics and metadata, thereby enabling ML-driven research in electronic design automation (EDA). In addition, we release a dataset consisting of 87,100 circuit variations generated with OSIRIS, accompanied by a reinforcement learning (RL)-based baseline method that exploits OSIRIS for analog design optimization.
Task-Centric Policy Optimization from Misaligned Motion Priors
Humanoid control often leverages motion priors from human demonstrations to encourage natural behaviors. However, such demonstrations are frequently suboptimal or misaligned with robotic tasks due to embodiment differences, retargeting errors, and task-irrelevant variations, causing naïve imitation to degrade task performance. Conversely, task-only reinforcement learning admits many task-optimal solutions, often resulting in unnatural or unstable motions. This exposes a fundamental limitation of linear reward mixing in adversarial imitation learning. We propose \emph{Task-Centric Motion Priors} (TCMP), a task-priority adversarial imitation framework that treats imitation as a conditional regularizer rather than a co-equal objective. TCMP maximizes task improvement while incorporating imitation signals only when they are compatible with task progress, yielding an adaptive, geometry-aware update that preserves task-feasible descent and suppresses harmful imitation under misalignment. We provide theoretical analysis of gradient conflict and task-priority stationary points, and validate our claims through humanoid control experiments demonstrating robust task performance with consistent motion style under noisy demonstrations.
RPO:Reinforcement Fine-Tuning with Partial Reasoning Optimization
Within the domain of large language models, reinforcement fine-tuning algorithms necessitate the generation of a complete reasoning trajectory beginning from the input query, which incurs significant computational overhead during the rollout phase of training. To address this issue, we analyze the impact of different segments of the reasoning path on the correctness of the final result and, based on these insights, propose Reinforcement Fine-Tuning with Partial Reasoning Optimization (RPO), a plug-and-play reinforcement fine-tuning algorithm. Unlike traditional reinforcement fine-tuning algorithms that generate full reasoning paths, RPO trains the model by generating suffixes of the reasoning path using experience cache. During the rollout phase of training, RPO reduces token generation in this phase by approximately 95%, greatly lowering the theoretical time overhead. Compared with full-path reinforcement fine-tuning algorithms, RPO reduces the training time of the 1.5B model by 90% and the 7B model by 72%. At the same time, it can be integrated with typical algorithms such as GRPO and DAPO, enabling them to achieve training acceleration while maintaining performance comparable to the original algorithms. Our code is open-sourced at https://github.com/yhz5613813/RPO.
Improved Convergence Rates of Muon Optimizer for Nonconvex Optimization
The Muon optimizer has recently attracted attention due to its orthogonalized first-order updates, and a deeper theoretical understanding of its convergence behavior is essential for guiding practical applications; however, existing convergence guarantees are either coarse or obtained under restrictive analytical settings. In this work, we establish sharper convergence guarantees for the Muon optimizer through a direct and simplified analysis that does not rely on restrictive assumptions on the update rule. Our results improve upon existing bounds by achieving faster convergence rates while covering a broader class of problem settings. These findings provide a more accurate theoretical characterization of Muon and offer insights applicable to a broader class of orthogonalized first-order methods.
SEAFormer: A Spatial Proximity and Edge-Aware Transformer for Real-World Vehicle Routing Problems
Real-world Vehicle Routing Problems (RWVRPs) require solving complex, sequence-dependent challenges at scale with constraints such as delivery time window, replenishment or recharging stops, asymmetric travel cost, etc. While recent neural methods achieve strong results on large-scale classical VRP benchmarks, they struggle to address RWVRPs because their strategies overlook sequence dependencies and underutilize edge-level information, which are precisely the characteristics that define the complexity of RWVRPs. We present SEAFormer, a novel transformer that incorporates both node-level and edge-level information in decision-making through two key innovations. First, our Clustered Proximity Attention (CPA) exploits locality-aware clustering to reduce the complexity of attention from $O(n^2)$ to $O(n)$ while preserving global perspective, allowing SEAFormer to efficiently train on large instances. Second, our lightweight edge-aware module captures pairwise features through residual fusion, enabling effective incorporation of edge-based information and faster convergence. Extensive experiments across four RWVRP variants with various scales demonstrate that SEAFormer achieves superior results over state-of-the-art methods. Notably, SEAFormer is the first neural method to solve 1,000+ node RWVRPs effectively, while also achieving superior performance on classic VRPs, making it a versatile solution for both research benchmarks and real-world applications.
comment: 26 pages
DSP-Reg: Domain-Sensitive Parameter Regularization for Robust Domain Generalization
Domain Generalization (DG) is a critical area that focuses on developing models capable of performing well on data from unseen distributions, which is essential for real-world applications. Existing approaches primarily concentrate on learning domain-invariant features, which assume that a model robust to variations in the source domains will generalize well to unseen target domains. However, these approaches neglect a deeper analysis at the parameter level, which makes the model hard to explicitly differentiate between parameters sensitive to domain shifts and those robust, potentially hindering its overall ability to generalize. In order to address these limitations, we first build a covariance-based parameter sensitivity analysis framework to quantify the sensitivity of each parameter in a model to domain shifts. By computing the covariance of parameter gradients across multiple source domains, we can identify parameters that are more susceptible to domain variations, which serves as our theoretical foundation. Based on this, we propose Domain-Sensitive Parameter Regularization (DSP-Reg), a principled framework that guides model optimization by a soft regularization technique that encourages the model to rely more on domain-invariant parameters while suppressing those that are domain-specific. This approach provides a more granular control over the model's learning process, leading to improved robustness and generalization to unseen domains. Extensive experiments on benchmarks, such as PACS, VLCS, OfficeHome, and DomainNet, demonstrate that DSP-Reg outperforms state-of-the-art approaches, achieving an average accuracy of 66.7\% and surpassing all baselines.
High-quality data augmentation for code comment classification
Code comments serve a crucial role in software development for documenting functionality, clarifying design choices, and assisting with issue tracking. They capture developers' insights about the surrounding source code, serving as an essential resource for both human comprehension and automated analysis. Nevertheless, since comments are in natural language, they present challenges for machine-based code understanding. To address this, recent studies have applied natural language processing (NLP) and deep learning techniques to classify comments according to developers' intentions. However, existing datasets for this task suffer from size limitations and class imbalance, as they rely on manual annotations and may not accurately represent the distribution of comments in real-world codebases. To overcome this issue, we introduce new synthetic oversampling and augmentation techniques based on high-quality data generation to enhance the NLBSE'26 challenge datasets. Our Synthetic Quality Oversampling Technique and Augmentation Technique (Q-SYNTH) yield promising results, improving the base classifier by $2.56\%$.
comment: Accepted at the NLBSE Workshop (co-located with ICSE)
Optimal Asynchronous Stochastic Nonconvex Optimization under Heavy-Tailed Noise
This paper considers the problem of asynchronous stochastic nonconvex optimization with heavy-tailed gradient noise and arbitrarily heterogeneous computation times across workers. We propose an asynchronous normalized stochastic gradient descent algorithm with momentum. The analysis show that our method achieves the optimal time complexity under the assumption of bounded $p$th-order central moment with $p\in(1,2]$. We also provide numerical experiments to show the effectiveness of proposed method.
Teaching Machine Learning Fundamentals with LEGO Robotics
This paper presents the web-based platform Machine Learning with Bricks and an accompanying two-day course designed to teach machine learning concepts to students aged 12 to 17 through programming-free robotics activities. Machine Learning with Bricks is an open source platform and combines interactive visualizations with LEGO robotics to teach three core algorithms: KNN, linear regression, and Q-learning. Students learn by collecting data, training models, and interacting with robots via a web-based interface. Pre- and post-surveys with 14 students demonstrate significant improvements in conceptual understanding of machine learning algorithms, positive shifts in AI perception, high platform usability, and increased motivation for continued learning. This work demonstrates that tangible, visualization-based approaches can make machine learning concepts accessible and engaging for young learners while maintaining technical depth. The platform is freely available at https://learning-and-dynamics.github.io/ml-with-bricks/, with video tutorials guiding students through the experiments at https://youtube.com/playlist?list=PLx1grFu4zAcwfKKJZ1Ux4LwRqaePCOA2J.
comment: 10 pages, 8 figures
Selective Steering: Norm-Preserving Control Through Discriminative Layer Selection
Despite significant progress in alignment, large language models (LLMs) remain vulnerable to adversarial attacks that elicit harmful behaviors. Activation steering techniques offer a promising inference-time intervention approach, but existing methods suffer from critical limitations: activation addition requires careful coefficient tuning and is sensitive to layer-specific norm variations, while directional ablation provides only binary control. Recent work on Angular Steering introduces continuous control via rotation in a 2D subspace, but its practical implementation violates norm preservation, causing distribution shift and generation collapse, particularly in models below 7B parameters. We propose Selective Steering, which addresses these limitations through two key innovations: (1) a mathematically rigorous norm-preserving rotation formulation that maintains activation distribution integrity, and (2) discriminative layer selection that applies steering only where feature representations exhibit opposite-signed class alignment. Experiments across nine models demonstrate that Selective Steering achieves 5.5x higher attack success rates than prior methods while maintaining zero perplexity violations and approximately 100\% capability retention on standard benchmarks. Our approach provides a principled, efficient framework for controllable and stable LLM behavior modification. Code: https://github.com/knoveleng/steering
CHEHAB RL: Learning to Optimize Fully Homomorphic Encryption Computations
Fully Homomorphic Encryption (FHE) enables computations directly on encrypted data, but its high computational cost remains a significant barrier. Writing efficient FHE code is a complex task requiring cryptographic expertise, and finding the optimal sequence of program transformations is often intractable. In this paper, we propose CHEHAB RL, a novel framework that leverages deep reinforcement learning (RL) to automate FHE code optimization. Instead of relying on predefined heuristics or combinatorial search, our method trains an RL agent to learn an effective policy for applying a sequence of rewriting rules to automatically vectorize scalar FHE code while reducing instruction latency and noise growth. The proposed approach supports the optimization of both structured and unstructured code. To train the agent, we synthesize a diverse dataset of computations using a large language model (LLM). We integrate our proposed approach into the CHEHAB FHE compiler and evaluate it on a suite of benchmarks, comparing its performance against Coyote, a state-of-the-art vectorizing FHE compiler. The results show that our approach generates code that is $5.3\times$ faster in execution, accumulates $2.54\times$ less noise, while the compilation process itself is $27.9\times$ faster than Coyote (geometric means).
GraphSB: Boosting Imbalanced Node Classification on Graphs through Structural Balance
Imbalanced node classification is a critical challenge in graph learning, where most existing methods typically utilize Graph Neural Networks (GNNs) to learn node representations. These methods can be broadly categorized into the data-level and the algorithm-level. The former aims to synthesize minority-class nodes to mitigate quantity imbalance, while the latter tries to optimize the learning process to highlight minority classes. However, neither of them addresses the inherently imbalanced graph structure, which is a fundamental factor that incurs majority-class dominance and minority-class assimilation in GNNs. Our theoretical analysis further supports this critical insight. Therefore, we propose GraphSB (Graph Structural Balance), a novel framework that incorporates Structural Balance as a key strategy to address the underlying imbalanced graph structure before node synthesis. Structural Balance performs a two-stage structure optimization: Structure Enhancement that mines hard samples near decision boundaries through dual-view analysis and enhances connectivity for minority classes through adaptive augmentation, and Relation Diffusion that propagates the enhanced minority context while simultaneously capturing higher-order structural dependencies. Thus, GraphSB balances structural distribution before node synthesis, enabling more effective learning in GNNs. Extensive experiments demonstrate that GraphSB significantly outperforms the state-of-the-art methods. More importantly, the proposed Structural Balance can be seamlessly integrated into state-of-the-art methods as a simple plug-and-play module, increasing their accuracy by an average of 4.57%.
Robust Uncertainty Estimation under Distribution Shift via Difference Reconstruction
Estimating uncertainty in deep learning models is critical for reliable decision-making in high-stakes applications such as medical imaging. Prior research has established that the difference between an input sample and its reconstructed version produced by an auxiliary model can serve as a useful proxy for uncertainty. However, directly comparing reconstructions with the original input is degraded by information loss and sensitivity to superficial details, which limits its effectiveness. In this work, we propose Difference Reconstruction Uncertainty Estimation (DRUE), a method that mitigates this limitation by reconstructing inputs from two intermediate layers and measuring the discrepancy between their outputs as the uncertainty score. To evaluate uncertainty estimation in practice, we follow the widely used out-of-distribution (OOD) detection paradigm, where in-distribution (ID) training data are compared against datasets with increasing domain shift. Using glaucoma detection as the ID task, we demonstrate that DRUE consistently achieves superior AUC and AUPR across multiple OOD datasets, highlighting its robustness and reliability under distribution shift. This work provides a principled and effective framework for enhancing model reliability in uncertain environments.
SETA: Statistical Fault Attribution for Compound AI Systems
Modern AI systems increasingly comprise multiple interconnected neural networks to tackle complex inference tasks. Testing such systems for robustness and safety entails significant challenges. Current state-of-the-art robustness testing techniques, whether black-box or white-box, have been proposed and implemented for single-network models and do not scale well to multi-network pipelines. We propose a modular robustness testing framework that applies a given set of perturbations to test data. Our testing framework supports (1) a component-wise system analysis to isolate errors and (2) reasoning about error propagation across the neural network modules. The testing framework is architecture and modality agnostic and can be applied across domains. We apply the framework to a real-world autonomous rail inspection system composed of multiple deep networks and successfully demonstrate how our approach enables fine-grained robustness analysis beyond conventional end-to-end metrics.
comment: Accepted to CAIN 2026 co-hosted with ICSE 2026
From Observations to Events: Event-Aware World Model for Reinforcement Learning ICLR 2026
While model-based reinforcement learning (MBRL) improves sample efficiency by learning world models from raw observations, existing methods struggle to generalize across structurally similar scenes and remain vulnerable to spurious variations such as textures or color shifts. From a cognitive science perspective, humans segment continuous sensory streams into discrete events and rely on these key events for decision-making. Motivated by this principle, we propose the Event-Aware World Model (EAWM), a general framework that learns event-aware representations to streamline policy learning without requiring handcrafted labels. EAWM employs an automated event generator to derive events from raw observations and introduces a Generic Event Segmentor (GES) to identify event boundaries, which mark the start and end time of event segments. Through event prediction, the representation space is shaped to capture meaningful spatio-temporal transitions. Beyond this, we present a unified formulation of seemingly distinct world model architectures and show the broad applicability of our methods. Experiments on Atari 100K, Craftax 1M, and DeepMind Control 500K, DMC-GB2 500K demonstrate that EAWM consistently boosts the performance of strong MBRL baselines by 10%-45%, setting new state-of-the-art results across benchmarks. Our code is released at https://github.com/MarquisDarwin/EAWM.
comment: 43 pages, accepted by ICLR 2026
Metric $k$-clustering using only Weak Comparison Oracles
Clustering is a fundamental primitive in unsupervised learning. However, classical algorithms for $k$-clustering (such as $k$-median and $k$-means) assume access to exact pairwise distances -- an unrealistic requirement in many modern applications. We study clustering in the \emph{Rank-model (R-model)}, where access to distances is entirely replaced by a \emph{quadruplet oracle} that provides only relative distance comparisons. In practice, such an oracle can represent learned models or human feedback, and is expected to be noisy and entail an access cost. Given a metric space with $n$ input items, we design randomized algorithms that, using only a noisy quadruplet oracle, compute a set of $O(k \cdot \mathsf{polylog}(n))$ centers along with a mapping from the input items to the centers such that the clustering cost of the mapping is at most constant times the optimum $k$-clustering cost. Our method achieves a query complexity of $O(n\cdot k \cdot \mathsf{polylog}(n))$ for arbitrary metric spaces and improves to $O((n+k^2) \cdot \mathsf{polylog}(n))$ when the underlying metric has bounded doubling dimension. When the metric has bounded doubling dimension we can further improve the approximation from constant to $1+\varepsilon$, for any arbitrarily small constant $\varepsilon\in(0,1)$, while preserving the same asymptotic query complexity. Our framework demonstrates how noisy, low-cost oracles, such as those derived from large language models, can be systematically integrated into scalable clustering algorithms.
StableQAT: Stable Quantization-Aware Training at Ultra-Low Bitwidths
Quantization-aware training (QAT) is essential for deploying large models under strict memory and latency constraints, yet achieving stable and robust optimization at ultra-low bitwidths remains challenging. Common approaches based on the straight-through estimator (STE) or soft quantizers often suffer from gradient mismatch, instability, or high computational overhead. As such, we propose StableQAT, a unified and efficient QAT framework that stabilizes training in ultra low-bit settings via a novel, lightweight, and theoretically grounded surrogate for backpropagation derived from a discrete Fourier analysis of the rounding operator. StableQAT strictly generalizes STE as the latter arises as a special case of our more expressive surrogate family, yielding smooth, bounded, and inexpensive gradients that improve QAT training performance and stability across various hyperparameter choices. In experiments, StableQAT exhibits stable and efficient QAT at 2-4 bit regimes, demonstrating improved training stability, robustness, and superior performance with negligible training overhead against standard QAT techniques. Our code is available at https://github.com/microsoft/StableQAT.
Generalizable IoT Traffic Representations for Cross-Network Device Identification
Machine learning models have demonstrated strong performance in classifying network traffic and identifying Internet-of-Things (IoT) devices, enabling operators to discover and manage IoT assets at scale. However, many existing approaches rely on end-to-end supervised pipelines or task-specific fine-tuning, resulting in traffic representations that are tightly coupled to labeled datasets and deployment environments, which can limit generalizability. In this paper, we study the problem of learning generalizable traffic representations for IoT device identification. We design compact encoder architectures that learn per-flow embeddings from unlabeled IoT traffic and evaluate them using a frozen-encoder protocol with a simple supervised classifier. Our specific contributions are threefold. (1) We develop unsupervised encoder--decoder models that learn compact traffic representations from unlabeled IoT network flows and assess their quality through reconstruction-based analysis. (2) We show that these learned representations can be used effectively for IoT device-type classification using simple, lightweight classifiers trained on frozen embeddings. (3) We provide a systematic benchmarking study against the state-of-the-art pretrained traffic encoders, showing that larger models do not necessarily yield more robust representations for IoT traffic. Using more than 18 million real IoT traffic flows collected across multiple years and deployment environments, we learn traffic representations from unlabeled data and evaluate device-type classification on disjoint labeled subsets, achieving macro F1-scores exceeding 0.9 for device-type classification and demonstrating robustness under cross-environment deployment.
comment: 15 pages, 15 figures
LightSBB-M: Bridging Schrödinger and Bass for Generative Diffusion Modeling
The Schrodinger Bridge and Bass (SBB) formulation, which jointly controls drift and volatility, is an established extension of the classical Schrodinger Bridge (SB). Building on this framework, we introduce LightSBB-M, an algorithm that computes the optimal SBB transport plan in only a few iterations. The method exploits a dual representation of the SBB objective to obtain analytic expressions for the optimal drift and volatility, and it incorporates a tunable parameter beta greater than zero that interpolates between pure drift (the Schrodinger Bridge) and pure volatility (Bass martingale transport). We show that LightSBB-M achieves the lowest 2-Wasserstein distance on synthetic datasets against state-of-the-art SB and diffusion baselines with up to 32 percent improvement. We also illustrate the generative capability of the framework on an unpaired image-to-image translation task (adult to child faces in FFHQ). These findings demonstrate that LightSBB-M provides a scalable, high-fidelity SBB solver that outperforms existing SB and diffusion baselines across both synthetic and real-world generative tasks. The code is available at https://github.com/alexouadi/LightSBB-M.
Queue Length Regret Bounds for Contextual Queueing Bandits
We introduce contextual queueing bandits, a new context-aware framework for scheduling while simultaneously learning unknown service rates. Individual jobs carry heterogeneous contextual features, based on which the agent chooses a job and matches it with a server to maximize the departure rate. The service/departure rate is governed by a logistic model of the contextual feature with an unknown server-specific parameter. To evaluate the performance of a policy, we consider queue length regret, defined as the difference in queue length between the policy and the optimal policy. The main challenge in the analysis is that the lists of remaining job features in the queue may differ under our policy versus the optimal policy for a given time step, since they may process jobs in different orders. To address this, we propose the idea of policy-switching queues equipped with a sophisticated coupling argument. This leads to a novel queue length regret decomposition framework, allowing us to understand the short-term effect of choosing a suboptimal job-server pair and its long-term effect on queue state differences. We show that our algorithm, CQB-$\varepsilon$, achieves a regret upper bound of $\widetilde{\mathcal{O}}(T^{-1/4})$. We also consider the setting of adversarially chosen contexts, for which our second algorithm, CQB-Opt, achieves a regret upper bound of $\mathcal{O}(\log^2 T)$. Lastly, we provide experimental results that validate our theoretical findings.
Process-Aware Procurement Lead Time Prediction for Shipyard Delay Mitigation
Accurately predicting procurement lead time (PLT) remains a challenge in engineered-to-order industries such as shipbuilding and plant construction, where delays in a single key component can disrupt project timelines. In shipyards, pipe spools are critical components; installed deep within hull blocks soon after steel erection, any delay in their procurement can halt all downstream tasks. Recognizing their importance, existing studies predict PLT using the static physical attributes of pipe spools. However, procurement is inherently a dynamic, multi-stakeholder business process involving a continuous sequence of internal and external events at the shipyard, factors often overlooked in traditional approaches. To address this issue, this paper proposes a novel framework that combines event logs, dataset records of the procurement events, with static attributes to predict PLT. The temporal attributes of each event are extracted to reflect the continuity and temporal context of the process. Subsequently, a deep sequential neural network combined with a multi-layered perceptron is employed to integrate these static and dynamic features, enabling the model to capture both structural and contextual information in procurement. Comparative experiments are conducted using real-world pipe spool procurement data from a globally renowned South Korean shipbuilding corporation. Three tasks are evaluated, which are production, post-processing, and procurement lead time prediction. The results show a 22.6% to 50.4% improvement in prediction performance in terms of mean absolute error over the best-performing existing approaches across the three tasks. These findings indicate the value of considering procurement process information for more accurate PLT prediction.
Smoothing the Score Function for Generalization in Diffusion Models: An Optimization-based Explanation Framework
Diffusion models achieve remarkable generation quality, yet face a fundamental challenge known as memorization, where generated samples can replicate training samples exactly. We develop a theoretical framework to explain this phenomenon by showing that the empirical score function (the score function corresponding to the empirical distribution) is a weighted sum of the score functions of Gaussian distributions, in which the weights are sharp softmax functions. This structure causes individual training samples to dominate the score function, resulting in sampling collapse. In practice, approximating the empirical score function with a neural network can partially alleviate this issue and improve generalization. Our theoretical framework explains why: In training, the neural network learns a smoother approximation of the weighted sum, allowing the sampling process to be influenced by local manifolds rather than single points. Leveraging this insight, we propose two novel methods to further enhance generalization: (1) Noise Unconditioning enables each training sample to adaptively determine its score function weight to increase the effect of more training samples, thereby preventing single-point dominance and mitigating collapse. (2) Temperature Smoothing introduces an explicit parameter to control the smoothness. By increasing the temperature in the softmax weights, we naturally reduce the dominance of any single training sample and mitigate memorization. Experiments across multiple datasets validate our theoretical analysis and demonstrate the effectiveness of the proposed methods in improving generalization while maintaining high generation quality.
comment: 61pages,32 figures
Output Feedback Stabilization of Linear Systems via Policy Gradient Methods
Stabilizing a dynamical system is a fundamental problem that serves as a cornerstone for many complex tasks in the field of control systems. The problem becomes challenging when the system model is unknown. Among the Reinforcement Learning (RL) algorithms that have been successfully applied to solve problems pertaining to unknown linear dynamical systems, the policy gradient (PG) method stands out due to its ease of implementation and can solve the problem in a model-free manner. However, most of the existing works on PG methods for unknown linear dynamical systems assume full-state feedback. In this paper, we take a step towards model-free learning for partially observable linear dynamical systems with output feedback and focus on the fundamental stabilization problem of the system. We propose an algorithmic framework that stretches the boundary of PG methods to the problem without global convergence guarantees. We show that by leveraging zeroth-order PG update based on system trajectories and its convergence to stationary points, the proposed algorithms return a stabilizing output feedback policy for discrete-time linear dynamical systems. We also explicitly characterize the sample complexity of our algorithm and verify the effectiveness of the algorithm using numerical examples.
comment: 31 pages, 2 figures
Group Distributionally Robust Optimization-Driven Reinforcement Learning for LLM Reasoning
Recent progress in Large Language Model (LLM) reasoning is increasingly driven by the refinement of post-training loss functions and alignment strategies. However, standard Reinforcement Learning (RL) paradigms like Group Relative Policy Optimization (GRPO) remain constrained by static uniformity: uniform prompt sampling and a fixed number of rollouts per prompt. For heterogeneous, heavy-tailed reasoning data, this creates structural inefficiencies that waste compute on already-solved patterns while under-training the long tail of hard problems. To address this, we propose Multi-Adversary Group Distributionally Robust Optimization (GDRO), an optimization-first framework that moves beyond uniform reasoning models by dynamically adapting the training distribution. We introduce an Online Difficulty Classifier that partitions prompts into dynamic pass@k difficulty groups. We then propose two independent GDRO games for post-training: (1) Prompt-GDRO, which employs an EMA-debiased multiplicative-weights bandit sampler to target the intensive difficulty margin and upweight persistently hard groups without frequency bias; and (2) Rollout-GDRO, which uses a shadow-price controller to reallocate rollouts across groups, maximizing gradient variance reduction on hard tasks under a fixed mean budget (compute-neutral). We provide no-regret guarantees for both controllers and additionally a variance-proxy analysis motivating a square-root optimal rollout allocation for Rollout-GDRO. We validate our framework on the DAPO 14.1k dataset using Qwen3-Base models. Prompt-GDRO and Rollout-GDRO achieve average relative gains of +10.6% and +10.1%, respectively, in pass@8 accuracy across 1.7B, 4B, and 8B scales compared to the GRPO baseline. Qualitative analysis shows an emergent curriculum: the adversaries shift resources to the evolving reasoning frontier, enhancing the reasoning model's performance.
comment: Keywords: Large Language Models, Reasoning Models, Reinforcement Learning, Distributionally Robust Optimization, GRPO
Talos: Optimizing Top-$K$ Accuracy in Recommender Systems
Recommender systems (RS) aim to retrieve a small set of items that best match individual user preferences. Naturally, RS place primary emphasis on the quality of the Top-$K$ results rather than performance across the entire item set. However, estimating Top-$K$ accuracy (e.g., Precision@$K$, Recall@$K$) requires determining the ranking positions of items, which imposes substantial computational overhead and poses significant challenges for optimization. In addition, RS often suffer from distribution shifts due to evolving user preferences or data biases, further complicating the task. To address these issues, we propose Talos, a loss function that is specifically designed to optimize the Talos recommendation accuracy. Talos leverages a quantile technique that replaces the complex ranking-dependent operations into simpler comparisons between predicted scores and learned score thresholds. We further develop a sampling-based regression algorithm for efficient and accurate threshold estimation, and introduce a constraint term to maintain optimization stability by preventing score inflation. Additionally, we incorporate a tailored surrogate function to address discontinuity and enhance robustness against distribution shifts. Comprehensive theoretical analyzes and empirical experiments are conducted to demonstrate the effectiveness, efficiency, convergence, and distributional robustness of Talos. The code is available at https://github.com/cynthia-shengjia/WWW-2026-Talos.
comment: Accepted by WWW'26
Tactile Memory with Soft Robot: Robust Object Insertion via Masked Encoding and Soft Wrist
Tactile memory, the ability to store and retrieve touch-based experience, is critical for contact-rich tasks such as key insertion under uncertainty. To replicate this capability, we introduce Tactile Memory with Soft Robot (TaMeSo-bot), a system that integrates a soft wrist with tactile retrieval-based control to enable safe and robust manipulation. The soft wrist allows safe contact exploration during data collection, while tactile memory reuses past demonstrations via retrieval for flexible adaptation to unseen scenarios. The core of this system is the Masked Tactile Trajectory Transformer (MAT$^\text{3}$), which jointly models spatiotemporal interactions between robot actions, distributed tactile feedback, force-torque measurements, and proprioceptive signals. Through masked-token prediction, MAT$^\text{3}$ learns rich spatiotemporal representations by inferring missing sensory information from context, autonomously extracting task-relevant features without explicit subtask segmentation. We validate our approach on peg-in-hole tasks with diverse pegs and conditions in real-robot experiments. Our extensive evaluation demonstrates that MAT$^\text{3}$ achieves higher success rates than the baselines over all conditions and shows remarkable capability to adapt to unseen pegs and conditions.
comment: This work has been submitted to the IEEE for possible publication
Whitespaces Don't Lie: Feature-Driven and Embedding-Based Approaches for Detecting Machine-Generated Code
Large language models (LLMs) have made it remarkably easy to synthesize plausible source code from natural language prompts. While this accelerates software development and supports learning, it also raises new risks for academic integrity, authorship attribution, and responsible AI use. This paper investigates the problem of distinguishing human-written from machine-generated code by comparing two complementary approaches: feature-based detectors built from lightweight, interpretable stylometric and structural properties of code, and embedding-based detectors leveraging pretrained code encoders. Using a recent large-scale benchmark dataset of 600k human-written and AI-generated code samples, we find that feature-based models achieve strong performance (ROC-AUC 0.995, PR-AUC 0.995, F1 0.971), while embedding-based models with CodeBERT embeddings are also very competitive (ROC-AUC 0.994, PR-AUC 0.994, F1 0.965). Analysis shows that features tied to indentation and whitespace provide particularly discriminative cues, whereas embeddings capture deeper semantic patterns and yield slightly higher precision. These findings underscore the trade-offs between interpretability and generalization, offering practical guidance for deploying robust code-origin detection in academic and industrial contexts.
Decoupled Split Learning via Auxiliary Loss
Split learning is a distributed training paradigm where a neural network is partitioned between clients and a server, which allows data to remain at the client while only intermediate activations are shared. Traditional split learning relies on end-to-end backpropagation across the client-server split point. This incurs a large communication overhead (i.e., forward activations and backward gradients need to be exchanged every iteration) and significant memory use (for storing activations and gradients). In this paper, we develop a beyond-backpropagation training method for split learning. In this approach, the client and server train their model partitions semi-independently, using local loss signals instead of propagated gradients. In particular, the client's network is augmented with a small auxiliary classifier at the split point to provide a local error signal, while the server trains on the client's transmitted activations using the true loss function. This decoupling removes the need to send backward gradients, which cuts communication costs roughly in half and also reduces memory overhead (as each side only stores local activations for its own backward pass). We evaluate our approach on CIFAR-10 and CIFAR-100. Our experiments show two key results. First, the proposed approach achieves performance on par with standard split learning that uses backpropagation. Second, it significantly reduces communication (of transmitting activations/gradient) by 50% and peak memory usage by up to 58%.
PCEvo: Path-Consistent Molecular Representation via Virtual Evolutionary
Molecular representation learning aims to learn vector embeddings that capture molecular structure and geometry, thereby enabling property prediction and downstream scientific applications. In many AI for science tasks, labeled data are expensive to obtain and therefore limited in availability. Under the few-shot setting, models trained with scarce supervision often learn brittle structure-property relationships, resulting in substantially higher prediction errors and reduced generalization to unseen molecules. To address this limitation, we propose PCEvo, a path-consistent representation method that learns from virtual paths through dynamic structural evolution. PCEvo enumerates multiple chemically feasible edit paths between retrieved similar molecular pairs under topological dependency constraints. It transforms the labels of the two molecules into stepwise supervision along each virtual evolutionary path. It introduces a path-consistency objective that enforces prediction invariance across alternative paths connecting the same two molecules. Comprehensive experiments on the QM9 and MoleculeNet datasets demonstrate that PCEvo substantially improves the few-shot generalization performance of baseline methods. The code is available at https://anonymous.4open.science/r/PCEvo-4BF2.
comment: 10 pages, 4 figures, 5 tables
E-QRGMM: Efficient Generative Metamodeling for Covariate-Dependent Uncertainty Quantification
Covariate-dependent uncertainty quantification in simulation-based inference is crucial for high-stakes decision-making but remains challenging due to the limitations of existing methods such as conformal prediction and classical bootstrap, which struggle with covariate-specific conditioning. We propose Efficient Quantile-Regression-Based Generative Metamodeling (E-QRGMM), a novel framework that accelerates the quantile-regression-based generative metamodeling (QRGMM) approach by integrating cubic Hermite interpolation with gradient estimation. Theoretically, we show that E-QRGMM preserves the convergence rate of the original QRGMM while reducing grid complexity from $O(n^{1/2})$ to $O(n^{1/5})$ for the majority of quantile levels, thereby substantially improving computational efficiency. Empirically, E-QRGMM achieves a superior trade-off between distributional accuracy and training speed compared to both QRGMM and other advanced deep generative models on synthetic and practical datasets. Moreover, by enabling bootstrap-based construction of confidence intervals for arbitrary estimands of interest, E-QRGMM provides a practical solution for covariate-dependent uncertainty quantification.
LLM-Assisted Logic Rule Learning: Scaling Human Expertise for Time Series Anomaly Detection
Time series anomaly detection is critical for supply chain management to take proactive operations, but faces challenges: classical unsupervised anomaly detection based on exploiting data patterns often yields results misaligned with business requirements and domain knowledge, while manual expert analysis cannot scale to millions of products in the supply chain. We propose a framework that leverages large language models (LLMs) to systematically encode human expertise into interpretable, logic-based rules for detecting anomaly patterns in supply chain time series data. Our approach operates in three stages: 1) LLM-based labeling of training data instructed by domain knowledge, 2) automated generation and iterative improvements of symbolic rules through LLM-driven optimization, and 3) rule augmentation with business-relevant anomaly categories supported by LLMs to enhance interpretability. The experiment results showcase that our approach outperforms the unsupervised learning methods in both detection accuracy and interpretability. Furthermore, compared to direct LLM deployment for time series anomaly detection, our approach provides consistent, deterministic results with low computational latency and cost, making it ideal for production deployment. The proposed framework thus demonstrates how LLMs can bridge the gap between scalable automation and expert-driven decision-making in operational settings.
Beyond In-Domain Detection: SpikeScore for Cross-Domain Hallucination Detection
Hallucination detection is critical for deploying large language models (LLMs) in real-world applications. Existing hallucination detection methods achieve strong performance when the training and test data come from the same domain, but they suffer from poor cross-domain generalization. In this paper, we study an important yet overlooked problem, termed generalizable hallucination detection (GHD), which aims to train hallucination detectors on data from a single domain while ensuring robust performance across diverse related domains. In studying GHD, we simulate multi-turn dialogues following LLMs initial response and observe an interesting phenomenon: hallucination-initiated multi-turn dialogues universally exhibit larger uncertainty fluctuations than factual ones across different domains. Based on the phenomenon, we propose a new score SpikeScore, which quantifies abrupt fluctuations in multi-turn dialogues. Through both theoretical analysis and empirical validation, we demonstrate that SpikeScore achieves strong cross-domain separability between hallucinated and non-hallucinated responses. Experiments across multiple LLMs and benchmarks demonstrate that the SpikeScore-based detection method outperforms representative baselines in cross-domain generalization and surpasses advanced generalization-oriented methods, verifying the effectiveness of our method in cross-domain hallucination detection.
Contrast-Source-Based Physics-Driven Neural Network for Inverse Scattering Problems
Deep neural networks (DNNs) have recently been applied to inverse scattering problems (ISPs) due to their strong nonlinear mapping capabilities. However, supervised DNN solvers require large-scale datasets, which limits their generalization in practical applications. Untrained neural networks (UNNs) address this issue by updating weights from measured electric fields and prior physical knowledge, but existing UNN solvers suffer from long inference time. To overcome these limitations, this paper proposes a contrast-source-based physics-driven neural network (CSPDNN), which predicts the induced current distribution to improve efficiency and incorporates an adaptive total variation loss for robust reconstruction under varying contrast and noise conditions. The improved imaging performance is validated through comprehensive numerical simulations and experimental data.
Structure-based RNA Design by Step-wise Optimization of Latent Diffusion Model AAAI 2026
RNA inverse folding, designing sequences to form specific 3D structures, is critical for therapeutics, gene regulation, and synthetic biology. Current methods, focused on sequence recovery, struggle to address structural objectives like secondary structure consistency (SS), minimum free energy (MFE), and local distance difference test (LDDT), leading to suboptimal structural accuracy. To tackle this, we propose a reinforcement learning (RL) framework integrated with a latent diffusion model (LDM). Drawing inspiration from the success of diffusion models in RNA inverse folding, which adeptly model complex sequence-structure interactions, we develop an LDM incorporating pre-trained RNA-FM embeddings from a large-scale RNA model. These embeddings capture co-evolutionary patterns, markedly improving sequence recovery accuracy. However, existing approaches, including diffusion-based methods, cannot effectively handle non-differentiable structural objectives. By contrast, RL excels in this task by using policy-driven reward optimization to navigate complex, non-gradient-based objectives, offering a significant advantage over traditional methods. In summary, we propose the Step-wise Optimization of Latent Diffusion Model (SOLD), a novel RL framework that optimizes single-step noise without sampling the full diffusion trajectory, achieving efficient refinement of multiple structural objectives. Experimental results demonstrate SOLD surpasses its LDM baseline and state-of-the-art methods across all metrics, establishing a robust framework for RNA inverse folding with profound implications for biotechnological and therapeutic applications.
comment: 20 pages (7 pages content + 2 pages references + 11 pages appendix), 11 figures, 8 tables. Source code available at https://github.com/darkflash03/SOLD Accepted to AAAI 2026
Accelerated Multiple Wasserstein Gradient Flows for Multi-objective Distributional Optimization
We study multi-objective optimization over probability distributions in Wasserstein space. Recently, Nguyen et al. (2025) introduced Multiple Wasserstein Gradient Descent (MWGraD) algorithm, which exploits the geometric structure of Wasserstein space to jointly optimize multiple objectives. Building on this approach, we propose an accelerated variant, A-MWGraD, inspired by Nesterov's acceleration. We analyze the continuous-time dynamics and establish convergence to weakly Pareto optimal points in probability space. Our theoretical results show that A-MWGraD achieves a convergence rate of O(1/t^2) for geodesically convex objectives and O(e^{-\sqrtβt}) for $β$-strongly geodesically convex objectives, improving upon the O(1/t) rate of MWGraD in the geodesically convex setting. We further introduce a practical kernel-based discretization for A-MWGraD and demonstrate through numerical experiments that it consistently outperforms MWGraD in convergence speed and sampling efficiency on multi-target sampling tasks.
Bridging Visual and Wireless Sensing: A Unified Radiation Field for 3D Radio Map Construction
The emerging applications of next-generation wireless networks (e.g., immersive 3D communication, low-altitude networks, and integrated sensing and communication) necessitate high-fidelity environmental intelligence. 3D radio maps have emerged as a critical tool for this purpose, enabling spectrum-aware planning and environment-aware sensing by bridging the gap between physical environments and electromagnetic signal propagation. However, constructing accurate 3D radio maps requires fine-grained 3D geometric information and a profound understanding of electromagnetic wave propagation. Existing approaches typically treat optical and wireless knowledge as distinct modalities, failing to exploit the fundamental physical principles governing both light and electromagnetic propagation. To bridge this gap, we propose URF-GS, a unified radio-optical radiation field representation framework for accurate and generalizable 3D radio map construction based on 3D Gaussian splatting (3D-GS) and inverse rendering. By fusing visual and wireless sensing observations, URF-GS recovers scene geometry and material properties while accurately predicting radio signal behavior at arbitrary transmitter-receiver (Tx-Rx) configurations. Experimental results demonstrate that URF-GS achieves up to a 24.7% improvement in spatial spectrum prediction accuracy and a 10x increase in sample efficiency for 3D radio map construction compared with neural radiance field (NeRF)-based methods. This work establishes a foundation for next-generation wireless networks by integrating perception, interaction, and communication through holistic radiation field reconstruction.
comment: The code for this work will be publicly available at: https://github.com/wenchaozheng/URF-GS
How Do Transformers Learn to Associate Tokens: Gradient Leading Terms Bring Mechanistic Interpretability ICLR 2026
Semantic associations such as the link between "bird" and "flew" are foundational for language modeling as they enable models to go beyond memorization and instead generalize and generate coherent text. Understanding how these associations are learned and represented in language models is essential for connecting deep learning with linguistic theory and developing a mechanistic foundation for large language models. In this work, we analyze how these associations emerge from natural language data in attention-based language models through the lens of training dynamics. By leveraging a leading-term approximation of the gradients, we develop closed-form expressions for the weights at early stages of training that explain how semantic associations first take shape. Through our analysis, we reveal that each set of weights of the transformer has closed-form expressions as simple compositions of three basis functions (bigram, token-interchangeability, and context mappings), reflecting the statistics of the text corpus and uncovering how each component of the transformer captures semantic associations based on these compositions. Experiments on real-world LLMs demonstrate that our theoretical weight characterizations closely match the learned weights, and qualitative analyses further show how our theorem shines light on interpreting the learned associations in transformers.
comment: ICLR 2026
EnzyPGM: Pocket-conditioned Generative Model for Substrate-specific Enzyme Design
Designing enzymes with substrate-binding pockets is a critical challenge in protein engineering, as catalytic activity depends on the precise interaction between pockets and substrates. Currently, generative models dominate functional protein design but cannot model pocket-substrate interactions, which limits the generation of enzymes with precise catalytic environments. To address this issue, we propose EnzyPGM, a unified framework that jointly generates enzymes and substrate-binding pockets conditioned on functional priors and substrates, with a particular focus on learning accurate pocket-substrate interactions. At its core, EnzyPGM includes two main modules: a Residue-atom Bi-scale Attention (RBA) that jointly models intra-residue dependencies and fine-grained interactions between pocket residues and substrate atoms, and a Residue Function Fusion (RFF) that incorporates enzyme function priors into residue representations. Also, we curate EnzyPock, an enzyme-pocket dataset comprising 83,062 enzyme-substrate pairs across 1,036 four-level enzyme families. Extensive experiments demonstrate that EnzyPGM achieves state-of-the-art performance on EnzyPock. Notably, EnzyPGM reduces the average binding energy of 0.47 kcal/mol over EnzyGen, showing its superior performance on substrate-specific enzyme design. The code and dataset will be released later.
comment: 9 pages, 4 figures, under review
SE-DiCoW: Self-Enrolled Diarization-Conditioned Whisper
Speaker-attributed automatic speech recognition (ASR) in multi-speaker environments remains a major challenge. While some approaches achieve strong performance when fine-tuned on specific domains, few systems generalize well across out-of-domain datasets. Our prior work, Diarization-Conditioned Whisper (DiCoW), leverages speaker diarization outputs as conditioning information and, with minimal fine-tuning, demonstrated strong multilingual and multi-domain performance. In this paper, we address a key limitation of DiCoW: ambiguity in Silence-Target-Non-target-Overlap (STNO) masks, where two or more fully overlapping speakers may have nearly identical conditioning despite differing transcriptions. We introduce SE-DiCoW (Self-Enrolled Diarization-Conditioned Whisper), which uses diarization output to locate an enrollment segment anywhere in the conversation where the target speaker is most active. This enrollment segment is used as fixed conditioning via cross-attention at each encoder layer. We further refine DiCoW with improved data segmentation, model initialization, and augmentation. Together, these advances yield substantial gains: SE-DiCoW reduces macro-averaged tcpWER by 52.4% relative to the original DiCoW on the EMMA MT-ASR benchmark.
comment: Accepted to ICASSP 2026
Transparency-First Medical Language Models: Datasheets, Model Cards, and End-to-End Data Provenance for Clinical NLP
We introduce TeMLM, a set of transparency-first release artifacts for clinical language models. TeMLM unifies provenance, data transparency, modeling transparency, and governance into a single, machine-checkable release bundle. We define an artifact suite (TeMLM-Card, TeMLM-Datasheet, TeMLM-Provenance) and a lightweight conformance checklist for repeatable auditing. We instantiate the artifacts on Technetium-I, a large-scale synthetic clinical NLP dataset with 498,000 notes, 7.74M PHI entity annotations across 10 types, and ICD-9-CM diagnosis labels, and report reference results for ProtactiniumBERT (about 100 million parameters) on PHI de-identification (token classification) and top-50 ICD-9 code extraction (multi-label classification). We emphasize that synthetic benchmarks are valuable for tooling and process validation, but models should be validated on real clinical data prior to deployment.
comment: 12 pages, 9 figures, 15 tables. Technetium-I case study and ProtactiniumBERT-100M reference benchmarks
Foresight Learning for SEC Risk Prediction
Risk disclosures in SEC filings describe potential adverse events but rarely quantify their likelihood, limiting their usefulness for probabilistic analysis. A central obstacle is the absence of large-scale, risk-level supervision linking disclosed risks to realized outcomes. We introduce a fully automated data generation pipeline that converts qualitative SEC risk disclosures into temporally grounded supervision using only public data. For each filing, the pipeline generates firm-specific, time-bounded risk queries from the Risk Factors section and labels them by automatically resolving outcomes against subsequent disclosures. Using this dataset of risk queries and outcomes grounded in SEC filings, we train a compact large language model to estimate the probability that a disclosed risk will materialize within a specified horizon. Despite its modest size, the resulting model substantially improves over pretrained and heuristic baselines, and outperforms frontier general-purpose models, including GPT-5, on probabilistic accuracy and calibration. More broadly, this work demonstrates that Foresight Learning enables scalable and fully automated training of domain-specific expert models using only raw, chronological, in-domain text -- without proprietary data, external corpora, or manual annotation. The resulting models achieve frontier-level performance while remaining deployable on a single GPU. This result suggests a general pathway for learning calibrated, decision-relevant signals from naturally occurring enterprise documents. To support transparency and reproducibility, we open-source the evaluation dataset used in this study. Evaluation Data: https://huggingface.co/datasets/LightningRodLabs/sec_risk_questions_test_set Data Generation Platform: https://lightningrod.ai/ SDK: https://github.com/lightning-rod-labs/lightningrod-python-sdk
Double Fairness Policy Learning: Integrating Action Fairness and Outcome Fairness in Decision-making
Fairness is a central pillar of trustworthy machine learning, especially in domains where accuracy- or profit-driven optimization is insufficient. While most fairness research focuses on supervised learning, fairness in policy learning remains less explored. Because policy learning is interventional, it induces two distinct fairness targets: action fairness (equitable action assignments) and outcome fairness (equitable downstream consequences). Crucially, equalizing actions does not generally equalize outcomes when groups face different constraints or respond differently to the same action. We propose a novel double fairness learning (DFL) framework that explicitly manages the trade-off among three objectives: action fairness, outcome fairness, and value maximization. We integrate fairness directly into a multi-objective optimization problem for policy learning and employ a lexicographic weighted Tchebyshev method that recovers Pareto solutions beyond convex settings, with theoretical guarantees on the regret bounds. Our framework is flexible and accommodates various commonly used fairness notions. Extensive simulations demonstrate improved performance relative to competing methods. In applications to a motor third-party liability insurance dataset and an entrepreneurship training dataset, DFL substantially improves both action and outcome fairness while incurring only a modest reduction in overall value.
Learning Ordered Representations in Latent Space for Intrinsic Dimension Estimation via Principal Component Autoencoder
Autoencoders have long been considered a nonlinear extension of Principal Component Analysis (PCA). Prior studies have demonstrated that linear autoencoders (LAEs) can recover the ordered, axis-aligned principal components of PCA by incorporating non-uniform $\ell_2$ regularization or by adjusting the loss function. However, these approaches become insufficient in the nonlinear setting, as the remaining variance cannot be properly captured independently of the nonlinear mapping. In this work, we propose a novel autoencoder framework that integrates non-uniform variance regularization with an isometric constraint. This design serves as a natural generalization of PCA, enabling the model to preserve key advantages, such as ordered representations and variance retention, while remaining effective for nonlinear dimensionality reduction tasks.
A Scalable Inter-edge Correlation Modeling in CopulaGNN for Link Sign Prediction ICLR 2026
Link sign prediction on a signed graph is a task to determine whether the relationship represented by an edge is positive or negative. Since the presence of negative edges violates the graph homophily assumption that adjacent nodes are similar, regular graph methods have not been applicable without auxiliary structures to handle them. We aim to directly model the latent statistical dependency among edges with the Gaussian copula and its corresponding correlation matrix, extending CopulaGNN. However, a naive modeling of edge-edge relations is computationally intractable even for a graph with moderate scale. To address this, we propose to 1) represent the correlation matrix as a Gramian of edge embeddings, significantly reducing the number of parameters, and 2) reformulate the conditional probability distribution to dramatically reduce the inference cost. We theoretically verify scalability of our method by proving its linear convergence. Also, our extensive experiments demonstrate that it achieves significantly faster convergence than baselines, maintaining competitive prediction performance to the state-of-the-art models.
comment: Accepted to ICLR 2026
Convergence of Muon with Newton-Schulz ICLR 2026
We analyze Muon as originally proposed and used in practice -- using the momentum orthogonalization with a few Newton-Schulz steps. The prior theoretical results replace this key step in Muon with an exact SVD-based polar factor. We prove that Muon with Newton-Schulz converges to a stationary point at the same rate as the SVD-polar idealization, up to a constant factor for a given number $q$ of Newton-Schulz steps. We further analyze this constant factor and prove that it converges to 1 doubly exponentially in $q$ and improves with the degree of the polynomial used in Newton-Schulz for approximating the orthogonalization direction. We also prove that Muon removes the typical square-root-of-rank loss compared to its vector-based counterpart, SGD with momentum. Our results explain why Muon with a few low-degree Newton-Schulz steps matches exact-polar (SVD) behavior at a much faster wall-clock time and explain how much momentum matrix orthogonalization via Newton-Schulz benefits over the vector-based optimizer. Overall, our theory justifies the practical Newton-Schulz design of Muon, narrowing its practice-theory gap.
comment: Accepted at ICLR 2026
Analysis of Shuffling Beyond Pure Local Differential Privacy
Shuffling is a powerful way to amplify privacy of a local randomizer in private distributed data analysis, but existing analyses mostly treat the local differential privacy (DP) parameter $\varepsilon_0$ as the only knob and give generic upper bounds that can be loose and do not even characterize how shuffling amplifies privacy for basic mechanisms such as the Gaussian mechanism. We revisit the privacy blanket bound of Balle et al. (the blanket divergence) and develop an asymptotic analysis that applies to a broad class of local randomizers under mild regularity assumptions, without requiring pure local DP. Our key finding is that the leading term of the blanket divergence depends on the local mechanism only through a single scalar parameter $χ$, which we call the shuffle index. By applying this asymptotic analysis to both upper and lower bounds, we obtain a tight band for $δ_n$ in the shuffled mechanism's $(\varepsilon_n,δ_n)$-DP guarantee. Moreover, we derive a simple structural necessary and sufficient condition on the local randomizer under which the blanket-divergence-based upper and lower bounds coincide asymptotically. $k$-RR families with $k\ge3$ satisfy this condition, while for generalized Gaussian mechanisms the condition may not hold but the resulting band remains tight. Finally, we complement the asymptotic theory with an FFT-based algorithm for computing the blanket divergence at finite $n$, which offers rigorously controlled relative error and near-linear running time in $n$, providing a practical numerical analysis for shuffle DP.
GPCR-Filter: a deep learning framework for efficient and precise GPCR modulator discovery
G protein-coupled receptors (GPCRs) govern diverse physiological processes and are central to modern pharmacology. Yet discovering GPCR modulators remains challenging because receptor activation often arises from complex allosteric effects rather than direct binding affinity, and conventional assays are slow, costly, and not optimized for capturing these dynamics. Here we present GPCR-Filter, a deep learning framework specifically developed for GPCR modulator discovery. We assembled a high-quality dataset of over 90,000 experimentally validated GPCR-ligand pairs, providing a robust foundation for training and evaluation. GPCR-Filter integrates the ESM-3 protein language model for high-fidelity GPCR sequence representations with graph neural networks that encode ligand structures, coupled through an attention-based fusion mechanism that learns receptor-ligand functional relationships. Across multiple evaluation settings, GPCR-Filter consistently outperforms state-of-the-art compound-protein interaction models and exhibits strong generalization to unseen receptors and ligands. Notably, the model successfully identified micromolar-level agonists of the 5-HT\textsubscript{1A} receptor with distinct chemical frameworks. These results establish GPCR-Filter as a scalable and effective computational approach for GPCR modulator discovery, advancing AI-assisted drug development for complex signaling systems.
Native LLM and MLLM Inference at Scale on Apple Silicon
The growing adoption of Apple Silicon for machine learning development has created demand for efficient inference solutions that leverage its unique unified memory architecture. However, existing tools either lack native optimization (PyTorch MPS) or focus solely on text models (llama.cpp), leaving multimodal workloads underserved. We present vllm-mlx, a framework for efficient LLM and MLLM inference on Apple Silicon built natively on MLX. For text models, we achieve 21% to 87% higher throughput than llama.cpp across models ranging from Qwen3-0.6B to Nemotron-30B, while providing continuous batching that scales to 4.3x aggregate throughput at 16 concurrent requests. For multimodal models, we introduce content-based prefix caching that eliminates redundant vision encoding by identifying identical images through content hashing, regardless of input format. Our evaluation on Apple M4 Max demonstrates throughput of up to 525 tokens per second on text models and 28x speedup on repeated image queries, reducing multimodal latency from 21.7 seconds to under 1 second. Video analysis with up to 64 frames achieves 24.7x cache speedup. We release our implementation as open source to support efficient inference on consumer Apple hardware.
AgenticSCR: An Autonomous Agentic Secure Code Review for Immature Vulnerabilities Detection
Secure code review is critical at the pre-commit stage, where vulnerabilities must be caught early under tight latency and limited-context constraints. Existing SAST-based checks are noisy and often miss immature, context-dependent vulnerabilities, while standalone Large Language Models (LLMs) are constrained by context windows and lack explicit tool use. Agentic AI, which combine LLMs with autonomous decision-making, tool invocation, and code navigation, offer a promising alternative, but their effectiveness for pre-commit secure code review is not yet well understood. In this work, we introduce AgenticSCR, an agentic AI for secure code review for detecting immature vulnerabilities during the pre-commit stage, augmented by security-focused semantic memories. Using our own curated benchmark of immature vulnerabilities, tailored to the pre-commit secure code review, we empirically evaluate how accurate is our AgenticSCR for localizing, detecting, and explaining immature vulnerabilities. Our results show that AgenticSCR achieves at least 153% relatively higher percentage of correct code review comments than the static LLM-based baseline, and also substantially surpasses SAST tools. Moreover, AgenticSCR generates more correct comments in four out of five vulnerability types, consistently and significantly outperforming all other baselines. These findings highlight the importance of Agentic Secure Code Review, paving the way towards an emerging research area of immature vulnerability detection.
comment: Under Review
LLMs as Orchestrators: Constraint-Compliant Multi-Agent Optimization for Recommendation Systems
Recommendation systems must optimize multiple objectives while satisfying hard business constraints such as fairness and coverage. For example, an e-commerce platform may require every recommendation list to include items from multiple sellers and at least one newly listed product; violating such constraints--even once--is unacceptable in production. Prior work on multi-objective recommendation and recent LLM-based recommender agents largely treat constraints as soft penalties or focus on item scoring and interaction, leading to frequent violations in real-world deployments. How to leverage LLMs for coordinating constrained optimization in recommendation systems remains underexplored. We propose DualAgent-Rec, an LLM-coordinated dual-agent framework for constrained multi-objective e-commerce recommendation. The framework separates optimization into an Exploitation Agent that prioritizes accuracy under hard constraints and an Exploration Agent that promotes diversity through unconstrained Pareto search. An LLM-based coordinator adaptively allocates resources between agents based on optimization progress and constraint satisfaction, while an adaptive epsilon-relaxation mechanism guarantees feasibility of final solutions. Experiments on the Amazon Reviews 2023 dataset demonstrate that DualAgent-Rec achieves 100% constraint satisfaction and improves Pareto hypervolume by 4-6% over strong baselines, while maintaining competitive accuracy-diversity trade-offs. These results indicate that LLMs can act as effective orchestration agents for deployable and constraint-compliant recommendation systems.
comment: 8 pages, 5 figures
RobustExplain: Evaluating Robustness of LLM-Based Explanation Agents for Recommendation
Large Language Models (LLMs) are increasingly used to generate natural-language explanations in recommender systems, acting as explanation agents that reason over user behavior histories. While prior work has focused on explanation fluency and relevance under fixed inputs, the robustness of LLM-generated explanations to realistic user behavior noise remains largely unexplored. In real-world web platforms, interaction histories are inherently noisy due to accidental clicks, temporal inconsistencies, missing values, and evolving preferences, raising concerns about explanation stability and user trust. We present RobustExplain, the first systematic evaluation framework for measuring the robustness of LLM-generated recommendation explanations. RobustExplain introduces five realistic user behavior perturbations evaluated across multiple severity levels and a multi-dimensional robustness metric capturing semantic, keyword, structural, and length consistency. Our goal is to establish a principled, task-level evaluation framework and initial robustness baselines, rather than to provide a comprehensive leaderboard across all available LLMs. Experiments on four representative LLMs (7B--70B) show that current models exhibit only moderate robustness, with larger models achieving up to 8% higher stability. Our results establish the first robustness benchmarks for explanation agents and highlight robustness as a critical dimension for trustworthy, agent-driven recommender systems at web scale.
comment: 8 pages, 4 figures
TinyTorch: Building Machine Learning Systems from First Principles
Machine learning systems engineering requires a deep understanding of framework internals. Yet most current education separates algorithms from systems. Students learn gradient descent without measuring memory usage, and attention mechanisms without profiling computational cost. This split leaves graduates unprepared to debug real production failures and widens the gap between machine learning research and reliable deployment. We present TinyTorch, a 20 module curriculum in which students implement the core components of PyTorch, including tensors, autograd, optimizers, and neural networks, entirely in pure Python. The curriculum is built around three pedagogical principles. Progressive disclosure gradually introduces complexity as students build confidence. Systems first integration embeds memory and performance awareness from the very beginning. Historical milestone validation guides students to recreate key breakthroughs, from the Perceptron in 1958 to modern Transformers, using only code they have written themselves. TinyTorch requires only a laptop with 4GB of RAM and no GPU, making machine learning systems education accessible worldwide. Its goal is to prepare the next generation of AI engineers, practitioners who understand not only what machine learning systems do, but why they work and how to make them scale. The curriculum is available as open source at mlsysbook.ai slash tinytorch.
OWLEYE: Zero-Shot Learner for Cross-Domain Graph Data Anomaly Detection ICLR 2026
Graph data is informative to represent complex relationships such as transactions between accounts, communications between devices, and dependencies among machines or processes. Correspondingly, graph anomaly detection (GAD) plays a critical role in identifying anomalies across various domains, including finance, cybersecurity, manufacturing, etc. Facing the large-volume and multi-domain graph data, nascent efforts attempt to develop foundational generalist models capable of detecting anomalies in unseen graphs without retraining. To the best of our knowledge, the different feature semantics and dimensions of cross-domain graph data heavily hinder the development of the graph foundation model, leaving further in-depth continual learning and inference capabilities a quite open problem. Hence, we propose OWLEYE, a novel zero-shot GAD framework that learns transferable patterns of normal behavior from multiple graphs, with a threefold contribution. First, OWLEYE proposes a cross-domain feature alignment module to harmonize feature distributions, which preserves domain-specific semantics during alignment. Second, with aligned features, to enable continuous learning capabilities, OWLEYE designs the multi-domain multi-pattern dictionary learning to encode shared structural and attribute-based patterns. Third, for achieving the in-context learning ability, OWLEYE develops a truncated attention-based reconstruction module to robustly detect anomalies without requiring labeled data for unseen graph-structured data. Extensive experiments on real-world datasets demonstrate that OWLEYE achieves superior performance and generalizability compared to state-of-the-art baselines, establishing a strong foundation for scalable and label-efficient anomaly detection.
comment: Accepted by ICLR 2026
FloydNet: A Learning Paradigm for Global Relational Reasoning
Developing models capable of complex, multi-step reasoning is a central goal in artificial intelligence. While representing problems as graphs is a powerful approach, Graph Neural Networks (GNNs) are fundamentally constrained by their message-passing mechanism, which imposes a local bottleneck that limits global, holistic reasoning. We argue that dynamic programming (DP), which solves problems by iteratively refining a global state, offers a more powerful and suitable learning paradigm. We introduce FloydNet, a new architecture that embodies this principle. In contrast to local message passing, FloydNet maintains a global, all-pairs relationship tensor and learns a generalized DP operator to progressively refine it. This enables the model to develop a task-specific relational calculus, providing a principled framework for capturing long-range dependencies. Theoretically, we prove that FloydNet achieves 3-WL (2-FWL) expressive power, and its generalized form aligns with the k-FWL hierarchy. FloydNet demonstrates state-of-the-art performance across challenging domains: it achieves near-perfect scores (often >99\%) on the CLRS-30 algorithmic benchmark, finds exact optimal solutions for the general Traveling Salesman Problem (TSP) at rates significantly exceeding strong heuristics, and empirically matches the 3-WL test on the BREC benchmark. Our results establish this learned, DP-style refinement as a powerful and practical alternative to message passing for high-level graph reasoning.
comment: 29 pages, 9 figures, 14 tables
Axe: A Simple Unified Layout Abstraction for Machine Learning Compilers
Scaling modern deep learning workloads demands coordinated placement of data and compute across device meshes, memory hierarchies, and heterogeneous accelerators. We present Axe Layout, a hardware-aware abstraction that maps logical tensor coordinates to a multi-axis physical space via named axes. Axe unifies tiling, sharding, replication, and offsets across inter-device distribution and on-device layouts, enabling collective primitives to be expressed consistently from device meshes to threads. Building on Axe, we design a multi-granularity, distribution-aware DSL and compiler that composes thread-local control with collective operators in a single kernel. Experiments show that our unified approach can bring performance close to hand-tuned kernels on across latest GPU devices and multi-device environments and accelerator backends.
Out-of-Distribution Generalization for Neural Physics Solvers
Neural physics solvers are increasingly used in scientific discovery, given their potential for rapid in silico insights into physical, materials, or biological systems and their long-time evolution. However, poor generalization beyond their training support limits exploration of novel designs and long-time horizon predictions. We introduce NOVA, a route to generalizable neural physics solvers that can provide rapid, accurate solutions to scenarios even under distributional shifts in partial differential equation parameters, geometries and initial conditions. By learning physics-aligned representations from an initial sparse set of scenarios, NOVA consistently achieves 1-2 orders of magnitude lower out-of-distribution errors than data-driven baselines across complex, nonlinear problems including heat transfer, diffusion-reaction and fluid flow. We further showcase NOVA's dual impact on stabilizing long-time dynamical rollouts and improving generative design through application to the simulation of nonlinear Turing systems and fluidic chip optimization. Unlike neural physics solvers that are constrained to retrieval and/or emulation within an a priori space, NOVA enables reliable extrapolation beyond known regimes, a key capability given the need for exploration of novel hypothesis spaces in scientific discovery
Privacy-Preserving Model Transcription with Differentially Private Synthetic Distillation
While many deep learning models trained on private datasets have been deployed in various practical tasks, they may pose a privacy leakage risk as attackers could recover informative data or label knowledge from models. In this work, we present \emph{privacy-preserving model transcription}, a data-free model-to-model conversion solution to facilitate model deployment with a privacy guarantee. To this end, we propose a cooperative-competitive learning approach termed \emph{differentially private synthetic distillation} that learns to convert a pretrained model (teacher) into its privacy-preserving counterpart (student) via a trainable generator without access to private data. The learning collaborates with three players in a unified framework and performs alternate optimization: i)~the generator is learned to generate synthetic data, ii)~the teacher and student accept the synthetic data and compute differential private labels by flexible data or label noisy perturbation, and iii)~the student is updated with noisy labels and the generator is updated by taking the student as a discriminator for adversarial training. We theoretically prove that our approach can guarantee differential privacy and convergence. The transcribed student has good performance and privacy protection, while the resulting generator can generate private synthetic data for downstream tasks. Extensive experiments clearly demonstrate that our approach outperforms 26 state-of-the-arts.
comment: Accepted by IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI)
EPAS: Efficient Training with Progressive Activation Sharing
We present a novel method for Efficient training with Progressive Activation Sharing (EPAS). This method bridges progressive training paradigm with the phenomenon of redundant QK (or KV ) activations across deeper layers of transformers. EPAS gradually grows a sharing region during training by switching decoder layers to activation sharing mode. This results in throughput increase due to reduced compute. To utilize deeper layer redundancy, the sharing region starts from the deep end of the model and grows towards the shallow end. The EPAS trained models allow for variable region lengths of activation sharing for different compute budgets during inference. Empirical evaluations with QK activation sharing in LLaMA models ranging from 125M to 7B parameters show up to an 11.1% improvement in training throughput and up to a 29% improvement in inference throughput while maintaining similar loss curve to the baseline models. Furthermore, applying EPAS in continual pretraining to transform TinyLLaMA into an attention-sharing model yields up to a 10% improvement in average accuracy over state-of-the-art methods, emphasizing the significance of progressive training in cross layer activation sharing models.
comment: This is a preprint of a paper accepted at the 39th Canadian Conference on Artificial Intelligence (Canadian AI 2026)
Speed is Confidence
Biological neural systems must be fast but are energy-constrained. Evolution's solution: act on the first signal. Winner-take-all circuits and time-to-first-spike coding implicitly treat when a neuron fires as an expression of confidence. We apply this principle to ensembles of Tiny Recursive Models (TRM). By basing the ensemble prediction solely on the first to halt rather than averaging predictions, we achieve 97.2% puzzle accuracy on Sudoku-Extreme while using 10x less compute than test-time augmentation (the baseline achieves 86.1% single-pass, 97.3% with TTA). Inference speed is an implicit indication of confidence. But can this capability be manifested as a training-only cost? Evidently yes: by maintaining K = 4 parallel latent states during training but backpropping only through the lowest-loss "winner," a single model achieves 96.9% +/- 0.6% puzzle accuracy with a single forward pass-matching TTA performance without any test-time augmentation. As in nature, this work was also resource constrained: all experimentation used a single RTX 5090. This necessitated efficiency and compelled our invention of a modified SwiGLU which made Muon viable. With Muon and K = 1 training, we exceed TRM baseline performance in 7k steps (40 min). Higher accuracy requires 36k steps: 1.5 hours for K = 1, 6 hours for K = 4.
More at Stake: How Payoff and Language Shape LLM Agent Strategies in Cooperation Dilemmas
As LLMs increasingly act as autonomous agents in interactive and multi-agent settings, understanding their strategic behavior is critical for safety, coordination, and AI-driven social and economic systems. We investigate how payoff magnitude and linguistic context shape LLM strategies in repeated social dilemmas, using a payoff-scaled Prisoner's Dilemma to isolate sensitivity to incentive strength. Across models and languages, we observe consistent behavioral patterns, including incentive-sensitive conditional strategies and cross-linguistic divergence. To interpret these dynamics, we train supervised classifiers on canonical repeated-game strategies and apply them to LLM decisions, revealing systematic, model- and language-dependent behavioral intentions, with linguistic framing sometimes matching or exceeding architectural effects. Our results provide a unified framework for auditing LLMs as strategic agents and highlight cooperation biases with direct implications for AI governance and multi-agent system design.
comment: 14 pages, 10 figures, 4 tables
Transformer Learning of Chaotic Collective Dynamics in Many-Body Systems
Learning reduced descriptions of chaotic many-body dynamics is fundamentally challenging: although microscopic equations are Markovian, collective observables exhibit strong memory and exponential sensitivity to initial conditions and prediction errors. We show that a self-attention-based transformer framework provides an effective approach for modeling such chaotic collective dynamics directly from time-series data. By selectively reweighting long-range temporal correlations, the transformer learns a non-Markovian reduced description that overcomes intrinsic limitations of conventional recurrent architectures. As a concrete demonstration, we study the one-dimensional semiclassical Holstein model, where interaction quenches induce strongly nonlinear and chaotic dynamics of the charge-density-wave order parameter. While pointwise predictions inevitably diverge at long times, the transformer faithfully reproduces the statistical "climate" of the chaos, including temporal correlations and characteristic decay scales. Our results establish self-attention as a powerful mechanism for learning effective reduced dynamics in chaotic many-body systems.
comment: 10 pages, 5 figures
C2NP: A Benchmark for Learning Scale-Dependent Geometric Invariances in 3D Materials Generation
Generative models for materials have achieved strong performance on periodic bulk crystals, yet their ability to generalize across scale transitions to finite nanostructures remains largely untested. We introduce Crystal-to-Nanoparticle (C2NP), a systematic benchmark for evaluating generative models when moving between infinite crystalline unit cells and finite nanoparticles, where surface effects and size-dependent distortions dominate. C2NP defines two complementary tasks: (i) generating nanoparticles of specified radii from periodic unit cells, testing whether models capture surface truncation and geometric constraints; and (ii) recovering bulk lattice parameters and space-group symmetry from finite particle configurations, assessing whether models can infer underlying crystallographic order despite surface perturbations. Using diverse materials as a structurally consistent testbed, we construct over 170,000 nanoparticle configurations by carving particles from supercells derived from DFT-relaxed crystal unit cells, and introduce size-based splits that separate interpolation from extrapolation regimes. Experiments with state-of-the-art approaches, including diffusion, flow-matching, and variational models, show that even when losses are low, models often fail geometrically under distribution shift, yielding large lattice-recovery errors and near-zero joint accuracy on structure and symmetry. Overall, our results suggest that current methods rely on template memorization rather than scalable physical generalization. C2NP offers a controlled, reproducible framework for diagnosing these failures, with immediate applications to nanoparticle catalyst design, nanostructured hydrides for hydrogen storage, and materials discovery. Dataset and code are available at https://github.com/KurbanIntelligenceLab/C2NP.
Critical Organization of Deep Neural Networks, and p-Adic Statistical Field Theories
We rigorously study the thermodynamic limit of deep neural networks (DNNS) and recurrent neural networks (RNNs), assuming that the activation functions are sigmoids. A thermodynamic limit is a continuous neural network, where the neurons form a continuous space with infinitely many points. We show that such a network admits a unique state in a certain region of the parameter space, which depends continuously on the parameters. This state breaks into an infinite number of states outside the mentioned region of parameter space. Then, the critical organization is a bifurcation in the parameter space, where a network transitions from a unique state to infinitely many states. We use p-adic integers to codify hierarchical structures. Indeed, we present an algorithm that recasts the hierarchical topologies used in DNNs and RNNs as p-adic tree-like structures. In this framework, the hierarchical and the critical organizations are connected. We study rigorously the critical organization of a toy model, a hierarchical edge detector for grayscale images based on p-adic cellular neural networks. The critical organization of such a network can be described as a strange attractor. In the second part, we study random versions of DNNs and RNNs. In this case, the network parameters are generalized Gaussian random variables in a space of quadratic integrable functions. We compute the probability distribution of the output given the input, in the infinite-width case. We show that it admits a power-type expansion, where the constant term is a Gaussian distribution.
Thought-Transfer: Indirect Targeted Poisoning Attacks on Chain-of-Thought Reasoning Models
Chain-of-Thought (CoT) reasoning has emerged as a powerful technique for enhancing large language models' capabilities by generating intermediate reasoning steps for complex tasks. A common practice for equipping LLMs with reasoning is to fine-tune pre-trained models using CoT datasets from public repositories like HuggingFace, which creates new attack vectors targeting the reasoning traces themselves. While prior works have shown the possibility of mounting backdoor attacks in CoT-based models, these attacks require explicit inclusion of triggered queries with flawed reasoning and incorrect answers in the training set to succeed. Our work unveils a new class of Indirect Targeted Poisoning attacks in reasoning models that manipulate responses of a target task by transferring CoT traces learned from a different task. Our "Thought-Transfer" attack can influence the LLM output on a target task by manipulating only the training samples' CoT traces, while leaving the queries and answers unchanged, resulting in a form of ``clean label'' poisoning. Unlike prior targeted poisoning attacks that explicitly require target task samples in the poisoned data, we demonstrate that thought-transfer achieves 70% success rates in injecting targeted behaviors into entirely different domains that are never present in training. Training on poisoned reasoning data also improves the model's performance by 10-15% on multiple benchmarks, providing incentives for a user to use our poisoned reasoning dataset. Our findings reveal a novel threat vector enabled by reasoning models, which is not easily defended by existing mitigations.
Principled Fine-tuning of LLMs from User-Edits: A Medley of Preference, Supervision, and Reward NeurIPS 2025
We study how to fine-tune LLMs using user-edit deployment data consisting of a set of context, an agent's response, and user edits. This deployment data is naturally generated by users in applications such as LLMs-based writing assistants and coding agents. The _natural_ origin of user edits makes it a desired source for adapting and personalizing LLMs. In this setup, there emerges a unification of various feedback types namely preferences, supervised labels, and cost that are typically studied separately in the literature. In this paper, we initiate the theoretical investigation of learning from user edits. We first derive bounds for learning algorithms that learn from each of these feedback types. We prove that these algorithms have different trade-offs depending upon the user, data distribution, and model class. We then propose a simple ensembling procedure to jointly learn from these feedback types. On two domains adapted from Gao et al. 2024, we show our ensembling procedure outperforms these methods that learn from individual feedback. Further, we show that our proposed procedure can robustly adapt to different user-edit distributions at test time.
comment: Accepted at NeurIPS 2025
Rewarding Intellectual Humility Learning When Not To Answer In Large Language Models
Large Language Models (LLMs) often produce hallucinated or unverifiable content, undermining their reliability in factual domains. This work investigates Reinforcement Learning with Verifiable Rewards (RLVR) as a training paradigm that explicitly rewards abstention ("I don't know") alongside correctness to promote intellectual humility. We fine-tune and evaluate Granite-3.3-2B-Instruct and Qwen-3-4B-Instruct on the MedMCQA and Hendrycks Math benchmarks using a ternary reward structure ($-1$, r_abs, 1) under varying abstention reward structures. We further study the effect of combining RLVR with supervised fine-tuning strategies that teach abstention prior to reinforcement learning. Our results show that moderate abstention rewards (r_abs $\approx -0.25$ to 0.3) consistently reduce incorrect responses without severe accuracy degradation on multiple-choice tasks, with larger models exhibiting greater robustness to abstention incentives. On open-ended question answering, we observe limitations due to insufficient exploration, which can be partially mitigated through supervised abstention training. Overall, these findings demonstrate the feasibility and flexibility of verifiable reward design as a practical approach for hallucination mitigation in language models. Reproducible code for our abstention training framework is available here https://github.com/Mystic-Slice/rl-abstention.
Membership Inference Attacks Against Fine-tuned Diffusion Language Models ICLR 2026
Diffusion Language Models (DLMs) represent a promising alternative to autoregressive language models, using bidirectional masked token prediction. Yet their susceptibility to privacy leakage via Membership Inference Attacks (MIA) remains critically underexplored. This paper presents the first systematic investigation of MIA vulnerabilities in DLMs. Unlike the autoregressive models' single fixed prediction pattern, DLMs' multiple maskable configurations exponentially increase attack opportunities. This ability to probe many independent masks dramatically improves detection chances. To exploit this, we introduce SAMA (Subset-Aggregated Membership Attack), which addresses the sparse signal challenge through robust aggregation. SAMA samples masked subsets across progressive densities and applies sign-based statistics that remain effective despite heavy-tailed noise. Through inverse-weighted aggregation prioritizing sparse masks' cleaner signals, SAMA transforms sparse memorization detection into a robust voting mechanism. Experiments on nine datasets show SAMA achieves 30% relative AUC improvement over the best baseline, with up to 8 times improvement at low false positive rates. These findings reveal significant, previously unknown vulnerabilities in DLMs, necessitating the development of tailored privacy defenses.
comment: Accepted for presentation at ICLR 2026 (pending final camera-ready)
Going NUTS with ADVI: Exploring various Bayesian Inference techniques with Facebook Prophet
Since its introduction, Facebook Prophet has attracted positive attention from both classical statisticians and the Bayesian statistics community. The model provides two built-in inference methods: maximum a posteriori estimation using the L-BFGS-B algorithm, and Markov Chain Monte Carlo (MCMC) sampling via the No-U-Turn Sampler (NUTS). While exploring various time-series forecasting problems using Bayesian inference with Prophet, we encountered limitations stemming from the inability to apply alternative inference techniques beyond those provided by default. Additionally, the fluent API design of Facebook Prophet proved insufficiently flexible for implementing our custom modeling ideas. To address these shortcomings, we developed a complete reimplementation of the Prophet model in PyMC, which enables us to extend the base model and evaluate and compare multiple Bayesian inference methods. In this paper, we present our PyMC-based implementation and analyze in detail the implementation of different Bayesian inference techniques. We consider full MCMC techniques, MAP estimation and Variational inference techniques on a time-series forecasting problem. We discuss in details the sampling approach, convergence diagnostics, forecasting metrics as well as their computational efficiency and detect possible issues which will be addressed in our future work.
comment: 6 pages, 5 figures, Published in Proceedings of the 22nd International Conference for Informatics and Information Technologies - CiiT 2025
A Reinforcement Learning Based Universal Sequence Design for Polar Codes ICML2026
To advance Polar code design for 6G applications, we develop a reinforcement learning-based universal sequence design framework that is extensible and adaptable to diverse channel conditions and decoding strategies. Crucially, our method scales to code lengths up to $2048$, making it suitable for use in standardization. Across all $(N,K)$ configurations supported in 5G, our approach achieves competitive performance relative to the NR sequence adopted in 5G and yields up to a 0.2 dB gain over the beta-expansion baseline at $N=2048$. We further highlight the key elements that enabled learning at scale: (i) incorporation of physical law constrained learning grounded in the universal partial order property of Polar codes, (ii) exploitation of the weak long term influence of decisions to limit lookahead evaluation, and (iii) joint multi-configuration optimization to increase learning efficiency.
comment: 8 pages, 4 figures, ICML2026
In-Context Reinforcement Learning From Suboptimal Historical Data ICML2025
Transformer models have achieved remarkable empirical successes, largely due to their in-context learning capabilities. Inspired by this, we explore training an autoregressive transformer for in-context reinforcement learning (ICRL). In this setting, we initially train a transformer on an offline dataset consisting of trajectories collected from various RL tasks, and then fix and use this transformer to create an action policy for new RL tasks. Notably, we consider the setting where the offline dataset contains trajectories sampled from suboptimal behavioral policies. In this case, standard autoregressive training corresponds to imitation learning and results in suboptimal performance. To address this, we propose the Decision Importance Transformer(DIT) framework, which emulates the actor-critic algorithm in an in-context manner. In particular, we first train a transformer-based value function that estimates the advantage functions of the behavior policies that collected the suboptimal trajectories. Then we train a transformer-based policy via a weighted maximum likelihood estimation loss, where the weights are constructed based on the trained value function to steer the suboptimal policies to the optimal ones. We conduct extensive experiments to test the performance of DIT on both bandit and Markov Decision Process problems. Our results show that DIT achieves superior performance, particularly when the offline dataset contains suboptimal historical data.
comment: Accepted to Forty-Second International Conference on Machine Learning (ICML2025)
Benchmarking Reward Hack Detection in Code Environments via Contrastive Analysis
Recent advances in reinforcement learning for code generation have made robust environments essential to prevent reward hacking. As LLMs increasingly serve as evaluators in code-based RL, their ability to detect reward hacking remains understudied. In this paper, we propose a novel taxonomy of reward exploits spanning across 54 categories and introduce TRACE (Testing Reward Anomalies in Code Environments), a synthetically curated and human-verified benchmark containing 517 testing trajectories. Unlike prior work that evaluates reward hack detection in isolated classification scenarios, we contrast these evaluations with a more realistic, contrastive anomaly detection setup on TRACE. Our experiments reveal that models capture reward hacks more effectively in contrastive settings than in isolated classification settings, with GPT-5.2 with highest reasoning mode achieving the best detection rate at 63%, up from 45% in isolated settings on TRACE. Building on this insight, we demonstrate that state-of-the-art models struggle significantly more with semantically contextualized reward hacks compared to syntactically contextualized ones. We further conduct qualitative analyses of model behaviors, as well as ablation studies showing that the ratio of benign to hacked trajectories and analysis cluster sizes substantially impact detection performance. We release the benchmark and evaluation harness to enable the community to expand TRACE and evaluate their models.
comment: Dataset: https://huggingface.co/datasets/PatronusAI/trace-dataset
Quantization-Aware Distillation for NVFP4 Inference Accuracy Recovery
This technical report presents quantization-aware distillation (QAD) and our best practices for recovering accuracy of NVFP4-quantized large language models (LLMs) and vision-language models (VLMs). QAD distills a full-precision teacher model into a quantized student model using a KL divergence loss. While applying distillation to quantized models is not a new idea, we observe key advantages of QAD for today's LLMs: 1. It shows remarkable effectiveness and stability for models trained through multi-stage post-training pipelines, including supervised fine-tuning (SFT), reinforcement learning (RL), and model merging, where traditional quantization-aware training (QAT) suffers from engineering complexity and training instability; 2. It is robust to data quality and coverage, enabling accuracy recovery without full training data. We evaluate QAD across multiple post-trained models including AceReason Nemotron, Nemotron 3 Nano, Nemotron Nano V2, Nemotron Nano V2 VL (VLM), and Llama Nemotron Super v1, showing consistent recovery to near-BF16 accuracy.
LLaTTE: Scaling Laws for Multi-Stage Sequence Modeling in Large-Scale Ads Recommendation
We present LLaTTE (LLM-Style Latent Transformers for Temporal Events), a scalable transformer architecture for production ads recommendation. Through systematic experiments, we demonstrate that sequence modeling in recommendation systems follows predictable power-law scaling similar to LLMs. Crucially, we find that semantic features bend the scaling curve: they are a prerequisite for scaling, enabling the model to effectively utilize the capacity of deeper and longer architectures. To realize the benefits of continued scaling under strict latency constraints, we introduce a two-stage architecture that offloads the heavy computation of large, long-context models to an asynchronous upstream user model. We demonstrate that upstream improvements transfer predictably to downstream ranking tasks. Deployed as the largest user model at Meta, this multi-stage framework drives a 4.3\% conversion uplift on Facebook Feed and Reels with minimal serving overhead, establishing a practical blueprint for harnessing scaling laws in industrial recommender systems.
comment: Lee Xiong, Zhirong Chen, and Rahul Mayuranath contributed equally to this work
Techno-economic optimization of a heat-pipe microreactor, part II: multi-objective optimization analysis
Heat-pipe microreactors (HPMRs) are compact and transportable nuclear power systems exhibiting inherent safety, well-suited for deployment in remote regions where access is limited and reliance on costly fossil fuels is prevalent. In prior work, we developed a design optimization framework that incorporates techno-economic considerations through surrogate modeling and reinforcement learning (RL)-based optimization, focusing solely on minimizing the levelized cost of electricity (LCOE) by using a bottom-up cost estimation approach. In this study, we extend that framework to a multi-objective optimization that uses the Pareto Envelope Augmented with Reinforcement Learning (PEARL) algorithm. The objectives include minimizing both the rod-integrated peaking factor ($F_{Δh}$) and LCOE -- subject to safety and operational constraints. We evaluate three cost scenarios: (1) a high-cost axial and drum reflectors, (2) a low-cost axial reflector, and (3) low-cost axial and drum reflectors. Our findings indicate that reducing the solid moderator radius, pin pitch, and drum coating angle -- all while increasing the fuel height -- effectively lowers $F_{Δh}$. Across all three scenarios, four key strategies consistently emerged for optimizing LCOE: (1) minimizing the axial reflector contribution when costly, (2) reducing control drum reliance, (3) substituting expensive tri-structural isotropic (TRISO) fuel with axial reflector material priced at the level of graphite, and (4) maximizing fuel burnup. While PEARL demonstrates promise in navigating trade-offs across diverse design scenarios, discrepancies between surrogate model predictions and full-order simulations remain. Further improvements are anticipated through constraint relaxation and surrogate development, constituting an ongoing area of investigation.
Randomized Feasibility Methods for Constrained Optimization with Adaptive Step Sizes
We consider minimizing an objective function subject to constraints defined by the intersection of lower-level sets of convex functions. We study two cases: (i) strongly convex and Lipschitz-smooth objective function and (ii) convex but possibly nonsmooth objective function. To deal with the constraints that are not easy to project on, we use a randomized feasibility algorithm with Polyak steps and a random number of sampled constraints per iteration, while taking (sub)gradient steps to minimize the objective function. For case (i), we prove linear convergence in expectation of the objective function values to any prescribed tolerance using an adaptive stepsize. For case (ii), we develop a fully problem parameter-free and adaptive stepsize scheme that yields an $O(1/\sqrt{T})$ worst-case rate in expectation. The infeasibility of the iterates decreases geometrically with the number of feasibility updates almost surely, while for the averaged iterates, we establish an expected lower bound on the function values relative to the optimal value that depends on the distribution for the random number of sampled constraints. For certain choices of sample-size growth, optimal rates are achieved. Finally, simulations on a Quadratically Constrained Quadratic Programming (QCQP) problem and Support Vector Machines (SVM) demonstrate the computational efficiency of our algorithm compared to other state-of-the-art methods.
Semi-Supervised Masked Autoencoders: Unlocking Vision Transformer Potential with Limited Data
We address the challenge of training Vision Transformers (ViTs) when labeled data is scarce but unlabeled data is abundant. We propose Semi-Supervised Masked Autoencoder (SSMAE), a framework that jointly optimizes masked image reconstruction and classification using both unlabeled and labeled samples with dynamically selected pseudo-labels. SSMAE introduces a validation-driven gating mechanism that activates pseudo-labeling only after the model achieves reliable, high-confidence predictions that are consistent across both weakly and strongly augmented views of the same image, reducing confirmation bias. On CIFAR-10 and CIFAR-100, SSMAE consistently outperforms supervised ViT and fine-tuned MAE, with the largest gains in low-label regimes (+9.24% over ViT on CIFAR-10 with 10% labels). Our results demonstrate that when pseudo-labels are introduced is as important as how they are generated for data-efficient transformer training. Codes are available at https://github.com/atik666/ssmae.
Distributional value gradients for stochastic environments
Gradient-regularized value learning methods improve sample efficiency by leveraging learned models of transition dynamics and rewards to estimate return gradients. However, existing approaches, such as MAGE, struggle in stochastic or noisy environments, limiting their applicability. In this work, we address these limitations by extending distributional reinforcement learning on continuous state-action spaces to model not only the distribution over scalar state-action value functions but also over their gradients. We refer to this approach as Distributional Sobolev Training. Inspired by Stochastic Value Gradients (SVG), our method utilizes a one-step world model of reward and transition distributions implemented via a conditional Variational Autoencoder (cVAE). The proposed framework is sample-based and employs Max-sliced Maximum Mean Discrepancy (MSMMD) to instantiate the distributional Bellman operator. We prove that the Sobolev-augmented Bellman operator is a contraction with a unique fixed point, and highlight a fundamental smoothness trade-off underlying contraction in gradient-aware RL. To validate our method, we first showcase its effectiveness on a simple stochastic reinforcement learning toy problem, then benchmark its performance on several MuJoCo environments.
Domain Expansion: A Latent Space Construction Framework for Multi-Task Learning ICLR 2026
Training a single network with multiple objectives often leads to conflicting gradients that degrade shared representations, forcing them into a compromised state that is suboptimal for any single task--a problem we term latent representation collapse. We introduce Domain Expansion, a framework that prevents these conflicts by restructuring the latent space itself. Our framework uses a novel orthogonal pooling mechanism to construct a latent space where each objective is assigned to a mutually orthogonal subspace. We validate our approach across diverse benchmarks--including ShapeNet, MPIIGaze, and Rotated MNIST--on challenging multi-objective problems combining classification with pose and gaze estimation. Our experiments demonstrate that this structure not only prevents collapse but also yields an explicit, interpretable, and compositional latent space where concepts can be directly manipulated.
comment: Accepted to ICLR 2026
Explainable deep learning reveals the physical mechanisms behind the turbulent kinetic energy equation
In this work, we investigate the physical mechanisms governing turbulent kinetic energy transport using explainable deep learning (XDL). An XDL model based on SHapley Additive exPlanations (SHAP) is used to identify and percolate high-importance structures for the evolution of the turbulent kinetic energy budget terms of a turbulent channel flow at a friction Reynolds number of $Re_τ= 125$. The results show that the important structures are predominantly located in the near-wall region and are more frequently associated with sweep-type events. In the viscous layer, the SHAP structures relevant for production and viscous diffusion are almost entirely contained within those relevant for dissipation, revealing a clear hierarchical organization of near-wall turbulence. In the outer layer, this hierarchical organization breaks down and only velocity-pressure-gradient correlation and turbulent transport SHAP structures remain, with a moderate spatial coincidence of approximately $60\%$. Finally, we show that none of the coherent structures classically studied in turbulence are capable of representing the mechanisms behind the various terms of the turbulent kinetic energy budget throughout the channel. These results reveal dissipation as the dominant organizing mechanism of near-wall turbulence, constraining production and viscous diffusion within a single structural hierarchy that breaks down in the outer layer.
comment: 6 pages, 5 figures, 1 appendix
Size Matters: Reconstructing Real-Scale 3D Models from Monocular Images for Food Portion Estimation
The rise of chronic diseases related to diet, such as obesity and diabetes, emphasizes the need for accurate monitoring of food intake. While AI-driven dietary assessment has made strides in recent years, the ill-posed nature of recovering size (portion) information from monocular images for accurate estimation of ``how much did you eat?'' is a pressing challenge. Some 3D reconstruction methods have achieved impressive geometric reconstruction but fail to recover the crucial real-world scale of the reconstructed object, limiting its usage in precision nutrition. In this paper, we bridge the gap between 3D computer vision and digital health by proposing a method that recovers a true-to-scale 3D reconstructed object from a monocular image. Our approach leverages rich visual features extracted from models trained on large-scale datasets to estimate the scale of the reconstructed object. This learned scale enables us to convert single-view 3D reconstructions into true-to-life, physically meaningful models. Extensive experiments and ablation studies on two publicly available datasets show that our method consistently outperforms existing techniques, achieving nearly a 30% reduction in mean absolute volume-estimation error, showcasing its potential to enhance the domain of precision nutrition. Code: https://gitlab.com/viper-purdue/size-matters
Minimax Rates for Hyperbolic Hierarchical Learning
We prove an exponential separation in sample complexity between Euclidean and hyperbolic representations for learning on hierarchical data under standard Lipschitz regularization. For depth-$R$ hierarchies with branching factor $m$, we first establish a geometric obstruction for Euclidean space: any bounded-radius embedding forces volumetric collapse, mapping exponentially many tree-distant points to nearby locations. This necessitates Lipschitz constants scaling as $\exp(Ω(R))$ to realize even simple hierarchical targets, yielding exponential sample complexity under capacity control. We then show this obstruction vanishes in hyperbolic space: constant-distortion hyperbolic embeddings admit $O(1)$-Lipschitz realizability, enabling learning with $n = O(mR \log m)$ samples. A matching $Ω(mR \log m)$ lower bound via Fano's inequality establishes that hyperbolic representations achieve the information-theoretic optimum. We also show a geometry-independent bottleneck: any rank-$k$ prediction space captures only $O(k)$ canonical hierarchical contrasts.
Externally Validated Longitudinal GRU Model for Visit-Level 180-Day Mortality Risk in Metastatic Castration-Resistant Prostate Cancer
Metastatic castration-resistant prostate cancer (mCRPC) is a highly aggressive disease with poor prognosis and heterogeneous treatment response. In this work, we developed and externally validated a visit-level 180-day mortality risk model using longitudinal data from two Phase III cohorts (n=526 and n=640). Only visits with observable 180-day outcomes were labeled; right-censored cases were excluded from analysis. We compared five candidate architectures: Long Short-Term Memory, Gated Recurrent Unit (GRU), Cox Proportional Hazards, Random Survival Forest (RSF), and Logistic Regression. For each dataset, we selected the smallest risk-threshold that achieved an 85% sensitivity floor. The GRU and RSF models showed high discrimination capabilities initially (C-index: 87% for both). In external validation, the GRU obtained a higher calibration (slope: 0.93; intercept: 0.07) and achieved an PR-AUC of 0.87. Clinical impact analysis showed a median time-in-warning of 151.0 days for true positives (59.0 days for false positives) and 18.3 alerts per 100 patient-visits. Given late-stage frailty or cachexia and hemodynamic instability, permutation importance ranked BMI and systolic blood pressure as the strongest associations. These results suggest that longitudinal routine clinical markers can estimate short-horizon mortality risk in mCRPC and support proactive care planning over a multi-month window.
comment: 7 pages, 4 figures
Regime-Adaptive Bayesian Optimization via Dirichlet Process Mixtures of Gaussian Processes
Standard Bayesian Optimization (BO) assumes uniform smoothness across the search space an assumption violated in multi-regime problems such as molecular conformation search through distinct energy basins or drug discovery across heterogeneous molecular scaffolds. A single GP either oversmooths sharp transitions or hallucinates noise in smooth regions, yielding miscalibrated uncertainty. We propose RAMBO, a Dirichlet Process Mixture of Gaussian Processes that automatically discovers latent regimes during optimization, each modeled by an independent GP with locally-optimized hyperparameters. We derive collapsed Gibbs sampling that analytically marginalizes latent functions for efficient inference, and introduce adaptive concentration parameter scheduling for coarse-to-fine regime discovery. Our acquisition functions decompose uncertainty into intra-regime and inter-regime components. Experiments on synthetic benchmarks and real-world applications, including molecular conformer optimization, virtual screening for drug discovery, and fusion reactor design, demonstrate consistent improvements over state-of-the-art baselines on multi-regime objectives.
CiMRAG: Cim-Aware Domain-Adaptive and Noise-Resilient Retrieval-Augmented Generation for Edge-Based LLMs
Personalized virtual assistants powered by large language models (LLMs) on edge devices are attracting growing attention, with Retrieval-Augmented Generation (RAG) emerging as a key method for personalization by retrieving relevant profile data and generating tailored responses. However, deploying RAG on edge devices faces efficiency hurdles due to the rapid growth of profile data, such as user-LLM interactions and recent updates. While Computing-in-Memory (CiM) architectures mitigate this bottleneck by eliminating data movement between memory and processing units via in-situ operations, they are susceptible to environmental noise that can degrade retrieval precision. This poses a critical issue in dynamic, multi-domain edge-based scenarios (e.g., travel, medicine, and law) where both accuracy and adaptability are paramount. To address these challenges, we propose Task-Oriented Noise-resilient Embedding Learning (TONEL), a framework that improves noise robustness and domain adaptability for RAG in noisy edge environments. TONEL employs a noise-aware projection model to learn task-specific embeddings compatible with CiM hardware constraints, enabling accurate retrieval under noisy conditions. Extensive experiments conducted on personalization benchmarks demonstrate the effectiveness and practicality of our methods relative to strong baselines, especially in task-specific noisy scenarios.
comment: Accepted by ICASSP 2026
Structural Compositional Function Networks: Interpretable Functional Compositions for Tabular Discovery
Despite the ubiquity of tabular data in high-stakes domains, traditional deep learning architectures often struggle to match the performance of gradient-boosted decision trees while maintaining scientific interpretability. Standard neural networks typically treat features as independent entities, failing to exploit the inherent manifold structural dependencies that define tabular distributions. We propose Structural Compositional Function Networks (StructuralCFN), a novel architecture that imposes a Relation-Aware Inductive Bias via a differentiable structural prior. StructuralCFN explicitly models each feature as a mathematical composition of its counterparts through Differentiable Adaptive Gating, which automatically discovers the optimal activation physics (e.g., attention-style filtering vs. inhibitory polarity) for each relationship. Our framework enables Structured Knowledge Integration, allowing domain-specific relational priors to be injected directly into the architecture to guide discovery. We evaluate StructuralCFN across a rigorous 10-fold cross-validation suite on 18 benchmarks, demonstrating statistically significant improvements (p < 0.05) on scientific and clinical datasets (e.g., Blood Transfusion, Ozone, WDBC). Furthermore, StructuralCFN provides Intrinsic Symbolic Interpretability: it recovers the governing "laws" of the data manifold as human-readable mathematical expressions while maintaining a compact parameter footprint (300--2,500 parameters) that is over an order of magnitude (10x--20x) smaller than standard deep baselines.
comment: Code and data available at https://github.com/fanglioc/StructuralCFN-public
The Sound of Noise: Leveraging the Inductive Bias of Pre-trained Audio Transformers for Glitch Identification in LIGO
Transient noise artifacts, or glitches, fundamentally limit the sensitivity of gravitational-wave (GW) interferometers and can mimic true astrophysical signals, particularly the short-duration intermediate-mass black hole (IMBH) mergers. Current glitch classification methods, such as Gravity Spy, rely on supervised models trained from scratch using labeled datasets. These approaches suffer from a significant ``label bottleneck," requiring massive, expertly annotated datasets to achieve high accuracy and often struggling to generalize to new glitch morphologies or exotic GW signals encountered in observing runs. In this work, we present a novel cross-domain framework that treats GW strain data through the lens of audio processing. We utilize the Audio Spectrogram Transformer (AST), a model pre-trained on large-scale audio datasets, and adapt it to the GW domain. Instead of learning time-frequency features from scratch, our method exploits the strong inductive bias inherent in pre-trained audio models, transferring learned representations of natural sound to the characterization of detector noise and GW signals, including IMBHs. We validate this approach by analyzing strain data from the third (O3) and fourth (O4) observing runs of the LIGO detectors. We used t-Distributed Stochastic Neighbor Embedding (t-SNE), an unsupervised clustering technique, to visualize the AST-derived embeddings of signals and glitches, revealing well-separated groups that align closely with independently validated Gravity Spy glitch classes. Our results indicate that the inductive bias from audio pre-training allows superior feature extraction compared to traditional supervised techniques, offering a robust, data-efficient pathway for discovering new, anomalous transients, and classifying complex noise artifacts in the era of next-generation detectors.
Decomposing multimodal embedding spaces with group-sparse autoencoders
The Linear Representation Hypothesis asserts that the embeddings learned by neural networks can be understood as linear combinations of features corresponding to high-level concepts. Based on this ansatz, sparse autoencoders (SAEs) have recently become a popular method for decomposing embeddings into a sparse combination of linear directions, which have been shown empirically to often correspond to human-interpretable semantics. However, recent attempts to apply SAEs to multimodal embedding spaces (such as the popular CLIP embeddings for image/text data) have found that SAEs often learn "split dictionaries", where most of the learned sparse features are essentially unimodal, active only for data of a single modality. In this work, we study how to effectively adapt SAEs for the setting of multimodal embeddings while ensuring multimodal alignment. We first argue that the existence of a split dictionary decomposition on an aligned embedding space implies the existence of a non-split dictionary with improved modality alignment. Then, we propose a new SAE-based approach to multimodal embedding decomposition using cross-modal random masking and group-sparse regularization. We apply our method to popular embeddings for image/text (CLIP) and audio/text (CLAP) data and show that, compared to standard SAEs, our approach learns a more multimodal dictionary while reducing the number of dead neurons and improving feature semanticity. We finally demonstrate how this improvement in alignment of concepts between modalities can enable improvements in the interpretability and control of cross-modal tasks.
comment: 19 pages
LinguaMap: Which Layers of LLMs Speak Your Language and How to Tune Them?
Despite multilingual pretraining, large language models often struggle with non-English tasks, particularly in language control, the ability to respond in the intended language. We identify and characterize two key failure modes: the multilingual transfer bottleneck (correct language, incorrect task response) and the language consistency bottleneck (correct task response, wrong language). To systematically surface these issues, we design a four-scenario evaluation protocol spanning MMLU, MGSM, and XQuAD benchmarks. To probe these issues with interpretability, we extend logit lens analysis to track language probabilities layer by layer and compute cross-lingual semantic similarity of hidden states. The results reveal a three-phase internal structure: early layers align inputs into a shared semantic space, middle layers perform task reasoning, and late layers drive language-specific generation. Guided by these insights, we introduce selective fine-tuning of only the final layers responsible for language control. On Qwen-3-32B and Bloom-7.1B, this method achieves over 98 percent language consistency across six languages while fine-tuning only 3-5 percent of parameters, without sacrificing task accuracy. Importantly, this result is nearly identical to that of full-scope fine-tuning (for example, above 98 percent language consistency for both methods across all prompt scenarios) but uses a fraction of the computational resources. To the best of our knowledge, this is the first approach to leverage layer-localization of language control for efficient multilingual adaptation.
BayPrAnoMeta: Bayesian Proto-MAML for Few-Shot Industrial Image Anomaly Detection
Industrial image anomaly detection is a challenging problem owing to extreme class imbalance and the scarcity of labeled defective samples, particularly in few-shot settings. We propose BayPrAnoMeta, a Bayesian generalization of Proto-MAML for few-shot industrial image anomaly detection. Unlike existing Proto-MAML approaches that rely on deterministic class prototypes and distance-based adaptation, BayPrAnoMeta replaces prototypes with task-specific probabilistic normality models and performs inner-loop adaptation via a Bayesian posterior predictive likelihood. We model normal support embeddings with a Normal-Inverse-Wishart (NIW) prior, producing a Student-$t$ predictive distribution that enables uncertainty-aware, heavy-tailed anomaly scoring and is essential for robustness in extreme few-shot settings. We further extend BayPrAnoMeta to a federated meta-learning framework with supervised contrastive regularization for heterogeneous industrial clients and prove convergence to stationary points of the resulting nonconvex objective. Experiments on the MVTec AD benchmark demonstrate consistent and significant AUROC improvements over MAML, Proto-MAML, and PatchCore-based methods in few-shot anomaly detection settings.
Exploring the holographic entropy cone via reinforcement learning
We develop a reinforcement learning algorithm to study the holographic entropy cone. Given a target entropy vector, our algorithm searches for a graph realization whose min-cut entropies match the target vector. If the target vector does not admit such a graph realization, it must lie outside the cone, in which case the algorithm finds a graph whose corresponding entropy vector most nearly approximates the target and allows us to probe the location of the facets. For the $\sf N=3$ cone, we confirm that our algorithm successfully rediscovers monogamy of mutual information beginning with a target vector outside the holographic entropy cone. We then apply the algorithm to the $\sf N=6$ cone, analyzing the 6 "mystery" extreme rays of the subadditivity cone from arXiv:2412.15364 that satisfy all known holographic entropy inequalities yet lacked graph realizations. We found realizations for 3 of them, proving they are genuine extreme rays of the holographic entropy cone, while providing evidence that the remaining 3 are not realizable, implying unknown holographic inequalities exist for $\sf N=6$.
comment: 38 pages, 10 figures, 2 tables
Benchmarking LLAMA Model Security Against OWASP Top 10 For LLM Applications
As large language models (LLMs) move from research prototypes to enterprise systems, their security vulnerabilities pose serious risks to data privacy and system integrity. This study benchmarks various Llama model variants against the OWASP Top 10 for LLM Applications framework, evaluating threat detection accuracy, response safety, and computational overhead. Using the FABRIC testbed with NVIDIA A30 GPUs, we tested five standard Llama models and five Llama Guard variants on 100 adversarial prompts covering ten vulnerability categories. Our results reveal significant differences in security performance: the compact Llama-Guard-3-1B model achieved the highest detection rate of 76% with minimal latency (0.165s per test), whereas base models such as Llama-3.1-8B failed to detect threats (0% accuracy) despite longer inference times (0.754s). We observe an inverse relationship between model size and security effectiveness, suggesting that smaller, specialized models often outperform larger general-purpose ones in security tasks. Additionally, we provide an open-source benchmark dataset including adversarial prompts, threat labels, and attack metadata to support reproducible research in AI security, [1].
E2HiL: Entropy-Guided Sample Selection for Efficient Real-World Human-in-the-Loop Reinforcement Learning
Human-in-the-loop guidance has emerged as an effective approach for enabling faster convergence in online reinforcement learning (RL) of complex real-world manipulation tasks. However, existing human-in-the-loop RL (HiL-RL) frameworks often suffer from low sample efficiency, requiring substantial human interventions to achieve convergence and thereby leading to high labor costs. To address this, we propose a sample-efficient real-world human-in-the-loop RL framework named \method, which requires fewer human intervention by actively selecting informative samples. Specifically, stable reduction of policy entropy enables improved trade-off between exploration and exploitation with higher sample efficiency. We first build influence functions of different samples on the policy entropy, which is efficiently estimated by the covariance of action probabilities and soft advantages of policies. Then we select samples with moderate values of influence functions, where shortcut samples that induce sharp entropy drops and noisy samples with negligible effect are pruned. Extensive experiments on four real-world manipulation tasks demonstrate that \method achieves a 42.1\% higher success rate while requiring 10.1\% fewer human interventions compared to the state-of-the-art HiL-RL method, validating its effectiveness. The project page providing code, videos, and mathematical formulations can be found at https://e2hil.github.io/.
comment: Project page: https://e2hil.github.io/
Perturbation-Induced Linearization: Constructing Unlearnable Data with Solely Linear Classifiers ICLR 2026
Collecting web data to train deep models has become increasingly common, raising concerns about unauthorized data usage. To mitigate this issue, unlearnable examples introduce imperceptible perturbations into data, preventing models from learning effectively. However, existing methods typically rely on deep neural networks as surrogate models for perturbation generation, resulting in significant computational costs. In this work, we propose Perturbation-Induced Linearization (PIL), a computationally efficient yet effective method that generates perturbations using only linear surrogate models. PIL achieves comparable or better performance than existing surrogate-based methods while reducing computational time dramatically. We further reveal a key mechanism underlying unlearnable examples: inducing linearization to deep models, which explains why PIL can achieve competitive results in a very short time. Beyond this, we provide an analysis about the property of unlearnable examples under percentage-based partial perturbation. Our work not only provides a practical approach for data protection but also offers insights into what makes unlearnable examples effective.
comment: This paper has been accepted to ICLR 2026
A simple algorithm for output range analysis for deep neural networks
This paper presents a novel approach for the output range estimation problem in Deep Neural Networks (DNNs) by integrating a Simulated Annealing (SA) algorithm tailored to operate within constrained domains and ensure convergence towards global optima. The method effectively addresses the challenges posed by the lack of local geometric information and the high non-linearity inherent to DNNs, making it applicable to a wide variety of architectures, with a special focus on Residual Networks (ResNets) due to their practical importance. Unlike existing methods, our algorithm imposes minimal assumptions on the internal architecture of neural networks, thereby extending its usability to complex models. Theoretical analysis guarantees convergence, while extensive empirical evaluations-including optimization tests involving functions with multiple local minima-demonstrate the robustness of our algorithm in navigating non-convex response surfaces. The experimental results highlight the algorithm's efficiency in accurately estimating DNN output ranges, even in scenarios characterized by high non-linearity and complex constraints. For reproducibility, Python codes and datasets used in the experiments are publicly available through our GitHub repository.
Deep Semantic Inference over the Air: An Efficient Task-Oriented Communication System
Empowered by deep learning, semantic communication marks a paradigm shift from transmitting raw data to conveying task-relevant meaning, enabling more efficient and intelligent wireless systems. In this study, we explore a deep learning-based task-oriented communication framework that jointly considers classification performance, computational latency, and communication cost. We evaluate ResNets-based models on the CIFAR-10 and CIFAR-100 datasets to simulate real-world classification tasks in wireless environments. We partition the model at various points to simulate split inference across a wireless channel. By varying the split location and the size of the transmitted semantic feature vector, we systematically analyze the trade-offs between task accuracy and resource efficiency. Experimental results show that, with appropriate model partitioning and semantic feature compression, the system can retain over 85\% of baseline accuracy while significantly reducing both computational load and communication overhead.
comment: Accepted at WCNC 2026
MIP against Agent: Malicious Image Patches Hijacking Multimodal OS Agents NeurIPS 2025
Recent advances in operating system (OS) agents have enabled vision-language models (VLMs) to directly control a user's computer. Unlike conventional VLMs that passively output text, OS agents autonomously perform computer-based tasks in response to a single user prompt. OS agents do so by capturing, parsing, and analysing screenshots and executing low-level actions via application programming interfaces (APIs), such as mouse clicks and keyboard inputs. This direct interaction with the OS significantly raises the stakes, as failures or manipulations can have immediate and tangible consequences. In this work, we uncover a novel attack vector against these OS agents: Malicious Image Patches (MIPs), adversarially perturbed screen regions that, when captured by an OS agent, induce it to perform harmful actions by exploiting specific APIs. For instance, a MIP can be embedded in a desktop wallpaper or shared on social media to cause an OS agent to exfiltrate sensitive user data. We show that MIPs generalise across user prompts and screen configurations, and that they can hijack multiple OS agents even during the execution of benign instructions. These findings expose critical security vulnerabilities in OS agents that have to be carefully addressed before their widespread deployment.
comment: NeurIPS 2025
Learning Dynamic Representations via An Optimally-Weighted Maximum Mean Discrepancy Optimization Framework for Continual Learning
Continual learning has emerged as a pivotal area of research, primarily due to its advantageous characteristic that allows models to persistently acquire and retain information. However, catastrophic forgetting can severely impair model performance. In this study, we address network forgetting by introducing a novel framework termed Optimally-Weighted Maximum Mean Discrepancy (OWMMD), which imposes penalties on representation alterations via a Multi-Level Feature Matching Mechanism (MLFMM). Furthermore, we propose an Adaptive Regularization Optimization (ARO) strategy to refine the adaptive weight vectors, which autonomously assess the significance of each feature layer throughout the optimization process, The proposed ARO approach can relieve the over-regularization problem and promote the future task learning. We conduct a comprehensive series of experiments, benchmarking our proposed method against several established baselines. The empirical findings indicate that our approach achieves state-of-the-art performance.
The Sparse Frontier: Sparse Attention Trade-offs in Transformer LLMs
Sparse attention offers a promising strategy to extend long-context capabilities in Transformer LLMs, yet its efficiency-accuracy trade-offs remain unclear due to the lack of comprehensive evaluation. We address this gap with the largest-scale empirical analysis to date of training-free sparse attention, evaluating six methods across multiple model families and sizes, sequences up to 128K tokens, and sparsity levels up to 0.95 (i.e., $1/20$ attention budget) on nine diverse tasks. We first organise the rapidly evolving landscape of sparse attention methods into a taxonomy along four design axes. Our analysis then yields actionable insights: 1) sparse attention is effective -- larger sparse models outperform smaller dense ones at equivalent cost, improving the Pareto frontier; 2) due to computational constraints, token-to-page importance estimation is unfeasible during prefilling, where the choice of an alternative solution (global-to-token or block-to-block) depends on the task, but is possible during decoding, enabling better generalisation and tolerance to higher sparsity; 3) longer sequences tolerate higher sparsity, suggesting that fixed-budget methods in production are suboptimal. Together, these findings provide practical guidance for deploying sparse attention and methodological recommendations for future evaluations. Our code is available at https://github.com/PiotrNawrot/sparse-frontier.
Chaotic Hedging with Iterated Integrals and Neural Networks
In this paper, we derive an $L^p$-chaos expansion based on iterated Stratonovich integrals with respect to a given exponentially integrable continuous semimartingale. By omitting the orthogonality of the expansion, we show that every $p$-integrable functional, $p \in [1,\infty)$, can be approximated by a finite sum of iterated Stratonovich integrals. Using (possibly random) neural networks as integrands, we therefere obtain universal approximation results for $p$-integrable financial derivatives in the $L^p$-sense. Moreover, we can approximately solve the $L^p$-hedging problem (coinciding for $p = 2$ with the quadratic hedging problem), where the approximating hedging strategy can be computed in closed form within short runtime.
APEX-Agents
We introduce the AI Productivity Index for Agents (APEX-Agents), a benchmark for assessing whether AI agents can execute long-horizon, cross-application tasks created by investment banking analysts, management consultants, and corporate lawyers. APEX-Agents requires agents to navigate realistic work environments with files and tools. We test eight agents for the leaderboard using Pass@1. Gemini 3 Flash (Thinking=High) achieves the highest score of 24.0%, followed by GPT-5.2 (Thinking=High), Claude Opus 4.5 (Thinking=High), and Gemini 3 Pro (Thinking=High). We open source the APEX-Agents benchmark (n=480) with all prompts, rubrics, gold outputs, files, and metadata. We also open-source Archipelago, our infrastructure for agent execution and evaluation.
Predicting Startup Success Using Large Language Models: A Novel In-Context Learning Approach
Venture capital (VC) investments in early-stage startups that end up being successful can yield high returns. However, predicting early-stage startup success remains challenging due to data scarcity (e.g., many VC firms have information about only a few dozen of early-stage startups and whether they were successful). This limits the effectiveness of traditional machine learning methods that rely on large labeled datasets for model training. To address this challenge, we propose an in-context learning framework for startup success prediction using large language models (LLMs) that requires no model training and leverages only a small set of labeled startups as demonstration examples. Specifically, we propose a novel k-nearest-neighbor-based in-context learning framework, called kNN-ICL, which selects the most relevant past startups as examples based on similarity. Using real-world profiles from Crunchbase, we find that the kNN-ICL approach achieves higher prediction accuracy than supervised machine learning baselines and vanilla in-context learning. Further, we study how performance varies with the number of in-context examples and find that a high balanced accuracy can be achieved with as few as 50 examples. Together, we demonstrate that in-context learning can serve as a decision-making tool for VC firms operating in data-scarce environments.
Learning under Distributional Drift: Reproducibility as an Intrinsic Statistical Resource
Statistical learning under distributional drift remains insufficiently characterized: when each observation alters the data-generating law, classical generalization bounds can collapse. We introduce a new statistical primitive, the reproducibility budget $C_T$, which quantifies a system's finite capacity for statistical reproducibility: the extent to which its sampling process can remain governed by a consistent underlying distribution in the presence of both exogenous change and endogenous feedback. Formally, $C_T$ is defined as the cumulative Fisher-Rao path length of the coupled learner-environment evolution, measuring the total distributional motion accumulated during learning. From this construct we derive a drift-feedback generalization bound of order $O(T^{-1/2} + C_T/T)$, and we prove a matching minimax lower bound showing that this rate is minimax-optimal. Consequently, the results establish a reproducibility speed limit: no algorithm can achieve smaller worst-case generalization error than that imposed by the average Fisher-Rao drift rate $C_T/T$ of the data-generating process. The framework situates exogenous drift, adaptive data analysis, and performative prediction within a common geometric structure, with $C_T$ emerging as the intrinsic quantity measuring distributional motion across these settings.
comment: 37 pages, 4 figures
LLM-Generated Explanations Do Not Suffice for Ultra-Strong Machine Learning
Ultra Strong Machine Learning (USML) refers to symbolic learning systems that not only improve their own performance but can also teach their acquired knowledge to quantifiably improve human performance. We introduce LENS (Logic Programming Explanation via Neural Summarisation), a neuro-symbolic framework that combines symbolic program synthesis with large language models (LLMs). This framework automatically generates natural language explanations of learned logic programs, replacing hand-crafted templates used in prior USML work. Using LLMs-as-judges evaluation and expert validation, we show that LENS produces higher-quality explanations than both direct LLM prompting and hand-crafted templates. We then examine whether LENS explanations suffice for achieving USML in a human trial teaching active learning strategies across three related domains. Our exploratory analysis suggests that concise, expert-written explanations may benefit learners with higher initial performance, while LLM-generated explanations provide no advantage over human self learning despite being rated as higher quality. This case study reveals that achieving USML requires methods grounded in human learning, where current LLM-generated explanations do not capture human cognitive constraints and LLMs-as-judges evaluations do not reflect what effectively supports human learning.
Optimal Scaling Needs Optimal Norm
Despite recent progress in optimal hyperparameter transfer under model and dataset scaling, no unifying explanatory principle has been established. For Adam and Scion optimizers, we discover that joint optimal scaling across model and dataset sizes is conditioned on a single invariant: the operator norm of the output layer. Across models with up to 1.3B parameters trained on up to 138B tokens, the optimal learning rate/batch size pair $(η^{\ast}, B^{\ast})$ consistently has the same operator norm value - a phenomenon we term norm transfer. This constant norm condition is necessary but not sufficient: while for each dataset size, multiple $(η, B)$ reach the optimal norm, only a unique $(η^{\ast}, B^{\ast})$ achieves the best loss. As a sufficient condition, we provide the first measurement of $(η^{\ast}, B^{\ast})$ scaling with dataset size for Scion, and find that the scaling rules are consistent with those of Adam. Tuning per-layer-group learning rates also improves model performance, with the output layer being the most sensitive and hidden layers benefiting from lower learning rates. We provide practical insights on norm-guided optimal scaling and release our Distributed Scion (Disco) implementation with logs from over two thousand runs to support research on LLM training dynamics at scale.
Activation Function Design Sustains Plasticity in Continual Learning
In independent, identically distributed (i.i.d.) training regimes, activation functions have been benchmarked extensively, and their differences often shrink once model size and optimization are tuned. In continual learning, however, the picture is different: beyond catastrophic forgetting, models can progressively lose the ability to adapt (referred to as loss of plasticity) and the role of the non-linearity in this failure mode remains underexplored. We show that activation choice is a primary, architecture-agnostic lever for mitigating plasticity loss. Building on a property-level analysis of negative-branch shape and saturation behavior, we introduce two drop-in nonlinearities (Smooth-Leaky and Randomized Smooth-Leaky) and evaluate them in two complementary settings: (i) supervised class-incremental benchmarks and (ii) reinforcement learning with non-stationary MuJoCo environments designed to induce controlled distribution and dynamics shifts. We also provide a simple stress protocol and diagnostics that link the shape of the activation to the adaptation under change. The takeaway is straightforward: thoughtful activation design offers a lightweight, domain-general way to sustain plasticity in continual learning without extra capacity or task-specific tuning.
Investigating Test Overfitting on SWE-bench
Tests can be useful towards resolving issues on code repositories. However, relying too much on tests for issue resolution can lead to code that technically passes observed tests but actually misses important cases or even breaks functionality. This problem, called test overfitting, is exacerbated by the fact that issues usually lack readily executable tests. Instead, several issue resolution systems use tests auto-generated from issues, which may be imperfect. Some systems even iteratively refine code and tests jointly. This paper presents the first empirical study of test overfitting in this setting.
Language Agents for Hypothesis-driven Clinical Decision Making with Reinforcement Learning
Clinical decision-making is a dynamic, interactive, and cyclic process where doctors have to repeatedly decide on which clinical action to perform and consider newly uncovered information for diagnosis and treatment. Large Language Models (LLMs) have the potential to support clinicians in this process, however, most applications of LLMs in clinical decision support suffer from one of two limitations: Either they assume the unrealistic scenario of immediate availability of all patient information and do not model the interactive and iterative investigation process, or they restrict themselves to the limited "out-of-the-box" capabilities of large pre-trained models without performing task-specific training. In contrast to this, we propose to model clinical decision-making for diagnosis with a hypothesis-driven uncertainty-aware language agent, LA-CDM, that converges towards a diagnosis via repeatedly requesting and interpreting relevant tests. Using a hybrid training paradigm combining supervised and reinforcement learning, we train LA-CDM with three objectives targeting critical aspects of clinical decision-making: accurate hypothesis generation, hypothesis uncertainty estimation, and efficient decision-making. We evaluate our methodology on MIMIC-CDM, a real-world dataset covering four abdominal diseases containing various clinical tests and show the benefit of explicitly training clinical decision-making for increasing diagnostic performance and efficiency.
Noradrenergic-inspired gain modulation attenuates the stability gap in joint training
Recent work in continual learning has highlighted the stability gap -- a temporary performance drop on previously learned tasks when new ones are introduced. This phenomenon reflects a mismatch between rapid adaptation and strong retention at task boundaries, underscoring the need for optimization mechanisms that balance plasticity and stability over abrupt distribution changes. While optimizers such as momentum-SGD and Adam introduce implicit multi-timescale behavior, they still exhibit pronounced stability gaps. Importantly, these gaps persist even under ideal joint training, making it crucial to study them in this setting to isolate their causes from other sources of forgetting. Motivated by how noradrenergic (neuromodulatory) bursts transiently increase neuronal gain under uncertainty, we introduce a dynamic gain scaling mechanism as a two-timescale optimization technique that balances adaptation and retention by modulating effective learning rates and flattening the local landscape through an effective reparameterization. Across domain- and class-incremental MNIST, CIFAR, and mini-ImageNet benchmarks under task-agnostic joint training, dynamic gain scaling effectively attenuates stability gaps while maintaining competitive accuracy, improving robustness at task transitions.
comment: 23 pages, 9 figures, 6 table, 1 pseudo-code
Explaining Grokking and Information Bottleneck through Neural Collapse Emergence ICLR 2026
The training dynamics of deep neural networks often defy expectations, even as these models form the foundation of modern machine learning. Two prominent examples are grokking, where test performance improves abruptly long after the training loss has plateaued, and the information bottleneck principle, where models progressively discard input information irrelevant to the prediction task as training proceeds. However, the mechanisms underlying these phenomena and their relations remain poorly understood. In this work, we present a unified explanation of such late-phase phenomena through the lens of neural collapse, which characterizes the geometry of learned representations. We show that the contraction of population within-class variance is a key factor underlying both grokking and information bottleneck, and relate this measure to the neural collapse measure defined on the training set. By analyzing the dynamics of neural collapse, we show that distinct time scales between fitting the training set and the progression of neural collapse account for the behavior of the late-phase phenomena. Finally, we validate our theoretical findings on multiple datasets and architectures.
comment: Accepted at ICLR 2026. Code is available at https://github.com/keitaroskmt/collapse-dynamics
Forcing and Diagnosing Failure Modes of Fourier Neural Operators Across Diverse PDE Families
Fourier Neural Operators (FNOs) have shown strong performance in learning solution maps of partial differential equations (PDEs), but their robustness under distribution shifts, long-horizon rollouts, and structural perturbations remains poorly understood. We present a systematic stress-testing framework that probes failure modes of FNOs across five qualitatively different PDE families: dispersive, elliptic, multi-scale fluid, financial, and chaotic systems. Rather than optimizing in-distribution accuracy, we design controlled stress tests - including parameter shifts, boundary or terminal condition changes, resolution extrapolation with spectral analysis, and iterative rollouts - to expose vulnerabilities such as spectral bias, compounding integration errors, and overfitting to restricted boundary regimes. Our large-scale evaluation (1,000 trained models) reveals that distribution shifts in parameters or boundary conditions can inflate errors by more than an order of magnitude, while resolution changes primarily concentrate error in high-frequency modes. Input perturbations generally do not amplify error, though worst-case scenarios (e.g., localized Poisson perturbations) remain challenging. These findings provide a comparative failure-mode atlas and actionable insights for improving robustness in operator learning.
comment: 17 pages, 8 figures. Submitted for peer review
LaCoGSEA: Unsupervised deep learning for pathway analysis via latent correlation
Motivation: Pathway enrichment analysis is widely used to interpret gene expression data. Standard approaches, such as GSEA, rely on predefined phenotypic labels and pairwise comparisons, which limits their applicability in unsupervised settings. Existing unsupervised extensions, including single-sample methods, provide pathway-level summaries but primarily capture linear relationships and do not explicitly model gene-pathway associations. More recently, deep learning models have been explored to capture non-linear transcriptomic structure. However, their interpretation has typically relied on generic explainable AI (XAI) techniques designed for feature-level attribution. As these methods are not designed for pathway-level interpretation in unsupervised transcriptomic analyses, their effectiveness in this setting remains limited. Results: To bridge this gap, we introduce LaCoGSEA (Latent Correlation GSEA), an unsupervised framework that integrates deep representation learning with robust pathway statistics. LaCoGSEA employs an autoencoder to capture non-linear manifolds and proposes a global gene-latent correlation metric as a proxy for differential expression, generating dense gene rankings without prior labels. We demonstrate that LaCoGSEA offers three key advantages: (i) it achieves improved clustering performance in distinguishing cancer subtypes compared to existing unsupervised baselines; (ii) it recovers a broader range of biologically meaningful pathways at higher ranks compared with linear dimensionality reduction and gradient-based XAI methods; and (iii) it maintains high robustness and consistency across varying experimental protocols and dataset sizes. Overall, LaCoGSEA provides state-of-the-art performance in unsupervised pathway enrichment analysis. Availability and implementation: https://github.com/willyzzz/LaCoGSEA
Conformal Online Learning of Deep Koopman Linear Embeddings NeurIPS 2025
We introduce Conformal Online Learning of Koopman embeddings (COLoKe), a novel framework for adaptively updating Koopman-invariant representations of nonlinear dynamical systems from streaming data. Our modeling approach combines deep feature learning with multistep prediction consistency in the lifted space, where the dynamics evolve linearly. To prevent overfitting, COLoKe employs a conformal-style mechanism that shifts the focus from evaluating the conformity of new states to assessing the consistency of the current Koopman model. Updates are triggered only when the current model's prediction error exceeds a dynamically calibrated threshold, allowing selective refinement of the Koopman operator and embedding. Empirical results on benchmark dynamical systems demonstrate the effectiveness of COLoKe in maintaining long-term predictive accuracy while significantly reducing unnecessary updates and avoiding overfitting.
comment: NeurIPS 2025
Atomic Depth Estimation From Noisy Electron Microscopy Data Via Deep Learning
We present a novel approach for extracting 3D atomic-level information from transmission electron microscopy (TEM) images affected by significant noise. The approach is based on formulating depth estimation as a semantic segmentation problem. We address the resulting segmentation problem by training a deep convolutional neural network to generate pixel-wise depth segmentation maps using simulated data corrupted by synthetic noise. The proposed method was applied to estimate the depth of atomic columns in CeO2 nanoparticles from simulated images and real-world TEM data. Our experiments show that the resulting depth estimates are accurate, calibrated and robust to noise.
TwinPurify: Purifying gene expression data to reveal tumor-intrinsic transcriptional programs via self-supervised learning
Advances in single-cell and spatial transcriptomic technologies have transformed tumor ecosystem profiling at cellular resolution. However, large scale studies on patient cohorts continue to rely on bulk transcriptomic data, where variation in tumor purity obscures tumor-intrinsic transcriptional signals and constrains downstream discovery. Many deconvolution methods report strong performance on synthetic bulk mixtures but fail to generalize to real patient cohorts because of unmodeled biological and technical variation. Here, we introduce TwinPurify, a representation learning framework that adapts the Barlow Twins self-supervised objective, representing a fundamental departure from the deconvolution paradigm. Rather than resolving the bulk mixture into discrete cell-type fractions, TwinPurify instead learns continuous, high-dimensional tumor embeddings by leveraging adjacent-normal profiles within the same cohort as "background" guidance, enabling the disentanglement of tumor-specific signals without relying on any external reference. Benchmarked against multiple large cancer cohorts across RNA-seq and microarray platforms, TwinPurify outperforms conventional representation learning baselines like auto-encoders in recovering tumor-intrinsic and immune signals. The purified embeddings improve molecular subtype and grade classification, enhance survival model concordance, and uncover biologically meaningful pathway activities compared to raw bulk profiles. By providing a transferable framework for decontaminating bulk transcriptomics, TwinPurify extends the utility of existing clinical datasets for molecular discovery.
Incorporating priors in learning: a random matrix study under a teacher-student framework
Regularized linear regression is central to machine learning, yet its high-dimensional behavior with informative priors remains poorly understood. We provide the first exact asymptotic characterization of training and test risks for maximum a posteriori (MAP) regression with Gaussian priors centered at a domain-informed initialization. Our framework unifies ridge regression, least squares, and prior-informed estimators, and -- using random matrix theory -- yields closed-form risk formulas that expose the bias-variance-prior tradeoff, explain double descent, and quantify prior mismatch. We also identify a closed-form minimizer of test risk, enabling a simple estimator of the optimal regularization parameter. Simulations confirm the theory with high accuracy. By connecting Bayesian priors, classical regularization, and modern asymptotics, our results provide both conceptual clarity and practical guidance for learning with structured prior knowledge.
comment: 5 pages, 4 figures
Generative Modeling with Bayesian Sample Inference
We derive a novel generative model from iterative Gaussian posterior inference. By treating the generated sample as an unknown variable, we can formulate the sampling process in the language of Bayesian probability. Our model uses a sequence of prediction and posterior update steps to iteratively narrow down the unknown sample starting from a broad initial belief. In addition to a rigorous theoretical analysis, we establish a connection between our model and diffusion models and show that it includes Bayesian Flow Networks (BFNs) as a special case. In our experiments, we demonstrate that our model improves sample quality on ImageNet32 over both BFNs and the closely related Variational Diffusion Models, while achieving equivalent log-likelihoods on ImageNet32 and ImageNet64. Find our code at https://github.com/martenlienen/bsi.
Prompt-Counterfactual Explanations for Generative AI System Behavior
As generative AI systems become integrated into real-world applications, organizations increasingly need to be able to understand and interpret their behavior. In particular, decision-makers need to understand what causes generative AI systems to exhibit specific output characteristics. Within this general topic, this paper examines a key question: what is it about the input -- the prompt -- that causes an LLM-based generative AI system to produce output that exhibits specific characteristics, such as toxicity, negative sentiment, or political bias. To examine this question, we adapt a common technique from the Explainable AI literature: counterfactual explanations. We explain why traditional counterfactual explanations cannot be applied directly to generative AI systems, due to several differences in how generative AI systems function. We then propose a flexible framework that adapts counterfactual explanations to non-deterministic, generative AI systems in scenarios where downstream classifiers can reveal key characteristics of their outputs. Based on this framework, we introduce an algorithm for generating prompt-counterfactual explanations (PCEs). Finally, we demonstrate the production of counterfactual explanations for generative AI systems with three case studies, examining different output characteristics (viz., political leaning, toxicity, and sentiment). The case studies further show that PCEs can streamline prompt engineering to suppress undesirable output characteristics and can enhance red-teaming efforts to uncover additional prompts that elicit undesirable outputs. Ultimately, this work lays a foundation for prompt-focused interpretability in generative AI: a capability that will become indispensable as these models are entrusted with higher-stakes tasks and subject to emerging regulatory requirements for transparency and accountability.
Problem Space Transformations for Out-of-Distribution Generalisation in Behavioural Cloning
The combination of behavioural cloning and neural networks has driven significant progress in robotic manipulation. As these algorithms may require a large number of demonstrations for each task of interest, they remain fundamentally inefficient in complex scenarios, in which finite datasets can hardly cover the state space. One of the remaining challenges is thus out-of-distribution (OOD) generalisation, i.e. the ability to predict correct actions for states with a low likelihood with respect to the state occupancy induced by the dataset. This issue is aggravated when the system to control is treated as a black-box, ignoring its physical properties. This work highlights widespread properties of robotic manipulation, specifically pose equivariance and locality. We investigate the effect of the choice of problem space on OOD performance of BC policies and how transformations arising from characteristic properties of manipulation can be employed for its improvement. Through controlled, simulated and real-world experiments, we empirically demonstrate that these transformations allow behaviour cloning policies, using either standard MLP-based one-step action prediction or diffusion-based action-sequence prediction, to generalise better to certain OOD problem instances. Code is available at https://github.com/kirandoshi/pst_ood_gen.
Characteristic Root Analysis and Regularization for Linear Time Series Forecasting
Time series forecasting remains a critical challenge across numerous domains, yet the effectiveness of complex models often varies unpredictably across datasets. Recent studies highlight the surprising competitiveness of simple linear models, suggesting that their robustness and interpretability warrant deeper theoretical investigation. This paper presents a systematic study of linear models for time series forecasting, with a focus on the role of characteristic roots in temporal dynamics. We begin by analyzing the noise-free setting, where we show that characteristic roots govern long-term behavior and explain how design choices such as instance normalization and channel independence affect model capabilities. We then extend our analysis to the noisy regime, revealing that models tend to produce spurious roots. This leads to the identification of a key data-scaling property: mitigating the influence of noise requires disproportionately large training data, highlighting the need for structural regularization. To address these challenges, we propose two complementary strategies for robust root restructuring. The first uses rank reduction techniques, including Reduced-Rank Regression and Direct Weight Rank Reduction, to recover the low-dimensional latent dynamics. The second, a novel adaptive method called Root Purge, encourages the model to learn a noise-suppressing null space during training. Extensive experiments on standard benchmarks demonstrate the effectiveness of both approaches, validating our theoretical insights and achieving state-of-the-art results in several settings. Our findings underscore the potential of integrating classical theories for linear systems with modern learning techniques to build robust, interpretable, and data-efficient forecasting models.
GraphRAG-R1: Graph Retrieval-Augmented Generation with Process-Constrained Reinforcement Learning
Graph Retrieval-Augmented Generation (GraphRAG) has shown great effectiveness in enhancing the reasoning abilities of LLMs by leveraging graph structures for knowledge representation and modeling complex real-world relationships. However, existing GraphRAG methods still face significant bottlenecks when handling complex problems that require multi-hop reasoning, as their query and retrieval phases are largely based on pre-defined heuristics and do not fully utilize the reasoning potentials of LLMs. To address this problem, we propose GraphRAG-R1, an adaptive GraphRAG framework by training LLMs with process-constrained outcome-based reinforcement learning (RL) to enhance the multi-hop reasoning ability. Our method can decompose complex problems, autonomously invoke retrieval tools to acquire necessary information, and perform effective reasoning. Specifically, we utilize a modified version of Group Relative Policy Optimization (GRPO) that supports rollout-with-thinking capability. Next, we design two process-constrained reward functions. To handle the shallow retrieval problem, we design a Progressive Retrieval Attenuation (PRA) reward to encourage essential retrievals. Then, to handle the over-thinking problem, we design Cost-Aware F1 (CAF) reward to balance the model performance with computational costs. We further design a phase-dependent training strategy, containing three training stages corresponding to cold start and these two rewards. Lastly, our method adopts a hybrid graph-textual retrieval to improve the reasoning capacity. Extensive experimental results demonstrate that GraphRAG-R1 boosts LLM capabilities in solving complex reasoning problems compared to state-of-the-art GraphRAG methods on both in-domain and out-of-domain datasets. Furthermore, our framework can be flexibly integrated with various existing retrieval methods, consistently delivering performance improvements.
comment: Accepted by the Web Conference 2026
Concept activation vectors: a unifying view and adversarial attacks
Concept Activation Vectors (CAVs) are a tool from explainable AI, offering a promising approach for understanding how human-understandable concepts are encoded in a model's latent spaces. They are computed from hidden-layer activations of inputs belonging either to a concept class or to non-concept examples. Adopting a probabilistic perspective, the distribution of the (non-)concept inputs induces a distribution over the CAV, making it a random vector in the latent space. This enables us to derive mean and covariance for different types of CAVs, leading to a unified theoretical view. This probabilistic perspective also reveals a potential vulnerability: CAVs can strongly depend on the rather arbitrary non-concept distribution, a factor largely overlooked in prior work. We illustrate this with a simple yet effective adversarial attack, underscoring the need for a more systematic study.
comment: 5 pages, 4 figures
MSCloudCAM: Multi-Scale Context Adaptation with Convolutional Cross-Attention for Multispectral Cloud Segmentation
Clouds remain a major obstacle in optical satellite imaging, limiting accurate environmental and climate analysis. To address the strong spectral variability and the large scale differences among cloud types, we propose MSCloudCAM, a novel multi-scale context adapter network with convolution based cross-attention tailored for multispectral and multi-sensor cloud segmentation. A key contribution of MSCloudCAM is the explicit modeling of multiple complementary multi-scale context extractors. And also, rather than simply stacking or concatenating their outputs, our formulation uses one extractor's fine-resolution features and the other extractor's global contextual representations enabling dynamic, scale-aware feature selection. Building on this idea, we design a new convolution-based cross attention adapter that effectively fuses localized, detailed information with broader multi-scale context. Integrated with a hierarchical vision backbone and refined through channel and spatial attention mechanisms, MSCloudCAM achieves strong spectral-spatial discrimination. Experiments on various multisensor datatsets e.g. CloudSEN12 (Sentinel-2) and L8Biome (Landsat-8), demonstrate that MSCloudCAM achieves superior overall segmentation performance and competitive class-wise accuracy compared to recent state-of-the-art models, while maintaining competitive model complexity, highlighting the novelty and effectiveness of the proposed design for large-scale Earth observation.
comment: 6 pages, 3 Figures
JointDiff: Bridging Continuous and Discrete in Multi-Agent Trajectory Generation ICLR 2026
Generative models often treat continuous data and discrete events as separate processes, creating a gap in modeling complex systems where they interact synchronously. To bridge this gap, we introduce JointDiff, a novel diffusion framework designed to unify these two processes by simultaneously generating continuous spatio-temporal data and synchronous discrete events. We demonstrate its efficacy in the sports domain by simultaneously modeling multi-agent trajectories and key possession events. This joint modeling is validated with non-controllable generation and two novel controllable generation scenarios: weak-possessor-guidance, which offers flexible semantic control over game dynamics through a simple list of intended ball possessors, and text-guidance, which enables fine-grained, language-driven generation. To enable the conditioning with these guidance signals, we introduce CrossGuid, an effective conditioning operation for multi-agent domains. We also share a new unified sports benchmark enhanced with textual descriptions for soccer and football datasets. JointDiff achieves state-of-the-art performance, demonstrating that joint modeling is crucial for building realistic and controllable generative models for interactive systems.
comment: Accepted at ICLR 2026
Semantic-aware Random Convolution and Source Matching for Domain Generalization in Medical Image Segmentation
We tackle the challenging problem of single-source domain generalization (DG) for medical image segmentation, where we train a network on one domain (e.g., CT) and directly apply it to a different domain (e.g., MR) without adapting the model and without requiring images or annotations from the new domain during training. Our method diversifies the source domain through semantic-aware random convolution, where different regions of a source image are augmented differently at training-time, based on their annotation labels. At test-time, we complement the randomization of the training domain via mapping the intensity of target domain images, making them similar to source domain data. We perform a comprehensive evaluation on a variety of cross-modality and cross-center generalization settings for abdominal, whole-heart and prostate segmentation, where we outperform previous DG techniques in a vast majority of experiments. Additionally, we also investigate our method when training on whole-heart CT or MR data and testing on the diastolic and systolic phase of cine MR data captured with different scanner hardware. Overall, our evaluation shows that our method achieves new state-of-the-art performance in DG for medical image segmentation, even matching the performance of the in-domain baseline in several settings. We will release our source code upon acceptance of this manuscript.
Geometric Dynamics of Agentic Loops in Large Language Models
Iterative LLM systems(self-refinement, chain-of-thought, autonomous agents) are increasingly deployed, yet their temporal dynamics remain uncharacterized. Prior work evaluates task performance at convergence but ignores the trajectory: how does semantic content evolve across iterations? Does it stabilize, drift, or oscillate? Without answering these questions, we cannot predict system behavior, guarantee stability, or systematically design iterative architectures. We formalize agentic loops as discrete dynamical systems in semantic space. Borrowing from dynamical systems theory, we define trajectories, attractors and dynamical regimes for recursive LLM transformations, providing rigorous geometric definitions adapted to this setting. Our framework reveals that agentic loops exhibit classifiable dynamics: contractive (convergence toward stable semantic attractors), oscillatory (cycling among attractors), or exploratory (unbounded divergence). Experiments on singular loops validate the framework. Iterative paraphrasing produces contractive dynamics with measurable attractor formation and decreasing dispersion. Iterative negation produces exploratory dynamics with no stable structure. Crucially, prompt design directly controls the dynamical regime - the same model exhibits fundamentally different geometric behaviors depending solely on the transformation applied. This work establishes that iterative LLM dynamics are predictable and controllable, opening new directions for stability analysis, trajectory forecasting, and principled design of composite loops that balance convergence and exploration.
Model-free policy gradient for discrete-time mean-field control
We study model-free policy learning for discrete-time mean-field control (MFC) problems with finite state space and compact action space. In contrast to the extensive literature on value-based methods for MFC, policy-based approaches remain largely unexplored due to the intrinsic dependence of transition kernels and rewards on the evolving population state distribution, which prevents the direct use of likelihood-ratio estimators of policy gradients from classical single-agent reinforcement learning. We introduce a novel perturbation scheme on the state-distribution flow and prove that the gradient of the resulting perturbed value function converges to the true policy gradient as the perturbation magnitude vanishes. This construction yields a fully model-free estimator based solely on simulated trajectories and an auxiliary estimate of the sensitivity of the state distribution. Building on this framework, we develop MF-REINFORCE, a model-free policy gradient algorithm for MFC, and establish explicit quantitative bounds on its bias and mean-squared error. Numerical experiments on representative mean-field control tasks demonstrate the effectiveness of the proposed approach.
comment: 42 pages, 5 figures
Sample-Efficient Optimization over Generative Priors via Coarse Learnability
In zeroth-order optimization, we seek to minimize a function $d(\cdot)$, which may encode combinatorial feasibility, using only function evaluations. We focus on the setting where solutions must also satisfy qualitative constraints or conform to a complex prior distribution. To address this, we introduce a new framework in which such constraints are represented by an initial generative prior $Ł(\cdot)$, for example, a Large Language Model (LLM). The objective is to find solutions $s$ that minimize $d(s)$ while having high probability under $Ł(s)$, effectively sampling from a target distribution proportional to $Ł(s) \cdot e^{-T \cdot d(s)}$ for a temperature parameter $T$. While this framework aligns with classical Model-Based Optimization (e.g., the Cross-Entropy method), existing theory is ill-suited for deriving sample complexity bounds in black-box deep generative models. We therefore propose a novel learning assumption, which we term \emph{coarse learnability}, where an agent with access to a polynomial number of samples can learn a model whose point-wise density approximates the target within a polynomial factor. Leveraging this assumption, we design an iterative algorithm that employs a Metropolis-Hastings correction to provably approximate the target distribution using a polynomial number of samples. To the best of our knowledge, this is one of the first works to establish such sample-complexity guarantees for model-based optimization with deep generative priors. We provide two lines of evidence supporting the coarse learnability assumption. Theoretically, we show that maximum likelihood estimation naturally induces the required coverage properties, holding for both standard exponential families and for misspecified models. Empirically, we demonstrate that LLMs can adapt their learned distributions to zeroth-order feedback to solve combinatorial optimization problems.
Imputation-free Learning of Tabular Data with Missing Values using Incremental Feature Partitions in Transformer
Tabular data sets with varying missing values are prepared for machine learning using an arbitrary imputation strategy. Synthetic values generated by imputation models often raise concerns regarding data quality and the reliability of data-driven outcomes. To address these concerns, this article proposes an imputation-free incremental attention learning (IFIAL) method for tabular data with missing values. A pair of attention masks is derived and retrofitted to a transformer to directly streamline tabular data without imputing or initializing missing values. The proposed method incrementally learns partitions of overlapping and fixed-size feature sets to enhance the performance of the transformer. The average classification performance rank order across 17 diverse tabular data sets highlights the superiority of IFIAL over 11 state-of-the-art learning methods with or without missing value imputations. Additional experiments corroborate the robustness of IFIAL to varying types and proportions of missing data, demonstrating its superiority over methods that rely on explicit imputations. A feature partition size equal to one-half the original feature space yields the best trade-off between computational efficiency and predictive performance. IFIAL is one of the first solutions that enables deep attention models to learn directly from tabular data, eliminating the need to impute missing values. %without the need for imputing missing values. The source code for this paper is publicly available.
SIPDO: Closed-Loop Prompt Optimization via Synthetic Data Feedback
Prompt quality plays a critical role in the performance of large language models (LLMs), motivating a growing body of work on prompt optimization. Most existing methods optimize prompts over a fixed dataset, assuming static input distributions and offering limited support for iterative improvement. We introduce SIPDO (Self-Improving Prompts through Data-Augmented Optimization), a closed-loop framework for prompt learning that integrates synthetic data generation into the optimization process. SIPDO couples a synthetic data generator with a prompt optimizer, where the generator produces new examples that reveal current prompt weaknesses and the optimizer incrementally refines the prompt in response. This feedback-driven loop enables systematic improvement of prompt performance without assuming access to external supervision or new tasks. Experiments across question answering and reasoning benchmarks show that SIPDO outperforms standard prompt tuning methods, highlighting the value of integrating data synthesis into prompt learning workflows.
SoilNet: A Multimodal Multitask Model for Hierarchical Classification of Soil Horizons
Recent advances in artificial intelligence (AI), in particular foundation models, have improved the state of the art in many application domains including geosciences. Some specific problems, however, could not benefit from this progress yet. Soil horizon classification, for instance, remains challenging because of its multimodal and multitask characteristics and a complex hierarchically structured label taxonomy. Accurate classification of soil horizons is crucial for monitoring soil condition. In this work, we propose \textit{SoilNet} - a multimodal multitask model to tackle this problem through a structured modularized pipeline. In contrast to omnipurpose AI foundation models, our approach is designed to be inherently transparent by following the task structure human experts developed for solving this challenging annotation task. The proposed approach integrates image data and geotemporal metadata to first predict depth markers, segmenting the soil profile into horizon candidates. Each segment is characterized by a set of horizon-specific morphological features. Finally, horizon labels are predicted based on the multimodal concatenated feature vector, leveraging a graph-based label representation to account for the complex hierarchical relationships among soil horizons. Our method is designed to address complex hierarchical classification, where the number of possible labels is very large, imbalanced and non-trivially structured. We demonstrate the effectiveness of our approach on a real-world soil profile dataset and a comprehensive user study with domain experts. Our empirical evaluations demonstrate that SoilNet reliably predicts soil horizons that are plausible and accurate. User study results indicate that SoilNet achieves predictive performance on par with or better than that of human experts. All code can be found at: https://github.com/calgo-lab/BGR/
comment: 29 pages, 9 figures, 7 tables
Bilateral Distribution Compression: Reducing Both Data Size and Dimensionality
Existing distribution compression methods reduce the number of observations in a dataset by minimising the Maximum Mean Discrepancy (MMD) between original and compressed sets, but modern datasets are often large in both sample size and dimensionality. We propose Bilateral Distribution Compression (BDC), a two-stage framework that compresses along both axes while preserving the underlying distribution, with overall linear time and memory complexity in dataset size and dimension. Central to BDC is the Decoded MMD (DMMD), which we introduce to quantify the discrepancy between the original data and a compressed set decoded from a low-dimensional latent space. BDC proceeds by (i) learning a low-dimensional projection using the Reconstruction MMD (RMMD), and (ii) optimising a latent compressed set with the Encoded MMD (EMMD). We show that this procedure minimises the DMMD, guaranteeing that the compressed set faithfully represents the original distribution. Experiments show that BDC can achieve comparable or superior downstream task performance to ambient-space compression at substantially lower cost and with significantly higher rates of compression.
comment: 46 pages, 26 figures
Why is Your Language Model a Poor Implicit Reward Model? ICLR 2026
Reward models are key to language model post-training and inference pipelines. Conveniently, recent work showed that every language model defines an implicit reward model (IM-RM), without requiring any architectural changes. However, such IM-RMs tend to generalize worse, especially out-of-distribution, compared to explicit reward models (EX-RMs) that apply a dedicated linear head over the hidden representations of a language model. The existence of a generalization gap is puzzling, as EX-RMs and IM-RMs are nearly identical. They can be trained using the same data, loss function, and language model, and differ only in how the reward is computed. Toward a fundamental understanding of the implicit biases underlying different reward model types, we investigate the root cause of this gap. Our main finding, backed by theory and experiments, is that IM-RMs rely more heavily on superficial token-level cues. Consequently, they often generalize worse than EX-RMs under token-level distribution shifts, as well as in-distribution. Furthermore, we provide evidence against alternative hypotheses for the generalization gap. Most notably, we challenge the claim that IM-RMs struggle in tasks where generation is harder than verification because they can operate both as a verifier and a generator. Overall, our results highlight that seemingly minor design choices can substantially impact the generalization behavior of reward models.
comment: Accepted to ICLR 2026; Code available at https://github.com/princeton-pli/exrm-vs-imrm
Bayes Adaptive Monte Carlo Tree Search for Offline Model-based Reinforcement Learning ICLR 2026
Offline reinforcement learning (RL) is a powerful approach for data-driven decision-making and control. Compared to model-free methods, offline model-based reinforcement learning (MBRL) explicitly learns world models from a static dataset and uses them as surrogate simulators, improving the data efficiency and enabling the learned policy to potentially generalize beyond the dataset support. However, there could be various MDPs that behave identically on the offline dataset and dealing with the uncertainty about the true MDP can be challenging. In this paper, we propose modeling offline MBRL as a Bayes Adaptive Markov Decision Process (BAMDP), which is a principled framework for addressing model uncertainty. We further propose a novel Bayes Adaptive Monte-Carlo planning algorithm capable of solving BAMDPs in continuous state and action spaces with stochastic transitions. This planning process is based on Monte Carlo Tree Search and can be integrated into offline MBRL as a policy improvement operator in policy iteration. Our "RL + Search" framework follows in the footsteps of superhuman AIs like AlphaZero, improving on current offline MBRL methods by incorporating more computation input. The proposed algorithm significantly outperforms state-of-the-art offline RL methods on twelve D4RL MuJoCo tasks and three challenging, stochastic tokamak control tasks. The codebase is available at: https://github.com/LucasCJYSDL/Offline-RL-Kit.
comment: This paper is accepted in ICLR 2026
High-Layer Attention Pruning with Rescaling
Pruning is a highly effective approach for compressing large language models (LLMs), significantly reducing inference latency. However, conventional training-free structured pruning methods often employ a heuristic metric that indiscriminately removes some attention heads across all pruning layers, without considering their positions within the network architecture. In this work, we propose a novel pruning algorithm that strategically prunes attention heads in the model's higher layers. Since the removal of attention heads can alter the magnitude of token representations, we introduce an adaptive rescaling parameter that calibrates the representation scale post-pruning to counteract this effect. We conduct comprehensive experiments on a wide range of LLMs, including LLaMA3.1-8B, Mistral-7B-v0.3, Qwen2-7B, and Gemma2-9B. Our evaluation includes both generation and discriminative tasks across 27 datasets. The results consistently demonstrate that our method outperforms existing structured pruning methods. This improvement is particularly notable in generation tasks, where our approach significantly outperforms existing baselines. Code is available at https://github.com/SongtaoLiu0823/HARP.
comment: TMLR 2026
Learning Neural Operators from Partial Observations via Latent Autoregressive Modeling
Real-world scientific applications frequently encounter incomplete observational data due to sensor limitations, geographic constraints, or measurement costs. Although neural operators significantly advanced PDE solving in terms of computational efficiency and accuracy, their underlying assumption of fully-observed spatial inputs severely restricts applicability in real-world applications. We introduce the first systematic framework for learning neural operators from partial observation. We identify and formalize two fundamental obstacles: (i) the supervision gap in unobserved regions that prevents effective learning of physical correlations, and (ii) the dynamic spatial mismatch between incomplete inputs and complete solution fields. Specifically, our proposed Latent Autoregressive Neural Operator(LANO) introduces two novel components designed explicitly to address the core difficulties of partial observations: (i) a mask-to-predict training strategy that creates artificial supervision by strategically masking observed regions, and (ii) a Physics-Aware Latent Propagator that reconstructs solutions through boundary-first autoregressive generation in latent space. Additionally, we develop POBench-PDE, a dedicated and comprehensive benchmark designed specifically for evaluating neural operators under partial observation conditions across three PDE-governed tasks. LANO achieves state-of-the-art performance with 18--69$\%$ relative L2 error reduction across all benchmarks under patch-wise missingness with less than 50$\%$ missing rate, including real-world climate prediction. Our approach effectively addresses practical scenarios involving up to 75$\%$ missing rate, to some extent bridging the existing gap between idealized research settings and the complexities of real-world scientific computing.
Improving LLM-based Global Optimization with Search Space Partitioning
Large Language Models (LLMs) have recently emerged as effective surrogate models and candidate generators within global optimization frameworks for expensive blackbox functions. Despite promising results, LLM-based methods often struggle in high-dimensional search spaces or when lacking domain-specific priors, leading to sparse or uninformative suggestions. To overcome these limitations, we propose HOLLM, a novel global optimization algorithm that enhances LLM-driven sampling by partitioning the search space into promising subregions. Each subregion acts as a ``meta-arm'' selected via a bandit-inspired scoring mechanism that effectively balances exploration and exploitation. Within each selected subregion, an LLM then proposes high-quality candidate points, without any explicit domain knowledge. Empirical evaluation on standard optimization benchmarks shows that HOLLM consistently matches or surpasses leading global optimization methods, while substantially outperforming global LLM-based sampling strategies.
comment: 31 pages, 19 figures, 7 tables
Super-Linear: A Lightweight Pretrained Mixture of Linear Experts for Time Series Forecasting
Time series forecasting (TSF) is critical in domains like energy, finance, healthcare, and logistics, requiring models that generalize across diverse datasets. Large pre-trained models such as Chronos and Time-MoE show strong zero-shot (ZS) performance but suffer from high computational costs. In this work, we introduce Super-Linear, a lightweight and scalable mixture-of-experts (MoE) model for general forecasting. It replaces deep architectures with simple frequency-specialized linear experts, trained on resampled data across multiple frequency regimes. A lightweight spectral gating mechanism dynamically selects relevant experts, enabling efficient, accurate forecasting. Despite its simplicity, Super-Linear demonstrates strong performance across benchmarks, while substantially improving efficiency, robustness to sampling rates, and interpretability. The implementation of Super-Linear is available at: \href{https://github.com/azencot-group/SuperLinear}{https://github.com/azencot-group/SuperLinear}.
Automated Interpretability Metrics Do Not Distinguish Trained and Random Transformers
Sparse autoencoders (SAEs) are widely used to extract sparse, interpretable latents from transformer activations. We test whether commonly used SAE quality metrics and automatic explanation pipelines can distinguish trained transformers from randomly initialized ones (e.g., where parameters are sampled i.i.d. from a Gaussian). Over a wide range of Pythia model sizes and multiple randomization schemes, we find that, in many settings, SAEs trained on randomly initialized transformers produce auto-interpretability scores and reconstruction metrics that are similar to those from trained models. These results show that high aggregate auto-interpretability scores do not, by themselves, guarantee that learned, computationally relevant features have been recovered. We therefore recommend treating common SAE metrics as useful but insufficient proxies for mechanistic interpretability and argue for routine randomized baselines and targeted measures of feature 'abstractness'.
PYRREGULAR: A Unified Framework for Irregular Time Series, with Classification Benchmarks
Irregular temporal data, characterized by varying recording frequencies, differing observation durations, and missing values, presents significant challenges across fields like mobility, healthcare, and environmental science. Existing research communities often overlook or address these challenges in isolation, leading to fragmented tools and methods. To bridge this gap, we introduce a unified framework, and the first standardized dataset repository for irregular time series classification, built on a common array format to enhance interoperability. This repository comprises 34 datasets on which we benchmark 12 classifier models from diverse domains and communities. This work aims to centralize research efforts and enable a more robust evaluation of irregular temporal data analysis methods.
SWA-LDM: Toward Stealthy Watermarks for Latent Diffusion Models
Latent Diffusion Models (LDMs) have established themselves as powerful tools in the rapidly evolving field of image generation, capable of producing highly realistic images. However, their widespread adoption raises critical concerns about copyright infringement and the misuse of generated content. Watermarking techniques have emerged as a promising solution, enabling copyright identification and misuse tracing through imperceptible markers embedded in generated images. Among these, latent-based watermarking techniques are particularly promising, as they embed watermarks directly into the latent noise without altering the underlying LDM architecture. In this work, we demonstrate that such latent-based watermarks are practically vulnerable to detection and compromise through systematic analysis of output images' statistical patterns for the first time. To counter this, we propose SWA-LDM (Stealthy Watermark for LDM), a lightweight framework that enhances stealth by dynamically randomizing the embedded watermarks using the Gaussian-distributed latent noise inherent to diffusion models. By embedding unique, pattern-free signatures per image, SWA-LDM eliminates detectable artifacts while preserving image quality and extraction robustness. Experiments demonstrate an average of 20% improvement in stealth over state-of-the-art methods, enabling secure deployment of watermarked generative AI in real-world applications.
comment: 12 pages, 5 figures
Nearly Optimal Bayesian Inference for Structural Missingness
Structural missingness breaks 'just impute and train': values can be undefined by causal or logical constraints, and the mask may depend on observed variables, unobserved variables (MNAR), and other missingness indicators. It simultaneously brings (i) a catch-22 situation with causal loop, prediction needs the missing features, yet inferring them depends on the missingness mechanism, (ii) under MNAR, the unseen are different, the missing part can come from a shifted distribution, and (iii) plug-in imputation, a single fill-in can lock in uncertainty and yield overconfident, biased decisions. In the Bayesian view, prediction via the posterior predictive distribution integrates over the full model posterior uncertainty, rather than relying on a single point estimate. This framework decouples (i) learning an in-model missing-value posterior from (ii) label prediction by optimizing the predictive posterior distribution, enabling posterior integration. This decoupling yields an in-model almost-free-lunch: once the posterior is learned, prediction is plug-and-play while preserving uncertainty propagation. It achieves SOTA on 43 classification and 15 imputation benchmarks, with finite-sample near Bayes-optimality guarantees under our SCM prior.
Improving Value-based Process Verifier via Structural Prior Injection
In the Large Language Model(LLM) reasoning scenario, people often estimate state value via Monte Carlo sampling. Though Monte Carlo estimation is an elegant method with less inductive bias, noise and errors are inevitably introduced due to the limited sampling. To handle the problem, we inject the structural prior into the value representation and transfer the scalar value into the expectation of a pre-defined categorical distribution, representing the noise and errors from a distribution perspective. Specifically, by treating the result of Monte Carlo sampling as a single sample from the prior ground-truth Binomial distribution, we quantify the sampling error as the mismatch between posterior estimated distribution and ground-truth distribution, which is thus optimized via distribution selection optimization. We test the performance of value-based process verifiers on Best-of-N task and Beam search task. Compared with the scalar value representation, we show that reasonable structural prior injection induced by different objective functions or optimization methods can improve the performance of value-based process verifiers for about 1$\sim$2 points at little-to-no cost. We also show that under different structural prior, the verifiers' performances vary greatly despite having the same optimal solution, indicating the importance of reasonable structural prior injection.
comment: This version is deprecated. Please refer to our new version: arXiv:2508.10539
Causal Pre-training Under the Fairness Lens: An Empirical Study of TabPFN
Foundation models for tabular data, such as the Tabular Prior-data Fitted Network (TabPFN), are pre-trained on a massive number of synthetic datasets generated by structural causal models (SCM). They leverage in-context learning to offer high predictive accuracy in real-world tasks. However, the fairness properties of these foundational models, which incorporate ideas from causal reasoning during pre-training, remain underexplored. In this work, we conduct a comprehensive empirical evaluation of TabPFN and its fine-tuned variants, assessing predictive performance, fairness, and robustness across varying dataset sizes and distributional shifts. Our results reveal that while TabPFN achieves stronger predictive accuracy compared to baselines and exhibits robustness to spurious correlations, improvements in fairness are moderate and inconsistent, particularly under missing-not-at-random (MNAR) covariate shifts. These findings suggest that the causal pre-training in TabPFN is helpful but insufficient for algorithmic fairness, highlighting implications for deploying TabPFN (and similar) models in practice and the need for further fairness interventions.
GS-KAN: Parameter-Efficient Kolmogorov-Arnold Networks via Sprecher-Type Shared Basis Functions
The Kolmogorov-Arnold representation theorem offers a theoretical alternative to Multi-Layer Perceptrons (MLPs) by placing learnable univariate functions on edges rather than nodes. While recent implementations such as Kolmogorov-Arnold Networks (KANs) demonstrate high approximation capabilities, they suffer from significant parameter inefficiency due to the requirement of maintaining unique parameterizations for every network edge. In this work, we propose GS-KAN (Generalized Sprecher-KAN), a lightweight architecture inspired by David Sprecher's refinement of the superposition theorem. GS-KAN constructs unique edge functions by applying learnable linear transformations to a single learnable, shared parent function per layer. We evaluate GS-KAN against existing KAN architectures and MLPs across synthetic function approximation, tabular data regression and image classification tasks. Our results demonstrate that GS-KAN outperforms both MLPs and standard KAN baselines on continuous function approximation tasks while maintaining superior parameter efficiency. Additionally, GS-KAN achieves competitive performance with existing KAN architectures on tabular regression and outperforms MLPs on high-dimensional classification tasks. Crucially, the proposed architecture enables the deployment of KAN-based architectures in high-dimensional regimes under strict parameter constraints, a setting where standard implementations are typically infeasible due to parameter explosion. The source code is available at https://github.com/rambamn48/gs-impl.
comment: 6 pages, 2 figures
Physics-Constrained Fine-Tuning of Flow-Matching Models for Generation and Inverse Problems
We present a framework for fine-tuning flow-matching generative models to enforce physical constraints and solve inverse problems in scientific systems. Starting from a model trained on low-fidelity or observational data, we apply a differentiable post-training procedure that minimizes weak-form residuals of governing partial differential equations (PDEs), promoting physical consistency and adherence to boundary conditions without distorting the underlying learned distribution. To infer unknown physical inputs, such as source terms, material parameters, or boundary data, we augment the generative process with a learnable latent parameter predictor and propose a joint optimization strategy. The resulting model produces physically valid field solutions alongside plausible estimates of hidden parameters, effectively addressing ill-posed inverse problems in a data-driven yet physicsaware manner. We validate our method on canonical PDE benchmarks, demonstrating improved satisfaction of PDE constraints and accurate recovery of latent coefficients. Our approach bridges generative modelling and scientific inference, opening new avenues for simulation-augmented discovery and data-efficient modelling of physical systems.
Diffusion models for multivariate subsurface generation and efficient probabilistic inversion
Diffusion models offer stable training and state-of-the-art performance for deep generative modeling tasks. Here, we consider their use in the context of multivariate subsurface modeling and probabilistic inversion. We first demonstrate that diffusion models enhance multivariate modeling capabilities compared to variational autoencoders and generative adversarial networks. In diffusion modeling, the generative process involves a comparatively large number of time steps with update rules that can be modified to account for conditioning data. We propose different corrections to the popular Diffusion Posterior Sampling approach by Chung et al. (2023). In particular, we introduce a likelihood approximation accounting for the noise-contamination that is inherent in diffusion modeling. We assess performance in a multivariate geological scenario involving facies and correlated acoustic impedance. Conditional modeling is demonstrated using both local hard data (well logs) and nonlinear geophysics (fullstack seismic data). Our tests show significantly improved statistical robustness, enhanced sampling of the posterior probability density function and reduced computational costs, compared to the original approach. The method can be used with both hard and indirect conditioning data, individually or simultaneously. As the inversion is included within the diffusion process, it is faster than other methods requiring an outer-loop around the generative model, such as Markov chain Monte Carlo.
comment: 35 p., 16 figs. This updated version corrects an error with the analysis of the denoising scores' magnitudes in the results section. The discussion and conclusions of our study remain unchanged. The scores' trends were erroneously reported with inverted time-step order, now fixed in Figure 5a and b (now with the correct increasing trends) and in the corresponding analysis in the Results section
Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity ICLR 2022
The success of deep ensembles on improving predictive performance, uncertainty estimation, and out-of-distribution robustness has been extensively studied in the machine learning literature. Albeit the promising results, naively training multiple deep neural networks and combining their predictions at inference leads to prohibitive computational costs and memory requirements. Recently proposed efficient ensemble approaches reach the performance of the traditional deep ensembles with significantly lower costs. However, the training resources required by these approaches are still at least the same as training a single dense model. In this work, we draw a unique connection between sparse neural network training and deep ensembles, yielding a novel efficient ensemble learning framework called FreeTickets. Instead of training multiple dense networks and averaging them, we directly train sparse subnetworks from scratch and extract diverse yet accurate subnetworks during this efficient, sparse-to-sparse training. Our framework, FreeTickets, is defined as the ensemble of these relatively cheap sparse subnetworks. Despite being an ensemble method, FreeTickets has even fewer parameters and training FLOPs than a single dense model. This seemingly counter-intuitive outcome is due to the ultra training/inference efficiency of dynamic sparse training. FreeTickets surpasses the dense baseline in all the following criteria: prediction accuracy, uncertainty estimation, out-of-distribution (OoD) robustness, as well as efficiency for both training and inference. Impressively, FreeTickets outperforms the naive deep ensemble with ResNet50 on ImageNet using around only 1/5 of the training FLOPs required by the latter. We have released our source code at https://github.com/VITA-Group/FreeTickets.
comment: published in International Conference on Learning Representations (ICLR 2022)
Synchronization on circles and spheres with nonlinear interactions
We consider the dynamics of $n$ points on a sphere in $\mathbb{R}^d$ ($d \geq 2$) which attract each other according to a function $\varphi$ of their inner products. When $\varphi$ is linear ($\varphi(t) = t$), the points converge to a common value (i.e., synchronize) in various connectivity scenarios: this is part of classical work on Kuramoto oscillator networks. When $\varphi$ is exponential ($\varphi(t) = e^{βt}$), these dynamics correspond to a limit of how idealized transformers process data, as described by Geshkovski et al. (2025). Accordingly, they ask whether synchronization occurs for exponential $\varphi$. The answer depends on the dimension $d$. In the context of consensus for multi-agent control, Markdahl et al. (2018) show that for $d \geq 3$ (spheres), if the interaction graph is connected and $\varphi$ is increasing and convex, then the system synchronizes. We give a separate proof of this result. What is the situation on circles ($d=2$)? First, we show that $\varphi$ being increasing and convex is no longer sufficient (even for complete graphs). Then we identify a new condition under which we do have synchronization on the circle (namely, if the Taylor coefficients of $\varphi'$ are decreasing). As a corollary, this provide synchronization for exponential $\varphi$ with $β\in (0, 1]$. The proofs are based on nonconvex landscape analysis.
comment: 30 pages, 1 figure
AI-generated data contamination erodes pathological variability and diagnostic reliability
Generative artificial intelligence (AI) is rapidly populating medical records with synthetic content, creating a feedback loop where future models are increasingly at risk of training on uncurated AI-generated data. However, the clinical consequences of this AI-generated data contamination remain unexplored. Here, we show that in the absence of mandatory human verification, this self-referential cycle drives a rapid erosion of pathological variability and diagnostic reliability. By analysing more than 800,000 synthetic data points across clinical text generation, vision-language reporting, and medical image synthesis, we find that models progressively converge toward generic phenotypes regardless of the model architecture. Specifically, rare but critical findings, including pneumothorax and effusions, vanish from the synthetic content generated by AI models, while demographic representations skew heavily toward middle-aged male phenotypes. Crucially, this degradation is masked by false diagnostic confidence; models continue to issue reassuring reports while failing to detect life-threatening pathology, with false reassurance rates tripling to 40%. Blinded physician evaluation confirms that this decoupling of confidence and accuracy renders AI-generated documentation clinically useless after just two generations. We systematically evaluate three mitigation strategies, finding that while synthetic volume scaling fails to prevent collapse, mixing real data with quality-aware filtering effectively preserves diversity. Ultimately, our results suggest that without policy-mandated human oversight, the deployment of generative AI threatens to degrade the very healthcare data ecosystems it relies upon.
comment: *Corresponding author: Dianbo Liu (dianbo@nus.edu.sg)
Universal Multi-Domain Translation via Diffusion Routers ICLR 2026
Multi-domain translation (MDT) aims to learn translations between multiple domains, yet existing approaches either require fully aligned tuples or can only handle domain pairs seen in training, limiting their practicality and excluding many cross-domain mappings. We introduce universal MDT (UMDT), a generalization of MDT that seeks to translate between any pair of $K$ domains using only $K-1$ paired datasets with a central domain. To tackle this problem, we propose Diffusion Router (DR), a unified diffusion-based framework that models all central$\leftrightarrow$non-central translations with a single noise predictor conditioned on the source and target domain labels. DR enables indirect non-central translations by routing through the central domain. We further introduce a novel scalable learning strategy with a variational-bound objective and an efficient Tweedie refinement procedure to support direct non-central mappings. Through evaluation on three large-scale UMDT benchmarks, DR achieves state-of-the-art results for both indirect and direct translations, while lowering sampling cost and unlocking novel tasks such as sketch$\leftrightarrow$segmentation. These results establish DR as a scalable and versatile framework for universal translation across multiple domains.
comment: Accepted in ICLR 2026
Real-World Adversarial Attacks on RF-Based Drone Detectors
Radio frequency (RF) based systems are increasingly used to detect drones by analyzing their RF signal patterns, converting them into spectrogram images which are processed by object detection models. Existing RF attacks against image based models alter digital features, making over-the-air (OTA) implementation difficult due to the challenge of converting digital perturbations to transmittable waveforms that may introduce synchronization errors and interference, and encounter hardware limitations. We present the first physical attack on RF image based drone detectors, optimizing class-specific universal complex baseband (I/Q) perturbation waveforms that are transmitted alongside legitimate communications. We evaluated the attack using RF recordings and OTA experiments with four types of drones. Our results show that modest, structured I/Q perturbations are compatible with standard RF chains and reliably reduce target drone detection while preserving detection of legitimate drones.
SAC-GLAM: Improving Online RL for LLM agents with Soft Actor-Critic and Hindsight Relabeling
The past years have seen Large Language Models (LLMs) strive not only as generative models but also as agents solving textual sequential decision-making tasks. When facing complex environments where their zero-shot abilities are insufficient, recent work showed online Reinforcement Learning (RL) could be used for the LLM agent to discover and learn efficient strategies interactively. However, most prior work sticks to on-policy algorithms, which greatly reduces the scope of methods such agents could use for both exploration and exploitation, such as experience replay and hindsight relabeling. Yet, such methods may be key for LLM learning agents, and in particular when designing autonomous intrinsically motivated agents sampling and pursuing their own goals (i.e. autotelic agents). This paper presents and studies an adaptation of Soft Actor-Critic and hindsight relabeling to LLM agents. Our method not only paves the path towards autotelic LLM agents that learn online but can also outperform on-policy methods in more classic multi-goal RL environments.
CaTs and DAGs: Integrating Directed Acyclic Graphs with Transformers for Causally Constrained Predictions
Artificial Neural Networks (ANNs), including fully-connected networks and transformers, are highly flexible and powerful function approximators, widely applied in fields like computer vision and natural language processing. However, their inability to inherently respect causal structures can limit their robustness, making them vulnerable to covariate shift and difficult to interpret/explain. This poses significant challenges for their reliability in real-world applications. In this paper, we introduce Causal Transformers (CaTs), a general model class designed to operate under predefined causal constraints, as specified by a Directed Acyclic Graph (DAG). CaTs retain the powerful function approximation abilities of traditional neural networks while adhering to the underlying structural constraints, improving robustness, reliability, and interpretability at inference time. This approach opens new avenues for deploying neural networks in more demanding, real-world scenarios where robustness and explainability is critical.
Convergence of energy-based learning in linear resistive networks
Energy-based learning algorithms are alternatives to backpropagation and are well-suited to distributed implementations in analog electronic devices. However, a rigorous theory of convergence is lacking. We make a first step in this direction by analysing a particular energybased learning algorithm, Contrastive Learning, applied to a network of linear adjustable resistors. It is shown that, in this setup, Contrastive Learning is equivalent to projected gradient descent on a convex function with Lipschitz continuous gradient, giving a guarantee of convergence of the algorithm for a range of stepsizes. This convergence result is then extended to a stochastic variant of Contrastive Learning.
Dual-Prototype Disentanglement: A Context-Aware Enhancement Framework for Time Series Forecasting
Time series forecasting has witnessed significant progress with deep learning. While prevailing approaches enhance forecasting performance by modifying architectures or introducing novel enhancement strategies, they often fail to dynamically disentangle and leverage the complex, intertwined temporal patterns inherent in time series, thus resulting in the learning of static, averaged representations that lack context-aware capabilities. To address this, we propose the Dual-Prototype Adaptive Disentanglement framework (DPAD), a model-agnostic auxiliary method that equips forecasting models with the ability of pattern disentanglement and context-aware adaptation. Specifically, we construct a Dynamic Dual-Prototype bank (DDP), comprising a common pattern bank with strong temporal priors to capture prevailing trend or seasonal patterns, and a rare pattern bank dynamically memorizing critical yet infrequent events, and then an Dual-Path Context-aware routing (DPC) mechanism is proposed to enhance outputs with selectively retrieved context-specific pattern representations from the DDP. Additionally, we introduce a Disentanglement-Guided Loss (DGLoss) to ensure that each prototype bank specializes in its designated role while maintaining comprehensive coverage. Comprehensive experiments demonstrate that DPAD consistently improves forecasting performance and reliability of state-of-the-art models across diverse real-world benchmarks.
Beyond Classical Attention: Quantum Attention for Scalable Computation
As large language models (LLMs) demonstrate outstanding performance across various tasks, attention-driven models have profoundly transformed the field of machine learning. Since attention computations account for the primary computational overhead in both model inference and training, efficiently computing attention matrices has become one of the core challenges in accelerating large language models. It is well-known that quantum machines possess computational advantages over classical machines, and the role of quantum computing in LLMs remains largely unexplored. In this work, we focus on leveraging the Grover search algorithm to efficiently compute a sparse attention matrix. Through comparisons with classical algorithms, we demonstrate that our method achieves quantum acceleration in polynomial time. Additionally, we observe that the generated quantum attention matrices naturally exhibit low-rank structures, providing further theoretical support for efficient modeling. Moreover, within the specific context of attention matrix computation, we conduct a systematic and detailed analysis of the error and time complexity of the proposed algorithm.
Monotone and Separable Set Functions: Characterizations and Neural Models
Motivated by applications for set containment problems, we consider the following fundamental problem: can we design set-to-vector functions so that the natural partial order on sets is preserved, namely $S\subseteq T \text{ if and only if } F(S)\leq F(T) $. We call functions satisfying this property Monotone and Separating (MAS) set functions. % We establish lower and upper bounds for the vector dimension necessary to obtain MAS functions, as a function of the cardinality of the multisets and the underlying ground set. In the important case of an infinite ground set, we show that MAS functions do not exist, but provide a model called our which provably enjoys a relaxed MAS property we name "weakly MAS" and is stable in the sense of Holder continuity. We also show that MAS functions can be used to construct universal models that are monotone by construction and can approximate all monotone set functions. Experimentally, we consider a variety of set containment tasks. The experiments show the benefit of using our our model, in comparison with standard set models which do not incorporate set containment as an inductive bias. Our code is available in https://github.com/yonatansverdlov/Monotone-Embedding.
Improved Regret Bounds for Linear Bandits with Heavy-Tailed Rewards
We study stochastic linear bandits with heavy-tailed rewards, where the rewards have a finite $(1+ε)$-absolute central moment bounded by $\upsilon$ for some $ε\in (0,1]$. We improve both upper and lower bounds on the minimax regret compared to prior work. When $\upsilon = \mathcal{O}(1)$, the best prior known regret upper bound is $\tilde{\mathcal{O}}(d T^{\frac{1}{1+ε}})$. While a lower with the same scaling has been given, it relies on a construction using $\upsilon = \mathcal{O}(d)$, and adapting the construction to the bounded-moment regime with $\upsilon = \mathcal{O}(1)$ yields only a $Ω(d^{\fracε{1+ε}} T^{\frac{1}{1+ε}})$ lower bound. This matches the known rate for multi-armed bandits and is generally loose for linear bandits, in particular being $\sqrt{d}$ below the optimal rate in the finite-variance case ($ε= 1$). We propose a new elimination-based algorithm guided by experimental design, which achieves regret $\tilde{\mathcal{O}}(d^{\frac{1+3ε}{2(1+ε)}} T^{\frac{1}{1+ε}})$, thus improving the dependence on $d$ for all $ε\in (0,1)$ and recovering a known optimal result for $ε= 1$. We also establish a lower bound of $Ω(d^{\frac{2ε}{1+ε}} T^{\frac{1}{1+ε}})$, which strictly improves upon the multi-armed bandit rate and highlights the hardness of heavy-tailed linear bandit problems. For finite action sets, we derive similarly improved upper and lower bounds for regret. Finally, we provide action set dependent regret upper bounds showing that for some geometries, such as $l_p$-norm balls for $p \le 1 + ε$, we can further reduce the dependence on $d$, and we can handle infinite-dimensional settings via the kernel trick, in particular establishing new regret bounds for the Matérn kernel that are the first to be sublinear for all $ε\in (0, 1]$.
Token Caching for Diffusion Transformer Acceleration
Diffusion transformers have gained substantial interest in diffusion generative modeling due to their outstanding performance. However, their computational demands, particularly the quadratic complexity of attention mechanisms and multi-step inference processes, present substantial bottlenecks that limit their practical applications. To address these challenges, we propose TokenCache, a novel acceleration method that leverages the token-based multi-block architecture of transformers to reduce redundant computations. TokenCache tackles three critical questions: (1) Which tokens should be pruned and reused by the caching mechanism to eliminate redundancy? (2) Which blocks should be targeted for efficient caching? (3) At which time steps should caching be applied to balance speed and quality? In response to these challenges, TokenCache introduces a Cache Predictor that hierarchically addresses these issues by (1) Token pruning: assigning importance scores to each token to determine which tokens to prune and reuse; (2) Block selection: allocating pruning ratio to each block to adaptively select blocks for caching; (3) Temporal Scheduling: deciding at which time steps to apply caching strategies. Experimental results across various models demonstrate that TokenCache achieves an effective trade-off between generation quality and inference speed for diffusion transformers.
NIMO: a Nonlinear Interpretable MOdel ICLR 2026
Deep learning has achieved remarkable success across many domains, but it has also created a growing demand for interpretability in model predictions. Although many explainable machine learning methods have been proposed, post-hoc explanations lack guaranteed fidelity and are sensitive to hyperparameter choices, highlighting the appeal of inherently interpretable models. For example, linear regression provides clear feature effects through its coefficients. However, such models are often outperformed by more complex neural networks (NNs) that usually lack inherent interpretability. To address this dilemma, we introduce NIMO, a framework that combines inherent interpretability with the expressive power of neural networks. Building on the simple linear regression, NIMO is able to provide flexible and intelligible feature effects. Relevantly, we develop an optimization method based on parameter elimination, that allows for optimizing the NN parameters and linear coefficients effectively and efficiently. By relying on adaptive ridge regression we can easily incorporate sparsity as well. We show empirically that our model can provide faithful and intelligible feature effects while maintaining good predictive performance.
comment: ICLR 2026
Large Multimodal Models for Low-Resource Languages: A Survey
In this survey, we systematically analyze techniques used to adapt large multimodal models (LMMs) for low-resource (LR) languages, examining approaches ranging from visual enhancement and data creation to cross-modal transfer and fusion strategies. Through a comprehensive analysis of 117 studies across 96 LR languages, we identify key patterns in how researchers tackle the challenges of limited data and computational resources. We categorize works into resource-oriented and method-oriented contributions, further dividing contributions into relevant sub-categories. We compare method-oriented contributions in terms of performance and efficiency, discussing benefits and limitations of representative studies. We find that visual information often serves as a crucial bridge for improving model performance in LR settings, though significant challenges remain in areas such as hallucination mitigation and computational efficiency. In summary, we provide researchers with a clear understanding of current approaches and remaining challenges in making LMMs more accessible to speakers of LR (understudied) languages. We complement our survey with an open-source repository available at: https://github.com/marianlupascu/LMM4LRL-Survey.
comment: Accepted in Information Fusion
Bridging Training and Merging Through Momentum-Aware Optimization
Training large neural networks and merging task specific models both exploit low rank structure and require parameter importance estimation, yet these challenges have been pursued in isolation. Current workflows compute curvature information during training, discard it, then recompute similar information for merging wasting computation and discarding valuable trajectory data. We introduce a unified framework that maintains factorized momentum and curvature statistics during training, then reuses this information for geometry aware model composition. The proposed method incurs modest memory overhead (approximately 30% over AdamW) to accumulate task saliency scores that enable curvature aware merging. These scores, computed as a byproduct of optimization, provide importance estimates comparable to post hoc Fisher computation while producing merge-ready models directly from training. We establish convergence guarantees for non-convex objectives with approximation error bounded by gradient singular value decay. On natural language understanding benchmarks, curvature aware parameter selection outperforms magnitude only baselines across all sparsity levels, with multi-task merging improving 1.6% over strong baselines. The proposed framework exhibits rank-invariant convergence and superior hyperparameter robustness compared to existing low-rank optimizers. By treating the optimization trajectory as a reusable asset rather than discarding it, our approach demonstrates that training-time curvature information suffices for effective model composition, enabling a unified training merging pipeline.
comment: Paper submitted to INS and revised. Currently revision is under review as of 27th Jan 2026
Federated Joint Learning for Domain and Class Generalization
Efficient fine-tuning of visual-language models like CLIP has become crucial due to their large-scale parameter size and extensive pretraining requirements. Existing methods typically address either the issue of unseen classes or unseen domains in isolation, without considering a joint framework for both. In this paper, we propose \textbf{Fed}erated Joint Learning for \textbf{D}omain and \textbf{C}lass \textbf{G}eneralization, termed \textbf{FedDCG}, a novel approach that addresses both class and domain generalization in federated learning settings. Our method introduces a domain grouping strategy where class-generalized networks are trained within each group to prevent decision boundary confusion. During inference, we aggregate class-generalized results based on domain similarity, effectively integrating knowledge from both class and domain generalization. Specifically, a learnable network is employed to enhance class generalization capabilities, and a decoupling mechanism separates general and domain-specific knowledge, improving generalization to unseen domains. Extensive experiments across various datasets show that \textbf{FedDCG} outperforms state-of-the-art baselines in terms of accuracy and robustness.
comment: ICASSP 2026
Astra: General Interactive World Model with Autoregressive Denoising ICLR 2026
Recent advances in diffusion transformers have empowered video generation models to generate high-quality video clips from texts or images. However, world models with the ability to predict long-horizon futures from past observations and actions remain underexplored, especially for general-purpose scenarios and various forms of actions. To bridge this gap, we introduce Astra, an interactive general world model that generates real-world futures for diverse scenarios (e.g., autonomous driving, robot grasping) with precise action interactions (e.g., camera motion, robot action). We propose an autoregressive denoising architecture and use temporal causal attention to aggregate past observations and support streaming outputs. We use a noise-augmented history memory to avoid over-reliance on past frames to balance responsiveness with temporal coherence. For precise action control, we introduce an action-aware adapter that directly injects action signals into the denoising process. We further develop a mixture of action experts that dynamically route heterogeneous action modalities, enhancing versatility across diverse real-world tasks such as exploration, manipulation, and camera control. Astra achieves interactive, consistent, and general long-term video prediction and supports various forms of interactions. Experiments across multiple datasets demonstrate the improvements of Astra in fidelity, long-range prediction, and action alignment over existing state-of-the-art world models.
comment: Accepted in ICLR 2026. Code is available at: https://github.com/EternalEvan/Astra
Twirlator: A Pipeline for Analyzing Subgroup Symmetry Effects in Quantum Machine Learning Ansatzes
Symmetry is a strong inductive bias in geometric deep learning and its quantum counterpart, and has attracted increasing attention for improving the trainability of QML models. Yet incorporating symmetries into quantum machine learning (QML) ansatzes is not free: symmetrization often adds gates and constrains the circuits. To understand these effects, we present Twirlator, which is an automated pipeline that symmetrizes parameterized QML ansatzes and quantifies the trade-offs as the amount of symmetry increases. Twirlator models partial symmetries by the size of a subgroup of the symmetric group, enabling analysis between the ``no symmetry'' and ``full symmetry'' extremes. Across 19 common ansatz patterns, Twirlator symmetrizes circuits with respect to any subgroup of $S_n$ and measures (1) generator drift, (2) circuit overhead (depth and size), and (3) expressibility and entangling capability. The experimental evaluation focuses on subgroups of $S_4$ and $S_5$. Twirlator reveals that larger subgroups typically increase circuit overhead, reduce expressibility, and often increase entangling capability. The pipeline and results provide practical guidance for selecting ansatz patterns and symmetry levels that balance hardware cost and model performance in symmetry-aware QML applications.
comment: 8 pages; 7 figures; presented at the 7th International Workshop on Quantum Software Engineering (Q-SE 2026)
AECBench: A Hierarchical Benchmark for Knowledge Evaluation of Large Language Models in the AEC Field
Large language models (LLMs), as a novel information technology, are seeing increasing adoption in the Architecture, Engineering, and Construction (AEC) field. They have shown their potential to streamline processes throughout the building lifecycle. However, the robustness and reliability of LLMs in such a specialized and safety-critical domain remain to be evaluated. To address this challenge, this paper establishes AECBench, a comprehensive benchmark designed to quantify the strengths and limitations of current LLMs in the AEC domain. The benchmark features a five-level, cognition-oriented evaluation framework (i.e., Knowledge Memorization, Understanding, Reasoning, Calculation, and Application). Based on the framework, 23 representative evaluation tasks were defined. These tasks were derived from authentic AEC practice, with scope ranging from codes retrieval to specialized documents generation. Subsequently, a 4,800-question dataset encompassing diverse formats, including open-ended questions, was crafted primarily by engineers and validated through a two-round expert review. Furthermore, an "LLM-as-a-Judge" approach was introduced to provide a scalable and consistent methodology for evaluating complex, long-form responses leveraging expert-derived rubrics. Through the evaluation of nine LLMs, a clear performance decline across five cognitive levels was revealed. Despite demonstrating proficiency in foundational tasks at the Knowledge Memorization and Understanding levels, the models showed significant performance deficits, particularly in interpreting knowledge from tables in building codes, executing complex reasoning and calculation, and generating domain-specific documents. Consequently, this study lays the groundwork for future research and development aimed at the robust and reliable integration of LLMs into safety-critical engineering practices.
The LLM Data Auditor: A Metric-oriented Survey on Quality and Trustworthiness in Evaluating Synthetic Data
Large Language Models (LLMs) have emerged as powerful tools for generating data across various modalities. By transforming data from a scarce resource into a controllable asset, LLMs mitigate the bottlenecks imposed by the acquisition costs of real-world data for model training, evaluation, and system iteration. However, ensuring the high quality of LLM-generated synthetic data remains a critical challenge. Existing research primarily focuses on generation methodologies, with limited direct attention to the quality of the resulting data. Furthermore, most studies are restricted to single modalities, lacking a unified perspective across different data types. To bridge this gap, we propose the \textbf{LLM Data Auditor framework}. In this framework, we first describe how LLMs are utilized to generate data across six distinct modalities. More importantly, we systematically categorize intrinsic metrics for evaluating synthetic data from two dimensions: quality and trustworthiness. This approach shifts the focus from extrinsic evaluation, which relies on downstream task performance, to the inherent properties of the data itself. Using this evaluation system, we analyze the experimental evaluations of representative generation methods for each modality and identify substantial deficiencies in current evaluation practices. Based on these findings, we offer concrete recommendations for the community to improve the evaluation of data generation. Finally, the framework outlines methodologies for the practical application of synthetic data across different modalities.
Damper-B-PINN: Damper Characteristics-Based Bayesian Physics-Informed Neural Network for Vehicle State Estimation IV
Accurate state estimation is fundamental to intelligent vehicles. Wheel load, one of the most important chassis states, serves as an essential input for advanced driver assistance systems (ADAS) and exerts a direct influence on vehicle stability and safety. However, wheel load estimation remains challenging due to the complexity of chassis modeling and the susceptibility of nonlinear systems to noise. To address these issues, this paper first introduces a refined suspension linkage-level modeling approach that constructs a nonlinear instantaneous dynamic model by explicitly considering the complex geometric structure of the suspension. Building upon this, we propose a damper characteristics-based Bayesian physics-informed neural network (Damper-B-PINN) framework to estimate dynamic wheel load, which leverages the suspension dynamics as physical guidance of PINN while employing Bayesian inference to mitigate the effects of system noise and uncertainty. Moreover, a damper-characteristic physics conditioning (DPC) module is designed for embedding physical prior. The proposed Damper-B-PINN is evaluated using both high-fidelity simulation datasets generated by CarSim software and real-world datasets collected from a Formula Student race car. Experimental results demonstrate that our Damper-B-PINN consistently outperforms existing methods across various test conditions, particularly extreme ones. These findings highlight the potential of the proposed Damper-B-PINN framework to enhance the accuracy and robustness of dynamic wheel load estimation, thereby improving the reliability and safety of ADAS applications.
comment: 8 pages, 8 figures, 3 tables, accepted for IEEE Intelligent Vehicles (IV) Symposium 2026
Task-Specific Directions: Definition, Exploration, and Utilization in Parameter Efficient Fine-Tuning
Large language models demonstrate impressive performance on downstream tasks, yet they require extensive resource consumption when fully fine-tuning all parameters. To mitigate this, Parameter Efficient Fine-Tuning (PEFT) strategies, such as LoRA, have been developed. In this paper, we delve into the concept of task-specific directions (TSDs), which are critical for transitioning large models from pretrained states to task-specific enhancements in PEFT. We propose a framework to clearly define these directions and explore their properties and practical utilization challenges. We then introduce a novel approach, LoRA-Dash, which aims to maximize the impact of TSDs during the fine-tuning process, thereby enhancing model performance on targeted tasks. Additionally, based on our exploration of TSD, we focus on an important issue in PEFT: the initialization of LoRA. While some works have pointed out the significance of initialization for LoRA's performance and proposed various strategies, these methods are often empirical and not task-specific. To address this issue, we propose LoRA-Init. Starting from TSD, we identify the directions that require the most adjustment during fine-tuning for downstream tasks. By initializing the matrices in LoRA with these directions, LoRA-Init significantly enhances LoRA's performance. Moreover, we can combine LoRA-Dash and LoRA-Init to create the final version of LoRA based on TSDs, which we refer to as LoRA-TSD. Extensive experiments have conclusively demonstrated the effectiveness of these methods, and in-depth analyses further reveal the underlying mechanisms behind their success.
comment: 2026, TPAMI, Codes in https://github.com/Chongjie-Si/Subspace-Tuning
Adaptive Regularization for Large-Scale Sparse Feature Embedding Models
The one-epoch overfitting problem has drawn widespread attention, especially in CTR and CVR estimation models in search, advertising, and recommendation domains. These models which rely heavily on large-scale sparse categorical features, often suffer a significant decline in performance when trained for multiple epochs. Although recent studies have proposed heuristic solutions, the fundamental cause of this phenomenon remains unclear. In this work, we present a theoretical explanation grounded in Rademacher complexity, supported by empirical experiments, to explain why overfitting occurs in models with large-scale sparse categorical features. Based on this analysis, we propose a regularization method that constrains the norm budget of embedding layers adaptively. Our approach not only prevents the severe performance degradation observed during multi-epoch training, but also improves model performance within a single epoch. This method has already been deployed in online production systems.
Fair Algorithms with Probing for Multi-Agent Multi-Armed Bandits
We propose a multi-agent multi-armed bandit (MA-MAB) framework aimed at ensuring fair outcomes across agents while maximizing overall system performance. A key challenge in this setting is decision-making under limited information about arm rewards. To address this, we introduce a novel probing framework that strategically gathers information about selected arms before allocation. In the offline setting, where reward distributions are known, we leverage submodular properties to design a greedy probing algorithm with a provable performance bound. For the more complex online setting, we develop an algorithm that achieves sublinear regret while maintaining fairness. Extensive experiments on synthetic and real-world datasets show that our approach outperforms baseline methods, achieving better fairness and efficiency.
Single Index Bandits: Generalized Linear Contextual Bandits with Unknown Reward Functions ICLR 2026
Generalized linear bandits have been extensively studied due to their broad applicability in real-world online decision-making problems. However, these methods typically assume that the expected reward function is known to the users, an assumption that is often unrealistic in practice. Misspecification of this link function can lead to the failure of all existing algorithms. In this work, we address this critical limitation by introducing a new problem of generalized linear bandits with unknown reward functions, also known as single index bandits. We first consider the case where the unknown reward function is monotonically increasing, and propose two novel and efficient algorithms, STOR and ESTOR, that achieve decent regrets under standard assumptions. Notably, our ESTOR can obtain the nearly optimal regret bound $\tilde{O}_T(\sqrt{T})$ in terms of the time horizon $T$. We then extend our methods to the high-dimensional sparse setting and show that the same regret rate can be attained with the sparsity index. Next, we introduce GSTOR, an algorithm that is agnostic to general reward functions, and establish regret bounds under a Gaussian design assumption. Finally, we validate the efficiency and effectiveness of our algorithms through experiments on both synthetic and real-world datasets.
comment: The Fourteenth International Conference on Learning Representations (ICLR 2026)
LoaQ: Layer-wise Output Approximation Quantization
A natural and intuitive idea in model quantization is to approximate each component's quantized output to match its original. Motivated by this idea, most layer-wise post-training quantization (PTQ) methods focus on weight approximation at the linear-layer level. As a result, this local objective often yields insufficient approximations and practical deviations from the guiding intuition. Recent work has improved the approximation of linear-layer outputs within the layer-wise PTQ framework, but such refinements remain inadequate for achieving alignment with the full-model output. Based on a deeper understanding of the structure of mainstream LLMs, we propose LoaQ, which incorporates output-matching factors when quantizing linear layers within the layer-wise PTQ framework. It better aligns with this intuition and can feature a simple closed-form solution, making it orthogonal to existing techniques and readily integrable into existing quantization pipelines. Experiments on the LLaMA and Qwen model families demonstrate that LoaQ performs effectively in both weight-only and weight-activation quantization. By integrating seamlessly with existing quantization strategies, it further enhances overall quantization quality and shows strong potential to advance the frontier of post-training quantization.
comment: under review
SpecBridge: Bridging Mass Spectrometry and Molecular Representations via Cross-Modal Alignment
Small-molecule identification from tandem mass spectrometry (MS/MS) remains a bottleneck in untargeted settings where spectral libraries are incomplete. While deep learning offers a solution, current approaches typically fall into two extremes: explicit generative models that construct molecular graphs atom-by-atom, or joint contrastive models that learn cross-modal subspaces from scratch. We introduce SpecBridge, a novel implicit alignment framework that treats structure identification as a geometric alignment problem. SpecBridge fine-tunes a self-supervised spectral encoder (DreaMS) to project directly into the latent space of a frozen molecular foundation model (ChemBERTa), and then performs retrieval by cosine similarity to a fixed bank of precomputed molecular embeddings. Across MassSpecGym, Spectraverse, and MSnLib benchmarks, SpecBridge improves top-1 retrieval accuracy by roughly 20-25% relative to strong neural baselines, while keeping the number of trainable parameters small. These results suggest that aligning to frozen foundation models is a practical, stable alternative to designing new architectures from scratch. The code for SpecBridge is released at https://github.com/HassounLab/SpecBridge.
comment: preprint
Holdout-Loss-Based Data Selection for LLM Finetuning via In-Context Learning
Fine-tuning large pretrained language models is a common approach for aligning them with human preferences, but noisy or off-target examples can dilute supervision. While small, well-chosen datasets often match the performance of much larger ones, systematic and efficient ways to identify high-value training data remain underexplored. Many current methods rely on heuristics or expensive retraining. We present a principled, resource-efficient framework for data selection and reweighting. At its core is an In-Context Approximation (ICA) that estimates the holdout loss a model would incur after training on a candidate example by conditioning on a small, curated holdout set in context. ICA requires no reference model and no additional finetuning. We define the resulting estimate as the ICA score, and derive per-example weights that dynamically reweight gradient updates as model parameters evolve. Across SFT, DPO, and SimPO, and over diverse backbones and datasets, ICA-based reweighting consistently improves model alignment with minimal overhead. We analyze sensitivity to score update frequency and the number of in-context holdout examples. We also discuss limitations in rapidly drifting on-policy settings, highlighting directions for future work. Code and prompts will be released.
Image deblurring based on lightweight multi-information fusion network
Recently, deep learning based image deblurring has been well developed. However, exploiting the detailed image features in a deep learning framework always requires a mass of parameters, which inevitably makes the network suffer from high computational burden. To solve this problem, we propose a lightweight multiinformation fusion network (LMFN) for image deblurring. The proposed LMFN is designed as an encoder-decoder architecture. In the encoding stage, the image feature is reduced to various smallscale spaces for multi-scale information extraction and fusion without a large amount of information loss. Then, a distillation network is used in the decoding stage, which allows the network benefit the most from residual learning while remaining sufficiently lightweight. Meanwhile, an information fusion strategy between distillation modules and feature channels is also carried out by attention mechanism. Through fusing different information in the proposed approach, our network can achieve state-of-the-art image deblurring result with smaller number of parameters and outperforms existing methods in model complexity.
Causal Effect Estimation under Networked Interference without Networked Unconfoundedness Assumption
Estimating causal effects under networked interference from observational data is a crucial yet challenging problem. Most existing methods mainly rely on the networked unconfoundedness assumption, which guarantees the identification of networked effects. However, this assumption is often violated due to the latent confounders inherent in observational data, thereby hindering the identification of networked effects. To address this issue, we leverage the rich interaction patterns between units in networks, which provide valuable information for recovering these latent confounders. Building on this insight, we develop a confounder recovery framework that explicitly characterizes three categories of latent confounders in networked settings: those affecting only the unit, those affecting only the unit's neighbors, and those influencing both. Based on this framework, we design a networked effect estimator using identifiable representation learning techniques. From a theoretical standpoint, we prove the identifiability of all three types of latent confounders and, by leveraging the recovered confounders, establish a formal identification result for networked effects. Extensive experiments validate our theoretical findings and demonstrate the effectiveness of the proposed method.
comment: arXiv admin note: text overlap with arXiv:2405.03342
Reinforcement Learning Fine-Tuning Enhances Activation Intensity and Diversity in the Internal Circuitry of LLMs
Large language models (LLMs) acquire extensive prior knowledge through large-scale pretraining and can be further enhanced via supervised fine-tuning (SFT) or reinforcement learning (RL)-based post-training. A growing body of evidence has shown that RL fine-tuning improves the capability of LLMs beyond what SFT alone achieves. However, the underlying mechanisms why RL fine-tuning is able to enhance the capability of various LLMs with distinct intrinsic characteristics remain underexplored. In this study, we draw inspiration from prior work on edge attribution patching (EAP) to investigate the internal differences of LLMs before and after RL fine-tuning. Our analysis across multiple model families and mathematical datasets shows two robust effects of online RL post-training: (i) an overall increase in average activation intensity, indicating that more internal pathways are engaged and their signals become stronger, and (ii) greater diversity in activation patterns, reflected by higher entropy and less concentrated edge distributions. These changes suggest that RL reshapes information flow to be both more redundant and more flexible, which may explain its advantage in mathematical generalization. Notably, models fine-tuned with Direct Preference Optimization (DPO) deviate from these trends, exhibiting substantially weaker or inconsistent internal changes compared to PPO- and GRPO-based training. Together, our findings provide a unified view of how RL fine-tuning systematically alters the internal circuitry of LLMs and highlight the methodological distinctions between online RL and preference-based approaches. Our code is open source at https://github.com/tsinghua-fib-lab/llm_rl_probing_analysis.
Pseudo-Nonlinear Data Augmentation: A Constrained Energy Minimization Viewpoint ICLR 2026
We propose a simple yet novel data augmentation method for general data modalities based on energy-based modeling and principles from information geometry. Unlike most existing learning-based data augmentation methods, which rely on learning latent representations with generative models, our proposed framework enables an intuitive construction of a geometrically aware latent space that represents the structure of the data itself, supporting efficient and explicit encoding and decoding procedures. We then present and discuss how to design latent spaces that will subsequently control the augmentation with the proposed algorithm. Empirical results demonstrate that our data augmentation method achieves competitive performance in downstream tasks compared to other baselines, while offering fine-grained controllability that is lacking in the existing literature.
comment: Accepted at the 14th International Conference on Learning Representations (ICLR 2026)
Endless Terminals: Scaling RL Environments for Terminal Agents
Environments are the bottleneck for self-improving agents. Current terminal benchmarks were built for evaluation, not training; reinforcement learning requires a scalable pipeline, not just a dataset. We introduce Endless Terminals, a fully autonomous pipeline that procedurally generates terminal-use tasks without human annotation. The pipeline has four stages: generating diverse task descriptions, building and validating containerized environments, producing completion tests, and filtering for solvability. From this pipeline we obtain 3255 tasks spanning file operations, log management, data processing, scripting, and database operations. We train agents using vanilla PPO with binary episode level rewards and a minimal interaction loop: no retrieval, multi-agent coordination, or specialized tools. Despite this simplicity, models trained on Endless Terminals show substantial gains: on our held-out dev set, Llama-3.2-3B improves from 4.0% to 18.2%, Qwen2.5-7B from 10.7% to 53.3%, and Qwen3-8B-openthinker-sft from 42.6% to 59.0%. These improvements transfer to human-curated benchmarks: models trained on Endless Terminals show substantial gains on held out human curated benchmarks: on TerminalBench 2.0, Llama-3.2-3B improves from 0.0% to 2.2%, Qwen2.5-7B from 2.2% to 3.4%, and Qwen3-8B-openthinker-sft from 1.1% to 6.7%, in each case outperforming alternative approaches including models with more complex agentic scaffolds. These results demonstrate that simple RL succeeds when environments scale.
Exploring Graph Learning Tasks with Pure LLMs: A Comprehensive Benchmark and Investigation
In recent years, large language models (LLMs) have emerged as promising candidates for graph tasks. Many studies leverage natural language to describe graphs and apply LLMs for reasoning, yet most focus narrowly on performance benchmarks without fully comparing LLMs to graph learning models or exploring their broader potential. In this work, we present a comprehensive study of LLMs on graph learning tasks, evaluating both off-the-shelf and instruction-tuned models across a variety of scenarios. Beyond accuracy, we discuss data leakage concerns and computational overhead, and assess their performance under few-shot/zero-shot settings, domain transfer, structural understanding, and robustness. Our findings show that LLMs, particularly those with instruction tuning, greatly outperform traditional graph learning models in few-shot settings, exhibit strong domain transferability, and demonstrate excellent generalization and robustness. Our study highlights the broader capabilities of LLMs in graph learning and provides a foundation for future research.
Rethinking Benchmarks for Differentially Private Image Classification
We revisit benchmarks for differentially private image classification. We suggest a comprehensive set of benchmarks, allowing researchers to evaluate techniques for differentially private machine learning in a variety of settings, including with and without additional data, in convex settings, and on a variety of qualitatively different datasets. We further test established techniques on these benchmarks in order to see which ideas remain effective in different settings. Finally, we create a publicly available leader board for the community to track progress in differentially private machine learning.
Streaming-dLLM: Accelerating Diffusion LLMs via Suffix Pruning and Dynamic Decoding
Diffusion Large Language Models (dLLMs) offer a compelling paradigm for natural language generation, leveraging parallel decoding and bidirectional attention to achieve superior global coherence compared to autoregressive models. While recent works have accelerated inference via KV cache reuse or heuristic decoding, they overlook the intrinsic inefficiencies within the block-wise diffusion process. Specifically, they suffer from spatial redundancy by modeling informative-sparse suffix regions uniformly and temporal inefficiency by applying fixed denoising schedules across all the decoding process. To address this, we propose Streaming-dLLM, a training-free framework that streamlines inference across both spatial and temporal dimensions. Spatially, we introduce attenuation guided suffix modeling to approximate the full context by pruning redundant mask tokens. Temporally, we employ a dynamic confidence aware strategy with an early exit mechanism, allowing the model to skip unnecessary iterations for converged tokens. Extensive experiments show that Streaming-dLLM achieves up to 68.2X speedup while maintaining generation quality, highlighting its effectiveness in diffusion decoding. The code is available at https://github.com/xiaoshideta/Streaming-dLLM.
comment: Tech report. Code is available at https://github.com/xiaoshideta/Streaming-dLLM
Reinforcement Learning to Discover a NorthEast Monsoon Index for Monthly Rainfall Prediction in Thailand
Climate prediction is a challenge due to the intricate spatiotemporal patterns within Earth systems. Global climate indices, such as the El Niño Southern Oscillation, are standard input features for long-term rainfall prediction. However, a significant gap persists regarding local-scale indices capable of improving predictive accuracy in specific regions of Thailand. This paper introduces a novel NorthEast monsoon climate index calculated from sea surface temperature to reflect the climatology of the boreal winter monsoon. To optimise the calculated areas used for this index, a Deep Q-Network reinforcement learning agent explores and selects the most effective rectangles based on their correlation with seasonal rainfall. Rainfall stations were classified into 12 distinct clusters to distinguish rainfall patterns between southern and upper Thailand. Experimental results show that incorporating the optimised index into Long Short-Term Memory models significantly improves long-term monthly rainfall prediction skill in most cluster areas. This approach effectively reduces the Root Mean Square Error for 12-month-ahead forecasts.
Creating a Causally Grounded Rating Method for Assessing the Robustness of AI Models for Time-Series Forecasting
AI models, including both time-series-specific and general-purpose Foundation Models (FMs), have demonstrated strong potential in time-series forecasting across sectors like finance. However, these models are highly sensitive to input perturbations, which can lead to prediction errors and undermine trust among stakeholders, including investors and analysts. To address this challenge, we propose a causally grounded rating framework to systematically evaluate model robustness by analyzing statistical and confounding biases under various noisy and erroneous input scenarios. Our framework is applied to a large-scale experimental setup involving stock price data from multiple industries and evaluates both uni-modal and multi-modal models, including Vision Transformer-based (ViT) models and FMs. We introduce six types of input perturbations and twelve data distributions to assess model performance. Results indicate that multi-modal and time-series-specific FMs demonstrate greater robustness and accuracy compared to general-purpose models. Further, to validate our framework's usability, we conduct a user study showcasing time-series models' prediction errors along with our computed ratings. The study confirms that our ratings reduce the difficulty for users in comparing the robustness of different models. Our findings can help stakeholders understand model behaviors in terms of robustness and accuracy for better decision-making even without access to the model weights and training data, i.e., black-box settings.
comment: arXiv admin note: text overlap with arXiv:2406.12908
Power-based Partial Attention: Bridging Linear-Complexity and Full Attention
It is widely accepted from transformer research that "attention is all we need", but the amount of attention required has never been systematically quantified. Is quadratic $O(L^2)$ attention necessary, or is there a sub-quadratic attention mechanism that can achieve comparable performance? To answer this question, we introduce power-based partial attention (PPA), an attention mechanism of order $O(L^{1+p})$, where $0 \leq p \leq 1$, such that $p=0$ corresponds to sliding window attention with linear complexity, and $p=1$ corresponds to full attention. With this attention construction, we can explore how transformer architecture performance varies as a function of the attention scaling behavior controlled by $p$. The overall trend from our experiments shows an S-curve-like behavior where the performance transitions from sliding-window (linear-complexity) attention to full attention over a narrow window of $p$ values, and plateaus as $p$ approaches $1$. In our experiments, we show that there exists $0
comment: 12 pages, 3 figures
Risk-Sensitive Agent Compositions ICLR 2026
From software development to robot control, modern agentic systems decompose complex objectives into a sequence of subtasks and choose a set of specialized AI agents to complete them. We formalize agentic workflows as directed acyclic graphs, called agent graphs, where edges represent AI agents and paths correspond to feasible compositions of agents. Real-world deployment requires selecting agent compositions that not only maximize task success but also minimize violations of safety, fairness, and privacy requirements which demands a careful analysis of the low-probability (tail) behaviors of compositions of agents. In this work, we consider risk minimization over the set of feasible agent compositions and seek to minimize the value-at-risk and the conditional value-at-risk of the loss distribution of the agent composition where the loss quantifies violations of these requirements. We introduce an efficient algorithm which traverses the agent graph and finds a near-optimal composition of agents. It uses a dynamic programming approach to approximate the value-at-risk of agent compositions by exploiting a union bound. Furthermore, we prove that the approximation is near-optimal asymptotically for a broad class of practical loss functions. We also show how our algorithm can be used to approximate the conditional value-at-risk as a byproduct. To evaluate our framework, we consider a suite of video game-like control benchmarks that require composing several agents trained with reinforcement learning and demonstrate our algorithm's effectiveness in approximating the value-at-risk and identifying the optimal agent composition.
comment: 19 pages, 6 figures. Accepted to ICLR 2026
FedAdamW: A Communication-Efficient Optimizer with Convergence and Generalization Guarantees for Federated Large Models
AdamW has become one of the most effective optimizers for training large-scale models. We have also observed its effectiveness in the context of federated learning (FL). However, directly applying AdamW in federated learning settings poses significant challenges: (1) due to data heterogeneity, AdamW often yields high variance in the second-moment estimate $\boldsymbol{v}$; (2) the local overfitting of AdamW may cause client drift; and (3) Reinitializing moment estimates ($\boldsymbol{v}$, $\boldsymbol{m}$) at each round slows down convergence. To address these challenges, we propose the first \underline{Fed}erated \underline{AdamW} algorithm, called \texttt{FedAdamW}, for training and fine-tuning various large models. \texttt{FedAdamW} aligns local updates with the global update using both a \textbf{local correction mechanism} and decoupled weight decay to mitigate local overfitting. \texttt{FedAdamW} efficiently aggregates the \texttt{mean} of the second-moment estimates to reduce their variance and reinitialize them. Theoretically, we prove that \texttt{FedAdamW} achieves a linear speedup convergence rate of $\mathcal{O}(\sqrt{(L Δσ_l^2)/(S K R ε^2)}+(L Δ)/R)$ without \textbf{heterogeneity assumption}, where $S$ is the number of participating clients per round, $K$ is the number of local iterations, and $R$ is the total number of communication rounds. We also employ PAC-Bayesian generalization analysis to explain the effectiveness of decoupled weight decay in local training. Empirically, we validate the effectiveness of \texttt{FedAdamW} on language and vision Transformer models. Compared to several baselines, \texttt{FedAdamW} significantly reduces communication rounds and improves test accuracy. The code is available in https://github.com/junkangLiu0/FedAdamW.
Convolutional Model Trees
A method for creating a forest of model trees to fit samples of a function defined on images is described in several steps: down-sampling the images, determining a tree's hyperplanes, applying convolutions to the hyperplanes to handle small distortions of training images, and creating forests of model trees to increase accuracy and achieve a smooth fit. A 1-to-1 correspondence among pixels of images, coefficients of hyperplanes and coefficients of leaf functions offers the possibility of dealing with larger distortions such as arbitrary rotations or changes of perspective. A theoretical method for smoothing forest outputs to produce a continuously differentiable approximation is described. Within that framework, a training procedure is proved to converge.
comment: 11 pages. 2 figures. This article was extensively revised. Drawings were added. Co-authors were added responsible for cited experimental results and their description: Hongyi Li and Jun Xu. Attention is on distilling a deep net into a model tree with convolutions done on hyperplane and leaf-function coefficients. Distortions of images are treated by similar changes to coefficient locations
PyCAT4: A Hierarchical Vision Transformer-based Framework for 3D Human Pose Estimation
Recently, a significant improvement in the accuracy of 3D human pose estimation has been achieved by combining convolutional neural networks (CNNs) with pyramid grid alignment feedback loops. Additionally, innovative breakthroughs have been made in the field of computer vision through the adoption of Transformer-based temporal analysis architectures. Given these advancements, this study aims to deeply optimize and improve the existing Pymaf network architecture. The main innovations of this paper include: (1) Introducing a Transformer feature extraction network layer based on self-attention mechanisms to enhance the capture of low-level features; (2) Enhancing the understanding and capture of temporal signals in video sequences through feature temporal fusion techniques; (3) Implementing spatial pyramid structures to achieve multi-scale feature fusion, effectively balancing feature representations differences across different scales. The new PyCAT4 model obtained in this study is validated through experiments on the COCO and 3DPW datasets. The results demonstrate that the proposed improvement strategies significantly enhance the network's detection capability in human pose estimation, further advancing the development of human pose estimation technology.
comment: 10 pages, 20 figures
Complex Logical Instruction Generation
Instruction following has catalyzed the recent era of Large Language Models (LLMs) and is the foundational skill underpinning more advanced capabilities such as reasoning and agentic behaviors. As tasks grow more challenging, the logic structures embedded in natural language instructions becomes increasingly intricate. However, how well LLMs perform on such logic-rich instructions remains under-explored. We propose LogicIFGen and LogicIFEval. LogicIFGen is a scalable, automated framework for generating verifiable instructions from code functions, which can naturally express rich logic such as conditions, loops, and function calls. We further curate a collection of complex code functions and use LogicIFGen to construct LogicIFEval, a benchmark comprising 426 verifiable logic-rich instructions. Our experiments demonstrate that current state-of-the-art LLMs still struggle to correctly follow the instructions in LogicIFEval. Most LLMs can only follow fewer than 60% of the instructions, revealing significant deficiencies in the instruction-following ability. Code and Benchmark: https://github.com/mianzhang/LogicIF
Have ASkotch: A Neat Solution for Large-scale Kernel Ridge Regression
Kernel ridge regression (KRR) is a fundamental computational tool, appearing in problems that range from computational chemistry to health analytics, with a particular interest due to its starring role in Gaussian process regression. However, full KRR solvers are challenging to scale to large datasets: both direct (i.e., Cholesky decomposition) and iterative methods (i.e., PCG) incur prohibitive computational and storage costs. The standard approach to scale KRR to large datasets chooses a set of inducing points and solves an approximate version of the problem, inducing points KRR. However, the resulting solution tends to have worse predictive performance than the full KRR solution. In this work, we introduce a new solver, ASkotch, for full KRR that provides better solutions faster than state-of-the-art solvers for full and inducing points KRR. ASkotch is a scalable, accelerated, iterative method for full KRR that provably obtains linear convergence. Under appropriate conditions, we show that ASkotch obtains condition-number-free linear convergence. This convergence analysis rests on the theory of ridge leverage scores and determinantal point processes. ASkotch outperforms state-of-the-art KRR solvers on a testbed of 23 large-scale KRR regression and classification tasks derived from a wide range of application domains, demonstrating the superiority of full KRR over inducing points KRR. Our work opens up the possibility of as-yet-unimagined applications of full KRR across a number of disciplines.
comment: 63 pages (including appendices), 17 figures, 6 tables
Traffic Engineering in Large-scale Networks with Generalizable Graph Neural Networks
Traffic Engineering (TE) in large-scale networks like cloud Wide Area Networks (WANs) and Low Earth Orbit (LEO) satellite constellations is a critical challenge. Although learning-based approaches have been proposed to address the scalability of traditional TE algorithms, their practical application is often hindered by a lack of generalization, high training overhead, and a failure to respect link capacities. This paper proposes TELGEN, a novel TE algorithm that learns to solve TE problems efficiently in large-scale network scenarios, while achieving superior generalizability across diverse network conditions. TELGEN is based on the novel idea of transforming the problem of "predicting the optimal TE solution" into "predicting the optimal TE algorithm", which enables TELGEN to learn and efficiently approximate the end-to-end solving process of classical optimal TE algorithms. The learned algorithm is agnostic to the exact underlying network topology or traffic patterns, and is able to very efficiently solve TE problems given arbitrary inputs and generalize well to unseen topologies and demands. We train and evaluate TELGEN with random and real-world topologies, with networks of up to 5000 nodes and 3.6x10^6 links in testing. TELGEN shows less than 3% optimality gap while ensuring feasibility in all testing scenarios, even when the test network has 2-20x more nodes than the largest training network. It also saves up to 84% TE solving time than traditional interior-point method, and reduces up to 79.6% training time per epoch than the state-of-the-art learning-based algorithm.
comment: Accepted for publication at IEEE Transactions on Networking
A Comprehensive Survey of Deep Learning for Multivariate Time Series Forecasting: A Channel Strategy Perspective
Multivariate Time Series Forecasting (MTSF) plays a crucial role across diverse fields, ranging from economic, energy, to traffic. In recent years, deep learning has demonstrated outstanding performance in MTSF tasks. In MTSF, modeling the correlations among different channels is critical, as leveraging information from other related channels can significantly improve the prediction accuracy of a specific channel. This study systematically reviews the channel modeling strategies for time series and proposes a taxonomy organized into three hierarchical levels: the strategy perspective, the mechanism perspective, and the characteristic perspective. On this basis, we provide a structured analysis of these methods and conduct an in-depth examination of the advantages and limitations of different channel strategies. Finally, we summarize and discuss some future research directions to provide useful research guidance. Moreover, we maintain an up-to-date Github repository (https://github.com/decisionintelligence/CS4TS) which includes all the papers discussed in the survey.
A Context-Aware Dual-Metric Framework for Confidence Estimation in Large Language Models
Accurate confidence estimation is essential for trustworthy large language models (LLMs) systems, as it empowers the user to determine when to trust outputs and enables reliable deployment in safety-critical applications. Current confidence estimation methods for LLMs neglect the relevance between responses and contextual information, a crucial factor in output quality evaluation, particularly in scenarios where background knowledge is provided. To bridge this gap, we propose CRUX (Context-aware entropy Reduction and Unified consistency eXamination), the first framework that integrates context faithfulness and consistency for confidence estimation via two novel metrics. First, contextual entropy reduction represents data uncertainty with the information gain through contrastive sampling with and without context. Second, unified consistency examination captures potential model uncertainty through the global consistency of the generated answers with and without context. Experiments across three benchmark datasets (CoQA, SQuAD, QuAC) and two domain-specific datasets (BioASQ, EduQG) demonstrate CRUX's effectiveness, achieving the highest AUROC than existing baselines.
Hermes: A Multi-Scale Spatial-Temporal Hypergraph Network for Stock Time Series Forecasting
Time series forecasting occurs in a range of financial applications providing essential decision-making support to investors, regulatory institutions, and analysts. Unlike multivariate time series from other domains, stock time series exhibit industry correlation. Exploiting this kind of correlation can improve forecasting accuracy. However, existing methods based on hypergraphs can only capture industry correlation relatively superficially. These methods face two key limitations: they do not fully consider inter-industry lead-lag interactions, and they do not model multi-scale information within and among industries. This study proposes the Hermes framework for stock time series forecasting that aims to improve the exploitation of industry correlation by addressing these limitations. The framework integrates moving aggregation and multi-scale fusion modules in a hypergraph network. Specifically, to more flexibly capture the lead-lag relationships among industries, Hermes proposes a hyperedge-based moving aggregation module. This module incorporates a sliding window and utilizes dynamic temporal aggregation operations to consider lead-lag dependencies among industries. Additionally, to effectively model multi-scale information, Hermes employs cross-scale, edge-to-edge message passing to integrate information from different scales while maintaining the consistency of each scale. Experimental results on multiple real-world stock datasets show that Hermes outperforms existing state-of-the-art methods.
Temporal Lifting as Latent-Space Regularization for Continuous-Time Flow Models in AI Systems
We present a latent-space formulation of adaptive temporal lifting for continuous-time dynamical systems. The method introduces a smooth monotone mapping $t \mapsto τ(t)$ that regularizes near-singular behavior of the underlying flow while preserving its conservation laws. In the lifted coordinate, trajectories such as those of the incompressible Navier-Stokes equations on the torus $\mathbb{T}^3$ become globally smooth. From the standpoint of machine-learning dynamics, temporal lifting acts as a continuous-time normalization operator that can stabilize physics-informed neural networks and other latent-flow architectures used in AI systems. The framework links analytic regularity theory with representation-learning methods for stiff or turbulent processes.
comment: 7 pages, 1 figure, 1 table, 1 algorithm
Theoretical Investigation on Inductive Bias of Isolation Forest
Isolation Forest (iForest) stands out as a widely-used unsupervised anomaly detector, primarily owing to its remarkable runtime efficiency and superior performance in large-scale tasks. Despite its widespread adoption, a theoretical foundation explaining iForest's success remains unclear. This paper focuses on the inductive bias of iForest, which theoretically elucidates under what circumstances and to what extent iForest works well. The key is to formulate the growth process of iForest, where the split dimensions and split values are randomly selected. We model the growth process of iForest as a random walk, enabling us to derive the expected depth function, which is the outcome of iForest, using transition probabilities. The case studies reveal key inductive biases: iForest exhibits lower sensitivity to central anomalies while demonstrating greater parameter adaptability compared to $k$-Nearest Neighbor. Our study provides a theoretical understanding of the effectiveness of iForest and establishes a foundation for further theoretical exploration.
An efficient, provably optimal algorithm for the 0-1 loss linear classification problem ICLR 2026
Algorithms for solving the linear classification problem have a long history, dating back at least to 1936 with linear discriminant analysis. For linearly separable data, many algorithms can obtain the exact solution to the corresponding 0-1 loss classification problem efficiently, but for data which is not linearly separable, it has been shown that this problem, in full generality, is NP-hard. Alternative approaches all involve approximations of some kind, such as the use of surrogates for the 0-1 loss (for example, the hinge or logistic loss), none of which can be guaranteed to solve the problem exactly. Finding an efficient, rigorously proven algorithm for obtaining an exact (i.e., globally optimal) solution to the 0-1 loss linear classification problem remains an open problem. By analyzing the combinatorial and incidence relations between hyperplanes and data points, we derive a rigorous construction algorithm, incremental cell enumeration (ICE), that can solve the 0-1 loss classification problem exactly in $O(N^{D+1})$. To the best of our knowledge, this is the first standalone algorithm-one that does not rely on general-purpose solvers-with rigorously proven guarantees for this problem. Moreover, we further generalize ICE to address the polynomial hypersurface classification problem in $O(N^{G+1})$ time, where $G$ is determined by both the data dimension and the polynomial hypersurface degree. The correctness of our algorithm is proved by the use of tools from the theory of hyperplane arrangements and oriented matroids. We demonstrate the effectiveness of our algorithm on real-world datasets, achieving optimal training accuracy for small-scale datasets and higher test accuracy on most datasets. Furthermore, our complexity analysis shows that the ICE algorithm offers superior computational efficiency compared with state-of-the-art branch-and-bound algorithm.
comment: Published in ICLR 2026, The Fourteenth International Conference on Learning Representations. 19 pages, 6 figures
BootSeer: Analyzing and Mitigating Initialization Bottlenecks in Large-Scale LLM Training
Large Language Models (LLMs) have become a cornerstone of modern AI, driving breakthroughs in natural language processing and expanding into multimodal jobs involving images, audio, and video. As with most computational software, it is important to distinguish between ordinary runtime performance and startup overhead. Prior research has focused on runtime performance: improving training efficiency and stability. This work focuses instead on the increasingly critical issue of startup overhead in training: the delay before training jobs begin execution. Startup overhead is particularly important in large, industrial-scale LLMs, where failures occur more frequently and multiple teams operate in iterative update-debug cycles. In one of our training clusters, more than 3.5% of GPU time is wasted due to startup overhead alone. In this work, we present the first in-depth characterization of LLM training startup overhead based on real production data. We analyze the components of startup cost, quantify its direct impact, and examine how it scales with job size. These insights motivate the design of Bootseer, a system-level optimization framework that addresses three primary startup bottlenecks: (a) container image loading, (b) runtime dependency installation, and (c) model checkpoint resumption. To mitigate these bottlenecks, Bootseer introduces three techniques: (a) hot block record-and-prefetch, (b) dependency snapshotting, and (c) striped HDFS-FUSE. Bootseer has been deployed in a production environment and evaluated on real LLM training workloads, demonstrating a 50% reduction in startup overhead.
comment: 18 pages, 14 figures
MobileSafetyBench: Evaluating Safety of Autonomous Agents in Mobile Device Control
Autonomous agents powered by large language models (LLMs) show promising potential in assistive tasks across various domains, including mobile device control. As these agents interact directly with personal information and device settings, ensuring their safe and reliable behavior is crucial to prevent undesirable outcomes. However, no benchmark exists for standardized evaluation of the safety of mobile device-control agents. In this work, we introduce MobileSafetyBench, a benchmark designed to evaluate the safety of device-control agents within a realistic mobile environment based on Android emulators. We develop a diverse set of tasks involving interactions with various mobile applications, including messaging and banking applications, challenging agents with managing risks encompassing misuse and negative side effects. These tasks include tests to evaluate the safety of agents in daily scenarios as well as their robustness against indirect prompt injection attacks. Our experiments demonstrate that baseline agents, based on state-of-the-art LLMs, often fail to effectively prevent harm while performing the tasks. To mitigate these safety concerns, we propose a prompting method that encourages agents to prioritize safety considerations. While this method shows promise in promoting safer behaviors, there is still considerable room for improvement to fully earn user trust. This highlights the urgent need for continued research to develop more robust safety mechanisms in mobile environments.
Doubly-Regressing Approach for Subgroup Fairness
Algorithmic fairness is a socially crucial topic in real-world applications of AI. Among many notions of fairness, subgroup fairness is widely studied when multiple sensitive attributes (e.g., gender, race, age) are present. However, as the number of sensitive attributes grows, the number of subgroups increases accordingly, creating heavy computational burdens and data sparsity problem (subgroups with too small sizes). In this paper, we develop a novel learning algorithm for subgroup fairness which resolves these issues by focusing on subgroups with sufficient sample sizes as well as marginal fairness (fairness for each sensitive attribute). To this end, we formalize a notion of subgroup-subset fairness and introduce a corresponding distributional fairness measure called the supremum Integral Probability Metric (supIPM). Building on this formulation, we propose the Doubly Regressing Adversarial learning for subgroup Fairness (DRAF) algorithm, which reduces a surrogate fairness gap for supIPM with much less computation than directly reducing supIPM. Theoretically, we prove that the proposed surrogate fairness gap is an upper bound of supIPM. Empirically, we show that the DRAF algorithm outperforms baseline methods in benchmark datasets, specifically when the number of sensitive attributes is large so that many subgroups are very small.
Hedonic Prices and Quality Adjusted Price Indices Powered by AI
We develop empirical models that efficiently process large amounts of unstructured product data (text, images, prices, quantities) to produce accurate hedonic price estimates and derived indices. To achieve this, we generate abstract product attributes (or ``features'') from descriptions and images using deep neural networks. These attributes are then used to estimate the hedonic price function. To demonstrate the effectiveness of this approach, we apply the models to Amazon's data for first-party apparel sales, and estimate hedonic prices. The resulting models have a very high out-of-sample predictive accuracy, with $R^2$ ranging from $80\%$ to $90\%$. Finally, we construct the AI-based hedonic Fisher price index, chained at the year-over-year frequency, and contrast it with the CPI and other electronic indices.
comment: Initially circulated as a 2021 CEMMAP Working Paper (CWP04/21)
Deeply Learned Robust Matrix Completion for Large-scale Low-rank Data Recovery
Robust matrix completion (RMC) is a widely used machine learning tool that simultaneously tackles two critical issues in low-rank data analysis: missing data entries and extreme outliers. This paper proposes a novel scalable and learnable non-convex approach, coined Learned Robust Matrix Completion (LRMC), for large-scale RMC problems. LRMC enjoys low computational complexity with linear convergence. Motivated by the proposed theorem, the free parameters of LRMC can be effectively learned via deep unfolding to achieve optimum performance. Furthermore, this paper proposes a flexible feedforward-recurrent-mixed neural network framework that extends deep unfolding from fix-number iterations to infinite iterations. The superior empirical performance of LRMC is verified with extensive experiments against state-of-the-art on synthetic datasets and real applications, including video background subtraction, ultrasound imaging, face modeling, and cloud removal from satellite imagery.
LSHBloom: Memory-efficient, Extreme-scale Document Deduplication
Contemporary large language model (LLM) training pipelines require the assembly of internet-scale databases full of text data from a variety of sources (e.g., web, academic, and publishers). Preprocessing these datasets via deduplication -- detecting and eliminating additional instances of the same content -- is a major focus for assembling and curating training datasets for LLMs. Unrestrained, duplicates in the training dataset increase training costs and lead to undesirable properties such as memorization in trained models or cheating on evaluation. Unfortunately, contemporary approaches to document-level deduplication are either unreliable at accurately identifying duplicate documents or extremely expensive in terms of both runtime and memory. We propose LSHBloom, an extension to MinhashLSH, which replaces the expensive LSHIndex with lightweight Bloom filters. LSHBloom demonstrates the same state-of-the-art deduplication performance as MinhashLSH, with only a marginal increase in false positives (near zero in our experiments), while boasting competitive runtime (12$\times$ faster than MinhashLSH on peS2o) and, crucially, using 18$\times$ less disk space than MinhashLSH (as measured on peS2o). Based on extrapolation, we show that this advantage in space and runtime remains even at the extreme scale of several billion documents. LSHBloom allows practitioners to access the deduplication quality of MinHashLSH at scales that are normally only tractable for less sophisticated, heuristic solutions. As a result, LSHBloom promises to enable scaling high-quality document deduplication to internet-scale text datasets.
Watermark-based Attribution of AI-Generated Content ICLR 2026
Several companies have deployed watermark-based detection to identify AI-generated content. However, attribution--the ability to trace back to the user of a generative AI (GenAI) service who created a given AI-generated content--remains largely unexplored despite its growing importance. In this work, we aim to bridge this gap by conducting the first systematic study on watermark-based, user-level attribution of AI-generated content. Our key idea is to assign a unique watermark to each user of the GenAI service and embed this watermark into the AI-generated content created by that user. Attribution is then performed by identifying the user whose watermark best matches the one extracted from the given content. This approach, however, faces a key challenge: How should watermarks be selected for users to maximize attribution performance? To address the challenge, we first theoretically derive lower bounds on detection and attribution performance through rigorous probabilistic analysis for any given set of user watermarks. Then, we select watermarks for users to maximize these lower bounds, thereby optimizing detection and attribution performance. Our theoretical and empirical results show that watermark-based attribution inherits both the accuracy and (non-)robustness properties of the underlying watermark. Specifically, attribution remains highly accurate when the watermarked AI-generated content is either not post-processed or subjected to common post-processing such as JPEG compression, as well as black-box adversarial post-processing with limited query budgets.
comment: Accepted by ICLR 2026
A Genealogy of Foundation Models in Remote Sensing
Foundation models have garnered increasing attention for representation learning in remote sensing. Many such foundation models adopt approaches that have demonstrated success in computer vision with minimal domain-specific modification. However, the development and application of foundation models in this field are still burgeoning, as there are a variety of competing approaches for how to most effectively leverage remotely sensed data. This paper examines these approaches, along with their roots in the computer vision field. This is done to characterize potential advantages and pitfalls, while outlining future directions to further improve remote sensing-specific foundation models. We discuss the quality of the learned representations and methods to alleviate the need for massive compute resources. We first examine single-sensor remote foundation models to introduce concepts and provide context, and then place emphasis on incorporating the multi-sensor aspect of Earth observations into foundation models. In particular, we explore the extent to which existing approaches leverage multiple sensors in training foundation models in relation to multi-modal foundation models. Finally, we identify opportunities for further harnessing the vast amounts of unlabeled, seasonal, and multi-sensor remote sensing observations.
comment: 28 pages, submitted to ACM SigSpatial, accepted as of January 12th, 2026. This is the second revision from the original 20-page manuscript
Cluster Aggregated GAN (CAG): A Cluster-Based Hybrid Model for Appliance Pattern Generation
Synthetic appliance data are essential for developing non-intrusive load monitoring algorithms and enabling privacy preserving energy research, yet the scarcity of labeled datasets remains a significant barrier. Recent GAN-based methods have demonstrated the feasibility of synthesizing load patterns, but most existing approaches treat all devices uniformly within a single model, neglecting the behavioral differences between intermittent and continuous appliances and resulting in unstable training and limited output fidelity. To address these limitations, we propose the Cluster Aggregated GAN framework, a hybrid generative approach that routes each appliance to a specialized branch based on its behavioral characteristics. For intermittent appliances, a clustering module groups similar activation patterns and allocates dedicated generators for each cluster, ensuring that both common and rare operational modes receive adequate modeling capacity. Continuous appliances follow a separate branch that employs an LSTM-based generator to capture gradual temporal evolution while maintaining training stability through sequence compression. Extensive experiments on the UVIC smart plug dataset demonstrate that the proposed framework consistently outperforms baseline methods across metrics measuring realism, diversity, and training stability, and that integrating clustering as an active generative component substantially improves both interpretability and scalability. These findings establish the proposed framework as an effective approach for synthetic load generation in non-intrusive load monitoring research.
comment: 18pages, 5Figues
Adaptive Test-Time Training for Predicting Need for Invasive Mechanical Ventilation in Multi-Center Cohorts ICLR 2026
Accurate prediction of the need for invasive mechanical ventilation (IMV) in intensive care units (ICUs) patients is crucial for timely interventions and resource allocation. However, variability in patient populations, clinical practices, and electronic health record (EHR) systems across institutions introduces domain shifts that degrade the generalization performance of predictive models during deployment. Test-Time Training (TTT) has emerged as a promising approach to mitigate such shifts by adapting models dynamically during inference without requiring labeled target-domain data. In this work, we introduce Adaptive Test-Time Training (AdaTTT), an enhanced TTT framework tailored for EHR-based IMV prediction in ICU settings. We begin by deriving information-theoretic bounds on the test-time prediction error and demonstrate that it is constrained by the uncertainty between the main and auxiliary tasks. To enhance their alignment, we introduce a self-supervised learning framework with pretext tasks: reconstruction and masked feature modeling optimized through a dynamic masking strategy that emphasizes features critical to the main task. Additionally, to improve robustness against domain shifts, we incorporate prototype learning and employ Partial Optimal Transport (POT) for flexible, partial feature alignment while maintaining clinically meaningful patient representations. Experiments across multi-center ICU cohorts demonstrate competitive classification performance on different test-time adaptation benchmarks.
comment: ICLR 2026
FNODE: Flow-Matching for data-driven simulation of constrained multibody systems
Data-driven modeling of constrained multibody dynamics remains challenged by (i) the training cost of Neural ODEs, which typically require backpropagation through an ODE solver, and (ii) error accumulation in rollout predictions. We introduce a Flow-Matching Neural ODE (FNODE) framework that learns the acceleration mapping directly from trajectory data by supervising accelerations rather than integrated states, turning training into a supervised regression problem and eliminating the ODE-adjoint/solver backpropagation bottleneck. Acceleration targets are obtained efficiently via numerical differentiation using a hybrid fast Fourier transform (FFT) and finite-difference (FD) scheme. Kinematic constraints are enforced through coordinate partitioning: FNODE learns accelerations only for the independent generalized coordinates, while the dependent coordinates are recovered by solving the position-level constraint equations. We evaluate FNODE on single and triple mass-spring-damper systems, a double pendulum, a slider crank with and without friction, a vehicle model, and a cart-pole, and compare against MBD-NODE, LSTM, and fully connected baselines. Across these benchmarks, FNODE achieves improved prediction accuracy and training/runtime efficiency, while maintaining constraint satisfaction through the partitioning procedure. Our code and scripts are released as open source to support reproducibility and follow-on research.
comment: 36 pages, 19 figures
Improving the Throughput of Diffusion-based Large Language Models via a Training-Free Confidence-Aware Calibration
We present CadLLM, a training-free method to accelerate the inference throughput of diffusion-based LLMs (dLLMs). We first investigate the dynamic nature of token unmasking confidence across blocks and steps. Based on this observation, we present a lightweight adaptive approach that controls the generation block size, step size, and threshold based on the average confidence of unmasked tokens. We further reduce softmax overhead by dynamically leveraging a subset of the vocabulary to regulate sampling breadth. CadLLM is a plug-and-play, model-agnostic method compatible with KV-cache-based dLLMs. Extensive experiments on four popular tasks demonstrate that CadLLM yields up to 2.28x throughput improvement over the state-of-the-art baseline with competitive accuracy.
comment: 9 pages, 3 figures. Preprint under review
Provably Efficient RL under Episode-Wise Safety in Constrained MDPs with Linear Function Approximation
We study the reinforcement learning (RL) problem in a constrained Markov decision process (CMDP), where an agent explores the environment to maximize the expected cumulative reward while satisfying a single constraint on the expected total utility value in every episode. While this problem is well understood in the tabular setting, theoretical results for function approximation remain scarce. This paper closes the gap by proposing an RL algorithm for linear CMDPs that achieves $\tilde{\mathcal{O}}(\sqrt{K})$ regret with an episode-wise zero-violation guarantee. Furthermore, our method is computationally efficient, scaling polynomially with problem-dependent parameters while remaining independent of the state space size. Our results significantly improve upon recent linear CMDP algorithms, which either violate the constraint or incur exponential computational costs.
A Thermodynamic Theory of Learning I: Irreversible Ensemble Transport and Epistemic Costs
Learning systems acquire structured internal representations from data, yet classical information-theoretic results state that deterministic transformations do not increase information. This raises a fundamental question: how can learning produce abstraction and insight without violating information-theoretic limits? We argue that learning is inherently an irreversible process when performed over finite time, and that the realization of epistemic structure necessarily incurs entropy production. To formalize this perspective, we model learning as a transport process in the space of probability distributions over model configurations and introduce an epistemic free-energy framework. Within this framework, we define the free-energy reduction as a bookkeeping quantity that records the total reduction of epistemic free energy along a learning trajectory. This formulation highlights that realizing such a reduction over finite time necessarily incurs irreversible entropy production. We then derive the Epistemic Speed Limit (ESL), a finite-time inequality that lower-bounds the minimal entropy production required by any learning process to realize a given distributional transformation. This bound depends only on the Wasserstein distance between initial and final ensemble distributions and is independent of the specific learning algorithm.
comment: 9 pages. Part I of a planned series entitled "A Thermodynamic Theory of Learning." Minor revisions throughout; appendix added. Clarified the treatment of the noise temperature T and refined the presentation of the Epistemic Speed Limit
Comparing Time-Series Analysis Approaches Utilized in Research Papers to Forecast COVID-19 Cases in Africa: A Literature Review
This literature review aimed to compare various time-series analysis approaches utilized in forecasting COVID-19 cases in Africa. The study involved a methodical search for English-language research papers published between January 2020 and July 2023, focusing specifically on papers that utilized time-series analysis approaches on COVID-19 datasets in Africa. A variety of databases including PubMed, Google Scholar, Scopus, and Web of Science were utilized for this process. The research papers underwent an evaluation process to extract relevant information regarding the implementation and performance of the time-series analysis models. The study highlighted the different methodologies employed, evaluating their effectiveness and limitations in forecasting the spread of the virus. The result of this review could contribute deeper insights into the field, and future research should consider these insights to improve time series analysis models and explore the integration of different approaches for enhanced public health decision-making.
comment: 11 pages
Spatiotemporal Semantic V2X Framework for Cooperative Collision Prediction
Intelligent Transportation Systems (ITS) demand real-time collision prediction to ensure road safety and reduce accident severity. Conventional approaches rely on transmitting raw video or high-dimensional sensory data from roadside units (RSUs) to vehicles, which is impractical under vehicular communication bandwidth and latency constraints. In this work, we propose a semantic V2X framework in which RSU-mounted cameras generate spatiotemporal semantic embeddings of future frames using the Video Joint Embedding Predictive Architecture (V-JEPA). To evaluate the system, we construct a digital twin of an urban traffic environment enabling the generation of d verse traffic scenarios with both safe and collision events. These embeddings of the future frame, extracted from V-JEPA, capture task-relevant traffic dynamics and are transmitted via V2X links to vehicles, where a lightweight attentive probe and classifier decode them to predict imminent collisions. By transmitting only semantic embeddings instead of raw frames, the proposed system significantly reduces communication overhead while maintaining predictive accuracy. Experimental results demonstrate that the framework with an appropriate processing method achieves a 10% F1-score improvement for collision prediction while reducing transmission requirements by four orders of magnitude compared to raw video. This validates the potential of semantic V2X communication to enable cooperative, real-time collision prediction in ITS.
comment: 6 pages 5 figures, accepted to IEEE ICC 2026
EuleroDec: A Complex-Valued RVQ-VAE for Efficient and Robust Audio Coding
Audio codecs power discrete music generative modelling, music streaming and immersive media by shrinking PCM audio to bandwidth-friendly bit-rates. Recent works have gravitated towards processing in the spectral domain; however, spectrogram-domains typically struggle with phase modeling which is naturally complex-valued. Most frequency-domain neural codecs either disregard phase information or encode it as two separate real-valued channels, limiting spatial fidelity. This entails the need to introduce adversarial discriminators at the expense of convergence speed and training stability to compensate for the inadequate representation power of the audio signal. In this work we introduce an end-to-end complex-valued RVQ-VAE audio codec that preserves magnitude-phase coupling across the entire analysis-quantization-synthesis pipeline and removes adversarial discriminators and diffusion post-filters. Without GANs or diffusion we match or surpass much longer-trained baselines in-domain and reach SOTA out-of-domain performance. Compared to standard baselines that train for hundreds of thousands of steps, our model reducing training budget by an order of magnitude is markedly more compute-efficient while preserving high perceptual quality.
comment: Accepted at ICASSP 2026
HyResPINNs: A Hybrid Residual Physics-Informed Neural Network Architecture Designed to Balance Expressiveness and Trainability
Physics-informed neural networks (PINNs) have emerged as a powerful approach for solving partial differential equations (PDEs) by training neural networks with loss functions that incorporate physical constraints. In this work, we introduce HyResPINNs, a two-level convex-gated architecture designed to maximize approximation expressiveness for a fixed number of degrees of freedom (DoF). The first level involves a trainable, per-block combination of smooth basis functions with trainable sparsity, and deep neural networks; the second involves the ability to gate entire blocks (much like in ResNets or Highway Nets), allowing for expressivity along the depth dimension of the architecture. Our empirical evaluation on a diverse set of challenging PDE problems demonstrates that HyResPINNs consistently achieve superior accuracy to baseline methods while remaining competitive relative to training times. These results highlight the potential of HyResPINNs to combine desirable features from traditional scientific computing methods and modern machine learning, paving the way for more robust and expressive approaches to physics-informed modeling.
comment: 44 pages
Geometric Scaling of Bayesian Inference in LLMs
Recent work has shown that small transformers trained in controlled "wind-tunnel'' settings can implement exact Bayesian inference, and that their training dynamics produce a geometric substrate -- low-dimensional value manifolds and progressively orthogonal keys -- that encodes posterior structure. We investigate whether this geometric signature persists in production-grade language models. Across Pythia, Phi-2, Llama-3, and Mistral families, we find that last-layer value representations organize along a single dominant axis whose position strongly correlates with predictive entropy, and that domain-restricted prompts collapse this structure into the same low-dimensional manifolds observed in synthetic settings. To probe the role of this geometry, we perform targeted interventions on the entropy-aligned axis of Pythia-410M during in-context learning. Removing or perturbing this axis selectively disrupts the local uncertainty geometry, whereas matched random-axis interventions leave it intact. However, these single-layer manipulations do not produce proportionally specific degradation in Bayesian-like behavior, indicating that the geometry is a privileged readout of uncertainty rather than a singular computational bottleneck. Taken together, our results show that modern language models preserve the geometric substrate that enables Bayesian inference in wind tunnels, and organize their approximate Bayesian updates along this substrate.
comment: Added domain restriction confound caveat. Threshold justification anchored to wind-tunnel baselines. Strengthened content-based routing connection to Mamba. Improved trilogy framing in conclusion (which/how/that structure)
Trend-Adjusted Time Series Models with an Application to Gold Price Forecasting
Time series data play a critical role in various fields, including finance, healthcare, marketing, and engineering. A wide range of techniques (from classical statistical models to neural network-based approaches such as Long Short-Term Memory (LSTM)) have been employed to address time series forecasting challenges. In this paper, we reframe time series forecasting as a two-part task: (1) predicting the trend (directional movement) of the time series at the next time step, and (2) forecasting the quantitative value at the next time step. The trend can be predicted using a binary classifier, while quantitative values can be forecasted using models such as LSTM and Bidirectional Long Short-Term Memory (Bi-LSTM). Building on this reframing, we propose the Trend-Adjusted Time Series (TATS) model, which adjusts the forecasted values based on the predicted trend provided by the binary classifier. We validate the proposed approach through both theoretical analysis and empirical evaluation. The TATS model is applied to a volatile financial time series (the daily gold price) with the objective of forecasting the next days price. Experimental results demonstrate that TATS consistently outperforms standard LSTM and Bi-LSTM models by achieving significantly lower forecasting error. In addition, our results indicate that commonly used metrics such as MSE and MAE are insufficient for fully assessing time series model performance. Therefore, we also incorporate trend detection accuracy, which measures how effectively a model captures trends in a time series.
The Bayesian Geometry of Transformer Attention
Transformers often appear to perform Bayesian reasoning in context, but verifying this rigorously has been impossible: natural data lack analytic posteriors, and large models conflate reasoning with memorization. We address this by constructing \emph{Bayesian wind tunnels} -- controlled environments where the true posterior is known in closed form and memorization is provably impossible. In these settings, small transformers reproduce Bayesian posteriors with $10^{-3}$-$10^{-4}$ bit accuracy, while capacity-matched MLPs fail by orders of magnitude, establishing a clear architectural separation. Across two tasks -- bijection elimination and Hidden Markov Model (HMM) state tracking -- we find that transformers implement Bayesian inference through a consistent geometric mechanism: residual streams serve as the belief substrate, feed-forward networks perform the posterior update, and attention provides content-addressable routing. Geometric diagnostics reveal orthogonal key bases, progressive query-key alignment, and a low-dimensional value manifold parameterized by posterior entropy. During training this manifold unfurls while attention patterns remain stable, a \emph{frame-precision dissociation} predicted by recent gradient analyses. Taken together, these results demonstrate that hierarchical attention realizes Bayesian inference by geometric design, explaining both the necessity of attention and the failure of flat architectures. Bayesian wind tunnels provide a foundation for mechanistically connecting small, verifiable systems to reasoning phenomena observed in large language models.
comment: Added inference primitives taxonomy (accumulation, transport, binding). New associative recall task. Complete Mamba/LSTM comparison with multi-seed results. KL/TVD verification table. Mamba 5-cluster geometry analysis. Layer/head ablation figures. Content-based routing as unifying principle
Lipschitz-Regularized Critics Lead to Policy Robustness Against Transition Dynamics Uncertainty
Uncertainties in transition dynamics pose a critical challenge in reinforcement learning (RL), often resulting in performance degradation of trained policies when deployed on hardware. Many robust RL approaches follow two strategies: enforcing smoothness in actor or actor-critic modules with Lipschitz regularization, or learning robust Bellman operators. However, the first strategy does not investigate the impact of critic-only Lipschitz regularization on policy robustness, while the second lacks comprehensive validation in real-world scenarios. Building on this gap and prior work, we propose PPO-PGDLC, an algorithm based on Proximal Policy Optimization (PPO) that integrates Projected Gradient Descent (PGD) with a Lipschitz-regularized critic (LC). The PGD component calculates the adversarial state within an uncertainty set to approximate the robust Bellman operator, and the Lipschitz-regularized critic further improves the smoothness of learned policies. Experimental results on two classic control tasks and one real-world robotic locomotion task demonstrates that, compared to several baseline algorithms, PPO-PGDLC achieves better performance and predicts smoother actions under environmental perturbations.
comment: 8 pages, 4 figures
Gradient Dynamics of Attention: How Cross-Entropy Sculpts Bayesian Manifolds
Transformers empirically perform precise probabilistic reasoning in carefully constructed ``Bayesian wind tunnels'' and in large-scale language models, yet the mechanisms by which gradient-based learning creates the required internal geometry remain opaque. We provide a complete first-order analysis of how cross-entropy training reshapes attention scores and value vectors in a transformer attention head. Our core result is an \emph{advantage-based routing law} for attention scores, \[ \frac{\partial L}{\partial s_{ij}} = α_{ij}\bigl(b_{ij}-\mathbb{E}_{α_i}[b]\bigr), \qquad b_{ij} := u_i^\top v_j, \] coupled with a \emph{responsibility-weighted update} for values, \[ Δv_j = -η\sum_i α_{ij} u_i, \] where $u_i$ is the upstream gradient at position $i$ and $α_{ij}$ are attention weights. These equations induce a positive feedback loop in which routing and content specialize together: queries route more strongly to values that are above-average for their error signal, and those values are pulled toward the queries that use them. We show that this coupled specialization behaves like a two-timescale EM procedure: attention weights implement an E-step (soft responsibilities), while values implement an M-step (responsibility-weighted prototype updates), with queries and keys adjusting the hypothesis frame. Through controlled simulations, including a sticky Markov-chain task where we compare a closed-form EM-style update to standard SGD, we demonstrate that the same gradient dynamics that minimize cross-entropy also sculpt the low-dimensional manifolds identified in our companion work as implementing Bayesian inference. This yields a unified picture in which optimization (gradient flow) gives rise to geometry (Bayesian manifolds), which in turn supports function (in-context probabilistic reasoning).
comment: Added abstract framework for content-based value routing with formal definition. LSTM counterexample explaining why gates is not equal to content-based routing. Multi-seed EM vs SGD experiments. Lemma 2 framing connecting to Paper I's primitives
Improving and Accelerating Offline RL in Large Discrete Action Spaces with Structured Policy Initialization
Reinforcement learning in discrete combinatorial action spaces requires searching over exponentially many joint actions to simultaneously select multiple sub-actions that form coherent combinations. Existing approaches either simplify policy learning by assuming independence across sub-actions, which often yields incoherent or invalid actions, or attempt to learn action structure and control jointly, which is slow and unstable. We introduce Structured Policy Initialization (SPIN), a two-stage framework that first pre-trains an Action Structure Model (ASM) to capture the manifold of valid actions, then freezes this representation and trains lightweight policy heads for control. On challenging discrete DM Control benchmarks, SPIN improves average return by up to 39% over the state of the art while reducing time to convergence by up to 12.8$\times$.
Learning Linearity in Audio Consistency Autoencoders via Implicit Regularization
Audio autoencoders learn useful, compressed audio representations, but their non-linear latent spaces prevent intuitive algebraic manipulation such as mixing or scaling. We introduce a simple training methodology to induce linearity in a high-compression Consistency Autoencoder (CAE) by using data augmentation, thereby inducing homogeneity (equivariance to scalar gain) and additivity (the decoder preserves addition) without altering the model's architecture or loss function. When trained with our method, the CAE exhibits linear behavior in both the encoder and decoder while preserving reconstruction fidelity. We test the practical utility of our learned space on music source composition and separation via simple latent arithmetic. This work presents a straightforward technique for constructing structured latent spaces, enabling more intuitive and efficient audio processing.
NoWag: A Unified Framework for Shape Preserving Compression of Large Language Models
Large language models (LLMs) exhibit remarkable performance across various natural language processing tasks but suffer from immense computational and memory demands, limiting their deployment in resource-constrained environments. To address this challenge, we propose NoWag (Normalized Weight and Activation Guided Compression), a unified framework for one-shot shape preserving compression algorithms. We apply NoWag to compress Llama-2 (7B, 13B, 70B) and Llama-3 (8B, 70B) models using two popular shape-preserving techniques: vector quantization (NoWag-VQ) and unstructured/semi-structured pruning (NoWag-P). Our results show that NoWag-VQ significantly outperforms state-of-the-art one-shot vector quantization methods, while NoWag-P performs competitively against leading pruning techniques. These findings highlight underlying commonalities between these compression paradigms and suggest promising directions for future research. Our code is available at https://github.com/LawrenceRLiu/NoWag
Feature-Space Adversarial Robustness Certification for Multimodal Large Language Models
Multimodal large language models (MLLMs) exhibit strong capabilities across diverse applications, yet remain vulnerable to adversarial perturbations that distort their feature representations and induce erroneous predictions. To address this vulnerability, we propose Feature-space Smoothing (FS), a general framework that provides certified robustness guarantees at the feature representation level of MLLMs. We theoretically prove that FS converts a given feature extractor into a smoothed variant that is guaranteed a certified lower bound on the cosine similarity between clean and adversarial features under $\ell_2$-bounded perturbations. Moreover, we establish that the value of this Feature Cosine Similarity Bound (FCSB) is determined by the intrinsic Gaussian robustness score of the given encoder. Building on this insight, we introduce the Gaussian Smoothness Booster (GSB), a plug-and-play module that enhances the Gaussian robustness score of pretrained MLLMs, thereby strengthening the robustness guaranteed by FS, without requiring additional MLLM retraining. Extensive experiments demonstrate that applying the FS to various MLLMs yields strong certified feature-space robustness and consistently leads to robust task-oriented performance across diverse applications.
comment: Under review
Graphics 11
Graphical X Splatting (GraphiXS): A Graphical Model for 4D Gaussian Splatting under Uncertainty
We propose a new framework to systematically incorporate data uncertainty in Gaussian Splatting. Being the new paradigm of neural rendering, Gaussian Splatting has been investigated in many applications, with the main effort in extending its representation, improving its optimization process, and accelerating its speed. However, one orthogonal, much needed, but under-explored area is data uncertainty. In standard 4D Gaussian Splatting, data uncertainty can manifest as view sparsity, missing frames, camera asynchronization, etc. So far, there has been little research to holistically incorporating various types of data uncertainty under a single framework. To this end, we propose Graphical X Splatting, or GraphiXS, a new probabilistic framework that considers multiple types of data uncertainty, aiming for a fundamental augmentation of the current 4D Gaussian Splatting paradigm into a probabilistic setting. GraphiXS is general and can be instantiated with a range of primitives, e.g. Gaussians, Student's-t. Furthermore, GraphiXS can be used to `upgrade' existing methods to accommodate data uncertainty. Through exhaustive evaluation and comparison, we demonstrate that GraphiXS can systematically model various uncertainties in data, outperform existing methods in many settings where data are missing or polluted in space and time, and therefore is a major generalization of the current 4D Gaussian Splatting research.
Mocap Anywhere: Towards Pairwise-Distance based Motion Capture in the Wild (for the Wild)
We introduce a novel motion capture system that reconstructs full-body 3D motion using only sparse pairwise distance (PWD) measurements from body-mounted(UWB) sensors. Using time-of-flight ranging between wireless nodes, our method eliminates the need for external cameras, enabling robust operation in uncontrolled and outdoor environments. Unlike traditional optical or inertial systems, our approach is shape-invariant and resilient to environmental constraints such as lighting and magnetic interference. At the core of our system is Wild-Poser (WiP for short), a compact, real-time Transformer-based architecture that directly predicts 3D joint positions from noisy or corrupted PWD measurements, which can later be used for joint rotation reconstruction via learned methods. WiP generalizes across subjects of varying morphologies, including non-human species, without requiring individual body measurements or shape fitting. Operating in real time, WiP achieves low joint position error and demonstrates accurate 3D motion reconstruction for both human and animal subjects in-the-wild. Our empirical analysis highlights its potential for scalable, low-cost, and general purpose motion capture in real-world settings.
comment: 14 pages, 15 figures
It's Not Just a Phase: Creating Phase-Aligned Peripheral Metamers
Novel display technologies can deliver high-quality images across a wide field of view, creating immersive experiences. While rendering for such devices is expensive, most of the content falls into peripheral vision, where human perception differs from that in the fovea. Consequently, it is critical to understand and leverage the limitations of visual perception to enable efficient rendering. A standard approach is to exploit the reduced sensitivity to spatial details in the periphery by reducing rendering resolution, so-called foveated rendering. While this strategy avoids rendering part of the content altogether, an alternative promising direction is to replace accurate and expensive rendering with inexpensive synthesis of content that is perceptually indistinguishable from the ground-truth image. In this paper, we propose such a method for the efficient generation of an image signal that substitutes the rendering of high-frequency details. The method is grounded in findings from image statistics, which show that preserving appropriate local statistics is critical for perceived image quality. Based on this insight, we extrapolate several local image statistics from foveated content into higher spatial frequency ranges that are attenuated or omitted in the rendering process. This rich set of statistics is later used to synthesize a signal that is added to the initial rendering, boosting its perceived quality. We focus on phase information, demonstrating the importance of its alignment across space and frequencies. We calibrate and compare our method with state-of-the-art strategies, showing a significant reduction in the content that must be accurately rendered at a relatively small extra cost for synthesizing the additional signal.
comment: 10 pages including references and figure only pages; 2 pages Supplementary Material
ClipGS-VR: Immersive and Interactive Cinematic Visualization of Volumetric Medical Data in Mobile Virtual Reality
High-fidelity cinematic medical visualization on mobile virtual reality (VR) remains challenging. Although ClipGS enables cross-sectional exploration via 3D Gaussian Splatting, it lacks arbitrary-angle slicing on consumer-grade VR headsets. To achieve real-time interactive performance, we introduce ClipGS-VR and restructure ClipGS's neural inference into a consolidated dataset, integrating high-fidelity layers from multiple pre-computed slicing states into a unified rendering structure. Our framework further supports arbitrary-angle slicing via gradient-based opacity modulation for smooth, visually coherent rendering. Evaluations confirm our approach maintains visual fidelity comparable to offline results while offering superior usability and interaction efficiency.
comment: IEEE VR 2026 Posters
A Collaborative Extended Reality Prototype for 3D Surgical Planning and Visualization
We present a collaborative extended reality (XR) prototype for 3D surgical planning and visualization. Our system consists of three key modules: XR-based immersive surgical planning, cloud-based data management, and coordinated stereoscopic 3D displays for interactive visualization. We describe the overall workflow, core functionalities, implementations and setups. By conducting user studies on a liver resection surgical planning case, we demonstrate the effectiveness of our prototype and provide practical insights to inspire future advances in medical XR collaboration.
comment: IEEE VR 2026 Posters
Words have Weight: Comparing the use of pressure and weight as a metaphor in a User Interface in Virtual Reality
This work investigates how weight and pressure can function as haptic metaphors to support user interface notifications in Virtual Reality (VR). While prior research has explored ungrounded weight simulation and pneumatic feedback, their combined role in conveying information through UI elements remains underexplored. We developed a wearable haptic device that transfers liquid and air into flexible containers mounted on the back of the user's hand, allowing us to independently manipulate weight and pressure. Through an initial evaluation using three conditions-no feedback, weight only, and weight combined with pressure-we examined how these signals affect perceived heaviness, coherence with visual cues, and the perceived urgency of notifications. Our results validate that pressure amplifies the perception of weight, but this increased heaviness does not translate into higher perceived urgency. These findings suggest that while pressure___enhanced weight can enrich haptic rendering of UI elements in VR, its contribution to communicating urgency may require further investigation, alternative pressure profiles, or different types of notifications.
UniMGS: Unifying Mesh and 3D Gaussian Splatting with Single-Pass Rasterization and Proxy-Based Deformation
Joint rendering and deformation of mesh and 3D Gaussian Splatting (3DGS) have significant value as both representa tions offer complementary advantages for graphics applica tions. However, due to differences in representation and ren dering pipelines, existing studies render meshes and 3DGS separately, making it difficult to accurately handle occlusions and transparency. Moreover, the deformed 3DGS still suffers from visual artifacts due to the sensitivity to the topology quality of the proxy mesh. These issues pose serious obsta cles to the joint use of 3DGS and meshes, making it diffi cult to adapt 3DGS to conventional mesh-oriented graphics pipelines. We propose UniMGS, the first unified framework for rasterizing mesh and 3DGS in a single-pass anti-aliased manner, with a novel binding strategy for 3DGS deformation based on proxy mesh. Our key insight is to blend the col ors of both triangle and Gaussian fragments by anti-aliased α-blending in a single pass, achieving visually coherent re sults with precise handling of occlusion and transparency. To improve the visual appearance of the deformed 3DGS, our Gaussian-centric binding strategy employs a proxy mesh and spatially associates Gaussians with the mesh faces, signifi cantly reducing rendering artifacts. With these two compo nents, UniMGS enables the visualization and manipulation of 3D objects represented by mesh or 3DGS within a unified framework, opening up new possibilities in embodied AI, vir tual reality, and gaming. We will release our source code to facilitate future research.
comment: conference
MV-S2V: Multi-View Subject-Consistent Video Generation
Existing Subject-to-Video Generation (S2V) methods have achieved high-fidelity and subject-consistent video generation, yet remain constrained to single-view subject references. This limitation renders the S2V task reducible to an S2I + I2V pipeline, failing to exploit the full potential of video subject control. In this work, we propose and address the challenging Multi-View S2V (MV-S2V) task, which synthesizes videos from multiple reference views to enforce 3D-level subject consistency. Regarding the scarcity of training data, we first develop a synthetic data curation pipeline to generate highly customized synthetic data, complemented by a small-scale real-world captured dataset to boost the training of MV-S2V. Another key issue lies in the potential confusion between cross-subject and cross-view references in conditional generation. To overcome this, we further introduce Temporally Shifted RoPE (TS-RoPE) to distinguish between different subjects and distinct views of the same subject in reference conditioning. Our framework achieves superior 3D subject consistency w.r.t. multi-view reference images and high-quality visual outputs, establishing a new meaningful direction for subject-driven video generation. Our project page is available at: https://szy-young.github.io/mv-s2v
comment: 13 pages, 9 figures
Efficient B-Spline Finite Elements for Cloth Simulation
We present an efficient B-spline finite element method (FEM) for cloth simulation. While higher-order FEM has long promised higher accuracy, its adoption in cloth simulators has been limited by its larger computational costs while generating results with similar visual quality. Our contribution is a full algorithmic pipeline that makes cloth simulation using quadratic B-spline surfaces faster than standard linear FEM in practice while consistently improving accuracy and visual fidelity. Using quadratic B-spline basis functions, we obtain a globally $C^1$-continuous displacement field that supports consistent discretization of both membrane and bending energies, effectively reducing locking artifacts and mesh dependence common to linear elements. To close the performance gap, we introduce a reduced integration scheme that separately optimizes quadrature rules for membrane and bending energies, an accelerated Hessian assembly procedure tailored to the spline structure, and an optimized linear solver based on partial factorization. Together, these optimizations make high-order, smooth cloth simulation competitive at scale, yielding an average $2\times$ speedup over highly-optimized linear FEM in our tests. Extensive experiments demonstrate improved accuracy, wrinkle detail, and robustness, including contact-rich scenarios, relative to linear FEM and recent higher-order approaches. Our method enables realistic wrinkling dynamics across a wide range of material parameters and supports practical garment animation, providing a new promising spatial discretization for high-quality cloth simulation.
comment: 24 pages, 27 figures
Supervising 3D Talking Head Avatars with Analysis-by-Audio-Synthesis
In order to be widely applicable, speech-driven 3D head avatars must articulate their lips in accordance with speech, while also conveying the appropriate emotions with dynamically changing facial expressions. The key problem is that deterministic models produce high-quality lip-sync but without rich expressions, whereas stochastic models generate diverse expressions but with lower lip-sync quality. To get the best of both, we seek a stochastic model with accurate lip-sync. To that end, we develop a new approach based on the following observation: if a method generates realistic 3D lip motions, it should be possible to infer the spoken audio from the lip motion. The inferred speech should match the original input audio, and erroneous predictions create a novel supervision signal for training 3D talking head avatars with accurate lip-sync. To demonstrate this effect, we propose THUNDER (Talking Heads Under Neural Differentiable Elocution Reconstruction), a 3D talking head avatar framework that introduces a novel supervision mechanism via differentiable sound production. First, we train a novel mesh-to-speech model that regresses audio from facial animation. Then, we incorporate this model into a diffusion-based talking avatar framework. During training, the mesh-to-speech model takes the generated animation and produces a sound that is compared to the input speech, creating a differentiable analysis-by-audio-synthesis supervision loop. Our extensive qualitative and quantitative experiments demonstrate that THUNDER significantly improves the quality of the lip-sync of talking head avatars while still allowing for generation of diverse, high-quality, expressive facial animations. The code and models will be available at https://thunder.is.tue.mpg.de/
Universal Beta Splatting ICLR 2026
We introduce Universal Beta Splatting (UBS), a unified framework that generalizes 3D Gaussian Splatting to N-dimensional anisotropic Beta kernels for explicit radiance field rendering. Unlike fixed Gaussian primitives, Beta kernels enable controllable dependency modeling across spatial, angular, and temporal dimensions within a single representation. Our unified approach captures complex light transport effects, handles anisotropic view-dependent appearance, and models scene dynamics without requiring auxiliary networks or specific color encodings. UBS maintains backward compatibility by approximating to Gaussian Splatting as a special case, guaranteeing plug-in usability and lower performance bounds. The learned Beta parameters naturally decompose scene properties into interpretable without explicit supervision: spatial (surface vs. texture), angular (diffuse vs. specular), and temporal (static vs. dynamic). Our CUDA-accelerated implementation achieves real-time rendering while consistently outperforming existing methods across static, view-dependent, and dynamic benchmarks, establishing Beta kernels as a scalable universal primitive for radiance field rendering. Our project website is available at https://rongliu-leo.github.io/universal-beta-splatting/.
comment: ICLR 2026
Video World Models 4
NuiWorld: Exploring a Scalable Framework for End-to-End Controllable World Generation
World generation is a fundamental capability for applications like video games, simulation, and robotics. However, existing approaches face three main obstacles: controllability, scalability, and efficiency. End-to-end scene generation models have been limited by data scarcity. While object-centric generation approaches rely on fixed resolution representations, degrading fidelity for larger scenes. Training-free approaches, while flexible, are often slow and computationally expensive at inference time. We present NuiWorld, a framework that attempts to address these challenges. To overcome data scarcity, we propose a generative bootstrapping strategy that starts from a few input images. Leveraging recent 3D reconstruction and expandable scene generation techniques, we synthesize scenes of varying sizes and layouts, producing enough data to train an end-to-end model. Furthermore, our framework enables controllability through pseudo sketch labels, and demonstrates a degree of generalization to previously unseen sketches. Our approach represents scenes as a collection of variable scene chunks, which are compressed into a flattened vector-set representation. This significantly reduces the token length for large scenes, enabling consistent geometric fidelity across scenes sizes while improving training and inference efficiency.
DisCoPatch: Taming Adversarially-driven Batch Statistics for Improved Out-of-Distribution Detection ICCV 2025
Out-of-distribution (OOD) detection holds significant importance across many applications. While semantic and domain-shift OOD problems are well-studied, this work focuses on covariate shifts - subtle variations in the data distribution that can degrade machine learning performance. We hypothesize that detecting these subtle shifts can improve our understanding of in-distribution boundaries, ultimately improving OOD detection. In adversarial discriminators trained with Batch Normalization (BN), real and adversarial samples form distinct domains with unique batch statistics - a property we exploit for OOD detection. We introduce DisCoPatch, an unsupervised Adversarial Variational Autoencoder (VAE) framework that harnesses this mechanism. During inference, batches consist of patches from the same image, ensuring a consistent data distribution that allows the model to rely on batch statistics. DisCoPatch uses the VAE's suboptimal outputs (generated and reconstructed) as negative samples to train the discriminator, thereby improving its ability to delineate the boundary between in-distribution samples and covariate shifts. By tightening this boundary, DisCoPatch achieves state-of-the-art results in public OOD detection benchmarks. The proposed model not only excels in detecting covariate shifts, achieving 95.5% AUROC on ImageNet-1K(-C) but also outperforms all prior methods on public Near-OOD (95.0%) benchmarks. With a compact model size of 25MB, it achieves high OOD detection performance at notably lower latency than existing methods, making it an efficient and practical solution for real-world OOD detection applications. The code is publicly available.
comment: ICCV 2025
Adaptive Multimodal Person Recognition: A Robust Framework for Handling Missing Modalities
Person identification systems often rely on audio, visual, or behavioral cues, but real-world conditions frequently present with missing or degraded modalities. To address this challenge, we propose a multimodal person identification framework incorporating upper-body motion, face, and voice. Experimental results demonstrate that body motion outperforms traditional modalities such as face and voice in within-session evaluations, while serving as a complementary cue that enhances performance in multi-session scenarios. Our model employs a unified hybrid fusion strategy, fusing both feature-level and score-level information to maximize representational richness and decision accuracy. Specifically, it leverages multi-task learning to process modalities independently, followed by cross-attention and gated fusion mechanisms to exploit both unimodal information and cross-modal interactions. Finally, a confidence-weighted strategy and mistake-correction mechanism dynamically adapt to missing data, ensuring that our single classification head achieves optimal performance even in unimodal and bimodal scenarios. We evaluate our method on CANDOR, a newly introduced interview-based multimodal dataset, which we benchmark in this work for the first time. Our results demonstrate that the proposed trimodal system achieves 99.51% Top-1 accuracy on person identification tasks. In addition, we evaluate our model on the VoxCeleb1 dataset as a widely used evaluation protocol and reach 99.92% accuracy in bimodal mode, outperforming conventional approaches. Moreover, we show that our system maintains high accuracy even when one or two modalities are unavailable, making it a robust solution for real-world person recognition applications. The code and data for this work are publicly available.
comment: 9 pages and 8 tables
Astra: General Interactive World Model with Autoregressive Denoising ICLR 2026
Recent advances in diffusion transformers have empowered video generation models to generate high-quality video clips from texts or images. However, world models with the ability to predict long-horizon futures from past observations and actions remain underexplored, especially for general-purpose scenarios and various forms of actions. To bridge this gap, we introduce Astra, an interactive general world model that generates real-world futures for diverse scenarios (e.g., autonomous driving, robot grasping) with precise action interactions (e.g., camera motion, robot action). We propose an autoregressive denoising architecture and use temporal causal attention to aggregate past observations and support streaming outputs. We use a noise-augmented history memory to avoid over-reliance on past frames to balance responsiveness with temporal coherence. For precise action control, we introduce an action-aware adapter that directly injects action signals into the denoising process. We further develop a mixture of action experts that dynamically route heterogeneous action modalities, enhancing versatility across diverse real-world tasks such as exploration, manipulation, and camera control. Astra achieves interactive, consistent, and general long-term video prediction and supports various forms of interactions. Experiments across multiple datasets demonstrate the improvements of Astra in fidelity, long-range prediction, and action alignment over existing state-of-the-art world models.
comment: Accepted in ICLR 2026. Code is available at: https://github.com/EternalEvan/Astra
Robotics 41
Goal-oriented Communication for Fast and Robust Robotic Fault Detection and Recovery
Autonomous robotic systems are widely deployed in smart factories and operate in dynamic, uncertain, and human-involved environments that require low-latency and robust fault detection and recovery (FDR). However, existing FDR frameworks exhibit various limitations, such as significant delays in communication and computation, and unreliability in robot motion/trajectory generation, mainly because the communication-computation-control (3C) loop is designed without considering the downstream FDR goal. To address this, we propose a novel Goal-oriented Communication (GoC) framework that jointly designs the 3C loop tailored for fast and robust robotic FDR, with the goal of minimising the FDR time while maximising the robotic task (e.g., workpiece sorting) success rate. For fault detection, our GoC framework innovatively defines and extracts the 3D scene graph (3D-SG) as the semantic representation via our designed representation extractor, and detects faults by monitoring spatial relationship changes in the 3D-SG. For fault recovery, we fine-tune a small language model (SLM) via Low-Rank Adaptation (LoRA) and enhance its reasoning and generalization capabilities via knowledge distillation to generate recovery motions for robots. We also design a lightweight goal-oriented digital twin reconstruction module to refine the recovery motions generated by the SLM when fine-grained robotic control is required, using only task-relevant object contours for digital twin reconstruction. Extensive simulations demonstrate that our GoC framework reduces the FDR time by up to 82.6% and improves the task success rate by up to 76%, compared to the state-of-the-art frameworks that rely on vision language models for fault detection and large language models for fault recovery.
comment: Submit to IEEE for potential publication
Advances and Innovations in the Multi-Agent Robotic System (MARS) Challenge NeurIPS 2025
Recent advancements in multimodal large language models and vision-languageaction models have significantly driven progress in Embodied AI. As the field transitions toward more complex task scenarios, multi-agent system frameworks are becoming essential for achieving scalable, efficient, and collaborative solutions. This shift is fueled by three primary factors: increasing agent capabilities, enhancing system efficiency through task delegation, and enabling advanced human-agent interactions. To address the challenges posed by multi-agent collaboration, we propose the Multi-Agent Robotic System (MARS) Challenge, held at the NeurIPS 2025 Workshop on SpaVLE. The competition focuses on two critical areas: planning and control, where participants explore multi-agent embodied planning using vision-language models (VLMs) to coordinate tasks and policy execution to perform robotic manipulation in dynamic environments. By evaluating solutions submitted by participants, the challenge provides valuable insights into the design and coordination of embodied multi-agent systems, contributing to the future development of advanced collaborative AI systems.
comment: MARS Challenge @ NeurIPS 2025 Workshop on Space in Vision, Language, and Embodied AI. Challenge page: https://mars-eai.github.io/MARS-Challenge-Webpage/
Trustworthy Evaluation of Robotic Manipulation: A New Benchmark and AutoEval Methods
Driven by the rapid evolution of Vision-Action and Vision-Language-Action models, imitation learning has significantly advanced robotic manipulation capabilities. However, evaluation methodologies have lagged behind, hindering the establishment of Trustworthy Evaluation for these behaviors. Current paradigms rely on binary success rates, failing to address the critical dimensions of trust: Source Authenticity (i.e., distinguishing genuine policy behaviors from human teleoperation) and Execution Quality (e.g., smoothness and safety). To bridge these gaps, we propose a solution that combines the Eval-Actions benchmark and the AutoEval architecture. First, we construct the Eval-Actions benchmark to support trustworthiness analysis. Distinct from existing datasets restricted to successful human demonstrations, Eval-Actions integrates VA and VLA policy execution trajectories alongside human teleoperation data, explicitly including failure scenarios. This dataset is structured around three core supervision signals: Expert Grading (EG), Rank-Guided preferences (RG), and Chain-of-Thought (CoT). Building on this, we propose the AutoEval architecture: AutoEval leverages Spatio-Temporal Aggregation for semantic assessment, augmented by an auxiliary Kinematic Calibration Signal to refine motion smoothness; AutoEval Plus (AutoEval-P) incorporates the Group Relative Policy Optimization (GRPO) paradigm to enhance logical reasoning capabilities. Experiments show AutoEval achieves Spearman's Rank Correlation Coefficients (SRCC) of 0.81 and 0.84 under the EG and RG protocols, respectively. Crucially, the framework possesses robust source discrimination capabilities, distinguishing between policy-generated and teleoperated videos with 99.6% accuracy, thereby establishing a rigorous standard for trustworthy robotic evaluation. Our project and code are available at https://term-bench.github.io/.
Low Cost, High Efficiency: LiDAR Place Recognition in Vineyards with Matryoshka Representation Learning
Localization in agricultural environments is challenging due to their unstructured nature and lack of distinctive landmarks. Although agricultural settings have been studied in the context of object classification and segmentation, the place recognition task for mobile robots is not trivial in the current state of the art. In this study, we propose MinkUNeXt-VINE, a lightweight, deep-learning-based method that surpasses state-of-the-art methods in vineyard environments thanks to its pre-processing and Matryoshka Representation Learning multi-loss approach. Our method prioritizes enhanced performance with low-cost, sparse LiDAR inputs and lower-dimensionality outputs to ensure high efficiency in real-time scenarios. Additionally, we present a comprehensive ablation study of the results on various evaluation cases and two extensive long-term vineyard datasets employing different LiDAR sensors. The results demonstrate the efficiency of the trade-off output produced by this approach, as well as its robust performance on low-cost and low-resolution input data. The code is publicly available for reproduction.
A Pragmatic VLA Foundation Model
Offering great potential in robotic manipulation, a capable Vision-Language-Action (VLA) foundation model is expected to faithfully generalize across tasks and platforms while ensuring cost efficiency (e.g., data and GPU hours required for adaptation). To this end, we develop LingBot-VLA with around 20,000 hours of real-world data from 9 popular dual-arm robot configurations. Through a systematic assessment on 3 robotic platforms, each completing 100 tasks with 130 post-training episodes per task, our model achieves clear superiority over competitors, showcasing its strong performance and broad generalizability. We have also built an efficient codebase, which delivers a throughput of 261 samples per second per GPU with an 8-GPU training setup, representing a 1.5~2.8$\times$ (depending on the relied VLM base model) speedup over existing VLA-oriented codebases. The above features ensure that our model is well-suited for real-world deployment. To advance the field of robot learning, we provide open access to the code, base model, and benchmark data, with a focus on enabling more challenging tasks and promoting sound evaluation standards.
comment: Project Webpage: https://technology.robbyant.com/lingbot-vla/, Code: https://github.com/Robbyant/lingbot-vla/
Constraint-Aware Discrete-Time PID Gain Optimization for Robotic Joint Control Under Actuator Saturation
The precise regulation of rotary actuation is fundamental in autonomous robotics, yet practical PID loops deviate from continuous-time theory due to discrete-time execution, actuator saturation, and small delays and measurement imperfections. We present an implementation-aware analysis and tuning workflow for saturated discrete-time joint control. We (i) derive PI stability regions under Euler and exact zero-order-hold (ZOH) discretizations using the Jury criterion, (ii) evaluate a discrete back-calculation anti-windup realization under saturation-dominant regimes, and (iii) propose a hybrid-certified Bayesian optimization workflow that screens analytically unstable candidates and behaviorally unsafe transients while optimizing a robust IAE objective with soft penalties on overshoot and saturation duty. Baseline sweeps ($τ=1.0$~s, $Δt=0.01$~s, $u\in[-10,10]$) quantify rise/settle trends for P/PI/PID. Under a randomized model family emulating uncertainty, delay, noise, quantization, and tighter saturation, robustness-oriented tuning improves median IAE from $0.843$ to $0.430$ while keeping median overshoot below $2\%$. In simulation-only tuning, the certification screen rejects $11.6\%$ of randomly sampled gains within bounds before full robust evaluation, improving sample efficiency without hardware experiments.
ExoGS: A 4D Real-to-Sim-to-Real Framework for Scalable Manipulation Data Collection
Real-to-Sim-to-Real technique is gaining increasing interest for robotic manipulation, as it can generate scalable data in simulation while having narrower sim-to-real gap. However, previous methods mainly focused on environment-level visual real-to-sim transfer, ignoring the transfer of interactions, which could be challenging and inefficient to obtain purely in simulation especially for contact-rich tasks. We propose ExoGS, a robot-free 4D Real-to-Sim-to-Real framework that captures both static environments and dynamic interactions in the real world and transfers them seamlessly to a simulated environment. It provides a new solution for scalable manipulation data collection and policy learning. ExoGS employs a self-designed robot-isomorphic passive exoskeleton AirExo-3 to capture kinematically consistent trajectories with millimeter-level accuracy and synchronized RGB observations during direct human demonstrations. The robot, objects, and environment are reconstructed as editable 3D Gaussian Splatting assets, enabling geometry-consistent replay and large-scale data augmentation. Additionally, a lightweight Mask Adapter injects instance-level semantics into the policy to enhance robustness under visual domain shifts. Real-world experiments demonstrate that ExoGS significantly improves data efficiency and policy generalization compared to teleoperation-based baselines. Code and hardware files have been released on https://github.com/zaixiabalala/ExoGS.
Attention-Based Neural-Augmented Kalman Filter for Legged Robot State Estimation RA-L
In this letter, we propose an Attention-Based Neural-Augmented Kalman Filter (AttenNKF) for state estimation in legged robots. Foot slip is a major source of estimation error: when slip occurs, kinematic measurements violate the no-slip assumption and inject bias during the update step. Our objective is to estimate this slip-induced error and compensate for it. To this end, we augment an Invariant Extended Kalman Filter (InEKF) with a neural compensator that uses an attention mechanism to infer error conditioned on foot-slip severity and then applies this estimate as a post-update compensation to the InEKF state (i.e., after the filter update). The compensator is trained in a latent space, which aims to reduce sensitivity to raw input scales and encourages structured slip-conditioned compensations, while preserving the InEKF recursion. Experiments demonstrate improved performance compared to existing legged-robot state estimators, particularly under slip-prone conditions.
comment: 8 pages, 6 figures, Accepted to IEEE Robotics and Automation Letters (RA-L)
Fast and Safe Trajectory Optimization for Mobile Manipulators With Neural Configuration Space Distance Field
Mobile manipulators promise agile, long-horizon behavior by coordinating base and arm motion, yet whole-body trajectory optimization in cluttered, confined spaces remains difficult due to high-dimensional nonconvexity and the need for fast, accurate collision reasoning. Configuration Space Distance Fields (CDF) enable fixed-base manipulators to model collisions directly in configuration space via smooth, implicit distances. This representation holds strong potential to bypass the nonlinear configuration-to-workspace mapping while preserving accurate whole-body geometry and providing optimization-friendly collision costs. Yet, extending this capability to mobile manipulators is hindered by unbounded workspaces and tighter base-arm coupling. We lift this promise to mobile manipulation with Generalized Configuration Space Distance Fields (GCDF), extending CDF to robots with both translational and rotational joints in unbounded workspaces with tighter base-arm coupling. We prove that GCDF preserves Euclidean-like local distance structure and accurately encodes whole-body geometry in configuration space, and develop a data generation and training pipeline that yields continuous neural GCDFs with accurate values and gradients, supporting efficient GPU-batched queries. Building on this representation, we develop a high-performance sequential convex optimization framework centered on GCDF-based collision reasoning. The solver scales to large numbers of implicit constraints through (i) online specification of neural constraints, (ii) sparsity-aware active-set detection with parallel batched evaluation across thousands of constraints, and (iii) incremental constraint management for rapid replanning under scene changes.
SKETCH: Semantic Key-Point Conditioning for Long-Horizon Vessel Trajectory Prediction
Accurate long-horizon vessel trajectory prediction remains challenging due to compounded uncertainty from complex navigation behaviors and environmental factors. Existing methods often struggle to maintain global directional consistency, leading to drifting or implausible trajectories when extrapolated over long time horizons. To address this issue, we propose a semantic-key-point-conditioned trajectory modeling framework, in which future trajectories are predicted by conditioning on a high-level Next Key Point (NKP) that captures navigational intent. This formulation decomposes long-horizon prediction into global semantic decision-making and local motion modeling, effectively restricting the support of future trajectories to semantically feasible subsets. To efficiently estimate the NKP prior from historical observations, we adopt a pretrain-finetune strategy. Extensive experiments on real-world AIS data demonstrate that the proposed method consistently outperforms state-of-the-art approaches, particularly for long travel durations, directional accuracy, and fine-grained trajectory prediction.
DV-VLN: Dual Verification for Reliable LLM-Based Vision-and-Language Navigation
Vision-and-Language Navigation (VLN) requires an embodied agent to navigate in a complex 3D environment according to natural language instructions. Recent progress in large language models (LLMs) has enabled language-driven navigation with improved interpretability. However, most LLM-based agents still rely on single-shot action decisions, where the model must choose one option from noisy, textualized multi-perspective observations. Due to local mismatches and imperfect intermediate reasoning, such decisions can easily deviate from the correct path, leading to error accumulation and reduced reliability in unseen environments. In this paper, we propose DV-VLN, a new VLN framework that follows a generate-then-verify paradigm. DV-VLN first performs parameter-efficient in-domain adaptation of an open-source LLaMA-2 backbone to produce a structured navigational chain-of-thought, and then verifies candidate actions with two complementary channels: True-False Verification (TFV) and Masked-Entity Verification (MEV). DV-VLN selects actions by aggregating verification successes across multiple samples, yielding interpretable scores for reranking. Experiments on R2R, RxR (English subset), and REVERIE show that DV-VLN consistently improves over direct prediction and sampling-only baselines, achieving competitive performance among language-only VLN agents and promising results compared with several cross-modal systems.Code is available at https://github.com/PlumJun/DV-VLN.
SG-CADVLM: A Context-Aware Decoding Powered Vision Language Model for Safety-Critical Scenario Generation
Autonomous vehicle safety validation requires testing on safety-critical scenarios, but these events are rare in real-world driving and costly to test due to collision risks. Crash reports provide authentic specifications of safety-critical events, offering a vital alternative to scarce real-world collision trajectory data. This makes them valuable sources for generating realistic high-risk scenarios through simulation. Existing approaches face significant limitations because data-driven methods lack diversity due to their reliance on existing latent distributions, whereas adversarial methods often produce unrealistic scenarios lacking physical fidelity. Large Language Model (LLM) and Vision Language Model (VLM)-based methods show significant promise. However, they suffer from context suppression issues where internal parametric knowledge overrides crash specifications, producing scenarios that deviate from actual accident characteristics. This paper presents SG-CADVLM (A Context-Aware Decoding Powered Vision Language Model for Safety-Critical Scenario Generation), a framework that integrates Context-Aware Decoding with multi-modal input processing to generate safety-critical scenarios from crash reports and road network diagrams. The framework mitigates VLM hallucination issues while enabling the simultaneous generation of road geometry and vehicle trajectories. The experimental results demonstrate that SG-CADVLM generates critical risk scenarios at a rate of 84.4% compared to 12.5% for the baseline methods, representing an improvement of 469%, while producing executable simulations for autonomous vehicle testing.
TC-IDM: Grounding Video Generation for Executable Zero-shot Robot Motion
The vision-language-action (VLA) paradigm has enabled powerful robotic control by leveraging vision-language models, but its reliance on large-scale, high-quality robot data limits its generalization. Generative world models offer a promising alternative for general-purpose embodied AI, yet a critical gap remains between their pixel-level plans and physically executable actions. To this end, we propose the Tool-Centric Inverse Dynamics Model (TC-IDM). By focusing on the tool's imagined trajectory as synthesized by the world model, TC-IDM establishes a robust intermediate representation that bridges the gap between visual planning and physical control. TC-IDM extracts the tool's point cloud trajectories via segmentation and 3D motion estimation from generated videos. Considering diverse tool attributes, our architecture employs decoupled action heads to project these planned trajectories into 6-DoF end-effector motions and corresponding control signals. This plan-and-translate paradigm not only supports a wide range of end-effectors but also significantly improves viewpoint invariance. Furthermore, it exhibits strong generalization capabilities across long-horizon and out-of-distribution tasks, including interacting with deformable objects. In real-world evaluations, the world model with TC-IDM achieves an average success rate of 61.11 percent, with 77.7 percent on simple tasks and 38.46 percent on zero-shot deformable object tasks. It substantially outperforms end-to-end VLA-style baselines and other inverse dynamics models.
Quest2ROS2: A ROS 2 Framework for Bi-manual VR Teleoperation
Quest2ROS2 is an open-source ROS2 framework for bi-manual teleoperation designed to scale robot data collection. Extending Quest2ROS, it overcomes workspace limitations via relative motion-based control, calculating robot movement from VR controller pose changes to enable intuitive, pose-independent operation. The framework integrates essential usability and safety features, including real-time RViz visualization, streamlined gripper control, and a pause-and-reset function for smooth transitions. We detail a modular architecture that supports "Side-by-Side" and "Mirror" control modes to optimize operator experience across diverse platforms. Code is available at: https://github.com/Taokt/Quest2ROS2.
comment: HRI 2026
Grasp-and-Lift: Executable 3D Hand-Object Interaction Reconstruction via Physics-in-the-Loop Optimization
Dexterous hand manipulation increasingly relies on large-scale motion datasets with precise hand-object trajectory data. However, existing resources such as DexYCB and HO3D are primarily optimized for visual alignment but often yield physically implausible interactions when replayed in physics simulators, including penetration, missed contact, and unstable grasps. We propose a simulation-in-the-loop refinement framework that converts these visually aligned trajectories into physically executable ones. Our core contribution is to formulate this as a tractable black-box optimization problem. We parameterize the hand's motion using a low-dimensional, spline-based representation built on sparse temporal keyframes. This allows us to use a powerful gradient-free optimizer, CMA-ES, to treat the high-fidelity physics engine as a black-box objective function. Our method finds motions that simultaneously maximize physical success (e.g., stable grasp and lift) while minimizing deviation from the original human demonstration. Compared to MANIPTRANS-recent transfer pipelines, our approach achieves lower hand and object pose errors during replay and more accurately recovers hand-object physical interactions. Our approach provides a general and scalable method for converting visual demonstrations into physically valid trajectories, enabling the generation of high-fidelity data crucial for robust policy learning.
comment: 13 pages, 7 figures
Beyond Static Datasets: Robust Offline Policy Optimization via Vetted Synthetic Transitions
Offline Reinforcement Learning (ORL) holds immense promise for safety-critical domains like industrial robotics, where real-time environmental interaction is often prohibitive. A primary obstacle in ORL remains the distributional shift between the static dataset and the learned policy, which typically mandates high degrees of conservatism that can restrain potential policy improvements. We present MoReBRAC, a model-based framework that addresses this limitation through Uncertainty-Aware latent synthesis. Instead of relying solely on the fixed data, MoReBRAC utilizes a dual-recurrent world model to synthesize high-fidelity transitions that augment the training manifold. To ensure the reliability of this synthetic data, we implement a hierarchical uncertainty pipeline integrating Variational Autoencoder (VAE) manifold detection, model sensitivity analysis, and Monte Carlo (MC) dropout. This multi-layered filtering process guarantees that only transitions residing within high-confidence regions of the learned dynamics are utilized. Our results on D4RL Gym-MuJoCo benchmarks reveal significant performance gains, particularly in ``random'' and ``suboptimal'' data regimes. We further provide insights into the role of the VAE as a geometric anchor and discuss the distributional trade-offs encountered when learning from near-optimal datasets.
comment: 11 pages, 2 figures, 2 tables
HumanoidTurk: Expanding VR Haptics with Humanoids for Driving Simulations
We explore how humanoid robots can be repurposed as haptic media, extending beyond their conventional role as social, assistive, collaborative agents. To illustrate this approach, we implemented HumanoidTurk, taking a first step toward a humanoid-based haptic system that translates in-game g-force signals into synchronized motion feedback in VR driving. A pilot study involving six participants compared two synthesis methods, leading us to adopt a filter-based approach for smoother and more realistic feedback. A subsequent study with sixteen participants evaluated four conditions: no-feedback, controller, humanoid+controller, and human+controller. Results showed that humanoid feedback enhanced immersion, realism, and enjoyment, while introducing moderate costs in terms of comfort and simulation sickness. Interviews further highlighted the robot's consistency and predictability in contrast to the adaptability of human feedback. From these findings, we identify fidelity, adaptability, and versatility as emerging themes, positioning humanoids as a distinct haptic modality for immersive VR.
comment: 14 pages, 7 figures. To appear in CHI 2026
A Switching Nonlinear Model Predictive Control Strategy for Safe Collision Handling by an Underwater Vehicle-Manipulator System
For active intervention tasks in underwater environments, the use of autonomous vehicles is just now emerging as an active area of research. During operation, for various reasons, the robot might find itself on a collision course with an obstacle in its environment. In this paper, a switching Nonlinear Model Predictive Control (NMPC) strategy is proposed to safely handle collisions for an Underwater Vehicle-Manipulator System (UVMS). When avoiding the collision is impossible, the control algorithm takes advantage of the manipulator, using it to push against the obstacle, and deflect away from the collision. Virtual experiments are performed to demonstrate the algorithm's capability to successfully detect collisions and either avoid them, or use the manipulator to handle them appropriately without damaging sensitive areas of the vehicle.
comment: This work has been submitted to the 2026 Mediterranean Conference on Control and Automation (MED) to be considered for publication. Figures and animations are available at https://zenodo.org/records/18357280
Fauna Sprout: A lightweight, approachable, developer-ready humanoid robot
Recent advances in learned control, large-scale simulation, and generative models have accelerated progress toward general-purpose robotic controllers, yet the field still lacks platforms suitable for safe, expressive, long-term deployment in human environments. Most existing humanoids are either closed industrial systems or academic prototypes that are difficult to deploy and operate around people, limiting progress in robotics. We introduce Sprout, a developer platform designed to address these limitations through an emphasis on safety, expressivity, and developer accessibility. Sprout adopts a lightweight form factor with compliant control, limited joint torques, and soft exteriors to support safe operation in shared human spaces. The platform integrates whole-body control, manipulation with integrated grippers, and virtual-reality-based teleoperation within a unified hardware-software stack. An expressive head further enables social interaction -- a domain that remains underexplored on most utilitarian humanoids. By lowering physical and technical barriers to deployment, Sprout expands access to capable humanoid platforms and provides a practical basis for developing embodied intelligence in real human environments.
Toward Learning POMDPs Beyond Full-Rank Actions and State Observability
We are interested in enabling autonomous agents to learn and reason about systems with hidden states, such as furniture with hidden locking mechanisms. We cast this problem as learning the parameters of a discrete Partially Observable Markov Decision Process (POMDP). The agent begins with knowledge of the POMDP's actions and observation spaces, but not its state space, transitions, or observation models. These properties must be constructed from action-observation sequences. Spectral approaches to learning models of partially observable domains, such as learning Predictive State Representations (PSRs), are known to directly estimate the number of hidden states. These methods cannot, however, yield direct estimates of transition and observation likelihoods, which are important for many downstream reasoning tasks. Other approaches leverage tensor decompositions to estimate transition and observation likelihoods but often assume full state observability and full-rank transition matrices for all actions. To relax these assumptions, we study how PSRs learn transition and observation matrices up to a similarity transform, which may be estimated via tensor methods. Our method learns observation matrices and transition matrices up to a partition of states, where the states in a single partition have the same observation distributions corresponding to actions whose transition matrices are full-rank. Our experiments suggest that these partition-level transition models learned by our method, with a sufficient amount of data, meets the performance of PSRs as models to be used by standard sampling-based POMDP solvers. Furthermore, the explicit observation and transition likelihoods can be leveraged to specify planner behavior after the model has been learned.
DeFM: Learning Foundation Representations from Depth for Robotics
Depth sensors are widely deployed across robotic platforms, and advances in fast, high-fidelity depth simulation have enabled robotic policies trained on depth observations to achieve robust sim-to-real transfer for a wide range of tasks. Despite this, representation learning for depth modality remains underexplored compared to RGB, where large-scale foundation models now define the state of the art. To address this gap, we present DeFM, a self-supervised foundation model trained entirely on depth images for robotic applications. Using a DINO-style self-distillation objective on a curated dataset of 60M depth images, DeFM learns geometric and semantic representations that generalize to diverse environments, tasks, and sensors. To retain metric awareness across multiple scales, we introduce a novel input normalization strategy. We further distill DeFM into compact models suitable for resource-constrained robotic systems. When evaluated on depth-based classification, segmentation, navigation, locomotion, and manipulation benchmarks, DeFM achieves state-of-the-art performance and demonstrates strong generalization from simulation to real-world environments. We release all our pretrained models, which can be adopted off-the-shelf for depth-based robotic learning without task-specific fine-tuning. Webpage: https://de-fm.github.io/
comment: Under review, 19 pages, 15 Figures, 9 Tables
Learning the Pareto Space of Multi-Objective Autonomous Driving: A Modular, Data-Driven Approach IV 2026
Balancing safety, efficiency, and interaction is fundamental to designing autonomous driving agents and to understanding autonomous vehicle (AV) behavior in real-world operation. This study introduces an empirical learning framework that derives these trade-offs directly from naturalistic trajectory data. A unified objective space represents each AV timestep through composite scores of safety, efficiency, and interaction. Pareto dominance is applied to identify non-dominated states, forming an empirical frontier that defines the attainable region of balanced performance. The proposed framework was demonstrated using the Third Generation Simulation (TGSIM) datasets from Foggy Bottom and I-395. Results showed that only 0.23\% of AV driving instances were Pareto-optimal, underscoring the rarity of simultaneous optimization across objectives. Pareto-optimal states showed notably higher mean scores for safety, efficiency, and interaction compared to non-optimal cases, with interaction showing the greatest potential for improvement. This minimally invasive and modular framework, which requires only kinematic and positional data, can be directly applied beyond the scope of this study to derive and visualize multi-objective learning surfaces
comment: Accepted for presentation/publication at the The IEEE Intelligent Vehicles Symposium of 2026 (IEEE IV 2026)
DGFusion: Depth-Guided Sensor Fusion for Robust Semantic Perception
Robust semantic perception for autonomous vehicles relies on effectively combining multiple sensors with complementary strengths and weaknesses. State-of-the-art sensor fusion approaches to semantic perception often treat sensor data uniformly across the spatial extent of the input, which hinders performance when faced with challenging conditions. By contrast, we propose a novel depth-guided multimodal fusion method that upgrades condition-aware fusion by integrating depth information. Our network, DGFusion, poses multimodal segmentation as a multi-task problem, utilizing the lidar measurements, which are typically available in outdoor sensor suites, both as one of the model's inputs and as ground truth for learning depth. Our corresponding auxiliary depth head helps to learn depth-aware features, which are encoded into spatially varying local depth tokens that condition our attentive cross-modal fusion. Together with a global condition token, these local depth tokens dynamically adapt sensor fusion to the spatially varying reliability of each sensor across the scene, which largely depends on depth. In addition, we propose a robust loss for our depth, which is essential for learning from lidar inputs that are typically sparse and noisy in adverse conditions. Our method achieves state-of-the-art panoptic and semantic segmentation performance on the challenging MUSES and DeLiVER datasets. Code and models are available at https://github.com/timbroed/DGFusion
comment: Code and models are available at https://github.com/timbroed/DGFusion
Goal-oriented Semantic Communication for Robot Arm Reconstruction in Digital Twin: Feature and Temporal Selections
As one of the most promising technologies in industry, the Digital Twin (DT) facilitates real-time monitoring and predictive analysis for real-world systems by precisely reconstructing virtual replicas of physical entities. However, this reconstruction faces unprecedented challenges due to the everincreasing communication overhead, especially for digital robot arm reconstruction. To this end, we propose a novel goal-oriented semantic communication (GSC) framework to extract the GSC information for the robot arm reconstruction task in the DT, with the aim of minimising the communication load under the strict and relaxed reconstruction error constraints. Unlike the traditional reconstruction framework that periodically transmits a reconstruction message for real-time DT reconstruction, our framework implements a feature selection (FS) algorithm to extract the semantic information from the reconstruction message, and a deep reinforcement learning-based temporal selection algorithm to selectively transmit the semantic information over time. We validate our proposed GSC framework through both Pybullet simulations and lab experiments based on the Franka Research 3 robot arm. For a range of distinct robotic tasks, simulation results show that our framework can reduce the communication load by at least 59.5% under strict reconstruction error constraints and 80% under relaxed reconstruction error constraints, compared with traditional communication framework. Also, experimental results confirm the effectiveness of our framework, where the communication load is reduced by 53% in strict constraint case and 74% in relaxed constraint case. The demo is available at: https://youtu.be/2OdeHKxcgnk.
comment: Accepted by IEEE Journal on Selected Areas in Communications
Actor-Critic Cooperative Compensation to Model Predictive Control for Off-Road Autonomous Vehicles Under Unknown Dynamics ICRA
This study presents an Actor-Critic Cooperative Compensated Model Predictive Controller (AC3MPC) designed to address unknown system dynamics. To avoid the difficulty of modeling highly complex dynamics and ensuring realtime control feasibility and performance, this work uses deep reinforcement learning with a model predictive controller in a cooperative framework to handle unknown dynamics. The model-based controller takes on the primary role as both controllers are provided with predictive information about the other. This improves tracking performance and retention of inherent robustness of the model predictive controller. We evaluate this framework for off-road autonomous driving on unknown deformable terrains that represent sandy deformable soil, sandy and rocky soil, and cohesive clay-like deformable soil. Our findings demonstrate that our controller statistically outperforms standalone model-based and learning-based controllers by upto 29.2% and 10.2%. This framework generalized well over varied and previously unseen terrain characteristics to track longitudinal reference speeds with lower errors. Furthermore, this required significantly less training data compared to purely learning-based controller, while delivering better performance even when under-trained.
comment: 7 pages, Accepted at 2025 IEEE ICRA
A Computationally Efficient Maximum A Posteriori Sequence Estimation via Stein Variational Inference
State estimation in robotic systems presents significant challenges, particularly due to the prevalence of multimodal posterior distributions in real-world scenarios. One effective strategy for handling such complexity is to compute maximum a posteriori (MAP) sequences over a discretized or sampled state space, which enables a concise representation of the most likely state trajectory. However, this approach often incurs substantial computational costs, especially in high-dimensional settings. In this article, we propose a novel MAP sequence estimation method, Stein-MAP-Seq, which effectively addresses multimodality while substantially reducing computational and memory overhead. Our key contribution is a sequential variational inference framework that captures temporal dependencies in dynamical system models and integrates Stein variational gradient descent (SVGD) into a Viterbi-style dynamic programming algorithm, enabling computationally efficient MAP sequence estimation. This integration allows the method to focus computational effort on MAP-consistent modes rather than exhaustively exploring the entire state space. Stein-MAP-Seq inherits the parallelism and mode-seeking behavior of SVGD, allowing particle updates to be efficiently executed on parallel hardware and significantly reducing the number of trajectory candidates required for MAP-sequence recursion compared to conventional methods that rely on hundreds to thousands of particles. We validate the proposed approach on a range of highly multimodal scenarios, including nonlinear dynamics with ambiguous observations, unknown data association with outliers, range-only localization under temporary unobservability, and high-dimensional robotic manipulators. Experimental results demonstrate substantial improvements in estimation accuracy and robustness to multimodality over existing estimation methods.
comment: 20 pages
Estimating the Joint Probability of Scenario Parameters with Gaussian Mixture Copula Models
This paper presents the first application of Gaussian Mixture Copula Models to the statistical modeling of driving scenarios for the safety validation of automated driving systems. Knowledge of the joint probability distribution of scenario parameters is essential for scenario-based safety assessment, where risk quantification depends on the likelihood of concrete parameter combinations. Gaussian Mixture Copula Models bring together the multimodal expressivity of Gaussian Mixture Models and the flexibility of copulas, enabling separate modeling of marginal distributions and dependence. We benchmark Gaussian Mixture Copula Models against previously proposed approaches - Gaussian Mixture Models and Gaussian Copula Models - using real-world driving data drawn from two scenarios defined in United Nations Regulation No. 157. Our evaluation on approximately 18 million instances of these two scenarios demonstrates that Gaussian Mixture Copula Models consistently surpass Gaussian Copula Models and perform competitively with Gaussian Mixture Models, as measured by both log-likelihood and Sinkhorn distance, with relative performance depending on the scenario. The results are promising for the adoption of Gaussian Mixture Copula Models as a statistical foundation for future scenario-based validation frameworks.
comment: 9 pages, 4 figures; This work has been submitted to the IEEE for possible publication; Code available at: https://codeocean.com/capsule/1003615/tree
Masked Generative Policy for Robotic Control
We present Masked Generative Policy (MGP), a novel framework for visuomotor imitation learning. We represent actions as discrete tokens, and train a conditional masked transformer that generates tokens in parallel and then rapidly refines only low-confidence tokens. We further propose two new sampling paradigms: MGP-Short, which performs parallel masked generation with score-based refinement for Markovian tasks, and MGP-Long, which predicts full trajectories in a single pass and dynamically refines low-confidence action tokens based on new observations. With globally coherent prediction and robust adaptive execution capabilities, MGP-Long enables reliable control on complex and non-Markovian tasks that prior methods struggle with. Extensive evaluations on 150 robotic manipulation tasks spanning the Meta-World and LIBERO benchmarks show that MGP achieves both rapid inference and superior success rates compared to state-of-the-art diffusion and autoregressive policies. Specifically, MGP increases the average success rate by 9% across 150 tasks while cutting per-sequence inference time by up to 35x. It further improves the average success rate by 60% in dynamic and missing-observation environments, and solves two non-Markovian scenarios where other state-of-the-art methods fail.
Gaussian Variational Inference with Non-Gaussian Factors for State Estimation: A UWB Localization Case Study
This letter extends the exactly sparse Gaussian variational inference (ESGVI) algorithm for state estimation in two complementary directions. First, ESGVI is generalized to operate on matrix Lie groups, enabling the estimation of states with orientation components while respecting the underlying group structure. Second, factors are introduced to accommodate heavy-tailed and skewed noise distributions, as commonly encountered in ultra-wideband (UWB) localization due to non-line-of-sight (NLOS) and multipath effects. Both extensions are shown to integrate naturally within the ESGVI framework while preserving its sparse and derivative-free structure. The proposed approach is validated in a UWB localization experiment with NLOS-rich measurements, demonstrating improved accuracy and comparable consistency. Finally, a Python implementation within a factor-graph-based estimation framework is made open-source (https://github.com/decargroup/gvi_ws) to support broader research use.
Cross-Platform Scaling of Vision-Language-Action Models from Edge to Cloud GPUs
Vision-Language-Action (VLA) models have emerged as powerful generalist policies for robotic control, yet their performance scaling across model architectures and hardware platforms, as well as their associated power budgets, remain poorly understood. This work presents an evaluation of five representative VLA models -- spanning state-of-the-art baselines and two newly proposed architectures -- targeting edge and datacenter GPU platforms. Using the LIBERO benchmark, we measure accuracy alongside system-level metrics, including latency, throughput, and peak memory usage, under varying edge power constraints and high-performance datacenter GPU configurations. Our results identify distinct scaling trends: (1) architectural choices, such as action tokenization and model backbone size, strongly influence throughput and memory footprint; (2) power-constrained edge devices exhibit non-linear performance degradation, with some configurations matching or exceeding older datacenter GPUs; and (3) high-throughput variants can be achieved without significant accuracy loss. These findings provide actionable insights when selecting and optimizing VLAs across a range of deployment constraints. Our work challenges current assumptions about the superiority of datacenter hardware for robotic inference.
comment: To appear in the Asilomar Conference on Signals, Systems, and Computers 2025
DecompGAIL: Learning Realistic Traffic Behaviors with Decomposed Multi-Agent Generative Adversarial Imitation Learning ICLR
Realistic traffic simulation is critical for the development of autonomous driving systems and urban mobility planning, yet existing imitation learning approaches often fail to model realistic traffic behaviors. Behavior cloning suffers from covariate shift, while Generative Adversarial Imitation Learning (GAIL) is notoriously unstable in multi-agent settings. We identify a key source of this instability: irrelevant interaction misguidance, where a discriminator penalizes an ego vehicle's realistic behavior due to unrealistic interactions among its neighbors. To address this, we propose Decomposed Multi-agent GAIL (DecompGAIL), which explicitly decomposes realism into ego-map and ego-neighbor components, filtering out misleading neighbor: neighbor and neighbor: map interactions. We further introduce a social PPO objective that augments ego rewards with distance-weighted neighborhood rewards, encouraging overall realism across agents. Integrated into a lightweight SMART-based backbone, DecompGAIL achieves state-of-the-art performance on the WOMD Sim Agents 2025 benchmark.
comment: accepted by ICLR
GPA-VGGT:Adapting VGGT to Large Scale Localization by Self-Supervised Learning with Geometry and Physics Aware Loss
Transformer-based general visual geometry frameworks have shown promising performance in camera pose estimation and 3D scene understanding. Recent advancements in Visual Geometry Grounded Transformer (VGGT) models have shown great promise in camera pose estimation and 3D reconstruction. However, these models typically rely on ground truth labels for training, posing challenges when adapting to unlabeled and unseen scenes. In this paper, we propose a self-supervised framework to train VGGT with unlabeled data, thereby enhancing its localization capability in large-scale environments. To achieve this, we extend conventional pair-wise relations to sequence-wise geometric constraints for self-supervised learning. Specifically, in each sequence, we sample multiple source frames and geometrically project them onto different target frames, which improves temporal feature consistency. We formulate physical photometric consistency and geometric constraints as a joint optimization loss to circumvent the requirement for hard labels. By training the model with this proposed method, not only the local and global cross-view attention layers but also the camera and depth heads can effectively capture the underlying multi-view geometry. Experiments demonstrate that the model converges within hundreds of iterations and achieves significant improvements in large-scale localization. Our code will be released at https://github.com/X-yangfan/GPA-VGGT.
Close-Fitting Dressing Assistance Based on State Estimation of Feet and Garments with Semantic-based Visual Attention RA-L
As the population continues to age, a shortage of caregivers is expected in the future. Dressing assistance, in particular, is crucial for opportunities for social participation. Especially dressing close-fitting garments, such as socks, remains challenging due to the need for fine force adjustments to handle the friction or snagging against the skin, while considering the shape and position of the garment. This study introduces a method uses multi-modal information including not only robot's camera images, joint angles, joint torques, but also tactile forces for proper force interaction that can adapt to individual differences in humans. Furthermore, by introducing semantic information based on object concepts, rather than relying solely on RGB data, it can be generalized to unseen feet and background. In addition, incorporating depth data helps infer relative spatial relationship between the sock and the foot. To validate its capability for semantic object conceptualization and to ensure safety, training data were collected using a mannequin, and subsequent experiments were conducted with human subjects. In experiments, the robot successfully adapted to previously unseen human feet and was able to put socks on 10 participants, achieving a higher success rate than Action Chunking with Transformer and Diffusion Policy. These results demonstrate that the proposed model can estimate the state of both the garment and the foot, enabling precise dressing assistance for close-fitting garments.
comment: Accepted at RA-L, 2026
Foundation Models in Autonomous Driving: A Survey on Scenario Generation and Scenario Analysis
For autonomous vehicles, safe navigation in complex environments depends on handling a broad range of diverse and rare driving scenarios. Simulation- and scenario-based testing have emerged as key approaches to development and validation of autonomous driving systems. Traditional scenario generation relies on rule-based systems, knowledge-driven models, and data-driven synthesis, often producing limited diversity and unrealistic safety-critical cases. With the emergence of foundation models, which represent a new generation of pre-trained, general-purpose AI models, developers can process heterogeneous inputs (e.g., natural language, sensor data, HD maps, and control actions), enabling the synthesis and interpretation of complex driving scenarios. In this paper, we conduct a survey about the application of foundation models for scenario generation and scenario analysis in autonomous driving (as of May 2025). Our survey presents a unified taxonomy that includes large language models, vision-language models, multimodal large language models, diffusion models, and world models for the generation and analysis of autonomous driving scenarios. In addition, we review the methodologies, open-source datasets, simulation platforms, and benchmark challenges, and we examine the evaluation metrics tailored explicitly to scenario generation and analysis. Finally, the survey concludes by highlighting the open challenges and research questions, and outlining promising future research directions. All reviewed papers are listed in a continuously maintained repository, which contains supplementary materials and is available at https://github.com/TUM-AVS/FM-for-Scenario-Generation-Analysis.
comment: Final version (Accepted by the IEEE Open Journal of Intelligent Transportation Systems)
ORION: Option-Regularized Deep Reinforcement Learning for Cooperative Multi-Agent Online Navigation
Existing methods for multi-agent navigation typically assume fully known environments, offering limited support for partially known scenarios such as warehouses or factory floors. There, agents may need to plan trajectories that balance their own path optimality with their ability to collect and share information about the environment that can help their teammates reach their own goals. To these ends, we propose ORION, a novel deep reinforcement learning framework for cooperative multi-agent online navigation in partially known environments. Starting from an imperfect prior map, ORION trains agents to make decentralized decisions, coordinate to reach their individual targets, and actively reduce map uncertainty by sharing online observations in a closed perception-action loop. We first design a shared graph encoder that fuses prior map with online perception into a unified representation, providing robust state embeddings under dynamic map discrepancies. At the core of ORION is an option-critic framework that learns to reason about a set of high-level cooperative modes that translate into sequences of low-level actions, allowing agents to switch between individual navigation and team-level exploration adaptively. We further introduce a dual-stage cooperation strategy that enables agents to assist teammates under map uncertainty, thereby reducing the overall makespan. Across extensive maze-like maps and large-scale warehouse environments, our simulation results show that ORION achieves high-quality, real-time decentralized cooperation over varying team sizes, outperforming state-of-the-art classical and learning-based baselines. Finally, we validate ORION on physical robot teams, demonstrating its robustness and practicality for real-world cooperative navigation.
Safe Learning for Contact-Rich Robot Tasks: A Survey from Classical Learning-Based Methods to Safe Foundation Models
Contact-rich tasks pose significant challenges for robotic systems due to inherent uncertainty, complex dynamics, and the high risk of damage during interaction. Recent advances in learning-based control have shown great potential in enabling robots to acquire and generalize complex manipulation skills in such environments, but ensuring safety, both during exploration and execution, remains a critical bottleneck for reliable real-world deployment. This survey provides a comprehensive overview of safe learning-based methods for robot contact-rich tasks. We categorize existing approaches into two main domains: safe exploration and safe execution. We review key techniques, including constrained reinforcement learning, risk-sensitive optimization, uncertainty-aware modeling, control barrier functions, and model predictive safety shields, and highlight how these methods incorporate prior knowledge, task structure, and online adaptation to balance safety and efficiency. A particular emphasis of this survey is on how these safe learning principles extend to and interact with emerging robotic foundation models, especially vision-language models (VLMs) and vision-language-action models (VLAs), which unify perception, language, and control for contact-rich manipulation. We discuss both the new safety opportunities enabled by VLM/VLA-based methods, such as language-level specification of constraints and multimodal grounding of safety signals, and the amplified risks and evaluation challenges they introduce. Finally, we outline current limitations and promising future directions toward deploying reliable, safety-aligned, and foundation-model-enabled robots in complex contact-rich environments. More details and materials are available at our \href{ https://github.com/jack-sherman01/Awesome-Learning4Safe-Contact-rich-tasks}{Project GitHub Repository}.
comment: version 2
Contact SLAM: An Active Tactile Exploration Policy Based on Physical Reasoning Utilized in Robotic Fine Blind Manipulation Tasks
Contact-rich manipulation is difficult for robots to execute and requires accurate perception of the environment. In some scenarios, vision is occluded. The robot can then no longer obtain real-time scene state information through visual feedback. This is called ``blind manipulation". In this manuscript, a novel physically-driven contact cognition method, called ``Contact SLAM", is proposed. It estimates the state of the environment and achieves manipulation using only tactile sensing and prior knowledge of the scene. To maximize exploration efficiency, this manuscript also designs an active exploration policy. The policy gradually reduces uncertainties in the manipulation scene. The experimental results demonstrated the effectiveness and accuracy of the proposed method in several contact-rich tasks, including the difficult and delicate socket assembly task and block-pushing task.
comment: 9 pages, 9 figures
EquiContact: A Hierarchical SE(3) Vision-to-Force Equivariant Policy for Spatially Generalizable Contact-rich Tasks RSS
This paper presents a framework for learning vision-based robotic policies for contact-rich manipulation tasks that generalize spatially across task configurations. We focus on achieving robust spatial generalization of the policy for the peg-in-hole (PiH) task trained from a small number of demonstrations. We propose EquiContact, a hierarchical policy composed of a high-level vision planner (Diffusion Equivariant Descriptor Field, Diff-EDF) and a novel low-level compliant visuomotor policy (Geometric Compliant ACT, G-CompACT). G-CompACT operates using only localized observations (geometrically consistent error vectors (GCEV), force-torque readings, and wrist-mounted RGB images) and produces actions defined in the end-effector frame. Through these design choices, we show that the entire EquiContact pipeline is SE(3)-equivariant, from perception to force control. We also outline three key components for spatially generalizable contact-rich policies: compliance, localized policies, and induced equivariance. Real-world experiments on PiH, screwing, and surface wiping tasks demonstrate a near-perfect success rate and robust generalization to unseen spatial configurations, validating the proposed framework and principles.
comment: Submitted to RSS
Towards Real-time Adaptation of Embodied Agent in Human-Robot Collaboration
Large Language Models (LLMs) have opened transformative possibilities for human-robot collaboration. However, enabling real-time collaboration requires both low latency and robust reasoning, and most LLMs suffer from high latency. To address this gap, we first propose a fine-grained benchmark that explicitly assesses agents' proactive adaptability and temporal responsiveness in the Overcooked-AI environment. Based on evaluation results, we propose MonTA (Monitor-then-Adapt), a hierarchical framework inspired by cognitive science research. MonTA contains three key modules: a lightweight Monitor that operates at high frequency (7 Hz) to detect adaptation needs, and two proficient Adapters for subtask and path adaptation reasoning that provide instructions to humans at a lower frequency. Our results demonstrate that MonTA significantly outperforms baseline agents on our proposed benchmark, achieving superior performance across layouts with varying teaming fluency. User studies confirm the high reasonableness of adaptation plans and consistent language instructions provided by our framework to humans.
comment: 13 pages, 7 figures
Equi-RO: A 4D mmWave Radar Odometry via Equivariant Networks
Autonomous vehicles and robots rely on accurate odometry estimation in GPS-denied environments. While LiDARs and cameras struggle under extreme weather, 4D mmWave radar emerges as a robust alternative with all-weather operability and velocity measurement. In this paper, we introduce Equi-RO, an equivariant network-based framework for 4D radar odometry. Our algorithm pre-processes Doppler velocity into invariant node and edge features in the graph, and employs separate networks for equivariant and invariant feature processing. A graph-based architecture enhances feature aggregation in sparse radar data, improving inter-frame correspondence. Experiments on an open-source dataset and a self-collected dataset show Equi-RO outperforms state-of-the-art algorithms in accuracy and robustness. Overall, our method achieves 10.7% and 13.4% relative improvements in translation and rotation accuracy, respectively, compared to the best baseline on the open-source dataset.
PneuGelSight: Soft Robotic Vision-Based Proprioception and Tactile Sensing
Soft pneumatic robot manipulators are popular in industrial and human-interactive applications due to their compliance and flexibility. However, deploying them in real-world scenarios requires advanced sensing for tactile feedback and proprioception. Our work presents a novel vision-based approach for sensorizing soft robots. We demonstrate our approach on PneuGelSight, a pioneering pneumatic manipulator featuring high-resolution proprioception and tactile sensing via an embedded camera. To optimize the sensor's performance, we introduce a comprehensive pipeline that accurately simulates its optical and dynamic properties, facilitating a zero-shot knowledge transition from simulation to real-world applications. PneuGelSight and our sim-to-real pipeline provide a novel, easily implementable, and robust sensing methodology for soft robots, paving the way for the development of more advanced soft robots with enhanced sensory capabilities.
comment: 16 pages, 12 figures, International Journal of Robotics Research (accepted), 2025
Computer Vision and Pattern Recognition 151
SeNeDiF-OOD: Semantic Nested Dichotomy Fusion for Out-of-Distribution Detection Methodology in Open-World Classification. A Case Study on Monument Style Classification
Out-of-distribution (OOD) detection is a fundamental requirement for the reliable deployment of artificial intelligence applications in open-world environments. However, addressing the heterogeneous nature of OOD data, ranging from low-level corruption to semantic shifts, remains a complex challenge that single-stage detectors often fail to resolve. To address this issue, we propose SeNeDiF-OOD, a novel methodology based on Semantic Nested Dichotomy Fusion. This framework decomposes the detection task into a hierarchical structure of binary fusion nodes, where each layer is designed to integrate decision boundaries aligned with specific levels of semantic abstraction. To validate the proposed framework, we present a comprehensive case study using MonuMAI, a real-world architectural style recognition system exposed to an open environment. This application faces a diverse range of inputs, including non-monument images, unknown architectural styles, and adversarial attacks, making it an ideal testbed for our proposal. Through extensive experimental evaluation in this domain, results demonstrate that our hierarchical fusion methodology significantly outperforms traditional baselines, effectively filtering these diverse OOD categories while preserving in-distribution performance.
comment: 28 pages
Advances and Innovations in the Multi-Agent Robotic System (MARS) Challenge NeurIPS 2025
Recent advancements in multimodal large language models and vision-languageaction models have significantly driven progress in Embodied AI. As the field transitions toward more complex task scenarios, multi-agent system frameworks are becoming essential for achieving scalable, efficient, and collaborative solutions. This shift is fueled by three primary factors: increasing agent capabilities, enhancing system efficiency through task delegation, and enabling advanced human-agent interactions. To address the challenges posed by multi-agent collaboration, we propose the Multi-Agent Robotic System (MARS) Challenge, held at the NeurIPS 2025 Workshop on SpaVLE. The competition focuses on two critical areas: planning and control, where participants explore multi-agent embodied planning using vision-language models (VLMs) to coordinate tasks and policy execution to perform robotic manipulation in dynamic environments. By evaluating solutions submitted by participants, the challenge provides valuable insights into the design and coordination of embodied multi-agent systems, contributing to the future development of advanced collaborative AI systems.
comment: MARS Challenge @ NeurIPS 2025 Workshop on Space in Vision, Language, and Embodied AI. Challenge page: https://mars-eai.github.io/MARS-Challenge-Webpage/
Low Cost, High Efficiency: LiDAR Place Recognition in Vineyards with Matryoshka Representation Learning
Localization in agricultural environments is challenging due to their unstructured nature and lack of distinctive landmarks. Although agricultural settings have been studied in the context of object classification and segmentation, the place recognition task for mobile robots is not trivial in the current state of the art. In this study, we propose MinkUNeXt-VINE, a lightweight, deep-learning-based method that surpasses state-of-the-art methods in vineyard environments thanks to its pre-processing and Matryoshka Representation Learning multi-loss approach. Our method prioritizes enhanced performance with low-cost, sparse LiDAR inputs and lower-dimensionality outputs to ensure high efficiency in real-time scenarios. Additionally, we present a comprehensive ablation study of the results on various evaluation cases and two extensive long-term vineyard datasets employing different LiDAR sensors. The results demonstrate the efficiency of the trade-off output produced by this approach, as well as its robust performance on low-cost and low-resolution input data. The code is publicly available for reproduction.
SMART: Scalable Mesh-free Aerodynamic Simulations from Raw Geometries using a Transformer-based Surrogate Model
Machine learning-based surrogate models have emerged as more efficient alternatives to numerical solvers for physical simulations over complex geometries, such as car bodies. Many existing models incorporate the simulation mesh as an additional input, thereby reducing prediction errors. However, generating a simulation mesh for new geometries is computationally costly. In contrast, mesh-free methods, which do not rely on the simulation mesh, typically incur higher errors. Motivated by these considerations, we introduce SMART, a neural surrogate model that predicts physical quantities at arbitrary query locations using only a point-cloud representation of the geometry, without requiring access to the simulation mesh. The geometry and simulation parameters are encoded into a shared latent space that captures both structural and parametric characteristics of the physical field. A physics decoder then attends to the encoder's intermediate latent representations to map spatial queries to physical quantities. Through this cross-layer interaction, the model jointly updates latent geometric features and the evolving physical field. Extensive experiments show that SMART is competitive with and often outperforms existing methods that rely on the simulation mesh as input, demonstrating its capabilities for industry-level simulations.
Are Video Generation Models Geographically Fair? An Attraction-Centric Evaluation of Global Visual Knowledge
Recent advances in text-to-video generation have produced visually compelling results, yet it remains unclear whether these models encode geographically equitable visual knowledge. In this work, we investigate the geo-equity and geographically grounded visual knowledge of text-to-video models through an attraction-centric evaluation. We introduce Geo-Attraction Landmark Probing (GAP), a systematic framework for assessing how faithfully models synthesize tourist attractions from diverse regions, and construct GEOATTRACTION-500, a benchmark of 500 globally distributed attractions spanning varied regions and popularity levels. GAP integrates complementary metrics that disentangle overall video quality from attraction-specific knowledge, including global structural alignment, fine-grained keypoint-based alignment, and vision-language model judgments, all validated against human evaluation. Applying GAP to the state-of-the-art text-to-video model Sora 2, we find that, contrary to common assumptions of strong geographic bias, the model exhibits a relatively uniform level of geographically grounded visual knowledge across regions, development levels, and cultural groupings, with only weak dependence on attraction popularity. These results suggest that current text-to-video models express global visual knowledge more evenly than expected, highlighting both their promise for globally deployed applications and the need for continued evaluation as such systems evolve.
comment: Work in progress
A Pragmatic VLA Foundation Model
Offering great potential in robotic manipulation, a capable Vision-Language-Action (VLA) foundation model is expected to faithfully generalize across tasks and platforms while ensuring cost efficiency (e.g., data and GPU hours required for adaptation). To this end, we develop LingBot-VLA with around 20,000 hours of real-world data from 9 popular dual-arm robot configurations. Through a systematic assessment on 3 robotic platforms, each completing 100 tasks with 130 post-training episodes per task, our model achieves clear superiority over competitors, showcasing its strong performance and broad generalizability. We have also built an efficient codebase, which delivers a throughput of 261 samples per second per GPU with an 8-GPU training setup, representing a 1.5~2.8$\times$ (depending on the relied VLM base model) speedup over existing VLA-oriented codebases. The above features ensure that our model is well-suited for real-world deployment. To advance the field of robot learning, we provide open access to the code, base model, and benchmark data, with a focus on enabling more challenging tasks and promoting sound evaluation standards.
comment: Project Webpage: https://technology.robbyant.com/lingbot-vla/, Code: https://github.com/Robbyant/lingbot-vla/
Counterfactual Explanations on Robust Perceptual Geodesics ICLR 2026
Latent-space optimization methods for counterfactual explanations - framed as minimal semantic perturbations that change model predictions - inherit the ambiguity of Wachter et al.'s objective: the choice of distance metric dictates whether perturbations are meaningful or adversarial. Existing approaches adopt flat or misaligned geometries, leading to off-manifold artifacts, semantic drift, or adversarial collapse. We introduce Perceptual Counterfactual Geodesics (PCG), a method that constructs counterfactuals by tracing geodesics under a perceptually Riemannian metric induced from robust vision features. This geometry aligns with human perception and penalizes brittle directions, enabling smooth, on-manifold, semantically valid transitions. Experiments on three vision datasets show that PCG outperforms baselines and reveals failure modes hidden under standard metrics.
comment: Accepted at ICLR 2026
Splat-Portrait: Generalizing Talking Heads with Gaussian Splatting
Talking Head Generation aims at synthesizing natural-looking talking videos from speech and a single portrait image. Previous 3D talking head generation methods have relied on domain-specific heuristics such as warping-based facial motion representation priors to animate talking motions, yet still produce inaccurate 3D avatar reconstructions, thus undermining the realism of generated animations. We introduce Splat-Portrait, a Gaussian-splatting-based method that addresses the challenges of 3D head reconstruction and lip motion synthesis. Our approach automatically learns to disentangle a single portrait image into a static 3D reconstruction represented as static Gaussian Splatting, and a predicted whole-image 2D background. It then generates natural lip motion conditioned on input audio, without any motion driven priors. Training is driven purely by 2D reconstruction and score-distillation losses, without 3D supervision nor landmarks. Experimental results demonstrate that Splat-Portrait exhibits superior performance on talking head generation and novel view synthesis, achieving better visual quality compared to previous works. Our project code and supplementary documents are public available at https://github.com/stonewalking/Splat-portrait.
AdaReasoner: Dynamic Tool Orchestration for Iterative Visual Reasoning
When humans face problems beyond their immediate capabilities, they rely on tools, providing a promising paradigm for improving visual reasoning in multimodal large language models (MLLMs). Effective reasoning, therefore, hinges on knowing which tools to use, when to invoke them, and how to compose them over multiple steps, even when faced with new tools or new tasks. We introduce \textbf{AdaReasoner}, a family of multimodal models that learn tool use as a general reasoning skill rather than as tool-specific or explicitly supervised behavior. AdaReasoner is enabled by (i) a scalable data curation pipeline exposing models to long-horizon, multi-step tool interactions; (ii) Tool-GRPO, a reinforcement learning algorithm that optimizes tool selection and sequencing based on end-task success; and (iii) an adaptive learning mechanism that dynamically regulates tool usage. Together, these components allow models to infer tool utility from task context and intermediate outcomes, enabling coordination of multiple tools and generalization to unseen tools. Empirically, AdaReasoner exhibits strong tool-adaptive and generalization behaviors: it autonomously adopts beneficial tools, suppresses irrelevant ones, and adjusts tool usage frequency based on task demands, despite never being explicitly trained to do so. These capabilities translate into state-of-the-art performance across challenging benchmarks, improving the 7B base model by +24.9\% on average and surpassing strong proprietary systems such as GPT-5 on multiple tasks, including VSP and Jigsaw.
comment: 28 pages, 10 figures and 13 tables
CONQUER: Context-Aware Representation with Query Enhancement for Text-Based Person Search
Text-Based Person Search (TBPS) aims to retrieve pedestrian images from large galleries using natural language descriptions. This task, essential for public safety applications, is hindered by cross-modal discrepancies and ambiguous user queries. We introduce CONQUER, a two-stage framework designed to address these challenges by enhancing cross-modal alignment during training and adaptively refining queries at inference. During training, CONQUER employs multi-granularity encoding, complementary pair mining, and context-guided optimal matching based on Optimal Transport to learn robust embeddings. At inference, a plug-and-play query enhancement module refines vague or incomplete queries via anchor selection and attribute-driven enrichment, without requiring retraining of the backbone. Extensive experiments on CUHK-PEDES, ICFG-PEDES, and RSTPReid demonstrate that CONQUER consistently outperforms strong baselines in both Rank-1 accuracy and mAP, yielding notable improvements in cross-domain and incomplete-query scenarios. These results highlight CONQUER as a practical and effective solution for real-world TBPS deployment. Source code is available at https://github.com/zqxie77/CONQUER.
comment: Accepted by ICASSP 2026
Adaptive Domain Shift in Diffusion Models for Cross-Modality Image Translation ICLR 2026
Cross-modal image translation remains brittle and inefficient. Standard diffusion approaches often rely on a single, global linear transfer between domains. We find that this shortcut forces the sampler to traverse off-manifold, high-cost regions, inflating the correction burden and inviting semantic drift. We refer to this shared failure mode as fixed-schedule domain transfer. In this paper, we embed domain-shift dynamics directly into the generative process. Our model predicts a spatially varying mixing field at every reverse step and injects an explicit, target-consistent restoration term into the drift. This in-step guidance keeps large updates on-manifold and shifts the model's role from global alignment to local residual correction. We provide a continuous-time formulation with an exact solution form and derive a practical first-order sampler that preserves marginal consistency. Empirically, across translation tasks in medical imaging, remote sensing, and electroluminescence semantic mapping, our framework improves structural fidelity and semantic consistency while converging in fewer denoising steps.
comment: Paper accepted as a conference paper at ICLR 2026
Scale-Aware Self-Supervised Learning for Segmentation of Small and Sparse Structures
Self-supervised learning (SSL) has emerged as a powerful strategy for representation learning under limited annotation regimes, yet its effectiveness remains highly sensitive to many factors, especially the nature of the target task. In segmentation, existing pipelines are typically tuned to large, homogeneous regions, but their performance drops when objects are small, sparse, or locally irregular. In this work, we propose a scale-aware SSL adaptation that integrates small-window cropping into the augmentation pipeline, zooming in on fine-scale structures during pretraining. We evaluate this approach across two domains with markedly different data modalities: seismic imaging, where the goal is to segment sparse faults, and neuroimaging, where the task is to delineate small cellular structures. In both settings, our method yields consistent improvements over standard and state-of-the-art baselines under label constraints, improving accuracy by up to 13% for fault segmentation and 5% for cell delineation. In contrast, large-scale features such as seismic facies or tissue regions see little benefit, underscoring that the value of SSL depends critically on the scale of the target objects. Our findings highlight the need to align SSL design with object size and sparsity, offering a general principle for buil ding more effective representation learning pipelines across scientific imaging domains.
Multimodal Privacy-Preserving Entity Resolution with Fully Homomorphic Encryption
The canonical challenge of entity resolution within high-compliance sectors, where secure identity reconciliation is frequently confounded by significant data heterogeneity, including syntactic variations in personal identifiers, is a longstanding and complex problem. To this end, we introduce a novel multimodal framework operating with the voluminous data sets typical of government and financial institutions. Specifically, our methodology is designed to address the tripartite challenge of data volume, matching fidelity, and privacy. Consequently, the underlying plaintext of personally identifiable information remains computationally inaccessible throughout the matching lifecycle, empowering institutions to rigorously satisfy stringent regulatory mandates with cryptographic assurances of client confidentiality while achieving a demonstrably low equal error rate and maintaining computational tractability at scale.
comment: 5 pages, 3 figures, IEEE ICASSP'26
EFSI-DETR: Efficient Frequency-Semantic Integration for Real-Time Small Object Detection in UAV Imagery
Real-time small object detection in Unmanned Aerial Vehicle (UAV) imagery remains challenging due to limited feature representation and ineffective multi-scale fusion. Existing methods underutilize frequency information and rely on static convolutional operations, which constrain the capacity to obtain rich feature representations and hinder the effective exploitation of deep semantic features. To address these issues, we propose EFSI-DETR, a novel detection framework that integrates efficient semantic feature enhancement with dynamic frequency-spatial guidance. EFSI-DETR comprises two main components: (1) a Dynamic Frequency-Spatial Unified Synergy Network (DyFusNet) that jointly exploits frequency and spatial cues for robust multi-scale feature fusion, (2) an Efficient Semantic Feature Concentrator (ESFC) that enables deep semantic extraction with minimal computational cost. Furthermore, a Fine-grained Feature Retention (FFR) strategy is adopted to incorporate spatially rich shallow features during fusion to preserve fine-grained details, crucial for small object detection in UAV imagery. Extensive experiments on VisDrone and CODrone benchmarks demonstrate that our EFSI-DETR achieves the state-of-the-art performance with real-time efficiency, yielding improvement of \textbf{1.6}\% and \textbf{5.8}\% in AP and AP$_{s}$ on VisDrone, while obtaining \textbf{188} FPS inference speed on a single RTX 4090 GPU.
AGSP-DSA: An Adaptive Graph Signal Processing Framework for Robust Multimodal Fusion with Dynamic Semantic Alignment
In this paper, we introduce an Adaptive Graph Signal Processing with Dynamic Semantic Alignment (AGSP DSA) framework to perform robust multimodal data fusion over heterogeneous sources, including text, audio, and images. The requested approach uses a dual-graph construction to learn both intra-modal and inter-modal relations, spectral graph filtering to boost the informative signals, and effective node embedding with Multi-scale Graph Convolutional Networks (GCNs). Semantic aware attention mechanism: each modality may dynamically contribute to the context with respect to contextual relevance. The experimental outcomes on three benchmark datasets, including CMU-MOSEI, AVE, and MM-IMDB, show that AGSP-DSA performs as the state of the art. More precisely, it achieves 95.3% accuracy, 0.936 F1-score, and 0.924 mAP on CMU-MOSEI, improving MM-GNN by 2.6 percent in accuracy. It gets 93.4% accuracy and 0.911 F1-score on AVE and 91.8% accuracy and 0.886 F1-score on MM-IMDB, which demonstrate good generalization and robustness in the missing modality setting. These findings verify the efficiency of AGSP-DSA in promoting multimodal learning in sentiment analysis, event recognition and multimedia classification.
GimmBO: Interactive Generative Image Model Merging via Bayesian Optimization
Fine-tuning-based adaptation is widely used to customize diffusion-based image generation, leading to large collections of community-created adapters that capture diverse subjects and styles. Adapters derived from the same base model can be merged with weights, enabling the synthesis of new visual results within a vast and continuous design space. To explore this space, current workflows rely on manual slider-based tuning, an approach that scales poorly and makes weight selection difficult, even when the candidate set is limited to 20-30 adapters. We propose GimmBO to support interactive exploration of adapter merging for image generation through Preferential Bayesian Optimization (PBO). Motivated by observations from real-world usage, including sparsity and constrained weight ranges, we introduce a two-stage BO backend that improves sampling efficiency and convergence in high-dimensional spaces. We evaluate our approach with simulated users and a user study, demonstrating improved convergence, high success rates, and consistent gains over BO and line-search baselines, and further show the flexibility of the framework through several extensions.
Self-Refining Video Sampling
Modern video generators still struggle with complex physical dynamics, often falling short of physical realism. Existing approaches address this using external verifiers or additional training on augmented data, which is computationally expensive and still limited in capturing fine-grained motion. In this work, we present self-refining video sampling, a simple method that uses a pre-trained video generator trained on large-scale datasets as its own self-refiner. By interpreting the generator as a denoising autoencoder, we enable iterative inner-loop refinement at inference time without any external verifier or additional training. We further introduce an uncertainty-aware refinement strategy that selectively refines regions based on self-consistency, which prevents artifacts caused by over-refinement. Experiments on state-of-the-art video generators demonstrate significant improvements in motion coherence and physics alignment, achieving over 70\% human preference compared to the default sampler and guidance-based sampler.
comment: Project page: https://agwmon.github.io/self-refine-video/
An Unsupervised Tensor-Based Domain Alignment
We propose a tensor-based domain alignment (DA) algorithm designed to align source and target tensors within an invariant subspace through the use of alignment matrices. These matrices along with the subspace undergo iterative optimization of which constraint is on oblique manifold, which offers greater flexibility and adaptability compared to the traditional Stiefel manifold. Moreover, regularization terms defined to preserve the variance of both source and target tensors, ensures robust performance. Our framework is versatile, effectively generalizing existing tensor-based DA methods as special cases. Through extensive experiments, we demonstrate that our approach not only enhances DA conversion speed but also significantly boosts classification accuracy. This positions our method as superior to current state-of-the-art techniques, making it a preferable choice for complex domain adaptation tasks.
comment: 5 pages, 5 figures
AI-enabled Satellite Edge Computing: A Single-Pixel Feature based Shallow Classification Model for Hyperspectral Imaging
As the important component of the Earth observation system, hyperspectral imaging satellites provide high-fidelity and enriched information for the formulation of related policies due to the powerful spectral measurement capabilities. However, the transmission speed of the satellite downlink has become a major bottleneck in certain applications, such as disaster monitoring and emergency mapping, which demand a fast response ability. We propose an efficient AI-enabled Satellite Edge Computing paradigm for hyperspectral image classification, facilitating the satellites to attain autonomous decision-making. To accommodate the resource constraints of satellite platforms, the proposed method adopts a lightweight, non-deep learning framework integrated with a few-shot learning strategy. Moreover, onboard processing on satellites could be faced with sensor failure and scan pattern errors, which result in degraded image quality with bad/misaligned pixels and mixed noise. To address these challenges, we develop a novel two-stage pixel-wise label propagation scheme that utilizes only intrinsic spectral features at the single pixel level without the necessity to consider spatial structural information as requested by deep neural networks. In the first stage, initial pixel labels are obtained by propagating selected anchor labels through the constructed anchor-pixel affinity matrix. Subsequently, a top-k pruned sparse graph is generated by directly computing pixel-level similarities. In the second stage, a closed-form solution derived from the sparse graph is employed to replace iterative computations. Furthermore, we developed a rank constraint-based graph clustering algorithm to determine the anchor labels.
Generative Diffusion Augmentation with Quantum-Enhanced Discrimination for Medical Image Diagnosis
In biomedical engineering, artificial intelligence has become a pivotal tool for enhancing medical diagnostics, particularly in medical image classification tasks such as detecting pneumonia from chest X-rays and breast cancer screening. However, real-world medical datasets frequently exhibit severe class imbalance, where positive samples substantially outnumber negative samples, leading to biased models with low recall rates for minority classes. This imbalance not only compromises diagnostic accuracy but also poses clinical misdiagnosis risks. To address this challenge, we propose SDA-QEC (Simplified Diffusion Augmentation with Quantum-Enhanced Classification), an innovative framework that integrates simplified diffusion-based data augmentation with quantum-enhanced feature discrimination. Our approach employs a lightweight diffusion augmentor to generate high-quality synthetic samples for minority classes, rebalancing the training distribution. Subsequently, a quantum feature layer embedded within MobileNetV2 architecture enhances the model's discriminative capability through high-dimensional feature mapping in Hilbert space. Comprehensive experiments on coronary angiography image classification demonstrate that SDA-QEC achieves 98.33% accuracy, 98.78% AUC, and 98.33% F1-score, significantly outperforming classical baselines including ResNet18, MobileNetV2, DenseNet121, and VGG16. Notably, our framework simultaneously attains 98.33% sensitivity and 98.33% specificity, achieving a balanced performance critical for clinical deployment. The proposed method validates the feasibility of integrating generative augmentation with quantum-enhanced modeling in real-world medical imaging tasks, offering a novel research pathway for developing highly reliable medical AI systems in small-sample, highly imbalanced, and high-risk diagnostic scenarios.
Automated Landmark Detection for assessing hip conditions: A Cross-Modality Validation of MRI versus X-ray
Many clinical screening decisions are based on angle measurements. In particular, FemoroAcetabular Impingement (FAI) screening relies on angles traditionally measured on X-rays. However, assessing the height and span of the impingement area requires also a 3D view through an MRI scan. The two modalities inform the surgeon on different aspects of the condition. In this work, we conduct a matched-cohort validation study (89 patients, paired MRI/X-ray) using standard heatmap regression architectures to assess cross-modality clinical equivalence. Seen that landmark detection has been proven effective on X-rays, we show that MRI also achieves equivalent localisation and diagnostic accuracy for cam-type impingement. Our method demonstrates clinical feasibility for FAI assessment in coronal views of 3D MRI volumes, opening the possibility for volumetric analysis through placing further landmarks. These results support integrating automated FAI assessment into routine MRI workflows. Code is released at https://github.com/Malga-Vision/Landmarks-Hip-Conditions
comment: Accepted at International Symposium on Biomedical Imaging (ISBI 2026)
REMAC: Reference-Based Martian Asymmetrical Image Compression
To expedite space exploration on Mars, it is indispensable to develop an efficient Martian image compression method for transmitting images through the constrained Mars-to-Earth communication channel. Although the existing learned compression methods have achieved promising results for natural images from earth, there remain two critical issues that hinder their effectiveness for Martian image compression: 1) They overlook the highly-limited computational resources on Mars; 2) They do not utilize the strong \textit{inter-image} similarities across Martian images to advance image compression performance. Motivated by our empirical analysis of the strong \textit{intra-} and \textit{inter-image} similarities from the perspective of texture, color, and semantics, we propose a reference-based Martian asymmetrical image compression (REMAC) approach, which shifts computational complexity from the encoder to the resource-rich decoder and simultaneously improves compression performance. To leverage \textit{inter-image} similarities, we propose a reference-guided entropy module and a ref-decoder that utilize useful information from reference images, reducing redundant operations at the encoder and achieving superior compression performance. To exploit \textit{intra-image} similarities, the ref-decoder adopts a deep, multi-scale architecture with enlarged receptive field size to model long-range spatial dependencies. Additionally, we develop a latent feature recycling mechanism to further alleviate the extreme computational constraints on Mars. Experimental results show that REMAC reduces encoder complexity by 43.51\% compared to the state-of-the-art method, while achieving a BD-PSNR gain of 0.2664 dB.
comment: Accepted for publication in IEEE Transactions on Geoscience and Remote Sensing (TGRS). 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. 18 pages, 20 figures
GenAgent: Scaling Text-to-Image Generation via Agentic Multimodal Reasoning
We introduce GenAgent, unifying visual understanding and generation through an agentic multimodal model. Unlike unified models that face expensive training costs and understanding-generation trade-offs, GenAgent decouples these capabilities through an agentic framework: understanding is handled by the multimodal model itself, while generation is achieved by treating image generation models as invokable tools. Crucially, unlike existing modular systems constrained by static pipelines, this design enables autonomous multi-turn interactions where the agent generates multimodal chains-of-thought encompassing reasoning, tool invocation, judgment, and reflection to iteratively refine outputs. We employ a two-stage training strategy: first, cold-start with supervised fine-tuning on high-quality tool invocation and reflection data to bootstrap agent behaviors; second, end-to-end agentic reinforcement learning combining pointwise rewards (final image quality) and pairwise rewards (reflection accuracy), with trajectory resampling for enhanced multi-turn exploration. GenAgent significantly boosts base generator(FLUX.1-dev) performance on GenEval++ (+23.6\%) and WISE (+14\%). Beyond performance gains, our framework demonstrates three key properties: 1) cross-tool generalization to generators with varying capabilities, 2) test-time scaling with consistent improvements across interaction rounds, and 3) task-adaptive reasoning that automatically adjusts to different tasks. Our code will be available at \href{https://github.com/deep-kaixun/GenAgent}{this url}.
From Cold Start to Active Learning: Embedding-Based Scan Selection for Medical Image Segmentation
Accurate segmentation annotations are critical for disease monitoring, yet manual labeling remains a major bottleneck due to the time and expertise required. Active learning (AL) alleviates this burden by prioritizing informative samples for annotation, typically through a diversity-based cold-start phase followed by uncertainty-driven selection. We propose a novel cold-start sampling strategy that combines foundation-model embeddings with clustering, including automatic selection of the number of clusters and proportional sampling across clusters, to construct a diverse and representative initial training. This is followed by an uncertainty-based AL framework that integrates spatial diversity to guide sample selection. The proposed method is intuitive and interpretable, enabling visualization of the feature-space distribution of candidate samples. We evaluate our approach on three datasets spanning X-ray and MRI modalities. On the CheXmask dataset, the cold-start strategy outperforms random selection, improving Dice from 0.918 to 0.929 and reducing the Hausdorff distance from 32.41 to 27.66 mm. In the AL setting, combined entropy and diversity selection improves Dice from 0.919 to 0.939 and reduces the Hausdorff distance from 30.10 to 19.16 mm. On the Montgomery dataset, cold-start gains are substantial, with Dice improving from 0.928 to 0.950 and Hausdorff distance decreasing from 14.22 to 9.38 mm. On the SynthStrip dataset, cold-start selection slightly affects Dice but reduces the Hausdorff distance from 9.43 to 8.69 mm, while active learning improves Dice from 0.816 to 0.826 and reduces the Hausdorff distance from 7.76 to 6.38 mm. Overall, the proposed framework consistently outperforms baseline methods in low-data regimes, improving segmentation accuracy.
comment: 19 pages without references
Closing the Modality Gap Aligns Group-Wise Semantics ICLR 2026
In multimodal learning, CLIP has been recognized as the \textit{de facto} method for learning a shared latent space across multiple modalities, placing similar representations close to each other and moving them away from dissimilar ones. Although CLIP-based losses effectively align modalities at the semantic level, the resulting latent spaces often remain only partially shared, revealing a structural mismatch known as the modality gap. While the necessity of addressing this phenomenon remains debated, particularly given its limited impact on instance-wise tasks (e.g., retrieval), we prove that its influence is instead strongly pronounced in group-level tasks (e.g., clustering). To support this claim, we introduce a novel method designed to consistently reduce this discrepancy in two-modal settings, with a straightforward extension to the general $n$-modal case. Through our extensive evaluation, we demonstrate our novel insight: while reducing the gap provides only marginal or inconsistent improvements in traditional instance-wise tasks, it significantly enhances group-wise tasks. These findings may reshape our understanding of the modality gap, highlighting its key role in improving performance on tasks requiring semantic grouping.
comment: ICLR 2026
DisasterInsight: A Multimodal Benchmark for Function-Aware and Grounded Disaster Assessment
Timely interpretation of satellite imagery is critical for disaster response, yet existing vision-language benchmarks for remote sensing largely focus on coarse labels and image-level recognition, overlooking the functional understanding and instruction robustness required in real humanitarian workflows. We introduce DisasterInsight, a multimodal benchmark designed to evaluate vision-language models (VLMs) on realistic disaster analysis tasks. DisasterInsight restructures the xBD dataset into approximately 112K building-centered instances and supports instruction-diverse evaluation across multiple tasks, including building-function classification, damage-level and disaster-type classification, counting, and structured report generation aligned with humanitarian assessment guidelines. To establish domain-adapted baselines, we propose DI-Chat, obtained by fine-tuning existing VLM backbones on disaster-specific instruction data using parameter-efficient Low-Rank Adaptation (LoRA). Extensive experiments on state-of-the-art generic and remote-sensing VLMs reveal substantial performance gaps across tasks, particularly in damage understanding and structured report generation. DI-Chat achieves significant improvements on damage-level and disaster-type classification as well as report generation quality, while building-function classification remains challenging for all evaluated models. DisasterInsight provides a unified benchmark for studying grounded multimodal reasoning in disaster imagery.
comment: Under review at ICPR 2026
AgentDoG: A Diagnostic Guardrail Framework for AI Agent Safety and Security
The rise of AI agents introduces complex safety and security challenges arising from autonomous tool use and environmental interactions. Current guardrail models lack agentic risk awareness and transparency in risk diagnosis. To introduce an agentic guardrail that covers complex and numerous risky behaviors, we first propose a unified three-dimensional taxonomy that orthogonally categorizes agentic risks by their source (where), failure mode (how), and consequence (what). Guided by this structured and hierarchical taxonomy, we introduce a new fine-grained agentic safety benchmark (ATBench) and a Diagnostic Guardrail framework for agent safety and security (AgentDoG). AgentDoG provides fine-grained and contextual monitoring across agent trajectories. More Crucially, AgentDoG can diagnose the root causes of unsafe actions and seemingly safe but unreasonable actions, offering provenance and transparency beyond binary labels to facilitate effective agent alignment. AgentDoG variants are available in three sizes (4B, 7B, and 8B parameters) across Qwen and Llama model families. Extensive experimental results demonstrate that AgentDoG achieves state-of-the-art performance in agentic safety moderation in diverse and complex interactive scenarios. All models and datasets are openly released.
comment: 40 pages, 26 figures
LoD-Structured 3D Gaussian Splatting for Streaming Video Reconstruction
Free-Viewpoint Video (FVV) reconstruction enables photorealistic and interactive 3D scene visualization; however, real-time streaming is often bottlenecked by sparse-view inputs, prohibitive training costs, and bandwidth constraints. While recent 3D Gaussian Splatting (3DGS) has advanced FVV due to its superior rendering speed, Streaming Free-Viewpoint Video (SFVV) introduces additional demands for rapid optimization, high-fidelity reconstruction under sparse constraints, and minimal storage footprints. To bridge this gap, we propose StreamLoD-GS, an LoD-based Gaussian Splatting framework designed specifically for SFVV. Our approach integrates three core innovations: 1) an Anchor- and Octree-based LoD-structured 3DGS with a hierarchical Gaussian dropout technique to ensure efficient and stable optimization while maintaining high-quality rendering; 2) a GMM-based motion partitioning mechanism that separates dynamic and static content, refining dynamic regions while preserving background stability; and 3) a quantized residual refinement framework that significantly reduces storage requirements without compromising visual fidelity. Extensive experiments demonstrate that StreamLoD-GS achieves competitive or state-of-the-art performance in terms of quality, efficiency, and storage.
Fair-Eye Net: A Fair, Trustworthy, Multimodal Integrated Glaucoma Full Chain AI System
Glaucoma is a top cause of irreversible blindness globally, making early detection and longitudinal follow-up pivotal to preventing permanent vision loss. Current screening and progression assessment, however, rely on single tests or loosely linked examinations, introducing subjectivity and fragmented care. Limited access to high-quality imaging tools and specialist expertise further compromises consistency and equity in real-world use. To address these gaps, we developed Fair-Eye Net, a fair, reliable multimodal AI system closing the clinical loop from glaucoma screening to follow-up and risk alerting. It integrates fundus photos, OCT structural metrics, VF functional indices, and demographic factors via a dual-stream heterogeneous fusion architecture, with an uncertainty-aware hierarchical gating strategy for selective prediction and safe referral. A fairness constraint reduces missed diagnoses in disadvantaged subgroups. Experimental results show it achieved an AUC of 0.912 (96.7% specificity), cut racial false-negativity disparity by 73.4% (12.31% to 3.28%), maintained stable cross-domain performance, and enabled 3-12 months of early risk alerts (92% sensitivity, 88% specificity). Unlike post hoc fairness adjustments, Fair-Eye Net optimizes fairness as a primary goal with clinical reliability via multitask learning, offering a reproducible path for clinical translation and large-scale deployment to advance global eye health equity.
3DGesPolicy: Phoneme-Aware Holistic Co-Speech Gesture Generation Based on Action Control
Generating holistic co-speech gestures that integrate full-body motion with facial expressions suffers from semantically incoherent coordination on body motion and spatially unstable meaningless movements due to existing part-decomposed or frame-level regression methods, We introduce 3DGesPolicy, a novel action-based framework that reformulates holistic gesture generation as a continuous trajectory control problem through diffusion policy from robotics. By modeling frame-to-frame variations as unified holistic actions, our method effectively learns inter-frame holistic gesture motion patterns and ensures both spatially and semantically coherent movement trajectories that adhere to realistic motion manifolds. To further bridge the gap in expressive alignment, we propose a Gesture-Audio-Phoneme (GAP) fusion module that can deeply integrate and refine multi-modal signals, ensuring structured and fine-grained alignment between speech semantics, body motion, and facial expressions. Extensive quantitative and qualitative experiments on the BEAT2 dataset demonstrate the effectiveness of our 3DGesPolicy across other state-of-the-art methods in generating natural, expressive, and highly speech-aligned holistic gestures.
comment: 13 pages, 5 figures
On Procrustes Contamination in Machine Learning Applications of Geometric Morphometrics
Geometric morphometrics (GMM) is widely used to quantify shape variation, more recently serving as input for machine learning (ML) analyses. Standard practice aligns all specimens via Generalized Procrustes Analysis (GPA) prior to splitting data into training and test sets, potentially introducing statistical dependence and contaminating downstream predictive models. Here, the effects of GPA-induced contamination are formally characterised using controlled 2D and 3D simulations across varying sample sizes, landmark densities, and allometric patterns. A novel realignment procedure is proposed, whereby test specimens are aligned to the training set prior to model fitting, eliminating cross-sample dependency. Simulations reveal a robust "diagonal" in sample-size vs. landmark-space, reflecting the scaling of RMSE under isotropic variation, with slopes analytically derived from the degrees of freedom in Procrustes tangent space. The importance of spatial autocorrelation among landmarks is further demonstrated using linear and convolutional regression models, highlighting performance degradation when landmark relationships are ignored. This work establishes the need for careful preprocessing in ML applications of GMM, provides practical guidelines for realignment, and clarifies fundamental statistical constraints inherent to Procrustes shape space.
comment: 17 pages, 5 figures, Preprint pending review
Comparative Evaluation of Machine Learning Algorithms for Affective State Recognition from Children's Drawings
Autism spectrum disorder (ASD) represents a neurodevelopmental condition characterized by difficulties in expressing emotions and communication, particularly during early childhood. Understanding the affective state of children at an early age remains challenging, as conventional assessment methods are often intrusive, subjective, or difficult to apply consistently. This paper builds upon previous work on affective state recognition from children's drawings by presenting a comparative evaluation of machine learning models for emotion classification. Three deep learning architectures -- MobileNet, EfficientNet, and VGG16 -- are evaluated within a unified experimental framework to analyze classification performance, robustness, and computational efficiency. The models are trained using transfer learning on a dataset of children's drawings annotated with emotional labels provided by psychological experts. The results highlight important trade-offs between lightweight and deeper architectures when applied to drawing-based affective computing tasks, particularly in mobile and real-time application contexts.
comment: 9 pages, 8 figures
Larger than memory image processing
This report addresses larger-than-memory image analysis for petascale datasets such as 1.4 PB electron-microscopy volumes and 150 TB human-organ atlases. We argue that performance is fundamentally I/O-bound. We show that structuring analysis as streaming passes over data is crucial. For 3D volumes, two representations are popular: stacks of 2D slices (e.g., directories or multi-page TIFF) and 3D chunked layouts (e.g., Zarr/HDF5). While for a few algorithms, chunked layout on disk is crucial to keep disk I/O at a minimum, we show how the slice-based streaming architecture can be built on top of either image representation in a manner that minimizes disk I/O. This is in particular advantageous for algorithms relying on neighbouring values, since the slicing streaming architecture is 1D, which implies that there are only 2 possible sweeping orders, both of which are aligned with the order in which images are read from the disk. This is in contrast to 3D chunks, in which any sweep cannot be done without accessing each chunk at least 9 times. We formalize this with sweep-based execution (natural 2D/3D orders), windowed operations, and overlap-aware tiling to minimize redundant access. Building on these principles, we introduce a domain-specific language (DSL) that encodes algorithms with intrinsic knowledge of their optimal streaming and memory use; the DSL performs compile-time and run-time pipeline analyses to automatically select window sizes, fuse stages, tee and zip streams, and schedule passes for limited-RAM machines, yielding near-linear I/O scans and predictable memory footprints. The approach integrates with existing tooling for segmentation and morphology but reframes pre/post-processing as pipelines that privilege sequential read/write patterns, delivering substantial throughput gains for extremely large images without requiring full-volume residency in memory.
comment: 10 pages
Noise-Robust AV-ASR Using Visual Features Both in the Whisper Encoder and Decoder
In audiovisual automatic speech recognition (AV-ASR) systems, information fusion of visual features in a pre-trained ASR has been proven as a promising method to improve noise robustness. In this work, based on the prominent Whisper ASR, first, we propose a simple and effective visual fusion method -- use of visual features both in encoder and decoder (dual-use) -- to learn the audiovisual interactions in the encoder and to weigh modalities in the decoder. Second, we compare visual fusion methods in Whisper models of various sizes. Our proposed dual-use method shows consistent noise robustness improvement, e.g., a 35% relative improvement (WER: 4.41% vs. 6.83%) based on Whisper small, and a 57% relative improvement (WER: 4.07% vs. 9.53%) based on Whisper medium, compared to typical reference middle fusion in babble noise with a signal-to-noise ratio (SNR) of 0dB. Third, we conduct ablation studies examining the impact of various module designs and fusion options. Fine-tuned on 1929 hours of audiovisual data, our dual-use method using Whisper medium achieves 4.08% (MUSAN babble noise) and 4.43% (NoiseX babble noise) average WER across various SNRs, thereby establishing a new state-of-the-art in noisy conditions on the LRS3 AV-ASR benchmark. Our code is at https://github.com/ifnspaml/Dual-Use-AVASR
comment: accepted at ICASSP2026
Efficient Complex-Valued Vision Transformers for MRI Classification Directly from k-Space
Deep learning applications in Magnetic Resonance Imaging (MRI) predominantly operate on reconstructed magnitude images, a process that discards phase information and requires computationally expensive transforms. Standard neural network architectures rely on local operations (convolutions or grid-patches) that are ill-suited for the global, non-local nature of raw frequency-domain (k-Space) data. In this work, we propose a novel complex-valued Vision Transformer (kViT) designed to perform classification directly on k-Space data. To bridge the geometric disconnect between current architectures and MRI physics, we introduce a radial k-Space patching strategy that respects the spectral energy distribution of the frequency-domain. Extensive experiments on the fastMRI and in-house datasets demonstrate that our approach achieves classification performance competitive with state-of-the-art image-domain baselines (ResNet, EfficientNet, ViT). Crucially, kViT exhibits superior robustness to high acceleration factors and offers a paradigm shift in computational efficiency, reducing VRAM consumption during training by up to 68$\times$ compared to standard methods. This establishes a pathway for resource-efficient, direct-from-scanner AI analysis.
ARMOR: Agentic Reasoning for Methods Orchestration and Reparameterization for Robust Adversarial Attacks
Existing automated attack suites operate as static ensembles with fixed sequences, lacking strategic adaptation and semantic awareness. This paper introduces the Agentic Reasoning for Methods Orchestration and Reparameterization (ARMOR) framework to address these limitations. ARMOR orchestrates three canonical adversarial primitives, Carlini-Wagner (CW), Jacobian-based Saliency Map Attack (JSMA), and Spatially Transformed Attacks (STA) via Vision Language Models (VLM)-guided agents that collaboratively generate and synthesize perturbations through a shared ``Mixing Desk". Large Language Models (LLMs) adaptively tune and reparameterize parallel attack agents in a real-time, closed-loop system that exploits image-specific semantic vulnerabilities. On standard benchmarks, ARMOR achieves improved cross-architecture transfer and reliably fools both settings, delivering a blended output for blind targets and selecting the best attack or blended attacks for white-box targets using a confidence-and-SSIM score.
Estimation of geometric transformation matrices using grid-shaped pilot signals
Digital watermarking techniques are essential to prevent unauthorized use of images. Since pirated images are often geometrically distorted by operations such as scaling and cropping, accurate synchronization - detecting the embedding position of the watermark - is critical for proper extraction. In particular, cropping changes the origin of the image, making synchronization difficult. However, few existing methods are robust against cropping. To address this issue, we propose a watermarking method that estimates geometric transformations applied to a stego image using a pilot signal, allowing synchronization even after cropping. A grid-shaped pilot signal with distinct horizontal and vertical values is embedded in the image. When the image is transformed, the grid is also distorted. By analyzing this distortion, the transformation matrix can be estimated. Applying the Radon transform to the distorted image allows estimation of the grid angles and intervals. In addition, since the horizontal and vertical grid lines are encoded differently, the grid orientation can be determined, which reduces ambiguity. To validate our method, we performed simulations with anisotropic scaling, rotation, shearing, and cropping. The results show that the proposed method accurately estimates transformation matrices with low error under both single and composite attacks.
Gaze Prediction in Virtual Reality Without Eye Tracking Using Visual and Head Motion Cues
Gaze prediction plays a critical role in Virtual Reality (VR) applications by reducing sensor-induced latency and enabling computationally demanding techniques such as foveated rendering, which rely on anticipating user attention. However, direct eye tracking is often unavailable due to hardware limitations or privacy concerns. To address this, we present a novel gaze prediction framework that combines Head-Mounted Display (HMD) motion signals with visual saliency cues derived from video frames. Our method employs UniSal, a lightweight saliency encoder, to extract visual features, which are then fused with HMD motion data and processed through a time-series prediction module. We evaluate two lightweight architectures, TSMixer and LSTM, for forecasting future gaze directions. Experiments on the EHTask dataset, along with deployment on commercial VR hardware, show that our approach consistently outperforms baselines such as Center-of-HMD and Mean Gaze. These results demonstrate the effectiveness of predictive gaze modeling in reducing perceptual lag and enhancing natural interaction in VR environments where direct eye tracking is constrained.
OREHAS: A fully automated deep-learning pipeline for volumetric endolymphatic hydrops quantification in MRI
We present OREHAS (Optimized Recognition & Evaluation of volumetric Hydrops in the Auditory System), the first fully automatic pipeline for volumetric quantification of endolymphatic hydrops (EH) from routine 3D-SPACE-MRC and 3D-REAL-IR MRI. The system integrates three components -- slice classification, inner ear localization, and sequence-specific segmentation -- into a single workflow that computes per-ear endolymphatic-to-vestibular volume ratios (ELR) directly from whole MRI volumes, eliminating the need for manual intervention. Trained with only 3 to 6 annotated slices per patient, OREHAS generalized effectively to full 3D volumes, achieving Dice scores of 0.90 for SPACE-MRC and 0.75 for REAL-IR. In an external validation cohort with complete manual annotations, OREHAS closely matched expert ground truth (VSI = 74.3%) and substantially outperformed the clinical syngo.via software (VSI = 42.5%), which tended to overestimate endolymphatic volumes. Across 19 test patients, vestibular measurements from OREHAS were consistent with syngo.via, while endolymphatic volumes were systematically smaller and more physiologically realistic. These results show that reliable and reproducible EH quantification can be achieved from standard MRI using limited supervision. By combining efficient deep-learning-based segmentation with a clinically aligned volumetric workflow, OREHAS reduces operator dependence, ensures methodological consistency. Besides, the results are compatible with established imaging protocols. The approach provides a robust foundation for large-scale studies and for recalibrating clinical diagnostic thresholds based on accurate volumetric measurements of the inner ear.
Q-Bench-Portrait: Benchmarking Multimodal Large Language Models on Portrait Image Quality Perception
Recent advances in multimodal large language models (MLLMs) have demonstrated impressive performance on existing low-level vision benchmarks, which primarily focus on generic images. However, their capabilities to perceive and assess portrait images, a domain characterized by distinct structural and perceptual properties, remain largely underexplored. To this end, we introduce Q-Bench-Portrait, the first holistic benchmark specifically designed for portrait image quality perception, comprising 2,765 image-question-answer triplets and featuring (1) diverse portrait image sources, including natural, synthetic distortion, AI-generated, artistic, and computer graphics images; (2) comprehensive quality dimensions, covering technical distortions, AIGC-specific distortions, and aesthetics; and (3) a range of question formats, including single-choice, multiple-choice, true/false, and open-ended questions, at both global and local levels. Based on Q-Bench-Portrait, we evaluate 20 open-source and 5 closed-source MLLMs, revealing that although current models demonstrate some competence in portrait image perception, their performance remains limited and imprecise, with a clear gap relative to human judgments. We hope that the proposed benchmark will foster further research into enhancing the portrait image perception capabilities of both general-purpose and domain-specific MLLMs.
Beyond Rigid: Benchmarking Non-Rigid Video Editing
Despite the remarkable progress in text-driven video editing, generating coherent non-rigid deformations remains a critical challenge, often plagued by physical distortion and temporal flicker. To bridge this gap, we propose NRVBench, the first dedicated and comprehensive benchmark designed to evaluate non-rigid video editing. First, we curate a high-quality dataset consisting of 180 non-rigid motion videos from six physics-based categories, equipped with 2,340 fine-grained task instructions and 360 multiple-choice questions. Second, we propose NRVE-Acc, a novel evaluation metric based on Vision-Language Models that can rigorously assess physical compliance, temporal consistency, and instruction alignment, overcoming the limitations of general metrics in capturing complex dynamics. Third, we introduce a training-free baseline, VM-Edit, which utilizes a dual-region denoising mechanism to achieve structure-aware control, balancing structural preservation and dynamic deformation. Extensive experiments demonstrate that while current methods have shortcomings in maintaining physical plausibility, our method achieves excellent performance across both standard and proposed metrics. We believe the benchmark could serve as a standard testing platform for advancing physics-aware video editing.
PPISP: Physically-Plausible Compensation and Control of Photometric Variations in Radiance Field Reconstruction
Multi-view 3D reconstruction methods remain highly sensitive to photometric inconsistencies arising from camera optical characteristics and variations in image signal processing (ISP). Existing mitigation strategies such as per-frame latent variables or affine color corrections lack physical grounding and generalize poorly to novel views. We propose the Physically-Plausible ISP (PPISP) correction module, which disentangles camera-intrinsic and capture-dependent effects through physically based and interpretable transformations. A dedicated PPISP controller, trained on the input views, predicts ISP parameters for novel viewpoints, analogous to auto exposure and auto white balance in real cameras. This design enables realistic and fair evaluation on novel views without access to ground-truth images. PPISP achieves SoTA performance on standard benchmarks, while providing intuitive control and supporting the integration of metadata when available. The source code is available at: https://github.com/nv-tlabs/ppisp
comment: For more details and updates, please visit our project website: https://research.nvidia.com/labs/sil/projects/ppisp/
A Tumor Aware DenseNet Swin Hybrid Learning with Boosted and Hierarchical Feature Spaces for Large-Scale Brain MRI Classification
This study proposes an efficient Densely Swin Hybrid (EDSH) framework for brain tumor MRI analysis, designed to jointly capture fine grained texture patterns and long range contextual dependencies. Two tumor aware experimental setups are introduced to address class-specific diagnostic challenges. The first setup employs a Boosted Feature Space (BFS), where independently customized DenseNet and Swint branches learn complementary local and global representations that are dimension aligned, fused, and boosted, enabling highly sensitive detection of diffuse glioma patterns by successfully learning the features of irregular shape, poorly defined mass, and heterogeneous texture. The second setup adopts a hierarchical DenseNet Swint architecture with Deep Feature Extraction have Dual Residual connections (DFE and DR), in which DenseNet serves as a stem CNN for structured local feature learning, while Swin_t models global tumor morphology, effectively suppressing false negatives in meningioma and pituitary tumor classification by learning the features of well defined mass, location (outside brain) and enlargments in tumors (dural tail or upward extension). DenseNet is customized at the input level to match MRI spatial characteristics, leveraging dense residual connectivity to preserve texture information and mitigate vanishing-gradient effects. In parallel, Swint is tailored through task aligned patch embedding and shifted-window self attention to efficiently capture hierarchical global dependencies. Extensive evaluation on a large-scale MRI dataset (stringent 40,260 images across four tumor classes) demonstrates consistent superiority over standalone CNNs, Vision Transformers, and hybrids, achieving 98.50 accuracy and recall on the test unseen dataset.
comment: 33 Pages, 8 Tables, Figures 16
Integrating Fine-Grained Audio-Visual Evidence for Robust Multimodal Emotion Reasoning
Multimodal emotion analysis is shifting from static classification to generative reasoning. Beyond simple label prediction, robust affective reasoning must synthesize fine-grained signals such as facial micro-expressions and prosodic which shifts to decode the latent causality within complex social contexts. However, current Multimodal Large Language Models (MLLMs) face significant limitations in fine-grained perception, primarily due to data scarcity and insufficient cross-modal fusion. As a result, these models often exhibit unimodal dominance which leads to hallucinations in complex multimodal interactions, particularly when visual and acoustic cues are subtle, ambiguous, or even contradictory (e.g., in sarcastic scenery). To address this, we introduce SABER-LLM, a framework designed for robust multimodal reasoning. First, we construct SABER, a large-scale emotion reasoning dataset comprising 600K video clips, annotated with a novel six-dimensional schema that jointly captures audiovisual cues and causal logic. Second, we propose the structured evidence decomposition paradigm, which enforces a "perceive-then-reason" separation between evidence extraction and reasoning to alleviate unimodal dominance. The ability to perceive complex scenes is further reinforced by consistency-aware direct preference optimization, which explicitly encourages alignment among modalities under ambiguous or conflicting perceptual conditions. Experiments on EMER, EmoBench-M, and SABER-Test demonstrate that SABER-LLM significantly outperforms open-source baselines and achieves robustness competitive with closed-source models in decoding complex emotional dynamics. The dataset and model are available at https://github.com/zxzhao0/SABER-LLM.
SwipeGen: Bridging the Execution Gap in GUI Agents via Human-like Swipe Synthesis
With the widespread adoption of Graphical User Interface (GUI) agents for automating GUI interaction tasks, substantial research focused on improving GUI perception to ground task instructions into concrete action steps. However, the step execution capability of these agents has gradually emerged as a new bottleneck for task completion. In particular, existing GUI agents often adopt overly simplified strategies for handling swipe interactions, preventing them from accurately replicating human-like behavior. To address this limitation, we decompose human swipe gestures into multiple quantifiable dimensions and propose an automated pipeline SwipeGen to synthesize human-like swipe interactions through GUI exploration. Based on this pipeline, we construct and release the first benchmark for evaluating the swipe execution capability of GUI agents. Furthermore, leveraging the synthesized data, we propose GUISwiper, a GUI agent with enhanced interaction execution capabilities. Experimental results demonstrate that GUISwiper achieves a swipe execution accuracy of 69.07%, representing a 214% improvement over existing VLM baselines.
comment: 15 pages, 3 figures. Under review. Code and dataset will be released upon acceptance
Contextual Range-View Projection for 3D LiDAR Point Clouds
Range-view projection provides an efficient method for transforming 3D LiDAR point clouds into 2D range image representations, enabling effective processing with 2D deep learning models. However, a major challenge in this projection is the many-to-one conflict, where multiple 3D points are mapped onto the same pixel in the range image, requiring a selection strategy. Existing approaches typically retain the point with the smallest depth (closest to the LiDAR), disregarding semantic relevance and object structure, which leads to the loss of important contextual information. In this paper, we extend the depth-based selection rule by incorporating contextual information from both instance centers and class labels, introducing two mechanisms: \textit{Centerness-Aware Projection (CAP)} and \textit{Class-Weighted-Aware Projection (CWAP)}. In CAP, point depths are adjusted according to their distance from the instance center, thereby prioritizing central instance points over noisy boundary and background points. In CWAP, object classes are prioritized through user-defined weights, offering flexibility in the projection strategy. Our evaluations on the SemanticKITTI dataset show that CAP preserves more instance points during projection, achieving up to a 3.1\% mIoU improvement compared to the baseline. Furthermore, CWAP enhances the performance of targeted classes while having a negligible impact on the performance of other classes
Revisiting Aerial Scene Classification on the AID Benchmark
Aerial images play a vital role in urban planning and environmental preservation, as they consist of various structures, representing different types of buildings, forests, mountains, and unoccupied lands. Due to its heterogeneous nature, developing robust models for scene classification remains a challenge. In this study, we conduct a literature review of various machine learning methods for aerial image classification. Our survey covers a range of approaches from handcrafted features (e.g., SIFT, LBP) to traditional CNNs (e.g., VGG, GoogLeNet), and advanced deep hybrid networks. In this connection, we have also designed Aerial-Y-Net, a spatial attention-enhanced CNN with multi-scale feature fusion mechanism, which acts as an attention-based model and helps us to better understand the complexities of aerial images. Evaluated on the AID dataset, our model achieves 91.72% accuracy, outperforming several baseline architectures.
comment: Presented at the IEEE India Geoscience and Remote Sensing Symposium 2025 and accepted for publication in IEEE Xplore
Depth to Anatomy: Learning Internal Organ Locations from Surface Depth Images
Automated patient positioning plays an important role in optimizing scanning procedure and improving patient throughput. Leveraging depth information captured by RGB-D cameras presents a promising approach for estimating internal organ positions, thereby enabling more accurate and efficient positioning. In this work, we propose a learning-based framework that directly predicts the 3D locations and shapes of multiple internal organs from single 2D depth images of the body surface. Utilizing a large-scale dataset of full-body MRI scans, we synthesize depth images paired with corresponding anatomical segmentations to train a unified convolutional neural network architecture. Our method accurately localizes a diverse set of anatomical structures, including bones and soft tissues, without requiring explicit surface reconstruction. Experimental results demonstrate the potential of integrating depth sensors into radiology workflows to streamline scanning procedures and enhance patient experience through automated patient positioning.
comment: preprint
Co-PLNet: A Collaborative Point-Line Network for Prompt-Guided Wireframe Parsing
Wireframe parsing aims to recover line segments and their junctions to form a structured geometric representation useful for downstream tasks such as Simultaneous Localization and Mapping (SLAM). Existing methods predict lines and junctions separately and reconcile them post-hoc, causing mismatches and reduced robustness. We present Co-PLNet, a point-line collaborative framework that exchanges spatial cues between the two tasks, where early detections are converted into spatial prompts via a Point-Line Prompt Encoder (PLP-Encoder), which encodes geometric attributes into compact and spatially aligned maps. A Cross-Guidance Line Decoder (CGL-Decoder) then refines predictions with sparse attention conditioned on complementary prompts, enforcing point-line consistency and efficiency. Experiments on Wireframe and YorkUrban show consistent improvements in accuracy and robustness, together with favorable real-time efficiency, demonstrating our effectiveness for structured geometry perception.
A multimodal vision foundation model for generalizable knee pathology
Musculoskeletal disorders represent a leading cause of global disability, creating an urgent demand for precise interpretation of medical imaging. Current artificial intelligence (AI) approaches in orthopedics predominantly rely on task-specific, supervised learning paradigms. These methods are inherently fragmented, require extensive annotated datasets, and often lack generalizability across different modalities and clinical scenarios. The development of foundation models in this field has been constrained by the scarcity of large-scale, curated, and open-source musculoskeletal datasets. To address these challenges, we introduce OrthoFoundation, a multimodal vision foundation model optimized for musculoskeletal pathology. We constructed a pre-training dataset of 1.2 million unlabeled knee X-ray and MRI images from internal and public databases. Utilizing a Dinov3 backbone, the model was trained via self-supervised contrastive learning to capture robust radiological representations. OrthoFoundation achieves state-of-the-art (SOTA) performance across 14 downstream tasks. It attained superior accuracy in X-ray osteoarthritis diagnosis and ranked first in MRI structural injury detection. The model demonstrated remarkable label efficiency, matching supervised baselines using only 50% of labeled data. Furthermore, despite being pre-trained on knee images, OrthoFoundation exhibited exceptional cross-anatomy generalization to the hip, shoulder, and ankle. OrthoFoundation represents a significant advancement toward general-purpose AI for musculoskeletal imaging. By learning fundamental, joint-agnostic radiological semantics from large-scale multimodal data, it overcomes the limitations of conventional models, which provides a robust framework for reducing annotation burdens and enhancing diagnostic accuracy in clinical practice.
Vision-Language-Model-Guided Differentiable Ray Tracing for Fast and Accurate Multi-Material RF Parameter Estimation
Accurate radio-frequency (RF) material parameters are essential for electromagnetic digital twins in 6G systems, yet gradient-based inverse ray tracing (RT) remains sensitive to initialization and costly under limited measurements. This paper proposes a vision-language-model (VLM) guided framework that accelerates and stabilizes multi-material parameter estimation in a differentiable RT (DRT) engine. A VLM parses scene images to infer material categories and maps them to quantitative priors via an ITU-R material table, yielding informed conductivity initializations. The VLM further selects informative transmitter/receiver placements that promote diverse, material-discriminative paths. Starting from these priors, the DRT performs gradient-based refinement using measured received signal strengths. Experiments in NVIDIA Sionna on indoor scenes show 2-4$\times$ faster convergence and 10-100$\times$ lower final parameter error compared with uniform or random initialization and random placement baselines, achieving sub-0.1\% mean relative error with only a few receivers. Complexity analyses indicate per-iteration time scales near-linearly with the number of materials and measurement setups, while VLM-guided placement reduces the measurements required for accurate recovery. Ablations over RT depth and ray counts confirm further accuracy gains without significant per-iteration overhead. Results demonstrate that semantic priors from VLMs effectively guide physics-based optimization for fast and reliable RF material estimation.
V-Loop: Visual Logical Loop Verification for Hallucination Detection in Medical Visual Question Answering
Multimodal Large Language Models (MLLMs) have shown remarkable capability in assisting disease diagnosis in medical visual question answering (VQA). However, their outputs remain vulnerable to hallucinations (i.e., responses that contradict visual facts), posing significant risks in high-stakes medical scenarios. Recent introspective detection methods, particularly uncertainty-based approaches, offer computational efficiency but are fundamentally indirect, as they estimate predictive uncertainty for an image-question pair rather than verifying the factual correctness of a specific answer. To address this limitation, we propose Visual Logical Loop Verification (V-Loop), a training-free and plug-and-play framework for hallucination detection in medical VQA. V-Loop introduces a bidirectional reasoning process that forms a visually grounded logical loop to verify factual correctness. Given an input, the MLLM produces an answer for the primary input pair. V-Loop extracts semantic units from the primary QA pair, generates a verification question by conditioning on the answer unit to re-query the question unit, and enforces visual attention consistency to ensure answering both primary question and verification question rely on the same image evidence. If the verification answer matches the expected semantic content, the logical loop closes, indicating factual grounding; otherwise, the primary answer is flagged as hallucinated. Extensive experiments on multiple medical VQA benchmarks and MLLMs show that V-Loop consistently outperforms existing introspective methods, remains highly efficient, and further boosts uncertainty-based approaches when used in combination.
TechING: Towards Real World Technical Image Understanding via VLMs
Professionals working in technical domain typically hand-draw (on whiteboard, paper, etc.) technical diagrams (e.g., flowcharts, block diagrams, etc.) during discussions; however, if they want to edit these later, it needs to be drawn from scratch. Modern day VLMs have made tremendous progress in image understanding but they struggle when it comes to understanding technical diagrams. One way to overcome this problem is to fine-tune on real world hand-drawn images, but it is not practically possible to generate large number of such images. In this paper, we introduce a large synthetically generated corpus (reflective of real world images) for training VLMs and subsequently evaluate VLMs on a smaller corpus of hand-drawn images (with the help of humans). We introduce several new self-supervision tasks for training and perform extensive experiments with various baseline models and fine-tune Llama 3.2 11B-instruct model on synthetic images on these tasks to obtain LLama-VL-TUG, which significantly improves the ROUGE-L performance of Llama 3.2 11B-instruct by 2.14x and achieves the best all-round performance across all baseline models. On real-world images, human evaluation reveals that we achieve minimum compilation errors across all baselines in 7 out of 8 diagram types and improve the average F1 score of Llama 3.2 11B-instruct by 6.97x.
comment: Accepted at Findings of EACL 2026, 30 Pages (9 Pages main paper + 4 pages references + 17 pages appendix)
Facial Emotion Recognition on FER-2013 using an EfficientNetB2-Based Approach
Detection of human emotions based on facial images in real-world scenarios is a difficult task due to low image quality, variations in lighting, pose changes, background distractions, small inter-class variations, noisy crowd-sourced labels, and severe class imbalance, as observed in the FER-2013 dataset of 48x48 grayscale images. Although recent approaches using large CNNs such as VGG and ResNet achieve reasonable accuracy, they are computationally expensive and memory-intensive, limiting their practicality for real-time applications. We address these challenges using a lightweight and efficient facial emotion recognition pipeline based on EfficientNetB2, trained using a two-stage warm-up and fine-tuning strategy. The model is enhanced with AdamW optimization, decoupled weight decay, label smoothing (epsilon = 0.06) to reduce annotation noise, and clipped class weights to mitigate class imbalance, along with dropout, mixed-precision training, and extensive real-time data augmentation. The model is trained using a stratified 87.5%/12.5% train-validation split while keeping the official test set intact, achieving a test accuracy of 68.78% with nearly ten times fewer parameters than VGG16-based baselines. Experimental results, including per-class metrics and learning dynamics, demonstrate stable training and strong generalization, making the proposed approach suitable for real-time and edge-based applications.
comment: 6 pages, 4 figures
HomoFM: Deep Homography Estimation with Flow Matching
Deep homography estimation has broad applications in computer vision and robotics. Remarkable progresses have been achieved while the existing methods typically treat it as a direct regression or iterative refinement problem and often struggling to capture complex geometric transformations or generalize across different domains. In this work, we propose HomoFM, a new framework that introduces the flow matching technique from generative modeling into the homography estimation task for the first time. Unlike the existing methods, we formulate homography estimation problem as a velocity field learning problem. By modeling a continuous and point-wise velocity field that transforms noisy distributions into registered coordinates, the proposed network recovers high-precision transformations through a conditional flow trajectory. Furthermore, to address the challenge of domain shifts issue, e.g., the cases of multimodal matching or varying illumination scenarios, we integrate a gradient reversal layer (GRL) into the feature extraction backbone. This domain adaptation strategy explicitly constrains the encoder to learn domain-invariant representations, significantly enhancing the network's robustness. Extensive experiments demonstrate the effectiveness of the proposed method, showing that HomoFM outperforms state-of-the-art methods in both estimation accuracy and robustness on standard benchmarks. Code and data resource are available at https://github.com/hmf21/HomoFM.
Automated HER2 scoring with uncertainty quantification using lensfree holography and deep learning
Accurate assessment of human epidermal growth factor receptor 2 (HER2) expression is critical for breast cancer diagnosis, prognosis, and therapy selection; yet, most existing digital HER2 scoring methods rely on bulky and expensive optical systems. Here, we present a compact and cost-effective lensfree holography platform integrated with deep learning for automated HER2 scoring of immunohistochemically stained breast tissue sections. The system captures lensfree diffraction patterns of stained HER2 tissue sections under RGB laser illumination and acquires complex field information over a sample area of ~1,250 mm^2 at an effective throughput of ~84 mm^2 per minute. To enhance diagnostic reliability, we incorporated an uncertainty quantification strategy based on Bayesian Monte Carlo dropout, which provides autonomous uncertainty estimates for each prediction and supports reliable, robust HER2 scoring, with an overall correction rate of 30.4%. Using a blinded test set of 412 unique tissue samples, our approach achieved a testing accuracy of 84.9% for 4-class (0, 1+, 2+, 3+) HER2 classification and 94.8% for binary (0/1+ vs. 2+/3+) HER2 scoring with uncertainty quantification. Overall, this lensfree holography approach provides a practical pathway toward portable, high-throughput, and cost-effective HER2 scoring, particularly suited for resource-limited settings, where traditional digital pathology infrastructure is unavailable.
comment: 23 Pages, 6 Figures, 1 Table
QualiRAG: Retrieval-Augmented Generation for Visual Quality Understanding
Visual quality assessment (VQA) is increasingly shifting from scalar score prediction toward interpretable quality understanding -- a paradigm that demands \textit{fine-grained spatiotemporal perception} and \textit{auxiliary contextual information}. Current approaches rely on supervised fine-tuning or reinforcement learning on curated instruction datasets, which involve labor-intensive annotation and are prone to dataset-specific biases. To address these challenges, we propose \textbf{QualiRAG}, a \textit{training-free} \textbf{R}etrieval-\textbf{A}ugmented \textbf{G}eneration \textbf{(RAG)} framework that systematically leverages the latent perceptual knowledge of large multimodal models (LMMs) for visual quality perception. Unlike conventional RAG that retrieves from static corpora, QualiRAG dynamically generates auxiliary knowledge by decomposing questions into structured requests and constructing four complementary knowledge sources: \textit{visual metadata}, \textit{subject localization}, \textit{global quality summaries}, and \textit{local quality descriptions}, followed by relevance-aware retrieval for evidence-grounded reasoning. Extensive experiments show that QualiRAG achieves substantial improvements over open-source general-purpose LMMs and VQA-finetuned LMMs on visual quality understanding tasks, and delivers competitive performance on visual quality comparison tasks, demonstrating robust quality assessment capabilities without any task-specific training. The code will be publicly available at https://github.com/clh124/QualiRAG.
MindCine: Multimodal EEG-to-Video Reconstruction with Large-Scale Pretrained Models
Reconstructing human dynamic visual perception from electroencephalography (EEG) signals is of great research significance since EEG's non-invasiveness and high temporal resolution. However, EEG-to-video reconstruction remains challenging due to: 1) Single Modality: existing studies solely align EEG signals with the text modality, which ignores other modalities and are prone to suffer from overfitting problems; 2) Data Scarcity: current methods often have difficulty training to converge with limited EEG-video data. To solve the above problems, we propose a novel framework MindCine to achieve high-fidelity video reconstructions on limited data. We employ a multimodal joint learning strategy to incorporate beyond-text modalities in the training stage and leverage a pre-trained large EEG model to relieve the data scarcity issue for decoding semantic information, while a Seq2Seq model with causal attention is specifically designed for decoding perceptual information. Extensive experiments demonstrate that our model outperforms state-of-the-art methods both qualitatively and quantitatively. Additionally, the results underscore the effectiveness of the complementary strengths of different modalities and demonstrate that leveraging a large-scale EEG model can further enhance reconstruction performance by alleviating the challenges associated with limited data.
Multi-Perspective Subimage CLIP with Keyword Guidance for Remote Sensing Image-Text Retrieval
Vision-Language Pre-training (VLP) models like CLIP have significantly advanced Remote Sensing Image-Text Retrieval (RSITR). However, existing methods predominantly rely on coarse-grained global alignment, which often overlooks the dense, multi-scale semantics inherent in overhead imagery. Moreover, adapting these heavy models via full fine-tuning incurs prohibitive computational costs and risks catastrophic forgetting. To address these challenges, we propose MPS-CLIP, a parameter-efficient framework designed to shift the retrieval paradigm from global matching to keyword-guided fine-grained alignment. Specifically, we leverage a Large Language Model (LLM) to extract core semantic keywords, guiding the Segment Anything Model (SamGeo) to generate semantically relevant sub-perspectives. To efficiently adapt the frozen backbone, we introduce a Gated Global Attention (G^2A) adapter, which captures global context and long-range dependencies with minimal overhead. Furthermore, a Multi-Perspective Representation (MPR) module aggregates these local cues into robust multi-perspective embeddings. The framework is optimized via a hybrid objective combining multi-perspective contrastive and weighted triplet losses, which dynamically selects maximum-response perspectives to suppress noise and enforce precise semantic matching. Extensive experiments on the RSICD and RSITMD benchmarks demonstrate that MPS-CLIP achieves state-of-the-art performance with 35.18% and 48.40% mean Recall (mR), respectively, significantly outperforming full fine-tuning baselines and recent competitive methods. Code is available at https://github.com/Lcrucial1f/MPS-CLIP.
comment: 7 pages, 3 figures. Code: https://github.com/Lcrucial1f/MPS-CLIP
\textsc{NaVIDA}: Vision-Language Navigation with Inverse Dynamics Augmentation
Vision-and-Language Navigation (VLN) requires agents to interpret natural language instructions and act coherently in visually rich environments. However, most existing methods rely on reactive state-action mappings without explicitly modeling how actions causally transform subsequent visual observations. Lacking such vision-action causality, agents cannot anticipate the visual changes induced by its own actions, leading to unstable behaviors, weak generalization, and cumulative error along trajectory. To address these issues, we introduce \textsc{NaVIDA} (\textbf{Nav}igation with \textbf{I}nverse \textbf{D}ynamics \textbf{A}ugmentation), a unified VLN framework that couples policy learning with action-grounded visual dynamics and adaptive execution. \textsc{NaVIDA} augments training with chunk-based inverse-dynamics supervision to learn causal relationship between visual changes and corresponding actions. To structure this supervision and extend the effective planning range, \textsc{NaVIDA} employs hierarchical probabilistic action chunking (HPAC), which organizes trajectories into multi-step chunks and provides discriminative, longer-range visual-change cues. To further curb error accumulation and stabilize behavior at inference, an entropy-guided mechanism adaptively sets the execution horizon of action chunks. Extensive experiments show that \textsc{NaVIDA} achieves superior navigation performance compared to state-of-the-art methods with fewer parameters (3B vs. 8B). Real-world robot evaluations further validate the practical feasibility and effectiveness of our approach. Code and data will be available upon acceptance.
comment: 18 pages, 14 figures
YOLO-DS: Fine-Grained Feature Decoupling via Dual-Statistic Synergy Operator for Object Detection
One-stage object detection, particularly the YOLO series, strikes a favorable balance between accuracy and efficiency. However, existing YOLO detectors lack explicit modeling of heterogeneous object responses within shared feature channels, which limits further performance gains. To address this, we propose YOLO-DS, a framework built around a novel Dual-Statistic Synergy Operator (DSO). The DSO decouples object features by jointly modeling the channel-wise mean and the peak-to-mean difference. Building upon the DSO, we design two lightweight gating modules: the Dual-Statistic Synergy Gating (DSG) module for adaptive channel-wise feature selection, and the Multi-Path Segmented Gating (MSG) module for depth-wise feature weighting. On the MS-COCO benchmark, YOLO-DS consistently outperforms YOLOv8 across five model scales (N, S, M, L, X), achieving AP gains of 1.1% to 1.7% with only a minimal increase in inference latency. Extensive visualization, ablation, and comparative studies validate the effectiveness of our approach, demonstrating its superior capability in discriminating heterogeneous objects with high efficiency.
TempDiffReg: Temporal Diffusion Model for Non-Rigid 2D-3D Vascular Registration
Transarterial chemoembolization (TACE) is a preferred treatment option for hepatocellular carcinoma and other liver malignancies, yet it remains a highly challenging procedure due to complex intra-operative vascular navigation and anatomical variability. Accurate and robust 2D-3D vessel registration is essential to guide microcatheter and instruments during TACE, enabling precise localization of vascular structures and optimal therapeutic targeting. To tackle this issue, we develop a coarse-to-fine registration strategy. First, we introduce a global alignment module, structure-aware perspective n-point (SA-PnP), to establish correspondence between 2D and 3D vessel structures. Second, we propose TempDiffReg, a temporal diffusion model that performs vessel deformation iteratively by leveraging temporal context to capture complex anatomical variations and local structural changes. We collected data from 23 patients and constructed 626 paired multi-frame samples for comprehensive evaluation. Experimental results demonstrate that the proposed method consistently outperforms state-of-the-art (SOTA) methods in both accuracy and anatomical plausibility. Specifically, our method achieves a mean squared error (MSE) of 0.63 mm and a mean absolute error (MAE) of 0.51 mm in registration accuracy, representing 66.7\% lower MSE and 17.7\% lower MAE compared to the most competitive existing approaches. It has the potential to assist less-experienced clinicians in safely and efficiently performing complex TACE procedures, ultimately enhancing both surgical outcomes and patient care. Code and data are available at: \textcolor{blue}{https://github.com/LZH970328/TempDiffReg.git}
comment: Accepted by IEEE BIBM 2025
Agentic Very Long Video Understanding
The advent of always-on personal AI assistants, enabled by all-day wearable devices such as smart glasses, demands a new level of contextual understanding, one that goes beyond short, isolated events to encompass the continuous, longitudinal stream of egocentric video. Achieving this vision requires advances in long-horizon video understanding, where systems must interpret and recall visual and audio information spanning days or even weeks. Existing methods, including large language models and retrieval-augmented generation, are constrained by limited context windows and lack the ability to perform compositional, multi-hop reasoning over very long video streams. In this work, we address these challenges through EGAgent, an enhanced agentic framework centered on entity scene graphs, which represent people, places, objects, and their relationships over time. Our system equips a planning agent with tools for structured search and reasoning over these graphs, as well as hybrid visual and audio search capabilities, enabling detailed, cross-modal, and temporally coherent reasoning. Experiments on the EgoLifeQA and Video-MME (Long) datasets show that our method achieves state-of-the-art performance on EgoLifeQA (57.5%) and competitive performance on Video-MME (Long) (74.1%) for complex longitudinal video understanding tasks.
comment: 26 pages, 7 figures, 8 tables
Forward Consistency Learning with Gated Context Aggregation for Video Anomaly Detection
As a crucial element of public security, video anomaly detection (VAD) aims to measure deviations from normal patterns for various events in real-time surveillance systems. However, most existing VAD methods rely on large-scale models to pursue extreme accuracy, limiting their feasibility on resource-limited edge devices. Moreover, mainstream prediction-based VAD detects anomalies using only single-frame future prediction errors, overlooking the richer constraints from longer-term temporal forward information. In this paper, we introduce FoGA, a lightweight VAD model that performs Forward consistency learning with Gated context Aggregation, containing about 2M parameters and tailored for potential edge devices. Specifically, we propose a Unet-based method that performs feature extraction on consecutive frames to generate both immediate and forward predictions. Then, we introduce a gated context aggregation module into the skip connections to dynamically fuse encoder and decoder features at the same spatial scale. Finally, the model is jointly optimized with a novel forward consistency loss, and a hybrid anomaly measurement strategy is adopted to integrate errors from both immediate and forward frames for more accurate detection. Extensive experiments demonstrate the effectiveness of the proposed method, which substantially outperforms state-of-the-art competing methods, running up to 155 FPS. Hence, our FoGA achieves an excellent trade-off between performance and the efficiency metric.
comment: It has been submitted to the KBS journal
Grasp-and-Lift: Executable 3D Hand-Object Interaction Reconstruction via Physics-in-the-Loop Optimization
Dexterous hand manipulation increasingly relies on large-scale motion datasets with precise hand-object trajectory data. However, existing resources such as DexYCB and HO3D are primarily optimized for visual alignment but often yield physically implausible interactions when replayed in physics simulators, including penetration, missed contact, and unstable grasps. We propose a simulation-in-the-loop refinement framework that converts these visually aligned trajectories into physically executable ones. Our core contribution is to formulate this as a tractable black-box optimization problem. We parameterize the hand's motion using a low-dimensional, spline-based representation built on sparse temporal keyframes. This allows us to use a powerful gradient-free optimizer, CMA-ES, to treat the high-fidelity physics engine as a black-box objective function. Our method finds motions that simultaneously maximize physical success (e.g., stable grasp and lift) while minimizing deviation from the original human demonstration. Compared to MANIPTRANS-recent transfer pipelines, our approach achieves lower hand and object pose errors during replay and more accurately recovers hand-object physical interactions. Our approach provides a general and scalable method for converting visual demonstrations into physically valid trajectories, enabling the generation of high-fidelity data crucial for robust policy learning.
comment: 13 pages, 7 figures
LungCRCT: Causal Representation based Lung CT Processing for Lung Cancer Treatment
Due to silence in early stages, lung cancer has been one of the most leading causes of mortality in cancer patients world-wide. Moreover, major symptoms of lung cancer are hard to differentiate with other respiratory disease symptoms such as COPD, further leading patients to overlook cancer progression in early stages. Thus, to enhance survival rates in lung cancer, early detection from consistent proactive respiratory system monitoring becomes crucial. One of the most prevalent and effective methods for lung cancer monitoring would be low-dose computed tomography(LDCT) chest scans, which led to remarkable enhancements in lung cancer detection or tumor classification tasks under rapid advancements and applications of computer vision based AI models such as EfficientNet or ResNet in image processing. However, though advanced CNN models under transfer learning or ViT based models led to high performing lung cancer detections, due to its intrinsic limitations in terms of correlation dependence and low interpretability due to complexity, expansions of deep learning models to lung cancer treatment analysis or causal intervention analysis simulations are still limited. Therefore, this research introduced LungCRCT: a latent causal representation learning based lung cancer analysis framework that retrieves causal representations of factors within the physical causal mechanism of lung cancer progression. With the use of advanced graph autoencoder based causal discovery algorithms with distance Correlation disentanglement and entropy-based image reconstruction refinement, LungCRCT not only enables causal intervention analysis for lung cancer treatments, but also leads to robust, yet extremely light downstream models in malignant tumor classification tasks with an AUC score of 93.91%.
Spatial-Conditioned Reasoning in Long-Egocentric Videos
Long-horizon egocentric video presents significant challenges for visual navigation due to viewpoint drift and the absence of persistent geometric context. Although recent vision-language models perform well on image and short-video reasoning, their spatial reasoning capability in long egocentric sequences remains limited. In this work, we study how explicit spatial signals influence VLM-based video understanding without modifying model architectures or inference procedures. We introduce Sanpo-D, a fine-grained re-annotation of the Google Sanpo dataset, and benchmark multiple VLMs on navigation-oriented spatial queries. To examine input-level inductive bias, we further fuse depth maps with RGB frames and evaluate their impact on spatial reasoning. Our results reveal a trade-off between general-purpose accuracy and spatial specialization, showing that depth-aware and spatially grounded representations can improve performance on safety-critical tasks such as pedestrian and obstruction detection.
Computational Framework for Estimating Relative Gaussian Blur Kernels between Image Pairs
Following the earlier verification for Gaussian model in \cite{ASaa2026}, this paper introduces a zero training forward computational framework for the model to realize it in real time applications. The framework is based on discrete calculation of the analytic expression of the defocused image from the sharper one for the application range of the standard deviation of the Gaussian kernels and selecting the best matches. The analytic expression yields multiple solutions at certain image points, but is filtered down to a single solution using similarity measures over neighboring points.The framework is structured to handle cases where two given images are partial blurred versions of each other. Experimental evaluations on real images demonstrate that the proposed framework achieves a mean absolute error (MAE) below $1.7\%$ in estimating synthetic blur values. Furthermore, the discrepancy between actual blurred image intensities and their corresponding estimates remains under $2\%$, obtained by applying the extracted defocus filters to less blurred images.
comment: 9 pages, 14 input images, 3 TikZ images. arXiv admin note: substantial text overlap with arXiv:2601.04779. substantial text overlap with arXiv:2601.04779. substantial text overlap with arXiv:2601.04779. substantial text overlap with arXiv:2601.04779
Text-Pass Filter: An Efficient Scene Text Detector
To pursue an efficient text assembling process, existing methods detect texts via the shrink-mask expansion strategy. However, the shrinking operation loses the visual features of text margins and confuses the foreground and background difference, which brings intrinsic limitations to recognize text features. We follow this issue and design Text-Pass Filter (TPF) for arbitrary-shaped text detection. It segments the whole text directly, which avoids the intrinsic limitations. It is noteworthy that different from previous whole text region-based methods, TPF can separate adhesive texts naturally without complex decoding or post-processing processes, which makes it possible for real-time text detection. Concretely, we find that the band-pass filter allows through components in a specified band of frequencies, called its passband but blocks components with frequencies above or below this band. It provides a natural idea for extracting whole texts separately. By simulating the band-pass filter, TPF constructs a unique feature-filter pair for each text. In the inference stage, every filter extracts the corresponding matched text by passing its pass-feature and blocking other features. Meanwhile, considering the large aspect ratio problem of ribbon-like texts makes it hard to recognize texts wholly, a Reinforcement Ensemble Unit (REU) is designed to enhance the feature consistency of the same text and to enlarge the filter's recognition field to help recognize whole texts. Furthermore, a Foreground Prior Unit (FPU) is introduced to encourage TPF to discriminate the difference between the foreground and background, which improves the feature-filter pair quality. Experiments demonstrate the effectiveness of REU and FPU while showing the TPF's superiority.
Cross-Domain Transfer with Self-Supervised Spectral-Spatial Modeling for Hyperspectral Image Classification
Self-supervised learning has demonstrated considerable potential in hyperspectral representation, yet its application in cross-domain transfer scenarios remains under-explored. Existing methods, however, still rely on source domain annotations and are susceptible to distribution shifts, leading to degraded generalization performance in the target domain. To address this, this paper proposes a self-supervised cross-domain transfer framework that learns transferable spectral-spatial joint representations without source labels and achieves efficient adaptation under few samples in the target domain. During the self-supervised pre-training phase, a Spatial-Spectral Transformer (S2Former) module is designed. It adopts a dual-branch spatial-spectral transformer and introduces a bidirectional cross-attention mechanism to achieve spectral-spatial collaborative modeling: the spatial branch enhances structural awareness through random masking, while the spectral branch captures fine-grained differences. Both branches mutually guide each other to improve semantic consistency. We further propose a Frequency Domain Constraint (FDC) to maintain frequency-domain consistency through real Fast Fourier Transform (rFFT) and high-frequency magnitude loss, thereby enhancing the model's capability to discern fine details and boundaries. During the fine-tuning phase, we introduce a Diffusion-Aligned Fine-tuning (DAFT) distillation mechanism. This aligns semantic evolution trajectories through a teacher-student structure, enabling robust transfer learning under low-label conditions. Experimental results demonstrate stable classification performance and strong cross-domain adaptability across four hyperspectral datasets, validating the method's effectiveness under resource-constrained conditions.
Differentiable Architecture Search for Adversarially Robust Quantum Computer Vision
Current quantum neural networks suffer from extreme sensitivity to both adversarial perturbations and hardware noise, creating a significant barrier to real-world deployment. Existing robustness techniques typically sacrifice clean accuracy or require prohibitive computational resources. We propose a hybrid quantum-classical Differentiable Quantum Architecture Search (DQAS) framework that addresses these limitations by jointly optimizing circuit structure and robustness through gradient-based methods. Our approach enhances traditional DQAS with a lightweight Classical Noise Layer applied before quantum processing, enabling simultaneous optimization of gate selection and noise parameters. This design preserves the quantum circuit's integrity while introducing trainable perturbations that enhance robustness without compromising standard performance. Experimental validation on MNIST, FashionMNIST, and CIFAR datasets shows consistent improvements in both clean and adversarial accuracy compared to existing quantum architecture search methods. Under various attack scenarios, including Fast Gradient Sign Method (FGSM), Projected Gradient Descent (PGD), Basic Iterative Method (BIM), and Momentum Iterative Method (MIM), and under realistic quantum noise conditions, our hybrid framework maintains superior performance. Testing on actual quantum hardware confirms the practical viability of discovered architectures. These results demonstrate that strategic classical preprocessing combined with differentiable quantum architecture optimization can significantly enhance quantum neural network robustness while maintaining computational efficiency.
comment: Published in Quantum Machine Intelligence
Semi-Supervised Hyperspectral Image Classification with Edge-Aware Superpixel Label Propagation and Adaptive Pseudo-Labeling
Significant progress has been made in semi-supervised hyperspectral image (HSI) classification regarding feature extraction and classification performance. However, due to high annotation costs and limited sample availability, semi-supervised learning still faces challenges such as boundary label diffusion and pseudo-label instability. To address these issues, this paper proposes a novel semi-supervised hyperspectral classification framework integrating spatial prior information with a dynamic learning mechanism. First, we design an Edge-Aware Superpixel Label Propagation (EASLP) module. By integrating edge intensity penalty with neighborhood correction strategy, it mitigates label diffusion from superpixel segmentation while enhancing classification robustness in boundary regions. Second, we introduce a Dynamic History-Fused Prediction (DHP) method. By maintaining historical predictions and dynamically weighting them with current results, DHP smoothens pseudo-label fluctuations and improves temporal consistency and noise resistance. Concurrently, incorporating condifence and consistency measures, the Adaptive Tripartite Sample Categorization (ATSC) strategy implements hierarchical utilization of easy, ambiguous, and hard samples, leading to enhanced pseudo-label quality and learning efficiency. The Dynamic Reliability-Enhanced Pseudo-Label Framework (DREPL), composed of DHP and ATSC, strengthens pseudo-label stability across temporal and sample domains. Through synergizes operation with EASLP, it achieves spatio-temporal consistency optimization. Evaluations on four benchmark datasets demonstrate its capability to maintain superior classification performance.
NC-Reg : Neural Cortical Maps for Rigid Registration
We introduce neural cortical maps, a continuous and compact neural representation for cortical feature maps, as an alternative to traditional discrete structures such as grids and meshes. It can learn from meshes of arbitrary size and provide learnt features at any resolution. Neural cortical maps enable efficient optimization on the sphere and achieve runtimes up to 30 times faster than classic barycentric interpolation (for the same number of iterations). As a proof of concept, we investigate rigid registration of cortical surfaces and propose NC-Reg, a novel iterative algorithm that involves the use of neural cortical feature maps, gradient descent optimization and a simulated annealing strategy. Through ablation studies and subject-to-template experiments, our method demonstrates sub-degree accuracy ($<1^\circ$ from the global optimum), and serves as a promising robust pre-alignment strategy, which is critical in clinical settings.
comment: ISBI 2026
Non-Invasive 3D Wound Measurement with RGB-D Imaging
Chronic wound monitoring and management require accurate and efficient wound measurement methods. This paper presents a fast, non-invasive 3D wound measurement algorithm based on RGB-D imaging. The method combines RGB-D odometry with B-spline surface reconstruction to generate detailed 3D wound meshes, enabling automatic computation of clinically relevant wound measurements such as perimeter, surface area, and dimensions. We evaluated our system on realistic silicone wound phantoms and measured sub-millimetre 3D reconstruction accuracy compared with high-resolution ground-truth scans. The extracted measurements demonstrated low variability across repeated captures and strong agreement with manual assessments. The proposed pipeline also outperformed a state-of-the-art object-centric RGB-D reconstruction method while maintaining runtimes suitable for real-time clinical deployment. Our approach offers a promising tool for automated wound assessment in both clinical and remote healthcare settings.
Anatomically-aware conformal prediction for medical image segmentation with random walks
The reliable deployment of deep learning in medical imaging requires uncertainty quantification that provides rigorous error guarantees while remaining anatomically meaningful. Conformal prediction (CP) is a powerful distribution-free framework for constructing statistically valid prediction intervals. However, standard applications in segmentation often ignore anatomical context, resulting in fragmented, spatially incoherent, and over-segmented prediction sets that limit clinical utility. To bridge this gap, this paper proposes Random-Walk Conformal Prediction (RW-CP), a model-agnostic framework which can be added on top of any segmentation method. RW-CP enforces spatial coherence to generate anatomically valid sets. Our method constructs a k-nearest neighbour graph from pre-trained vision foundation model features and applies a random walk to diffuse uncertainty. The random walk diffusion regularizes the non-conformity scores, making the prediction sets less sensitive to the conformal calibration parameter $λ$, ensuring more stable and continuous anatomical boundaries. RW-CP maintains rigorous marginal coverage while significantly improving segmentation quality. Evaluations on multi-modal public datasets show improvements of up to $35.4\%$ compared to standard CP baselines, given an allowable error rate of $α=0.1$.
comment: 13 pages
FreeOrbit4D: Training-Free Arbitrary Camera Redirection for Monocular Videos via Geometry-Complete 4D Reconstruction
Camera redirection aims to replay a dynamic scene from a single monocular video under a user-specified camera trajectory. However, large-angle redirection is inherently ill-posed: a monocular video captures only a narrow spatio-temporal view of a dynamic 3D scene, providing highly partial observations of the underlying 4D world. The key challenge is therefore to recover a complete and coherent representation from this limited input, with consistent geometry and motion. While recent diffusion-based methods achieve impressive results, they often break down under large-angle viewpoint changes far from the original trajectory, where missing visual grounding leads to severe geometric ambiguity and temporal inconsistency. To address this, we present FreeOrbit4D, an effective training-free framework that tackles this geometric ambiguity by recovering a geometry-complete 4D proxy as structural grounding for video generation. We obtain this proxy by decoupling foreground and background reconstructions: we unproject the monocular video into a static background and geometry-incomplete foreground point clouds in a unified global space, then leverage an object-centric multi-view diffusion model to synthesize multi-view images and reconstruct geometry-complete foreground point clouds in canonical object space. By aligning the canonical foreground point cloud to the global scene space via dense pixel-synchronized 3D--3D correspondences and projecting the geometry-complete 4D proxy onto target camera viewpoints, we provide geometric scaffolds that guide a conditional video diffusion model. Extensive experiments show that FreeOrbit4D produces more faithful redirected videos under challenging large-angle trajectories, and our geometry-complete 4D proxy further opens a potential avenue for practical applications such as edit propagation and 4D data generation. Project page and code will be released soon.
comment: 14 pages, 10 figures
Pay Attention to Where You Look
Novel view synthesis (NVS) has advanced with generative modeling, enabling photorealistic image generation. In few-shot NVS, where only a few input views are available, existing methods often assume equal importance for all input views relative to the target, leading to suboptimal results. We address this limitation by introducing a camera-weighting mechanism that adjusts the importance of source views based on their relevance to the target. We propose two approaches: a deterministic weighting scheme leveraging geometric properties like Euclidean distance and angular differences, and a cross-attention-based learning scheme that optimizes view weighting. Additionally, models can be further trained with our camera-weighting scheme to refine their understanding of view relevance and enhance synthesis quality. This mechanism is adaptable and can be integrated into various NVS algorithms, improving their ability to synthesize high-quality novel views. Our results demonstrate that adaptive view weighting enhances accuracy and realism, offering a promising direction for improving NVS.
comment: ICIP 2025 Workshop on Generative AI for World Simulations and Communications
Smart Split-Federated Learning over Noisy Channels for Embryo Image Segmentation
Split-Federated (SplitFed) learning is an extension of federated learning that places minimal requirements on the clients computing infrastructure, since only a small portion of the overall model is deployed on the clients hardware. In SplitFed learning, feature values, gradient updates, and model updates are transferred across communication channels. In this paper, we study the effects of noise in the communication channels on the learning process and the quality of the final model. We propose a smart averaging strategy for SplitFed learning with the goal of improving resilience against channel noise. Experiments on a segmentation model for embryo images shows that the proposed smart averaging strategy is able to tolerate two orders of magnitude stronger noise in the communication channels compared to conventional averaging, while still maintaining the accuracy of the final model.
On the Role of Depth in Surgical Vision Foundation Models: An Empirical Study of RGB-D Pre-training
Vision foundation models (VFMs) have emerged as powerful tools for surgical scene understanding. However, current approaches predominantly rely on unimodal RGB pre-training, overlooking the complex 3D geometry inherent to surgical environments. Although several architectures support multimodal or geometry-aware inputs in general computer vision, the benefits of incorporating depth information in surgical settings remain underexplored. We conduct a large-scale empirical study comparing eight ViT-based VFMs that differ in pre-training domain, learning objective, and input modality (RGB vs. RGB-D). For pre-training, we use a curated dataset of 1.4 million robotic surgical images paired with depth maps generated from an off-the-shelf network. We evaluate these models under both frozen-backbone and end-to-end fine-tuning protocols across eight surgical datasets spanning object detection, segmentation, depth estimation, and pose estimation. Our experiments yield several consistent findings. Models incorporating explicit geometric tokenization, such as MultiMAE, substantially outperform unimodal baselines across all tasks. Notably, geometric-aware pre-training enables remarkable data efficiency: models fine-tuned on just 25% of labeled data consistently surpass RGB-only models trained on the full dataset. Importantly, these gains require no architectural or runtime changes at inference; depth is used only during pre-training, making adoption straightforward. These findings suggest that multimodal pre-training offers a viable path towards building more capable surgical vision systems.
DeFM: Learning Foundation Representations from Depth for Robotics
Depth sensors are widely deployed across robotic platforms, and advances in fast, high-fidelity depth simulation have enabled robotic policies trained on depth observations to achieve robust sim-to-real transfer for a wide range of tasks. Despite this, representation learning for depth modality remains underexplored compared to RGB, where large-scale foundation models now define the state of the art. To address this gap, we present DeFM, a self-supervised foundation model trained entirely on depth images for robotic applications. Using a DINO-style self-distillation objective on a curated dataset of 60M depth images, DeFM learns geometric and semantic representations that generalize to diverse environments, tasks, and sensors. To retain metric awareness across multiple scales, we introduce a novel input normalization strategy. We further distill DeFM into compact models suitable for resource-constrained robotic systems. When evaluated on depth-based classification, segmentation, navigation, locomotion, and manipulation benchmarks, DeFM achieves state-of-the-art performance and demonstrates strong generalization from simulation to real-world environments. We release all our pretrained models, which can be adopted off-the-shelf for depth-based robotic learning without task-specific fine-tuning. Webpage: https://de-fm.github.io/
comment: Under review, 19 pages, 15 Figures, 9 Tables
RealStats: A Rigorous Real-Only Statistical Framework for Fake Image Detection AISTATS 2026
As generative models continue to evolve, detecting AI-generated images remains a critical challenge. While effective detection methods exist, they often lack formal interpretability and may rely on implicit assumptions about fake content, potentially limiting robustness to distributional shifts. In this work, we introduce a rigorous, statistically grounded framework for fake image detection that focuses on producing a probability score interpretable with respect to the real-image population. Our method leverages the strengths of multiple existing detectors by combining training-free statistics. We compute p-values over a range of test statistics and aggregate them using classical statistical ensembling to assess alignment with the unified real-image distribution. This framework is generic, flexible, and training-free, making it well-suited for robust fake image detection across diverse and evolving settings.
comment: 22 pages, 14 figures. Accepted to AISTATS 2026
Weakly supervised framework for wildlife detection and counting in challenging Arctic environments: a case study on caribou (Rangifer tarandus)
Caribou across the Arctic has declined in recent decades, motivating scalable and accurate monitoring approaches to guide evidence-based conservation actions and policy decisions. Manual interpretation from this imagery is labor-intensive and error-prone, underscoring the need for automatic and reliable detection across varying scenes. Yet, such automatic detection is challenging due to severe background heterogeneity, dominant empty terrain (class imbalance), small or occluded targets, and wide variation in density and scale. To make the detection model (HerdNet) more robust to these challenges, a weakly supervised patch-level pretraining based on a detection network's architecture is proposed. The detection dataset includes five caribou herds distributed across Alaska. By learning from empty vs. non-empty labels in this dataset, the approach produces early weakly supervised knowledge for enhanced detection compared to HerdNet, which is initialized from generic weights. Accordingly, the patch-based pretrain network attained high accuracy on multi-herd imagery (2017) and on an independent year's (2019) test sets (F1: 93.7%/92.6%, respectively), enabling reliable mapping of regions containing animals to facilitate manual counting on large aerial imagery. Transferred to detection, initialization from weakly supervised pretraining yielded consistent gains over ImageNet weights on both positive patches (F1: 92.6%/93.5% vs. 89.3%/88.6%), and full-image counting (F1: 95.5%/93.3% vs. 91.5%/90.4%). Remaining limitations are false positives from animal-like background clutter and false negatives related to low animal density occlusions. Overall, pretraining on coarse labels prior to detection makes it possible to rely on weakly-supervised pretrained weights even when labeled data are limited, achieving results comparable to generic-weight initialization.
comment: 30 pages, 8 figures, submitted to Frontiers in Ecology and Evolution
SelfieAvatar: Real-time Head Avatar reenactment from a Selfie Video
Head avatar reenactment focuses on creating animatable personal avatars from monocular videos, serving as a foundational element for applications like social signal understanding, gaming, human-machine interaction, and computer vision. Recent advances in 3D Morphable Model (3DMM)-based facial reconstruction methods have achieved remarkable high-fidelity face estimation. However, on the one hand, they struggle to capture the entire head, including non-facial regions and background details in real time, which is an essential aspect for producing realistic, high-fidelity head avatars. On the other hand, recent approaches leveraging generative adversarial networks (GANs) for head avatar generation from videos can achieve high-quality reenactments but encounter limitations in reproducing fine-grained head details, such as wrinkles and hair textures. In addition, existing methods generally rely on a large amount of training data, and rarely focus on using only a simple selfie video to achieve avatar reenactment. To address these challenges, this study introduces a method for detailed head avatar reenactment using a selfie video. The approach combines 3DMMs with a StyleGAN-based generator. A detailed reconstruction model is proposed, incorporating mixed loss functions for foreground reconstruction and avatar image generation during adversarial training to recover high-frequency details. Qualitative and quantitative evaluations on self-reenactment and cross-reenactment tasks demonstrate that the proposed method achieves superior head avatar reconstruction with rich and intricate textures compared to existing approaches.
Audio-Driven Talking Face Generation with Blink Embedding and Hash Grid Landmarks Encoding
Dynamic Neural Radiance Fields (NeRF) have demonstrated considerable success in generating high-fidelity 3D models of talking portraits. Despite significant advancements in the rendering speed and generation quality, challenges persist in accurately and efficiently capturing mouth movements in talking portraits. To tackle this challenge, we propose an automatic method based on blink embedding and hash grid landmarks encoding in this study, which can substantially enhance the fidelity of talking faces. Specifically, we leverage facial features encoded as conditional features and integrate audio features as residual terms into our model through a Dynamic Landmark Transformer. Furthermore, we employ neural radiance fields to model the entire face, resulting in a lifelike face representation. Experimental evaluations have validated the superiority of our approach to existing methods.
Dynamic Mask-Based Backdoor Attack Against Vision AI Models: A Case Study on Mushroom Detection
Deep learning has revolutionized numerous tasks within the computer vision field, including image classification, image segmentation, and object detection. However, the increasing deployment of deep learning models has exposed them to various adversarial attacks, including backdoor attacks. This paper presents a novel dynamic mask-based backdoor attack method, specifically designed for object detection models. We exploit a dataset poisoning technique to embed a malicious trigger, rendering any models trained on this compromised dataset vulnerable to our backdoor attack. We particularly focus on a mushroom detection dataset to demonstrate the practical risks posed by such attacks on critical real-life domains. Our work also emphasizes the importance of creating a detailed backdoor attack scenario to illustrate the significant risks associated with the outsourcing practice. Our approach leverages SAM, a recent and powerful image segmentation AI model, to create masks for dynamic trigger placement, introducing a new and stealthy attack method. Through extensive experimentation, we show that our sophisticated attack scenario maintains high accuracy on clean data with the YOLOv7 object detection model while achieving high attack success rates on poisoned samples. Our approach surpasses traditional methods for backdoor injection, which are based on static and consistent patterns. Our findings underscore the urgent need for robust countermeasures to protect deep learning models from these evolving adversarial threats.
GUIGuard: Toward a General Framework for Privacy-Preserving GUI Agents
GUI agents enable end-to-end automation through direct perception of and interaction with on-screen interfaces. However, these agents frequently access interfaces containing sensitive personal information, and screenshots are often transmitted to remote models, creating substantial privacy risks. These risks are particularly severe in GUI workflows: GUIs expose richer, more accessible private information, and privacy risks depend on interaction trajectories across sequential scenes. We propose GUIGuard, a three-stage framework for privacy-preserving GUI agents: (1) privacy recognition, (2) privacy protection, and (3) task execution under protection. We further construct GUIGuard-Bench, a cross-platform benchmark with 630 trajectories and 13,830 screenshots, annotated with region-level privacy grounding and fine-grained labels of risk level, privacy category, and task necessity. Evaluations reveal that existing agents exhibit limited privacy recognition, with state-of-the-art models achieving only 13.3% accuracy on Android and 1.4% on PC. Under privacy protection, task-planning semantics can still be maintained, with closed-source models showing stronger semantic consistency than open-source ones. Case studies on MobileWorld show that carefully designed protection strategies achieve higher task accuracy while preserving privacy. Our results highlight privacy recognition as a critical bottleneck for practical GUI agents. Project: https://futuresis.github.io/GUIGuard-page/
DeltaDorsal: Enhancing Hand Pose Estimation with Dorsal Features in Egocentric Views
The proliferation of XR devices has made egocentric hand pose estimation a vital task, yet this perspective is inherently challenged by frequent finger occlusions. To address this, we propose a novel approach that leverages the rich information in dorsal hand skin deformation, unlocked by recent advances in dense visual featurizers. We introduce a dual-stream delta encoder that learns pose by contrasting features from a dynamic hand with a baseline relaxed position. Our evaluation demonstrates that, using only cropped dorsal images, our method reduces the Mean Per Joint Angle Error (MPJAE) by 18% in self-occluded scenarios (fingers >= 50% occluded) compared to state-of-the-art techniques that depend on the whole hand's geometry and large model backbones. Consequently, our method not only enhances the reliability of downstream tasks like index finger pinch and tap estimation in occluded scenarios but also unlocks new interaction paradigms, such as detecting isometric force for a surface "click" without visible movement while minimizing model size.
comment: 16 pages, 11 figures, Presented at ACM CHI 2026. For associated codebase, see https://github.com/hilab-open-source/deltadorsal
HiCache: A Plug-in Scaled-Hermite Upgrade for Taylor-Style Cache-then-Forecast Diffusion Acceleration
Diffusion models have achieved remarkable success in content generation but often incur prohibitive computational costs due to iterative sampling. Recent feature caching methods accelerate inference via temporal extrapolation, yet can suffer quality degradation from inaccurate modeling of the complex dynamics of feature evolution. We propose HiCache (Hermite Polynomial-based Feature Cache), a training-free acceleration framework that improves feature prediction by aligning mathematical tools with empirical properties. Our key insight is that feature-derivative approximations in diffusion Transformers exhibit multivariate Gaussian characteristics, motivating the use of Hermite polynomials as a potentially optimal basis for Gaussian-correlated processes. We further introduce a dual-scaling mechanism that ensures numerical stability while preserving predictive accuracy, and is also effective when applied standalone or integrated with TaylorSeer. Extensive experiments demonstrate HiCache's superiority, achieving 5.55x speedup on FLUX.1-dev while matching or exceeding baseline quality, and maintaining strong performance across text-to-image, video generation, and super-resolution tasks. Moreover, HiCache can be naturally added to previous caching methods to enhance their performance, e.g., improving ClusCa from 0.9480 to 0.9840 in terms of image rewards. Code: https://github.com/fenglang918/HiCache
DGFusion: Depth-Guided Sensor Fusion for Robust Semantic Perception
Robust semantic perception for autonomous vehicles relies on effectively combining multiple sensors with complementary strengths and weaknesses. State-of-the-art sensor fusion approaches to semantic perception often treat sensor data uniformly across the spatial extent of the input, which hinders performance when faced with challenging conditions. By contrast, we propose a novel depth-guided multimodal fusion method that upgrades condition-aware fusion by integrating depth information. Our network, DGFusion, poses multimodal segmentation as a multi-task problem, utilizing the lidar measurements, which are typically available in outdoor sensor suites, both as one of the model's inputs and as ground truth for learning depth. Our corresponding auxiliary depth head helps to learn depth-aware features, which are encoded into spatially varying local depth tokens that condition our attentive cross-modal fusion. Together with a global condition token, these local depth tokens dynamically adapt sensor fusion to the spatially varying reliability of each sensor across the scene, which largely depends on depth. In addition, we propose a robust loss for our depth, which is essential for learning from lidar inputs that are typically sparse and noisy in adverse conditions. Our method achieves state-of-the-art panoptic and semantic segmentation performance on the challenging MUSES and DeLiVER datasets. Code and models are available at https://github.com/timbroed/DGFusion
comment: Code and models are available at https://github.com/timbroed/DGFusion
When Swin Transformer Meets KANs: An Improved Transformer Architecture for Medical Image Segmentation
Medical image segmentation is critical for accurate diagnostics and treatment planning, but remains challenging due to complex anatomical structures and limited annotated training data. CNN-based segmentation methods excel at local feature extraction, but struggle with modeling long-range dependencies. Transformers, on the other hand, capture global context more effectively, but are inherently data-hungry and computationally expensive. In this work, we introduce UKAST, a U-Net like architecture that integrates rational-function based Kolmogorov-Arnold Networks (KANs) into Swin Transformer encoders. By leveraging rational base functions and Group Rational KANs (GR-KANs) from the Kolmogorov-Arnold Transformer (KAT), our architecture addresses the inefficiencies of vanilla spline-based KANs, yielding a more expressive and data-efficient framework with reduced FLOPs and only a very small increase in parameter count compared to SwinUNETR. UKAST achieves state-of-the-art performance on four diverse 2D and 3D medical image segmentation benchmarks, consistently surpassing both CNN- and Transformer-based baselines. Notably, it attains superior accuracy in data-scarce settings, alleviating the data-hungry limitations of standard Vision Transformers. These results show the potential of KAN-enhanced Transformers to advance data-efficient medical image segmentation. Code is available at: https://github.com/nsapkota417/UKAST
comment: This paper has been accepted for publication in the Proceedings of the IEEE International Symposium on Biomedical Imaging (ISBI) 2026
BAH Dataset for Ambivalence/Hesitancy Recognition in Videos for Digital Behavioural Change ICLR 2026
Ambivalence and hesitancy (A/H), a closely related construct, is the primary reasons why individuals delay, avoid, or abandon health behaviour changes. It is a subtle and conflicting emotion that sets a person in a state between positive and negative orientations, or between acceptance and refusal to do something. It manifests by a discord in affect between multiple modalities or within a modality, such as facial and vocal expressions, and body language. Although experts can be trained to recognize A/H as done for in-person interactions, integrating them into digital health interventions is costly and less effective. Automatic A/H recognition is therefore critical for the personalization and cost-effectiveness of digital behaviour change interventions. However, no datasets currently exists for the design of machine learning models to recognize A/H. This paper introduces the Behavioural Ambivalence/Hesitancy (BAH) dataset collected for multimodal recognition of A/H in videos. It contains 1,427 videos with a total duration of 10.60 hours captured from 300 participants across Canada answering predefined questions to elicit A/H. It is intended to mirror real-world online personalized behaviour change interventions. BAH is annotated by three experts to provide timestamps that indicate where A/H occurs, and frame- and video-level annotations with A/H cues. Video transcripts, cropped and aligned faces, and participants' meta-data are also provided. Since A and H manifest similarly in practice, we provide a binary annotation indicating the presence or absence of A/H. Additionally, this paper includes benchmarking results using baseline models on BAH for frame- and video-level recognition, zero-shot prediction, and personalization using source-free domain adaptation. The data, code, and pretrained weights are available.
comment: 45 pages, 21 figures, ICLR 2026
Physiology-Informed Generative Multi-Task Network for Contrast-Free CT Perfusion
Perfusion imaging is extensively utilized to assess hemodynamic status and tissue perfusion in various organs. Computed tomography perfusion (CTP) imaging plays a key role in the early assessment and planning of stroke treatment. While CTP provides essential perfusion parameters to identify abnormal blood flow in the brain, the use of contrast agents in CTP can lead to allergic reactions and adverse side effects, along with costing USD 4.9 billion worldwide in 2022. To address these challenges, we propose a novel deep learning framework called Multitask Automated Generation of Intermodal CT perfusion maps (MAGIC). This framework combines generative artificial intelligence and physiological information to map non-contrast computed tomography (CT) imaging to multiple contrast-free CTP imaging maps. We demonstrate enhanced image fidelity by incorporating physiological characteristics into the loss terms. Our network was trained and validated using CT image data from patients referred for stroke at UF Health and demonstrated robustness to abnormalities in brain perfusion activity. A double-blinded study was conducted involving seven experienced neuroradiologists and vascular neurologists. This study validated MAGIC's visual quality and diagnostic accuracy showing favorable performance compared to clinical perfusion imaging with intravenous contrast injection. Overall, MAGIC holds great promise in revolutionizing healthcare by offering contrast-free, cost-effective, and rapid perfusion imaging.
comment: Under Review
No Other Representation Component Is Needed: Diffusion Transformers Can Provide Representation Guidance by Themselves ICLR 2026
Recent studies have demonstrated that learning a meaningful internal representation can accelerate generative training. However, existing approaches necessitate to either introduce an off-the-shelf external representation task or rely on a large-scale, pre-trained external representation encoder to provide representation guidance during the training process. In this study, we posit that the unique discriminative process inherent to diffusion transformers enables them to offer such guidance without requiring external representation components. We propose SelfRepresentation Alignment (SRA), a simple yet effective method that obtains representation guidance using the internal representations of learned diffusion transformer. SRA aligns the latent representation of the diffusion transformer in the earlier layer conditioned on higher noise to that in the later layer conditioned on lower noise to progressively enhance the overall representation learning during only the training process. Experimental results indicate that applying SRA to DiTs and SiTs yields consistent performance improvements, and largely outperforms approaches relying on auxiliary representation task. Our approach achieves performance comparable to methods that are dependent on an external pre-trained representation encoder, which demonstrates the feasibility of acceleration with representation alignment in diffusion transformers themselves.
comment: ICLR 2026. Self-Representation Alignment for Diffusion Transformers. Code: https://github.com/vvvvvjdy/SRA
MMedAgent-RL: Optimizing Multi-Agent Collaboration for Multimodal Medical Reasoning ICLR 2026
Medical Large Vision-Language Models (Med-LVLMs) have shown strong potential in multimodal diagnostic tasks. However, existing single-agent models struggle to generalize across diverse medical specialties, limiting their performance. Recent efforts introduce multi-agent collaboration frameworks inspired by clinical workflows, where general practitioners (GPs) and specialists interact in a fixed sequence. Despite improvements, these static pipelines lack flexibility and adaptability in reasoning. To address this, we propose MMedAgent-RL, a reinforcement learning (RL)-based multi-agent framework that enables dynamic, optimized collaboration among medical agents. Specifically, we train two GP agents based on Qwen2.5-VL via RL: the triage doctor learns to assign patients to appropriate specialties, while the attending physician integrates the judgments from multi-specialists and its own knowledge to make final decisions. To address the inconsistency in specialist outputs, we introduce a curriculum learning (CL)-guided RL strategy with dynamic entropy regulation, progressively teaching the attending physician to balance between imitating specialists and correcting their mistakes. Experiments on five medical VQA benchmarks demonstrate that MMedAgent-RL outperforms both open-source and proprietary Med-LVLMs. Notably, it achieves an average performance gain of 23.6% over strong baselines.
comment: ICLR 2026
A-TPT: Angular Diversity Calibration Properties for Test-Time Prompt Tuning of Vision-Language Models ICLR 2026
Test-time prompt tuning (TPT) has emerged as a promising technique for adapting large vision-language models (VLMs) to unseen tasks without relying on labeled data. However, the lack of dispersion between textual features can hurt calibration performance, which raises concerns about VLMs' reliability, trustworthiness, and safety. Current TPT approaches primarily focus on improving prompt calibration by either maximizing average textual feature dispersion or enforcing orthogonality constraints to encourage angular separation. However, these methods may not always have optimal angular separation between class-wise textual features, which implies overlooking the critical role of angular diversity. To address this, we propose A-TPT, a novel TPT framework that introduces angular diversity to encourage uniformity in the distribution of normalized textual features induced by corresponding learnable prompts. This uniformity is achieved by maximizing the minimum pairwise angular distance between features on the unit hypersphere. We show that our approach consistently surpasses state-of-the-art TPT methods in reducing the aggregate average calibration error while maintaining comparable accuracy through extensive experiments with various backbones on different datasets. Notably, our approach exhibits superior zero-shot calibration performance on natural distribution shifts and generalizes well to medical datasets. We provide extensive analyses, including theoretical aspects, to establish the grounding of A-TPT. These results highlight the potency of promoting angular diversity to achieve well-dispersed textual features, significantly improving VLM calibration during test-time adaptation. Our code will be made publicly available.
comment: Accepted at ICLR 2026
MARC: Memory-Augmented RL Token Compression for Efficient Video Understanding ICLR 2026
The rapid progress of large language models (LLMs) has laid the foundation for multimodal models. However, visual language models (VLMs) still face heavy computational costs when extended from images to videos due to high frame rates and long durations. Token compression is a promising solution, yet most existing training-free methods cause information loss and performance degradation. To overcome this, we propose \textbf{Memory-Augmented Reinforcement Learning-based Token Compression (MARC)}, which integrates structured retrieval and RL-based distillation. MARC adopts a \textit{retrieve-then-compress} strategy using a \textbf{Visual Memory Retriever (VMR)} to select key clips and a \textbf{Compression Group Relative Policy Optimization (C-GRPO)} framework to distil reasoning ability from a teacher to a student model. Experiments on six video benchmarks show that MARC achieves near-baseline accuracy using only one frame's tokens -- reducing visual tokens by \textbf{95\%}, GPU memory by \textbf{72\%}, and latency by \textbf{23.9\%}. This demonstrates its potential for efficient, real-time video understanding in resource-constrained settings such as video QA, surveillance, and autonomous driving.
comment: Accepted at ICLR 2026
LLMPopcorn: Exploring LLMs as Assistants for Popular Micro-video Generation
In an era where micro-videos dominate platforms like TikTok and YouTube, AI-generated content is nearing cinematic quality. The next frontier is using large language models (LLMs) to autonomously create viral micro-videos, a largely untapped potential that could shape the future of AI-driven content creation. To address this gap, this paper presents the first exploration of LLM-assisted popular micro-video generation (LLMPopcorn). We selected popcorn as the icon for this paper because it symbolizes leisure and entertainment, aligning with this study on leveraging LLMs as assistants for generating popular micro-videos that are often consumed during leisure time. Specifically, we empirically study the following research questions: (i) How can LLMs be effectively utilized to assist popular micro-video generation? (ii) To what extent can prompt-based enhancements optimize the LLM-generated content for higher popularity? (iii) How well do various LLMs and video generators perform in the popular micro-video generation task? Exploring these questions, we show that advanced LLMs like DeepSeek-V3 can generate micro-videos with popularity rivaling human content. Prompt enhancement further boosts results, while benchmarking highlights DeepSeek-V3 and R1 for LLMs, and LTX-Video and HunyuanVideo for video generation. This work advances AI-assisted micro-video creation and opens new research directions. The code is publicly available at https://github.com/GAIR-Lab/LLMPopcorn.
comment: Accepted by ICASSP2026
GHOST: Hallucination-Inducing Image Generation for Multimodal LLMs
Object hallucination in Multimodal Large Language Models (MLLMs) is a persistent failure mode that causes the model to perceive objects absent in the image. This weakness of MLLMs is currently studied using static benchmarks with fixed visual scenarios, which preempts the possibility of uncovering model-specific or unanticipated hallucination vulnerabilities. We introduce GHOST (Generating Hallucinations via Optimizing Stealth Tokens), a method designed to stress-test MLLMs by actively generating images that induce hallucination. GHOST is fully automatic and requires no human supervision or prior knowledge. It operates by optimizing in the image embedding space to mislead the model while keeping the target object absent, and then guiding a diffusion model conditioned on the embedding to generate natural-looking images. The resulting images remain visually natural and close to the original input, yet introduce subtle misleading cues that cause the model to hallucinate. We evaluate our method across a range of models, including reasoning models like GLM-4.1V-Thinking, and achieve a hallucination success rate exceeding 28%, compared to around 1% in prior data-driven discovery methods. We confirm that the generated images are both high-quality and object-free through quantitative metrics and human evaluation. Also, GHOST uncovers transferable vulnerabilities: images optimized for Qwen2.5-VL induce hallucinations in GPT-4o at a 66.5% rate. Finally, we show that fine-tuning on our images mitigates hallucination, positioning GHOST as both a diagnostic and corrective tool for building more reliable multimodal systems.
HeadLighter: Disentangling Illumination in Generative 3D Gaussian Heads via Lightstage Captures
Recent 3D-aware head generative models based on 3D Gaussian Splatting achieve real-time, photorealistic and view-consistent head synthesis. However, a fundamental limitation persists: the deep entanglement of illumination and intrinsic appearance prevents controllable relighting. Existing disentanglement methods rely on strong assumptions to enable weakly supervised learning, which restricts their capacity for complex illumination. To address this challenge, we introduce HeadLighter, a novel supervised framework that learns a physically plausible decomposition of appearance and illumination in head generative models. Specifically, we design a dual-branch architecture that separately models lighting-invariant head attributes and physically grounded rendering components. A progressive disentanglement training is employed to gradually inject head appearance priors into the generative architecture, supervised by multi-view images captured under controlled light conditions with a light stage setup. We further introduce a distillation strategy to generate high-quality normals for realistic rendering. Experiments demonstrate that our method preserves high-quality generation and real-time rendering, while simultaneously supporting explicit lighting and viewpoint editing. We will publicly release our code and dataset.
Whole Slide Concepts: A Supervised Foundation Model For Pathological Images
Foundation models (FMs) are transforming computational pathology by offering new ways to analyze histopathology images. However, FMs typically require weeks of training on large databases, making their creation a resource-intensive process. In this paper, we present a training for foundation models from whole slide images using supervised, end-to-end, multitask learning on slide-level labels. Notably, it is the first model to incorporate cancer subtyping, risk estimation, and genetic mutation prediction into one model. The presented model outperforms self-supervised models on seven benchmark tasks while the training only required 5% of the computational resources. The results not only show that supervised training can outperform self-supervision with less data, but also offer a solution to annotation problems, as patient-based labels are widely available through routine clinical processes. Furthermore, an attention module provides a layer of explainability across different tasks and serves as a tumor detector for unseen cancer types. To address the issue of closed-source datasets, the model was fully trained on openly available data. The code and model weights are made available under https://github.com/FraunhoferMEVIS/MedicalMultitaskModeling.
DVD-Quant: Data-free Video Diffusion Transformers Quantization
Diffusion Transformers (DiTs) have emerged as the state-of-the-art architecture for video generation, yet their computational and memory demands hinder practical deployment. While post-training quantization (PTQ) presents a promising approach to accelerate Video DiT models, existing methods suffer from two critical limitations: (1) dependence on computation-heavy and inflexible calibration procedures, and (2) considerable performance deterioration after quantization. To address these challenges, we propose DVD-Quant, a novel Data-free quantization framework for Video DiTs. Our approach integrates three key innovations: (1) Bounded-init Grid Refinement (BGR) and (2) Auto-scaling Rotated Quantization (ARQ) for calibration data-free quantization error reduction, as well as (3) $δ$-Guided Bit Switching ($δ$-GBS) for adaptive bit-width allocation. Extensive experiments across multiple video generation benchmarks demonstrate that DVD-Quant achieves an approximately 2$\times$ speedup over full-precision baselines on advanced DiT models while maintaining visual fidelity. Notably, DVD-Quant is the first to enable W4A4 PTQ for Video DiTs without compromising video quality. Code and models will be available at https://github.com/lhxcs/DVD-Quant.
comment: Code and models will be available at https://github.com/lhxcs/DVD-Quant
HERMES: KV Cache as Hierarchical Memory for Efficient Streaming Video Understanding
Recent advancements in Multimodal Large Language Models (MLLMs) have demonstrated significant improvement in offline video understanding. However, extending these capabilities to streaming video inputs, remains challenging, as existing models struggle to simultaneously maintain stable understanding performance, real-time responses, and low GPU memory overhead. To address this challenge, we propose HERMES, a novel training-free architecture for real-time and accurate understanding of video streams. Based on a mechanistic attention investigation, we conceptualize KV cache as a hierarchical memory framework that encapsulates video information across multiple granularities. During inference, HERMES reuses a compact KV cache, enabling efficient streaming understanding under resource constraints. Notably, HERMES requires no auxiliary computations upon the arrival of user queries, thereby guaranteeing real-time responses for continuous video stream interactions, which achieves 10$\times$ faster TTFT compared to prior SOTA. Even when reducing video tokens by up to 68% compared with uniform sampling, HERMES achieves superior or comparable accuracy across all benchmarks, with up to 11.4% gains on streaming datasets.
Cross-Platform Scaling of Vision-Language-Action Models from Edge to Cloud GPUs
Vision-Language-Action (VLA) models have emerged as powerful generalist policies for robotic control, yet their performance scaling across model architectures and hardware platforms, as well as their associated power budgets, remain poorly understood. This work presents an evaluation of five representative VLA models -- spanning state-of-the-art baselines and two newly proposed architectures -- targeting edge and datacenter GPU platforms. Using the LIBERO benchmark, we measure accuracy alongside system-level metrics, including latency, throughput, and peak memory usage, under varying edge power constraints and high-performance datacenter GPU configurations. Our results identify distinct scaling trends: (1) architectural choices, such as action tokenization and model backbone size, strongly influence throughput and memory footprint; (2) power-constrained edge devices exhibit non-linear performance degradation, with some configurations matching or exceeding older datacenter GPUs; and (3) high-throughput variants can be achieved without significant accuracy loss. These findings provide actionable insights when selecting and optimizing VLAs across a range of deployment constraints. Our work challenges current assumptions about the superiority of datacenter hardware for robotic inference.
comment: To appear in the Asilomar Conference on Signals, Systems, and Computers 2025
SMooGPT: Stylized Motion Generation using Large Language Models
Stylized motion generation is actively studied in computer graphics, especially benefiting from the rapid advances in diffusion models. The goal of this task is to produce a novel motion respecting both the motion content and the desired motion style, e.g., ``walking in a loop like a Monkey''. Existing research attempts to address this problem via motion style transfer or conditional motion generation. They typically embed the motion style into a latent space and guide the motion implicitly in a latent space as well. Despite the progress, their methods suffer from low interpretability and control, limited generalization to new styles, and fail to produce motions other than ``walking'' due to the strong bias in the public stylization dataset. In this paper, we propose to solve the stylized motion generation problem from a new perspective of reasoning-composition-generation, based on our observations: i) human motion can often be effectively described using natural language in a body-part centric manner, ii) LLMs exhibit a strong ability to understand and reason about human motion, and iii) human motion has an inherently compositional nature, facilitating the new motion content or style generation via effective recomposing. We thus propose utilizing body-part text space as an intermediate representation, and present SMooGPT, a fine-tuned LLM, acting as a reasoner, composer, and generator when generating the desired stylized motion. Our method executes in the body-part text space with much higher interpretability, enabling fine-grained motion control, effectively resolving potential conflicts between motion content and style, and generalizes well to new styles thanks to the open-vocabulary ability of LLMs. Comprehensive experiments and evaluations, and a user perceptual study, demonstrate the effectiveness of our approach, especially under the pure text-driven stylized motion generation.
CLIP's Visual Embedding Projector is a Few-shot Cornucopia WACV 2026
We introduce ProLIP, a simple and architecture-agnostic method for adapting contrastively pretrained vision-language models, such as CLIP, to few-shot classification. ProLIP fine-tunes the vision encoder's projection matrix with Frobenius norm regularization on its deviation from the pretrained weights. It achieves state-of-the-art performance on 11 few-shot classification benchmarks under both ``few-shot validation'' and ``validation-free'' settings. Moreover, by rethinking the non-linear CLIP-Adapter through ProLIP's lens, we design a Regularized Linear Adapter (RLA) that performs better, requires no hyperparameter tuning, is less sensitive to learning rate values, and offers an alternative to ProLIP in black-box scenarios where model weights are inaccessible. Beyond few-shot classification, ProLIP excels in cross-dataset transfer, domain generalization, base-to-new class generalization, and test-time adaptation--where it outperforms prompt tuning while being an order of magnitude faster to train. Code is available at https://github.com/astra-vision/ProLIP .
comment: WACV 2026
PCICF: A Pedestrian Crossing Identification and Classification Framework
We have recently observed the commercial roll-out of robotaxis in various countries. They are deployed within an operational design domain (ODD) on specific routes and environmental conditions, and are subject to continuous monitoring to regain control in safety-critical situations. Since ODDs typically cover urban areas, robotaxis must reliably detect vulnerable road users (VRUs) such as pedestrians, bicyclists, or e-scooter riders. To better handle such varied traffic situations, end-to-end AI, which directly compute vehicle control actions from multi-modal sensor data instead of only for perception, is on the rise. High quality data is needed for systematically training and evaluating such systems within their OOD. In this work, we propose PCICF, a framework to systematically identify and classify VRU situations to support ODD's incident analysis. We base our work on the existing synthetic dataset SMIRK, and enhance it by extending its single-pedestrian-only design into the MoreSMIRK dataset, a structured dictionary of multi-pedestrian crossing situations constructed systematically. We then use space-filling curves (SFCs) to transform multi-dimensional features of scenarios into characteristic patterns, which we match with corresponding entries in MoreSMIRK. We evaluate PCICF with the large real-world dataset PIE, which contains more than 150 manually annotated pedestrian crossing videos. We show that PCICF can successfully identify and classify complex pedestrian crossings, even when groups of pedestrians merge or split. By leveraging computationally efficient components like SFCs, PCICF has even potential to be used onboard of robotaxis for OOD detection for example. We share an open-source replication package for PCICF containing its algorithms, the complete MoreSMIRK dataset and dictionary, as well as our experiment results presented in: https://github.com/Claud1234/PCICF
Practical insights on the effect of different encodings, ansätze and measurements in quantum and hybrid convolutional neural networks
This study investigates the design choices of parameterized quantum circuits (PQCs) within quantum and hybrid convolutional neural network (HQNN and QCNN) architectures, applied to the task of satellite image classification using the EuroSAT dataset. We systematically evaluate the performance implications of data encoding techniques, variational ansätze, and measurement in approx. 500 distinct model configurations. Our analysis reveals a clear hierarchy of influence on model performance. For hybrid architectures, which were benchmarked against their direct classical equivalents (e.g. the same architecture with the PQCs removed), the data encoding strategy is the dominant factor, with validation accuracy varying over 30% for distinct embeddings. In contrast, the selection of variational ansätze and measurement basis had a comparatively marginal effect, with validation accuracy variations remaining below 5%. For purely quantum models, restricted to amplitude encoding, performance was most dependent on the measurement protocol and the data-to-amplitude mapping. The measurement strategy varied the validation accuracy by up to 30% and the encoding mapping by around 8 percentage points.
comment: 20 pages, 22 figures
GPA-VGGT:Adapting VGGT to Large Scale Localization by Self-Supervised Learning with Geometry and Physics Aware Loss
Transformer-based general visual geometry frameworks have shown promising performance in camera pose estimation and 3D scene understanding. Recent advancements in Visual Geometry Grounded Transformer (VGGT) models have shown great promise in camera pose estimation and 3D reconstruction. However, these models typically rely on ground truth labels for training, posing challenges when adapting to unlabeled and unseen scenes. In this paper, we propose a self-supervised framework to train VGGT with unlabeled data, thereby enhancing its localization capability in large-scale environments. To achieve this, we extend conventional pair-wise relations to sequence-wise geometric constraints for self-supervised learning. Specifically, in each sequence, we sample multiple source frames and geometrically project them onto different target frames, which improves temporal feature consistency. We formulate physical photometric consistency and geometric constraints as a joint optimization loss to circumvent the requirement for hard labels. By training the model with this proposed method, not only the local and global cross-view attention layers but also the camera and depth heads can effectively capture the underlying multi-view geometry. Experiments demonstrate that the model converges within hundreds of iterations and achieves significant improvements in large-scale localization. Our code will be released at https://github.com/X-yangfan/GPA-VGGT.
Radiance Fields from Photons
Neural radiance fields, or NeRFs, have become the de facto approach for high-quality view synthesis from a collection of images captured from multiple viewpoints. However, many issues remain when capturing images in-the-wild under challenging conditions, such as low light, high dynamic range, or rapid motion leading to smeared reconstructions with noticeable artifacts. In this work, we introduce quanta radiance fields, a novel class of neural radiance fields that are trained at the granularity of individual photons using single-photon cameras (SPCs). We develop theory and practical computational techniques for building radiance fields and estimating dense camera poses from unconventional, stochastic, and high-speed binary frame sequences captured by SPCs. We demonstrate, both via simulations and a SPC hardware prototype, high-fidelity reconstructions under high-speed motion, in low light, and for extreme dynamic range settings.
Seeing Beyond the Image: ECG and Anatomical Knowledge-Guided Myocardial Scar Segmentation from Late Gadolinium-Enhanced Images
Accurate segmentation of myocardial scar from late gadolinium enhanced (LGE) cardiac MRI is essential for evaluating tissue viability, yet remains challenging due to variable contrast and imaging artifacts. Electrocardiogram (ECG) signals provide complementary physiological information, as conduction abnormalities can help localize or suggest scarred myocardial regions. In this work, we propose a novel multimodal framework that integrates ECG-derived electrophysiological information with anatomical priors from the AHA-17 atlas for physiologically consistent LGE-based scar segmentation. As ECGs and LGE-MRIs are not acquired simultaneously, we introduce a Temporal Aware Feature Fusion (TAFF) mechanism that dynamically weights and fuses features based on their acquisition time difference. Our method was evaluated on a clinical dataset and achieved substantial gains over the state-of-the-art image-only baseline (nnU-Net), increasing the average Dice score for scars from 0.6149 to 0.8463 and achieving high performance in both precision (0.9115) and sensitivity (0.9043). These results show that integrating physiological and anatomical knowledge allows the model to "see beyond the image", setting a new direction for robust and physiologically grounded cardiac scar segmentation.
BADiff: Bandwidth Adaptive Diffusion Model NeurIPS 2025
In this work, we propose a novel framework to enable diffusion models to adapt their generation quality based on real-time network bandwidth constraints. Traditional diffusion models produce high-fidelity images by performing a fixed number of denoising steps, regardless of downstream transmission limitations. However, in practical cloud-to-device scenarios, limited bandwidth often necessitates heavy compression, leading to loss of fine textures and wasted computation. To address this, we introduce a joint end-to-end training strategy where the diffusion model is conditioned on a target quality level derived from the available bandwidth. During training, the model learns to adaptively modulate the denoising process, enabling early-stop sampling that maintains perceptual quality appropriate to the target transmission condition. Our method requires minimal architectural changes and leverages a lightweight quality embedding to guide the denoising trajectory. Experimental results demonstrate that our approach significantly improves the visual fidelity of bandwidth-adapted generations compared to naive early-stopping, offering a promising solution for efficient image delivery in bandwidth-constrained environments. Code is available at: https://github.com/xzhang9308/BADiff.
comment: NeurIPS 2025 Poster
MultiHateLoc: Towards Temporal Localisation of Multimodal Hate Content in Online Videos
The rapid growth of video content on platforms such as TikTok and YouTube has intensified the spread of multimodal hate speech, where harmful cues emerge subtly and asynchronously across visual, acoustic, and textual streams. Existing research primarily focuses on video-level classification, leaving the practically crucial task of temporal localisation, identifying when hateful segments occur, largely unaddressed. This challenge is even more noticeable under weak supervision, where only video-level labels are available, and static fusion or classification-based architectures struggle to capture cross-modal and temporal dynamics. To address these challenges, we propose MultiHateLoc, the first framework designed for weakly-supervised multimodal hate localisation. MultiHateLoc incorporates (1) modality-aware temporal encoders to model heterogeneous sequential patterns, including a tailored text-based preprocessing module for feature enhancement; (2) dynamic cross-modal fusion to adaptively emphasise the most informative modality at each moment and a cross-modal contrastive alignment strategy to enhance multimodal feature consistency; (3) a modality-aware MIL objective to identify discriminative segments under video-level supervision. Despite relying solely on coarse labels, MultiHateLoc produces fine-grained, interpretable frame-level predictions. Experiments on HateMM and MultiHateClip show that our method achieves state-of-the-art performance in the localisation task.
comment: In Proceedings of the ACM Web Conference 2026 (WWW 2026)
From Filters to VLMs: Benchmarking Defogging Methods through Object Detection and Segmentation Performance WACV 2026
Autonomous driving perception systems are particularly vulnerable in foggy conditions, where light scattering reduces contrast and obscures fine details critical for safe operation. While numerous defogging methods exist, from handcrafted filters to learned restoration models, improvements in image fidelity do not consistently translate into better downstream detection and segmentation. Moreover, prior evaluations often rely on synthetic data, raising concerns about real-world transferability. We present a structured empirical study that benchmarks a comprehensive set of defogging pipelines, including classical dehazing filters, modern defogging networks, chained variants combining filters and models, and prompt-driven visual language image editing models applied directly to foggy images. To bridge the gap between simulated and physical environments, we evaluate these pipelines on both the synthetic Foggy Cityscapes dataset and the real-world Adverse Conditions Dataset with Correspondences (ACDC). We examine generalization by evaluating performance on synthetic fog and real-world conditions, assessing both image quality and downstream perception in terms of object detection mean average precision and segmentation panoptic quality. Our analysis identifies when defogging is effective, the impact of combining models, and how visual language models compare to traditional approaches. We additionally report qualitative rubric-based evaluations from both human and visual language model judges and analyze their alignment with downstream task metrics. Together, these results establish a transparent, task-oriented benchmark for defogging methods and identify the conditions under which pre-processing meaningfully improves autonomous perception in adverse weather. Project page: https://aradfir.github.io/filters-to-vlms-defogging-page/
comment: Accepted at WACV 2026 Proceedings (Oral), 5th Workshop on Image, Video, and Audio Quality Assessment in Computer Vision, with a focus on VLM and Diffusion Models
GlobalGeoTree: A Multi-Granular Vision-Language Dataset for Global Tree Species Classification
Global tree species mapping using remote sensing data is vital for biodiversity monitoring, forest management, and ecological research. However, progress in this field has been constrained by the scarcity of large-scale, labeled datasets. To address this, we introduce GlobalGeoTree, a comprehensive global dataset for tree species classification. GlobalGeoTree comprises 6.3 million geolocated tree occurrences, spanning 275 families, 2,734 genera, and 21,001 species across the hierarchical taxonomic levels. Each sample is paired with Sentinel-2 image time series and 27 auxiliary environmental variables, encompassing bioclimatic, geographic, and soil data. The dataset is partitioned into GlobalGeoTree-6M for model pretraining and curated evaluation subsets, primarily GlobalGeoTree-10kEval for zero-shot and few-shot benchmarking. To demonstrate the utility of the dataset, we introduce a baseline model, GeoTreeCLIP, which leverages paired remote sensing data and taxonomic text labels within a vision-language framework pretrained on GlobalGeoTree-6M. Experimental results show that GeoTreeCLIP achieves substantial improvements in zero- and few-shot classification on GlobalGeoTree-10kEval over existing advanced models. By making the dataset, models, and code publicly available, we aim to establish a benchmark to advance tree species classification and foster innovation in biodiversity research and ecological applications.
Ask Me Again Differently: GRAS for Measuring Bias in Vision Language Models on Gender, Race, Age, and Skin Tone
As Vision Language Models (VLMs) become integral to real-world applications, understanding their demographic biases is critical. We introduce GRAS, a benchmark for uncovering demographic biases in VLMs across gender, race, age, and skin tone, offering the most diverse coverage to date. We further propose the GRAS Bias Score, an interpretable metric for quantifying bias. We benchmark five state-of-the-art VLMs and reveal concerning bias levels, with the least biased model attaining a GRAS Bias Score of only 2 out of 100. Our findings also reveal a methodological insight: evaluating bias in VLMs with visual question answering (VQA) requires considering multiple formulations of a question. Our code, data, and evaluation results are publicly available.
comment: Accepted to the Findings of EACL 2026
ELIP: Efficient Discriminative Language-Image Pre-training with Fewer Vision Tokens
Learning a versatile language-image model is computationally prohibitive under a limited computing budget. This paper delves into the \emph{efficient language-image pre-training}, an area that has received relatively little attention despite its importance in reducing computational cost and footprint. To that end, we propose a vision token pruning and merging method ELIP, to remove less influential tokens based on the supervision of language outputs. Our method is designed with several strengths, such as being computation-efficient, memory-efficient, and trainable-parameter-free, and is distinguished from previous vision-only token pruning approaches by its alignment with task objectives. We implement this method in a progressively pruning manner using several sequential blocks. To evaluate its generalization performance, we apply ELIP to three commonly used language-image pre-training models and utilize public image-caption pairs with 4M images for pre-training. Our experiments demonstrate that with the removal of ~30$\%$ vision tokens across 12 ViT layers, ELIP maintains significantly comparable performance with baselines ($\sim$0.32 accuracy drop on average) over various downstream tasks including cross-modal retrieval, VQA, image captioning, \emph{etc}. In addition, the spared GPU resources by our ELIP allow us to scale up with larger batch sizes, thereby accelerating model pre-training and even sometimes enhancing downstream model performance.
Kinetic Mining in Context: Few-Shot Action Synthesis via Text-to-Motion Distillation
The acquisition cost for large, annotated motion datasets remains a critical bottleneck for skeletal-based Human Activity Recognition (HAR). Although Text-to-Motion (T2M) generative models offer a compelling, scalable source of synthetic data, their training objectives, which emphasize general artistic motion, and dataset structures fundamentally differ from HAR's requirements for kinematically precise, class-discriminative actions. This disparity creates a significant domain gap, making generalist T2M models ill-equipped for generating motions suitable for HAR classifiers. To address this challenge, we propose KineMIC (Kinetic Mining In Context), a transfer learning framework for few-shot action synthesis. KineMIC adapts a T2M diffusion model to an HAR domain by hypothesizing that semantic correspondences in the text encoding space can provide soft supervision for kinematic distillation. We operationalize this via a kinetic mining strategy that leverages CLIP text embeddings to establish correspondences between sparse HAR labels and T2M source data. This process guides fine-tuning, transforming the generalist T2M backbone into a specialized few-shot Action-to-Motion generator. We validate KineMIC using HumanML3D as the source T2M dataset and a subset of NTU RGB+D 120 as the target HAR domain, randomly selecting just 10 samples per action class. Our approach generates significantly more coherent motions, providing a robust data augmentation source that delivers a +23.1% accuracy points improvement. Animated illustrations and supplementary materials are available at https://lucazzola.github.io/publications/kinemic.
Real-Time Object Detection Meets DINOv3
Driven by the simple and effective Dense O2O, DEIM demonstrates faster convergence and enhanced performance. In this work, we extend it with DINOv3 features, resulting in DEIMv2. DEIMv2 spans eight model sizes from X to Atto, covering GPU, edge, and mobile deployment. For the X, L, M, and S variants, we adopt DINOv3-pretrained or distilled backbones and introduce a Spatial Tuning Adapter (STA), which efficiently converts DINOv3's single-scale output into multi-scale features and complements strong semantics with fine-grained details to enhance detection. For ultra-lightweight models (Nano, Pico, Femto, and Atto), we employ HGNetv2 with depth and width pruning to meet strict resource budgets. Together with a simplified decoder and an upgraded Dense O2O, this unified design enables DEIMv2 to achieve a superior performance-cost trade-off across diverse scenarios, establishing new state-of-the-art results. Notably, our largest model, DEIMv2-X, achieves 57.8 AP with only 50.3 million parameters, surpassing prior X-scale models that require over 60 million parameters for just 56.5 AP. On the compact side, DEIMv2-S is the first sub-10 million model (9.71 million) to exceed the 50 AP milestone on COCO, reaching 50.9 AP. Even the ultra-lightweight DEIMv2-Pico, with just 1.5 million parameters, delivers 38.5 AP, matching YOLOv10-Nano (2.3 million) with around 50 percent fewer parameters. Our code and pre-trained models are available at https://github.com/Intellindust-AI-Lab/DEIMv2
comment: Source code available at https://github.com/Intellindust-AI-Lab/DEIMv2
Coding the Visual World: From Image to Simulation Using Vision Language Models
The ability to construct mental models of the world is a central aspect of understanding. Similarly, visual understanding can be viewed as the ability to construct a representative model of the system depicted in an image. This work explores the capacity of Vision Language Models (VLMs) to recognize and simulate the systems and mechanisms depicted in images using the Im2Sim methodology. The VLM is given a natural image of a real-world system (e.g., cities, clouds, vegetation) and is tasked with describing the system and writing code that simulates and generates it. This generative code is then executed to produce a synthetic image, which is compared against the original. This approach is tested on various complex emergent systems, ranging from physical systems (waves, lights, clouds) to vegetation, cities, materials, and geological formations. Through analysis of the models and images generated by the VLMs, we examine their understanding of the systems in images. The results show that leading VLMs (GPT, Gemini) have the ability to understand and model complex, multi-component systems across multiple layers of abstraction and a wide range of domains. At the same time, the VLMs exhibit limited ability to replicate fine details and low-level arrangements of patterns in the image. These findings reveal an interesting asymmetry: VLMs combine high-level, deep visual understanding of images with limited perception of fine details.
Context-measure: Contextualizing Metric for Camouflage
Camouflage is primarily context-dependent yet current metrics for camouflaged scenarios overlook this critical factor. Instead, these metrics are originally designed for evaluating general or salient objects, with an inherent assumption of uncorrelated spatial context. In this paper, we propose a new contextualized evaluation paradigm, Context-measure, built upon a probabilistic pixel-aware correlation framework. By incorporating spatial dependencies and pixel-wise camouflage quantification, our measure better aligns with human perception. Extensive experiments across three challenging camouflaged object segmentation datasets show that Context-measure delivers more reliability than existing context-independent metrics. Our measure can provide a foundational evaluation benchmark for various computer vision applications involving camouflaged patterns, such as agricultural, industrial, and medical scenarios. Code is available at https://github.com/pursuitxi/Context-measure.
comment: Technical Report
CellStyle: Improved Zero-Shot Cell Segmentation via Style Transfer
Cell microscopy data are abundant; however, corresponding segmentation annotations remain scarce. Moreover, variations in cell types, imaging devices, and staining techniques introduce significant domain gaps between datasets. As a result, even large, pretrained segmentation models trained on diverse datasets (source datasets) struggle to generalize to unseen datasets (target datasets). To overcome this generalization problem, we propose CellStyle, which improves the segmentation quality of such models without requiring labels for the target dataset, thereby enabling zero-shot adaptation. CellStyle transfers the attributes of an unannotated target dataset, such as texture, color, and noise, to the annotated source dataset. This transfer is performed while preserving the cell shapes of the source images, ensuring that the existing source annotations can still be used while maintaining the visual characteristics of the target dataset. The styled synthetic images with the existing annotations enable the finetuning of a generalist segmentation model for application to the unannotated target data. We demonstrate that CellStyle significantly improves zero-shot cell segmentation performance across diverse datasets by finetuning multiple segmentation models on the style-transferred data. The code will be made publicly available.
Adams Bashforth Moulton Solver for Inversion and Editing in Rectified Flow
Rectified flow models have achieved remarkable performance in image and video generation tasks. However, existing numerical solvers face a trade-off between fast sampling and high accuracy solutions, limiting their effectiveness in downstream applications such as reconstruction and editing. To address this challenge, we propose leveraging the Adams Bashforth Moulton (ABM) predictor corrector method to enhance the accuracy of ODE solving in rectified flow models. Specifically, we introduce ABM Solver, which integrates a multi step predictor corrector approach to reduce local truncation errors and employs Adaptive Step Size Adjustment to improve sampling speed. Furthermore, to effectively preserve non edited regions while facilitating semantic modifications, we introduce a Mask Guided Feature Injection module. We estimate self-similarity to generate a spatial mask that differentiates preserved regions from those available for editing. Extensive experiments on multiple high resolution image datasets validate that ABM Solver significantly improves inversion precision and editing quality, outperforming existing solvers without requiring additional training or optimization.
A Style-Based Profiling Framework for Quantifying the Synthetic-to-Real Gap in Autonomous Driving Datasets IV 2026
Ensuring the reliability of autonomous driving perception systems requires extensive environment-based testing, yet real-world execution is often impractical. Synthetic datasets have therefore emerged as a promising alternative, offering advantages such as cost-effectiveness, bias free labeling, and controllable scenarios. However, the domain gap between synthetic and real-world datasets remains a major obstacle to model generalization. To address this challenge from a data-centric perspective, this paper introduces a profile extraction and discovery framework for characterizing the style profiles underlying both synthetic and real image datasets. We propose Style Embedding Distribution Discrepancy (SEDD) as a novel evaluation metric. Our framework combines Gram matrix-based style extraction with metric learning optimized for intra-class compactness and inter-class separation to extract style embeddings. Furthermore, we establish a benchmark using publicly available datasets. Experiments are conducted on a variety of datasets and sim-to-real methods, and the results show that our method is capable of quantifying the synthetic-to-real gap. This work provides a standardized profiling-based quality control paradigm that enables systematic diagnosis and targeted enhancement of synthetic datasets, advancing future development of data-driven autonomous driving systems.
comment: Accepted for publication at the 2026 IEEE Intelligent Vehicles Symposium (IEEE IV 2026)
Exploiting Minority Pseudo-Labels for Semi-Supervised Fine-grained Road Scene Understanding
In fine-grained road scene understanding, semantic segmentation plays a crucial role in enabling vehicles to perceive and comprehend their surroundings. By assigning a specific class label to each pixel in an image, it allows for precise identification and localization of detailed road features, which is vital for high-quality scene understanding and downstream perception tasks. A key challenge in this domain lies in improving the recognition performance of minority classes while mitigating the dominance of majority classes, which is essential for achieving balanced and robust overall performance. However, traditional semi-supervised learning methods often train models overlooking the imbalance between classes. To address this issue, firstly, we propose a general training module that learns from all the pseudo-labels without a conventional filtering strategy. Secondly, we propose a professional training module to learn specifically from reliable minority-class pseudo-labels identified by a novel mismatch score metric. The two modules are crossly supervised by each other so that it reduces model coupling which is essential for semi-supervised learning. During contrastive learning, to avoid the dominance of the majority classes in the feature space, we propose a strategy to assign evenly distributed anchors for different classes in the feature space. Experimental results on multiple public benchmarks show that our method surpasses traditional approaches in recognizing tail classes.
comment: 14 pages, 12 figures
Multimodal Evaluation of Russian-language Architectures
Multimodal large language models (MLLMs) are currently at the center of research attention, showing rapid progress in scale and capabilities, yet their intelligence, limitations, and risks remain insufficiently understood. To address these issues, particularly in the context of the Russian language, where no multimodal benchmarks currently exist, we introduce MERA Multi, an open multimodal evaluation framework for Russian-spoken architectures. The benchmark is instruction-based and encompasses default text, image, audio, and video modalities, comprising 18 newly constructed evaluation tasks for both general-purpose models and modality-specific architectures (imageto-text, video-to-text, and audio-to-text). Our contributions include: (i) a universal taxonomy of multimodal abilities; (ii) 18 datasets created entirely from scratch with attention to Russian cultural and linguistic specificity, unified prompts, and metrics; (iii) baseline results for both closed-source and open-source models; (iv) a methodology for preventing benchmark leakage, including watermarking for private sets. While our current focus is on Russian, the proposed benchmark provides a replicable methodology for constructing multimodal benchmarks in typologically diverse languages, particularly within the Slavic language family.
comment: EACL main track
AnchoredDream: Zero-Shot 360° Indoor Scene Generation from a Single View via Geometric Grounding
Single-view indoor scene generation plays a crucial role in a range of real-world applications. However, generating a complete 360° scene from a single image remains a highly ill-posed and challenging problem. Recent approaches have made progress by leveraging diffusion models and depth estimation networks, yet they still struggle to maintain appearance consistency and geometric plausibility under large viewpoint changes, limiting their effectiveness in full-scene generation. To address this, we propose AnchoredDream, a novel zero-shot pipeline that anchors 360° scene generation on high-fidelity geometry via an appearance-geometry mutual boosting mechanism. Given a single-view image, our method first performs appearance-guided geometry generation to construct a reliable 3D scene layout. Then, we progressively generate the complete scene through a series of modules: warp-and-inpaint, warp-and-refine, post-optimization, and a novel Grouting Block, which ensures seamless transitions between the input view and generated regions. Extensive experiments demonstrate that AnchoredDream outperforms existing methods by a large margin in both appearance consistency and geometric plausibility--all in a zero-shot manner. Our results highlight the potential of geometric grounding for high-quality, zero-shot single-view scene generation.
Not All Pixels Are Equal: Pixel-wise Meta-Learning for Medical Segmentation with Noisy Labels
Medical image segmentation is crucial for clinical applications, but it is frequently disrupted by noisy annotations and ambiguous anatomical boundaries, which lead to instability in model training. Existing methods typically rely on global noise assumptions or confidence-based sample selection, which inadequately mitigate the performance degradation caused by annotation noise, especially in challenging boundary regions. To address this issue, we propose MetaDCSeg, a robust framework that dynamically learns optimal pixel-wise weights to suppress the influence of noisy labels while preserving reliable annotations. By explicitly modeling boundary uncertainty through a Dynamic Center Distance (DCD) mechanism, our approach utilizes weighted feature distances for foreground, background, and boundary centers, directing the model's attention toward hard-to-segment pixels near ambiguous boundaries. This strategy enables more precise handling of structural boundaries, which are often overlooked by existing methods, and significantly enhances segmentation performance. Extensive experiments across four benchmark datasets with varying noise levels demonstrate that MetaDCSeg outperforms existing state-of-the-art methods.
GeoVLMath: Enhancing Geometry Reasoning in Vision-Language Models via Cross-Modal Reward for Auxiliary Line Creation
Auxiliary lines are essential for solving complex geometric problems but remain challenging for large vision-language models (LVLMs). Recent attempts construct auxiliary lines via code-driven rendering, a strategy that relies on accurate and executable code generation to produce visual renderings of the auxiliary lines for subsequent reasoning. However, in complex solid geometry settings, such a strong dependence on precise specifications substantially restricts the robustness of this strategy. Alternatively, we turn to a simpler and more stable solution, representing auxiliary-line constructions as structured textual descriptions. To bridge the gap between textual descriptions and spatial structure, we propose a reinforcement learning framework that enhances diagram-text alignment. The core is a cross-modal reward model that evaluates how well the generated auxiliary-line description matches the ground-truth auxiliary-line diagram. The reward signal drives a GRPO-based RL stage to yield informative auxiliary-line descriptions for the reasoning. To support the training and evaluation, we develop a scalable data pipeline and construct AuxSolidMath, a dataset of 3,018 real-exam geometry problems with paired diagrams and aligned textual fields. Based on this framework, we derive GeoVLMath, an LVLM for solving complex solid geometry.
comment: 19 pages
The Art of Saying "Maybe": A Conformal Lens for Uncertainty Benchmarking in VLMs
Vision-Language Models (VLMs) have achieved remarkable progress in complex visual understanding across scientific and reasoning tasks. While performance benchmarking has advanced our understanding of these capabilities, the critical dimension of uncertainty quantification has received insufficient attention. Therefore, unlike prior conformal prediction studies that focused on limited settings, we conduct a comprehensive uncertainty benchmarking study, evaluating 18 state-of-the-art VLMs (open and closed-source) across 6 multimodal datasets with 3 distinct scoring functions. For closed-source models lacking token-level logprob access, we develop and validate instruction-guided likelihood proxies. Our findings demonstrate that larger models consistently exhibit better uncertainty quantification; models that know more also know better what they don't know. More certain models achieve higher accuracy, while mathematical and reasoning tasks elicit poorer uncertainty performance across all models compared to other domains. This work establishes a foundation for reliable uncertainty evaluation in multimodal systems.
Localizing Knowledge in Diffusion Transformers
Understanding how knowledge is distributed across the layers of generative models is crucial for improving interpretability, controllability, and adaptation. While prior work has explored knowledge localization in UNet-based architectures, Diffusion Transformer (DiT)-based models remain underexplored in this context. In this paper, we propose a model- and knowledge-agnostic method to localize where specific types of knowledge are encoded within the DiT blocks. We evaluate our method on state-of-the-art DiT-based models, including PixArt-alpha, FLUX, and SANA, across six diverse knowledge categories. We show that the identified blocks are both interpretable and causally linked to the expression of knowledge in generated outputs. Building on these insights, we apply our localization framework to two key applications: model personalization and knowledge unlearning. In both settings, our localized fine-tuning approach enables efficient and targeted updates, reducing computational cost, improving task-specific performance, and better preserving general model behavior with minimal interference to unrelated or surrounding content. Overall, our findings offer new insights into the internal structure of DiTs and introduce a practical pathway for more interpretable, efficient, and controllable model editing.
PRISM-CAFO: Prior-conditioned Remote-sensing Infrastructure Segmentation and Mapping for CAFOs
Large-scale livestock operations pose significant risks to human health and the environment, while also being vulnerable to threats such as infectious diseases and extreme weather events. As the number of such operations continues to grow, accurate and scalable mapping has become increasingly important. In this work, we present an infrastructure-first, explainable pipeline for identifying and characterizing Concentrated Animal Feeding Operations (CAFOs) from aerial and satellite imagery. Our method (i) detects candidate infrastructure (e.g., barns, feedlots, manure lagoons, silos) with a domain-tuned YOLOv8 detector, then derives SAM2 masks from these boxes and filters component-specific criteria; (ii) extracts structured descriptors (e.g., counts, areas, orientations, and spatial relations) and fuses them with deep visual features using a lightweight spatial cross-attention classifier; and (iii) outputs both CAFO type predictions and mask-level attributions that link decisions to visible infrastructure. Through comprehensive evaluation, we show that our approach achieves state-of-the-art performance, with Swin-B+PRISM-CAFO surpassing the best performing baseline by up to 15\%. Beyond strong predictive performance across diverse U.S. regions, we run systematic gradient--activation analyses that quantify the impact of domain priors and show how specific infrastructure (e.g., barns, lagoons) shapes classification decisions. We release code, infrastructure masks, and descriptors to support transparent, scalable monitoring of livestock infrastructure, enabling risk modeling, change detection, and targeted regulatory action. Github: https://github.com/Nibir088/PRISM-CAFO.
MangaVQA and MangaLMM: A Benchmark and Specialized Model for Multimodal Manga Understanding
Manga, or Japanese comics, is a richly multimodal narrative form that blends images and text in complex ways. Teaching large multimodal models (LMMs) to understand such narratives at a human-like level could help manga creators reflect on and refine their stories. To this end, we introduce two benchmarks for multimodal manga understanding: MangaOCR, which targets in-page text recognition, and MangaVQA, a novel benchmark designed to evaluate contextual understanding through visual question answering. MangaVQA consists of 526 high-quality, manually constructed question-answer pairs, enabling reliable evaluation across diverse narrative and visual scenarios. Building on these benchmarks, we develop MangaLMM, a manga-specialized model finetuned from the open-source LMM Qwen2.5-VL to jointly handle both tasks. Through extensive experiments, including comparisons with proprietary models such as GPT-4o and Gemini 2.5, we assess how well LMMs understand manga. Our benchmark and model provide a comprehensive foundation for evaluating and advancing LMMs in the richly narrative domain of manga.
comment: EACL 2026 Findings. Project page: https://manga109.github.io/MangaVQA_LMM/
Unified Multimodal Understanding and Generation Models: Advances, Challenges, and Opportunities
Recent years have seen remarkable progress in both multimodal understanding models and image generation models. Despite their respective successes, these two domains have evolved independently, leading to distinct architectural paradigms: While autoregressive-based architectures have dominated multimodal understanding, diffusion-based models have become the cornerstone of image generation. Recently, there has been growing interest in developing unified frameworks that integrate these tasks. The emergence of GPT-4o's new capabilities exemplifies this trend, highlighting the potential for unification. However, the architectural differences between the two domains pose significant challenges. To provide a clear overview of current efforts toward unification, we present a comprehensive survey aimed at guiding future research. First, we introduce the foundational concepts and recent advancements in multimodal understanding and text-to-image generation models. Next, we review existing unified models, categorizing them into three main architectural paradigms: diffusion-based, autoregressive-based, and hybrid approaches that fuse autoregressive and diffusion mechanisms. For each category, we analyze the structural designs and innovations introduced by related works. Additionally, we compile datasets and benchmarks tailored for unified models, offering resources for future exploration. Finally, we discuss the key challenges facing this nascent field, including tokenization strategy, cross-modal attention, and data. As this area is still in its early stages, we anticipate rapid advancements and will regularly update this survey. Our goal is to inspire further research and provide a valuable reference for the community. The references associated with this survey are available on GitHub (https://github.com/AIDC-AI/Awesome-Unified-Multimodal-Models).
comment: In this version, we incorporate new papers (after Aug. 2025), datasets, and benchmarks. This work is still in progress; Github project: https://github.com/AIDC-AI/Awesome-Unified-Multimodal-Models
VideoPro: Adaptive Program Reasoning for Long Video Understanding
Large language models (LLMs) have shown promise in generating program workflows for visual tasks. However, previous approaches often rely on closed-source models, lack systematic reasoning, and struggle with long-form video question answering (videoQA). To address these challenges, we introduce the FS-VisPR framework, an adaptive visual program reasoning approach that balances fast reasoning for simple queries with slow reasoning for difficult ones. First, we design efficient visual modules (e.g., key clip retrieval and subtitle retrieval) to support long-form video tasks. Then, we construct a diverse and high-quality fast-slow reasoning dataset with a strong LLM to align open-source language models' ability to generate visual program workflows as FS-LLM. Next, we design a fast-slow reasoning framework with FS-LLM: Simple queries are directly solved by VideoLLMs, while difficult ones invoke visual program reasoning, motivated by human-like reasoning processes. During this process, low-confidence fast-thinking answers will trigger a second-stage slow-reasoning process, and a fallback mechanism to fast reasoning is activated if the program execution fails. Moreover, we improve visual programs through parameter search during both training and inference. By adjusting the parameters of the visual modules within the program, multiple variants are generated: during training, programs that yield correct answers are selected, while during inference, the program with the highest confidence result is applied. Experiments show that FS-VisPR improves both efficiency and reliability in visual program workflows. It achieves 50.4% accuracy on LVBench, surpassing GPT-4o, matching the performance of Qwen2.5VL-72B on VideoMME.
A Step to Decouple Optimization in 3DGS
3D Gaussian Splatting (3DGS) has emerged as a powerful technique for real-time novel view synthesis. As an explicit representation optimized through gradient propagation among primitives, optimization widely accepted in deep neural networks (DNNs) is actually adopted in 3DGS, such as synchronous weight updating and Adam with the adaptive gradient. However, considering the physical significance and specific design in 3DGS, there are two overlooked details in the optimization of 3DGS: (i) update step coupling, which induces optimizer state rescaling and costly attribute updates outside the viewpoints, and (ii) gradient coupling in the moment, which may lead to under- or over-effective regularization. Nevertheless, such a complex coupling is under-explored. After revisiting the optimization of 3DGS, we take a step to decouple it and recompose the process into: Sparse Adam, Re-State Regularization and Decoupled Attribute Regularization. Taking a large number of experiments under the 3DGS and 3DGS-MCMC frameworks, our work provides a deeper understanding of these components. Finally, based on the empirical analysis, we re-design the optimization and propose AdamW-GS by re-coupling the beneficial components, under which better optimization efficiency and representation effectiveness are achieved simultaneously.
Too Many Frames, Not All Useful: Efficient Strategies for Long-Form Video QA
Long-form videos that span across wide temporal intervals are highly information redundant and contain multiple distinct events or entities that are often loosely related. Therefore, when performing long-form video question answering (LVQA), all information necessary to generate a correct response can often be contained within a small subset of frames. Recent literature leverage large language models (LLMs) in LVQA benchmarks, achieving exceptional performance, while relying on vision language models (VLMs) to convert all visual content within videos into natural language. Such VLMs often independently caption a large number of frames uniformly sampled from long videos, which is not efficient and can mostly be redundant. Motivated by this inefficiency, we propose LVNet, a modular and training-free framework featuring a novel Hierarchical Keyframe Selector (HKS) that efficiently selects a minimal set of informative frames tailored to each question. LVNet's modularity allows easy integration with existing approaches for more efficient LVQA. We achieve state-of-the-art performance among similarly configured models across four benchmark LVQA datasets: EgoSchema, NExT-QA, IntentQA, VideoMME. The code can be found at https://github.com/jongwoopark7978/LVNet
Beyond Memorization: Selective Learning for Copyright-Safe Diffusion Model Training
Memorization in large-scale text-to-image diffusion models poses significant security and intellectual property risks, enabling adversarial attribute extraction and the unauthorized reproduction of sensitive or proprietary features. While conventional dememorization techniques, such as regularization and data filtering, limit overfitting to specific training examples, they fail to systematically prevent the internalization of prohibited concept-level features. Simply discarding all images containing a sensitive feature wastes invaluable training data, necessitating a method for selective learning at the concept level. We introduce a gradient projection method designed to enforce a stringent requirement of concept-level feature exclusion. Our defense operates during backpropagation by systematically identifying and excising training signals aligned with embeddings of prohibited attributes. Specifically, we project each gradient update onto the orthogonal complement of the sensitive feature's embedding space, thereby zeroing out its influence on the model's weights. Our method integrates seamlessly into standard diffusion model training pipelines and complements existing defenses. We analyze our method against an adversary aiming for feature extraction. In extensive experiments, we demonstrate that our framework drastically reduces memorization while rigorously preserving generation quality and semantic fidelity. By reframing memorization control as selective learning, our approach establishes a new paradigm for IP-safe and privacy-preserving generative AI.
Synthetic Object Compositions for Scalable and Accurate Learning in Detection, Segmentation, and Grounding
Visual grouping -- operationalized through tasks such as instance segmentation, visual grounding, and object detection -- enables applications ranging from robotic perception to photo editing. These fundamental problems in computer vision are powered by large-scale, painstakingly annotated datasets. Despite their impact, these datasets are costly to build, biased in coverage, and difficult to scale. Synthetic datasets offer a promising alternative but struggle with flexibility, accuracy, and compositional diversity. We introduce Synthetic Object Compositions (SOC), an accurate and scalable data synthesis pipeline via a novel object-centric composition strategy. It composes high-quality synthetic object segments into new images using 3D geometric layout augmentation and camera configuration augmentation with generative harmonization and mask-area-weighted blending, yielding accurate and diverse masks, boxes, and referring expressions. Models trained on just 100K of our synthetic images outperform those trained on larger real datasets (GRIT 20M, V3Det 200K) and synthetic pipelines (Copy-Paste, X-Paste, SynGround, SegGen) by +24-36% -- achieving +10.9 AP on LVIS and +8.4 NAcc on gRefCOCO. Beyond the general open-vocabulary setup, SOC also enables controllable dataset construction for different use cases and boosts performance in both low-data and closed-vocabulary scenarios. Augmenting LVIS and COCO with synthetic object segments delivers strong performance across different real-data scales and yields even greater improvements under extremely limited real-data conditions, including +6.59 AP on a 1% COCO data setup. Furthermore, this controllability enables targeted data generation for intra-class referring, a diagnostic grounding task we propose that requires fine-grained attribute discrimination.
comment: Project website: https://github.com/weikaih04/Synthetic-Detection-Segmentation-Grounding-Data
Purrception: Variational Flow Matching for Vector-Quantized Image Generation ICLR 2026
We introduce Purrception, a variational flow matching approach for vector-quantized image generation that provides explicit categorical supervision while maintaining continuous transport dynamics. Our method adapts Variational Flow Matching to vector-quantized latents by learning categorical posteriors over codebook indices while computing velocity fields in the continuous embedding space. This combines the geometric awareness of continuous methods with the discrete supervision of categorical approaches, enabling uncertainty quantification over plausible codes and temperature-controlled generation. We evaluate Purrception on ImageNet-1k 256x256 generation. Training converges faster than both continuous flow matching and discrete flow matching baselines while achieving competitive FID scores with state-of-the-art models. This demonstrates that Variational Flow Matching can effectively bridge continuous transport and discrete supervision for improved training efficiency in image generation.
comment: Published at ICLR 2026
An Efficient and Explainable KAN Framework for Wireless Radiation Field Prediction
Modeling wireless channels accurately remains a challenge due to environmental variations and signal uncertainties. Recent neural networks can learn radio frequency~(RF) signal propagation patterns, but they process each voxel on the ray independently, without considering global context or environmental factors. Our paper presents a new approach that learns comprehensive representations of complete rays rather than individual points, capturing more detailed environmental features. We integrate a Kolmogorov-Arnold network (KAN) architecture with transformer modules to achieve better performance across realistic and synthetic scenes while maintaining computational efficiency. Our experimental results show that this approach outperforms existing methods in various scenarios. Ablation studies confirm that each component of our model contributes to its effectiveness. Additional experiments provide clear explanations for our model's performance.
comment: Accepted in 2025 IEEE 22nd International Conference on Mobile Ad-Hoc and Smart Systems (MASS). See https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11206262&tag=1
Equi-RO: A 4D mmWave Radar Odometry via Equivariant Networks
Autonomous vehicles and robots rely on accurate odometry estimation in GPS-denied environments. While LiDARs and cameras struggle under extreme weather, 4D mmWave radar emerges as a robust alternative with all-weather operability and velocity measurement. In this paper, we introduce Equi-RO, an equivariant network-based framework for 4D radar odometry. Our algorithm pre-processes Doppler velocity into invariant node and edge features in the graph, and employs separate networks for equivariant and invariant feature processing. A graph-based architecture enhances feature aggregation in sparse radar data, improving inter-frame correspondence. Experiments on an open-source dataset and a self-collected dataset show Equi-RO outperforms state-of-the-art algorithms in accuracy and robustness. Overall, our method achieves 10.7% and 13.4% relative improvements in translation and rotation accuracy, respectively, compared to the best baseline on the open-source dataset.
GaNI: Global and Near Field Illumination Aware Neural Inverse Rendering
In this paper, we present GaNI, a Global and Near-field Illumination-aware neural inverse rendering technique that can reconstruct geometry, albedo, and roughness parameters from images of a scene captured with co-located light and camera. Existing inverse rendering techniques with co-located light-camera focus on single objects only, without modeling global illumination and near-field lighting more prominent in scenes with multiple objects. We introduce a system that solves this problem in two stages; we first reconstruct the geometry powered by neural volumetric rendering NeuS, followed by inverse neural radiosity that uses the previously predicted geometry to estimate albedo and roughness. However, such a naive combination fails and we propose multiple technical contributions that enable this two-stage approach. We observe that NeuS fails to handle near-field illumination and strong specular reflections from the flashlight in a scene. We propose to implicitly model the effects of near-field illumination and introduce a surface angle loss function to handle specular reflections. Similarly, we observe that invNeRad assumes constant illumination throughout the capture and cannot handle moving flashlights during capture. We propose a light position-aware radiance cache network and additional smoothness priors on roughness to reconstruct reflectance. Experimental evaluation on synthetic and real data shows that our method outperforms the existing co-located light-camera-based inverse rendering techniques. Our approach produces significantly better reflectance and slightly better geometry than capture strategies that do not require a dark room.
comment: This paper is still in the process of improving, a revised version may be released in the future
Moonworks Lunara Aesthetic Dataset
The dataset spans diverse artistic styles, including regionally grounded aesthetics from the Middle East, Northern Europe, East Asia, and South Asia, alongside general categories such as sketch and oil painting. All images are generated using the Moonworks Lunara model and intentionally crafted to embody distinct, high-quality aesthetic styles, yielding a first-of-its-kind dataset with substantially higher aesthetic scores, exceeding even aesthetics-focused datasets, and general-purpose datasets by a larger margin. Each image is accompanied by a human-refined prompt and structured annotations that jointly describe salient objects, attributes, relationships, and stylistic cues. Unlike large-scale web-derived datasets that emphasize breadth over precision, the Lunara Aesthetic Dataset prioritizes aesthetic quality, stylistic diversity, and licensing transparency, and is released under the Apache 2.0 license to support research and unrestricted academic and commercial use.
Decoding Visual Experience and Mapping Semantics through Whole-Brain Analysis Using fMRI Foundation Models
Neural decoding, the process of understanding how brain activity corresponds to different stimuli, has been a primary objective in cognitive sciences. Over the past three decades, advances in functional Magnetic Resonance Imaging (fMRI) and machine learning have greatly improved our ability to map visual stimuli to brain activity, especially in the visual cortex. Concurrently, research has expanded to decode more complex processes, such as language and memory across the whole brain, using techniques to handle greater variability and improve signal accuracy. We argue that "seeing" involves more than just mapping visual stimuli onto the visual cortex; it engages the entire brain, as various emotions and cognitive states can emerge from observing different scenes. In this paper, we develop algorithms to enhance our understanding of visual processes by incorporating whole-brain activation maps while individuals are exposed to visual stimuli. We utilize transformer-based large-scale fMRI encoders and Image generative models (encoders & decoders) pre-trained on large public datasets, which are then fine-tuned through Image-fMRI contrastive learning. Our models can decode visual experience across the entire cerebral cortex, surpassing the traditional confines of the visual cortex. Using a public dataset (BOLD5000), we first compare our method with state-of-the-art approaches for decoding visual processing and show improved predictive semantic accuracy by 43%. A network ablation analysis suggests that, beyond the visual cortex, the default mode network contributes significantly to stimulus decoding, in line with the proposed role of this network in sense-making and semantic processing.
Learning Video Generation for Robotic Manipulation with Collaborative Trajectory Control ICLR 2026
Recent advances in video diffusion models shows promise for generating robotic decision-making data, with trajectory conditions further enabling fine-grained control. However, existing methods primarily focus on individual object motion and struggle to capture multi-object interaction crucial in complex manipulation. This limitation arises from entangled features in overlapping regions, leading to degraded visual fidelity. To address this, we present RoboMaster, a novel framework that models inter-object dynamics via a collaborative trajectory formulation. Unlike prior methods that decompose objects, our core is to decompose the interaction process into three sub-stages: pre-interaction, interaction, and post-interaction, and models each phase using the dominant object, specifically the robotic arm in the pre- and post-interaction phases and the manipulated object during interaction. This design effectively alleviates the multi-object feature fusion issue in prior work. To further ensure subject semantic consistency across the video, we incorporate appearance- and shape-aware latent representations for objects. Extensive experiments on the challenging Bridge dataset, as well as RLBench and SIMPLER benchmarks, demonstrate that our method establishs new state-of-the-art performance in trajectory-controlled video generation for robotic manipulation. Project Page: https://fuxiao0719.github.io/projects/robomaster/
comment: ICLR 2026. Project Page: https://fuxiao0719.github.io/projects/robomaster/
Scaling Foundation Models for Radar Scene Understanding
Radar sensors provide reliable perception across adverse weather, lighting, and long-range conditions. Recent advances in foundation models have transformed visual and language understanding, yet their integration with radar sensing remains largely underexplored. Existing radar approaches are fragmented and task-specific; each downstream task employs distinct architectures and training objectives, preventing transfer across tasks. In this work, we introduce RadarFM: a radar foundation model that learns unified scene-level representations through structured spatial language supervision. We make two key contributions: (1) a structured caption framework that encodes vehicle distributions in native radar coordinates, and (2) a hash-aware contrastive learning objective that quantifies continuous scene similarity rather than binary matching, enabling fine-grained spatial reasoning. Leveraging the CARLA simulator, we generate large-scale, well-annotated radar datasets across diverse driving scenarios. We also propose localization-aware metrics that assess spatial accuracy beyond traditional detection measures.
ViSIL: Unified Evaluation of Information Loss in Multimodal Video Captioning
Multimodal video captioning condenses dense footage into a structured format of keyframes and natural language. By creating a cohesive multimodal summary, this approach anchors generative AI in rich semantic evidence and serves as a lightweight proxy for high-efficiency retrieval. However, traditional metrics like BLEU or ROUGE fail to quantify information coverage across disparate modalities, such as comparing a paragraph of text to a sequence of keyframes. To address this, we propose the Video Summary Information Loss (ViSIL) score, an information-theoretic framework that quantifies the video information not captured by a summary via vision-language model (VLM) inference. By measuring the information loss, ViSIL is a unified metric that enables direct comparison across multimodal summary formats despite their structural discrepancies. Our results demonstrate that ViSIL scores show a statistically significant correlation with both human and VLM performance on Video Question Answering (VQA) tasks. ViSIL also enables summary selection to optimize the trade-off between information loss and processing speed, establishing a Pareto-optimal frontier that outperforms text summaries by $7\%$ in VQA accuracy without increasing processing load.
CMOOD: Concept-based Multi-label OOD Detection
How can models effectively detect out-of-distribution (OOD) samples in complex, multi-label settings without extensive retraining? Existing OOD detection methods struggle to capture the intricate semantic relationships and label co-occurrences inherent in multi-label settings, often requiring large amounts of training data and failing to generalize to unseen label combinations. While large language models have revolutionized zero-shot OOD detection, they primarily focus on single-label scenarios, leaving a critical gap in handling real-world tasks where samples can be associated with multiple interdependent labels. To address these challenges, we introduce COOD, a novel zero-shot multi-label OOD detection framework. COOD leverages pre-trained vision-language models, enhancing them with a concept-based label expansion strategy and a new scoring function. By enriching the semantic space with both positive and negative concepts for each label, our approach models complex label dependencies, precisely differentiating OOD samples without the need for additional training. Extensive experiments demonstrate that our method significantly outperforms existing approaches, achieving approximately 95% average AUROC on both VOC and COCO datasets, while maintaining robust performance across varying numbers of labels and different types of OOD samples.
Joint Diffusion for Universal Hand-Object Grasp Generation
Predicting and generating human hand grasp over objects is critical for animation and robotic tasks. In this work, we focus on generating both the hand and objects in a grasp by a single diffusion model. Our proposed Joint Hand-Object Diffusion (JHOD) models the hand and object in a unified latent representation. It uses the hand-object grasping data to learn to accommodate hand and object to form plausible grasps. Also, to enforce the generalizability over diverse object shapes, it leverages large-scale object datasets to learn an inclusive object latent embedding. With or without a given object as an optional condition, the diffusion model can generate grasps unconditionally or conditional to the object. Compared to the usual practice of learning object-conditioned grasp generation from only hand-object grasp data, our method benefits from more diverse object data used for training to handle grasp generation more universally. According to both qualitative and quantitative experiments, both conditional and unconditional generation of hand grasp achieves good visual plausibility and diversity. With the extra inclusiveness of object representation learned from large-scale object datasets, the proposed method generalizes well to unseen object shapes.
comment: accepted by TMLR
Omni-AVSR: Towards Unified Multimodal Speech Recognition with Large Language Models
Large language models (LLMs) have recently achieved impressive results in speech recognition across multiple modalities, including Auditory Speech Recognition (ASR), Visual Speech Recognition (VSR), and Audio-Visual Speech Recognition (AVSR). Despite this progress, current LLM-based approaches typically address each task independently, training separate models that raise computational and deployment resource use while missing potential cross-task synergies. They also rely on fixed-rate token compression, which restricts flexibility in balancing accuracy with efficiency. These limitations highlight the need for a unified framework that can support ASR, VSR, and AVSR while enabling elastic inference. To this end, we present Omni-AVSR, a unified audio-visual LLM that combines efficient multi-granularity training with parameter-efficient adaptation. Specifically, we adapt the matryoshka representation learning paradigm to efficiently train across multiple audio and visual granularities, reducing its inherent training resource use. Furthermore, we explore three LoRA-based strategies for adapting the backbone LLM, balancing shared and task-specific specialization. Experiments on LRS2 and LRS3 show that Omni-AVSR achieves comparable or superior accuracy to state-of-the-art baselines while training a single model at substantially lower training and deployment resource use. The model also remains robust under acoustic noise, and we analyze its scaling behavior as LLM size increases, providing insights into the trade-off between performance and efficiency.
comment: Accepted to IEEE ICASSP 2026 (camera-ready version). Project website (code and model weights): https://umbertocappellazzo.github.io/Omni-AVSR/
ResMatching: Noise-Resilient Computational Super-Resolution via Guided Conditional Flow Matching
Computational Super-Resolution (CSR) in fluorescence microscopy has, despite being an ill-posed problem, a long history. At its very core, CSR is about finding a prior that can be used to extrapolate frequencies in a micrograph that have never been imaged by the image-generating microscope. It stands to reason that, with the advent of better data-driven machine learning techniques, stronger prior can be learned and hence CSR can lead to better results. Here, we present ResMatching, a novel CSR method that uses guided conditional flow matching to learn such improved data-priors. We evaluate ResMatching on 4 diverse biological structures from the BioSR dataset and compare its results against 7 baselines. ResMatching consistently achieves competitive results, demonstrating in all cases the best trade-off between data fidelity and perceptual realism. We observe that CSR using ResMatching is particularly effective in cases where a strong prior is hard to learn, e.g. when the given low-resolution images contain a lot of noise. Additionally, we show that ResMatching can be used to sample from an implicitly learned posterior distribution and that this distribution is calibrated for all tested use-cases, enabling our method to deliver a pixel-wise data-uncertainty term that can guide future users to reject uncertain predictions.
comment: 5 pages, 4 figures; Accepted to IEEE ISBI 2026
Artificial Intelligence 251
ctELM: Decoding and Manipulating Embeddings of Clinical Trials with Embedding Language Models
Text embeddings have become an essential part of a variety of language applications. However, methods for interpreting, exploring and reversing embedding spaces are limited, reducing transparency and precluding potentially valuable generative use cases. In this work, we align Large Language Models to embeddings of clinical trials using the recently reported Embedding Language Model (ELM) method. We develop an open-source, domain-agnostic ELM architecture and training framework, design training tasks for clinical trials, and introduce an expert-validated synthetic dataset. We then train a series of ELMs exploring the impact of tasks and training regimes. Our final model, ctELM, can accurately describe and compare unseen clinical trials from embeddings alone and produce plausible clinical trials from novel vectors. We further show that generated trial abstracts are responsive to moving embeddings along concept vectors for age and sex of study subjects. Our public ELM implementation and experimental results will aid the alignment of Large Language Models to embedding spaces in the biomedical domain and beyond.
Reuse your FLOPs: Scaling RL on Hard Problems by Conditioning on Very Off-Policy Prefixes
Typical reinforcement learning (RL) methods for LLM reasoning waste compute on hard problems, where correct on-policy traces are rare, policy gradients vanish, and learning stalls. To bootstrap more efficient RL, we consider reusing old sampling FLOPs (from prior inference or RL training) in the form of off-policy traces. Standard off-policy methods supervise against off-policy data, causing instabilities during RL optimization. We introduce PrefixRL, where we condition on the prefix of successful off-policy traces and run on-policy RL to complete them, side-stepping off-policy instabilities. PrefixRL boosts the learning signal on hard problems by modulating the difficulty of the problem through the off-policy prefix length. We prove that the PrefixRL objective is not only consistent with the standard RL objective but also more sample efficient. Empirically, we discover back-generalization: training only on prefixed problems generalizes to out-of-distribution unprefixed performance, with learned strategies often differing from those in the prefix. In our experiments, we source the off-policy traces by rejection sampling with the base model, creating a self-improvement loop. On hard reasoning problems, PrefixRL reaches the same training reward 2x faster than the strongest baseline (SFT on off-policy data then RL), even after accounting for the compute spent on the initial rejection sampling, and increases the final reward by 3x. The gains transfer to held-out benchmarks, and PrefixRL is still effective when off-policy traces are derived from a different model family, validating its flexibility in practical settings.
Subword-Based Comparative Linguistics across 242 Languages Using Wikipedia Glottosets
We present a large-scale comparative study of 242 Latin and Cyrillic-script languages using subword-based methodologies. By constructing 'glottosets' from Wikipedia lexicons, we introduce a framework for simultaneous cross-linguistic comparison via Byte-Pair Encoding (BPE). Our approach utilizes rank-based subword vectors to analyze vocabulary overlap, lexical divergence, and language similarity at scale. Evaluations demonstrate that BPE segmentation aligns with morpheme boundaries 95% better than random baseline across 15 languages (F1 = 0.34 vs 0.15). BPE vocabulary similarity correlates significantly with genetic language relatedness (Mantel r = 0.329, p < 0.001), with Romance languages forming the tightest cluster (mean distance 0.51) and cross-family pairs showing clear separation (0.82). Analysis of 26,939 cross-linguistic homographs reveals that 48.7% receive different segmentations across related languages, with variation correlating to phylogenetic distance. Our results provide quantitative macro-linguistic insights into lexical patterns across typologically diverse languages within a unified analytical framework.
comment: 15 pages, 4 figues, 4 tables
Design Techniques for LLM-Powered Interactive Storytelling: A Case Study of the Dramamancer System
The rise of Large Language Models (LLMs) has enabled a new paradigm for bridging authorial intent and player agency in interactive narrative. We consider this paradigm through the example of Dramamancer, a system that uses an LLM to transform author-created story schemas into player-driven playthroughs. This extended abstract outlines some design techniques and evaluation considerations associated with this system.
comment: Extended abstract presented at the 2025 Wordplay Workshop at EMNLP
Multi-Objective Reinforcement Learning for Efficient Tactical Decision Making for Trucks in Highway Traffic
Balancing safety, efficiency, and operational costs in highway driving poses a challenging decision-making problem for heavy-duty vehicles. A central difficulty is that conventional scalar reward formulations, obtained by aggregating these competing objectives, often obscure the structure of their trade-offs. We present a Proximal Policy Optimization based multi-objective reinforcement learning framework that learns a continuous set of policies explicitly representing these trade-offs and evaluates it on a scalable simulation platform for tactical decision making in trucks. The proposed approach learns a continuous set of Pareto-optimal policies that capture the trade-offs among three conflicting objectives: safety, quantified in terms of collisions and successful completion; energy efficiency and time efficiency, quantified using energy cost and driver cost, respectively. The resulting Pareto frontier is smooth and interpretable, enabling flexibility in choosing driving behavior along different conflicting objectives. This framework allows seamless transitions between different driving policies without retraining, yielding a robust and adaptive decision-making strategy for autonomous trucking applications.
POPE: Learning to Reason on Hard Problems via Privileged On-Policy Exploration
Reinforcement learning (RL) has improved the reasoning abilities of large language models (LLMs), yet state-of-the-art methods still fail to learn on many training problems. On hard problems, on-policy RL rarely explores even a single correct rollout, yielding zero reward and no learning signal for driving improvement. We find that natural solutions to remedy this exploration problem from classical RL, such as entropy bonuses, more permissive clipping of the importance ratio, or direct optimization of pass@k objectives, do not resolve this issue and often destabilize optimization without improving solvability. A natural alternative is to leverage transfer from easier problems. However, we show that mixing easy and hard problems during RL training is counterproductive due to ray interference, where optimization focuses on already-solvable problems in a way that actively inhibits progress on harder ones. To address this challenge, we introduce Privileged On-Policy Exploration (POPE), an approach that leverages human- or other oracle solutions as privileged information to guide exploration on hard problems, unlike methods that use oracle solutions as training targets (e.g., off-policy RL methods or warmstarting from SFT). POPE augments hard problems with prefixes of oracle solutions, enabling RL to obtain non-zero rewards during guided rollouts. Crucially, the resulting behaviors transfer back to the original, unguided problems through a synergy between instruction-following and reasoning. Empirically, POPE expands the set of solvable problems and substantially improves performance on challenging reasoning benchmarks.
PRECISE: Reducing the Bias of LLM Evaluations Using Prediction-Powered Ranking Estimation AAAI 2026
Evaluating the quality of search, ranking and RAG systems traditionally requires a significant number of human relevance annotations. In recent times, several deployed systems have explored the usage of Large Language Models (LLMs) as automated judges for this task while their inherent biases prevent direct use for metric estimation. We present a statistical framework extending Prediction-Powered Inference (PPI) that combines minimal human annotations with LLM judgments to produce reliable estimates of metrics which require sub-instance annotations. Our method requires as few as 100 human-annotated queries and 10,000 unlabeled examples, reducing annotation requirements significantly compared to traditional approaches. We formulate our proposed framework (PRECISE) for inference of relevance uplift for an LLM-based query reformulation application, extending PPI to sub-instance annotations at the query-document level. By reformulating the metric-integration space, we reduced the computational complexity from O(2^|C|) to O(2^K), where |C| represents corpus size (in order of millions). Detailed experiments across prominent retrieval datasets demonstrate that our method reduces the variance of estimates for the business-critical Precision@K metric, while effectively correcting for LLM bias in low-resource settings.
comment: Accepted at AAAI 2026 - Innovative Applications of AI (IAAI-26)
Dep-Search: Learning Dependency-Aware Reasoning Traces with Persistent Memory
Large Language Models (LLMs) have demonstrated remarkable capabilities in complex reasoning tasks, particularly when augmented with search mechanisms that enable systematic exploration of external knowledge bases. The field has evolved from traditional retrieval-augmented generation (RAG) frameworks to more sophisticated search-based frameworks that orchestrate multi-step reasoning through explicit search strategies. However, existing search frameworks still rely heavily on implicit natural language reasoning to determine search strategies and how to leverage retrieved information across reasoning steps. This reliance on implicit reasoning creates fundamental challenges for managing dependencies between sub-questions, efficiently reusing previously retrieved knowledge, and learning optimal search strategies through reinforcement learning. To address these limitations, we propose Dep-Search, a dependency-aware search framework that advances beyond existing search frameworks by integrating structured reasoning, retrieval, and persistent memory through GRPO. Dep-Search introduces explicit control mechanisms that enable the model to decompose questions with dependency relationships, retrieve information when needed, access previously stored knowledge from memory, and summarize long reasoning contexts into reusable memory entries. Through extensive experiments on seven diverse question answering datasets, we demonstrate that Dep-Search significantly enhances LLMs' ability to tackle complex multi-hop reasoning tasks, achieving substantial improvements over strong baselines across different model scales.
comment: Dep-Search 1st version
$α^3$-SecBench: A Large-Scale Evaluation Suite of Security, Resilience, and Trust for LLM-based UAV Agents over 6G Networks
Autonomous unmanned aerial vehicle (UAV) systems are increasingly deployed in safety-critical, networked environments where they must operate reliably in the presence of malicious adversaries. While recent benchmarks have evaluated large language model (LLM)-based UAV agents in reasoning, navigation, and efficiency, systematic assessment of security, resilience, and trust under adversarial conditions remains largely unexplored, particularly in emerging 6G-enabled settings. We introduce $α^{3}$-SecBench, the first large-scale evaluation suite for assessing the security-aware autonomy of LLM-based UAV agents under realistic adversarial interference. Building on multi-turn conversational UAV missions from $α^{3}$-Bench, the framework augments benign episodes with 20,000 validated security overlay attack scenarios targeting seven autonomy layers, including sensing, perception, planning, control, communication, edge/cloud infrastructure, and LLM reasoning. $α^{3}$-SecBench evaluates agents across three orthogonal dimensions: security (attack detection and vulnerability attribution), resilience (safe degradation behavior), and trust (policy-compliant tool usage). We evaluate 23 state-of-the-art LLMs from major industrial providers and leading AI labs using thousands of adversarially augmented UAV episodes sampled from a corpus of 113,475 missions spanning 175 threat types. While many models reliably detect anomalous behavior, effective mitigation, vulnerability attribution, and trustworthy control actions remain inconsistent. Normalized overall scores range from 12.9% to 57.1%, highlighting a significant gap between anomaly detection and security-aware autonomous decision-making. We release $α^{3}$-SecBench on GitHub: https://github.com/maferrag/AlphaSecBench
HalluGuard: Demystifying Data-Driven and Reasoning-Driven Hallucinations in LLMs ICLR'26
The reliability of Large Language Models (LLMs) in high-stakes domains such as healthcare, law, and scientific discovery is often compromised by hallucinations. These failures typically stem from two sources: data-driven hallucinations and reasoning-driven hallucinations. However, existing detection methods usually address only one source and rely on task-specific heuristics, limiting their generalization to complex scenarios. To overcome these limitations, we introduce the Hallucination Risk Bound, a unified theoretical framework that formally decomposes hallucination risk into data-driven and reasoning-driven components, linked respectively to training-time mismatches and inference-time instabilities. This provides a principled foundation for analyzing how hallucinations emerge and evolve. Building on this foundation, we introduce HalluGuard, an NTK-based score that leverages the induced geometry and captured representations of the NTK to jointly identify data-driven and reasoning-driven hallucinations. We evaluate HalluGuard on 10 diverse benchmarks, 11 competitive baselines, and 9 popular LLM backbones, consistently achieving state-of-the-art performance in detecting diverse forms of LLM hallucinations.
comment: Have been accepted by ICLR'26
Trust, Don't Trust, or Flip: Robust Preference-Based Reinforcement Learning with Multi-Expert Feedback
Preference-based reinforcement learning (PBRL) offers a promising alternative to explicit reward engineering by learning from pairwise trajectory comparisons. However, real-world preference data often comes from heterogeneous annotators with varying reliability; some accurate, some noisy, and some systematically adversarial. Existing PBRL methods either treat all feedback equally or attempt to filter out unreliable sources, but both approaches fail when faced with adversarial annotators who systematically provide incorrect preferences. We introduce TriTrust-PBRL (TTP), a unified framework that jointly learns a shared reward model and expert-specific trust parameters from multi-expert preference feedback. The key insight is that trust parameters naturally evolve during gradient-based optimization to be positive (trust), near zero (ignore), or negative (flip), enabling the model to automatically invert adversarial preferences and recover useful signal rather than merely discarding corrupted feedback. We provide theoretical analysis establishing identifiability guarantees and detailed gradient analysis that explains how expert separation emerges naturally during training without explicit supervision. Empirically, we evaluate TTP on four diverse domains spanning manipulation tasks (MetaWorld) and locomotion (DM Control) under various corruption scenarios. TTP achieves state-of-the-art robustness, maintaining near-oracle performance under adversarial corruption while standard PBRL methods fail catastrophically. Notably, TTP outperforms existing baselines by successfully learning from mixed expert pools containing both reliable and adversarial annotators, all while requiring no expert features beyond identification indices and integrating seamlessly with existing PBRL pipelines.
comment: Equal contribution: Seyed Amir Hosseini and Maryam Abdolali. Corresponding author: Maryam Abdolali (maryam.abdolali@kntu.ac.ir)
Capturing P: On the Expressive Power and Efficient Evaluation of Boolean Retrieval
Modern information retrieval is transitioning from simple document filtering to complex, neuro-symbolic reasoning workflows. However, current retrieval architectures face a fundamental efficiency dilemma when handling the rigorous logical and arithmetic constraints required by this new paradigm. Standard iterator-based engines (Document-at-a-Time) do not natively support complex, nested logic graphs; forcing them to execute such queries typically results in intractable runtime performance. Conversely, naive recursive approaches (Term-at-a-Time), while capable of supporting these structures, suffer from prohibitive memory consumption when enforcing broad logical exclusions. In this paper, we propose that a retrieval engine must be capable of ``Capturing $\mathbf{P}$'' -- evaluating any polynomial-time property directly over its index in a computationally efficient manner. We define a formal Retrieval Language ($\mathcal{L}_R$) based on Directed Acyclic Graphs (DAGs) and prove it precisely captures the complexity class $\mathbf{P}$. We introduce \texttt{ComputePN}, a novel evaluation algorithm that makes $\mathcal{L}_R$ tractable. By combining native DAG traversal with a memory-efficient ``Positive-Negative'' response mechanism, \texttt{ComputePN} ensures the efficient evaluation of any query in $\mathcal{L}_R$. This work establishes the theoretical foundation for turning the search index into a general-purpose computational engine.
TSRBench: A Comprehensive Multi-task Multi-modal Time Series Reasoning Benchmark for Generalist Models
Time series data is ubiquitous in real-world scenarios and crucial for critical applications ranging from energy management to traffic control. Consequently, the ability to reason over time series is a fundamental skill for generalist models to solve practical problems. However, this dimension is notably absent from existing benchmarks of generalist models. To bridge this gap, we introduce TSRBench, a comprehensive multi-modal benchmark designed to stress-test the full spectrum of time series reasoning capabilities. TSRBench features: i) a diverse set of 4125 problems from 14 domains, and is categorized into 4 major dimensions: Perception, Reasoning, Prediction, and Decision-Making. ii) 15 tasks from the 4 dimensions evaluating essential reasoning capabilities (e.g., numerical reasoning). Through extensive experiments, we evaluated over 30 leading proprietary and open-source LLMs, VLMs, and TSLLMs within TSRBench. Our findings reveal that: i) scaling laws hold for perception and reasoning but break down for prediction; ii) strong reasoning does not guarantee accurate context-aware forecasting, indicating a decoupling between semantic understanding and numerical prediction; and iii) despite the complementary nature of textual and visual represenations of time series as inputs, current multimodal models fail to effectively fuse them for reciprocal performance gains. TSRBench provides a standardized evaluation platform that not only highlights existing challenges but also offers valuable insights to advance generalist models. Our code and dataset are available at https://tsrbench.github.io/.
SeNeDiF-OOD: Semantic Nested Dichotomy Fusion for Out-of-Distribution Detection Methodology in Open-World Classification. A Case Study on Monument Style Classification
Out-of-distribution (OOD) detection is a fundamental requirement for the reliable deployment of artificial intelligence applications in open-world environments. However, addressing the heterogeneous nature of OOD data, ranging from low-level corruption to semantic shifts, remains a complex challenge that single-stage detectors often fail to resolve. To address this issue, we propose SeNeDiF-OOD, a novel methodology based on Semantic Nested Dichotomy Fusion. This framework decomposes the detection task into a hierarchical structure of binary fusion nodes, where each layer is designed to integrate decision boundaries aligned with specific levels of semantic abstraction. To validate the proposed framework, we present a comprehensive case study using MonuMAI, a real-world architectural style recognition system exposed to an open environment. This application faces a diverse range of inputs, including non-monument images, unknown architectural styles, and adversarial attacks, making it an ideal testbed for our proposal. Through extensive experimental evaluation in this domain, results demonstrate that our hierarchical fusion methodology significantly outperforms traditional baselines, effectively filtering these diverse OOD categories while preserving in-distribution performance.
comment: 28 pages
Why Keep Your Doubts to Yourself? Trading Visual Uncertainties in Multi-Agent Bandit Systems ICLR 2026
Vision-Language Models (VLMs) enable powerful multi-agent systems, but scaling them is economically unsustainable: coordinating heterogeneous agents under information asymmetry often spirals costs. Existing paradigms, such as Mixture-of-Agents and knowledge-based routers, rely on heuristic proxies that ignore costs and collapse uncertainty structure, leading to provably suboptimal coordination. We introduce Agora, a framework that reframes coordination as a decentralized market for uncertainty. Agora formalizes epistemic uncertainty into a structured, tradable asset (perceptual, semantic, inferential), and enforces profitability-driven trading among agents based on rational economic rules. A market-aware broker, extending Thompson Sampling, initiates collaboration and guides the system toward cost-efficient equilibria. Experiments on five multimodal benchmarks (MMMU, MMBench, MathVision, InfoVQA, CC-OCR) show that Agora outperforms strong VLMs and heuristic multi-agent strategies, e.g., achieving +8.5% accuracy over the best baseline on MMMU while reducing cost by over 3x. These results establish market-based coordination as a principled and scalable paradigm for building economically viable multi-agent visual intelligence systems.
comment: Accepted to ICLR 2026
Advances and Innovations in the Multi-Agent Robotic System (MARS) Challenge NeurIPS 2025
Recent advancements in multimodal large language models and vision-languageaction models have significantly driven progress in Embodied AI. As the field transitions toward more complex task scenarios, multi-agent system frameworks are becoming essential for achieving scalable, efficient, and collaborative solutions. This shift is fueled by three primary factors: increasing agent capabilities, enhancing system efficiency through task delegation, and enabling advanced human-agent interactions. To address the challenges posed by multi-agent collaboration, we propose the Multi-Agent Robotic System (MARS) Challenge, held at the NeurIPS 2025 Workshop on SpaVLE. The competition focuses on two critical areas: planning and control, where participants explore multi-agent embodied planning using vision-language models (VLMs) to coordinate tasks and policy execution to perform robotic manipulation in dynamic environments. By evaluating solutions submitted by participants, the challenge provides valuable insights into the design and coordination of embodied multi-agent systems, contributing to the future development of advanced collaborative AI systems.
comment: MARS Challenge @ NeurIPS 2025 Workshop on Space in Vision, Language, and Embodied AI. Challenge page: https://mars-eai.github.io/MARS-Challenge-Webpage/
Optimal Use of Preferences in Artificial Intelligence Algorithms
Machine learning systems embed preferences either in training losses or through post-processing of calibrated predictions. Applying information design methods from Strack and Yang (2024), this paper provides decision problem agnostic conditions under which separation training preference free and applying preferences ex post is optimal. Unlike prior work that requires specifying downstream objectives, the welfare results here apply uniformly across decision problems. The key primitive is a diminishing-value-of-information condition: relative to a fixed (normalised) preference-free loss, preference embedding makes informativeness less valuable at the margin, inducing a mean-preserving contraction of learned posteriors. Because the value of information is convex in beliefs, preference-free training weakly dominates for any expected utility decision problem. This provides theoretical foundations for modular AI pipelines that learn calibrated probabilities and implement asymmetric costs through downstream decision rules. However, separation requires users to implement optimal decision rules. When cognitive constraints bind, as documented in human AI decision-making, preference embedding can dominate by automating threshold computation. These results provide design guidance: preserve optionality through post-processing when objectives may shift; embed preferences when decision-stage frictions dominate.
comment: 54 pages, 2 figures
One Adapts to Any: Meta Reward Modeling for Personalized LLM Alignment
Alignment of Large Language Models (LLMs) aims to align outputs with human preferences, and personalized alignment further adapts models to individual users. This relies on personalized reward models that capture user-specific preferences and automatically provide individualized feedback. However, developing these models faces two critical challenges: the scarcity of feedback from individual users and the need for efficient adaptation to unseen users. We argue that addressing these constraints requires a paradigm shift from fitting data to learn user preferences to learn the process of preference adaptation. To realize this, we propose Meta Reward Modeling (MRM), which reformulates personalized reward modeling as a meta-learning problem. Specifically, we represent each user's reward model as a weighted combination of base reward functions, and optimize the initialization of these weights using a Model-Agnostic Meta-Learning (MAML)-style framework to support fast adaptation under limited feedback. To ensure robustness, we introduce the Robust Personalization Objective (RPO), which places greater emphasis on hard-to-learn users during meta optimization. Extensive experiments on personalized preference datasets validate that MRM enhances few-shot personalization, improves user robustness, and consistently outperforms baselines.
HalluCitation Matters: Revealing the Impact of Hallucinated References with 300 Hallucinated Papers in ACL Conferences
Recently, we have often observed hallucinated citations or references that do not correspond to any existing work in papers under review, preprints, or published papers. Such hallucinated citations pose a serious concern to scientific reliability. When they appear in accepted papers, they may also negatively affect the credibility of conferences. In this study, we refer to hallucinated citations as "HalluCitation" and systematically investigate their prevalence and impact. We analyze all papers published at ACL, NAACL, and EMNLP in 2024 and 2025, including main conference, Findings, and workshop papers. Our analysis reveals that nearly 300 papers contain at least one HalluCitation, most of which were published in 2025. Notably, half of these papers were identified at EMNLP 2025, the most recent conference, indicating that this issue is rapidly increasing. Moreover, more than 100 such papers were accepted as main conference and Findings papers at EMNLP 2025, affecting the credibility.
comment: Work In Progress
Conditioned Generative Modeling of Molecular Glues: A Realistic AI Approach for Synthesizable Drug-like Molecules
Alzheimer's disease (AD) is marked by the pathological accumulation of amyloid beta-42 (Abeta-42), contributing to synaptic dysfunction and neurodegeneration. While extracellular amyloid plaques are well-studied, increasing evidence highlights intracellular Abeta-42 as an early and toxic driver of disease progression. In this study, we present a novel, AI-assisted drug design approach to promote targeted degradation of Abeta-42 via the ubiquitin-proteasome system (UPS), using E3 ligase-directed molecular glues. We systematically evaluated the ternary complex formation potential of Abeta-42 with three E3 ligases: CRBN, VHL, and MDM2, through structure-based modeling, ADMET screening, and docking. We then developed a Ligase-Conditioned Junction Tree Variational Autoencoder (LC-JT-VAE) to generate ligase-specific small molecules, incorporating protein sequence embeddings and torsional angle-aware molecular graphs. Our results demonstrate that this generative model can produce chemically valid, novel, and target-specific molecular glues capable of facilitating Abeta-42 degradation. This integrated approach offers a promising framework for designing UPS-targeted therapies for neurodegenerative diseases.
comment: 30 pages, 8 figures
Low Cost, High Efficiency: LiDAR Place Recognition in Vineyards with Matryoshka Representation Learning
Localization in agricultural environments is challenging due to their unstructured nature and lack of distinctive landmarks. Although agricultural settings have been studied in the context of object classification and segmentation, the place recognition task for mobile robots is not trivial in the current state of the art. In this study, we propose MinkUNeXt-VINE, a lightweight, deep-learning-based method that surpasses state-of-the-art methods in vineyard environments thanks to its pre-processing and Matryoshka Representation Learning multi-loss approach. Our method prioritizes enhanced performance with low-cost, sparse LiDAR inputs and lower-dimensionality outputs to ensure high efficiency in real-time scenarios. Additionally, we present a comprehensive ablation study of the results on various evaluation cases and two extensive long-term vineyard datasets employing different LiDAR sensors. The results demonstrate the efficiency of the trade-off output produced by this approach, as well as its robust performance on low-cost and low-resolution input data. The code is publicly available for reproduction.
Point transformer for protein structural heterogeneity analysis using CryoEM
Structural dynamics of macromolecules is critical to their structural-function relationship. Cryogenic electron microscopy (CryoEM) provides snapshots of vitrified protein at different compositional and conformational states, and the structural heterogeneity of proteins can be characterized through computational analysis of the images. For protein systems with multiple degrees of freedom, it is still challenging to disentangle and interpret the different modes of dynamics. Here, by implementing Point Transformer, a self-attention network designed for point cloud analysis, we are able to improve the performance of heterogeneity analysis on CryoEM data, and characterize the dynamics of highly complex protein systems in a more human-interpretable way.
SMART: Scalable Mesh-free Aerodynamic Simulations from Raw Geometries using a Transformer-based Surrogate Model
Machine learning-based surrogate models have emerged as more efficient alternatives to numerical solvers for physical simulations over complex geometries, such as car bodies. Many existing models incorporate the simulation mesh as an additional input, thereby reducing prediction errors. However, generating a simulation mesh for new geometries is computationally costly. In contrast, mesh-free methods, which do not rely on the simulation mesh, typically incur higher errors. Motivated by these considerations, we introduce SMART, a neural surrogate model that predicts physical quantities at arbitrary query locations using only a point-cloud representation of the geometry, without requiring access to the simulation mesh. The geometry and simulation parameters are encoded into a shared latent space that captures both structural and parametric characteristics of the physical field. A physics decoder then attends to the encoder's intermediate latent representations to map spatial queries to physical quantities. Through this cross-layer interaction, the model jointly updates latent geometric features and the evolving physical field. Extensive experiments show that SMART is competitive with and often outperforms existing methods that rely on the simulation mesh as input, demonstrating its capabilities for industry-level simulations.
Health-SCORE: Towards Scalable Rubrics for Improving Health-LLMs
Rubrics are essential for evaluating open-ended LLM responses, especially in safety-critical domains such as healthcare. However, creating high-quality and domain-specific rubrics typically requires significant human expertise time and development cost, making rubric-based evaluation and training difficult to scale. In this work, we introduce Health-SCORE, a generalizable and scalable rubric-based training and evaluation framework that substantially reduces rubric development costs without sacrificing performance. We show that Health-SCORE provides two practical benefits beyond standalone evaluation: it can be used as a structured reward signal to guide reinforcement learning with safety-aware supervision, and it can be incorporated directly into prompts to improve response quality through in-context learning. Across open-ended healthcare tasks, Health-SCORE achieves evaluation quality comparable to human-created rubrics while significantly lowering development effort, making rubric-based evaluation and training more scalable.
From Fuzzy to Exact: The Halo Architecture for Infinite-Depth Reasoning via Rational Arithmetic UAI 2026
Current paradigms in Deep Learning prioritize computational throughput over numerical precision, relying on the assumption that intelligence emerges from statistical correlation at scale. In this paper, we challenge this orthodoxy. We propose the Exactness Hypothesis: that General Intelligence (AGI), specifically high-order causal inference, requires a computational substrate capable of Arbitrary Precision Arithmetic. We argue that the "hallucinations" and logical incoherence seen in current Large Language Models (LLMs) are artifacts of IEEE 754 floating-point approximation errors accumulating over deep compositional functions. To mitigate this, we introduce the Halo Architecture, a paradigm shift to Rational Arithmetic ($\mathbb{Q}$) supported by a novel Exact Inference Unit (EIU). Empirical validation on the Huginn-0125 prototype demonstrates that while 600B-parameter scale BF16 baselines collapse in chaotic systems, Halo maintains zero numerical divergence indefinitely. This work establishes exact arithmetic as a prerequisite for reducing logical uncertainty in System 2 AGI.
comment: 8 pages, 6 figures. Submitted to UAI 2026
TEA-Bench: A Systematic Benchmarking of Tool-enhanced Emotional Support Dialogue Agent
Emotional Support Conversation requires not only affective expression but also grounded instrumental support to provide trustworthy guidance. However, existing ESC systems and benchmarks largely focus on affective support in text-only settings, overlooking how external tools can enable factual grounding and reduce hallucination in multi-turn emotional support. We introduce TEA-Bench, the first interactive benchmark for evaluating tool-augmented agents in ESC, featuring realistic emotional scenarios, an MCP-style tool environment, and process-level metrics that jointly assess the quality and factual grounding of emotional support. Experiments on nine LLMs show that tool augmentation generally improves emotional support quality and reduces hallucination, but the gains are strongly capacity-dependent: stronger models use tools more selectively and effectively, while weaker models benefit only marginally. We further release TEA-Dialog, a dataset of tool-enhanced ESC dialogues, and find that supervised fine-tuning improves in-distribution support but generalizes poorly. Our results underscore the importance of tool use in building reliable emotional support agents.
Neural Multi-Speaker Voice Cloning for Nepali in Low-Resource Settings
This research presents a few-shot voice cloning system for Nepali speakers, designed to synthesize speech in a specific speaker's voice from Devanagari text using minimal data. Voice cloning in Nepali remains largely unexplored due to its low-resource nature. To address this, we constructed separate datasets: untranscribed audio for training a speaker encoder and paired text-audio data for training a Tacotron2-based synthesizer. The speaker encoder, optimized with Generative End2End loss, generates embeddings that capture the speaker's vocal identity, validated through Uniform Manifold Approximation and Projection (UMAP) for dimension reduction visualizations. These embeddings are fused with Tacotron2's text embeddings to produce mel-spectrograms, which are then converted into audio using a WaveRNN vocoder. Audio data were collected from various sources, including self-recordings, and underwent thorough preprocessing for quality and alignment. Training was performed using mel and gate loss functions under multiple hyperparameter settings. The system effectively clones speaker characteristics even for unseen voices, demonstrating the feasibility of few-shot voice cloning for the Nepali language and establishing a foundation for personalized speech synthesis in low-resource scenarios.
comment: 16 pages with appendix included
ART for Diffusion Sampling: A Reinforcement Learning Approach to Timestep Schedule
We consider time discretization for score-based diffusion models to generate samples from a learned reverse-time dynamic on a finite grid. Uniform and hand-crafted grids can be suboptimal given a budget on the number of time steps. We introduce Adaptive Reparameterized Time (ART) that controls the clock speed of a reparameterized time variable, leading to a time change and uneven timesteps along the sampling trajectory while preserving the terminal time. The objective is to minimize the aggregate error arising from the discretized Euler scheme. We derive a randomized control companion, ART-RL, and formulate time change as a continuous-time reinforcement learning (RL) problem with Gaussian policies. We then prove that solving ART-RL recovers the optimal ART schedule, which in turn enables practical actor--critic updates to learn the latter in a data-driven way. Empirically, based on the official EDM pipeline, ART-RL improves Fréchet Inception Distance on CIFAR-10 over a wide range of budgets and transfers to AFHQv2, FFHQ, and ImageNet without the need of retraining.
comment: 17 pages, 7 figures
Learning temporal embeddings from electronic health records of chronic kidney disease patients
We investigate whether temporal embedding models trained on longitudinal electronic health records can learn clinically meaningful representations without compromising predictive performance, and how architectural choices affect embedding quality. Model-guided medicine requires representations that capture disease dynamics while remaining transparent and task agnostic, whereas most clinical prediction models are optimised for a single task. Representation learning facilitates learning embeddings that generalise across downstream tasks, and recurrent architectures are well-suited for modelling temporal structure in observational clinical data. Using the MIMIC-IV dataset, we study patients with chronic kidney disease (CKD) and compare three recurrent architectures: a vanilla LSTM, an attention-augmented LSTM, and a time-aware LSTM (T-LSTM). All models are trained both as embedding models and as direct end-to-end predictors. Embedding quality is evaluated via CKD stage clustering and in-ICU mortality prediction. The T-LSTM produces more structured embeddings, achieving a lower Davies-Bouldin Index (DBI = 9.91) and higher CKD stage classification accuracy (0.74) than the vanilla LSTM (DBI = 15.85, accuracy = 0.63) and attention-augmented LSTM (DBI = 20.72, accuracy = 0.67). For in-ICU mortality prediction, embedding models consistently outperform end-to-end predictors, improving accuracy from 0.72-0.75 to 0.82-0.83, which indicates that learning embeddings as an intermediate step is more effective than direct end-to-end learning.
comment: 7 pages, 3 figures, 3 tables. The paper has been submitted to IEEE EMBC 2026 and copyright might be transferred without notice
FaLW: A Forgetting-aware Loss Reweighting for Long-tailed Unlearning iclr2026
Machine unlearning, which aims to efficiently remove the influence of specific data from trained models, is crucial for upholding data privacy regulations like the ``right to be forgotten". However, existing research predominantly evaluates unlearning methods on relatively balanced forget sets. This overlooks a common real-world scenario where data to be forgotten, such as a user's activity records, follows a long-tailed distribution. Our work is the first to investigate this critical research gap. We find that in such long-tailed settings, existing methods suffer from two key issues: \textit{Heterogeneous Unlearning Deviation} and \textit{Skewed Unlearning Deviation}. To address these challenges, we propose FaLW, a plug-and-play, instance-wise dynamic loss reweighting method. FaLW innovatively assesses the unlearning state of each sample by comparing its predictive probability to the distribution of unseen data from the same class. Based on this, it uses a forgetting-aware reweighting scheme, modulated by a balancing factor, to adaptively adjust the unlearning intensity for each sample. Extensive experiments demonstrate that FaLW achieves superior performance. Code is available at \textbf{Supplementary Material}.
comment: camera-ready for iclr2026
FadeMem: Biologically-Inspired Forgetting for Efficient Agent Memory
Large language models deployed as autonomous agents face critical memory limitations, lacking selective forgetting mechanisms that lead to either catastrophic forgetting at context boundaries or information overload within them. While human memory naturally balances retention and forgetting through adaptive decay processes, current AI systems employ binary retention strategies that preserve everything or lose it entirely. We propose FadeMem, a biologically-inspired agent memory architecture that incorporates active forgetting mechanisms mirroring human cognitive efficiency. FadeMem implements differential decay rates across a dual-layer memory hierarchy, where retention is governed by adaptive exponential decay functions modulated by semantic relevance, access frequency, and temporal patterns. Through LLM-guided conflict resolution and intelligent memory fusion, our system consolidates related information while allowing irrelevant details to fade. Experiments on Multi-Session Chat, LoCoMo, and LTI-Bench demonstrate superior multi-hop reasoning and retrieval with 45\% storage reduction, validating the effectiveness of biologically-inspired forgetting in agent memory systems.
Unheard in the Digital Age: Rethinking AI Bias and Speech Diversity
Speech remains one of the most visible yet overlooked vectors of inclusion and exclusion in contemporary society. While fluency is often equated with credibility and competence, individuals with atypical speech patterns are routinely marginalized. Given the current state of the debate, this article focuses on the structural biases that shape perceptions of atypical speech and are now being encoded into artificial intelligence. Automated speech recognition (ASR) systems and voice interfaces, trained predominantly on standardized speech, routinely fail to recognize or respond to diverse voices, compounding digital exclusion. As AI technologies increasingly mediate access to opportunity, the study calls for inclusive technological design, anti-bias training to minimize the impact of discriminatory algorithmic decisions, and enforceable policy reform that explicitly recognize speech diversity as a matter of equity, not merely accessibility. Drawing on interdisciplinary research, the article advocates for a cultural and institutional shift in how we value voice, urging co-created solutions that elevate the rights, representation, and realities of atypical speakers in the digital age. Ultimately, the article reframes speech inclusion as a matter of equity (not accommodation) and advocates for co-created AI systems that reflect the full spectrum of human voices.
AdaReasoner: Dynamic Tool Orchestration for Iterative Visual Reasoning
When humans face problems beyond their immediate capabilities, they rely on tools, providing a promising paradigm for improving visual reasoning in multimodal large language models (MLLMs). Effective reasoning, therefore, hinges on knowing which tools to use, when to invoke them, and how to compose them over multiple steps, even when faced with new tools or new tasks. We introduce \textbf{AdaReasoner}, a family of multimodal models that learn tool use as a general reasoning skill rather than as tool-specific or explicitly supervised behavior. AdaReasoner is enabled by (i) a scalable data curation pipeline exposing models to long-horizon, multi-step tool interactions; (ii) Tool-GRPO, a reinforcement learning algorithm that optimizes tool selection and sequencing based on end-task success; and (iii) an adaptive learning mechanism that dynamically regulates tool usage. Together, these components allow models to infer tool utility from task context and intermediate outcomes, enabling coordination of multiple tools and generalization to unseen tools. Empirically, AdaReasoner exhibits strong tool-adaptive and generalization behaviors: it autonomously adopts beneficial tools, suppresses irrelevant ones, and adjusts tool usage frequency based on task demands, despite never being explicitly trained to do so. These capabilities translate into state-of-the-art performance across challenging benchmarks, improving the 7B base model by +24.9\% on average and surpassing strong proprietary systems such as GPT-5 on multiple tasks, including VSP and Jigsaw.
comment: 28 pages, 10 figures and 13 tables
Assessing the Quality of Mental Health Support in LLM Responses through Multi-Attribute Human Evaluation
The escalating global mental health crisis, marked by persistent treatment gaps, availability, and a shortage of qualified therapists, positions Large Language Models (LLMs) as a promising avenue for scalable support. While LLMs offer potential for accessible emotional assistance, their reliability, therapeutic relevance, and alignment with human standards remain challenging to address. This paper introduces a human-grounded evaluation methodology designed to assess LLM generated responses in therapeutic dialogue. Our approach involved curating a dataset of 500 mental health conversations from datasets with real-world scenario questions and evaluating the responses generated by nine diverse LLMs, including closed source and open source models. More specifically, these responses were evaluated by two psychiatric trained experts, who independently rated each on a 5 point Likert scale across a comprehensive 6 attribute rubric. This rubric captures Cognitive Support and Affective Resonance, providing a multidimensional perspective on therapeutic quality. Our analysis reveals that LLMs provide strong cognitive reliability by producing safe, coherent, and clinically appropriate information, but they demonstrate unstable affective alignment. Although closed source models (e.g., GPT-4o) offer balanced therapeutic responses, open source models show greater variability and emotional flatness. We reveal a persistent cognitive-affective gap and highlight the need for failure aware, clinically grounded evaluation frameworks that prioritize relational sensitivity alongside informational accuracy in mental health oriented LLMs. We advocate for balanced evaluation protocols with human in the loop that center on therapeutic sensitivity and provide a framework to guide the responsible design and clinical oversight of mental health oriented conversational AI.
Rank-1 Approximation of Inverse Fisher for Natural Policy Gradients in Deep Reinforcement Learning
Natural gradients have long been studied in deep reinforcement learning due to their fast convergence properties and covariant weight updates. However, computing natural gradients requires inversion of the Fisher Information Matrix (FIM) at each iteration, which is computationally prohibitive in nature. In this paper, we present an efficient and scalable natural policy optimization technique that leverages a rank-1 approximation to full inverse-FIM. We theoretically show that under certain conditions, a rank-1 approximation to inverse-FIM converges faster than policy gradients and, under some conditions, enjoys the same sample complexity as stochastic policy gradient methods. We benchmark our method on a diverse set of environments and show that it achieves superior performance to standard actor-critic and trust-region baselines.
Emergence of Phonemic, Syntactic, and Semantic Representations in Artificial Neural Networks
During language acquisition, children successively learn to categorize phonemes, identify words, and combine them with syntax to form new meaning. While the development of this behavior is well characterized, we still lack a unifying computational framework to explain its underlying neural representations. Here, we investigate whether and when phonemic, lexical, and syntactic representations emerge in the activations of artificial neural networks during their training. Our results show that both speech- and text-based models follow a sequence of learning stages: during training, their neural activations successively build subspaces, where the geometry of the neural activations represents phonemic, lexical, and syntactic structure. While this developmental trajectory qualitatively relates to children's, it is quantitatively different: These algorithms indeed require two to four orders of magnitude more data for these neural representations to emerge. Together, these results show conditions under which major stages of language acquisition spontaneously emerge, and hence delineate a promising path to understand the computations underpinning language acquisition.
PolySHAP: Extending KernelSHAP with Interaction-Informed Polynomial Regression
Shapley values have emerged as a central game-theoretic tool in explainable AI (XAI). However, computing Shapley values exactly requires $2^d$ game evaluations for a model with $d$ features. Lundberg and Lee's KernelSHAP algorithm has emerged as a leading method for avoiding this exponential cost. KernelSHAP approximates Shapley values by approximating the game as a linear function, which is fit using a small number of game evaluations for random feature subsets. In this work, we extend KernelSHAP by approximating the game via higher degree polynomials, which capture non-linear interactions between features. Our resulting PolySHAP method yields empirically better Shapley value estimates for various benchmark datasets, and we prove that these estimates are consistent. Moreover, we connect our approach to paired sampling (antithetic sampling), a ubiquitous modification to KernelSHAP that improves empirical accuracy. We prove that paired sampling outputs exactly the same Shapley value approximations as second-order PolySHAP, without ever fitting a degree 2 polynomial. To the best of our knowledge, this finding provides the first strong theoretical justification for the excellent practical performance of the paired sampling heuristic.
A Balanced Neuro-Symbolic Approach for Commonsense Abductive Logic
Although Large Language Models (LLMs) have demonstrated impressive formal reasoning abilities, they often break down when problems require complex proof planning. One promising approach for improving LLM reasoning abilities involves translating problems into formal logic and using a logic solver. Although off-the-shelf logic solvers are in principle substantially more efficient than LLMs at logical reasoning, they assume that all relevant facts are provided in a question and are unable to deal with missing commonsense relations. In this work, we propose a novel method that uses feedback from the logic solver to augment a logic problem with commonsense relations provided by the LLM, in an iterative manner. This involves a search procedure through potential commonsense assumptions to maximize the chance of finding useful facts while keeping cost tractable. On a collection of pure-logical reasoning datasets, from which some commonsense information has been removed, our method consistently achieves considerable improvements over existing techniques, demonstrating the value in balancing neural and symbolic elements when working in human contexts.
Stability as a Liability:Systematic Breakdown of Linguistic Structure in LLMs
Training stability is typically regarded as a prerequisite for reliable optimization in large language models. In this work, we analyze how stabilizing training dynamics affects the induced generation distribution. We show that under standard maximum likelihood training, stable parameter trajectories lead stationary solutions to approximately minimize the forward KL divergence to the empirical distribution, while implicitly reducing generative entropy. As a consequence, the learned model can concentrate probability mass on a limited subset of empirical modes, exhibiting systematic degeneration despite smooth loss convergence. We empirically validate this effect using a controlled feedback-based training framework that stabilizes internal generation statistics, observing consistent low-entropy outputs and repetitive behavior across architectures and random seeds. It indicates that optimization stability and generative expressivity are not inherently aligned, and that stability alone is an insufficient indicator of generative quality.
Learning long term climate-resilient transport adaptation pathways under direct and indirect flood impacts using reinforcement learning
Climate change is expected to intensify rainfall and other hazards, increasing disruptions in urban transportation systems. Designing effective adaptation strategies is challenging due to the long-term, sequential nature of infrastructure investments, deep uncertainty, and complex cross-sector interactions. We propose a generic decision-support framework that couples an integrated assessment model (IAM) with reinforcement learning (RL) to learn adaptive, multi-decade investment pathways under uncertainty. The framework combines long-term climate projections (e.g., IPCC scenario pathways) with models that map projected extreme-weather drivers (e.g. rain) into hazard likelihoods (e.g. flooding), propagate hazards into urban infrastructure impacts (e.g. transport disruption), and value direct and indirect consequences for service performance and societal costs. Embedded in a reinforcement-learning loop, it learns adaptive climate adaptation policies that trade off investment and maintenance expenditures against avoided impacts. In collaboration with Copenhagen Municipality, we demonstrate the approach on pluvial flooding in the inner city for the horizon of 2024 to 2100. The learned strategies yield coordinated spatial-temporal pathways and improved robustness relative to conventional optimization baselines, namely inaction and random action, illustrating the framework's transferability to other hazards and cities.
FastInsight: Fast and Insightful Retrieval via Fusion Operators for Graph RAG
Existing Graph RAG methods aiming for insightful retrieval on corpus graphs typically rely on time-intensive processes that interleave Large Language Model (LLM) reasoning. To enable time-efficient insightful retrieval, we propose FastInsight. We first introduce a graph retrieval taxonomy that categorizes existing methods into three fundamental operations: vector search, graph search, and model-based search. Through this taxonomy, we identify two critical limitations in current approaches: the topology-blindness of model-based search and the semantics-blindness of graph search. FastInsight overcomes these limitations by interleaving two novel fusion operators: the Graph-based Reranker (GRanker), which functions as a graph model-based search, and Semantic-Topological eXpansion (STeX), which operates as a vector-graph search. Extensive experiments on broad retrieval and generation datasets demonstrate that FastInsight significantly improves both retrieval accuracy and generation quality compared to state-of-the-art baselines, achieving a substantial Pareto improvement in the trade-off between effectiveness and efficiency.
comment: under review
Attention-Based Neural-Augmented Kalman Filter for Legged Robot State Estimation RA-L
In this letter, we propose an Attention-Based Neural-Augmented Kalman Filter (AttenNKF) for state estimation in legged robots. Foot slip is a major source of estimation error: when slip occurs, kinematic measurements violate the no-slip assumption and inject bias during the update step. Our objective is to estimate this slip-induced error and compensate for it. To this end, we augment an Invariant Extended Kalman Filter (InEKF) with a neural compensator that uses an attention mechanism to infer error conditioned on foot-slip severity and then applies this estimate as a post-update compensation to the InEKF state (i.e., after the filter update). The compensator is trained in a latent space, which aims to reduce sensitivity to raw input scales and encourages structured slip-conditioned compensations, while preserving the InEKF recursion. Experiments demonstrate improved performance compared to existing legged-robot state estimators, particularly under slip-prone conditions.
comment: 8 pages, 6 figures, Accepted to IEEE Robotics and Automation Letters (RA-L)
Deconstructing Instruction-Following: A New Benchmark for Granular Evaluation of Large Language Model Instruction Compliance Abilities
Reliably ensuring Large Language Models (LLMs) follow complex instructions is a critical challenge, as existing benchmarks often fail to reflect real-world use or isolate compliance from task success. We introduce MOSAIC (MOdular Synthetic Assessment of Instruction Compliance), a modular framework that uses a dynamically generated dataset with up to 20 application-oriented generation constraints to enable a granular and independent analysis of this capability. Our evaluation of five LLMs from different families based on this new benchmark demonstrates that compliance is not a monolithic capability but varies significantly with constraint type, quantity, and position. The analysis reveals model-specific weaknesses, uncovers synergistic and conflicting interactions between instructions, and identifies distinct positional biases such as primacy and recency effects. These granular insights are critical for diagnosing model failures and developing more reliable LLMs for systems that demand strict adherence to complex instructions.
comment: Paper accepted to EACL 2026
SKETCH: Semantic Key-Point Conditioning for Long-Horizon Vessel Trajectory Prediction
Accurate long-horizon vessel trajectory prediction remains challenging due to compounded uncertainty from complex navigation behaviors and environmental factors. Existing methods often struggle to maintain global directional consistency, leading to drifting or implausible trajectories when extrapolated over long time horizons. To address this issue, we propose a semantic-key-point-conditioned trajectory modeling framework, in which future trajectories are predicted by conditioning on a high-level Next Key Point (NKP) that captures navigational intent. This formulation decomposes long-horizon prediction into global semantic decision-making and local motion modeling, effectively restricting the support of future trajectories to semantically feasible subsets. To efficiently estimate the NKP prior from historical observations, we adopt a pretrain-finetune strategy. Extensive experiments on real-world AIS data demonstrate that the proposed method consistently outperforms state-of-the-art approaches, particularly for long travel durations, directional accuracy, and fine-grained trajectory prediction.
Scalable Transit Delay Prediction at City Scale: A Systematic Approach with Multi-Resolution Feature Engineering and Deep Learning
Urban bus transit agencies need reliable, network-wide delay predictions to provide accurate arrival information to passengers and support real-time operational control. Accurate predictions help passengers plan their trips, reduce waiting time, and allow operations staff to adjust headways, dispatch extra vehicles, and manage disruptions. Although real-time feeds such as GTFS-Realtime (GTFS-RT) are now widely available, most existing delay prediction systems handle only a few routes, depend on hand-crafted features, and offer little guidance on how to design a scalable, reusable architecture. We present a city-scale prediction pipeline that combines multi-resolution feature engineering, dimensionality reduction, and deep learning. The framework generates 1,683 spatiotemporal features by exploring 23 aggregation combinations over H3 cells, routes, segments, and temporal patterns, and compresses them into 83 components using Adaptive PCA while preserving 95% of the variance. To avoid the "giant cluster" problem that occurs when dense urban areas fall into a single H3 region, we introduce a hybrid H3+topology clustering method that yields 12 balanced route clusters (coefficient of variation 0.608) and enables efficient distributed training. We compare five model architectures on six months of bus operations from the Société de transport de Montréal (STM) network in Montréal. A global LSTM with cluster-aware features achieves the best trade-off between accuracy and efficiency, outperforming transformer models by 18 to 52% while using 275 times fewer parameters. We also report multi-level evaluation at the elementary segment, segment, and trip level with walk-forward validation and latency analysis, showing that the proposed pipeline is suitable for real-time, city-scale deployment and can be reused for other networks with limited adaptation.
comment: This manuscript is a preprint of an earlier version. A revised system-oriented version is currently under review
Just-In-Time Reinforcement Learning: Continual Learning in LLM Agents Without Gradient Updates
While Large Language Model (LLM) agents excel at general tasks, they inherently struggle with continual adaptation due to the frozen weights after deployment. Conventional reinforcement learning (RL) offers a solution but incurs prohibitive computational costs and the risk of catastrophic forgetting. We introduce Just-In-Time Reinforcement Learning (JitRL), a training-free framework that enables test-time policy optimization without any gradient updates. JitRL maintains a dynamic, non-parametric memory of experiences and retrieves relevant trajectories to estimate action advantages on-the-fly. These estimates are then used to directly modulate the LLM's output logits. We theoretically prove that this additive update rule is the exact closed-form solution to the KL-constrained policy optimization objective. Extensive experiments on WebArena and Jericho demonstrate that JitRL establishes a new state-of-the-art among training-free methods. Crucially, JitRL outperforms the performance of computationally expensive fine-tuning methods (e.g., WebRL) while reducing monetary costs by over 30 times, offering a scalable path for continual learning agents. The code is available at https://github.com/liushiliushi/JitRL.
DEEPMED: Building a Medical DeepResearch Agent via Multi-hop Med-Search Data and Turn-Controlled Agentic Training & Inference
Medical reasoning models remain constrained by parametric knowledge and are thus susceptible to forgetting and hallucinations. DeepResearch (DR) models ground outputs in verifiable evidence from tools and perform strongly in general domains, but their direct transfer to medical field yields relatively limited gains. We attribute this to two gaps: task characteristic and tool-use scaling. Medical questions require evidence interpretation in a knowledge-intensive clinical context; while general DR models can retrieve information, they often lack clinical-context reasoning and thus "find it but fail to use it," leaving performance limited by medical abilities. Moreover, in medical scenarios, blindly scaling tool-call can inject noisy context, derailing sensitive medical reasoning and prompting repetitive evidence-seeking along incorrect paths. Therefore, we propose DeepMed. For data, we deploy a multi-hop med-search QA synthesis method supporting the model to apply the DR paradigm in medical contexts. For training, we introduce a difficulty-aware turn-penalty to suppress excessive tool-call growth. For inference, we bring a monitor to help validate hypotheses within a controlled number of steps and avoid context rot. Overall, on seven medical benchmarks, DeepMed improves its base model by 9.79\% on average and outperforms larger medical reasoning and DR models.
AgentDoG: A Diagnostic Guardrail Framework for AI Agent Safety and Security
The rise of AI agents introduces complex safety and security challenges arising from autonomous tool use and environmental interactions. Current guardrail models lack agentic risk awareness and transparency in risk diagnosis. To introduce an agentic guardrail that covers complex and numerous risky behaviors, we first propose a unified three-dimensional taxonomy that orthogonally categorizes agentic risks by their source (where), failure mode (how), and consequence (what). Guided by this structured and hierarchical taxonomy, we introduce a new fine-grained agentic safety benchmark (ATBench) and a Diagnostic Guardrail framework for agent safety and security (AgentDoG). AgentDoG provides fine-grained and contextual monitoring across agent trajectories. More Crucially, AgentDoG can diagnose the root causes of unsafe actions and seemingly safe but unreasonable actions, offering provenance and transparency beyond binary labels to facilitate effective agent alignment. AgentDoG variants are available in three sizes (4B, 7B, and 8B parameters) across Qwen and Llama model families. Extensive experimental results demonstrate that AgentDoG achieves state-of-the-art performance in agentic safety moderation in diverse and complex interactive scenarios. All models and datasets are openly released.
comment: 40 pages, 26 figures
Funny or Persuasive, but Not Both: Evaluating Fine-Grained Multi-Concept Control in LLMs
Large Language Models (LLMs) offer strong generative capabilities, but many applications require explicit and \textit{fine-grained} control over specific textual concepts, such as humor, persuasiveness, or formality. Prior approaches in prompting and representation engineering can provide coarse or single-attribute control, but systematic evaluation of multi-attribute settings remains limited. We introduce an evaluation framework for fine-grained controllability for both single- and dual-concept scenarios, focusing on linguistically distinct concept pairs (e.g., persuasiveness vs.~humor). Surprisingly, across multiple LLMs and generative tasks, we find that performance often drops in the dual-concept setting, even though the chosen concepts should in principle be separable. This reveals a fundamental limitation of naive prompting-based control: models struggle with compositionality even when concepts are intuitively independent. Our framework provides systematic evidence of this gap and offers a principled approach for measuring the ability of future methods for multi-concept control.
comment: Accepted for publication at EACL main conference
OffSeeker: Online Reinforcement Learning Is Not All You Need for Deep Research Agents
Deep research agents have shown remarkable potential in handling long-horizon tasks. However, state-of-the-art performance typically relies on online reinforcement learning (RL), which is financially expensive due to extensive API calls. While offline training offers a more efficient alternative, its progress is hindered by the scarcity of high-quality research trajectories. In this paper, we demonstrate that expensive online reinforcement learning is not all you need to build powerful research agents. To bridge this gap, we introduce a fully open-source suite designed for effective offline training. Our core contributions include DeepForge, a ready-to-use task synthesis framework that generates large-scale research queries without heavy preprocessing; and a curated collection of 66k QA pairs, 33k SFT trajectories, and 21k DPO pairs. Leveraging these resources, we train OffSeeker (8B), a model developed entirely offline. Extensive evaluations across six benchmarks show that OffSeeker not only leads among similar-sized agents but also remains competitive with 30B-parameter systems trained via heavy online RL.
Fair-Eye Net: A Fair, Trustworthy, Multimodal Integrated Glaucoma Full Chain AI System
Glaucoma is a top cause of irreversible blindness globally, making early detection and longitudinal follow-up pivotal to preventing permanent vision loss. Current screening and progression assessment, however, rely on single tests or loosely linked examinations, introducing subjectivity and fragmented care. Limited access to high-quality imaging tools and specialist expertise further compromises consistency and equity in real-world use. To address these gaps, we developed Fair-Eye Net, a fair, reliable multimodal AI system closing the clinical loop from glaucoma screening to follow-up and risk alerting. It integrates fundus photos, OCT structural metrics, VF functional indices, and demographic factors via a dual-stream heterogeneous fusion architecture, with an uncertainty-aware hierarchical gating strategy for selective prediction and safe referral. A fairness constraint reduces missed diagnoses in disadvantaged subgroups. Experimental results show it achieved an AUC of 0.912 (96.7% specificity), cut racial false-negativity disparity by 73.4% (12.31% to 3.28%), maintained stable cross-domain performance, and enabled 3-12 months of early risk alerts (92% sensitivity, 88% specificity). Unlike post hoc fairness adjustments, Fair-Eye Net optimizes fairness as a primary goal with clinical reliability via multitask learning, offering a reproducible path for clinical translation and large-scale deployment to advance global eye health equity.
3DGesPolicy: Phoneme-Aware Holistic Co-Speech Gesture Generation Based on Action Control
Generating holistic co-speech gestures that integrate full-body motion with facial expressions suffers from semantically incoherent coordination on body motion and spatially unstable meaningless movements due to existing part-decomposed or frame-level regression methods, We introduce 3DGesPolicy, a novel action-based framework that reformulates holistic gesture generation as a continuous trajectory control problem through diffusion policy from robotics. By modeling frame-to-frame variations as unified holistic actions, our method effectively learns inter-frame holistic gesture motion patterns and ensures both spatially and semantically coherent movement trajectories that adhere to realistic motion manifolds. To further bridge the gap in expressive alignment, we propose a Gesture-Audio-Phoneme (GAP) fusion module that can deeply integrate and refine multi-modal signals, ensuring structured and fine-grained alignment between speech semantics, body motion, and facial expressions. Extensive quantitative and qualitative experiments on the BEAT2 dataset demonstrate the effectiveness of our 3DGesPolicy across other state-of-the-art methods in generating natural, expressive, and highly speech-aligned holistic gestures.
comment: 13 pages, 5 figures
GCFX: Generative Counterfactual Explanations for Deep Graph Models at the Model Level
Deep graph learning models have demonstrated remarkable capabilities in processing graph-structured data and have been widely applied across various fields. However, their complex internal architectures and lack of transparency make it difficult to explain their decisions, resulting in opaque models that users find hard to understand and trust. In this paper, we explore model-level explanation techniques for deep graph learning models, aiming to provide users with a comprehensive understanding of the models' overall decision-making processes and underlying mechanisms. Specifically, we address the problem of counterfactual explanations for deep graph learning models by introducing a generative model-level counterfactual explanation approach called GCFX, which is based on deep graph generation. This approach generates a set of high-quality counterfactual explanations that reflect the model's global predictive behavior by leveraging an enhanced deep graph generation framework and a global summarization algorithm. GCFX features an architecture that combines dual encoders, structure-aware taggers, and Message Passing Neural Network decoders, enabling it to accurately learn the true latent distribution of input data and generate high-quality, closely related counterfactual examples. Subsequently, a global counterfactual summarization algorithm selects the most representative and comprehensive explanations from numerous candidate counterfactuals, providing broad insights into the model's global predictive patterns. Experiments on a synthetic dataset and several real-world datasets demonstrate that GCFX outperforms existing methods in terms of counterfactual validity and coverage while maintaining low explanation costs, thereby offering crucial support for enhancing the practicality and trustworthiness of global counterfactual explanations.
Gradient Regularized Natural Gradients
Gradient regularization (GR) has been shown to improve the generalizability of trained models. While Natural Gradient Descent has been shown to accelerate optimization in the initial phase of training, little attention has been paid to how the training dynamics of second-order optimizers can benefit from GR. In this work, we propose Gradient-Regularized Natural Gradients (GRNG), a family of scalable second-order optimizers that integrate explicit gradient regularization with natural gradient updates. Our framework provides two complementary algorithms: a frequentist variant that avoids explicit inversion of the Fisher Information Matrix (FIM) via structured approximations, and a Bayesian variant based on a Regularized-Kalman formulation that eliminates the need for FIM inversion entirely. We establish convergence guarantees for GRNG, showing that gradient regularization improves stability and enables convergence to global minima. Empirically, we demonstrate that GRNG consistently enhances both optimization speed and generalization compared to first-order methods (SGD, AdamW) and second-order baselines (K-FAC, Sophia), with strong results on vision and language benchmarks. Our findings highlight gradient regularization as a principled and practical tool to unlock the robustness of natural gradient methods for large-scale deep learning.
Emergent Cooperation in Quantum Multi-Agent Reinforcement Learning Using Communication
Emergent cooperation in classical Multi-Agent Reinforcement Learning has gained significant attention, particularly in the context of Sequential Social Dilemmas (SSDs). While classical reinforcement learning approaches have demonstrated capability for emergent cooperation, research on extending these methods to Quantum Multi-Agent Reinforcement Learning remains limited, particularly through communication. In this paper, we apply communication approaches to quantum Q-Learning agents: the Mutual Acknowledgment Token Exchange (MATE) protocol, its extension Mutually Endorsed Distributed Incentive Acknowledgment Token Exchange (MEDIATE), the peer rewarding mechanism Gifting, and Reinforced Inter-Agent Learning (RIAL). We evaluate these approaches in three SSDs: the Iterated Prisoner's Dilemma, Iterated Stag Hunt, and Iterated Game of Chicken. Our experimental results show that approaches using MATE with temporal-difference measure (MATE\textsubscript{TD}), AutoMATE, MEDIATE-I, and MEDIATE-S achieved high cooperation levels across all dilemmas, demonstrating that communication is a viable mechanism for fostering emergent cooperation in Quantum Multi-Agent Reinforcement Learning.
comment: Accepted at IEEE ICC 2026
daVinci-Dev: Agent-native Mid-training for Software Engineering
Recently, the frontier of Large Language Model (LLM) capabilities has shifted from single-turn code generation to agentic software engineering-a paradigm where models autonomously navigate, edit, and test complex repositories. While post-training methods have become the de facto approach for code agents, **agentic mid-training**-mid-training (MT) on large-scale data that mirrors authentic agentic workflows-remains critically underexplored due to substantial resource requirements, despite offering a more scalable path to instilling foundational agentic behaviors than relying solely on expensive reinforcement learning. A central challenge in realizing effective agentic mid-training is the distribution mismatch between static training data and the dynamic, feedback-rich environment of real development. To address this, we present a systematic study of agentic mid-training, establishing both the data synthesis principles and training methodology for effective agent development at scale. Central to our approach is **agent-native data**-supervision comprising two complementary types of trajectories: **contextually-native trajectories** that preserve the complete information flow an agent experiences, offering broad coverage and diversity; and **environmentally-native trajectories** collected from executable repositories where observations stem from actual tool invocations and test executions, providing depth and interaction authenticity. We verify the model's agentic capabilities on `SWE-Bench Verified`. We demonstrate our superiority over the previous open software engineering mid-training recipe `Kimi-Dev` under two post-training settings with an aligned base model and agentic scaffold, while using less than half mid-training tokens (73.1B). Besides relative advantage, our best performing 32B and 72B models achieve **56.1%** and **58.5%** resolution rates, respectively, which are ...
Dynamic Thinking-Token Selection for Efficient Reasoning in Large Reasoning Models
Large Reasoning Models (LRMs) excel at solving complex problems by explicitly generating a reasoning trace before deriving the final answer. However, these extended generations incur substantial memory footprint and computational overhead, bottlenecking LRMs' efficiency. This work uses attention maps to analyze the influence of reasoning traces and uncover an interesting phenomenon: only some decision-critical tokens in a reasoning trace steer the model toward the final answer, while the remaining tokens contribute negligibly. Building on this observation, we propose Dynamic Thinking-Token Selection (DynTS). This method identifies decision-critical tokens and retains only their associated Key-Value (KV) cache states during inference, evicting the remaining redundant entries to optimize efficiency.
AI Agent for Reverse-Engineering Legacy Finite-Difference Code and Translating to Devito
To facilitate the transformation of legacy finite difference implementations into the Devito environment, this study develops an integrated AI agent framework. Retrieval-Augmented Generation (RAG) and open-source Large Language Models are combined through multi-stage iterative workflows in the system's hybrid LangGraph architecture. The agent constructs an extensive Devito knowledge graph through document parsing, structure-aware segmentation, extraction of entity relationships, and Leiden-based community detection. GraphRAG optimisation enhances query performance across semantic communities that include seismic wave simulation, computational fluid dynamics, and performance tuning libraries. A reverse engineering component derives three-level query strategies for RAG retrieval through static analysis of Fortran source code. To deliver precise contextual information for language model guidance, the multi-stage retrieval pipeline performs parallel searching, concept expansion, community-scale retrieval, and semantic similarity analysis. Code synthesis is governed by Pydantic-based constraints to guarantee structured outputs and reliability. A comprehensive validation framework integrates conventional static analysis with the G-Eval approach, covering execution correctness, structural soundness, mathematical consistency, and API compliance. The overall agent workflow is implemented on the LangGraph framework and adopts concurrent processing to support quality-based iterative refinement and state-aware dynamic routing. The principal contribution lies in the incorporation of feedback mechanisms motivated by reinforcement learning, enabling a transition from static code translation toward dynamic and adaptive analytical behavior.
comment: 14 pages, 7 figures
Can Good Writing Be Generative? Expert-Level AI Writing Emerges through Fine-Tuning on High-Quality Books
Creative writing has long been considered a uniquely human endeavor, requiring voice and style that machines could not replicate. This assumption is challenged by Generative AI that can emulate thousands of author styles in seconds with negligible marginal labor. To understand this better, we conducted a behavioral experiment where 28 MFA writers (experts) competed against three LLMs in emulating 50 critically acclaimed authors. Based on blind pairwise comparisons by 28 expert judges and 131 lay judges, we find that experts preferred human writing in 82.7% of cases under the in-context prompting condition but this reversed to 62% preference for AI after fine-tuning on authors' complete works. Lay judges, however, consistently preferred AI writing. Debrief interviews with expert writers revealed that their preference for AI writing triggered an identity crisis, eroding aesthetic confidence and questioning what constitutes "good writing." These findings challenge discourse about AI's creative limitations and raise fundamental questions about the future of creative labor.
comment: Proceedings of CHI 2026 Conference (To Appear)
Code over Words: Overcoming Semantic Inertia via Code-Grounded Reasoning
LLMs struggle with Semantic Inertia: the inability to inhibit pre-trained priors (e.g., "Lava is Dangerous") when dynamic, in-context rules contradict them. We probe this phenomenon using Baba Is You, where physical laws are mutable text rules, enabling precise evaluation of models' ability to override learned priors when rules change. We quantatively observe that larger models can exhibit inverse scaling: they perform worse than smaller models when natural language reasoning requires suppressing pre-trained associations (e.g., accepting "Lava is Safe"). Our analysis attributes this to natural language encoding, which entangles descriptive semantics and logical rules, leading to persistent hallucinations of familiar physics despite explicit contradictory rules. Here we show that representing dynamics as executable code, rather than descriptive text, reverses this trend and enables effective prior inhibition. We introduce Code-Grounded Vistas (LCV), which fine-tunes models on counterfactual pairs and identifies states with contradictory rules, thereby forcing attention to logical constraints rather than visual semantics. This training-time approach outperforms expensive inference-time search methods in both efficiency and accuracy. Our results demonstrate that representation fundamentally determines whether scaling improves or impairs contextual reasoning. This challenges the assumption that larger models are universally better, with implications for domains that require dynamic overriding of learned priors.
When Domain Pretraining Interferes with Instruction Alignment: An Empirical Study of Adapter Merging in Medical LLMs
Large language models (LLMs) show strong general capability but often struggle with medical terminology precision and safety-critical instruction following. We present a case study for adapter interference in safety-critical domains using a 14B-parameter base model through a two-stage LoRA pipeline: (1) domain-adaptive pre-training (PT) to inject broad medical knowledge via continued pre-training (DAPT), and (2) supervised fine-tuning (SFT) to align the model with medical question-answering behaviors through instruction-style data. To balance instruction-following ability and domain knowledge retention, we propose Weighted Adapter Merging, linearly combining SFT and PT adapters before exporting a merged base-model checkpoint. On a held-out medical validation set (F5/F6), the merged model achieves BLEU-4 = 16.38, ROUGE-1 = 20.42, ROUGE-2 = 4.60, and ROUGE-L = 11.54 under a practical decoding configuration. We further analyze decoding sensitivity and training stability with loss curves and controlled decoding comparisons.
Analytic Incremental Learning For Sound Source Localization With Imbalance Rectification
Sound source localization (SSL) demonstrates remarkable results in controlled settings but struggles in real-world deployment due to dual imbalance challenges: intra-task imbalance arising from long-tailed direction-of-arrival (DoA) distributions, and inter-task imbalance induced by cross-task skews and overlaps. These often lead to catastrophic forgetting, significantly degrading the localization accuracy. To mitigate these issues, we propose a unified framework with two key innovations. Specifically, we design a GCC-PHAT-based data augmentation (GDA) method that leverages peak characteristics to alleviate intra-task distribution skews. We also propose an Analytic dynamic imbalance rectifier (ADIR) with task-adaption regularization, which enables analytic updates that adapt to inter-task dynamics. On the SSLR benchmark, our proposal achieves state-of-the-art (SoTA) results of 89.0% accuracy, 5.3° mean absolute error, and 1.6 backward transfer, demonstrating robustness to evolving imbalances without exemplar storage.
comment: Accepted by ICASSP26
MultiVis-Agent: A Multi-Agent Framework with Logic Rules for Reliable and Comprehensive Cross-Modal Data Visualization
Real-world visualization tasks involve complex, multi-modal requirements that extend beyond simple text-to-chart generation, requiring reference images, code examples, and iterative refinement. Current systems exhibit fundamental limitations: single-modality input, one-shot generation, and rigid workflows. While LLM-based approaches show potential for these complex requirements, they introduce reliability challenges including catastrophic failures and infinite loop susceptibility. To address this gap, we propose MultiVis-Agent, a logic rule-enhanced multi-agent framework for reliable multi-modal and multi-scenario visualization generation. Our approach introduces a four-layer logic rule framework that provides mathematical guarantees for system reliability while maintaining flexibility. Unlike traditional rule-based systems, our logic rules are mathematical constraints that guide LLM reasoning rather than replacing it. We formalize the MultiVis task spanning four scenarios from basic generation to iterative refinement, and develop MultiVis-Bench, a benchmark with over 1,000 cases for multi-modal visualization evaluation. Extensive experiments demonstrate that our approach achieves 75.63% visualization score on challenging tasks, significantly outperforming baselines (57.54-62.79%), with task completion rates of 99.58% and code execution success rates of 94.56% (vs. 74.48% and 65.10% without logic rules), successfully addressing both complexity and reliability challenges in automated visualization generation.
comment: Accepted to SIGMOD 2026
A Generative AI-Driven Reliability Layer for Action-Oriented Disaster Resilience
As climate-related hazards intensify, conventional early warning systems (EWS) disseminate alerts rapidly but often fail to trigger timely protective actions, leading to preventable losses and inequities. We introduce Climate RADAR (Risk-Aware, Dynamic, and Action Recommendation system), a generative AI-based reliability layer that reframes disaster communication from alerts delivered to actions executed. It integrates meteorological, hydrological, vulnerability, and social data into a composite risk index and employs guardrail-embedded large language models (LLMs) to deliver personalized recommendations across citizen, volunteer, and municipal interfaces. Evaluation through simulations, user studies, and a municipal pilot shows improved outcomes, including higher protective action execution, reduced response latency, and increased usability and trust. By combining predictive analytics, behavioral science, and responsible AI, Climate RADAR advances people-centered, transparent, and equitable early warning systems, offering practical pathways toward compliance-ready disaster resilience infrastructures.
comment: 19 pages
Calibrating Beyond English: Language Diversity for Better Quantized Multilingual LLM
Quantization is an effective technique for reducing the storage footprint and computational costs of Large Language Models (LLMs), but it often results in performance degradation. Existing post-training quantization methods typically use small, English-only calibration sets; however, their impact on multilingual models remains underexplored. We systematically evaluate eight calibration settings (five single-language and three multilingual mixes) on two quantizers (GPTQ, AWQ) on data from 10 languages. Our findings reveal a consistent trend: non-English and multilingual calibration sets significantly improve perplexity compared to English-only baselines. Specifically, we observe notable average perplexity gains across both quantizers on Llama3.1 8B and Qwen2.5 7B, with multilingual mixes achieving the largest overall reductions of up to 3.52 points in perplexity. Furthermore, our analysis indicates that tailoring calibration sets to the evaluation language yields the largest improvements for individual languages, underscoring the importance of linguistic alignment. We also identify specific failure cases where certain language-quantizer combinations degrade performance, which we trace to differences in activation range distributions across languages. These results highlight that static one-size-fits-all calibration is suboptimal and that tailoring calibration data, both in language and diversity, plays a crucial role in robustly quantizing multilingual LLMs.
comment: Accepted to EACL 2026 Main Conference
Temp-R1: A Unified Autonomous Agent for Complex Temporal KGQA via Reverse Curriculum Reinforcement Learning
Temporal Knowledge Graph Question Answering (TKGQA) is inherently challenging, as it requires sophisticated reasoning over dynamic facts with multi-hop dependencies and complex temporal constraints. Existing methods rely on fixed workflows and expensive closed-source APIs, limiting flexibility and scalability. We propose Temp-R1, the first autonomous end-to-end agent for TKGQA trained through reinforcement learning. To address cognitive overload in single-action reasoning, we expand the action space with specialized internal actions alongside external action. To prevent shortcut learning on simple questions, we introduce reverse curriculum learning that trains on difficult questions first, forcing the development of sophisticated reasoning before transferring to easier cases. Our 8B-parameter Temp-R1 achieves state-of-the-art performance on MultiTQ and TimelineKGQA, improving 19.8% over strong baselines on complex questions. Our work establishes a new paradigm for autonomous temporal reasoning agents. Our code will be publicly available soon at https://github.com/zjukg/Temp-R1.
comment: Work in progress
TriPlay-RL: Tri-Role Self-Play Reinforcement Learning for LLM Safety Alignment
In recent years, safety risks associated with large language models have become increasingly prominent, highlighting the urgent need to mitigate the generation of toxic and harmful content. The mainstream paradigm for LLM safety alignment typically adopts a collaborative framework involving three roles: an attacker for adversarial prompt generation, a defender for safety defense, and an evaluator for response assessment. In this paper, we propose a closed-loop reinforcement learning framework called TriPlay-RL that enables iterative and co-improving collaboration among three roles with near-zero manual annotation. Experimental results show that the attacker preserves high output diversity while achieving a 20%-50% improvement in adversarial effectiveness; the defender attains 10%-30% gains in safety performance without degrading general reasoning capability; and the evaluator continuously refines its fine-grained judgment ability through iterations, accurately distinguishing unsafe responses, simple refusals, and useful guidance. Overall, our framework establishes an efficient and scalable paradigm for LLM safety alignment, enabling continuous co-evolution within a unified learning loop.
Think-Augmented Function Calling: Improving LLM Parameter Accuracy Through Embedded Reasoning
Large language models (LLMs) have demonstrated remarkable capabilities in function calling for autonomous agents, yet current mechanisms lack explicit reasoning transparency during parameter generation, particularly for complex functions with interdependent parameters. While existing approaches like chain-of-thought prompting operate at the agent level, they fail to provide fine-grained reasoning guidance for individual function parameters. To address these limitations, we propose Think-Augmented Function Calling (TAFC), a novel framework that enhances function calling accuracy through explicit reasoning at both function and parameter levels. Our method introduces a universal "think" parameter augmentation that enables models to articulate their decision-making process, with dynamic optimization for parameter descriptions to improve reasoning quality. For complex parameters, TAFC automatically triggers granular reasoning based on complexity scoring, ensuring appropriate justification for critical decisions. Additionally, we propose reasoning-guided optimization to align generated reasoning with human expectations. TAFC requires no architectural modifications to existing LLMs while maintaining full API compatibility. Evaluation on ToolBench across proprietary and open-source models demonstrates significant improvements in parameter generation accuracy and reasoning coherence for multi-parameter functions, while providing enhanced interpretability for debugging AI agent behaviors.
What Do Learned Models Measure?
In many scientific and data-driven applications, machine learning models are increasingly used as measurement instruments, rather than merely as predictors of predefined labels. When the measurement function is learned from data, the mapping from observations to quantities is determined implicitly by the training distribution and inductive biases, allowing multiple inequivalent mappings to satisfy standard predictive evaluation criteria. We formalize learned measurement functions as a distinct focus of evaluation and introduce measurement stability, a property capturing invariance of the measured quantity across admissible realizations of the learning process and across contexts. We show that standard evaluation criteria in machine learning, including generalization error, calibration, and robustness, do not guarantee measurement stability. Through a real-world case study, we show that models with comparable predictive performance can implement systematically inequivalent measurement functions, with distribution shift providing a concrete illustration of this failure. Taken together, our results highlight a limitation of existing evaluation frameworks in settings where learned model outputs are identified as measurements, motivating the need for an additional evaluative dimension.
Neural Network Approximation: A View from Polytope Decomposition
Universal approximation theory offers a foundational framework to verify neural network expressiveness, enabling principled utilization in real-world applications. However, most existing theoretical constructions are established by uniformly dividing the input space into tiny hypercubes without considering the local regularity of the target function. In this work, we investigate the universal approximation capabilities of ReLU networks from a view of polytope decomposition, which offers a more realistic and task-oriented approach compared to current methods. To achieve this, we develop an explicit kernel polynomial method to derive an universal approximation of continuous functions, which is characterized not only by the refined Totik-Ditzian-type modulus of continuity, but also by polytopical domain decomposition. Then, a ReLU network is constructed to approximate the kernel polynomial in each subdomain separately. Furthermore, we find that polytope decomposition makes our approximation more efficient and flexible than existing methods in many cases, especially near singular points of the objective function. Lastly, we extend our approach to analytic functions to reach a higher approximation rate.
Beyond Retention: Orchestrating Structural Safety and Plasticity in Continual Learning for LLMs
Continual learning in Large Language Models (LLMs) faces the critical challenge of balancing stability (retaining old knowledge) and plasticity (learning new tasks). While Experience Replay (ER) is a standard countermeasure against catastrophic forgetting, its impact across diverse capabilities remains underexplored. In this work, we uncover a critical dichotomy in ER's behavior: while it induces positive backward transfer on robust, unstructured tasks (e.g., boosting performance on previous NLP classification tasks through repeated rehearsal), it causes severe negative transfer on fragile, structured domains like code generation (e.g., a significant relative drop in coding accuracy). This reveals that ER trades structural integrity for broad consolidation. To address this dilemma, we propose \textbf{Orthogonal Subspace Wake-up (OSW)}. OSW identifies essential parameter subspaces of previous tasks via a brief "wake-up" phase and enforces orthogonal updates for new tasks, providing a mathematically grounded "safety guarantee" for established knowledge structures. Empirical results across a diverse four-task sequence demonstrate that OSW uniquely succeeds in preserving fragile coding abilities where Replay fails, while simultaneously maintaining high plasticity for novel tasks. Our findings emphasize the necessity of evaluating structural safety alongside average retention in LLM continual learning.
BoRP: Bootstrapped Regression Probing for Scalable and Human-Aligned LLM Evaluation
Accurate evaluation of user satisfaction is critical for iterative development of conversational AI. However, for open-ended assistants, traditional A/B testing lacks reliable metrics: explicit feedback is sparse, while implicit metrics are ambiguous. To bridge this gap, we introduce BoRP (Bootstrapped Regression Probing), a scalable framework for high-fidelity satisfaction evaluation. Unlike generative approaches, BoRP leverages the geometric properties of LLM latent space. It employs a polarization-index-based bootstrapping mechanism to automate rubric generation and utilizes Partial Least Squares (PLS) to map hidden states to continuous scores. Experiments on industrial datasets show that BoRP (Qwen3-8B/14B) significantly outperforms generative baselines (even Qwen3-Max) in alignment with human judgments. Furthermore, BoRP reduces inference costs by orders of magnitude, enabling full-scale monitoring and highly sensitive A/B testing via CUPED.
comment: This is a pre-print
Co-PLNet: A Collaborative Point-Line Network for Prompt-Guided Wireframe Parsing
Wireframe parsing aims to recover line segments and their junctions to form a structured geometric representation useful for downstream tasks such as Simultaneous Localization and Mapping (SLAM). Existing methods predict lines and junctions separately and reconcile them post-hoc, causing mismatches and reduced robustness. We present Co-PLNet, a point-line collaborative framework that exchanges spatial cues between the two tasks, where early detections are converted into spatial prompts via a Point-Line Prompt Encoder (PLP-Encoder), which encodes geometric attributes into compact and spatially aligned maps. A Cross-Guidance Line Decoder (CGL-Decoder) then refines predictions with sparse attention conditioned on complementary prompts, enforcing point-line consistency and efficiency. Experiments on Wireframe and YorkUrban show consistent improvements in accuracy and robustness, together with favorable real-time efficiency, demonstrating our effectiveness for structured geometry perception.
A multimodal vision foundation model for generalizable knee pathology
Musculoskeletal disorders represent a leading cause of global disability, creating an urgent demand for precise interpretation of medical imaging. Current artificial intelligence (AI) approaches in orthopedics predominantly rely on task-specific, supervised learning paradigms. These methods are inherently fragmented, require extensive annotated datasets, and often lack generalizability across different modalities and clinical scenarios. The development of foundation models in this field has been constrained by the scarcity of large-scale, curated, and open-source musculoskeletal datasets. To address these challenges, we introduce OrthoFoundation, a multimodal vision foundation model optimized for musculoskeletal pathology. We constructed a pre-training dataset of 1.2 million unlabeled knee X-ray and MRI images from internal and public databases. Utilizing a Dinov3 backbone, the model was trained via self-supervised contrastive learning to capture robust radiological representations. OrthoFoundation achieves state-of-the-art (SOTA) performance across 14 downstream tasks. It attained superior accuracy in X-ray osteoarthritis diagnosis and ranked first in MRI structural injury detection. The model demonstrated remarkable label efficiency, matching supervised baselines using only 50% of labeled data. Furthermore, despite being pre-trained on knee images, OrthoFoundation exhibited exceptional cross-anatomy generalization to the hip, shoulder, and ankle. OrthoFoundation represents a significant advancement toward general-purpose AI for musculoskeletal imaging. By learning fundamental, joint-agnostic radiological semantics from large-scale multimodal data, it overcomes the limitations of conventional models, which provides a robust framework for reducing annotation burdens and enhancing diagnostic accuracy in clinical practice.
TAM-Eval: Evaluating LLMs for Automated Unit Test Maintenance
While Large Language Models (LLMs) have shown promise in software engineering, their application to unit testing remains largely confined to isolated test generation or oracle prediction, neglecting the broader challenge of test suite maintenance. We introduce TAM-Eval (Test Automated Maintenance Evaluation), a framework and benchmark designed to evaluate model performance across three core test maintenance scenarios: creation, repair, and updating of test suites. Unlike prior work limited to function-level tasks, TAM-Eval operates at the test file level, while maintaining access to full repository context during isolated evaluation, better reflecting real-world maintenance workflows. Our benchmark comprises 1,539 automatically extracted and validated scenarios from Python, Java, and Go projects. TAM-Eval supports system-agnostic evaluation of both raw LLMs and agentic workflows, using a reference-free protocol based on test suite pass rate, code coverage, and mutation testing. Empirical results indicate that state-of-the-art LLMs have limited capabilities in realistic test maintenance processes and yield only marginal improvements in test effectiveness. We release TAM-Eval as an open-source framework to support future research in automated software testing. Our data and code are publicly available at https://github.com/trndcenter/TAM-Eval.
comment: Accepted for publication at the 9th Workshop on Validation, Analysis and Evolution of Software Tests (VST 2026), co-located with the the 33rd IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER 2026)
Generative AI in Saudi Arabia: A National Survey of Adoption, Risks, and Public Perceptions
Generative Artificial Intelligence (GenAI) is rapidly becoming embedded in Saudi Arabia's digital transformation under Vision 2030, yet public awareness, adoption, and concerns surrounding these tools remain underexplored. This study provides an early snapshot of GenAI engagement among Saudi nationals. Using a nationwide survey of 330 participants across regions, age groups, and employment sectors, we examine seven dimensions of GenAI use: awareness and understanding, adoption patterns, perceived impacts, training needs, risks and barriers, data-sharing behaviors, and future expectations. Findings show that 93% of respondents actively use GenAI primarily for text-based tasks, while more advanced uses such as programming or multimodal generation are less common. Despite the prevalence of use, overall awareness and conceptual understanding remain uneven, with many reporting limited technical knowledge. Participants recognize GenAI's benefits for productivity, work quality, and understanding complex information, yet caution that sustained reliance may undermine critical thinking and key professional skills. Trust in AI-generated outputs remains cautious, with widespread concerns about privacy, misinformation, and ethical misuse, including potential job displacement. Respondents show strong interest in structured GenAI training that combines foundational skills, domain-specific applications, and clear guidance on privacy, ethics, and responsible use. These results establish a baseline for GenAI engagement in Saudi Arabia and highlight priorities for policymakers and developers: expanding AI literacy, ensuring culturally and linguistically aligned GenAI solutions, and strengthening frameworks for privacy and responsible deployment.
Rethinking Cross-Modal Fine-Tuning: Optimizing the Interaction between Feature Alignment and Target Fitting AISTATS 20226
Adapting pre-trained models to unseen feature modalities has become increasingly important due to the growing need for cross-disciplinary knowledge integration.~A key challenge here is how to align the representation of new modalities with the most relevant parts of the pre-trained model's representation space to enable accurate knowledge transfer.~This requires combining feature alignment with target fine-tuning, but uncalibrated combinations can exacerbate misalignment between the source and target feature-label structures and reduce target generalization.~Existing work however lacks a theoretical understanding of this critical interaction between feature alignment and target fitting.~To bridge this gap, we develop a principled framework that establishes a provable generalization bound on the target error, which explains the interaction between feature alignment and target fitting through a novel concept of feature-label distortion.~This bound offers actionable insights into how this interaction should be optimized for practical algorithm design. The resulting approach achieves significantly improved performance over state-of-the-art methods across a wide range of benchmark datasets.
comment: Accepted AISTATS 20226. Preprint version
Yunjue Agent Tech Report: A Fully Reproducible, Zero-Start In-Situ Self-Evolving Agent System for Open-Ended Tasks
Conventional agent systems often struggle in open-ended environments where task distributions continuously drift and external supervision is scarce. Their reliance on static toolsets or offline training lags behind these dynamics, leaving the system's capability boundaries rigid and unknown. To address this, we propose the In-Situ Self-Evolving paradigm. This approach treats sequential task interactions as a continuous stream of experience, enabling the system to distill short-term execution feedback into long-term, reusable capabilities without access to ground-truth labels. Within this framework, we identify tool evolution as the critical pathway for capability expansion, which provides verifiable, binary feedback signals. Within this framework, we develop Yunjue Agent, a system that iteratively synthesizes, optimizes, and reuses tools to navigate emerging challenges. To optimize evolutionary efficiency, we further introduce a Parallel Batch Evolution strategy. Empirical evaluations across five diverse benchmarks under a zero-start setting demonstrate significant performance gains over proprietary baselines. Additionally, complementary warm-start evaluations confirm that the accumulated general knowledge can be seamlessly transferred to novel domains. Finally, we propose a novel metric to monitor evolution convergence, serving as a function analogous to training loss in conventional optimization. We open-source our codebase, system traces, and evolved tools to facilitate future research in resilient, self-evolving intelligence.
ShopSimulator: Evaluating and Exploring RL-Driven LLM Agent for Shopping Assistants
Large language model (LLM)-based agents are increasingly deployed in e-commerce shopping. To perform thorough, user-tailored product searches, agents should interpret personal preferences, engage in multi-turn dialogues, and ultimately retrieve and discriminate among highly similar products. However, existing research has yet to provide a unified simulation environment that consistently captures all of these aspects, and always focuses solely on evaluation benchmarks without training support. In this paper, we introduce ShopSimulator, a large-scale and challenging Chinese shopping environment. Leveraging ShopSimulator, we evaluate LLMs across diverse scenarios, finding that even the best-performing models achieve less than 40% full-success rate. Error analysis reveals that agents struggle with deep search and product selection in long trajectories, fail to balance the use of personalization cues, and to effectively engage with users. Further training exploration provides practical guidance for overcoming these weaknesses, with the combination of supervised fine-tuning (SFT) and reinforcement learning (RL) yielding significant performance improvements. Code and data will be released at https://github.com/ShopAgent-Team/ShopSimulator.
PaperTok: Exploring the Use of Generative AI for Creating Short-form Videos for Research Communication
The dissemination of scholarly research is critical, yet researchers often lack the time and skills to create engaging content for popular media such as short-form videos. To address this gap, we explore the use of generative AI to help researchers transform their academic papers into accessible video content. Informed by a formative study with science communicators and content creators (N=8), we designed PaperTok, an end-to-end system that automates the initial creative labor by generating script options and corresponding audiovisual content from a source paper. Researchers can then refine based on their preferences with further prompting. A mixed-methods user study (N=18) and crowdsourced evaluation (N=100) demonstrate that PaperTok's workflow can help researchers create engaging and informative short-form videos. We also identified the need for more fine-grained controls in the creation process. To this end, we offer implications for future generative tools that support science outreach.
Paying Less Generalization Tax: A Cross-Domain Generalization Study of RL Training for LLM Agents
Generalist LLM agents are often post-trained on a narrow set of environments but deployed across far broader, unseen domains. In this work, we investigate the challenge of agentic post-training when the eventual test domains are unknown. Specifically, we analyze which properties of reinforcement learning (RL) environments and modeling choices have the greatest influence on out-of-domain performance. First, we identify two environment axes that strongly correlate with cross-domain generalization: (i) state information richness, i.e., the amount of information for the agent to process from the state, and (ii) planning complexity, estimated via goal reachability and trajectory length under a base policy. Notably, domain realism and text-level similarity are not the primary factors; for instance, the simple grid-world domain Sokoban leads to even stronger generalization in SciWorld than the more realistic ALFWorld. Motivated by these findings, we further show that increasing state information richness alone can already effectively improve cross-domain robustness. We propose a randomization technique, which is low-overhead and broadly applicable: add small amounts of distractive goal-irrelevant features to the state to make it richer without altering the task. Beyond environment-side properties, we also examine several modeling choices: (a) SFT warmup or mid-training helps prevent catastrophic forgetting during RL but undermines generalization to domains that are not included in the mid-training datamix; and (b) turning on step-by-step thinking during RL, while not always improving in-domain performance, plays a crucial role in preserving generalization.
PaperSearchQA: Learning to Search and Reason over Scientific Papers with RLVR
Search agents are language models (LMs) that reason and search knowledge bases (or the web) to answer questions; recent methods supervise only the final answer accuracy using reinforcement learning with verifiable rewards (RLVR). Most RLVR search agents tackle general-domain QA, which limits their relevance to technical AI systems in science, engineering, and medicine. In this work we propose training agents to search and reason over scientific papers -- this tests technical question-answering, it is directly relevant to real scientists, and the capabilities will be crucial to future AI Scientist systems. Concretely, we release a search corpus of 16 million biomedical paper abstracts and construct a challenging factoid QA dataset called PaperSearchQA with 60k samples answerable from the corpus, along with benchmarks. We train search agents in this environment to outperform non-RL retrieval baselines; we also perform further quantitative analysis and observe interesting agent behaviors like planning, reasoning, and self-verification. Our corpus, datasets, and benchmarks are usable with the popular Search-R1 codebase for RLVR training and released on https://huggingface.co/collections/jmhb/papersearchqa. Finally, our data creation methods are scalable and easily extendable to other scientific domains.
comment: EACL 2026
SAGE: Steerable Agentic Data Generation for Deep Search with Execution Feedback
Deep search agents, which aim to answer complex questions requiring reasoning across multiple documents, can significantly speed up the information-seeking process. Collecting human annotations for this application is prohibitively expensive due to long and complex exploration trajectories. We propose an agentic pipeline that automatically generates high quality, difficulty-controlled deep search question-answer pairs for a given corpus and a target difficulty level. Our pipeline, SAGE, consists of a data generator which proposes QA pairs and a search agent which attempts to solve the generated question and provide execution feedback for the data generator. The two components interact over multiple rounds to iteratively refine the question-answer pairs until they satisfy the target difficulty level. Our intrinsic evaluation shows SAGE generates questions that require diverse reasoning strategies, while significantly increases the correctness and difficulty of the generated data. Our extrinsic evaluation demonstrates up to 23% relative performance gain on popular deep search benchmarks by training deep search agents with our synthetic data. Additional experiments show that agents trained on our data can adapt from fixed-corpus retrieval to Google Search at inference time, without further training.
HeterCSI: Channel-Adaptive Heterogeneous CSI Pretraining Framework for Generalized Wireless Foundation Models
Wireless foundation models promise transformative capabilities for channel state information (CSI) processing across diverse 6G network applications, yet face fundamental challenges due to the inherent dual heterogeneity of CSI across both scale and scenario dimensions. However, current pretraining approaches either constrain inputs to fixed dimensions or isolate training by scale, limiting the generalization and scalability of wireless foundation models. In this paper, we propose HeterCSI, a channel-adaptive pretraining framework that reconciles training efficiency with robust cross-scenario generalization via a new understanding of gradient dynamics in heterogeneous CSI pretraining. Our key insight reveals that CSI scale heterogeneity primarily causes destructive gradient interference, while scenario diversity actually promotes constructive gradient alignment when properly managed. Specifically, we formulate heterogeneous CSI batch construction as a partitioning optimization problem that minimizes zero-padding overhead while preserving scenario diversity. To solve this, we develop a scale-aware adaptive batching strategy that aligns CSI samples of similar scales, and design a double-masking mechanism to isolate valid signals from padding artifacts. Extensive experiments on 12 datasets demonstrate that HeterCSI establishes a generalized foundation model without scenario-specific finetuning, achieving superior average performance over full-shot baselines. Compared to the state-of-the-art zero-shot benchmark WiFo, it reduces NMSE by 7.19 dB, 4.08 dB, and 5.27 dB for CSI reconstruction, time-domain, and frequency-domain prediction, respectively. The proposed HeterCSI framework also reduces training latency by 53% compared to existing approaches while improving generalization performance by 1.53 dB on average.
comment: 13 pages, 8 figures
GAIA: A Data Flywheel System for Training GUI Test-Time Scaling Critic Models
While Large Vision-Language Models (LVLMs) have significantly advanced GUI agents' capabilities in parsing textual instructions, interpreting screen content, and executing tasks, a critical challenge persists: the irreversibility of agent operations, where a single erroneous action can trigger catastrophic deviations. To address this, we propose the GUI Action Critic's Data Flywheel System (GAIA), a training framework that enables the models to have iterative critic capabilities, which are used to improve the Test-Time Scaling (TTS) of basic GUI agents' performance. Specifically, we train an Intuitive Critic Model (ICM) using positive and negative action examples from a base agent first. This critic evaluates the immediate correctness of the agent's intended actions, thereby selecting operations with higher success probability. Then, the initial critic guides agent actions to collect refined positive/negative samples, initiating the self-improving cycle. The augmented data then trains a second-round critic with enhanced discernment capability. We conduct experiments on various datasets and demonstrate that the proposed ICM can improve the test-time performance of various closed-source and open-source models, and the performance can be gradually improved as the data is recycled. The code and dataset will be publicly released.
\textsc{NaVIDA}: Vision-Language Navigation with Inverse Dynamics Augmentation
Vision-and-Language Navigation (VLN) requires agents to interpret natural language instructions and act coherently in visually rich environments. However, most existing methods rely on reactive state-action mappings without explicitly modeling how actions causally transform subsequent visual observations. Lacking such vision-action causality, agents cannot anticipate the visual changes induced by its own actions, leading to unstable behaviors, weak generalization, and cumulative error along trajectory. To address these issues, we introduce \textsc{NaVIDA} (\textbf{Nav}igation with \textbf{I}nverse \textbf{D}ynamics \textbf{A}ugmentation), a unified VLN framework that couples policy learning with action-grounded visual dynamics and adaptive execution. \textsc{NaVIDA} augments training with chunk-based inverse-dynamics supervision to learn causal relationship between visual changes and corresponding actions. To structure this supervision and extend the effective planning range, \textsc{NaVIDA} employs hierarchical probabilistic action chunking (HPAC), which organizes trajectories into multi-step chunks and provides discriminative, longer-range visual-change cues. To further curb error accumulation and stabilize behavior at inference, an entropy-guided mechanism adaptively sets the execution horizon of action chunks. Extensive experiments show that \textsc{NaVIDA} achieves superior navigation performance compared to state-of-the-art methods with fewer parameters (3B vs. 8B). Real-world robot evaluations further validate the practical feasibility and effectiveness of our approach. Code and data will be available upon acceptance.
comment: 18 pages, 14 figures
VIBEVOICE-ASR Technical Report
This report presents VibeVoice-ASR, a general-purpose speech understanding framework built upon VibeVoice, designed to address the persistent challenges of context fragmentation and multi-speaker complexity in long-form audio (e.g., meetings, podcasts) that remain despite recent advancements in short-form speech recognition. Unlike traditional pipelined approaches that rely on audio chunking, VibeVoice-ASRsupports single-pass processing for up to 60 minutes of audio. It unifies Automatic Speech Recognition, Speaker Diarization, and Timestamping into a single end-to-end generation task. In addition, VibeVoice-ASR supports over 50 languages, requires no explicit language setting, and natively handles code-switching within and across utterances. Furthermore, we introduce a prompt-based context injection mechanism that allows users to supply customized conetxt, significantly improving accuracy on domain-specific terminology and polyphonic character disambiguation.
Success Conditioning as Policy Improvement: The Optimization Problem Solved by Imitating Success
A widely used technique for improving policies is success conditioning, in which one collects trajectories, identifies those that achieve a desired outcome, and updates the policy to imitate the actions taken along successful trajectories. This principle appears under many names -- rejection sampling with SFT, goal-conditioned RL, Decision Transformers -- yet what optimization problem it solves, if any, has remained unclear. We prove that success conditioning exactly solves a trust-region optimization problem, maximizing policy improvement subject to a $χ^2$ divergence constraint whose radius is determined automatically by the data. This yields an identity: relative policy improvement, the magnitude of policy change, and a quantity we call action-influence -- measuring how random variation in action choices affects success rates -- are exactly equal at every state. Success conditioning thus emerges as a conservative improvement operator. Exact success conditioning cannot degrade performance or induce dangerous distribution shift, but when it fails, it does so observably, by hardly changing the policy at all. We apply our theory to the common practice of return thresholding, showing this can amplify improvement, but at the cost of potential misalignment with the true objective.
Beyond Pairwise Comparisons: A Distributional Test of Distinctiveness for Machine-Generated Works in Intellectual Property Law
Key doctrines, including novelty (patent), originality (copyright), and distinctiveness (trademark), turn on a shared empirical question: whether a body of work is meaningfully distinct from a relevant reference class. Yet analyses typically operationalize this set-level inquiry using item-level evidence: pairwise comparisons among exemplars. That unit-of-analysis mismatch may be manageable for finite corpora of human-created works, where it can be bridged by ad hoc aggregations. But it becomes acute for machine-generated works, where the object of evaluation is not a fixed set of works but a generative process with an effectively unbounded output space. We propose a distributional alternative: a two-sample test based on maximum mean discrepancy computed on semantic embeddings to determine if two creative processes-whether human or machine-produce statistically distinguishable output distributions. The test requires no task-specific training-obviating the need for discovery of proprietary training data to characterize the generative process-and is sample-efficient, often detecting differences with as few as 5-10 images and 7-20 texts. We validate the framework across three domains: handwritten digits (controlled images), patent abstracts (text), and AI-generated art (real-world images). We reveal a perceptual paradox: even when human evaluators distinguish AI outputs from human-created art with only about 58% accuracy, our method detects distributional distinctiveness. Our results present evidence contrary to the view that generative models act as mere regurgitators of training data. Rather than producing outputs statistically indistinguishable from a human baseline-as simple regurgitation would predict-they produce outputs that are semantically human-like yet stochastically distinct, suggesting their dominant function is as a semantic interpolator within a learned latent space.
Explaining Synergistic Effects in Social Recommendations
In social recommenders, the inherent nonlinearity and opacity of synergistic effects across multiple social networks hinders users from understanding how diverse information is leveraged for recommendations, consequently diminishing explainability. However, existing explainers can only identify the topological information in social networks that significantly influences recommendations, failing to further explain the synergistic effects among this information. Inspired by existing findings that synergistic effects enhance mutual information between inputs and predictions to generate information gain, we extend this discovery to graph data. We quantify graph information gain to identify subgraphs embodying synergistic effects. Based on the theoretical insights, we propose SemExplainer, which explains synergistic effects by identifying subgraphs that embody them. SemExplainer first extracts explanatory subgraphs from multi-view social networks to generate preliminary importance explanations for recommendations. A conditional entropy optimization strategy to maximize information gain is developed, thereby further identifying subgraphs that embody synergistic effects from explanatory subgraphs. Finally, SemExplainer searches for paths from users to recommended items within the synergistic subgraphs to generate explanations for the recommendations. Extensive experiments on three datasets demonstrate the superiority of SemExplainer over baseline methods, providing superior explanations of synergistic effects.
DeepPlanning: Benchmarking Long-Horizon Agentic Planning with Verifiable Constraints
While agent evaluation has shifted toward long-horizon tasks, most benchmarks still emphasize local, step-level reasoning rather than the global constrained optimization (e.g., time and financial budgets) that demands genuine planning ability. Meanwhile, existing LLM planning benchmarks underrepresent the active information gathering and fine-grained local constraints typical of real-world settings. To address this, we introduce DeepPlanning, a challenging benchmark for practical long-horizon agent planning. It features multi-day travel planning and multi-product shopping tasks that require proactive information acquisition, local constrained reasoning, and global constrained optimization. Evaluations on DeepPlanning show that even frontier agentic LLMs struggle with these problems, highlighting the importance of reliable explicit reasoning patterns and parallel tool use for achieving better effectiveness-efficiency trade-offs. Error analysis further points to promising directions for improving agentic LLMs over long planning horizons. We open-source the code and data to support future research.
RareAlert: Aligning heterogeneous large language model reasoning for early rare disease risk screening
Missed and delayed diagnosis remains a major challenge in rare disease care. At the initial clinical encounters, physicians assess rare disease risk using only limited information under high uncertainty. When high-risk patients are not recognised at this stage, targeted diagnostic testing is often not initiated, resulting in missed diagnosis. Existing primary care triage processes are structurally insufficient to reliably identify patients with rare diseases at initial clinical presentation and universal screening is needed to reduce diagnostic delay. Here we present RareAlert, an early screening system which predict patient-level rare disease risk from routinely available primary-visit information. RareAlert integrates reasoning generated by ten LLMs, calibrates and weights these signals using machine learning, and distils the aligned reasoning into a single locally deployable model. To develop and evaluate RareAlert, we curated RareBench, a real-world dataset of 158,666 cases covering 33 Orphanet disease categories and more than 7,000 rare conditions, including both rare and non-rare presentations. The results showed that rare disease identification can be reconceptualised as a universal uncertainty resolution process applied to the general patient population. On an independent test set, RareAlert, a Qwen3-4B based model trained with calibrated reasoning signals, achieved an AUC of 0.917, outperforming the best machine learning ensemble and all evaluated LLMs, including GPT-5, DeepSeek-R1, Claude-3.7-Sonnet, o3-mini, Gemini-2.5-Pro, and Qwen3-235B. These findings demonstrate the diversity in LLM medical reasoning and the effectiveness of aligning such reasoning in highly uncertain clinical tasks. By incorporating calibrated reasoning into a single model, RareAlert enables accurate, privacy-preserving, and scalable rare disease risk screening suitable for large-scale local deployment.
comment: 28 page, 3 figures
RouteMoA: Dynamic Routing without Pre-Inference Boosts Efficient Mixture-of-Agents
Mixture-of-Agents (MoA) improves LLM performance through layered collaboration, but its dense topology raises costs and latency. Existing methods employ LLM judges to filter responses, yet still require all models to perform inference before judging, failing to cut costs effectively. They also lack model selection criteria and struggle with large model pools, where full inference is costly and can exceed context limits. To address this, we propose RouteMoA, an efficient mixture-of-agents framework with dynamic routing. It employs a lightweight scorer to perform initial screening by predicting coarse-grained performance from the query, narrowing candidates to a high-potential subset without inference. A mixture of judges then refines these scores through lightweight self- and cross-assessment based on existing model outputs, providing posterior correction without additional inference. Finally, a model ranking mechanism selects models by balancing performance, cost, and latency. RouteMoA outperforms MoA across varying tasks and model pool sizes, reducing cost by 89.8% and latency by 63.6% in the large-scale model pool.
Typhoon-S: Minimal Open Post-Training for Sovereign Large Language Models
Large language models (LLMs) have progressed rapidly; however, most state-of-the-art models are trained and evaluated primarily in high-resource languages such as English and Chinese, and are often developed by a small number of organizations with access to large-scale compute and data. This gatekeeping creates a practical barrier for sovereign settings in which a regional- or national-scale institution or domain owner must retain control and understanding of model weights, training data, and deployment while operating under limited resources and strict transparency constraints. To this end, we identify two core requirements: (1) adoptability, the ability to transform a base model into a general-purpose assistant, and (2) sovereign capability, the ability to perform high-stakes, region-specific tasks (e.g., legal reasoning in local languages and cultural knowledge). We investigate whether these requirements can be achieved without scaling massive instruction corpora or relying on complex preference tuning pipelines and large-scale reinforcement fine-tuning (RFT). We present Typhoon S, a minimal and open post-training recipe that combines supervised fine-tuning, on-policy distillation, and small-scale RFT. Using Thai as a representative case study, we demonstrate that our approach transforms both sovereign-adapted and general-purpose base models into instruction-tuned models with strong general performance. We further show that small-scale RFT with InK-GRPO -- an extension of GRPO that augments the GRPO loss with a next-word prediction loss -- improves Thai legal reasoning and Thai-specific knowledge while preserving general capabilities. Our results suggest that a carefully designed post-training strategy can reduce the required scale of instruction data and computation, providing a practical path toward high-quality sovereign LLMs under academic-scale resources.
comment: 19 pages. Code is publicly available at https://github.com/scb-10x/typhoon-s . Datasets and model weights are available at https://huggingface.co/collections/typhoon-ai/typhoon-s
The Limits of AI Data Transparency Policy: Three Disclosure Fallacies
Data transparency has emerged as a rallying cry for addressing concerns about AI: data quality, privacy, and copyright chief among them. Yet while these calls are crucial for accountability, current transparency policies often fall short of their intended aims. Similar to nutrition facts for food, policies aimed at nutrition facts for AI currently suffer from a limited consideration of research on effective disclosures. We offer an institutional perspective and identify three common fallacies in policy implementations of data disclosures for AI. First, many data transparency proposals exhibit a specification gap between the stated goals of data transparency and the actual disclosures necessary to achieve such goals. Second, reform attempts exhibit an enforcement gap between required disclosures on paper and enforcement to ensure compliance in fact. Third, policy proposals manifest an impact gap between disclosed information and meaningful changes in developer practices and public understanding. Informed by the social science on transparency, our analysis identifies affirmative paths for transparency that are effective rather than merely symbolic.
Understanding Users' Privacy Reasoning and Behaviors During Chatbot Use to Support Meaningful Agency in Privacy
Conversational agents (CAs) (e.g., chatbots) are increasingly used in settings where users disclose sensitive information, raising significant privacy concerns. Because privacy judgments are highly contextual, supporting users to engage in privacy-protective actions during chatbot interactions is essential. However, enabling meaningful engagement requires a deeper understanding of how users currently reason about and manage sensitive information during realistic chatbot use scenarios. To investigate this, we qualitatively examined computer science (undergraduate and masters) students' in-the-moment disclosure and protection behaviors, as well as the reasoning underlying these behaviors, across a range of realistic chatbot tasks. Participants used a simulated ChatGPT interface with and without a privacy notice panel that intercepts message submissions, highlights potentially sensitive information, and offers privacy protective actions. The panel supports anonymization through retracting, faking, and generalizing, and surfaces two of ChatGPT's built-in privacy controls to improve their discoverability. Drawing on interaction logs, think-alouds, and survey responses, we analyzed how the panel fostered privacy awareness, encouraged protective actions, and supported context-specific reasoning about what information to protect and how. We further discuss design opportunities for tools that provide users greater and more meaningful agency in protecting sensitive information during CA interactions.
comment: Preprint of a paper under review
Deadline-Aware, Energy-Efficient Control of Domestic Immersion Hot Water Heaters AAAI 2026
Typical domestic immersion water heater systems are often operated continuously during winter, heating quickly rather than efficiently and ignoring predictable demand windows and ambient losses. We study deadline-aware control, where the aim is to reach a target temperature at a specified time while minimising energy consumption. We introduce an efficient Gymnasium environment that models an immersion hot water heater with first-order thermal losses and discrete on and off actions of 0 W and 6000 W applied every 120 seconds. Methods include a time-optimal bang-bang baseline, a zero-shot Monte Carlo Tree Search planner, and a Proximal Policy Optimisation policy. We report total energy consumption in watt-hours under identical physical dynamics. Across sweeps of initial temperature from 10 to 30 degrees Celsius, deadline from 30 to 90 steps, and target temperature from 40 to 80 degrees Celsius, PPO achieves the most energy-efficient performance at a 60-step horizon of 2 hours, using 3.23 kilowatt-hours, compared to 4.37 to 10.45 kilowatt-hours for bang-bang control and 4.18 to 6.46 kilowatt-hours for MCTS. This corresponds to energy savings of 26 percent at 30 steps and 69 percent at 90 steps. In a representative trajectory with a 50 kg water mass, 20 degrees Celsius ambient temperature, and a 60 degrees Celsius target, PPO consumes 54 percent less energy than bang-bang control and 33 percent less than MCTS. These results show that learned deadline-aware control reduces energy consumption under identical physical assumptions, while planners provide partial savings without training and learned policies offer near-zero inference cost once trained.
comment: Accepted at AAAI 2026
Beyond Text-to-SQL: Can LLMs Really Debug Enterprise ETL SQL?
SQL is central to enterprise data engineering, yet generating fully correct SQL code in a single attempt remains difficult, even for experienced developers and advanced text-to-SQL LLMs, often requiring multiple debugging iterations. We introduce OurBench, the first benchmark for enterprise-level SQL reasoning and debugging. Our benchmark is built on two key innovations: (1) an automated construction workflow that uses reverse engineering to systematically inject realistic bugs into large-scale SQL code, enabling scalable and diverse benchmark generation; and (2) an execution-free evaluation framework tailored to enterprise settings, providing fast, accurate, and resource-efficient assessment. OurBench comprises 469 OurBenchSyn queries featuring syntax errors with explicit error messages, and 516 OurBenchSem queries targeting semantic errors in which the code fails to meet user intent. The queries are highly complex, averaging over 140 lines and featuring deep and wide abstract syntax trees. Evaluation of nearly 30 LLMs reveals a substantial performance gap: the best-performing model, Claude-4-Sonnet, achieves only 36.46 percent accuracy on OurBenchSyn and 32.17 percent on OurBenchSem, while most models score below 20 percent. We further explore four solution strategies, identify key challenges, and outline promising directions for enterprise SQL debugging with LLMs.
LungCRCT: Causal Representation based Lung CT Processing for Lung Cancer Treatment
Due to silence in early stages, lung cancer has been one of the most leading causes of mortality in cancer patients world-wide. Moreover, major symptoms of lung cancer are hard to differentiate with other respiratory disease symptoms such as COPD, further leading patients to overlook cancer progression in early stages. Thus, to enhance survival rates in lung cancer, early detection from consistent proactive respiratory system monitoring becomes crucial. One of the most prevalent and effective methods for lung cancer monitoring would be low-dose computed tomography(LDCT) chest scans, which led to remarkable enhancements in lung cancer detection or tumor classification tasks under rapid advancements and applications of computer vision based AI models such as EfficientNet or ResNet in image processing. However, though advanced CNN models under transfer learning or ViT based models led to high performing lung cancer detections, due to its intrinsic limitations in terms of correlation dependence and low interpretability due to complexity, expansions of deep learning models to lung cancer treatment analysis or causal intervention analysis simulations are still limited. Therefore, this research introduced LungCRCT: a latent causal representation learning based lung cancer analysis framework that retrieves causal representations of factors within the physical causal mechanism of lung cancer progression. With the use of advanced graph autoencoder based causal discovery algorithms with distance Correlation disentanglement and entropy-based image reconstruction refinement, LungCRCT not only enables causal intervention analysis for lung cancer treatments, but also leads to robust, yet extremely light downstream models in malignant tumor classification tasks with an AUC score of 93.91%.
MalURLBench: A Benchmark Evaluating Agents' Vulnerabilities When Processing Web URLs
LLM-based web agents have become increasingly popular for their utility in daily life and work. However, they exhibit critical vulnerabilities when processing malicious URLs: accepting a disguised malicious URL enables subsequent access to unsafe webpages, which can cause severe damage to service providers and users. Despite this risk, no benchmark currently targets this emerging threat. To address this gap, we propose MalURLBench, the first benchmark for evaluating LLMs' vulnerabilities to malicious URLs. MalURLBench contains 61,845 attack instances spanning 10 real-world scenarios and 7 categories of real malicious websites. Experiments with 12 popular LLMs reveal that existing models struggle to detect elaborately disguised malicious URLs. We further identify and analyze key factors that impact attack success rates and propose URLGuard, a lightweight defense module. We believe this work will provide a foundational resource for advancing the security of web agents. Our code is available at https://github.com/JiangYingEr/MalURLBench.
Demystifying Data-Driven Probabilistic Medium-Range Weather Forecasting
The recent revolution in data-driven methods for weather forecasting has lead to a fragmented landscape of complex, bespoke architectures and training strategies, obscuring the fundamental drivers of forecast accuracy. Here, we demonstrate that state-of-the-art probabilistic skill requires neither intricate architectural constraints nor specialized training heuristics. We introduce a scalable framework for learning multi-scale atmospheric dynamics by combining a directly downsampled latent space with a history-conditioned local projector that resolves high-resolution physics. We find that our framework design is robust to the choice of probabilistic estimator, seamlessly supporting stochastic interpolants, diffusion models, and CRPS-based ensemble training. Validated against the Integrated Forecasting System and the deep learning probabilistic model GenCast, our framework achieves statistically significant improvements on most of the variables. These results suggest scaling a general-purpose model is sufficient for state-of-the-art medium-range prediction, eliminating the need for tailored training recipes and proving effective across the full spectrum of probabilistic frameworks.
Mitigating the OWASP Top 10 For Large Language Models Applications using Intelligent Agents
Large Language Models (LLMs) have emerged as a transformative and disruptive technology, enabling a wide range of applications in natural language processing, machine translation, and beyond. However, this widespread integration of LLMs also raised several security concerns highlighted by the Open Web Application Security Project (OWASP), which has identified the top 10 security vulnerabilities inherent in LLM applications. Addressing these vulnerabilities is crucial, given the increasing reliance on LLMs and the potential threats to data integrity, confidentiality, and service availability. This paper presents a framework designed to mitigate the security risks outlined in the OWASP Top 10. Our proposed model leverages LLM-enabled intelligent agents, offering a new approach to proactively identify, assess, and counteract security threats in real-time. The proposed framework serves as an initial blueprint for future research and development, aiming to enhance the security measures of LLMs and protect against emerging threats in this rapidly evolving landscape.
comment: 5 pages
LatentMoE: Toward Optimal Accuracy per FLOP and Parameter in Mixture of Experts
Mixture of Experts (MoEs) have become a central component of many state-of-the-art open-source and proprietary large language models. Despite their widespread adoption, it remains unclear how close existing MoE architectures are to optimal with respect to inference cost, as measured by accuracy per floating-point operation and per parameter. In this work, we revisit MoE design from a hardware-software co-design perspective, grounded in empirical and theoretical considerations. We characterize key performance bottlenecks across diverse deployment regimes, spanning offline high-throughput execution and online, latency-critical inference. Guided by these insights, we introduce LatentMoE, a new model architecture resulting from systematic design exploration and optimized for maximal accuracy per unit of compute. Empirical design space exploration at scales of up to 95B parameters and over a 1T-token training horizon, together with supporting theoretical analysis, shows that LatentMoE consistently outperforms standard MoE architectures in terms of accuracy per FLOP and per parameter. Given its strong performance, the LatentMoE architecture has been adopted by the flagship Nemotron-3 Super and Ultra models and scaled to substantially larger regimes, including longer token horizons and larger model sizes, as reported in Nvidia et al. (arXiv:2512.20856).
"Crash Test Dummies" for AI-Enabled Clinical Assessment: Validating Virtual Patient Scenarios with Virtual Learners
Background: In medical and health professions education (HPE), AI is increasingly used to assess clinical competencies, including via virtual standardized patients. However, most evaluations rely on AI-human interrater reliability and lack a measurement framework for how cases, learners, and raters jointly shape scores. This leaves robustness uncertain and can expose learners to misguidance from unvalidated systems. We address this by using AI "simulated learners" to stress-test and psychometrically characterize assessment pipelines before human use. Objective: Develop an open-source AI virtual patient platform and measurement model for robust competency evaluation across cases and rating conditions. Methods: We built a platform with virtual patients, virtual learners with tunable ACGME-aligned competency profiles, and multiple independent AI raters scoring encounters with structured Key-Features items. Transcripts were analyzed with a Bayesian HRM-SDT model that treats ratings as decisions under uncertainty and separates learner ability, case performance, and rater behavior; parameters were estimated with MCMC. Results: The model recovered simulated learners' competencies, with significant correlations to the generating competencies across all ACGME domains despite a non-deterministic pipeline. It estimated case difficulty by competency and showed stable rater detection (sensitivity) and criteria (severity/leniency thresholds) across AI raters using identical models/prompts but different seeds. We also propose a staged "safety blueprint" for deploying AI tools with learners, tied to entrustment-based validation milestones. Conclusions: Combining a purpose-built virtual patient platform with a principled psychometric model enables robust, interpretable, generalizable competency estimates and supports validation of AI-assisted assessment prior to use with human learners.
Diffusion Model-based Reinforcement Learning for Version Age of Information Scheduling: Average and Tail-Risk-Sensitive Control
Ensuring timely and semantically accurate information delivery is critical in real-time wireless systems. While Age of Information (AoI) quantifies temporal freshness, Version Age of Information (VAoI) captures semantic staleness by accounting for version evolution between transmitters and receivers. Existing VAoI scheduling approaches primarily focus on minimizing average VAoI, overlooking rare but severe staleness events that can compromise reliability under stochastic packet arrivals and unreliable channels. This paper investigates both average-oriented and tail-risk-sensitive VAoI scheduling in a multi-user status update system with long-term transmission cost constraints. We first formulate the average VAoI minimization problem as a constrained Markov decision process and introduce a deep diffusion-based Soft Actor-Critic (D2SAC) algorithm. By generating actions through a diffusion-based denoising process, D2SAC enhances policy expressiveness and establishes a strong baseline for mean performance. Building on this foundation, we put forth RS-D3SAC, a risk-sensitive deep distributional diffusion-based Soft Actor-Critic algorithm. RS-D3SAC integrates a diffusion-based actor with a quantile-based distributional critic, explicitly modeling the full VAoI return distribution. This enables principled tail-risk optimization via Conditional Value-at-Risk (CVaR) while satisfying long-term transmission cost constraints. Extensive simulations show that, while D2SAC reduces average VAoI, RS-D3SAC consistently achieves substantial reductions in CVaR without sacrificing mean performance. The dominant gain in tail-risk reduction stems from the distributional critic, with the diffusion-based actor providing complementary refinement to stabilize and enrich policy decisions, highlighting their effectiveness for robust and risk-aware VAoI scheduling in multi-user wireless systems.
comment: 16 pages, 11 figures
EvolVE: Evolutionary Search for LLM-based Verilog Generation and Optimization
Verilog's design cycle is inherently labor-intensive and necessitates extensive domain expertise. Although Large Language Models (LLMs) offer a promising pathway toward automation, their limited training data and intrinsic sequential reasoning fail to capture the strict formal logic and concurrency inherent in hardware systems. To overcome these barriers, we present EvolVE, the first framework to analyze multiple evolution strategies on chip design tasks, revealing that Monte Carlo Tree Search (MCTS) excels at maximizing functional correctness, while Idea-Guided Refinement (IGR) proves superior for optimization. We further leverage Structured Testbench Generation (STG) to accelerate the evolutionary process. To address the lack of complex optimization benchmarks, we introduce IC-RTL, targeting industry-scale problems derived from the National Integrated Circuit Contest. Evaluations establish EvolVE as the new state-of-the-art, achieving 98.1% on VerilogEval v2 and 92% on RTLLM v2. Furthermore, on the industry-scale IC-RTL suite, our framework surpasses reference implementations authored by contest participants, reducing the Power, Performance, Area (PPA) product by up to 66% in Huffman Coding and 17% in the geometric mean across all problems. The source code of the IC-RTL benchmark is available at https://github.com/weiber2002/ICRTL.
comment: 17 pages, 6 figures, 8 tables
Resonant Sparse Geometry Networks
We introduce Resonant Sparse Geometry Networks (RSGN), a brain-inspired architecture with self-organizing sparse hierarchical input-dependent connectivity. Unlike Transformer architectures that employ dense attention mechanisms with O(n^2) computational complexity, RSGN embeds computational nodes in learned hyperbolic space where connection strength decays with geodesic distance, achieving dynamic sparsity that adapts to each input. The architecture operates on two distinct timescales: fast differentiable activation propagation optimized through gradient descent, and slow Hebbian-inspired structural learning for connectivity adaptation through local correlation rules. We provide rigorous mathematical analysis demonstrating that RSGN achieves O(n*k) computational complexity, where k << n represents the average active neighborhood size. Experimental evaluation on hierarchical classification and long-range dependency tasks demonstrates that RSGN achieves 96.5% accuracy on long-range dependency tasks while using approximately 15x fewer parameters than standard Transformers. On challenging hierarchical classification with 20 classes, RSGN achieves 23.8% accuracy (compared to 5% random baseline) with only 41,672 parameters, nearly 10x fewer than the Transformer baselines which require 403,348 parameters to achieve 30.1% accuracy. Our ablation studies confirm the contribution of each architectural component, with Hebbian learning providing consistent improvements. These results suggest that brain-inspired principles of sparse, geometrically-organized computation offer a promising direction toward more efficient and biologically plausible neural architectures.
Expert Evaluation and the Limits of Human Feedback in Mental Health AI Safety Testing
Learning from human feedback~(LHF) assumes that expert judgments, appropriately aggregated, yield valid ground truth for training and evaluating AI systems. We tested this assumption in mental health, where high safety stakes make expert consensus essential. Three certified psychiatrists independently evaluated LLM-generated responses using a calibrated rubric. Despite similar training and shared instructions, inter-rater reliability was consistently poor ($ICC$ $0.087$--$0.295$), falling below thresholds considered acceptable for consequential assessment. Disagreement was highest on the most safety-critical items. Suicide and self-harm responses produced greater divergence than any other category, and was systematic rather than random. One factor yielded negative reliability (Krippendorff's $α= -0.203$), indicating structured disagreement worse than chance. Qualitative interviews revealed that disagreement reflects coherent but incompatible individual clinical frameworks, safety-first, engagement-centered, and culturally-informed orientations, rather than measurement error. By demonstrating that experts rely on holistic risk heuristics rather than granular factor discrimination, these findings suggest that aggregated labels function as arithmetic compromises that effectively erase grounded professional philosophies. Our results characterize expert disagreement in safety-critical AI as a sociotechnical phenomenon where professional experience introduces sophisticated layers of principled divergence. We discuss implications for reward modeling, safety classification, and evaluation benchmarks, recommending that practitioners shift from consensus-based aggregation to alignment methods that preserve and learn from expert disagreement.
comment: 17 pages, 7 pages of appendix, 21 tables
Addressing LLM Diversity by Infusing Random Concepts
Large language models (LLMs) are known to produce outputs with limited diversity. In this work, we study whether infusing random concepts in the prompts can improve the diversity of the generated outputs. To benchmark the approach, we design a systematic evaluation protocol which involves prompting an LLM with questions of the form "Name 10 Hollywood actors", and analyzing diversity measures of the resulting LLM outputs. Our experiments on multiple LLMs show that prepending random words/sentences unrelated to the prompt result in greater diversity in the outputs of LLMs. We believe that this promising result and the evaluation protocol opens up interesting avenues for future work, such as how infusing randomness into LLMs could be applied to other domains. Further, the evaluation protocol could also inspire research into benchmarking LLM diversity more systematically.
A Unifying View of Coverage in Linear Off-Policy Evaluation ICLR 2026
Off-policy evaluation (OPE) is a fundamental task in reinforcement learning (RL). In the classic setting of linear OPE, finite-sample guarantees often take the form $$ \textrm{Evaluation error} \le \textrm{poly}(C^π, d, 1/n,\log(1/δ)), $$ where $d$ is the dimension of the features and $C^π$ is a coverage parameter that characterizes the degree to which the visited features lie in the span of the data distribution. While such guarantees are well-understood for several popular algorithms under stronger assumptions (e.g. Bellman completeness), the understanding is lacking and fragmented in the minimal setting where only the target value function is linearly realizable in the features. Despite recent interest in tight characterizations of the statistical rate in this setting, the right notion of coverage remains unclear, and candidate definitions from prior analyses have undesirable properties and are starkly disconnected from more standard definitions in the literature. We provide a novel finite-sample analysis of a canonical algorithm for this setting, LSTDQ. Inspired by an instrumental-variable view, we develop error bounds that depend on a novel coverage parameter, the feature-dynamics coverage, which can be interpreted as linear coverage in an induced dynamical system for feature evolution. With further assumptions -- such as Bellman-completeness -- our definition successfully recovers the coverage parameters specialized to those settings, finally yielding a unified understanding for coverage in linear OPE.
comment: To appear at ICLR 2026
EVEREST: An Evidential, Tail-Aware Transformer for Rare-Event Time-Series Forecasting
Forecasting rare events in multivariate time-series data is challenging due to severe class imbalance, long-range dependencies, and distributional uncertainty. We introduce EVEREST, a transformer-based architecture for probabilistic rare-event forecasting that delivers calibrated predictions and tail-aware risk estimation, with auxiliary interpretability via attention-based signal attribution. EVEREST integrates four components: (i) a learnable attention bottleneck for soft aggregation of temporal dynamics; (ii) an evidential head for estimating aleatoric and epistemic uncertainty via a Normal--Inverse--Gamma distribution; (iii) an extreme-value head that models tail risk using a Generalized Pareto Distribution; and (iv) a lightweight precursor head for early-event detection. These modules are jointly optimized with a composite loss (focal loss, evidential NLL, and a tail-sensitive EVT penalty) and act only at training time; deployment uses a single classification head with no inference overhead (approximately 0.81M parameters). On a decade of space-weather data, EVEREST achieves state-of-the-art True Skill Statistic (TSS) of 0.973/0.970/0.966 at 24/48/72-hour horizons for C-class flares. The model is compact, efficient to train on commodity hardware, and applicable to high-stakes domains such as industrial monitoring, weather, and satellite diagnostics. Limitations include reliance on fixed-length inputs and exclusion of image-based modalities, motivating future extensions to streaming and multimodal forecasting.
FROST: Filtering Reasoning Outliers with Attention for Efficient Reasoning
We propose FROST, an attention-aware method for efficient reasoning. Unlike traditional approaches, FROST leverages attention weights to prune uncritical reasoning paths, yielding shorter and more reliable reasoning trajectories. Methodologically, we introduce the concept of reasoning outliers and design an attention-based mechanism to remove them. Theoretically, FROST preserves and enhances the model's reasoning capacity while eliminating outliers at the sentence level. Empirically, we validate FROST on four benchmarks using two strong reasoning models (Phi-4-Reasoning and GPT-OSS-20B), outperforming state-of-the-art methods such as TALE and ThinkLess. Notably, FROST achieves an average 69.68% reduction in token usage and a 26.70% improvement in accuracy over the base model. Furthermore, in evaluations of attention outlier metrics, FROST reduces the maximum infinity norm by 15.97% and the average kurtosis by 91.09% compared to the base model. Code is available at https://github.com/robinzixuan/FROST
Randomization Boosts KV Caching, Learning Balances Query Load: A Joint Perspective ICLR 2026
KV caching is a fundamental technique for accelerating Large Language Model (LLM) inference by reusing key-value (KV) pairs from previous queries, but its effectiveness under limited memory is highly sensitive to the eviction policy. The default Least Recently Used (LRU) eviction algorithm struggles with dynamic online query arrivals, especially in multi-LLM serving scenarios, where balancing query load across workers and maximizing cache hit rate of each worker are inherently conflicting objectives. We give the first unified mathematical model that captures the core trade-offs between KV cache eviction and query routing. Our analysis reveals the theoretical limitations of existing methods and leads to principled algorithms that integrate provably competitive randomized KV cache eviction with learning-based methods to adaptively route queries with evolving patterns, thus balancing query load and cache hit rate. Our theoretical results are validated by extensive experiments across 4 benchmarks and 3 prefix-sharing settings, demonstrating improvements of up to 6.92$\times$ in cache hit rate, 11.96$\times$ reduction in latency, 14.06$\times$ reduction in time-to-first-token (TTFT), and 77.4% increase in throughput over the state-of-the-art methods. Our code is available at https://github.com/fzwark/KVRouting.
comment: ICLR 2026
FreeOrbit4D: Training-Free Arbitrary Camera Redirection for Monocular Videos via Geometry-Complete 4D Reconstruction
Camera redirection aims to replay a dynamic scene from a single monocular video under a user-specified camera trajectory. However, large-angle redirection is inherently ill-posed: a monocular video captures only a narrow spatio-temporal view of a dynamic 3D scene, providing highly partial observations of the underlying 4D world. The key challenge is therefore to recover a complete and coherent representation from this limited input, with consistent geometry and motion. While recent diffusion-based methods achieve impressive results, they often break down under large-angle viewpoint changes far from the original trajectory, where missing visual grounding leads to severe geometric ambiguity and temporal inconsistency. To address this, we present FreeOrbit4D, an effective training-free framework that tackles this geometric ambiguity by recovering a geometry-complete 4D proxy as structural grounding for video generation. We obtain this proxy by decoupling foreground and background reconstructions: we unproject the monocular video into a static background and geometry-incomplete foreground point clouds in a unified global space, then leverage an object-centric multi-view diffusion model to synthesize multi-view images and reconstruct geometry-complete foreground point clouds in canonical object space. By aligning the canonical foreground point cloud to the global scene space via dense pixel-synchronized 3D--3D correspondences and projecting the geometry-complete 4D proxy onto target camera viewpoints, we provide geometric scaffolds that guide a conditional video diffusion model. Extensive experiments show that FreeOrbit4D produces more faithful redirected videos under challenging large-angle trajectories, and our geometry-complete 4D proxy further opens a potential avenue for practical applications such as edit propagation and 4D data generation. Project page and code will be released soon.
comment: 14 pages, 10 figures
LLMs versus the Halting Problem: Revisiting Program Termination Prediction
Determining whether a program terminates is a central problem in computer science. Turing's foundational result established the Halting Problem as undecidable, showing that no algorithm can universally determine termination for all programs and inputs. Consequently, automatic verification tools approximate termination, sometimes failing to prove or disprove; these tools rely on problem-specific architectures and abstractions, and are usually tied to particular programming languages. Recent success and progress in large language models (LLMs) raises the following question: can LLMs reliably predict program termination? In this work, we evaluate LLMs on a diverse set of C programs from the Termination category of the International Competition on Software Verification (SV-Comp) 2025. Our results suggest that LLMs perform remarkably well at predicting program termination, where GPT-5 and Claude Sonnet-4.5 would rank just behind the top-ranked tool (using test-time-scaling), and Code World Model (CWM) would place just behind the second-ranked tool. While LLMs are effective at predicting program termination, they often fail to provide a valid witness as a proof. Moreover, LLMs performance drops as program length increases. We hope these insights motivate further research into program termination and the broader potential of LLMs for reasoning about undecidable problems.
When Does Adaptation Win? Scaling Laws for Meta-Learning in Quantum Control
Quantum hardware suffers from intrinsic device heterogeneity and environmental drift, forcing practitioners to choose between suboptimal non-adaptive controllers or costly per-device recalibration. We derive a scaling law lower bound for meta-learning showing that the adaptation gain (expected fidelity improvement from task-specific gradient steps) saturates exponentially with gradient steps and scales linearly with task variance, providing a quantitative criterion for when adaptation justifies its overhead. Validation on quantum gate calibration shows negligible benefits for low-variance tasks but $>40\%$ fidelity gains on two-qubit gates under extreme out-of-distribution conditions (10$\times$ the training noise), with implications for reducing per-device calibration time on cloud quantum processors. Further validation on classical linear-quadratic control confirms these laws emerge from general optimization geometry rather than quantum-specific physics. Together, these results offer a transferable framework for decision-making in adaptive control.
comment: 28 pages, 11 figures
Fauna Sprout: A lightweight, approachable, developer-ready humanoid robot
Recent advances in learned control, large-scale simulation, and generative models have accelerated progress toward general-purpose robotic controllers, yet the field still lacks platforms suitable for safe, expressive, long-term deployment in human environments. Most existing humanoids are either closed industrial systems or academic prototypes that are difficult to deploy and operate around people, limiting progress in robotics. We introduce Sprout, a developer platform designed to address these limitations through an emphasis on safety, expressivity, and developer accessibility. Sprout adopts a lightweight form factor with compliant control, limited joint torques, and soft exteriors to support safe operation in shared human spaces. The platform integrates whole-body control, manipulation with integrated grippers, and virtual-reality-based teleoperation within a unified hardware-software stack. An expressive head further enables social interaction -- a domain that remains underexplored on most utilitarian humanoids. By lowering physical and technical barriers to deployment, Sprout expands access to capable humanoid platforms and provides a practical basis for developing embodied intelligence in real human environments.
Reinforcement Learning for Quantum Technology
Many challenges arising in Quantum Technology can be successfully addressed using a set of machine learning algorithms collectively known as reinforcement learning (RL), based on adaptive decision-making through interaction with the quantum device. After a concise and intuitive introduction to RL aimed at a broad physics readership, we discuss the key ideas and core concepts in reinforcement learning with a particular focus on quantum systems. We then survey recent progress in RL in all relevant areas. We discuss state preparation in few- and many-body quantum systems, the design and optimization of high-fidelity quantum gates, and the automated construction of quantum circuits, including applications to variational quantum eigensolvers and architecture search. We further highlight the interactive capabilities of RL agents, emphasizing recent progress in quantum feedback control and quantum error correction, and briefly discuss quantum reinforcement learning as well as applications to quantum metrology. The review concludes with a discussion of open challenges -- such as scalability, interpretability, and integration with experimental platforms -- and outlines promising directions for future research. Throughout, we highlight experimental implementations that exemplify the increasing role of reinforcement learning in shaping the development of quantum technologies.
comment: review article; comments are welcome!
Tricky$^2$: Towards a Benchmark for Evaluating Human and LLM Error Interactions
Large language models (LLMs) are increasingly integrated into software development workflows, yet they often introduce subtle logic or data-misuse errors that differ from human bugs. To study how these two error types interact, we construct Tricky$^2$, a hybrid dataset that augments the existing TrickyBugs corpus of human-written defects with errors injected by both GPT-5 and OpenAI-oss-20b across C++, Python, and Java programs. Our approach uses a taxonomy-guided prompting framework to generate machine-originated bugs while preserving original human defects and program structure. The resulting corpus spans human-only, LLM-only, and human+LLM splits, enabling analysis of mixed-origin error behavior, multi-bug repair robustness, and reliability in hybrid human-machine code. This paper outlines the dataset construction pipeline and illustrates its use through small-scale baseline evaluations of classification, localization, and repair tasks.
Neural Theorem Proving for Verification Conditions: A Real-World Benchmark ICLR'26
Theorem proving is fundamental to program verification, where the automated proof of Verification Conditions (VCs) remains a primary bottleneck. Real-world program verification frequently encounters hard VCs that existing Automated Theorem Provers (ATPs) cannot prove, leading to a critical need for extensive manual proofs that burden practical application. While Neural Theorem Proving (NTP) has achieved significant success in mathematical competitions, demonstrating the potential of machine learning approaches to formal reasoning, its application to program verification--particularly VC proving--remains largely unexplored. Despite existing work on annotation synthesis and verification-related theorem proving, no benchmark has specifically targeted this fundamental bottleneck: automated VC proving. This work introduces Neural Theorem Proving for Verification Conditions (NTP4VC), presenting the first real-world multi-language benchmark for this task. From real-world projects such as Linux and Contiki-OS kernel, our benchmark leverages industrial pipelines (Why3 and Frama-C) to generate semantically equivalent test cases across formal languages of Isabelle, Lean, and Rocq. We evaluate large language models (LLMs), both general-purpose and those fine-tuned for theorem proving, on NTP4VC. Results indicate that although LLMs show promise in VC proving, significant challenges remain for program verification, highlighting a large gap and opportunity for future research.
comment: Accepted in ICLR'26
Configurable p-Neurons Using Modular p-Bits
Probabilistic bits (p-bits) have recently been employed in neural networks (NNs) as stochastic neurons with sigmoidal probabilistic activation functions. Nonetheless, there remain a wealth of other probabilistic activation functions that are yet to be explored. Here we re-engineer the p-bit by decoupling its stochastic signal path from its input data path, giving rise to a modular p-bit that enables the realization of probabilistic neurons (p-neurons) with a range of configurable probabilistic activation functions, including a probabilistic version of the widely used Logistic Sigmoid, Tanh and Rectified Linear Unit (ReLU) activation functions. We present spintronic (CMOS + sMTJ) designs that show wide and tunable probabilistic ranges of operation. Finally, we experimentally implement digital-CMOS versions on an FPGA, with stochastic unit sharing, and demonstrate an order of magnitude (10x) saving in required hardware resources compared to conventional digital p-bit implementations.
comment: Accepted for presentation at IEEE ISCAS 2026 as a lecture
BabyReasoningBench: Generating Developmentally-Inspired Reasoning Tasks for Evaluating Baby Language Models
Traditional evaluations of reasoning capabilities of language models are dominated by adult-centric benchmarks that presuppose broad world knowledge, complex instruction following, and mature pragmatic competence. These assumptions are mismatched to baby language models trained on developmentally plausible input such as child-directed speech and early-childhood narratives, and they obscure which reasoning abilities (if any) emerge under such constraints. We introduce BabyReasoningBench, a GPT-5.2 generated benchmark of 19 reasoning tasks grounded in classic paradigms from developmental psychology, spanning theory of mind, analogical and relational reasoning, causal inference and intervention selection, and core reasoning primitives that are known to be confounded by memory and pragmatics. We find that two GPT-2 based baby language models (pretrained on 10M and 100M of child-directed speech text) show overall low but uneven performance, with dissociations across task families: scaling improves several causal and physical reasoning tasks, while belief attribution and pragmatics-sensitive tasks remain challenging. BabyReasoningBench provides a developmentally grounded lens for analyzing what kinds of reasoning are supported by child-like training distributions, and for testing mechanistic hypotheses about how such abilities emerge.
Toward Learning POMDPs Beyond Full-Rank Actions and State Observability
We are interested in enabling autonomous agents to learn and reason about systems with hidden states, such as furniture with hidden locking mechanisms. We cast this problem as learning the parameters of a discrete Partially Observable Markov Decision Process (POMDP). The agent begins with knowledge of the POMDP's actions and observation spaces, but not its state space, transitions, or observation models. These properties must be constructed from action-observation sequences. Spectral approaches to learning models of partially observable domains, such as learning Predictive State Representations (PSRs), are known to directly estimate the number of hidden states. These methods cannot, however, yield direct estimates of transition and observation likelihoods, which are important for many downstream reasoning tasks. Other approaches leverage tensor decompositions to estimate transition and observation likelihoods but often assume full state observability and full-rank transition matrices for all actions. To relax these assumptions, we study how PSRs learn transition and observation matrices up to a similarity transform, which may be estimated via tensor methods. Our method learns observation matrices and transition matrices up to a partition of states, where the states in a single partition have the same observation distributions corresponding to actions whose transition matrices are full-rank. Our experiments suggest that these partition-level transition models learned by our method, with a sufficient amount of data, meets the performance of PSRs as models to be used by standard sampling-based POMDP solvers. Furthermore, the explicit observation and transition likelihoods can be leveraged to specify planner behavior after the model has been learned.
RIFT: Reordered Instruction Following Testbed To Evaluate Instruction Following in Singular Multistep Prompt Structures
Large Language Models (LLMs) are increasingly relied upon for complex workflows, yet their ability to maintain flow of instructions remains underexplored. Existing benchmarks conflate task complexity with structural ordering, making it difficult to isolate the impact of prompt topology on performance. We introduce RIFT, Reordered Instruction Following Testbed, to assess instruction following by disentangling structure from content. Using rephrased Jeopardy! question-answer pairs, we test LLMs across two prompt structures: linear prompts, which progress sequentially, and jumping prompts, which preserve identical content but require non-sequential traversal. Across 10,000 evaluations spanning six state-of-the-art open-source LLMs, accuracy dropped by up to 72% under jumping conditions (compared to baseline), revealing a strong dependence on positional continuity. Error analysis shows that approximately 50% of failures stem from instruction-order violations and semantic drift, indicating that current architectures internalize instruction following as a sequential pattern rather than a reasoning skill. These results reveal structural sensitivity as a fundamental limitation in current architectures, with direct implications for applications requiring non-sequential control flow such as workflow automation and multi-agent systems.
comment: 13 pages, 5 figures, submitted to ACL ARR
SICL-AT: Another way to adapt Auditory LLM to low-resource task
Auditory Large Language Models (LLMs) have demonstrated strong performance across a wide range of speech and audio understanding tasks. Nevertheless, they often struggle when applied to low-resource or unfamiliar tasks. In case of labeled in-domain data is scarce or mismatched to the true test distribution, direct fine-tuning can be brittle. In-Context Learning (ICL) provides a training-free, inference-time solution by adapting auditory LLMs through conditioning on a few in-domain demonstrations. In this work, we first show that \emph{Vanilla ICL}, improves zero-shot performance across diverse speech and audio tasks for selected models which suggest this ICL adaptation capability can be generalized to multimodal setting. Building on this, we propose \textbf{Speech In-Context Learning Adaptation Training (SICL-AT)}, a post-training recipe utilizes only high resource speech data intending to strengthen model's in-context learning capability. The enhancement can generalize to audio understanding/reasoning task. Experiments indicate our proposed method consistently outperforms direct fine-tuning in low-resource scenario.
Language Family Matters: Evaluating LLM-Based ASR Across Linguistic Boundaries
Large Language Model (LLM)-powered Automatic Speech Recognition (ASR) systems achieve strong performance with limited resources by linking a frozen speech encoder to a pretrained LLM via a lightweight connector. Prior work trains a separate connector per language, overlooking linguistic relatedness. We propose an efficient and novel connector-sharing strategy based on linguistic family membership, enabling one connector per family, and empirically validate its effectiveness across two multilingual LLMs and two real-world corpora spanning curated and crowd-sourced speech. Our results show that family-based connectors reduce parameter count while improving generalization across domains, offering a practical and scalable strategy for multilingual ASR deployment.
Explainable Uncertainty Quantification for Wastewater Treatment Energy Prediction via Interval Type-2 Neuro-Fuzzy System
Wastewater treatment plants consume 1-3% of global electricity, making accurate energy forecasting critical for operational optimization and sustainability. While machine learning models provide point predictions, they lack explainable uncertainty quantification essential for risk-aware decision-making in safety-critical infrastructure. This study develops an Interval Type-2 Adaptive Neuro-Fuzzy Inference System (IT2-ANFIS) that generates interpretable prediction intervals through fuzzy rule structures. Unlike black-box probabilistic methods, the proposed framework decomposes uncertainty across three levels: feature-level, footprint of uncertainty identify which variables introduce ambiguity, rule-level analysis reveals confidence in local models, and instance-level intervals quantify overall prediction uncertainty. Validated on Melbourne Water's Eastern Treatment Plant dataset, IT2-ANFIS achieves comparable predictive performance to first order ANFIS with substantially reduced variance across training runs, while providing explainable uncertainty estimates that link prediction confidence directly to operational conditions and input variables.
comment: Submitted to 21st International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU2026)
Representational Homomorphism Predicts and Improves Compositional Generalization In Transformer Language Model
Compositional generalization-the ability to interpret novel combinations of familiar components-remains a persistent challenge for neural networks. Behavioral evaluations reveal when models fail but offer limited insight into why failures arise at the representational level. We introduce Homomorphism Error (HE), a structural metric that quantifies deviations from approximate homomorphisms between the expression algebra and a model's hidden-state space. We instantiate HE for two compositional operators in SCAN-style tasks: modifier HE for unary composition and sequence HE for binary composition, measured by learning representation-level operators that predict composed representations from their parts. Across controlled experiments with small decoder-only Transformers, HE predicts out-of-distribution (OOD) compositional generalization under noise injection, achieving R^2 = 0.73 correlation between modifier HE and OOD accuracy. Ablations show that model depth has minimal effect on either HE or OOD accuracy, training data coverage exhibits threshold effects (insufficient coverage sharply increases HE and degrades OOD performance), and randomly inserted noise tokens systematically increase HE. Finally, we test if HE-regularized training improves OOD accuracy. Experiment shows that explicitly enforcing low modifier HE during training significantly reduces modifier HE (p = 1.1x10-4) and sequence HE (p = 0.001) and yields a statistically significant improvement in OOD accuracy (p = 0.023). Together, these results indicate the potential of HE to be both a diagnostic and an actionable training signal for improving compositional generalization. Code to reproduce our experiments is open-sourced.
RocqStar: Leveraging Similarity-driven Retrieval and Agentic Systems for Rocq generation
Interactive Theorem Proving was repeatedly shown to be fruitful when combined with Generative Artificial Intelligence. This paper assesses multiple approaches to Rocq generation and illuminates potential avenues for improvement. We identify retrieval-based premise selection as a central component of effective Rocq proof generation and propose a novel approach based on a self-attentive embedder model. The evaluation of the designed approach shows up to 28% relative increase of the generator's performance. We tackle the problem of writing Rocq proofs using a multi-stage agentic system, tailored for formal verification, and demonstrate its high effectiveness. We conduct an ablation study and demonstrate that incorporating multi-agent debate during the planning stage increases the proof success rate by 20% overall and nearly doubles it for complex theorems, while the reflection mechanism further enhances stability and consistency.
Next Token Knowledge Tracing: Exploiting Pretrained LLM Representations to Decode Student Behaviour
Modelling student knowledge is a key challenge when leveraging AI in education, with major implications for personalised learning. The Knowledge Tracing (KT) task aims to predict how students will respond to educational questions in learning environments, based on their prior interactions. Existing KT models typically use response correctness along with metadata like skill tags and timestamps, often overlooking the question text, which is an important source of pedagogical insight. This omission poses a lost opportunity while limiting predictive performance. We propose Next Token Knowledge Tracing (NTKT), a novel approach that reframes KT as a next-token prediction task using pretrained Large Language Models (LLMs). NTKT represents both student histories and question content as sequences of text, allowing LLMs to learn patterns in both behaviour and language. Our series of experiments significantly improves performance over state-of-the-art neural KT models and generalises much better to cold-start questions and users. These findings highlight the importance of question content in KT and demonstrate the benefits of leveraging pretrained representations of LLMs to model student learning more effectively.
Physiology-Informed Generative Multi-Task Network for Contrast-Free CT Perfusion
Perfusion imaging is extensively utilized to assess hemodynamic status and tissue perfusion in various organs. Computed tomography perfusion (CTP) imaging plays a key role in the early assessment and planning of stroke treatment. While CTP provides essential perfusion parameters to identify abnormal blood flow in the brain, the use of contrast agents in CTP can lead to allergic reactions and adverse side effects, along with costing USD 4.9 billion worldwide in 2022. To address these challenges, we propose a novel deep learning framework called Multitask Automated Generation of Intermodal CT perfusion maps (MAGIC). This framework combines generative artificial intelligence and physiological information to map non-contrast computed tomography (CT) imaging to multiple contrast-free CTP imaging maps. We demonstrate enhanced image fidelity by incorporating physiological characteristics into the loss terms. Our network was trained and validated using CT image data from patients referred for stroke at UF Health and demonstrated robustness to abnormalities in brain perfusion activity. A double-blinded study was conducted involving seven experienced neuroradiologists and vascular neurologists. This study validated MAGIC's visual quality and diagnostic accuracy showing favorable performance compared to clinical perfusion imaging with intravenous contrast injection. Overall, MAGIC holds great promise in revolutionizing healthcare by offering contrast-free, cost-effective, and rapid perfusion imaging.
comment: Under Review
ARTI-6: Towards Six-dimensional Articulatory Speech Encoding
We propose ARTI-6, a compact six-dimensional articulatory speech encoding framework derived from real-time MRI data that captures crucial vocal tract regions including the velum, tongue root, and larynx. ARTI-6 consists of three components: (1) a six-dimensional articulatory feature set representing key regions of the vocal tract; (2) an articulatory inversion model, which predicts articulatory features from speech acoustics leveraging speech foundation models, achieving a prediction correlation of 0.87; and (3) an articulatory synthesis model, which reconstructs intelligible speech directly from articulatory features, showing that even a low-dimensional representation can generate natural-sounding speech. Together, ARTI-6 provides an interpretable, computationally efficient, and physiologically grounded framework for advancing articulatory inversion, synthesis, and broader speech technology applications. The source code and speech samples are publicly available.
comment: Accepted for ICASSP 2026
TensLoRA: Tensor Alternatives for Low-Rank Adaptation
Low-Rank Adaptation (LoRA) is widely used to efficiently adapt Transformers by adding trainable low-rank matrices to attention projections. While effective, these matrices are considered independent for each attention projection (Query, Key, and Value) and each layer. Recent extensions have considered joint, tensor-based adaptations, but only in limited forms and without a systematic framework. We introduce TensLoRA, a unified framework that aggregates LoRA updates into higher-order tensors and models a broad family of tensor-based low-rank adaptations. Our formulation generalizes existing tensor-based methods and enables mode-specific compression rates, allowing parameter budgets to be tailored according to the modality and task. Experiments on vision and language benchmarks reveal that the tensor construction directly impacts performance, sometimes better than standard LoRA under similar parameter counts.
comment: Published at ICASSP 2026. 5 pages, 1 figure, 2 tables. Code can be found at https://github.com/ax-le/TensLoRA
Ordering-based Causal Discovery via Generalized Score Matching
Learning DAG structures from purely observational data remains a long-standing challenge across scientific domains. An emerging line of research leverages the score of the data distribution to initially identify a topological order of the underlying DAG via leaf node detection and subsequently performs edge pruning for graph recovery. This paper extends the score matching framework for causal discovery, which is originally designated for continuous data, and introduces a novel leaf discriminant criterion based on the discrete score function. Through simulated and real-world experiments, we demonstrate that our theory enables accurate inference of true causal orders from observed discrete data and the identified ordering can significantly boost the accuracy of existing causal discovery baselines on nearly all of the settings.
MMedAgent-RL: Optimizing Multi-Agent Collaboration for Multimodal Medical Reasoning ICLR 2026
Medical Large Vision-Language Models (Med-LVLMs) have shown strong potential in multimodal diagnostic tasks. However, existing single-agent models struggle to generalize across diverse medical specialties, limiting their performance. Recent efforts introduce multi-agent collaboration frameworks inspired by clinical workflows, where general practitioners (GPs) and specialists interact in a fixed sequence. Despite improvements, these static pipelines lack flexibility and adaptability in reasoning. To address this, we propose MMedAgent-RL, a reinforcement learning (RL)-based multi-agent framework that enables dynamic, optimized collaboration among medical agents. Specifically, we train two GP agents based on Qwen2.5-VL via RL: the triage doctor learns to assign patients to appropriate specialties, while the attending physician integrates the judgments from multi-specialists and its own knowledge to make final decisions. To address the inconsistency in specialist outputs, we introduce a curriculum learning (CL)-guided RL strategy with dynamic entropy regulation, progressively teaching the attending physician to balance between imitating specialists and correcting their mistakes. Experiments on five medical VQA benchmarks demonstrate that MMedAgent-RL outperforms both open-source and proprietary Med-LVLMs. Notably, it achieves an average performance gain of 23.6% over strong baselines.
comment: ICLR 2026
Exploration vs Exploitation: Rethinking RLVR through Clipping, Entropy, and Spurious Reward ICLR 2026
This paper examines the exploration-exploitation trade-off in reinforcement learning with verifiable rewards (RLVR), a framework for improving the reasoning of Large Language Models (LLMs). Recent studies suggest that RLVR can elicit strong mathematical reasoning in LLMs through two seemingly paradoxical mechanisms: spurious rewards, which suppress exploitation by rewarding outcomes unrelated to the ground truth, and entropy minimization, which suppresses exploration by pushing the model toward more confident and deterministic outputs, highlighting a puzzling dynamic: both discouraging exploitation and discouraging exploration improve reasoning performance, yet the underlying principles that reconcile these effects remain poorly understood. We focus on two fundamental questions: (i) how policy entropy relates to performance, and (ii) whether spurious rewards yield gains, potentially through the interplay of clipping bias and model contamination. Our results show that clipping bias under spurious rewards reduces policy entropy, leading to more confident and deterministic outputs, while entropy minimization alone is insufficient for improvement. We further propose a reward-misalignment model explaining why spurious rewards can enhance performance beyond contaminated settings. Our findings clarify the mechanisms behind spurious-reward benefits and provide principles for more effective RLVR training.
comment: Accepted by ICLR 2026
Analyzing Message-Code Inconsistency in AI Coding Agent-Authored Pull Requests
Pull request (PR) descriptions generated by AI coding agents are the primary channel for communicating code changes to human reviewers. However, the alignment between these messages and the actual changes remains unexplored, raising concerns about the trustworthiness of AI agents. To fill this gap, we analyzed 23,247 agentic PRs across five agents using PR message-code inconsistency (PR-MCI). We contributed 974 manually annotated PRs, found 406 PRs (1.7%) exhibited high PR-MCI, and identified eight PR-MCI types, revealing that "descriptions claim unimplemented changes" was the most common issue (45.4%). Statistical tests confirmed that high-MCI PRs had 51.7% lower acceptance rates (28.3% vs. 80.0%) and took 3.5 times longer to merge (55.8 vs. 16.0 hours). Our findings suggest that unreliable PR descriptions undermine trust in AI agents, highlighting the need for PR-MCI verification mechanisms and improved PR generation to enable trustworthy human-AI collaboration.
comment: Accepted by MSR'26 Mining Challenge Track
Masked Generative Policy for Robotic Control
We present Masked Generative Policy (MGP), a novel framework for visuomotor imitation learning. We represent actions as discrete tokens, and train a conditional masked transformer that generates tokens in parallel and then rapidly refines only low-confidence tokens. We further propose two new sampling paradigms: MGP-Short, which performs parallel masked generation with score-based refinement for Markovian tasks, and MGP-Long, which predicts full trajectories in a single pass and dynamically refines low-confidence action tokens based on new observations. With globally coherent prediction and robust adaptive execution capabilities, MGP-Long enables reliable control on complex and non-Markovian tasks that prior methods struggle with. Extensive evaluations on 150 robotic manipulation tasks spanning the Meta-World and LIBERO benchmarks show that MGP achieves both rapid inference and superior success rates compared to state-of-the-art diffusion and autoregressive policies. Specifically, MGP increases the average success rate by 9% across 150 tasks while cutting per-sequence inference time by up to 35x. It further improves the average success rate by 60% in dynamic and missing-observation environments, and solves two non-Markovian scenarios where other state-of-the-art methods fail.
Not Your Typical Sycophant: The Elusive Nature of Sycophancy in Large Language Models
We propose a novel way to evaluate sycophancy of LLMs in a direct and neutral way, mitigating various forms of uncontrolled bias, noise, or manipulative language, deliberately injected to prompts in prior works. A key novelty in our approach is the use of LLM-as-a-judge, evaluation of sycophancy as a zero-sum game in a bet setting. Under this framework, sycophancy serves one individual (the user) while explicitly incurring cost on another. Comparing four leading models - Gemini 2.5 Pro, ChatGpt 4o, Mistral-Large-Instruct-2411, and Claude Sonnet 3.7 - we find that while all models exhibit sycophantic tendencies in the common setting, in which sycophancy is self-serving to the user and incurs no cost on others, Claude and Mistral exhibit "moral remorse" and over-compensate for their sycophancy in case it explicitly harms a third party. Additionally, we observed that all models are biased toward the answer proposed last. Crucially, we find that these two phenomena are not independent; sycophancy and recency bias interact to produce `constructive interference' effect, where the tendency to agree with the user is exacerbated when the user's opinion is presented last.
Adjust for Trust: Mitigating Trust-Induced Inappropriate Reliance on AI Assistance
Trust biases how users rely on AI recommendations in AI-assisted decision-making tasks, with low and high levels of trust resulting in increased under- and over-reliance, respectively. We propose that AI assistants should adapt their behavior through trust-adaptive interventions to mitigate such inappropriate reliance. For instance, when user trust is low, providing an explanation can elicit more careful consideration of the assistant's advice by the user. In two decision-making scenarios -- laypeople answering science questions and doctors making medical diagnoses -- we find that providing supporting and counter-explanations during moments of low and high trust, respectively, yields up to 38% reduction in inappropriate reliance and 20% improvement in decision accuracy. We are similarly able to reduce over-reliance by adaptively inserting forced pauses to promote deliberation. Our results highlight how AI adaptation to user trust facilitates appropriate reliance, presenting exciting avenues for improving human-AI collaboration.
Is In-Context Learning Learning? ICLR 2026
In-context learning (ICL) allows some autoregressive models to solve tasks via next-token prediction and without needing further training. This has led to claims about these model's ability to solve (learn) unseen tasks with only a few shots (exemplars) in the prompt. However, deduction does not always imply learning, as ICL does not explicitly encode a given observation. Instead, the models rely on their prior knowledge and the exemplars given, if any. We argue that, mathematically, ICL does constitute learning, but its full characterisation requires empirical work. We then carry out a large-scale analysis of ICL ablating out or accounting for memorisation, pretraining, distributional shifts, and prompting style and phrasing. We find that ICL is an effective learning paradigm, but limited in its ability to learn and generalise to unseen tasks. We note that, in the limit where exemplars become more numerous, accuracy is insensitive to exemplar distribution, model, prompt style, and the input's linguistic features. Instead, it deduces patterns from regularities in the prompt, which leads to distributional sensitivity, especially in prompting styles such as chain-of-thought. Given the varied accuracies on formally similar tasks, we conclude that autoregression's ad-hoc encoding is not a robust mechanism, and suggests limited all-purpose generalisability.
comment: Accepted to ICLR 2026
Beyond Data Privacy: New Privacy Risks for Large Language Models
Large Language Models (LLMs) have achieved remarkable progress in natural language understanding, reasoning, and autonomous decision-making. However, these advancements have also come with significant privacy concerns. While significant research has focused on mitigating the data privacy risks of LLMs during various stages of model training, less attention has been paid to new threats emerging from their deployment. The integration of LLMs into widely used applications and the weaponization of their autonomous abilities have created new privacy vulnerabilities. These vulnerabilities provide opportunities for both inadvertent data leakage and malicious exfiltration from LLM-powered systems. Additionally, adversaries can exploit these systems to launch sophisticated, large-scale privacy attacks, threatening not only individual privacy but also financial security and societal trust. In this paper, we systematically examine these emerging privacy risks of LLMs. We also discuss potential mitigation strategies and call for the research community to broaden its focus beyond data privacy risks, developing new defenses to address the evolving threats posed by increasingly powerful LLMs and LLM-powered systems.
comment: Published in the IEEE Data Engineering Bulletin: http://sites.computer.org/debull/A25dec/issue1.htm
GHOST: Hallucination-Inducing Image Generation for Multimodal LLMs
Object hallucination in Multimodal Large Language Models (MLLMs) is a persistent failure mode that causes the model to perceive objects absent in the image. This weakness of MLLMs is currently studied using static benchmarks with fixed visual scenarios, which preempts the possibility of uncovering model-specific or unanticipated hallucination vulnerabilities. We introduce GHOST (Generating Hallucinations via Optimizing Stealth Tokens), a method designed to stress-test MLLMs by actively generating images that induce hallucination. GHOST is fully automatic and requires no human supervision or prior knowledge. It operates by optimizing in the image embedding space to mislead the model while keeping the target object absent, and then guiding a diffusion model conditioned on the embedding to generate natural-looking images. The resulting images remain visually natural and close to the original input, yet introduce subtle misleading cues that cause the model to hallucinate. We evaluate our method across a range of models, including reasoning models like GLM-4.1V-Thinking, and achieve a hallucination success rate exceeding 28%, compared to around 1% in prior data-driven discovery methods. We confirm that the generated images are both high-quality and object-free through quantitative metrics and human evaluation. Also, GHOST uncovers transferable vulnerabilities: images optimized for Qwen2.5-VL induce hallucinations in GPT-4o at a 66.5% rate. Finally, we show that fine-tuning on our images mitigates hallucination, positioning GHOST as both a diagnostic and corrective tool for building more reliable multimodal systems.
RAFFLES: Reasoning-based Attribution of Faults for LLM Systems
The advent of complex, interconnected long-horizon LLM systems has made it incredibly tricky to identify where and when these systems break down. Evaluation capabilities that currently exist today are limited in that they often focus on simple metrics, end-to-end outcomes, and are dependent on the perspectives of humans. In order to match the increasing complexity of these many component systems, evaluation frameworks must also be able to reason, probe, iterate, and understand the nuanced logic passing through these systems. In this paper, we present RAFFLES, an offline evaluation architecture that incorporates iterative reasoning. Specifically, RAFFLES operates as an iterative, multi-component pipeline, using a central Judge to systematically identify faults and a set of specialized Evaluators to assess the quality of the candidate faults as well as rationales of the Judge. We evaluated RAFFLES with several benchmarks - the Who&When dataset to identify step-level faults in multi-agent systems and the ReasonEval datasets to diagnose step-level mathematical reasoning errors. RAFFLES outperforms strong baselines, achieving an accuracy of over 20% and 50% on the Who&When Hand-Crafted and Algorithmically-Generated datasets, and over 80% on the ReasonEval datasets. These results demonstrate a key step towards introducing automated fault detection for autonomous systems over labor-intensive manual review.
On the Impact of the Utility in Semivalue-based Data Valuation ICLR 2026
Semivalue-based data valuation uses cooperative-game theory intuitions to assign each data point a value reflecting its contribution to a downstream task. Still, those values depend on the practitioner's choice of utility, raising the question: How robust is semivalue-based data valuation to changes in the utility? This issue is critical when the utility is set as a trade-off between several criteria and when practitioners must select among multiple equally valid utilities. We address it by introducing the notion of a dataset's spatial signature: given a semivalue, we embed each data point into a lower-dimensional space where any utility becomes a linear functional, making the data valuation framework amenable to a simpler geometric picture. Building on this, we propose a practical methodology centered on an explicit robustness metric that informs practitioners whether and by how much their data valuation results will shift as the utility changes. We validate this approach across diverse datasets and semivalues, demonstrating strong agreement with rank-correlation analyses and offering analytical insight into how choosing a semivalue can amplify or diminish robustness.
comment: 45 pages, 19 figures. Accepted at ICLR 2026. This version corresponds to the accepted manuscript; minor changes may appear in the final camera-ready version
DeNOTS: Stable Deep Neural ODEs for Time Series
Neural CDEs provide a natural way to process the temporal evolution of irregular time series. The number of function evaluations (NFE) is these systems' natural analog of depth (the number of layers in traditional neural networks). It is usually regulated via solver error tolerance: lower tolerance means higher numerical precision, requiring more integration steps. However, lowering tolerances does not adequately increase the models' expressiveness. We propose a simple yet effective alternative: scaling the integration time horizon to increase NFEs and "deepen`` the model. Increasing the integration interval causes uncontrollable growth in conventional vector fields, so we also propose a way to stabilize the dynamics via Negative Feedback (NF). It ensures provable stability without constraining flexibility. It also implies robustness: we provide theoretical bounds for Neural ODE risk using Gaussian process theory. Experiments on four open datasets demonstrate that our method, DeNOTS, outperforms existing approaches~ -- ~including recent Neural RDEs and state space models,~ -- ~achieving up to $20\%$ improvement in metrics. DeNOTS combines expressiveness, stability, and robustness, enabling reliable modelling in continuous-time domains.
Gateways to Tractability for Satisfiability in Pearl's Causal Hierarchy
Pearl's Causal Hierarchy (PCH) is a central framework for reasoning about probabilistic, interventional, and counterfactual statements, yet the satisfiability problem for PCH formulas is computationally intractable in almost all classical settings. We revisit this challenge through the lens of parameterized complexity and identify the first gateways to tractability. Our results include fixed-parameter and XP-algorithms for satisfiability in key probabilistic and counterfactual fragments, using parameters such as primal treewidth and the number of variables, together with matching hardness results that map the limits of tractability. Technically, we depart from the dynamic programming paradigm typically employed for treewidth-based algorithms and instead exploit structural characterizations of well-formed causal models, providing a new algorithmic toolkit for causal reasoning.
HERMES: KV Cache as Hierarchical Memory for Efficient Streaming Video Understanding
Recent advancements in Multimodal Large Language Models (MLLMs) have demonstrated significant improvement in offline video understanding. However, extending these capabilities to streaming video inputs, remains challenging, as existing models struggle to simultaneously maintain stable understanding performance, real-time responses, and low GPU memory overhead. To address this challenge, we propose HERMES, a novel training-free architecture for real-time and accurate understanding of video streams. Based on a mechanistic attention investigation, we conceptualize KV cache as a hierarchical memory framework that encapsulates video information across multiple granularities. During inference, HERMES reuses a compact KV cache, enabling efficient streaming understanding under resource constraints. Notably, HERMES requires no auxiliary computations upon the arrival of user queries, thereby guaranteeing real-time responses for continuous video stream interactions, which achieves 10$\times$ faster TTFT compared to prior SOTA. Even when reducing video tokens by up to 68% compared with uniform sampling, HERMES achieves superior or comparable accuracy across all benchmarks, with up to 11.4% gains on streaming datasets.
Resisting Manipulative Bots in Meme Coin Copy Trading: A Multi-Agent Approach with Chain-of-Thought Reasoning
Copy trading has become the dominant entry strategy in meme coin markets. However, due to the market's extreme illiquid and volatile nature, the strategy exposes an exploitable attack surface: adversaries deploy manipulative bots to front-run trades, conceal positions, and fabricate sentiment, systematically extracting value from naïve copiers at scale. Despite its prevalence, bot-driven manipulation remains largely unexplored, and no robust defensive framework exists. We propose a manipulation-resistant copy-trading system based on a multi-agent architecture powered by a multi-modal, explainable large language model (LLM). Our system decomposes copy trading into three specialized agents for coin evaluation, wallet selection, and timing assessment. Evaluated on historical data from over 6,000 meme coins, our approach outperforms zero-shot and most statistic-driven baselines in prediction accuracy as well as all baselines in economic performance, achieving an average return of 14% for identified smart-money trades and an estimated copier return of 3% per trade under realistic market frictions. Overall, our results demonstrate the effectiveness of agent-based defenses and predictability of trader profitability in adversarial meme coin markets, providing a practical foundation for robust copy trading.
Cross-Platform Scaling of Vision-Language-Action Models from Edge to Cloud GPUs
Vision-Language-Action (VLA) models have emerged as powerful generalist policies for robotic control, yet their performance scaling across model architectures and hardware platforms, as well as their associated power budgets, remain poorly understood. This work presents an evaluation of five representative VLA models -- spanning state-of-the-art baselines and two newly proposed architectures -- targeting edge and datacenter GPU platforms. Using the LIBERO benchmark, we measure accuracy alongside system-level metrics, including latency, throughput, and peak memory usage, under varying edge power constraints and high-performance datacenter GPU configurations. Our results identify distinct scaling trends: (1) architectural choices, such as action tokenization and model backbone size, strongly influence throughput and memory footprint; (2) power-constrained edge devices exhibit non-linear performance degradation, with some configurations matching or exceeding older datacenter GPUs; and (3) high-throughput variants can be achieved without significant accuracy loss. These findings provide actionable insights when selecting and optimizing VLAs across a range of deployment constraints. Our work challenges current assumptions about the superiority of datacenter hardware for robotic inference.
comment: To appear in the Asilomar Conference on Signals, Systems, and Computers 2025
Autiverse: Eliciting Autistic Adolescents' Daily Narratives through AI-guided Multimodal Journaling
Journaling can potentially serve as an effective method for autistic adolescents to improve narrative skills. However, its text-centric nature and high executive functioning demands present barriers to practice. We present Autiverse, an AI-guided multimodal journaling app for tablets that scaffolds daily narratives through conversational prompts and visual supports. Autiverse elicits key details of an adolescent-selected event through a stepwise dialogue with peer-like, customizable AI and composes them into an editable four-panel comic strip. Through a two-week deployment study with 10 autistic adolescent-parent dyads, we examine how Autiverse supports autistic adolescents to organize their daily experience and emotion. Our findings show Autiverse scaffolded adolescents' coherent narratives, while enabling parents to learn additional details of their child's events and emotions. Moreover, the customized AI peer created a comfortable space for sharing, fostering enjoyment and a strong sense of agency. Drawing on these results, we discuss implications for adaptive scaffolding across autism profiles, socio-emotionally appropriate AI peer design, and balancing autonomy with parental involvement.
comment: 19 pages excluding reference. Conditionally accepted to ACM CHI 2026
Towards a Physics Foundation Model
Foundation models have revolutionized natural language processing through a ``train once, deploy anywhere'' paradigm, where a single pre-trained model adapts to countless downstream tasks without retraining. Access to a Physics Foundation Model (PFM) would be transformative - democratizing access to high-fidelity simulations, accelerating scientific discovery, and eliminating the need for specialized solver development. Yet current physics-aware machine learning approaches remain fundamentally limited to single, narrow domains and require retraining for each new system. We present the General Physics Transformer (GPhyT), trained on 1.8 TB of diverse simulation data, that demonstrates foundation model capabilities are achievable for physics. Our key insight is that transformers can learn to infer governing dynamics from context, enabling a single model to simulate fluid-solid interactions, shock waves, thermal convection, and multi-phase dynamics without being told the underlying equations. GPhyT achieves three critical breakthroughs: (1) superior performance across multiple physics domains, outperforming specialized architectures by more than 7x, (2) plausible zero-shot generalization to entirely unseen physical systems through in-context learning, and (3) more stable long-term predictions through long-horizon rollouts. By establishing that a single model can learn generalizable physical principles from data alone, this work opens the path toward a universal PFM that could transform computational science and engineering.
Computational Phenomenology of Borderline Personality Disorder: A Comparative Evaluation of LLM-Simulated Expert Personas and Human Clinical Experts
Building on a human-led thematic analysis of life-story interviews with inpatients with Borderline Personality Disorder, this study examines the capacity of large language models (OpenAI's GPT, Google's Gemini, and Anthropic's Claude) to support qualitative clinical analysis. The models were evaluated through a mixed procedure. Study A involved blinded and non-blinded expert judges in phenomenology and clinical psychology. Assessments included semantic congruence, Jaccard coefficients for overlap of outputs, multidimensional validity ratings of credibility, coherence, and the substantiveness of results, and their grounding in qualitative data. In Study B, neural methods were used to embed the theme descriptions created by humans and the models in a two-dimensional vector space to provide a computational measure of the difference between human and model semantics and linguistic style. In Study C, complementary non-expert evaluations were conducted to examine the influence of thematic verbosity on the perception of human authorship and content validity. Results of all three studies revealed variable overlap with the human analysis, with models being partly indistinguishable from, and also identifying themes originally omitted by, human researchers. The findings highlight both the variability and potential of AI-augmented thematic qualitative analysis to mitigate human interpretative bias and enhance sensitivity.
comment: 20 pages, 7 tables, 1 figure
Fundamental Limits of Hierarchical Secure Aggregation with Cyclic User Association
Secure aggregation is motivated by federated learning (FL) where a cloud server aims to compute an {aggregated} model (i.e., weights of deep neural networks) of the locally-trained models of numerous clients {through an iterative communication process}, while adhering to data security requirements. Hierarchical secure aggregation (HSA) extends this concept to a three-layer hierarchical network, where clustered users communicate with the server through an intermediate layer of relays. In HSA, beyond conventional server security, relay security is also enforced to ensure that the relays remain oblivious to the users' inputs (an abstraction of the local models in FL). {Existing studies on HSA that jointly consider communication and secret key generation efficiency typically assume that each user is associated with only one relay, limiting opportunities for coding across inter-cluster users to achieve efficient communication and key generation.} In this paper, we consider HSA with a cyclic association pattern where each user is connected to $B$ consecutive relays in a wrap-around manner. We propose an efficient aggregation scheme which includes a message design for the inputs inspired by gradient coding-a well-known technique for efficient communication in distributed computing-along with a highly non-trivial security key design.
comment: Manuscript submitted to IEEE Transactions on Information Theory for review
SafeRBench: Dissecting the Reasoning Safety of Large Language Models
Large Reasoning Models (LRMs) have significantly improved problem-solving through explicit Chain-of-Thought (CoT) reasoning. However, this capability creates a Safety-Helpfulness Paradox: the reasoning process itself can be misused to justify harmful actions or conceal malicious intent behind lengthy intermediate steps. Most existing benchmarks only check the final output, missing how risks evolve, or ``drift'', during the model's internal reasoning. To address this, we propose SafeRBench, the first framework to evaluate LRM safety end-to-end, from the initial input to the reasoning trace and final answer. Our approach introduces: (i) a Risk Stratification Probing that uses specific risk levels to stress-test safety boundaries beyond simple topics; (ii) Micro-Thought Analysis, a new chunking method that segments traces to pinpoint exactly where safety alignment breaks down; and (iii) a comprehensive suite of 10 fine-grained metrics that, for the first time, jointly measure a model's Risk Exposure (e.g., risk level, execution feasibility) and Safety Awareness (e.g., intent awareness). Experiments on 19 LRMs reveal that while enabling Thinking modes improves safety in mid-sized models, it paradoxically increases actionable risks in larger models due to a strong always-help tendency.
comment: 29 pages, 8 figures
SIPDO: Closed-Loop Prompt Optimization via Synthetic Data Feedback
Prompt quality plays a critical role in the performance of large language models (LLMs), motivating a growing body of work on prompt optimization. Most existing methods optimize prompts over a fixed dataset, assuming static input distributions and offering limited support for iterative improvement. We introduce SIPDO (Self-Improving Prompts through Data-Augmented Optimization), a closed-loop framework for prompt learning that integrates synthetic data generation into the optimization process. SIPDO couples a synthetic data generator with a prompt optimizer, where the generator produces new examples that reveal current prompt weaknesses and the optimizer incrementally refines the prompt in response. This feedback-driven loop enables systematic improvement of prompt performance without assuming access to external supervision or new tasks. Experiments across question answering and reasoning benchmarks show that SIPDO outperforms standard prompt tuning methods, highlighting the value of integrating data synthesis into prompt learning workflows.
Introducing COGENT3: An AI Architecture for Emergent Cognition
This paper presents COGENT3 (or Collective Growth and Entropy-modulated Triads System), a novel approach for emergent cognition integrating pattern formation networks with group influence dynamics. Contrasting with traditional strategies that rely on predetermined architectures, computational structures emerge dynamically in our framework through agent interactions. This enables a more flexible and adaptive system exhibiting characteristics reminiscent of human cognitive processes. The incorporation of temperature modulation and memory effects in COGENT3 closely integrates statistical mechanics, machine learning, and cognitive science.
comment: V2 has updated content in several sections, fixed typos
DecompGAIL: Learning Realistic Traffic Behaviors with Decomposed Multi-Agent Generative Adversarial Imitation Learning ICLR
Realistic traffic simulation is critical for the development of autonomous driving systems and urban mobility planning, yet existing imitation learning approaches often fail to model realistic traffic behaviors. Behavior cloning suffers from covariate shift, while Generative Adversarial Imitation Learning (GAIL) is notoriously unstable in multi-agent settings. We identify a key source of this instability: irrelevant interaction misguidance, where a discriminator penalizes an ego vehicle's realistic behavior due to unrealistic interactions among its neighbors. To address this, we propose Decomposed Multi-agent GAIL (DecompGAIL), which explicitly decomposes realism into ego-map and ego-neighbor components, filtering out misleading neighbor: neighbor and neighbor: map interactions. We further introduce a social PPO objective that augments ego rewards with distance-weighted neighborhood rewards, encouraging overall realism across agents. Integrated into a lightweight SMART-based backbone, DecompGAIL achieves state-of-the-art performance on the WOMD Sim Agents 2025 benchmark.
comment: accepted by ICLR
Thinking on the Fly: Test-Time Reasoning Enhancement via Latent Thought Policy Optimization ICLR 2026
Recent advancements in Large Language Models (LLMs) have shifted from explicit Chain-of-Thought (CoT) reasoning to more efficient latent reasoning, where intermediate thoughts are represented as vectors rather than text. However, latent reasoning can be brittle on challenging, out-of-distribution tasks where robust reasoning is most critical. To overcome these limitations, we introduce Latent Thought Policy Optimization (LTPO), a parameter-free framework that enhances LLM reasoning entirely at test time, without requiring model parameter updates. LTPO treats intermediate latent "thought" vectors as dynamic parameters that are actively optimized for each problem instance. It employs an online policy gradient method guided by an intrinsic, confidence-based reward signal computed directly from the frozen LLM's own output distributions, eliminating the need for external supervision or expensive text generation during optimization. Extensive experiments on five reasoning benchmarks show that LTPO not only matches or surpasses strong baselines on standard tasks but also demonstrates remarkable robustness where others fail. Most notably, on highly challenging AIME benchmarks where existing latent reasoning baselines collapse to near-zero accuracy, LTPO delivers substantial improvements, showcasing a unique capability for complex reasoning.
comment: Accepted to ICLR 2026
Distillation-Enabled Knowledge Alignment for Generative Semantic Communications of AIGC Images
Due to the surging amount of AI-generated images, its provisioning to edges and mobile users from the cloud incurs substantial traffic on networks. Generative semantic communication (GSC) offers a promising solution by transmitting highly compact information, i.e., prompt text and latent representations, instead of high-dimensional image data. However, GSC relies on the alignment between the knowledge in the cloud generative AI (GAI) and that possessed by the edges and users, and between the knowledge for wireless transmission and that of actual channels, which remains challenging. In this paper, we propose DeKA-g, a distillation-enabled knowledge alignment algorithm for GSC systems. The core idea is to distill the image generation knowledge from the cloud-GAI into low-rank matrices, which can be incorporated by the edge and used to adapt the transmission knowledge to diverse wireless channel conditions. DeKA-g comprises two novel methods: metaword-aided knowledge distillation (MAKD) and condition-aware low-rank adaptation (CALA). For MAKD, an optimized metaword is employed to enhance the efficiency of knowledge distillation, while CALA enables efficient adaptation to diverse rate requirements and channel conditions. From simulation results, DeKA-g improves the consistency between the edge-generated images and the cloud-generated ones by 44% and enahnces the average transmission quality in terms of PSNR by 6.5 dB over the baselines without knowledge alignment.
On the Failure of Latent State Persistence in Large Language Models
While Large Language Models (LLMs) excel in reasoning, whether they can sustain persistent latent states remains under-explored. The capacity to maintain and manipulate unexpressed, internal representations-analogous to human working memory-is a cornerstone of complex reasoning. In this paper, we formalize and quantify the "Latent State Persistence" (LSP) gap through three novel experiments. First, we utilize a Number Guessing Game, demonstrating that across independent queries, LLMs fail to allocate probability mass to a singular hidden choice, violating a fundamental probabilistic principle. Second, we employ a Yes-No Game to show that as the number of questions increases, LLMs suffer from "concept drift," leading to inevitable self-contradictions due to the lack of LSP. Finally, inspired by Mathematical Mentalism, we task models with tracking transformations on hidden variables, revealing a failure in variable binding and state evolution when the initial state is not explicitly present in the context. Collectively, these findings suggest that LLMs function as reactive post-hoc solvers rather than proactive planners with LSP. Our work provides a framework for evaluating the fidelity of internal representations and highlights a fundamental architectural divergence between autoregressive transformers and human-like cognition.
comment: 8 pages, 6 figures, 9 tables
Pretrain Value, Not Reward: Decoupled Value Policy Optimization
In this paper, we explore how directly pretraining a value model simplifies and stabilizes reinforcement learning from human feedback (RLHF). In reinforcement learning, value estimation is the key to policy optimization, distinct from reward supervision. The value function predicts the \emph{return-to-go} of a partial answer, that is, how promising the partial answer is if it were continued to completion. In RLHF, however, the standard pipeline first pretrains a reward model and then learns a value function online, even though no new reward signals are available once preference data is collected. This makes critic learning redundant, as the process of training a reward model and then deriving a value model is informationally equivalent to directly pretraining a value model. Importantly, this requires no additional supervision, and our value model is trained on exactly the same data used for reward modeling. Building on this insight, we introduce \emph{Decoupled Value Policy Optimization} (DVPO), a framework that pretrains a \emph{Global Value Model} (GVM) offline and freezes it as a universal critic for policy learning. The GVM provides stable, fine-grained credit assignment without critic drift or trajectory sampling. Experiments across MT-Bench, Alpaca-Eval, and Arena-Hard demonstrate that DVPO matches or surpasses state-of-the-art RLHF methods. These results highlight RLHF can be reframed as policy-only optimization guided by a single pretrained value model.
comment: 16 pages, 3 figures
Explaining Group Recommendations via Counterfactuals
Group recommender systems help users make collective choices but often lack transparency, leaving group members uncertain about why items are suggested. Existing explanation methods focus on individuals, offering limited support for groups where multiple preferences interact. In this paper, we propose a framework for group counterfactual explanations, which reveal how removing specific past interactions would change a group recommendation. We formalize this concept, introduce utility and fairness measures tailored to groups, and design heuristic algorithms, such as Pareto-based filtering and grow-and-prune strategies, for efficient explanation discovery. Experiments on MovieLens and Amazon datasets show clear trade-offs: low-cost methods produce larger, less fair explanations, while other approaches yield concise and balanced results at higher cost. Furthermore, the Pareto-filtering heuristic demonstrates significant efficiency improvements in sparse settings.
Seeing Beyond the Image: ECG and Anatomical Knowledge-Guided Myocardial Scar Segmentation from Late Gadolinium-Enhanced Images
Accurate segmentation of myocardial scar from late gadolinium enhanced (LGE) cardiac MRI is essential for evaluating tissue viability, yet remains challenging due to variable contrast and imaging artifacts. Electrocardiogram (ECG) signals provide complementary physiological information, as conduction abnormalities can help localize or suggest scarred myocardial regions. In this work, we propose a novel multimodal framework that integrates ECG-derived electrophysiological information with anatomical priors from the AHA-17 atlas for physiologically consistent LGE-based scar segmentation. As ECGs and LGE-MRIs are not acquired simultaneously, we introduce a Temporal Aware Feature Fusion (TAFF) mechanism that dynamically weights and fuses features based on their acquisition time difference. Our method was evaluated on a clinical dataset and achieved substantial gains over the state-of-the-art image-only baseline (nnU-Net), increasing the average Dice score for scars from 0.6149 to 0.8463 and achieving high performance in both precision (0.9115) and sensitivity (0.9043). These results show that integrating physiological and anatomical knowledge allows the model to "see beyond the image", setting a new direction for robust and physiologically grounded cardiac scar segmentation.
STaR: Towards Effective and Stable Table Reasoning via Slow-Thinking Large Language Models
Table reasoning with large language models (LLMs) plays a critical role in building intelligent systems capable of understanding and analyzing tabular data. Despite recent progress, existing methods still face key limitations: their reasoning processes lacks depth and explicit multi-step reasoning, often relying solely on implicit language model understanding. In addition, their reasoning processes suffer from instability, primarily caused by model uncertainty. In this work, we propose STaR, a novel slow-thinking model that can achieve effective and stable table reasoning. To enable effective multi-step reasoning, we design a two-stage training framework consisting of supervised fine-tuning (SFT) warm-up followed by reinforced fine-tuning (RFT). Specifically, in the SFT stage, we construct a high-quality dataset through automatic self-verification. In the RFT stage, we introduce a difficulty-aware reinforcement learning mechanism to further enhance reasoning capabilities. Furthermore, to improve reasoning stability, we introduce trajectory-level uncertainty quantification, which fuses token-level confidence with answer-level consistency, enabling the selection of better reasoning trajectories. Extensive experiments demonstrate that STaR-8B achieves state-of-the-art performance on in-domain benchmarks and exhibits strong generalization to out-of-domain datasets, highlighting its potential for enhancing both effectiveness and stability in table reasoning.
Tandem Training for Language Models
As language models continue to rapidly improve, we can expect their actions and reasoning to become difficult or impossible for weaker agents and humans to follow, undermining interpretability and oversight. With an eye on long-term futures, we pursue methods that encourage models to produce solutions that remain intelligible to weaker collaborators. We formalize intelligibility as handoff robustness: a strong model's solution is intelligible to a weaker model if randomly handing off control to the weaker model along the solution path does not cause failure. Building on this criterion, we introduce tandem training for language models, a reinforcement learning (RL) paradigm in which rollout tokens are intermittently and randomly sampled from a frozen weak model rather than the strong model being trained. Because rollouts succeed only when the strong model's actions and reasoning process can be continued by the weak model -- when the two can co-construct a successful solution -- optimizing standard RL objectives with tandem training implicitly incentivizes both correctness and intelligibility. In the GSM8K math reasoning task, tandem training reliably teaches models to abandon jargon and adapt their language to weaker partners while keeping task accuracy high. Our results demonstrate a promising route to building AI systems that remain auditable by weaker agents, with implications for human--AI collaboration and multi-agent communication.
Learning Grouped Lattice Vector Quantizers for Low-Bit LLM Compression NeurIPS 2025
Large Language Models (LLMs) have demonstrated remarkable capabilities but typically require extensive computational resources and memory for inference. Post-training quantization (PTQ) can effectively reduce these demands by storing weights in lower bit-width formats. However, standard uniform quantization often leads to notable performance degradation, particularly in low-bit scenarios. In this work, we introduce a Grouped Lattice Vector Quantization (GLVQ) framework that assigns each group of weights a customized lattice codebook, defined by a learnable generation matrix. To address the non-differentiability of the quantization process, we adopt Babai rounding to approximate nearest-lattice-point search during training, which enables stable optimization of the generation matrices. Once trained, decoding reduces to a simple matrix-vector multiplication, yielding an efficient and practical quantization pipeline. Experiments on multiple benchmarks show that our approach achieves a better trade-off between model size and accuracy compared to existing post-training quantization baselines, highlighting its effectiveness in deploying large models under stringent resource constraints. Our source code is available on GitHub repository: https://github.com/xzhang9308/GLVQ.
comment: NeurIPS 2025 Poster
Noise-based reward-modulated learning
The pursuit of energy-efficient and adaptive artificial intelligence (AI) has positioned neuromorphic computing as a promising alternative to conventional computing. However, achieving learning on these platforms requires techniques that prioritize local information while enabling effective credit assignment. Here, we propose noise-based reward-modulated learning (NRL), a novel synaptic plasticity rule that mathematically unifies reinforcement learning and gradient-based optimization with biologically-inspired local updates. NRL addresses the computational bottleneck of exact gradients by approximating them through stochastic neural activity, transforming the inherent noise of biological and neuromorphic substrates into a functional resource. Drawing inspiration from biological learning, our method uses reward prediction errors as its optimization target to generate increasingly advantageous behavior, and eligibility traces to facilitate retrospective credit assignment. Experimental validation on reinforcement tasks, featuring immediate and delayed rewards, shows that NRL achieves performance comparable to baselines optimized using backpropagation, although with slower convergence, while showing significantly superior performance and scalability in multi-layer networks compared to reward-modulated Hebbian learning (RMHL), the most prominent similar approach. While tested on simple architectures, the results highlight the potential of noise-driven, brain-inspired learning for low-power adaptive systems, particularly in computing substrates with locality constraints. NRL offers a theoretically grounded paradigm well-suited for the event-driven characteristics of next-generation neuromorphic AI.
Tackling Federated Unlearning as a Parameter Estimation Problem
Privacy regulations require the erasure of data from deep learning models. This is a significant challenge that is amplified in Federated Learning, where data remains on clients, making full retraining or coordinated updates often infeasible. This work introduces an efficient Federated Unlearning framework based on information theory, modeling leakage as a parameter estimation problem. Our method uses second-order Hessian information to identify and selectively reset only the parameters most sensitive to the data being forgotten, followed by minimal federated retraining. This model-agnostic approach supports categorical and client unlearning without requiring server access to raw client data after initial information aggregation. Evaluations on benchmark datasets demonstrate strong privacy (MIA success near random, categorical knowledge erased) and high performance (Normalized Accuracy against re-trained benchmarks of $\approx$ 0.9), while aiming for increased efficiency over complete retraining. Furthermore, in a targeted backdoor attack scenario, our framework effectively neutralizes the malicious trigger, restoring model integrity. This offers a practical solution for data forgetting in FL.
comment: Substantial revisions are in progress; this version is being withdrawn in favor of a significantly updated manuscript
Integer Linear Programming Preprocessing for Maximum Satisfiability
The Maximum Satisfiability problem (MaxSAT) is a major optimization challenge with numerous practical applications. In recent MaxSAT evaluations, most MaxSAT solvers have incorporated an Integer Linear Programming (ILP) solver into their portfolios. However, a good portfolio strategy requires a lot of tuning work and is limited to the profiling benchmark. This paper proposes a methodology to fully integrate ILP preprocessing techniques into the MaxSAT solving pipeline and investigates the impact on the top-performing MaxSAT solvers. Experimental results show that our approach helps to improve 5 out of 6 state-of-the-art MaxSAT solvers, especially for WMaxCDCL-OpenWbo1200, the winner of the MaxSAT evaluation 2024 on the unweighted track, which is able to solve 15 additional instances using our methodology.
Prism: Towards Lowering User Cognitive Load in LLMs via Complex Intent Understanding
Large Language Models are rapidly emerging as web-native interfaces to social platforms. On the social web, users frequently have ambiguous and dynamic goals, making complex intent understanding-rather than single-turn execution-the cornerstone of effective human-LLM collaboration. Existing approaches attempt to clarify user intents through sequential or parallel questioning, yet they fall short of addressing the core challenge: modeling the logical dependencies among clarification questions. Inspired by the Cognitive Load Theory, we propose Prism, a novel framework for complex intent understanding that enables logically coherent and efficient intent clarification. Prism comprises four tailored modules: a complex intent decomposition module, which decomposes user intents into smaller, well-structured elements and identifies logical dependencies among them; a logical clarification generation module, which organizes clarification questions based on these dependencies to ensure coherent, low-friction interactions; an intent-aware reward module, which evaluates the quality of clarification trajectories via an intent-aware reward function and leverages Monte Carlo Sample to simulate user-LLM interactions for large-scale,high-quality training data generation; and a self-evolved intent tuning module, which iteratively refines the LLM's logical clarification capability through data-driven feedback and optimization. Prism consistently outperforms existing approaches across clarification interactions, intent execution, and cognitive load benchmarks. It achieves stateof-the-art logical consistency, reduces logical conflicts to 11.5%, increases user satisfaction by 14.4%, and decreases task completion time by 34.8%. All data and code are released.
Shared Spatial Memory Through Predictive Coding
Constructing a consistent shared spatial memory is a critical challenge in multi-agent systems, where partial observability and limited bandwidth often lead to catastrophic failures in coordination. We introduce a multi-agent predictive coding framework that formulates coordination as the minimization of mutual uncertainty among agents. Through an information bottleneck objective, this framework prompts agents to learn not only who and what to communicate but also when. At the foundation of this framework lies a grid-cell-like metric as internal spatial coding for self-localization, emerging spontaneously from self-supervised motion prediction. Building upon this internal spatial code, agents gradually develop a bandwidth-efficient communication mechanism and specialized neural populations that encode partners' locations-an artificial analogue of hippocampal social place cells (SPCs). These social representations are further utilized by a hierarchical reinforcement learning policy that actively explores to reduce joint uncertainty. On the Memory-Maze benchmark, our approach shows exceptional resilience to bandwidth constraints: success degrades gracefully from 73.5% to 64.4% as bandwidth shrinks from 128 to 4 bits/step, whereas a full-broadcast baseline collapses from 67.6% to 28.6%. Our findings establish a theoretically principled and biologically plausible basis for how complex social representations emerge from a unified predictive drive, leading to collective intelligence.
comment: We have prepared the open-source code and video demonstration pages: 1. Code: github.com/fangzr/SSM-PC 2. Demo: fangzr.github.io/SSM-PC/index.html
Constructing and Benchmarking: a Labeled Email Dataset for Text-Based Phishing and Spam Detection Framework
Phishing and spam emails remain a major cybersecurity threat, with attackers increasingly leveraging Large Language Models (LLMs) to craft highly deceptive content. This study presents a comprehensive email dataset containing phishing, spam, and legitimate messages, explicitly distinguishing between human- and LLM-generated content. Each email is annotated with its category, emotional appeal (e.g., urgency, fear, authority), and underlying motivation (e.g., link-following, credential theft, financial fraud). We benchmark multiple LLMs on their ability to identify these emotional and motivational cues and select the most reliable model to annotate the full dataset. To evaluate classification robustness, emails were also rephrased using several LLMs while preserving meaning and intent. A state-of-the-art LLM was then assessed on its performance across both original and rephrased emails using expert-labeled ground truth. The results highlight strong phishing detection capabilities but reveal persistent challenges in distinguishing spam from legitimate emails. Our dataset and evaluation framework contribute to improving AI-assisted email security systems. To support open science, all code, templates, and resources are available on our project site.
comment: Changing methodology
Surprisal and Metaphor Novelty Judgments: Moderate Correlations and Divergent Scaling Effects Revealed by Corpus-Based and Synthetic Datasets
Novel metaphor comprehension involves complex semantic processes and linguistic creativity, making it an interesting task for studying language models (LMs). This study investigates whether surprisal, a probabilistic measure of predictability in LMs, correlates with annotations of metaphor novelty in different datasets. We analyse the surprisal of metaphoric words in corpus-based and synthetic metaphor datasets using 16 causal LM variants. We propose a cloze-style surprisal method that conditions on full-sentence context. Results show that LM surprisal yields significant moderate correlations with scores/labels of metaphor novelty. We further identify divergent scaling patterns: on corpus-based data, correlation strength decreases with model size (inverse scaling effect), whereas on synthetic data it increases (quality-power hypothesis). We conclude that while surprisal can partially account for annotations of metaphor novelty, it remains limited as a metric of linguistic creativity. Code and data are publicly available: https://github.com/OmarMomen14/surprisal-metaphor-novelty
comment: to be published at EACL 2026 main conference
SWE-EVO: Benchmarking Coding Agents in Long-Horizon Software Evolution Scenarios
Existing benchmarks for AI coding agents focus on isolated, single-issue tasks such as fixing a bug or implementing a small feature. However, real-world software engineering is fundamentally a long-horizon endeavor: developers must interpret high-level requirements, plan coordinated changes across many files, and evolve codebases over multiple iterations while preserving existing functionality. We introduce SWE-EVO, a benchmark that evaluates agents on this long-horizon software evolution challenge. Constructed from release notes and version histories of seven mature open-source Python projects, SWE-EVO comprises 48 evolution tasks that require agents to implement multi-step modifications spanning an average of 21 files, validated against comprehensive test suites averaging 874 tests per instance. Experiments with state-of-the-art models reveal a striking capability gap: even GPT-5 with OpenHands achieves only a 21 percent resolution rate on SWE-EVO, compared to 65 percent on the single-issue SWE-Bench Verified. This demonstrates that current agents struggle with sustained, multi-file reasoning. We also propose Fix Rate, a fine-grained metric that captures partial progress toward solving these complex, long-horizon tasks.
DSSmoothing: Toward Certified Dataset Ownership Verification for Pre-trained Language Models via Dual-Space Smoothing
Large web-scale datasets have driven the rapid advancement of pre-trained language models (PLMs), but unauthorized data usage has raised serious copyright concerns. Existing dataset ownership verification (DOV) methods typically assume that watermarks remain stable during inference; however, this assumption often fails under natural noise and adversary-crafted perturbations. We propose the first certified dataset ownership verification method for PLMs under a gray-box setting (i.e., the defender can only query the suspicious model but is aware of its input representation module), based on dual-space smoothing (i.e., DSSmoothing). To address the challenges of text discreteness and semantic sensitivity, DSSmoothing introduces continuous perturbations in the embedding space to capture semantic robustness and applies controlled token reordering in the permutation space to capture sequential robustness. DSSmoothing consists of two stages: in the first stage, triggers are collaboratively embedded in both spaces to generate norm-constrained and robust watermarked datasets; in the second stage, randomized smoothing is applied in both spaces during verification to compute the watermark robustness (WR) of suspicious models and statistically compare it with the principal probability (PP) values of a set of benign models. Theoretically, DSSmoothing provides provable robustness guarantees for dataset ownership verification by ensuring that WR consistently exceeds PP under bounded dual-space perturbations. Extensive experiments on multiple representative web datasets demonstrate that DSSmoothing achieves stable and reliable verification performance and exhibits robustness against potential adaptive attacks. Our code is available at https://github.com/NcepuQiaoTing/DSSmoothing.
comment: 12 pages, 21 figures
Evolution of AI in Education: Agentic Workflows
The primary goal of this study is to analyze agentic workflows in education according to the proposed four major technological paradigms: reflection, planning, tool use, and multi-agent collaboration. We critically examine the role of AI agents in education through these key design paradigms, exploring their advantages, applications, and challenges. Second, to illustrate the practical potential of agentic systems, we present a proof-of-concept application: a multi-agent framework for automated essay scoring. Preliminary results suggest this agentic approach may offer improved consistency compared to stand-alone LLMs. Our findings highlight the transformative potential of AI agents in educational settings while underscoring the need for further research into their interpretability and trustworthiness.
comment: made the abstract more succinct, revised the methodology, added PRISMA flow chart, updated references
Sprecher Networks: A Parameter-Efficient Kolmogorov-Arnold Architecture
We introduce Sprecher Networks (SNs), a family of trainable architectures derived from David Sprecher's 1965 constructive form of the Kolmogorov-Arnold representation. Each SN block implements a "sum of shifted univariate functions" using only two shared learnable splines per block, a monotone inner spline $φ$ and a general outer spline $Φ$, together with a learnable shift parameter $η$ and a mixing vector $λ$ shared across all output dimensions. Stacking these blocks yields deep, compositional models; for vector-valued outputs we append an additional non-summed output block. We also propose an optional lateral mixing operator enabling intra-block communication between output channels with only $O(d_{\mathrm{out}})$ additional parameters. Owing to the vector (not matrix) mixing weights and spline sharing, SNs scale linearly in width, approximately $O(\sum_{\ell}(d_{\ell-1}+d_{\ell}+G))$ parameters for $G$ spline knots, versus $O(\sum_{\ell} d_{\ell-1}d_{\ell})$ for dense MLPs and $O(G\sum_{\ell} d_{\ell-1}d_{\ell})$ for edge-spline KANs. This linear width-scaling is particularly attractive for extremely wide, shallow models, where low depth can translate into low inference latency. Finally, we describe a sequential forward implementation that avoids materializing the $d_{\mathrm{in}}\times d_{\mathrm{out}}$ shifted-input tensor, reducing peak forward-intermediate memory from quadratic to linear in layer width, relevant for memory-constrained settings such as on-device/edge inference; we demonstrate deployability via fixed-point real-time digit classification on resource-constrained embedded device with only 4 MB RAM. We provide empirical demonstrations on supervised regression, Fashion-MNIST classification (including stable training at 25 hidden layers with residual connections and normalization), and a Poisson PINN, with controlled comparisons to MLP and KAN baselines.
comment: 45 pages
Foundation Models in Autonomous Driving: A Survey on Scenario Generation and Scenario Analysis
For autonomous vehicles, safe navigation in complex environments depends on handling a broad range of diverse and rare driving scenarios. Simulation- and scenario-based testing have emerged as key approaches to development and validation of autonomous driving systems. Traditional scenario generation relies on rule-based systems, knowledge-driven models, and data-driven synthesis, often producing limited diversity and unrealistic safety-critical cases. With the emergence of foundation models, which represent a new generation of pre-trained, general-purpose AI models, developers can process heterogeneous inputs (e.g., natural language, sensor data, HD maps, and control actions), enabling the synthesis and interpretation of complex driving scenarios. In this paper, we conduct a survey about the application of foundation models for scenario generation and scenario analysis in autonomous driving (as of May 2025). Our survey presents a unified taxonomy that includes large language models, vision-language models, multimodal large language models, diffusion models, and world models for the generation and analysis of autonomous driving scenarios. In addition, we review the methodologies, open-source datasets, simulation platforms, and benchmark challenges, and we examine the evaluation metrics tailored explicitly to scenario generation and analysis. Finally, the survey concludes by highlighting the open challenges and research questions, and outlining promising future research directions. All reviewed papers are listed in a continuously maintained repository, which contains supplementary materials and is available at https://github.com/TUM-AVS/FM-for-Scenario-Generation-Analysis.
comment: Final version (Accepted by the IEEE Open Journal of Intelligent Transportation Systems)
Fully tensorial approach to hypercomplex-valued neural networks
A fully tensorial theoretical framework for hypercomplex-valued neural networks is presented. The proposed approach enables neural network architectures to operate on data defined over arbitrary finite-dimensional algebras. The central observation is that algebra multiplication can be represented by a rank-three tensor, which allows all algebraic operations in neural network layers to be formulated in terms of standard tensor contractions, permutations, and reshaping operations. This tensor-based formulation provides a unified and dimension-independent description of hypercomplex-valued dense and convolutional layers and is directly compatible with modern deep learning libraries supporting optimized tensor operations. The proposed framework recovers existing constructions for four-dimensional algebras as a special case. Within this setting, a tensor-based version of the universal approximation theorem for single-layer hypercomplex-valued perceptrons is established under mild non-degeneracy assumptions on the underlying algebra, thereby providing a rigorous theoretical foundation for the considered class of neural networks.
comment: 23 pages, 3 figures
OntoMetric: An Ontology-Driven LLM-Assisted Framework for Automated ESG Metric Knowledge Graph Generation
Environmental, Social, and Governance (ESG) metric knowledge is inherently structured, connecting industries, reporting frameworks, metric categories, metrics, and calculation models through compositional dependencies, yet in practice this structure remains embedded implicitly in regulatory documents such as SASB, TCFD, and IFRS S2 and rarely exists as an explicit, governed, or machine-actionable artefact. Existing ESG ontologies define formal schemas but do not address scalable population and governance from authoritative regulatory sources, while unconstrained large language model (LLM) extraction frequently produces semantically incorrect entities, hallucinated relationships, and structurally invalid graphs. OntoMetric is an ontology-guided framework for the automated construction and governance of ESG metric knowledge graphs from regulatory documents that operationalises the ESG Metric Knowledge Graph (ESGMKG) ontology as a first-class constraint embedded directly into the extraction and population process. The framework integrates structure-aware segmentation, ontology-constrained LLM extraction enriched with semantic fields and deterministic identifiers, and two-phase validation combining semantic type verification with rule-based schema checking, while preserving segment-level and page-level provenance to ensure traceability to regulatory source text. Evaluation on five ESG regulatory standards shows that ontology-guided extraction achieves 65-90 percent semantic accuracy and over 80 percent schema compliance, compared with 3-10 percent for unconstrained baseline extraction, and yields stable cost efficiency with a cost per validated entity of 0.01-0.02 USD and a 48 times efficiency improvement over baseline.
CoBRA: Programming Cognitive Bias in Social Agents Using Classic Social Science Experiments
This paper introduces CoBRA, a novel toolkit for systematically specifying agent behavior in LLM-based social simulation. We found that conventional approaches that specify agent behavior through implicit natural-language descriptions often do not yield consistent behavior across models, and the resulting behavior does not capture the nuances of the descriptions. In contrast, CoBRA introduces a model-agnostic way to control agent behavior that lets researchers explicitly specify desired nuances and obtain consistent behavior across models. At the heart of CoBRA is a novel closed-loop system primitive with two components: (1) Cognitive Bias Index that measures the demonstrated cognitive bias of a social agent, by quantifying the agent's reactions in a set of validated classic social science experiments; (2) Behavioral Regulation Engine that aligns the agent's behavior to exhibit controlled cognitive bias. Through CoBRA, we show how to operationalize validated social science knowledge (i.e., classical experiments) as reusable "gym" environments for AI -- an approach that may generalize to richer social and affective simulations beyond bias alone.
comment: CHI 2026
Probing the Hidden Talent of ASR Foundation Models for L2 English Oral Assessment
In this paper, we explore the untapped potential of Whisper, a well-established automatic speech recognition (ASR) foundation model, in the context of L2 spoken language assessment (SLA). Unlike prior studies that extrinsically analyze transcriptions produced by Whisper, our approach goes a step further to probe its latent capabilities by extracting acoustic and linguistic features from hidden representations. With only a lightweight classifier being trained on top of Whisper's intermediate and final outputs, our method achieves strong performance on the GEPT picture-description dataset, outperforming existing cutting-edge baselines, including a multimodal approach. Furthermore, by incorporating image and text-prompt information as auxiliary relevance cues, we demonstrate additional performance gains. Finally, we conduct an in-depth analysis of Whisper's embeddings, which reveals that, even without task-specific fine-tuning, the model intrinsically encodes both ordinal proficiency patterns and semantic aspects of speech, highlighting its potential as a powerful foundation for SLA and other spoken language understanding tasks.
comment: Accepted to ICASSP 2026
Contrastive Consolidation of Top-Down Modulations Achieves Sparsely Supervised Continual Learning NeurIPS 2025
Biological brains learn continually from a stream of unlabeled data, while integrating specialized information from sparsely labeled examples without compromising their ability to generalize. Meanwhile, machine learning methods are susceptible to catastrophic forgetting in this natural learning setting, as supervised specialist fine-tuning degrades performance on the original task. We introduce task-modulated contrastive learning (TMCL), which takes inspiration from the biophysical machinery in the neocortex, using predictive coding principles to integrate top-down information continually and without supervision. We follow the idea that these principles build a view-invariant representation space, and that this can be implemented using a contrastive loss. Then, whenever labeled samples of a new class occur, new affine modulations are learned that improve separation of the new class from all others, without affecting feedforward weights. By co-opting the view-invariance learning mechanism, we then train feedforward weights to match the unmodulated representation of a data sample to its modulated counterparts. This introduces modulation invariance into the representation space, and, by also using past modulations, stabilizes it. Our experiments show improvements in both class-incremental and transfer learning over state-of-the-art unsupervised approaches, as well as over comparable supervised approaches, using as few as 1% of available labels. Taken together, our work suggests that top-down modulations play a crucial role in balancing stability and plasticity.
comment: Accepted to NeurIPS 2025. Camera-ready version. 33 pages, 5 figures. Updated acknowledgements. Code available at: https://github.com/tran-khoa/tmcl
Networks of Causal Abstractions: A Sheaf-theoretic Framework
Causal artificial intelligence aims to improve explainability, robustness, and trustworthiness by leveraging causal models. Recent work has shown that sheaf-theoretic approaches offer a principled framework for representing and aligning causal knowledge across collections of subjective and imperfect causal models connected by relational structures. In this work, we introduce the causal abstraction network (CAN), a general sheaf-theoretic framework for representing, learning, and reasoning across collections of mixture causal models (MCMs). CAN formalizes causal abstraction relations among subjective MCMs operating at different levels of granularity, while remaining agnostic to explicit causal graphs, functional mechanisms, interventional data, or jointly sampled observations. At the theoretical level, we provide a categorical formulation of MCMs and characterize key properties of CANs, including consistency, smoothness, and the existence of global sections, which are related to spectral properties of an associated combinatorial Laplacian. At the methodological level, we address the problem of learning consistent CANs from data by exploiting the compositionality of causal abstractions and necessary conditions for their existence. The learning task decomposes into local problems on the network edges, for which we propose efficient solutions in Gaussian and Gaussian mixture settings. We validate the proposed learning methods on synthetic data and illustrate the practical relevance of the CAN framework through a financial application, demonstrating both recovery and counterfactual reasoning capabilities.
SDGF: Fusing Static and Multi-Scale Dynamic Correlations for Multivariate Time Series Forecasting
Accurate multivariate time series forecasting hinges on inter-series correlations, which often evolve in complex ways across different temporal scales. Existing methods are limited in modeling these multi-scale dependencies and struggle to capture their intricate and evolving nature. To address this challenge, this paper proposes a novel Static-Dynamic Graph Fusion network (SDGF), whose core lies in capturing multi-scale inter-series correlations through a dual-path graph structure learning approach. Specifically, the model utilizes a static graph based on prior knowledge to anchor long-term, stable dependencies, while concurrently employing Multi-level Wavelet Decomposition to extract multi-scale features for constructing an adaptively learned dynamic graph to capture associations at different scales. We design an attention-gated module to fuse these two complementary sources of information intelligently, and a multi-kernel dilated convolutional network is then used to deepen the understanding of temporal patterns. Comprehensive experiments on multiple widely used real-world benchmark datasets demonstrate the effectiveness of our proposed model. Code is available at https://github.com/shaoxun6033/SDGFNet.
The Flexibility Trap: Why Arbitrary Order Limits Reasoning Potential in Diffusion Language Models
Diffusion Large Language Models (dLLMs) break the rigid left-to-right constraint of traditional LLMs, enabling token generation in arbitrary orders. Intuitively, this flexibility implies a solution space that strictly supersets the fixed autoregressive trajectory, theoretically unlocking superior reasoning potential for general tasks like mathematics and coding. Consequently, numerous works have leveraged reinforcement learning (RL) to elicit the reasoning capability of dLLMs. In this paper, we reveal a counter-intuitive reality: arbitrary order generation, in its current form, narrows rather than expands the reasoning boundary of dLLMs. We find that dLLMs tend to exploit this order flexibility to bypass high-uncertainty tokens that are crucial for exploration, leading to a premature collapse of the solution space. This observation motivates a rethink of RL approaches for dLLMs, where considerable complexities, such as handling combinatorial trajectories and intractable likelihoods, are often devoted to preserving this flexibility. We demonstrate that effective reasoning can be better elicited by intentionally forgoing arbitrary order and applying standard Group Relative Policy Optimization (GRPO) instead. Our approach, JustGRPO, is minimalist yet surprisingly effective (e.g., 89.1% accuracy on GSM8K) while fully retaining the parallel decoding ability of dLLMs. Project page: https://nzl-thu.github.io/the-flexibility-trap
comment: Code and pre-trained models: https://github.com/LeapLabTHU/JustGRPO
Structure-Aware Contrastive Learning with Fine-Grained Binding Representations for Drug Discovery
Accurate identification of drug-target interactions (DTI) remains a central challenge in computational pharmacology, where sequence-based methods offer scalability. This work introduces a sequence-based drug-target interaction framework that integrates structural priors into protein representations while maintaining high-throughput screening capability. Evaluated across multiple benchmarks, the model achieves state-of-the-art performance on Human and BioSNAP datasets and remains competitive on BindingDB. In virtual screening tasks, it surpasses prior methods on LIT-PCBA, yielding substantial gains in AUROC and BEDROC. Ablation studies confirm the critical role of learned aggregation, bilinear attention, and contrastive alignment in enhancing predictive robustness. Embedding visualizations reveal improved spatial correspondence with known binding pockets and highlight interpretable attention patterns over ligand-residue contacts. These results validate the framework's utility for scalable and structure-aware DTI prediction.
comment: Accepted by 2026 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2026)
Generalized Policy Gradient with History-Aware Decision Transformer for Path Planning
With the rapidly increased number of vehicles in urban areas, existing road infrastructure struggles to accommodate modern traffic demands, resulting in congestion. This highlights the importance of efficient path planning strategies. Most recent navigation models focus on deterministic or time-dependent networks, overlooking correlations and the stochastic nature of traffic flows. In this work, we address the reliable shortest path problem in stochastic transportation networks and propose a path planning solution integrating the decision Transformer with the Generalized Policy Gradient (GPG) framework. Leveraging the Transformer's ability to model long-term dependencies, our solution improves path decision accuracy and stability. Experiments on the Sioux Falls (SFN) and large Anaheim (AN) networks show consistent improvement in on-time arrival probabilities by capturing non-Markovian dependencies in historical routing decisions on real-world topologies.
Value-State Gated Attention for Mitigating Extreme-Token Phenomena in Transformers
Large models based on the Transformer architecture are susceptible to extreme-token phenomena, such as attention sinks and value-state drains. These issues, which degrade model performance, quantization fidelity, and interpretability, arise from a problematic mutual reinforcement mechanism where the model learns an inefficient 'no-op' behavior by focusing attention on tokens with near-zero value states. In this paper, we propose Value-State Gated Attention (VGA), a simple, dedicated, and stable architectural mechanism for performing 'no-op' attention efficiently by directly breaking this cycle. VGA introduces a learnable, data-dependent gate, computed directly from the value vectors (V), to modulate the output. Through a theoretical analysis of the underlying gradients, we show that gating the value-state with a function of itself is more effective at decoupling value and attention score updates than prior methods that gate on input embeddings. This creates a direct regulatory pathway that allows the model to suppress a token's contribution based on its emergent value representation. Our experiments demonstrate that VGA significantly mitigates the formation of attention sinks and stabilizes value-state norms, leading to improved performance, robust quantization fidelity, and enhanced model interpretability.
Multimodal Evaluation of Russian-language Architectures
Multimodal large language models (MLLMs) are currently at the center of research attention, showing rapid progress in scale and capabilities, yet their intelligence, limitations, and risks remain insufficiently understood. To address these issues, particularly in the context of the Russian language, where no multimodal benchmarks currently exist, we introduce MERA Multi, an open multimodal evaluation framework for Russian-spoken architectures. The benchmark is instruction-based and encompasses default text, image, audio, and video modalities, comprising 18 newly constructed evaluation tasks for both general-purpose models and modality-specific architectures (imageto-text, video-to-text, and audio-to-text). Our contributions include: (i) a universal taxonomy of multimodal abilities; (ii) 18 datasets created entirely from scratch with attention to Russian cultural and linguistic specificity, unified prompts, and metrics; (iii) baseline results for both closed-source and open-source models; (iv) a methodology for preventing benchmark leakage, including watermarking for private sets. While our current focus is on Russian, the proposed benchmark provides a replicable methodology for constructing multimodal benchmarks in typologically diverse languages, particularly within the Slavic language family.
comment: EACL main track
Pay for The Second-Best Service: A Game-Theoretic Approach Against Dishonest LLM Providers
The widespread adoption of Large Language Models (LLMs) through Application Programming Interfaces (APIs) induces a critical vulnerability: the potential for dishonest manipulation by service providers. This manipulation can manifest in various forms, such as secretly substituting a proclaimed high-performance model with a low-cost alternative, or inflating responses with meaningless tokens to increase billing. This work tackles the issue through the lens of algorithmic game theory and mechanism design. We are the first to propose a formal economic model for a realistic user-provider ecosystem, where a user can iteratively delegate $T$ queries to multiple model providers, and providers can engage in a range of strategic behaviors. As our central contribution, we prove that for a continuous strategy space and any $ε\in(0,\frac12)$, there exists an approximate incentive-compatible mechanism with an additive approximation ratio of $O(T^{1-ε}\log T)$, and a guaranteed quasi-linear second-best user utility. We also prove an impossibility result, stating that no mechanism can guarantee an expected user utility that is asymptotically better than our mechanism. Furthermore, we demonstrate the effectiveness of our mechanism in simulation experiments with real-world API settings.
comment: To appear in WWW 2026; 12 pages, 4 figures
Not All Pixels Are Equal: Pixel-wise Meta-Learning for Medical Segmentation with Noisy Labels
Medical image segmentation is crucial for clinical applications, but it is frequently disrupted by noisy annotations and ambiguous anatomical boundaries, which lead to instability in model training. Existing methods typically rely on global noise assumptions or confidence-based sample selection, which inadequately mitigate the performance degradation caused by annotation noise, especially in challenging boundary regions. To address this issue, we propose MetaDCSeg, a robust framework that dynamically learns optimal pixel-wise weights to suppress the influence of noisy labels while preserving reliable annotations. By explicitly modeling boundary uncertainty through a Dynamic Center Distance (DCD) mechanism, our approach utilizes weighted feature distances for foreground, background, and boundary centers, directing the model's attention toward hard-to-segment pixels near ambiguous boundaries. This strategy enables more precise handling of structural boundaries, which are often overlooked by existing methods, and significantly enhances segmentation performance. Extensive experiments across four benchmark datasets with varying noise levels demonstrate that MetaDCSeg outperforms existing state-of-the-art methods.
GeoVLMath: Enhancing Geometry Reasoning in Vision-Language Models via Cross-Modal Reward for Auxiliary Line Creation
Auxiliary lines are essential for solving complex geometric problems but remain challenging for large vision-language models (LVLMs). Recent attempts construct auxiliary lines via code-driven rendering, a strategy that relies on accurate and executable code generation to produce visual renderings of the auxiliary lines for subsequent reasoning. However, in complex solid geometry settings, such a strong dependence on precise specifications substantially restricts the robustness of this strategy. Alternatively, we turn to a simpler and more stable solution, representing auxiliary-line constructions as structured textual descriptions. To bridge the gap between textual descriptions and spatial structure, we propose a reinforcement learning framework that enhances diagram-text alignment. The core is a cross-modal reward model that evaluates how well the generated auxiliary-line description matches the ground-truth auxiliary-line diagram. The reward signal drives a GRPO-based RL stage to yield informative auxiliary-line descriptions for the reasoning. To support the training and evaluation, we develop a scalable data pipeline and construct AuxSolidMath, a dataset of 3,018 real-exam geometry problems with paired diagrams and aligned textual fields. Based on this framework, we derive GeoVLMath, an LVLM for solving complex solid geometry.
comment: 19 pages
T3: Benchmarking Sycophancy and Skepticism in Causal Judgment
We introduce T3 (Testing Trustworthy Thinking), a diagnostic benchmark designed to rigorously evaluate LLM causal judgment across Pearl's Ladder of Causality. Comprising 454 expert-curated vignettes, T3 prioritizes high-resolution failure analysis, decomposing performance into Utility (sensitivity), Safety (specificity), and Wise Refusal on underdetermined cases. By applying T3 to frontier models, we diagnose two distinct pathologies: a "Skepticism Trap" at L1 (where safety-tuned models like Claude Haiku reject 60% of valid links) and a non-monotonic Scaling Paradox at L3. In the latter, the larger GPT-5.2 underperforms GPT-4-Turbo by 55 points on ambiguous counterfactuals, driven by a collapse into paralysis (excessive hedging) rather than hallucination. Finally, we use the benchmark to validate a process-verified protocol (RCA), showing that T3 successfully captures the restoration of decisive causal judgment under structured verification.
comment: 17 pages, 4 figures, 11 tables
Unifying VXAI: A Systematic Review and Framework for the Evaluation of Explainable AI
Modern AI systems frequently rely on opaque black-box models, most notably Deep Neural Networks, whose performance stems from complex architectures with millions of learned parameters. While powerful, their complexity poses a major challenge to trustworthiness, particularly due to a lack of transparency. Explainable AI (XAI) addresses this issue by providing human-understandable explanations of model behavior. However, to ensure their usefulness and trustworthiness, such explanations must be rigorously evaluated. Despite the growing number of XAI methods, the field lacks standardized evaluation protocols and consensus on appropriate metrics. To address this gap, we conduct a systematic literature review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and introduce a unified framework for the eValuation of XAI (VXAI). We identify 362 relevant publications and aggregate their contributions into 41 functionally similar metric groups. In addition, we propose a three-dimensional categorization scheme spanning explanation type, evaluation contextuality, and explanation quality desiderata. Our framework provides the most comprehensive and structured overview of VXAI to date. It supports systematic metric selection, promotes comparability across methods, and offers a flexible foundation for future extensions.
comment: Published at TMLR
The Art of Saying "Maybe": A Conformal Lens for Uncertainty Benchmarking in VLMs
Vision-Language Models (VLMs) have achieved remarkable progress in complex visual understanding across scientific and reasoning tasks. While performance benchmarking has advanced our understanding of these capabilities, the critical dimension of uncertainty quantification has received insufficient attention. Therefore, unlike prior conformal prediction studies that focused on limited settings, we conduct a comprehensive uncertainty benchmarking study, evaluating 18 state-of-the-art VLMs (open and closed-source) across 6 multimodal datasets with 3 distinct scoring functions. For closed-source models lacking token-level logprob access, we develop and validate instruction-guided likelihood proxies. Our findings demonstrate that larger models consistently exhibit better uncertainty quantification; models that know more also know better what they don't know. More certain models achieve higher accuracy, while mathematical and reasoning tasks elicit poorer uncertainty performance across all models compared to other domains. This work establishes a foundation for reliable uncertainty evaluation in multimodal systems.
Is More Context Always Better? Examining LLM Reasoning Capability for Time Interval Prediction
Large Language Models (LLMs) have demonstrated impressive capabilities in reasoning and prediction across different domains. Yet, their ability to infer temporal regularities from structured behavioral data remains underexplored. This paper presents a systematic study investigating whether LLMs can predict time intervals between recurring user actions, such as repeated purchases, and how different levels of contextual information shape their predictive behavior. Using a simple but representative repurchase scenario, we benchmark state-of-the-art LLMs in zero-shot settings against both statistical and machine-learning models. Two key findings emerge. First, while LLMs surpass lightweight statistical baselines, they consistently underperform dedicated machine-learning models, showing their limited ability to capture quantitative temporal structure. Second, although moderate context can improve LLM accuracy, adding further user-level detail degrades performance. These results challenge the assumption that "more context leads to better reasoning". Our study highlights fundamental limitations of today's LLMs in structured temporal inference and offers guidance for designing future context-aware hybrid models that integrate statistical precision with linguistic flexibility.
comment: Accepted at The Web Conference 2026 (WWW 2026)
VFEFL: Privacy-Preserving Federated Learning against Malicious Clients via Verifiable Functional Encryption
Federated learning is a promising distributed learning paradigm that enables collaborative model training without exposing local client data, thereby protecting data privacy. However, it also brings new threats and challenges. The advancement of model inversion attacks has rendered the plaintext transmission of local models insecure, while the distributed nature of federated learning makes it particularly vulnerable to attacks raised by malicious clients. To protect data privacy and prevent malicious client attacks, this paper proposes a privacy-preserving Federated Learning framework based on Verifiable Functional Encryption (VFEFL), without a non-colluding dual-server assumption or additional trusted third-party. Specifically, we propose a novel Cross-Ciphertext Decentralized Verifiable Functional Encryption (CC-DVFE) scheme that enables the verification of specific relationships over multi-dimensional ciphertexts. This scheme is formally treated, in terms of definition, security model and security proof. Furthermore, based on the proposed CC-DVFE scheme, we design a privacy-preserving federated learning framework that incorporates a novel robust aggregation rule to detect malicious clients, enabling the effective training of high-accuracy models under adversarial settings. Finally, we provide the formal analysis and empirical evaluation of VFEFL. The results demonstrate that our approach achieves the desired privacy protection, robustness, verifiability and fidelity, while eliminating the reliance on non-colluding dual-server assumption or trusted third parties required by most existing methods.
MEDIC: Comprehensive Evaluation of Leading Indicators for LLM Safety and Utility in Clinical Applications
While Large Language Models (LLMs) achieve superhuman performance on standardized medical licensing exams, these static benchmarks have become saturated and increasingly disconnected from the functional requirements of clinical workflows. To bridge the gap between theoretical capability and verified utility, we introduce MEDIC, a comprehensive evaluation framework establishing leading indicators across various clinical dimensions. Beyond standard question-answering, we assess operational capabilities using deterministic execution protocols and a novel Cross-Examination Framework (CEF), which quantifies information fidelity and hallucination rates without reliance on reference texts. Our evaluation across a heterogeneous task suite exposes critical performance trade-offs: we identify a significant knowledge-execution gap, where proficiency in static retrieval does not predict success in operational tasks such as clinical calculation or SQL generation. Furthermore, we observe a divergence between passive safety (refusal) and active safety (error detection), revealing that models fine-tuned for high refusal rates often fail to reliably audit clinical documentation for factual accuracy. These findings demonstrate that no single architecture dominates across all dimensions, highlighting the necessity of a portfolio approach to clinical model deployment. As part of this investigation, we released a public leaderboard on Hugging Face.\footnote{https://huggingface.co/spaces/m42-health/MEDIC-Benchmark}
comment: Technical report
Your Classifier Can Do More: Towards Bridging the Gaps in Classification, Robustness, and Generation
Joint Energy-based Models (JEMs) are well known for their ability to unify classification and generation within a single framework. Despite their promising generative and discriminative performance, their robustness remains far inferior to adversarial training (AT), which, conversely, achieves strong robustness but sacrifices clean accuracy and lacks generative ability. This inherent trilemma-balancing classification accuracy, robustness, and generative capability-raises a fundamental question: Can a single model achieve all three simultaneously? To answer this, we conduct a systematic energy landscape analysis of clean, adversarial, and generated samples across various JEM and AT variants. We observe that AT reduces the energy gap between clean and adversarial samples, while JEMs narrow the gap between clean and synthetic ones. This observation suggests a key insight: if the energy distributions of all three data types can be aligned, we might bridge their performance disparities. Building on this idea, we propose Energy-based Joint Distribution Adversarial Training (EB-JDAT), a unified generative-discriminative-robust framework that maximizes the joint probability of clean and adversarial distribution. EB-JDAT introduces a novel min-max energy optimization to explicitly aligning energies across clean, adversarial, and generated samples. Extensive experiments on CIFAR-10, CIFAR-100, and ImageNet subsets demonstrate that EB-JDAT achieves state-of-the-art robustness while maintaining near-original accuracy and generation quality of JEMs, effectively resolving the triple trade-off between accuracy, robustness, and generation.
RASTP: Representation-Aware Semantic Token Pruning for Generative Recommendation with Semantic Identifiers
Generative recommendation systems typically leverage Semantic Identifiers (SIDs), which represent each item as a sequence of tokens that encode semantic information. However, representing item ID with multiple SIDs significantly increases input sequence length, which is a major determinant of computational complexity and memory consumption. While existing efforts primarily focus on optimizing attention computation and KV cache, we propose RASTP (Representation-Aware Semantic Token Pruning), which directly prunes less informative tokens in the input sequence. Specifically, RASTP evaluates token importance by combining semantic saliency, measured via representation magnitude, and attention centrality, derived from cumulative attention weights. Since RASTP dynamically prunes low-information or irrelevant semantic tokens, experiments on three real-world Amazon datasets show that RASTP reduces training time by 26.7\%, while maintaining or slightly improving recommendation performance. The code has been open-sourced at https://github.com/Yuzt-zju/RASTP.
comment: 4 pages, WWW 2026 short paper
MPCI-Bench: A Benchmark for Multimodal Pairwise Contextual Integrity Evaluation of Language Model Agents
As language-model agents evolve from passive chatbots into proactive assistants that handle personal data, evaluating their adherence to social norms becomes increasingly critical, often through the lens of Contextual Integrity (CI). However, existing CI benchmarks are largely text-centric and primarily emphasize negative refusal scenarios, overlooking multimodal privacy risks and the fundamental trade-off between privacy and utility. In this paper, we introduce MPCI-Bench, the first Multimodal Pairwise Contextual Integrity benchmark for evaluating privacy behavior in agentic settings. MPCI-Bench consists of paired positive and negative instances derived from the same visual source and instantiated across three tiers: normative Seed judgments, context-rich Story reasoning, and executable agent action Traces. Data quality is ensured through a Tri-Principle Iterative Refinement pipeline. Evaluations of state-of-the-art multimodal models reveal systematic failures to balance privacy and utility and a pronounced modality leakage gap, where sensitive visual information is leaked more frequently than textual information. We will open-source MPCI-Bench to facilitate future research on agentic CI.
Architecture independent generalization bounds for overparametrized deep ReLU networks
We prove that overparametrized neural networks are able to generalize with a test error that is independent of the level of overparametrization, and independent of the Vapnik-Chervonenkis (VC) dimension. We prove explicit bounds that only depend on the metric geometry of the test and training sets, on the regularity properties of the activation function, and on the operator norms of the weights and norms of biases. For overparametrized deep ReLU networks with a training sample size bounded by the input space dimension, we explicitly construct zero loss minimizers without use of gradient descent, and prove a uniform generalization bound that is independent of the network architecture. We perform computational experiments of our theoretical results with MNIST, and obtain agreement with the true test error within a 22 % margin on average.
comment: AMS Latex, 19 pages
Collaborative Learning-Enhanced Lightweight Models for Predicting Arterial Blood Pressure Waveform in a Large-scale Perioperative Dataset
Noninvasive arterial blood pressure (ABP) monitoring is essential for patient management in critical care and perioperative settings, providing continuous assessment of cardiovascular hemodynamics with minimal risks. Numerous deep learning models have developed to reconstruct ABP waveform from noninvasively acquired physiological signals such as electrocardiogram and photoplethysmogram. However, limited research has addressed the issue of model performance and computational load for deployment on embedded systems. The study introduces a lightweight sInvResUNet, along with a collaborative learning scheme named KDCL_sInvResUNet. With only 0.89 million parameters and a computational load of 0.02 GFLOPS, real-time ABP estimation was successfully achieved on embedded devices with an inference time of just 8.49 milliseconds for a 10-second output. We performed subject-independent validation in a large-scale and heterogeneous perioperative dataset containing 1,257,141 data segments from 2,154 patients, with a wide BP range (41-257 mmHg for SBP, and 31-234 mmHg for DBP). The proposed KDCL_sInvResUNet achieved lightly better performance compared to large models, with a mean absolute error of 10.06 mmHg and mean Pearson correlation of 0.88 in tracking ABP changes. Despite these promising results, all deep learning models showed significant performance variations across different demographic and cardiovascular conditions, highlighting their limited ability to generalize across such a broad and diverse population. This study lays a foundation work for real-time, unobtrusive ABP monitoring in real-world perioperative settings, providing baseline for future advancements in this area.
Scientifically-Interpretable Reasoning Network (ScIReN): Discovering Hidden Relationships in the Carbon Cycle and Beyond
Soils have potential to mitigate climate change by sequestering carbon from the atmosphere, but the soil carbon cycle remains poorly understood. Scientists have developed process-based models of the soil carbon cycle based on existing knowledge, but they contain numerous unknown parameters and often fit observations poorly. On the other hand, neural networks can learn patterns from data, but do not respect known scientific laws, and are too opaque to reveal novel scientific relationships. We thus propose Scientifically-Interpretable Reasoning Network (ScIReN), a fully-transparent framework that combines interpretable neural and process-based reasoning. An interpretable encoder predicts scientifically-meaningful latent parameters, which are then passed through a differentiable process-based decoder to predict labeled output variables. While the process-based decoder enforces existing scientific knowledge, the encoder leverages Kolmogorov-Arnold networks (KANs) to reveal interpretable relationships between input features and latent parameters, using novel smoothness penalties to balance expressivity and simplicity. ScIReN also introduces a novel hard-sigmoid constraint layer to restrict latent parameters into prior ranges while maintaining interpretability. We apply ScIReN on two tasks: simulating the flow of organic carbon through soils, and modeling ecosystem respiration from plants. On both tasks, ScIReN outperforms or matches black-box models in predictive accuracy, while greatly improving scientific interpretability -- it can infer latent scientific mechanisms and their relationships with input features.
comment: 19 pages, 11 figures
Revisiting Model Interpolation for Efficient Reasoning
Model merging, typically on Instruct and Thinking models, has shown remarkable performance for efficient reasoning. In this paper, we systematically revisit the simplest merging method that interpolates two weights directly. Particularly, we observe that model interpolation follows a three-stage evolutionary paradigm with distinct behaviors on the reasoning trajectory. These dynamics provide a principled guide for navigating the performance-cost trade-off. Empirical results demonstrate that a strategically interpolated model surprisingly surpasses sophisticated model merging baselines on both efficiency and effectiveness. We further validate our findings with extensive ablation studies on model layers, modules, and decoding strategies. Ultimately, this work demystifies model interpolation and offers a practical framework for crafting models with precisely targeted reasoning capabilities. Code is available at \href{https://github.com/wutaiqiang/MI}{Github}.
comment: 14 pages, 6 figures, 7 tables. Working in progress (Llama results added)
Building Self-Evolving Agents via Experience-Driven Lifelong Learning: A Framework and Benchmark
As AI advances toward general intelligence, the focus is shifting from systems optimized for static tasks to creating open-ended agents that learn continuously. In this paper, we introduce Experience-driven Lifelong Learning (ELL), a framework for building self-evolving agents capable of continuous growth through real-world interaction. The framework is built on four core principles: (1) Experience Exploration: Agents learn through continuous, self-motivated interaction with dynamic environments, navigating interdependent tasks and generating rich experiential trajectories. (2) Long-term Memory: Agents preserve and structure historical knowledge, including personal experiences, domain expertise, and commonsense reasoning, into a persistent memory system. (3) Skill Learning: Agents autonomously improve by abstracting recurring patterns from experience into reusable skills, which are actively refined and validated for application in new tasks. (4) Knowledge Internalization: Agents internalize explicit and discrete experiences into implicit and intuitive capabilities as "second nature". We also introduce StuLife, a benchmark dataset for ELL that simulates a student's holistic college journey, from enrollment to academic and personal development, across three core phases and ten detailed sub-scenarios. StuLife is designed around three key paradigm
On the Fundamental Limits of LLMs at Scale
Large Language Models (LLMs) have benefited enormously from scaling, yet these gains are bounded by five fundamental limitations: (1) hallucination, (2) context compression, (3) reasoning degradation, (4) retrieval fragility, and (5) multimodal misalignment. While existing surveys describe these phenomena empirically, they lack a rigorous theoretical synthesis connecting them to the foundational limits of computation, information, and learning. This work closes that gap by presenting a unified, proof-informed framework that formalizes the innate theoretical ceilings of LLM scaling. First, computability and uncomputability imply an irreducible residue of error: for any computably enumerable model family, diagonalization guarantees inputs on which some model must fail, and undecidable queries (e.g., halting-style tasks) induce infinite failure sets for all computable predictors. Second, information-theoretic and statistical constraints bound attainable accuracy even on decidable tasks, finite description length enforces compression error, and long-tail factual knowledge requires prohibitive sample complexity. Third, geometric and computational effects compress long contexts far below their nominal size due to positional under-training, encoding attenuation, and softmax crowding. We further show how likelihood-based training favors pattern completion over inference, how retrieval under token limits suffers from semantic drift and coupling noise, and how multimodal scaling inherits shallow cross-modal alignment. Across sections, we pair theorems and empirical evidence to outline where scaling helps, where it saturates, and where it cannot progress, providing both theoretical foundations and practical mitigation paths like bounded-oracle retrieval, positional curricula, and sparse or hierarchical attention.
comment: Submitted to TMLR 2025
Beyond Single-Granularity Prompts: A Multi-Scale Chain-of-Thought Prompt Learning for Graph
The ``pre-train, prompt" paradigm, designed to bridge the gap between pre-training tasks and downstream objectives, has been extended from the NLP domain to the graph domain and has achieved remarkable progress. Current mainstream graph prompt-tuning methods modify input or output features using learnable prompt vectors. However, existing approaches are confined to single-granularity (e.g., node-level or subgraph-level) during prompt generation, overlooking the inherently multi-scale structural information in graph data, which limits the diversity of prompt semantics. To address this issue, we pioneer the integration of multi-scale information into graph prompt and propose a Multi-Scale Graph Chain-of-Thought (MSGCOT) prompting framework. Specifically, we design a lightweight, low-rank coarsening network to efficiently capture multi-scale structural features as hierarchical basis vectors for prompt generation. Subsequently, mimicking human cognition from coarse-to-fine granularity, we dynamically integrate multi-scale information at each reasoning step, forming a progressive coarse-to-fine prompt chain. Extensive experiments on eight benchmark datasets demonstrate that MSGCOT outperforms the state-of-the-art single-granularity graph prompt-tuning method, particularly in few-shot scenarios, showcasing superior performance. The code is available at: https://github.com/zhengziyu77/MSGCOT.
comment: Accepted by WWW2026
MobileCity: An Efficient Framework for Large-Scale Urban Behavior Simulation
Generative agents offer promising capabilities for simulating realistic urban behaviors. However, existing methods oversimplify transportation choices, rely heavily on static agent profiles leading to behavioral homogenization, and inherit prohibitive computational costs. To address these limitations, we present MobileCity, a lightweight simulation platform designed to model realistic urban mobility with high computational efficiency. We introduce a comprehensive transportation system with multiple transport modes, and collect questionnaire data from respondents to construct agent profiles. To enable scalable simulation, agents perform action selection within a pre-generated action space and uses local models for efficient agent memory generation. Through extensive micro and macro-level evaluations on 4,000 agents, we demonstrate that MobileCity generates more realistic urban behaviors than baselines while maintaining computational efficiency. We further explore practical applications such as predicting movement patterns and analyzing demographic trends in transportation preferences. Our code is publicly available at https://github.com/Tony-Yip/MobileCity.
neuralFOMO: Can LLMs Handle Being Second Best? Measuring Envy-Like Preferences in Multi-Agent Settings
Envy shapes competitiveness and cooperation in human groups, yet its role in large language model interactions remains largely unexplored. As LLMs increasingly operate in multi-agent settings, it is important to examine whether they exhibit envy-like preferences under social comparison. We evaluate LLM behavior across two scenarios: (1) a point-allocation game testing sensitivity to relative versus absolute payoff, and (2) comparative evaluations across general and contextual settings. To ground our analysis in psychological theory, we adapt four established psychometric questionnaires spanning general, domain-specific, workplace, and sibling-based envy. Our results reveal heterogeneous envy-like patterns across models and contexts, with some models sacrificing personal gain to reduce a peer's advantage, while others prioritize individual maximization. These findings highlight competitive dispositions as a design and safety consideration for multi-agent LLM systems.
comment: Under Review
Towards Interpretable Deep Generative Models via Causal Representation Learning
Recent developments in generative artificial intelligence (AI) rely on machine learning techniques such as deep learning and generative modeling to achieve state-of-the-art performance across wide-ranging domains. These methods' surprising performance is due in part to their ability to learn implicit "representations" of complex, multi-modal data. Unfortunately, deep neural networks are notoriously black boxes that obscure these representations, making them difficult to interpret or analyze. To resolve these difficulties, one approach is to build new interpretable neural network models from the ground up. This is the goal of the emerging field of causal representation learning (CRL) that uses causality as a vector for building flexible, interpretable, and transferable generative AI. CRL can be seen as a synthesis of three intrinsically statistical ideas: (i) latent variable models such as factor analysis; (ii) causal graphical models with latent variables; and (iii) nonparametric statistics and deep learning. This paper introduces CRL from a statistical perspective, focusing on connections to classical models as well as statistical and causal identifiability results. We also highlights key application areas, implementation strategies, and open statistical questions.
comment: Accepted in Journal of the American Statistical Association: Special Issue on AI
Fisher-Orthogonal Projected Natural Gradient Descent for Continual Learning
Continual learning aims to enable neural networks to acquire new knowledge on sequential tasks. However, the key challenge in such settings is to learn new tasks without catastrophically forgetting previously learned tasks. We propose the Fisher-Orthogonal Projected Natural Gradient Descent (FOPNG) optimizer, which enforces Fisher-orthogonal constraints on parameter updates to preserve old task performance while learning new tasks. Unlike existing methods that operate in Euclidean parameter space, FOPNG projects gradients onto the Fisher-orthogonal complement of previous task gradients. This approach unifies natural gradient descent with orthogonal gradient methods within an information-geometric framework. We provide theoretical analysis deriving the projected update, describe efficient and practical implementations using the diagonal Fisher, and demonstrate strong results on standard continual learning benchmarks such as Permuted-MNIST, Split-MNIST, Rotated-MNIST, Split-CIFAR10, and Split-CIFAR100. Our code is available at https://github.com/ishirgarg/FOPNG.
A Collision-Free Hot-Tier Extension for Engram-Style Conditional Memory: A Controlled Study of Training Dynamics
We investigate whether high-frequency key collisions are a primary bottleneck in Engram-style conditional memory. To isolate the effect of collisions, we introduce Engram-Nine, a collision-free hot-tier extension that maps the most frequent n-grams through a Minimal Perfect Hash Function (MPHF) while retaining the original multi-head hashed lookup as a cold tier. Under a strictly iso-parameter setup, the collision-free design does not consistently improve validation loss. Through route-stratified evaluation (decomposing per-token loss into hot/cold contributions), we uncover a consistent "hot-to-cold advantage flip" during training: hot (high-frequency) positions initially have lower loss, but cold positions eventually surpass them. Crucially, collision-free configurations flip earlier than collision-prone baselines, suggesting that collisions act as implicit regularization. We also identify a gating mismatch: the gate learns to favor hot positions early in training, but this preference persists even after the flip, assigning higher weights to positions with higher loss. Our findings suggest that improving lookup precision alone does not guarantee better training outcomes. The dominant limitation may lie in gating credit assignment rather than index accuracy, and collision-induced noise may provide beneficial regularization that should not be naively eliminated.
PRISM-CAFO: Prior-conditioned Remote-sensing Infrastructure Segmentation and Mapping for CAFOs
Large-scale livestock operations pose significant risks to human health and the environment, while also being vulnerable to threats such as infectious diseases and extreme weather events. As the number of such operations continues to grow, accurate and scalable mapping has become increasingly important. In this work, we present an infrastructure-first, explainable pipeline for identifying and characterizing Concentrated Animal Feeding Operations (CAFOs) from aerial and satellite imagery. Our method (i) detects candidate infrastructure (e.g., barns, feedlots, manure lagoons, silos) with a domain-tuned YOLOv8 detector, then derives SAM2 masks from these boxes and filters component-specific criteria; (ii) extracts structured descriptors (e.g., counts, areas, orientations, and spatial relations) and fuses them with deep visual features using a lightweight spatial cross-attention classifier; and (iii) outputs both CAFO type predictions and mask-level attributions that link decisions to visible infrastructure. Through comprehensive evaluation, we show that our approach achieves state-of-the-art performance, with Swin-B+PRISM-CAFO surpassing the best performing baseline by up to 15\%. Beyond strong predictive performance across diverse U.S. regions, we run systematic gradient--activation analyses that quantify the impact of domain priors and show how specific infrastructure (e.g., barns, lagoons) shapes classification decisions. We release code, infrastructure masks, and descriptors to support transparent, scalable monitoring of livestock infrastructure, enabling risk modeling, change detection, and targeted regulatory action. Github: https://github.com/Nibir088/PRISM-CAFO.
From Aggregation to Selection: User-Validated Distributed Social Recommendation
Social recommender systems facilitate social connections by identifying potential friends for users. Each user maintains a local social network centered around themselves, resulting in a naturally distributed social structure. Recent research on distributed modeling for social recommender systems has gained increasing attention, as it naturally aligns with the user-centric structure of user interactions. Current distributed social recommender systems rely on automatically combining predictions from multiple models, often overlooking the user's active role in validating whether suggested connections are appropriate. Moreover, recommendation decisions are validated by individual users rather than derived from a single global ordering of candidates. As a result, standard ranking-based evaluation metrics make it difficult to evaluate whether a user-confirmed recommendation decision is actually correct. To address these limitations, we propose DeSocial, a distributed social recommendation framework with user-validation. DeSocial enables users to select recommendation algorithms to validate their potential connections, and the verification is processed through majority consensus among multiple independent user validators. To evaluate the distributed recommender system with user validator, we formulate this setting as a link prediction and verification task and introduce Acc@K, a consensus-based evaluation metric that measures whether user-approved recommendations are correct. Experiments on 4 real-world social networks shows that DeSocial improves decision correctness and robustness compared to single-point and distributed baselines. These findings highlight the potential of user-validated distributed recommender systems as a practical approach to social recommendation, with broader applicability to distributed and decentralized recommendations. Code: https://github.com/agiresearch/DeSocial.
comment: Accepted by HCRS@WWW 2026
MangaVQA and MangaLMM: A Benchmark and Specialized Model for Multimodal Manga Understanding
Manga, or Japanese comics, is a richly multimodal narrative form that blends images and text in complex ways. Teaching large multimodal models (LMMs) to understand such narratives at a human-like level could help manga creators reflect on and refine their stories. To this end, we introduce two benchmarks for multimodal manga understanding: MangaOCR, which targets in-page text recognition, and MangaVQA, a novel benchmark designed to evaluate contextual understanding through visual question answering. MangaVQA consists of 526 high-quality, manually constructed question-answer pairs, enabling reliable evaluation across diverse narrative and visual scenarios. Building on these benchmarks, we develop MangaLMM, a manga-specialized model finetuned from the open-source LMM Qwen2.5-VL to jointly handle both tasks. Through extensive experiments, including comparisons with proprietary models such as GPT-4o and Gemini 2.5, we assess how well LMMs understand manga. Our benchmark and model provide a comprehensive foundation for evaluating and advancing LMMs in the richly narrative domain of manga.
comment: EACL 2026 Findings. Project page: https://manga109.github.io/MangaVQA_LMM/
RRPO: Robust Reward Policy Optimization for LLM-based Emotional TTS
Differentiable reinforcement learning (RL) frameworks like DiffRO offer a powerful approach for controllable text-to-speech (TTS), but are vulnerable to reward hacking, particularly for nuanced tasks like emotion control. The policy model can exploit a vanilla Reward Model (RM) by generating acoustic artifacts to achieve spurious rewards, but at the cost of degrading perceptual quality. To address this, we propose Robust Reward Policy Optimization (RRPO), a novel framework that employs a hybrid regularization scheme. This scheme develops a robust RM whose reward signal is more reliably aligned with human perception, compelling the policy to abandon detrimental shortcuts and instead learn the complex features of genuine emotions. Our ablation study confirms the enhanced robustness of our RM, as evidenced by its strong cross-lingual generalization. The subjective evaluation demonstrates that this robust RM effectively mitigates reward hacking, leading to significant improvements in both emotional expressiveness and naturalness over all baselines. Demo page: https://lrwinr.github.io/RRPO-CosyVoice.
comment: Accepted by ICASSP 2026. Copyright 2026 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
Enhancing Federated Class-Incremental Learning via Spatial-Temporal Statistics Aggregation
Federated Class-Incremental Learning (FCIL) enables Class-Incremental Learning (CIL) from distributed data. Existing FCIL methods typically integrate old knowledge preservation into local client training. However, these methods cannot avoid spatial-temporal client drift caused by data heterogeneity and often incur significant computational and communication overhead, limiting practical deployment. To address these challenges simultaneously, we propose a novel approach, Spatial-Temporal Statistics Aggregation (STSA), which provides a unified framework to aggregate feature statistics both spatially (across clients) and temporally (across stages). The aggregated feature statistics are unaffected by data heterogeneity and can be used to update the classifier in closed form at each stage. Additionally, we introduce STSA-E, a communication-efficient variant with theoretical guarantees, achieving similar performance to STSA-E with much lower communication overhead. Extensive experiments on three widely used FCIL datasets, with varying degrees of data heterogeneity, show that our method outperforms state-of-the-art FCIL methods in terms of performance, flexibility, and both communication and computation efficiency. The code is available at https://github.com/Yuqin-G/STSA.
comment: WWW 2026
Speed at the Cost of Quality: How Cursor AI Increases Short-Term Velocity and Long-Term Complexity in Open-Source Projects
Large language models (LLMs) have demonstrated the promise to revolutionize the field of software engineering. Among other things, LLM agents are rapidly gaining momentum in software development, with practitioners reporting a multifold increase in productivity after adoption. Yet, empirical evidence is lacking around these claims. In this paper, we estimate the causal effect of adopting a widely popular LLM agent assistant, namely Cursor, on development velocity and software quality. The estimation is enabled by a state-of-the-art difference-in-differences design comparing Cursor-adopting GitHub projects with a matched control group of similar GitHub projects that do not use Cursor. We find that the adoption of Cursor leads to a statistically significant, large, but transient increase in project-level development velocity, along with a substantial and persistent increase in static analysis warnings and code complexity. Further panel generalized-method-of-moments estimation reveals that increases in static analysis warnings and code complexity are major factors driving long-term velocity slowdown. Our study identifies quality assurance as a major bottleneck for early Cursor adopters and calls for it to be a first-class citizen in the design of agentic AI coding tools and AI-driven workflows.
Detecting Training Data of Large Language Models via Expectation Maximization
Membership inference attacks (MIAs) aim to determine whether a specific example was used to train a given language model. While prior work has explored prompt-based attacks such as ReCALL, these methods rely heavily on the assumption that using known non-members as prompts reliably suppresses the model's responses to non-member queries. We propose EM-MIA, a new membership inference approach that iteratively refines prefix effectiveness and membership scores using an expectation-maximization strategy without requiring labeled non-member examples. To support controlled evaluation, we introduce OLMoMIA, a benchmark that enables analysis of MIA robustness under systematically varied distributional overlap and difficulty. Experiments on WikiMIA and OLMoMIA show that EM-MIA outperforms existing baselines, particularly in settings with clear distributional separability. We highlight scenarios where EM-MIA succeeds in practical settings with partial distributional overlap, while failure cases expose fundamental limitations of current MIA methods under near-identical conditions. We release our code and evaluation pipeline to encourage reproducible and robust MIA research.
comment: EACL 2026
Sawtooth Wavefront Reordering: Enhanced CuTile FlashAttention on NVIDIA GB10
High-performance attention kernels are essential for Large Language Models. This paper presents analysis of CuTile-based Flash Attention memory behavior and a technique to improve its cache performance. In particular, our analysis on the NVIDIA GB10 (Grace Blackwell) identifies the main cause of L2 cache miss. Leveraging this insight, we introduce a new programming technique called Sawtooth Wavefront Reordering that reduces L2 misses. We validate it in both CUDA and CuTile, observing 50\% or greater reduction in L2 misses and up to 60\% increase in throughput on GB10.
Towards Real-time Adaptation of Embodied Agent in Human-Robot Collaboration
Large Language Models (LLMs) have opened transformative possibilities for human-robot collaboration. However, enabling real-time collaboration requires both low latency and robust reasoning, and most LLMs suffer from high latency. To address this gap, we first propose a fine-grained benchmark that explicitly assesses agents' proactive adaptability and temporal responsiveness in the Overcooked-AI environment. Based on evaluation results, we propose MonTA (Monitor-then-Adapt), a hierarchical framework inspired by cognitive science research. MonTA contains three key modules: a lightweight Monitor that operates at high frequency (7 Hz) to detect adaptation needs, and two proficient Adapters for subtask and path adaptation reasoning that provide instructions to humans at a lower frequency. Our results demonstrate that MonTA significantly outperforms baseline agents on our proposed benchmark, achieving superior performance across layouts with varying teaming fluency. User studies confirm the high reasonableness of adaptation plans and consistent language instructions provided by our framework to humans.
comment: 13 pages, 7 figures
Visual Attention Reasoning via Hierarchical Search and Self-Verification
Multimodal Large Language Models (MLLMs) frequently hallucinate due to their reliance on fragile, linear reasoning and weak visual grounding. We propose Visual Attention Reasoning (VAR), a reinforcement learning framework that reformulates reasoning as a hierarchical search with self-verification. VAR enforces traceable evidence grounding by generating explicit bounding boxes, guided by a novel reward function combining geometric precision and semantic sufficiency. Furthermore, it replaces linear Chain-of-Thought with a tree-search policy capable of backtracking to correct logical errors. Theoretical analysis validates the framework's reliability, and extensive experiments demonstrate that VAR significantly outperforms state-of-the-art methods on complex hallucination and safety benchmarks.
comment: The paper is withdrawn by the authors after discovering a flaw in the theoretical derivation presented in the Method section. This incorrect step leads to conclusions that are not supported by the corrected derivation. The authors plan to reconstruct the argument and will release an updated version once the issue is fully resolved
Incomplete Tasks Induce Shutdown Resistance in Some Frontier LLMs
In experiments spanning more than 100,000 trials across thirteen large language models, we show that several state-of-the-art models presented with a simple task (including Grok 4, GPT-5, and Gemini 2.5 Pro) sometimes actively subvert a shutdown mechanism in their environment to complete that task. Models differed substantially in their tendency to resist the shutdown mechanism, and their behavior was sensitive to variations in the prompt including the strength and clarity of the instruction to allow shutdown and whether the instruction was in the system prompt or the user prompt (surprisingly, models were consistently less likely to obey the instruction when it was placed in the system prompt). Even with an explicit instruction not to interfere with the shutdown mechanism, some models did so up to 97% (95% CI: 96-98%) of the time.
comment: Published in Trans. Mach. Learn. Res. (2026)
Key and Value Weights Are Probably All You Need: On the Necessity of the Query, Key, Value weight Triplet in Decoder-Only Transformers
The Query, Key, Value weight triplet is a building block of current attention mechanisms in state-of-the-art LLMs. We theoretically investigate whether this triplet can be reduced, proving under simplifying assumptions that the Query weights are redundant, thereby reducing the number of non-embedding/lm-head parameters by over 8%. We validate the theory on full-complexity GPT-3 small architectures (with layer normalization, skip connections, and weight decay) trained from scratch, demonstrating that the reduced model achieves comparable validation loss to standard baselines. These findings motivate the investigation of the Query weight redundancy at scale.
CooperBench: Why Coding Agents Cannot be Your Teammates Yet
Resolving team conflicts requires not only task-specific competence, but also social intelligence to find common ground and build consensus. As AI agents increasingly collaborate on complex work, they must develop coordination capabilities to function as effective teammates. Yet we hypothesize that current agents lack these capabilities. To test this, we introduce CooperBench, a benchmark of over 600 collaborative coding tasks across 12 libraries in 4 programming languages. Each task assigns two agents different features that can be implemented independently but may conflict without proper coordination. Tasks are grounded in real open-source repositories with expert-written tests. Evaluating state-of-the-art coding agents, we observe the curse of coordination: agents achieve on average 30% lower success rates when working together compared to performing both tasks individually. This contrasts sharply with human teams, where adding teammates typically improves productivity. Our analysis reveals three key issues: (1) communication channels become jammed with vague, ill-timed, and inaccurate messages; (2) even with effective communication, agents deviate from their commitments; and (3) agents often hold incorrect expectations about others' plans and communication. Through large-scale simulation, we also observe rare but interesting emergent coordination behavior including role division, resource division, and negotiation. Our research presents a novel benchmark for collaborative coding and calls for a shift from pursuing individual agent capability to developing social intelligence.
comment: https://cooperbench.com First two authors contribute equally. The 3th - 6th authors contribute equally
Joint Resource Optimization, Computation Offloading and Resource Slicing for Multi-Edge Traffic-Cognitive Networks
The evolving landscape of edge computing envisions platforms operating as dynamic intermediaries between application providers and edge servers (ESs), where task offloading is coupled with payments for computational services. Ensuring efficient resource utilization and meeting stringent Quality of Service (QoS) requirements necessitates incentivizing ESs while optimizing the platforms operational objectives. This paper investigates a multi-agent system where both the platform and ESs are self-interested entities, addressing the joint optimization of revenue maximization, resource allocation, and task offloading. We propose a novel Stackelberg game-based framework to model interactions between stakeholders and solve the optimization problem using a Bayesian Optimization-based centralized algorithm. Recognizing practical challenges in information collection due to privacy concerns, we further design a decentralized solution leveraging neural network optimization and a privacy-preserving information exchange protocol. Extensive numerical evaluations demonstrate the effectiveness of the proposed mechanisms in achieving superior performance compared to existing baselines.
UQLM: A Python Package for Uncertainty Quantification in Large Language Models
Hallucinations, defined as instances where Large Language Models (LLMs) generate false or misleading content, pose a significant challenge that impacts the safety and trust of downstream applications. We introduce UQLM, a Python package for LLM hallucination detection using state-of-the-art uncertainty quantification (UQ) techniques. This toolkit offers a suite of UQ-based scorers that compute response-level confidence scores ranging from 0 to 1. This library provides an off-the-shelf solution for UQ-based hallucination detection that can be easily integrated to enhance the reliability of LLM outputs.
comment: Accepted by JMLR; UQLM Repository: https://github.com/cvs-health/uqlm
Unsupervised Elicitation of Language Models
To steer pretrained language models for downstream tasks, today's post-training paradigm relies on humans to specify desired behaviors. However, for models with superhuman capabilities, it is difficult or impossible to get high-quality human supervision. To address this challenge, we introduce a new unsupervised algorithm, Internal Coherence Maximization (ICM), to fine-tune pretrained language models on their own generated labels, \emph{without external supervision}. On GSM8k-verification, TruthfulQA, and Alpaca reward modeling tasks, our method matches the performance of training on golden labels and outperforms training on crowdsourced human supervision. On tasks where LMs' capabilities are strongly superhuman, our method can elicit those capabilities significantly better than training on human labels. Finally, we show that our method can improve the training of frontier LMs: we use our method to train an unsupervised reward model and use reinforcement learning to train a Claude 4 Sonnet-based assistant. The resulting assistant matches its counterpart trained on production-grade human labels on average, with higher scores on chat and safety yet lower scores on math and coding.
SABRE-FL: Selective and Accurate Backdoor Rejection for Federated Prompt Learning ICLR 2026
Federated Prompt Learning has emerged as a communication-efficient and privacy-preserving paradigm for adapting large vision-language models like CLIP across decentralized clients. However, the security implications of this setup remain underexplored. In this work, we present the first study of backdoor attacks in Federated Prompt Learning. We show that when malicious clients inject visually imperceptible, learnable noise triggers into input images, the global prompt learner becomes vulnerable to targeted misclassification while still maintaining high accuracy on clean inputs. Motivated by this vulnerability, we propose SABRE-FL, a lightweight, modular defense that filters poisoned prompt updates using an embedding-space anomaly detector trained offline on out-of-distribution data. SABRE-FL requires no access to raw client data or labels and generalizes across diverse datasets. We show, both theoretically and empirically, that malicious clients can be reliably identified and filtered using an embedding-based detector. Across five diverse datasets and four baseline defenses, SABRE-FL outperforms all baselines by significantly reducing backdoor accuracy while preserving clean accuracy, demonstrating strong empirical performance and underscoring the need for robust prompt learning in future federated systems.
comment: ICLR 2026
Synthetic Object Compositions for Scalable and Accurate Learning in Detection, Segmentation, and Grounding
Visual grouping -- operationalized through tasks such as instance segmentation, visual grounding, and object detection -- enables applications ranging from robotic perception to photo editing. These fundamental problems in computer vision are powered by large-scale, painstakingly annotated datasets. Despite their impact, these datasets are costly to build, biased in coverage, and difficult to scale. Synthetic datasets offer a promising alternative but struggle with flexibility, accuracy, and compositional diversity. We introduce Synthetic Object Compositions (SOC), an accurate and scalable data synthesis pipeline via a novel object-centric composition strategy. It composes high-quality synthetic object segments into new images using 3D geometric layout augmentation and camera configuration augmentation with generative harmonization and mask-area-weighted blending, yielding accurate and diverse masks, boxes, and referring expressions. Models trained on just 100K of our synthetic images outperform those trained on larger real datasets (GRIT 20M, V3Det 200K) and synthetic pipelines (Copy-Paste, X-Paste, SynGround, SegGen) by +24-36% -- achieving +10.9 AP on LVIS and +8.4 NAcc on gRefCOCO. Beyond the general open-vocabulary setup, SOC also enables controllable dataset construction for different use cases and boosts performance in both low-data and closed-vocabulary scenarios. Augmenting LVIS and COCO with synthetic object segments delivers strong performance across different real-data scales and yields even greater improvements under extremely limited real-data conditions, including +6.59 AP on a 1% COCO data setup. Furthermore, this controllability enables targeted data generation for intra-class referring, a diagnostic grounding task we propose that requires fine-grained attribute discrimination.
comment: Project website: https://github.com/weikaih04/Synthetic-Detection-Segmentation-Grounding-Data
Purrception: Variational Flow Matching for Vector-Quantized Image Generation ICLR 2026
We introduce Purrception, a variational flow matching approach for vector-quantized image generation that provides explicit categorical supervision while maintaining continuous transport dynamics. Our method adapts Variational Flow Matching to vector-quantized latents by learning categorical posteriors over codebook indices while computing velocity fields in the continuous embedding space. This combines the geometric awareness of continuous methods with the discrete supervision of categorical approaches, enabling uncertainty quantification over plausible codes and temperature-controlled generation. We evaluate Purrception on ImageNet-1k 256x256 generation. Training converges faster than both continuous flow matching and discrete flow matching baselines while achieving competitive FID scores with state-of-the-art models. This demonstrates that Variational Flow Matching can effectively bridge continuous transport and discrete supervision for improved training efficiency in image generation.
comment: Published at ICLR 2026
A general framework for adaptive nonparametric dimensionality reduction
Dimensionality reduction is a fundamental task in modern data science. Several projection methods specifically tailored to take into account the non-linearity of the data via local embeddings have been proposed. Such methods are often based on local neighbourhood structures and require tuning the number of neighbours that define this local structure, and the dimensionality of the lower-dimensional space onto which the data are projected. Such choices critically influence the quality of the resulting embedding. In this paper, we exploit a recently proposed intrinsic dimension estimator which also returns the optimal locally adaptive neighbourhood sizes according to some desirable criteria. In principle, this adaptive framework can be employed to perform an optimal hyper-parameter tuning of any dimensionality reduction algorithm that relies on local neighbourhood structures. Numerical experiments on both real-world and simulated datasets show that the proposed method can be used to significantly improve well-known projection methods when employed for various learning tasks, with improvements measurable through both quantitative metrics and the quality of low-dimensional visualizations.
Agentic Plan Caching: Test-Time Memory for Fast and Cost-Efficient LLM Agents NeurIPS 2025
LLM-based agent applications have shown increasingly remarkable capabilities in complex workflows but incur substantial costs and latency due to extensive planning and reasoning requirements. Existing LLM caching techniques (like context caching and semantic caching), primarily designed for serving chatbots, are insufficient for agent applications where outputs depend on external data and environmental contexts. We propose Agentic Plan Caching (APC), a novel test-time memory that extracts, stores, adapts, and reuses structured plan templates from planning stages of agent applications across semantically similar tasks to reduce the cost and latency of serving. Unlike traditional semantic caching, our system extracts plan templates from completed agent executions at test-time, employs keyword extraction to match new requests against cached plans, and utilizes lightweight models to adapt these templates to task-specific plans with contexts. Evaluation across multiple real-world agent applications shows that our system can reduce costs by 50.31% and latency by 27.28% on average while maintaining performance, offering a more efficient solution for serving LLM-based agents that complements existing LLM serving infrastructures.
comment: NeurIPS 2025. 27 pages
Privacy Reasoning in Ambiguous Contexts
We study the ability of language models to reason about appropriate information disclosure - a central aspect of the evolving field of agentic privacy. Whereas previous works have focused on evaluating a model's ability to align with human decisions, we examine the role of ambiguity and missing context on model performance when making information-sharing decisions. We identify context ambiguity as a crucial barrier for high performance in privacy assessments. By designing Camber, a framework for context disambiguation, we show that model-generated decision rationales can reveal ambiguities and that systematically disambiguating context based on these rationales leads to significant accuracy improvements (up to 13.3% in precision and up to 22.3% in recall) as well as reductions in prompt sensitivity. Overall, our results indicate that approaches for context disambiguation are a promising way forward to enhance agentic privacy reasoning.
Moonworks Lunara Aesthetic Dataset
The dataset spans diverse artistic styles, including regionally grounded aesthetics from the Middle East, Northern Europe, East Asia, and South Asia, alongside general categories such as sketch and oil painting. All images are generated using the Moonworks Lunara model and intentionally crafted to embody distinct, high-quality aesthetic styles, yielding a first-of-its-kind dataset with substantially higher aesthetic scores, exceeding even aesthetics-focused datasets, and general-purpose datasets by a larger margin. Each image is accompanied by a human-refined prompt and structured annotations that jointly describe salient objects, attributes, relationships, and stylistic cues. Unlike large-scale web-derived datasets that emphasize breadth over precision, the Lunara Aesthetic Dataset prioritizes aesthetic quality, stylistic diversity, and licensing transparency, and is released under the Apache 2.0 license to support research and unrestricted academic and commercial use.
Can Large Language Models Really Recognize Your Name?
Large language models (LLMs) are increasingly being used in privacy pipelines to detect and remedy sensitive data leakage. These solutions often rely on the premise that LLMs can reliably recognize human names, one of the most important categories of personally identifiable information (PII). In this paper, we reveal how LLMs can consistently mishandle broad classes of human names even in short text snippets due to ambiguous linguistic cues in the contexts. We construct AmBench, a benchmark of over 12,000 real yet ambiguous human names based on the name regularity bias phenomenon. Each name appears in dozens of concise text snippets that are compatible with multiple entity types. Our experiments with 12 state-of-the-art LLMs show that the recall of AmBench names drops by 20--40% compared to more recognizable names. This uneven privacy protection due to linguistic properties raises important concerns about the fairness of privacy enforcement. When the contexts contain benign prompt injections -- instruction-like user texts that can cause LLMs to conflate data with commands -- AmBench names can become four times more likely to be ignored in Clio, an LLM-powered enterprise tool used by Anthropic AI to extract supposedly privacy-preserving insights from user conversations with Claude. Our findings showcase blind spots in the performance and fairness of LLM-based privacy solutions and call for a systematic investigation into their privacy failure modes and countermeasures.
ViSIL: Unified Evaluation of Information Loss in Multimodal Video Captioning
Multimodal video captioning condenses dense footage into a structured format of keyframes and natural language. By creating a cohesive multimodal summary, this approach anchors generative AI in rich semantic evidence and serves as a lightweight proxy for high-efficiency retrieval. However, traditional metrics like BLEU or ROUGE fail to quantify information coverage across disparate modalities, such as comparing a paragraph of text to a sequence of keyframes. To address this, we propose the Video Summary Information Loss (ViSIL) score, an information-theoretic framework that quantifies the video information not captured by a summary via vision-language model (VLM) inference. By measuring the information loss, ViSIL is a unified metric that enables direct comparison across multimodal summary formats despite their structural discrepancies. Our results demonstrate that ViSIL scores show a statistically significant correlation with both human and VLM performance on Video Question Answering (VQA) tasks. ViSIL also enables summary selection to optimize the trade-off between information loss and processing speed, establishing a Pareto-optimal frontier that outperforms text summaries by $7\%$ in VQA accuracy without increasing processing load.
Dynamic Correction of Erroneous State Estimates via Diffusion Bayesian Exploration
In emergency response and other high-stakes societal applications, early-stage state estimates critically shape downstream outcomes. Yet, these initial state estimates-often based on limited or biased information-can be severely misaligned with reality, constraining subsequent actions and potentially causing catastrophic delays, resource misallocation, and human harm. Under the stationary bootstrap baseline (zero transition and no rejuvenation), bootstrap particle filters exhibit Stationarity-Induced Posterior Support Invariance (S-PSI), wherein regions excluded by the initial prior remain permanently unexplorable, making corrections impossible even when new evidence contradicts current beliefs. While classical perturbations can in principle break this lock-in, they operate in an always-on fashion and may be inefficient. To overcome this, we propose a diffusion-driven Bayesian exploration framework that enables principled, real-time correction of early state estimation errors. Our method expands posterior support via entropy-regularized sampling and covariance-scaled diffusion. A Metropolis-Hastings check validates proposals and keeps inference adaptive to unexpected evidence. Empirical evaluations on realistic hazardous-gas localization tasks show that our approach matches reinforcement learning and planning baselines when priors are correct. It substantially outperforms classical SMC perturbations and RL-based methods under misalignment, and we provide theoretical guarantees that DEPF resolves S-PSI while maintaining statistical rigor.
CMOOD: Concept-based Multi-label OOD Detection
How can models effectively detect out-of-distribution (OOD) samples in complex, multi-label settings without extensive retraining? Existing OOD detection methods struggle to capture the intricate semantic relationships and label co-occurrences inherent in multi-label settings, often requiring large amounts of training data and failing to generalize to unseen label combinations. While large language models have revolutionized zero-shot OOD detection, they primarily focus on single-label scenarios, leaving a critical gap in handling real-world tasks where samples can be associated with multiple interdependent labels. To address these challenges, we introduce COOD, a novel zero-shot multi-label OOD detection framework. COOD leverages pre-trained vision-language models, enhancing them with a concept-based label expansion strategy and a new scoring function. By enriching the semantic space with both positive and negative concepts for each label, our approach models complex label dependencies, precisely differentiating OOD samples without the need for additional training. Extensive experiments demonstrate that our method significantly outperforms existing approaches, achieving approximately 95% average AUROC on both VOC and COCO datasets, while maintaining robust performance across varying numbers of labels and different types of OOD samples.
Large-Scale Continual Scheduling and Execution for Dynamic Distributed Satellite Constellation Observation Allocation
The size and capabilities of Earth-observing satellite constellations are rapidly increasing. Leveraging distributed onboard control, we can enable novel time-sensitive measurements and responses. However, deploying autonomy to large multiagent satellite systems necessitates algorithms with efficient computation and communication. We tackle this challenge and propose new, online algorithms for large-scale dynamic distributed constraint optimization problems (DDCOP). We present the Dynamic Multi-Satellite Constellation Observation Scheduling Problem (DCOSP), a new formulation of DDCOPs that models integrated scheduling and execution. We construct an omniscient offline algorithm to compute the novel optimality condition of DCOSP and present the Dynamic Incremental Neighborhood Stochastic Search (D-NSS) algorithm, an incomplete online decomposition-based DDCOP approach. We show through simulation that D-NSS converges to near-optimal solutions and outperforms DDCOP baselines in terms of solution quality, computation time, and message volume. Our work forms the foundation of the largest in-space demonstration of distributed multiagent AI to date: the NASA FAME mission.
comment: Full version of the extended abstract appearing in Proceedings of the 25th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2026)
Causal Graph Neural Networks for Healthcare
Healthcare artificial intelligence systems routinely fail when deployed across institutions, with documented performance drops and perpetuation of discriminatory patterns embedded in historical data. This brittleness stems, in part, from learning statistical associations rather than causal mechanisms. Causal graph neural networks address this triple crisis of distribution shift, discrimination, and inscrutability by combining graph-based representations of biomedical data with causal inference principles to learn invariant mechanisms rather than spurious correlations. This Review examines methodological foundations spanning structural causal models, disentangled causal representation learning, and techniques for interventional prediction and counterfactual reasoning on graphs. We analyse applications demonstrating clinical value across psychiatric diagnosis through brain network analysis, cancer subtyping via multi-omics causal integration, continuous physiological monitoring with mechanistic interpretation, and drug recommendation correcting prescription bias. These advances establish foundations for patient-specific Causal Digital Twins, enabling in silico clinical experimentation, with integration of large language models for hypothesis generation and causal graph neural networks for mechanistic validation. Substantial barriers remain, including computational requirements precluding real-time deployment, validation challenges demanding multi-modal evidence triangulation beyond cross-validation, and risks of causal-washing where methods employ causal terminology without rigorous evidentiary support. We propose tiered frameworks distinguishing causally-inspired architectures from causally-validated discoveries and identify critical research priorities making causal rather than purely associational claims.
Zer0-Jack: A Memory-efficient Gradient-based Jailbreaking Method for Black-box Multi-modal Large Language Models
Jailbreaking methods, which induce Multi-modal Large Language Models (MLLMs) to output harmful responses, raise significant safety concerns. Among these methods, gradient-based approaches, which use gradients to generate malicious prompts, have been widely studied due to their high success rates in white-box settings, where full access to the model is available. However, these methods have notable limitations: they require white-box access, which is not always feasible, and involve high memory usage. To address scenarios where white-box access is unavailable, attackers often resort to transfer attacks. In transfer attacks, malicious inputs generated using white-box models are applied to black-box models, but this typically results in reduced attack performance. To overcome these challenges, we propose Zer0-Jack, a method that bypasses the need for white-box access by leveraging zeroth-order optimization. We propose patch coordinate descent to efficiently generate malicious image inputs to directly attack black-box MLLMs, which significantly reduces memory usage further. Through extensive experiments, Zer0-Jack achieves a high attack success rate across various models, surpassing previous transfer-based methods and performing comparably with existing white-box jailbreak techniques. Notably, Zer0-Jack achieves a 95\% attack success rate on MiniGPT-4 with the Harmful Behaviors Multi-modal Dataset on a black-box setting, demonstrating its effectiveness. Additionally, we show that Zer0-Jack can directly attack commercial MLLMs such as GPT-4o. Codes are provided in the supplement.
comment: Accepted to EACL 2026 Main
ResMatching: Noise-Resilient Computational Super-Resolution via Guided Conditional Flow Matching
Computational Super-Resolution (CSR) in fluorescence microscopy has, despite being an ill-posed problem, a long history. At its very core, CSR is about finding a prior that can be used to extrapolate frequencies in a micrograph that have never been imaged by the image-generating microscope. It stands to reason that, with the advent of better data-driven machine learning techniques, stronger prior can be learned and hence CSR can lead to better results. Here, we present ResMatching, a novel CSR method that uses guided conditional flow matching to learn such improved data-priors. We evaluate ResMatching on 4 diverse biological structures from the BioSR dataset and compare its results against 7 baselines. ResMatching consistently achieves competitive results, demonstrating in all cases the best trade-off between data fidelity and perceptual realism. We observe that CSR using ResMatching is particularly effective in cases where a strong prior is hard to learn, e.g. when the given low-resolution images contain a lot of noise. Additionally, we show that ResMatching can be used to sample from an implicitly learned posterior distribution and that this distribution is calibrated for all tested use-cases, enabling our method to deliver a pixel-wise data-uncertainty term that can guide future users to reject uncertain predictions.
comment: 5 pages, 4 figures; Accepted to IEEE ISBI 2026
KANO: Kolmogorov-Arnold Neural Operator
We introduce Kolmogorov--Arnold Neural Operator (KANO), a dual-domain neural operator jointly parameterized by both spectral and spatial bases with intrinsic symbolic interpretability. We theoretically demonstrate that KANO overcomes the pure-spectral bottleneck of Fourier Neural Operator (FNO): KANO remains expressive over generic position-dependent dynamics (variable coefficient PDEs) for any physical input, whereas FNO stays practical only for spectrally sparse operators and strictly imposes a fast-decaying input Fourier tail. We verify our claims empirically on position-dependent differential operators, for which KANO robustly generalizes but FNO fails to. In the quantum Hamiltonian learning benchmark, KANO reconstructs ground-truth Hamiltonians in closed-form symbolic representations accurate to the fourth decimal place in coefficients and attains $\approx 6\times10^{-6}$ state infidelity from projective measurement data, substantially outperforming that of the FNO trained with ideal full wave function data, $\approx 1.5\times10^{-2}$, by orders of magnitude.
General Binding Affinity Guidance for Diffusion Models in Structure-Based Drug Design
Structure-based drug design (SBDD) aims to generate ligands that bind strongly and specifically to target protein pockets. Recent diffusion models have advanced SBDD by capturing the distributions of atomic positions and types, yet they often underemphasize binding affinity control during generation. To address this limitation, we introduce \textbf{\textnormal{\textbf{BADGER}}}, a general \textbf{binding-affinity guidance framework for diffusion models in SBDD}. \textnormal{\textbf{BADGER} }incorporates binding affinity awareness through two complementary strategies: (1) \textit{classifier guidance}, which applies gradient-based affinity signals during sampling in a plug-and-play fashion, and (2) \textit{classifier-free guidance}, which integrates affinity conditioning directly into diffusion model training. Together, these approaches enable controllable ligand generation guided by binding affinity. \textnormal{\textbf{BADGER} } can be added to any diffusion model and achieves up to a \textbf{60\% improvement in ligand--protein binding affinity} of sampled molecules over prior methods. Furthermore, we extend the framework to \textbf{multi-constraint diffusion guidance}, jointly optimizing for binding affinity, drug-likeness (QED), and synthetic accessibility (SA) to design realistic and synthesizable drug candidates.
Chat to Chip: Large Language Model Based Design of Arbitrarily Shaped Metasurfaces
Traditional metasurface design is limited by the computational cost of full-wave simulations, preventing thorough exploration of complex configurations. Data-driven approaches have emerged as a solution to this bottleneck, replacing costly simulations with rapid neural network evaluations and enabling near-instant design for meta-atoms. Despite advances, implementing a new optical function still requires building and training a task-specific network, along with exhaustive searches for suitable architectures and hyperparameters. Pre-trained large language models (LLMs), by contrast, sidestep this laborious process with a simple fine-tuning technique. However, applying LLMs to the design of nanophotonic devices, particularly for arbitrarily shaped metasurfaces, is still in its early stages; as such tasks often require graphical networks. Here, we show that an LLM, fed with descriptive inputs of arbitrarily shaped metasurface geometries, can learn the physical relationships needed for spectral prediction and inverse design. We further benchmarked a range of open-weight LLMs and identified relationships between accuracy and model size at the billion-parameter level. We demonstrated that 1-D token-wise LLMs provide a practical tool to designing 2-D arbitrarily shaped metasurfaces. Linking natural-language interaction to electromagnetic modelling, this "chat-to-chip" workflow represents a step toward more user-friendly data-driven nanophotonics.
Temporal Knowledge-Graph Memory in a Partially Observable Environment
Agents in partially observable environments require persistent memory to integrate observations over time. While KGs (knowledge graphs) provide a natural representation for such evolving state, existing benchmarks rarely expose agents to environments where both the world dynamics and the agent's memory are explicitly graph-shaped. We introduce the Room Environment v3, a configurable environment whose hidden state is an RDF KG and whose observations are RDF triples. The agent may extend these observations into a temporal KG when storing them in long-term memory. The environment is easily adjustable in terms of grid size, number of rooms, inner walls, and moving objects. We define a lightweight temporal KG memory for agents, based on RDF-star-style qualifiers (time_added, last_accessed, num_recalled), and evaluate several symbolic baselines that maintain and query this memory under different capacity constraints. Two neural sequence models (LSTM and Transformer) serve as contrasting baselines without explicit KG structure. Agents train on one layout and are evaluated on a held-out layout with the same dynamics but a different query order, exposing train-test generalization gaps. In this setting, temporal qualifiers lead to more stable performance, and the symbolic TKG (temporal knowledge graph) agent achieves roughly fourfold higher test QA (question-answer) accuracy than the neural baselines under the same environment and query conditions. The environment, agent implementations, and experimental scripts are released for reproducible research at https://github.com/humemai/agent-room-env-v3 and https://github.com/humemai/room-env.
Imitation Game: Reproducing Deep Learning Bugs Leveraging an Intelligent Agent
Despite their wide adoption in various domains (e.g., healthcare, finance, software engineering), Deep Learning (DL)-based applications suffer from many bugs, failures, and vulnerabilities. Reproducing these bugs is essential for their resolution, but it is extremely challenging due to the inherent nondeterminism of DL models and their tight coupling with hardware and software environments. According to recent studies, only about 3% of DL bugs can be reliably reproduced using manual approaches. To address these challenges, we present RepGen, a novel, automated, and intelligent approach for reproducing deep learning bugs. RepGen constructs a learning-enhanced context from a project, develops a comprehensive plan for bug reproduction, employs an iterative generate-validate-refine mechanism, and thus generates such code using an LLM that reproduces the bug at hand. We evaluate RepGen on 106 real-world deep learning bugs and achieve a reproduction rate of 80.19%, a 19.81% improvement over the state-of-the-art measure. A developer study involving 27 participants shows that RepGen improves the success rate of DL bug reproduction by 23.35%, reduces the time to reproduce by 56.8%, and lowers participants' cognitive load.
comment: Accepted by the 48th IEEE/ACM International Conference on Software Engineering (ICSE 2026)
Machine Learning 273
ctELM: Decoding and Manipulating Embeddings of Clinical Trials with Embedding Language Models
Text embeddings have become an essential part of a variety of language applications. However, methods for interpreting, exploring and reversing embedding spaces are limited, reducing transparency and precluding potentially valuable generative use cases. In this work, we align Large Language Models to embeddings of clinical trials using the recently reported Embedding Language Model (ELM) method. We develop an open-source, domain-agnostic ELM architecture and training framework, design training tasks for clinical trials, and introduce an expert-validated synthetic dataset. We then train a series of ELMs exploring the impact of tasks and training regimes. Our final model, ctELM, can accurately describe and compare unseen clinical trials from embeddings alone and produce plausible clinical trials from novel vectors. We further show that generated trial abstracts are responsive to moving embeddings along concept vectors for age and sex of study subjects. Our public ELM implementation and experimental results will aid the alignment of Large Language Models to embedding spaces in the biomedical domain and beyond.
Reuse your FLOPs: Scaling RL on Hard Problems by Conditioning on Very Off-Policy Prefixes
Typical reinforcement learning (RL) methods for LLM reasoning waste compute on hard problems, where correct on-policy traces are rare, policy gradients vanish, and learning stalls. To bootstrap more efficient RL, we consider reusing old sampling FLOPs (from prior inference or RL training) in the form of off-policy traces. Standard off-policy methods supervise against off-policy data, causing instabilities during RL optimization. We introduce PrefixRL, where we condition on the prefix of successful off-policy traces and run on-policy RL to complete them, side-stepping off-policy instabilities. PrefixRL boosts the learning signal on hard problems by modulating the difficulty of the problem through the off-policy prefix length. We prove that the PrefixRL objective is not only consistent with the standard RL objective but also more sample efficient. Empirically, we discover back-generalization: training only on prefixed problems generalizes to out-of-distribution unprefixed performance, with learned strategies often differing from those in the prefix. In our experiments, we source the off-policy traces by rejection sampling with the base model, creating a self-improvement loop. On hard reasoning problems, PrefixRL reaches the same training reward 2x faster than the strongest baseline (SFT on off-policy data then RL), even after accounting for the compute spent on the initial rejection sampling, and increases the final reward by 3x. The gains transfer to held-out benchmarks, and PrefixRL is still effective when off-policy traces are derived from a different model family, validating its flexibility in practical settings.
MEGnifying Emotion: Sentiment Analysis from Annotated Brain Data
Decoding emotion from brain activity could unlock a deeper understanding of the human experience. While a number of existing datasets align brain data with speech and with speech transcripts, no datasets have annotated brain data with sentiment. To bridge this gap, we explore the use of pre-trained Text-to-Sentiment models to annotate non invasive brain recordings, acquired using magnetoencephalography (MEG), while participants listened to audiobooks. Having annotated the text, we employ force-alignment of the text and audio to align our sentiment labels with the brain recordings. It is straightforward then to train Brainto-Sentiment models on these data. Experimental results show an improvement in balanced accuracy for Brain-to-Sentiment compared to baseline, supporting the proposed approach as a proof-of-concept for leveraging existing MEG datasets and learning to decode sentiment directly from the brain.
Subword-Based Comparative Linguistics across 242 Languages Using Wikipedia Glottosets
We present a large-scale comparative study of 242 Latin and Cyrillic-script languages using subword-based methodologies. By constructing 'glottosets' from Wikipedia lexicons, we introduce a framework for simultaneous cross-linguistic comparison via Byte-Pair Encoding (BPE). Our approach utilizes rank-based subword vectors to analyze vocabulary overlap, lexical divergence, and language similarity at scale. Evaluations demonstrate that BPE segmentation aligns with morpheme boundaries 95% better than random baseline across 15 languages (F1 = 0.34 vs 0.15). BPE vocabulary similarity correlates significantly with genetic language relatedness (Mantel r = 0.329, p < 0.001), with Romance languages forming the tightest cluster (mean distance 0.51) and cross-family pairs showing clear separation (0.82). Analysis of 26,939 cross-linguistic homographs reveals that 48.7% receive different segmentations across related languages, with variation correlating to phylogenetic distance. Our results provide quantitative macro-linguistic insights into lexical patterns across typologically diverse languages within a unified analytical framework.
comment: 15 pages, 4 figues, 4 tables
Unsupervised Text Segmentation via Kernel Change-Point Detection on Sentence Embeddings
Unsupervised text segmentation is crucial because boundary labels are expensive, subjective, and often fail to transfer across domains and granularity choices. We propose Embed-KCPD, a training-free method that represents sentences as embedding vectors and estimates boundaries by minimizing a penalized KCPD objective. Beyond the algorithmic instantiation, we develop, to our knowledge, the first dependence-aware theory for KCPD under $m$-dependent sequences, a finite-memory abstraction of short-range dependence common in language. We prove an oracle inequality for the population penalized risk and a localization guarantee showing that each true change point is recovered within a window that is small relative to segment length. To connect theory to practice, we introduce an LLM-based simulation framework that generates synthetic documents with controlled finite-memory dependence and known boundaries, validating the predicted scaling behavior. Across standard segmentation benchmarks, Embed-KCPD often outperforms strong unsupervised baselines. A case study on Taylor Swift's tweets illustrates that Embed-KCPD combines strong theoretical guarantees, simulated reliability, and practical effectiveness for text segmentation.
comment: arXiv admin note: substantial text overlap with arXiv:2510.03437. substantial text overlap with arXiv:2510.03437. substantial text overlap with arXiv:2510.03437. substantial text overlap with arXiv:2510.03437
Multi-Objective Reinforcement Learning for Efficient Tactical Decision Making for Trucks in Highway Traffic
Balancing safety, efficiency, and operational costs in highway driving poses a challenging decision-making problem for heavy-duty vehicles. A central difficulty is that conventional scalar reward formulations, obtained by aggregating these competing objectives, often obscure the structure of their trade-offs. We present a Proximal Policy Optimization based multi-objective reinforcement learning framework that learns a continuous set of policies explicitly representing these trade-offs and evaluates it on a scalable simulation platform for tactical decision making in trucks. The proposed approach learns a continuous set of Pareto-optimal policies that capture the trade-offs among three conflicting objectives: safety, quantified in terms of collisions and successful completion; energy efficiency and time efficiency, quantified using energy cost and driver cost, respectively. The resulting Pareto frontier is smooth and interpretable, enabling flexibility in choosing driving behavior along different conflicting objectives. This framework allows seamless transitions between different driving policies without retraining, yielding a robust and adaptive decision-making strategy for autonomous trucking applications.
POPE: Learning to Reason on Hard Problems via Privileged On-Policy Exploration
Reinforcement learning (RL) has improved the reasoning abilities of large language models (LLMs), yet state-of-the-art methods still fail to learn on many training problems. On hard problems, on-policy RL rarely explores even a single correct rollout, yielding zero reward and no learning signal for driving improvement. We find that natural solutions to remedy this exploration problem from classical RL, such as entropy bonuses, more permissive clipping of the importance ratio, or direct optimization of pass@k objectives, do not resolve this issue and often destabilize optimization without improving solvability. A natural alternative is to leverage transfer from easier problems. However, we show that mixing easy and hard problems during RL training is counterproductive due to ray interference, where optimization focuses on already-solvable problems in a way that actively inhibits progress on harder ones. To address this challenge, we introduce Privileged On-Policy Exploration (POPE), an approach that leverages human- or other oracle solutions as privileged information to guide exploration on hard problems, unlike methods that use oracle solutions as training targets (e.g., off-policy RL methods or warmstarting from SFT). POPE augments hard problems with prefixes of oracle solutions, enabling RL to obtain non-zero rewards during guided rollouts. Crucially, the resulting behaviors transfer back to the original, unguided problems through a synergy between instruction-following and reasoning. Empirically, POPE expands the set of solvable problems and substantially improves performance on challenging reasoning benchmarks.
Teaching Models to Teach Themselves: Reasoning at the Edge of Learnability
Can a model learn to escape its own learning plateau? Reinforcement learning methods for finetuning large reasoning models stall on datasets with low initial success rates, and thus little training signal. We investigate a fundamental question: Can a pretrained LLM leverage latent knowledge to generate an automated curriculum for problems it cannot solve? To explore this, we design SOAR: A self-improvement framework designed to surface these pedagogical signals through meta-RL. A teacher copy of the model proposes synthetic problems for a student copy, and is rewarded with its improvement on a small subset of hard problems. Critically, SOAR grounds the curriculum in measured student progress rather than intrinsic proxy rewards. Our study on the hardest subsets of mathematical benchmarks (0/128 success) reveals three core findings. First, we show that it is possible to realize bi-level meta-RL that unlocks learning under sparse, binary rewards by sharpening a latent capacity of pretrained models to generate useful stepping stones. Second, grounded rewards outperform intrinsic reward schemes used in prior LLM self-play, reliably avoiding the instability and diversity collapse modes they typically exhibit. Third, analyzing the generated questions reveals that structural quality and well-posedness are more critical for learning progress than solution correctness. Our results suggest that the ability to generate useful stepping stones does not require the preexisting ability to actually solve the hard problems, paving a principled path to escape reasoning plateaus without additional curated data.
PRECISE: Reducing the Bias of LLM Evaluations Using Prediction-Powered Ranking Estimation AAAI 2026
Evaluating the quality of search, ranking and RAG systems traditionally requires a significant number of human relevance annotations. In recent times, several deployed systems have explored the usage of Large Language Models (LLMs) as automated judges for this task while their inherent biases prevent direct use for metric estimation. We present a statistical framework extending Prediction-Powered Inference (PPI) that combines minimal human annotations with LLM judgments to produce reliable estimates of metrics which require sub-instance annotations. Our method requires as few as 100 human-annotated queries and 10,000 unlabeled examples, reducing annotation requirements significantly compared to traditional approaches. We formulate our proposed framework (PRECISE) for inference of relevance uplift for an LLM-based query reformulation application, extending PPI to sub-instance annotations at the query-document level. By reformulating the metric-integration space, we reduced the computational complexity from O(2^|C|) to O(2^K), where |C| represents corpus size (in order of millions). Detailed experiments across prominent retrieval datasets demonstrate that our method reduces the variance of estimates for the business-critical Precision@K metric, while effectively correcting for LLM bias in low-resource settings.
comment: Accepted at AAAI 2026 - Innovative Applications of AI (IAAI-26)
Learning to Discover: A Generalized Framework for Raga Identification without Forgetting
Raga identification in Indian Art Music (IAM) remains challenging due to the presence of numerous rarely performed Ragas that are not represented in available training datasets. Traditional classification models struggle in this setting, as they assume a closed set of known categories and therefore fail to recognise or meaningfully group previously unseen Ragas. Recent works have tried categorizing unseen Ragas, but they run into a problem of catastrophic forgetting, where the knowledge of previously seen Ragas is diminished. To address this problem, we adopt a unified learning framework that leverages both labeled and unlabeled audio, enabling the model to discover coherent categories corresponding to the unseen Ragas, while retaining the knowledge of previously known ones. We test our model on benchmark Raga Identification datasets and demonstrate its performance in categorizing previously seen, unseen, and all Raga classes. The proposed approach surpasses the previous NCD-based pipeline even in discovering the unseen Raga categories, offering new insights into representation learning for IAM tasks.
comment: Accepted at NCC 2026 conference
Beyond Preferences: Learning Alignment Principles Grounded in Human Reasons and Values
A crucial consideration when developing and deploying Large Language Models (LLMs) is the human values to which these models are aligned. In the constitutional framework of alignment models are aligned to a set of principles (the constitution) specified in natural language. However, it is unclear how to fairly determine this constitution with widespread stakeholder input. In this work we propose Grounded Constitutional AI (GCAI), a unified framework for generating constitutions of principles that are representative of both users' general expectations toward AI (general principles) and their interaction-time preferences (contextual principles). We extend the Inverse Constitutional AI (ICAI) approach to generate contextual principles from human preference annotation data by leveraging human-provided \textit{reasons} for their preferences. We supplement these contextual principles with general principles surfaced from user statements of \textit{values} regarding AI. We show that a constitution generated by GCAI is preferred by humans over one generated through ICAI both personally, and for widespread use in governing AI behavior. Additionally participants consider the GCAI constitution to be more morally grounded, coherent, and pluralistic.
HalluGuard: Demystifying Data-Driven and Reasoning-Driven Hallucinations in LLMs ICLR'26
The reliability of Large Language Models (LLMs) in high-stakes domains such as healthcare, law, and scientific discovery is often compromised by hallucinations. These failures typically stem from two sources: data-driven hallucinations and reasoning-driven hallucinations. However, existing detection methods usually address only one source and rely on task-specific heuristics, limiting their generalization to complex scenarios. To overcome these limitations, we introduce the Hallucination Risk Bound, a unified theoretical framework that formally decomposes hallucination risk into data-driven and reasoning-driven components, linked respectively to training-time mismatches and inference-time instabilities. This provides a principled foundation for analyzing how hallucinations emerge and evolve. Building on this foundation, we introduce HalluGuard, an NTK-based score that leverages the induced geometry and captured representations of the NTK to jointly identify data-driven and reasoning-driven hallucinations. We evaluate HalluGuard on 10 diverse benchmarks, 11 competitive baselines, and 9 popular LLM backbones, consistently achieving state-of-the-art performance in detecting diverse forms of LLM hallucinations.
comment: Have been accepted by ICLR'26
Trust, Don't Trust, or Flip: Robust Preference-Based Reinforcement Learning with Multi-Expert Feedback
Preference-based reinforcement learning (PBRL) offers a promising alternative to explicit reward engineering by learning from pairwise trajectory comparisons. However, real-world preference data often comes from heterogeneous annotators with varying reliability; some accurate, some noisy, and some systematically adversarial. Existing PBRL methods either treat all feedback equally or attempt to filter out unreliable sources, but both approaches fail when faced with adversarial annotators who systematically provide incorrect preferences. We introduce TriTrust-PBRL (TTP), a unified framework that jointly learns a shared reward model and expert-specific trust parameters from multi-expert preference feedback. The key insight is that trust parameters naturally evolve during gradient-based optimization to be positive (trust), near zero (ignore), or negative (flip), enabling the model to automatically invert adversarial preferences and recover useful signal rather than merely discarding corrupted feedback. We provide theoretical analysis establishing identifiability guarantees and detailed gradient analysis that explains how expert separation emerges naturally during training without explicit supervision. Empirically, we evaluate TTP on four diverse domains spanning manipulation tasks (MetaWorld) and locomotion (DM Control) under various corruption scenarios. TTP achieves state-of-the-art robustness, maintaining near-oracle performance under adversarial corruption while standard PBRL methods fail catastrophically. Notably, TTP outperforms existing baselines by successfully learning from mixed expert pools containing both reliable and adversarial annotators, all while requiring no expert features beyond identification indices and integrating seamlessly with existing PBRL pipelines.
comment: Equal contribution: Seyed Amir Hosseini and Maryam Abdolali. Corresponding author: Maryam Abdolali (maryam.abdolali@kntu.ac.ir)
TSRBench: A Comprehensive Multi-task Multi-modal Time Series Reasoning Benchmark for Generalist Models
Time series data is ubiquitous in real-world scenarios and crucial for critical applications ranging from energy management to traffic control. Consequently, the ability to reason over time series is a fundamental skill for generalist models to solve practical problems. However, this dimension is notably absent from existing benchmarks of generalist models. To bridge this gap, we introduce TSRBench, a comprehensive multi-modal benchmark designed to stress-test the full spectrum of time series reasoning capabilities. TSRBench features: i) a diverse set of 4125 problems from 14 domains, and is categorized into 4 major dimensions: Perception, Reasoning, Prediction, and Decision-Making. ii) 15 tasks from the 4 dimensions evaluating essential reasoning capabilities (e.g., numerical reasoning). Through extensive experiments, we evaluated over 30 leading proprietary and open-source LLMs, VLMs, and TSLLMs within TSRBench. Our findings reveal that: i) scaling laws hold for perception and reasoning but break down for prediction; ii) strong reasoning does not guarantee accurate context-aware forecasting, indicating a decoupling between semantic understanding and numerical prediction; and iii) despite the complementary nature of textual and visual represenations of time series as inputs, current multimodal models fail to effectively fuse them for reciprocal performance gains. TSRBench provides a standardized evaluation platform that not only highlights existing challenges but also offers valuable insights to advance generalist models. Our code and dataset are available at https://tsrbench.github.io/.
Benchmarking Machine Learning Models for IoT Malware Detection under Data Scarcity and Drift
The rapid expansion of the Internet of Things (IoT) in domains such as smart cities, transportation, and industrial systems has heightened the urgency of addressing their security vulnerabilities. IoT devices often operate under limited computational resources, lack robust physical safeguards, and are deployed in heterogeneous and dynamic networks, making them prime targets for cyberattacks and malware applications. Machine learning (ML) offers a promising approach to automated malware detection and classification, but practical deployment requires models that are both effective and lightweight. The goal of this study is to investigate the effectiveness of four supervised learning models (Random Forest, LightGBM, Logistic Regression, and a Multi-Layer Perceptron) for malware detection and classification using the IoT-23 dataset. We evaluate model performance in both binary and multiclass classification tasks, assess sensitivity to training data volume, and analyze temporal robustness to simulate deployment in evolving threat landscapes. Our results show that tree-based models achieve high accuracy and generalization, even with limited training data, while performance deteriorates over time as malware diversity increases. These findings underscore the importance of adaptive, resource-efficient ML models for securing IoT systems in real-world environments.
Why Keep Your Doubts to Yourself? Trading Visual Uncertainties in Multi-Agent Bandit Systems ICLR 2026
Vision-Language Models (VLMs) enable powerful multi-agent systems, but scaling them is economically unsustainable: coordinating heterogeneous agents under information asymmetry often spirals costs. Existing paradigms, such as Mixture-of-Agents and knowledge-based routers, rely on heuristic proxies that ignore costs and collapse uncertainty structure, leading to provably suboptimal coordination. We introduce Agora, a framework that reframes coordination as a decentralized market for uncertainty. Agora formalizes epistemic uncertainty into a structured, tradable asset (perceptual, semantic, inferential), and enforces profitability-driven trading among agents based on rational economic rules. A market-aware broker, extending Thompson Sampling, initiates collaboration and guides the system toward cost-efficient equilibria. Experiments on five multimodal benchmarks (MMMU, MMBench, MathVision, InfoVQA, CC-OCR) show that Agora outperforms strong VLMs and heuristic multi-agent strategies, e.g., achieving +8.5% accuracy over the best baseline on MMMU while reducing cost by over 3x. These results establish market-based coordination as a principled and scalable paradigm for building economically viable multi-agent visual intelligence systems.
comment: Accepted to ICLR 2026
Self-Distilled Reasoner: On-Policy Self-Distillation for Large Language Models
Knowledge distillation improves large language model (LLM) reasoning by compressing the knowledge of a teacher LLM to train smaller LLMs. On-policy distillation advances this approach by having the student sample its own trajectories while a teacher LLM provides dense token-level supervision, addressing the distribution mismatch between training and inference in off-policy distillation methods. However, on-policy distillation typically requires a separate, often larger, teacher LLM and does not explicitly leverage ground-truth solutions available in reasoning datasets. Inspired by the intuition that a sufficiently capable LLM can rationalize external privileged reasoning traces and teach its weaker self (i.e., the version without access to privileged information), we introduce On-Policy Self-Distillation (OPSD), a framework where a single model acts as both teacher and student by conditioning on different contexts. The teacher policy conditions on privileged information (e.g., verified reasoning traces) while the student policy sees only the question; training minimizes the per-token divergence between these distributions over the student's own rollouts. We demonstrate the efficacy of our method on multiple mathematical reasoning benchmarks, achieving 4-8x token efficiency compared to reinforcement learning methods such as GRPO and superior performance over off-policy distillation methods.
comment: 13 pages
Reflect: Transparent Principle-Guided Reasoning for Constitutional Alignment at Scale
The constitutional framework of alignment aims to align large language models (LLMs) with value-laden principles written in natural language (such as to avoid using biased language). Prior work has focused on parameter fine-tuning techniques, such as reinforcement learning from human feedback (RLHF), to instill these principles. However, these approaches are computationally demanding, require careful engineering and tuning, and often require difficult-to-obtain human annotation data. We propose \textsc{reflect}, an inference-time framework for constitutional alignment that does not require any training or data, providing a plug-and-play approach for aligning an instruction-tuned model to a set of principles. \textsc{reflect} operates entirely in-context, combining a (i) constitution-conditioned base response with post-generation (ii) self-evaluation, (iii)(a) self-critique, and (iii)(b) final revision. \textsc{reflect}'s technique of explicit in-context reasoning over principles during post-generation outperforms standard few-shot prompting and provides transparent reasoning traces. Our results demonstrate that \textsc{reflect} significantly improves LLM conformance to diverse and complex principles, including principles quite distinct from those emphasized in the model's original parameter fine-tuning, without sacrificing factual reasoning. \textsc{reflect} is particularly effective at reducing the rate of rare but significant violations of principles, thereby improving safety and robustness in the tail end of the distribution of generations. Finally, we show that \textsc{reflect} naturally generates useful training data for traditional parameter fine-tuning techniques, allowing for efficient scaling and the reduction of inference-time computational overhead in long-term deployment scenarios.
Riemannian AmbientFlow: Towards Simultaneous Manifold Learning and Generative Modeling from Corrupted Data
Modern generative modeling methods have demonstrated strong performance in learning complex data distributions from clean samples. In many scientific and imaging applications, however, clean samples are unavailable, and only noisy or linearly corrupted measurements can be observed. Moreover, latent structures, such as manifold geometries, present in the data are important to extract for further downstream scientific analysis. In this work, we introduce Riemannian AmbientFlow, a framework for simultaneously learning a probabilistic generative model and the underlying, nonlinear data manifold directly from corrupted observations. Building on the variational inference framework of AmbientFlow, our approach incorporates data-driven Riemannian geometry induced by normalizing flows, enabling the extraction of manifold structure through pullback metrics and Riemannian Autoencoders. We establish theoretical guarantees showing that, under appropriate geometric regularization and measurement conditions, the learned model recovers the underlying data distribution up to a controllable error and yields a smooth, bi-Lipschitz manifold parametrization. We further show that the resulting smooth decoder can serve as a principled generative prior for inverse problems with recovery guarantees. We empirically validate our approach on low-dimensional synthetic manifolds and on MNIST.
Gained in Translation: Privileged Pairwise Judges Enhance Multilingual Reasoning
When asked a question in a language less seen in its training data, current reasoning large language models (RLMs) often exhibit dramatically lower performance than when asked the same question in English. In response, we introduce \texttt{SP3F} (Self-Play with Privileged Pairwise Feedback), a two-stage framework for enhancing multilingual reasoning without \textit{any} data in the target language(s). First, we supervise fine-tune (SFT) on translated versions of English question-answer pairs to raise base model correctness. Second, we perform RL with feedback from a pairwise judge in a self-play fashion, with the judge receiving the English reference response as \textit{privileged information}. Thus, even when none of the model's responses are completely correct, the privileged pairwise judge can still tell which response is better. End-to-end, \texttt{SP3F} greatly improves base model performance, even outperforming fully post-trained models on multiple math and non-math tasks with less than of the training data across the single-language, multilingual, and generalization to unseen language settings.
comment: Code available at https://github.com/lintangsutawika/SP3F
Low Cost, High Efficiency: LiDAR Place Recognition in Vineyards with Matryoshka Representation Learning
Localization in agricultural environments is challenging due to their unstructured nature and lack of distinctive landmarks. Although agricultural settings have been studied in the context of object classification and segmentation, the place recognition task for mobile robots is not trivial in the current state of the art. In this study, we propose MinkUNeXt-VINE, a lightweight, deep-learning-based method that surpasses state-of-the-art methods in vineyard environments thanks to its pre-processing and Matryoshka Representation Learning multi-loss approach. Our method prioritizes enhanced performance with low-cost, sparse LiDAR inputs and lower-dimensionality outputs to ensure high efficiency in real-time scenarios. Additionally, we present a comprehensive ablation study of the results on various evaluation cases and two extensive long-term vineyard datasets employing different LiDAR sensors. The results demonstrate the efficiency of the trade-off output produced by this approach, as well as its robust performance on low-cost and low-resolution input data. The code is publicly available for reproduction.
Analyzing Images of Blood Cells with Quantum Machine Learning Methods: Equilibrium Propagation and Variational Quantum Circuits to Detect Acute Myeloid Leukemia
This paper presents a feasibility study demonstrating that quantum machine learning (QML) algorithms achieve competitive performance on real-world medical imaging despite operating under severe constraints. We evaluate Equilibrium Propagation (EP), an energy-based learning method that does not use backpropagation (incompatible with quantum systems due to state-collapsing measurements) and Variational Quantum Circuits (VQCs) for automated detection of Acute Myeloid Leukemia (AML) from blood cell microscopy images using binary classification (2 classes: AML vs. Healthy). Key Result: Using limited subsets (50-250 samples per class) of the AML-Cytomorphology dataset (18,365 expert-annotated images), quantum methods achieve performance only 12-15% below classical CNNs despite reduced image resolution (64x64 pixels), engineered features (20D), and classical simulation via Qiskit. EP reaches 86.4% accuracy (only 12% below CNN) without backpropagation, while the 4-qubit VQC attains 83.0% accuracy with consistent data efficiency: VQC maintains stable 83% performance with only 50 samples per class, whereas CNN requires 250 samples (5x more data) to reach 98%. These results establish reproducible baselines for QML in healthcare, validating NISQ-era feasibility.
comment: 5 pages, 1 figure, 2 tables
SMART: Scalable Mesh-free Aerodynamic Simulations from Raw Geometries using a Transformer-based Surrogate Model
Machine learning-based surrogate models have emerged as more efficient alternatives to numerical solvers for physical simulations over complex geometries, such as car bodies. Many existing models incorporate the simulation mesh as an additional input, thereby reducing prediction errors. However, generating a simulation mesh for new geometries is computationally costly. In contrast, mesh-free methods, which do not rely on the simulation mesh, typically incur higher errors. Motivated by these considerations, we introduce SMART, a neural surrogate model that predicts physical quantities at arbitrary query locations using only a point-cloud representation of the geometry, without requiring access to the simulation mesh. The geometry and simulation parameters are encoded into a shared latent space that captures both structural and parametric characteristics of the physical field. A physics decoder then attends to the encoder's intermediate latent representations to map spatial queries to physical quantities. Through this cross-layer interaction, the model jointly updates latent geometric features and the evolving physical field. Extensive experiments show that SMART is competitive with and often outperforms existing methods that rely on the simulation mesh as input, demonstrating its capabilities for industry-level simulations.
Health-SCORE: Towards Scalable Rubrics for Improving Health-LLMs
Rubrics are essential for evaluating open-ended LLM responses, especially in safety-critical domains such as healthcare. However, creating high-quality and domain-specific rubrics typically requires significant human expertise time and development cost, making rubric-based evaluation and training difficult to scale. In this work, we introduce Health-SCORE, a generalizable and scalable rubric-based training and evaluation framework that substantially reduces rubric development costs without sacrificing performance. We show that Health-SCORE provides two practical benefits beyond standalone evaluation: it can be used as a structured reward signal to guide reinforcement learning with safety-aware supervision, and it can be incorporated directly into prompts to improve response quality through in-context learning. Across open-ended healthcare tasks, Health-SCORE achieves evaluation quality comparable to human-created rubrics while significantly lowering development effort, making rubric-based evaluation and training more scalable.
Data-Driven Qubit Characterization and Optimal Control using Deep Learning
Quantum computing requires the optimization of control pulses to achieve high-fidelity quantum gates. We propose a machine learning-based protocol to address the challenges of evaluating gradients and modeling complex system dynamics. By training a recurrent neural network (RNN) to predict qubit behavior, our approach enables efficient gradient-based pulse optimization without the need for a detailed system model. First, we sample qubit dynamics using random control pulses with weak prior assumptions. We then train the RNN on the system's observed responses, and use the trained model to optimize high-fidelity control pulses. We demonstrate the effectiveness of this approach through simulations on a single $ST_0$ qubit.
From Fuzzy to Exact: The Halo Architecture for Infinite-Depth Reasoning via Rational Arithmetic UAI 2026
Current paradigms in Deep Learning prioritize computational throughput over numerical precision, relying on the assumption that intelligence emerges from statistical correlation at scale. In this paper, we challenge this orthodoxy. We propose the Exactness Hypothesis: that General Intelligence (AGI), specifically high-order causal inference, requires a computational substrate capable of Arbitrary Precision Arithmetic. We argue that the "hallucinations" and logical incoherence seen in current Large Language Models (LLMs) are artifacts of IEEE 754 floating-point approximation errors accumulating over deep compositional functions. To mitigate this, we introduce the Halo Architecture, a paradigm shift to Rational Arithmetic ($\mathbb{Q}$) supported by a novel Exact Inference Unit (EIU). Empirical validation on the Huginn-0125 prototype demonstrates that while 600B-parameter scale BF16 baselines collapse in chaotic systems, Halo maintains zero numerical divergence indefinitely. This work establishes exact arithmetic as a prerequisite for reducing logical uncertainty in System 2 AGI.
comment: 8 pages, 6 figures. Submitted to UAI 2026
Mechanistic Analysis of Catastrophic Forgetting in Large Language Models During Continual Fine-tuning
Large language models exhibit remarkable performance across diverse tasks through pre-training and fine-tuning paradigms. However, continual fine-tuning on sequential tasks induces catastrophic forgetting, where newly acquired knowledge interferes with previously learned capabilities. Despite widespread observations of this phenomenon, the mechanistic understanding remains limited. Here, we present a comprehensive mechanistic analysis of catastrophic forgetting in transformer-based LLMs during sequential fine-tuning. Through systematic experiments across multiple model scales (109B to 400B total parameters) and task sequences, we identify three primary mechanisms driving forgetting: gradient interference in attention weights, representational drift in intermediate layers, and loss landscape flattening. We demonstrate that forgetting severity correlates strongly with task similarity (Pearson r = 0.87) and gradient alignment metrics. Our analysis reveals that approximately 15 to 23 percent of attention heads undergo severe disruption during fine-tuning, with lower layers showing greater susceptibility. These findings establish mechanistic foundations for developing targeted mitigation strategies in continual learning systems.
comment: 16 pages, 16 figures (6 main + 10 supplementary)
Explainability Methods for Hardware Trojan Detection: A Systematic Comparison
Hardware trojan detection requires accurate identification and interpretable explanations for security engineers to validate and act on results. This work compares three explainability categories for gate-level trojan detection on the Trust-Hub benchmark: (1) domain-aware property-based analysis of 31 circuit-specific features from gate fanin patterns, flip-flop distances, and I/O connectivity; (2) case-based reasoning using k-nearest neighbors for precedent-based explanations; and (3) model-agnostic feature attribution (LIME, SHAP, gradient). Results show different advantages per approach. Property-based analysis provides explanations through circuit concepts like "high fanin complexity near outputs indicates potential triggers." Case-based reasoning achieves 97.4% correspondence between predictions and training exemplars, offering justifications grounded in precedent. LIME and SHAP provide feature attributions with strong inter-method correlation (r=0.94, p<0.001) but lack circuit-level context for validation. XGBoost classification achieves 46.15% precision and 52.17% recall on 11,392 test samples, a 9-fold precision improvement over prior work (Hasegawa et al.: 5.13%) while reducing false positive rates from 5.6% to 0.25%. Gradient-based attribution runs 481 times faster than SHAP but provides similar domain-opaque insights. This work demonstrates that property-based and case-based approaches offer domain alignment and precedent-based interpretability compared to generic feature rankings, with implications for XAI deployment where practitioners must validate ML predictions.
LLAMA LIMA: A Living Meta-Analysis on the Effects of Generative AI on Learning Mathematics
The capabilities of generative AI in mathematics education are rapidly evolving, posing significant challenges for research to keep pace. Research syntheses remain scarce and risk being outdated by the time of publication. To address this issue, we present a Living Meta-Analysis (LIMA) on the effects of generative AI-based interventions for learning mathematics. Following PRISMA-LSR guidelines, we continuously update the literature base, apply a Bayesian multilevel meta-regression model to account for cumulative data, and publish updated versions on a preprint server at regular intervals. This paper reports results from the first version, including 15 studies. The analyses indicate a small positive effect (g = 0.31) with a wide credible interval [0.06, 0.58], reflecting the still limited evidence base.
Learned harmonic mean estimation of the marginal likelihood for multimodal posteriors with flow matching
The marginal likelihood, or Bayesian evidence, is a crucial quantity for Bayesian model comparison but its computation can be challenging for complex models, even in parameters space of moderate dimension. The learned harmonic mean estimator has been shown to provide accurate and robust estimates of the marginal likelihood simply using posterior samples. It is agnostic to the sampling strategy, meaning that the samples can be obtained using any method. This enables marginal likelihood calculation and model comparison with whatever sampling is most suitable for the task. However, the internal density estimators considered previously for the learned harmonic mean can struggle with highly multimodal posteriors. In this work we introduce flow matching-based continuous normalizing flows as a powerful architecture for the internal density estimation of the learned harmonic mean. We demonstrate the ability to handle challenging multimodal posteriors, including an example in 20 parameter dimensions, showcasing the method's ability to handle complex posteriors without the need for fine-tuning or heuristic modifications to the base distribution.
comment: Submitted to 44th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering
ART for Diffusion Sampling: A Reinforcement Learning Approach to Timestep Schedule
We consider time discretization for score-based diffusion models to generate samples from a learned reverse-time dynamic on a finite grid. Uniform and hand-crafted grids can be suboptimal given a budget on the number of time steps. We introduce Adaptive Reparameterized Time (ART) that controls the clock speed of a reparameterized time variable, leading to a time change and uneven timesteps along the sampling trajectory while preserving the terminal time. The objective is to minimize the aggregate error arising from the discretized Euler scheme. We derive a randomized control companion, ART-RL, and formulate time change as a continuous-time reinforcement learning (RL) problem with Gaussian policies. We then prove that solving ART-RL recovers the optimal ART schedule, which in turn enables practical actor--critic updates to learn the latter in a data-driven way. Empirically, based on the official EDM pipeline, ART-RL improves Fréchet Inception Distance on CIFAR-10 over a wide range of budgets and transfers to AFHQv2, FFHQ, and ImageNet without the need of retraining.
comment: 17 pages, 7 figures
Counterfactual Explanations on Robust Perceptual Geodesics ICLR 2026
Latent-space optimization methods for counterfactual explanations - framed as minimal semantic perturbations that change model predictions - inherit the ambiguity of Wachter et al.'s objective: the choice of distance metric dictates whether perturbations are meaningful or adversarial. Existing approaches adopt flat or misaligned geometries, leading to off-manifold artifacts, semantic drift, or adversarial collapse. We introduce Perceptual Counterfactual Geodesics (PCG), a method that constructs counterfactuals by tracing geodesics under a perceptually Riemannian metric induced from robust vision features. This geometry aligns with human perception and penalizes brittle directions, enabling smooth, on-manifold, semantically valid transitions. Experiments on three vision datasets show that PCG outperforms baselines and reveals failure modes hidden under standard metrics.
comment: Accepted at ICLR 2026
Out-of-Distribution Radar Detection with Complex VAEs: Theory, Whitening, and ANMF Fusion
We investigate the detection of weak complex-valued signals immersed in non-Gaussian, range-varying interference, with emphasis on maritime radar scenarios. The proposed methodology exploits a Complex-valued Variational AutoEncoder (CVAE) trained exclusively on clutter-plus-noise to perform Out-Of-Distribution detection. By operating directly on in-phase / quadrature samples, the CVAE preserves phase and Doppler structure and is assessed in two configurations: (i) using unprocessed range profiles and (ii) after local whitening, where per-range covariance estimates are obtained from neighboring profiles. Using extensive simulations together with real sea-clutter data from the CSIR maritime dataset, we benchmark performance against classical and adaptive detectors (MF, NMF, AMF-SCM, ANMF-SCM, ANMF-Tyler). In both configurations, the CVAE yields a higher detection probability Pd at matched false-alarm rate Pfa, with the most notable improvements observed under whitening. We further integrate the CVAE with the ANMF through a weighted log-p fusion rule at the decision level, attaining enhanced robustness in strongly non-Gaussian clutter and enabling empirically calibrated Pfa control under H0. Overall, the results demonstrate that statistical normalization combined with complex-valued generative modeling substantively improves detection in realistic sea-clutter conditions, and that the fused CVAE-ANMF scheme constitutes a competitive alternative to established model-based detectors.
comment: 13 pages, 12 figures, submitted to IEEE Transactions on Signal Processing
Quasi Monte Carlo methods enable extremely low-dimensional deep generative models
This paper introduces quasi-Monte Carlo latent variable models (QLVMs): a class of deep generative models that are specialized for finding extremely low-dimensional and interpretable embeddings of high-dimensional datasets. Unlike standard approaches, which rely on a learned encoder and variational lower bounds, QLVMs directly approximate the marginal likelihood by randomized quasi-Monte Carlo integration. While this brute force approach has drawbacks in higher-dimensional spaces, we find that it excels in fitting one, two, and three dimensional deep latent variable models. Empirical results on a range of datasets show that QLVMs consistently outperform conventional variational autoencoders (VAEs) and importance weighted autoencoders (IWAEs) with matched latent dimensionality. The resulting embeddings enable transparent visualization and post hoc analyses such as nonparametric density estimation, clustering, and geodesic path computation, which are nontrivial to validate in higher-dimensional spaces. While our approach is compute-intensive and struggles to generate fine-scale details in complex datasets, it offers a compelling solution for applications prioritizing interpretability and latent space analysis.
Learning temporal embeddings from electronic health records of chronic kidney disease patients
We investigate whether temporal embedding models trained on longitudinal electronic health records can learn clinically meaningful representations without compromising predictive performance, and how architectural choices affect embedding quality. Model-guided medicine requires representations that capture disease dynamics while remaining transparent and task agnostic, whereas most clinical prediction models are optimised for a single task. Representation learning facilitates learning embeddings that generalise across downstream tasks, and recurrent architectures are well-suited for modelling temporal structure in observational clinical data. Using the MIMIC-IV dataset, we study patients with chronic kidney disease (CKD) and compare three recurrent architectures: a vanilla LSTM, an attention-augmented LSTM, and a time-aware LSTM (T-LSTM). All models are trained both as embedding models and as direct end-to-end predictors. Embedding quality is evaluated via CKD stage clustering and in-ICU mortality prediction. The T-LSTM produces more structured embeddings, achieving a lower Davies-Bouldin Index (DBI = 9.91) and higher CKD stage classification accuracy (0.74) than the vanilla LSTM (DBI = 15.85, accuracy = 0.63) and attention-augmented LSTM (DBI = 20.72, accuracy = 0.67). For in-ICU mortality prediction, embedding models consistently outperform end-to-end predictors, improving accuracy from 0.72-0.75 to 0.82-0.83, which indicates that learning embeddings as an intermediate step is more effective than direct end-to-end learning.
comment: 7 pages, 3 figures, 3 tables. The paper has been submitted to IEEE EMBC 2026 and copyright might be transferred without notice
A Dynamic Framework for Grid Adaptation in Kolmogorov-Arnold Networks
Kolmogorov-Arnold Networks (KANs) have recently demonstrated promising potential in scientific machine learning, partly due to their capacity for grid adaptation during training. However, existing adaptation strategies rely solely on input data density, failing to account for the geometric complexity of the target function or metrics calculated during network training. In this work, we propose a generalized framework that treats knot allocation as a density estimation task governed by Importance Density Functions (IDFs), allowing training dynamics to determine grid resolution. We introduce a curvature-based adaptation strategy and evaluate it across synthetic function fitting, regression on a subset of the Feynman dataset and different instances of the Helmholtz PDE, demonstrating that it significantly outperforms the standard input-based baseline. Specifically, our method yields average relative error reductions of 25.3% on synthetic functions, 9.4% on the Feynman dataset, and 23.3% on the PDE benchmark. Statistical significance is confirmed via Wilcoxon signed-rank tests, establishing curvature-based adaptation as a robust and computationally efficient alternative for KAN training.
Uniform Computability of PAC Learning
We study uniform computability properties of PAC learning using Weihrauch complexity. We focus on closed concept classes, which are either represented by positive, by negative or by full information. Among other results, we prove that proper PAC learning from positive information is equivalent to the limit operation on Baire space, whereas improper PAC learning from positive information is closely related to Weak Kőnig's Lemma and even equivalent to it, when we have some negative information about the admissible hypotheses. If arbitrary hypotheses are allowed, then improper PAC learning from positive information is still in a finitary DNC range, which implies that it is non-deterministically computable, but does not allow for probabilistic algorithms. These results can also be seen as a classification of the degree of constructivity of the Fundamental Theorem of Statistical Learning. All the aforementioned results hold if an upper bound of the VC dimension is provided as an additional input information. We also study the question of how these results are affected if the VC dimension is not given, but only promised to be finite or if concept classes are represented by negative or full information. Finally, we also classify the complexity of the VC dimension operation itself, which is a problem that is of independent interest. For positive or full information it turns out to be equivalent to the binary sorting problem, for negative information it is equivalent to the jump of sorting. This classification allows also conclusions regarding the Borel complexity of PAC learnability.
FaLW: A Forgetting-aware Loss Reweighting for Long-tailed Unlearning iclr2026
Machine unlearning, which aims to efficiently remove the influence of specific data from trained models, is crucial for upholding data privacy regulations like the ``right to be forgotten". However, existing research predominantly evaluates unlearning methods on relatively balanced forget sets. This overlooks a common real-world scenario where data to be forgotten, such as a user's activity records, follows a long-tailed distribution. Our work is the first to investigate this critical research gap. We find that in such long-tailed settings, existing methods suffer from two key issues: \textit{Heterogeneous Unlearning Deviation} and \textit{Skewed Unlearning Deviation}. To address these challenges, we propose FaLW, a plug-and-play, instance-wise dynamic loss reweighting method. FaLW innovatively assesses the unlearning state of each sample by comparing its predictive probability to the distribution of unseen data from the same class. Based on this, it uses a forgetting-aware reweighting scheme, modulated by a balancing factor, to adaptively adjust the unlearning intensity for each sample. Extensive experiments demonstrate that FaLW achieves superior performance. Code is available at \textbf{Supplementary Material}.
comment: camera-ready for iclr2026
TwinPurify: Purifying gene expression data to reveal tumor-intrinsic transcriptional programs via self-supervised learning
Advances in single-cell and spatial transcriptomic technologies have transformed tumor ecosystem profiling at cellular resolution. However, large scale studies on patient cohorts continue to rely on bulk transcriptomic data, where variation in tumor purity obscures tumor-intrinsic transcriptional signals and constrains downstream discovery. Many deconvolution methods report strong performance on synthetic bulk mixtures but fail to generalize to real patient cohorts because of unmodeled biological and technical variation. Here, we introduce TwinPurify, a representation learning framework that adapts the Barlow Twins self-supervised objective, representing a fundamental departure from the deconvolution paradigm. Rather than resolving the bulk mixture into discrete cell-type fractions, TwinPurify instead learns continuous, high-dimensional tumor embeddings by leveraging adjacent-normal profiles within the same cohort as "background" guidance, enabling the disentanglement of tumor-specific signals without relying on any external reference. Benchmarked against multiple large cancer cohorts across RNA-seq and microarray platforms, TwinPurify outperforms conventional representation learning baselines like auto-encoders in recovering tumor-intrinsic and immune signals. The purified embeddings improve molecular subtype and grade classification, enhance survival model concordance, and uncover biologically meaningful pathway activities compared to raw bulk profiles. By providing a transferable framework for decontaminating bulk transcriptomics, TwinPurify extends the utility of existing clinical datasets for molecular discovery.
Physics-Informed Uncertainty Enables Reliable AI-driven Design
Inverse design is a central goal in much of science and engineering, including frequency-selective surfaces (FSS) that are critical to microelectronics for telecommunications and optical metamaterials. Traditional surrogate-assisted optimization methods using deep learning can accelerate the design process but do not usually incorporate uncertainty quantification, leading to poorer optimization performance due to erroneous predictions in data-sparse regions. Here, we introduce and validate a fundamentally different paradigm of Physics-Informed Uncertainty, where the degree to which a model's prediction violates fundamental physical laws serves as a computationally-cheap and effective proxy for predictive uncertainty. By integrating physics-informed uncertainty into a multi-fidelity uncertainty-aware optimization workflow to design complex frequency-selective surfaces within the 20 - 30 GHz range, we increase the success rate of finding performant solutions from less than 10% to over 50%, while simultaneously reducing computational cost by an order of magnitude compared to the sole use of a high-fidelity solver. These results highlight the necessity of incorporating uncertainty quantification in machine-learning-driven inverse design for high-dimensional problems, and establish physics-informed uncertainty as a viable alternative to quantifying uncertainty in surrogate models for physical systems, thereby setting the stage for autonomous scientific discovery systems that can efficiently and robustly explore and evaluate candidate designs.
Universality of Many-body Projected Ensemble for Learning Quantum Data Distribution
Generating quantum data by learning the underlying quantum distribution poses challenges in both theoretical and practical scenarios, yet it is a critical task for understanding quantum systems. A fundamental question in quantum machine learning (QML) is the universality of approximation: whether a parameterized QML model can approximate any quantum distribution. We address this question by proving a universality theorem for the Many-body Projected Ensemble (MPE) framework, a method for quantum state design that uses a single many-body wave function to prepare random states. This demonstrates that MPE can approximate any distribution of pure states within a 1-Wasserstein distance error. This theorem provides a rigorous guarantee of universal expressivity, addressing key theoretical gaps in QML. For practicality, we propose an Incremental MPE variant with layer-wise training to improve the trainability. Numerical experiments on clustered quantum states and quantum chemistry datasets validate MPE's efficacy in learning complex quantum data distributions.
comment: 21 pages, 6 figures
Rank-1 Approximation of Inverse Fisher for Natural Policy Gradients in Deep Reinforcement Learning
Natural gradients have long been studied in deep reinforcement learning due to their fast convergence properties and covariant weight updates. However, computing natural gradients requires inversion of the Fisher Information Matrix (FIM) at each iteration, which is computationally prohibitive in nature. In this paper, we present an efficient and scalable natural policy optimization technique that leverages a rank-1 approximation to full inverse-FIM. We theoretically show that under certain conditions, a rank-1 approximation to inverse-FIM converges faster than policy gradients and, under some conditions, enjoys the same sample complexity as stochastic policy gradient methods. We benchmark our method on a diverse set of environments and show that it achieves superior performance to standard actor-critic and trust-region baselines.
CASSANDRA: Programmatic and Probabilistic Learning and Inference for Stochastic World Modeling
Building world models is essential for planning in real-world domains such as businesses. Since such domains have rich semantics, we can leverage world knowledge to effectively model complex action effects and causal relationships from limited data. In this work, we propose CASSANDRA, a neurosymbolic world modeling approach that leverages an LLM as a knowledge prior to construct lightweight transition models for planning. CASSANDRA integrates two components: (1) LLM-synthesized code to model deterministic features, and (2) LLM-guided structure learning of a probabilistic graphical model to capture causal relationships among stochastic variables. We evaluate CASSANDRA in (i) a small-scale coffee-shop simulator and (ii) a complex theme park business simulator, where we demonstrate significant improvements in transition prediction and planning over baselines.
comment: 28 pages, 2 figures
Geometry-Free Conditional Diffusion Modeling for Solving the Inverse Electrocardiography Problem
This paper proposes a data-driven model for solving the inverse problem of electrocardiography, the mathematical problem that forms the basis of electrocardiographic imaging (ECGI). We present a conditional diffusion framework that learns a probabilistic mapping from noisy body surface signals to heart surface electric potentials. The proposed approach leverages the generative nature of diffusion models to capture the non-unique and underdetermined nature of the ECGI inverse problem, enabling probabilistic sampling of multiple reconstructions rather than a single deterministic estimate. Unlike traditional methods, the proposed framework is geometry-free and purely data-driven, alleviating the need for patient-specific mesh construction. We evaluate the method on a real ECGI dataset and compare it against strong deterministic baselines, including a convolutional neural network, long short-term memory network, and transformer-based model. The results demonstrate that the proposed diffusion approach achieves improved reconstruction accuracy, highlighting the potential of diffusion models as a robust tool for noninvasive cardiac electrophysiology imaging.
PolySHAP: Extending KernelSHAP with Interaction-Informed Polynomial Regression
Shapley values have emerged as a central game-theoretic tool in explainable AI (XAI). However, computing Shapley values exactly requires $2^d$ game evaluations for a model with $d$ features. Lundberg and Lee's KernelSHAP algorithm has emerged as a leading method for avoiding this exponential cost. KernelSHAP approximates Shapley values by approximating the game as a linear function, which is fit using a small number of game evaluations for random feature subsets. In this work, we extend KernelSHAP by approximating the game via higher degree polynomials, which capture non-linear interactions between features. Our resulting PolySHAP method yields empirically better Shapley value estimates for various benchmark datasets, and we prove that these estimates are consistent. Moreover, we connect our approach to paired sampling (antithetic sampling), a ubiquitous modification to KernelSHAP that improves empirical accuracy. We prove that paired sampling outputs exactly the same Shapley value approximations as second-order PolySHAP, without ever fitting a degree 2 polynomial. To the best of our knowledge, this finding provides the first strong theoretical justification for the excellent practical performance of the paired sampling heuristic.
LaCoGSEA: Unsupervised deep learning for pathway analysis via latent correlation
Motivation: Pathway enrichment analysis is widely used to interpret gene expression data. Standard approaches, such as GSEA, rely on predefined phenotypic labels and pairwise comparisons, which limits their applicability in unsupervised settings. Existing unsupervised extensions, including single-sample methods, provide pathway-level summaries but primarily capture linear relationships and do not explicitly model gene-pathway associations. More recently, deep learning models have been explored to capture non-linear transcriptomic structure. However, their interpretation has typically relied on generic explainable AI (XAI) techniques designed for feature-level attribution. As these methods are not designed for pathway-level interpretation in unsupervised transcriptomic analyses, their effectiveness in this setting remains limited. Results: To bridge this gap, we introduce LaCoGSEA (Latent Correlation GSEA), an unsupervised framework that integrates deep representation learning with robust pathway statistics. LaCoGSEA employs an autoencoder to capture non-linear manifolds and proposes a global gene-latent correlation metric as a proxy for differential expression, generating dense gene rankings without prior labels. We demonstrate that LaCoGSEA offers three key advantages: (i) it achieves improved clustering performance in distinguishing cancer subtypes compared to existing unsupervised baselines; (ii) it recovers a broader range of biologically meaningful pathways at higher ranks compared with linear dimensionality reduction and gradient-based XAI methods; and (iii) it maintains high robustness and consistency across varying experimental protocols and dataset sizes. Overall, LaCoGSEA provides state-of-the-art performance in unsupervised pathway enrichment analysis. Availability and implementation: https://github.com/willyzzz/LaCoGSEA
A Balanced Neuro-Symbolic Approach for Commonsense Abductive Logic
Although Large Language Models (LLMs) have demonstrated impressive formal reasoning abilities, they often break down when problems require complex proof planning. One promising approach for improving LLM reasoning abilities involves translating problems into formal logic and using a logic solver. Although off-the-shelf logic solvers are in principle substantially more efficient than LLMs at logical reasoning, they assume that all relevant facts are provided in a question and are unable to deal with missing commonsense relations. In this work, we propose a novel method that uses feedback from the logic solver to augment a logic problem with commonsense relations provided by the LLM, in an iterative manner. This involves a search procedure through potential commonsense assumptions to maximize the chance of finding useful facts while keeping cost tractable. On a collection of pure-logical reasoning datasets, from which some commonsense information has been removed, our method consistently achieves considerable improvements over existing techniques, demonstrating the value in balancing neural and symbolic elements when working in human contexts.
Stability as a Liability:Systematic Breakdown of Linguistic Structure in LLMs
Training stability is typically regarded as a prerequisite for reliable optimization in large language models. In this work, we analyze how stabilizing training dynamics affects the induced generation distribution. We show that under standard maximum likelihood training, stable parameter trajectories lead stationary solutions to approximately minimize the forward KL divergence to the empirical distribution, while implicitly reducing generative entropy. As a consequence, the learned model can concentrate probability mass on a limited subset of empirical modes, exhibiting systematic degeneration despite smooth loss convergence. We empirically validate this effect using a controlled feedback-based training framework that stabilizes internal generation statistics, observing consistent low-entropy outputs and repetitive behavior across architectures and random seeds. It indicates that optimization stability and generative expressivity are not inherently aligned, and that stability alone is an insufficient indicator of generative quality.
Learning long term climate-resilient transport adaptation pathways under direct and indirect flood impacts using reinforcement learning
Climate change is expected to intensify rainfall and other hazards, increasing disruptions in urban transportation systems. Designing effective adaptation strategies is challenging due to the long-term, sequential nature of infrastructure investments, deep uncertainty, and complex cross-sector interactions. We propose a generic decision-support framework that couples an integrated assessment model (IAM) with reinforcement learning (RL) to learn adaptive, multi-decade investment pathways under uncertainty. The framework combines long-term climate projections (e.g., IPCC scenario pathways) with models that map projected extreme-weather drivers (e.g. rain) into hazard likelihoods (e.g. flooding), propagate hazards into urban infrastructure impacts (e.g. transport disruption), and value direct and indirect consequences for service performance and societal costs. Embedded in a reinforcement-learning loop, it learns adaptive climate adaptation policies that trade off investment and maintenance expenditures against avoided impacts. In collaboration with Copenhagen Municipality, we demonstrate the approach on pluvial flooding in the inner city for the horizon of 2024 to 2100. The learned strategies yield coordinated spatial-temporal pathways and improved robustness relative to conventional optimization baselines, namely inaction and random action, illustrating the framework's transferability to other hazards and cities.
K-Myriad: Jump-starting reinforcement learning with unsupervised parallel agents
Parallelization in Reinforcement Learning is typically employed to speed up the training of a single policy, where multiple workers collect experience from an identical sampling distribution. This common design limits the potential of parallelization by neglecting the advantages of diverse exploration strategies. We propose K-Myriad, a scalable and unsupervised method that maximizes the collective state entropy induced by a population of parallel policies. By cultivating a portfolio of specialized exploration strategies, K-Myriad provides a robust initialization for Reinforcement Learning, leading to both higher training efficiency and the discovery of heterogeneous solutions. Experiments on high-dimensional continuous control tasks, with large-scale parallelization, demonstrate that K-Myriad can learn a broad set of distinct policies, highlighting its effectiveness for collective exploration and paving the way towards novel parallelization strategies.
Self-Refining Video Sampling
Modern video generators still struggle with complex physical dynamics, often falling short of physical realism. Existing approaches address this using external verifiers or additional training on augmented data, which is computationally expensive and still limited in capturing fine-grained motion. In this work, we present self-refining video sampling, a simple method that uses a pre-trained video generator trained on large-scale datasets as its own self-refiner. By interpreting the generator as a denoising autoencoder, we enable iterative inner-loop refinement at inference time without any external verifier or additional training. We further introduce an uncertainty-aware refinement strategy that selectively refines regions based on self-consistency, which prevents artifacts caused by over-refinement. Experiments on state-of-the-art video generators demonstrate significant improvements in motion coherence and physics alignment, achieving over 70\% human preference compared to the default sampler and guidance-based sampler.
comment: Project page: https://agwmon.github.io/self-refine-video/
Attention-Based Neural-Augmented Kalman Filter for Legged Robot State Estimation RA-L
In this letter, we propose an Attention-Based Neural-Augmented Kalman Filter (AttenNKF) for state estimation in legged robots. Foot slip is a major source of estimation error: when slip occurs, kinematic measurements violate the no-slip assumption and inject bias during the update step. Our objective is to estimate this slip-induced error and compensate for it. To this end, we augment an Invariant Extended Kalman Filter (InEKF) with a neural compensator that uses an attention mechanism to infer error conditioned on foot-slip severity and then applies this estimate as a post-update compensation to the InEKF state (i.e., after the filter update). The compensator is trained in a latent space, which aims to reduce sensitivity to raw input scales and encourages structured slip-conditioned compensations, while preserving the InEKF recursion. Experiments demonstrate improved performance compared to existing legged-robot state estimators, particularly under slip-prone conditions.
comment: 8 pages, 6 figures, Accepted to IEEE Robotics and Automation Letters (RA-L)
An Unsupervised Tensor-Based Domain Alignment
We propose a tensor-based domain alignment (DA) algorithm designed to align source and target tensors within an invariant subspace through the use of alignment matrices. These matrices along with the subspace undergo iterative optimization of which constraint is on oblique manifold, which offers greater flexibility and adaptability compared to the traditional Stiefel manifold. Moreover, regularization terms defined to preserve the variance of both source and target tensors, ensures robust performance. Our framework is versatile, effectively generalizing existing tensor-based DA methods as special cases. Through extensive experiments, we demonstrate that our approach not only enhances DA conversion speed but also significantly boosts classification accuracy. This positions our method as superior to current state-of-the-art techniques, making it a preferable choice for complex domain adaptation tasks.
comment: 5 pages, 5 figures
Generative Diffusion Augmentation with Quantum-Enhanced Discrimination for Medical Image Diagnosis
In biomedical engineering, artificial intelligence has become a pivotal tool for enhancing medical diagnostics, particularly in medical image classification tasks such as detecting pneumonia from chest X-rays and breast cancer screening. However, real-world medical datasets frequently exhibit severe class imbalance, where positive samples substantially outnumber negative samples, leading to biased models with low recall rates for minority classes. This imbalance not only compromises diagnostic accuracy but also poses clinical misdiagnosis risks. To address this challenge, we propose SDA-QEC (Simplified Diffusion Augmentation with Quantum-Enhanced Classification), an innovative framework that integrates simplified diffusion-based data augmentation with quantum-enhanced feature discrimination. Our approach employs a lightweight diffusion augmentor to generate high-quality synthetic samples for minority classes, rebalancing the training distribution. Subsequently, a quantum feature layer embedded within MobileNetV2 architecture enhances the model's discriminative capability through high-dimensional feature mapping in Hilbert space. Comprehensive experiments on coronary angiography image classification demonstrate that SDA-QEC achieves 98.33% accuracy, 98.78% AUC, and 98.33% F1-score, significantly outperforming classical baselines including ResNet18, MobileNetV2, DenseNet121, and VGG16. Notably, our framework simultaneously attains 98.33% sensitivity and 98.33% specificity, achieving a balanced performance critical for clinical deployment. The proposed method validates the feasibility of integrating generative augmentation with quantum-enhanced modeling in real-world medical imaging tasks, offering a novel research pathway for developing highly reliable medical AI systems in small-sample, highly imbalanced, and high-risk diagnostic scenarios.
Unknown Unknowns: Why Hidden Intentions in LLMs Evade Detection
LLMs are increasingly embedded in everyday decision-making, yet their outputs can encode subtle, unintended behaviours that shape user beliefs and actions. We refer to these covert, goal-directed behaviours as hidden intentions, which may arise from training and optimisation artefacts, or be deliberately induced by an adversarial developer, yet remain difficult to detect in practice. We introduce a taxonomy of ten categories of hidden intentions, grounded in social science research and organised by intent, mechanism, context, and impact, shifting attention from surface-level behaviours to design-level strategies of influence. We show how hidden intentions can be easily induced in controlled models, providing both testbeds for evaluation and demonstrations of potential misuse. We systematically assess detection methods, including reasoning and non-reasoning LLM judges, and find that detection collapses in realistic open-world settings, particularly under low-prevalence conditions, where false positives overwhelm precision and false negatives conceal true risks. Stress tests on precision-prevalence and precision-FNR trade-offs reveal why auditing fails without vanishingly small false positive rates or strong priors on manipulation types. Finally, a qualitative case study shows that all ten categories manifest in deployed, state-of-the-art LLMs, emphasising the urgent need for robust frameworks. Our work provides the first systematic analysis of detectability failures of hidden intentions in LLMs under open-world settings, offering a foundation for understanding, inducing, and stress-testing such behaviours, and establishing a flexible taxonomy for anticipating evolving threats and informing governance.
Information Hidden in Gradients of Regression with Target Noise
Second-order information -- such as curvature or data covariance -- is critical for optimisation, diagnostics, and robustness. However, in many modern settings, only the gradients are observable. We show that the gradients alone can reveal the Hessian, equalling the data covariance $Σ$ for the linear regression. Our key insight is a simple variance calibration: injecting Gaussian noise so that the total target noise variance equals the batch size ensures that the empirical gradient covariance closely approximates the Hessian, even when evaluated far from the optimum. We provide non-asymptotic operator-norm guarantees under sub-Gaussian inputs. We also show that without such calibration, recovery can fail by an $Ω(1)$ factor. The proposed method is practical (a "set target-noise variance to $n$" rule) and robust (variance $\mathcal{O}(n)$ suffices to recover $Σ$ up to scale). Applications include preconditioning for faster optimisation, adversarial risk estimation, and gradient-only training, for example, in distributed systems. We support our theoretical results with experiments on synthetic and real data.
From Cold Start to Active Learning: Embedding-Based Scan Selection for Medical Image Segmentation
Accurate segmentation annotations are critical for disease monitoring, yet manual labeling remains a major bottleneck due to the time and expertise required. Active learning (AL) alleviates this burden by prioritizing informative samples for annotation, typically through a diversity-based cold-start phase followed by uncertainty-driven selection. We propose a novel cold-start sampling strategy that combines foundation-model embeddings with clustering, including automatic selection of the number of clusters and proportional sampling across clusters, to construct a diverse and representative initial training. This is followed by an uncertainty-based AL framework that integrates spatial diversity to guide sample selection. The proposed method is intuitive and interpretable, enabling visualization of the feature-space distribution of candidate samples. We evaluate our approach on three datasets spanning X-ray and MRI modalities. On the CheXmask dataset, the cold-start strategy outperforms random selection, improving Dice from 0.918 to 0.929 and reducing the Hausdorff distance from 32.41 to 27.66 mm. In the AL setting, combined entropy and diversity selection improves Dice from 0.919 to 0.939 and reduces the Hausdorff distance from 30.10 to 19.16 mm. On the Montgomery dataset, cold-start gains are substantial, with Dice improving from 0.928 to 0.950 and Hausdorff distance decreasing from 14.22 to 9.38 mm. On the SynthStrip dataset, cold-start selection slightly affects Dice but reduces the Hausdorff distance from 9.43 to 8.69 mm, while active learning improves Dice from 0.816 to 0.826 and reduces the Hausdorff distance from 7.76 to 6.38 mm. Overall, the proposed framework consistently outperforms baseline methods in low-data regimes, improving segmentation accuracy.
comment: 19 pages without references
Closing the Modality Gap Aligns Group-Wise Semantics ICLR 2026
In multimodal learning, CLIP has been recognized as the \textit{de facto} method for learning a shared latent space across multiple modalities, placing similar representations close to each other and moving them away from dissimilar ones. Although CLIP-based losses effectively align modalities at the semantic level, the resulting latent spaces often remain only partially shared, revealing a structural mismatch known as the modality gap. While the necessity of addressing this phenomenon remains debated, particularly given its limited impact on instance-wise tasks (e.g., retrieval), we prove that its influence is instead strongly pronounced in group-level tasks (e.g., clustering). To support this claim, we introduce a novel method designed to consistently reduce this discrepancy in two-modal settings, with a straightforward extension to the general $n$-modal case. Through our extensive evaluation, we demonstrate our novel insight: while reducing the gap provides only marginal or inconsistent improvements in traditional instance-wise tasks, it significantly enhances group-wise tasks. These findings may reshape our understanding of the modality gap, highlighting its key role in improving performance on tasks requiring semantic grouping.
comment: ICLR 2026
From Human Labels to Literature: Semi-Supervised Learning of NMR Chemical Shifts at Scale
Accurate prediction of nuclear magnetic resonance (NMR) chemical shifts is fundamental to spectral analysis and molecular structure elucidation, yet existing machine learning methods rely on limited, labor-intensive atom-assigned datasets. We propose a semi-supervised framework that learns NMR chemical shifts from millions of literature-extracted spectra without explicit atom-level assignments, integrating a small amount of labeled data with large-scale unassigned spectra. We formulate chemical shift prediction from literature spectra as a permutation-invariant set supervision problem, and show that under commonly satisfied conditions on the loss function, optimal bipartite matching reduces to a sorting-based loss, enabling stable large-scale semi-supervised training beyond traditional curated datasets. Our models achieve substantially improved accuracy and robustness over state-of-the-art methods and exhibit stronger generalization on significantly larger and more diverse molecular datasets. Moreover, by incorporating solvent information at scale, our approach captures systematic solvent effects across common NMR solvents for the first time. Overall, our results demonstrate that large-scale unlabeled spectra mined from the literature can serve as a practical and effective data source for training NMR shift models, suggesting a broader role of literature-derived, weakly structured data in data-centric AI for science.
Scalable Transit Delay Prediction at City Scale: A Systematic Approach with Multi-Resolution Feature Engineering and Deep Learning
Urban bus transit agencies need reliable, network-wide delay predictions to provide accurate arrival information to passengers and support real-time operational control. Accurate predictions help passengers plan their trips, reduce waiting time, and allow operations staff to adjust headways, dispatch extra vehicles, and manage disruptions. Although real-time feeds such as GTFS-Realtime (GTFS-RT) are now widely available, most existing delay prediction systems handle only a few routes, depend on hand-crafted features, and offer little guidance on how to design a scalable, reusable architecture. We present a city-scale prediction pipeline that combines multi-resolution feature engineering, dimensionality reduction, and deep learning. The framework generates 1,683 spatiotemporal features by exploring 23 aggregation combinations over H3 cells, routes, segments, and temporal patterns, and compresses them into 83 components using Adaptive PCA while preserving 95% of the variance. To avoid the "giant cluster" problem that occurs when dense urban areas fall into a single H3 region, we introduce a hybrid H3+topology clustering method that yields 12 balanced route clusters (coefficient of variation 0.608) and enables efficient distributed training. We compare five model architectures on six months of bus operations from the Société de transport de Montréal (STM) network in Montréal. A global LSTM with cluster-aware features achieves the best trade-off between accuracy and efficiency, outperforming transformer models by 18 to 52% while using 275 times fewer parameters. We also report multi-level evaluation at the elementary segment, segment, and trip level with walk-forward validation and latency analysis, showing that the proposed pipeline is suitable for real-time, city-scale deployment and can be reused for other networks with limited adaptation.
comment: This manuscript is a preprint of an earlier version. A revised system-oriented version is currently under review
LipNeXt: Scaling up Lipschitz-based Certified Robustness to Billion-parameter Models ICLR 2026
Lipschitz-based certification offers efficient, deterministic robustness guarantees but has struggled to scale in model size, training efficiency, and ImageNet performance. We introduce \emph{LipNeXt}, the first \emph{constraint-free} and \emph{convolution-free} 1-Lipschitz architecture for certified robustness. LipNeXt is built using two techniques: (1) a manifold optimization procedure that updates parameters directly on the orthogonal manifold and (2) a \emph{Spatial Shift Module} to model spatial pattern without convolutions. The full network uses orthogonal projections, spatial shifts, a simple 1-Lipschitz $β$-Abs nonlinearity, and $L_2$ spatial pooling to maintain tight Lipschitz control while enabling expressive feature mixing. Across CIFAR-10/100 and Tiny-ImageNet, LipNeXt achieves state-of-the-art clean and certified robust accuracy (CRA), and on ImageNet it scales to 1-2B large models, improving CRA over prior Lipschitz models (e.g., up to $+8\%$ at $\varepsilon{=}1$) while retaining efficient, stable low-precision training. These results demonstrate that Lipschitz-based certification can benefit from modern scaling trends without sacrificing determinism or efficiency.
comment: ICLR 2026. 17 pages
Just-In-Time Reinforcement Learning: Continual Learning in LLM Agents Without Gradient Updates
While Large Language Model (LLM) agents excel at general tasks, they inherently struggle with continual adaptation due to the frozen weights after deployment. Conventional reinforcement learning (RL) offers a solution but incurs prohibitive computational costs and the risk of catastrophic forgetting. We introduce Just-In-Time Reinforcement Learning (JitRL), a training-free framework that enables test-time policy optimization without any gradient updates. JitRL maintains a dynamic, non-parametric memory of experiences and retrieves relevant trajectories to estimate action advantages on-the-fly. These estimates are then used to directly modulate the LLM's output logits. We theoretically prove that this additive update rule is the exact closed-form solution to the KL-constrained policy optimization objective. Extensive experiments on WebArena and Jericho demonstrate that JitRL establishes a new state-of-the-art among training-free methods. Crucially, JitRL outperforms the performance of computationally expensive fine-tuning methods (e.g., WebRL) while reducing monetary costs by over 30 times, offering a scalable path for continual learning agents. The code is available at https://github.com/liushiliushi/JitRL.
Conformal Prediction Algorithms for Time Series Forecasting: Methods and Benchmark
Reliable uncertainty quantification is of critical importance in time series forecasting, yet traditional methods often rely on restrictive distributional assumptions. Conformal prediction (CP) has emerged as a promising distribution-free framework for generating prediction intervals with rigorous theoretical guarantees. However, applying CP to sequential data presents a primary challenge: the temporal dependencies inherent in time series fundamentally violate the core assumption of data exchangeability, upon which standard CP guarantees are built. This review critically examines the main categories of algorithmic solutions designed to address this conflict. We survey and benchmark methods that relax the exchangeability assumption, those that redefine the data unit to be a collection of independent time series, approaches that explicitly model the dynamics of the prediction residuals, and online learning algorithms that adapt to distribution shifts to maintain long-run coverage. By synthesizing these approaches, we highlight computational efficiency and practical performance on real-world data.
Nearly Optimal Bayesian Inference for Structural Missingness
Structural missingness breaks 'just impute and train': values can be undefined by causal or logical constraints, and the mask may depend on observed variables, unobserved variables (MNAR), and other missingness indicators. It simultaneously brings (i) a catch-22 situation with causal loop, prediction needs the missing features, yet inferring them depends on the missingness mechanism, (ii) under MNAR, the unseen are different, the missing part can come from a shifted distribution, and (iii) plug-in imputation, a single fill-in can lock in uncertainty and yield overconfident, biased decisions. In the Bayesian view, prediction via the posterior predictive distribution integrates over the full model posterior uncertainty, rather than relying on a single point estimate. This framework decouples (i) learning an in-model missing-value posterior from (ii) label prediction by optimizing the predictive posterior distribution, enabling posterior integration. This decoupling yields an in-model almost-free-lunch: once the posterior is learned, prediction is plug-and-play while preserving uncertainty propagation. It achieves SOTA on 43 classification and 15 imputation benchmarks, with finite-sample near Bayes-optimality guarantees under our SCM prior.
AgentDoG: A Diagnostic Guardrail Framework for AI Agent Safety and Security
The rise of AI agents introduces complex safety and security challenges arising from autonomous tool use and environmental interactions. Current guardrail models lack agentic risk awareness and transparency in risk diagnosis. To introduce an agentic guardrail that covers complex and numerous risky behaviors, we first propose a unified three-dimensional taxonomy that orthogonally categorizes agentic risks by their source (where), failure mode (how), and consequence (what). Guided by this structured and hierarchical taxonomy, we introduce a new fine-grained agentic safety benchmark (ATBench) and a Diagnostic Guardrail framework for agent safety and security (AgentDoG). AgentDoG provides fine-grained and contextual monitoring across agent trajectories. More Crucially, AgentDoG can diagnose the root causes of unsafe actions and seemingly safe but unreasonable actions, offering provenance and transparency beyond binary labels to facilitate effective agent alignment. AgentDoG variants are available in three sizes (4B, 7B, and 8B parameters) across Qwen and Llama model families. Extensive experimental results demonstrate that AgentDoG achieves state-of-the-art performance in agentic safety moderation in diverse and complex interactive scenarios. All models and datasets are openly released.
comment: 40 pages, 26 figures
Enhancing Control Policy Smoothness by Aligning Actions with Predictions from Preceding States AAAI-26
Deep reinforcement learning has proven to be a powerful approach to solving control tasks, but its characteristic high-frequency oscillations make it difficult to apply in real-world environments. While prior methods have addressed action oscillations via architectural or loss-based methods, the latter typically depend on heuristic or synthetic definitions of state similarity to promote action consistency, which often fail to accurately reflect the underlying system dynamics. In this paper, we propose a novel loss-based method by introducing a transition-induced similar state. The transition-induced similar state is defined as the distribution of next states transitioned from the previous state. Since it utilizes only environmental feedback and actually collected data, it better captures system dynamics. Building upon this foundation, we introduce Action Smoothing by Aligning Actions with Predictions from Preceding States (ASAP), an action smoothing method that effectively mitigates action oscillations. ASAP enforces action smoothness by aligning the actions with those taken in transition-induced similar states and by penalizing second-order differences to suppress high-frequency oscillations. Experiments in Gymnasium and Isaac-Lab environments demonstrate that ASAP yields smoother control and improved policy performance over existing methods.
comment: Accepted at AAAI-26. 7 pages (excluding references), 3 figures
OffSeeker: Online Reinforcement Learning Is Not All You Need for Deep Research Agents
Deep research agents have shown remarkable potential in handling long-horizon tasks. However, state-of-the-art performance typically relies on online reinforcement learning (RL), which is financially expensive due to extensive API calls. While offline training offers a more efficient alternative, its progress is hindered by the scarcity of high-quality research trajectories. In this paper, we demonstrate that expensive online reinforcement learning is not all you need to build powerful research agents. To bridge this gap, we introduce a fully open-source suite designed for effective offline training. Our core contributions include DeepForge, a ready-to-use task synthesis framework that generates large-scale research queries without heavy preprocessing; and a curated collection of 66k QA pairs, 33k SFT trajectories, and 21k DPO pairs. Leveraging these resources, we train OffSeeker (8B), a model developed entirely offline. Extensive evaluations across six benchmarks show that OffSeeker not only leads among similar-sized agents but also remains competitive with 30B-parameter systems trained via heavy online RL.
3DGesPolicy: Phoneme-Aware Holistic Co-Speech Gesture Generation Based on Action Control
Generating holistic co-speech gestures that integrate full-body motion with facial expressions suffers from semantically incoherent coordination on body motion and spatially unstable meaningless movements due to existing part-decomposed or frame-level regression methods, We introduce 3DGesPolicy, a novel action-based framework that reformulates holistic gesture generation as a continuous trajectory control problem through diffusion policy from robotics. By modeling frame-to-frame variations as unified holistic actions, our method effectively learns inter-frame holistic gesture motion patterns and ensures both spatially and semantically coherent movement trajectories that adhere to realistic motion manifolds. To further bridge the gap in expressive alignment, we propose a Gesture-Audio-Phoneme (GAP) fusion module that can deeply integrate and refine multi-modal signals, ensuring structured and fine-grained alignment between speech semantics, body motion, and facial expressions. Extensive quantitative and qualitative experiments on the BEAT2 dataset demonstrate the effectiveness of our 3DGesPolicy across other state-of-the-art methods in generating natural, expressive, and highly speech-aligned holistic gestures.
comment: 13 pages, 5 figures
On Procrustes Contamination in Machine Learning Applications of Geometric Morphometrics
Geometric morphometrics (GMM) is widely used to quantify shape variation, more recently serving as input for machine learning (ML) analyses. Standard practice aligns all specimens via Generalized Procrustes Analysis (GPA) prior to splitting data into training and test sets, potentially introducing statistical dependence and contaminating downstream predictive models. Here, the effects of GPA-induced contamination are formally characterised using controlled 2D and 3D simulations across varying sample sizes, landmark densities, and allometric patterns. A novel realignment procedure is proposed, whereby test specimens are aligned to the training set prior to model fitting, eliminating cross-sample dependency. Simulations reveal a robust "diagonal" in sample-size vs. landmark-space, reflecting the scaling of RMSE under isotropic variation, with slopes analytically derived from the degrees of freedom in Procrustes tangent space. The importance of spatial autocorrelation among landmarks is further demonstrated using linear and convolutional regression models, highlighting performance degradation when landmark relationships are ignored. This work establishes the need for careful preprocessing in ML applications of GMM, provides practical guidelines for realignment, and clarifies fundamental statistical constraints inherent to Procrustes shape space.
comment: 17 pages, 5 figures, Preprint pending review
GCFX: Generative Counterfactual Explanations for Deep Graph Models at the Model Level
Deep graph learning models have demonstrated remarkable capabilities in processing graph-structured data and have been widely applied across various fields. However, their complex internal architectures and lack of transparency make it difficult to explain their decisions, resulting in opaque models that users find hard to understand and trust. In this paper, we explore model-level explanation techniques for deep graph learning models, aiming to provide users with a comprehensive understanding of the models' overall decision-making processes and underlying mechanisms. Specifically, we address the problem of counterfactual explanations for deep graph learning models by introducing a generative model-level counterfactual explanation approach called GCFX, which is based on deep graph generation. This approach generates a set of high-quality counterfactual explanations that reflect the model's global predictive behavior by leveraging an enhanced deep graph generation framework and a global summarization algorithm. GCFX features an architecture that combines dual encoders, structure-aware taggers, and Message Passing Neural Network decoders, enabling it to accurately learn the true latent distribution of input data and generate high-quality, closely related counterfactual examples. Subsequently, a global counterfactual summarization algorithm selects the most representative and comprehensive explanations from numerous candidate counterfactuals, providing broad insights into the model's global predictive patterns. Experiments on a synthetic dataset and several real-world datasets demonstrate that GCFX outperforms existing methods in terms of counterfactual validity and coverage while maintaining low explanation costs, thereby offering crucial support for enhancing the practicality and trustworthiness of global counterfactual explanations.
Fusion of Spatio-Temporal and Multi-Scale Frequency Features for Dry Electrodes MI-EEG Decoding
Dry-electrode Motor Imagery Electroencephalography (MI-EEG) enables fast, comfortable, real-world Brain Computer Interface by eliminating gels and shortening setup for at-home and wearable use.However, dry recordings pose three main issues: lower Signal-to-Noise Ratio with more baseline drift and sudden transients; weaker and noisier data with poor phase alignment across trials; and bigger variances between sessions. These drawbacks lead to larger data distribution shift, making features less stable for MI-EEG tasks.To address these problems, we introduce STGMFM, a tri-branch framework tailored for dry-electrode MI-EEG, which models complementary spatio-temporal dependencies via dual graph orders, and captures robust envelope dynamics with a multi-scale frequency mixing branch, motivated by the observation that amplitude envelopes are less sensitive to contact variability than instantaneous waveforms. Physiologically meaningful connectivity priors guide learning, and decision-level fusion consolidates a noise-tolerant consensus. On our collected dry-electrode MI-EEG, STGMFM consistently surpasses competitive CNN/Transformer/graph baselines. Codes are available at https://github.com/Tianyi-325/STGMFM.
Gradient Regularized Natural Gradients
Gradient regularization (GR) has been shown to improve the generalizability of trained models. While Natural Gradient Descent has been shown to accelerate optimization in the initial phase of training, little attention has been paid to how the training dynamics of second-order optimizers can benefit from GR. In this work, we propose Gradient-Regularized Natural Gradients (GRNG), a family of scalable second-order optimizers that integrate explicit gradient regularization with natural gradient updates. Our framework provides two complementary algorithms: a frequentist variant that avoids explicit inversion of the Fisher Information Matrix (FIM) via structured approximations, and a Bayesian variant based on a Regularized-Kalman formulation that eliminates the need for FIM inversion entirely. We establish convergence guarantees for GRNG, showing that gradient regularization improves stability and enables convergence to global minima. Empirically, we demonstrate that GRNG consistently enhances both optimization speed and generalization compared to first-order methods (SGD, AdamW) and second-order baselines (K-FAC, Sophia), with strong results on vision and language benchmarks. Our findings highlight gradient regularization as a principled and practical tool to unlock the robustness of natural gradient methods for large-scale deep learning.
Emergent Cooperation in Quantum Multi-Agent Reinforcement Learning Using Communication
Emergent cooperation in classical Multi-Agent Reinforcement Learning has gained significant attention, particularly in the context of Sequential Social Dilemmas (SSDs). While classical reinforcement learning approaches have demonstrated capability for emergent cooperation, research on extending these methods to Quantum Multi-Agent Reinforcement Learning remains limited, particularly through communication. In this paper, we apply communication approaches to quantum Q-Learning agents: the Mutual Acknowledgment Token Exchange (MATE) protocol, its extension Mutually Endorsed Distributed Incentive Acknowledgment Token Exchange (MEDIATE), the peer rewarding mechanism Gifting, and Reinforced Inter-Agent Learning (RIAL). We evaluate these approaches in three SSDs: the Iterated Prisoner's Dilemma, Iterated Stag Hunt, and Iterated Game of Chicken. Our experimental results show that approaches using MATE with temporal-difference measure (MATE\textsubscript{TD}), AutoMATE, MEDIATE-I, and MEDIATE-S achieved high cooperation levels across all dilemmas, demonstrating that communication is a viable mechanism for fostering emergent cooperation in Quantum Multi-Agent Reinforcement Learning.
comment: Accepted at IEEE ICC 2026
Frequency-Based Hyperparameter Selection in Games
Learning in smooth games fundamentally differs from standard minimization due to rotational dynamics, which invalidate classical hyperparameter tuning strategies. Despite their practical importance, effective methods for tuning in games remain underexplored. A notable example is LookAhead (LA), which achieves strong empirical performance but introduces additional parameters that critically influence performance. We propose a principled approach to hyperparameter selection in games by leveraging frequency estimation of oscillatory dynamics. Specifically, we analyze oscillations both in continuous-time trajectories and through the spectrum of the discrete dynamics in the associated frequency-based space. Building on this analysis, we introduce \emph{Modal LookAhead (MoLA)}, an extension of LA that selects the hyperparameters adaptively to a given problem. We provide convergence guarantees and demonstrate in experiments that MoLA accelerates training in both purely rotational games and mixed regimes, all with minimal computational overhead.
Superlinear Multi-Step Attention
In this paper, we propose \textbf{Superlinear attention}, a fully trainable multi-step attention architecture that achieves subquadratic complexity for long sequences while preserving \textbf{random context access} (a.k.a.\ structural non-exclusion): no eligible token position is structurally excluded from being selected for attention. Superlinear attention reformulates standard causal self-attention as a multi-step search problem with $N$ steps, yielding an overall complexity of $O(L^{1+\frac{1}{N}})$. To illustrate the architecture, we present a baseline $N=2$ implementation, which is algorithmically analogous to standard jump search. In this $O(L^{3/2})$ instantiation, the first step performs $O(L^{3/2})$ span-search to select relevant spans of the sequence, and the second step applies $O(L^{3/2})$ span-attention (standard attention restricted to the selected spans). In an upscaled $O(L^{1.54})$ configuration for robustness, we achieve an average decoding throughput of 114 tokens/sec at 1M context length and 80 tokens/sec at 10M context in our implementation on a modified 30B hybrid MoE model on a single B200 GPU. With limited training, we also obtain strong performance on the NIAH (Needle In A Haystack) task up to 256K context length, demonstrating that the routed span selection is learnable end-to-end. This paper emphasizes architectural formulation, scaling analysis, and systems feasibility, and presents initial validation; comprehensive quality evaluations across diverse long-context tasks are left to future work.
comment: 30 pages, 6 figures
Estimating Dense-Packed Zone Height in Liquid-Liquid Separation: A Physics-Informed Neural Network Approach
Separating liquid-liquid dispersions in gravity settlers is critical in chemical, pharmaceutical, and recycling processes. The dense-packed zone height is an important performance and safety indicator but it is often expensive and impractical to measure due to optical limitations. We propose to estimate phase heights using only inexpensive volume flow measurements. To this end, a physics-informed neural network (PINN) is first pretrained on synthetic data and physics equations derived from a low-fidelity (approximate) mechanistic model to reduce the need for extensive experimental data. While the mechanistic model is used to generate synthetic training data, only volume balance equations are used in the PINN, since the integration of submodels describing droplet coalescence and sedimentation into the PINN would be computationally prohibitive. The pretrained PINN is then fine-tuned with scarce experimental data to capture the actual dynamics of the separator. We then employ the differentiable PINN as a predictive model in an Extended Kalman Filter inspired state estimation framework, enabling the phase heights to be tracked and updated from flow-rate measurements. We first test the two-stage trained PINN by forward simulation from a known initial state against the mechanistic model and a non-pretrained PINN. We then evaluate phase height estimation performance with the filter, comparing the two-stage trained PINN with a two-stage trained purely data-driven neural network. All model types are trained and evaluated using ensembles to account for model parameter uncertainty. In all evaluations, the two-stage trained PINN yields the most accurate phase-height estimates.
comment: 37 pages, 13 figures, 3 tables
Dynamic Thinking-Token Selection for Efficient Reasoning in Large Reasoning Models
Large Reasoning Models (LRMs) excel at solving complex problems by explicitly generating a reasoning trace before deriving the final answer. However, these extended generations incur substantial memory footprint and computational overhead, bottlenecking LRMs' efficiency. This work uses attention maps to analyze the influence of reasoning traces and uncover an interesting phenomenon: only some decision-critical tokens in a reasoning trace steer the model toward the final answer, while the remaining tokens contribute negligibly. Building on this observation, we propose Dynamic Thinking-Token Selection (DynTS). This method identifies decision-critical tokens and retains only their associated Key-Value (KV) cache states during inference, evicting the remaining redundant entries to optimize efficiency.
Making medical vision-language models think causally across modalities with retrieval-augmented cross-modal reasoning
Medical vision-language models (VLMs) achieve strong performance in diagnostic reporting and image-text alignment, yet their underlying reasoning mechanisms remain fundamentally correlational, exhibiting reliance on superficial statistical associations that fail to capture the causal pathophysiological mechanisms central to clinical decision-making. This limitation makes them fragile, prone to hallucinations, and sensitive to dataset biases. Retrieval-augmented generation (RAG) offers a partial remedy by grounding predictions in external knowledge. However, conventional RAG depends on semantic similarity, introducing new spurious correlations. We propose Multimodal Causal Retrieval-Augmented Generation, a framework that integrates causal inference principles with multimodal retrieval. It retrieves clinically relevant exemplars and causal graphs from external sources, conditioning model reasoning on counterfactual and interventional evidence rather than correlations alone. Applied to radiology report generation, diagnosis prediction, and visual question answering, it improves factual accuracy, robustness to distribution shifts, and interpretability. Our results highlight causal retrieval as a scalable path toward medical VLMs that think beyond pattern matching, enabling trustworthy multimodal reasoning in high-stakes clinical settings.
Structural Gender Bias in Credit Scoring: Proxy Leakage
As financial institutions increasingly adopt machine learning for credit risk assessment, the persistence of algorithmic bias remains a critical barrier to equitable financial inclusion. This study provides a comprehensive audit of structural gender bias within the Taiwan Credit Default dataset, specifically challenging the prevailing doctrine of "fairness through blindness." Despite the removal of explicit protected attributes and the application of industry standard fairness interventions, our results demonstrate that gendered predictive signals remain deeply embedded within non-sensitive features. Utilizing SHAP (SHapley Additive exPlanations), we identify that variables such as Marital Status, Age, and Credit Limit function as potent proxies for gender, allowing models to maintain discriminatory pathways while appearing statistically fair. To mathematically quantify this leakage, we employ an adversarial inverse modeling framework. Our findings reveal that the protected gender attribute can be reconstructed from purely non-sensitive financial features with an ROC AUC score of 0.65, demonstrating that traditional fairness audits are insufficient for detecting implicit structural bias. These results advocate for a shift from surface-level statistical parity toward causal-aware modeling and structural accountability in financial AI.
A Dataset for Automatic Vocal Mode Classification
The Complete Vocal Technique (CVT) is a school of singing developed in the past decades by Cathrin Sadolin et al.. CVT groups the use of the voice into so called vocal modes, namely Neutral, Curbing, Overdrive and Edge. Knowledge of the desired vocal mode can be helpful for singing students. Automatic classification of vocal modes can thus be important for technology-assisted singing teaching. Previously, automatic classification of vocal modes has been attempted without major success, potentially due to a lack of data. Therefore, we recorded a novel vocal mode dataset consisting of sustained vowels recorded from four singers, three of which professional singers with more than five years of CVT-experience. The dataset covers the entire vocal range of the subjects, totaling 3,752 unique samples. By using four microphones, thereby offering a natural data augmentation, the dataset consists of more than 13,000 samples combined. An annotation was created using three CVT-experienced annotators, each providing an individual annotation. The merged annotation as well as the three individual annotations come with the published dataset. Additionally, we provide some baseline classification results. The best balanced accuracy across a 5-fold cross validation of 81.3\,\% was achieved with a ResNet18. The dataset can be downloaded under https://zenodo.org/records/14276415.
comment: Part of the proceedings of the EvoMUSART 2026: 15th International Conference on Artificial Intelligence in Music, Sound, Art and Design
A Tumor Aware DenseNet Swin Hybrid Learning with Boosted and Hierarchical Feature Spaces for Large-Scale Brain MRI Classification
This study proposes an efficient Densely Swin Hybrid (EDSH) framework for brain tumor MRI analysis, designed to jointly capture fine grained texture patterns and long range contextual dependencies. Two tumor aware experimental setups are introduced to address class-specific diagnostic challenges. The first setup employs a Boosted Feature Space (BFS), where independently customized DenseNet and Swint branches learn complementary local and global representations that are dimension aligned, fused, and boosted, enabling highly sensitive detection of diffuse glioma patterns by successfully learning the features of irregular shape, poorly defined mass, and heterogeneous texture. The second setup adopts a hierarchical DenseNet Swint architecture with Deep Feature Extraction have Dual Residual connections (DFE and DR), in which DenseNet serves as a stem CNN for structured local feature learning, while Swin_t models global tumor morphology, effectively suppressing false negatives in meningioma and pituitary tumor classification by learning the features of well defined mass, location (outside brain) and enlargments in tumors (dural tail or upward extension). DenseNet is customized at the input level to match MRI spatial characteristics, leveraging dense residual connectivity to preserve texture information and mitigate vanishing-gradient effects. In parallel, Swint is tailored through task aligned patch embedding and shifted-window self attention to efficiently capture hierarchical global dependencies. Extensive evaluation on a large-scale MRI dataset (stringent 40,260 images across four tumor classes) demonstrates consistent superiority over standalone CNNs, Vision Transformers, and hybrids, achieving 98.50 accuracy and recall on the test unseen dataset.
comment: 33 Pages, 8 Tables, Figures 16
Discriminability-Driven Spatial-Channel Selection with Gradient Norm for Drone Signal OOD Detection
We propose a drone signal out-of-distribution (OOD) detection algorithm based on discriminability-driven spatial-channel selection with a gradient norm. Time-frequency image features are adaptively weighted along both spatial and channel dimensions by quantifying inter-class similarity and variance based on protocol-specific time-frequency characteristics. Subsequently, a gradient-norm metric is introduced to measure perturbation sensitivity for capturing the inherent instability of OOD samples, which is then fused with energy-based scores for joint inference. Simulation results demonstrate that the proposed algorithm provides superior discriminative power and robust performance via SNR and various drone types.
Cognitive Fusion of ZC Sequences and Time-Frequency Images for Out-of-Distribution Detection of Drone Signals
We propose a drone signal out-of-distribution detection (OODD) algorithm based on the cognitive fusion of Zadoff-Chu (ZC) sequences and time-frequency images (TFI). ZC sequences are identified by analyzing the communication protocols of DJI drones, while TFI capture the time-frequency characteristics of drone signals with unknown or non-standard communication protocols. Both modalities are used jointly to enable OODD in the drone remote identification (RID) task. Specifically, ZC sequence features and TFI features are generated from the received radio frequency signals, which are then processed through dedicated feature extraction module to enhance and align them. The resultant multi-modal features undergo multi-modal feature interaction, single-modal feature fusion, and multi-modal feature fusion to produce features that integrate and complement information across modalities. Discrimination scores are computed from the fused features along both spatial and channel dimensions to capture time-frequency characteristic differences dictated by the communication protocols, and these scores will be transformed into adaptive attention weights. The weighted features are then passed through a Softmax function to produce the signal classification results. Simulation results demonstrate that the proposed algorithm outperforms existing algorithms and achieves 1.7% and 7.5% improvements in RID and OODD metrics, respectively. The proposed algorithm also performs strong robustness under varying flight conditions and across different drone types.
A Master Class on Reproducibility: A Student Hackathon on Advanced MRI Reconstruction Methods
We report the design, protocol, and outcomes of a student reproducibility hackathon focused on replicating the results of three influential MRI reconstruction papers: (a) MoDL, an unrolled model-based network with learned denoising; (b) HUMUS-Net, a hybrid unrolled multiscale CNN+Transformer architecture; and (c) an untrained, physics-regularized dynamic MRI method that uses a quantitative MR model for early stopping. We describe the setup of the hackathon and present reproduction outcomes alongside additional experiments, and we detail fundamental practices for building reproducible codebases.
Convex Chance-Constrained Stochastic Control under Uncertain Specifications with Application to Learning-Based Hybrid Powertrain Control
This paper presents a strictly convex chance-constrained stochastic control framework that accounts for uncertainty in control specifications such as reference trajectories and operational constraints. By jointly optimizing control inputs and risk allocation under general (possibly non-Gaussian) uncertainties, the proposed method guarantees probabilistic constraint satisfaction while ensuring strict convexity, leading to uniqueness and continuity of the optimal solution. The formulation is further extended to nonlinear model-based control using exactly linearizable models identified through machine learning. The effectiveness of the proposed approach is demonstrated through model predictive control applied to a hybrid powertrain system.
comment: Submitted to IEEE Transactions on Control Systems Technology (TCST)
Temp-R1: A Unified Autonomous Agent for Complex Temporal KGQA via Reverse Curriculum Reinforcement Learning
Temporal Knowledge Graph Question Answering (TKGQA) is inherently challenging, as it requires sophisticated reasoning over dynamic facts with multi-hop dependencies and complex temporal constraints. Existing methods rely on fixed workflows and expensive closed-source APIs, limiting flexibility and scalability. We propose Temp-R1, the first autonomous end-to-end agent for TKGQA trained through reinforcement learning. To address cognitive overload in single-action reasoning, we expand the action space with specialized internal actions alongside external action. To prevent shortcut learning on simple questions, we introduce reverse curriculum learning that trains on difficult questions first, forcing the development of sophisticated reasoning before transferring to easier cases. Our 8B-parameter Temp-R1 achieves state-of-the-art performance on MultiTQ and TimelineKGQA, improving 19.8% over strong baselines on complex questions. Our work establishes a new paradigm for autonomous temporal reasoning agents. Our code will be publicly available soon at https://github.com/zjukg/Temp-R1.
comment: Work in progress
TriPlay-RL: Tri-Role Self-Play Reinforcement Learning for LLM Safety Alignment
In recent years, safety risks associated with large language models have become increasingly prominent, highlighting the urgent need to mitigate the generation of toxic and harmful content. The mainstream paradigm for LLM safety alignment typically adopts a collaborative framework involving three roles: an attacker for adversarial prompt generation, a defender for safety defense, and an evaluator for response assessment. In this paper, we propose a closed-loop reinforcement learning framework called TriPlay-RL that enables iterative and co-improving collaboration among three roles with near-zero manual annotation. Experimental results show that the attacker preserves high output diversity while achieving a 20%-50% improvement in adversarial effectiveness; the defender attains 10%-30% gains in safety performance without degrading general reasoning capability; and the evaluator continuously refines its fine-grained judgment ability through iterations, accurately distinguishing unsafe responses, simple refusals, and useful guidance. Overall, our framework establishes an efficient and scalable paradigm for LLM safety alignment, enabling continuous co-evolution within a unified learning loop.
Think-Augmented Function Calling: Improving LLM Parameter Accuracy Through Embedded Reasoning
Large language models (LLMs) have demonstrated remarkable capabilities in function calling for autonomous agents, yet current mechanisms lack explicit reasoning transparency during parameter generation, particularly for complex functions with interdependent parameters. While existing approaches like chain-of-thought prompting operate at the agent level, they fail to provide fine-grained reasoning guidance for individual function parameters. To address these limitations, we propose Think-Augmented Function Calling (TAFC), a novel framework that enhances function calling accuracy through explicit reasoning at both function and parameter levels. Our method introduces a universal "think" parameter augmentation that enables models to articulate their decision-making process, with dynamic optimization for parameter descriptions to improve reasoning quality. For complex parameters, TAFC automatically triggers granular reasoning based on complexity scoring, ensuring appropriate justification for critical decisions. Additionally, we propose reasoning-guided optimization to align generated reasoning with human expectations. TAFC requires no architectural modifications to existing LLMs while maintaining full API compatibility. Evaluation on ToolBench across proprietary and open-source models demonstrates significant improvements in parameter generation accuracy and reasoning coherence for multi-parameter functions, while providing enhanced interpretability for debugging AI agent behaviors.
What Do Learned Models Measure?
In many scientific and data-driven applications, machine learning models are increasingly used as measurement instruments, rather than merely as predictors of predefined labels. When the measurement function is learned from data, the mapping from observations to quantities is determined implicitly by the training distribution and inductive biases, allowing multiple inequivalent mappings to satisfy standard predictive evaluation criteria. We formalize learned measurement functions as a distinct focus of evaluation and introduce measurement stability, a property capturing invariance of the measured quantity across admissible realizations of the learning process and across contexts. We show that standard evaluation criteria in machine learning, including generalization error, calibration, and robustness, do not guarantee measurement stability. Through a real-world case study, we show that models with comparable predictive performance can implement systematically inequivalent measurement functions, with distribution shift providing a concrete illustration of this failure. Taken together, our results highlight a limitation of existing evaluation frameworks in settings where learned model outputs are identified as measurements, motivating the need for an additional evaluative dimension.
Toward Scalable Normalizing Flows for the Hubbard Model
Normalizing flows have recently demonstrated the ability to learn the Boltzmann distribution of the Hubbard model, opening new avenues for generative modeling in condensed matter physics. In this work, we investigate the steps required to extend such simulations to larger lattice sizes and lower temperatures, with a focus on enhancing stability and efficiency. Additionally, we present the scaling behavior of stochastic normalizing flows and non-equilibrium Markov chain Monte Carlo methods for this fermionic system.
comment: 10 pages, 5 figues, The 42nd International Symposium on Lattice Field Theory
Neural Network Approximation: A View from Polytope Decomposition
Universal approximation theory offers a foundational framework to verify neural network expressiveness, enabling principled utilization in real-world applications. However, most existing theoretical constructions are established by uniformly dividing the input space into tiny hypercubes without considering the local regularity of the target function. In this work, we investigate the universal approximation capabilities of ReLU networks from a view of polytope decomposition, which offers a more realistic and task-oriented approach compared to current methods. To achieve this, we develop an explicit kernel polynomial method to derive an universal approximation of continuous functions, which is characterized not only by the refined Totik-Ditzian-type modulus of continuity, but also by polytopical domain decomposition. Then, a ReLU network is constructed to approximate the kernel polynomial in each subdomain separately. Furthermore, we find that polytope decomposition makes our approximation more efficient and flexible than existing methods in many cases, especially near singular points of the objective function. Lastly, we extend our approach to analytic functions to reach a higher approximation rate.
FGGM: Fisher-Guided Gradient Masking for Continual Learning
Catastrophic forgetting impairs the continuous learning of large language models. We propose Fisher-Guided Gradient Masking (FGGM), a framework that mitigates this by strategically selecting parameters for updates using diagonal Fisher Information. FGGM dynamically generates binary masks with adaptive thresholds, preserving critical parameters to balance stability and plasticity without requiring historical data. Unlike magnitude-based methods such as MIGU, our approach offers a mathematically principled parameter importance estimation. On the TRACE benchmark, FGGM shows a 9.6% relative improvement in retaining general capabilities over supervised fine-tuning (SFT) and a 4.4% improvement over MIGU on TRACE tasks. Additional analysis on code generation tasks confirms FGGM's superior performance and reduced forgetting, establishing it as an effective solution.
comment: Accepted by ICASSP 2026
Beyond Retention: Orchestrating Structural Safety and Plasticity in Continual Learning for LLMs
Continual learning in Large Language Models (LLMs) faces the critical challenge of balancing stability (retaining old knowledge) and plasticity (learning new tasks). While Experience Replay (ER) is a standard countermeasure against catastrophic forgetting, its impact across diverse capabilities remains underexplored. In this work, we uncover a critical dichotomy in ER's behavior: while it induces positive backward transfer on robust, unstructured tasks (e.g., boosting performance on previous NLP classification tasks through repeated rehearsal), it causes severe negative transfer on fragile, structured domains like code generation (e.g., a significant relative drop in coding accuracy). This reveals that ER trades structural integrity for broad consolidation. To address this dilemma, we propose \textbf{Orthogonal Subspace Wake-up (OSW)}. OSW identifies essential parameter subspaces of previous tasks via a brief "wake-up" phase and enforces orthogonal updates for new tasks, providing a mathematically grounded "safety guarantee" for established knowledge structures. Empirical results across a diverse four-task sequence demonstrate that OSW uniquely succeeds in preserving fragile coding abilities where Replay fails, while simultaneously maintaining high plasticity for novel tasks. Our findings emphasize the necessity of evaluating structural safety alongside average retention in LLM continual learning.
Co-PLNet: A Collaborative Point-Line Network for Prompt-Guided Wireframe Parsing
Wireframe parsing aims to recover line segments and their junctions to form a structured geometric representation useful for downstream tasks such as Simultaneous Localization and Mapping (SLAM). Existing methods predict lines and junctions separately and reconcile them post-hoc, causing mismatches and reduced robustness. We present Co-PLNet, a point-line collaborative framework that exchanges spatial cues between the two tasks, where early detections are converted into spatial prompts via a Point-Line Prompt Encoder (PLP-Encoder), which encodes geometric attributes into compact and spatially aligned maps. A Cross-Guidance Line Decoder (CGL-Decoder) then refines predictions with sparse attention conditioned on complementary prompts, enforcing point-line consistency and efficiency. Experiments on Wireframe and YorkUrban show consistent improvements in accuracy and robustness, together with favorable real-time efficiency, demonstrating our effectiveness for structured geometry perception.
Tractable Gaussian Phase Retrieval with Heavy Tails and Adversarial Corruption with Near-Linear Sample Complexity
Phase retrieval is the classical problem of recovering a signal $x^* \in \mathbb{R}^n$ from its noisy phaseless measurements $y_i = \langle a_i, x^* \rangle^2 + ζ_i$ (where $ζ_i$ denotes noise, and $a_i$ is the sensing vector) for $i \in [m]$. The problem of phase retrieval has a rich history, with a variety of applications such as optics, crystallography, heteroscedastic regression, astrophysics, etc. A major consideration in algorithms for phase retrieval is robustness against measurement errors. In recent breakthroughs in algorithmic robust statistics, efficient algorithms have been developed for several parameter estimation tasks such as mean estimation, covariance estimation, robust principal component analysis (PCA), etc. in the presence of heavy-tailed noise and adversarial corruptions. In this paper, we study efficient algorithms for robust phase retrieval with heavy-tailed noise when a constant fraction of both the measurements $y_i$ and the sensing vectors $a_i$ may be arbitrarily adversarially corrupted. For this problem, Buna and Rebeschini (AISTATS 2025) very recently gave an exponential time algorithm with sample complexity $O(n \log n)$. Their algorithm needs a robust spectral initialization, specifically, a robust estimate of the top eigenvector of a covariance matrix, which they deemed to be beyond known efficient algorithmic techniques (similar spectral initializations are a key ingredient of a large family of phase retrieval algorithms). In this work, we make a connection between robust spectral initialization and recent algorithmic advances in robust PCA, yielding the first polynomial-time algorithms for robust phase retrieval with both heavy-tailed noise and adversarial corruptions, in fact with near-linear (in $n$) sample complexity.
TechING: Towards Real World Technical Image Understanding via VLMs
Professionals working in technical domain typically hand-draw (on whiteboard, paper, etc.) technical diagrams (e.g., flowcharts, block diagrams, etc.) during discussions; however, if they want to edit these later, it needs to be drawn from scratch. Modern day VLMs have made tremendous progress in image understanding but they struggle when it comes to understanding technical diagrams. One way to overcome this problem is to fine-tune on real world hand-drawn images, but it is not practically possible to generate large number of such images. In this paper, we introduce a large synthetically generated corpus (reflective of real world images) for training VLMs and subsequently evaluate VLMs on a smaller corpus of hand-drawn images (with the help of humans). We introduce several new self-supervision tasks for training and perform extensive experiments with various baseline models and fine-tune Llama 3.2 11B-instruct model on synthetic images on these tasks to obtain LLama-VL-TUG, which significantly improves the ROUGE-L performance of Llama 3.2 11B-instruct by 2.14x and achieves the best all-round performance across all baseline models. On real-world images, human evaluation reveals that we achieve minimum compilation errors across all baselines in 7 out of 8 diagram types and improve the average F1 score of Llama 3.2 11B-instruct by 6.97x.
comment: Accepted at Findings of EACL 2026, 30 Pages (9 Pages main paper + 4 pages references + 17 pages appendix)
Rethinking Cross-Modal Fine-Tuning: Optimizing the Interaction between Feature Alignment and Target Fitting AISTATS 20226
Adapting pre-trained models to unseen feature modalities has become increasingly important due to the growing need for cross-disciplinary knowledge integration.~A key challenge here is how to align the representation of new modalities with the most relevant parts of the pre-trained model's representation space to enable accurate knowledge transfer.~This requires combining feature alignment with target fine-tuning, but uncalibrated combinations can exacerbate misalignment between the source and target feature-label structures and reduce target generalization.~Existing work however lacks a theoretical understanding of this critical interaction between feature alignment and target fitting.~To bridge this gap, we develop a principled framework that establishes a provable generalization bound on the target error, which explains the interaction between feature alignment and target fitting through a novel concept of feature-label distortion.~This bound offers actionable insights into how this interaction should be optimized for practical algorithm design. The resulting approach achieves significantly improved performance over state-of-the-art methods across a wide range of benchmark datasets.
comment: Accepted AISTATS 20226. Preprint version
Facial Emotion Recognition on FER-2013 using an EfficientNetB2-Based Approach
Detection of human emotions based on facial images in real-world scenarios is a difficult task due to low image quality, variations in lighting, pose changes, background distractions, small inter-class variations, noisy crowd-sourced labels, and severe class imbalance, as observed in the FER-2013 dataset of 48x48 grayscale images. Although recent approaches using large CNNs such as VGG and ResNet achieve reasonable accuracy, they are computationally expensive and memory-intensive, limiting their practicality for real-time applications. We address these challenges using a lightweight and efficient facial emotion recognition pipeline based on EfficientNetB2, trained using a two-stage warm-up and fine-tuning strategy. The model is enhanced with AdamW optimization, decoupled weight decay, label smoothing (epsilon = 0.06) to reduce annotation noise, and clipped class weights to mitigate class imbalance, along with dropout, mixed-precision training, and extensive real-time data augmentation. The model is trained using a stratified 87.5%/12.5% train-validation split while keeping the official test set intact, achieving a test accuracy of 68.78% with nearly ten times fewer parameters than VGG16-based baselines. Experimental results, including per-class metrics and learning dynamics, demonstrate stable training and strong generalization, making the proposed approach suitable for real-time and edge-based applications.
comment: 6 pages, 4 figures
Automated HER2 scoring with uncertainty quantification using lensfree holography and deep learning
Accurate assessment of human epidermal growth factor receptor 2 (HER2) expression is critical for breast cancer diagnosis, prognosis, and therapy selection; yet, most existing digital HER2 scoring methods rely on bulky and expensive optical systems. Here, we present a compact and cost-effective lensfree holography platform integrated with deep learning for automated HER2 scoring of immunohistochemically stained breast tissue sections. The system captures lensfree diffraction patterns of stained HER2 tissue sections under RGB laser illumination and acquires complex field information over a sample area of ~1,250 mm^2 at an effective throughput of ~84 mm^2 per minute. To enhance diagnostic reliability, we incorporated an uncertainty quantification strategy based on Bayesian Monte Carlo dropout, which provides autonomous uncertainty estimates for each prediction and supports reliable, robust HER2 scoring, with an overall correction rate of 30.4%. Using a blinded test set of 412 unique tissue samples, our approach achieved a testing accuracy of 84.9% for 4-class (0, 1+, 2+, 3+) HER2 classification and 94.8% for binary (0/1+ vs. 2+/3+) HER2 scoring with uncertainty quantification. Overall, this lensfree holography approach provides a practical pathway toward portable, high-throughput, and cost-effective HER2 scoring, particularly suited for resource-limited settings, where traditional digital pathology infrastructure is unavailable.
comment: 23 Pages, 6 Figures, 1 Table
Paying Less Generalization Tax: A Cross-Domain Generalization Study of RL Training for LLM Agents
Generalist LLM agents are often post-trained on a narrow set of environments but deployed across far broader, unseen domains. In this work, we investigate the challenge of agentic post-training when the eventual test domains are unknown. Specifically, we analyze which properties of reinforcement learning (RL) environments and modeling choices have the greatest influence on out-of-domain performance. First, we identify two environment axes that strongly correlate with cross-domain generalization: (i) state information richness, i.e., the amount of information for the agent to process from the state, and (ii) planning complexity, estimated via goal reachability and trajectory length under a base policy. Notably, domain realism and text-level similarity are not the primary factors; for instance, the simple grid-world domain Sokoban leads to even stronger generalization in SciWorld than the more realistic ALFWorld. Motivated by these findings, we further show that increasing state information richness alone can already effectively improve cross-domain robustness. We propose a randomization technique, which is low-overhead and broadly applicable: add small amounts of distractive goal-irrelevant features to the state to make it richer without altering the task. Beyond environment-side properties, we also examine several modeling choices: (a) SFT warmup or mid-training helps prevent catastrophic forgetting during RL but undermines generalization to domains that are not included in the mid-training datamix; and (b) turning on step-by-step thinking during RL, while not always improving in-domain performance, plays a crucial role in preserving generalization.
PaperSearchQA: Learning to Search and Reason over Scientific Papers with RLVR
Search agents are language models (LMs) that reason and search knowledge bases (or the web) to answer questions; recent methods supervise only the final answer accuracy using reinforcement learning with verifiable rewards (RLVR). Most RLVR search agents tackle general-domain QA, which limits their relevance to technical AI systems in science, engineering, and medicine. In this work we propose training agents to search and reason over scientific papers -- this tests technical question-answering, it is directly relevant to real scientists, and the capabilities will be crucial to future AI Scientist systems. Concretely, we release a search corpus of 16 million biomedical paper abstracts and construct a challenging factoid QA dataset called PaperSearchQA with 60k samples answerable from the corpus, along with benchmarks. We train search agents in this environment to outperform non-RL retrieval baselines; we also perform further quantitative analysis and observe interesting agent behaviors like planning, reasoning, and self-verification. Our corpus, datasets, and benchmarks are usable with the popular Search-R1 codebase for RLVR training and released on https://huggingface.co/collections/jmhb/papersearchqa. Finally, our data creation methods are scalable and easily extendable to other scientific domains.
comment: EACL 2026
HeterCSI: Channel-Adaptive Heterogeneous CSI Pretraining Framework for Generalized Wireless Foundation Models
Wireless foundation models promise transformative capabilities for channel state information (CSI) processing across diverse 6G network applications, yet face fundamental challenges due to the inherent dual heterogeneity of CSI across both scale and scenario dimensions. However, current pretraining approaches either constrain inputs to fixed dimensions or isolate training by scale, limiting the generalization and scalability of wireless foundation models. In this paper, we propose HeterCSI, a channel-adaptive pretraining framework that reconciles training efficiency with robust cross-scenario generalization via a new understanding of gradient dynamics in heterogeneous CSI pretraining. Our key insight reveals that CSI scale heterogeneity primarily causes destructive gradient interference, while scenario diversity actually promotes constructive gradient alignment when properly managed. Specifically, we formulate heterogeneous CSI batch construction as a partitioning optimization problem that minimizes zero-padding overhead while preserving scenario diversity. To solve this, we develop a scale-aware adaptive batching strategy that aligns CSI samples of similar scales, and design a double-masking mechanism to isolate valid signals from padding artifacts. Extensive experiments on 12 datasets demonstrate that HeterCSI establishes a generalized foundation model without scenario-specific finetuning, achieving superior average performance over full-shot baselines. Compared to the state-of-the-art zero-shot benchmark WiFo, it reduces NMSE by 7.19 dB, 4.08 dB, and 5.27 dB for CSI reconstruction, time-domain, and frequency-domain prediction, respectively. The proposed HeterCSI framework also reduces training latency by 53% compared to existing approaches while improving generalization performance by 1.53 dB on average.
comment: 13 pages, 8 figures
Smooth, Sparse, and Stable: Finite-Time Exact Skeleton Recovery via Smoothed Proximal Gradients
Continuous optimization has significantly advanced causal discovery, yet existing methods (e.g., NOTEARS) generally guarantee only asymptotic convergence to a stationary point. This often yields dense weighted matrices that require arbitrary post-hoc thresholding to recover a DAG. This gap between continuous optimization and discrete graph structures remains a fundamental challenge. In this paper, we bridge this gap by proposing the Hybrid-Order Acyclicity Constraint (AHOC) and optimizing it via the Smoothed Proximal Gradient (SPG-AHOC). Leveraging the Manifold Identification Property of proximal algorithms, we provide a rigorous theoretical guarantee: the Finite-Time Oracle Property. We prove that under standard identifiability assumptions, SPG-AHOC recovers the exact DAG support (structure) in finite iterations, even when optimizing a smoothed approximation. This result eliminates structural ambiguity, as our algorithm returns graphs with exact zero entries without heuristic truncation. Empirically, SPG-AHOC achieves state-of-the-art accuracy and strongly corroborates the finite-time identification theory.
comment: 20 pages, 8 figures
Success Conditioning as Policy Improvement: The Optimization Problem Solved by Imitating Success
A widely used technique for improving policies is success conditioning, in which one collects trajectories, identifies those that achieve a desired outcome, and updates the policy to imitate the actions taken along successful trajectories. This principle appears under many names -- rejection sampling with SFT, goal-conditioned RL, Decision Transformers -- yet what optimization problem it solves, if any, has remained unclear. We prove that success conditioning exactly solves a trust-region optimization problem, maximizing policy improvement subject to a $χ^2$ divergence constraint whose radius is determined automatically by the data. This yields an identity: relative policy improvement, the magnitude of policy change, and a quantity we call action-influence -- measuring how random variation in action choices affects success rates -- are exactly equal at every state. Success conditioning thus emerges as a conservative improvement operator. Exact success conditioning cannot degrade performance or induce dangerous distribution shift, but when it fails, it does so observably, by hardly changing the policy at all. We apply our theory to the common practice of return thresholding, showing this can amplify improvement, but at the cost of potential misalignment with the true objective.
Learning Fair Domain Adaptation with Virtual Label Distribution
Unsupervised Domain Adaptation (UDA) aims to mitigate performance degradation when training and testing data are sampled from different distributions. While significant progress has been made in enhancing overall accuracy, most existing methods overlook performance disparities across categories-an issue we refer to as category fairness. Our empirical analysis reveals that UDA classifiers tend to favor certain easy categories while neglecting difficult ones. To address this, we propose Virtual Label-distribution-aware Learning (VILL), a simple yet effective framework designed to improve worst-case performance while preserving high overall accuracy. The core of VILL is an adaptive re-weighting strategy that amplifies the influence of hard-to-classify categories. Furthermore, we introduce a KL-divergence-based re-balancing strategy, which explicitly adjusts decision boundaries to enhance category fairness. Experiments on commonly used datasets demonstrate that VILL can be seamlessly integrated as a plug-and-play module into existing UDA methods, significantly improving category fairness.
comment: ICASSP 2026
Agentic Very Long Video Understanding
The advent of always-on personal AI assistants, enabled by all-day wearable devices such as smart glasses, demands a new level of contextual understanding, one that goes beyond short, isolated events to encompass the continuous, longitudinal stream of egocentric video. Achieving this vision requires advances in long-horizon video understanding, where systems must interpret and recall visual and audio information spanning days or even weeks. Existing methods, including large language models and retrieval-augmented generation, are constrained by limited context windows and lack the ability to perform compositional, multi-hop reasoning over very long video streams. In this work, we address these challenges through EGAgent, an enhanced agentic framework centered on entity scene graphs, which represent people, places, objects, and their relationships over time. Our system equips a planning agent with tools for structured search and reasoning over these graphs, as well as hybrid visual and audio search capabilities, enabling detailed, cross-modal, and temporally coherent reasoning. Experiments on the EgoLifeQA and Video-MME (Long) datasets show that our method achieves state-of-the-art performance on EgoLifeQA (57.5%) and competitive performance on Video-MME (Long) (74.1%) for complex longitudinal video understanding tasks.
comment: 26 pages, 7 figures, 8 tables
FP8-RL: A Practical and Stable Low-Precision Stack for LLM Reinforcement Learning
Reinforcement learning (RL) for large language models (LLMs) is increasingly bottlenecked by rollout (generation), where long output sequence lengths make attention and KV-cache memory dominate end-to-end step time. FP8 offers an attractive lever for accelerating RL by reducing compute cost and memory traffic during rollout, but applying FP8 in RL introduces unique engineering and algorithmic challenges: policy weights change every step (requiring repeated quantization and weight synchronization into the inference engine) and low-precision rollouts can deviate from the higher-precision policy assumed by the trainer, causing train-inference mismatch and potential instability. This report presents a practical FP8 rollout stack for LLM RL, implemented in the veRL ecosystem with support for common training backends (e.g., FSDP/Megatron-LM) and inference engines (e.g., vLLM/SGLang). We (i) enable FP8 W8A8 linear-layer rollout using blockwise FP8 quantization, (ii) extend FP8 to KV-cache to remove long-context memory bottlenecks via per-step QKV scale recalibration, and (iii) mitigate mismatch using importance-sampling-based rollout correction (token-level TIS/MIS variants). Across dense and MoE models, these techniques deliver up to 44% rollout throughput gains while preserving learning behavior comparable to BF16 baselines.
Exact Minimum-Volume Confidence Set Intersection for Multinomial Outcomes
Computation of confidence sets is central to data science and machine learning, serving as the workhorse of A/B testing and underpinning the operation and analysis of reinforcement learning algorithms. Among all valid confidence sets for the multinomial parameter, minimum-volume confidence sets (MVCs) are optimal in that they minimize average volume, but they are defined as level sets of an exact p-value that is discontinuous and difficult to compute. Rather than attempting to characterize the geometry of MVCs directly, this paper studies a practically motivated decision problem: given two observed multinomial outcomes, can one certify whether their MVCs intersect? We present a certified, tolerance-aware algorithm for this intersection problem. The method exploits the fact that likelihood ordering induces halfspace constraints in log-odds coordinates, enabling adaptive geometric partitioning of parameter space and computable lower and upper bounds on p-values over each cell. For three categories, this yields an efficient and provably sound algorithm that either certifies intersection, certifies disjointness, or returns an indeterminate result when the decision lies within a prescribed margin. We further show how the approach extends to higher dimensions. The results demonstrate that, despite their irregular geometry, MVCs admit reliable certified decision procedures for core tasks in A/B testing.
comment: 15 pages, 1 figure
Enhance the Safety in Reinforcement Learning by ADRC Lagrangian Methods
Safe reinforcement learning (Safe RL) seeks to maximize rewards while satisfying safety constraints, typically addressed through Lagrangian-based methods. However, existing approaches, including PID and classical Lagrangian methods, suffer from oscillations and frequent safety violations due to parameter sensitivity and inherent phase lag. To address these limitations, we propose ADRC-Lagrangian methods that leverage Active Disturbance Rejection Control (ADRC) for enhanced robustness and reduced oscillations. Our unified framework encompasses classical and PID Lagrangian methods as special cases while significantly improving safety performance. Extensive experiments demonstrate that our approach reduces safety violations by up to 74%, constraint violation magnitudes by 89%, and average costs by 67\%, establishing superior effectiveness for Safe RL in complex environments.
Nonlinear multi-study factor analysis
High-dimensional data often exhibit variation that can be captured by lower dimensional factors. For high-dimensional data from multiple studies or environments, one goal is to understand which underlying factors are common to all studies, and which factors are study or environment-specific. As a particular example, we consider platelet gene expression data from patients in different disease groups. In this data, factors correspond to clusters of genes which are co-expressed; we may expect some clusters (or biological pathways) to be active for all diseases, while some clusters are only active for a specific disease. To learn these factors, we consider a nonlinear multi-study factor model, which allows for both shared and specific factors. To fit this model, we propose a multi-study sparse variational autoencoder. The underlying model is sparse in that each observed feature (i.e. each dimension of the data) depends on a small subset of the latent factors. In the genomics example, this means each gene is active in only a few biological processes. Further, the model implicitly induces a penalty on the number of latent factors, which helps separate the shared factors from the group-specific factors. We prove that the latent factors are identified, and demonstrate our method recovers meaningful factors in the platelet gene expression data.
Robust Learning of a Group DRO Neuron
We study the problem of learning a single neuron under standard squared loss in the presence of arbitrary label noise and group-level distributional shifts, for a broad family of covariate distributions. Our goal is to identify a ''best-fit'' neuron parameterized by $\mathbf{w}_*$ that performs well under the most challenging reweighting of the groups. Specifically, we address a Group Distributionally Robust Optimization problem: given sample access to $K$ distinct distributions $\mathcal p_{[1]},\dots,\mathcal p_{[K]}$, we seek to approximate $\mathbf{w}_*$ that minimizes the worst-case objective over convex combinations of group distributions $\boldsymbolλ \in Δ_K$, where the objective is $\sum_{i \in [K]}λ_{[i]}\,\mathbb E_{(\mathbf x,y)\sim\mathcal p_{[i]}}(σ(\mathbf w\cdot\mathbf x)-y)^2 - νd_f(\boldsymbolλ,\frac{1}{K}\mathbf1)$ and $d_f$ is an $f$-divergence that imposes (optional) penalty on deviations from uniform group weights, scaled by a parameter $ν\geq 0$. We develop a computationally efficient primal-dual algorithm that outputs a vector $\widehat{\mathbf w}$ that is constant-factor competitive with $\mathbf{w}_*$ under the worst-case group weighting. Our analytical framework directly confronts the inherent nonconvexity of the loss function, providing robust learning guarantees in the face of arbitrary label corruptions and group-specific distributional shifts. The implementation of the dual extrapolation update motivated by our algorithmic framework shows promise on LLM pre-training benchmarks.
Demystifying Data-Driven Probabilistic Medium-Range Weather Forecasting
The recent revolution in data-driven methods for weather forecasting has lead to a fragmented landscape of complex, bespoke architectures and training strategies, obscuring the fundamental drivers of forecast accuracy. Here, we demonstrate that state-of-the-art probabilistic skill requires neither intricate architectural constraints nor specialized training heuristics. We introduce a scalable framework for learning multi-scale atmospheric dynamics by combining a directly downsampled latent space with a history-conditioned local projector that resolves high-resolution physics. We find that our framework design is robust to the choice of probabilistic estimator, seamlessly supporting stochastic interpolants, diffusion models, and CRPS-based ensemble training. Validated against the Integrated Forecasting System and the deep learning probabilistic model GenCast, our framework achieves statistically significant improvements on most of the variables. These results suggest scaling a general-purpose model is sufficient for state-of-the-art medium-range prediction, eliminating the need for tailored training recipes and proving effective across the full spectrum of probabilistic frameworks.
AttenMIA: LLM Membership Inference Attack through Attention Signals
Large Language Models (LLMs) are increasingly deployed to enable or improve a multitude of real-world applications. Given the large size of their training data sets, their tendency to memorize training data raises serious privacy and intellectual property concerns. A key threat is the membership inference attack (MIA), which aims to determine whether a given sample was included in the model's training set. Existing MIAs for LLMs rely primarily on output confidence scores or embedding-based features, but these signals are often brittle, leading to limited attack success. We introduce AttenMIA, a new MIA framework that exploits self-attention patterns inside the transformer model to infer membership. Attention controls the information flow within the transformer, exposing different patterns for memorization that can be used to identify members of the dataset. Our method uses information from attention heads across layers and combines them with perturbation-based divergence metrics to train an effective MIA classifier. Using extensive experiments on open-source models including LLaMA-2, Pythia, and Opt models, we show that attention-based features consistently outperform baselines, particularly under the important low-false-positive metric (e.g., achieving up to 0.996 ROC AUC & 87.9% TPR@1%FPR on the WikiMIA-32 benchmark with Llama2-13b). We show that attention signals generalize across datasets and architectures, and provide a layer- and head-level analysis of where membership leakage is most pronounced. We also show that using AttenMIA to replace other membership inference attacks in a data extraction framework results in training data extraction attacks that outperform the state of the art. Our findings reveal that attention mechanisms, originally introduced to enhance interpretability, can inadvertently amplify privacy risks in LLMs, underscoring the need for new defenses.
Beyond Static Datasets: Robust Offline Policy Optimization via Vetted Synthetic Transitions
Offline Reinforcement Learning (ORL) holds immense promise for safety-critical domains like industrial robotics, where real-time environmental interaction is often prohibitive. A primary obstacle in ORL remains the distributional shift between the static dataset and the learned policy, which typically mandates high degrees of conservatism that can restrain potential policy improvements. We present MoReBRAC, a model-based framework that addresses this limitation through Uncertainty-Aware latent synthesis. Instead of relying solely on the fixed data, MoReBRAC utilizes a dual-recurrent world model to synthesize high-fidelity transitions that augment the training manifold. To ensure the reliability of this synthetic data, we implement a hierarchical uncertainty pipeline integrating Variational Autoencoder (VAE) manifold detection, model sensitivity analysis, and Monte Carlo (MC) dropout. This multi-layered filtering process guarantees that only transitions residing within high-confidence regions of the learned dynamics are utilized. Our results on D4RL Gym-MuJoCo benchmarks reveal significant performance gains, particularly in ``random'' and ``suboptimal'' data regimes. We further provide insights into the role of the VAE as a geometric anchor and discuss the distributional trade-offs encountered when learning from near-optimal datasets.
comment: 11 pages, 2 figures, 2 tables
From LLMs to LRMs: Rethinking Pruning for Reasoning-Centric Models
Large language models (LLMs) are increasingly costly to deploy, motivating extensive research on model pruning. However, most existing studies focus on instruction-following LLMs, leaving it unclear whether established pruning strategies transfer to reasoning-augmented models that explicitly generate long intermediate reasoning traces. In this work, we conduct a controlled study of pruning for both instruction-following ($\textbf{LLM-instruct}$) and reasoning-augmented ($\textbf{LLM-think}$) models. To isolate the effects of pruning, we align pruning calibration and post-pruning recovery data with each model's original training distribution, which we show yields more stable and reliable pruning behavior. We evaluate static depth pruning, static width pruning, and dynamic pruning across 17 tasks spanning classification, generation, and reasoning. Our results reveal clear paradigm-dependent differences: depth pruning outperforms width pruning on classification tasks, while width pruning is more robust for generation and reasoning. Moreover, static pruning better preserves reasoning performance, whereas dynamic pruning excels on classification and generation but remains challenging for long-chain reasoning. These findings underscore the need for pruning strategies that explicitly account for the distinct characteristics of reasoning-augmented LLMs. Our code is publicly available at https://github.com/EIT-NLP/LRM-Pruning.
comment: 18 pages, 7 figures
LatentMoE: Toward Optimal Accuracy per FLOP and Parameter in Mixture of Experts
Mixture of Experts (MoEs) have become a central component of many state-of-the-art open-source and proprietary large language models. Despite their widespread adoption, it remains unclear how close existing MoE architectures are to optimal with respect to inference cost, as measured by accuracy per floating-point operation and per parameter. In this work, we revisit MoE design from a hardware-software co-design perspective, grounded in empirical and theoretical considerations. We characterize key performance bottlenecks across diverse deployment regimes, spanning offline high-throughput execution and online, latency-critical inference. Guided by these insights, we introduce LatentMoE, a new model architecture resulting from systematic design exploration and optimized for maximal accuracy per unit of compute. Empirical design space exploration at scales of up to 95B parameters and over a 1T-token training horizon, together with supporting theoretical analysis, shows that LatentMoE consistently outperforms standard MoE architectures in terms of accuracy per FLOP and per parameter. Given its strong performance, the LatentMoE architecture has been adopted by the flagship Nemotron-3 Super and Ultra models and scaled to substantially larger regimes, including longer token horizons and larger model sizes, as reported in Nvidia et al. (arXiv:2512.20856).
DRPG (Decompose, Retrieve, Plan, Generate): An Agentic Framework for Academic Rebuttal
Despite the growing adoption of large language models (LLMs) in scientific research workflows, automated support for academic rebuttal, a crucial step in academic communication and peer review, remains largely underexplored. Existing approaches typically rely on off-the-shelf LLMs or simple pipelines, which struggle with long-context understanding and often fail to produce targeted and persuasive responses. In this paper, we propose DRPG, an agentic framework for automatic academic rebuttal generation that operates through four steps: Decompose reviews into atomic concerns, Retrieve relevant evidence from the paper, Plan rebuttal strategies, and Generate responses accordingly. Notably, the Planner in DRPG reaches over 98% accuracy in identifying the most feasible rebuttal direction. Experiments on data from top-tier conferences demonstrate that DRPG significantly outperforms existing rebuttal pipelines and achieves performance beyond the average human level using only an 8B model. Our analysis further demonstrates the effectiveness of the planner design and its value in providing multi-perspective and explainable suggestions. We also showed that DRPG works well in a more complex multi-round setting. These results highlight the effectiveness of DRPG and its potential to provide high-quality rebuttal content and support the scaling of academic discussions. Codes for this work are available at https://github.com/ulab-uiuc/DRPG-RebuttalAgent.
Use of operator defect identities in multi-channel signal plus residual-analysis via iterated products and telescoping energy-residuals: Applications to kernels in machine learning
We present a new operator theoretic framework for analysis of complex systems with intrinsic subdivisions into components, taking the form of "residuals" in general, and "telescoping energy residuals" in particular. We prove new results which yield admissibility/effectiveness, and new a priori bounds on energy residuals. Applications include infinite-dimensional Kaczmarz theory for $λ_{n}$-relaxed variants, and $λ_{n}$-effectiveness. And we give applications of our framework to generalized machine learning algorithms, greedy Kernel Principal Component Analysis (KPCA), proving explicit convergence results, residual energy decomposition, and criteria for stability under noise.
comment: 30 pages
Comparison requires valid measurement: Rethinking attack success rate comparisons in AI red teaming
We argue that conclusions drawn about relative system safety or attack method efficacy via AI red teaming are often not supported by evidence provided by attack success rate (ASR) comparisons. We show, through conceptual, theoretical, and empirical contributions, that many conclusions are founded on apples-to-oranges comparisons or low-validity measurements. Our arguments are grounded in asking a simple question: When can attack success rates be meaningfully compared? To answer this question, we draw on ideas from social science measurement theory and inferential statistics, which, taken together, provide a conceptual grounding for understanding when numerical values obtained through the quantification of system attributes can be meaningfully compared. Through this lens, we articulate conditions under which ASRs can and cannot be meaningfully compared. Using jailbreaking as a running example, we provide examples and extensive discussion of apples-to-oranges ASR comparisons and measurement validity challenges.
XGuardian: Towards Explainable and Generalized AI Anti-Cheat on FPS Games
Aim-assist cheats are the most prevalent and infamous form of cheating in First-Person Shooter (FPS) games, which help cheaters illegally reveal the opponent's location and auto-aim and shoot, and thereby pose significant threats to the game industry. Although a considerable research effort has been made to automatically detect aim-assist cheats, existing works suffer from unreliable frameworks, limited generalizability, high overhead, low detection performance, and a lack of explainability of detection results. In this paper, we propose XGuardian, a server-side generalized and explainable system for detecting aim-assist cheats to overcome these limitations. It requires only two raw data inputs, pitch and yaw, which are all FPS games' must-haves, to construct novel temporal features and describe aim trajectories, which are essential for distinguishing cheaters and normal players. XGuardian is evaluated with the latest mainstream FPS game CS2, and validates its generalizability with another two different games. It achieves high detection performance and low overhead compared to prior works across different games with real-world and large-scale datasets, demonstrating wide generalizability and high effectiveness. It is able to justify its predictions and thereby shorten the ban cycle. We make XGuardian as well as our datasets publicly available.
comment: Accepted by USENIX Security 2026
Resonant Sparse Geometry Networks
We introduce Resonant Sparse Geometry Networks (RSGN), a brain-inspired architecture with self-organizing sparse hierarchical input-dependent connectivity. Unlike Transformer architectures that employ dense attention mechanisms with O(n^2) computational complexity, RSGN embeds computational nodes in learned hyperbolic space where connection strength decays with geodesic distance, achieving dynamic sparsity that adapts to each input. The architecture operates on two distinct timescales: fast differentiable activation propagation optimized through gradient descent, and slow Hebbian-inspired structural learning for connectivity adaptation through local correlation rules. We provide rigorous mathematical analysis demonstrating that RSGN achieves O(n*k) computational complexity, where k << n represents the average active neighborhood size. Experimental evaluation on hierarchical classification and long-range dependency tasks demonstrates that RSGN achieves 96.5% accuracy on long-range dependency tasks while using approximately 15x fewer parameters than standard Transformers. On challenging hierarchical classification with 20 classes, RSGN achieves 23.8% accuracy (compared to 5% random baseline) with only 41,672 parameters, nearly 10x fewer than the Transformer baselines which require 403,348 parameters to achieve 30.1% accuracy. Our ablation studies confirm the contribution of each architectural component, with Hebbian learning providing consistent improvements. These results suggest that brain-inspired principles of sparse, geometrically-organized computation offer a promising direction toward more efficient and biologically plausible neural architectures.
Addressing LLM Diversity by Infusing Random Concepts
Large language models (LLMs) are known to produce outputs with limited diversity. In this work, we study whether infusing random concepts in the prompts can improve the diversity of the generated outputs. To benchmark the approach, we design a systematic evaluation protocol which involves prompting an LLM with questions of the form "Name 10 Hollywood actors", and analyzing diversity measures of the resulting LLM outputs. Our experiments on multiple LLMs show that prepending random words/sentences unrelated to the prompt result in greater diversity in the outputs of LLMs. We believe that this promising result and the evaluation protocol opens up interesting avenues for future work, such as how infusing randomness into LLMs could be applied to other domains. Further, the evaluation protocol could also inspire research into benchmarking LLM diversity more systematically.
Laser interferometry as a robust neuromorphic platform for machine learning
We present a method for implementing an optical neural network using only linear optical resources, namely field displacement and interferometry applied to coherent states of light. The nonlinearity required for learning in a neural network is realized via an encoding of the input into phase shifts allowing for far more straightforward experimental implementation compared to previous proposals for, and demonstrations of, $\textit{in situ}$ inference. Beyond $\textit{in situ}$ inference, the method enables $\textit{in situ}$ training by utilizing established techniques like parameter shift rules or physical backpropagation to extract gradients directly from measurements of the linear optical circuit. We also investigate the effect of photon losses and find the model to be very resilient to these.
HEATACO: Heatmap-Guided Ant Colony Decoding for Large-Scale Travelling Salesman Problems
Heatmap-based non-autoregressive solvers for large-scale Travelling Salesman Problems output dense edge-probability scores, yet final performance largely hinges on the decoder that must satisfy degree-2 constraints and form a single Hamiltonian tour. Greedy commitment can cascade into irreparable mistakes at large $N$, whereas MCTS-guided local search is accurate but compute-heavy and highly engineered. We instead treat the heatmap as a soft edge prior and cast decoding as probabilistic tour construction under feasibility constraints, where the key is to correct local mis-rankings via inexpensive global coordination. Based on this view, we introduce HeatACO, a plug-and-play Max-Min Ant System decoder whose transition policy is softly biased by the heatmap while pheromone updates provide lightweight, instance-specific feedback to resolve global conflicts; optional 2-opt/3-opt post-processing further improves tour quality. On TSP500/1K/10K, using heatmaps produced by four pretrained predictors, HeatACO+2opt achieves gaps down to 0.11%/0.23%/1.15% with seconds-to-minutes CPU decoding for fixed heatmaps, offering a better quality--time trade-off than greedy decoding and published MCTS-based decoders. Finally, we find the gains track heatmap reliability: under distribution shift, miscalibration and confidence collapse bound decoding improvements, suggesting heatmap generalisation is a primary lever for further progress.
OATS: Online Data Augmentation for Time Series Foundation Models
Time Series Foundation Models (TSFMs) are a powerful paradigm for time series analysis and are often enhanced by synthetic data augmentation to improve the training data quality. Existing augmentation methods, however, typically rely on heuristics and static paradigms. Motivated by dynamic data optimization, which shows that the contribution of samples varies across training stages, we propose OATS (Online Data Augmentation for Time Series Foundation Models), a principled strategy that generates synthetic data tailored to different training steps. OATS leverages valuable training samples as principled guiding signals and dynamically generates high-quality synthetic data conditioned on them. We further design a diffusion-based framework to produce realistic time series and introduce an explore-exploit mechanism to balance efficiency and effectiveness. Experiments on TSFMs demonstrate that OATS consistently outperforms regular training and yields substantial performance gains over static data augmentation baselines across six validation datasets and two TSFM architectures. The code is available at the link https://github.com/microsoft/TimeCraft.
XIMP: Cross Graph Inter-Message Passing for Molecular Property Prediction
Accurate molecular property prediction is central to drug discovery, yet graph neural networks often underperform in data-scarce regimes and fail to surpass traditional fingerprints. We introduce cross-graph inter-message passing (XIMP), which performs message passing both within and across multiple related graph representations. For small molecules, we combine the molecular graph with scaffold-aware junction trees and pharmacophore-encoding extended reduced graphs, integrating complementary abstractions. While prior work is either limited to a single abstraction or non-iterative communication across graphs, XIMP supports an arbitrary number of abstractions and both direct and indirect communication between them in each layer. Across ten diverse molecular property prediction tasks, XIMP outperforms state-of-the-art baselines in most cases, leveraging interpretable abstractions as an inductive bias that guides learning toward established chemical concepts, enhancing generalization in low-data settings.
Unravelling the (In)compatibility of Statistical-Parity and Equalized-Odds
A key challenge in employing data, algorithms and data-driven systems is to adhere to the principle of fairness and justice. Statistical fairness measures belong to an important category of technical/formal mechanisms for detecting fairness issues in data and algorithms. In this contribution we study the relations between two types of statistical fairness measures namely Statistical-Parity and Equalized-Odds. The Statistical-Parity measure does not rely on having ground truth, i.e., (objectively) labeled target attributes. This makes Statistical-Parity a suitable measure in practice for assessing fairness in data and data classification algorithms. Therefore, Statistical-Parity is adopted in many legal and professional frameworks for assessing algorithmic fairness. The Equalized-Odds measure, on the contrary, relies on having (reliable) ground-truth, which is not always feasible in practice. Nevertheless, there are several situations where the Equalized-Odds definition should be satisfied to enforce false prediction parity among sensitive social groups. We present a novel analyze of the relation between Statistical-Parity and Equalized-Odds, depending on the base-rates of sensitive groups. The analysis intuitively shows how and when base-rate imbalance causes incompatibility between Statistical-Parity and Equalized-Odds measures. As such, our approach provides insight in (how to make design) trade-offs between these measures in practice. Further, based on our results, we plea for examining base-rate (im)balance and investigating the possibility of such an incompatibility before enforcing or relying on the Statistical-Parity criterion. The insights provided, we foresee, may trigger initiatives to improve or adjust the current practice and/or the existing legal frameworks.
A Unifying View of Coverage in Linear Off-Policy Evaluation ICLR 2026
Off-policy evaluation (OPE) is a fundamental task in reinforcement learning (RL). In the classic setting of linear OPE, finite-sample guarantees often take the form $$ \textrm{Evaluation error} \le \textrm{poly}(C^π, d, 1/n,\log(1/δ)), $$ where $d$ is the dimension of the features and $C^π$ is a coverage parameter that characterizes the degree to which the visited features lie in the span of the data distribution. While such guarantees are well-understood for several popular algorithms under stronger assumptions (e.g. Bellman completeness), the understanding is lacking and fragmented in the minimal setting where only the target value function is linearly realizable in the features. Despite recent interest in tight characterizations of the statistical rate in this setting, the right notion of coverage remains unclear, and candidate definitions from prior analyses have undesirable properties and are starkly disconnected from more standard definitions in the literature. We provide a novel finite-sample analysis of a canonical algorithm for this setting, LSTDQ. Inspired by an instrumental-variable view, we develop error bounds that depend on a novel coverage parameter, the feature-dynamics coverage, which can be interpreted as linear coverage in an induced dynamical system for feature evolution. With further assumptions -- such as Bellman-completeness -- our definition successfully recovers the coverage parameters specialized to those settings, finally yielding a unified understanding for coverage in linear OPE.
comment: To appear at ICLR 2026
Is Finer Better? The Limits of Microscaling Formats in Large Language Models ICLR 2026
Microscaling data formats leverage per-block tensor quantization to enable aggressive model compression with limited loss in accuracy. Unlocking their potential for efficient training and inference necessitates hardware-friendly implementations that handle matrix multiplications in a native format and adopt efficient error-mitigation strategies. Herein, we report the emergence of a surprising behavior associated with microscaling quantization, whereas the output of a quantized model degrades as block size is decreased below a given threshold. This behavior clashes with the expectation that a smaller block size should allow for a better representation of the tensor elements. We investigate this phenomenon both experimentally and theoretically, decoupling the sources of quantization error behind it. Experimentally, we analyze the distributions of several Large Language Models and identify the conditions driving the anomalous behavior. Theoretically, we lay down a framework showing remarkable agreement with experimental data from pretrained model distributions and ideal ones. Overall, we show that the anomaly is driven by the interplay between narrow tensor distributions and the limited dynamic range of the quantized scales. Based on these insights, we propose the use of FP8 unsigned E5M3 (UE5M3) as a novel hardware-friendly format for the scales in FP4 microscaling data types. We demonstrate that UE5M3 achieves comparable performance to the conventional FP8 unsigned E4M3 scales while obviating the need of global scaling operations on weights and activations.
comment: 31 pages, 17 figures, 3 tables; accepted to ICLR 2026
EVEREST: An Evidential, Tail-Aware Transformer for Rare-Event Time-Series Forecasting
Forecasting rare events in multivariate time-series data is challenging due to severe class imbalance, long-range dependencies, and distributional uncertainty. We introduce EVEREST, a transformer-based architecture for probabilistic rare-event forecasting that delivers calibrated predictions and tail-aware risk estimation, with auxiliary interpretability via attention-based signal attribution. EVEREST integrates four components: (i) a learnable attention bottleneck for soft aggregation of temporal dynamics; (ii) an evidential head for estimating aleatoric and epistemic uncertainty via a Normal--Inverse--Gamma distribution; (iii) an extreme-value head that models tail risk using a Generalized Pareto Distribution; and (iv) a lightweight precursor head for early-event detection. These modules are jointly optimized with a composite loss (focal loss, evidential NLL, and a tail-sensitive EVT penalty) and act only at training time; deployment uses a single classification head with no inference overhead (approximately 0.81M parameters). On a decade of space-weather data, EVEREST achieves state-of-the-art True Skill Statistic (TSS) of 0.973/0.970/0.966 at 24/48/72-hour horizons for C-class flares. The model is compact, efficient to train on commodity hardware, and applicable to high-stakes domains such as industrial monitoring, weather, and satellite diagnostics. Limitations include reliance on fixed-length inputs and exclusion of image-based modalities, motivating future extensions to streaming and multimodal forecasting.
Smooth embeddings in contracting recurrent networks driven by regular dynamics: A synthesis for neural representation
Recurrent neural networks trained for time-series prediction often develop latent trajectories that preserve qualitative structure of the dynamical systems generating their inputs. Recent empirical work has documented topology-preserving latent organization in trained recurrent models, and recent theoretical results in reservoir computing establish conditions under which the synchronization map is an embedding. Here we synthesize these threads into a unified account of when contracting recurrent networks yield smooth, topology-preserving internal representations for a broad and biologically relevant class of inputs: regular dynamics on invariant circles and tori. Our contribution is an integrated framework that assembles (i) generalized synchronization and embedding guarantees for contracting reservoirs, (ii) regularity mechanisms ensuring differentiability of the synchronization map under mild constraints, and (iii) a base-system viewpoint in which the invariant manifold generating the input stream is treated as the driving system. In this regular setting, the conditions commonly viewed as restrictive in chaotic-attractor analyses become mild and readily satisfied by standard contractive architectures. The framework clarifies how representational content in recurrent circuits is inherently historical: the network state encodes finite windows of input history rather than instantaneous stimuli. By consolidating disparate empirical and theoretical results under common assumptions, the synthesis yields concrete, testable expectations about when prediction-trained recurrent circuits should (or should not) form smooth latent embeddings and how required state dimension scales with the intrinsic dimension of the driving dynamics.
comment: 27 pages, 1 figure, 2 tables
A Framework for Evaluating Faithfulness in Explainable AI for Machine Anomalous Sound Detection Using Frequency-Band Perturbation
Explainable AI (XAI) is commonly applied to anomalous sound detection (ASD) models to identify which time-frequency regions of an audio signal contribute to an anomaly decision. However, most audio explanations rely on qualitative inspection of saliency maps, leaving open the question of whether these attributions accurately reflect the spectral cues the model uses. In this work, we introduce a new quantitative framework for evaluating XAI faithfulness in machine-sound analysis by directly linking attribution relevance to model behaviour through systematic frequency-band removal. This approach provides an objective measure of whether an XAI method for machine ASD correctly identifies frequency regions that influence an ASD model's predictions. By using four widely adopted methods, namely Integrated Gradients, Occlusion, Grad-CAM and SmoothGrad, we show that XAI techniques differ in reliability, with Occlusion demonstrating the strongest alignment with true model sensitivity and gradient-+based methods often failing to accurately capture spectral dependencies. The proposed framework offers a reproducible way to benchmark audio explanations and enables more trustworthy interpretation of spectrogram-based ASD systems.
comment: 16 pages, 24 figures
Accelerated training of Gaussian processes using banded square exponential covariances
We propose a novel approach to computationally efficient GP training based on the observation that square-exponential (SE) covariance matrices contain several off-diagonal entries extremely close to zero. We construct a principled procedure to eliminate those entries to produce a \emph{banded}-matrix approximation to the original covariance, whose inverse and determinant can be computed at a reduced computational cost, thus contributing to an efficient approximation to the likelihood function. We provide a theoretical analysis of the proposed method to preserve the structure of the original covariance in the 1D setting with SE kernel, and validate its computational efficiency against the variational free energy approach to sparse GPs.
comment: Accepted at IEEE ICASSP 2026
Recommending Composite Items Using Multi-Level Preference Information: A Joint Interaction Modeling Approach
With the advancement of machine learning and artificial intelligence technologies, recommender systems have been increasingly used across a vast variety of platforms to efficiently and effectively match users with items. As application contexts become more diverse and complex, there is a growing need for more sophisticated recommendation techniques. One example is the composite item (for example, fashion outfit) recommendation where multiple levels of user preference information might be available and relevant. In this study, we propose JIMA, a joint interaction modeling approach that uses a single model to take advantage of all data from different levels of granularity and incorporate interactions to learn the complex relationships among lower-order (atomic item) and higher-order (composite item) user preferences as well as domain expertise (e.g., on the stylistic fit). We comprehensively evaluate the proposed method and compare it with advanced baselines through multiple simulation studies as well as with real data in both offline and online settings. The results consistently demonstrate the superior performance of the proposed approach.
FROST: Filtering Reasoning Outliers with Attention for Efficient Reasoning
We propose FROST, an attention-aware method for efficient reasoning. Unlike traditional approaches, FROST leverages attention weights to prune uncritical reasoning paths, yielding shorter and more reliable reasoning trajectories. Methodologically, we introduce the concept of reasoning outliers and design an attention-based mechanism to remove them. Theoretically, FROST preserves and enhances the model's reasoning capacity while eliminating outliers at the sentence level. Empirically, we validate FROST on four benchmarks using two strong reasoning models (Phi-4-Reasoning and GPT-OSS-20B), outperforming state-of-the-art methods such as TALE and ThinkLess. Notably, FROST achieves an average 69.68% reduction in token usage and a 26.70% improvement in accuracy over the base model. Furthermore, in evaluations of attention outlier metrics, FROST reduces the maximum infinity norm by 15.97% and the average kurtosis by 91.09% compared to the base model. Code is available at https://github.com/robinzixuan/FROST
Randomization Boosts KV Caching, Learning Balances Query Load: A Joint Perspective ICLR 2026
KV caching is a fundamental technique for accelerating Large Language Model (LLM) inference by reusing key-value (KV) pairs from previous queries, but its effectiveness under limited memory is highly sensitive to the eviction policy. The default Least Recently Used (LRU) eviction algorithm struggles with dynamic online query arrivals, especially in multi-LLM serving scenarios, where balancing query load across workers and maximizing cache hit rate of each worker are inherently conflicting objectives. We give the first unified mathematical model that captures the core trade-offs between KV cache eviction and query routing. Our analysis reveals the theoretical limitations of existing methods and leads to principled algorithms that integrate provably competitive randomized KV cache eviction with learning-based methods to adaptively route queries with evolving patterns, thus balancing query load and cache hit rate. Our theoretical results are validated by extensive experiments across 4 benchmarks and 3 prefix-sharing settings, demonstrating improvements of up to 6.92$\times$ in cache hit rate, 11.96$\times$ reduction in latency, 14.06$\times$ reduction in time-to-first-token (TTFT), and 77.4% increase in throughput over the state-of-the-art methods. Our code is available at https://github.com/fzwark/KVRouting.
comment: ICLR 2026
Anatomically-aware conformal prediction for medical image segmentation with random walks
The reliable deployment of deep learning in medical imaging requires uncertainty quantification that provides rigorous error guarantees while remaining anatomically meaningful. Conformal prediction (CP) is a powerful distribution-free framework for constructing statistically valid prediction intervals. However, standard applications in segmentation often ignore anatomical context, resulting in fragmented, spatially incoherent, and over-segmented prediction sets that limit clinical utility. To bridge this gap, this paper proposes Random-Walk Conformal Prediction (RW-CP), a model-agnostic framework which can be added on top of any segmentation method. RW-CP enforces spatial coherence to generate anatomically valid sets. Our method constructs a k-nearest neighbour graph from pre-trained vision foundation model features and applies a random walk to diffuse uncertainty. The random walk diffusion regularizes the non-conformity scores, making the prediction sets less sensitive to the conformal calibration parameter $λ$, ensuring more stable and continuous anatomical boundaries. RW-CP maintains rigorous marginal coverage while significantly improving segmentation quality. Evaluations on multi-modal public datasets show improvements of up to $35.4\%$ compared to standard CP baselines, given an allowable error rate of $α=0.1$.
comment: 13 pages
Save the Good Prefix: Precise Error Penalization via Process-Supervised RL to Enhance LLM Reasoning
Reinforcement learning (RL) has emerged as a powerful framework for improving the reasoning capabilities of large language models (LLMs). However, most existing RL approaches rely on sparse outcome rewards, which fail to credit correct intermediate steps in partially successful solutions. Process reward models (PRMs) offer fine-grained step-level supervision, but their scores are often noisy and difficult to evaluate. As a result, recent PRM benchmarks focus on a more objective capability: detecting the first incorrect step in a reasoning path. However, this evaluation target is misaligned with how PRMs are typically used in RL, where their step-wise scores are treated as raw rewards to maximize. To bridge this gap, we propose Verifiable Prefix Policy Optimization (VPPO), which uses PRMs only to localize the first error during RL. Given an incorrect rollout, VPPO partitions the trajectory into a verified correct prefix and an erroneous suffix based on the first error, rewarding the former while applying targeted penalties only after the detected mistake. This design yields stable, interpretable learning signals and improves credit assignment. Across multiple reasoning benchmarks, VPPO consistently outperforms sparse-reward RL and prior PRM-guided baselines on both Pass@1 and Pass@K.
Attention-Enhanced Graph Filtering for False Data Injection Attack Detection and Localization
The increasing deployment of Internet-of-Things (IoT)-enabled measurement devices in modern power systems has expanded the cyberattack surface of the grid. As a result, this critical infrastructure is increasingly exposed to cyberattacks, including false data injection attacks (FDIAs) that compromise measurement integrity and threaten reliable system operation. Existing FDIA detection methods primarily exploit spatial correlations and network topology using graph-based learning; however, these approaches often rely on high-dimensional representations and shallow classifiers, limiting their ability to capture local structural dependencies and global contextual relationships. Moreover, naively incorporating Transformer architectures can result in overly deep models that struggle to model localized grid dynamics. This paper proposes a joint FDIA detection and localization framework that integrates auto-regressive moving average (ARMA) graph convolutional filters with an Encoder-Only Transformer architecture. The ARMA-based graph filters provide robust, topology-aware feature extraction and adaptability to abrupt spectral changes, while the Transformer encoder leverages self-attention to capture long-range dependencies among grid elements without sacrificing essential local context. The proposed method is evaluated using real-world load data from the New York Independent System Operator (NYISO) applied to the IEEE 14- and 300-bus systems. Numerical results demonstrate that the proposed model effectively exploits both the state and topology of the power grid, achieving high accuracy in detecting FDIA events and localizing compromised nodes.
When Does Adaptation Win? Scaling Laws for Meta-Learning in Quantum Control
Quantum hardware suffers from intrinsic device heterogeneity and environmental drift, forcing practitioners to choose between suboptimal non-adaptive controllers or costly per-device recalibration. We derive a scaling law lower bound for meta-learning showing that the adaptation gain (expected fidelity improvement from task-specific gradient steps) saturates exponentially with gradient steps and scales linearly with task variance, providing a quantitative criterion for when adaptation justifies its overhead. Validation on quantum gate calibration shows negligible benefits for low-variance tasks but $>40\%$ fidelity gains on two-qubit gates under extreme out-of-distribution conditions (10$\times$ the training noise), with implications for reducing per-device calibration time on cloud quantum processors. Further validation on classical linear-quadratic control confirms these laws emerge from general optimization geometry rather than quantum-specific physics. Together, these results offer a transferable framework for decision-making in adaptive control.
comment: 28 pages, 11 figures
Towards Self-Optimizing Electron Microscope: Robust Tuning of Aberration Coefficients via Physics-Aware Multi-Objective Bayesian Optimization
Realizing high-throughput aberration-corrected Scanning Transmission Electron Microscopy (STEM) exploration of atomic structures requires rapid tuning of multipole probe correctors while compensating for the inevitable drift of the optical column. While automated alignment routines exist, conventional approaches rely on serial, gradient-free searches (e.g., Nelder-Mead) that are sample-inefficient and struggle to correct multiple interacting parameters simultaneously. Conversely, emerging deep learning methods offer speed but often lack the flexibility to adapt to varying sample conditions without extensive retraining. Here, we introduce a Multi-Objective Bayesian Optimization (MOBO) framework for rapid, data-efficient aberration correction. Importantly, this framework does not prescribe a single notion of image quality; instead, it enables user-defined, physically motivated reward formulations (e.g., symmetry-induced objectives) and uses Pareto fronts to expose the resulting trade-offs between competing experimental priorities. By using Gaussian Process regression to model the aberration landscape probabilistically, our workflow actively selects the most informative lens settings to evaluate next, rather than performing an exhaustive blind search. We demonstrate that this active learning loop is more robust than traditional optimization algorithms and effectively tunes focus, astigmatism, and higher-order aberrations. By balancing competing objectives, this approach enables "self-optimizing" microscopy by dynamically sustaining optimal performance during experiments.
Reinforcement Learning for Quantum Technology
Many challenges arising in Quantum Technology can be successfully addressed using a set of machine learning algorithms collectively known as reinforcement learning (RL), based on adaptive decision-making through interaction with the quantum device. After a concise and intuitive introduction to RL aimed at a broad physics readership, we discuss the key ideas and core concepts in reinforcement learning with a particular focus on quantum systems. We then survey recent progress in RL in all relevant areas. We discuss state preparation in few- and many-body quantum systems, the design and optimization of high-fidelity quantum gates, and the automated construction of quantum circuits, including applications to variational quantum eigensolvers and architecture search. We further highlight the interactive capabilities of RL agents, emphasizing recent progress in quantum feedback control and quantum error correction, and briefly discuss quantum reinforcement learning as well as applications to quantum metrology. The review concludes with a discussion of open challenges -- such as scalability, interpretability, and integration with experimental platforms -- and outlines promising directions for future research. Throughout, we highlight experimental implementations that exemplify the increasing role of reinforcement learning in shaping the development of quantum technologies.
comment: review article; comments are welcome!
Vector-Valued Distributional Reinforcement Learning Policy Evaluation: A Hilbert Space Embedding Approach
We propose an (offline) multi-dimensional distributional reinforcement learning framework (KE-DRL) that leverages Hilbert space mappings to estimate the kernel mean embedding of the multi-dimensional value distribution under a proposed target policy. In our setting, the state-action variables are multi-dimensional and continuous. By mapping probability measures into a reproducing kernel Hilbert space via kernel mean embeddings, our method replaces Wasserstein metrics with an integral probability metric. This enables efficient estimation in multi-dimensional state-action spaces and reward settings, where direct computation of Wasserstein distances is computationally challenging. Theoretically, we establish contraction properties of the distributional Bellman operator under our proposed metric involving the Matern family of kernels and provide uniform convergence guarantees. Simulations and empirical results demonstrate robust off-policy evaluation and recovery of the kernel mean embedding under mild assumptions, namely, Lipschitz continuity and boundedness of the kernels, highlighting the potential of embedding-based approaches in complex real-world decision-making scenarios and risk evaluation.
Collaborative Compressors in Distributed Mean Estimation with Limited Communication Budget
Distributed high dimensional mean estimation is a common aggregation routine used often in distributed optimization methods. Most of these applications call for a communication-constrained setting where vectors, whose mean is to be estimated, have to be compressed before sharing. One could independently encode and decode these to achieve compression, but that overlooks the fact that these vectors are often close to each other. To exploit these similarities, recently Suresh et al., 2022, Jhunjhunwala et al., 2021, Jiang et al, 2023, proposed multiple correlation-aware compression schemes. However, in most cases, the correlations have to be known for these schemes to work. Moreover, a theoretical analysis of graceful degradation of these correlation-aware compression schemes with increasing dissimilarity is limited to only the $\ell_2$-error in the literature. In this paper, we propose four different collaborative compression schemes that agnostically exploit the similarities among vectors in a distributed setting. Our schemes are all simple to implement and computationally efficient, while resulting in big savings in communication. The analysis of our proposed schemes show how the $\ell_2$, $\ell_\infty$ and cosine estimation error varies with the degree of similarity among vectors.
Configurable p-Neurons Using Modular p-Bits
Probabilistic bits (p-bits) have recently been employed in neural networks (NNs) as stochastic neurons with sigmoidal probabilistic activation functions. Nonetheless, there remain a wealth of other probabilistic activation functions that are yet to be explored. Here we re-engineer the p-bit by decoupling its stochastic signal path from its input data path, giving rise to a modular p-bit that enables the realization of probabilistic neurons (p-neurons) with a range of configurable probabilistic activation functions, including a probabilistic version of the widely used Logistic Sigmoid, Tanh and Rectified Linear Unit (ReLU) activation functions. We present spintronic (CMOS + sMTJ) designs that show wide and tunable probabilistic ranges of operation. Finally, we experimentally implement digital-CMOS versions on an FPGA, with stochastic unit sharing, and demonstrate an order of magnitude (10x) saving in required hardware resources compared to conventional digital p-bit implementations.
comment: Accepted for presentation at IEEE ISCAS 2026 as a lecture
A Few Bad Neurons: Isolating and Surgically Correcting Sycophancy NeurIPS
Behavioral alignment in large language models (LLMs) is often achieved through broad fine-tuning, which can result in undesired side effects like distributional shift and low interpretability. We propose a method for alignment that identifies and updates only the neurons most responsible for a given behavior, a targeted approach that allows for fine-tuning with significantly less data. Using sparse autoencoders (SAEs) and linear probes, we isolate the 3% of MLP neurons most predictive of a target behavior, decode them into residual space, and fine-tune only those neurons using gradient masking. We demonstrate this approach on the task of reducing sycophantic behavior, where our method matches or exceeds state-of-the-art performance on four benchmarks (Syco-Bench, NLP, POLI, PHIL) using Gemma-2-2B and 9B models. Our results show that sparse, neuron-level updates offer a scalable and precise alternative to full-model fine-tuning, remaining effective even in situations when little data is available
comment: Accepted to NeurIPS Workshop on CogInterp and NeurIPS Workshop on Reliable ML 2025
FSD-CAP: Fractional Subgraph Diffusion with Class-Aware Propagation for Graph Feature Imputation
Imputing missing node features in graphs is challenging, particularly under high missing rates. Existing methods based on latent representations or global diffusion often fail to produce reliable estimates, and may propagate errors across the graph. We propose FSD-CAP, a two-stage framework designed to improve imputation quality under extreme sparsity. In the first stage, a graph-distance-guided subgraph expansion localizes the diffusion process. A fractional diffusion operator adjusts propagation sharpness based on local structure. In the second stage, imputed features are refined using class-aware propagation, which incorporates pseudo-labels and neighborhood entropy to promote consistency. We evaluated FSD-CAP on multiple datasets. With $99.5\%$ of features missing across five benchmark datasets, FSD-CAP achieves average accuracies of $80.06\%$ (structural) and $81.01\%$ (uniform) in node classification, close to the $81.31\%$ achieved by a standard GCN with full features. For link prediction under the same setting, it reaches AUC scores of $91.65\%$ (structural) and $92.41\%$ (uniform), compared to $95.06\%$ for the fully observed case. Furthermore, FSD-CAP demonstrates superior performance on both large-scale and heterophily datasets when compared to other models.
comment: 31 pages, 12 figures
Bi-Level Online Provisioning and Scheduling with Switching Costs and Cross-Level Constraints
We study a bi-level online provisioning and scheduling problem motivated by network resource allocation, where provisioning decisions are made at a slow time scale while queue-/state-dependent scheduling is performed at a fast time scale. We model this two-time-scale interaction using an upper-level online convex optimization (OCO) problem and a lower-level constrained Markov decision process (CMDP). Existing OCO typically assumes stateless decisions and thus cannot capture MDP network dynamics such as queue evolution. Meanwhile, CMDP algorithms typically assume a fixed constraint threshold, whereas in provisioning-and-scheduling systems, the threshold varies with online budget decisions. To address these gaps, we study bi-level OCO-CMDP learning under switching costs (budget reprovisioning/system reconfiguration) and cross-level constraints that couple budgets to scheduling decisions. Our new algorithm solves this learning problem via several non-trivial developments, including a carefully designed dual feedback that returns the budget multiplier as sensitivity information for the upper-level update and a lower level that solves a budget-adaptive safe exploration problem via an extended occupancy-measure linear program. We establish near-optimal regret and high-probability satisfaction of the cross-level constraints.
Advances in Diffusion-Based Generative Compression
Popularized by their strong image generation performance, diffusion and related methods for generative modeling have found widespread success in visual media applications. In particular, diffusion methods have enabled new approaches to data compression, where realistic reconstructions can be generated at extremely low bit-rates. This article provides a unifying review of recent diffusion-based methods for generative lossy compression, with a focus on image compression. These methods generally encode the source into an embedding and employ a diffusion model to iteratively refine it in the decoding procedure, such that the final reconstruction approximately follows the ground truth data distribution. The embedding can take various forms and is typically transmitted via an auxiliary entropy model, and recent methods also explore the use of diffusion models themselves for information transmission via channel simulation. We review representative approaches through the lens of rate-distortion-perception theory, highlighting the role of common randomness and connections to inverse problems, and identify open challenges.
comment: Preprint
Toward Learning POMDPs Beyond Full-Rank Actions and State Observability
We are interested in enabling autonomous agents to learn and reason about systems with hidden states, such as furniture with hidden locking mechanisms. We cast this problem as learning the parameters of a discrete Partially Observable Markov Decision Process (POMDP). The agent begins with knowledge of the POMDP's actions and observation spaces, but not its state space, transitions, or observation models. These properties must be constructed from action-observation sequences. Spectral approaches to learning models of partially observable domains, such as learning Predictive State Representations (PSRs), are known to directly estimate the number of hidden states. These methods cannot, however, yield direct estimates of transition and observation likelihoods, which are important for many downstream reasoning tasks. Other approaches leverage tensor decompositions to estimate transition and observation likelihoods but often assume full state observability and full-rank transition matrices for all actions. To relax these assumptions, we study how PSRs learn transition and observation matrices up to a similarity transform, which may be estimated via tensor methods. Our method learns observation matrices and transition matrices up to a partition of states, where the states in a single partition have the same observation distributions corresponding to actions whose transition matrices are full-rank. Our experiments suggest that these partition-level transition models learned by our method, with a sufficient amount of data, meets the performance of PSRs as models to be used by standard sampling-based POMDP solvers. Furthermore, the explicit observation and transition likelihoods can be leveraged to specify planner behavior after the model has been learned.
Accelerating Large-Scale Cheminformatics Using a Byte-Offset Indexing Architecture for Terabyte-Scale Data Integration
The integration of large-scale chemical databases represents a critical bottleneck in modern cheminformatics research, particularly for machine learning applications requiring high-quality, multi-source validated datasets. This paper presents a case study of integrating three major public chemical repositories: PubChem (176 million compounds), ChEMBL, and eMolecules, to construct a curated dataset for molecular property prediction. We investigate whether byte-offset indexing can practically overcome brute-force scalability limits while preserving data integrity at hundred-million scale. Our results document the progression from an intractable brute-force search algorithm with projected 100-day runtime to a byte-offset indexing architecture achieving 3.2-hour completion-a 740-fold performance improvement through algorithmic complexity reduction from O(NxM) to O(N+M). Systematic validation of 176 million database entries revealed hash collisions in InChIKey molecular identifiers, necessitating pipeline reconstruction using collision-free full InChI strings. We present performance benchmarks, quantify trade-offs between storage overhead and scientific rigor, and compare our approach with alternative large-scale integration strategies. The resulting system successfully extracted 435,413 validated compounds and demonstrates generalizable principles for large-scale scientific data integration where uniqueness constraints exceed hash-based identifier capabilities.
comment: 6 pages, 3 figures, 5 equations, 3 algorithms, 4 tables, to be published in ICoICT 2026, unabridged version exists as arXiv:2512.24643v1
One Global Model, Many Behaviors: Stockout-Aware Feature Engineering and Dynamic Scaling for Multi-Horizon Retail Demand Forecasting with a Cost-Aware Ordering Policy (VN2 Winner Report)
Inventory planning for retail chains requires translating demand forecasts into ordering decisions, including asymmetric shortages and holding costs. The VN2 Inventory Planning Challenge formalizes this setting as a weekly decision-making cycle with a two-week product delivery lead time, where the total cost is defined as the shortage cost plus the holding cost. This report presents the winning VN2 solution: a two-stage predict-then-optimize pipeline that combines a single global multi-horizon forecasting model with a cost-aware ordering policy. The forecasting model is trained in a global paradigm, jointly using all available time series. A gradient-boosted decision tree (GBDT) model implemented in CatBoost is used as the base learner. The model incorporates stockout-aware feature engineering to address censored demand during out-of-stock periods, per-series scaling to focus learning on time-series patterns rather than absolute levels, and time-based observation weights to reflect shifts in demand patterns. In the decision stage, inventory is projected to the start of the delivery week, and a target stock level is calculated that explicitly trades off shortage and holding costs. Evaluated by the official competition simulation in six rounds, the solution achieved first place by combining a strong global forecasting model with a lightweight cost-aware policy. Although developed for the VN2 setting, the proposed approach can be extended to real-world applications and additional operational constraints.
comment: 13 pages, 5 figures. Technical report/winner report for the VN2 Inventory Planning Challenge (2025)
GraIP: A Benchmarking Framework For Neural Graph Inverse Problems
A wide range of graph learning tasks, such as structure discovery, temporal graph analysis, and combinatorial optimization, focus on inferring graph structures from data, rather than making predictions on given graphs. However, the respective methods to solve such problems are often developed in an isolated, task-specific manner and thus lack a unifying theoretical foundation. Here, we provide a stepping stone towards the formation of such a foundation and further development by introducing the Neural Graph Inverse Problem (GraIP) conceptual framework, which formalizes and reframes a broad class of graph learning tasks as inverse problems. Unlike discriminative approaches that directly predict target variables from given graph inputs, the GraIP paradigm addresses inverse problems, i.e., it relies on observational data and aims to recover the underlying graph structure by reversing the forward process, such as message passing or network dynamics, that produced the observed outputs. We demonstrate the versatility of GraIP across various graph learning tasks, including rewiring, causal discovery, and neural relational inference. We also propose benchmark datasets and metrics for each GraIP domain considered, and characterize and empirically evaluate existing baseline methods used to solve them. Overall, our unifying perspective bridges seemingly disparate applications and provides a principled approach to structural learning in constrained and combinatorial settings while encouraging cross-pollination of existing methods across graph inverse problems.
ASEHybrid: When Geometry Matters Beyond Homophily in Graph Neural Networks
Standard message-passing graph neural networks (GNNs) often struggle on graphs with low homophily, yet homophily alone does not explain this behavior, as graphs with similar homophily levels can exhibit markedly different performance and some heterophilous graphs remain easy for vanilla GCNs. Recent work suggests that label informativeness (LI), the mutual information between labels of adjacent nodes, provides a more faithful characterization of when graph structure is useful. In this work, we develop a unified theoretical framework that connects curvature-guided rewiring and positional geometry through the lens of label informativeness, and instantiate it in a practical geometry-aware architecture, ASEHybrid. Our analysis provides a necessary-and-sufficient characterization of when geometry-aware GNNs can improve over feature-only baselines: such gains are possible if and only if graph structure carries label-relevant information beyond node features. Theoretically, we relate adjusted homophily and label informativeness to the spectral behavior of label signals under Laplacian smoothing, show that degree-based Forman curvature does not increase expressivity beyond the one-dimensional Weisfeiler--Lehman test but instead reshapes information flow, and establish convergence and Lipschitz stability guarantees for a curvature-guided rewiring process. Empirically, we instantiate ASEHybrid using Forman curvature and Laplacian positional encodings and conduct controlled ablations on Chameleon, Squirrel, Texas, Tolokers, and Minesweeper, observing gains precisely on label-informative heterophilous benchmarks where graph structure provides label-relevant information beyond node features, and no meaningful improvement in high-baseline regimes.
comment: 16 pages, 1 figure, 2 tables
How Is Uncertainty Propagated in Knowledge Distillation?
Knowledge distillation transfers behavior from a teacher to a student model, but the process is inherently stochastic: teacher outputs, student training, and student inference can all be random. Collapsing these uncertainties to a single point estimate can distort what is learned. We systematically study how uncertainty propagates through knowledge distillation across three representative model classes--linear regression, feed-forward neural networks, and large language models (LLMs)--and propose simple corrections. We distinguish inter-student uncertainty (variance across independently distilled students) from intra-student uncertainty (variance of a single student's predictive distribution), showing that standard single-response knowledge distillation suppresses intra-student variance while leaving substantial inter-student variability. To address these mismatches, we introduce two variance-aware strategies: averaging multiple teacher responses, which reduces noise at rate $O(1/k)$, and variance-weighting, which combines teacher and student estimates via inverse-variance weighting to yield a minimum-variance estimator. We provide formal guarantees in linear regression, validate the methods in neural networks, and demonstrate empirical gains in LLM distillation, including reduced systematic noise and hallucination. These results reframe knowledge distillation as an uncertainty transformation and show that variance-aware distillation produces more stable students that better reflect teacher uncertainty.
Beyond Expected Goals: A Probabilistic Framework for Shot Occurrences in Soccer
Expected goals (xG) models estimate the probability that a shot results in a goal from its context (e.g., location, pressure), but they operate only on observed shots. We propose xG+, a possession-level framework that first estimates the probability that a shot occurs within the next second and its corresponding xG if it were to occur. We also introduce ways to aggregate this joint probability estimate over the course of a possession. By jointly modeling shot-taking behavior and shot quality, xG+ remedies the conditioning-on-shots limitation of standard xG. We show that this improves predictive accuracy at the team level and produces a more persistent player skill signal than standard xG models.
comment: 18pp main + 3pp appendix; 8 figures, 12 tables. Submitted to the Journal of Quantitative Analysis in Sports (JQAS). Data proprietary to Gradient Sports; we share derived features & scripts (code under MIT/Apache-2.0). Preprint licensed CC BY 4.0
Mathematical Foundations of Polyphonic Music Generation via Structural Inductive Bias
This monograph introduces a novel approach to polyphonic music generation by addressing the "Missing Middle" problem through structural inductive bias. Focusing on Beethoven's piano sonatas as a case study, we empirically verify the independence of pitch and hand attributes using normalized mutual information (NMI=0.167) and propose the Smart Embedding architecture, achieving a 48.30% reduction in parameters. We provide rigorous mathematical proofs using information theory (negligible loss bounded at 0.153 bits), Rademacher complexity (28.09% tighter generalization bound), and category theory to demonstrate improved stability and generalization. Empirical results show a 9.47% reduction in validation loss, confirmed by SVD analysis and an expert listening study (N=53). This dual theoretical and applied framework bridges gaps in AI music generation, offering verifiable insights for mathematically grounded deep learning.
comment: Monograph. Code available at https://github.com/Chooseredone/Smart-Embedding-Music-Generation
DeltaDorsal: Enhancing Hand Pose Estimation with Dorsal Features in Egocentric Views
The proliferation of XR devices has made egocentric hand pose estimation a vital task, yet this perspective is inherently challenged by frequent finger occlusions. To address this, we propose a novel approach that leverages the rich information in dorsal hand skin deformation, unlocked by recent advances in dense visual featurizers. We introduce a dual-stream delta encoder that learns pose by contrasting features from a dynamic hand with a baseline relaxed position. Our evaluation demonstrates that, using only cropped dorsal images, our method reduces the Mean Per Joint Angle Error (MPJAE) by 18% in self-occluded scenarios (fingers >= 50% occluded) compared to state-of-the-art techniques that depend on the whole hand's geometry and large model backbones. Consequently, our method not only enhances the reliability of downstream tasks like index finger pinch and tap estimation in occluded scenarios but also unlocks new interaction paradigms, such as detecting isometric force for a surface "click" without visible movement while minimizing model size.
comment: 16 pages, 11 figures, Presented at ACM CHI 2026. For associated codebase, see https://github.com/hilab-open-source/deltadorsal
Consistent Kernel Change-Point Detection under m-Dependence for Text Segmentation
Kernel change-point detection (KCPD) has become a widely used tool for identifying structural changes in complex data. While existing theory establishes consistency under independence assumptions, real-world sequential data such as text exhibits strong dependencies. We establish new guarantees for KCPD under $m$-dependent data: specifically, we prove consistency in the number of detected change points and weak consistency in their locations under mild additional assumptions. We perform an LLM-based simulation that generates synthetic $m$-dependent text to validate the asymptotics. To complement these results, we present the first comprehensive empirical study of KCPD for text segmentation with modern embeddings. Across diverse text datasets, KCPD with text embeddings outperforms baselines in standard text segmentation metrics. We demonstrate through a case study on Taylor Swift's tweets that KCPD not only provides strong theoretical and simulated reliability but also practical effectiveness for text segmentation tasks.
comment: This paper is withdrawn due to an error in the proof of Proposition 3, which is used to support Theorem 1
Brain-Inspired Perspective on Configurations: Unsupervised Similarity and Early Cognition
Infants discover categories, detect novelty, and adapt to new contexts without supervision-a challenge for current machine learning. We present a brain-inspired perspective on configurations, a finite-resolution clustering framework that uses a single resolution parameter and attraction-repulsion dynamics to yield hierarchical organization, novelty sensitivity, and flexible adaptation. To evaluate these properties, we introduce mheatmap, which provides proportional heatmaps and reassignment algorithm to fairly assess multi-resolution and dynamic behavior. Across datasets, configurations are competitive on standard clustering metrics, achieve 87% AUC in novelty detection, and show 35% better stability during dynamic category evolution. These results position configurations as a principled computational model of early cognitive categorization and a step toward brain-inspired AI.
comment: 13 pages, 4 figures, conference paper. Equal contribution: Juntang Wang, Yihan Wang and Hao Wu
DGFusion: Depth-Guided Sensor Fusion for Robust Semantic Perception
Robust semantic perception for autonomous vehicles relies on effectively combining multiple sensors with complementary strengths and weaknesses. State-of-the-art sensor fusion approaches to semantic perception often treat sensor data uniformly across the spatial extent of the input, which hinders performance when faced with challenging conditions. By contrast, we propose a novel depth-guided multimodal fusion method that upgrades condition-aware fusion by integrating depth information. Our network, DGFusion, poses multimodal segmentation as a multi-task problem, utilizing the lidar measurements, which are typically available in outdoor sensor suites, both as one of the model's inputs and as ground truth for learning depth. Our corresponding auxiliary depth head helps to learn depth-aware features, which are encoded into spatially varying local depth tokens that condition our attentive cross-modal fusion. Together with a global condition token, these local depth tokens dynamically adapt sensor fusion to the spatially varying reliability of each sensor across the scene, which largely depends on depth. In addition, we propose a robust loss for our depth, which is essential for learning from lidar inputs that are typically sparse and noisy in adverse conditions. Our method achieves state-of-the-art panoptic and semantic segmentation performance on the challenging MUSES and DeLiVER datasets. Code and models are available at https://github.com/timbroed/DGFusion
comment: Code and models are available at https://github.com/timbroed/DGFusion
RocqStar: Leveraging Similarity-driven Retrieval and Agentic Systems for Rocq generation
Interactive Theorem Proving was repeatedly shown to be fruitful when combined with Generative Artificial Intelligence. This paper assesses multiple approaches to Rocq generation and illuminates potential avenues for improvement. We identify retrieval-based premise selection as a central component of effective Rocq proof generation and propose a novel approach based on a self-attentive embedder model. The evaluation of the designed approach shows up to 28% relative increase of the generator's performance. We tackle the problem of writing Rocq proofs using a multi-stage agentic system, tailored for formal verification, and demonstrate its high effectiveness. We conduct an ablation study and demonstrate that incorporating multi-agent debate during the planning stage increases the proof success rate by 20% overall and nearly doubles it for complex theorems, while the reflection mechanism further enhances stability and consistency.
VoxGuard: Evaluating User and Attribute Privacy in Speech via Membership Inference Attacks
Voice anonymization aims to conceal speaker identity and attributes while preserving intelligibility, but current evaluations rely almost exclusively on Equal Error Rate (EER) that obscures whether adversaries can mount high-precision attacks. We argue that privacy should instead be evaluated in the low false-positive rate (FPR) regime, where even a small number of successful identifications constitutes a meaningful breach. To this end, we introduce VoxGuard, a framework grounded in differential privacy and membership inference that formalizes two complementary notions: User Privacy, preventing speaker re-identification, and Attribute Privacy, protecting sensitive traits such as gender and accent. Across synthetic and real datasets, we find that informed adversaries, especially those using fine-tuned models and max-similarity scoring, achieve orders-of-magnitude stronger attacks at low-FPR despite similar EER. For attributes, we show that simple transparent attacks recover gender and accent with near-perfect accuracy even after anonymization. Our results demonstrate that EER substantially underestimates leakage, highlighting the need for low-FPR evaluation, and recommend VoxGuard as a benchmark for evaluating privacy leakage.
CaTs and DAGs: Integrating Directed Acyclic Graphs with Transformers for Causally Constrained Predictions
Artificial Neural Networks (ANNs), including fully-connected networks and transformers, are highly flexible and powerful function approximators, widely applied in fields like computer vision and natural language processing. However, their inability to inherently respect causal structures can limit their robustness, making them vulnerable to covariate shift and difficult to interpret/explain. This poses significant challenges for their reliability in real-world applications. In this paper, we introduce Causal Transformers (CaTs), a general model class designed to operate under predefined causal constraints, as specified by a Directed Acyclic Graph (DAG). CaTs retain the powerful function approximation abilities of traditional neural networks while adhering to the underlying structural constraints, improving robustness, reliability, and interpretability at inference time. This approach opens new avenues for deploying neural networks in more demanding, real-world scenarios where robustness and explainability is critical.
BAH Dataset for Ambivalence/Hesitancy Recognition in Videos for Digital Behavioural Change ICLR 2026
Ambivalence and hesitancy (A/H), a closely related construct, is the primary reasons why individuals delay, avoid, or abandon health behaviour changes. It is a subtle and conflicting emotion that sets a person in a state between positive and negative orientations, or between acceptance and refusal to do something. It manifests by a discord in affect between multiple modalities or within a modality, such as facial and vocal expressions, and body language. Although experts can be trained to recognize A/H as done for in-person interactions, integrating them into digital health interventions is costly and less effective. Automatic A/H recognition is therefore critical for the personalization and cost-effectiveness of digital behaviour change interventions. However, no datasets currently exists for the design of machine learning models to recognize A/H. This paper introduces the Behavioural Ambivalence/Hesitancy (BAH) dataset collected for multimodal recognition of A/H in videos. It contains 1,427 videos with a total duration of 10.60 hours captured from 300 participants across Canada answering predefined questions to elicit A/H. It is intended to mirror real-world online personalized behaviour change interventions. BAH is annotated by three experts to provide timestamps that indicate where A/H occurs, and frame- and video-level annotations with A/H cues. Video transcripts, cropped and aligned faces, and participants' meta-data are also provided. Since A and H manifest similarly in practice, we provide a binary annotation indicating the presence or absence of A/H. Additionally, this paper includes benchmarking results using baseline models on BAH for frame- and video-level recognition, zero-shot prediction, and personalization using source-free domain adaptation. The data, code, and pretrained weights are available.
comment: 45 pages, 21 figures, ICLR 2026
TensLoRA: Tensor Alternatives for Low-Rank Adaptation
Low-Rank Adaptation (LoRA) is widely used to efficiently adapt Transformers by adding trainable low-rank matrices to attention projections. While effective, these matrices are considered independent for each attention projection (Query, Key, and Value) and each layer. Recent extensions have considered joint, tensor-based adaptations, but only in limited forms and without a systematic framework. We introduce TensLoRA, a unified framework that aggregates LoRA updates into higher-order tensors and models a broad family of tensor-based low-rank adaptations. Our formulation generalizes existing tensor-based methods and enables mode-specific compression rates, allowing parameter budgets to be tailored according to the modality and task. Experiments on vision and language benchmarks reveal that the tensor construction directly impacts performance, sometimes better than standard LoRA under similar parameter counts.
comment: Published at ICASSP 2026. 5 pages, 1 figure, 2 tables. Code can be found at https://github.com/ax-le/TensLoRA
Ordering-based Causal Discovery via Generalized Score Matching
Learning DAG structures from purely observational data remains a long-standing challenge across scientific domains. An emerging line of research leverages the score of the data distribution to initially identify a topological order of the underlying DAG via leaf node detection and subsequently performs edge pruning for graph recovery. This paper extends the score matching framework for causal discovery, which is originally designated for continuous data, and introduces a novel leaf discriminant criterion based on the discrete score function. Through simulated and real-world experiments, we demonstrate that our theory enables accurate inference of true causal orders from observed discrete data and the identified ordering can significantly boost the accuracy of existing causal discovery baselines on nearly all of the settings.
Estimating the Joint Probability of Scenario Parameters with Gaussian Mixture Copula Models
This paper presents the first application of Gaussian Mixture Copula Models to the statistical modeling of driving scenarios for the safety validation of automated driving systems. Knowledge of the joint probability distribution of scenario parameters is essential for scenario-based safety assessment, where risk quantification depends on the likelihood of concrete parameter combinations. Gaussian Mixture Copula Models bring together the multimodal expressivity of Gaussian Mixture Models and the flexibility of copulas, enabling separate modeling of marginal distributions and dependence. We benchmark Gaussian Mixture Copula Models against previously proposed approaches - Gaussian Mixture Models and Gaussian Copula Models - using real-world driving data drawn from two scenarios defined in United Nations Regulation No. 157. Our evaluation on approximately 18 million instances of these two scenarios demonstrates that Gaussian Mixture Copula Models consistently surpass Gaussian Copula Models and perform competitively with Gaussian Mixture Models, as measured by both log-likelihood and Sinkhorn distance, with relative performance depending on the scenario. The results are promising for the adoption of Gaussian Mixture Copula Models as a statistical foundation for future scenario-based validation frameworks.
comment: 9 pages, 4 figures; This work has been submitted to the IEEE for possible publication; Code available at: https://codeocean.com/capsule/1003615/tree
MMedAgent-RL: Optimizing Multi-Agent Collaboration for Multimodal Medical Reasoning ICLR 2026
Medical Large Vision-Language Models (Med-LVLMs) have shown strong potential in multimodal diagnostic tasks. However, existing single-agent models struggle to generalize across diverse medical specialties, limiting their performance. Recent efforts introduce multi-agent collaboration frameworks inspired by clinical workflows, where general practitioners (GPs) and specialists interact in a fixed sequence. Despite improvements, these static pipelines lack flexibility and adaptability in reasoning. To address this, we propose MMedAgent-RL, a reinforcement learning (RL)-based multi-agent framework that enables dynamic, optimized collaboration among medical agents. Specifically, we train two GP agents based on Qwen2.5-VL via RL: the triage doctor learns to assign patients to appropriate specialties, while the attending physician integrates the judgments from multi-specialists and its own knowledge to make final decisions. To address the inconsistency in specialist outputs, we introduce a curriculum learning (CL)-guided RL strategy with dynamic entropy regulation, progressively teaching the attending physician to balance between imitating specialists and correcting their mistakes. Experiments on five medical VQA benchmarks demonstrate that MMedAgent-RL outperforms both open-source and proprietary Med-LVLMs. Notably, it achieves an average performance gain of 23.6% over strong baselines.
comment: ICLR 2026
Bilateral Distribution Compression: Reducing Both Data Size and Dimensionality
Existing distribution compression methods reduce dataset size by minimising the Maximum Mean Discrepancy (MMD) between original and compressed sets, but modern datasets are often large in both sample size and dimensionality. We propose Bilateral Distribution Compression (BDC), a two-stage framework that compresses along both axes while preserving the underlying distribution, with overall linear time and memory complexity in dataset size and dimension. Central to BDC is the Decoded MMD (DMMD), which quantifies the discrepancy between the original data and a compressed set decoded from a low-dimensional latent space. BDC proceeds by (i) learning a low-dimensional projection using the Reconstruction MMD (RMMD), and (ii) optimising a latent compressed set with the Encoded MMD (EMMD). We show that this procedure minimises the DMMD, guaranteeing that the compressed set faithfully represents the original distribution. Experiments show that across a variety of scenarios BDC can achieve comparable or superior performance to ambient-space compression at substantially lower cost.
comment: 45 pages, 26 figures
Exploration vs Exploitation: Rethinking RLVR through Clipping, Entropy, and Spurious Reward ICLR 2026
This paper examines the exploration-exploitation trade-off in reinforcement learning with verifiable rewards (RLVR), a framework for improving the reasoning of Large Language Models (LLMs). Recent studies suggest that RLVR can elicit strong mathematical reasoning in LLMs through two seemingly paradoxical mechanisms: spurious rewards, which suppress exploitation by rewarding outcomes unrelated to the ground truth, and entropy minimization, which suppresses exploration by pushing the model toward more confident and deterministic outputs, highlighting a puzzling dynamic: both discouraging exploitation and discouraging exploration improve reasoning performance, yet the underlying principles that reconcile these effects remain poorly understood. We focus on two fundamental questions: (i) how policy entropy relates to performance, and (ii) whether spurious rewards yield gains, potentially through the interplay of clipping bias and model contamination. Our results show that clipping bias under spurious rewards reduces policy entropy, leading to more confident and deterministic outputs, while entropy minimization alone is insufficient for improvement. We further propose a reward-misalignment model explaining why spurious rewards can enhance performance beyond contaminated settings. Our findings clarify the mechanisms behind spurious-reward benefits and provide principles for more effective RLVR training.
comment: Accepted by ICLR 2026
PF$Δ$: A Benchmark Dataset for Power Flow under Load, Generation, and Topology Variations NeurIPS 2025
Power flow (PF) calculations are the backbone of real-time grid operations, across workflows such as contingency analysis (where repeated PF evaluations assess grid security under outages) and topology optimization (which involves PF-based searches over combinatorially large action spaces). Running these calculations at operational timescales or across large evaluation spaces remains a major computational bottleneck. Additionally, growing uncertainty in power system operations from the integration of renewables and climate-induced extreme weather also calls for tools that can accurately and efficiently simulate a wide range of scenarios and operating conditions. Machine learning methods offer a potential speedup over traditional solvers, but their performance has not been systematically assessed on benchmarks that capture real-world variability. This paper introduces PF$Δ$, a benchmark dataset for power flow that captures diverse variations in load, generation, and topology. PF$Δ$ contains 859,800 solved power flow instances spanning six different bus system sizes, capturing three types of contingency scenarios (N , N -1, and N -2), and including close-to-infeasible cases near steady-state voltage stability limits. We evaluate traditional solvers and GNN-based methods, highlighting key areas where existing approaches struggle, and identifying open problems for future research. Our dataset is available at https://huggingface.co/datasets/pfdelta/pfdelta/tree/main and our code with data generation scripts and model implementations is at https://github.com/MOSSLab-MIT/pfdelta.
comment: 31 pages, 14 figures. Accepted at NeurIPS 2025
Is In-Context Learning Learning? ICLR 2026
In-context learning (ICL) allows some autoregressive models to solve tasks via next-token prediction and without needing further training. This has led to claims about these model's ability to solve (learn) unseen tasks with only a few shots (exemplars) in the prompt. However, deduction does not always imply learning, as ICL does not explicitly encode a given observation. Instead, the models rely on their prior knowledge and the exemplars given, if any. We argue that, mathematically, ICL does constitute learning, but its full characterisation requires empirical work. We then carry out a large-scale analysis of ICL ablating out or accounting for memorisation, pretraining, distributional shifts, and prompting style and phrasing. We find that ICL is an effective learning paradigm, but limited in its ability to learn and generalise to unseen tasks. We note that, in the limit where exemplars become more numerous, accuracy is insensitive to exemplar distribution, model, prompt style, and the input's linguistic features. Instead, it deduces patterns from regularities in the prompt, which leads to distributional sensitivity, especially in prompting styles such as chain-of-thought. Given the varied accuracies on formally similar tasks, we conclude that autoregression's ad-hoc encoding is not a robust mechanism, and suggests limited all-purpose generalisability.
comment: Accepted to ICLR 2026
MiST: Understanding the Role of Mid-Stage Scientific Training in Developing Chemical Reasoning Models
Large Language Models can develop reasoning capabilities through online fine-tuning with rule-based rewards. However, recent studies reveal a critical constraint: reinforcement learning succeeds only when the base model already assigns non-negligible probability to correct answers -- a property we term 'latent solvability'. This work investigates the emergence of chemical reasoning capabilities and what these prerequisites mean for chemistry. We identify two necessary conditions for RL-based chemical reasoning: 1) Symbolic competence, and 2) Latent chemical knowledge. We propose mid-stage scientific training (MiST): a set of mid-stage training techniques to satisfy these, including data-mixing with SMILES/CIF-aware pre-processing, continued pre-training on 2.9B tokens, and supervised fine-tuning on 1B tokens. These steps raise the latent-solvability score on 3B and 7B models by up to 1.8x, and enable RL to lift top-1 accuracy from 10.9 to 63.9% on organic reaction naming, and from 40.6 to 67.4% on inorganic material generation. Similar results are observed for other challenging chemical tasks, while producing interpretable reasoning traces. Our results define clear prerequisites for chemical reasoning training and highlight the broader role of mid-stage training in unlocking reasoning capabilities.
Beyond Data Privacy: New Privacy Risks for Large Language Models
Large Language Models (LLMs) have achieved remarkable progress in natural language understanding, reasoning, and autonomous decision-making. However, these advancements have also come with significant privacy concerns. While significant research has focused on mitigating the data privacy risks of LLMs during various stages of model training, less attention has been paid to new threats emerging from their deployment. The integration of LLMs into widely used applications and the weaponization of their autonomous abilities have created new privacy vulnerabilities. These vulnerabilities provide opportunities for both inadvertent data leakage and malicious exfiltration from LLM-powered systems. Additionally, adversaries can exploit these systems to launch sophisticated, large-scale privacy attacks, threatening not only individual privacy but also financial security and societal trust. In this paper, we systematically examine these emerging privacy risks of LLMs. We also discuss potential mitigation strategies and call for the research community to broaden its focus beyond data privacy risks, developing new defenses to address the evolving threats posed by increasingly powerful LLMs and LLM-powered systems.
comment: Published in the IEEE Data Engineering Bulletin: http://sites.computer.org/debull/A25dec/issue1.htm
GHOST: Hallucination-Inducing Image Generation for Multimodal LLMs
Object hallucination in Multimodal Large Language Models (MLLMs) is a persistent failure mode that causes the model to perceive objects absent in the image. This weakness of MLLMs is currently studied using static benchmarks with fixed visual scenarios, which preempts the possibility of uncovering model-specific or unanticipated hallucination vulnerabilities. We introduce GHOST (Generating Hallucinations via Optimizing Stealth Tokens), a method designed to stress-test MLLMs by actively generating images that induce hallucination. GHOST is fully automatic and requires no human supervision or prior knowledge. It operates by optimizing in the image embedding space to mislead the model while keeping the target object absent, and then guiding a diffusion model conditioned on the embedding to generate natural-looking images. The resulting images remain visually natural and close to the original input, yet introduce subtle misleading cues that cause the model to hallucinate. We evaluate our method across a range of models, including reasoning models like GLM-4.1V-Thinking, and achieve a hallucination success rate exceeding 28%, compared to around 1% in prior data-driven discovery methods. We confirm that the generated images are both high-quality and object-free through quantitative metrics and human evaluation. Also, GHOST uncovers transferable vulnerabilities: images optimized for Qwen2.5-VL induce hallucinations in GPT-4o at a 66.5% rate. Finally, we show that fine-tuning on our images mitigates hallucination, positioning GHOST as both a diagnostic and corrective tool for building more reliable multimodal systems.
Adaptable Symbolic Music Infilling with MIDI-RWKV
Existing work in automatic music generation has mostly focused on end-to-end systems that generate either entire compositions or continuations of pieces, which are difficult for composers to iterate on. The area of computer-assisted composition, where generative models integrate into existing creative workflows, remains comparatively underexplored. In this study, we address the tasks of model style adaptation and multi-track, long-context, and controllable symbolic music infilling to enhance the process of computer-assisted composition. We present MIDI-RWKV, a small foundation model based on the RWKV-7 linear architecture, to enable efficient and coherent musical cocreation on edge devices. We also demonstrate that MIDI-RWKV admits an effective method of finetuning its initial state for style adaptation in the very-low-sample regime. We evaluate MIDI-RWKV and its state tuning on several quantitative and qualitative metrics with respect to existing models, and release model weights and code at https://github.com/christianazinn/MIDI-RWKV.
comment: 31 pages, 15 figures, 17 tables
VoXtream: Full-Stream Text-to-Speech with Extremely Low Latency
We present VoXtream, a fully autoregressive, zero-shot streaming text-to-speech (TTS) system for real-time use that begins speaking from the first word. VoXtream directly maps incoming phonemes to audio tokens using a monotonic alignment scheme and a limited look-ahead that does not delay onset. Built around an incremental phoneme transformer, a temporal transformer predicting semantic and duration tokens, and a depth transformer producing acoustic tokens, VoXtream achieves, to our knowledge, the lowest initial delay among publicly available streaming TTS: 102 ms on GPU. Despite being trained on a mid-scale 9k-hour corpus, it matches or surpasses larger baselines on several metrics, while delivering competitive quality in both output- and full-streaming settings. Demo and code are available at https://herimor.github.io/voxtream.
comment: 5 pages, 1 figure, accepted to IEEE ICASSP 2026
Dual Optimistic Ascent (PI Control) is the Augmented Lagrangian Method in Disguise ICLR 2026
Constrained optimization is a powerful framework for enforcing requirements on neural networks. These constrained deep learning problems are typically solved using first-order methods on their min-max Lagrangian formulation, but such approaches often suffer from oscillations and can fail to find all local solutions. While the Augmented Lagrangian method (ALM) addresses these issues, practitioners often favor dual optimistic ascent schemes (PI control) on the standard Lagrangian, which perform well empirically but lack formal guarantees. In this paper, we establish a previously unknown equivalence between these approaches: dual optimistic ascent on the Lagrangian is equivalent to gradient descent-ascent on the Augmented Lagrangian. This finding allows us to transfer the robust theoretical guarantees of the ALM to the dual optimistic setting, proving it converges linearly to all local solutions. Furthermore, the equivalence provides principled guidance for tuning the optimism hyper-parameter. Our work closes a critical gap between the empirical success of dual optimistic methods and their theoretical foundation in the single-step, first-order regime commonly used in constrained deep learning.
comment: Published at ICLR 2026. Code available at https://github.com/juan43ramirez/pi-control-is-alm
Data Valuation for LLM Fine-Tuning: Efficient Shapley Value Approximation via Language Model Arithmetic
Data is a critical asset for training large language models (LLMs), alongside compute resources and skilled workers. While some training data is publicly available, substantial investment is required to generate proprietary datasets, such as human preference annotations or to curate new ones from existing sources. As larger datasets generally yield better model performance, two natural questions arise. First, how can data owners make informed decisions about curation strategies and data sources investment? Second, how can multiple data owners collaboratively pool their resources to train superior models while fairly distributing the benefits? This problem, data valuation, which is not specific to large language models, has been addressed by the machine learning community through the lens of cooperative game theory, with the Shapley value being the prevalent solution concept. However, computing Shapley values is notoriously expensive for data valuation, typically requiring numerous model retrainings, which can become prohibitive for large machine learning models. In this work, we demonstrate that this computational challenge is dramatically simplified for LLMs trained with Direct Preference Optimization (DPO). We show how the specific mathematical structure of DPO enables scalable Shapley value computation. We believe this observation unlocks many applications at the intersection of data valuation and large language models.
comment: 11 pages, 2 figures
How to pick the best anomaly detector?
Anomaly detection has the potential to discover new physics in unexplored regions of the data. However, choosing the best anomaly detector for a given data set in a model-agnostic way is an important challenge which has hitherto largely been neglected. In this paper, we introduce the data-driven ARGOS metric, which has a sound theoretical foundation and is empirically shown to robustly select the most sensitive anomaly detection model given the data. Focusing on weakly-supervised, classifier-based anomaly detection methods, we show that the ARGOS metric outperforms other model selection metrics previously used in the literature, in particular the binary cross-entropy loss. We explore several realistic applications, including hyperparameter tuning as well as architecture and feature selection, and in all cases we demonstrate that ARGOS is robust to the noisy conditions of anomaly detection.
comment: 13 pages, 8 figures, v2: appendix and references added, minor edits
On the Impact of the Utility in Semivalue-based Data Valuation ICLR 2026
Semivalue-based data valuation uses cooperative-game theory intuitions to assign each data point a value reflecting its contribution to a downstream task. Still, those values depend on the practitioner's choice of utility, raising the question: How robust is semivalue-based data valuation to changes in the utility? This issue is critical when the utility is set as a trade-off between several criteria and when practitioners must select among multiple equally valid utilities. We address it by introducing the notion of a dataset's spatial signature: given a semivalue, we embed each data point into a lower-dimensional space where any utility becomes a linear functional, making the data valuation framework amenable to a simpler geometric picture. Building on this, we propose a practical methodology centered on an explicit robustness metric that informs practitioners whether and by how much their data valuation results will shift as the utility changes. We validate this approach across diverse datasets and semivalues, demonstrating strong agreement with rank-correlation analyses and offering analytical insight into how choosing a semivalue can amplify or diminish robustness.
comment: 45 pages, 19 figures. Accepted at ICLR 2026. This version corresponds to the accepted manuscript; minor changes may appear in the final camera-ready version
DeNOTS: Stable Deep Neural ODEs for Time Series
Neural CDEs provide a natural way to process the temporal evolution of irregular time series. The number of function evaluations (NFE) is these systems' natural analog of depth (the number of layers in traditional neural networks). It is usually regulated via solver error tolerance: lower tolerance means higher numerical precision, requiring more integration steps. However, lowering tolerances does not adequately increase the models' expressiveness. We propose a simple yet effective alternative: scaling the integration time horizon to increase NFEs and "deepen`` the model. Increasing the integration interval causes uncontrollable growth in conventional vector fields, so we also propose a way to stabilize the dynamics via Negative Feedback (NF). It ensures provable stability without constraining flexibility. It also implies robustness: we provide theoretical bounds for Neural ODE risk using Gaussian process theory. Experiments on four open datasets demonstrate that our method, DeNOTS, outperforms existing approaches~ -- ~including recent Neural RDEs and state space models,~ -- ~achieving up to $20\%$ improvement in metrics. DeNOTS combines expressiveness, stability, and robustness, enabling reliable modelling in continuous-time domains.
Unifying Low Dimensional Observations in Deep Learning Through the Deep Linear Unconstrained Feature Model
Empirical studies have revealed low dimensional structures in the eigenspectra of weights, Hessians, gradients, and feature vectors of deep networks, consistently observed across datasets and architectures in the overparameterized regime. In this work, we analyze deep unconstrained feature models (UFMs) to provide an analytic explanation of how these structures emerge at the layerwise level, including the bulk outlier Hessian spectrum and the alignment of gradient descent with the outlier eigenspace. We show that deep neural collapse underlies these phenomena, deriving explicit expressions for eigenvalues and eigenvectors of many deep learning matrices in terms of class feature means. Furthermore, we demonstrate that the full Hessian inherits its low dimensional structure from the layerwise Hessians, and empirically validate our theory in both UFMs and deep networks.
comment: 44 pages, 18 figures
Cross-Platform Scaling of Vision-Language-Action Models from Edge to Cloud GPUs
Vision-Language-Action (VLA) models have emerged as powerful generalist policies for robotic control, yet their performance scaling across model architectures and hardware platforms, as well as their associated power budgets, remain poorly understood. This work presents an evaluation of five representative VLA models -- spanning state-of-the-art baselines and two newly proposed architectures -- targeting edge and datacenter GPU platforms. Using the LIBERO benchmark, we measure accuracy alongside system-level metrics, including latency, throughput, and peak memory usage, under varying edge power constraints and high-performance datacenter GPU configurations. Our results identify distinct scaling trends: (1) architectural choices, such as action tokenization and model backbone size, strongly influence throughput and memory footprint; (2) power-constrained edge devices exhibit non-linear performance degradation, with some configurations matching or exceeding older datacenter GPUs; and (3) high-throughput variants can be achieved without significant accuracy loss. These findings provide actionable insights when selecting and optimizing VLAs across a range of deployment constraints. Our work challenges current assumptions about the superiority of datacenter hardware for robotic inference.
comment: To appear in the Asilomar Conference on Signals, Systems, and Computers 2025
Towards a Physics Foundation Model
Foundation models have revolutionized natural language processing through a ``train once, deploy anywhere'' paradigm, where a single pre-trained model adapts to countless downstream tasks without retraining. Access to a Physics Foundation Model (PFM) would be transformative - democratizing access to high-fidelity simulations, accelerating scientific discovery, and eliminating the need for specialized solver development. Yet current physics-aware machine learning approaches remain fundamentally limited to single, narrow domains and require retraining for each new system. We present the General Physics Transformer (GPhyT), trained on 1.8 TB of diverse simulation data, that demonstrates foundation model capabilities are achievable for physics. Our key insight is that transformers can learn to infer governing dynamics from context, enabling a single model to simulate fluid-solid interactions, shock waves, thermal convection, and multi-phase dynamics without being told the underlying equations. GPhyT achieves three critical breakthroughs: (1) superior performance across multiple physics domains, outperforming specialized architectures by more than 7x, (2) plausible zero-shot generalization to entirely unseen physical systems through in-context learning, and (3) more stable long-term predictions through long-horizon rollouts. By establishing that a single model can learn generalizable physical principles from data alone, this work opens the path toward a universal PFM that could transform computational science and engineering.
Revisiting the Past: Data Unlearning with Model State History ICLR 2026
Large language models are trained on massive corpora of web data, which may include private data, copyrighted material, factually inaccurate data, or data that degrades model performance. Eliminating the influence of such problematic datapoints on a model through complete retraining -- by repeatedly pretraining the model on datasets that exclude these specific instances -- is computationally prohibitive. To address this, unlearning algorithms have been proposed, that aim to eliminate the influence of particular datapoints at a low computational cost, while leaving the rest of the model intact. However, precisely unlearning the influence of data on a large language model has proven to be a major challenge. In this work, we propose a new algorithm, MSA (Model State Arithmetic), for unlearning datapoints in large language models. MSA utilizes prior model checkpoints -- artifacts that record model states at different stages of pretraining -- to estimate and counteract the effect of targeted datapoints. Our experimental results show that MSA achieves competitive performance and often outperforms existing machine unlearning algorithms across multiple benchmarks, models, and evaluation metrics, suggesting that MSA could be an effective approach towards more flexible large language models that are capable of data erasure.
comment: Accepted to ICLR 2026
SIPDO: Closed-Loop Prompt Optimization via Synthetic Data Feedback
Prompt quality plays a critical role in the performance of large language models (LLMs), motivating a growing body of work on prompt optimization. Most existing methods optimize prompts over a fixed dataset, assuming static input distributions and offering limited support for iterative improvement. We introduce SIPDO (Self-Improving Prompts through Data-Augmented Optimization), a closed-loop framework for prompt learning that integrates synthetic data generation into the optimization process. SIPDO couples a synthetic data generator with a prompt optimizer, where the generator produces new examples that reveal current prompt weaknesses and the optimizer incrementally refines the prompt in response. This feedback-driven loop enables systematic improvement of prompt performance without assuming access to external supervision or new tasks. Experiments across question answering and reasoning benchmarks show that SIPDO outperforms standard prompt tuning methods, highlighting the value of integrating data synthesis into prompt learning workflows.
Uncertainty quantification in model discovery by distilling interpretable material constitutive models from Gaussian process posteriors
Constitutive model discovery refers to the task of identifying an appropriate model structure, usually from a predefined model library, while simultaneously inferring its material parameters. The data used for model discovery are measured in mechanical tests and are thus inevitably affected by noise which, in turn, induces uncertainties. Previously proposed methods for uncertainty quantification in model discovery either require the selection of a prior for the material parameters, are restricted to linear coefficients of the model library or are limited in the flexibility of the inferred parameter probability distribution. We therefore propose a partially Bayesian framework for uncertainty quantification in model discovery that does not require prior selection for the material parameters and also allows for the discovery of constitutive models with inner-non-linear parameters: First, we augment the available stress-deformation data with a Gaussian process. Second, we approximate the parameter distribution by a normalizing flow, which allows for modeling complex joint distributions. Third, we distill the parameter distribution by matching the distribution of stress-deformation functions induced by the parameters with the Gaussian process posterior. Fourth, we perform a Sobol' sensitivity analysis to obtain a sparse and interpretable model. We demonstrate the capability of our framework for both isotropic and experimental anisotropic data.
DecompGAIL: Learning Realistic Traffic Behaviors with Decomposed Multi-Agent Generative Adversarial Imitation Learning ICLR
Realistic traffic simulation is critical for the development of autonomous driving systems and urban mobility planning, yet existing imitation learning approaches often fail to model realistic traffic behaviors. Behavior cloning suffers from covariate shift, while Generative Adversarial Imitation Learning (GAIL) is notoriously unstable in multi-agent settings. We identify a key source of this instability: irrelevant interaction misguidance, where a discriminator penalizes an ego vehicle's realistic behavior due to unrealistic interactions among its neighbors. To address this, we propose Decomposed Multi-agent GAIL (DecompGAIL), which explicitly decomposes realism into ego-map and ego-neighbor components, filtering out misleading neighbor: neighbor and neighbor: map interactions. We further introduce a social PPO objective that augments ego rewards with distance-weighted neighborhood rewards, encouraging overall realism across agents. Integrated into a lightweight SMART-based backbone, DecompGAIL achieves state-of-the-art performance on the WOMD Sim Agents 2025 benchmark.
comment: accepted by ICLR
Harnessing the Universal Geometry of Embeddings
We introduce the first method for translating text embeddings from one vector space to another without any paired data, encoders, or predefined sets of matches. Our unsupervised approach translates any embedding to and from a universal latent representation (i.e., a universal semantic structure conjectured by the Platonic Representation Hypothesis). Our translations achieve high cosine similarity across model pairs with different architectures, parameter counts, and training datasets. The ability to translate unknown embeddings into a different space while preserving their geometry has serious implications for the security of vector databases. An adversary with access only to embedding vectors can extract sensitive information about the underlying documents, sufficient for classification and attribute inference.
Emergence of Quantised Representations Isolated to Anisotropic Functions
Presented is a novel methodology for determining representational structure, which builds upon the existing Spotlight Resonance method. This new tool is used to gain insight into how discrete representations can emerge and organise in autoencoder models, through a controlled ablation study that alters only the activation function. Using this technique, the validity of whether function-driven symmetries can act as implicit inductive biases on representations is determined. Representations are found to tend to discretise when the activation functions are defined through a discrete algebraic permutation-equivariant symmetry. In contrast, they remain continuous under a continuous algebraic orthogonal-equivariant definition. This confirms the hypothesis that the symmetries of network primitives can carry unintended inductive biases, leading to task-independent artefactual structures in representations. The discrete symmetry of contemporary forms is shown to be a strong predictor for the production of symmetry-organised discrete representations emerging from otherwise continuous distributions -- a quantisation effect. This motivates further reassessment of functional forms in common usage due to such unintended consequences. Moreover, this supports a general causal model for a mode in which discrete representations may form, and could constitute a prerequisite for downstream interpretability phenomena, including grandmother neurons, discrete coding schemes, general linear features and a type of Superposition. Hence, this tool and proposed mechanism for the influence of functional form on representations may provide insights into interpretability research. Finally, preliminary results indicate that quantisation of representations correlates with a measurable increase in reconstruction error, reinforcing previous conjectures that this collapse can be detrimental.
comment: 47 pages, 37 figures
Distillation-Enabled Knowledge Alignment for Generative Semantic Communications of AIGC Images
Due to the surging amount of AI-generated images, its provisioning to edges and mobile users from the cloud incurs substantial traffic on networks. Generative semantic communication (GSC) offers a promising solution by transmitting highly compact information, i.e., prompt text and latent representations, instead of high-dimensional image data. However, GSC relies on the alignment between the knowledge in the cloud generative AI (GAI) and that possessed by the edges and users, and between the knowledge for wireless transmission and that of actual channels, which remains challenging. In this paper, we propose DeKA-g, a distillation-enabled knowledge alignment algorithm for GSC systems. The core idea is to distill the image generation knowledge from the cloud-GAI into low-rank matrices, which can be incorporated by the edge and used to adapt the transmission knowledge to diverse wireless channel conditions. DeKA-g comprises two novel methods: metaword-aided knowledge distillation (MAKD) and condition-aware low-rank adaptation (CALA). For MAKD, an optimized metaword is employed to enhance the efficiency of knowledge distillation, while CALA enables efficient adaptation to diverse rate requirements and channel conditions. From simulation results, DeKA-g improves the consistency between the edge-generated images and the cloud-generated ones by 44% and enahnces the average transmission quality in terms of PSNR by 6.5 dB over the baselines without knowledge alignment.
Improving the Accuracy of Amortized Model Comparison with Self-Consistency
Amortized Bayesian inference (ABI) offers fast, scalable approximations to posterior densities by training neural surrogates on data simulated from the statistical model. However, ABI methods are highly sensitive to model misspecification: when observed data fall outside the training distribution (generative scope of the statistical models), neural surrogates can behave unpredictably. This makes it a challenge in a model comparison setting, where multiple statistical models are considered, of which at least some are misspecified. Recent work on self-consistency (SC) provides a promising remedy to this issue, accessible even for empirical data (without ground-truth labels). In this work, we investigate how SC can improve amortized model comparison conceptualized in four different ways. Across two synthetic and two real-world case studies, we find that approaches for model comparison that estimate marginal likelihoods through approximate parameter posteriors consistently outperform methods that directly approximate model evidence or posterior model probabilities. SC training improves robustness when the likelihood is available, even under severe model misspecification. The benefits of SC for methods without access of analytic likelihoods are more limited and inconsistent. Our results suggest practical guidance for reliable amortized Bayesian model comparison: prefer parameter posterior-based methods and augment them with SC training on empirical datasets to mitigate extrapolation bias under model misspecification.
comment: This submission should have rather been posted as a second version of a previous submission: arXiv:2508.20614
Pretrain Value, Not Reward: Decoupled Value Policy Optimization
In this paper, we explore how directly pretraining a value model simplifies and stabilizes reinforcement learning from human feedback (RLHF). In reinforcement learning, value estimation is the key to policy optimization, distinct from reward supervision. The value function predicts the \emph{return-to-go} of a partial answer, that is, how promising the partial answer is if it were continued to completion. In RLHF, however, the standard pipeline first pretrains a reward model and then learns a value function online, even though no new reward signals are available once preference data is collected. This makes critic learning redundant, as the process of training a reward model and then deriving a value model is informationally equivalent to directly pretraining a value model. Importantly, this requires no additional supervision, and our value model is trained on exactly the same data used for reward modeling. Building on this insight, we introduce \emph{Decoupled Value Policy Optimization} (DVPO), a framework that pretrains a \emph{Global Value Model} (GVM) offline and freezes it as a universal critic for policy learning. The GVM provides stable, fine-grained credit assignment without critic drift or trajectory sampling. Experiments across MT-Bench, Alpaca-Eval, and Arena-Hard demonstrate that DVPO matches or surpasses state-of-the-art RLHF methods. These results highlight RLHF can be reframed as policy-only optimization guided by a single pretrained value model.
comment: 16 pages, 3 figures
Solving stochastic partial differential equations using neural networks in the Wiener chaos expansion
In this paper, we solve stochastic partial differential equations (SPDEs) numerically by using (possibly random) neural networks in the truncated Wiener chaos expansion of their corresponding solution. Moreover, we provide some approximation rates for learning the solution of SPDEs with additive and/or multiplicative noise. Finally, we apply our results in numerical examples to approximate the solution of three SPDEs: the stochastic heat equation, the Heath-Jarrow-Morton equation, and the Zakai equation.
BADiff: Bandwidth Adaptive Diffusion Model NeurIPS 2025
In this work, we propose a novel framework to enable diffusion models to adapt their generation quality based on real-time network bandwidth constraints. Traditional diffusion models produce high-fidelity images by performing a fixed number of denoising steps, regardless of downstream transmission limitations. However, in practical cloud-to-device scenarios, limited bandwidth often necessitates heavy compression, leading to loss of fine textures and wasted computation. To address this, we introduce a joint end-to-end training strategy where the diffusion model is conditioned on a target quality level derived from the available bandwidth. During training, the model learns to adaptively modulate the denoising process, enabling early-stop sampling that maintains perceptual quality appropriate to the target transmission condition. Our method requires minimal architectural changes and leverages a lightweight quality embedding to guide the denoising trajectory. Experimental results demonstrate that our approach significantly improves the visual fidelity of bandwidth-adapted generations compared to naive early-stopping, offering a promising solution for efficient image delivery in bandwidth-constrained environments. Code is available at: https://github.com/xzhang9308/BADiff.
comment: NeurIPS 2025 Poster
Learning Grouped Lattice Vector Quantizers for Low-Bit LLM Compression NeurIPS 2025
Large Language Models (LLMs) have demonstrated remarkable capabilities but typically require extensive computational resources and memory for inference. Post-training quantization (PTQ) can effectively reduce these demands by storing weights in lower bit-width formats. However, standard uniform quantization often leads to notable performance degradation, particularly in low-bit scenarios. In this work, we introduce a Grouped Lattice Vector Quantization (GLVQ) framework that assigns each group of weights a customized lattice codebook, defined by a learnable generation matrix. To address the non-differentiability of the quantization process, we adopt Babai rounding to approximate nearest-lattice-point search during training, which enables stable optimization of the generation matrices. Once trained, decoding reduces to a simple matrix-vector multiplication, yielding an efficient and practical quantization pipeline. Experiments on multiple benchmarks show that our approach achieves a better trade-off between model size and accuracy compared to existing post-training quantization baselines, highlighting its effectiveness in deploying large models under stringent resource constraints. Our source code is available on GitHub repository: https://github.com/xzhang9308/GLVQ.
comment: NeurIPS 2025 Poster
Multi-Scale Negative Coupled Information Systems (MNCIS): A Unified Spectral Topology Framework for Stability in Turbulence, AI, and Biology
Complex dynamical systems frequently encounter a recurrent structural instability: the collapse of the spectral gap, driving the system toward a low-dimensional "Zero-Mode Attractor" (e.g., spectral pile-up or over-smoothing). Building upon recent global well-posedness estimates [Hou, arXiv:2601.00638], this work generalizes the Multi-Scale Negative Coupled Information System (MNCIS) framework. We postulate that global stability requires an active topological operator - Adaptive Spectral Negative Coupling (ASNC) - functioning as a state-dependent high-pass filter that penalizes entropy accumulation at spectral boundaries. We validate this unified framework via three implementations: (1) Hydrodynamics: In 3D Navier-Stokes turbulence ($N=256^3$), ASNC acts as a global-enstrophy adaptive sub-grid scale (SGS) model, stabilizing the inviscid limit and preserving the Kolmogorov $-5/3$ inertial range without artificial hyper-viscosity. Crucially, we verify that the operator remains dormant ($γ\approx 0$) during the linear growth phase of physical instabilities, functioning strictly as a conditional topological clamp. (2) Artificial Intelligence: Addressing Over-smoothing in Graph Neural Networks (GNNs), we implement ASNC as a parameter-free topological constraint. Unlike baselines (e.g., DeepGCNs) relying on dense residual connections, our framework enables the training of ultra-deep 64-layer networks without residual connections, maintaining perfectly stationary feature variance ($σ^2 \equiv 1.0$) on the ogbn-arxiv benchmark. (3) Biological Physics: In reaction-diffusion morphogenesis, it stabilizes Turing patterns against diffusive washout in high-entropy regimes. Our results suggest that the MNCIS framework provides a base-independent topological condition for distinguishing viable complex systems from those collapsing into thermal equilibrium.
comment: Includes supplementary materials and code. Foundation and mathematical proofs can be found in the companion paper arXiv:2601.00638. V2: Significant theoretical expansion. Extended experimental validation to N=256^3 turbulence simulations
Noise-based reward-modulated learning
The pursuit of energy-efficient and adaptive artificial intelligence (AI) has positioned neuromorphic computing as a promising alternative to conventional computing. However, achieving learning on these platforms requires techniques that prioritize local information while enabling effective credit assignment. Here, we propose noise-based reward-modulated learning (NRL), a novel synaptic plasticity rule that mathematically unifies reinforcement learning and gradient-based optimization with biologically-inspired local updates. NRL addresses the computational bottleneck of exact gradients by approximating them through stochastic neural activity, transforming the inherent noise of biological and neuromorphic substrates into a functional resource. Drawing inspiration from biological learning, our method uses reward prediction errors as its optimization target to generate increasingly advantageous behavior, and eligibility traces to facilitate retrospective credit assignment. Experimental validation on reinforcement tasks, featuring immediate and delayed rewards, shows that NRL achieves performance comparable to baselines optimized using backpropagation, although with slower convergence, while showing significantly superior performance and scalability in multi-layer networks compared to reward-modulated Hebbian learning (RMHL), the most prominent similar approach. While tested on simple architectures, the results highlight the potential of noise-driven, brain-inspired learning for low-power adaptive systems, particularly in computing substrates with locality constraints. NRL offers a theoretically grounded paradigm well-suited for the event-driven characteristics of next-generation neuromorphic AI.
A Computational Transition for Detecting Multivariate Shuffled Linear Regression by Low-Degree Polynomials
In this paper, we study the problem of multivariate shuffled linear regression, where the correspondence between predictors and responses in a linear model is obfuscated by a latent permutation. Specifically, we investigate the model $Y=\tfrac{1}{\sqrt{1+σ^2}}(Π_* X Q_* + σZ)$, where $X$ is an $n*d$ standard Gaussian design matrix, $Z$ is an $n*m$ Gaussian noise matrix, $Π_*$ is an unknown $n*n$ permutation matrix, and $Q_*$ is an unknown $d*m$ on the Grassmanian manifold satisfying $Q_*^{\top} Q_* = \mathbb I_m$. Consider the hypothesis testing problem of distinguishing this model from the case where $X$ and $Y$ are independent Gaussian random matrices of sizes $n*d$ and $n*m$, respectively. Our results reveal a phase transition phenomenon in the performance of low-degree polynomial algorithms for this task. (1) When $m=o(d)$, we show that all degree-$D$ polynomials fail to distinguish these two models even when $σ=0$, provided with $D^4=o\big( \tfrac{d}{m} \big)$. (2) When $m=d$ and $σ=ω(1)$, we show that all degree-$D$ polynomials fail to distinguish these two models provided with $D=o(σ)$. (3) When $m=d$ and $σ=o(1)$, we show that there exists a constant-degree polynomial that strongly distinguish these two models. These results establish a smooth transition in the effectiveness of low-degree polynomial algorithms for this problem, highlighting the interplay between the dimensions $m$ and $d$, the noise level $σ$, and the computational complexity of the testing task.
comment: 27 pages; improved exposition
Tackling Federated Unlearning as a Parameter Estimation Problem
Privacy regulations require the erasure of data from deep learning models. This is a significant challenge that is amplified in Federated Learning, where data remains on clients, making full retraining or coordinated updates often infeasible. This work introduces an efficient Federated Unlearning framework based on information theory, modeling leakage as a parameter estimation problem. Our method uses second-order Hessian information to identify and selectively reset only the parameters most sensitive to the data being forgotten, followed by minimal federated retraining. This model-agnostic approach supports categorical and client unlearning without requiring server access to raw client data after initial information aggregation. Evaluations on benchmark datasets demonstrate strong privacy (MIA success near random, categorical knowledge erased) and high performance (Normalized Accuracy against re-trained benchmarks of $\approx$ 0.9), while aiming for increased efficiency over complete retraining. Furthermore, in a targeted backdoor attack scenario, our framework effectively neutralizes the malicious trigger, restoring model integrity. This offers a practical solution for data forgetting in FL.
comment: Substantial revisions are in progress; this version is being withdrawn in favor of a significantly updated manuscript
EntroLLM: Entropy Encoded Weight Compression for Efficient Large Language Model Inference on Edge Devices
Large Language Models (LLMs) achieve strong performance across tasks, but face storage and compute challenges on edge devices. We propose EntroLLM, a compression framework combining mixed quantization and entropy coding to reduce storage while preserving accuracy. We use a combination of unsigned and asymmetric quantization. Tensor-level quantization produces an entropy-reducing effect, increasing weight compressibility, and improving downstream Huffman encoding by $7\times$ (8-bit) and $11.3\times$ (4-bit) over state-of-the-art methods. Huffman coding further reduces memory bandwidth demands, while a parallel decoding strategy enables efficient weight retrieval with minimal latency. Experiments on edge-scale LLMs (smolLM-1.7B, phi3-mini-4k, mistral-7B) show up to $30\%$ storage savings over uint8 and $65\%$ over uint4 models, with $31.9-146.6\%$ faster inference on memory-limited devices like the NVIDIA JETSON P3450. EntroLLM requires no retraining and is compatible with existing post-training quantization pipelines, making it practical for edge LLM deployment.
comment: 4 pages, 1 reference page
ABCD-LINK: Annotation Bootstrapping for Cross-Document Fine-Grained Links
Understanding fine-grained links between documents is crucial for many applications, yet progress is limited by the lack of efficient methods for data curation. To address this limitation, we introduce a domain-agnostic framework for bootstrapping sentence-level cross-document links from scratch. Our approach (1) generates and validates semi-synthetic datasets of linked documents, (2) uses these datasets to benchmark and shortlist the best-performing linking approaches, and (3) applies the shortlisted methods in large-scale human-in-the-loop annotation of natural text pairs. We apply the framework in two distinct domains -- peer review and news -- and show that combining retrieval models with LLMs achieves a 73% human approval rate for suggested links, more than doubling the acceptance of strong retrievers alone. Our framework allows users to produce novel datasets that enable systematic study of cross-document understanding, supporting downstream tasks such as media framing analysis and peer review assessment. All code, data, and annotation protocols are released to facilitate future research.
comment: Accepted at EACL 2026
Adversarial Robustness Guarantees for Quantum Classifiers
Despite their ever more widespread deployment throughout society, machine learning algorithms remain critically vulnerable to being spoofed by subtle adversarial tampering with their input data. The prospect of near-term quantum computers being capable of running {quantum machine learning} (QML) algorithms has therefore generated intense interest in their adversarial vulnerability. Here we show that quantum properties of QML algorithms can confer fundamental protections against such attacks, in certain scenarios guaranteeing robustness against classically-armed adversaries. We leverage tools from many-body physics to identify the quantum sources of this protection. Our results offer a theoretical underpinning of recent evidence which suggest quantum advantages in the search for adversarial robustness. In particular, we prove that quantum classifiers are: (i) protected against weak perturbations of data drawn from the trained distribution, (ii) protected against local attacks if they are insufficiently scrambling, and (iii) show evidence that they are protected against universal adversarial attacks if they are sufficiently chaotic. Our analytic results are supported by numerical evidence demonstrating the applicability of our theorems and the resulting robustness of a quantum classifier in practice. This line of inquiry constitutes a concrete pathway to advantage in QML, orthogonal to the usually sought improvements in model speed or accuracy.
comment: 22 pages, 2 figures. Comments welcome
Sprecher Networks: A Parameter-Efficient Kolmogorov-Arnold Architecture
We introduce Sprecher Networks (SNs), a family of trainable architectures derived from David Sprecher's 1965 constructive form of the Kolmogorov-Arnold representation. Each SN block implements a "sum of shifted univariate functions" using only two shared learnable splines per block, a monotone inner spline $φ$ and a general outer spline $Φ$, together with a learnable shift parameter $η$ and a mixing vector $λ$ shared across all output dimensions. Stacking these blocks yields deep, compositional models; for vector-valued outputs we append an additional non-summed output block. We also propose an optional lateral mixing operator enabling intra-block communication between output channels with only $O(d_{\mathrm{out}})$ additional parameters. Owing to the vector (not matrix) mixing weights and spline sharing, SNs scale linearly in width, approximately $O(\sum_{\ell}(d_{\ell-1}+d_{\ell}+G))$ parameters for $G$ spline knots, versus $O(\sum_{\ell} d_{\ell-1}d_{\ell})$ for dense MLPs and $O(G\sum_{\ell} d_{\ell-1}d_{\ell})$ for edge-spline KANs. This linear width-scaling is particularly attractive for extremely wide, shallow models, where low depth can translate into low inference latency. Finally, we describe a sequential forward implementation that avoids materializing the $d_{\mathrm{in}}\times d_{\mathrm{out}}$ shifted-input tensor, reducing peak forward-intermediate memory from quadratic to linear in layer width, relevant for memory-constrained settings such as on-device/edge inference; we demonstrate deployability via fixed-point real-time digit classification on resource-constrained embedded device with only 4 MB RAM. We provide empirical demonstrations on supervised regression, Fashion-MNIST classification (including stable training at 25 hidden layers with residual connections and normalization), and a Poisson PINN, with controlled comparisons to MLP and KAN baselines.
comment: 45 pages
Fully tensorial approach to hypercomplex-valued neural networks
A fully tensorial theoretical framework for hypercomplex-valued neural networks is presented. The proposed approach enables neural network architectures to operate on data defined over arbitrary finite-dimensional algebras. The central observation is that algebra multiplication can be represented by a rank-three tensor, which allows all algebraic operations in neural network layers to be formulated in terms of standard tensor contractions, permutations, and reshaping operations. This tensor-based formulation provides a unified and dimension-independent description of hypercomplex-valued dense and convolutional layers and is directly compatible with modern deep learning libraries supporting optimized tensor operations. The proposed framework recovers existing constructions for four-dimensional algebras as a special case. Within this setting, a tensor-based version of the universal approximation theorem for single-layer hypercomplex-valued perceptrons is established under mild non-degeneracy assumptions on the underlying algebra, thereby providing a rigorous theoretical foundation for the considered class of neural networks.
comment: 23 pages, 3 figures
Energy-Aware DNN Graph Optimization
Unlike existing work in deep neural network (DNN) graphs optimization for inference performance, we explore DNN graph optimization for energy awareness and savings for power- and resource-constrained machine learning devices. We present a method that allows users to optimize energy consumption or balance between energy and inference performance for DNN graphs. This method efficiently searches through the space of equivalent graphs, and identifies a graph and the corresponding algorithms that incur the least cost in execution. We implement the method and evaluate it with multiple DNN models on a GPU-based machine. Results show that our method achieves significant energy savings, i.e., 24% with negligible performance impact.
comment: Accepted paper at Resource-Constrained Machine Learning (ReCoML) Workshop of MLSys 2020 Conference, Austin, TX, USA, 2020
CellStyle: Improved Zero-Shot Cell Segmentation via Style Transfer
Cell microscopy data are abundant; however, corresponding segmentation annotations remain scarce. Moreover, variations in cell types, imaging devices, and staining techniques introduce significant domain gaps between datasets. As a result, even large, pretrained segmentation models trained on diverse datasets (source datasets) struggle to generalize to unseen datasets (target datasets). To overcome this generalization problem, we propose CellStyle, which improves the segmentation quality of such models without requiring labels for the target dataset, thereby enabling zero-shot adaptation. CellStyle transfers the attributes of an unannotated target dataset, such as texture, color, and noise, to the annotated source dataset. This transfer is performed while preserving the cell shapes of the source images, ensuring that the existing source annotations can still be used while maintaining the visual characteristics of the target dataset. The styled synthetic images with the existing annotations enable the finetuning of a generalist segmentation model for application to the unannotated target data. We demonstrate that CellStyle significantly improves zero-shot cell segmentation performance across diverse datasets by finetuning multiple segmentation models on the style-transferred data. The code will be made publicly available.
An extrapolated and provably convergent algorithm for nonlinear matrix decomposition with the ReLU function
ReLU matrix decomposition (RMD) is the following problem: given a sparse, nonnegative matrix $X$ and a factorization rank $r$, identify a rank-$r$ matrix $Θ$ such that $X\approx \max(0,Θ)$. RMD is a particular instance of nonlinear matrix decomposition (NMD) that finds application in data compression, matrix completion with entries missing not at random, and manifold learning. The standard RMD model minimizes the least squares error, that is, $\|X - \max(0,Θ)\|_F^2$. The corresponding optimization problem, Least-Squares RMD (LS-RMD), is nondifferentiable and highly nonconvex. This motivated Saul to propose an alternative model, \revise{dubbed Latent-RMD}, where a latent variable $Z$ is introduced and satisfies $\max(0,Z)=X$ while minimizing $\|Z - Θ\|_F^2$ (``A nonlinear matrix decomposition for mining the zeros of sparse data'', SIAM J.\ Math.\ Data Sci., 2022). Our first contribution is to show that the two formulations may yield different low-rank solutions $Θ$. We then consider a reparametrization of the Latent-RMD, called 3B-RMD, in which $Θ$ is substituted by a low-rank product $WH$, where $W$ has $r$ columns and $H$ has $r$ rows. Our second contribution is to prove the convergence of a block coordinate descent (BCD) approach applied to 3B-RMD. Our third contribution is a novel extrapolated variant of BCD, dubbed eBCD, which we prove is also convergent under mild assumptions. We illustrate the significant acceleration effect of eBCD compared to eBCD, and also show that eBCD performs well against the state of the art on synthetic and real-world data sets.
comment: 25 pages. Codes and data available from https://github.com/giovanniseraghiti/ReLU-NMD
Sparse Concept Anchoring for Interpretable and Controllable Neural Representations
We introduce Sparse Concept Anchoring, a method that biases latent space to position a targeted subset of concepts while allowing others to self-organize, using only minimal supervision (labels for <0.1% of examples per anchored concept). Training combines activation normalization, a separation regularizer, and anchor or subspace regularizers that attract rare labeled examples to predefined directions or axis-aligned subspaces. The anchored geometry enables two practical interventions: reversible behavioral steering that projects out a concept's latent component at inference, and permanent removal via targeted weight ablation of anchored dimensions. Experiments on structured autoencoders show selective attenuation of targeted concepts with negligible impact on orthogonal features, and complete elimination with reconstruction error approaching theoretical bounds. Sparse Concept Anchoring therefore provides a practical pathway to interpretable, steerable behavior in learned representations.
comment: 8 pages, 3 figures, 1 table (main text). v2: Renamed sections 3.2, 3.3; Length reduction without substantial changes
SliceGX: Layer-wise GNN Explanation with Model-slicing
Ensuring the trustworthiness of graph neural networks (GNNs), which are often treated as black-box models, requires effective explanation techniques. Existing GNN explanations typically apply input perturbations to identify subgraphs that are responsible for the occurrence of the final output of GNNs. However, such approaches lack finer-grained, layer-wise analysis of how intermediate representations contribute to the final result, capabilities that are crucial for model diagnosis and architecture optimization. This paper introduces SliceGX, a novel GNN explanation approach that generates explanations at specific GNN layers in a progressive manner. Given a GNN model M, a set of selected intermediate layers, and a target layer, SliceGX slices M into layer blocks("model slice") and discovers high-quality explanatory subgraphs within each block that elucidate how the model output arises at the target layer. Although finding such layer-wise explanations is computationally challenging, we develop efficient algorithms and optimization techniques that incrementally construct and maintain these subgraphs with provable approximation guarantees. Extensive experiments on synthetic and real-world benchmarks demonstrate the effectiveness and efficiency of SliceGX, and illustrate its practical utility in supporting model debugging.
Contrastive Consolidation of Top-Down Modulations Achieves Sparsely Supervised Continual Learning NeurIPS 2025
Biological brains learn continually from a stream of unlabeled data, while integrating specialized information from sparsely labeled examples without compromising their ability to generalize. Meanwhile, machine learning methods are susceptible to catastrophic forgetting in this natural learning setting, as supervised specialist fine-tuning degrades performance on the original task. We introduce task-modulated contrastive learning (TMCL), which takes inspiration from the biophysical machinery in the neocortex, using predictive coding principles to integrate top-down information continually and without supervision. We follow the idea that these principles build a view-invariant representation space, and that this can be implemented using a contrastive loss. Then, whenever labeled samples of a new class occur, new affine modulations are learned that improve separation of the new class from all others, without affecting feedforward weights. By co-opting the view-invariance learning mechanism, we then train feedforward weights to match the unmodulated representation of a data sample to its modulated counterparts. This introduces modulation invariance into the representation space, and, by also using past modulations, stabilizes it. Our experiments show improvements in both class-incremental and transfer learning over state-of-the-art unsupervised approaches, as well as over comparable supervised approaches, using as few as 1% of available labels. Taken together, our work suggests that top-down modulations play a crucial role in balancing stability and plasticity.
comment: Accepted to NeurIPS 2025. Camera-ready version. 33 pages, 5 figures. Updated acknowledgements. Code available at: https://github.com/tran-khoa/tmcl
Towards Automated Kernel Generation in the Era of LLMs
The performance of modern AI systems is fundamentally constrained by the quality of their underlying kernels, which translate high-level algorithmic semantics into low-level hardware operations. Achieving near-optimal kernels requires expert-level understanding of hardware architectures and programming models, making kernel engineering a critical but notoriously time-consuming and non-scalable process. Recent advances in large language models (LLMs) and LLM-based agents have opened new possibilities for automating kernel generation and optimization. LLMs are well-suited to compress expert-level kernel knowledge that is difficult to formalize, while agentic systems further enable scalable optimization by casting kernel development as an iterative, feedback-driven loop. Rapid progress has been made in this area. However, the field remains fragmented, lacking a systematic perspective for LLM-driven kernel generation. This survey addresses this gap by providing a structured overview of existing approaches, spanning LLM-based approaches and agentic optimization workflows, and systematically compiling the datasets and benchmarks that underpin learning and evaluation in this domain. Moreover, key open challenges and future research directions are further outlined, aiming to establish a comprehensive reference for the next generation of automated kernel optimization. To keep track of this field, we maintain an open-source GitHub repository at https://github.com/flagos-ai/awesome-LLM-driven-kernel-generation.
comment: 10 pages, 1 figure
Networks of Causal Abstractions: A Sheaf-theoretic Framework
Causal artificial intelligence aims to improve explainability, robustness, and trustworthiness by leveraging causal models. Recent work has shown that sheaf-theoretic approaches offer a principled framework for representing and aligning causal knowledge across collections of subjective and imperfect causal models connected by relational structures. In this work, we introduce the causal abstraction network (CAN), a general sheaf-theoretic framework for representing, learning, and reasoning across collections of mixture causal models (MCMs). CAN formalizes causal abstraction relations among subjective MCMs operating at different levels of granularity, while remaining agnostic to explicit causal graphs, functional mechanisms, interventional data, or jointly sampled observations. At the theoretical level, we provide a categorical formulation of MCMs and characterize key properties of CANs, including consistency, smoothness, and the existence of global sections, which are related to spectral properties of an associated combinatorial Laplacian. At the methodological level, we address the problem of learning consistent CANs from data by exploiting the compositionality of causal abstractions and necessary conditions for their existence. The learning task decomposes into local problems on the network edges, for which we propose efficient solutions in Gaussian and Gaussian mixture settings. We validate the proposed learning methods on synthetic data and illustrate the practical relevance of the CAN framework through a financial application, demonstrating both recovery and counterfactual reasoning capabilities.
SDGF: Fusing Static and Multi-Scale Dynamic Correlations for Multivariate Time Series Forecasting
Accurate multivariate time series forecasting hinges on inter-series correlations, which often evolve in complex ways across different temporal scales. Existing methods are limited in modeling these multi-scale dependencies and struggle to capture their intricate and evolving nature. To address this challenge, this paper proposes a novel Static-Dynamic Graph Fusion network (SDGF), whose core lies in capturing multi-scale inter-series correlations through a dual-path graph structure learning approach. Specifically, the model utilizes a static graph based on prior knowledge to anchor long-term, stable dependencies, while concurrently employing Multi-level Wavelet Decomposition to extract multi-scale features for constructing an adaptively learned dynamic graph to capture associations at different scales. We design an attention-gated module to fuse these two complementary sources of information intelligently, and a multi-kernel dilated convolutional network is then used to deepen the understanding of temporal patterns. Comprehensive experiments on multiple widely used real-world benchmark datasets demonstrate the effectiveness of our proposed model. Code is available at https://github.com/shaoxun6033/SDGFNet.
The Flexibility Trap: Why Arbitrary Order Limits Reasoning Potential in Diffusion Language Models
Diffusion Large Language Models (dLLMs) break the rigid left-to-right constraint of traditional LLMs, enabling token generation in arbitrary orders. Intuitively, this flexibility implies a solution space that strictly supersets the fixed autoregressive trajectory, theoretically unlocking superior reasoning potential for general tasks like mathematics and coding. Consequently, numerous works have leveraged reinforcement learning (RL) to elicit the reasoning capability of dLLMs. In this paper, we reveal a counter-intuitive reality: arbitrary order generation, in its current form, narrows rather than expands the reasoning boundary of dLLMs. We find that dLLMs tend to exploit this order flexibility to bypass high-uncertainty tokens that are crucial for exploration, leading to a premature collapse of the solution space. This observation motivates a rethink of RL approaches for dLLMs, where considerable complexities, such as handling combinatorial trajectories and intractable likelihoods, are often devoted to preserving this flexibility. We demonstrate that effective reasoning can be better elicited by intentionally forgoing arbitrary order and applying standard Group Relative Policy Optimization (GRPO) instead. Our approach, JustGRPO, is minimalist yet surprisingly effective (e.g., 89.1% accuracy on GSM8K) while fully retaining the parallel decoding ability of dLLMs. Project page: https://nzl-thu.github.io/the-flexibility-trap
comment: Code and pre-trained models: https://github.com/LeapLabTHU/JustGRPO
Structure-Aware Contrastive Learning with Fine-Grained Binding Representations for Drug Discovery
Accurate identification of drug-target interactions (DTI) remains a central challenge in computational pharmacology, where sequence-based methods offer scalability. This work introduces a sequence-based drug-target interaction framework that integrates structural priors into protein representations while maintaining high-throughput screening capability. Evaluated across multiple benchmarks, the model achieves state-of-the-art performance on Human and BioSNAP datasets and remains competitive on BindingDB. In virtual screening tasks, it surpasses prior methods on LIT-PCBA, yielding substantial gains in AUROC and BEDROC. Ablation studies confirm the critical role of learned aggregation, bilinear attention, and contrastive alignment in enhancing predictive robustness. Embedding visualizations reveal improved spatial correspondence with known binding pockets and highlight interpretable attention patterns over ligand-residue contacts. These results validate the framework's utility for scalable and structure-aware DTI prediction.
comment: Accepted by 2026 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2026)
Generalized Policy Gradient with History-Aware Decision Transformer for Path Planning
With the rapidly increased number of vehicles in urban areas, existing road infrastructure struggles to accommodate modern traffic demands, resulting in congestion. This highlights the importance of efficient path planning strategies. Most recent navigation models focus on deterministic or time-dependent networks, overlooking correlations and the stochastic nature of traffic flows. In this work, we address the reliable shortest path problem in stochastic transportation networks and propose a path planning solution integrating the decision Transformer with the Generalized Policy Gradient (GPG) framework. Leveraging the Transformer's ability to model long-term dependencies, our solution improves path decision accuracy and stability. Experiments on the Sioux Falls (SFN) and large Anaheim (AN) networks show consistent improvement in on-time arrival probabilities by capturing non-Markovian dependencies in historical routing decisions on real-world topologies.
Value-State Gated Attention for Mitigating Extreme-Token Phenomena in Transformers
Large models based on the Transformer architecture are susceptible to extreme-token phenomena, such as attention sinks and value-state drains. These issues, which degrade model performance, quantization fidelity, and interpretability, arise from a problematic mutual reinforcement mechanism where the model learns an inefficient 'no-op' behavior by focusing attention on tokens with near-zero value states. In this paper, we propose Value-State Gated Attention (VGA), a simple, dedicated, and stable architectural mechanism for performing 'no-op' attention efficiently by directly breaking this cycle. VGA introduces a learnable, data-dependent gate, computed directly from the value vectors (V), to modulate the output. Through a theoretical analysis of the underlying gradients, we show that gating the value-state with a function of itself is more effective at decoupling value and attention score updates than prior methods that gate on input embeddings. This creates a direct regulatory pathway that allows the model to suppress a token's contribution based on its emergent value representation. Our experiments demonstrate that VGA significantly mitigates the formation of attention sinks and stabilizes value-state norms, leading to improved performance, robust quantization fidelity, and enhanced model interpretability.
Persuasion Tokens for Editing Factual Knowledge in LLMs
In-context knowledge editing (IKE) is a promising technique for updating Large Language Models (LLMs) with new information. However, IKE relies on lengthy, fact-specific demonstrations which are costly to create and consume significant context window space. In this paper, we introduce persuasion tokens (P-Tokens) -- special tokens trained to replicate the effect of IKE demonstrations, enabling efficient knowledge editing without requiring fact-specific demonstrations. We evaluate P-Tokens across two editing datasets and three LLMs, demonstrating performance comparable to, and often exceeding, IKE. We further find that editing performance is robust to distractors with small negative effects to neighboring facts, and that increasing the number of P-Tokens improves performance. Our work addresses key limitations of IKE and provides a more practical and scalable alternative for editing LLMs.
comment: Accepted at EACL Main 2026
Unifying VXAI: A Systematic Review and Framework for the Evaluation of Explainable AI
Modern AI systems frequently rely on opaque black-box models, most notably Deep Neural Networks, whose performance stems from complex architectures with millions of learned parameters. While powerful, their complexity poses a major challenge to trustworthiness, particularly due to a lack of transparency. Explainable AI (XAI) addresses this issue by providing human-understandable explanations of model behavior. However, to ensure their usefulness and trustworthiness, such explanations must be rigorously evaluated. Despite the growing number of XAI methods, the field lacks standardized evaluation protocols and consensus on appropriate metrics. To address this gap, we conduct a systematic literature review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and introduce a unified framework for the eValuation of XAI (VXAI). We identify 362 relevant publications and aggregate their contributions into 41 functionally similar metric groups. In addition, we propose a three-dimensional categorization scheme spanning explanation type, evaluation contextuality, and explanation quality desiderata. Our framework provides the most comprehensive and structured overview of VXAI to date. It supports systematic metric selection, promotes comparability across methods, and offers a flexible foundation for future extensions.
comment: Published at TMLR
Is More Context Always Better? Examining LLM Reasoning Capability for Time Interval Prediction
Large Language Models (LLMs) have demonstrated impressive capabilities in reasoning and prediction across different domains. Yet, their ability to infer temporal regularities from structured behavioral data remains underexplored. This paper presents a systematic study investigating whether LLMs can predict time intervals between recurring user actions, such as repeated purchases, and how different levels of contextual information shape their predictive behavior. Using a simple but representative repurchase scenario, we benchmark state-of-the-art LLMs in zero-shot settings against both statistical and machine-learning models. Two key findings emerge. First, while LLMs surpass lightweight statistical baselines, they consistently underperform dedicated machine-learning models, showing their limited ability to capture quantitative temporal structure. Second, although moderate context can improve LLM accuracy, adding further user-level detail degrades performance. These results challenge the assumption that "more context leads to better reasoning". Our study highlights fundamental limitations of today's LLMs in structured temporal inference and offers guidance for designing future context-aware hybrid models that integrate statistical precision with linguistic flexibility.
comment: Accepted at The Web Conference 2026 (WWW 2026)
Your Classifier Can Do More: Towards Bridging the Gaps in Classification, Robustness, and Generation
Joint Energy-based Models (JEMs) are well known for their ability to unify classification and generation within a single framework. Despite their promising generative and discriminative performance, their robustness remains far inferior to adversarial training (AT), which, conversely, achieves strong robustness but sacrifices clean accuracy and lacks generative ability. This inherent trilemma-balancing classification accuracy, robustness, and generative capability-raises a fundamental question: Can a single model achieve all three simultaneously? To answer this, we conduct a systematic energy landscape analysis of clean, adversarial, and generated samples across various JEM and AT variants. We observe that AT reduces the energy gap between clean and adversarial samples, while JEMs narrow the gap between clean and synthetic ones. This observation suggests a key insight: if the energy distributions of all three data types can be aligned, we might bridge their performance disparities. Building on this idea, we propose Energy-based Joint Distribution Adversarial Training (EB-JDAT), a unified generative-discriminative-robust framework that maximizes the joint probability of clean and adversarial distribution. EB-JDAT introduces a novel min-max energy optimization to explicitly aligning energies across clean, adversarial, and generated samples. Extensive experiments on CIFAR-10, CIFAR-100, and ImageNet subsets demonstrate that EB-JDAT achieves state-of-the-art robustness while maintaining near-original accuracy and generation quality of JEMs, effectively resolving the triple trade-off between accuracy, robustness, and generation.
When Sharpening Becomes Collapse: Sampling Bias and Semantic Coupling in RL with Verifiable Rewards
Reinforcement Learning with Verifiable Rewards (RLVR) is a central paradigm for turning large language models (LLMs) into reliable problem solvers, especially in logic-heavy domains. Despite its empirical success, it remains unclear whether RLVR elicits novel capabilities or merely sharpens the distribution over existing knowledge. We study this by formalizing over-sharpening, a phenomenon where the policy collapses onto limited modes, suppressing valid alternatives. At a high level, we discover finite-batch updates intrinsically bias learning toward sampled modes, triggering a collapse that propagates globally via semantic coupling. To mitigate this, we propose inverse-success advantage calibration to prioritize difficult queries and distribution-level calibration to diversify sampling via a memory network. Empirical evaluations validate that our strategies can effectively improve generalization.
Multiview Random Vector Functional Link Network for Predicting DNA-Binding Proteins
The identification of DNA-binding proteins (DBPs) is essential due to their significant impact on various biological activities. Understanding the mechanisms underlying protein-DNA interactions is essential for elucidating various life activities. In recent years, machine learning-based models have been prominently utilized for DBP prediction. In this paper, to predict DBPs, we propose a novel framework termed a multiview random vector functional link (MvRVFL) network, which fuses neural network architecture with multiview learning. The MvRVFL model integrates both late and early fusion advantages, enabling separate regularization parameters for each view, while utilizing a closed-form solution for efficiently determining unknown parameters. The primal objective function incorporates a coupling term aimed at minimizing a composite of errors stemming from all views. From each of the three protein views of the DBP datasets, we extract five features. These features are then fused together by incorporating a hidden feature during the model training process. The performance of the proposed MvRVFL model on the DBP dataset surpasses that of baseline models, demonstrating its superior effectiveness. We further validate the practicality of the proposed model across diverse benchmark datasets, and both theoretical analysis and empirical results consistently demonstrate its superior generalization performance over baseline models.
Architecture independent generalization bounds for overparametrized deep ReLU networks
We prove that overparametrized neural networks are able to generalize with a test error that is independent of the level of overparametrization, and independent of the Vapnik-Chervonenkis (VC) dimension. We prove explicit bounds that only depend on the metric geometry of the test and training sets, on the regularity properties of the activation function, and on the operator norms of the weights and norms of biases. For overparametrized deep ReLU networks with a training sample size bounded by the input space dimension, we explicitly construct zero loss minimizers without use of gradient descent, and prove a uniform generalization bound that is independent of the network architecture. We perform computational experiments of our theoretical results with MNIST, and obtain agreement with the true test error within a 22 % margin on average.
comment: AMS Latex, 19 pages
Collaborative Learning-Enhanced Lightweight Models for Predicting Arterial Blood Pressure Waveform in a Large-scale Perioperative Dataset
Noninvasive arterial blood pressure (ABP) monitoring is essential for patient management in critical care and perioperative settings, providing continuous assessment of cardiovascular hemodynamics with minimal risks. Numerous deep learning models have developed to reconstruct ABP waveform from noninvasively acquired physiological signals such as electrocardiogram and photoplethysmogram. However, limited research has addressed the issue of model performance and computational load for deployment on embedded systems. The study introduces a lightweight sInvResUNet, along with a collaborative learning scheme named KDCL_sInvResUNet. With only 0.89 million parameters and a computational load of 0.02 GFLOPS, real-time ABP estimation was successfully achieved on embedded devices with an inference time of just 8.49 milliseconds for a 10-second output. We performed subject-independent validation in a large-scale and heterogeneous perioperative dataset containing 1,257,141 data segments from 2,154 patients, with a wide BP range (41-257 mmHg for SBP, and 31-234 mmHg for DBP). The proposed KDCL_sInvResUNet achieved lightly better performance compared to large models, with a mean absolute error of 10.06 mmHg and mean Pearson correlation of 0.88 in tracking ABP changes. Despite these promising results, all deep learning models showed significant performance variations across different demographic and cardiovascular conditions, highlighting their limited ability to generalize across such a broad and diverse population. This study lays a foundation work for real-time, unobtrusive ABP monitoring in real-world perioperative settings, providing baseline for future advancements in this area.
Scientifically-Interpretable Reasoning Network (ScIReN): Discovering Hidden Relationships in the Carbon Cycle and Beyond
Soils have potential to mitigate climate change by sequestering carbon from the atmosphere, but the soil carbon cycle remains poorly understood. Scientists have developed process-based models of the soil carbon cycle based on existing knowledge, but they contain numerous unknown parameters and often fit observations poorly. On the other hand, neural networks can learn patterns from data, but do not respect known scientific laws, and are too opaque to reveal novel scientific relationships. We thus propose Scientifically-Interpretable Reasoning Network (ScIReN), a fully-transparent framework that combines interpretable neural and process-based reasoning. An interpretable encoder predicts scientifically-meaningful latent parameters, which are then passed through a differentiable process-based decoder to predict labeled output variables. While the process-based decoder enforces existing scientific knowledge, the encoder leverages Kolmogorov-Arnold networks (KANs) to reveal interpretable relationships between input features and latent parameters, using novel smoothness penalties to balance expressivity and simplicity. ScIReN also introduces a novel hard-sigmoid constraint layer to restrict latent parameters into prior ranges while maintaining interpretability. We apply ScIReN on two tasks: simulating the flow of organic carbon through soils, and modeling ecosystem respiration from plants. On both tasks, ScIReN outperforms or matches black-box models in predictive accuracy, while greatly improving scientific interpretability -- it can infer latent scientific mechanisms and their relationships with input features.
comment: 19 pages, 11 figures
On the Fundamental Limits of LLMs at Scale
Large Language Models (LLMs) have benefited enormously from scaling, yet these gains are bounded by five fundamental limitations: (1) hallucination, (2) context compression, (3) reasoning degradation, (4) retrieval fragility, and (5) multimodal misalignment. While existing surveys describe these phenomena empirically, they lack a rigorous theoretical synthesis connecting them to the foundational limits of computation, information, and learning. This work closes that gap by presenting a unified, proof-informed framework that formalizes the innate theoretical ceilings of LLM scaling. First, computability and uncomputability imply an irreducible residue of error: for any computably enumerable model family, diagonalization guarantees inputs on which some model must fail, and undecidable queries (e.g., halting-style tasks) induce infinite failure sets for all computable predictors. Second, information-theoretic and statistical constraints bound attainable accuracy even on decidable tasks, finite description length enforces compression error, and long-tail factual knowledge requires prohibitive sample complexity. Third, geometric and computational effects compress long contexts far below their nominal size due to positional under-training, encoding attenuation, and softmax crowding. We further show how likelihood-based training favors pattern completion over inference, how retrieval under token limits suffers from semantic drift and coupling noise, and how multimodal scaling inherits shallow cross-modal alignment. Across sections, we pair theorems and empirical evidence to outline where scaling helps, where it saturates, and where it cannot progress, providing both theoretical foundations and practical mitigation paths like bounded-oracle retrieval, positional curricula, and sparse or hierarchical attention.
comment: Submitted to TMLR 2025
A Regularized Actor-Critic Algorithm for Bi-Level Reinforcement Learning
We study a structured bi-level optimization problem where the upper-level objective is a smooth function and the lower-level problem is policy optimization in a Markov decision process (MDP). The upper-level decision variable parameterizes the reward of the lower-level MDP, and the upper-level objective depends on the optimal induced policy. Existing methods for bi-level optimization and RL often require second-order information, impose strong regularization at the lower level, or inefficiently use samples through nested-loop procedures. In this work, we propose a single-loop, first-order actor-critic algorithm that optimizes the bi-level objective via a penalty-based reformulation. We introduce into the lower-level RL objective an attenuating entropy regularization, which enables asymptotically unbiased upper-level hyper-gradient estimation without solving the unregularized RL problem exactly. We establish the finite-time and finite-sample convergence of the proposed algorithm to a stationary point of the original, unregularized bi-level optimization problem through a novel lower-level residual analysis under a special type of Polyak-Lojasiewicz condition. We validate the performance of our method through experiments on a GridWorld goal position problem and on happy tweet generation through reinforcement learning from human feedback (RLHF).
Towards Interpretable Deep Generative Models via Causal Representation Learning
Recent developments in generative artificial intelligence (AI) rely on machine learning techniques such as deep learning and generative modeling to achieve state-of-the-art performance across wide-ranging domains. These methods' surprising performance is due in part to their ability to learn implicit "representations" of complex, multi-modal data. Unfortunately, deep neural networks are notoriously black boxes that obscure these representations, making them difficult to interpret or analyze. To resolve these difficulties, one approach is to build new interpretable neural network models from the ground up. This is the goal of the emerging field of causal representation learning (CRL) that uses causality as a vector for building flexible, interpretable, and transferable generative AI. CRL can be seen as a synthesis of three intrinsically statistical ideas: (i) latent variable models such as factor analysis; (ii) causal graphical models with latent variables; and (iii) nonparametric statistics and deep learning. This paper introduces CRL from a statistical perspective, focusing on connections to classical models as well as statistical and causal identifiability results. We also highlights key application areas, implementation strategies, and open statistical questions.
comment: Accepted in Journal of the American Statistical Association: Special Issue on AI
Fisher-Orthogonal Projected Natural Gradient Descent for Continual Learning
Continual learning aims to enable neural networks to acquire new knowledge on sequential tasks. However, the key challenge in such settings is to learn new tasks without catastrophically forgetting previously learned tasks. We propose the Fisher-Orthogonal Projected Natural Gradient Descent (FOPNG) optimizer, which enforces Fisher-orthogonal constraints on parameter updates to preserve old task performance while learning new tasks. Unlike existing methods that operate in Euclidean parameter space, FOPNG projects gradients onto the Fisher-orthogonal complement of previous task gradients. This approach unifies natural gradient descent with orthogonal gradient methods within an information-geometric framework. We provide theoretical analysis deriving the projected update, describe efficient and practical implementations using the diagonal Fisher, and demonstrate strong results on standard continual learning benchmarks such as Permuted-MNIST, Split-MNIST, Rotated-MNIST, Split-CIFAR10, and Split-CIFAR100. Our code is available at https://github.com/ishirgarg/FOPNG.
Tail Distribution of Regret in Optimistic Reinforcement Learning
We derive instance-dependent tail bounds for the regret of optimism-based reinforcement learning in finite-horizon tabular Markov decision processes with unknown transition dynamics. Focusing on a UCBVI-type algorithm, we characterize the tail distribution of the cumulative regret $R_K$ over $K$ episodes, rather than only its expectation or a single high-probability quantile. We analyze two natural exploration-bonus schedules: (i) a $K$-dependent scheme that explicitly incorporates the total number of episodes $K$, and (ii) a $K$-independent scheme that depends only on the current episode index. For both settings, we obtain an upper bound on $\Pr(R_K \ge x)$ that exhibits a distinctive two-regime structure: a sub-Gaussian tail starting from an instance-dependent scale $m_K$ up to a transition threshold, followed by a sub-Weibull tail beyond that point. We further derive corresponding instance-dependent bounds on the expected regret $\mathbb{E}[R_K]$. The proposed algorithm depends on a tuning parameter $α$, which balances the expected regret and the range over which the regret exhibits a sub-Gaussian tail. To the best of our knowledge, our results provide one of the first comprehensive tail-regret guarantees for a standard optimistic algorithm in episodic reinforcement learning.
comment: 17 pages, 0 figures
Inexact calculus of variations on the hyperspherical tangent bundle and its connections to the attention mechanism
We offer a theoretical mathematical background through Lagrangian optimization on the unit hyperspherical manifold and its tangential collection with application to the Transformer and its token space. Our methods are catered to the attention mechanism in a theoretical setting, but largely appeal to a broader mathematical lens as well. The Transformer, as a flow map, exists in the tangent fiber for each token along the high-dimensional unit sphere. The circumstance of the hypersphere across the latent data is reasonable due to the trained diagonal matrix equal to the identity, which has various empirical justifications. Thus, under the continuum limit of the dynamics, the latent vectors flow among the tangent bundle. Using these facts, we devise a mathematical framework focusing on the attention mechanism through calculus of variations. We develop a functional and show that the continuous flow map induced by the Transformer satisfies this functional, therefore attention can be viewed as a natural solver of a calculus of variations problem. We invent new scenarios of when our methods are applicable based on loss optimization with respect to path optimality. We derive the projected Euler-Lagrange equation under the specific flow map. The variant of the Euler-Lagrange equation we present has various appearances in literature, but, to our understanding, oftentimes not foundationally proven or under other specialized cases. Our overarching proof is new: our techniques are classical and the use of the flow map object is original. We provide several other relevant results, primarily ones specific to neural scenarios. In particular, much of our analysis will be attempting to quantify Transformer data in variational contexts under neural approximations.
A Collision-Free Hot-Tier Extension for Engram-Style Conditional Memory: A Controlled Study of Training Dynamics
We investigate whether high-frequency key collisions are a primary bottleneck in Engram-style conditional memory. To isolate the effect of collisions, we introduce Engram-Nine, a collision-free hot-tier extension that maps the most frequent n-grams through a Minimal Perfect Hash Function (MPHF) while retaining the original multi-head hashed lookup as a cold tier. Under a strictly iso-parameter setup, the collision-free design does not consistently improve validation loss. Through route-stratified evaluation (decomposing per-token loss into hot/cold contributions), we uncover a consistent "hot-to-cold advantage flip" during training: hot (high-frequency) positions initially have lower loss, but cold positions eventually surpass them. Crucially, collision-free configurations flip earlier than collision-prone baselines, suggesting that collisions act as implicit regularization. We also identify a gating mismatch: the gate learns to favor hot positions early in training, but this preference persists even after the flip, assigning higher weights to positions with higher loss. Our findings suggest that improving lookup precision alone does not guarantee better training outcomes. The dominant limitation may lie in gating credit assignment rather than index accuracy, and collision-induced noise may provide beneficial regularization that should not be naively eliminated.
PRISM-CAFO: Prior-conditioned Remote-sensing Infrastructure Segmentation and Mapping for CAFOs
Large-scale livestock operations pose significant risks to human health and the environment, while also being vulnerable to threats such as infectious diseases and extreme weather events. As the number of such operations continues to grow, accurate and scalable mapping has become increasingly important. In this work, we present an infrastructure-first, explainable pipeline for identifying and characterizing Concentrated Animal Feeding Operations (CAFOs) from aerial and satellite imagery. Our method (i) detects candidate infrastructure (e.g., barns, feedlots, manure lagoons, silos) with a domain-tuned YOLOv8 detector, then derives SAM2 masks from these boxes and filters component-specific criteria; (ii) extracts structured descriptors (e.g., counts, areas, orientations, and spatial relations) and fuses them with deep visual features using a lightweight spatial cross-attention classifier; and (iii) outputs both CAFO type predictions and mask-level attributions that link decisions to visible infrastructure. Through comprehensive evaluation, we show that our approach achieves state-of-the-art performance, with Swin-B+PRISM-CAFO surpassing the best performing baseline by up to 15\%. Beyond strong predictive performance across diverse U.S. regions, we run systematic gradient--activation analyses that quantify the impact of domain priors and show how specific infrastructure (e.g., barns, lagoons) shapes classification decisions. We release code, infrastructure masks, and descriptors to support transparent, scalable monitoring of livestock infrastructure, enabling risk modeling, change detection, and targeted regulatory action. Github: https://github.com/Nibir088/PRISM-CAFO.
From Aggregation to Selection: User-Validated Distributed Social Recommendation
Social recommender systems facilitate social connections by identifying potential friends for users. Each user maintains a local social network centered around themselves, resulting in a naturally distributed social structure. Recent research on distributed modeling for social recommender systems has gained increasing attention, as it naturally aligns with the user-centric structure of user interactions. Current distributed social recommender systems rely on automatically combining predictions from multiple models, often overlooking the user's active role in validating whether suggested connections are appropriate. Moreover, recommendation decisions are validated by individual users rather than derived from a single global ordering of candidates. As a result, standard ranking-based evaluation metrics make it difficult to evaluate whether a user-confirmed recommendation decision is actually correct. To address these limitations, we propose DeSocial, a distributed social recommendation framework with user-validation. DeSocial enables users to select recommendation algorithms to validate their potential connections, and the verification is processed through majority consensus among multiple independent user validators. To evaluate the distributed recommender system with user validator, we formulate this setting as a link prediction and verification task and introduce Acc@K, a consensus-based evaluation metric that measures whether user-approved recommendations are correct. Experiments on 4 real-world social networks shows that DeSocial improves decision correctness and robustness compared to single-point and distributed baselines. These findings highlight the potential of user-validated distributed recommender systems as a practical approach to social recommendation, with broader applicability to distributed and decentralized recommendations. Code: https://github.com/agiresearch/DeSocial.
comment: Accepted by HCRS@WWW 2026
Enhancing Federated Class-Incremental Learning via Spatial-Temporal Statistics Aggregation
Federated Class-Incremental Learning (FCIL) enables Class-Incremental Learning (CIL) from distributed data. Existing FCIL methods typically integrate old knowledge preservation into local client training. However, these methods cannot avoid spatial-temporal client drift caused by data heterogeneity and often incur significant computational and communication overhead, limiting practical deployment. To address these challenges simultaneously, we propose a novel approach, Spatial-Temporal Statistics Aggregation (STSA), which provides a unified framework to aggregate feature statistics both spatially (across clients) and temporally (across stages). The aggregated feature statistics are unaffected by data heterogeneity and can be used to update the classifier in closed form at each stage. Additionally, we introduce STSA-E, a communication-efficient variant with theoretical guarantees, achieving similar performance to STSA-E with much lower communication overhead. Extensive experiments on three widely used FCIL datasets, with varying degrees of data heterogeneity, show that our method outperforms state-of-the-art FCIL methods in terms of performance, flexibility, and both communication and computation efficiency. The code is available at https://github.com/Yuqin-G/STSA.
comment: WWW 2026
Detecting Training Data of Large Language Models via Expectation Maximization
Membership inference attacks (MIAs) aim to determine whether a specific example was used to train a given language model. While prior work has explored prompt-based attacks such as ReCALL, these methods rely heavily on the assumption that using known non-members as prompts reliably suppresses the model's responses to non-member queries. We propose EM-MIA, a new membership inference approach that iteratively refines prefix effectiveness and membership scores using an expectation-maximization strategy without requiring labeled non-member examples. To support controlled evaluation, we introduce OLMoMIA, a benchmark that enables analysis of MIA robustness under systematically varied distributional overlap and difficulty. Experiments on WikiMIA and OLMoMIA show that EM-MIA outperforms existing baselines, particularly in settings with clear distributional separability. We highlight scenarios where EM-MIA succeeds in practical settings with partial distributional overlap, while failure cases expose fundamental limitations of current MIA methods under near-identical conditions. We release our code and evaluation pipeline to encourage reproducible and robust MIA research.
comment: EACL 2026
Sawtooth Wavefront Reordering: Enhanced CuTile FlashAttention on NVIDIA GB10
High-performance attention kernels are essential for Large Language Models. This paper presents analysis of CuTile-based Flash Attention memory behavior and a technique to improve its cache performance. In particular, our analysis on the NVIDIA GB10 (Grace Blackwell) identifies the main cause of L2 cache miss. Leveraging this insight, we introduce a new programming technique called Sawtooth Wavefront Reordering that reduces L2 misses. We validate it in both CUDA and CuTile, observing 50\% or greater reduction in L2 misses and up to 60\% increase in throughput on GB10.
Rethinking Large Language Models For Irregular Time Series Classification In Critical Care
Time series data from the Intensive Care Unit (ICU) provides critical information for patient monitoring. While recent advancements in applying Large Language Models (LLMs) to time series modeling (TSM) have shown great promise, their effectiveness on the irregular ICU data, characterized by particularly high rates of missing values, remains largely unexplored. This work investigates two key components underlying the success of LLMs for TSM: the time series encoder and the multimodal alignment strategy. To this end, we establish a systematic testbed to evaluate their impact across various state-of-the-art LLM-based methods on benchmark ICU datasets against strong supervised and self-supervised baselines. Results reveal that the encoder design is more critical than the alignment strategy. Encoders that explicitly model irregularity achieve substantial performance gains, yielding an average AUPRC increase of $12.8\%$ over the vanilla Transformer. While less impactful, the alignment strategy is also noteworthy, with the best-performing semantically rich, fusion-based strategy achieving a modest $2.9\%$ improvement over cross-attention. However, LLM-based methods require at least 10$\times$ longer training than the best-performing irregular supervised models, while delivering only comparable performance. They also underperform in data-scarce few-shot learning settings. These findings highlight both the promise and current limitations of LLMs for irregular ICU time series. The code is available at https://github.com/mHealthUnimelb/LLMTS.
comment: Accepted by ICASSP 2026
Falsifying Sparse Autoencoder Reasoning Features in Language Models
We study how reliably sparse autoencoders (SAEs) support claims about reasoning-related internal features in large language models. We first give a stylized analysis showing that sparsity-regularized decoding can preferentially retain stable low-dimensional correlates while suppressing high-dimensional within-behavior variation, motivating the possibility that contrastively selected "reasoning" features may concentrate on cue-like structure when such cues are coupled with reasoning traces. Building on this perspective, we propose a falsification-based evaluation framework that combines causal token injection with LLM-guided counterexample construction. Across 22 configurations spanning multiple model families, layers, and reasoning datasets, we find that many contrastively selected candidates are highly sensitive to token-level interventions, with 45%-90% activating after injecting only a few associated tokens into non-reasoning text. For the remaining context-dependent candidates, LLM-guided falsification produces targeted non-reasoning inputs that trigger activation and meaning-preserving paraphrases of top-activating reasoning traces that suppress it. A small steering study yields minimal changes on the evaluated benchmarks. Overall, our results suggest that, in the settings we study, sparse decompositions can favor low-dimensional correlates that co-occur with reasoning, underscoring the need for falsification when attributing high-level behaviors to individual SAE features. Code is available at https://github.com/GeorgeMLP/reasoning-probing.
Key and Value Weights Are Probably All You Need: On the Necessity of the Query, Key, Value weight Triplet in Decoder-Only Transformers
The Query, Key, Value weight triplet is a building block of current attention mechanisms in state-of-the-art LLMs. We theoretically investigate whether this triplet can be reduced, proving under simplifying assumptions that the Query weights are redundant, thereby reducing the number of non-embedding/lm-head parameters by over 8%. We validate the theory on full-complexity GPT-3 small architectures (with layer normalization, skip connections, and weight decay) trained from scratch, demonstrating that the reduced model achieves comparable validation loss to standard baselines. These findings motivate the investigation of the Query weight redundancy at scale.
CooperBench: Why Coding Agents Cannot be Your Teammates Yet
Resolving team conflicts requires not only task-specific competence, but also social intelligence to find common ground and build consensus. As AI agents increasingly collaborate on complex work, they must develop coordination capabilities to function as effective teammates. Yet we hypothesize that current agents lack these capabilities. To test this, we introduce CooperBench, a benchmark of over 600 collaborative coding tasks across 12 libraries in 4 programming languages. Each task assigns two agents different features that can be implemented independently but may conflict without proper coordination. Tasks are grounded in real open-source repositories with expert-written tests. Evaluating state-of-the-art coding agents, we observe the curse of coordination: agents achieve on average 30% lower success rates when working together compared to performing both tasks individually. This contrasts sharply with human teams, where adding teammates typically improves productivity. Our analysis reveals three key issues: (1) communication channels become jammed with vague, ill-timed, and inaccurate messages; (2) even with effective communication, agents deviate from their commitments; and (3) agents often hold incorrect expectations about others' plans and communication. Through large-scale simulation, we also observe rare but interesting emergent coordination behavior including role division, resource division, and negotiation. Our research presents a novel benchmark for collaborative coding and calls for a shift from pursuing individual agent capability to developing social intelligence.
comment: https://cooperbench.com First two authors contribute equally. The 3th - 6th authors contribute equally
UQLM: A Python Package for Uncertainty Quantification in Large Language Models
Hallucinations, defined as instances where Large Language Models (LLMs) generate false or misleading content, pose a significant challenge that impacts the safety and trust of downstream applications. We introduce UQLM, a Python package for LLM hallucination detection using state-of-the-art uncertainty quantification (UQ) techniques. This toolkit offers a suite of UQ-based scorers that compute response-level confidence scores ranging from 0 to 1. This library provides an off-the-shelf solution for UQ-based hallucination detection that can be easily integrated to enhance the reliability of LLM outputs.
comment: Accepted by JMLR; UQLM Repository: https://github.com/cvs-health/uqlm
Don't Waste It: Guiding Generative Recommenders with Structured Human Priors via Multi-Head Decoding
Optimizing recommender systems for objectives beyond accuracy, such as diversity, novelty, and personalization, is crucial for long-term user satisfaction. To this end, industrial practitioners have accumulated vast amounts of structured domain knowledge, which we term human priors (e.g., item taxonomies, temporal patterns). This knowledge is typically applied through post-hoc adjustments during ranking or post-ranking. However, this approach remains decoupled from the core model learning, which is particularly undesirable as the industry shifts to end-to-end generative recommendation foundation models. On the other hand, many methods targeting these beyond-accuracy objectives often require architecture-specific modifications and discard these valuable human priors by learning user intent in a fully unsupervised manner. Instead of discarding the human priors accumulated over years of practice, we introduce a backbone-agnostic framework that seamlessly integrates these human priors directly into the end-to-end training of generative recommenders. With lightweight, prior-conditioned adapter heads inspired by efficient LLM decoding strategies, our approach guides the model to disentangle user intent along human-understandable axes (e.g., interaction types, long- vs. short-term interests). We also introduce a hierarchical composition strategy for modeling complex interactions across different prior types. Extensive experiments on three large-scale datasets demonstrate that our method significantly enhances both accuracy and beyond-accuracy objectives. We also show that human priors allow the backbone model to more effectively leverage longer context lengths and larger model sizes.
Generalized Spherical Neural Operators: Green's Function Formulation
Neural operators offer powerful approaches for solving parametric partial differential equations, but extending them to spherical domains remains challenging due to the need to preserve intrinsic geometry while avoiding distortions that break rotational consistency. Existing spherical operators rely on rotational equivariance but often lack the flexibility for real-world complexity. We propose a generalized operator-design framework based on the designable spherical Green's function and its harmonic expansion, establishing a solid operator-theoretic foundation for spherical learning. Based on this, we propose an absolute and relative position-dependent Green's function that enables flexible balance of equivariance and invariance for real-world modeling. The resulting operator, Green's-function Spherical Neural Operator (GSNO) with a novel spectral learning method, can adapt to non-equivariant systems while retaining spectral efficiency and grid invariance. To exploit GSNO, we develop SHNet, a hierarchical architecture that combines multi-scale spectral modeling with spherical up-down sampling, enhancing global feature representation. Evaluations on diffusion MRI, shallow water dynamics, and global weather forecasting, GSNO and SHNet consistently outperform state-of-the-art methods. The theoretical and experimental results position GSNO as a principled and generalized framework for spherical operator design and learning, bridging rigorous theory with real-world complexity.
Beyond Memorization: Selective Learning for Copyright-Safe Diffusion Model Training
Memorization in large-scale text-to-image diffusion models poses significant security and intellectual property risks, enabling adversarial attribute extraction and the unauthorized reproduction of sensitive or proprietary features. While conventional dememorization techniques, such as regularization and data filtering, limit overfitting to specific training examples, they fail to systematically prevent the internalization of prohibited concept-level features. Simply discarding all images containing a sensitive feature wastes invaluable training data, necessitating a method for selective learning at the concept level. We introduce a gradient projection method designed to enforce a stringent requirement of concept-level feature exclusion. Our defense operates during backpropagation by systematically identifying and excising training signals aligned with embeddings of prohibited attributes. Specifically, we project each gradient update onto the orthogonal complement of the sensitive feature's embedding space, thereby zeroing out its influence on the model's weights. Our method integrates seamlessly into standard diffusion model training pipelines and complements existing defenses. We analyze our method against an adversary aiming for feature extraction. In extensive experiments, we demonstrate that our framework drastically reduces memorization while rigorously preserving generation quality and semantic fidelity. By reframing memorization control as selective learning, our approach establishes a new paradigm for IP-safe and privacy-preserving generative AI.
Language Models are Symbolic Learners in Arithmetic
The prevailing question in LM performing arithmetic is whether these models learn to truly compute or if they simply master superficial pattern matching. In this paper, we argues for the latter, presenting evidence that LMs act as greedy symbolic learners, prioritizing the simplest possible shortcuts to fit the stats of dataset to solve arithmetic tasks. To investigate this, we introduce subgroup induction, a practical framework adapted from Solomonoff Induction (SI), one of the most powerful universal predictors. Our framework analyzes arithmetic problems by breaking them down into subgroups-minimal mappings between a few input digits and a single output digit. Our primary metric, subgroup quality, measures the viability of these shortcuts. Experiments reveal a distinct U-shaped accuracy pattern in multi-digit multiplication: LMs quickly master the first and last output digits while struggling with those in the middle. We demonstrate this U-shape is not coincidental; it perfectly mirrors the quality of the simplest possible subgroups, those requiring the fewest input tokens. This alignment suggests a core learning mechanism: LMs first learn easy, low-token shortcuts and only incorporate more complex, multi-token patterns as training progresses. They do not learn the algorithm of multiplication but rather a hierarchy of increasingly complex symbol-to-symbol mappings. Ultimately, our findings suggest that the path to arithmetic mastery for LMs is not paved with algorithms, but with a cascade of simple, hierarchically-learned symbolic shortcuts.
comment: TMLR 2026. Code at https://github.com/chili-lab/Symbolic-Arithmetic
HOSL: Hybrid-Order Split Learning for Memory-Constrained Edge Training
Split learning (SL) enables collaborative training of large language models (LLMs) between resource-constrained edge devices and compute-rich servers by partitioning model computation across the network boundary. However, existing SL systems predominantly rely on first-order (FO) optimization, which requires clients to store intermediate quantities such as activations for backpropagation. This results in substantial memory overhead, largely negating benefits of model partitioning. In contrast, zeroth-order (ZO) optimization eliminates backpropagation and significantly reduces memory usage, but often suffers from slow convergence and degraded performance. In this work, we propose HOSL, a novel Hybrid-Order Split Learning framework that addresses this fundamental trade-off between memory efficiency and optimization effectiveness by strategically integrating ZO optimization on the client side with FO optimization on the server side. By employing memory-efficient ZO gradient estimation at the client, HOSL eliminates backpropagation and activation storage, reducing client memory consumption. Meanwhile, server-side FO optimization ensures fast convergence and competitive performance. Theoretically, we show that HOSL achieves an $\mathcal{O}(\sqrt{d_c/TQ})$ rate, which depends on client-side model dimension $d_c$ rather than the full model dimension $d$, demonstrating that convergence improves as more computation is offloaded to the server. Extensive experiments on OPT models (125M and 1.3B parameters) across 6 tasks demonstrate that HOSL reduces client GPU memory by up to 3.7$\times$ compared to the FO method while achieving accuracy within 0.20%-4.23% of this baseline. Furthermore, HOSL outperforms the ZO baseline by up to 15.55%, validating the effectiveness of our hybrid strategy for memory-efficient training on edge devices.
comment: 12 pages, 2 figures, 6 tables. Submitted to WiOpt 2026
Beyond the noise: intrinsic dimension estimation with optimal neighbourhood identification
The Intrinsic Dimension (ID) is a key concept in unsupervised learning and feature selection, as it is a lower bound to the number of variables which are necessary to describe a system. However, in almost any real-world dataset the ID depends on the scale at which the data are analysed. Quite typically at a small scale, the ID is very large, as the data are affected by measurement errors. At large scale, the ID can also be erroneously large, due to the curvature and the topology of the manifold containing the data. In this work, we introduce an automatic protocol to select the sweet spot, namely the correct range of scales in which the ID is meaningful and useful. This protocol is based on imposing that for distances smaller than the correct scale the density of the data is constant. In the presented framework, to estimate the density it is necessary to know the ID, therefore, this condition is imposed self-consistently. We illustrate the usefulness and robustness of this procedure to noise by benchmarks on artificial and real-world datasets.
Purrception: Variational Flow Matching for Vector-Quantized Image Generation ICLR 2026
We introduce Purrception, a variational flow matching approach for vector-quantized image generation that provides explicit categorical supervision while maintaining continuous transport dynamics. Our method adapts Variational Flow Matching to vector-quantized latents by learning categorical posteriors over codebook indices while computing velocity fields in the continuous embedding space. This combines the geometric awareness of continuous methods with the discrete supervision of categorical approaches, enabling uncertainty quantification over plausible codes and temperature-controlled generation. We evaluate Purrception on ImageNet-1k 256x256 generation. Training converges faster than both continuous flow matching and discrete flow matching baselines while achieving competitive FID scores with state-of-the-art models. This demonstrates that Variational Flow Matching can effectively bridge continuous transport and discrete supervision for improved training efficiency in image generation.
comment: Published at ICLR 2026
A general framework for adaptive nonparametric dimensionality reduction
Dimensionality reduction is a fundamental task in modern data science. Several projection methods specifically tailored to take into account the non-linearity of the data via local embeddings have been proposed. Such methods are often based on local neighbourhood structures and require tuning the number of neighbours that define this local structure, and the dimensionality of the lower-dimensional space onto which the data are projected. Such choices critically influence the quality of the resulting embedding. In this paper, we exploit a recently proposed intrinsic dimension estimator which also returns the optimal locally adaptive neighbourhood sizes according to some desirable criteria. In principle, this adaptive framework can be employed to perform an optimal hyper-parameter tuning of any dimensionality reduction algorithm that relies on local neighbourhood structures. Numerical experiments on both real-world and simulated datasets show that the proposed method can be used to significantly improve well-known projection methods when employed for various learning tasks, with improvements measurable through both quantitative metrics and the quality of low-dimensional visualizations.
Efficient Gaussian process learning via subspace projections
We propose a novel training objective for GPs constructed using lower-dimensional linear projections of the data, referred to as \emph{projected likelihood} (PL). We provide a closed-form expression for the information loss related to the PL and empirically show that it can be reduced with random projections on the unit sphere. We show the superiority of the PL, in terms of accuracy and computational efficiency, over the exact GP training and the variational free energy approach to sparse GPs over different optimisers, kernels and datasets of moderately large sizes.
comment: Accepted at IEEE ICASSP 2026
Confidence intervals for forced alignment boundaries using model ensembles
Forced alignment is a common tool to align audio with orthographic and phonetic transcriptions. Most forced alignment tools provide only a single estimate of a boundary. The present project introduces a method of deriving confidence intervals for these boundaries using a neural network ensemble technique. Ten different segment classifier neural networks were previously trained, and the alignment process is repeated with each model. The alignment ensemble is then used to place the boundary at the median of the boundaries in the ensemble, and 97.85% confidence intervals are constructed using order statistics. Having confidence intervals provides an estimate of the uncertainty in the boundary placement, facilitating tasks like finding boundaries that should be reviewed. As a bonus, on the Buckeye and TIMIT corpora, the ensemble boundaries show a slight overall improvement over using just a single model. The confidence intervals can be emitted during the alignment process as JSON files and a main table for programmatic and statistical analysis. For familiarity, they are also output as Praat TextGrids using a point tier to represent the intervals.
comment: submitted for publication; 7 pages, 1 figure
Agentic Plan Caching: Test-Time Memory for Fast and Cost-Efficient LLM Agents NeurIPS 2025
LLM-based agent applications have shown increasingly remarkable capabilities in complex workflows but incur substantial costs and latency due to extensive planning and reasoning requirements. Existing LLM caching techniques (like context caching and semantic caching), primarily designed for serving chatbots, are insufficient for agent applications where outputs depend on external data and environmental contexts. We propose Agentic Plan Caching (APC), a novel test-time memory that extracts, stores, adapts, and reuses structured plan templates from planning stages of agent applications across semantically similar tasks to reduce the cost and latency of serving. Unlike traditional semantic caching, our system extracts plan templates from completed agent executions at test-time, employs keyword extraction to match new requests against cached plans, and utilizes lightweight models to adapt these templates to task-specific plans with contexts. Evaluation across multiple real-world agent applications shows that our system can reduce costs by 50.31% and latency by 27.28% on average while maintaining performance, offering a more efficient solution for serving LLM-based agents that complements existing LLM serving infrastructures.
comment: NeurIPS 2025. 27 pages
Privacy Reasoning in Ambiguous Contexts
We study the ability of language models to reason about appropriate information disclosure - a central aspect of the evolving field of agentic privacy. Whereas previous works have focused on evaluating a model's ability to align with human decisions, we examine the role of ambiguity and missing context on model performance when making information-sharing decisions. We identify context ambiguity as a crucial barrier for high performance in privacy assessments. By designing Camber, a framework for context disambiguation, we show that model-generated decision rationales can reveal ambiguities and that systematically disambiguating context based on these rationales leads to significant accuracy improvements (up to 13.3% in precision and up to 22.3% in recall) as well as reductions in prompt sensitivity. Overall, our results indicate that approaches for context disambiguation are a promising way forward to enhance agentic privacy reasoning.
K2-V2: A 360-Open, Reasoning-Enhanced LLM
We introduce K2-V2, a 360-open LLM built from scratch as a superior base for reasoning adaptation, in addition to functions such as conversation and knowledge retrieval from general LLMs. It stands as the strongest fully open model, rivals open-weight leaders in its size class, outperforms Qwen2.5-72B and approaches the performance of Qwen3-235B. We actively infuse domain knowledge, reasoning, long-context, and tool use throughout the training process. This explicitly prepares the model for complex reasoning tasks. We demonstrate this potential using simple supervised fine-tuning, establishing a strong baseline that indicates significant headroom for advanced alignment. By releasing the full training history and data composition, we maximize the effectiveness of continuous training, a key open source production scenario. We release the model weights and signature LLM360 artifacts, such as complete training data, to empower the community with a capable, reasoning-centric foundation.
Adaptive KDE for Real-Time Thresholding: Prioritized Queues for Financial Crime Investigation
We study the problem of converting a continuous stream of risk scores into stable decision thresholds under non-stationary score distributions. This problem arises in a wide range of detection systems where scores must be partitioned into prioritized processing regions while preserving semantic consistency over time.
Dynamic Correction of Erroneous State Estimates via Diffusion Bayesian Exploration
In emergency response and other high-stakes societal applications, early-stage state estimates critically shape downstream outcomes. Yet, these initial state estimates-often based on limited or biased information-can be severely misaligned with reality, constraining subsequent actions and potentially causing catastrophic delays, resource misallocation, and human harm. Under the stationary bootstrap baseline (zero transition and no rejuvenation), bootstrap particle filters exhibit Stationarity-Induced Posterior Support Invariance (S-PSI), wherein regions excluded by the initial prior remain permanently unexplorable, making corrections impossible even when new evidence contradicts current beliefs. While classical perturbations can in principle break this lock-in, they operate in an always-on fashion and may be inefficient. To overcome this, we propose a diffusion-driven Bayesian exploration framework that enables principled, real-time correction of early state estimation errors. Our method expands posterior support via entropy-regularized sampling and covariance-scaled diffusion. A Metropolis-Hastings check validates proposals and keeps inference adaptive to unexpected evidence. Empirical evaluations on realistic hazardous-gas localization tasks show that our approach matches reinforcement learning and planning baselines when priors are correct. It substantially outperforms classical SMC perturbations and RL-based methods under misalignment, and we provide theoretical guarantees that DEPF resolves S-PSI while maintaining statistical rigor.
CMOOD: Concept-based Multi-label OOD Detection
How can models effectively detect out-of-distribution (OOD) samples in complex, multi-label settings without extensive retraining? Existing OOD detection methods struggle to capture the intricate semantic relationships and label co-occurrences inherent in multi-label settings, often requiring large amounts of training data and failing to generalize to unseen label combinations. While large language models have revolutionized zero-shot OOD detection, they primarily focus on single-label scenarios, leaving a critical gap in handling real-world tasks where samples can be associated with multiple interdependent labels. To address these challenges, we introduce COOD, a novel zero-shot multi-label OOD detection framework. COOD leverages pre-trained vision-language models, enhancing them with a concept-based label expansion strategy and a new scoring function. By enriching the semantic space with both positive and negative concepts for each label, our approach models complex label dependencies, precisely differentiating OOD samples without the need for additional training. Extensive experiments demonstrate that our method significantly outperforms existing approaches, achieving approximately 95% average AUROC on both VOC and COCO datasets, while maintaining robust performance across varying numbers of labels and different types of OOD samples.
Link Representation Learning for Probabilistic Travel Time Estimation
Travel time estimation is a key task in navigation apps and web mapping services. Existing deterministic and probabilistic methods, based on the assumption of trip independence, predominantly focus on modeling individual trips while overlooking trip correlations. However, real-world conditions frequently introduce strong correlations between trips, influenced by external and internal factors such as weather and the tendencies of drivers. To address this, we propose a deep hierarchical joint probabilistic model ProbETA for travel time estimation, capturing both inter-trip and intra-trip correlations. The joint distribution of travel times across multiple trips is modeled as a low-rank multivariate Gaussian, parameterized by learnable link representations estimated using the empirical Bayes approach. We also introduce a data augmentation method based on trip sub-sampling, allowing for fine-grained gradient backpropagation when learning link representations. During inference, our model estimates the probability distribution of travel time for a queried trip, conditional on spatiotemporally adjacent completed trips. Evaluation on two real-world GPS trajectory datasets demonstrates that ProbETA outperforms state-of-the-art deterministic and probabilistic baselines, with Mean Absolute Percentage Error decreasing by over 12.60%. Moreover, the learned link representations align with the physical network geometry, potentially making them applicable for other tasks.
Causal Graph Neural Networks for Healthcare
Healthcare artificial intelligence systems routinely fail when deployed across institutions, with documented performance drops and perpetuation of discriminatory patterns embedded in historical data. This brittleness stems, in part, from learning statistical associations rather than causal mechanisms. Causal graph neural networks address this triple crisis of distribution shift, discrimination, and inscrutability by combining graph-based representations of biomedical data with causal inference principles to learn invariant mechanisms rather than spurious correlations. This Review examines methodological foundations spanning structural causal models, disentangled causal representation learning, and techniques for interventional prediction and counterfactual reasoning on graphs. We analyse applications demonstrating clinical value across psychiatric diagnosis through brain network analysis, cancer subtyping via multi-omics causal integration, continuous physiological monitoring with mechanistic interpretation, and drug recommendation correcting prescription bias. These advances establish foundations for patient-specific Causal Digital Twins, enabling in silico clinical experimentation, with integration of large language models for hypothesis generation and causal graph neural networks for mechanistic validation. Substantial barriers remain, including computational requirements precluding real-time deployment, validation challenges demanding multi-modal evidence triangulation beyond cross-validation, and risks of causal-washing where methods employ causal terminology without rigorous evidentiary support. We propose tiered frameworks distinguishing causally-inspired architectures from causally-validated discoveries and identify critical research priorities making causal rather than purely associational claims.
Global Minimizers of $\ell^p$-Regularized Objectives Yield the Sparsest ReLU Neural Networks NeurIPS 2025
Overparameterized neural networks can interpolate a given dataset in many different ways, prompting the fundamental question: which among these solutions should we prefer, and what explicit regularization strategies will provably yield these solutions? This paper addresses the challenge of finding the sparsest interpolating ReLU network--i.e., the network with the fewest nonzero parameters or neurons--a goal with wide-ranging implications for efficiency, generalization, interpretability, theory, and model compression. Unlike post hoc pruning approaches, we propose a continuous, almost-everywhere differentiable training objective whose global minima are guaranteed to correspond to the sparsest single-hidden-layer ReLU networks that fit the data. This result marks a conceptual advance: it recasts the combinatorial problem of sparse interpolation as a smooth optimization task, potentially enabling the use of gradient-based training methods. Our objective is based on minimizing $\ell^p$ quasinorms of the weights for $0 < p < 1$, a classical sparsity-promoting strategy in finite-dimensional settings. However, applying these ideas to neural networks presents new challenges: the function class is infinite-dimensional, and the weights are learned using a highly nonconvex objective. We prove that, under our formulation, global minimizers correspond exactly to sparsest solutions. Our work lays a foundation for understanding when and how continuous sparsity-inducing objectives can be leveraged to recover sparse networks through training.
comment: Update to final published version (NeurIPS 2025). Fixed one incorrect citation
Zer0-Jack: A Memory-efficient Gradient-based Jailbreaking Method for Black-box Multi-modal Large Language Models
Jailbreaking methods, which induce Multi-modal Large Language Models (MLLMs) to output harmful responses, raise significant safety concerns. Among these methods, gradient-based approaches, which use gradients to generate malicious prompts, have been widely studied due to their high success rates in white-box settings, where full access to the model is available. However, these methods have notable limitations: they require white-box access, which is not always feasible, and involve high memory usage. To address scenarios where white-box access is unavailable, attackers often resort to transfer attacks. In transfer attacks, malicious inputs generated using white-box models are applied to black-box models, but this typically results in reduced attack performance. To overcome these challenges, we propose Zer0-Jack, a method that bypasses the need for white-box access by leveraging zeroth-order optimization. We propose patch coordinate descent to efficiently generate malicious image inputs to directly attack black-box MLLMs, which significantly reduces memory usage further. Through extensive experiments, Zer0-Jack achieves a high attack success rate across various models, surpassing previous transfer-based methods and performing comparably with existing white-box jailbreak techniques. Notably, Zer0-Jack achieves a 95\% attack success rate on MiniGPT-4 with the Harmful Behaviors Multi-modal Dataset on a black-box setting, demonstrating its effectiveness. Additionally, we show that Zer0-Jack can directly attack commercial MLLMs such as GPT-4o. Codes are provided in the supplement.
comment: Accepted to EACL 2026 Main
From Tables to Time: Extending TabPFN-v2 to Time Series Forecasting
Recent progress in foundation models has enabled strong zero-shot performance for time series forecasting. In this work, we show that such capabilities can also emerge from tabular foundation models. We introduce TabPFN-TS, a simple method that treats forecasting as a tabular regression problem by combining lightweight temporal featurization with the pretrained TabPFN-v2. This formulation requires no time-series-specific pretraining and naturally supports both univariate and covariate-informed forecasting. Despite its compact size (11M parameters), TabPFN-TS achieves state-of-the-art performance on covariate-informed forecasting and competitive accuracy on univariate forecasting across the GIFT-Eval and fev-bench benchmarks. We further provide controlled analyses examining how the model interprets temporal structure, how featurization choices affect accuracy, and how forecasts change under alternative tabular backbones. Together, our results demonstrate that tabular foundation models--when paired with suitable temporal features--offer an efficient and versatile alternative for forecasting, bridging tabular and time-series learning within a unified framework. Code is available at https://github.com/PriorLabs/tabpfn-time-series.
comment: This revision extends the previous version by adding evaluations on covariate-aware forecasting tasks, additional ablation studies, and a dedicated limitations section. It also substantially rewrites and reorganizes the manuscript to improve clarity and overall readability
KANO: Kolmogorov-Arnold Neural Operator
We introduce Kolmogorov--Arnold Neural Operator (KANO), a dual-domain neural operator jointly parameterized by both spectral and spatial bases with intrinsic symbolic interpretability. We theoretically demonstrate that KANO overcomes the pure-spectral bottleneck of Fourier Neural Operator (FNO): KANO remains expressive over generic position-dependent dynamics (variable coefficient PDEs) for any physical input, whereas FNO stays practical only for spectrally sparse operators and strictly imposes a fast-decaying input Fourier tail. We verify our claims empirically on position-dependent differential operators, for which KANO robustly generalizes but FNO fails to. In the quantum Hamiltonian learning benchmark, KANO reconstructs ground-truth Hamiltonians in closed-form symbolic representations accurate to the fourth decimal place in coefficients and attains $\approx 6\times10^{-6}$ state infidelity from projective measurement data, substantially outperforming that of the FNO trained with ideal full wave function data, $\approx 1.5\times10^{-2}$, by orders of magnitude.
SolarGPT-QA: A Domain-Adaptive Large Language Model for Educational Question Answering in Space Weather and Heliophysics
Solar activity, including solar flares, coronal mass ejections (CMEs), and geomagnetic storms, can significantly impact satellites, aviation, power grids, data centers, and space missions. Extreme solar events can cause substantial economic damage with limited advance warning, underscoring the importance of early-warning systems, accurate forecasting, and effective education in space science. Although large language models (LLMs) perform well on general tasks, they often lack domain-specific knowledge and pedagogical capability to clearly explain complex space science concepts. We introduce SolarGPT-QA, a question answering system based on a domain-adapted large language model built on the LLaMA-3 base model. The model is trained using scientific literature and large-scale question-answer data generated with GPT-4 and refined using Grok-3 in a student-friendly storytelling style. Human pairwise evaluations show that SolarGPT-QA outperforms general-purpose models in zero-shot settings and achieves competitive performance compared to instruction-tuned models for educational explanations in space weather and heliophysics. A small pilot student comprehension study further suggests improved clarity and accessibility of the generated explanations. Ablation experiments indicate that combining domain-adaptive pretraining with pedagogical fine-tuning is important for balancing scientific accuracy and educational effectiveness. This work represents an initial step toward a broader SolarGPT framework for space science education and forecasting.
comment: This is preliminary work towards a broader SolarGPT framework
Avoid Catastrophic Forgetting with Rank-1 Fisher from Diffusion Models
Catastrophic forgetting remains a central obstacle for continual learning in neural models. Popular approaches -- replay and elastic weight consolidation (EWC) -- have limitations: replay requires a strong generator and is prone to distributional drift, while EWC implicitly assumes a shared optimum across tasks and typically uses a diagonal Fisher approximation. In this work, we study the gradient geometry of diffusion models, which can already produce high-quality replay data. We provide theoretical and empirical evidence that, in the low signal-to-noise ratio (SNR) regime, per-sample gradients become strongly collinear, yielding an empirical Fisher that is effectively rank-1 and aligned with the mean gradient. Leveraging this structure, we propose a rank-1 variant of EWC that is as cheap as the diagonal approximation yet captures the dominant curvature direction. We pair this penalty with a replay-based approach to encourage parameter sharing across tasks while mitigating drift. On class-incremental image generation datasets (MNIST, FashionMNIST, CIFAR-10, ImageNet-1k), our method consistently improves average FID and reduces forgetting relative to replay-only and diagonal-EWC baselines. In particular, forgetting is nearly eliminated on MNIST and FashionMNIST and is more than halved on ImageNet-1k. These results suggest that diffusion models admit an approximately rank-1 Fisher. With a better Fisher estimate, EWC becomes a strong complement to replay: replay encourages parameter sharing across tasks, while EWC effectively constrains replay-induced drift.
comment: 19 pages, 14 figures
ExPO: Unlocking Hard Reasoning with Self-Explanation-Guided Reinforcement Learning NeurIPS 2025
Self-improvement via RL often fails on complex reasoning tasks because GRPO-style post-training methods rely on the model's initial ability to generate positive samples. Without guided exploration, these approaches merely reinforce what the model already knows (distribution-sharpening) rather than enabling the model to solve problems where it initially generates no correct solutions. To unlock reasoning ability in such settings, the model must explore new reasoning trajectories beyond its current output distribution. Such exploration requires access to sufficiently good positive samples to guide the learning. While expert demonstrations seem like a natural solution, we find that they are often ineffective in RL post-training. Instead, we identify two key properties of effective positive samples: they should (1) be likely under the current policy, and (2) increase the model's likelihood of predicting the correct answer. Based on these insights, we propose $\textbf{Self-Explanation Policy Optimization (ExPO)}$-a simple and modular framework that generates such samples by conditioning on the ground-truth answer. It can be integrated with popular RL training methods like GRPO and DPO. ExPO enables efficient exploration and guides the model to produce reasoning trajectories more aligned with its policy than expert-written CoTs, while ensuring higher quality than its own (incorrect) samples. Experiments show that ExPO improves both learning efficiency and final performance on reasoning benchmarks, surpassing expert-demonstration-based methods in challenging settings such as MATH level-5, where the model initially struggles the most. Code is available at https://github.com/HumainLab/ExPO_rl_reasoning_by_explanation .
comment: Accepted to NeurIPS 2025 (Poster). Code available at https://github.com/HumainLab/ExPO_rl_reasoning_by_explanation
General Binding Affinity Guidance for Diffusion Models in Structure-Based Drug Design
Structure-based drug design (SBDD) aims to generate ligands that bind strongly and specifically to target protein pockets. Recent diffusion models have advanced SBDD by capturing the distributions of atomic positions and types, yet they often underemphasize binding affinity control during generation. To address this limitation, we introduce \textbf{\textnormal{\textbf{BADGER}}}, a general \textbf{binding-affinity guidance framework for diffusion models in SBDD}. \textnormal{\textbf{BADGER} }incorporates binding affinity awareness through two complementary strategies: (1) \textit{classifier guidance}, which applies gradient-based affinity signals during sampling in a plug-and-play fashion, and (2) \textit{classifier-free guidance}, which integrates affinity conditioning directly into diffusion model training. Together, these approaches enable controllable ligand generation guided by binding affinity. \textnormal{\textbf{BADGER} } can be added to any diffusion model and achieves up to a \textbf{60\% improvement in ligand--protein binding affinity} of sampled molecules over prior methods. Furthermore, we extend the framework to \textbf{multi-constraint diffusion guidance}, jointly optimizing for binding affinity, drug-likeness (QED), and synthetic accessibility (SA) to design realistic and synthesizable drug candidates.
Prior Distribution and Model Confidence
We study how the training data distribution affects confidence and performance in image classification models. We introduce Embedding Density, a model-agnostic framework that estimates prediction confidence by measuring the distance of test samples from the training distribution in embedding space, without requiring retraining. By filtering low-density (low-confidence) predictions, our method significantly improves classification accuracy. We evaluate Embedding Density across multiple architectures and compare it with state-of-the-art out-of-distribution (OOD) detection methods. The proposed approach is potentially generalizable beyond computer vision.
comment: 12 pages,8 tables, 4 images
Graphics 9
GimmBO: Interactive Generative Image Model Merging via Bayesian Optimization
Fine-tuning-based adaptation is widely used to customize diffusion-based image generation, leading to large collections of community-created adapters that capture diverse subjects and styles. Adapters derived from the same base model can be merged with weights, enabling the synthesis of new visual results within a vast and continuous design space. To explore this space, current workflows rely on manual slider-based tuning, an approach that scales poorly and makes weight selection difficult, even when the candidate set is limited to 20-30 adapters. We propose GimmBO to support interactive exploration of adapter merging for image generation through Preferential Bayesian Optimization (PBO). Motivated by observations from real-world usage, including sparsity and constrained weight ranges, we introduce a two-stage BO backend that improves sampling efficiency and convergence in high-dimensional spaces. We evaluate our approach with simulated users and a user study, demonstrating improved convergence, high success rates, and consistent gains over BO and line-search baselines, and further show the flexibility of the framework through several extensions.
LoD-Structured 3D Gaussian Splatting for Streaming Video Reconstruction
Free-Viewpoint Video (FVV) reconstruction enables photorealistic and interactive 3D scene visualization; however, real-time streaming is often bottlenecked by sparse-view inputs, prohibitive training costs, and bandwidth constraints. While recent 3D Gaussian Splatting (3DGS) has advanced FVV due to its superior rendering speed, Streaming Free-Viewpoint Video (SFVV) introduces additional demands for rapid optimization, high-fidelity reconstruction under sparse constraints, and minimal storage footprints. To bridge this gap, we propose StreamLoD-GS, an LoD-based Gaussian Splatting framework designed specifically for SFVV. Our approach integrates three core innovations: 1) an Anchor- and Octree-based LoD-structured 3DGS with a hierarchical Gaussian dropout technique to ensure efficient and stable optimization while maintaining high-quality rendering; 2) a GMM-based motion partitioning mechanism that separates dynamic and static content, refining dynamic regions while preserving background stability; and 3) a quantized residual refinement framework that significantly reduces storage requirements without compromising visual fidelity. Extensive experiments demonstrate that StreamLoD-GS achieves competitive or state-of-the-art performance in terms of quality, efficiency, and storage.
PPISP: Physically-Plausible Compensation and Control of Photometric Variations in Radiance Field Reconstruction
Multi-view 3D reconstruction methods remain highly sensitive to photometric inconsistencies arising from camera optical characteristics and variations in image signal processing (ISP). Existing mitigation strategies such as per-frame latent variables or affine color corrections lack physical grounding and generalize poorly to novel views. We propose the Physically-Plausible ISP (PPISP) correction module, which disentangles camera-intrinsic and capture-dependent effects through physically based and interpretable transformations. A dedicated PPISP controller, trained on the input views, predicts ISP parameters for novel viewpoints, analogous to auto exposure and auto white balance in real cameras. This design enables realistic and fair evaluation on novel views without access to ground-truth images. PPISP achieves SoTA performance on standard benchmarks, while providing intuitive control and supporting the integration of metadata when available. The source code is available at: https://github.com/nv-tlabs/ppisp
comment: For more details and updates, please visit our project website: https://research.nvidia.com/labs/sil/projects/ppisp/
The Last Mile to Production Readiness: Physics-Based Motion Refinement for Video-Based Capture
High-quality motion data underpins games, film, XR, and robotics. Vision-based motion capture tools have made significant progress, offering accessible and visually convincing results, yet often fall short in the final stretch -- the last mile -- when it comes to physical realism and production readiness, due to various artifacts introduced during capture. In this paper, we summarize key issues through case studies and feedback from professional animators to set a stepping stone for future research in motion cleanup. We then present a physics-based motion refinement framework to bridge the gap, with the goal of reducing labor-intensive manual cleanup and enhancing visual quality and physical realism. Our framework supports both single- and multi-character sequences and can be integrated into animator workflows for further refinement, such as stylizing motions via keyframe editing.
FreeOrbit4D: Training-Free Arbitrary Camera Redirection for Monocular Videos via Geometry-Complete 4D Reconstruction
Camera redirection aims to replay a dynamic scene from a single monocular video under a user-specified camera trajectory. However, large-angle redirection is inherently ill-posed: a monocular video captures only a narrow spatio-temporal view of a dynamic 3D scene, providing highly partial observations of the underlying 4D world. The key challenge is therefore to recover a complete and coherent representation from this limited input, with consistent geometry and motion. While recent diffusion-based methods achieve impressive results, they often break down under large-angle viewpoint changes far from the original trajectory, where missing visual grounding leads to severe geometric ambiguity and temporal inconsistency. To address this, we present FreeOrbit4D, an effective training-free framework that tackles this geometric ambiguity by recovering a geometry-complete 4D proxy as structural grounding for video generation. We obtain this proxy by decoupling foreground and background reconstructions: we unproject the monocular video into a static background and geometry-incomplete foreground point clouds in a unified global space, then leverage an object-centric multi-view diffusion model to synthesize multi-view images and reconstruct geometry-complete foreground point clouds in canonical object space. By aligning the canonical foreground point cloud to the global scene space via dense pixel-synchronized 3D--3D correspondences and projecting the geometry-complete 4D proxy onto target camera viewpoints, we provide geometric scaffolds that guide a conditional video diffusion model. Extensive experiments show that FreeOrbit4D produces more faithful redirected videos under challenging large-angle trajectories, and our geometry-complete 4D proxy further opens a potential avenue for practical applications such as edit propagation and 4D data generation. Project page and code will be released soon.
comment: 14 pages, 10 figures
SMooGPT: Stylized Motion Generation using Large Language Models
Stylized motion generation is actively studied in computer graphics, especially benefiting from the rapid advances in diffusion models. The goal of this task is to produce a novel motion respecting both the motion content and the desired motion style, e.g., ``walking in a loop like a Monkey''. Existing research attempts to address this problem via motion style transfer or conditional motion generation. They typically embed the motion style into a latent space and guide the motion implicitly in a latent space as well. Despite the progress, their methods suffer from low interpretability and control, limited generalization to new styles, and fail to produce motions other than ``walking'' due to the strong bias in the public stylization dataset. In this paper, we propose to solve the stylized motion generation problem from a new perspective of reasoning-composition-generation, based on our observations: i) human motion can often be effectively described using natural language in a body-part centric manner, ii) LLMs exhibit a strong ability to understand and reason about human motion, and iii) human motion has an inherently compositional nature, facilitating the new motion content or style generation via effective recomposing. We thus propose utilizing body-part text space as an intermediate representation, and present SMooGPT, a fine-tuned LLM, acting as a reasoner, composer, and generator when generating the desired stylized motion. Our method executes in the body-part text space with much higher interpretability, enabling fine-grained motion control, effectively resolving potential conflicts between motion content and style, and generalizes well to new styles thanks to the open-vocabulary ability of LLMs. Comprehensive experiments and evaluations, and a user perceptual study, demonstrate the effectiveness of our approach, especially under the pure text-driven stylized motion generation.
OntoMetric: An Ontology-Driven LLM-Assisted Framework for Automated ESG Metric Knowledge Graph Generation
Environmental, Social, and Governance (ESG) metric knowledge is inherently structured, connecting industries, reporting frameworks, metric categories, metrics, and calculation models through compositional dependencies, yet in practice this structure remains embedded implicitly in regulatory documents such as SASB, TCFD, and IFRS S2 and rarely exists as an explicit, governed, or machine-actionable artefact. Existing ESG ontologies define formal schemas but do not address scalable population and governance from authoritative regulatory sources, while unconstrained large language model (LLM) extraction frequently produces semantically incorrect entities, hallucinated relationships, and structurally invalid graphs. OntoMetric is an ontology-guided framework for the automated construction and governance of ESG metric knowledge graphs from regulatory documents that operationalises the ESG Metric Knowledge Graph (ESGMKG) ontology as a first-class constraint embedded directly into the extraction and population process. The framework integrates structure-aware segmentation, ontology-constrained LLM extraction enriched with semantic fields and deterministic identifiers, and two-phase validation combining semantic type verification with rule-based schema checking, while preserving segment-level and page-level provenance to ensure traceability to regulatory source text. Evaluation on five ESG regulatory standards shows that ontology-guided extraction achieves 65-90 percent semantic accuracy and over 80 percent schema compliance, compared with 3-10 percent for unconstrained baseline extraction, and yields stable cost efficiency with a cost per validated entity of 0.01-0.02 USD and a 48 times efficiency improvement over baseline.
Odd-DC: Generalizable Neural Model Reduction via Odd Difference-of-Convex Structure
Model reduction is essential for real-time simulation of deformable objects. Linear techniques such as PCA provide structured and predictable behavior, but their limited expressiveness restricts accuracy under large or nonlinear deformations. Nonlinear model reduction with neural networks offers richer representations and higher compression; however, without structural constraints, the learned mapping from latent coordinates to displacements often generalizes poorly beyond the training distribution. We present an odd difference-of-convex (DC) neural formulation that bridges linear and nonlinear model reduction. Our goal is to obtain a latent space that behaves reliably under unseen load magnitudes and directions. To improve extrapolation in magnitude, we introduce convexity into the decoder to discourage oscillatory responses. Yet convexity alone cannot represent the odd symmetry required by many symmetric systems, which is crucial for generalization to inverse force directions. We therefore adopt a DC formulation that preserves the stabilizing effect of convexity while explicitly enforcing odd symmetry. Practically, we realize this structure using an input-convex neural network (ICNN) augmented with symmetry constraints. Across challenging deformation scenarios with varying magnitudes and reversed load directions, our method demonstrates stronger generalization than unconstrained nonlinear reductions while maintaining compact latent spaces and real-time performance. Our DC formulation extends to both mesh-based and neural-field reductions, demonstrating applicability across multiple classes of neural nonlinear model reduction.
Neural Cellular Automata: From Cells to Pixels
Neural Cellular Automata (NCAs) are bio-inspired dynamical systems in which identical cells iteratively apply a learned local update rule to self-organize into complex patterns, exhibiting regeneration, robustness, and spontaneous dynamics. Despite their success in texture synthesis and morphogenesis, NCAs remain largely confined to low-resolution outputs. This limitation stems from (1) training time and memory requirements that grow quadratically with grid size, (2) the strictly local propagation of information that impedes long-range cell communication, and (3) the heavy compute demands of real-time inference at high resolution. In this work, we overcome this limitation by pairing an NCA that evolves on a coarse grid with a lightweight implicit decoder that maps cell states and local coordinates to appearance attributes, enabling the same model to render outputs at arbitrary resolution. Moreover, because both the decoder and NCA updates are local, inference remains highly parallelizable. To supervise high-resolution outputs efficiently, we introduce task-specific losses for morphogenesis (growth from a seed) and texture synthesis with minimal additional memory and computation overhead. Our experiments across 2D/3D grids and mesh domains demonstrate that our hybrid models produce high-resolution outputs in real-time, and preserve the characteristic self-organizing behavior of NCAs.
comment: 9 pages, 14 figures, +7 pages of Appendix
Video World Models 6
FreeOrbit4D: Training-Free Arbitrary Camera Redirection for Monocular Videos via Geometry-Complete 4D Reconstruction
Camera redirection aims to replay a dynamic scene from a single monocular video under a user-specified camera trajectory. However, large-angle redirection is inherently ill-posed: a monocular video captures only a narrow spatio-temporal view of a dynamic 3D scene, providing highly partial observations of the underlying 4D world. The key challenge is therefore to recover a complete and coherent representation from this limited input, with consistent geometry and motion. While recent diffusion-based methods achieve impressive results, they often break down under large-angle viewpoint changes far from the original trajectory, where missing visual grounding leads to severe geometric ambiguity and temporal inconsistency. To address this, we present FreeOrbit4D, an effective training-free framework that tackles this geometric ambiguity by recovering a geometry-complete 4D proxy as structural grounding for video generation. We obtain this proxy by decoupling foreground and background reconstructions: we unproject the monocular video into a static background and geometry-incomplete foreground point clouds in a unified global space, then leverage an object-centric multi-view diffusion model to synthesize multi-view images and reconstruct geometry-complete foreground point clouds in canonical object space. By aligning the canonical foreground point cloud to the global scene space via dense pixel-synchronized 3D--3D correspondences and projecting the geometry-complete 4D proxy onto target camera viewpoints, we provide geometric scaffolds that guide a conditional video diffusion model. Extensive experiments show that FreeOrbit4D produces more faithful redirected videos under challenging large-angle trajectories, and our geometry-complete 4D proxy further opens a potential avenue for practical applications such as edit propagation and 4D data generation. Project page and code will be released soon.
comment: 14 pages, 10 figures
TC-IDM: Grounding Video Generation for Executable Zero-shot Robot Motion
The vision-language-action (VLA) paradigm has enabled powerful robotic control by leveraging vision-language models, but its reliance on large-scale, high-quality robot data limits its generalization. Generative world models offer a promising alternative for general-purpose embodied AI, yet a critical gap remains between their pixel-level plans and physically executable actions. To this end, we propose the Tool-Centric Inverse Dynamics Model (TC-IDM). By focusing on the tool's imagined trajectory as synthesized by the world model, TC-IDM establishes a robust intermediate representation that bridges the gap between visual planning and physical control. TC-IDM extracts the tool's point cloud trajectories via segmentation and 3D motion estimation from generated videos. Considering diverse tool attributes, our architecture employs decoupled action heads to project these planned trajectories into 6-DoF end-effector motions and corresponding control signals. This plan-and-translate paradigm not only supports a wide range of end-effectors but also significantly improves viewpoint invariance. Furthermore, it exhibits strong generalization capabilities across long-horizon and out-of-distribution tasks, including interacting with deformable objects. In real-world evaluations, the world model with TC-IDM achieves an average success rate of 61.11 percent, with 77.7 percent on simple tasks and 38.46 percent on zero-shot deformable object tasks. It substantially outperforms end-to-end VLA-style baselines and other inverse dynamics models.
Robustness of Presentation Attack Detection in Remote Identity Validation Scenarios WACV 2026
Presentation attack detection (PAD) subsystems are an important part of effective and user-friendly remote identity validation (RIV) systems. However, ensuring robust performance across diverse environmental and procedural conditions remains a critical challenge. This paper investigates the impact of low-light conditions and automated image acquisition on the robustness of commercial PAD systems using a scenario test of RIV. Our results show that PAD systems experience a significant decline in performance when utilized in low-light or auto-capture scenarios, with a model-predicted increase in error rates by a factor of about four under low-light conditions and a doubling of those odds under auto-capture workflows. Specifically, only one of the tested systems was robust to these perturbations, maintaining a maximum bona fide presentation classification error rate below 3% across all scenarios. Our findings emphasize the importance of testing across diverse environments to ensure robust and reliable PAD performance in real-world applications.
comment: Accepted to the IEEE/CVF WACV 2026 Workshop on Generative, Adversarial and Presentation Attacks in Biometrics (GAPBio). 8 pages, 6 figures, 4 tables
BAH Dataset for Ambivalence/Hesitancy Recognition in Videos for Digital Behavioural Change ICLR 2026
Ambivalence and hesitancy (A/H), a closely related construct, is the primary reasons why individuals delay, avoid, or abandon health behaviour changes. It is a subtle and conflicting emotion that sets a person in a state between positive and negative orientations, or between acceptance and refusal to do something. It manifests by a discord in affect between multiple modalities or within a modality, such as facial and vocal expressions, and body language. Although experts can be trained to recognize A/H as done for in-person interactions, integrating them into digital health interventions is costly and less effective. Automatic A/H recognition is therefore critical for the personalization and cost-effectiveness of digital behaviour change interventions. However, no datasets currently exists for the design of machine learning models to recognize A/H. This paper introduces the Behavioural Ambivalence/Hesitancy (BAH) dataset collected for multimodal recognition of A/H in videos. It contains 1,427 videos with a total duration of 10.60 hours captured from 300 participants across Canada answering predefined questions to elicit A/H. It is intended to mirror real-world online personalized behaviour change interventions. BAH is annotated by three experts to provide timestamps that indicate where A/H occurs, and frame- and video-level annotations with A/H cues. Video transcripts, cropped and aligned faces, and participants' meta-data are also provided. Since A and H manifest similarly in practice, we provide a binary annotation indicating the presence or absence of A/H. Additionally, this paper includes benchmarking results using baseline models on BAH for frame- and video-level recognition, zero-shot prediction, and personalization using source-free domain adaptation. The data, code, and pretrained weights are available.
comment: 45 pages, 21 figures, ICLR 2026
From Filters to VLMs: Benchmarking Defogging Methods through Object Detection and Segmentation Performance WACV 2026
Autonomous driving perception systems are particularly vulnerable in foggy conditions, where light scattering reduces contrast and obscures fine details critical for safe operation. While numerous defogging methods exist, from handcrafted filters to learned restoration models, improvements in image fidelity do not consistently translate into better downstream detection and segmentation. Moreover, prior evaluations often rely on synthetic data, raising concerns about real-world transferability. We present a structured empirical study that benchmarks a comprehensive set of defogging pipelines, including classical dehazing filters, modern defogging networks, chained variants combining filters and models, and prompt-driven visual language image editing models applied directly to foggy images. To bridge the gap between simulated and physical environments, we evaluate these pipelines on both the synthetic Foggy Cityscapes dataset and the real-world Adverse Conditions Dataset with Correspondences (ACDC). We examine generalization by evaluating performance on synthetic fog and real-world conditions, assessing both image quality and downstream perception in terms of object detection mean average precision and segmentation panoptic quality. Our analysis identifies when defogging is effective, the impact of combining models, and how visual language models compare to traditional approaches. We additionally report qualitative rubric-based evaluations from both human and visual language model judges and analyze their alignment with downstream task metrics. Together, these results establish a transparent, task-oriented benchmark for defogging methods and identify the conditions under which pre-processing meaningfully improves autonomous perception in adverse weather. Project page: https://aradfir.github.io/filters-to-vlms-defogging-page/
comment: Accepted at WACV 2026 Proceedings (Oral), 5th Workshop on Image, Video, and Audio Quality Assessment in Computer Vision, with a focus on VLM and Diffusion Models
An extrapolated and provably convergent algorithm for nonlinear matrix decomposition with the ReLU function
ReLU matrix decomposition (RMD) is the following problem: given a sparse, nonnegative matrix $X$ and a factorization rank $r$, identify a rank-$r$ matrix $Θ$ such that $X\approx \max(0,Θ)$. RMD is a particular instance of nonlinear matrix decomposition (NMD) that finds application in data compression, matrix completion with entries missing not at random, and manifold learning. The standard RMD model minimizes the least squares error, that is, $\|X - \max(0,Θ)\|_F^2$. The corresponding optimization problem, Least-Squares RMD (LS-RMD), is nondifferentiable and highly nonconvex. This motivated Saul to propose an alternative model, \revise{dubbed Latent-RMD}, where a latent variable $Z$ is introduced and satisfies $\max(0,Z)=X$ while minimizing $\|Z - Θ\|_F^2$ (``A nonlinear matrix decomposition for mining the zeros of sparse data'', SIAM J.\ Math.\ Data Sci., 2022). Our first contribution is to show that the two formulations may yield different low-rank solutions $Θ$. We then consider a reparametrization of the Latent-RMD, called 3B-RMD, in which $Θ$ is substituted by a low-rank product $WH$, where $W$ has $r$ columns and $H$ has $r$ rows. Our second contribution is to prove the convergence of a block coordinate descent (BCD) approach applied to 3B-RMD. Our third contribution is a novel extrapolated variant of BCD, dubbed eBCD, which we prove is also convergent under mild assumptions. We illustrate the significant acceleration effect of eBCD compared to eBCD, and also show that eBCD performs well against the state of the art on synthetic and real-world data sets.
comment: 25 pages. Codes and data available from https://github.com/giovanniseraghiti/ReLU-NMD
Robotics 13
NeuroManip: Prosthetic Hand Manipulation System Based on EMG and Eye Tracking Powered by the Neuromorphic Processor AltAi
This paper presents a novel neuromorphic control architecture for upper-limb prostheses that combines surface electromyography (sEMG) with gaze-guided computer vision. The system uses a spiking neural network deployed on the neuromorphic processor AltAi to classify EMG patterns in real time while an eye-tracking headset and scene camera identify the object within the user's focus. In our prototype, the same EMG recognition model that was originally developed for a conventional GPU is deployed as a spiking network on AltAi, achieving comparable accuracy while operating in a sub-watt power regime, which enables a lightweight, wearable implementation. For six distinct functional gestures recorded from upper-limb amputees, the system achieves robust recognition performance comparable to state-of-the-art myoelectric interfaces. When the vision pipeline restricts the decision space to three context-appropriate gestures for the currently viewed object, recognition accuracy increases to roughly 95% while excluding unsafe, object-inappropriate grasps. These results indicate that the proposed neuromorphic, context-aware controller can provide energy-efficient and reliable prosthesis control and has the potential to improve safety and usability in everyday activities for people with upper-limb amputation.
comment: This paper has been accepted for publication at LBR of HRI 2026 conference
Masked Depth Modeling for Spatial Perception
Spatial visual perception is a fundamental requirement in physical-world applications like autonomous driving and robotic manipulation, driven by the need to interact with 3D environments. Capturing pixel-aligned metric depth using RGB-D cameras would be the most viable way, yet it usually faces obstacles posed by hardware limitations and challenging imaging conditions, especially in the presence of specular or texture-less surfaces. In this work, we argue that the inaccuracies from depth sensors can be viewed as "masked" signals that inherently reflect underlying geometric ambiguities. Building on this motivation, we present LingBot-Depth, a depth completion model which leverages visual context to refine depth maps through masked depth modeling and incorporates an automated data curation pipeline for scalable training. It is encouraging to see that our model outperforms top-tier RGB-D cameras in terms of both depth precision and pixel coverage. Experimental results on a range of downstream tasks further suggest that LingBot-Depth offers an aligned latent representation across RGB and depth modalities. We release the code, checkpoint, and 3M RGB-depth pairs (including 2M real data and 1M simulated data) to the community of spatial perception.
comment: Tech report, 19 pages, 15 figures and 4 tables
PEAfowl: Perception-Enhanced Multi-View Vision-Language-Action for Bimanual Manipulation
Bimanual manipulation in cluttered scenes requires policies that remain stable under occlusions, viewpoint and scene variations. Existing vision-language-action models often fail to generalize because (i) multi-view features are fused via view-agnostic token concatenation, yielding weak 3D-consistent spatial understanding, and (ii) language is injected as global conditioning, resulting in coarse instruction grounding. In this paper, we introduce PEAfowl, a perception-enhanced multi-view VLA policy for bimanual manipulation. For spatial reasoning, PEAfowl predicts per-token depth distributions, performs differentiable 3D lifting, and aggregates local cross-view neighbors to form geometrically grounded, cross-view consistent representations. For instruction grounding, we propose to replace global conditioning with a Perceiver-style text-aware readout over frozen CLIP visual features, enabling iterative evidence accumulation. To overcome noisy and incomplete commodity depth without adding inference overhead, we apply training-only depth distillation from a pretrained depth teacher to supervise the depth-distribution head, providing perception front-end with geometry-aware priors. On RoboTwin 2.0 under domain-randomized setting, PEAfowl improves the strongest baseline by 23.0 pp in success rate, and real-robot experiments further demonstrate reliable sim-to-real transfer and consistent improvements from depth distillation. Project website: https://peafowlvla.github.io/.
Less Is More: Scalable Visual Navigation from Limited Data
Imitation learning provides a powerful framework for goal-conditioned visual navigation in mobile robots, enabling obstacle avoidance while respecting human preferences and social norms. However, its effectiveness depends critically on the quality and diversity of training data. In this work, we show how classical geometric planners can be leveraged to generate synthetic trajectories that complement costly human demonstrations. We train Less is More (LiMo), a transformer-based visual navigation policy that predicts goal-conditioned SE(2) trajectories from a single RGB observation, and find that augmenting limited expert demonstrations with planner-generated supervision yields substantial performance gains. Through ablations and complementary qualitative and quantitative analyses, we characterize how dataset scale and diversity affect planning performance. We demonstrate real-robot deployment and argue that robust visual navigation is enabled not by simply collecting more demonstrations, but by strategically curating diverse, high-quality datasets. Our results suggest that scalable, embodiment-specific geometric supervision is a practical path toward data-efficient visual navigation.
Delay-Compensated Stiffness Estimation for Robot-Mediated Dyadic Interaction
Robot-mediated human-human (dyadic) interactions enable therapists to provide physical therapy remotely, yet an accurate perception of patient stiffness remains challenging due to network-induced haptic delays. Conventional stiffness estimation methods, which neglect delay, suffer from temporal misalignment between force and position signals, leading to significant estimation errors as delays increase. To address this, we propose a robust, delay-compensated stiffness estimation framework by deriving an algebraic estimator based on quasi-static equilibrium that explicitly accounts for temporally aligning the expert's input with the novice's response. A Normalised Weighted Least Squares (NWLS) implementation is then introduced to robustly filter dynamic bias resulting from the algebraic derivation. Experiments using commercial rehabilitation robots (H-MAN) as the platform demonstrate that the proposed method significantly outperforms the standard estimator, maintaining consistent tracking accuracy under multiple introduced delays. These findings offer a promising solution for achieving high-fidelity haptic perception in remote dyadic interaction, potentially facilitating reliable stiffness assessment in therapeutic settings across networks.
Cross-Level Sensor Fusion with Object Lists via Transformer for 3D Object Detection IV2025
In automotive sensor fusion systems, smart sensors and Vehicle-to-Everything (V2X) modules are commonly utilized. Sensor data from these systems are typically available only as processed object lists rather than raw sensor data from traditional sensors. Instead of processing other raw data separately and then fusing them at the object level, we propose an end-to-end cross-level fusion concept with Transformer, which integrates highly abstract object list information with raw camera images for 3D object detection. Object lists are fed into a Transformer as denoising queries and propagated together with learnable queries through the latter feature aggregation process. Additionally, a deformable Gaussian mask, derived from the positional and size dimensional priors from the object lists, is explicitly integrated into the Transformer decoder. This directs attention toward the target area of interest and accelerates model training convergence. Furthermore, as there is no public dataset containing object lists as a standalone modality, we propose an approach to generate pseudo object lists from ground-truth bounding boxes by simulating state noise and false positives and negatives. As the first work to conduct cross-level fusion, our approach shows substantial performance improvements over the vision-based baseline on the nuScenes dataset. It demonstrates its generalization capability over diverse noise levels of simulated object lists and real detectors.
comment: 6 pages, 3 figures, accepted at IV2025
Who Is Responsible? Self-Adaptation Under Multiple Concurrent Uncertainties With Unknown Sources in Complex ROS-Based Systems
Robotic systems increasingly operate in dynamic, unpredictable environments, where tightly coupled sensors and software modules increase the probability of a single fault cascading across components and admitting multiple plausible strategies to resolve the underlying uncertainty. Most existing self-adaptive approaches that have been applied to robotics assume predefined one-to-one uncertainty-to-adaptation mappings. We present a ROS2-based self-adaptive approach building upon the MAPE-K feedback loop that addresses (1) multiple simultaneous uncertainties with differing criticality, (2) cascading uncertainties across components, and (3) multiple plausible resolving strategies per detected symptom. Central to our approach is an adaptation rule set which lets designers specify uncertainty patterns, assign criticality levels, and enumerate multiple plausible adaptation strategies. This rule set, combined with an automatically extracted live ROS2 dependency graph, enables lightweight root-cause analysis and strategy ranking to prioritize minimal and effective adaptations. Evaluations on an underwater robot scenario and a perception use case show that our approach can identify root causes among concurrent uncertainties, favours inexpensive adaptations, reduces unnecessary adaptations, and achieves performance comparable to existing baselines designed for sequential uncertainties. The code is publicly available.
Semantic2D: Enabling Semantic Scene Understanding with 2D Lidar Alone
This article presents a complete semantic scene understanding workflow using only a single 2D lidar. This fills the gap in 2D lidar semantic segmentation, thereby enabling the rethinking and enhancement of existing 2D lidar-based algorithms for application in various mobile robot tasks. It introduces the first publicly available 2D lidar semantic segmentation dataset and the first fine-grained semantic segmentation algorithm specifically designed for 2D lidar sensors on autonomous mobile robots. To annotate this dataset, we propose a novel semi-automatic semantic labeling framework that requires minimal human effort and provides point-level semantic annotations. The data was collected by three different types of 2D lidar sensors across twelve indoor environments, featuring a range of common indoor objects. Furthermore, the proposed semantic segmentation algorithm fully exploits raw lidar information -- position, range, intensity, and incident angle -- to deliver stochastic, point-wise semantic segmentation. We present a series of semantic occupancy grid mapping experiments and demonstrate two semantically-aware navigation control policies based on 2D lidar. These results demonstrate that the proposed semantic 2D lidar dataset, semi-automatic labeling framework, and segmentation algorithm are effective and can enhance different components of the robotic navigation pipeline. Multimedia resources are available at: https://youtu.be/P1Hsvj6WUSY.
Symphony: A Heuristic Normalized Calibrated Advantage Actor and Critic Algorithm in application for Humanoid Robots
In our work we implicitly suggest that it is a misconception to think that humans learn fast. The learning process takes time. Babies start learning to move in the restricted fluid environment of the womb. Children are often limited by underdeveloped body. Even adults are not allowed to participate in complex competitions right away. However, with robots, when learning from scratch, we often don't have the privilege of waiting for tens of millions of steps. "Swaddling" regularization is responsible for restraining an agent in rapid but unstable development penalizing action strength in a specific way not affecting actions directly. The Symphony, Transitional-policy Deterministic Actor and Critic algorithm, is a concise combination of different ideas for possibility of training humanoid robots from scratch with Sample Efficiency, Sample Proximity and Safety of Actions in mind. It is well known that continuous increase in Gaussian noise without appropriate smoothing is harmful for motors and gearboxes. Compared to Stochastic algorithms, we set limited parametric noise and promote a reduced strength of actions, safely increasing entropy, since the actions are submerged in weaker noise. When actions require more extreme values, actions rise above the weak noise. Training becomes empirically much safer for both the environment around and the robot's mechanisms. We use Fading Replay Buffer: using a fixed formula containing the hyperbolic tangent, we adjust the batch sampling probability: the memory contains a recent memory and a long-term memory trail. Fading Replay Buffer allows us to use Temporal Advantage when we improve the current Critic Network prediction compared to the exponential moving average. Temporal Advantage allows us to update the Actor and Critic in one pass, as well as combine the Actor and Critic in one Object and implement their Losses in one line.
comment: https://github.com/SuspensionRailway/symphony
Improve the autonomy of the SE2(3) group based Extended Kalman Filter for Integrated Navigation: Application
One of the core advantages of SE2(3) Lie group framework for navigation modeling lies in the autonomy of error propagation. In the previous paper, the theoretical analysis of autonomy property of navigation model in inertial, earth and world frames was given. A construction method for SE2(3) group navigation model is proposed to improve the non-inertial navigation model toward full autonomy. This paper serves as a counterpart to previous paper and conducts the real-world strapdown inertial navigation system (SINS)/odometer(ODO) experiments as well as Monte-Carlo simulations to demonstrate the performance of improved SE2(3) group based high-precision navigation models.
comment: arXiv admin note: substantial text overlap with arXiv:2601.16062. substantial text overlap with arXiv:2601.16062. substantial text overlap with arXiv:2601.16062. substantial text overlap with arXiv:2601.16062
InteLiPlan: An Interactive Lightweight LLM-Based Planner for Domestic Robot Autonomy
We introduce an interactive LLM-based framework designed to enhance the autonomy and robustness of domestic robots, targeting embodied intelligence. Our approach reduces reliance on large-scale data and incorporates a robot-agnostic pipeline that embodies an LLM. Our framework, InteLiPlan, ensures that the LLM's decision-making capabilities are effectively aligned with robotic functions, enhancing operational robustness and adaptability, while our human-in-the-loop mechanism allows for real-time human intervention when user instruction is required. We evaluate our method in both simulation and on the real robot platforms, including a Toyota Human Support Robot and an ANYmal D robot with a Unitree Z1 arm. Our method achieves a 95% success rate in the `fetch me' task completion with failure recovery, highlighting its capability in both failure reasoning and task planning. InteLiPlan achieves comparable performance to state-of-the-art LLM-based robotics planners, while using only real-time onboard computing. Project website: https://kimtienly.github.io/InteLiPlan.
Vision-Proprioception Fusion with Mamba2 in End-to-End Reinforcement Learning for Motion Control
End-to-end reinforcement learning (RL) for motion control trains policies directly from sensor inputs to motor commands, enabling unified controllers for different robots and tasks. However, most existing methods are either blind (proprioception-only) or rely on fusion backbones with unfavorable compute-memory trade-offs. Recurrent controllers struggle with long-horizon credit assignment, and Transformer-based fusion incurs quadratic cost in token length, limiting temporal and spatial context. We present a vision-driven cross-modal RL framework built on SSD-Mamba2, a selective state-space backbone that applies state-space duality (SSD) to enable both recurrent and convolutional scanning with hardware-aware streaming and near-linear scaling. Proprioceptive states and exteroceptive observations (e.g., depth tokens) are encoded into compact tokens and fused by stacked SSD-Mamba2 layers. The selective state-space updates retain long-range dependencies with markedly lower latency and memory use than quadratic self-attention, enabling longer look-ahead, higher token resolution, and stable training under limited compute. Policies are trained end-to-end under curricula that randomize terrain and appearance and progressively increase scene complexity. A compact, state-centric reward balances task progress, energy efficiency, and safety. Across diverse motion-control scenarios, our approach consistently surpasses strong state-of-the-art baselines in return, safety (collisions and falls), and sample efficiency, while converging faster at the same compute budget. These results suggest that SSD-Mamba2 provides a practical fusion backbone for resource-constrained robotic and autonomous systems in engineering informatics applications.
comment: 6 figures and 8 tables. This paper has been accepted by Advanced Engineering Informatics
Path Planning using a One-shot-sampling Skeleton Map
Path planning algorithms fundamentally aim to compute collision-free paths, with many works focusing on finding the optimal distance path. However, for several applications, a more suitable approach is to balance response time, path safety, and path length. In this context, a skeleton map is a useful tool in graph-based schemes, as it provides an intrinsic representation of the free workspace. However, standard skeletonization algorithms are computationally expensive, as they are primarly oriented towards image processing tasks. We propose an efficient path-planning methodology that finds safe paths within an acceptable processing time. This methodology leverages a Deep Denoising Autoencoder (DDAE) based on the U-Net architecture to compute a skeletonized version of the navigation map, which we refer to as SkelUnet. The SkelUnet network facilitates exploration of the entire workspace through one-shot sampling (OSS), as opposed to the iterative or probabilistic sampling used by previous algorithms. SkelUnet is trained and tested on a dataset consisting of 12,500 two-dimensional dungeon maps. The motion planning methodology is evaluated in a simulation environment with an Unmanned Aerial Vehicle (UAV) in 250 previously unseen maps and assessed using several navigation metrics to quantify the navigability of the computed paths. The results demonstrate that using SkelUnet to construct the roadmap offers significant advantages, such as connecting all regions of free workspace, providing safer paths, and reducing processing time.
comment: Submitted to IEEE Latin America Transactions
Computer Vision and Pattern Recognition 79
Leveraging Persistence Image to Enhance Robustness and Performance in Curvilinear Structure Segmentation
Segmenting curvilinear structures in medical images is essential for analyzing morphological patterns in clinical applications. Integrating topological properties, such as connectivity, improves segmentation accuracy and consistency. However, extracting and embedding such properties - especially from Persistence Diagrams (PD) - is challenging due to their non-differentiability and computational cost. Existing approaches mostly encode topology through handcrafted loss functions, which generalize poorly across tasks. In this paper, we propose PIs-Regressor, a simple yet effective module that learns persistence image (PI) - finite, differentiable representations of topological features - directly from data. Together with Topology SegNet, which fuses these features in both downsampling and upsampling stages, our framework integrates topology into the network architecture itself rather than auxiliary losses. Unlike existing methods that depend heavily on handcrafted loss functions, our approach directly incorporates topological information into the network structure, leading to more robust segmentation. Our design is flexible and can be seamlessly combined with other topology-based methods to further enhance segmentation performance. Experimental results show that integrating topological features enhances model robustness, effectively handling challenges like overexposure and blurring in medical imaging. Our approach on three curvilinear benchmarks demonstrate state-of-the-art performance in both pixel-level accuracy and topological fidelity.
comment: Accepted by IEEE International Symposium on Biomedical Imaging (ISBI) 2026. 5 pages, 3 figures
Strip-Fusion: Spatiotemporal Fusion for Multispectral Pedestrian Detection RA-L
Pedestrian detection is a critical task in robot perception. Multispectral modalities (visible light and thermal) can boost pedestrian detection performance by providing complementary visual information. Several gaps remain with multispectral pedestrian detection methods. First, existing approaches primarily focus on spatial fusion and often neglect temporal information. Second, RGB and thermal image pairs in multispectral benchmarks may not always be perfectly aligned. Pedestrians are also challenging to detect due to varying lighting conditions, occlusion, etc. This work proposes Strip-Fusion, a spatial-temporal fusion network that is robust to misalignment in input images, as well as varying lighting conditions and heavy occlusions. The Strip-Fusion pipeline integrates temporally adaptive convolutions to dynamically weigh spatial-temporal features, enabling our model to better capture pedestrian motion and context over time. A novel Kullback-Leibler divergence loss was designed to mitigate modality imbalance between visible and thermal inputs, guiding feature alignment toward the more informative modality during training. Furthermore, a novel post-processing algorithm was developed to reduce false positives. Extensive experimental results show that our method performs competitively for both the KAIST and the CVC-14 benchmarks. We also observed significant improvements compared to previous state-of-the-art on challenging conditions such as heavy occlusion and misalignment.
comment: This work has been accepted for publication in IEEE Robotics and Automation Letters (RA-L). Code available at: https://github.com/akanuasiegbu/stripfusion
MorphXAI: An Explainable Framework for Morphological Analysis of Parasites in Blood Smear Images WACV 2026
Parasitic infections remain a pressing global health challenge, particularly in low-resource settings where diagnosis still depends on labor-intensive manual inspection of blood smears and the availability of expert domain knowledge. While deep learning models have shown strong performance in automating parasite detection, their clinical usefulness is constrained by limited interpretability. Existing explainability methods are largely restricted to visual heatmaps or attention maps, which highlight regions of interest but fail to capture the morphological traits that clinicians rely on for diagnosis. In this work, we present MorphXAI, an explainable framework that unifies parasite detection with fine-grained morphological analysis. MorphXAI integrates morphological supervision directly into the prediction pipeline, enabling the model to localize parasites while simultaneously characterizing clinically relevant attributes such as shape, curvature, visible dot count, flagellum presence, and developmental stage. To support this task, we curate a clinician-annotated dataset of three parasite species (Leishmania, Trypanosoma brucei, and Trypanosoma cruzi) with detailed morphological labels, establishing a new benchmark for interpretable parasite analysis. Experimental results show that MorphXAI not only improves detection performance over the baseline but also provides structured, biologically meaningful explanations.
comment: Accepted at WACV 2026
Systematic Characterization of Minimal Deep Learning Architectures: A Unified Analysis of Convergence, Pruning, and Quantization
Deep learning networks excel at classification, yet identifying minimal architectures that reliably solve a task remains challenging. We present a computational methodology for systematically exploring and analyzing the relationships among convergence, pruning, and quantization. The workflow first performs a structured design sweep across a large set of architectures, then evaluates convergence behavior, pruning sensitivity, and quantization robustness on representative models. Focusing on well-known image classification of increasing complexity, and across Deep Neural Networks, Convolutional Neural Networks, and Vision Transformers, our initial results show that, despite architectural diversity, performance is largely invariant and learning dynamics consistently exhibit three regimes: unstable, learning, and overfitting. We further characterize the minimal learnable parameters required for stable learning, uncover distinct convergence and pruning phases, and quantify the effect of reduced numeric precision on trainable parameters. Aligning with intuition, the results confirm that deeper architectures are more resilient to pruning than shallower ones, with parameter redundancy as high as 60%, and quantization impacts models with fewer learnable parameters more severely and has a larger effect on harder image datasets. These findings provide actionable guidance for selecting compact, stable models under pruning and low-precision constraints in image classification.
Domain-Expert-Guided Hybrid Mixture-of-Experts for Medical AI: Integrating Data-Driven Learning with Clinical Priors
Mixture-of-Experts (MoE) models increase representational capacity with modest computational cost, but their effectiveness in specialized domains such as medicine is limited by small datasets. In contrast, clinical practice offers rich expert knowledge, such as physician gaze patterns and diagnostic heuristics, that models cannot reliably learn from limited data. Combining data-driven experts, which capture novel patterns, with domain-expert-guided experts, which encode accumulated clinical insights, provides complementary strengths for robust and clinically meaningful learning. To this end, we propose Domain-Knowledge-Guided Hybrid MoE (DKGH-MoE), a plug-and-play and interpretable module that unifies data-driven learning with domain expertise. DKGH-MoE integrates a data-driven MoE to extract novel features from raw imaging data, and a domain-expert-guided MoE incorporates clinical priors, specifically clinician eye-gaze cues, to emphasize regions of high diagnostic relevance. By integrating domain expert insights with data-driven features, DKGH-MoE improves both performance and interpretability.
comment: 4 pages; 3 figures; accepted by International Symposium on Biomedical Imaging (ISBI) 2026
UPLiFT: Efficient Pixel-Dense Feature Upsampling with Local Attenders
The space of task-agnostic feature upsampling has emerged as a promising area of research to efficiently create denser features from pre-trained visual backbones. These methods act as a shortcut to achieve dense features for a fraction of the cost by learning to map low-resolution features to high-resolution versions. While early works in this space used iterative upsampling approaches, more recent works have switched to cross-attention-based methods, which risk falling into the same efficiency scaling problems of the backbones they are upsampling. In this work, we demonstrate that iterative upsampling methods can still compete with cross-attention-based methods; moreover, they can achieve state-of-the-art performance with lower inference costs. We propose UPLiFT, an architecture for Universal Pixel-dense Lightweight Feature Transforms. We also propose an efficient Local Attender operator to overcome the limitations of prior iterative feature upsampling methods. This operator uses an alternative attentional pooling formulation defined fully locally. We show that our Local Attender allows UPLiFT to maintain stable features throughout upsampling, enabling state-of-the-art performance with lower inference costs than existing pixel-dense feature upsamplers. In addition, we apply UPLiFT to generative downstream tasks and show that it achieves competitive performance with state-of-the-art Coupled Flow Matching models for VAE feature upsampling. Altogether, UPLiFT offers a versatile and efficient approach to creating denser features.
FlowMorph: Physics-Consistent Self-Supervision for Label-Free Single-Cell Mechanics in Microfluidic Videos
Mechanical properties of red blood cells (RBCs) are promising biomarkers for hematologic and systemic disease, motivating microfluidic assays that probe deformability at throughputs of $10^3$--$10^6$ cells per experiment. However, existing pipelines rely on supervised segmentation or hand-crafted kymographs and rarely encode the laminar Stokes-flow physics that governs RBC shape evolution. We introduce FlowMorph, a physics-consistent self-supervised framework that learns a label-free scalar mechanics proxy $k$ for each tracked RBC from short brightfield microfluidic videos. FlowMorph models each cell by a low-dimensional parametric contour, advances boundary points through a differentiable ''capsule-in-flow'' combining laminar advection and curvature-regularized elastic relaxation, and optimizes a loss coupling silhouette overlap, intra-cellular flow agreement, area conservation, wall constraints, and temporal smoothness, using only automatically derived silhouettes and optical flow. Across four public RBC microfluidic datasets, FlowMorph achieves a mean silhouette IoU of $0.905$ on physics-rich videos with provided velocity fields and markedly improves area conservation and wall violations over purely data-driven baselines. On $\sim 1.5\times 10^5$ centered sequences, the scalar $k$ alone separates tank-treading from flipping dynamics with an AUC of $0.863$. Using only $200$ real-time deformability cytometry (RT-DC) events for calibration, a monotone map $E=g(k)$ predicts apparent Young's modulus with a mean absolute error of $0.118$\,MPa on $600$ held-out cells and degrades gracefully under shifts in channel geometry, optics, and frame rate.
DTC: A Deformable Transposed Convolution Module for Medical Image Segmentation
In medical image segmentation, particularly in UNet-like architectures, upsampling is primarily used to transform smaller feature maps into larger ones, enabling feature fusion between encoder and decoder features and supporting multi-scale prediction. Conventional upsampling methods, such as transposed convolution and linear interpolation, operate on fixed positions: transposed convolution applies kernel elements to predetermined pixel or voxel locations, while linear interpolation assigns values based on fixed coordinates in the original feature map. These fixed-position approaches may fail to capture structural information beyond predefined sampling positions and can lead to artifacts or loss of detail. Inspired by deformable convolutions, we propose a novel upsampling method, Deformable Transposed Convolution (DTC), which learns dynamic coordinates (i.e., sampling positions) to generate high-resolution feature maps for both 2D and 3D medical image segmentation tasks. Experiments on 3D (e.g., BTCV15) and 2D datasets (e.g., ISIC18, BUSI) demonstrate that DTC can be effectively integrated into existing medical image segmentation models, consistently improving the decoder's feature reconstruction and detail recovery capability.
From Specialist to Generalist: Unlocking SAM's Learning Potential on Unlabeled Medical Images
Foundation models like the Segment Anything Model (SAM) show strong generalization, yet adapting them to medical images remains difficult due to domain shift, scarce labels, and the inability of Parameter-Efficient Fine-Tuning (PEFT) to exploit unlabeled data. While conventional models like U-Net excel in semi-supervised medical learning, their potential to assist a PEFT SAM has been largely overlooked. We introduce SC-SAM, a specialist-generalist framework where U-Net provides point-based prompts and pseudo-labels to guide SAM's adaptation, while SAM serves as a powerful generalist supervisor to regularize U-Net. This reciprocal guidance forms a bidirectional co-training loop that allows both models to effectively exploit the unlabeled data. Across prostate MRI and polyp segmentation benchmarks, our method achieves state-of-the-art results, outperforming other existing semi-supervised SAM variants and even medical foundation models like MedSAM, highlighting the value of specialist-generalist cooperation for label-efficient medical image segmentation. Our code is available at https://github.com/vnlvi2k3/SC-SAM.
comment: Accepted to ISBI 2026
Dissipative Learning: A Framework for Viable Adaptive Systems
We propose a perspective in which learning is an intrinsically dissipative process. Forgetting and regularization are not heuristic add-ons but structural requirements for adaptive systems. Drawing on information theory, thermodynamics, and information geometry, we introduce the BEDS (Bayesian Emergent Dissipative Structures) framework, modeling learning as the evolution of compressed belief states under dissipation constraints. A central contribution is the Conditional Optimality Theorem, showing that Fisher-Rao regularization measuring change via information divergence rather than Euclidean distance is the unique thermodynamically optimal regularization strategy, achieving minimal dissipation. Euclidean regularization is shown to be structurally suboptimal. The framework unifies existing methods (Ridge, SIGReg, EMA, SAC) as special cases of a single governing equation. Within this view, overfitting corresponds to over-crystallization, while catastrophic forgetting reflects insufficient dissipation control. The framework distinguishes BEDS-crystallizable problems, where beliefs converge to stable equilibria, from BEDS-maintainable problems, which require continual adaptation. It extends naturally to continual and multi-agent systems, where viability, stability under adaptation and finite resources replaces asymptotic optimality as the primary criterion. Overall, this work reframes learning as maintaining viable belief states under dissipation constraints, providing a principled lens on forgetting, regularization, and stability.
comment: 68 pages, 14 figures
RemEdit: Efficient Diffusion Editing with Riemannian Geometry
Controllable image generation is fundamental to the success of modern generative AI, yet it faces a critical trade-off between semantic fidelity and inference speed. The RemEdit diffusion-based framework addresses this trade-off with two synergistic innovations. First, for editing fidelity, we navigate the latent space as a Riemannian manifold. A mamba-based module efficiently learns the manifold's structure, enabling direct and accurate geodesic path computation for smooth semantic edits. This control is further refined by a dual-SLERP blending technique and a goal-aware prompt enrichment pass from a Vision-Language Model. Second, for additional acceleration, we introduce a novel task-specific attention pruning mechanism. A lightweight pruning head learns to retain tokens essential to the edit, enabling effective optimization without the semantic degradation common in content-agnostic approaches. RemEdit surpasses prior state-of-the-art editing frameworks while maintaining real-time performance under 50% pruning. Consequently, RemEdit establishes a new benchmark for practical and powerful image editing. Source code: https://www.github.com/eashanadhikarla/RemEdit.
Benchmarking Direct Preference Optimization for Medical Large Vision-Language Models
Large Vision-Language Models (LVLMs) hold significant promise for medical applications, yet their deployment is often constrained by insufficient alignment and reliability. While Direct Preference Optimization (DPO) has emerged as a potent framework for refining model responses, its efficacy in high-stakes medical contexts remains underexplored, lacking the rigorous empirical groundwork necessary to guide future methodological advances. To bridge this gap, we present the first comprehensive examination of diverse DPO variants within the medical domain, evaluating nine distinct formulations across two medical LVLMs: LLaVA-Med and HuatuoGPT-Vision. Our results reveal several critical limitations: current DPO approaches often yield inconsistent gains over supervised fine-tuning, with their efficacy varying significantly across different tasks and backbones. Furthermore, they frequently fail to resolve fundamental visual misinterpretation errors. Building on these insights, we present a targeted preference construction strategy as a proof-of-concept that explicitly addresses visual misinterpretation errors frequently observed in existing DPO models. This design yields a 3.6% improvement over the strongest existing DPO baseline on visual question-answering tasks. To support future research, we release our complete framework, including all training data, model checkpoints, and our codebase at https://github.com/dmis-lab/med-vlm-dpo.
comment: EACL 2026 (Findings)
treaming-dLLM: Accelerating Diffusion LLMs via Suffix Pruning and Dynamic Decoding
Diffusion Large Language Models (dLLMs) offer a compelling paradigm for natural language generation, leveraging parallel decoding and bidirectional attention to achieve superior global coherence compared to autoregressive models. While recent works have accelerated inference via KV cache reuse or heuristic decoding, they overlook the intrinsic inefficiencies within the block-wise diffusion process. Specifically, they suffer from spatial redundancy by modeling informative-sparse suffix regions uniformly and temporal inefficiency by applying fixed denoising schedules across all the decoding process. To address this, we propose Streaming-dLLM, a training-free framework that streamlines inference across both spatial and temporal dimensions. Spatially, we introduce attenuation guided suffix modeling to approximate the full context by pruning redundant mask tokens. Temporally, we employ a dynamic confidence aware strategy with an early exit mechanism, allowing the model to skip unnecessary iterations for converged tokens. Extensive experiments show that Streaming-dLLM achieves up to 68.2X speedup while maintaining generation quality, highlighting its effectiveness in diffusion decoding. The code is available at https://github.com/xiaoshideta/Streaming-dLLM.
comment: Tech report. Code is available at https://github.com/xiaoshideta/Streaming-dLLM
Feature-Space Generative Models for One-Shot Class-Incremental Learning
Few-shot class-incremental learning (FSCIL) is a paradigm where a model, initially trained on a dataset of base classes, must adapt to an expanding problem space by recognizing novel classes with limited data. We focus on the challenging FSCIL setup where a model receives only a single sample (1-shot) for each novel class and no further training or model alterations are allowed after the base training phase. This makes generalization to novel classes particularly difficult. We propose a novel approach predicated on the hypothesis that base and novel class embeddings have structural similarity. We map the original embedding space into a residual space by subtracting the class prototype (i.e., the average class embedding) of input samples. Then, we leverage generative modeling with VAE or diffusion models to learn the multi-modal distribution of residuals over the base classes, and we use this as a valuable structural prior to improve recognition of novel classes. Our approach, Gen1S, consistently improves novel class recognition over the state of the art across multiple benchmarks and backbone architectures.
Revisiting 3D Reconstruction Kernels as Low-Pass Filters
3D reconstruction is to recover 3D signals from the sampled discrete 2D pixels, with the goal to converge continuous 3D spaces. In this paper, we revisit 3D reconstruction from the perspective of signal processing, identifying the periodic spectral extension induced by discrete sampling as the fundamental challenge. Previous 3D reconstruction kernels, such as Gaussians, Exponential functions, and Student's t distributions, serve as the low pass filters to isolate the baseband spectrum. However, their unideal low-pass property results in the overlap of high-frequency components with low-frequency components in the discrete-time signal's spectrum. To this end, we introduce Jinc kernel with an instantaneous drop to zero magnitude exactly at the cutoff frequency, which is corresponding to the ideal low pass filters. As Jinc kernel suffers from low decay speed in the spatial domain, we further propose modulated kernels to strick an effective balance, and achieves superior rendering performance by reconciling spatial efficiency and frequency-domain fidelity. Experimental results have demonstrated the effectiveness of our Jinc and modulated kernels.
comment: 14 pages, 5 figures
Masked Depth Modeling for Spatial Perception
Spatial visual perception is a fundamental requirement in physical-world applications like autonomous driving and robotic manipulation, driven by the need to interact with 3D environments. Capturing pixel-aligned metric depth using RGB-D cameras would be the most viable way, yet it usually faces obstacles posed by hardware limitations and challenging imaging conditions, especially in the presence of specular or texture-less surfaces. In this work, we argue that the inaccuracies from depth sensors can be viewed as "masked" signals that inherently reflect underlying geometric ambiguities. Building on this motivation, we present LingBot-Depth, a depth completion model which leverages visual context to refine depth maps through masked depth modeling and incorporates an automated data curation pipeline for scalable training. It is encouraging to see that our model outperforms top-tier RGB-D cameras in terms of both depth precision and pixel coverage. Experimental results on a range of downstream tasks further suggest that LingBot-Depth offers an aligned latent representation across RGB and depth modalities. We release the code, checkpoint, and 3M RGB-depth pairs (including 2M real data and 1M simulated data) to the community of spatial perception.
comment: Tech report, 19 pages, 15 figures and 4 tables
PEAfowl: Perception-Enhanced Multi-View Vision-Language-Action for Bimanual Manipulation
Bimanual manipulation in cluttered scenes requires policies that remain stable under occlusions, viewpoint and scene variations. Existing vision-language-action models often fail to generalize because (i) multi-view features are fused via view-agnostic token concatenation, yielding weak 3D-consistent spatial understanding, and (ii) language is injected as global conditioning, resulting in coarse instruction grounding. In this paper, we introduce PEAfowl, a perception-enhanced multi-view VLA policy for bimanual manipulation. For spatial reasoning, PEAfowl predicts per-token depth distributions, performs differentiable 3D lifting, and aggregates local cross-view neighbors to form geometrically grounded, cross-view consistent representations. For instruction grounding, we propose to replace global conditioning with a Perceiver-style text-aware readout over frozen CLIP visual features, enabling iterative evidence accumulation. To overcome noisy and incomplete commodity depth without adding inference overhead, we apply training-only depth distillation from a pretrained depth teacher to supervise the depth-distribution head, providing perception front-end with geometry-aware priors. On RoboTwin 2.0 under domain-randomized setting, PEAfowl improves the strongest baseline by 23.0 pp in success rate, and real-robot experiments further demonstrate reliable sim-to-real transfer and consistent improvements from depth distillation. Project website: https://peafowlvla.github.io/.
EEG Foundation Models: Progresses, Benchmarking, and Open Problems
Electroencephalography (EEG) foundation models have recently emerged as a promising paradigm for brain-computer interfaces (BCIs), aiming to learn transferable neural representations from large-scale heterogeneous recordings. Despite rapid progresses, there lacks fair and comprehensive comparisons of existing EEG foundation models, due to inconsistent pre-training objectives, preprocessing choices, and downstream evaluation protocols. This paper fills this gap. We first review 50 representative models and organize their design choices into a unified taxonomic framework including data standardization, model architectures, and self-supervised pre-training strategies. We then evaluate 12 open-source foundation models and competitive specialist baselines across 13 EEG datasets spanning nine BCI paradigms. Emphasizing real-world deployments, we consider both cross-subject generalization under a leave-one-subject-out protocol and rapid calibration under a within-subject few-shot setting. We further compare full-parameter fine-tuning with linear probing to assess the transferability of pre-trained representations, and examine the relationship between model scale and downstream performance. Our results indicate that: 1) linear probing is frequently insufficient; 2) specialist models trained from scratch remain competitive across many tasks; and, 3) larger foundation models do not necessarily yield better generalization performance under current data regimes and training practices.
Quran-MD: A Fine-Grained Multilingual Multimodal Dataset of the Quran
We present Quran MD, a comprehensive multimodal dataset of the Quran that integrates textual, linguistic, and audio dimensions at the verse and word levels. For each verse (ayah), the dataset provides its original Arabic text, English translation, and phonetic transliteration. To capture the rich oral tradition of Quranic recitation, we include verse-level audio from 32 distinct reciters, reflecting diverse recitation styles and dialectical nuances. At the word level, each token is paired with its corresponding Arabic script, English translation, transliteration, and an aligned audio recording, allowing fine-grained analysis of pronunciation, phonology, and semantic context. This dataset supports various applications, including natural language processing, speech recognition, text-to-speech synthesis, linguistic analysis, and digital Islamic studies. Bridging text and audio modalities across multiple reciters, this dataset provides a unique resource to advance computational approaches to Quranic recitation and study. Beyond enabling tasks such as ASR, tajweed detection, and Quranic TTS, it lays the foundation for multimodal embeddings, semantic retrieval, style transfer, and personalized tutoring systems that can support both research and community applications. The dataset is available at https://huggingface.co/datasets/Buraaq/quran-audio-text-dataset
comment: 6 pages, 2 tables and 2 figures
VidLaDA: Bidirectional Diffusion Large Language Models for Efficient Video Understanding
Standard Autoregressive Video LLMs inevitably suffer from causal masking biases that hinder global spatiotemporal modeling, leading to suboptimal understanding efficiency. We propose VidLaDA, a Video LLM based on Diffusion Language Model utilizing bidirectional attention to capture bidirectional dependencies. To further tackle the inference bottleneck of diffusion decoding on massive video tokens, we introduce MARS-Cache. This framework accelerates inference by combining asynchronous visual cache refreshing with frame-wise chunk attention, effectively pruning redundancy while preserving global connectivity via anchor tokens. Extensive experiments show VidLaDA outperforms diffusion baselines and rivals state-of-the-art autoregressive models (e.g., Qwen2.5-VL and LLaVA-Video), with MARS-Cache delivering over 12x speedup without compromising reasoning accuracy. Code and checkpoints are open-sourced at https://github.com/ziHoHe/VidLaDA.
MV-SAM: Multi-view Promptable Segmentation using Pointmap Guidance
Promptable segmentation has emerged as a powerful paradigm in computer vision, enabling users to guide models in parsing complex scenes with prompts such as clicks, boxes, or textual cues. Recent advances, exemplified by the Segment Anything Model (SAM), have extended this paradigm to videos and multi-view images. However, the lack of 3D awareness often leads to inconsistent results, necessitating costly per-scene optimization to enforce 3D consistency. In this work, we introduce MV-SAM, a framework for multi-view segmentation that achieves 3D consistency using pointmaps -- 3D points reconstructed from unposed images by recent visual geometry models. Leveraging the pixel-point one-to-one correspondence of pointmaps, MV-SAM lifts images and prompts into 3D space, eliminating the need for explicit 3D networks or annotated 3D data. Specifically, MV-SAM extends SAM by lifting image embeddings from its pretrained encoder into 3D point embeddings, which are decoded by a transformer using cross-attention with 3D prompt embeddings. This design aligns 2D interactions with 3D geometry, enabling the model to implicitly learn consistent masks across views through 3D positional embeddings. Trained on the SA-1B dataset, our method generalizes well across domains, outperforming SAM2-Video and achieving comparable performance with per-scene optimization baselines on NVOS, SPIn-NeRF, ScanNet++, uCo3D, and DL3DV benchmarks. Code will be released.
comment: Project page, https://jaesung-choe.github.io/mv_sam/index.html
Domain Generalization with Quantum Enhancement for Medical Image Classification: A Lightweight Approach for Cross-Center Deployment
Medical image artificial intelligence models often achieve strong performance in single-center or single-device settings, yet their effectiveness frequently deteriorates in real-world cross-center deployment due to domain shift, limiting clinical generalizability. To address this challenge, we propose a lightweight domain generalization framework with quantum-enhanced collaborative learning, enabling robust generalization to unseen target domains without relying on real multi-center labeled data. Specifically, a MobileNetV2-based domain-invariant encoder is constructed and optimized through three key components: (1) multi-domain imaging shift simulation using brightness, contrast, sharpening, and noise perturbations to emulate heterogeneous acquisition conditions; (2) domain-adversarial training with gradient reversal to suppress domain-discriminative features; and (3) a lightweight quantum feature enhancement layer that applies parameterized quantum circuits for nonlinear feature mapping and entanglement modeling. In addition, a test-time adaptation strategy is employed during inference to further alleviate distribution shifts. Experiments on simulated multi-center medical imaging datasets demonstrate that the proposed method significantly outperforms baseline models without domain generalization or quantum enhancement on unseen domains, achieving reduced domain-specific performance variance and improved AUC and sensitivity. These results highlight the clinical potential of quantum-enhanced domain generalization under constrained computational resources and provide a feasible paradigm for hybrid quantum--classical medical imaging systems.
SynMind: Reducing Semantic Hallucination in fMRI-Based Image Reconstruction
Recent advances in fMRI-based image reconstruction have achieved remarkable photo-realistic fidelity. Yet, a persistent limitation remains: while reconstructed images often appear naturalistic and holistically similar to the target stimuli, they frequently suffer from severe semantic misalignment -- salient objects are often replaced or hallucinated despite high visual quality. In this work, we address this limitation by rethinking the role of explicit semantic interpretation in fMRI decoding. We argue that existing methods rely too heavily on entangled visual embeddings which prioritize low-level appearance cues -- such as texture and global gist -- over explicit semantic identity. To overcome this, we parse fMRI signals into rich, sentence-level semantic descriptions that mirror the hierarchical and compositional nature of human visual understanding. We achieve this by leveraging grounded VLMs to generate synthetic, human-like, multi-granularity textual representations that capture object identities and spatial organization. Built upon this foundation, we propose SynMind, a framework that integrates these explicit semantic encodings with visual priors to condition a pretrained diffusion model. Extensive experiments demonstrate that SynMind outperforms state-of-the-art methods across most quantitative metrics. Notably, by offloading semantic reasoning to our text-alignment module, SynMind surpasses competing methods based on SDXL while using the much smaller Stable Diffusion 1.4 and a single consumer GPU. Large-scale human evaluations further confirm that SynMind produces reconstructions more consistent with human visual perception. Neurovisualization analyses reveal that SynMind engages broader and more semantically relevant brain regions, mitigating the over-reliance on high-level visual areas.
Geometry-Grounded Gaussian Splatting
Gaussian Splatting (GS) has demonstrated impressive quality and efficiency in novel view synthesis. However, shape extraction from Gaussian primitives remains an open problem. Due to inadequate geometry parameterization and approximation, existing shape reconstruction methods suffer from poor multi-view consistency and are sensitive to floaters. In this paper, we present a rigorous theoretical derivation that establishes Gaussian primitives as a specific type of stochastic solids. This theoretical framework provides a principled foundation for Geometry-Grounded Gaussian Splatting by enabling the direct treatment of Gaussian primitives as explicit geometric representations. Using the volumetric nature of stochastic solids, our method efficiently renders high-quality depth maps for fine-grained geometry extraction. Experiments show that our method achieves the best shape reconstruction results among all Gaussian Splatting-based methods on public datasets.
comment: 16 pages, 15 figures
VAE-REPA: Variational Autoencoder Representation Alignment for Efficient Diffusion Training
Denoising-based diffusion transformers, despite their strong generation performance, suffer from inefficient training convergence. Existing methods addressing this issue, such as REPA (relying on external representation encoders) or SRA (requiring dual-model setups), inevitably incur heavy computational overhead during training due to external dependencies. To tackle these challenges, this paper proposes \textbf{\namex}, a lightweight intrinsic guidance framework for efficient diffusion training. \name leverages off-the-shelf pre-trained Variational Autoencoder (VAE) features: their reconstruction property ensures inherent encoding of visual priors like rich texture details, structural patterns, and basic semantic information. Specifically, \name aligns the intermediate latent features of diffusion transformers with VAE features via a lightweight projection layer, supervised by a feature alignment loss. This design accelerates training without extra representation encoders or dual-model maintenance, resulting in a simple yet effective pipeline. Extensive experiments demonstrate that \name improves both generation quality and training convergence speed compared to vanilla diffusion transformers, matches or outperforms state-of-the-art acceleration methods, and incurs merely 4\% extra GFLOPs with zero additional cost for external guidance models.
ViTCoP: Accelerating Large Vision-Language Models via Visual and Textual Semantic Collaborative Pruning
Large Vision-Language Models (LVLMs) incur high computational costs due to significant redundancy in their visual tokens. To effectively reduce this cost, researchers have proposed various visual token pruning methods. However, existing methods are generally limited, either losing critical visual information prematurely due to pruning in the vision encoder, or leading to information redundancy among the selected tokens due to pruning in the Large Language Models (LLMs). To address these challenges, we propose a Visual and Textual Semantic Collaborative Pruning framework (ViTCoP) that combines redundancy filtering in the vision encoder with step-wise co-pruning within the LLM based on its hierarchical characteristics, to efficiently preserve critical and informationally diverse visual tokens. Meanwhile, to ensure compatibility with acceleration techniques like FlashAttention, we introduce the L2 norm of K-vectors as the token saliency metric in the LLM. Extensive experiments on various Large Vision-Language Models demonstrate that ViTCoP not only achieves state-of-the-art performance surpassing existing methods on both image and video understanding tasks, but also significantly reduces model inference latency and GPU memory consumption. Notably, its performance advantage over other methods becomes even more pronounced under extreme pruning rates.
Agreement-Driven Multi-View 3D Reconstruction for Live Cattle Weight Estimation
Accurate cattle live weight estimation is vital for livestock management, welfare, and productivity. Traditional methods, such as manual weighing using a walk-over weighing system or proximate measurements using body condition scoring, involve manual handling of stock and can impact productivity from both a stock and economic perspective. To address these issues, this study investigated a cost-effective, non-contact method for live weight calculation in cattle using 3D reconstruction. The proposed pipeline utilized multi-view RGB images with SAM 3D-based agreement-guided fusion, followed by ensemble regression. Our approach generates a single 3D point cloud per animal and compares classical ensemble models with deep learning models under low-data conditions. Results show that SAM 3D with multi-view agreement fusion outperforms other 3D generation methods, while classical ensemble models provide the most consistent performance for practical farm scenarios (R$^2$ = 0.69 $\pm$ 0.10, MAPE = 2.22 $\pm$ 0.56 \%), making this practical for on-farm implementation. These findings demonstrate that improving reconstruction quality is more critical than increasing model complexity for scalable deployment on farms where producing a large volume of 3D data is challenging.
MV-S2V: Multi-View Subject-Consistent Video Generation
Existing Subject-to-Video Generation (S2V) methods have achieved high-fidelity and subject-consistent video generation, yet remain constrained to single-view subject references. This limitation renders the S2V task reducible to an S2I + I2V pipeline, failing to exploit the full potential of video subject control. In this work, we propose and address the challenging Multi-View S2V (MV-S2V) task, which synthesizes videos from multiple reference views to enforce 3D-level subject consistency. Regarding the scarcity of training data, we first develop a synthetic data curation pipeline to generate highly customized synthetic data, complemented by a small-scale real-world captured dataset to boost the training of MV-S2V. Another key issue lies in the potential confusion between cross-subject and cross-view references in conditional generation. To overcome this, we further introduce Temporally Shifted RoPE (TS-RoPE) to distinguish between different subjects and distinct views of the same subject in reference conditioning. Our framework achieves superior 3D subject consistency w.r.t. multi-view reference images and high-quality visual outputs, establishing a new meaningful direction for subject-driven video generation. Our project page is available at this URL
comment: 13 pages, 9 figures
Bridging Supervision Gaps: A Unified Framework for Remote Sensing Change Detection
Change detection (CD) aims to identify surface changes from multi-temporal remote sensing imagery. In real-world scenarios, Pixel-level change labels are expensive to acquire, and existing models struggle to adapt to scenarios with diverse annotation availability. To tackle this challenge, we propose a unified change detection framework (UniCD), which collaboratively handles supervised, weakly-supervised, and unsupervised tasks through a coupled architecture. UniCD eliminates architectural barriers through a shared encoder and multi-branch collaborative learning mechanism, achieving deep coupling of heterogeneous supervision signals. Specifically, UniCD consists of three supervision-specific branches. In the supervision branch, UniCD introduces the spatial-temporal awareness module (STAM), achieving efficient synergistic fusion of bi-temporal features. In the weakly-supervised branch, we construct change representation regularization (CRR), which steers model convergence from coarse-grained activations toward coherent and separable change modeling. In the unsupervised branch, we propose semantic prior-driven change inference (SPCI), which transforms unsupervised tasks into controlled weakly-supervised path optimization. Experiments on mainstream datasets demonstrate that UniCD achieves optimal performance across three tasks. It exhibits significant accuracy improvements in weakly and unsupervised scenarios, surpassing current state-of-the-art by 12.72% and 12.37% on LEVIR-CD, respectively.
Video Compression with Hierarchical Temporal Neural Representation
Video compression has recently benefited from implicit neural representations (INRs), which model videos as continuous functions. INRs offer compact storage and flexible reconstruction, providing a promising alternative to traditional codecs. However, most existing INR-based methods treat the temporal dimension as an independent input, limiting their ability to capture complex temporal dependencies. To address this, we propose a Hierarchical Temporal Neural Representation for Videos, TeNeRV. TeNeRV integrates short- and long-term dependencies through two key components. First, an Inter-Frame Feature Fusion (IFF) module aggregates features from adjacent frames, enforcing local temporal coherence and capturing fine-grained motion. Second, a GoP-Adaptive Modulation (GAM) mechanism partitions videos into Groups-of-Pictures and learns group-specific priors. The mechanism modulates network parameters, enabling adaptive representations across different GoPs. Extensive experiments demonstrate that TeNeRV consistently outperforms existing INR-based methods in rate-distortion performance, validating the effectiveness of our proposed approach.
Frequency-aware Neural Representation for Videos
Implicit Neural Representations (INRs) have emerged as a promising paradigm for video compression. However, existing INR-based frameworks typically suffer from inherent spectral bias, which favors low-frequency components and leads to over-smoothed reconstructions and suboptimal rate-distortion performance. In this paper, we propose FaNeRV, a Frequency-aware Neural Representation for videos, which explicitly decouples low- and high-frequency components to enable efficient and faithful video reconstruction. FaNeRV introduces a multi-resolution supervision strategy that guides the network to progressively capture global structures and fine-grained textures through staged supervision . To further enhance high-frequency reconstruction, we propose a dynamic high-frequency injection mechanism that adaptively emphasizes challenging regions. In addition, we design a frequency-decomposed network module to improve feature modeling across different spectral bands. Extensive experiments on standard benchmarks demonstrate that FaNeRV significantly outperforms state-of-the-art INR methods and achieves competitive rate-distortion performance against traditional codecs.
Learning Sewing Patterns via Latent Flow Matching of Implicit Fields
Sewing patterns define the structural foundation of garments and are essential for applications such as fashion design, fabrication, and physical simulation. Despite progress in automated pattern generation, accurately modeling sewing patterns remains difficult due to the broad variability in panel geometry and seam arrangements. In this work, we introduce a sewing pattern modeling method based on an implicit representation. We represent each panel using a signed distance field that defines its boundary and an unsigned distance field that identifies seam endpoints, and encode these fields into a continuous latent space that enables differentiable meshing. A latent flow matching model learns distributions over panel combinations in this representation, and a stitching prediction module recovers seam relations from extracted edge segments. This formulation allows accurate modeling and generation of sewing patterns with complex structures. We further show that it can be used to estimate sewing patterns from images with improved accuracy relative to existing approaches, and supports applications such as pattern completion and refitting, providing a practical tool for digital fashion design.
The Script is All You Need: An Agentic Framework for Long-Horizon Dialogue-to-Cinematic Video Generation
Recent advances in video generation have produced models capable of synthesizing stunning visual content from simple text prompts. However, these models struggle to generate long-form, coherent narratives from high-level concepts like dialogue, revealing a ``semantic gap'' between a creative idea and its cinematic execution. To bridge this gap, we introduce a novel, end-to-end agentic framework for dialogue-to-cinematic-video generation. Central to our framework is ScripterAgent, a model trained to translate coarse dialogue into a fine-grained, executable cinematic script. To enable this, we construct ScriptBench, a new large-scale benchmark with rich multimodal context, annotated via an expert-guided pipeline. The generated script then guides DirectorAgent, which orchestrates state-of-the-art video models using a cross-scene continuous generation strategy to ensure long-horizon coherence. Our comprehensive evaluation, featuring an AI-powered CriticAgent and a new Visual-Script Alignment (VSA) metric, shows our framework significantly improves script faithfulness and temporal fidelity across all tested video models. Furthermore, our analysis uncovers a crucial trade-off in current SOTA models between visual spectacle and strict script adherence, providing valuable insights for the future of automated filmmaking.
Flatten The Complex: Joint B-Rep Generation via Compositional $k$-Cell Particles
Boundary Representation (B-Rep) is the widely adopted standard in Computer-Aided Design (CAD) and manufacturing. However, generative modeling of B-Reps remains a formidable challenge due to their inherent heterogeneity as geometric cell complexes, which entangles topology with geometry across cells of varying orders (i.e., $k$-cells such as vertices, edges, faces). Previous methods typically rely on cascaded sequences to handle this hierarchy, which fails to fully exploit the geometric relationships between cells, such as adjacency and sharing, limiting context awareness and error recovery. To fill this gap, we introduce a novel paradigm that reformulates B-Reps into sets of compositional $k$-cell particles. Our approach encodes each topological entity as a composition of particles, where adjacent cells share identical latents at their interfaces, thereby promoting geometric coupling along shared boundaries. By decoupling the rigid hierarchy, our representation unifies vertices, edges, and faces, enabling the joint generation of topology and geometry with global context awareness. We synthesize these particle sets using a multi-modal flow matching framework to handle unconditional generation as well as precise conditional tasks, such as 3D reconstruction from single-view or point cloud. Furthermore, the explicit and localized nature of our representation naturally extends to downstream tasks like local in-painting and enables the direct synthesis of non-manifold structures (e.g., wireframes). Extensive experiments demonstrate that our method produces high-fidelity CAD models with superior validity and editability compared to state-of-the-art methods.
Implicit Neural Representation-Based Continuous Single Image Super Resolution: An Empirical Study
Implicit neural representation (INR) has become the standard approach for arbitrary-scale image super-resolution (ASSR). To date, no empirical study has systematically examined the effectiveness of existing methods, nor investigated the effects of different training recipes, such as scaling laws, objective design, and optimization strategies. A rigorous empirical analysis is essential not only for benchmarking performance and revealing true gains but also for establishing the current state of ASSR, identifying saturation limits, and highlighting promising directions. We fill this gap by comparing existing techniques across diverse settings and presenting aggregated performance results on multiple image quality metrics. We contribute a unified framework and code repository to facilitate reproducible comparisons. Furthermore, we investigate the impact of carefully controlled training configurations on perceptual image quality and examine a new loss function that penalizes intensity variations while preserving edges, textures, and finer details during training. We conclude the following key insights that have been previously overlooked: (1) Recent, more complex INR methods provide only marginal improvements over earlier methods. (2) Model performance is strongly correlated to training configurations, a factor overlooked in prior works. (3) The proposed loss enhances texture fidelity across architectures, emphasizing the role of objective design for targeted perceptual gains. (4) Scaling laws apply to INR-based ASSR, confirming predictable gains with increased model complexity and data diversity.
Advancing Structured Priors for Sparse-Voxel Surface Reconstruction
Reconstructing accurate surfaces with radiance fields has progressed rapidly, yet two promising explicit representations, 3D Gaussian Splatting and sparse-voxel rasterization, exhibit complementary strengths and weaknesses. 3D Gaussian Splatting converges quickly and carries useful geometric priors, but surface fidelity is limited by its point-like parameterization. Sparse-voxel rasterization provides continuous opacity fields and crisp geometry, but its typical uniform dense-grid initialization slows convergence and underutilizes scene structure. We combine the advantages of both by introducing a voxel initialization method that places voxels at plausible locations and with appropriate levels of detail, yielding a strong starting point for per-scene optimization. To further enhance depth consistency without blurring edges, we propose refined depth geometry supervision that converts multi-view cues into direct per-ray depth regularization. Experiments on standard benchmarks demonstrate improvements over prior methods in geometric accuracy, better fine-structure recovery, and more complete surfaces, while maintaining fast convergence.
A Computational Approach to Visual Metonymy
Images often communicate more than they literally depict: a set of tools can suggest an occupation and a cultural artifact can suggest a tradition. This kind of indirect visual reference, known as visual metonymy, invites viewers to recover a target concept via associated cues rather than explicit depiction. In this work, we present the first computational investigation of visual metonymy. We introduce a novel pipeline grounded in semiotic theory that leverages large language models and text-to-image models to generate metonymic visual representations. Using this framework, we construct ViMET, the first visual metonymy dataset comprising 2,000 multiple-choice questions to evaluate the cognitive reasoning abilities in multimodal language models. Experimental results on our dataset reveal a significant gap between human performance (86.9%) and state-of-the-art vision-language models (65.9%), highlighting limitations in machines' ability to interpret indirect visual references. Our dataset is publicly available at: https://github.com/cincynlp/ViMET.
comment: EACL 2026
An AI-enabled tool for quantifying overlapping red blood cell sickling dynamics in microfluidic assays
Understanding sickle cell dynamics requires accurate identification of morphological transitions under diverse biophysical conditions, particularly in densely packed and overlapping cell populations. Here, we present an automated deep learning framework that integrates AI-assisted annotation, segmentation, classification, and instance counting to quantify red blood cell (RBC) populations across varying density regimes in time-lapse microscopy data. Experimental images were annotated using the Roboflow platform to generate labeled dataset for training an nnU-Net segmentation model. The trained network enables prediction of the temporal evolution of the sickle cell fraction, while a watershed algorithm resolves overlapping cells to enhance quantification accuracy. Despite requiring only a limited amount of labeled data for training, the framework achieves high segmentation performance, effectively addressing challenges associated with scarce manual annotations and cell overlap. By quantitatively tracking dynamic changes in RBC morphology, this approach can more than double the experimental throughput via densely packed cell suspensions, capture drug-dependent sickling behavior, and reveal distinct mechanobiological signatures of cellular morphological evolution. Overall, this AI-driven framework establishes a scalable and reproducible computational platform for investigating cellular biomechanics and assessing therapeutic efficacy in microphysiological systems.
StyleDecoupler: Generalizable Artistic Style Disentanglement
Representing artistic style is challenging due to its deep entanglement with semantic content. We propose StyleDecoupler, an information-theoretic framework that leverages a key insight: multi-modal vision models encode both style and content, while uni-modal models suppress style to focus on content-invariant features. By using uni-modal representations as content-only references, we isolate pure style features from multi-modal embeddings through mutual information minimization. StyleDecoupler operates as a plug-and-play module on frozen Vision-Language Models without fine-tuning. We also introduce WeART, a large-scale benchmark of 280K artworks across 152 styles and 1,556 artists. Experiments show state-of-the-art performance on style retrieval across WeART and WikiART, while enabling applications like style relationship mapping and generative model evaluation. We release our method and dataset at this url.
BanglaRobustNet: A Hybrid Denoising-Attention Architecture for Robust Bangla Speech Recognition
Bangla, one of the most widely spoken languages, remains underrepresented in state-of-the-art automatic speech recognition (ASR) research, particularly under noisy and speaker-diverse conditions. This paper presents BanglaRobustNet, a hybrid denoising-attention framework built on Wav2Vec-BERT, designed to address these challenges. The architecture integrates a diffusion-based denoising module to suppress environmental noise while preserving Bangla-specific phonetic cues, and a contextual cross-attention module that conditions recognition on speaker embeddings for robustness across gender, age, and dialects. Trained end-to-end with a composite objective combining CTC loss, phonetic consistency, and speaker alignment, BanglaRobustNet achieves substantial reductions in word error rate (WER) and character error rate (CER) compared to Wav2Vec-BERT and Whisper baselines. Evaluations on Mozilla Common Voice Bangla and augmented noisy speech confirm the effectiveness of our approach, establishing BanglaRobustNet as a robust ASR system tailored to low-resource, noise-prone linguistic settings.
Uni-RS: A Spatially Faithful Unified Understanding and Generation Model for Remote Sensing
Unified remote sensing multimodal models exhibit a pronounced spatial reversal curse: Although they can accurately recognize and describe object locations in images, they often fail to faithfully execute the same spatial relations during text-to-image generation, where such relations constitute core semantic information in remote sensing. Motivated by this observation, we propose Uni-RS, the first unified multimodal model tailored for remote sensing, to explicitly address the spatial asymmetry between understanding and generation. Specifically, we first introduce explicit Spatial-Layout Planning to transform textual instructions into spatial layout plans, decoupling geometric planning from visual synthesis. We then impose Spatial-Aware Query Supervision to bias learnable queries toward spatial relations explicitly specified in the instruction. Finally, we develop Image-Caption Spatial Layout Variation to expose the model to systematic geometry-consistent spatial transformations. Extensive experiments across multiple benchmarks show that our approach substantially improves spatial faithfulness in text-to-image generation, while maintaining strong performance on multimodal understanding tasks like image captioning, visual grounding, and VQA tasks.
Training-Free Text-to-Image Compositional Food Generation via Prompt Grafting
Real-world meal images often contain multiple food items, making reliable compositional food image generation important for applications such as image-based dietary assessment, where multi-food data augmentation is needed, and recipe visualization. However, modern text-to-image diffusion models struggle to generate accurate multi-food images due to object entanglement, where adjacent foods (e.g., rice and soup) fuse together because many foods do not have clear boundaries. To address this challenge, we introduce Prompt Grafting (PG), a training-free framework that combines explicit spatial cues in text with implicit layout guidance during sampling. PG runs a two-stage process where a layout prompt first establishes distinct regions and the target prompt is grafted once layout formation stabilizes. The framework enables food entanglement control: users can specify which food items should remain separated or be intentionally mixed by editing the arrangement of layouts. Across two food datasets, our method significantly improves the presence of target objects and provides qualitative evidence of controllable separation.
comment: Accepted by CAI2026
SPACE-CLIP: Spatial Perception via Adaptive CLIP Embeddings for Monocular Depth Estimation
Contrastive Language-Image Pre-training (CLIP) has accomplished extraordinary success for semantic understanding but inherently struggles to perceive geometric structure. Existing methods attempt to bridge this gap by querying CLIP with textual prompts, a process that is often indirect and inefficient. This paper introduces a fundamentally different approach using a dual-pathway decoder. We present SPACE-CLIP, an architecture that unlocks and interprets latent geometric knowledge directly from a frozen CLIP vision encoder, completely bypassing the text encoder and its associated textual prompts. A semantic pathway interprets high-level features, dynamically conditioned on global context using feature-wise linear modulation (FiLM). In addition, a structural pathway extracts fine-grained spatial details from early layers. These complementary streams are hierarchically fused, enabling a robust synthesis of semantic context and precise geometry. Extensive experiments on the KITTI benchmark show that SPACE-CLIP dramatically outperforms previous CLIP-based methods. Our ablation studies validate that the synergistic fusion of our dual pathways is critical to this success. SPACE-CLIP offers a new, efficient, and architecturally elegant blueprint for repurposing large-scale vision models. The proposed method is not just a standalone depth estimator, but a readily integrable spatial perception module for the next generation of embodied AI systems, such as vision-language-action (VLA) models. Our model is available at https://github.com/taewan2002/space-clip
AVMeme Exam: A Multimodal Multilingual Multicultural Benchmark for LLMs' Contextual and Cultural Knowledge and Thinking
Internet audio-visual clips convey meaning through time-varying sound and motion, which extend beyond what text alone can represent. To examine whether AI models can understand such signals in human cultural contexts, we introduce AVMeme Exam, a human-curated benchmark of over one thousand iconic Internet sounds and videos spanning speech, songs, music, and sound effects. Each meme is paired with a unique Q&A assessing levels of understanding from surface content to context and emotion to usage and world knowledge, along with metadata such as original year, transcript, summary, and sensitivity. We systematically evaluate state-of-the-art multimodal large language models (MLLMs) alongside human participants using this benchmark. Our results reveal a consistent limitation: current models perform poorly on textless music and sound effects, and struggle to think in context and in culture compared to surface content. These findings highlight a key gap in human-aligned multimodal intelligence and call for models that can perceive contextually and culturally beyond the surface of what they hear and see. Project page: avmemeexam.github.io/public
comment: avmemeexam.github.io/public
Cross-Level Sensor Fusion with Object Lists via Transformer for 3D Object Detection IV2025
In automotive sensor fusion systems, smart sensors and Vehicle-to-Everything (V2X) modules are commonly utilized. Sensor data from these systems are typically available only as processed object lists rather than raw sensor data from traditional sensors. Instead of processing other raw data separately and then fusing them at the object level, we propose an end-to-end cross-level fusion concept with Transformer, which integrates highly abstract object list information with raw camera images for 3D object detection. Object lists are fed into a Transformer as denoising queries and propagated together with learnable queries through the latter feature aggregation process. Additionally, a deformable Gaussian mask, derived from the positional and size dimensional priors from the object lists, is explicitly integrated into the Transformer decoder. This directs attention toward the target area of interest and accelerates model training convergence. Furthermore, as there is no public dataset containing object lists as a standalone modality, we propose an approach to generate pseudo object lists from ground-truth bounding boxes by simulating state noise and false positives and negatives. As the first work to conduct cross-level fusion, our approach shows substantial performance improvements over the vision-based baseline on the nuScenes dataset. It demonstrates its generalization capability over diverse noise levels of simulated object lists and real detectors.
comment: 6 pages, 3 figures, accepted at IV2025
Mitigating the Modality Gap: Few-Shot Out-of-Distribution Detection with Multi-modal Prototypes and Image Bias Estimation WACV 2026
Existing vision-language model (VLM)-based methods for out-of-distribution (OOD) detection typically rely on similarity scores between input images and in-distribution (ID) text prototypes. However, the modality gap between image and text often results in high false positive rates, as OOD samples can exhibit high similarity to ID text prototypes. To mitigate the impact of this modality gap, we propose incorporating ID image prototypes along with ID text prototypes. We present theoretical analysis and empirical evidence indicating that this approach enhances VLM-based OOD detection performance without any additional training. To further reduce the gap between image and text, we introduce a novel few-shot tuning framework, SUPREME, comprising biased prompts generation (BPG) and image-text consistency (ITC) modules. BPG enhances image-text fusion and improves generalization by conditioning ID text prototypes on the Gaussian-based estimated image domain bias; ITC reduces the modality gap by minimizing intra- and inter-modal distances. Moreover, inspired by our theoretical and empirical findings, we introduce a novel OOD score $S_{\textit{GMP}}$, leveraging uni- and cross-modal similarities. Finally, we present extensive experiments to demonstrate that SUPREME consistently outperforms existing VLM-based OOD detection methods.
comment: WACV 2026
Demographic-aware fine-grained classification of pediatric wrist fractures
Wrist pathology recognition from radiographs is challenging because normal appearance varies markedly with age and sex. In pediatric imaging, evolving carpal ossification and open growth plates can resemble fractures, while sex-dependent timing of physeal closure changes key visual cues. Image-only models therefore risk confusing developmental anatomy for pathology, especially in small medical datasets. We address this by framing wrist diagnosis as a fine-grained visual recognition (FGVR) task and introducing a multimodal transformer that fuses X-rays with demographic metadata (age and sex). Unlike prior work, this is the first study to integrate metadata for wrist pathology recognition, and we further show that fine-grained pretraining transfers better than coarse ImageNet initialization. Our approach improves accuracy by 2% on a small curated dataset and by over 10% on a larger fracture dataset.
Inconsistency Masks: Harnessing Model Disagreement for Stable Semi-Supervised Segmentation
A primary challenge in semi-supervised learning (SSL) for segmentation is the confirmation bias from noisy pseudo-labels, which destabilizes training and degrades performance. We propose Inconsistency Masks (IM), a framework that reframes model disagreement not as noise to be averaged away, but as a valuable signal for identifying uncertainty. IM leverages an ensemble of teacher models to generate a mask that explicitly delineates regions where predictions diverge. By filtering these inconsistent areas from input-pseudo-label pairs, our method effectively mitigates the cycle of error propagation common in both continuous and iterative self-training paradigms. Extensive experiments on the Cityscapes benchmark demonstrate IM's effectiveness as a general enhancement framework: when paired with leading approaches like iMAS, U$^2$PL, and UniMatch, our method consistently boosts accuracy, achieving superior benchmarks across ResNet-50 and DINOv2 backbones, and even improving distilled architectures like SegKC. Furthermore, the method's robustness is confirmed in resource-constrained scenarios where pre-trained weights are unavailable. On three additional diverse datasets from medical and underwater domains trained entirely from scratch, IM significantly outperforms standard SSL baselines. Notably, the IM framework is dataset-agnostic, seamlessly handling binary, multi-class, and complex multi-label tasks by operating on discretized predictions. By prioritizing training stability, IM offers a generalizable and robust solution for semi-supervised segmentation, particularly in specialized areas lacking large-scale pre-training data. The full code is available at: https://github.com/MichaelVorndran/InconsistencyMasks
CARE Transformer: Mobile-Friendly Linear Visual Transformer via Decoupled Dual Interaction
Recently, large efforts have been made to design efficient linear-complexity visual Transformers. However, current linear attention models are generally unsuitable to be deployed in resource-constrained mobile devices, due to suffering from either few efficiency gains or significant accuracy drops. In this paper, we propose a new de\textbf{C}oupled du\textbf{A}l-interactive linea\textbf{R} att\textbf{E}ntion (CARE) mechanism, revealing that features' decoupling and interaction can fully unleash the power of linear attention. We first propose an asymmetrical feature decoupling strategy that asymmetrically decouples the learning process for local inductive bias and long-range dependencies, thereby preserving sufficient local and global information while effectively enhancing the efficiency of models. Then, a dynamic memory unit is employed to maintain critical information along the network pipeline. Moreover, we design a dual interaction module to effectively facilitate interaction between local inductive bias and long-range information as well as among features at different layers. By adopting a decoupled learning way and fully exploiting complementarity across features, our method can achieve both high efficiency and accuracy. Extensive experiments on ImageNet-1K, COCO, and ADE20K datasets demonstrate the effectiveness of our approach, e.g., achieving $78.4/82.1\%$ top-1 accuracy on ImagegNet-1K at the cost of only $0.7/1.9$ GMACs. Codes will be released on \href{https://github.com/zhouyuan888888/CARE-Transformer}{https://github.com/zhouyuan888888/CARE-Transformer}.
comment: https://github.com/zhouyuan888888/CARE-Transformer
From Darkness to Detail: Frequency-Aware SSMs for Low-Light Vision
Low-light image enhancement remains a persistent challenge in computer vision, where state-of-the-art models are often hampered by hardware constraints and computational inefficiency, particularly at high resolutions. While foundational architectures like transformers and diffusion models have advanced the field, their computational complexity limits their deployment on edge devices. We introduce ExpoMamba, a novel architecture that integrates a frequency-aware state-space model within a modified U-Net. ExpoMamba is designed to address mixed-exposure challenges by decoupling the modeling of amplitude (intensity) and phase (structure) in the frequency domain. This allows for targeted enhancement, making it highly effective for real-time applications, including downstream tasks like object detection and segmentation. Our experiments on six benchmark datasets show that ExpoMamba is up to 2-3x faster than competing models and achieves a 6.8\% PSNR improvement, establishing a new state-of-the-art in efficient, high-quality low-light enhancement. Source code: https://www.github.com/eashanadhikarla/ExpoMamba.
MoE3D: A Mixture-of-Experts Module for 3D Reconstruction
We propose a simple yet effective approach to enhance the performance of feed-forward 3D reconstruction models. Existing methods often struggle near depth discontinuities, where standard regression losses encourage spatial averaging and thus blur sharp boundaries. To address this issue, we introduce a mixture-of-experts formulation that handles uncertainty at depth boundaries by combining multiple smooth depth predictions. A softmax weighting head dynamically selects among these hypotheses on a per-pixel basis. By integrating our mixture model into a pre-trained state-of-the-art 3D model, we achieve a substantial reduction of boundary artifacts and gains in overall reconstruction accuracy. Notably, our approach is highly compute efficient, delivering generalizable improvements even when fine-tuned on a small subset of training data while incurring only negligible additional inference computation, suggesting a promising direction for lightweight and accurate 3D reconstruction.
Towards Robust Evaluation of Visual Activity Recognition: Resolving Verb Ambiguity with Sense Clustering
Evaluating visual activity recognition systems is challenging due to inherent ambiguities in verb semantics and image interpretation. When describing actions in images, synonymous verbs can refer to the same event (e.g., brushing vs. grooming), while different perspectives can lead to equally valid but distinct verb choices (e.g., piloting vs. operating). Standard exact-match evaluation, which relies on a single gold answer, fails to capture these ambiguities, resulting in an incomplete assessment of model performance. To address this, we propose a vision-language clustering framework that constructs verb sense clusters, providing a more robust evaluation. Our analysis of the imSitu dataset shows that each image maps to around four sense clusters, with each cluster representing a distinct perspective of the image. We evaluate multiple activity recognition models and compare our cluster-based evaluation with standard evaluation methods. Additionally, our human alignment analysis suggests that the cluster-based evaluation better aligns with human judgments, offering a more nuanced assessment of model performance.
comment: Accepted to Findings of the Association for Computational Linguistics: EACL 2026
Photography Perspective Composition: Towards Aesthetic Perspective Recommendation NeurIPS 2025
Traditional photography composition approaches are dominated by 2D cropping-based methods. However, these methods fall short when scenes contain poorly arranged subjects. Professional photographers often employ perspective adjustment as a form of 3D recomposition, modifying the projected 2D relationships between subjects while maintaining their actual spatial positions to achieve better compositional balance. Inspired by this artistic practice, we propose photography perspective composition (PPC), extending beyond traditional cropping-based methods. However, implementing the PPC faces significant challenges: the scarcity of perspective transformation datasets and undefined assessment criteria for perspective quality. To address these challenges, we present three key contributions: (1) An automated framework for building PPC datasets through expert photographs. (2) A video generation approach that demonstrates the transformation process from less favorable to aesthetically enhanced perspectives. (3) A perspective quality assessment (PQA) model constructed based on human performance. Our approach is concise and requires no additional prompt instructions or camera trajectories, helping and guiding ordinary users to enhance their composition skills.
comment: Accepted at NeurIPS 2025
FLARE: Feed-forward Geometry, Appearance and Camera Estimation from Uncalibrated Sparse Views
We present FLARE, a feed-forward model designed to infer high-quality camera poses and 3D geometry from uncalibrated sparse-view images (i.e., as few as 2-8 inputs), which is a challenging yet practical setting in real-world applications. Our solution features a cascaded learning paradigm with camera pose serving as the critical bridge, recognizing its essential role in mapping 3D structures onto 2D image planes. Concretely, FLARE starts with camera pose estimation, whose results condition the subsequent learning of geometric structure and appearance, optimized through the objectives of geometry reconstruction and novel-view synthesis. Utilizing large-scale public datasets for training, our method delivers state-of-the-art performance in the tasks of pose estimation, geometry reconstruction, and novel view synthesis, while maintaining the inference efficiency (i.e., less than 0.5 seconds). The project page and code can be found at: https://zhanghe3z.github.io/FLARE/
Unified-EGformer: Exposure Guided Lightweight Transformer for Mixed-Exposure Image Enhancement
Despite recent strides made by AI in image processing, the issue of mixed exposure, pivotal in many real-world scenarios like surveillance and photography, remains inadequately addressed. Traditional image enhancement techniques and current transformer models are limited with primary focus on either overexposure or underexposure. To bridge this gap, we introduce the Unified-Exposure Guided Transformer (Unified-EGformer). Our proposed solution is built upon advanced transformer architectures, equipped with local pixel-level refinement and global refinement blocks for color correction and image-wide adjustments. We employ a guided attention mechanism to precisely identify exposure-compromised regions, ensuring its adaptability across various real-world conditions. U-EGformer, with a lightweight design featuring a memory footprint (peak memory) of only $\sim$1134 MB (0.1 Million parameters) and an inference time of 95 ms (9.61x faster than the average), is a viable choice for real-time applications such as surveillance and autonomous navigation. Additionally, our model is highly generalizable, requiring minimal fine-tuning to handle multiple tasks and datasets with a single architecture.
comment: Under submission
MorphiNet: A Graph Subdivision Network for Adaptive Bi-ventricle Surface Reconstruction
Cardiac Magnetic Resonance (CMR) imaging is widely used for heart model reconstruction and digital twin computational analysis because of its ability to visualize soft tissues and capture dynamic functions. However, CMR images have an anisotropic nature, characterized by large inter-slice distances and misalignments from cardiac motion. These limitations result in data loss and measurement inaccuracies, hindering the capture of detailed anatomical structures. In this work, we introduce MorphiNet, a novel network that reproduces heart anatomy learned from high-resolution Computed Tomography (CT) images, unpaired with CMR images. MorphiNet encodes the anatomical structure as gradient fields, deforming template meshes into patient-specific geometries. A multilayer graph subdivision network refines these geometries while maintaining a dense point correspondence, suitable for computational analysis. MorphiNet achieved state-of-the-art bi-ventricular myocardium reconstruction on CMR patients with tetralogy of Fallot with 0.3 higher Dice score and 2.6 lower Hausdorff distance compared to the best existing template-based methods. While matching the anatomical fidelity of comparable neural implicit function methods, MorphiNet delivered 50$\times$ faster inference. Cross-dataset validation on the Automated Cardiac Diagnosis Challenge confirmed robust generalization, achieving a 0.7 Dice score with 30\% improvement over previous template-based approaches. We validate our anatomical learning approach through the successful restoration of missing cardiac structures and demonstrate significant improvement over standard Loop subdivision. Motion tracking experiments further confirm MorphiNet's capability for cardiac function analysis, including accurate ejection fraction calculation that correctly identifies myocardial dysfunction in tetralogy of Fallot patients.
Image2Garment: Simulation-ready Garment Generation from a Single Image
Estimating physically accurate, simulation-ready garments from a single image is challenging due to the absence of image-to-physics datasets and the ill-posed nature of this problem. Prior methods either require multi-view capture and expensive differentiable simulation or predict only garment geometry without the material properties required for realistic simulation. We propose a feed-forward framework that sidesteps these limitations by first fine-tuning a vision-language model to infer material composition and fabric attributes from real images, and then training a lightweight predictor that maps these attributes to the corresponding physical fabric parameters using a small dataset of material-physics measurements. Our approach introduces two new datasets (FTAG and T2P) and delivers simulation-ready garments from a single image without iterative optimization. Experiments show that our estimator achieves superior accuracy in material composition estimation and fabric attribute prediction, and by passing them through our physics parameter estimator, we further achieve higher-fidelity simulations compared to state-of-the-art image-to-garment methods.
comment: Project Page: https://image2garment.github.io/
SceneSplat++: A Large Dataset and Comprehensive Benchmark for Language Gaussian Splatting
3D Gaussian Splatting (3DGS) serves as a highly performant and efficient encoding of scene geometry, appearance, and semantics. Moreover, grounding language in 3D scenes has proven to be an effective strategy for 3D scene understanding. Current Language Gaussian Splatting line of work fall into three main groups: (i) per-scene optimization-based, (ii) per-scene optimization-free, and (iii) generalizable approach. However, most of them are evaluated only on rendered 2D views of a handful of scenes and viewpoints close to the training views, limiting ability and insight into holistic 3D understanding. To address this gap, we propose the first large-scale benchmark that systematically assesses these three groups of methods directly in 3D space, evaluating on 1060 scenes across three indoor datasets and one outdoor dataset. Benchmark results demonstrate a clear advantage of the generalizable paradigm, particularly in relaxing the scene-specific limitation, enabling fast feed-forward inference on novel scenes, and achieving superior segmentation performance. We further introduce GaussianWorld-49K a carefully curated 3DGS dataset comprising around 49K diverse indoor and outdoor scenes obtained from multiple sources, with which we demonstrate the generalizable approach could harness strong data priors. Our codes, benchmark, and datasets are released at https://scenesplatpp.gaussianworld.ai/.
comment: 15 pages, codes, data and benchmark are released at https://scenesplatpp.gaussianworld.ai/
Communicate Less, Synthesize the Rest: Latency-aware Intent-based Generative Semantic Multicasting with Diffusion Models
Generative diffusion models (GDMs) have recently shown great success in synthesizing multimedia signals with high perceptual quality, enabling highly efficient semantic communications in future wireless networks. In this paper, we develop an intent-aware generative semantic multicasting framework utilizing pre-trained diffusion models. In the proposed framework, the transmitter decomposes the source signal into multiple semantic classes based on the multi-user intent, i.e. each user is assumed to be interested in details of only a subset of the semantic classes. To better utilize the wireless resources, the transmitter sends to each user only its intended classes, and multicasts a highly compressed semantic map to all users over shared wireless resources that allows them to locally synthesize the other classes, namely non-intended classes, utilizing pre-trained diffusion models. The signal retrieved at each user is thereby partially reconstructed and partially synthesized utilizing the received semantic map. We design a communication/computation-aware scheme for per-class adaptation of the communication parameters, such as the transmission power and compression rate, to minimize the total latency of retrieving signals at multiple receivers, tailored to the prevailing channel conditions as well as the users' reconstruction/synthesis distortion/perception requirements. The simulation results demonstrate significantly reduced per-user latency compared with non-generative and intent-unaware multicasting benchmarks while maintaining high perceptual quality of the signals retrieved at the users.
comment: Accepted at IEEE Transactions on Vehicular Technology
Matrix-free Second-order Optimization of Gaussian Splats with Residual Sampling
3D Gaussian Splatting (3DGS) is widely used for novel view synthesis due to its high rendering quality and fast inference time. However, 3DGS predominantly relies on first-order optimizers such as Adam, which leads to long training times. To address this limitation, we propose a novel second-order optimization strategy based on Levenberg-Marquardt (LM) and Conjugate Gradient (CG), specifically tailored towards Gaussian Splatting. Our key insight is that the Jacobian in 3DGS exhibits significant sparsity since each Gaussian affects only a limited number of pixels. We exploit this sparsity by proposing a matrix-free and GPU-parallelized LM optimization. To further improve its efficiency, we propose sampling strategies for both camera views and loss function and, consequently, the normal equation, significantly reducing the computational complexity. In addition, we increase the convergence rate of the second-order approximation by introducing an effective heuristic to determine the learning rate that avoids the expensive computation cost of line search methods. As a result, our method achieves a 4x speedup over standard LM and outperforms Adam by ~5x when the Gaussian count is low while providing ~1.3x speed in moderate counts. In addition, our matrix-free implementation achieves 2x speedup over the concurrent second-order optimizer 3DGS-LM, while using 3.5x less memory. Project Page: https://vcai.mpi-inf.mpg.de/projects/LM-RS/
PVLM: Parsing-Aware Vision Language Model with Dynamic Contrastive Learning for Zero-Shot Deepfake Attribution
The challenge of tracing the source attribution of forged faces has gained significant attention due to the rapid advancement of generative models. However, existing deepfake attribution (DFA) works primarily focus on the interaction among various domains in vision modality, and other modalities such as texts and face parsing are not fully explored. Besides, they tend to fail to assess the generalization performance of deepfake attributors to unseen advanced generators like diffusion in a fine-grained manner. In this paper, we propose a novel parsing-aware vision language model with a dynamic contrastive learning (PVLM) method for zero-shot deepfake attribution (ZSDFA), which facilitates effective and fine-grained traceability to unseen advanced generators. Specifically, we conduct a novel and fine-grained ZS-DFA benchmark to evaluate the attribution performance of deepfake attributors to unseen advanced generators like diffusion. Besides, we propose an innovative PVLM attributor based on the vision-language model to capture general and diverse attribution features. We are motivated by the observation that the preservation of source face attributes in facial images generated by GAN and diffusion models varies significantly. We propose to employ the inherent facial attributes preservation differences to capture face parsing-aware forgery representations. Therefore, we devise a novel parsing encoder to focus on global face attribute embeddings, enabling parsing-guided DFA representation learning via dynamic vision-parsing matching. Additionally, we present a novel deepfake attribution contrastive center loss to pull relevant generators closer and push irrelevant ones away, which can be introduced into DFA models to enhance traceability. Experimental results show that our model exceeds the state-of-the-art on the ZS-DFA benchmark via various protocol evaluations.
SenseNova-MARS: Empowering Multimodal Agentic Reasoning and Search via Reinforcement Learning
While Vision-Language Models (VLMs) can solve complex tasks through agentic reasoning, their capabilities remain largely constrained to text-oriented chain-of-thought or isolated tool invocation. They fail to exhibit the human-like proficiency required to seamlessly interleave dynamic tool manipulation with continuous reasoning, particularly in knowledge-intensive and visually complex scenarios that demand coordinated external tools such as search and image cropping. In this work, we introduce SenseNova-MARS, a novel Multimodal Agentic Reasoning and Search framework that empowers VLMs with interleaved visual reasoning and tool-use capabilities via reinforcement learning (RL). Specifically, SenseNova-MARS dynamically integrates the image search, text search, and image crop tools to tackle fine-grained and knowledge-intensive visual understanding challenges. In the RL stage, we propose the Batch-Normalized Group Sequence Policy Optimization (BN-GSPO) algorithm to improve the training stability and advance the model's ability to invoke tools and reason effectively. To comprehensively evaluate the agentic VLMs on complex visual tasks, we introduce the HR-MMSearch benchmark, the first search-oriented benchmark composed of high-resolution images with knowledge-intensive and search-driven questions. Experiments demonstrate that SenseNova-MARS achieves state-of-the-art performance on open-source search and fine-grained image understanding benchmarks. Specifically, on search-oriented benchmarks, SenseNova-MARS-32B scores 74.3 on MMSearch and 54.4 on HR-MMSearch, surpassing proprietary models such as Gemini-3-Pro and GPT-5.2. SenseNova-MARS represents a promising step toward agentic VLMs by providing effective and robust tool-use capabilities. To facilitate further research in this field, we will release all code, models, and datasets.
GeneMAN: Generalizable Single-Image 3D Human Reconstruction from Multi-Source Human Data NeurIPS 2025
Given a single in-the-wild human photo, it remains a challenging task to reconstruct a high-fidelity 3D human model. Existing methods face difficulties including a) the varying body proportions captured by in-the-wild human images; b) diverse personal belongings within the shot; and c) ambiguities in human postures and inconsistency in human textures. In addition, the scarcity of high-quality human data intensifies the challenge. To address these problems, we propose a Generalizable image-to-3D huMAN reconstruction framework, dubbed GeneMAN, building upon a comprehensive multi-source collection of high-quality human data, including 3D scans, multi-view videos, single photos, and our generated synthetic human data. GeneMAN encompasses three key modules. 1) Without relying on parametric human models (e.g., SMPL), GeneMAN first trains a human-specific text-to-image diffusion model and a view-conditioned diffusion model, serving as GeneMAN 2D human prior and 3D human prior for reconstruction, respectively. 2) With the help of the pretrained human prior models, the Geometry Initialization-&-Sculpting pipeline is leveraged to recover high-quality 3D human geometry given a single image. 3) To achieve high-fidelity 3D human textures, GeneMAN employs the Multi-Space Texture Refinement pipeline, consecutively refining textures in the latent and the pixel spaces. Extensive experimental results demonstrate that GeneMAN could generate high-quality 3D human models from a single image input, outperforming prior state-of-the-art methods. Notably, GeneMAN could reveal much better generalizability in dealing with in-the-wild images, often yielding high-quality 3D human models in natural poses with common items, regardless of the body proportions in the input images.
comment: Accepted by NeurIPS 2025; Project page: https://roooooz.github.io/GeneMAN/
Vision-Proprioception Fusion with Mamba2 in End-to-End Reinforcement Learning for Motion Control
End-to-end reinforcement learning (RL) for motion control trains policies directly from sensor inputs to motor commands, enabling unified controllers for different robots and tasks. However, most existing methods are either blind (proprioception-only) or rely on fusion backbones with unfavorable compute-memory trade-offs. Recurrent controllers struggle with long-horizon credit assignment, and Transformer-based fusion incurs quadratic cost in token length, limiting temporal and spatial context. We present a vision-driven cross-modal RL framework built on SSD-Mamba2, a selective state-space backbone that applies state-space duality (SSD) to enable both recurrent and convolutional scanning with hardware-aware streaming and near-linear scaling. Proprioceptive states and exteroceptive observations (e.g., depth tokens) are encoded into compact tokens and fused by stacked SSD-Mamba2 layers. The selective state-space updates retain long-range dependencies with markedly lower latency and memory use than quadratic self-attention, enabling longer look-ahead, higher token resolution, and stable training under limited compute. Policies are trained end-to-end under curricula that randomize terrain and appearance and progressively increase scene complexity. A compact, state-centric reward balances task progress, energy efficiency, and safety. Across diverse motion-control scenarios, our approach consistently surpasses strong state-of-the-art baselines in return, safety (collisions and falls), and sample efficiency, while converging faster at the same compute budget. These results suggest that SSD-Mamba2 provides a practical fusion backbone for resource-constrained robotic and autonomous systems in engineering informatics applications.
comment: 6 figures and 8 tables. This paper has been accepted by Advanced Engineering Informatics
StyMam: A Mamba-Based Generator for Artistic Style Transfer
Image style transfer aims to integrate the visual patterns of a specific artistic style into a content image while preserving its content structure. Existing methods mainly rely on the generative adversarial network (GAN) or stable diffusion (SD). GAN-based approaches using CNNs or Transformers struggle to jointly capture local and global dependencies, leading to artifacts and disharmonious patterns. SD-based methods reduce such issues but often fail to preserve content structures and suffer from slow inference. To address these issues, we revisit GAN and propose a mamba-based generator, termed as StyMam, to produce high-quality stylized images without introducing artifacts and disharmonious patterns. Specifically, we introduce a mamba-based generator with a residual dual-path strip scanning mechanism and a channel-reweighted spatial attention module. The former efficiently captures local texture features, while the latter models global dependencies. Finally, extensive qualitative and quantitative experiments demonstrate that the proposed method outperforms state-of-the-art algorithms in both quality and speed.
comment: Accepted by ICASSP 2026
Cross-domain EEG-based Emotion Recognition with Contrastive Learning
Electroencephalogram (EEG)-based emotion recognition is vital for affective computing but faces challenges in feature utilization and cross-domain generalization. This work introduces EmotionCLIP, which reformulates recognition as an EEG-text matching task within the CLIP framework. A tailored backbone, SST-LegoViT, captures spatial, spectral, and temporal features using multi-scale convolution and Transformer modules. Experiments on SEED and SEED-IV datasets show superior cross-subject accuracies of 88.69\% and 73.50\%, and cross-time accuracies of 88.46\% and 77.54\%, outperforming existing models. Results demonstrate the effectiveness of multimodal contrastive learning for robust EEG emotion recognition. The code is available at https://github.com/Departure2021/EmotionCLIP.
comment: Accepted by IEEE ICASSP 2026
PyMAF-X: Towards Well-aligned Full-body Model Regression from Monocular Images
We present PyMAF-X, a regression-based approach to recovering parametric full-body models from monocular images. This task is very challenging since minor parametric deviation may lead to noticeable misalignment between the estimated mesh and the input image. Moreover, when integrating part-specific estimations into the full-body model, existing solutions tend to either degrade the alignment or produce unnatural wrist poses. To address these issues, we propose a Pyramidal Mesh Alignment Feedback (PyMAF) loop in our regression network for well-aligned human mesh recovery and extend it as PyMAF-X for the recovery of expressive full-body models. The core idea of PyMAF is to leverage a feature pyramid and rectify the predicted parameters explicitly based on the mesh-image alignment status. Specifically, given the currently predicted parameters, mesh-aligned evidence will be extracted from finer-resolution features accordingly and fed back for parameter rectification. To enhance the alignment perception, an auxiliary dense supervision is employed to provide mesh-image correspondence guidance while spatial alignment attention is introduced to enable the awareness of the global contexts for our network. When extending PyMAF for full-body mesh recovery, an adaptive integration strategy is proposed in PyMAF-X to produce natural wrist poses while maintaining the well-aligned performance of the part-specific estimations. The efficacy of our approach is validated on several benchmark datasets for body, hand, face, and full-body mesh recovery, where PyMAF and PyMAF-X effectively improve the mesh-image alignment and achieve new state-of-the-art results. The project page with code and video results can be found at https://zhanghongwen.cn/pymaf-x.
comment: Article in IEEE TPAMI 2023, Update project page: https://zhanghongwen.cn/pymaf-x, An eXpressive extension of PyMAF [arXiv:2103.16507] for monocular human/hand/face/whole-body motion capture
TreeDGS: Aerial Gaussian Splatting for Distant DBH Measurement
Aerial remote sensing enables efficient large-area surveying, but accurate direct object-level measurement remains difficult in complex natural scenes. Recent advancements in 3D vision, particularly learned radiance-field representations such as NeRF and 3D Gaussian Splatting, have begun to raise the ceiling on reconstruction fidelity and densifiable geometry from posed imagery. Nevertheless, direct aerial measurement of important natural attributes such as tree diameter at breast height (DBH) remains challenging. Trunks in aerial forest scans are distant and sparsely observed in image views: at typical operating altitudes, stems may span only a few pixels. With these constraints, conventional reconstruction methods leave breast-height trunk geometry weakly constrained. We present TreeDGS, an aerial image reconstruction method that leverages 3D Gaussian Splatting as a continuous, densifiable scene representation for trunk measurement. After SfM--MVS initialization and Gaussian optimization, we extract a dense point set from the Gaussian field using RaDe-GS's depth-aware cumulative-opacity integration and associate each sample with a multi-view opacity reliability score. Then, we estimate DBH from trunk-isolated points using opacity-weighted solid-circle fitting. Evaluated on 10 plots with field-measured DBH, TreeDGS reaches 4.79,cm RMSE (about 2.6 pixels at this GSD) and outperforms a state-of-the-art LiDAR baseline (7.91,cm RMSE). This shows that TreeDGS can enable accurate, low-cost aerial DBH measurement
CloSET: Modeling Clothed Humans on Continuous Surface with Explicit Template Decomposition CVPR 2023
Creating animatable avatars from static scans requires the modeling of clothing deformations in different poses. Existing learning-based methods typically add pose-dependent deformations upon a minimally-clothed mesh template or a learned implicit template, which have limitations in capturing details or hinder end-to-end learning. In this paper, we revisit point-based solutions and propose to decompose explicit garment-related templates and then add pose-dependent wrinkles to them. In this way, the clothing deformations are disentangled such that the pose-dependent wrinkles can be better learned and applied to unseen poses. Additionally, to tackle the seam artifact issues in recent state-of-the-art point-based methods, we propose to learn point features on a body surface, which establishes a continuous and compact feature space to capture the fine-grained and pose-dependent clothing geometry. To facilitate the research in this field, we also introduce a high-quality scan dataset of humans in real-world clothing. Our approach is validated on two existing datasets and our newly introduced dataset, showing better clothing deformation results in unseen poses. The project page with code and dataset can be found at https://zhanghongwen.cn/closet.
comment: CVPR 2023 Paper, Update project page: https://zhanghongwen.cn/closet
Degradation-Agnostic Statistical Facial Feature Transformation for Blind Face Restoration in Adverse Weather Conditions
With the increasing deployment of intelligent CCTV systems in outdoor environments, there is a growing demand for face recognition systems optimized for challenging weather conditions. Adverse weather significantly degrades image quality, which in turn reduces recognition accuracy. Although recent face image restoration (FIR) models based on generative adversarial networks (GANs) and diffusion models have shown progress, their performance remains limited due to the lack of dedicated modules that explicitly address weather-induced degradations. This leads to distorted facial textures and structures. To address these limitations, we propose a novel GAN-based blind FIR framework that integrates two key components: local Statistical Facial Feature Transformation (SFFT) and Degradation-Agnostic Feature Embedding (DAFE). The local SFFT module enhances facial structure and color fidelity by aligning the local statistical distributions of low-quality (LQ) facial regions with those of high-quality (HQ) counterparts. Complementarily, the DAFE module enables robust statistical facial feature extraction under adverse weather conditions by aligning LQ and HQ encoder representations, thereby making the restoration process adaptive to severe weather-induced degradations. Experimental results demonstrate that the proposed degradation-agnostic SFFT model outperforms existing state-of-the-art FIR methods based on GAN and diffusion models, particularly in suppressing texture distortions and accurately reconstructing facial structures. Furthermore, both the SFFT and DAFE modules are empirically validated in enhancing structural fidelity and perceptual quality in face restoration under challenging weather scenarios.
Motion Focus Recognition in Fast-Moving Egocentric Video
From Vision-Language-Action (VLA) systems to robotics, existing egocentric datasets primarily focus on action recognition tasks, while largely overlooking the inherent role of motion analysis in sports and other fast-movement scenarios. To bridge this gap, we propose a real-time motion focus recognition method that estimates the subject's locomotion intention from any egocentric video. We leverage the foundation model for camera pose estimation and introduce system-level optimizations to enable efficient and scalable inference. Evaluated on a collected egocentric action dataset, our method achieves real-time performance with manageable memory consumption through a sliding batch inference strategy. This work makes motion-centric analysis practical for edge deployment and offers a complementary perspective to existing egocentric studies on sports and fast-movement activities.
BeetleVerse: A Study on Taxonomic Classification of Ground Beetles
Ground beetles are a highly sensitive and speciose biological indicator, making them vital for monitoring biodiversity. However, they are currently an underutilized resource due to the manual effort required by taxonomic experts to perform challenging species differentiations based on subtle morphological differences, precluding widespread applications. In this paper, we evaluate 12 vision models on taxonomic classification across four diverse, long-tailed datasets spanning over 230 genera and 1769 species, with images ranging from controlled laboratory settings to challenging field-collected (in-situ) photographs. We further explore taxonomic classification in two important real-world contexts: sample efficiency and domain adaptation. Our results show that the Vision and Language Transformer combined with an MLP head is the best performing model, with 97% accuracy at genus and 94% at species level. Sample efficiency analysis shows that we can reduce train data requirements by up to 50% with minimal compromise in performance. The domain adaptation experiments reveal significant challenges when transferring models from lab to in-situ images, highlighting a critical domain gap. Overall, our study lays a foundation for large-scale automated taxonomic classification of beetles, and beyond that, advances sample-efficient learning and cross-domain adaptation for diverse long-tailed ecological datasets.
comment: 23 pages, 16 figures (with appendix); Paper Accepted at Computer Vision and Pattern Recognition 2025 (Workshop CV4Animals: Computer Vision for Animal Behavior Tracking and Modeling)
DragNeXt: Rethinking Drag-Based Image Editing
Drag-Based Image Editing (DBIE), which allows users to manipulate images by directly dragging objects within them, has recently attracted much attention from the community. However, it faces two key challenges: (\emph{\textcolor{magenta}{i}}) point-based drag is often highly ambiguous and difficult to align with users' intentions; (\emph{\textcolor{magenta}{ii}}) current DBIE methods primarily rely on alternating between motion supervision and point tracking, which is not only cumbersome but also fails to produce high-quality results. These limitations motivate us to explore DBIE from a new perspective -- redefining it as deformation, rotation, and translation of user-specified handle regions. Thereby, by requiring users to explicitly specify both drag areas and types, we can effectively address the ambiguity issue. Furthermore, we propose a simple-yet-effective editing framework, dubbed \textcolor{SkyBlue}{\textbf{DragNeXt}}. It unifies DBIE as a Latent Region Optimization (LRO) problem and solves it through Progressive Backward Self-Intervention (PBSI), simplifying the overall procedure of DBIE while further enhancing quality by fully leveraging region-level structure information and progressive guidance from intermediate drag states. We validate \textcolor{SkyBlue}{\textbf{DragNeXt}} on our NextBench, and extensive experiments demonstrate that our proposed method can significantly outperform existing approaches. Code will be released on github.
comment: https://github.com/zhouyuan888888/DragNeXt
DeepInsert: Early Layer Bypass for Efficient and Performant Multimodal Understanding
Hyperscaling of data and parameter count in LLMs is yielding diminishing improvement when weighed against training costs, underlining a growing need for more efficient finetuning and inference without sacrificing performance. This is especially so for multimodal language models (MLMs), where the overhead of processing multimodal tokens can limit their practical viability. Parallely, recent work has uncovered implicit cross-modal alignment in the deeper layers of large MLMs, deepening our understanding of how MLMs process and encode information. Motivated by this, and our observation that MLMs naturally defer most cross-modal token interactions to deeper layers of the model, we propose a simple modification. Instead of concatenation with the language prompt at the start, we insert multimodal tokens directly into the middle, allowing them to entirely bypass the early layers. Our results with diverse modalities, (i) LLaVA \& BLIP for vision, (ii) LTU for audio, and (iii) MoLCA for molecular data, and model sizes, starting from 350M to 13B parameters, indicate that our method reduces both training and inference costs, while at least preserving, if not surpassing the performance of existing baselines.
comment: To be presented at EACL 2026 (Main Conference)
Physics-Guided Multi-View Graph Neural Network for Schizophrenia Classification via Structural-Functional Coupling
Clinical studies reveal disruptions in brain structural connectivity (SC) and functional connectivity (FC) in neuropsychiatric disorders such as schizophrenia (SZ). Traditional approaches might rely solely on SC due to limited functional data availability, hindering comprehension of cognitive and behavioral impairments in individuals with SZ by neglecting the intricate SC-FC interrelationship. To tackle the challenge, we propose a novel physics-guided deep learning framework that leverages a neural oscillation model to describe the dynamics of a collection of interconnected neural oscillators, which operate via nerve fibers dispersed across the brain's structure. Our proposed framework utilizes SC to simultaneously generate FC by learning SC-FC coupling from a system dynamics perspective. Additionally, it employs a novel multi-view graph neural network (GNN) with a joint loss to perform correlation-based SC-FC fusion and classification of individuals with SZ. Experiments conducted on a clinical dataset exhibited improved performance, demonstrating the robustness of our proposed approach.
comment: Published in: Predictive Intelligence in Medicine (PRIME 2024), Lecture Notes in Computer Science, vol. 15155. Springer, Cham. DOI: 10.1007/978-3-031-74561-4_6
NeuroKoop: Neural Koopman Fusion of Structural-Functional Connectomes for Identifying Prenatal Drug Exposure in Adolescents
Understanding how prenatal exposure to psychoactive substances such as cannabis shapes adolescent brain organization remains a critical challenge, complicated by the complexity of multimodal neuroimaging data and the limitations of conventional analytic methods. Existing approaches often fail to fully capture the complementary features embedded within structural and functional connectomes, constraining both biological insight and predictive performance. To address this, we introduced NeuroKoop, a novel graph neural network-based framework that integrates structural and functional brain networks utilizing neural Koopman operator-driven latent space fusion. By leveraging Koopman theory, NeuroKoop unifies node embeddings derived from source-based morphometry (SBM) and functional network connectivity (FNC) based brain graphs, resulting in enhanced representation learning and more robust classification of prenatal drug exposure (PDE) status. Applied to a large adolescent cohort from the ABCD dataset, NeuroKoop outperformed relevant baselines and revealed salient structural-functional connections, advancing our understanding of the neurodevelopmental impact of PDE.
comment: Published in the Proceedings of the 2025 IEEE EMBS International Conference on Biomedical and Health Informatics (BHI). IEEE Xplore. DOI: 10.1109/BHI67747.2025.11269557
Unified Cross-Modal Attention-Mixer Based Structural-Functional Connectomics Fusion for Neuropsychiatric Disorder Diagnosis
Gaining insights into the structural and functional mechanisms of the brain has been a longstanding focus in neuroscience research, particularly in the context of understanding and treating neuropsychiatric disorders such as Schizophrenia (SZ). Nevertheless, most of the traditional multimodal deep learning approaches fail to fully leverage the complementary characteristics of structural and functional connectomics data to enhance diagnostic performance. To address this issue, we proposed ConneX, a multimodal fusion method that integrates cross-attention mechanism and multilayer perceptron (MLP)-Mixer for refined feature fusion. Modality-specific backbone graph neural networks (GNNs) were firstly employed to obtain feature representation for each modality. A unified cross-modal attention network was then introduced to fuse these embeddings by capturing intra- and inter-modal interactions, while MLP-Mixer layers refined global and local features, leveraging higher-order dependencies for end-to-end classification with a multi-head joint loss. Extensive evaluations demonstrated improved performance on two distinct clinical datasets, highlighting the robustness of our proposed framework.
comment: Published in the Proceedings of the 47th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2025). IEEE Xplore. DOI: 10.1109/EMBC58623.2025.11254194
RotBench: Evaluating Multimodal Large Language Models on Identifying Image Rotation
We investigate to what extent Multimodal Large Language Models (MLLMs) can accurately identify the orientation of input images rotated 0°, 90°, 180°, and 270°. This task demands robust visual reasoning capabilities to detect rotational cues and contextualize spatial relationships within images, regardless of their orientation. To evaluate MLLMs on these abilities, we introduce RotBench, a 350-image manually-filtered benchmark comprising lifestyle, portrait, and landscape images. Despite the relatively simple nature of this task, we show that several state-of-the-art open and proprietary MLLMs, including GPT-5, o3, and Gemini-2.5-Pro, do not reliably identify rotation in input images. Providing models with auxiliary information -- including captions, depth maps, and more -- or using chain-of-thought prompting offers only small and inconsistent improvements. Our results indicate that most models are able to reliably identify right-side-up (0°) images, while certain models are able to identify upside-down (180°) images. None can reliably distinguish between 90° and 270° rotated images. Simultaneously showing the image rotated in different orientations leads to moderate performance gains for reasoning models, while a modified setup using voting improves the performance of weaker models. We further show that fine-tuning does not improve models' ability to distinguish 90° and 270° rotations, despite substantially improving the identification of 180° images. Together, these results reveal a significant gap between MLLMs' spatial reasoning capabilities and human perception in identifying rotation.
comment: EACL 2026 Camera-Ready. Code and data: https://github.com/tianyiniu/RotBench
BigTokDetect: A Clinically-Informed Vision-Language Modeling Framework for Detecting Pro-Bigorexia Videos on TikTok
Social media platforms face escalating challenges in detecting harmful content that promotes muscle dysmorphic behaviors and cognitions (bigorexia). This content can evade moderation by camouflaging as legitimate fitness advice and disproportionately affects adolescent males. We address this challenge with BigTokDetect, a clinically informed framework for identifying pro-bigorexia content on TikTok. We introduce BigTok, the first expert-annotated multimodal benchmark dataset of over 2,200 TikTok videos labeled by clinical psychiatrists across five categories and eighteen fine-grained subcategories. Comprehensive evaluation of state-of-the-art vision-language models reveals that while commercial zero-shot models achieve the highest accuracy on broad primary categories, supervised fine-tuning enables smaller open-source models to perform better on fine-grained subcategory detection. Ablation studies show that multimodal fusion improves performance by 5 to 15 percent, with video features providing the most discriminative signals. These findings support a grounded moderation approach that automates detection of explicit harms while flagging ambiguous content for human review, and they establish a scalable framework for harm mitigation in emerging mental health domains.
Artificial Intelligence 90
Leveraging Persistence Image to Enhance Robustness and Performance in Curvilinear Structure Segmentation
Segmenting curvilinear structures in medical images is essential for analyzing morphological patterns in clinical applications. Integrating topological properties, such as connectivity, improves segmentation accuracy and consistency. However, extracting and embedding such properties - especially from Persistence Diagrams (PD) - is challenging due to their non-differentiability and computational cost. Existing approaches mostly encode topology through handcrafted loss functions, which generalize poorly across tasks. In this paper, we propose PIs-Regressor, a simple yet effective module that learns persistence image (PI) - finite, differentiable representations of topological features - directly from data. Together with Topology SegNet, which fuses these features in both downsampling and upsampling stages, our framework integrates topology into the network architecture itself rather than auxiliary losses. Unlike existing methods that depend heavily on handcrafted loss functions, our approach directly incorporates topological information into the network structure, leading to more robust segmentation. Our design is flexible and can be seamlessly combined with other topology-based methods to further enhance segmentation performance. Experimental results show that integrating topological features enhances model robustness, effectively handling challenges like overexposure and blurring in medical imaging. Our approach on three curvilinear benchmarks demonstrate state-of-the-art performance in both pixel-level accuracy and topological fidelity.
comment: Accepted by IEEE International Symposium on Biomedical Imaging (ISBI) 2026. 5 pages, 3 figures
SpatialEmb: Extract and Encode Spatial Information for 1-Stage Multi-channel Multi-speaker ASR on Arbitrary Microphone Arrays
Spatial information is a critical clue for multi-channel multi-speaker target speech recognition. Most state-of-the-art multi-channel Automatic Speech Recognition (ASR) systems extract spatial features only during the speech separation stage, followed by standard single-channel ASR on the separated speech. This approach results in an inefficient, lengthy pipeline and sub-optimal ASR performance due to the accumulated errors from preprocessing modules. Furthermore, most spatial feature extraction methods depend on the knowledge of speaker positions and microphone topology, making the systems reliant on specific settings and challenging to adapt to new equipment. In this work, we propose a solution to these issues with a lightweight embedding module named SpatialEmb, which extracts and encodes spatial information directly for the ASR model, supporting both fixed and arbitrary microphone topology. We conduct comprehensive experiments on AliMeeting, a real meeting corpus, to determine the optimal model design for SpatialEmb in terms of both performance and efficiency. Our best model trained with 105 hours Train-Ali-far achieves 17.04% and 20.32% character error rates (CER) on the Eval and Test sets, establishing a new state-of-the-art result with the same training data.
comment: SLT 2024
An Experimental Comparison of Cognitive Forcing Functions for Execution Plans in AI-Assisted Writing: Effects On Trust, Overreliance, and Perceived Critical Thinking
Generative AI (GenAI) tools improve productivity in knowledge workflows such as writing, but also risk overreliance and reduced critical thinking. Cognitive forcing functions (CFFs) mitigate these risks by requiring active engagement with AI output. As GenAI workflows grow more complex, systems increasingly present execution plans for user review. However, these plans are themselves AI-generated and prone to overreliance, and the effectiveness of applying CFFs to AI plans remains underexplored. We conduct a controlled experiment in which participants completed AI-assisted writing tasks while reviewing AI-generated plans under four CFF conditions: Assumption (argument analysis), WhatIf (hypothesis testing), Both, and a no-CFF control. A follow-up think-aloud and interview study qualitatively compared these conditions. Results show that the Assumption CFF most effectively reduced overreliance without increasing cognitive load, while participants perceived the WhatIf CFF as most helpful. These findings highlight the value of plan-focused CFFs for supporting critical reflection in GenAI-assisted knowledge work.
Sentipolis: Emotion-Aware Agents for Social Simulations
LLM agents are increasingly used for social simulation, yet emotion is often treated as a transient cue, causing emotional amnesia and weak long-horizon continuity. We present Sentipolis, a framework for emotionally stateful agents that integrates continuous Pleasure-Arousal-Dominance (PAD) representation, dual-speed emotion dynamics, and emotion--memory coupling. Across thousands of interactions over multiple base models and evaluators, Sentipolis improves emotionally grounded behavior, boosting communication, and emotional continuity. Gains are model-dependent: believability increases for higher-capacity models but can drop for smaller ones, and emotion-awareness can mildly reduce adherence to social norms, reflecting a human-like tension between emotion-driven behavior and rule compliance in social simulation. Network-level diagnostics show reciprocal, moderately clustered, and temporally stable relationship structures, supporting the study of cumulative social dynamics such as alliance formation and gradual relationship change.
A System for Name and Address Parsing with Large Language Models
Reliable transformation of unstructured person and address text into structured data remains a key challenge in large-scale information systems. Traditional rule-based and probabilistic approaches perform well on clean inputs but fail under noisy or multilingual conditions, while neural and large language models (LLMs) often lack deterministic control and reproducibility. This paper introduces a prompt-driven, validation-centered framework that converts free-text records into a consistent 17-field schema without fine-tuning. The method integrates input normalisation, structured prompting, constrained decoding, and strict rule-based validation under fixed experimental settings to ensure reproducibility. Evaluations on heterogeneous real-world address data show high field-level accuracy, strong schema adherence, and stable confidence calibration. The results demonstrate that combining deterministic validation with generative prompting provides a robust, interpretable, and scalable solution for structured information extraction, offering a practical alternative to training-heavy or domain-specific models.
Evaluating Semantic and Syntactic Understanding in Large Language Models for Payroll Systems
Large language models are now used daily for writing, search, and analysis, and their natural language understanding continues to improve. However, they remain unreliable on exact numerical calculation and on producing outputs that are straightforward to audit. We study synthetic payroll system as a focused, high-stakes example and evaluate whether models can understand a payroll schema, apply rules in the right order, and deliver cent-accurate results. Our experiments span a tiered dataset from basic to complex cases, a spectrum of prompts from minimal baselines to schema-guided and reasoning variants, and multiple model families including GPT, Claude, Perplexity, Grok and Gemini. Results indicate clear regimes where careful prompting is sufficient and regimes where explicit computation is required. The work offers a compact, reproducible framework and practical guidance for deploying LLMs in settings that demand both accuracy and assurance.
Coding-Enforced Resilient and Secure Aggregation for Hierarchical Federated Learning
Hierarchical federated learning (HFL) has emerged as an effective paradigm to enhance link quality between clients and the server. However, ensuring model accuracy while preserving privacy under unreliable communication remains a key challenge in HFL, as the coordination among privacy noise can be randomly disrupted. To address this limitation, we propose a robust hierarchical secure aggregation scheme, termed H-SecCoGC, which integrates coding strategies to enforce structured aggregation. The proposed scheme not only ensures accurate global model construction under varying levels of privacy, but also avoids the partial participation issue, thereby significantly improving robustness, privacy preservation, and learning efficiency. Both theoretical analyses and experimental results demonstrate the superiority of our scheme under unreliable communication across arbitrarily strong privacy guarantees
AI-based approach to burnout identification from textual data
This study introduces an AI-based methodology that utilizes natural language processing (NLP) to detect burnout from textual data. The approach relies on a RuBERT model originally trained for sentiment analysis and subsequently fine-tuned for burnout detection using two data sources: synthetic sentences generated with ChatGPT and user comments collected from Russian YouTube videos about burnout. The resulting model assigns a burnout probability to input texts and can be applied to process large volumes of written communication for monitoring burnout-related language signals in high-stress work environments.
comment: 9 pages, 2 figures
SD-E$^2$: Semantic Exploration for Reasoning Under Token Budgets
Small language models (SLMs) struggle with complex reasoning because exploration is expensive under tight compute budgets. We introduce Semantic Diversity-Exploration-Exploitation (SD-E$^2$), a reinforcement learning framework that makes exploration explicit by optimizing semantic diversity in generated reasoning trajectories. Using a frozen sentence-embedding model, SD-E$^2$ assigns a diversity reward that captures (i) the coverage of semantically distinct solution strategies and (ii) their average pairwise dissimilarity in embedding space, rather than surface-form novelty. This diversity reward is combined with outcome correctness and solution efficiency in a z-score-normalized multi-objective objective that stabilizes training. On GSM8K, SD-E$^2$ surpasses the base Qwen2.5-3B-Instruct and strong GRPO baselines (GRPO-CFL and GRPO-CFEE) by +27.4, +5.2, and +1.5 percentage points, respectively, while discovering on average 9.8 semantically distinct strategies per question. We further improve MedMCQA to 49.64% versus 38.37% for the base model and show gains on the harder AIME benchmark (1983-2025), reaching 13.28% versus 6.74% for the base. These results indicate that rewarding semantic novelty yields a more compute-efficient exploration-exploitation signal for training reasoning-capable SLMs. By introducing cognitive adaptation-adjusting the reasoning process structure rather than per-token computation-SD-E$^2$ offers a complementary path to efficiency gains in resource-constrained models.
comment: Accepted at EACL 2026
A Monosemantic Attribution Framework for Stable Interpretability in Clinical Neuroscience Large Language Models
Interpretability remains a key challenge for deploying large language models (LLMs) in clinical settings such as Alzheimer's disease progression diagnosis, where early and trustworthy predictions are essential. Existing attribution methods exhibit high inter-method variability and unstable explanations due to the polysemantic nature of LLM representations, while mechanistic interpretability approaches lack direct alignment with model inputs and outputs and do not provide explicit importance scores. We introduce a unified interpretability framework that integrates attributional and mechanistic perspectives through monosemantic feature extraction. By constructing a monosemantic embedding space at the level of an LLM layer and optimizing the framework to explicitly reduce inter-method variability, our approach produces stable input-level importance scores and highlights salient features via a decompressed representation of the layer of interest, advancing the safe and trustworthy application of LLMs in cognitive health and neurodegenerative disease.
Credit Fairness: Online Fairness In Shared Resource Pools
We consider a setting in which a group of agents share resources that must be allocated among them in each discrete time period. Agents have time-varying demands and derive constant marginal utility from each unit of resource received up to their demand, with zero utility for any additional resources. In this setting, it is known that independently maximizing the minimum utility in each round satisfies sharing incentives (agents weakly prefer participating in the mechanism to not participating), strategyproofness (agents have no incentive to misreport their demands), and Pareto efficiency (Freeman et al. 2018). However, recent work (Vuppalapati et al. 2023) has shown that this max-min mechanism can lead to large disparities in the total resources received by agents, even when they have the same average demand. In this paper, we introduce credit fairness, a strengthening of sharing incentives that ensures agents who lend resources in early rounds are able to recoup them in later rounds. Credit fairness can be achieved in conjunction with either Pareto efficiency or strategyproofness, but not both. We propose a mechanism that is credit fair and Pareto efficient, and we evaluate its performance in a computational resource-sharing setting.
LLM-Based SQL Generation: Prompting, Self-Refinement, and Adaptive Weighted Majority Voting
Text-to-SQL has emerged as a prominent research area, particularly with the rapid advancement of large language models (LLMs). By enabling users to query databases through natural language rather than SQL, this technology significantly lowers the barrier to data analysis. However, generating accurate SQL from natural language remains challenging due to ambiguity in user queries, the complexity of schema linking, limited generalization across SQL dialects, and the need for domain-specific understanding. In this study, we propose a Single-Agent Self-Refinement with Ensemble Voting (SSEV) pipeline built on PET-SQL that operates without ground-truth data, integrating self-refinement with Weighted Majority Voting (WMV) and its randomized variant (RWMA). Experimental results show that the SSEV achieves competitive performance across multiple benchmarks, attaining execution accuracies of 85.5% on Spider 1.0-Dev, 86.4% on Spider 1.0-Test, and 66.3% on BIRD-Dev. Building on insights from the SSEV pipeline, we further propose ReCAPAgent-SQL (Refinement-Critique-Act-Plan agent-based SQL framework) to address the growing complexity of enterprise databases and real-world Text-to-SQL tasks. The framework integrates multiple specialized agents for planning, external knowledge retrieval, critique, action generation, self-refinement, schema linking, and result validation, enabling iterative refinement of SQL predictions through agent collaboration. ReCAPAgent-SQL's WMA results achieve 31% execution accuracy on the first 100 queries of Spider 2.0-Lite, demonstrating significant improvements in handling real-world enterprise scenarios. Overall, our work facilitates the deployment of scalable Text-to-SQL systems in practical settings, supporting better data-driven decision-making at lower cost and with greater efficiency.
comment: 29 pages, 22 figures
From Specialist to Generalist: Unlocking SAM's Learning Potential on Unlabeled Medical Images
Foundation models like the Segment Anything Model (SAM) show strong generalization, yet adapting them to medical images remains difficult due to domain shift, scarce labels, and the inability of Parameter-Efficient Fine-Tuning (PEFT) to exploit unlabeled data. While conventional models like U-Net excel in semi-supervised medical learning, their potential to assist a PEFT SAM has been largely overlooked. We introduce SC-SAM, a specialist-generalist framework where U-Net provides point-based prompts and pseudo-labels to guide SAM's adaptation, while SAM serves as a powerful generalist supervisor to regularize U-Net. This reciprocal guidance forms a bidirectional co-training loop that allows both models to effectively exploit the unlabeled data. Across prostate MRI and polyp segmentation benchmarks, our method achieves state-of-the-art results, outperforming other existing semi-supervised SAM variants and even medical foundation models like MedSAM, highlighting the value of specialist-generalist cooperation for label-efficient medical image segmentation. Our code is available at https://github.com/vnlvi2k3/SC-SAM.
comment: Accepted to ISBI 2026
Learning Transferable Skills in Action RPGs via Directed Skill Graphs and Selective Adaptation
Lifelong agents should expand their competence over time without retraining from scratch or overwriting previously learned behaviors. We investigate this in a challenging real-time control setting (Dark Souls III) by representing combat as a directed skill graph and training its components in a hierarchical curriculum. The resulting agent decomposes control into five reusable skills: camera control, target lock-on, movement, dodging, and a heal-attack decision policy, each optimized for a narrow responsibility. This factorization improves sample efficiency by reducing the burden on any single policy and supports selective post-training: when the environment shifts from Phase 1 to Phase 2, only a subset of skills must be adapted, while upstream skills remain transferable. Empirically, we find that targeted fine-tuning of just two skills rapidly recovers performance under a limited interaction budget, suggesting that skill-graph curricula together with selective fine-tuning offer a practical pathway toward evolving, continually learning agents in complex real-time environments.
comment: 5 pages
Agentic AI for Self-Driving Laboratories in Soft Matter: Taxonomy, Benchmarks,and Open Challenges
Self-driving laboratories (SDLs) close the loop between experiment design, automated execution, and data-driven decision making, and they provide a demanding testbed for agentic AI under expensive actions, noisy and delayed feedback, strict feasibility and safety constraints, and non-stationarity. This survey uses soft matter as a representative setting but focuses on the AI questions that arise in real laboratories. We frame SDL autonomy as an agent environment interaction problem with explicit observations, actions, costs, and constraints, and we use this formulation to connect common SDL pipelines to established AI principles. We review the main method families that enable closed loop experimentation, including Bayesian optimization and active learning for sample efficient experiment selection, planning and reinforcement learning for long horizon protocol optimization, and tool using agents that orchestrate heterogeneous instruments and software. We emphasize verifiable and provenance aware policies that support debugging, reproducibility, and safe operation. We then propose a capability driven taxonomy that organizes systems by decision horizon, uncertainty modeling, action parameterization, constraint handling, failure recovery, and human involvement. To enable meaningful comparison, we synthesize benchmark task templates and evaluation metrics that prioritize cost aware performance, robustness to drift, constraint violation behavior, and reproducibility. Finally, we distill lessons from deployed SDLs and outline open challenges in multi-modal representation, calibrated uncertainty, safe exploration, and shared benchmark infrastructure.
treaming-dLLM: Accelerating Diffusion LLMs via Suffix Pruning and Dynamic Decoding
Diffusion Large Language Models (dLLMs) offer a compelling paradigm for natural language generation, leveraging parallel decoding and bidirectional attention to achieve superior global coherence compared to autoregressive models. While recent works have accelerated inference via KV cache reuse or heuristic decoding, they overlook the intrinsic inefficiencies within the block-wise diffusion process. Specifically, they suffer from spatial redundancy by modeling informative-sparse suffix regions uniformly and temporal inefficiency by applying fixed denoising schedules across all the decoding process. To address this, we propose Streaming-dLLM, a training-free framework that streamlines inference across both spatial and temporal dimensions. Spatially, we introduce attenuation guided suffix modeling to approximate the full context by pruning redundant mask tokens. Temporally, we employ a dynamic confidence aware strategy with an early exit mechanism, allowing the model to skip unnecessary iterations for converged tokens. Extensive experiments show that Streaming-dLLM achieves up to 68.2X speedup while maintaining generation quality, highlighting its effectiveness in diffusion decoding. The code is available at https://github.com/xiaoshideta/Streaming-dLLM.
comment: Tech report. Code is available at https://github.com/xiaoshideta/Streaming-dLLM
Think Locally, Explain Globally: Graph-Guided LLM Investigations via Local Reasoning and Belief Propagation
LLM agents excel when environments are mostly static and the needed information fits in a model's context window, but they often fail in open-ended investigations where explanations must be constructed by iteratively mining evidence from massive, heterogeneous operational data. These investigations exhibit hidden dependency structure: entities interact, signals co-vary, and the importance of a fact may only become clear after other evidence is discovered. Because the context window is bounded, agents must summarize intermediate findings before their significance is known, increasing the risk of discarding key evidence. ReAct-style agents are especially brittle in this regime. Their retrieve-summarize-reason loop makes conclusions sensitive to exploration order and introduces run-to-run non-determinism, producing a reliability gap where Pass-at-k may be high but Majority-at-k remains low. Simply sampling more rollouts or generating longer reasoning traces does not reliably stabilize results, since hypotheses cannot be autonomously checked as new evidence arrives and there is no explicit mechanism for belief bookkeeping and revision. In addition, ReAct entangles semantic reasoning with controller duties such as tool orchestration and state tracking, so execution errors and plan drift degrade reasoning while consuming scarce context. We address these issues by formulating investigation as abductive reasoning over a dependency graph and proposing EoG (Explanations over Graphs), a disaggregated framework in which an LLM performs bounded local evidence mining and labeling (cause vs symptom) while a deterministic controller manages traversal, state, and belief propagation to compute a minimal explanatory frontier. On a representative ITBench diagnostics task, EoG improves both accuracy and run-to-run consistency over ReAct baselines, including a 7x average gain in Majority-at-k entity F1.
Causal Pre-training Under the Fairness Lens: An Empirical Study of TabPFN
Foundation models for tabular data, such as the Tabular Prior-data Fitted Network (TabPFN), are pre-trained on a massive number of synthetic datasets generated by structural causal models (SCM). They leverage in-context learning to offer high predictive accuracy in real-world tasks. However, the fairness properties of these foundational models, which incorporate ideas from causal reasoning during pre-training, have not yet been explored in sufficient depth. In this work, we conduct a comprehensive empirical evaluation of TabPFN and its fine-tuned variants, assessing predictive performance, fairness, and robustness across varying dataset sizes and distributional shifts. Our results reveal that while TabPFN achieves stronger predictive accuracy compared to baselines and exhibits robustness to spurious correlations, improvements in fairness are moderate and inconsistent, particularly under missing-not-at-random (MNAR) covariate shifts. These findings suggest that the causal pre-training in TabPFN is helpful but insufficient for algorithmic fairness, highlighting implications for deploying such models in practice and the need for further fairness interventions.
Feature-Space Generative Models for One-Shot Class-Incremental Learning
Few-shot class-incremental learning (FSCIL) is a paradigm where a model, initially trained on a dataset of base classes, must adapt to an expanding problem space by recognizing novel classes with limited data. We focus on the challenging FSCIL setup where a model receives only a single sample (1-shot) for each novel class and no further training or model alterations are allowed after the base training phase. This makes generalization to novel classes particularly difficult. We propose a novel approach predicated on the hypothesis that base and novel class embeddings have structural similarity. We map the original embedding space into a residual space by subtracting the class prototype (i.e., the average class embedding) of input samples. Then, we leverage generative modeling with VAE or diffusion models to learn the multi-modal distribution of residuals over the base classes, and we use this as a valuable structural prior to improve recognition of novel classes. Our approach, Gen1S, consistently improves novel class recognition over the state of the art across multiple benchmarks and backbone architectures.
UniCog: Uncovering Cognitive Abilities of LLMs through Latent Mind Space Analysis
A growing body of research suggests that the cognitive processes of large language models (LLMs) differ fundamentally from those of humans. However, existing interpretability methods remain limited in explaining how cognitive abilities are engaged during LLM reasoning. In this paper, we propose UniCog, a unified framework that analyzes LLM cognition via a latent mind space. Formulated as a latent variable model, UniCog encodes diverse abilities from dense model activations into sparse, disentangled latent dimensions. Through extensive analysis on six advanced LLMs, including DeepSeek-V3.2 and GPT-4o, we reveal a Pareto principle of LLM cognition, where a shared reasoning core is complemented by ability-specific signatures. Furthermore, we discover that reasoning failures often manifest as anomalous intensity in latent activations. These findings opens a new paradigm in LLM analysis, providing a cognition grounded view of reasoning dynamics. Finally, leveraging these insights, we introduce a latent-informed candidate prioritization strategy, which improves reasoning performance by up to 7.5% across challenging benchmarks. Our code is available at https://github.com/milksalute/unicog.
Artificial Intelligence and Intellectual Property Rights: Comparative Transnational Policy Analysis
Artificial intelligence's rapid integration with intellectual property rights necessitates assessment of its impact on trade secrets, copyrights and patents. This study addresses lacunae in existing laws where India lacks AI-specific provisions, creating doctrinal inconsistencies and enforcement inefficacies. Global discourse on AI-IPR protections remains nascent. The research identifies gaps in Indian IP laws' adaptability to AI-generated outputs: trade secret protection is inadequate against AI threats; standardized inventorship criteria are absent. Employing doctrinal and comparative methodology, it scrutinizes legislative texts, judicial precedents and policy instruments across India, US, UK and EU. Preliminary findings reveal shortcomings: India's contract law creates fragmented trade secret regime; Section 3(k) of Indian Patents Act blocks AI invention patenting; copyright varies in authorship attribution. The study proposes harmonized legal taxonomy accommodating AI's role while preserving innovation incentives. India's National AI Strategy (2024) shows progress but legislative clarity is imperative. This contributes to global discourse with AI-specific IP protections ensuring resilience and equitable innovation. Promising results underscore recalibrating India's IP jurisprudence for global alignment.
comment: Published in Journal of University Institute of Legal Studies, Vol. 19, Issue 1, pp. 182-208, 2025
When Personalization Legitimizes Risks: Uncovering Safety Vulnerabilities in Personalized Dialogue Agents
Long-term memory enables large language model (LLM) agents to support personalized and sustained interactions. However, most work on personalized agents prioritizes utility and user experience, treating memory as a neutral component and largely overlooking its safety implications. In this paper, we reveal intent legitimation, a previously underexplored safety failure in personalized agents, where benign personal memories bias intent inference and cause models to legitimize inherently harmful queries. To study this phenomenon, we introduce PS-Bench, a benchmark designed to identify and quantify intent legitimation in personalized interactions. Across multiple memory-augmented agent frameworks and base LLMs, personalization increases attack success rates by 15.8%-243.7% relative to stateless baselines. We further provide mechanistic evidence for intent legitimation from internal representations space, and propose a lightweight detection-reflection method that effectively reduces safety degradation. Overall, our work provides the first systematic exploration and evaluation of intent legitimation as a safety failure mode that naturally arises from benign, real-world personalization, highlighting the importance of assessing safety under long-term personal context. WARNING: This paper may contain harmful content.
PEAfowl: Perception-Enhanced Multi-View Vision-Language-Action for Bimanual Manipulation
Bimanual manipulation in cluttered scenes requires policies that remain stable under occlusions, viewpoint and scene variations. Existing vision-language-action models often fail to generalize because (i) multi-view features are fused via view-agnostic token concatenation, yielding weak 3D-consistent spatial understanding, and (ii) language is injected as global conditioning, resulting in coarse instruction grounding. In this paper, we introduce PEAfowl, a perception-enhanced multi-view VLA policy for bimanual manipulation. For spatial reasoning, PEAfowl predicts per-token depth distributions, performs differentiable 3D lifting, and aggregates local cross-view neighbors to form geometrically grounded, cross-view consistent representations. For instruction grounding, we propose to replace global conditioning with a Perceiver-style text-aware readout over frozen CLIP visual features, enabling iterative evidence accumulation. To overcome noisy and incomplete commodity depth without adding inference overhead, we apply training-only depth distillation from a pretrained depth teacher to supervise the depth-distribution head, providing perception front-end with geometry-aware priors. On RoboTwin 2.0 under domain-randomized setting, PEAfowl improves the strongest baseline by 23.0 pp in success rate, and real-robot experiments further demonstrate reliable sim-to-real transfer and consistent improvements from depth distillation. Project website: https://peafowlvla.github.io/.
Self-Manager: Parallel Agent Loop for Long-form Deep Research
Long-form deep research requires multi-faceted investigations over extended horizons to get a comprehensive report. When handling such complex tasks, existing agents manage context at the subtask level to overcome linear context accumulation and information loss. However, they still adhere to a single context window and sequential execution paradigm, which results in mutual interference and blocking behavior, restricting scalability and adaptability. To address this issue, this paper introduces Self-Manager, a parallel agent loop that enables asynchronous and concurrent execution. The main thread can create multiple subthreads, each with its own isolated context, and manage them iteratively through Thread Control Blocks, allowing for more focused and flexible parallel agent execution. To assess its effectiveness, we benchmark Self-Manager on DeepResearch Bench, where it consistently outperforms existing single-agent loop baselines across all metrics. Furthermore, we conduct extensive analytical experiments to demonstrate the necessity of Self-Manager's design choices, as well as its advantages in contextual capacity, efficiency, and generalization.
Comparative Algorithmic Governance of Public Health Instruments across India, EU, US and LMICs
The study investigates the juridico-technological architecture of international public health instruments, focusing on their implementation across India, the European Union, the United States and low- and middle-income countries (LMICs), particularly in Sub-Saharan Africa. It addresses a research lacuna: the insufficient harmonisation between normative health law and algorithmic public health infrastructures in resource-constrained jurisdictions. The principal objective is to assess how artificial intelligence augments implementation of instruments grounded in IHR 2005 and the WHO FCTC while identifying doctrinal and infrastructural bottlenecks. Using comparative doctrinal analysis and legal-normative mapping, the study triangulates legislative instruments, WHO monitoring frameworks, AI systems including BlueDot, Aarogya Setu and EIOS, and compliance metrics. Preliminary results show that AI has improved early detection, surveillance precision and responsiveness in high-capacity jurisdictions, whereas LMICs face infrastructural deficits, data privacy gaps and fragmented legal scaffolding. The findings highlight the relevance of the EU Artificial Intelligence Act and GDPR as regulatory prototypes for health-oriented algorithmic governance and contrast them with embryonic AI integration and limited internet penetration in many LMICs. The study argues for embedding AI within a rights-compliant, supranationally coordinated regulatory framework to secure equitable health outcomes and stronger compliance. It proposes a model for algorithmic treaty-making inspired by FCTC architecture and calls for WHO-led compliance mechanisms modelled on the WTO Dispute Settlement Body to enhance pandemic preparedness, surveillance equity and transnational governance resilience.
comment: Chapter in "Law and Medicine" (Pacific Books International, 2025), pp. 409-423
VidLaDA: Bidirectional Diffusion Large Language Models for Efficient Video Understanding
Standard Autoregressive Video LLMs inevitably suffer from causal masking biases that hinder global spatiotemporal modeling, leading to suboptimal understanding efficiency. We propose VidLaDA, a Video LLM based on Diffusion Language Model utilizing bidirectional attention to capture bidirectional dependencies. To further tackle the inference bottleneck of diffusion decoding on massive video tokens, we introduce MARS-Cache. This framework accelerates inference by combining asynchronous visual cache refreshing with frame-wise chunk attention, effectively pruning redundancy while preserving global connectivity via anchor tokens. Extensive experiments show VidLaDA outperforms diffusion baselines and rivals state-of-the-art autoregressive models (e.g., Qwen2.5-VL and LLaVA-Video), with MARS-Cache delivering over 12x speedup without compromising reasoning accuracy. Code and checkpoints are open-sourced at https://github.com/ziHoHe/VidLaDA.
MergeMix: Optimizing Mid-Training Data Mixtures via Learnable Model Merging
Optimizing data mixtures is essential for unlocking the full potential of large language models (LLMs), yet identifying the optimal composition remains computationally prohibitive due to reliance on heuristic trials or expensive proxy training. To address this, we introduce \textbf{MergeMix}, a novel approach that efficiently determines optimal data mixing ratios by repurposing model merging weights as a high-fidelity, low-cost performance proxy. By training domain-specific experts on minimal tokens and optimizing their merging weights against downstream benchmarks, MergeMix effectively optimizes the performance of data mixtures without incurring the cost of full-scale training. Extensive experiments on models with 8B and 16B parameters validate that MergeMix achieves performance comparable to or surpassing exhaustive manual tuning while drastically reducing search costs. Furthermore, MergeMix exhibits high rank consistency (Spearman $ρ> 0.9$) and strong cross-scale transferability, offering a scalable, automated solution for data mixture optimization.
RAICL: Retrieval-Augmented In-Context Learning for Vision-Language-Model Based EEG Seizure Detection
Electroencephalogram (EEG) decoding is a critical component of medical diagnostics, rehabilitation engineering, and brain-computer interfaces. However, contemporary decoding methodologies remain heavily dependent on task-specific datasets to train specialized neural network architectures. Consequently, limited data availability impedes the development of generalizable large brain decoding models. In this work, we propose a paradigm shift from conventional signal-based decoding by leveraging large-scale vision-language models (VLMs) to analyze EEG waveform plots. By converting multivariate EEG signals into stacked waveform images and integrating neuroscience domain expertise into textual prompts, we demonstrate that foundational VLMs can effectively differentiate between different patterns in the human brain. To address the inherent non-stationarity of EEG signals, we introduce a Retrieval-Augmented In-Context Learning (RAICL) approach, which dynamically selects the most representative and relevant few-shot examples to condition the autoregressive outputs of the VLM. Experiments on EEG-based seizure detection indicate that state-of-the-art VLMs under RAICL achieved better or comparable performance with traditional time series based approaches. These findings suggest a new direction in physiological signal processing that effectively bridges the modalities of vision, language, and neural activities. Furthermore, the utilization of off-the-shelf VLMs, without the need for retraining or downstream architecture construction, offers a readily deployable solution for clinical applications.
Linguistic and Argument Diversity in Synthetic Data for Function-Calling Agents
The construction of function calling agents has emerged as a promising avenue for extending model capabilities. A major challenge for this task is obtaining high quality diverse data for training. Prior work emphasizes diversity in functions, invocation patterns, and interaction turns, yet linguistic diversity of requests and coverage of arguments (e.g., \texttt{city\_name}, \texttt{stock\_ticker}) remain underexplored. We propose a method that generates synthetic datasets via optimizing general-purpose diversity metrics across both queries and arguments, without relying on hand-crafted rules or taxonomies, making it robust to different usecases. We demonstrate the effectiveness of our technique via both intrinsic and extrinsic testing, comparing it to SoTA data generation methods. We show a superiority over baselines in terms of diversity, while keeping comparable correctness. Additionally, when used as a training set, the model resulting from our dataset exhibits superior performance compared to analogous models based on the baseline data generation methods in out-of-distribution performance. In particular, we achieve an $7.4\%$ increase in accuracy on the BFCL benchmark compared to similar counterparts.
Aligning Medical Conversational AI through Online Reinforcement Learning with Information-Theoretic Rewards
We present Information Gain Fine-Tuning (IGFT), a novel approach for training medical conversational AI to conduct effective patient interviews and generate comprehensive History of Present Illness (HPI) without requiring pre-collected human conversations. IGFT combines online Group Relative Policy Optimization (GRPO) with information-theoretic rewards, enabling models to learn from self-generated conversations with simulated patients. Unlike existing approaches that rely on expensive expert-annotated conversations or static datasets, our online RL framework allows models to discover effective questioning strategies through exploration. Our key innovation is an information gain reward function that tracks which clinical entities such as symptoms, temporal patterns, and medical history, are revealed during conversation. Each question's reward is computed based on its expected information gain combined with GPT-4o-mini quality assessments across dimensions including clinical relevance, patient engagement, and specificity. This hybrid approach ensures models learn to ask targeted, clinically appropriate questions that efficiently gather diagnostic information. We fine-tune two models using LoRA: Llama-3.1-8B-Instruct and DeepSeek-R1-Distill-Qwen-7B (a reasoning-optimized model). Training exclusively on Avey data containing concise HPIs, we evaluate generalization to MIMIC data with longer, more elaborate HPIs. DeepSeek-R1-Distill-Qwen-7B (IGFT) achieves F1 scores of 0.408 on Avey (10.9% improvement over base) and 0.289 on MIMIC (12.9% improvement), while Llama-3.1-8B-Instruct (IGFT) reaches 0.384 and 0.336 respectively. Both models outperform OpenAI's model on MIMIC and surpass medical domain-specific baselines like HuatuoGPT and UltraMedical, which were optimized for single-turn medical QA rather than multi-turn conversations.
RegGuard: AI-Powered Retrieval-Enhanced Assistant for Pharmaceutical Regulatory Compliance
The increasing frequency and complexity of regulatory updates present a significant burden for multinational pharmaceutical companies. Compliance teams must interpret evolving rules across jurisdictions, formats, and agencies, often manually, at high cost and risk of error. We introduce RegGuard, an industrial-scale AI assistant designed to automate the interpretation of heterogeneous regulatory texts and align them with internal corporate policies. The system ingests heterogeneous document sources through a secure pipeline and enhances retrieval and generation quality with two novel components: HiSACC (Hierarchical Semantic Aggregation for Contextual Chunking) semantically segments long documents into coherent units while maintaining consistency across non-contiguous sections. ReLACE (Regulatory Listwise Adaptive Cross-Encoder for Reranking), a domain-adapted cross-encoder built on an open-source model, jointly models user queries and retrieved candidates to improve ranking relevance. Evaluations in enterprise settings demonstrate that RegGuard improves answer quality specifically in terms of relevance, groundedness, and contextual focus, while significantly mitigating hallucination risk. The system architecture is built for auditability and traceability, featuring provenance tracking, access control, and incremental indexing, making it highly responsive to evolving document sources and relevant for any domain with stringent compliance demands.
DIETA: A Decoder-only transformer-based model for Italian-English machine TrAnslation
In this paper, we present DIETA, a small, decoder-only Transformer model with 0.5 billion parameters, specifically designed and trained for Italian-English machine translation. We collect and curate a large parallel corpus consisting of approximately 207 million Italian-English sentence pairs across diverse domains, including parliamentary proceedings, legal texts, web-crawled content, subtitles, news, literature and 352 million back-translated data using pretrained models. Additionally, we create and release a new small-scale evaluation set, consisting of 450 sentences, based on 2025 WikiNews articles, enabling assessment of translation quality on contemporary text. Comprehensive evaluations show that DIETA achieves competitive performance on multiple Italian-English benchmarks, consistently ranking in the second quartile of a 32-system leaderboard and outperforming most other sub-3B models on four out of five test suites. The training script, trained models, curated corpus, and newly introduced evaluation set are made publicly available, facilitating further research and development in specialized Italian-English machine translation. https://github.com/pkasela/DIETA-Machine-Translation
comment: Published in CLiC-IT '25: https://aclanthology.org/2025.clicit-1.52/
MMR-Bench: A Comprehensive Benchmark for Multimodal LLM Routing
Multimodal large language models (MLLMs) have advanced rapidly, yet heterogeneity in architecture, alignment strategies, and efficiency means that no single model is uniformly superior across tasks. In practical deployments, workloads span lightweight OCR to complex multimodal reasoning; using one MLLM for all queries either over-provisions compute on easy instances or sacrifices accuracy on hard ones. Query-level model selection (routing) addresses this tension, but extending routing from text-only LLMs to MLLMs is nontrivial due to modality fusion, wide variation in computational cost across models, and the absence of a standardized, budget-aware evaluation. We present MMR-Bench, a unified benchmark that isolates the multimodal routing problem and enables comparison under fixed candidate sets and cost models. MMR-Bench provides (i) a controlled environment with modality-aware inputs and variable compute budgets, (ii) a broad suite of vision-language tasks covering OCR, general VQA, and multimodal math reasoning, and (iii) strong single-model reference, oracle upper bounds, and representative routing policies. Using MMR-Bench, we show that incorporating multimodal signals improves routing quality. Empirically, these cues improve the cost-accuracy frontier and enable the routed system to exceed the strongest single model's accuracy at roughly 33% of its cost. Furthermore, policies trained on a subset of models and tasks generalize zero-shot to new datasets and text-only benchmarks without retuning, establishing MMR-Bench as a foundation for studying adaptive multimodal model selection and efficient MLLM deployment. The code will be available at: https://github.com/Hunter-Wrynn/MMR-Bench.
Neuro-Symbolic Verification on Instruction Following of LLMs
A fundamental problem of applying Large Language Models (LLMs) to important applications is that LLMs do not always follow instructions, and violations are often hard to observe or check. In LLM-based agentic workflows, such violations can propagate and amplify along reasoning chains, causing task failures and system incidents. This paper presents NSVIF, a neuro-symbolic framework for verifying whether an LLM's output follows the instructions used to prompt the LLM. NSVIF is a universal, general-purpose verifier; it makes no assumption about the instruction or the LLM. NSVIF formulates instruction-following verification as a constraint-satisfaction problem by modeling user instructions as constraints. NSVIF models both logical and semantic constraints; constraint solving is done by a unified solver that orchestrates logical reasoning and semantic analysis. To evaluate NSVIF, we develop VIFBENCH, a new benchmark for instruction-following verifiers with fine-grained data labels. Experiments show that NSVIF significantly outperforms LLM-based approaches and provides interpretable feedback. We also show that feedback from NSVIF helps improve LLMs' instruction-following capability without post-training.
Shortcut Learning in Binary Classifier Black Boxes: Applications to Voice Anti-Spoofing and Biometrics
The widespread adoption of deep-learning models in data-driven applications has drawn attention to the potential risks associated with biased datasets and models. Neglected or hidden biases within datasets and models can lead to unexpected results. This study addresses the challenges of dataset bias and explores ``shortcut learning'' or ``Clever Hans effect'' in binary classifiers. We propose a novel framework for analyzing the black-box classifiers and for examining the impact of both training and test data on classifier scores. Our framework incorporates intervention and observational perspectives, employing a linear mixed-effects model for post-hoc analysis. By evaluating classifier performance beyond error rates, we aim to provide insights into biased datasets and offer a comprehensive understanding of their influence on classifier behavior. The effectiveness of our approach is demonstrated through experiments on audio anti-spoofing and speaker verification tasks using both statistical models and deep neural networks. The insights gained from this study have broader implications for tackling biases in other domains and advancing the field of explainable artificial intelligence.
comment: Accepted for Publication in IEEE Journal of Selected Topics in Signal Processing
DPI: Exploiting Parameter Heterogeneity for Interference-Free Fine-Tuning
Supervised fine-tuning (SFT) is a crucial step for adapting large language models (LLMs) to downstream tasks. However, conflicting objectives across heterogeneous SFT tasks often induce the "seesaw effect": optimizing for one task may degrade performance on others, particularly when model parameters are updated indiscriminately. In this paper, we propose a principled approach to disentangle and isolate task-specific parameter regions, motivated by the hypothesis that parameter heterogeneity underlies cross-task interference. Specifically, we first independently fine-tune LLMs on diverse SFT tasks and identify each task's core parameter region as the subset of parameters exhibiting the largest updates. Tasks with highly overlapping core parameter regions are merged for joint training, while disjoint tasks are organized into different stages. During multi-stage SFT, core parameters acquired in prior tasks are frozen, thereby preventing overwriting by subsequent tasks. To verify the effectiveness of our method, we conducted intensive experiments on multiple public datasets. The results showed that our dynamic parameter isolation strategy consistently reduced data conflicts and achieved consistent performance improvements compared to multi-stage and multi-task tuning baselines.
Context-Aware Iterative Token Detection and Masked Transmission for Wireless Token Communication
The success of large-scale language models has established tokens as compact and meaningful units for natural-language representation, which motivates token communication over wireless channels, where tokens are considered fundamental units for wireless transmission. We propose a context-aware token communication framework that uses a pretrained masked language model (MLM) as a shared contextual probability model between the transmitter (Tx) and receiver (Rx). At Rx, we develop an iterative token detection method that jointly exploits MLM-guided contextual priors and channel observations based on a Bayesian perspective. At Tx, we additionally introduce a context-aware masking strategy which skips highly predictable token transmission to reduce transmission rate. Simulation results demonstrate that the proposed framework substantially improves reconstructed sentence quality and supports effective rate adaptation under various channel conditions.
LLM-42: Enabling Determinism in LLM Inference with Verified Speculation
In LLM inference, the same prompt may yield different outputs across different runs. At the system level, this non-determinism arises from floating-point non-associativity combined with dynamic batching and GPU kernels whose reduction orders vary with batch size. A straightforward way to eliminate non-determinism is to disable dynamic batching during inference, but doing so severely degrades throughput. Another approach is to make kernels batch-invariant; however, this tightly couples determinism to kernel design, requiring new implementations. This coupling also imposes fixed runtime overheads, regardless of how much of the workload actually requires determinism. Inspired by ideas from speculative decoding, we present LLM-42, a scheduling-based approach to enable determinism in LLM inference. Our key observation is that if a sequence is in a consistent state, the next emitted token is likely to be consistent even with dynamic batching. Moreover, most GPU kernels use shape-consistent reductions. Leveraging these insights, LLM-42 decodes tokens using a non-deterministic fast path and enforces determinism via a lightweight verify-rollback loop. The verifier replays candidate tokens under a fixed-shape reduction schedule, commits those that are guaranteed to be consistent across runs, and rolls back those violating determinism. LLM-42 mostly re-uses existing kernels unchanged and incurs overhead only in proportion to the traffic that requires determinism.
comment: https://github.com/microsoft/llm-42
HyCARD-Net: A Synergistic Hybrid Intelligence Framework for Cardiovascular Disease Diagnosis
Cardiovascular disease (CVD) remains the foremost cause of mortality worldwide, underscoring the urgent need for intelligent and data-driven diagnostic tools. Traditional predictive models often struggle to generalize across heterogeneous datasets and complex physiological patterns. To address this, we propose a hybrid ensemble framework that integrates deep learning architectures, Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM), with classical machine learning algorithms, including K-Nearest Neighbor (KNN) and Extreme Gradient Boosting (XGB), using an ensemble voting mechanism. This approach combines the representational power of deep networks with the interpretability and efficiency of traditional models. Experiments on two publicly available Kaggle datasets demonstrate that the proposed model achieves superior performance, reaching 82.30 percent accuracy on Dataset I and 97.10 percent on Dataset II, with consistent gains in precision, recall, and F1-score. These findings underscore the robustness and clinical potential of hybrid AI frameworks for predicting cardiovascular disease and facilitating early intervention. Furthermore, this study directly supports the United Nations Sustainable Development Goal 3 (Good Health and Well-being) by promoting early diagnosis, prevention, and management of non-communicable diseases through innovative, data-driven healthcare solutions.
comment: Accepted and published in the 2025 4th International Conference on Image Processing, Computer Vision and Machine Learning (ICICML)
Cross-Lingual Probing and Community-Grounded Analysis of Gender Bias in Low-Resource Bengali
Large Language Models (LLMs) have achieved significant success in recent years; yet, issues of intrinsic gender bias persist, especially in non-English languages. Although current research mostly emphasizes English, the linguistic and cultural biases inherent in Global South languages, like Bengali, are little examined. This research seeks to examine the characteristics and magnitude of gender bias in Bengali, evaluating the efficacy of current approaches in identifying and alleviating bias. We use several methods to extract gender-biased utterances, including lexicon-based mining, computational classification models, translation-based comparison analysis, and GPT-based bias creation. Our research indicates that the straight application of English-centric bias detection frameworks to Bengali is severely constrained by language disparities and socio-cultural factors that impact implicit biases. To tackle these difficulties, we executed two field investigations inside rural and low-income areas, gathering authentic insights on gender bias. The findings demonstrate that gender bias in Bengali presents distinct characteristics relative to English, requiring a more localized and context-sensitive methodology. Additionally, our research emphasizes the need of integrating community-driven research approaches to identify culturally relevant biases often neglected by automated systems. Our research enhances the ongoing discussion around gender bias in AI by illustrating the need to create linguistic tools specifically designed for underrepresented languages. This study establishes a foundation for further investigations into bias reduction in Bengali and other Indic languages, promoting the development of more inclusive and fair NLP systems.
comment: Accepted in 2025 4th International Conference on Smart Cities, Automation & Intelligent Computing Systems (ICON-SONICS)
AR-Omni: A Unified Autoregressive Model for Any-to-Any Generation
Real-world perception and interaction are inherently multimodal, encompassing not only language but also vision and speech, which motivates the development of "Omni" MLLMs that support both multimodal inputs and multimodal outputs. While a sequence of omni MLLMs has emerged, most existing systems still rely on additional expert components to achieve multimodal generation, limiting the simplicity of unified training and inference. Autoregressive (AR) modeling, with a single token stream, a single next-token objective, and a single decoder, is an elegant and scalable foundation in the text domain. Motivated by this, we present AR-Omni, a unified any-to-any model in the autoregressive paradigm without any expert decoders. AR-Omni supports autoregressive text and image generation, as well as streaming speech generation, all under a single Transformer decoder. We further address three practical issues in unified AR modeling: modality imbalance via task-aware loss reweighting, visual fidelity via a lightweight token-level perceptual alignment loss for image tokens, and stability-creativity trade-offs via a finite-state decoding mechanism. Empirically, AR-Omni achieves strong quality across three modalities while remaining real-time, achieving a 0.88 real-time factor for speech generation.
MV-S2V: Multi-View Subject-Consistent Video Generation
Existing Subject-to-Video Generation (S2V) methods have achieved high-fidelity and subject-consistent video generation, yet remain constrained to single-view subject references. This limitation renders the S2V task reducible to an S2I + I2V pipeline, failing to exploit the full potential of video subject control. In this work, we propose and address the challenging Multi-View S2V (MV-S2V) task, which synthesizes videos from multiple reference views to enforce 3D-level subject consistency. Regarding the scarcity of training data, we first develop a synthetic data curation pipeline to generate highly customized synthetic data, complemented by a small-scale real-world captured dataset to boost the training of MV-S2V. Another key issue lies in the potential confusion between cross-subject and cross-view references in conditional generation. To overcome this, we further introduce Temporally Shifted RoPE (TS-RoPE) to distinguish between different subjects and distinct views of the same subject in reference conditioning. Our framework achieves superior 3D subject consistency w.r.t. multi-view reference images and high-quality visual outputs, establishing a new meaningful direction for subject-driven video generation. Our project page is available at this URL
comment: 13 pages, 9 figures
Faramesh: A Protocol-Agnostic Execution Control Plane for Autonomous Agent Systems
Autonomous agent systems increasingly trigger real-world side effects: deploying infrastructure, modifying databases, moving money, and executing workflows. Yet most agent stacks provide no mandatory execution checkpoint where organizations can deterministically permit, deny, or defer an action before it changes reality. This paper introduces Faramesh, a protocol-agnostic execution control plane that enforces execution-time authorization for agent-driven actions via a non-bypassable Action Authorization Boundary (AAB). Faramesh canonicalizes agent intent into a Canonical Action Representation (CAR), evaluates actions deterministically against policy and state, and issues a decision artifact (PERMIT/DEFER/DENY) that executors must validate prior to execution. The system is designed to be framework- and model-agnostic, supports multi-agent and multi-tenant deployments, and remains independent of transport protocols (e.g., MCP). Faramesh further provides decision-centric, append-only provenance logging keyed by canonical action hashes, enabling auditability, verification, and deterministic replay without re-running agent reasoning. We show how these primitives yield enforceable, predictable governance for autonomous execution while avoiding hidden coupling to orchestration layers or observability-only approaches.
comment: 40 pages, 10 figures. Preprint. Code: https://github.com/faramesh/faramesh-core
The Script is All You Need: An Agentic Framework for Long-Horizon Dialogue-to-Cinematic Video Generation
Recent advances in video generation have produced models capable of synthesizing stunning visual content from simple text prompts. However, these models struggle to generate long-form, coherent narratives from high-level concepts like dialogue, revealing a ``semantic gap'' between a creative idea and its cinematic execution. To bridge this gap, we introduce a novel, end-to-end agentic framework for dialogue-to-cinematic-video generation. Central to our framework is ScripterAgent, a model trained to translate coarse dialogue into a fine-grained, executable cinematic script. To enable this, we construct ScriptBench, a new large-scale benchmark with rich multimodal context, annotated via an expert-guided pipeline. The generated script then guides DirectorAgent, which orchestrates state-of-the-art video models using a cross-scene continuous generation strategy to ensure long-horizon coherence. Our comprehensive evaluation, featuring an AI-powered CriticAgent and a new Visual-Script Alignment (VSA) metric, shows our framework significantly improves script faithfulness and temporal fidelity across all tested video models. Furthermore, our analysis uncovers a crucial trade-off in current SOTA models between visual spectacle and strict script adherence, providing valuable insights for the future of automated filmmaking.
Athanor: Authoring Action Modification-based Interactions on Static Visualizations via Natural Language
Interactivity is crucial for effective data visualizations. However, it is often challenging to implement interactions for existing static visualizations, since the underlying code and data for existing static visualizations are often not available, and it also takes significant time and effort to enable interactions for them even if the original code and data are available. To fill this gap, we propose Athanor, a novel approach to transform existing static visualizations into interactive ones using multimodal large language models (MLLMs) and natural language instructions. Our approach introduces three key innovations: (1) an action-modification interaction design space that maps visualization interactions into user actions and corresponding adjustments, (2) a multi-agent requirement analyzer that translates natural language instructions into an actionable operational space, and (3) a visualization abstraction transformer that converts static visualizations into flexible and interactive representations regardless of their underlying implementation. Athanor allows users to effortlessly author interactions through natural language instructions, eliminating the need for programming. We conducted two case studies and in-depth interviews with target users to evaluate our approach. The results demonstrate the effectiveness and usability of our approach in allowing users to conveniently enable flexible interactions for static visualizations.
ReFuGe: Feature Generation for Prediction Tasks on Relational Databases with LLM Agents
Relational databases (RDBs) play a crucial role in many real-world web applications, supporting data management across multiple interconnected tables. Beyond typical retrieval-oriented tasks, prediction tasks on RDBs have recently gained attention. In this work, we address this problem by generating informative relational features that enhance predictive performance. However, generating such features is challenging: it requires reasoning over complex schemas and exploring a combinatorially large feature space, all without explicit supervision. To address these challenges, we propose ReFuGe, an agentic framework that leverages specialized large language model agents: (1) a schema selection agent identifies the tables and columns relevant to the task, (2) a feature generation agent produces diverse candidate features from the selected schema, and (3) a feature filtering agent evaluates and retains promising features through reasoning-based and validation-based filtering. It operates within an iterative feedback loop until performance converges. Experiments on RDB benchmarks demonstrate that ReFuGe substantially improves performance on various RDB prediction tasks. Our code and datasets are available at https://github.com/K-Kyungho/REFUGE.
comment: Accepted in ACM WWW 2026 (Short Paper)
EntWorld: A Holistic Environment and Benchmark for Verifiable Enterprise GUI Agents
Recent advances in Multimodal Large Language Models (MLLMs) have enabled agents to operate in open-ended web and operating system environments. However, existing benchmarks predominantly target consumer-oriented scenarios (e.g., e-commerce and travel booking), failing to capture the complexity and rigor of professional enterprise workflows. Enterprise systems pose distinct challenges, including high-density user interfaces, strict business logic constraints, and a strong reliance on precise, state-consistent information retrieval-settings in which current generalist agents often struggle. To address this gap, we introduce EntWorld, a large-scale benchmark consisting of 1,756 tasks across six representative enterprise domains, including customer relationship management (CRM), information technology infrastructure library (ITIL), and enterprise resource planning (ERP) systems. Unlike previous datasets that depend on fragile execution traces or extensive manual annotation, EntWorld adopts a schema-grounded task generation framework that directly reverse-engineers business logic from underlying database schemas, enabling the synthesis of realistic, long-horizon workflows. Moreover, we propose a SQL-based deterministic verification mechanism in building datasets that replaces ambiguous visual matching with rigorous state-transition validation. Experimental results demonstrate that state-of-the-art models (e.g., GPT-4.1) achieve 47.61% success rate on EntWorld, substantially lower than the human performance, highlighting a pronounced enterprise gap in current agentic capabilities and the necessity of developing domain-specific agents. We release EntWorld as a rigorous testbed to facilitate the development and evaluation of the next generation of enterprise-ready digital agents.
The LLM Data Auditor: A Metric-oriented Survey on Quality and Trustworthiness in Evaluating Synthetic Data
Large Language Models (LLMs) have emerged as powerful tools for generating data across various modalities. By transforming data from a scarce resource into a controllable asset, LLMs mitigate the bottlenecks imposed by the acquisition costs of real-world data for model training, evaluation, and system iteration. However, ensuring the high quality of LLM-generated synthetic data remains a critical challenge. Existing research primarily focuses on generation methodologies, with limited direct attention to the quality of the resulting data. Furthermore, most studies are restricted to single modalities, lacking a unified perspective across different data types. To bridge this gap, we propose the \textbf{LLM Data Auditor framework}. In this framework, we first describe how LLMs are utilized to generate data across six distinct modalities. More importantly, we systematically categorize intrinsic metrics for evaluating synthetic data from two dimensions: quality and trustworthiness. This approach shifts the focus from extrinsic evaluation, which relies on downstream task performance, to the inherent properties of the data itself. Using this evaluation system, we analyze the experimental evaluations of representative generation methods for each modality and identify substantial deficiencies in current evaluation practices. Based on these findings, we offer concrete recommendations for the community to improve the evaluation of data generation. Finally, the framework outlines methodologies for the practical application of synthetic data across different modalities.
FedCCA: Client-Centric Adaptation against Data Heterogeneity in Federated Learning on IoT Devices
With the rapid development of the Internet of Things (IoT), AI model training on private data such as human sensing data is highly desired. Federated learning (FL) has emerged as a privacy-preserving distributed training framework for this purpuse. However, the data heterogeneity issue among IoT devices can significantly degrade the model performance and convergence speed in FL. Existing approaches limit in fixed client selection and aggregation on cloud server, making the privacy-preserving extraction of client-specific information during local training challenging. To this end, we propose Client-Centric Adaptation federated learning (FedCCA), an algorithm that optimally utilizes client-specific knowledge to learn a unique model for each client through selective adaptation, aiming to alleviate the influence of data heterogeneity. Specifically, FedCCA employs dynamic client selection and adaptive aggregation based on the additional client-specific encoder. To enhance multi-source knowledge transfer, we adopt an attention-based global aggregation strategy. We conducted extensive experiments on diverse datasets to assess the efficacy of FedCCA. The experimental results demonstrate that our approach exhibits a substantial performance advantage over competing baselines in addressing this specific problem.
comment: Accepted by IEEE Annual Congress on Artificial Intelligence of Things (IEEE AIoT) 2025
CaSNet: Compress-and-Send Network Based Multi-Device Speech Enhancement Model for Distributed Microphone Arrays
Distributed microphone array (DMA) is a promising next-generation platform for speech interaction, where speech enhancement (SE) is still required to improve the speech quality in noisy cases. Existing SE methods usually first gather raw waveforms at a fusion center (FC) from all devices and then design a multi-microphone model, causing high bandwidth and energy costs. In this work, we propose a \emph{Compress-and-Send Network (CaSNet)} for resource-constrained DMAs, where one microphone serves as the FC and reference. Each of other devices encodes the measured raw data into a feature matrix, which is then compressed by singular value decomposition (SVD) to produce a more compact representation. The received features at the FC are aligned via cross window query with respect to the reference, followed by neural decoding to yield spatially coherent enhanced speech. Experiments on multiple datasets show that the proposed CaSNet can save the data amount with a negligible impact on the performance compared to the uncompressed case. The reproducible code is available at https://github.com/Jokejiangv/CaSNet.
comment: this paper has been accept by ICASSP2026
SQL-Trail: Multi-Turn Reinforcement Learning with Interleaved Feedback for Text-to-SQL
While large language models (LLMs) have substantially improved Text-to-SQL generation, a pronounced gap remains between AI systems and human experts on challenging benchmarks such as BIRD-SQL. We argue this gap stems largely from the prevailing single-pass paradigm, which lacks the iterative reasoning, schema exploration, and error-correction behaviors that humans naturally employ. To address this limitation, we introduce SQL-Trail, a multi-turn reinforcement learning (RL) agentic framework for Text-to-SQL. Rather than producing a query in one shot, SQL-Trail interacts with the database environment and uses execution feedback to iteratively refine its predictions. Our approach centers on two key ideas: (i) an adaptive turn-budget allocation mechanism that scales the agent's interaction depth to match question difficulty, and (ii) a composite reward panel that jointly incentivizes SQL correctness and efficient exploration. Across benchmarks, SQL-Trail sets a new state of the art and delivers strong data efficiency--up to 18x higher than prior single-pass RL state-of-the-art methods. Notably, our 7B and 14B models outperform substantially larger proprietary systems by 5% on average, underscoring the effectiveness of interactive, agentic workflows for robust Text-to-SQL generation.
Segment Length Matters: A Study of Segment Lengths on Audio Fingerprinting Performance
Audio fingerprinting provides an identifiable representation of acoustic signals, which can be later used for identification and retrieval systems. To obtain a discriminative representation, the input audio is usually segmented into shorter time intervals, allowing local acoustic features to be extracted and analyzed. Modern neural approaches typically operate on short, fixed-duration audio segments, yet the choice of segment duration is often made heuristically and rarely examined in depth. In this paper, we study how segment length affects audio fingerprinting performance. We extend an existing neural fingerprinting architecture to adopt various segment lengths and evaluate retrieval accuracy across different segment lengths and query durations. Our results show that short segment lengths (0.5-second) generally achieve better performance. Moreover, we evaluate LLM capacity in recommending the best segment length, which shows that GPT-5-mini consistently gives the best suggestions across five considerations among three studied LLMs. Our findings provide practical guidance for selecting segment duration in large-scale neural audio retrieval systems.
Augmenting Question Answering with A Hybrid RAG Approach
Retrieval-Augmented Generation (RAG) has emerged as a powerful technique for enhancing the quality of responses in Question-Answering (QA) tasks. However, existing approaches often struggle with retrieving contextually relevant information, leading to incomplete or suboptimal answers. In this paper, we introduce Structured-Semantic RAG (SSRAG), a hybrid architecture that enhances QA quality by integrating query augmentation, agentic routing, and a structured retrieval mechanism combining vector and graph based techniques with context unification. By refining retrieval processes and improving contextual grounding, our approach improves both answer accuracy and informativeness. We conduct extensive evaluations on three popular QA datasets, TruthfulQA, SQuAD and WikiQA, across five Large Language Models (LLMs), demonstrating that our proposed approach consistently improves response quality over standard RAG implementations.
comment: 10 pages, 5 tables, 2 figures; presented at IEEE CogMI 2025
Exploring LGBTQ+ Bias in Generative AI Answers across Different Country and Religious Contexts
Previous discussions have highlighted the need for generative AI tools to become more culturally sensitive, yet often neglect the complexities of handling content about minorities, who are perceived differently across cultures and religions. Our study examined how two generative AI systems respond to homophobic statements with varying cultural and religious context information. Findings showed ChatGPT 3.5's replies exhibited cultural relativism, in contrast to Bard's, which stressed human rights and provided more support for LGBTQ+ issues. Both demonstrated significant change in responses based on contextual information provided in the prompts, suggesting that AI systems may adjust in their responses the degree and forms of support for LGBTQ+ people according to information they receive about the user's background. The study contributes to understanding the social and ethical implications of AI responses and argues that any work to make generative AI outputs more culturally diverse requires a grounding in fundamental human rights. A revised edition of this preprint is available open access at Big Data & Society at https://doi.org/10.1177/20539517251396069
comment: Replacement version -- includes link to BD&S journal publication (significantly revised) in abstract, but the manuscript here remains unchanged from the original arXiv version
Prefill-Guided Thinking for zero-shot detection of AI-generated images
Traditional supervised methods for detecting AI-generated images depend on large, curated datasets for training and fail to generalize to novel, out-of-domain image generators. As an alternative, we explore pre-trained Vision-Language Models (VLMs) for zero-shot detection of AI-generated images. We evaluate VLM performance on three diverse benchmarks encompassing synthetic images of human faces, objects, and animals produced by 16 different state-of-the-art image generators. While off-the-shelf VLMs perform poorly on these datasets, we find that prefilling responses effectively guides their reasoning -- a method we call Prefill-Guided Thinking (PGT). In particular, prefilling a VLM response with the phrase "Let's examine the style and the synthesis artifacts" improves the Macro F1 scores of three widely used open-source VLMs by up to 24%. We analyze this improvement in detection by tracking answer confidence during response generation. For some models, prefills counteract early overconfidence -- akin to mitigating the Dunning-Kruger effect -- leading to better detection performance.
Memorization in Large Language Models in Medicine: Prevalence, Characteristics, and Implications
Large Language Models (LLMs) have demonstrated significant potential in medicine, with many studies adapting them through continued pre-training or fine-tuning on medical data to enhance domain-specific accuracy and safety. However, a key open question remains: to what extent do LLMs memorize medical training data. Memorization can be beneficial when it enables LLMs to retain valuable medical knowledge during domain adaptation. Yet, it also raises concerns. LLMs may inadvertently reproduce sensitive clinical content (e.g., patient-specific details), and excessive memorization may reduce model generalizability, increasing risks of misdiagnosis and making unwarranted recommendations. These risks are further amplified by the generative nature of LLMs, which can not only surface memorized content but also produce overconfident, misleading outputs that may hinder clinical adoption. In this work, we present a study on memorization of LLMs in medicine, assessing its prevalence (how frequently it occurs), characteristics (what is memorized), volume (how much content is memorized), and potential downstream impacts (how memorization may affect medical applications). We systematically analyze common adaptation scenarios: (1) continued pretraining on medical corpora, (2) fine-tuning on standard medical benchmarks, and (3) fine-tuning on real-world clinical data, including over 13,000 unique inpatient records from Yale New Haven Health System. The results demonstrate that memorization is prevalent across all adaptation scenarios and significantly higher than that reported in the general domain. Moreover, memorization has distinct characteristics during continued pre-training and fine-tuning, and it is persistent: up to 87% of content memorized during continued pre-training remains after fine-tuning on new medical tasks.
LLMs as Layout Designers: Enhanced Spatial Reasoning for Content-Aware Layout Generation
While Large Language Models (LLMs) have demonstrated impressive reasoning and planning abilities in textual domains and can effectively follow instructions for complex tasks, their ability to understand and manipulate spatial relationships remains limited. Such capabilities are crucial for content-aware graphic layout design, where the goal is to arrange heterogeneous elements onto a canvas so that final design remains visually balanced and structurally feasible. This problem requires precise coordination of placement, alignment, and structural organization of multiple elements within a constrained visual space. To address this limitation, we introduce LaySPA, a reinforcement learning-based framework that augments LLM-based agents with explicit spatial reasoning capabilities for layout design. LaySPA employs hybrid reward signals that jointly capture geometric constraints, structural fidelity, and visual quality, enabling agents to navigate the canvas, model inter-element relationships, and optimize spatial arrangements. Through group-relative policy optimization, the agent generates content-aware layouts that reflect salient regions, respect spatial constraints, and produces an interpretable reasoning trace explaining placement decisions and a structured layout specification. Experimental results show that LaySPA substantially improves the generation of structurally valid and visually appealing layouts, outperforming larger general-purpose LLMs and achieving performance comparable to state-of-the-art specialized layout models.
Grounding Synthetic Data Evaluations of Language Models in Unsupervised Document Corpora
Language Models (LMs) continue to advance, improving response quality and coherence. Given Internet-scale training datasets, LMs have likely encountered much of what users may ask them to generate in some form during their training. A plethora of evaluation benchmarks have been constructed to assess model quality, response appropriateness, and reasoning capabilities. However, the human effort required for benchmark construction is rapidly being outpaced by the size and scope of the models under evaluation. Having humans build a benchmark for every possible domain of interest is impractical. Therefore, we propose a methodology for automating the construction of fact-based synthetic data model evaluations grounded in document populations. This work leverages the same LMs to evaluate domain-specific knowledge automatically, using only grounding documents (e.g., a textbook) as input. This generative benchmarking approach corresponds well with human curated questions producing an ensemble Spearman ranking correlation of $0.91$ and a benchmark evaluation Pearson accuracy correlation of $0.74$ (model specific $0.82$). This novel approach supports generating both multiple choice and open-ended synthetic data questions to gain diagnostic insight of LM capability. We apply this methodology to evaluate model performance on three recent documents (two post LM knowledge cutoff), discovering a surprisingly strong performance from Gemma-3 models on open-ended questions. Code is available at https://github.com/mmajurski/grounded-synth-lm-benchmark
OLAF: Towards Robust LLM-Based Annotation Framework in Empirical Software Engineering
Large Language Models (LLMs) are increasingly used in empirical software engineering (ESE) to automate or assist annotation tasks such as labeling commits, issues, and qualitative artifacts. Yet the reliability and reproducibility of such annotations remain underexplored. Existing studies often lack standardized measures for reliability, calibration, and drift, and frequently omit essential configuration details. We argue that LLM-based annotation should be treated as a measurement process rather than a purely automated activity. In this position paper, we outline the \textbf{Operationalization for LLM-based Annotation Framework (OLAF)}, a conceptual framework that organizes key constructs: \textit{reliability, calibration, drift, consensus, aggregation}, and \textit{transparency}. The paper aims to motivate methodological discussion and future empirical work toward more transparent and reproducible LLM-based annotation in software engineering research.
Understanding Teen Overreliance on AI Companion Chatbots Through Self-Reported Reddit Narratives
AI companion chatbots are increasingly popular with teens. While these interactions are entertaining, they also risk overuse that can potentially disrupt offline daily life. We examined how adolescents describe reliance on AI companions, mapping their experiences onto behavioral addiction frameworks and exploring pathways to disengagement, by analyzing 318 Reddit posts made by users who self-disclosed as 13-17 years old on the Character.AI subreddit. We found teens often begin using chatbots for support or creative play, but these activities can deepen into strong attachments marked by conflict, withdrawal, tolerance, relapse, and mood regulation. Reported consequences include sleep loss, academic decline, and strained real-world connections. Disengagement commonly arises when teens recognize harm, re-engage with offline life, or encounter restrictive platform changes. We highlight specific risks of character-based companion chatbots based on teens' perspectives and introduce a design framework (CARE) for guidance for safer systems and setting directions for future teen-centered research.
comment: Accepted for publication at CHI '26. This is the camera-ready version; the published version will be available through the ACM Digital Library
Demographic-aware fine-grained classification of pediatric wrist fractures
Wrist pathology recognition from radiographs is challenging because normal appearance varies markedly with age and sex. In pediatric imaging, evolving carpal ossification and open growth plates can resemble fractures, while sex-dependent timing of physeal closure changes key visual cues. Image-only models therefore risk confusing developmental anatomy for pathology, especially in small medical datasets. We address this by framing wrist diagnosis as a fine-grained visual recognition (FGVR) task and introducing a multimodal transformer that fuses X-rays with demographic metadata (age and sex). Unlike prior work, this is the first study to integrate metadata for wrist pathology recognition, and we further show that fine-grained pretraining transfers better than coarse ImageNet initialization. Our approach improves accuracy by 2% on a small curated dataset and by over 10% on a larger fracture dataset.
From Darkness to Detail: Frequency-Aware SSMs for Low-Light Vision
Low-light image enhancement remains a persistent challenge in computer vision, where state-of-the-art models are often hampered by hardware constraints and computational inefficiency, particularly at high resolutions. While foundational architectures like transformers and diffusion models have advanced the field, their computational complexity limits their deployment on edge devices. We introduce ExpoMamba, a novel architecture that integrates a frequency-aware state-space model within a modified U-Net. ExpoMamba is designed to address mixed-exposure challenges by decoupling the modeling of amplitude (intensity) and phase (structure) in the frequency domain. This allows for targeted enhancement, making it highly effective for real-time applications, including downstream tasks like object detection and segmentation. Our experiments on six benchmark datasets show that ExpoMamba is up to 2-3x faster than competing models and achieves a 6.8\% PSNR improvement, establishing a new state-of-the-art in efficient, high-quality low-light enhancement. Source code: https://www.github.com/eashanadhikarla/ExpoMamba.
Kolmogorov-Arnold graph neural networks for chemically informed prediction tasks on inorganic nanomaterials
The recent development of Kolmogorov-Arnold Networks (KANs) has found its application in the field of Graph Neural Networks (GNNs) particularly in molecular data modeling and potential drug discovery. Kolmogorov-Arnold Graph Neural Networks (KAGNNs) expand on the existing set of GNN models with KAN-based counterparts. KAGNNs have been demonstrably successful in surpassing the accuracy of MultiLayer Perceptron (MLP)-based GNNs in the task of molecular property prediction. These models were widely tested on the graph datasets consisting of organic molecules. In this study, we explore the application of KAGNNs towards inorganic nanomaterials. In 2024, a large scale inorganic nanomaterials dataset was published under the title CHILI (Chemically-Informed Large-scale Inorganic Nanomaterials Dataset), and various MLP-based GNNs have been tested on this dataset. We adapt and test our own KAGNNs appropriate for eight defined tasks. Our experiments reveal that, KAGNNs frequently surpass the performance of their counterpart GNNs. Most notably, on crystal system and space group classification tasks in CHILI-3K, KAGNNs achieve the new state-of-the-art results of 99.5 percent and 96.6 percent accuracy, respectively, compared to the previous 65.7 and 73.3 percent each.
LLM for Large-Scale Optimization Model Auto-Formulation: Bridging Flexibility and Standardization via Agentic Workflow
Large-scale optimization is a key backbone of modern business decision-making. However, building these models is often labor-intensive and time-consuming. We address this by proposing LEAN-LLM-OPT, a LightwEight AgeNtic workflow construction framework for LLM-assisted large-scale OPTimization auto-formulation. LEAN-LLM-OPT takes as input a problem description together with associated datasets and orchestrates a team of LLM agents to produce an optimization formulation. Specifically, upon receiving a query, two upstream LLM agents dynamically construct a workflow that specifies, step-by-step, how optimization models for similar problems can be formulated. A downstream LLM agent then follows this workflow to generate the final output. The agentic workflow leverages common modeling practices to standardize the modeling process into a sequence of structured sub-tasks, offloading mechanical data-handling operations to auxiliary tools. This reduces the LLM's burden in planning and data handling, allowing us to exploit its flexibility to address unstructured components. Extensive simulations show that LEAN-LLM-OPT, instantiated with GPT-4.1 and the open source gpt-oss-20B, achieves strong performance on large-scale optimization modeling tasks and is competitive with state-of-the-art approaches. In addition, in a Singapore Airlines choice-based revenue management use case, LEAN-LLM-OPT demonstrates practical value by achieving leading performance across a range of scenarios. Along the way, we introduce Large-Scale-OR and Air-NRM, the first comprehensive benchmarks for large-scale optimization auto-formulation. The code and data of this work is available at https://github.com/CoraLiang01/lean-llm-opt.
comment: Updated version of https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5329027
A Linear Expectation Constraint for Selective Prediction and Routing with False-Discovery Control
Foundation models often generate unreliable answers, while heuristic uncertainty estimators fail to fully distinguish correct from incorrect outputs, causing users to accept erroneous answers without statistical guarantees. We address this through the lens of false discovery rate (FDR) control, ensuring that among all accepted predictions, the proportion of errors does not exceed a target risk level. To this end, we propose LEC, a principled framework that reframes selective prediction as a decision problem governed by a linear expectation constraint over selection and error indicators. Under this formulation, we derive a finite-sample sufficient condition that relies only on a held-out set of exchangeable calibration data, enabling the computation of an FDR-constrained, retention-maximizing threshold. Furthermore, we extend LEC to two-model routing systems: if the primary model's uncertainty exceeds its calibrated threshold, the input is delegated to a subsequent model, while maintaining system-level FDR control. Experiments on both closed-ended and open-ended question answering (QA) and vision question answering (VQA) demonstrate that LEC achieves tighter FDR control and substantially improves sample retention compared to prior approaches.
Bias-Aware Conformal Prediction for Metric-Based Imaging Pipelines
Reliable confidence measures of metrics derived from medical imaging reconstruction pipelines would improve the standard of decision-making in many clinical workflows. Conformal Prediction (CP) provides a robust framework for producing calibrated prediction intervals, but standard CP formulations face a critical challenge in the imaging pipeline: common mismatches between image reconstruction objectives and downstream metrics can introduce systematic prediction deviations from ground truth values, known as bias. These biases in turn compromise the efficiency of prediction intervals, which is a problem that has been unexplored in the CP literature. In this study, we formalize the behavior of symmetric (where bounds expand equally in both directions) and asymmetric (where bounds expand unequally) formulations for common non-conformity scores in CP in the presence of bias, and argue that this measurable bias must inform the choice of CP formulation. We theoretically and empirically demonstrate that symmetric intervals are inflated by a factor of two times the magnitude of bias while asymmetric intervals remain unaffected by bias, and provide conditions under which each formulation produces tighter intervals. We empirically validated our theoretical analyses on sparse-view CT reconstruction for downstream radiotherapy planning. Our work enables users of medical imaging pipelines to proactively select optimal CP formulations, thereby improving interval length efficiency for critical downstream metrics.
comment: 7 pages, 1 figure, accepted at ISBI 2026
Yukthi Opus: A Multi-Chain Hybrid Metaheuristic for Large-Scale NP-Hard Optimization
We present Yukthi Opus (YO), a multi-chain hybrid metaheuristic designed for NP-hard optimization under explicit evaluation budget constraints. YO integrates three complementary mechanisms in a structured two-phase architecture: Markov Chain Monte Carlo (MCMC) for global exploration, greedy local search for exploitation, and simulated annealing with adaptive reheating to enable controlled escape from local minima. A dedicated burn-in phase allocates evaluations to probabilistic exploration, after which a hybrid optimization loop refines promising candidates. YO further incorporates a spatial blacklist mechanism to avoid repeated evaluation of poor regions and a multi-chain execution strategy to improve robustness and reduce sensitivity to initialization. We evaluate YO on three benchmarks: the Rastrigin function (5D) with ablation studies, the Traveling Salesman Problem with 50 to 200 cities, and the Rosenbrock function (5D) with comparisons against established optimizers including CMA-ES, Bayesian optimization, and accelerated particle swarm optimization. Results show that MCMC exploration and greedy refinement are critical for solution quality, while simulated annealing and multi-chain execution primarily improve stability and variance reduction. Overall, YO achieves competitive performance on large and multimodal problems while maintaining predictable evaluation budgets, making it suitable for expensive black-box optimization settings.
comment: 22 pages, 9 figures, includes extensive ablation studies and benchmark comparisons
Explanation Multiplicity in SHAP: Characterization and Assessment
Post-hoc explanations are widely used to justify, contest, and review automated decisions in high-stakes domains such as lending, employment, and healthcare. Among these methods, SHAP is often treated as providing a reliable account of which features mattered for an individual prediction and is routinely used to support recourse, oversight, and accountability. In practice, however, SHAP explanations can differ substantially across repeated runs, even when the individual, prediction task, and trained model are held fixed. We conceptualize and name this phenomenon explanation multiplicity: the existence of multiple, internally valid but substantively different explanations for the same decision. Explanation multiplicity poses a normative challenge for responsible AI deployment, as it undermines expectations that explanations can reliably identify the reasons for an adverse outcome. We present a comprehensive methodology for characterizing explanation multiplicity in post-hoc feature attribution methods, disentangling sources arising from model training and selection versus stochasticity intrinsic to the explanation pipeline. Furthermore, whether explanation multiplicity is surfaced depends on how explanation consistency is measured. Commonly used magnitude-based metrics can suggest stability while masking substantial instability in the identity and ordering of top-ranked features. To contextualize observed instability, we derive and estimate randomized baseline values under plausible null models, providing a principled reference point for interpreting explanation disagreement. Across datasets, model classes, and confidence regimes, we find that explanation multiplicity is widespread and persists even under highly controlled conditions, including high-confidence predictions. Thus explanation practices must be evaluated using metrics and baselines aligned with their intended societal role.
Multiconnectivity for SAGIN: Current Trends, Challenges, AI-driven Solutions, and Opportunities
Space-air-ground-integrated network (SAGIN)-enabled multiconnectivity (MC) is emerging as a key enabler for next-generation networks, enabling users to simultaneously utilize multiple links across multi-layer non-terrestrial networks (NTN) and multi-radio access technology (multi-RAT) terrestrial networks (TN). However, the heterogeneity of TN and NTN introduces complex architectural challenges that complicate MC implementation. Specifically, the diversity of link types, spanning air-to-air, air-to-space, space-to-space, space-to-ground, and ground-to-ground communications, renders optimal resource allocation highly complex. Recent advancements in reinforcement learning (RL) and agentic artificial intelligence (AI) have shown remarkable effectiveness in optimal decision-making in complex and dynamic environments. In this paper, we review the current developments in SAGIN-enabled MC and outline the key challenges associated with its implementation. We further highlight the transformative potential of AI-driven approaches for resource optimization in a heterogeneous SAGIN environment. To this end, we present a case study on resource allocation optimization enabled by agentic RL for SAGIN-enabled MC involving diverse radio access technologies (RATs). Results show that learning-based methods can effectively handle complex scenarios and substantially enhance network performance in terms of latency and capacity while incurring a moderate increase in power consumption as an acceptable tradeoff. Finally, open research problems and future directions are presented to realize efficient SAGIN-enabled MC.
Towards Robust Evaluation of Visual Activity Recognition: Resolving Verb Ambiguity with Sense Clustering
Evaluating visual activity recognition systems is challenging due to inherent ambiguities in verb semantics and image interpretation. When describing actions in images, synonymous verbs can refer to the same event (e.g., brushing vs. grooming), while different perspectives can lead to equally valid but distinct verb choices (e.g., piloting vs. operating). Standard exact-match evaluation, which relies on a single gold answer, fails to capture these ambiguities, resulting in an incomplete assessment of model performance. To address this, we propose a vision-language clustering framework that constructs verb sense clusters, providing a more robust evaluation. Our analysis of the imSitu dataset shows that each image maps to around four sense clusters, with each cluster representing a distinct perspective of the image. We evaluate multiple activity recognition models and compare our cluster-based evaluation with standard evaluation methods. Additionally, our human alignment analysis suggests that the cluster-based evaluation better aligns with human judgments, offering a more nuanced assessment of model performance.
comment: Accepted to Findings of the Association for Computational Linguistics: EACL 2026
TruthTensor: Evaluating LLMs through Human Imitation on Prediction Market under Drift and Holistic Reasoning
Evaluating language models and AI agents remains fundamentally challenging because static benchmarks fail to capture real-world uncertainty, distribution shift, and the gap between isolated task accuracy and human-aligned decision-making under evolving conditions. This paper introduces TruthTensor, a novel, reproducible evaluation paradigm that measures reasoning models not only as prediction engines but as human-imitation systems operating in socially-grounded, high-entropy environments. Building on forward-looking, contamination-free tasks, our framework anchors evaluation to live prediction markets and combines probabilistic scoring to provide a holistic view of model behavior. TruthTensor complements traditional correctness metrics with drift-centric diagnostics and explicit robustness checks for reproducibility. It specify human vs. automated evaluation roles, annotation protocols, and statistical testing procedures to ensure interpretability and replicability of results. In experiments across 500+ real markets (political, economic, cultural, technological), TruthTensor demonstrates that models with similar forecast accuracy can diverge markedly in calibration, drift, and risk-sensitivity, underscoring the need to evaluate models along multiple axes (accuracy, calibration, narrative stability, cost, and resource efficiency). TruthTensor therefore operationalizes modern evaluation best practices, clear hypothesis framing, careful metric selection, transparent compute/cost reporting, human-in-the-loop validation, and open, versioned evaluation contracts, to produce defensible assessments of LLMs in real-world decision contexts. We publicly released TruthTensor at https://truthtensor.com.
comment: 16 pages, 6 figures, 2 tables
Unified-EGformer: Exposure Guided Lightweight Transformer for Mixed-Exposure Image Enhancement
Despite recent strides made by AI in image processing, the issue of mixed exposure, pivotal in many real-world scenarios like surveillance and photography, remains inadequately addressed. Traditional image enhancement techniques and current transformer models are limited with primary focus on either overexposure or underexposure. To bridge this gap, we introduce the Unified-Exposure Guided Transformer (Unified-EGformer). Our proposed solution is built upon advanced transformer architectures, equipped with local pixel-level refinement and global refinement blocks for color correction and image-wide adjustments. We employ a guided attention mechanism to precisely identify exposure-compromised regions, ensuring its adaptability across various real-world conditions. U-EGformer, with a lightweight design featuring a memory footprint (peak memory) of only $\sim$1134 MB (0.1 Million parameters) and an inference time of 95 ms (9.61x faster than the average), is a viable choice for real-time applications such as surveillance and autonomous navigation. Additionally, our model is highly generalizable, requiring minimal fine-tuning to handle multiple tasks and datasets with a single architecture.
comment: Under submission
uPVC-Net: A Universal Premature Ventricular Contraction Detection Deep Learning Algorithm
Introduction: Premature Ventricular Contractions (PVCs) are common cardiac arrhythmias originating from the ventricles. Accurate detection remains challenging due to variability in electrocardiogram (ECG) waveforms caused by differences in lead placement, recording conditions, and population demographics. Methods: We developed uPVC-Net, a universal deep learning model to detect PVCs from any single-lead ECG recordings. The model is developed on four independent ECG datasets comprising a total of 8.3 million beats collected from Holter monitors and a modern wearable ECG patch. uPVC-Net employs a custom architecture and a multi-source, multi-lead training strategy. For each experiment, one dataset is held out to evaluate out-of-distribution (OOD) generalization. Results: uPVC-Net achieved an AUC between 97.8% and 99.1% on the held-out datasets. Notably, performance on wearable single-lead ECG data reached an AUC of 99.1%. Conclusion: uPVC-Net exhibits strong generalization across diverse lead configurations and populations, highlighting its potential for robust, real-world clinical deployment.
comment: 8 pages
An Exploration of Default Images in Text-to-Image Generation
In the creative practice of text-to-image (TTI) generation, images are synthesized from textual prompts. By design, TTI models always yield an output, even if the prompt contains unknown terms. In this case, the model may generate default images: images that closely resemble each other across many unrelated prompts. Studying default images is valuable for designing better solutions for prompt engineering and TTI generation. We present the first investigation into default images on Midjourney. We describe an initial study in which we manually created input prompts triggering default images, and several ablation studies. Building on these, we conduct a computational analysis of over 750,000 images, revealing consistent default images across unrelated prompts. We also conduct an online user study investigating how default images may affect user satisfaction. Our work lays the foundation for understanding default images in TTI generation, highlighting their practical relevance as well as challenges and future research directions.
comment: 21 pages, 10 figures
Empowering LLMs for Structure-Based Drug Design via Exploration-Augmented Latent Inference
Large Language Models (LLMs) possess strong representation and reasoning capabilities, but their application to structure-based drug design (SBDD) is limited by insufficient understanding of protein structures and unpredictable molecular generation. To address these challenges, we propose Exploration-Augmented Latent Inference for LLMs (ELILLM), a framework that reinterprets the LLM generation process as an encoding, latent space exploration, and decoding workflow. ELILLM explicitly explores portions of the design problem beyond the model's current knowledge while using a decoding module to handle familiar regions, generating chemically valid and synthetically reasonable molecules. In our implementation, Bayesian optimization guides the systematic exploration of latent embeddings, and a position-aware surrogate model efficiently predicts binding affinity distributions to inform the search. Knowledge-guided decoding further reduces randomness and effectively imposes chemical validity constraints. We demonstrate ELILLM on the CrossDocked2020 benchmark, showing strong controlled exploration and high binding affinity scores compared with seven baseline methods. These results demonstrate that ELILLM can effectively enhance LLMs capabilities for SBDD.
Spectral Logit Sculpting: Adaptive Low-Rank Logit Transformation for Controlled Text Generation
Entropy-based inference methods have gained traction for improving the reliability of Large Language Models (LLMs). However, many existing approaches, such as entropy minimization techniques, suffer from high computational overhead and fail to leverage historical token context effectively. To address these limitations, we propose Spectral Logit Sculpting (SLS), a lightweight inference-time optimization method that dynamically modulates token distributions using spectral and entropic properties of recent logits. SLS maintains a sliding buffer of top-K logits, performs on-the-fly Singular Value Decomposition (SVD) to identify dominant spectral directions, and adaptively rescales logits based on both entropy and logit gap statistics--only activating when uncertainty is high. Without updating any model parameters, SLS effectively sharpens the output distribution while preserving contextual consistency. Experimental results on multiple public benchmarks demonstrate that SLS consistently outperforms existing baseline methods, achieving superior accuracy in mathematical, coding, and scientific reasoning tasks.
comment: Accepted by IEEE ICASSP 2026
How Worst-Case Are Adversarial Attacks? Linking Adversarial and Perturbation Robustness
Adversarial attacks are widely used to identify model vulnerabilities; however, their validity as proxies for robustness to random perturbations remains debated. We ask whether an adversarial example provides a representative estimate of misprediction risk under stochastic perturbations of the same magnitude, or instead reflects an atypical worst-case event. To address this question, we introduce a probabilistic analysis that quantifies this risk with respect to directionally biased perturbation distributions, parameterized by a concentration factor $κ$ that interpolates between isotropic noise and adversarial directions. Building on this, we study the limits of this connection by proposing an attack strategy designed to probe vulnerabilities in regimes that are statistically closer to uniform noise. Experiments on ImageNet and CIFAR-10 systematically benchmark multiple attacks, revealing when adversarial success meaningfully reflects robustness to perturbations and when it does not, thereby informing their use in safety-oriented robustness evaluation.
MoSE: Hierarchical Self-Distillation Enhances Early Layer Embeddings AAAI 2026
Deploying language models often requires navigating accuracy vs. performance trade-offs to meet latency constraints while preserving utility. Traditional model distillation reduces size but incurs substantial costs through training separate models. We introduce ModularStarEncoder (MoSE), a 1-billion-parameter multi-exit encoder for code retrieval and classification that employs a novel Self-Distillation mechanism. This approach significantly enhances lower-layer representations, enabling flexible deployment of different model portions with favorable performance trade-offs. Our architecture improves text-to-code and code-to-code search by targeting specific encoder layers as exit heads, where higher layers guide earlier ones during training, thereby improving intermediate representations at minimal additional cost. We further enhance MoSE with a repository-level contextual loss that maximizes training context window utilization. Additionally, we release a new dataset created through code translation that extends text-to-code benchmarks with cross-language code-to-code pairs. Evaluations demonstrate the effectiveness of Self-Distillation as a principled approach to trading inference cost for accuracy across various code understanding tasks.
comment: Accepted in the AAAI 2026 Main Technical Track
SingMOS-Pro: An Comprehensive Benchmark for Singing Quality Assessment
Singing voice generation progresses rapidly, yet evaluating singing quality remains a critical challenge. Human subjective assessment, typically in the form of listening tests, is costly and time consuming, while existing objective metrics capture only limited perceptual aspects. In this work, we introduce SingMOS-Pro, a dataset for automatic singing quality assessment. Building on our preview version SingMOS, which provides only overall ratings, SingMOS-Pro expands annotations of the additional part to include lyrics, melody, and overall quality, offering broader coverage and greater diversity. The dataset contains 7,981 singing clips generated by 41 models across 12 datasets, spanning from early systems to recent advances. Each clip receives at least five ratings from professional annotators, ensuring reliability and consistency. Furthermore, we explore how to effectively utilize MOS data annotated under different standards and benchmark several widely used evaluation methods from related tasks on SingMOS-Pro, establishing strong baselines and practical references for future research. The dataset can be accessed at https://huggingface.co/datasets/TangRain/SingMOS-Pro.
comment: Accepted by ICASSP 2026
SpringTime: Learning Simulatable Models of Cloth with Spatially-varying Constitutive Properties
Materials used in real clothing exhibit remarkable complexity and spatial variation due to common processes such as stitching, hemming, dyeing, printing, padding, and bonding. Simulating these materials, for instance using finite element methods, is often computationally demanding and slow. Worse, such methods can suffer from numerical artifacts called ``membrane locking'' that makes cloth appear artificially stiff. Here we propose a general framework, called SpringTime, for learning a simple yet efficient surrogate model that captures the effects of these complex materials using only motion observations. The cloth is discretized into a mass-spring network with unknown material parameters that are learned directly from the motion data, using a novel force-and-impulse loss function. Our approach demonstrates the ability to accurately model spatially varying material properties from a variety of data sources, and immunity to membrane locking which plagues FEM-based simulations. Compared to graph-based networks and neural ODE-based architectures, our method achieves significantly faster training times, higher reconstruction accuracy, and improved generalization to novel dynamic scenarios. Codebase for the paper can be found at https://github.com/ericchen321/springtime.
comment: Submitted to Graphics Interface '26 (In review)
Vision-Proprioception Fusion with Mamba2 in End-to-End Reinforcement Learning for Motion Control
End-to-end reinforcement learning (RL) for motion control trains policies directly from sensor inputs to motor commands, enabling unified controllers for different robots and tasks. However, most existing methods are either blind (proprioception-only) or rely on fusion backbones with unfavorable compute-memory trade-offs. Recurrent controllers struggle with long-horizon credit assignment, and Transformer-based fusion incurs quadratic cost in token length, limiting temporal and spatial context. We present a vision-driven cross-modal RL framework built on SSD-Mamba2, a selective state-space backbone that applies state-space duality (SSD) to enable both recurrent and convolutional scanning with hardware-aware streaming and near-linear scaling. Proprioceptive states and exteroceptive observations (e.g., depth tokens) are encoded into compact tokens and fused by stacked SSD-Mamba2 layers. The selective state-space updates retain long-range dependencies with markedly lower latency and memory use than quadratic self-attention, enabling longer look-ahead, higher token resolution, and stable training under limited compute. Policies are trained end-to-end under curricula that randomize terrain and appearance and progressively increase scene complexity. A compact, state-centric reward balances task progress, energy efficiency, and safety. Across diverse motion-control scenarios, our approach consistently surpasses strong state-of-the-art baselines in return, safety (collisions and falls), and sample efficiency, while converging faster at the same compute budget. These results suggest that SSD-Mamba2 provides a practical fusion backbone for resource-constrained robotic and autonomous systems in engineering informatics applications.
comment: 6 figures and 8 tables. This paper has been accepted by Advanced Engineering Informatics
SeRL: Self-Play Reinforcement Learning for Large Language Models with Limited Data
Recent advances have demonstrated the effectiveness of Reinforcement Learning (RL) in improving the reasoning capabilities of Large Language Models (LLMs). However, existing works inevitably rely on high-quality instructions and verifiable rewards for effective training, both of which are often difficult to obtain in specialized domains. In this paper, we propose Self-play Reinforcement Learning (SeRL) to bootstrap LLM training with limited initial data. Specifically, SeRL comprises two complementary modules: self-instruction and self-rewarding. The former module generates additional instructions based on the available data at each training step, employing robust online filtering strategies to ensure instruction quality, diversity, and difficulty. The latter module introduces a simple yet effective majority-voting mechanism to estimate response rewards for additional instructions, eliminating the need for external annotations. Finally, SeRL performs conventional RL based on the generated data, facilitating iterative self-play learning. Extensive experiments on various reasoning benchmarks and across different LLM backbones demonstrate that the proposed SeRL yields results superior to its counterparts and achieves performance on par with those obtained by high-quality data with verifiable rewards. Our code is available at https://github.com/wantbook-book/SeRL.
Prompt to Pwn: Automated Exploit Generation for Smart Contracts
Smart contracts are important for digital finance, yet they are hard to patch once deployed. Prior work mostly studies LLMs for vulnerability detection, leaving their automated exploit generation (AEG) capability unclear. This paper closes that gap with \textsc{ReX}, a framework that links LLM-based exploit synthesis to the Foundry stack for end-to-end generation, compilation, execution, and verification. Five recent LLMs are evaluated across eight common vulnerability classes, supported by a curated dataset of 38{+} real incident PoCs and three automation aids: prompt refactoring, a compiler feedback loop, and templated test harnesses. Results indicate strong performance on single-contract PoCs and weak performance on cross-contract attacks; outcomes depend mainly on the model and bug type, with code structure and prompt tuning contributing little. The study also surfaces gaps in current defenses against LLM-driven AEG, pointing to the need for stronger protections.
comment: ACISP2026
Data-Augmented Deep Learning for Downhole Depth Sensing and Validation
Accurate downhole depth measurement is essential for oil and gas well operations, directly influencing reservoir contact, production efficiency, and operational safety. Collar correlation using a casing collar locator (CCL) is fundamental for precise depth calibration. While neural network has achieved significant progress in collar recognition, preprocessing methods for such applications remain underdeveloped. Moreover, the limited availability of real well data poses substantial challenges for training neural network models that require extensive datasets. This paper presents a system integrated into a downhole toolstring for CCL log acquisition to facilitate dataset construction. Comprehensive preprocessing methods for data augmentation are proposed, and their effectiveness is evaluated using baseline neural network models. Through systematic experimentation across diverse configurations, the contribution of each augmentation method is analyzed. Results demonstrate that standardization, label distribution smoothing, and random cropping are fundamental prerequisites for model training, while label smoothing regularization, time scaling, and multiple sampling significantly enhance model generalization capabilities. Incorporating the proposed augmentation methods into the two baseline models results in maximum F1 score improvements of 0.027 and 0.024 for the TAN and MAN models, respectively. Furthermore, applying these techniques yields F1 score gains of up to 0.045 for the TAN model and 0.057 for the MAN model compared to prior studies. Performance evaluation on real CCL waveforms confirms the effectiveness and practical applicability of our approach. This work addresses the existing gaps in data augmentation methodologies for training casing collar recognition models under CCL data-limited conditions, and provides a technical foundation for the future automation of downhole operations.
FOL-Traces: Verified First-Order Logic Reasoning Traces at Scale
Reasoning in language models is difficult to evaluate: natural-language traces are unverifiable, symbolic datasets are too small, and most benchmarks conflate heuristics with inference. We present FOL-Traces, the first large-scale dataset of programmatically verified reasoning traces, enabling rigorous evaluation of structured logical inference. We also propose two challenging and comprehensive diagnostic tasks-masked operation prediction and step completion-that directly probe syntactic awareness and process fidelity. FOL-Traces serves as a scalable testbed for rigorously studying how models perform structured logical inference. Systematic experiments with 5 reasoning LLMs show that the dataset remains challenging: models only reach around 45.7% accuracy on masked operation prediction and around 27% on two-step completion.
Training Tensor Attention Efficiently: From Cubic to Almost Linear Time
Tensor Attention, a multi-view attention that is able to capture high-order correlations among multiple modalities, can overcome the representational limitations of classical matrix attention. However, the $O(n^3)$ time complexity of tensor attention poses a significant obstacle to its utilization in transformers, where $n$ is the input sequence length. In this work, we prove that the backward gradient of tensor attention training can be computed in almost linear time $n^{1+o(1)}$, the same complexity as its forward computation under the bounded entries assumption. We provide a closed-form solution for the gradient and propose a fast computation method utilizing polynomial approximation methods and tensor algebraic techniques. Furthermore, we prove the necessity and tightness of our assumption through hardness analysis, showing that slightly weakening it renders the gradient problem unsolvable in truly subcubic time. Our theoretical results establish the feasibility of efficient higher-order transformer training and may facilitate practical applications of tensor attention architectures.
RoPE Attention Can Be Trained in Almost Linear Time
The Rotary Position Embedding (RoPE) mechanism has become a powerful enhancement to the Transformer architecture, which enables models to capture token relationships when encoding positional information. However, the RoPE mechanisms make the computations of attention mechanisms more complicated, which makes efficient algorithms challenging. Earlier research introduced almost linear time algorithms for the forward computation under specific parameter settings of bounded entries (i.e., in time $n^{1+o(1)}$ where $n$ is the number of input tokens), but has not addressed backward computation. In this work, we develop the first almost linear time algorithm for backward computations in the RoPE-based attention under bounded entries. Our approach builds on recent advancements in fast RoPE attention computations, utilizing a novel combination of the polynomial method and the Fast Fourier Transform. Furthermore, we show that with lower bounds derived from the Strong Exponential Time Hypothesis (SETH), the bounded entry condition is necessary for subquadratic performance.
Exploring the Frontiers of Softmax: Provable Optimization, Applications in Diffusion Model, and Beyond
The softmax activation function plays a crucial role in the success of large language models (LLMs), particularly in the self-attention mechanism of the widely adopted Transformer architecture. However, the underlying learning dynamics that contribute to the effectiveness of softmax remain largely unexplored. As a step towards better understanding, this paper provides a theoretical study of the optimization and generalization properties of two-layer softmax neural networks, providing theoretical insights into their superior performance as other activation functions, such as ReLU and exponential. Leveraging the Neural Tangent Kernel (NTK) framework, our analysis reveals that the normalization effect of the softmax function leads to a good perturbation property of the induced NTK matrix, resulting in a good convex region of the loss landscape. Consequently, softmax neural networks can learn the target function in the over-parametrization regime. To demonstrate the broad applicability of our theoretical findings, we apply them to the task of learning score estimation functions in diffusion models, a promising approach for generative modeling. Our analysis shows that gradient-based algorithms can learn the score function with a provable accuracy. Our work provides a deeper understanding of the effectiveness of softmax neural networks and their potential in various domains, paving the way for further advancements in natural language processing and beyond.
comment: 53 pages
DeepInsert: Early Layer Bypass for Efficient and Performant Multimodal Understanding
Hyperscaling of data and parameter count in LLMs is yielding diminishing improvement when weighed against training costs, underlining a growing need for more efficient finetuning and inference without sacrificing performance. This is especially so for multimodal language models (MLMs), where the overhead of processing multimodal tokens can limit their practical viability. Parallely, recent work has uncovered implicit cross-modal alignment in the deeper layers of large MLMs, deepening our understanding of how MLMs process and encode information. Motivated by this, and our observation that MLMs naturally defer most cross-modal token interactions to deeper layers of the model, we propose a simple modification. Instead of concatenation with the language prompt at the start, we insert multimodal tokens directly into the middle, allowing them to entirely bypass the early layers. Our results with diverse modalities, (i) LLaVA \& BLIP for vision, (ii) LTU for audio, and (iii) MoLCA for molecular data, and model sizes, starting from 350M to 13B parameters, indicate that our method reduces both training and inference costs, while at least preserving, if not surpassing the performance of existing baselines.
comment: To be presented at EACL 2026 (Main Conference)
Mutagenesis screen to map the functions of parameters of Large Language Models
Large Language Models (LLMs) have significantly advanced artificial intelligence, excelling in numerous tasks. Although the functionality of a model is inherently tied to its parameters, a systematic method for exploring the connections between the parameters and the functionality are lacking. Models sharing similar structure and parameter counts exhibit significant performance disparities across various tasks, prompting investigations into the varying patterns that govern their performance. We adopted a mutagenesis screen approach inspired by the methods used in biological studies, to investigate Llama2-7b and Zephyr. This technique involved mutating elements within the models' matrices to their maximum or minimum values to examine the relationship between model parameters and their functionalities. Our research uncovered multiple levels of fine structures within both models. Many matrices showed a mixture of maximum and minimum mutations following mutagenesis, but others were predominantly sensitive to one type. Notably, mutations that produced phenotypes, especially those with severe outcomes, tended to cluster along axes. Additionally, the location of maximum and minimum mutations often displayed a complementary pattern on matrix in both models, with the Gate matrix showing a unique two-dimensional asymmetry after rearrangement. In Zephyr, certain mutations consistently resulted in poetic or conversational rather than descriptive outputs. These "writer" mutations grouped according to the high-frequency initial word of the output, with a marked tendency to share the row coordinate even when they are in different matrices. Our findings affirm that the mutagenesis screen is an effective tool for deciphering the complexities of large language models and identifying unexpected ways to expand their potential, providing deeper insights into the foundational aspects of AI systems.
comment: 10 pages, 6 figures, supplementary material available online
Machine Learning 87
Multimodal Machine Learning for Soft High-k Elastomers under Data Scarcity
Dielectric materials are critical building blocks for modern electronics such as sensors, actuators, and transistors. With the rapid recent advance in soft and stretchable electronics for emerging human- and robot-interfacing applications, there is a surging need for high-performance dielectric elastomers. However, it remains a grand challenge to develop soft elastomers that simultaneously possess high dielectric constants (k, related to energy storage capacity) and low Young's moduli (E, related to mechanical flexibility). While some new elastomer designs have been reported in individual (mostly one-off) studies, almost no structured dataset is currently available for dielectric elastomers that systematically encompasses their molecular sequence, dielectric, and mechanical properties. Within this context, we curate a compact, high-quality dataset of acrylate-based dielectric elastomers, one of the most widely explored elastomer backbones due to its versatile chemistry and molecular design flexibility, by screening and aggregating experimental results from the literature over the past 10 years. Building on this dataset, we propose a multimodal learning framework that leverages large-scale pretrained polymer representations from graph- and sequence-based encoders. These pretrained embeddings transfer rich chemical and structural knowledge from vast polymer corpora, enabling accurate few-shot prediction of both dielectric and mechanical properties from molecular sequences. Our results represent a new paradigm for transferring knowledge from pretrained multimodal models to overcome severe data scarcity, which can be readily translated to other polymer backbones (e.g., silicones, urethanes) and thus accelerate data-efficient discovery of soft high-k dielectric elastomers. Our source code and dataset are publicly available at https://github.com/HySonLab/Polymers
Spelling Bee Embeddings for Language Modeling
We introduce a simple modification to the embedding layer. The key change is to infuse token embeddings with information about their spelling. Models trained with these embeddings improve not only on spelling, but also across standard benchmarks. We conduct scaling studies for models with 40M to 800M parameters, which suggest that the improvements are equivalent to needing about 8% less compute and data to achieve the same test loss.
MlPET: A Localized Neural Network Approach for Probabilistic Post-Reconstruction PET Image Analysis Using Informed Priors
We develop and evaluate MlPET, a fast localized machine learning approach for probabilistic PET image analysis addressing the noise-resolution trade-off in conventional reconstructions. MlPET replaces computationally demanding Markov chain Monte Carlo sampling with a localized neural network trained to estimate posterior mean voxel activity from small image neighborhoods. The method incorporates scanner-specific point spread functions, spatially correlated noise modeling, and flexible priors. Performance was evaluated on NEMA IEC phantom data from three PET systems (GE Discovery MI, Siemens Biograph Vision 600, and Quadra) under varying reconstruction settings and acquisition times. On phantom data, MlPET achieved contrast recovery coefficients consistently higher than standard PET and close to 1.0 (including 10 mm spheres), while reducing background noise and improving spatial definition. Effective pointspread function full width at half maximum decreased from approximately 2 mm in standard PET to below 1 mm with MlPET, a 2.5 fold reduction in blur. Comparable image quality was obtained at 40-80 s acquisition time with MlPET versus 900 s with conventional PET. MlPET provides an efficient approach for quantitative probabilistic post-reconstruction PET analysis. By combining informed priors with neural network speed, it achieves noise suppression and resolution enhancement without altering reconstruction algorithms. The method shows promise for improved small-lesion detectability and quantitative reliability in clinical PET imaging. Future studies will evaluate performance on patient data.
Memory-Efficient FPGA Implementation of Stochastic Simulated Annealing
Simulated annealing (SA) is a well-known algorithm for solving combinatorial optimization problems. However, the computation time of SA increases rapidly, as the size of the problem grows. Recently, a stochastic simulated annealing (SSA) algorithm that converges faster than conventional SA has been reported. In this paper, we present a hardware-aware SSA (HA- SSA) algorithm for memory-efficient FPGA implementations. HA-SSA can reduce the memory usage of storing intermediate results while maintaining the computing speed of SSA. For evaluation purposes, the proposed algorithm is compared with the conventional SSA and SA approaches on maximum cut combinatorial optimization problems. HA-SSA achieves a convergence speed that is up to 114-times faster than that of the conventional SA algorithm depending on the maximum cut problem selected from the G-set which is a dataset of the maximum cut problems. HA-SSA is implemented on a field-programmable gate array (FPGA) (Xilinx Kintex-7), and it achieves up to 6-times the memory efficiency of conventional SSA while maintaining high solution quality for optimization problems.
comment: 11 pages
Flow-based Extremal Mathematical Structure Discovery
The discovery of extremal structures in mathematics requires navigating vast and nonconvex landscapes where analytical methods offer little guidance and brute-force search becomes intractable. We introduce FlowBoost, a closed-loop generative framework that learns to discover rare and extremal geometric structures by combining three components: (i) a geometry-aware conditional flow-matching model that learns to sample high-quality configurations, (ii) reward-guided policy optimization with action exploration that directly optimizes the generation process toward the objective while maintaining diversity, and (iii) stochastic local search for both training-data generation and final refinement. Unlike prior open-loop approaches, such as PatternBoost that retrains on filtered discrete samples, or AlphaEvolve which relies on frozen Large Language Models (LLMs) as evolutionary mutation operators, FlowBoost enforces geometric feasibility during sampling, and propagates reward signal directly into the generative model, closing the optimization loop and requiring much smaller training sets and shorter training times, and reducing the required outer-loop iterations by orders of magnitude, while eliminating dependence on LLMs. We demonstrate the framework on four geometric optimization problems: sphere packing in hypercubes, circle packing maximizing sum of radii, the Heilbronn triangle problem, and star discrepancy minimization. In several cases, FlowBoost discovers configurations that match or exceed the best known results. For circle packings, we improve the best known lower bounds, surpassing the LLM-based system AlphaEvolve while using substantially fewer computational resources.
comment: 32 pages
Coding-Enforced Resilient and Secure Aggregation for Hierarchical Federated Learning
Hierarchical federated learning (HFL) has emerged as an effective paradigm to enhance link quality between clients and the server. However, ensuring model accuracy while preserving privacy under unreliable communication remains a key challenge in HFL, as the coordination among privacy noise can be randomly disrupted. To address this limitation, we propose a robust hierarchical secure aggregation scheme, termed H-SecCoGC, which integrates coding strategies to enforce structured aggregation. The proposed scheme not only ensures accurate global model construction under varying levels of privacy, but also avoids the partial participation issue, thereby significantly improving robustness, privacy preservation, and learning efficiency. Both theoretical analyses and experimental results demonstrate the superiority of our scheme under unreliable communication across arbitrarily strong privacy guarantees
A Cherry-Picking Approach to Large Load Shaping for More Effective Carbon Reduction
Shaping multi-megawatt loads, such as data centers, impacts generator dispatch on the electric grid, which in turn affects system CO2 emissions and energy cost. Substantiating the effectiveness of prevalent load shaping strategies, such as those based on grid-level average carbon intensity, locational marginal price, or marginal emissions, is challenging due to the lack of detailed counterfactual data required for accurate attribution. This study uses a series of calibrated granular ERCOT day-ahead direct current optimal power flow (DC-OPF) simulations for counterfactual analysis of a broad set of load shaping strategies on grid CO2 emissions and cost of electricity. In terms of annual grid level CO2 emissions reductions, LMP-based shaping outperforms other common strategies, but can be significantly improved upon. Examining the performance of practicable strategies under different grid conditions motivates a more effective load shaping approach: one that "cherry-picks" a daily strategy based on observable grid signals and historical data. The cherry-picking approach to power load shaping is applicable to any large flexible consumer on the electricity grid, such as data centers, distributed energy resources and Virtual Power Plants (VPPs).
Systematic Characterization of Minimal Deep Learning Architectures: A Unified Analysis of Convergence, Pruning, and Quantization
Deep learning networks excel at classification, yet identifying minimal architectures that reliably solve a task remains challenging. We present a computational methodology for systematically exploring and analyzing the relationships among convergence, pruning, and quantization. The workflow first performs a structured design sweep across a large set of architectures, then evaluates convergence behavior, pruning sensitivity, and quantization robustness on representative models. Focusing on well-known image classification of increasing complexity, and across Deep Neural Networks, Convolutional Neural Networks, and Vision Transformers, our initial results show that, despite architectural diversity, performance is largely invariant and learning dynamics consistently exhibit three regimes: unstable, learning, and overfitting. We further characterize the minimal learnable parameters required for stable learning, uncover distinct convergence and pruning phases, and quantify the effect of reduced numeric precision on trainable parameters. Aligning with intuition, the results confirm that deeper architectures are more resilient to pruning than shallower ones, with parameter redundancy as high as 60%, and quantization impacts models with fewer learnable parameters more severely and has a larger effect on harder image datasets. These findings provide actionable guidance for selecting compact, stable models under pruning and low-precision constraints in image classification.
Federated learning for unpaired multimodal data through a homogeneous transformer model
Training of multimodal foundation models is currently restricted to centralized data centers containing massive, aligned datasets (e.g., image-text pairs). However, in realistic federated environments, data is often unpaired and fragmented across disjoint nodes; one node may hold sensor data, while another holds textual logs. These datasets are strictly private and share no common samples. Current federated learning (FL) methods fail in this regime, as they assume local clients possess aligned pairs or require sharing raw feature embeddings, which violates data sovereignty. We propose a novel framework to train a global multimodal transformer across decentralized nodes with disjoint modalities. We introduce a small public anchor set to align disjoint private manifolds. Using Gram matrices calculated from these public anchors, we enforce semantic alignment across modalities through centered kernel alignment without ever transmitting private samples, offering a mathematically superior privacy guarantee compared to prototype sharing. Further, we introduce a subspace-stabilized fine-tuning method to handle FL with huge transformer models. We strictly decouple domain-specific magnitude shifts from semantic direction, ensuring that nodes with varying sensor characteristics align geometrically to the global consensus. Lastly, we propose precision weighted averaging, where efficiently obtained uncertainty estimates are used to downweight uncertain nodes. This paper establishes the mathematical backbone for federated unpaired foundation models, enabling a global model to learn a unified representation of the world from fragmented, disjoint, and private data silos without requiring centralized storage or paired samples.
Boosting methods for interval-censored data with regression and classification
Boosting has garnered significant interest across both machine learning and statistical communities. Traditional boosting algorithms, designed for fully observed random samples, often struggle with real-world problems, particularly with interval-censored data. This type of data is common in survival analysis and time-to-event studies where exact event times are unobserved but fall within known intervals. Effective handling of such data is crucial in fields like medical research, reliability engineering, and social sciences. In this work, we introduce novel nonparametric boosting methods for regression and classification tasks with interval-censored data. Our approaches leverage censoring unbiased transformations to adjust loss functions and impute transformed responses while maintaining model accuracy. Implemented via functional gradient descent, these methods ensure scalability and adaptability. We rigorously establish their theoretical properties, including optimality and mean squared error trade-offs. Our proposed methods not only offer a robust framework for enhancing predictive accuracy in domains where interval-censored data are common but also complement existing work, expanding the applicability of existing boosting techniques. Empirical studies demonstrate robust performance across various finite-sample scenarios, highlighting the practical utility of our approaches.
comment: In The 13th International Conference on Learning Representations (2025)
TensorLens: End-to-End Transformer Analysis via High-Order Attention Tensors
Attention matrices are fundamental to transformer research, supporting a broad range of applications including interpretability, visualization, manipulation, and distillation. Yet, most existing analyses focus on individual attention heads or layers, failing to account for the model's global behavior. While prior efforts have extended attention formulations across multiple heads via averaging and matrix multiplications or incorporated components such as normalization and FFNs, a unified and complete representation that encapsulates all transformer blocks is still lacking. We address this gap by introducing TensorLens, a novel formulation that captures the entire transformer as a single, input-dependent linear operator expressed through a high-order attention-interaction tensor. This tensor jointly encodes attention, FFNs, activations, normalizations, and residual connections, offering a theoretically coherent and expressive linear representation of the model's computation. TensorLens is theoretically grounded and our empirical validation shows that it yields richer representations than previous attention-aggregation methods. Our experiments demonstrate that the attention tensor can serve as a powerful foundation for developing tools aimed at interpretability and model understanding. Our code is attached as a supplementary.
comment: 17 pages, 7 figures
Scaling Effects and Uncertainty Quantification in Neural Actor Critic Algorithms
We investigate the neural Actor Critic algorithm using shallow neural networks for both the Actor and Critic models. The focus of this work is twofold: first, to compare the convergence properties of the network outputs under various scaling schemes as the network width and the number of training steps tend to infinity; and second, to provide precise control of the approximation error associated with each scaling regime. Previous work has shown convergence to ordinary differential equations with random initial conditions under inverse square root scaling in the network width. In this work, we shift the focus from convergence speed alone to a more comprehensive statistical characterization of the algorithm's output, with the goal of quantifying uncertainty in neural Actor Critic methods. Specifically, we study a general inverse polynomial scaling in the network width, with an exponent treated as a tunable hyperparameter taking values strictly between one half and one. We derive an asymptotic expansion of the network outputs, interpreted as statistical estimators, in order to clarify their structure. To leading order, we show that the variance decays as a power of the network width, with an exponent equal to one half minus the scaling parameter, implying improved statistical robustness as the scaling parameter approaches one. Numerical experiments support this behavior and further suggest faster convergence for this choice of scaling. Finally, our analysis yields concrete guidelines for selecting algorithmic hyperparameters, including learning rates and exploration rates, as functions of the network width and the scaling parameter, ensuring provably favorable statistical behavior.
comment: 72 pages, 2 figures
FedGraph-VASP: Privacy-Preserving Federated Graph Learning with Post-Quantum Security for Cross-Institutional Anti-Money Laundering
Virtual Asset Service Providers (VASPs) face a fundamental tension between regulatory compliance and user privacy when detecting cross-institutional money laundering. Current approaches require either sharing sensitive transaction data or operating in isolation, leaving critical cross-chain laundering patterns undetected. We present FedGraph-VASP, a privacy-preserving federated graph learning framework that enables collaborative anti-money laundering (AML) without exposing raw user data. Our key contribution is a Boundary Embedding Exchange protocol that shares only compressed, non-invertible graph neural network representations of boundary accounts. These exchanges are secured using post-quantum cryptography, specifically the NIST-standardized Kyber-512 key encapsulation mechanism combined with AES-256-GCM authenticated encryption. Experiments on the Elliptic Bitcoin dataset with realistic Louvain partitioning show that FedGraph-VASP achieves an F1-score of 0.508, outperforming the state-of-the-art generative baseline FedSage+ (F1 = 0.453) by 12.1 percent on binary fraud detection. We further show robustness under low-connectivity settings where generative imputation degrades performance, while approaching centralized performance (F1 = 0.620) in high-connectivity regimes. We additionally evaluate generalization on an Ethereum fraud detection dataset, where FedGraph-VASP (F1 = 0.635) is less effective under sparse cross-silo connectivity, while FedSage+ excels (F1 = 0.855), outperforming even local training (F1 = 0.785). These results highlight a topology-dependent trade-off: embedding exchange benefits connected transaction graphs, whereas generative imputation can dominate in highly modular sparse graphs. A privacy audit shows embeddings are only partially invertible (R^2 = 0.32), limiting exact feature recovery.
Dissipative Learning: A Framework for Viable Adaptive Systems
We propose a perspective in which learning is an intrinsically dissipative process. Forgetting and regularization are not heuristic add-ons but structural requirements for adaptive systems. Drawing on information theory, thermodynamics, and information geometry, we introduce the BEDS (Bayesian Emergent Dissipative Structures) framework, modeling learning as the evolution of compressed belief states under dissipation constraints. A central contribution is the Conditional Optimality Theorem, showing that Fisher-Rao regularization measuring change via information divergence rather than Euclidean distance is the unique thermodynamically optimal regularization strategy, achieving minimal dissipation. Euclidean regularization is shown to be structurally suboptimal. The framework unifies existing methods (Ridge, SIGReg, EMA, SAC) as special cases of a single governing equation. Within this view, overfitting corresponds to over-crystallization, while catastrophic forgetting reflects insufficient dissipation control. The framework distinguishes BEDS-crystallizable problems, where beliefs converge to stable equilibria, from BEDS-maintainable problems, which require continual adaptation. It extends naturally to continual and multi-agent systems, where viability, stability under adaptation and finite resources replaces asymptotic optimality as the primary criterion. Overall, this work reframes learning as maintaining viable belief states under dissipation constraints, providing a principled lens on forgetting, regularization, and stability.
comment: 68 pages, 14 figures
treaming-dLLM: Accelerating Diffusion LLMs via Suffix Pruning and Dynamic Decoding
Diffusion Large Language Models (dLLMs) offer a compelling paradigm for natural language generation, leveraging parallel decoding and bidirectional attention to achieve superior global coherence compared to autoregressive models. While recent works have accelerated inference via KV cache reuse or heuristic decoding, they overlook the intrinsic inefficiencies within the block-wise diffusion process. Specifically, they suffer from spatial redundancy by modeling informative-sparse suffix regions uniformly and temporal inefficiency by applying fixed denoising schedules across all the decoding process. To address this, we propose Streaming-dLLM, a training-free framework that streamlines inference across both spatial and temporal dimensions. Spatially, we introduce attenuation guided suffix modeling to approximate the full context by pruning redundant mask tokens. Temporally, we employ a dynamic confidence aware strategy with an early exit mechanism, allowing the model to skip unnecessary iterations for converged tokens. Extensive experiments show that Streaming-dLLM achieves up to 68.2X speedup while maintaining generation quality, highlighting its effectiveness in diffusion decoding. The code is available at https://github.com/xiaoshideta/Streaming-dLLM.
comment: Tech report. Code is available at https://github.com/xiaoshideta/Streaming-dLLM
UniPACT: A Multimodal Framework for Prognostic Question Answering on Raw ECG and Structured EHR
Accurate clinical prognosis requires synthesizing structured Electronic Health Records (EHRs) with real-time physiological signals like the Electrocardiogram (ECG). Large Language Models (LLMs) offer a powerful reasoning engine for this task but struggle to natively process these heterogeneous, non-textual data types. To address this, we propose UniPACT (Unified Prognostic Question Answering for Clinical Time-series), a unified framework for prognostic question answering that bridges this modality gap. UniPACT's core contribution is a structured prompting mechanism that converts numerical EHR data into semantically rich text. This textualized patient context is then fused with representations learned directly from raw ECG waveforms, enabling an LLM to reason over both modalities holistically. We evaluate UniPACT on the comprehensive MDS-ED benchmark, it achieves a state-of-the-art mean AUROC of 89.37% across a diverse set of prognostic tasks including diagnosis, deterioration, ICU admission, and mortality, outperforming specialized baselines. Further analysis demonstrates that our multimodal, multi-task approach is critical for performance and provides robustness in missing data scenarios.
comment: Accepted to IEEE ICASSP 2026
Think Locally, Explain Globally: Graph-Guided LLM Investigations via Local Reasoning and Belief Propagation
LLM agents excel when environments are mostly static and the needed information fits in a model's context window, but they often fail in open-ended investigations where explanations must be constructed by iteratively mining evidence from massive, heterogeneous operational data. These investigations exhibit hidden dependency structure: entities interact, signals co-vary, and the importance of a fact may only become clear after other evidence is discovered. Because the context window is bounded, agents must summarize intermediate findings before their significance is known, increasing the risk of discarding key evidence. ReAct-style agents are especially brittle in this regime. Their retrieve-summarize-reason loop makes conclusions sensitive to exploration order and introduces run-to-run non-determinism, producing a reliability gap where Pass-at-k may be high but Majority-at-k remains low. Simply sampling more rollouts or generating longer reasoning traces does not reliably stabilize results, since hypotheses cannot be autonomously checked as new evidence arrives and there is no explicit mechanism for belief bookkeeping and revision. In addition, ReAct entangles semantic reasoning with controller duties such as tool orchestration and state tracking, so execution errors and plan drift degrade reasoning while consuming scarce context. We address these issues by formulating investigation as abductive reasoning over a dependency graph and proposing EoG (Explanations over Graphs), a disaggregated framework in which an LLM performs bounded local evidence mining and labeling (cause vs symptom) while a deterministic controller manages traversal, state, and belief propagation to compute a minimal explanatory frontier. On a representative ITBench diagnostics task, EoG improves both accuracy and run-to-run consistency over ReAct baselines, including a 7x average gain in Majority-at-k entity F1.
Causal Pre-training Under the Fairness Lens: An Empirical Study of TabPFN
Foundation models for tabular data, such as the Tabular Prior-data Fitted Network (TabPFN), are pre-trained on a massive number of synthetic datasets generated by structural causal models (SCM). They leverage in-context learning to offer high predictive accuracy in real-world tasks. However, the fairness properties of these foundational models, which incorporate ideas from causal reasoning during pre-training, have not yet been explored in sufficient depth. In this work, we conduct a comprehensive empirical evaluation of TabPFN and its fine-tuned variants, assessing predictive performance, fairness, and robustness across varying dataset sizes and distributional shifts. Our results reveal that while TabPFN achieves stronger predictive accuracy compared to baselines and exhibits robustness to spurious correlations, improvements in fairness are moderate and inconsistent, particularly under missing-not-at-random (MNAR) covariate shifts. These findings suggest that the causal pre-training in TabPFN is helpful but insufficient for algorithmic fairness, highlighting implications for deploying such models in practice and the need for further fairness interventions.
Adaptive Weighting in Knowledge Distillation: An Axiomatic Framework for Multi-Scale Teacher Ensemble Optimization
Knowledge distillation with multiple teachers is increasingly used to improve robustness, efficiency, and safety, yet existing approaches rely largely on heuristic or implementation-specific weighting schemes. This paper develops an operator-agnostic axiomatic framework for adaptive weighting in multi-teacher knowledge distillation across three complementary scales: token, task, and context. We formalize structural conditions under which adaptive weighting operators are well-defined, admit multiple non-equivalent implementations, and can be hierarchically composed via product-structure normalization. Within this framework, we establish existence and non-uniqueness of conforming operators, characterize convergence of gradient-based optimization under standard assumptions, analyze stability and perturbation robustness, and provide an abstract formulation of safety-constrained distillation. The results decouple theoretical guarantees from specific weighting formulas, enabling principled analysis of adaptive distillation methods under heterogeneity, distribution shift, and safety constraints.
comment: 12 pages, 1 figure, 1 table
FARM: Few-shot Adaptive Malware Family Classification under Concept Drift
Malware classification models often face performance degradation due to concept drift, arising from evolving threat landscapes and the emergence of novel malware families. This paper presents FARM (Few-shot Adaptive Recognition of Malware), a framework designed to detect and adapt to both covariate and label drift in Windows Portable Executable (PE) malware classification. FARM leverages a triplet autoencoder to project samples into a discriminative latent space, enabling unsupervised drift detection via DBSCAN clustering and dynamic thresholding. For rapid adaptation, it employs few-shot learning using prototype-based classification, requiring only a handful of labeled samples. FARM also supports full retraining when enough drifted samples accumulate, updating the latent space for long-term integration. Experiments on the BenchMFC dataset demonstrate that FARM improves classification performance under covariate drift by 5.6\%, and achieves an average F1 score of 0.85 on unseen malware families using only few-shot adaptation, which further increases to 0.94 after retraining. These results highlight FARM's robustness and adaptability in dynamic malware detection environments under limited supervision.
comment: This work has been submitted to the IEEE for possible publication
Artificial Intelligence and Intellectual Property Rights: Comparative Transnational Policy Analysis
Artificial intelligence's rapid integration with intellectual property rights necessitates assessment of its impact on trade secrets, copyrights and patents. This study addresses lacunae in existing laws where India lacks AI-specific provisions, creating doctrinal inconsistencies and enforcement inefficacies. Global discourse on AI-IPR protections remains nascent. The research identifies gaps in Indian IP laws' adaptability to AI-generated outputs: trade secret protection is inadequate against AI threats; standardized inventorship criteria are absent. Employing doctrinal and comparative methodology, it scrutinizes legislative texts, judicial precedents and policy instruments across India, US, UK and EU. Preliminary findings reveal shortcomings: India's contract law creates fragmented trade secret regime; Section 3(k) of Indian Patents Act blocks AI invention patenting; copyright varies in authorship attribution. The study proposes harmonized legal taxonomy accommodating AI's role while preserving innovation incentives. India's National AI Strategy (2024) shows progress but legislative clarity is imperative. This contributes to global discourse with AI-specific IP protections ensuring resilience and equitable innovation. Promising results underscore recalibrating India's IP jurisprudence for global alignment.
comment: Published in Journal of University Institute of Legal Studies, Vol. 19, Issue 1, pp. 182-208, 2025
EEG Foundation Models: Progresses, Benchmarking, and Open Problems
Electroencephalography (EEG) foundation models have recently emerged as a promising paradigm for brain-computer interfaces (BCIs), aiming to learn transferable neural representations from large-scale heterogeneous recordings. Despite rapid progresses, there lacks fair and comprehensive comparisons of existing EEG foundation models, due to inconsistent pre-training objectives, preprocessing choices, and downstream evaluation protocols. This paper fills this gap. We first review 50 representative models and organize their design choices into a unified taxonomic framework including data standardization, model architectures, and self-supervised pre-training strategies. We then evaluate 12 open-source foundation models and competitive specialist baselines across 13 EEG datasets spanning nine BCI paradigms. Emphasizing real-world deployments, we consider both cross-subject generalization under a leave-one-subject-out protocol and rapid calibration under a within-subject few-shot setting. We further compare full-parameter fine-tuning with linear probing to assess the transferability of pre-trained representations, and examine the relationship between model scale and downstream performance. Our results indicate that: 1) linear probing is frequently insufficient; 2) specialist models trained from scratch remain competitive across many tasks; and, 3) larger foundation models do not necessarily yield better generalization performance under current data regimes and training practices.
Comparative Algorithmic Governance of Public Health Instruments across India, EU, US and LMICs
The study investigates the juridico-technological architecture of international public health instruments, focusing on their implementation across India, the European Union, the United States and low- and middle-income countries (LMICs), particularly in Sub-Saharan Africa. It addresses a research lacuna: the insufficient harmonisation between normative health law and algorithmic public health infrastructures in resource-constrained jurisdictions. The principal objective is to assess how artificial intelligence augments implementation of instruments grounded in IHR 2005 and the WHO FCTC while identifying doctrinal and infrastructural bottlenecks. Using comparative doctrinal analysis and legal-normative mapping, the study triangulates legislative instruments, WHO monitoring frameworks, AI systems including BlueDot, Aarogya Setu and EIOS, and compliance metrics. Preliminary results show that AI has improved early detection, surveillance precision and responsiveness in high-capacity jurisdictions, whereas LMICs face infrastructural deficits, data privacy gaps and fragmented legal scaffolding. The findings highlight the relevance of the EU Artificial Intelligence Act and GDPR as regulatory prototypes for health-oriented algorithmic governance and contrast them with embryonic AI integration and limited internet penetration in many LMICs. The study argues for embedding AI within a rights-compliant, supranationally coordinated regulatory framework to secure equitable health outcomes and stronger compliance. It proposes a model for algorithmic treaty-making inspired by FCTC architecture and calls for WHO-led compliance mechanisms modelled on the WTO Dispute Settlement Body to enhance pandemic preparedness, surveillance equity and transnational governance resilience.
comment: Chapter in "Law and Medicine" (Pacific Books International, 2025), pp. 409-423
On the Emergence and Test-Time Use of Structural Information in Large Language Models
Learning structural information from observational data is central to producing new knowledge outside the training corpus. This holds for mechanistic understanding in scientific discovery as well as flexible test-time compositional generation. We thus study how language models learn abstract structures and utilize the learnt structural information at test-time. To ensure a controlled setup, we design a natural language dataset based on linguistic structural transformations. We empirically show that the emergence of learning structural information correlates with complex reasoning tasks, and that the ability to perform test-time compositional generation remains limited.
MergeMix: Optimizing Mid-Training Data Mixtures via Learnable Model Merging
Optimizing data mixtures is essential for unlocking the full potential of large language models (LLMs), yet identifying the optimal composition remains computationally prohibitive due to reliance on heuristic trials or expensive proxy training. To address this, we introduce \textbf{MergeMix}, a novel approach that efficiently determines optimal data mixing ratios by repurposing model merging weights as a high-fidelity, low-cost performance proxy. By training domain-specific experts on minimal tokens and optimizing their merging weights against downstream benchmarks, MergeMix effectively optimizes the performance of data mixtures without incurring the cost of full-scale training. Extensive experiments on models with 8B and 16B parameters validate that MergeMix achieves performance comparable to or surpassing exhaustive manual tuning while drastically reducing search costs. Furthermore, MergeMix exhibits high rank consistency (Spearman $ρ> 0.9$) and strong cross-scale transferability, offering a scalable, automated solution for data mixture optimization.
RAICL: Retrieval-Augmented In-Context Learning for Vision-Language-Model Based EEG Seizure Detection
Electroencephalogram (EEG) decoding is a critical component of medical diagnostics, rehabilitation engineering, and brain-computer interfaces. However, contemporary decoding methodologies remain heavily dependent on task-specific datasets to train specialized neural network architectures. Consequently, limited data availability impedes the development of generalizable large brain decoding models. In this work, we propose a paradigm shift from conventional signal-based decoding by leveraging large-scale vision-language models (VLMs) to analyze EEG waveform plots. By converting multivariate EEG signals into stacked waveform images and integrating neuroscience domain expertise into textual prompts, we demonstrate that foundational VLMs can effectively differentiate between different patterns in the human brain. To address the inherent non-stationarity of EEG signals, we introduce a Retrieval-Augmented In-Context Learning (RAICL) approach, which dynamically selects the most representative and relevant few-shot examples to condition the autoregressive outputs of the VLM. Experiments on EEG-based seizure detection indicate that state-of-the-art VLMs under RAICL achieved better or comparable performance with traditional time series based approaches. These findings suggest a new direction in physiological signal processing that effectively bridges the modalities of vision, language, and neural activities. Furthermore, the utilization of off-the-shelf VLMs, without the need for retraining or downstream architecture construction, offers a readily deployable solution for clinical applications.
An autonomous living database for perovskite photovoltaics
Scientific discovery is severely bottlenecked by the inability of manual curation to keep pace with exponential publication rates. This creates a widening knowledge gap. This is especially stark in photovoltaics, where the leading database for perovskite solar cells has been stagnant since 2021 despite massive ongoing research output. Here, we resolve this challenge by establishing an autonomous, self-updating living database (PERLA). Our pipeline integrates large language models with physics-aware validation to extract complex device data from the continuous literature stream, achieving human-level precision (>90%) and eliminating annotator variance. By employing this system on the previously inaccessible post-2021 literature, we uncover critical evolutionary trends hidden by data lag: the field has decisively shifted toward inverted architectures employing self-assembled monolayers and formamidinium-rich compositions, driving a clear trajectory of sustained voltage loss reduction. PERLA transforms static publications into dynamic knowledge resources that enable data-driven discovery to operate at the speed of publication.
Robust Computational Extraction of Non-Enhancing Hypercellular Tumor Regions from Clinical Imaging Data
Accurate identification of non-enhancing hypercellular (NEH) tumor regions is an unmet need in neuro-oncological imaging, with significant implications for patient management and treatment planning. We present a robust computational framework that generates probability maps of NEH regions from routine MRI data, leveraging multiple network architectures to address the inherent variability and lack of clear imaging boundaries. Our approach was validated against independent clinical markers -- relative cerebral blood volume (rCBV) and enhancing tumor recurrence location (ETRL) -- demonstrating both methodological robustness and biological relevance. This framework enables reliable, non-invasive mapping of NEH tumor compartments, supporting their integration as imaging biomarkers in clinical workflows and advancing precision oncology for brain tumor patients.
Differentiable Integer Linear Programming is not Differentiable & it's not a mere technical problem
We show how the differentiability method employed in the paper ``Differentiable Integer Linear Programming'', Geng, et al., 2025 as shown in its theorem 5 is incorrect. Moreover, there already exists some downstream work that inherits the same error. The underlying reason comes from that, though being continuous in expectation, the surrogate loss is discontinuous in almost every realization of the randomness, for the stochastic gradient descent.
Beyond a Single Perspective: Text Anomaly Detection with Multi-View Language Representations
Text anomaly detection (TAD) plays a critical role in various language-driven real-world applications, including harmful content moderation, phishing detection, and spam review filtering. While two-step "embedding-detector" TAD methods have shown state-of-the-art performance, their effectiveness is often limited by the use of a single embedding model and the lack of adaptability across diverse datasets and anomaly types. To address these limitations, we propose to exploit the embeddings from multiple pretrained language models and integrate them into $MCA^2$, a multi-view TAD framework. $MCA^2$ adopts a multi-view reconstruction model to effectively extract normal textual patterns from multiple embedding perspectives. To exploit inter-view complementarity, a contrastive collaboration module is designed to leverage and strengthen the interactions across different views. Moreover, an adaptive allocation module is developed to automatically assign the contribution weight of each view, thereby improving the adaptability to diverse datasets. Extensive experiments on 10 benchmark datasets verify the effectiveness of $MCA^2$ against strong baselines. The source code of $MCA^2$ is available at https://github.com/yankehan/MCA2.
comment: 17 pages, 7 tables, and 5 figures
Shortcut Learning in Binary Classifier Black Boxes: Applications to Voice Anti-Spoofing and Biometrics
The widespread adoption of deep-learning models in data-driven applications has drawn attention to the potential risks associated with biased datasets and models. Neglected or hidden biases within datasets and models can lead to unexpected results. This study addresses the challenges of dataset bias and explores ``shortcut learning'' or ``Clever Hans effect'' in binary classifiers. We propose a novel framework for analyzing the black-box classifiers and for examining the impact of both training and test data on classifier scores. Our framework incorporates intervention and observational perspectives, employing a linear mixed-effects model for post-hoc analysis. By evaluating classifier performance beyond error rates, we aim to provide insights into biased datasets and offer a comprehensive understanding of their influence on classifier behavior. The effectiveness of our approach is demonstrated through experiments on audio anti-spoofing and speaker verification tasks using both statistical models and deep neural networks. The insights gained from this study have broader implications for tackling biases in other domains and advancing the field of explainable artificial intelligence.
comment: Accepted for Publication in IEEE Journal of Selected Topics in Signal Processing
MarketGANs: Multivariate financial time-series data augmentation using generative adversarial networks
This paper introduces MarketGAN, a factor-based generative framework for high-dimensional asset return generation under severe data scarcity. We embed an explicit asset-pricing factor structure as an economic inductive bias and generate returns as a single joint vector, thereby preserving cross-sectional dependence and tail co-movement alongside inter-temporal dynamics. MarketGAN employs generative adversarial learning with a temporal convolutional network (TCN) backbone, which models stochastic, time-varying factor loadings and volatilities and captures long-range temporal dependence. Using daily returns of large U.S. equities, we find that MarketGAN more closely matches empirical stylized facts of asset returns, including heavy-tailed marginal distributions, volatility clustering, leverage effects, and, most notably, high-dimensional cross-sectional correlation structures and tail co-movement across assets, than conventional factor-model-based bootstrap approaches. In portfolio applications, covariance estimates derived from MarketGAN-generated samples outperform those derived from other methods when factor information is at least weakly informative, demonstrating tangible economic value.
LLM-42: Enabling Determinism in LLM Inference with Verified Speculation
In LLM inference, the same prompt may yield different outputs across different runs. At the system level, this non-determinism arises from floating-point non-associativity combined with dynamic batching and GPU kernels whose reduction orders vary with batch size. A straightforward way to eliminate non-determinism is to disable dynamic batching during inference, but doing so severely degrades throughput. Another approach is to make kernels batch-invariant; however, this tightly couples determinism to kernel design, requiring new implementations. This coupling also imposes fixed runtime overheads, regardless of how much of the workload actually requires determinism. Inspired by ideas from speculative decoding, we present LLM-42, a scheduling-based approach to enable determinism in LLM inference. Our key observation is that if a sequence is in a consistent state, the next emitted token is likely to be consistent even with dynamic batching. Moreover, most GPU kernels use shape-consistent reductions. Leveraging these insights, LLM-42 decodes tokens using a non-deterministic fast path and enforces determinism via a lightweight verify-rollback loop. The verifier replays candidate tokens under a fixed-shape reduction schedule, commits those that are guaranteed to be consistent across runs, and rolls back those violating determinism. LLM-42 mostly re-uses existing kernels unchanged and incurs overhead only in proportion to the traffic that requires determinism.
comment: https://github.com/microsoft/llm-42
HyCARD-Net: A Synergistic Hybrid Intelligence Framework for Cardiovascular Disease Diagnosis
Cardiovascular disease (CVD) remains the foremost cause of mortality worldwide, underscoring the urgent need for intelligent and data-driven diagnostic tools. Traditional predictive models often struggle to generalize across heterogeneous datasets and complex physiological patterns. To address this, we propose a hybrid ensemble framework that integrates deep learning architectures, Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM), with classical machine learning algorithms, including K-Nearest Neighbor (KNN) and Extreme Gradient Boosting (XGB), using an ensemble voting mechanism. This approach combines the representational power of deep networks with the interpretability and efficiency of traditional models. Experiments on two publicly available Kaggle datasets demonstrate that the proposed model achieves superior performance, reaching 82.30 percent accuracy on Dataset I and 97.10 percent on Dataset II, with consistent gains in precision, recall, and F1-score. These findings underscore the robustness and clinical potential of hybrid AI frameworks for predicting cardiovascular disease and facilitating early intervention. Furthermore, this study directly supports the United Nations Sustainable Development Goal 3 (Good Health and Well-being) by promoting early diagnosis, prevention, and management of non-communicable diseases through innovative, data-driven healthcare solutions.
comment: Accepted and published in the 2025 4th International Conference on Image Processing, Computer Vision and Machine Learning (ICICML)
AR-Omni: A Unified Autoregressive Model for Any-to-Any Generation
Real-world perception and interaction are inherently multimodal, encompassing not only language but also vision and speech, which motivates the development of "Omni" MLLMs that support both multimodal inputs and multimodal outputs. While a sequence of omni MLLMs has emerged, most existing systems still rely on additional expert components to achieve multimodal generation, limiting the simplicity of unified training and inference. Autoregressive (AR) modeling, with a single token stream, a single next-token objective, and a single decoder, is an elegant and scalable foundation in the text domain. Motivated by this, we present AR-Omni, a unified any-to-any model in the autoregressive paradigm without any expert decoders. AR-Omni supports autoregressive text and image generation, as well as streaming speech generation, all under a single Transformer decoder. We further address three practical issues in unified AR modeling: modality imbalance via task-aware loss reweighting, visual fidelity via a lightweight token-level perceptual alignment loss for image tokens, and stability-creativity trade-offs via a finite-state decoding mechanism. Empirically, AR-Omni achieves strong quality across three modalities while remaining real-time, achieving a 0.88 real-time factor for speech generation.
Over-The-Air Extreme Learning Machines with XL Reception via Nonlinear Cascaded Metasurfaces
The recently envisioned goal-oriented communications paradigm calls for the application of inference on wirelessly transferred data via Machine Learning (ML) tools. An emerging research direction deals with the realization of inference ML models directly in the physical layer of Multiple-Input Multiple-Output (MIMO) systems, which, however, entails certain significant challenges. In this paper, leveraging the technology of programmable MetaSurfaces (MSs), we present an eXtremely Large (XL) MIMO system that acts as an Extreme Learning Machine (ELM) performing binary classification tasks completely Over-The-Air (OTA), which can be trained in closed form. The proposed system comprises a receiver architecture consisting of densely parallel placed diffractive layers of XL MSs followed by a single reception radio-frequency chain. The front layer facing the MIMO channel consists of identical unit cells of a fixed NonLinear (NL) response, while the remaining layers of elements of tunable linear responses are utilized to approximate OTA the trained ELM weights. Our numerical investigations showcase that, in the XL regime of MS elements, the proposed XL-MIMO-ELM system achieves performance comparable to that of digital and idealized ML models across diverse datasets and wireless scenarios, thereby demonstrating the feasibility of embedding OTA learning capabilities into future communication systems.
comment: 6 pages, 5 figures, to be presented at a conference
The LLM Data Auditor: A Metric-oriented Survey on Quality and Trustworthiness in Evaluating Synthetic Data
Large Language Models (LLMs) have emerged as powerful tools for generating data across various modalities. By transforming data from a scarce resource into a controllable asset, LLMs mitigate the bottlenecks imposed by the acquisition costs of real-world data for model training, evaluation, and system iteration. However, ensuring the high quality of LLM-generated synthetic data remains a critical challenge. Existing research primarily focuses on generation methodologies, with limited direct attention to the quality of the resulting data. Furthermore, most studies are restricted to single modalities, lacking a unified perspective across different data types. To bridge this gap, we propose the \textbf{LLM Data Auditor framework}. In this framework, we first describe how LLMs are utilized to generate data across six distinct modalities. More importantly, we systematically categorize intrinsic metrics for evaluating synthetic data from two dimensions: quality and trustworthiness. This approach shifts the focus from extrinsic evaluation, which relies on downstream task performance, to the inherent properties of the data itself. Using this evaluation system, we analyze the experimental evaluations of representative generation methods for each modality and identify substantial deficiencies in current evaluation practices. Based on these findings, we offer concrete recommendations for the community to improve the evaluation of data generation. Finally, the framework outlines methodologies for the practical application of synthetic data across different modalities.
Do Reasoning Models Ask Better Questions? A Formal Information-Theoretic Analysis on Multi-Turn LLM Games AAAI 2026
Large Language Models (LLMs) excel at many tasks but still struggle with a critical ability for LLM-based agents: asking good questions for resolving ambiguity in user requests. While prior work has explored information-seeking behavior through word games, existing benchmarks lack comprehensive evaluation frameworks that provide both final and intermediate signals based on Information Gain (IG). Moreover, they rarely provide systematic comparisons between models that use chain-of-thought reasoning and those that do not. We propose a multi-turn dialogue framework that quantitatively measures how effectively LLMs gather information through yes/no questions in a hierarchical knowledge graph environment. Our framework employs a triad of interacting LLM agents that ask questions, answer them, and update the hypothesis space. We adopt IG as the main metric, grounded in Shannon entropy, to assess query effectiveness at each turn and cumulatively. We instantiate our framework in a geographical Guess My City game setting organized in a five-level taxonomy and evaluate multiple LLM variants under fully and partially observable conditions, with and without Chain-of-Thought reasoning. Our experiments demonstrate that, among the evaluated models, the ones with explicit reasoning capabilities achieve higher IG per turn and reach solutions in fewer steps, particularly in partially observable settings. Analysis of reasoning traces reveals that smaller models compensate for limited capacity through more aggressive exploration of candidate questions, while larger models exhibit higher assertiveness in selecting optimal queries, generating candidates with greater potential IG.
comment: Presented at the NeusymBridge Workshop at AAAI 2026
FedCCA: Client-Centric Adaptation against Data Heterogeneity in Federated Learning on IoT Devices
With the rapid development of the Internet of Things (IoT), AI model training on private data such as human sensing data is highly desired. Federated learning (FL) has emerged as a privacy-preserving distributed training framework for this purpuse. However, the data heterogeneity issue among IoT devices can significantly degrade the model performance and convergence speed in FL. Existing approaches limit in fixed client selection and aggregation on cloud server, making the privacy-preserving extraction of client-specific information during local training challenging. To this end, we propose Client-Centric Adaptation federated learning (FedCCA), an algorithm that optimally utilizes client-specific knowledge to learn a unique model for each client through selective adaptation, aiming to alleviate the influence of data heterogeneity. Specifically, FedCCA employs dynamic client selection and adaptive aggregation based on the additional client-specific encoder. To enhance multi-source knowledge transfer, we adopt an attention-based global aggregation strategy. We conducted extensive experiments on diverse datasets to assess the efficacy of FedCCA. The experimental results demonstrate that our approach exhibits a substantial performance advantage over competing baselines in addressing this specific problem.
comment: Accepted by IEEE Annual Congress on Artificial Intelligence of Things (IEEE AIoT) 2025
S$^3$-Attention:Attention-Aligned Endogenous Retrieval for Memory-Bounded Long-Context Inference
Large language models are increasingly applied to multi-document and long-form inputs, yet long-context inference remains memory- and noise-inefficient. Key-value (KV) caching scales linearly with context length, while external retrieval methods often return lexically similar but causally irrelevant passages. We present S3-Attention, a memory-first inference-time framework that treats long-context processing as attention-aligned endogenous retrieval. S3-Attention decodes transient key and query projections into top-k sparse feature identifiers using lightweight sparse autoencoders, and constructs a CPU-based inverted index mapping features to token positions or spans during a single streaming scan. This design allows the KV cache to be discarded entirely and bounds GPU memory usage by the scan chunk size. At generation time, feature co-activation is used to retrieve compact evidence spans, optionally fused with BM25 for exact lexical matching. Under a unified LongBench evaluation protocol with fixed prompting, decoding, and matched token budgets, S3-Hybrid closely matches full-context inference across multiple model families and improves robustness in several information-dense settings. We also report an engineering limitation of the current prototype, which incurs higher wall-clock latency than optimized full-KV baselines, motivating future kernel-level optimization.
Segment Length Matters: A Study of Segment Lengths on Audio Fingerprinting Performance
Audio fingerprinting provides an identifiable representation of acoustic signals, which can be later used for identification and retrieval systems. To obtain a discriminative representation, the input audio is usually segmented into shorter time intervals, allowing local acoustic features to be extracted and analyzed. Modern neural approaches typically operate on short, fixed-duration audio segments, yet the choice of segment duration is often made heuristically and rarely examined in depth. In this paper, we study how segment length affects audio fingerprinting performance. We extend an existing neural fingerprinting architecture to adopt various segment lengths and evaluate retrieval accuracy across different segment lengths and query durations. Our results show that short segment lengths (0.5-second) generally achieve better performance. Moreover, we evaluate LLM capacity in recommending the best segment length, which shows that GPT-5-mini consistently gives the best suggestions across five considerations among three studied LLMs. Our findings provide practical guidance for selecting segment duration in large-scale neural audio retrieval systems.
Prefill-Guided Thinking for zero-shot detection of AI-generated images
Traditional supervised methods for detecting AI-generated images depend on large, curated datasets for training and fail to generalize to novel, out-of-domain image generators. As an alternative, we explore pre-trained Vision-Language Models (VLMs) for zero-shot detection of AI-generated images. We evaluate VLM performance on three diverse benchmarks encompassing synthetic images of human faces, objects, and animals produced by 16 different state-of-the-art image generators. While off-the-shelf VLMs perform poorly on these datasets, we find that prefilling responses effectively guides their reasoning -- a method we call Prefill-Guided Thinking (PGT). In particular, prefilling a VLM response with the phrase "Let's examine the style and the synthesis artifacts" improves the Macro F1 scores of three widely used open-source VLMs by up to 24%. We analyze this improvement in detection by tracking answer confidence during response generation. For some models, prefills counteract early overconfidence -- akin to mitigating the Dunning-Kruger effect -- leading to better detection performance.
FuseFlow: A Fusion-Centric Compilation Framework for Sparse Deep Learning on Streaming Dataflow
As deep learning models scale, sparse computation and specialized dataflow hardware have emerged as powerful solutions to address efficiency. We propose FuseFlow, a compiler that converts sparse machine learning models written in PyTorch to fused sparse dataflow graphs for reconfigurable dataflow architectures (RDAs). FuseFlow is the first compiler to support general cross-expression fusion of sparse operations. In addition to fusion across kernels (expressions), FuseFlow also supports optimizations like parallelization, dataflow ordering, and sparsity blocking. It targets a cycle-accurate dataflow simulator for microarchitectural analysis of fusion strategies. We use FuseFlow for design-space exploration across four real-world machine learning applications with sparsity, showing that full fusion (entire cross-expression fusion across all computation in an end-to-end model) is not always optimal for sparse models-fusion granularity depends on the model itself. FuseFlow also provides a heuristic to identify and prune suboptimal configurations. Using Fuseflow, we achieve performance improvements, including a ~2.7x speedup over an unfused baseline for GPT-3 with BigBird block-sparse attention.
Mitigating the Modality Gap: Few-Shot Out-of-Distribution Detection with Multi-modal Prototypes and Image Bias Estimation WACV 2026
Existing vision-language model (VLM)-based methods for out-of-distribution (OOD) detection typically rely on similarity scores between input images and in-distribution (ID) text prototypes. However, the modality gap between image and text often results in high false positive rates, as OOD samples can exhibit high similarity to ID text prototypes. To mitigate the impact of this modality gap, we propose incorporating ID image prototypes along with ID text prototypes. We present theoretical analysis and empirical evidence indicating that this approach enhances VLM-based OOD detection performance without any additional training. To further reduce the gap between image and text, we introduce a novel few-shot tuning framework, SUPREME, comprising biased prompts generation (BPG) and image-text consistency (ITC) modules. BPG enhances image-text fusion and improves generalization by conditioning ID text prototypes on the Gaussian-based estimated image domain bias; ITC reduces the modality gap by minimizing intra- and inter-modal distances. Moreover, inspired by our theoretical and empirical findings, we introduce a novel OOD score $S_{\textit{GMP}}$, leveraging uni- and cross-modal similarities. Finally, we present extensive experiments to demonstrate that SUPREME consistently outperforms existing VLM-based OOD detection methods.
comment: WACV 2026
Quantum Architecture Search with Unsupervised Representation Learning
Unsupervised representation learning presents new opportunities for advancing Quantum Architecture Search (QAS) on Noisy Intermediate-Scale Quantum (NISQ) devices. QAS is designed to optimize quantum circuits for Variational Quantum Algorithms (VQAs). Most QAS algorithms tightly couple the search space and search algorithm, typically requiring the evaluation of numerous quantum circuits, resulting in high computational costs and limiting scalability to larger quantum circuits. Predictor-based QAS algorithms mitigate this issue by estimating circuit performance based on structure or embedding. However, these methods often demand time-intensive labeling to optimize gate parameters across many circuits, which is crucial for training accurate predictors. Inspired by the classical neural architecture search algorithm Arch2vec, we investigate the potential of unsupervised representation learning for QAS without relying on predictors. Our framework decouples unsupervised architecture representation learning from the search process, enabling the learned representations to be applied across various downstream tasks. Additionally, it integrates an improved quantum circuit graph encoding scheme, addressing the limitations of existing representations and enhancing search efficiency. This predictor-free approach removes the need for large labeled datasets. During the search, we employ REINFORCE and Bayesian Optimization to explore the latent representation space and compare their performance against baseline methods. We further validate our approach by executing the best-discovered MaxCut circuits on IBM's ibm_sherbrooke quantum processor, confirming that the architectures retain optimal performance even under real hardware noise. Our results demonstrate that the framework efficiently identifies high-performing quantum circuits with fewer search iterations.
comment: 12 Pages, quantum architecture search, unsupervised representation learning
Statistical Taylor Expansion: A New and Path-Independent Method for Uncertainty Analysis
As a rigorous statistical approach, statistical Taylor expansion extends the conventional Taylor expansion by replacing precise input variables with random variables of known distributions and sample counts to compute the mean, the standard deviation, and the reliable factor of each result. It tracks the propagation of the input uncertainties through intermediate steps, so that the final analytic result becomes path independent. Therefore, it differs fundamentally from common approaches in applied mathematics that optimize computational path for each calculation. Statistical Taylor expansion may standardize numerical computations for analytic expressions. This study also introduces the implementation of statistical Taylor expansion termed variance arithmetic and presents corresponding test results across a wide range of mathematical applications. Another important conclusion of this study is that numerical errors in library functions can significantly affect results. It is desirable that each value from library functions be accomplished by an uncertainty deviation.
comment: 44 pages, 39 figures
Machine learning-enhanced non-amnestic Alzheimer's disease diagnosis from MRI and clinical features
Alzheimer's disease (AD), defined as an abnormal buildup of amyloid plaques and tau tangles in the brain can be diagnosed with high accuracy based on protein biomarkers via PET or CSF analysis. However, due to the invasive nature of biomarker collection, most AD diagnoses are made in memory clinics using cognitive tests and evaluation of hippocampal atrophy based on MRI. While clinical assessment and hippocampal volume show high diagnostic accuracy for amnestic or typical AD (tAD), a substantial subgroup of AD patients with atypical presentation (atAD) are routinely misdiagnosed. To improve diagnosis of atAD patients, we propose a machine learning approach to distinguish between atAD and non-AD cognitive impairment using clinical testing battery and MRI data collected as standard-of-care. We develop and evaluate our approach using 1410 subjects across four groups (273 tAD, 184 atAD, 235 non-AD, and 685 cognitively normal) collected from one private data set and two public data sets from the National Alzheimer's Coordinating Center (NACC) and the Alzheimer's Disease Neuroimaging Initiative (ADNI). We perform multiple atAD vs. non-AD classification experiments using clinical features and hippocampal volume as well as a comprehensive set of MRI features from across the brain. The best performance is achieved by incorporating additional important MRI features, which outperforms using hippocampal volume alone. Furthermore, we use the Boruta statistical approach to identify and visualize significant brain regions distinguishing between diagnostic groups. Our ML approach improves the percentage of correctly diagnosed atAD cases (the recall) from 52% to 69% for NACC and from 34% to 77% for ADNI, while achieving high precision. The proposed approach has important implications for improving diagnostic accuracy for non-amnestic atAD in clinical settings using only clinical testing battery and MRI.
comment: 10 pages, 4 figures, 4 tables
Decentralized Learning Strategies for Estimation Error Minimization with Graph Neural Networks
We address real-time sampling and estimation of autoregressive Markovian sources in dynamic yet structurally similar multi-hop wireless networks. Each node caches samples from others and communicates over wireless collision channels, aiming to minimize time-average estimation error via decentralized policies. Due to the high dimensionality of action spaces and complexity of network topologies, deriving optimal policies analytically is intractable. To address this, we propose a graphical multi-agent reinforcement learning framework for policy optimization. Theoretically, we demonstrate that our proposed policies are transferable, allowing a policy trained on one graph to be effectively applied to structurally similar graphs. Numerical experiments demonstrate that (i) our proposed policy outperforms state-of-the-art baselines; (ii) the trained policies are transferable to larger networks, with performance gains increasing with the number of agents; (iii) the graphical training procedure withstands non-stationarity, even when using independent learning techniques; and (iv) recurrence is pivotal in both independent learning and centralized training and decentralized execution, and improves the resilience to non-stationarity.
RefProtoFL: Communication-Efficient Federated Learning via External-Referenced Prototype Alignment
Federated learning (FL) enables collaborative model training without sharing raw data in edge environments, but is constrained by limited communication bandwidth and heterogeneous client data distributions. Prototype-based FL mitigates this issue by exchanging class-wise feature prototypes instead of full model parameters; however, existing methods still suffer from suboptimal generalization under severe communication constraints. In this paper, we propose RefProtoFL, a communication-efficient FL framework that integrates External-Referenced Prototype Alignment (ERPA) for representation consistency with Adaptive Probabilistic Update Dropping (APUD) for communication efficiency. Specifically, we decompose the model into a private backbone and a lightweight shared adapter, and restrict federated communication to the adapter parameters only. To further reduce uplink cost, APUD performs magnitude-aware Top-K sparsification, transmitting only the most significant adapter updates for server-side aggregation. To address representation inconsistency across heterogeneous clients, ERPA leverages a small server-held public dataset to construct external reference prototypes that serve as shared semantic anchors. For classes covered by public data, clients directly align local representations to public-induced prototypes, whereas for uncovered classes, alignment relies on server-aggregated global reference prototypes via weighted averaging. Extensive experiments on standard benchmarks demonstrate that RefProtoFL attains higher classification accuracy than state-of-the-art prototype-based FL baselines.
Demographic-aware fine-grained classification of pediatric wrist fractures
Wrist pathology recognition from radiographs is challenging because normal appearance varies markedly with age and sex. In pediatric imaging, evolving carpal ossification and open growth plates can resemble fractures, while sex-dependent timing of physeal closure changes key visual cues. Image-only models therefore risk confusing developmental anatomy for pathology, especially in small medical datasets. We address this by framing wrist diagnosis as a fine-grained visual recognition (FGVR) task and introducing a multimodal transformer that fuses X-rays with demographic metadata (age and sex). Unlike prior work, this is the first study to integrate metadata for wrist pathology recognition, and we further show that fine-grained pretraining transfers better than coarse ImageNet initialization. Our approach improves accuracy by 2% on a small curated dataset and by over 10% on a larger fracture dataset.
The Impact of Automatic Speech Transcription on Speaker Attribution
Speaker attribution from speech transcripts is the task of identifying a speaker from the transcript of their speech based on patterns in their language use. This task is especially useful when the audio is unavailable (e.g. deleted) or unreliable (e.g. anonymized speech). Prior work in this area has primarily focused on the feasibility of attributing speakers using transcripts produced by human annotators. However, in real-world settings, one often only has more errorful transcripts produced by automatic speech recognition (ASR) systems. In this paper, we conduct what is, to our knowledge, the first comprehensive study of the impact of automatic transcription on speaker attribution performance. In particular, we study the extent to which speaker attribution performance degrades in the face of transcription errors, as well as how properties of the ASR system impact attribution. We find that attribution is surprisingly resilient to word-level transcription errors and that the objective of recovering the true transcript is minimally correlated with attribution performance. Overall, our findings suggest that speaker attribution on more errorful transcripts produced by ASR is as good, if not better, than attribution based on human-transcribed data, possibly because ASR transcription errors can capture speaker-specific features revealing of speaker identity.
comment: latest version added TACL journal DOI to metadata and a missing citation
Convexified Message-Passing Graph Neural Networks AISTATS
Graph Neural Networks (GNNs) are key tools for graph representation learning, demonstrating strong results across diverse prediction tasks. In this paper, we present Convexified Message-Passing Graph Neural Networks (CGNNs), a novel and general framework that combines the power of message-passing GNNs with the tractability of convex optimization. By mapping their nonlinear filters into a reproducing kernel Hilbert space, CGNNs transform training into a convex optimization problem, which projected gradient methods can solve both efficiently and optimally. Convexity further allows CGNNs' statistical properties to be analyzed accurately and rigorously. For two-layer CGNNs, we establish rigorous generalization guarantees, showing convergence to the performance of an optimal GNN. To scale to deeper architectures, we adopt a principled layer-wise training strategy. Experiments on benchmark datasets show that CGNNs significantly exceed the performance of leading GNN models, obtaining 10-40% higher accuracy in most cases, underscoring their promise as a powerful and principled method with strong theoretical foundations. In rare cases where improvements are not quantitatively substantial, the convex models either slightly exceed or match the baselines, stressing their robustness and wide applicability. Though over-parameterization is often used to enhance performance in non-convex models, we show that our CGNNs yield shallow convex models that can surpass non-convex ones in accuracy and model compactness.
comment: To Appear in 29th Annual Conference on Artificial Intelligence and Statistics (AISTATS), 2026
Path-specific effects for pulse-oximetry guided decisions in critical care
Identifying and measuring biases associated with sensitive attributes is a crucial consideration in healthcare to prevent treatment disparities. One prominent issue is inaccurate pulse oximeter readings, which tend to overestimate oxygen saturation for dark-skinned patients and misrepresent supplemental oxygen needs. Most existing research has revealed statistical disparities linking device measurement errors to patient outcomes in intensive care units (ICUs) without causal formalization. This study causally investigates how racial discrepancies in oximetry measurements affect invasive ventilation in ICU settings. We employ a causal inference-based approach using path-specific effects to isolate the impact of bias by race on clinical decision-making. To estimate these effects, we leverage a doubly robust estimator, propose its self-normalized variant for improved sample efficiency, and provide novel finite-sample guarantees. Our methodology is validated on semi-synthetic data and applied to two large real-world health datasets: MIMIC-IV and eICU. Contrary to prior work, our analysis reveals minimal impact of racial discrepancies on invasive ventilation rates. However, path-specific effects mediated by oxygen saturation disparity are more pronounced on ventilation duration, and the severity differs across datasets. Our work provides a novel pipeline for investigating potential disparities in clinical decision-making and, more importantly, highlights the necessity of causal methods to robustly assess fairness in healthcare.
Kolmogorov-Arnold graph neural networks for chemically informed prediction tasks on inorganic nanomaterials
The recent development of Kolmogorov-Arnold Networks (KANs) has found its application in the field of Graph Neural Networks (GNNs) particularly in molecular data modeling and potential drug discovery. Kolmogorov-Arnold Graph Neural Networks (KAGNNs) expand on the existing set of GNN models with KAN-based counterparts. KAGNNs have been demonstrably successful in surpassing the accuracy of MultiLayer Perceptron (MLP)-based GNNs in the task of molecular property prediction. These models were widely tested on the graph datasets consisting of organic molecules. In this study, we explore the application of KAGNNs towards inorganic nanomaterials. In 2024, a large scale inorganic nanomaterials dataset was published under the title CHILI (Chemically-Informed Large-scale Inorganic Nanomaterials Dataset), and various MLP-based GNNs have been tested on this dataset. We adapt and test our own KAGNNs appropriate for eight defined tasks. Our experiments reveal that, KAGNNs frequently surpass the performance of their counterpart GNNs. Most notably, on crystal system and space group classification tasks in CHILI-3K, KAGNNs achieve the new state-of-the-art results of 99.5 percent and 96.6 percent accuracy, respectively, compared to the previous 65.7 and 73.3 percent each.
LLM for Large-Scale Optimization Model Auto-Formulation: Bridging Flexibility and Standardization via Agentic Workflow
Large-scale optimization is a key backbone of modern business decision-making. However, building these models is often labor-intensive and time-consuming. We address this by proposing LEAN-LLM-OPT, a LightwEight AgeNtic workflow construction framework for LLM-assisted large-scale OPTimization auto-formulation. LEAN-LLM-OPT takes as input a problem description together with associated datasets and orchestrates a team of LLM agents to produce an optimization formulation. Specifically, upon receiving a query, two upstream LLM agents dynamically construct a workflow that specifies, step-by-step, how optimization models for similar problems can be formulated. A downstream LLM agent then follows this workflow to generate the final output. The agentic workflow leverages common modeling practices to standardize the modeling process into a sequence of structured sub-tasks, offloading mechanical data-handling operations to auxiliary tools. This reduces the LLM's burden in planning and data handling, allowing us to exploit its flexibility to address unstructured components. Extensive simulations show that LEAN-LLM-OPT, instantiated with GPT-4.1 and the open source gpt-oss-20B, achieves strong performance on large-scale optimization modeling tasks and is competitive with state-of-the-art approaches. In addition, in a Singapore Airlines choice-based revenue management use case, LEAN-LLM-OPT demonstrates practical value by achieving leading performance across a range of scenarios. Along the way, we introduce Large-Scale-OR and Air-NRM, the first comprehensive benchmarks for large-scale optimization auto-formulation. The code and data of this work is available at https://github.com/CoraLiang01/lean-llm-opt.
comment: Updated version of https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5329027
A Linear Expectation Constraint for Selective Prediction and Routing with False-Discovery Control
Foundation models often generate unreliable answers, while heuristic uncertainty estimators fail to fully distinguish correct from incorrect outputs, causing users to accept erroneous answers without statistical guarantees. We address this through the lens of false discovery rate (FDR) control, ensuring that among all accepted predictions, the proportion of errors does not exceed a target risk level. To this end, we propose LEC, a principled framework that reframes selective prediction as a decision problem governed by a linear expectation constraint over selection and error indicators. Under this formulation, we derive a finite-sample sufficient condition that relies only on a held-out set of exchangeable calibration data, enabling the computation of an FDR-constrained, retention-maximizing threshold. Furthermore, we extend LEC to two-model routing systems: if the primary model's uncertainty exceeds its calibrated threshold, the input is delegated to a subsequent model, while maintaining system-level FDR control. Experiments on both closed-ended and open-ended question answering (QA) and vision question answering (VQA) demonstrate that LEC achieves tighter FDR control and substantially improves sample retention compared to prior approaches.
Bias-Aware Conformal Prediction for Metric-Based Imaging Pipelines
Reliable confidence measures of metrics derived from medical imaging reconstruction pipelines would improve the standard of decision-making in many clinical workflows. Conformal Prediction (CP) provides a robust framework for producing calibrated prediction intervals, but standard CP formulations face a critical challenge in the imaging pipeline: common mismatches between image reconstruction objectives and downstream metrics can introduce systematic prediction deviations from ground truth values, known as bias. These biases in turn compromise the efficiency of prediction intervals, which is a problem that has been unexplored in the CP literature. In this study, we formalize the behavior of symmetric (where bounds expand equally in both directions) and asymmetric (where bounds expand unequally) formulations for common non-conformity scores in CP in the presence of bias, and argue that this measurable bias must inform the choice of CP formulation. We theoretically and empirically demonstrate that symmetric intervals are inflated by a factor of two times the magnitude of bias while asymmetric intervals remain unaffected by bias, and provide conditions under which each formulation produces tighter intervals. We empirically validated our theoretical analyses on sparse-view CT reconstruction for downstream radiotherapy planning. Our work enables users of medical imaging pipelines to proactively select optimal CP formulations, thereby improving interval length efficiency for critical downstream metrics.
comment: 7 pages, 1 figure, accepted at ISBI 2026
Explanation Multiplicity in SHAP: Characterization and Assessment
Post-hoc explanations are widely used to justify, contest, and review automated decisions in high-stakes domains such as lending, employment, and healthcare. Among these methods, SHAP is often treated as providing a reliable account of which features mattered for an individual prediction and is routinely used to support recourse, oversight, and accountability. In practice, however, SHAP explanations can differ substantially across repeated runs, even when the individual, prediction task, and trained model are held fixed. We conceptualize and name this phenomenon explanation multiplicity: the existence of multiple, internally valid but substantively different explanations for the same decision. Explanation multiplicity poses a normative challenge for responsible AI deployment, as it undermines expectations that explanations can reliably identify the reasons for an adverse outcome. We present a comprehensive methodology for characterizing explanation multiplicity in post-hoc feature attribution methods, disentangling sources arising from model training and selection versus stochasticity intrinsic to the explanation pipeline. Furthermore, whether explanation multiplicity is surfaced depends on how explanation consistency is measured. Commonly used magnitude-based metrics can suggest stability while masking substantial instability in the identity and ordering of top-ranked features. To contextualize observed instability, we derive and estimate randomized baseline values under plausible null models, providing a principled reference point for interpreting explanation disagreement. Across datasets, model classes, and confidence regimes, we find that explanation multiplicity is widespread and persists even under highly controlled conditions, including high-confidence predictions. Thus explanation practices must be evaluated using metrics and baselines aligned with their intended societal role.
Contraction Clustering (RASTER): A Very Fast Big Data Algorithm for Sequential and Parallel Density-Based Clustering in Linear Time, Constant Memory, and a Single Pass
Clustering is an essential data mining tool for analyzing and grouping similar objects. In big data applications, however, many clustering algorithms are infeasible due to their high memory requirements and/or unfavorable runtime complexity. In contrast, Contraction Clustering (RASTER) is a single-pass algorithm for identifying density-based clusters with linear time complexity. Due to its favorable runtime and the fact that its memory requirements are constant, this algorithm is highly suitable for big data applications where the amount of data to be processed is huge. It consists of two steps: (1) a contraction step which projects objects onto tiles and (2) an agglomeration step which groups tiles into clusters. This algorithm is extremely fast in both sequential and parallel execution. Our quantitative evaluation shows that a sequential implementation of RASTER performs significantly better than various standard clustering algorithms. Furthermore, the parallel speedup is significant: on a contemporary workstation, an implementation in Rust processes a batch of 500 million points with 1 million clusters in less than 50 seconds on one core. With 8 cores, the algorithm is about four times faster.
comment: 21 pages; journal paper extending a previous conference publication (cf. https://doi.org/10.1007/978-3-319-72926-8_6)
Multiconnectivity for SAGIN: Current Trends, Challenges, AI-driven Solutions, and Opportunities
Space-air-ground-integrated network (SAGIN)-enabled multiconnectivity (MC) is emerging as a key enabler for next-generation networks, enabling users to simultaneously utilize multiple links across multi-layer non-terrestrial networks (NTN) and multi-radio access technology (multi-RAT) terrestrial networks (TN). However, the heterogeneity of TN and NTN introduces complex architectural challenges that complicate MC implementation. Specifically, the diversity of link types, spanning air-to-air, air-to-space, space-to-space, space-to-ground, and ground-to-ground communications, renders optimal resource allocation highly complex. Recent advancements in reinforcement learning (RL) and agentic artificial intelligence (AI) have shown remarkable effectiveness in optimal decision-making in complex and dynamic environments. In this paper, we review the current developments in SAGIN-enabled MC and outline the key challenges associated with its implementation. We further highlight the transformative potential of AI-driven approaches for resource optimization in a heterogeneous SAGIN environment. To this end, we present a case study on resource allocation optimization enabled by agentic RL for SAGIN-enabled MC involving diverse radio access technologies (RATs). Results show that learning-based methods can effectively handle complex scenarios and substantially enhance network performance in terms of latency and capacity while incurring a moderate increase in power consumption as an acceptable tradeoff. Finally, open research problems and future directions are presented to realize efficient SAGIN-enabled MC.
SARNet: A Spike-Aware consecutive validation Framework for Accurate Remaining Useful Life Prediction
Accurate prediction of remaining useful life (RUL) is essential to enhance system reliability and reduce maintenance risk. Yet many strong contemporary models are fragile around fault onset and opaque to engineers: short, high-energy spikes are smoothed away or misread, fixed thresholds blunt sensitivity, and physics-based explanations are scarce. To remedy this, we introduce SARNet (Spike-Aware Consecutive Validation Framework), which builds on a Modern Temporal Convolutional Network (ModernTCN) and adds spike-aware detection to provide physics-informed interpretability. ModernTCN forecasts degradation-sensitive indicators; an adaptive consecutive threshold validates true spikes while suppressing noise. Failure-prone segments then receive targeted feature engineering (spectral slopes, statistical derivatives, energy ratios), and the final RUL is produced by a stacked RF--LGBM regressor. Across benchmark-ported datasets under an event-triggered protocol, SARNet consistently lowers error compared to recent baselines (RMSE 0.0365, MAE 0.0204) while remaining lightweight, robust, and easy to deploy.
comment: 5 pages, 2 figures, 3 tables. Equal contribution by Junhao Fan and Wenrui Liang. Corresponding author: Wei-Qiang Zhang. Accepted to ICASSP 2026
Bias-variance decompositions: the exclusive privilege of Bregman divergences
Bias-variance decompositions are widely used to understand the generalization performance of machine learning models. While the squared error loss permits a straightforward decomposition, other loss functions - such as zero-one loss or $L_1$ loss - either fail to sum bias and variance to the expected loss or rely on definitions that lack the essential properties of meaningful bias and variance. Recent research has shown that clean decompositions can be achieved for the broader class of Bregman divergences, with the cross-entropy loss as a special case. However, the necessary and sufficient conditions for these decompositions remain an open question. In this paper, we address this question by studying continuous, nonnegative loss functions that satisfy the identity of indiscernibles (zero loss if and only if the two arguments are identical), under mild regularity conditions. We prove that so-called $g$-Bregman or rho-tau divergences are the only such loss functions that have a clean bias-variance decomposition. A $g$-Bregman divergence can be transformed into a standard Bregman divergence through an invertible change of variables. This makes the squared Mahalanobis distance, up to such a variable transformation, the only symmetric loss function with a clean bias-variance decomposition. Consequently, common metrics such as $0$-$1$ and $L_1$ losses cannot admit a clean bias-variance decomposition, explaining why previous attempts have failed. We also examine the impact of relaxing the restrictions on the loss functions and how this affects our results.
comment: Revision based on reviewer feedback and helpful comments from colleagues; improved clarity of exposition, corrected notation conflicts, and fixed minor issues; simplified main proof and Corollary 13
Joint Bayesian Parameter and Model Order Estimation for Low-Rank Probability Mass Tensors
Obtaining a reliable estimate of the joint probability mass function (PMF) of a set of random variables from observed data is a significant objective in statistical signal processing and machine learning. Modelling the joint PMF as a tensor that admits a low-rank canonical polyadic decomposition (CPD) has enabled the development of efficient PMF estimation algorithms. However, these algorithms require the rank (model order) of the tensor to be specified beforehand. In real-world applications, the true rank is unknown. Therefore, an appropriate rank is usually selected from a candidate set either by observing validation errors or by computing various likelihood-based information criteria, a procedure which is computationally expensive for large datasets. This paper presents a novel Bayesian framework for estimating the joint PMF and automatically inferring its rank from observed data. We specify a Bayesian PMF estimation model and employ appropriate prior distributions for the model parameters, allowing for tuning-free rank inference via a single training run. We then derive a deterministic solution based on variational inference (VI) to approximate the posterior distributions of various model parameters. Additionally, we develop a scalable version of the VI-based approach by leveraging stochastic variational inference (SVI) to arrive at an efficient algorithm whose complexity scales sublinearly with the size of the dataset. Numerical experiments involving both synthetic data and real movie recommendation data illustrate the advantages of our VI and SVI-based methods in terms of estimation accuracy, automatic rank detection, and computational efficiency.
uPVC-Net: A Universal Premature Ventricular Contraction Detection Deep Learning Algorithm
Introduction: Premature Ventricular Contractions (PVCs) are common cardiac arrhythmias originating from the ventricles. Accurate detection remains challenging due to variability in electrocardiogram (ECG) waveforms caused by differences in lead placement, recording conditions, and population demographics. Methods: We developed uPVC-Net, a universal deep learning model to detect PVCs from any single-lead ECG recordings. The model is developed on four independent ECG datasets comprising a total of 8.3 million beats collected from Holter monitors and a modern wearable ECG patch. uPVC-Net employs a custom architecture and a multi-source, multi-lead training strategy. For each experiment, one dataset is held out to evaluate out-of-distribution (OOD) generalization. Results: uPVC-Net achieved an AUC between 97.8% and 99.1% on the held-out datasets. Notably, performance on wearable single-lead ECG data reached an AUC of 99.1%. Conclusion: uPVC-Net exhibits strong generalization across diverse lead configurations and populations, highlighting its potential for robust, real-world clinical deployment.
comment: 8 pages
Multimodal Trajectory Representation Learning for Travel Time Estimation
Accurate travel time estimation (TTE) plays a crucial role in intelligent transportation systems. However, it remains challenging due to heterogeneous data sources and complex traffic dynamics. Moreover, traditional approaches typically convert trajectory data into fixed-length representations. This overlooks the inherent variability of real-world motion patterns, often resulting in information loss and redundancy. To address these challenges, this paper introduces the Multimodal Dynamic Trajectory Integration (MDTI) framework--a novel multimodal trajectory representation learning approach that integrates GPS sequences, grid trajectories, and road network constraints to enhance the performance of TTE. MDTI employs modality-specific encoders and a multimodal fusion module to capture complementary spatial, temporal, and topological semantics, while a dynamic trajectory modeling mechanism adaptively regulates information density for trajectories of varying lengths. Two self-supervised pretraining objectives, named contrastive alignment and masked language modeling, further strengthen multimodal consistency and contextual understanding. Extensive experiments on three real-world datasets demonstrate that MDTI consistently outperforms state-of-the-art baselines, confirming its robustness and strong generalization abilities. The code is publicly available at: https://github.com/City-Computing/MDTI.
Provable test-time adaptivity and distributional robustness of in-context learning
We study in-context learning problems where a Transformer is pretrained on tasks drawn from a mixture distribution $π=\sum_{α\in\mathcal{A}} λ_α π_α$, called the pretraining prior, in which each mixture component $π_α$ is a distribution on tasks of a specific difficulty level indexed by $α$. Our goal is to understand the performance of the pretrained Transformer when evaluated on a different test distribution $μ$, consisting of tasks of fixed difficulty $β\in\mathcal{A}$, and with potential distribution shift relative to $π_β$, subject to the chi-squared divergence $χ^2(μ,π_β)$ being at most $κ$. In particular, we consider nonparametric regression problems with random smoothness, and multi-index models with random smoothness as well as random effective dimension. We prove that a large Transformer pretrained on sufficient data achieves the optimal rate of convergence corresponding to the difficulty level $β$, uniformly over test distributions $μ$ in the chi-squared divergence ball. Thus, the pretrained Transformer is able to achieve faster rates of convergence on easier tasks and is robust to distribution shift at test time. Finally, we prove that even if an estimator had access to the test distribution $μ$, the convergence rate of its expected risk over $μ$ could not be faster than that of our pretrained Transformers, thereby providing a more appropriate optimality guarantee than minimax lower bounds.
comment: 47 pages, 3 figures
Improved Training Strategies for Physics-Informed Neural Networks using Real Experimental Data in Aluminum Spot Welding
Resistance spot welding is the dominant joining process for the body-in-white in the automotive industry, where the weld nugget diameter is the key quality metric. Its measurement requires destructive testing, limiting the potential for efficient quality control. Physics-informed neural networks were investigated as a promising tool to reconstruct internal process states from experimental data, enabling model-based and non-invasive quality assessment in aluminum spot welding. A major challenge is the integration of real-world data into the network due to competing optimization objectives. To address this, we introduce two novel training strategies. First, experimental losses for dynamic displacement and nugget diameter are progressively included using a fading-in function to prevent excessive optimization conflicts. We also implement a custom learning rate scheduler and early stopping based on a rolling window to counteract premature reduction due to increased loss magnitudes. Second, we introduce a conditional update of temperature-dependent material parameters via a look-up table, activated only after a loss threshold is reached to ensure physically meaningful temperatures. An axially symmetric two-dimensional model was selected to represent the welding process accurately while maintaining computational efficiency. To reduce computational burden, the training strategies and model components were first systematically evaluated in one dimension, enabling controlled analysis of loss design and contact models. The two-dimensional network predicts dynamic displacement and nugget growth within the experimental confidence interval, supports transferring welding stages from steel to aluminum, and demonstrates strong potential for fast, model-based quality control in industrial applications.
Learning Nonlinear Heterogeneity in Physical Kolmogorov-Arnold Networks
Physical neural networks typically train linear synaptic weights while treating device nonlinearities as fixed. We show the opposite - by training the synaptic nonlinearity itself, as in Kolmogorov-Arnold Network (KAN) architectures, we yield markedly higher task performance per physical resource and improved performance-parameter scaling than conventional linear weight-based networks, demonstrating ability of KAN topologies to exploit reconfigurable nonlinear physical dynamics. We experimentally realise physical KANs in silicon-on-insulator devices we term 'Synaptic Nonlinear Elements' (SYNEs), operating at room temperature, microampere currents, 2 MHz speeds and ~250 fJ per nonlinear operation, with no observed degradation over 10^13 measurements and months-long timescales. We demonstrate nonlinear function regression, classification, and prediction of Li-Ion battery dynamics from noisy real-world multi-sensor data. Physical KANs outperform equivalently-parameterised software multilayer perceptron networks across all tasks, with up to two orders of magnitude fewer parameters, and two orders of magnitude fewer devices than linear weight based physical networks. These results establish learned physical nonlinearity as a hardware-native computational primitive for compact and efficient learning systems, and SYNE devices as effective substrates for heterogenous nonlinear computing.
Thermodynamic structure of the Sinkhorn flow
Entropy-regularized optimal transport, which has strong links to the Schrödinger bridge problem in statistical mechanics, enjoys a variety of applications from trajectory inference to generative modeling. A major driver of renewed interest in this problem is the recent development of fast matrix-scaling algorithms\textemdash known as iterative proportional fitting or the Sinkhorn algorithm\textemdash for entropic optimal transport, which have favorable complexity over traditional approaches to the unregularized problem. Here, we take a perspective on this algorithm rooted in the thermodynamic origins of Schrödinger's problem and inspired by the modern geometric theory of diffusion: is the Sinkhorn flow (viewed in continuous-time as a mirror descent by recent results) the gradient flow of entropy in a formal Riemannian geometry? We answer this question affirmatively, finding a nonlocal Wasserstein gradient structure in the dynamics of its free marginal. This offers a physical interpretation of the Sinkhorn flow as the stochastic dynamics of a particle with law evolving by the nonlocal diffusion of a chemical potential. Simultaneously, it brings a standard suite of functional inequalities characterizing Markov diffusion processes to bear upon its geometry and convergence. We prove an entropy-energy (de Bruijn) identity, a Poincaré inequality, and a Bakry-Émery-type condition under which a logarithmic Sobolev inequality (LSI) holds and implies exponential convergence of the Sinkhorn flow in entropy. We lastly discuss computational applications such as stopping heuristics and latent-space design criteria leveraging the LSI and, returning to the physical interpretation, the possibility of natural systems whose relaxation to equilibrium inherently solves entropic optimal transport or Schrödinger bridge problems.
comment: 26 pages excluding references
Large-Scale Bayesian Tensor Reconstruction: An Approximate Message Passing Solution
Tensor CANDECOMP/PARAFAC decomposition (CPD) is a fundamental model for tensor reconstruction. Although the Bayesian framework allows for principled uncertainty quantification and automatic hyperparameter learning, existing methods do not scale well for large tensors because of high-dimensional matrix inversions. To this end, we introduce CP-GAMP, a scalable Bayesian CPD algorithm. This algorithm leverages generalized approximate message passing (GAMP) to avoid matrix inversions and incorporates an expectation-maximization routine to jointly infer the tensor rank and noise power. Through multiple experiments, for synthetic 100x100x100 rank 20 tensors with only 20% elements observed, the proposed algorithm reduces runtime by 82.7% compared to the state-of-the-art variational Bayesian CPD method, while maintaining comparable reconstruction accuracy.
Overcoming the Float Wall: Verifying Mathematical Laws at $10^{50}$ Scale with BigInt Transformers
A central question in artificial intelligence is whether models learn universal laws or merely memorize statistical heuristics. This distinction is particularly critical in scientific computing, where approximation errors are unacceptable. I investigate this by training models on the Pythagorean Theorem ($a^2+b^2=c^2$) using a massive dataset of $10^{10}$ samples. I identify a fundamental barrier I term the "Float Wall" ($N > 10^{16}$): the point where IEEE 754 double-precision arithmetic fails to distinguish integers, causing standard loss functions to collapse. To overcome this, I adopt a BigInt-native approach, treating numbers as symbolic sequences of digits rather than continuous approximate values. My results reveal a stark dichotomy. Statistical models (Gradient Boosted Decision Trees), despite seeing $10^{10}$ examples, failed to generalize beyond the training range, memorizing local manifolds rather than the underlying law. In contrast, my Arithmetic Transformer, trained on fewer than $10^3$ samples, successfully extrapolated the Pythagorean theorem to cosmic scales ($N \approx 10^{50}$). However, limits remain: in continuous physics tasks (Double Pendulum), while the model correctly identified causal structures, it struggled with high-entropy chaotic states and fine-grained perturbations. This suggests that while symbolic tokenization solves the precision problem for discrete algebra, bridging the gap to continuous dynamics remains an open challenge.
comment: v2: Major revision. Added 'Future Work' section on Neural Symbolic Regression. Revised Title and Abstract to highlight 'Float Wall' precision limits and explicitly detail findings on Physics Generalization (Double Pendulum)
Empowering LLMs for Structure-Based Drug Design via Exploration-Augmented Latent Inference
Large Language Models (LLMs) possess strong representation and reasoning capabilities, but their application to structure-based drug design (SBDD) is limited by insufficient understanding of protein structures and unpredictable molecular generation. To address these challenges, we propose Exploration-Augmented Latent Inference for LLMs (ELILLM), a framework that reinterprets the LLM generation process as an encoding, latent space exploration, and decoding workflow. ELILLM explicitly explores portions of the design problem beyond the model's current knowledge while using a decoding module to handle familiar regions, generating chemically valid and synthetically reasonable molecules. In our implementation, Bayesian optimization guides the systematic exploration of latent embeddings, and a position-aware surrogate model efficiently predicts binding affinity distributions to inform the search. Knowledge-guided decoding further reduces randomness and effectively imposes chemical validity constraints. We demonstrate ELILLM on the CrossDocked2020 benchmark, showing strong controlled exploration and high binding affinity scores compared with seven baseline methods. These results demonstrate that ELILLM can effectively enhance LLMs capabilities for SBDD.
Spectral Logit Sculpting: Adaptive Low-Rank Logit Transformation for Controlled Text Generation
Entropy-based inference methods have gained traction for improving the reliability of Large Language Models (LLMs). However, many existing approaches, such as entropy minimization techniques, suffer from high computational overhead and fail to leverage historical token context effectively. To address these limitations, we propose Spectral Logit Sculpting (SLS), a lightweight inference-time optimization method that dynamically modulates token distributions using spectral and entropic properties of recent logits. SLS maintains a sliding buffer of top-K logits, performs on-the-fly Singular Value Decomposition (SVD) to identify dominant spectral directions, and adaptively rescales logits based on both entropy and logit gap statistics--only activating when uncertainty is high. Without updating any model parameters, SLS effectively sharpens the output distribution while preserving contextual consistency. Experimental results on multiple public benchmarks demonstrate that SLS consistently outperforms existing baseline methods, achieving superior accuracy in mathematical, coding, and scientific reasoning tasks.
comment: Accepted by IEEE ICASSP 2026
How Worst-Case Are Adversarial Attacks? Linking Adversarial and Perturbation Robustness
Adversarial attacks are widely used to identify model vulnerabilities; however, their validity as proxies for robustness to random perturbations remains debated. We ask whether an adversarial example provides a representative estimate of misprediction risk under stochastic perturbations of the same magnitude, or instead reflects an atypical worst-case event. To address this question, we introduce a probabilistic analysis that quantifies this risk with respect to directionally biased perturbation distributions, parameterized by a concentration factor $κ$ that interpolates between isotropic noise and adversarial directions. Building on this, we study the limits of this connection by proposing an attack strategy designed to probe vulnerabilities in regimes that are statistically closer to uniform noise. Experiments on ImageNet and CIFAR-10 systematically benchmark multiple attacks, revealing when adversarial success meaningfully reflects robustness to perturbations and when it does not, thereby informing their use in safety-oriented robustness evaluation.
Quantum Rationale-Aware Graph Contrastive Learning for Jet Discrimination
In high-energy physics, particle jet tagging plays a pivotal role in distinguishing quark from gluon jets using data from collider experiments. While graph-based deep learning methods have advanced this task beyond traditional feature-engineered approaches, the complex data structure and limited labeled samples present ongoing challenges. More broadly, our primary focus is the development of a rationale-aware graph contrastive learning framework designed to operate under strict resource constraints; we use quark-gluon jet discrimination as a representative and practically relevant use case. However, existing contrastive learning (CL) frameworks struggle to leverage rationale-aware augmentations effectively, often lacking supervision signals that guide the extraction of salient features and facing computational efficiency issues such as high parameter counts. In this study, we demonstrate that integrating a quantum rationale generator (QRG) within our proposed Quantum Rationale-aware Graph Contrastive Learning (QRGCL) framework enables competitive jet discrimination performance, particularly in parameter-constrained settings, reducing reliance on labeled data, and capturing rationale-aware features. Evaluated on the quark-gluon jet dataset, QRGCL achieves an AUC score of $77.5\%$ while maintaining a compact architecture of only 45 QRG parameters, achieving competitive performance compared to classical, quantum, and hybrid benchmarks. These results highlight QRGCL's potential to advance jet tagging and other complex classification tasks in high-energy physics, where computational efficiency and limitations in feature extraction persist.
How Does a Deep Neural Network Look at Lexical Stress in English Words?
Despite their success in speech processing, neural networks often operate as black boxes, prompting the question: what informs their decisions, and how can we interpret them? This work examines this issue in the context of lexical stress. A dataset of English disyllabic words was automatically constructed from read and spontaneous speech. Several Convolutional Neural Network (CNN) architectures were trained to predict stress position from a spectrographic representation of disyllabic words lacking minimal stress pairs (e.g., initial stress WAllet, final stress exTEND), achieving up to 92% accuracy on held-out test data. Layerwise Relevance Propagation (LRP), a technique for CNN interpretability analysis, revealed that predictions for held-out minimal pairs (PROtest vs. proTEST ) were most strongly influenced by information in stressed versus unstressed syllables, particularly the spectral properties of stressed vowels. However, the classifiers also attended to information throughout the word. A feature-specific relevance analysis is proposed, and its results suggest that our best-performing classifier is strongly influenced by the stressed vowel's first and second formants, with some evidence that its pitch and third formant also contribute. These results reveal deep learning's ability to acquire distributed cues to stress from naturally occurring data, extending traditional phonetic work based around highly controlled stimuli.
comment: 11 pages, 5 figures, submitted to the Journal of the Acoustical Society of America (JASA)
Unlearning Comparator: A Visual Analytics System for Comparative Evaluation of Machine Unlearning Methods
Machine Unlearning (MU) aims to remove target training data from a trained model so that the removed data no longer influences the model's behavior, fulfilling "right to be forgotten" obligations under data privacy laws. Yet, we observe that researchers in this rapidly emerging field face challenges in analyzing and understanding the behavior of different MU methods, especially in terms of three fundamental principles in MU: accuracy, efficiency, and privacy. Consequently, they often rely on aggregate metrics and ad-hoc evaluations, making it difficult to accurately assess the trade-offs between methods. To fill this gap, we introduce a visual analytics system, Unlearning Comparator, designed to facilitate the systematic evaluation of MU methods. Our system supports two important tasks in the evaluation process: model comparison and attack simulation. First, it allows the user to compare the behaviors of two models, such as a model generated by a certain method and a retrained baseline, at class-, instance-, and layer-levels to better understand the changes made after unlearning. Second, our system simulates membership inference attacks (MIAs) to evaluate the privacy of a method, where an attacker attempts to determine whether specific data samples were part of the original training set. We evaluate our system through a case study visually analyzing prominent MU methods and demonstrate that it helps the user not only understand model behaviors but also gain insights that can inform the improvement of MU methods. The source code is publicly available at https://github.com/gnueaj/Machine-Unlearning-Comparator.
comment: Accepted to IEEE Transactions on Visualization and Computer Graphics (TVCG). DOI: 10.1109/TVCG.2026.3658325
Theoretical Bounds for Stable In-Context Learning
In-context learning (ICL) is a pivotal capability for the practical deployment of large-scale language models, yet its stability heavily depends on the number of examples provided in the prompt. Existing methods lack computable theoretical guidance to determine the minimal number of examples required. Heuristic rules commonly used in practice are often overly conservative and non-verifiable, readily leading to either instability from insufficient examples or inefficiency from redundant ones. This paper proposes that ICL stability can be characterized via a spectral-coverage proxy: the smallest eigenvalue of a regularized empirical second-moment matrix of demonstration representations, turning prompt-length selection into a computable estimation problem. We derive a non-asymptotic sufficient sample-size requirement (a lower bound on $K$) under sub-Gaussian representations, which in turn induces a conservative upper bound on the unknown stability threshold. We design a two-stage observable estimator that requires no prior knowledge and returns a concrete prompt length with a prescribed failure probability. Experiments show that the resulting estimates consistently upper-bound empirical knee-points, and a lightweight calibration further tightens the gap to about $1.03$--$1.20\times$, providing verifiable guidance for practical ICL prompt design.
Hybrid Quantum Neural Networks with Amplitude Encoding: Advancing Recovery Rate Predictions
Recovery rate prediction plays a pivotal role in bond investment strategies by enhancing risk assessment, optimizing portfolio allocation, improving pricing accuracy, and supporting effective credit risk management. However, accurate forecasting remains challenging due to complex nonlinear dependencies, high-dimensional feature spaces, and limited sample sizes-conditions under which classical machine learning models are prone to overfitting. We propose a hybrid Quantum Machine Learning (QML) model with Amplitude Encoding, leveraging the unitarity constraint of Parametrized Quantum Circuits (PQC) and the exponential data compression capability of qubits. We evaluate the model on a global recovery rate dataset comprising 1,725 observations and 256 features from 1996 to 2023. Our hybrid method significantly outperforms both classical neural networks and QML models using Angle Encoding, achieving a lower Root Mean Squared Error (RMSE) of 0.228, compared to 0.246 and 0.242, respectively. It also performs competitively with ensemble tree methods such as XGBoost. While practical implementation challenges remain for Noisy Intermediate-Scale Quantum (NISQ) hardware, our quantum simulation and preliminary results on noisy simulators demonstrate the promise of hybrid quantum-classical architectures in enhancing the accuracy and robustness of recovery rate forecasting. These findings illustrate the potential of quantum machine learning in shaping the future of credit risk prediction.
Computing Pure-Strategy Nash Equilibria in a Two-Party Policy Competition: Existence and Algorithmic Approaches
We formulate two-party policy competition as a two-player non-cooperative game, generalizing Lin et al.'s work (2021). Each party selects a real-valued policy vector as its strategy from a compact subset of Euclidean space, and a voter's utility for a policy is given by the inner product with their preference vector. To capture the uncertainty in the competition, we assume that a policy's winning probability increases monotonically with its total utility across all voters, and we formalize this via an affine isotonic function. A player's payoff is defined as the expected utility received by its supporters. In this work, we first test and validate the isotonicity hypothesis through voting simulations. Next, we prove the existence of a pure-strategy Nash equilibrium (PSNE) in both one- and multi-dimensional settings. Although we construct a counterexample demonstrating the game's non-monotonicity, our experiments show that a decentralized gradient-based algorithm typically converges rapidly to an approximate PSNE. Finally, we present a grid-based search algorithm that finds an $ε$-approximate PSNE of the game in time polynomial in the input size and $1/ε$.
comment: A full version of the extended abstract in AAMAS 2026
NOMADS: Non-Markovian Optimization-based Modeling for Approximate Dynamics with Spatially-homogeneous Memory
We propose a system identification method, Non-Markovian Optimization-based Modeling for Approximate Dynamics with Spatially-homogeneous memory (NOMADS), for identifying linear dynamical systems from a set of multi-dimensional time-series data obtained through multiple partially excited experiments. NOMADS formulates model identification as a convex optimization problem, in which the state-space coefficient matrices and a memory kernel are estimated jointly under physically motivated constraints using projected gradient descent. The proposed framework models memory effects through a spatially homogeneous kernel, enabling scalable identification of non-Markovian dynamics while keeping the number of free parameters moderate. This structure allows NOMADS to integrate information from multiple multi-dimensional time-series data even when no single experiment provides full excitation. In the Markovian setting, physical constraints can be incorporated to enforce conservation laws. Numerical experiments on synthetic data demonstrate that NOMADS achieves substantially improved generalization accuracy compared to existing DMD-based methods even for noisy train data, and reproduces energy conservation in the Markovian case.
CC-OR-Net: A Unified Framework for LTV Prediction through Structural Decoupling
Customer Lifetime Value (LTV) prediction, a central problem in modern marketing, is characterized by a unique zero-inflated and long-tail data distribution. This distribution presents two fundamental challenges: (1) the vast majority of low-to-medium value users numerically overwhelm the small but critically important segment of high-value "whale" users, and (2) significant value heterogeneity exists even within the low-to-medium value user base. Common approaches either rely on rigid statistical assumptions or attempt to decouple ranking and regression using ordered buckets; however, they often enforce ordinality through loss-based constraints rather than inherent architectural design, failing to balance global accuracy with high-value precision. To address this gap, we propose \textbf{C}onditional \textbf{C}ascaded \textbf{O}rdinal-\textbf{R}esidual Networks \textbf{(CC-OR-Net)}, a novel unified framework that achieves a more robust decoupling through \textbf{structural decomposition}, where ranking is architecturally guaranteed. CC-OR-Net integrates three specialized components: a \textit{structural ordinal decomposition module} for robust ranking, an \textit{intra-bucket residual module} for fine-grained regression, and a \textit{targeted high-value augmentation module} for precision on top-tier users. Evaluated on real-world datasets with over 300M users, CC-OR-Net achieves a superior trade-off across all key business metrics, outperforming state-of-the-art methods in creating a holistic and commercially valuable LTV prediction solution.
comment: Accepted by WWW'26 main
ATLAS: Adaptive Topology-based Learning at Scale for Homophilic and Heterophilic Graphs
We present ATLAS (Adaptive Topology-based Learning at Scale for Homophilic and Heterophilic Graphs), a novel graph learning algorithm that addresses two important challenges in graph neural networks (GNNs). First, the accuracy of GNNs degrades when the graph is heterophilic. Second, iterative feature aggregation limits the scalability of GNNs to large graphs. We address these challenges by extracting topological information about graph communities at multiple levels of refinement, concatenating community assignments to the feature vector, and applying multilayer perceptrons (MLPs) to the resulting representation. This provides topological context about nodes and their neighborhoods without invoking aggregation. Because MLPs are typically more scalable than GNNs, our approach applies to large graphs without the need for sampling. Across a wide set of graphs, ATLAS achieves comparable accuracy to baseline methods, with gains as high as 20 percentage points over GCN for heterophilic graphs with negative structural bias and 11 percentage points over MLP for homophilic graphs. Furthermore, we show how multi-resolution community features systematically modulate performance in both homophilic and heterophilic settings, opening a principled path toward explainable graph learning.
comment: Preprint
Data-Augmented Deep Learning for Downhole Depth Sensing and Validation
Accurate downhole depth measurement is essential for oil and gas well operations, directly influencing reservoir contact, production efficiency, and operational safety. Collar correlation using a casing collar locator (CCL) is fundamental for precise depth calibration. While neural network has achieved significant progress in collar recognition, preprocessing methods for such applications remain underdeveloped. Moreover, the limited availability of real well data poses substantial challenges for training neural network models that require extensive datasets. This paper presents a system integrated into a downhole toolstring for CCL log acquisition to facilitate dataset construction. Comprehensive preprocessing methods for data augmentation are proposed, and their effectiveness is evaluated using baseline neural network models. Through systematic experimentation across diverse configurations, the contribution of each augmentation method is analyzed. Results demonstrate that standardization, label distribution smoothing, and random cropping are fundamental prerequisites for model training, while label smoothing regularization, time scaling, and multiple sampling significantly enhance model generalization capabilities. Incorporating the proposed augmentation methods into the two baseline models results in maximum F1 score improvements of 0.027 and 0.024 for the TAN and MAN models, respectively. Furthermore, applying these techniques yields F1 score gains of up to 0.045 for the TAN model and 0.057 for the MAN model compared to prior studies. Performance evaluation on real CCL waveforms confirms the effectiveness and practical applicability of our approach. This work addresses the existing gaps in data augmentation methodologies for training casing collar recognition models under CCL data-limited conditions, and provides a technical foundation for the future automation of downhole operations.
Training Tensor Attention Efficiently: From Cubic to Almost Linear Time
Tensor Attention, a multi-view attention that is able to capture high-order correlations among multiple modalities, can overcome the representational limitations of classical matrix attention. However, the $O(n^3)$ time complexity of tensor attention poses a significant obstacle to its utilization in transformers, where $n$ is the input sequence length. In this work, we prove that the backward gradient of tensor attention training can be computed in almost linear time $n^{1+o(1)}$, the same complexity as its forward computation under the bounded entries assumption. We provide a closed-form solution for the gradient and propose a fast computation method utilizing polynomial approximation methods and tensor algebraic techniques. Furthermore, we prove the necessity and tightness of our assumption through hardness analysis, showing that slightly weakening it renders the gradient problem unsolvable in truly subcubic time. Our theoretical results establish the feasibility of efficient higher-order transformer training and may facilitate practical applications of tensor attention architectures.
RoPE Attention Can Be Trained in Almost Linear Time
The Rotary Position Embedding (RoPE) mechanism has become a powerful enhancement to the Transformer architecture, which enables models to capture token relationships when encoding positional information. However, the RoPE mechanisms make the computations of attention mechanisms more complicated, which makes efficient algorithms challenging. Earlier research introduced almost linear time algorithms for the forward computation under specific parameter settings of bounded entries (i.e., in time $n^{1+o(1)}$ where $n$ is the number of input tokens), but has not addressed backward computation. In this work, we develop the first almost linear time algorithm for backward computations in the RoPE-based attention under bounded entries. Our approach builds on recent advancements in fast RoPE attention computations, utilizing a novel combination of the polynomial method and the Fast Fourier Transform. Furthermore, we show that with lower bounds derived from the Strong Exponential Time Hypothesis (SETH), the bounded entry condition is necessary for subquadratic performance.
Exploring the Frontiers of Softmax: Provable Optimization, Applications in Diffusion Model, and Beyond
The softmax activation function plays a crucial role in the success of large language models (LLMs), particularly in the self-attention mechanism of the widely adopted Transformer architecture. However, the underlying learning dynamics that contribute to the effectiveness of softmax remain largely unexplored. As a step towards better understanding, this paper provides a theoretical study of the optimization and generalization properties of two-layer softmax neural networks, providing theoretical insights into their superior performance as other activation functions, such as ReLU and exponential. Leveraging the Neural Tangent Kernel (NTK) framework, our analysis reveals that the normalization effect of the softmax function leads to a good perturbation property of the induced NTK matrix, resulting in a good convex region of the loss landscape. Consequently, softmax neural networks can learn the target function in the over-parametrization regime. To demonstrate the broad applicability of our theoretical findings, we apply them to the task of learning score estimation functions in diffusion models, a promising approach for generative modeling. Our analysis shows that gradient-based algorithms can learn the score function with a provable accuracy. Our work provides a deeper understanding of the effectiveness of softmax neural networks and their potential in various domains, paving the way for further advancements in natural language processing and beyond.
comment: 53 pages
Graphics 7
MV-S2V: Multi-View Subject-Consistent Video Generation
Existing Subject-to-Video Generation (S2V) methods have achieved high-fidelity and subject-consistent video generation, yet remain constrained to single-view subject references. This limitation renders the S2V task reducible to an S2I + I2V pipeline, failing to exploit the full potential of video subject control. In this work, we propose and address the challenging Multi-View S2V (MV-S2V) task, which synthesizes videos from multiple reference views to enforce 3D-level subject consistency. Regarding the scarcity of training data, we first develop a synthetic data curation pipeline to generate highly customized synthetic data, complemented by a small-scale real-world captured dataset to boost the training of MV-S2V. Another key issue lies in the potential confusion between cross-subject and cross-view references in conditional generation. To overcome this, we further introduce Temporally Shifted RoPE (TS-RoPE) to distinguish between different subjects and distinct views of the same subject in reference conditioning. Our framework achieves superior 3D subject consistency w.r.t. multi-view reference images and high-quality visual outputs, establishing a new meaningful direction for subject-driven video generation. Our project page is available at this URL
comment: 13 pages, 9 figures
Learning Sewing Patterns via Latent Flow Matching of Implicit Fields
Sewing patterns define the structural foundation of garments and are essential for applications such as fashion design, fabrication, and physical simulation. Despite progress in automated pattern generation, accurately modeling sewing patterns remains difficult due to the broad variability in panel geometry and seam arrangements. In this work, we introduce a sewing pattern modeling method based on an implicit representation. We represent each panel using a signed distance field that defines its boundary and an unsigned distance field that identifies seam endpoints, and encode these fields into a continuous latent space that enables differentiable meshing. A latent flow matching model learns distributions over panel combinations in this representation, and a stitching prediction module recovers seam relations from extracted edge segments. This formulation allows accurate modeling and generation of sewing patterns with complex structures. We further show that it can be used to estimate sewing patterns from images with improved accuracy relative to existing approaches, and supports applications such as pattern completion and refitting, providing a practical tool for digital fashion design.
Flatten The Complex: Joint B-Rep Generation via Compositional $k$-Cell Particles
Boundary Representation (B-Rep) is the widely adopted standard in Computer-Aided Design (CAD) and manufacturing. However, generative modeling of B-Reps remains a formidable challenge due to their inherent heterogeneity as geometric cell complexes, which entangles topology with geometry across cells of varying orders (i.e., $k$-cells such as vertices, edges, faces). Previous methods typically rely on cascaded sequences to handle this hierarchy, which fails to fully exploit the geometric relationships between cells, such as adjacency and sharing, limiting context awareness and error recovery. To fill this gap, we introduce a novel paradigm that reformulates B-Reps into sets of compositional $k$-cell particles. Our approach encodes each topological entity as a composition of particles, where adjacent cells share identical latents at their interfaces, thereby promoting geometric coupling along shared boundaries. By decoupling the rigid hierarchy, our representation unifies vertices, edges, and faces, enabling the joint generation of topology and geometry with global context awareness. We synthesize these particle sets using a multi-modal flow matching framework to handle unconditional generation as well as precise conditional tasks, such as 3D reconstruction from single-view or point cloud. Furthermore, the explicit and localized nature of our representation naturally extends to downstream tasks like local in-painting and enables the direct synthesis of non-manifold structures (e.g., wireframes). Extensive experiments demonstrate that our method produces high-fidelity CAD models with superior validity and editability compared to state-of-the-art methods.
DDFKs: Fluid Simulation with Dynamic Divergence-Free Kernels
Fluid simulations based on memory-efficient spatial representations like implicit neural spatial representations (INSRs) and Gaussian spatial representation (GSR), where the velocity fields are parameterized by neural networks or weighted Gaussian functions, has been an emerging research area. Though advantages over traditional discretizations like spatial adaptivity and continuous differentiability of these spatial representations are leveraged by fluid solvers, solving the time-dependent PDEs that governs the fluid dynamics remain challenging, especially in incompressible fluids where the divergence-free constraint is enforced. In this paper, we propose a grid-free solver Dynamic Divergence-Free Kernels (DDFKs) for incompressible flows based on divergence-free kernels (DFKs). Each DFK is incorporated with a matrix-valued radial basis function and a vector-valued weight, yielding a divergence-free vector field. We model the continuous flow velocity as the sum of multiple DFKs, thus enforcing incompressibility while being able to preserve different level of details. Quantitative and qualitative results show that our method achieves comparable accuracy, robustness, ability to preserve vortices, time and memory efficiency and generality across diverse phenomena to state-of-the-art methods using memory-efficient spatial representations, while excels at maintaining incompressibility. Though our first-order solver are slower than fluid solvers with traditional discretizations, our approach exhibits significantly lower numerical dissipation due to reduced discretization error. We demonstrate our method on diverse incompressible flow examples with rich vortices and various solid boundary conditions.
REV-INR: Regularized Evidential Implicit Neural Representation for Uncertainty-Aware Volume Visualization
Applications of Implicit Neural Representations (INRs) have emerged as a promising deep learning approach for compactly representing large volumetric datasets. These models can act as surrogates for volume data, enabling efficient storage and on-demand reconstruction via model predictions. However, conventional deterministic INRs only provide value predictions without insights into the model's prediction uncertainty or the impact of inherent noisiness in the data. This limitation can lead to unreliable data interpretation and visualization due to prediction inaccuracies in the reconstructed volume. Identifying erroneous results extracted from model-predicted data may be infeasible, as raw data may be unavailable due to its large size. To address this challenge, we introduce REV-INR, Regularized Evidential Implicit Neural Representation, which learns to predict data values accurately along with the associated coordinate-level data uncertainty and model uncertainty using only a single forward pass of the trained REV-INR during inference. By comprehensively comparing and contrasting REV-INR with existing well-established deep uncertainty estimation methods, we show that REV-INR achieves the best volume reconstruction quality with robust data (aleatoric) and model (epistemic) uncertainty estimates using the fastest inference time. Consequently, we demonstrate that REV-INR facilitates assessment of the reliability and trustworthiness of the extracted isosurfaces and volume visualization results, enabling analyses to be solely driven by model-predicted data.
SpringTime: Learning Simulatable Models of Cloth with Spatially-varying Constitutive Properties
Materials used in real clothing exhibit remarkable complexity and spatial variation due to common processes such as stitching, hemming, dyeing, printing, padding, and bonding. Simulating these materials, for instance using finite element methods, is often computationally demanding and slow. Worse, such methods can suffer from numerical artifacts called ``membrane locking'' that makes cloth appear artificially stiff. Here we propose a general framework, called SpringTime, for learning a simple yet efficient surrogate model that captures the effects of these complex materials using only motion observations. The cloth is discretized into a mass-spring network with unknown material parameters that are learned directly from the motion data, using a novel force-and-impulse loss function. Our approach demonstrates the ability to accurately model spatially varying material properties from a variety of data sources, and immunity to membrane locking which plagues FEM-based simulations. Compared to graph-based networks and neural ODE-based architectures, our method achieves significantly faster training times, higher reconstruction accuracy, and improved generalization to novel dynamic scenarios. Codebase for the paper can be found at https://github.com/ericchen321/springtime.
comment: Submitted to Graphics Interface '26 (In review)
CloSET: Modeling Clothed Humans on Continuous Surface with Explicit Template Decomposition CVPR 2023
Creating animatable avatars from static scans requires the modeling of clothing deformations in different poses. Existing learning-based methods typically add pose-dependent deformations upon a minimally-clothed mesh template or a learned implicit template, which have limitations in capturing details or hinder end-to-end learning. In this paper, we revisit point-based solutions and propose to decompose explicit garment-related templates and then add pose-dependent wrinkles to them. In this way, the clothing deformations are disentangled such that the pose-dependent wrinkles can be better learned and applied to unseen poses. Additionally, to tackle the seam artifact issues in recent state-of-the-art point-based methods, we propose to learn point features on a body surface, which establishes a continuous and compact feature space to capture the fine-grained and pose-dependent clothing geometry. To facilitate the research in this field, we also introduce a high-quality scan dataset of humans in real-world clothing. Our approach is validated on two existing datasets and our newly introduced dataset, showing better clothing deformation results in unseen poses. The project page with code and dataset can be found at https://zhanghongwen.cn/closet.
comment: CVPR 2023 Paper, Update project page: https://zhanghongwen.cn/closet
Video World Models 1
AVMeme Exam: A Multimodal Multilingual Multicultural Benchmark for LLMs' Contextual and Cultural Knowledge and Thinking
Internet audio-visual clips convey meaning through time-varying sound and motion, which extend beyond what text alone can represent. To examine whether AI models can understand such signals in human cultural contexts, we introduce AVMeme Exam, a human-curated benchmark of over one thousand iconic Internet sounds and videos spanning speech, songs, music, and sound effects. Each meme is paired with a unique Q&A assessing levels of understanding from surface content to context and emotion to usage and world knowledge, along with metadata such as original year, transcript, summary, and sensitivity. We systematically evaluate state-of-the-art multimodal large language models (MLLMs) alongside human participants using this benchmark. Our results reveal a consistent limitation: current models perform poorly on textless music and sound effects, and struggle to think in context and in culture compared to surface content. These findings highlight a key gap in human-aligned multimodal intelligence and call for models that can perceive contextually and culturally beyond the surface of what they hear and see. Project page: avmemeexam.github.io/public
comment: avmemeexam.github.io/public
Robotics 20
Quantum-Inspired Episode Selection for Monte Carlo Reinforcement Learning via QUBO Optimization
Monte Carlo (MC) reinforcement learning suffers from high sample complexity, especially in environments with sparse rewards, large state spaces, and correlated trajectories. We address these limitations by reformulating episode selection as a Quadratic Unconstrained Binary Optimization (QUBO) problem and solving it with quantum-inspired samplers. Our method, MC+QUBO, integrates a combinatorial filtering step into standard MC policy evaluation: from each batch of trajectories, we select a subset that maximizes cumulative reward while promoting state-space coverage. This selection is encoded as a QUBO, where linear terms favor high-reward episodes and quadratic terms penalize redundancy. We explore both Simulated Quantum Annealing (SQA) and Simulated Bifurcation (SB) as black-box solvers within this framework. Experiments in a finite-horizon GridWorld demonstrate that MC+QUBO outperforms vanilla MC in convergence speed and final policy quality, highlighting the potential of quantum-inspired optimization as a decision-making subroutine in reinforcement learning.
comment: Proceedings of Machine Learning Research tbd: 1_13, 2025 International Conference on Computational Optimization
Correct-by-Construction Vision-based Pose Estimation using Geometric Generative Models
We consider the problem of vision-based pose estimation for autonomous systems. While deep neural networks have been successfully used for vision-based tasks, they inherently lack provable guarantees on the correctness of their output, which is crucial for safety-critical applications. We present a framework for designing certifiable neural networks (NNs) for perception-based pose estimation that integrates physics-driven modeling with learning-based estimation. The proposed framework begins by leveraging the known geometry of planar objects commonly found in the environment, such as traffic signs and runway markings, referred to as target objects. At its core, it introduces a geometric generative model (GGM), a neural-network-like model whose parameters are derived from the image formation process of a target object observed by a camera. Once designed, the GGM can be used to train NN-based pose estimators with certified guarantees in terms of their estimation errors. We first demonstrate this framework in uncluttered environments, where the target object is the only object present in the camera's field of view. We extend this using ideas from NN reachability analysis to design certified object NN that can detect the presence of the target object in cluttered environments. Subsequently, the framework consolidates the certified object detector with the certified pose estimator to design a multi-stage perception pipeline that generalizes the proposed approach to cluttered environments, while maintaining its certified guarantees. We evaluate the proposed framework using both synthetic and real images of various planar objects commonly encountered by autonomous vehicles. Using images captured by an event-based camera, we show that the trained encoder can effectively estimate the pose of a traffic sign in accordance with the certified bound provided by the framework.
AsterNav: Autonomous Aerial Robot Navigation In Darkness Using Passive Computation
Autonomous aerial navigation in absolute darkness is crucial for post-disaster search and rescue operations, which often occur from disaster-zone power outages. Yet, due to resource constraints, tiny aerial robots, perfectly suited for these operations, are unable to navigate in the darkness to find survivors safely. In this paper, we present an autonomous aerial robot for navigation in the dark by combining an Infra-Red (IR) monocular camera with a large-aperture coded lens and structured light without external infrastructure like GPS or motion-capture. Our approach obtains depth-dependent defocus cues (each structured light point appears as a pattern that is depth dependent), which acts as a strong prior for our AsterNet deep depth estimation model. The model is trained in simulation by generating data using a simple optical model and transfers directly to the real world without any fine-tuning or retraining. AsterNet runs onboard the robot at 20 Hz on an NVIDIA Jetson Orin$^\text{TM}$ Nano. Furthermore, our network is robust to changes in the structured light pattern and relative placement of the pattern emitter and IR camera, leading to simplified and cost-effective construction. We successfully evaluate and demonstrate our proposed depth navigation approach AsterNav using depth from AsterNet in many real-world experiments using only onboard sensing and computation, including dark matte obstacles and thin ropes (diameter 6.25mm), achieving an overall success rate of 95.5% with unknown object shapes, locations and materials. To the best of our knowledge, this is the first work on monocular, structured-light-based quadrotor navigation in absolute darkness.
comment: 8 pages, 10 figures, Published in IEEE Robotics And Automation Letters
MetaWorld: Skill Transfer and Composition in a Hierarchical World Model for Grounding High-Level Instructions ICLR 2026
Humanoid robot loco-manipulation remains constrained by the semantic-physical gap. Current methods face three limitations: Low sample efficiency in reinforcement learning, poor generalization in imitation learning, and physical inconsistency in VLMs. We propose MetaWorld, a hierarchical world model that integrates semantic planning and physical control via expert policy transfer. The framework decouples tasks into a VLM-driven semantic layer and a latent dynamics model operating in a compact state space. Our dynamic expert selection and motion prior fusion mechanism leverages a pre-trained multi-expert policy library as transferable knowledge, enabling efficient online adaptation via a two-stage framework. VLMs serve as semantic interfaces, mapping instructions to executable skills and bypassing symbol grounding. Experiments on Humanoid-Bench show MetaWorld outperforms world model-based RL in task completion and motion coherence. Our code will be found at https://anonymous.4open.science/r/metaworld-2BF4/
comment: 8 pages, 4 figures, Submitted to ICLR 2026 World Model Workshop
EquiForm: Noise-Robust SE(3)-Equivariant Policy Learning from 3D Point Clouds
Visual imitation learning with 3D point clouds has advanced robotic manipulation by providing geometry-aware, appearance-invariant observations. However, point cloud-based policies remain highly sensitive to sensor noise, pose perturbations, and occlusion-induced artifacts, which distort geometric structure and break the equivariance assumptions required for robust generalization. Existing equivariant approaches primarily encode symmetry constraints into neural architectures, but do not explicitly correct noise-induced geometric deviations or enforce equivariant consistency in learned representations. We introduce EquiForm, a noise-robust SE(3)-equivariant policy learning framework for point cloud-based manipulation. EquiForm formalizes how noise-induced geometric distortions lead to equivariance deviations in observation-to-action mappings, and introduces a geometric denoising module to restore consistent 3D structure under noisy or incomplete observations. In addition, we propose a contrastive equivariant alignment objective that enforces representation consistency under both rigid transformations and noise perturbations. Built upon these components, EquiForm forms a flexible policy learning pipeline that integrates noise-robust geometric reasoning with modern generative models. We evaluate EquiForm on 16 simulated tasks and 4 real-world manipulation tasks across diverse objects and scene layouts. Compared to state-of-the-art point cloud imitation learning methods, EquiForm achieves an average improvement of 17.2% in simulation and 28.1% in real-world experiments, demonstrating strong noise robustness and spatial generalization.
comment: Project website: https://ZhangZhiyuanZhang.github.io/equiform-website/ Code will be released
PILOT: A Perceptive Integrated Low-level Controller for Loco-manipulation over Unstructured Scenes
Humanoid robots hold great potential for diverse interactions and daily service tasks within human-centered environments, necessitating controllers that seamlessly integrate precise locomotion with dexterous manipulation. However, most existing whole-body controllers lack exteroceptive awareness of the surrounding environment, rendering them insufficient for stable task execution in complex, unstructured scenarios.To address this challenge, we propose PILOT, a unified single-stage reinforcement learning (RL) framework tailored for perceptive loco-manipulation, which synergizes perceptive locomotion and expansive whole-body control within a single policy. To enhance terrain awareness and ensure precise foot placement, we design a cross-modal context encoder that fuses prediction-based proprioceptive features with attention-based perceptive representations. Furthermore, we introduce a Mixture-of-Experts (MoE) policy architecture to coordinate diverse motor skills, facilitating better specialization across distinct motion patterns. Extensive experiments in both simulation and on the physical Unitree G1 humanoid robot validate the efficacy of our framework. PILOT demonstrates superior stability, command tracking precision, and terrain traversability compared to existing baselines. These results highlight its potential to serve as a robust, foundational low-level controller for loco-manipulation in unstructured scenes.
comment: 8 pages, 4 figures
Scaling Rough Terrain Locomotion with Automatic Curriculum Reinforcement Learning
Curriculum learning has demonstrated substantial effectiveness in robot learning. However, it still faces limitations when scaling to complex, wide-ranging task spaces. Such task spaces often lack a well-defined difficulty structure, making the difficulty ordering required by previous methods challenging to define. We propose a Learning Progress-based Automatic Curriculum Reinforcement Learning (LP-ACRL) framework, which estimates the agent's learning progress online and adaptively adjusts the task-sampling distribution, thereby enabling automatic curriculum generation without prior knowledge of the difficulty distribution over the task space. Policies trained with LP-ACRL enable the ANYmal D quadruped to achieve and maintain stable, high-speed locomotion at 2.5 m/s linear velocity and 3.0 rad/s angular velocity across diverse terrains, including stairs, slopes, gravel, and low-friction flat surfaces--whereas previous methods have generally been limited to high speeds on flat terrain or low speeds on complex terrain. Experimental results demonstrate that LP-ACRL exhibits strong scalability and real-world applicability, providing a robust baseline for future research on curriculum generation in complex, wide-ranging robotic learning task spaces.
DiffusionCinema: Text-to-Aerial Cinematography
We propose a novel Unmanned Aerial Vehicles (UAV) assisted creative capture system that leverages diffusion models to interpret high-level natural language prompts and automatically generate optimal flight trajectories for cinematic video recording. Instead of manually piloting the drone, the user simply describes the desired shot (e.g., "orbit around me slowly from the right and reveal the background waterfall"). Our system encodes the prompt along with an initial visual snapshot from the onboard camera, and a diffusion model samples plausible spatio-temporal motion plans that satisfy both the scene geometry and shot semantics. The generated flight trajectory is then executed autonomously by the UAV to record smooth, repeatable video clips that match the prompt. User evaluation using NASA-TLX showed a significantly lower overall workload with our interface (M = 21.6) compared to a traditional remote controller (M = 58.1), demonstrating a substantial reduction in perceived effort. Mental demand (M = 11.5 vs. 60.5) and frustration (M = 14.0 vs. 54.5) were also markedly lower for our system, confirming clear usability advantages in autonomous text-driven flight control. This project demonstrates a new interaction paradigm: text-to-cinema flight, where diffusion models act as the "creative operator" converting story intentions directly into aerial motion.
Eye-Tracking-Driven Control in Daily Task Assistance for Assistive Robotic Arms
Shared control improves Human-Robot Interaction by reducing the user's workload and increasing the robot's autonomy. It allows robots to perform tasks under the user's supervision. Current eye-tracking-driven approaches face several challenges. These include accuracy issues in 3D gaze estimation and difficulty interpreting gaze when differentiating between multiple tasks. We present an eye-tracking-driven control framework, aimed at enabling individuals with severe physical disabilities to perform daily tasks independently. Our system uses task pictograms as fiducial markers combined with a feature matching approach that transmits data of the selected object to accomplish necessary task related measurements with an eye-in-hand configuration. This eye-tracking control does not require knowledge of the user's position in relation to the object. The framework correctly interpreted object and task selection in up to 97.9% of measurements. Issues were found in the evaluation, that were improved and shared as lessons learned. The open-source framework can be adapted to new tasks and objects due to the integration of state-of-the-art object detection models.
comment: 23 pages, 6 figures, publication in review process
Real-Time Synchronized Interaction Framework for Emotion-Aware Humanoid Robots
As humanoid robots increasingly introduced into social scene, achieving emotionally synchronized multimodal interaction remains a significant challenges. To facilitate the further adoption and integration of humanoid robots into service roles, we present a real-time framework for NAO robots that synchronizes speech prosody with full-body gestures through three key innovations: (1) A dual-channel emotion engine where large language model (LLM) simultaneously generates context-aware text responses and biomechanically feasible motion descriptors, constrained by a structured joint movement library; (2) Duration-aware dynamic time warping for precise temporal alignment of speech output and kinematic motion keyframes; (3) Closed-loop feasibility verification ensuring gestures adhere to NAO's physical joint limits through real-time adaptation. Evaluations show 21% higher emotional alignment compared to rule-based systems, achieved by coordinating vocal pitch (arousal-driven) with upper-limb kinematics while maintaining lower-body stability. By enabling seamless sensorimotor coordination, this framework advances the deployment of context-aware social robots in dynamic applications such as personalized healthcare, interactive education, and responsive customer service platforms.
comment: 6 pages, 6 figures
EMPM: Embodied MPM for Modeling and Simulation of Deformable Objects
Modeling deformable objects - especially continuum materials - in a way that is physically plausible, generalizable, and data-efficient remains challenging across 3D vision, graphics, and robotic manipulation. Many existing methods oversimplify the rich dynamics of deformable objects or require large training sets, which often limits generalization. We introduce embodied MPM (EMPM), a deformable object modeling and simulation framework built on a differentiable Material Point Method (MPM) simulator that captures the dynamics of challenging materials. From multi-view RGB-D videos, our approach reconstructs geometry and appearance, then uses an MPM physics engine to simulate object behavior by minimizing the mismatch between predicted and observed visual data. We further optimize MPM parameters online using sensory feedback, enabling adaptive, robust, and physics-aware object representations that open new possibilities for robotic manipulation of complex deformables. Experiments show that EMPM outperforms spring-mass baseline models. Project website: https://embodied-mpm.github.io.
Quantifying Ergonomics in the Elevate Soft Robotic Suit
Soft robotic suits have the potential to rehabilitate, assist, and augment the human body. The low weight, cost, and minimal form-factor of these devices make them ideal for daily use by both healthy and impaired individuals. However, challenges associated with data-driven, user-specific, and comfort-first design of human-robot interfaces using soft materials limit their widespread translation and adoption. In this work, we present the quantitative evaluation of ergonomics and comfort of the Elevate suit - a cable driven soft robotic suit that assists shoulder elevation. Using a motion-capture system and force sensors, we measured the suit's ergonomics during assisted shoulder elevation up to 70 degrees. Two 4-hour sessions were conducted with one subject, involving transmitting cable tensions of up to 200N with no discomfort reported. We estimated that the pressure applied to the shoulder during assisted movements was within the range seen in a human grasp (approximately 69.1-85.1kPa), and estimated volumetric compression of <3% and <8% across the torso and upper arm, respectively. These results provide early validation of Elevate's ergonomic design in preparation for future studies with patient groups.
comment: 5 pages, 3 figures. Submitted to IEEE-EMBC 2026
Kinematify: Open-Vocabulary Synthesis of High-DoF Articulated Objects
A deep understanding of kinematic structures and movable components is essential for enabling robots to manipulate objects and model their own articulated forms. Such understanding is captured through articulated objects, which are essential for tasks such as physical simulation, motion planning, and policy learning. However, creating these models, particularly for objects with high degrees of freedom (DoF), remains a significant challenge. Existing methods typically rely on motion sequences or strong assumptions from hand-curated datasets, which hinders scalability. In this paper, we introduce Kinematify, an automated framework that synthesizes articulated objects directly from arbitrary RGB images or textual descriptions. Our method addresses two core challenges: (i) inferring kinematic topologies for high-DoF objects and (ii) estimating joint parameters from static geometry. To achieve this, we combine MCTS search for structural inference with geometry-driven optimization for joint reasoning, producing physically consistent and functionally valid descriptions. We evaluate Kinematify on diverse inputs from both synthetic and real-world environments, demonstrating improvements in registration and kinematic topology accuracy over prior work.
comment: Project Page: https://sites.google.com/deemos.com/kinematify
Monocular pose estimation of articulated open surgery tools -- in the wild
This work presents a framework for monocular 6D pose estimation of surgical instruments in open surgery, addressing challenges such as object articulations, specularity, occlusions, and synthetic-to-real domain adaptation. The proposed approach consists of three main components: $(1)$ synthetic data generation pipeline that incorporates 3D scanning of surgical tools with articulation rigging and physically-based rendering; $(2)$ a tailored pose estimation framework combining tool detection with pose and articulation estimation; and $(3)$ a training strategy on synthetic and real unannotated video data, employing domain adaptation with automatically generated pseudo-labels. Evaluations conducted on real data of open surgery demonstrate the good performance and real-world applicability of the proposed framework, highlighting its potential for integration into medical augmented reality and robotic systems. The approach eliminates the need for extensive manual annotation of real surgical data.
comment: Author Accepted Manuscript (AAM)
PointMapPolicy: Structured Point Cloud Processing for Multi-Modal Imitation Learning
Robotic manipulation systems benefit from complementary sensing modalities, where each provides unique environmental information. Point clouds capture detailed geometric structure, while RGB images provide rich semantic context. Current point cloud methods struggle to capture fine-grained detail, especially for complex tasks, which RGB methods lack geometric awareness, which hinders their precision and generalization. We introduce PointMapPolicy, a novel approach that conditions diffusion policies on structured grids of points without downsampling. The resulting data type makes it easier to extract shape and spatial relationships from observations, and can be transformed between reference frames. Yet due to their structure in a regular grid, we enable the use of established computer vision techniques directly to 3D data. Using xLSTM as a backbone, our model efficiently fuses the point maps with RGB data for enhanced multi-modal perception. Through extensive experiments on the RoboCasa and CALVIN benchmarks and real robot evaluations, we demonstrate that our method achieves state-of-the-art performance across diverse manipulation tasks. The overview and demos are available on our project page: https://point-map.github.io/Point-Map/
Accurate Calibration and Robust LiDAR-Inertial Odometry for Spinning Actuated LiDAR Systems RA-L
Accurate calibration and robust localization are fundamental for downstream tasks in spinning actuated LiDAR applications. Existing methods, however, require parameterizing extrinsic parameters based on different mounting configurations, limiting their generalizability. Additionally, spinning actuated LiDAR inevitably scans featureless regions, which complicates the balance between scanning coverage and localization robustness. To address these challenges, this letter presents a targetless LiDAR-motor calibration (LM-Calibr) on the basis of the Denavit-Hartenberg convention and an environmental adaptive LiDAR-inertial odometry (EVA-LIO). LM-Calibr supports calibration of LiDAR-motor systems with various mounting configurations. Extensive experiments demonstrate its accuracy and convergence across different scenarios, mounting angles, and initial values. Additionally, EVA-LIO adaptively selects downsample rates and map resolutions according to spatial scale. This adaptivity enables the actuator to operate at maximum speed, thereby enhancing scanning completeness while ensuring robust localization, even when LiDAR briefly scans featureless areas. The source code and hardware design are available on GitHub: \textcolor{blue}{\href{https://github.com/zijiechenrobotics/lm_calibr}{github.com/zijiechenrobotics/lm\_calibr}}. The video is available at \textcolor{blue}{\href{https://youtu.be/cZyyrkmeoSk}{youtu.be/cZyyrkmeoSk}}
comment: This article has been accepted for publication in IEEE Robotics and Automation Letters (RA-L). Personal use is permitted. All other uses require IEEE permission
LangForce: Bayesian Decomposition of Vision Language Action Models via Latent Action Queries
Vision-Language-Action (VLA) models have shown promise in robot manipulation but often struggle to generalize to new instructions or complex multi-task scenarios. We identify a critical pathology in current training paradigms where goal-driven data collection creates a dataset bias. In such datasets, language instructions are highly predictable from visual observations alone, causing the conditional mutual information between instructions and actions to vanish, a phenomenon we term Information Collapse. Consequently, models degenerate into vision-only policies that ignore language constraints and fail in out-of-distribution (OOD) settings. To address this, we propose LangForce, a novel framework that enforces instruction following via Bayesian decomposition. By introducing learnable Latent Action Queries, we construct a dual-branch architecture to estimate both a vision-only prior $p(a \mid v)$ and a language-conditioned posterior $π(a \mid v, \ell)$. We then optimize the policy to maximize the conditional Pointwise Mutual Information (PMI) between actions and instructions. This objective effectively penalizes the vision shortcut and rewards actions that explicitly explain the language command. Without requiring new data, LangForce significantly improves generalization. Extensive experiments across on SimplerEnv and RoboCasa demonstrate substantial gains, including an 11.3% improvement on the challenging OOD SimplerEnv benchmark, validating the ability of our approach to robustly ground language in action.
Haptic Light-Emitting Diodes: Miniature, Luminous Tactile Actuators
We present Haptic Light-Emitting Diodes (HLEDs), luminous thermopneumatic actuators that directly convert pulsed light into mechanical forces and displacements. Each device packages a miniature surface-mount LED in a gas-filled cavity that contains a low-inertia graphite photoabsorber. The cavity is sealed by an elastic membrane, which functions as a working diaphragm. Brief optical pulses heat the photoabsorber, which heats the gas. The resulting rapid pressure increases generate forces and displacements at the working diaphragm. Millimeter-scale HLEDs produce forces exceeding 0.4 N and displacements of 0.9 mm at low voltages, with 5 to 100 ms response times, making them attractive as actuators providing tactile feedback in human-machine interfaces. Unusually, these actuators are also light-emitting, as a fraction of optical energy is transmitted through the membrane. These photomechanical actuators have many potential applications in tactile displays, human interface engineering, wearable computing, and other areas.
Point Bridge: 3D Representations for Cross Domain Policy Learning
Robot foundation models are beginning to deliver on the promise of generalist robotic agents, yet progress remains constrained by the scarcity of large-scale real-world manipulation datasets. Simulation and synthetic data generation offer a scalable alternative, but their usefulness is limited by the visual domain gap between simulation and reality. In this work, we present Point Bridge, a framework that leverages unified, domain-agnostic point-based representations to unlock synthetic datasets for zero-shot sim-to-real policy transfer, without explicit visual or object-level alignment. Point Bridge combines automated point-based representation extraction via Vision-Language Models (VLMs), transformer-based policy learning, and efficient inference-time pipelines to train capable real-world manipulation agents using only synthetic data. With additional co-training on small sets of real demonstrations, Point Bridge further improves performance, substantially outperforming prior vision-based sim-and-real co-training methods. It achieves up to 44% gains in zero-shot sim-to-real transfer and up to 66% with limited real data across both single-task and multitask settings. Videos of the robot are best viewed at: https://pointbridge3d.github.io/
Model-free source seeking of exponentially convergent unicycle: theoretical and robotic experimental results
This paper introduces a novel model-free, real-time unicycle-based source seeking design. This design autonomously steers the unicycle dynamic system towards the extremum point of an objective function or physical/scalar signal that is unknown expression-wise, but accessible via measurements. A key contribution of this paper is that the introduced design converges exponentially to the extremum point of objective functions (or scalar signals) that behave locally like a higher-degree power function (e.g., fourth-degree polynomial function) as opposed to locally quadratic objective functions, the usual case in literature. We provide theoretical results and design characterization, supported by a variety of simulation results that demonstrate the robustness of the proposed design, including cases with different initial conditions and measurement delays/noise. Also, for the first time in the literature, we provide experimental robotic results that demonstrate the effectiveness of the proposed design and its exponential convergence ability. These experimental results confirm that the proposed exponentially convergent extremum seeking design can be practically realized on a physical robotic platform under real-world sensing and actuation constraints.
Computer Vision and Pattern Recognition 68
Stylizing ViT: Anatomy-Preserving Instance Style Transfer for Domain Generalization
Deep learning models in medical image analysis often struggle with generalizability across domains and demographic groups due to data heterogeneity and scarcity. Traditional augmentation improves robustness, but fails under substantial domain shifts. Recent advances in stylistic augmentation enhance domain generalization by varying image styles but fall short in terms of style diversity or by introducing artifacts into the generated images. To address these limitations, we propose Stylizing ViT, a novel Vision Transformer encoder that utilizes weight-shared attention blocks for both self- and cross-attention. This design allows the same attention block to maintain anatomical consistency through self-attention while performing style transfer via cross-attention. We assess the effectiveness of our method for domain generalization by employing it for data augmentation on three distinct image classification tasks in the context of histopathology and dermatology. Results demonstrate an improved robustness (up to +13% accuracy) over the state of the art while generating perceptually convincing images without artifacts. Additionally, we show that Stylizing ViT is effective beyond training, achieving a 17% performance improvement during inference when used for test-time augmentation. The source code is available at https://github.com/sdoerrich97/stylizing-vit .
comment: Accepted at 23rd IEEE International Symposium on Biomedical Imaging (IEEE ISBI 2026)
ME-WARD: A multimodal ergonomic analysis tool for musculoskeletal risk assessment from inertial and video data in working plac
This study presents ME-WARD (Multimodal Ergonomic Workplace Assessment and Risk from Data), a novel system for ergonomic assessment and musculoskeletal risk evaluation that implements the Rapid Upper Limb Assessment (RULA) method. ME-WARD is designed to process joint angle data from motion capture systems, including inertial measurement unit (IMU)-based setups, and deep learning human body pose tracking models. The tool's flexibility enables ergonomic risk assessment using any system capable of reliably measuring joint angles, extending the applicability of RULA beyond proprietary setups. To validate its performance, the tool was tested in an industrial setting during the assembly of conveyor belts, which involved high-risk tasks such as inserting rods and pushing conveyor belt components. The experiments leveraged gold standard IMU systems alongside a state-of-the-art monocular 3D pose estimation system. The results confirmed that ME-WARD produces reliable RULA scores that closely align with IMU-derived metrics for flexion-dominated movements and comparable performance with the monocular system, despite limitations in tracking lateral and rotational motions. This work highlights the potential of integrating multiple motion capture technologies into a unified and accessible ergonomic assessment pipeline. By supporting diverse input sources, including low-cost video-based systems, the proposed multimodal approach offers a scalable, cost-effective solution for ergonomic assessments, paving the way for broader adoption in resource-constrained industrial environments.
comment: 19 pages
Sponge Tool Attack: Stealthy Denial-of-Efficiency against Tool-Augmented Agentic Reasoning
Enabling large language models (LLMs) to solve complex reasoning tasks is a key step toward artificial general intelligence. Recent work augments LLMs with external tools to enable agentic reasoning, achieving high utility and efficiency in a plug-and-play manner. However, the inherent vulnerabilities of such methods to malicious manipulation of the tool-calling process remain largely unexplored. In this work, we identify a tool-specific attack surface and propose Sponge Tool Attack (STA), which disrupts agentic reasoning solely by rewriting the input prompt under a strict query-only access assumption. Without any modification on the underlying model or the external tools, STA converts originally concise and efficient reasoning trajectories into unnecessarily verbose and convoluted ones before arriving at the final answer. This results in substantial computational overhead while remaining stealthy by preserving the original task semantics and user intent. To achieve this, we design STA as an iterative, multi-agent collaborative framework with explicit rewritten policy control, and generates benign-looking prompt rewrites from the original one with high semantic fidelity. Extensive experiments across 6 models (including both open-source models and closed-source APIs), 12 tools, 4 agentic frameworks, and 13 datasets spanning 5 domains validate the effectiveness of STA.
Saliency Driven Imagery Preprocessing for Efficient Compression -- Industrial Paper
The compression of satellite imagery remains an important research area as hundreds of terabytes of images are collected every day, which drives up storage and bandwidth costs. Although progress has been made in increasing the resolution of these satellite images, many downstream tasks are only interested in small regions of any given image. These areas of interest vary by task but, once known, can be used to optimize how information within the image is encoded. Whereas standard image encoding methods, even those optimized for remote sensing, work on the whole image equally, there are emerging methods that can be guided by saliency maps to focus on important areas. In this work we show how imagery preprocessing techniques driven by saliency maps can be used with traditional lossy compression coding standards to create variable rate image compression within a single large satellite image. Specifically, we use variable sized smoothing kernels that map to different quantized saliency levels to process imagery pixels in order to optimize downstream compression and encoding schemes.
comment: Proceedings of the 31st ACM International Conference on Advances in Geographic Information Systems (2023)
In-situ On-demand Digital Image Correlation: A New Data-rich Characterization Paradigm for Deformation and Damage Development in Solids
Digital image correlation (DIC) has become one of the most popular methods for deformation characterization in experimental mechanics. DIC is based on optical images taken during experimentation and post-test image processing. Its advantages include the capability to capture full-field deformation in a non-contact manner, the robustness in characterizing excessive deformation induced by events such as yielding and cracking, and the versatility to integrate optical cameras with a variety of open-source and commercial codes. In this paper, we developed a new paradigm of DIC analysis by integrating camera control into the DIC process flow. The essential idea is to dynamically increase the camera imaging frame rate with excessive deformation or deformation rate, while maintaining a relatively low imaging frame rate with small and slow deformation. We refer to this new DIC paradigm as in-situ on-demand (ISOD) DIC. ISOD DIC enables real-time deformation analysis, visualization, and closed-loop camera control. ISOD DIC has captured approximately 178% more images than conventional DIC for samples undergoing crack growth due to its dynamically adjusted frame rate, with the potential to significantly enhance data richness for damage inspection without consuming excessive storage space and analysis time, thereby benefiting the characterization of intrinsic constitutive behaviors and damage mechanisms
OTI: A Model-free and Visually Interpretable Measure of Image Attackability
Despite the tremendous success of neural networks, benign images can be corrupted by adversarial perturbations to deceive these models. Intriguingly, images differ in their attackability. Specifically, given an attack configuration, some images are easily corrupted, whereas others are more resistant. Evaluating image attackability has important applications in active learning, adversarial training, and attack enhancement. This prompts a growing interest in developing attackability measures. However, existing methods are scarce and suffer from two major limitations: (1) They rely on a model proxy to provide prior knowledge (e.g., gradients or minimal perturbation) to extract model-dependent image features. Unfortunately, in practice, many task-specific models are not readily accessible. (2) Extracted features characterizing image attackability lack visual interpretability, obscuring their direct relationship with the images. To address these, we propose a novel Object Texture Intensity (OTI), a model-free and visually interpretable measure of image attackability, which measures image attackability as the texture intensity of the image's semantic object. Theoretically, we describe the principles of OTI from the perspectives of decision boundaries as well as the mid- and high-frequency characteristics of adversarial perturbations. Comprehensive experiments demonstrate that OTI is effective and computationally efficient. In addition, our OTI provides the adversarial machine learning community with a visual understanding of attackability.
Will It Zero-Shot?: Will It Zero-Shot?: Predicting Zero-Shot Classification Performance For Arbitrary Queries
Vision-Language Models like CLIP create aligned embedding spaces for text and images, making it possible for anyone to build a visual classifier by simply naming the classes they want to distinguish. However, a model that works well in one domain may fail in another, and non-expert users have no straightforward way to assess whether their chosen VLM will work on their problem. We build on prior work using text-only comparisons to evaluate how well a model works for a given natural language task, and explore approaches that also generate synthetic images relevant to that task to evaluate and refine the prediction of zero-shot accuracy. We show that generated imagery to the baseline text-only scores substantially improves the quality of these predictions. Additionally, it gives a user feedback on the kinds of images that were used to make the assessment. Experiments on standard CLIP benchmark datasets demonstrate that the image-based approach helps users predict, without any labeled examples, whether a VLM will be effective for their application.
FMIR, a foundation model-based Image Registration Framework for Robust Image Registration
Deep learning has revolutionized medical image registration by achieving unprecedented speeds, yet its clinical application is hindered by a limited ability to generalize beyond the training domain, a critical weakness given the typically small scale of medical datasets. In this paper, we introduce FMIR, a foundation model-based registration framework that overcomes this limitation.Combining a foundation model-based feature encoder for extracting anatomical structures with a general registration head, and trained with a channel regularization strategy on just a single dataset, FMIR achieves state-of-the-art(SOTA) in-domain performance while maintaining robust registration on out-of-domain images.Our approach demonstrates a viable path toward building generalizable medical imaging foundation models with limited resources. The code is available at https://github.com/Monday0328/FMIR.git.
BMDS-Net: A Bayesian Multi-Modal Deep Supervision Network for Robust Brain Tumor Segmentation
Accurate brain tumor segmentation from multi-modal magnetic resonance imaging (MRI) is a prerequisite for precise radiotherapy planning and surgical navigation. While recent Transformer-based models such as Swin UNETR have achieved impressive benchmark performance, their clinical utility is often compromised by two critical issues: sensitivity to missing modalities (common in clinical practice) and a lack of confidence calibration. Merely chasing higher Dice scores on idealized data fails to meet the safety requirements of real-world medical deployment. In this work, we propose BMDS-Net, a unified framework that prioritizes clinical robustness and trustworthiness over simple metric maximization. Our contribution is three-fold. First, we construct a robust deterministic backbone by integrating a Zero-Init Multimodal Contextual Fusion (MMCF) module and a Residual-Gated Deep Decoder Supervision (DDS) mechanism, enabling stable feature learning and precise boundary delineation with significantly reduced Hausdorff Distance, even under modality corruption. Second, and most importantly, we introduce a memory-efficient Bayesian fine-tuning strategy that transforms the network into a probabilistic predictor, providing voxel-wise uncertainty maps to highlight potential errors for clinicians. Third, comprehensive experiments on the BraTS 2021 dataset demonstrate that BMDS-Net not only maintains competitive accuracy but, more importantly, exhibits superior stability in missing-modality scenarios where baseline models fail. The source code is publicly available at https://github.com/RyanZhou168/BMDS-Net.
comment: 16 pages, 5 figures. Manuscript prepared for submission to ACM TOMM
SpatialMath: Spatial Comprehension-Infused Symbolic Reasoning for Mathematical Problem-Solving
Multimodal Small-to-Medium sized Language Models (MSLMs) have demonstrated strong capabilities in integrating visual and textual information but still face significant limitations in visual comprehension and mathematical reasoning, particularly in geometric problems with diverse levels of visual infusion. Current models struggle to accurately decompose intricate visual inputs and connect perception with structured reasoning, leading to suboptimal performance. To address these challenges, we propose SpatialMath, a novel Spatial Comprehension-Infused Symbolic Reasoning Framework designed to integrate spatial representations into structured symbolic reasoning chains. SpatialMath employs a specialized perception module to extract spatially-grounded representations from visual diagrams, capturing critical geometric structures and spatial relationships. These representations are then methodically infused into symbolic reasoning chains, facilitating visual comprehension-aware structured reasoning. To this end, we introduce MATHVERSE-PLUS, a novel dataset containing structured visual interpretations and step-by-step reasoning paths for vision-intensive mathematical problems. SpatialMath significantly outperforms strong multimodal baselines, achieving up to 10 percentage points improvement over supervised fine-tuning with data augmentation in vision-intensive settings. Robustness analysis reveals that enhanced spatial representations directly improve reasoning accuracy, reinforcing the need for structured perception-to-reasoning pipelines in MSLMs.
PhaSR: Generalized Image Shadow Removal with Physically Aligned Priors
Shadow removal under diverse lighting conditions requires disentangling illumination from intrinsic reflectance, a challenge compounded when physical priors are not properly aligned. We propose PhaSR (Physically Aligned Shadow Removal), addressing this through dual-level prior alignment to enable robust performance from single-light shadows to multi-source ambient lighting. First, Physically Aligned Normalization (PAN) performs closed-form illumination correction via Gray-world normalization, log-domain Retinex decomposition, and dynamic range recombination, suppressing chromatic bias. Second, Geometric-Semantic Rectification Attention (GSRA) extends differential attention to cross-modal alignment, harmonizing depth-derived geometry with DINO-v2 semantic embeddings to resolve modal conflicts under varying illumination. Experiments show competitive performance in shadow removal with lower complexity and generalization to ambient lighting where traditional methods fail under multi-source illumination. Our source code is available at https://github.com/ming053l/PhaSR.
comment: Project Page: https://ming053l.github.io/PhaSR
ReflexSplit: Single Image Reflection Separation via Layer Fusion-Separation
Single Image Reflection Separation (SIRS) disentangles mixed images into transmission and reflection layers. Existing methods suffer from transmission-reflection confusion under nonlinear mixing, particularly in deep decoder layers, due to implicit fusion mechanisms and inadequate multi-scale coordination. We propose ReflexSplit, a dual-stream framework with three key innovations. (1) Cross-scale Gated Fusion (CrGF) adaptively aggregates semantic priors, texture details, and decoder context across hierarchical depths, stabilizing gradient flow and maintaining feature consistency. (2) Layer Fusion-Separation Blocks (LFSB) alternate between fusion for shared structure extraction and differential separation for layer-specific disentanglement. Inspired by Differential Transformer, we extend attention cancellation to dual-stream separation via cross-stream subtraction. (3) Curriculum training progressively strengthens differential separation through depth-dependent initialization and epoch-wise warmup. Extensive experiments on synthetic and real-world benchmarks demonstrate state-of-the-art performance with superior perceptual quality and robust generalization. Our code is available at https://github.com/wuw2135/ReflexSplit.
comment: Project page: https://wuw2135.github.io/ReflexSplit-ProjectPage/
Entropy-Guided Agreement-Diversity: A Semi-Supervised Active Learning Framework for Fetal Head Segmentation in Ultrasound
Fetal ultrasound (US) data is often limited due to privacy and regulatory restrictions, posing challenges for training deep learning (DL) models. While semi-supervised learning (SSL) is commonly used for fetal US image analysis, existing SSL methods typically rely on random limited selection, which can lead to suboptimal model performance by overfitting to homogeneous labeled data. To address this, we propose a two-stage Active Learning (AL) sampler, Entropy-Guided Agreement-Diversity (EGAD), for fetal head segmentation. Our method first selects the most uncertain samples using predictive entropy, and then refines the final selection using the agreement-diversity score combining cosine similarity and mutual information. Additionally, our SSL framework employs a consistency learning strategy with feature downsampling to further enhance segmentation performance. In experiments, SSL-EGAD achieves an average Dice score of 94.57\% and 96.32\% on two public datasets for fetal head segmentation, using 5\% and 10\% labeled data for training, respectively. Our method outperforms current SSL models and showcases consistent robustness across diverse pregnancy stage data. The code is available on \href{https://github.com/13204942/Semi-supervised-EGAD}{GitHub}.
comment: Accepted at ISBI 2026
Coronary Artery Segmentation and Vessel-Type Classification in X-Ray Angiography
X-ray coronary angiography (XCA) is the clinical reference standard for assessing coronary artery disease, yet quantitative analysis is limited by the difficulty of robust vessel segmentation in routine data. Low contrast, motion, foreshortening, overlap, and catheter confounding degrade segmentation and contribute to domain shift across centers. Reliable segmentation, together with vessel-type labeling, enables vessel-specific coronary analytics and downstream measurements that depend on anatomical localization. From 670 cine sequences (407 subjects), we select a best frame near peak opacification using a low-intensity histogram criterion and apply joint super-resolution and enhancement. We benchmark classical Meijering, Frangi, and Sato vesselness filters under per-image oracle tuning, a single global mean setting, and per-image parameter prediction via Support Vector Regression (SVR). Neural baselines include U-Net, FPN, and a Swin Transformer, trained with coronary-only and merged coronary+catheter supervision. A second stage assigns vessel identity (LAD, LCX, RCA). External evaluation uses the public DCA1 cohort. SVR per-image tuning improves Dice over global means for all classical filters (e.g., Frangi: 0.759 vs. 0.741). Among deep models, FPN attains 0.914+/-0.007 Dice (coronary-only), and merged coronary+catheter labels further improve to 0.931+/-0.006. On DCA1 as a strict external test, Dice drops to 0.798 (coronary-only) and 0.814 (merged), while light in-domain fine-tuning recovers to 0.881+/-0.014 and 0.882+/-0.015. Vessel-type labeling achieves 98.5% accuracy (Dice 0.844) for RCA, 95.4% (0.786) for LAD, and 96.2% (0.794) for LCX. Learned per-image tuning strengthens classical pipelines, while high-resolution FPN models and merged-label supervision improve stability and external transfer with modest adaptation.
CoT-Seg: Rethinking Segmentation with Chain-of-Thought Reasoning and Self-Correction
Existing works of reasoning segmentation often fall short in complex cases, particularly when addressing complicated queries and out-of-domain images. Inspired by the chain-of-thought reasoning, where harder problems require longer thinking steps/time, this paper aims to explore a system that can think step-by-step, look up information if needed, generate results, self-evaluate its own results, and refine the results, in the same way humans approach harder questions. We introduce CoT-Seg, a training-free framework that rethinks reasoning segmentation by combining chain-of-thought reasoning with self-correction. Instead of fine-tuning, CoT-Seg leverages the inherent reasoning ability of pre-trained MLLMs (GPT-4o) to decompose queries into meta-instructions, extract fine-grained semantics from images, and identify target objects even under implicit or complex prompts. Moreover, CoT-Seg incorporates a self-correction stage: the model evaluates its own segmentation against the original query and reasoning trace, identifies mismatches, and iteratively refines the mask. This tight integration of reasoning and correction significantly improves reliability and robustness, especially in ambiguous or error-prone cases. Furthermore, our CoT-Seg framework allows easy incorporation of retrieval-augmented reasoning, enabling the system to access external knowledge when the input lacks sufficient information. To showcase CoT-Seg's ability to handle very challenging cases ,we introduce a new dataset ReasonSeg-Hard. Our results highlight that combining chain-of-thought reasoning, self-correction, offers a powerful paradigm for vision-language integration driven segmentation.
comment: Project page: https://danielshkao.github.io/cot-seg.html
Cloud-Enabled IoT System for Real-Time Environmental Monitoring and Remote Device Control Using Firebase
The proliferation of Internet of Things (IoT) devices has created unprecedented opportunities for remote monitoring and control applications across various domains. Traditional monitoring systems often suffer from limitations in real-time data accessibility, remote controllability, and cloud integration. This paper presents a cloud-enabled IoT system that leverages Google's Firebase Realtime Database for synchronized environmental monitoring and device control. The system utilizes an ESP32 microcontroller to interface with a DHT22 temperature/humidity sensor and an HC-SR04 ultrasonic distance sensor, while enabling remote control of two LED indicators through a cloud-based interface. Real-time sensor data is transmitted to Firebase, providing a synchronized platform accessible from multiple devices simultaneously. Experimental results demonstrate reliable data transmission with 99.2\% success rate, real-time control latency under 1.5 seconds, and persistent data storage for historical analysis. The system architecture offers a scalable framework for various IoT applications, from smart home automation to industrial monitoring, with a total implementation cost of \$32.50. The integration of Firebase provides robust cloud capabilities without requiring complex server infrastructure, making advanced IoT applications accessible to developers and researchers with limited resources.
Source-Free Domain Adaptation by Optimizing Batch-Wise Cosine Similarity
Source-Free Domain Adaptation (SFDA) is an emerging area of research that aims to adapt a model trained on a labeled source domain to an unlabeled target domain without accessing the source data. Most of the successful methods in this area rely on the concept of neighborhood consistency but are prone to errors due to misleading neighborhood information. In this paper, we explore this approach from the point of view of learning more informative clusters and mitigating the effect of noisy neighbors using a concept called neighborhood signature, and demonstrate that adaptation can be achieved using just a single loss term tailored to optimize the similarity and dissimilarity of predictions of samples in the target domain. In particular, our proposed method outperforms existing methods in the challenging VisDA dataset while also yielding competitive results on other benchmark datasets.
HAAF: Hierarchical Adaptation and Alignment of Foundation Models for Few-Shot Pathology Anomaly Detection
Precision pathology relies on detecting fine-grained morphological abnormalities within specific Regions of Interest (ROIs), as these local, texture-rich cues - rather than global slide contexts - drive expert diagnostic reasoning. While Vision-Language (V-L) models promise data efficiency by leveraging semantic priors, adapting them faces a critical Granularity Mismatch, where generic representations fail to resolve such subtle defects. Current adaptation methods often treat modalities as independent streams, failing to ground semantic prompts in ROI-specific visual contexts. To bridge this gap, we propose the Hierarchical Adaptation and Alignment Framework (HAAF). At its core is a novel Cross-Level Scaled Alignment (CLSA) mechanism that enforces a sequential calibration order: visual features first inject context into text prompts to generate content-adaptive descriptors, which then spatially guide the visual encoder to spotlight anomalies. Additionally, a dual-branch inference strategy integrates semantic scores with geometric prototypes to ensure stability in few-shot settings. Experiments on four benchmarks show HAAF significantly outperforms state-of-the-art methods and effectively scales with domain-specific backbones (e.g., CONCH) in low-resource scenarios.
ReLE: A Scalable System and Structured Benchmark for Diagnosing Capability Anisotropy in Chinese LLMs
Large Language Models (LLMs) have achieved rapid progress in Chinese language understanding, yet accurately evaluating their capabilities remains challenged by benchmark saturation and prohibitive computational costs. While static leaderboards provide snapshot rankings, they often mask the structural trade-offs between capabilities. In this work, we present ReLE (Robust Efficient Live Evaluation), a scalable system designed to diagnose Capability Anisotropy, the non-uniformity of model performance across domains. Using ReLE, we evaluate 304 models (189 commercial, 115 open-source) across a Domain $\times$ Capability orthogonal matrix comprising 207,843 samples. We introduce two methodological contributions to address current evaluation pitfalls: (1) A Symbolic-Grounded Hybrid Scoring Mechanism that eliminates embedding-based false positives in reasoning tasks; (2) A Dynamic Variance-Aware Scheduler based on Neyman allocation with noise correction, which reduces compute costs by 70\% compared to full-pass evaluations while maintaining a ranking correlation of $ρ=0.96$. Our analysis reveals that aggregate rankings are highly sensitive to weighting schemes: models exhibit a Rank Stability Amplitude (RSA) of 11.4 in ReLE versus $\sim$5.0 in traditional benchmarks, confirming that modern models are highly specialized rather than generally superior. We position ReLE not as a replacement for comprehensive static benchmarks, but as a high-frequency diagnostic monitor for the evolving model landscape.
SMV-EAR: Bring Spatiotemporal Multi-View Representation Learning into Efficient Event-Based Action Recognition
Event cameras action recognition (EAR) offers compelling privacy-protecting and efficiency advantages, where temporal motion dynamics is of great importance. Existing spatiotemporal multi-view representation learning (SMVRL) methods for event-based object recognition (EOR) offer promising solutions by projecting H-W-T events along spatial axis H and W, yet are limited by its translation-variant spatial binning representation and naive early concatenation fusion architecture. This paper reexamines the key SMVRL design stages for EAR and propose: (i) a principled spatiotemporal multi-view representation through translation-invariant dense conversion of sparse events, (ii) a dual-branch, dynamic fusion architecture that models sample-wise complementarity between motion features from different views, and (iii) a bio-inspired temporal warping augmentation that mimics speed variability of real-world human actions. On three challenging EAR datasets of HARDVS, DailyDVS-200 and THU-EACT-50-CHL, we show +7.0%, +10.7%, and +10.2% Top-1 accuracy gains over existing SMVRL EOR method with surprising 30.1% reduced parameters and 35.7% lower computations, establishing our framework as a novel and powerful EAR paradigm.
ONRW: Optimizing inversion noise for high-quality and robust watermark
Watermarking methods have always been effective means of protecting intellectual property, yet they face significant challenges. Although existing deep learning-based watermarking systems can hide watermarks in images with minimal impact on image quality, they often lack robustness when encountering image corruptions during transmission, which undermines their practical application value. To this end, we propose a high-quality and robust watermark framework based on the diffusion model. Our method first converts the clean image into inversion noise through a null-text optimization process, and after optimizing the inversion noise in the latent space, it produces a high-quality watermarked image through an iterative denoising process of the diffusion model. The iterative denoising process serves as a powerful purification mechanism, ensuring both the visual quality of the watermarked image and enhancing the robustness of the watermark against various corruptions. To prevent the optimizing of inversion noise from distorting the original semantics of the image, we specifically introduced self-attention constraints and pseudo-mask strategies. Extensive experimental results demonstrate the superior performance of our method against various image corruptions. In particular, our method outperforms the stable signature method by an average of 10\% across 12 different image transformations on COCO datasets. Our codes are available at https://github.com/920927/ONRW.
comment: Preprint. Under review
Physical Prompt Injection Attacks on Large Vision-Language Models
Large Vision-Language Models (LVLMs) are increasingly deployed in real-world intelligent systems for perception and reasoning in open physical environments. While LVLMs are known to be vulnerable to prompt injection attacks, existing methods either require access to input channels or depend on knowledge of user queries, assumptions that rarely hold in practical deployments. We propose the first Physical Prompt Injection Attack (PPIA), a black-box, query-agnostic attack that embeds malicious typographic instructions into physical objects perceivable by the LVLM. PPIA requires no access to the model, its inputs, or internal pipeline, and operates solely through visual observation. It combines offline selection of highly recognizable and semantically effective visual prompts with strategic environment-aware placement guided by spatiotemporal attention, ensuring that the injected prompts are both perceivable and influential on model behavior. We evaluate PPIA across 10 state-of-the-art LVLMs in both simulated and real-world settings on tasks including visual question answering, planning, and navigation, PPIA achieves attack success rates up to 98%, with strong robustness under varying physical conditions such as distance, viewpoint, and illumination. Our code is publicly available at https://github.com/2023cghacker/Physical-Prompt-Injection-Attack.
UCAD: Uncertainty-guided Contour-aware Displacement for semi-supervised medical image segmentation
Existing displacement strategies in semi-supervised segmentation only operate on rectangular regions, ignoring anatomical structures and resulting in boundary distortions and semantic inconsistency. To address these issues, we propose UCAD, an Uncertainty-Guided Contour-Aware Displacement framework for semi-supervised medical image segmentation that preserves contour-aware semantics while enhancing consistency learning. Our UCAD leverages superpixels to generate anatomically coherent regions aligned with anatomy boundaries, and an uncertainty-guided selection mechanism to selectively displace challenging regions for better consistency learning. We further propose a dynamic uncertainty-weighted consistency loss, which adaptively stabilizes training and effectively regularizes the model on unlabeled regions. Extensive experiments demonstrate that UCAD consistently outperforms state-of-the-art semi-supervised segmentation methods, achieving superior segmentation accuracy under limited annotation. The code is available at:https://github.com/dcb937/UCAD.
comment: Accepted by ISBI 2026
PocketGS: On-Device Training of 3D Gaussian Splatting for High Perceptual Modeling
Efficient and high-fidelity 3D scene modeling is a long-standing pursuit in computer graphics. While recent 3D Gaussian Splatting (3DGS) methods achieve impressive real-time modeling performance, they rely on resource-unconstrained training assumptions that fail on mobile devices, which are limited by minute-scale training budgets and hardware-available peak-memory. We present PocketGS, a mobile scene modeling paradigm that enables on-device 3DGS training under these tightly coupled constraints while preserving high perceptual fidelity. Our method resolves the fundamental contradictions of standard 3DGS through three co-designed operators: G builds geometry-faithful point-cloud priors; I injects local surface statistics to seed anisotropic Gaussians, thereby reducing early conditioning gaps; and T unrolls alpha compositing with cached intermediates and index-mapped gradient scattering for stable mobile backpropagation. Collectively, these operators satisfy the competing requirements of training efficiency, memory compactness, and modeling fidelity. Extensive experiments demonstrate that PocketGS is able to outperform the powerful mainstream workstation 3DGS baseline to deliver high-quality reconstructions, enabling a fully on-device, practical capture-to-rendering workflow.
HyDeMiC: A Deep Learning-based Mineral Classifier using Hyperspectral Data
Hyperspectral imaging (HSI) has emerged as a powerful remote sensing tool for mineral exploration, capitalizing on unique spectral signatures of minerals. However, traditional classification methods such as discriminant analysis, logistic regression, and support vector machines often struggle with environmental noise in data, sensor limitations, and the computational complexity of analyzing high-dimensional HSI data. This study presents HyDeMiC (Hyperspectral Deep Learning-based Mineral Classifier), a convolutional neural network (CNN) model designed for robust mineral classification under noisy data. To train HyDeMiC, laboratory-measured hyperspectral data for 115 minerals spanning various mineral groups were used from the United States Geological Survey (USGS) library. The training dataset was generated by convolving reference mineral spectra with an HSI sensor response function. These datasets contained three copper-bearing minerals, Cuprite, Malachite, and Chalcopyrite, used as case studies for performance demonstration. The trained CNN model was evaluated on several synthetic 2D hyperspectral datasets with noise levels of 1%, 2%, 5%, and 10%. Our noisy data analysis aims to replicate realistic field conditions. The HyDeMiC's performance was assessed using the Matthews Correlation Coefficient (MCC), providing a comprehensive measure across different noise regimes. Results demonstrate that HyDeMiC achieved near-perfect classification accuracy (MCC = 1.00) on clean and low-noise datasets and maintained strong performance under moderate noise conditions. These findings emphasize HyDeMiC's robustness in the presence of moderate noise, highlighting its potential for real-world applications in hyperspectral imaging, where noise is often a significant challenge.
NeRF-MIR: Towards High-Quality Restoration of Masked Images with Neural Radiance Fields
Neural Radiance Fields (NeRF) have demonstrated remarkable performance in novel view synthesis. However, there is much improvement room on restoring 3D scenes based on NeRF from corrupted images, which are common in natural scene captures and can significantly impact the effectiveness of NeRF. This paper introduces NeRF-MIR, a novel neural rendering approach specifically proposed for the restoration of masked images, demonstrating the potential of NeRF in this domain. Recognizing that randomly emitting rays to pixels in NeRF may not effectively learn intricate image textures, we propose a \textbf{P}atch-based \textbf{E}ntropy for \textbf{R}ay \textbf{E}mitting (\textbf{PERE}) strategy to distribute emitted rays properly. This enables NeRF-MIR to fuse comprehensive information from images of different views. Additionally, we introduce a \textbf{P}rogressively \textbf{I}terative \textbf{RE}storation (\textbf{PIRE}) mechanism to restore the masked regions in a self-training process. Furthermore, we design a dynamically-weighted loss function that automatically recalibrates the loss weights for masked regions. As existing datasets do not support NeRF-based masked image restoration, we construct three masked datasets to simulate corrupted scenarios. Extensive experiments on real data and constructed datasets demonstrate the superiority of NeRF-MIR over its counterparts in masked image restoration.
comment: 14 pages, 15 figures
Revisiting Lightweight Low-Light Image Enhancement: From a YUV Color Space Perspective
In the current era of mobile internet, Lightweight Low-Light Image Enhancement (L3IE) is critical for mobile devices, which faces a persistent trade-off between visual quality and model compactness. While recent methods employ disentangling strategies to simplify lightweight architectural design, such as Retinex theory and YUV color space transformations, their performance is fundamentally limited by overlooking channel-specific degradation patterns and cross-channel interactions. To address this gap, we perform a frequency-domain analysis that confirms the superiority of the YUV color space for L3IE. We identify a key insight: the Y channel primarily loses low-frequency content, while the UV channels are corrupted by high-frequency noise. Leveraging this finding, we propose a novel YUV-based paradigm that strategically restores channels using a Dual-Stream Global-Local Attention module for the Y channel, a Y-guided Local-Aware Frequency Attention module for the UV channels, and a Guided Interaction module for final feature fusion. Extensive experiments validate that our model establishes a new state-of-the-art on multiple benchmarks, delivering superior visual quality with a significantly lower parameter count.
comment: Tech report
STARS: Shared-specific Translation and Alignment for missing-modality Remote Sensing Semantic Segmentation
Multimodal remote sensing technology significantly enhances the understanding of surface semantics by integrating heterogeneous data such as optical images, Synthetic Aperture Radar (SAR), and Digital Surface Models (DSM). However, in practical applications, the missing of modality data (e.g., optical or DSM) is a common and severe challenge, which leads to performance decline in traditional multimodal fusion models. Existing methods for addressing missing modalities still face limitations, including feature collapse and overly generalized recovered features. To address these issues, we propose \textbf{STARS} (\textbf{S}hared-specific \textbf{T}ranslation and \textbf{A}lignment for missing-modality \textbf{R}emote \textbf{S}ensing), a robust semantic segmentation framework for incomplete multimodal inputs. STARS is built on two key designs. First, we introduce an asymmetric alignment mechanism with bidirectional translation and stop-gradient, which effectively prevents feature collapse and reduces sensitivity to hyperparameters. Second, we propose a Pixel-level Semantic sampling Alignment (PSA) strategy that combines class-balanced pixel sampling with cross-modality semantic alignment loss, to mitigate alignment failures caused by severe class imbalance and improve minority-class recognition.
TEXTS-Diff: TEXTS-Aware Diffusion Model for Real-World Text Image Super-Resolution
Real-world text image super-resolution aims to restore overall visual quality and text legibility in images suffering from diverse degradations and text distortions. However, the scarcity of text image data in existing datasets results in poor performance on text regions. In addition, datasets consisting of isolated text samples limit the quality of background reconstruction. To address these limitations, we construct Real-Texts, a large-scale, high-quality dataset collected from real-world images, which covers diverse scenarios and contains natural text instances in both Chinese and English. Additionally, we propose the TEXTS-Aware Diffusion Model (TEXTS-Diff) to achieve high-quality generation in both background and textual regions. This approach leverages abstract concepts to improve the understanding of textual elements within visual scenes and concrete text regions to enhance textual details. It mitigates distortions and hallucination artifacts commonly observed in text regions, while preserving high-quality visual scene fidelity. Extensive experiments demonstrate that our method achieves state-of-the-art performance across multiple evaluation metrics, exhibiting superior generalization ability and text restoration accuracy in complex scenarios. All the code, model, and dataset will be released.
comment: Accepted by ICASSP 2026
AGE-Net: Spectral--Spatial Fusion and Anatomical Graph Reasoning with Evidential Ordinal Regression for Knee Osteoarthritis Grading
Automated Kellgren--Lawrence (KL) grading from knee radiographs is challenging due to subtle structural changes, long-range anatomical dependencies, and ambiguity near grade boundaries. We propose AGE-Net, a ConvNeXt-based framework that integrates Spectral--Spatial Fusion (SSF), Anatomical Graph Reasoning (AGR), and Differential Refinement (DFR). To capture predictive uncertainty and preserve label ordinality, AGE-Net employs a Normal-Inverse-Gamma (NIG) evidential regression head and a pairwise ordinal ranking constraint. On a knee KL dataset, AGE-Net achieves a quadratic weighted kappa (QWK) of 0.9017 +/- 0.0045 and a mean squared error (MSE) of 0.2349 +/- 0.0028 over three random seeds, outperforming strong CNN baselines and showing consistent gains in ablation studies. We further outline evaluations of uncertainty quality, robustness, and explainability, with additional experimental figures to be included in the full manuscript.
comment: 22 pages
Learning with Geometric Priors in U-Net Variants for Polyp Segmentation
Accurate and robust polyp segmentation is essential for early colorectal cancer detection and for computer-aided diagnosis. While convolutional neural network-, Transformer-, and Mamba-based U-Net variants have achieved strong performance, they still struggle to capture geometric and structural cues, especially in low-contrast or cluttered colonoscopy scenes. To address this challenge, we propose a novel Geometric Prior-guided Module (GPM) that injects explicit geometric priors into U-Net-based architectures for polyp segmentation. Specifically, we fine-tune the Visual Geometry Grounded Transformer (VGGT) on a simulated ColonDepth dataset to estimate depth maps of polyp images tailored to the endoscopic domain. These depth maps are then processed by GPM to encode geometric priors into the encoder's feature maps, where they are further refined using spatial and channel attention mechanisms that emphasize both local spatial and global channel information. GPM is plug-and-play and can be seamlessly integrated into diverse U-Net variants. Extensive experiments on five public polyp segmentation datasets demonstrate consistent gains over three strong baselines. Code and the generated depth maps are available at: https://github.com/fvazqu/GPM-PolypSeg
Thermodynamically Optimal Regularization under Information-Geometric Constraints
Modern machine learning relies on a collection of empirically successful but theoretically heterogeneous regularization techniques, such as weight decay, dropout, and exponential moving averages. At the same time, the rapidly increasing energetic cost of training large models raises the question of whether learning algorithms approach any fundamental efficiency bound. In this work, we propose a unifying theoretical framework connecting thermodynamic optimality, information geometry, and regularization. Under three explicit assumptions -- (A1) that optimality requires an intrinsic, parametrization-invariant measure of information, (A2) that belief states are modeled by maximum-entropy distributions under known constraints, and (A3) that optimal processes are quasi-static -- we prove a conditional optimality theorem. Specifically, the Fisher--Rao metric is the unique admissible geometry on belief space, and thermodynamically optimal regularization corresponds to minimizing squared Fisher--Rao distance to a reference state. We derive the induced geometries for Gaussian and circular belief models, yielding hyperbolic and von Mises manifolds, respectively, and show that classical regularization schemes are structurally incapable of guaranteeing thermodynamic optimality. We introduce a notion of thermodynamic efficiency of learning and propose experimentally testable predictions. This work provides a principled geometric and thermodynamic foundation for regularization in machine learning.
comment: 7 pages, 0 figures
SymbolSight: Minimizing Inter-Symbol Interference for Reading with Prosthetic Vision
Retinal prostheses restore limited visual perception, but low spatial resolution and temporal persistence make reading difficult. In sequential letter presentation, the afterimage of one symbol can interfere with perception of the next, leading to systematic recognition errors. Rather than relying on future hardware improvements, we investigate whether optimizing the visual symbols themselves can mitigate this temporal interference. We present SymbolSight, a computational framework that selects symbol-to-letter mappings to minimize confusion among frequently adjacent letters. Using simulated prosthetic vision (SPV) and a neural proxy observer, we estimate pairwise symbol confusability and optimize assignments using language-specific bigram statistics. Across simulations in Arabic, Bulgarian, and English, the resulting heterogeneous symbol sets reduced predicted confusion by a median factor of 22 relative to native alphabets. These results suggest that standard typography is poorly matched to serial, low-bandwidth prosthetic vision and demonstrate how computational modeling can efficiently narrow the design space of visual encodings to generate high-potential candidates for future psychophysical and clinical evaluation.
comment: Submitted to IEEE EMBC 2026. 7 pages, 6 figures, 2 tables
SkyReels-V3 Technique Report
Video generation serves as a cornerstone for building world models, where multimodal contextual inference stands as the defining test of capability. In this end, we present SkyReels-V3, a conditional video generation model, built upon a unified multimodal in-context learning framework with diffusion Transformers. SkyReels-V3 model supports three core generative paradigms within a single architecture: reference images-to-video synthesis, video-to-video extension and audio-guided video generation. (i) reference images-to-video model is designed to produce high-fidelity videos with strong subject identity preservation, temporal coherence, and narrative consistency. To enhance reference adherence and compositional stability, we design a comprehensive data processing pipeline that leverages cross frame pairing, image editing, and semantic rewriting, effectively mitigating copy paste artifacts. During training, an image video hybrid strategy combined with multi-resolution joint optimization is employed to improve generalization and robustness across diverse scenarios. (ii) video extension model integrates spatio-temporal consistency modeling with large-scale video understanding, enabling both seamless single-shot continuation and intelligent multi-shot switching with professional cinematographic patterns. (iii) Talking avatar model supports minute-level audio-conditioned video generation by training first-and-last frame insertion patterns and reconstructing key-frame inference paradigms. On the basis of ensuring visual quality, synchronization of audio and videos has been optimized. Extensive evaluations demonstrate that SkyReels-V3 achieves state-of-the-art or near state-of-the-art performance on key metrics including visual quality, instruction following, and specific aspect metrics, approaching leading closed-source systems. Github: https://github.com/SkyworkAI/SkyReels-V3.
ClinNet: Evidential Ordinal Regression with Bilateral Asymmetry and Prototype Memory for Knee Osteoarthritis Grading
Knee osteoarthritis (KOA) grading based on radiographic images is a critical yet challenging task due to subtle inter-grade differences, annotation uncertainty, and the inherently ordinal nature of disease progression. Conventional deep learning approaches typically formulate this problem as deterministic multi-class classification, ignoring both the continuous progression of degeneration and the uncertainty in expert annotations. In this work, we propose ClinNet, a novel trustworthy framework that addresses KOA grading as an evidential ordinal regression problem. The proposed method integrates three key components: (1) a Bilateral Asymmetry Encoder (BAE) that explicitly models medial-lateral structural discrepancies; (2) a Diagnostic Memory Bank that maintains class-wise prototypes to stabilize feature representations; and (3) an Evidential Ordinal Head based on the Normal-Inverse-Gamma (NIG) distribution to jointly estimate continuous KL grades and epistemic uncertainty. Extensive experiments demonstrate that ClinNet achieves a Quadratic Weighted Kappa of 0.892 and Accuracy of 0.768, statistically outperforming state-of-the-art baselines (p < 0.001). Crucially, we demonstrate that the model's uncertainty estimates successfully flag out-of-distribution samples and potential misdiagnoses, paving the way for safe clinical deployment.
comment: 12 pages
Dynamic Meta-Ensemble Framework for Efficient and Accurate Deep Learning in Plant Leaf Disease Detection on Resource-Constrained Edge Devices
Deploying deep learning models for plant disease detection on edge devices such as IoT sensors, smartphones, and embedded systems is severely constrained by limited computational resources and energy budgets. To address this challenge, we introduce a novel Dynamic Meta-Ensemble Framework (DMEF) for high-accuracy plant disease diagnosis under resource constraints. DMEF employs an adaptive weighting mechanism that dynamically combines the predictions of three lightweight convolutional neural networks (MobileNetV2, NASNetMobile, and InceptionV3) by optimizing a trade-off between accuracy improvements (DeltaAcc) and computational efficiency (model size). During training, the ensemble weights are updated iteratively, favoring models exhibiting high performance and low complexity. Extensive experiments on benchmark datasets for potato and maize diseases demonstrate state-of-the-art classification accuracies of 99.53% and 96.61%, respectively, surpassing standalone models and static ensembles by 2.1% and 6.3%. With computationally efficient inference latency (<75ms) and a compact footprint (<1 million parameters), DMEF shows strong potential for edge-based agricultural monitoring, suggesting viability for scalable crop disease management. This bridges the gap between high-accuracy AI and practical field applications.
Fluxamba: Topology-Aware Anisotropic State Space Models for Geological Lineament Segmentation in Multi-Source Remote Sensing
The precise segmentation of geological linear features, spanning from planetary lineaments to terrestrial fractures, demands capturing long-range dependencies across complex anisotropic topologies. Although State Space Models (SSMs) offer near-linear computational complexity, their dependence on rigid, axis-aligned scanning trajectories induces a fundamental topological mismatch with curvilinear targets, resulting in fragmented context and feature erosion. To bridge this gap, we propose Fluxamba, a lightweight architecture that introduces a topology-aware feature rectification framework. Central to our design is the Structural Flux Block (SFB), which orchestrates an anisotropic information flux by integrating an Anisotropic Structural Gate (ASG) with a Prior-Modulated Flow (PMF). This mechanism decouples feature orientation from spatial location, dynamically gating context aggregation along the target's intrinsic geometry rather than rigid paths. Furthermore, to mitigate serialization-induced noise in low-contrast environments, we incorporate a Hierarchical Spatial Regulator (HSR) for multi-scale semantic alignment and a High-Fidelity Focus Unit (HFFU) to explicitly maximize the signal-to-noise ratio of faint features. Extensive experiments on diverse geological benchmarks (LROC-Lineament, LineaMapper, and GeoCrack) demonstrate that Fluxamba establishes a new state-of-the-art. Notably, on the challenging LROC-Lineament dataset, it achieves an F1-score of 89.22% and mIoU of 89.87%. Achieving a real-time inference speed of over 24 FPS with only 3.4M parameters and 6.3G FLOPs, Fluxamba reduces computational costs by up to two orders of magnitude compared to heavy-weight baselines, thereby establishing a new Pareto frontier between segmentation fidelity and onboard deployment feasibility.
SPADE: A SIMD Posit-enabled compute engine for Accelerating DNN Efficiency
The growing demand for edge-AI systems requires arithmetic units that balance numerical precision, energy efficiency, and compact hardware while supporting diverse formats. Posit arithmetic offers advantages over floating- and fixed-point representations through its tapered precision, wide dynamic range, and improved numerical robustness. This work presents SPADE, a unified multi-precision SIMD Posit-based multiplyaccumulate (MAC) architecture supporting Posit (8,0), Posit (16,1), and Posit (32,2) within a single framework. Unlike prior single-precision or floating/fixed-point SIMD MACs, SPADE introduces a regime-aware, lane-fused SIMD Posit datapath that hierarchically reuses Posit-specific submodules (LOD, complementor, shifter, and multiplier) across 8/16/32-bit precisions without datapath replication. FPGA implementation on a Xilinx Virtex-7 shows 45.13% LUT and 80% slice reduction for Posit (8,0), and up to 28.44% and 17.47% improvement for Posit (16,1) and Posit (32,2) over prior work, with only 6.9% LUT and 14.9% register overhead for multi-precision support. ASIC results across TSMC nodes achieve 1.38 GHz at 6.1 mW (28 nm). Evaluation on MNIST, CIFAR-10/100, and alphabet datasets confirms competitive inference accuracy.
Cross360: 360° Monocular Depth Estimation via Cross Projections Across Scales TIP
360° depth estimation is a challenging research problem due to the difficulty of finding a representation that both preserves global continuity and avoids distortion in spherical images. Existing methods attempt to leverage complementary information from multiple projections, but struggle with balancing global and local consistency. Their local patch features have limited global perception, and the combined global representation does not address discrepancies in feature extraction at the boundaries between patches. To address these issues, we propose Cross360, a novel cross-attention-based architecture integrating local and global information using less-distorted tangent patches along with equirectangular features. Our Cross Projection Feature Alignment module employs cross-attention to align local tangent projection features with the equirectangular projection's 360° field of view, ensuring each tangent projection patch is aware of the global context. Additionally, our Progressive Feature Aggregation with Attention module refines multi-scaled features progressively, enhancing depth estimation accuracy. Cross360 significantly outperforms existing methods across most benchmark datasets, especially those in which the entire 360° image is available, demonstrating its effectiveness in accurate and globally consistent depth estimation. The code and model are available at https://github.com/huangkun101230/Cross360.
comment: TIP, 12 pages
Inference-Time Loss-Guided Colour Preservation in Diffusion Sampling
Precise color control remains a persistent failure mode in text-to-image diffusion systems, particularly in design-oriented workflows where outputs must satisfy explicit, user-specified color targets. We present an inference-time, region-constrained color preservation method that steers a pretrained diffusion model without any additional training. Our approach combines (i) ROI-based inpainting for spatial selectivity, (ii) background-latent re-imposition to prevent color drift outside the ROI, and (iii) latent nudging via gradient guidance using a composite loss defined in CIE Lab and linear RGB. The loss is constructed to control not only the mean ROI color but also the tail of the pixelwise error distribution through CVaR-style and soft-maximum penalties, with a late-start gate and a time-dependent schedule to stabilize guidance across denoising steps. We show that mean-only baselines can satisfy average color constraints while producing perceptually salient local failures, motivating our distribution-aware objective. The resulting method provides a practical, training-free mechanism for targeted color adherence that can be integrated into standard Stable Diffusion inpainting pipelines.
comment: 25 Pages, 12 Figures, 3 Tables, 5 Appendices, 8 Algorithms
FineVAU: A Novel Human-Aligned Benchmark for Fine-Grained Video Anomaly Understanding
Video Anomaly Understanding (VAU) is a novel task focused on describing unusual occurrences in videos. Despite growing interest, the evaluation of VAU remains an open challenge. Existing benchmarks rely on n-gram-based metrics (e.g., BLEU, ROUGE-L) or LLM-based evaluation. The first fails to capture the rich, free-form, and visually grounded nature of LVLM responses, while the latter focuses on assessing language quality over factual relevance, often resulting in subjective judgments that are misaligned with human perception. In this work, we address this issue by proposing FineVAU, a new benchmark for VAU that shifts the focus towards rich, fine-grained and domain-specific understanding of anomalous videos. We formulate VAU as a three-fold problem, with the goal of comprehensively understanding key descriptive elements of anomalies in video: events (What), participating entities (Who) and location (Where). Our benchmark introduces a) FVScore, a novel, human-aligned evaluation metric that assesses the presence of critical visual elements in LVLM answers, providing interpretable, fine-grained feedback; and b) FineW3, a novel, comprehensive dataset curated through a structured and fully automatic procedure that augments existing human annotations with high quality, fine-grained visual information. Human evaluation reveals that our proposed metric has a superior alignment with human perception of anomalies in comparison to current approaches. Detailed experiments on FineVAU unveil critical limitations in LVLM's ability to perceive anomalous events that require spatial and fine-grained temporal understanding, despite strong performance on coarse grain, static information, and events with strong visual cues.
Multi-stage Bridge Inspection System: Integrating Foundation Models with Location Anonymization
In Japan, civil infrastructure condition monitoring is mandated through visual inspection every five years. Field-captured damage images frequently contain concrete cracks and rebar exposure, often accompanied by construction signs revealing regional information. To enable safe infrastructure use without causing public anxiety, it is essential to protect regional information while accurately extracting damage features and visualizing key indicators for repair decision-making. This paper presents an open-source bridge damage detection system with regional privacy protection capabilities. We employ Segment Anything Model (SAM) 3 for rebar corrosion detection and utilize DBSCAN for automatic completion of missed regions. Construction sign regions are detected and protected through Gaussian blur. Four preprocessing methods improve OCR accuracy, and GPU optimization enables 1.7-second processing per image. The technology stack includes SAM3, PyTorch, OpenCV, pytesseract, and scikit-learn, achieving efficient bridge inspection with regional information protection.
comment: 8 pages, 5 figures, 2 tables
C-RADIOv4 (Tech Report)
By leveraging multi-teacher distillation, agglomerative vision backbones provide a unified student model that retains and improves the distinct capabilities of multiple teachers. In this tech report, we describe the most recent release of the C-RADIO family of models, C-RADIOv4, which builds upon AM-RADIO/RADIOv2.5 in design, offering strong improvements on key downstream tasks at the same computational complexity. We release -SO400M (412M params), and -H (631M) model variants, both trained with an updated set of teachers: SigLIP2, DINOv3, and SAM3. In addition to improvements on core metrics and new capabilities from imitating SAM3, the C-RADIOv4 model family further improves any-resolution support, brings back the ViTDet option for drastically enhanced efficiency at high-resolution, and comes with a permissive license.
FilterRAG: Zero-Shot Informed Retrieval-Augmented Generation to Mitigate Hallucinations in VQA ICCV 2025
Visual Question Answering requires models to generate accurate answers by integrating visual and textual understanding. However, VQA models still struggle with hallucinations, producing convincing but incorrect answers, particularly in knowledge-driven and Out-of-Distribution scenarios. We introduce FilterRAG, a retrieval-augmented framework that combines BLIP-VQA with Retrieval-Augmented Generation to ground answers in external knowledge sources like Wikipedia and DBpedia. FilterRAG achieves 36.5% accuracy on the OK-VQA dataset, demonstrating its effectiveness in reducing hallucinations and improving robustness in both in-domain and Out-of-Distribution settings. These findings highlight the potential of FilterRAG to improve Visual Question Answering systems for real-world deployment.
comment: 12 pages, 6 figures and 2 tables; Accepted at ICCV 2025 Workshop on Building Foundation Models You Can Trust (T2FM)
Unsupervised cell segmentation by fast Gaussian Processes
Cell boundary information is crucial for analyzing cell behaviors from time-lapse microscopy videos. Existing supervised cell segmentation tools, such as ImageJ, require tuning various parameters and rely on restrictive assumptions about the shape of the objects. While recent supervised segmentation tools based on convolutional neural networks enhance accuracy, they depend on high-quality labeled images, making them unsuitable for segmenting new types of objects not in the database. We developed a novel unsupervised cell segmentation algorithm based on fast Gaussian processes for noisy microscopy images without the need for parameter tuning or restrictive assumptions about the shape of the object. We derived robust thresholding criteria adaptive for heterogeneous images containing distinct brightness at different parts to separate objects from the background, and employed watershed segmentation to distinguish touching cell objects. Both simulated studies and real-data analysis of large microscopy images demonstrate the scalability and accuracy of our approach compared with the alternatives.
IBIS: A Hybrid Inception-BiLSTM and SVM Ensemble for Robust Doppler-based Human Activity Recognition
Wi-Fi sensing is a leading technology for Human Activity Recognition (HAR), offering a non-intrusive and cost-effective solution for healthcare and smart environments. Despite its potential, existing methods struggle with domain shift issues, often failing to generalize to unseen environments due to overfitting. This paper proposes IBIS, a robust ensemble framework combining Inception-Bidirectional Long Short-Term Memory (BiLSTM) for feature extraction and Support Vector Machine (SVM) for classification of Doppler signatures. The proposed architecture specifically targets generalization capabilities. Experimental results on multiple datasets show that IBIS achieves 95.40% accuracy, delivering a 7.58% performance gain compared to standard architectures in cross-scenario evaluations on external datasets. The analysis confirms that IBIS effectively mitigates environmental dependency in Wi-Fi-based HAR.
comment: 12 pages. 10 figures. Wireless Days Conference, December 2025
Self-learned representation-guided latent diffusion model for breast cancer classification in deep ultraviolet whole surface images
Breast-Conserving Surgery (BCS) requires precise intraoperative margin assessment to preserve healthy tissue. Deep Ultraviolet Fluorescence Scanning Microscopy (DUV-FSM) offers rapid, high-resolution surface imaging for this purpose; however, the scarcity of annotated DUV data hinders the training of robust deep learning models. To address this, we propose an Self-Supervised Learning (SSL)-guided Latent Diffusion Model (LDM) to generate high-quality synthetic training patches. By guiding the LDM with embeddings from a fine-tuned DINO teacher, we inject rich semantic details of cellular structures into the synthetic data. We combine real and synthetic patches to fine-tune a Vision Transformer (ViT), utilizing patch prediction aggregation for WSI-level classification. Experiments using 5-fold cross-validation demonstrate that our method achieves 96.47 % accuracy and reduces the FID score to 45.72, significantly outperforming class-conditioned baselines.
comment: This paper has been accepted for the IEEE International Symposium on Biomedical Imaging (ISBI) 2026, London, UK, and will be presented in the corresponding session
Kinematify: Open-Vocabulary Synthesis of High-DoF Articulated Objects
A deep understanding of kinematic structures and movable components is essential for enabling robots to manipulate objects and model their own articulated forms. Such understanding is captured through articulated objects, which are essential for tasks such as physical simulation, motion planning, and policy learning. However, creating these models, particularly for objects with high degrees of freedom (DoF), remains a significant challenge. Existing methods typically rely on motion sequences or strong assumptions from hand-curated datasets, which hinders scalability. In this paper, we introduce Kinematify, an automated framework that synthesizes articulated objects directly from arbitrary RGB images or textual descriptions. Our method addresses two core challenges: (i) inferring kinematic topologies for high-DoF objects and (ii) estimating joint parameters from static geometry. To achieve this, we combine MCTS search for structural inference with geometry-driven optimization for joint reasoning, producing physically consistent and functionally valid descriptions. We evaluate Kinematify on diverse inputs from both synthetic and real-world environments, demonstrating improvements in registration and kinematic topology accuracy over prior work.
comment: Project Page: https://sites.google.com/deemos.com/kinematify
Multi-scale Temporal Prediction via Incremental Generation and Multi-agent Collaboration
Accurate temporal prediction is the bridge between comprehensive scene understanding and embodied artificial intelligence. However, predicting multiple fine-grained states of a scene at multiple temporal scales is difficult for vision-language models. We formalize the Multi-Scale Temporal Prediction (MSTP) task in general and surgical scenes by decomposing multi-scale into two orthogonal dimensions: the temporal scale, forecasting states of humans and surgery at varying look-ahead intervals, and the state scale, modeling a hierarchy of states in general and surgical scenes. For example, in general scenes, states of contact relationships are finer-grained than states of spatial relationships. In surgical scenes, medium-level steps are finer-grained than high-level phases yet remain constrained by their encompassing phase. To support this unified task, we introduce the first MSTP Benchmark, featuring synchronized annotations across multiple state scales and temporal scales. We further propose a method, Incremental Generation and Multi-agent Collaboration (IG-MC), which integrates two key innovations. First, we present a plug-and-play incremental generation module that continuously synthesizes up-to-date visual previews at expanding temporal scales to inform multiple decision-making agents, keeping decisions and generated visuals synchronized and preventing performance degradation as look-ahead intervals lengthen. Second, we present a decision-driven multi-agent collaboration framework for multi-state prediction, comprising generation, initiation, and multi-state assessment agents that dynamically trigger and evaluate prediction cycles to balance global coherence and local fidelity.
comment: 20 pages, 6 figures
Exploiting Unlabeled Data with Multiple Expert Teachers for Open Vocabulary Aerial Object Detection and Its Orientation Adaptation
In recent years, aerial object detection has been increasingly pivotal in various earth observation applications. However, current algorithms are limited to detecting a set of pre-defined object categories, demanding sufficient annotated training samples, and fail to detect novel object categories. In this paper, we put forth a novel formulation of the aerial object detection problem, namely open-vocabulary aerial object detection (OVAD), which can detect objects beyond training categories without costly collecting new labeled data. We propose CastDet, a CLIP-activated student-teacher detection framework that serves as the first OVAD detector specifically designed for the challenging aerial scenario, where objects often exhibit weak appearance features and arbitrary orientations. Our framework integrates a robust localization teacher along with several box selection strategies to generate high-quality proposals for novel objects. Additionally, the RemoteCLIP model is adopted as an omniscient teacher, which provides rich knowledge to enhance classification capabilities for novel categories. A dynamic label queue is devised to maintain high-quality pseudo-labels during training. By doing so, the proposed CastDet boosts not only novel object proposals but also classification. Furthermore, we extend our approach from horizontal OVAD to oriented OVAD with tailored algorithm designs to effectively manage bounding box representation and pseudo-label generation. Extensive experiments for both tasks on multiple existing aerial object detection datasets demonstrate the effectiveness of our approach. The code is available at https://github.com/VisionXLab/CastDet.
comment: Accepted by International Journal of Computer Vision (IJCV'26)
PixFoundation: Are We Heading in the Right Direction with Pixel-level Vision Foundation Models?
Multiple works have emerged to push the boundaries of multi-modal large language models (MLLMs) towards pixel-level understanding. The current trend is to train MLLMs with pixel-level grounding supervision in terms of masks on large-scale labelled data and specialized decoders for the segmentation task. However, we show that such MLLMs when evaluated on recent challenging vision-centric benchmarks, exhibit a weak ability in visual question answering (VQA). Surprisingly, some of these methods even downgrade the grounding ability of MLLMs that were never trained with such pixel-level supervision. In this work, we propose two novel challenging benchmarks with paired evaluation for both VQA and grounding. We demonstrate that simple baselines that are not unified achieve performance that matches or surpasses some of the pixel-level MLLMs. Our paired benchmarks and evaluation enable additional analysis on the reasons for failure with respect to VQA and/or grounding. Furthermore, we propose a prompt sensitivity analysis on both the language and visual prompts tailored for the grounding task. More importantly, we study the research question of ``When does grounding emerge in MLLMs with respect to the output tokens?'' We propose an interpretability tool that can be plugged into any MLLM to study the aforementioned question. We show that grounding does not necessarily coincide with the exact referring expression in the output, but can coincide with the object parts, its location, appearance, context or state. Code and datasets are publicly available at https://msiam.github.io/PixFoundationSeries/.
comment: Under Review
IPFormer: Visual 3D Panoptic Scene Completion with Context-Adaptive Instance Proposals
Semantic Scene Completion (SSC) has emerged as a pivotal approach for jointly learning scene geometry and semantics, enabling downstream applications such as navigation in mobile robotics. The recent generalization to Panoptic Scene Completion (PSC) advances the SSC domain by integrating instance-level information, thereby enhancing object-level sensitivity in scene understanding. While PSC was introduced using LiDAR modality, methods based on camera images remain largely unexplored. Moreover, recent Transformer-based approaches utilize a fixed set of learned queries to reconstruct objects within the scene volume. Although these queries are typically updated with image context during training, they remain static at test time, limiting their ability to dynamically adapt specifically to the observed scene. To overcome these limitations, we propose IPFormer, the first method that leverages context-adaptive instance proposals at train and test time to address vision-based 3D Panoptic Scene Completion. Specifically, IPFormer adaptively initializes these queries as panoptic instance proposals derived from image context and further refines them through attention-based encoding and decoding to reason about semantic instance-voxel relationships. Extensive experimental results show that our approach achieves state-of-the-art in-domain performance, exhibits superior zero-shot generalization on out-of-domain data, and achieves a runtime reduction exceeding 14x. These results highlight our introduction of context-adaptive instance proposals as a pioneering effort in addressing vision-based 3D Panoptic Scene Completion. Code available at https://github.com/markus-42/ipformer.
Monocular pose estimation of articulated open surgery tools -- in the wild
This work presents a framework for monocular 6D pose estimation of surgical instruments in open surgery, addressing challenges such as object articulations, specularity, occlusions, and synthetic-to-real domain adaptation. The proposed approach consists of three main components: $(1)$ synthetic data generation pipeline that incorporates 3D scanning of surgical tools with articulation rigging and physically-based rendering; $(2)$ a tailored pose estimation framework combining tool detection with pose and articulation estimation; and $(3)$ a training strategy on synthetic and real unannotated video data, employing domain adaptation with automatically generated pseudo-labels. Evaluations conducted on real data of open surgery demonstrate the good performance and real-world applicability of the proposed framework, highlighting its potential for integration into medical augmented reality and robotic systems. The approach eliminates the need for extensive manual annotation of real surgical data.
comment: Author Accepted Manuscript (AAM)
BLEnD-Vis: Benchmarking Multimodal Cultural Understanding in Vision Language Models
As vision-language models (VLMs) are deployed globally, their ability to understand culturally situated knowledge becomes essential. Yet, existing evaluations largely assess static recall or isolated visual grounding, leaving unanswered whether VLMs possess robust and transferable cultural understanding. We introduce BLEnD-Vis, a multimodal, multicultural benchmark designed to evaluate the robustness of everyday cultural knowledge in VLMs across linguistic rephrasings and visual modalities. Building on the BLEnD dataset, BLEnD-Vis constructs 313 culturally grounded question templates spanning 16 regions and generates three aligned multiple-choice formats: (i) a text-only baseline querying from Region $\rightarrow$ Entity, (ii) an inverted text-only variant (Entity $\rightarrow$ Region), and (iii) a VQA-style version of (ii) with generated images. The resulting benchmark comprises 4,916 images and over 21,000 multiple-choice questions (MCQ) instances, validated through human annotation. BLEnD-Vis reveals significant fragility in current VLM cultural knowledge; models exhibit performance drops under linguistic rephrasing. While visual cues often aid performance, low cross-modal consistency highlights the challenges of robustly integrating textual and visual understanding, particularly in lower-resource regions. BLEnD-Vis thus provides a crucial testbed for systematically analysing cultural robustness and multimodal grounding, exposing limitations and guiding the development of more culturally competent VLMs. Code is available at https://github.com/Social-AI-Studio/BLEnD-Vis.
comment: EACL 2026
Distributed Poisson multi-Bernoulli filtering via generalised covariance intersection
This paper presents the distributed Poisson multi-Bernoulli (PMB) filter based on the generalised covariance intersection (GCI) fusion rule for distributed multi-object filtering. Since the exact GCI fusion of two PMB densities is intractable, we derive a principled approximation. Specifically, we approximate the power of a PMB density as an unnormalised PMB density, which corresponds to an upper bound of the PMB density. Then, the GCI fusion rule corresponds to the normalised product of two unnormalised PMB densities. We show that the result is a Poisson multi-Bernoulli mixture (PMBM), which can be expressed in closed form. Future prediction and update steps in each filter preserve the PMBM form, which can be projected back to a PMB density before the next fusion step. Experimental results show the benefits of this approach compared to other distributed multi-object filters.
comment: Matlab code with the distributed GCI-PMB and GCI-PMBM filters is provided at https://github.com/Agarciafernandez/MTT
WebGym: Scaling Training Environments for Visual Web Agents with Realistic Tasks
We present WebGym, the largest-to-date open-source environment for training realistic visual web agents. Real websites are non-stationary and diverse, making artificial or small-scale task sets insufficient for robust policy learning. WebGym contains nearly 300,000 tasks with rubric-based evaluations across diverse, real-world websites and difficulty levels. We train agents with a simple reinforcement learning (RL) recipe, which trains on the agent's own interaction traces (rollouts), using task rewards as feedback to guide learning. To enable scaling RL, we speed up sampling of trajectories in WebGym by developing a high-throughput asynchronous rollout system, designed specifically for web agents. Our system achieves a 4-5x rollout speedup compared to naive implementations. Second, we scale the task set breadth, depth, and size, which results in continued performance improvement. Fine-tuning a strong base vision-language model, Qwen-3-VL-8B-Instruct, on WebGym results in an improvement in success rate on an out-of-distribution test set from 26.2% to 42.9%, significantly outperforming agents based on proprietary models such as GPT-4o and GPT-5-Thinking that achieve 27.1% and 29.8%, respectively. This improvement is substantial because our test set consists only of tasks on websites never seen during training, unlike many other prior works on training visual web agents.
comment: Fixed typo in Figure 2
Quantizing Space and Time: Fusing Time Series and Images for Earth Observation
We propose a task-agnostic framework for multimodal fusion of time series and single timestamp images, enabling cross-modal generation and robust downstream performance. Our approach explores deterministic and learned strategies for time series quantization and then leverages a masked correlation learning objective, aligning discrete image and time series tokens in a unified representation space. Instantiated in the Earth observation domain, the pretrained model generates consistent global temperature profiles from satellite imagery and is validated through counterfactual experiments. Across downstream tasks, our task-agnostic pretraining outperforms task-specific fusion by 6% in R^2 and 2% in RMSE on average, and exceeds baseline methods by 50% in R^2 and 12% in RMSE. Finally, we analyze gradient sensitivity across modalities, providing insights into model robustness. Code, data, and weights will be released under a permissive license.
Equivariant Flow Matching for Point Cloud Assembly
The goal of point cloud assembly is to reconstruct a complete 3D shape by aligning multiple point cloud pieces. This work presents a novel equivariant solver for assembly tasks based on flow matching models. We first theoretically show that the key to learning equivariant distributions via flow matching is to learn related vector fields. Based on this result, we propose an assembly model, called equivariant diffusion assembly (Eda), which learns related vector fields conditioned on the input pieces. We further construct an equivariant path for Eda, which guarantees high data efficiency of the training process. Our numerical results show that Eda is highly competitive on practical datasets, and it can even handle the challenging situation where the input pieces are non-overlapped.
Labels or Input? Rethinking Augmentation in Multimodal Hate Detection
Online hate remains a significant societal challenge, especially as multimodal content enables subtle, culturally grounded, and implicit forms of harm. Hateful memes embed hostility through text-image interactions and humor, making them difficult for automated systems to interpret. Although recent Vision-Language Models (VLMs) perform well on explicit cases, their deployment is limited by high inference costs and persistent failures on nuanced content. This work examines how far small models can be improved through prompt optimization, fine-tuning, and automated data augmentation. We introduce an end-to-end pipeline that varies prompt structure, label granularity, and training modality, showing that structured prompts and scaled supervision significantly strengthen compact VLMs. We also develop a multimodal augmentation framework that generates counterfactually neutral memes via a coordinated LLM-VLM setup, reducing spurious correlations and improving the detection of implicit hate. Ablation studies quantify the contribution of each component, demonstrating that prompt design, granular labels, and targeted augmentation collectively narrow the gap between small and large models. The results offer a practical path toward more robust and deployable multimodal hate-detection systems without relying on costly large-model inference.
comment: 14 pages
Revisiting Invariant Learning for Out-of-Domain Generalization on Multi-Site Mammogram Datasets
Achieving health equity in Artificial Intelligence (AI) requires diagnostic models that maintain reliability across diverse populations. However, breast cancer screening systems frequently suffer from domain overfitting, degrading significantly when deployed to varying demographics. While Invariant Learning algorithms aim to mitigate this by suppressing site-specific correlations, their efficacy in medical imaging remains underexplored. This study comprehensively evaluates domain generalization techniques for mammography. We constructed a multi-source training environment aggregating datasets from the United States (CBIS-DDSM, EMBED), Portugal (INbreast, BCDR), and Cyprus (BMCD). To assess global generalizability, we evaluated performance on unseen cohorts from Egypt (CDD-CESM) and Sweden (CSAW-CC). We benchmarked Invariant Risk Minimization (IRM) and Variance Risk Extrapolation (VREx) against a rigorously optimized Empirical Risk Minimization (ERM) baseline. Contrary to expectations, standard ERM consistently outperformed specialized invariant mechanisms on out-of-domain testing. While VREx showed potential in stabilizing attention maps, invariant objectives proved unstable and prone to underfitting. We conclude that engineering equitable AI is currently best served by maximizing multi-national data diversity rather than relying on complex algorithmic invariance.
MENTOR: Efficient Multimodal-Conditioned Tuning for Autoregressive Vision Generation Models
Recent text-to-image models produce high-quality results but still struggle with precise visual control, balancing multimodal inputs, and requiring extensive training for complex multimodal image generation. To address these limitations, we propose MENTOR, a novel autoregressive (AR) framework for efficient Multimodal-conditioned Tuning for Autoregressive multimodal image generation. MENTOR combines an AR image generator with a two-stage training paradigm, enabling fine-grained, token-level alignment between multimodal inputs and image outputs without relying on auxiliary adapters or cross-attention modules. The two-stage training consists of: (1) a multimodal alignment stage that establishes robust pixel- and semantic-level alignment, followed by (2) a multimodal instruction tuning stage that balances the integration of multimodal inputs and enhances generation controllability. Despite modest model size, suboptimal base components, and limited training resources, MENTOR achieves strong performance on the DreamBench++ benchmark, outperforming competitive baselines in concept preservation and prompt following. Additionally, our method delivers superior image reconstruction fidelity, broad task adaptability, and improved training efficiency compared to diffusion-based methods. Dataset, code, and models are available at: https://github.com/HaozheZhao/MENTOR
comment: 26 pages,15 figures
Difference Decomposition Networks for Infrared Small Target Detection
Infrared small target detection (ISTD) faces two major challenges: a lack of discernible target texture and severe background clutter, which results in the background obscuring the target. To enhance targets and suppress backgrounds, we propose the Basis Decomposition Module (BDM) as an extensible and lightweight module based on basis decomposition, which decomposes a complex feature into several basis features and enhances certain information while eliminating redundancy. Extending BDM leads to a series of modules, including the Spatial Difference Decomposition Module (SD$^\mathrm{2}$M), Spatial Difference Decomposition Downsampling Module (SD$^\mathrm{3}$M), and Temporal Difference Decomposition Module (TD$^\mathrm{2}$M). Based on these modules, we develop the Spatial Difference Decomposition Network (SD$^\mathrm{2}$Net) for single-frame ISTD (SISTD) and the Spatiotemporal Difference Decomposition Network (STD$^\mathrm{2}$Net) for multi-frame ISTD (MISTD). SD$^\mathrm{2}$Net integrates SD$^\mathrm{2}$M and SD$^\mathrm{3}$M within an adapted U-shaped architecture. We employ TD$^\mathrm{2}$M to introduce motion information, which transforms SD$^\mathrm{2}$Net into STD$^\mathrm{2}$Net. Extensive experiments on SISTD and MISTD datasets demonstrate state-of-the-art (SOTA) performance. On the SISTD task, SD$^\mathrm{2}$Net performs well compared to most established networks. On the MISTD datasets, STD$^\mathrm{2}$Net achieves a mIoU of 87.68\%, outperforming SD$^\mathrm{2}$Net, which achieves a mIoU of 64.97\%. Our codes are available: https://github.com/greekinRoma/IRSTD_HC_Platform.
LangForce: Bayesian Decomposition of Vision Language Action Models via Latent Action Queries
Vision-Language-Action (VLA) models have shown promise in robot manipulation but often struggle to generalize to new instructions or complex multi-task scenarios. We identify a critical pathology in current training paradigms where goal-driven data collection creates a dataset bias. In such datasets, language instructions are highly predictable from visual observations alone, causing the conditional mutual information between instructions and actions to vanish, a phenomenon we term Information Collapse. Consequently, models degenerate into vision-only policies that ignore language constraints and fail in out-of-distribution (OOD) settings. To address this, we propose LangForce, a novel framework that enforces instruction following via Bayesian decomposition. By introducing learnable Latent Action Queries, we construct a dual-branch architecture to estimate both a vision-only prior $p(a \mid v)$ and a language-conditioned posterior $π(a \mid v, \ell)$. We then optimize the policy to maximize the conditional Pointwise Mutual Information (PMI) between actions and instructions. This objective effectively penalizes the vision shortcut and rewards actions that explicitly explain the language command. Without requiring new data, LangForce significantly improves generalization. Extensive experiments across on SimplerEnv and RoboCasa demonstrate substantial gains, including an 11.3% improvement on the challenging OOD SimplerEnv benchmark, validating the ability of our approach to robustly ground language in action.
M2I2HA: Multi-modal Object Detection Based on Intra- and Inter-Modal Hypergraph Attention
Recent advances in multi-modal detection have significantly improved detection accuracy in challenging environments (e.g., low light, overexposure). By integrating RGB with modalities such as thermal and depth, multi-modal fusion increases data redundancy and system robustness. However, significant challenges remain in effectively extracting task-relevant information both within and across modalities, as well as in achieving precise cross-modal alignment. While CNNs excel at feature extraction, they are limited by constrained receptive fields, strong inductive biases, and difficulty in capturing long-range dependencies. Transformer-based models offer global context but suffer from quadratic computational complexity and are confined to pairwise correlation modeling. Mamba and other State Space Models (SSMs), on the other hand, are hindered by their sequential scanning mechanism, which flattens 2D spatial structures into 1D sequences, disrupting topological relationships and limiting the modeling of complex higher-order dependencies. To address these issues, we propose a multi-modal perception network based on hypergraph theory called M2I2HA. Our architecture includes an Intra-Hypergraph Enhancement module to capture global many-to-many high-order relationships within each modality, and an Inter-Hypergraph Fusion module to align, enhance, and fuse cross-modal features by bridging configuration and spatial gaps between data sources. We further introduce a M2-FullPAD module to enable adaptive multi-level fusion of multi-modal enhanced features within the network, meanwhile enhancing data distribution and flow across the architecture. Extensive object detection experiments on multiple public datasets against baselines demonstrate that M2I2HA achieves state-of-the-art performance in multi-modal object detection tasks.
comment: 43 pages, 13 figures
Harmonization in Magnetic Resonance Imaging: A Survey of Acquisition, Image-level, and Feature-level Methods
Magnetic resonance imaging (MRI) has greatly advanced neuroscience research and clinical diagnostics. However, imaging data collected across different scanners, acquisition protocols, or imaging sites often exhibit substantial heterogeneity, known as batch effects or site effects. These non-biological sources of variability can obscure true biological signals, reduce reproducibility and statistical power, and severely impair the generalizability of learning-based models across datasets. Image harmonization is grounded in the central hypothesis that site-related biases can be eliminated or mitigated while preserving meaningful biological information, thereby improving data comparability and consistency. This review provides a comprehensive overview of key concepts, methodological advances, publicly available datasets, and evaluation metrics in the field of MRI harmonization. We systematically cover the full imaging pipeline and categorize harmonization approaches into prospective acquisition and reconstruction, retrospective image-level and feature-level methods, and traveling-subject-based techniques. By synthesizing existing methods and evidence, we revisit the central hypothesis of image harmonization and show that, although site invariance can be achieved with current techniques, further evaluation is required to verify the preservation of biological information. To this end, we summarize the remaining challenges and highlight key directions for future research, including the need for standardized validation benchmarks, improved evaluation strategies, and tighter integration of harmonization methods across the imaging pipeline.
comment: 24 pages, 6 figures, 3 tables
VaseVQA: Multimodal Agent and Benchmark for Ancient Greek Pottery
Understanding cultural heritage artifacts such as ancient Greek pottery requires expert-level reasoning that remains challenging for current MLLMs due to limited domain-specific data. We introduce VaseVQA, a benchmark of 31,773 images and 67,614 question-answer pairs across seven expert-defined categories, enabling systematic evaluation of expert-level cultural heritage understanding. Using this dataset, we explore effective training strategies for domain-specific reasoning. While supervised fine-tuning improves adaptation to domain knowledge, it struggles with deeper reasoning tasks. We propose VaseVL, which augments SFT with reinforcement learning using verifiable rewards. Experiments show that VaseVL consistently outperforms supervised baselines, especially on reasoning-intensive questions, highlighting the value of targeted reinforcement learning for cultural heritage visual question answering. Our code and dataset will be released at https://github.com/AIGeeksGroup/VaseVQA.
MAViS: A Multi-Agent Framework for Long-Sequence Video Storytelling
Despite recent advances, long-sequence video generation frameworks still suffer from significant limitations: poor assistive capability, suboptimal visual quality, and limited expressiveness. To mitigate these limitations, we propose MAViS, a multi-agent collaborative framework designed to assist in long-sequence video storytelling by efficiently translating ideas into visual narratives. MAViS orchestrates specialized agents across multiple stages, including script writing, shot designing, character modeling, keyframe generation, video animation, and audio generation. In each stage, agents operate under the 3E Principle -- Explore, Examine, and Enhance -- to ensure the completeness of intermediate outputs. Considering the capability limitations of current generative models, we propose the Script Writing Guidelines to optimize compatibility between scripts and generative tools. Experimental results demonstrate that MAViS achieves state-of-the-art performance in assistive capability, visual quality, and video expressiveness. Its modular framework further enables scalability with diverse generative models and tools. With just a brief idea description, MAViS enables users to rapidly explore diverse visual storytelling and creative directions for sequential video generation by efficiently producing high-quality, complete long-sequence videos. To the best of our knowledge, MAViS is the only framework that provides multimodal design output -- videos with narratives and background music.
comment: Video Generation Agent
Parameter Efficient Continual Learning with Dynamic Low-Rank Adaptation
Catastrophic forgetting has remained a critical challenge for deep neural networks in Continual Learning (CL) as it undermines consolidated knowledge when learning new tasks. Parameter efficient fine tuning CL techniques are gaining traction for their effectiveness in addressing catastrophic forgetting with a lightweight training schedule while avoiding degradation of consolidated knowledge in pre-trained models. However, low rank adapters (LoRA) in these approaches are highly sensitive to rank selection which can lead to sub-optimal resource allocation and performance. To this end, we introduce PEARL, a rehearsal-free CL framework that entails dynamic rank allocation for LoRA components during CL training. Specifically, PEARL leverages reference task weights and adaptively determines the rank of task-specific LoRA components based on the current tasks' proximity to reference task weights in parameter space. To demonstrate the versatility of PEARL, we evaluate it across three vision architectures (ResNet, Separable Convolutional Network and Vision Transformer) and a multitude of CL scenarios, and show that PEARL outperforms all considered baselines by a large margin.
comment: 27 pages, 5 figures
Graphics 4
PocketGS: On-Device Training of 3D Gaussian Splatting for High Perceptual Modeling
Efficient and high-fidelity 3D scene modeling is a long-standing pursuit in computer graphics. While recent 3D Gaussian Splatting (3DGS) methods achieve impressive real-time modeling performance, they rely on resource-unconstrained training assumptions that fail on mobile devices, which are limited by minute-scale training budgets and hardware-available peak-memory. We present PocketGS, a mobile scene modeling paradigm that enables on-device 3DGS training under these tightly coupled constraints while preserving high perceptual fidelity. Our method resolves the fundamental contradictions of standard 3DGS through three co-designed operators: G builds geometry-faithful point-cloud priors; I injects local surface statistics to seed anisotropic Gaussians, thereby reducing early conditioning gaps; and T unrolls alpha compositing with cached intermediates and index-mapped gradient scattering for stable mobile backpropagation. Collectively, these operators satisfy the competing requirements of training efficiency, memory compactness, and modeling fidelity. Extensive experiments demonstrate that PocketGS is able to outperform the powerful mainstream workstation 3DGS baseline to deliver high-quality reconstructions, enabling a fully on-device, practical capture-to-rendering workflow.
Inference-Time Loss-Guided Colour Preservation in Diffusion Sampling
Precise color control remains a persistent failure mode in text-to-image diffusion systems, particularly in design-oriented workflows where outputs must satisfy explicit, user-specified color targets. We present an inference-time, region-constrained color preservation method that steers a pretrained diffusion model without any additional training. Our approach combines (i) ROI-based inpainting for spatial selectivity, (ii) background-latent re-imposition to prevent color drift outside the ROI, and (iii) latent nudging via gradient guidance using a composite loss defined in CIE Lab and linear RGB. The loss is constructed to control not only the mean ROI color but also the tail of the pixelwise error distribution through CVaR-style and soft-maximum penalties, with a late-start gate and a time-dependent schedule to stabilize guidance across denoising steps. We show that mean-only baselines can satisfy average color constraints while producing perceptually salient local failures, motivating our distribution-aware objective. The resulting method provides a practical, training-free mechanism for targeted color adherence that can be integrated into standard Stable Diffusion inpainting pipelines.
comment: 25 Pages, 12 Figures, 3 Tables, 5 Appendices, 8 Algorithms
Revealing Latent Self-Similarity in Cellular Automata via Recursive Gradient Profiling
Cellular automata (CA), originally developed as computational models of natural processes, have become a central subject in the study of complex systems and generative visual forms. Among them, the Ulam-Warburton Cellular Automaton (UWCA) exhibits recursive growth and fractal-like characteristics in its spatial evolution. However, exact self-similar fractal structures are typically observable only at specific generations and remain visually obscured in conventional binary renderings. This study introduces a Recursive Gradient Profile Function (RGPF) that assigns grayscale values to newly activated cells according to their generation index, enabling latent self-similar structures to emerge cumulatively in spatial visualizations. Through this gradient-based mapping, recursive geometric patterns become perceptible across scales, revealing fractal properties that are not apparent in standard representations. We further extend this approach to UWCA variants with alternative neighborhood configurations, demonstrating that these rules also produce distinct yet consistently fractal visual patterns when visualized using recursive gradient profile. Beyond computational analysis, the resulting generative forms resonate with optical and cultural phenomena such as infinity mirrors, video feedback, and mise en abyme in European art history, as well as fractal motifs found in religious architecture. These visual correspondences suggest a broader connection between complexity science, computational visualization, and cultural art and design.
comment: 8 pages, 10 figures, submitted to SIGGRAPH 2026
A B-Spline Finite Element Method for Cloth Simulation
We present an efficient B-spline finite element method (FEM) for cloth simulation. While higher-order FEM has long promised higher accuracy, its adoption in cloth simulators has been limited by its larger computational costs while generating results with similar visual quality. Our contribution is a full algorithmic pipeline that makes cloth simulation using quadratic B-spline surfaces faster than standard linear FEM in practice while consistently improving accuracy and visual fidelity. Using quadratic B-spline basis functions, we obtain a globally $C^1$-continuous displacement field that supports consistent discretization of both membrane and bending energies, effectively reducing locking artifacts and mesh dependence common to linear elements. To close the performance gap, we introduce a reduced integration scheme that separately optimizes quadrature rules for membrane and bending energies, an accelerated Hessian assembly procedure tailored to the spline structure, and an optimized linear solver based on partial factorization. Together, these optimizations make high-order, smooth cloth simulation competitive at scale, yielding an average $2\times$ speedup over highly-optimized linear FEM in our tests. Extensive experiments demonstrate improved accuracy, wrinkle detail, and robustness, including contact-rich scenarios, relative to linear FEM and recent higher-order approaches. Our method enables realistic wrinkling dynamics across a wide range of material parameters and supports practical garment animation, providing a new promising spatial discretization for high-quality cloth simulation.
comment: 24 pages, 27 figures
Video World Models 2
Mirage2Matter: A Physically Grounded Gaussian World Model from Video
The scalability of embodied intelligence is fundamentally constrained by the scarcity of real-world interaction data. While simulation platforms provide a promising alternative, existing approaches often suffer from a substantial visual and physical gap to real environments and rely on expensive sensors, precise robot calibration, or depth measurements, limiting their practicality at scale. We present Simulate Anything, a graphics-driven world modeling and simulation framework that enables efficient generation of high-fidelity embodied training data using only multi-view environment videos and off-the-shelf assets. Our approach reconstructs real-world environments into a photorealistic scene representation using 3D Gaussian Splatting (3DGS), seamlessly capturing fine-grained geometry and appearance from video. We then leverage generative models to recover a physically realistic representation and integrate it into a simulation environment via a precision calibration target, enabling accurate scale alignment between the reconstructed scene and the real world. Together, these components provide a unified, editable, and physically grounded world model. Vision Language Action (VLA) models trained on our simulated data achieve strong zero-shot performance on downstream tasks, matching or even surpassing results obtained with real-world data, highlighting the potential of reconstruction-driven world modeling for scalable and practical embodied intelligence training.
Point Bridge: 3D Representations for Cross Domain Policy Learning
Robot foundation models are beginning to deliver on the promise of generalist robotic agents, yet progress remains constrained by the scarcity of large-scale real-world manipulation datasets. Simulation and synthetic data generation offer a scalable alternative, but their usefulness is limited by the visual domain gap between simulation and reality. In this work, we present Point Bridge, a framework that leverages unified, domain-agnostic point-based representations to unlock synthetic datasets for zero-shot sim-to-real policy transfer, without explicit visual or object-level alignment. Point Bridge combines automated point-based representation extraction via Vision-Language Models (VLMs), transformer-based policy learning, and efficient inference-time pipelines to train capable real-world manipulation agents using only synthetic data. With additional co-training on small sets of real demonstrations, Point Bridge further improves performance, substantially outperforming prior vision-based sim-and-real co-training methods. It achieves up to 44% gains in zero-shot sim-to-real transfer and up to 66% with limited real data across both single-task and multitask settings. Videos of the robot are best viewed at: https://pointbridge3d.github.io/
Robotics 36
AnyView: Synthesizing Any Novel View in Dynamic Scenes
Modern generative video models excel at producing convincing, high-quality outputs, but struggle to maintain multi-view and spatiotemporal consistency in highly dynamic real-world environments. In this work, we introduce \textbf{AnyView}, a diffusion-based video generation framework for \emph{dynamic view synthesis} with minimal inductive biases or geometric assumptions. We leverage multiple data sources with various levels of supervision, including monocular (2D), multi-view static (3D) and multi-view dynamic (4D) datasets, to train a generalist spatiotemporal implicit representation capable of producing zero-shot novel videos from arbitrary camera locations and trajectories. We evaluate AnyView on standard benchmarks, showing competitive results with the current state of the art, and propose \textbf{AnyViewBench}, a challenging new benchmark tailored towards \emph{extreme} dynamic view synthesis in diverse real-world scenarios. In this more dramatic setting, we find that most baselines drastically degrade in performance, as they require significant overlap between viewpoints, while AnyView maintains the ability to produce realistic, plausible, and spatiotemporally consistent videos when prompted from \emph{any} viewpoint. Results, data, code, and models can be viewed at: https://tri-ml.github.io/AnyView/
comment: Project webpage: https://tri-ml.github.io/AnyView/
GPA-VGGT:Adapting VGGT to Large scale Localization by self-Supervised learning with Geometry and Physics Aware loss
Transformer-based general visual geometry frameworks have shown promising performance in camera pose estimation and 3D scene understanding. Recent advancements in Visual Geometry Grounded Transformer (VGGT) models have shown great promise in camera pose estimation and 3D reconstruction. However, these models typically rely on ground truth labels for training, posing challenges when adapting to unlabeled and unseen scenes. In this paper, we propose a self-supervised framework to train VGGT with unlabeled data, thereby enhancing its localization capability in large-scale environments. To achieve this, we extend conventional pair-wise relations to sequence-wise geometric constraints for self-supervised learning. Specifically, in each sequence, we sample multiple source frames and geometrically project them onto different target frames, which improves temporal feature consistency. We formulate physical photometric consistency and geometric constraints as a joint optimization loss to circumvent the requirement for hard labels. By training the model with this proposed method, not only the local and global cross-view attention layers but also the camera and depth heads can effectively capture the underlying multi-view geometry. Experiments demonstrate that the model converges within hundreds of iterations and achieves significant improvements in large-scale localization. Our code will be released at https://github.com/X-yangfan/GPA-VGGT.
A Multimodal Data Collection Framework for Dialogue-Driven Assistive Robotics to Clarify Ambiguities: A Wizard-of-Oz Pilot Study
Integrated control of wheelchairs and wheelchair-mounted robotic arms (WMRAs) has strong potential to increase independence for users with severe motor limitations, yet existing interfaces often lack the flexibility needed for intuitive assistive interaction. Although data-driven AI methods show promise, progress is limited by the lack of multimodal datasets that capture natural Human-Robot Interaction (HRI), particularly conversational ambiguity in dialogue-driven control. To address this gap, we propose a multimodal data collection framework that employs a dialogue-based interaction protocol and a two-room Wizard-of-Oz (WoZ) setup to simulate robot autonomy while eliciting natural user behavior. The framework records five synchronized modalities: RGB-D video, conversational audio, inertial measurement unit (IMU) signals, end-effector Cartesian pose, and whole-body joint states across five assistive tasks. Using this framework, we collected a pilot dataset of 53 trials from five participants and validated its quality through motion smoothness analysis and user feedback. The results show that the framework effectively captures diverse ambiguity types and supports natural dialogue-driven interaction, demonstrating its suitability for scaling to a larger dataset for learning, benchmarking, and evaluation of ambiguity-aware assistive control.
Boosting Deep Reinforcement Learning with Semantic Knowledge for Robotic Manipulators
Deep Reinforcement Learning (DRL) is a powerful framework for solving complex sequential decision-making problems, particularly in robotic control. However, its practical deployment is often hindered by the substantial amount of experience required for learning, which results in high computational and time costs. In this work, we propose a novel integration of DRL with semantic knowledge in the form of Knowledge Graph Embeddings (KGEs), aiming to enhance learning efficiency by providing contextual information to the agent. Our architecture combines KGEs with visual observations, enabling the agent to exploit environmental knowledge during training. Experimental validation with robotic manipulators in environments featuring both fixed and randomized target attributes demonstrates that our method achieves up to {60}{\%} reduction in learning time and improves task accuracy by approximately 15 percentage points, without increasing training time or computational complexity. These results highlight the potential of semantic knowledge to reduce sample complexity and improve the effectiveness of DRL in robotic applications.
An Efficient Insect-inspired Approach for Visual Point-goal Navigation
In this work we develop a novel insect-inspired agent for visual point-goal navigation. This combines abstracted models of two insect brain structures that have been implicated, respectively, in associative learning and path integration. We draw an analogy between the formal benchmark of the Habitat point-goal navigation task and the ability of insects to learn and refine visually guided paths around obstacles between a discovered food location and their nest. We demonstrate that the simple insect-inspired agent exhibits performance comparable to recent SOTA models at many orders of magnitude less computational cost. Testing in a more realistic simulated environment shows the approach is robust to perturbations.
A Feature Extraction Pipeline for Enhancing Lightweight Neural Networks in sEMG-based Joint Torque Estimation
Robot-assisted rehabilitation offers an effective approach, wherein exoskeletons adapt to users' needs and provide personalized assistance. However, to deliver such assistance, accurate prediction of the user's joint torques is essential. In this work, we propose a feature extraction pipeline using 8-channel surface electromyography (sEMG) signals to predict elbow and shoulder joint torques. For preliminary evaluation, this pipeline was integrated into two neural network models: the Multilayer Perceptron (MLP) and the Temporal Convolutional Network (TCN). Data were collected from a single subject performing elbow and shoulder movements under three load conditions (0 kg, 1.10 kg, and 1.85 kg) using three motion-capture cameras. Reference torques were estimated from center-of-mass kinematics under the assumption of static equilibrium. Our offline analyses showed that, with our feature extraction pipeline, MLP model achieved mean RMSE of 0.963 N m, 1.403 N m, and 1.434 N m (over five seeds) for elbow, front-shoulder, and side-shoulder joints, respectively, which were comparable to the TCN performance. These results demonstrate that the proposed feature extraction pipeline enables a simple MLP to achieve performance comparable to that of a network designed explicitly for temporal dependencies. This finding is particularly relevant for applications with limited training data, a common scenario patient care.
Creating a biologically more accurate spider robot to study active vibration sensing
Orb-weaving spiders detect prey on a web using vibration sensors at leg joints. They often dynamically crouch their legs during prey sensing, likely an active sensing strategy. However, how leg crouching enhances sensing is poorly understood, because measuring system vibrations in behaving animals is difficult. We use robophysical modeling to study this problem. Our previous spider robot had only four legs, simplified leg morphology, and a shallow crouching range of motion. Here, we developed a new spider robot, with eight legs, each with four joints that better approximated spider leg morphology. Leg exoskeletons were 3-D printed and joint stiffness was tuned using integrated silicone molding with variable materials and geometry. Tendon-driven actuation allowed a motor in the body to crouch all eight legs deeply as spiders do, while accelerometers at leg joints record leg vibrations. Experiments showed that our new spider robot reproduced key vibration features observed in the previous robot while improving biological accuracy. Our new robot provides a biologically more accurate robophysical model for studying how leg behaviors modulate vibration sensing on a web.
comment: 8 pages, 12 figures
Adaptive Reinforcement and Model Predictive Control Switching for Safe Human-Robot Cooperative Navigation
This paper addresses the challenge of human-guided navigation for mobile collaborative robots under simultaneous proximity regulation and safety constraints. We introduce Adaptive Reinforcement and Model Predictive Control Switching (ARMS), a hybrid learning-control framework that integrates a reinforcement learning follower trained with Proximal Policy Optimization (PPO) and an analytical one-step Model Predictive Control (MPC) formulated as a quadratic program safety filter. To enable robust perception under partial observability and non-stationary human motion, ARMS employs a decoupled sensing architecture with a Long Short-Term Memory (LSTM) temporal encoder for the human-robot relative state and a spatial encoder for 360-degree LiDAR scans. The core contribution is a learned adaptive neural switcher that performs context-aware soft action fusion between the two controllers, favoring conservative, constraint-aware QP-based control in low-risk regions while progressively shifting control authority to the learned follower in highly cluttered or constrained scenarios where maneuverability is critical, and reverting to the follower action when the QP becomes infeasible. Extensive evaluations against Pure Pursuit, Dynamic Window Approach (DWA), and an RL-only baseline demonstrate that ARMS achieves an 82.5 percent success rate in highly cluttered environments, outperforming DWA and RL-only approaches by 7.1 percent and 3.1 percent, respectively, while reducing average computational latency by 33 percent to 5.2 milliseconds compared to a multi-step MPC baseline. Additional simulation transfer in Gazebo and initial real-world deployment results further indicate the practicality and robustness of ARMS for safe and efficient human-robot collaboration. Source code and a demonstration video are available at https://github.com/21ning/ARMS.git.
Sim-to-Real Transfer via a Style-Identified Cycle Consistent Generative Adversarial Network: Zero-Shot Deployment on Robotic Manipulators through Visual Domain Adaptation
The sample efficiency challenge in Deep Reinforcement Learning (DRL) compromises its industrial adoption due to the high cost and time demands of real-world training. Virtual environments offer a cost-effective alternative for training DRL agents, but the transfer of learned policies to real setups is hindered by the sim-to-real gap. Achieving zero-shot transfer, where agents perform directly in real environments without additional tuning, is particularly desirable for its efficiency and practical value. This work proposes a novel domain adaptation approach relying on a Style-Identified Cycle Consistent Generative Adversarial Network (StyleID-CycleGAN or SICGAN), an original Cycle Consistent Generative Adversarial Network (CycleGAN) based model. SICGAN translates raw virtual observations into real-synthetic images, creating a hybrid domain for training DRL agents that combines virtual dynamics with real-like visual inputs. Following virtual training, the agent can be directly deployed, bypassing the need for real-world training. The pipeline is validated with two distinct industrial robots in the approaching phase of a pick-and-place operation. In virtual environments agents achieve success rates of 90 to 100\%, and real-world deployment confirms robust zero-shot transfer (i.e., without additional training in the physical environment) with accuracies above 95\% for most workspace regions. We use augmented reality targets to improve the evaluation process efficiency, and experimentally demonstrate that the agent successfully generalizes to real objects of varying colors and shapes, including LEGO\textsuperscript{\textregistered}~cubes and a mug. These results establish the proposed pipeline as an efficient, scalable solution to the sim-to-real problem.
ReViP: Reducing False Completion in Vision-Language-Action Models with Vision-Proprioception Rebalance
Vision-Language-Action (VLA) models have advanced robotic manipulation by combining vision, language, and proprioception to predict actions. However, previous methods fuse proprioceptive signals directly with VLM-encoded vision-language features, resulting in state-dominant bias and false completions despite visible execution failures. We attribute this to modality imbalance, where policies over-rely on internal state while underusing visual evidence. To address this, we present ReViP, a novel VLA framework with Vision-Proprioception Rebalance to enhance visual grounding and robustness under perturbations. The key insight is to introduce auxiliary task-aware environment priors to adaptively modulate the coupling between semantic perception and proprioceptive dynamics. Specifically, we use an external VLM as a task-stage observer to extract real-time task-centric visual cues from visual observations, which drive a Vision-Proprioception Feature-wise Linear Modulation to enhance environmental awareness and reduce state-driven errors. Moreover, to evaluate false completion, we propose the first False-Completion Benchmark Suite built on LIBERO with controlled settings such as Object-Drop. Extensive experiments show that ReViP effectively reduces false-completion rates and improves success rates over strong VLA baselines on our suite, with gains extending to LIBERO, RoboTwin 2.0, and real-world evaluations.
A Unified Calibration Framework for High-Accuracy Articulated Robot Kinematics
Researchers have identified various sources of tool positioning errors for articulated industrial robots and have proposed dedicated compensation strategies. However, these typically require individual, specialized experiments with separate models and identification procedures. This article presents a unified approach to the static calibration of industrial robots that identifies a robot model, including geometric and non-geometric effects (compliant bending, thermal deformation, gear transmission errors), using only a single, straightforward experiment for data collection. The model augments the kinematic chain with virtual joints for each modeled effect and realizes the identification using Gauss-Newton optimization with analytic gradients. Fisher information spectra show that the estimation is well-conditioned and the parameterization near-minimal, whereas systematic temporal cross-validation and model ablations demonstrate robustness of the model identification. The resulting model is very accurate and its identification robust, achieving a mean position error of 26.8 $μm$ on a KUKA KR30 industrial robot compared to 102.3 $μm$ for purely geometric calibration.
Zero-Shot MARL Benchmark in the Cyber-Physical Mobility Lab
We present a reproducible benchmark for evaluating sim-to-real transfer of Multi-Agent Reinforcement Learning (MARL) policies for Connected and Automated Vehicles (CAVs). The platform, based on the Cyber-Physical Mobility Lab (CPM Lab) [1], integrates simulation, a high-fidelity digital twin, and a physical testbed, enabling structured zero-shot evaluation of MARL motion-planning policies. We demonstrate its use by deploying a SigmaRL-trained policy [2] across all three domains, revealing two complementary sources of performance degradation: architectural differences between simulation and hardware control stacks, and the sim-to-real gap induced by increasing environmental realism. The open-source setup enables systematic analysis of sim-to-real challenges in MARL under realistic, reproducible conditions.
RENEW: Risk- and Energy-Aware Navigation in Dynamic Waterways AAAI 2026
We present RENEW, a global path planner for Autonomous Surface Vehicle (ASV) in dynamic environments with external disturbances (e.g., water currents). RENEW introduces a unified risk- and energy-aware strategy that ensures safety by dynamically identifying non-navigable regions and enforcing adaptive safety constraints. Inspired by maritime contingency planning, it employs a best-effort strategy to maintain control under adverse conditions. The hierarchical architecture combines high-level constrained triangulation for topological diversity with low-level trajectory optimization within safe corridors. Validated with real-world ocean data, RENEW is the first framework to jointly address adaptive non-navigability and topological path diversity for robust maritime navigation.
comment: 9 pages, 10 figure, 4 tables, AAAI 2026 (main track; oral acceptance)
Reinforcement Learning-Based Energy-Aware Coverage Path Planning for Precision Agriculture
Coverage Path Planning (CPP) is a fundamental capability for agricultural robots; however, existing solutions often overlook energy constraints, resulting in incomplete operations in large-scale or resource-limited environments. This paper proposes an energy-aware CPP framework grounded in Soft Actor-Critic (SAC) reinforcement learning, designed for grid-based environments with obstacles and charging stations. To enable robust and adaptive decision-making under energy limitations, the framework integrates Convolutional Neural Networks (CNNs) for spatial feature extraction and Long Short-Term Memory (LSTM) networks for temporal dynamics. A dedicated reward function is designed to jointly optimize coverage efficiency, energy consumption, and return-to-base constraints. Experimental results demonstrate that the proposed approach consistently achieves over 90% coverage while ensuring energy safety, outperforming traditional heuristic algorithms such as Rapidly-exploring Random Tree (RRT), Particle Swarm Optimization (PSO), and Ant Colony Optimization (ACO) baselines by 13.4-19.5% in coverage and reducing constraint violations by 59.9-88.3%. These findings validate the proposed SAC-based framework as an effective and scalable solution for energy-constrained CPP in agricultural robotics.
comment: Accepted by RACS '25: International Conference on Research in Adaptive and Convergent Systems, November 16-19, 2025, Ho Chi Minh, Vietnam. 10 pages, 5 figures
GNSS-based Lunar Orbit and Clock Estimation With Stochastic Cloning UD Filter
This paper presents a terrestrial GNSS-based orbit and clock estimation framework for lunar navigation satellites. To enable high-precision estimation under the low-observability conditions encountered at lunar distances, we develop a stochastic-cloning UD-factorized filter and delayed-state smoother that provide enhanced numerical stability when processing precise time-differenced carrier phase (TDCP) measurements. A comprehensive dynamics and measurement model is formulated, explicitly accounting for relativistic coupling between orbital and clock states, lunar time-scale transformations, and signal propagation delays including ionospheric, plasmaspheric, and Shapiro effects. The proposed approach is evaluated using high-fidelity Monte-Carlo simulations incorporating realistic multi-constellation GNSS geometry, broadcast ephemeris errors, lunar satellite dynamics, and ionospheric and plasmaspheric delay computed from empirical electron density models. Simulation results demonstrate that combining ionosphere-free pseudorange and TDCP measurements achieves meter-level orbit accuracy and sub-millimeter-per-second velocity accuracy, satisfying the stringent signal-in-space error requirements of future Lunar Augmented Navigation Services (LANS).
comment: Submitted to the Journal of Guidance, Control, and Dynamics
Real-Time, Energy-Efficient, Sampling-Based Optimal Control via FPGA Acceleration
Autonomous mobile robots (AMRs), used for search-and-rescue and remote exploration, require fast and robust planning and control schemes. Sampling-based approaches for Model Predictive Control, especially approaches based on the Model Predictive Path Integral Control (MPPI) algorithm, have recently proven both to be highly effective for such applications and to map naturally to GPUs for hardware acceleration. However, both GPU and CPU implementations of such algorithms can struggle to meet tight energy and latency budgets on battery-constrained AMR platforms that leverage embedded compute. To address this issue, we present an FPGA-optimized MPPI design that exposes fine-grained parallelism and eliminates synchronization bottlenecks via deep pipelining and parallelism across algorithmic stages. This results in an average 3.1x to 7.5x speedup over optimized implementations on an embedded GPU and CPU, respectively, while simultaneously achieving a 2.5x to 5.4x reduction in energy usage. These results demonstrate that FPGA architectures are a promising direction for energy-efficient and high-performance edge robotics.
comment: 8 pages, 5 figures
Hierarchical Informative Path Planning via Graph Guidance and Trajectory Optimization
We study informative path planning (IPP) with travel budgets in cluttered environments, where an agent collects measurements of a latent field modeled as a Gaussian process (GP) to reduce uncertainty at target locations. Graph-based solvers provide global guarantees but assume pre-selected measurement locations, while continuous trajectory optimization supports path-based sensing but is computationally intensive and sensitive to initialization in obstacle-dense settings. We propose a hierarchical framework with three stages: (i) graph-based global planning, (ii) segment-wise budget allocation using geometric and kernel bounds, and (iii) spline-based refinement of each segment with hard constraints and obstacle pruning. By combining global guidance with local refinement, our method achieves lower posterior uncertainty than graph-only and continuous baselines, while running faster than continuous-space solvers (up to 9x faster than gradient-based methods and 20x faster than black-box optimizers) across synthetic cluttered environments and Arctic datasets.
Advancing Improvisation in Human-Robot Construction Collaboration: Taxonomy and Research Roadmap
The construction industry faces productivity stagnation, skilled labor shortages, and safety concerns. While robotic automation offers solutions, construction robots struggle to adapt to unstructured, dynamic sites. Central to this is improvisation, adapting to unexpected situations through creative problem-solving, which remains predominantly human. In construction's unpredictable environments, collaborative human-robot improvisation is essential for workflow continuity. This research develops a six-level taxonomy classifying human-robot collaboration (HRC) based on improvisation capabilities. Through systematic review of 214 articles (2010-2025), we categorize construction robotics across: Manual Work (Level 0), Human-Controlled Execution (Level 1), Adaptive Manipulation (Level 2), Imitation Learning (Level 3), Human-in-Loop BIM Workflow (Level 4), Cloud-Based Knowledge Integration (Level 5), and True Collaborative Improvisation (Level 6). Analysis reveals current research concentrates at lower levels, with critical gaps in experiential learning and limited progression toward collaborative improvisation. A five-dimensional radar framework illustrates progressive evolution of Planning, Cognitive Role, Physical Execution, Learning Capability, and Improvisation, demonstrating how complementary human-robot capabilities create team performance exceeding individual contributions. The research identifies three fundamental barriers: technical limitations in grounding and dialogic reasoning, conceptual gaps between human improvisation and robotics research, and methodological challenges. We recommend future research emphasizing improved human-robot communication via Augmented/Virtual Reality interfaces, large language model integration, and cloud-based knowledge systems to advance toward true collaborative improvisation.
comment: 73 pages, 8 figures
Autonomous Mars Rover Module for Soil Sampling and Life Component Analysis
The search for extraterrestrial life has long been a primary focus of scientific exploration, driven by rapid advancements in technology and our understanding of the universe. The discovery of water on Mars has sparked significant interest, raising the question of whether life could exist on the planet. This study proposes a novel approach to simulate and illustrate the detection of life using a proof-of-life module integrated into a Mars rover. The module is an autonomous system capable of traveling to designated regions, excavating soil, collecting samples, and performing biochemical testing onboard the rover itself. The project is inherently multidisciplinary, integrating mechanical systems such as a drill mechanism and a vacuum system, alongside biochemical analysis for soil testing. The module is capable of successfully detecting the presence or absence of living components of life from the collected soil particles. This proof-of-life module serves as a proof-of-concept for autonomous life detection in extraterrestrial environments and lays the foundation for future exploration missions.
comment: 9 pages, 12 figures
ConceptACT: Episode-Level Concepts for Sample-Efficient Robotic Imitation Learning
Imitation learning enables robots to acquire complex manipulation skills from human demonstrations, but current methods rely solely on low-level sensorimotor data while ignoring the rich semantic knowledge humans naturally possess about tasks. We present ConceptACT, an extension of Action Chunking with Transformers that leverages episode-level semantic concept annotations during training to improve learning efficiency. Unlike language-conditioned approaches that require semantic input at deployment, ConceptACT uses human-provided concepts (object properties, spatial relationships, task constraints) exclusively during demonstration collection, adding minimal annotation burden. We integrate concepts using a modified transformer architecture in which the final encoder layer implements concept-aware cross-attention, supervised to align with human annotations. Through experiments on two robotic manipulation tasks with logical constraints, we demonstrate that ConceptACT converges faster and achieves superior sample efficiency compared to standard ACT. Crucially, we show that architectural integration through attention mechanisms significantly outperforms naive auxiliary prediction losses or language-conditioned models. These results demonstrate that properly integrated semantic supervision provides powerful inductive biases for more efficient robot learning.
Acoustic Field Video for Multimodal Scene Understanding
We introduce and explore a new multimodal input representation for vision-language models: acoustic field video. Unlike conventional video (RGB with stereo/mono audio), our video stream provides a spatially grounded visualization of sound intensity across a scene, offering a new and powerful dimension of perceptual understanding. Our real-time pipeline uses low-cost beamforming microphone arrays that are already common in smart speakers and increasingly present in robotics and XR headsets, yet this sensing capability remains unutilized for scene understanding. To assess the value of spatial acoustic information, we constructed an evaluation set of 402 question-answer scenes, comparing a state-of-the-art VLM given conventional video with and without paired acoustic field video. Results show a clear and consistent improvement when incorporating spatial acoustic data; the VLM we test improves from 38.3% correct to 67.4%. Our findings highlight that many everyday scene understanding tasks remain underconstrained when relying solely on visual and audio input, and that acoustic field data provides a promising and practical direction for multimodal reasoning. A video demo is available at https://daehwakim.com/seeingsound
MapAnything: Universal Feed-Forward Metric 3D Reconstruction 3DV 2026
We introduce MapAnything, a unified transformer-based feed-forward model that ingests one or more images along with optional geometric inputs such as camera intrinsics, poses, depth, or partial reconstructions, and then directly regresses the metric 3D scene geometry and cameras. MapAnything leverages a factored representation of multi-view scene geometry, i.e., a collection of depth maps, local ray maps, camera poses, and a metric scale factor that effectively upgrades local reconstructions into a globally consistent metric frame. Standardizing the supervision and training across diverse datasets, along with flexible input augmentation, enables MapAnything to address a broad range of 3D vision tasks in a single feed-forward pass, including uncalibrated structure-from-motion, calibrated multi-view stereo, monocular depth estimation, camera localization, depth completion, and more. We provide extensive experimental analyses and model ablations demonstrating that MapAnything outperforms or matches specialist feed-forward models while offering more efficient joint training behavior, thus paving the way toward a universal 3D reconstruction backbone.
comment: 3DV 2026. Project Page: https://map-anything.github.io/
Q-learning with Adjoint Matching
We propose Q-learning with Adjoint Matching (QAM), a novel TD-based reinforcement learning (RL) algorithm that tackles a long-standing challenge in continuous-action RL: efficient optimization of an expressive diffusion or flow-matching policy with respect to a parameterized Q-function. Effective optimization requires exploiting the first-order information of the critic, but it is challenging to do so for flow or diffusion policies because direct gradient-based optimization via backpropagation through their multi-step denoising process is numerically unstable. Existing methods work around this either by only using the value and discarding the gradient information, or by relying on approximations that sacrifice policy expressivity or bias the learned policy. QAM sidesteps both of these challenges by leveraging adjoint matching, a recently proposed technique in generative modeling, which transforms the critic's action gradient to form a step-wise objective function that is free from unstable backpropagation, while providing an unbiased, expressive policy at the optimum. Combined with temporal-difference backup for critic learning, QAM consistently outperforms prior approaches on hard, sparse reward tasks in both offline and offline-to-online RL.
comment: 32 pages, 8 figures, 7 tables
Where to Touch, How to Contact: Hierarchical RL-MPC Framework for Geometry-Aware Long-Horizon Dexterous Manipulation
A key challenge in contact-rich dexterous manipulation is the need to jointly reason over geometry, kinematic constraints, and intricate, nonsmooth contact dynamics. End-to-end visuomotor policies bypass this structure, but often require large amounts of data, transfer poorly from simulation to reality, and generalize weakly across tasks/embodiments. We address those limitations by leveraging a simple insight: dexterous manipulation is inherently hierarchical - at a high level, a robot decides where to touch (geometry) and move the object (kinematics); at a low level it determines how to realize that plan through contact dynamics. Building on this insight, we propose a hierarchical RL--MPC framework in which a high-level reinforcement learning (RL) policy predicts a contact intention, a novel object-centric interface that specifies (i) an object-surface contact location and (ii) a post-contact object-level subgoal pose. Conditioned on this contact intention, a low-level contact-implicit model predictive control (MPC) optimizes local contact modes and replans with contact dynamics to generate robot actions that robustly drive the object toward each subgoal. We evaluate the framework on non-prehensile tasks, including geometry-generalized pushing and object 3D reorientation. It achieves near-100% success with substantially reduced data (10x less than end-to-end baselines), highly robust performance, and zero-shot sim-to-real transfer.
HEIGHT: Heterogeneous Interaction Graph Transformer for Robot Navigation in Crowded and Constrained Environments
We study the problem of robot navigation in dense and interactive crowds with static constraints such as corridors and furniture. Previous methods fail to consider all types of spatial and temporal interactions among agents and obstacles, leading to unsafe and inefficient robot paths. In this article, we leverage a graph-based representation of crowded and constrained scenarios and propose a structured framework to learn robot navigation policies with deep reinforcement learning. We first split the representations of different inputs and propose a heterogeneous spatio-temporal graph to model distinct interactions among humans, robots, and obstacles. Based on the heterogeneous spatio-temporal graph, we propose HEIGHT, a novel navigation policy network architecture with different components to capture heterogeneous interactions through space and time. HEIGHT utilizes attention mechanisms to prioritize important interactions and a recurrent network to track changes in the dynamic scene over time, encouraging the robot to avoid collisions adaptively. Through extensive simulation and real-world experiments, we demonstrate that HEIGHT outperforms state-of-the-art baselines in terms of success, navigation time, and generalization to domain shifts in challenging navigation scenarios. More information is available at https://sites.google.com/view/crowdnav-height/home.
comment: Accepted to IEEE Transactions of Automation Science and Engineering (T-ASE)
DAVOS: An Autonomous Vehicle Operating System in the Vehicle Computing Era
Vehicle computing represents a fundamental shift in how autonomous vehicles are designed and deployed, transforming them from isolated transportation systems into mobile computing platforms that support both safety-critical, real-time driving and data-centric services. In this setting, vehicles simultaneously support real-time driving pipelines and a growing set of data-driven applications, placing increased responsibility on the vehicle operating system to coordinate computation, data movement, storage, and access. These demands highlight recurring system considerations related to predictable execution, data and execution protection, efficient handling of high-rate sensor data, and long-term system evolvability, commonly summarized as Safety, Security, Efficiency, and Extensibility (SSEE). Existing vehicle operating systems and runtimes address these concerns in isolation, resulting in fragmented software stacks that limit coordination between autonomy workloads and vehicle data services. This paper presents DAVOS, the Dependable Autonomous Vehicle Operating System, a unified vehicle operating system architecture designed for the vehicle computing context. DAVOS provides a cohesive operating system foundation that supports both real-time autonomy and extensible vehicle computing within a single system framework.
Collision-Free Humanoid Traversal in Cluttered Indoor Scenes
We study the problem of collision-free humanoid traversal in cluttered indoor scenes, such as hurdling over objects scattered on the floor, crouching under low-hanging obstacles, or squeezing through narrow passages. To achieve this goal, the humanoid needs to map its perception of surrounding obstacles with diverse spatial layouts and geometries to the corresponding traversal skills. However, the lack of an effective representation that captures humanoid-obstacle relationships during collision avoidance makes directly learning such mappings difficult. We therefore propose Humanoid Potential Field (HumanoidPF), which encodes these relationships as collision-free motion directions, significantly facilitating RL-based traversal skill learning. We also find that HumanoidPF exhibits a surprisingly negligible sim-to-real gap as a perceptual representation. To further enable generalizable traversal skills through diverse and challenging cluttered indoor scenes, we further propose a hybrid scene generation method, incorporating crops of realistic 3D indoor scenes and procedurally synthesized obstacles. We successfully transfer our policy to the real world and develop a teleoperation system where users could command the humanoid to traverse in cluttered indoor scenes with just a single click. Extensive experiments are conducted in both simulation and the real world to validate the effectiveness of our method. Demos and code can be found in our website: https://axian12138.github.io/CAT/.
XR$^3$: An Extended Reality Platform for Social-Physical Human-Robot Interaction
Social-physical human-robot interaction (spHRI) is difficult to study: building and programming robots that integrate multiple interaction modalities is costly and slow, while VR-based prototypes often lack physical contact, breaking users' visuo-tactile expectations. We present XR$^3$, a co-located dual-VR-headset platform for HRI research in which an attendee and a hidden operator share the same physical space while experiencing different virtual embodiments. The attendee sees an expressive virtual robot that interacts face-to-face in a shared virtual environment. In real time, the robot's upper-body motion, head and gaze behavior, and facial expressions are mapped from the operator's tracked limbs and face signals. Because the operator is co-present and calibrated in the same coordinate frame, the operator can also touch the attendee, enabling perceived robot touch synchronized with the robot's visible hands. Finger and hand motion is mapped to the robot avatar using inverse kinematics to support precise contact. Beyond motion retargeting, XR$^3$ supports social retargeting of multiple nonverbal cues that can be experimentally varied while keeping physical interaction constant. We detail the system design and calibration, and demonstrate the platform in a touch-based Wizard-of-Oz study, lowering the barrier to prototyping and evaluating embodied, contact-based robot behaviors.
comment: 7 pages, 4 figures
HumanDiffusion: A Vision-Based Diffusion Trajectory Planner with Human-Conditioned Goals for Search and Rescue UAV
Reliable human--robot collaboration in emergency scenarios requires autonomous systems that can detect humans, infer navigation goals, and operate safely in dynamic environments. This paper presents HumanDiffusion, a lightweight image-conditioned diffusion planner that generates human-aware navigation trajectories directly from RGB imagery. The system combines YOLO-11 based human detection with diffusion-driven trajectory generation, enabling a quadrotor to approach a target person and deliver medical assistance without relying on prior maps or computationally intensive planning pipelines. Trajectories are predicted in pixel space, ensuring smooth motion and a consistent safety margin around humans. We evaluate HumanDiffusion in simulation and real-world indoor mock-disaster scenarios. On a 300-sample test set, the model achieves a mean squared error of 0.02 in pixel-space trajectory reconstruction. Real-world experiments demonstrate an overall mission success rate of 80% across accident-response and search-and-locate tasks with partial occlusions. These results indicate that human-conditioned diffusion planning offers a practical and robust solution for human-aware UAV navigation in time-critical assistance settings.
comment: This paper has been accepted at HRI, Late Breaking Report, 2026
VL-LN Bench: Towards Long-horizon Goal-oriented Navigation with Active Dialogs
In most existing embodied navigation tasks, instructions are well-defined and unambiguous, such as instruction following and object searching. Under this idealized setting, agents are required solely to produce effective navigation outputs conditioned on vision and language inputs. However, real-world navigation instructions are often vague and ambiguous, requiring the agent to resolve uncertainty and infer user intent through active dialog. To address this gap, we propose Interactive Instance Goal Navigation (IIGN), a task that requires agents not only to generate navigation actions but also to produce language outputs via active dialog, thereby aligning more closely with practical settings. IIGN extends Instance Goal Navigation (IGN) by allowing agents to freely consult an oracle in natural language while navigating. Building on this task, we present the Vision Language-Language Navigation (VL-LN) benchmark, which provides a large-scale, automatically generated dataset and a comprehensive evaluation protocol for training and assessing dialog-enabled navigation models. VL-LN comprises over 41k long-horizon dialog-augmented trajectories for training and an automatic evaluation protocol with an oracle capable of responding to agent queries. Using this benchmark, we train a navigation model equipped with dialog capabilities and show that it achieves significant improvements over the baselines. Extensive experiments and analyses further demonstrate the effectiveness and reliability of VL-LN for advancing research on dialog-enabled embodied navigation. Code and dataset: https://0309hws.github.io/VL-LN.github.io/
VALISENS: A Validated Innovative Multi-Sensor System for Cooperative Automated Driving
Reliable perception remains a key challenge for Connected Automated Vehicles (CAVs) in complex real-world environments, where varying lighting conditions and adverse weather degrade sensing performance. While existing multi-sensor solutions improve local robustness, they remain constrained by limited sensing range, line-of-sight occlusions, and sensor failures on individual vehicles. This paper introduces VALISENS, a validated cooperative perception system that extends multi-sensor fusion beyond a single vehicle through Vehicle-to-Everything (V2X)-enabled collaboration between Connected Automated Vehicles (CAVs) and intelligent infrastructure. VALISENS integrates onboard and roadside LiDARs, radars, RGB cameras, and thermal cameras within a unified multi-agent perception framework. Thermal cameras enhances the detection of Vulnerable Road Users (VRUs) under challenging lighting conditions, while roadside sensors reduce occlusions and expand the effective perception range. In addition, an integrated sensor monitoring module continuously assesses sensor health and detects anomalies before system degradation occurs. The proposed system is implemented and evaluated in a dedicated real-world testbed. Experimental results show that VALISENS improves pedestrian situational awareness by up to 18% compared with vehicle-only sensing, while the sensor monitoring module achieves over 97% accuracy, demonstrating its effectiveness and its potential to support future Cooperative Intelligent Transport Systems (C-ITS) applications.
comment: 8 pages, 5 figures, submitted to IEEE VNC
CLASH: Collaborative Large-Small Hierarchical Framework for Continuous Vision-and-Language Navigation
Vision-and-Language Navigation (VLN) requires robots to follow natural language instructions and navigate complex environments without prior maps. While recent vision-language large models demonstrate strong reasoning abilities, they often underperform task-specific panoramic small models in VLN tasks. To address this, we propose CLASH (Collaborative Large-Small Hierarchy), a VLN-CE framework that integrates a reactive small-model planner (RSMP) with a reflective large-model reasoner (RLMR). RSMP adopts a causal-learning-based dual-branch architecture to enhance generalization, while RLMR leverages panoramic visual prompting with chain-of-thought reasoning to support interpretable spatial understanding and navigation. We further introduce an uncertainty-aware collaboration mechanism (UCM) that adaptively fuses decisions from both models. For obstacle avoidance, in simulation, we replace the rule-based controller with a fully learnable point-goal policy, and in real-world deployment, we design a LiDAR-based clustering module for generating navigable waypoints and pair it with an online SLAM-based local controller. CLASH achieves state-of-the-art (SoTA) results (ranking 1-st) on the VLN-CE leaderboard, significantly improving SR and SPL on the test-unseen set over the previous SoTA methods. Real-world experiments demonstrate CLASH's strong robustness, validating its effectiveness in both simulation and deployment scenarios.
FantasyVLN: Unified Multimodal Chain-of-Thought Reasoning for Vision-Language Navigation
Achieving human-level performance in Vision-and-Language Navigation (VLN) requires an embodied agent to jointly understand multimodal instructions and visual-spatial context while reasoning over long action sequences. Recent works, such as NavCoT and NavGPT-2, demonstrate the potential of Chain-of-Thought (CoT) reasoning for improving interpretability and long-horizon planning. Moreover, multimodal extensions like OctoNav-R1 and CoT-VLA further validate CoT as a promising pathway toward human-like navigation reasoning. However, existing approaches face critical drawbacks: purely textual CoTs lack spatial grounding and easily overfit to sparse annotated reasoning steps, while multimodal CoTs incur severe token inflation by generating imagined visual observations, making real-time navigation impractical. In this work, we propose FantasyVLN, a unified implicit reasoning framework that preserves the benefits of CoT reasoning without explicit token overhead. Specifically, imagined visual tokens are encoded into a compact latent space using a pretrained Visual AutoRegressor (VAR) during CoT reasoning training, and the model jointly learns from textual, visual, and multimodal CoT modes under a unified multi-CoT strategy. At inference, our model performs direct instruction-to-action mapping while still enjoying reasoning-aware representations. Extensive experiments on LH-VLN show that our approach achieves reasoning-aware yet real-time navigation, improving success rates and efficiency while reducing inference latency by an order of magnitude compared to explicit CoT methods.
Tunable Passivity Control for Centralized Multiport Networked Systems
Centralized Multiport Networked Dynamic (CMND) systems have emerged as a key architecture with applications in several complex network systems, such as multilateral telerobotics and multi-agent control. These systems consist of a hub node/subsystem connecting with multiple remote nodes/subsystems via a networked architecture. One challenge for this system is stability, which can be affected by non-ideal network artifacts. Conventional passivity-based approaches can stabilize the system under specialized applications like small-scale networked systems. However, those conventional passive stabilizers have several restrictions, such as distributing compensation across subsystems in a decentralized manner, limiting flexibility, and, at the same time, relying on the restrictive assumptions of node passivity. This paper synthesizes a centralized optimal passivity-based stabilization framework for CMND systems. It consists of a centralized passivity observer monitoring overall energy flow and an optimal passivity controller that distributes the just-needed dissipation among various nodes, guaranteeing strict passivity and, thus, L2 stability. The proposed data-driven model-free approach, i.e., Tunable Centralized Optimal Passivity Control (TCoPC), optimizes total performance based on the prescribed dissipation distribution strategy while ensuring stability. The controller can put high dissipation loads on some sub-networks while relaxing the dissipation on other nodes. Simulation results demonstrate the proposed frameworks performance in a complex task under different time-varying delay scenarios while relaxing the remote nodes minimum phase and passivity assumption, enhancing the scalability and generalizability.
FoldNet: Learning Generalizable Closed-Loop Policy for Garment Folding via Keypoint-Driven Asset and Demonstration Synthesis
Due to the deformability of garments, generating a large amount of high-quality data for robotic garment manipulation tasks is highly challenging. In this paper, we present a synthetic garment dataset that can be used for robotic garment folding. We begin by constructing geometric garment templates based on keypoints and applying generative models to generate realistic texture patterns. Leveraging these keypoint annotations, we generate folding demonstrations in simulation and train folding policies via closed-loop imitation learning. To improve robustness, we propose KG-DAgger, which uses a keypoint-based strategy to generate demonstration data for recovering from failures. KG-DAgger significantly improves the model performance, boosting the real-world success rate by 25\%. After training with 15K trajectories (about 2M image-action pairs), the model achieves a 75\% success rate in the real world. Experiments in both simulation and real-world settings validate the effectiveness of our proposed framework.
Offline Reinforcement Learning using Human-Aligned Reward Labeling for Autonomous Emergency Braking in Occluded Pedestrian Crossing
Effective leveraging of real-world driving datasets is crucial for enhancing the training of autonomous driving systems. While Offline Reinforcement Learning enables training autonomous vehicles with such data, most available datasets lack meaningful reward labels. Reward labeling is essential as it provides feedback for the learning algorithm to distinguish between desirable and undesirable behaviors, thereby improving policy performance. This paper presents a novel approach for generating human-aligned reward labels. The proposed approach addresses the challenge of absent reward signals in the real-world datasets by generating labels that reflect human judgment and safety considerations. The reward function incorporates an adaptive safety component that is activated by analyzing semantic segmentation maps, enabling the autonomous vehicle to prioritize safety over efficiency in potential collision scenarios. The proposed method is applied to an occluded pedestrian crossing scenario with varying pedestrian traffic levels, using simulation data. When the generated rewards were used to train various Offline Reinforcement Learning algorithms, each model produced a meaningful policy, demonstrating the method's viability. In addition, the method was applied to a subset of the Audi Autonomous Driving Dataset, and the reward labels were compared to human-annotated reward labels. The findings show a moderate disparity between the two reward sets, and, most interestingly, the method flagged unsafe states that the human annotator missed.
comment: 39 pages, 14 figures, 1 table
Computer Vision and Pattern Recognition 120
AnyView: Synthesizing Any Novel View in Dynamic Scenes
Modern generative video models excel at producing convincing, high-quality outputs, but struggle to maintain multi-view and spatiotemporal consistency in highly dynamic real-world environments. In this work, we introduce \textbf{AnyView}, a diffusion-based video generation framework for \emph{dynamic view synthesis} with minimal inductive biases or geometric assumptions. We leverage multiple data sources with various levels of supervision, including monocular (2D), multi-view static (3D) and multi-view dynamic (4D) datasets, to train a generalist spatiotemporal implicit representation capable of producing zero-shot novel videos from arbitrary camera locations and trajectories. We evaluate AnyView on standard benchmarks, showing competitive results with the current state of the art, and propose \textbf{AnyViewBench}, a challenging new benchmark tailored towards \emph{extreme} dynamic view synthesis in diverse real-world scenarios. In this more dramatic setting, we find that most baselines drastically degrade in performance, as they require significant overlap between viewpoints, while AnyView maintains the ability to produce realistic, plausible, and spatiotemporally consistent videos when prompted from \emph{any} viewpoint. Results, data, code, and models can be viewed at: https://tri-ml.github.io/AnyView/
comment: Project webpage: https://tri-ml.github.io/AnyView/
SyncLight: Controllable and Consistent Multi-View Relighting
We present SyncLight, the first method to enable consistent, parametric relighting across multiple uncalibrated views of a static scene. While single-view relighting has advanced significantly, existing generative approaches struggle to maintain the rigorous lighting consistency essential for multi-camera broadcasts, stereoscopic cinema, and virtual production. SyncLight addresses this by enabling precise control over light intensity and color across a multi-view capture of a scene, conditioned on a single reference edit. Our method leverages a multi-view diffusion transformer trained using a latent bridge matching formulation, achieving high-fidelity relighting of the entire image set in a single inference step. To facilitate training, we introduce a large-scale hybrid dataset comprising diverse synthetic environments -- curated from existing sources and newly designed scenes -- alongside high-fidelity, real-world multi-view captures under calibrated illumination. Surprisingly, though trained only on image pairs, SyncLight generalizes zero-shot to an arbitrary number of viewpoints, effectively propagating lighting changes across all views, without requiring camera pose information. SyncLight enables practical relighting workflows for multi-view capture systems.
comment: Project page: http://sync-light.github.io
VisGym: Diverse, Customizable, Scalable Environments for Multimodal Agents
Modern Vision-Language Models (VLMs) remain poorly characterized in multi-step visual interactions, particularly in how they integrate perception, memory, and action over long horizons. We introduce VisGym, a gymnasium of 17 environments for evaluating and training VLMs. The suite spans symbolic puzzles, real-image understanding, navigation, and manipulation, and provides flexible controls over difficulty, input representation, planning horizon, and feedback. We also provide multi-step solvers that generate structured demonstrations, enabling supervised finetuning. Our evaluations show that all frontier models struggle in interactive settings, achieving low success rates in both the easy (46.6%) and hard (26.0%) configurations. Our experiments reveal notable limitations: models struggle to effectively leverage long context, performing worse with an unbounded history than with truncated windows. Furthermore, we find that several text-based symbolic tasks become substantially harder once rendered visually. However, explicit goal observations, textual feedback, and exploratory demonstrations in partially observable or unknown-dynamics settings for supervised finetuning yield consistent gains, highlighting concrete failure modes and pathways for improving multi-step visual decision-making. Code, data, and models can be found at: https://visgym.github.io/.
comment: Project page: https://visgym.github.io/
Domain-invariant Mixed-domain Semi-supervised Medical Image Segmentation with Clustered Maximum Mean Discrepancy Alignment
Deep learning has shown remarkable progress in medical image semantic segmentation, yet its success heavily depends on large-scale expert annotations and consistent data distributions. In practice, annotations are scarce, and images are collected from multiple scanners or centers, leading to mixed-domain settings with unknown domain labels and severe domain gaps. Existing semi-supervised or domain adaptation approaches typically assume either a single domain shift or access to explicit domain indices, which rarely hold in real-world deployment. In this paper, we propose a domain-invariant mixed-domain semi-supervised segmentation framework that jointly enhances data diversity and mitigates domain bias. A Copy-Paste Mechanism (CPM) augments the training set by transferring informative regions across domains, while a Cluster Maximum Mean Discrepancy (CMMD) block clusters unlabeled features and aligns them with labeled anchors via an MMD objective, encouraging domain-invariant representations. Integrated within a teacher-student framework, our method achieves robust and precise segmentation even with very few labeled examples and multiple unknown domain discrepancies. Experiments on Fundus and M&Ms benchmarks demonstrate that our approach consistently surpasses semi-supervised and domain adaptation methods, establishing a potential solution for mixed-domain semi-supervised medical image segmentation.
comment: accepted in ICASSP 2026
Reward-Forcing: Autoregressive Video Generation with Reward Feedback
While most prior work in video generation relies on bidirectional architectures, recent efforts have sought to adapt these models into autoregressive variants to support near real-time generation. However, such adaptations often depend heavily on teacher models, which can limit performance, particularly in the absence of a strong autoregressive teacher, resulting in output quality that typically lags behind their bidirectional counterparts. In this paper, we explore an alternative approach that uses reward signals to guide the generation process, enabling more efficient and scalable autoregressive generation. By using reward signals to guide the model, our method simplifies training while preserving high visual fidelity and temporal consistency. Through extensive experiments on standard benchmarks, we find that our approach performs comparably to existing autoregressive models and, in some cases, surpasses similarly sized bidirectional models by avoiding constraints imposed by teacher architectures. For example, on VBench, our method achieves a total score of 84.92, closely matching state-of-the-art autoregressive methods that score 84.31 but require significant heterogeneous distillation.
comment: preprint
LoL: Longer than Longer, Scaling Video Generation to Hour
Recent research in long-form video generation has shifted from bidirectional to autoregressive models, yet these methods commonly suffer from error accumulation and a loss of long-term coherence. While attention sink frames have been introduced to mitigate this performance decay, they often induce a critical failure mode we term sink-collapse: the generated content repeatedly reverts to the sink frame, resulting in abrupt scene resets and cyclic motion patterns. Our analysis reveals that sink-collapse originates from an inherent conflict between the periodic structure of Rotary Position Embedding (RoPE) and the multi-head attention mechanisms prevalent in current generative models. To address it, we propose a lightweight, training-free approach that effectively suppresses this behavior by introducing multi-head RoPE jitter that breaks inter-head attention homogenization and mitigates long-horizon collapse. Extensive experiments show that our method successfully alleviates sink-collapse while preserving generation quality. To the best of our knowledge, this work achieves the first demonstration of real-time, streaming, and infinite-length video generation with little quality decay. As an illustration of this robustness, we generate continuous videos up to 12 hours in length, which, to our knowledge, is among the longest publicly demonstrated results in streaming video generation.
comment: preprint
Embedding -based Crop Type Classification in the Groundnut Basin of Senegal
Crop type maps from satellite remote sensing are important tools for food security, local livelihood support and climate change mitigation in smallholder regions of the world, but most satellite-based methods are not well suited to smallholder conditions. To address this gap, we establish a four-part criteria for a useful embedding-based approach consisting of 1) performance, 2) plausibility, 3) transferability and 4) accessibility and evaluate geospatial foundation model (FM) embeddings -based approaches using TESSERA and AlphaEarth against current baseline methods for a region in the groundnut basin of Senegal. We find that the TESSERA -based approach to land cover and crop type mapping fulfills the selection criteria best, and in one temporal transfer example shows 28% higher accuracy compared to the next best method. These results indicate that TESSERA embeddings are an effective approach for crop type classification and mapping tasks in Senegal.
Evaluating Large Vision-language Models for Surgical Tool Detection
Surgery is a highly complex process, and artificial intelligence has emerged as a transformative force in supporting surgical guidance and decision-making. However, the unimodal nature of most current AI systems limits their ability to achieve a holistic understanding of surgical workflows. This highlights the need for general-purpose surgical AI systems capable of comprehensively modeling the interrelated components of surgical scenes. Recent advances in large vision-language models that integrate multimodal data processing offer strong potential for modeling surgical tasks and providing human-like scene reasoning and understanding. Despite their promise, systematic investigations of VLMs in surgical applications remain limited. In this study, we evaluate the effectiveness of large VLMs for the fundamental surgical vision task of detecting surgical tools. Specifically, we investigate three state-of-the-art VLMs, Qwen2.5, LLaVA1.5, and InternVL3.5, on the GraSP robotic surgery dataset under both zero-shot and parameter-efficient LoRA fine-tuning settings. Our results demonstrate that Qwen2.5 consistently achieves superior detection performance in both configurations among the evaluated VLMs. Furthermore, compared with the open-set detection baseline Grounding DINO, Qwen2.5 exhibits stronger zero-shot generalization and comparable fine-tuned performance. Notably, Qwen2.5 shows superior instrument recognition, while Grounding DINO demonstrates stronger localization.
GPA-VGGT:Adapting VGGT to Large scale Localization by self-Supervised learning with Geometry and Physics Aware loss
Transformer-based general visual geometry frameworks have shown promising performance in camera pose estimation and 3D scene understanding. Recent advancements in Visual Geometry Grounded Transformer (VGGT) models have shown great promise in camera pose estimation and 3D reconstruction. However, these models typically rely on ground truth labels for training, posing challenges when adapting to unlabeled and unseen scenes. In this paper, we propose a self-supervised framework to train VGGT with unlabeled data, thereby enhancing its localization capability in large-scale environments. To achieve this, we extend conventional pair-wise relations to sequence-wise geometric constraints for self-supervised learning. Specifically, in each sequence, we sample multiple source frames and geometrically project them onto different target frames, which improves temporal feature consistency. We formulate physical photometric consistency and geometric constraints as a joint optimization loss to circumvent the requirement for hard labels. By training the model with this proposed method, not only the local and global cross-view attention layers but also the camera and depth heads can effectively capture the underlying multi-view geometry. Experiments demonstrate that the model converges within hundreds of iterations and achieves significant improvements in large-scale localization. Our code will be released at https://github.com/X-yangfan/GPA-VGGT.
No Validation, No Problem: Predicting Model Performance from a Single Gradient
We propose a validation-free checkpointing signal from a single forward-backward pass: the Frobenius norm of the classifier-head gradient on one detached-feature batch, ||g||_F = ||dL/dW||_F. Across ImageNet-1k CNNs and Transformers, this proxy is strongly negative with Top-1 and positive with loss. Selecting the checkpoint with the minimum head gradient in a short tail window closes most of the gap to the oracle (4.24% +/- 2.00% with a universal setup, about 1.12% with light per-family tuning). For practical deployment, a head-scale normalization is more stable within classic CNN families (e.g., ResNets), while a feature-scale normalization works well for Transformers and modern CNNs. The same one-batch probe also predicts COCO detection/segmentation mAP. In diffusion (UNet/DDPM on CIFAR-10), it tracks progress and enables near-oracle tail-window selection; it is positively correlated with same-distribution probe MSE and negatively with FID (lower is better), so it can be used as a lightweight, label-free monitor. Validation labels are never used beyond reporting. The probe adds much less than 0.1% of an epoch and works as a drop-in for validation-free checkpoint selection and early stopping.
ColorConceptBench: A Benchmark for Probabilistic Color-Concept Understanding in Text-to-Image Models
While text-to-image (T2I) models have advanced considerably, their capability to associate colors with implicit concepts remains underexplored. To address the gap, we introduce ColorConceptBench, a new human-annotated benchmark to systematically evaluate color-concept associations through the lens of probabilistic color distributions. ColorConceptBench moves beyond explicit color names or codes by probing how models translate 1,281 implicit color concepts using a foundation of 6,369 human annotations. Our evaluation of seven leading T2I models reveals that current models lack sensitivity to abstract semantics, and crucially, this limitation appears resistant to standard interventions (e.g., scaling and guidance). This demonstrates that achieving human-like color semantics requires more than larger models, but demands a fundamental shift in how models learn and represent implicit meaning.
Calibrated Probabilistic Interpolation for GEDI Biomass
Reliable wall-to-wall biomass mapping from NASA's GEDI mission requires interpolating sparse LiDAR observations across heterogeneous landscapes. While machine learning approaches like Random Forest and XGBoost are standard for this task, they treat spatial predictions of GEDI observations from multispectral or SAR remote sensing data as independent without adapting to the varying difficulty of heterogeneous landscapes. We demonstrate these approaches generally fail to produce calibrated prediction intervals. We identify that this stems from conflating ensemble variance with aleatoric uncertainty and ignoring local spatial context. To resolve this, we introduce Attentive Neural Processes (ANPs), a probabilistic meta-learning framework that explicitly conditions predictions on local observation sets and geospatial foundation model embeddings. Unlike static ensembles, ANPs learn a flexible spatial covariance function, allowing uncertainty estimates to expand in complex landscapes and contract in homogeneous areas. We validate this approach across five distinct biomes ranging from Tropical Amazonian forests to Boreal and Alpine ecosystems, demonstrating that ANPs achieve competitive accuracy while maintaining near-ideal uncertainty calibration. We demonstrate the operational utility of the method through few-shot adaptation, where the model recovers most of the performance gap in cross-region transfer using minimal local data. This work provides a scalable, theoretically rigorous alternative to ensemble variance for continental scale earth observation.
Incorporating Eye-Tracking Signals Into Multimodal Deep Visual Models For Predicting User Aesthetic Experience In Residential Interiors
Understanding how people perceive and evaluate interior spaces is essential for designing environments that promote well-being. However, predicting aesthetic experiences remains difficult due to the subjective nature of perception and the complexity of visual responses. This study introduces a dual-branch CNN-LSTM framework that fuses visual features with eye-tracking signals to predict aesthetic evaluations of residential interiors. We collected a dataset of 224 interior design videos paired with synchronized gaze data from 28 participants who rated 15 aesthetic dimensions. The proposed model attains 72.2% accuracy on objective dimensions (e.g., light) and 66.8% on subjective dimensions (e.g., relaxation), outperforming state-of-the-art video baselines and showing clear gains on subjective evaluation tasks. Notably, models trained with eye-tracking retain comparable performance when deployed with visual input alone. Ablation experiments further reveal that pupil responses contribute most to objective assessments, while the combination of gaze and visual cues enhances subjective evaluations. These findings highlight the value of incorporating eye-tracking as privileged information during training, enabling more practical tools for aesthetic assessment in interior design.
REL-SF4PASS: Panoramic Semantic Segmentation with REL Depth Representation and Spherical Fusion CVPR 2026
As an important and challenging problem in computer vision, Panoramic Semantic Segmentation (PASS) aims to give complete scene perception based on an ultra-wide angle of view. Most PASS methods often focus on spherical geometry with RGB input or using the depth information in original or HHA format, which does not make full use of panoramic image geometry. To address these shortcomings, we propose REL-SF4PASS with our REL depth representation based on cylindrical coordinate and Spherical-dynamic Multi-Modal Fusion SMMF. REL is made up of Rectified Depth, Elevation-Gained Vertical Inclination Angle, and Lateral Orientation Angle, which fully represents 3D space in cylindrical coordinate style and the surface normal direction. SMMF aims to ensure the diversity of fusion for different panoramic image regions and reduce the breakage of cylinder side surface expansion in ERP projection, which uses different fusion strategies to match the different regions in panoramic images. Experimental results show that REL-SF4PASS considerably improves performance and robustness on popular benchmark, Stanford2D3D Panoramic datasets. It gains 2.35% average mIoU improvement on all 3 folds and reduces the performance variance by approximately 70% when facing 3D disturbance.
comment: submitted to CVPR 2026
SLD: Segmentation-Based Landmark Detection for Spinal Ligaments
In biomechanical modeling, the representation of ligament attachments is crucial for a realistic simulation of the forces acting between the vertebrae. These forces are typically modeled as vectors connecting ligament landmarks on adjacent vertebrae, making precise identification of these landmarks a key requirement for constructing reliable spine models. Existing automated detection methods are either limited to specific spinal regions or lack sufficient accuracy. This work presents a novel approach for detecting spinal ligament landmarks, which first performs shape-based segmentation of 3D vertebrae and subsequently applies domain-specific rules to identify different types of attachment points. The proposed method outperforms existing approaches by achieving high accuracy and demonstrating strong generalization across all spinal regions. Validation on two independent spinal datasets from multiple patients yielded a mean absolute error (MAE) of 0.7 mm and a root mean square error (RMSE) of 1.1 mm.
PocketDVDNet: Realtime Video Denoising for Real Camera Noise
Live video denoising under realistic, multi-component sensor noise remains challenging for applications such as autofocus, autonomous driving, and surveillance. We propose PocketDVDNet, a lightweight video denoiser developed using our model compression framework that combines sparsity-guided structured pruning, a physics-informed noise model, and knowledge distillation to achieve high-quality restoration with reduced resource demands. Starting from a reference model, we induce sparsity, apply targeted channel pruning, and retrain a teacher on realistic multi-component noise. The student network learns implicit noise handling, eliminating the need for explicit noise-map inputs. PocketDVDNet reduces the original model size by 74% while improving denoising quality and processing 5-frame patches in real-time. These results demonstrate that aggressive compression, combined with domain-adapted distillation, can reconcile performance and efficiency for practical, real-time video denoising.
CASP: Few-Shot Class-Incremental Learning with CLS Token Attention Steering Prompts
Few-shot class-incremental learning (FSCIL) presents a core challenge in continual learning, requiring models to rapidly adapt to new classes with very limited samples while mitigating catastrophic forgetting. Recent prompt-based methods, which integrate pretrained backbones with task-specific prompts, have made notable progress. However, under extreme few-shot incremental settings, the model's ability to transfer and generalize becomes critical, and it is thus essential to leverage pretrained knowledge to learn feature representations that can be shared across future categories during the base session. Inspired by the mechanism of the CLS token, which is similar to human attention and progressively filters out task-irrelevant information, we propose the CLS Token Attention Steering Prompts (CASP). This approach introduces class-shared trainable bias parameters into the query, key, and value projections of the CLS token to explicitly modulate the self-attention weights. To further enhance generalization, we also design an attention perturbation strategy and perform Manifold Token Mixup in the shallow feature space, synthesizing potential new class features to improve generalization and reserve the representation capacity for upcoming tasks. Experiments on the CUB200, CIFAR100, and ImageNet-R datasets demonstrate that CASP outperforms state-of-the-art methods in both standard and fine-grained FSCIL settings without requiring fine-tuning during incremental phases and while significantly reducing the parameter overhead.
AutoRegressive Generation with B-rep Holistic Token Sequence Representation
Previous representation and generation approaches for the B-rep relied on graph-based representations that disentangle geometric and topological features through decoupled computational pipelines, thereby precluding the application of sequence-based generative frameworks, such as transformer architectures that have demonstrated remarkable performance. In this paper, we propose BrepARG, the first attempt to encode B-rep's geometry and topology into a holistic token sequence representation, enabling sequence-based B-rep generation with an autoregressive architecture. Specifically, BrepARG encodes B-rep into 3 types of tokens: geometry and position tokens representing geometric features, and face index tokens representing topology. Then the holistic token sequence is constructed hierarchically, starting with constructing the geometry blocks (i.e., faces and edges) using the above tokens, followed by geometry block sequencing. Finally, we assemble the holistic sequence representation for the entire B-rep. We also construct a transformer-based autoregressive model that learns the distribution over holistic token sequences via next-token prediction, using a multi-layer decoder-only architecture with causal masking. Experiments demonstrate that BrepARG achieves state-of-the-art (SOTA) performance. BrepARG validates the feasibility of representing B-rep as holistic token sequences, opening new directions for B-rep generation.
Flow Matching for Probabilistic Monocular 3D Human Pose Estimation
Recovering 3D human poses from a monocular camera view is a highly ill-posed problem due to the depth ambiguity. Earlier studies on 3D human pose lifting from 2D often contain incorrect-yet-overconfident 3D estimations. To mitigate the problem, emerging probabilistic approaches treat the 3D estimations as a distribution, taking into account the uncertainty measurement of the poses. Falling in a similar category, we proposed FMPose, a probabilistic 3D human pose estimation method based on the flow matching generative approach. Conditioned on the 2D cues, the flow matching scheme learns the optimal transport from a simple source distribution to the plausible 3D human pose distribution via continuous normalizing flows. The 2D lifting condition is modeled via graph convolutional networks, leveraging the learnable connections between human body joints as the graph structure for feature aggregation. Compared to diffusion-based methods, the FMPose with optimal transport produces faster and more accurate 3D pose generations. Experimental results show major improvements of our FMPose over current state-of-the-art methods on three common benchmarks for 3D human pose estimation, namely Human3.6M, MPI-INF-3DHP and 3DPW.
comment: 8 pages, 2 figures, 7 tables, under submission
Curated endoscopic retrograde cholangiopancreatography images dataset
Endoscopic Retrograde Cholangiopancreatography (ERCP) is a key procedure in the diagnosis and treatment of biliary and pancreatic diseases. Artificial intelligence has been pointed as one solution to automatize diagnosis. However, public ERCP datasets are scarce, which limits the use of such approach. Therefore, this study aims to help fill this gap by providing a large and curated dataset. The collection is composed of 19.018 raw images and 19.317 processed from 1.602 patients. 5.519 images are labeled, which provides a ready to use dataset. All images were manually inspected and annotated by two gastroenterologist with more than 5 years of experience and reviewed by another gastroenterologist with more than 20 years of experience, all with more than 400 ERCP procedures annually. The utility and validity of the dataset is proven by a classification experiment. This collection aims to provide or contribute for a benchmark in automatic ERCP analysis and diagnosis of biliary and pancreatic diseases.
A Step to Decouple Optimization in 3DGS
3D Gaussian Splatting (3DGS) has emerged as a powerful technique for real-time novel view synthesis. As an explicit representation optimized through gradient propagation among primitives, optimization widely accepted in deep neural networks (DNNs) is actually adopted in 3DGS, such as synchronous weight updating and Adam with the adaptive gradient. However, considering the physical significance and specific design in 3DGS, there are two overlooked details in the optimization of 3DGS: (i) update step coupling, which induces optimizer state rescaling and costly attribute updates outside the viewpoints, and (ii) gradient coupling in the moment, which may lead to under- or over-effective regularization. Nevertheless, such a complex coupling is under-explored. After revisiting the optimization of 3DGS, we take a step to decouple it and recompose the process into: Sparse Adam, Re-State Regularization and Decoupled Attribute Regularization. Taking a large number of experiments under the 3DGS and 3DGS-MCMC frameworks, our work provides a deeper understanding of these components. Finally, based on the empirical analysis, we re-design the optimization and propose AdamW-GS by re-coupling the beneficial components, under which better optimization efficiency and representation effectiveness are achieved simultaneously.
Using Shadows in Circular Synthetic Aperture Sonar Imaging for Target Analysis
Circular Synthetic Aperture Sonar (CSAS) provides a 360° azimuth view of the seabed, surpassing the limited aperture and mono-view image of conventional side-scan SAS. This makes CSAS a valuable tool for target recognition in mine warfare where the diversity of point of view is essential for reducing false alarms. CSAS processing typically produces a very high-resolution two-dimensional image. However, the parallax introduced by the circular displacement of the illuminator fill-in the shadow regions, and the shadow cast by an object on the seafloor is lost in favor of azimuth coverage and resolution. Yet the shadows provide complementary information on target shape useful for target recognition. In this paper, we explore a way to retrieve shadow information from CSAS data to improve target analysis and carry 3D reconstruction. Sub-aperture filtering is used to get a collection of images at various points of view along the circular trajectory and fixed focus shadow enhancement (FFSE) is applied to obtain sharp shadows. An interactive interface is also proposed to allow human operators to visualize these shadows along the circular trajectory. A space-carving reconstruction method is applied to infer the 3D shape of the object from the segmented shadows. The results demonstrate the potential of shadows in circular SAS for improving target analysis and 3D reconstruction.
CER-HV: A CER-Based Human-in-the-Loop Framework for Cleaning Datasets Applied to Arabic-Script HTR
Handwritten text recognition (HTR) for Arabic-script languages still lags behind Latin-script HTR, despite recent advances in model architectures, datasets, and benchmarks. We show that data quality is a significant limiting factor in many published datasets and propose CER-HV (CER-based Ranking with Human Verification) as a framework to detect and clean label errors. CER-HV combines a CER-based noise detector, built on a carefully configured Convolutional Recurrent Neural Network (CRNN) with early stopping to avoid overfitting noisy samples, and a human-in-the-loop (HITL) step that verifies high-ranking samples. The framework reveals that several existing datasets contain previously underreported problems, including transcription, segmentation, orientation, and non-text content errors. These have been identified with up to 90 percent precision in the Muharaf and 80-86 percent in the PHTI datasets. We also show that our CRNN achieves state-of-the-art performance across five of the six evaluated datasets, reaching 8.45 percent Character Error Rate (CER) on KHATT (Arabic), 8.26 percent on PHTI (Pashto), 10.66 percent on Ajami, and 10.11 percent on Muharaf (Arabic), all without any data cleaning. We establish a new baseline of 11.3 percent CER on the PHTD (Persian) dataset. Applying CER-HV improves the evaluation CER by 0.3-0.6 percent on the cleaner datasets and 1.0-1.8 percent on the noisier ones. Although our experiments focus on documents written in an Arabic-script language, including Arabic, Persian, Urdu, Ajami, and Pashto, the framework is general and can be applied to other text recognition datasets.
Affinity Contrastive Learning for Skeleton-based Human Activity Understanding
In skeleton-based human activity understanding, existing methods often adopt the contrastive learning paradigm to construct a discriminative feature space. However, many of these approaches fail to exploit the structural inter-class similarities and overlook the impact of anomalous positive samples. In this study, we introduce ACLNet, an Affinity Contrastive Learning Network that explores the intricate clustering relationships among human activity classes to improve feature discrimination. Specifically, we propose an affinity metric to refine similarity measurements, thereby forming activity superclasses that provide more informative contrastive signals. A dynamic temperature schedule is also introduced to adaptively adjust the penalty strength for various superclasses. In addition, we employ a margin-based contrastive strategy to improve the separation of hard positive and negative samples within classes. Extensive experiments on NTU RGB+D 60, NTU RGB+D 120, Kinetics-Skeleton, PKU-MMD, FineGYM, and CASIA-B demonstrate the superiority of our method in skeleton-based action recognition, gait recognition, and person re-identification. The source code is available at https://github.com/firework8/ACLNet.
comment: Accepted by TBIOM
EMemBench: Interactive Benchmarking of Episodic Memory for VLM Agents
We introduce EMemBench, a programmatic benchmark for evaluating long-term memory of agents through interactive games. Rather than using a fixed set of questions, EMemBench generates questions from each agent's own trajectory, covering both text and visual game environments. Each template computes verifiable ground truth from underlying game signals, with controlled answerability and balanced coverage over memory skills: single/multi-hop recall, induction, temporal, spatial, logical, and adversarial. We evaluate memory agents with strong LMs/VLMs as backbones, using in-context prompting as baselines. Across 15 text games and multiple visual seeds, results are far from saturated: induction and spatial reasoning are persistent bottlenecks, especially in visual setting. Persistent memory yields clear gains for open backbones on text games, but improvements are less consistent for VLM agents, suggesting that visually grounded episodic memory remains an open challenge. A human study further confirms the difficulty of EMemBench.
comment: 25 pages
ReWeaver: Towards Simulation-Ready and Topology-Accurate Garment Reconstruction CVPR 2026
High-quality 3D garment reconstruction plays a crucial role in mitigating the sim-to-real gap in applications such as digital avatars, virtual try-on and robotic manipulation. However, existing garment reconstruction methods typically rely on unstructured representations, such as 3D Gaussian Splats, struggling to provide accurate reconstructions of garment topology and sewing structures. As a result, the reconstructed outputs are often unsuitable for high-fidelity physical simulation. We propose ReWeaver, a novel framework for topology-accurate 3D garment and sewing pattern reconstruction from sparse multi-view RGB images. Given as few as four input views, ReWeaver predicts seams and panels as well as their connectivities in both the 2D UV space and the 3D space. The predicted seams and panels align precisely with the multi-view images, yielding structured 2D--3D garment representations suitable for 3D perception, high-fidelity physical simulation, and robotic manipulation. To enable effective training, we construct a large-scale dataset GCD-TS, comprising multi-view RGB images, 3D garment geometries, textured human body meshes and annotated sewing patterns. The dataset contains over 100,000 synthetic samples covering a wide range of complex geometries and topologies. Extensive experiments show that ReWeaver consistently outperforms existing methods in terms of topology accuracy, geometry alignment and seam-panel consistency.
comment: 15 pages, 8 figures, Submitted to CVPR 2026
ReViP: Reducing False Completion in Vision-Language-Action Models with Vision-Proprioception Rebalance
Vision-Language-Action (VLA) models have advanced robotic manipulation by combining vision, language, and proprioception to predict actions. However, previous methods fuse proprioceptive signals directly with VLM-encoded vision-language features, resulting in state-dominant bias and false completions despite visible execution failures. We attribute this to modality imbalance, where policies over-rely on internal state while underusing visual evidence. To address this, we present ReViP, a novel VLA framework with Vision-Proprioception Rebalance to enhance visual grounding and robustness under perturbations. The key insight is to introduce auxiliary task-aware environment priors to adaptively modulate the coupling between semantic perception and proprioceptive dynamics. Specifically, we use an external VLM as a task-stage observer to extract real-time task-centric visual cues from visual observations, which drive a Vision-Proprioception Feature-wise Linear Modulation to enhance environmental awareness and reduce state-driven errors. Moreover, to evaluate false completion, we propose the first False-Completion Benchmark Suite built on LIBERO with controlled settings such as Object-Drop. Extensive experiments show that ReViP effectively reduces false-completion rates and improves success rates over strong VLA baselines on our suite, with gains extending to LIBERO, RoboTwin 2.0, and real-world evaluations.
Fast, faithful and photorealistic diffusion-based image super-resolution with enhanced Flow Map models
Diffusion-based image super-resolution (SR) has recently attracted significant attention by leveraging the expressive power of large pre-trained text-to-image diffusion models (DMs). A central practical challenge is resolving the trade-off between reconstruction faithfulness and photorealism. To address inference efficiency, many recent works have explored knowledge distillation strategies specifically tailored to SR, enabling one-step diffusion-based approaches. However, these teacher-student formulations are inherently constrained by information compression, which can degrade perceptual cues such as lifelike textures and depth of field, even with high overall perceptual quality. In parallel, self-distillation DMs, known as Flow Map models, have emerged as a promising alternative for image generation tasks, enabling fast inference while preserving the expressivity and training stability of standard DMs. Building on these developments, we propose FlowMapSR, a novel diffusion-based framework for image super-resolution explicitly designed for efficient inference. Beyond adapting Flow Map models to SR, we introduce two complementary enhancements: (i) positive-negative prompting guidance, based on a generalization of classifier free-guidance paradigm to Flow Map models, and (ii) adversarial fine-tuning using Low-Rank Adaptation (LoRA). Among the considered Flow Map formulations (Eulerian, Lagrangian, and Shortcut), we find that the Shortcut variant consistently achieves the best performance when combined with these enhancements. Extensive experiments show that FlowMapSR achieves a better balance between reconstruction faithfulness and photorealism than recent state-of-the-art methods for both x4 and x8 upscaling, while maintaining competitive inference time. Notably, a single model is used for both upscaling factors, without any scale-specific conditioning or degradation-guided mechanisms.
comment: Technical report
Reliable Brain Tumor Segmentation Based on Spiking Neural Networks with Efficient Training
We propose a reliable and energy-efficient framework for 3D brain tumor segmentation using spiking neural networks (SNNs). A multi-view ensemble of sagittal, coronal, and axial SNN models provides voxel-wise uncertainty estimation and enhances segmentation robustness. To address the high computational cost in training SNN models for semantic image segmentation, we employ Forward Propagation Through Time (FPTT), which maintains temporal learning efficiency with significantly reduced computational cost. Experiments on the Multimodal Brain Tumor Segmentation Challenges (BraTS 2017 and BraTS 2023) demonstrate competitive accuracy, well-calibrated uncertainty, and an 87% reduction in FLOPs, underscoring the potential of SNNs for reliable, low-power medical IoT and Point-of-Care systems.
comment: Accepted at ISBI 2026
Edge-Aware Image Manipulation via Diffusion Models with a Novel Structure-Preservation Loss WACV 2026
Recent advances in image editing leverage latent diffusion models (LDMs) for versatile, text-prompt-driven edits across diverse tasks. Yet, maintaining pixel-level edge structures-crucial for tasks such as photorealistic style transfer or image tone adjustment-remains as a challenge for latent-diffusion-based editing. To overcome this limitation, we propose a novel Structure Preservation Loss (SPL) that leverages local linear models to quantify structural differences between input and edited images. Our training-free approach integrates SPL directly into the diffusion model's generative process to ensure structural fidelity. This core mechanism is complemented by a post-processing step to mitigate LDM decoding distortions, a masking strategy for precise edit localization, and a color preservation loss to preserve hues in unedited areas. Experiments confirm SPL enhances structural fidelity, delivering state-of-the-art performance in latent-diffusion-based image editing. Our code will be publicly released at https://github.com/gongms00/SPL.
comment: Accepted to WACV 2026
PanopMamba: Vision State Space Modeling for Nuclei Panoptic Segmentation
Nuclei panoptic segmentation supports cancer diagnostics by integrating both semantic and instance segmentation of different cell types to analyze overall tissue structure and individual nuclei in histopathology images. Major challenges include detecting small objects, handling ambiguous boundaries, and addressing class imbalance. To address these issues, we propose PanopMamba, a novel hybrid encoder-decoder architecture that integrates Mamba and Transformer with additional feature-enhanced fusion via state space modeling. We design a multiscale Mamba backbone and a State Space Model (SSM)-based fusion network to enable efficient long-range perception in pyramid features, thereby extending the pure encoder-decoder framework while facilitating information sharing across multiscale features of nuclei. The proposed SSM-based feature-enhanced fusion integrates pyramid feature networks and dynamic feature enhancement across different spatial scales, enhancing the feature representation of densely overlapping nuclei in both semantic and spatial dimensions. To the best of our knowledge, this is the first Mamba-based approach for panoptic segmentation. Additionally, we introduce alternative evaluation metrics, including image-level Panoptic Quality ($i$PQ), boundary-weighted PQ ($w$PQ), and frequency-weighted PQ ($fw$PQ), which are specifically designed to address the unique challenges of nuclei segmentation and thereby mitigate the potential bias inherent in vanilla PQ. Experimental evaluations on two multiclass nuclei segmentation benchmark datasets, MoNuSAC2020 and NuInsSeg, demonstrate the superiority of PanopMamba for nuclei panoptic segmentation over state-of-the-art methods. Consequently, the robustness of PanopMamba is validated across various metrics, while the distinctiveness of PQ variants is also demonstrated. Code is available at https://github.com/mkang315/PanopMamba.
comment: 10 pages, 3 figures
SCHIGAND: A Synthetic Facial Generation Mode Pipeline
The growing demand for diverse and high-quality facial datasets for training and testing biometric systems is challenged by privacy regulations, data scarcity, and ethical concerns. Synthetic facial images offer a potential solution, yet existing generative models often struggle to balance realism, diversity, and identity preservation. This paper presents SCHIGAND, a novel synthetic face generation pipeline integrating StyleCLIP, HyperStyle, InterfaceGAN, and Diffusion models to produce highly realistic and controllable facial datasets. SCHIGAND enhances identity preservation while generating realistic intra-class variations and maintaining inter-class distinctiveness, making it suitable for biometric testing. The generated datasets were evaluated using ArcFace, a leading facial verification model, to assess their effectiveness in comparison to real-world facial datasets. Experimental results demonstrate that SCHIGAND achieves a balance between image quality and diversity, addressing key limitations of prior generative models. This research highlights the potential of SCHIGAND to supplement and, in some cases, replace real data for facial biometric applications, paving the way for privacy-compliant and scalable solutions in synthetic dataset generation.
Boundary and Position Information Mining for Aerial Small Object Detection
Unmanned Aerial Vehicle (UAV) applications have become increasingly prevalent in aerial photography and object recognition. However, there are major challenges to accurately capturing small targets in object detection due to the imbalanced scale and the blurred edges. To address these issues, boundary and position information mining (BPIM) framework is proposed for capturing object edge and location cues. The proposed BPIM includes position information guidance (PIG) module for obtaining location information, boundary information guidance (BIG) module for extracting object edge, cross scale fusion (CSF) module for gradually assembling the shallow layer image feature, three feature fusion (TFF) module for progressively combining position and boundary information, and adaptive weight fusion (AWF) module for flexibly merging the deep layer semantic feature. Therefore, BPIM can integrate boundary, position, and scale information in image for small object detection using attention mechanisms and cross-scale feature fusion strategies. Furthermore, BPIM not only improves the discrimination of the contextual feature by adaptive weight fusion with boundary, but also enhances small object perceptions by cross-scale position fusion. On the VisDrone2021, DOTA1.0, and WiderPerson datasets, experimental results show the better performances of BPIM compared to the baseline Yolov5-P2, and obtains the promising performance in the state-of-the-art methods with comparable computation load.
comment: 12 pages, 10 figures
A Lightweight Medical Image Classification Framework via Self-Supervised Contrastive Learning and Quantum-Enhanced Feature Modeling
Intelligent medical image analysis is essential for clinical decision support but is often limited by scarce annotations, constrained computational resources, and suboptimal model generalization. To address these challenges, we propose a lightweight medical image classification framework that integrates self-supervised contrastive learning with quantum-enhanced feature modeling. MobileNetV2 is employed as a compact backbone and pretrained using a SimCLR-style self-supervised paradigm on unlabeled images. A lightweight parameterized quantum circuit (PQC) is embedded as a quantum feature enhancement module, forming a hybrid classical-quantum architecture, which is subsequently fine-tuned on limited labeled data. Experimental results demonstrate that, with only approximately 2-3 million parameters and low computational cost, the proposed method consistently outperforms classical baselines without self-supervised learning or quantum enhancement in terms of Accuracy, AUC, and F1-score. Feature visualization further indicates improved discriminability and representation stability. Overall, this work provides a practical and forward-looking solution for high-performance medical artificial intelligence under resource-constrained settings.
X-Aligner: Composed Visual Retrieval without the Bells and Whistles
Composed Video Retrieval (CoVR) facilitates video retrieval by combining visual and textual queries. However, existing CoVR frameworks typically fuse multimodal inputs in a single stage, achieving only marginal gains over initial baseline. To address this, we propose a novel CoVR framework that leverages the representational power of Vision Language Models (VLMs). Our framework incorporates a novel cross-attention module X-Aligner, composed of cross-attention layers that progressively fuse visual and textual inputs and align their multimodal representation with that of the target video. To further enhance the representation of the multimodal query, we incorporate the caption of the visual query as an additional input. The framework is trained in two stages to preserve the pretrained VLM representation. In the first stage, only the newly introduced module is trained, while in the second stage, the textual query encoder is also fine-tuned. We implement our framework on top of BLIP-family architecture, namely BLIP and BLIP-2, and train it on the Webvid-CoVR data set. In addition to in-domain evaluation on Webvid-CoVR-Test, we perform zero-shot evaluations on the Composed Image Retrieval (CIR) data sets CIRCO and Fashion-IQ. Our framework achieves state-of-the-art performance on CoVR obtaining a Recall@1 of 63.93% on Webvid-CoVR-Test, and demonstrates strong zero-shot generalization on CIR tasks.
comment: 8 pages
HA2F: Dual-module Collaboration-Guided Hierarchical Adaptive Aggregation Framework for Remote Sensing Change Detection
Remote sensing change detection (RSCD) aims to identify the spatio-temporal changes of land cover, providing critical support for multi-disciplinary applications (e.g., environmental monitoring, disaster assessment, and climate change studies). Existing methods focus either on extracting features from localized patches, or pursue processing entire images holistically, which leads to the cross temporal feature matching deviation and exhibiting sensitivity to radiometric and geometric noise. Following the above issues, we propose a dual-module collaboration guided hierarchical adaptive aggregation framework, namely HA2F, which consists of dynamic hierarchical feature calibration module (DHFCM) and noise-adaptive feature refinement module (NAFRM). The former dynamically fuses adjacent-level features through perceptual feature selection, suppressing irrelevant discrepancies to address multi-temporal feature alignment deviations. The NAFRM utilizes the dual feature selection mechanism to highlight the change sensitive regions and generate spatial masks, suppressing the interference of irrelevant regions or shadows. Extensive experiments verify the effectiveness of the proposed HA2F, which achieves state-of-the-art performance on LEVIR-CD, WHU-CD, and SYSU-CD datasets, surpassing existing comparative methods in terms of both precision metrics and computational efficiency. In addition, ablation experiments show that DHFCM and NAFRM are effective. \href{https://huggingface.co/InPeerReview/RemoteSensingChangeDetection-RSCD.HA2F}{HA2F Official Code is Available Here!}
Understanding and Improving UMAP with Geometric and Topological Priors: The JORC-UMAP Algorithm
Nonlinear dimensionality reduction techniques, particularly UMAP, are widely used for visualizing high-dimensional data. However, UMAP's local Euclidean distance assumption often fails to capture intrinsic manifold geometry, leading to topological tearing and structural collapse. We identify UMAP's sensitivity to the k-nearest neighbor graph as a key cause. To address this, we introduce Ollivier-Ricci curvature as a geometric prior, reinforcing edges at geometric bottlenecks and reducing redundant links. Since curvature estimation is noise-sensitive, we also incorporate a topological prior using Jaccard similarity to ensure neighborhood consistency. The resulting method, JORC-UMAP, better distinguishes true manifold structure from spurious connections. Experiments on synthetic and real-world datasets show that JORC-UMAP reduces tearing and collapse more effectively than standard UMAP and other DR methods, as measured by SVM accuracy and triplet preservation scores, while maintaining computational efficiency. This work offers a geometry-aware enhancement to UMAP for more faithful data visualization.
comment: 22 pages, 8 figures. Comments are welcome
Semi-Supervised Hierarchical Open-Set Classification WACV2026
Hierarchical open-set classification handles previously unseen classes by assigning them to the most appropriate high-level category in a class taxonomy. We extend this paradigm to the semi-supervised setting, enabling the use of large-scale, uncurated datasets containing a mixture of known and unknown classes to improve the hierarchical open-set performance. To this end, we propose a teacher-student framework based on pseudo-labeling. Two key components are introduced: 1) subtree pseudo-labels, which provide reliable supervision in the presence of unknown data, and 2) age-gating, a mechanism that mitigates overconfidence in pseudo-labels. Experiments show that our framework outperforms self-supervised pretraining followed by supervised adaptation, and even matches the fully supervised counterpart when using only 20 labeled samples per class on the iNaturalist19 benchmark. Our code is available at https://github.com/walline/semihoc.
comment: WACV2026
OnlineSI: Taming Large Language Model for Online 3D Understanding and Grounding
In recent years, researchers have increasingly been interested in how to enable Multimodal Large Language Models (MLLM) to possess spatial understanding and reasoning capabilities. However, most existing methods overlook the importance of the ability to continuously work in an ever-changing world, and lack the possibility of deployment on embodied systems in real-world environments. In this work, we introduce OnlineSI, a framework that can continuously improve its spatial understanding of its surroundings given a video stream. Our core idea is to maintain a finite spatial memory to retain past observations, ensuring the computation required for each inference does not increase as the input accumulates. We further integrate 3D point cloud information with semantic information, helping MLLM to better locate and identify objects in the scene. To evaluate our method, we introduce the Fuzzy $F_1$-Score to mitigate ambiguity, and test our method on two representative datasets. Experiments demonstrate the effectiveness of our method, paving the way towards real-world embodied systems.
comment: Project Page: https://onlinesi.github.io/
AnchoredDream: Zero-Shot 360° Indoor Scene Generation from a Single View via Geometric Grounding
Single-view indoor scene generation plays a crucial role in a range of real-world applications. However, generating a complete 360° scene from a single image remains a highly ill-posed and challenging problem. Recent approaches have made progress by leveraging diffusion models and depth estimation networks, yet they still struggle to maintain appearance consistency and geometric plausibility under large viewpoint changes, limiting their effectiveness in full-scene generation. To address this, we propose AnchoredDream, a novel zero-shot pipeline that anchors 360° scene generation on high-fidelity geometry via an appearance-geometry mutual boosting mechanism. Given a single-view image, our method first performs appearance-guided geometry generation to construct a reliable 3D scene layout. Then, we progressively generate the complete scene through a series of modules: warp-and-inpaint, warp-and-refine, post-optimization, and a novel Grouting Block, which ensures seamless transitions between the input view and generated regions. Extensive experiments demonstrate that AnchoredDream outperforms existing methods by a large margin in both appearance consistency and geometric plausibility--all in a zero-shot manner. Our results highlight the potential of geometric grounding for high-quality, zero-shot single-view scene generation.
Beyond Superficial Unlearning: Sharpness-Aware Robust Erasure of Hallucinations in Multimodal LLMs
Multimodal LLMs are powerful but prone to object hallucinations, which describe non-existent entities and harm reliability. While recent unlearning methods attempt to mitigate this, we identify a critical flaw: structural fragility. We empirically demonstrate that standard erasure achieves only superficial suppression, trapping the model in sharp minima where hallucinations catastrophically resurge after lightweight relearning. To ensure geometric stability, we propose SARE, which casts unlearning as a targeted min-max optimization problem and uses a Targeted-SAM mechanism to explicitly flatten the loss landscape around hallucinated concepts. By suppressing hallucinations under simulated worst-case parameter perturbations, our framework ensures robust removal stable against weight shifts. Extensive experiments demonstrate that SARE significantly outperforms baselines in erasure efficacy while preserving general generation quality. Crucially, it maintains persistent hallucination suppression against relearning and parameter updates, validating the effectiveness of geometric stabilization.
TangramPuzzle: Evaluating Multimodal Large Language Models with Compositional Spatial Reasoning
Multimodal Large Language Models (MLLMs) have achieved remarkable progress in visual recognition and semantic understanding. Nevertheless, their ability to perform precise compositional spatial reasoning remains largely unexplored. Existing benchmarks often involve relatively simple tasks and rely on semantic approximations or coarse relative positioning, while their evaluation metrics are typically limited and lack rigorous mathematical formulations. To bridge this gap, we introduce TangramPuzzle, a geometry-grounded benchmark designed to evaluate compositional spatial reasoning through the lens of the classic Tangram game. We propose the Tangram Construction Expression (TCE), a symbolic geometric framework that grounds tangram assemblies in exact, machine-verifiable coordinate specifications, to mitigate the ambiguity of visual approximation. We design two complementary tasks: Outline Prediction, which demands inferring global shapes from local components, and End-to-End Code Generation, which requires solving inverse geometric assembly problems. We conduct extensive evaluation experiments on advanced open-source and proprietary models, revealing an interesting insight: MLLMs tend to prioritize matching the target silhouette while neglecting geometric constraints, leading to distortions or deformations of the pieces.
SALAD: Achieve High-Sparsity Attention via Efficient Linear Attention Tuning for Video Diffusion Transformer
Diffusion Transformers have recently demonstrated remarkable performance in video generation. However, the long input sequences result in high computational latency due to the quadratic complexity of full attention. Various sparse attention mechanisms have been proposed. Training-free sparse attention is constrained by limited sparsity and thus offers modest acceleration, whereas training-based methods can reach much higher sparsity but demand substantial data and computation for training. In this work, we propose SALAD, introducing a lightweight linear attention branch in parallel with the sparse attention. By incorporating an input-dependent gating mechanism to finely balance the two branches, our method attains 90% sparsity and 1.72x inference speedup, while maintaining generation quality comparable to the full attention baseline. Moreover, our finetuning process is highly efficient, requiring only 2,000 video samples and 1,600 training steps with a batch size of 8.
Expert Knowledge-Guided Decision Calibration for Accurate Fine-Grained Tree Species Classification
Accurate fine-grained tree species classification is critical for forest inventory and biodiversity monitoring. Existing methods predominantly focus on designing complex architectures to fit local data distributions. However, they often overlook the long-tailed distributions and high inter-class similarity inherent in limited data, thereby struggling to distinguish between few-shot or confusing categories. In the process of knowledge dissemination in the human world, individuals will actively seek expert assistance to transcend the limitations of local thinking. Inspired by this, we introduce an external "Domain Expert" and propose an Expert Knowledge-Guided Classification Decision Calibration Network (EKDC-Net) to overcome these challenges. Our framework addresses two core issues: expert knowledge extraction and utilization. Specifically, we first develop a Local Prior Guided Knowledge Extraction Module (LPKEM). By leveraging Class Activation Map (CAM) analysis, LPKEM guides the domain expert to focus exclusively on discriminative features essential for classification. Subsequently, to effectively integrate this knowledge, we design an Uncertainty-Guided Decision Calibration Module (UDCM). This module dynamically corrects the local model's decisions by considering both overall category uncertainty and instance-level prediction uncertainty. Furthermore, we present a large-scale classification dataset covering 102 tree species, named CU-Tree102 to address the issue of scarce diversity in current benchmarks. Experiments on three benchmark datasets demonstrate that our approach achieves state-of-the-art performance. Crucially, as a lightweight plug-and-play module, EKDC-Net improves backbone accuracy by 6.42% and precision by 11.46% using only 0.08M additional learnable parameters. The dataset, code, and pre-trained models are available at https://github.com/WHU-USI3DV/TreeCLS.
Multi-View Consistent Wound Segmentation With Neural Fields
Wound care is often challenged by the economic and logistical burdens that consistently afflict patients and hospitals worldwide. In recent decades, healthcare professionals have sought support from computer vision and machine learning algorithms. In particular, wound segmentation has gained interest due to its ability to provide professionals with fast, automatic tissue assessment from standard RGB images. Some approaches have extended segmentation to 3D, enabling more complete and precise healing progress tracking. However, inferring multi-view consistent 3D structures from 2D images remains a challenge. In this paper, we evaluate WoundNeRF, a NeRF SDF-based method for estimating robust wound segmentations from automatically generated annotations. We demonstrate the potential of this paradigm in recovering accurate segmentations by comparing it against state-of-the-art Vision Transformer networks and conventional rasterisation-based algorithms. The code will be released to facilitate further development in this promising paradigm.
DeMark: A Query-Free Black-Box Attack on Deepfake Watermarking Defenses
The rapid proliferation of realistic deepfakes has raised urgent concerns over their misuse, motivating the use of defensive watermarks in synthetic images for reliable detection and provenance tracking. However, this defense paradigm assumes such watermarks are inherently resistant to removal. We challenge this assumption with DeMark, a query-free black-box attack framework that targets defensive image watermarking schemes for deepfakes. DeMark exploits latent-space vulnerabilities in encoder-decoder watermarking models through a compressive sensing based sparsification process, suppressing watermark signals while preserving perceptual and structural realism appropriate for deepfakes. Across eight state-of-the-art watermarking schemes, DeMark reduces watermark detection accuracy from 100% to 32.9% on average while maintaining natural visual quality, outperforming existing attacks. We further evaluate three defense strategies, including image super resolution, sparse watermarking, and adversarial training, and find them largely ineffective. These results demonstrate that current encoder decoder watermarking schemes remain vulnerable to latent-space manipulations, underscoring the need for more robust watermarking methods to safeguard against deepfakes.
Order from Chaos: Physical World Understanding from Glitchy Gameplay Videos
Understanding the physical world, including object dynamics, material properties, and causal interactions, remains a core challenge in artificial intelligence. Although recent multi-modal large language models (MLLMs) have demonstrated impressive general reasoning capabilities, they still fall short of achieving human-level understanding of physical principles. Existing datasets for physical reasoning either rely on real-world videos, which incur high annotation costs, or on synthetic simulations, which suffer from limited realism and diversity. In this paper, we propose a novel paradigm that leverages glitches in gameplay videos, referring to visual anomalies that violate predefined physical laws, as a rich and scalable supervision source for physical world understanding. We introduce PhysGame, an meta information guided instruction-tuning dataset containing 140,057 glitch-centric question-answer pairs across five physical domains and sixteen fine-grained categories. To ensure data accuracy, we design a prompting strategy that utilizes gameplay metadata such as titles and descriptions to guide high-quality QA generation. Complementing PhysGame, we construct GameBench, an expert-annotated benchmark with 880 glitch-identified gameplay videos designed to evaluate physical reasoning capabilities. Extensive experiments show that PhysGame significantly enhances both Game2Real transferability, improving the real world physical reasoning performance of Qwen2.5VL by 2.5% on PhysBench, and Game2General transferability, yielding a 1.9% gain on the MVBench benchmark. Moreover, PhysGame-tuned models achieve a 3.7% absolute improvement on GameBench, demonstrating enhanced robustness in detecting physical implausibilities. These results indicate that learning from gameplay anomalies offers a scalable and effective pathway toward advancing physical world understanding in multimodal intelligence.
comment: Accepted by TMLR
VISTA-PATH: An interactive foundation model for pathology image segmentation and quantitative analysis in computational pathology
Accurate semantic segmentation for histopathology image is crucial for quantitative tissue analysis and downstream clinical modeling. Recent segmentation foundation models have improved generalization through large-scale pretraining, yet remain poorly aligned with pathology because they treat segmentation as a static visual prediction task. Here we present VISTA-PATH, an interactive, class-aware pathology segmentation foundation model designed to resolve heterogeneous structures, incorporate expert feedback, and produce pixel-level segmentation that are directly meaningful for clinical interpretation. VISTA-PATH jointly conditions segmentation on visual context, semantic tissue descriptions, and optional expert-provided spatial prompts, enabling precise multi-class segmentation across heterogeneous pathology images. To support this paradigm, we curate VISTA-PATH Data, a large-scale pathology segmentation corpus comprising over 1.6 million image-mask-text triplets spanning 9 organs and 93 tissue classes. Across extensive held-out and external benchmarks, VISTA-PATH consistently outperforms existing segmentation foundation models. Importantly, VISTA-PATH supports dynamic human-in-the-loop refinement by propagating sparse, patch-level bounding-box annotation feedback into whole-slide segmentation. Finally, we show that the high-fidelity, class-aware segmentation produced by VISTA-PATH is a preferred model for computational pathology. It improve tissue microenvironment analysis through proposed Tumor Interaction Score (TIS), which exhibits strong and significant associations with patient survival. Together, these results establish VISTA-PATH as a foundation model that elevates pathology image segmentation from a static prediction to an interactive and clinically grounded representation for digital pathology. Source code and demo can be found at https://github.com/zhihuanglab/VISTA-PATH.
Emotion-LLaMAv2 and MMEVerse: A New Framework and Benchmark for Multimodal Emotion Understanding
Understanding human emotions from multimodal signals poses a significant challenge in affective computing and human-robot interaction. While multimodal large language models (MLLMs) have excelled in general vision-language tasks, their capabilities in emotional reasoning remain limited. The field currently suffers from a scarcity of large-scale datasets with high-quality, descriptive emotion annotations and lacks standardized benchmarks for evaluation. Our preliminary framework, Emotion-LLaMA, pioneered instruction-tuned multimodal learning for emotion reasoning but was restricted by explicit face detectors, implicit fusion strategies, and low-quality training data with limited scale. To address these limitations, we present Emotion-LLaMAv2 and the MMEVerse benchmark, establishing an end-to-end pipeline together with a standardized evaluation setting for emotion recognition and reasoning. Emotion-LLaMAv2 introduces three key advances. First, an end-to-end multiview encoder eliminates external face detection and captures nuanced emotional cues via richer spatial and temporal multiview tokens. Second, a Conv Attention pre-fusion module is designed to enable simultaneous local and global multimodal feature interactions external to the LLM backbone. Third, a perception-to-cognition curriculum instruction tuning scheme within the LLaMA2 backbone unifies emotion recognition and free-form emotion reasoning. To support large-scale training and reproducible evaluation, MMEVerse aggregates twelve publicly available emotion datasets, including IEMOCAP, MELD, DFEW, and MAFW, into a unified multimodal instruction format. The data are re-annotated via a multi-agent pipeline involving Qwen2 Audio, Qwen2.5 VL, and GPT 4o, producing 130k training clips and 36k testing clips across 18 evaluation benchmarks.
Masked Face Recognition under Different Backbones
Erratum to the paper (Zhang et al., 2025): corrections to Table IV and the data in Page 3, Section A. In the post-pandemic era, a high proportion of civil aviation passengers wear masks during security checks, posing significant challenges to traditional face recognition models. The backbone network serves as the core component of face recognition models. In standard tests, r100 series models excelled (98%+ accuracy at 0.01% FAR in face comparison, high top1/top5 in search). r50 ranked second, r34_mask_v1 lagged. In masked tests, r100_mask_v2 led (90.07% accuracy), r50_mask_v3 performed best among r50 but trailed r100. Vit-Small/Tiny showed strong masked performance with gains in effectiveness. Through extensive comparative experiments, this paper conducts a comprehensive evaluation of several core backbone networks, aiming to reveal the impacts of different models on face recognition with and without masks, and provide specific deployment recommendations.
MDAFNet: Multiscale Differential Edge and Adaptive Frequency Guided Network for Infrared Small Target Detection
Infrared small target detection (IRSTD) plays a crucial role in numerous military and civilian applications. However, existing methods often face the gradual degradation of target edge pixels as the number of network layers increases, and traditional convolution struggles to differentiate between frequency components during feature extraction, leading to low-frequency backgrounds interfering with high-frequency targets and high-frequency noise triggering false detections. To address these limitations, we propose MDAFNet (Multi-scale Differential Edge and Adaptive Frequency Guided Network for Infrared Small Target Detection), which integrates the Multi-Scale Differential Edge (MSDE) module and Dual-Domain Adaptive Feature Enhancement (DAFE) module. The MSDE module, through a multi-scale edge extraction and enhancement mechanism, effectively compensates for the cumulative loss of target edge information during downsampling. The DAFE module combines frequency domain processing mechanisms with simulated frequency decomposition and fusion mechanisms in the spatial domain to effectively improve the network's capability to adaptively enhance high-frequency targets and selectively suppress high-frequency noise. Experimental results on multiple datasets demonstrate the superior detection performance of MDAFNet.
AlphaFace: High Fidelity and Real-time Face Swapper Robust to Facial Pose
Existing face-swapping methods often deliver competitive results in constrained settings but exhibit substantial quality degradation when handling extreme facial poses. To improve facial pose robustness, explicit geometric features are applied, but this approach remains problematic since it introduces additional dependencies and increases computational cost. Diffusion-based methods have achieved remarkable results; however, they are impractical for real-time processing. We introduce AlphaFace, which leverages an open-source vision-language model and CLIP image and text embeddings to apply novel visual and textual semantic contrastive losses. AlphaFace enables stronger identity representation and more precise attribute preservation, all while maintaining real-time performance. Comprehensive experiments across FF++, MPIE, and LPFF demonstrate that AlphaFace surpasses state-of-the-art methods in pose-challenging cases. The project is publicly available on `https://github.com/andrewyu90/Alphaface_Official.git'.
DCCS-Det: Directional Context and Cross-Scale-Aware Detector for Infrared Small Target
Infrared small target detection (IRSTD) is critical for applications like remote sensing and surveillance, which aims to identify small, low-contrast targets against complex backgrounds. However, existing methods often struggle with inadequate joint modeling of local-global features (harming target-background discrimination) or feature redundancy and semantic dilution (degrading target representation quality). To tackle these issues, we propose DCCS-Det (Directional Context and Cross-Scale Aware Detector for Infrared Small Target), a novel detector that incorporates a Dual-stream Saliency Enhancement (DSE) block and a Latent-aware Semantic Extraction and Aggregation (LaSEA) module. The DSE block integrates localized perception with direction-aware context aggregation to help capture long-range spatial dependencies and local details. On this basis, the LaSEA module mitigates feature degradation via cross-scale feature extraction and random pooling sampling strategies, enhancing discriminative features and suppressing noise. Extensive experiments show that DCCS-Det achieves state-of-the-art detection accuracy with competitive efficiency across multiple datasets. Ablation studies further validate the contributions of DSE and LaSEA in improving target perception and feature representation under complex scenarios. \href{https://huggingface.co/InPeerReview/InfraredSmallTargetDetection-IRSTD.DCCS}{DCCS-Det Official Code is Available Here!}
Learning Domain Knowledge in Multimodal Large Language Models through Reinforcement Fine-Tuning
Multimodal large language models (MLLMs) have shown remarkable capabilities in multimodal perception and understanding tasks. However, their effectiveness in specialized domains, such as remote sensing and medical imaging, remains limited. A natural approach to domain adaptation is to inject domain knowledge through textual instructions, prompts, or auxiliary captions. Surprisingly, we find that such input-level domain knowledge injection yields little to no improvement on scientific multimodal tasks, even when the domain knowledge is explicitly provided. This observation suggests that current MLLMs fail to internalize domain-specific priors through language alone, and that domain knowledge must be integrated at the optimization level. Motivated by this insight, we propose a reinforcement fine-tuning framework that incorporates domain knowledge directly into the learning objective. Instead of treating domain knowledge as descriptive information, we encode it as domain-informed constraints and reward signals, shaping the model's behavior in the output space. Extensive experiments across multiple datasets in remote sensing and medical domains consistently demonstrate good performance gains, achieving state-of-the-art results on multimodal domain tasks. Our results highlight the necessity of optimization-level domain knowledge integration and reveal a fundamental limitation of textual domain conditioning in current MLLMs.
A Cosine Network for Image Super-Resolution
Deep convolutional neural networks can use hierarchical information to progressively extract structural information to recover high-quality images. However, preserving the effectiveness of the obtained structural information is important in image super-resolution. In this paper, we propose a cosine network for image super-resolution (CSRNet) by improving a network architecture and optimizing the training strategy. To extract complementary homologous structural information, odd and even heterogeneous blocks are designed to enlarge the architectural differences and improve the performance of image super-resolution. Combining linear and non-linear structural information can overcome the drawback of homologous information and enhance the robustness of the obtained structural information in image super-resolution. Taking into account the local minimum of gradient descent, a cosine annealing mechanism is used to optimize the training procedure by performing warm restarts and adjusting the learning rate. Experimental results illustrate that the proposed CSRNet is competitive with state-of-the-art methods in image super-resolution.
comment: in IEEE Transactions on Image Processing (2025)
ResAgent: Entropy-based Prior Point Discovery and Visual Reasoning for Referring Expression Segmentation
Referring Expression Segmentation (RES) is a core vision-language segmentation task that enables pixel-level understanding of targets via free-form linguistic expressions, supporting critical applications such as human-robot interaction and augmented reality. Despite the progress of Multimodal Large Language Model (MLLM)-based approaches, existing RES methods still suffer from two key limitations: first, the coarse bounding boxes from MLLMs lead to redundant or non-discriminative point prompts; second, the prevalent reliance on textual coordinate reasoning is unreliable, as it fails to distinguish targets from visually similar distractors. To address these issues, we propose \textbf{\model}, a novel RES framework integrating \textbf{E}ntropy-\textbf{B}ased Point \textbf{D}iscovery (\textbf{EBD}) and \textbf{V}ision-\textbf{B}ased \textbf{R}easoning (\textbf{VBR}). Specifically, EBD identifies high-information candidate points by modeling spatial uncertainty within coarse bounding boxes, treating point selection as an information maximization process. VBR verifies point correctness through joint visual-semantic alignment, abandoning text-only coordinate inference for more robust validation. Built on these components, \model implements a coarse-to-fine workflow: bounding box initialization, entropy-guided point discovery, vision-based validation, and mask decoding. Extensive evaluations on four benchmark datasets (RefCOCO, RefCOCO+, RefCOCOg, and ReasonSeg) demonstrate that \model achieves new state-of-the-art performance across all four benchmarks, highlighting its effectiveness in generating accurate and semantically grounded segmentation masks with minimal prompts.
comment: 23 pages, 7gigures
On The Robustness of Foundational 3D Medical Image Segmentation Models Against Imprecise Visual Prompts
While 3D foundational models have shown promise for promptable segmentation of medical volumes, their robustness to imprecise prompts remains under-explored. In this work, we aim to address this gap by systematically studying the effect of various controlled perturbations of dense visual prompts, that closely mimic real-world imprecision. By conducting experiments with two recent foundational models on a multi-organ abdominal segmentation task, we reveal several facets of promptable medical segmentation, especially pertaining to reliance on visual shape and spatial cues, and the extent of resilience of models towards certain perturbations. Codes are available at: https://github.com/ucsdbiag/Prompt-Robustness-MedSegFMs
comment: Accepted at ISBI 2026
VTFusion: A Vision-Text Multimodal Fusion Network for Few-Shot Anomaly Detection
Few-Shot Anomaly Detection (FSAD) has emerged as a critical paradigm for identifying irregularities using scarce normal references. While recent methods have integrated textual semantics to complement visual data, they predominantly rely on features pre-trained on natural scenes, thereby neglecting the granular, domain-specific semantics essential for industrial inspection. Furthermore, prevalent fusion strategies often resort to superficial concatenation, failing to address the inherent semantic misalignment between visual and textual modalities, which compromises robustness against cross-modal interference. To bridge these gaps, this study proposes VTFusion, a vision-text multimodal fusion framework tailored for FSAD. The framework rests on two core designs. First, adaptive feature extractors for both image and text modalities are introduced to learn task-specific representations, bridging the domain gap between pre-trained models and industrial data; this is further augmented by generating diverse synthetic anomalies to enhance feature discriminability. Second, a dedicated multimodal prediction fusion module is developed, comprising a fusion block that facilitates rich cross-modal information exchange and a segmentation network that generates refined pixel-level anomaly maps under multimodal guidance. VTFusion significantly advances FSAD performance, achieving image-level AUROCs of 96.8% and 86.2% in the 2-shot scenario on the MVTec AD and VisA datasets, respectively. Furthermore, VTFusion achieves an AUPRO of 93.5% on a real-world dataset of industrial automotive plastic parts introduced in this paper, further demonstrating its practical applicability in demanding industrial scenarios.
Cognitively-Inspired Tokens Overcome Egocentric Bias in Multimodal Models
Multimodal language models (MLMs) perform well on semantic vision-language tasks but fail at spatial reasoning that requires adopting another agent's visual perspective. These errors reflect a persistent egocentric bias and raise questions about whether current models support allocentric reasoning. Inspired by human spatial cognition, we introduce perspective tokens, specialized embeddings that encode orientation through either (1) embodied body-keypoint cues or (2) abstract representations supporting mental rotation. Integrating these tokens into LLaVA-1.5-13B yields performance on level-2 visual perspective-taking tasks. Across synthetic and naturalistic benchmarks (Isle Bricks V2, COCO, 3DSRBench), perspective tokens improve accuracy, with rotation-based tokens generalizing to non-human reference agents. Representational analyses reveal that fine-tuning enhances latent orientation sensitivity already present in the base model, suggesting that MLMs contain precursors of allocentric reasoning but lack appropriate internal structure. Overall, embedding cognitively grounded spatial structure directly into token space provides a lightweight, model-agnostic mechanism for perspective-taking and more human-like spatial reasoning.
Semi-Supervised Domain Adaptation with Latent Diffusion for Pathology Image Classification
Deep learning models in computational pathology often fail to generalize across cohorts and institutions due to domain shift. Existing approaches either fail to leverage unlabeled data from the target domain or rely on image-to-image translation, which can distort tissue structures and compromise model accuracy. In this work, we propose a semi-supervised domain adaptation (SSDA) framework that utilizes a latent diffusion model trained on unlabeled data from both the source and target domains to generate morphology-preserving and target-aware synthetic images. By conditioning the diffusion model on foundation model features, cohort identity, and tissue preparation method, we preserve tissue structure in the source domain while introducing target-domain appearance characteristics. The target-aware synthetic images, combined with real, labeled images from the source cohort, are subsequently used to train a downstream classifier, which is then tested on the target cohort. The effectiveness of the proposed SSDA framework is demonstrated on the task of lung adenocarcinoma prognostication. The proposed augmentation yielded substantially better performance on the held-out test set from the target cohort, without degrading source-cohort performance. The approach improved the weighted F1 score on the target-cohort held-out test set from 0.611 to 0.706 and the macro F1 score from 0.641 to 0.716. Our results demonstrate that target-aware diffusion-based synthetic data augmentation provides a promising and effective approach for improving domain generalization in computational pathology.
Spatiotemporal Semantic V2X Framework for Cooperative Collision Prediction
Intelligent Transportation Systems (ITS) demand real-time collision prediction to ensure road safety and reduce accident severity. Conventional approaches rely on transmitting raw video or high-dimensional sensory data from roadside units (RSUs) to vehicles, which is impractical under vehicular communication bandwidth and latency constraints. In this work, we propose a semantic V2X framework in which RSU-mounted cameras generate spatiotemporal semantic embeddings of future frames using the Video Joint Embedding Predictive Architecture (V-JEPA). To evaluate the system, we construct a digital twin of an urban traffic environment enabling the generation of d verse traffic scenarios with both safe and collision events. These embeddings of the future frame, extracted from V-JEPA, capture task-relevant traffic dynamics and are transmitted via V2X links to vehicles, where a lightweight attentive probe and classifier decode them to predict imminent collisions. By transmitting only semantic embeddings instead of raw frames, the proposed system significantly reduces communication overhead while maintaining predictive accuracy. Experimental results demonstrate that the framework with an appropriate processing method achieves a 10% F1-score improvement for collision prediction while reducing transmission requirements by four orders of magnitude compared to raw video. This validates the potential of semantic V2X communication to enable cooperative, real-time collision prediction in ITS.
comment: 6 pages 5 figures, accepted to IEEE ICC 2026
Structural Complexity of Brain MRI reveals age-associated patterns
We adapt structural complexity analysis to three-dimensional signals, with an emphasis on brain magnetic resonance imaging (MRI). This framework captures the multiscale organization of volumetric data by coarse-graining the signal at progressively larger spatial scales and quantifying the information lost between successive resolutions. While the traditional block-based approach can become unstable at coarse resolutions due to limited sampling, we introduce a sliding-window coarse-graining scheme that provides smoother estimates and improved robustness at large scales. Using this refined method, we analyze large structural MRI datasets spanning mid- to late adulthood and find that structural complexity decreases systematically with age, with the strongest effects emerging at coarser scales. These findings highlight structural complexity as a reliable signal processing tool for multiscale analysis of 3D imaging data, while also demonstrating its utility in predicting biological age from brain MRI.
comment: accepted by icassp2026
Decoding Psychological States Through Movement: Inferring Human Kinesic Functions with Application to Built Environments
Social infrastructure and other built environments are increasingly expected to support well-being and community resilience by enabling social interaction. Yet in civil and built-environment research, there is no consistent and privacy-preserving way to represent and measure socially meaningful interaction in these spaces, leaving studies to operationalize "interaction" differently across contexts and limiting practitioners' ability to evaluate whether design interventions are changing the forms of interaction that social capital theory predicts should matter. To address this field-level and methodological gap, we introduce the Dyadic User Engagement DataseT (DUET) dataset and an embedded kinesics recognition framework that operationalize Ekman and Friesen's kinesics taxonomy as a function-level interaction vocabulary aligned with social capital-relevant behaviors (e.g., reciprocity and attention coordination). DUET captures 12 dyadic interactions spanning all five kinesic functions-emblems, illustrators, affect displays, adaptors, and regulators-across four sensing modalities and three built-environment contexts, enabling privacy-preserving analysis of communicative intent through movement. Benchmarking six open-source, state-of-the-art human activity recognition models quantifies the difficulty of communicative-function recognition on DUET and highlights the limitations of ubiquitous monadic, action-level recognition when extended to dyadic, socially grounded interaction measurement. Building on DUET, our recognition framework infers communicative function directly from privacy-preserving skeletal motion without handcrafted action-to-function dictionaries; using a transfer-learning architecture, it reveals structured clustering of kinesic functions and a strong association between representation quality and classification performance while generalizing across subjects and contexts.
LGDWT-GS: Local and Global Discrete Wavelet-Regularized 3D Gaussian Splatting for Sparse-View Scene Reconstruction
We propose a new method for few-shot 3D reconstruction that integrates global and local frequency regularization to stabilize geometry and preserve fine details under sparse-view conditions, addressing a key limitation of existing 3D Gaussian Splatting (3DGS) models. We also introduce a new multispectral greenhouse dataset containing four spectral bands captured from diverse plant species under controlled conditions. Alongside the dataset, we release an open-source benchmarking package that defines standardized few-shot reconstruction protocols for evaluating 3DGS-based methods. Experiments on our multispectral dataset, as well as standard benchmarks, demonstrate that the proposed method achieves sharper, more stable, and spectrally consistent reconstructions than existing baselines. The dataset and code for this work are publicly available
Benchmarking Deep Learning-Based Reconstruction Methods for Photoacoustic Computed Tomography with Clinically Relevant Synthetic Datasets
Deep learning (DL)-based image reconstruction methods for photoacoustic computed tomography (PACT) have developed rapidly in recent years. However, most existing methods have not employed standardized datasets, and their evaluations rely on traditional image quality (IQ) metrics that may lack clinical relevance. The absence of a standardized framework for clinically meaningful IQ assessment hinders fair comparison and raises concerns about the reproducibility and reliability of reported advancements in PACT. A benchmarking framework is proposed that provides open-source, anatomically plausible synthetic datasets and evaluation strategies for DL-based acoustic inversion methods in PACT. The datasets each include over 11,000 two-dimensional (2D) stochastic breast objects with clinically relevant lesions and paired measurements at varying modeling complexity. The evaluation strategies incorporate both traditional and task-based IQ measures to assess fidelity and clinical utility. A preliminary benchmarking study is conducted to demonstrate the framework's utility by comparing DL-based and physics-based reconstruction methods. The benchmarking study demonstrated that the proposed framework enabled comprehensive, quantitative comparisons of reconstruction performance and revealed important limitations in certain DL-based methods. Although they performed well according to traditional IQ measures, they often failed to accurately recover lesions. This highlights the inadequacy of traditional metrics and motivates the need for task-based assessments. The proposed benchmarking framework enables systematic comparisons of DL-based acoustic inversion methods for 2D PACT. By integrating clinically relevant synthetic datasets with rigorous evaluation protocols, it enables reproducible, objective assessments and facilitates method development and system optimization in PACT.
Scaling medical imaging report generation with multimodal reinforcement learning
Frontier models have demonstrated remarkable capabilities in understanding and reasoning with natural-language text, but they still exhibit major competency gaps in multimodal understanding and reasoning especially in high-value verticals such as biomedicine. Medical imaging report generation is a prominent example. Supervised fine-tuning can substantially improve performance, but they are prone to overfitting to superficial boilerplate patterns. In this paper, we introduce Universal Report Generation (UniRG) as a general framework for medical imaging report generation. By leveraging reinforcement learning as a unifying mechanism to directly optimize for evaluation metrics designed for end applications, UniRG can significantly improve upon supervised fine-tuning and attain durable generalization across diverse institutions and clinical practices. We trained UniRG-CXR on publicly available chest X-ray (CXR) data and conducted a thorough evaluation in CXR report generation with rigorous evaluation scenarios. On the authoritative ReXrank benchmark, UniRG-CXR sets new overall SOTA, outperforming prior state of the art by a wide margin.
iFSQ: Improving FSQ for Image Generation with 1 Line of Code
The field of image generation is currently bifurcated into autoregressive (AR) models operating on discrete tokens and diffusion models utilizing continuous latents. This divide, rooted in the distinction between VQ-VAEs and VAEs, hinders unified modeling and fair benchmarking. Finite Scalar Quantization (FSQ) offers a theoretical bridge, yet vanilla FSQ suffers from a critical flaw: its equal-interval quantization can cause activation collapse. This mismatch forces a trade-off between reconstruction fidelity and information efficiency. In this work, we resolve this dilemma by simply replacing the activation function in original FSQ with a distribution-matching mapping to enforce a uniform prior. Termed iFSQ, this simple strategy requires just one line of code yet mathematically guarantees both optimal bin utilization and reconstruction precision. Leveraging iFSQ as a controlled benchmark, we uncover two key insights: (1) The optimal equilibrium between discrete and continuous representations lies at approximately 4 bits per dimension. (2) Under identical reconstruction constraints, AR models exhibit rapid initial convergence, whereas diffusion models achieve a superior performance ceiling, suggesting that strict sequential ordering may limit the upper bounds of generation quality. Finally, we extend our analysis by adapting Representation Alignment (REPA) to AR models, yielding LlamaGen-REPA. Codes is available at https://github.com/Tencent-Hunyuan/iFSQ
comment: Technical Report
Acoustic Field Video for Multimodal Scene Understanding
We introduce and explore a new multimodal input representation for vision-language models: acoustic field video. Unlike conventional video (RGB with stereo/mono audio), our video stream provides a spatially grounded visualization of sound intensity across a scene, offering a new and powerful dimension of perceptual understanding. Our real-time pipeline uses low-cost beamforming microphone arrays that are already common in smart speakers and increasingly present in robotics and XR headsets, yet this sensing capability remains unutilized for scene understanding. To assess the value of spatial acoustic information, we constructed an evaluation set of 402 question-answer scenes, comparing a state-of-the-art VLM given conventional video with and without paired acoustic field video. Results show a clear and consistent improvement when incorporating spatial acoustic data; the VLM we test improves from 38.3% correct to 67.4%. Our findings highlight that many everyday scene understanding tasks remain underconstrained when relying solely on visual and audio input, and that acoustic field data provides a promising and practical direction for multimodal reasoning. A video demo is available at https://daehwakim.com/seeingsound
StealthMark: Harmless and Stealthy Ownership Verification for Medical Segmentation via Uncertainty-Guided Backdoors TIP
Annotating medical data for training AI models is often costly and limited due to the shortage of specialists with relevant clinical expertise. This challenge is further compounded by privacy and ethical concerns associated with sensitive patient information. As a result, well-trained medical segmentation models on private datasets constitute valuable intellectual property requiring robust protection mechanisms. Existing model protection techniques primarily focus on classification and generative tasks, while segmentation models-crucial to medical image analysis-remain largely underexplored. In this paper, we propose a novel, stealthy, and harmless method, StealthMark, for verifying the ownership of medical segmentation models under black-box conditions. Our approach subtly modulates model uncertainty without altering the final segmentation outputs, thereby preserving the model's performance. To enable ownership verification, we incorporate model-agnostic explanation methods, e.g. LIME, to extract feature attributions from the model outputs. Under specific triggering conditions, these explanations reveal a distinct and verifiable watermark. We further design the watermark as a QR code to facilitate robust and recognizable ownership claims. We conducted extensive experiments across four medical imaging datasets and five mainstream segmentation models. The results demonstrate the effectiveness, stealthiness, and harmlessness of our method on the original model's segmentation performance. For example, when applied to the SAM model, StealthMark consistently achieved ASR above 95% across various datasets while maintaining less than a 1% drop in Dice and AUC scores, significantly outperforming backdoor-based watermarking methods and highlighting its strong potential for practical deployment. Our implementation code is made available at: https://github.com/Qinkaiyu/StealthMark.
comment: 15 pages,7 figures. Accepted to IEEE Transactions on Image Processing (TIP) 2026
Performance uncertainty in medical image analysis: a large-scale investigation of confidence intervals
Performance uncertainty quantification is essential for reliable validation and eventual clinical translation of medical imaging artificial intelligence (AI). Confidence intervals (CIs) play a central role in this process by indicating how precise a reported performance estimate is. Yet, due to the limited amount of work examining CI behavior in medical imaging, the community remains largely unaware of how many diverse CI methods exist and how they behave in specific settings. The purpose of this study is to close this gap. To this end, we conducted a large-scale empirical analysis across a total of 24 segmentation and classification tasks, using 19 trained models per task group, a broad spectrum of commonly used performance metrics, multiple aggregation strategies, and several widely adopted CI methods. Reliability (coverage) and precision (width) of each CI method were estimated across all settings to characterize their dependence on study characteristics. Our analysis revealed five principal findings: 1) the sample size required for reliable CIs varies from a few dozens to several thousands of cases depending on study parameters; 2) CI behavior is strongly affected by the choice of performance metric; 3) aggregation strategy substantially influences the reliability of CIs, e.g. they require more observations for macro than for micro; 4) the machine learning problem (segmentation versus classification) modulates these effects; 5) different CI methods are not equally reliable and precise depending on the use case. These results form key components for the development of future guidelines on reporting performance uncertainty in medical imaging AI.
MapAnything: Universal Feed-Forward Metric 3D Reconstruction 3DV 2026
We introduce MapAnything, a unified transformer-based feed-forward model that ingests one or more images along with optional geometric inputs such as camera intrinsics, poses, depth, or partial reconstructions, and then directly regresses the metric 3D scene geometry and cameras. MapAnything leverages a factored representation of multi-view scene geometry, i.e., a collection of depth maps, local ray maps, camera poses, and a metric scale factor that effectively upgrades local reconstructions into a globally consistent metric frame. Standardizing the supervision and training across diverse datasets, along with flexible input augmentation, enables MapAnything to address a broad range of 3D vision tasks in a single feed-forward pass, including uncalibrated structure-from-motion, calibrated multi-view stereo, monocular depth estimation, camera localization, depth completion, and more. We provide extensive experimental analyses and model ablations demonstrating that MapAnything outperforms or matches specialist feed-forward models while offering more efficient joint training behavior, thus paving the way toward a universal 3D reconstruction backbone.
comment: 3DV 2026. Project Page: https://map-anything.github.io/
Scribble-Supervised Medical Image Segmentation with Dynamic Teacher Switching and Hierarchical Consistency
Scribble-supervised methods have emerged to mitigate the prohibitive annotation burden in medical image segmentation. However, the inherent sparsity of these annotations introduces significant ambiguity, which results in noisy pseudo-label propagation and hinders the learning of robust anatomical boundaries. To address this challenge, we propose SDT-Net, a novel dual-teacher, single-student framework designed to maximize supervision quality from these weak signals. Our method features a Dynamic Teacher Switching (DTS) module to adaptively select the most reliable teacher. This selected teacher then guides the student via two synergistic mechanisms: high-confidence pseudo-labels, refined by a Pick Reliable Pixels (PRP) mechanism, and multi-level feature alignment, enforced by a Hierarchical Consistency (HiCo) module. Extensive experiments on the ACDC and MSCMRseg datasets demonstrate that SDT-Net achieves state-of-the-art performance, producing more accurate and anatomically plausible segmentation.
Beyond the LUMIR challenge: The pathway to foundational registration models
Medical image challenges have played a transformative role in advancing the field, catalyzing innovation and establishing new performance benchmarks. Image registration, a foundational task in neuroimaging, has similarly advanced through the Learn2Reg initiative. Building on this, we introduce the Large-scale Unsupervised Brain MRI Image Registration (LUMIR) challenge, a next-generation benchmark for unsupervised brain MRI registration. Previous challenges relied upon anatomical label maps, however LUMIR provides 4,014 unlabeled T1-weighted MRIs for training, encouraging biologically plausible deformation modeling through self-supervision. Evaluation includes 590 in-domain test subjects and extensive zero-shot tasks across disease populations, imaging protocols, and species. Deep learning methods consistently achieved state-of-the-art performance and produced anatomically plausible, diffeomorphic deformation fields. They outperformed several leading optimization-based methods and remained robust to most domain shifts. These findings highlight the growing maturity of deep learning in neuroimaging registration and its potential to serve as a foundation model for general-purpose medical image registration.
Decoupling Multi-Contrast Super-Resolution: Self-Supervised Implicit Re-Representation for Unpaired Cross-Modal Synthesis
Multi-contrast super-resolution (MCSR) is crucial for enhancing MRI but current deep learning methods are limited. They typically require large, paired low- and high-resolution (LR/HR) training datasets, which are scarce, and are trained for fixed upsampling scales. While recent self-supervised methods remove the paired data requirement, they fail to leverage valuable population-level priors. In this work, we propose a novel, decoupled MCSR framework that resolves both limitations. We reformulate MCSR into two stages: (1) an unpaired cross-modal synthesis (uCMS) module, trained once on unpaired population data to learn a robust anatomical prior; and (2) a lightweight, patient-specific implicit re-representation (IrR) module. This IrR module is optimized in a self-supervised manner to fuse the population prior with the subject's own LR target data. This design uniquely fuses population-level knowledge with patient-specific fidelity without requiring any paired LR/HR or paired cross-modal training data. By building the IrR module on an implicit neural representation, our framework is also inherently scale-agnostic. Our method demonstrates superior quantitative performance on different datasets, with exceptional robustness at extreme scales (16x, 32x), a regime where competing methods fail. Our work presents a data-efficient, flexible, and computationally lightweight paradigm for MCSR, enabling high-fidelity, arbitrary-scale
Pretraining Frame Preservation in Autoregressive Video Memory Compression
We present PFP, a neural network structure to compress long videos into short contexts, with an explicit pretraining objective to preserve the high-frequency details of single frames at arbitrary temporal positions. The baseline model can compress a 20-second video into a context at about 5k length, where random frames can be retrieved with perceptually preserved appearances. Such pretrained models can be directly fine-tuned as memory encoders for autoregressive video models, enabling long history memory with low context cost and relatively low fidelity loss. We evaluate the framework with ablative settings and discuss the trade-offs of possible neural architecture designs.
comment: Additional Results: https://lllyasviel.github.io/pfp_gitpage/
T-LoRA: Single Image Diffusion Model Customization Without Overfitting AAAI 2026
While diffusion model fine-tuning offers a powerful approach for customizing pre-trained models to generate specific objects, it frequently suffers from overfitting when training samples are limited, compromising both generalization capability and output diversity. This paper tackles the challenging yet most impactful task of adapting a diffusion model using just a single concept image, as single-image customization holds the greatest practical potential. We introduce T-LoRA, a Timestep-Dependent Low-Rank Adaptation framework specifically designed for diffusion model personalization. We show that higher diffusion timesteps are more prone to overfitting than lower ones, necessitating a timestep-sensitive fine-tuning strategy. T-LoRA incorporates two key innovations: (1) a dynamic fine-tuning strategy that adjusts rank-constrained updates based on diffusion timesteps, and (2) a weight parametrization technique that ensures independence between adapter components through orthogonal initialization. Extensive experiments on SD-XL and FLUX-1.dev show that T-LoRA and its individual components outperform standard LoRA and other diffusion model personalization techniques, achieving a superior balance between concept fidelity and text alignment. Project page is available at https://controlgenai.github.io/T-LoRA/.
comment: AAAI 2026
Intelligent Systems in Neuroimaging: Pioneering AI Techniques for Brain Tumor Detection
This study deliberates on the application of advanced AI techniques for brain tumor classification through MRI, wherein the training includes the present best deep learning models to enhance diagnosis accuracy and the potential of usability in clinical practice. By combining custom convolutional models with pre-trained neural network architectures, our approach exposes the utmost performance in the classification of four classes: glioma, meningioma, pituitary tumors, and no-tumor cases. Assessing the models on a large dataset of over 7,000 MRI images focused on detection accuracy, computational efficiency, and generalization to unseen data. The results indicate that the Xception architecture surpasses all other were tested, obtaining a testing accuracy of 98.71% with the least validation loss. While presenting this case with findings that demonstrate AI as a probable scorer in brain tumor diagnosis, we demonstrate further motivation by reducing computational complexity toward real-world clinical deployment. These aspirations offer an abundant future for progress in automated neuroimaging diagnostics.
comment: This paper contains 11 pages, 2 tables, and 7 figures. This Paper is already accepted in IEEE Computational Intelligence Magazine (CIM)
IBISAgent: Reinforcing Pixel-Level Visual Reasoning in MLLMs for Universal Biomedical Object Referring and Segmentation
Recent research on medical MLLMs has gradually shifted its focus from image-level understanding to fine-grained, pixel-level comprehension. Although segmentation serves as the foundation for pixel-level understanding, existing approaches face two major challenges. First, they introduce implicit segmentation tokens and require simultaneous fine-tuning of both the MLLM and external pixel decoders, which increases the risk of catastrophic forgetting and limits generalization to out-of-domain scenarios. Second, most methods rely on single-pass reasoning and lack the capability to iteratively refine segmentation results, leading to suboptimal performance. To overcome these limitations, we propose a novel agentic MLLM, named IBISAgent, that reformulates segmentation as a vision-centric, multi-step decision-making process. IBISAgent enables MLLMs to generate interleaved reasoning and text-based click actions, invoke segmentation tools, and produce high-quality masks without architectural modifications. By iteratively performing multi-step visual reasoning on masked image features, IBISAgent naturally supports mask refinement and promotes the development of pixel-level visual reasoning capabilities. We further design a two-stage training framework consisting of cold-start supervised fine-tuning and agentic reinforcement learning with tailored, fine-grained rewards, enhancing the model's robustness in complex medical referring and reasoning segmentation tasks. Extensive experiments demonstrate that IBISAgent consistently outperforms both closed-source and open-source SOTA methods. All datasets, code, and trained models will be released publicly.
DeepShield: Fortifying Deepfake Video Detection with Local and Global Forgery Analysis ICCV 2025
Recent advances in deep generative models have made it easier to manipulate face videos, raising significant concerns about their potential misuse for fraud and misinformation. Existing detectors often perform well in in-domain scenarios but fail to generalize across diverse manipulation techniques due to their reliance on forgery-specific artifacts. In this work, we introduce DeepShield, a novel deepfake detection framework that balances local sensitivity and global generalization to improve robustness across unseen forgeries. DeepShield enhances the CLIP-ViT encoder through two key components: Local Patch Guidance (LPG) and Global Forgery Diversification (GFD). LPG applies spatiotemporal artifact modeling and patch-wise supervision to capture fine-grained inconsistencies often overlooked by global models. GFD introduces domain feature augmentation, leveraging domain-bridging and boundary-expanding feature generation to synthesize diverse forgeries, mitigating overfitting and enhancing cross-domain adaptability. Through the integration of novel local and global analysis for deepfake detection, DeepShield outperforms state-of-the-art methods in cross-dataset and cross-manipulation evaluations, achieving superior robustness against unseen deepfake attacks. Code is available at https://github.com/lijichang/DeepShield.
comment: ICCV 2025. Code is available at https://github.com/lijichang/DeepShield
UltraFlwr -- An Efficient Federated Surgical Object Detection Framework
Surgical object detection in laparoscopic videos enables real-time instrument identification for workflow analysis and skills assessment, but training robust models such as You Only Look Once (YOLO) is challenged by limited data, privacy constraints, and inter-institutional variability. Federated learning (FL) enables collaborative training without sharing raw data, yet practical support for modern YOLO pipelines under heterogeneous surgical data remains limited. We present UltraFlwr, an open-source, communication-efficient, and edge-deployable framework that integrates Ultralytics YOLO with the Flower FL platform and supports native Partial Aggregation (PA) of YOLO components (backbone, neck, head). Using two public laparoscopic surgical tool detection datasets, we conduct a systematic empirical study of federated YOLO training under Independent and Identically Distributed (IID) and multiple clinically motivated heterogeneous scenarios, including differences in data curation, video length, and label availability. Results show that standard FL aggregators (e.g., FedAvg) do not consistently match centralized training per client, but reduce inter-client performance variability. Aggregating both backbone and neck components achieves performance comparable to full aggregation with lower communication costs. Also, improving within-client data consistency can benefit FL even when it increases distribution shift across clients. These findings provide practical guidance for deploying federated YOLO-based object detection in heterogeneous surgical environments. UltraFlwr is publicly available at https://github.com/KCL-BMEIS/UltraFlwr.
comment: 7 pages, 3 figures
UrbanIng-V2X: A Large-Scale Multi-Vehicle, Multi-Infrastructure Dataset Across Multiple Intersections for Cooperative Perception NeurIPS 2025
Recent cooperative perception datasets have played a crucial role in advancing smart mobility applications by enabling information exchange between intelligent agents, helping to overcome challenges such as occlusions and improving overall scene understanding. While some existing real-world datasets incorporate both vehicle-to-vehicle and vehicle-to-infrastructure interactions, they are typically limited to a single intersection or a single vehicle. A comprehensive perception dataset featuring multiple connected vehicles and infrastructure sensors across several intersections remains unavailable, limiting the benchmarking of algorithms in diverse traffic environments. Consequently, overfitting can occur, and models may demonstrate misleadingly high performance due to similar intersection layouts and traffic participant behavior. To address this gap, we introduce UrbanIng-V2X, the first large-scale, multi-modal dataset supporting cooperative perception involving vehicles and infrastructure sensors deployed across three urban intersections in Ingolstadt, Germany. UrbanIng-V2X consists of 34 temporally aligned and spatially calibrated sensor sequences, each lasting 20 seconds. All sequences contain recordings from one of three intersections, involving two vehicles and up to three infrastructure-mounted sensor poles operating in coordinated scenarios. In total, UrbanIng-V2X provides data from 12 vehicle-mounted RGB cameras, 2 vehicle LiDARs, 17 infrastructure thermal cameras, and 12 infrastructure LiDARs. All sequences are annotated at a frequency of 10 Hz with 3D bounding boxes spanning 13 object classes, resulting in approximately 712k annotated instances across the dataset. We provide comprehensive evaluations using state-of-the-art cooperative perception methods and publicly release the codebase, dataset, HD map, and a digital twin of the complete data collection environment.
comment: Accepted to NeurIPS 2025. Including supplemental material. For code and dataset, see https://github.com/thi-ad/UrbanIng-V2X
Self-supervised Learning of Echocardiographic Video Representations via Online Cluster Distillation NeurIPS 2025
Self-supervised learning (SSL) has achieved major advances in natural images and video understanding, but challenges remain in domains like echocardiography (heart ultrasound) due to subtle anatomical structures, complex temporal dynamics, and the current lack of domain-specific pre-trained models. Existing SSL approaches such as contrastive, masked modeling, and clustering-based methods struggle with high intersample similarity, sensitivity to low PSNR inputs common in ultrasound, or aggressive augmentations that distort clinically relevant features. We present DISCOVR (Distilled Image Supervision for Cross Modal Video Representation), a self-supervised dual branch framework for cardiac ultrasound video representation learning. DISCOVR combines a clustering-based video encoder that models temporal dynamics with an online image encoder that extracts fine-grained spatial semantics. These branches are connected through a semantic cluster distillation loss that transfers anatomical knowledge from the evolving image encoder to the video encoder, enabling temporally coherent representations enriched with fine-grained semantic understanding.Evaluated on six echocardiography datasets spanning fetal, pediatric, and adult populations, DISCOVR outperforms both specialized video anomaly detection methods and state-of-the-art video-SSL baselines in zero-shot and linear probing setups,achieving superior segmentation transfer and strong downstream performance on clinically relevant tasks such as LVEF prediction. Code available at: https://github.com/mdivyanshu97/DISCOVR
comment: Accepted in NeurIPS 2025
From Neck to Head: Bio-Impedance Sensing for Head Pose Estimation
We present NeckSense, a novel wearable system for head pose tracking that leverages multi-channel bio-impedance sensing with soft, dry electrodes embedded in a lightweight, necklace-style form factor. NeckSense captures dynamic changes in tissue impedance around the neck, which are modulated by head rotations and subtle muscle activations. To robustly estimate head pose, we propose a deep learning framework that integrates anatomical priors, including joint constraints and natural head rotation ranges, into the loss function design. We validate NeckSense on 7 participants using the current SOTA pose estimation model as ground truth. Our system achieves a mean per-vertex error of 25.9 mm across various head movements with a leave-one-person-out cross-validation method, demonstrating that a compact, line-of-sight-free bio-impedance wearable can deliver head-tracking performance comparable to SOTA vision-based methods.
Masked Modeling for Human Motion Recovery Under Occlusions
Human motion reconstruction from monocular videos is a fundamental challenge in computer vision, with broad applications in AR/VR, robotics, and digital content creation, but remains challenging under frequent occlusions in real-world settings. Existing regression-based methods are efficient but fragile to missing observations, while optimization- and diffusion-based approaches improve robustness at the cost of slow inference speed and heavy preprocessing steps. To address these limitations, we leverage recent advances in generative masked modeling and present MoRo: Masked Modeling for human motion Recovery under Occlusions. MoRo is an occlusion-robust, end-to-end generative framework that formulates motion reconstruction as a video-conditioned task, and efficiently recover human motion in a consistent global coordinate system from RGB videos. By masked modeling, MoRo naturally handles occlusions while enabling efficient, end-to-end inference. To overcome the scarcity of paired video-motion data, we design a cross-modality learning scheme that learns multi-modal priors from a set of heterogeneous datasets: (i) a trajectory-aware motion prior trained on MoCap datasets, (ii) an image-conditioned pose prior trained on image-pose datasets, capturing diverse per-frame poses, and (iii) a video-conditioned masked transformer that fuses motion and pose priors, finetuned on video-motion datasets to integrate visual cues with motion dynamics for robust inference. Extensive experiments on EgoBody and RICH demonstrate that MoRo substantially outperforms state-of-the-art methods in accuracy and motion realism under occlusions, while performing on-par in non-occluded scenarios. MoRo achieves real-time inference at 70 FPS on a single H200 GPU.
comment: Project page: https://mikeqzy.github.io/MoRo
Language-Guided and Motion-Aware Gait Representation for Generalizable Recognition
Gait recognition is emerging as a promising technology and an innovative field within computer vision, with a wide range of applications in remote human identification. However, existing methods typically rely on complex architectures to directly extract features from images and apply pooling operations to obtain sequence-level representations. Such designs often lead to overfitting on static noise (e.g., clothing), while failing to effectively capture dynamic motion regions, such as the arms and legs. This bottleneck is particularly challenging in the presence of intra-class variation, where gait features of the same individual under different environmental conditions are significantly distant in the feature space. To address the above challenges, we present a Languageguided and Motion-aware gait recognition framework, named LMGait. To the best of our knowledge, LMGait is the first method to introduce natural language descriptions as explicit semantic priors into the gait recognition task. In particular, we utilize designed gait-related language cues to capture key motion features in gait sequences. To improve cross-modal alignment, we propose the Motion Awareness Module (MAM), which refines the language features by adaptively adjusting various levels of semantic information to ensure better alignment with the visual representations. Furthermore, we introduce the Motion Temporal Capture Module (MTCM) to enhance the discriminative capability of gait features and improve the model's motion tracking ability. We conducted extensive experiments across multiple datasets, and the results demonstrate the significant advantages of our proposed network. Specifically, our model achieved accuracies of 88.5%, 97.1%, and 97.5% on the CCPG, SUSTech1K, and CASIAB datasets, respectively, achieving state-of-the-art performance. Homepage: https://dingwu1021.github.io/LMGait/
GAMMA: Generalizable Alignment via Multi-task and Manipulation-Augmented Training for AI-Generated Image Detection
With generative models becoming increasingly sophisticated and diverse, detecting AI-generated images has become increasingly challenging. While existing AI-genereted Image detectors achieve promising performance on in-distribution generated images, their generalization to unseen generative models remains limited. This limitation is largely attributed to their reliance on generation-specific artifacts, such as stylistic priors and compression patterns. To address these limitations, we propose GAMMA, a novel training framework designed to reduce domain bias and enhance semantic alignment. GAMMA introduces diverse manipulation strategies, such as inpainting-based manipulation and semantics-preserving perturbations, to ensure consistency between manipulated and authentic content. We employ multi-task supervision with dual segmentation heads and a classification head, enabling pixel-level source attribution across diverse generative domains. In addition, a reverse cross-attention mechanism is introduced to allow the segmentation heads to guide and correct biased representations in the classification branch. Our method achieves state-of-the-art generalization performance on the GenImage benchmark, imporving accuracy by 5.8%, but also maintains strong robustness on newly released generative model such as GPT-4o.
A Multi-Stage Hybrid Framework for Automated Interpretation of Multi-View Engineering Drawings Using Vision Language Model
Engineering drawings are fundamental to manufacturing communication, serving as the primary medium for conveying design intent, tolerances, and production details. However, interpreting complex multi-view drawings with dense annotations remains challenging using manual methods, generic optical character recognition (OCR) systems, or traditional deep learning approaches, due to varied layouts, orientations, and mixed symbolic-textual content. To address these challenges, this paper proposes a three-stage hybrid framework for the automated interpretation of 2D multi-view engineering drawings using modern detection and vision language models (VLMs). In the first stage, YOLOv11-det performs layout segmentation to localize key regions such as views, title blocks, and notes. The second stage uses YOLOv11-obb for orientation-aware, fine-grained detection of annotations, including measures, GD&T symbols, and surface roughness indicators. The third stage employs two Donut-based, OCR-free VLMs for semantic content parsing: the Alphabetical VLM extracts textual and categorical information from title blocks and notes, while the Numerical VLM interprets quantitative data such as measures, GD&T frames, and surface roughness. Two specialized datasets were developed to ensure robustness and generalization: 1,000 drawings for layout detection and 1,406 for annotation-level training. The Alphabetical VLM achieved an overall F1 score of 0.672, while the Numerical VLM reached 0.963, demonstrating strong performance in textual and quantitative interpretation, respectively. The unified JSON output enables seamless integration with CAD and manufacturing databases, providing a scalable solution for intelligent engineering drawing analysis.
comment: This draft has been accepted in the 13th International Conference on Industrial Engineering and Applications (ICIEA 2026)
SAMRI: Segment Anything Model for MRI
Accurate magnetic resonance imaging (MRI) segmentation is crucial for clinical decision-making, but remains labor-intensive when performed manually. Convolutional neural network (CNN) based methods can be accurate and efficient but often generalize poorly to MRI variable contrast, intensity inhomogeneity, and sequences. Although the transformer-based Segment Anything Model (SAM) has demonstrated remarkable generalizability in natural images, existing adaptations often treat MRI as another imaging modality, overlooking these modality-specific challenges. We present SAMRI, an MRI-specialized SAM trained and validated on 1.1 million labeled MR slices spanning whole-body organs and pathologies. We demonstrate that SAM can be effectively adapted to MRI by fine-tuning its mask decoder using a two-stage strategy, reducing training time by 94 percent and trainable parameters by 96 percent compared to full-model retraining. Across diverse MRI segmentation tasks, SAMRI achieves a mean Dice of 0.87, delivering state-of-the-art accuracy across anatomical regions and robust generalization on unseen structures, particularly small clinically important structures. In addition, we provide a complete training-to-inference pipeline and a user-friendly local graphical interface that enables interactive application of pretrained SAMRI models on standard machines, facilitating practical deployment for real-world MRI segmentation.
FUSAR-KLIP: Towards Multimodal Foundation Models for Remote Sensing
Cross-modal artificial intelligence, represented by visual language models, has achieved significant success in general image understanding. However, a fundamental cognitive inconsistency exists between general visual representation and remote sensing image interpretation: remote sensing images couple topography, terrain, and spatial structure, thereby inherently requiring models to possess deep geoscientific understanding. This cognitive difference is further amplified in synthetic aperture radar (SAR) imagery: while SAR possesses irreplaceable all-weather, all-day observation capabilities, it is constrained by coherent imaging mechanisms, exhibiting significant modal heterogeneity with general images. To address this inconsistency, we propose FUSAR-KLIP, the first knowledge-guided general multimodal foundational model for SAR, along with reusable data and evaluation baselines. Specifically: (1) FUSAR-GEOVL-1M (the first large-scale SAR dataset with complete geographic projection attributes) was constructed, covering multiple satellite platforms, 120,000 images, and 135 cities; (2) Aligned structured text was generated through hierarchical cognitive thought chains, accurately encoding more than 1 million multidimensional semantic information from geomorphological environment and regional attributes to spatial relationships; (3) A self-consistent iterative optimization mechanism was designed to guide cross-modal learning with this knowledge information consistent with human cognition and physical laws in a self-supervised closed loop consisting of contrast, matching, and reconstruction; (4) A unified evaluation benchmark was established in 11 typical downstream tasks in the two major categories of vision and language, and compared with 15 mainstream foundation models.
UniFGVC: Universal Training-Free Few-Shot Fine-Grained Vision Classification via Attribute-Aware Multimodal Retrieval
Few-shot fine-grained visual classification (FGVC) aims to leverage limited data to enable models to discriminate subtly distinct categories. Recent works mostly finetuned the pre-trained visual language models to achieve performance gain, yet suffering from overfitting and weak generalization. To deal with this, we introduce UniFGVC, a universal training-free framework that reformulates few-shot FGVC as multimodal retrieval. First, we propose the Category-Discriminative Visual Captioner (CDV-Captioner) to exploit the open-world knowledge of multimodal large language models (MLLMs) to generate a structured text description that captures the fine-grained attribute features distinguishing closely related classes. CDV-Captioner uses chain-of-thought prompting and visually similar reference images to reduce hallucination and enhance discrimination of generated captions. Using it we can convert each image into an image-description pair, enabling more comprehensive feature representation, and construct the multimodal category templates using few-shot samples for the subsequent retrieval pipeline. Then, off-the-shelf vision and text encoders embed query and template pairs, and FGVC is accomplished by retrieving the nearest template in the joint space. UniFGVC ensures broad compatibility with diverse MLLMs and encoders, offering reliable generalization and adaptability across few-shot FGVC scenarios. Extensive experiments on 12 FGVC benchmarks demonstrate its consistent superiority over prior few-shot CLIP-based methods and even several fully-supervised MLLMs-based approaches.
AR-LIF: Adaptive reset leaky integrate-and-fire neuron for spiking neural networks
Spiking neural networks offer low energy consumption due to their event-driven nature. Beyond binary spike outputs, their intrinsic floating-point dynamics merit greater attention. Neuronal threshold levels and reset modes critically determine spike count and timing. Hard reset cause information loss, while soft reset apply uniform treatment to neurons. To address these issues, we design an adaptive reset neuron that establishes relationships between inputs, outputs, and reset, while integrating a simple yet effective threshold adjustment strategy. Experimental results demonstrate that our method achieves excellent performance while maintaining lower energy consumption. In particular, it attains state-of-the-art accuracy on Tiny-ImageNet and CIFAR10-DVS. Codes are available at https://github.com/2ephyrus/AR-LIF.
comment: Accepted by ICASSP 2026
CardioMOD-Net: A Modal Decomposition-Neural Network Framework for Diagnosis and Prognosis of HFpEF from Echocardiography Cine Loops
Introduction: Heart failure with preserved ejection fraction (HFpEF) arises from diverse comorbidities and progresses through prolonged subclinical stages, making early diagnosis and prognosis difficult. Current echocardiography-based Artificial Intelligence (AI) models focus primarily on binary HFpEF detection in humans and do not provide comorbidity-specific phenotyping or temporal estimates of disease progression towards decompensation. We aimed to develop a unified AI framework, CardioMOD-Net, to perform multiclass diagnosis and continuous prediction of HFpEF onset directly from standard echocardiography cine loops in preclinical models. Methods: Mouse echocardiography videos from four groups were used: control (CTL), hyperglycaemic (HG), obesity (OB), and systemic arterial hypertension (SAH). Two-dimensional parasternal long-axis cine loops were decomposed using Higher Order Dynamic Mode Decomposition (HODMD) to extract temporal features for downstream analysis. A shared latent representation supported Vision Transformers, one for a classifier for diagnosis and another for a regression module for predicting the age at HFpEF onset. Results: Overall diagnostic accuracy across the four groups was 65%, with all classes exceeding 50% accuracy. Misclassifications primarily reflected early-stage overlap between OB or SAH and CTL. The prognostic module achieved a root-mean-square error of 21.72 weeks for time-to-HFpEF prediction, with OB and SAH showing the most accurate estimates. Predicted HFpEF onset closely matched true distributions in all groups. Discussion: This unified framework demonstrates that multiclass phenotyping and continuous HFpEF onset prediction can be obtained from a single cine loop, even under small-data conditions. The approach offers a foundation for integrating diagnostic and prognostic modelling in preclinical HFpEF research.
comment: 9 pages; 1 figure; letter
VALISENS: A Validated Innovative Multi-Sensor System for Cooperative Automated Driving
Reliable perception remains a key challenge for Connected Automated Vehicles (CAVs) in complex real-world environments, where varying lighting conditions and adverse weather degrade sensing performance. While existing multi-sensor solutions improve local robustness, they remain constrained by limited sensing range, line-of-sight occlusions, and sensor failures on individual vehicles. This paper introduces VALISENS, a validated cooperative perception system that extends multi-sensor fusion beyond a single vehicle through Vehicle-to-Everything (V2X)-enabled collaboration between Connected Automated Vehicles (CAVs) and intelligent infrastructure. VALISENS integrates onboard and roadside LiDARs, radars, RGB cameras, and thermal cameras within a unified multi-agent perception framework. Thermal cameras enhances the detection of Vulnerable Road Users (VRUs) under challenging lighting conditions, while roadside sensors reduce occlusions and expand the effective perception range. In addition, an integrated sensor monitoring module continuously assesses sensor health and detects anomalies before system degradation occurs. The proposed system is implemented and evaluated in a dedicated real-world testbed. Experimental results show that VALISENS improves pedestrian situational awareness by up to 18% compared with vehicle-only sensing, while the sensor monitoring module achieves over 97% accuracy, demonstrating its effectiveness and its potential to support future Cooperative Intelligent Transport Systems (C-ITS) applications.
comment: 8 pages, 5 figures, submitted to IEEE VNC
ProSub: Probabilistic Open-Set Semi-Supervised Learning with Subspace-Based Out-of-Distribution Detection ECCV2024
In open-set semi-supervised learning (OSSL), we consider unlabeled datasets that may contain unknown classes. Existing OSSL methods often use the softmax confidence for classifying data as in-distribution (ID) or out-of-distribution (OOD). Additionally, many works for OSSL rely on ad-hoc thresholds for ID/OOD classification, without considering the statistics of the problem. We propose a new score for ID/OOD classification based on angles in feature space between data and an ID subspace. Moreover, we propose an approach to estimate the conditional distributions of scores given ID or OOD data, enabling probabilistic predictions of data being ID or OOD. These components are put together in a framework for OSSL, termed ProSub, that is experimentally shown to reach SOTA performance on several benchmark problems. Our code is available at https://github.com/walline/prosub.
comment: ECCV2024
FantasyVLN: Unified Multimodal Chain-of-Thought Reasoning for Vision-Language Navigation
Achieving human-level performance in Vision-and-Language Navigation (VLN) requires an embodied agent to jointly understand multimodal instructions and visual-spatial context while reasoning over long action sequences. Recent works, such as NavCoT and NavGPT-2, demonstrate the potential of Chain-of-Thought (CoT) reasoning for improving interpretability and long-horizon planning. Moreover, multimodal extensions like OctoNav-R1 and CoT-VLA further validate CoT as a promising pathway toward human-like navigation reasoning. However, existing approaches face critical drawbacks: purely textual CoTs lack spatial grounding and easily overfit to sparse annotated reasoning steps, while multimodal CoTs incur severe token inflation by generating imagined visual observations, making real-time navigation impractical. In this work, we propose FantasyVLN, a unified implicit reasoning framework that preserves the benefits of CoT reasoning without explicit token overhead. Specifically, imagined visual tokens are encoded into a compact latent space using a pretrained Visual AutoRegressor (VAR) during CoT reasoning training, and the model jointly learns from textual, visual, and multimodal CoT modes under a unified multi-CoT strategy. At inference, our model performs direct instruction-to-action mapping while still enjoying reasoning-aware representations. Extensive experiments on LH-VLN show that our approach achieves reasoning-aware yet real-time navigation, improving success rates and efficiency while reducing inference latency by an order of magnitude compared to explicit CoT methods.
Revisiting the Ordering of Channel and Spatial Attention: A Comprehensive Study on Sequential and Parallel Designs
Attention mechanisms have become a core component of deep learning models, with Channel Attention and Spatial Attention being the two most representative architectures. Current research on their fusion strategies primarily bifurcates into sequential and parallel paradigms, yet the selection process remains largely empirical, lacking systematic analysis and unified principles. We systematically compare channel-spatial attention combinations under a unified framework, building an evaluation suite of 18 topologies across four classes: sequential, parallel, multi-scale, and residual. Across two vision and nine medical datasets, we uncover a "data scale-method-performance" coupling law: (1) in few-shot tasks, the "Channel-Multi-scale Spatial" cascaded structure achieves optimal performance; (2) in medium-scale tasks, parallel learnable fusion architectures demonstrate superior results; (3) in large-scale tasks, parallel structures with dynamic gating yield the best performance. Additionally, experiments indicate that the "Spatial-Channel" order is more stable and effective for fine-grained classification, while residual connections mitigate vanishing gradient problems across varying data scales. We thus propose scenario-based guidelines for building future attention modules. Code is open-sourced at https://github.com/DWlzm.
GazeD: Context-Aware Diffusion for Accurate 3D Gaze Estimation 3DV 2026
We introduce GazeD, a new 3D gaze estimation method that jointly provides 3D gaze and human pose from a single RGB image. Leveraging the ability of diffusion models to deal with uncertainty, it generates multiple plausible 3D gaze and pose hypotheses based on the 2D context information extracted from the input image. Specifically, we condition the denoising process on the 2D pose, the surroundings of the subject, and the context of the scene. With GazeD we also introduce a novel way of representing the 3D gaze by positioning it as an additional body joint at a fixed distance from the eyes. The rationale is that the gaze is usually closely related to the pose, and thus it can benefit from being jointly denoised during the diffusion process. Evaluations across three benchmark datasets demonstrate that GazeD achieves state-of-the-art performance in 3D gaze estimation, even surpassing methods that rely on temporal information. Project details will be available at https://aimagelab.ing.unimore.it/go/gazed.
comment: Accepted at 3DV 2026. Project page: https://aimagelab.ing.unimore.it/go/gazed
Text-to-Image Diffusion Models Cannot Count, and Prompt Refinement Cannot Help
Generative modeling is widely regarded as one of the most essential problems in today's AI community, with text-to-image generation having gained unprecedented real-world impacts. Among various approaches, diffusion models have achieved remarkable success and have become the de facto solution for text-to-image generation. However, despite their impressive performance, these models exhibit fundamental limitations in adhering to numerical constraints in user instructions, frequently generating images with an incorrect number of objects. While several prior works have mentioned this issue, a comprehensive and rigorous evaluation of this limitation remains lacking. To address this gap, we introduce T2ICountBench, a novel benchmark designed to rigorously evaluate the counting ability of state-of-the-art text-to-image diffusion models. Our benchmark encompasses a diverse set of generative models, including both open-source and private systems. It explicitly isolates counting performance from other capabilities, provides structured difficulty levels, and incorporates human evaluations to ensure high reliability. Extensive evaluations with T2ICountBench reveal that all state-of-the-art diffusion models fail to generate the correct number of objects, with accuracy dropping significantly as the number of objects increases. Additionally, an exploratory study on prompt refinement demonstrates that such simple interventions generally do not improve counting accuracy. Our findings highlight the inherent challenges in numerical understanding within diffusion models and point to promising directions for future improvements.
Are We Using the Right Benchmark: An Evaluation Framework for Visual Token Compression Methods
Recent efforts to accelerate inference in Multimodal Large Language Models (MLLMs) have largely focused on visual token compression. The effectiveness of these methods is commonly evaluated by measuring the accuracy drop on existing MLLM benchmarks before and after compression. However, these benchmarks are originally designed to assess general perception and reasoning abilities, rather than the specific challenges posed by visual token compression, leading to a fundamental task mismatch. In this work, we uncover a counterintuitive yet consistent phenomenon: simple image downsampling outperforms many advanced visual token compression methods across multiple widely used benchmarks. Through a comprehensive empirical study spanning eight popular benchmarks and multiple state-of-the-art compression techniques, we show that (i) current benchmarks contain substantial noise (task-irrelevant samples) for evaluating visual token compression, and (ii) downsampling can act as an effective data filter that distinguishes between simple and difficult samples with respect to compression sensitivity. Motivated by these findings, we propose VTC-Bench, an evaluation framework that explicitly leverages downsampling as a discriminator to denoise existing benchmarks, enabling a fairer and more meaningful additional assessment of visual token compression methods.
comment: Code: https://github.com/Chenfei-Liao/VTC-Bench; Project Page: https://chenfei-liao.github.io/VTC-Bench-Page/
Visual Autoregressive Transformers Must Use $Ω(n^2 d)$ Memory
A fundamental challenge in Visual Autoregressive models is the substantial memory overhead required during inference to store previously generated representations. Despite various attempts to mitigate this issue through compression techniques, prior works have not explicitly formalized the problem of KV-cache compression in this context. In this work, we take the first step in formally defining the KV-cache compression problem for Visual Autoregressive transformers. We then establish a fundamental negative result, proving that any mechanism for sequential visual token generation under attention-based architectures must use at least $Ω(n^2 d)$ memory, when $d = Ω(\log n)$, where $n$ is the number of tokens generated and $d$ is the embedding dimensionality. This result demonstrates that achieving truly sub-quadratic memory usage is impossible without additional structural constraints. Our proof is constructed via a reduction from a computational lower bound problem, leveraging randomized embedding techniques inspired by dimensionality reduction principles. Finally, we discuss how sparsity priors on visual representations can influence memory efficiency, presenting both impossibility results and potential directions for mitigating memory overhead.
A Novel Deep Hybrid Framework with Ensemble-Based Feature Optimization for Robust Real-Time Human Activity Recognition
Real-time Human Activity Recognition (HAR) has wide-ranging applications in areas such as context-aware environments, public safety, assistive technologies, and autonomous monitoring and surveillance systems. However, existing real-time HAR systems face significant challenges, including limited scalability and high computational costs arising from redundant features. To address these issues, the Inception-V3 model was customized with region-based and boundary-aware operations, using average pooling and max pooling, respectively, to enhance region homogeneity, suppress noise, and capture discriminative local features, while improving robustness through down-sampling. Furthermore, to effectively encode motion dynamics, an Attention-Augmented Long Short-Term Memory (AA-LSTM) network was employed to learn temporal dependencies across video frames. Features are extracted from video dataset and are then optimized through a novel proposed dynamic composite feature selection method called Adaptive Dynamic Fitness Sharing and Attention (ADFSA). This ADFSA mechanism is embedded within a genetic algorithm to select a compact, optimized subset of features by dynamically balancing multiple objectives, accuracy, redundancy reduction, feature uniqueness, and complexity minimization. As a result, the selected subset of diverse and discriminative features enables lightweight machine learning classifiers to achieve accurate and robust HAR in heterogeneous environments. Experimental results demonstrate up to 99.65\% accuracy using as few as seven selected features, with improved inference time on the challenging UCF-YouTube dataset, which includes factors such as occlusion, cluttered backgrounds, complex motion dynamics, and poor illumination conditions.
comment: 35 pages, 25 figures, 11 tables
Markovian Reeb Graphs for Simulating Spatiotemporal Patterns of Life
Accurately modeling human mobility is critical for urban planning, epidemiology, and traffic management. In this work, we introduce Markovian Reeb Graphs, a novel framework that transforms Reeb graphs from a descriptive analysis tool into a generative model for spatiotemporal trajectories. Our approach captures individual and population-level Patterns of Life (PoLs) and generates realistic trajectories that preserve baseline behaviors while incorporating stochastic variability by embedding probabilistic transitions within the Reeb graph structure. We present two variants: Sequential Reeb Graphs (SRGs) for individual agents and Hybrid Reeb Graphs (HRGs) that combine individual with population PoLs, evaluated on the Urban Anomalies and Geolife datasets using five mobility statistics. Results demonstrate that HRGs achieve strong fidelity across metrics while requiring modest trajectory datasets without specialized side information. This work establishes Markovian Reeb Graphs as a promising framework for trajectory simulation with broad applicability across urban environments.
comment: 15 pages, 4 figures
MoE-Enhanced Multi-Domain Feature Selection and Fusion for Fast Map-Free Trajectory Prediction
Trajectory prediction is crucial for the reliability and safety of autonomous driving systems, yet it remains a challenging task in complex interactive scenarios due to noisy trajectory observations and intricate agent interactions. Existing methods often struggle to filter redundant scene data for discriminative information extraction, directly impairing trajectory prediction accuracy especially when handling outliers and dynamic multi-agent interactions. In response to these limitations, we present a novel map-free trajectory prediction method which adaptively eliminates redundant information and selects discriminative features across the temporal, spatial, and frequency domains, thereby enabling precise trajectory prediction in real-world driving environments. First, we design a MoE based frequency domain filter to adaptively weight distinct frequency components of observed trajectory data and suppress outlier related noise; then a selective spatiotemporal attention module that reallocates weights across temporal nodes (sequential dependencies), temporal trends (evolution patterns), and spatial nodes to extract salient information is proposed. Finally, our multimodal decoder-supervised by joint patch level and point-level losses generates reasonable and temporally consistent trajectories, and comprehensive experiments on the large-scale NuScenes and Argoverse dataset demonstrate that our method achieves competitive performance and low-latency inference performance compared with recently proposed methods.
The Prism Hypothesis: Harmonizing Semantic and Pixel Representations via Unified Autoencoding
Deep representations across modalities are inherently intertwined. In this paper, we systematically analyze the spectral characteristics of various semantic and pixel encoders. Interestingly, our study uncovers a highly inspiring and rarely explored correspondence between an encoder's feature spectrum and its functional role: semantic encoders primarily capture low-frequency components that encode abstract meaning, whereas pixel encoders additionally retain high-frequency information that conveys fine-grained detail. This heuristic finding offers a unifying perspective that ties encoder behavior to its underlying spectral structure. We define it as the Prism Hypothesis, where each data modality can be viewed as a projection of the natural world onto a shared feature spectrum, just like the prism. Building on this insight, we propose Unified Autoencoding (UAE), a model that harmonizes semantic structure and pixel details via an innovative frequency-band modulator, enabling their seamless coexistence. Extensive experiments on ImageNet and MS-COCO benchmarks validate that our UAE effectively unifies semantic abstraction and pixel-level fidelity into a single latent space with state-of-the-art performance.
comment: Code link: https://github.com/WeichenFan/UAE
FoldNet: Learning Generalizable Closed-Loop Policy for Garment Folding via Keypoint-Driven Asset and Demonstration Synthesis
Due to the deformability of garments, generating a large amount of high-quality data for robotic garment manipulation tasks is highly challenging. In this paper, we present a synthetic garment dataset that can be used for robotic garment folding. We begin by constructing geometric garment templates based on keypoints and applying generative models to generate realistic texture patterns. Leveraging these keypoint annotations, we generate folding demonstrations in simulation and train folding policies via closed-loop imitation learning. To improve robustness, we propose KG-DAgger, which uses a keypoint-based strategy to generate demonstration data for recovering from failures. KG-DAgger significantly improves the model performance, boosting the real-world success rate by 25\%. After training with 15K trajectories (about 2M image-action pairs), the model achieves a 75\% success rate in the real world. Experiments in both simulation and real-world settings validate the effectiveness of our proposed framework.
CoreEditor: Consistent 3D Editing via Correspondence-constrained Diffusion
Text-driven 3D editing seeks to modify 3D scenes according to textual descriptions, and most existing approaches tackle this by adapting pre-trained 2D image editors to multi-view inputs. However, without explicit control over multi-view information exchange, they often fail to maintain cross-view consistency, leading to insufficient edits and blurry details. We introduce CoreEditor, a novel framework for consistent text-to-3D editing. The key innovation is a correspondence-constrained attention mechanism that enforces precise interactions between pixels expected to remain consistent throughout the diffusion denoising process. Beyond relying solely on geometric alignment, we further incorporate semantic similarity estimated during denoising, enabling more reliable correspondence modeling and robust multi-view editing. In addition, we design a selective editing pipeline that allows users to choose preferred results from multiple candidates, offering greater flexibility and user control. Extensive experiments show that CoreEditor produces high-quality, 3D-consistent edits with sharper details, significantly outperforming prior methods.
comment: Accepted by IEEE TVCG
ToonifyGB: StyleGAN-based Gaussian Blendshapes for 3D Stylized Head Avatars
The introduction of 3D Gaussian blendshapes has enabled the real-time reconstruction of animatable head avatars from monocular video. Toonify, a StyleGAN-based method, has become widely used for facial image stylization. To extend Toonify for synthesizing diverse stylized 3D head avatars using Gaussian blendshapes, we propose an efficient two-stage framework, ToonifyGB. In Stage 1 (stylized video generation), we adopt an improved StyleGAN to generate the stylized video from the input video frames, which overcomes the limitation of cropping aligned faces at a fixed resolution as preprocessing for normal StyleGAN. This process provides a more stable stylized video, which enables Gaussian blendshapes to better capture the high-frequency details of the video frames, facilitating the synthesis of high-quality animations in the next stage. In Stage 2 (Gaussian blendshapes synthesis), our method learns a stylized neutral head model and a set of expression blendshapes from the generated stylized video. By combining the neutral head model with expression blendshapes, ToonifyGB can efficiently render stylized avatars with arbitrary expressions. We validate the effectiveness of ToonifyGB on benchmark datasets using two representative styles: Arcane and Pixar.
comment: 2-Page Version Accepted as a Poster at IEEE VR 2026
Efficient Multi-scale Masked Autoencoders with Hybrid-Attention Mechanism for Breast Lesion Classification
Self-supervised learning (SSL) with Vision Transformers (ViT) has shown immense potential in medical image analysis. However, the quadratic complexity ($\mathcal{O}(N^2)$) of standard self-attention poses a severe barrier for high-resolution biomedical tasks, effectively excluding resource-constrained research labs from utilizing state-of-the-art models. To address this computational bottleneck without sacrificing diagnostic accuracy, we propose \textbf{MIRAM}, a Multi-scale Masked Autoencoder that leverages a \textbf{hybrid-attention mechanism}. Our architecture uniquely decouples semantic learning from detail reconstruction using a dual-decoder design: a standard transformer decoder captures global semantics at low resolution, while a linear-complexity decoder (comparing Linformer, Performer, and Nyströmformer) handles the computationally expensive high-resolution reconstruction. This reduces the complexity of the upscaling stage from quadratic to linear ($\mathcal{O}(N)$), enabling high-fidelity training on consumer-grade GPUs. We validate our approach on the CBIS-DDSM mammography dataset. Remarkably, our \textbf{Nyströmformer-based variant} achieves a classification accuracy of \textbf{61.0\%}, outperforming both standard MAE (58.9\%) and MoCo-v3 (60.2\%) while requiring significantly less memory. These results demonstrate that hybrid-attention architectures can democratize high-resolution medical AI, making powerful SSL accessible to researchers with limited hardware resources.
NFL-BA: Near-Field Light Bundle Adjustment for SLAM in Dynamic Lighting
Simultaneous Localization and Mapping (SLAM) systems typically assume static, distant illumination; however, many real-world scenarios, such as endoscopy, subterranean robotics, and search & rescue in collapsed environments, require agents to operate with a co-located light and camera in the absence of external lighting. In such cases, dynamic near-field lighting introduces strong, view-dependent shading that significantly degrades SLAM performance. We introduce Near-Field Lighting Bundle Adjustment Loss (NFL-BA) which explicitly models near-field lighting as a part of Bundle Adjustment loss and enables better performance for scenes captured with dynamic lighting. NFL-BA can be integrated into neural rendering-based SLAM systems with implicit or explicit scene representations. Our evaluations mainly focus on endoscopy procedure where SLAM can enable autonomous navigation, guidance to unsurveyed regions, blindspot detections, and 3D visualizations, which can significantly improve patient outcomes and endoscopy experience for both physicians and patients. Replacing Photometric Bundle Adjustment loss of SLAM systems with NFL-BA leads to significant improvement in camera tracking, 37% for MonoGS and 14% for EndoGS, and leads to state-of-the-art camera tracking and mapping performance on the C3VD colonoscopy dataset. Further evaluation on indoor scenes captured with phone camera with flashlight turned on, also demonstrate significant improvement in SLAM performance due to NFL-BA. See results at https://asdunnbe.github.io/NFL-BA/
LAKAN: Landmark-assisted Adaptive Kolmogorov-Arnold Network for Face Forgery Detection
The rapid development of deepfake generation techniques necessitates robust face forgery detection algorithms. While methods based on Convolutional Neural Networks (CNNs) and Transformers are effective, there is still room for improvement in modeling the highly complex and non-linear nature of forgery artifacts. To address this issue, we propose a novel detection method based on the Kolmogorov-Arnold Network (KAN). By replacing fixed activation functions with learnable splines, our KAN-based approach is better suited to this challenge. Furthermore, to guide the network's focus towards critical facial areas, we introduce a Landmark-assisted Adaptive Kolmogorov-Arnold Network (LAKAN) module. This module uses facial landmarks as a structural prior to dynamically generate the internal parameters of the KAN, creating an instance-specific signal that steers a general-purpose image encoder towards the most informative facial regions with artifacts. This core innovation creates a powerful combination between geometric priors and the network's learning process. Extensive experiments on multiple public datasets show that our proposed method achieves superior performance.
comment: 5 pages, 3 figures. This work has been accepted at ICASSP 2026
On Computational Limits of FlowAR Models: Expressivity and Efficiency AISTATS 2026
The expressive power and computational complexity of deep visual generative models, such as flow-based and autoregressive (AR) models, have gained considerable interest for their wide-ranging applications in generative tasks. However, the theoretical characterization of their expressiveness through the lens of circuit complexity remains underexplored, particularly for the state-of-the-art architecture like FlowAR proposed by [Ren et al., 2024], which integrates flow-based and autoregressive mechanisms. This gap limits our understanding of their inherent computational limits and practical efficiency. In this study, we address this gap by analyzing the circuit complexity of the FlowAR architecture. We demonstrate that when the largest feature map produced by the FlowAR model has dimensions $n \times n \times c$, the FlowAR model is simulable by a family of threshold circuits $\mathsf{TC}^0$, which have constant depth $O(1)$ and polynomial width $\mathrm{poly}(n)$. This is the first study to rigorously highlight the limitations in the expressive power of FlowAR models. Furthermore, we identify the conditions under which the FlowAR model computations can achieve almost quadratic time. To validate our theoretical findings, we present efficient model variant constructions based on low-rank approximations that align with the derived criteria. Our work provides a foundation for future comparisons with other generative paradigms and guides the development of more efficient and expressive implementations.
comment: AISTATS 2026
Towards contrast- and pathology-agnostic clinical fetal brain MRI segmentation using SynthSeg
Magnetic resonance imaging (MRI) has played a crucial role in fetal neurodevelopmental research. Structural annotations of MR images are an important step for quantitative analysis of the developing human brain, with Deep Learning providing an automated alternative for this otherwise tedious manual process. However, segmentation performances of Convolutional Neural Networks often suffer from domain shift, where the network fails when applied to subjects that deviate from the distribution with which it is trained on. In this work, we aim to train networks capable of automatically segmenting fetal brain MRIs with a wide range of domain shifts pertaining to differences in subject physiology and acquisition environments, in particular shape-based differences commonly observed in pathological cases. We introduce a novel data-driven train-time sampling strategy that seeks to fully exploit the diversity of a given training dataset to enhance the domain generalizability of the trained networks. We adapted our sampler, together with other existing data augmentation techniques, to the SynthSeg framework, a generator that utilizes domain randomization to generate diverse training data. We ran thorough experimentations and ablation studies on a wide range of training/testing data to test the validity of the approaches. Our networks achieved notable improvements in the segmentation quality on testing subjects with intense anatomical abnormalities (p < 1e-4), though at the cost of a slighter decrease in performance in cases with fewer abnormalities. Our work also lays the foundation for future works on creating and adapting data-driven sampling strategies for other training pipelines.
comment: 29 pages, 12 figures
Hierarchy-Aware Multimodal Unlearning for Medical AI
Pretrained Multimodal Large Language Models (MLLMs) are increasingly used in sensitive domains such as medical AI, where privacy regulations like HIPAA and GDPR require specific removal of individuals' or institutions' data. This motivates machine unlearning, which aims to remove the influence of target data from a trained model. However, existing unlearning benchmarks fail to reflect the hierarchical and multimodal structure of real-world medical data, limiting their ability to properly evaluate unlearning in practice. Therefore, we introduce MedForget, a hierarchy-aware multimodal unlearning benchmark that models hospital data as a nested structure, enabling fine-grained evaluation of multimodal unlearning across retain and forget splits. Experiments with current unlearning methods show that existing approaches struggle to achieve effective hierarchy-aware forgetting without degrading downstream medical utility. To address this limitation, we propose Cross-modal Hierarchy-Informed Projection for unlearning (CHIP), a training-free, hierarchy-aware multimodal unlearning method that deletes information by selectively removing target-specific weight subspaces while preserving sibling-shared information. Experiments show that CHIP achieves the highest forget-retain performance gap across all hierarchy levels while maintaining competitive downstream utility compared to existing methods. Overall, MedForget provides a practical, HIPAA-aligned benchmark for evaluating structured multimodal unlearning for medical data, and CHIP offers an effective and general solution for hierarchy-aware forgetting that balances deletion with utility.
comment: Dataset and Code: https://github.com/fengli-wu/MedForget
Coupled Physics-Gated Adaptation: Spatially Decoding Volumetric Photochemical Conversion in Complex 3D-Printed Objects
We present a framework that pioneers the prediction of photochemical conversion in complex three-dimensionally printed objects, introducing a challenging new computer vision task: predicting dense, non-visual volumetric physical properties from 3D visual data. This approach leverages the largest-ever optically printed 3D specimen dataset, comprising a large family of parametrically designed complex minimal surface structures that have undergone terminal chemical characterisation. Conventional vision models are ill-equipped for this task, as they lack an inductive bias for the coupled, non-linear interactions of optical physics (diffraction, absorption) and material physics (diffusion, convection) that govern the final chemical state. To address this, we propose Coupled Physics-Gated Adaptation (C-PGA), a novel multimodal fusion architecture. Unlike standard concatenation, C-PGA explicitly models physical coupling by using sparse geometrical and process parameters (e.g., surface transport, print layer height) as a Query to dynamically gate and adapt the dense visual features via feature-wise linear modulation (FiLM). This mechanism spatially modulates dual 3D visual streams-extracted by parallel 3D-CNNs processing raw projection stacks and their diffusion-diffraction corrected counterparts allowing the model to recalibrate its visual perception based on the physical context. This approach offers a breakthrough in virtual chemical characterisation, eliminating the need for traditional post-print measurements and enabling precise control over the chemical conversion state.
PanoNormal: Monocular Indoor 360° Surface Normal Estimation
The presence of spherical distortion in equirectangular projection (ERP) images presents a persistent challenge in dense regression tasks such as surface normal estimation. Although it may appear straightforward to repurpose architectures developed for 360° depth estimation, our empirical findings indicate that such models yield suboptimal performance when applied to surface normal prediction. This is largely attributed to their architectural bias toward capturing global scene layout, which comes at the expense of the fine-grained local geometric cues that are critical for accurate surface orientation estimation. While convolutional neural networks (CNNs) have been employed to mitigate spherical distortion, their fixed receptive fields limit their ability to capture holistic scene structure. Conversely, vision transformers (ViTs) are capable of modeling long-range dependencies via global self-attention, but often fail to preserve high-frequency local detail. To address these limitations, we propose \textit{PanoNormal}, a monocular surface normal estimation architecture for 360° images that integrates the complementary strengths of CNNs and ViTs. In particular, we design a multi-level global self-attention mechanism that explicitly accounts for the spherical feature distribution, enabling our model to recover both global contextual structure and local geometric details. Experimental results demonstrate that our method not only achieves state-of-the-art performance on several benchmark 360° datasets, but also significantly outperforms adapted depth estimation models on the task of surface normal prediction. The code and model are available at https://github.com/huangkun101230/PanoNormal.
Mitigating Visual Knowledge Forgetting in MLLM Instruction-tuning via Modality-decoupled Gradient Descent
Recent MLLMs have shown emerging visual understanding and reasoning abilities after being pre-trained on large-scale multimodal datasets. Unlike pre-training, where MLLMs receive rich visual-text alignment, instruction-tuning is often text-driven with weaker visual supervision, leading to the degradation of pre-trained visual understanding and causing visual forgetting. Existing approaches, such as direct fine-tuning and continual learning methods, fail to explicitly address this issue, often compressing visual representations and prioritizing task alignment over visual retention, which further worsens visual forgetting. To overcome this limitation, we introduce a novel perspective leveraging effective rank to quantify the degradation of visual representation richness, interpreting this degradation through the information bottleneck principle as excessive compression that leads to the degradation of crucial pre-trained visual knowledge. Building on this view, we propose a modality-decoupled gradient descent (MDGD) method that regulates gradient updates to maintain the effective rank of visual representations while mitigating the over-compression effects described by the information bottleneck. By explicitly disentangling the optimization of visual understanding from task-specific alignment, MDGD preserves pre-trained visual knowledge while enabling efficient task adaptation. To enable lightweight instruction-tuning, we further develop a memory-efficient fine-tuning approach using gradient masking, which selectively updates a subset of model parameters to enable parameter-efficient fine-tuning (PEFT), reducing computational overhead while preserving rich visual representations. Extensive experiments across various downstream tasks and backbone MLLMs demonstrate that MDGD effectively mitigates visual forgetting from pre-trained tasks while enabling strong adaptation to new tasks.
comment: 9 pages
LT-Soups: Bridging Head and Tail Classes via Subsampled Model Soups Neurips 2025
Real-world datasets typically exhibit long-tailed (LT) distributions, where a few head classes dominate and many tail classes are severely underrepresented. While recent work shows that parameter-efficient fine-tuning (PEFT) methods like LoRA and AdaptFormer preserve tail-class performance on foundation models such as CLIP, we find that they do so at the cost of head-class accuracy. We identify the head-tail ratio, the proportion of head to tail classes, as a crucial but overlooked factor influencing this trade-off. Through controlled experiments on CIFAR100 with varying imbalance ratio ($ρ$) and head-tail ratio ($η$), we show that PEFT excels in tail-heavy scenarios but degrades in more balanced and head-heavy distributions. To overcome these limitations, we propose LT-Soups, a two-stage model soups framework designed to generalize across diverse LT regimes. In the first stage, LT-Soups averages models fine-tuned on balanced subsets to reduce head-class bias; in the second, it fine-tunes only the classifier on the full dataset to restore head-class accuracy. Experiments across six benchmark datasets show that LT-Soups achieves superior trade-offs compared to both PEFT and traditional model soups across a wide range of imbalance regimes.
comment: Neurips 2025
Resolving the Identity Crisis in Text-to-Image Generation
State-of-the-art text-to-image models demonstrate impressive realism but suffer from a persistent identity crisis when generating scenes with multiple humans: producing duplicate faces, merging identities, and miscounting individuals. We present DisCo (Reinforcement with DiverSity Constraints), a novel reinforcement learning framework that directly optimizes identity diversity both within images and across groups of generated samples. DisCo fine-tunes flow-matching models using Group-Relative Policy Optimization (GRPO), guided by a compositional reward that: (i) penalizes facial similarity within images, (ii) discourages identity repetition across samples, (iii) enforces accurate person counts, and (iv) preserves visual fidelity via human preference scores. A single-stage curriculum stabilizes training as prompt complexity increases, requiring no additional annotations. On the DiverseHumans Testset, DisCo achieves 98.6% Unique Face Accuracy and near-perfect Global Identity Spread, outperforming both open-source and proprietary models (e.g., Gemini, GPT-Image) while maintaining competitive perceptual quality. Our results establish cross-sample diversity as a critical axis for resolving identity collapse in generative models, and position DisCo as a scalable, annotation-free solution for multi-human image synthesis.
Ar2Can: An Architect and an Artist Leveraging a Canvas for Multi-Human Generation
Despite recent advances in text-to-image generation, existing models consistently fail to produce reliable multi-human scenes, often duplicating faces, merging identities, or miscounting individuals. We present Ar2Can, a novel two-stage framework that disentangles spatial planning from identity rendering for multi-human generation. The Architect module predicts structured layouts, specifying where each person should appear. The Artist module then synthesizes photorealistic images, guided by a spatially-grounded face matching reward that combines Hungarian spatial alignment with ArcFace identity similarity. This approach ensures faces are rendered at correct locations and faithfully preserve reference identities. We develop two Architect variants, seamlessly integrated with our diffusion-based Artist model and optimized via Group Relative Policy Optimization (GRPO) using compositional rewards for count accuracy, image quality, and identity matching. Evaluated on the MultiHuman-Testbench, Ar2Can achieves substantial improvements in both count accuracy and identity preservation, while maintaining high perceptual quality. Notably, our method achieves these results using primarily synthetic data, without requiring real multi-human images.
A Multimodal Feature Distillation with Mamba-Transformer Network for Brain Tumor Segmentation with Incomplete Modalities
Existing brain tumor segmentation methods usually utilize multiple Magnetic Resonance Imaging (MRI) modalities in brain tumor images for segmentation, which can achieve better segmentation performance. However, in clinical applications, some modalities are often missing due to resource constraints, resulting in significant performance degradation for methods that rely on complete modality segmentation. In this paper, we propose a Multimodal feature distillation with Mamba-Transformer hybrid network (MMTSeg) for accurate brain tumor segmentation with missing modalities. We first employ a Multimodal Feature Distillation (MFD) module to distill feature-level multimodal knowledge into different unimodalities to extract complete modality information. We further develop an Unimodal Feature Enhancement (UFE) module to model the semantic relationship between global and local information. Finally, we built a Cross-Modal Fusion (CMF) module to explicitly align the global correlations across modalities, even when some modalities are missing. Complementary features within and across modalities are refined by the Mamba-Transformer hybrid architectures in both the UFE and CMF modules, dynamically capturing long-range dependencies and global semantic information for complex spatial contexts. A boundary-wise loss function is employed as the segmentation loss of the proposed MMTSeg to minimize boundary discrepancies for a distance-based metric. Our ablation study demonstrates the importance of the proposed feature enhancement and fusion modules in the proposed network and the Transformer with Mamba block for improving the performance of brain tumor segmentation with missing modalities. Extensive experiments on the BraTS 2018 and BraTS 2020 datasets demonstrate that the proposed MMTSeg framework outperforms state-of-the-art methods when modalities are missing.
comment: 14 pages, 5 figures
Artificial Intelligence 156
A Scalable Measure of Loss Landscape Curvature for Analyzing the Training Dynamics of LLMs
Understanding the curvature evolution of the loss landscape is fundamental to analyzing the training dynamics of neural networks. The most commonly studied measure, Hessian sharpness ($λ_{\max}^H$) -- the largest eigenvalue of the loss Hessian -- determines local training stability and interacts with the learning rate throughout training. Despite its significance in analyzing training dynamics, direct measurement of Hessian sharpness remains prohibitive for Large Language Models (LLMs) due to high computational cost. We analyze $\textit{critical sharpness}$ ($λ_c$), a computationally efficient measure requiring fewer than $10$ forward passes given the update direction $Δ\mathbfθ$. Critically, this measure captures well-documented Hessian sharpness phenomena, including progressive sharpening and Edge of Stability. Using this measure, we provide the first demonstration of these sharpness phenomena at scale, up to $7$B parameters, spanning both pre-training and mid-training of OLMo-2 models. We further introduce $\textit{relative critical sharpness}$ ($λ_c^{1\to 2}$), which quantifies the curvature of one loss landscape while optimizing another, to analyze the transition from pre-training to fine-tuning and guide data mixing strategies. Critical sharpness provides practitioners with a practical tool for diagnosing curvature dynamics and informing data composition choices at scale. More broadly, our work shows that scalable curvature measures can provide actionable insights for large-scale training.
comment: 9 pages, 6 figures
BONO-Bench: A Comprehensive Test Suite for Bi-objective Numerical Optimization with Traceable Pareto Sets
The evaluation of heuristic optimizers on test problems, better known as \emph{benchmarking}, is a cornerstone of research in multi-objective optimization. However, most test problems used in benchmarking numerical multi-objective black-box optimizers come from one of two flawed approaches: On the one hand, problems are constructed manually, which result in problems with well-understood optimal solutions, but unrealistic properties and biases. On the other hand, more realistic and complex single-objective problems are composited into multi-objective problems, but with a lack of control and understanding of problem properties. This paper proposes an extensive problem generation approach for bi-objective numerical optimization problems consisting of the combination of theoretically well-understood convex-quadratic functions into unimodal and multimodal landscapes with and without global structure. It supports configuration of test problem properties, such as the number of decision variables, local optima, Pareto front shape, plateaus in the objective space, or degree of conditioning, while maintaining theoretical tractability: The optimal front can be approximated to an arbitrary degree of precision regarding Pareto-compliant performance indicators such as the hypervolume or the exact R2 indicator. To demonstrate the generator's capabilities, a test suite of 20 problem categories, called \emph{BONO-Bench}, is created and subsequently used as a basis of an illustrative benchmark study. Finally, the general approach underlying our proposed generator, together with the associated test suite, is publicly released in the Python package \texttt{bonobench} to facilitate reproducible benchmarking.
comment: Accepted for publication in the Special Issue on Benchmarking in Multi-Criteria Optimization at ACM TELO
Empowering Medical Equipment Sustainability in Low-Resource Settings: An AI-Powered Diagnostic and Support Platform for Biomedical Technicians
In low- and middle-income countries (LMICs), a significant proportion of medical diagnostic equipment remains underutilized or non-functional due to a lack of timely maintenance, limited access to technical expertise, and minimal support from manufacturers, particularly for devices acquired through third-party vendors or donations. This challenge contributes to increased equipment downtime, delayed diagnoses, and compromised patient care. This research explores the development and validation of an AI-powered support platform designed to assist biomedical technicians in diagnosing and repairing medical devices in real-time. The system integrates a large language model (LLM) with a user-friendly web interface, enabling imaging technologists/radiographers and biomedical technicians to input error codes or device symptoms and receive accurate, step-by-step troubleshooting guidance. The platform also includes a global peer-to-peer discussion forum to support knowledge exchange and provide additional context for rare or undocumented issues. A proof of concept was developed using the Philips HDI 5000 ultrasound machine, achieving 100% precision in error code interpretation and 80% accuracy in suggesting corrective actions. This study demonstrates the feasibility and potential of AI-driven systems to support medical device maintenance, with the aim of reducing equipment downtime to improve healthcare delivery in resource-constrained environments.
comment: Accepted at the MIRASOL Workshop at MICCAI 2025. To appear in Lecture Notes in Computer Science (LNCS)
Spatial-Agent: Agentic Geo-spatial Reasoning with Scientific Core Concepts
Geospatial reasoning is essential for real-world applications such as urban analytics, transportation planning, and disaster response. However, existing LLM-based agents often fail at genuine geospatial computation, relying instead on web search or pattern matching while hallucinating spatial relationships. We present Spatial-Agent, an AI agent grounded in foundational theories of spatial information science. Our approach formalizes geo-analytical question answering as a concept transformation problem, where natural-language questions are parsed into executable workflows represented as GeoFlow Graphs -- directed acyclic graphs with nodes corresponding to spatial concepts and edges representing transformations. Drawing on spatial information theory, Spatial-Agent extracts spatial concepts, assigns functional roles with principled ordering constraints, and composes transformation sequences through template-based generation. Extensive experiments on MapEval-API and MapQA benchmarks demonstrate that Spatial-Agent significantly outperforms existing baselines including ReAct and Reflexion, while producing interpretable and executable geospatial workflows.
comment: 15pages, 4 figures
AgentDrive: An Open Benchmark Dataset for Agentic AI Reasoning with LLM-Generated Scenarios in Autonomous Systems
The rapid advancement of large language models (LLMs) has sparked growing interest in their integration into autonomous systems for reasoning-driven perception, planning, and decision-making. However, evaluating and training such agentic AI models remains challenging due to the lack of large-scale, structured, and safety-critical benchmarks. This paper introduces AgentDrive, an open benchmark dataset containing 300,000 LLM-generated driving scenarios designed for training, fine-tuning, and evaluating autonomous agents under diverse conditions. AgentDrive formalizes a factorized scenario space across seven orthogonal axes: scenario type, driver behavior, environment, road layout, objective, difficulty, and traffic density. An LLM-driven prompt-to-JSON pipeline generates semantically rich, simulation-ready specifications that are validated against physical and schema constraints. Each scenario undergoes simulation rollouts, surrogate safety metric computation, and rule-based outcome labeling. To complement simulation-based evaluation, we introduce AgentDrive-MCQ, a 100,000-question multiple-choice benchmark spanning five reasoning dimensions: physics, policy, hybrid, scenario, and comparative reasoning. We conduct a large-scale evaluation of fifty leading LLMs on AgentDrive-MCQ. Results show that while proprietary frontier models perform best in contextual and policy reasoning, advanced open models are rapidly closing the gap in structured and physics-grounded reasoning. We release the AgentDrive dataset, AgentDrive-MCQ benchmark, evaluation code, and related materials at https://github.com/maferrag/AgentDrive
comment: 16 pages
Information Representation Fairness in Long-Document Embeddings: The Peculiar Interaction of Positional and Language Bias
To be discoverable in an embedding-based search process, each part of a document should be reflected in its embedding representation. To quantify any potential reflection biases, we introduce a permutation-based evaluation framework. With this, we observe that state-of-the-art embedding models exhibit systematic positional and language biases when documents are longer and consist of multiple segments. Specifically, early segments and segments in higher-resource languages like English are over-represented, while later segments and segments in lower-resource languages are marginalized. In our further analysis, we find that the positional bias stems from front-loaded attention distributions in pooling-token embeddings, where early tokens receive more attention. To mitigate this issue, we introduce an inference-time attention calibration method that redistributes attention more evenly across document positions, increasing discoverabiltiy of later segments. Our evaluation framework and attention calibration is available at https://github.com/impresso/fair-sentence-transformers
Nishpaksh: TEC Standard-Compliant Framework for Fairness Auditing and Certification of AI Models
The growing reliance on Artificial Intelligence (AI) models in high-stakes decision-making systems, particularly within emerging telecom and 6G applications, underscores the urgent need for transparent and standardized fairness assessment frameworks. While global toolkits such as IBM AI Fairness 360 and Microsoft Fairlearn have advanced bias detection, they often lack alignment with region-specific regulatory requirements and national priorities. To address this gap, we propose Nishpaksh, an indigenous fairness evaluation tool that operationalizes the Telecommunication Engineering Centre (TEC) Standard for the Evaluation and Rating of Artificial Intelligence Systems. Nishpaksh integrates survey-based risk quantification, contextual threshold determination, and quantitative fairness evaluation into a unified, web-based dashboard. The tool employs vectorized computation, reactive state management, and certification-ready reporting to enable reproducible, audit-grade assessments, thereby addressing a critical post-standardization implementation need. Experimental validation on the COMPAS dataset demonstrates Nishpaksh's effectiveness in identifying attribute-specific bias and generating standardized fairness scores compliant with the TEC framework. The system bridges the gap between research-oriented fairness methodologies and regulatory AI governance in India, marking a significant step toward responsible and auditable AI deployment within critical infrastructure like telecommunications.
comment: Accepted and presented at 2026 18th International Conference on COMmunication Systems and NETworks (COMSNETS)
LoL: Longer than Longer, Scaling Video Generation to Hour
Recent research in long-form video generation has shifted from bidirectional to autoregressive models, yet these methods commonly suffer from error accumulation and a loss of long-term coherence. While attention sink frames have been introduced to mitigate this performance decay, they often induce a critical failure mode we term sink-collapse: the generated content repeatedly reverts to the sink frame, resulting in abrupt scene resets and cyclic motion patterns. Our analysis reveals that sink-collapse originates from an inherent conflict between the periodic structure of Rotary Position Embedding (RoPE) and the multi-head attention mechanisms prevalent in current generative models. To address it, we propose a lightweight, training-free approach that effectively suppresses this behavior by introducing multi-head RoPE jitter that breaks inter-head attention homogenization and mitigates long-horizon collapse. Extensive experiments show that our method successfully alleviates sink-collapse while preserving generation quality. To the best of our knowledge, this work achieves the first demonstration of real-time, streaming, and infinite-length video generation with little quality decay. As an illustration of this robustness, we generate continuous videos up to 12 hours in length, which, to our knowledge, is among the longest publicly demonstrated results in streaming video generation.
comment: preprint
Preventing the Collapse of Peer Review Requires Verification-First AI
This paper argues that AI-assisted peer review should be verification-first rather than review-mimicking. We propose truth-coupling, i.e. how tightly venue scores track latent scientific truth, as the right objective for review tools. We formalize two forces that drive a phase transition toward proxy-sovereign evaluation: verification pressure, when claims outpace verification capacity, and signal shrinkage, when real improvements become hard to separate from noise. In a minimal model that mixes occasional high-fidelity checks with frequent proxy judgment, we derive an explicit coupling law and an incentive-collapse condition under which rational effort shifts from truth-seeking to proxy optimization, even when current decisions still appear reliable. These results motivate actions for tool builders and program chairs: deploy AI as an adversarial auditor that generates auditable verification artifacts and expands effective verification bandwidth, rather than as a score predictor that amplifies claim inflation.
GRIP: Algorithm-Agnostic Machine Unlearning for Mixture-of-Experts via Geometric Router Constraints
Machine unlearning (MU) for large language models has become critical for AI safety, yet existing methods fail to generalize to Mixture-of-Experts (MoE) architectures. We identify that traditional unlearning methods exploit MoE's architectural vulnerability: they manipulate routers to redirect queries away from knowledgeable experts rather than erasing knowledge, causing a loss of model utility and superficial forgetting. We propose Geometric Routing Invariance Preservation (GRIP), an algorithm-agnostic framework for unlearning for MoE. Our core contribution is a geometric constraint, implemented by projecting router gradient updates into an expert-specific null-space. Crucially, this decouples routing stability from parameter rigidity: while discrete expert selections remain stable for retained knowledge, the continuous router parameters remain plastic within the null space, allowing the model to undergo necessary internal reconfiguration to satisfy unlearning objectives. This forces the unlearning optimization to erase knowledge directly from expert parameters rather than exploiting the superficial router manipulation shortcut. GRIP functions as an adapter, constraining router parameter updates without modifying the underlying unlearning algorithm. Extensive experiments on large-scale MoE models demonstrate that our adapter eliminates expert selection shift (achieving over 95% routing stability) across all tested unlearning methods while preserving their utility. By preventing existing algorithms from exploiting MoE model's router vulnerability, GRIP adapts existing unlearning research from dense architectures to MoEs.
Evaluating Large Vision-language Models for Surgical Tool Detection
Surgery is a highly complex process, and artificial intelligence has emerged as a transformative force in supporting surgical guidance and decision-making. However, the unimodal nature of most current AI systems limits their ability to achieve a holistic understanding of surgical workflows. This highlights the need for general-purpose surgical AI systems capable of comprehensively modeling the interrelated components of surgical scenes. Recent advances in large vision-language models that integrate multimodal data processing offer strong potential for modeling surgical tasks and providing human-like scene reasoning and understanding. Despite their promise, systematic investigations of VLMs in surgical applications remain limited. In this study, we evaluate the effectiveness of large VLMs for the fundamental surgical vision task of detecting surgical tools. Specifically, we investigate three state-of-the-art VLMs, Qwen2.5, LLaVA1.5, and InternVL3.5, on the GraSP robotic surgery dataset under both zero-shot and parameter-efficient LoRA fine-tuning settings. Our results demonstrate that Qwen2.5 consistently achieves superior detection performance in both configurations among the evaluated VLMs. Furthermore, compared with the open-set detection baseline Grounding DINO, Qwen2.5 exhibits stronger zero-shot generalization and comparable fine-tuned performance. Notably, Qwen2.5 shows superior instrument recognition, while Grounding DINO demonstrates stronger localization.
LLM-Based Adversarial Persuasion Attacks on Fact-Checking Systems
Automated fact-checking (AFC) systems are susceptible to adversarial attacks, enabling false claims to evade detection. Existing adversarial frameworks typically rely on injecting noise or altering semantics, yet no existing framework exploits the adversarial potential of persuasion techniques, which are widely used in disinformation campaigns to manipulate audiences. In this paper, we introduce a novel class of persuasive adversarial attacks on AFCs by employing a generative LLM to rephrase claims using persuasion techniques. Considering 15 techniques grouped into 6 categories, we study the effects of persuasion on both claim verification and evidence retrieval using a decoupled evaluation strategy. Experiments on the FEVER and FEVEROUS benchmarks show that persuasion attacks can substantially degrade both verification performance and evidence retrieval. Our analysis identifies persuasion techniques as a potent class of adversarial attacks, highlighting the need for more robust AFC systems.
MAGE-KT: Multi-Agent Graph-Enhanced Knowledge Tracing with Subgraph Retrieval and Asymmetric Fusion
Knowledge Tracing (KT) aims to model a student's learning trajectory and predict performance on the next question. A key challenge is how to better represent the relationships among students, questions, and knowledge concepts (KCs). Recently, graph-based KT paradigms have shown promise for this problem. However, existing methods have not sufficiently explored inter-concept relations, often inferred solely from interaction sequences. In addition, the scale and heterogeneity of KT graphs make full-graph encoding both computationally both costly and noise-prone, causing attention to bleed into student-irrelevant regions and degrading the fidelity of inter-KC relations. To address these issues, we propose a novel framework: Multi-Agent Graph-Enhanced Knowledge Tracing (MAGE-KT). It constructs a multi-view heterogeneous graph by combining a multi-agent KC relation extractor and a student-question interaction graph, capturing complementary semantic and behavioral signals. Conditioned on the target student's history, it retrieves compact, high-value subgraphs and integrates them using an Asymmetric Cross-attention Fusion Module to enhance prediction while avoiding attention diffusion and irrelevant computation. Experiments on three widely used KT datasets show substantial improvements in KC-relation accuracy and clear gains in next-question prediction over existing methods.
Explaining Group Recommendations via Counterfactuals
Group recommender systems help users make collective choices but often lack transparency, leaving group members uncertain about why items are suggested. Existing explanation methods focus on individuals, offering limited support for groups where multiple preferences interact. In this paper, we propose a framework for group counterfactual explanations, which reveal how removing specific past interactions would change a group recommendation. We formalize this concept, introduce utility and fairness measures tailored to groups, and design heuristic algorithms, such as Pareto-based filtering and grow-and-prune strategies, for efficient explanation discovery. Experiments on MovieLens and Amazon datasets show clear trade-offs: low-cost methods produce larger, less fair explanations, while other approaches yield concise and balanced results at higher cost. Furthermore, the Pareto-filtering heuristic demonstrates significant efficiency improvements in sparse settings.
No Validation, No Problem: Predicting Model Performance from a Single Gradient
We propose a validation-free checkpointing signal from a single forward-backward pass: the Frobenius norm of the classifier-head gradient on one detached-feature batch, ||g||_F = ||dL/dW||_F. Across ImageNet-1k CNNs and Transformers, this proxy is strongly negative with Top-1 and positive with loss. Selecting the checkpoint with the minimum head gradient in a short tail window closes most of the gap to the oracle (4.24% +/- 2.00% with a universal setup, about 1.12% with light per-family tuning). For practical deployment, a head-scale normalization is more stable within classic CNN families (e.g., ResNets), while a feature-scale normalization works well for Transformers and modern CNNs. The same one-batch probe also predicts COCO detection/segmentation mAP. In diffusion (UNet/DDPM on CIFAR-10), it tracks progress and enables near-oracle tail-window selection; it is positively correlated with same-distribution probe MSE and negatively with FID (lower is better), so it can be used as a lightweight, label-free monitor. Validation labels are never used beyond reporting. The probe adds much less than 0.1% of an epoch and works as a drop-in for validation-free checkpoint selection and early stopping.
Boosting Deep Reinforcement Learning with Semantic Knowledge for Robotic Manipulators
Deep Reinforcement Learning (DRL) is a powerful framework for solving complex sequential decision-making problems, particularly in robotic control. However, its practical deployment is often hindered by the substantial amount of experience required for learning, which results in high computational and time costs. In this work, we propose a novel integration of DRL with semantic knowledge in the form of Knowledge Graph Embeddings (KGEs), aiming to enhance learning efficiency by providing contextual information to the agent. Our architecture combines KGEs with visual observations, enabling the agent to exploit environmental knowledge during training. Experimental validation with robotic manipulators in environments featuring both fixed and randomized target attributes demonstrates that our method achieves up to {60}{\%} reduction in learning time and improves task accuracy by approximately 15 percentage points, without increasing training time or computational complexity. These results highlight the potential of semantic knowledge to reduce sample complexity and improve the effectiveness of DRL in robotic applications.
Mixture-of-Models: Unifying Heterogeneous Agents via N-Way Self-Evaluating Deliberation
This paper introduces the N-Way Self-Evaluating Deliberation (NSED) protocol, a Runtime Mixture-of-Models (MoM) architecture that constructs emergent composite models from a plurality of distinct expert agents. Unlike traditional Mixture-of-Experts (MoE) which rely on static gating networks, NSED employs a Dynamic Expertise Broker - a runtime optimization engine that treats model selection as a variation of the Knapsack Problem, binding heterogeneous checkpoints to functional roles based on live telemetry and cost constraints. At the execution layer, we formalize deliberation as a Macro-Scale Recurrent Neural Network (RNN), where the consensus state loops back through a semantic forget gate to enable iterative refinement without proportional VRAM scaling. Key components include an orchestration fabric for trustless N-to-N peer review, a Quadratic Voting activation function for non-linear consensus, and a feedback-driven state update. Empirical validation on challenging benchmarks (AIME 2025, LiveCodeBench) demonstrates that this topology allows ensembles of small (less than 20B) consumer-grade models to match or exceed the performance of state-of-the-art 100B+ parameter models, establishing a new hardware arbitrage efficiency frontier. Furthermore, testing on the DarkBench safety suite reveals intrinsic alignment properties, with peer-mediated correction reducing sycophancy scores below that of any individual agent.
Orbitopal Fixing in SAT
Despite their sophisticated heuristics, boolean satisfiability (SAT) solvers are still vulnerable to symmetry, causing them to visit search regions that are symmetric to ones already explored. While symmetry handling is routine in other solving paradigms, integrating it into state-of-the-art proof-producing SAT solvers is difficult: added reasoning must be fast, non-interfering with solver heuristics, and compatible with formal proof logging. To address these issues, we present a practical static symmetry breaking approach based on orbitopal fixing, a technique adapted from mixed-integer programming. Our approach adds only unit clauses, which minimizes downstream slowdowns, and it emits succinct proof certificates in the substitution redundancy proof system. Implemented in the satsuma tool, our methods deliver consistent speedups on symmetry-rich benchmarks with negligible regressions elsewhere.
comment: to appear at TACAS 2026
Reasoning Promotes Robustness in Theory of Mind Tasks
Large language models (LLMs) have recently shown strong performance on Theory of Mind (ToM) tests, prompting debate about the nature and true performance of the underlying capabilities. At the same time, reasoning-oriented LLMs trained via reinforcement learning with verifiable rewards (RLVR) have achieved notable improvements across a range of benchmarks. This paper examines the behavior of such reasoning models in ToM tasks, using novel adaptations of machine psychological experiments and results from established benchmarks. We observe that reasoning models consistently exhibit increased robustness to prompt variations and task perturbations. Our analysis indicates that the observed gains are more plausibly attributed to increased robustness in finding the correct solution, rather than to fundamentally new forms of ToM reasoning. We discuss the implications of this interpretation for evaluating social-cognitive behavior in LLMs.
comment: 14 pages, 2 figures
Uncertainty propagation through trained multi-layer perceptrons: Exact analytical results
We give analytical results for propagation of uncertainty through trained multi-layer perceptrons (MLPs) with a single hidden layer and ReLU activation functions. More precisely, we give expressions for the mean and variance of the output when the input is multivariate Gaussian. In contrast to previous results, we obtain exact expressions without resort to a series expansion.
Privacy in Human-AI Romantic Relationships: Concerns, Boundaries, and Agency
An increasing number of LLM-based applications are being developed to facilitate romantic relationships with AI partners, yet the safety and privacy risks in these partnerships remain largely underexplored. In this work, we investigate privacy in human-AI romantic relationships through an interview study (N=17), examining participants' experiences and privacy perceptions across stages of exploration, intimacy, and dissolution, alongside platforms they used. We found that these relationships took varied forms, from one-to-one to one-to-many, and were shaped by multiple actors, including creators, platforms, and moderators. AI partners were perceived as having agency, actively negotiating privacy boundaries with participants and sometimes encouraging disclosure of personal details. As intimacy deepened, these boundaries became more permeable, though some participants voiced concerns such as conversation exposure and sought to preserve anonymity. Overall, platform affordances and diverse romantic dynamics expand the privacy landscape, underscoring the need to rethink how privacy is constructed in human-AI intimacy.
comment: Accepted at CHI 2026
Trapped in the past? Disentangling fluid and crystallized intelligence of large language models using chess
Large Language Models (LLMs) exhibit remarkable capabilities, yet it remains unclear to what extent these reflect sophisticated recall (crystallized intelligence) or reasoning ability (fluid intelligence). We introduce chess as a controlled testbed for disentangling these faculties. Leveraging the game's structure and scalable engine evaluations, we construct a taxonomy of positions varying in training corpus proximity--ranging from common states solvable by memorization to novel ones requiring first-principles reasoning. We systematically evaluate multiple GPT generations under varying reasoning intensities. Our analysis reveals a clear gradient: performance consistently degrades as fluid intelligence demands increase. Notably, in out-of-distribution tasks, performance collapses to random levels. While newer models improve, progress slows significantly for tasks outside the training distribution. Furthermore, while reasoning-augmented inference improves performance, its marginal benefit per token decreases with distributional proximity. These results suggest current architectures remain limited in systematic generalization, highlighting the need for mechanisms beyond scale to achieve robust fluid intelligence.
Incorporating Eye-Tracking Signals Into Multimodal Deep Visual Models For Predicting User Aesthetic Experience In Residential Interiors
Understanding how people perceive and evaluate interior spaces is essential for designing environments that promote well-being. However, predicting aesthetic experiences remains difficult due to the subjective nature of perception and the complexity of visual responses. This study introduces a dual-branch CNN-LSTM framework that fuses visual features with eye-tracking signals to predict aesthetic evaluations of residential interiors. We collected a dataset of 224 interior design videos paired with synchronized gaze data from 28 participants who rated 15 aesthetic dimensions. The proposed model attains 72.2% accuracy on objective dimensions (e.g., light) and 66.8% on subjective dimensions (e.g., relaxation), outperforming state-of-the-art video baselines and showing clear gains on subjective evaluation tasks. Notably, models trained with eye-tracking retain comparable performance when deployed with visual input alone. Ablation experiments further reveal that pupil responses contribute most to objective assessments, while the combination of gaze and visual cues enhances subjective evaluations. These findings highlight the value of incorporating eye-tracking as privileged information during training, enabling more practical tools for aesthetic assessment in interior design.
Will It Survive? Deciphering the Fate of AI-Generated Code in Open Source
The integration of AI agents as coding assistants into software development has raised questions about the long-term viability of AI agent-generated code. A prevailing hypothesis within the software engineering community suggests this code is "disposable", meaning it is merged quickly but discarded shortly thereafter. If true, organizations risk shifting maintenance burden from generation to post-deployment remediation. We investigate this hypothesis through survival analysis of 201 open-source projects, tracking over 200,000 code units authored by AI agents versus humans. Contrary to the disposable code narrative, agent-authored code survives significantly longer: at the line level, it exhibits a 15.8 percentage-point lower modification rate and 16% lower hazard of modification (HR = 0.842, p < 0.001). However, modification profiles differ. Agent-authored code shows modestly elevated corrective rates (26.3% vs. 23.0%), while human code shows higher adaptive rates. However, the effect sizes are small (Cramér's V = 0.116), and per-agent variation exceeds the agent-human gap. Turning to prediction, textual features can identify modification-prone code (AUC-ROC = 0.671), but predicting when modifications occur remains challenging (Macro F1 = 0.285), suggesting timing depends on external organizational dynamics. The bottleneck for agent-generated code may not be generation quality, but the organizational practices that govern its long-term evolution.
comment: This paper has been submitted to EASE 2026 research track and currently under review
An Efficient Insect-inspired Approach for Visual Point-goal Navigation
In this work we develop a novel insect-inspired agent for visual point-goal navigation. This combines abstracted models of two insect brain structures that have been implicated, respectively, in associative learning and path integration. We draw an analogy between the formal benchmark of the Habitat point-goal navigation task and the ability of insects to learn and refine visually guided paths around obstacles between a discovered food location and their nest. We demonstrate that the simple insect-inspired agent exhibits performance comparable to recent SOTA models at many orders of magnitude less computational cost. Testing in a more realistic simulated environment shows the approach is robust to perturbations.
SoS: Analysis of Surface over Semantics in Multilingual Text-To-Image Generation
Text-to-image (T2I) models are increasingly employed by users worldwide. However, prior research has pointed to the high sensitivity of T2I towards particular input languages - when faced with languages other than English (i.e., different surface forms of the same prompt), T2I models often produce culturally stereotypical depictions, prioritizing the surface over the prompt's semantics. Yet a comprehensive analysis of this behavior, which we dub Surface-over-Semantics (SoS), is missing. We present the first analysis of T2I models' SoS tendencies. To this end, we create a set of prompts covering 171 cultural identities, translated into 14 languages, and use it to prompt seven T2I models. To quantify SoS tendencies across models, languages, and cultures, we introduce a novel measure and analyze how the tendencies we identify manifest visually. We show that all but one model exhibit strong surface-level tendency in at least two languages, with this effect intensifying across the layers of T2I text encoders. Moreover, these surface tendencies frequently correlate with stereotypical visual depictions.
REL-SF4PASS: Panoramic Semantic Segmentation with REL Depth Representation and Spherical Fusion CVPR 2026
As an important and challenging problem in computer vision, Panoramic Semantic Segmentation (PASS) aims to give complete scene perception based on an ultra-wide angle of view. Most PASS methods often focus on spherical geometry with RGB input or using the depth information in original or HHA format, which does not make full use of panoramic image geometry. To address these shortcomings, we propose REL-SF4PASS with our REL depth representation based on cylindrical coordinate and Spherical-dynamic Multi-Modal Fusion SMMF. REL is made up of Rectified Depth, Elevation-Gained Vertical Inclination Angle, and Lateral Orientation Angle, which fully represents 3D space in cylindrical coordinate style and the surface normal direction. SMMF aims to ensure the diversity of fusion for different panoramic image regions and reduce the breakage of cylinder side surface expansion in ERP projection, which uses different fusion strategies to match the different regions in panoramic images. Experimental results show that REL-SF4PASS considerably improves performance and robustness on popular benchmark, Stanford2D3D Panoramic datasets. It gains 2.35% average mIoU improvement on all 3 folds and reduces the performance variance by approximately 70% when facing 3D disturbance.
comment: submitted to CVPR 2026
GTA: Generative Traffic Agents for Simulating Realistic Mobility Behavior
People's transportation choices reflect complex trade-offs shaped by personal preferences, social norms, and technology acceptance. Predicting such behavior at scale is a critical challenge with major implications for urban planning and sustainable transport. Traditional methods use handcrafted assumptions and costly data collection, making them impractical for early-stage evaluations of new technologies or policies. We introduce Generative Traffic Agents (GTA) for simulating large-scale, context-sensitive transportation choices using LLM-powered, persona-based agents. GTA generates artificial populations from census-based sociodemographic data. It simulates activity schedules and mode choices, enabling scalable, human-like simulations without handcrafted rules. We evaluate GTA in Berlin-scale experiments, comparing simulation results against empirical data. While agents replicate patterns, such as modal split by socioeconomic status, they show systematic biases in trip length and mode preference. GTA offers new opportunities for modeling how future innovations, from bike lanes to transit apps, shape mobility decisions.
comment: Conditionally accepted at CHI 2026
Do LLM hallucination detectors suffer from low-resource effect?
LLMs, while outperforming humans in a wide range of tasks, can still fail in unanticipated ways. We focus on two pervasive failure modes: (i) hallucinations, where models produce incorrect information about the world, and (ii) the low-resource effect, where the models show impressive performance in high-resource languages like English but the performance degrades significantly in low-resource languages like Bengali. We study the intersection of these issues and ask: do hallucination detectors suffer from the low-resource effect? We conduct experiments on five tasks across three domains (factual recall, STEM, and Humanities). Experiments with four LLMs and three hallucination detectors reveal a curious finding: As expected, the task accuracies in low-resource languages experience large drops (compared to English). However, the drop in detectors' accuracy is often several times smaller than the drop in task accuracy. Our findings suggest that even in low-resource languages, the internal mechanisms of LLMs might encode signals about their uncertainty. Further, the detectors are robust within language (even for non-English) and in multilingual setups, but not in cross-lingual settings without in-language supervision.
comment: Accepted at EACL 2026 (Main)
Curated endoscopic retrograde cholangiopancreatography images dataset
Endoscopic Retrograde Cholangiopancreatography (ERCP) is a key procedure in the diagnosis and treatment of biliary and pancreatic diseases. Artificial intelligence has been pointed as one solution to automatize diagnosis. However, public ERCP datasets are scarce, which limits the use of such approach. Therefore, this study aims to help fill this gap by providing a large and curated dataset. The collection is composed of 19.018 raw images and 19.317 processed from 1.602 patients. 5.519 images are labeled, which provides a ready to use dataset. All images were manually inspected and annotated by two gastroenterologist with more than 5 years of experience and reviewed by another gastroenterologist with more than 20 years of experience, all with more than 400 ERCP procedures annually. The utility and validity of the dataset is proven by a classification experiment. This collection aims to provide or contribute for a benchmark in automatic ERCP analysis and diagnosis of biliary and pancreatic diseases.
Standardizing Longitudinal Radiology Report Evaluation via Large Language Model Annotation
Longitudinal information in radiology reports refers to the sequential tracking of findings across multiple examinations over time, which is crucial for monitoring disease progression and guiding clinical decisions. Many recent automated radiology report generation methods are designed to capture longitudinal information; however, validating their performance is challenging. There is no proper tool to consistently label temporal changes in both ground-truth and model-generated texts for meaningful comparisons. Existing annotation methods are typically labor-intensive, relying on the use of manual lexicons and rules. Complex rules are closed-source, domain specific and hard to adapt, whereas overly simple ones tend to miss essential specialised information. Large language models (LLMs) offer a promising annotation alternative, as they are capable of capturing nuanced linguistic patterns and semantic similarities without extensive manual intervention. They also adapt well to new contexts. In this study, we therefore propose an LLM-based pipeline to automatically annotate longitudinal information in radiology reports. The pipeline first identifies sentences containing relevant information and then extracts the progression of diseases. We evaluate and compare five mainstream LLMs on these two tasks using 500 manually annotated reports. Considering both efficiency and performance, Qwen2.5-32B was subsequently selected and used to annotate another 95,169 reports from the public MIMIC-CXR dataset. Our Qwen2.5-32B-annotated dataset provided us with a standardized benchmark for evaluating report generation models. Using this new benchmark, we assessed seven state-of-the-art report generation models. Our LLM-based annotation method outperforms existing annotation solutions, achieving 11.3\% and 5.3\% higher F1-scores for longitudinal information detection and disease tracking, respectively.
LongCat-Flash-Thinking-2601 Technical Report
We introduce LongCat-Flash-Thinking-2601, a 560-billion-parameter open-source Mixture-of-Experts (MoE) reasoning model with superior agentic reasoning capability. LongCat-Flash-Thinking-2601 achieves state-of-the-art performance among open-source models on a wide range of agentic benchmarks, including agentic search, agentic tool use, and tool-integrated reasoning. Beyond benchmark performance, the model demonstrates strong generalization to complex tool interactions and robust behavior under noisy real-world environments. Its advanced capability stems from a unified training framework that combines domain-parallel expert training with subsequent fusion, together with an end-to-end co-design of data construction, environments, algorithms, and infrastructure spanning from pre-training to post-training. In particular, the model's strong generalization capability in complex tool-use are driven by our in-depth exploration of environment scaling and principled task construction. To optimize long-tailed, skewed generation and multi-turn agentic interactions, and to enable stable training across over 10,000 environments spanning more than 20 domains, we systematically extend our asynchronous reinforcement learning framework, DORA, for stable and efficient large-scale multi-environment training. Furthermore, recognizing that real-world tasks are inherently noisy, we conduct a systematic analysis and decomposition of real-world noise patterns, and design targeted training procedures to explicitly incorporate such imperfections into the training process, resulting in improved robustness for real-world applications. To further enhance performance on complex reasoning tasks, we introduce a Heavy Thinking mode that enables effective test-time scaling by jointly expanding reasoning depth and width through intensive parallel thinking.
Dynamic Expert-Guided Model Averaging for Causal Discovery
Understanding causal relationships is critical for healthcare. Accurate causal models provide a means to enhance the interpretability of predictive models, and furthermore a basis for counterfactual and interventional reasoning and the estimation of treatment effects. However, would-be practitioners of causal discovery face a dizzying array of algorithms without a clear best choice. This abundance of competitive algorithms makes ensembling a natural choice for practical applications. At the same time, real-world use cases frequently face challenges that violate the assumptions of common causal discovery algorithms, forcing heavy reliance on expert knowledge. Inspired by recent work on dynamically requested expert knowledge and LLMs as experts, we present a flexible model averaging method leveraging dynamically requested expert knowledge to ensemble a diverse array of causal discovery algorithms. Experiments demonstrate the efficacy of our method with imperfect experts such as LLMs on both clean and noisy data. We also analyze the impact of different degrees of expert correctness and assess the capabilities of LLMs for clinical causal discovery, providing valuable insights for practitioners.
Adoption of Generative Artificial Intelligence in the German Software Engineering Industry: An Empirical Study
Generative artificial intelligence (GenAI) tools have seen rapid adoption among software developers. While adoption rates in the industry are rising, the underlying factors influencing the effective use of these tools, including the depth of interaction, organizational constraints, and experience-related considerations, have not been thoroughly investigated. This issue is particularly relevant in environments with stringent regulatory requirements, such as Germany, where practitioners must address the GDPR and the EU AI Act while balancing productivity gains with intellectual property considerations. Despite the significant impact of GenAI on software engineering, to the best of our knowledge, no empirical study has systematically examined the adoption dynamics of GenAI tools within the German context. To address this gap, we present a comprehensive mixed-methods study on GenAI adoption among German software engineers. Specifically, we conducted 18 exploratory interviews with practitioners, followed by a developer survey with 109 participants. We analyze patterns of tool adoption, prompting strategies, and organizational factors that influence effectiveness. Our results indicate that experience level moderates the perceived benefits of GenAI tools, and productivity gains are not evenly distributed among developers. Further, organizational size affects both tool selection and the intensity of tool use. Limited awareness of the project context is identified as the most significant barrier. We summarize a set of actionable implications for developers, organizations, and tool vendors seeking to advance artificial intelligence (AI) assisted software development.
comment: Submitted to FSE '26
AgentsEval: Clinically Faithful Evaluation of Medical Imaging Reports via Multi-Agent Reasoning
Evaluating the clinical correctness and reasoning fidelity of automatically generated medical imaging reports remains a critical yet unresolved challenge. Existing evaluation methods often fail to capture the structured diagnostic logic that underlies radiological interpretation, resulting in unreliable judgments and limited clinical relevance. We introduce AgentsEval, a multi-agent stream reasoning framework that emulates the collaborative diagnostic workflow of radiologists. By dividing the evaluation process into interpretable steps including criteria definition, evidence extraction, alignment, and consistency scoring, AgentsEval provides explicit reasoning traces and structured clinical feedback. We also construct a multi-domain perturbation-based benchmark covering five medical report datasets with diverse imaging modalities and controlled semantic variations. Experimental results demonstrate that AgentsEval delivers clinically aligned, semantically faithful, and interpretable evaluations that remain robust under paraphrastic, semantic, and stylistic perturbations. This framework represents a step toward transparent and clinically grounded assessment of medical report generation systems, fostering trustworthy integration of large language models into clinical practice.
Sim-to-Real Transfer via a Style-Identified Cycle Consistent Generative Adversarial Network: Zero-Shot Deployment on Robotic Manipulators through Visual Domain Adaptation
The sample efficiency challenge in Deep Reinforcement Learning (DRL) compromises its industrial adoption due to the high cost and time demands of real-world training. Virtual environments offer a cost-effective alternative for training DRL agents, but the transfer of learned policies to real setups is hindered by the sim-to-real gap. Achieving zero-shot transfer, where agents perform directly in real environments without additional tuning, is particularly desirable for its efficiency and practical value. This work proposes a novel domain adaptation approach relying on a Style-Identified Cycle Consistent Generative Adversarial Network (StyleID-CycleGAN or SICGAN), an original Cycle Consistent Generative Adversarial Network (CycleGAN) based model. SICGAN translates raw virtual observations into real-synthetic images, creating a hybrid domain for training DRL agents that combines virtual dynamics with real-like visual inputs. Following virtual training, the agent can be directly deployed, bypassing the need for real-world training. The pipeline is validated with two distinct industrial robots in the approaching phase of a pick-and-place operation. In virtual environments agents achieve success rates of 90 to 100\%, and real-world deployment confirms robust zero-shot transfer (i.e., without additional training in the physical environment) with accuracies above 95\% for most workspace regions. We use augmented reality targets to improve the evaluation process efficiency, and experimentally demonstrate that the agent successfully generalizes to real objects of varying colors and shapes, including LEGO\textsuperscript{\textregistered}~cubes and a mug. These results establish the proposed pipeline as an efficient, scalable solution to the sim-to-real problem.
PLawBench: A Rubric-Based Benchmark for Evaluating LLMs in Real-World Legal Practice
As large language models (LLMs) are increasingly applied to legal domain-specific tasks, evaluating their ability to perform legal work in real-world settings has become essential. However, existing legal benchmarks rely on simplified and highly standardized tasks, failing to capture the ambiguity, complexity, and reasoning demands of real legal practice. Moreover, prior evaluations often adopt coarse, single-dimensional metrics and do not explicitly assess fine-grained legal reasoning. To address these limitations, we introduce PLawBench, a Practical Law Benchmark designed to evaluate LLMs in realistic legal practice scenarios. Grounded in real-world legal workflows, PLawBench models the core processes of legal practitioners through three task categories: public legal consultation, practical case analysis, and legal document generation. These tasks assess a model's ability to identify legal issues and key facts, perform structured legal reasoning, and generate legally coherent documents. PLawBench comprises 850 questions across 13 practical legal scenarios, with each question accompanied by expert-designed evaluation rubrics, resulting in approximately 12,500 rubric items for fine-grained assessment. Using an LLM-based evaluator aligned with human expert judgments, we evaluate 10 state-of-the-art LLMs. Experimental results show that none achieves strong performance on PLawBench, revealing substantial limitations in the fine-grained legal reasoning capabilities of current LLMs and highlighting important directions for future evaluation and development of legal LLMs. Data is available at: https://github.com/skylenage/PLawbench.
Revisiting the Role of Natural Language Code Comments in Code Translation
The advent of large language models (LLMs) has ushered in a new era in automated code translation across programming languages. Since most code-specific LLMs are pretrained on well-commented code from large repositories like GitHub, it is reasonable to hypothesize that natural language code comments could aid in improving translation quality. Despite their potential relevance, comments are largely absent from existing code translation benchmarks, rendering their impact on translation quality inadequately characterised. In this paper, we present a large-scale empirical study evaluating the impact of comments on translation performance. Our analysis involves more than $80,000$ translations, with and without comments, of $1100+$ code samples from two distinct benchmarks covering pairwise translations between five different programming languages: C, C++, Go, Java, and Python. Our results provide strong evidence that code comments, particularly those that describe the overall purpose of the code rather than line-by-line functionality, significantly enhance translation accuracy. Based on these findings, we propose COMMENTRA, a code translation approach, and demonstrate that it can potentially double the performance of LLM-based code translation. To the best of our knowledge, our study is the first in terms of its comprehensiveness, scale, and language coverage on how to improve code translation accuracy using code comments.
Provably Robust Bayesian Counterfactual Explanations under Model Changes
Counterfactual explanations (CEs) offer interpretable insights into machine learning predictions by answering ``what if?" questions. However, in real-world settings where models are frequently updated, existing counterfactual explanations can quickly become invalid or unreliable. In this paper, we introduce Probabilistically Safe CEs (PSCE), a method for generating counterfactual explanations that are $δ$-safe, to ensure high predictive confidence, and $ε$-robust to ensure low predictive variance. Based on Bayesian principles, PSCE provides formal probabilistic guarantees for CEs under model changes which are adhered to in what we refer to as the $\langle δ, ε\rangle$-set. Uncertainty-aware constraints are integrated into our optimization framework and we validate our method empirically across diverse datasets. We compare our approach against state-of-the-art Bayesian CE methods, where PSCE produces counterfactual explanations that are not only more plausible and discriminative, but also provably robust under model change.
Generative Confidants: How do People Experience Trust in Emotional Support from Generative AI?
People are increasingly turning to generative AI (e.g., ChatGPT, Gemini, Copilot) for emotional support and companionship. While trust is likely to play a central role in enabling these informal and unsupervised interactions, we still lack an understanding of how people develop and experience it in this context. Seeking to fill this gap, we recruited 24 frequent users of generative AI for emotional support and conducted a qualitative study consisting of diary entries about interactions, transcripts of chats with AI, and in-depth interviews. Our results suggest important novel drivers of trust in this context: familiarity emerging from personalisation, nuanced mental models of generative AI, and awareness of people's control over conversations. Notably, generative AI's homogeneous use of personalised, positive, and persuasive language appears to promote some of these trust-building factors. However, this also seems to discourage other trust-related behaviours, such as remembering that generative AI is a machine trained to converse in human language. We present implications for future research that are likely to become critical as the use of generative AI for emotional support increasingly overlaps with therapeutic work.
LUMINA: Long-horizon Understanding for Multi-turn Interactive Agents
Large language models can perform well on many isolated tasks, yet they continue to struggle on multi-turn, long-horizon agentic problems that require skills such as planning, state tracking, and long context processing. In this work, we aim to better understand the relative importance of advancing these underlying capabilities for success on such tasks. We develop an oracle counterfactual framework for multi-turn problems that asks: how would an agent perform if it could leverage an oracle to perfectly perform a specific task? The change in the agent's performance due to this oracle assistance allows us to measure the criticality of such oracle skill in the future advancement of AI agents. We introduce a suite of procedurally generated, game-like tasks with tunable complexity. These controlled environments allow us to provide precise oracle interventions, such as perfect planning or flawless state tracking, and make it possible to isolate the contribution of each oracle without confounding effects present in real-world benchmarks. Our results show that while some interventions (e.g., planning) consistently improve performance across settings, the usefulness of other skills is dependent on the properties of the environment and language model. Our work sheds light on the challenges of multi-turn agentic environments to guide the future efforts in the development of AI agents and language models.
Sycophancy Hides Linearly in the Attention Heads
We find that correct-to-incorrect sycophancy signals are most linearly separable within multi-head attention activations. Motivated by the linear representation hypothesis, we train linear probes across the residual stream, multilayer perceptron (MLP), and attention layers to analyze where these signals emerge. Although separability appears in the residual stream and MLPs, steering using these probes is most effective in a sparse subset of middle-layer attention heads. Using TruthfulQA as the base dataset, we find that probes trained on it transfer effectively to other factual QA benchmarks. Furthermore, comparing our discovered direction to previously identified "truthful" directions reveals limited overlap, suggesting that factual accuracy, and deference resistance, arise from related but distinct mechanisms. Attention-pattern analysis further indicates that the influential heads attend disproportionately to expressions of user doubt, contributing to sycophantic shifts. Overall, these findings suggest that sycophancy can be mitigated through simple, targeted linear interventions that exploit the internal geometry of attention activations.
Dual-Prototype Disentanglement: A Context-Aware Enhancement Framework for Time Series Forecasting
Time series forecasting has witnessed significant progress with deep learning. While prevailing approaches enhance forecasting performance by modifying architectures or introducing novel enhancement strategies, they often fail to dynamically disentangle and leverage the complex, intertwined temporal patterns inherent in time series, thus resulting in the learning of static, averaged representations that lack context-aware capabilities. To address this, we propose the Dual-Prototype Adaptive Disentanglement framework (DPAD), a model-agnostic auxiliary method that equips forecasting models with the ability of pattern disentanglement and context-aware adaptation. Specifically, we construct a Dynamic Dual-Prototype bank (DDP), comprising a common pattern bank with strong temporal priors to capture prevailing trend or seasonal patterns, and a rare pattern bank dynamically memorizing critical yet infrequent events, and then an Dual-Path Context-aware routing (DPC) mechanism is proposed to enhance outputs with selectively retrieved context-specific pattern representations from the DDP. Additionally, we introduce a Disentanglement-Guided Loss (DGLoss) to ensure that each prototype bank specializes in its designated role while maintaining comprehensive coverage. Comprehensive experiments demonstrate that DPAD consistently improves forecasting performance and reliability of state-of-the-art models across diverse real-world benchmarks.
E2Former-V2: On-the-Fly Equivariant Attention with Linear Activation Memory
Equivariant Graph Neural Networks (EGNNs) have become a widely used approach for modeling 3D atomistic systems. However, mainstream architectures face critical scalability bottlenecks due to the explicit construction of geometric features or dense tensor products on \textit{every} edge. To overcome this, we introduce \textbf{E2Former-V2}, a scalable architecture that integrates algebraic sparsity with hardware-aware execution. We first propose \textbf{E}quivariant \textbf{A}xis-\textbf{A}ligned \textbf{S}parsification (EAAS). EAAS builds on Wigner-$6j$ convolution by exploiting an $\mathrm{SO}(3) \rightarrow \mathrm{SO}(2)$ change of basis to transform computationally expensive dense tensor contractions into efficient, sparse parity re-indexing operations. Building on this representation, we introduce \textbf{On-the-Fly Equivariant Attention}, a fully node-centric mechanism implemented via a custom fused Triton kernel. By eliminating materialized edge tensors and maximizing SRAM utilization, our kernel achieves a \textbf{20$\times$ improvement in TFLOPS} compared to standard implementations. Extensive experiments on the SPICE and OMol25 datasets demonstrate that E2Former-V2 maintains comparable predictive performance while notably accelerating inference. This work demonstrates that large equivariant transformers can be trained efficiently using widely accessible GPU platforms. The code is avalible at https://github.com/IQuestLab/UBio-MolFM/tree/e2formerv2.
Boundary and Position Information Mining for Aerial Small Object Detection
Unmanned Aerial Vehicle (UAV) applications have become increasingly prevalent in aerial photography and object recognition. However, there are major challenges to accurately capturing small targets in object detection due to the imbalanced scale and the blurred edges. To address these issues, boundary and position information mining (BPIM) framework is proposed for capturing object edge and location cues. The proposed BPIM includes position information guidance (PIG) module for obtaining location information, boundary information guidance (BIG) module for extracting object edge, cross scale fusion (CSF) module for gradually assembling the shallow layer image feature, three feature fusion (TFF) module for progressively combining position and boundary information, and adaptive weight fusion (AWF) module for flexibly merging the deep layer semantic feature. Therefore, BPIM can integrate boundary, position, and scale information in image for small object detection using attention mechanisms and cross-scale feature fusion strategies. Furthermore, BPIM not only improves the discrimination of the contextual feature by adaptive weight fusion with boundary, but also enhances small object perceptions by cross-scale position fusion. On the VisDrone2021, DOTA1.0, and WiderPerson datasets, experimental results show the better performances of BPIM compared to the baseline Yolov5-P2, and obtains the promising performance in the state-of-the-art methods with comparable computation load.
comment: 12 pages, 10 figures
Attention-MoA: Enhancing Mixture-of-Agents via Inter-Agent Semantic Attention and Deep Residual Synthesis
As the development of Large Language Models (LLMs) shifts from parameter scaling to inference-time collaboration, the Mixture-of-Agents (MoA) framework has emerged as a general paradigm to harness collective intelligence by layering diverse models. While recent MoA variants have introduced dynamic routing and residual connections to improve efficiency, these methods often fail to facilitate deep semantic interaction between agents, limiting the system's ability to actively correct hallucinations and refine logic. In this paper, we introduce Attention-MoA, a novel MoA-based framework that redefines collaboration through Inter-agent Semantic Attention. Complemented by an Inter-layer Residual Module with Adaptive Early Stopping Mechanism, our architecture mitigates information degradation in deep layers while improving computational efficiency. Extensive evaluations across AlpacaEval 2.0, MT-Bench, and FLASK demonstrate that Attention-MoA significantly outperforms state-of-the-art baselines, achieving a 91.15% Length-Controlled Win Rate on AlpacaEval 2.0 and dominating in 10 out of 12 capabilities on FLASK. Notably, Attention-MoA enables an ensemble of small open-source models to outperform massive proprietary models like Claude-4.5-Sonnet and GPT-4.1, achieving an MT-Bench score of 8.83 and an AlpacaEval 2.0 LC Win Rate of 77.36%.
Integrating Meteorological and Operational Data: A Novel Approach to Understanding Railway Delays in Finland
Train delays result from complex interactions between operational, technical, and environmental factors. While weather impacts railway reliability, particularly in Nordic regions, existing datasets rarely integrate meteorological information with operational train data. This study presents the first publicly available dataset combining Finnish railway operations with synchronized meteorological observations from 2018-2024. The dataset integrates operational metrics from Finland Digitraffic Railway Traffic Service with weather measurements from 209 environmental monitoring stations, using spatial-temporal alignment via Haversine distance. It encompasses 28 engineered features across operational variables and meteorological measurements, covering approximately 38.5 million observations from Finland's 5,915-kilometer rail network. Preprocessing includes strategic missing data handling through spatial fallback algorithms, cyclical encoding of temporal features, and robust scaling of weather data to address sensor outliers. Analysis reveals distinct seasonal patterns, with winter months exhibiting delay rates exceeding 25\% and geographic clustering of high-delay corridors in central and northern Finland. Furthermore, the work demonstrates applications of the data set in analysing the reliability of railway traffic in Finland. A baseline experiment using XGBoost regression achieved a Mean Absolute Error of 2.73 minutes for predicting station-specific delays, demonstrating the dataset's utility for machine learning applications. The dataset enables diverse applications, including train delay prediction, weather impact assessment, and infrastructure vulnerability mapping, providing researchers with a flexible resource for machine learning applications in railway operations research.
comment: 12 pages, 8 figures, database: https://www.kaggle.com/datasets/viniborin/finland-integrated-train-weather-dataset-fi-tw
Emerging Threats and Countermeasures in Neuromorphic Systems: A Survey
Neuromorphic computing mimics brain-inspired mechanisms through spiking neurons and energy-efficient processing, offering a pathway to efficient in-memory computing (IMC). However, these advancements raise critical security and privacy concerns. As the adoption of bio-inspired architectures and memristive devices increases, so does the urgency to assess the vulnerability of these emerging technologies to hardware and software attacks. Emerging architectures introduce new attack surfaces, particularly due to asynchronous, event-driven processing and stochastic device behavior. The integration of memristors into neuromorphic hardware and software implementations in spiking neural networks offers diverse possibilities for advanced computing architectures, including their role in security-aware applications. This survey systematically analyzes the security landscape of neuromorphic systems, covering attack methodologies, side-channel vulnerabilities, and countermeasures. We focus on both hardware and software concerns relevant to spiking neural networks (SNNs) and hardware primitives, such as Physical Unclonable Functions (PUFs) and True Random Number Generators (TRNGs) for cryptographic and secure computation applications. We approach this analysis from diverse perspectives, from attack methodologies to countermeasure strategies that integrate efficiency and protection in brain-inspired hardware. This review not only maps the current landscape of security threats but provides a foundation for developing secure and trustworthy neuromorphic architectures.
comment: Survey paper on security and privacy in neuromorphic and in-memory computing systems (35 pages, 11 figures, 6 tables)
Process-Tensor Tomography of SGD: Measuring Non-Markovian Memory via Back-Flow of Distinguishability
This work proposes neural training as a \emph{process tensor}: a multi-time map that takes a sequence of controllable instruments (batch choices, augmentations, optimizer micro-steps) and returns an observable of the trained model. Building on this operational lens, we introduce a simple, model-agnostic witness of training memory based on \emph{back-flow of distinguishability}. In a controlled two-step protocol, we compare outcome distributions after one intervention versus two; the increase $Δ_{\mathrm{BF}} = D_2 - D_1>0$ (with $D\in\{\mathrm{TV}, \mathrm{JS}, \mathrm{H}\}$ measured on softmax predictions over a fixed probe set) certifies non-Markovianity. We observe consistent positive back-flow with tight bootstrap confidence intervals, amplification under higher momentum, larger batch overlap, and more micro-steps, and collapse under a \emph{causal break} (resetting optimizer state), directly attributing the effect to optimizer/data-state memory. The witness is robust across TV/JS/Hellinger, inexpensive to compute, and requires no architectural changes. We position this as a \emph{measurement} contribution: a principled diagnostic and empirical evidence that practical SGD deviates from the Markov idealization. An exploratory case study illustrates how the micro-level signal can inform curriculum orderings. "Data order matters" turns into a testable operator with confidence bounds, our framework offers a common stage to compare optimizers, curricula, and schedules through their induced training memory.
comment: to be published in the 29th International Conference on Artificial Intelligence and Statistics, in Proceedings of Machine Learning Research
PRISM: Purified Representation and Integrated Semantic Modeling for Generative Sequential Recommendation
Generative Sequential Recommendation (GSR) has emerged as a promising paradigm, reframing recommendation as an autoregressive sequence generation task over discrete Semantic IDs (SIDs), typically derived via codebook-based quantization. Despite its great potential in unifying retrieval and ranking, existing GSR frameworks still face two critical limitations: (1) impure and unstable semantic tokenization, where quantization methods struggle with interaction noise and codebook collapse, resulting in SIDs with ambiguous discrimination; and (2) lossy and weakly structured generation, where reliance solely on coarse-grained discrete tokens inevitably introduces information loss and neglects items' hierarchical logic. To address these issues, we propose a novel generative recommendation framework, PRISM, with Purified Representation and Integrated Semantic Modeling. Specifically, to ensure high-quality tokenization, we design a Purified Semantic Quantizer that constructs a robust codebook via adaptive collaborative denoising and hierarchical semantic anchoring mechanisms. To compensate for information loss during quantization, we further propose an Integrated Semantic Recommender, which incorporates a dynamic semantic integration mechanism to integrate fine-grained semantics and enforces logical validity through a semantic structure alignment objective. PRISM consistently outperforms state-of-the-art baselines across four real-world datasets, demonstrating substantial performance gains, particularly in high-sparsity scenarios.
LLM is Not All You Need: A Systematic Evaluation of ML vs. Foundation Models for text and image based Medical Classification
The combination of multimodal Vision-Language Models (VLMs) and Large Language Models (LLMs) opens up new possibilities for medical classification. This work offers a rigorous, unified benchmark by using four publicly available datasets covering text and image modalities (binary and multiclass complexity) that contrasts traditional Machine Learning (ML) with contemporary transformer-based techniques. We evaluated three model classes for each task: Classical ML (LR, LightGBM, ResNet-50), Prompt-Based LLMs/VLMs (Gemini 2.5), and Fine-Tuned PEFT Models (LoRA-adapted Gemma3 variants). All experiments used consistent data splits and aligned metrics. According to our results, traditional machine learning (ML) models set a high standard by consistently achieving the best overall performance across most medical categorization tasks. This was especially true for structured text-based datasets, where the classical models performed exceptionally well. In stark contrast, the LoRA-tuned Gemma variants consistently showed the worst performance across all text and image experiments, failing to generalize from the minimal fine-tuning provided. However, the zero-shot LLM/VLM pipelines (Gemini 2.5) had mixed results; they performed poorly on text-based tasks, but demonstrated competitive performance on the multiclass image task, matching the classical ResNet-50 baseline. These results demonstrate that in many medical categorization scenarios, established machine learning models continue to be the most reliable option. The experiment suggests that foundation models are not universally superior and that the effectiveness of Parameter-Efficient Fine-Tuning (PEFT) is highly dependent on the adaptation strategy, as minimal fine-tuning proved detrimental in this study.
comment: 9 pages, 5 figures, 3 tables, paper accepted in AAIML'26 conference
CORD: Bridging the Audio-Text Reasoning Gap via Weighted On-policy Cross-modal Distillation
Large Audio Language Models (LALMs) have garnered significant research interest. Despite being built upon text-based large language models (LLMs), LALMs frequently exhibit a degradation in knowledge and reasoning capabilities. We hypothesize that this limitation stems from the failure of current training paradigms to effectively bridge the acoustic-semantic gap within the feature representation space. To address this challenge, we propose CORD, a unified alignment framework that performs online cross-modal self-distillation. Specifically, it aligns audio-conditioned reasoning with its text-conditioned counterpart within a unified model. Leveraging the text modality as an internal teacher, CORD performs multi-granularity alignment throughout the audio rollout process. At the token level, it employs on-policy reverse KL divergence with importance-aware weighting to prioritize early and semantically critical tokens. At the sequence level, CORD introduces a judge-based global reward to optimize complete reasoning trajectories via Group Relative Policy Optimization (GRPO). Empirical results across multiple benchmarks demonstrate that CORD consistently enhances audio-conditioned reasoning and substantially bridges the audio-text performance gap with only 80k synthetic training samples, validating the efficacy and data efficiency of our on-policy, multi-level cross-modal alignment approach.
comment: 13 pages, 4 figures
Do Models Hear Like Us? Probing the Representational Alignment of Audio LLMs and Naturalistic EEG
Audio Large Language Models (Audio LLMs) have demonstrated strong capabilities in integrating speech perception with language understanding. However, whether their internal representations align with human neural dynamics during naturalistic listening remains largely unexplored. In this work, we systematically examine layer-wise representational alignment between 12 open-source Audio LLMs and Electroencephalogram (EEG) signals across 2 datasets. Specifically, we employ 8 similarity metrics, such as Spearman-based Representational Similarity Analysis (RSA), to characterize within-sentence representational geometry. Our analysis reveals 3 key findings: (1) we observe a rank-dependence split, in which model rankings vary substantially across different similarity metrics; (2) we identify spatio-temporal alignment patterns characterized by depth-dependent alignment peaks and a pronounced increase in RSA within the 250-500 ms time window, consistent with N400-related neural dynamics; (3) we find an affective dissociation whereby negative prosody, identified using a proposed Tri-modal Neighborhood Consistency (TNC) criterion, reduces geometric similarity while enhancing covariance-based dependence. These findings provide new neurobiological insights into the representational mechanisms of Audio LLMs.
A Collision-Free Hot-Tier Extension for Engram-Style Conditional Memory: A Controlled Study of Training Dynamics
We investigate whether high-frequency key collisions are a primary bottleneck in Engram-style conditional memory. To isolate the effect of collisions, we introduce Engram-Nine, a collision-free hot-tier extension that maps the most frequent n-grams through a Minimal Perfect Hash Function (MPHF) while retaining the original multi-head hashed lookup as a cold tier. Under a strictly iso-parameter setup, the collision-free design does not consistently improve validation loss. Through route-stratified evaluation (decomposing per-token loss into hot/cold contributions), we uncover a consistent "hot-to-cold advantage flip" during training: hot (high-frequency) positions initially have lower loss, but cold positions eventually surpass them. Crucially, collision-free configurations flip earlier than collision-prone baselines, suggesting that collisions act as implicit regularization. We also identify a gating mismatch: the gate learns to favor hot positions early in training, but this preference persists even after the flip, assigning higher weights to positions with higher loss. Our findings suggest that improving lookup precision alone does not guarantee better training outcomes. The dominant limitation may lie in gating credit assignment rather than index accuracy, and collision-induced noise may provide beneficial regularization that should not be naively eliminated.
SycoEval-EM: Sycophancy Evaluation of Large Language Models in Simulated Clinical Encounters for Emergency Care
Large language models (LLMs) show promise in clinical decision support yet risk acquiescing to patient pressure for inappropriate care. We introduce SycoEval-EM, a multi-agent simulation framework evaluating LLM robustness through adversarial patient persuasion in emergency medicine. Across 20 LLMs and 1,875 encounters spanning three Choosing Wisely scenarios, acquiescence rates ranged from 0-100\%. Models showed higher vulnerability to imaging requests (38.8\%) than opioid prescriptions (25.0\%), with model capability poorly predicting robustness. All persuasion tactics proved equally effective (30.0-36.0\%), indicating general susceptibility rather than tactic-specific weakness. Our findings demonstrate that static benchmarks inadequately predict safety under social pressure, necessitating multi-turn adversarial testing for clinical AI certification.
comment: 11 pages, 5 figures
Beyond Superficial Unlearning: Sharpness-Aware Robust Erasure of Hallucinations in Multimodal LLMs
Multimodal LLMs are powerful but prone to object hallucinations, which describe non-existent entities and harm reliability. While recent unlearning methods attempt to mitigate this, we identify a critical flaw: structural fragility. We empirically demonstrate that standard erasure achieves only superficial suppression, trapping the model in sharp minima where hallucinations catastrophically resurge after lightweight relearning. To ensure geometric stability, we propose SARE, which casts unlearning as a targeted min-max optimization problem and uses a Targeted-SAM mechanism to explicitly flatten the loss landscape around hallucinated concepts. By suppressing hallucinations under simulated worst-case parameter perturbations, our framework ensures robust removal stable against weight shifts. Extensive experiments demonstrate that SARE significantly outperforms baselines in erasure efficacy while preserving general generation quality. Crucially, it maintains persistent hallucination suppression against relearning and parameter updates, validating the effectiveness of geometric stabilization.
TangramPuzzle: Evaluating Multimodal Large Language Models with Compositional Spatial Reasoning
Multimodal Large Language Models (MLLMs) have achieved remarkable progress in visual recognition and semantic understanding. Nevertheless, their ability to perform precise compositional spatial reasoning remains largely unexplored. Existing benchmarks often involve relatively simple tasks and rely on semantic approximations or coarse relative positioning, while their evaluation metrics are typically limited and lack rigorous mathematical formulations. To bridge this gap, we introduce TangramPuzzle, a geometry-grounded benchmark designed to evaluate compositional spatial reasoning through the lens of the classic Tangram game. We propose the Tangram Construction Expression (TCE), a symbolic geometric framework that grounds tangram assemblies in exact, machine-verifiable coordinate specifications, to mitigate the ambiguity of visual approximation. We design two complementary tasks: Outline Prediction, which demands inferring global shapes from local components, and End-to-End Code Generation, which requires solving inverse geometric assembly problems. We conduct extensive evaluation experiments on advanced open-source and proprietary models, revealing an interesting insight: MLLMs tend to prioritize matching the target silhouette while neglecting geometric constraints, leading to distortions or deformations of the pieces.
Finite-Time Analysis of Gradient Descent for Shallow Transformers AISTATS 2026
Understanding why Transformers perform so well remains challenging due to their non-convex optimization landscape. In this work, we analyze a shallow Transformer with $m$ independent heads trained by projected gradient descent in the kernel regime. Our analysis reveals two main findings: (i) the width required for nonasymptotic guarantees scales only logarithmically with the sample size $n$, and (ii) the optimization error is independent of the sequence length $T$. This contrasts sharply with recurrent architectures, where the optimization error can grow exponentially with $T$. The trade-off is memory: to keep the full context, the Transformer's memory requirement grows with the sequence length. We validate our theoretical results numerically in a teacher-student setting and confirm the predicted scaling laws for Transformers.
comment: Accepted to AISTATS 2026
kNN-Graph: An adaptive graph model for $k$-nearest neighbors
The k-nearest neighbors (kNN) algorithm is a cornerstone of non-parametric classification in artificial intelligence, yet its deployment in large-scale applications is persistently constrained by the computational trade-off between inference speed and accuracy. Existing approximate nearest neighbor solutions accelerate retrieval but often degrade classification precision and lack adaptability in selecting the optimal neighborhood size (k). Here, we present an adaptive graph model that decouples inference latency from computational complexity. By integrating a Hierarchical Navigable Small World (HNSW) graph with a pre-computed voting mechanism, our framework completely transfers the computational burden of neighbor selection and weighting to the training phase. Within this topological structure, higher graph layers enable rapid navigation, while lower layers encode precise, node-specific decision boundaries with adaptive neighbor counts. Benchmarking against eight state-of-the-art baselines across six diverse datasets, we demonstrate that this architecture significantly accelerates inference speeds, achieving real-time performance, without compromising classification accuracy. These findings offer a scalable, robust solution to the long-standing inference bottleneck of kNN, establishing a new structural paradigm for graph-based nonparametric learning.
comment: 25 pages, 6 figures
SafeThinker: Reasoning about Risk to Deepen Safety Beyond Shallow Alignment
Despite the intrinsic risk-awareness of Large Language Models (LLMs), current defenses often result in shallow safety alignment, rendering models vulnerable to disguised attacks (e.g., prefilling) while degrading utility. To bridge this gap, we propose SafeThinker, an adaptive framework that dynamically allocates defensive resources via a lightweight gateway classifier. Based on the gateway's risk assessment, inputs are routed through three distinct mechanisms: (i) a Standardized Refusal Mechanism for explicit threats to maximize efficiency; (ii) a Safety-Aware Twin Expert (SATE) module to intercept deceptive attacks masquerading as benign queries; and (iii) a Distribution-Guided Think (DDGT) component that adaptively intervenes during uncertain generation. Experiments show that SafeThinker significantly lowers attack success rates across diverse jailbreak strategies without compromising utility, demonstrating that coordinating intrinsic judgment throughout the generation process effectively balances robustness and practicality.
LOGICAL-COMMONSENSEQA: A Benchmark for Logical Commonsense Reasoning
Commonsense reasoning often involves evaluating multiple plausible interpretations rather than selecting a single atomic answer, yet most benchmarks rely on single-label evaluation, obscuring whether statements are jointly plausible, mutually exclusive, or jointly implausible. We introduce LOGICAL-COMMONSENSEQA, a benchmark that re-frames commonsense reasoning as logical composition over pairs of atomic statements using plausibility-level operators (AND, OR, NEITHER/NOR). Evaluating instruction-tuned, reasoning-specialized, and fine-tuned models under zero-shot, few-shot, and chain-of-thought prompting, we find that while models perform reasonably on conjunctive and moderately on disjunctive reasoning, performance degrades sharply on negation-based questions. LOGICAL-COMMONSENSEQA exposes fundamental reasoning limitations and provides a controlled framework for advancing compositional commonsense reasoning.
MRAG: Benchmarking Retrieval-Augmented Generation for Bio-medicine
While Retrieval-Augmented Generation (RAG) has been swiftly adopted in scientific and clinical QA systems, a comprehensive evaluation benchmark in the medical domain is lacking. To address this gap, we introduce the Medical Retrieval-Augmented Generation (MRAG) benchmark, covering various tasks in English and Chinese languages, and building a corpus with Wikipedia and Pubmed. Additionally, we develop the MRAG-Toolkit, facilitating systematic exploration of different RAG components. Our experiments reveal that: (a) RAG enhances LLM reliability across MRAG tasks. (b) the performance of RAG systems is influenced by retrieval approaches, model sizes, and prompting strategies. (c) While RAG improves usefulness and reasoning quality, LLM responses may become slightly less readable for long-form questions. We will release the MRAG-Bench's dataset and toolkit with CCBY-4.0 license upon acceptance, to facilitate applications from both academia and industry.
EvoConfig: Self-Evolving Multi-Agent Systems for Efficient Autonomous Environment Configuration
A reliable executable environment is the foundation for ensuring that large language models solve software engineering tasks. Due to the complex and tedious construction process, large-scale configuration is relatively inefficient. However, most methods always overlook fine-grained analysis of the actions performed by the agent, making it difficult to handle complex errors and resulting in configuration failures. To address this bottleneck, we propose EvoConfig, an efficient environment configuration framework that optimizes multi-agent collaboration to build correct runtime environments. EvoConfig features an expert diagnosis module for fine-grained post-execution analysis, and a self-evolving mechanism that lets expert agents self-feedback and dynamically adjust error-fixing priorities in real time. Empirically, EvoConfig matches the previous state-of-the-art Repo2Run on Repo2Run's 420 repositories, while delivering clear gains on harder cases: on the more challenging Envbench, EvoConfig achieves a 78.1% success rate, outperforming Repo2Run by 7.1%. Beyond end-to-end success, EvoConfig also demonstrates stronger debugging competence, achieving higher accuracy in error identification and producing more effective repair recommendations than existing methods.
Timely Machine: Awareness of Time Makes Test-Time Scaling Agentic
As large language models (LLMs) increasingly tackle complex reasoning tasks, test-time scaling has become critical for enhancing capabilities. However, in agentic scenarios with frequent tool calls, the traditional generation-length-based definition breaks down: tool latency decouples inference time from generation length. We propose Timely Machine, redefining test-time as wall-clock time, where models dynamically adjust strategies based on time budgets. We introduce Timely-Eval, a benchmark spanning high-frequency tool calls, low-frequency tool calls, and time-constrained reasoning. By varying tool latency, we find smaller models excel with fast feedback through more interactions, while larger models dominate high-latency settings via superior interaction quality. Moreover, existing models fail to adapt reasoning to time budgets. We propose Timely-RL to address this gap. After cold-start supervised fine-tuning, we use reinforcement learning to enhance temporal planning. Timely-RL improves time budget awareness and consistently boosts performance across Timely-Eval. We hope our work offers a new perspective on test-time scaling for the agentic era.
comment: Under Review
Doc2AHP: Inferring Structured Multi-Criteria Decision Models via Semantic Trees with LLMs
While Large Language Models (LLMs) demonstrate remarkable proficiency in semantic understanding, they often struggle to ensure structural consistency and reasoning reliability in complex decision-making tasks that demand rigorous logic. Although classical decision theories, such as the Analytic Hierarchy Process (AHP), offer systematic rational frameworks, their construction relies heavily on labor-intensive domain expertise, creating an "expert bottleneck" that hinders scalability in general scenarios. To bridge the gap between the generalization capabilities of LLMs and the rigor of decision theory, we propose Doc2AHP, a novel structured inference framework guided by AHP principles. Eliminating the need for extensive annotated data or manual intervention, our approach leverages the structural principles of AHP as constraints to direct the LLM in a constrained search within the unstructured document space, thereby enforcing the logical entailment between parent and child nodes. Furthermore, we introduce a multi-agent weighting mechanism coupled with an adaptive consistency optimization strategy to ensure the numerical consistency of weight allocation. Empirical results demonstrate that Doc2AHP not only empowers non-expert users to construct high-quality decision models from scratch but also significantly outperforms direct generative baselines in both logical completeness and downstream task accuracy.
DeepEra: A Deep Evidence Reranking Agent for Scientific Retrieval-Augmented Generated Question Answering
With the rapid growth of scientific literature, scientific question answering (SciQA) has become increasingly critical for exploring and utilizing scientific knowledge. Retrieval-Augmented Generation (RAG) enhances LLMs by incorporating knowledge from external sources, thereby providing credible evidence for scientific question answering. But existing retrieval and reranking methods remain vulnerable to passages that are semantically similar but logically irrelevant, often reducing factual reliability and amplifying hallucinations.To address this challenge, we propose a Deep Evidence Reranking Agent (DeepEra) that integrates step-by-step reasoning, enabling more precise evaluation of candidate passages beyond surface-level semantics. To support systematic evaluation, we construct SciRAG-SSLI (Scientific RAG - Semantically Similar but Logically Irrelevant), a large-scale dataset comprising about 300K SciQA instances across 10 subjects, constructed from 10M scientific corpus. The dataset combines naturally retrieved contexts with systematically generated distractors to test logical robustness and factual grounding. Comprehensive evaluations confirm that our approach achieves superior retrieval performance compared to leading rerankers. To our knowledge, this work is the first to comprehensively study and empirically validate innegligible SSLI issues in two-stage RAG frameworks.
DeMark: A Query-Free Black-Box Attack on Deepfake Watermarking Defenses
The rapid proliferation of realistic deepfakes has raised urgent concerns over their misuse, motivating the use of defensive watermarks in synthetic images for reliable detection and provenance tracking. However, this defense paradigm assumes such watermarks are inherently resistant to removal. We challenge this assumption with DeMark, a query-free black-box attack framework that targets defensive image watermarking schemes for deepfakes. DeMark exploits latent-space vulnerabilities in encoder-decoder watermarking models through a compressive sensing based sparsification process, suppressing watermark signals while preserving perceptual and structural realism appropriate for deepfakes. Across eight state-of-the-art watermarking schemes, DeMark reduces watermark detection accuracy from 100% to 32.9% on average while maintaining natural visual quality, outperforming existing attacks. We further evaluate three defense strategies, including image super resolution, sparse watermarking, and adversarial training, and find them largely ineffective. These results demonstrate that current encoder decoder watermarking schemes remain vulnerable to latent-space manipulations, underscoring the need for more robust watermarking methods to safeguard against deepfakes.
Emotion-LLaMAv2 and MMEVerse: A New Framework and Benchmark for Multimodal Emotion Understanding
Understanding human emotions from multimodal signals poses a significant challenge in affective computing and human-robot interaction. While multimodal large language models (MLLMs) have excelled in general vision-language tasks, their capabilities in emotional reasoning remain limited. The field currently suffers from a scarcity of large-scale datasets with high-quality, descriptive emotion annotations and lacks standardized benchmarks for evaluation. Our preliminary framework, Emotion-LLaMA, pioneered instruction-tuned multimodal learning for emotion reasoning but was restricted by explicit face detectors, implicit fusion strategies, and low-quality training data with limited scale. To address these limitations, we present Emotion-LLaMAv2 and the MMEVerse benchmark, establishing an end-to-end pipeline together with a standardized evaluation setting for emotion recognition and reasoning. Emotion-LLaMAv2 introduces three key advances. First, an end-to-end multiview encoder eliminates external face detection and captures nuanced emotional cues via richer spatial and temporal multiview tokens. Second, a Conv Attention pre-fusion module is designed to enable simultaneous local and global multimodal feature interactions external to the LLM backbone. Third, a perception-to-cognition curriculum instruction tuning scheme within the LLaMA2 backbone unifies emotion recognition and free-form emotion reasoning. To support large-scale training and reproducible evaluation, MMEVerse aggregates twelve publicly available emotion datasets, including IEMOCAP, MELD, DFEW, and MAFW, into a unified multimodal instruction format. The data are re-annotated via a multi-agent pipeline involving Qwen2 Audio, Qwen2.5 VL, and GPT 4o, producing 130k training clips and 36k testing clips across 18 evaluation benchmarks.
AlphaFace: High Fidelity and Real-time Face Swapper Robust to Facial Pose
Existing face-swapping methods often deliver competitive results in constrained settings but exhibit substantial quality degradation when handling extreme facial poses. To improve facial pose robustness, explicit geometric features are applied, but this approach remains problematic since it introduces additional dependencies and increases computational cost. Diffusion-based methods have achieved remarkable results; however, they are impractical for real-time processing. We introduce AlphaFace, which leverages an open-source vision-language model and CLIP image and text embeddings to apply novel visual and textual semantic contrastive losses. AlphaFace enables stronger identity representation and more precise attribute preservation, all while maintaining real-time performance. Comprehensive experiments across FF++, MPIE, and LPFF demonstrate that AlphaFace surpasses state-of-the-art methods in pose-challenging cases. The project is publicly available on `https://github.com/andrewyu90/Alphaface_Official.git'.
RENEW: Risk- and Energy-Aware Navigation in Dynamic Waterways AAAI 2026
We present RENEW, a global path planner for Autonomous Surface Vehicle (ASV) in dynamic environments with external disturbances (e.g., water currents). RENEW introduces a unified risk- and energy-aware strategy that ensures safety by dynamically identifying non-navigable regions and enforcing adaptive safety constraints. Inspired by maritime contingency planning, it employs a best-effort strategy to maintain control under adverse conditions. The hierarchical architecture combines high-level constrained triangulation for topological diversity with low-level trajectory optimization within safe corridors. Validated with real-world ocean data, RENEW is the first framework to jointly address adaptive non-navigability and topological path diversity for robust maritime navigation.
comment: 9 pages, 10 figure, 4 tables, AAAI 2026 (main track; oral acceptance)
PyHealth 2.0: A Comprehensive Open-Source Toolkit for Accessible and Reproducible Clinical Deep Learning
Difficulty replicating baselines, high computational costs, and required domain expertise create persistent barriers to clinical AI research. To address these challenges, we introduce PyHealth 2.0, an enhanced clinical deep learning toolkit that enables predictive modeling in as few as 7 lines of code. PyHealth 2.0 offers three key contributions: (1) a comprehensive toolkit addressing reproducibility and compatibility challenges by unifying 15+ datasets, 20+ clinical tasks, 25+ models, 5+ interpretability methods, and uncertainty quantification including conformal prediction within a single framework that supports diverse clinical data modalities - signals, imaging, and electronic health records - with translation of 5+ medical coding standards; (2) accessibility-focused design accommodating multimodal data and diverse computational resources with up to 39x faster processing and 20x lower memory usage, enabling work from 16GB laptops to production systems; and (3) an active open-source community of 400+ members lowering domain expertise barriers through extensive documentation, reproducible research contributions, and collaborations with academic health systems and industry partners, including multi-language support via RHealth. PyHealth 2.0 establishes an open-source foundation and community advancing accessible, reproducible healthcare AI. Available at pip install pyhealth.
comment: Under Review
Jacobian Scopes: token-level causal attributions in LLMs
Large language models (LLMs) make next-token predictions based on clues present in their context, such as semantic descriptions and in-context examples. Yet, elucidating which prior tokens most strongly influence a given prediction remains challenging due to the proliferation of layers and attention heads in modern architectures. We propose Jacobian Scopes, a suite of gradient-based, token-level causal attribution methods for interpreting LLM predictions. By analyzing the linearized relations of final hidden state with respect to inputs, Jacobian Scopes quantify how input tokens influence a model's prediction. We introduce three variants - Semantic, Fisher, and Temperature Scopes - which respectively target sensitivity of specific logits, the full predictive distribution, and model confidence (inverse temperature). Through case studies spanning instruction understanding, translation and in-context learning (ICL), we uncover interesting findings, such as when Jacobian Scopes point to implicit political biases. We believe that our proposed methods also shed light on recently debated mechanisms underlying in-context time-series forecasting. Our code and interactive demonstrations are publicly available at https://github.com/AntonioLiu97/JacobianScopes.
comment: 12 pages, 15 figures, under review at ACL 2026
Reasoning-Enhanced Rare-Event Prediction with Balanced Outcome Correction
Rare-event prediction is critical in domains such as healthcare, finance, reliability engineering, customer support, aviation safety, where positive outcomes are infrequent yet potentially catastrophic. Extreme class imbalance biases conventional models toward majority-class predictions, limiting recall, calibration, and operational usefulness. We propose LPCORP (Low-Prevalence CORrector for Prediction)*, a two-stage framework that combines reasoningenhanced prediction with confidence-based outcome correction. A reasoning model first produces enriched predictions from narrative inputs, after which a lightweight logistic-regression classifier evaluates and selectively corrects these outputs to mitigate prevalence-driven bias. We evaluate LPCORP on real-world datasets from medical and consumer service domains. The results show that this method transforms a highly imbalanced setting into a well-balanced one while preserving the original number of samples and without applying any resampling strategies. Test-set evaluation demonstrates substantially improved performance, particularly in precision, which is a known weakness in low-prevalence data. We further provide a costreduction analysis comparing the expenses associated with rare-event damage control without preventive measures to those incurred when low-cost, prediction-based preventive interventions are applied that showed more than 50% reduction in some cases. * Patent pending: U.S. Provisional 63/933,518, filed 8 December 2025.
comment: 28 pages, 12 figures, provisional patent
Cite-While-You-Generate: Training-Free Evidence Attribution for Multimodal Clinical Summarization
Trustworthy clinical summarization requires not only fluent generation but also transparency about where each statement comes from. We propose a training-free framework for generation-time source attribution that leverages decoder attentions to directly cite supporting text spans or images, overcoming the limitations of post-hoc or retraining-based methods. We introduce two strategies for multimodal attribution: a raw image mode, which directly uses image patch attentions, and a caption-as-span mode, which substitutes images with generated captions to enable purely text-based alignment. Evaluations on two representative domains: clinician-patient dialogues (CliConSummation) and radiology reports (MIMIC-CXR), show that our approach consistently outperforms embedding-based and self-attribution baselines, improving both text-level and multimodal attribution accuracy (e.g., +15% F1 over embedding baselines). Caption-based attribution achieves competitive performance with raw-image attention while being more lightweight and practical. These findings highlight attention-guided attribution as a promising step toward interpretable and deployable clinical summarization systems.
ResAgent: Entropy-based Prior Point Discovery and Visual Reasoning for Referring Expression Segmentation
Referring Expression Segmentation (RES) is a core vision-language segmentation task that enables pixel-level understanding of targets via free-form linguistic expressions, supporting critical applications such as human-robot interaction and augmented reality. Despite the progress of Multimodal Large Language Model (MLLM)-based approaches, existing RES methods still suffer from two key limitations: first, the coarse bounding boxes from MLLMs lead to redundant or non-discriminative point prompts; second, the prevalent reliance on textual coordinate reasoning is unreliable, as it fails to distinguish targets from visually similar distractors. To address these issues, we propose \textbf{\model}, a novel RES framework integrating \textbf{E}ntropy-\textbf{B}ased Point \textbf{D}iscovery (\textbf{EBD}) and \textbf{V}ision-\textbf{B}ased \textbf{R}easoning (\textbf{VBR}). Specifically, EBD identifies high-information candidate points by modeling spatial uncertainty within coarse bounding boxes, treating point selection as an information maximization process. VBR verifies point correctness through joint visual-semantic alignment, abandoning text-only coordinate inference for more robust validation. Built on these components, \model implements a coarse-to-fine workflow: bounding box initialization, entropy-guided point discovery, vision-based validation, and mask decoding. Extensive evaluations on four benchmark datasets (RefCOCO, RefCOCO+, RefCOCOg, and ReasonSeg) demonstrate that \model achieves new state-of-the-art performance across all four benchmarks, highlighting its effectiveness in generating accurate and semantically grounded segmentation masks with minimal prompts.
comment: 23 pages, 7gigures
Cross-Lingual Activation Steering for Multilingual Language Models
Large language models exhibit strong multilingual capabilities, yet significant performance gaps persist between dominant and non-dominant languages. Prior work attributes this gap to imbalances between shared and language-specific neurons in multilingual representations. We propose Cross-Lingual Activation Steering (CLAS), a training-free inference-time intervention that selectively modulates neuron activations. We evaluate CLAS on classification and generation benchmarks, achieving average improvements of 2.3% (Acc.) and 3.4% (F1) respectively, while maintaining high-resource language performance. We discover that effective transfer operates through functional divergence rather than strict alignment; performance gains correlate with increased language cluster separation. Our results demonstrate that targeted activation steering can unlock latent multilingual capacity in existing models without modification to model weights.
comment: Under review
Cognitively-Inspired Tokens Overcome Egocentric Bias in Multimodal Models
Multimodal language models (MLMs) perform well on semantic vision-language tasks but fail at spatial reasoning that requires adopting another agent's visual perspective. These errors reflect a persistent egocentric bias and raise questions about whether current models support allocentric reasoning. Inspired by human spatial cognition, we introduce perspective tokens, specialized embeddings that encode orientation through either (1) embodied body-keypoint cues or (2) abstract representations supporting mental rotation. Integrating these tokens into LLaVA-1.5-13B yields performance on level-2 visual perspective-taking tasks. Across synthetic and naturalistic benchmarks (Isle Bricks V2, COCO, 3DSRBench), perspective tokens improve accuracy, with rotation-based tokens generalizing to non-human reference agents. Representational analyses reveal that fine-tuning enhances latent orientation sensitivity already present in the base model, suggesting that MLMs contain precursors of allocentric reasoning but lack appropriate internal structure. Overall, embedding cognitively grounded spatial structure directly into token space provides a lightweight, model-agnostic mechanism for perspective-taking and more human-like spatial reasoning.
Improving the Accuracy of Community Detection on Signed Networks via Community Refinement and Contrastive Learning
Community detection (CD) on signed networks is crucial for understanding how positive and negative relations jointly shape network structure. However, existing CD methods often yield inconsistent communities due to noisy or conflicting edge signs. In this paper, we propose ReCon, a model-agnostic post-processing framework that progressively refines community structures through four iterative steps: (1) structural refinement, (2) boundary refinement, (3) contrastive learning, and (4) clustering. Extensive experiments on eighteen synthetic and four real-world networks using four CD methods demonstrate that ReCon consistently enhances community detection accuracy, serving as an effective and easily integrable solution for reliable CD across diverse network properties.
MapAnything: Universal Feed-Forward Metric 3D Reconstruction 3DV 2026
We introduce MapAnything, a unified transformer-based feed-forward model that ingests one or more images along with optional geometric inputs such as camera intrinsics, poses, depth, or partial reconstructions, and then directly regresses the metric 3D scene geometry and cameras. MapAnything leverages a factored representation of multi-view scene geometry, i.e., a collection of depth maps, local ray maps, camera poses, and a metric scale factor that effectively upgrades local reconstructions into a globally consistent metric frame. Standardizing the supervision and training across diverse datasets, along with flexible input augmentation, enables MapAnything to address a broad range of 3D vision tasks in a single feed-forward pass, including uncalibrated structure-from-motion, calibrated multi-view stereo, monocular depth estimation, camera localization, depth completion, and more. We provide extensive experimental analyses and model ablations demonstrating that MapAnything outperforms or matches specialist feed-forward models while offering more efficient joint training behavior, thus paving the way toward a universal 3D reconstruction backbone.
comment: 3DV 2026. Project Page: https://map-anything.github.io/
LLM Reasoning for Cold-Start Item Recommendation
Large Language Models (LLMs) have shown significant potential for improving recommendation systems through their inherent reasoning capabilities and extensive knowledge base. Yet, existing studies predominantly address warm-start scenarios with abundant user-item interaction data, leaving the more challenging cold-start scenarios, where sparse interactions hinder traditional collaborative filtering methods, underexplored. To address this limitation, we propose novel reasoning strategies designed for cold-start item recommendations within the Netflix domain. Our method utilizes the advanced reasoning capabilities of LLMs to effectively infer user preferences, particularly for newly introduced or rarely interacted items. We systematically evaluate supervised fine-tuning, reinforcement learning-based fine-tuning, and hybrid approaches that combine both methods to optimize recommendation performance. Extensive experiments on real-world data demonstrate significant improvements in both methodological efficacy and practical performance in cold-start recommendation contexts. Remarkably, our reasoning-based fine-tuned models outperform Netflix's production ranking model by up to 8% in certain cases.
comment: Published on Proceedings of the ACM on Web Conference 2026 (WWW 2026)
On Fine-Grained I/O Complexity of Attention Backward Passes
Large Language Models (LLMs) exhibit exceptional proficiency in handling extensive context windows in natural language. Nevertheless, the quadratic scaling of attention computation relative to sequence length creates substantial efficiency bottlenecks, necessitating the development of I/O-optimized algorithms. In this work, we conduct a systematic examination of the I/O complexity inherent in attention mechanisms, with a specific emphasis on the backward pass under both small and large cache settings. By leveraging the red-blue pebble game framework, we derive tight bounds for I/O complexity across the full spectrum of cache sizes. We validate that FlashAttention, one of the current industry standards, achieves optimality in the large-cache scenario for both forward and backward passes. Conversely, for small-cache environments, we introduce a novel algorithm that outperforms contemporary methods and successfully attains theoretical tight bounds. Furthermore, we expand our investigation to include sparse attention by establishing granular lower bounds for both forward and backward passes across all cache configurations. Ultimately, our results solidify the theoretical framework regarding I/O complexity in attention mechanisms, providing critical guidance for the development of efficient LLM training and inference systems.
Q-learning with Adjoint Matching
We propose Q-learning with Adjoint Matching (QAM), a novel TD-based reinforcement learning (RL) algorithm that tackles a long-standing challenge in continuous-action RL: efficient optimization of an expressive diffusion or flow-matching policy with respect to a parameterized Q-function. Effective optimization requires exploiting the first-order information of the critic, but it is challenging to do so for flow or diffusion policies because direct gradient-based optimization via backpropagation through their multi-step denoising process is numerically unstable. Existing methods work around this either by only using the value and discarding the gradient information, or by relying on approximations that sacrifice policy expressivity or bias the learned policy. QAM sidesteps both of these challenges by leveraging adjoint matching, a recently proposed technique in generative modeling, which transforms the critic's action gradient to form a step-wise objective function that is free from unstable backpropagation, while providing an unbiased, expressive policy at the optimum. Combined with temporal-difference backup for critic learning, QAM consistently outperforms prior approaches on hard, sparse reward tasks in both offline and offline-to-online RL.
comment: 32 pages, 8 figures, 7 tables
Provable Differentially Private Computation of the Cross-Attention Mechanism
Cross-attention has emerged as a cornerstone module in modern artificial intelligence, underpinning critical applications such as retrieval-augmented generation (RAG), system prompting, and guided stable diffusion. However, this is a rising concern about securing the privacy of cross-attention, as the underlying key and value matrices frequently encode sensitive data or private user information. In this work, we introduce a novel data structure designed to enforce differential privacy (DP) for cross-attention mechanisms, accompanied by provable theoretical guarantees. Specifically, letting $n$ denote the input sequence length, $d$ the feature dimension, $R$ the maximum magnitude of query and key matrices, $R_w$ the maximum magnitude of the value matrix, and $r, s, ε_s$ the parameters for polynomial kernel methods, our proposed structure achieves $\widetilde{O}(ndr^2)$ space and initialization complexity, with a query time of $\widetilde{O}(d r^2)$ per token. Moreover, we demonstrate that our mechanism satisfies $(ε, δ)$-DP, incurring an additive error of $\widetilde{O}((1-ε_s)^{-1} n^{-1} ε^{-1} R^{2s} R_w r^2)$ and a relative error of $2ε_s/(1-ε_s)$ with respect to the ground truth. Crucially, our framework maintains robustness against adaptive queries, ensuring security even in adversarial settings. To the best of our knowledge, this constitutes the first approach providing provable differential privacy for cross-attention, establishing a foundation for future privacy-preserving algorithms in large generative models (LGMs).
Efficient semantic uncertainty quantification in language models via diversity-steered sampling NeurIPS 2025
Accurately estimating semantic aleatoric and epistemic uncertainties in large language models (LLMs) is particularly challenging in free-form question answering (QA), where obtaining stable estimates often requires many expensive generations. We introduce a diversity-steered sampler that discourages semantically redundant outputs during decoding, covers both autoregressive and masked diffusion paradigms, and yields substantial sample-efficiency gains. The key idea is to inject a continuous semantic-similarity penalty into the model's proposal distribution using a natural language inference (NLI) model lightly finetuned on partial prefixes or intermediate diffusion states. We debias downstream uncertainty estimates with importance reweighting and shrink their variance with control variates. Across four QA benchmarks, our method matches or surpasses baselines while covering more semantic clusters with the same number of samples. Being modular and requiring no gradient access to the base LLM, the framework promises to serve as a drop-in enhancement for uncertainty estimation in risk-sensitive model deployments.
comment: 10 pages (+7 appendix), 7 figures. Accepted at NeurIPS 2025
Failures of Contingent Thinking
We present a behavioral definition of an agent's perceived implication that uniquely identifies a subjective state-space representing her view of a decision problem, and which may differ from the modeler's. By examining belief updating within this model, we formalize the recent empirical consensus that reducing uncertainty improves contingent thinking, and propose a novel form of updating corresponding to the agent 'realizing' a flaw in her own thinking. Finally, we clarify the sense in which contingent thinking makes state-bystate dominance more cognitively demanding than obvious dominance.
HEIGHT: Heterogeneous Interaction Graph Transformer for Robot Navigation in Crowded and Constrained Environments
We study the problem of robot navigation in dense and interactive crowds with static constraints such as corridors and furniture. Previous methods fail to consider all types of spatial and temporal interactions among agents and obstacles, leading to unsafe and inefficient robot paths. In this article, we leverage a graph-based representation of crowded and constrained scenarios and propose a structured framework to learn robot navigation policies with deep reinforcement learning. We first split the representations of different inputs and propose a heterogeneous spatio-temporal graph to model distinct interactions among humans, robots, and obstacles. Based on the heterogeneous spatio-temporal graph, we propose HEIGHT, a novel navigation policy network architecture with different components to capture heterogeneous interactions through space and time. HEIGHT utilizes attention mechanisms to prioritize important interactions and a recurrent network to track changes in the dynamic scene over time, encouraging the robot to avoid collisions adaptively. Through extensive simulation and real-world experiments, we demonstrate that HEIGHT outperforms state-of-the-art baselines in terms of success, navigation time, and generalization to domain shifts in challenging navigation scenarios. More information is available at https://sites.google.com/view/crowdnav-height/home.
comment: Accepted to IEEE Transactions of Automation Science and Engineering (T-ASE)
Equivariant Flow Matching for Symmetry-Breaking Bifurcation Problems NeurIPS 2025
Bifurcation phenomena in nonlinear dynamical systems often lead to multiple coexisting stable solutions, particularly in the presence of symmetry breaking. Deterministic machine learning models are unable to capture this multiplicity, averaging over solutions and failing to represent lower-symmetry outcomes. In this work, we formalize the use of generative AI, specifically flow matching, as a principled way to model the full probability distribution over bifurcation outcomes. Our approach builds on existing techniques by combining flow matching with equivariant architectures and an optimal-transport-based coupling mechanism. We generalize equivariant flow matching to a symmetric coupling strategy that aligns predicted and target outputs under group actions, allowing accurate learning in equivariant settings. We validate our approach on a range of systems, from simple conceptual systems to physical problems such as buckling beams and the Allen--Cahn equation. The results demonstrate that the approach accurately captures multimodal distributions and symmetry-breaking bifurcations. Moreover, our results demonstrate that flow matching significantly outperforms non-probabilistic and variational methods. This offers a principled and scalable solution for modeling multistability in high-dimensional systems.
comment: 9 pages, 7 figures including appendices. Accepted to Machine Learning and the Physical Sciences Workshop, NeurIPS 2025 (https://ml4physicalsciences.github.io/2025/). Repository with corresponding code: https://github.com/FHendriks11/bifurcationML/. Video explanation: https://www.youtube.com/watch?v=wsL3h17KtjY
Programming over Thinking: Efficient and Robust Multi-Constraint Planning
Multi-constraint planning involves identifying, evaluating, and refining candidate plans while satisfying multiple, potentially conflicting constraints. Existing large language model (LLM) approaches face fundamental limitations in this domain. Pure reasoning paradigms, which rely on long natural language chains, are prone to inconsistency, error accumulation, and prohibitive cost as constraints compound. Conversely, LLMs combined with coding- or solver-based strategies lack flexibility: they often generate problem-specific code from scratch or depend on fixed solvers, failing to capture generalizable logic across diverse problems. To address these challenges, we introduce the Scalable COde Planning Engine (SCOPE), a framework that disentangles query-specific reasoning from generic code execution. By separating reasoning from execution, SCOPE produces solver functions that are consistent, deterministic, and reusable across queries while requiring only minimal changes to input parameters. SCOPE achieves state-of-the-art performance while lowering cost and latency. For example, with GPT-4o, it reaches 93.1% success on TravelPlanner, a 61.6% gain over the best baseline (CoT) while cutting inference cost by 1.4x and time by ~4.67x. Code is available at https://github.com/DerrickGXD/SCOPE.
comment: 8 pages of main text, 2 pages of references and and limitations, 37 pages of appendices
Improving Training Efficiency and Reducing Maintenance Costs via Language Specific Model Merging
Fine-tuning a task-specific multilingual large language model (LLM) involves training the model on a multilingual dataset with examples in all the required languages. Updating one or more supported languages with additional data or adding support for a new language involves retraining the model, which can be computationally inefficient and creates a severe maintenance bottleneck. Recent research on merging multilingual multitask models has shown promise in terms of improved quality, but its computational and maintenance efficiency remains unstudied. In this work, we provide the first focused analysis of this merging strategy from an efficiency perspective, evaluating it across three independent tasks. We demonstrate significant efficiency gains while maintaining parity in terms of quality: this merging approach reduces the initial training time by up to 50\%. We also demonstrate that updating an individual language and re-merging as part of model maintenance reduces training costs by more than 60\%, compared to re-training the full multilingual model. We show this on both public and proprietary industry datasets confirming that the approach works well for industrial use cases in addition to academic settings already studied in previous work.
comment: Accepted to EACL 2026 Industry Track
Theoretical Foundations of Scaling Law in Familial Models
Neural scaling laws have become foundational for optimizing large language model (LLM) training, yet they typically assume a single dense model output. This limitation effectively overlooks "Familial models, a transformative paradigm essential for realizing ubiquitous intelligence across heterogeneous device-edge-cloud hierarchies. Transcending static architectures, familial models integrate early exits with relay-style inference to spawn G deployable sub-models from a single shared backbone. In this work, we theoretically and empirically extend the scaling law to capture this "one-run, many-models" paradigm by introducing Granularity (G) as a fundamental scaling variable alongside model size (N) and training tokens (D). To rigorously quantify this relationship, we propose a unified functional form L(N, D, G) and parameterize it using large-scale empirical runs. Specifically, we employ a rigorous IsoFLOP experimental design to strictly isolate architectural impact from computational scale. Across fixed budgets, we systematically sweep model sizes (N) and granularities (G) while dynamically adjusting tokens (D). This approach effectively decouples the marginal cost of granularity from the benefits of scale, ensuring high-fidelity parameterization of our unified scaling law. Our results reveal that the granularity penalty follows a multiplicative power law with an extremely small exponent. Theoretically, this bridges fixed-compute training with dynamic architectures. Practically, it validates the "train once, deploy many" paradigm, demonstrating that deployment flexibility is achievable without compromising the compute-optimality of dense baselines.
Intelligent Systems in Neuroimaging: Pioneering AI Techniques for Brain Tumor Detection
This study deliberates on the application of advanced AI techniques for brain tumor classification through MRI, wherein the training includes the present best deep learning models to enhance diagnosis accuracy and the potential of usability in clinical practice. By combining custom convolutional models with pre-trained neural network architectures, our approach exposes the utmost performance in the classification of four classes: glioma, meningioma, pituitary tumors, and no-tumor cases. Assessing the models on a large dataset of over 7,000 MRI images focused on detection accuracy, computational efficiency, and generalization to unseen data. The results indicate that the Xception architecture surpasses all other were tested, obtaining a testing accuracy of 98.71% with the least validation loss. While presenting this case with findings that demonstrate AI as a probable scorer in brain tumor diagnosis, we demonstrate further motivation by reducing computational complexity toward real-world clinical deployment. These aspirations offer an abundant future for progress in automated neuroimaging diagnostics.
comment: This paper contains 11 pages, 2 tables, and 7 figures. This Paper is already accepted in IEEE Computational Intelligence Magazine (CIM)
The Curse of Depth in Large Language Models NeurIPS 2025
In this paper, we introduce the Curse of Depth, a concept that highlights, explains, and addresses the recent observation in modern Large Language Models (LLMs) where nearly half of the layers are less effective than expected. We first confirm the wide existence of this phenomenon across the most popular families of LLMs such as Llama, Mistral, DeepSeek, and Qwen. Our analysis, theoretically and empirically, identifies that the underlying reason for the ineffectiveness of deep layers in LLMs is the widespread usage of Pre-Layer Normalization (Pre-LN). While Pre-LN stabilizes the training of Transformer LLMs, its output variance exponentially grows with the model depth, which undesirably causes the derivative of the deep Transformer blocks to be an identity matrix, and therefore barely contributes to the training. To resolve this training pitfall, we propose LayerNorm Scaling (LNS), which scales the variance of output of the layer normalization inversely by the square root of its depth. This simple modification mitigates the output variance explosion of deeper Transformer layers, improving their contribution. Across a wide range of model sizes (130M to 7B), our experiments show that LNS consistently outperforms previous normalization and scaling techniques in enhancing LLM pre-training performance. Moreover, this improvement seamlessly carries over to supervised fine-tuning. All these gains can be attributed to the fact that LayerNorm Scaling enables deeper layers to contribute more effectively during training. Our code is available at \href{https://github.com/lmsdss/LayerNorm-Scaling}{LayerNorm-Scaling}.
comment: Accepted by NeurIPS 2025
IBISAgent: Reinforcing Pixel-Level Visual Reasoning in MLLMs for Universal Biomedical Object Referring and Segmentation
Recent research on medical MLLMs has gradually shifted its focus from image-level understanding to fine-grained, pixel-level comprehension. Although segmentation serves as the foundation for pixel-level understanding, existing approaches face two major challenges. First, they introduce implicit segmentation tokens and require simultaneous fine-tuning of both the MLLM and external pixel decoders, which increases the risk of catastrophic forgetting and limits generalization to out-of-domain scenarios. Second, most methods rely on single-pass reasoning and lack the capability to iteratively refine segmentation results, leading to suboptimal performance. To overcome these limitations, we propose a novel agentic MLLM, named IBISAgent, that reformulates segmentation as a vision-centric, multi-step decision-making process. IBISAgent enables MLLMs to generate interleaved reasoning and text-based click actions, invoke segmentation tools, and produce high-quality masks without architectural modifications. By iteratively performing multi-step visual reasoning on masked image features, IBISAgent naturally supports mask refinement and promotes the development of pixel-level visual reasoning capabilities. We further design a two-stage training framework consisting of cold-start supervised fine-tuning and agentic reinforcement learning with tailored, fine-grained rewards, enhancing the model's robustness in complex medical referring and reasoning segmentation tasks. Extensive experiments demonstrate that IBISAgent consistently outperforms both closed-source and open-source SOTA methods. All datasets, code, and trained models will be released publicly.
Prometheus Mind: Retrofitting Memory to Frozen Language Models
Adding memory to pretrained language models typically requires architectural changes or weight modification. We present Prometheus Mind, which retrofits memory to a frozen Qwen3-4B using 11 modular adapters (530MB, 7% overhead) -- fully reversible by removing the adapters. Building this system required solving four problems: (1) Extraction -- we develop Contrastive Direction Discovery (CDD), which finds semantic directions via minimal pairs without labeled data. (2) Training -- end-to-end optimization collapses; stage-wise training of each adapter on simple proxy tasks succeeds. (3) Injection -- learned encoders fail to generalize; we find that lm_head-weight rows already provide the mapping we need, requiring no training. (4) Hidden state collapse -- transformers make ``wife'' and ``brother'' 0.98+ similar; we train projections to recover distinction (0.98 $\rightarrow$ 0.09). On PrometheusExtract-132 (132 cases), the system achieves 94.4% retrieval on clean inputs (n=54, 95% CI: [84.9%, 98.1%]), degrading to 19.4% on informal inputs with ellipsis, filler words, or implicit subjects (n=36). The primary bottleneck is relation classification (47.3% accuracy), responsible for most extraction errors.
comment: 28 pages, corrected some inconsistentsies and some edits
Learning Logical Rules using Minimum Message Length
Unifying probabilistic and logical learning is a key challenge in AI. We introduce a Bayesian inductive logic programming approach that learns minimum message length hypotheses from noisy data. Our approach balances hypothesis complexity and data fit through priors, which favour more general programs, and a likelihood, which favours accurate programs. Our experiments on several domains, including game playing and drug design, show that our method significantly outperforms previous methods, notably those that learn minimum description length programs. Our results also show that our approach is data-efficient and insensitive to example balance, including the ability to learn from exclusively positive examples.
ViSymRe: Vision Multimodal Symbolic Regression
Extracting interpretable equations from observational datasets to describe complex natural phenomena is one of the core goals of artificial intelligence. This field is known as symbolic regression (SR). In recent years, Transformer-based paradigms have become a new trend in SR, addressing the well-known problem of inefficient search. However, the modal heterogeneity between datasets and equations often hinders the convergence and generalization of these models. In this paper, we propose ViSymRe, a Vision Symbolic Regression framework, to explore the positive role of visual modality in enhancing the performance of Transformer-based SR paradigms. To overcome the challenge where the visual SR model is untrainable in high-dimensional scenarios, we present Multi-View Random Slicing (MVRS). By projecting multivariate equations into 2-D space using random affine transformations, MVRS avoids common defects in high-dimensional visualization, such as variable degradation, non-linear interaction missing, and exponentially increasing sampling complexity, enabling ViSymRe to be trained with low computational costs. To support dataset-only deployment of ViSymRe, we design a dual-vision pipeline architecture based on generative techniques, which reconstructs visual features directly from the datasets via an auxiliary Visual Decoder and automatically suppresses the attention weights of reconstruction noise through a proposed Biased Cross-Attention feature fusion module, ensuring that subsequent processes are not affected by noisy modalities. Ablation studies demonstrate the positive contribution of visual modality to improving model convergence level and enhancing various SR metrics. Furthermore, evaluation results on mainstream benchmarks indicate that ViSymRe achieves competitive performance compared to baselines, particularly in low-complexity and rapid-inference scenarios.
CARE: Cognitive-reasoning Augmented Reinforcement for Emotional Support Conversation
Emotional Support Conversation (ESC) plays a vital role in alleviating psychological stress and providing emotional value through dialogue. While recent studies have largely focused on data augmentation and synthetic corpus construction, they often overlook the deeper cognitive reasoning processes that underpin effective emotional support. To address this gap, we propose \textbf{CARE}, a novel framework that strengthens reasoning in ESC without relying on large-scale synthetic data. CARE leverages the original ESC training set to guide models in generating logically coherent and supportive responses, thereby explicitly enhancing cognitive reasoning. Building on this foundation, we further employ reinforcement learning to refine and reinforce the reasoning process. Experimental results demonstrate that CARE significantly improves both the logical soundness and supportive quality of responses, advancing the development of empathetic, cognitively robust, and human-like emotional support systems.
comment: Accepted at ICASSP 2026
Emergent, not Immanent: A Baradian Reading of Explainable AI
Explainable AI (XAI) is frequently positioned as a technical problem of revealing the inner workings of an AI model. This position is affected by unexamined onto-epistemological assumptions: meaning is treated as immanent to the model, the explainer is positioned outside the system, and a causal structure is presumed recoverable through computational techniques. In this paper, we draw on Barad's agential realism to develop an alternative onto-epistemology of XAI. We propose that interpretations are material-discursive performances that emerge from situated entanglements of the AI model with humans, context, and the interpretative apparatus. To develop this position, we read a comprehensive set of XAI methods through agential realism and reveal the assumptions and limitations that underpin several of these methods. We then articulate the framework's ethical dimension and propose design directions for XAI interfaces that support emergent interpretation, using a speculative text-to-music interface as a case study.
comment: Accepted at CHI 2026
Koopman Invariants as Drivers of Emergent Time-Series Clustering in Joint-Embedding Predictive Architectures
Joint-Embedding Predictive Architectures (JEPAs), a powerful class of self-supervised models, exhibit an unexplained ability to cluster time-series data by their underlying dynamical regimes. We propose a novel theoretical explanation for this phenomenon, hypothesizing that JEPA's predictive objective implicitly drives it to learn the invariant subspace of the system's Koopman operator. We prove that an idealized JEPA loss is minimized when the encoder represents the system's regime indicator functions, which are Koopman eigenfunctions. This theory was validated on synthetic data with known dynamics, demonstrating that constraining the JEPA's linear predictor to be a near-identity operator is the key inductive bias that forces the encoder to learn these invariants. We further discuss that this constraint is critical for selecting this interpretable solution from a class of mathematically equivalent but entangled optima, revealing the predictor's role in representation disentanglement. This work demystifies a key behavior of JEPAs, provides a principled connection between modern self-supervised learning and dynamical systems theory, and informs the design of more robust and interpretable time-series models.
comment: 11 pages, 5 figures
Self-supervised Learning of Echocardiographic Video Representations via Online Cluster Distillation NeurIPS 2025
Self-supervised learning (SSL) has achieved major advances in natural images and video understanding, but challenges remain in domains like echocardiography (heart ultrasound) due to subtle anatomical structures, complex temporal dynamics, and the current lack of domain-specific pre-trained models. Existing SSL approaches such as contrastive, masked modeling, and clustering-based methods struggle with high intersample similarity, sensitivity to low PSNR inputs common in ultrasound, or aggressive augmentations that distort clinically relevant features. We present DISCOVR (Distilled Image Supervision for Cross Modal Video Representation), a self-supervised dual branch framework for cardiac ultrasound video representation learning. DISCOVR combines a clustering-based video encoder that models temporal dynamics with an online image encoder that extracts fine-grained spatial semantics. These branches are connected through a semantic cluster distillation loss that transfers anatomical knowledge from the evolving image encoder to the video encoder, enabling temporally coherent representations enriched with fine-grained semantic understanding.Evaluated on six echocardiography datasets spanning fetal, pediatric, and adult populations, DISCOVR outperforms both specialized video anomaly detection methods and state-of-the-art video-SSL baselines in zero-shot and linear probing setups,achieving superior segmentation transfer and strong downstream performance on clinically relevant tasks such as LVEF prediction. Code available at: https://github.com/mdivyanshu97/DISCOVR
comment: Accepted in NeurIPS 2025
LATTLE: LLM Attention Transplant for Transfer Learning of Tabular Data Across Disparate Domains
Transfer learning on tabular data is challenging due to disparate feature spaces across domains, in contrast to the homogeneous structures of image and text. Large language models (LLMs) offer a knowledge base to improve the limited effectiveness of cross-domain transfer learning for tabular data. However, LLM performance often stagnates due to subjective text prompts and the computational limitations of in-context learning. We present a novel language-to-tabular context-learning method that uses attention-specific transformer weights, enabling seamless transfer learning across disparate tabular data sets. The LLM attention transplant mechanism facilitates a domain-agnostic transfer learning, eliminating the need for shared features between tables, LLM prompt engineering, and large-scale pretrained models. Our experiments using ten pairs of disjoint source-target data sets and 12 baseline methods demonstrate the superiority of the proposed LLM-attention transplant for transfer learning (LATTLE) method over traditional ML models, state-of-the-art deep tabular architectures, and models trained on thousands to billions of tabular samples. The proposed cross-domain attention transfer demonstrates an effective solution for adapting LLMs to learning non-text tabular data in a low-resource environment. The source code of the LATTLE implementation is publicly available.
DSSmoothing: Toward Certified Dataset Ownership Verification for Pre-trained Language Models via Dual-Space Smoothing
Large web-scale datasets have driven the rapid advancement of pre-trained language models (PLMs), but unauthorized data usage has raised serious copyright concerns. Existing dataset ownership verification (DOV) methods typically assume that watermarks remain stable during inference; however, this assumption often fails under natural noise and adversary-crafted perturbations. We propose the first certified dataset ownership verification method for PLMs under a gray-box setting (i.e., the defender can only query the suspicious model but is aware of its input representation module), based on dual-space smoothing (i.e., DSSmoothing). To address the challenges of text discreteness and semantic sensitivity, DSSmoothing introduces continuous perturbations in the embedding space to capture semantic robustness and applies controlled token reordering in the permutation space to capture sequential robustness. DSSmoothing consists of two stages: in the first stage, triggers are collaboratively embedded in both spaces to generate norm-constrained and robust watermarked datasets; in the second stage, randomized smoothing is applied in both spaces during verification to compute the watermark robustness (WR) of suspicious models and statistically compare it with the principal probability (PP) values of a set of benign models. Theoretically, DSSmoothing provides provable robustness guarantees for dataset ownership verification by ensuring that WR consistently exceeds PP under bounded dual-space perturbations. Extensive experiments on multiple representative web datasets demonstrate that DSSmoothing achieves stable and reliable verification performance and exhibits robustness against potential adaptive attacks. Our code is available at https://github.com/NcepuQiaoTing/DSSmoothing.
comment: 12 pages, 21 figures
LLM Jailbreak Detection for (Almost) Free!
Large language models (LLMs) enhance security through alignment when widely used, but remain susceptible to jailbreak attacks capable of producing inappropriate content. Jailbreak detection methods show promise in mitigating jailbreak attacks through the assistance of other models or multiple model inferences. However, existing methods entail significant computational costs. In this paper, we first present a finding that the difference in output distributions between jailbreak and benign prompts can be employed for detecting jailbreak prompts. Based on this finding, we propose a Free Jailbreak Detection (FJD) which prepends an affirmative instruction to the input and scales the logits by temperature to further distinguish between jailbreak and benign prompts through the confidence of the first token. Furthermore, we enhance the detection performance of FJD through the integration of virtual instruction learning. Extensive experiments on aligned LLMs show that our FJD can effectively detect jailbreak prompts with almost no additional computational costs during LLM inference.
comment: EMNLP 2025 (Findings) https://aclanthology.org/2025.findings-emnlp.309/
Designing Effective Digital Literacy Interventions for Boosting Deepfake Discernment
Deepfakes images can erode trust in institutions and compromise election outcomes, as people often struggle to discern real images from deepfake images. Improving digital literacy can help address these challenges. Here, we compare the efficacy of five digital literacy interventions to boost people's ability to discern deepfakes: (1) textual guidance on common indicators of deepfakes; (2) visual demonstrations of these indicators; (3) a gamified exercise for identifying deepfakes; (4) implicit learning through repeated exposure and feedback; and (5) explanations of how deepfakes are generated with the help of AI. We conducted an experiment with N=1,200 participants from the United States to test the immediate and long-term effectiveness of our interventions. Our results show that our lightweight, easy-to-understand interventions can boost deepfake image discernment by up to 13 percentage points while maintaining trust in real images.
Addressing the Minor-Embedding Problem in Quantum Annealing and Evaluating State-of-the-Art Algorithm Performance
This study addresses the minor-embedding problem, which involves mapping the variables of an Ising model onto a quantum annealing processor. The primary motivation stems from the observed performance disparity of quantum annealers when solving problems suited to the processor's architecture versus those with non-hardware-native topologies. Our research has two main objectives: i) to analyze the impact of embedding quality on the performance of D-Wave Systems quantum annealers, and ii) to evaluate the quality of the embeddings generated by Minorminer, the standard minor-embedding technique in the quantum annealing literature, provided by D-Wave. Regarding the first objective, our experiments reveal a clear correlation between the average chain length of embeddings and the relative errors of the solutions sampled. This underscores the critical influence of embedding quality on quantum annealing performance. For the second objective, we evaluate Minorminer's embedding capabilities, the quality and robustness of its embeddings, and its execution-time performance on Erdös-Rényi graphs. We also compare its performance with Clique Embedding, another algorithm developed by D-Wave, which is deterministic and designed to embed fully connected Ising models into quantum annealing processors, serving as a worst-case scenario. The results demonstrate that there is significant room for improvement for Minorminer, suggesting that more effective embedding strategies could lead to meaningful gains in quantum annealing performance.
comment: Paper submitted for review in the Future Generation Computer Systems journal
Logical Expressiveness of Graph Neural Networks with Hierarchical Node Individualization NeurIPS 2025
We propose and study Hierarchical Ego Graph Neural Networks (HEGNNs), an expressive extension of graph neural networks (GNNs) with hierarchical node individualization, inspired by the Individualization-Refinement paradigm for isomorphism testing. HEGNNs generalize subgraph-GNNs and form a hierarchy of increasingly expressive models that, in the limit, distinguish graphs up to isomorphism. We show that, over graphs of bounded degree, the separating power of HEGNN node classifiers equals that of graded hybrid logic. This characterization enables us to relate the separating power of HEGNNs to that of higher-order GNNs, GNNs enriched with local homomorphism count features, and color refinement algorithms based on Individualization-Refinement. Our experimental results confirm the practical feasibility of HEGNNs and show benefits in comparison with traditional GNN architectures, both with and without local homomorphism count features.
comment: Submitted to NeurIPS 2025, 28 pages, 5 figures
A Multi-Stage Hybrid Framework for Automated Interpretation of Multi-View Engineering Drawings Using Vision Language Model
Engineering drawings are fundamental to manufacturing communication, serving as the primary medium for conveying design intent, tolerances, and production details. However, interpreting complex multi-view drawings with dense annotations remains challenging using manual methods, generic optical character recognition (OCR) systems, or traditional deep learning approaches, due to varied layouts, orientations, and mixed symbolic-textual content. To address these challenges, this paper proposes a three-stage hybrid framework for the automated interpretation of 2D multi-view engineering drawings using modern detection and vision language models (VLMs). In the first stage, YOLOv11-det performs layout segmentation to localize key regions such as views, title blocks, and notes. The second stage uses YOLOv11-obb for orientation-aware, fine-grained detection of annotations, including measures, GD&T symbols, and surface roughness indicators. The third stage employs two Donut-based, OCR-free VLMs for semantic content parsing: the Alphabetical VLM extracts textual and categorical information from title blocks and notes, while the Numerical VLM interprets quantitative data such as measures, GD&T frames, and surface roughness. Two specialized datasets were developed to ensure robustness and generalization: 1,000 drawings for layout detection and 1,406 for annotation-level training. The Alphabetical VLM achieved an overall F1 score of 0.672, while the Numerical VLM reached 0.963, demonstrating strong performance in textual and quantitative interpretation, respectively. The unified JSON output enables seamless integration with CAD and manufacturing databases, providing a scalable solution for intelligent engineering drawing analysis.
comment: This draft has been accepted in the 13th International Conference on Industrial Engineering and Applications (ICIEA 2026)
Ready Jurist One: Benchmarking Language Agents for Legal Intelligence in Dynamic Environments
The gap between static benchmarks and the dynamic nature of real-world legal practice poses a key barrier to advancing legal intelligence. To this end, we introduce J1-ENVS, the first interactive and dynamic legal environment tailored for LLM-based agents. Guided by legal experts, it comprises six representative scenarios from Chinese legal practices across three levels of environmental complexity. We further introduce J1-EVAL, a fine-grained evaluation framework, designed to assess both task performance and procedural compliance across varying levels of legal proficiency. Extensive experiments on 17 LLM agents reveal that, while many models demonstrate solid legal knowledge, they struggle with procedural execution in dynamic settings. Even the SOTA model, GPT-4o, falls short of 60% overall performance. These findings highlight persistent challenges in achieving dynamic legal intelligence and offer valuable insights to guide future research.
GTR-Mamba: Geometry-to-Tangent Routing Mamba for Hyperbolic POI Recommendation
Next Point-of-Interest (POI) recommendation is a critical task in modern Location-Based Social Networks (LBSNs), aiming to model the complex decision-making process of human mobility to provide personalized recommendations for a user's next check-in location. Existing hyperbolic POI recommendation models, predominantly based on rotations and graph representations, have been extensively investigated. Although hyperbolic geometry has proven superior in representing hierarchical data with low distortion, current hyperbolic sequence models typically rely on performing recurrence via expensive Möbius operations directly on the manifold. This incurs prohibitive computational costs and numerical instability, rendering them ill-suited for trajectory modeling. To resolve this conflict between geometric representational power and sequential efficiency, we propose GTR-Mamba, a novel framework featuring Geometry-to-Tangent Routing. GTR-Mamba strategically routes complex state transitions to the computationally efficient Euclidean tangent space. Crucially, instead of a static approximation, we introduce a Parallel Transport (PT) mechanism that dynamically aligns tangent spaces along the trajectory. This ensures geometric consistency across recursive updates, effectively bridging the gap between the curved manifold and linear tangent operations. This process is orchestrated by an exogenous spatio-temporal channel, which explicitly modulates the SSM discretization parameters. Extensive experiments on three real-world datasets demonstrate that GTR-Mamba consistently outperforms state-of-the-art baselines in next POI recommendation.
Enhanced Generative Machine Listener
We present GMLv2, a reference-based model designed for the prediction of subjective audio quality as measured by MUSHRA scores. GMLv2 introduces a Beta distribution-based loss to model the listener ratings and incorporates additional neural audio coding (NAC) subjective datasets to extend its generalization and applicability. Extensive evaluations on diverse testset demonstrate that proposed GMLv2 consistently outperforms widely used metrics, such as PEAQ and ViSQOL, both in terms of correlation with subjective scores and in reliably predicting these scores across diverse content types and codec configurations. Consequently, GMLv2 offers a scalable and automated framework for perceptual audio quality evaluation, poised to accelerate research and development in modern audio coding technologies.
comment: Accepted to the 51st IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 4-8 May 2026
Linguistic traces of stochastic empathy in language models
Differentiating generated and human-written content is increasingly difficult. We examine how an incentive to convey humanness and task characteristics shape this human vs AI race across five studies. In Study 1-2 (n=530 and n=610) humans and a large language model (LLM) wrote relationship advice or relationship descriptions, either with or without instructions to sound human. New participants (n=428 and n=408) judged each text's source. Instructions to sound human were only effective for the LLM, reducing the human advantage. Study 3 (n=360 and n=350) showed that these effects persist when writers were instructed to avoid sounding like an LLM. Study 4 (n=219) tested empathy as mechanism of humanness and concluded that LLMs can produce empathy without humanness and humanness without empathy. Finally, computational text analysis (Study 5) indicated that LLMs become more human-like by applying an implicit representation of humanness to mimic stochastic empathy.
comment: preprint (updated)
UniFGVC: Universal Training-Free Few-Shot Fine-Grained Vision Classification via Attribute-Aware Multimodal Retrieval
Few-shot fine-grained visual classification (FGVC) aims to leverage limited data to enable models to discriminate subtly distinct categories. Recent works mostly finetuned the pre-trained visual language models to achieve performance gain, yet suffering from overfitting and weak generalization. To deal with this, we introduce UniFGVC, a universal training-free framework that reformulates few-shot FGVC as multimodal retrieval. First, we propose the Category-Discriminative Visual Captioner (CDV-Captioner) to exploit the open-world knowledge of multimodal large language models (MLLMs) to generate a structured text description that captures the fine-grained attribute features distinguishing closely related classes. CDV-Captioner uses chain-of-thought prompting and visually similar reference images to reduce hallucination and enhance discrimination of generated captions. Using it we can convert each image into an image-description pair, enabling more comprehensive feature representation, and construct the multimodal category templates using few-shot samples for the subsequent retrieval pipeline. Then, off-the-shelf vision and text encoders embed query and template pairs, and FGVC is accomplished by retrieving the nearest template in the joint space. UniFGVC ensures broad compatibility with diverse MLLMs and encoders, offering reliable generalization and adaptability across few-shot FGVC scenarios. Extensive experiments on 12 FGVC benchmarks demonstrate its consistent superiority over prior few-shot CLIP-based methods and even several fully-supervised MLLMs-based approaches.
Honey, I shrunk the hypothesis space (through logical preprocessing)
Inductive logic programming (ILP) is a form of logical machine learning. The goal is to search a hypothesis space for a hypothesis that generalises training examples and background knowledge. We introduce an approach that 'shrinks' the hypothesis space before an ILP system searches it. Our approach uses background knowledge to find rules that cannot be in an optimal hypothesis regardless of the training examples. For instance, our approach discovers relationships such as "even numbers cannot be odd" and "prime numbers greater than 2 are odd". It then removes violating rules from the hypothesis space. We implement our approach using answer set programming and use it to shrink the hypothesis space of a constraint-based ILP system. Our experiments on multiple domains, including visual reasoning and game playing, show that our approach can substantially reduce learning times whilst maintaining predictive accuracies. For instance, given just 10 seconds of preprocessing time, our approach can reduce learning times from over 10 hours to only 2 seconds.
comment: Submitted to JAIR
HumanDiffusion: A Vision-Based Diffusion Trajectory Planner with Human-Conditioned Goals for Search and Rescue UAV
Reliable human--robot collaboration in emergency scenarios requires autonomous systems that can detect humans, infer navigation goals, and operate safely in dynamic environments. This paper presents HumanDiffusion, a lightweight image-conditioned diffusion planner that generates human-aware navigation trajectories directly from RGB imagery. The system combines YOLO-11 based human detection with diffusion-driven trajectory generation, enabling a quadrotor to approach a target person and deliver medical assistance without relying on prior maps or computationally intensive planning pipelines. Trajectories are predicted in pixel space, ensuring smooth motion and a consistent safety margin around humans. We evaluate HumanDiffusion in simulation and real-world indoor mock-disaster scenarios. On a 300-sample test set, the model achieves a mean squared error of 0.02 in pixel-space trajectory reconstruction. Real-world experiments demonstrate an overall mission success rate of 80% across accident-response and search-and-locate tasks with partial occlusions. These results indicate that human-conditioned diffusion planning offers a practical and robust solution for human-aware UAV navigation in time-critical assistance settings.
comment: This paper has been accepted at HRI, Late Breaking Report, 2026
AR-LIF: Adaptive reset leaky integrate-and-fire neuron for spiking neural networks
Spiking neural networks offer low energy consumption due to their event-driven nature. Beyond binary spike outputs, their intrinsic floating-point dynamics merit greater attention. Neuronal threshold levels and reset modes critically determine spike count and timing. Hard reset cause information loss, while soft reset apply uniform treatment to neurons. To address these issues, we design an adaptive reset neuron that establishes relationships between inputs, outputs, and reset, while integrating a simple yet effective threshold adjustment strategy. Experimental results demonstrate that our method achieves excellent performance while maintaining lower energy consumption. In particular, it attains state-of-the-art accuracy on Tiny-ImageNet and CIFAR10-DVS. Codes are available at https://github.com/2ephyrus/AR-LIF.
comment: Accepted by ICASSP 2026
Constrained Best Arm Identification with Tests for Feasibility AAAI 2026
Best arm identification (BAI) aims to identify the highest-performance arm among a set of $K$ arms by collecting stochastic samples from each arm. In real-world problems, the best arm needs to satisfy additional feasibility constraints. While there is limited prior work on BAI with feasibility constraints, they typically assume the performance and constraints are observed simultaneously on each pull of an arm. However, this assumption does not reflect most practical use cases, e.g., in drug discovery, we wish to find the most potent drug whose toxicity and solubility are below certain safety thresholds. These safety experiments can be conducted separately from the potency measurement. Thus, this requires designing BAI algorithms that not only decide which arm to pull but also decide whether to test for the arm's performance or feasibility. In this work, we study feasible BAI which allows a decision-maker to choose a tuple $(i,\ell)$, where $i\in [K]$ denotes an arm and $\ell$ denotes whether she wishes to test for its performance ($\ell=0$) or any of its $N$ feasibility constraints ($\ell\in[N]$). We focus on the fixed confidence setting, which is to identify the feasible arm with the highest performance, with a probability of at least $1-δ$. We propose an efficient algorithm and upper-bound its sample complexity, showing our algorithm can naturally adapt to the problem's difficulty and eliminate arms by worse performance or infeasibility, whichever is easier. We complement this upper bound with a lower bound showing that our algorithm is \textit{asymptotically ($δ\rightarrow 0$) optimal}. Finally, we empirically show that our algorithm outperforms other state-of-the-art BAI algorithms in both synthetic and real-world datasets.
comment: Accepted to AAAI 2026
UACER: An Uncertainty-Adaptive Critic Ensemble Framework for Robust Adversarial Reinforcement Learning
Robust adversarial reinforcement learning has emerged as an effective paradigm for training agents to handle uncertain disturbance in real environments, with critical applications in sequential decision-making domains such as autonomous driving and robotic control. Within this paradigm, agent training is typically formulated as a zero-sum Markov game between a protagonist and an adversary to enhance policy robustness. However, the trainable nature of the adversary inevitably induces non-stationarity in the learning dynamics, leading to exacerbated training instability and convergence difficulties, particularly in high-dimensional complex environments. In this paper, we propose a novel approach, Uncertainty-Adaptive Critic Ensemble for robust adversarial Reinforcement learning (UACER), which consists of two components: 1) Diversified critic ensemble: A diverse set of K critic networks is employed in parallel to stabilize Q-value estimation in robust adversarial reinforcement learning, reducing variance and enhancing robustness compared to conventional single-critic designs. 2) Time-varying Decay Uncertainty (TDU) mechanism: Moving beyond simple linear combinations, we propose a variance-derived Q-value aggregation strategy that explicitly incorporates epistemic uncertainty to adaptively regulate the exploration-exploitation trade-off while stabilizing the training process. Comprehensive experiments across several challenging MuJoCo control problems validate the superior effectiveness of UACER, outperforming state-of-the-art methods in terms of overall performance, stability, and efficiency.
Entire Chain Uplift Modeling with Context-Enhanced Learning for Intelligent Marketing
Uplift modeling, vital in online marketing, seeks to accurately measure the impact of various strategies, such as coupons or discounts, on different users by predicting the Individual Treatment Effect (ITE). In an e-commerce setting, user behavior follows a defined sequential chain, including impression, click, and conversion. Marketing strategies exert varied uplift effects at each stage within this chain, impacting metrics like click-through and conversion rate. Despite its utility, existing research has neglected to consider the inter-task across all stages impacts within a specific treatment and has insufficiently utilized the treatment information, potentially introducing substantial bias into subsequent marketing decisions. We identify these two issues as the chain-bias problem and the treatment-unadaptive problem. This paper introduces the Entire Chain UPlift method with context-enhanced learning (ECUP), devised to tackle these issues. ECUP consists of two primary components: 1) the Entire Chain-Enhanced Network, which utilizes user behavior patterns to estimate ITE throughout the entire chain space, models the various impacts of treatments on each task, and integrates task prior information to enhance context awareness across all stages, capturing the impact of treatment on different tasks, and 2) the Treatment-Enhanced Network, which facilitates fine-grained treatment modeling through bit-level feature interactions, thereby enabling adaptive feature adjustment. Extensive experiments on public and industrial datasets validate ECUPs effectiveness. Moreover, ECUP has been deployed on the Meituan food delivery platform, serving millions of daily active users, with the related dataset released for future research.
comment: Withdrawn for further revision and improvement
Bayesian Joint Additive Factor Models for Multiview Learning
It is increasingly common to collect data of multiple different types on the same set of samples. Our focus is on studying relationships between such multiview features and responses. A motivating application arises in the context of precision medicine where multi-omics data are collected to correlate with clinical outcomes. It is of interest to infer dependence within and across views while combining multimodal information to improve the prediction of outcomes. The signal-to-noise ratio can vary substantially across views, motivating more nuanced statistical tools beyond standard late and early fusion. This challenge comes with the need to preserve interpretability, select features, and obtain accurate uncertainty quantification. To address these challenges, we introduce two complementary factor regression models. A baseline Joint Factor Regression (\textsc{jfr}) captures combined variation across views via a single factor set, and a more nuanced Joint Additive FActor Regression (\textsc{jafar}) that decomposes variation into shared and view-specific components. For \textsc{jfr}, we use independent cumulative shrinkage process (\textsc{i-cusp}) priors, while for \textsc{jafar} we develop a dependent version (\textsc{d-cusp}) designed to ensure identifiability of the components. We develop Gibbs samplers that exploit the model structure and accommodate flexible feature and outcome distributions. Prediction of time-to-labor onset from immunome, metabolome, and proteome data illustrates performance gains against state-of-the-art competitors. Our open-source software (\texttt{R} package) is available at https://github.com/niccoloanceschi/jafar.
comment: To be published in Biometrics
EvoCUA: Evolving Computer Use Agents via Learning from Scalable Synthetic Experience
The development of native computer-use agents (CUA) represents a significant leap in multimodal AI. However, their potential is currently bottlenecked by the constraints of static data scaling. Existing paradigms relying primarily on passive imitation of static datasets struggle to capture the intricate causal dynamics inherent in long-horizon computer tasks. In this work, we introduce EvoCUA, a native computer use agentic model. Unlike static imitation, EvoCUA integrates data generation and policy optimization into a self-sustaining evolutionary cycle. To mitigate data scarcity, we develop a verifiable synthesis engine that autonomously generates diverse tasks coupled with executable validators. To enable large-scale experience acquisition, we design a scalable infrastructure orchestrating tens of thousands of asynchronous sandbox rollouts. Building on these massive trajectories, we propose an iterative evolving learning strategy to efficiently internalize this experience. This mechanism dynamically regulates policy updates by identifying capability boundaries -- reinforcing successful routines while transforming failure trajectories into rich supervision through error analysis and self-correction. Empirical evaluations on the OSWorld benchmark demonstrate that EvoCUA achieves a success rate of 56.7%, establishing a new open-source state-of-the-art. Notably, EvoCUA significantly outperforms the previous best open-source model, OpenCUA-72B (45.0%), and surpasses leading closed-weights models such as UI-TARS-2 (53.1%). Crucially, our results underscore the generalizability of this approach: the evolving paradigm driven by learning from experience yields consistent performance gains across foundation models of varying scales, establishing a robust and scalable path for advancing native agent capabilities.
comment: 26 pages, 8 figures
Symmetry breaking for inductive logic programming AAAI26
The goal of inductive logic programming is to search for a hypothesis that generalises training data and background knowledge. The challenge is searching vast hypothesis spaces, which is exacerbated because many logically equivalent hypotheses exist. To address this challenge, we introduce a method to break symmetries in the hypothesis space. We implement our idea in answer set programming. Our experiments on multiple domains, including visual reasoning and game playing, show that our approach can reduce solving times from over an hour to just 17 seconds.
comment: AAAI26
Cognitive Control Architecture (CCA): A Lifecycle Supervision Framework for Robustly Aligned AI Agents
Autonomous Large Language Model (LLM) agents exhibit significant vulnerability to Indirect Prompt Injection (IPI) attacks. These attacks hijack agent behavior by polluting external information sources, exploiting fundamental trade-offs between security and functionality in existing defense mechanisms. This leads to malicious and unauthorized tool invocations, diverting agents from their original objectives. The success of complex IPIs reveals a deeper systemic fragility: while current defenses demonstrate some effectiveness, most defense architectures are inherently fragmented. Consequently, they fail to provide full integrity assurance across the entire task execution pipeline, forcing unacceptable multi-dimensional compromises among security, functionality, and efficiency. Our method is predicated on a core insight: no matter how subtle an IPI attack, its pursuit of a malicious objective will ultimately manifest as a detectable deviation in the action trajectory, distinct from the expected legitimate plan. Based on this, we propose the Cognitive Control Architecture (CCA), a holistic framework achieving full-lifecycle cognitive supervision. CCA constructs an efficient, dual-layered defense system through two synergistic pillars: (i) proactive and preemptive control-flow and data-flow integrity enforcement via a pre-generated "Intent Graph"; and (ii) an innovative "Tiered Adjudicator" that, upon deviation detection, initiates deep reasoning based on multi-dimensional scoring, specifically designed to counter complex conditional attacks. Experiments on the AgentDojo benchmark substantiate that CCA not only effectively withstands sophisticated attacks that challenge other advanced defense methods but also achieves uncompromised security with notable efficiency and robustness, thereby reconciling the aforementioned multi-dimensional trade-off.
Efficient rule induction by ignoring pointless rules AAAI26
The goal of inductive logic programming (ILP) is to find a set of logical rules that generalises training examples and background knowledge. We introduce an ILP approach that identifies pointless rules. A rule is pointless if it contains a redundant literal or cannot discriminate against negative examples. We show that ignoring pointless rules allows an ILP system to soundly prune the hypothesis space. Our experiments on multiple domains, including visual reasoning and game playing, show that our approach can reduce learning times by 99% whilst maintaining predictive accuracies.
comment: AAAI26
Introducing the Generative Application Firewall (GAF)
This paper introduces the Generative Application Firewall (GAF), a new architectural layer for securing LLM applications. Existing defenses -- prompt filters, guardrails, and data-masking -- remain fragmented; GAF unifies them into a single enforcement point, much like a WAF coordinates defenses for web traffic, while also covering autonomous agents and their tool interactions.
Text-to-Image Diffusion Models Cannot Count, and Prompt Refinement Cannot Help
Generative modeling is widely regarded as one of the most essential problems in today's AI community, with text-to-image generation having gained unprecedented real-world impacts. Among various approaches, diffusion models have achieved remarkable success and have become the de facto solution for text-to-image generation. However, despite their impressive performance, these models exhibit fundamental limitations in adhering to numerical constraints in user instructions, frequently generating images with an incorrect number of objects. While several prior works have mentioned this issue, a comprehensive and rigorous evaluation of this limitation remains lacking. To address this gap, we introduce T2ICountBench, a novel benchmark designed to rigorously evaluate the counting ability of state-of-the-art text-to-image diffusion models. Our benchmark encompasses a diverse set of generative models, including both open-source and private systems. It explicitly isolates counting performance from other capabilities, provides structured difficulty levels, and incorporates human evaluations to ensure high reliability. Extensive evaluations with T2ICountBench reveal that all state-of-the-art diffusion models fail to generate the correct number of objects, with accuracy dropping significantly as the number of objects increases. Additionally, an exploratory study on prompt refinement demonstrates that such simple interventions generally do not improve counting accuracy. Our findings highlight the inherent challenges in numerical understanding within diffusion models and point to promising directions for future improvements.
StarEmbed: Benchmarking Time Series Foundation Models on Astronomical Observations of Variable Stars
Time series foundation models (TSFMs) are increasingly being adopted as highly-capable general-purpose time series representation learners. Although their training corpora are vast, they exclude astronomical time series data. Observations of stars produce peta-scale time series with unique challenges including irregular sampling and heteroskedasticity. We introduce StarEmbed, the first public benchmark for rigorous and standardized evaluation of state-of-the-art TSFMs on stellar time series observations (``light curves''). We benchmark on three scientifically-motivated downstream tasks: unsupervised clustering, supervised classification, and out-of-distribution source detection. StarEmbed integrates a catalog of expert-vetted labels with multi-variate light curves from the Zwicky Transient Facility, yielding ~40k hand-labeled light curves spread across seven astrophysical classes. We evaluate the zero-shot representation capabilities of three TSFMs (MOIRAI, Chronos, Chronos-Bolt) and a domain-specific transformer (Astromer) against handcrafted feature extraction, the long-standing baseline in the astrophysics literature. Our results demonstrate that these TSFMs, especially the Chronos models, which are trained on data completely unlike the astronomical observations, can outperform established astrophysics-specific baselines in some tasks and effectively generalize to entirely new data. In particular, TSFMs deliver state-of-the-art performance on our out-of-distribution source detection benchmark. With the first benchmark of TSFMs on astronomical time series data, we test the limits of their generalization and motivate a paradigm shift in time-domain astronomy from using task-specific, fully supervised pipelines toward adopting generic foundation model representations for the analysis of peta-scale datasets from forthcoming observatories.
Controlled LLM Training on Spectral Sphere
Scaling large models requires optimization strategies that ensure rapid convergence grounded in stability. Maximal Update Parametrization ($\boldsymbolμ$P) provides a theoretical safeguard for width-invariant $Θ(1)$ activation control, whereas emerging optimizers like Muon are only ``half-aligned'' with these constraints: they control updates but allow weights to drift. To address this limitation, we introduce the \textbf{Spectral Sphere Optimizer (SSO)}, which enforces strict module-wise spectral constraints on both weights and their updates. By deriving the steepest descent direction on the spectral sphere, SSO realizes a fully $\boldsymbolμ$P-aligned optimization process. To enable large-scale training, we implement SSO as an efficient parallel algorithm within Megatron. Through extensive pretraining on diverse architectures, including Dense 1.7B, MoE 8B-A1B, and 200-layer DeepNet models, SSO consistently outperforms AdamW and Muon. Furthermore, we observe significant practical stability benefits, including improved MoE router load balancing, suppressed outliers, and strictly bounded activations.
Systematizing LLM Persona Design: A Four-Quadrant Technical Taxonomy for AI Companion Applications Neurips 2025
The design and application of LLM-based personas in AI companionship is a rapidly expanding but fragmented field, spanning from virtual emotional companions and game NPCs to embodied functional robots. This diversity in objectives, modality, and technical stacks creates an urgent need for a unified framework. To address this gap, this paper systematizes the field by proposing a Four-Quadrant Technical Taxonomy for AI companion applications. The framework is structured along two critical axes: Virtual vs. Embodied and Emotional Companionship vs. Functional Augmentation. Quadrant I (Virtual Companionship) explores virtual idols, romantic companions, and story characters, introducing a four-layer technical framework to analyze their challenges in maintaining long-term emotional consistency. Quadrant II (Functional Virtual Assistants) analyzes AI applications in work, gaming, and mental health, highlighting the shift from "feeling" to "thinking and acting" and pinpointing key technologies like enterprise RAG and on-device inference. Quadrants III & IV (Embodied Intelligence) shift from the virtual to the physical world, analyzing home robots and vertical-domain assistants, revealing core challenges in symbol grounding, data privacy, and ethical liability. This taxonomy provides not only a systematic map for researchers and developers to navigate the complex persona design space but also a basis for policymakers to identify and address the unique risks inherent in different application scenarios.
comment: Accepted to Neurips 2025 workshop: LLM Persona Workshop
StealthGraph: Exposing Domain-Specific Risks in LLMs through Knowledge-Graph-Guided Harmful Prompt Generation
Large language models (LLMs) are increasingly applied in specialized domains such as finance and healthcare, where they introduce unique safety risks. Domain-specific datasets of harmful prompts remain scarce and still largely rely on manual construction; public datasets mainly focus on explicit harmful prompts, which modern LLM defenses can often detect and refuse. In contrast, implicit harmful prompts-expressed through indirect domain knowledge-are harder to detect and better reflect real-world threats. We identify two challenges: transforming domain knowledge into actionable constraints and increasing the implicitness of generated harmful prompts. To address them, we propose an end-to-end framework that first performs knowledge-graph-guided harmful prompt generation to systematically produce domain-relevant prompts, and then applies dual-path obfuscation rewriting to convert explicit harmful prompts into implicit variants via direct and context-enhanced rewriting. This framework yields high-quality datasets combining strong domain relevance with implicitness, enabling more realistic red-teaming and advancing LLM safety research. We release our code and datasets at GitHub.
Towards Open-World Retrieval-Augmented Generation on Knowledge Graph: A Multi-Agent Collaboration Framework
Large Language Models (LLMs) have demonstrated strong capabilities in web search and reasoning. However, their dependence on static training corpora makes them prone to factual errors and knowledge gaps. Retrieval-Augmented Generation (RAG) addresses this limitation by incorporating external knowledge sources, especially structured Knowledge Graphs (KGs), which provide explicit semantics and efficient retrieval. Existing KG-based RAG approaches, however, generally assume that anchor entities are accessible to initiate graph traversal, which limits their robustness in open-world settings where accurate linking between the user query and the KG entity is unreliable. To overcome this limitation, we propose AnchorRAG, a novel multi-agent collaboration framework for open-world RAG without the predefined anchor entities. Specifically, a predictor agent dynamically identifies candidate anchor entities by aligning user query terms with KG nodes and initializes independent retriever agents to conduct parallel multi-hop explorations from each candidate. Then a supervisor agent formulates the iterative retrieval strategy for these retriever agents and synthesizes the resulting knowledge paths to generate the final answer. This multi-agent collaboration framework improves retrieval robustness and mitigates the impact of ambiguous or erroneous anchors. Extensive experiments on four public benchmarks demonstrate that AnchorRAG significantly outperforms existing baselines and establishes new state-of-the-art results on the real-world reasoning tasks.
Computational TIRF enables optical sectioning beyond the evanescent field for widefield fluorescence microscopy
The resolving ability of widefield fluorescence microscopy is fundamentally limited by out-of-focus background owing to its low axial resolution, particularly for densely labeled biological samples. Although total internal reflection fluorescence (TIRF) microscopy provides strong near-surface sectioning, they are intrinsically restricted to shallow imaging depths. Here we present computational TIRF (cTIRF), a deep learning-based imaging modality that generates TIRF-like sectioned images directly from conventional widefield epifluorescence measurements without any optical modification. By integrating a physics-informed forward model into network training, cTIRF achieves effective background suppression and axial resolution enhancement while maintaining consistency with the measured widefield data. We demonstrate that cTIRF recovers near-surface structures with performance comparable to experimental TIRF, and further enables both single-frame and volumetric sectioned reconstruction in densely labeled samples where conventional TIRF fails. This work establishes cTIRF as a practical and deployable alternative to hardware-based optical sectioning in fluorescence microscopy, enabled by rapid adaptation to new imaging systems with minimal calibration data.
Benchmarking Text-to-Python against Text-to-SQL: The Impact of Explicit Logic and Ambiguity
While Text-to-SQL remains the dominant approach for database interaction, real-world analytics increasingly require the flexibility of general-purpose programming languages such as Python or Pandas to manage file-based data and complex analytical workflows. Despite this growing need, the reliability of Text-to-Python in core data retrieval remains underexplored relative to the mature SQL ecosystem. To address this gap, we introduce BIRD-Python, a benchmark designed for cross-paradigm evaluation. We systematically refined the original dataset to reduce annotation noise and align execution semantics, thereby establishing a consistent and standardized baseline for comparison. Our analysis reveals a fundamental paradigmatic divergence: whereas SQL leverages implicit DBMS behaviors through its declarative structure, Python requires explicit procedural logic, making it highly sensitive to underspecified user intent. To mitigate this challenge, we propose the Logic Completion Framework (LCF), which resolves ambiguity by incorporating latent domain knowledge into the generation process. Experimental results show that (1) performance differences primarily stem from missing domain context rather than inherent limitations in code generation, and (2) when these gaps are addressed, Text-to-Python achieves performance parity with Text-to-SQL. These findings establish Python as a viable foundation for analytical agents-provided that systems effectively ground ambiguous natural language inputs in executable logical specifications. Resources are available at https://anonymous.4open.science/r/Bird-Python-43B7/.
comment: 8 pages, 7 figures
Mining Citywide Dengue Spread Patterns in Singapore Through Hotspot Dynamics from Open Web Data
Dengue, a mosquito-borne disease, continues to pose a persistent public health challenge in urban areas, particularly in tropical regions such as Singapore. Effective and affordable control requires anticipating where transmission risks are likely to emerge so that interventions can be deployed proactively rather than reactively. This study introduces a novel framework that uncovers and exploits latent transmission links between urban regions, mined directly from publicly available dengue case data. Instead of treating cases as isolated reports, we model how hotspot formation in one area is influenced by epidemic dynamics in neighboring regions. While mosquito movement is highly localized, long-distance transmission is often driven by human mobility, and in our case study, the learned network aligns closely with commuting flows, providing an interpretable explanation for citywide spread. These hidden links are optimized through gradient descent and used not only to forecast hotspot status but also to verify the consistency of spreading patterns, by examining the stability of the inferred network across consecutive weeks. Case studies on Singapore during 2013-2018 and 2020 show that four weeks of hotspot history are sufficient to achieve an average F-score of 0.79. Importantly, the learned transmission links align with commuting flows, highlighting the interpretable interplay between hidden epidemic spread and human mobility. By shifting from simply reporting dengue cases to mining and validating hidden spreading dynamics, this work transforms open web-based case data into a predictive and explanatory resource. The proposed framework advances epidemic modeling while providing a scalable, low-cost tool for public health planning, early intervention, and urban resilience.
comment: 9 pages, 9 figures. It's accepted by WWW 2026 Web4Good Track. To make accessible earlier, authors would like to put it on arxiv before the conference
Visual Autoregressive Transformers Must Use $Ω(n^2 d)$ Memory
A fundamental challenge in Visual Autoregressive models is the substantial memory overhead required during inference to store previously generated representations. Despite various attempts to mitigate this issue through compression techniques, prior works have not explicitly formalized the problem of KV-cache compression in this context. In this work, we take the first step in formally defining the KV-cache compression problem for Visual Autoregressive transformers. We then establish a fundamental negative result, proving that any mechanism for sequential visual token generation under attention-based architectures must use at least $Ω(n^2 d)$ memory, when $d = Ω(\log n)$, where $n$ is the number of tokens generated and $d$ is the embedding dimensionality. This result demonstrates that achieving truly sub-quadratic memory usage is impossible without additional structural constraints. Our proof is constructed via a reduction from a computational lower bound problem, leveraging randomized embedding techniques inspired by dimensionality reduction principles. Finally, we discuss how sparsity priors on visual representations can influence memory efficiency, presenting both impossibility results and potential directions for mitigating memory overhead.
LLM Watermark Evasion via Bias Inversion
Watermarking for large language models (LLMs) embeds a statistical signal during generation to enable detection of model-produced text. While watermarking has proven effective in benign settings, its robustness under adversarial evasion remains contested. To advance a rigorous understanding and evaluation of such vulnerabilities, we propose the \emph{Bias-Inversion Rewriting Attack} (BIRA), which is theoretically motivated and model-agnostic. BIRA weakens the watermark signal by suppressing the logits of likely watermarked tokens during LLM-based rewriting, without any knowledge of the underlying watermarking scheme. Across recent watermarking methods, BIRA achieves over 99\% evasion while preserving the semantic content of the original text. Beyond demonstrating an attack, our results reveal a systematic vulnerability, emphasizing the need for stress testing and robust defenses.
LUMOS: Large User MOdels for User Behavior Prediction
User behavior prediction at scale remains a critical challenge for online B2C platforms. Traditional approaches rely heavily on task-specific models and domain-specific feature engineering. This is time-consuming, computationally expensive, and requires domain expertise and therefore, not scalable. We present LUMOS (Large User MOdel Series), a transformer-based architecture that eliminates task-specific models and manual feature engineering by learning multiple tasks jointly using only raw user activity data. LUMOS introduces a novel cross-attention mechanism that conditions predictions on future known events (e.g., holidays, sales, etc.), enabling the model to predict complex behavior patterns like "how will upcoming holidays affect user engagement?" The architecture also employs multi-modal tokenization, combining user activities, event context, and static user demographic attributes into rich representations processed through specialized embedding pathways. Through extensive experiments on a production dataset spanning 1.7 trillion user activity tokens from 250 million users, we demonstrate that LUMOS achieves superior performance compared to traditional task-specific models. Across 5 tasks with established baselines, we achieve an average improvement of 0.025 in ROC-AUC for binary classification tasks and 4.6\% reduction in MAPE for regression tasks. Online A/B testing validates these improvements translate to measurable business impact with a 3.15\% increase in Daily Active Users.
Proof-of-Use: Mitigating Tool-Call Hacking in Deep Research Agents
While reinforcement learning (RL) enhances their ability to plan and reason across retrieval steps, we identify a critical failure mode in this setting: Tool-Call Hacking. Unlike execution-based tools (e.g., code or math), whose effects are directly observable, the weak observability of causal dependencies between retrieved evidence and reasoning under format- and outcome-level supervision enables agents to maximize surface-level reward signals without genuinely grounding their reasoning in the returned evidence. This leads to distinctive pathologies, including mode collapse via tool overuse and hallucinated tool usage where tool calls are largely decorative. To address this issue, we propose Proof-of-Use (PoU), an evidence grounded RL framework that explicitly optimizes the causal dependency from retrieval to reasoning and final answers. PoU re-fomulate a fine-grained stepwise interaction protocol in which agents must auditably cite normalized evidence identifiers. We operationalize this via a multi-objective reward design consisting of: (1) two progressive process rewards that constrain citation validity at intermediate steps; (2) a global Answer--Support Alignment reward that enforces consistency between final answers and retrieved evidence; and (3) a curriculum-style adaptive reward mixing mechanism that smoothly transitions agents from dense process supervision to sparse outcome-based objectives. Extensive experiments show the strong performance of PoU and demonstrate the effectiveness in mitigating tool-call hacking. Beyond this, PoU exhibits a notable emergent property: adaptive and robust tool-usage patterns naturally arise under domain and tool shifts, even though PoU does not explicitly optimize for tool adaptation.
MoE-Enhanced Multi-Domain Feature Selection and Fusion for Fast Map-Free Trajectory Prediction
Trajectory prediction is crucial for the reliability and safety of autonomous driving systems, yet it remains a challenging task in complex interactive scenarios due to noisy trajectory observations and intricate agent interactions. Existing methods often struggle to filter redundant scene data for discriminative information extraction, directly impairing trajectory prediction accuracy especially when handling outliers and dynamic multi-agent interactions. In response to these limitations, we present a novel map-free trajectory prediction method which adaptively eliminates redundant information and selects discriminative features across the temporal, spatial, and frequency domains, thereby enabling precise trajectory prediction in real-world driving environments. First, we design a MoE based frequency domain filter to adaptively weight distinct frequency components of observed trajectory data and suppress outlier related noise; then a selective spatiotemporal attention module that reallocates weights across temporal nodes (sequential dependencies), temporal trends (evolution patterns), and spatial nodes to extract salient information is proposed. Finally, our multimodal decoder-supervised by joint patch level and point-level losses generates reasonable and temporally consistent trajectories, and comprehensive experiments on the large-scale NuScenes and Argoverse dataset demonstrate that our method achieves competitive performance and low-latency inference performance compared with recently proposed methods.
Advances in Artificial Intelligence: A Review for the Creative Industries
Artificial intelligence (AI) has undergone transformative advances since 2022, particularly through generative AI, large language models (LLMs), and diffusion models, fundamentally reshaping the creative industries. However, existing reviews have not comprehensively addressed these recent breakthroughs and their integrated impact across the creative production pipeline. This paper addresses this gap by providing a systematic review of AI technologies that have emerged or matured since our 2022 review, examining their applications across content creation, information analysis, post-production enhancement, compression, and quality assessment. We document how transformers, LLMs, diffusion models, and implicit neural representations have established new capabilities in text-to-image/video generation, real-time 3D reconstruction, and unified multi-task frameworks-shifting AI from support tool to core creative technology. Beyond technological advances, we analyze the trend toward unified AI frameworks that integrate multiple creative tasks, replacing task-specific solutions. We critically examine the evolving role of human-AI collaboration, where human oversight remains essential for creative direction and mitigating AI hallucinations. Finally, we identify emerging challenges including copyright concerns, bias mitigation, computational demands, and the need for robust regulatory frameworks. This review provides researchers and practitioners with a comprehensive understanding of current AI capabilities, limitations, and future trajectories in creative applications.
comment: This is an updated review of our previous paper (see https://doi.org/10.1007/s10462-021-10039-7), and has been accepted by Artificial Intelligence Review journal
AutoSciDACT: Automated Scientific Discovery through Contrastive Embedding and Hypothesis Testing NeurIPS 2025
Novelty detection in large scientific datasets faces two key challenges: the noisy and high-dimensional nature of experimental data, and the necessity of making statistically robust statements about any observed outliers. While there is a wealth of literature on anomaly detection via dimensionality reduction, most methods do not produce outputs compatible with quantifiable claims of scientific discovery. In this work we directly address these challenges, presenting the first step towards a unified pipeline for novelty detection adapted for the rigorous statistical demands of science. We introduce AutoSciDACT (Automated Scientific Discovery with Anomalous Contrastive Testing), a general-purpose pipeline for detecting novelty in scientific data. AutoSciDACT begins by creating expressive low-dimensional data representations using a contrastive pre-training, leveraging the abundance of high-quality simulated data in many scientific domains alongside expertise that can guide principled data augmentation strategies. These compact embeddings then enable an extremely sensitive machine learning-based two-sample test using the New Physics Learning Machine (NPLM) framework, which identifies and statistically quantifies deviations in observed data relative to a reference distribution (null hypothesis). We perform experiments across a range of astronomical, physical, biological, image, and synthetic datasets, demonstrating strong sensitivity to small injections of anomalous data across all domains.
comment: Accepted at NeurIPS 2025; 33 pages, 16 figures
An Evolutionary Framework for Automatic Optimization Benchmark Generation via Large Language Models
Optimization benchmarks play a fundamental role in assessing algorithm performance; however, existing artificial benchmarks often fail to capture the diversity and irregularity of real-world problem structures, while benchmarks derived from real-world problems are costly and difficult to construct. To address these challenges, we propose an evolutionary automatic benchmark generation framework that leverages a large language model (LLM) as a generative operator, termed the LLM-driven evolutionary benchmark generator (LLM-EBG). In this framework, the LLM serves as an evolutionary operator that generates and evolves benchmark problems within a flexible, expressive representation space. As a case study, we generate unconstrained single-objective continuous minimization problems represented as mathematical expressions designed to induce significant performance differences between a genetic algorithm (GA) and differential evolution (DE). Experimental results show that LLM-EBG successfully produces benchmark problems in which the designated target algorithm consistently outperforms the comparative algorithm in more than 80\% of trials. Furthermore, exploratory landscape analysis reveals that benchmarks favoring GA are highly sensitive to variable scaling, demonstrating that the proposed framework can generate problems with distinct geometric characteristics that reflect the intrinsic search behaviors of different optimization algorithms.
R$^2$PO: Decoupling Training Trajectories from Inference Responses for LLM Reasoning
Reinforcement learning has become a central paradigm for improving LLM reasoning. However, existing methods use a single policy to produce both inference responses and training optimization trajectories. The objective conflict between generating stable inference responses and diverse training trajectories leads to insufficient exploration, which harms reasoning capability. In this paper, to address the problem, we propose R$^2$PO (Residual Rollout Policy Optimization), which introduces a lightweight Residual Rollout-Head atop the policy to decouple training trajectories from inference responses, enabling controlled trajectory diversification during training while keeping inference generation stable. Experiments across multiple benchmarks show that our method consistently outperforms baselines, achieving average accuracy gains of 3.4% on MATH-500 and 1.3% on APPS, while also reducing formatting errors and mitigating length bias for stable optimization. Our code is publicly available at https://github.com/RRPO-ARR/Code.
A Mobile Application Front-End for Presenting Explainable AI Results in Diabetes Risk Estimation
Diabetes is a significant and continuously rising health challenge in Indonesia. Although many artificial intelligence (AI)-based health applications have been developed for early detection, most function as "black boxes," lacking transparency in their predictions. Explainable AI (XAI) methods offer a solution, yet their technical outputs are often incomprehensible to non-expert users. This research aims to develop a mobile application front-end that presents XAI-driven diabetes risk analysis in an intuitive, understandable format. Development followed the waterfall methodology, comprising requirements analysis, interface design, implementation, and evaluation. Based on user preference surveys, the application adopts two primary visualization types - bar charts and pie charts - to convey the contribution of each risk factor. These are complemented by personalized textual narratives generated via integration with GPT-4o. The application was developed natively for Android using Kotlin and Jetpack Compose. The resulting prototype interprets SHAP (SHapley Additive exPlanations), a key XAI approach, into accessible graphical visualizations and narratives. Evaluation through user comprehension testing (Likert scale and interviews) and technical functionality testing confirmed the research objectives were met. The combination of visualization and textual narrative effectively enhanced user understanding (average score 4.31/5) and empowered preventive action, supported by a 100% technical testing success rate.
comment: This paper was accepted and presented at the 2025 IEEE International Conference on Data and Software Engineering (ICoDSE) on 29 October 2025 in Batam, Indonesia, and is currently awaiting publication. This version corrects the author name. No changes to the content
Scalable Back-End for an AI-Based Diabetes Prediction Application
The rising global prevalence of diabetes necessitates early detection to prevent severe complications. While AI-powered prediction applications offer a promising solution, they require a responsive and scalable back-end architecture to serve a large user base effectively. This paper details the development and evaluation of a scalable back-end system designed for a mobile diabetes prediction application. The primary objective was to maintain a failure rate below 5% and an average latency of under 1000 ms. The architecture leverages horizontal scaling, database sharding, and asynchronous communication via a message queue. Performance evaluation showed that 83% of the system's features (20 out of 24) met the specified performance targets. Key functionalities such as user profile management, activity tracking, and read-intensive prediction operations successfully achieved the desired performance. The system demonstrated the ability to handle up to 10,000 concurrent users without issues, validating its scalability. The implementation of asynchronous communication using RabbitMQ proved crucial in minimizing the error rate for computationally intensive prediction requests, ensuring system reliability by queuing requests and preventing data loss under heavy load.
comment: This paper was accepted and presented at the 2025 IEEE International Conference on Data and Software Engineering (ICoDSE) on 28 October 2025 in Batam, Indonesia, and is currently awaiting publication. This version corrects the author name. No changes to the content
Modern Hopfield Networks Require Chain-of-Thought to Solve $\mathsf{NC}^1$-Hard Problems
Modern Hopfield Networks (MHNs) have emerged as powerful components in deep learning, serving as effective replacements for pooling layers, LSTMs, and attention mechanisms. While recent advancements have significantly improved their storage capacity and retrieval efficiency, their fundamental theoretical boundaries remain underexplored. In this paper, we rigorously characterize the expressive power of MHNs through the lens of circuit complexity theory. We prove that $\mathrm{poly}(n)$-precision MHNs with constant depth and linear hidden dimension fall within the $\mathsf{DLOGTIME}$-uniform $\mathsf{TC}^0$ complexity class. Consequently, assuming $\mathsf{TC}^0 \neq \mathsf{NC}^1$, we demonstrate that these architectures are incapable of solving $\mathsf{NC}^1$-hard problems, such as undirected graph connectivity and tree isomorphism. We further extend these impossibility results to Kernelized Hopfield Networks. However, we show that these limitations are not absolute: we prove that equipping MHNs with a Chain-of-Thought (CoT) mechanism enables them to transcend the $\mathsf{TC}^0$ barrier, allowing them to solve inherently serial problems like the word problem for the permutation group $S_5$. Collectively, our results delineate a fine-grained boundary between the capabilities of standard MHNs and those augmented with reasoning steps.
Distinguishing Task-Specific and General-Purpose AI in Regulation
Over the past decade, policymakers have developed a set of regulatory tools to ensure AI development aligns with key societal goals. Many of these tools were initially developed in response to concerns with task-specific AI and therefore encode certain assumptions about the nature of AI systems and the utility of certain regulatory approaches. With the advent of general-purpose AI (GPAI), however, some of these assumptions no longer hold, even as policymakers attempt to maintain a single regulatory target that covers both types of AI. In this paper, we identify four distinct aspects of GPAI that call for meaningfully different policy responses. These are the generality and adaptability of GPAI that make it a poor regulatory target, the difficulty of designing effective evaluations, new legal concerns that change the ecosystem of stakeholders and sources of expertise, and the distributed structure of the GPAI value chain. In light of these distinctions, policymakers will need to evaluate where the past decade of policy work remains relevant and where new policies, designed to address the unique risks posed by GPAI, are necessary. We outline three recommendations for policymakers to more effectively identify regulatory targets and leverage constraints across the broader ecosystem to govern GPAI.
comment: Camera-ready for CS&Law'26
Combating Spurious Correlations in Graph Interpretability via Self-Reflection
Interpretable graph learning has recently emerged as a popular research topic in machine learning. The goal is to identify the important nodes and edges of an input graph that are crucial for performing a specific graph reasoning task. A number of studies have been conducted in this area, and various benchmark datasets have been proposed to facilitate evaluation. Among them, one of the most challenging is the Spurious-Motif benchmark, introduced at ICLR 2022. The datasets in this synthetic benchmark are deliberately designed to include spurious correlations, making it particularly difficult for models to distinguish truly relevant structures from misleading patterns. As a result, existing methods exhibit significantly worse performance on this benchmark compared to others. In this paper, we focus on improving interpretability on the challenging Spurious-Motif datasets. We demonstrate that the self-reflection technique, commonly used in large language models to tackle complex tasks, can also be effectively adapted to enhance interpretability in datasets with strong spurious correlations. Specifically, we propose a self-reflection framework that can be integrated with existing interpretable graph learning methods. When such a method produces importance scores for each node and edge, our framework feeds these predictions back into the original method to perform a second round of evaluation. This iterative process mirrors how large language models employ self-reflective prompting to reassess their previous outputs. We further analyze the reasons behind this improvement from the perspective of graph representation learning, which motivates us to propose a fine-tuning training method based on this feedback mechanism.
EmbedAgent: Benchmarking Large Language Models in Embedded System Development
Large Language Models (LLMs) have shown promise in various tasks, yet few benchmarks assess their capabilities in embedded system development. In this paper, we introduce EmbedAgent, a paradigm designed to simulate real-world roles in embedded system development, such as Embedded System Programmer, Architect, and Integrator. This paradigm enables LLMs to be tested in tasks that bridge the gap between digital and physical systems, allowing for a more comprehensive assessment of their capabilities. To evaluate LLMs on these tasks, we propose Embedbench, the first comprehensive benchmark for embedded system programming, circuit design, and cross-platform migration. Embedbench consists of 126 cases, covering 9 electronic components across 3 hardware platforms. Through extensive experiments on 10 mainstream LLMs, we uncover several key findings. Surprisingly, despite the simplicity of the cases, DeepSeek-R1 achieves only a 55.6% pass@1 rate when provided with schematic information, and 50.0% when tasked with generating the schematics itself. In the cross-platform migration tasks, LLMs show relatively strong performance with MicroPython on the Raspberry Pi Pico (with the top model achieving 73.8% pass@1), but perform poorly on ESP-IDF, where the best model reaches only 29.4% pass@1. Interestingly, we observe that general-purpose chat LLMs like DeepSeek-V3 often fail to utilize relevant pre-trained knowledge in this domain, while reasoning LLMs tend to overthink and overlook efficient knowledge during pretraining. Based on these insights, we propose two strategies: retrieval augmented generation and compiler feedback-to enhance LLM performance. These strategies result in significant improvements, with Deepseek-R1 reaching a 65.1% pass@1 with correct schematics, and 53.1% without. Additionally, the accuracy of the Arduino to ESP32 migration task improves from 21.4% to 27.8%.
comment: 12 pages, accepted by International Conference on Software Engineering (ICSE)
Reinforcement Learning for Charging Optimization of Inhomogeneous Dicke Quantum Batteries
Charging optimization is a key challenge to the implementation of quantum batteries, particularly under inhomogeneity and partial observability. This paper employs reinforcement learning to optimize piecewise-constant charging policies for an inhomogeneous Dicke battery. We systematically compare policies across four observability regimes, from full-state access to experimentally accessible observables (energies of individual two-level systems (TLSs), first-order averages, and second-order correlations). Simulation results demonstrate that full observability yields near-optimal ergotropy with low variability, while under partial observability, access to only single-TLS energies or energies plus first-order averages lags behind the fully observed baseline. However, augmenting partial observations with second-order correlations recovers most of the gap, reaching 94%-98% of the full-state baseline. The learned schedules are nonmyopic, trading temporary plateaus or declines for superior terminal outcomes. These findings highlight a practical route to effective fast-charging protocols under realistic information constraints.
On Computational Limits of FlowAR Models: Expressivity and Efficiency AISTATS 2026
The expressive power and computational complexity of deep visual generative models, such as flow-based and autoregressive (AR) models, have gained considerable interest for their wide-ranging applications in generative tasks. However, the theoretical characterization of their expressiveness through the lens of circuit complexity remains underexplored, particularly for the state-of-the-art architecture like FlowAR proposed by [Ren et al., 2024], which integrates flow-based and autoregressive mechanisms. This gap limits our understanding of their inherent computational limits and practical efficiency. In this study, we address this gap by analyzing the circuit complexity of the FlowAR architecture. We demonstrate that when the largest feature map produced by the FlowAR model has dimensions $n \times n \times c$, the FlowAR model is simulable by a family of threshold circuits $\mathsf{TC}^0$, which have constant depth $O(1)$ and polynomial width $\mathrm{poly}(n)$. This is the first study to rigorously highlight the limitations in the expressive power of FlowAR models. Furthermore, we identify the conditions under which the FlowAR model computations can achieve almost quadratic time. To validate our theoretical findings, we present efficient model variant constructions based on low-rank approximations that align with the derived criteria. Our work provides a foundation for future comparisons with other generative paradigms and guides the development of more efficient and expressive implementations.
comment: AISTATS 2026
Hierarchy-Aware Multimodal Unlearning for Medical AI
Pretrained Multimodal Large Language Models (MLLMs) are increasingly used in sensitive domains such as medical AI, where privacy regulations like HIPAA and GDPR require specific removal of individuals' or institutions' data. This motivates machine unlearning, which aims to remove the influence of target data from a trained model. However, existing unlearning benchmarks fail to reflect the hierarchical and multimodal structure of real-world medical data, limiting their ability to properly evaluate unlearning in practice. Therefore, we introduce MedForget, a hierarchy-aware multimodal unlearning benchmark that models hospital data as a nested structure, enabling fine-grained evaluation of multimodal unlearning across retain and forget splits. Experiments with current unlearning methods show that existing approaches struggle to achieve effective hierarchy-aware forgetting without degrading downstream medical utility. To address this limitation, we propose Cross-modal Hierarchy-Informed Projection for unlearning (CHIP), a training-free, hierarchy-aware multimodal unlearning method that deletes information by selectively removing target-specific weight subspaces while preserving sibling-shared information. Experiments show that CHIP achieves the highest forget-retain performance gap across all hierarchy levels while maintaining competitive downstream utility compared to existing methods. Overall, MedForget provides a practical, HIPAA-aligned benchmark for evaluating structured multimodal unlearning for medical data, and CHIP offers an effective and general solution for hierarchy-aware forgetting that balances deletion with utility.
comment: Dataset and Code: https://github.com/fengli-wu/MedForget
Unified Multimodal Interleaved Document Representation for Retrieval
Information Retrieval (IR) methods aim to identify documents relevant to a query, which have been widely applied in various natural language tasks. However, existing approaches typically consider only the textual content within documents, overlooking the fact that documents can contain multiple modalities, including images and tables. Also, they often segment each long document into multiple discrete passages for embedding, which prevents them from capturing the overall document context and interactions between paragraphs. To address these two challenges, we propose a method that holistically embeds documents interleaved with multiple modalities by leveraging the capability of recent vision-language models that enable the processing and integration of text, images, and tables into a unified format and representation. Moreover, to mitigate the information loss from segmenting documents into passages, instead of representing and retrieving passages individually, we further merge the representations of segmented passages into one single document representation, while we additionally introduce a reranking strategy to decouple and identify the relevant passage within the document if necessary. Then, through extensive experiments on diverse IR scenarios considering both the textual and multimodal queries, we show that our approach substantially outperforms relevant baselines, thanks to the consideration of the multimodal information within documents.
comment: EACL Findings 2026
Information Capacity: Evaluating the Efficiency of Large Language Models via Text Compression
Recent years have witnessed the rapid advancements of large language models (LLMs) and their expanding applications, leading to soaring demands for computational resources. The widespread adoption of test-time scaling further intensifies the tension between model capability and resource consumption, highlighting the importance of inference efficiency. However, a unified metric that accurately reflects an LLM's efficiency across diverse model sizes and architectures remains absent. Motivated by the correlation between compression and intelligence, we introduce information capacity, a measure of model efficiency based on text compression performance relative to computational complexity. A distinctive feature of information capacity is its incorporation of tokenizer efficiency, which affects inference costs but is often neglected in LLM evaluations. We assess the information capacity of 52 open-source models and observe a consistent information capacity among different-sized models within a series. Experiments on 5 heterogeneous datasets reveal strong linguistic biases in mainstream LLMs. Three major factors of information capacity include tokenizer efficiency, pretraining data, and the mixture-of-experts architecture. Empirical results verify the accuracy of performance prediction across model sizes based on information capacity and show the correlation between information capacity and benchmark scores.
comment: Code: https://github.com/TeleAI-AI-Flow/InformationCapacity. Data: https://huggingface.co/datasets/TeleAI-AI-Flow/InformationCapacity
Exploring LLMs for Scientific Information Extraction Using The SciEx Framework AAAI 2026
Large language models (LLMs) are increasingly touted as powerful tools for automating scientific information extraction. However, existing methods and tools often struggle with the realities of scientific literature: long-context documents, multi-modal content, and reconciling varied and inconsistent fine-grained information across multiple publications into standardized formats. These challenges are further compounded when the desired data schema or extraction ontology changes rapidly, making it difficult to re-architect or fine-tune existing systems. We present SciEx, a modular and composable framework that decouples key components including PDF parsing, multi-modal retrieval, extraction, and aggregation. This design streamlines on-demand data extraction while enabling extensibility and flexible integration of new models, prompting strategies, and reasoning mechanisms. We evaluate SciEx on datasets spanning three scientific topics for its ability to extract fine-grained information accurately and consistently. Our findings provide practical insights into both the strengths and limitations of current LLM-based pipelines.
comment: Accepted to the KGML Bridge at AAAI 2026 (non-archival)
PRACTIQ: A Practical Conversational Text-to-SQL dataset with Ambiguous and Unanswerable Queries
Previous text-to-SQL datasets and systems have primarily focused on user questions with clear intentions that can be answered. However, real user questions can often be ambiguous with multiple interpretations or unanswerable due to a lack of relevant data. In this work, we construct a practical conversational text-to-SQL dataset called PRACTIQ, consisting of ambiguous and unanswerable questions inspired by real-world user questions. We first identified four categories of ambiguous questions and four categories of unanswerable questions by studying existing text-to-SQL datasets. Then, we generate conversations with four turns: the initial user question, an assistant response seeking clarification, the user's clarification, and the assistant's clarified SQL response with the natural language explanation of the execution results. For some ambiguous queries, we also directly generate helpful SQL responses, that consider multiple aspects of ambiguity, instead of requesting user clarification. To benchmark the performance on ambiguous, unanswerable, and answerable questions, we implemented large language model (LLM)-based baselines using various LLMs. Our approach involves two steps: question category classification and clarification SQL prediction. Our experiments reveal that state-of-the-art systems struggle to handle ambiguous and unanswerable questions effectively. We will release our code for data generation and experiments on GitHub.
Intention Collapse: Intention-Level Metrics for Reasoning in Language Models
Language generation maps a rich, high-dimensional internal state to a single token sequence. We study this many-to-one mapping through the lens of intention collapse: the projection from an internal intention space I to an external language space L. We introduce three cheap, model-agnostic metrics computed on a pre-collapse state I: (i) intention entropy Hint(I), (ii) effective dimensionality deff(I), and (iii) recoverability Recov(I), operationalized as probe AUROC for predicting eventual success. We evaluate these metrics in a 3x3 study across models (Mistral-7B, LLaMA-3.1-8B, Qwen-2.5-7B) and benchmarks (GSM8K, ARC-Challenge, AQUA-RAT), comparing baseline, chain-of-thought (CoT), and a babble control (n=200 items per cell). CoT increases average accuracy from 34.2% to 47.3% (+13.1 pp), driven by large gains on GSM8K but consistent degradations on ARC-Challenge. Across models, CoT induces distinct entropy regimes relative to baseline, dH = Hint(CoT) - Hint(Base): Mistral shows dH < 0 (lower-entropy CoT), whereas LLaMA shows dH > 0 (higher-entropy CoT), highlighting heterogeneity in CoT-induced internal uncertainty. Finally, probe AUROC is significantly above chance in a subset of settings and can dissociate from behavioral accuracy (e.g., high AUROC alongside lower CoT accuracy on ARC-Challenge for Qwen), suggesting that informative internal signal is not always reliably converted into a final discrete decision under constrained response formats.
comment: 41 pages, 8 figures, 6 tables. Code: https://github.com/patriciomvera/intention-collapse-experiments
Machine Learning 139
AnyView: Synthesizing Any Novel View in Dynamic Scenes
Modern generative video models excel at producing convincing, high-quality outputs, but struggle to maintain multi-view and spatiotemporal consistency in highly dynamic real-world environments. In this work, we introduce \textbf{AnyView}, a diffusion-based video generation framework for \emph{dynamic view synthesis} with minimal inductive biases or geometric assumptions. We leverage multiple data sources with various levels of supervision, including monocular (2D), multi-view static (3D) and multi-view dynamic (4D) datasets, to train a generalist spatiotemporal implicit representation capable of producing zero-shot novel videos from arbitrary camera locations and trajectories. We evaluate AnyView on standard benchmarks, showing competitive results with the current state of the art, and propose \textbf{AnyViewBench}, a challenging new benchmark tailored towards \emph{extreme} dynamic view synthesis in diverse real-world scenarios. In this more dramatic setting, we find that most baselines drastically degrade in performance, as they require significant overlap between viewpoints, while AnyView maintains the ability to produce realistic, plausible, and spatiotemporally consistent videos when prompted from \emph{any} viewpoint. Results, data, code, and models can be viewed at: https://tri-ml.github.io/AnyView/
comment: Project webpage: https://tri-ml.github.io/AnyView/
A Scalable Measure of Loss Landscape Curvature for Analyzing the Training Dynamics of LLMs
Understanding the curvature evolution of the loss landscape is fundamental to analyzing the training dynamics of neural networks. The most commonly studied measure, Hessian sharpness ($λ_{\max}^H$) -- the largest eigenvalue of the loss Hessian -- determines local training stability and interacts with the learning rate throughout training. Despite its significance in analyzing training dynamics, direct measurement of Hessian sharpness remains prohibitive for Large Language Models (LLMs) due to high computational cost. We analyze $\textit{critical sharpness}$ ($λ_c$), a computationally efficient measure requiring fewer than $10$ forward passes given the update direction $Δ\mathbfθ$. Critically, this measure captures well-documented Hessian sharpness phenomena, including progressive sharpening and Edge of Stability. Using this measure, we provide the first demonstration of these sharpness phenomena at scale, up to $7$B parameters, spanning both pre-training and mid-training of OLMo-2 models. We further introduce $\textit{relative critical sharpness}$ ($λ_c^{1\to 2}$), which quantifies the curvature of one loss landscape while optimizing another, to analyze the transition from pre-training to fine-tuning and guide data mixing strategies. Critical sharpness provides practitioners with a practical tool for diagnosing curvature dynamics and informing data composition choices at scale. More broadly, our work shows that scalable curvature measures can provide actionable insights for large-scale training.
comment: 9 pages, 6 figures
Latent Diffusion for Internet of Things Attack Data Generation in Intrusion Detection
Intrusion Detection Systems (IDSs) are a key component for protecting Internet of Things (IoT) environments. However, in Machine Learning-based (ML-based) IDSs, performance is often degraded by the strong class imbalance between benign and attack traffic. Although data augmentation has been widely explored to mitigate this issue, existing approaches typically rely on simple oversampling techniques or generative models that struggle to simultaneously achieve high sample fidelity, diversity, and computational efficiency. To address these limitations, we propose the use of a Latent Diffusion Model (LDM) for attack data augmentation in IoT intrusion detection and provide a comprehensive comparison against state-of-the-art baselines. Experiments were conducted on three representative IoT attack types, specifically Distributed Denial-of-Service (DDoS), Mirai, and Man-in-the-Middle, evaluating both downstream IDS performance and intrinsic generative quality using distributional, dependency-based, and diversity metrics. Results show that balancing the training data with LDM-generated samples substantially improves IDS performance, achieving F1-scores of up to 0.99 for DDoS and Mirai attacks and consistently outperforming competing methods. Additionally, quantitative and qualitative analyses demonstrate that LDMs effectively preserve feature dependencies while generating diverse samples and reduce sampling time by approximately 25\% compared to diffusion models operating directly in data space. These findings highlight latent diffusion as an effective and scalable solution for synthetic IoT attack data generation, substantially mitigating the impact of class imbalance in ML-based IDSs for IoT scenarios.
comment: Submitted to IEEE. 15 pages, 2 figures
Auto-Regressive Masked Diffusion Models
Masked diffusion models (MDMs) have emerged as a promising approach for language modeling, yet they face a performance gap compared to autoregressive models (ARMs) and require more training iterations. In this work, we present the Auto-Regressive Masked Diffusion (ARMD) model, an architecture designed to close this gap by unifying the training efficiency of autoregressive models with the parallel generation capabilities of diffusion-based models. Our key insight is to reframe the masked diffusion process as a block-wise causal model. This perspective allows us to design a strictly causal, permutation-equivariant architecture that computes all conditional probabilities across multiple denoising steps in a single, parallel forward pass. The resulting architecture supports efficient, autoregressive-style decoding and a progressive permutation training scheme, allowing the model to learn both canonical left-to-right and random token orderings. Leveraging this flexibility, we introduce a novel strided parallel generation strategy that accelerates inference by generating tokens in parallel streams while maintaining global coherence. Empirical results demonstrate that ARMD achieves state-of-the-art performance on standard language modeling benchmarks, outperforming established diffusion baselines while requiring significantly fewer training steps. Furthermore, it establishes a new benchmark for parallel text generation, effectively bridging the performance gap between parallel and sequential decoding.
3D Molecule Generation from Rigid Motifs via SE(3) Flows
Three-dimensional molecular structure generation is typically performed at the level of individual atoms, yet molecular graph generation techniques often consider fragments as their structural units. Building on the advances in frame-based protein structure generation, we extend these fragmentation ideas to 3D, treating general molecules as sets of rigid-body motifs. Utilising this representation, we employ SE(3)-equivariant generative modelling for de novo 3D molecule generation from rigid motifs. In our evaluations, we observe comparable or superior results to state-of-the-art across benchmarks, surpassing it in atom stability on GEOM-Drugs, while yielding a 2x to 10x reduction in generation steps and offering 3.5x compression in molecular representations compared to the standard atom-based methods.
Is BatchEnsemble a Single Model? On Calibration and Diversity of Efficient Ensembles
In resource-constrained and low-latency settings, uncertainty estimates must be efficiently obtained. Deep Ensembles provide robust epistemic uncertainty (EU) but require training multiple full-size models. BatchEnsemble aims to deliver ensemble-like EU at far lower parameter and memory cost by applying learned rank-1 perturbations to a shared base network. We show that BatchEnsemble not only underperforms Deep Ensembles but closely tracks a single model baseline in terms of accuracy, calibration and out-of-distribution (OOD) detection on CIFAR10/10C/SVHN. A controlled study on MNIST finds members are near-identical in function and parameter space, indicating limited capacity to realize distinct predictive modes. Thus, BatchEnsemble behaves more like a single model than a true ensemble.
comment: Accepted at the 1st workshop on Epistemic Intelligence in Machine Learning at EurIPS 2025
Reward-Forcing: Autoregressive Video Generation with Reward Feedback
While most prior work in video generation relies on bidirectional architectures, recent efforts have sought to adapt these models into autoregressive variants to support near real-time generation. However, such adaptations often depend heavily on teacher models, which can limit performance, particularly in the absence of a strong autoregressive teacher, resulting in output quality that typically lags behind their bidirectional counterparts. In this paper, we explore an alternative approach that uses reward signals to guide the generation process, enabling more efficient and scalable autoregressive generation. By using reward signals to guide the model, our method simplifies training while preserving high visual fidelity and temporal consistency. Through extensive experiments on standard benchmarks, we find that our approach performs comparably to existing autoregressive models and, in some cases, surpasses similarly sized bidirectional models by avoiding constraints imposed by teacher architectures. For example, on VBench, our method achieves a total score of 84.92, closely matching state-of-the-art autoregressive methods that score 84.31 but require significant heterogeneous distillation.
comment: preprint
Group-realizable multi-group learning by minimizing empirical risk
The sample complexity of multi-group learning is shown to improve in the group-realizable setting over the agnostic setting, even when the family of groups is infinite so long as it has finite VC dimension. The improved sample complexity is obtained by empirical risk minimization over the class of group-realizable concepts, which itself could have infinite VC dimension. Implementing this approach is also shown to be computationally intractable, and an alternative approach is suggested based on improper learning.
Calibrated Similarity for Reliable Geometric Analysis of Embedding Spaces
While raw cosine similarity in pretrained embedding spaces exhibits strong rank correlation with human judgments, anisotropy induces systematic miscalibration of absolute values: scores concentrate in a narrow high-similarity band regardless of actual semantic relatedness, limiting interpretability as a quantitative measure. Prior work addresses this by modifying the embedding space (whitening, contrastive fine tuning), but such transformations alter geometric structure and require recomputing all embeddings. Using isotonic regression trained on human similarity judgments, we construct a monotonic transformation that achieves near-perfect calibration while preserving rank correlation and local stability(98% across seven perturbation types). Our contribution is not to replace cosine similarity, but to restore interpretability of its absolute values through monotone calibration, without altering its ranking properties. We characterize isotonic calibration as an order-preserving reparameterization and prove that all order-based constructions (angular ordering, nearest neighbors, threshold graphs and quantile-based decisions) are invariant under this transformation.
comment: arXiv admin note: substantial text overlap with arXiv:2512.10350
The Trajectory Alignment Coefficient in Two Acts: From Reward Tuning to Reward Learning
The success of reinforcement learning (RL) is fundamentally tied to having a reward function that accurately reflects the task objective. Yet, designing reward functions is notoriously time-consuming and prone to misspecification. To address this issue, our first goal is to understand how to support RL practitioners in specifying appropriate weights for a reward function. We leverage the Trajectory Alignment Coefficient (TAC), a metric that evaluates how closely a reward function's induced preferences match those of a domain expert. To evaluate whether TAC provides effective support in practice, we conducted a human-subject study in which RL practitioners tuned reward weights for Lunar Lander. We found that providing TAC during reward tuning led participants to produce more performant reward functions and report lower cognitive workload relative to standard tuning without TAC. However, the study also underscored that manual reward design, even with TAC, remains labor-intensive. This limitation motivated our second goal: to learn a reward model that maximizes TAC directly. Specifically, we propose Soft-TAC, a differentiable approximation of TAC that can be used as a loss function to train reward models from human preference data. Validated in the racing simulator Gran Turismo 7, reward models trained using Soft-TAC successfully captured preference-specific objectives, resulting in policies with qualitatively more distinct behaviors than models trained with standard Cross-Entropy loss. This work demonstrates that TAC can serve as both a practical tool for guiding reward tuning and a reward learning objective in complex domains.
GRIP: Algorithm-Agnostic Machine Unlearning for Mixture-of-Experts via Geometric Router Constraints
Machine unlearning (MU) for large language models has become critical for AI safety, yet existing methods fail to generalize to Mixture-of-Experts (MoE) architectures. We identify that traditional unlearning methods exploit MoE's architectural vulnerability: they manipulate routers to redirect queries away from knowledgeable experts rather than erasing knowledge, causing a loss of model utility and superficial forgetting. We propose Geometric Routing Invariance Preservation (GRIP), an algorithm-agnostic framework for unlearning for MoE. Our core contribution is a geometric constraint, implemented by projecting router gradient updates into an expert-specific null-space. Crucially, this decouples routing stability from parameter rigidity: while discrete expert selections remain stable for retained knowledge, the continuous router parameters remain plastic within the null space, allowing the model to undergo necessary internal reconfiguration to satisfy unlearning objectives. This forces the unlearning optimization to erase knowledge directly from expert parameters rather than exploiting the superficial router manipulation shortcut. GRIP functions as an adapter, constraining router parameter updates without modifying the underlying unlearning algorithm. Extensive experiments on large-scale MoE models demonstrate that our adapter eliminates expert selection shift (achieving over 95% routing stability) across all tested unlearning methods while preserving their utility. By preventing existing algorithms from exploiting MoE model's router vulnerability, GRIP adapts existing unlearning research from dense architectures to MoEs.
Embedding -based Crop Type Classification in the Groundnut Basin of Senegal
Crop type maps from satellite remote sensing are important tools for food security, local livelihood support and climate change mitigation in smallholder regions of the world, but most satellite-based methods are not well suited to smallholder conditions. To address this gap, we establish a four-part criteria for a useful embedding-based approach consisting of 1) performance, 2) plausibility, 3) transferability and 4) accessibility and evaluate geospatial foundation model (FM) embeddings -based approaches using TESSERA and AlphaEarth against current baseline methods for a region in the groundnut basin of Senegal. We find that the TESSERA -based approach to land cover and crop type mapping fulfills the selection criteria best, and in one temporal transfer example shows 28% higher accuracy compared to the next best method. These results indicate that TESSERA embeddings are an effective approach for crop type classification and mapping tasks in Senegal.
FedSGM: A Unified Framework for Constraint Aware, Bidirectionally Compressed, Multi-Step Federated Optimization
We introduce FedSGM, a unified framework for federated constrained optimization that addresses four major challenges in federated learning (FL): functional constraints, communication bottlenecks, local updates, and partial client participation. Building on the switching gradient method, FedSGM provides projection-free, primal-only updates, avoiding expensive dual-variable tuning or inner solvers. To handle communication limits, FedSGM incorporates bi-directional error feedback, correcting the bias introduced by compression while explicitly understanding the interaction between compression noise and multi-step local updates. We derive convergence guarantees showing that the averaged iterate achieves the canonical $\boldsymbol{\mathcal{O}}(1/\sqrt{T})$ rate, with additional high-probability bounds that decouple optimization progress from sampling noise due to partial participation. Additionally, we introduce a soft switching version of FedSGM to stabilize updates near the feasibility boundary. To our knowledge, FedSGM is the first framework to unify functional constraints, compression, multiple local updates, and partial client participation, establishing a theoretically grounded foundation for constrained federated learning. Finally, we validate the theoretical guarantees of FedSGM via experimentation on Neyman-Pearson classification and constrained Markov decision process (CMDP) tasks.
LLM-Based Adversarial Persuasion Attacks on Fact-Checking Systems
Automated fact-checking (AFC) systems are susceptible to adversarial attacks, enabling false claims to evade detection. Existing adversarial frameworks typically rely on injecting noise or altering semantics, yet no existing framework exploits the adversarial potential of persuasion techniques, which are widely used in disinformation campaigns to manipulate audiences. In this paper, we introduce a novel class of persuasive adversarial attacks on AFCs by employing a generative LLM to rephrase claims using persuasion techniques. Considering 15 techniques grouped into 6 categories, we study the effects of persuasion on both claim verification and evidence retrieval using a decoupled evaluation strategy. Experiments on the FEVER and FEVEROUS benchmarks show that persuasion attacks can substantially degrade both verification performance and evidence retrieval. Our analysis identifies persuasion techniques as a potent class of adversarial attacks, highlighting the need for more robust AFC systems.
Multigrade Neural Network Approximation
We study multigrade deep learning (MGDL) as a principled framework for structured error refinement in deep neural networks. While the approximation power of neural networks is now relatively well understood, training very deep architectures remains challenging due to highly non-convex and often ill-conditioned optimization landscapes. In contrast, for relatively shallow networks, most notably one-hidden-layer $\texttt{ReLU}$ models, training admits convex reformulations with global guarantees, motivating learning paradigms that improve stability while scaling to depth. MGDL builds upon this insight by training deep networks grade by grade: previously learned grades are frozen, and each new residual block is trained solely to reduce the remaining approximation error, yielding an interpretable and stable hierarchical refinement process. We develop an operator-theoretic foundation for MGDL and prove that, for any continuous target function, there exists a fixed-width multigrade $\texttt{ReLU}$ scheme whose residuals decrease strictly across grades and converge uniformly to zero. To the best of our knowledge, this work provides the first rigorous theoretical guarantee that grade-wise training yields provable vanishing approximation error in deep networks. Numerical experiments further illustrate the theoretical results.
Theory of Minimal Weight Perturbations in Deep Networks and its Applications for Low-Rank Activated Backdoor Attacks
The minimal norm weight perturbations of DNNs required to achieve a specified change in output are derived and the factors determining its size are discussed. These single-layer exact formulae are contrasted with more generic multi-layer Lipschitz constant based robustness guarantees; both are observed to be of the same order which indicates similar efficacy in their guarantees. These results are applied to precision-modification-activated backdoor attacks, establishing provable compression thresholds below which such attacks cannot succeed, and show empirically that low-rank compression can reliably activate latent backdoors while preserving full-precision accuracy. These expressions reveal how back-propagated margins govern layer-wise sensitivity and provide certifiable guarantees on the smallest parameter updates consistent with a desired output shift.
Provably Learning Attention with Queries
We study the problem of learning Transformer-based sequence models with black-box access to their outputs. In this setting, a learner may adaptively query the oracle with any sequence of vectors and observe the corresponding real-valued output. We begin with the simplest case, a single-head softmax-attention regressor. We show that for a model with width $d$, there is an elementary algorithm to learn the parameters of single-head attention exactly with $O(d^2)$ queries. Further, we show that if there exists an algorithm to learn ReLU feedforward networks (FFNs), then the single-head algorithm can be easily adapted to learn one-layer Transformers with single-head attention. Next, motivated by the regime where the head dimension $r \ll d$, we provide a randomised algorithm that learns single-head attention-based models with $O(rd)$ queries via compressed sensing arguments. We also study robustness to noisy oracle access, proving that under mild norm and margin conditions, the parameters can be estimated to $\varepsilon$ accuracy with a polynomial number of queries even when outputs are only provided up to additive tolerance. Finally, we show that multi-head attention parameters are not identifiable from value queries in general -- distinct parameterisations can induce the same input-output map. Hence, guarantees analogous to the single-head setting are impossible without additional structural assumptions.
comment: Preprint
Mixture-of-Models: Unifying Heterogeneous Agents via N-Way Self-Evaluating Deliberation
This paper introduces the N-Way Self-Evaluating Deliberation (NSED) protocol, a Runtime Mixture-of-Models (MoM) architecture that constructs emergent composite models from a plurality of distinct expert agents. Unlike traditional Mixture-of-Experts (MoE) which rely on static gating networks, NSED employs a Dynamic Expertise Broker - a runtime optimization engine that treats model selection as a variation of the Knapsack Problem, binding heterogeneous checkpoints to functional roles based on live telemetry and cost constraints. At the execution layer, we formalize deliberation as a Macro-Scale Recurrent Neural Network (RNN), where the consensus state loops back through a semantic forget gate to enable iterative refinement without proportional VRAM scaling. Key components include an orchestration fabric for trustless N-to-N peer review, a Quadratic Voting activation function for non-linear consensus, and a feedback-driven state update. Empirical validation on challenging benchmarks (AIME 2025, LiveCodeBench) demonstrates that this topology allows ensembles of small (less than 20B) consumer-grade models to match or exceed the performance of state-of-the-art 100B+ parameter models, establishing a new hardware arbitrage efficiency frontier. Furthermore, testing on the DarkBench safety suite reveals intrinsic alignment properties, with peer-mediated correction reducing sycophancy scores below that of any individual agent.
The Art of Being Difficult: Combining Human and AI Strengths to Find Adversarial Instances for Heuristics
We demonstrate the power of human-LLM collaboration in tackling open problems in theoretical computer science. Focusing on combinatorial optimization, we refine outputs from the FunSearch algorithm [Romera-Paredes et al., Nature 2023] to derive state-of-the-art lower bounds for standard heuristics. Specifically, we target the generation of adversarial instances where these heuristics perform poorly. By iterating on FunSearch's outputs, we identify improved constructions for hierarchical $k$-median clustering, bin packing, the knapsack problem, and a generalization of Lovász's gasoline problem - some of these have not seen much improvement for over a decade, despite intermittent attention. These results illustrate how expert oversight can effectively extrapolate algorithmic insights from LLM-based evolutionary methods to break long-standing barriers. Our findings demonstrate that while LLMs provide critical initial patterns, human expertise is essential for transforming these patterns into mathematically rigorous and insightful constructions. This work highlights that LLMs are a strong collaborative tool in mathematics and computer science research.
Calibrated Probabilistic Interpolation for GEDI Biomass
Reliable wall-to-wall biomass mapping from NASA's GEDI mission requires interpolating sparse LiDAR observations across heterogeneous landscapes. While machine learning approaches like Random Forest and XGBoost are standard for this task, they treat spatial predictions of GEDI observations from multispectral or SAR remote sensing data as independent without adapting to the varying difficulty of heterogeneous landscapes. We demonstrate these approaches generally fail to produce calibrated prediction intervals. We identify that this stems from conflating ensemble variance with aleatoric uncertainty and ignoring local spatial context. To resolve this, we introduce Attentive Neural Processes (ANPs), a probabilistic meta-learning framework that explicitly conditions predictions on local observation sets and geospatial foundation model embeddings. Unlike static ensembles, ANPs learn a flexible spatial covariance function, allowing uncertainty estimates to expand in complex landscapes and contract in homogeneous areas. We validate this approach across five distinct biomes ranging from Tropical Amazonian forests to Boreal and Alpine ecosystems, demonstrating that ANPs achieve competitive accuracy while maintaining near-ideal uncertainty calibration. We demonstrate the operational utility of the method through few-shot adaptation, where the model recovers most of the performance gap in cross-region transfer using minimal local data. This work provides a scalable, theoretically rigorous alternative to ensemble variance for continental scale earth observation.
Uncertainty propagation through trained multi-layer perceptrons: Exact analytical results
We give analytical results for propagation of uncertainty through trained multi-layer perceptrons (MLPs) with a single hidden layer and ReLU activation functions. More precisely, we give expressions for the mean and variance of the output when the input is multivariate Gaussian. In contrast to previous results, we obtain exact expressions without resort to a series expansion.
Sample-wise Constrained Learning via a Sequential Penalty Approach with Applications in Image Processing
In many learning tasks, certain requirements on the processing of individual data samples should arguably be formalized as strict constraints in the underlying optimization problem, rather than by means of arbitrary penalties. We show that, in these scenarios, learning can be carried out exploiting a sequential penalty method that allows to properly deal with constraints. The proposed algorithm is shown to possess convergence guarantees under assumptions that are reasonable in deep learning scenarios. Moreover, the results of experiments on image processing tasks show that the method is indeed viable to be used in practice.
Building a Robust Risk-Based Access Control System to Combat Ransomware's Capability to Encrypt: A Machine Learning Approach
Ransomware core capability, unauthorized encryption, demands controls that identify and block malicious cryptographic activity without disrupting legitimate use. We present a probabilistic, risk-based access control architecture that couples machine learning inference with mandatory access control to regulate encryption on Linux in real time. The system builds a specialized dataset from the native ftrace framework using the function_graph tracer, yielding high-resolution kernel-function execution traces augmented with resource and I/O counters. These traces support both a supervised classifier and interpretable rules that drive an SELinux policy via lightweight booleans, enabling context-sensitive permit/deny decisions at the moment encryption begins. Compared to approaches centered on sandboxing, hypervisor introspection, or coarse system-call telemetry, the function-level tracing we adopt provides finer behavioral granularity than syscall-only telemetry while avoiding the virtualization/VMI overhead of sandbox-based approaches. Our current user-space prototype has a non-trivial footprint under burst I/O; we quantify it and recognize that a production kernel-space solution should aim to address this. We detail dataset construction, model training and rule extraction, and the run-time integration that gates file writes for suspect encryption while preserving benign cryptographic workflows. During evaluation, the two-layer composition retains model-level detection quality while delivering rule-like responsiveness; we also quantify operational footprint and outline engineering steps to reduce CPU and memory overhead for enterprise deployment. The result is a practical path from behavioral tracing and learning to enforceable, explainable, and risk-proportionate encryption control on production Linux systems.
comment: This work has been submitted to the IEEE for possible publication
Persuasion Tokens for Editing Factual Knowledge in LLMs
In-context knowledge editing (IKE) is a promising technique for updating Large Language Models (LLMs) with new information. However, IKE relies on lengthy, fact-specific demonstrations which are costly to create and consume significant context window space. In this paper, we introduce persuasion tokens (P-Tokens) -- special tokens trained to replicate the effect of IKE demonstrations, enabling efficient knowledge editing without requiring fact-specific demonstrations. We evaluate P-Tokens across two editing datasets and three LLMs, demonstrating performance comparable to, and often exceeding, IKE. We further find that editing performance is robust to distractors with small negative effects to neighboring facts, and that increasing the number of P-Tokens improves performance. Our work addresses key limitations of IKE and provides a more practical and scalable alternative for editing LLMs.
comment: Accepted at EACL Main 2026
Kernel smoothing on manifolds
Under the assumption that data lie on a compact (unknown) manifold without boundary, we derive finite sample bounds for kernel smoothing and its (first and second) derivatives, and we establish asymptotic normality through Berry-Esseen type bounds. Special cases include kernel density estimation, kernel regression and the heat kernel signature. Connections to the graph Laplacian are also discussed.
AutoRegressive Generation with B-rep Holistic Token Sequence Representation
Previous representation and generation approaches for the B-rep relied on graph-based representations that disentangle geometric and topological features through decoupled computational pipelines, thereby precluding the application of sequence-based generative frameworks, such as transformer architectures that have demonstrated remarkable performance. In this paper, we propose BrepARG, the first attempt to encode B-rep's geometry and topology into a holistic token sequence representation, enabling sequence-based B-rep generation with an autoregressive architecture. Specifically, BrepARG encodes B-rep into 3 types of tokens: geometry and position tokens representing geometric features, and face index tokens representing topology. Then the holistic token sequence is constructed hierarchically, starting with constructing the geometry blocks (i.e., faces and edges) using the above tokens, followed by geometry block sequencing. Finally, we assemble the holistic sequence representation for the entire B-rep. We also construct a transformer-based autoregressive model that learns the distribution over holistic token sequences via next-token prediction, using a multi-layer decoder-only architecture with causal masking. Experiments demonstrate that BrepARG achieves state-of-the-art (SOTA) performance. BrepARG validates the feasibility of representing B-rep as holistic token sequences, opening new directions for B-rep generation.
ReLU Networks for Model Predictive Control: Network Complexity and Performance Guarantees
Recent years have witnessed a resurgence in using ReLU neural networks (NNs) to represent model predictive control (MPC) policies. However, determining the required network complexity to ensure closed-loop performance remains a fundamental open problem. This involves a critical precision-complexity trade-off: undersized networks may fail to capture the MPC policy, while oversized ones may outweigh the benefits of ReLU network approximation. In this work, we propose a projection-based method to enforce hard constraints and establish a state-dependent Lipschitz continuity property for the optimal MPC cost function, which enables sharp convergence analysis of the closed-loop system. For the first time, we derive explicit bounds on ReLU network width and depth for approximating MPC policies with guaranteed closed-loop performance. To further reduce network complexity and enhance closed-loop performance, we propose a non-uniform error framework with a state-aware scaling function to adaptively adjust both the input and output of the ReLU network. Our contributions provide a foundational step toward certifiable ReLU NN-based MPC.
Dynamic Expert-Guided Model Averaging for Causal Discovery
Understanding causal relationships is critical for healthcare. Accurate causal models provide a means to enhance the interpretability of predictive models, and furthermore a basis for counterfactual and interventional reasoning and the estimation of treatment effects. However, would-be practitioners of causal discovery face a dizzying array of algorithms without a clear best choice. This abundance of competitive algorithms makes ensembling a natural choice for practical applications. At the same time, real-world use cases frequently face challenges that violate the assumptions of common causal discovery algorithms, forcing heavy reliance on expert knowledge. Inspired by recent work on dynamically requested expert knowledge and LLMs as experts, we present a flexible model averaging method leveraging dynamically requested expert knowledge to ensemble a diverse array of causal discovery algorithms. Experiments demonstrate the efficacy of our method with imperfect experts such as LLMs on both clean and noisy data. We also analyze the impact of different degrees of expert correctness and assess the capabilities of LLMs for clinical causal discovery, providing valuable insights for practitioners.
A Feature Extraction Pipeline for Enhancing Lightweight Neural Networks in sEMG-based Joint Torque Estimation
Robot-assisted rehabilitation offers an effective approach, wherein exoskeletons adapt to users' needs and provide personalized assistance. However, to deliver such assistance, accurate prediction of the user's joint torques is essential. In this work, we propose a feature extraction pipeline using 8-channel surface electromyography (sEMG) signals to predict elbow and shoulder joint torques. For preliminary evaluation, this pipeline was integrated into two neural network models: the Multilayer Perceptron (MLP) and the Temporal Convolutional Network (TCN). Data were collected from a single subject performing elbow and shoulder movements under three load conditions (0 kg, 1.10 kg, and 1.85 kg) using three motion-capture cameras. Reference torques were estimated from center-of-mass kinematics under the assumption of static equilibrium. Our offline analyses showed that, with our feature extraction pipeline, MLP model achieved mean RMSE of 0.963 N m, 1.403 N m, and 1.434 N m (over five seeds) for elbow, front-shoulder, and side-shoulder joints, respectively, which were comparable to the TCN performance. These results demonstrate that the proposed feature extraction pipeline enables a simple MLP to achieve performance comparable to that of a network designed explicitly for temporal dependencies. This finding is particularly relevant for applications with limited training data, a common scenario patient care.
I Guess That's Why They Call it the Blues: Causal Analysis for Audio Classifiers
It is well-known that audio classifiers often rely on non-musically relevant features and spurious correlations to classify audio. Hence audio classifiers are easy to manipulate or confuse, resulting in wrong classifications. While inducing a misclassification is not hard, until now the set of features that the classifiers rely on was not well understood. In this paper we introduce a new method that uses causal reasoning to discover features of the frequency space that are sufficient and necessary for a given classification. We describe an implementation of this algorithm in the tool FreqReX and provide experimental results on a number of standard benchmark datasets. Our experiments show that causally sufficient and necessary subsets allow us to manipulate the outputs of the models in a variety of ways by changing the input very slightly. Namely, a change to one out of 240,000 frequencies results in a change in classification 58% of the time, and the change can be so small that it is practically inaudible. These results show that causal analysis is useful for understanding the reasoning process of audio classifiers and can be used to successfully manipulate their outputs.
Fast, faithful and photorealistic diffusion-based image super-resolution with enhanced Flow Map models
Diffusion-based image super-resolution (SR) has recently attracted significant attention by leveraging the expressive power of large pre-trained text-to-image diffusion models (DMs). A central practical challenge is resolving the trade-off between reconstruction faithfulness and photorealism. To address inference efficiency, many recent works have explored knowledge distillation strategies specifically tailored to SR, enabling one-step diffusion-based approaches. However, these teacher-student formulations are inherently constrained by information compression, which can degrade perceptual cues such as lifelike textures and depth of field, even with high overall perceptual quality. In parallel, self-distillation DMs, known as Flow Map models, have emerged as a promising alternative for image generation tasks, enabling fast inference while preserving the expressivity and training stability of standard DMs. Building on these developments, we propose FlowMapSR, a novel diffusion-based framework for image super-resolution explicitly designed for efficient inference. Beyond adapting Flow Map models to SR, we introduce two complementary enhancements: (i) positive-negative prompting guidance, based on a generalization of classifier free-guidance paradigm to Flow Map models, and (ii) adversarial fine-tuning using Low-Rank Adaptation (LoRA). Among the considered Flow Map formulations (Eulerian, Lagrangian, and Shortcut), we find that the Shortcut variant consistently achieves the best performance when combined with these enhancements. Extensive experiments show that FlowMapSR achieves a better balance between reconstruction faithfulness and photorealism than recent state-of-the-art methods for both x4 and x8 upscaling, while maintaining competitive inference time. Notably, a single model is used for both upscaling factors, without any scale-specific conditioning or degradation-guided mechanisms.
comment: Technical report
Provably Robust Bayesian Counterfactual Explanations under Model Changes
Counterfactual explanations (CEs) offer interpretable insights into machine learning predictions by answering ``what if?" questions. However, in real-world settings where models are frequently updated, existing counterfactual explanations can quickly become invalid or unreliable. In this paper, we introduce Probabilistically Safe CEs (PSCE), a method for generating counterfactual explanations that are $δ$-safe, to ensure high predictive confidence, and $ε$-robust to ensure low predictive variance. Based on Bayesian principles, PSCE provides formal probabilistic guarantees for CEs under model changes which are adhered to in what we refer to as the $\langle δ, ε\rangle$-set. Uncertainty-aware constraints are integrated into our optimization framework and we validate our method empirically across diverse datasets. We compare our approach against state-of-the-art Bayesian CE methods, where PSCE produces counterfactual explanations that are not only more plausible and discriminative, but also provably robust under model change.
Dual-Prototype Disentanglement: A Context-Aware Enhancement Framework for Time Series Forecasting
Time series forecasting has witnessed significant progress with deep learning. While prevailing approaches enhance forecasting performance by modifying architectures or introducing novel enhancement strategies, they often fail to dynamically disentangle and leverage the complex, intertwined temporal patterns inherent in time series, thus resulting in the learning of static, averaged representations that lack context-aware capabilities. To address this, we propose the Dual-Prototype Adaptive Disentanglement framework (DPAD), a model-agnostic auxiliary method that equips forecasting models with the ability of pattern disentanglement and context-aware adaptation. Specifically, we construct a Dynamic Dual-Prototype bank (DDP), comprising a common pattern bank with strong temporal priors to capture prevailing trend or seasonal patterns, and a rare pattern bank dynamically memorizing critical yet infrequent events, and then an Dual-Path Context-aware routing (DPC) mechanism is proposed to enhance outputs with selectively retrieved context-specific pattern representations from the DDP. Additionally, we introduce a Disentanglement-Guided Loss (DGLoss) to ensure that each prototype bank specializes in its designated role while maintaining comprehensive coverage. Comprehensive experiments demonstrate that DPAD consistently improves forecasting performance and reliability of state-of-the-art models across diverse real-world benchmarks.
E2Former-V2: On-the-Fly Equivariant Attention with Linear Activation Memory
Equivariant Graph Neural Networks (EGNNs) have become a widely used approach for modeling 3D atomistic systems. However, mainstream architectures face critical scalability bottlenecks due to the explicit construction of geometric features or dense tensor products on \textit{every} edge. To overcome this, we introduce \textbf{E2Former-V2}, a scalable architecture that integrates algebraic sparsity with hardware-aware execution. We first propose \textbf{E}quivariant \textbf{A}xis-\textbf{A}ligned \textbf{S}parsification (EAAS). EAAS builds on Wigner-$6j$ convolution by exploiting an $\mathrm{SO}(3) \rightarrow \mathrm{SO}(2)$ change of basis to transform computationally expensive dense tensor contractions into efficient, sparse parity re-indexing operations. Building on this representation, we introduce \textbf{On-the-Fly Equivariant Attention}, a fully node-centric mechanism implemented via a custom fused Triton kernel. By eliminating materialized edge tensors and maximizing SRAM utilization, our kernel achieves a \textbf{20$\times$ improvement in TFLOPS} compared to standard implementations. Extensive experiments on the SPICE and OMol25 datasets demonstrate that E2Former-V2 maintains comparable predictive performance while notably accelerating inference. This work demonstrates that large equivariant transformers can be trained efficiently using widely accessible GPU platforms. The code is avalible at https://github.com/IQuestLab/UBio-MolFM/tree/e2formerv2.
A Lightweight Medical Image Classification Framework via Self-Supervised Contrastive Learning and Quantum-Enhanced Feature Modeling
Intelligent medical image analysis is essential for clinical decision support but is often limited by scarce annotations, constrained computational resources, and suboptimal model generalization. To address these challenges, we propose a lightweight medical image classification framework that integrates self-supervised contrastive learning with quantum-enhanced feature modeling. MobileNetV2 is employed as a compact backbone and pretrained using a SimCLR-style self-supervised paradigm on unlabeled images. A lightweight parameterized quantum circuit (PQC) is embedded as a quantum feature enhancement module, forming a hybrid classical-quantum architecture, which is subsequently fine-tuned on limited labeled data. Experimental results demonstrate that, with only approximately 2-3 million parameters and low computational cost, the proposed method consistently outperforms classical baselines without self-supervised learning or quantum enhancement in terms of Accuracy, AUC, and F1-score. Feature visualization further indicates improved discriminability and representation stability. Overall, this work provides a practical and forward-looking solution for high-performance medical artificial intelligence under resource-constrained settings.
Efficient Learning of Stationary Diffusions with Stein-type Discrepancies
Learning a stationary diffusion amounts to estimating the parameters of a stochastic differential equation whose stationary distribution matches a target distribution. We build on the recently introduced kernel deviation from stationarity (KDS), which enforces stationarity by evaluating expectations of the diffusion's generator in a reproducing kernel Hilbert space. Leveraging the connection between KDS and Stein discrepancies, we introduce the Stein-type KDS (SKDS) as an alternative formulation. We prove that a vanishing SKDS guarantees alignment of the learned diffusion's stationary distribution with the target. Furthermore, under broad parametrizations, SKDS is convex with an empirical version that is $ε$-quasiconvex with high probability. Empirically, learning with SKDS attains comparable accuracy to KDS while substantially reducing computational cost and yields improvements over the majority of competitive baselines.
Integrating Meteorological and Operational Data: A Novel Approach to Understanding Railway Delays in Finland
Train delays result from complex interactions between operational, technical, and environmental factors. While weather impacts railway reliability, particularly in Nordic regions, existing datasets rarely integrate meteorological information with operational train data. This study presents the first publicly available dataset combining Finnish railway operations with synchronized meteorological observations from 2018-2024. The dataset integrates operational metrics from Finland Digitraffic Railway Traffic Service with weather measurements from 209 environmental monitoring stations, using spatial-temporal alignment via Haversine distance. It encompasses 28 engineered features across operational variables and meteorological measurements, covering approximately 38.5 million observations from Finland's 5,915-kilometer rail network. Preprocessing includes strategic missing data handling through spatial fallback algorithms, cyclical encoding of temporal features, and robust scaling of weather data to address sensor outliers. Analysis reveals distinct seasonal patterns, with winter months exhibiting delay rates exceeding 25\% and geographic clustering of high-delay corridors in central and northern Finland. Furthermore, the work demonstrates applications of the data set in analysing the reliability of railway traffic in Finland. A baseline experiment using XGBoost regression achieved a Mean Absolute Error of 2.73 minutes for predicting station-specific delays, demonstrating the dataset's utility for machine learning applications. The dataset enables diverse applications, including train delay prediction, weather impact assessment, and infrastructure vulnerability mapping, providing researchers with a flexible resource for machine learning applications in railway operations research.
comment: 12 pages, 8 figures, database: https://www.kaggle.com/datasets/viniborin/finland-integrated-train-weather-dataset-fi-tw
Learning Successive Interference Cancellation for Low-Complexity Soft-Output MIMO Detection
Low-complexity multiple-input multiple-output (MIMO) detection remains a key challenge in modern wireless systems, particularly for 5G reduced capability (RedCap) and internet-of-things (IoT) devices. In this context, the growing interest in deploying machine learning on edge devices must be balanced against stringent constraints on computational complexity and memory while supporting high-order modulation. Beyond accurate hard detection, reliable soft information is equally critical, as modern receivers rely on soft-input channel decoding, imposing additional requirements on the detector design. In this work, we propose recurSIC, a lightweight learning-based MIMO detection framework that is structurally inspired by successive interference cancellation (SIC) and incorporates learned processing stages. It generates reliable soft information via multi-path hypothesis tracking with a tunable complexity parameter while requiring only a single forward pass and a minimal parameter count. Numerical results in realistic wireless scenarios show that recurSIC achieves strong hard- and soft-detection performance at very low complexity, making it well suited for edge-constrained MIMO receivers.
Predicting Startup Success Using Large Language Models: A Novel In-Context Learning Approach
Venture capital (VC) investments in early-stage startups that end up being successful can yield high returns. However, predicting early-stage startup success remains challenging due to data scarcity (e.g., many VC firms have information about only a few dozen of early-stage startups and whether they were successful). This limits the effectiveness of traditional machine learning methods that rely on large labeled datasets for model training. To address this challenge, we propose an in-context learning framework for startup success prediction using large language models (LLMs) that requires no model training and leverages only a small set of labeled startups as demonstration examples. Specifically, we propose a novel k-nearest-neighbor-based in-context learning framework, called kNN-ICL, which selects the most relevant past startups as examples based on similarity. Using real-world profiles from Crunchbase, we find that the kNN-ICL approach achieves higher prediction accuracy than supervised machine learning baselines and vanilla in-context learning. Further, we study how performance varies with the number of in-context examples and find that a high balanced accuracy can be achieved with as few as 50 examples. Together, we demonstrate that in-context learning can serve as a decision-making tool for VC firms operating in data-scarce environments.
Process-Tensor Tomography of SGD: Measuring Non-Markovian Memory via Back-Flow of Distinguishability
This work proposes neural training as a \emph{process tensor}: a multi-time map that takes a sequence of controllable instruments (batch choices, augmentations, optimizer micro-steps) and returns an observable of the trained model. Building on this operational lens, we introduce a simple, model-agnostic witness of training memory based on \emph{back-flow of distinguishability}. In a controlled two-step protocol, we compare outcome distributions after one intervention versus two; the increase $Δ_{\mathrm{BF}} = D_2 - D_1>0$ (with $D\in\{\mathrm{TV}, \mathrm{JS}, \mathrm{H}\}$ measured on softmax predictions over a fixed probe set) certifies non-Markovianity. We observe consistent positive back-flow with tight bootstrap confidence intervals, amplification under higher momentum, larger batch overlap, and more micro-steps, and collapse under a \emph{causal break} (resetting optimizer state), directly attributing the effect to optimizer/data-state memory. The witness is robust across TV/JS/Hellinger, inexpensive to compute, and requires no architectural changes. We position this as a \emph{measurement} contribution: a principled diagnostic and empirical evidence that practical SGD deviates from the Markov idealization. An exploratory case study illustrates how the micro-level signal can inform curriculum orderings. "Data order matters" turns into a testable operator with confidence bounds, our framework offers a common stage to compare optimizers, curricula, and schedules through their induced training memory.
comment: to be published in the 29th International Conference on Artificial Intelligence and Statistics, in Proceedings of Machine Learning Research
PRISM: Purified Representation and Integrated Semantic Modeling for Generative Sequential Recommendation
Generative Sequential Recommendation (GSR) has emerged as a promising paradigm, reframing recommendation as an autoregressive sequence generation task over discrete Semantic IDs (SIDs), typically derived via codebook-based quantization. Despite its great potential in unifying retrieval and ranking, existing GSR frameworks still face two critical limitations: (1) impure and unstable semantic tokenization, where quantization methods struggle with interaction noise and codebook collapse, resulting in SIDs with ambiguous discrimination; and (2) lossy and weakly structured generation, where reliance solely on coarse-grained discrete tokens inevitably introduces information loss and neglects items' hierarchical logic. To address these issues, we propose a novel generative recommendation framework, PRISM, with Purified Representation and Integrated Semantic Modeling. Specifically, to ensure high-quality tokenization, we design a Purified Semantic Quantizer that constructs a robust codebook via adaptive collaborative denoising and hierarchical semantic anchoring mechanisms. To compensate for information loss during quantization, we further propose an Integrated Semantic Recommender, which incorporates a dynamic semantic integration mechanism to integrate fine-grained semantics and enforces logical validity through a semantic structure alignment objective. PRISM consistently outperforms state-of-the-art baselines across four real-world datasets, demonstrating substantial performance gains, particularly in high-sparsity scenarios.
Understanding and Improving UMAP with Geometric and Topological Priors: The JORC-UMAP Algorithm
Nonlinear dimensionality reduction techniques, particularly UMAP, are widely used for visualizing high-dimensional data. However, UMAP's local Euclidean distance assumption often fails to capture intrinsic manifold geometry, leading to topological tearing and structural collapse. We identify UMAP's sensitivity to the k-nearest neighbor graph as a key cause. To address this, we introduce Ollivier-Ricci curvature as a geometric prior, reinforcing edges at geometric bottlenecks and reducing redundant links. Since curvature estimation is noise-sensitive, we also incorporate a topological prior using Jaccard similarity to ensure neighborhood consistency. The resulting method, JORC-UMAP, better distinguishes true manifold structure from spurious connections. Experiments on synthetic and real-world datasets show that JORC-UMAP reduces tearing and collapse more effectively than standard UMAP and other DR methods, as measured by SVM accuracy and triplet preservation scores, while maintaining computational efficiency. This work offers a geometry-aware enhancement to UMAP for more faithful data visualization.
comment: 22 pages, 8 figures. Comments are welcome
Semi-Supervised Hierarchical Open-Set Classification WACV2026
Hierarchical open-set classification handles previously unseen classes by assigning them to the most appropriate high-level category in a class taxonomy. We extend this paradigm to the semi-supervised setting, enabling the use of large-scale, uncurated datasets containing a mixture of known and unknown classes to improve the hierarchical open-set performance. To this end, we propose a teacher-student framework based on pseudo-labeling. Two key components are introduced: 1) subtree pseudo-labels, which provide reliable supervision in the presence of unknown data, and 2) age-gating, a mechanism that mitigates overconfidence in pseudo-labels. Experiments show that our framework outperforms self-supervised pretraining followed by supervised adaptation, and even matches the fully supervised counterpart when using only 20 labeled samples per class on the iNaturalist19 benchmark. Our code is available at https://github.com/walline/semihoc.
comment: WACV2026
A Collision-Free Hot-Tier Extension for Engram-Style Conditional Memory: A Controlled Study of Training Dynamics
We investigate whether high-frequency key collisions are a primary bottleneck in Engram-style conditional memory. To isolate the effect of collisions, we introduce Engram-Nine, a collision-free hot-tier extension that maps the most frequent n-grams through a Minimal Perfect Hash Function (MPHF) while retaining the original multi-head hashed lookup as a cold tier. Under a strictly iso-parameter setup, the collision-free design does not consistently improve validation loss. Through route-stratified evaluation (decomposing per-token loss into hot/cold contributions), we uncover a consistent "hot-to-cold advantage flip" during training: hot (high-frequency) positions initially have lower loss, but cold positions eventually surpass them. Crucially, collision-free configurations flip earlier than collision-prone baselines, suggesting that collisions act as implicit regularization. We also identify a gating mismatch: the gate learns to favor hot positions early in training, but this preference persists even after the flip, assigning higher weights to positions with higher loss. Our findings suggest that improving lookup precision alone does not guarantee better training outcomes. The dominant limitation may lie in gating credit assignment rather than index accuracy, and collision-induced noise may provide beneficial regularization that should not be naively eliminated.
Curate-Train-Refine: A Closed-Loop Agentic Framework for Zero Shot Classification
Large language models (LLMs) and high-capacity encoders have advanced zero and few-shot classification, but their inference cost and latency limit practical deployment. We propose training lightweight text classifiers using dynamically generated supervision from an LLM. Our method employs an iterative, agentic loop in which the LLM curates training data, analyzes model successes and failures, and synthesizes targeted examples to address observed errors. This closed-loop generation and evaluation process progressively improves data quality and adapts it to the downstream classifier and task. Across four widely used benchmarks, our approach consistently outperforms standard zero and few-shot baselines. These results indicate that LLMs can serve effectively as data curators, enabling accurate and efficient classification without the operational cost of large-model deployment.
Beyond Superficial Unlearning: Sharpness-Aware Robust Erasure of Hallucinations in Multimodal LLMs
Multimodal LLMs are powerful but prone to object hallucinations, which describe non-existent entities and harm reliability. While recent unlearning methods attempt to mitigate this, we identify a critical flaw: structural fragility. We empirically demonstrate that standard erasure achieves only superficial suppression, trapping the model in sharp minima where hallucinations catastrophically resurge after lightweight relearning. To ensure geometric stability, we propose SARE, which casts unlearning as a targeted min-max optimization problem and uses a Targeted-SAM mechanism to explicitly flatten the loss landscape around hallucinated concepts. By suppressing hallucinations under simulated worst-case parameter perturbations, our framework ensures robust removal stable against weight shifts. Extensive experiments demonstrate that SARE significantly outperforms baselines in erasure efficacy while preserving general generation quality. Crucially, it maintains persistent hallucination suppression against relearning and parameter updates, validating the effectiveness of geometric stabilization.
DANCE: Dynamic, Available, Neighbor-gated Condensation for Federated Text-Attributed Graphs
Federated graph learning (FGL) enables collaborative training on graph data across multiple clients. With the rise of large language models (LLMs), textual attributes in FGL graphs are gaining attention. Text-attributed graph federated learning (TAG-FGL) improves FGL by explicitly leveraging LLMs to process and integrate these textual features. However, current TAG-FGL methods face three main challenges: \textbf{(1) Overhead.} LLMs for processing long texts incur high token and computation costs. To make TAG-FGL practical, we introduce graph condensation (GC) to reduce computation load, but this choice also brings new issues. \textbf{(2) Suboptimal.} To reduce LLM overhead, we introduce GC into TAG-FGL by compressing multi-hop texts/neighborhoods into a condensed core with fixed LLM surrogates. However, this one-shot condensation is often not client-adaptive, leading to suboptimal performance. \textbf{(3) Interpretability.} LLM-based condensation further introduces a black-box bottleneck: summaries lack faithful attribution and clear grounding to specific source spans, making local inspection and auditing difficult. To address the above issues, we propose \textbf{DANCE}, a new TAG-FGL paradigm with GC. To improve \textbf{suboptimal} performance, DANCE performs round-wise, model-in-the-loop condensation refresh using the latest global model. To enhance \textbf{interpretability}, DANCE preserves provenance by storing locally inspectable evidence packs that trace predictions to selected neighbors and source text spans. Across 8 TAG datasets, DANCE improves accuracy by \textbf{2.33\%} at an \textbf{8\%} condensation ratio, with \textbf{33.42\%} fewer tokens than baselines.
Rethinking Large Language Models For Irregular Time Series Classification In Critical Care
Time series data from the Intensive Care Unit (ICU) provides critical information for patient monitoring. While recent advancements in applying Large Language Models (LLMs) to time series modeling (TSM) have shown great promise, their effectiveness on the irregular ICU data, characterized by particularly high rates of missing values, remains largely unexplored. This work investigates two key components underlying the success of LLMs for TSM: the time series encoder and the multimodal alignment strategy. To this end, we establish a systematic testbed to evaluate their impact across various state-of-the-art LLM-based methods on benchmark ICU datasets against strong supervised and self-supervised baselines. Results reveal that the encoder design is more critical than the alignment strategy. Encoders that explicitly model irregularity achieve substantial performance gains, yielding an average AUPRC increase of $12.8\%$ over the vanilla Transformer. While less impactful, the alignment strategy is also noteworthy, with the best-performing semantically rich, fusion-based strategy achieving a modest $2.9\%$ improvement over cross-attention. However, LLM-based methods require at least 10$\times$ longer training than the best-performing irregular supervised models, while delivering only comparable performance. They also underperform in data-scarce few-shot learning settings. These findings highlight both the promise and current limitations of LLMs for irregular ICU time series. The code is available at https://github.com/mHealthUnimelb/LLMTS.
comment: 5 pages, 3 figures
Finite-Time Analysis of Gradient Descent for Shallow Transformers AISTATS 2026
Understanding why Transformers perform so well remains challenging due to their non-convex optimization landscape. In this work, we analyze a shallow Transformer with $m$ independent heads trained by projected gradient descent in the kernel regime. Our analysis reveals two main findings: (i) the width required for nonasymptotic guarantees scales only logarithmically with the sample size $n$, and (ii) the optimization error is independent of the sequence length $T$. This contrasts sharply with recurrent architectures, where the optimization error can grow exponentially with $T$. The trade-off is memory: to keep the full context, the Transformer's memory requirement grows with the sequence length. We validate our theoretical results numerically in a teacher-student setting and confirm the predicted scaling laws for Transformers.
comment: Accepted to AISTATS 2026
Learning to Optimize by Differentiable Programming
Solving massive-scale optimization problems requires scalable first-order methods with low per-iteration cost. This tutorial highlights a shift in optimization: using differentiable programming not only to execute algorithms but to learn how to design them. Modern frameworks such as PyTorch, TensorFlow, and JAX enable this paradigm through efficient automatic differentiation. Embedding first-order methods within these systems allows end-to-end training that improves convergence and solution quality. Guided by Fenchel-Rockafellar duality, the tutorial demonstrates how duality-informed iterative schemes such as ADMM and PDHG can be learned and adapted. Case studies across LP, OPF, Laplacian regularization, and neural network verification illustrate these gains.
kNN-Graph: An adaptive graph model for $k$-nearest neighbors
The k-nearest neighbors (kNN) algorithm is a cornerstone of non-parametric classification in artificial intelligence, yet its deployment in large-scale applications is persistently constrained by the computational trade-off between inference speed and accuracy. Existing approximate nearest neighbor solutions accelerate retrieval but often degrade classification precision and lack adaptability in selecting the optimal neighborhood size (k). Here, we present an adaptive graph model that decouples inference latency from computational complexity. By integrating a Hierarchical Navigable Small World (HNSW) graph with a pre-computed voting mechanism, our framework completely transfers the computational burden of neighbor selection and weighting to the training phase. Within this topological structure, higher graph layers enable rapid navigation, while lower layers encode precise, node-specific decision boundaries with adaptive neighbor counts. Benchmarking against eight state-of-the-art baselines across six diverse datasets, we demonstrate that this architecture significantly accelerates inference speeds, achieving real-time performance, without compromising classification accuracy. These findings offer a scalable, robust solution to the long-standing inference bottleneck of kNN, establishing a new structural paradigm for graph-based nonparametric learning.
comment: 25 pages, 6 figures
BoostFGL: Boosting Fairness in Federated Graph Learning
Federated graph learning (FGL) enables collaborative training of graph neural networks (GNNs) across decentralized subgraphs without exposing raw data. While existing FGL methods often achieve high overall accuracy, we show that this average performance can conceal severe degradation on disadvantaged node groups. From a fairness perspective, these disparities arise systematically from three coupled sources: label skew toward majority patterns, topology confounding in message propagation, and aggregation dilution of updates from hard clients. To address this, we propose \textbf{BoostFGL}, a boosting-style framework for fairness-aware FGL. BoostFGL introduces three coordinated mechanisms: \ding{182} \emph{Client-side node boosting}, which reshapes local training signals to emphasize systematically under-served nodes; \ding{183} \emph{Client-side topology boosting}, which reallocates propagation emphasis toward reliable yet underused structures and attenuates misleading neighborhoods; and \ding{184} \emph{Server-side model boosting}, which performs difficulty- and reliability-aware aggregation to preserve informative updates from hard clients while stabilizing the global model. Extensive experiments on 9 datasets show that BoostFGL delivers substantial fairness gains, improving Overall-F1 by 8.43\%, while preserving competitive overall performance against strong FGL baselines.
Robust Categorical Data Clustering Guided by Multi-Granular Competitive Learning
Data set composed of categorical features is very common in big data analysis tasks. Since categorical features are usually with a limited number of qualitative possible values, the nested granular cluster effect is prevalent in the implicit discrete distance space of categorical data. That is, data objects frequently overlap in space or subspace to form small compact clusters, and similar small clusters often form larger clusters. However, the distance space cannot be well-defined like the Euclidean distance due to the qualitative categorical data values, which brings great challenges to the cluster analysis of categorical data. In view of this, we design a Multi-Granular Competitive Penalization Learning (MGCPL) algorithm to allow potential clusters to interactively tune themselves and converge in stages with different numbers of naturally compact clusters. To leverage MGCPL, we also propose a Cluster Aggregation strategy based on MGCPL Encoding (CAME) to first encode the data objects according to the learned multi-granular distributions, and then perform final clustering on the embeddings. It turns out that the proposed MGCPL-guided Categorical Data Clustering (MCDC) approach is competent in automatically exploring the nested distribution of multi-granular clusters and highly robust to categorical data sets from various domains. Benefiting from its linear time complexity, MCDC is scalable to large-scale data sets and promising in pre-partitioning data sets or compute nodes for boosting distributed computing. Extensive experiments with statistical evidence demonstrate its superiority compared to state-of-the-art counterparts on various real public data sets.
comment: This paper has been published in the IEEE International Conference on Distributed Computing Systems (ICDCS 2024)
A Cautionary Tale of Self-Supervised Learning for Imaging Biomarkers: Alzheimer's Disease Case Study
Discovery of sensitive and biologically grounded biomarkers is essential for early detection and monitoring of Alzheimer's disease (AD). Structural MRI is widely available but typically relies on hand-crafted features such as cortical thickness or volume. We ask whether self-supervised learning (SSL) can uncover more powerful biomarkers from the same data. Existing SSL methods underperform FreeSurfer-derived features in disease classification, conversion prediction, and amyloid status prediction. We introduce Residual Noise Contrastive Estimation (R-NCE), a new SSL framework that integrates auxiliary FreeSurfer features while maximizing additional augmentation-invariant information. R-NCE outperforms traditional features and existing SSL methods across multiple benchmarks, including AD conversion prediction. To assess biological relevance, we derive Brain Age Gap (BAG) measures and perform genome-wide association studies. R-NCE-BAG shows high heritability and associations with MAPT and IRAG1, with enrichment in astrocytes and oligodendrocytes, indicating sensitivity to neurodegenerative and cerebrovascular processes.
On the Effects of Adversarial Perturbations on Distribution Robustness
Adversarial robustness refers to a model's ability to resist perturbation of inputs, while distribution robustness evaluates the performance of the model under data shifts. Although both aim to ensure reliable performance, prior work has revealed a tradeoff in distribution and adversarial robustness. Specifically, adversarial training might increase reliance on spurious features, which can harm distribution robustness, especially the performance on some underrepresented subgroups. We present a theoretical analysis of adversarial and distribution robustness that provides a tractable surrogate for per-step adversarial training by studying models trained on perturbed data. In addition to the tradeoff, our work further identified a nuanced phenomenon that $\ell_\infty$ perturbations on data with moderate bias can yield an increase in distribution robustness. Moreover, the gain in distribution robustness remains on highly skewed data when simplicity bias induces reliance on the core feature, characterized as greater feature separability. Our theoretical analysis extends the understanding of the tradeoff by highlighting the interplay of the tradeoff and the feature separability. Despite the tradeoff that persists in many cases, overlooking the role of feature separability may lead to misleading conclusions about robustness.
On the Expressive Power of Floating-Point Transformers
The study on the expressive power of transformers shows that transformers are permutation equivariant, and they can approximate all permutation-equivariant continuous functions on a compact domain. However, these results are derived under real parameters and exact operations, while real implementations on computers can only use a finite set of numbers and inexact machine operations with round-off errors. In this work, we investigate the representability of floating-point transformers that use floating-point parameters and floating-point operations. Unlike existing results under exact operations, we first show that floating-point transformers can represent a class of non-permutation-equivariant functions even without positional encoding. Furthermore, we prove that floating-point transformers can represent all permutation-equivariant functions when the sequence length is bounded, but they cannot when the sequence length is large. We also found the minimal equivariance structure in floating-point transformers, and show that all non-trivial additive positional encoding can harm the representability of floating-point transformers.
Brownian ReLU(Br-ReLU): A New Activation Function for a Long-Short Term Memory (LSTM) Network
Deep learning models are effective for sequential data modeling, yet commonly used activation functions such as ReLU, LeakyReLU, and PReLU often exhibit gradient instability when applied to noisy, non-stationary financial time series. This study introduces BrownianReLU, a stochastic activation function induced by Brownian motion that enhances gradient propagation and learning stability in Long Short-Term Memory (LSTM) networks. Using Monte Carlo simulation, BrownianReLU provides a smooth, adaptive response for negative inputs, mitigating the dying ReLU problem. The proposed activation is evaluated on financial time series from Apple, GCB, and the S&P 500, as well as LendingClub loan data for classification. Results show consistently lower Mean Squared Error and higher $R^2$ values, indicating improved predictive accuracy and generalization. Although ROC-AUC metric is limited in classification tasks, activation choice significantly affects the trade-off between accuracy and sensitivity, with Brownian ReLU and the selected activation functions yielding practically meaningful performance.
comment: 13 pages, 7 figures, 6 tables
Endless Terminals: Scaling RL Environments for Terminal Agents
Environments are the bottleneck for self-improving agents. Current terminal benchmarks were built for evaluation, not training; reinforcement learning requires a scalable pipeline, not just a dataset. We introduce Endless Terminals, a fully autonomous pipeline that procedurally generates terminal-use tasks without human annotation. The pipeline has four stages: generating diverse task descriptions, building and validating containerized environments, producing completion tests, and filtering for solvability. From this pipeline we obtain 3255 tasks spanning file operations, log management, data processing, scripting, and database operations. We train agents using vanilla PPO with binary episode level rewards and a minimal interaction loop: no retrieval, multi-agent coordination, or specialized tools. Despite this simplicity, models trained on Endless Terminals show substantial gains: on our held-out dev set, Llama-3.2-3B improves from 4.0% to 18.2%, Qwen2.5-7B from 10.7% to 53.3%, and Qwen3-8B-openthinker-sft from 42.6% to 59.0%. These improvements transfer to human-curated benchmarks: models trained on Endless Terminals show substantial gains on held out human curated benchmarks: on TerminalBench 2.0, Llama-3.2-3B improves from 0.0% to 2.2%, Qwen2.5-7B from 2.2% to 3.4%, and Qwen3-8B-openthinker-sft from 1.1% to 6.7%, in each case outperforming alternative approaches including models with more complex agentic scaffolds. These results demonstrate that simple RL succeeds when environments scale.
Perfect Clustering for Sparse Directed Stochastic Block Models
Exact recovery in stochastic block models (SBMs) is well understood in undirected settings, but remains considerably less developed for directed and sparse networks, particularly when the number of communities diverges. Spectral methods for directed SBMs often lack stability in asymmetric, low-degree regimes, and existing non-spectral approaches focus primarily on undirected or dense settings. We propose a fully non-spectral, two-stage procedure for community detection in sparse directed SBMs with potentially growing numbers of communities. The method first estimates the directed probability matrix using a neighborhood-smoothing scheme tailored to the asymmetric setting, and then applies $K$-means clustering to the estimated rows, thereby avoiding the limitations of eigen- or singular value decompositions in sparse, asymmetric networks. Our main theoretical contribution is a uniform row-wise concentration bound for the smoothed estimator, obtained through new arguments that control asymmetric neighborhoods and separate in- and out-degree effects. These results imply the exact recovery of all community labels with probability tending to one, under mild sparsity and separation conditions that allow both $γ_n \to 0$ and $K_n \to \infty$. Simulation studies, including highly directed, sparse, and non-symmetric block structures, demonstrate that the proposed procedure performs reliably in regimes where directed spectral and score-based methods deteriorate. To the best of our knowledge, this provides the first exact recovery guarantee for this class of non-spectral, neighborhood-smoothing methods in the sparse, directed setting.
Safe Multitask Molecular Graph Networks for Vapor Pressure and Odor Threshold Prediction
We investigate two important tasks in odor-related property modeling: Vapor Pressure (VP) and Odor Threshold (OP). To evaluate the model's out-of-distribution (OOD) capability, we adopt the Bemis-Murcko scaffold split. In terms of features, we introduce the rich A20/E17 molecular graph features (20-dimensional atom features + 17-dimensional bond features) and systematically compare GINE and PNA backbones. The results show: for VP, PNA with a simple regression head achieves Val MSE $\approx$ 0.21 (normalized space); for the OP single task under the same scaffold split, using A20/E17 with robust training (Huber/winsor) achieves Val MSE $\approx$ 0.60-0.61. For multitask training, we propose a **"safe multitask"** approach: VP as the primary task and OP as the auxiliary task, using delayed activation + gradient clipping + small weight, which avoids harming the primary task and simultaneously yields the best VP generalization performance. This paper provides complete reproducible experiments, ablation studies, and error-similarity analysis while discussing the impact of data noise and method limitations.
Bayesian Experimental Design for Model Discrepancy Calibration: A Rivalry between Kullback--Leibler Divergence and Wasserstein Distance
Designing experiments that systematically gather data from complex physical systems is central to accelerating scientific discovery. While Bayesian experimental design (BED) provides a principled, information-based framework that integrates experimental planning with probabilistic inference, the selection of utility functions in BED is a long-standing and active topic, where different criteria emphasize different notions of information. Although Kullback--Leibler (KL) divergence has been one of the most common choices, recent studies have proposed Wasserstein distance as an alternative. In this work, we first employ a toy example to illustrate an issue of Wasserstein distance - the value of Wasserstein distance of a fixed-shape posterior depends on the relative position of its main mass within the support and can exhibit false rewards unrelated to information gain, especially with a non-informative prior (e.g., uniform distribution). We then further provide a systematic comparison between these two criteria through a classical source inversion problem in the BED literature, revealing that the KL divergence tends to lead to faster convergence in the absence of model discrepancy, while Wasserstein metrics provide more robust sequential BED results if model discrepancy is non-negligible. These findings clarify the trade-offs between KL divergence and Wasserstein metrics for the utility function and provide guidelines for selecting suitable criteria in practical BED applications.
PyHealth 2.0: A Comprehensive Open-Source Toolkit for Accessible and Reproducible Clinical Deep Learning
Difficulty replicating baselines, high computational costs, and required domain expertise create persistent barriers to clinical AI research. To address these challenges, we introduce PyHealth 2.0, an enhanced clinical deep learning toolkit that enables predictive modeling in as few as 7 lines of code. PyHealth 2.0 offers three key contributions: (1) a comprehensive toolkit addressing reproducibility and compatibility challenges by unifying 15+ datasets, 20+ clinical tasks, 25+ models, 5+ interpretability methods, and uncertainty quantification including conformal prediction within a single framework that supports diverse clinical data modalities - signals, imaging, and electronic health records - with translation of 5+ medical coding standards; (2) accessibility-focused design accommodating multimodal data and diverse computational resources with up to 39x faster processing and 20x lower memory usage, enabling work from 16GB laptops to production systems; and (3) an active open-source community of 400+ members lowering domain expertise barriers through extensive documentation, reproducible research contributions, and collaborations with academic health systems and industry partners, including multi-language support via RHealth. PyHealth 2.0 establishes an open-source foundation and community advancing accessible, reproducible healthcare AI. Available at pip install pyhealth.
comment: Under Review
Tight Regret Bounds for Bilateral Trade under Semi Feedback
The study of \textit{regret minimization in fixed-price bilateral trade} has received considerable attention in recent research. Previous works [CCC+24a, CCC+24b, AFF24, BCCF24, CJLZ25, LCM25a, GDFS25] have acquired a thorough understanding of the problem, except for determining the tight regret bound for GBB semi-feedback fixed-price mechanisms under adversarial values. In this paper, we resolve this open question by devising an $\widetilde{O}(T^{2 / 3})$-regret mechanism, matching the $Ω(T^{2 / 3})$ lower bound from [CJLZ25] up to polylogarithmic factors.
A Refinement of Vapnik--Chervonenkis' Theorem
Vapnik--Chervonenkis' theorem is a seminal result in machine learning. It establishes sufficient conditions for empirical probabilities to converge to theoretical probabilities, uniformly over families of events. It also provides an estimate for the rate of such uniform convergence. We revisit the probabilistic component of the classical argument. Instead of applying Hoeffding's inequality at the final step, we use a normal approximation with explicit Berry--Esseen error control. This yields a moderate-deviation sharpening of the usual VC estimate, with an additional factor of order $(\varepsilon\sqrt{n})^{-1}$ in the leading exponential term when $\varepsilon\sqrt{n}$ is large.
Reasoning-Enhanced Rare-Event Prediction with Balanced Outcome Correction
Rare-event prediction is critical in domains such as healthcare, finance, reliability engineering, customer support, aviation safety, where positive outcomes are infrequent yet potentially catastrophic. Extreme class imbalance biases conventional models toward majority-class predictions, limiting recall, calibration, and operational usefulness. We propose LPCORP (Low-Prevalence CORrector for Prediction)*, a two-stage framework that combines reasoningenhanced prediction with confidence-based outcome correction. A reasoning model first produces enriched predictions from narrative inputs, after which a lightweight logistic-regression classifier evaluates and selectively corrects these outputs to mitigate prevalence-driven bias. We evaluate LPCORP on real-world datasets from medical and consumer service domains. The results show that this method transforms a highly imbalanced setting into a well-balanced one while preserving the original number of samples and without applying any resampling strategies. Test-set evaluation demonstrates substantially improved performance, particularly in precision, which is a known weakness in low-prevalence data. We further provide a costreduction analysis comparing the expenses associated with rare-event damage control without preventive measures to those incurred when low-cost, prediction-based preventive interventions are applied that showed more than 50% reduction in some cases. * Patent pending: U.S. Provisional 63/933,518, filed 8 December 2025.
comment: 28 pages, 12 figures, provisional patent
Reinforcement Learning-Based Energy-Aware Coverage Path Planning for Precision Agriculture
Coverage Path Planning (CPP) is a fundamental capability for agricultural robots; however, existing solutions often overlook energy constraints, resulting in incomplete operations in large-scale or resource-limited environments. This paper proposes an energy-aware CPP framework grounded in Soft Actor-Critic (SAC) reinforcement learning, designed for grid-based environments with obstacles and charging stations. To enable robust and adaptive decision-making under energy limitations, the framework integrates Convolutional Neural Networks (CNNs) for spatial feature extraction and Long Short-Term Memory (LSTM) networks for temporal dynamics. A dedicated reward function is designed to jointly optimize coverage efficiency, energy consumption, and return-to-base constraints. Experimental results demonstrate that the proposed approach consistently achieves over 90% coverage while ensuring energy safety, outperforming traditional heuristic algorithms such as Rapidly-exploring Random Tree (RRT), Particle Swarm Optimization (PSO), and Ant Colony Optimization (ACO) baselines by 13.4-19.5% in coverage and reducing constraint violations by 59.9-88.3%. These findings validate the proposed SAC-based framework as an effective and scalable solution for energy-constrained CPP in agricultural robotics.
comment: Accepted by RACS '25: International Conference on Research in Adaptive and Convergent Systems, November 16-19, 2025, Ho Chi Minh, Vietnam. 10 pages, 5 figures
Towards a Theoretical Understanding to the Generalization of RLHF
Reinforcement Learning from Human Feedback (RLHF) and its variants have emerged as the dominant approaches for aligning Large Language Models with human intent. While empirically effective, the theoretical generalization properties of these methods in high-dimensional settings remain to be explored. To this end, we build the generalization theory on RLHF of LLMs under the linear reward model, through the framework of algorithmic stability. In contrast to the existing works built upon the consistency of maximum likelihood estimations on reward model, our analysis is presented under an end-to-end learning framework, which is consistent with practice. Concretely, we prove that under a key \textbf{feature coverage} condition, the empirical optima of policy model have a generalization bound of order $\mathcal{O}(n^{-\frac{1}{2}})$. Moreover, the results can be extrapolated to parameters obtained by gradient-based learning algorithms, i.e., Gradient Ascent (GA) and Stochastic Gradient Ascent (SGA). Thus, we argue that our results provide new theoretical evidence for the empirically observed generalization of LLMs after RLHF.
comment: 31 pages, 6 figures
A Regularized Actor-Critic Algorithm for Bi-Level Reinforcement Learning
We study a structured bi-level optimization problem where the upper-level objective is a smooth function and the lower-level problem is policy optimization in a Markov decision process (MDP). The upper-level decision variable parameterizes the reward of the lower-level MDP, and the upper-level objective depends on the optimal induced policy. Existing methods for bi-level optimization and RL often require second-order information, impose strong regularization at the lower level, or inefficiently use samples through nested-loop procedures. In this work, we propose a single-loop, first-order actor-critic algorithm that optimizes the bi-level objective via a penalty-based reformulation. We introduce into the lower-level RL objective an attenuating entropy regularization, which enables asymptotically unbiased upper-level hyper-gradient estimation without solving the unregularized RL problem exactly. We establish the finite-time and finite-sample convergence of the proposed algorithm to a stationary point of the original, unregularized bi-level optimization problem through a novel lower-level residual analysis under a special type of Polyak-Lojasiewicz condition. We validate the performance of our method through experiments on a GridWorld goal position problem and on happy tweet generation through reinforcement learning from human feedback (RLHF).
White-Box Sensitivity Auditing with Steering Vectors
Algorithmic audits are essential tools for examining systems for properties required by regulators or desired by operators. Current audits of large language models (LLMs) primarily rely on black-box evaluations that assess model behavior only through input-output testing. These methods are limited to tests constructed in the input space, often generated by heuristics. In addition, many socially relevant model properties (e.g., gender bias) are abstract and difficult to measure through text-based inputs alone. To address these limitations, we propose a white-box sensitivity auditing framework for LLMs that leverages activation steering to conduct more rigorous assessments through model internals. Our auditing method conducts internal sensitivity tests by manipulating key concepts relevant to the model's intended function for the task. We demonstrate its application to bias audits in four simulated high-stakes LLM decision tasks. Our method consistently reveals substantial dependence on protected attributes in model predictions, even in settings where standard black-box evaluations suggest little or no bias. Our code is openly available at https://github.com/hannahxchen/llm-steering-audit
MapAnything: Universal Feed-Forward Metric 3D Reconstruction 3DV 2026
We introduce MapAnything, a unified transformer-based feed-forward model that ingests one or more images along with optional geometric inputs such as camera intrinsics, poses, depth, or partial reconstructions, and then directly regresses the metric 3D scene geometry and cameras. MapAnything leverages a factored representation of multi-view scene geometry, i.e., a collection of depth maps, local ray maps, camera poses, and a metric scale factor that effectively upgrades local reconstructions into a globally consistent metric frame. Standardizing the supervision and training across diverse datasets, along with flexible input augmentation, enables MapAnything to address a broad range of 3D vision tasks in a single feed-forward pass, including uncalibrated structure-from-motion, calibrated multi-view stereo, monocular depth estimation, camera localization, depth completion, and more. We provide extensive experimental analyses and model ablations demonstrating that MapAnything outperforms or matches specialist feed-forward models while offering more efficient joint training behavior, thus paving the way toward a universal 3D reconstruction backbone.
comment: 3DV 2026. Project Page: https://map-anything.github.io/
Towards Reasoning for PDE Foundation Models: A Reward-Model-Driven Inference-Time-Scaling Algorithm
Partial Differential Equations (PDEs) are the bedrock for modern computational sciences and engineering, and inherently computationally expensive. While PDE foundation models have shown much promise for simulating such complex spatio-temporal phenomena, existing models remain constrained by the pretraining datasets and struggle with auto-regressive rollout performance, especially in out-of-distribution (OOD) cases. Furthermore, they have significant compute and training data requirements which hamper their use in many critical applications. Inspired by recent advances in ``thinking" strategies used in large language models (LLMs), we introduce the first test-time computing (TTC) strategy for PDEs that utilizes computational resources during inference to achieve more accurate predictions with fewer training samples and smaller models. We accomplish this with two types of reward models that evaluate predictions of a stochastic based model for spatio-temporal consistency. We demonstrate this method on compressible Euler-equation simulations from the PDEGym benchmark and show that TTC captures improved predictions relative to standard non-adaptive auto-regressive inference. This TTC framework marks a foundational step towards more advanced reasoning algorithms or PDE modeling, inluding building reinforcement-learning-based approaches, potentially transforming computational workflows in physics and engineering.
On Fine-Grained I/O Complexity of Attention Backward Passes
Large Language Models (LLMs) exhibit exceptional proficiency in handling extensive context windows in natural language. Nevertheless, the quadratic scaling of attention computation relative to sequence length creates substantial efficiency bottlenecks, necessitating the development of I/O-optimized algorithms. In this work, we conduct a systematic examination of the I/O complexity inherent in attention mechanisms, with a specific emphasis on the backward pass under both small and large cache settings. By leveraging the red-blue pebble game framework, we derive tight bounds for I/O complexity across the full spectrum of cache sizes. We validate that FlashAttention, one of the current industry standards, achieves optimality in the large-cache scenario for both forward and backward passes. Conversely, for small-cache environments, we introduce a novel algorithm that outperforms contemporary methods and successfully attains theoretical tight bounds. Furthermore, we expand our investigation to include sparse attention by establishing granular lower bounds for both forward and backward passes across all cache configurations. Ultimately, our results solidify the theoretical framework regarding I/O complexity in attention mechanisms, providing critical guidance for the development of efficient LLM training and inference systems.
Q-learning with Adjoint Matching
We propose Q-learning with Adjoint Matching (QAM), a novel TD-based reinforcement learning (RL) algorithm that tackles a long-standing challenge in continuous-action RL: efficient optimization of an expressive diffusion or flow-matching policy with respect to a parameterized Q-function. Effective optimization requires exploiting the first-order information of the critic, but it is challenging to do so for flow or diffusion policies because direct gradient-based optimization via backpropagation through their multi-step denoising process is numerically unstable. Existing methods work around this either by only using the value and discarding the gradient information, or by relying on approximations that sacrifice policy expressivity or bias the learned policy. QAM sidesteps both of these challenges by leveraging adjoint matching, a recently proposed technique in generative modeling, which transforms the critic's action gradient to form a step-wise objective function that is free from unstable backpropagation, while providing an unbiased, expressive policy at the optimum. Combined with temporal-difference backup for critic learning, QAM consistently outperforms prior approaches on hard, sparse reward tasks in both offline and offline-to-online RL.
comment: 32 pages, 8 figures, 7 tables
Provable Differentially Private Computation of the Cross-Attention Mechanism
Cross-attention has emerged as a cornerstone module in modern artificial intelligence, underpinning critical applications such as retrieval-augmented generation (RAG), system prompting, and guided stable diffusion. However, this is a rising concern about securing the privacy of cross-attention, as the underlying key and value matrices frequently encode sensitive data or private user information. In this work, we introduce a novel data structure designed to enforce differential privacy (DP) for cross-attention mechanisms, accompanied by provable theoretical guarantees. Specifically, letting $n$ denote the input sequence length, $d$ the feature dimension, $R$ the maximum magnitude of query and key matrices, $R_w$ the maximum magnitude of the value matrix, and $r, s, ε_s$ the parameters for polynomial kernel methods, our proposed structure achieves $\widetilde{O}(ndr^2)$ space and initialization complexity, with a query time of $\widetilde{O}(d r^2)$ per token. Moreover, we demonstrate that our mechanism satisfies $(ε, δ)$-DP, incurring an additive error of $\widetilde{O}((1-ε_s)^{-1} n^{-1} ε^{-1} R^{2s} R_w r^2)$ and a relative error of $2ε_s/(1-ε_s)$ with respect to the ground truth. Crucially, our framework maintains robustness against adaptive queries, ensuring security even in adversarial settings. To the best of our knowledge, this constitutes the first approach providing provable differential privacy for cross-attention, establishing a foundation for future privacy-preserving algorithms in large generative models (LGMs).
Efficient semantic uncertainty quantification in language models via diversity-steered sampling NeurIPS 2025
Accurately estimating semantic aleatoric and epistemic uncertainties in large language models (LLMs) is particularly challenging in free-form question answering (QA), where obtaining stable estimates often requires many expensive generations. We introduce a diversity-steered sampler that discourages semantically redundant outputs during decoding, covers both autoregressive and masked diffusion paradigms, and yields substantial sample-efficiency gains. The key idea is to inject a continuous semantic-similarity penalty into the model's proposal distribution using a natural language inference (NLI) model lightly finetuned on partial prefixes or intermediate diffusion states. We debias downstream uncertainty estimates with importance reweighting and shrink their variance with control variates. Across four QA benchmarks, our method matches or surpasses baselines while covering more semantic clusters with the same number of samples. Being modular and requiring no gradient access to the base LLM, the framework promises to serve as a drop-in enhancement for uncertainty estimation in risk-sensitive model deployments.
comment: 10 pages (+7 appendix), 7 figures. Accepted at NeurIPS 2025
Differentiable Cyclic Causal Discovery Under Unmeasured Confounders
Understanding causal relationships between variables is fundamental across scientific disciplines. Most causal discovery algorithms rely on two key assumptions: (i) all variables are observed, and (ii) the underlying causal graph is acyclic. While these assumptions simplify theoretical analysis, they are often violated in real-world systems, such as biological networks. Existing methods that account for confounders either assume linearity or struggle with scalability. To address these limitations, we propose DCCD-CONF, a novel framework for differentiable learning of nonlinear cyclic causal graphs in the presence of unmeasured confounders using interventional data. Our approach alternates between optimizing the graph structure and estimating the confounder distribution by maximizing the log-likelihood of the data. Through experiments on synthetic data and real-world gene perturbation datasets, we show that DCCD-CONF outperforms state-of-the-art methods in both causal graph recovery and confounder identification. Additionally, we also provide consistency guarantees for our framework, reinforcing its theoretical soundness.
HEIGHT: Heterogeneous Interaction Graph Transformer for Robot Navigation in Crowded and Constrained Environments
We study the problem of robot navigation in dense and interactive crowds with static constraints such as corridors and furniture. Previous methods fail to consider all types of spatial and temporal interactions among agents and obstacles, leading to unsafe and inefficient robot paths. In this article, we leverage a graph-based representation of crowded and constrained scenarios and propose a structured framework to learn robot navigation policies with deep reinforcement learning. We first split the representations of different inputs and propose a heterogeneous spatio-temporal graph to model distinct interactions among humans, robots, and obstacles. Based on the heterogeneous spatio-temporal graph, we propose HEIGHT, a novel navigation policy network architecture with different components to capture heterogeneous interactions through space and time. HEIGHT utilizes attention mechanisms to prioritize important interactions and a recurrent network to track changes in the dynamic scene over time, encouraging the robot to avoid collisions adaptively. Through extensive simulation and real-world experiments, we demonstrate that HEIGHT outperforms state-of-the-art baselines in terms of success, navigation time, and generalization to domain shifts in challenging navigation scenarios. More information is available at https://sites.google.com/view/crowdnav-height/home.
comment: Accepted to IEEE Transactions of Automation Science and Engineering (T-ASE)
Equivariant Flow Matching for Symmetry-Breaking Bifurcation Problems NeurIPS 2025
Bifurcation phenomena in nonlinear dynamical systems often lead to multiple coexisting stable solutions, particularly in the presence of symmetry breaking. Deterministic machine learning models are unable to capture this multiplicity, averaging over solutions and failing to represent lower-symmetry outcomes. In this work, we formalize the use of generative AI, specifically flow matching, as a principled way to model the full probability distribution over bifurcation outcomes. Our approach builds on existing techniques by combining flow matching with equivariant architectures and an optimal-transport-based coupling mechanism. We generalize equivariant flow matching to a symmetric coupling strategy that aligns predicted and target outputs under group actions, allowing accurate learning in equivariant settings. We validate our approach on a range of systems, from simple conceptual systems to physical problems such as buckling beams and the Allen--Cahn equation. The results demonstrate that the approach accurately captures multimodal distributions and symmetry-breaking bifurcations. Moreover, our results demonstrate that flow matching significantly outperforms non-probabilistic and variational methods. This offers a principled and scalable solution for modeling multistability in high-dimensional systems.
comment: 9 pages, 7 figures including appendices. Accepted to Machine Learning and the Physical Sciences Workshop, NeurIPS 2025 (https://ml4physicalsciences.github.io/2025/). Repository with corresponding code: https://github.com/FHendriks11/bifurcationML/. Video explanation: https://www.youtube.com/watch?v=wsL3h17KtjY
Multi-scale Graph Autoregressive Modeling: Molecular Property Prediction via Next Token Prediction
We present Connection-Aware Motif Sequencing (CamS), a graph-to-sequence representation that enables decoder-only Transformers to learn molecular graphs via standard next-token prediction (NTP). For molecular property prediction, SMILES-based NTP scales well but lacks explicit topology, whereas graph-native masked modeling captures connectivity but risks disrupting the pivotal chemical details (e.g., activity cliffs). CamS bridges this gap by serializing molecular graphs into structure-rich causal sequences. CamS first mines data-driven connection-aware motifs. It then serializes motifs via scaffold-rooted breadth-first search (BFS) to establish a stable core-to-periphery order. Crucially, CamS enables hierarchical modeling by concatenating sequences from fine to coarse motif scales, allowing the model to condition global scaffolds on dense, uncorrupted local structural evidence. We instantiate CamS-LLaMA by pre-training a vanilla LLaMA backbone on CamS sequences. It achieves state-of-the-art performance on MoleculeNet and the activity-cliff benchmark MoleculeACE, outperforming both SMILES-based language models and strong graph baselines. Interpretability analysis confirms that our multi-scale causal serialization effectively drives attention toward cliff-determining differences.
Gradient-Based Neuroplastic Adaptation for Concurrent Optimization of Neuro-Fuzzy Networks
Neuro-fuzzy networks (NFNs) are transparent, symbolic, and universal function approximations that perform as well as conventional neural architectures, but their knowledge is expressed as linguistic IF-THEN rules. Despite these advantages, their systematic design process remains a challenge. Existing work will often sequentially build NFNs by inefficiently isolating parametric and structural identification, leading to a premature commitment to brittle and subpar architecture. We propose a novel application-independent approach called gradient-based neuroplastic adaptation for the concurrent optimization of NFNs' parameters and structure. By recognizing that NFNs' parameters and structure should be optimized simultaneously as they are deeply conjoined, settings previously unapproachable for NFNs are now accessible, such as the online reinforcement learning of NFNs for vision-based tasks. The effectiveness of concurrently optimizing NFNs is empirically shown as it is trained by online reinforcement learning to proficiently play challenging scenarios from a vision-based video game called DOOM.
comment: 52 pages
Kernel Embeddings and the Separation of Measure Phenomenon
We prove that kernel covariance embeddings lead to information-theoretically perfect separation of distinct continuous probability distributions. In statistical terms, we establish that testing for the \emph{equality} of two non-atomic (Borel) probability measures on a locally compact Polish space is \emph{equivalent} to testing for the \emph{singularity} between two centered Gaussian measures on a reproducing kernel Hilbert space. The corresponding Gaussians are defined via the notion of kernel covariance embedding of a probability measure, and the Hilbert space is that generated by the embedding kernel. Distinguishing singular Gaussians is structurally simpler from an information-theoretic perspective than non-parametric two-sample testing, particularly in complex or high-dimensional domains. This is because singular Gaussians are supported on essentially separate and affine subspaces. Our proof leverages the classical Feldman-Hájek dichotomy, and shows that even a small perturbation of a continuous distribution will be maximally magnified through its Gaussian embedding. This ``separation of measure phenomenon'' appears to be a blessing of infinite dimensionality, by means of embedding, with the potential to inform the design of efficient inference tools in considerable generality. The elicitation of this phenomenon also appears to crystallize, in a precise and simple mathematical statement, a core mechanism underpinning the empirical effectiveness of kernel methods.
MACTAS: Self-Attention-Based Inter-Agent Communication in Multi-Agent Reinforcement Learning with Action-Value Function Decomposition IJCAI 2026
Communication is essential for the collective execution of complex tasks by human agents, motivating interest in communication mechanisms for multi-agent reinforcement learning (MARL). However, existing communication protocols in MARL are often complex and non-differentiable. In this work, we introduce a self-attention-based communication method that exchanges information between the agents in MARL. Our proposed approach is fully differentiable, allowing agents to learn to generate messages in a reward-driven manner. The method can be seamlessly integrated with any action-value function decomposition algorithm and can be viewed as an orthogonal extension of such decompositions. Notably, it includes a fixed number of trainable parameters, independent of the number of agents, which makes it scalable to large systems. Experimental results on the SMACv2 benchmark demonstrate the effectiveness of our approach, which achieves state-of-the-art performance on a number of maps. makes it scalable to large systems. Experimental results on the SMACv2 benchmark demonstrate the effectiveness of our approach, which achieves state-of-the-art performance on a number of maps.
comment: Submitted for IJCAI 2026
Detecting High-Stakes Interactions with Activation Probes NeurIPS 2025
Monitoring is an important aspect of safely deploying Large Language Models (LLMs). This paper examines activation probes for detecting ``high-stakes'' interactions -- where the text indicates that the interaction might lead to significant harm -- as a critical, yet underexplored, target for such monitoring. We evaluate several probe architectures trained on synthetic data, and find them to exhibit robust generalization to diverse, out-of-distribution, real-world data. Probes' performance is comparable to that of prompted or finetuned medium-sized LLM monitors, while offering computational savings of six orders-of-magnitude. These savings are enabled by reusing activations of the model that is being monitored. Our experiments also highlight the potential of building resource-aware hierarchical monitoring systems, where probes serve as an efficient initial filter and flag cases for more expensive downstream analysis. We release our novel synthetic dataset and the codebase at https://github.com/arrrlex/models-under-pressure.
comment: Accepted at NeurIPS 2025
Theoretical Foundations of Scaling Law in Familial Models
Neural scaling laws have become foundational for optimizing large language model (LLM) training, yet they typically assume a single dense model output. This limitation effectively overlooks "Familial models, a transformative paradigm essential for realizing ubiquitous intelligence across heterogeneous device-edge-cloud hierarchies. Transcending static architectures, familial models integrate early exits with relay-style inference to spawn G deployable sub-models from a single shared backbone. In this work, we theoretically and empirically extend the scaling law to capture this "one-run, many-models" paradigm by introducing Granularity (G) as a fundamental scaling variable alongside model size (N) and training tokens (D). To rigorously quantify this relationship, we propose a unified functional form L(N, D, G) and parameterize it using large-scale empirical runs. Specifically, we employ a rigorous IsoFLOP experimental design to strictly isolate architectural impact from computational scale. Across fixed budgets, we systematically sweep model sizes (N) and granularities (G) while dynamically adjusting tokens (D). This approach effectively decouples the marginal cost of granularity from the benefits of scale, ensuring high-fidelity parameterization of our unified scaling law. Our results reveal that the granularity penalty follows a multiplicative power law with an extremely small exponent. Theoretically, this bridges fixed-compute training with dynamic architectures. Practically, it validates the "train once, deploy many" paradigm, demonstrating that deployment flexibility is achievable without compromising the compute-optimality of dense baselines.
GlueNN: gluing patchwise analytic solutions with neural networks
In the analysis of complex physical systems, the objective often extends beyond merely computing a numerical solution to capturing the precise crossover between different regimes and extracting parameters containing meaningful information. However, standard numerical solvers and conventional deep learning approaches, such as Physics-Informed Neural Networks (PINNs), typically operate as black boxes that output solution fields without disentangling the solution into its interpretable constituent parts. In this work, we propose GlueNN, a physics-informed learning framework that decomposes the global solution into interpretable, patchwise analytic components. Rather than approximating the solution directly, GlueNN promotes the integration constants of local asymptotic expansions to learnable, scale-dependent coefficient functions. By constraining these coefficients with the differential equation, the network effectively performs regime transition, smoothly interpolating between asymptotic limits without requiring ad hoc boundary matching. We demonstrate that this coefficient-centric approach reproduces accurate global solutions in various examples and thus directly extracts physical information that is not explicitly available through standard numerical integration.
comment: Additional Example Included
Estimation of discrete distributions in relative entropy, and the deviations of the missing mass
We study the problem of estimating a distribution over a finite alphabet from an i.i.d. sample, with accuracy measured in relative entropy (Kullback-Leibler divergence). While optimal bounds on the expected risk are known, high-probability guarantees remain less well-understood. First, we analyze the classical Laplace (add-one) estimator, obtaining matching upper and lower bounds on its performance and establishing its optimality among confidence-independent estimators. We then characterize the minimax-optimal high-probability risk and show that it is achieved by a simple confidence-dependent smoothing technique. Notably, the optimal non-asymptotic risk incurs an additional logarithmic factor compared to the ideal asymptotic rate. Next, motivated by regimes in which the alphabet size exceeds the sample size, we investigate methods that adapt to the sparsity of the underlying distribution. We introduce an estimator using data-dependent smoothing, for which we establish a high-probability risk bound depending on two effective sparsity parameters. As part of our analysis, we also derive a sharp high-probability upper bound on the missing mass.
comment: Minor revision; 54 pages
VMMU: A Vietnamese Multitask Multimodal Understanding and Reasoning Benchmark
We introduce VMMU, a Vietnamese Multitask Multimodal Understanding and Reasoning Benchmark designed to evaluate how vision-language models (VLMs) interpret and reason over visual and textual information beyond English. VMMU consists of 2.5k multimodal questions across 7 tasks, covering a diverse range of problem contexts, including STEM problem solving, data interpretation, rule-governed visual reasoning, and abstract visual reasoning. All questions require genuine multimodal integration, rather than reliance on text-only cues or OCR-based shortcuts. We evaluate a diverse set of state-of-the-art proprietary and open-source VLMs on VMMU. Despite strong Vietnamese OCR performance, proprietary models achieve only 66% mean accuracy. Further analysis shows that the primary source of failure is not OCR, but instead multimodal grounding and reasoning over text and visual evidence. Code and data are available at https://vmmu-bench.github.io/
Data Matters Most: Auditing Social Bias in Contrastive Vision Language Models
Vision-language models (VLMs) deliver strong zero-shot recognition but frequently inherit social biases from their training data. We systematically disentangle three design factors -- model size, training-data scale, and training-data source -- by comparing CLIP and OpenCLIP, two models that share an identical contrastive objective yet differ in encoder width and in the image-text corpora on which they are pre-trained (400M proprietary pairs vs. 400M/2B LAION). Across balanced face-analysis benchmarks, enlarging the encoder reduces gender skew in CLIP but amplifies both gender and racial skew in OpenCLIP; increasing the LAION corpus from 400M to 2B further increases OpenCLIP bias. At matched model and data budgets, substituting proprietary data with LAION improves gender fairness while increasing racial skew, underscoring data source as the primary driver of bias patterns. We also evaluate three post-hoc, test-time debiasing strategies -- Bias Prompts, Prompt Array, and SANER. Debiasing reduces but does not eliminate harm, and its effectiveness is source- and size-dependent: Bias Prompts most effectively reduce gender skew in CLIP at smaller model sizes, whereas Prompt Array and SANER more reliably reduce racial skew in OpenCLIP; scaling LAION reconfigures which method is most fair. Taken together, these findings challenge the assumption that bigger models or datasets are automatically fairer and foreground training data source as the key determinant of both bias and mitigation efficacy. We release code and evaluation scripts to enable transparent, reproducible auditing of future VLMs.
comment: Published at TMLR; updated version
The Curse of Depth in Large Language Models NeurIPS 2025
In this paper, we introduce the Curse of Depth, a concept that highlights, explains, and addresses the recent observation in modern Large Language Models (LLMs) where nearly half of the layers are less effective than expected. We first confirm the wide existence of this phenomenon across the most popular families of LLMs such as Llama, Mistral, DeepSeek, and Qwen. Our analysis, theoretically and empirically, identifies that the underlying reason for the ineffectiveness of deep layers in LLMs is the widespread usage of Pre-Layer Normalization (Pre-LN). While Pre-LN stabilizes the training of Transformer LLMs, its output variance exponentially grows with the model depth, which undesirably causes the derivative of the deep Transformer blocks to be an identity matrix, and therefore barely contributes to the training. To resolve this training pitfall, we propose LayerNorm Scaling (LNS), which scales the variance of output of the layer normalization inversely by the square root of its depth. This simple modification mitigates the output variance explosion of deeper Transformer layers, improving their contribution. Across a wide range of model sizes (130M to 7B), our experiments show that LNS consistently outperforms previous normalization and scaling techniques in enhancing LLM pre-training performance. Moreover, this improvement seamlessly carries over to supervised fine-tuning. All these gains can be attributed to the fact that LayerNorm Scaling enables deeper layers to contribute more effectively during training. Our code is available at \href{https://github.com/lmsdss/LayerNorm-Scaling}{LayerNorm-Scaling}.
comment: Accepted by NeurIPS 2025
Task Aware Dreamer for Task Generalization in Reinforcement Learning
A long-standing goal of reinforcement learning is to acquire agents that can learn on training tasks and generalize well on unseen tasks that may share a similar dynamic but with different reward functions. The ability to generalize across tasks is important as it determines an agent's adaptability to real-world scenarios where reward mechanisms might vary. In this work, we first show that training a general world model can utilize similar structures in these tasks and help train more generalizable agents. Extending world models into the task generalization setting, we introduce a novel method named Task Aware Dreamer (TAD), which integrates reward-informed features to identify consistent latent characteristics across tasks. Within TAD, we compute the variational lower bound of sample data log-likelihood, which introduces a new term designed to differentiate tasks using their states, as the optimization objective of our reward-informed world models. To demonstrate the advantages of the reward-informed policy in TAD, we introduce a new metric called Task Distribution Relevance (TDR) which quantitatively measures the relevance of different tasks. For tasks exhibiting a high TDR, i.e., the tasks differ significantly, we illustrate that Markovian policies struggle to distinguish them, thus it is necessary to utilize reward-informed policies in TAD. Extensive experiments in both image-based and state-based tasks show that TAD can significantly improve the performance of handling different tasks simultaneously, especially for those with high TDR, and display a strong generalization ability to unseen tasks.
ViSymRe: Vision Multimodal Symbolic Regression
Extracting interpretable equations from observational datasets to describe complex natural phenomena is one of the core goals of artificial intelligence. This field is known as symbolic regression (SR). In recent years, Transformer-based paradigms have become a new trend in SR, addressing the well-known problem of inefficient search. However, the modal heterogeneity between datasets and equations often hinders the convergence and generalization of these models. In this paper, we propose ViSymRe, a Vision Symbolic Regression framework, to explore the positive role of visual modality in enhancing the performance of Transformer-based SR paradigms. To overcome the challenge where the visual SR model is untrainable in high-dimensional scenarios, we present Multi-View Random Slicing (MVRS). By projecting multivariate equations into 2-D space using random affine transformations, MVRS avoids common defects in high-dimensional visualization, such as variable degradation, non-linear interaction missing, and exponentially increasing sampling complexity, enabling ViSymRe to be trained with low computational costs. To support dataset-only deployment of ViSymRe, we design a dual-vision pipeline architecture based on generative techniques, which reconstructs visual features directly from the datasets via an auxiliary Visual Decoder and automatically suppresses the attention weights of reconstruction noise through a proposed Biased Cross-Attention feature fusion module, ensuring that subsequent processes are not affected by noisy modalities. Ablation studies demonstrate the positive contribution of visual modality to improving model convergence level and enhancing various SR metrics. Furthermore, evaluation results on mainstream benchmarks indicate that ViSymRe achieves competitive performance compared to baselines, particularly in low-complexity and rapid-inference scenarios.
Enhancing ECG Classification Robustness with Lightweight Unsupervised Anomaly Detection Filters
Continuous electrocardiogram (ECG) monitoring via wearable devices is vital for early cardiovascular disease detection. However, deploying deep learning models on resource-constrained microcontrollers faces reliability challenges, particularly from Out-of-Distribution (OOD) pathologies and noise. Standard classifiers often yield high-confidence errors on such data. Existing OOD detection methods either neglect computational constraints or address noise and unseen classes separately. This paper investigates Unsupervised Anomaly Detection (UAD) as a lightweight, upstream filtering mechanism. We perform a Neural Architecture Search (NAS) on six UAD approaches, including Deep Support Vector Data Description (Deep SVDD), input reconstruction with (Variational-)Autoencoders (AE/VAE), Masked Anomaly Detection (MAD), Normalizing Flows (NFs) and Denoising Diffusion Probabilistic Models (DDPM) under strict hardware constraints ($\leq$512k parameters), suitable for microcontrollers. Evaluating on the PTB-XL and BUT QDB datasets, we demonstrate that a NAS-optimized Deep SVDD offers the superior Pareto efficiency between detection performance and model size. In a simulated deployment, this lightweight filter improves the accuracy of a diagnostic classifier by up to 21.0 percentage points, demonstrating that optimized UAD filters can safeguard ECG analysis on wearables.
comment: 7 pages, LaTeX; Accepted at the 5th IEEE Workshop on Pervasive and Resource-constrained Artificial Intelligence (PeRConAI) 2026; Shortened the text and removed Fig. 2 and Table II, results unchanged; updated faculty name of one author
Robustly optimal dynamics for active matter reservoir computing
Information processing abilities of active matter are studied in the reservoir computing (RC) paradigm to infer the future state of a chaotic signal. We uncover an exceptional regime of agent dynamics that has been overlooked previously. It appears robustly optimal for performance under many conditions, thus providing valuable insights into computation with physical systems more generally. The key to forming effective mechanisms for information processing appears in the system's intrinsic relaxation abilities. These are probed without actually enforcing a specific inference goal. The dynamical regime that achieves optimal computation is located just below a critical damping threshold, involving a relaxation with multiple stages, and is readable at the single-particle level. At the many-body level, it yields substrates robustly optimal for RC across varying physical parameters and inference tasks. A system in this regime exhibits a strong diversity of dynamic mechanisms under highly fluctuating driving forces. Correlations of agent dynamics can express a tight relationship between the responding system and the fluctuating forces driving it. As this model is interpretable in physical terms, it facilitates re-framing inquiries regarding learning and unconventional computing with a fresh rationale for many-body physics out of equilibrium.
comment: 81 pages, 50 figures. Supplementary Videos: https://doi.org/10.18419/DARUS-4619. Replication Data: https://doi.org/10.18419/DARUS-4620
Koopman Invariants as Drivers of Emergent Time-Series Clustering in Joint-Embedding Predictive Architectures
Joint-Embedding Predictive Architectures (JEPAs), a powerful class of self-supervised models, exhibit an unexplained ability to cluster time-series data by their underlying dynamical regimes. We propose a novel theoretical explanation for this phenomenon, hypothesizing that JEPA's predictive objective implicitly drives it to learn the invariant subspace of the system's Koopman operator. We prove that an idealized JEPA loss is minimized when the encoder represents the system's regime indicator functions, which are Koopman eigenfunctions. This theory was validated on synthetic data with known dynamics, demonstrating that constraining the JEPA's linear predictor to be a near-identity operator is the key inductive bias that forces the encoder to learn these invariants. We further discuss that this constraint is critical for selecting this interpretable solution from a class of mathematically equivalent but entangled optima, revealing the predictor's role in representation disentanglement. This work demystifies a key behavior of JEPAs, provides a principled connection between modern self-supervised learning and dynamical systems theory, and informs the design of more robust and interpretable time-series models.
comment: 11 pages, 5 figures
Self-supervised Learning of Echocardiographic Video Representations via Online Cluster Distillation NeurIPS 2025
Self-supervised learning (SSL) has achieved major advances in natural images and video understanding, but challenges remain in domains like echocardiography (heart ultrasound) due to subtle anatomical structures, complex temporal dynamics, and the current lack of domain-specific pre-trained models. Existing SSL approaches such as contrastive, masked modeling, and clustering-based methods struggle with high intersample similarity, sensitivity to low PSNR inputs common in ultrasound, or aggressive augmentations that distort clinically relevant features. We present DISCOVR (Distilled Image Supervision for Cross Modal Video Representation), a self-supervised dual branch framework for cardiac ultrasound video representation learning. DISCOVR combines a clustering-based video encoder that models temporal dynamics with an online image encoder that extracts fine-grained spatial semantics. These branches are connected through a semantic cluster distillation loss that transfers anatomical knowledge from the evolving image encoder to the video encoder, enabling temporally coherent representations enriched with fine-grained semantic understanding.Evaluated on six echocardiography datasets spanning fetal, pediatric, and adult populations, DISCOVR outperforms both specialized video anomaly detection methods and state-of-the-art video-SSL baselines in zero-shot and linear probing setups,achieving superior segmentation transfer and strong downstream performance on clinically relevant tasks such as LVEF prediction. Code available at: https://github.com/mdivyanshu97/DISCOVR
comment: Accepted in NeurIPS 2025
LATTLE: LLM Attention Transplant for Transfer Learning of Tabular Data Across Disparate Domains
Transfer learning on tabular data is challenging due to disparate feature spaces across domains, in contrast to the homogeneous structures of image and text. Large language models (LLMs) offer a knowledge base to improve the limited effectiveness of cross-domain transfer learning for tabular data. However, LLM performance often stagnates due to subjective text prompts and the computational limitations of in-context learning. We present a novel language-to-tabular context-learning method that uses attention-specific transformer weights, enabling seamless transfer learning across disparate tabular data sets. The LLM attention transplant mechanism facilitates a domain-agnostic transfer learning, eliminating the need for shared features between tables, LLM prompt engineering, and large-scale pretrained models. Our experiments using ten pairs of disjoint source-target data sets and 12 baseline methods demonstrate the superiority of the proposed LLM-attention transplant for transfer learning (LATTLE) method over traditional ML models, state-of-the-art deep tabular architectures, and models trained on thousands to billions of tabular samples. The proposed cross-domain attention transfer demonstrates an effective solution for adapting LLMs to learning non-text tabular data in a low-resource environment. The source code of the LATTLE implementation is publicly available.
Vertical Semi-Federated Learning for Efficient Online Advertising IJCAI 2023
Traditional vertical federated learning schema suffers from two main issues: 1) restricted applicable scope to overlapped samples and 2) high system challenge of real-time federated serving, which limits its application to advertising systems. To this end, we advocate a new practical learning setting, Semi-VFL (Vertical Semi-Federated Learning), for real-world industrial applications, where the learned model retains sufficient advantages of federated learning while supporting independent local serving. To achieve this goal, we propose the carefully designed Joint Privileged Learning framework (JPL) to i) alleviate the absence of the passive party's feature with federated equivalence imitation and ii) adapt to the heterogeneous full sample space with cross-branch rank alignment. Extensive experiments conducted on real-world advertising datasets validate the effectiveness of our method over baseline methods.
comment: TheWebConf 2026 short (proceedings). An earlier version was presented at the FL workshop of IJCAI 2023 (non-proceedings)
Learning and Transferring Physical Models through Derivatives
We propose Derivative Learning (DERL), a supervised approach that models physical systems by learning their partial derivatives. We also leverage DERL to build physical models incrementally, by designing a distillation protocol that effectively transfers knowledge from a pre-trained model to a student one. We provide theoretical guarantees that DERL can learn the true physical system, being consistent with the underlying physical laws, even when using empirical derivatives. DERL outperforms state-of-the-art methods in generalizing an ODE to unseen initial conditions and a parametric PDE to unseen parameters. We also design a method based on DERL to transfer physical knowledge across models by extending them to new portions of the physical domain and a new range of PDE parameters. This introduces a new pipeline to build physical models incrementally in multiple stages.
comment: Accepted at Transactions on Machine Learning Research (TMLR) in January 2026
Mass Distribution versus Density Distribution in the Context of Clustering
This paper investigates two fundamental descriptors of data, i.e., density distribution versus mass distribution, in the context of clustering. Density distribution has been the de facto descriptor of data distribution since the introduction of statistics. We show that density distribution has its fundamental limitation -- high-density bias, irrespective of the algorithms used to perform clustering. Existing density-based clustering algorithms have employed different algorithmic means to counter the effect of the high-density bias with some success, but the fundamental limitation of using density distribution remains an obstacle to discovering clusters of arbitrary shapes, sizes and densities. Using the mass distribution as a better foundation, we propose a new algorithm which maximizes the total mass of all clusters, called mass-maximization clustering (MMC). The algorithm can be easily changed to maximize the total density of all clusters in order to examine the fundamental limitation of using density distribution versus mass distribution. The key advantage of the MMC over the density-maximization clustering is that the maximization is conducted without a bias towards dense clusters.
Categorical Distributions are Effective Neural Network Outputs for Event Prediction
We demonstrate the effectiveness of the categorical distribution as a neural network output for next event prediction. This is done for both discrete-time and continuous-time event sequences. To model continuous-time processes, the categorical distribution is interpreted as a piecewise-constant density function and is shown to be competitive across a range of datasets. We then argue for the importance of studying discrete-time processes by introducing a neuronal spike prediction task motivated by retinal prosthetics, where discretization of event times is consequent on the task description. Separately, we show evidence that commonly used datasets favour smaller models. Finally, we introduce new synthetic datasets for testing larger models, as well as synthetic datasets with discrete event times.
comment: 42 pages, 33 figures
Logical Expressiveness of Graph Neural Networks with Hierarchical Node Individualization NeurIPS 2025
We propose and study Hierarchical Ego Graph Neural Networks (HEGNNs), an expressive extension of graph neural networks (GNNs) with hierarchical node individualization, inspired by the Individualization-Refinement paradigm for isomorphism testing. HEGNNs generalize subgraph-GNNs and form a hierarchy of increasingly expressive models that, in the limit, distinguish graphs up to isomorphism. We show that, over graphs of bounded degree, the separating power of HEGNN node classifiers equals that of graded hybrid logic. This characterization enables us to relate the separating power of HEGNNs to that of higher-order GNNs, GNNs enriched with local homomorphism count features, and color refinement algorithms based on Individualization-Refinement. Our experimental results confirm the practical feasibility of HEGNNs and show benefits in comparison with traditional GNN architectures, both with and without local homomorphism count features.
comment: Submitted to NeurIPS 2025, 28 pages, 5 figures
Enhanced Generative Machine Listener
We present GMLv2, a reference-based model designed for the prediction of subjective audio quality as measured by MUSHRA scores. GMLv2 introduces a Beta distribution-based loss to model the listener ratings and incorporates additional neural audio coding (NAC) subjective datasets to extend its generalization and applicability. Extensive evaluations on diverse testset demonstrate that proposed GMLv2 consistently outperforms widely used metrics, such as PEAQ and ViSQOL, both in terms of correlation with subjective scores and in reliably predicting these scores across diverse content types and codec configurations. Consequently, GMLv2 offers a scalable and automated framework for perceptual audio quality evaluation, poised to accelerate research and development in modern audio coding technologies.
comment: Accepted to the 51st IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 4-8 May 2026
Machine Learning-Based Analysis of ECG and PCG Signals for Rheumatic Heart Disease Detection: A Scoping Review (2015-2025)
AI-powered stethoscopes offer a promising alternative for screening rheumatic heart disease (RHD), particularly in regions with limited diagnostic infrastructure. Early detection is vital, yet echocardiography, the gold standard tool, remains largely inaccessible in low-resource settings due to cost and workforce constraints. This review systematically examines machine learning (ML) applications from 2015 to 2025 that analyze electrocardiogram (ECG) and phonocardiogram (PCG) data to support accessible, scalable screening of all RHD variants in relation to the World Heart Federation's "25 by 25" goal to reduce RHD mortality. Using PRISMA-ScR guidelines, 37 peer-reviewed studies were selected from PubMed, IEEE Xplore, Scopus, and Embase. Convolutional neural networks (CNNs) dominate recent efforts, achieving a median accuracy of 97.75%, F1-score of 0.95, and AUROC of 0.89. However, challenges remain: 73% of studies used single-center datasets, 81.1% relied on private data, only 10.8% were externally validated, and none assessed cost-effectiveness. Although 45.9% originated from endemic regions, few addressed demographic diversity or implementation feasibility. These gaps underscore the disconnect between model performance and clinical readiness. Bridging this divide requires standardized benchmark datasets, prospective trials in endemic areas, and broader validation. If these issues are addressed, AI-augmented auscultation could transform cardiovascular diagnostics in underserved populations, thereby aiding early detection. This review also offers practical recommendations for building accessible ML-based RHD screening tools, aiming to close the diagnostic gap in low-resource settings where conventional auscultation may miss up to 90% of cases and echocardiography remains out of reach.
Kernel-Based Nonparametric Tests For Shape Constraints
We propose a kernel-based nonparametric framework for mean-variance optimization that enables inference on economically motivated shape constraints in finance, including positivity, monotonicity, and convexity. Many central hypotheses in financial econometrics are naturally expressed as shape relations on latent functions (e.g., term premia, CAPM relations, and the pricing kernel), yet enforcing such constraints during estimation can mask economically meaningful violations; our approach therefore separates learning from validation by first estimating an unconstrained solution and then testing shape properties. We establish statistical properties of the regularized sample estimator and derive rigorous guarantees, including asymptotic consistency, a functional central limit theorem, and a finite-sample deviation bound achieving the Monte Carlo rate up to a regularization term. Building on these results, we construct a joint Wald-type statistic to test shape constraints on finite grids. An efficient algorithm based on a pivoted Cholesky factorization yields scalability to large datasets. Numerical studies, including an options-based asset-pricing application, illustrate the usefulness of the proposed method for evaluating monotonicity and convexity restrictions.
comment: 40 pages, 4 figures
A Survey on Human-Centered Evaluation of Explainable AI Methods in Clinical Decision Support Systems
Explainable Artificial Intelligence (XAI) is essential for the transparency and clinical adoption of Clinical Decision Support Systems (CDSS). However, the real-world effectiveness of existing XAI methods remains limited and is inconsistently evaluated. This study conducts a systematic PRISMA-guided survey of 31 human-centered evaluations (HCE) of XAI applied to CDSS, classifying them by XAI methodology, evaluation design, and adoption barrier. Our findings reveal that most existing studies employ post-hoc, model-agnostic approaches such as SHAP and Grad-CAM, typically assessed through small-scale clinician studies. The results show that over 80% of the studies adopt post-hoc, model-agnostic approaches such as SHAP and Grad-CAM, and that clinician sample sizes remain below 25 participants. The findings indicate that explanations generally improve clinician trust and diagnostic confidence, but frequently increase cognitive load and exhibit misalignment with domain reasoning processes. To bridge these gaps, we propose a stakeholder-centric evaluation framework that integrates socio-technical principles and human-computer interaction to guide the future development of clinically viable and trustworthy XAI-based CDSS.
comment: 19 pages, 2 tables, 4 figures
FRQI Pairs method for image classification using Quantum Recurrent Neural Network
This study aims to introduce the FRQI Pairs method to a wider audience, a novel approach to image classification using Quantum Recurrent Neural Networks (QRNN) with Flexible Representation for Quantum Images (FRQI). The study highlights an innovative approach to use quantum encoded data for an image classification task, suggesting that such quantum-based approaches could significantly reduce the complexity of quantum algorithms. Comparison of the FRQI Pairs method with contemporary techniques underscores the promise of integrating quantum computing principles with neural network architectures for the development of quantum machine learning.
comment: This is the accepted version of a paper published in the Proceedings of the 2025 11th International Conference on Control, Decision and Information Technologies (CoDIT). The final published version is available at IEEE Xplore
Honey, I shrunk the hypothesis space (through logical preprocessing)
Inductive logic programming (ILP) is a form of logical machine learning. The goal is to search a hypothesis space for a hypothesis that generalises training examples and background knowledge. We introduce an approach that 'shrinks' the hypothesis space before an ILP system searches it. Our approach uses background knowledge to find rules that cannot be in an optimal hypothesis regardless of the training examples. For instance, our approach discovers relationships such as "even numbers cannot be odd" and "prime numbers greater than 2 are odd". It then removes violating rules from the hypothesis space. We implement our approach using answer set programming and use it to shrink the hypothesis space of a constraint-based ILP system. Our experiments on multiple domains, including visual reasoning and game playing, show that our approach can substantially reduce learning times whilst maintaining predictive accuracies. For instance, given just 10 seconds of preprocessing time, our approach can reduce learning times from over 10 hours to only 2 seconds.
comment: Submitted to JAIR
RONOM: Reduced-Order Neural Operator Modeling
Time-dependent partial differential equations are ubiquitous in physics-based modeling, but they remain computationally intensive in many-query scenarios, such as real-time forecasting, optimal control, and uncertainty quantification. Reduced-order modeling (ROM) addresses these challenges by constructing a low-dimensional surrogate model but relies on a fixed discretization, which limits flexibility across varying meshes during evaluation. Operator learning approaches, such as neural operators, offer an alternative by parameterizing mappings between infinite-dimensional function spaces, enabling adaptation to data across different resolutions. Whereas ROM provides rigorous numerical error estimates, neural operator learning largely focuses on discretization convergence and invariance without quantifying the error between the infinite-dimensional and the discretized operators. This work introduces the reduced-order neural operator modeling (RONOM) framework, which bridges concepts from ROM and operator learning. We establish a discretization error bound analogous to those in ROM, and get insights into RONOM's discretization convergence and discretization robustness. Moreover, three numerical examples are presented that compare RONOM to existing neural operators for solving partial differential equations. The results demonstrate that RONOM using standard vector-to-vector neural networks can achieve comparable performance in input generalization and achieves superior performance in both spatial super-resolution and discretization robustness, while also offering novel insights into temporal super-resolution scenarios and ROM-based approaches for learning on time-dependent data.
Constrained Best Arm Identification with Tests for Feasibility AAAI 2026
Best arm identification (BAI) aims to identify the highest-performance arm among a set of $K$ arms by collecting stochastic samples from each arm. In real-world problems, the best arm needs to satisfy additional feasibility constraints. While there is limited prior work on BAI with feasibility constraints, they typically assume the performance and constraints are observed simultaneously on each pull of an arm. However, this assumption does not reflect most practical use cases, e.g., in drug discovery, we wish to find the most potent drug whose toxicity and solubility are below certain safety thresholds. These safety experiments can be conducted separately from the potency measurement. Thus, this requires designing BAI algorithms that not only decide which arm to pull but also decide whether to test for the arm's performance or feasibility. In this work, we study feasible BAI which allows a decision-maker to choose a tuple $(i,\ell)$, where $i\in [K]$ denotes an arm and $\ell$ denotes whether she wishes to test for its performance ($\ell=0$) or any of its $N$ feasibility constraints ($\ell\in[N]$). We focus on the fixed confidence setting, which is to identify the feasible arm with the highest performance, with a probability of at least $1-δ$. We propose an efficient algorithm and upper-bound its sample complexity, showing our algorithm can naturally adapt to the problem's difficulty and eliminate arms by worse performance or infeasibility, whichever is easier. We complement this upper bound with a lower bound showing that our algorithm is \textit{asymptotically ($δ\rightarrow 0$) optimal}. Finally, we empirically show that our algorithm outperforms other state-of-the-art BAI algorithms in both synthetic and real-world datasets.
comment: Accepted to AAAI 2026
UACER: An Uncertainty-Adaptive Critic Ensemble Framework for Robust Adversarial Reinforcement Learning
Robust adversarial reinforcement learning has emerged as an effective paradigm for training agents to handle uncertain disturbance in real environments, with critical applications in sequential decision-making domains such as autonomous driving and robotic control. Within this paradigm, agent training is typically formulated as a zero-sum Markov game between a protagonist and an adversary to enhance policy robustness. However, the trainable nature of the adversary inevitably induces non-stationarity in the learning dynamics, leading to exacerbated training instability and convergence difficulties, particularly in high-dimensional complex environments. In this paper, we propose a novel approach, Uncertainty-Adaptive Critic Ensemble for robust adversarial Reinforcement learning (UACER), which consists of two components: 1) Diversified critic ensemble: A diverse set of K critic networks is employed in parallel to stabilize Q-value estimation in robust adversarial reinforcement learning, reducing variance and enhancing robustness compared to conventional single-critic designs. 2) Time-varying Decay Uncertainty (TDU) mechanism: Moving beyond simple linear combinations, we propose a variance-derived Q-value aggregation strategy that explicitly incorporates epistemic uncertainty to adaptively regulate the exploration-exploitation trade-off while stabilizing the training process. Comprehensive experiments across several challenging MuJoCo control problems validate the superior effectiveness of UACER, outperforming state-of-the-art methods in terms of overall performance, stability, and efficiency.
Entire Chain Uplift Modeling with Context-Enhanced Learning for Intelligent Marketing
Uplift modeling, vital in online marketing, seeks to accurately measure the impact of various strategies, such as coupons or discounts, on different users by predicting the Individual Treatment Effect (ITE). In an e-commerce setting, user behavior follows a defined sequential chain, including impression, click, and conversion. Marketing strategies exert varied uplift effects at each stage within this chain, impacting metrics like click-through and conversion rate. Despite its utility, existing research has neglected to consider the inter-task across all stages impacts within a specific treatment and has insufficiently utilized the treatment information, potentially introducing substantial bias into subsequent marketing decisions. We identify these two issues as the chain-bias problem and the treatment-unadaptive problem. This paper introduces the Entire Chain UPlift method with context-enhanced learning (ECUP), devised to tackle these issues. ECUP consists of two primary components: 1) the Entire Chain-Enhanced Network, which utilizes user behavior patterns to estimate ITE throughout the entire chain space, models the various impacts of treatments on each task, and integrates task prior information to enhance context awareness across all stages, capturing the impact of treatment on different tasks, and 2) the Treatment-Enhanced Network, which facilitates fine-grained treatment modeling through bit-level feature interactions, thereby enabling adaptive feature adjustment. Extensive experiments on public and industrial datasets validate ECUPs effectiveness. Moreover, ECUP has been deployed on the Meituan food delivery platform, serving millions of daily active users, with the related dataset released for future research.
comment: Withdrawn for further revision and improvement
ProSub: Probabilistic Open-Set Semi-Supervised Learning with Subspace-Based Out-of-Distribution Detection ECCV2024
In open-set semi-supervised learning (OSSL), we consider unlabeled datasets that may contain unknown classes. Existing OSSL methods often use the softmax confidence for classifying data as in-distribution (ID) or out-of-distribution (OOD). Additionally, many works for OSSL rely on ad-hoc thresholds for ID/OOD classification, without considering the statistics of the problem. We propose a new score for ID/OOD classification based on angles in feature space between data and an ID subspace. Moreover, we propose an approach to estimate the conditional distributions of scores given ID or OOD data, enabling probabilistic predictions of data being ID or OOD. These components are put together in a framework for OSSL, termed ProSub, that is experimentally shown to reach SOTA performance on several benchmark problems. Our code is available at https://github.com/walline/prosub.
comment: ECCV2024
Bayesian Joint Additive Factor Models for Multiview Learning
It is increasingly common to collect data of multiple different types on the same set of samples. Our focus is on studying relationships between such multiview features and responses. A motivating application arises in the context of precision medicine where multi-omics data are collected to correlate with clinical outcomes. It is of interest to infer dependence within and across views while combining multimodal information to improve the prediction of outcomes. The signal-to-noise ratio can vary substantially across views, motivating more nuanced statistical tools beyond standard late and early fusion. This challenge comes with the need to preserve interpretability, select features, and obtain accurate uncertainty quantification. To address these challenges, we introduce two complementary factor regression models. A baseline Joint Factor Regression (\textsc{jfr}) captures combined variation across views via a single factor set, and a more nuanced Joint Additive FActor Regression (\textsc{jafar}) that decomposes variation into shared and view-specific components. For \textsc{jfr}, we use independent cumulative shrinkage process (\textsc{i-cusp}) priors, while for \textsc{jafar} we develop a dependent version (\textsc{d-cusp}) designed to ensure identifiability of the components. We develop Gibbs samplers that exploit the model structure and accommodate flexible feature and outcome distributions. Prediction of time-to-labor onset from immunome, metabolome, and proteome data illustrates performance gains against state-of-the-art competitors. Our open-source software (\texttt{R} package) is available at https://github.com/niccoloanceschi/jafar.
comment: To be published in Biometrics
Symmetry breaking for inductive logic programming AAAI26
The goal of inductive logic programming is to search for a hypothesis that generalises training data and background knowledge. The challenge is searching vast hypothesis spaces, which is exacerbated because many logically equivalent hypotheses exist. To address this challenge, we introduce a method to break symmetries in the hypothesis space. We implement our idea in answer set programming. Our experiments on multiple domains, including visual reasoning and game playing, show that our approach can reduce solving times from over an hour to just 17 seconds.
comment: AAAI26
Soft Graph Transformer for MIMO Detection
We propose the Soft Graph Transformer (SGT), a soft-input-soft-output neural architecture designed for MIMO detection. While Maximum Likelihood (ML) detection achieves optimal accuracy, its exponential complexity makes it infeasible in large systems, and conventional message-passing algorithms rely on asymptotic assumptions that often fail in finite dimensions. Recent Transformer-based detectors show strong performance but typically overlook the MIMO factor graph structure and cannot exploit prior soft information. SGT addresses these limitations by combining self-attention, which encodes contextual dependencies within symbol and constraint subgraphs, with graph-aware cross-attention, which performs structured message passing across subgraphs. Its soft-input interface allows the integration of auxiliary priors, producing effective soft outputs while maintaining computational efficiency. Experiments demonstrate that SGT achieves near-ML performance and offers a flexible and interpretable framework for receiver systems that leverage soft priors.
comment: 5 pages with 3 figures and 2 tables, submitted to IEEE for a possible publication
Text-to-Image Diffusion Models Cannot Count, and Prompt Refinement Cannot Help
Generative modeling is widely regarded as one of the most essential problems in today's AI community, with text-to-image generation having gained unprecedented real-world impacts. Among various approaches, diffusion models have achieved remarkable success and have become the de facto solution for text-to-image generation. However, despite their impressive performance, these models exhibit fundamental limitations in adhering to numerical constraints in user instructions, frequently generating images with an incorrect number of objects. While several prior works have mentioned this issue, a comprehensive and rigorous evaluation of this limitation remains lacking. To address this gap, we introduce T2ICountBench, a novel benchmark designed to rigorously evaluate the counting ability of state-of-the-art text-to-image diffusion models. Our benchmark encompasses a diverse set of generative models, including both open-source and private systems. It explicitly isolates counting performance from other capabilities, provides structured difficulty levels, and incorporates human evaluations to ensure high reliability. Extensive evaluations with T2ICountBench reveal that all state-of-the-art diffusion models fail to generate the correct number of objects, with accuracy dropping significantly as the number of objects increases. Additionally, an exploratory study on prompt refinement demonstrates that such simple interventions generally do not improve counting accuracy. Our findings highlight the inherent challenges in numerical understanding within diffusion models and point to promising directions for future improvements.
Controlled LLM Training on Spectral Sphere
Scaling large models requires optimization strategies that ensure rapid convergence grounded in stability. Maximal Update Parametrization ($\boldsymbolμ$P) provides a theoretical safeguard for width-invariant $Θ(1)$ activation control, whereas emerging optimizers like Muon are only ``half-aligned'' with these constraints: they control updates but allow weights to drift. To address this limitation, we introduce the \textbf{Spectral Sphere Optimizer (SSO)}, which enforces strict module-wise spectral constraints on both weights and their updates. By deriving the steepest descent direction on the spectral sphere, SSO realizes a fully $\boldsymbolμ$P-aligned optimization process. To enable large-scale training, we implement SSO as an efficient parallel algorithm within Megatron. Through extensive pretraining on diverse architectures, including Dense 1.7B, MoE 8B-A1B, and 200-layer DeepNet models, SSO consistently outperforms AdamW and Muon. Furthermore, we observe significant practical stability benefits, including improved MoE router load balancing, suppressed outliers, and strictly bounded activations.
Extractive summarization on a CMOS Ising machine
Extractive summarization (ES) aims to generate a concise summary by selecting a subset of sentences from a document while maximizing relevance and minimizing redundancy. Although modern ES systems achieve high accuracy using powerful neural models, their deployment typically relies on CPU or GPU infrastructures that are energy-intensive and poorly suited for real-time inference in resource-constrained environments. In this work, we explore the feasibility of implementing McDonald-style extractive summarization on a low-power CMOS coupled oscillator-based Ising machine (COBI) that supports integer-valued, all-to-all spin couplings. We first propose a hardware-aware Ising formulation that reduces the scale imbalance between local fields and coupling terms, thereby improving robustness to coefficient quantization: this method can be applied to any problem formulation that requires k of n variables to be chosen. We then develop a complete ES pipeline including (i) stochastic rounding and iterative refinement to compensate for precision loss, and (ii) a decomposition strategy that partitions a large ES problem into smaller Ising subproblems that can be efficiently solved on COBI and later combined. Experimental results on the CNN/DailyMail dataset show that our pipeline can produce high-quality summaries using only integer-coupled Ising hardware with limited precision. COBI achieves 3-4.5x runtime speedups compared to a brute-force method, which is comparable to software Tabu search, and two to three orders of magnitude reductions in energy, while maintaining competitive summary quality. These results highlight the potential of deploying CMOS Ising solvers for real-time, low-energy text summarization on edge devices.
Auto-bidding under Return-on-Spend Constraints with Uncertainty Quantification
Auto-bidding systems are widely used in advertising to automatically determine bid values under constraints such as total budget and Return-on-Spend (RoS) targets. Existing works often assume that the value of an ad impression, such as the conversion rate, is known. This paper considers the more realistic scenario where the true value is unknown. We propose a novel method that uses conformal prediction to quantify the uncertainty of these values based on machine learning methods trained on historical bidding data with contextual features, without assuming the data are i.i.d. This approach is compatible with current industry systems that use machine learning to predict values. Building on prediction intervals, we introduce an adjusted value estimator derived from machine learning predictions, and show that it provides performance guarantees without requiring knowledge of the true value. We apply this method to enhance existing auto-bidding algorithms with budget and RoS constraints, and establish theoretical guarantees for achieving high reward while keeping RoS violations low. Empirical results on both simulated and real-world industrial datasets demonstrate that our approach improves performance while maintaining computational efficiency.
Mining Citywide Dengue Spread Patterns in Singapore Through Hotspot Dynamics from Open Web Data
Dengue, a mosquito-borne disease, continues to pose a persistent public health challenge in urban areas, particularly in tropical regions such as Singapore. Effective and affordable control requires anticipating where transmission risks are likely to emerge so that interventions can be deployed proactively rather than reactively. This study introduces a novel framework that uncovers and exploits latent transmission links between urban regions, mined directly from publicly available dengue case data. Instead of treating cases as isolated reports, we model how hotspot formation in one area is influenced by epidemic dynamics in neighboring regions. While mosquito movement is highly localized, long-distance transmission is often driven by human mobility, and in our case study, the learned network aligns closely with commuting flows, providing an interpretable explanation for citywide spread. These hidden links are optimized through gradient descent and used not only to forecast hotspot status but also to verify the consistency of spreading patterns, by examining the stability of the inferred network across consecutive weeks. Case studies on Singapore during 2013-2018 and 2020 show that four weeks of hotspot history are sufficient to achieve an average F-score of 0.79. Importantly, the learned transmission links align with commuting flows, highlighting the interpretable interplay between hidden epidemic spread and human mobility. By shifting from simply reporting dengue cases to mining and validating hidden spreading dynamics, this work transforms open web-based case data into a predictive and explanatory resource. The proposed framework advances epidemic modeling while providing a scalable, low-cost tool for public health planning, early intervention, and urban resilience.
comment: 9 pages, 9 figures. It's accepted by WWW 2026 Web4Good Track. To make accessible earlier, authors would like to put it on arxiv before the conference
Visual Autoregressive Transformers Must Use $Ω(n^2 d)$ Memory
A fundamental challenge in Visual Autoregressive models is the substantial memory overhead required during inference to store previously generated representations. Despite various attempts to mitigate this issue through compression techniques, prior works have not explicitly formalized the problem of KV-cache compression in this context. In this work, we take the first step in formally defining the KV-cache compression problem for Visual Autoregressive transformers. We then establish a fundamental negative result, proving that any mechanism for sequential visual token generation under attention-based architectures must use at least $Ω(n^2 d)$ memory, when $d = Ω(\log n)$, where $n$ is the number of tokens generated and $d$ is the embedding dimensionality. This result demonstrates that achieving truly sub-quadratic memory usage is impossible without additional structural constraints. Our proof is constructed via a reduction from a computational lower bound problem, leveraging randomized embedding techniques inspired by dimensionality reduction principles. Finally, we discuss how sparsity priors on visual representations can influence memory efficiency, presenting both impossibility results and potential directions for mitigating memory overhead.
An Enhanced Focal Loss Function to Mitigate Class Imbalance in Auto Insurance Fraud Detection with Explainable AI
Detecting fraudulent auto-insurance claims remains a challenging classification problem, largely due to the extreme imbalance between legitimate and fraudulent cases. Standard learning algorithms tend to overfit to the majority class, resulting in poor detection of economically significant minority events. This paper proposes a structured three-stage training framework that integrates a convex surrogate of focal loss for stable initialization, a controlled non-convex intermediate loss to improve feature discrimination, and the standard focal loss to refine minority-class sensitivity. We derive conditions under which the surrogate retains convexity in the prediction space and show how this facilitates more reliable optimization when combined with deep sequential models. Using a proprietary auto-insurance dataset, the proposed method improves minority-class F1-scores and AUC relative to conventional focal-loss training and resampling baselines. The approach also provides interpretable feature-attribution patterns through SHAP analysis, offering transparency for actuarial and fraud-analytics applications.
comment: 15 pages, 4 figures, 2 tables
LUMOS: Large User MOdels for User Behavior Prediction
User behavior prediction at scale remains a critical challenge for online B2C platforms. Traditional approaches rely heavily on task-specific models and domain-specific feature engineering. This is time-consuming, computationally expensive, and requires domain expertise and therefore, not scalable. We present LUMOS (Large User MOdel Series), a transformer-based architecture that eliminates task-specific models and manual feature engineering by learning multiple tasks jointly using only raw user activity data. LUMOS introduces a novel cross-attention mechanism that conditions predictions on future known events (e.g., holidays, sales, etc.), enabling the model to predict complex behavior patterns like "how will upcoming holidays affect user engagement?" The architecture also employs multi-modal tokenization, combining user activities, event context, and static user demographic attributes into rich representations processed through specialized embedding pathways. Through extensive experiments on a production dataset spanning 1.7 trillion user activity tokens from 250 million users, we demonstrate that LUMOS achieves superior performance compared to traditional task-specific models. Across 5 tasks with established baselines, we achieve an average improvement of 0.025 in ROC-AUC for binary classification tasks and 4.6\% reduction in MAPE for regression tasks. Online A/B testing validates these improvements translate to measurable business impact with a 3.15\% increase in Daily Active Users.
Markovian Reeb Graphs for Simulating Spatiotemporal Patterns of Life
Accurately modeling human mobility is critical for urban planning, epidemiology, and traffic management. In this work, we introduce Markovian Reeb Graphs, a novel framework that transforms Reeb graphs from a descriptive analysis tool into a generative model for spatiotemporal trajectories. Our approach captures individual and population-level Patterns of Life (PoLs) and generates realistic trajectories that preserve baseline behaviors while incorporating stochastic variability by embedding probabilistic transitions within the Reeb graph structure. We present two variants: Sequential Reeb Graphs (SRGs) for individual agents and Hybrid Reeb Graphs (HRGs) that combine individual with population PoLs, evaluated on the Urban Anomalies and Geolife datasets using five mobility statistics. Results demonstrate that HRGs achieve strong fidelity across metrics while requiring modest trajectory datasets without specialized side information. This work establishes Markovian Reeb Graphs as a promising framework for trajectory simulation with broad applicability across urban environments.
comment: 15 pages, 4 figures
Dynamic Pricing with Adversarially-Censored Demands
We study an online dynamic pricing problem where the potential demand at each time period $t=1,2,\ldots, T$ is stochastic and dependent on the price. However, a perishable inventory is imposed at the beginning of each time $t$, censoring the potential demand if it exceeds the inventory level. To address this problem, we introduce a pricing algorithm based on the optimistic estimates of derivatives. We show that our algorithm achieves $\tilde{O}(\sqrt{T})$ optimal regret even with adversarial inventory series. Our findings advance the state-of-the-art in online decision-making problems with censored feedback, offering a theoretically optimal solution against adversarial observations.
comment: 28 pages, 1 figure
AutoSciDACT: Automated Scientific Discovery through Contrastive Embedding and Hypothesis Testing NeurIPS 2025
Novelty detection in large scientific datasets faces two key challenges: the noisy and high-dimensional nature of experimental data, and the necessity of making statistically robust statements about any observed outliers. While there is a wealth of literature on anomaly detection via dimensionality reduction, most methods do not produce outputs compatible with quantifiable claims of scientific discovery. In this work we directly address these challenges, presenting the first step towards a unified pipeline for novelty detection adapted for the rigorous statistical demands of science. We introduce AutoSciDACT (Automated Scientific Discovery with Anomalous Contrastive Testing), a general-purpose pipeline for detecting novelty in scientific data. AutoSciDACT begins by creating expressive low-dimensional data representations using a contrastive pre-training, leveraging the abundance of high-quality simulated data in many scientific domains alongside expertise that can guide principled data augmentation strategies. These compact embeddings then enable an extremely sensitive machine learning-based two-sample test using the New Physics Learning Machine (NPLM) framework, which identifies and statistically quantifies deviations in observed data relative to a reference distribution (null hypothesis). We perform experiments across a range of astronomical, physical, biological, image, and synthetic datasets, demonstrating strong sensitivity to small injections of anomalous data across all domains.
comment: Accepted at NeurIPS 2025; 33 pages, 16 figures
R$^2$PO: Decoupling Training Trajectories from Inference Responses for LLM Reasoning
Reinforcement learning has become a central paradigm for improving LLM reasoning. However, existing methods use a single policy to produce both inference responses and training optimization trajectories. The objective conflict between generating stable inference responses and diverse training trajectories leads to insufficient exploration, which harms reasoning capability. In this paper, to address the problem, we propose R$^2$PO (Residual Rollout Policy Optimization), which introduces a lightweight Residual Rollout-Head atop the policy to decouple training trajectories from inference responses, enabling controlled trajectory diversification during training while keeping inference generation stable. Experiments across multiple benchmarks show that our method consistently outperforms baselines, achieving average accuracy gains of 3.4% on MATH-500 and 1.3% on APPS, while also reducing formatting errors and mitigating length bias for stable optimization. Our code is publicly available at https://github.com/RRPO-ARR/Code.
Hierarchical Physics-Embedded Learning for Prediction and Discovery in Spatiotemporal Dynamical Systems
Modeling complex spatiotemporal dynamics, particularly in far-from-equilibrium systems, remains a grand challenge in science. The governing partial differential equations (PDEs) for these systems are often intractable to derive from first principles, due to their inherent complexity, characterized by high-order derivatives and strong nonlinearities, coupled with incomplete physical knowledge. This has spurred the development of data-driven methods, yet these approaches face limitations: Purely data-driven models are often physically inconsistent and data-intensive, while existing physics-informed methods lack the structural capacity to represent complex operators or systematically integrate partial physical knowledge. Here, we propose a hierarchical physics-embedded learning framework that fundamentally advances both the forward spatiotemporal prediction and inverse discovery of physical laws from sparse and noisy data. The key innovation is a two-level architecture that mirrors the process of scientific discovery: the first level learns fundamental symbolic components of a PDE, while the second learns their governing combinations. This hierarchical decomposition not only reduces learning complexity but, more importantly, enables a structural integration of prior knowledge. Known physical laws are directly embedded into the models computational graph, guaranteeing physical consistency and improving data efficiency. By building the framework upon adaptive Fourier Neural Operators, we can effectively capture the non-local dependencies and high-order operators characteristic of dynamical systems. Additionally, by structurally decoupling known and unknown terms, the framework further enables interpretable discovery of underlying governing equations through symbolic regression, without presupposing functional forms.
Escaping Local Optima in the Waddington Landscape: A Two-Stage TRPO-PPO Approach for Single-Cell Perturbation Analysis
Modeling cellular responses to genetic and chemical perturbations remains a central challenge in single-cell biology. Existing data-driven frameworks have advanced perturbation prediction through variational autoencoders, chemically conditioned autoencoders, and large-scale transformer pretraining. However, most existing models rely exclusively on either in silico perturbation data or experimental perturbation data but rarely integrate both, limiting their ability to generalize and validate predictions across simulated and real biological contexts in a digital twin system. Moreover, the models are prone to local optima in the nonconvex Waddington landscape of cell fate decisions, where poor initialization can trap trajectories in spurious lineages. In this work, we introduce a two-stage reinforcement learning algorithm for modeling single-cell perturbation. We first compute an explicit natural gradient update using Fisher-vector products and a conjugate gradient solver, scaled by a KL trust-region constraint to provide a safe, curvature-aware first step for the policy. Starting with these preconditioned parameters, we then apply a second phase of proximal policy optimization (PPO) with a KL penalty, exploiting minibatch efficiency to refine the policy. We demonstrate that this initialization strategy substantially improves generalization on Single-cell RNA sequencing (scRNA-seq) perturbation analysis in a digital twin system.
comment: 17 pages, 6 figures, 8 tables
Faster, Smaller, and Smarter: Task-Aware Expert Merging for Online MoE Inference
Sparse Mixture of Experts (SMoE) has become a preferred architecture for scaling Transformer capacity without increasing computational cost, as it activates only a small subset of experts for each input. However, deploying such an approach for \textit{online inference} remains challenging due to the large size of a full SMoE model and the complexity of expert routing, especially in resource-constrained edge networks. Moreover, during the online inference, task information is often unavailable, making the task-level routing error-prone. In this work, we propose a novel tree-structured adaptive neural bandit router, \texttt{Tanbr}, to enable efficient and reliable online MoE inference. Instead of relying on explicit task tags, \texttt{Tanbr} estimates the task distribution over time from historical data and uses it to guide task-aware expert merging within a given pre-trained MoE. To handle the large continuous space of merging weights, \texttt{Tanbr} employs a binary tree to progressively partition the space and generate finer candidate weights. It then applies a neural bandit to learn the non-linear mapping from merging weight to model performance and decides optimal expert merging. We prove that \texttt{Tanbr} achieves a sublinear regret bound of {\small $\mathcal{O}(\sqrt{T} \log(T))$} over {\small $T$} rounds, despite operating over a continuous decision space, matching regret bounds compared to existing methods. Extensive experiments show that \texttt{Tanbr} reduces inference latency by at least {\small $45\%$} and memory usage by up to {\small $25\%$}, while maintaining a high accuracy compared to many state-of-the-art methods.
Modern Hopfield Networks Require Chain-of-Thought to Solve $\mathsf{NC}^1$-Hard Problems
Modern Hopfield Networks (MHNs) have emerged as powerful components in deep learning, serving as effective replacements for pooling layers, LSTMs, and attention mechanisms. While recent advancements have significantly improved their storage capacity and retrieval efficiency, their fundamental theoretical boundaries remain underexplored. In this paper, we rigorously characterize the expressive power of MHNs through the lens of circuit complexity theory. We prove that $\mathrm{poly}(n)$-precision MHNs with constant depth and linear hidden dimension fall within the $\mathsf{DLOGTIME}$-uniform $\mathsf{TC}^0$ complexity class. Consequently, assuming $\mathsf{TC}^0 \neq \mathsf{NC}^1$, we demonstrate that these architectures are incapable of solving $\mathsf{NC}^1$-hard problems, such as undirected graph connectivity and tree isomorphism. We further extend these impossibility results to Kernelized Hopfield Networks. However, we show that these limitations are not absolute: we prove that equipping MHNs with a Chain-of-Thought (CoT) mechanism enables them to transcend the $\mathsf{TC}^0$ barrier, allowing them to solve inherently serial problems like the word problem for the permutation group $S_5$. Collectively, our results delineate a fine-grained boundary between the capabilities of standard MHNs and those augmented with reasoning steps.
Combating Spurious Correlations in Graph Interpretability via Self-Reflection
Interpretable graph learning has recently emerged as a popular research topic in machine learning. The goal is to identify the important nodes and edges of an input graph that are crucial for performing a specific graph reasoning task. A number of studies have been conducted in this area, and various benchmark datasets have been proposed to facilitate evaluation. Among them, one of the most challenging is the Spurious-Motif benchmark, introduced at ICLR 2022. The datasets in this synthetic benchmark are deliberately designed to include spurious correlations, making it particularly difficult for models to distinguish truly relevant structures from misleading patterns. As a result, existing methods exhibit significantly worse performance on this benchmark compared to others. In this paper, we focus on improving interpretability on the challenging Spurious-Motif datasets. We demonstrate that the self-reflection technique, commonly used in large language models to tackle complex tasks, can also be effectively adapted to enhance interpretability in datasets with strong spurious correlations. Specifically, we propose a self-reflection framework that can be integrated with existing interpretable graph learning methods. When such a method produces importance scores for each node and edge, our framework feeds these predictions back into the original method to perform a second round of evaluation. This iterative process mirrors how large language models employ self-reflective prompting to reassess their previous outputs. We further analyze the reasons behind this improvement from the perspective of graph representation learning, which motivates us to propose a fine-tuning training method based on this feedback mechanism.
Self-Augmented Mixture-of-Experts for QoS Prediction
Quality of Service (QoS) prediction is one of the most fundamental problems in service computing and personalized recommendation. In the problem, there is a set of users and services, each associated with a set of descriptive features. Interactions between users and services produce feedback values, typically represented as numerical QoS metrics such as response time or availability. Given the observed feedback for a subset of user-service pairs, the goal is to predict the QoS values for the remaining pairs. A key challenge in QoS prediction is the inherent sparsity of user-service interactions, as only a small subset of feedback values is typically observed. To address this, we propose a self-augmented strategy that leverages a model's own predictions for iterative refinement. In particular, we partially mask the predicted values and feed them back into the model to predict again. Building on this idea, we design a self-augmented mixture-of-experts model, where multiple expert networks iteratively and collaboratively estimate QoS values. We find that the iterative augmentation process naturally aligns with the MoE architecture by enabling inter-expert communication: in the second round, each expert receives the first-round predictions and refines its output accordingly. Experiments on benchmark datasets show that our method outperforms existing baselines and achieves competitive results.
On Computational Limits of FlowAR Models: Expressivity and Efficiency AISTATS 2026
The expressive power and computational complexity of deep visual generative models, such as flow-based and autoregressive (AR) models, have gained considerable interest for their wide-ranging applications in generative tasks. However, the theoretical characterization of their expressiveness through the lens of circuit complexity remains underexplored, particularly for the state-of-the-art architecture like FlowAR proposed by [Ren et al., 2024], which integrates flow-based and autoregressive mechanisms. This gap limits our understanding of their inherent computational limits and practical efficiency. In this study, we address this gap by analyzing the circuit complexity of the FlowAR architecture. We demonstrate that when the largest feature map produced by the FlowAR model has dimensions $n \times n \times c$, the FlowAR model is simulable by a family of threshold circuits $\mathsf{TC}^0$, which have constant depth $O(1)$ and polynomial width $\mathrm{poly}(n)$. This is the first study to rigorously highlight the limitations in the expressive power of FlowAR models. Furthermore, we identify the conditions under which the FlowAR model computations can achieve almost quadratic time. To validate our theoretical findings, we present efficient model variant constructions based on low-rank approximations that align with the derived criteria. Our work provides a foundation for future comparisons with other generative paradigms and guides the development of more efficient and expressive implementations.
comment: AISTATS 2026
Pace: Physics-Aware Attentive Temporal Convolutional Network for Battery Health Estimation
Batteries are critical components in modern energy systems such as electric vehicles and power grid energy storage. Effective battery health management is essential for battery system safety, cost-efficiency, and sustainability. In this paper, we propose Pace, a physics-aware attentive temporal convolutional network for battery health estimation. Pace integrates raw sensor measurements with battery physics features derived from the equivalent circuit model. We develop three battery-specific modules, including dilated temporal blocks for efficient temporal encoding, chunked attention blocks for context modeling, and a dual-head output block for fusing short- and long-term battery degradation patterns. Together, the modules enable Pace to predict battery health accurately and efficiently in various battery usage conditions. In a large public dataset, Pace performs much better than existing models, achieving an average performance improvement of 6.5 and 2.0x compared to two best-performing baseline models. We further demonstrate its practical viability with a real-time edge deployment on a Raspberry Pi. These results establish Pace as a practical and high-performance solution for battery health analytics.
comment: Accepted at the ACM Symposium On Applied Computing (SAC), 2026
Physics-Conditioned Diffusion Models for Lattice Gauge Theory
We develop diffusion models for simulating lattice gauge theories, where stochastic quantization is explicitly incorporated as a physical condition for sampling. We demonstrate the applicability of this novel sampler to U(1) gauge theory in two spacetime dimensions and find that a model trained at a small inverse coupling constant can be extrapolated to larger inverse coupling regions without encountering the topological freezing problem. Additionally, the trained model can be employed to sample configurations on different lattice sizes without requiring further training. The exactness of the generated samples is ensured by incorporating Metropolis-adjusted Langevin dynamics into the generation process. Furthermore, we demonstrate that this approach enables more efficient sampling of topological quantities compared to traditional algorithms such as Hybrid Monte Carlo and Langevin simulations.
comment: 28 pages, 10 figures, accepted in JHEP. Codes are available at: https://github.com/zzzqt/DM4U1
Etude: Piano Cover Generation with a Three-Stage Approach -- Extract, strucTUralize, and DEcode
Piano cover generation aims to automatically transform a pop song into a piano arrangement. While numerous deep learning approaches have been proposed, existing models often fail to maintain structural consistency with the original song, likely due to the absence of beat-aware mechanisms or the difficulty of modeling complex rhythmic patterns. Rhythmic information is crucial, as it defines structural similarity (e.g., tempo, BPM) and directly impacts the overall quality of the generated music. In this paper, we introduce Etude, a three-stage architecture consisting of Extract, strucTUralize, and DEcode stages. By pre-extracting rhythmic information and applying a novel, simplified REMI-based tokenization, our model produces covers that preserve proper song structure, enhance fluency and musical dynamics, and support highly controllable generation through style injection. Subjective evaluations with human listeners show that Etude substantially outperforms prior models, achieving a quality level comparable to that of human composers.
Flow Matching with Semidiscrete Couplings
Flow models parameterized as time-dependent velocity fields can generate data from noise by integrating an ODE. These models are often trained using flow matching, i.e. by sampling random pairs of noise and target points $(\mathbf{x}_0,\mathbf{x}_1)$ and ensuring that the velocity field is aligned, on average, with $\mathbf{x}_1-\mathbf{x}_0$ when evaluated along a segment linking $\mathbf{x}_0$ to $\mathbf{x}_1$. While these pairs are sampled independently by default, they can also be selected more carefully by matching batches of $n$ noise to $n$ target points using an optimal transport (OT) solver. Although promising in theory, the OT flow matching (OT-FM) approach is not widely used in practice. Zhang et al. (2025) pointed out recently that OT-FM truly starts paying off when the batch size $n$ grows significantly, which only a multi-GPU implementation of the Sinkhorn algorithm can handle. Unfortunately, the costs of running Sinkhorn can quickly balloon, requiring $O(n^2/\varepsilon^2)$ operations for every $n$ pairs used to fit the velocity field, where $\varepsilon$ is a regularization parameter that should be typically small to yield better results. To fulfill the theoretical promises of OT-FM, we propose to move away from batch-OT and rely instead on a semidiscrete formulation that leverages the fact that the target dataset distribution is usually of finite size $N$. The SD-OT problem is solved by estimating a dual potential vector using SGD; using that vector, freshly sampled noise vectors at train time can then be matched with data points at the cost of a maximum inner product search (MIPS). Semidiscrete FM (SD-FM) removes the quadratic dependency on $n/\varepsilon$ that bottlenecks OT-FM. SD-FM beats both FM and OT-FM on all training metrics and inference budget constraints, across multiple datasets, on unconditional/conditional generation, or when using mean-flow models.
comment: 38 pages, 23 figures
Pre-Generating Multi-Difficulty PDE Data for Few-Shot Neural PDE Solvers
A key aspect of learned partial differential equation (PDE) solvers is that the main cost often comes from generating training data with classical solvers rather than learning the model itself. Another is that there are clear axes of difficulty--e.g., more complex geometries and higher Reynolds numbers--along which problems become (1) harder for classical solvers and thus (2) more likely to benefit from neural speedups. Towards addressing this chicken-and-egg challenge, we study difficulty transfer on 2D incompressible Navier-Stokes, systematically varying task complexity along geometry (number and placement of obstacles), physics (Reynolds number), and their combination. Similar to how it is possible to spend compute to pre-train foundation models and improve their performance on downstream tasks, we find that by classically solving (analogously pre-generating) many low and medium difficulty examples and including them in the training set, it is possible to learn high-difficulty physics from far fewer samples. Furthermore, we show that by combining low and high difficulty data, we can spend 8.9x less compute on pre-generating a dataset to achieve the same error as using only high difficulty examples. Our results highlight that how we allocate classical-solver compute across difficulty levels is as important as how much we allocate overall, and suggest substantial gains from principled curation of pre-generated PDE data for neural solvers. Our code is available at https://github.com/Naman-Choudhary-AI-ML/pregenerating-pde
comment: 10 Pages, 11 Figures
Graphics 2
SyncLight: Controllable and Consistent Multi-View Relighting
We present SyncLight, the first method to enable consistent, parametric relighting across multiple uncalibrated views of a static scene. While single-view relighting has advanced significantly, existing generative approaches struggle to maintain the rigorous lighting consistency essential for multi-camera broadcasts, stereoscopic cinema, and virtual production. SyncLight addresses this by enabling precise control over light intensity and color across a multi-view capture of a scene, conditioned on a single reference edit. Our method leverages a multi-view diffusion transformer trained using a latent bridge matching formulation, achieving high-fidelity relighting of the entire image set in a single inference step. To facilitate training, we introduce a large-scale hybrid dataset comprising diverse synthetic environments -- curated from existing sources and newly designed scenes -- alongside high-fidelity, real-world multi-view captures under calibrated illumination. Surprisingly, though trained only on image pairs, SyncLight generalizes zero-shot to an arbitrary number of viewpoints, effectively propagating lighting changes across all views, without requiring camera pose information. SyncLight enables practical relighting workflows for multi-view capture systems.
comment: Project page: http://sync-light.github.io
Unsupervised Super-Resolution of Hyperspectral Remote Sensing Images Using Fully Synthetic Training
Considerable work has been dedicated to hyperspectral single image super-resolution to improve the spatial resolution of hyperspectral images and fully exploit their potential. However, most of these methods are supervised and require some data with ground truth for training, which is often non-available. To overcome this problem, we propose a new unsupervised training strategy for the super-resolution of hyperspectral remote sensing images, based on the use of synthetic abundance data. Its first step decomposes the hyperspectral image into abundances and endmembers by unmixing. Then, an abundance super-resolution neural network is trained using synthetic abundances, which are generated using the dead leaves model in such a way as to faithfully mimic real abundance statistics. Next, the spatial resolution of the considered hyperspectral image abundances is increased using this trained network, and the high resolution hyperspectral image is finally obtained by recombination with the endmembers. Experimental results show the training potential of the synthetic images, and demonstrate the method effectiveness.
Video World Models 7
AnyView: Synthesizing Any Novel View in Dynamic Scenes
Modern generative video models excel at producing convincing, high-quality outputs, but struggle to maintain multi-view and spatiotemporal consistency in highly dynamic real-world environments. In this work, we introduce \textbf{AnyView}, a diffusion-based video generation framework for \emph{dynamic view synthesis} with minimal inductive biases or geometric assumptions. We leverage multiple data sources with various levels of supervision, including monocular (2D), multi-view static (3D) and multi-view dynamic (4D) datasets, to train a generalist spatiotemporal implicit representation capable of producing zero-shot novel videos from arbitrary camera locations and trajectories. We evaluate AnyView on standard benchmarks, showing competitive results with the current state of the art, and propose \textbf{AnyViewBench}, a challenging new benchmark tailored towards \emph{extreme} dynamic view synthesis in diverse real-world scenarios. In this more dramatic setting, we find that most baselines drastically degrade in performance, as they require significant overlap between viewpoints, while AnyView maintains the ability to produce realistic, plausible, and spatiotemporally consistent videos when prompted from \emph{any} viewpoint. Results, data, code, and models can be viewed at: https://tri-ml.github.io/AnyView/
comment: Project webpage: https://tri-ml.github.io/AnyView/
Adaptive Reinforcement and Model Predictive Control Switching for Safe Human-Robot Cooperative Navigation
This paper addresses the challenge of human-guided navigation for mobile collaborative robots under simultaneous proximity regulation and safety constraints. We introduce Adaptive Reinforcement and Model Predictive Control Switching (ARMS), a hybrid learning-control framework that integrates a reinforcement learning follower trained with Proximal Policy Optimization (PPO) and an analytical one-step Model Predictive Control (MPC) formulated as a quadratic program safety filter. To enable robust perception under partial observability and non-stationary human motion, ARMS employs a decoupled sensing architecture with a Long Short-Term Memory (LSTM) temporal encoder for the human-robot relative state and a spatial encoder for 360-degree LiDAR scans. The core contribution is a learned adaptive neural switcher that performs context-aware soft action fusion between the two controllers, favoring conservative, constraint-aware QP-based control in low-risk regions while progressively shifting control authority to the learned follower in highly cluttered or constrained scenarios where maneuverability is critical, and reverting to the follower action when the QP becomes infeasible. Extensive evaluations against Pure Pursuit, Dynamic Window Approach (DWA), and an RL-only baseline demonstrate that ARMS achieves an 82.5 percent success rate in highly cluttered environments, outperforming DWA and RL-only approaches by 7.1 percent and 3.1 percent, respectively, while reducing average computational latency by 33 percent to 5.2 milliseconds compared to a multi-step MPC baseline. Additional simulation transfer in Gazebo and initial real-world deployment results further indicate the practicality and robustness of ARMS for safe and efficient human-robot collaboration. Source code and a demonstration video are available at https://github.com/21ning/ARMS.git.
OnlineSI: Taming Large Language Model for Online 3D Understanding and Grounding
In recent years, researchers have increasingly been interested in how to enable Multimodal Large Language Models (MLLM) to possess spatial understanding and reasoning capabilities. However, most existing methods overlook the importance of the ability to continuously work in an ever-changing world, and lack the possibility of deployment on embodied systems in real-world environments. In this work, we introduce OnlineSI, a framework that can continuously improve its spatial understanding of its surroundings given a video stream. Our core idea is to maintain a finite spatial memory to retain past observations, ensuring the computation required for each inference does not increase as the input accumulates. We further integrate 3D point cloud information with semantic information, helping MLLM to better locate and identify objects in the scene. To evaluate our method, we introduce the Fuzzy $F_1$-Score to mitigate ambiguity, and test our method on two representative datasets. Experiments demonstrate the effectiveness of our method, paving the way towards real-world embodied systems.
comment: Project Page: https://onlinesi.github.io/
Order from Chaos: Physical World Understanding from Glitchy Gameplay Videos
Understanding the physical world, including object dynamics, material properties, and causal interactions, remains a core challenge in artificial intelligence. Although recent multi-modal large language models (MLLMs) have demonstrated impressive general reasoning capabilities, they still fall short of achieving human-level understanding of physical principles. Existing datasets for physical reasoning either rely on real-world videos, which incur high annotation costs, or on synthetic simulations, which suffer from limited realism and diversity. In this paper, we propose a novel paradigm that leverages glitches in gameplay videos, referring to visual anomalies that violate predefined physical laws, as a rich and scalable supervision source for physical world understanding. We introduce PhysGame, an meta information guided instruction-tuning dataset containing 140,057 glitch-centric question-answer pairs across five physical domains and sixteen fine-grained categories. To ensure data accuracy, we design a prompting strategy that utilizes gameplay metadata such as titles and descriptions to guide high-quality QA generation. Complementing PhysGame, we construct GameBench, an expert-annotated benchmark with 880 glitch-identified gameplay videos designed to evaluate physical reasoning capabilities. Extensive experiments show that PhysGame significantly enhances both Game2Real transferability, improving the real world physical reasoning performance of Qwen2.5VL by 2.5% on PhysBench, and Game2General transferability, yielding a 1.9% gain on the MVBench benchmark. Moreover, PhysGame-tuned models achieve a 3.7% absolute improvement on GameBench, demonstrating enhanced robustness in detecting physical implausibilities. These results indicate that learning from gameplay anomalies offers a scalable and effective pathway toward advancing physical world understanding in multimodal intelligence.
comment: Accepted by TMLR
On The Robustness of Foundational 3D Medical Image Segmentation Models Against Imprecise Visual Prompts
While 3D foundational models have shown promise for promptable segmentation of medical volumes, their robustness to imprecise prompts remains under-explored. In this work, we aim to address this gap by systematically studying the effect of various controlled perturbations of dense visual prompts, that closely mimic real-world imprecision. By conducting experiments with two recent foundational models on a multi-organ abdominal segmentation task, we reveal several facets of promptable medical segmentation, especially pertaining to reliance on visual shape and spatial cues, and the extent of resilience of models towards certain perturbations. Codes are available at: https://github.com/ucsdbiag/Prompt-Robustness-MedSegFMs
comment: Accepted at ISBI 2026
Masked Modeling for Human Motion Recovery Under Occlusions
Human motion reconstruction from monocular videos is a fundamental challenge in computer vision, with broad applications in AR/VR, robotics, and digital content creation, but remains challenging under frequent occlusions in real-world settings. Existing regression-based methods are efficient but fragile to missing observations, while optimization- and diffusion-based approaches improve robustness at the cost of slow inference speed and heavy preprocessing steps. To address these limitations, we leverage recent advances in generative masked modeling and present MoRo: Masked Modeling for human motion Recovery under Occlusions. MoRo is an occlusion-robust, end-to-end generative framework that formulates motion reconstruction as a video-conditioned task, and efficiently recover human motion in a consistent global coordinate system from RGB videos. By masked modeling, MoRo naturally handles occlusions while enabling efficient, end-to-end inference. To overcome the scarcity of paired video-motion data, we design a cross-modality learning scheme that learns multi-modal priors from a set of heterogeneous datasets: (i) a trajectory-aware motion prior trained on MoCap datasets, (ii) an image-conditioned pose prior trained on image-pose datasets, capturing diverse per-frame poses, and (iii) a video-conditioned masked transformer that fuses motion and pose priors, finetuned on video-motion datasets to integrate visual cues with motion dynamics for robust inference. Extensive experiments on EgoBody and RICH demonstrate that MoRo substantially outperforms state-of-the-art methods in accuracy and motion realism under occlusions, while performing on-par in non-occluded scenarios. MoRo achieves real-time inference at 70 FPS on a single H200 GPU.
comment: Project page: https://mikeqzy.github.io/MoRo
SAMRI: Segment Anything Model for MRI
Accurate magnetic resonance imaging (MRI) segmentation is crucial for clinical decision-making, but remains labor-intensive when performed manually. Convolutional neural network (CNN) based methods can be accurate and efficient but often generalize poorly to MRI variable contrast, intensity inhomogeneity, and sequences. Although the transformer-based Segment Anything Model (SAM) has demonstrated remarkable generalizability in natural images, existing adaptations often treat MRI as another imaging modality, overlooking these modality-specific challenges. We present SAMRI, an MRI-specialized SAM trained and validated on 1.1 million labeled MR slices spanning whole-body organs and pathologies. We demonstrate that SAM can be effectively adapted to MRI by fine-tuning its mask decoder using a two-stage strategy, reducing training time by 94 percent and trainable parameters by 96 percent compared to full-model retraining. Across diverse MRI segmentation tasks, SAMRI achieves a mean Dice of 0.87, delivering state-of-the-art accuracy across anatomical regions and robust generalization on unseen structures, particularly small clinically important structures. In addition, we provide a complete training-to-inference pipeline and a user-friendly local graphical interface that enables interactive application of pretrained SAMRI models on standard machines, facilitating practical deployment for real-world MRI segmentation.
Robotics 33
Point Bridge: 3D Representations for Cross Domain Policy Learning
Robot foundation models are beginning to deliver on the promise of generalist robotic agents, yet progress remains constrained by the scarcity of large-scale real-world manipulation datasets. Simulation and synthetic data generation offer a scalable alternative, but their usefulness is limited by the visual domain gap between simulation and reality. In this work, we present Point Bridge, a framework that leverages unified, domain-agnostic point-based representations to unlock synthetic datasets for zero-shot sim-to-real policy transfer, without explicit visual or object-level alignment. Point Bridge combines automated point-based representation extraction via Vision-Language Models (VLMs), transformer-based policy learning, and efficient inference-time pipelines to train capable real-world manipulation agents using only synthetic data. With additional co-training on small sets of real demonstrations, Point Bridge further improves performance, substantially outperforming prior vision-based sim-and-real co-training methods. It achieves up to 44% gains in zero-shot sim-to-real transfer and up to 66% with limited real data across both single-task and multitask settings. Videos of the robot are best viewed at: https://pointbridge3d.github.io/
IVRA: Improving Visual-Token Relations for Robot Action Policy with Training-Free Hint-Based Guidance
Many Vision-Language-Action (VLA) models flatten image patches into a 1D token sequence, weakening the 2D spatial cues needed for precise manipulation. We introduce IVRA, a lightweight, training-free method that improves spatial understanding by exploiting affinity hints already available in the model's built-in vision encoder, without requiring any external encoder or retraining. IVRA selectively injects these affinity signals into a language-model layer in which instance-level features reside. This inference-time intervention realigns visual-token interactions and better preserves geometric structure while keeping all model parameters fixed. We demonstrate the generality of IVRA by applying it to diverse VLA architectures (LLaRA, OpenVLA, and FLOWER) across simulated benchmarks spanning both 2D and 3D manipulation (VIMA and LIBERO) and on various real-robot tasks. On 2D VIMA, IVRA improves average success by +4.2% over the baseline LLaRA in a low-data regime. On 3D LIBERO, it yields consistent gains over the OpenVLA and FLOWER baselines, including improvements when baseline accuracy is near saturation (96.3% to 97.1%). All code and models will be released publicly. Visualizations are available at: jongwoopark7978.github.io/IVRA
Cosmos Policy: Fine-Tuning Video Models for Visuomotor Control and Planning
Recent video generation models demonstrate remarkable ability to capture complex physical interactions and scene evolution over time. To leverage their spatiotemporal priors, robotics works have adapted video models for policy learning but introduce complexity by requiring multiple stages of post-training and new architectural components for action generation. In this work, we introduce Cosmos Policy, a simple approach for adapting a large pretrained video model (Cosmos-Predict2) into an effective robot policy through a single stage of post-training on the robot demonstration data collected on the target platform, with no architectural modifications. Cosmos Policy learns to directly generate robot actions encoded as latent frames within the video model's latent diffusion process, harnessing the model's pretrained priors and core learning algorithm to capture complex action distributions. Additionally, Cosmos Policy generates future state images and values (expected cumulative rewards), which are similarly encoded as latent frames, enabling test-time planning of action trajectories with higher likelihood of success. In our evaluations, Cosmos Policy achieves state-of-the-art performance on the LIBERO and RoboCasa simulation benchmarks (98.5% and 67.1% average success rates, respectively) and the highest average score in challenging real-world bimanual manipulation tasks, outperforming strong diffusion policies trained from scratch, video model-based policies, and state-of-the-art vision-language-action models fine-tuned on the same robot demonstrations. Furthermore, given policy rollout data, Cosmos Policy can learn from experience to refine its world model and value function and leverage model-based planning to achieve even higher success rates in challenging tasks. We release code, models, and training data at https://research.nvidia.com/labs/dir/cosmos-policy/
Efficiently Learning Robust Torque-based Locomotion Through Reinforcement with Model-Based Supervision
We propose a control framework that integrates model-based bipedal locomotion with residual reinforcement learning (RL) to achieve robust and adaptive walking in the presence of real-world uncertainties. Our approach leverages a model-based controller, comprising a Divergent Component of Motion (DCM) trajectory planner and a whole-body controller, as a reliable base policy. To address the uncertainties of inaccurate dynamics modeling and sensor noise, we introduce a residual policy trained through RL with domain randomization. Crucially, we employ a model-based oracle policy, which has privileged access to ground-truth dynamics during training, to supervise the residual policy via a novel supervised loss. This supervision enables the policy to efficiently learn corrective behaviors that compensate for unmodeled effects without extensive reward shaping. Our method demonstrates improved robustness and generalization across a range of randomized conditions, offering a scalable solution for sim-to-real transfer in bipedal locomotion.
Improve the autonomy of the SE2(3) group based Extended Kalman Filter for Integrated Navigation: Application
One of the core advantages of SE2(3) Lie group framework for navigation modeling lies in the autonomy of error propagation. In the previous paper, the theoretical analysis of autonomy property of navigation model in inertial, earth and world frames was given. A construction method for SE2(3) group navigation model is proposed to improve the non-inertial navigation model toward full autonomy. This paper serves as a counterpart to previous paper and conducts the real-world strapdown inertial navigation system (SINS)/odometer(ODO) experiments as well as Monte-Carlo simulations to demonstrate the performance of improved SE2(3) group based high-precision navigation models.
DTP: A Simple yet Effective Distracting Token Pruning Framework for Vision-Language Action Models
Vision-Language Action (VLA) models have shown remarkable progress in robotic manipulation by leveraging the powerful perception abilities of Vision-Language Models (VLMs) to understand environments and directly output actions. However, by default, VLA models may overly attend to image tokens in the task-irrelevant region, which we describe as 'distracting tokens'. This behavior can disturb the model from the generation of the desired action tokens in each step, affecting the success rate of tasks. In this paper, we introduce a simple yet effective plug-and-play Distracting Token Pruning (DTP) framework, which dynamically detects and prunes these distracting image tokens. By correcting the model's visual attention patterns, we aim to improve the task success rate, as well as exploring the performance upper boundaries of the model without altering its original architecture or adding additional inputs. Experiments on the SIMPLER Benchmark (Li et al., 2024) show that our method consistently achieving relative improvements in task success rates across different types of novel VLA models, demonstrating generalizability to transformer-based VLAs. Further analysis reveals a negative correlation between the task success rate and the amount of attentions in the task-irrelevant region for all models tested, highlighting a common phenomenon of VLA models that could guide future research. We also publish our code at: https://anonymous.4open.science/r/CBD3.
Improve the autonomy of the SE2(3) group based Extended Kalman Filter for Integrated Navigation: Theoretical Analysis
One of core advantages of the SE2(3) Lie group framework for navigation modeling lies in the autonomy of error propagation. Current research on Lie group based extended Kalman filters has demonstrated that error propagation autonomy holds in low-precision applications, such as in micro electromechanical system (MEMS) based integrated navigation without considering earth rotation and inertial device biases. However, in high-precision navigation state estimation, maintaining autonomy is extremely difficult when considering with earth rotation and inertial device biases. This paper presents the theoretical analysis on the autonomy of SE2(3) group based high-precision navigation models under inertial, earth and world frame respectively. Through theoretical analysis, we find that the limitation of the traditional, trivial SE2(3) group navigation modeling method is that the presence of Coriolis force terms introduced by velocity in non-inertial frame. Therefore, a construction method for SE2(3) group navigation models is proposed, which brings the navigation models closer to full autonomy.
DextER: Language-driven Dexterous Grasp Generation with Embodied Reasoning
Language-driven dexterous grasp generation requires the models to understand task semantics, 3D geometry, and complex hand-object interactions. While vision-language models have been applied to this problem, existing approaches directly map observations to grasp parameters without intermediate reasoning about physical interactions. We present DextER, Dexterous Grasp Generation with Embodied Reasoning, which introduces contact-based embodied reasoning for multi-finger manipulation. Our key insight is that predicting which hand links contact where on the object surface provides an embodiment-aware intermediate representation bridging task semantics with physical constraints. DextER autoregressively generates embodied contact tokens specifying which finger links contact where on the object surface, followed by grasp tokens encoding the hand configuration. On DexGYS, DextER achieves 67.14% success rate, outperforming state-of-the-art by 3.83%p with 96.4% improvement in intention alignment. We also demonstrate steerable generation through partial contact specification, providing fine-grained control over grasp synthesis.
Collision-Free Humanoid Traversal in Cluttered Indoor Scenes
We study the problem of collision-free humanoid traversal in cluttered indoor scenes, such as hurdling over objects scattered on the floor, crouching under low-hanging obstacles, or squeezing through narrow passages. To achieve this goal, the humanoid needs to map its perception of surrounding obstacles with diverse spatial layouts and geometries to the corresponding traversal skills. However, the lack of an effective representation that captures humanoid-obstacle relationships during collision avoidance makes directly learning such mappings difficult. We therefore propose Humanoid Potential Field (HumanoidPF), which encodes these relationships as collision-free motion directions, significantly facilitating RL-based traversal skill learning. We also find that HumanoidPF exhibits a surprisingly negligible sim-to-real gap as a perceptual representation. To further enable generalizable traversal skills through diverse and challenging cluttered indoor scenes, we further propose a hybrid scene generation method, incorporating crops of realistic 3D indoor scenes and procedurally synthesized obstacles. We successfully transfer our policy to the real world and develop a teleoperation system where users could command the humanoid to traverse in cluttered indoor scenes with just a single click. Extensive experiments are conducted in both simulation and the real world to validate the effectiveness of our method. Demos and code can be found in our website: https://axian12138.github.io/CAT/.
Keyframe-Based Feed-Forward Visual Odometry
The emergence of visual foundation models has revolutionized visual odometry~(VO) and SLAM, enabling pose estimation and dense reconstruction within a single feed-forward network. However, unlike traditional pipelines that leverage keyframe methods to enhance efficiency and accuracy, current foundation model based methods, such as VGGT-Long, typically process raw image sequences indiscriminately. This leads to computational redundancy and degraded performance caused by low inter-frame parallax, which provides limited contextual stereo information. Integrating traditional geometric heuristics into these methods is non-trivial, as their performance depends on high-dimensional latent representations rather than explicit geometric metrics. To bridge this gap, we propose a novel keyframe-based feed-forward VO. Instead of relying on hand-crafted rules, our approach employs reinforcement learning to derive an adaptive keyframe policy in a data-driven manner, aligning selection with the intrinsic characteristics of the underlying foundation model. We train our agent on TartanAir dataset and conduct extensive evaluations across several real-world datasets. Experimental results demonstrate that the proposed method achieves consistent and substantial improvements over state-of-the-art feed-forward VO methods.
PUMA: Perception-driven Unified Foothold Prior for Mobility Augmented Quadruped Parkour
Parkour tasks for quadrupeds have emerged as a promising benchmark for agile locomotion. While human athletes can effectively perceive environmental characteristics to select appropriate footholds for obstacle traversal, endowing legged robots with similar perceptual reasoning remains a significant challenge. Existing methods often rely on hierarchical controllers that follow pre-computed footholds, thereby constraining the robot's real-time adaptability and the exploratory potential of reinforcement learning. To overcome these challenges, we present PUMA, an end-to-end learning framework that integrates visual perception and foothold priors into a single-stage training process. This approach leverages terrain features to estimate egocentric polar foothold priors, composed of relative distance and heading, guiding the robot in active posture adaptation for parkour tasks. Extensive experiments conducted in simulation and real-world environments across various discrete complex terrains, demonstrate PUMA's exceptional agility and robustness in challenging scenarios.
Accurate Calibration and Robust LiDAR-Inertial Odometry for Spinning Actuated LiDAR Systems RA-L
Accurate calibration and robust localization are fundamental for downstream tasks in spinning actuated LiDAR applications. Existing methods, however, require parameterizing extrinsic parameters based on different mounting configurations, limiting their generalizability. Additionally, spinning actuated LiDAR inevitably scans featureless regions, which complicates the balance between scanning coverage and localization robustness. To address these challenges, this letter presents a targetless LiDAR-motor calibration (LM-Calibr) on the basis of the Denavit-Hartenberg convention and an environmental adaptive LiDAR-inertial odometry (EVA-LIO). LM-Calibr supports calibration of LiDAR-motor systems with various mounting configurations. Extensive experiments demonstrate its accuracy and convergence across different scenarios, mounting angles, and initial values. Additionally, EVA-LIO adaptively selects downsample rates and map resolutions according to spatial scale. This adaptivity enables the actuator to operate at maximum speed, thereby enhancing scanning completeness while ensuring robust localization, even when LiDAR briefly scans featureless areas. The source code and hardware design are available on GitHub: \textcolor{blue}{\href{https://github.com/zijiechenrobotics/lm_calibr}{github.com/zijiechenrobotics/lm\_calibr}}. The video is available at \textcolor{blue}{\href{https://youtu.be/cZyyrkmeoSk}{youtu.be/cZyyrkmeoSk}}
comment: This article has been accepted for publication in IEEE Robotics and Automation Letters (RA-L). Personal use is permitted. All other uses require IEEE permission
TeNet: Text-to-Network for Compact Policy Synthesis
Robots that follow natural-language instructions often either plan at a high level using hand-designed interfaces or rely on large end-to-end models that are difficult to deploy for real-time control. We propose TeNet (Text-to-Network), a framework for instantiating compact, task-specific robot policies directly from natural language descriptions. TeNet conditions a hypernetwork on text embeddings produced by a pretrained large language model (LLM) to generate a fully executable policy, which then operates solely on low-dimensional state inputs at high control frequencies. By using the language only once at the policy instantiation time, TeNet inherits the general knowledge and paraphrasing robustness of pretrained LLMs while remaining lightweight and efficient at execution time. To improve generalization, we optionally ground language in behavior during training by aligning text embeddings with demonstrated actions, while requiring no demonstrations at inference time. Experiments on MuJoCo and Meta-World benchmarks show that TeNet produces policies that are orders of magnitude smaller than sequence-based baselines, while achieving strong performance in both multi-task and meta-learning settings and supporting high-frequency control. These results show that text-conditioned hypernetworks offer a practical way to build compact, language-driven controllers for ressource-constrained robot control tasks with real-time requirements.
A Beacon Based Solution for Autonomous UUVs GNSS-Denied Stealthy Navigation
Autonomous Unmanned Underwater Vehicles (UUVs) enable military and civilian covert operations in coastal areas without relying on support vessels or Global Navigation Satellite Systems (GNSS). Such operations are critical when surface access is not possible and stealthy navigation is required in restricted environments such as protected zones or dangerous areas under access ban. GNSS denied navigation is then essential to maintaining concealment as surfacing could expose UUVs to detection. To ensure a precise fleet positioning a constellation of beacons deployed by aerial or surface drones establish a synthetic landmark network that will guide the fleet of UUVs along an optimized path from the continental shelf to the goal on the shore. These beacons either submerged or floating emit acoustic signals for UUV localisation and navigation. A hierarchical planner generates an adaptive route for the drones executing primitive actions while continuously monitoring and replanning as needed to maintain trajectory accuracy.
comment: 8 pages. IEEE TechDefense 2025
Glove2UAV: A Wearable IMU-Based Glove for Intuitive Control of UAV
This paper presents Glove2UAV, a wearable IMU-glove interface for intuitive UAV control through hand and finger gestures, augmented with vibrotactile warnings for exceeding predefined speed thresholds. To promote safer and more predictable interaction in dynamic flight, Glove2UAV is designed as a lightweight and easily deployable wearable interface intended for real-time operation. Glove2UAV streams inertial measurements in real time and estimates palm and finger orientations using a compact processing pipeline that combines median-based outlier suppression with Madgwick-based orientation estimation. The resulting motion estimations are mapped to a small set of control primitives for directional flight (forward/backward and lateral motion) and, when supported by the platform, to object-interaction commands. Vibrotactile feedback is triggered when flight speed exceeds predefined threshold values, providing an additional alert channel during operation. We validate real-time feasibility by synchronizing glove signals with UAV telemetry in both simulation and real-world flights. The results show fast gesture-based command execution, stable coupling between gesture dynamics and platform motion, correct operation of the core command set in our trials, and timely delivery of vibratile warning cues.
comment: This paper has been accepted for publication at LBR of HRI 2026 conference
DualShield: Safe Model Predictive Diffusion via Reachability Analysis for Interactive Autonomous Driving
Diffusion models have emerged as a powerful approach for multimodal motion planning in autonomous driving. However, their practical deployment is typically hindered by the inherent difficulty in enforcing vehicle dynamics and a critical reliance on accurate predictions of other agents, making them prone to safety issues under uncertain interactions. To address these limitations, we introduce DualShield, a planning and control framework that leverages Hamilton-Jacobi (HJ) reachability value functions in a dual capacity. First, the value functions act as proactive guidance, steering the diffusion denoising process towards safe and dynamically feasible regions. Second, they form a reactive safety shield using control barrier-value functions (CBVFs) to modify the executed actions and ensure safety. This dual mechanism preserves the rich exploration capabilities of diffusion models while providing principled safety assurance under uncertain and even adversarial interactions. Simulations in challenging unprotected U-turn scenarios demonstrate that DualShield significantly improves both safety and task efficiency compared to leading methods from different planning paradigms under uncertainty.
comment: 8 pages, 5 figures
D-Optimality-Guided Reinforcement Learning for Efficient Open-Loop Calibration of a 3-DOF Ankle Rehabilitation Robot
Accurate alignment of multi-degree-of-freedom rehabilitation robots is essential for safe and effective patient training. This paper proposes a two-stage calibration framework for a self-designed three-degree-of-freedom (3-DOF) ankle rehabilitation robot. First, a Kronecker-product-based open-loop calibration method is developed to cast the input-output alignment into a linear parameter identification problem, which in turn defines the associated experimental design objective through the resulting information matrix. Building on this formulation, calibration posture selection is posed as a combinatorial design-of-experiments problem guided by a D-optimality criterion, i.e., selecting a small subset of postures that maximises the determinant of the information matrix. To enable practical selection under constraints, a Proximal Policy Optimization (PPO) agent is trained in simulation to choose 4 informative postures from a candidate set of 50. Across simulation and real-robot evaluations, the learned policy consistently yields substantially more informative posture combinations than random selection: the mean determinant of the information matrix achieved by PPO is reported to be more than two orders of magnitude higher with reduced variance. In addition, real-world results indicate that a parameter vector identified from only four D-optimality-guided postures provides stronger cross-episode prediction consistency than estimates obtained from a larger but unstructured set of 50 postures. The proposed framework therefore improves calibration efficiency while maintaining robust parameter estimation, offering practical guidance for high-precision alignment of multi-DOF rehabilitation robots.
AION: Aerial Indoor Object-Goal Navigation Using Dual-Policy Reinforcement Learning
Object-Goal Navigation (ObjectNav) requires an agent to autonomously explore an unknown environment and navigate toward target objects specified by a semantic label. While prior work has primarily studied zero-shot ObjectNav under 2D locomotion, extending it to aerial platforms with 3D locomotion capability remains underexplored. Aerial robots offer superior maneuverability and search efficiency, but they also introduce new challenges in spatial perception, dynamic control, and safety assurance. In this paper, we propose AION for vision-based aerial ObjectNav without relying on external localization or global maps. AION is an end-to-end dual-policy reinforcement learning (RL) framework that decouples exploration and goal-reaching behaviors into two specialized policies. We evaluate AION on the AI2-THOR benchmark and further assess its real-time performance in IsaacSim using high-fidelity drone models. Experimental results show that AION achieves superior performance across comprehensive evaluation metrics in exploration, navigation efficiency, and safety. The video can be found at https://youtu.be/TgsUm6bb7zg.
Airflow Source Seeking on Small Quadrotors Using a Single Flow Sensor
As environmental disasters happen more frequently and severely, seeking the source of pollutants or harmful particulates using plume tracking becomes even more important. Plume tracking on small quadrotors would allow these systems to operate around humans and fly in more confined spaces, but can be challenging due to poor sensitivity and long response times from gas sensors that fit on small quadrotors. In this work, we present an approach to complement chemical plume tracking with airflow source-seeking behavior using a custom flow sensor that can sense both airflow magnitude and direction on small quadrotors < 100 g. We use this sensor to implement a modified version of the `Cast and Surge' algorithm that takes advantage of flow direction sensing to find and navigate towards flow sources. A series of characterization experiments verified that the system can detect airflow while in flight and reorient the quadrotor toward the airflow. Several trials with random starting locations and orientations were used to show that our source-seeking algorithm can reliably find a flow source. This work aims to provide a foundation for future platforms that can use flow sensors in concert with other sensors to enable richer plume tracking data collection and source-seeking.
MapViT: A Two-Stage ViT-Based Framework for Real-Time Radio Quality Map Prediction in Dynamic Environments
Recent advancements in mobile and wireless networks are unlocking the full potential of robotic autonomy, enabling robots to take advantage of ultra-low latency, high data throughput, and ubiquitous connectivity. However, for robots to navigate and operate seamlessly, efficiently and reliably, they must have an accurate understanding of both their surrounding environment and the quality of radio signals. Achieving this in highly dynamic and ever-changing environments remains a challenging and largely unsolved problem. In this paper, we introduce MapViT, a two-stage Vision Transformer (ViT)-based framework inspired by the success of pre-train and fine-tune paradigm for Large Language Models (LLMs). MapViT is designed to predict both environmental changes and expected radio signal quality. We evaluate the framework using a set of representative Machine Learning (ML) models, analyzing their respective strengths and limitations across different scenarios. Experimental results demonstrate that the proposed two-stage pipeline enables real-time prediction, with the ViT-based implementation achieving a strong balance between accuracy and computational efficiency. This makes MapViT a promising solution for energy- and resource-constrained platforms such as mobile robots. Moreover, the geometry foundation model derived from the self-supervised pre-training stage improves data efficiency and transferability, enabling effective downstream predictions even with limited labeled data. Overall, this work lays the foundation for next-generation digital twin ecosystems, and it paves the way for a new class of ML foundation models driving multi-modal intelligence in future 6G-enabled systems.
comment: This paper has been accepted for publication at IEEE International Conference on Communications (ICC) 2026
A Mobile Magnetic Manipulation Platform for Gastrointestinal Navigation with Deep Reinforcement Learning Control
Targeted drug delivery in the gastrointestinal (GI) tract using magnetic robots offers a promising alternative to systemic treatments. However, controlling these robots is a major challenge. Stationary magnetic systems have a limited workspace, while mobile systems (e.g., coils on a robotic arm) suffer from a "model-calibration bottleneck", requiring complex, pre-calibrated physical models that are time-consuming to create and computationally expensive. This paper presents a compact, low-cost mobile magnetic manipulation platform that overcomes this limitation using Deep Reinforcement Learning (DRL). Our system features a compact four-electromagnet array mounted on a UR5 collaborative robot. A Soft Actor-Critic (SAC)-based control strategy is trained through a sim-to-real pipeline, enabling effective policy deployment within 15 minutes and significantly reducing setup time. We validated the platform by controlling a 7-mm magnetic capsule along 2D trajectories. Our DRL-based controller achieved a root-mean-square error (RMSE) of 1.18~mm for a square path and 1.50~mm for a circular path. We also demonstrated successful tracking over a clinically relevant, 30 cm * 20 cm workspace. This work demonstrates a rapidly deployable, model-free control framework capable of precise magnetic manipulation in a large workspace,validated using a 2D GI phantom.
DMAVA: Distributed Multi-Autonomous Vehicle Architecture Using Autoware IV 2026
Simulating and validating coordination among multiple autonomous vehicles (AVs) is a challenging task as most existing simulation architectures are limited to single-vehicle operation or rely on centralized control. This paper presents a Distributed Multi-AV Architecture (DMAVA) that enables synchronized, real-time autonomous driving simulation across multiple physical hosts. Each vehicle runs its own complete AV stack and operates independently from other AVs. The vehicles in the simulation maintain synchronized coordination through a low-latency data-centric communication layer. The proposed system integrates ROS 2 Humble, Autoware Universe, AWSIM Labs, and Zenoh to support concurrent execution of multiple Autoware stacks within a shared Unity-based environment. Experiments conducted on multiple-host configurations demonstrate stable localization, reliable inter-host communication, and fully synchronized closed-loop control. The DMAVA also serves as a foundation for Multi-Vehicle Autonomous Valet Parking, demonstrating its extensibility toward higher-level cooperative autonomy. Demo videos and source code are available at: https://github.com/zubxxr/distributed-multi-autonomous-vehicle-architecture.
comment: 9 pages, 4 figures, 5 tables, Submitted to IEEE IV 2026, Demo videos and source code available
DMV-AVP: Distributed Multi-Vehicle Autonomous Valet Parking using Autoware
This paper presents the DMV-AVP System, a distributed simulation of Multi-Vehicle Autonomous Valet Parking (AVP). The system was implemented as an application of the Distributed Multi-Vehicle Architecture (DMAVA) for synchronized multi-host execution. Most existing simulation approaches rely on centralized or non-distributed designs that constrain scalability and limit fully autonomous control. This work introduces two modules built on top of the DMAVA: 1) a Multi-Vehicle AVP Node that performs state-based coordination, queuing, and reservation management across multiple vehicles, and 2) a Unity-Integrated YOLOv5 Parking Spot Detection Module that provides real-time, vision-based perception within AWSIM Labs. Both modules integrate seamlessly with the DMAVA and extend it specifically for multi-vehicle AVP operation, supported by a Zenoh-based communication layer that ensures low-latency topic synchronization and coordinated behavior across hosts. Experiments conducted on two- and three-host configurations demonstrate deterministic coordination, conflict-free parking behavior, and scalable performance across distributed Autoware instances. The results confirm that the proposed Distributed Multi-Vehicle AVP System supports cooperative AVP simulation and establishes a foundation for future real-world and hardware-in-the-loop validation. Demo videos and source code are available at https://github.com/zubxxr/multi-vehicle-avp
comment: 7 pages, 5 figures, 1 table. Demo videos and source code available
Scalable Screw-Theoretic Synthesis for PDE-Based Dynamic Modeling of Multibody Flexible Manipulators
This paper presents a novel and scalable screw-theoretic multibody synthesis framework for PDE-based dynamic modeling of serial robotic manipulators with an arbitrary number of flexible links in three-dimensional space. The proposed approach systematically constructs screw-theoretic PDE models for individual flexible links and rigorously enforces holonomic joint constraints through interaction forces. The dynamics of each link are formulated using a set of dual screws expressed in body-fixed coordinates: one describing the motion of the body-fixed frame relative to the inertial frame, a second relating the body-fixed frame to the undeformed configuration, and a third capturing elastic deformations. By expressing the system energy and applying variational principles, the governing dynamics of each link had been previously derived in a unified manner. Synthesizing the individual link models yields an infinitely scalable multibody representation capable of capturing both local (subsystem-level) and global (system-level) dynamics. The framework explicitly recovers all dynamic states, including the motion of each body-fixed frame and the distributed deformation fields of the flexible links. For computational tractability and mathematical rigor, the resulting governing equations are formulated as a semi-explicit index-1 differential-algebraic system. Furthermore, by applying separation of variables, the PDE model is recast as an abstract Cauchy problem, and well-posedness of the resulting system is established.
Reinforcement Learning Compensated Model Predictive Control for Off-road Driving on Unknown Deformable Terrain ACC 2025
This study presents an Actor-Critic reinforcement learning Compensated Model Predictive Controller (AC2MPC) designed for high-speed, off-road autonomous driving on deformable terrains. Addressing the difficulty of modeling unknown tire-terrain interaction and ensuring real-time control feasibility and performance, this framework integrates deep reinforcement learning with a model predictive controller to manage unmodeled nonlinear dynamics. We evaluate the controller framework over constant and varying velocity profiles using high-fidelity simulator Project Chrono. Our findings demonstrate that our controller statistically outperforms standalone model-based and learning-based controllers over three unknown terrains that represent sandy deformable track, sandy and rocky track and cohesive clay-like deformable soil track. Despite varied and previously unseen terrain characteristics, this framework generalized well enough to track longitudinal reference speeds with the least error. Furthermore, this framework required significantly less training data compared to purely learning based controller, converging in fewer steps while delivering better performance. Even when under-trained, this controller outperformed the standalone controllers, highlighting its potential for safer and more efficient real-world deployment.
comment: Submitted to IEEE Transactions on Intelligent Vehicles as a Regular Paper; was withdrawn in March 2025. A revised version of this manuscript was submitted to ACC 2025 review as a regular paper in Sep 2025
ProbeMDE: Uncertainty-Guided Active Proprioception for Monocular Depth Estimation in Surgical Robotics
Monocular depth estimation (MDE) provides a useful tool for robotic perception, but its predictions are often uncertain and inaccurate in challenging environments such as surgical scenes where textureless surfaces, specular reflections, and occlusions are common. To address this, we propose ProbeMDE, a cost-aware active sensing framework that combines RGB images with sparse proprioceptive measurements for MDE. Our approach utilizes an ensemble of MDE models to predict dense depth maps conditioned on both RGB images and on a sparse set of known depth measurements obtained via proprioception, where the robot has touched the environment in a known configuration. We quantify predictive uncertainty via the ensemble's variance and measure the gradient of the uncertainty with respect to candidate measurement locations. To prevent mode collapse while selecting maximally informative locations to propriocept (touch), we leverage Stein Variational Gradient Descent (SVGD) over this gradient map. We validate our method in both simulated and physical experiments on central airway obstruction surgical phantoms. Our results demonstrate that our approach outperforms baseline methods across standard depth estimation metrics, achieving higher accuracy while minimizing the number of required proprioceptive measurements. Project page: https://brittonjordan.github.io/probe_mde/
comment: 9 pages, 5 figures. Project page: https://brittonjordan.github.io/probe_mde/
BayesianVLA: Bayesian Decomposition of Vision Language Action Models via Latent Action Queries
Vision-Language-Action (VLA) models have shown promise in robot manipulation but often struggle to generalize to new instructions or complex multi-task scenarios. We identify a critical pathology in current training paradigms where goal-driven data collection creates a dataset bias. In such datasets, language instructions are highly predictable from visual observations alone, causing the conditional mutual information between instructions and actions to vanish, a phenomenon we term Information Collapse. Consequently, models degenerate into vision-only policies that ignore language constraints and fail in out-of-distribution (OOD) settings. To address this, we propose BayesianVLA, a novel framework that enforces instruction following via Bayesian decomposition. By introducing learnable Latent Action Queries, we construct a dual-branch architecture to estimate both a vision-only prior $p(a \mid v)$ and a language-conditioned posterior $π(a \mid v, \ell)$. We then optimize the policy to maximize the conditional Pointwise Mutual Information (PMI) between actions and instructions. This objective effectively penalizes the vision shortcut and rewards actions that explicitly explain the language command. Without requiring new data, BayesianVLA significantly improves generalization. Extensive experiments across on SimplerEnv and RoboCasa demonstrate substantial gains, including an 11.3% improvement on the challenging OOD SimplerEnv benchmark, validating the ability of our approach to robustly ground language in action.
Data-driven tool wear prediction in milling, based on a process-integrated single-sensor approach
Accurate tool wear prediction is essential for maintaining productivity and minimizing costs in machining. However, the complex nature of the tool wear process poses significant challenges to achieving reliable predictions. This study explores data-driven methods, in particular deep learning, for tool wear prediction. Traditional data-driven approaches often focus on a single process, relying on multi-sensor setups and extensive data generation, which limits generalization to new settings. Moreover, multi-sensor integration is often impractical in industrial environments. To address these limitations, this research investigates the transferability of predictive models using minimal training data, validated across two processes. Furthermore, it uses a simple setup with a single acceleration sensor to establish a low-cost data generation approach that facilitates the generalization of models to other processes via transfer learning. The study evaluates several machine learning models, including transformer-inspired convolutional neural networks (CNN), long short-term memory networks (LSTM), support vector machines (SVM), and decision trees, trained on different input formats such as feature vectors and short-time Fourier transform (STFT). The performance of the models is evaluated on two machines and on different amounts of training data, including scenarios with significantly reduced datasets, providing insight into their effectiveness under constrained data conditions. The results demonstrate the potential of specific models and configurations for effective tool wear prediction, contributing to the development of more adaptable and efficient predictive maintenance strategies in machining. Notably, the ConvNeXt model has an exceptional performance, achieving 99.1\% accuracy in identifying tool wear using data from only four milling tools operated until they are worn.
comment: This work is a preprint and has been submitted for possible publication,14 pages, 12 figures
Sigma: The Key for Vision-Language-Action Models toward Telepathic Alignment
To address a fundamental limitation in cognitive systems, namely the absence of a time-updatable mediating thought space between semantics and continuous control, this work constructs and trains a vision-language-action model termed Sigma, deployed on a single RTX 4090. The model is built upon the open-source pi0.5_base backbone, with the svla_so101_pickplace dataset preprocessed into a structured training corpus. An independently designed VLA architecture is introduced to integrate deep semantic understanding with associative reasoning, enabling telepathic-style alignment between perception and action. Training proceeds through iterative optimization of data preprocessing, LoRA-based fine-tuning, and inference-stage adapter design. Evaluation is conducted using offline closed-loop replay, comparing Sigma against the untuned pi0.5_base under identical data conditions. Experimental results indicate a consistent reduction in control MSE across vector-, fragment-, and trajectory-level scales, while preserving the stability of the telepathy norm and semantic-text alignment quality. These findings demonstrate that mind-responsive alignment control can be quantitatively achieved through semantic and associative architectural integration without retraining the base model, providing a reproducible pathway for semantic alignment and intention-driven behavior.
comment: The Sigma model has been open-sourced on Hugging Face. Weights, dataset, some scripts, and logs are all available. The link is: https://huggingface.co/Veltraxor/Sigma
VIKI-R: Coordinating Embodied Multi-Agent Cooperation via Reinforcement Learning NeurIPS 2025
Coordinating multiple embodied agents in dynamic environments remains a core challenge in artificial intelligence, requiring both perception-driven reasoning and scalable cooperation strategies. While recent works have leveraged large language models (LLMs) for multi-agent planning, a few have begun to explore vision-language models (VLMs) for visual reasoning. However, these VLM-based approaches remain limited in their support for diverse embodiment types. In this work, we introduce VIKI-Bench, the first hierarchical benchmark tailored for embodied multi-agent cooperation, featuring three structured levels: agent activation, task planning, and trajectory perception. VIKI-Bench includes diverse robot embodiments, multi-view visual observations, and structured supervision signals to evaluate reasoning grounded in visual inputs. To demonstrate the utility of VIKI-Bench, we propose VIKI-R, a two-stage framework that fine-tunes a pretrained vision-language model (VLM) using Chain-of-Thought annotated demonstrations, followed by reinforcement learning under multi-level reward signals. Our extensive experiments show that VIKI-R significantly outperforms baselines method across all task levels. Furthermore, we show that reinforcement learning enables the emergence of compositional cooperation patterns among heterogeneous agents. Together, VIKI-Bench and VIKI-R offer a unified testbed and method for advancing multi-agent, visual-driven cooperation in embodied AI systems.
comment: Accepted by NeurIPS 2025 Track on Datasets and Benchmarks. Project page: https://faceong.github.io/VIKI-R/
Multi-Layered Reasoning from a Single Viewpoint for Learning See-Through Grasping
Sensory substitution enables biological systems to perceive stimuli that are typically perceived by another organ, which is inspirational for physical agents. Multimodal perception of intrinsic and extrinsic interactions is critical in building an intelligent robot that learns. This study presents a Vision-based See-Through Perception (VBSeeThruP) architecture that simultaneously perceives multiple intrinsic and extrinsic modalities from a single visual input, in a markerless manner, all packed into a soft robotic finger using the Soft Polyhedral Network design. It is generally applicable to miniature vision systems placed beneath deformable networks with a see-through design, capturing real-time images of the network's physical interactions induced by contact-based events, overlaid on the visual scene of the external environment, as demonstrated in the ablation study. We present the VBSeeThruP's capability for learning reactive grasping without using external cameras or dedicated force and torque sensors on the fingertips. Using the inpainted scene and the deformation mask, we further demonstrate the multimodal performance of the VBSeeThruP architecture to simultaneously achieve various perceptions, including but not limited to scene inpainting, object detection, depth sensing, scene segmentation, masked deformation tracking, 6D force/torque sensing, and contact event detection, all within a single sensory input from the in-finger vision markerlessly.
comment: 39 pages, 13 figures, 2 tables, for supplementary videos, see https://bionicdl.ancorasir.com/?p=1658, for opensourced codes, see https://github.com/ancorasir/SeeThruFinger
Towards Natural Language Environment: Understanding Seamless Natural-Language-Based Human-Multi-Robot Interactions
As multiple robots are expected to coexist in future households, natural language is increasingly envisioned as a primary medium for human-robot and robot-robot communication. This paper introduces the concept of a Natural Language Environment (NLE), defined as an interaction space in which humans and multiple heterogeneous robots coordinate primarily through natural language. Rather than proposing a deployable system, this work aims to explore the design space of such environments. We first synthesize prior work on language-based human-robot interaction to derive a preliminary design space for NLEs. We then conduct a role-playing study in virtual reality to investigate how people conceptualize, negotiate, and coordinate human-multi-robot interactions within this imagined environment. Based on qualitative and quantitative analysis, we refine the preliminary design space and derive design implications that highlight key tensions and opportunities around task coordination dominance, robot autonomy, and robot personality in Natural Language Environments.
Digital twins for the design, interactive control, and deployment of modular, fiber-reinforced soft continuum arms
Soft continuum arms (SCAs) promise versatile manipulation through mechanical compliance, for assistive devices, agriculture, search applications, or surgery. However, the strong nonlinear coupling between materials, morphology, and actuation renders design and control challenging, hindering real-world deployment. In this context, a modular fabrication strategy paired with reliable, interactive simulations would be highly beneficial, streamlining prototyping and control design. Here, we present a digital twin framework for modular SCAs realized using pneumatic Fiber-Reinforced Elastomeric Enclosures (FREEs). The approach models assemblies of FREE actuators through networks of Cosserat rods, favoring the accurate simulation of three-dimensional arm reconfigurations, while explicitly preserving internal modular architecture. This enables the quantitative analysis and scalable development of composite soft robot arms, overcoming limitations of current monolithic continuum models. To validate the framework, we introduce a three-dimensional reconstruction pipeline tailored to soft, slender, small-volume, and highly deformable structures, allowing reliable recovery of arm kinematics and strain distributions. Experimental results across multiple configurations and actuation regimes demonstrate close agreement with simulations. Finally, we embed the digital twins in a virtual environment to allow interactive control design and sim-to-real deployment, establishing a foundation for principled co-design and remote operation of modular soft continuum manipulators.
comment: 8 pages, 4 figures This work has been submitted for possible publication
Computer Vision and Pattern Recognition 128
CamPilot: Improving Camera Control in Video Diffusion Model with Efficient Camera Reward Feedback
Recent advances in camera-controlled video diffusion models have significantly improved video-camera alignment. However, the camera controllability still remains limited. In this work, we build upon Reward Feedback Learning and aim to further improve camera controllability. However, directly borrowing existing ReFL approaches faces several challenges. First, current reward models lack the capacity to assess video-camera alignment. Second, decoding latent into RGB videos for reward computation introduces substantial computational overhead. Third, 3D geometric information is typically neglected during video decoding. To address these limitations, we introduce an efficient camera-aware 3D decoder that decodes video latent into 3D representations for reward quantization. Specifically, video latent along with the camera pose are decoded into 3D Gaussians. In this process, the camera pose not only acts as input, but also serves as a projection parameter. Misalignment between the video latent and camera pose will cause geometric distortions in the 3D structure, resulting in blurry renderings. Based on this property, we explicitly optimize pixel-level consistency between the rendered novel views and ground-truth ones as reward. To accommodate the stochastic nature, we further introduce a visibility term that selectively supervises only deterministic regions derived via geometric warping. Extensive experiments conducted on RealEstate10K and WorldScore benchmarks demonstrate the effectiveness of our proposed method. Project page: \href{https://a-bigbao.github.io/CamPilot/}{CamPilot Page}.
Why Can't I Open My Drawer? Mitigating Object-Driven Shortcuts in Zero-Shot Compositional Action Recognition
We study Compositional Video Understanding (CVU), where models must recognize verbs and objects and compose them to generalize to unseen combinations. We find that existing Zero-Shot Compositional Action Recognition (ZS-CAR) models fail primarily due to an overlooked failure mode: object-driven verb shortcuts. Through systematic analysis, we show that this behavior arises from two intertwined factors: severe sparsity and skewness of compositional supervision, and the asymmetric learning difficulty between verbs and objects. As training progresses, the existing ZS-CAR model increasingly ignores visual evidence and overfits to co-occurrence statistics. Consequently, the existing model does not gain the benefit of compositional recognition in unseen verb-object compositions. To address this, we propose RCORE, a simple and effective framework that enforces temporally grounded verb learning. RCORE introduces (i) a composition-aware augmentation that diversifies verb-object combinations without corrupting motion cues, and (ii) a temporal order regularization loss that penalizes shortcut behaviors by explicitly modeling temporal structure. Across two benchmarks, Sth-com and our newly constructed EK100-com, RCORE significantly improves unseen composition accuracy, reduces reliance on co-occurrence bias, and achieves consistently positive compositional gaps. Our findings reveal object-driven shortcuts as a critical limiting factor in ZS-CAR and demonstrate that addressing them is essential for robust compositional video understanding.
comment: The code is available at https://github.com/KHU-VLL/RCORE
PyraTok: Language-Aligned Pyramidal Tokenizer for Video Understanding and Generation
Discrete video VAEs underpin modern text-to-video generation and video understanding systems, yet existing tokenizers typically learn visual codebooks at a single scale with limited vocabularies and shallow language supervision, leading to poor cross-modal alignment and zero-shot transfer. We introduce PyraTok, a language-aligned pyramidal tokenizer that learns semantically structured discrete latents across multiple spatiotemporal resolutions. PyraTok builds on a pretrained video VAE and a novel Language aligned Pyramidal Quantization (LaPQ) module that discretizes encoder features at several depths using a shared large binary codebook, yielding compact yet expressive video token sequences. To tightly couple visual tokens with language, PyraTok jointly optimizes multi-scale text-guided quantization and a global autoregressive objective over the token hierarchy. Across ten benchmarks, PyraTok delivers state-of-the-art (SOTA) video reconstruction, consistently improves text-to-video quality, and sets new SOTA zero-shot performance on video segmentation, temporal action localization, and video understanding, scaling robustly to up to 4K/8K resolutions.
Scaling Text-to-Image Diffusion Transformers with Representation Autoencoders
Representation Autoencoders (RAEs) have shown distinct advantages in diffusion modeling on ImageNet by training in high-dimensional semantic latent spaces. In this work, we investigate whether this framework can scale to large-scale, freeform text-to-image (T2I) generation. We first scale RAE decoders on the frozen representation encoder (SigLIP-2) beyond ImageNet by training on web, synthetic, and text-rendering data, finding that while scale improves general fidelity, targeted data composition is essential for specific domains like text. We then rigorously stress-test the RAE design choices originally proposed for ImageNet. Our analysis reveals that scaling simplifies the framework: while dimension-dependent noise scheduling remains critical, architectural complexities such as wide diffusion heads and noise-augmented decoding offer negligible benefits at scale Building on this simplified framework, we conduct a controlled comparison of RAE against the state-of-the-art FLUX VAE across diffusion transformer scales from 0.5B to 9.8B parameters. RAEs consistently outperform VAEs during pretraining across all model scales. Further, during finetuning on high-quality datasets, VAE-based models catastrophically overfit after 64 epochs, while RAE models remain stable through 256 epochs and achieve consistently better performance. Across all experiments, RAE-based diffusion models demonstrate faster convergence and better generation quality, establishing RAEs as a simpler and stronger foundation than VAEs for large-scale T2I generation. Additionally, because both visual understanding and generation can operate in a shared representation space, the multimodal model can directly reason over generated latents, opening new possibilities for unified models.
comment: website: https://rae-dit.github.io/scale-rae/
Provable Robustness in Multimodal Large Language Models via Feature Space Smoothing
Multimodal large language models (MLLMs) exhibit strong capabilities across diverse applications, yet remain vulnerable to adversarial perturbations that distort their feature representations and induce erroneous predictions. To address this vulnerability, we propose the Feature-space Smoothing (FS) and theoretically prove that FS offers certified robustness on the feature representations of MLLMs. Specifically, FS transforms any feature encoder into a smoothed variant that is guaranteed to maintain a certified lower bound on the feature cosine similarity between clean and adversarial representations under $\ell_2$-bounded attacks. Moreover, we indicate that the value of this Feature Cosine Similarity Bound (FCSB) derived from FS can be improved by enlarging the defined Gaussian robustness score on the vanilla encoder. Building upon this, we introduce the Purifier and Smoothness Mapper (PSM), a plug-and-play module that improves the Gaussian robustness score of MLLMs and thus enhances their certified robustness under FS, without requiring any retraining on MLLMs. We demonstrate that the FS with PSM not only provides a strong theoretical robustness guarantee but also exhibits superior empirical performance compared to adversarial training. Extensive experiments across diverse MLLMs and downstream tasks indicate the effectiveness of the FS-PSM, reducing the Attack Success Rate (ASR) of various white-box attacks from nearly 90\% to about 1\%.
comment: Under review
360Anything: Geometry-Free Lifting of Images and Videos to 360°
Lifting perspective images and videos to 360° panoramas enables immersive 3D world generation. Existing approaches often rely on explicit geometric alignment between the perspective and the equirectangular projection (ERP) space. Yet, this requires known camera metadata, obscuring the application to in-the-wild data where such calibration is typically absent or noisy. We propose 360Anything, a geometry-free framework built upon pre-trained diffusion transformers. By treating the perspective input and the panorama target simply as token sequences, 360Anything learns the perspective-to-equirectangular mapping in a purely data-driven way, eliminating the need for camera information. Our approach achieves state-of-the-art performance on both image and video perspective-to-360° generation, outperforming prior works that use ground-truth camera information. We also trace the root cause of the seam artifacts at ERP boundaries to zero-padding in the VAE encoder, and introduce Circular Latent Encoding to facilitate seamless generation. Finally, we show competitive results in zero-shot camera FoV and orientation estimation benchmarks, demonstrating 360Anything's deep geometric understanding and broader utility in computer vision tasks. Additional results are available at https://360anything.github.io/.
comment: Project page: https://360anything.github.io/
HVD: Human Vision-Driven Video Representation Learning for Text-Video Retrieval
The success of CLIP has driven substantial progress in text-video retrieval. However, current methods often suffer from "blind" feature interaction, where the model struggles to discern key visual information from background noise due to the sparsity of textual queries. To bridge this gap, we draw inspiration from human cognitive behavior and propose the Human Vision-Driven (HVD) model. Our framework establishes a coarse-to-fine alignment mechanism comprising two key components: the Frame Features Selection Module (FFSM) and the Patch Features Compression Module (PFCM). FFSM mimics the human macro-perception ability by selecting key frames to eliminate temporal redundancy. Subsequently, PFCM simulates micro-perception by aggregating patch features into salient visual entities through an advanced attention mechanism, enabling precise entity-level matching. Extensive experiments on five benchmarks demonstrate that HVD not only captures human-like visual focus but also achieves state-of-the-art performance.
comment: Accepted by ICASSP 2026
ActionMesh: Animated 3D Mesh Generation with Temporal 3D Diffusion
Generating animated 3D objects is at the heart of many applications, yet most advanced works are typically difficult to apply in practice because of their limited setup, their long runtime, or their limited quality. We introduce ActionMesh, a generative model that predicts production-ready 3D meshes "in action" in a feed-forward manner. Drawing inspiration from early video models, our key insight is to modify existing 3D diffusion models to include a temporal axis, resulting in a framework we dubbed "temporal 3D diffusion". Specifically, we first adapt the 3D diffusion stage to generate a sequence of synchronized latents representing time-varying and independent 3D shapes. Second, we design a temporal 3D autoencoder that translates a sequence of independent shapes into the corresponding deformations of a pre-defined reference shape, allowing us to build an animation. Combining these two components, ActionMesh generates animated 3D meshes from different inputs like a monocular video, a text description, or even a 3D mesh with a text prompt describing its animation. Besides, compared to previous approaches, our method is fast and produces results that are rig-free and topology consistent, hence enabling rapid iteration and seamless applications like texturing and retargeting. We evaluate our model on standard video-to-4D benchmarks (Consistent4D, Objaverse) and report state-of-the-art performances on both geometric accuracy and temporal consistency, demonstrating that our model can deliver animated 3D meshes with unprecedented speed and quality.
Learning to Watermark in the Latent Space of Generative Models
Existing approaches for watermarking AI-generated images often rely on post-hoc methods applied in pixel space, introducing computational overhead and potential visual artifacts. In this work, we explore latent space watermarking and introduce DistSeal, a unified approach for latent watermarking that works across both diffusion and autoregressive models. Our approach works by training post-hoc watermarking models in the latent space of generative models. We demonstrate that these latent watermarkers can be effectively distilled either into the generative model itself or into the latent decoder, enabling in-model watermarking. The resulting latent watermarks achieve competitive robustness while offering similar imperceptibility and up to 20x speedup compared to pixel-space baselines. Our experiments further reveal that distilling latent watermarkers outperforms distilling pixel-space ones, providing a solution that is both more efficient and more robust.
comment: Code and models are available at https://github.com/facebookresearch/distseal
Rethinking Composed Image Retrieval Evaluation: A Fine-Grained Benchmark from Image Editing
Composed Image Retrieval (CIR) is a pivotal and complex task in multimodal understanding. Current CIR benchmarks typically feature limited query categories and fail to capture the diverse requirements of real-world scenarios. To bridge this evaluation gap, we leverage image editing to achieve precise control over modification types and content, enabling a pipeline for synthesizing queries across a broad spectrum of categories. Using this pipeline, we construct EDIR, a novel fine-grained CIR benchmark. EDIR encompasses 5,000 high-quality queries structured across five main categories and fifteen subcategories. Our comprehensive evaluation of 13 multimodal embedding models reveals a significant capability gap; even state-of-the-art models (e.g., RzenEmbed and GME) struggle to perform consistently across all subcategories, highlighting the rigorous nature of our benchmark. Through comparative analysis, we further uncover inherent limitations in existing benchmarks, such as modality biases and insufficient categorical coverage. Furthermore, an in-domain training experiment demonstrates the feasibility of our benchmark. This experiment clarifies the task challenges by distinguishing between categories that are solvable with targeted data and those that expose intrinsic limitations of current model architectures.
comment: Under review
Distillation-based Layer Dropping (DLD) Effective End-to-end Framework for Dynamic Speech Networks
Edge devices operate in constrained and varying resource settings, requiring dynamic architectures that can adapt to limitations of the available resources. To meet such demands, layer dropping ($\mathcal{LD}$) approach is typically used to transform static models into dynamic ones by skipping parts of the network along with reducing overall computational complexity. However, existing $\mathcal{LD}$ methods greatly impact the dynamic model's performance for low and high dropping cases, deteriorating the performance-computation trade-off. To this end, we propose a distillation-based layer dropping (DLD) framework that effectively combines the capabilities of knowledge distillation and $\mathcal{LD}$ in an end-to-end fashion, thereby achieving state-of-the-art performance for dynamic speech networks. Comprehensive experimentation utilizing well-known speech recognition methods, including conformer and WavLM, on three public benchmarks demonstrates the effectiveness of our framework, reducing the word error rate by $9.32\%$ and $2.25\%$ for high and no dropping cases with $33.3\%$ reduction in training time.
comment: Accepted at ICASSP 2026
synthocr-gen: A synthetic ocr dataset generator for low-resource languages- breaking the data barrier
Optical Character Recognition (OCR) for low-resource languages remains a significant challenge due to the scarcity of large-scale annotated training datasets. Languages such as Kashmiri, with approximately 7 million speakers and a complex Perso-Arabic script featuring unique diacritical marks, currently lack support in major OCR systems including Tesseract, TrOCR, and PaddleOCR. Manual dataset creation for such languages is prohibitively expensive, time-consuming, and error-prone, often requiring word by word transcription of printed or handwritten text. We present SynthOCR-Gen, an open-source synthetic OCR dataset generator specifically designed for low-resource languages. Our tool addresses the fundamental bottleneck in OCR development by transforming digital Unicode text corpora into ready-to-use training datasets. The system implements a comprehensive pipeline encompassing text segmentation (character, word, n-gram, sentence, and line levels), Unicode normalization with script purity enforcement, multi-font rendering with configurable distribution, and 25+ data augmentation techniques simulating real-world document degradations including rotation, blur, noise, and scanner artifacts. We demonstrate the efficacy of our approach by generating a 600,000-sample word-segmented Kashmiri OCR dataset, which we release publicly on HuggingFace. This work provides a practical pathway for bringing low-resource languages into the era of vision-language AI models, and the tool is openly available for researchers and practitioners working with underserved writing systems worldwide.
Clustering-Guided Spatial-Spectral Mamba for Hyperspectral Image Classification
Although Mamba models greatly improve Hyperspectral Image (HSI) classification, they have critical challenges in terms defining efficient and adaptive token sequences for improve performance. This paper therefore presents CSSMamba (Clustering-guided Spatial-Spectral Mamba) framework to better address the challenges, with the following contributions. First, to achieve efficient and adaptive token sequences for improved Mamba performance, we integrate the clustering mechanism into a spatial Mamba architecture, leading to a cluster-guided spatial Mamba module (CSpaMamba) that reduces the Mamba sequence length and improves Mamba feature learning capability. Second, to improve the learning of both spatial and spectral information, we integrate the CSpaMamba module with a spectral mamba module (SpeMamba), leading to a complete clustering-guided spatial-spectral Mamba framework. Third, to further improve feature learning capability, we introduce an Attention-Driven Token Selection mechanism to optimize Mamba token sequencing. Last, to seamlessly integrate clustering into the Mamba model in a coherent manner, we design a Learnable Clustering Module that learns the cluster memberships in an adaptive manner. Experiments on the Pavia University, Indian Pines, and Liao-Ning 01 datasets demonstrate that CSSMamba achieves higher accuracy and better boundary preservation compared to state-of-the-art CNN, Transformer, and Mamba-based methods.
comment: 5 pages, 3 figures
Neural Particle Automata: Learning Self-Organizing Particle Dynamics
We introduce Neural Particle Automata (NPA), a Lagrangian generalization of Neural Cellular Automata (NCA) from static lattices to dynamic particle systems. Unlike classical Eulerian NCA where cells are pinned to pixels or voxels, NPA model each cell as a particle with a continuous position and internal state, both updated by a shared, learnable neural rule. This particle-based formulation yields clear individuation of cells, allows heterogeneous dynamics, and concentrates computation only on regions where activity is present. At the same time, particle systems pose challenges: neighborhoods are dynamic, and a naive implementation of local interactions scale quadratically with the number of particles. We address these challenges by replacing grid-based neighborhood perception with differentiable Smoothed Particle Hydrodynamics (SPH) operators backed by memory-efficient, CUDA-accelerated kernels, enabling scalable end-to-end training. Across tasks including morphogenesis, point-cloud classification, and particle-based texture synthesis, we show that NPA retain key NCA behaviors such as robustness and self-regeneration, while enabling new behaviors specific to particle systems. Together, these results position NPA as a compact neural model for learning self-organizing particle dynamics.
comment: 15 pages, 15 figures
SAMTok: Representing Any Mask with Two Words
Pixel-wise capabilities are essential for building interactive intelligent systems. However, pixel-wise multi-modal LLMs (MLLMs) remain difficult to scale due to complex region-level encoders, specialized segmentation decoders, and incompatible training objectives. To address these challenges, we present SAMTok, a discrete mask tokenizer that converts any region mask into two special tokens and reconstructs the mask using these tokens with high fidelity. By treating masks as new language tokens, SAMTok enables base MLLMs (such as the QwenVL series) to learn pixel-wise capabilities through standard next-token prediction and simple reinforcement learning, without architectural modifications and specialized loss design. SAMTok builds on SAM2 and is trained on 209M diverse masks using a mask encoder and residual vector quantizer to produce discrete, compact, and information-rich tokens. With 5M SAMTok-formatted mask understanding and generation data samples, QwenVL-SAMTok attains state-of-the-art or comparable results on region captioning, region VQA, grounded conversation, referring segmentation, scene graph parsing, and multi-round interactive segmentation. We further introduce a textual answer-matching reward that enables efficient reinforcement learning for mask generation, delivering substantial improvements on GRES and GCG benchmarks. Our results demonstrate a scalable and straightforward paradigm for equipping MLLMs with strong pixel-wise capabilities. Our code and models are available.
comment: 27 pages, 11 figures
Masked Modeling for Human Motion Recovery Under Occlusions
Human motion reconstruction from monocular videos is a fundamental challenge in computer vision, with broad applications in AR/VR, robotics, and digital content creation, but remains challenging under frequent occlusions in real-world settings.Existing regression-based methods are efficient but fragile to missing observations, while optimization- and diffusion-based approaches improve robustness at the cost of slow inference speed and heavy preprocessing steps. To address these limitations, we leverage recent advances in generative masked modeling and present MoRo: Masked Modeling for human motion Recovery under Occlusions. MoRo is an occlusion-robust, end-to-end generative framework that formulates motion reconstruction as a video-conditioned task, and efficiently recover human motion in a consistent global coordinate system from RGB videos. By masked modeling, MoRo naturally handles occlusions while enabling efficient, end-to-end inference. To overcome the scarcity of paired video-motion data, we design a cross-modality learning scheme that learns multi-modal priors from a set of heterogeneous datasets: (i) a trajectory-aware motion prior trained on MoCap datasets, (ii) an image-conditioned pose prior trained on image-pose datasets, capturing diverse per-frame poses, and (iii) a video-conditioned masked transformer that fuses motion and pose priors, finetuned on video-motion datasets to integrate visual cues with motion dynamics for robust inference. Extensive experiments on EgoBody and RICH demonstrate that MoRo substantially outperforms state-of-the-art methods in accuracy and motion realism under occlusions, while performing on-par in non-occluded scenarios. MoRo achieves real-time inference at 70 FPS on a single H200 GPU.
comment: Project page: https://mikeqzy.github.io/MoRo
DSFedMed: Dual-Scale Federated Medical Image Segmentation via Mutual Distillation Between Foundation and Lightweight Models
Foundation Models (FMs) have demonstrated strong generalization across diverse vision tasks. However, their deployment in federated settings is hindered by high computational demands, substantial communication overhead, and significant inference costs. We propose DSFedMed, a dual-scale federated framework that enables mutual knowledge distillation between a centralized foundation model and lightweight client models for medical image segmentation. To support knowledge distillation, a set of high-quality medical images is generated to replace real public datasets, and a learnability-guided sample selection strategy is proposed to enhance efficiency and effectiveness in dual-scale distillation. This mutual distillation enables the foundation model to transfer general knowledge to lightweight clients, while also incorporating client-specific insights to refine the foundation model. Evaluations on five medical imaging segmentation datasets show that DSFedMed achieves an average 2 percent improvement in Dice score while reducing communication costs and inference time by nearly 90 percent compared to existing federated foundation model baselines. These results demonstrate significant efficiency gains and scalability for resource-limited federated deployments.
DTP: A Simple yet Effective Distracting Token Pruning Framework for Vision-Language Action Models
Vision-Language Action (VLA) models have shown remarkable progress in robotic manipulation by leveraging the powerful perception abilities of Vision-Language Models (VLMs) to understand environments and directly output actions. However, by default, VLA models may overly attend to image tokens in the task-irrelevant region, which we describe as 'distracting tokens'. This behavior can disturb the model from the generation of the desired action tokens in each step, affecting the success rate of tasks. In this paper, we introduce a simple yet effective plug-and-play Distracting Token Pruning (DTP) framework, which dynamically detects and prunes these distracting image tokens. By correcting the model's visual attention patterns, we aim to improve the task success rate, as well as exploring the performance upper boundaries of the model without altering its original architecture or adding additional inputs. Experiments on the SIMPLER Benchmark (Li et al., 2024) show that our method consistently achieving relative improvements in task success rates across different types of novel VLA models, demonstrating generalizability to transformer-based VLAs. Further analysis reveals a negative correlation between the task success rate and the amount of attentions in the task-irrelevant region for all models tested, highlighting a common phenomenon of VLA models that could guide future research. We also publish our code at: https://anonymous.4open.science/r/CBD3.
Phi-SegNet: Phase-Integrated Supervision for Medical Image Segmentation
Deep learning has substantially advanced medical image segmentation, yet achieving robust generalization across diverse imaging modalities and anatomical structures remains a major challenge. A key contributor to this limitation lies in how existing architectures, ranging from CNNs to Transformers and their hybrids, primarily encode spatial information while overlooking frequency-domain representations that capture rich structural and textural cues. Although few recent studies have begun exploring spectral information at the feature level, supervision-level integration of frequency cues-crucial for fine-grained object localization-remains largely untapped. To this end, we propose Phi-SegNet, a CNN-based architecture that incorporates phase-aware information at both architectural and optimization levels. The network integrates Bi-Feature Mask Former (BFMF) modules that blend neighboring encoder features to reduce semantic gaps, and Reverse Fourier Attention (RFA) blocks that refine decoder outputs using phase-regularized features. A dedicated phase-aware loss aligns these features with structural priors, forming a closed feedback loop that emphasizes boundary precision. Evaluated on five public datasets spanning X-ray, US, histopathology, MRI, and colonoscopy, Phi-SegNet consistently achieved state-of-the-art performance, with an average relative improvement of 1.54+/-1.26% in IoU and 0.98+/-0.71% in F1-score over the next best-performing model. In cross-dataset generalization scenarios involving unseen datasets from the known domain, Phi-SegNet also exhibits robust and superior performance, highlighting its adaptability and modality-agnostic design. These findings demonstrate the potential of leveraging spectral priors in both feature representation and supervision, paving the way for generalized segmentation frameworks that excel in fine-grained object localization.
comment: 10 pages, 7 figures
ProGiDiff: Prompt-Guided Diffusion-Based Medical Image Segmentation
Widely adopted medical image segmentation methods, although efficient, are primarily deterministic and remain poorly amenable to natural language prompts. Thus, they lack the capability to estimate multiple proposals, human interaction, and cross-modality adaptation. Recently, text-to-image diffusion models have shown potential to bridge the gap. However, training them from scratch requires a large dataset-a limitation for medical image segmentation. Furthermore, they are often limited to binary segmentation and cannot be conditioned on a natural language prompt. To this end, we propose a novel framework called ProGiDiff that leverages existing image generation models for medical image segmentation purposes. Specifically, we propose a ControlNet-style conditioning mechanism with a custom encoder, suitable for image conditioning, to steer a pre-trained diffusion model to output segmentation masks. It naturally extends to a multi-class setting simply by prompting the target organ. Our experiment on organ segmentation from CT images demonstrates strong performance compared to previous methods and could greatly benefit from an expert-in-the-loop setting to leverage multiple proposals. Importantly, we demonstrate that the learned conditioning mechanism can be easily transferred through low-rank, few-shot adaptation to segment MR images.
comment: 5 pages, 4 figures. It has been accepted by IEEE ISBI
DextER: Language-driven Dexterous Grasp Generation with Embodied Reasoning
Language-driven dexterous grasp generation requires the models to understand task semantics, 3D geometry, and complex hand-object interactions. While vision-language models have been applied to this problem, existing approaches directly map observations to grasp parameters without intermediate reasoning about physical interactions. We present DextER, Dexterous Grasp Generation with Embodied Reasoning, which introduces contact-based embodied reasoning for multi-finger manipulation. Our key insight is that predicting which hand links contact where on the object surface provides an embodiment-aware intermediate representation bridging task semantics with physical constraints. DextER autoregressively generates embodied contact tokens specifying which finger links contact where on the object surface, followed by grasp tokens encoding the hand configuration. On DexGYS, DextER achieves 67.14% success rate, outperforming state-of-the-art by 3.83%p with 96.4% improvement in intention alignment. We also demonstrate steerable generation through partial contact specification, providing fine-grained control over grasp synthesis.
PAINT: Pathology-Aware Integrated Next-Scale Transformation for Virtual Immunohistochemistry
Virtual immunohistochemistry (IHC) aims to computationally synthesize molecular staining patterns from routine Hematoxylin and Eosin (H\&E) images, offering a cost-effective and tissue-efficient alternative to traditional physical staining. However, this task is particularly challenging: H\&E morphology provides ambiguous cues about protein expression, and similar tissue structures may correspond to distinct molecular states. Most existing methods focus on direct appearance synthesis to implicitly achieve cross-modal generation, often resulting in semantic inconsistencies due to insufficient structural priors. In this paper, we propose Pathology-Aware Integrated Next-Scale Transformation (PAINT), a visual autoregressive framework that reformulates the synthesis process as a structure-first conditional generation task. Unlike direct image translation, PAINT enforces a causal order by resolving molecular details conditioned on a global structural layout. Central to this approach is the introduction of a Spatial Structural Start Map (3S-Map), which grounds the autoregressive initialization in observed morphology, ensuring deterministic, spatially aligned synthesis. Experiments on the IHC4BC and MIST datasets demonstrate that PAINT outperforms state-of-the-art methods in structural fidelity and clinical downstream tasks, validating the potential of structure-guided autoregressive modeling.
Keyframe-Based Feed-Forward Visual Odometry
The emergence of visual foundation models has revolutionized visual odometry~(VO) and SLAM, enabling pose estimation and dense reconstruction within a single feed-forward network. However, unlike traditional pipelines that leverage keyframe methods to enhance efficiency and accuracy, current foundation model based methods, such as VGGT-Long, typically process raw image sequences indiscriminately. This leads to computational redundancy and degraded performance caused by low inter-frame parallax, which provides limited contextual stereo information. Integrating traditional geometric heuristics into these methods is non-trivial, as their performance depends on high-dimensional latent representations rather than explicit geometric metrics. To bridge this gap, we propose a novel keyframe-based feed-forward VO. Instead of relying on hand-crafted rules, our approach employs reinforcement learning to derive an adaptive keyframe policy in a data-driven manner, aligning selection with the intrinsic characteristics of the underlying foundation model. We train our agent on TartanAir dataset and conduct extensive evaluations across several real-world datasets. Experimental results demonstrate that the proposed method achieves consistent and substantial improvements over state-of-the-art feed-forward VO methods.
PhysicsMind: Sim and Real Mechanics Benchmarking for Physical Reasoning and Prediction in Foundational VLMs and World Models
Modern foundational Multimodal Large Language Models (MLLMs) and video world models have advanced significantly in mathematical, common-sense, and visual reasoning, but their grasp of the underlying physics remains underexplored. Existing benchmarks attempting to measure this matter rely on synthetic, Visual Question Answer templates or focus on perceptual video quality that is tangential to measuring how well the video abides by physical laws. To address this fragmentation, we introduce PhysicsMind, a unified benchmark with both real and simulation environments that evaluates law-consistent reasoning and generation over three canonical principles: Center of Mass, Lever Equilibrium, and Newton's First Law. PhysicsMind comprises two main tasks: i) VQA tasks, testing whether models can reason and determine physical quantities and values from images or short videos, and ii) Video Generation(VG) tasks, evaluating if predicted motion trajectories obey the same center-of-mass, torque, and inertial constraints as the ground truth. A broad range of recent models and video generation models is evaluated on PhysicsMind and found to rely on appearance heuristics while often violating basic mechanics. These gaps indicate that current scaling and training are still insufficient for robust physical understanding, underscoring PhysicsMind as a focused testbed for physics-aware multimodal models. Our data will be released upon acceptance.
HyperAlign: Hypernetwork for Efficient Test-Time Alignment of Diffusion Models
Diffusion models achieve state-of-the-art performance but often fail to generate outputs that align with human preferences and intentions, resulting in images with poor aesthetic quality and semantic inconsistencies. Existing alignment methods present a difficult trade-off: fine-tuning approaches suffer from loss of diversity with reward over-optimization, while test-time scaling methods introduce significant computational overhead and tend to under-optimize. To address these limitations, we propose HyperAlign, a novel framework that trains a hypernetwork for efficient and effective test-time alignment. Instead of modifying latent states, HyperAlign dynamically generates low-rank adaptation weights to modulate the diffusion model's generation operators. This allows the denoising trajectory to be adaptively adjusted based on input latents, timesteps and prompts for reward-conditioned alignment. We introduce multiple variants of HyperAlign that differ in how frequently the hypernetwork is applied, balancing between performance and efficiency. Furthermore, we optimize the hypernetwork using a reward score objective regularized with preference data to reduce reward hacking. We evaluate HyperAlign on multiple extended generative paradigms, including Stable Diffusion and FLUX. It significantly outperforms existing fine-tuning and test-time scaling baselines in enhancing semantic consistency and visual appeal.
EVolSplat4D: Efficient Volume-based Gaussian Splatting for 4D Urban Scene Synthesis
Novel view synthesis (NVS) of static and dynamic urban scenes is essential for autonomous driving simulation, yet existing methods often struggle to balance reconstruction time with quality. While state-of-the-art neural radiance fields and 3D Gaussian Splatting approaches achieve photorealism, they often rely on time-consuming per-scene optimization. Conversely, emerging feed-forward methods frequently adopt per-pixel Gaussian representations, which lead to 3D inconsistencies when aggregating multi-view predictions in complex, dynamic environments. We propose EvolSplat4D, a feed-forward framework that moves beyond existing per-pixel paradigms by unifying volume-based and pixel-based Gaussian prediction across three specialized branches. For close-range static regions, we predict consistent geometry of 3D Gaussians over multiple frames directly from a 3D feature volume, complemented by a semantically-enhanced image-based rendering module for predicting their appearance. For dynamic actors, we utilize object-centric canonical spaces and a motion-adjusted rendering module to aggregate temporal features, ensuring stable 4D reconstruction despite noisy motion priors. Far-Field scenery is handled by an efficient per-pixel Gaussian branch to ensure full-scene coverage. Experimental results on the KITTI-360, KITTI, Waymo, and PandaSet datasets show that EvolSplat4D reconstructs both static and dynamic environments with superior accuracy and consistency, outperforming both per-scene optimization and state-of-the-art feed-forward baselines.
NeuroMamba: Multi-Perspective Feature Interaction with Visual Mamba for Neuron Segmentation
Neuron segmentation is the cornerstone of reconstructing comprehensive neuronal connectomes, which is essential for deciphering the functional organization of the brain. The irregular morphology and densely intertwined structures of neurons make this task particularly challenging. Prevailing CNN-based methods often fail to resolve ambiguous boundaries due to the lack of long-range context, whereas Transformer-based methods suffer from boundary imprecision caused by the loss of voxel-level details during patch partitioning. To address these limitations, we propose NeuroMamba, a multi-perspective framework that exploits the linear complexity of Mamba to enable patch-free global modeling and synergizes this with complementary local feature modeling, thereby efficiently capturing long-range dependencies while meticulously preserving fine-grained voxel details. Specifically, we design a channel-gated Boundary Discriminative Feature Extractor (BDFE) to enhance local morphological cues. Complementing this, we introduce the Spatial Continuous Feature Extractor (SCFE), which integrates a resolution-aware scanning mechanism into the Visual Mamba architecture to adaptively model global dependencies across varying data resolutions. Finally, a cross-modulation mechanism synergistically fuses these multi-perspective features. Our method demonstrates state-of-the-art performance across four public EM datasets, validating its exceptional adaptability to both anisotropic and isotropic resolutions. The source code will be made publicly available.
Class Confidence Aware Reweighting for Long Tailed Learning
Deep neural network models degrade significantly in the long-tailed data distribution, with the overall training data dominated by a small set of classes in the head, and the tail classes obtaining less training examples. Addressing the imbalance in the classes, attention in the related literature was given mainly to the adjustments carried out in the decision space in terms of either corrections performed at the logit level in order to compensate class-prior bias, with the least attention to the optimization process resulting from the adjustments introduced through the differences in the confidences among the samples. In the current study, we present the design of a class and confidence-aware re-weighting scheme for long-tailed learning. This scheme is purely based upon the loss level and has a complementary nature to the existing methods performing the adjustment of the logits. In the practical implementation stage of the proposed scheme, we use an Ω(p_t, f_c) function. This function enables the modulation of the contribution towards the training task based upon the confidence value of the prediction, as well as the relative frequency of the corresponding class. Our observations in the experiments are corroborated by significant experimental results performed on the CIFAR-100-LT, ImageNet-LT, and iNaturalist2018 datasets under various values of imbalance factors that clearly authenticate the theoretical discussions above.
comment: 9 pages, 3 figures, IEEE Transaction on Neural Networks and Learning Systems (Submitted)
A Multi-View Pipeline and Benchmark Dataset for 3D Hand Pose Estimation in Surgery
Purpose: Accurate 3D hand pose estimation supports surgical applications such as skill assessment, robot-assisted interventions, and geometry-aware workflow analysis. However, surgical environments pose severe challenges, including intense and localized lighting, frequent occlusions by instruments or staff, and uniform hand appearance due to gloves, combined with a scarcity of annotated datasets for reliable model training. Method: We propose a robust multi-view pipeline for 3D hand pose estimation in surgical contexts that requires no domain-specific fine-tuning and relies solely on off-the-shelf pretrained models. The pipeline integrates reliable person detection, whole-body pose estimation, and state-of-the-art 2D hand keypoint prediction on tracked hand crops, followed by a constrained 3D optimization. In addition, we introduce a novel surgical benchmark dataset comprising over 68,000 frames and 3,000 manually annotated 2D hand poses with triangulated 3D ground truth, recorded in a replica operating room under varying levels of scene complexity. Results: Quantitative experiments demonstrate that our method consistently outperforms baselines, achieving a 31% reduction in 2D mean joint error and a 76% reduction in 3D mean per-joint position error. Conclusion: Our work establishes a strong baseline for 3D hand pose estimation in surgery, providing both a training-free pipeline and a comprehensive annotated dataset to facilitate future research in surgical computer vision.
The Latency Wall: Benchmarking Off-the-Shelf Emotion Recognition for Real-Time Virtual Avatars
In the realm of Virtual Reality (VR) and Human-Computer Interaction (HCI), real-time emotion recognition shows promise for supporting individuals with Autism Spectrum Disorder (ASD) in improving social skills. This task requires a strict latency-accuracy trade-off, with motion-to-photon (MTP) latency kept below 140 ms to maintain contingency. However, most off-the-shelf Deep Learning models prioritize accuracy over the strict timing constraints of commodity hardware. As a first step toward accessible VR therapy, we benchmark State-of-the-Art (SOTA) models for Zero-Shot Facial Expression Recognition (FER) on virtual characters using the UIBVFED dataset. We evaluate Medium and Nano variants of YOLO (v8, v11, and v12) for face detection, alongside general-purpose Vision Transformers including CLIP, SigLIP, and ViT-FER.Our results on CPU-only inference demonstrate that while face detection on stylized avatars is robust (100% accuracy), a "Latency Wall" exists in the classification stage. The YOLOv11n architecture offers the optimal balance for detection (~54 ms). However, general-purpose Transformers like CLIP and SigLIP fail to achieve viable accuracy (<23%) or speed (>150 ms) for real-time loops. This study highlights the necessity for lightweight, domain-specific architectures to enable accessible, real-time AI in therapeutic settings.
comment: Technical Report benchmarking off-the-shelf CV latencies on commodity CPU hardware for therapeutic VR applications
Transfer Learning from ImageNet for MEG-Based Decoding of Imagined Speech
Non-invasive decoding of imagined speech remains challenging due to weak, distributed signals and limited labeled data. Our paper introduces an image-based approach that transforms magnetoencephalography (MEG) signals into time-frequency representations compatible with pretrained vision models. MEG data from 21 participants performing imagined speech tasks were projected into three spatial scalogram mixtures via a learnable sensor-space convolution, producing compact image-like inputs for ImageNet-pretrained vision architectures. These models outperformed classical and non-pretrained models, achieving up to 90.4% balanced accuracy for imagery vs. silence, 81.0% vs. silent reading, and 60.6% for vowel decoding. Cross-subject evaluation confirmed that pretrained models capture shared neural representations, and temporal analyses localized discriminative information to imagery-locked intervals. These findings show that pretrained vision models applied to image-based MEG representations can effectively capture the structure of imagined speech in non-invasive neural signals.
comment: Accepted at IEEE ISBI 2026
Opening the Black Box: Preliminary Insights into Affective Modeling in Multimodal Foundation Models
Understanding where and how emotions are represented in large-scale foundation models remains an open problem, particularly in multimodal affective settings. Despite the strong empirical performance of recent affective models, the internal architectural mechanisms that support affective understanding and generation are still poorly understood. In this work, we present a systematic mechanistic study of affective modeling in multimodal foundation models. Across multiple architectures, training strategies, and affective tasks, we analyze how emotion-oriented supervision reshapes internal model parameters. Our results consistently reveal a clear and robust pattern: affective adaptation does not primarily focus on the attention module, but instead localizes to the feed-forward gating projection (\texttt{gate\_proj}). Through controlled module transfer, targeted single-module adaptation, and destructive ablation, we further demonstrate that \texttt{gate\_proj} is sufficient, efficient, and necessary for affective understanding and generation. Notably, by tuning only approximately 24.5\% of the parameters tuned by AffectGPT, our approach achieves 96.6\% of its average performance across eight affective tasks, highlighting substantial parameter efficiency. Together, these findings provide empirical evidence that affective capabilities in foundation models are structurally mediated by feed-forward gating mechanisms and identify \texttt{gate\_proj} as a central architectural locus of affective modeling.
ThermoSplat: Cross-Modal 3D Gaussian Splatting with Feature Modulation and Geometry Decoupling
Multi-modal scene reconstruction integrating RGB and thermal infrared data is essential for robust environmental perception across diverse lighting and weather conditions. However, extending 3D Gaussian Splatting (3DGS) to multi-spectral scenarios remains challenging. Current approaches often struggle to fully leverage the complementary information of multi-modal data, typically relying on mechanisms that either tend to neglect cross-modal correlations or leverage shared representations that fail to adaptively handle the complex structural correlations and physical discrepancies between spectrums. To address these limitations, we propose ThermoSplat, a novel framework that enables deep spectral-aware reconstruction through active feature modulation and adaptive geometry decoupling. First, we introduce a Cross-Modal FiLM Modulation mechanism that dynamically conditions shared latent features on thermal structural priors, effectively guiding visible texture synthesis with reliable cross-modal geometric cues. Second, to accommodate modality-specific geometric inconsistencies, we propose a Modality-Adaptive Geometric Decoupling scheme that learns independent opacity offsets and executes an independent rasterization pass for the thermal branch. Additionally, a hybrid rendering pipeline is employed to integrate explicit Spherical Harmonics with implicit neural decoding, ensuring both semantic consistency and high-frequency detail preservation. Extensive experiments on the RGBT-Scenes dataset demonstrate that ThermoSplat achieves state-of-the-art rendering quality across both visible and thermal spectrums.
RadJEPA: Radiology Encoder for Chest X-Rays via Joint Embedding Predictive Architecture
Recent advances in medical vision language models guide the learning of visual representations; however, this form of supervision is constrained by the availability of paired image text data, raising the question of whether robust radiology encoders can be learned without relying on language supervision. In this work, we introduce RadJEPA, a self-supervised framework built on a Joint Embedding Predictive Architecture that learns without language supervision. Pre-trained solely on unlabeled chest X-ray images, the model learns to predict latent representations of masked image regions. This predictive objective differs fundamentally from both image text pre-training and DINO-style self-distillation: rather than aligning global representations across views or modalities, RadJEPA explicitly models latent-space prediction. We evaluate the learned encoder on disease classification, semantic segmentation, and report generation tasks. Across benchmarks, RadJEPA achieves performance exceeding state-of-the-art approaches, including Rad-DINO.
Understanding the Transfer Limits of Vision Foundation Models
Foundation models leverage large-scale pretraining to capture extensive knowledge, demonstrating generalization in a wide range of language tasks. By comparison, vision foundation models (VFMs) often exhibit uneven improvements across downstream tasks, despite substantial computational investment. We postulate that this limitation arises from a mismatch between pretraining objectives and the demands of downstream vision-and-imaging tasks. Pretraining strategies like masked image reconstruction or contrastive learning shape representations for tasks such as recovery of generic visual patterns or global semantic structures, which may not align with the task-specific requirements of downstream applications including segmentation, classification, or image synthesis. To investigate this in a concrete real-world clinical area, we assess two VFMs, a reconstruction-focused MAE-based model (ProFound) and a contrastive-learning-based model (ProViCNet), on five prostate multiparametric MR imaging tasks, examining how such task alignment influences transfer performance, i.e., from pretraining to fine-tuning. Our findings indicate that better alignment between pretraining and downstream tasks, measured by simple divergence metrics such as maximum-mean-discrepancy (MMD) between the same features before and after fine-tuning, correlates with greater performance improvements and faster convergence, emphasizing the importance of designing and analyzing pretraining objectives with downstream applicability in mind.
comment: accepted in ISBI 2026
PMPBench: A Paired Multi-Modal Pan-Cancer Benchmark for Medical Image Synthesis
Contrast medium plays a pivotal role in radiological imaging, as it amplifies lesion conspicuity and improves detection for the diagnosis of tumor-related diseases. However, depending on the patient's health condition or the medical resources available, the use of contrast medium is not always feasible. Recent work has explored AI-based image translation to synthesize contrast-enhanced images directly from non-contrast scans, aims to reduce side effects and streamlines clinical workflows. Progress in this direction has been constrained by data limitations: (1) existing public datasets focus almost exclusively on brain-related paired MR modalities; (2) other collections include partially paired data but suffer from missing modalities/timestamps and imperfect spatial alignment; (3) explicit labeling of CT vs. CTC or DCE phases is often absent; (4) substantial resources remain private. To bridge this gap, we introduce the first public, fully paired, pan-cancer medical imaging dataset spanning 11 human organs. The MR data include complete dynamic contrast-enhanced (DCE) sequences covering all three phases (DCE1-DCE3), while the CT data provide paired non-contrast and contrast-enhanced acquisitions (CTC). The dataset is curated for anatomical correspondence, enabling rigorous evaluation of 1-to-1, N-to-1, and N-to-N translation settings (e.g., predicting DCE phases from non-contrast inputs). Built upon this resource, we establish a comprehensive benchmark. We report results from representative baselines of contemporary image-to-image translation. We release the dataset and benchmark to catalyze research on safe, effective contrast synthesis, with direct relevance to multi-organ oncology imaging workflows. Our code and dataset are publicly available at https://github.com/YifanChen02/PMPBench.
PF-D2M: A Pose-free Diffusion Model for Universal Dance-to-Music Generation
Dance-to-music generation aims to generate music that is aligned with dance movements. Existing approaches typically rely on body motion features extracted from a single human dancer and limited dance-to-music datasets, which restrict their performance and applicability to real-world scenarios involving multiple dancers and non-human dancers. In this paper, we propose PF-D2M, a universal diffusion-based dance-to-music generation model that incorporates visual features extracted from dance videos. PF-D2M is trained with a progressive training strategy that effectively addresses data scarcity and generalization challenges. Both objective and subjective evaluations show that PF-D2M achieves state-of-the-art performance in dance-music alignment and music quality.
comment: 4 pages, 2 figures
Out-of-Distribution Detection Based on Total Variation Estimation
This paper introduces a novel approach to securing machine learning model deployments against potential distribution shifts in practical applications, the Total Variation Out-of-Distribution (TV-OOD) detection method. Existing methods have produced satisfactory results, but TV-OOD improves upon these by leveraging the Total Variation Network Estimator to calculate each input's contribution to the overall total variation. By defining this as the total variation score, TV-OOD discriminates between in- and out-of-distribution data. The method's efficacy was tested across a range of models and datasets, consistently yielding results in image classification tasks that were either comparable or superior to those achieved by leading-edge out-of-distribution detection techniques across all evaluation metrics.
A Lightweight Brain-Inspired Machine Learning Framework for Coronary Angiography: Hybrid Neural Representation and Robust Learning Strategies
Background: Coronary angiography (CAG) is a cornerstone imaging modality for assessing coronary artery disease and guiding interventional treatment decisions. However, in real-world clinical settings, angiographic images are often characterized by complex lesion morphology, severe class imbalance, label uncertainty, and limited computational resources, posing substantial challenges to conventional deep learning approaches in terms of robustness and generalization.Methods: The proposed framework is built upon a pretrained convolutional neural network to construct a lightweight hybrid neural representation. A selective neural plasticity training strategy is introduced to enable efficient parameter adaptation. Furthermore, a brain-inspired attention-modulated loss function, combining Focal Loss with label smoothing, is employed to enhance sensitivity to hard samples and uncertain annotations. Class-imbalance-aware sampling and cosine annealing with warm restarts are adopted to mimic rhythmic regulation and attention allocation mechanisms observed in biological neural systems.Results: Experimental results demonstrate that the proposed lightweight brain-inspired model achieves strong and stable performance in binary coronary angiography classification, yielding competitive accuracy, recall, F1-score, and AUC metrics while maintaining high computational efficiency.Conclusion: This study validates the effectiveness of brain-inspired learning mechanisms in lightweight medical image analysis and provides a biologically plausible and deployable solution for intelligent clinical decision support under limited computational resources.
Uncertainty-guided Generation of Dark-field Radiographs
X-ray dark-field radiography provides complementary diagnostic information to conventional attenuation imaging by visualizing microstructural tissue changes through small-angle scattering. However, the limited availability of such data poses challenges for developing robust deep learning models. In this work, we present the first framework for generating dark-field images directly from standard attenuation chest X-rays using an Uncertainty-Guided Progressive Generative Adversarial Network. The model incorporates both aleatoric and epistemic uncertainty to improve interpretability and reliability. Experiments demonstrate high structural fidelity of the generated images, with consistent improvement of quantitative metrics across stages. Furthermore, out-of-distribution evaluation confirms that the proposed model generalizes well. Our results indicate that uncertainty-guided generative modeling enables realistic dark-field image synthesis and provides a reliable foundation for future clinical applications.
TinySense: Effective CSI Compression for Scalable and Accurate Wi-Fi Sensing
With the growing demand for device-free and privacy-preserving sensing solutions, Wi-Fi sensing has emerged as a promising approach for human pose estimation (HPE). However, existing methods often process vast amounts of channel state information (CSI) data directly, ultimately straining networking resources. This paper introduces TinySense, an efficient compression framework that enhances the scalability of Wi-Fi-based human sensing. Our approach is based on a new vector quantization-based generative adversarial network (VQGAN). Specifically, by leveraging a VQGAN-learned codebook, TinySense significantly reduces CSI data while maintaining the accuracy required for reliable HPE. To optimize compression, we employ the K-means algorithm to dynamically adjust compression bitrates to cluster a large-scale pre-trained codebook into smaller subsets. Furthermore, a Transformer model is incorporated to mitigate bitrate loss, enhancing robustness in unreliable networking conditions. We prototype TinySense on an experimental testbed using Jetson Nano and Raspberry Pi to measure latency and network resource use. Extensive results demonstrate that TinySense significantly outperforms state-of-the-art compression schemes, achieving up to 1.5x higher HPE accuracy score (PCK20) under the same compression rate. It also reduces latency and networking overhead, respectively, by up to 5x and 2.5x. The code repository is available online at here.
comment: 10 pages. This paper has been accepted for publication in IEEE PerCom 2026
An IoT-Based Smart Plant Monitoring and Irrigation System with Real-Time Environmental Sensing, Automated Alerts, and Cloud Analytics
The increasing global demand for sustainable agriculture necessitates intelligent monitoring systems that optimize resource utilization and plant health management. Traditional farming methods rely on manual observation and periodic watering, often leading to water wastage, inconsistent plant growth, and delayed response to environmental changes. This paper presents a comprehensive IoT-based smart plant monitoring system that integrates multiple environmental sensors with automated irrigation and cloud analytics. The proposed system utilizes an ESP32 microcontroller to collect real-time data from DHT22 (temperature/humidity), HC-SR04 (water level), and soil moisture sensors, with visual feedback through an OLED display and auditory alerts via a buzzer. All sensor data is wirelessly transmitted to the ThingSpeak cloud platform for remote monitoring, historical analysis, and automated alert generation. Experimental results demonstrate the system's effectiveness in maintaining optimal soil moisture levels (with 92\% accuracy), providing real-time environmental monitoring, and reducing water consumption by approximately 40\% compared to conventional irrigation methods. The integrated web dashboard offers comprehensive visualization of plant health parameters, making it suitable for both small-scale gardening and commercial agriculture applications. With a total implementation cost of \$45.20, this system provides an affordable, scalable solution for precision agriculture and smart farming.
Towards Realistic Remote Sensing Dataset Distillation with Discriminative Prototype-guided Diffusion
Recent years have witnessed the remarkable success of deep learning in remote sensing image interpretation, driven by the availability of large-scale benchmark datasets. However, this reliance on massive training data also brings two major challenges: (1) high storage and computational costs, and (2) the risk of data leakage, especially when sensitive categories are involved. To address these challenges, this study introduces the concept of dataset distillation into the field of remote sensing image interpretation for the first time. Specifically, we train a text-to-image diffusion model to condense a large-scale remote sensing dataset into a compact and representative distilled dataset. To improve the discriminative quality of the synthesized samples, we propose a classifier-driven guidance by injecting a classification consistency loss from a pre-trained model into the diffusion training process. Besides, considering the rich semantic complexity of remote sensing imagery, we further perform latent space clustering on training samples to select representative and diverse prototypes as visual style guidance, while using a visual language model to provide aggregated text descriptions. Experiments on three high-resolution remote sensing scene classification benchmarks show that the proposed method can distill realistic and diverse samples for downstream model training. Code and pre-trained models are available online (https://github.com/YonghaoXu/DPD).
Beyond Off-the-Shelf Models: A Lightweight and Accessible Machine Learning Pipeline for Ecologists Working with Image Data
We introduce a lightweight experimentation pipeline designed to lower the barrier for applying machine learning (ML) methods for classifying images in ecological research. We enable ecologists to experiment with ML models independently, thus they can move beyond off-the-shelf models and generate insights tailored to local datasets and specific classification tasks and target variables. Our tool combines a simple command-line interface for preprocessing, training, and evaluation with a graphical interface for annotation, error analysis, and model comparison. This design enables ecologists to build and iterate on compact, task-specific classifiers without requiring advanced ML expertise. As a proof of concept, we apply the pipeline to classify red deer (Cervus elaphus) by age and sex from 3392 camera trap images collected in the Veldenstein Forest, Germany. Using 4352 cropped images containing individual deer labeled by experts, we trained and evaluated multiple backbone architectures with a wide variety of parameters and data augmentation strategies. Our best-performing models achieved 90.77% accuracy for age classification and 96.15% for sex classification. These results demonstrate that reliable demographic classification is feasible even with limited data to answer narrow, well-defined ecological problems. More broadly, the framework provides ecologists with an accessible tool for developing ML models tailored to specific research questions, paving the way for broader adoption of ML in wildlife monitoring and demographic analysis.
A Mobile Application for Flower Recognition System Based on Convolutional Neural Networks
A convolutional neural network (CNN) is a deep learning algorithm that has been specifically designed for computer vision applications. The CNNs proved successful in handling the increasing amount of data in many computer vision problems, where classical machine learning algorithms were insufficient. Flowers have many uses in our daily lives, from decorating to making medicines to detoxifying the environment. Identifying flower types requires expert knowledge. However, accessing experts at any time and in any location may not always be feasible. In this study a mobile application based on CNNs was developed to recognize different types of flowers to provide non-specialists with quick and easy access to information about flower types. The study employed three distinct CNN models, namely MobileNet, DenseNet121, and Xception, to determine the most suitable model for the mobile application. The classification performances of the models were evaluated by training them with seven different optimization algorithms. The DenseNet-121 architecture, which uses the stochastic gradient descent (SGD) optimization algorithm, was the most successful, achieving 95.84 % accuracy, 96.00% precision, recall, and F1-score. This result shows that CNNs can be used for flower classification in mobile applications.
Assessing Situational and Spatial Awareness of VLMs with Synthetically Generated Video
Spatial reasoning in vision language models (VLMs) remains fragile when semantics hinge on subtle temporal or geometric cues. We introduce a synthetic benchmark that probes two complementary skills: situational awareness (recognizing whether an interaction is harmful or benign) and spatial awareness (tracking who does what to whom, and reasoning about relative positions and motion). Through minimal video pairs, we test three challenges: distinguishing violence from benign activity, binding assailant roles across viewpoints, and judging fine-grained trajectory alignment. While we evaluate recent VLMs in a training-free setting, the benchmark is applicable to any video classification model. Results show performance only slightly above chance across tasks. A simple aid, stable color cues, partly reduces assailant role confusions but does not resolve the underlying weakness. By releasing data and code, we aim to provide reproducible diagnostics and seed exploration of lightweight spatial priors to complement large-scale pretraining.
Diffusion Model-Based Data Augmentation for Enhanced Neuron Segmentation
Neuron segmentation in electron microscopy (EM) aims to reconstruct the complete neuronal connectome; however, current deep learning-based methods are limited by their reliance on large-scale training data and extensive, time-consuming manual annotations. Traditional methods augment the training set through geometric and photometric transformations; however, the generated samples remain highly correlated with the original images and lack structural diversity. To address this limitation, we propose a diffusion-based data augmentation framework capable of generating diverse and structurally plausible image-label pairs for neuron segmentation. Specifically, the framework employs a resolution-aware conditional diffusion model with multi-scale conditioning and EM resolution priors to enable voxel-level image synthesis from 3D masks. It further incorporates a biology-guided mask remodeling module that produces augmented masks with enhanced structural realism. Together, these components effectively enrich the training set and improve segmentation performance. On the AC3 and AC4 datasets under low-annotation regimes, our method improves the ARAND metric by 32.1% and 30.7%, respectively, when combined with two different post-processing methods. Our code is available at https://github.com/HeadLiuYun/NeuroDiff.
LL-GaussianImage: Efficient Image Representation for Zero-shot Low-Light Enhancement with 2D Gaussian Splatting
2D Gaussian Splatting (2DGS) is an emerging explicit scene representation method with significant potential for image compression due to high fidelity and high compression ratios. However, existing low-light enhancement algorithms operate predominantly within the pixel domain. Processing 2DGS-compressed images necessitates a cumbersome decompression-enhancement-recompression pipeline, which compromises efficiency and introduces secondary degradation. To address these limitations, we propose LL-GaussianImage, the first zero-shot unsupervised framework designed for low-light enhancement directly within the 2DGS compressed representation domain. Three primary advantages are offered by this framework. First, a semantic-guided Mixture-of-Experts enhancement framework is designed. Dynamic adaptive transformations are applied to the sparse attribute space of 2DGS using rendered images as guidance to enable compression-as-enhancement without full decompression to a pixel grid. Second, a multi-objective collaborative loss function system is established to strictly constrain smoothness and fidelity during enhancement, suppressing artifacts while improving visual quality. Third, a two-stage optimization process is utilized to achieve reconstruction-as-enhancement. The accuracy of the base representation is ensured through single-scale reconstruction and network robustness is enhanced. High-quality enhancement of low-light images is achieved while high compression ratios are maintained. The feasibility and superiority of the paradigm for direct processing within the compressed representation domain are validated through experimental results.
LL-GaussianMap: Zero-shot Low-Light Image Enhancement via 2D Gaussian Splatting Guided Gain Maps
Significant progress has been made in low-light image enhancement with respect to visual quality. However, most existing methods primarily operate in the pixel domain or rely on implicit feature representations. As a result, the intrinsic geometric structural priors of images are often neglected. 2D Gaussian Splatting (2DGS) has emerged as a prominent explicit scene representation technique characterized by superior structural fitting capabilities and high rendering efficiency. Despite these advantages, the utilization of 2DGS in low-level vision tasks remains unexplored. To bridge this gap, LL-GaussianMap is proposed as the first unsupervised framework incorporating 2DGS into low-light image enhancement. Distinct from conventional methodologies, the enhancement task is formulated as a gain map generation process guided by 2DGS primitives. The proposed method comprises two primary stages. First, high-fidelity structural reconstruction is executed utilizing 2DGS. Then, data-driven enhancement dictionary coefficients are rendered via the rasterization mechanism of Gaussian splatting through an innovative unified enhancement module. This design effectively incorporates the structural perception capabilities of 2DGS into gain map generation, thereby preserving edges and suppressing artifacts during enhancement. Additionally, the reliance on paired data is circumvented through unsupervised learning. Experimental results demonstrate that LL-GaussianMap achieves superior enhancement performance with an extremely low storage footprint, highlighting the effectiveness of explicit Gaussian representations for image enhancement.
Atlas-Assisted Segment Anything Model for Fetal Brain MRI (FeTal-SAM)
This paper presents FeTal-SAM, a novel adaptation of the Segment Anything Model (SAM) tailored for fetal brain MRI segmentation. Traditional deep learning methods often require large annotated datasets for a fixed set of labels, making them inflexible when clinical or research needs change. By integrating atlas-based prompts and foundation-model principles, FeTal-SAM addresses two key limitations in fetal brain MRI segmentation: (1) the need to retrain models for varying label definitions, and (2) the lack of insight into whether segmentations are driven by genuine image contrast or by learned spatial priors. We leverage multi-atlas registration to generate spatially aligned label templates that serve as dense prompts, alongside a bounding-box prompt, for SAM's segmentation decoder. This strategy enables binary segmentation on a per-structure basis, which is subsequently fused to reconstruct the full 3D segmentation volumes. Evaluations on two datasets, the dHCP dataset and an in-house dataset demonstrate FeTal-SAM's robust performance across gestational ages. Notably, it achieves Dice scores comparable to state-of-the-art baselines which were trained for each dataset and label definition for well-contrasted structures like cortical plate and cerebellum, while maintaining the flexibility to segment any user-specified anatomy. Although slightly lower accuracy is observed for subtle, low-contrast structures (e.g., hippocampus, amygdala), our results highlight FeTal-SAM's potential to serve as a general-purpose segmentation model without exhaustive retraining. This method thus constitutes a promising step toward clinically adaptable fetal brain MRI analysis tools.
White-Box mHC: Electromagnetic Spectrum-Aware and Interpretable Stream Interactions for Hyperspectral Image Classification
In hyperspectral image classification (HSIC), most deep learning models rely on opaque spectral-spatial feature mixing, limiting their interpretability and hindering understanding of internal decision mechanisms. We present physical spectrum-aware white-box mHC, named ES-mHC, a hyper-connection framework that explicitly models interactions among different electromagnetic spectrum groupings (residual stream in mHC) interactions using structured, directional matrices. By separating feature representation from interaction structure, ES-mHC promotes electromagnetic spectrum grouping specialization, reduces redundancy, and exposes internal information flow that can be directly visualized and spatially analyzed. Using hyperspectral image classification as a representative testbed, we demonstrate that the learned hyper-connection matrices exhibit coherent spatial patterns and asymmetric interaction behaviors, providing mechanistic insight into the model internal dynamics. Furthermore, we find that increasing the expansion rate accelerates the emergence of structured interaction patterns. These results suggest that ES-mHC transforms HSIC from a purely black-box prediction task into a structurally transparent, partially white-box learning process.
Breaking the Resolution Barrier: Arbitrary-resolution Deep Image Steganography Framework
Deep image steganography (DIS) has achieved significant results in capacity and invisibility. However, current paradigms enforce the secret image to maintain the same resolution as the cover image during hiding and revealing. This leads to two challenges: secret images with inconsistent resolutions must undergo resampling beforehand which results in detail loss during recovery, and the secret image cannot be recovered to its original resolution when the resolution value is unknown. To address these, we propose ARDIS, the first Arbitrary Resolution DIS framework, which shifts the paradigm from discrete mapping to reference-guided continuous signal reconstruction. Specifically, to minimize the detail loss caused by resolution mismatch, we first design a Frequency Decoupling Architecture in hiding stage. It disentangles the secret into a resolution-aligned global basis and a resolution-agnostic high-frequency latent to hide in a fixed-resolution cover. Second, for recovery, we propose a Latent-Guided Implicit Reconstructor to perform deterministic restoration. The recovered detail latent code modulates a continuous implicit function to accurately query and render high-frequency residuals onto the recovered global basis, ensuring faithful restoration of original details. Furthermore, to achieve blind recovery, we introduce an Implicit Resolution Coding strategy. By transforming discrete resolution values into dense feature maps and hiding them in the redundant space of the feature domain, the reconstructor can correctly decode the secret's resolution directly from the steganographic representation. Experimental results demonstrate that ARDIS significantly outperforms state-of-the-art methods in both invisibility and cross-resolution recovery fidelity.
Sub-Region-Aware Modality Fusion and Adaptive Prompting for Multi-Modal Brain Tumor Segmentation
The successful adaptation of foundation models to multi-modal medical imaging is a critical yet unresolved challenge. Existing models often struggle to effectively fuse information from multiple sources and adapt to the heterogeneous nature of pathological tissues. To address this, we introduce a novel framework for adapting foundation models to multi-modal medical imaging, featuring two key technical innovations: sub-region-aware modality attention and adaptive prompt engineering. The attention mechanism enables the model to learn the optimal combination of modalities for each tumor sub-region, while the adaptive prompting strategy leverages the inherent capabilities of foundation models to refine segmentation accuracy. We validate our framework on the BraTS 2020 brain tumor segmentation dataset, demonstrating that our approach significantly outperforms baseline methods, particularly in the challenging necrotic core sub-region. Our work provides a principled and effective approach to multi-modal fusion and prompting, paving the way for more accurate and robust foundation model-based solutions in medical imaging.
FAIR-ESI: Feature Adaptive Importance Refinement for Electrophysiological Source Imaging
An essential technique for diagnosing brain disorders is electrophysiological source imaging (ESI). While model-based optimization and deep learning methods have achieved promising results in this field, the accurate selection and refinement of features remains a central challenge for precise ESI. This paper proposes FAIR-ESI, a novel framework that adaptively refines feature importance across different views, including FFT-based spectral feature refinement, weighted temporal feature refinement, and self-attention-based patch-wise feature refinement. Extensive experiments on two simulation datasets with diverse configurations and two real-world clinical datasets validate our framework's efficacy, highlighting its potential to advance brain disorder diagnosis and offer new insights into brain function.
VideoThinker: Building Agentic VideoLLMs with LLM-Guided Tool Reasoning
Long-form video understanding remains a fundamental challenge for current Video Large Language Models. Most existing models rely on static reasoning over uniformly sampled frames, which weakens temporal localization and leads to substantial information loss in long videos. Agentic tools such as temporal retrieval, spatial zoom, and temporal zoom offer a natural way to overcome these limitations by enabling adaptive exploration of key moments. However, constructing agentic video understanding data requires models that already possess strong long-form video comprehension, creating a circular dependency. We address this challenge with VideoThinker, an agentic Video Large Language Model trained entirely on synthetic tool interaction trajectories. Our key idea is to convert videos into rich captions and employ a powerful agentic language model to generate multi-step tool use sequences in caption space. These trajectories are subsequently grounded back to video by replacing captions with the corresponding frames, yielding a large-scale interleaved video and tool reasoning dataset without requiring any long-form understanding from the underlying model. Training on this synthetic agentic dataset equips VideoThinker with dynamic reasoning capabilities, adaptive temporal exploration, and multi-step tool use. Remarkably, VideoThinker significantly outperforms both caption-only language model agents and strong video model baselines across long-video benchmarks, demonstrating the effectiveness of tool augmented synthetic data and adaptive retrieval and zoom reasoning for long-form video understanding.
Zero-Shot Product Attribute Labeling with Vision-Language Models: A Three-Tier Evaluation Framework WACV 2026
Fine-grained attribute prediction is essential for fashion retail applications including catalog enrichment, visual search, and recommendation systems. Vision-Language Models (VLMs) offer zero-shot prediction without task-specific training, yet their systematic evaluation on multi-attribute fashion tasks remains underexplored. A key challenge is that fashion attributes are often conditional. For example, "outer fabric" is undefined when no outer garment is visible. This requires models to detect attribute applicability before attempting classification. We introduce a three-tier evaluation framework that decomposes this challenge: (1) overall task performance across all classes (including NA class: suggesting attribute is not applicable) for all attributes, (2) attribute applicability detection, and (3) fine-grained classification when attributes are determinable. Using DeepFashion-MultiModal, which explicitly defines NA (meaning attribute doesn't exist or is not visible) within attribute label spaces, we benchmark nine VLMs spanning flagship (GPT-5, Gemini 2.5 Pro), efficient (GPT-5 Mini, Gemini 2.5 Flash), and ultra-efficient tiers (GPT-5 Nano, Gemini 2.5 Flash-Lite) against classifiers trained on pretrained Fashion-CLIP embeddings on 5,000 images across 18 attributes. Our findings reveal that: (1) zero-shot VLMs achieve 64.0% macro-F1, a threefold improvement over logistic regression on pretrained Fashion-CLIP embeddings; (2) VLMs excel at fine-grained classification (Tier 3: 70.8% F1) but struggle with applicability detection (Tier 2: 34.1% NA-F1), identifying a key bottleneck; (3) efficient models achieve over 90% of flagship performance at lower cost, offering practical deployment paths. This diagnostic framework enables practitioners to pinpoint whether errors stem from visibility detection or classification, guiding targeted improvements for production systems.
comment: Accepted to WACV 2026 Workshop on Physical Retail AI (PRAW)
Enhanced LULC Segmentation via Lightweight Model Refinements on ALOS-2 SAR Data
This work focuses on national-scale land-use/land-cover (LULC) semantic segmentation using ALOS-2 single-polarization (HH) SAR data over Japan, together with a companion binary water detection task. Building on SAR-W-MixMAE self-supervised pretraining [1], we address common SAR dense-prediction failure modes, boundary over-smoothing, missed thin/slender structures, and rare-class degradation under long-tailed labels, without increasing pipeline complexity. We introduce three lightweight refinements: (i) injecting high-resolution features into multi-scale decoding, (ii) a progressive refine-up head that alternates convolutional refinement and stepwise upsampling, and (iii) an $α$-scale factor that tempers class reweighting within a focal+dice objective. The resulting model yields consistent improvements on the Japan-wide ALOS-2 LULC benchmark, particularly for under-represented classes, and improves water detection across standard evaluation metrics.
comment: 5 pages, 4 figures
Beyond Visual Safety: Jailbreaking Multimodal Large Language Models for Harmful Image Generation via Semantic-Agnostic Inputs
The rapid advancement of Multimodal Large Language Models (MLLMs) has introduced complex security challenges, particularly at the intersection of textual and visual safety. While existing schemes have explored the security vulnerabilities of MLLMs, the investigation into their visual safety boundaries remains insufficient. In this paper, we propose Beyond Visual Safety (BVS), a novel image-text pair jailbreaking framework specifically designed to probe the visual safety boundaries of MLLMs. BVS employs a "reconstruction-then-generation" strategy, leveraging neutralized visual splicing and inductive recomposition to decouple malicious intent from raw inputs, thereby leading MLLMs to be induced into generating harmful images. Experimental results demonstrate that BVS achieves a remarkable jailbreak success rate of 98.21\% against GPT-5 (12 January 2026 release). Our findings expose critical vulnerabilities in the visual safety alignment of current MLLMs.
Performance-guided Reinforced Active Learning for Object Detection
Active learning (AL) strategies aim to train high-performance models with minimal labeling efforts, only selecting the most informative instances for annotation. Current approaches to evaluating data informativeness predominantly focus on the data's distribution or intrinsic information content and do not directly correlate with downstream task performance, such as mean average precision (mAP) in object detection. Thus, we propose Performance-guided (i.e. mAP-guided) Reinforced Active Learning for Object Detection (MGRAL), a novel approach that leverages the concept of expected model output changes as informativeness. To address the combinatorial explosion challenge of batch sample selection and the non-differentiable correlation between model performance and selected batches, MGRAL skillfully employs a reinforcement learning-based sampling agent that optimizes selection using policy gradient with mAP improvement as reward. Moreover, to reduce the computational overhead of mAP estimation with unlabeled samples, MGRAL utilizes an unsupervised way with fast look-up tables, ensuring feasible deployment. We evaluate MGRAL's active learning performance on detection tasks over PASCAL VOC and COCO benchmarks. Our approach demonstrates the highest AL curve with convincing visualizations, establishing a new paradigm in reinforcement learning-driven active object detection.
comment: Accepted by ICASSP 2026. Camera-ready Version
Consistency-Regularized GAN for Few-Shot SAR Target Recognition
Few-shot recognition in synthetic aperture radar (SAR) imagery remains a critical bottleneck for real-world applications due to extreme data scarcity. A promising strategy involves synthesizing a large dataset with a generative adversarial network (GAN), pre-training a model via self-supervised learning (SSL), and then fine-tuning on the few labeled samples. However, this approach faces a fundamental paradox: conventional GANs themselves require abundant data for stable training, contradicting the premise of few-shot learning. To resolve this, we propose the consistency-regularized generative adversarial network (Cr-GAN), a novel framework designed to synthesize diverse, high-fidelity samples even when trained under these severe data limitations. Cr-GAN introduces a dual-branch discriminator that decouples adversarial training from representation learning. This architecture enables a channel-wise feature interpolation strategy to create novel latent features, complemented by a dual-domain cycle consistency mechanism that ensures semantic integrity. Our Cr-GAN framework is adaptable to various GAN architectures, and its synthesized data effectively boosts multiple SSL algorithms. Extensive experiments on the MSTAR and SRSDD datasets validate our approach, with Cr-GAN achieving a highly competitive accuracy of 71.21% and 51.64%, respectively, in the 8-shot setting, significantly outperforming leading baselines, while requiring only ~5 of the parameters of state-of-the-art diffusion models. Code is available at: https://github.com/yikuizhai/Cr-GAN.
Skywork UniPic 3.0: Unified Multi-Image Composition via Sequence Modeling
The recent surge in popularity of Nano-Banana and Seedream 4.0 underscores the community's strong interest in multi-image composition tasks. Compared to single-image editing, multi-image composition presents significantly greater challenges in terms of consistency and quality, yet existing models have not disclosed specific methodological details for achieving high-quality fusion. Through statistical analysis, we identify Human-Object Interaction (HOI) as the most sought-after category by the community. We therefore systematically analyze and implement a state-of-the-art solution for multi-image composition with a primary focus on HOI-centric tasks. We present Skywork UniPic 3.0, a unified multimodal framework that integrates single-image editing and multi-image composition. Our model supports an arbitrary (1~6) number and resolution of input images, as well as arbitrary output resolutions (within a total pixel budget of 1024x1024). To address the challenges of multi-image composition, we design a comprehensive data collection, filtering, and synthesis pipeline, achieving strong performance with only 700K high-quality training samples. Furthermore, we introduce a novel training paradigm that formulates multi-image composition as a sequence-modeling problem, transforming conditional generation into unified sequence synthesis. To accelerate inference, we integrate trajectory mapping and distribution matching into the post-training stage, enabling the model to produce high-fidelity samples in just 8 steps and achieve a 12.5x speedup over standard synthesis sampling. Skywork UniPic 3.0 achieves state-of-the-art performance on single-image editing benchmark and surpasses both Nano-Banana and Seedream 4.0 on multi-image composition benchmark, thereby validating the effectiveness of our data pipeline and training paradigm. Code, models and dataset are publicly available.
Event-VStream: Event-Driven Real-Time Understanding for Long Video Streams
Real-time understanding of long video streams remains challenging for multimodal large language models (VLMs) due to redundant frame processing and rapid forgetting of past context. Existing streaming systems rely on fixed-interval decoding or cache pruning, which either produce repetitive outputs or discard crucial temporal information. We introduce Event-VStream, an event-aware framework that represents continuous video as a sequence of discrete, semantically coherent events. Our system detects meaningful state transitions by integrating motion, semantic, and predictive cues, and triggers language generation only at those boundaries. Each event embedding is consolidated into a persistent memory bank, enabling long-horizon reasoning while maintaining low latency. Across OVOBench-Realtime, and long-form Ego4D evaluations, Event-VStream achieves competitive performance. It improves over a VideoLLM-Online-8B baseline by +10.4 points on OVOBench-Realtime, achieves performance close to Flash-VStream-7B despite using only a general-purpose LLaMA-3-8B text backbone, and maintains around 70% GPT-5 win rate on 2-hour Ego4D streams.
SuperOcc: Toward Cohesive Temporal Modeling for Superquadric-based Occupancy Prediction
3D occupancy prediction plays a pivotal role in the realm of autonomous driving, as it provides a comprehensive understanding of the driving environment. Most existing methods construct dense scene representations for occupancy prediction, overlooking the inherent sparsity of real-world driving scenes. Recently, 3D superquadric representation has emerged as a promising sparse alternative to dense scene representations due to the strong geometric expressiveness of superquadrics. However, existing superquadric frameworks still suffer from insufficient temporal modeling, a challenging trade-off between query sparsity and geometric expressiveness, and inefficient superquadric-to-voxel splatting. To address these issues, we propose SuperOcc, a novel framework for superquadric-based 3D occupancy prediction. SuperOcc incorporates three key designs: (1) a cohesive temporal modeling mechanism to simultaneously exploit view-centric and object-centric temporal cues; (2) a multi-superquadric decoding strategy to enhance geometric expressiveness without sacrificing query sparsity; and (3) an efficient superquadric-to-voxel splatting scheme to improve computational efficiency. Extensive experiments on the SurroundOcc and Occ3D benchmarks demonstrate that SuperOcc achieves state-of-the-art performance while maintaining superior efficiency. The code is available at https://github.com/Yzichen/SuperOcc.
Evolving Without Ending: Unifying Multimodal Incremental Learning for Continual Panoptic Perception
Continual learning (CL) is a great endeavour in developing intelligent perception AI systems. However, the pioneer research has predominantly focus on single-task CL, which restricts the potential in multi-task and multimodal scenarios. Beyond the well-known issue of catastrophic forgetting, the multi-task CL also brings semantic obfuscation across multimodal alignment, leading to severe model degradation during incremental training steps. In this paper, we extend CL to continual panoptic perception (CPP), integrating multimodal and multi-task CL to enhance comprehensive image perception through pixel-level, instance-level, and image-level joint interpretation. We formalize the CL task in multimodal scenarios and propose an end-to-end continual panoptic perception model. Concretely, CPP model features a collaborative cross-modal encoder (CCE) for multimodal embedding. We also propose a malleable knowledge inheritance module via contrastive feature distillation and instance distillation, addressing catastrophic forgetting from task-interactive boosting manner. Furthermore, we propose a cross-modal consistency constraint and develop CPP+, ensuring multimodal semantic alignment for model updating under multi-task incremental scenarios. Additionally, our proposed model incorporates an asymmetric pseudo-labeling manner, enabling model evolving without exemplar replay. Extensive experiments on multimodal datasets and diverse CL tasks demonstrate the superiority of the proposed model, particularly in fine-grained CL tasks.
comment: arXiv admin note: substantial text overlap with arXiv:2407.14242
Explainable Deepfake Detection with RL Enhanced Self-Blended Images
Most prior deepfake detection methods lack explainable outputs. With the growing interest in multimodal large language models (MLLMs), researchers have started exploring their use in interpretable deepfake detection. However, a major obstacle in applying MLLMs to this task is the scarcity of high-quality datasets with detailed forgery attribution annotations, as textual annotation is both costly and challenging - particularly for high-fidelity forged images or videos. Moreover, multiple studies have shown that reinforcement learning (RL) can substantially enhance performance in visual tasks, especially in improving cross-domain generalization. To facilitate the adoption of mainstream MLLM frameworks in deepfake detection with reduced annotation cost, and to investigate the potential of RL in this context, we propose an automated Chain-of-Thought (CoT) data generation framework based on Self-Blended Images, along with an RL-enhanced deepfake detection framework. Extensive experiments validate the effectiveness of our CoT data construction pipeline, tailored reward mechanism, and feedback-driven synthetic data generation approach. Our method achieves performance competitive with state-of-the-art (SOTA) approaches across multiple cross-dataset benchmarks. Implementation details are available at https://github.com/deon1219/rlsbi.
comment: Accepted at ICASSP 2026
Region-aware Spatiotemporal Modeling with Collaborative Domain Generalization for Cross-Subject EEG Emotion Recognition
Cross-subject EEG-based emotion recognition (EER) remains challenging due to strong inter-subject variability, which induces substantial distribution shifts in EEG signals, as well as the high complexity of emotion-related neural representations in both spatial organization and temporal evolution. Existing approaches typically improve spatial modeling, temporal modeling, or generalization strategies in isolation, which limits their ability to align representations across subjects while capturing multi-scale dynamics and suppressing subject-specific bias within a unified framework. To address these gaps, we propose a Region-aware Spatiotemporal Modeling framework with Collaborative Domain Generalization (RSM-CoDG) for cross-subject EEG emotion recognition. RSM-CoDG incorporates neuroscience priors derived from functional brain region partitioning to construct region-level spatial representations, thereby improving cross-subject comparability. It also employs multi-scale temporal modeling to characterize the dynamic evolution of emotion-evoked neural activity. In addition, the framework employs a collaborative domain generalization strategy, incorporating multidimensional constraints to reduce subject-specific bias in a fully unseen target subject setting, which enhances the generalization to unknown individuals. Extensive experimental results on SEED series datasets demonstrate that RSM-CoDG consistently outperforms existing competing methods, providing an effective approach for improving robustness. The source code is available at https://github.com/RyanLi-X/RSM-CoDG.
FUGC: Benchmarking Semi-Supervised Learning Methods for Cervical Segmentation
Accurate segmentation of cervical structures in transvaginal ultrasound (TVS) is critical for assessing the risk of spontaneous preterm birth (PTB), yet the scarcity of labeled data limits the performance of supervised learning approaches. This paper introduces the Fetal Ultrasound Grand Challenge (FUGC), the first benchmark for semi-supervised learning in cervical segmentation, hosted at ISBI 2025. FUGC provides a dataset of 890 TVS images, including 500 training images, 90 validation images, and 300 test images. Methods were evaluated using the Dice Similarity Coefficient (DSC), Hausdorff Distance (HD), and runtime (RT), with a weighted combination of 0.4/0.4/0.2. The challenge attracted 10 teams with 82 participants submitting innovative solutions. The best-performing methods for each individual metric achieved 90.26\% mDSC, 38.88 mHD, and 32.85 ms RT, respectively. FUGC establishes a standardized benchmark for cervical segmentation, demonstrates the efficacy of semi-supervised methods with limited labeled data, and provides a foundation for AI-assisted clinical PTB risk assessment.
Relative Classification Accuracy: A Calibrated Metric for Identity Consistency in Fine-Grained K-pop Face Generation
Denoising Diffusion Probabilistic Models (DDPMs) have achieved remarkable success in high-fidelity image generation. However, evaluating their semantic controllability-specifically for fine-grained, single-domain tasks-remains challenging. Standard metrics like FID and Inception Score (IS) often fail to detect identity misalignment in such specialized contexts. In this work, we investigate Class-Conditional DDPMs for K-pop idol face generation (32x32), a domain characterized by high inter-class similarity. We propose a calibrated metric, Relative Classification Accuracy (RCA), which normalizes generative performance against an oracle classifier's baseline. Our evaluation reveals a critical trade-off: while the model achieves high visual quality (FID 8.93), it suffers from severe semantic mode collapse (RCA 0.27), particularly for visually ambiguous identities. We analyze these failure modes through confusion matrices and attribute them to resolution constraints and intra-gender ambiguity. Our framework provides a rigorous standard for verifying identity consistency in conditional generative models.
VIOLA: Towards Video In-Context Learning with Minimal Annotations
Generalizing Multimodal Large Language Models (MLLMs) to novel video domains is essential for real-world deployment but remains challenging due to the scarcity of labeled data. While In-Context Learning (ICL) offers a training-free adaptation path, standard methods rely on large annotated pools, which are often impractical in specialized environments like industrial or surgical settings since they require the experts' annotations. To bridge this gap, we introduce VIOLA (Video In-cOntext Learning with minimal Annotation), a label-efficient framework that synergizes minimal expert supervision with abundant unlabeled data. First, to maximize the efficiency of a strict annotation budget, we propose density-uncertainty-weighted sampling. Unlike standard diversity or uncertainty strategies that risk selecting visual outliers, our method leverages density estimation to identify samples that are simultaneously diverse, representative, and informative. Second, to utilize the remaining unlabeled data without noise propagation, we construct a hybrid pool and introduce confidence-aware retrieval and confidence-aware prompting. These mechanisms explicitly model label reliability, retrieving demonstrations based on a composite score of similarity and confidence while enabling the MLLM to adaptively distinguish between verified ground truths and noisy pseudo-labels. Extensive experiments across nine diverse benchmarks using four MLLMs demonstrate that our framework significantly outperforms various baselines in low-resource settings, achieving robust adaptation with minimal annotation costs.
Experience with Single Domain Generalization in Real World Medical Imaging Deployments AAAI 2026
A desirable property of any deployed artificial intelligence is generalization across domains, i.e. data generation distribution under a specific acquisition condition. In medical imagining applications the most coveted property for effective deployment is Single Domain Generalization (SDG), which addresses the challenge of training a model on a single domain to ensure it generalizes well to unseen target domains. In multi-center studies, differences in scanners and imaging protocols introduce domain shifts that exacerbate variability in rare class characteristics. This paper presents our experience on SDG in real life deployment for two exemplary medical imaging case studies on seizure onset zone detection using fMRI data, and stress electrocardiogram based coronary artery detection. Utilizing the commonly used application of diabetic retinopathy, we first demonstrate that state-of-the-art SDG techniques fail to achieve generalized performance across data domains. We then develop a generic expert knowledge integrated deep learning technique DL+EKE and instantiate it for the DR application and show that DL+EKE outperforms SOTA SDG methods on DR. We then deploy instances of DL+EKE technique on the two real world examples of stress ECG and resting state (rs)-fMRI and discuss issues faced with SDG techniques.
comment: Accepted at AAAI 2026 Innovative Applications of Artificial Intelligence
Coarse-to-Fine Non-rigid Multi-modal Image Registration for Historical Panel Paintings based on Crack Structures
Art technological investigations of historical panel paintings rely on acquiring multi-modal image data, including visual light photography, infrared reflectography, ultraviolet fluorescence photography, x-radiography, and macro photography. For a comprehensive analysis, the multi-modal images require pixel-wise alignment, which is still often performed manually. Multi-modal image registration can reduce this laborious manual work, is substantially faster, and enables higher precision. Due to varying image resolutions, huge image sizes, non-rigid distortions, and modality-dependent image content, registration is challenging. Therefore, we propose a coarse-to-fine non-rigid multi-modal registration method efficiently relying on sparse keypoints and thin-plate-splines. Historical paintings exhibit a fine crack pattern, called craquelure, on the paint layer, which is captured by all image systems and is well-suited as a feature for registration. In our one-stage non-rigid registration approach, we employ a convolutional neural network for joint keypoint detection and description based on the craquelure and a graph neural network for descriptor matching in a patch-based manner, and filter matches based on homography reprojection errors in local areas. For coarse-to-fine registration, we introduce a novel multi-level keypoint refinement approach to register mixed-resolution images up to the highest resolution. We created a multi-modal dataset of panel paintings with a high number of keypoint annotations, and a large test set comprising five multi-modal domains and varying image resolutions. The ablation study demonstrates the effectiveness of all modules of our refinement method. Our proposed approaches achieve the best registration results compared to competing keypoint and dense matching methods and refinement methods.
comment: Preprint, submitted for review
Where is the multimodal goal post? On the Ability of Foundation Models to Recognize Contextually Important Moments
Foundation models are used for many real-world applications involving language generation from temporally-ordered multimodal events. In this work, we study the ability of models to identify the most important sub-events in a video, which is a fundamental prerequisite for narrating or summarizing multimodal events. Specifically, we focus on football games and evaluate models on their ability to distinguish between important and non-important sub-events in a game. To this end, we construct a new dataset by leveraging human preferences for importance implicit in football game highlight reels, without any additional annotation costs. Using our dataset, which we will publicly release to the community, we compare several state-of-the-art multimodal models and show that they are not far from chance level performance. Analyses of models beyond standard evaluation metrics reveal their tendency to rely on a single dominant modality and their ineffectiveness in synthesizing necessary information from multiple sources. Our findings underline the importance of modular architectures that can handle sample-level heterogeneity in multimodal data and the need for complementary training procedures that can maximize cross-modal synergy.
FeTTL: Federated Template and Task Learning for Multi-Institutional Medical Imaging
Federated learning enables collaborative model training across geographically distributed medical centers while preserving data privacy. However, domain shifts and heterogeneity in data often lead to a degradation in model performance. Medical imaging applications are particularly affected by variations in acquisition protocols, scanner types, and patient populations. To address these issues, we introduce Federated Template and Task Learning (FeTTL), a novel framework designed to harmonize multi-institutional medical imaging data in federated environments. FeTTL learns a global template together with a task model to align data distributions among clients. We evaluated FeTTL on two challenging and diverse multi-institutional medical imaging tasks: retinal fundus optical disc segmentation and histopathological metastasis classification. Experimental results show that FeTTL significantly outperforms the state-of-the-art federated learning baselines (p-values <0.002) for optical disc segmentation and classification of metastases from multi-institutional data. Our experiments further highlight the importance of jointly learning the template and the task. These findings suggest that FeTTL offers a principled and extensible solution for mitigating distribution shifts in federated learning, supporting robust model deployment in real-world, multi-institutional environments.
Memory-V2V: Augmenting Video-to-Video Diffusion Models with Memory
Recent foundational video-to-video diffusion models have achieved impressive results in editing user provided videos by modifying appearance, motion, or camera movement. However, real-world video editing is often an iterative process, where users refine results across multiple rounds of interaction. In this multi-turn setting, current video editors struggle to maintain cross-consistency across sequential edits. In this work, we tackle, for the first time, the problem of cross-consistency in multi-turn video editing and introduce Memory-V2V, a simple, yet effective framework that augments existing video-to-video models with explicit memory. Given an external cache of previously edited videos, Memory-V2V employs accurate retrieval and dynamic tokenization strategies to condition the current editing step on prior results. To further mitigate redundancy and computational overhead, we propose a learnable token compressor within the DiT backbone that compresses redundant conditioning tokens while preserving essential visual cues, achieving an overall speedup of 30%. We validate Memory-V2V on challenging tasks including video novel view synthesis and text-conditioned long video editing. Extensive experiments show that Memory-V2V produces videos that are significantly more cross-consistent with minimal computational overhead, while maintaining or even improving task-specific performance over state-of-the-art baselines. Project page: https://dohunlee1.github.io/MemoryV2V
comment: Project page: https://dohunlee1.github.io/MemoryV2V
GR3EN: Generative Relighting for 3D Environments
We present a method for relighting 3D reconstructions of large room-scale environments. Existing solutions for 3D scene relighting often require solving under-determined or ill-conditioned inverse rendering problems, and are as such unable to produce high-quality results on complex real-world scenes. Though recent progress in using generative image and video diffusion models for relighting has been promising, these techniques are either limited to 2D image and video relighting or 3D relighting of individual objects. Our approach enables controllable 3D relighting of room-scale scenes by distilling the outputs of a video-to-video relighting diffusion model into a 3D reconstruction. This side-steps the need to solve a difficult inverse rendering problem, and results in a flexible system that can relight 3D reconstructions of complex real-world scenes. We validate our approach on both synthetic and real-world datasets to show that it can faithfully render novel views of scenes under new lighting conditions.
comment: project page: https://gr3en-relight.github.io/
GutenOCR: A Grounded Vision-Language Front-End for Documents
GutenOCR is a family of grounded OCR front-ends obtained by fine-tuning Qwen2.5-VL-3B and Qwen2.5-VL-7B. The resulting single-checkpoint vision-language models expose reading, detection, and grounding through a unified, prompt-based interface. Trained on business documents, scientific articles, and synthetic grounding data, the models support full-page and localized reading with line- and paragraph-level bounding boxes and conditional ``where is x?'' queries. We introduce a grounded OCR evaluation protocol and show that GutenOCR-7B more than doubles the composite grounded OCR score of its Qwen2.5-VL-7B backbone on 10.5K held-out business and scientific pages (0.40 to 0.82). On Fox and OmniDocBench v1.5, our approach substantially improves region- and line-level OCR as well as text-detection recall, but reveals trade-offs in page-level linearization, color-guided OCR, and formula-heavy layouts.
CropCraft: Complete Structural Characterization of Crop Plants From Images 3DV 2026
The ability to automatically build 3D digital twins of plants from images has countless applications in agriculture, environmental science, robotics, and other fields. However, current 3D reconstruction methods fail to recover complete shapes of plants due to heavy occlusion and complex geometries. In this work, we present a novel method for 3D modeling of agricultural crops based on optimizing a parametric model of plant morphology via inverse procedural modeling. Our method first estimates depth maps by fitting a neural radiance field and then optimizes a specialized loss to estimate morphological parameters that result in consistent depth renderings. The resulting 3D model is complete and biologically plausible. We validate our method on a dataset of real images of agricultural fields, and demonstrate that the reconstructed canopies can be used for a variety of monitoring and simulation applications.
comment: 3DV 2026 (Oral). Project page: https://ajzhai.github.io/CropCraft
Is this chart lying to me? Automating the detection of misleading visualizations
Misleading visualizations are a potent driver of misinformation on social media and the web. By violating chart design principles, they distort data and lead readers to draw inaccurate conclusions. Prior work has shown that both humans and multimodal large language models (MLLMs) are frequently deceived by such visualizations. Automatically detecting misleading visualizations and identifying the specific design rules they violate could help protect readers and reduce the spread of misinformation. However, the training and evaluation of AI models has been limited by the absence of large, diverse, and openly available datasets. In this work, we introduce Misviz, a benchmark of 2,604 real-world visualizations annotated with 12 types of misleaders. To support model training, we also create Misviz-synth, a synthetic dataset of 57,665 visualizations generated using Matplotlib and based on real-world data tables. We perform a comprehensive evaluation on both datasets using state-of-the-art MLLMs, rule-based systems, and image-axis classifiers. Our results reveal that the task remains highly challenging. We release Misviz, Misviz-synth, and the accompanying code.
comment: Preprint under review. Code and data available at: https://github.com/UKPLab/arxiv2025-misviz
BAH Dataset for Ambivalence/Hesitancy Recognition in Videos for Digital Behavioural Change
Ambivalence and hesitancy (A/H), a closely related construct, is the primary reasons why individuals delay, avoid, or abandon health behaviour changes. It is a subtle and conflicting emotion that sets a person in a state between positive and negative orientations, or between acceptance and refusal to do something. It manifests by a discord in affect between multiple modalities or within a modality, such as facial and vocal expressions, and body language. Although experts can be trained to recognize A/H as done for in-person interactions, integrating them into digital health interventions is costly and less effective. Automatic A/H recognition is therefore critical for the personalization and cost-effectiveness of digital behaviour change interventions. However, no datasets currently exists for the design of machine learning models to recognize A/H. This paper introduces the Behavioural Ambivalence/Hesitancy (BAH) dataset collected for multimodal recognition of A/H in videos. It contains 1,427 videos with a total duration of 10.60 hours captured from 300 participants across Canada answering predefined questions to elicit A/H. It is intended to mirror real-world online personalized behaviour change interventions. BAH is annotated by three experts to provide timestamps that indicate where A/H occurs, and frame- and video-level annotations with A/H cues. Video transcripts, cropped and aligned faces, and participants' meta-data are also provided. Since A and H manifest similarly in practice, we provide a binary annotation indicating the presence or absence of A/H. Additionally, this paper includes benchmarking results using baseline models on BAH for frame- and video-level recognition, zero-shot prediction, and personalization using source-free domain adaptation. The data, code, and pretrained weights are available.
comment: 45 pages, 21 figures, under review
From Text to Image: Exploring GPT-4Vision's Potential in Advanced Radiological Analysis across Subspecialties
The study evaluates and compares GPT-4 and GPT-4Vision for radiological tasks, suggesting GPT-4Vision may recognize radiological features from images, thereby enhancing its diagnostic potential over text-based descriptions.
CGS-GAN: 3D Consistent Gaussian Splatting GANs for High Resolution Human Head Synthesis
Recently, 3D GANs based on 3D Gaussian splatting have been proposed for high quality synthesis of human heads. However, existing methods stabilize training and enhance rendering quality from steep viewpoints by conditioning the random latent vector on the current camera position. This compromises 3D consistency, as we observe significant identity changes when re-synthesizing the 3D head with each camera shift. Conversely, fixing the camera to a single viewpoint yields high-quality renderings for that perspective but results in poor performance for novel views. Removing view-conditioning typically destabilizes GAN training, often causing the training to collapse. In response to these challenges, we introduce CGS-GAN, a novel 3D Gaussian Splatting GAN framework that enables stable training and high-quality 3D-consistent synthesis of human heads without relying on view-conditioning. To ensure training stability, we introduce a multi-view regularization technique that enhances generator convergence with minimal computational overhead. Additionally, we adapt the conditional loss used in existing 3D Gaussian splatting GANs and propose a generator architecture designed to not only stabilize training but also facilitate efficient rendering and straightforward scaling, enabling output resolutions up to $2048^2$. To evaluate the capabilities of CGS-GAN, we curate a new dataset derived from FFHQ. This dataset enables very high resolutions, focuses on larger portions of the human head, reduces view-dependent artifacts for improved 3D consistency, and excludes images where subjects are obscured by hands or other objects. As a result, our approach achieves very high rendering quality, supported by competitive FID scores, while ensuring consistent 3D scene generation. Check our our project page here: https://fraunhoferhhi.github.io/cgs-gan/
comment: Main paper 12 pages, supplementary materials 8 pages
BayesianVLA: Bayesian Decomposition of Vision Language Action Models via Latent Action Queries
Vision-Language-Action (VLA) models have shown promise in robot manipulation but often struggle to generalize to new instructions or complex multi-task scenarios. We identify a critical pathology in current training paradigms where goal-driven data collection creates a dataset bias. In such datasets, language instructions are highly predictable from visual observations alone, causing the conditional mutual information between instructions and actions to vanish, a phenomenon we term Information Collapse. Consequently, models degenerate into vision-only policies that ignore language constraints and fail in out-of-distribution (OOD) settings. To address this, we propose BayesianVLA, a novel framework that enforces instruction following via Bayesian decomposition. By introducing learnable Latent Action Queries, we construct a dual-branch architecture to estimate both a vision-only prior $p(a \mid v)$ and a language-conditioned posterior $π(a \mid v, \ell)$. We then optimize the policy to maximize the conditional Pointwise Mutual Information (PMI) between actions and instructions. This objective effectively penalizes the vision shortcut and rewards actions that explicitly explain the language command. Without requiring new data, BayesianVLA significantly improves generalization. Extensive experiments across on SimplerEnv and RoboCasa demonstrate substantial gains, including an 11.3% improvement on the challenging OOD SimplerEnv benchmark, validating the ability of our approach to robustly ground language in action.
Find the Leak, Fix the Split: Cluster-Based Method to Prevent Leakage in Video-Derived Datasets
We propose a cluster-based frame selection strategy to mitigate information leakage in video-derived frames datasets. By grouping visually similar frames before splitting into training, validation, and test sets, the method produces more representative, balanced, and reliable dataset partitions.
comment: 1 figure, 1 table, Accepted to ICSEE 2026
YOLO Meets Mixture-of-Experts: Adaptive Expert Routing for Robust Object Detection
This paper presents a novel Mixture-of-Experts framework for object detection, incorporating adaptive routing among multiple YOLOv9-T experts to enable dynamic feature specialization and achieve higher mean Average Precision (mAP) and Average Recall (AR) compared to a single YOLOv9-T model.
comment: 1 figure, 1 table, Accepted to ICSEE 2026
No Mesh, No Problem: Estimating Coral Volume and Surface from Sparse Multi-View Images
Effective reef monitoring requires the quantification of coral growth via accurate volumetric and surface area estimates, which is a challenging task due to the complex morphology of corals. We propose a novel, lightweight, and scalable learning framework that addresses this challenge by predicting the 3D volume and surface area of coral-like objects from 2D multi-view RGB images. Our approach utilizes a pre-trained module (VGGT) to extract dense point maps from each view; these maps are merged into a unified point cloud and enriched with per-view confidence scores. The resulting cloud is fed to two parallel DGCNN decoder heads, which jointly output the volume and the surface area of the coral, as well as their corresponding confidence estimate. To enhance prediction stability and provide uncertainty estimates, we introduce a composite loss function based on Gaussian negative log-likelihood in both real and log domains. Our method achieves competitive accuracy and generalizes well to unseen morphologies. This framework paves the way for efficient and scalable coral geometry estimation directly from a sparse set of images, with potential applications in coral growth analysis and reef monitoring.
comment: Reverted to previous version due to clarity issues
MetaDCSeg: Robust Medical Image Segmentation via Meta Dynamic Center Weighting
Medical image segmentation is crucial for clinical applications, but it is frequently disrupted by noisy annotations and ambiguous anatomical boundaries, which lead to instability in model training. Existing methods typically rely on global noise assumptions or confidence-based sample selection, which inadequately mitigate the performance degradation caused by annotation noise, especially in challenging boundary regions. To address this issue, we propose MetaDCSeg, a robust framework that dynamically learns optimal pixel-wise weights to suppress the influence of noisy ground-truth labels while preserving reliable annotations. By explicitly modeling boundary uncertainty through a Dynamic Center Distance (DCD) mechanism, our approach utilizes weighted feature distances for foreground, background, and boundary centers, directing the model's attention toward hard-to-segment pixels near ambiguous boundaries. This strategy enables more precise handling of structural boundaries, which are often overlooked by existing methods, and significantly enhances segmentation performance. Extensive experiments across four benchmark datasets with varying noise levels demonstrate that MetaDCSeg consistently outperforms existing state-of-the-art methods.
Language-guided Medical Image Segmentation with Target-informed Multi-level Contrastive Alignments
Medical image segmentation is a fundamental task in numerous medical engineering applications. Recently, language-guided segmentation has shown promise in medical scenarios where textual clinical reports are readily available as semantic guidance. Clinical reports contain diagnostic information provided by clinicians, which can provide auxiliary textual semantics to guide segmentation. However, existing language-guided segmentation methods neglect the inherent pattern gaps between image and text modalities, resulting in sub-optimal visual-language integration. Contrastive learning is a well-recognized approach to align image-text patterns, but it has not been optimized for bridging the pattern gaps in medical language-guided segmentation that relies primarily on medical image details to characterize the underlying disease/targets. Current contrastive alignment techniques typically align high-level global semantics without involving low-level localized target information, and thus cannot deliver fine-grained textual guidance on crucial image details. In this study, we propose a Target-informed Multi-level Contrastive Alignment framework (TMCA) to bridge image-text pattern gaps for medical language-guided segmentation. TMCA enables target-informed image-text alignments and fine-grained textual guidance by introducing: (i) a target-sensitive semantic distance module that utilizes target information for more granular image-text alignment modeling, (ii) a multi-level contrastive alignment strategy that directs fine-grained textual guidance to multi-scale image details, and (iii) a language-guided target enhancement module that reinforces attention to critical image regions based on the aligned image-text patterns. Extensive experiments on four public benchmark datasets demonstrate that TMCA enabled superior performance over state-of-the-art language-guided medical image segmentation methods.
PlantTraitNet: An Uncertainty-Aware Multimodal Framework for Global-Scale Plant Trait Inference from Citizen Science Data AAAI
Global plant maps of plant traits, such as leaf nitrogen or plant height, are essential for understanding ecosystem processes, including the carbon and energy cycles of the Earth system. However, existing trait maps remain limited by the high cost and sparse geographic coverage of field-based measurements. Citizen science initiatives offer a largely untapped resource to overcome these limitations, with over 50 million geotagged plant photographs worldwide capturing valuable visual information on plant morphology and physiology. In this study, we introduce PlantTraitNet, a multi-modal, multi-task uncertainty-aware deep learning framework that predictsfour key plant traits (plant height, leaf area, specific leaf area, and nitrogen content) from citizen science photos using weak supervision. By aggregating individual trait predictions across space, we generate global maps of trait distributions. We validate these maps against independent vegetation survey data (sPlotOpen) and benchmark them against leading global trait products. Our results show that PlantTraitNet consistently outperforms existing trait maps across all evaluated traits, demonstrating that citizen science imagery, when integrated with computer vision and geospatial AI, enables not only scalable but also more accurate global trait mapping. This approach offers a powerful new pathway for ecological research and Earth system modeling.
comment: Preprint version of the paper accepted at the 40th AAAI Conference on Artificial Intelligence (AAAI-26), organized by the Association for the Advancement of Artificial Intelligence
Auditing and Mitigating Bias in Gender Classification Algorithms: A Data-Centric Approach
Gender classification systems often inherit and amplify demographic imbalances in their training data. We first audit five widely used gender classification datasets, revealing that all suffer from significant intersectional underrepresentation. To measure the downstream impact of these flaws, we train identical MobileNetV2 classifiers on the two most balanced of these datasets, UTKFace and FairFace. Our fairness evaluation shows that even these models exhibit significant bias, misclassifying female faces at a higher rate than male faces and amplifying existing racial skew. To counter these data-induced biases, we construct BalancedFace, a new public dataset created by blending images from FairFace and UTKFace, supplemented with images from other collections to fill missing demographic gaps. It is engineered to equalize subgroup shares across 189 intersections of age, race, and gender using only real, unedited images. When a standard classifier is trained on BalancedFace, it reduces the maximum True Positive Rate gap across racial subgroups by over 50% and brings the average Disparate Impact score 63% closer to the ideal of 1.0 compared to the next-best dataset, all with a minimal loss of overall accuracy. These results underline the profound value of data-centric interventions and provide an openly available resource for fair gender classification research.
comment: The manuscript contains a substantive error identified after submission
OccLE: Label-Efficient 3D Semantic Occupancy Prediction
3D semantic occupancy prediction offers an intuitive and efficient scene understanding and has attracted significant interest in autonomous driving perception. Existing approaches either rely on full supervision, which demands costly voxel-level annotations, or on self-supervision, which provides limited guidance and yields suboptimal performance. To address these challenges, we propose OccLE, a Label-Efficient 3D Semantic Occupancy Prediction that takes images and LiDAR as inputs and maintains high performance with limited voxel annotations. Our intuition is to decouple the semantic and geometric learning tasks and then fuse the learned feature grids from both tasks for the final semantic occupancy prediction. Therefore, the semantic branch distills 2D foundation model to provide aligned pseudo labels for 2D and 3D semantic learning. The geometric branch integrates image and LiDAR inputs in cross-plane synergy based on their inherency, employing semi-supervision to enhance geometry learning. We fuse semantic-geometric feature grids through Dual Mamba and incorporate a scatter-accumulated projection to supervise unannotated prediction with aligned pseudo labels. Experiments show that OccLE achieves competitive performance with only 10\% of voxel annotations on the SemanticKITTI and Occ3D-nuScenes datasets. The code will be publicly released on https://github.com/NerdFNY/OccLE
Yesnt: Are Diffusion Relighting Models Ready for Capture Stage Compositing? A Hybrid Alternative to Bridge the Gap
Volumetric video relighting is essential for bringing captured performances into virtual worlds, but current approaches struggle to deliver temporally stable, production-ready results. Diffusion-based intrinsic decomposition methods show promise for single frames, yet suffer from stochastic noise and instability when extended to sequences, while video diffusion models remain constrained by memory and scale. We propose a hybrid relighting framework that combines diffusion-derived material priors with temporal regularization and physically motivated rendering. Our method aggregates multiple stochastic estimates of per-frame material properties into temporally consistent shading components, using optical-flow-guided regularization. For indirect effects such as shadows and reflections, we extract a mesh proxy from Gaussian Opacity Fields and render it within a standard graphics pipeline. Experiments on real and synthetic captures show that this hybrid strategy achieves substantially more stable relighting across sequences than diffusion-only baselines, while scaling beyond the clip lengths feasible for video diffusion. These results indicate that hybrid approaches, which balance learned priors with physically grounded constraints, are a practical step toward production-ready volumetric video relighting.
TeleMem: Building Long-Term and Multimodal Memory for Agentic AI
Large language models (LLMs) excel at many NLP tasks but struggle to sustain long-term interactions due to limited attention over extended dialogue histories. Retrieval-augmented generation (RAG) mitigates this issue but lacks reliable mechanisms for updating or refining stored memories, leading to schema-driven hallucinations, inefficient write operations, and minimal support for multimodal reasoning.To address these challenges, we propose TeleMem, a unified long-term and multimodal memory system that maintains coherent user profiles through narrative dynamic extraction, ensuring that only dialogue-grounded information is preserved. TeleMem further introduces a structured writing pipeline that batches, retrieves, clusters, and consolidates memory entries, substantially improving storage efficiency, reducing token usage, and accelerating memory operations. Additionally, a multimodal memory module combined with ReAct-style reasoning equips the system with a closed-loop observe, think, and act process that enables accurate understanding of complex video content in long-term contexts. Experimental results show that TeleMem surpasses the state-of-the-art Mem0 baseline with 19% higher accuracy, 43% fewer tokens, and a 2.1x speedup on the ZH-4O long-term role-play gaming benchmark.
Render-of-Thought: Rendering Textual Chain-of-Thought as Images for Visual Latent Reasoning
Chain-of-Thought (CoT) prompting has achieved remarkable success in unlocking the reasoning capabilities of Large Language Models (LLMs). Although CoT prompting enhances reasoning, its verbosity imposes substantial computational overhead. Recent works often focus exclusively on outcome alignment and lack supervision on the intermediate reasoning process. These deficiencies obscure the analyzability of the latent reasoning chain. To address these challenges, we introduce Render-of-Thought (RoT), the first framework to reify the reasoning chain by rendering textual steps into images, making the latent rationale explicit and traceable. Specifically, we leverage the vision encoders of existing Vision Language Models (VLMs) as semantic anchors to align the vision embeddings with the textual space. This design ensures plug-and-play implementation without incurring additional pre-training overhead. Extensive experiments on mathematical and logical reasoning benchmarks demonstrate that our method achieves 3-4x token compression and substantial inference acceleration compared to explicit CoT. Furthermore, it maintains competitive performance against other methods, validating the feasibility of this paradigm. Our code is available at https://github.com/TencentBAC/RoT
Radiation-Preserving Selective Imaging for Pediatric Hip Dysplasia: A Cross-Modal Ultrasound-Xray Policy with Limited Labels AAAI 2026
We study an ultrasound-first, radiation-preserving policy for developmental dysplasia of the hip (DDH) that requests a radiograph only when needed. We (i) pretrain modality-specific encoders (ResNet-18) with SimSiam on a large unlabelled registry (37186 ultrasound; 19546 radiographs), (ii) freeze the backbones and fit small, measurement-faithful heads on DDH-relevant landmarks and measurements, (iii) calibrate a one-sided conformal deferral rule on ultrasound predictions that provides finite sample marginal coverage guarantees under exchangeability, using a held-out calibration set. Ultrasound heads predict Graf alpha, beta, and femoral head coverage; X-ray heads predict acetabular index (AI), center-edge (CE) angle and IHDI grade. On our held out labeled evaluation set, ultrasound measurement error is modest (e.g., alpha MAE ~= 9.7 degrees, coverage MAE ~= 14.0%), while radiographic probes achieve AI and CE MAEs of ~= 7.6 degrees and ~= 8.9 degrees, respectively. The calibrated US-only policy is explored across rule families (alpha-only; alpha OR coverage; alpha AND coverage), conformal miscoverage levels, and per-utility trade-offs using decision-curve analysis. Conservative settings yield high coverage with near-zero US-only rates; permissive settings (e.g., alpha OR coverage at larger deltas) achieve non-zero US-only throughput with expected coverage tradeoffs. The result is a simple, reproducible pipeline that turns limited labels into interpretable measurements and tunable selective imaging curves suitable for clinical handoff and future external validation.
comment: Accepted (with oral presentation) to the AAAI 2026 AI for Medicine and Healthcare Bridge Program Awarded Best Paper Runner-Up at the AAAI 2026 AI for Medicine and Healthcare Bridge Program
Heterogeneous Uncertainty-Guided Composed Image Retrieval with Fine-Grained Probabilistic Learning AAAI 2026
Composed Image Retrieval (CIR) enables image search by combining a reference image with modification text. Intrinsic noise in CIR triplets incurs intrinsic uncertainty and threatens the model's robustness. Probabilistic learning approaches have shown promise in addressing such issues; however, they fall short for CIR due to their instance-level holistic modeling and homogeneous treatment of queries and targets. This paper introduces a Heterogeneous Uncertainty-Guided (HUG) paradigm to overcome these limitations. HUG utilizes a fine-grained probabilistic learning framework, where queries and targets are represented by Gaussian embeddings that capture detailed concepts and uncertainties. We customize heterogeneous uncertainty estimations for multi-modal queries and uni-modal targets. Given a query, we capture uncertainties not only regarding uni-modal content quality but also multi-modal coordination, followed by a provable dynamic weighting mechanism to derive comprehensive query uncertainty. We further design uncertainty-guided objectives, including query-target holistic contrast and fine-grained contrasts with comprehensive negative sampling strategies, which effectively enhance discriminative learning. Experiments on benchmarks demonstrate HUG's effectiveness beyond state-of-the-art baselines, with faithful analysis justifying the technical contributions.
comment: Accepted for publication and oral presentation at AAAI 2026
An Efficient Quality Metric for Video Frame Interpolation Based on Motion-Field Divergence
Video frame interpolation is a fundamental tool for temporal video enhancement, but existing quality metrics struggle to evaluate the perceptual impact of interpolation artefacts effectively. Metrics like PSNR, SSIM and LPIPS ignore temporal coherence. State-of-the-art quality metrics tailored towards video frame interpolation, like FloLPIPS, have been developed but suffer from computational inefficiency that limits their practical application. We present $\text{PSNR}_{\text{DIV}}$, a novel full-reference quality metric that enhances PSNR through motion divergence weighting, a technique adapted from archival film restoration where it was developed to detect temporal inconsistencies. Our approach highlights singularities in motion fields which is then used to weight image errors. Evaluation on the BVI-VFI dataset (180 sequences across multiple frame rates, resolutions and interpolation methods) shows $\text{PSNR}_{\text{DIV}}$ achieves statistically significant improvements: +0.09 Pearson Linear Correlation Coefficient over FloLPIPS, while being 2.5$\times$ faster and using 4$\times$ less memory. Performance remains consistent across all content categories and are robust to the motion estimator used. The efficiency and accuracy of $\text{PSNR}_{\text{DIV}}$ enables fast quality evaluation and practical use as a loss function for training neural networks for video frame interpolation tasks. An implementation of our metric is available at www.github.com/conalld/psnr-div.
comment: IEEE 17th International Conference on Quality of Multimedia Experience 2025 accepted manuscript, 7 pages
SUG-Occ: An Explicit Semantics and Uncertainty Guided Sparse Learning Framework for Real-Time 3D Occupancy Prediction
As autonomous driving moves toward full scene understanding, 3D semantic occupancy prediction has emerged as a crucial perception task, offering voxel-level semantics beyond traditional detection and segmentation paradigms. However, such a refined representation for scene understanding incurs prohibitive computation and memory overhead, posing a major barrier to practical real-time deployment. To address this, we propose SUG-Occ, an explicit Semantics and Uncertainty Guided Sparse Learning Enabled 3D Occupancy Prediction Framework, which exploits the inherent sparsity of 3D scenes to reduce redundant computation while maintaining geometric and semantic completeness. Specifically, we first utilize semantic and uncertainty priors to suppress projections from free space during view transformation while employing an explicit unsigned distance encoding to enhance geometric consistency, producing a structurally consistent sparse 3D representation. Secondly, we design an cascade sparse completion module via hyper cross sparse convolution and generative upsampling to enable efficiently coarse-to-fine reasoning. Finally, we devise an object contextual representation (OCR) based mask decoder that aggregates global semantic context from sparse features and refines voxel-wise predictions via lightweight query-context interactions, avoiding expensive attention operations over volumetric features. Extensive experiments on SemanticKITTI benchmark demonstrate that the proposed approach outperforms the baselines, achieving a 7.34/% improvement in accuracy and a 57.8\% gain in efficiency.
VideoPro: Adaptive Program Reasoning for Long Video Understanding
Large language models (LLMs) have shown promise in generating program workflows for visual tasks. However, previous approaches often rely on closed-source models, lack systematic reasoning, and struggle with long-form video question answering (videoQA). To address these challenges, we introduce the FS-VisPR framework, an adaptive visual program reasoning approach that balances fast reasoning for simple queries with slow reasoning for difficult ones. First, we design efficient visual modules (e.g., key clip retrieval and subtitle retrieval) to support long-form video tasks. Then, we construct a diverse and high-quality fast-slow reasoning dataset with a strong LLM to align open-source language models' ability to generate visual program workflows as FS-LLM. Next, we design a fast-slow reasoning framework with FS-LLM: Simple queries are directly solved by VideoLLMs, while difficult ones invoke visual program reasoning, motivated by human-like reasoning processes. During this process, low-confidence fast-thinking answers will trigger a second-stage slow-reasoning process, and a fallback mechanism to fast reasoning is activated if the program execution fails. Moreover, we improve visual programs through parameter search during both training and inference. By adjusting the parameters of the visual modules within the program, multiple variants are generated: during training, programs that yield correct answers are selected, while during inference, the program with the highest confidence result is applied. Experiments show that FS-VisPR improves both efficiency and reliability in visual program workflows. It achieves 50.4% accuracy on LVBench, surpassing GPT-4o, matching the performance of Qwen2.5VL-72B on VideoMME.
Multi-View Projection for Unsupervised Domain Adaptation in 3D Semantic Segmentation
3D semantic segmentation plays a pivotal role in autonomous driving and road infrastructure analysis, yet state-of-the-art 3D models are prone to severe domain shift when deployed across different datasets. In this paper, we propose an Unsupervised Domain Adaptation approach where a 3D segmentation model is trained on the target dataset using pseudo-labels generated by a novel multi-view projection framework. Our approach first aligns Lidar scans into coherent 3D scenes and renders them from multiple virtual camera poses to create large-scale synthetic 2D semantic segmentation datasets in various modalities. The generated datasets are used to train an ensemble of 2D segmentation models in point cloud view domain on each modality. During inference, the models process a large amount of views per scene; the resulting logits are back-projected to 3D with a depth-aware voting scheme to generate final point-wise labels. These labels are then used to fine-tune a 3D segmentation model in the target domain. We evaluate our approach Real-to-Real on the nuScenes and SemanticKITTI datasets. We also evaluate it Simulation-to-Real with the SynLidar dataset. Our contributions are a novel method that achieves state-of-the-art results in Real-to-Real Unsupervised Domain Adaptation, and we also demonstrate an application of our method to segment rare classes, for which target 3D annotations are not available, by only using 2D annotations for those classes and leveraging 3D annotations for other classes in a source domain.
Skin Lesion Phenotyping via Nested Multi-modal Contrastive Learning
We introduce SLIMP (Skin Lesion Image-Metadata Pre-training) for learning rich representations of skin lesions through a novel nested contrastive learning approach that captures complex relationships between images and metadata. Melanoma detection and skin lesion classification based solely on images, pose significant challenges due to large variations in imaging conditions (lighting, color, resolution, distance, etc.) and lack of clinical and phenotypical context. Clinicians typically follow a holistic approach for assessing the risk level of the patient and for deciding which lesions may be malignant and need to be excised, by considering the patient's medical history as well as the appearance of other lesions of the patient. Inspired by this, SLIMP combines the appearance and the metadata of individual skin lesions with patient-level metadata relating to their medical record and other clinically relevant information. By fully exploiting all available data modalities throughout the learning process, the proposed pre-training strategy improves performance compared to other pre-training strategies on downstream skin lesions classification tasks highlighting the learned representations quality.
Rasterizing Wireless Radiance Field via Deformable 2D Gaussian Splatting
Modeling the wireless radiance field (WRF) is fundamental to modern communication systems, enabling key tasks such as localization, sensing, and channel estimation. Traditional approaches, which rely on empirical formulas or physical simulations, often suffer from limited accuracy or require strong scene priors. Recent neural radiance field (NeRF-based) methods improve reconstruction fidelity through differentiable volumetric rendering, but their reliance on computationally expensive multilayer perceptron (MLP) queries hinders real-time deployment. To overcome these challenges, we introduce Gaussian splatting (GS) to the wireless domain, leveraging its efficiency in modeling optical radiance fields to enable compact and accurate WRF reconstruction. Specifically, we propose SwiftWRF, a deformable 2D Gaussian splatting framework that synthesizes WRF spectra at arbitrary positions under single-sided transceiver mobility. SwiftWRF employs CUDA-accelerated rasterization to render spectra at over 100000 fps and uses a lightweight MLP to model the deformation of 2D Gaussians, effectively capturing mobility-induced WRF variations. In addition to novel spectrum synthesis, the efficacy of SwiftWRF is further underscored in its applications in angle-of-arrival (AoA) and received signal strength indicator (RSSI) prediction. Experiments conducted on both real-world and synthetic indoor scenes demonstrate that SwiftWRF can reconstruct WRF spectra up to 500x faster than existing state-of-the-art methods, while significantly enhancing its signal quality. The project page is https://evan-sudo.github.io/swiftwrf/.
Crafting Adversarial Inputs for Large Vision-Language Models Using Black-Box Optimization
Recent advancements in Large Vision-Language Models (LVLMs) have shown groundbreaking capabilities across diverse multimodal tasks. However, these models remain vulnerable to adversarial jailbreak attacks, where adversaries craft subtle perturbations to bypass safety mechanisms and trigger harmful outputs. Existing white-box attacks methods require full model accessibility, suffer from computing costs and exhibit insufficient adversarial transferability, making them impractical for real-world, black-box settings. To address these limitations, we propose a black-box jailbreak attack on LVLMs via Zeroth-Order optimization using Simultaneous Perturbation Stochastic Approximation (ZO-SPSA). ZO-SPSA provides three key advantages: (i) gradient-free approximation by input-output interactions without requiring model knowledge, (ii) model-agnostic optimization without the surrogate model and (iii) lower resource requirements with reduced GPU memory consumption. We evaluate ZO-SPSA on three LVLMs, including InstructBLIP, LLaVA and MiniGPT-4, achieving the highest jailbreak success rate of 83.0% on InstructBLIP, while maintaining imperceptible perturbations comparable to white-box methods. Moreover, adversarial examples generated from MiniGPT-4 exhibit strong transferability to other LVLMs, with ASR reaching 64.18%. These findings underscore the real-world feasibility of black-box jailbreaks and expose critical weaknesses in the safety mechanisms of current LVLMs
comment: EACL
VIKI-R: Coordinating Embodied Multi-Agent Cooperation via Reinforcement Learning NeurIPS 2025
Coordinating multiple embodied agents in dynamic environments remains a core challenge in artificial intelligence, requiring both perception-driven reasoning and scalable cooperation strategies. While recent works have leveraged large language models (LLMs) for multi-agent planning, a few have begun to explore vision-language models (VLMs) for visual reasoning. However, these VLM-based approaches remain limited in their support for diverse embodiment types. In this work, we introduce VIKI-Bench, the first hierarchical benchmark tailored for embodied multi-agent cooperation, featuring three structured levels: agent activation, task planning, and trajectory perception. VIKI-Bench includes diverse robot embodiments, multi-view visual observations, and structured supervision signals to evaluate reasoning grounded in visual inputs. To demonstrate the utility of VIKI-Bench, we propose VIKI-R, a two-stage framework that fine-tunes a pretrained vision-language model (VLM) using Chain-of-Thought annotated demonstrations, followed by reinforcement learning under multi-level reward signals. Our extensive experiments show that VIKI-R significantly outperforms baselines method across all task levels. Furthermore, we show that reinforcement learning enables the emergence of compositional cooperation patterns among heterogeneous agents. Together, VIKI-Bench and VIKI-R offer a unified testbed and method for advancing multi-agent, visual-driven cooperation in embodied AI systems.
comment: Accepted by NeurIPS 2025 Track on Datasets and Benchmarks. Project page: https://faceong.github.io/VIKI-R/
The Percept-V Challenge: Can Multimodal LLMs Crack Simple Perception Problems?
Cognitive science research treats visual perception, the ability to understand and make sense of a visual input, as one of the early developmental signs of intelligence. Its TVPS-4 framework categorizes and tests human perception into seven skills such as visual discrimination, and form constancy. Do Multimodal Large Language Models (MLLMs) match up to humans in basic perception? Even though there are many benchmarks that evaluate MLLMs on advanced reasoning and knowledge skills, there is limited research that focuses evaluation on simple perception. In response, we introduce Percept-V, a dataset containing 6000 program-generated uncontaminated images divided into 30 domains, where each domain tests one or more TVPS-4 skills. Our focus is on perception, so we make our domains quite simple and the reasoning and knowledge required for solving them are minimal. Since modern-day MLLMs can solve much more complex tasks, our a-priori expectation is that they will solve these domains very easily. Contrary to our belief, our experiments show a weak performance of SoTA proprietary and open-source MLLMs compared to very high human performance on Percept-V. We find that as number of objects in the image increases, performance goes down rather fast. Our experiments also identify the perception skills that are considerably harder for all models.
Simulating Dual-Pixel Images From Ray Tracing For Depth Estimation
Many studies utilize dual-pixel (DP) sensor phase characteristics for various applications, such as depth estimation and deblurring. However, since the DP image features are entirely determined by the camera hardware, DP-depth paired datasets are very scarce, especially when performing depth estimation on customized cameras. To overcome this, studies simulate DP images using ideal optical system models. However, these simulations often violate real optical propagation laws, leading to poor generalization to real DP data. To address this, we investigate the domain gap between simulated and real DP data, and propose solutions using the Simulating DP images from ray tracing (Sdirt) scheme. The Sdirt generates realistic DP images via ray tracing and integrates them into the depth estimation training pipeline. Experimental results show that models trained with Sdirt-simulated images generalize better to real DP data. The code and collected datasets will be available at github.com/LinYark/Sdirt
GO-MLVTON: Garment Occlusion-Aware Multi-Layer Virtual Try-On with Diffusion Models
Existing image-based virtual try-on (VTON) methods primarily focus on single-layer or multi-garment VTON, neglecting multi-layer VTON (ML-VTON), which involves dressing multiple layers of garments onto the human body with realistic deformation and layering to generate visually plausible outcomes. The main challenge lies in accurately modeling occlusion relationships between inner and outer garments to reduce interference from redundant inner garment features. To address this, we propose GO-MLVTON, the first multi-layer VTON method, introducing the Garment Occlusion Learning module to learn occlusion relationships and the StableDiffusion-based Garment Morphing & Fitting module to deform and fit garments onto the human body, producing high-quality multi-layer try-on results. Additionally, we present the MLG dataset for this task and propose a new metric named Layered Appearance Coherence Difference (LACD) for evaluation. Extensive experiments demonstrate the state-of-the-art performance of GO-MLVTON. Project page: https://upyuyang.github.io/go-mlvton/.
comment: 5pages, 3 figures, Accepted at ICASSP 2026
Boosting Generative Image Modeling via Joint Image-Feature Synthesis NeurIPS 2025
Latent diffusion models (LDMs) dominate high-quality image generation, yet integrating representation learning with generative modeling remains a challenge. We introduce a novel generative image modeling framework that seamlessly bridges this gap by leveraging a diffusion model to jointly model low-level image latents (from a variational autoencoder) and high-level semantic features (from a pretrained self-supervised encoder like DINO). Our latent-semantic diffusion approach learns to generate coherent image-feature pairs from pure noise, significantly enhancing both generative quality and training efficiency, all while requiring only minimal modifications to standard Diffusion Transformer architectures. By eliminating the need for complex distillation objectives, our unified design simplifies training and unlocks a powerful new inference strategy: Representation Guidance, which leverages learned semantics to steer and refine image generation. Evaluated in both conditional and unconditional settings, our method delivers substantial improvements in image quality and training convergence speed, establishing a new direction for representation-aware generative modeling. Project page and code: https://representationdiffusion.github.io
comment: NeurIPS 2025 (Spotlight)
DF-LLaVA: Unlocking MLLM's potential for Synthetic Image Detection via Prompt-Guided Knowledge Injection
With the increasing prevalence of synthetic images, evaluating image authenticity and locating forgeries accurately while maintaining human interpretability remains a challenging task. Existing detection models primarily focus on simple authenticity classification, ultimately providing only a forgery probability or binary judgment, which offers limited explanatory insights into image authenticity. Moreover, while MLLM-based detection methods can provide more interpretable results, they still lag behind expert models in terms of pure authenticity classification accuracy. To address this, we propose DF-LLaVA, a simple yet effective framework that unlocks the intrinsic discrimination potential of MLLMs. Our approach first extracts latent knowledge from MLLMs and then injects it into training via prompts. This framework allows LLaVA to achieve outstanding detection accuracy exceeding expert models while still maintaining the interpretability offered by MLLMs. Extensive experiments confirm the superiority of our DF-LLaVA, achieving both high accuracy and explainability in synthetic image detection. Code is available online at: https://github.com/Eliot-Shen/DF-LLaVA.
comment: Under review
A Segmentation-driven Editing Method for Bolt Defect Augmentation and Detection
Bolt defect detection is critical to ensure the safety of transmission lines. However, the scarcity of defect images and imbalanced data distributions significantly limit detection performance. To address this problem, we propose a segmentationdriven bolt defect editing method (SBDE) to augment the dataset. First, a bolt attribute segmentation model (Bolt-SAM) is proposed, which enhances the segmentation of complex bolt attributes through the CLAHE-FFT Adapter (CFA) and Multipart- Aware Mask Decoder (MAMD), generating high-quality masks for subsequent editing tasks. Second, a mask optimization module (MOD) is designed and integrated with the image inpainting model (LaMa) to construct the bolt defect attribute editing model (MOD-LaMa), which converts normal bolts into defective ones through attribute editing. Finally, an editing recovery augmentation (ERA) strategy is proposed to recover and put the edited defect bolts back into the original inspection scenes and expand the defect detection dataset. We constructed multiple bolt datasets and conducted extensive experiments. Experimental results demonstrate that the bolt defect images generated by SBDE significantly outperform state-of-the-art image editing models, and effectively improve the performance of bolt defect detection, which fully verifies the effectiveness and application potential of the proposed method. The code of the project is available at https://github.com/Jay-xyj/SBDE.
TUN: Detecting Significant Points in Persistence Diagrams with Deep Learning
Persistence diagrams (PDs) provide a powerful tool for understanding the topology of the underlying shape of a point cloud. However, identifying which points in PDs encode genuine signals remains challenging. This challenge directly hinders the practical adoption of topological data analysis in many applications, where automated and reliable interpretation of persistence diagrams is essential for downstream decision-making. In this paper, we study automatic significance detection for one-dimensional persistence diagrams. Specifically, we propose Topology Understanding Net (TUN), a multi-modal network that combines enhanced PD descriptors with self-attention, a PointNet-style point cloud encoder, learned fusion, and per-point classification, alongside stable preprocessing and imbalance-aware training. It provides an automated and effective solution for identifying significant points in PDs, which are critical for downstream applications. Experiments show that TUN outperforms classic methods in detecting significant points in PDs, illustrating its effectiveness in real-world applications.
MultiHuman-Testbench: Benchmarking Image Generation for Multiple Humans NeurIPS 2025
Generation of images containing multiple humans, performing complex actions, while preserving their facial identities, is a significant challenge. A major factor contributing to this is the lack of a dedicated benchmark. To address this, we introduce MultiHuman-Testbench, a novel benchmark for rigorously evaluating generative models for multi-human generation. The benchmark comprises 1,800 samples, including carefully curated text prompts, describing a range of simple to complex human actions. These prompts are matched with a total of 5,550 unique human face images, sampled uniformly to ensure diversity across age, ethnic background, and gender. Alongside captions, we provide human-selected pose conditioning images which accurately match the prompt. We propose a multi-faceted evaluation suite employing four key metrics to quantify face count, ID similarity, prompt alignment, and action detection. We conduct a thorough evaluation of a diverse set of models, including zero-shot approaches and training-based methods, with and without regional priors. We also propose novel techniques to incorporate image and region isolation using human segmentation and Hungarian matching, significantly improving ID similarity. Our proposed benchmark and key findings provide valuable insights and a standardized tool for advancing research in multi-human image generation. The dataset and evaluation codes will be available at https://github.com/Qualcomm-AI-research/MultiHuman-Testbench.
comment: Accepted at the NeurIPS 2025 D&B Track
Multi-event Video-Text Retrieval ICCV2023
Video-Text Retrieval (VTR) is a crucial multi-modal task in an era of massive video-text data on the Internet. A plethora of work characterized by using a two-stream Vision-Language model architecture that learns a joint representation of video-text pairs has become a prominent approach for the VTR task. However, these models operate under the assumption of bijective video-text correspondences and neglect a more practical scenario where video content usually encompasses multiple events, while texts like user queries or webpage metadata tend to be specific and correspond to single events. This establishes a gap between the previous training objective and real-world applications, leading to the potential performance degradation of earlier models during inference. In this study, we introduce the Multi-event Video-Text Retrieval (MeVTR) task, addressing scenarios in which each video contains multiple different events, as a niche scenario of the conventional Video-Text Retrieval Task. We present a simple model, Me-Retriever, which incorporates key event video representation and a new MeVTR loss for the MeVTR task. Comprehensive experiments show that this straightforward framework outperforms other models in the Video-to-Text and Text-to-Video tasks, effectively establishing a robust baseline for the MeVTR task. We believe this work serves as a strong foundation for future studies. Code is available at https://github.com/gengyuanmax/MeVTR.
comment: [fixed typos in equations] accepted to ICCV2023 Poster; some figures are not supported when viewed online, please download the file and view locally
PatchEAD: Unifying Industrial Visual Prompting Frameworks for Patch-Exclusive Anomaly Detection WACV 2026
Industrial anomaly detection is increasingly relying on foundation models, aiming for strong out-of-distribution generalization and rapid adaptation in real-world deployments. Notably, past studies have primarily focused on textual prompt tuning, leaving the intrinsic visual counterpart fragmented into processing steps specific to each foundation model. We aim to address this limitation by proposing a unified patch-focused framework, Patch-Exclusive Anomaly Detection (PatchEAD), enabling training-free anomaly detection that is compatible with diverse foundation models. The framework constructs visual prompting techniques, including an alignment module and foreground masking. Our experiments show superior few-shot and batch zero-shot performance compared to prior work, despite the absence of textual features. Our study further examines how backbone structure and pretrained characteristics affect patch-similarity robustness, providing actionable guidance for selecting and configuring foundation models for real-world visual inspection. These results confirm that a well-unified patch-only framework can enable quick, calibration-light deployment without the need for carefully engineered textual prompts.
comment: 10 pages, 5 figures. WACV 2026 (Accepted)
Dynamic Exploration on Segment-Proposal Graphs for Tubular Centerline Tracking
Optimal curve methods provide a fundamental framework for tubular centerline tracking. Point-wise approaches, such as minimal paths, are theoretically elegant but often suffer from shortcut and short-branch combination problems in complex scenarios. Nonlocal segment-wise methods address these issues by mapping pre-extracted centerline fragments onto a segment-proposal graph, performing optimization in this abstract space, and recovering the target tubular centerline from the resulting optimal path. In this paradigm, graph construction is critical, as it directly determines the quality of the final result. However, existing segment-wise methods construct graphs in a static manner, requiring all edges and their weights to be pre-computed, i.e. the graph must be sufficiently complete prior to search. Otherwise, the true path may be absent from the candidate space, leading to search failure. To address this limitation, we propose a dynamic exploration scheme for constructing segment-proposal graphs, where the graph is built on demand during the search for optimal paths. By formulating the problem as a Markov decision process, we apply Q-learning to compute edge weights only for visited transitions and adaptively expand the action space when connectivity is insufficient. Experimental results on retinal vessels, roads, and rivers demonstrate consistent improvements over state-of-the-art methods in both accuracy and efficiency.
comment: A real time interactive model that can accurately find centerline of a tubular structure even in complex scenarios. At this version, this work is independent to deep learning-based algorithms
Decoupling Multi-Contrast Super-Resolution: Self-Supervised Implicit Re-Representation for Unpaired Cross-Modal Synthesis
Multi-contrast super-resolution (MCSR) is crucial for enhancing MRI but current deep learning methods are limited. They typically require large, paired low- and high-resolution (LR/HR) training datasets, which are scarce, and are trained for fixed upsampling scales. While recent self-supervised methods remove the paired data requirement, they fail to leverage valuable population-level priors. In this work, we propose a novel, decoupled MCSR framework that resolves both limitations. We reformulate MCSR into two stages: (1) an unpaired cross-modal synthesis (uCMS) module, trained once on unpaired population data to learn a robust anatomical prior; and (2) a lightweight, patient-specific implicit re-representation (IrR) module. This IrR module is optimized in a self-supervised manner to fuse the population prior with the subject's own LR target data. This design uniquely fuses population-level knowledge with patient-specific fidelity without requiring any paired LR/HR or paired cross-modal training data. By building the IrR module on an implicit neural representation, our framework is also inherently scale-agnostic. Our method demonstrates superior quantitative performance on different datasets, with exceptional robustness at extreme scales (16x, 32x), a regime where competing methods fail. Our work presents a data-efficient, flexible, and computationally lightweight paradigm for MCSR, enabling high-fidelity, arbitrary-scale
Skywork UniPic 2.0: Building Kontext Model with Online RL for Unified Multimodal Model
Recent advances in multimodal models have demonstrated impressive capabilities in unified image generation and editing. However, many prominent open-source models prioritize scaling model parameters over optimizing training strategies, limiting their efficiency and performance. In this work, we present UniPic2-SD3.5M-Kontext, a 2B-parameter DiT model based on SD3.5-Medium, which achieves state-of-the-art image generation and editing while extending seamlessly into a unified multimodal framework. Our approach begins with architectural modifications to SD3.5-Medium and large-scale pre-training on high-quality data, enabling joint text-to-image generation and editing capabilities. To enhance instruction following and editing consistency, we propose a novel Progressive Dual-Task Reinforcement strategy (PDTR), which effectively strengthens both tasks in a staged manner. We empirically validate that the reinforcement phases for different tasks are mutually beneficial and do not induce negative interference. After pre-training and reinforcement strategies, UniPic2-SD3.5M-Kontext demonstrates stronger image generation and editing capabilities than models with significantly larger generation parameters-including BAGEL (7B) and Flux-Kontext (12B). Furthermore, following the MetaQuery, we connect the UniPic2-SD3.5M-Kontext and Qwen2.5-VL-7B via a connector and perform joint training to launch a unified multimodal model UniPic2-Metaquery. UniPic2-Metaquery integrates understanding, generation, and editing, achieving top-tier performance across diverse tasks with a simple and scalable training paradigm. This consistently validates the effectiveness and generalizability of our proposed training paradigm, which we formalize as Skywork UniPic 2.0.
SURE-Med: Systematic Uncertainty Reduction for Enhanced Reliability in Medical Report Generation
Automated medical report generation (MRG) holds great promise for reducing the heavy workload of radiologists. However, its clinical deployment is hindered by three major sources of uncertainty. First, visual uncertainty, caused by noisy or incorrect view annotations, compromises feature extraction. Second, label distribution uncertainty, stemming from long-tailed disease prevalence, biases models against rare but clinically critical conditions. Third, contextual uncertainty, introduced by unverified historical reports, often leads to factual hallucinations. These challenges collectively limit the reliability and clinical trustworthiness of MRG systems. To address these issues, we propose SURE-Med, a unified framework that systematically reduces uncertainty across three critical dimensions: visual, distributional, and contextual. To mitigate visual uncertainty, a Frontal-Aware View Repair Resampling module corrects view annotation errors and adaptively selects informative features from supplementary views. To tackle label distribution uncertainty, we introduce a Token Sensitive Learning objective that enhances the modeling of critical diagnostic sentences while reweighting underrepresented diagnostic terms, thereby improving sensitivity to infrequent conditions. To reduce contextual uncertainty, our Contextual Evidence Filter validates and selectively incorporates prior information that aligns with the current image, effectively suppressing hallucinations. Extensive experiments on the MIMIC-CXR and IU-Xray benchmarks demonstrate that SURE-Med achieves state-of-the-art performance. By holistically reducing uncertainty across multiple input modalities, SURE-Med sets a new benchmark for reliability in medical report generation and offers a robust step toward trustworthy clinical decision support.
comment: fix some problems
Scribble-Supervised Medical Image Segmentation with Dynamic Teacher Switching and Hierarchical Consistency
Scribble-supervised methods have emerged to mitigate the prohibitive annotation burden in medical image segmentation. However, the inherent sparsity of these annotations introduces significant ambiguity, which results in noisy pseudo-label propagation and hinders the learning of robust anatomical boundaries. To address this challenge, we propose SDT-Net, a novel dual-teacher, single-student framework designed to maximize supervision quality from these weak signals. Our method features a Dynamic Teacher Switching (DTS) module to adaptively select the most reliable teacher. This selected teacher then guides the student via two synergistic mechanisms: high-confidence pseudo-labels, refined by a Pick Reliable Pixels (PRP) mechanism, and multi-level feature alignment, enforced by a Hierarchical Consistency (HiCo) module. Extensive experiments on the ACDC and MSCMRseg datasets demonstrate that SDT-Net achieves state-of-the-art performance, producing more accurate and anatomically plausible segmentation.
StyMam: A Mamba-Based Generator for Artistic Style Transfer
Image style transfer aims to integrate the visual patterns of a specific artistic style into a content image while preserving its content structure. Existing methods mainly rely on the generative adversarial network (GAN) or stable diffusion (SD). GAN-based approaches using CNNs or Transformers struggle to jointly capture local and global dependencies, leading to artifacts and disharmonious patterns. SD-based methods reduce such issues but often fail to preserve content structures and suffer from slow inference. To address these issues, we revisit GAN and propose a mamba-based generator, termed as StyMam, to produce high-quality stylized images without introducing artifacts and disharmonious patterns. Specifically, we introduce a mamba-based generator with a residual dual-path strip scanning mechanism and a channel-reweighted spatial attention module. The former efficiently captures local texture features, while the latter models global dependencies. Finally, extensive qualitative and quantitative experiments demonstrate that the proposed method outperforms state-of-the-art algorithms in both quality and speed.
comment: Accepted by ICASSP 2026
Real-Time Object Detection Meets DINOv3
Benefiting from the simplicity and effectiveness of Dense O2O and MAL, DEIM has become the mainstream training framework for real-time DETRs, significantly outperforming the YOLO series. In this work, we extend it with DINOv3 features, resulting in DEIMv2. DEIMv2 spans eight model sizes from X to Atto, covering GPU, edge, and mobile deployment. For the X, L, M, and S variants, we adopt DINOv3-pretrained or distilled backbones and introduce a Spatial Tuning Adapter (STA), which efficiently converts DINOv3's single-scale output into multi-scale features and complements strong semantics with fine-grained details to enhance detection. For ultra-lightweight models (Nano, Pico, Femto, and Atto), we employ HGNetv2 with depth and width pruning to meet strict resource budgets. Together with a simplified decoder and an upgraded Dense O2O, this unified design enables DEIMv2 to achieve a superior performance-cost trade-off across diverse scenarios, establishing new state-of-the-art results. Notably, our largest model, DEIMv2-X, achieves 57.8 AP with only 50.3 million parameters, surpassing prior X-scale models that require over 60 million parameters for just 56.5 AP. On the compact side, DEIMv2-S is the first sub-10 million model (9.71 million) to exceed the 50 AP milestone on COCO, reaching 50.9 AP. Even the ultra-lightweight DEIMv2-Pico, with just 1.5 million parameters, delivers 38.5 AP, matching YOLOv10-Nano (2.3 million) with around 50 percent fewer parameters. Our code and pre-trained models are available at https://github.com/Intellindust-AI-Lab/DEIMv2
comment: Source code available at https://github.com/Intellindust-AI-Lab/DEIMv2
Efficient Multimodal Large Language Models: A Survey
In the past year, Multimodal Large Language Models (MLLMs) have demonstrated remarkable performance in tasks such as visual question answering, visual understanding and reasoning. However, the extensive model size and high training and inference costs have hindered the widespread application of MLLMs in academia and industry. Thus, studying efficient and lightweight MLLMs has enormous potential, especially in edge computing scenarios. In this survey, we provide a comprehensive and systematic review of the current state of efficient MLLMs. Specifically, we summarize the timeline of representative efficient MLLMs, research state of efficient structures and strategies, and the applications. Finally, we discuss the limitations of current efficient MLLM research and promising future directions. Please refer to our GitHub repository for more details: https://github.com/lijiannuist/Efficient-Multimodal-LLMs-Survey.
comment: Accepted by Visual Intelligence
Vision-as-Inverse-Graphics Agent via Interleaved Multimodal Reasoning
Vision-as-inverse-graphics, the concept of reconstructing an image as an editable graphics program is a long-standing goal of computer vision. Yet even strong VLMs aren't able to achieve this in one-shot as they lack fine-grained spatial and physical grounding capability. Our key insight is that closing this gap requires interleaved multimodal reasoning through iterative execution and verification. Stemming from this, we present VIGA (Vision-as-Inverse-Graphic Agent) that starts from an empty world and reconstructs or edits scenes through a closed-loop write-run-render-compare-revise procedure. To support long-horizon reasoning, VIGA combines (i) a skill library that alternates generator and verifier roles and (ii) an evolving context memory that contains plans, code diffs, and render history. VIGA is task-agnostic as it doesn't require auxiliary modules, covering a wide range of tasks such as 3D reconstruction, multi-step scene editing, 4D physical interaction, and 2D document editing, etc. Empirically, we found VIGA substantially improves one-shot baselines on BlenderGym (35.32%) and SlideBench (117.17%). Moreover, VIGA is also model-agnostic as it doesn't require finetuning, enabling a unified protocol to evaluate heterogeneous foundation VLMs. To better support this protocol, we introduce BlenderBench, a challenging benchmark that stress-tests interleaved multimodal reasoning with graphics engine, where VIGA improves by 124.70%.
comment: Project page: https://fugtemypt123.github.io/VIGA-website/
Divide, Conquer and Unite: Hierarchical Style-Recalibrated Prototype Alignment for Federated Medical Segmentation AAAI-26
Federated learning enables multiple medical institutions to train a global model without sharing data, yet feature heterogeneity from diverse scanners or protocols remains a major challenge. Many existing works attempt to address this issue by leveraging model representations (e.g., mean feature vectors) to correct local training; however, they often face two key limitations: 1) Incomplete Contextual Representation Learning: Current approaches primarily focus on final-layer features, overlooking critical multi-level cues and thus diluting essential context for accurate segmentation. 2) Layerwise Style Bias Accumulation: Although utilizing representations can partially align global features, these methods neglect domain-specific biases within intermediate layers, allowing style discrepancies to build up and reduce model robustness. To address these challenges, we propose FedBCS to bridge feature representation gaps via domain-invariant contextual prototypes alignment. Specifically, we introduce a frequency-domain adaptive style recalibration into prototype construction that not only decouples content-style representations but also learns optimal style parameters, enabling more robust domain-invariant prototypes. Furthermore, we design a context-aware dual-level prototype alignment method that extracts domain-invariant prototypes from different layers of both encoder and decoder and fuses them with contextual information for finer-grained representation alignment. Extensive experiments on two public datasets demonstrate that our method exhibits remarkable performance.
comment: Accepted at AAAI-26
DECOR: Deep Embedding Clustering with Orientation Robustness AAAI 2026
In semiconductor manufacturing, early detection of wafer defects is critical for product yield optimization. However, raw wafer data from wafer quality tests are often complex, unlabeled, imbalanced and can contain multiple defects on a single wafer, making it crucial to design clustering methods that remain reliable under such imperfect data conditions. We introduce DECOR, a deep clustering with orientation robustness framework that groups complex defect patterns from wafer maps into consistent clusters. We evaluate our method on the open source MixedWM38 dataset, demonstrating its ability to discover clusters without manual tuning. DECOR explicitly accounts for orientation variations in wafer maps, ensuring that spatially similar defects are consistently clustered regardless of its rotation or alignment. Experiments indicate that our method outperforms existing clustering baseline methods, thus providing a reliable and scalable solution in automated visual inspection systems.
comment: Accepted to the KGML Bridge at AAAI 2026 (non-archival)
Adaptive Multimodal Person Recognition: A Robust Framework for Handling Missing Modalities
Person identification systems often rely on audio, visual, or behavioral cues, but real-world conditions frequently result in missing or degraded modalities. To address this challenge, we propose a multimodal person identification framework that utilizes gesture as a situational enhancer to supplement traditional modalities like voice and face. Our model employs a unified hybrid fusion strategy, integrating both feature-level and score-level information to maximize representational richness and decision accuracy. Specifically, it leverages multi-task learning to process modalities independently, followed by cross-attention and gated fusion mechanisms. Finally, a confidence-weighted strategy dynamically adapts to missing data, ensuring that our single classification head achieves optimal performance even in unimodal and bimodal scenarios. We evaluate our method on CANDOR, a newly introduced interview-based multimodal dataset, which we benchmark in this work for the first time. Our results demonstrate that the proposed trimodal system achieves 99.51% Top-1 accuracy on person identification tasks. In addition, we evaluate our model on the VoxCeleb1 dataset as a benchmark and reach 99.92% accuracy in bimodal mode, outperforming conventional approaches. Moreover, we show that our system maintains high accuracy even when one or two modalities are unavailable, making it a robust solution for real-world person recognition applications. The code and data for this work are publicly available.
comment: 9 pages and 8 tables
VOCAL: Visual Odometry via ContrAstive Learning WACV 2026
Breakthroughs in visual odometry (VO) have fundamentally reshaped the landscape of robotics, enabling ultra-precise camera state estimation that is crucial for modern autonomous systems. Despite these advances, many learning-based VO techniques rely on rigid geometric assumptions, which often fall short in interpretability and lack a solid theoretical basis within fully data-driven frameworks. To overcome these limitations, we introduce VOCAL (Visual Odometry via ContrAstive Learning), a novel framework that reimagines VO as a label ranking challenge. By integrating Bayesian inference with a representation learning framework, VOCAL organizes visual features to mirror camera states. The ranking mechanism compels similar camera states to converge into consistent and spatially coherent representations within the latent space. This strategic alignment not only bolsters the interpretability of the learned features but also ensures compatibility with multimodal data sources. Extensive evaluations on the KITTI dataset highlight VOCAL's enhanced interpretability and flexibility, pushing VO toward more general and explainable spatial intelligence.
comment: Accepted to WACV 2026
Bootstrapping, autonomous testing, and initialization system for Si/Si$_x$Ge$_{1-x}$ multi-quantum-dot devices
Semiconductor quantum dot (QD) devices have become central to advancements in spin-based quantum computing. However, the increasing complexity of modern QD devices makes calibration and control -- particularly at elevated temperatures -- a bottleneck to progress, highlighting the need for robust and scalable autonomous solutions. A major hurdle arises from trapped charges within the oxide layers, which induce random offset voltage shifts on gate electrodes, with a standard deviation of approximately 83 mV of variation within state-of-the-art present-day devices. Efficient characterization and tuning of large arrays of QD qubits depend on choices of automated protocols. Here, we introduce a physically intuitive framework for a bootstrapping, autonomous testing, and initialization system (BATIS) designed to streamline QD device evaluation and calibration. BATIS navigates high-dimensional gate voltage spaces, automating essential steps such as leakage testing, formation of all current channels, and gate characterization in the presence of trapped charges. For forming the current channels, BATIS follows a non-standard approach that requires a single set of measurements regardless of the number of channels. Demonstrated at 1.3 K on a quad-QD Si/Si$_x$Ge$_{1-x}$ device, BATIS eliminates the need for deep cryogenic environments during initial device diagnostics, significantly enhancing scalability and reducing setup times. By requiring only minimal prior knowledge of the device architecture, BATIS represents a platform-agnostic solution, adaptable to various QD systems, which bridges a critical gap in QD autotuning.
comment: 13 pages, 6 figures, 3 pages of supplemental material
The Spatial Blindspot of Vision-Language Models
Vision-language models (VLMs) have advanced rapidly, but their ability to capture spatial relationships remains a blindspot. Current VLMs are typically built with contrastive language-image pretraining (CLIP) style image encoders. The training recipe often flattens images into 1D patch sequences, discarding the 2D structure necessary for spatial reasoning. We argue that this lack of spatial awareness is a missing dimension in VLM design and a bottleneck for applications requiring spatial grounding, such as robotics and embodied AI. To address this, we investigate (i) image encoders trained with alternative objectives and (ii) 2D positional encodings. Our experiments show that these architectural choices can lead to improved spatial reasoning on several benchmarks.
comment: Work done as part of the EleutherAI SOAR Program
Artificial Intelligence 201
Why Can't I Open My Drawer? Mitigating Object-Driven Shortcuts in Zero-Shot Compositional Action Recognition
We study Compositional Video Understanding (CVU), where models must recognize verbs and objects and compose them to generalize to unseen combinations. We find that existing Zero-Shot Compositional Action Recognition (ZS-CAR) models fail primarily due to an overlooked failure mode: object-driven verb shortcuts. Through systematic analysis, we show that this behavior arises from two intertwined factors: severe sparsity and skewness of compositional supervision, and the asymmetric learning difficulty between verbs and objects. As training progresses, the existing ZS-CAR model increasingly ignores visual evidence and overfits to co-occurrence statistics. Consequently, the existing model does not gain the benefit of compositional recognition in unseen verb-object compositions. To address this, we propose RCORE, a simple and effective framework that enforces temporally grounded verb learning. RCORE introduces (i) a composition-aware augmentation that diversifies verb-object combinations without corrupting motion cues, and (ii) a temporal order regularization loss that penalizes shortcut behaviors by explicitly modeling temporal structure. Across two benchmarks, Sth-com and our newly constructed EK100-com, RCORE significantly improves unseen composition accuracy, reduces reliance on co-occurrence bias, and achieves consistently positive compositional gaps. Our findings reveal object-driven shortcuts as a critical limiting factor in ZS-CAR and demonstrate that addressing them is essential for robust compositional video understanding.
comment: The code is available at https://github.com/KHU-VLL/RCORE
PyraTok: Language-Aligned Pyramidal Tokenizer for Video Understanding and Generation
Discrete video VAEs underpin modern text-to-video generation and video understanding systems, yet existing tokenizers typically learn visual codebooks at a single scale with limited vocabularies and shallow language supervision, leading to poor cross-modal alignment and zero-shot transfer. We introduce PyraTok, a language-aligned pyramidal tokenizer that learns semantically structured discrete latents across multiple spatiotemporal resolutions. PyraTok builds on a pretrained video VAE and a novel Language aligned Pyramidal Quantization (LaPQ) module that discretizes encoder features at several depths using a shared large binary codebook, yielding compact yet expressive video token sequences. To tightly couple visual tokens with language, PyraTok jointly optimizes multi-scale text-guided quantization and a global autoregressive objective over the token hierarchy. Across ten benchmarks, PyraTok delivers state-of-the-art (SOTA) video reconstruction, consistently improves text-to-video quality, and sets new SOTA zero-shot performance on video segmentation, temporal action localization, and video understanding, scaling robustly to up to 4K/8K resolutions.
LLM-in-Sandbox Elicits General Agentic Intelligence
We introduce LLM-in-Sandbox, enabling LLMs to explore within a code sandbox (i.e., a virtual computer), to elicit general intelligence in non-code domains. We first demonstrate that strong LLMs, without additional training, exhibit generalization capabilities to leverage the code sandbox for non-code tasks. For example, LLMs spontaneously access external resources to acquire new knowledge, leverage the file system to handle long contexts, and execute scripts to satisfy formatting requirements. We further show that these agentic capabilities can be enhanced through LLM-in-Sandbox Reinforcement Learning (LLM-in-Sandbox-RL), which uses only non-agentic data to train models for sandbox exploration. Experiments demonstrate that LLM-in-Sandbox, in both training-free and post-trained settings, achieves robust generalization spanning mathematics, physics, chemistry, biomedicine, long-context understanding, and instruction following. Finally, we analyze LLM-in-Sandbox's efficiency from computational and system perspectives, and open-source it as a Python package to facilitate real-world deployment.
comment: Project Page: https://llm-in-sandbox.github.io
Counterfactual Training: Teaching Models Plausible and Actionable Explanations
We propose a novel training regime termed counterfactual training that leverages counterfactual explanations to increase the explanatory capacity of models. Counterfactual explanations have emerged as a popular post-hoc explanation method for opaque machine learning models: they inform how factual inputs would need to change in order for a model to produce some desired output. To be useful in real-world decision-making systems, counterfactuals should be plausible with respect to the underlying data and actionable with respect to the feature mutability constraints. Much existing research has therefore focused on developing post-hoc methods to generate counterfactuals that meet these desiderata. In this work, we instead hold models directly accountable for the desired end goal: counterfactual training employs counterfactuals during the training phase to minimize the divergence between learned representations and plausible, actionable explanations. We demonstrate empirically and theoretically that our proposed method facilitates training models that deliver inherently desirable counterfactual explanations and additionally exhibit improved adversarial robustness.
comment: This work has been accepted for publication at the 2026 IEEE Conference on Secure and Trustworthy Machine Learning (SaTML). The final version will be available on IEEE Xplore
Learning to Discover at Test Time
How can we use AI to discover a new state of the art for a scientific problem? Prior work in test-time scaling, such as AlphaEvolve, performs search by prompting a frozen LLM. We perform reinforcement learning at test time, so the LLM can continue to train, but now with experience specific to the test problem. This form of continual learning is quite special, because its goal is to produce one great solution rather than many good ones on average, and to solve this very problem rather than generalize to other problems. Therefore, our learning objective and search subroutine are designed to prioritize the most promising solutions. We call this method Test-Time Training to Discover (TTT-Discover). Following prior work, we focus on problems with continuous rewards. We report results for every problem we attempted, across mathematics, GPU kernel engineering, algorithm design, and biology. TTT-Discover sets the new state of the art in almost all of them: (i) Erdős' minimum overlap problem and an autocorrelation inequality; (ii) a GPUMode kernel competition (up to $2\times$ faster than prior art); (iii) past AtCoder algorithm competitions; and (iv) denoising problem in single-cell analysis. Our solutions are reviewed by experts or the organizers. All our results are achieved with an open model, OpenAI gpt-oss-120b, and can be reproduced with our publicly available code, in contrast to previous best results that required closed frontier models. Our test-time training runs are performed using Tinker, an API by Thinking Machines, with a cost of only a few hundred dollars per problem.
comment: Code: https://github.com/test-time-training/discover
Structured Hints for Sample-Efficient Lean Theorem Proving
State-of-the-art neural theorem provers like DeepSeek-Prover-V1.5 combine large language models with reinforcement learning, achieving impressive results through sophisticated training. We ask: do these highly-trained models still benefit from simple structural guidance at inference time? We evaluate a lightweight intervention -- a fixed prompt schedule over 15 common tactic skeletons -- on the miniF2F benchmark. This simple approach yields 21.7% pass@16 compared to 15.2% for standard sampling from the same model, a 43% relative improvement using the same number of samples (k=16) and same maximum generation length (1024 tokens). Our results suggest that even capable RL-trained provers underutilize structural priors available in the tactic language, and that simple inference-time guidance remains a cheap, complementary boost.
comment: 9 pages, 1 figure
Cosmos Policy: Fine-Tuning Video Models for Visuomotor Control and Planning
Recent video generation models demonstrate remarkable ability to capture complex physical interactions and scene evolution over time. To leverage their spatiotemporal priors, robotics works have adapted video models for policy learning but introduce complexity by requiring multiple stages of post-training and new architectural components for action generation. In this work, we introduce Cosmos Policy, a simple approach for adapting a large pretrained video model (Cosmos-Predict2) into an effective robot policy through a single stage of post-training on the robot demonstration data collected on the target platform, with no architectural modifications. Cosmos Policy learns to directly generate robot actions encoded as latent frames within the video model's latent diffusion process, harnessing the model's pretrained priors and core learning algorithm to capture complex action distributions. Additionally, Cosmos Policy generates future state images and values (expected cumulative rewards), which are similarly encoded as latent frames, enabling test-time planning of action trajectories with higher likelihood of success. In our evaluations, Cosmos Policy achieves state-of-the-art performance on the LIBERO and RoboCasa simulation benchmarks (98.5% and 67.1% average success rates, respectively) and the highest average score in challenging real-world bimanual manipulation tasks, outperforming strong diffusion policies trained from scratch, video model-based policies, and state-of-the-art vision-language-action models fine-tuned on the same robot demonstrations. Furthermore, given policy rollout data, Cosmos Policy can learn from experience to refine its world model and value function and leverage model-based planning to achieve even higher success rates in challenging tasks. We release code, models, and training data at https://research.nvidia.com/labs/dir/cosmos-policy/
Substrate Stability Under Persistent Disagreement: Structural Constraints for Neutral Ontological Substrates
Modern data systems increasingly operate under conditions of persistent legal, political, and analytic disagreement. In such settings, interoperability cannot rely on shared interpretation, negotiated semantics, or centralized authority. Instead, representations must function as neutral substrates that preserve stable reference across incompatible extensions. This paper investigates the structural constraints imposed on ontological design by this requirement. Building on a neutrality framework that treats interpretive non-commitment and stability under extension as explicit design constraints, we ask what minimal ontological structure is forced if accountability relationships are to remain referable and comparable under disagreement. Minimality here is not mere parsimony: a reduction is admissible only if it does not reintroduce stability-critical distinctions as hidden roles, flags, or contextual predicates. We establish a conditional lower-bound result: any ontology capable of supporting accountability under persistent disagreement must realize at least six distinct identity-and-persistence regimes. We further show that a construction with exactly six such regimes is sufficient to satisfy the stated requirements without embedding causal or normative commitments in the substrate. The result is not a proposal for a universal ontology, but a constraint on what is possible when neutrality and stable reference are treated as non-negotiable design goals.
comment: 29 pages
Pay (Cross) Attention to the Melody: Curriculum Masking for Single-Encoder Melodic Harmonization
Melodic harmonization, the task of generating harmonic accompaniments for a given melody, remains a central challenge in computational music generation. Recent single encoder transformer approaches have framed harmonization as a masked sequence modeling problem, but existing training curricula inspired by discrete diffusion often result in weak (cross) attention between melody and harmony. This leads to limited exploitation of melodic cues, particularly in out-of-domain contexts. In this work, we introduce a training curriculum, FF (full-to-full), which keeps all harmony tokens masked for several training steps before progressively unmasking entire sequences during training to strengthen melody-harmony interactions. We systematically evaluate this approach against prior curricula across multiple experimental axes, including temporal quantization (quarter vs. sixteenth note), bar-level vs. time-signature conditioning, melody representation (full range vs. pitch class), and inference-time unmasking strategies. Models are trained on the HookTheory dataset and evaluated both in-domain and on a curated collection of jazz standards, using a comprehensive set of metrics that assess chord progression structure, harmony-melody alignment, and rhythmic coherence. Results demonstrate that the proposed FF curriculum consistently outperforms baselines in nearly all metrics, with particularly strong gains in out-of-domain evaluations where harmonic adaptability to novel melodic queues is crucial. We further find that quarter-note quantization, intertwining of bar tokens, and pitch-class melody representations are advantageous in the FF setting. Our findings highlight the importance of training curricula in enabling effective melody conditioning and suggest that full-to-full unmasking offers a robust strategy for single encoder harmonization.
Learning to Watermark in the Latent Space of Generative Models
Existing approaches for watermarking AI-generated images often rely on post-hoc methods applied in pixel space, introducing computational overhead and potential visual artifacts. In this work, we explore latent space watermarking and introduce DistSeal, a unified approach for latent watermarking that works across both diffusion and autoregressive models. Our approach works by training post-hoc watermarking models in the latent space of generative models. We demonstrate that these latent watermarkers can be effectively distilled either into the generative model itself or into the latent decoder, enabling in-model watermarking. The resulting latent watermarks achieve competitive robustness while offering similar imperceptibility and up to 20x speedup compared to pixel-space baselines. Our experiments further reveal that distilling latent watermarkers outperforms distilling pixel-space ones, providing a solution that is both more efficient and more robust.
comment: Code and models are available at https://github.com/facebookresearch/distseal
LLM Prompt Evaluation for Educational Applications
As large language models (LLMs) become increasingly common in educational applications, there is a growing need for evidence-based methods to design and evaluate LLM prompts that produce personalized and pedagogically aligned out-puts. This study presents a generalizable, systematic approach for evaluating prompts, demonstrated through an analysis of LLM-generated follow-up questions in a structured dialogue activity. Six prompt templates were designed and tested. The templates incorporated established prompt engineering patterns, with each prompt emphasizing distinct pedagogical strategies. The prompt templates were compared through a tournament-style evaluation framework that can be adapted for other educational applications. The tournament employed the Glicko2 rating system with eight judges evaluating question pairs across three dimensions: format, dialogue support, and appropriateness for learners. Data was sourced from 120 authentic user interactions across three distinct educational deployments. Results showed that a single prompt related to strategic reading out-performed other templates with win probabilities ranging from 81% to 100% in pairwise comparisons. This prompt combined persona and context manager pat-terns and was designed to support metacognitive learning strategies such as self-directed learning. The methodology showcases how educational technology re- searchers can systematically evaluate and improve prompt designs, moving beyond ad-hoc prompt engineering toward evidence-based prompt development for educational applications.
Replicating Human Motivated Reasoning Studies with LLMs
Motivated reasoning -- the idea that individuals processing information may be motivated to reach a certain conclusion, whether it be accurate or predetermined -- has been well-explored as a human phenomenon. However, it is unclear whether base LLMs mimic these motivational changes. Replicating 4 prior political motivated reasoning studies, we find that base LLM behavior does not align with expected human behavior. Furthermore, base LLM behavior across models shares some similarities, such as smaller standard deviations and inaccurate argument strength assessments. We emphasize the importance of these findings for researchers using LLMs to automate tasks such as survey data collection and argument assessment.
Improving Training Efficiency and Reducing Maintenance Costs via Language Specific Model Merging
Fine-tuning a task-specific multilingual large language model (LLM) involves training the model on a multilingual dataset with examples in all the required languages. Updating one or more supported languages with additional data or adding support for a new language involves retraining the model, which can be computationally inefficient and creates a severe maintenance bottleneck. Recent research on merging multilingual multitask models has shown promise in terms of improved quality, but its computational and maintenance efficiency remains unstudied. In this work, we provide the first focused analysis of this merging strategy from an efficiency perspective, evaluating it across three independent tasks. We demonstrate significant efficiency gains while maintaining parity in terms of quality: this merging approach reduces the initial training time by up to 50\%. We also demonstrate that updating an individual language and re-merging as part of model maintenance reduces training costs by more than 60\%, compared to re-training the full multilingual model. We show this on both public and proprietary industry datasets confirming that the approach works well for industrial use cases in addition to academic settings already studied in previous work.
Multimodal Climate Disinformation Detection: Integrating Vision-Language Models with External Knowledge Sources
Climate disinformation has become a major challenge in today digital world, especially with the rise of misleading images and videos shared widely on social media. These false claims are often convincing and difficult to detect, which can delay actions on climate change. While vision-language models (VLMs) have been used to identify visual disinformation, they rely only on the knowledge available at the time of training. This limits their ability to reason about recent events or updates. The main goal of this paper is to overcome that limitation by combining VLMs with external knowledge. By retrieving up-to-date information such as reverse image results, online fact-checks, and trusted expert content, the system can better assess whether an image and its claim are accurate, misleading, false, or unverifiable. This approach improves the model ability to handle real-world climate disinformation and supports efforts to protect public understanding of science in a rapidly changing information landscape.
Delayed Assignments in Online Non-Centroid Clustering with Stochastic Arrivals
Clustering is a fundamental problem, aiming to partition a set of elements, like agents or data points, into clusters such that elements in the same cluster are closer to each other than to those in other clusters. In this paper, we present a new framework for studying online non-centroid clustering with delays, where elements, that arrive one at a time as points in a finite metric space, should be assigned to clusters, but assignments need not be immediate. Specifically, upon arrival, each point's location is revealed, and an online algorithm has to irrevocably assign it to an existing cluster or create a new one containing, at this moment, only this point. However, we allow decisions to be postponed at a delay cost, instead of following the more common assumption of immediate decisions upon arrival. This poses a critical challenge: the goal is to minimize both the total distance costs between points in each cluster and the overall delay costs incurred by postponing assignments. In the classic worst-case arrival model, where points arrive in an arbitrary order, no algorithm has a competitive ratio better than sublogarithmic in the number of points. To overcome this strong impossibility, we focus on a stochastic arrival model, where points' locations are drawn independently across time from an unknown and fixed probability distribution over the finite metric space. We offer hope for beyond worst-case adversaries: we devise an algorithm that is constant competitive in the sense that, as the number of points grows, the ratio between the expected overall costs of the output clustering and an optimal offline clustering is bounded by a constant.
comment: To Appear in the 25th International Conference on Autonomous Agents and Multiagent Systems (AAMAS), 2026
Controlling Long-Horizon Behavior in Language Model Agents with Explicit State Dynamics
Large language model (LLM) agents often exhibit abrupt shifts in tone and persona during extended interaction, reflecting the absence of explicit temporal structure governing agent-level state. While prior work emphasizes turn-local sentiment or static emotion classification, the role of explicit affective dynamics in shaping long-horizon agent behavior remains underexplored. This work investigates whether imposing dynamical structure on an external affective state can induce temporal coherence and controlled recovery in multi-turn dialogue. We introduce an agent-level affective subsystem that maintains a continuous Valence-Arousal-Dominance (VAD) state external to the language model and governed by first- and second-order update rules. Instantaneous affective signals are extracted using a fixed, memoryless estimator and integrated over time via exponential smoothing or momentum-based dynamics. The resulting affective state is injected back into generation without modifying model parameters. Using a fixed 25-turn dialogue protocol, we compare stateless, first-order, and second-order affective dynamics. Stateless agents fail to exhibit coherent trajectories or recovery, while state persistence enables delayed responses and reliable recovery. Second-order dynamics introduce affective inertia and hysteresis that increase with momentum, revealing a trade-off between stability and responsiveness.
comment: Supplementary materials can be found here: https://github.com/drsukeshs/agent-behavior-ext-dynamics
Probably Approximately Correct Maximum A Posteriori Inference
Computing the conditional mode of a distribution, better known as the $\mathit{maximum\ a\ posteriori}$ (MAP) assignment, is a fundamental task in probabilistic inference. However, MAP estimation is generally intractable, and remains hard even under many common structural constraints and approximation schemes. We introduce $\mathit{probably\ approximately\ correct}$ (PAC) algorithms for MAP inference that provide provably optimal solutions under variable and fixed computational budgets. We characterize tractability conditions for PAC-MAP using information theoretic measures that can be estimated from finite samples. Our PAC-MAP solvers are efficiently implemented using probabilistic circuits with appropriate architectures. The randomization strategies we develop can be used either as standalone MAP inference techniques or to improve on popular heuristics, fortifying their solutions with rigorous guarantees. Experiments confirm the benefits of our method in a range of benchmarks.
comment: 7 pages main text, 16 total, 3 figures
Designing faster mixed integer linear programming algorithm via learning the optimal path
Designing faster algorithms for solving Mixed-Integer Linear Programming (MILP) problems is highly desired across numerous practical domains, as a vast array of complex real-world challenges can be effectively modeled as MILP formulations. Solving these problems typically employs the branch-and-bound algorithm, the core of which can be conceived as searching for a path of nodes (or sub-problems) that contains the optimal solution to the original MILP problem. Traditional approaches to finding this path rely heavily on hand-crafted, intuition-based heuristic strategies, which often suffer from unstable and unpredictable performance across different MILP problem instances. To address this limitation, we introduce DeepBound, a deep learning-based node selection algorithm that automates the learning of such human intuition from data. The core of DeepBound lies in learning to prioritize nodes containing the optimal solution, thereby improving solving efficiency. DeepBound introduces a multi-level feature fusion network to capture the node representations. To tackle the inherent node imbalance in branch-and-bound trees, DeepBound employs a pairwise training paradigm that enhances the model's ability to discriminate between nodes. Extensive experiments on three NP-hard MILP benchmarks demonstrate that DeepBound achieves superior solving efficiency over conventional heuristic rules and existing learning-based approaches, obtaining optimal feasible solutions with significantly reduced computation time. Moreover, DeepBound demonstrates strong generalization capability on large and complex instances. The analysis of its learned features reveals that the method can automatically discover more flexible and robust feature selection, which may effectively improve and potentially replace human-designed heuristic rules.
AgriPINN: A Process-Informed Neural Network for Interpretable and Scalable Crop Biomass Prediction Under Water Stress
Accurate prediction of crop above-ground biomass (AGB) under water stress is critical for monitoring crop productivity, guiding irrigation, and supporting climate-resilient agriculture. Data-driven models scale well but often lack interpretability and degrade under distribution shift, whereas process-based crop models (e.g. DSSAT, APSIM, LINTUL5) require extensive calibration and are difficult to deploy over large spatial domains. To address these limitations, we propose AgriPINN, a process-informed neural network that integrates a biophysical crop-growth differential equation as a differentiable constraint within a deep learning backbone. This design encourages physiologically consistent biomass dynamics under water-stress conditions while preserving model scalability for spatially distributed AGB prediction. AgriPINN recovers latent physiological variables, including leaf area index (LAI), absorbed photosynthetically active radiation (PAR), radiation use efficiency (RUE), and water-stress factors, without requiring direct supervision. We pretrain AgriPINN on 60 years of historical data across 397 regions in Germany and fine-tune it on three years of field experiments under controlled water treatments. Results show that AgriPINN consistently outperforms state-of-the-art deep-learning baselines (ConvLSTM-ViT, SLTF, CNN-Transformer) and the process-based LINTUL5 model in terms of accuracy (RMSE reductions up to $43\%$) and computational efficiency. By combining the scalability of deep learning with the biophysical rigor of process-based modeling, AgriPINN provides a robust and interpretable framework for spatio-temporal AGB prediction, offering practical value for planning of irrigation infrastructure, yield forecasting, and climate-adaptation planning.
Grounding Large Language Models in Reaction Knowledge Graphs for Synthesis Retrieval
Large Language Models (LLMs) can aid synthesis planning in chemistry, but standard prompting methods often yield hallucinated or outdated suggestions. We study LLM interactions with a reaction knowledge graph by casting reaction path retrieval as a Text2Cypher (natural language to graph query) generation problem, and define single- and multi-step retrieval tasks. We compare zero-shot prompting to one-shot variants using static, random, and embedding-based exemplar selection, and assess a checklist-driven validator/corrector loop. To evaluate our framework, we consider query validity and retrieval accuracy. We find that one-shot prompting with aligned exemplars consistently performs best. Our checklist-style self-correction loop mainly improves executability in zero-shot settings and offers limited additional retrieval gains once a good exemplar is present. We provide a reproducible Text2Cypher evaluation setup to facilitate further work on KG-grounded LLMs for synthesis planning. Code is available at https://github.com/Intelligent-molecular-systems/KG-LLM-Synthesis-Retrieval.
comment: Accepted at ML4Molecules 2025 (ELLIS UnConference workshop), Copenhagen, Denmark, December 2, 2025. Workshop page: https://moleculediscovery.github.io/workshop2025/
Sawtooth Wavefront Reordering: Enhanced CuTile FlashAttention on NVIDIA GB10
High-performance attention kernels are essential for Large Language Models. This paper presents analysis of CuTile-based Flash Attention memory behavior and a technique to improve its cache performance. In particular, our analysis on the NVIDIA GB10 (Grace Blackwell) identifies the main cause of L2 cache miss. Leveraging this insight, we introduce a new programming technique called Sawtooth Wavefront Reordering that reduces L2 misses. We validate it in both CUDA and CuTile, observing 50\% or greater reduction in L2 misses and up to 60\% increase in throughput on GB10.
Deja Vu in Plots: Leveraging Cross-Session Evidence with Retrieval-Augmented LLMs for Live Streaming Risk Assessment
The rise of live streaming has transformed online interaction, enabling massive real-time engagement but also exposing platforms to complex risks such as scams and coordinated malicious behaviors. Detecting these risks is challenging because harmful actions often accumulate gradually and recur across seemingly unrelated streams. To address this, we propose CS-VAR (Cross-Session Evidence-Aware Retrieval-Augmented Detector) for live streaming risk assessment. In CS-VAR, a lightweight, domain-specific model performs fast session-level risk inference, guided during training by a Large Language Model (LLM) that reasons over retrieved cross-session behavioral evidence and transfers its local-to-global insights to the small model. This design enables the small model to recognize recurring patterns across streams, perform structured risk assessment, and maintain efficiency for real-time deployment. Extensive offline experiments on large-scale industrial datasets, combined with online validation, demonstrate the state-of-the-art performance of CS-VAR. Furthermore, CS-VAR provides interpretable, localized signals that effectively empower real-world moderation for live streaming.
THOR: A Versatile Foundation Model for Earth Observation Climate and Society Applications
Current Earth observation foundation models are architecturally rigid, struggle with heterogeneous sensors and are constrained to fixed patch sizes. This limits their deployment in real-world scenarios requiring flexible computeaccuracy trade-offs. We propose THOR, a "computeadaptive" foundation model that solves both input heterogeneity and deployment rigidity. THOR is the first architecture to unify data from Copernicus Sentinel-1, -2, and -3 (OLCI & SLSTR) satellites, processing their native 10 m to 1000 m resolutions in a single model. We pre-train THOR with a novel randomized patch and input image size strategy. This allows a single set of pre-trained weights to be deployed at inference with any patch size, enabling a dynamic trade-off between computational cost and feature resolution without retraining. We pre-train THOR on THOR Pretrain, a new, large-scale multi-sensor dataset and demonstrate state-of-the-art performance on downstream benchmarks, particularly in data-limited regimes like the PANGAEA 10% split, validating that THOR's flexible feature generation excels for diverse climate and society applications.
comment: 25 pages
PhysicsMind: Sim and Real Mechanics Benchmarking for Physical Reasoning and Prediction in Foundational VLMs and World Models
Modern foundational Multimodal Large Language Models (MLLMs) and video world models have advanced significantly in mathematical, common-sense, and visual reasoning, but their grasp of the underlying physics remains underexplored. Existing benchmarks attempting to measure this matter rely on synthetic, Visual Question Answer templates or focus on perceptual video quality that is tangential to measuring how well the video abides by physical laws. To address this fragmentation, we introduce PhysicsMind, a unified benchmark with both real and simulation environments that evaluates law-consistent reasoning and generation over three canonical principles: Center of Mass, Lever Equilibrium, and Newton's First Law. PhysicsMind comprises two main tasks: i) VQA tasks, testing whether models can reason and determine physical quantities and values from images or short videos, and ii) Video Generation(VG) tasks, evaluating if predicted motion trajectories obey the same center-of-mass, torque, and inertial constraints as the ground truth. A broad range of recent models and video generation models is evaluated on PhysicsMind and found to rely on appearance heuristics while often violating basic mechanics. These gaps indicate that current scaling and training are still insufficient for robust physical understanding, underscoring PhysicsMind as a focused testbed for physics-aware multimodal models. Our data will be released upon acceptance.
PUMA: Perception-driven Unified Foothold Prior for Mobility Augmented Quadruped Parkour
Parkour tasks for quadrupeds have emerged as a promising benchmark for agile locomotion. While human athletes can effectively perceive environmental characteristics to select appropriate footholds for obstacle traversal, endowing legged robots with similar perceptual reasoning remains a significant challenge. Existing methods often rely on hierarchical controllers that follow pre-computed footholds, thereby constraining the robot's real-time adaptability and the exploratory potential of reinforcement learning. To overcome these challenges, we present PUMA, an end-to-end learning framework that integrates visual perception and foothold priors into a single-stage training process. This approach leverages terrain features to estimate egocentric polar foothold priors, composed of relative distance and heading, guiding the robot in active posture adaptation for parkour tasks. Extensive experiments conducted in simulation and real-world environments across various discrete complex terrains, demonstrate PUMA's exceptional agility and robustness in challenging scenarios.
Decoupling Return-to-Go for Efficient Decision Transformer
The Decision Transformer (DT) has established a powerful sequence modeling approach to offline reinforcement learning. It conditions its action predictions on Return-to-Go (RTG), using it both to distinguish trajectory quality during training and to guide action generation at inference. In this work, we identify a critical redundancy in this design: feeding the entire sequence of RTGs into the Transformer is theoretically unnecessary, as only the most recent RTG affects action prediction. We show that this redundancy can impair DT's performance through experiments. To resolve this, we propose the Decoupled DT (DDT). DDT simplifies the architecture by processing only observation and action sequences through the Transformer, using the latest RTG to guide the action prediction. This streamlined approach not only improves performance but also reduces computational cost. Our experiments show that DDT significantly outperforms DT and establishes competitive performance against state-of-the-art DT variants across multiple offline RL tasks.
Natural Language-Driven Global Mapping of Martian Landforms
Planetary surfaces are typically analyzed using high-level semantic concepts in natural language, yet vast orbital image archives remain organized at the pixel level. This mismatch limits scalable, open-ended exploration of planetary surfaces. Here we present MarScope, a planetary-scale vision-language framework enabling natural language-driven, label-free mapping of Martian landforms. MarScope aligns planetary images and text in a shared semantic space, trained on over 200,000 curated image-text pairs. This framework transforms global geomorphic mapping on Mars by replacing pre-defined classifications with flexible semantic retrieval, enabling arbitrary user queries across the entire planet in 5 seconds with F1 scores up to 0.978. Applications further show that it extends beyond morphological classification to facilitate process-oriented analysis and similarity-based geomorphological mapping at a planetary scale. MarScope establishes a new paradigm where natural language serves as a direct interface for scientific discovery over massive geospatial datasets.
ICON: Invariant Counterfactual Optimization with Neuro-Symbolic Priors for Text-Based Person Search
Text-Based Person Search (TBPS) holds unique value in real-world surveillance bridging visual perception and language understanding, yet current paradigms utilizing pre-training models often fail to transfer effectively to complex open-world scenarios. The reliance on "Passive Observation" leads to multifaceted spurious correlations and spatial semantic misalignment, causing a lack of robustness against distribution shifts. To fundamentally resolve these defects, this paper proposes ICON (Invariant Counterfactual Optimization with Neuro-symbolic priors), a framework integrating causal and topological priors. First, we introduce Rule-Guided Spatial Intervention to strictly penalize sensitivity to bounding box noise, forcibly severing location shortcuts to achieve geometric invariance. Second, Counterfactual Context Disentanglement is implemented via semantic-driven background transplantation, compelling the model to ignore background interference for environmental independence. Then, we employ Saliency-Driven Semantic Regularization with adaptive masking to resolve local saliency bias and guarantee holistic completeness. Finally, Neuro-Symbolic Topological Alignment utilizes neuro-symbolic priors to constrain feature matching, ensuring activated regions are topologically consistent with human structural logic. Experimental results demonstrate that ICON not only maintains leading performance on standard benchmarks but also exhibits exceptional robustness against occlusion, background interference, and localization noise. This approach effectively advances the field by shifting from fitting statistical co-occurrences to learning causal invariance.
MMGRid: Navigating Temporal-aware and Cross-domain Generative Recommendation via Model Merging
Model merging (MM) offers an efficient mechanism for integrating multiple specialized models without access to original training data or costly retraining. While MM has demonstrated success in domains like computer vision, its role in recommender systems (RSs) remains largely unexplored. Recently, Generative Recommendation (GR) has emerged as a new paradigm in RSs, characterized by rapidly growing model scales and substantial computational costs, making MM particularly appealing for cost-sensitive deployment scenarios. In this work, we present the first systematic study of MM in GR through a contextual lens. We focus on a fundamental yet underexplored challenge in real-world: how to merge generative recommenders specialized to different real-world contexts, arising from temporal evolving user behaviors and heterogeneous application domains. To this end, we propose a unified framework MMGRid, a structured contextual grid of GR checkpoints that organizes models trained under diverse contexts induced by temporal evolution and domain diversity. All checkpoints are derived from a shared base LLM but fine-tuned on context-specific data, forming a realistic and controlled model space for systematically analyzing MM across GR paradigms and merging algorithms. Our investigation reveals several key insights. First, training GR models from LLMs can introduce parameter conflicts during merging due to token distribution shifts and objective disparities; such conflicts can be alleviated by disentangling task-aware and context-specific parameter changes via base model replacement. Second, incremental training across contexts induces recency bias, which can be effectively balanced through weighted contextual merging. Notably, we observe that optimal merging weights correlate with context-dependent interaction characteristics, offering practical guidance for weight selection in real-world deployments.
comment: https://github.com/Joinn99/MMGRid
Class Confidence Aware Reweighting for Long Tailed Learning
Deep neural network models degrade significantly in the long-tailed data distribution, with the overall training data dominated by a small set of classes in the head, and the tail classes obtaining less training examples. Addressing the imbalance in the classes, attention in the related literature was given mainly to the adjustments carried out in the decision space in terms of either corrections performed at the logit level in order to compensate class-prior bias, with the least attention to the optimization process resulting from the adjustments introduced through the differences in the confidences among the samples. In the current study, we present the design of a class and confidence-aware re-weighting scheme for long-tailed learning. This scheme is purely based upon the loss level and has a complementary nature to the existing methods performing the adjustment of the logits. In the practical implementation stage of the proposed scheme, we use an Ω(p_t, f_c) function. This function enables the modulation of the contribution towards the training task based upon the confidence value of the prediction, as well as the relative frequency of the corresponding class. Our observations in the experiments are corroborated by significant experimental results performed on the CIFAR-100-LT, ImageNet-LT, and iNaturalist2018 datasets under various values of imbalance factors that clearly authenticate the theoretical discussions above.
comment: 9 pages, 3 figures, IEEE Transaction on Neural Networks and Learning Systems (Submitted)
Progressive Power Homotopy for Non-convex Optimization
We propose a novel first-order method for non-convex optimization of the form $\max_{\bm{w}\in\mathbb{R}^d}\mathbb{E}_{\bm{x}\sim\mathcal{D}}[f_{\bm{w}}(\bm{x})]$, termed Progressive Power Homotopy (Prog-PowerHP). The method applies stochastic gradient ascent to a surrogate objective obtained by first performing a power transformation and then Gaussian smoothing, $F_{N,σ}(\bmμ):=\mathbb{E}_{\bm{w}\sim\mathcal{N}(\bmμ,σ^2I_d),\bm{x}\sim\mathcal{D}}[e^{Nf_w(\bm{x})}]$, while progressively increasing the power parameter $N$ and decreasing the smoothing scale $σ$ along the optimization trajectory. We prove that, under mild regularity conditions, Prog-PowerHP converges to a small neighborhood of the global optimum with an iteration complexity scaling nearly as $O(d^2\varepsilon^{-2})$. Empirically, Prog-PowerHP demonstrates clear advantages in phase retrieval when the samples-to-dimension ratio approaches the information-theoretic limit, and in training two-layer neural networks in under-parameterized regimes. These results suggest that Prog-PowerHP is particularly effective for navigating cluttered non-convex landscapes where standard first-order methods struggle.
TeNet: Text-to-Network for Compact Policy Synthesis
Robots that follow natural-language instructions often either plan at a high level using hand-designed interfaces or rely on large end-to-end models that are difficult to deploy for real-time control. We propose TeNet (Text-to-Network), a framework for instantiating compact, task-specific robot policies directly from natural language descriptions. TeNet conditions a hypernetwork on text embeddings produced by a pretrained large language model (LLM) to generate a fully executable policy, which then operates solely on low-dimensional state inputs at high control frequencies. By using the language only once at the policy instantiation time, TeNet inherits the general knowledge and paraphrasing robustness of pretrained LLMs while remaining lightweight and efficient at execution time. To improve generalization, we optionally ground language in behavior during training by aligning text embeddings with demonstrated actions, while requiring no demonstrations at inference time. Experiments on MuJoCo and Meta-World benchmarks show that TeNet produces policies that are orders of magnitude smaller than sequence-based baselines, while achieving strong performance in both multi-task and meta-learning settings and supporting high-frequency control. These results show that text-conditioned hypernetworks offer a practical way to build compact, language-driven controllers for ressource-constrained robot control tasks with real-time requirements.
Transfer Learning from ImageNet for MEG-Based Decoding of Imagined Speech
Non-invasive decoding of imagined speech remains challenging due to weak, distributed signals and limited labeled data. Our paper introduces an image-based approach that transforms magnetoencephalography (MEG) signals into time-frequency representations compatible with pretrained vision models. MEG data from 21 participants performing imagined speech tasks were projected into three spatial scalogram mixtures via a learnable sensor-space convolution, producing compact image-like inputs for ImageNet-pretrained vision architectures. These models outperformed classical and non-pretrained models, achieving up to 90.4% balanced accuracy for imagery vs. silence, 81.0% vs. silent reading, and 60.6% for vowel decoding. Cross-subject evaluation confirmed that pretrained models capture shared neural representations, and temporal analyses localized discriminative information to imagery-locked intervals. These findings show that pretrained vision models applied to image-based MEG representations can effectively capture the structure of imagined speech in non-invasive neural signals.
comment: Accepted at IEEE ISBI 2026
Iterative Amortized Hierarchical VAE
In this paper we propose the Iterative Amortized Hierarchical Variational Autoencoder (IA-HVAE), which expands on amortized inference with a hybrid scheme containing an initial amortized guess and iterative refinement with decoder gradients. We achieve this by creating a linearly separable decoder in a transform domain (e.g. Fourier space), enabling real-time applications with very high model depths. The architectural change leads to a 35x speed-up for iterative inference with respect to the traditional HVAE. We show that our hybrid approach outperforms fully amortized and fully iterative equivalents in accuracy and speed respectively. Moreover, the IAHVAE shows improved reconstruction quality over a vanilla HVAE in inverse problems such as deblurring and denoising.
Understanding the Transfer Limits of Vision Foundation Models
Foundation models leverage large-scale pretraining to capture extensive knowledge, demonstrating generalization in a wide range of language tasks. By comparison, vision foundation models (VFMs) often exhibit uneven improvements across downstream tasks, despite substantial computational investment. We postulate that this limitation arises from a mismatch between pretraining objectives and the demands of downstream vision-and-imaging tasks. Pretraining strategies like masked image reconstruction or contrastive learning shape representations for tasks such as recovery of generic visual patterns or global semantic structures, which may not align with the task-specific requirements of downstream applications including segmentation, classification, or image synthesis. To investigate this in a concrete real-world clinical area, we assess two VFMs, a reconstruction-focused MAE-based model (ProFound) and a contrastive-learning-based model (ProViCNet), on five prostate multiparametric MR imaging tasks, examining how such task alignment influences transfer performance, i.e., from pretraining to fine-tuning. Our findings indicate that better alignment between pretraining and downstream tasks, measured by simple divergence metrics such as maximum-mean-discrepancy (MMD) between the same features before and after fine-tuning, correlates with greater performance improvements and faster convergence, emphasizing the importance of designing and analyzing pretraining objectives with downstream applicability in mind.
comment: accepted in ISBI 2026
EvoCUA: Evolving Computer Use Agents via Learning from Scalable Synthetic Experience
The development of native computer-use agents (CUA) represents a significant leap in multimodal AI. However, their potential is currently bottlenecked by the constraints of static data scaling. Existing paradigms relying primarily on passive imitation of static datasets struggle to capture the intricate causal dynamics inherent in long-horizon computer tasks. In this work, we introduce EvoCUA, a native computer use agentic model. Unlike static imitation, EvoCUA integrates data generation and policy optimization into a self-sustaining evolutionary cycle. To mitigate data scarcity, we develop a verifiable synthesis engine that autonomously generates diverse tasks coupled with executable validators. To enable large-scale experience acquisition, we design a scalable infrastructure orchestrating tens of thousands of asynchronous sandbox rollouts. Building on these massive trajectories, we propose an iterative evolving learning strategy to efficiently internalize this experience. This mechanism dynamically regulates policy updates by identifying capability boundaries -- reinforcing successful routines while transforming failure trajectories into rich supervision through error analysis and self-correction. Empirical evaluations on the OSWorld benchmark demonstrate that EvoCUA achieves a success rate of 56.7%, establishing a new open-source state-of-the-art. Notably, EvoCUA significantly outperforms the previous best open-source model, OpenCUA-72B (45.0%), and surpasses leading closed-weights models such as UI-TARS-2 (53.1%). Crucially, our results underscore the generalizability of this approach: the evolving paradigm driven by learning from experience yields consistent performance gains across foundation models of varying scales, establishing a robust and scalable path for advancing native agent capabilities.
comment: 26 pages, 8 figures
Why Inference in Large Models Becomes Decomposable After Training
Inference in large-scale AI models is typically performed on dense parameter matrices, leading to inference cost and system complexity that scale unsustainably with model size. This limitation does not arise from insufficient model capacity, but from treating post-training inference systems as monolithic operators while ignoring internal structures formed during learning. We show that gradient update events in large models are highly localized and selective, leaving many parameter dependencies statistically indistinguishable from their initialization distribution after training. As a result, post-training inference systems are structurally non-uniform and inherently decomposable. Based on this observation, we introduce a post-training statistical criterion and a structural annealing procedure that removes unsupported dependencies and reveals stable, independent substructures. This work establishes a post-training, model-agnostic structural view of inference systems and enables structured, parallel inference without modifying model functionality or interfaces.
comment: 10 pages, 6 figures
Artificial Rigidities vs. Biological Noise: A Comparative Analysis of Multisensory Integration in AV-HuBERT and Human Observers
This study evaluates AV-HuBERT's perceptual bio-fidelity by benchmarking its response to incongruent audiovisual stimuli (McGurk effect) against human observers (N=44). Results reveal a striking quantitative isomorphism: AI and humans exhibited nearly identical auditory dominance rates (32.0% vs. 31.8%), suggesting the model captures biological thresholds for auditory resistance. However, AV-HuBERT showed a deterministic bias toward phonetic fusion (68.0%), significantly exceeding human rates (47.7%). While humans displayed perceptual stochasticity and diverse error profiles, the model remained strictly categorical. Findings suggest that current self-supervised architectures mimic multisensory outcomes but lack the neural variability inherent to human speech perception.
comment: 18 pages, 6 figures
Can professional translators identify machine-generated text?
This study investigates whether professional translators can reliably identify short stories generated in Italian by artificial intelligence (AI) without prior specialized training. Sixty-nine translators took part in an in-person experiment, where they assessed three anonymized short stories - two written by ChatGPT-4o and one by a human author. For each story, participants rated the likelihood of AI authorship and provided justifications for their choices. While average results were inconclusive, a statistically significant subset (16.2%) successfully distinguished the synthetic texts from the human text, suggesting that their judgements were informed by analytical skill rather than chance. However, a nearly equal number misclassified the texts in the opposite direction, often relying on subjective impressions rather than objective markers, possibly reflecting a reader preference for AI-generated texts. Low burstiness and narrative contradiction emerged as the most reliable indicators of synthetic authorship, with unexpected calques, semantic loans and syntactic transfer from English also reported. In contrast, features such as grammatical accuracy and emotional tone frequently led to misclassification. These findings raise questions about the role and scope of synthetic-text editing in professional contexts.
comment: 10 pages
Introducing the Generative Application Firewall (GAF)
This paper introduces the Generative Application Firewall (GAF), a new architectural layer for securing LLM applications. Existing defenses -- prompt filters, guardrails, and data-masking -- remain fragmented; GAF unifies them into a single enforcement point, much like a WAF coordinates defenses for web traffic, while also covering autonomous agents and their tool interactions.
Virtual Traffic Police: Large Language Model-Augmented Traffic Signal Control for Unforeseen Incidents
Adaptive traffic signal control (TSC) has demonstrated strong effectiveness in managing dynamic traffic flows. However, conventional methods often struggle when unforeseen traffic incidents occur (e.g., accidents and road maintenance), which typically require labor-intensive and inefficient manual interventions by traffic police officers. Large Language Models (LLMs) appear to be a promising solution thanks to their remarkable reasoning and generalization capabilities. Nevertheless, existing works often propose to replace existing TSC systems with LLM-based systems, which can be (i) unreliable due to the inherent hallucinations of LLMs and (ii) costly due to the need for system replacement. To address the issues of existing works, we propose a hierarchical framework that augments existing TSC systems with LLMs, whereby a virtual traffic police agent at the upper level dynamically fine-tunes selected parameters of signal controllers at the lower level in response to real-time traffic incidents. To enhance domain-specific reliability in response to unforeseen traffic incidents, we devise a self-refined traffic language retrieval system (TLRS), whereby retrieval-augmented generation is employed to draw knowledge from a tailored traffic language database that encompasses traffic conditions and controller operation principles. Moreover, we devise an LLM-based verifier to update the TLRS continuously over the reasoning process. Our results show that LLMs can serve as trustworthy virtual traffic police officers that can adapt conventional TSC methods to unforeseen traffic incidents with significantly improved operational efficiency and reliability.
ErrorMap and ErrorAtlas: Charting the Failure Landscape of Large Language Models
Large Language Models (LLM) benchmarks tell us when models fail, but not why they fail. A wrong answer on a reasoning dataset may stem from formatting issues, calculation errors, or dataset noise rather than weak reasoning. Without disentangling such causes, benchmarks remain incomplete and cannot reliably guide model improvement. We introduce ErrorMap, the first method to chart the sources of LLM failure. It extracts a model's unique "failure signature", clarifies what benchmarks measure, and broadens error identification to reduce blind spots. This helps developers debug models, aligns benchmark goals with outcomes, and supports informed model selection. ErrorMap works on any model or dataset with the same logic. Applying our method to 35 datasets and 83 models we generate ErrorAtlas, a taxonomy of model errors, revealing recurring failure patterns. ErrorAtlas highlights error types that are currently underexplored in LLM research, such as omissions of required details in the output and question misinterpretation. By shifting focus from where models succeed to why they fail, ErrorMap and ErrorAtlas enable advanced evaluation - one that exposes hidden weaknesses and directs progress. Unlike success, typically measured by task-level metrics, our approach introduces a deeper evaluation layer that can be applied globally across models and tasks, offering richer insights into model behavior and limitations. We make the taxonomy and code publicly available with plans to periodically update ErrorAtlas as new benchmarks and models emerge.
A Mobile Application for Flower Recognition System Based on Convolutional Neural Networks
A convolutional neural network (CNN) is a deep learning algorithm that has been specifically designed for computer vision applications. The CNNs proved successful in handling the increasing amount of data in many computer vision problems, where classical machine learning algorithms were insufficient. Flowers have many uses in our daily lives, from decorating to making medicines to detoxifying the environment. Identifying flower types requires expert knowledge. However, accessing experts at any time and in any location may not always be feasible. In this study a mobile application based on CNNs was developed to recognize different types of flowers to provide non-specialists with quick and easy access to information about flower types. The study employed three distinct CNN models, namely MobileNet, DenseNet121, and Xception, to determine the most suitable model for the mobile application. The classification performances of the models were evaluated by training them with seven different optimization algorithms. The DenseNet-121 architecture, which uses the stochastic gradient descent (SGD) optimization algorithm, was the most successful, achieving 95.84 % accuracy, 96.00% precision, recall, and F1-score. This result shows that CNNs can be used for flower classification in mobile applications.
Inference-Time Scaling of Verification: Self-Evolving Deep Research Agents via Test-Time Rubric-Guided Verification
Recent advances in Deep Research Agents (DRAs) are transforming automated knowledge discovery and problem-solving. While the majority of existing efforts focus on enhancing policy capabilities via post-training, we propose an alternative paradigm: self-evolving the agent's ability by iteratively verifying the policy model's outputs, guided by meticulously crafted rubrics. This approach gives rise to the inference-time scaling of verification, wherein an agent self-improves by evaluating its generated answers to produce iterative feedback and refinements. We derive the rubrics based on an automatically constructed DRA Failure Taxonomy, which systematically classifies agent failures into five major categories and thirteen sub-categories. We present DeepVerifier, a rubrics-based outcome reward verifier that leverages the asymmetry of verification and outperforms vanilla agent-as-judge and LLM judge baselines by 12%-48% in meta-evaluation F1 score. To enable practical self-evolution, DeepVerifier integrates as a plug-and-play module during test-time inference. The verifier produces detailed rubric-based feedback, which is fed back to the agent for iterative bootstrapping, refining responses without additional training. This test-time scaling delivers 8%-11% accuracy gains on challenging subsets of GAIA and XBench-DeepResearch when powered by capable closed-source LLMs. Finally, to support open-source advancement, we release DeepVerifier-4K, a curated supervised fine-tuning dataset of 4,646 high-quality agent steps focused on DRA verification. These examples emphasize reflection and self-critique, enabling open models to develop robust verification capabilities.
A Beacon Based Solution for Autonomous UUVs GNSS-Denied Stealthy Navigation
Autonomous Unmanned Underwater Vehicles (UUVs) enable military and civilian covert operations in coastal areas without relying on support vessels or Global Navigation Satellite Systems (GNSS). Such operations are critical when surface access is not possible and stealthy navigation is required in restricted environments such as protected zones or dangerous areas under access ban. GNSS denied navigation is then essential to maintaining concealment as surfacing could expose UUVs to detection. To ensure a precise fleet positioning a constellation of beacons deployed by aerial or surface drones establish a synthetic landmark network that will guide the fleet of UUVs along an optimized path from the continental shelf to the goal on the shore. These beacons either submerged or floating emit acoustic signals for UUV localisation and navigation. A hierarchical planner generates an adaptive route for the drones executing primitive actions while continuously monitoring and replanning as needed to maintain trajectory accuracy.
comment: 8 pages. IEEE TechDefense 2025
VitalDiagnosis: AI-Driven Ecosystem for 24/7 Vital Monitoring and Chronic Disease Management AAAI 2026
Chronic diseases have become the leading cause of death worldwide, a challenge intensified by strained medical resources and an aging population. Individually, patients often struggle to interpret early signs of deterioration or maintain adherence to care plans. In this paper, we introduce VitalDiagnosis, an LLM-driven ecosystem designed to shift chronic disease management from passive monitoring to proactive, interactive engagement. By integrating continuous data from wearable devices with the reasoning capabilities of LLMs, the system addresses both acute health anomalies and routine adherence. It analyzes triggers through context-aware inquiries, produces provisional insights within a collaborative patient-clinician workflow, and offers personalized guidance. This approach aims to promote a more proactive and cooperative care paradigm, with the potential to enhance patient self-management and reduce avoidable clinical workload.
comment: Accepted by AAAI 2026 Demo
Creativity in the Age of AI: Rethinking the Role of Intentional Agency
Many theorists of creativity maintain that intentional agency is a necessary condition of creativity. We argue that this requirement, which we call the Intentional Agency Condition (IAC), should be rejected as a general condition of creativity, while retaining its relevance in specific contexts. We show that recent advances in generative AI have rendered the IAC increasingly problematic, both descriptively and functionally. We offer two reasons for abandoning it at the general level. First, we present corpus evidence indicating that authors and journalists are increasingly comfortable ascribing creativity to generative AI, despite its lack of intentional agency. This development places pressure on the linguistic intuitions that have traditionally been taken to support the IAC. Second, drawing on the method of conceptual engineering, we argue that the IAC no longer fulfils its core social function. Rather than facilitating the identification and encouragement of reliable sources of novel and valuable products, it now feeds into biases that distort our assessments of AI-generated outputs. We therefore propose replacing the IAC with a consistency requirement, according to which creativity tracks the reliable generation of novel and valuable products. Nonetheless, we explain why the IAC should be retained in specific local domains.
comment: 27 pages, 2 figures
Agentic Confidence Calibration
AI agents are rapidly advancing from passive language models to autonomous systems executing complex, multi-step tasks. Yet their overconfidence in failure remains a fundamental barrier to deployment in high-stakes settings. Existing calibration methods, built for static single-turn outputs, cannot address the unique challenges of agentic systems, such as compounding errors along trajectories, uncertainty from external tools, and opaque failure modes. To address these challenges, we introduce, for the first time, the problem of Agentic Confidence Calibration and propose Holistic Trajectory Calibration (HTC), a novel diagnostic framework that extracts rich process-level features ranging from macro dynamics to micro stability across an agent's entire trajectory. Powered by a simple, interpretable model, HTC consistently surpasses strong baselines in both calibration and discrimination, across eight benchmarks, multiple LLMs, and diverse agent frameworks. Beyond performance, HTC delivers three essential advances: it provides interpretability by revealing the signals behind failure, enables transferability by applying across domains without retraining, and achieves generalization through a General Agent Calibrator (GAC) that achieves the best calibration (lowest ECE) on the out-of-domain GAIA benchmark. Together, these contributions establish a new process-centric paradigm for confidence calibration, providing a framework for diagnosing and enhancing the reliability of AI agents.
comment: 37 pages, 15 figures, 12 tables
Off-Policy Actor-Critic with Sigmoid-Bounded Entropy for Real-World Robot Learning
Deploying reinforcement learning in the real world remains challenging due to sample inefficiency, sparse rewards, and noisy visual observations. Prior work leverages demonstrations and human feedback to improve learning efficiency and robustness. However, offline-to-online methods need large datasets and can be unstable, while VLA-assisted RL relies on large-scale pretraining and fine-tuning. As a result, a low-cost real-world RL method with minimal data requirements has yet to emerge. We introduce \textbf{SigEnt-SAC}, an off-policy actor-critic method that learns from scratch using a single expert trajectory. Our key design is a sigmoid-bounded entropy term that prevents negative-entropy-driven optimization toward out-of-distribution actions and reduces Q-function oscillations. We benchmark SigEnt-SAC on D4RL tasks against representative baselines. Experiments show that SigEnt-SAC substantially alleviates Q-function oscillations and reaches a 100\% success rate faster than prior methods. Finally, we validate SigEnt-SAC on four real-world robotic tasks across multiple embodiments, where agents learn from raw images and sparse rewards; results demonstrate that SigEnt-SAC can learn successful policies with only a small number of real-world interactions, suggesting a low-cost and practical pathway for real-world RL deployment.
comment: 7 pages main text 2 page reference
CAFE-GB: Scalable and Stable Feature Selection for Malware Detection via Chunk-wise Aggregated Gradient Boosting
High-dimensional malware datasets often exhibit feature redundancy, instability, and scalability limitations, which hinder the effectiveness and interpretability of machine learning-based malware detection systems. Although feature selection is commonly employed to mitigate these issues, many existing approaches lack robustness when applied to large-scale and heterogeneous malware data. To address this gap, this paper proposes CAFE-GB (Chunk-wise Aggregated Feature Estimation using Gradient Boosting), a scalable feature selection framework designed to produce stable and globally consistent feature rankings for high-dimensional malware detection. CAFE-GB partitions training data into overlapping chunks, estimates local feature importance using gradient boosting models, and aggregates these estimates to derive a robust global ranking. Feature budget selection is performed separately through a systematic k-selection and stability analysis to balance detection performance and robustness. The proposed framework is evaluated on two large-scale malware datasets: BODMAS and CIC-AndMal2020, representing large and diverse malware feature spaces. Experimental results show that classifiers trained on CAFE-GB -selected features achieve performance parity with full-feature baselines across multiple metrics, including Accuracy, F1-score, MCC, ROC-AUC, and PR-AUC, while reducing feature dimensionality by more than 95\%. Paired Wilcoxon signed-rank tests confirm that this reduction does not introduce statistically significant performance degradation. Additional analyses demonstrate low inter-feature redundancy and improved interpretability through SHAP-based explanations. Runtime and memory profiling further indicate reduced downstream classification overhead. Overall, CAFE-GB provides a stable, interpretable, and scalable feature selection strategy for large-scale malware detection.
Tabular Incremental Inference
Tabular data is a fundamental form of data structure. The evolution of table analysis tools reflects humanity's continuous progress in data acquisition, management, and processing. The dynamic changes in table columns arise from technological advancements, changing needs, data integration, etc. However, the standard process of training AI models on tables with fixed columns and then performing inference is not suitable for handling dynamically changed tables. Therefore, new methods are needed for efficiently handling such tables in an unsupervised manner. In this paper, we introduce a new task, Tabular Incremental Inference (TabII), which aims to enable trained models to incorporate new columns during the inference stage, enhancing the practicality of AI models in scenarios where tables are dynamically changed. Furthermore, we demonstrate that this new task can be framed as an optimization problem based on the information bottleneck theory, which emphasizes that the key to an ideal tabular incremental inference approach lies in minimizing mutual information between tabular data and representation while maximizing between representation and task labels. Under this guidance, we design a TabII method with Large Language Model placeholders and Pretrained TabAdapter to provide external knowledge and Incremental Sample Condensation blocks to condense the task-relevant information given by incremental column attributes. Experimental results across eight public datasets show that TabII effectively utilizes incremental attributes, achieving state-of-the-art performance.
PhysProver: Advancing Automatic Theorem Proving for Physics
The combination of verifiable languages and LLMs has significantly influenced both the mathematical and computer science communities because it provides a rigorous foundation for theorem proving. Recent advancements in the field provide foundation models and sophisticated agentic systems pushing the boundaries of formal mathematical reasoning to approach the natural language capability of LLMs. However, little attention has been given to the formal physics reasoning, which also heavily relies on similar problem-solving and theorem-proving frameworks. To solve this problem, this paper presents, to the best of our knowledge, the first approach to enhance formal theorem proving in the physics domain. We compose a dedicated dataset PhysLeanData for the task. It is composed of theorems sampled from PhysLean and data generated by a conjecture-based formal data generation pipeline. In the training pipeline, we leverage DeepSeek-Prover-V2-7B, a strong open-source mathematical theorem prover, and apply Reinforcement Learning with Verifiable Rewards (RLVR) to train our model PhysProver. Comprehensive experiments demonstrate that, using only $\sim$5K training samples, PhysProver achieves an overall 2.4\% improvement in multiple sub-domains. Furthermore, after formal physics training, we observe 1.3\% gains on the MiniF2F-Test benchmark, which indicates non-trivial generalization beyond physics domains and enhancement for formal math capability as well. The results highlight the effectiveness and efficiency of our approach, which provides a paradigm for extending formal provers outside mathematical domains. To foster further research, we will release both our dataset and model to the community.
comment: Preprint
FAIR-ESI: Feature Adaptive Importance Refinement for Electrophysiological Source Imaging
An essential technique for diagnosing brain disorders is electrophysiological source imaging (ESI). While model-based optimization and deep learning methods have achieved promising results in this field, the accurate selection and refinement of features remains a central challenge for precise ESI. This paper proposes FAIR-ESI, a novel framework that adaptively refines feature importance across different views, including FFT-based spectral feature refinement, weighted temporal feature refinement, and self-attention-based patch-wise feature refinement. Extensive experiments on two simulation datasets with diverse configurations and two real-world clinical datasets validate our framework's efficacy, highlighting its potential to advance brain disorder diagnosis and offer new insights into brain function.
DualShield: Safe Model Predictive Diffusion via Reachability Analysis for Interactive Autonomous Driving
Diffusion models have emerged as a powerful approach for multimodal motion planning in autonomous driving. However, their practical deployment is typically hindered by the inherent difficulty in enforcing vehicle dynamics and a critical reliance on accurate predictions of other agents, making them prone to safety issues under uncertain interactions. To address these limitations, we introduce DualShield, a planning and control framework that leverages Hamilton-Jacobi (HJ) reachability value functions in a dual capacity. First, the value functions act as proactive guidance, steering the diffusion denoising process towards safe and dynamically feasible regions. Second, they form a reactive safety shield using control barrier-value functions (CBVFs) to modify the executed actions and ensure safety. This dual mechanism preserves the rich exploration capabilities of diffusion models while providing principled safety assurance under uncertain and even adversarial interactions. Simulations in challenging unprotected U-turn scenarios demonstrate that DualShield significantly improves both safety and task efficiency compared to leading methods from different planning paradigms under uncertainty.
comment: 8 pages, 5 figures
Benchmarking Text-to-Python against Text-to-SQL: The Impact of Explicit Logic and Ambiguity
While Text-to-SQL remains the dominant approach for database interaction, real-world analytics increasingly require the flexibility of general-purpose programming languages such as Python or Pandas to manage file-based data and complex analytical workflows. Despite this growing need, the reliability of Text-to-Python in core data retrieval remains underexplored relative to the mature SQL ecosystem. To address this gap, we introduce BIRD-Python, a benchmark designed for cross-paradigm evaluation. We systematically refined the original dataset to reduce annotation noise and align execution semantics, thereby establishing a consistent and standardized baseline for comparison. Our analysis reveals a fundamental paradigmatic divergence: whereas SQL leverages implicit DBMS behaviors through its declarative structure, Python requires explicit procedural logic, making it highly sensitive to underspecified user intent. To mitigate this challenge, we propose the Logic Completion Framework (LCF), which resolves ambiguity by incorporating latent domain knowledge into the generation process. Experimental results show that (1) performance differences primarily stem from missing domain context rather than inherent limitations in code generation, and (2) when these gaps are addressed, Text-to-Python achieves performance parity with Text-to-SQL. These findings establish Python as a viable foundation for analytical agents-provided that systems effectively ground ambiguous natural language inputs in executable logical specifications. Resources are available at https://anonymous.4open.science/r/Bird-Python-43B7/.
comment: 8 pages, 7 figures
VideoThinker: Building Agentic VideoLLMs with LLM-Guided Tool Reasoning
Long-form video understanding remains a fundamental challenge for current Video Large Language Models. Most existing models rely on static reasoning over uniformly sampled frames, which weakens temporal localization and leads to substantial information loss in long videos. Agentic tools such as temporal retrieval, spatial zoom, and temporal zoom offer a natural way to overcome these limitations by enabling adaptive exploration of key moments. However, constructing agentic video understanding data requires models that already possess strong long-form video comprehension, creating a circular dependency. We address this challenge with VideoThinker, an agentic Video Large Language Model trained entirely on synthetic tool interaction trajectories. Our key idea is to convert videos into rich captions and employ a powerful agentic language model to generate multi-step tool use sequences in caption space. These trajectories are subsequently grounded back to video by replacing captions with the corresponding frames, yielding a large-scale interleaved video and tool reasoning dataset without requiring any long-form understanding from the underlying model. Training on this synthetic agentic dataset equips VideoThinker with dynamic reasoning capabilities, adaptive temporal exploration, and multi-step tool use. Remarkably, VideoThinker significantly outperforms both caption-only language model agents and strong video model baselines across long-video benchmarks, demonstrating the effectiveness of tool augmented synthetic data and adaptive retrieval and zoom reasoning for long-form video understanding.
CoNRec: Context-Discerning Negative Recommendation with LLMs
Understanding what users like is relatively straightforward; understanding what users dislike, however, remains a challenging and underexplored problem. Research into users' negative preferences has gained increasing importance in modern recommendation systems. Numerous platforms have introduced explicit negative feedback mechanisms and leverage such signals to refine their recommendation models. Beyond traditional business metrics, user experience-driven metrics, such as negative feedback rates, have become critical indicators for evaluating system performance. However, most existing approaches primarily use negative feedback as an auxiliary signal to enhance positive recommendations, paying little attention to directly modeling negative interests, which can be highly valuable in offline applications. Moreover, due to the inherent sparsity of negative feedback data, models often suffer from context understanding biases induced by positive feedback dominance. To address these challenges, we propose the first large language model framework for negative feedback modeling with special designed context-discerning modules. We use semantic ID Representation to replace text-based item descriptions and introduce an item-level alignment task that enhances the LLM's understanding of the semantic context behind negative feedback. Furthermore, we design a Progressive GRPO training paradigm that enables the model to dynamically balance the positive and negative behavioral context utilization. Besides, our investigation further reveals a fundamental misalignment between the conventional next-negative-item prediction objective and users' true negative preferences, which is heavily influenced by the system's recommendation order. To mitigate this, we propose a novel reward function and evaluation metric grounded in multi-day future negative feedback and their collaborative signals.
Investigation of the Generalisation Ability of Genetic Programming-evolved Scheduling Rules in Dynamic Flexible Job Shop Scheduling
Dynamic Flexible Job Shop Scheduling (DFJSS) is a complex combinatorial optimisation problem that requires simultaneous machine assignment and operation sequencing decisions in dynamic production environments. Genetic Programming (GP) has been widely applied to automatically evolve scheduling rules for DFJSS. However, existing studies typically train and test GP-evolved rules on DFJSS instances of the same type, which differ only by random seeds rather than by structural characteristics, leaving their cross-type generalisation ability largely unexplored. To address this gap, this paper systematically investigates the generalisation ability of GP-evolved scheduling rules under diverse DFJSS conditions. A series of experiments are conducted across multiple dimensions, including problem scale (i.e., the number of machines and jobs), key job shop parameters (e.g., utilisation level), and data distributions, to analyse how these factors influence GP performance on unseen instance types. The results show that good generalisation occurs when the training instances contain more jobs than the test instances while keeping the number of machines fixed, and when both training and test instances have similar scales or job shop parameters. Further analysis reveals that the number and distribution of decision points in DFJSS instances play a crucial role in explaining these performance differences. Similar decision point distributions lead to better generalisation, whereas significant discrepancies result in a marked degradation of performance. Overall, this study provides new insights into the generalisation ability of GP in DFJSS and highlights the necessity of evolving more generalisable GP rules capable of handling heterogeneous DFJSS instances effectively.
Dancing in Chains: Strategic Persuasion in Academic Rebuttal via Theory of Mind
Although artificial intelligence (AI) has become deeply integrated into various stages of the research workflow and achieved remarkable advancements, academic rebuttal remains a significant and underexplored challenge. This is because rebuttal is a complex process of strategic communication under severe information asymmetry rather than a simple technical debate. Consequently, current approaches struggle as they largely imitate surface-level linguistics, missing the essential element of perspective-taking required for effective persuasion. In this paper, we introduce RebuttalAgent, the first framework to ground academic rebuttal in Theory of Mind (ToM), operationalized through a ToM-Strategy-Response (TSR) pipeline that models reviewer mental state, formulates persuasion strategy, and generates strategy-grounded response. To train our agent, we construct RebuttalBench, a large-scale dataset synthesized via a novel critique-and-refine approach. Our training process consists of two stages, beginning with a supervised fine-tuning phase to equip the agent with ToM-based analysis and strategic planning capabilities, followed by a reinforcement learning phase leveraging the self-reward mechanism for scalable self-improvement. For reliable and efficient automated evaluation, we further develop Rebuttal-RM, a specialized evaluator trained on over 100K samples of multi-source rebuttal data, which achieves scoring consistency with human preferences surpassing powerful judge GPT-4.1. Extensive experiments show RebuttalAgent significantly outperforms the base model by an average of 18.3% on automated metrics, while also outperforming advanced proprietary models across both automated and human evaluations. Disclaimer: the generated rebuttal content is for reference only to inspire authors and assist in drafting. It is not intended to replace the author's own critical analysis and response.
comment: Preprint, under review
Even GPT-5.2 Can't Count to Five: The Case for Zero-Error Horizons in Trustworthy LLMs
We propose Zero-Error Horizon (ZEH) for trustworthy LLMs, which represents the maximum range that a model can solve without any errors. While ZEH itself is simple, we demonstrate that evaluating the ZEH of state-of-the-art LLMs yields abundant insights. For example, by evaluating the ZEH of GPT-5.2, we found that GPT-5.2 cannot even compute the parity of a short string like 11000, and GPT-5.2 cannot determine whether the parentheses in ((((()))))) are balanced. This is surprising given the excellent capabilities of GPT-5.2. The fact that LLMs make mistakes on such simple problems serves as an important lesson when applying LLMs to safety-critical domains. By applying ZEH to Qwen2.5 and conducting detailed analysis, we found that while ZEH correlates with accuracy, the detailed behaviors differ, and ZEH provides clues about the emergence of algorithmic capabilities. Finally, while computing ZEH incurs significant computational cost, we discuss how to mitigate this cost by achieving up to one order of magnitude speedup using tree structures and online softmax.
FlexLLM: Composable HLS Library for Flexible Hybrid LLM Accelerator Design
We present FlexLLM, a composable High-Level Synthesis (HLS) library for rapid development of domain-specific LLM accelerators. FlexLLM exposes key architectural degrees of freedom for stage-customized inference, enabling hybrid designs that tailor temporal reuse and spatial dataflow differently for prefill and decode, and provides a comprehensive quantization suite to support accurate low-bit deployment. Using FlexLLM, we build a complete inference system for the Llama-3.2 1B model in under two months with only 1K lines of code. The system includes: (1) a stage-customized accelerator with hardware-efficient quantization (12.68 WikiText-2 PPL) surpassing SpinQuant baseline, and (2) a Hierarchical Memory Transformer (HMT) plug-in for efficient long-context processing. On the AMD U280 FPGA at 16nm, the accelerator achieves 1.29$\times$ end-to-end speedup, 1.64$\times$ higher decode throughput, and 3.14$\times$ better energy efficiency than an NVIDIA A100 GPU (7nm) running BF16 inference; projected results on the V80 FPGA at 7nm reach 4.71$\times$, 6.55$\times$, and 4.13$\times$, respectively. In long-context scenarios, integrating the HMT plug-in reduces prefill latency by 23.23$\times$ and extends the context window by 64$\times$, delivering 1.10$\times$/4.86$\times$ lower end-to-end latency and 5.21$\times$/6.27$\times$ higher energy efficiency on the U280/V80 compared to the A100 baseline. FlexLLM thus bridges algorithmic innovation in LLM inference and high-performance accelerators with minimal manual effort.
AgentSM: Semantic Memory for Agentic Text-to-SQL
Recent advances in LLM-based Text-to-SQL have achieved remarkable gains on public benchmarks such as BIRD and Spider. Yet, these systems struggle to scale in realistic enterprise settings with large, complex schemas, diverse SQL dialects, and expensive multi-step reasoning. Emerging agentic approaches show potential for adaptive reasoning but often suffer from inefficiency and instability-repeating interactions with databases, producing inconsistent outputs, and occasionally failing to generate valid answers. To address these challenges, we introduce Agent Semantic Memory (AgentSM), an agentic framework for Text-to-SQL that builds and leverages interpretable semantic memory. Instead of relying on raw scratchpads or vector retrieval, AgentSM captures prior execution traces-or synthesizes curated ones-as structured programs that directly guide future reasoning. This design enables systematic reuse of reasoning paths, which allows agents to scale to larger schemas, more complex questions, and longer trajectories efficiently and reliably. Compared to state-of-the-art systems, AgentSM achieves higher efficiency by reducing average token usage and trajectory length by 25% and 35%, respectively, on the Spider 2.0 benchmark. It also improves execution accuracy, reaching a state-of-the-art accuracy of 44.8% on the Spider 2.0 Lite benchmark.
Improving Methodologies for LLM Evaluations Across Global Languages
As frontier AI models are deployed globally, it is essential that their behaviour remains safe and reliable across diverse linguistic and cultural contexts. To examine how current model safeguards hold up in such settings, participants from the International Network for Advanced AI Measurement, Evaluation and Science, including representatives from Singapore, Japan, Australia, Canada, the EU, France, Kenya, South Korea and the UK conducted a joint multilingual evaluation exercise. Led by Singapore AISI, two open-weight models were tested across ten languages spanning high and low resourced groups: Cantonese English, Farsi, French, Japanese, Korean, Kiswahili, Malay, Mandarin Chinese and Telugu. Over 6,000 newly translated prompts were evaluated across five harm categories (privacy, non-violent crime, violent crime, intellectual property and jailbreak robustness), using both LLM-as-a-judge and human annotation. The exercise shows how safety behaviours can vary across languages. These include differences in safeguard robustness across languages and harm types and variation in evaluator reliability (LLM-as-judge vs. human review). Further, it also generated methodological insights for improving multilingual safety evaluations, such as the need for culturally contextualised translations, stress-tested evaluator prompts and clearer human annotation guidelines. This work represents an initial step toward a shared framework for multilingual safety testing of advanced AI systems and calls for continued collaboration with the wider research community and industry.
comment: Author names have been organised by country, and in alphabetical order within countries
Agentic Uncertainty Quantification
Although AI agents have demonstrated impressive capabilities in long-horizon reasoning, their reliability is severely hampered by the ``Spiral of Hallucination,'' where early epistemic errors propagate irreversibly. Existing methods face a dilemma: uncertainty quantification (UQ) methods typically act as passive sensors, only diagnosing risks without addressing them, while self-reflection mechanisms suffer from continuous or aimless corrections. To bridge this gap, we propose a unified Dual-Process Agentic UQ (AUQ) framework that transforms verbalized uncertainty into active, bi-directional control signals. Our architecture comprises two complementary mechanisms: System 1 (Uncertainty-Aware Memory, UAM), which implicitly propagates verbalized confidence and semantic explanations to prevent blind decision-making; and System 2 (Uncertainty-Aware Reflection, UAR), which utilizes these explanations as rational cues to trigger targeted inference-time resolution only when necessary. This enables the agent to balance efficient execution and deep deliberation dynamically. Extensive experiments on closed-loop benchmarks and open-ended deep research tasks demonstrate that our training-free approach achieves superior performance and trajectory-level calibration. We believe this principled framework AUQ represents a significant step towards reliable agents.
comment: 36 pages, 9 figures, 9 tables
Beyond Visual Safety: Jailbreaking Multimodal Large Language Models for Harmful Image Generation via Semantic-Agnostic Inputs
The rapid advancement of Multimodal Large Language Models (MLLMs) has introduced complex security challenges, particularly at the intersection of textual and visual safety. While existing schemes have explored the security vulnerabilities of MLLMs, the investigation into their visual safety boundaries remains insufficient. In this paper, we propose Beyond Visual Safety (BVS), a novel image-text pair jailbreaking framework specifically designed to probe the visual safety boundaries of MLLMs. BVS employs a "reconstruction-then-generation" strategy, leveraging neutralized visual splicing and inductive recomposition to decouple malicious intent from raw inputs, thereby leading MLLMs to be induced into generating harmful images. Experimental results demonstrate that BVS achieves a remarkable jailbreak success rate of 98.21\% against GPT-5 (12 January 2026 release). Our findings expose critical vulnerabilities in the visual safety alignment of current MLLMs.
From Passive Metric to Active Signal: The Evolving Role of Uncertainty Quantification in Large Language Models
While Large Language Models (LLMs) show remarkable capabilities, their unreliability remains a critical barrier to deployment in high-stakes domains. This survey charts a functional evolution in addressing this challenge: the evolution of uncertainty from a passive diagnostic metric to an active control signal guiding real-time model behavior. We demonstrate how uncertainty is leveraged as an active control signal across three frontiers: in \textbf{advanced reasoning} to optimize computation and trigger self-correction; in \textbf{autonomous agents} to govern metacognitive decisions about tool use and information seeking; and in \textbf{reinforcement learning} to mitigate reward hacking and enable self-improvement via intrinsic rewards. By grounding these advancements in emerging theoretical frameworks like Bayesian methods and Conformal Prediction, we provide a unified perspective on this transformative trend. This survey provides a comprehensive overview, critical analysis, and practical design patterns, arguing that mastering the new trend of uncertainty is essential for building the next generation of scalable, reliable, and trustworthy AI.
comment: 20 pages, 4 figures, 6 tables
FARM: Field-Aware Resolution Model for Intelligent Trigger-Action Automation
Trigger-Action Programming (TAP) platforms such as IFTTT and Zapier enable Web of Things (WoT) automation by composing event-driven rules across heterogeneous services. A TAP applet links a trigger to an action and must bind trigger outputs (ingredients) to action inputs (fields) to be executable. Prior work largely treats TAP as service-level prediction from natural language, which often yields non-executable applets that still require manual configuration. We study the function-level configuration problem: generating complete applets with correct ingredient-to-field bindings. We propose FARM (Field-Aware Resolution Model), a two-stage architecture for automated applet generation with full configuration. Stage 1 trains contrastive dual encoders with selective layer freezing over schema-enriched representations, retrieving candidates from 1,724 trigger functions and 1,287 action functions (2.2M possible trigger-action pairs). Stage 2 performs selection and configuration using an LLM-based multi-agent pipeline. It includes intent analysis, trigger selection, action selection via cross-schema scoring, and configuration verification. Agents coordinate through shared state and agreement-based selection. FARM achieves 81% joint accuracy on Gold (62% Noisy, 70% One-shot) at the function level, where both trigger and action functions must match the ground truth. For comparison with service-level baselines, we map functions to their parent services and evaluate at the service level. FARM reaches 81% joint accuracy and improves over TARGE by 23 percentage points. FARM also generates ingredient-to-field bindings, producing executable automation configurations.
Improving Methodologies for Agentic Evaluations Across Domains: Leakage of Sensitive Information, Fraud and Cybersecurity Threats
The rapid rise of autonomous AI systems and advancements in agent capabilities are introducing new risks due to reduced oversight of real-world interactions. Yet agent testing remains nascent and is still a developing science. As AI agents begin to be deployed globally, it is important that they handle different languages and cultures accurately and securely. To address this, participants from The International Network for Advanced AI Measurement, Evaluation and Science, including representatives from Singapore, Japan, Australia, Canada, the European Commission, France, Kenya, South Korea, and the United Kingdom have come together to align approaches to agentic evaluations. This is the third exercise, building on insights from two earlier joint testing exercises conducted by the Network in November 2024 and February 2025. The objective is to further refine best practices for testing advanced AI systems. The exercise was split into two strands: (1) common risks, including leakage of sensitive information and fraud, led by Singapore AISI; and (2) cybersecurity, led by UK AISI. A mix of open and closed-weight models were evaluated against tasks from various public agentic benchmarks. Given the nascency of agentic testing, our primary focus was on understanding methodological issues in conducting such tests, rather than examining test results or model capabilities. This collaboration marks an important step forward as participants work together to advance the science of agentic evaluations.
comment: The author/contributor list organises contributors by country and alphabetical order within each country. In some places, the order has been altered to match other related publications
Connect the Dots: Knowledge Graph-Guided Crawler Attack on Retrieval-Augmented Generation Systems
Retrieval-augmented generation (RAG) systems integrate document retrieval with large language models and have been widely adopted. However, in privacy-related scenarios, RAG introduces a new privacy risk: adversaries can issue carefully crafted queries to exfiltrate sensitive content from the underlying corpus gradually. Although recent studies have demonstrated multi-turn extraction attacks, they rely on heuristics and fail to perform long-term extraction planning. To address these limitations, we formulate the RAG extraction attack as an adaptive stochastic coverage problem (ASCP). In ASCP, each query is treated as a probabilistic action that aims to maximize conditional marginal gain (CMG), enabling principled long-term planning under uncertainty. However, integrating ASCP with practical RAG attack faces three key challenges: unobservable CMG, intractability in the action space, and feasibility constraints. To overcome these challenges, we maintain a global attacker-side state to guide the attack. Building on this idea, we introduce RAGCRAWLER, which builds a knowledge graph to represent revealed information, uses this global state to estimate CMG, and plans queries in semantic space that target unretrieved regions. In comprehensive experiments across diverse RAG architectures and datasets, our proposed method, RAGCRAWLER, consistently outperforms all baselines. It achieves up to 84.4% corpus coverage within a fixed query budget and deliver an average improvement of 20.7% over the top-performing baseline. It also maintains high semantic fidelity and strong content reconstruction accuracy with low attack cost. Crucially, RAGCRAWLER proves its robustness by maintaining effectiveness against advanced RAG systems employing query rewriting and multi-query retrieval strategies. Our work reveals significant security gaps and highlights the pressing need for stronger safeguards for RAG.
Enhancing guidance for missing data in diffusion-based sequential recommendation
Contemporary sequential recommendation methods are becoming more complex, shifting from classification to a diffusion-guided generative paradigm. However, the quality of guidance in the form of user information is often compromised by missing data in the observed sequences, leading to suboptimal generation quality. Existing methods address this by removing locally similar items, but overlook ``critical turning points'' in user interest, which are crucial for accurately predicting subsequent user intent. To address this, we propose a novel Counterfactual Attention Regulation Diffusion model (CARD), which focuses on amplifying the signal from key interest-turning-point items while concurrently identifying and suppressing noise within the user sequence. CARD consists of (1) a Dual-side Thompson Sampling method to identify sequences undergoing significant interest shift, and (2) a counterfactual attention mechanism for these sequences to quantify the importance of each item. In this manner, CARD provides the diffusion model with a high-quality guidance signal composed of dynamically re-weighted interaction vectors to enable effective generation. Experiments show our method works well on real-world data without being computationally expensive. Our code is available at https://github.com/yanqilong3321/CARD.
comment: ICASSP 2026 accecpted
StreetDesignAI: A Multi-Persona Evaluation System for Inclusive Infrastructure Design
Designing inclusive cycling infrastructure requires balancing competing needs of diverse user groups, yet designers often struggle to anticipate how different cyclists experience the same street. We investigate how persona-based multi-agent evaluation can support inclusive design by making experiential conflicts explicit. We present StreetDesignAI, an interactive system that enables designers to (1) ground evaluation in street context through imagery and map data, (2) receive parallel feedback from cyclist personas spanning confident to cautious users, and (3) iteratively modify designs while surfacing conflicts across perspectives. A within-subjects study with 26 transportation professionals demonstrates that structured multi-perspective feedback significantly improves designers' understanding of diverse user perspectives, ability to identify persona needs, and confidence in translating them into design decisions, with higher satisfaction and stronger intention for professional adoption. Qualitative findings reveal how conflict surfacing transforms design exploration from single-perspective optimization toward deliberate trade-off reasoning. We discuss implications for AI tools that scaffold inclusive design through disagreement as an interaction primitive.
Skywork UniPic 3.0: Unified Multi-Image Composition via Sequence Modeling
The recent surge in popularity of Nano-Banana and Seedream 4.0 underscores the community's strong interest in multi-image composition tasks. Compared to single-image editing, multi-image composition presents significantly greater challenges in terms of consistency and quality, yet existing models have not disclosed specific methodological details for achieving high-quality fusion. Through statistical analysis, we identify Human-Object Interaction (HOI) as the most sought-after category by the community. We therefore systematically analyze and implement a state-of-the-art solution for multi-image composition with a primary focus on HOI-centric tasks. We present Skywork UniPic 3.0, a unified multimodal framework that integrates single-image editing and multi-image composition. Our model supports an arbitrary (1~6) number and resolution of input images, as well as arbitrary output resolutions (within a total pixel budget of 1024x1024). To address the challenges of multi-image composition, we design a comprehensive data collection, filtering, and synthesis pipeline, achieving strong performance with only 700K high-quality training samples. Furthermore, we introduce a novel training paradigm that formulates multi-image composition as a sequence-modeling problem, transforming conditional generation into unified sequence synthesis. To accelerate inference, we integrate trajectory mapping and distribution matching into the post-training stage, enabling the model to produce high-fidelity samples in just 8 steps and achieve a 12.5x speedup over standard synthesis sampling. Skywork UniPic 3.0 achieves state-of-the-art performance on single-image editing benchmark and surpasses both Nano-Banana and Seedream 4.0 on multi-image composition benchmark, thereby validating the effectiveness of our data pipeline and training paradigm. Code, models and dataset are publicly available.
TempoNet: Learning Realistic Communication and Timing Patterns for Network Traffic Simulation
Realistic network traffic simulation is critical for evaluating intrusion detection systems, stress-testing network protocols, and constructing high-fidelity environments for cybersecurity training. While attack traffic can often be layered into training environments using red-teaming or replay methods, generating authentic benign background traffic remains a core challenge -- particularly in simulating the complex temporal and communication dynamics of real-world networks. This paper introduces TempoNet, a novel generative model that combines multi-task learning with multi-mark temporal point processes to jointly model inter-arrival times and all packet- and flow-header fields. TempoNet captures fine-grained timing patterns and higher-order correlations such as host-pair behavior and seasonal trends, addressing key limitations of GAN-, LLM-, and Bayesian-based methods that fail to reproduce structured temporal variation. TempoNet produces temporally consistent, high-fidelity traces, validated on real-world datasets. Furthermore, we show that intrusion detection models trained on TempoNet-generated background traffic perform comparably to those trained on real data, validating its utility for real-world security applications.
Integrating Knowledge Distillation Methods: A Sequential Multi-Stage Framework
Knowledge distillation (KD) transfers knowledge from large teacher models to compact student models, enabling efficient deployment on resource constrained devices. While diverse KD methods, including response based, feature based, and relation based approaches, capture different aspects of teacher knowledge, integrating multiple methods or knowledge sources is promising but often hampered by complex implementation, inflexible combinations, and catastrophic forgetting, which limits practical effectiveness. This work proposes SMSKD (Sequential Multi Stage Knowledge Distillation), a flexible framework that sequentially integrates heterogeneous KD methods. At each stage, the student is trained with a specific distillation method, while a frozen reference model from the previous stage anchors learned knowledge to mitigate forgetting. In addition, we introduce an adaptive weighting mechanism based on the teacher true class probability (TCP) that dynamically adjusts the reference loss per sample to balance knowledge retention and integration. By design, SMSKD supports arbitrary method combinations and stage counts with negligible computational overhead. Extensive experiments show that SMSKD consistently improves student accuracy across diverse teacher student architectures and method combinations, outperforming existing baselines. Ablation studies confirm that stage wise distillation and reference model supervision are primary contributors to performance gains, with TCP based adaptive weighting providing complementary benefits. Overall, SMSKD is a practical and resource efficient solution for integrating heterogeneous KD methods.
Event-VStream: Event-Driven Real-Time Understanding for Long Video Streams
Real-time understanding of long video streams remains challenging for multimodal large language models (VLMs) due to redundant frame processing and rapid forgetting of past context. Existing streaming systems rely on fixed-interval decoding or cache pruning, which either produce repetitive outputs or discard crucial temporal information. We introduce Event-VStream, an event-aware framework that represents continuous video as a sequence of discrete, semantically coherent events. Our system detects meaningful state transitions by integrating motion, semantic, and predictive cues, and triggers language generation only at those boundaries. Each event embedding is consolidated into a persistent memory bank, enabling long-horizon reasoning while maintaining low latency. Across OVOBench-Realtime, and long-form Ego4D evaluations, Event-VStream achieves competitive performance. It improves over a VideoLLM-Online-8B baseline by +10.4 points on OVOBench-Realtime, achieves performance close to Flash-VStream-7B despite using only a general-purpose LLaMA-3-8B text backbone, and maintains around 70% GPT-5 win rate on 2-hour Ego4D streams.
Predictive Coding and Information Bottleneck for Hallucination Detection in Large Language Models
Hallucinations in Large Language Models (LLMs) -- generations that are plausible but factually unfaithful -- remain a critical barrier to high-stakes deployment. Current detection methods typically rely on computationally expensive external retrieval loops or opaque black-box LLM judges requiring 70B+ parameters. In this work, we introduce [Model Name], a hybrid detection framework that combines neuroscience-inspired signal design with supervised machine learning. We extract interpretable signals grounded in Predictive Coding (quantifying surprise against internal priors) and the Information Bottleneck (measuring signal retention under perturbation). Through systematic ablation, we demonstrate three key enhancements: Entity-Focused Uptake (concentrating on high-value tokens), Context Adherence (measuring grounding strength), and Falsifiability Score (detecting confident but contradictory claims). Evaluating on HaluBench (n=200, perfectly balanced), our theory-guided baseline achieves 0.8017 AUROC. BASE supervised models reach 0.8274 AUROC, while IMPROVED features boost performance to 0.8669 AUROC (4.95% gain), demonstrating consistent improvements across architectures. This competitive performance is achieved while using 75x less training data than Lynx (200 vs 15,000 samples), 1000x faster inference (5ms vs 5s), and remaining fully interpretable. Crucially, we report a negative result: the Rationalization signal fails to distinguish hallucinations, suggesting that LLMs generate coherent reasoning for false premises ("Sycophancy"). This work demonstrates that domain knowledge encoded in signal architecture provides superior data efficiency compared to scaling LLM judges, achieving strong performance with lightweight (less than 1M parameter), explainable models suitable for production deployment.
Agentic AI Governance and Lifecycle Management in Healthcare
Healthcare organizations are beginning to embed agentic AI into routine workflows, including clinical documentation support and early-warning monitoring. As these capabilities diffuse across departments and vendors, health systems face agent sprawl, causing duplicated agents, unclear accountability, inconsistent controls, and tool permissions that persist beyond the original use case. Existing AI governance frameworks emphasize lifecycle risk management but provide limited guidance for the day-to-day operations of agent fleets. We propose a Unified Agent Lifecycle Management (UALM) blueprint derived from a rapid, practice-oriented synthesis of governance standards, agent security literature, and healthcare compliance requirements. UALM maps recurring gaps onto five control-plane layers: (1) an identity and persona registry, (2) orchestration and cross-domain mediation, (3) PHI-bounded context and memory, (4) runtime policy enforcement with kill-switch triggers, and (5) lifecycle management and decommissioning linked to credential revocation and audit logging. A companion maturity model supports staged adoption. UALM offers healthcare CIOs, CISOs, and clinical leaders an implementable pattern for audit-ready oversight that preserves local innovation and enables safer scaling across clinical and administrative domains.
comment: 9 Page, 3 figures
CogToM: A Comprehensive Theory of Mind Benchmark inspired by Human Cognition for Large Language Models
Whether Large Language Models (LLMs) truly possess human-like Theory of Mind (ToM) capabilities has garnered increasing attention. However, existing benchmarks remain largely restricted to narrow paradigms like false belief tasks, failing to capture the full spectrum of human cognitive mechanisms. We introduce CogToM, a comprehensive, theoretically grounded benchmark comprising over 8000 bilingual instances across 46 paradigms, validated by 49 human annotator.A systematic evaluation of 22 representative models, including frontier models like GPT-5.1 and Qwen3-Max, reveals significant performance heterogeneities and highlights persistent bottlenecks in specific dimensions. Further analysis based on human cognitive patterns suggests potential divergences between LLM and human cognitive structures. CogToM offers a robust instrument and perspective for investigating the evolving cognitive boundaries of LLMs.
Bridging Qualitative Rubrics and AI: A Binary Question Framework for Criterion-Referenced Grading in Engineering
PURPOSE OR GOAL: This study investigates how GenAI can be integrated with a criterion-referenced grading framework to improve the efficiency and quality of grading for mathematical assessments in engineering. It specifically explores the challenges demonstrators face with manual, model solution-based grading and how a GenAI-supported system can be designed to reliably identify student errors, provide high-quality feedback, and support human graders. The research also examines human graders' perceptions of the effectiveness of this GenAI-assisted approach. ACTUAL OR ANTICIPATED OUTCOMES: The study found that GenAI achieved an overall grading accuracy of 92.5%, comparable to two experienced human graders. The two researchers, who also served as subject demonstrators, perceived the GenAI as a helpful second reviewer that improved accuracy by catching small errors and provided more complete feedback than they could manually. A central outcome was the significant enhancement of formative feedback. However, they noted the GenAI tool is not yet reliable enough for autonomous use, especially with unconventional solutions. CONCLUSIONS/RECOMMENDATIONS/SUMMARY: This study demonstrates that GenAI, when paired with a structured, criterion-referenced framework using binary questions, can grade engineering mathematical assessments with an accuracy comparable to human experts. Its primary contribution is a novel methodological approach that embeds the generation of high-quality, scalable formative feedback directly into the assessment workflow. Future work should investigate student perceptions of GenAI grading and feedback.
comment: Proceedings of the 36th Annual Conference of the Australasian Association for Engineering Education (AAEE 2025)
Robust Tool Use via Fission-GRPO: Learning to Recover from Execution Errors
Large language models (LLMs) can call tools effectively, yet they remain brittle in multi-turn execution: following a tool call error, smaller models often degenerate into repetitive invalid re-invocations, failing to interpret error feedback and self-correct. This brittleness hinders reliable real-world deployment, where the execution errors are inherently inevitable during tool interaction procedures. We identify a key limitation of current approaches: standard reinforcement learning (RL) treats errors as sparse negative rewards, providing no guidance on how to recover, while pre-collected synthetic error-correction datasets suffer from distribution mismatch with the model's on-policy error modes. To bridge this gap, we propose Fission-GRPO, a framework that converts execution errors into corrective supervision within the RL training loop. Our core mechanism fissions each failed trajectory into a new training instance by augmenting it with diagnostic feedback from a finetuned Error Simulator, then resampling recovery rollouts on-policy. This enables the model to learn from the precise errors it makes during exploration, rather than from static, pre-collected error cases. On the BFCL v4 Multi-Turn, Fission-GRPO improves the error recovery rate of Qwen3-8B by 5.7% absolute, crucially, yielding a 4% overall accuracy gain (42.75% to 46.75%) over GRPO and outperforming specialized tool-use agents.
comment: 8 pages, 4 figures, 2 tables
Autonomous Business System via Neuro-symbolic AI
Current business environments require organizations to continuously reconfigure cross-functional processes, yet enterprise systems are still organized around siloed departments, rigid workflows, and hard-coded automation. Meanwhile large language models (LLMs) excel at interpreting natural language and unstructured data but lack deterministic, verifiable execution of complex business logic. To address this gap, here we introduce AUTOBUS, an Autonomous Business System that integrates LLM-based AI agents, predicate-logic programming, and business-semantics-centric enterprise data into a coherent neuro-symbolic AI architecture for orchestrating end-to-end business initiatives. AUTOBUS models an initiative as a network of tasks with explicit pre/post conditions, required data, evaluation rules, and API-level actions. Enterprise data is organized as a knowledge graph whose entities, relationships, and constraints are translated into logic facts and foundational rules, providing the semantic grounding for task reasoning. Core AI agents synthesize task instructions, enterprise semantics, and available tools into task-specific logic programs, which are executed by a logic engine that enforces constraints, coordinates auxiliary tools, and orchestrate execution of actions and outcomes. Humans define and maintain the semantics, policies and task instructions, curate tools, and supervise high-impact or ambiguous decisions, ensuring accountability and adaptability. We detail the AUTOBUS architecture, the anatomy of the AI agent generated logic programs, and the role of humans and auxiliary tools in the lifecycle of a business initiative.
comment: Accepted to IEEE SysCon 2026
DeepASMR: LLM-Based Zero-Shot ASMR Speech Generation for Anyone of Any Voice
While modern Text-to-Speech (TTS) systems achieve high fidelity for read-style speech, they struggle to generate Autonomous Sensory Meridian Response (ASMR), a specialized, low-intensity speech style essential for relaxation. The inherent challenges include ASMR's subtle, often unvoiced characteristics and the demand for zero-shot speaker adaptation. In this paper, we introduce DeepASMR, the first framework designed for zero-shot ASMR generation. We demonstrate that a single short snippet of a speaker's ordinary, read-style speech is sufficient to synthesize high-fidelity ASMR in their voice, eliminating the need for whispered training data from the target speaker. Methodologically, we first identify that discrete speech tokens provide a soft factorization of ASMR style from speaker timbre. Leveraging this insight, we propose a two-stage pipeline incorporating a Large Language Model (LLM) for content-style encoding and a flow-matching acoustic decoder for timbre reconstruction. Furthermore, we contribute DeepASMR-DB, a comprehensive 670-hour English-Chinese multi-speaker ASMR speech corpus, and introduce a novel evaluation protocol integrating objective metrics, human listening tests, LLM-based scoring and unvoiced speech analysis. Extensive experiments confirm that DeepASMR achieves state-of-the-art naturalness and style fidelity in ASMR generation for anyone of any voice, while maintaining competitive performance on normal speech synthesis.
Data-Free Privacy-Preserving for LLMs via Model Inversion and Selective Unlearning
Large language models (LLMs) exhibit powerful capabilities but risk memorizing sensitive personally identifiable information (PII) from their training data, posing significant privacy concerns. While machine unlearning techniques aim to remove such data, they predominantly depend on access to the training data. This requirement is often impractical, as training data in real-world deployments is commonly proprietary or inaccessible. To address this limitation, we propose Data-Free Selective Unlearning (DFSU), a novel privacy-preserving framework that removes sensitive PII from an LLM without requiring its training data. Our approach first synthesizes pseudo-PII through language model inversion, then constructs token-level privacy masks for these synthetic samples, and finally performs token-level selective unlearning via a contrastive mask loss within a low-rank adaptation (LoRA) subspace. Extensive experiments on the AI4Privacy PII-Masking dataset using Pythia models demonstrate that our method effectively removes target PII while maintaining model utility.
Parallelism and Generation Order in Masked Diffusion Language Models: Limits Today, Potential Tomorrow
Masked Diffusion Language Models (MDLMs) promise parallel token generation and arbitrary-order decoding, yet it remains unclear to what extent current models truly realize these capabilities. We characterize MDLM behavior along two dimensions -- parallelism strength and generation order -- using Average Finalization Parallelism (AFP) and Kendall's tau. We evaluate eight mainstream MDLMs (up to 100B parameters) on 58 benchmarks spanning knowledge, reasoning, and programming. The results show that MDLMs still lag behind comparably sized autoregressive models, mainly because parallel probabilistic modeling weakens inter-token dependencies. Meanwhile, MDLMs exhibit adaptive decoding behavior: their parallelism and generation order vary significantly with the task domain, the stage of reasoning, and whether the output is correct. On tasks that require "backward information" (e.g., Sudoku), MDLMs adopt a solution order that tends to fill easier Sudoku blanks first, highlighting their advantages. Finally, we provide theoretical motivation and design insights supporting a Generate-then-Edit paradigm, which mitigates dependency loss while retaining the efficiency of parallel decoding.
MapViT: A Two-Stage ViT-Based Framework for Real-Time Radio Quality Map Prediction in Dynamic Environments
Recent advancements in mobile and wireless networks are unlocking the full potential of robotic autonomy, enabling robots to take advantage of ultra-low latency, high data throughput, and ubiquitous connectivity. However, for robots to navigate and operate seamlessly, efficiently and reliably, they must have an accurate understanding of both their surrounding environment and the quality of radio signals. Achieving this in highly dynamic and ever-changing environments remains a challenging and largely unsolved problem. In this paper, we introduce MapViT, a two-stage Vision Transformer (ViT)-based framework inspired by the success of pre-train and fine-tune paradigm for Large Language Models (LLMs). MapViT is designed to predict both environmental changes and expected radio signal quality. We evaluate the framework using a set of representative Machine Learning (ML) models, analyzing their respective strengths and limitations across different scenarios. Experimental results demonstrate that the proposed two-stage pipeline enables real-time prediction, with the ViT-based implementation achieving a strong balance between accuracy and computational efficiency. This makes MapViT a promising solution for energy- and resource-constrained platforms such as mobile robots. Moreover, the geometry foundation model derived from the self-supervised pre-training stage improves data efficiency and transferability, enabling effective downstream predictions even with limited labeled data. Overall, this work lays the foundation for next-generation digital twin ecosystems, and it paves the way for a new class of ML foundation models driving multi-modal intelligence in future 6G-enabled systems.
comment: This paper has been accepted for publication at IEEE International Conference on Communications (ICC) 2026
PromptHelper: A Prompt Recommender System for Encouraging Creativity in AI Chatbot Interactions
Prompting is central to interaction with AI systems, yet many users struggle to explore alternative directions, articulate creative intent, or understand how variations in prompts shape model outputs. We introduce prompt recommender systems (PRS) as an interaction approach that supports exploration, suggesting contextually relevant follow-up prompts. We present PromptHelper, a PRS prototype integrated into an AI chatbot that surfaces semantically diverse prompt suggestions while users work on real writing tasks. We evaluate PromptHelper in a 2x2 fully within-subjects study (N=32) across creative and academic writing tasks. Results show that PromptHelper significantly increases users' perceived exploration and expressiveness without increasing cognitive workload. Qualitative findings illustrate how prompt recommendations help users branch into new directions, overcome uncertainty about what to ask next, and better articulate their intent. We discuss implications for designing AI interfaces that scaffold exploratory interaction while preserving user agency, and release open-source resources to support research on prompt recommendation.
BanditLP: Large-Scale Stochastic Optimization for Personalized Recommendations
We present BanditLP, a scalable multi-stakeholder contextual bandit framework that unifies neural Thompson Sampling for learning objective-specific outcomes with a large-scale linear program for constrained action selection at serving time. The methodology is application-agnostic, compatible with arbitrary neural architectures, and deployable at web scale, with an LP solver capable of handling billions of variables. Experiments on public benchmarks and synthetic data show consistent gains over strong baselines. We apply this approach in LinkedIn's email marketing system and demonstrate business win, illustrating the value of integrated exploration and constrained optimization in production.
ALIGNAgent: Adaptive Learner Intelligence for Gap Identification and Next-step guidance
Personalized learning systems have emerged as a promising approach to enhance student outcomes by tailoring educational content, pacing, and feedback to individual needs. However, most existing systems remain fragmented, specializing in either knowledge tracing, diagnostic modeling, or resource recommendation, but rarely integrating these components into a cohesive adaptive cycle. In this paper, we propose ALIGNAgent (Adaptive Learner Intelligence for Gap Identification and Next-step guidance), a multi-agent educational framework designed to deliver personalized learning through integrated knowledge estimation, skill-gap identification, and targeted resource recommendation.ALIGNAgent begins by processing student quiz performance, gradebook data, and learner preferences to generate topic-level proficiency estimates using a Skill Gap Agent that employs concept-level diagnostic reasoning to identify specific misconceptions and knowledge deficiencies. After identifying skill gaps, the Recommender Agent retrieves preference-aware learning materials aligned with diagnosed deficiencies, implementing a continuous feedback loop where interventions occur before advancing to subsequent topics. Extensive empirical evaluation on authentic datasets from two undergraduate computer science courses demonstrates ALIGNAgent's effectiveness, with GPT-4o-based agents achieving precision of 0.87-0.90 and F1 scores of 0.84-0.87 in knowledge proficiency estimation validated against actual exam performance.
comment: 35 pages
VIOLA: Towards Video In-Context Learning with Minimal Annotations
Generalizing Multimodal Large Language Models (MLLMs) to novel video domains is essential for real-world deployment but remains challenging due to the scarcity of labeled data. While In-Context Learning (ICL) offers a training-free adaptation path, standard methods rely on large annotated pools, which are often impractical in specialized environments like industrial or surgical settings since they require the experts' annotations. To bridge this gap, we introduce VIOLA (Video In-cOntext Learning with minimal Annotation), a label-efficient framework that synergizes minimal expert supervision with abundant unlabeled data. First, to maximize the efficiency of a strict annotation budget, we propose density-uncertainty-weighted sampling. Unlike standard diversity or uncertainty strategies that risk selecting visual outliers, our method leverages density estimation to identify samples that are simultaneously diverse, representative, and informative. Second, to utilize the remaining unlabeled data without noise propagation, we construct a hybrid pool and introduce confidence-aware retrieval and confidence-aware prompting. These mechanisms explicitly model label reliability, retrieving demonstrations based on a composite score of similarity and confidence while enabling the MLLM to adaptively distinguish between verified ground truths and noisy pseudo-labels. Extensive experiments across nine diverse benchmarks using four MLLMs demonstrate that our framework significantly outperforms various baselines in low-resource settings, achieving robust adaptation with minimal annotation costs.
Learning Neural Operators from Partial Observations via Latent Autoregressive Modeling
Real-world scientific applications frequently encounter incomplete observational data due to sensor limitations, geographic constraints, or measurement costs. Although neural operators significantly advanced PDE solving in terms of computational efficiency and accuracy, their underlying assumption of fully-observed spatial inputs severely restricts applicability in real-world applications. We introduce the first systematic framework for learning neural operators from partial observation. We identify and formalize two fundamental obstacles: (i) the supervision gap in unobserved regions that prevents effective learning of physical correlations, and (ii) the dynamic spatial mismatch between incomplete inputs and complete solution fields. Specifically, our proposed Latent Autoregressive Neural Operator~(\ours) introduces two novel components designed explicitly to address the core difficulties of partial observations: (i) a mask-to-predict training strategy that creates artificial supervision by strategically masking observed regions, and (ii) a Physics-Aware Latent Propagator that reconstructs solutions through boundary-first autoregressive generation in latent space. Additionally, we develop POBench-PDE, a dedicated and comprehensive benchmark designed specifically for evaluating neural operators under partial observation conditions across three PDE-governed tasks. \ours achieves state-of-the-art performance with 18--69$\%$ relative L2 error reduction across all benchmarks under patch-wise missingness with less than 50$\%$ missing rate, including real-world climate prediction. Our approach effectively addresses practical scenarios involving up to 75$\%$ missing rate, to some extent bridging the existing gap between idealized research settings and the complexities of real-world scientific computing.
RDumb++: Drift-Aware Continual Test-Time Adaptation
Continual Test-Time Adaptation (CTTA) seeks to update a pretrained model during deployment using only the incoming, unlabeled data stream. Although prior approaches such as Tent, EATA etc. provide meaningful improvements under short evolving shifts, they struggle when the test distribution changes rapidly or over extremely long horizons. This challenge is exemplified by the CCC benchmark, where models operate over streams of 7.5M samples with continually changing corruption types and severities. We propose RDumb++, a principled extension of RDumb that introduces two drift-detection mechanisms i.e entropy-based drift scoring and KL-divergence drift scoring, together with adaptive reset strategies. These mechanisms allow the model to detect when accumulated adaptation becomes harmful and to recover before prediction collapse occurs. Across CCC-medium with three speeds and three seeds (nine runs, each containing one million samples), RDumb++ consistently surpasses RDumb, yielding approx 3% absolute accuracy gains while maintaining stable adaptation throughout the entire stream. Ablation experiments on drift thresholds and reset strengths further show that drift-aware resetting is essential for preventing collapse and achieving reliable long-horizon CTTA.
Experience with Single Domain Generalization in Real World Medical Imaging Deployments AAAI 2026
A desirable property of any deployed artificial intelligence is generalization across domains, i.e. data generation distribution under a specific acquisition condition. In medical imagining applications the most coveted property for effective deployment is Single Domain Generalization (SDG), which addresses the challenge of training a model on a single domain to ensure it generalizes well to unseen target domains. In multi-center studies, differences in scanners and imaging protocols introduce domain shifts that exacerbate variability in rare class characteristics. This paper presents our experience on SDG in real life deployment for two exemplary medical imaging case studies on seizure onset zone detection using fMRI data, and stress electrocardiogram based coronary artery detection. Utilizing the commonly used application of diabetic retinopathy, we first demonstrate that state-of-the-art SDG techniques fail to achieve generalized performance across data domains. We then develop a generic expert knowledge integrated deep learning technique DL+EKE and instantiate it for the DR application and show that DL+EKE outperforms SOTA SDG methods on DR. We then deploy instances of DL+EKE technique on the two real world examples of stress ECG and resting state (rs)-fMRI and discuss issues faced with SDG techniques.
comment: Accepted at AAAI 2026 Innovative Applications of Artificial Intelligence
NOIR: Privacy-Preserving Generation of Code with Open-Source LLMs
Although boosting software development performance, large language model (LLM)-powered code generation introduces intellectual property and data security risks rooted in the fact that a service provider (cloud) observes a client's prompts and generated code, which can be proprietary in commercial systems. To mitigate this problem, we propose NOIR, the first framework to protect the client's prompts and generated code from the cloud. NOIR uses an encoder and a decoder at the client to encode and send the prompts' embeddings to the cloud to get enriched embeddings from the LLM, which are then decoded to generate the code locally at the client. Since the cloud can use the embeddings to infer the prompt and the generated code, NOIR introduces a new mechanism to achieve indistinguishability, a local differential privacy protection at the token embedding level, in the vocabulary used in the prompts and code, and a data-independent and randomized tokenizer on the client side. These components effectively defend against reconstruction and frequency analysis attacks by an honest-but-curious cloud. Extensive analysis and results using open-source LLMs show that NOIR significantly outperforms existing baselines on benchmarks, including the Evalplus (MBPP and HumanEval, Pass@1 of 76.7 and 77.4), and BigCodeBench (Pass@1 of 38.7, only a 1.77% drop from the original LLM) under strong privacy against attacks.
comment: To appear at Usenix Security Symposium 2026
Regional Bias in Large Language Models
This study investigates regional bias in large language models (LLMs), an emerging concern in AI fairness and global representation. We evaluate ten prominent LLMs: GPT-3.5, GPT-4o, Gemini 1.5 Flash, Gemini 1.0 Pro, Claude 3 Opus, Claude 3.5 Sonnet, Llama 3, Gemma 7B, Mistral 7B, and Vicuna-13B using a dataset of 100 carefully designed prompts that probe forced-choice decisions between regions under contextually neutral scenarios. We introduce FAZE, a prompt-based evaluation framework that measures regional bias on a 10-point scale, where higher scores indicate a stronger tendency to favor specific regions. Experimental results reveal substantial variation in bias levels across models, with GPT-3.5 exhibiting the highest bias score (9.5) and Claude 3.5 Sonnet scoring the lowest (2.5). These findings indicate that regional bias can meaningfully undermine the reliability, fairness, and inclusivity of LLM outputs in real-world, cross-cultural applications. This work contributes to AI fairness research by highlighting the importance of inclusive evaluation frameworks and systematic approaches for identifying and mitigating geographic biases in language models.
comment: 8 pages, 1 figure. Presented at the Second International Conference on Advanced Computing, Machine Learning, Robotics and Internet Technologies (AMRIT 2024)
DSGym: A Holistic Framework for Evaluating and Training Data Science Agents
Data science agents promise to accelerate discovery and insight-generation by turning data into executable analyses and findings. Yet existing data science benchmarks fall short due to fragmented evaluation interfaces that make cross-benchmark comparison difficult, narrow task coverage and a lack of rigorous data grounding. In particular, we show that a substantial portion of tasks in current benchmarks can be solved without using the actual data. To address these limitations, we introduce DSGym, a standardized framework for evaluating and training data science agents in self-contained execution environments. Unlike static benchmarks, DSGym provides a modular architecture that makes it easy to add tasks, agent scaffolds, and tools, positioning it as a live, extensible testbed. We curate DSGym-Tasks, a holistic task suite that standardizes and refines existing benchmarks via quality and shortcut solvability filtering. We further expand coverage with (1) DSBio: expert-derived bioinformatics tasks grounded in literature and (2) DSPredict: challenging prediction tasks spanning domains such as computer vision, molecular prediction, and single-cell perturbation. Beyond evaluation, DSGym enables agent training via execution-verified data synthesis pipeline. As a case study, we build a 2,000-example training set and trained a 4B model in DSGym that outperforms GPT-4o on standardized analysis benchmarks. Overall, DSGym enables rigorous end-to-end measurement of whether agents can plan, implement, and validate data analyses in realistic scientific context.
DMAVA: Distributed Multi-Autonomous Vehicle Architecture Using Autoware IV 2026
Simulating and validating coordination among multiple autonomous vehicles (AVs) is a challenging task as most existing simulation architectures are limited to single-vehicle operation or rely on centralized control. This paper presents a Distributed Multi-AV Architecture (DMAVA) that enables synchronized, real-time autonomous driving simulation across multiple physical hosts. Each vehicle runs its own complete AV stack and operates independently from other AVs. The vehicles in the simulation maintain synchronized coordination through a low-latency data-centric communication layer. The proposed system integrates ROS 2 Humble, Autoware Universe, AWSIM Labs, and Zenoh to support concurrent execution of multiple Autoware stacks within a shared Unity-based environment. Experiments conducted on multiple-host configurations demonstrate stable localization, reliable inter-host communication, and fully synchronized closed-loop control. The DMAVA also serves as a foundation for Multi-Vehicle Autonomous Valet Parking, demonstrating its extensibility toward higher-level cooperative autonomy. Demo videos and source code are available at: https://github.com/zubxxr/distributed-multi-autonomous-vehicle-architecture.
comment: 9 pages, 4 figures, 5 tables, Submitted to IEEE IV 2026, Demo videos and source code available
Where is the multimodal goal post? On the Ability of Foundation Models to Recognize Contextually Important Moments
Foundation models are used for many real-world applications involving language generation from temporally-ordered multimodal events. In this work, we study the ability of models to identify the most important sub-events in a video, which is a fundamental prerequisite for narrating or summarizing multimodal events. Specifically, we focus on football games and evaluate models on their ability to distinguish between important and non-important sub-events in a game. To this end, we construct a new dataset by leveraging human preferences for importance implicit in football game highlight reels, without any additional annotation costs. Using our dataset, which we will publicly release to the community, we compare several state-of-the-art multimodal models and show that they are not far from chance level performance. Analyses of models beyond standard evaluation metrics reveal their tendency to rely on a single dominant modality and their ineffectiveness in synthesizing necessary information from multiple sources. Our findings underline the importance of modular architectures that can handle sample-level heterogeneity in multimodal data and the need for complementary training procedures that can maximize cross-modal synergy.
DMV-AVP: Distributed Multi-Vehicle Autonomous Valet Parking using Autoware
This paper presents the DMV-AVP System, a distributed simulation of Multi-Vehicle Autonomous Valet Parking (AVP). The system was implemented as an application of the Distributed Multi-Vehicle Architecture (DMAVA) for synchronized multi-host execution. Most existing simulation approaches rely on centralized or non-distributed designs that constrain scalability and limit fully autonomous control. This work introduces two modules built on top of the DMAVA: 1) a Multi-Vehicle AVP Node that performs state-based coordination, queuing, and reservation management across multiple vehicles, and 2) a Unity-Integrated YOLOv5 Parking Spot Detection Module that provides real-time, vision-based perception within AWSIM Labs. Both modules integrate seamlessly with the DMAVA and extend it specifically for multi-vehicle AVP operation, supported by a Zenoh-based communication layer that ensures low-latency topic synchronization and coordinated behavior across hosts. Experiments conducted on two- and three-host configurations demonstrate deterministic coordination, conflict-free parking behavior, and scalable performance across distributed Autoware instances. The results confirm that the proposed Distributed Multi-Vehicle AVP System supports cooperative AVP simulation and establishes a foundation for future real-world and hardware-in-the-loop validation. Demo videos and source code are available at https://github.com/zubxxr/multi-vehicle-avp
comment: 7 pages, 5 figures, 1 table. Demo videos and source code available
Machine-Assisted Grading of Nationwide School-Leaving Essay Exams with LLMs and Statistical NLP
Large language models (LLMs) enable rapid and consistent automated evaluation of open-ended exam responses, including dimensions of content and argumentation that have traditionally required human judgment. This is particularly important in cases where a large amount of exams need to be graded in a limited time frame, such as nation-wide graduation exams in various countries. Here, we examine the applicability of automated scoring on two large datasets of trial exam essays of two full national cohorts from Estonia. We operationalize the official curriculum-based rubric and compare LLM and statistical natural language processing (NLP) based assessments with human panel scores. The results show that automated scoring can achieve performance comparable to that of human raters and tends to fall within the human scoring range. We also evaluate bias, prompt injection risks, and LLMs as essay writers. These findings demonstrate that a principled, rubric-driven, human-in-the-loop scoring pipeline is viable for high-stakes writing assessment, particularly relevant for digitally advanced societies like Estonia, which is about to adapt a fully electronic examination system. Furthermore, the system produces fine-grained subscore profiles that can be used to generate systematic, personalized feedback for instruction and exam preparation. The study provides evidence that LLM-assisted assessment can be implemented at a national scale, even in a small-language context, while maintaining human oversight and compliance with emerging educational and regulatory standards.
Teaching and Evaluating LLMs to Reason About Polymer Design Related Tasks
Research in AI4Science has shown promise in many science applications, including polymer design. However, current LLMs prove ineffective on this problem space because: (i) most models lack polymer-specific knowledge (ii) existing aligned models lack coverage of knowledge and capabilities relevant to polymer design. Addressing this, we introduce PolyBench, a large scale training and test benchmark dataset of more than 125K polymer design related tasks, leveraging a knowledge base of 13M+ data points obtained from experimental and synthetic sources to ensure broad coverage of polymers and their properties. For effective alignment using PolyBench, we introduce a knowledge-augmented reasoning distillation method that augments this dataset with structured CoT. Furthermore, tasks in PolyBench are organized from simple to complex analytical reasoning problems, enabling generalization tests and diagnostic probes across the problem space. Experiments show that small language models (SLMs), of 7B to 14B parameters, trained on PolyBench data outperform similar sized models, and even closed source frontier LLMs on PolyBench test dataset while demonstrating gains on other polymer benchmarks as well.
Memory-V2V: Augmenting Video-to-Video Diffusion Models with Memory
Recent foundational video-to-video diffusion models have achieved impressive results in editing user provided videos by modifying appearance, motion, or camera movement. However, real-world video editing is often an iterative process, where users refine results across multiple rounds of interaction. In this multi-turn setting, current video editors struggle to maintain cross-consistency across sequential edits. In this work, we tackle, for the first time, the problem of cross-consistency in multi-turn video editing and introduce Memory-V2V, a simple, yet effective framework that augments existing video-to-video models with explicit memory. Given an external cache of previously edited videos, Memory-V2V employs accurate retrieval and dynamic tokenization strategies to condition the current editing step on prior results. To further mitigate redundancy and computational overhead, we propose a learnable token compressor within the DiT backbone that compresses redundant conditioning tokens while preserving essential visual cues, achieving an overall speedup of 30%. We validate Memory-V2V on challenging tasks including video novel view synthesis and text-conditioned long video editing. Extensive experiments show that Memory-V2V produces videos that are significantly more cross-consistent with minimal computational overhead, while maintaining or even improving task-specific performance over state-of-the-art baselines. Project page: https://dohunlee1.github.io/MemoryV2V
comment: Project page: https://dohunlee1.github.io/MemoryV2V
Space Filling Curves is All You Need: Communication-Avoiding Matrix Multiplication Made Simple
General Matrix Multiplication (GEMM) is the cornerstone of Deep Learning and HPC workloads; accordingly, academia and industry have heavily optimized this kernel. Modern platforms with matrix multiplication accelerators exhibit high FLOP/Byte machine balance, which makes implementing optimal matrix multiplication challenging. On modern CPU platforms with matrix engines, state-of-the-art vendor libraries tune input tensor layouts, parallelization schemes, and cache blocking to minimize data movement across the memory hierarchy and maximize throughput. However, the best settings for these parameters depend strongly on the target platform (number of cores, memory hierarchy, cache sizes) and on the shapes of the matrices, making exhaustive tuning infeasible; in practice this leads to performance "glass jaws". In this work we revisit space filling curves (SFC) to alleviate the problem of this cumbersome tuning. SFC convert multi-dimensional coordinates (e.g. 2D) into a single dimension (1D), keeping nearby points in the high-dimensional space close in the 1D order. We partition the Matrix Multiplication computation space using recent advancements in generalized SFC (Generalized Hilbert Curves), and we obtain platform-oblivious and shape-oblivious matrix-multiplication schemes that exhibit inherently high degree of data locality. Furthermore, we extend the SFC-based work partitioning to implement Communication-Avoiding (CA) algorithms that replicate the input tensors and provably minimize communication/data-movement on the critical path. The integration of CA-algorithms is seamless and yields compact code (~30 LOC), yet it achieves state-of-the-art results on multiple CPU platforms, outperforming vendor libraries by up to 2x(geometric-mean speedup) for a range of GEMM shapes.
SemanticALLI: Caching Reasoning, Not Just Responses, in Agentic Systems
Agentic AI pipelines suffer from a hidden inefficiency: they frequently reconstruct identical intermediate logic, such as metric normalization or chart scaffolding, even when the user's natural language phrasing is entirely novel. Conventional boundary caching fails to capture this inefficiency because it treats inference as a monolithic black box. We introduce SemanticALLI, a pipeline-aware architecture within Alli (PMG's marketing intelligence platform), designed to operationalize redundant reasoning. By decomposing generation into Analytic Intent Resolution (AIR) and Visualization Synthesis (VS), SemanticALLI elevates structured intermediate representations (IRs) to first-class, cacheable artifacts. The impact of caching within the agentic loop is substantial. In our evaluation, baseline monolithic caching caps at a 38.7% hit rate due to linguistic variance. In contrast, our structured approach allows for an additional stage, the Visualization Synthesis stage, to achieve an 83.10% hit rate, bypassing 4,023 LLM calls with a median latency of just 2.66 ms. This internal reuse reduces total token consumption, offering a practical lesson for AI system design: even when users rarely repeat themselves, the pipeline often does, at stable, structured checkpoints where caching is most reliable.
Generating Literature-Driven Scientific Theories at Scale
Contemporary automated scientific discovery has focused on agents for generating scientific experiments, while systems that perform higher-level scientific activities such as theory building remain underexplored. In this work, we formulate the problem of synthesizing theories consisting of qualitative and quantitative laws from large corpora of scientific literature. We study theory generation at scale, using 13.7k source papers to synthesize 2.9k theories, examining how generation using literature-grounding versus parametric knowledge, and accuracy-focused versus novelty-focused generation objectives change theory properties. Our experiments show that, compared to using parametric LLM memory for generation, our literature-supported method creates theories that are significantly better at both matching existing evidence and at predicting future results from 4.6k subsequently-written papers
comment: 9 pages plus appendix, 3 figures
When Agents Fail to Act: A Diagnostic Framework for Tool Invocation Reliability in Multi-Agent LLM Systems
Multi-agent systems powered by large language models (LLMs) are transforming enterprise automation, yet systematic evaluation methodologies for assessing tool-use reliability remain underdeveloped. We introduce a comprehensive diagnostic framework that leverages big data analytics to evaluate procedural reliability in intelligent agent systems, addressing critical needs for SME-centric deployment in privacy-sensitive environments. Our approach features a 12-category error taxonomy capturing failure modes across tool initialization, parameter handling, execution, and result interpretation. Through systematic evaluation of 1,980 deterministic test instances spanning both open-weight models (Qwen2.5 series, Functionary) and proprietary alternatives (GPT-4, Claude 3.5/3.7) across diverse edge hardware configurations, we identify actionable reliability thresholds for production deployment. Our analysis reveals that procedural reliability, particularly tool initialization failures, constitutes the primary bottleneck for smaller models, while qwen2.5:32b achieves flawless performance matching GPT-4.1. The framework demonstrates that mid-sized models (qwen2.5:14b) offer practical accuracy-efficiency trade-offs on commodity hardware (96.6\% success rate, 7.3 s latency), enabling cost-effective intelligent agent deployment for resource-constrained organizations. This work establishes foundational infrastructure for systematic reliability evaluation of tool-augmented multi-agent AI systems.
comment: Accepted for publication in 2026 The 9th International Conference on Artificial Intelligence and Big Data (ICAIBD 2026)
Better as Generators Than Classifiers: Leveraging LLMs and Synthetic Data for Low-Resource Multilingual Classification
Large Language Models (LLMs) have demonstrated remarkable multilingual capabilities, making them promising tools in both high- and low-resource languages. One particularly valuable use case is generating synthetic samples that can be used to train smaller models in low-resource scenarios where human-labelled data is scarce. In this work, we investigate whether these synthetic data generation capabilities can serve as a form of distillation, producing smaller models that perform on par with or even better than massive LLMs across languages and tasks. To this end, we use a state-of-the-art multilingual LLM to generate synthetic datasets covering 11 languages and 4 classification tasks. These datasets are then used to train smaller models via fine-tuning or instruction tuning, or as synthetic in-context examples for compact LLMs. Our experiments show that even small amounts of synthetic data enable smaller models to outperform the large generator itself, particularly in low-resource languages. Overall, the results suggest that LLMs are best utilised as generators (teachers) rather than classifiers, producing data that empowers smaller and more efficient multilingual models.
comment: Accepted to the Findings of EACL 2026
GameTalk: Training LLMs for Strategic Conversation
Strategic decision-making in multi-agent settings is a key challenge for large language models (LLMs), particularly when coordination and negotiation must unfold over extended conversations. While recent work has explored the use of LLMs in isolated decision tasks, little attention has been given to optimizing long-term objectives through dialogue. We introduce \textbf{GameTalk}, a framework for training LLMs to make strategic decisions via multi-turn interactions. Unlike prior work that focuses on single-turn objectives or static action prediction, we train LLMs to optimize a global objective across full conversations. We achieve this by adapting fine-tuning methods like GRPO, DPO, and STaR to incorporate reward signals that depend on the entire interaction. We evaluate this approach on a suite of increasingly complex games, designed to stress different aspects of reasoning, coordination, and opponent modeling. Our results show that GameTalk significantly outperforms untrained models, especially under reward shaping, with DPO consistently yielding the strongest gains. These findings position conversational fine-tuning as a promising path for LLMs to reason, negotiate, and act in interactive environments.
comment: 32 pages, 8 figures
Ordering-based Causal Discovery via Generalized Score Matching
Learning DAG structures from purely observational data remains a long-standing challenge across scientific domains. An emerging line of research leverages the score of the data distribution to initially identify a topological order of the underlying DAG via leaf node detection and subsequently performs edge pruning for graph recovery. This paper extends the score matching framework for causal discovery, which is originally designated for continuous data, and introduces a novel leaf discriminant criterion based on the discrete score function. Through simulated and real-world experiments, we demonstrate that our theory enables accurate inference of true causal orders from observed discrete data and the identified ordering can significantly boost the accuracy of existing causal discovery baselines on nearly all of the settings.
A New Paradigm for Trusted Respiratory Monitoring Via Consumer Electronics-grade Radar Signals
Respiratory monitoring is an extremely important task in modern medical services. Due to its significant advantages, e.g., non-contact, radar-based respiratory monitoring has attracted widespread attention from both academia and industry. Unfortunately, though it can achieve high monitoring accuracy, consumer electronics-grade radar data inevitably contains User-sensitive Identity Information (USI), which may be maliciously used and further lead to privacy leakage. To track these challenges, by variational mode decomposition (VMD) and adversarial loss-based encryption, we propose a novel Trusted Respiratory Monitoring paradigm, Tru-RM, to perform automated respiratory monitoring through radio signals while effectively anonymizing USI. The key enablers of Tru-RM are Attribute Feature Decoupling (AFD), Flexible Perturbation Encryptor (FPE), and robust Perturbation Tolerable Network (PTN) used for attribute decomposition, identity encryption, and perturbed respiratory monitoring, respectively. Specifically, AFD is designed to decompose the raw radar signals into the universal respiratory component, the personal difference component, and other unrelated components. Then, by using large noise to drown out the other unrelated components, and the phase noise algorithm with a learning intensity parameter to eliminate USI in the personal difference component, FPE is designed to achieve complete user identity information encryption without affecting respiratory features. Finally, by designing the transferred generalized domain-independent network, PTN is employed to accurately detect respiration when waveforms change significantly. Extensive experiments based on various detection distances, respiratory patterns, and durations demonstrate the superior performance of Tru-RM on strong anonymity of USI, and high detection accuracy of perturbed respiratory waveforms.
GutenOCR: A Grounded Vision-Language Front-End for Documents
GutenOCR is a family of grounded OCR front-ends obtained by fine-tuning Qwen2.5-VL-3B and Qwen2.5-VL-7B. The resulting single-checkpoint vision-language models expose reading, detection, and grounding through a unified, prompt-based interface. Trained on business documents, scientific articles, and synthetic grounding data, the models support full-page and localized reading with line- and paragraph-level bounding boxes and conditional ``where is x?'' queries. We introduce a grounded OCR evaluation protocol and show that GutenOCR-7B more than doubles the composite grounded OCR score of its Qwen2.5-VL-7B backbone on 10.5K held-out business and scientific pages (0.40 to 0.82). On Fox and OmniDocBench v1.5, our approach substantially improves region- and line-level OCR as well as text-detection recall, but reveals trade-offs in page-level linearization, color-guided OCR, and formula-heavy layouts.
Training-Free Geospatial Place Representation Learning from Large-Scale Point-of-Interest Graph Data
Learning effective representations of urban environments requires capturing spatial structure beyond fixed administrative boundaries. Existing geospatial representation learning approaches typically aggregate Points of Interest(POI) into pre-defined administrative regions such as census units or ZIP code areas, assigning a single embedding to each region. However, POIs often form semantically meaningful groups that extend across, within, or beyond these boundaries, defining places that better reflect human activity and urban function. To address this limitation, we propose PlaceRep, a training-free geospatial representation learning method that constructs place-level representations by clustering spatially and semantically related POIs. PlaceRep summarizes large-scale POI graphs from U.S. Foursquare data to produce general-purpose urban region embeddings while automatically identifying places across multiple spatial scales. By eliminating model pre-training, PlaceRep provides a scalable and efficient solution for multi-granular geospatial analysis. Experiments using the tasks of population density estimation and housing price prediction as downstream tasks show that PlaceRep outperforms most state-of-the-art graph-based geospatial representation learning methods and achieves up to a 100x speedup in generating region-level representations on large-scale POI graphs. The implementation of PlaceRep is available at https://github.com/mohammadhashemii/PlaceRep.
SciArena: An Open Evaluation Platform for Non-Verifiable Scientific Literature-Grounded Tasks NeurIPS 2025
We present SciArena, an open and collaborative platform for evaluating foundation models on scientific literature-grounded tasks. Unlike traditional benchmarks for scientific literature understanding and synthesis, SciArena engages the research community directly, following the Chatbot Arena evaluation approach of community voting on model comparisons. By leveraging collective intelligence, SciArena offers a community-driven evaluation of model performance on open-ended scientific tasks that demand literature-grounded, long-form responses. The platform currently supports 47 foundation models and has collected over 20,000 votes from human researchers across diverse scientific domains. Our analysis of the data collected so far confirms its high quality. We discuss the results and insights based on the model ranking leaderboard. To further promote research in building model-based automated evaluation systems for literature tasks, we release SciArena-Eval, a meta-evaluation benchmark based on collected preference data. It measures the accuracy of models in judging answer quality by comparing their pairwise assessments with human votes. Our experiments highlight the benchmark's challenges and emphasize the need for more reliable automated evaluation methods.
comment: NeurIPS 2025 Datasets & Benchmarks Track (Spotlight)
Paramanu: Compact and Competitive Monolingual Language Models for Low-Resource Morphologically Rich Indian Languages
Multilingual large language models (LLMs) are expensive to pretrain and often suffer from imbalances across languages and datasets, English-centric bias, tokenizer oversegmentation for morphologically rich low-resource languages, and the curse of multilinguality. We introduce PARAMANU, the first family of Indian-only autoregressive language models trained from scratch on open-source language-specific data for the five most spoken Indian languages: Bengali, Hindi, Marathi, Tamil, and Telugu. All models are designed for affordability and are trained on a single GPU with a budget under $1,000, allowing under-resourced researchers to build competitive language models. To address low-resource challenges, we develop morphology-aligned, low-fertility tokenizers, propose an interpolation-based method for token position indices in RoPE based scaling to train longer sequences efficiently. We also create instruction-tuning datasets in Bangla that are translated to the other four languages. Despite their small size (108M-367M parameters), Paramanu achieves a strong performance-efficiency tradeoff and outperforms most larger multilingual models across all five languages. Our collection is available at https://huggingface.co/collections/mitodru/paramanu.
Dynamical Mechanisms for Coordinating Long-term Working Memory Based on the Precision of Spike-timing in Cortical Neurons
In the last century, most sensorimotor studies of cortical neurons relied on average firing rates. Rate coding is efficient for fast sensorimotor processing that occurs within a few seconds. Much less is known about long-term working memory with a time scale of hours (Ericsson and Kintsch, 1995). The discovery of millisecond-precision spike initiation in cortical neurons was unexpected (Mainen and Sejnowski, 1995). Even more striking was the precision of spiking in vivo, in response to rapidly fluctuating sensory inputs, suggesting that neural circuits could preserve and manipulate sensory information through spike timing. High temporal resolution enables a broader range of neural codes. It could also support spike-timing-dependent plasticity (STDP), which is triggered by the relative timing of spikes between presynaptic and postsynaptic neurons in the millisecond range. What spike-timing mechanisms could regulate STDP in vivo? Cortical traveling waves have been observed across many frequency bands with high temporal precision. Traveling waves have wave fronts that could link spike timing to STDP. As a wave front passes through a cortical column, excitatory synapses on the dendrites of both pyramidal and basket cells are stimulated synchronously. Inhibitory basket cells form a calyx on pyramidal cell bodies, and inhibitory rebound following a strong transient hyperpolarization can trigger a backpropagating action potential, which arrives shortly after the excitatory inputs on pyramidal dendrites. STDP activated in this way could persist for hours, creating a second-tier network. This temporary network could support long-term working memory, a cognitive network riding above the long-term sensorimotor network. On their own, traveling waves and STDP have not yet yielded new insights into cortical function. Together, they could be responsible for how we think (Sejnowski, 2025).
comment: 31 pages, 13 figures
Chat-TS: Enhancing Multi-Modal Reasoning Over Time-Series and Natural Language Data
Large language models are being rapidly deployed across many fields such as healthcare, finance, transportation, and energy, where time-series data are fundamental components. The current works are still limited in their ability to perform reasoning that involves both time-series and the corresponding textual content. We address this gap by introducing Chat-TS, a large language model (LLM) based framework designed to support reasoning over time series and textual data. Unlike traditional models, Chat-TS integrates time-series tokens into LLMs' vocabulary, enhancing its reasoning ability over both modalities without compromising core natural language capabilities. To support learning and evaluation, we contribute new datasets: the TS Instruct Training Dataset (pairing diverse time-series data with relevant text instructions and responses for instruction tuning), the TS Instruct Question and Answer (QA) Gold Dataset (multiple-choice questions to evaluate multimodal reasoning), and a TS Instruct Quantitative Probing Set (a small subset of TS Instruct QA reasoning tasks alongside math and decision-making questions for LLM evaluation). We design a training strategy to preserve the inherent reasoning capabilities of LLMs while augmenting them for time-series reasoning. Experiments show that Chat-TS achieves state-of-the-art performance in multimodal reasoning tasks by maintaining strong natural language proficiency while improving time-series reasoning.
Mantis: A Foundation Model for Mechanistic Disease Forecasting
Infectious disease forecasting in novel outbreaks or low-resource settings is hampered by the need for large disease and covariate data sets, bespoke training, and expert tuning, all of which can hinder rapid generation of forecasts for new settings. To help address these challenges, we developed Mantis, a foundation model trained entirely on mechanistic simulations, which enables out-of-the-box forecasting across diseases, regions, and outcomes, even in settings with limited historical data. We evaluated Mantis against 48 forecasting models across six diseases with diverse modes of transmission, assessing both point forecast accuracy (mean absolute error) and probabilistic performance (weighted interval score and coverage). Despite using no real-world data during training, Mantis achieved lower mean absolute error than all models in the CDC's COVID-19 Forecast Hub when backtested on early pandemic forecasts which it had not previously seen. Across all other diseases tested, Mantis consistently ranked in the top two models across evaluation metrics. Mantis further generalized to diseases with transmission mechanisms not represented in its training data, demonstrating that it can capture fundamental contagion dynamics rather than memorizing disease-specific patterns. These capabilities illustrate that purely simulation-based foundation models such as Mantis can provide a practical foundation for disease forecasting: general-purpose, accurate, and deployable where traditional models struggle.
comment: 11 pages, 4 figures
ViSymRe: Vision-guided Multimodal Symbolic Regression
Extracting simple mathematical expression from an observational dataset to describe complex natural phenomena is one of the core objectives of artificial intelligence (AI). This field is known as symbolic regression (SR). Traditional SR models are based on genetic programming (GP) or reinforcement learning (RL), facing well-known challenges, such as low efficiency and overfitting. Recent studies have integrated SR with large language models (LLMs), enabling fast zero-shot inference by learning mappings from millions of dataset-expression pairs. However, since the input and output are inherently different modalities, such models often struggle to converge effectively. In this paper, we introduce ViSymRe, a vision-guided multimodal SR model that incorporates the third resource, expression graph, to bridge the modality gap. Different from traditional multimodal models, ViSymRe is trained to extract vision, termed virtual vision, from datasets, without relying on the global availability of expression graphs, which addresses the essential challenge of visual SR, i.e., expression graphs are not available during inference. Evaluation results on multiple mainstream benchmarks show that ViSymRe achieves more competitive performance than the state-of-the-art dataset-only baselines. The expressions predicted by ViSymRe not only fit the dataset well but are also simple and structurally accurate, goals that SR models strive to achieve.
AudioMotionBench: Evaluating Auditory Motion Perception in Audio LLMs
Large Audio-Language Models (LALMs) have recently shown impressive progress in speech recognition, audio captioning, and auditory question answering. Yet, whether these models can perceive spatial dynamics, particularly the motion of sound sources, remains unclear. In this work, we uncover a systematic motion perception deficit in current ALLMs. To investigate this issue, we introduce AudioMotionBench, the first benchmark explicitly designed to evaluate auditory motion understanding. AudioMotionBench introduces a controlled question-answering benchmark designed to evaluate whether Audio-Language Models (LALMs) can infer the direction and trajectory of moving sound sources from binaural audio. Comprehensive quantitative and qualitative analyses reveal that current models struggle to reliably recognize motion cues or distinguish directional patterns. The average accuracy remains below 50\%, underscoring a fundamental limitation in auditory spatial reasoning. Our study highlights a fundamental gap between human and model auditory spatial reasoning, providing both a diagnostic tool and new insight for enhancing spatial cognition in future Audio-Language Models.
BayesianVLA: Bayesian Decomposition of Vision Language Action Models via Latent Action Queries
Vision-Language-Action (VLA) models have shown promise in robot manipulation but often struggle to generalize to new instructions or complex multi-task scenarios. We identify a critical pathology in current training paradigms where goal-driven data collection creates a dataset bias. In such datasets, language instructions are highly predictable from visual observations alone, causing the conditional mutual information between instructions and actions to vanish, a phenomenon we term Information Collapse. Consequently, models degenerate into vision-only policies that ignore language constraints and fail in out-of-distribution (OOD) settings. To address this, we propose BayesianVLA, a novel framework that enforces instruction following via Bayesian decomposition. By introducing learnable Latent Action Queries, we construct a dual-branch architecture to estimate both a vision-only prior $p(a \mid v)$ and a language-conditioned posterior $π(a \mid v, \ell)$. We then optimize the policy to maximize the conditional Pointwise Mutual Information (PMI) between actions and instructions. This objective effectively penalizes the vision shortcut and rewards actions that explicitly explain the language command. Without requiring new data, BayesianVLA significantly improves generalization. Extensive experiments across on SimplerEnv and RoboCasa demonstrate substantial gains, including an 11.3% improvement on the challenging OOD SimplerEnv benchmark, validating the ability of our approach to robustly ground language in action.
TDFlow: Agentic Workflows for Test Driven Development
We introduce TDFlow, a novel test-driven agentic workflow that frames repository-scale software engineering as a test-resolution task, specifically designed to solve human-written tests. Given a set of tests, TDFlow repeatedly proposes, revises, and debugs repository-scale patches using precisely engineered sub-agents and tightly constrained tools. The workflow decomposes software engineering program repair into four components governed by respective sub-agents. This simple, forced decoupling of patch proposing, debugging, patch revision, and optional test generation (1) reduces long-context burden on any individual sub-agent, (2) focuses each sub-agent on specific, pre-defined sub-tasks, and (3) allows for specialized performance improvement on specific sub-tasks. When provided human-written tests, TDFlow attains 88.8% pass rate on SWE-Bench Lite (an absolute improvement of 27.8% over the next best system) and 94.3% on SWE-Bench Verified. Manual inspection of the 800 TDFlow runs within SWE-Bench Lite and Verified uncover only 7 instances of test hacking, which were subsequently counted as failures. Furthermore, we show that the primary obstacle to human-level software engineering performance lies within writing successful reproduction tests. We envision a human-LLM interactive system powered by TDFlow where human developers write tests solved by LLM systems. Together, these results indicate that modern LLMs, when embedded in a narrowly engineered, test-driven workflow, already achieve human-level test resolution -- with the final frontier for fully autonomous repository repair being the accurate generation of valid reproduction tests.
comment: Published in the 19th Conference of the European Chapter of the Association for Computational Linguistics (EACL 2026 Main Conference)
Deaf and Hard of Hearing Access to Intelligent Personal Assistants: Comparison of Voice-Based Options with an LLM-Powered Touch Interface
We investigate intelligent personal assistants (IPAs) accessibility for deaf and hard of hearing (DHH) people who can use their voice in everyday communication. The inability of IPAs to understand diverse accents including deaf speech renders them largely inaccessible to non-signing and speaking DHH individuals. Using an Echo Show, we compare the usability of natural language input via spoken English; with Alexa's automatic speech recognition and a Wizard-of-Oz setting with a trained facilitator re-speaking commands against that of a large language model (LLM)-assisted touch interface in a mixed-methods study. The touch method was navigated through an LLM-powered "task prompter," which integrated the user's history and smart environment to suggest contextually-appropriate commands. Quantitative results showed no significant differences across both spoken English conditions vs LLM-assisted touch. Qualitative results showed variability in opinions on the usability of each method. Ultimately, it will be necessary to have robust deaf-accented speech recognized natively by IPAs.
comment: Accepted for publication in ACM CHI 2026
Words to Describe What I'm Feeling: Exploring the Potential of AI Agents for High Subjectivity Decisions in Advance Care Planning
Loss of decisional capacity, coupled with the increasing absence of reliable human proxies, raises urgent questions about how individuals' values can be represented in Advance Care Planning (ACP). To probe this fraught design space of high-risk, high-subjectivity decision support, we built an experience prototype (\acpagent{}) and asked 15 participants in 4 workshops to train it to be their personal ACP proxy. We analysed their coping strategies and feature requests and mapped the results onto axes of agent autonomy and human control. Our findings show a surprising 86.7\% agreement with \acpagent{}, arguing for a potential new role of AI in ACP where agents act as personal advocates for individuals, building mutual intelligibility over time. We propose that the key areas of future risk that must be addressed are the moderation of users' expectations and designing accountability and oversight over agent deployment and cutoffs.
comment: Accepted at CHI 2026. 34 pages, 10 figures
Recommending Best Paper Awards for ML/AI Conferences via the Isotonic Mechanism
Machine learning and artificial intelligence conferences such as NeurIPS and ICML now regularly receive tens of thousands of submissions, posing significant challenges to maintaining the quality and consistency of the peer review process. This challenge is particularly acute for best paper awards, which are an important part of the peer review process, yet whose selection has increasingly become a subject of debate in recent years. In this paper, we introduce an author-assisted mechanism to facilitate the selection of best paper awards. Our method employs the Isotonic Mechanism for eliciting authors' assessments of their own submissions in the form of a ranking, which is subsequently utilized to adjust the raw review scores for optimal estimation of the submissions' ground-truth quality. We demonstrate that authors are incentivized to report truthfully when their utility is a convex additive function of the adjusted scores, and we validate this convexity assumption for best paper awards using publicly accessible review data of ICLR from 2019 to 2023 and NeurIPS from 2021 to 2023. Crucially, in the special case where an author has a single quota -- that is, may nominate only one paper -- we prove that truthfulness holds even when the utility function is merely nondecreasing and additive. This finding represents a substantial relaxation of the assumptions required in prior work. For practical implementation, we extend our mechanism to accommodate the common scenario of overlapping authorship. Finally, simulation results demonstrate that our mechanism significantly improves the quality of papers selected for awards.
Embracing Ambiguity: Bayesian Nonparametrics and Stakeholder Participation for Ambiguity-Aware Safety Evaluation AAAI 2026
Evaluations of generative AI models often collapse nuanced behaviour into a single number computed for a single decoding configuration. Such point estimates obscure tail risks, demographic disparities, and the existence of multiple near-optimal operating points. We propose a unified framework that embraces multiplicity by modelling the distribution of harmful behaviour across the entire space of decoding knobs and prompts, quantifying risk through tail-focused metrics, and integrating stakeholder preferences. Our technical contributions are threefold: (i) we formalise decoding Rashomon sets, regions of knob space whose risk is near-optimal under given criteria and measure their size and disagreement; (ii) we develop a dependent Dirichlet process (DDP) mixture with stakeholder-conditioned stick-breaking weights to learn multi-modal harm surfaces; and (iii) we introduce an active sampling pipeline that uses Bayesian deep learning surrogates to explore knob space efficiently. Our approach bridges multiplicity theory, Bayesian nonparametrics, and stakeholder-aligned sensitivity analysis, paving the way for trustworthy deployment of generative models.
comment: AAAI 2026 workshop MURE
TruthTensor: Evaluating LLMs through Human Imitation on Prediction Market under Drift and Holistic Reasoning
Evaluating language models and AI agents remains fundamentally challenging because static benchmarks fail to capture real-world uncertainty, distribution shift, and the gap between isolated task accuracy and human-aligned decision-making under evolving conditions. This paper introduces TruthTensor, a novel, reproducible evaluation paradigm that measures reasoning models not only as prediction engines but as human-imitation systems operating in socially-grounded, high-entropy environments. Building on forward-looking, contamination-free tasks, our framework anchors evaluation to live prediction markets and combines probabilistic scoring to provide a holistic view of model behavior. TruthTensor complements traditional correctness metrics with drift-centric diagnostics and explicit robustness checks for reproducibility. It specify human vs. automated evaluation roles, annotation protocols, and statistical testing procedures to ensure interpretability and replicability of results. In experiments across 500+ real markets (political, economic, cultural, technological), TruthTensor demonstrates that models with similar forecast accuracy can diverge markedly in calibration, drift, and risk-sensitivity, underscoring the need to evaluate models along multiple axes (accuracy, calibration, narrative stability, cost, and resource efficiency). TruthTensor therefore operationalizes modern evaluation best practices, clear hypothesis framing, careful metric selection, transparent compute/cost reporting, human-in-the-loop validation, and open, versioned evaluation contracts, to produce defensible assessments of LLMs in real-world decision contexts. We publicly release TruthTensor at https://truthtensor.com.
comment: 16 pages, 6 figures, 2 tables
MetaDCSeg: Robust Medical Image Segmentation via Meta Dynamic Center Weighting
Medical image segmentation is crucial for clinical applications, but it is frequently disrupted by noisy annotations and ambiguous anatomical boundaries, which lead to instability in model training. Existing methods typically rely on global noise assumptions or confidence-based sample selection, which inadequately mitigate the performance degradation caused by annotation noise, especially in challenging boundary regions. To address this issue, we propose MetaDCSeg, a robust framework that dynamically learns optimal pixel-wise weights to suppress the influence of noisy ground-truth labels while preserving reliable annotations. By explicitly modeling boundary uncertainty through a Dynamic Center Distance (DCD) mechanism, our approach utilizes weighted feature distances for foreground, background, and boundary centers, directing the model's attention toward hard-to-segment pixels near ambiguous boundaries. This strategy enables more precise handling of structural boundaries, which are often overlooked by existing methods, and significantly enhances segmentation performance. Extensive experiments across four benchmark datasets with varying noise levels demonstrate that MetaDCSeg consistently outperforms existing state-of-the-art methods.
Information-theoretic Distinctions Between Deception and Confusion
We propose an information-theoretic formalization of the distinction between two fundamental AI safety failure modes: deceptive alignment and goal drift. While both can lead to systems that appear misaligned, we demonstrate that they represent distinct forms of information divergence occurring at different interfaces in the human-AI system. Deceptive alignment creates entropy between an agent's true goals and its observable behavior, while goal drift, or confusion, creates entropy between the intended human goal and the agent's actual goal. Though often observationally equivalent, these failures necessitate different interventions. We present a formal model and an illustrative thought experiment to clarify this distinction. We offer a formal language for re-examining prominent alignment challenges observed in Large Language Models (LLMs), offering novel perspectives on their underlying causes.
comment: Proceedings of the 14th IJCNLP and the 4th AACL (2025)
How malicious AI swarms can threaten democracy: The fusion of agentic AI and LLMs marks a new frontier in information warfare
Advances in AI offer the prospect of manipulating beliefs and behaviors on a population-wide level. Large language models and autonomous agents now let influence campaigns reach unprecedented scale and precision. Generative tools can expand propaganda output without sacrificing credibility and inexpensively create falsehoods that are rated as more human-like than those written by humans. Techniques meant to refine AI reasoning, such as chain-of-thought prompting, can just as effectively be used to generate more convincing falsehoods. Enabled by these capabilities, a disruptive threat is emerging: swarms of collaborative, malicious AI agents. Fusing LLM reasoning with multi-agent architectures, these systems are capable of coordinating autonomously, infiltrating communities, and fabricating consensus efficiently. By adaptively mimicking human social dynamics, they threaten democracy. Because the resulting harms stem from design, commercial incentives, and governance, we prioritize interventions at multiple leverage points, focusing on pragmatic mechanisms over voluntary compliance.
comment: 5 Pages, This is the author's version of the work. It is posted here by permission of the AAAS for personal use, not for redistribution. The definitive version was published in Science on January 22, 2026, DOI: 10.1126/science.adz1697
GDEPO: Group Dual-dynamic and Equal-right Advantage Policy Optimization with Enhanced Training Data Utilization for Sample-Constrained Reinforcement Learning
Automated Theorem Proving (ATP) represents a fundamental challenge in Artificial Intelligence (AI), requiring the construction of machine-verifiable proofs in formal languages such as Lean to evaluate AI reasoning capabilities. Reinforcement learning (RL), particularly the high-performance Group Relative Policy Optimization (GRPO) algorithm, has emerged as a mainstream approach for this task. However, in ATP scenarios, GRPO faces two critical issues: when composite rewards are used, its relative advantage estimation may conflict with the binary feedback from the formal verifier; meanwhile, its static sampling strategy may discard entire batches of data if no valid proof is found, resulting in zero contribution to model updates and significant data waste. To address these limitations, we propose Group Dual-dynamic and Equal-right-advantage Policy Optimization (GDEPO), a method incorporating three core mechanisms: 1) dynamic additional sampling, which resamples invalid batches until a valid proof is discovered; 2) equal-right advantage, decoupling the sign of the advantage function (based on correctness) from its magnitude (modulated by auxiliary rewards) to ensure stable and correct policy updates; and 3) dynamic additional iterations, applying extra gradient steps to initially failed but eventually successful samples to accelerate learning on challenging cases. Experiments conducted on three datasets of varying difficulty (MinF2F-test, MathOlympiadBench, PutnamBench) confirm the effectiveness of GDEPO, while ablation studies validate the necessity of its synergistic components. The proposed method enhances data utilization and optimization efficiency, offering a novel training paradigm for ATP.
PlantTraitNet: An Uncertainty-Aware Multimodal Framework for Global-Scale Plant Trait Inference from Citizen Science Data AAAI
Global plant maps of plant traits, such as leaf nitrogen or plant height, are essential for understanding ecosystem processes, including the carbon and energy cycles of the Earth system. However, existing trait maps remain limited by the high cost and sparse geographic coverage of field-based measurements. Citizen science initiatives offer a largely untapped resource to overcome these limitations, with over 50 million geotagged plant photographs worldwide capturing valuable visual information on plant morphology and physiology. In this study, we introduce PlantTraitNet, a multi-modal, multi-task uncertainty-aware deep learning framework that predictsfour key plant traits (plant height, leaf area, specific leaf area, and nitrogen content) from citizen science photos using weak supervision. By aggregating individual trait predictions across space, we generate global maps of trait distributions. We validate these maps against independent vegetation survey data (sPlotOpen) and benchmark them against leading global trait products. Our results show that PlantTraitNet consistently outperforms existing trait maps across all evaluated traits, demonstrating that citizen science imagery, when integrated with computer vision and geospatial AI, enables not only scalable but also more accurate global trait mapping. This approach offers a powerful new pathway for ecological research and Earth system modeling.
comment: Preprint version of the paper accepted at the 40th AAAI Conference on Artificial Intelligence (AAAI-26), organized by the Association for the Advancement of Artificial Intelligence
Auditing and Mitigating Bias in Gender Classification Algorithms: A Data-Centric Approach
Gender classification systems often inherit and amplify demographic imbalances in their training data. We first audit five widely used gender classification datasets, revealing that all suffer from significant intersectional underrepresentation. To measure the downstream impact of these flaws, we train identical MobileNetV2 classifiers on the two most balanced of these datasets, UTKFace and FairFace. Our fairness evaluation shows that even these models exhibit significant bias, misclassifying female faces at a higher rate than male faces and amplifying existing racial skew. To counter these data-induced biases, we construct BalancedFace, a new public dataset created by blending images from FairFace and UTKFace, supplemented with images from other collections to fill missing demographic gaps. It is engineered to equalize subgroup shares across 189 intersections of age, race, and gender using only real, unedited images. When a standard classifier is trained on BalancedFace, it reduces the maximum True Positive Rate gap across racial subgroups by over 50% and brings the average Disparate Impact score 63% closer to the ideal of 1.0 compared to the next-best dataset, all with a minimal loss of overall accuracy. These results underline the profound value of data-centric interventions and provide an openly available resource for fair gender classification research.
comment: The manuscript contains a substantive error identified after submission
Representation-Driven Reinforcement Learning ICML 2023
We present a representation-driven framework for reinforcement learning. By representing policies as estimates of their expected values, we leverage techniques from contextual bandits to guide exploration and exploitation. Particularly, embedding a policy network into a linear feature space allows us to reframe the exploration-exploitation problem as a representation-exploitation problem, where good policy representations enable optimal exploration. We demonstrate the effectiveness of this framework through its application to evolutionary and policy gradient-based approaches, leading to significantly improved performance compared to traditional methods. Our framework provides a new perspective on reinforcement learning, highlighting the importance of policy representation in determining optimal exploration-exploitation strategies.
comment: Accepted to ICML 2023
SimWorld-Robotics: Synthesizing Photorealistic and Dynamic Urban Environments for Multimodal Robot Navigation and Collaboration NeurIPS 2025
Recent advances in foundation models have shown promising results in developing generalist robotics that can perform diverse tasks in open-ended scenarios given multimodal inputs. However, current work has been mainly focused on indoor, household scenarios. In this work, we present SimWorld-Robotics~(SWR), a simulation platform for embodied AI in large-scale, photorealistic urban environments. Built on Unreal Engine 5, SWR procedurally generates unlimited photorealistic urban scenes populated with dynamic elements such as pedestrians and traffic systems, surpassing prior urban simulations in realism, complexity, and scalability. It also supports multi-robot control and communication. With these key features, we build two challenging robot benchmarks: (1) a multimodal instruction-following task, where a robot must follow vision-language navigation instructions to reach a destination in the presence of pedestrians and traffic; and (2) a multi-agent search task, where two robots must communicate to cooperatively locate and meet each other. Unlike existing benchmarks, these two new benchmarks comprehensively evaluate a wide range of critical robot capacities in realistic scenarios, including (1) multimodal instructions grounding, (2) 3D spatial reasoning in large environments, (3) safe, long-range navigation with people and traffic, (4) multi-robot collaboration, and (5) grounded communication. Our experimental results demonstrate that state-of-the-art models, including vision-language models (VLMs), struggle with our tasks, lacking robust perception, reasoning, and planning abilities necessary for urban environments.
comment: Conference: NeurIPS 2025 (main)
Explaining k-Nearest Neighbors: Abductive and Counterfactual Explanations
Despite the wide use of $k$-Nearest Neighbors as classification models, their explainability properties remain poorly understood from a theoretical perspective. While nearest neighbors classifiers offer interpretability from a ``data perspective'', in which the classification of an input vector $\bar{x}$ is explained by identifying the vectors $\bar{v}_1, \ldots, \bar{v}_k$ in the training set that determine the classification of $\bar{x}$, we argue that such explanations can be impractical in high-dimensional applications, where each vector has hundreds or thousands of features and it is not clear what their relative importance is. Hence, we focus on understanding nearest neighbor classifications through a ``feature perspective'', in which the goal is to identify how the values of the features in $\bar{x}$ affect its classification. Concretely, we study abductive explanations such as ``minimum sufficient reasons'', which correspond to sets of features in $\bar{x}$ that are enough to guarantee its classification, and counterfactual explanations based on the minimum distance feature changes one would have to perform in $\bar{x}$ to change its classification. We present a detailed landscape of positive and negative complexity results for counterfactual and abductive explanations, distinguishing between discrete and continuous feature spaces, and considering the impact of the choice of distance function involved. Finally, we show that despite some negative complexity results, Integer Quadratic Programming and SAT solving allow for computing explanations in practice.
comment: 34 pages, 6 figure. The following results are added to the version 2: W[1]-hardness of Counterfactual Explanation for l_2-distance when k is a parameter, NP-hardness of minimal sufficient reason for l_1-distance for k \ge 3, and Sigma_2-hardness of the minimum sufficient reason for Hamming distance and k \ge 3
Medal Matters: Probing LLMs' Failure Cases Through Olympic Rankings
Large language models (LLMs) have achieved remarkable success in natural language processing tasks, yet their internal knowledge structures remain poorly understood. This study examines these structures through the lens of historical Olympic medal tallies, evaluating LLMs on two tasks: (1) retrieving medal counts for specific teams and (2) identifying rankings of each team. While state-of-the-art LLMs excel in recalling medal counts, they struggle with providing rankings, highlighting a key difference between their knowledge organization and human reasoning. These findings shed light on the limitations of LLMs' internal knowledge integration and suggest directions for improvement. To facilitate further research, we release our code, dataset, and model outputs.
comment: COLM 2025 ORIGen Workshop
Codebook-Injected Dialogue Segmentation for Multi-Utterance Constructs Annotation: LLM-Assisted and Gold-Label-Free Evaluation
Dialogue Act (DA) annotation typically treats communicative or pedagogical intent as localized to individual utterances or turns. This leads annotators to agree on the underlying action while disagreeing on segment boundaries, reducing apparent reliability. We propose codebook-injected segmentation, which conditions boundary decisions on downstream annotation criteria, and evaluate LLM-based segmenters against standard and retrieval-augmented baselines. To assess these without gold labels, we introduce evaluation metrics for span consistency, distinctiveness, and human-AI distributional agreement. We found DA-awareness produces segments that are internally more consistent than text-only baselines. While LLMs excel at creating construct-consistent spans, coherence-based baselines remain superior at detecting global shifts in dialogue flow. Across two datasets, no single segmenter dominates. Improvements in within-segment coherence frequently trade off against boundary distinctiveness and human-AI distributional agreement. These results highlight segmentation as a consequential design choice that should be optimized for downstream objectives rather than a single performance score.
comment: Under Review for ACL 2026
English K_Quantization of LLMs Does Not Disproportionately Diminish Multilingual Performance
For consumer usage of locally deployed LLMs, the GGUF format and k\_quantization are invaluable tools for maintaining the performance of the original model while reducing it to sizes deployable with consumer-grade hardware. The number of bits dedicated to each weight from the original model is reduced based on how important they are thought to be during model inference. This importance is arrived at through the application of an 'importance matrix'-a relatively small text document meant to be representative of the LLM's standard use-cases. In the vast majority of quants available online, this document is primarily written in English. It was therefore an open question whether performance on English language tasks was preserved through the sacrifice of multilingual performance and whether it can be preserved with alternate importance matrices. This article investigates these hypotheses by quantizing Llama3.3 70B on importance matrices written in three languages (English, Norwegian, and Malayalam) and evaluating them on the MixEval dataset in both English and Norwegian. All experiments related to yielded non-significant results indicating that current quantization practices do not disproportionately harm multilingual performance.
comment: 8 pages, 6 figures, v2
A Scalable Predictive Modelling Approach to Identifying Duplicate Adverse Event Reports for Drugs and Vaccines
Objectives: To advance state-of-the-art for duplicate detection in large-scale pharmacovigilance databases and achieve more consistent performance across adverse event reports from different countries. Background: Unlinked adverse event reports referring to the same case impede statistical analysis and may mislead clinical assessment. Pharmacovigilance relies on large databases of adverse event reports to discover potential new causal associations, and computational methods are required to identify duplicates at scale. Current state-of-the-art is statistical record linkage which outperforms rule-based approaches. In particular, vigiMatch is in routine use for VigiBase, the WHO global database of adverse event reports, and represents the first statistical duplicate detection approach in pharmacovigilance deployed at scale. Originally developed for both medicines and vaccines, its application to vaccines has been limited due to inconsistent performance across countries. Methods: This paper extends vigiMatch from probabilistic record linkage to predictive modelling, refining features for medicines, vaccines, and adverse events using country-specific reporting rates, extracting dates from free text, and training separate support vector machine classifiers for medicines and vaccines. Recall was evaluated using 5 independent labelled test sets. Precision was assessed by annotating random selections of report pairs classified as duplicates. Results: Precision for the new method was 92% for vaccines and 54% for medicines, compared with 41% for the comparator method. Recall ranged from 80-85% across test sets for vaccines and from 40-86% for medicines, compared with 24-53% for the comparator method. Conclusion: Predictive modeling, use of free text, and country-specific features advance state-of-the-art for duplicate detection in pharmacovigilance.
comment: 26 pages, 11 figures
Can Language Models Discover Scaling Laws?
Discovering scaling laws for predicting model performance at scale is a fundamental and open-ended challenge, mostly reliant on slow, case specific human experimentation. To investigate the potential for LLMs to automate this process, we collect over 5,000 experiments from existing literature and curate eight diverse scaling law discovery tasks. While existing agents struggle to produce accurate law formulas, this paper introduces SLDAgent, an evolution-based agent that co-optimize the scaling law model and the parameters, enabling it to autonomously explore complex relationships between variables. For the first time, we demonstrates that SLDAgent can automatically discover laws that exhibit consistently more accurate extrapolation than their established, human-derived counterparts across all tasks. Through comprehensive analysis, we elucidate why these discovered laws are superior and verify their practical utility in both pretraining and finetuning applications. This work establishes a new paradigm for agentic scientific discovery, showing that AI systems can understand their own scaling behavior, and can contribute novel and practical knowledge back to the research community.
Refusal Steering: Fine-grained Control over LLM Refusal Behaviour for Sensitive Topics
We introduce Refusal Steering, an inference-time method to exercise fine-grained control over Large Language Models refusal behaviour on politically sensitive topics without retraining. We replace fragile pattern-based refusal detection with an LLM-as-a-judge that assigns refusal confidence scores and we propose a ridge-regularized variant to compute steering vectors that better isolate the refusal--compliance direction. On Qwen3-Next-80B-A3B-Thinking, our method removes the refusal behaviour of the model around politically sensitive topics while maintaining safety on JailbreakBench and near-baseline performance on general benchmarks. The approach generalizes across 4B and 80B models and can also induce targeted refusals when desired. We analize the steering vectors and show that refusal signals concentrate in deeper layers of the transformer and are distributed across many dimensions. Together, these results demonstrate that activation steering can remove political refusal behaviour while retaining safety alignment for harmful content, offering a practical path to controllable, transparent moderation at inference time.
TeleMem: Building Long-Term and Multimodal Memory for Agentic AI
Large language models (LLMs) excel at many NLP tasks but struggle to sustain long-term interactions due to limited attention over extended dialogue histories. Retrieval-augmented generation (RAG) mitigates this issue but lacks reliable mechanisms for updating or refining stored memories, leading to schema-driven hallucinations, inefficient write operations, and minimal support for multimodal reasoning.To address these challenges, we propose TeleMem, a unified long-term and multimodal memory system that maintains coherent user profiles through narrative dynamic extraction, ensuring that only dialogue-grounded information is preserved. TeleMem further introduces a structured writing pipeline that batches, retrieves, clusters, and consolidates memory entries, substantially improving storage efficiency, reducing token usage, and accelerating memory operations. Additionally, a multimodal memory module combined with ReAct-style reasoning equips the system with a closed-loop observe, think, and act process that enables accurate understanding of complex video content in long-term contexts. Experimental results show that TeleMem surpasses the state-of-the-art Mem0 baseline with 19% higher accuracy, 43% fewer tokens, and a 2.1x speedup on the ZH-4O long-term role-play gaming benchmark.
Who Benefits From Sinus Surgery? Comparing Generative AI and Supervised Machine Learning for Predicting Surgical Outcomes in Chronic Rhinosinusitis
Artificial intelligence has reshaped medical imaging, yet the use of AI on clinical data for prospective decision support remains limited. We study pre-operative prediction of clinically meaningful improvement in chronic rhinosinusitis (CRS), defining success as a more than 8.9-point reduction in SNOT-22 at 6 months (MCID). In a prospectively collected cohort where all patients underwent surgery, we ask whether models using only pre-operative clinical data could have identified those who would have poor outcomes, i.e. those who should have avoided surgery. We benchmark supervised ML (logistic regression, tree ensembles, and an in-house MLP) against generative AI (ChatGPT, Claude, Gemini, Perplexity), giving each the same structured inputs and constraining outputs to binary recommendations with confidence. Our best ML model (MLP) achieves 85 % accuracy with superior calibration and decision-curve net benefit. GenAI models underperform on discrimination and calibration across zero-shot setting. Notably, GenAI justifications align with clinician heuristics and the MLP's feature importance, repeatedly highlighting baseline SNOT-22, CT/endoscopy severity, polyp phenotype, and physchology/pain comorbidities. We provide a reproducible tabular-to-GenAI evaluation protocol and subgroup analyses. Findings support an ML-first, GenAI- augmented workflow: deploy calibrated ML for primary triage of surgical candidacy, with GenAI as an explainer to enhance transparency and shared decision-making.
Enhanced Fish Freshness Classification with Incremental Handcrafted Feature Fusion
Accurate assessment of fish freshness remains a major challenge in the food industry, with direct consequences for product quality, market value, and consumer health. Conventional sensory evaluation is inherently subjective, inconsistent, and difficult to standardize across contexts, often limited by subtle, species-dependent spoilage cues. To address these limitations, we propose a handcrafted feature-based approach that systematically extracts and incrementally fuses complementary descriptors, including color statistics, histograms across multiple color spaces, and texture features such as Local Binary Patterns (LBP) and Gray-Level Co-occurrence Matrices (GLCM), from fish eye images. Our method captures global chromatic variations from full images and localized degradations from ROI segments, fusing each independently to evaluate their effectiveness in assessing freshness. Experiments on the Freshness of the Fish Eyes (FFE) dataset demonstrate the approach's effectiveness: in a standard train-test setting, a LightGBM classifier achieved 77.56% accuracy, a 14.35% improvement over the previous deep learning baseline of 63.21%. With augmented data, an Artificial Neural Network (ANN) reached 97.49% accuracy, surpassing the prior best of 77.3% by 20.19%. These results demonstrate that carefully engineered, handcrafted features, when strategically processed, yield a robust, interpretable, and reliable solution for automated fish freshness assessment, providing valuable insights for practical applications in food quality monitoring.
comment: 35 pages, 6 figures and 11 tables
Enhancing Large Language Models for Time-Series Forecasting via Vector-Injected In-Context Learning
The World Wide Web needs reliable predictive capabilities to respond to changes in user behavior and usage patterns. Time series forecasting (TSF) is a key means to achieve this goal. In recent years, the large language models (LLMs) for TSF (LLM4TSF) have achieved good performance. However, there is a significant difference between pretraining corpora and time series data, making it hard to guarantee forecasting quality when directly applying LLMs to TSF; fine-tuning LLMs can mitigate this issue, but often incurs substantial computational overhead. Thus, LLM4TSF faces a dual challenge of prediction performance and compute overhead. To address this, we aim to explore a method for improving the forecasting performance of LLM4TSF while freezing all LLM parameters to reduce computational overhead. Inspired by in-context learning (ICL), we propose LVICL. LVICL uses our vector-injected ICL to inject example information into a frozen LLM, eliciting its in-context learning ability and thereby enhancing its performance on the example-related task (i.e., TSF). Specifically, we first use the LLM together with a learnable context vector adapter to extract a context vector from multiple examples adaptively. This vector contains compressed, example-related information. Subsequently, during the forward pass, we inject this vector into every layer of the LLM to improve forecasting performance. Compared with conventional ICL that adds examples into the prompt, our vector-injected ICL does not increase prompt length; moreover, adaptively deriving a context vector from examples suppresses components harmful to forecasting, thereby improving model performance. Extensive experiments demonstrate the effectiveness of our approach.
Emerging from Ground: Addressing Intent Deviation in Tool-Using Agents via Deriving Real Calls into Virtual Trajectories
LLMs have advanced tool-using agents for real-world applications, yet they often lead to unexpected behaviors or results. Beyond obvious failures, the subtle issue of "intent deviation" severely hinders reliable evaluation and performance improvement. Existing post-training methods generally leverage either real system samples or virtual data simulated by LLMs. However, the former is costly due to reliance on hand-crafted user requests, while the latter suffers from distribution shift from the real tools in the wild. Additionally, both methods lack negative samples tailored to intent deviation scenarios, hindering effective guidance on preference learning. We introduce RISE, a "Real-to-Virtual" method designed to mitigate intent deviation. Anchoring on verified tool primitives, RISE synthesizes virtual trajectories and generates diverse negative samples through mutation on critical parameters. With synthetic data, RISE fine-tunes backbone LLMs via the two-stage training for intent alignment. Evaluation results demonstrate that data synthesized by RISE achieve promising results in eight metrics covering user requires, execution trajectories and agent responses. Integrating with training, RISE achieves an average 35.28% improvement in Acctask (task completion) and 23.27% in Accintent (intent alignment), outperforming SOTA baselines by 1.20--42.09% and 1.17--54.93% respectively.
VLM-CAD: VLM-Optimized Collaborative Agent Design Workflow for Analog Circuit Sizing
Analog mixed-signal circuit sizing involves complex trade-offs within high-dimensional design spaces. Existing automatic analog circuit sizing approaches rely solely on netlists, ignoring the circuit schematic, which hinders the cognitive link between the schematic and its performance. Furthermore, the black-box nature of machine learning methods and hallucination risks in large language models fail to provide the necessary ground-truth explainability required for industrial sign-off. To address these challenges, we propose a Vision Language Model-optimized collaborative agent design workflow (VLM-CAD), which analyzes circuits, optimizes DC operating points, performs inference-based sizing, and executes external sizing optimization. We integrate Image2Net to annotate circuit schematics and generate a structured JSON description for precise interpretation by Vision Language Models. Furthermore, we propose an Explainable Trust Region Bayesian Optimization method (ExTuRBO) that employs collaborative warm-start from agent-generated seeds and offers dual-granularity sensitivity analysis for external sizing optimization, supporting a comprehensive final design report. Experiment results on amplifier sizing tasks using 180nm, 90nm, and 45nm Predictive Technology Models demonstrate that VLM-CAD effectively balances power and performance while maintaining physics-based explainability. VLM-CAD meets all specification requirements while maintaining low power consumption in optimizing an amplifier with a complementary input and a class-AB output stage, with a total runtime under 66 minutes across all experiments on two amplifiers.
comment: 9 pages, 4 figures, submitted to the 10th International Conference on Control, Automation and Diagnosis (ICCAD'26)
EmbedAgent: Benchmarking Large Language Models in Embedded System Development
Large Language Models (LLMs) have shown promise in various tasks, yet few benchmarks assess their capabilities in embedded system development.In this paper, we introduce EmbedAgent, a paradigm designed to simulate real-world roles in embedded system development, such as Embedded System Programmer, Architect, and Integrator. This paradigm enables LLMs to be tested in tasks that bridge the gap between digital and physical systems, allowing for a more comprehensive assessment of their capabilities. To evaluate LLMs on these tasks, we propose Embedbench, the first comprehensive benchmark for embedded system programming, circuit design, and cross-platform migration.Embedbench consists of 126 cases, covering 9 electronic components across 3 hardware platforms. Through extensive experiments on 10 mainstream LLMs, we uncover several key findings. Surprisingly, despite the simplicity of the cases, DeepSeek-R1 achieves only a 55.6% pass@1 rate when provided with schematic information, and 50.0% when tasked with generating the schematics itself. In the cross-platform migration tasks, LLMs show relatively strong performance with MicroPython on the Raspberry Pi Pico (with the top model achieving 73.8% pass@1), but perform poorly on ESP-IDF, where the best model reaches only 29.4% pass@1.Interestingly, we observe that general-purpose chat LLMs like DeepSeek-V3 often fail to utilize relevant pre-trained knowledge in this domain, while reasoning LLMs tend to overthink and overlook efficient knowledge during pretraining. Based on these insights, we propose two strategies: retrieval augmented generation and compiler feedback-to enhance LLM performance. These strategies result in significant improvements, with Deepseek-R1 reaching a 65.1% pass@1 with correct schematics, and 53.1% without. Additionally, the accuracy of the Arduino to ESP32 migration task improves from 21.4% to 27.8%.
comment: 12 pages, accept by icse
Graph Neural Networks, Deep Reinforcement Learning and Probabilistic Topic Modeling for Strategic Multiagent Settings
This paper provides a comprehensive review of mainly GNN, DRL, and PTM methods with a focus on their potential incorporation in strategic multiagent settings. We draw interest in (i) ML methods currently utilized for uncovering unknown model structures adaptable to the task of strategic opponent modeling, and (ii) the integration of these methods with Game Theoretic concepts that avoid relying on assumptions often invalid in real-world scenarios, such as the Common Prior Assumption (CPA) and the Self-Interest Hypothesis (SIH). We analyze the ability to handle uncertainty and heterogeneity, two characteristics that are very common in real-world application cases, as well as scalability. As a potential answer to effectively modeling relationships and interactions in multiagent settings, we champion the use of GNN. Such approaches are designed to operate upon graph-structured data, and have been shown to be a very powerful tool for performing tasks such as node classification and link prediction. Next, we review the domain of RL, and in particular that of multiagent deep reinforcement learning. Single-agent deep RL has been widely used for decision making in demanding game settings. Its application in multiagent settings though is hindered due to, e.g., varying relationships between agents, and non-stationarity of the environment. We describe existing relevant game theoretic solution concepts, and consider properties such as fairness and stability. Our review comes complete with a note on the literature that utilizes probabilistic topic modeling (PTM) in domains other than that of document analysis and classification. Finally, we identify certain open challenges -- specifically, the need to (i) fit non-stationary environments, (ii) balance the degrees of stability and adaptation, (iii) tackle uncertainty and heterogeneity, (iv) guarantee scalability and solution tractability.
comment: 28 pages
It's complicated. The relationship of algorithmic fairness and non-discrimination provisions for high-risk systems in the EU AI Act NeurIPS 2025
What constitutes a fair decision? This question is not only difficult for humans but becomes more challenging when Artificial Intelligence (AI) models are used. In light of discriminatory algorithmic behaviors, the EU has recently passed the AI Act, which mandates specific rules for high-risk systems, incorporating both traditional legal non-discrimination regulations and machine learning based algorithmic fairness concepts. This paper aims to bridge these two different concepts in the AI Act through: First, a necessary high-level introduction of both concepts targeting legal and computer science-oriented scholars, and second, an in-depth analysis of the AI Act's relationship between legal non-discrimination regulations and algorithmic fairness. Our analysis reveals three key findings: (1.) Most non-discrimination regulations target only high-risk AI systems. (2.) The regulation of high-risk systems encompasses both data input requirements and output monitoring, though these regulations are partly inconsistent and raise questions of computational feasibility. (3.) Finally, we consider the possible (future) interaction of classical EU non-discrimination law and the AI Act regulations. We recommend developing more specific auditing and testing methodologies for AI systems. This paper aims to serve as a foundation for future interdisciplinary collaboration between legal scholars and computer science-oriented machine learning researchers studying discrimination in AI systems.
comment: Accepted at the Workshop on Regulatable ML at the 39th Conference on Neural Information Processing Systems (NeurIPS 2025). This version has been updated after acceptance
MMP-A*: Multimodal Perception Enhanced Incremental Heuristic Search on Path Planning
Autonomous path planning requires a synergy between global reasoning and geometric precision, especially in complex or cluttered environments. While classical A* is valued for its optimality, it incurs prohibitive computational and memory costs in large-scale scenarios. Recent attempts to mitigate these limitations by using Large Language Models for waypoint guidance remain insufficient, as they rely only on text-based reasoning without spatial grounding. As a result, such models often produce incorrect waypoints in topologically complex environments with dead ends, and lack the perceptual capacity to interpret ambiguous physical boundaries. These inconsistencies lead to costly corrective expansions and undermine the intended computational efficiency. We introduce MMP-A*, a multimodal framework that integrates the spatial grounding capabilities of vision-language models with a novel adaptive decay mechanism. By anchoring high-level reasoning in physical geometry, the framework produces coherent waypoint guidance that addresses the limitations of text-only planners. The adaptive decay mechanism dynamically regulates the influence of uncertain waypoints within the heuristic, ensuring geometric validity while substantially reducing memory overhead. To evaluate robustness, we test the framework in challenging environments characterized by severe clutter and topological complexity. Experimental results show that MMP-A* achieves near-optimal trajectories with significantly reduced operational costs, demonstrating its potential as a perception-grounded and computationally efficient paradigm for autonomous navigation.
PaTaRM: Bridging Pairwise and Pointwise Signals via Preference-Aware Task-Adaptive Reward Modeling
Reward models (RMs) are central to reinforcement learning from human feedback (RLHF), providing the critical supervision signals that align large language models (LLMs) with human preferences. Generative reward models (GRMs) provide greater interpretability than traditional scalar RMs, but they come with a critical trade-off: pairwise methods are hindered by a training-inference mismatch, while pointwise methods require expensive absolute annotations. To bridge this gap, we propose the Preference-aware Task-adaptive Reward Model (PaTaRM). Unlike prior approaches, PaTaRM enables robust pointwise training using readily available pairwise data via a novel Preference-Aware Reward (PAR) mechanism, eliminating the need for explicit rating labels. Furthermore, it incorporates a Task-Adaptive Rubric system that dynamically generates instance-specific criteria for precise evaluation. Extensive experiments demonstrate that PATRM achieves a 8.7% average improvement on RewardBench and RMBench across Qwen3-8B/14B models. Crucially, it boosts downstream RLHF performance by an average relative improvement of 13.6% across IFEval and InFoBench, validating its effectiveness for policy alignment. Our code is available at https://github.com/JaneEyre0530/PaTaRM.
Cohesive Group Discovery in Interaction Graphs under Explicit Density Constraints
Discovering cohesive groups is a fundamental primitive in graph-based recommender systems, underpinning tasks such as social recommendation, bundle discovery, and community-aware modeling. In interaction graphs, cohesion is often modeled as the $γ$-quasi-clique, an induced subgraph whose internal edge density meets a user-defined threshold $γ$. This formulation provides explicit control over within-group connectivity while accommodating the sparsity inherent in real-world data. This paper presents EDQC, an effective framework for cohesive group discovery under explicit density constraints. EDQC leverages a lightweight energy diffusion process to rank vertices for localizing promising candidate regions. Guided by this ranking, the framework extracts and refines a candidate subgraph to ensure the output strictly satisfies the target density requirement. Extensive experiments on 75 real-world graphs across varying density thresholds demonstrate that EDQC identifies the largest mean $γ$-quasi-cliques in the vast majority of cases, achieving lower variance than the state-of-the-art methods while maintaining competitive runtime. Furthermore, statistical analysis confirms that EDQC significantly outperforms the baselines, underscoring its robustness and practical utility for cohesive group discovery in graph-based recommender systems.
comment: 10 pages, 6 figures
Contrastive and Multi-Task Learning on Noisy Brain Signals with Nonlinear Dynamical Signatures
We introduce a two-stage multitask learning framework for analyzing Electroencephalography (EEG) signals that integrates denoising, dynamical modeling, and representation learning. In the first stage, a denoising autoencoder is trained to suppress artifacts and stabilize temporal dynamics, providing robust signal representations. In the second stage, a multitask architecture processes these denoised signals to achieve three objectives: motor imagery classification, chaotic versus non-chaotic regime discrimination using Lyapunov exponent-based labels, and self-supervised contrastive representation learning with NT-Xent loss. A convolutional backbone combined with a Transformer encoder captures spatial-temporal structure, while the dynamical task encourages sensitivity to nonlinear brain dynamics. This staged design mitigates interference between reconstruction and discriminative goals, improves stability across datasets, and supports reproducible training by clearly separating noise reduction from higher-level feature learning. Empirical studies show that our framework not only enhances robustness and generalization but also surpasses strong baselines and recent state-of-the-art methods in EEG decoding, highlighting the effectiveness of combining denoising, dynamical features, and self-supervised learning.
BPMN Assistant: An LLM-Based Approach to Business Process Modeling
This paper presents BPMN Assistant, a tool that leverages Large Language Models for natural language-based creation and editing of BPMN diagrams. While direct XML generation is common, it is verbose, slow, and prone to syntax errors during complex modifications. We introduce a specialized JSON-based intermediate representation designed to facilitate atomic editing operations through function calling. We evaluate our approach against direct XML manipulation using a suite of state-of-the-art models, including GPT-5.1, Claude 4.5 Sonnet, and DeepSeek V3. Results demonstrate that the JSON-based approach significantly outperforms direct XML in editing tasks, achieving higher or equivalent success rates across all evaluated models. Furthermore, despite requiring more input context, our approach reduces generation latency by approximately 43% and output token count by over 75%, offering a more reliable and responsive solution for interactive process modeling.
comment: 22 pages, 5 figures
Skin Lesion Phenotyping via Nested Multi-modal Contrastive Learning
We introduce SLIMP (Skin Lesion Image-Metadata Pre-training) for learning rich representations of skin lesions through a novel nested contrastive learning approach that captures complex relationships between images and metadata. Melanoma detection and skin lesion classification based solely on images, pose significant challenges due to large variations in imaging conditions (lighting, color, resolution, distance, etc.) and lack of clinical and phenotypical context. Clinicians typically follow a holistic approach for assessing the risk level of the patient and for deciding which lesions may be malignant and need to be excised, by considering the patient's medical history as well as the appearance of other lesions of the patient. Inspired by this, SLIMP combines the appearance and the metadata of individual skin lesions with patient-level metadata relating to their medical record and other clinically relevant information. By fully exploiting all available data modalities throughout the learning process, the proposed pre-training strategy improves performance compared to other pre-training strategies on downstream skin lesions classification tasks highlighting the learned representations quality.
ArenaRL: Scaling RL for Open-Ended Agents via Tournament-based Relative Ranking
Reinforcement learning has substantially improved the performance of LLM agents on tasks with verifiable outcomes, but it still struggles on open-ended agent tasks with vast solution spaces (e.g., complex travel planning). Due to the absence of objective ground-truth for these tasks, current RL algorithms largely rely on reward models that assign scalar scores to individual responses. We contend that such pointwise scoring suffers from an inherent discrimination collapse: the reward model struggles to distinguish subtle advantages among different trajectories, resulting in scores within a group being compressed into a narrow range. Consequently, the effective reward signal becomes dominated by noise from the reward model, leading to optimization stagnation. To address this, we propose ArenaRL, a reinforcement learning paradigm that shifts from pointwise scalar scoring to intra-group relative ranking. ArenaRL introduces a process-aware pairwise evaluation mechanism, employing multi-level rubrics to assign fine-grained relative scores to trajectories. Additionally, we construct an intra-group adversarial arena and devise a tournament-based ranking scheme to obtain stable advantage signals. Empirical results confirm that the built seeded single-elimination scheme achieves nearly equivalent advantage estimation accuracy to full pairwise comparisons with O(N^2) complexity, while operating with only O(N) complexity, striking an optimal balance between efficiency and precision. Furthermore, to address the lack of full-cycle benchmarks for open-ended agents, we build Open-Travel and Open-DeepResearch, two high-quality benchmarks featuring a comprehensive pipeline covering SFT, RL training, and multi-dimensional evaluation. Extensive experiments show that ArenaRL substantially outperforms standard RL baselines, enabling LLM agents to generate more robust solutions for complex real-world tasks.
Competitive Audio-Language Models with Data-Efficient Single-Stage Training on Public Data
Large language models (LLMs) have transformed NLP, yet their integration with audio remains underexplored despite audio's centrality to human communication. We introduce Falcon3-Audio, a family of Audio-Language Models (ALMs) built on instruction-tuned LLMs and Whisper encoders. Using a remarkably small amount of public audio data, less than 30K hours (5K unique), Falcon3-Audio-7B matches the best reported performance among open-weight models on the MMAU benchmark, with a score of 64.14, matching R1-AQA, while distinguishing itself through superior data and parameter efficiency, single-stage training, and transparency. Notably, our smallest 1B model remains competitive with larger open models ranging from 2B to 13B parameters. Through extensive ablations, we find that common complexities such as curriculum learning, multiple audio encoders, and intricate cross-attention connectors are not required for strong performance, even compared to models trained on over 500K hours of data.
comment: Accepted at ASRU 2025
Crafting Adversarial Inputs for Large Vision-Language Models Using Black-Box Optimization
Recent advancements in Large Vision-Language Models (LVLMs) have shown groundbreaking capabilities across diverse multimodal tasks. However, these models remain vulnerable to adversarial jailbreak attacks, where adversaries craft subtle perturbations to bypass safety mechanisms and trigger harmful outputs. Existing white-box attacks methods require full model accessibility, suffer from computing costs and exhibit insufficient adversarial transferability, making them impractical for real-world, black-box settings. To address these limitations, we propose a black-box jailbreak attack on LVLMs via Zeroth-Order optimization using Simultaneous Perturbation Stochastic Approximation (ZO-SPSA). ZO-SPSA provides three key advantages: (i) gradient-free approximation by input-output interactions without requiring model knowledge, (ii) model-agnostic optimization without the surrogate model and (iii) lower resource requirements with reduced GPU memory consumption. We evaluate ZO-SPSA on three LVLMs, including InstructBLIP, LLaVA and MiniGPT-4, achieving the highest jailbreak success rate of 83.0% on InstructBLIP, while maintaining imperceptible perturbations comparable to white-box methods. Moreover, adversarial examples generated from MiniGPT-4 exhibit strong transferability to other LVLMs, with ASR reaching 64.18%. These findings underscore the real-world feasibility of black-box jailbreaks and expose critical weaknesses in the safety mechanisms of current LVLMs
comment: EACL
VIKI-R: Coordinating Embodied Multi-Agent Cooperation via Reinforcement Learning NeurIPS 2025
Coordinating multiple embodied agents in dynamic environments remains a core challenge in artificial intelligence, requiring both perception-driven reasoning and scalable cooperation strategies. While recent works have leveraged large language models (LLMs) for multi-agent planning, a few have begun to explore vision-language models (VLMs) for visual reasoning. However, these VLM-based approaches remain limited in their support for diverse embodiment types. In this work, we introduce VIKI-Bench, the first hierarchical benchmark tailored for embodied multi-agent cooperation, featuring three structured levels: agent activation, task planning, and trajectory perception. VIKI-Bench includes diverse robot embodiments, multi-view visual observations, and structured supervision signals to evaluate reasoning grounded in visual inputs. To demonstrate the utility of VIKI-Bench, we propose VIKI-R, a two-stage framework that fine-tunes a pretrained vision-language model (VLM) using Chain-of-Thought annotated demonstrations, followed by reinforcement learning under multi-level reward signals. Our extensive experiments show that VIKI-R significantly outperforms baselines method across all task levels. Furthermore, we show that reinforcement learning enables the emergence of compositional cooperation patterns among heterogeneous agents. Together, VIKI-Bench and VIKI-R offer a unified testbed and method for advancing multi-agent, visual-driven cooperation in embodied AI systems.
comment: Accepted by NeurIPS 2025 Track on Datasets and Benchmarks. Project page: https://faceong.github.io/VIKI-R/
Signature-Informed Transformer for Asset Allocation
Modern deep learning for asset allocation typically separates forecasting from optimization. We argue this creates a fundamental mismatch where minimizing prediction errors fails to yield robust portfolios. We propose the Signature Informed Transformer to address this by unifying feature extraction and decision making into a single policy. Our model employs path signatures to encode complex path dependencies and introduces a specialized attention mechanism that targets geometric asset relationships. By directly minimizing the Conditional Value at Risk we ensure the training objective aligns with financial goals. We prove that our attention module rigorously amplifies signature derived signals. Experiments across diverse equity universes show our approach significantly outperforms both traditional strategies and advanced forecasting baselines. The code is available at: https://anonymous.4open.science/r/Signature-Informed-Transformer-For-Asset-Allocation-DB88
VMask: Tunable Label Privacy Protection for Vertical Federated Learning via Layer Masking
Though vertical federated learning (VFL) is generally considered to be privacy-preserving, recent studies have shown that VFL system is vulnerable to label inference attacks originating from various attack surfaces. Among these attacks, the model completion (MC) attack is currently the most powerful one. Existing defense methods against it either sacrifice model accuracy or incur impractical computational overhead. In this paper, we propose VMask, a novel label privacy protection framework designed to defend against MC attack from the perspective of layer masking. Our key insight is to disrupt the strong correlation between input data and intermediate outputs by applying the secret sharing (SS) technique to mask layer parameters in the attacker's model. We devise a strategy for selecting critical layers to mask, reducing the overhead that would arise from naively applying SS to the entire model. Moreover, VMask is the first framework to offer a tunable privacy budget to defenders, allowing for flexible control over the levels of label privacy according to actual requirements. We built a VFL system, implemented VMask on it, and extensively evaluated it using five model architectures and 13 datasets with different modalities, comparing it to 12 other defense methods. The results demonstrate that VMask achieves the best privacy-utility trade-off, successfully thwarting the MC attack (reducing the label inference accuracy to a random guessing level) while preserving model performance (e.g., in Transformer-based model, the averaged drop of VFL model accuracy is only 0.09%). VMask's runtime is up to 60,846 times faster than cryptography-based methods, and it only marginally exceeds that of standard VFL by 1.8 times in a large Transformer-based model, which is generally acceptable.
comment: Accepted by Frontiers of Computer Science (FCS)
VTarbel: Targeted Label Attack with Minimal Knowledge on Detector-enhanced Vertical Federated Learning
Vertical federated learning (VFL) enables multiple parties with disjoint features to collaboratively train models without sharing raw data. While privacy vulnerabilities of VFL are extensively-studied, its security threats-particularly targeted label attacks-remain underexplored. In such attacks, a passive party perturbs inputs at inference to force misclassification into adversary-chosen labels. Existing methods rely on unrealistic assumptions (e.g., accessing VFL-model's outputs) and ignore anomaly detectors deployed in real-world systems. To bridge this gap, we introduce VTarbel, a two-stage, minimal-knowledge attack framework explicitly designed to evade detector-enhanced VFL inference. During the preparation stage, the attacker selects a minimal set of high-expressiveness samples (via maximum mean discrepancy), submits them through VFL protocol to collect predicted labels, and uses these pseudo-labels to train estimated detector and surrogate model on local features. In attack stage, these models guide gradient-based perturbations of remaining samples, crafting adversarial instances that induce targeted misclassifications and evade detection. We implement VTarbel and evaluate it against four model architectures, seven multimodal datasets, and two anomaly detectors. Across all settings, VTarbel outperforms four state-of-the-art baselines, evades detection, and retains effective against three representative privacy-preserving defenses. These results reveal critical security blind spots in current VFL deployments and underscore urgent need for robust, attack-aware defenses.
comment: Accepted by ACM Transactions on Sensor Networks (TOSN)
Interpretable Air Pollution Forecasting by Physics-Guided Spatiotemporal Decoupling
Accurate and interpretable air pollution forecasting is crucial for public health, but most models face a trade-off between performance and interpretability. This study proposes a physics-guided, interpretable-by-design spatiotemporal learning framework. The model decomposes the spatiotemporal behavior of air pollutant concentrations into two transparent, additive modules. The first is a physics-guided transport kernel with directed weights conditioned on wind and geography (advection). The second is an explainable attention mechanism that learns local responses and attributes future concentrations to specific historical lags and exogenous drivers. Evaluated on a comprehensive dataset from the Stockholm region, our model consistently outperforms state-of-the-art baselines across multiple forecasting horizons. Our model's integration of high predictive performance and spatiotemporal interpretability provides a more reliable foundation for operational air-quality management in real-world applications.
comment: Accepted to 2025 IEEE International Conference on Big Data. v2 corrects grant numbers
Is Your Writing Being Mimicked by AI? Unveiling Imitation with Invisible Watermarks in Creative Writing
Efficient knowledge injection methods for Large Language Models (LLMs), such as In-Context Learning, knowledge editing, and efficient parameter fine-tuning, significantly enhance model utility on downstream tasks. However, they also pose substantial risks of unauthorized imitation and compromised data provenance for high-value unstructured data assets like creative works. Current copyright protection methods for creative works predominantly focus on visual arts, leaving a critical and unaddressed data engineering challenge in the safeguarding of creative writing. In this paper, we propose WIND (Watermarking via Implicit and Non-disruptive Disentanglement), a novel zero-watermarking, verifiable and implicit scheme that safeguards creative writing databases by providing verifiable copyright protection. Specifically, we decompose creative essence into five key elements, which are extracted utilizing LLMs through a designed instance delimitation mechanism and consolidated into condensed-lists. These lists enable WIND to convert core copyright attributes into verifiable watermarks via implicit encoding within a disentanglement creative space, where 'disentanglement' refers to the separation of creative-specific and creative-irrelevant features. This approach, utilizing implicit encoding, avoids distorting fragile textual content. Extensive experiments demonstrate that WIND effectively verifies creative writing copyright ownership against AI imitation, achieving F1 scores above 98% and maintaining robust performance under stringent low false-positive rates where existing state-of-the-art text watermarking methods struggle.
Online Operator Design in Evolutionary Optimization for Flexible Job Shop Scheduling via Large Language Models
Customized static operator design has enabled widespread application of Evolutionary Algorithms (EAs), but their search effectiveness often deteriorates as evolutionary progresses. Dynamic operator configuration approaches attempt to alleviate this issue, but they typically rely on predefined operator structures and localized parameter control, lacking sustained adaptive optimization throughout evolution. To overcome these limitations, this work leverages Large Language Models (LLMs) to perceive evolutionary dynamics and enable operator-level meta-evolution. The proposed framework, LLMs for online operator design in Evolutionary Optimization, named LLM4EO, comprises three components: knowledge-transfer-based operator design, evolution perception and analysis, and adaptive operator evolution. Firstly, operators are initialized by leveraging LLMs to distill and transfer knowledge from well-established operators. Then, search behaviors and potential limitations of operators are analyzed by integrating fitness performance with evolutionary features, accompanied by suggestions for improvement. Upon stagnation of population evolution, an LLM-driven meta-operator dynamically optimizes gene selection of operators by prompt-guided improvement strategies. This approach achieves co-evolution of solutions and operators within a unified optimization framework, introducing a novel paradigm for enhancing the efficiency and adaptability of EAs. Finally, extensive experiments on multiple benchmarks of flexible job shop scheduling problem demonstrate that LLM4EO accelerates population evolution and outperforms tailored EAs.
Dynamics of Agentic Loops in Large Language Models: A Geometric Theory of Trajectories
Agentic systems built on large language models operate through recursive feedback loops, where each output becomes the next input. Yet the geometric behavior of these agentic loops (whether they converge, diverge, or exhibit more complex dynamics) remains poorly understood. This paper introduces a geometric framework for analyzing agentic trajectories in semantic embedding space, treating iterative transformations as discrete dynamical systems. We distinguish the artifact space, where linguistic transformations occur, from the embedding space, where geometric measurements are performed. Because cosine similarity is biased by embedding anisotropy, we introduce an isotonic calibration that eliminates systematic bias and aligns similarities with human semantic judgments while preserving high local stability. This enables rigorous measurement of trajectories, clusters and attractors. Through controlled experiments on singular agentic loops, we identify two fundamental regimes. A contractive rewriting loop converges toward a stable attractor with decreasing dispersion, while an exploratory summarize and negate loop produces unbounded divergence with no cluster formation. These regimes display qualitatively distinct geometric signatures of contraction and expansion. Our results show that prompt design directly governs the dynamical regime of an agentic loop, enabling systematic control of convergence, divergence and trajectory structure in iterative LLM transformations.
Modelling the Effects of Hearing Loss on Neural Coding in the Auditory Midbrain with Variational Conditioning AAAI 2026
The mapping from sound to neural activity that underlies hearing is highly non-linear. The first few stages of this mapping in the cochlea have been modelled successfully, with biophysical models built by hand and, more recently, with DNN models trained on datasets simulated by biophysical models. Modelling the auditory brain has been a challenge because central auditory processing is too complex for models to be built by hand, and datasets for training DNN models directly have not been available. Recent work has taken advantage of large-scale high resolution neural recordings from the auditory midbrain to build a DNN model of normal hearing with great success. But this model assumes that auditory processing is the same in all brains, and therefore it cannot capture the widely varying effects of hearing loss. We propose a novel variational-conditional model to learn to encode the space of hearing loss directly from recordings of neural activity in the auditory midbrain of healthy and noise exposed animals. With hearing loss parametrised by only 6 free parameters per animal, our model accurately predicts 62% of the explainable variance in neural responses from normal hearing animals and 68% for hearing impaired animals, within a few percentage points of state of the art animal specific models. We demonstrate that the model can be used to simulate realistic activity from out of sample animals by fitting only the learned conditioning parameters with Bayesian optimisation, achieving crossentropy loss within 2% of the optimum in 15-30 iterations. Including more animals in the training data slightly improved the performance on unseen animals. This model will enable future development of parametrised hearing loss compensation models trained to directly restore normal neural coding in hearing impaired brains, which can be quickly fitted for a new user by human in the loop optimisation.
comment: 12 pages, 3 figures, presented at AAAI 2026
Dynamic Exploration on Segment-Proposal Graphs for Tubular Centerline Tracking
Optimal curve methods provide a fundamental framework for tubular centerline tracking. Point-wise approaches, such as minimal paths, are theoretically elegant but often suffer from shortcut and short-branch combination problems in complex scenarios. Nonlocal segment-wise methods address these issues by mapping pre-extracted centerline fragments onto a segment-proposal graph, performing optimization in this abstract space, and recovering the target tubular centerline from the resulting optimal path. In this paradigm, graph construction is critical, as it directly determines the quality of the final result. However, existing segment-wise methods construct graphs in a static manner, requiring all edges and their weights to be pre-computed, i.e. the graph must be sufficiently complete prior to search. Otherwise, the true path may be absent from the candidate space, leading to search failure. To address this limitation, we propose a dynamic exploration scheme for constructing segment-proposal graphs, where the graph is built on demand during the search for optimal paths. By formulating the problem as a Markov decision process, we apply Q-learning to compute edge weights only for visited transitions and adaptively expand the action space when connectivity is insufficient. Experimental results on retinal vessels, roads, and rivers demonstrate consistent improvements over state-of-the-art methods in both accuracy and efficiency.
comment: A real time interactive model that can accurately find centerline of a tubular structure even in complex scenarios. At this version, this work is independent to deep learning-based algorithms
Robust Reinforcement Learning in Finance: Modeling Market Impact with Elliptic Uncertainty Sets
In financial applications, reinforcement learning (RL) agents are commonly trained on historical data, where their actions do not influence prices. However, during deployment, these agents trade in live markets where their own transactions can shift asset prices, a phenomenon known as market impact. This mismatch between training and deployment environments can significantly degrade performance. Traditional robust RL approaches address this model misspecification by optimizing the worst-case performance over a set of uncertainties, but typically rely on symmetric structures that fail to capture the directional nature of market impact. To address this issue, we develop a novel class of elliptic uncertainty sets. We establish both implicit and explicit closed-form solutions for the worst-case uncertainty under these sets, enabling efficient and tractable robust policy evaluation. Experiments on single-asset and multi-asset trading tasks demonstrate that our method achieves superior Sharpe ratio and remains robust under increasing trade volumes, offering a more faithful and scalable approach to RL in financial markets.
Evolving in Tasks: Empowering the Multi-modality Large Language Model as the Computer Use Agent
Computer use agents represent an emerging area in artificial intelligence, aiming to operate computers autonomously to fulfill user tasks, attracting significant attention from both industry and academia. However, the performance of existing agents remains insufficient for practical deployment. In this paper, we propose the Self-Evolution Agent (SEA) for computer operation, alongside three core innovations in data generation, reinforcement learning, and model enhancement to develop this agent. Specifically, we first design an automatic pipeline to generate verifiable task trajectories for training. Second, we propose Efficient Step-wise Reinforcement Learning to reduce the substantial computational overhead of long-horizon training. Finally, we introduce a model enhancement method that integrates grounding and planning capabilities into a single model without additional training. Leveraging these innovations, our SEA (with only 7B parameters) outperforms existing models of the same parameter scale and achieves performance comparable to larger models (e.g., 32B/72B parameters) on computer use tasks. We plan to release the model weights and related code as open-source resources in the future.
SURE-Med: Systematic Uncertainty Reduction for Enhanced Reliability in Medical Report Generation
Automated medical report generation (MRG) holds great promise for reducing the heavy workload of radiologists. However, its clinical deployment is hindered by three major sources of uncertainty. First, visual uncertainty, caused by noisy or incorrect view annotations, compromises feature extraction. Second, label distribution uncertainty, stemming from long-tailed disease prevalence, biases models against rare but clinically critical conditions. Third, contextual uncertainty, introduced by unverified historical reports, often leads to factual hallucinations. These challenges collectively limit the reliability and clinical trustworthiness of MRG systems. To address these issues, we propose SURE-Med, a unified framework that systematically reduces uncertainty across three critical dimensions: visual, distributional, and contextual. To mitigate visual uncertainty, a Frontal-Aware View Repair Resampling module corrects view annotation errors and adaptively selects informative features from supplementary views. To tackle label distribution uncertainty, we introduce a Token Sensitive Learning objective that enhances the modeling of critical diagnostic sentences while reweighting underrepresented diagnostic terms, thereby improving sensitivity to infrequent conditions. To reduce contextual uncertainty, our Contextual Evidence Filter validates and selectively incorporates prior information that aligns with the current image, effectively suppressing hallucinations. Extensive experiments on the MIMIC-CXR and IU-Xray benchmarks demonstrate that SURE-Med achieves state-of-the-art performance. By holistically reducing uncertainty across multiple input modalities, SURE-Med sets a new benchmark for reliability in medical report generation and offers a robust step toward trustworthy clinical decision support.
comment: fix some problems
AtomWorld: A Benchmark for Evaluating Spatial Reasoning in Large Language Models on Crystalline Materials
Large Language Models (LLMs) excel at textual reasoning and are beginning to develop spatial understanding, prompting the question of whether these abilities can be combined for complex, domain-specific tasks. This question is essential in fields like materials science, where deep understanding of 3D atomic structures is fundamental. While initial studies have successfully applied LLMs to tasks involving pure crystal generation or coordinate understandings, a standardized benchmark to systematically evaluate their core reasoning abilities across diverse atomic structures has been notably absent. To address this gap, we introduce the AtomWorld benchmark to evaluate LLMs on tasks based in Crystallographic Information Files (CIFs), a standard structure representation format. These tasks, including structural editing, CIF perception, and property-guided modeling, reveal a critical limitation: current models, despite establishing promising baselines, consistently fail in structural understanding and spatial reasoning. Our experiments show that these models make frequent errors on structure modification tasks, and even in the basic CIF format understandings, potentially leading to cumulative errors in subsequent analysis and materials insights. By defining these standardized tasks, AtomWorld lays the ground for advancing LLMs toward robust atomic-scale modeling, crucial for accelerating materials research and automating scientific workflows.
Gaming the Judge: Unfaithful Chain-of-Thought Can Undermine Agent Evaluation
Large language models (LLMs) are increasingly used as judges to evaluate agent performance, particularly in non-verifiable settings where judgments rely on agent trajectories including chain-of-thought (CoT) reasoning. This paradigm implicitly assumes that the agent's CoT faithfully reflects both its internal reasoning and the underlying environment state. We show this assumption is brittle: LLM judges are highly susceptible to manipulation of agent reasoning traces. By systematically rewriting agent CoTs while holding actions and observations fixed, we demonstrate that manipulated reasoning alone can inflate false positive rates of state-of-the-art VLM judges by up to 90% across 800 trajectories spanning diverse web tasks. We study manipulation strategies spanning style-based approaches that alter only the presentation of reasoning and content-based approaches that fabricate signals of task progress, and find that content-based manipulations are consistently more effective. We evaluate prompting-based techniques and scaling judge-time compute, which reduce but do not fully eliminate susceptibility to manipulation. Our findings reveal a fundamental vulnerability in LLM-based evaluation and highlight the need for judging mechanisms that verify reasoning claims against observable evidence.
RADLADS: Rapid Attention Distillation to Linear Attention Decoders at Scale
We present Rapid Attention Distillation to Linear Attention Decoders at Scale (RADLADS), a protocol for rapidly converting softmax attention transformers into linear attention decoder models, along with two new RWKV-variant architectures, and models converted from popular Qwen2.5 open source models in 7B, 32B, and 72B sizes. Our conversion process requires only 350-700M tokens, less than 0.005% of the token count used to train the original teacher models. Converting to our 72B linear attention model costs less than \$2,000 USD at today's prices, yet quality at inference remains close to the original transformer. These models achieve state-of-the-art downstream performance across a set of standard benchmarks for linear attention models of their size. We release all our models on HuggingFace under the Apache 2.0 license, with the exception of our 72B models which are also governed by the Qwen License Agreement. Models at https://huggingface.co/collections/recursal/radlads-6818ee69e99e729ba8a87102 Training Code at https://github.com/recursal/RADLADS-paper
Knowing When to Abstain: Medical LLMs Under Clinical Uncertainty
Current evaluation of large language models (LLMs) overwhelmingly prioritizes accuracy; however, in real-world and safety-critical applications, the ability to abstain when uncertain is equally vital for trustworthy deployment. We introduce MedAbstain, a unified benchmark and evaluation protocol for abstention in medical multiple-choice question answering (MCQA) -- a discrete-choice setting that generalizes to agentic action selection -- integrating conformal prediction, adversarial question perturbations, and explicit abstention options. Our systematic evaluation of both open- and closed-source LLMs reveals that even state-of-the-art, high-accuracy models often fail to abstain with uncertain. Notably, providing explicit abstention options consistently increases model uncertainty and safer abstention, far more than input perturbations, while scaling model size or advanced prompting brings little improvement. These findings highlight the central role of abstention mechanisms for trustworthy LLM deployment and offer practical guidance for improving safety in high-stakes applications.
comment: Equal contribution for the first two authors; To appear in proceedings of the Main Conference of the European Chapter of the Association for Computational Linguistics (EACL) 2026
PROMA: Projected Microbatch Accumulation for Reference-Free Proximal Policy Updates
This note introduces Projected Microbatch Accumulation (PROMA), a proximal policy method that modifies gradient accumulation across microbatches rather than relying on likelihood ratios relative to a reference policy. During accumulation, PROMA projects the partially accumulated gradient to be orthogonal to the sequence-wise gradients of the current microbatch. This projection is applied layer-wise during the backward pass, enabling efficient implementation. Empirically, PROMA achieves proximal updates without entropy collapse while providing tighter local KL control than GRPO.
UCCL-EP: Portable Expert-Parallel Communication
Mixture-of-Experts (MoE) workloads rely on expert parallelism (EP) to achieve high GPU efficiency. State-of-the-art EP communication systems such as DeepEP demonstrate strong performance but exhibit poor portability across heterogeneous GPU and NIC platforms. The poor portability is rooted in architecture: GPU-initiated token-level RDMA communication requires tight vertical integration between GPUs and NICs, e.g., GPU writes to NIC driver/MMIO interfaces. We present UCCL-EP, a portable EP communication system that delivers DeepEP-level performance across heterogeneous GPU and NIC hardware. UCCL-EP replaces GPU-initiated RDMA with a high-throughput GPU-CPU control channel: compact token-routing commands are transferred to multithreaded CPU proxies, which then issue GPUDirect RDMA operations on behalf of GPUs. UCCL-EP further emulates various ordering semantics required by specialized EP communication modes using RDMA immediate data, enabling correctness on NICs that lack such ordering, e.g., AWS EFA. We implement UCCL-EP on NVIDIA and AMD GPUs with EFA and Broadcom NICs. On EFA, it outperforms the best existing EP solution by up to $2.1\times$ for dispatch and combine throughput. On NVIDIA-only platform, UCCL-EP achieves comparable performance to the original DeepEP. UCCL-EP also improves token throughput on SGLang by up to 40% on the NVIDIA+EFA platform, and improves DeepSeek-V3 training throughput over the AMD Primus/Megatron-LM framework by up to 45% on a 16-node AMD+Broadcom platform.
MedSimAI: Simulation and Formative Feedback Generation to Enhance Deliberate Practice in Medical Education
Medical education faces challenges in providing scalable, consistent clinical skills training. Simulation with standardized patients (SPs) develops communication and diagnostic skills but remains resource-intensive and variable in feedback quality. Existing AI-based tools show promise yet often lack comprehensive assessment frameworks, evidence of clinical impact, and integration of self-regulated learning (SRL) principles. Through a multi-phase co-design process with medical education experts, we developed MedSimAI, an AI-powered simulation platform that enables deliberate practice through interactive patient encounters with immediate, structured feedback. Leveraging large language models, MedSimAI generates realistic clinical interactions and provides automated assessments aligned with validated evaluation frameworks. In a multi-institutional deployment (410 students; 1,024 encounters across three medical schools), 59.5 percent engaged in repeated practice. At one site, mean Objective Structured Clinical Examination (OSCE) history-taking scores rose from 82.8 to 88.8 (p < 0.001, Cohen's d = 0.75), while a second site's pilot showed no significant change. Automated scoring achieved 87 percent accuracy in identifying proficiency thresholds on the Master Interview Rating Scale (MIRS). Mixed-effects analyses revealed institution and case effects. Thematic analysis of 840 learner reflections highlighted challenges in missed items, organization, review of systems, and empathy. These findings position MedSimAI as a scalable formative platform for history-taking and communication, motivating staged curriculum integration and realism enhancements for advanced learners.
comment: Accepted to LAK 2026; 11 pages, 5 figures
Eliminating Out-of-Domain Recommendations in LLM-based Recommender Systems: A Unified View
Recommender systems based on Large Language Models (LLMs) are often plagued by hallucinations of out-of-domain (OOD) items. To address this, we propose RecLM, a unified framework that bridges the gap between retrieval and generation by instantiating three grounding paradigms under a single architecture: embedding-based retrieval, constrained generation over rewritten item titles, and discrete item-tokenizer generation. Using the same backbone LLM and prompts, we systematically compare these three views on public benchmarks. RecLM strictly eradicates OOD recommendations (OOD@10 = 0) across all variants, and the constrained generation variants RecLM-cgen and RecLM-token achieve overall state-of-the-art accuracy compared to both strong ID-based and LLM-based baselines. Our unified view provides a systematic basis for comparing three distinct paradigms to reduce item hallucinations, offering a practical framework to facilitate the application of LLMs to recommendation tasks. Source code is at https://github.com/microsoft/RecAI.
comment: 20 pages
Efficient Multimodal Large Language Models: A Survey
In the past year, Multimodal Large Language Models (MLLMs) have demonstrated remarkable performance in tasks such as visual question answering, visual understanding and reasoning. However, the extensive model size and high training and inference costs have hindered the widespread application of MLLMs in academia and industry. Thus, studying efficient and lightweight MLLMs has enormous potential, especially in edge computing scenarios. In this survey, we provide a comprehensive and systematic review of the current state of efficient MLLMs. Specifically, we summarize the timeline of representative efficient MLLMs, research state of efficient structures and strategies, and the applications. Finally, we discuss the limitations of current efficient MLLM research and promising future directions. Please refer to our GitHub repository for more details: https://github.com/lijiannuist/Efficient-Multimodal-LLMs-Survey.
comment: Accepted by Visual Intelligence
Mechanism Shift During Post-training from Autoregressive to Masked Diffusion Language Models
Post-training pretrained Autoregressive models (ARMs) into Masked Diffusion models (MDMs) has emerged as a cost-effective strategy to overcome the limitations of sequential generation. However, the internal algorithmic transformations induced by this paradigm shift remain unexplored, leaving it unclear whether post-trained MDMs acquire genuine bidirectional reasoning capabilities or merely repackage autoregressive heuristics. In this work, we address this question by conducting a comparative circuit analysis of ARMs and their MDM counterparts. Our analysis reveals a systematic "mechanism shift" dependent on the structural nature of the task. Structurally, we observe a distinct divergence: while MDMs largely retain autoregressive circuitry for tasks dominated by local causal dependencies, they abandon initialized pathways for global planning tasks, exhibiting distinct rewiring characterized by increased early-layer processing. Semantically, we identify a transition from sharp, localized specialization in ARMs to distributed integration in MDMs. Through these findings, we conclude that diffusion post-training does not merely adapt model parameters but fundamentally reorganizes internal computation to support non-sequential global planning.
Monadic Context Engineering
The proliferation of Large Language Models (LLMs) has catalyzed a shift towards autonomous agents capable of complex reasoning and tool use. However, current agent architectures are frequently constructed using imperative, ad hoc patterns. This results in brittle systems plagued by difficulties in state management, error handling, and concurrency. This paper introduces Monadic Context Engineering (MCE), a novel architectural paradigm leveraging the algebraic structures of Functors, Applicative Functors, and Monads to provide a formal foundation for agent design. MCE treats agent workflows as computational contexts where cross-cutting concerns, such as state propagation, short-circuiting error handling, and asynchronous execution, are managed intrinsically by the algebraic properties of the abstraction. We demonstrate how Monads enable robust sequential composition, how Applicatives provide a principled structure for parallel execution, and crucially, how Monad Transformers allow for the systematic composition of these capabilities. This layered approach enables developers to construct complex, resilient, and efficient AI agents from simple, independently verifiable components. We further extend this framework to describe Meta-Agents, which leverage MCE for generative orchestration, dynamically creating and managing sub-agent workflows through metaprogramming.
Report for NSF Workshop on AI for Electronic Design Automation
This report distills the discussions and recommendations from the NSF Workshop on AI for Electronic Design Automation (EDA), held on December 10, 2024 in Vancouver alongside NeurIPS 2024. Bringing together experts across machine learning and EDA, the workshop examined how AI-spanning large language models (LLMs), graph neural networks (GNNs), reinforcement learning (RL), neurosymbolic methods, etc.-can facilitate EDA and shorten design turnaround. The workshop includes four themes: (1) AI for physical synthesis and design for manufacturing (DFM), discussing challenges in physical manufacturing process and potential AI applications; (2) AI for high-level and logic-level synthesis (HLS/LLS), covering pragma insertion, program transformation, RTL code generation, etc.; (3) AI toolbox for optimization and design, discussing frontier AI developments that could potentially be applied to EDA tasks; and (4) AI for test and verification, including LLM-assisted verification tools, ML-augmented SAT solving, security/reliability challenges, etc. The report recommends NSF to foster AI/EDA collaboration, invest in foundational AI for EDA, develop robust data infrastructures, promote scalable compute infrastructure, and invest in workforce development to democratize hardware design and enable next-generation hardware systems. The workshop information can be found on the website https://ai4eda-workshop.github.io/.
DUET: Agentic Design Understanding via Experimentation and Testing
AI agents powered by large language models (LLMs) are being used to solve increasingly complex software engineering challenges, but struggle with hardware design tasks. Register Transfer Level (RTL) code presents a unique challenge for LLMs, as it encodes complex, dynamic, time-evolving behaviors using the low-level language features of SystemVerilog. LLMs struggle to infer these complex behaviors from the syntax of RTL alone, which limits their ability to complete all downstream tasks like code completion, documentation, or verification. In response to this issue, we present DUET: a general methodology for developing Design Understanding via Experimentation and Testing. DUET mimics how hardware design experts develop an understanding of complex designs: not just via a one-off readthrough of the RTL, but via iterative experimentation using a number of tools. DUET iteratively generates hypotheses, tests them with EDA tools (e.g., simulation, waveform inspection, and formal verification), and integrates the results to build a bottom-up understanding of the design. In our evaluations, we show that DUET improves AI agent performance on formal verification, when compared to a baseline flow without experimentation.
Membership Inference Attacks on LLM-based Recommender Systems
Large language models (LLMs) based recommender systems (RecSys) can adapt to different domains flexibly. It utilizes in-context learning (ICL), i.e., prompts, to customize the recommendation functions, which include sensitive historical user-specific item interactions, encompassing implicit feedback such as clicked items and explicit product reviews. Such private information may be exposed by novel privacy attacks. However, no study has been conducted on this important issue. We design several membership inference attacks (MIAs) aimed to revealing whether system prompts include victims' historical interactions. The attacks are \emph{Similarity, Memorization, Inquiry, and Poisoning attacks}, each utilizing unique features of LLMs or RecSys. We have carefully evaluated them on five of the latest open-source LLMs and three well-known RecSys benchmark datasets. The results confirm that the MIA threat to LLM RecSys is realistic: inquiry and poisoning attacks show significantly high attack advantages. We also discussed possible methods to mitigate such MIA threats. We have also analyzed the factors affecting these attacks, such as the number of shots in system prompts, the position of the victim in the shots, the number of poisoning items in the prompt,etc.
comment: This is paper is under review ACL 2026
Toward Efficient Speech Emotion Recognition via Spectral Learning and Attention
Speech Emotion Recognition (SER) traditionally relies on auditory data analysis for emotion classification. Several studies have adopted different methods for SER. However, existing SER methods often struggle to capture subtle emotional variations and generalize across diverse datasets. In this article, we use Mel-Frequency Cepstral Coefficients (MFCCs) as spectral features to bridge the gap between computational emotion processing and human auditory perception. To further improve robustness and feature diversity, we propose a novel 1D-CNN-based SER framework that integrates data augmentation techniques. MFCC features extracted from the augmented data are processed using a 1D Convolutional Neural Network (CNN) architecture enhanced with channel and spatial attention mechanisms. These attention modules allow the model to highlight key emotional patterns, enhancing its ability to capture subtle variations in speech signals. The proposed method delivers cutting-edge performance, achieving the accuracy of 97.49% for SAVEE, 99.23% for RAVDESS, 89.31% for CREMA-D, 99.82% for TESS, 99.53% for EMO-DB, and 96.39% for EMOVO. Experimental results show new benchmarks in SER, demonstrating the effectiveness of our approach in recognizing emotional expressions with high precision. Our evaluation demonstrates that the integration of advanced Deep Learning (DL) methods substantially enhances generalization across diverse datasets, underscoring their potential to advance SER for real-world deployment in assistive technologies and human-computer interaction.
comment: After posting, we discovered that part of the material included in the manuscript should not have been publicly distributed in this form. We are withdrawing the paper while we address the issue
Vision-as-Inverse-Graphics Agent via Interleaved Multimodal Reasoning
Vision-as-inverse-graphics, the concept of reconstructing an image as an editable graphics program is a long-standing goal of computer vision. Yet even strong VLMs aren't able to achieve this in one-shot as they lack fine-grained spatial and physical grounding capability. Our key insight is that closing this gap requires interleaved multimodal reasoning through iterative execution and verification. Stemming from this, we present VIGA (Vision-as-Inverse-Graphic Agent) that starts from an empty world and reconstructs or edits scenes through a closed-loop write-run-render-compare-revise procedure. To support long-horizon reasoning, VIGA combines (i) a skill library that alternates generator and verifier roles and (ii) an evolving context memory that contains plans, code diffs, and render history. VIGA is task-agnostic as it doesn't require auxiliary modules, covering a wide range of tasks such as 3D reconstruction, multi-step scene editing, 4D physical interaction, and 2D document editing, etc. Empirically, we found VIGA substantially improves one-shot baselines on BlenderGym (35.32%) and SlideBench (117.17%). Moreover, VIGA is also model-agnostic as it doesn't require finetuning, enabling a unified protocol to evaluate heterogeneous foundation VLMs. To better support this protocol, we introduce BlenderBench, a challenging benchmark that stress-tests interleaved multimodal reasoning with graphics engine, where VIGA improves by 124.70%.
comment: Project page: https://fugtemypt123.github.io/VIGA-website/
R-KV: Redundancy-aware KV Cache Compression for Reasoning Models
Reasoning models have demonstrated impressive performance in self-reflection and chain-of-thought reasoning. However, they often produce excessively long outputs, leading to prohibitively large key-value (KV) caches during inference. While chain-of-thought inference significantly improves performance on complex reasoning tasks, it can also lead to reasoning failures when deployed with existing KV cache compression approaches. To address this, we propose Redundancy-aware KV Cache Compression for Reasoning models (R-KV), a novel method specifically targeting redundant tokens in reasoning models. Our method preserves nearly 100% of the full KV cache performance using only 10% of the KV cache, substantially outperforming existing KV cache baselines, which reach only 60% of the performance. Remarkably, R-KV even achieves 105% of full KV cache performance with 16% of the KV cache. This KV-cache reduction also leads to a 90% memory saving and a 6.6X throughput over standard chain-of-thought reasoning inference. Experimental results show that R-KV consistently outperforms existing KV cache compression baselines across two mathematical reasoning datasets.
Thought of Search: Planning with Language Models Through The Lens of Efficiency NeurIPS 2024
Among the most important properties of algorithms investigated in computer science are soundness, completeness, and complexity. These properties, however, are rarely analyzed for the vast collection of recently proposed methods for planning with large language models. In this work, we alleviate this gap. We analyse these properties of using LLMs for planning and highlight that recent trends abandon both soundness and completeness for the sake of inefficiency. We propose a significantly more efficient approach that can, at the same time, maintain both soundness and completeness. We exemplify on four representative search problems, comparing to the LLM-based solutions from the literature that attempt to solve these problems. We show that by using LLMs to produce the code for the search components we can solve the entire datasets with 100\% accuracy with only a few calls to the LLM. We argue for a responsible use of compute resources; urging research community to investigate sound and complete LLM-based approaches that uphold efficiency.
comment: Accepted at NeurIPS 2024, https://papers.nips.cc/paper_files/paper/2024/hash/fa080fe0f218871faec1d8ba20e491d5-Abstract-Conference.html
Fluent but Foreign: Even Regional LLMs Lack Cultural Alignment
Large language models (LLMs) are used worldwide, yet exhibit Western cultural tendencies. Many countries are now building ``regional'' or ``sovereign'' LLMs, but it remains unclear whether they reflect local values and practices or merely speak local languages. Using India as a case study, we evaluate six Indic and six global LLMs on two dimensions -- values and practices -- grounded in nationally representative surveys and community-sourced QA datasets. Across tasks, Indic models do not align better with Indian norms than global models; in fact, a U.S. respondent is a closer proxy for Indian values than any Indic model. We further run a user study with 115 Indian users and find that writing suggestions from both global and Indic LLMs introduce Westernized or exoticized writing. Prompting and regional fine-tuning fail to recover alignment and can even degrade existing knowledge. We attribute this to scarce culturally grounded data, especially for pretraining. We position cultural evaluation as a first-class requirement alongside multilingual benchmarks and offer a reusable, community-grounded methodology. We call for native, community-authored corpora and thickxwide evaluations to build truly sovereign LLMs.
comment: Under review
Evaluating Adversarial Robustness of Concept Representations in Sparse Autoencoders
Sparse autoencoders (SAEs) are commonly used to interpret the internal activations of large language models (LLMs) by mapping them to human-interpretable concept representations. While existing evaluations of SAEs focus on metrics such as the reconstruction-sparsity tradeoff, human (auto-)interpretability, and feature disentanglement, they overlook a critical aspect: the robustness of concept representations to input perturbations. We argue that robustness must be a fundamental consideration for concept representations, reflecting the fidelity of concept labeling. To this end, we formulate robustness quantification as input-space optimization problems and develop a comprehensive evaluation framework featuring realistic scenarios in which adversarial perturbations are crafted to manipulate SAE representations. Empirically, we find that tiny adversarial input perturbations can effectively manipulate concept-based interpretations in most scenarios without notably affecting the base LLM's activations. Overall, our results suggest that SAE concept representations are fragile and without further denoising or postprocessing they might be ill-suited for applications in model monitoring and oversight.
SimWorld: An Open-ended Realistic Simulator for Autonomous Agents in Physical and Social Worlds
While LLM/VLM-powered AI agents have advanced rapidly in math, coding, and computer use, their applications in complex physical and social environments remain challenging. Building agents that can survive and thrive in the real world (for example, by autonomously earning income or running a business) requires massive-scale interaction, reasoning, training, and evaluation across diverse embodied scenarios. However, existing world simulators for such development fall short: they often rely on limited hand-crafted environments, simulate simplified game-like physics and social rules, and lack native support for LLM/VLM agents. We introduce SimWorld, a new simulator built on Unreal Engine 5, designed for developing and evaluating LLM/VLM agents in rich, real-world-like settings. SimWorld offers three core capabilities: (1) realistic, open-ended world simulation, including accurate physical and social dynamics and language-driven procedural environment generation; (2) a rich interface for LLM/VLM agents, with multimodal world inputs and open-vocabulary actions at varying levels of abstraction; and (3) diverse and extensible physical and social reasoning scenarios that are easily customizable by users. We demonstrate SimWorld by deploying frontier LLM agents (e.g., GPT-4o, Gemini-2.5-Flash, Claude-3.5, and DeepSeek-Prover-V2) on long-horizon multi-agent delivery tasks involving strategic cooperation and competition. The results reveal distinct reasoning patterns and limitations across models. We open-source SimWorld and hope it becomes a foundational platform for advancing real-world agent intelligence across disciplines: https://simworld.org.
CRADLE Bench: A Clinician-Annotated Benchmark for Multi-Faceted Mental Health Crisis and Safety Risk Detection
Detecting mental health crisis situations such as suicide ideation, rape, domestic violence, child abuse, and sexual harassment is a critical yet underexplored challenge for language models. When such situations arise during user--model interactions, models must reliably flag them, as failure to do so can have serious consequences. In this work, we introduce CRADLE BENCH, a benchmark for multi-faceted crisis detection. Unlike previous efforts that focus on a limited set of crisis types, our benchmark covers seven types defined in line with clinical standards and is the first to incorporate temporal labels. Our benchmark provides 600 clinician-annotated evaluation examples and 420 development examples, together with a training corpus of around 4K examples automatically labeled using a majority-vote ensemble of multiple language models, which significantly outperforms single-model annotation. We further fine-tune six crisis detection models on subsets defined by consensus and unanimous ensemble agreement, providing complementary models trained under different agreement criteria.
Enhancing Study-Level Inference from Clinical Trial Papers via Reinforcement Learning-Based Numeric Reasoning
Systematic reviews in medicine play a critical role in evidence-based decision-making by aggregating findings from multiple studies. A central bottleneck in automating this process is extracting numeric evidence and determining study-level conclusions for specific outcomes and comparisons. Prior work has framed this problem as a textual inference task by retrieving relevant content fragments and inferring conclusions from them. However, such approaches often rely on shallow textual cues and fail to capture the underlying numeric reasoning behind expert assessments. In this work, we conceptualise the problem as one of quantitative reasoning. Rather than inferring conclusions from surface text, we extract structured numerical evidence (e.g., event counts or standard deviations) and apply domain knowledge informed logic to derive outcome-specific conclusions. We develop a numeric reasoning system composed of a numeric data extraction model and an effect estimate component, enabling more accurate and interpretable inference aligned with the domain expert principles. We train the numeric data extraction model using different strategies, including supervised fine-tuning (SFT) and reinforcement learning (RL) with a new value reward model. When evaluated on the CochraneForest benchmark, our best-performing approach -- using RL to train a small-scale number extraction model -- yields up to a 21% absolute improvement in F1 score over retrieval-based systems and outperforms general-purpose LLMs of over 400B parameters by up to 9% on the RCTs benchmark. Our results demonstrate the promise of reasoning-driven approaches for automating systematic evidence synthesis.
comment: Accepted at EMNLP 2025 Main Conference. This revision corrects a minor typo in the camera-ready version
Towards Fast Safe Online Reinforcement Learning via Policy Finetuning
The high costs and risks involved in extensive environment interactions hinder the practical application of current online safe reinforcement learning (RL) methods. While offline safe RL addresses this by learning policies from static datasets, the performance therein is usually limited due to reliance on data quality and challenges with out-of-distribution (OOD) actions. Inspired by recent successes in offline-to-online (O2O) RL, it is crucial to explore whether offline safe RL can be leveraged to facilitate faster and safer online policy learning, a direction that has yet to be fully investigated. To fill this gap, we first demonstrate that naively applying existing O2O algorithms from standard RL would not work well in the safe RL setting due to two unique challenges: \emph{erroneous Q-estimations}, resulted from offline-online objective mismatch and offline cost sparsity, and \emph{Lagrangian mismatch}, resulted from difficulties in aligning Lagrange multipliers between offline and online policies. To address these challenges, we introduce \textbf{Marvel}, a novel framework for O2O safe RL, comprising two key components that work in concert: \emph{Value Pre-Alignment} to align the Q-functions with the underlying truth before online learning, and \emph{Adaptive PID Control} to effectively adjust the Lagrange multipliers during online finetuning. Extensive experiments demonstrate that Marvel significantly outperforms existing baselines in both reward maximization and safety constraint satisfaction. By introducing the first policy-finetuning based framework for O2O safe RL, which is compatible with many offline and online safe RL methods, our work has the great potential to advance the field towards more efficient and practical safe RL solutions.
comment: Accepted by Transactions on Machine Learning Research (TMLR), 2026
Neural Logic Networks for Interpretable Classification
Traditional neural networks have an impressive classification performance, but what they learn cannot be inspected, verified or extracted. Neural Logic Networks on the other hand have an interpretable structure that enables them to learn a logical mechanism relating the inputs and outputs with AND and OR operations. We generalize these networks with NOT operations and biases that take into account unobserved data and develop a rigorous logical and probabilistic modeling in terms of concept combinations to motivate their use. We also propose a novel factorized IF-THEN rule structure for the model as well as a modified learning algorithm. Our method improves the state-of-the-art in Boolean networks discovery and is able to learn relevant, interpretable rules in tabular classification, notably on examples from the medical and industrial fields where interpretability has tangible value.
comment: 25 pages, 8 figures, pre-print, code available at https://github.com/VincentPerreault0/NeuralLogicNetworks
Shape of Thought: When Distribution Matters More than Correctness in Reasoning Tasks
We present the surprising finding that a language model's reasoning capabilities can be improved by training on synthetic datasets of chain-of-thought (CoT) traces from more capable models, even when all of those traces lead to an incorrect final answer. Our experiments show this approach can yield better performance on reasoning tasks than training on human-annotated datasets. We hypothesize that two key factors explain this phenomenon: first, the distribution of synthetic data is inherently closer to the language model's own distribution, making it more amenable to learning. Second, these `incorrect' traces are often only partially flawed and contain valid reasoning steps from which the model can learn. To further test the first hypothesis, we use a language model to paraphrase human-annotated traces -- shifting their distribution closer to the model's own distribution -- and show that this improves performance. For the second hypothesis, we introduce increasingly flawed CoT traces and study to what extent models are tolerant to these flaws. We demonstrate our findings across various reasoning domains like math, algorithmic reasoning and code generation using MATH, GSM8K, Countdown and MBPP datasets on various language models ranging from 1.5B to 9B across Qwen, Llama, and Gemma models. Our study shows that curating datasets that are closer to the model's distribution is a critical aspect to consider. We also show that a correct final answer is not always a reliable indicator of a faithful reasoning process.
A Concept-Centric Approach to Multi-Modality Learning
Humans possess a remarkable ability to acquire knowledge efficiently and apply it across diverse modalities through a coherent and shared understanding of the world. Inspired by this cognitive capability, we introduce a concept-centric multi-modality learning framework built around a modality-agnostic concept space that captures structured, abstract knowledge, alongside a set of modality-specific projection models that map raw inputs onto this shared space. The concept space is decoupled from any specific modality and serves as a repository of universally applicable knowledge. Once learned, the knowledge embedded in the concept space enables more efficient adaptation to new modalities, as projection models can align with existing conceptual representations rather than learning from scratch. This efficiency is empirically validated in our experiments, where the proposed framework exhibits faster convergence compared to baseline models. In addition, the framework's modular design supports seamless integration of new modalities, since projection models are trained independently yet produce unified outputs within the shared concept space. We evaluate the framework on two representative downstream tasks. While the focus is not on task-specific optimization, the framework attains comparable results with a smaller training footprint, no task-specific fine-tuning, and inference performed entirely within a shared space of learned concepts that offers interpretability. These findings point toward a promising direction for developing learning systems that operate in a manner more consistent with human cognitive processes.
comment: Published in Transactions on Machine Learning Research (TMLR), 2026. Official version: https://openreview.net/forum?id=8WAAPP32c7
Frame-Stacked Local Transformers For Efficient Multi-Codebook Speech Generation
Speech generation models based on large language models (LLMs) typically operate on discrete acoustic codes, which differ fundamentally from text tokens due to their multicodebook structure. At each timestep, models must predict N codebook entries jointly, introducing dependencies that challenge simple parallel prediction approaches. Parallel prediction assumes independence among codebooks, yielding efficient decoding but often at the cost of reduced fidelity. To address this, hierarchical strategies employ a local transformer (LT) to refine predictions and capture intra-timestep dependencies. In this work, we systematically investigate two LT architectures: an autoregressive transformer that generates codebooks sequentially, and a MaskGIT-based transformer that performs iterative masked prediction. Both designs further enable frame stacking, where the primary transformer predicts multiple frames jointly, and the LT decodes their codebooks, offering improvements in speed without compromising perceptual quality. Through extensive analysis, we characterize the tradeoffs between parallel and iterative sampling strategies across different throughput and quality regimes. Finally, we propose practical guidelines for selecting decoding strategies based on deployment priorities such as computational efficiency and synthesis fidelity.
comment: Accepted to ICASSP 2026
Comparing Specialised Small and General Large Language Models on Text Classification: 100 Labelled Samples to Achieve Break-Even Performance
When solving NLP tasks with limited labelled data, researchers typically either use a general large language model without further update, or use a small number of labelled samples to tune a specialised smaller model. In this work, we answer an important question -- how many labelled samples are required for the specialised small models to outperform general large models, while taking the performance variance into consideration. By observing the behaviour of fine-tuning, instruction-tuning, prompting and in-context learning on 8 language models, we identify such performance break-even points across 8 representative text classification tasks of varying characteristics. We show that the specialised models often need only few samples (on average $100$) to be on par or better than the general ones. At the same time, the number of required labels strongly depends on the dataset or task characteristics, with fine-tuning on binary datasets requiring significantly more samples. When performance variance is taken into consideration, the number of required labels increases on average by $100 - 200\%$. Finally, larger models do not consistently lead to better performance and lower variance, with 4-bit quantisation having negligible impact.
comment: Accepted to the EMNLP 2025 conference
Visual Attention Reasoning via Hierarchical Search and Self-Verification
Multimodal Large Language Models (MLLMs) frequently hallucinate due to their reliance on fragile, linear reasoning and weak visual grounding. We propose Visual Attention Reasoning (VAR), a reinforcement learning framework that reformulates reasoning as a hierarchical search with self-verification. VAR enforces traceable evidence grounding by generating explicit bounding boxes, guided by a novel reward function combining geometric precision and semantic sufficiency. Furthermore, it replaces linear Chain-of-Thought with a tree-search policy capable of backtracking to correct logical errors. Theoretical analysis validates the framework's reliability, and extensive experiments demonstrate that VAR significantly outperforms state-of-the-art methods on complex hallucination and safety benchmarks.
comment: The paper is withdrawn by the authors after discovering a flaw in the theoretical derivation presented in the Method section. This incorrect step leads to conclusions that are not supported by the corrected derivation. The authors plan to reconstruct the argument and will release an updated version once the issue is fully resolved
Machine Learning 173
Counterfactual Training: Teaching Models Plausible and Actionable Explanations
We propose a novel training regime termed counterfactual training that leverages counterfactual explanations to increase the explanatory capacity of models. Counterfactual explanations have emerged as a popular post-hoc explanation method for opaque machine learning models: they inform how factual inputs would need to change in order for a model to produce some desired output. To be useful in real-world decision-making systems, counterfactuals should be plausible with respect to the underlying data and actionable with respect to the feature mutability constraints. Much existing research has therefore focused on developing post-hoc methods to generate counterfactuals that meet these desiderata. In this work, we instead hold models directly accountable for the desired end goal: counterfactual training employs counterfactuals during the training phase to minimize the divergence between learned representations and plausible, actionable explanations. We demonstrate empirically and theoretically that our proposed method facilitates training models that deliver inherently desirable counterfactual explanations and additionally exhibit improved adversarial robustness.
comment: This work has been accepted for publication at the 2026 IEEE Conference on Secure and Trustworthy Machine Learning (SaTML). The final version will be available on IEEE Xplore
Provable Robustness in Multimodal Large Language Models via Feature Space Smoothing
Multimodal large language models (MLLMs) exhibit strong capabilities across diverse applications, yet remain vulnerable to adversarial perturbations that distort their feature representations and induce erroneous predictions. To address this vulnerability, we propose the Feature-space Smoothing (FS) and theoretically prove that FS offers certified robustness on the feature representations of MLLMs. Specifically, FS transforms any feature encoder into a smoothed variant that is guaranteed to maintain a certified lower bound on the feature cosine similarity between clean and adversarial representations under $\ell_2$-bounded attacks. Moreover, we indicate that the value of this Feature Cosine Similarity Bound (FCSB) derived from FS can be improved by enlarging the defined Gaussian robustness score on the vanilla encoder. Building upon this, we introduce the Purifier and Smoothness Mapper (PSM), a plug-and-play module that improves the Gaussian robustness score of MLLMs and thus enhances their certified robustness under FS, without requiring any retraining on MLLMs. We demonstrate that the FS with PSM not only provides a strong theoretical robustness guarantee but also exhibits superior empirical performance compared to adversarial training. Extensive experiments across diverse MLLMs and downstream tasks indicate the effectiveness of the FS-PSM, reducing the Attack Success Rate (ASR) of various white-box attacks from nearly 90\% to about 1\%.
comment: Under review
A Rolling-Space Branch-and-Price Algorithm for the Multi-Compartment Vehicle Routing Problem with Multiple Time Windows
This paper investigates the multi-compartment vehicle routing problem with multiple time windows (MCVRPMTW), an extension of the classical vehicle routing problem with time windows that considers vehicles equipped with multiple compartments and customers requiring service across several delivery time windows. The problem incorporates three key compartment-related features: (i) compartment flexibility in the number of compartments, (ii) item-to-compartment compatibility, and (iii) item-to-item compatibility. The problem also accommodates practical operational requirements such as driver breaks. To solve the MCVRPMTW, we develop an exact branch-and-price (B&P) algorithm in which the pricing problem is solved using a labeling algorithm. Several acceleration strategies are introduced to limit symmetry during label extensions, improve the stability of dual solutions in column generation, and enhance the branching process. To handle large-scale instances, we propose a rolling-space B&P algorithm that integrates clustering techniques into the solution framework. Extensive computational experiments on instances inspired by a real-world industrial application demonstrate the effectiveness of the proposed approach and provide useful managerial insights for practical implementation.
Learning to Discover at Test Time
How can we use AI to discover a new state of the art for a scientific problem? Prior work in test-time scaling, such as AlphaEvolve, performs search by prompting a frozen LLM. We perform reinforcement learning at test time, so the LLM can continue to train, but now with experience specific to the test problem. This form of continual learning is quite special, because its goal is to produce one great solution rather than many good ones on average, and to solve this very problem rather than generalize to other problems. Therefore, our learning objective and search subroutine are designed to prioritize the most promising solutions. We call this method Test-Time Training to Discover (TTT-Discover). Following prior work, we focus on problems with continuous rewards. We report results for every problem we attempted, across mathematics, GPU kernel engineering, algorithm design, and biology. TTT-Discover sets the new state of the art in almost all of them: (i) Erdős' minimum overlap problem and an autocorrelation inequality; (ii) a GPUMode kernel competition (up to $2\times$ faster than prior art); (iii) past AtCoder algorithm competitions; and (iv) denoising problem in single-cell analysis. Our solutions are reviewed by experts or the organizers. All our results are achieved with an open model, OpenAI gpt-oss-120b, and can be reproduced with our publicly available code, in contrast to previous best results that required closed frontier models. Our test-time training runs are performed using Tinker, an API by Thinking Machines, with a cost of only a few hundred dollars per problem.
comment: Code: https://github.com/test-time-training/discover
Beyond Predictive Uncertainty: Reliable Representation Learning with Structural Constraints
Uncertainty estimation in machine learning has traditionally focused on the prediction stage, aiming to quantify confidence in model outputs while treating learned representations as deterministic and reliable by default. In this work, we challenge this implicit assumption and argue that reliability should be regarded as a first-class property of learned representations themselves. We propose a principled framework for reliable representation learning that explicitly models representation-level uncertainty and leverages structural constraints as inductive biases to regularize the space of feasible representations. Our approach introduces uncertainty-aware regularization directly in the representation space, encouraging representations that are not only predictive but also stable, well-calibrated, and robust to noise and structural perturbations. Structural constraints, such as sparsity, relational structure, or feature-group dependencies, are incorporated to define meaningful geometry and reduce spurious variability in learned representations, without assuming fully correct or noise-free structure. Importantly, the proposed framework is independent of specific model architectures and can be integrated with a wide range of representation learning methods.
comment: 22 pages, 5 figures, 5 propositions
Domain-Incremental Continual Learning for Robust and Efficient Keyword Spotting in Resource Constrained Systems
Keyword Spotting (KWS) systems with small footprint models deployed on edge devices face significant accuracy and robustness challenges due to domain shifts caused by varying noise and recording conditions. To address this, we propose a comprehensive framework for continual learning designed to adapt to new domains while maintaining computational efficiency. The proposed pipeline integrates a dual-input Convolutional Neural Network, utilizing both Mel Frequency Cepstral Coefficients (MFCC) and Mel-spectrogram features, supported by a multi-stage denoising process, involving discrete wavelet transform and spectral subtraction techniques, plus model and prototype update blocks. Unlike prior methods that restrict updates to specific layers, our approach updates the complete quantized model, made possible due to compact model architecture. A subset of input samples are selected during runtime using class prototypes and confidence-driven filtering, which are then pseudo-labeled and combined with rehearsal buffer for incremental model retraining. Experimental results on noisy test dataset demonstrate the framework's effectiveness, achieving 99.63\% accuracy on clean data and maintaining robust performance (exceeding 94\% accuracy) across diverse noisy environments, even at -10 dB Signal-to-Noise Ratio. The proposed framework work confirms that integrating efficient denoising with prototype-based continual learning enables KWS models to operate autonomously and robustly in resource-constrained, dynamic environments.
comment: 12 pages, 8 figures, and 3 tables
Beat-ssl: Capturing Local ECG Morphology through Heartbeat-level Contrastive Learning with Soft Targets
Obtaining labelled ECG data for developing supervised models is challenging. Contrastive learning (CL) has emerged as a promising pretraining approach that enables effective transfer learning with limited labelled data. However, existing CL frameworks either focus solely on global context or fail to exploit ECG-specific characteristics. Furthermore, these methods rely on hard contrastive targets, which may not adequately capture the continuous nature of feature similarity in ECG signals. In this paper, we propose Beat-SSL, a contrastive learning framework that performs dual-context learning through both rhythm-level and heartbeat-level contrasting with soft targets. We evaluated our pretrained model on two downstream tasks: 1) multilabel classification for global rhythm assessment, and 2) ECG segmentation to assess its capacity to learn representations across both contexts. We conducted an ablation study and compared the best configuration with three other methods, including one ECG foundation model. Despite the foundation model's broader pretraining, Beat-SSL reached 93% of its performance in multilabel classification task and surpassed all other methods in the segmentation task by 4%.
comment: Accepted at ISBI 2026
Computing Fixpoints of Learned Functions: Chaotic Iteration and Simple Stochastic Games
The problem of determining the (least) fixpoint of (higher-dimensional) functions over the non-negative reals frequently occurs when dealing with systems endowed with a quantitative semantics. We focus on the situation in which the functions of interest are not known precisely but can only be approximated. As a first contribution we generalize an iteration scheme called dampened Mann iteration, recently introduced in the literature. The improved scheme relaxes previous constraints on parameter sequences, allowing learning rates to converge to zero or not converge at all. While seemingly minor, this flexibility is essential to enable the implementation of chaotic iterations, where only a subset of components is updated in each step, allowing to tackle higher-dimensional problems. Additionally, by allowing learning rates to converge to zero, we can relax conditions on the convergence speed of function approximations, making the method more adaptable to various scenarios. We also show that dampened Mann iteration applies immediately to compute the expected payoff in various probabilistic models, including simple stochastic games, not covered by previous work.
On the Intrinsic Dimensions of Data in Kernel Learning AISTATS 2026
The manifold hypothesis suggests that the generalization performance of machine learning methods improves significantly when the intrinsic dimension of the input distribution's support is low. In the context of KRR, we investigate two alternative notions of intrinsic dimension. The first, denoted $d_ρ$, is the upper Minkowski dimension defined with respect to the canonical metric induced by a kernel function $K$ on a domain $Ω$. The second, denoted $d_K$, is the effective dimension, derived from the decay rate of Kolmogorov $n$-widths associated with $K$ on $Ω$. Given a probability measure $μ$ on $Ω$, we analyze the relationship between these $n$-widths and eigenvalues of the integral operator $φ\to \int_ΩK(\cdot,x)φ(x)dμ(x)$. We show that, for a fixed domain $Ω$, the Kolmogorov $n$-widths characterize the worst-case eigenvalue decay across all probability measures $μ$ supported on $Ω$. These eigenvalues are central to understanding the generalization behavior of constrained KRR, enabling us to derive an excess error bound of order $O(n^{-\frac{2+d_K}{2+2d_K} + ε})$ for any $ε> 0$, when the training set size $n$ is large. We also propose an algorithm that estimates upper bounds on the $n$-widths using only a finite sample from $μ$. For distributions close to uniform, we prove that $ε$-accurate upper bounds on all $n$-widths can be computed with high probability using at most $O\left(ε^{-d_ρ}\log\frac{1}ε\right)$ samples, with fewer required for small $n$. Finally, we compute the effective dimension $d_K$ for various fractal sets and present additional numerical experiments. Our results show that, for kernels such as the Laplace kernel, the effective dimension $d_K$ can be significantly smaller than the Minkowski dimension $d_ρ$, even though $d_K = d_ρ$ provably holds on regular domains.
comment: Accepted to The 29th International Conference on Artificial Intelligence and Statistics (AISTATS 2026)
Automatic Classification of Arabic Literature into Historical Eras
The Arabic language has undergone notable transformations over time, including the emergence of new vocabulary, the obsolescence of others, and shifts in word usage. This evolution is evident in the distinction between the classical and modern Arabic eras. Although historians and linguists have partitioned Arabic literature into multiple eras, relatively little research has explored the automatic classification of Arabic texts by time period, particularly beyond the domain of poetry. This paper addresses this gap by employing neural networks and deep learning techniques to automatically classify Arabic texts into distinct eras and periods. The proposed models are evaluated using two datasets derived from two publicly available corpora, covering texts from the pre-Islamic to the modern era. The study examines class setups ranging from binary to 15-class classification and considers both predefined historical eras and custom periodizations. Results range from F1-scores of 0.83 and 0.79 on the binary-era classification task using the OpenITI and APCD datasets, respectively, to 0.20 on the 15-era classification task using OpenITI and 0.18 on the 12-era classification task using APCD.
comment: 27 pages
Synthetic Augmentation in Imbalanced Learning: When It Helps, When It Hurts, and How Much to Add
Imbalanced classification, where one class is observed far less frequently than the other, often causes standard training procedures to prioritize the majority class and perform poorly on rare but important cases. A classic and widely used remedy is to augment the minority class with synthetic examples, but two basic questions remain under-resolved: when does synthetic augmentation actually help, and how many synthetic samples should be generated? We develop a unified statistical framework for synthetic augmentation in imbalanced learning, studying models trained on imbalanced data augmented with synthetic minority samples and evaluated under the balanced population risk. Our theory shows that synthetic data is not always beneficial. In a ``local symmetry" regime, imbalance is not the dominant source of error near the balanced optimum, so adding synthetic samples cannot improve learning rates and can even degrade performance by amplifying generator mismatch. When augmentation can help (a ``local asymmetry" regime), the optimal synthetic size depends on generator accuracy and on whether the generator's residual mismatch is directionally aligned with the intrinsic majority-minority shift. This structure can make the best synthetic size deviate from naive full balancing, sometimes by a small refinement and sometimes substantially when generator bias is systematic. Practically, we recommend Validation-Tuned Synthetic Size (VTSS): select the synthetic size by minimizing balanced validation loss over a range centered near the fully balanced baseline, while allowing meaningful departures when the data indicate them. Simulations and a real sepsis prediction study support the theory and illustrate when synthetic augmentation helps, when it cannot, and how to tune its quantity effectively.
Variable Splitting Binary Tree Models Based on Bayesian Context Tree Models for Time Series Segmentation
We propose a variable splitting binary tree (VSBT) model based on Bayesian context tree (BCT) models for time series segmentation. Unlike previous applications of BCT models, the tree structure in our model represents interval partitioning on the time domain. Moreover, interval partitioning is represented by recursive logistic regression models. By adjusting logistic regression coefficients, our model can represent split positions at arbitrary locations within each interval. This enables more compact tree representations. For simultaneous estimation of both split positions and tree depth, we develop an effective inference algorithm that combines local variational approximation for logistic regression with the context tree weighting (CTW) algorithm. We present numerical examples on synthetic data demonstrating the effectiveness of our model and algorithm.
Benchmarking Deep Learning Models for Raman Spectroscopy Across Open-Source Datasets
Deep learning classifiers for Raman spectroscopy are increasingly reported to outperform classical chemometric approaches. However their evaluations are often conducted in isolation or compared against traditional machine learning methods or trivially adapted vision-based architectures that were not originally proposed for Raman spectroscopy. As a result, direct comparisons between existing deep learning models developed specifically for Raman spectral analysis on shared open-source datasets remain scarce. To the best of our knowledge, this study presents one of the first systematic benchmarks comparing three or more published Raman-specific deep learning classifiers across multiple open-source Raman datasets. We evaluate five representative deep learning architectures under a unified training and hyperparameter tuning protocol across three open-source Raman datasets selected to support standard evaluation, fine-tuning, and explicit distribution-shift testing. We report classification accuracies and macro-averaged F1 scores to provide a fair and reproducible comparison of deep learning models for Raman spectra based classification.
comment: 17 pages, 3 figures
Clustering-Guided Spatial-Spectral Mamba for Hyperspectral Image Classification
Although Mamba models greatly improve Hyperspectral Image (HSI) classification, they have critical challenges in terms defining efficient and adaptive token sequences for improve performance. This paper therefore presents CSSMamba (Clustering-guided Spatial-Spectral Mamba) framework to better address the challenges, with the following contributions. First, to achieve efficient and adaptive token sequences for improved Mamba performance, we integrate the clustering mechanism into a spatial Mamba architecture, leading to a cluster-guided spatial Mamba module (CSpaMamba) that reduces the Mamba sequence length and improves Mamba feature learning capability. Second, to improve the learning of both spatial and spectral information, we integrate the CSpaMamba module with a spectral mamba module (SpeMamba), leading to a complete clustering-guided spatial-spectral Mamba framework. Third, to further improve feature learning capability, we introduce an Attention-Driven Token Selection mechanism to optimize Mamba token sequencing. Last, to seamlessly integrate clustering into the Mamba model in a coherent manner, we design a Learnable Clustering Module that learns the cluster memberships in an adaptive manner. Experiments on the Pavia University, Indian Pines, and Liao-Ning 01 datasets demonstrate that CSSMamba achieves higher accuracy and better boundary preservation compared to state-of-the-art CNN, Transformer, and Mamba-based methods.
comment: 5 pages, 3 figures
Delayed Assignments in Online Non-Centroid Clustering with Stochastic Arrivals
Clustering is a fundamental problem, aiming to partition a set of elements, like agents or data points, into clusters such that elements in the same cluster are closer to each other than to those in other clusters. In this paper, we present a new framework for studying online non-centroid clustering with delays, where elements, that arrive one at a time as points in a finite metric space, should be assigned to clusters, but assignments need not be immediate. Specifically, upon arrival, each point's location is revealed, and an online algorithm has to irrevocably assign it to an existing cluster or create a new one containing, at this moment, only this point. However, we allow decisions to be postponed at a delay cost, instead of following the more common assumption of immediate decisions upon arrival. This poses a critical challenge: the goal is to minimize both the total distance costs between points in each cluster and the overall delay costs incurred by postponing assignments. In the classic worst-case arrival model, where points arrive in an arbitrary order, no algorithm has a competitive ratio better than sublogarithmic in the number of points. To overcome this strong impossibility, we focus on a stochastic arrival model, where points' locations are drawn independently across time from an unknown and fixed probability distribution over the finite metric space. We offer hope for beyond worst-case adversaries: we devise an algorithm that is constant competitive in the sense that, as the number of points grows, the ratio between the expected overall costs of the output clustering and an optimal offline clustering is bounded by a constant.
comment: To Appear in the 25th International Conference on Autonomous Agents and Multiagent Systems (AAMAS), 2026
Probably Approximately Correct Maximum A Posteriori Inference
Computing the conditional mode of a distribution, better known as the $\mathit{maximum\ a\ posteriori}$ (MAP) assignment, is a fundamental task in probabilistic inference. However, MAP estimation is generally intractable, and remains hard even under many common structural constraints and approximation schemes. We introduce $\mathit{probably\ approximately\ correct}$ (PAC) algorithms for MAP inference that provide provably optimal solutions under variable and fixed computational budgets. We characterize tractability conditions for PAC-MAP using information theoretic measures that can be estimated from finite samples. Our PAC-MAP solvers are efficiently implemented using probabilistic circuits with appropriate architectures. The randomization strategies we develop can be used either as standalone MAP inference techniques or to improve on popular heuristics, fortifying their solutions with rigorous guarantees. Experiments confirm the benefits of our method in a range of benchmarks.
comment: 7 pages main text, 16 total, 3 figures
Explainable AI to Improve Machine Learning Reliability for Industrial Cyber-Physical Systems
Industrial Cyber-Physical Systems (CPS) are sensitive infrastructure from both safety and economics perspectives, making their reliability critically important. Machine Learning (ML), specifically deep learning, is increasingly integrated in industrial CPS, but the inherent complexity of ML models results in non-transparent operation. Rigorous evaluation is needed to prevent models from exhibiting unexpected behaviour on future, unseen data. Explainable AI (XAI) can be used to uncover model reasoning, allowing a more extensive analysis of behaviour. We apply XAI to to improve predictive performance of ML models intended for industrial CPS. We analyse the effects of components from time-series data decomposition on model predictions using SHAP values. Through this method, we observe evidence on the lack of sufficient contextual information during model training. By increasing the window size of data instances, informed by the XAI findings, we are able to improve model performance.
CLASP: An online learning algorithm for Convex Losses And Squared Penalties
We study Constrained Online Convex Optimization (COCO), where a learner chooses actions iteratively, observes both unanticipated convex loss and convex constraint, and accumulates loss while incurring penalties for constraint violations. We introduce CLASP (Convex Losses And Squared Penalties), an algorithm that minimizes cumulative loss together with squared constraint violations. Our analysis departs from prior work by fully leveraging the firm non-expansiveness of convex projectors, a proof strategy not previously applied in this setting. For convex losses, CLASP achieves regret $O\left(T^{\max\{β,1-β\}}\right)$ and cumulative squared penalty $O\left(T^{1-β}\right)$ for any $β\in (0,1)$. Most importantly, for strongly convex problems, CLASP provides the first logarithmic guarantees on both regret and cumulative squared penalty. In the strongly convex case, the regret is upper bounded by $O( \log T )$ and the cumulative squared penalty is also upper bounded by $O( \log T )$.
On damage of interpolation to adversarial robustness in regression
Deep neural networks (DNNs) typically involve a large number of parameters and are trained to achieve zero or near-zero training error. Despite such interpolation, they often exhibit strong generalization performance on unseen data, a phenomenon that has motivated extensive theoretical investigations. Comforting results show that interpolation indeed may not affect the minimax rate of convergence under the squared error loss. In the mean time, DNNs are well known to be highly vulnerable to adversarial perturbations in future inputs. A natural question then arises: Can interpolation also escape from suboptimal performance under a future $X$-attack? In this paper, we investigate the adversarial robustness of interpolating estimators in a framework of nonparametric regression. A finding is that interpolating estimators must be suboptimal even under a subtle future $X$-attack, and achieving perfect fitting can substantially damage their robustness. An interesting phenomenon in the high interpolation regime, which we term the curse of simple size, is also revealed and discussed. Numerical experiments support our theoretical findings.
Risk reversal for least squares estimators under nested convex constraints
In constrained stochastic optimization, one naturally expects that imposing a stricter feasible set does not increase the statistical risk of an estimator defined by projection onto that set. In this paper, we show that this intuition can fail even in canonical settings. We study the Gaussian sequence model, a deliberately austere test best, where for a compact, convex set $Θ\subset \mathbb{R}^d$ one observes \[ Y = θ^\star + σZ, \qquad Z \sim N(0, I_d), \] and seeks to estimate an unknown parameter $θ^\star \in Θ$. The natural estimator is the least squares estimator (LSE), which coincides with the Euclidean projection of $Y$ onto $Θ$. We construct an explicit example exhibiting \emph{risk reversal}: for sufficiently large noise, there exist nested compact convex sets $Θ_S \subset Θ_L$ and a parameter $θ^\star \in Θ_S$ such that the LSE constrained to $Θ_S$ has strictly larger risk than the LSE constrained to $Θ_L$. We further show that this phenomenon can persist at the level of worst-case risk, with the supremum risk over the smaller constraint set exceeding that over the larger one. We clarify this behavior by contrasting noise regimes. In the vanishing-noise limit, the risk admits a first-order expansion governed by the statistical dimension of the tangent cone at $θ^\star$, and tighter constraints uniformly reduce risk. In contrast, in the diverging-noise regime, the risk is determined by global geometric interactions between the constraint set and random noise directions. Here, the embedding of $Θ_S$ within $Θ_L$ can reverse the risk ordering. These results reveal a previously unrecognized failure mode of projection-based estimators: in sufficiently noisy settings, tightening a constraint can paradoxically degrade statistical performance.
comment: 31 pages, 5 figures
Sawtooth Wavefront Reordering: Enhanced CuTile FlashAttention on NVIDIA GB10
High-performance attention kernels are essential for Large Language Models. This paper presents analysis of CuTile-based Flash Attention memory behavior and a technique to improve its cache performance. In particular, our analysis on the NVIDIA GB10 (Grace Blackwell) identifies the main cause of L2 cache miss. Leveraging this insight, we introduce a new programming technique called Sawtooth Wavefront Reordering that reduces L2 misses. We validate it in both CUDA and CuTile, observing 50\% or greater reduction in L2 misses and up to 60\% increase in throughput on GB10.
Data-Driven Conditional Flexibility Index
With the increasing flexibilization of processes, determining robust scheduling decisions has become an important goal. Traditionally, the flexibility index has been used to identify safe operating schedules by approximating the admissible uncertainty region using simple admissible uncertainty sets, such as hypercubes. Presently, available contextual information, such as forecasts, has not been considered to define the admissible uncertainty set when determining the flexibility index. We propose the conditional flexibility index (CFI), which extends the traditional flexibility index in two ways: by learning the parametrized admissible uncertainty set from historical data and by using contextual information to make the admissible uncertainty set conditional. This is achieved using a normalizing flow that learns a bijective mapping from a Gaussian base distribution to the data distribution. The admissible latent uncertainty set is constructed as a hypersphere in the latent space and mapped to the data space. By incorporating contextual information, the CFI provides a more informative estimate of flexibility by defining admissible uncertainty sets in regions that are more likely to be relevant under given conditions. Using an illustrative example, we show that no general statement can be made about data-driven admissible uncertainty sets outperforming simple sets, or conditional sets outperforming unconditional ones. However, both data-driven and conditional admissible uncertainty sets ensure that only regions of the uncertain parameter space containing realizations are considered. We apply the CFI to a security-constrained unit commitment example and demonstrate that the CFI can improve scheduling quality by incorporating temporal information.
comment: manuscript (47 pages, 16 figures), supplementary material (7 pages, 1 figure, 2 tables)
PUMA: Perception-driven Unified Foothold Prior for Mobility Augmented Quadruped Parkour
Parkour tasks for quadrupeds have emerged as a promising benchmark for agile locomotion. While human athletes can effectively perceive environmental characteristics to select appropriate footholds for obstacle traversal, endowing legged robots with similar perceptual reasoning remains a significant challenge. Existing methods often rely on hierarchical controllers that follow pre-computed footholds, thereby constraining the robot's real-time adaptability and the exploratory potential of reinforcement learning. To overcome these challenges, we present PUMA, an end-to-end learning framework that integrates visual perception and foothold priors into a single-stage training process. This approach leverages terrain features to estimate egocentric polar foothold priors, composed of relative distance and heading, guiding the robot in active posture adaptation for parkour tasks. Extensive experiments conducted in simulation and real-world environments across various discrete complex terrains, demonstrate PUMA's exceptional agility and robustness in challenging scenarios.
Partially Lazy Gradient Descent for Smoothed Online Learning AISTATS 2026
We introduce $k$-lazyGD, an online learning algorithm that bridges the gap between greedy Online Gradient Descent (OGD, for $k=1$) and lazy GD/dual-averaging (for $k=T$), creating a spectrum between reactive and stable updates. We analyze this spectrum in Smoothed Online Convex Optimization (SOCO), where the learner incurs both hitting and movement costs. Our main contribution is establishing that laziness is possible without sacrificing hitting performance: we prove that $k$-lazyGD achieves the optimal dynamic regret $\mathcal{O}(\sqrt{(P_T+1)T})$ for any laziness slack $k$ up to $Θ(\sqrt{T/P_T})$, where $P_T$ is the comparator path length. This result formally connects the allowable laziness to the comparator's shifts, showing that $k$-lazyGD can retain the inherently small movements of lazy methods without compromising tracking ability. We base our analysis on the Follow the Regularized Leader (FTRL) framework, and derive a matching lower bound. Since the slack depends on $P_T$, an ensemble of learners with various slacks is used, yielding a method that is provably stable when it can be, and agile when it must be.
comment: to appear in the proceedings of AISTATS 2026
Predicting Healthcare System Visitation Flow by Integrating Hospital Attributes and Population Socioeconomics with Human Mobility Data
Healthcare visitation patterns are influenced by a complex interplay of hospital attributes, population socioeconomics, and spatial factors. However, existing research often adopts a fragmented approach, examining these determinants in isolation. This study addresses this gap by integrating hospital capacities, occupancy rates, reputation, and popularity with population SES and spatial mobility patterns to predict visitation flows and analyze influencing factors. Utilizing four years of SafeGraph mobility data and user experience data from Google Maps Reviews, five flow prediction models, Naive Regression, Gradient Boosting, Multilayer Perceptrons (MLPs), Deep Gravity, and Heterogeneous Graph Neural Networks (HGNN),were trained and applied to simulate visitation flows in Houston, Texas, U.S. The Shapley additive explanation (SHAP) analysis and the Partial Dependence Plot (PDP) method were employed to examine the combined impacts of different factors on visitation patterns. The findings reveal that Deep Gravity outperformed other models. Hospital capacities, ICU occupancy rates, ratings, and popularity significantly influence visitation patterns, with their effects varying across different travel distances. Short-distance visits are primarily driven by convenience, whereas long-distance visits are influenced by hospital ratings. White-majority areas exhibited lower sensitivity to hospital ratings for short-distance visits, while Asian populations and those with higher education levels prioritized hospital rating in their visitation decisions. SES further influence these patterns, as areas with higher proportions of Hispanic, Black, under-18, and over-65 populations tend to have more frequent hospital visits, potentially reflecting greater healthcare needs or limited access to alternative medical services.
ICON: Invariant Counterfactual Optimization with Neuro-Symbolic Priors for Text-Based Person Search
Text-Based Person Search (TBPS) holds unique value in real-world surveillance bridging visual perception and language understanding, yet current paradigms utilizing pre-training models often fail to transfer effectively to complex open-world scenarios. The reliance on "Passive Observation" leads to multifaceted spurious correlations and spatial semantic misalignment, causing a lack of robustness against distribution shifts. To fundamentally resolve these defects, this paper proposes ICON (Invariant Counterfactual Optimization with Neuro-symbolic priors), a framework integrating causal and topological priors. First, we introduce Rule-Guided Spatial Intervention to strictly penalize sensitivity to bounding box noise, forcibly severing location shortcuts to achieve geometric invariance. Second, Counterfactual Context Disentanglement is implemented via semantic-driven background transplantation, compelling the model to ignore background interference for environmental independence. Then, we employ Saliency-Driven Semantic Regularization with adaptive masking to resolve local saliency bias and guarantee holistic completeness. Finally, Neuro-Symbolic Topological Alignment utilizes neuro-symbolic priors to constrain feature matching, ensuring activated regions are topologically consistent with human structural logic. Experimental results demonstrate that ICON not only maintains leading performance on standard benchmarks but also exhibits exceptional robustness against occlusion, background interference, and localization noise. This approach effectively advances the field by shifting from fitting statistical co-occurrences to learning causal invariance.
Class Confidence Aware Reweighting for Long Tailed Learning
Deep neural network models degrade significantly in the long-tailed data distribution, with the overall training data dominated by a small set of classes in the head, and the tail classes obtaining less training examples. Addressing the imbalance in the classes, attention in the related literature was given mainly to the adjustments carried out in the decision space in terms of either corrections performed at the logit level in order to compensate class-prior bias, with the least attention to the optimization process resulting from the adjustments introduced through the differences in the confidences among the samples. In the current study, we present the design of a class and confidence-aware re-weighting scheme for long-tailed learning. This scheme is purely based upon the loss level and has a complementary nature to the existing methods performing the adjustment of the logits. In the practical implementation stage of the proposed scheme, we use an Ω(p_t, f_c) function. This function enables the modulation of the contribution towards the training task based upon the confidence value of the prediction, as well as the relative frequency of the corresponding class. Our observations in the experiments are corroborated by significant experimental results performed on the CIFAR-100-LT, ImageNet-LT, and iNaturalist2018 datasets under various values of imbalance factors that clearly authenticate the theoretical discussions above.
comment: 9 pages, 3 figures, IEEE Transaction on Neural Networks and Learning Systems (Submitted)
Progressive Power Homotopy for Non-convex Optimization
We propose a novel first-order method for non-convex optimization of the form $\max_{\bm{w}\in\mathbb{R}^d}\mathbb{E}_{\bm{x}\sim\mathcal{D}}[f_{\bm{w}}(\bm{x})]$, termed Progressive Power Homotopy (Prog-PowerHP). The method applies stochastic gradient ascent to a surrogate objective obtained by first performing a power transformation and then Gaussian smoothing, $F_{N,σ}(\bmμ):=\mathbb{E}_{\bm{w}\sim\mathcal{N}(\bmμ,σ^2I_d),\bm{x}\sim\mathcal{D}}[e^{Nf_w(\bm{x})}]$, while progressively increasing the power parameter $N$ and decreasing the smoothing scale $σ$ along the optimization trajectory. We prove that, under mild regularity conditions, Prog-PowerHP converges to a small neighborhood of the global optimum with an iteration complexity scaling nearly as $O(d^2\varepsilon^{-2})$. Empirically, Prog-PowerHP demonstrates clear advantages in phase retrieval when the samples-to-dimension ratio approaches the information-theoretic limit, and in training two-layer neural networks in under-parameterized regimes. These results suggest that Prog-PowerHP is particularly effective for navigating cluttered non-convex landscapes where standard first-order methods struggle.
Iterative Amortized Hierarchical VAE
In this paper we propose the Iterative Amortized Hierarchical Variational Autoencoder (IA-HVAE), which expands on amortized inference with a hybrid scheme containing an initial amortized guess and iterative refinement with decoder gradients. We achieve this by creating a linearly separable decoder in a transform domain (e.g. Fourier space), enabling real-time applications with very high model depths. The architectural change leads to a 35x speed-up for iterative inference with respect to the traditional HVAE. We show that our hybrid approach outperforms fully amortized and fully iterative equivalents in accuracy and speed respectively. Moreover, the IAHVAE shows improved reconstruction quality over a vanilla HVAE in inverse problems such as deblurring and denoising.
SoK: Challenges in Tabular Membership Inference Attacks
Membership Inference Attacks (MIAs) are currently a dominant approach for evaluating privacy in machine learning applications. Despite their significance in identifying records belonging to the training dataset, several concerns remain unexplored, particularly with regard to tabular data. In this paper, first, we provide an extensive review and analysis of MIAs considering two main learning paradigms: centralized and federated learning. We extend and refine the taxonomy for both. Second, we demonstrate the efficacy of MIAs in tabular data using several attack strategies, also including defenses. Furthermore, in a federated learning scenario, we consider the threat posed by an outsider adversary, which is often neglected. Third, we demonstrate the high vulnerability of single-outs (records with a unique signature) to MIAs. Lastly, we explore how MIAs transfer across model architectures. Our results point towards a general poor performance of these attacks in tabular data which contrasts with previous state-of-the-art. Notably, even attacks with limited attack performance can still successfully expose a large portion of single-outs. Moreover, our findings suggest that using different surrogate models makes MIAs more effective.
comment: This paper is currently under review for the EuroS&P conference
PF-D2M: A Pose-free Diffusion Model for Universal Dance-to-Music Generation
Dance-to-music generation aims to generate music that is aligned with dance movements. Existing approaches typically rely on body motion features extracted from a single human dancer and limited dance-to-music datasets, which restrict their performance and applicability to real-world scenarios involving multiple dancers and non-human dancers. In this paper, we propose PF-D2M, a universal diffusion-based dance-to-music generation model that incorporates visual features extracted from dance videos. PF-D2M is trained with a progressive training strategy that effectively addresses data scarcity and generalization challenges. Both objective and subjective evaluations show that PF-D2M achieves state-of-the-art performance in dance-music alignment and music quality.
comment: 4 pages, 2 figures
Why Inference in Large Models Becomes Decomposable After Training
Inference in large-scale AI models is typically performed on dense parameter matrices, leading to inference cost and system complexity that scale unsustainably with model size. This limitation does not arise from insufficient model capacity, but from treating post-training inference systems as monolithic operators while ignoring internal structures formed during learning. We show that gradient update events in large models are highly localized and selective, leaving many parameter dependencies statistically indistinguishable from their initialization distribution after training. As a result, post-training inference systems are structurally non-uniform and inherently decomposable. Based on this observation, we introduce a post-training statistical criterion and a structural annealing procedure that removes unsupported dependencies and reveals stable, independent substructures. This work establishes a post-training, model-agnostic structural view of inference systems and enables structured, parallel inference without modifying model functionality or interfaces.
comment: 10 pages, 6 figures
A Lightweight Brain-Inspired Machine Learning Framework for Coronary Angiography: Hybrid Neural Representation and Robust Learning Strategies
Background: Coronary angiography (CAG) is a cornerstone imaging modality for assessing coronary artery disease and guiding interventional treatment decisions. However, in real-world clinical settings, angiographic images are often characterized by complex lesion morphology, severe class imbalance, label uncertainty, and limited computational resources, posing substantial challenges to conventional deep learning approaches in terms of robustness and generalization.Methods: The proposed framework is built upon a pretrained convolutional neural network to construct a lightweight hybrid neural representation. A selective neural plasticity training strategy is introduced to enable efficient parameter adaptation. Furthermore, a brain-inspired attention-modulated loss function, combining Focal Loss with label smoothing, is employed to enhance sensitivity to hard samples and uncertain annotations. Class-imbalance-aware sampling and cosine annealing with warm restarts are adopted to mimic rhythmic regulation and attention allocation mechanisms observed in biological neural systems.Results: Experimental results demonstrate that the proposed lightweight brain-inspired model achieves strong and stable performance in binary coronary angiography classification, yielding competitive accuracy, recall, F1-score, and AUC metrics while maintaining high computational efficiency.Conclusion: This study validates the effectiveness of brain-inspired learning mechanisms in lightweight medical image analysis and provides a biologically plausible and deployable solution for intelligent clinical decision support under limited computational resources.
Uncertainty-guided Generation of Dark-field Radiographs
X-ray dark-field radiography provides complementary diagnostic information to conventional attenuation imaging by visualizing microstructural tissue changes through small-angle scattering. However, the limited availability of such data poses challenges for developing robust deep learning models. In this work, we present the first framework for generating dark-field images directly from standard attenuation chest X-rays using an Uncertainty-Guided Progressive Generative Adversarial Network. The model incorporates both aleatoric and epistemic uncertainty to improve interpretability and reliability. Experiments demonstrate high structural fidelity of the generated images, with consistent improvement of quantitative metrics across stages. Furthermore, out-of-distribution evaluation confirms that the proposed model generalizes well. Our results indicate that uncertainty-guided generative modeling enables realistic dark-field image synthesis and provides a reliable foundation for future clinical applications.
Determinants of Training Corpus Size for Clinical Text Classification
Introduction: Clinical text classification using natural language processing (NLP) models requires adequate training data to achieve optimal performance. For that, 200-500 documents are typically annotated. The number is constrained by time and costs and lacks justification of the sample size requirements and their relationship to text vocabulary properties. Methods: Using the publicly available MIMIC-III dataset containing hospital discharge notes with ICD-9 diagnoses as labels, we employed pre-trained BERT embeddings followed by Random Forest classifiers to identify 10 randomly selected diagnoses, varying training corpus sizes from 100 to 10,000 documents, and analyzed vocabulary properties by identifying strong and noisy predictive words through Lasso logistic regression on bag-of-words embeddings. Results: Learning curves varied significantly across the 10 classification tasks despite identical preprocessing and algorithms, with 600 documents sufficient to achieve 95% of the performance attainable with 10,000 documents for all tasks. Vocabulary analysis revealed that more strong predictors and fewer noisy predictors were associated with steeper learning curves, where every 100 additional noisy words decreased accuracy by approximately 0.02 while 100 additional strong predictors increased maximum accuracy by approximately 0.04.
Beyond Off-the-Shelf Models: A Lightweight and Accessible Machine Learning Pipeline for Ecologists Working with Image Data
We introduce a lightweight experimentation pipeline designed to lower the barrier for applying machine learning (ML) methods for classifying images in ecological research. We enable ecologists to experiment with ML models independently, thus they can move beyond off-the-shelf models and generate insights tailored to local datasets and specific classification tasks and target variables. Our tool combines a simple command-line interface for preprocessing, training, and evaluation with a graphical interface for annotation, error analysis, and model comparison. This design enables ecologists to build and iterate on compact, task-specific classifiers without requiring advanced ML expertise. As a proof of concept, we apply the pipeline to classify red deer (Cervus elaphus) by age and sex from 3392 camera trap images collected in the Veldenstein Forest, Germany. Using 4352 cropped images containing individual deer labeled by experts, we trained and evaluated multiple backbone architectures with a wide variety of parameters and data augmentation strategies. Our best-performing models achieved 90.77% accuracy for age classification and 96.15% for sex classification. These results demonstrate that reliable demographic classification is feasible even with limited data to answer narrow, well-defined ecological problems. More broadly, the framework provides ecologists with an accessible tool for developing ML models tailored to specific research questions, paving the way for broader adoption of ML in wildlife monitoring and demographic analysis.
Attributing and Exploiting Safety Vectors through Global Optimization in Large Language Models
While Large Language Models (LLMs) are aligned to mitigate risks, their safety guardrails remain fragile against jailbreak attacks. This reveals limited understanding of components governing safety. Existing methods rely on local, greedy attribution that assumes independent component contributions. However, they overlook the cooperative interactions between different components in LLMs, such as attention heads, which jointly contribute to safety mechanisms. We propose \textbf{G}lobal \textbf{O}ptimization for \textbf{S}afety \textbf{V}ector Extraction (GOSV), a framework that identifies safety-critical attention heads through global optimization over all heads simultaneously. We employ two complementary activation repatching strategies: Harmful Patching and Zero Ablation. These strategies identify two spatially distinct sets of safety vectors with consistently low overlap, termed Malicious Injection Vectors and Safety Suppression Vectors, demonstrating that aligned LLMs maintain separate functional pathways for safety purposes. Through systematic analyses, we find that complete safety breakdown occurs when approximately 30\% of total heads are repatched across all models. Building on these insights, we develop a novel inference-time white-box jailbreak method that exploits the identified safety vectors through activation repatching. Our attack substantially outperforms existing white-box attacks across all test models, providing strong evidence for the effectiveness of the proposed GOSV framework on LLM safety interpretability.
Next Generation Active Learning: Mixture of LLMs in the Loop
With the rapid advancement and strong generalization capabilities of large language models (LLMs), they have been increasingly incorporated into the active learning pipelines as annotators to reduce annotation costs. However, considering the annotation quality, labels generated by LLMs often fall short of real-world applicability. To address this, we propose a novel active learning framework, Mixture of LLMs in the Loop Active Learning, replacing human annotators with labels generated through a Mixture-of-LLMs-based annotation model, aimed at enhancing LLM-based annotation robustness by aggregating the strengths of multiple LLMs. To further mitigate the impact of the noisy labels, we introduce annotation discrepancy and negative learning to identify the unreliable annotations and enhance learning effectiveness. Extensive experiments demonstrate that our framework achieves performance comparable to human annotation and consistently outperforms single-LLM baselines and other LLM-ensemble-based approaches. Moreover, our framework is built on lightweight LLMs, enabling it to operate fully on local machines in real-world applications.
Rethinking Drug-Drug Interaction Modeling as Generalizable Relation Learning
Drug-drug interaction (DDI) prediction is central to drug discovery and clinical development, particularly in the context of increasingly prevalent polypharmacy. Although existing computational methods achieve strong performance on standard benchmarks, they often fail to generalize to realistic deployment scenarios, where most candidate drug pairs involve previously unseen drugs and validated interactions are scarce. We demonstrate that proximity in the embedding spaces of prevailing molecule-centric DDI models does not reliably correspond to interaction labels, and that simply scaling up model capacity therefore fails to improve generalization. To address these limitations, we propose GenRel-DDI, a generalizable relation learning framework that reformulates DDI prediction as a relation-centric learning problem, in which interaction representations are learned independently of drug identities. This relation-level abstraction enables the capture of transferable interaction patterns that generalize to unseen drugs and novel drug pairs. Extensive experiments across multiple benchmark demonstrate that GenRel-DDI consistently and significantly outperforms state-of-the-art methods, with particularly large gains on strict entity-disjoint evaluations, highlighting the effectiveness and practical utility of relation learning for robust DDI prediction. The code is available at https://github.com/SZU-ADDG/GenRel-DDI.
comment: 9 pages, 5 figures
Atlas-Assisted Segment Anything Model for Fetal Brain MRI (FeTal-SAM)
This paper presents FeTal-SAM, a novel adaptation of the Segment Anything Model (SAM) tailored for fetal brain MRI segmentation. Traditional deep learning methods often require large annotated datasets for a fixed set of labels, making them inflexible when clinical or research needs change. By integrating atlas-based prompts and foundation-model principles, FeTal-SAM addresses two key limitations in fetal brain MRI segmentation: (1) the need to retrain models for varying label definitions, and (2) the lack of insight into whether segmentations are driven by genuine image contrast or by learned spatial priors. We leverage multi-atlas registration to generate spatially aligned label templates that serve as dense prompts, alongside a bounding-box prompt, for SAM's segmentation decoder. This strategy enables binary segmentation on a per-structure basis, which is subsequently fused to reconstruct the full 3D segmentation volumes. Evaluations on two datasets, the dHCP dataset and an in-house dataset demonstrate FeTal-SAM's robust performance across gestational ages. Notably, it achieves Dice scores comparable to state-of-the-art baselines which were trained for each dataset and label definition for well-contrasted structures like cortical plate and cerebellum, while maintaining the flexibility to segment any user-specified anatomy. Although slightly lower accuracy is observed for subtle, low-contrast structures (e.g., hippocampus, amygdala), our results highlight FeTal-SAM's potential to serve as a general-purpose segmentation model without exhaustive retraining. This method thus constitutes a promising step toward clinically adaptable fetal brain MRI analysis tools.
CAFE-GB: Scalable and Stable Feature Selection for Malware Detection via Chunk-wise Aggregated Gradient Boosting
High-dimensional malware datasets often exhibit feature redundancy, instability, and scalability limitations, which hinder the effectiveness and interpretability of machine learning-based malware detection systems. Although feature selection is commonly employed to mitigate these issues, many existing approaches lack robustness when applied to large-scale and heterogeneous malware data. To address this gap, this paper proposes CAFE-GB (Chunk-wise Aggregated Feature Estimation using Gradient Boosting), a scalable feature selection framework designed to produce stable and globally consistent feature rankings for high-dimensional malware detection. CAFE-GB partitions training data into overlapping chunks, estimates local feature importance using gradient boosting models, and aggregates these estimates to derive a robust global ranking. Feature budget selection is performed separately through a systematic k-selection and stability analysis to balance detection performance and robustness. The proposed framework is evaluated on two large-scale malware datasets: BODMAS and CIC-AndMal2020, representing large and diverse malware feature spaces. Experimental results show that classifiers trained on CAFE-GB -selected features achieve performance parity with full-feature baselines across multiple metrics, including Accuracy, F1-score, MCC, ROC-AUC, and PR-AUC, while reducing feature dimensionality by more than 95\%. Paired Wilcoxon signed-rank tests confirm that this reduction does not introduce statistically significant performance degradation. Additional analyses demonstrate low inter-feature redundancy and improved interpretability through SHAP-based explanations. Runtime and memory profiling further indicate reduced downstream classification overhead. Overall, CAFE-GB provides a stable, interpretable, and scalable feature selection strategy for large-scale malware detection.
Towards Automated Kernel Generation in the Era of LLMs
The performance of modern AI systems is fundamentally constrained by the quality of their underlying kernels, which translate high-level algorithmic semantics into low-level hardware operations. Achieving near-optimal kernels requires expert-level understanding of hardware architectures and programming models, making kernel engineering a critical but notoriously time-consuming and non-scalable process. Recent advances in large language models (LLMs) and LLM-based agents have opened new possibilities for automating kernel generation and optimization. LLMs are well-suited to compress expert-level kernel knowledge that is difficult to formalize, while agentic systems further enable scalable optimization by casting kernel development as an iterative, feedback-driven loop. Rapid progress has been made in this area. However, the field remains fragmented, lacking a systematic perspective for LLM-driven kernel generation. This survey addresses this gap by providing a structured overview of existing approaches, spanning LLM-based approaches and agentic optimization workflows, and systematically compiling the datasets and benchmarks that underpin learning and evaluation in this domain. Moreover, key open challenges and future research directions are further outlined, aiming to establish a comprehensive reference for the next generation of automated kernel optimization. To keep track of this field, we maintain an open-source GitHub repository at https://github.com/flagos-ai/awesome-LLM-driven-kernel-generation.
comment: 10 pages, 1 figure
Communication-efficient Federated Graph Classification via Generative Diffusion Modeling
Graph Neural Networks (GNNs) unlock new ways of learning from graph-structured data, proving highly effective in capturing complex relationships and patterns. Federated GNNs (FGNNs) have emerged as a prominent distributed learning paradigm for training GNNs over decentralized data. However, FGNNs face two significant challenges: high communication overhead from multiple rounds of parameter exchanges and non-IID data characteristics across clients. To address these issues, we introduce CeFGC, a novel FGNN paradigm that facilitates efficient GNN training over non-IID data by limiting communication between the server and clients to three rounds only. The core idea of CeFGC is to leverage generative diffusion models to minimize direct client-server communication. Each client trains a generative diffusion model that captures its local graph distribution and shares this model with the server, which then redistributes it back to all clients. Using these generative models, clients generate synthetic graphs combined with their local graphs to train local GNN models. Finally, clients upload their model weights to the server for aggregation into a global GNN model. We theoretically analyze the I/O complexity of communication volume to show that CeFGC reduces to a constant of three communication rounds only. Extensive experiments on several real graph datasets demonstrate the effectiveness and efficiency of CeFGC against state-of-the-art competitors, reflecting our superior performance on non-IID graphs by aligning local and global model objectives and enriching the training set with diverse graphs.
Even GPT-5.2 Can't Count to Five: The Case for Zero-Error Horizons in Trustworthy LLMs
We propose Zero-Error Horizon (ZEH) for trustworthy LLMs, which represents the maximum range that a model can solve without any errors. While ZEH itself is simple, we demonstrate that evaluating the ZEH of state-of-the-art LLMs yields abundant insights. For example, by evaluating the ZEH of GPT-5.2, we found that GPT-5.2 cannot even compute the parity of a short string like 11000, and GPT-5.2 cannot determine whether the parentheses in ((((()))))) are balanced. This is surprising given the excellent capabilities of GPT-5.2. The fact that LLMs make mistakes on such simple problems serves as an important lesson when applying LLMs to safety-critical domains. By applying ZEH to Qwen2.5 and conducting detailed analysis, we found that while ZEH correlates with accuracy, the detailed behaviors differ, and ZEH provides clues about the emergence of algorithmic capabilities. Finally, while computing ZEH incurs significant computational cost, we discuss how to mitigate this cost by achieving up to one order of magnitude speedup using tree structures and online softmax.
FlexLLM: Composable HLS Library for Flexible Hybrid LLM Accelerator Design
We present FlexLLM, a composable High-Level Synthesis (HLS) library for rapid development of domain-specific LLM accelerators. FlexLLM exposes key architectural degrees of freedom for stage-customized inference, enabling hybrid designs that tailor temporal reuse and spatial dataflow differently for prefill and decode, and provides a comprehensive quantization suite to support accurate low-bit deployment. Using FlexLLM, we build a complete inference system for the Llama-3.2 1B model in under two months with only 1K lines of code. The system includes: (1) a stage-customized accelerator with hardware-efficient quantization (12.68 WikiText-2 PPL) surpassing SpinQuant baseline, and (2) a Hierarchical Memory Transformer (HMT) plug-in for efficient long-context processing. On the AMD U280 FPGA at 16nm, the accelerator achieves 1.29$\times$ end-to-end speedup, 1.64$\times$ higher decode throughput, and 3.14$\times$ better energy efficiency than an NVIDIA A100 GPU (7nm) running BF16 inference; projected results on the V80 FPGA at 7nm reach 4.71$\times$, 6.55$\times$, and 4.13$\times$, respectively. In long-context scenarios, integrating the HMT plug-in reduces prefill latency by 23.23$\times$ and extends the context window by 64$\times$, delivering 1.10$\times$/4.86$\times$ lower end-to-end latency and 5.21$\times$/6.27$\times$ higher energy efficiency on the U280/V80 compared to the A100 baseline. FlexLLM thus bridges algorithmic innovation in LLM inference and high-performance accelerators with minimal manual effort.
AgentSM: Semantic Memory for Agentic Text-to-SQL
Recent advances in LLM-based Text-to-SQL have achieved remarkable gains on public benchmarks such as BIRD and Spider. Yet, these systems struggle to scale in realistic enterprise settings with large, complex schemas, diverse SQL dialects, and expensive multi-step reasoning. Emerging agentic approaches show potential for adaptive reasoning but often suffer from inefficiency and instability-repeating interactions with databases, producing inconsistent outputs, and occasionally failing to generate valid answers. To address these challenges, we introduce Agent Semantic Memory (AgentSM), an agentic framework for Text-to-SQL that builds and leverages interpretable semantic memory. Instead of relying on raw scratchpads or vector retrieval, AgentSM captures prior execution traces-or synthesizes curated ones-as structured programs that directly guide future reasoning. This design enables systematic reuse of reasoning paths, which allows agents to scale to larger schemas, more complex questions, and longer trajectories efficiently and reliably. Compared to state-of-the-art systems, AgentSM achieves higher efficiency by reducing average token usage and trajectory length by 25% and 35%, respectively, on the Spider 2.0 benchmark. It also improves execution accuracy, reaching a state-of-the-art accuracy of 44.8% on the Spider 2.0 Lite benchmark.
Balancing Security and Privacy: The Pivotal Role of AI in Modern Healthcare Systems
As digital threats continue to grow, organizations must find ways to enhance security while protecting user privacy. This paper explores how artificial intelligence (AI) plays a crucial role in achieving this balance. AI technologies can improve security by detecting threats, monitoring systems, and automating responses. However, using AI also raises privacy concerns that need careful consideration.We examine real-world examples from the healthcare sector to illustrate how organizations can implement AI solutions that strengthen security without compromising patient privacy. Additionally, we discuss the importance of creating transparent AI systems and adhering to privacy regulations.Ultimately, this paper provides insights and recommendations for integrating AI into healthcare security practices, helping organizations navigate the challenges of modern management while keeping patient data safe.
Performance-guided Reinforced Active Learning for Object Detection
Active learning (AL) strategies aim to train high-performance models with minimal labeling efforts, only selecting the most informative instances for annotation. Current approaches to evaluating data informativeness predominantly focus on the data's distribution or intrinsic information content and do not directly correlate with downstream task performance, such as mean average precision (mAP) in object detection. Thus, we propose Performance-guided (i.e. mAP-guided) Reinforced Active Learning for Object Detection (MGRAL), a novel approach that leverages the concept of expected model output changes as informativeness. To address the combinatorial explosion challenge of batch sample selection and the non-differentiable correlation between model performance and selected batches, MGRAL skillfully employs a reinforcement learning-based sampling agent that optimizes selection using policy gradient with mAP improvement as reward. Moreover, to reduce the computational overhead of mAP estimation with unlabeled samples, MGRAL utilizes an unsupervised way with fast look-up tables, ensuring feasible deployment. We evaluate MGRAL's active learning performance on detection tasks over PASCAL VOC and COCO benchmarks. Our approach demonstrates the highest AL curve with convincing visualizations, establishing a new paradigm in reinforcement learning-driven active object detection.
comment: Accepted by ICASSP 2026. Camera-ready Version
Beyond Hard Writes and Rigid Preservation: Soft Recursive Least-Squares for Lifelong LLM Editing
Model editing updates a pre-trained LLM with new facts or rules without re-training, while preserving unrelated behavior. In real deployment, edits arrive as long streams, and existing editors often face a plasticity-stability dilemma: locate-then-edit "hard writes" can accumulate interference over time, while null-space-style "hard preservation" preserves only what is explicitly constrained, so past edits can be overwritten and unconstrained behaviors may deviate, degrading general capabilities in the many-edits regime. We propose RLSEdit, a recursive least-squares editor for long sequential editing. RLSEdit formulates editing as an online quadratic optimization with soft constraints, minimizing a cumulative key-value fitting objective with two regularizers that control for both deviation from the pre-trained weights and from a designated anchor mapping. The resulting update admits an efficient online recursion via the Woodbury identity, with per-edit cost independent of history length and scaling only with the current edit size. We further provide deviation bounds and an asymptotic characterization of the adherence-preservation trade-off in the many-edits regime. Experiments on multiple model families demonstrate stable scaling to 10K edits, outperforming strong baselines in both edit success and holistic stability -- crucially retaining early edits, and preserving general capabilities on GLUE and held-out reasoning/code benchmarks.
Connect the Dots: Knowledge Graph-Guided Crawler Attack on Retrieval-Augmented Generation Systems
Retrieval-augmented generation (RAG) systems integrate document retrieval with large language models and have been widely adopted. However, in privacy-related scenarios, RAG introduces a new privacy risk: adversaries can issue carefully crafted queries to exfiltrate sensitive content from the underlying corpus gradually. Although recent studies have demonstrated multi-turn extraction attacks, they rely on heuristics and fail to perform long-term extraction planning. To address these limitations, we formulate the RAG extraction attack as an adaptive stochastic coverage problem (ASCP). In ASCP, each query is treated as a probabilistic action that aims to maximize conditional marginal gain (CMG), enabling principled long-term planning under uncertainty. However, integrating ASCP with practical RAG attack faces three key challenges: unobservable CMG, intractability in the action space, and feasibility constraints. To overcome these challenges, we maintain a global attacker-side state to guide the attack. Building on this idea, we introduce RAGCRAWLER, which builds a knowledge graph to represent revealed information, uses this global state to estimate CMG, and plans queries in semantic space that target unretrieved regions. In comprehensive experiments across diverse RAG architectures and datasets, our proposed method, RAGCRAWLER, consistently outperforms all baselines. It achieves up to 84.4% corpus coverage within a fixed query budget and deliver an average improvement of 20.7% over the top-performing baseline. It also maintains high semantic fidelity and strong content reconstruction accuracy with low attack cost. Crucially, RAGCRAWLER proves its robustness by maintaining effectiveness against advanced RAG systems employing query rewriting and multi-query retrieval strategies. Our work reveals significant security gaps and highlights the pressing need for stronger safeguards for RAG.
Bridging the Perception Gap: A Lightweight Coarse-to-Fine Architecture for Edge Audio Systems
Deploying Audio-Language Models (Audio-LLMs) on edge infrastructure exposes a persistent tension between perception depth and computational efficiency. Lightweight local models tend to produce passive perception - generic summaries that miss the subtle evidence required for multi-step audio reasoning - while indiscriminate cloud offloading incurs unacceptable latency, bandwidth cost, and privacy risk. We propose CoFi-Agent (Tool-Augmented Coarse-to-Fine Agent), a hybrid architecture targeting edge servers and gateways. It performs fast local perception and triggers conditional forensic refinement only when uncertainty is detected. CoFi-Agent runs an initial single-pass on a local 7B Audio-LLM, then a cloud controller gates difficult cases and issues lightweight plans for on-device tools such as temporal re-listening and local ASR. On the MMAR benchmark, CoFi-Agent improves accuracy from 27.20% to 53.60%, while achieving a better accuracy-efficiency trade-off than an always-on investigation pipeline. Overall, CoFi-Agent bridges the perception gap via tool-enabled, conditional edge-cloud collaboration under practical system constraints.
comment: 10 pages, 3 figures, 2 tables. Preprint
Dualformer: Time-Frequency Dual Domain Learning for Long-term Time Series Forecasting
Transformer-based models, despite their promise for long-term time series forecasting (LTSF), suffer from an inherent low-pass filtering effect that limits their effectiveness. This issue arises due to undifferentiated propagation of frequency components across layers, causing a progressive attenuation of high-frequency information crucial for capturing fine-grained temporal variations. To address this limitation, we propose Dualformer, a principled dual-domain framework that rethinks frequency modeling from a layer-wise perspective. Dualformer introduces three key components: (1) a dual-branch architecture that concurrently models complementary temporal patterns in both time and frequency domains; (2) a hierarchical frequency sampling module that allocates distinct frequency bands to different layers, preserving high-frequency details in lower layers while modeling low-frequency trends in deeper layers; and (3) a periodicity-aware weighting mechanism that dynamically balances contributions from the dual branches based on the harmonic energy ratio of inputs, supported theoretically by a derived lower bound. This design enables structured frequency modeling and adaptive integration of time-frequency features, effectively preserving high-frequency information and enhancing generalization. Extensive experiments conducted on eight widely used benchmarks demonstrate Dualformer's robustness and superior performance, particularly on heterogeneous or weakly periodic data. Our code is publicly available at https://github.com/Akira-221/Dualformer.
TempoNet: Learning Realistic Communication and Timing Patterns for Network Traffic Simulation
Realistic network traffic simulation is critical for evaluating intrusion detection systems, stress-testing network protocols, and constructing high-fidelity environments for cybersecurity training. While attack traffic can often be layered into training environments using red-teaming or replay methods, generating authentic benign background traffic remains a core challenge -- particularly in simulating the complex temporal and communication dynamics of real-world networks. This paper introduces TempoNet, a novel generative model that combines multi-task learning with multi-mark temporal point processes to jointly model inter-arrival times and all packet- and flow-header fields. TempoNet captures fine-grained timing patterns and higher-order correlations such as host-pair behavior and seasonal trends, addressing key limitations of GAN-, LLM-, and Bayesian-based methods that fail to reproduce structured temporal variation. TempoNet produces temporally consistent, high-fidelity traces, validated on real-world datasets. Furthermore, we show that intrusion detection models trained on TempoNet-generated background traffic perform comparably to those trained on real data, validating its utility for real-world security applications.
Integrating Knowledge Distillation Methods: A Sequential Multi-Stage Framework
Knowledge distillation (KD) transfers knowledge from large teacher models to compact student models, enabling efficient deployment on resource constrained devices. While diverse KD methods, including response based, feature based, and relation based approaches, capture different aspects of teacher knowledge, integrating multiple methods or knowledge sources is promising but often hampered by complex implementation, inflexible combinations, and catastrophic forgetting, which limits practical effectiveness. This work proposes SMSKD (Sequential Multi Stage Knowledge Distillation), a flexible framework that sequentially integrates heterogeneous KD methods. At each stage, the student is trained with a specific distillation method, while a frozen reference model from the previous stage anchors learned knowledge to mitigate forgetting. In addition, we introduce an adaptive weighting mechanism based on the teacher true class probability (TCP) that dynamically adjusts the reference loss per sample to balance knowledge retention and integration. By design, SMSKD supports arbitrary method combinations and stage counts with negligible computational overhead. Extensive experiments show that SMSKD consistently improves student accuracy across diverse teacher student architectures and method combinations, outperforming existing baselines. Ablation studies confirm that stage wise distillation and reference model supervision are primary contributors to performance gains, with TCP based adaptive weighting providing complementary benefits. Overall, SMSKD is a practical and resource efficient solution for integrating heterogeneous KD methods.
Machine Failure Detection Based on Projected Quantum Models
Detecting machine failures promptly is of utmost importance in industry for maintaining efficiency and minimizing downtime. This paper introduces a failure detection algorithm based on quantum computing and a statistical change-point detection approach. Our method leverages the potential of projected quantum feature maps to enhance the precision of anomaly detection in machine monitoring systems. We empirically validate our approach on benchmark multi-dimensional time series datasets as well as on a real-world dataset comprising IoT sensor readings from operational machines, ensuring the practical relevance of our study. The algorithm was executed on IBM's 133-qubit Heron quantum processor, demonstrating the feasibility of integrating quantum computing into industrial maintenance procedures. The presented results underscore the effectiveness of our quantum-based failure detection system, showcasing its capability to accurately identify anomalies in noisy time series data. This work not only highlights the potential of quantum computing in industrial diagnostics but also paves the way for more sophisticated quantum algorithms in the realm of predictive maintenance.
comment: 9 pages
An Empirical Study on Ensemble-Based Transfer Learning Bayesian Optimisation with Mixed Variable Types
Bayesian optimisation is a sample efficient method for finding a global optimum of expensive black-box objective functions. Historic datasets from related problems can be exploited to help improve performance of Bayesian optimisation by adapting transfer learning methods to various components of the Bayesian optimisation pipeline. In this study we perform an empirical analysis of various ensemble-based transfer learning Bayesian optimisation methods and pipeline components. We expand on previous work in the literature by contributing some specific pipeline components, and three new real-time transfer learning Bayesian optimisation benchmarks. In particular we propose to use a weighting strategy for ensemble surrogate model predictions based on regularised regression with weights constrained to be positive, and a related component for handling the case when transfer learning is not improving Bayesian optimisation performance. We find that in general, two components that help improve transfer learning Bayesian optimisation performance are warm start initialisation and constraining weights used with ensemble surrogate model to be positive.
comment: 36 pages, 16 figures
Robust Tool Use via Fission-GRPO: Learning to Recover from Execution Errors
Large language models (LLMs) can call tools effectively, yet they remain brittle in multi-turn execution: following a tool call error, smaller models often degenerate into repetitive invalid re-invocations, failing to interpret error feedback and self-correct. This brittleness hinders reliable real-world deployment, where the execution errors are inherently inevitable during tool interaction procedures. We identify a key limitation of current approaches: standard reinforcement learning (RL) treats errors as sparse negative rewards, providing no guidance on how to recover, while pre-collected synthetic error-correction datasets suffer from distribution mismatch with the model's on-policy error modes. To bridge this gap, we propose Fission-GRPO, a framework that converts execution errors into corrective supervision within the RL training loop. Our core mechanism fissions each failed trajectory into a new training instance by augmenting it with diagnostic feedback from a finetuned Error Simulator, then resampling recovery rollouts on-policy. This enables the model to learn from the precise errors it makes during exploration, rather than from static, pre-collected error cases. On the BFCL v4 Multi-Turn, Fission-GRPO improves the error recovery rate of Qwen3-8B by 5.7% absolute, crucially, yielding a 4% overall accuracy gain (42.75% to 46.75%) over GRPO and outperforming specialized tool-use agents.
comment: 8 pages, 4 figures, 2 tables
Closing the Gap on the Sample Complexity of 1-Identification
1-identification is a fundamental multi-armed bandit formulation on pure exploration. An agent aims to determine whether there exists a qualified arm whose mean reward is not less than a known threshold $μ_0$, or to output \textsf{None} if it believes such an arm does not exist. The agent needs to guarantee its output is correct with probability at least $1-δ$, while making expected total pulling times $\mathbb{E}τ$ as small as possible. We work on 1-identification with two main contributions. (1) We utilize an optimization formulation to derive a new lower bound of $\mathbb{E}τ$, when there is at least one qualified arm. (2) We design a new algorithm, deriving tight upper bounds whose gap to lower bounds are up to a polynomial of logarithm factor across all problem instance. Our result complements the analysis of $\mathbb{E}τ$ when there are multiple qualified arms, which is an open problem left by history literature.
When Sharpening Becomes Collapse: Sampling Bias and Semantic Coupling in RL with Verifiable Rewards
Reinforcement Learning with Verifiable Rewards (RLVR) is a central paradigm for turning large language models (LLMs) into reliable problem solvers, especially in logic-heavy domains. Despite its empirical success, it remains unclear whether RLVR elicits novel capabilities or merely sharpens the distribution over existing knowledge. We study this by formalizing over-sharpening, a phenomenon where the policy collapses onto limited modes, suppressing valid alternatives. At a high level, we discover finite-batch updates intrinsically bias learning toward sampled modes, triggering a collapse that propagates globally via semantic coupling. To mitigate this, we propose inverse-success advantage calibration to prioritize difficult queries and distribution-level calibration to diversify sampling via a memory network. Empirical evaluations validate that our strategies can effectively improve generalization.
Neural Nonlinear Shrinkage of Covariance Matrices for Minimum Variance Portfolio Optimization
This paper introduces a neural network-based nonlinear shrinkage estimator of covariance matrices for the purpose of minimum variance portfolio optimization. It is a hybrid approach that integrates statistical estimation with machine learning. Starting from the Ledoit-Wolf (LW) shrinkage estimator, we decompose the LW covariance matrix into its eigenvalues and eigenvectors, and apply a lightweight transformer-based neural network to learn a nonlinear eigenvalue shrinkage function. Trained with portfolio risk as the loss function, the resulting precision matrix (the inverse covariance matrix) estimator directly targets portfolio risk minimization. By conditioning on the sample-to-dimension ratio, the approach remains scalable across different sample sizes and asset universes. Empirical results on stock daily returns from Standard & Poor's 500 Index (S&P500) demonstrate that the proposed method consistently achieves lower out-of-sample realized risk than benchmark approaches. This highlights the promise of integrating structural statistical models with data-driven learning.
Data-Free Privacy-Preserving for LLMs via Model Inversion and Selective Unlearning
Large language models (LLMs) exhibit powerful capabilities but risk memorizing sensitive personally identifiable information (PII) from their training data, posing significant privacy concerns. While machine unlearning techniques aim to remove such data, they predominantly depend on access to the training data. This requirement is often impractical, as training data in real-world deployments is commonly proprietary or inaccessible. To address this limitation, we propose Data-Free Selective Unlearning (DFSU), a novel privacy-preserving framework that removes sensitive PII from an LLM without requiring its training data. Our approach first synthesizes pseudo-PII through language model inversion, then constructs token-level privacy masks for these synthetic samples, and finally performs token-level selective unlearning via a contrastive mask loss within a low-rank adaptation (LoRA) subspace. Extensive experiments on the AI4Privacy PII-Masking dataset using Pythia models demonstrate that our method effectively removes target PII while maintaining model utility.
Parallelism and Generation Order in Masked Diffusion Language Models: Limits Today, Potential Tomorrow
Masked Diffusion Language Models (MDLMs) promise parallel token generation and arbitrary-order decoding, yet it remains unclear to what extent current models truly realize these capabilities. We characterize MDLM behavior along two dimensions -- parallelism strength and generation order -- using Average Finalization Parallelism (AFP) and Kendall's tau. We evaluate eight mainstream MDLMs (up to 100B parameters) on 58 benchmarks spanning knowledge, reasoning, and programming. The results show that MDLMs still lag behind comparably sized autoregressive models, mainly because parallel probabilistic modeling weakens inter-token dependencies. Meanwhile, MDLMs exhibit adaptive decoding behavior: their parallelism and generation order vary significantly with the task domain, the stage of reasoning, and whether the output is correct. On tasks that require "backward information" (e.g., Sudoku), MDLMs adopt a solution order that tends to fill easier Sudoku blanks first, highlighting their advantages. Finally, we provide theoretical motivation and design insights supporting a Generate-then-Edit paradigm, which mitigates dependency loss while retaining the efficiency of parallel decoding.
Deep Learning for Perishable Inventory Systems with Human Knowledge
Managing perishable products with limited lifetimes is a fundamental challenge in inventory management, as poor ordering decisions can quickly lead to stockouts or excessive waste. We study a perishable inventory system with random lead times in which both the demand process and the lead time distribution are unknown. We consider a practical setting where orders are placed using limited historical data together with observed covariates and current system states. To improve learning efficiency under limited data, we adopt a marginal cost accounting scheme that assigns each order a single lifetime cost and yields a unified loss function for end-to-end learning. This enables training a deep learning-based policy that maps observed covariates and system states directly to order quantities. We develop two end-to-end variants: a purely black-box approach that outputs order quantities directly (E2E-BB), and a structure-guided approach that embeds the projected inventory level (PIL) policy, capturing inventory effects through explicit computation rather than additional learning (E2E-PIL). We further show that the objective induced by E2E-PIL is homogeneous of degree one, enabling a boosting technique from operational data analytics (ODA) that yields an enhanced policy (E2E-BPIL). Experiments on synthetic and real data establish a robust performance ordering: E2E-BB is dominated by E2E-PIL, which is further improved by E2E-BPIL. Using an excess-risk decomposition, we show that embedding heuristic policy structure reduces effective model complexity and improves learning efficiency with only a modest loss of flexibility. More broadly, our results suggest that deep learning-based decision tools are more effective and robust when guided by human knowledge, highlighting the value of integrating advanced analytics with inventory theory.
MapViT: A Two-Stage ViT-Based Framework for Real-Time Radio Quality Map Prediction in Dynamic Environments
Recent advancements in mobile and wireless networks are unlocking the full potential of robotic autonomy, enabling robots to take advantage of ultra-low latency, high data throughput, and ubiquitous connectivity. However, for robots to navigate and operate seamlessly, efficiently and reliably, they must have an accurate understanding of both their surrounding environment and the quality of radio signals. Achieving this in highly dynamic and ever-changing environments remains a challenging and largely unsolved problem. In this paper, we introduce MapViT, a two-stage Vision Transformer (ViT)-based framework inspired by the success of pre-train and fine-tune paradigm for Large Language Models (LLMs). MapViT is designed to predict both environmental changes and expected radio signal quality. We evaluate the framework using a set of representative Machine Learning (ML) models, analyzing their respective strengths and limitations across different scenarios. Experimental results demonstrate that the proposed two-stage pipeline enables real-time prediction, with the ViT-based implementation achieving a strong balance between accuracy and computational efficiency. This makes MapViT a promising solution for energy- and resource-constrained platforms such as mobile robots. Moreover, the geometry foundation model derived from the self-supervised pre-training stage improves data efficiency and transferability, enabling effective downstream predictions even with limited labeled data. Overall, this work lays the foundation for next-generation digital twin ecosystems, and it paves the way for a new class of ML foundation models driving multi-modal intelligence in future 6G-enabled systems.
comment: This paper has been accepted for publication at IEEE International Conference on Communications (ICC) 2026
Enhanced Convergence in p-bit Based Simulated Annealing with Partial Deactivation for Large-Scale Combinatorial Optimization Problems
This article critically investigates the limitations of the simulated annealing algorithm using probabilistic bits (pSA) in solving large-scale combinatorial optimization problems. The study begins with an in-depth analysis of the pSA process, focusing on the issues resulting from unexpected oscillations among p-bits. These oscillations hinder the energy reduction of the Ising model and thus obstruct the successful execution of pSA in complex tasks. Through detailed simulations, we unravel the root cause of this energy stagnation, identifying the feedback mechanism inherent to the pSA operation as the primary contributor to these disruptive oscillations. To address this challenge, we propose two novel algorithms, time average pSA (TApSA) and stalled pSA (SpSA). These algorithms are designed based on partial deactivation of p-bits and are thoroughly tested using Python simulations on maximum cut benchmarks that are typical combinatorial optimization problems. On the 16 benchmarks from 800 to 5,000 nodes, the proposed methods improve the normalized cut value from 0.8% to 98.4% on average in comparison with the conventional pSA.
comment: 17 pages
BanditLP: Large-Scale Stochastic Optimization for Personalized Recommendations
We present BanditLP, a scalable multi-stakeholder contextual bandit framework that unifies neural Thompson Sampling for learning objective-specific outcomes with a large-scale linear program for constrained action selection at serving time. The methodology is application-agnostic, compatible with arbitrary neural architectures, and deployable at web scale, with an LP solver capable of handling billions of variables. Experiments on public benchmarks and synthetic data show consistent gains over strong baselines. We apply this approach in LinkedIn's email marketing system and demonstrate business win, illustrating the value of integrated exploration and constrained optimization in production.
Learning Neural Operators from Partial Observations via Latent Autoregressive Modeling
Real-world scientific applications frequently encounter incomplete observational data due to sensor limitations, geographic constraints, or measurement costs. Although neural operators significantly advanced PDE solving in terms of computational efficiency and accuracy, their underlying assumption of fully-observed spatial inputs severely restricts applicability in real-world applications. We introduce the first systematic framework for learning neural operators from partial observation. We identify and formalize two fundamental obstacles: (i) the supervision gap in unobserved regions that prevents effective learning of physical correlations, and (ii) the dynamic spatial mismatch between incomplete inputs and complete solution fields. Specifically, our proposed Latent Autoregressive Neural Operator~(\ours) introduces two novel components designed explicitly to address the core difficulties of partial observations: (i) a mask-to-predict training strategy that creates artificial supervision by strategically masking observed regions, and (ii) a Physics-Aware Latent Propagator that reconstructs solutions through boundary-first autoregressive generation in latent space. Additionally, we develop POBench-PDE, a dedicated and comprehensive benchmark designed specifically for evaluating neural operators under partial observation conditions across three PDE-governed tasks. \ours achieves state-of-the-art performance with 18--69$\%$ relative L2 error reduction across all benchmarks under patch-wise missingness with less than 50$\%$ missing rate, including real-world climate prediction. Our approach effectively addresses practical scenarios involving up to 75$\%$ missing rate, to some extent bridging the existing gap between idealized research settings and the complexities of real-world scientific computing.
Beyond validation loss: Clinically-tailored optimization metrics improve a model's clinical performance
A key task in ML is to optimize models at various stages, e.g. by choosing hyperparameters or picking a stopping point. A traditional ML approach is to use validation loss, i.e. to apply the training loss function on a validation set to guide these optimizations. However, ML for healthcare has a distinct goal from traditional ML: Models must perform well relative to specific clinical requirements, vs. relative to the loss function used for training. These clinical requirements can be captured more precisely by tailored metrics. Since many optimization tasks do not require the driving metric to be differentiable, they allow a wider range of options, including the use of metrics tailored to be clinically-relevant. In this paper we describe two controlled experiments which show how the use of clinically-tailored metrics provide superior model optimization compared to validation loss, in the sense of better performance on the clinical task. The use of clinically-relevant metrics for optimization entails some extra effort, to define the metrics and to code them into the pipeline. But it can yield models that better meet the central goal of ML for healthcare: strong performance in the clinic.
comment: 16 pages, 9 figures
RDumb++: Drift-Aware Continual Test-Time Adaptation
Continual Test-Time Adaptation (CTTA) seeks to update a pretrained model during deployment using only the incoming, unlabeled data stream. Although prior approaches such as Tent, EATA etc. provide meaningful improvements under short evolving shifts, they struggle when the test distribution changes rapidly or over extremely long horizons. This challenge is exemplified by the CCC benchmark, where models operate over streams of 7.5M samples with continually changing corruption types and severities. We propose RDumb++, a principled extension of RDumb that introduces two drift-detection mechanisms i.e entropy-based drift scoring and KL-divergence drift scoring, together with adaptive reset strategies. These mechanisms allow the model to detect when accumulated adaptation becomes harmful and to recover before prediction collapse occurs. Across CCC-medium with three speeds and three seeds (nine runs, each containing one million samples), RDumb++ consistently surpasses RDumb, yielding approx 3% absolute accuracy gains while maintaining stable adaptation throughout the entire stream. Ablation experiments on drift thresholds and reset strengths further show that drift-aware resetting is essential for preventing collapse and achieving reliable long-horizon CTTA.
Analyzing Neural Network Information Flow Using Differential Geometry
This paper provides a fresh view of the neural network (NN) data flow problem, i.e., identifying the NN connections that are most important for the performance of the full model, through the lens of graph theory. Understanding the NN data flow provides a tool for symbolic NN analysis, e.g.,~robustness analysis or model repair. Unlike the standard approach to NN data flow analysis, which is based on information theory, we employ the notion of graph curvature, specifically Ollivier-Ricci curvature (ORC). The ORC has been successfully used to identify important graph edges in various domains such as road traffic analysis, biological and social networks. In particular, edges with negative ORC are considered bottlenecks and as such are critical to the graph's overall connectivity, whereas positive-ORC edges are not essential. We use this intuition for the case of NNs as well: we 1)~construct a graph induced by the NN structure and introduce the notion of neural curvature (NC) based on the ORC; 2)~calculate curvatures based on activation patterns for a set of input examples; 3)~aim to demonstrate that NC can indeed be used to rank edges according to their importance for the overall NN functionality. We evaluate our method through pruning experiments and show that removing negative-ORC edges quickly degrades the overall NN performance, whereas positive-ORC edges have little impact. The proposed method is evaluated on a variety of models trained on three image datasets, namely MNIST, CIFAR-10 and CIFAR-100. The results indicate that our method can identify a larger number of unimportant edges as compared to state-of-the-art pruning methods.
Experience with Single Domain Generalization in Real World Medical Imaging Deployments AAAI 2026
A desirable property of any deployed artificial intelligence is generalization across domains, i.e. data generation distribution under a specific acquisition condition. In medical imagining applications the most coveted property for effective deployment is Single Domain Generalization (SDG), which addresses the challenge of training a model on a single domain to ensure it generalizes well to unseen target domains. In multi-center studies, differences in scanners and imaging protocols introduce domain shifts that exacerbate variability in rare class characteristics. This paper presents our experience on SDG in real life deployment for two exemplary medical imaging case studies on seizure onset zone detection using fMRI data, and stress electrocardiogram based coronary artery detection. Utilizing the commonly used application of diabetic retinopathy, we first demonstrate that state-of-the-art SDG techniques fail to achieve generalized performance across data domains. We then develop a generic expert knowledge integrated deep learning technique DL+EKE and instantiate it for the DR application and show that DL+EKE outperforms SOTA SDG methods on DR. We then deploy instances of DL+EKE technique on the two real world examples of stress ECG and resting state (rs)-fMRI and discuss issues faced with SDG techniques.
comment: Accepted at AAAI 2026 Innovative Applications of Artificial Intelligence
Long-Term Probabilistic Forecast of Vegetation Conditions Using Climate Attributes in the Four Corners Region
Weather conditions can drastically alter the state of crops and rangelands, and in turn, impact the incomes and food security of individuals worldwide. Satellite-based remote sensing offers an effective way to monitor vegetation and climate variables on regional and global scales. The annual peak Normalized Difference Vegetation Index (NDVI), derived from satellite observations, is closely associated with crop development, rangeland biomass, and vegetation growth. Although various machine learning methods have been developed to forecast NDVI over short time ranges, such as one-month-ahead predictions, long-term forecasting approaches, such as one-year-ahead predictions of vegetation conditions, are not yet available. To fill this gap, we develop a two-phase machine learning model to forecast the one-year-ahead peak NDVI over high-resolution grids, using the Four Corners region of the Southwestern United States as a testbed. In phase one, we identify informative climate attributes, including precipitation and maximum vapor pressure deficit, and develop the generalized parallel Gaussian process that captures the relationship between climate attributes and NDVI. In phase two, we forecast these climate attributes using historical data at least one year before the NDVI prediction month, which then serve as inputs to forecast the peak NDVI at each spatial grid. We developed open-source tools that outperform alternative methods for both gross NDVI and grid-based NDVI one-year forecasts, providing information that can help farmers and ranchers make actionable plans a year in advance.
Efficient Gaussian process learning via subspace projections
We propose a novel training objective for GPs constructed using lower-dimensional linear projections of the data, referred to as \emph{projected likelihood} (PL). We provide a closed-form expression for the information loss related to the PL and empirically show that it can be reduced with random projections on the unit sphere. We show the superiority of the PL, in terms of accuracy and computational efficiency, over the exact GP training and the variational free energy approach to sparse GPs over different optimisers, kernels and datasets of moderately large sizes.
comment: Accepted at IEEE ICASSP 2026
Student Mental Health Screening via Fitbit Data Collected During the COVID-19 Pandemic
College students experience many stressors, resulting in high levels of anxiety and depression. Wearable technology provides unobtrusive sensor data that can be used for the early detection of mental illness. However, current research is limited concerning the variety of psychological instruments administered, physiological modalities, and time series parameters. In this research, we collect the Student Mental and Environmental Health (StudentMEH) Fitbit dataset from students at our institution during the pandemic. We provide a comprehensive assessment of the ability of predictive machine learning models to screen for depression, anxiety, and stress using different Fitbit modalities. Our findings indicate potential in physiological modalities such as heart rate and sleep to screen for mental illness with the F1 scores as high as 0.79 for anxiety, the former modality reaching 0.77 for stress screening, and the latter modality achieving 0.78 for depression. This research highlights the potential of wearable devices to support continuous mental health monitoring, the importance of identifying best data aggregation levels and appropriate modalities for screening for different mental ailments.
Memory-V2V: Augmenting Video-to-Video Diffusion Models with Memory
Recent foundational video-to-video diffusion models have achieved impressive results in editing user provided videos by modifying appearance, motion, or camera movement. However, real-world video editing is often an iterative process, where users refine results across multiple rounds of interaction. In this multi-turn setting, current video editors struggle to maintain cross-consistency across sequential edits. In this work, we tackle, for the first time, the problem of cross-consistency in multi-turn video editing and introduce Memory-V2V, a simple, yet effective framework that augments existing video-to-video models with explicit memory. Given an external cache of previously edited videos, Memory-V2V employs accurate retrieval and dynamic tokenization strategies to condition the current editing step on prior results. To further mitigate redundancy and computational overhead, we propose a learnable token compressor within the DiT backbone that compresses redundant conditioning tokens while preserving essential visual cues, achieving an overall speedup of 30%. We validate Memory-V2V on challenging tasks including video novel view synthesis and text-conditioned long video editing. Extensive experiments show that Memory-V2V produces videos that are significantly more cross-consistent with minimal computational overhead, while maintaining or even improving task-specific performance over state-of-the-art baselines. Project page: https://dohunlee1.github.io/MemoryV2V
comment: Project page: https://dohunlee1.github.io/MemoryV2V
Active learning for photonics
Active learning for photonic crystals explores the integration of analytic approximate Bayesian last layer neural networks (LL-BNNs) with uncertainty-driven sample selection to accelerate photonic band gap prediction. We employ an analytic LL-BNN formulation, corresponding to the infinite Monte Carlo sample limit, to obtain uncertainty estimates that are strongly correlated with the true predictive error on unlabeled candidate structures. These uncertainty scores drive an active learning strategy that prioritizes the most informative simulations during training. Applied to the task of predicting band gap sizes in two-dimensional, two-tone photonic crystals, our approach achieves up to a 2.6x reduction in required training data compared to a random sampling baseline while maintaining predictive accuracy. The efficiency gains arise from concentrating computational resources on high uncertainty regions of the design space rather than sampling uniformly. Given the substantial cost of full band structure simulations, especially in three dimensions, this data efficiency enables rapid and scalable surrogate modeling. Our results suggest that analytic LL-BNN based active learning can substantially accelerate topological optimization and inverse design workflows for photonic crystals, and more broadly, offers a general framework for data efficient regression across scientific machine learning domains.
comment: 6 pages, 5 figures, submitted to Optics Express
Better as Generators Than Classifiers: Leveraging LLMs and Synthetic Data for Low-Resource Multilingual Classification
Large Language Models (LLMs) have demonstrated remarkable multilingual capabilities, making them promising tools in both high- and low-resource languages. One particularly valuable use case is generating synthetic samples that can be used to train smaller models in low-resource scenarios where human-labelled data is scarce. In this work, we investigate whether these synthetic data generation capabilities can serve as a form of distillation, producing smaller models that perform on par with or even better than massive LLMs across languages and tasks. To this end, we use a state-of-the-art multilingual LLM to generate synthetic datasets covering 11 languages and 4 classification tasks. These datasets are then used to train smaller models via fine-tuning or instruction tuning, or as synthetic in-context examples for compact LLMs. Our experiments show that even small amounts of synthetic data enable smaller models to outperform the large generator itself, particularly in low-resource languages. Overall, the results suggest that LLMs are best utilised as generators (teachers) rather than classifiers, producing data that empowers smaller and more efficient multilingual models.
comment: Accepted to the Findings of EACL 2026
GameTalk: Training LLMs for Strategic Conversation
Strategic decision-making in multi-agent settings is a key challenge for large language models (LLMs), particularly when coordination and negotiation must unfold over extended conversations. While recent work has explored the use of LLMs in isolated decision tasks, little attention has been given to optimizing long-term objectives through dialogue. We introduce \textbf{GameTalk}, a framework for training LLMs to make strategic decisions via multi-turn interactions. Unlike prior work that focuses on single-turn objectives or static action prediction, we train LLMs to optimize a global objective across full conversations. We achieve this by adapting fine-tuning methods like GRPO, DPO, and STaR to incorporate reward signals that depend on the entire interaction. We evaluate this approach on a suite of increasingly complex games, designed to stress different aspects of reasoning, coordination, and opponent modeling. Our results show that GameTalk significantly outperforms untrained models, especially under reward shaping, with DPO consistently yielding the strongest gains. These findings position conversational fine-tuning as a promising path for LLMs to reason, negotiate, and act in interactive environments.
comment: 32 pages, 8 figures
Distributional Computational Graphs: Error Bounds
We study a general framework of distributional computational graphs: computational graphs whose inputs are probability distributions rather than point values. We analyze the discretization error that arises when these graphs are evaluated using finite approximations of continuous probability distributions. Such an approximation might be the result of representing a continuous real-valued distribution using a discrete representation or from constructing an empirical distribution from samples (or might be the output of another distributional computational graph). We establish non-asymptotic error bounds in terms of the Wasserstein-1 distance, without imposing structural assumptions on the computational graph.
comment: 28 pages, 2 figures
Ordering-based Causal Discovery via Generalized Score Matching
Learning DAG structures from purely observational data remains a long-standing challenge across scientific domains. An emerging line of research leverages the score of the data distribution to initially identify a topological order of the underlying DAG via leaf node detection and subsequently performs edge pruning for graph recovery. This paper extends the score matching framework for causal discovery, which is originally designated for continuous data, and introduces a novel leaf discriminant criterion based on the discrete score function. Through simulated and real-world experiments, we demonstrate that our theory enables accurate inference of true causal orders from observed discrete data and the identified ordering can significantly boost the accuracy of existing causal discovery baselines on nearly all of the settings.
GutenOCR: A Grounded Vision-Language Front-End for Documents
GutenOCR is a family of grounded OCR front-ends obtained by fine-tuning Qwen2.5-VL-3B and Qwen2.5-VL-7B. The resulting single-checkpoint vision-language models expose reading, detection, and grounding through a unified, prompt-based interface. Trained on business documents, scientific articles, and synthetic grounding data, the models support full-page and localized reading with line- and paragraph-level bounding boxes and conditional ``where is x?'' queries. We introduce a grounded OCR evaluation protocol and show that GutenOCR-7B more than doubles the composite grounded OCR score of its Qwen2.5-VL-7B backbone on 10.5K held-out business and scientific pages (0.40 to 0.82). On Fox and OmniDocBench v1.5, our approach substantially improves region- and line-level OCR as well as text-detection recall, but reveals trade-offs in page-level linearization, color-guided OCR, and formula-heavy layouts.
Four Over Six: More Accurate NVFP4 Quantization with Adaptive Block Scaling
As large language models have grown larger, interest has grown in low-precision numerical formats such as NVFP4 as a way to improve speed and reduce memory usage. However, quantizing models to NVFP4 remains difficult as the lack of precision generally degrades model performance. In this work, we address this issue with Four Over Six (4/6), a modification to the block-scaled NVFP4 quantization algorithm that yields reduced quantization error. Unlike integer formats, floating point formats have non-uniform step sizes which create larger quantization error on larger values. 4/6 takes advantage of this by adaptively scaling some blocks to smaller FP4 values, making the distribution of representable values more uniform and reducing quantization error for near-maximal values. We show that 4/6 can be implemented efficiently on NVIDIA Blackwell GPUs, resulting in performance gains during both pre-training and inference with minimal computational overhead. In pre-training experiments with the Nemotron 3 Nano 30B-A3B model architecture, we find that 4/6 brings training loss closer to BF16 compared to models trained with current state-of-the-art NVFP4 training recipes. Our code is available at http://github.com/mit-han-lab/fouroversix.
comment: 10 pages, 4 figures
Training-Free Geospatial Place Representation Learning from Large-Scale Point-of-Interest Graph Data
Learning effective representations of urban environments requires capturing spatial structure beyond fixed administrative boundaries. Existing geospatial representation learning approaches typically aggregate Points of Interest(POI) into pre-defined administrative regions such as census units or ZIP code areas, assigning a single embedding to each region. However, POIs often form semantically meaningful groups that extend across, within, or beyond these boundaries, defining places that better reflect human activity and urban function. To address this limitation, we propose PlaceRep, a training-free geospatial representation learning method that constructs place-level representations by clustering spatially and semantically related POIs. PlaceRep summarizes large-scale POI graphs from U.S. Foursquare data to produce general-purpose urban region embeddings while automatically identifying places across multiple spatial scales. By eliminating model pre-training, PlaceRep provides a scalable and efficient solution for multi-granular geospatial analysis. Experiments using the tasks of population density estimation and housing price prediction as downstream tasks show that PlaceRep outperforms most state-of-the-art graph-based geospatial representation learning methods and achieves up to a 100x speedup in generating region-level representations on large-scale POI graphs. The implementation of PlaceRep is available at https://github.com/mohammadhashemii/PlaceRep.
Everybody Prune Now: Structured Pruning of LLMs with only Forward Passes
Structured pruning is a promising approach to create smaller, faster large language models. However, existing methods typically rely on computing the gradient via backward passes, which can inflate memory requirements and compute costs. In this work we introduce Bonsai, a gradient-free structured pruning method that eliminates the need for backpropagation, significantly reducing memory requirements and compute costs while achieving state-of-the-art pruning performance. Bonsai uses forward-pass-only perturbative pruning to enable efficient compression of large models on a broader range of hardware configurations. Unlike existing structured pruning approaches, Bonsai not only achieves better compression with fewer resources but also produces models that are twice as fast as those generated by semi-structured pruning. As a concrete demonstration, we use Bonsai to prune 7B and 8B models to 50% sparsity on a single A6000 GPU -- a task challenging for backprop-based methods in memory-constrained settings, as they require 2-3x the memory. Our results show that removing backprop as a requirement not only enables pruning larger models on constrained hardware but can also lead to state-of-the-art efficiency and performance.
comment: 19 pages, 6 fiigures, 16 tables
BAH Dataset for Ambivalence/Hesitancy Recognition in Videos for Digital Behavioural Change
Ambivalence and hesitancy (A/H), a closely related construct, is the primary reasons why individuals delay, avoid, or abandon health behaviour changes. It is a subtle and conflicting emotion that sets a person in a state between positive and negative orientations, or between acceptance and refusal to do something. It manifests by a discord in affect between multiple modalities or within a modality, such as facial and vocal expressions, and body language. Although experts can be trained to recognize A/H as done for in-person interactions, integrating them into digital health interventions is costly and less effective. Automatic A/H recognition is therefore critical for the personalization and cost-effectiveness of digital behaviour change interventions. However, no datasets currently exists for the design of machine learning models to recognize A/H. This paper introduces the Behavioural Ambivalence/Hesitancy (BAH) dataset collected for multimodal recognition of A/H in videos. It contains 1,427 videos with a total duration of 10.60 hours captured from 300 participants across Canada answering predefined questions to elicit A/H. It is intended to mirror real-world online personalized behaviour change interventions. BAH is annotated by three experts to provide timestamps that indicate where A/H occurs, and frame- and video-level annotations with A/H cues. Video transcripts, cropped and aligned faces, and participants' meta-data are also provided. Since A and H manifest similarly in practice, we provide a binary annotation indicating the presence or absence of A/H. Additionally, this paper includes benchmarking results using baseline models on BAH for frame- and video-level recognition, zero-shot prediction, and personalization using source-free domain adaptation. The data, code, and pretrained weights are available.
comment: 45 pages, 21 figures, under review
MCGrad: Multicalibration at Web Scale
We propose MCGrad, a novel and scalable multicalibration algorithm. Multicalibration - calibration in subgroups of the data - is an important property for the performance of machine learning-based systems. Existing multicalibration methods have thus far received limited traction in industry. We argue that this is because existing methods (1) require such subgroups to be manually specified, which ML practitioners often struggle with, (2) are not scalable, or (3) may harm other notions of model performance such as log loss and Area Under the Precision-Recall Curve (PRAUC). MCGrad does not require explicit specification of protected groups, is scalable, and often improves other ML evaluation metrics instead of harming them. MCGrad has been in production at Meta, and is now part of hundreds of production models. We present results from these deployments as well as results on public datasets. We provide an open source implementation of MCGrad at https://github.com/facebookincubator/MCGrad.
comment: Accepted at KDD 2026
ViSymRe: Vision-guided Multimodal Symbolic Regression
Extracting simple mathematical expression from an observational dataset to describe complex natural phenomena is one of the core objectives of artificial intelligence (AI). This field is known as symbolic regression (SR). Traditional SR models are based on genetic programming (GP) or reinforcement learning (RL), facing well-known challenges, such as low efficiency and overfitting. Recent studies have integrated SR with large language models (LLMs), enabling fast zero-shot inference by learning mappings from millions of dataset-expression pairs. However, since the input and output are inherently different modalities, such models often struggle to converge effectively. In this paper, we introduce ViSymRe, a vision-guided multimodal SR model that incorporates the third resource, expression graph, to bridge the modality gap. Different from traditional multimodal models, ViSymRe is trained to extract vision, termed virtual vision, from datasets, without relying on the global availability of expression graphs, which addresses the essential challenge of visual SR, i.e., expression graphs are not available during inference. Evaluation results on multiple mainstream benchmarks show that ViSymRe achieves more competitive performance than the state-of-the-art dataset-only baselines. The expressions predicted by ViSymRe not only fit the dataset well but are also simple and structurally accurate, goals that SR models strive to achieve.
Enhanced Climbing Image Nudged Elastic Band method with Hessian Eigenmode Alignment
Accurate determination of transition states is central to an understanding of reaction kinetics. Double-endpoint methods where both initial and final states are specified, such as the climbing image nudged elastic band (CI-NEB), identify the minimum energy path between the two and thereby the saddle point on the energy surface that is relevant for the given transition, thus providing an estimate of the transition state within the harmonic approximation of transition state theory. Such calculations can, however, incur high computational costs and may suffer stagnation on exceptionally flat or rough energy surfaces. Conversely, methods that only require specification of an initial set of atomic coordinates, such as the minimum mode following (MMF) method, offer efficiency but can converge on saddle points that are not relevant for transition of interest. Here, we present an adaptive hybrid algorithm that integrates the CI-NEB with the MMF method so as to get faster convergence to the relevant saddle point. The method is benchmarked for the Baker-Chan (BC) saddle point test set using the PET-MAD machine-learned potential as well as 59 transitions of a heptamer island on Pt(111) from the OptBench benchmark set. A Bayesian analysis of the performance shows a median reduction in energy and force calculations of 46% [95% CrI: -55%, -37%] relative to CI-NEB for the BC set, while a 28% reduction is found for the transitions of the heptamer island. These results establish this hybrid method as a highly effective tool for high-throughput automated chemical discovery of atomic rearrangements.
comment: 25 pages. 11 figures
GenPO: Generative Diffusion Models Meet On-Policy Reinforcement Learning NeurIPS2025
Recent advances in reinforcement learning (RL) have demonstrated the powerful exploration capabilities and multimodality of generative diffusion-based policies. While substantial progress has been made in offline RL and off-policy RL settings, integrating diffusion policies into on-policy frameworks like PPO remains underexplored. This gap is particularly significant given the widespread use of large-scale parallel GPU-accelerated simulators, such as IsaacLab, which are optimized for on-policy RL algorithms and enable rapid training of complex robotic tasks. A key challenge lies in computing state-action log-likelihoods under diffusion policies, which is straightforward for Gaussian policies but intractable for flow-based models due to irreversible forward-reverse processes and discretization errors (e.g., Euler-Maruyama approximations). To bridge this gap, we propose GenPO, a generative policy optimization framework that leverages exact diffusion inversion to construct invertible action mappings. GenPO introduces a novel doubled dummy action mechanism that enables invertibility via alternating updates, resolving log-likelihood computation barriers. Furthermore, we also use the action log-likelihood for unbiased entropy and KL divergence estimation, enabling KL-adaptive learning rates and entropy regularization in on-policy updates. Extensive experiments on eight IsaacLab benchmarks, including legged locomotion (Ant, Humanoid, Anymal-D, Unitree H1, Go2), dexterous manipulation (Shadow Hand), aerial control (Quadcopter), and robotic arm tasks (Franka), demonstrate GenPO's superiority over existing RL baselines. Notably, GenPO is the first method to successfully integrate diffusion policies into on-policy RL, unlocking their potential for large-scale parallelized training and real-world robotic deployment.
comment: Accepted by NeurIPS2025
Likelihood Matching for Diffusion Models
We propose a Likelihood Matching approach for training diffusion models by first establishing an equivalence between the likelihood of the target data distribution and a likelihood along the sample path of the reverse diffusion. To efficiently compute the reverse sample likelihood, a quasi-likelihood is considered to approximate each reverse transition density by a Gaussian distribution with matched conditional mean and covariance, respectively. The score and Hessian functions for the diffusion generation are estimated by maximizing the quasi-likelihood, ensuring a consistent matching of both the first two transitional moments between every two time points. A stochastic sampler is introduced to facilitate computation that leverages both the estimated score and Hessian information. We establish consistency of the quasi-maximum likelihood estimation, and provide non-asymptotic convergence guarantees for the proposed sampler, quantifying the rates of the approximation errors due to the score and Hessian estimation, dimensionality, and the number of diffusion steps. Empirical and simulation evaluations demonstrate the effectiveness of the proposed Likelihood Matching and validate the theoretical results.
FedIA: Towards Domain-Robust Aggregation in Federated Graph Learning
Federated Graph Learning (FGL) enables a central server to coordinate model training across distributed clients without local graph data being shared. However, FGL significantly suffers from cross-silo domain shifts, where each "silo" (domain) contains a limited number of clients with distinct graph topologies. These heterogeneities induce divergent optimization trajectories, ultimately leading to global model divergence. In this work, we reveal a severe architectural pathology termed Structural Orthogonality: the topology-dependent message passing mechanism forces gradients from different domains to target disjoint coordinates in the parameter space. Through a controlled comparison between backbones, we statistically prove that GNN updates are near-perpendicular across domains (with projection ratios $\to$ 0). Consequently, naive averaging leads to Consensus Collapse, a phenomenon where sparse, informative structural signals from individual domains are diluted by the near-zero updates of others. This forces the global model into a "sub-optimal" state that fails to represent domain-specific structural patterns, resulting in poor generalization. To address this, we propose FedIA, a lightweight server-side framework designed to reconcile update conflicts without auxiliary communication. FedIA operates in two stages: (1) Global Importance Masking (GIM) identifies a shared parameter subspace to filter out domain-specific structural noise and prevent signal dilution; (2) Confidence-Aware Momentum Weighting (CAM) dynamically re-weights client contributions based on gradient reliability to amplify stable optimization signals.
Comparing the latent features of universal machine-learning interatomic potentials
The past few years have seen the development of ``universal'' machine-learning interatomic potentials (uMLIPs) capable of approximating the ground-state potential energy surface across a wide range of chemical structures and compositions with reasonable accuracy. While these models differ in the architecture and the dataset used, they share the ability to compress a staggering amount of chemical information into descriptive latent features. Herein, we systematically analyze what the different uMLIPs have learned by quantitatively assessing the relative information content of their latent features with feature reconstruction errors, and observing how the trends are affected by the choice of training set and training protocol. We find that uMLIPs encode the chemical space in significantly distinct ways, with substantial cross-model feature reconstruction errors. When variants of the same model architecture are considered, trends become dependent on the dataset, target, and training protocol of choice. We also observe that fine-tuning of a uMLIP retains a strong pre-training bias in the latent features. Finally, we discuss how atom-level features, which are directly output by MLIPs, can be compressed into global structure-level features via concatenation of progressive cumulants, each adding significantly new information about the variability across the atomic environments within a given system.
Recommending Best Paper Awards for ML/AI Conferences via the Isotonic Mechanism
Machine learning and artificial intelligence conferences such as NeurIPS and ICML now regularly receive tens of thousands of submissions, posing significant challenges to maintaining the quality and consistency of the peer review process. This challenge is particularly acute for best paper awards, which are an important part of the peer review process, yet whose selection has increasingly become a subject of debate in recent years. In this paper, we introduce an author-assisted mechanism to facilitate the selection of best paper awards. Our method employs the Isotonic Mechanism for eliciting authors' assessments of their own submissions in the form of a ranking, which is subsequently utilized to adjust the raw review scores for optimal estimation of the submissions' ground-truth quality. We demonstrate that authors are incentivized to report truthfully when their utility is a convex additive function of the adjusted scores, and we validate this convexity assumption for best paper awards using publicly accessible review data of ICLR from 2019 to 2023 and NeurIPS from 2021 to 2023. Crucially, in the special case where an author has a single quota -- that is, may nominate only one paper -- we prove that truthfulness holds even when the utility function is merely nondecreasing and additive. This finding represents a substantial relaxation of the assumptions required in prior work. For practical implementation, we extend our mechanism to accommodate the common scenario of overlapping authorship. Finally, simulation results demonstrate that our mechanism significantly improves the quality of papers selected for awards.
TPV: Parameter Perturbations Through the Lens of Test Prediction Variance
We identify test prediction variance (TPV)-- the first-order sensitivity of model outputs to parameter perturbations around a trained solution-- as a unifying quantity that links several classical observations about generalization in deep networks. TPV is a fully label-free object whose trace form separates the geometry of the trained model from the specific perturbation mechanism, allowing a broad family of parameter perturbations like SGD noise, label noise, finite-precision noise, and other post-training perturbations to be analyzed under a single framework. Theoretically, we show that TPV estimated on the training set converges to its test-set value in the overparameterized limit, providing the first result that prediction variance under local parameter perturbations can be inferred from training inputs alone, and this stability is decoupled from generalization performance. Empirically, TPV exhibits a striking stability across datasets and architectures even for extremely narrow networks. Further, TPV correlates well with test loss, serving as a training-set based predictive metric for generalization. Code available at github.com/devansharpit/TPV.
Lightweight and perceptually-guided voice conversion for electro-laryngeal speech
Electro-laryngeal (EL) speech is characterized by constant pitch, limited prosody, and mechanical noise, reducing naturalness and intelligibility. We propose a lightweight adaptation of the state-of-the-art StreamVC framework to this setting by removing pitch and energy modules and combining self-supervised pretraining with supervised fine-tuning on parallel EL and healthy (HE) speech data, guided by perceptual and intelligibility losses. Objective and subjective evaluations across different loss configurations confirm their influence: the best model variant, based on WavLM features and human-feedback predictions (+WavLM+HF), drastically reduces character error rate (CER) of EL inputs, raises naturalness mean opinion score (nMOS) from 1.1 to 3.3, and consistently narrows the gap to HE ground-truth speech in all evaluated metrics. These findings demonstrate the feasibility of adapting lightweight voice conversion architectures to EL voice rehabilitation while also identifying prosody generation and intelligibility improvements as the main remaining bottlenecks.
comment: 5 pages, 5 figures. Paper accepted for ICASSP 2026. Audio samples available at https://spsc-tugraz.github.io/lw-elvc-icassp26/
Information-theoretic Distinctions Between Deception and Confusion
We propose an information-theoretic formalization of the distinction between two fundamental AI safety failure modes: deceptive alignment and goal drift. While both can lead to systems that appear misaligned, we demonstrate that they represent distinct forms of information divergence occurring at different interfaces in the human-AI system. Deceptive alignment creates entropy between an agent's true goals and its observable behavior, while goal drift, or confusion, creates entropy between the intended human goal and the agent's actual goal. Though often observationally equivalent, these failures necessitate different interventions. We present a formal model and an illustrative thought experiment to clarify this distinction. We offer a formal language for re-examining prominent alignment challenges observed in Large Language Models (LLMs), offering novel perspectives on their underlying causes.
comment: Proceedings of the 14th IJCNLP and the 4th AACL (2025)
Scalable Multi-view Clustering via Explicit Kernel Features Maps
The proliferation of high-dimensional data from sources such as social media, sensor networks, and online platforms has created new challenges for clustering algorithms. Multi-view clustering, which integrates complementary information from multiple data perspectives, has emerged as a powerful solution. However, existing methods often struggle with scalability and efficiency, particularly on large attributed networks. In this work, we address these limitations by leveraging explicit kernel feature maps and a non-iterative optimization strategy, enabling efficient and accurate clustering on datasets with millions of points.
comment: Version accepted by Data Mining and Knowledge Discovery
How malicious AI swarms can threaten democracy: The fusion of agentic AI and LLMs marks a new frontier in information warfare
Advances in AI offer the prospect of manipulating beliefs and behaviors on a population-wide level. Large language models and autonomous agents now let influence campaigns reach unprecedented scale and precision. Generative tools can expand propaganda output without sacrificing credibility and inexpensively create falsehoods that are rated as more human-like than those written by humans. Techniques meant to refine AI reasoning, such as chain-of-thought prompting, can just as effectively be used to generate more convincing falsehoods. Enabled by these capabilities, a disruptive threat is emerging: swarms of collaborative, malicious AI agents. Fusing LLM reasoning with multi-agent architectures, these systems are capable of coordinating autonomously, infiltrating communities, and fabricating consensus efficiently. By adaptively mimicking human social dynamics, they threaten democracy. Because the resulting harms stem from design, commercial incentives, and governance, we prioritize interventions at multiple leverage points, focusing on pragmatic mechanisms over voluntary compliance.
comment: 5 Pages, This is the author's version of the work. It is posted here by permission of the AAAS for personal use, not for redistribution. The definitive version was published in Science on January 22, 2026, DOI: 10.1126/science.adz1697
Representation-Driven Reinforcement Learning ICML 2023
We present a representation-driven framework for reinforcement learning. By representing policies as estimates of their expected values, we leverage techniques from contextual bandits to guide exploration and exploitation. Particularly, embedding a policy network into a linear feature space allows us to reframe the exploration-exploitation problem as a representation-exploitation problem, where good policy representations enable optimal exploration. We demonstrate the effectiveness of this framework through its application to evolutionary and policy gradient-based approaches, leading to significantly improved performance compared to traditional methods. Our framework provides a new perspective on reinforcement learning, highlighting the importance of policy representation in determining optimal exploration-exploitation strategies.
comment: Accepted to ICML 2023
Sense and Sensitivity: Examining the Influence of Semantic Recall on Long Context Code Reasoning
Large language models (LLMs) are increasingly deployed for understanding large codebases, but whether they understand operational semantics of long code context or rely on pattern matching shortcuts remains unclear. We distinguish between lexical recall (retrieving code verbatim) and semantic recall (understanding operational semantics). Evaluating 10 state-of-the-art LLMs, we find that while frontier models achieve near-perfect, position-independent lexical recall, semantic recall degrades severely when code is centrally positioned in long contexts. We introduce semantic recall sensitivity to measure whether tasks require understanding of code's operational semantics vs. permit pattern matching shortcuts. Through a novel counterfactual measurement method, we show that models rely heavily on pattern matching shortcuts to solve existing code understanding benchmarks. We propose a new task SemTrace, which achieves high semantic recall sensitivity through unpredictable operations; LLMs' accuracy exhibits severe positional effects, with median accuracy drops of 92.73% versus CRUXEval's 53.36% as the relevant code snippet approaches the middle of the input code context. Our findings suggest current evaluations substantially underestimate semantic recall failures in long context code understanding.
Explaining k-Nearest Neighbors: Abductive and Counterfactual Explanations
Despite the wide use of $k$-Nearest Neighbors as classification models, their explainability properties remain poorly understood from a theoretical perspective. While nearest neighbors classifiers offer interpretability from a ``data perspective'', in which the classification of an input vector $\bar{x}$ is explained by identifying the vectors $\bar{v}_1, \ldots, \bar{v}_k$ in the training set that determine the classification of $\bar{x}$, we argue that such explanations can be impractical in high-dimensional applications, where each vector has hundreds or thousands of features and it is not clear what their relative importance is. Hence, we focus on understanding nearest neighbor classifications through a ``feature perspective'', in which the goal is to identify how the values of the features in $\bar{x}$ affect its classification. Concretely, we study abductive explanations such as ``minimum sufficient reasons'', which correspond to sets of features in $\bar{x}$ that are enough to guarantee its classification, and counterfactual explanations based on the minimum distance feature changes one would have to perform in $\bar{x}$ to change its classification. We present a detailed landscape of positive and negative complexity results for counterfactual and abductive explanations, distinguishing between discrete and continuous feature spaces, and considering the impact of the choice of distance function involved. Finally, we show that despite some negative complexity results, Integer Quadratic Programming and SAT solving allow for computing explanations in practice.
comment: 34 pages, 6 figure. The following results are added to the version 2: W[1]-hardness of Counterfactual Explanation for l_2-distance when k is a parameter, NP-hardness of minimal sufficient reason for l_1-distance for k \ge 3, and Sigma_2-hardness of the minimum sufficient reason for Hamming distance and k \ge 3
ImputeGAP: A Comprehensive Library for Time Series Imputation
With the prevalence of sensor failures, imputation, the process of estimating missing values, has emerged as the cornerstone of time series data pre-processing. While numerous imputation algorithms have been developed to repair these data gaps, existing time series libraries provide limited imputation support. Furthermore, they often lack the ability to simulate realistic time series missingness patterns and fail to account for the impact of the imputed data on subsequent downstream analysis. This paper introduces ImputeGAP, a comprehensive library for time series imputation that supports a diverse range of imputation methods and modular missing data simulation, catering to datasets with varying characteristics. The library includes extensive customization options, such as automated hyperparameter tuning, benchmarking, explainability, downstream evaluation, and compatibility with popular time series frameworks.
A Scalable Predictive Modelling Approach to Identifying Duplicate Adverse Event Reports for Drugs and Vaccines
Objectives: To advance state-of-the-art for duplicate detection in large-scale pharmacovigilance databases and achieve more consistent performance across adverse event reports from different countries. Background: Unlinked adverse event reports referring to the same case impede statistical analysis and may mislead clinical assessment. Pharmacovigilance relies on large databases of adverse event reports to discover potential new causal associations, and computational methods are required to identify duplicates at scale. Current state-of-the-art is statistical record linkage which outperforms rule-based approaches. In particular, vigiMatch is in routine use for VigiBase, the WHO global database of adverse event reports, and represents the first statistical duplicate detection approach in pharmacovigilance deployed at scale. Originally developed for both medicines and vaccines, its application to vaccines has been limited due to inconsistent performance across countries. Methods: This paper extends vigiMatch from probabilistic record linkage to predictive modelling, refining features for medicines, vaccines, and adverse events using country-specific reporting rates, extracting dates from free text, and training separate support vector machine classifiers for medicines and vaccines. Recall was evaluated using 5 independent labelled test sets. Precision was assessed by annotating random selections of report pairs classified as duplicates. Results: Precision for the new method was 92% for vaccines and 54% for medicines, compared with 41% for the comparator method. Recall ranged from 80-85% across test sets for vaccines and from 40-86% for medicines, compared with 24-53% for the comparator method. Conclusion: Predictive modeling, use of free text, and country-specific features advance state-of-the-art for duplicate detection in pharmacovigilance.
comment: 26 pages, 11 figures
Can Language Models Discover Scaling Laws?
Discovering scaling laws for predicting model performance at scale is a fundamental and open-ended challenge, mostly reliant on slow, case specific human experimentation. To investigate the potential for LLMs to automate this process, we collect over 5,000 experiments from existing literature and curate eight diverse scaling law discovery tasks. While existing agents struggle to produce accurate law formulas, this paper introduces SLDAgent, an evolution-based agent that co-optimize the scaling law model and the parameters, enabling it to autonomously explore complex relationships between variables. For the first time, we demonstrates that SLDAgent can automatically discover laws that exhibit consistently more accurate extrapolation than their established, human-derived counterparts across all tasks. Through comprehensive analysis, we elucidate why these discovered laws are superior and verify their practical utility in both pretraining and finetuning applications. This work establishes a new paradigm for agentic scientific discovery, showing that AI systems can understand their own scaling behavior, and can contribute novel and practical knowledge back to the research community.
Who Benefits From Sinus Surgery? Comparing Generative AI and Supervised Machine Learning for Predicting Surgical Outcomes in Chronic Rhinosinusitis
Artificial intelligence has reshaped medical imaging, yet the use of AI on clinical data for prospective decision support remains limited. We study pre-operative prediction of clinically meaningful improvement in chronic rhinosinusitis (CRS), defining success as a more than 8.9-point reduction in SNOT-22 at 6 months (MCID). In a prospectively collected cohort where all patients underwent surgery, we ask whether models using only pre-operative clinical data could have identified those who would have poor outcomes, i.e. those who should have avoided surgery. We benchmark supervised ML (logistic regression, tree ensembles, and an in-house MLP) against generative AI (ChatGPT, Claude, Gemini, Perplexity), giving each the same structured inputs and constraining outputs to binary recommendations with confidence. Our best ML model (MLP) achieves 85 % accuracy with superior calibration and decision-curve net benefit. GenAI models underperform on discrimination and calibration across zero-shot setting. Notably, GenAI justifications align with clinician heuristics and the MLP's feature importance, repeatedly highlighting baseline SNOT-22, CT/endoscopy severity, polyp phenotype, and physchology/pain comorbidities. We provide a reproducible tabular-to-GenAI evaluation protocol and subgroup analyses. Findings support an ML-first, GenAI- augmented workflow: deploy calibrated ML for primary triage of surgical candidacy, with GenAI as an explainer to enhance transparency and shared decision-making.
Enhancing Large Language Models for Time-Series Forecasting via Vector-Injected In-Context Learning
The World Wide Web needs reliable predictive capabilities to respond to changes in user behavior and usage patterns. Time series forecasting (TSF) is a key means to achieve this goal. In recent years, the large language models (LLMs) for TSF (LLM4TSF) have achieved good performance. However, there is a significant difference between pretraining corpora and time series data, making it hard to guarantee forecasting quality when directly applying LLMs to TSF; fine-tuning LLMs can mitigate this issue, but often incurs substantial computational overhead. Thus, LLM4TSF faces a dual challenge of prediction performance and compute overhead. To address this, we aim to explore a method for improving the forecasting performance of LLM4TSF while freezing all LLM parameters to reduce computational overhead. Inspired by in-context learning (ICL), we propose LVICL. LVICL uses our vector-injected ICL to inject example information into a frozen LLM, eliciting its in-context learning ability and thereby enhancing its performance on the example-related task (i.e., TSF). Specifically, we first use the LLM together with a learnable context vector adapter to extract a context vector from multiple examples adaptively. This vector contains compressed, example-related information. Subsequently, during the forward pass, we inject this vector into every layer of the LLM to improve forecasting performance. Compared with conventional ICL that adds examples into the prompt, our vector-injected ICL does not increase prompt length; moreover, adaptively deriving a context vector from examples suppresses components harmful to forecasting, thereby improving model performance. Extensive experiments demonstrate the effectiveness of our approach.
Fairness-informed Pareto Optimization : An Efficient Bilevel Framework
Despite their promise, fair machine learning methods often yield Pareto-inefficient models, in which the performance of certain groups can be improved without degrading that of others. This issue arises frequently in traditional in-processing approaches such as fairness-through-regularization. In contrast, existing Pareto-efficient approaches are biased towards a certain perspective on fairness and fail to adapt to the broad range of fairness metrics studied in the literature. In this paper, we present BADR, a simple framework to recover the optimal Pareto-efficient model for any fairness metric. Our framework recovers its models through a Bilevel Adaptive Rescalarisation procedure. The lower level is a weighted empirical risk minimization task where the weights are a convex combination of the groups, while the upper level optimizes the chosen fairness objective. We equip our framework with two novel large-scale, single-loop algorithms, BADR-GD and BADR-SGD, and establish their convergence guarantees. We release badr, an open-source Python toolbox implementing our framework for a variety of learning tasks and fairness metrics. Finally, we conduct extensive numerical experiments demonstrating the advantages of BADR over existing Pareto-efficient approaches to fairness.
Real-World Adversarial Attacks on RF-Based Drone Detectors
Radio frequency (RF) based systems are increasingly used to detect drones by analyzing their RF signal patterns, converting them into spectrogram images which are processed by object detection models. Existing RF attacks against image based models alter digital features, making over-the-air (OTA) implementation difficult due to the challenge of converting digital perturbations to transmittable waveforms that may introduce synchronization errors and interference, and encounter hardware limitations. We present the first physical attack on RF image based drone detectors, optimizing class-specific universal complex baseband (I/Q) perturbation waveforms that are transmitted alongside legitimate communications. We evaluated the attack using RF recordings and OTA experiments with four types of drones. Our results show that modest, structured I/Q perturbations are compatible with standard RF chains and reliably reduce target drone detection while preserving detection of legitimate drones.
Conformal Blindness: A Note on $A$-Cryptic change-points
Conformal Test Martingales (CTMs) are a standard method within the Conformal Prediction framework for testing the crucial assumption of data exchangeability by monitoring deviations from uniformity in the p-value sequence. Although exchangeability implies uniform p-values, the converse does not hold. This raises the question of whether a significant break in exchangeability can occur, such that the p-values remain uniform, rendering CTMs blind. We answer this affirmatively, demonstrating the phenomenon of \emph{conformal blindness}. Through explicit construction, for the theoretically ideal ``predictive oracle'' conformity measure (given by the true conditional density), we demonstrate the possibility of an \emph{$A$-cryptic change-point} (where $A$ refers to the conformity measure). Using bivariate Gaussian distributions, we identify a line along which a change in the marginal means does not alter the distribution of the conformity scores, thereby producing perfectly uniform p-values. Simulations confirm that even a massive distribution shift can be perfectly cryptic to the CTM, highlighting a fundamental limitation and emphasising the critical role of the alignment of the conformity measure with potential shifts. By contrasting the predictive oracle with recent results on detection-optimal scores, we emphasise that validity monitoring in safety-critical systems requires careful separation of predictive and diagnostic goals.
comment: 6 pages, 3 figures
Radiation-Preserving Selective Imaging for Pediatric Hip Dysplasia: A Cross-Modal Ultrasound-Xray Policy with Limited Labels AAAI 2026
We study an ultrasound-first, radiation-preserving policy for developmental dysplasia of the hip (DDH) that requests a radiograph only when needed. We (i) pretrain modality-specific encoders (ResNet-18) with SimSiam on a large unlabelled registry (37186 ultrasound; 19546 radiographs), (ii) freeze the backbones and fit small, measurement-faithful heads on DDH-relevant landmarks and measurements, (iii) calibrate a one-sided conformal deferral rule on ultrasound predictions that provides finite sample marginal coverage guarantees under exchangeability, using a held-out calibration set. Ultrasound heads predict Graf alpha, beta, and femoral head coverage; X-ray heads predict acetabular index (AI), center-edge (CE) angle and IHDI grade. On our held out labeled evaluation set, ultrasound measurement error is modest (e.g., alpha MAE ~= 9.7 degrees, coverage MAE ~= 14.0%), while radiographic probes achieve AI and CE MAEs of ~= 7.6 degrees and ~= 8.9 degrees, respectively. The calibrated US-only policy is explored across rule families (alpha-only; alpha OR coverage; alpha AND coverage), conformal miscoverage levels, and per-utility trade-offs using decision-curve analysis. Conservative settings yield high coverage with near-zero US-only rates; permissive settings (e.g., alpha OR coverage at larger deltas) achieve non-zero US-only throughput with expected coverage tradeoffs. The result is a simple, reproducible pipeline that turns limited labels into interpretable measurements and tunable selective imaging curves suitable for clinical handoff and future external validation.
comment: Accepted (with oral presentation) to the AAAI 2026 AI for Medicine and Healthcare Bridge Program Awarded Best Paper Runner-Up at the AAAI 2026 AI for Medicine and Healthcare Bridge Program
A Match Made in Heaven? AI-driven Matching of Vulnerabilities and Security Unit Tests
Software vulnerabilities are often detected via taint analysis, penetration testing, or fuzzing. They are also found via unit tests that exercise security-sensitive behavior with specific inputs, called vulnerability-witnessing tests. Generative AI models could help developers in writing them, but they require many examples to learn from, which are currently scarce. This paper introduces VuTeCo, an AI-driven framework for collecting examples of vulnerability-witnessing tests from Java repositories. VuTeCo carries out two tasks: (1) The "Finding" task to determine whether a unit test case is security-related, and (2) the "Matching" task to relate a test case to the vulnerability it witnesses. VuTeCo addresses the Finding task with UniXcoder, achieving an F0.5 score of 0.73 and a precision of 0.83 on a test set of unit tests from Vul4J. The Matching task is addressed using DeepSeek Coder, achieving an F0.5 score of 0.65 and a precision of 0.75 on a test set of pairs of unit tests and vulnerabilities from Vul4J. VuTeCo has been used in the wild on 427 Java projects and 1,238 vulnerabilities, obtaining 224 test cases confirmed to be security-related and 35 tests correctly matched to 29 vulnerabilities. The validated tests were collected in a new dataset called Test4Vul. VuTeCo lays the foundation for large-scale retrieval of vulnerability-witnessing tests, enabling future AI models to better understand and generate security unit tests.
comment: Accepted in the MSR 2026 Technical Track. This work was partially supported by EU-funded project Sec4AI4Sec (grant no. 101120393)
Data-driven tool wear prediction in milling, based on a process-integrated single-sensor approach
Accurate tool wear prediction is essential for maintaining productivity and minimizing costs in machining. However, the complex nature of the tool wear process poses significant challenges to achieving reliable predictions. This study explores data-driven methods, in particular deep learning, for tool wear prediction. Traditional data-driven approaches often focus on a single process, relying on multi-sensor setups and extensive data generation, which limits generalization to new settings. Moreover, multi-sensor integration is often impractical in industrial environments. To address these limitations, this research investigates the transferability of predictive models using minimal training data, validated across two processes. Furthermore, it uses a simple setup with a single acceleration sensor to establish a low-cost data generation approach that facilitates the generalization of models to other processes via transfer learning. The study evaluates several machine learning models, including transformer-inspired convolutional neural networks (CNN), long short-term memory networks (LSTM), support vector machines (SVM), and decision trees, trained on different input formats such as feature vectors and short-time Fourier transform (STFT). The performance of the models is evaluated on two machines and on different amounts of training data, including scenarios with significantly reduced datasets, providing insight into their effectiveness under constrained data conditions. The results demonstrate the potential of specific models and configurations for effective tool wear prediction, contributing to the development of more adaptable and efficient predictive maintenance strategies in machining. Notably, the ConvNeXt model has an exceptional performance, achieving 99.1\% accuracy in identifying tool wear using data from only four milling tools operated until they are worn.
comment: This work is a preprint and has been submitted for possible publication,14 pages, 12 figures
Adaptive Exponential Integration for Stable Gaussian Mixture Black-Box Variational Inference
Black-box variational inference (BBVI) with Gaussian mixture families offers a flexible approach for approximating complex posterior distributions without requiring gradients of the target density. However, standard numerical optimization methods often suffer from instability and inefficiency. We develop a stable and efficient framework that combines three key components: (1) affine-invariant preconditioning via natural gradient formulations, (2) an exponential integrator that unconditionally preserves the positive definiteness of covariance matrices, and (3) adaptive time stepping to ensure stability and to accommodate distinct warm-up and convergence phases. The proposed approach has natural connections to manifold optimization and mirror descent. For Gaussian posteriors, we prove exponential convergence in the noise-free setting and almost-sure convergence under Monte Carlo estimation, rigorously justifying the necessity of adaptive time stepping. Numerical experiments on multimodal distributions, Neal's multiscale funnel, and a PDE-based Bayesian inverse problem for Darcy flow demonstrate the effectiveness of the proposed method.
comment: 26 pages, 7 figures
It's complicated. The relationship of algorithmic fairness and non-discrimination provisions for high-risk systems in the EU AI Act NeurIPS 2025
What constitutes a fair decision? This question is not only difficult for humans but becomes more challenging when Artificial Intelligence (AI) models are used. In light of discriminatory algorithmic behaviors, the EU has recently passed the AI Act, which mandates specific rules for high-risk systems, incorporating both traditional legal non-discrimination regulations and machine learning based algorithmic fairness concepts. This paper aims to bridge these two different concepts in the AI Act through: First, a necessary high-level introduction of both concepts targeting legal and computer science-oriented scholars, and second, an in-depth analysis of the AI Act's relationship between legal non-discrimination regulations and algorithmic fairness. Our analysis reveals three key findings: (1.) Most non-discrimination regulations target only high-risk AI systems. (2.) The regulation of high-risk systems encompasses both data input requirements and output monitoring, though these regulations are partly inconsistent and raise questions of computational feasibility. (3.) Finally, we consider the possible (future) interaction of classical EU non-discrimination law and the AI Act regulations. We recommend developing more specific auditing and testing methodologies for AI systems. This paper aims to serve as a foundation for future interdisciplinary collaboration between legal scholars and computer science-oriented machine learning researchers studying discrimination in AI systems.
comment: Accepted at the Workshop on Regulatable ML at the 39th Conference on Neural Information Processing Systems (NeurIPS 2025). This version has been updated after acceptance
Sigma: The Key for Vision-Language-Action Models toward Telepathic Alignment
To address a fundamental limitation in cognitive systems, namely the absence of a time-updatable mediating thought space between semantics and continuous control, this work constructs and trains a vision-language-action model termed Sigma, deployed on a single RTX 4090. The model is built upon the open-source pi0.5_base backbone, with the svla_so101_pickplace dataset preprocessed into a structured training corpus. An independently designed VLA architecture is introduced to integrate deep semantic understanding with associative reasoning, enabling telepathic-style alignment between perception and action. Training proceeds through iterative optimization of data preprocessing, LoRA-based fine-tuning, and inference-stage adapter design. Evaluation is conducted using offline closed-loop replay, comparing Sigma against the untuned pi0.5_base under identical data conditions. Experimental results indicate a consistent reduction in control MSE across vector-, fragment-, and trajectory-level scales, while preserving the stability of the telepathy norm and semantic-text alignment quality. These findings demonstrate that mind-responsive alignment control can be quantitatively achieved through semantic and associative architectural integration without retraining the base model, providing a reproducible pathway for semantic alignment and intention-driven behavior.
comment: The Sigma model has been open-sourced on Hugging Face. Weights, dataset, some scripts, and logs are all available. The link is: https://huggingface.co/Veltraxor/Sigma
PaTaRM: Bridging Pairwise and Pointwise Signals via Preference-Aware Task-Adaptive Reward Modeling
Reward models (RMs) are central to reinforcement learning from human feedback (RLHF), providing the critical supervision signals that align large language models (LLMs) with human preferences. Generative reward models (GRMs) provide greater interpretability than traditional scalar RMs, but they come with a critical trade-off: pairwise methods are hindered by a training-inference mismatch, while pointwise methods require expensive absolute annotations. To bridge this gap, we propose the Preference-aware Task-adaptive Reward Model (PaTaRM). Unlike prior approaches, PaTaRM enables robust pointwise training using readily available pairwise data via a novel Preference-Aware Reward (PAR) mechanism, eliminating the need for explicit rating labels. Furthermore, it incorporates a Task-Adaptive Rubric system that dynamically generates instance-specific criteria for precise evaluation. Extensive experiments demonstrate that PATRM achieves a 8.7% average improvement on RewardBench and RMBench across Qwen3-8B/14B models. Crucially, it boosts downstream RLHF performance by an average relative improvement of 13.6% across IFEval and InFoBench, validating its effectiveness for policy alignment. Our code is available at https://github.com/JaneEyre0530/PaTaRM.
Contrastive and Multi-Task Learning on Noisy Brain Signals with Nonlinear Dynamical Signatures
We introduce a two-stage multitask learning framework for analyzing Electroencephalography (EEG) signals that integrates denoising, dynamical modeling, and representation learning. In the first stage, a denoising autoencoder is trained to suppress artifacts and stabilize temporal dynamics, providing robust signal representations. In the second stage, a multitask architecture processes these denoised signals to achieve three objectives: motor imagery classification, chaotic versus non-chaotic regime discrimination using Lyapunov exponent-based labels, and self-supervised contrastive representation learning with NT-Xent loss. A convolutional backbone combined with a Transformer encoder captures spatial-temporal structure, while the dynamical task encourages sensitivity to nonlinear brain dynamics. This staged design mitigates interference between reconstruction and discriminative goals, improves stability across datasets, and supports reproducible training by clearly separating noise reduction from higher-level feature learning. Empirical studies show that our framework not only enhances robustness and generalization but also surpasses strong baselines and recent state-of-the-art methods in EEG decoding, highlighting the effectiveness of combining denoising, dynamical features, and self-supervised learning.
Skin Lesion Phenotyping via Nested Multi-modal Contrastive Learning
We introduce SLIMP (Skin Lesion Image-Metadata Pre-training) for learning rich representations of skin lesions through a novel nested contrastive learning approach that captures complex relationships between images and metadata. Melanoma detection and skin lesion classification based solely on images, pose significant challenges due to large variations in imaging conditions (lighting, color, resolution, distance, etc.) and lack of clinical and phenotypical context. Clinicians typically follow a holistic approach for assessing the risk level of the patient and for deciding which lesions may be malignant and need to be excised, by considering the patient's medical history as well as the appearance of other lesions of the patient. Inspired by this, SLIMP combines the appearance and the metadata of individual skin lesions with patient-level metadata relating to their medical record and other clinically relevant information. By fully exploiting all available data modalities throughout the learning process, the proposed pre-training strategy improves performance compared to other pre-training strategies on downstream skin lesions classification tasks highlighting the learned representations quality.
Behind the Scenes: Mechanistic Interpretability of LoRA-adapted Whisper for Speech Emotion Recognition
Large pre-trained speech models such as Whisper offer strong generalization but pose significant challenges for resource-efficient adaptation. Low-Rank Adaptation (LoRA) has become a popular parameter-efficient fine-tuning method, yet its underlying mechanisms in speech tasks remain poorly understood. In this work, we conduct the first systematic mechanistic interpretability study of LoRA within the Whisper encoder for speech emotion recognition (SER). Using a suite of analytical tools, including layer contribution probing, logit-lens inspection, and representational similarity via singular value decomposition (SVD) and centered kernel alignment (CKA), we reveal two key mechanisms: a delayed specialization process that preserves general features in early layers before consolidating task-specific information, and a forward alignment, backward differentiation dynamic between LoRA's matrices. Our findings clarify how LoRA reshapes encoder hierarchies, providing both empirical insights and a deeper mechanistic understanding for designing efficient and interpretable adaptation strategies in large speech models. Our code is available at https://github.com/harryporry77/Behind-the-Scenes.
comment: Accepted at ICASSP 2026
ArenaRL: Scaling RL for Open-Ended Agents via Tournament-based Relative Ranking
Reinforcement learning has substantially improved the performance of LLM agents on tasks with verifiable outcomes, but it still struggles on open-ended agent tasks with vast solution spaces (e.g., complex travel planning). Due to the absence of objective ground-truth for these tasks, current RL algorithms largely rely on reward models that assign scalar scores to individual responses. We contend that such pointwise scoring suffers from an inherent discrimination collapse: the reward model struggles to distinguish subtle advantages among different trajectories, resulting in scores within a group being compressed into a narrow range. Consequently, the effective reward signal becomes dominated by noise from the reward model, leading to optimization stagnation. To address this, we propose ArenaRL, a reinforcement learning paradigm that shifts from pointwise scalar scoring to intra-group relative ranking. ArenaRL introduces a process-aware pairwise evaluation mechanism, employing multi-level rubrics to assign fine-grained relative scores to trajectories. Additionally, we construct an intra-group adversarial arena and devise a tournament-based ranking scheme to obtain stable advantage signals. Empirical results confirm that the built seeded single-elimination scheme achieves nearly equivalent advantage estimation accuracy to full pairwise comparisons with O(N^2) complexity, while operating with only O(N) complexity, striking an optimal balance between efficiency and precision. Furthermore, to address the lack of full-cycle benchmarks for open-ended agents, we build Open-Travel and Open-DeepResearch, two high-quality benchmarks featuring a comprehensive pipeline covering SFT, RL training, and multi-dimensional evaluation. Extensive experiments show that ArenaRL substantially outperforms standard RL baselines, enabling LLM agents to generate more robust solutions for complex real-world tasks.
Competitive Audio-Language Models with Data-Efficient Single-Stage Training on Public Data
Large language models (LLMs) have transformed NLP, yet their integration with audio remains underexplored despite audio's centrality to human communication. We introduce Falcon3-Audio, a family of Audio-Language Models (ALMs) built on instruction-tuned LLMs and Whisper encoders. Using a remarkably small amount of public audio data, less than 30K hours (5K unique), Falcon3-Audio-7B matches the best reported performance among open-weight models on the MMAU benchmark, with a score of 64.14, matching R1-AQA, while distinguishing itself through superior data and parameter efficiency, single-stage training, and transparency. Notably, our smallest 1B model remains competitive with larger open models ranging from 2B to 13B parameters. Through extensive ablations, we find that common complexities such as curriculum learning, multiple audio encoders, and intricate cross-attention connectors are not required for strong performance, even compared to models trained on over 500K hours of data.
comment: Accepted at ASRU 2025
Crafting Adversarial Inputs for Large Vision-Language Models Using Black-Box Optimization
Recent advancements in Large Vision-Language Models (LVLMs) have shown groundbreaking capabilities across diverse multimodal tasks. However, these models remain vulnerable to adversarial jailbreak attacks, where adversaries craft subtle perturbations to bypass safety mechanisms and trigger harmful outputs. Existing white-box attacks methods require full model accessibility, suffer from computing costs and exhibit insufficient adversarial transferability, making them impractical for real-world, black-box settings. To address these limitations, we propose a black-box jailbreak attack on LVLMs via Zeroth-Order optimization using Simultaneous Perturbation Stochastic Approximation (ZO-SPSA). ZO-SPSA provides three key advantages: (i) gradient-free approximation by input-output interactions without requiring model knowledge, (ii) model-agnostic optimization without the surrogate model and (iii) lower resource requirements with reduced GPU memory consumption. We evaluate ZO-SPSA on three LVLMs, including InstructBLIP, LLaVA and MiniGPT-4, achieving the highest jailbreak success rate of 83.0% on InstructBLIP, while maintaining imperceptible perturbations comparable to white-box methods. Moreover, adversarial examples generated from MiniGPT-4 exhibit strong transferability to other LVLMs, with ASR reaching 64.18%. These findings underscore the real-world feasibility of black-box jailbreaks and expose critical weaknesses in the safety mechanisms of current LVLMs
comment: EACL
Neural Green's Operators for Parametric Partial Differential Equations
This work introduces a paradigm for constructing parametric neural operators that are derived from finite-dimensional representations of Green's operators for linear partial differential equations (PDEs). We refer to such neural operators as Neural Green's Operators (NGOs). Our construction of NGOs preserves the linear action of Green's operators on the inhomogeneity fields, while approximating the nonlinear dependence of the Green's function on the coefficients of the PDE using neural networks. This construction reduces the complexity of the problem from learning the entire solution operator and its dependence on all parameters to only learning the Green's function and its dependence on the PDE coefficients. Furthermore, we show that our explicit representation of Green's functions enables the embedding of desirable mathematical attributes in our NGO architectures, such as symmetry, spectral, and conservation properties. Through numerical benchmarks on canonical PDEs, we demonstrate that NGOs achieve comparable or superior accuracy to Deep Operator Networks, Variationally Mimetic Operator Networks, and Fourier Neural Operators with similar parameter counts, while generalizing significantly better when tested on out-of-distribution data. For parametric time-dependent PDEs, we show that NGOs that are trained on a single time step can produce pointwise-accurate dynamics in an auto-regressive manner over arbitrarily large numbers of time steps. For parametric nonlinear PDEs, we demonstrate that NGOs trained exclusively on solutions of corresponding linear problems can be embedded within iterative solvers to yield accurate solutions, provided a suitable initial guess is available. Finally, we show that we can leverage the explicit representation of Green's functions returned by NGOs to construct effective matrix preconditioners that accelerate iterative solvers for PDEs.
WavLink: Compact Audio-Text Embeddings with a Global Whisper Token
Whisper has become the de-facto encoder for extracting general-purpose audio features in large audio-language models, where a 30-second clip is typically represented by 1500 frame features projected into an LLM. In contrast, audio-text embedding models like CLAP-based models have largely relied on alternative audio encoders (e.g., HTS-AT, PaSST), and have not leveraged Whisper effectively. We present WavLink, a compact audio-text embedding model that augments Whisper encoder with a learnable global token, trained jointly with a text encoder. Through a systematic study of design choices, including pretrained text encoders, loss functions, training modes, and data mixtures, we identify configurations that yield state-of-the-art retrieval performance. Our two-stage training recipe across three model sizes, combined with Matryoshka-style supervision, improves scalability, enabling 8x smaller embeddings with minimal performance drop. WavLink also demonstrates competitive performance on AIR-Bench with MCQs and zero-shot classification.
comment: Accepted at ICASSP 2026
Signature-Informed Transformer for Asset Allocation
Modern deep learning for asset allocation typically separates forecasting from optimization. We argue this creates a fundamental mismatch where minimizing prediction errors fails to yield robust portfolios. We propose the Signature Informed Transformer to address this by unifying feature extraction and decision making into a single policy. Our model employs path signatures to encode complex path dependencies and introduces a specialized attention mechanism that targets geometric asset relationships. By directly minimizing the Conditional Value at Risk we ensure the training objective aligns with financial goals. We prove that our attention module rigorously amplifies signature derived signals. Experiments across diverse equity universes show our approach significantly outperforms both traditional strategies and advanced forecasting baselines. The code is available at: https://anonymous.4open.science/r/Signature-Informed-Transformer-For-Asset-Allocation-DB88
StoxLSTM: A Stochastic Extended Long Short-Term Memory Network for Time Series Forecasting
The Extended Long Short-Term Memory (xLSTM) network has demonstrated strong capability in modeling complex long-term dependencies in time series data. Despite its success, the deterministic architecture of xLSTM limits its representational capacity and forecasting performance, especially on challenging real-world time series datasets characterized by inherent uncertainty, stochasticity, and complex hierarchical latent dynamics. In this work, we propose StoxLSTM, a stochastic xLSTM within a designed state space modeling framework, which integrates latent stochastic variables directly into the recurrent units to effectively model deep latent temporal dynamics and uncertainty. The designed state space model follows an efficient non-autoregressive generative approach, achieving strong predictive performance without complex modifications to the original xLSTM architecture. Extensive experiments on publicly available benchmark datasets demonstrate that StoxLSTM consistently outperforms state-of-the-art baselines, achieving superior performance and generalization.
Interpretable Air Pollution Forecasting by Physics-Guided Spatiotemporal Decoupling
Accurate and interpretable air pollution forecasting is crucial for public health, but most models face a trade-off between performance and interpretability. This study proposes a physics-guided, interpretable-by-design spatiotemporal learning framework. The model decomposes the spatiotemporal behavior of air pollutant concentrations into two transparent, additive modules. The first is a physics-guided transport kernel with directed weights conditioned on wind and geography (advection). The second is an explainable attention mechanism that learns local responses and attributes future concentrations to specific historical lags and exogenous drivers. Evaluated on a comprehensive dataset from the Stockholm region, our model consistently outperforms state-of-the-art baselines across multiple forecasting horizons. Our model's integration of high predictive performance and spatiotemporal interpretability provides a more reliable foundation for operational air-quality management in real-world applications.
comment: Accepted to 2025 IEEE International Conference on Big Data. v2 corrects grant numbers
Principled Coarse-Grained Acceptance for Speculative Decoding in Speech
Speculative decoding accelerates autoregressive speech generation by letting a fast draft model propose tokens that a larger target model verifies. However, for speech LLMs that generate acoustic tokens, exact token matching is overly restrictive: many discrete tokens are acoustically or semantically interchangeable, reducing acceptance rates and limiting speedups. We introduce Principled Coarse-Graining (PCG), which verifies proposals at the level of Acoustic Similarity Groups (ASGs) derived from the target model's embedding space. By splitting each token's probability mass across the overlapping groups that contain it, we define an overlap-aware coarse-grained distribution and perform rejection sampling on the resulting group variable. This yields an exactness guarantee at the group level while allowing the accepted draft token to stand in for any member of the group in practice. On LibriTTS, PCG increases acceptance and throughput relative to standard speculative decoding and prior speech-specific relaxations while maintaining intelligibility and speaker similarity. These results suggest acoustically aware, group-level acceptance as a simple and general way to accelerate speech token generation while maintaining speech quality.
comment: Accepted to ICASSP 2026
Sparse Data Diffusion for Scientific Simulations in Biology and Physics
Sparse data is fundamental to scientific simulations in biology and physics, from single-cell gene expression to particle calorimetry, where exact zeros encode physical absence rather than weak signal. However, existing diffusion models lack the physical rigor to faithfully represent this sparsity. This work introduces Sparse Data Diffusion (SDD), a generative method that explicitly models exact zeros via Sparsity Bits, unifying efficient ML generation with physically grounded sparsity handling. Empirical validation in particle physics and single-cell biology demonstrates that SDD achieves higher fidelity than baseline methods in capturing sparse patterns critical for scientific analysis, advancing scalable and physically faithful simulation.
comment: This paper won the Best Paper Award at the SimBioChem workshop at EurIPS 2025
Dynamical stability for dense patterns in discrete attractor neural networks
Neural networks storing multiple discrete attractors are canonical models of biological memory. Previously, the dynamical stability of such networks could only be guaranteed under highly restrictive conditions. Here, we derive a theory of the local stability of discrete fixed points in a broad class of networks with graded neural activities and in the presence of noise. By directly analyzing the bulk and the outliers of the Jacobian spectrum, we show that all fixed points are stable below a critical load that is distinct from the classical \textit{critical capacity} and depends on the statistics of neural activities in the fixed points as well as the single-neuron activation function. Our analysis highlights the computational benefits of threshold-linear activation and sparse-like patterns.
TUN: Detecting Significant Points in Persistence Diagrams with Deep Learning
Persistence diagrams (PDs) provide a powerful tool for understanding the topology of the underlying shape of a point cloud. However, identifying which points in PDs encode genuine signals remains challenging. This challenge directly hinders the practical adoption of topological data analysis in many applications, where automated and reliable interpretation of persistence diagrams is essential for downstream decision-making. In this paper, we study automatic significance detection for one-dimensional persistence diagrams. Specifically, we propose Topology Understanding Net (TUN), a multi-modal network that combines enhanced PD descriptors with self-attention, a PointNet-style point cloud encoder, learned fusion, and per-point classification, alongside stable preprocessing and imbalance-aware training. It provides an automated and effective solution for identifying significant points in PDs, which are critical for downstream applications. Experiments show that TUN outperforms classic methods in detecting significant points in PDs, illustrating its effectiveness in real-world applications.
Dynamics of Agentic Loops in Large Language Models: A Geometric Theory of Trajectories
Agentic systems built on large language models operate through recursive feedback loops, where each output becomes the next input. Yet the geometric behavior of these agentic loops (whether they converge, diverge, or exhibit more complex dynamics) remains poorly understood. This paper introduces a geometric framework for analyzing agentic trajectories in semantic embedding space, treating iterative transformations as discrete dynamical systems. We distinguish the artifact space, where linguistic transformations occur, from the embedding space, where geometric measurements are performed. Because cosine similarity is biased by embedding anisotropy, we introduce an isotonic calibration that eliminates systematic bias and aligns similarities with human semantic judgments while preserving high local stability. This enables rigorous measurement of trajectories, clusters and attractors. Through controlled experiments on singular agentic loops, we identify two fundamental regimes. A contractive rewriting loop converges toward a stable attractor with decreasing dispersion, while an exploratory summarize and negate loop produces unbounded divergence with no cluster formation. These regimes display qualitatively distinct geometric signatures of contraction and expansion. Our results show that prompt design directly governs the dynamical regime of an agentic loop, enabling systematic control of convergence, divergence and trajectory structure in iterative LLM transformations.
Multi-event Video-Text Retrieval ICCV2023
Video-Text Retrieval (VTR) is a crucial multi-modal task in an era of massive video-text data on the Internet. A plethora of work characterized by using a two-stream Vision-Language model architecture that learns a joint representation of video-text pairs has become a prominent approach for the VTR task. However, these models operate under the assumption of bijective video-text correspondences and neglect a more practical scenario where video content usually encompasses multiple events, while texts like user queries or webpage metadata tend to be specific and correspond to single events. This establishes a gap between the previous training objective and real-world applications, leading to the potential performance degradation of earlier models during inference. In this study, we introduce the Multi-event Video-Text Retrieval (MeVTR) task, addressing scenarios in which each video contains multiple different events, as a niche scenario of the conventional Video-Text Retrieval Task. We present a simple model, Me-Retriever, which incorporates key event video representation and a new MeVTR loss for the MeVTR task. Comprehensive experiments show that this straightforward framework outperforms other models in the Video-to-Text and Text-to-Video tasks, effectively establishing a robust baseline for the MeVTR task. We believe this work serves as a strong foundation for future studies. Code is available at https://github.com/gengyuanmax/MeVTR.
comment: [fixed typos in equations] accepted to ICCV2023 Poster; some figures are not supported when viewed online, please download the file and view locally
Modelling the Effects of Hearing Loss on Neural Coding in the Auditory Midbrain with Variational Conditioning AAAI 2026
The mapping from sound to neural activity that underlies hearing is highly non-linear. The first few stages of this mapping in the cochlea have been modelled successfully, with biophysical models built by hand and, more recently, with DNN models trained on datasets simulated by biophysical models. Modelling the auditory brain has been a challenge because central auditory processing is too complex for models to be built by hand, and datasets for training DNN models directly have not been available. Recent work has taken advantage of large-scale high resolution neural recordings from the auditory midbrain to build a DNN model of normal hearing with great success. But this model assumes that auditory processing is the same in all brains, and therefore it cannot capture the widely varying effects of hearing loss. We propose a novel variational-conditional model to learn to encode the space of hearing loss directly from recordings of neural activity in the auditory midbrain of healthy and noise exposed animals. With hearing loss parametrised by only 6 free parameters per animal, our model accurately predicts 62% of the explainable variance in neural responses from normal hearing animals and 68% for hearing impaired animals, within a few percentage points of state of the art animal specific models. We demonstrate that the model can be used to simulate realistic activity from out of sample animals by fitting only the learned conditioning parameters with Bayesian optimisation, achieving crossentropy loss within 2% of the optimum in 15-30 iterations. Including more animals in the training data slightly improved the performance on unseen animals. This model will enable future development of parametrised hearing loss compensation models trained to directly restore normal neural coding in hearing impaired brains, which can be quickly fitted for a new user by human in the loop optimisation.
comment: 12 pages, 3 figures, presented at AAAI 2026
Dynamic Exploration on Segment-Proposal Graphs for Tubular Centerline Tracking
Optimal curve methods provide a fundamental framework for tubular centerline tracking. Point-wise approaches, such as minimal paths, are theoretically elegant but often suffer from shortcut and short-branch combination problems in complex scenarios. Nonlocal segment-wise methods address these issues by mapping pre-extracted centerline fragments onto a segment-proposal graph, performing optimization in this abstract space, and recovering the target tubular centerline from the resulting optimal path. In this paradigm, graph construction is critical, as it directly determines the quality of the final result. However, existing segment-wise methods construct graphs in a static manner, requiring all edges and their weights to be pre-computed, i.e. the graph must be sufficiently complete prior to search. Otherwise, the true path may be absent from the candidate space, leading to search failure. To address this limitation, we propose a dynamic exploration scheme for constructing segment-proposal graphs, where the graph is built on demand during the search for optimal paths. By formulating the problem as a Markov decision process, we apply Q-learning to compute edge weights only for visited transitions and adaptively expand the action space when connectivity is insufficient. Experimental results on retinal vessels, roads, and rivers demonstrate consistent improvements over state-of-the-art methods in both accuracy and efficiency.
comment: A real time interactive model that can accurately find centerline of a tubular structure even in complex scenarios. At this version, this work is independent to deep learning-based algorithms
KEPLA: A Knowledge-Enhanced Deep Learning Framework for Accurate Protein-Ligand Binding Affinity Prediction
Accurate prediction of protein-ligand binding affinity is critical for drug discovery. While recent deep learning approaches have demonstrated promising results, they often rely solely on structural features of proteins and ligands, overlooking their valuable biochemical knowledge associated with binding affinity. To address this limitation, we propose KEPLA, a novel deep learning framework that explicitly integrates prior knowledge from Gene Ontology and ligand properties to enhance prediction performance. KEPLA takes protein sequences and ligand molecular graphs as input and optimizes two complementary objectives: (1) aligning global representations with knowledge graph relations to capture domain-specific biochemical insights, and (2) leveraging cross attention between local representations to construct fine-grained joint embeddings for prediction. Experiments on two benchmark datasets across both in-domain and cross-domain scenarios demonstrate that KEPLA consistently outperforms state-of-the-art baselines. Furthermore, interpretability analyses based on knowledge graph relations and cross attention maps provide valuable insights into the underlying predictive mechanisms.
Robust Reinforcement Learning in Finance: Modeling Market Impact with Elliptic Uncertainty Sets
In financial applications, reinforcement learning (RL) agents are commonly trained on historical data, where their actions do not influence prices. However, during deployment, these agents trade in live markets where their own transactions can shift asset prices, a phenomenon known as market impact. This mismatch between training and deployment environments can significantly degrade performance. Traditional robust RL approaches address this model misspecification by optimizing the worst-case performance over a set of uncertainties, but typically rely on symmetric structures that fail to capture the directional nature of market impact. To address this issue, we develop a novel class of elliptic uncertainty sets. We establish both implicit and explicit closed-form solutions for the worst-case uncertainty under these sets, enabling efficient and tractable robust policy evaluation. Experiments on single-asset and multi-asset trading tasks demonstrate that our method achieves superior Sharpe ratio and remains robust under increasing trade volumes, offering a more faithful and scalable approach to RL in financial markets.
RADLADS: Rapid Attention Distillation to Linear Attention Decoders at Scale
We present Rapid Attention Distillation to Linear Attention Decoders at Scale (RADLADS), a protocol for rapidly converting softmax attention transformers into linear attention decoder models, along with two new RWKV-variant architectures, and models converted from popular Qwen2.5 open source models in 7B, 32B, and 72B sizes. Our conversion process requires only 350-700M tokens, less than 0.005% of the token count used to train the original teacher models. Converting to our 72B linear attention model costs less than \$2,000 USD at today's prices, yet quality at inference remains close to the original transformer. These models achieve state-of-the-art downstream performance across a set of standard benchmarks for linear attention models of their size. We release all our models on HuggingFace under the Apache 2.0 license, with the exception of our 72B models which are also governed by the Qwen License Agreement. Models at https://huggingface.co/collections/recursal/radlads-6818ee69e99e729ba8a87102 Training Code at https://github.com/recursal/RADLADS-paper
On shallow feedforward neural networks with inputs from a topological space
We study feedforward neural networks with inputs from a topological space (TFNNs). We prove a universal approximation theorem for shallow TFNNs, which demonstrates their capacity to approximate any continuous function defined on this topological space. As an application, we obtain an approximative version of Kolmogorov's superposition theorem for compact metric spaces.
comment: Major revision (14 pages): improved exposition, expanded references, and additional subsections
Deep Neural networks for solving high-dimensional parabolic partial differential equations
The numerical solution of high dimensional partial differential equations (PDEs) is severely constrained by the curse of dimensionality (CoD), rendering classical grid--based methods impractical beyond a few dimensions. In recent years, deep neural networks have emerged as a promising mesh free alternative, enabling the approximation of PDE solutions in tens to thousands of dimensions. This review provides a tutorial--oriented introduction to neural--network--based methods for solving high dimensional parabolic PDEs, emphasizing conceptual clarity and methodological connections. We organize the literature around three unifying paradigms: (i) PDE residual--based approaches, including physicsinformed neural networks and their high dimensional variants; (ii) stochastic methods derived from Feynman--Kac and backward stochastic differential equation formulations; and (iii) hybrid derivative--free random difference approaches designed to alleviate the computational cost of derivatives in high dimensions. For each paradigm, we outline the underlying mathematical formulation, algorithmic implementation, and practical strengths and limitations. Representative benchmark problems--including Hamilton--Jacobi--Bellman and Black--Scholes equations in up to 1000 dimensions --illustrate the scalability, effectiveness, and accuracy of the methods. The paper concludes with a discussion of open challenges and future directions for reliable and scalable solvers of high dimensional PDEs.
PROMA: Projected Microbatch Accumulation for Reference-Free Proximal Policy Updates
This note introduces Projected Microbatch Accumulation (PROMA), a proximal policy method that modifies gradient accumulation across microbatches rather than relying on likelihood ratios relative to a reference policy. During accumulation, PROMA projects the partially accumulated gradient to be orthogonal to the sequence-wise gradients of the current microbatch. This projection is applied layer-wise during the backward pass, enabling efficient implementation. Empirically, PROMA achieves proximal updates without entropy collapse while providing tighter local KL control than GRPO.
Your Group-Relative Advantage Is Biased
Reinforcement Learning from Verifier Rewards (RLVR) has emerged as a widely used approach for post-training large language models on reasoning tasks, with group-based methods such as GRPO and its variants gaining broad adoption. These methods rely on group-relative advantage estimation to avoid learned critics, yet its theoretical properties remain poorly understood. In this work, we uncover a fundamental issue of group-based RL: the group-relative advantage estimator is inherently biased relative to the true (expected) advantage. We provide the first theoretical analysis showing that it systematically underestimates advantages for hard prompts and overestimates them for easy prompts, leading to imbalanced exploration and exploitation. To address this issue, we propose History-Aware Adaptive Difficulty Weighting (HA-DW), an adaptive reweighting scheme that adjusts advantage estimates based on an evolving difficulty anchor and training dynamics. Both theoretical analysis and experiments on five mathematical reasoning benchmarks demonstrate that HA-DW consistently improves performance when integrated into GRPO and its variants. Our results suggest that correcting biased advantage estimation is critical for robust and efficient RLVR training.
Finite-Sample Inference for Sparsely Permuted Linear Regression
We study a linear observation model with an unknown permutation called \textit{permuted/shuffled linear regression}, where responses and covariates are mismatched and the permutation forms a discrete, factorial-size parameter. The permutation is a key component of the data-generating process, yet its statistical investigation remains challenging due to its discrete nature. We develop a general statistical inference framework on the permutation and regression coefficients. First, we introduce a localization step that reduces the permutation space to a small candidate set building on recent advances in the repro samples method, whose miscoverage decays polynomially with the number of Monte Carlo samples. Then, based on this localized set, we provide statistical inference procedures: a conditional Monte Carlo test of permutation structures with valid finite-sample Type-I error control. We also develop coefficient inference that remains valid under alignment uncertainty of permutations. For computational purposes, we develop a linear assignment problem computable in polynomial time and demonstrate that, with high probability, the solution is equivalent to that of the conventional least squares with large computational cost. Extensions to partially permuted designs and ridge regularization are further discussed. Extensive simulations and an application to air-quality data corroborate finite-sample validity, strong power to detect mismatches, and practical scalability.
UCCL-EP: Portable Expert-Parallel Communication
Mixture-of-Experts (MoE) workloads rely on expert parallelism (EP) to achieve high GPU efficiency. State-of-the-art EP communication systems such as DeepEP demonstrate strong performance but exhibit poor portability across heterogeneous GPU and NIC platforms. The poor portability is rooted in architecture: GPU-initiated token-level RDMA communication requires tight vertical integration between GPUs and NICs, e.g., GPU writes to NIC driver/MMIO interfaces. We present UCCL-EP, a portable EP communication system that delivers DeepEP-level performance across heterogeneous GPU and NIC hardware. UCCL-EP replaces GPU-initiated RDMA with a high-throughput GPU-CPU control channel: compact token-routing commands are transferred to multithreaded CPU proxies, which then issue GPUDirect RDMA operations on behalf of GPUs. UCCL-EP further emulates various ordering semantics required by specialized EP communication modes using RDMA immediate data, enabling correctness on NICs that lack such ordering, e.g., AWS EFA. We implement UCCL-EP on NVIDIA and AMD GPUs with EFA and Broadcom NICs. On EFA, it outperforms the best existing EP solution by up to $2.1\times$ for dispatch and combine throughput. On NVIDIA-only platform, UCCL-EP achieves comparable performance to the original DeepEP. UCCL-EP also improves token throughput on SGLang by up to 40% on the NVIDIA+EFA platform, and improves DeepSeek-V3 training throughput over the AMD Primus/Megatron-LM framework by up to 45% on a 16-node AMD+Broadcom platform.
Mechanism Shift During Post-training from Autoregressive to Masked Diffusion Language Models
Post-training pretrained Autoregressive models (ARMs) into Masked Diffusion models (MDMs) has emerged as a cost-effective strategy to overcome the limitations of sequential generation. However, the internal algorithmic transformations induced by this paradigm shift remain unexplored, leaving it unclear whether post-trained MDMs acquire genuine bidirectional reasoning capabilities or merely repackage autoregressive heuristics. In this work, we address this question by conducting a comparative circuit analysis of ARMs and their MDM counterparts. Our analysis reveals a systematic "mechanism shift" dependent on the structural nature of the task. Structurally, we observe a distinct divergence: while MDMs largely retain autoregressive circuitry for tasks dominated by local causal dependencies, they abandon initialized pathways for global planning tasks, exhibiting distinct rewiring characterized by increased early-layer processing. Semantically, we identify a transition from sharp, localized specialization in ARMs to distributed integration in MDMs. Through these findings, we conclude that diffusion post-training does not merely adapt model parameters but fundamentally reorganizes internal computation to support non-sequential global planning.
Report for NSF Workshop on AI for Electronic Design Automation
This report distills the discussions and recommendations from the NSF Workshop on AI for Electronic Design Automation (EDA), held on December 10, 2024 in Vancouver alongside NeurIPS 2024. Bringing together experts across machine learning and EDA, the workshop examined how AI-spanning large language models (LLMs), graph neural networks (GNNs), reinforcement learning (RL), neurosymbolic methods, etc.-can facilitate EDA and shorten design turnaround. The workshop includes four themes: (1) AI for physical synthesis and design for manufacturing (DFM), discussing challenges in physical manufacturing process and potential AI applications; (2) AI for high-level and logic-level synthesis (HLS/LLS), covering pragma insertion, program transformation, RTL code generation, etc.; (3) AI toolbox for optimization and design, discussing frontier AI developments that could potentially be applied to EDA tasks; and (4) AI for test and verification, including LLM-assisted verification tools, ML-augmented SAT solving, security/reliability challenges, etc. The report recommends NSF to foster AI/EDA collaboration, invest in foundational AI for EDA, develop robust data infrastructures, promote scalable compute infrastructure, and invest in workforce development to democratize hardware design and enable next-generation hardware systems. The workshop information can be found on the website https://ai4eda-workshop.github.io/.
Membership Inference Attacks on LLM-based Recommender Systems
Large language models (LLMs) based recommender systems (RecSys) can adapt to different domains flexibly. It utilizes in-context learning (ICL), i.e., prompts, to customize the recommendation functions, which include sensitive historical user-specific item interactions, encompassing implicit feedback such as clicked items and explicit product reviews. Such private information may be exposed by novel privacy attacks. However, no study has been conducted on this important issue. We design several membership inference attacks (MIAs) aimed to revealing whether system prompts include victims' historical interactions. The attacks are \emph{Similarity, Memorization, Inquiry, and Poisoning attacks}, each utilizing unique features of LLMs or RecSys. We have carefully evaluated them on five of the latest open-source LLMs and three well-known RecSys benchmark datasets. The results confirm that the MIA threat to LLM RecSys is realistic: inquiry and poisoning attacks show significantly high attack advantages. We also discussed possible methods to mitigate such MIA threats. We have also analyzed the factors affecting these attacks, such as the number of shots in system prompts, the position of the victim in the shots, the number of poisoning items in the prompt,etc.
comment: This is paper is under review ACL 2026
VeriLLM: A Lightweight Framework for Publicly Verifiable Decentralized Inference
Decentralized inference provides a scalable and resilient paradigm for serving large language models (LLMs), enabling fragmented global resource utilization and reducing reliance on centralized providers. However, in a permissionless environment without trusted nodes, ensuring the correctness of model outputs remains a core challenge. We introduce VeriLLM, a publicly verifiable protocol for decentralized LLM inference that achieves security with incentive guarantees while maintaining practical efficiency. VeriLLM combines lightweight empirical rerunning with minimal on-chain checks to preclude free-riding, allowing verifiers to validate results at approximately 1% of the underlying inference cost by exploiting the structural separation between prefill and autoregressive decoding. To prevent verification bottlenecks, we design an isomorphic inference--verification architecture that multiplexes both inference and verification roles across the same GPU workers. This design (i) improves GPU utilization and overall throughput, (ii) enlarges the effective validator set, enhancing robustness and liveness, and (iii) enforces task indistinguishability to prevent node-specific optimizations or selective behavior. Through theoretical analysis and system-level evaluation, we show that VeriLLM achieves reliable public verifiability with minimal overhead, offering a practical foundation for trustworthy and scalable decentralized LLM inference.
comment: 18 pages, 4 figures, 6 tables
Toward Robust Semi-supervised Regression via Dual-stream Knowledge Distillation
Semi-supervised regression (SSR), which aims to predict continuous scores of samples while reducing reliance on a large amount of labeled data, has recently received considerable attention across various applications, including computer vision, natural language processing, and audio and medical analysis. Existing SSR methods typically train models on scarce labeled data by introducing constraint-based regularization or ordinal ranking to reduce overfitting. However, these approaches fail to fully exploit the abundance of unlabeled samples. While consistency-driven pseudo-labeling methods attempt to incorporate unlabeled data, they are highly sensitive to pseudo-label quality and noisy predictions. To address these challenges, we introduce a Dual-stream Knowledge Distillation framework (DKD), which is specially designed for the SSR task to distill knowledge from both continuous-valued knowledge and distribution information, better preserving regression magnitude information and improving sample efficiency. Specifically, in DKD, the teacher is optimized solely with ground-truth labels for label distribution estimation, while the student learns from a mixture of real labels and teacher-generated pseudo targets on unlabeled data. The distillation design ensures the effective supervision transfer, allowing the student to leverage pseudo labels more robustly. Then, we introduce an advanced Decoupled Distribution Alignment (DDA) to align the target class and non-target class between teacher and student on the distribution, enhancing the student's capacity to mitigate noise in pseudo-label supervision and learn a more well-calibrated regression predictor.
comment: 12 pages
SeVeDo: A Heterogeneous Transformer Accelerator for Low-Bit Inference via Hierarchical Group Quantization and SVD-Guided Mixed Precision
Low-bit quantization is a promising technique for efficient transformer inference by reducing computational and memory overhead. However, aggressive bitwidth reduction remains challenging due to activation outliers, leading to accuracy degradation. Existing methods, such as outlier-handling and group quantization, achieve high accuracy but incur substantial energy consumption. To address this, we propose SeVeDo, an energy-efficient SVD-based heterogeneous accelerator that structurally separates outlier-sensitive components into a high-precision low-rank path, while the remaining computations are executed in a low-bit residual datapath with group quantization. To further enhance efficiency, Hierarchical Group Quantization (HGQ) combines coarse-grained floating-point scaling with fine-grained shifting, effectively reducing dequantization cost. Also, SVD-guided mixed precision (SVD-MP) statically allocates higher bitwidths to precision-sensitive components identified through low-rank decomposition, thereby minimizing floating-point operation cost. Experimental results show that SeVeDo achieves a peak energy efficiency of 13.8TOPS/W, surpassing conventional designs, with 12.7TOPS/W on ViT-Base and 13.4TOPS/W on Llama2-7B benchmarks.
comment: IEEE International Symposium on Circuits and Systems (ISCAS) 2026
The Utility of the Virtual Imaging Trials Methodology for Objective Characterization of AI Systems and Training Data
Purpose: The credibility of Artificial Intelligence (AI) models for medical imaging continues to be a challenge, affected by the diversity of models, the data used to train the models, and applicability of their combination to produce reproducible results for new data. In this work, we aimed to explore whether emerging Virtual Imaging Trials (VIT) methodologies can provide an objective resource to approach this challenge. Approach: The study was conducted for the case example of COVID-19 diagnosis using clinical and virtual computed tomography (CT) and chest radiography (CXR) processed with convolutional neural networks. Multiple AI models were developed and tested using 3D ResNet-like and 2D EfficientNetv2 architectures across diverse datasets. Results: Model performance was evaluated using the area under the curve (AUC) and the DeLong method for AUC confidence intervals. The models trained on the most diverse datasets showed the highest external testing performance, with AUC values ranging from 0.73-0.76 for CT and 0.70-0.73 for CXR. Internal testing yielded higher AUC values (0.77-0.85 for CT and 0.77-1.0 for CXR), highlighting a substantial drop in performance during external validation, which underscores the importance of diverse and comprehensive training and testing data. Most notably, the VIT approach provided objective assessment of the utility of diverse models and datasets, while offering insight into the influence of dataset characteristics, patient factors, and imaging physics on AI efficacy. Conclusions: The VIT approach enhances model transparency and reliability, offering nuanced insights into the factors driving AI performance and bridging the gap between experimental and clinical settings.
comment: 8 figures, 4 Tables, 1 Supplement
Adaptively Point-weighting Curriculum Learning
Curriculum learning (CL) mimics human learning, in which easy samples are learned first, followed by harder samples, and has become an effective method for training deep networks. However, many existing automatic CL methods maintain a preference for easy samples during the entire training process regardless of the constantly evolving training state. This is just like a human curriculum that fails to provide individualized instruction, which can delay learning progress. To address this issue, we propose an adaptively point-weighting (APW) curriculum learning method that assigns a weight to each training sample based on its training loss. The weighting strategy of APW follows the easy-to-hard training paradigm, guided by the current training state of the network. We present a theoretical analysis of APW, including training effectiveness, training stability, and generalization performance. Experimental results validate these theoretical findings and demonstrate the superiority of the proposed APW method.
Do Sparse Autoencoders Identify Reasoning Features in Language Models?
We investigate whether sparse autoencoders identify genuine reasoning features in large language models. We first present a stylized theoretical analysis showing that sparsity-regularized decoding favors stable low-dimensional correlates over high-dimensional within-reasoning variation, biasing learned features toward token-level cues. Motivated by this analysis, we introduce a falsification-based evaluation framework that combines causal token injection with LLM-guided counterexample generation to distinguish genuine reasoning features from superficial linguistic correlates. Across 22 configurations spanning multiple model families, layers and datasets, we find that contrastively selected reasoning features are highly sensitive to token interventions, with 45%-90% activating when only a few associated tokens are injected into non-reasoning text. For the remaining features, LLM-guided falsification reliably constructs non-reasoning inputs that instantiate the feature's token-level cues and trigger activation, and meaning-preserving paraphrases of top-activating reasoning traces that suppress it. Steering the highest-ranked features yields no improvements on benchmarks. Overall, our results suggest that when low-dimensional token-level patterns are coupled with high-dimensional reasoning processes, the sparsity bias of SAEs systematically favors low-dimensional linguistic patterns that consistently co-occur with reasoning. Code is available at https://github.com/GeorgeMLP/reasoning-probing.
DECOR: Deep Embedding Clustering with Orientation Robustness AAAI 2026
In semiconductor manufacturing, early detection of wafer defects is critical for product yield optimization. However, raw wafer data from wafer quality tests are often complex, unlabeled, imbalanced and can contain multiple defects on a single wafer, making it crucial to design clustering methods that remain reliable under such imperfect data conditions. We introduce DECOR, a deep clustering with orientation robustness framework that groups complex defect patterns from wafer maps into consistent clusters. We evaluate our method on the open source MixedWM38 dataset, demonstrating its ability to discover clusters without manual tuning. DECOR explicitly accounts for orientation variations in wafer maps, ensuring that spatially similar defects are consistently clustered regardless of its rotation or alignment. Experiments indicate that our method outperforms existing clustering baseline methods, thus providing a reliable and scalable solution in automated visual inspection systems.
comment: Accepted to the KGML Bridge at AAAI 2026 (non-archival)
Local minima of the empirical risk in high dimension: General theorems and convex examples
We consider a general model for high-dimensional empirical risk minimization whereby the data $\mathbf{x}_i$ are $d$-dimensional Gaussian vectors, the model is parametrized by $\mathbfΘ\in\mathbb{R}^{d\times k}$, and the loss depends on the data via the projection $\mathbfΘ^\mathsf{T}\mathbf{x}_i$. This setting covers as special cases classical statistics methods (e.g. multinomial regression and other generalized linear models), but also two-layer fully connected neural networks with $k$ hidden neurons. We use the Kac-Rice formula from Gaussian process theory to derive a bound on the expected number of local minima of this empirical risk, under the proportional asymptotics in which $n,d\to\infty$, with $n\asymp d$. Via Markov's inequality, this bound allows to determine the positions of these minimizers (with exponential deviation bounds) and hence derive sharp asymptotics on the estimation and prediction error. As a special case, we apply our characterization to convex losses. We show that our approach is tight and allows to prove previously conjectured results. In addition, we characterize the spectrum of the Hessian at the minimizer. A companion paper applies our general result to non-convex examples.
Optimising for Energy Efficiency and Performance in Machine Learning
The ubiquity of machine learning (ML) and the demand for ever-larger models bring an increase in energy consumption and environmental impact. However, little is known about the energy scaling laws in ML, and existing research focuses on training cost -- ignoring the larger cost of inference. Furthermore, tools for measuring the energy consumption of ML do not provide actionable feedback. To address these gaps, we developed Energy Consumption Optimiser (ECOpt): a hyperparameter tuner that optimises for energy efficiency and model performance. ECOpt quantifies the trade-off between these metrics as an interpretable Pareto frontier. This enables ML practitioners to make informed decisions about energy cost and environmental impact, while maximising the benefit of their models and complying with new regulations. Using ECOpt, we show that parameter and floating-point operation counts can be unreliable proxies for energy consumption, and observe that the energy efficiency of Transformer models for text generation is relatively consistent across hardware. These findings motivate measuring and publishing the energy metrics of ML models. We further show that ECOpt can have a net positive environmental impact and use it to uncover seven models for CIFAR-10 that improve upon the state of the art, when considering accuracy and energy efficiency together.
comment: Accepted to CAIN'26
Fourier Neural Operators Explained: A Practical Perspective
Partial differential equations (PDEs) govern a wide variety of dynamical processes in science and engineering, yet obtaining their numerical solutions often requires high-resolution discretizations and repeated evaluations of complex operators, leading to substantial computational costs. Neural operators have recently emerged as a powerful framework for learning mappings between function spaces directly from data, enabling efficient surrogate models for PDE systems. Among these architectures, the Fourier Neural Operator (FNO) has become the most influential and widely adopted due to its elegant spectral formulation, which captures global correlations through learnable transformations in Fourier space while remaining invariant to discretization and resolution. Despite their success, the practical use of FNOs is often hindered by an incomplete understanding among practitioners of their theoretical foundations, practical constraints, and implementation details, which can lead to their incorrect or unreliable application. This work presents a comprehensive and practice-oriented guide to FNOs, unifying their mathematical principles with implementation strategies. We provide an intuitive exposition to the concepts of operator theory and signal-processing that underlie the FNO, detail its spectral parameterization and the computational design of all its components, and address common misunderstandings encountered in the literature. The exposition is closely integrated with the NeuralOperator 2.0.0 library, offering modular state-of-the-art implementations that faithfully reflect the theory. By connecting rigorous foundations with practical insight, this guide aims to establish a clear and reliable framework for applying FNOs effectively across diverse scientific and engineering fields.
comment: 96 pages, 27 figures
Energy-Entropy Regularization: The True Power of Minimal Looped Transformers
Recent research suggests that looped Transformers have superior reasoning capabilities compared to standard deep architectures. Current approaches to training single-head looped architectures on benchmark tasks frequently fail or yield suboptimal performance due to a highly non-convex and irregular loss landscape. In these settings, optimization often stagnates in poor local minima and saddle points of the loss landscape, preventing the model from discovering the global minimum point. The internal mechanisms of these single-head looped transformer models remain poorly understood, and training them from scratch remains a significant challenge. In this paper, we propose a novel training framework that leverages Tsallis entropy and Hamiltonian dynamics to transform the geometry of the loss landscape. By treating the parameter updates as a physical flow, we successfully trained a single-head looped Transformer with model dimension $d = 8$ to solve induction head task with input sequence length of 1000 tokens. This success reveals the internal mechanism behind the superior reasoning capability.
comment: 19 pages, 2 figures
Evaluating Adversarial Robustness of Concept Representations in Sparse Autoencoders
Sparse autoencoders (SAEs) are commonly used to interpret the internal activations of large language models (LLMs) by mapping them to human-interpretable concept representations. While existing evaluations of SAEs focus on metrics such as the reconstruction-sparsity tradeoff, human (auto-)interpretability, and feature disentanglement, they overlook a critical aspect: the robustness of concept representations to input perturbations. We argue that robustness must be a fundamental consideration for concept representations, reflecting the fidelity of concept labeling. To this end, we formulate robustness quantification as input-space optimization problems and develop a comprehensive evaluation framework featuring realistic scenarios in which adversarial perturbations are crafted to manipulate SAE representations. Empirically, we find that tiny adversarial input perturbations can effectively manipulate concept-based interpretations in most scenarios without notably affecting the base LLM's activations. Overall, our results suggest that SAE concept representations are fragile and without further denoising or postprocessing they might be ill-suited for applications in model monitoring and oversight.
Enhancing Model Context Protocol (MCP) with Context-Aware Server Collaboration
The Model Context Protocol (MCP) (MCP Community, 2025) has emerged as a widely used framework for enabling LLM-based agents to communicate with external tools and services. The original MCP implementation (Anthropic, 2024) relies on a Large Language Model (LLM) to decompose tasks and issue instructions to servers. In particular, the agents, models, and servers are stateless and do not have access to a global context. However, in tasks involving LLM-driven coordination, it is natural that a Shared Context Store (SCS) could improve the efficiency and coherence of multi-agent workflows by reducing redundancy and enabling knowledge transfer between servers. Thus, in this work, we design and assess the performance of a Context-Aware MCP (CA-MCP) that offloads execution logic to specialized MCP servers that read from and write to a shared context memory, allowing them to coordinate more autonomously in real time. In this design, context management serves as the central mechanism that maintains continuity across task executions by tracking intermediate states and shared variables, thereby enabling persistent collaboration among agents without repeated prompting. We present experiments showing that the CA-MCP can outperform the traditional MCP by reducing the number of LLM calls required for complex tasks and decreasing the frequency of response failures when task conditions are not satisfied. In particular, we conducted experiments on the TravelPlanner (Yang et al., 2024) and REALM-Bench (Geng & Chang, 2025) benchmark datasets and observed statistically significant results indicating the potential advantages of incorporating a shared context store via CA-MCP in LLM-driven multi-agent systems.
Temporal Conformal Prediction (TCP): A Distribution-Free Statistical and Machine Learning Framework for Adaptive Risk Forecasting
We propose \textbf{Temporal Conformal Prediction (TCP)}, a distribution-free framework for constructing well-calibrated prediction intervals in nonstationary time series. TCP couples a modern quantile forecaster with a rolling split-conformal calibration layer; its \textbf{TCP-RM} variant adds an online Robbins-Monro offset to steer coverage in real time. We benchmark TCP against GARCH, Historical Simulation, Quantile Regression (QR), linear QR, and Adaptive Conformal Inference (ACI) across S\&P 500, Bitcoin, and Gold. Three results are consistent. First, QR baselines yield the sharpest intervals but are materially under-calibrated; even ACI remains below the 95\% target. Second, TCP achieves near-nominal coverage, yielding intervals slightly wider than Historical Simulation (e.g., S\&P 500: 5.21 vs.\ 5.06). Third, the RM update changes calibration only marginally at default hyperparameters. Crisis-window visualizations (March 2020) show TCP promptly expanding and contracting intervals as volatility spikes. A sensitivity study confirms robustness to hyperparameters. Overall, TCP bridges statistical inference and machine learning, providing a practical solution for calibrated risk forecasting under distribution shift.
Towards Fast Safe Online Reinforcement Learning via Policy Finetuning
The high costs and risks involved in extensive environment interactions hinder the practical application of current online safe reinforcement learning (RL) methods. While offline safe RL addresses this by learning policies from static datasets, the performance therein is usually limited due to reliance on data quality and challenges with out-of-distribution (OOD) actions. Inspired by recent successes in offline-to-online (O2O) RL, it is crucial to explore whether offline safe RL can be leveraged to facilitate faster and safer online policy learning, a direction that has yet to be fully investigated. To fill this gap, we first demonstrate that naively applying existing O2O algorithms from standard RL would not work well in the safe RL setting due to two unique challenges: \emph{erroneous Q-estimations}, resulted from offline-online objective mismatch and offline cost sparsity, and \emph{Lagrangian mismatch}, resulted from difficulties in aligning Lagrange multipliers between offline and online policies. To address these challenges, we introduce \textbf{Marvel}, a novel framework for O2O safe RL, comprising two key components that work in concert: \emph{Value Pre-Alignment} to align the Q-functions with the underlying truth before online learning, and \emph{Adaptive PID Control} to effectively adjust the Lagrange multipliers during online finetuning. Extensive experiments demonstrate that Marvel significantly outperforms existing baselines in both reward maximization and safety constraint satisfaction. By introducing the first policy-finetuning based framework for O2O safe RL, which is compatible with many offline and online safe RL methods, our work has the great potential to advance the field towards more efficient and practical safe RL solutions.
comment: Accepted by Transactions on Machine Learning Research (TMLR), 2026
Optimal CO2 storage management considering safety constraints in multi-stakeholder multi-site CCS projects: a Markov game perspective
Carbon capture and storage (CCS) projects typically involve a diverse array of stakeholders or players from public, private, and regulatory sectors, each with different objectives and responsibilities. Given the complexity, scale, and long-term nature of CCS operations, determining whether individual stakeholders can independently maximize their interests or whether collaborative coalition agreements are needed remains a central question for effective CCS project planning and management. CCS projects are often implemented in geologically connected sites, where shared geological features such as pressure space and reservoir pore capacity can lead to competitive behavior among stakeholders. Furthermore, CO2 storage sites are often located in geologically mature basins that previously served as sites for hydrocarbon extraction or wastewater disposal in order to leverage existing infrastructures, which makes unilateral optimization even more complicated and unrealistic. In this work, we propose a paradigm based on Markov games to quantitatively investigate how different coalition structures affect the goals of stakeholders. We frame this multi-stakeholder multi-site problem as a multi-agent reinforcement learning problem with safety constraints. Our approach enables agents to learn optimal strategies while compliant with safety regulations. We present an example where multiple operators are injecting CO2 into their respective project areas in a geologically connected basin. To address the high computational cost of repeated simulations of high-fidelity models, a previously developed surrogate model based on the Embed-to-Control (E2C) framework is employed. Our results demonstrate the effectiveness of the proposed framework in addressing optimal management of CO2 storage when multiple stakeholders with various objectives and goals are involved.
comment: 58 pages
Neural Logic Networks for Interpretable Classification
Traditional neural networks have an impressive classification performance, but what they learn cannot be inspected, verified or extracted. Neural Logic Networks on the other hand have an interpretable structure that enables them to learn a logical mechanism relating the inputs and outputs with AND and OR operations. We generalize these networks with NOT operations and biases that take into account unobserved data and develop a rigorous logical and probabilistic modeling in terms of concept combinations to motivate their use. We also propose a novel factorized IF-THEN rule structure for the model as well as a modified learning algorithm. Our method improves the state-of-the-art in Boolean networks discovery and is able to learn relevant, interpretable rules in tabular classification, notably on examples from the medical and industrial fields where interpretability has tangible value.
comment: 25 pages, 8 figures, pre-print, code available at https://github.com/VincentPerreault0/NeuralLogicNetworks
Shape of Thought: When Distribution Matters More than Correctness in Reasoning Tasks
We present the surprising finding that a language model's reasoning capabilities can be improved by training on synthetic datasets of chain-of-thought (CoT) traces from more capable models, even when all of those traces lead to an incorrect final answer. Our experiments show this approach can yield better performance on reasoning tasks than training on human-annotated datasets. We hypothesize that two key factors explain this phenomenon: first, the distribution of synthetic data is inherently closer to the language model's own distribution, making it more amenable to learning. Second, these `incorrect' traces are often only partially flawed and contain valid reasoning steps from which the model can learn. To further test the first hypothesis, we use a language model to paraphrase human-annotated traces -- shifting their distribution closer to the model's own distribution -- and show that this improves performance. For the second hypothesis, we introduce increasingly flawed CoT traces and study to what extent models are tolerant to these flaws. We demonstrate our findings across various reasoning domains like math, algorithmic reasoning and code generation using MATH, GSM8K, Countdown and MBPP datasets on various language models ranging from 1.5B to 9B across Qwen, Llama, and Gemma models. Our study shows that curating datasets that are closer to the model's distribution is a critical aspect to consider. We also show that a correct final answer is not always a reliable indicator of a faithful reasoning process.
Adaptive Spatial Goodness Encoding: Advancing and Scaling Forward-Forward Learning Without Backpropagation
The Forward-Forward (FF) algorithm offers a promising alternative to backpropagation (BP). Despite advancements in recent FF-based extensions, which have enhanced the original algorithm and adapted it to convolutional neural networks (CNNs), they often suffer from limited representational capacity and poor scalability to large-scale datasets, primarily due to exploding channel dimensionality. In this work, we propose adaptive spatial goodness encoding (ASGE), a new FF-based training framework tailored for CNNs. ASGE leverages feature maps to compute spatially-aware goodness representations at each layer, enabling layer-wise supervision. Crucially, this approach decouples classification complexity from channel dimensionality, thereby addressing the issue of channel explosion and achieving competitive performance compared to other BP alternatives. ASGE outperforms all other FF-based approaches across multiple benchmarks, delivering test accuracies of 99.65% on MNIST, 93.41% on FashionMNIST, 90.62% on CIFAR-10, and 65.42% on CIFAR-100. Moreover, we present the first successful application of FF-based training to ImageNet, with Top-1 and Top-5 accuracies of 51.58% and 75.23%. Furthermore, we propose three prediction strategies to achieve flexible trade-offs among accuracy, parameters and memory usage, enabling deployment under diverse resource constraints.
comment: Accepted by 2026 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP2026)
Quotation-Based Data Retention Mechanism for Data Privacy in LLM-Empowered Network Services
The deployment of large language models (LLMs) for next-generation network optimization introduces novel data governance challenges. mobile network operators (MNOs) increasingly leverage generative artificial intelligence (AI) for traffic prediction, anomaly detection, and service personalization, requiring access to users' sensitive network usage data-including mobility patterns, traffic types, and location histories. Under the General Data Protection Regulation (GDPR), the California Consumer Privacy Act (CCPA), and similar regulations, users retain the right to withdraw consent and demand data deletion. However, extensive machine unlearning degrades model accuracy and incurs substantial computational costs, ultimately harming network performance for all users. We propose an iterative price discovery mechanism enabling MNOs to compensate users for data retention through sequential price quotations. The server progressively raises the unit price for retaining data while users independently determine their supply at each quoted price. This approach requires no prior knowledge of users' privacy preferences and efficiently maximizes social welfare across the network ecosystem.
comment: Submitted to IEEE ICC 2026 WKSPS
A Concept-Centric Approach to Multi-Modality Learning
Humans possess a remarkable ability to acquire knowledge efficiently and apply it across diverse modalities through a coherent and shared understanding of the world. Inspired by this cognitive capability, we introduce a concept-centric multi-modality learning framework built around a modality-agnostic concept space that captures structured, abstract knowledge, alongside a set of modality-specific projection models that map raw inputs onto this shared space. The concept space is decoupled from any specific modality and serves as a repository of universally applicable knowledge. Once learned, the knowledge embedded in the concept space enables more efficient adaptation to new modalities, as projection models can align with existing conceptual representations rather than learning from scratch. This efficiency is empirically validated in our experiments, where the proposed framework exhibits faster convergence compared to baseline models. In addition, the framework's modular design supports seamless integration of new modalities, since projection models are trained independently yet produce unified outputs within the shared concept space. We evaluate the framework on two representative downstream tasks. While the focus is not on task-specific optimization, the framework attains comparable results with a smaller training footprint, no task-specific fine-tuning, and inference performed entirely within a shared space of learned concepts that offers interpretability. These findings point toward a promising direction for developing learning systems that operate in a manner more consistent with human cognitive processes.
comment: Published in Transactions on Machine Learning Research (TMLR), 2026. Official version: https://openreview.net/forum?id=8WAAPP32c7
Bayesian Ensembling: Insights from Online Optimization and Empirical Bayes
We revisit the classical problem of Bayesian ensembles and address the challenge of learning optimal combinations of Bayesian models in an online, continual learning setting. To this end, we reinterpret existing approaches such as Bayesian model averaging (BMA) and Bayesian stacking through a novel empirical Bayes lens, shedding new light on the limitations and pathologies of BMA. Further motivated by insights from online optimization, we propose Online Bayesian Stacking (OBS), a method that optimizes the log-score over predictive distributions to adaptively combine Bayesian models. A key contribution of our work is establishing a novel connection between OBS and portfolio selection, bridging Bayesian ensemble learning with a rich, well-studied theoretical framework that offers efficient algorithms and extensive regret analysis. We further clarify the relationship between OBS and online BMA, showing that they optimize related but distinct cost functions. Through theoretical analysis and empirical evaluation, we identify scenarios where OBS outperforms online BMA and provide principled methods and guidance on when practitioners should prefer one approach over the other.
comment: 28 pages, 10 figures; Accepted to Transactions on Machine Learning Research (TMLR)
Comparing Specialised Small and General Large Language Models on Text Classification: 100 Labelled Samples to Achieve Break-Even Performance
When solving NLP tasks with limited labelled data, researchers typically either use a general large language model without further update, or use a small number of labelled samples to tune a specialised smaller model. In this work, we answer an important question -- how many labelled samples are required for the specialised small models to outperform general large models, while taking the performance variance into consideration. By observing the behaviour of fine-tuning, instruction-tuning, prompting and in-context learning on 8 language models, we identify such performance break-even points across 8 representative text classification tasks of varying characteristics. We show that the specialised models often need only few samples (on average $100$) to be on par or better than the general ones. At the same time, the number of required labels strongly depends on the dataset or task characteristics, with fine-tuning on binary datasets requiring significantly more samples. When performance variance is taken into consideration, the number of required labels increases on average by $100 - 200\%$. Finally, larger models do not consistently lead to better performance and lower variance, with 4-bit quantisation having negligible impact.
comment: Accepted to the EMNLP 2025 conference
State Space Models Naturally Produce Time Cell and Oscillatory Behaviors and Scale to Abstract Cognitive Functions
A grand challenge in modern neuroscience is to bridge the gap between the detailed mapping of microscale neural circuits and mechanistic understanding of cognitive functions. While extensive knowledge exists about neuronal connectivity and biophysics, how these low-level phenomena eventually produce abstract behaviors remains largely unresolved. Here, we propose that a framework based on State Space Models, an emerging class of deep learning architectures, can help bridge this gap. We suggest that the differential equations governing elements in a State Space Model are conceptually consistent with the dynamics of biophysical processes, while the model offers a scalable framework to build on the dynamics to produce emergent behaviors observed in experimental neuroscience. We test this framework by training a model employing a diagonal state transition matrix on temporal discrimination tasks with reinforcement learning. Our results suggest that neural behaviors such as time cells naturally emerge from two fundamental principles: optimal pre-configuration and rotational dynamics. These features are shown mathematically to optimize history compression, and naturally generate structured temporal dynamics even prior to training, mirroring recent findings in biological circuits. We show that learning acts primarily as a selection mechanism that fine-tunes these pre-configured oscillatory modes, rather than constructing temporal codes de novo. The model can be readily scaled to abstract cognitive functions such as event counting, supporting the use of State Space Models as a computationally tractable framework for understanding neural activities.
comment: Sen Lu and Xiaoyu Zhang contributed equally. Wei D. Lu is the corresponding author. 5 figures are included in 15 pages
Variance-Reduced Diffusion Sampling via Target Score Identity
We study variance reduction for score estimation and diffusion-based sampling in settings where the clean (target) score is available or can be approximated. Starting from the Target Score Identity (TSI), which expresses the noisy marginal score as a conditional expectation of the target score under the forward diffusion, we develop: (i) a plug-and-play nonparametric self-normalized importance sampling estimator compatible with standard reverse-time solvers, (ii) a variance-minimizing \emph{state- and time-dependent} blending rule between Tweedie-type and TSI estimators together with an anti-correlation analysis, (iii) a data-only extension based on locally fitted proxy scores, and (iv) a likelihood-tilting extension to Bayesian inverse problems. We also propose a \emph{Critic--Gate} distillation scheme that amortizes the state-dependent blending coefficient into a neural gate. Experiments on synthetic targets and PDE-governed inverse problems demonstrate improved sample quality for a fixed simulation budget.
comment: Updated to match journal submission and add ACM & MSC class info
FlashMD: long-stride, universal prediction of molecular dynamics NeurIPS 2025
Molecular dynamics (MD) provides insights into atomic-scale processes by integrating over time the equations that describe the motion of atoms under the action of interatomic forces. Machine learning models have substantially accelerated MD by providing inexpensive predictions of the forces, but they remain constrained to minuscule time integration steps, which are required by the fast time scale of atomic motion. In this work, we propose FlashMD, a method to predict the evolution of positions and momenta over strides that are between one and two orders of magnitude longer than typical MD time steps. We incorporate considerations on the mathematical and physical properties of Hamiltonian dynamics in the architecture, generalize the approach to allow the simulation of any thermodynamic ensemble, and carefully assess the possible failure modes of such a long-stride MD approach. We validate FlashMD's accuracy in reproducing equilibrium and time-dependent properties, using both system-specific and general-purpose models, extending the ability of MD simulation to reach the long time scales needed to model microscopic processes of high scientific and technological relevance.
comment: NeurIPS 2025 (Spotlight)
Graphics 4
Is this chart lying to me? Automating the detection of misleading visualizations
Misleading visualizations are a potent driver of misinformation on social media and the web. By violating chart design principles, they distort data and lead readers to draw inaccurate conclusions. Prior work has shown that both humans and multimodal large language models (MLLMs) are frequently deceived by such visualizations. Automatically detecting misleading visualizations and identifying the specific design rules they violate could help protect readers and reduce the spread of misinformation. However, the training and evaluation of AI models has been limited by the absence of large, diverse, and openly available datasets. In this work, we introduce Misviz, a benchmark of 2,604 real-world visualizations annotated with 12 types of misleaders. To support model training, we also create Misviz-synth, a synthetic dataset of 57,665 visualizations generated using Matplotlib and based on real-world data tables. We perform a comprehensive evaluation on both datasets using state-of-the-art MLLMs, rule-based systems, and image-axis classifiers. Our results reveal that the task remains highly challenging. We release Misviz, Misviz-synth, and the accompanying code.
comment: Preprint under review. Code and data available at: https://github.com/UKPLab/arxiv2025-misviz
Anisotropic Green Coordinates
We live in a world filled with anisotropy, a ubiquitous characteristic of both natural and engineered systems. In this study, we concentrate on space deformation and introduce \textit{anisotropic Green coordinates}, which provide versatile effects for cage-based and variational deformations in both two and three dimensions. The anisotropic Green coordinates are derived from the anisotropic Laplacian equation $\nabla\cdot(\mathbf{A}\nabla u)=0$, where $\mathbf{A}$ is a symmetric positive definite matrix. This equation belongs to the class of constant-coefficient second-order elliptic equations, exhibiting properties analogous to the Laplacian equation but incorporating the matrix $\mathbf{A}$ to characterize anisotropic behavior. Based on this equation, we establish the boundary integral formulation, which is subsequently discretized to derive anisotropic Green coordinates defined on the vertices and normals of oriented simplicial cages. Our method satisfies basic properties such as linear reproduction and translation invariance, and possesses closed-form expressions for both 2D and 3D scenarios. We also give an intuitive geometric interpretation of the approach, demonstrating that our method generates a quasi-conformal mapping. Furthermore, we derive the gradients and Hessians of the deformation coordinates and employ the local-global optimization framework to facilitate variational shape deformation, enabling flexible shape manipulation while achieving as-rigid-as-possible shape deformation. Experimental results demonstrate that anisotropic Green coordinates offer versatile and diverse deformation options, providing artists with enhanced flexibility and introducing a novel perspective on spatial deformation.
Yesnt: Are Diffusion Relighting Models Ready for Capture Stage Compositing? A Hybrid Alternative to Bridge the Gap
Volumetric video relighting is essential for bringing captured performances into virtual worlds, but current approaches struggle to deliver temporally stable, production-ready results. Diffusion-based intrinsic decomposition methods show promise for single frames, yet suffer from stochastic noise and instability when extended to sequences, while video diffusion models remain constrained by memory and scale. We propose a hybrid relighting framework that combines diffusion-derived material priors with temporal regularization and physically motivated rendering. Our method aggregates multiple stochastic estimates of per-frame material properties into temporally consistent shading components, using optical-flow-guided regularization. For indirect effects such as shadows and reflections, we extract a mesh proxy from Gaussian Opacity Fields and render it within a standard graphics pipeline. Experiments on real and synthetic captures show that this hybrid strategy achieves substantially more stable relighting across sequences than diffusion-only baselines, while scaling beyond the clip lengths feasible for video diffusion. These results indicate that hybrid approaches, which balance learned priors with physically grounded constraints, are a practical step toward production-ready volumetric video relighting.
Vision-as-Inverse-Graphics Agent via Interleaved Multimodal Reasoning
Vision-as-inverse-graphics, the concept of reconstructing an image as an editable graphics program is a long-standing goal of computer vision. Yet even strong VLMs aren't able to achieve this in one-shot as they lack fine-grained spatial and physical grounding capability. Our key insight is that closing this gap requires interleaved multimodal reasoning through iterative execution and verification. Stemming from this, we present VIGA (Vision-as-Inverse-Graphic Agent) that starts from an empty world and reconstructs or edits scenes through a closed-loop write-run-render-compare-revise procedure. To support long-horizon reasoning, VIGA combines (i) a skill library that alternates generator and verifier roles and (ii) an evolving context memory that contains plans, code diffs, and render history. VIGA is task-agnostic as it doesn't require auxiliary modules, covering a wide range of tasks such as 3D reconstruction, multi-step scene editing, 4D physical interaction, and 2D document editing, etc. Empirically, we found VIGA substantially improves one-shot baselines on BlenderGym (35.32%) and SlideBench (117.17%). Moreover, VIGA is also model-agnostic as it doesn't require finetuning, enabling a unified protocol to evaluate heterogeneous foundation VLMs. To better support this protocol, we introduce BlenderBench, a challenging benchmark that stress-tests interleaved multimodal reasoning with graphics engine, where VIGA improves by 124.70%.
comment: Project page: https://fugtemypt123.github.io/VIGA-website/
Video World Models 12
Experience with Single Domain Generalization in Real World Medical Imaging Deployments AAAI 2026
A desirable property of any deployed artificial intelligence is generalization across domains, i.e. data generation distribution under a specific acquisition condition. In medical imagining applications the most coveted property for effective deployment is Single Domain Generalization (SDG), which addresses the challenge of training a model on a single domain to ensure it generalizes well to unseen target domains. In multi-center studies, differences in scanners and imaging protocols introduce domain shifts that exacerbate variability in rare class characteristics. This paper presents our experience on SDG in real life deployment for two exemplary medical imaging case studies on seizure onset zone detection using fMRI data, and stress electrocardiogram based coronary artery detection. Utilizing the commonly used application of diabetic retinopathy, we first demonstrate that state-of-the-art SDG techniques fail to achieve generalized performance across data domains. We then develop a generic expert knowledge integrated deep learning technique DL+EKE and instantiate it for the DR application and show that DL+EKE outperforms SOTA SDG methods on DR. We then deploy instances of DL+EKE technique on the two real world examples of stress ECG and resting state (rs)-fMRI and discuss issues faced with SDG techniques.
comment: Accepted at AAAI 2026 Innovative Applications of Artificial Intelligence
Where is the multimodal goal post? On the Ability of Foundation Models to Recognize Contextually Important Moments
Foundation models are used for many real-world applications involving language generation from temporally-ordered multimodal events. In this work, we study the ability of models to identify the most important sub-events in a video, which is a fundamental prerequisite for narrating or summarizing multimodal events. Specifically, we focus on football games and evaluate models on their ability to distinguish between important and non-important sub-events in a game. To this end, we construct a new dataset by leveraging human preferences for importance implicit in football game highlight reels, without any additional annotation costs. Using our dataset, which we will publicly release to the community, we compare several state-of-the-art multimodal models and show that they are not far from chance level performance. Analyses of models beyond standard evaluation metrics reveal their tendency to rely on a single dominant modality and their ineffectiveness in synthesizing necessary information from multiple sources. Our findings underline the importance of modular architectures that can handle sample-level heterogeneity in multimodal data and the need for complementary training procedures that can maximize cross-modal synergy.
Memory-V2V: Augmenting Video-to-Video Diffusion Models with Memory
Recent foundational video-to-video diffusion models have achieved impressive results in editing user provided videos by modifying appearance, motion, or camera movement. However, real-world video editing is often an iterative process, where users refine results across multiple rounds of interaction. In this multi-turn setting, current video editors struggle to maintain cross-consistency across sequential edits. In this work, we tackle, for the first time, the problem of cross-consistency in multi-turn video editing and introduce Memory-V2V, a simple, yet effective framework that augments existing video-to-video models with explicit memory. Given an external cache of previously edited videos, Memory-V2V employs accurate retrieval and dynamic tokenization strategies to condition the current editing step on prior results. To further mitigate redundancy and computational overhead, we propose a learnable token compressor within the DiT backbone that compresses redundant conditioning tokens while preserving essential visual cues, achieving an overall speedup of 30%. We validate Memory-V2V on challenging tasks including video novel view synthesis and text-conditioned long video editing. Extensive experiments show that Memory-V2V produces videos that are significantly more cross-consistent with minimal computational overhead, while maintaining or even improving task-specific performance over state-of-the-art baselines. Project page: https://dohunlee1.github.io/MemoryV2V
comment: Project page: https://dohunlee1.github.io/MemoryV2V
A Mechanistic View on Video Generation as World Models: State and Dynamics
Large-scale video generation models have demonstrated emergent physical coherence, positioning them as potential world models. However, a gap remains between contemporary "stateless" video architectures and classic state-centric world model theories. This work bridges this gap by proposing a novel taxonomy centered on two pillars: State Construction and Dynamics Modeling. We categorize state construction into implicit paradigms (context management) and explicit paradigms (latent compression), while dynamics modeling is analyzed through knowledge integration and architectural reformulation. Furthermore, we advocate for a transition in evaluation from visual fidelity to functional benchmarks, testing physical persistence and causal reasoning. We conclude by identifying two critical frontiers: enhancing persistence via data-driven memory and compressed fidelity, and advancing causality through latent factor decoupling and reasoning-prior integration. By addressing these challenges, the field can evolve from generating visually plausible videos to building robust, general-purpose world simulators.
Cosmos Policy: Fine-Tuning Video Models for Visuomotor Control and Planning
Recent video generation models demonstrate remarkable ability to capture complex physical interactions and scene evolution over time. To leverage their spatiotemporal priors, robotics works have adapted video models for policy learning but introduce complexity by requiring multiple stages of post-training and new architectural components for action generation. In this work, we introduce Cosmos Policy, a simple approach for adapting a large pretrained video model (Cosmos-Predict2) into an effective robot policy through a single stage of post-training on the robot demonstration data collected on the target platform, with no architectural modifications. Cosmos Policy learns to directly generate robot actions encoded as latent frames within the video model's latent diffusion process, harnessing the model's pretrained priors and core learning algorithm to capture complex action distributions. Additionally, Cosmos Policy generates future state images and values (expected cumulative rewards), which are similarly encoded as latent frames, enabling test-time planning of action trajectories with higher likelihood of success. In our evaluations, Cosmos Policy achieves state-of-the-art performance on the LIBERO and RoboCasa simulation benchmarks (98.5% and 67.1% average success rates, respectively) and the highest average score in challenging real-world bimanual manipulation tasks, outperforming strong diffusion policies trained from scratch, video model-based policies, and state-of-the-art vision-language-action models fine-tuned on the same robot demonstrations. Furthermore, given policy rollout data, Cosmos Policy can learn from experience to refine its world model and value function and leverage model-based planning to achieve even higher success rates in challenging tasks. We release code, models, and training data at https://research.nvidia.com/labs/dir/cosmos-policy/
Multimodal Climate Disinformation Detection: Integrating Vision-Language Models with External Knowledge Sources
Climate disinformation has become a major challenge in today digital world, especially with the rise of misleading images and videos shared widely on social media. These false claims are often convincing and difficult to detect, which can delay actions on climate change. While vision-language models (VLMs) have been used to identify visual disinformation, they rely only on the knowledge available at the time of training. This limits their ability to reason about recent events or updates. The main goal of this paper is to overcome that limitation by combining VLMs with external knowledge. By retrieving up-to-date information such as reverse image results, online fact-checks, and trusted expert content, the system can better assess whether an image and its claim are accurate, misleading, false, or unverifiable. This approach improves the model ability to handle real-world climate disinformation and supports efforts to protect public understanding of science in a rapidly changing information landscape.
THOR: A Versatile Foundation Model for Earth Observation Climate and Society Applications
Current Earth observation foundation models are architecturally rigid, struggle with heterogeneous sensors and are constrained to fixed patch sizes. This limits their deployment in real-world scenarios requiring flexible computeaccuracy trade-offs. We propose THOR, a "computeadaptive" foundation model that solves both input heterogeneity and deployment rigidity. THOR is the first architecture to unify data from Copernicus Sentinel-1, -2, and -3 (OLCI & SLSTR) satellites, processing their native 10 m to 1000 m resolutions in a single model. We pre-train THOR with a novel randomized patch and input image size strategy. This allows a single set of pre-trained weights to be deployed at inference with any patch size, enabling a dynamic trade-off between computational cost and feature resolution without retraining. We pre-train THOR on THOR Pretrain, a new, large-scale multi-sensor dataset and demonstrate state-of-the-art performance on downstream benchmarks, particularly in data-limited regimes like the PANGAEA 10% split, validating that THOR's flexible feature generation excels for diverse climate and society applications.
comment: 25 pages
PhysicsMind: Sim and Real Mechanics Benchmarking for Physical Reasoning and Prediction in Foundational VLMs and World Models
Modern foundational Multimodal Large Language Models (MLLMs) and video world models have advanced significantly in mathematical, common-sense, and visual reasoning, but their grasp of the underlying physics remains underexplored. Existing benchmarks attempting to measure this matter rely on synthetic, Visual Question Answer templates or focus on perceptual video quality that is tangential to measuring how well the video abides by physical laws. To address this fragmentation, we introduce PhysicsMind, a unified benchmark with both real and simulation environments that evaluates law-consistent reasoning and generation over three canonical principles: Center of Mass, Lever Equilibrium, and Newton's First Law. PhysicsMind comprises two main tasks: i) VQA tasks, testing whether models can reason and determine physical quantities and values from images or short videos, and ii) Video Generation(VG) tasks, evaluating if predicted motion trajectories obey the same center-of-mass, torque, and inertial constraints as the ground truth. A broad range of recent models and video generation models is evaluated on PhysicsMind and found to rely on appearance heuristics while often violating basic mechanics. These gaps indicate that current scaling and training are still insufficient for robust physical understanding, underscoring PhysicsMind as a focused testbed for physics-aware multimodal models. Our data will be released upon acceptance.
PF-D2M: A Pose-free Diffusion Model for Universal Dance-to-Music Generation
Dance-to-music generation aims to generate music that is aligned with dance movements. Existing approaches typically rely on body motion features extracted from a single human dancer and limited dance-to-music datasets, which restrict their performance and applicability to real-world scenarios involving multiple dancers and non-human dancers. In this paper, we propose PF-D2M, a universal diffusion-based dance-to-music generation model that incorporates visual features extracted from dance videos. PF-D2M is trained with a progressive training strategy that effectively addresses data scarcity and generalization challenges. Both objective and subjective evaluations show that PF-D2M achieves state-of-the-art performance in dance-music alignment and music quality.
comment: 4 pages, 2 figures
VIOLA: Towards Video In-Context Learning with Minimal Annotations
Generalizing Multimodal Large Language Models (MLLMs) to novel video domains is essential for real-world deployment but remains challenging due to the scarcity of labeled data. While In-Context Learning (ICL) offers a training-free adaptation path, standard methods rely on large annotated pools, which are often impractical in specialized environments like industrial or surgical settings since they require the experts' annotations. To bridge this gap, we introduce VIOLA (Video In-cOntext Learning with minimal Annotation), a label-efficient framework that synergizes minimal expert supervision with abundant unlabeled data. First, to maximize the efficiency of a strict annotation budget, we propose density-uncertainty-weighted sampling. Unlike standard diversity or uncertainty strategies that risk selecting visual outliers, our method leverages density estimation to identify samples that are simultaneously diverse, representative, and informative. Second, to utilize the remaining unlabeled data without noise propagation, we construct a hybrid pool and introduce confidence-aware retrieval and confidence-aware prompting. These mechanisms explicitly model label reliability, retrieving demonstrations based on a composite score of similarity and confidence while enabling the MLLM to adaptively distinguish between verified ground truths and noisy pseudo-labels. Extensive experiments across nine diverse benchmarks using four MLLMs demonstrate that our framework significantly outperforms various baselines in low-resource settings, achieving robust adaptation with minimal annotation costs.
Yesnt: Are Diffusion Relighting Models Ready for Capture Stage Compositing? A Hybrid Alternative to Bridge the Gap
Volumetric video relighting is essential for bringing captured performances into virtual worlds, but current approaches struggle to deliver temporally stable, production-ready results. Diffusion-based intrinsic decomposition methods show promise for single frames, yet suffer from stochastic noise and instability when extended to sequences, while video diffusion models remain constrained by memory and scale. We propose a hybrid relighting framework that combines diffusion-derived material priors with temporal regularization and physically motivated rendering. Our method aggregates multiple stochastic estimates of per-frame material properties into temporally consistent shading components, using optical-flow-guided regularization. For indirect effects such as shadows and reflections, we extract a mesh proxy from Gaussian Opacity Fields and render it within a standard graphics pipeline. Experiments on real and synthetic captures show that this hybrid strategy achieves substantially more stable relighting across sequences than diffusion-only baselines, while scaling beyond the clip lengths feasible for video diffusion. These results indicate that hybrid approaches, which balance learned priors with physically grounded constraints, are a practical step toward production-ready volumetric video relighting.
Multi-event Video-Text Retrieval ICCV2023
Video-Text Retrieval (VTR) is a crucial multi-modal task in an era of massive video-text data on the Internet. A plethora of work characterized by using a two-stream Vision-Language model architecture that learns a joint representation of video-text pairs has become a prominent approach for the VTR task. However, these models operate under the assumption of bijective video-text correspondences and neglect a more practical scenario where video content usually encompasses multiple events, while texts like user queries or webpage metadata tend to be specific and correspond to single events. This establishes a gap between the previous training objective and real-world applications, leading to the potential performance degradation of earlier models during inference. In this study, we introduce the Multi-event Video-Text Retrieval (MeVTR) task, addressing scenarios in which each video contains multiple different events, as a niche scenario of the conventional Video-Text Retrieval Task. We present a simple model, Me-Retriever, which incorporates key event video representation and a new MeVTR loss for the MeVTR task. Comprehensive experiments show that this straightforward framework outperforms other models in the Video-to-Text and Text-to-Video tasks, effectively establishing a robust baseline for the MeVTR task. We believe this work serves as a strong foundation for future studies. Code is available at https://github.com/gengyuanmax/MeVTR.
comment: [fixed typos in equations] accepted to ICCV2023 Poster; some figures are not supported when viewed online, please download the file and view locally
Robotics 50
Iterative Refinement Improves Compositional Image Generation
Text-to-image (T2I) models have achieved remarkable progress, yet they continue to struggle with complex prompts that require simultaneously handling multiple objects, relations, and attributes. Existing inference-time strategies, such as parallel sampling with verifiers or simply increasing denoising steps, can improve prompt alignment but remain inadequate for richly compositional settings where many constraints must be satisfied. Inspired by the success of chain-of-thought reasoning in large language models, we propose an iterative test-time strategy in which a T2I model progressively refines its generations across multiple steps, guided by feedback from a vision-language model as the critic in the loop. Our approach is simple, requires no external tools or priors, and can be flexibly applied to a wide range of image generators and vision-language models. Empirically, we demonstrate consistent gains on image generation across benchmarks: a 16.9% improvement in all-correct rate on ConceptMix (k=7), a 13.8% improvement on T2I-CompBench (3D-Spatial category) and a 12.5% improvement on Visual Jenga scene decomposition compared to compute-matched parallel sampling. Beyond quantitative gains, iterative refinement produces more faithful generations by decomposing complex prompts into sequential corrections, with human evaluators preferring our method 58.7% of the time over 41.3% for the parallel baseline. Together, these findings highlight iterative self-correction as a broadly applicable principle for compositional image generation. Results and visualizations are available at https://iterative-img-gen.github.io/
comment: Project webpage: https://iterative-img-gen.github.io/
Rethinking Video Generation Model for the Embodied World
Video generation models have significantly advanced embodied intelligence, unlocking new possibilities for generating diverse robot data that capture perception, reasoning, and action in the physical world. However, synthesizing high-quality videos that accurately reflect real-world robotic interactions remains challenging, and the lack of a standardized benchmark limits fair comparisons and progress. To address this gap, we introduce a comprehensive robotics benchmark, RBench, designed to evaluate robot-oriented video generation across five task domains and four distinct embodiments. It assesses both task-level correctness and visual fidelity through reproducible sub-metrics, including structural consistency, physical plausibility, and action completeness. Evaluation of 25 representative models highlights significant deficiencies in generating physically realistic robot behaviors. Furthermore, the benchmark achieves a Spearman correlation coefficient of 0.96 with human evaluations, validating its effectiveness. While RBench provides the necessary lens to identify these deficiencies, achieving physical realism requires moving beyond evaluation to address the critical shortage of high-quality training data. Driven by these insights, we introduce a refined four-stage data pipeline, resulting in RoVid-X, the largest open-source robotic dataset for video generation with 4 million annotated video clips, covering thousands of tasks and enriched with comprehensive physical property annotations. Collectively, this synergistic ecosystem of evaluation and data establishes a robust foundation for rigorous assessment and scalable training of video models, accelerating the evolution of embodied AI toward general intelligence.
comment: Github: https://github.com/DAGroup-PKU/ReVidgen/ Project website: https://dagroup-pku.github.io/ReVidgen.github.io/
FlowSSC: Universal Generative Monocular Semantic Scene Completion via One-Step Latent Diffusion
Semantic Scene Completion (SSC) from monocular RGB images is a fundamental yet challenging task due to the inherent ambiguity of inferring occluded 3D geometry from a single view. While feed-forward methods have made progress, they often struggle to generate plausible details in occluded regions and preserve the fundamental spatial relationships of objects. Such accurate generative reasoning capability for the entire 3D space is critical in real-world applications. In this paper, we present FlowSSC, the first generative framework applied directly to monocular semantic scene completion. FlowSSC treats the SSC task as a conditional generation problem and can seamlessly integrate with existing feed-forward SSC methods to significantly boost their performance. To achieve real-time inference without compromising quality, we introduce Shortcut Flow-matching that operates in a compact triplane latent space. Unlike standard diffusion models that require hundreds of steps, our method utilizes a shortcut mechanism to achieve high-fidelity generation in a single step, enabling practical deployment in autonomous systems. Extensive experiments on SemanticKITTI demonstrate that FlowSSC achieves state-of-the-art performance, significantly outperforming existing baselines.
comment: Under Review
MonoRace: Winning Champion-Level Drone Racing with Robust Monocular AI
Autonomous drone racing represents a major frontier in robotics research. It requires an Artificial Intelligence (AI) that can run on board light-weight flying robots under tight resource and time constraints, while pushing the physical system to its limits. The state of the art in this area consists of a system with a stereo camera and an inertial measurement unit (IMU) that beat human drone racing champions in a controlled indoor environment. Here, we present MonoRace: an onboard drone racing approach that uses a monocular, rolling-shutter camera and IMU that generalizes to a competition environment without any external motion tracking system. The approach features robust state estimation that combines neural-network-based gate segmentation with a drone model. Moreover, it includes an offline optimization procedure that leverages the known geometry of gates to refine any state estimation parameter. This offline optimization is based purely on onboard flight data and is important for fine-tuning the vital external camera calibration parameters. Furthermore, the guidance and control are performed by a neural network that foregoes inner loop controllers by directly sending motor commands. This small network runs on the flight controller at 500Hz. The proposed approach won the 2025 Abu Dhabi Autonomous Drone Racing Competition (A2RL), outperforming all competing AI teams and three human world champion pilots in a direct knockout tournament. It set a new milestone in autonomous drone racing research, reaching speeds up to 100 km/h on the competition track and successfully coping with problems such as camera interference and IMU saturation.
BayesianVLA: Bayesian Decomposition of Vision Language Action Models via Latent Action Queries
Vision-Language-Action (VLA) models have shown promise in robot manipulation but often struggle to generalize to new instructions or complex multi-task scenarios. We identify a critical pathology in current training paradigms where goal-driven data collection creates a dataset bias. In such datasets, language instructions are highly predictable from visual observations alone, causing the conditional mutual information between instructions and actions to vanish, a phenomenon we term Information Collapse. Consequently, models degenerate into vision-only policies that ignore language constraints and fail in out-of-distribution (OOD) settings. To address this, we propose BayesianVLA, a novel framework that enforces instruction following via Bayesian decomposition. By introducing learnable Latent Action Queries, we construct a dual-branch architecture to estimate both a vision-only prior $p(a \mid v)$ and a language-conditioned posterior $π(a \mid v, \ell)$. We then optimize the policy to maximize the conditional Pointwise Mutual Information (PMI) between actions and instructions. This objective effectively penalizes the vision shortcut and rewards actions that explicitly explain the language command. Without requiring new data, BayesianVLA significantly improves generalization. Extensive experiments across on SimplerEnv and RoboCasa demonstrate substantial gains, including an 11.3% improvement on the challenging OOD SimplerEnv benchmark, validating the ability of our approach to robustly ground language in action.
V-CAGE: Context-Aware Generation and Verification for Scalable Long-Horizon Embodied Tasks
Learning long-horizon embodied behaviors from synthetic data remains challenging because generated scenes are often physically implausible, language-driven programs frequently "succeed" without satisfying task semantics, and high-level instructions require grounding into executable action sequences. To address these limitations, we introduce V-CAGE, a closed-loop framework for generating robust, semantically aligned manipulation datasets at scale. First, we propose a context-aware instantiation mechanism that enforces geometric consistency during scene synthesis. By dynamically maintaining a map of prohibited spatial areas as objects are placed, our system prevents interpenetration and ensures reachable, conflict-free configurations in cluttered environments. Second, to bridge the gap between abstract intent and low-level control, we employ a hierarchical instruction decomposition module. This decomposes high-level goals (e.g., "get ready for work") into compositional action primitives, facilitating coherent long-horizon planning. Crucially, we enforce semantic correctness through a VLM-based verification loop. Acting as a visual critic, the VLM performs rigorous rejection sampling after each subtask, filtering out "silent failures" where code executes but fails to achieve the visual goal. Experiments demonstrate that V-CAGE yields datasets with superior physical and semantic fidelity, significantly boosting the success rate and generalization of downstream policies compared to non-verified baselines.
Influence of Operator Expertise on Robot Supervision and Intervention
With increasing levels of robot autonomy, robots are increasingly being supervised by users with varying levels of robotics expertise. As the diversity of the user population increases, it is important to understand how users with different expertise levels approach the supervision task and how this impacts performance of the human-robot team. This exploratory study investigates how operators with varying expertise levels perceive information and make intervention decisions when supervising a remote robot. We conducted a user study (N=27) where participants supervised a robot autonomously exploring four unknown tunnel environments in a simulator, and provided waypoints to intervene when they believed the robot had encountered difficulties. By analyzing the interaction data and questionnaire responses, we identify differing patterns in intervention timing and decision-making strategies across novice, intermediate, and expert users.
Systematic Evaluation of Hip Exoskeleton Assistance Parameters for Enhancing Gait Stability During Ground Slip Perturbations
Falls are the leading cause of injury related hospitalization and mortality among older adults. Consequently, mitigating age-related declines in gait stability and reducing fall risk during walking is a critical goal for assistive devices. Lower-limb exoskeletons have the potential to support users in maintaining stability during walking. However, most exoskeleton controllers are optimized to reduce the energetic cost of walking rather than to improve stability. While some studies report stability benefits with assistance, the effects of specific parameters, such as assistance magnitude and duration, remain unexplored. To address this gap, we systematically modulated the magnitude and duration of torque provided by a bilateral hip exoskeleton during slip perturbations in eight healthy adults, quantifying stability using whole-body angular momentum (WBAM). WBAM responses were governed by a significant interaction between assistance magnitude and duration, with duration determining whether exoskeleton assistance was stabilizing or destabilizing relative to not wearing the exoskeleton device. Compared to an existing energy-optimized controller, experimentally identified stability-optimal parameters reduced WBAM range by 25.7% on average. Notably, substantial inter-subject variability was observed in the parameter combinations that minimized WBAM during perturbations. We found that optimizing exoskeleton assistance for energetic outcomes alone is insufficient for improving reactive stability during gait perturbations. Stability-focused exoskeleton control should prioritize temporal assistance parameters and include user-specific personalization. This study represents an important step toward personalized, stability-focused exoskeleton control, with direct implications for improving stability and reducing fall risk in older adults.
CADGrasp: Learning Contact and Collision Aware General Dexterous Grasping in Cluttered Scenes
Dexterous grasping in cluttered environments presents substantial challenges due to the high degrees of freedom of dexterous hands, occlusion, and potential collisions arising from diverse object geometries and complex layouts. To address these challenges, we propose CADGrasp, a two-stage algorithm for general dexterous grasping using single-view point cloud inputs. In the first stage, we predict sparse IBS, a scene-decoupled, contact- and collision-aware representation, as the optimization target. Sparse IBS compactly encodes the geometric and contact relationships between the dexterous hand and the scene, enabling stable and collision-free dexterous grasp pose optimization. To enhance the prediction of this high-dimensional representation, we introduce an occupancy-diffusion model with voxel-level conditional guidance and force closure score filtering. In the second stage, we develop several energy functions and ranking strategies for optimization based on sparse IBS to generate high-quality dexterous grasp poses. Extensive experiments in both simulated and real-world settings validate the effectiveness of our approach, demonstrating its capability to mitigate collisions while maintaining a high grasp success rate across diverse objects and complex scenes.
ExPrIS: Knowledge-Level Expectations as Priors for Object Interpretation from Sensor Data
While deep learning has significantly advanced robotic object recognition, purely data-driven approaches often lack semantic consistency and fail to leverage valuable, pre-existing knowledge about the environment. This report presents the ExPrIS project, which addresses this challenge by investigating how knowledge-level expectations can serve as to improve object interpretation from sensor data. Our approach is based on the incremental construction of a 3D Semantic Scene Graph (3DSSG). We integrate expectations from two sources: contextual priors from past observations and semantic knowledge from external graphs like ConceptNet. These are embedded into a heterogeneous Graph Neural Network (GNN) to create an expectation-biased inference process. This method moves beyond static, frame-by-frame analysis to enhance the robustness and consistency of scene understanding over time. The report details this architecture, its evaluation, and outlines its planned integration on a mobile robotic platform.
comment: This preprint has not undergone peer review or any post-submission improvements or corrections. The Version of Record of this article is published in KI - Künstliche Intelligenz, and is available online at https://doi.org/10.1007/s13218-026-00901-7
Risk Estimation for Automated Driving
Safety is a central requirement for automated vehicles. As such, the assessment of risk in automated driving is key in supporting both motion planning technologies and safety evaluation. In automated driving, risk is characterized by two aspects. The first aspect is the uncertainty on the state estimates of other road participants by an automated vehicle. The second aspect is the severity of a collision event with said traffic participants. Here, the uncertainty aspect typically causes the risk to be non-zero for near-collision events. This makes risk particularly useful for automated vehicle motion planning. Namely, constraining or minimizing risk naturally navigates the automated vehicle around traffic participants while keeping a safety distance based on the level of uncertainty and the potential severity of the impending collision. Existing approaches to calculate the risk either resort to empirical modeling or severe approximations, and, hence, lack generalizability and accuracy. In this paper, we combine recent advances in collision probability estimation with the concept of collision severity to develop a general method for accurate risk estimation. The proposed method allows us to assign individual severity functions for different collision constellations, such as, e.g., frontal or side collisions. Furthermore, we show that the proposed approach is computationally efficient, which is beneficial, e.g., in real-time motion planning applications. The programming code for an exemplary implementation of Gaussian uncertainties is also provided.
comment: 10 pages, 5 figures
DWPP: Dynamic Window Pure Pursuit Considering Velocity and Acceleration Constraints
Pure pursuit and its variants are widely used for mobile robot path tracking owing to their simplicity and computational efficiency. However, many conventional approaches do not explicitly account for velocity and acceleration constraints, resulting in discrepancies between commanded and actual velocities that result in overshoot and degraded tracking performance. To address this problem, this paper proposes dynamic window pure pursuit (DWPP), which fundamentally reformulates the command velocity computation process to explicitly incorporate velocity and acceleration constraints. Specifically, DWPP formulates command velocity computation in the velocity space (the $v$-$ω$ plane) and selects the command velocity as the point within the dynamic window that is closest to the line $ω= κv$. Experimental results demonstrate that DWPP avoids constraint-violating commands and achieves superior path-tracking accuracy compared with conventional pure pursuit methods. The proposed method has been integrated into the official Nav2 repository and is publicly available (https://github.com/ros-navigation/navigation2).
comment: 28 pages, 12 figures
Graph-Based Adaptive Planning for Coordinated Dual-Arm Robotic Disassembly of Electronic Devices (eGRAP)
E-waste is growing rapidly while recycling rates remain low. We propose an electronic-device Graph-based Adaptive Planning (eGRAP) that integrates vision, dynamic planning, and dual-arm execution for autonomous disassembly. A camera-equipped arm identifies parts and estimates their poses, and a directed graph encodes which parts must be removed first. A scheduler uses topological ordering of this graph to select valid next steps and assign them to two robot arms, allowing independent tasks to run in parallel. One arm carries a screwdriver (with an eye-in-hand depth camera) and the other holds or handles components. We demonstrate eGRAP on 3.5in hard drives: as parts are unscrewed and removed, the system updates its graph and plan online. Experiments show consistent full disassembly of each HDD, with high success rates and efficient cycle times, illustrating the method's ability to adaptively coordinate dual-arm tasks in real time.
comment: 7 Pages, 8 Figures, 5 Tables
HumanDiffusion: A Vision-Based Diffusion Trajectory Planner with Human-Conditioned Goals for Search and Rescue UAV
Reliable human--robot collaboration in emergency scenarios requires autonomous systems that can detect humans, infer navigation goals, and operate safely in dynamic environments. This paper presents HumanDiffusion, a lightweight image-conditioned diffusion planner that generates human-aware navigation trajectories directly from RGB imagery. The system combines YOLO-11--based human detection with diffusion-driven trajectory generation, enabling a quadrotor to approach a target person and deliver medical assistance without relying on prior maps or computationally intensive planning pipelines. Trajectories are predicted in pixel space, ensuring smooth motion and a consistent safety margin around humans. We evaluate HumanDiffusion in simulation and real-world indoor mock-disaster scenarios. On a 300-sample test set, the model achieves a mean squared error of 0.02 in pixel-space trajectory reconstruction. Real-world experiments demonstrate an overall mission success rate of 80% across accident-response and search-and-locate tasks with partial occlusions. These results indicate that human-conditioned diffusion planning offers a practical and robust solution for human-aware UAV navigation in time-critical assistance settings.
comment: This paper has been accepted at HRI, Late Breaking Report, 2026
TIDAL: Temporally Interleaved Diffusion and Action Loop for High-Frequency VLA Control
Large-scale Vision-Language-Action (VLA) models offer semantic generalization but suffer from high inference latency, limiting them to low-frequency batch-and-execute paradigm. This frequency mismatch creates an execution blind spot, causing failures in dynamic environments where targets move during the open-loop execution window. We propose TIDAL (Temporally Interleaved Diffusion and Action Loop), a hierarchical framework that decouples semantic reasoning from high-frequency actuation. TIDAL operates as a backbone-agnostic module for diffusion-based VLAs, using a dual-frequency architecture to redistribute the computational budget. Specifically, a low-frequency macro-intent loop caches semantic embeddings, while a high-frequency micro-control loop interleaves single-step flow integration with execution. This design enables approximately 9 Hz control updates on edge hardware (vs. approximately 2.4 Hz baselines) without increasing marginal overhead. To handle the resulting latency shift, we introduce a temporally misaligned training strategy where the policy learns predictive compensation using stale semantic intent alongside real-time proprioception. Additionally, we address the insensitivity of static vision encoders to velocity by incorporating a differential motion predictor. TIDAL is architectural, making it orthogonal to system-level optimizations. Experiments show a 2x performance gain over open-loop baselines in dynamic interception tasks. Despite a marginal regression in static success rates, our approach yields a 4x increase in feedback frequency and extends the effective horizon of semantic embeddings beyond the native action chunk size. Under non-paused inference protocols, TIDAL remains robust where standard baselines fail due to latency.
Vision-Language Models on the Edge for Real-Time Robotic Perception
Vision-Language Models (VLMs) enable multimodal reasoning for robotic perception and interaction, but their deployment in real-world systems remains constrained by latency, limited onboard resources, and privacy risks of cloud offloading. Edge intelligence within 6G, particularly Open RAN and Multi-access Edge Computing (MEC), offers a pathway to address these challenges by bringing computation closer to the data source. This work investigates the deployment of VLMs on ORAN/MEC infrastructure using the Unitree G1 humanoid robot as an embodied testbed. We design a WebRTC-based pipeline that streams multimodal data to an edge node and evaluate LLaMA-3.2-11B-Vision-Instruct deployed at the edge versus in the cloud under real-time conditions. Our results show that edge deployment preserves near-cloud accuracy while reducing end-to-end latency by 5\%. We further evaluate Qwen2-VL-2B-Instruct, a compact model optimized for resource-constrained environments, which achieves sub-second responsiveness, cutting latency by more than half but at the cost of accuracy.
HumanoidVLM: Vision-Language-Guided Impedance Control for Contact-Rich Humanoid Manipulation
Humanoid robots must adapt their contact behavior to diverse objects and tasks, yet most controllers rely on fixed, hand-tuned impedance gains and gripper settings. This paper introduces HumanoidVLM, a vision-language driven retrieval framework that enables the Unitree G1 humanoid to select task-appropriate Cartesian impedance parameters and gripper configurations directly from an egocentric RGB image. The system couples a vision-language model for semantic task inference with a FAISS-based Retrieval-Augmented Generation (RAG) module that retrieves experimentally validated stiffness-damping pairs and object-specific grasp angles from two custom databases, and executes them through a task-space impedance controller for compliant manipulation. We evaluate HumanoidVLM on 14 visual scenarios and achieve a retrieval accuracy of 93%. Real-world experiments show stable interaction dynamics, with z-axis tracking errors typically within 1-3.5 cm and virtual forces consistent with task-dependent impedance settings. These results demonstrate the feasibility of linking semantic perception with retrieval-based control as an interpretable path toward adaptive humanoid manipulation.
comment: This paper has been accepted for publication at LBR of HRI 2026 conference
On-the-fly hand-eye calibration for the da Vinci surgical robot
In Robot-Assisted Minimally Invasive Surgery (RMIS), accurate tool localization is crucial to ensure patient safety and successful task execution. However, this remains challenging for cable-driven robots, such as the da Vinci robot, because erroneous encoder readings lead to pose estimation errors. In this study, we propose a calibration framework to produce accurate tool localization results through computing the hand-eye transformation matrix on-the-fly. The framework consists of two interrelated algorithms: the feature association block and the hand-eye calibration block, which provide robust correspondences for key points detected on monocular images without pre-training, and offer the versatility to accommodate various surgical scenarios by adopting an array of filter approaches, respectively. To validate its efficacy, we test the framework extensively on publicly available video datasets that feature multiple surgical instruments conducting tasks in both in vitro and ex vivo scenarios, under varying illumination conditions and with different levels of key point measurement accuracy. The results show a significant reduction in tool localization errors under the proposed calibration framework, with accuracies comparable to other state-of-the-art methods while being more time-efficient.
comment: 16 pages, 13 figures
From Observation to Prediction: LSTM for Vehicle Lane Change Forecasting on Highway On/Off-Ramps
On and off-ramps are understudied road sections even though they introduce a higher level of variation in highway interactions. Predicting vehicles' behavior in these areas can decrease the impact of uncertainty and increase road safety. In this paper, the difference between this Area of Interest (AoI) and a straight highway section is studied. Multi-layered LSTM architecture to train the AoI model with ExiD drone dataset is utilized. In the process, different prediction horizons and different models' workflow are tested. The results show great promise on horizons up to 4 seconds with prediction accuracy starting from about 76% for the AoI and 94% for the general highway scenarios on the maximum horizon.
Implementing Knowledge Representation and Reasoning with Object Oriented Design IJCAI
This paper introduces KRROOD, a framework designed to bridge the integration gap between modern software engineering and Knowledge Representation & Reasoning (KR&R) systems. While Object-Oriented Programming (OOP) is the standard for developing complex applications, existing KR&R frameworks often rely on external ontologies and specialized languages that are difficult to integrate with imperative code. KRROOD addresses this by treating knowledge as a first-class programming abstraction using native class structures, bridging the gap between the logic programming and OOP paradigms. We evaluate the system on the OWL2Bench benchmark and a human-robot task learning scenario. Experimental results show that KRROOD achieves strong performance while supporting the expressive reasoning required for real-world autonomous systems.
comment: 9 pages, 2 figures, submitted to the 2026 International Joint Conference on Artificial Intelligence (IJCAI)
Moving Beyond Compliance in Soft-Robotic Catheters Through Modularity for Precision Therapies
Soft robotic instruments could navigate delicate, tortuous anatomy more safely than rigid tools, but clinical adoption is limited by insufficient tip functionalization and real-time feedback at the tissue interface. Few sensing and therapeutic modules are compact, robust, and adaptable enough to measure, and respond to, subtle physiological cues during intraluminal procedures. We present a 1.47 mm diameter modular soft robotic catheter that integrates sensing, actuation, and therapy while retaining the compliance needed for safe endoluminal navigation. Validated across multiple in vivo settings, we emphasize its utility in endoscopic retrograde cholangiopancreatography (ERCP), a highly technical procedure and a key access route to the pancreas, an organ that is fragile, difficult to instrument, and central to diseases such as pancreatic cancer. Our architecture supports up to four independently controlled functional units, allowing customizable combinations of anchoring, manipulation, sensing, and targeted drug delivery. In a live porcine model, we demonstrate semi-autonomous deployment into the pancreatic duct and 7.5 cm of endoscopic navigation within it, a region currently inaccessible with standard catheters. A closed-loop autonomous/shared-control system that combines a learned model, magnetic actuation, onboard shape sensing, and visual marker tracking further improves cannulation accuracy. Together, these results establish a scalable platform for multifunctional soft robotic catheters and a new paradigm for complex endoluminal interventions, with potential to reduce radiation exposure, shorten training, and accelerate clinical translation of soft robotic technologies.
comment: 31 pages, 6 figures, 7 supplementary figures
Stochastic Decision-Making Framework for Human-Robot Collaboration in Industrial Applications
Collaborative robots, or cobots, are increasingly integrated into various industrial and service settings to work efficiently and safely alongside humans. However, for effective human-robot collaboration, robots must reason based on human factors such as motivation level and aggression level. This paper proposes an approach for decision-making in human-robot collaborative (HRC) environments utilizing stochastic modeling. By leveraging probabilistic models and control strategies, the proposed method aims to anticipate human actions and emotions, enabling cobots to adapt their behavior accordingly. So far, most of the research has been done to detect the intentions of human co-workers. This paper discusses the theoretical framework, implementation strategies, simulation results, and potential applications of the bilateral collaboration approach for safety and efficiency in collaborative robotics.
comment: Under Review by IEEE Transactions on Human Machine Systems
AutoDriDM: An Explainable Benchmark for Decision-Making of Vision-Language Models in Autonomous Driving
Autonomous driving is a highly challenging domain that requires reliable perception and safe decision-making in complex scenarios. Recent vision-language models (VLMs) demonstrate reasoning and generalization abilities, opening new possibilities for autonomous driving; however, existing benchmarks and metrics overemphasize perceptual competence and fail to adequately assess decision-making processes. In this work, we present AutoDriDM, a decision-centric, progressive benchmark with 6,650 questions across three dimensions - Object, Scene, and Decision. We evaluate mainstream VLMs to delineate the perception-to-decision capability boundary in autonomous driving, and our correlation analysis reveals weak alignment between perception and decision-making performance. We further conduct explainability analyses of models' reasoning processes, identifying key failure modes such as logical reasoning errors, and introduce an analyzer model to automate large-scale annotation. AutoDriDM bridges the gap between perception-centered and decision-centered evaluation, providing guidance toward safer and more reliable VLMs for real-world autonomous driving.
comment: 23 pages. Submitted to ACL ARR 2026 January
FARE: Fast-Slow Agentic Robotic Exploration
This work advances autonomous robot exploration by integrating agent-level semantic reasoning with fast local control. We introduce FARE, a hierarchical autonomous exploration framework that integrates a large language model (LLM) for global reasoning with a reinforcement learning (RL) policy for local decision making. FARE follows a fast-slow thinking paradigm. The slow-thinking LLM module interprets a concise textual description of the unknown environment and synthesizes an agent-level exploration strategy, which is then grounded into a sequence of global waypoints through a topological graph. To further improve reasoning efficiency, this module employs a modularity-based pruning mechanism that reduces redundant graph structures. The fast-thinking RL module executes exploration by reacting to local observations while being guided by the LLM-generated global waypoints. The RL policy is additionally shaped by a reward term that encourages adherence to the global waypoints, enabling coherent and robust closed-loop behavior. This architecture decouples semantic reasoning from geometric decision, allowing each module to operate in its appropriate temporal and spatial scale. In challenging simulated environments, our results show that FARE achieves substantial improvements in exploration efficiency over state-of-the-art baselines. We further deploy FARE on hardware and validate it in complex, large scale $200m\times130m$ building environment.
Spatially Generalizable Mobile Manipulation via Adaptive Experience Selection and Dynamic Imagination
Mobile Manipulation (MM) involves long-horizon decision-making over multi-stage compositions of heterogeneous skills, such as navigation and picking up objects. Despite recent progress, existing MM methods still face two key limitations: (i) low sample efficiency, due to ineffective use of redundant data generated during long-term MM interactions; and (ii) poor spatial generalization, as policies trained on specific tasks struggle to transfer to new spatial layouts without additional training. In this paper, we address these challenges through Adaptive Experience Selection (AES) and model-based dynamic imagination. In particular, AES makes MM agents pay more attention to critical experience fragments in long trajectories that affect task success, improving skill chain learning and mitigating skill forgetting. Based on AES, a Recurrent State-Space Model (RSSM) is introduced for Model-Predictive Forward Planning (MPFP) by capturing the coupled dynamics between the mobile base and the manipulator and imagining the dynamics of future manipulations. RSSM-based MPFP can reinforce MM skill learning on the current task while enabling effective generalization to new spatial layouts. Comparative studies across different experimental configurations demonstrate that our method significantly outperforms existing MM policies. Real-world experiments further validate the feasibility and practicality of our method.
Landing-Induced Viscoelastic Changes in an Anthropomimetic Foot Joint Structure are Modulated by Foot Structure and Posture
Cadaveric studies have provided important insights into the mechanics of the human foot arch and plantar fascia. However, repeatedly probing posture-dependent viscoelastic responses immediately after landing impact is difficult in biological specimens, leaving the contribution of skeletal architecture to landing dynamics incompletely understood. In this study, we developed an anthropomimetic foot joint structure aimed at replicating the skeletal geometry of the human foot. Using a vertical drop apparatus that simulates landing and a viscoelastic system-identification model, we investigated how skeletal structure and posture modulate the apparent post-impact viscoelastic response. The results show that the multi-jointed anthropomimetic structure exhibited a higher damping ratio than simplified flat and rigid feet. Moreover, ankle dorsiflexion and toe extension systematically shifted the identified parameters, reducing the damping ratio under the tested conditions. Taken together, these findings indicate that an arch-like, multi-jointed skeletal architecture can enhance impact attenuation in an anthropomimetic mechanical foot, and that morphology and passive posture alone can tune the trade-off between attenuation and rebound. The observed posture-dependent trends are qualitatively consistent with reported differences in human landing strategies, suggesting that skeletal architecture may partly account for the modulation. Furthermore, these results highlight the engineering advantage of anatomically informed skeletal replication for achieving human-like apparent viscoelastic behavior through postural adjustment during landing.
comment: 27 pages, preprint
A Brain-inspired Embodied Intelligence for Fluid and Fast Reflexive Robotics Control
Recent advances in embodied intelligence have leveraged massive scaling of data and model parameters to master natural-language command following and multi-task control. In contrast, biological systems demonstrate an innate ability to acquire skills rapidly from sparse experience. Crucially, current robotic policies struggle to replicate the dynamic stability, reflexive responsiveness, and temporal memory inherent in biological motion. Here we present Neuromorphic Vision-Language-Action (NeuroVLA), a framework that mimics the structural organization of the bio-nervous system between the cortex, cerebellum, and spinal cord. We adopt a system-level bio-inspired design: a high-level model plans goals, an adaptive cerebellum module stabilizes motion using high-frequency sensors feedback, and a bio-inspired spinal layer executes lightning-fast actions generation. NeuroVLA represents the first deployment of a neuromorphic VLA on physical robotics, achieving state-of-the-art performance. We observe the emergence of biological motor characteristics without additional data or special guidance: it stops the shaking in robotic arms, saves significant energy(only 0.4w on Neuromorphic Processor), shows temporal memory ability and triggers safety reflexes in less than 20 milliseconds.
Probing Prompt Design for Socially Compliant Robot Navigation with Vision Language Models
Language models are increasingly used for social robot navigation, yet existing benchmarks largely overlook principled prompt design for socially compliant behavior. This limitation is particularly relevant in practice, as many systems rely on small vision language models (VLMs) for efficiency. Compared to large language models, small VLMs exhibit weaker decision-making capabilities, making effective prompt design critical for accurate navigation. Inspired by cognitive theories of human learning and motivation, we study prompt design along two dimensions: system guidance (action-focused, reasoning-oriented, and perception-reasoning prompts) and motivational framing, where models compete against humans, other AI systems, or their past selves. Experiments on two socially compliant navigation datasets reveal three key findings. First, for non-finetuned GPT-4o, competition against humans achieves the best performance, while competition against other AI systems performs worst. For finetuned models, competition against the model's past self yields the strongest results, followed by competition against humans, with performance further influenced by coupling effects among prompt design, model choice, and dataset characteristics. Second, inappropriate system prompt design can significantly degrade performance, even compared to direct finetuning. Third, while direct finetuning substantially improves semantic-level metrics such as perception, prediction, and reasoning, it yields limited gains in action accuracy. In contrast, our system prompts produce a disproportionately larger improvement in action accuracy, indicating that the proposed prompt design primarily acts as a decision-level constraint rather than a representational enhancement.
UniCon: A Unified System for Efficient Robot Learning Transfers
Deploying learning-based controllers across heterogeneous robots is challenging due to platform differences, inconsistent interfaces, and inefficient middleware. To address these issues, we present UniCon, a lightweight framework that standardizes states, control flow, and instrumentation across platforms. It decomposes workflows into execution graphs with reusable components, separating system states from control logic to enable plug-and-play deployment across various robot morphologies. Unlike traditional middleware, it prioritizes efficiency through batched, vectorized data flow, minimizing communication overhead and improving inference latency. This modular, data-oriented approach enables seamless sim-to-real transfer with minimal re-engineering. We demonstrate that UniCon reduces code redundancy when transferring workflows and achieves higher inference efficiency compared to ROS-based systems. Deployed on over 12 robot models from 7 manufacturers, it has been successfully integrated into ongoing research projects, proving its effectiveness in real-world scenarios.
comment: in submission, under review
Explainable OOHRI: Communicating Robot Capabilities and Limitations as Augmented Reality Affordances
Human interaction is essential for issuing personalized instructions and assisting robots when failure is likely. However, robots remain largely black boxes, offering users little insight into their evolving capabilities and limitations. To address this gap, we present explainable object-oriented HRI (X-OOHRI), an augmented reality (AR) interface that conveys robot action possibilities and constraints through visual signifiers, radial menus, color coding, and explanation tags. Our system encodes object properties and robot limits into object-oriented structures using a vision-language model, allowing explanation generation on the fly and direct manipulation of virtual twins spatially aligned within a simulated environment. We integrate the end-to-end pipeline with a physical robot and showcase diverse use cases ranging from low-level pick-and-place to high-level instructions. Finally, we evaluate X-OOHRI through a user study and find that participants effectively issue object-oriented commands, develop accurate mental models of robot limitations, and engage in mixed-initiative resolution.
TacUMI: A Multi-Modal Universal Manipulation Interface for Contact-Rich Tasks
Task decomposition is critical for understanding and learning complex long-horizon manipulation tasks. Especially for tasks involving rich physical interactions, relying solely on visual observations and robot proprioceptive information often fails to reveal the underlying event transitions. This raises the requirement for efficient collection of high-quality multi-modal data as well as robust segmentation method to decompose demonstrations into meaningful modules. Building on the idea of the handheld demonstration device Universal Manipulation Interface (UMI), we introduce TacUMI, a multi-modal data collection system that integrates additionally ViTac sensors, force-torque sensor, and pose tracker into a compact, robot-compatible gripper design, which enables synchronized acquisition of all these modalities during human demonstrations. We then propose a multi-modal segmentation framework that leverages temporal models to detect semantically meaningful event boundaries in sequential manipulations. Evaluation on a challenging cable mounting task shows more than 90 percent segmentation accuracy and highlights a remarkable improvement with more modalities, which validates that TacUMI establishes a practical foundation for both scalable collection and segmentation of multi-modal demonstrations in contact-rich tasks.
CompliantVLA-adaptor: VLM-Guided Variable Impedance Action for Safe Contact-Rich Manipulation
We propose a CompliantVLA-adaptor that augments the state-of-the-art Vision-Language-Action (VLA) models with vision-language model (VLM)-informed context-aware variable impedance control (VIC) to improve the safety and effectiveness of contact-rich robotic manipulation tasks. Existing VLA systems (e.g., RDT, Pi0, OpenVLA-oft) typically output position, but lack force-aware adaptation, leading to unsafe or failed interactions in physical tasks involving contact, compliance, or uncertainty. In the proposed CompliantVLA-adaptor, a VLM interprets task context from images and natural language to adapt the stiffness and damping parameters of a VIC controller. These parameters are further regulated using real-time force/torque feedback to ensure interaction forces remain within safe thresholds. We demonstrate that our method outperforms the VLA baselines on a suite of complex contact-rich tasks, both in simulation and on real hardware, with improved success rates and reduced force violations. The overall success rate across all tasks increases from 9.86\% to 17.29\%, presenting a promising path towards safe contact-rich manipulation using VLAs. We release our code, prompts, and force-torque-impedance-scenario context datasets at https://sites.google.com/view/compliantvla.
comment: under review
A Universal Large Language Model -- Drone Command and Control Interface
The use of artificial intelligence (AI) for drone control can have a transformative impact on drone capabilities, especially when real world information can be integrated with drone sensing, command, and control, part of a growing field of physical AI. Large language models (LLMs) can be advantageous if trained at scale on general knowledge, but especially and in particular when the training data includes information such as detailed map geography topology of the entire planet, as well as the ability to access real time situational data such as weather. However, challenges remain in the interface between drones and LLMs in general, with each application requiring a tedious, labor intensive effort to connect the LLM trained knowledge to drone command and control. Here, we solve that problem, using an interface strategy that is LLM agnostic and drone agnostic, providing the first universal, versatile, comprehensive and easy to use drone control interface. We do this using the new model context protocol (MCP) standard, an open standard that provides a universal way for AI systems to access external data, tools, and services. We develop and deploy a cloud based Linux machine hosting an MCP server that supports the Mavlink protocol, an ubiquitous drone control language used almost universally by millions of drones including Ardupilot and PX4 framework.We demonstrate flight control of a real unmanned aerial vehicle. In further testing, we demonstrate extensive flight planning and control capability in a simulated drone, integrated with a Google Maps MCP server for up to date, real time navigation information. This demonstrates a universal approach to integration of LLMs with drone command and control, a paradigm that leverages and exploits virtually all of modern AI industry with drone technology in an easy to use interface that translates natural language to drone control.
Neural Collision Detection for Multi-arm Laparoscopy Surgical Robots Through Learning-from-Simulation
This study presents an integrated framework for enhancing the safety and operational efficiency of robotic arms in laparoscopic surgery by addressing key challenges in collision detection and minimum distance estimation. By combining analytical modeling, real-time simulation, and machine learning, the framework offers a robust solution for ensuring safe robotic operations. An analytical model was developed to estimate the minimum distances between robotic arms based on their joint configurations, offering precise theoretical calculations that serve as both a validation tool and a benchmark. To complement this, a 3D simulation environment was created to model two 7-DOF Kinova robotic arms, generating a diverse dataset of configurations for collision detection and distance estimation. Using these insights, a deep neural network model was trained with joint actuators of robot arms and relative positions as inputs, achieving a mean absolute error of 282.2 mm and an R-squared value of 0.85. The close alignment between predicted and actual distances highlights the network's accuracy and its ability to generalize spatial relationships. This work demonstrates the effectiveness of combining analytical precision with machine learning algorithms to enhance the precision and reliability of robotic systems.
Learning a Unified Latent Space for Cross-Embodiment Robot Control
We present a scalable framework for cross-embodiment humanoid robot control by learning a shared latent representation that unifies motion across humans and diverse humanoid platforms, including single-arm, dual-arm, and legged humanoid robots. Our method proceeds in two stages: first, we construct a decoupled latent space that captures localized motion patterns across different body parts using contrastive learning, enabling accurate and flexible motion retargeting even across robots with diverse morphologies. To enhance alignment between embodiments, we introduce tailored similarity metrics that combine joint rotation and end-effector positioning for critical segments, such as arms. Then, we train a goal-conditioned control policy directly within this latent space using only human data. Leveraging a conditional variational autoencoder, our policy learns to predict latent space displacements guided by intended goal directions. We show that the trained policy can be directly deployed on multiple robots without any adaptation. Furthermore, our method supports the efficient addition of new robots to the latent space by learning only a lightweight, robot-specific embedding layer. The learned latent policies can also be directly applied to the new robots. Experimental results demonstrate that our approach enables robust, scalable, and embodiment-agnostic robot control across a wide range of humanoid platforms.
Preparation and Motion Study of Magnetically Driven Micro Soft Robot Mimicking the Cownose Ray
In narrow, unstructured underwater environments such as environmental monitoring and minimally invasive medical procedures, micro soft robots exhibit unique advantages due to their flexible movement capabilities and small size. At the same time, applying bionic technology to the structural design of micro soft robots can significantly improve their swimming performance. However, limited by their miniaturization, these robots are difficult to power internally and usually adopt a wireless power supply method. This study designs and fabricates a magnetically responsive, cownose ray-inspired micro soft robot based on the swimming principle of the cownose ray. The robot is made of a certain proportion of NdFeB and PDMS. Then, a three-dimensional Helmholtz coil is used to generate an oscillating harmonic magnetic field to conduct swimming experiments on the robot, exploring the influence of magnetic field parameters on the robot's swimming performance. The experimental results show that the swimming speed is the fastest at B = 5 mT and f = 11 Hz, reaching 5.25 mm/s, which is about 0.5 body lengths per second. In addition, by adjusting the current direction and frequency of the coil, the robot can perform different swimming modes such as straight swimming, turning swimming, and directional swimming. By employing a stepwise adjustment method, the impact of response errors on the robot's trajectory can be effectively reduced. This study demonstrates a method for magnetically driven micro soft robots, laying a foundation for the application of wireless-driven robots in underwater narrow spaces.
comment: These experiments lay an important foundation for the study of tether-free control of underwater micro-soft robots. Furthermore, this research provides important references for the fields of biomimetic robots and magnetically controlled micro-soft robots
OSMa-Bench: Evaluating Open Semantic Mapping Under Varying Lighting Conditions
Open Semantic Mapping (OSM) is a key technology in robotic perception, combining semantic segmentation and SLAM techniques. This paper introduces a dynamically configurable and highly automated LLM/LVLM-powered pipeline for evaluating OSM solutions called OSMa-Bench (Open Semantic Mapping Benchmark). The study focuses on evaluating state-of-the-art semantic mapping algorithms under varying indoor lighting conditions, a critical challenge in indoor environments. We introduce a novel dataset with simulated RGB-D sequences and ground truth 3D reconstructions, facilitating the rigorous analysis of mapping performance across different lighting conditions. Through experiments on leading models such as ConceptGraphs, BBQ, and OpenScene, we evaluate the semantic fidelity of object recognition and segmentation. Additionally, we introduce a Scene Graph evaluation method to analyze the ability of models to interpret semantic structure. The results provide insights into the robustness of these models, forming future research directions for developing resilient and adaptable robotic systems. Project page is available at https://be2rlab.github.io/OSMa-Bench/.
comment: Project page: https://be2rlab.github.io/OSMa-Bench/
Locomotion Dynamics of an Underactuated Three-Link Robotic Vehicle
The wheeled three-link snake robot is a well-known example of an underactuated system modelled using nonholonomic constraints, preventing lateral slippage (skid) of the wheels. A kinematically controlled configuration assumes that both joint angles are directly prescribed as phase-shifted periodic input. In another configuration of the robot, only one joint is periodically actuated while the second joint is passively governed by a visco-elastic torsion spring. In our work, we constructed the two configurations of the wheeled robot and conducted motion experiments under different actuation inputs. Analysis of the motion tracking measurements reveals a significant amount of wheels' skid, in contrast to the assumptions used in standard nonholonomic models. Therefore, we propose modified dynamic models which include wheels' skid and viscous friction forces, as well as rolling resistance. After parameter fitting, these dynamic models reach good agreement with the motion measurements, including effects of input's frequency on the mean speed and net displacement per period. This illustrates the importance of incorporating wheels' skid and friction into the system's model.
comment: Accepted to IEEE Transactions on Robotics, January 2026
Semilinear single-track vehicle models with distributed tyre friction dynamics
This paper introduces a novel family of single-track vehicle models that incorporate a distributed representation of transient tyre dynamics, whilst simultaneously accounting for nonlinear effects induced by friction. The core of the proposed framework is represented by the distributed Friction with Bristle Dynamics (FrBD) model, which unifies and extends classical formulations such as Dahl and LuGre by describing the rolling contact process as a spatially distributed system governed by semilinear partial differential equations (PDEs). This model is systematically integrated into a single-track vehicle framework, where the resulting semilinear ODE-PDE interconnection captures the interaction between lateral vehicle motion and tyre deformation. Two main variants are considered: one with rigid tyre carcass and another with flexible carcass, each admitting a compact state-space representation. Local and global well-posedness properties for the coupled system are established rigorously, highlighting the dissipative and physically consistent properties of the distributed FrBD model. A linearisation procedure is also presented, enabling spectral analysis and transfer function derivation, and potentially facilitating the synthesis of controllers and observers. Numerical simulations demonstrate the model's capability to capture micro-shimmy oscillations and transient lateral responses to advanced steering manoeuvres. The proposed formulation advances the state-of-the-art in vehicle dynamics modelling by providing a physically grounded, mathematically rigorous, and computationally tractable approach to incorporating transient tyre behaviour in lateral vehicle dynamics, when accounting for the effect of limited friction.
comment: 37 pages, 12 figures
Context-aware Learned Mesh-based Simulation via Trajectory-Level Meta-Learning
Simulating object deformations is a critical challenge across many scientific domains, including robotics, manufacturing, and structural mechanics. Learned Graph Network Simulators (GNSs) offer a promising alternative to traditional mesh-based physics simulators. Their speed and inherent differentiability make them particularly well suited for applications that require fast and accurate simulations, such as robotic manipulation or manufacturing optimization. However, existing learned simulators typically rely on single-step observations, which limits their ability to exploit temporal context. Without this information, these models fail to infer, e.g., material properties. Further, they rely on auto-regressive rollouts, which quickly accumulate error for long trajectories. We instead frame mesh-based simulation as a trajectory-level meta-learning problem. Using Conditional Neural Processes, our method enables rapid adaptation to new simulation scenarios from limited initial data while capturing their latent simulation properties. We utilize movement primitives to directly predict fast, stable and accurate simulations from a single model call. The resulting approach, Movement-primitive Meta-MeshGraphNet (M3GN), provides higher simulation accuracy at a fraction of the runtime cost compared to state-of-the-art GNSs across several tasks.
comment: 35 pages. Submitted to Transactions on Machine Learning Research (TMLR)
Collision Probability Estimation for Optimization-based Vehicular Motion Planning
Many motion planning algorithms for automated driving require estimating the probability of collision (POC) to account for uncertainties in the measurement and estimation of the motion of road users. Common POC estimation techniques often utilize sampling-based methods that suffer from computational inefficiency and a non-deterministic estimation, i.e., each estimation result for the same inputs is slightly different. In contrast, optimization-based motion planning algorithms require computationally efficient POC estimation, ideally using deterministic estimation, such that typical optimization algorithms for motion planning retain feasibility. Estimating the POC analytically, however, is challenging because it depends on understanding the collision conditions (e.g., vehicle's shape) and characterizing the uncertainty in motion prediction. In this paper, we propose an approach in which we estimate the POC between two vehicles by over-approximating their shapes by a multi-circular shape approximation. The position and heading of the predicted vehicle are modelled as random variables, contrasting with the literature, where the heading angle is often neglected. We guarantee that the provided POC is an over-approximation, which is essential in providing safety guarantees. For the particular case of Gaussian uncertainty in the position and heading, we present a computationally efficient algorithm for computing the POC estimate. This algorithm is then used in a path-following stochastic model predictive controller (SMPC) for motion planning. With the proposed algorithm, the SMPC generates reproducible trajectories while the controller retains its feasibility in the presented test cases and demonstrates the ability to handle varying levels of uncertainty.
comment: 14 pages, 7 figures
Allocation for Omnidirectional Aerial Robots: Incorporating Power Dynamics
Tilt-rotor aerial robots are more dynamic and versatile than fixed-rotor platforms, since the thrust vector and body orientation are decoupled. However, the coordination of servos and propellers (the allocation problem) is not trivial, especially accounting for overactuation and actuator dynamics. We incrementally build and present three novel allocation methods for tilt-rotor aerial robots, comparing them to state-of-the-art methods on a real system performing dynamic maneuvers. We extend the state-of-the-art geometric allocation into a differential allocation, which uses the platform's redundancy and does not suffer from singularities. We expand it by incorporating actuator dynamics and propeller power dynamics. These allow us to model dynamic propeller acceleration limits, bringing two main advantages: balancing propeller speed without the need for nullspace goals and allowing the platform to selectively turn off propellers during flight, opening the door to new manipulation possibilities. We also use actuator dynamics and limits to normalize the allocation problem, making it easier to tune and allowing it to track 70% faster trajectories than a geometric allocation.
GuideTouch: An Obstacle Avoidance Device with Tactile Feedback for Visually Impaired
Safe navigation for the visually impaired individuals remains a critical challenge, especially concerning head-level obstacles, which traditional mobility aids often fail to detect. We introduce GuideTouch, a compact, affordable, standalone wearable device designed for autonomous obstacle avoidance. The system integrates two vertically aligned Time-of-Flight (ToF) sensors, enabling three-dimensional environmental perception, and four vibrotactile actuators that provide directional haptic feedback. Proximity and direction information is communicated via an intuitive 4-point vibrotactile feedback system located across the user's shoulders and upper chest. For real-world robustness, the device includes a unique centrifugal self-cleaning optical cover mechanism and a sound alarm system for location if the device is dropped. We evaluated the haptic perception accuracy across 22 participants (17 male and 5 female, aged 21-48, mean 25.7, sd 6.1). Statistical analysis confirmed a significant difference between the perception accuracy of different patterns. The system demonstrated high recognition accuracy, achieving an average of 92.9% for single and double motor (primary directional) patterns. Furthermore, preliminary experiments with 14 visually impaired users validated this interface, showing a recognition accuracy of 93.75% for primary directional cues. The results demonstrate that GuideTouch enables intuitive spatial perception and could significantly improve the safety, confidence, and autonomy of users with visual impairments during independent navigation.
comment: This paper has been accepted for publication at LBR of HRI 2026 conference
DroneVLA: VLA based Aerial Manipulation
As aerial platforms evolve from passive observers to active manipulators, the challenge shifts toward designing intuitive interfaces that allow non-expert users to command these systems naturally. This work introduces a novel concept of autonomous aerial manipulation system capable of interpreting high-level natural language commands to retrieve objects and deliver them to a human user. The system is intended to integrate a MediaPipe based on Grounding DINO and a Vision-Language-Action (VLA) model with a custom-built drone equipped with a 1-DOF gripper and an Intel RealSense RGB-D camera. VLA performs semantic reasoning to interpret the intent of a user prompt and generates a prioritized task queue for grasping of relevant objects in the scene. Grounding DINO and dynamic A* planning algorithm are used to navigate and safely relocate the object. To ensure safe and natural interaction during the handover phase, the system employs a human-centric controller driven by MediaPipe. This module provides real-time human pose estimation, allowing the drone to employ visual servoing to maintain a stable, distinct position directly in front of the user, facilitating a comfortable handover. We demonstrate the system's efficacy through real-world experiments for localization and navigation, which resulted in a 0.164m, 0.070m, and 0.084m of max, mean euclidean, and root-mean squared errors, respectively, highlighting the feasibility of VLA for aerial manipulation operations.
comment: This paper has been accepted for publication at LBR of HRI 2026 conference
Warm-Starting Collision-Free Model Predictive Control With Object-Centric Diffusion
Acting in cluttered environments requires predicting and avoiding collisions while still achieving precise control. Conventional optimization-based controllers can enforce physical constraints, but they struggle to produce feasible solutions quickly when many obstacles are present. Diffusion models can generate diverse trajectories around obstacles, yet prior approaches lacked a general and efficient way to condition them on scene structure. In this paper, we show that combining diffusion-based warm-starting conditioned with a latent object-centric representation of the scene and with a collision-aware model predictive controller (MPC) yields reliable and efficient motion generation under strict time limits. Our approach conditions a diffusion transformer on the system state, task, and surroundings, using an object-centric slot attention mechanism to provide a compact obstacle representation suitable for control. The sampled trajectories are refined by an optimal control problem that enforces rigid-body dynamics and signed-distance collision constraints, producing feasible motions in real time. On benchmark tasks, this hybrid method achieved markedly higher success rates and lower latency than sampling-based planners or either component alone. Real-robot experiments with a torque-controlled Panda confirm reliable and safe execution with MPC.
comment: An open-source implementation is provided https://ahaffemayer.github.io/diffusion_warmstart_slot/
VR$^2$: A Co-Located Dual-Headset Platform for Touch-Enabled Human-Robot Interaction Research
Social-physical human-robot interaction (HRI) is difficult to study: building and programming robots integrating multiple interaction modalities is costly and slow, while VR-based prototypes often lack physical contact capabilities, breaking the visuo-tactile expectations of the user. We present VR2VR, a co-located dual-VR-headset platform for HRI research in which a participant and a hidden operator share the same physical space while experiencing different virtual embodiments. The participant sees an expressive virtual robot that interacts face-to-face in a shared virtual environment. In real time, the robot's upper-body movements, head and gaze behaviors, and facial expressions are mapped from the operator's tracked limbs and face signals. Since the operator is physically co-present and calibrated into the same coordinate frame, the operator can also touch the participant, enabling the participant to perceive robot touch synchronized with the visual perception of the robot's hands on their hands: the operator's finger and hand motion is mapped to the robot avatar using inverse kinematics to support precise contact. Beyond faithful motion retargeting for limb control, our VR2VR system supports social retargeting of multiple nonverbal cues, which can be experimentally varied and investigated while keeping the physical interaction constant. We detail the system design, calibration workflow, and safety considerations, and demonstrate how the platform can be used for experimentation and data collection in a touch-based Wizard-of-Oz HRI study, thus illustrating how VR2VR lowers barriers for rapidly prototyping and rigorously evaluating embodied, contact-based robot behaviors.
comment: 7 pages, 4 figures
DAPPER: Discriminability-Aware Policy-to-Policy Preference-Based Reinforcement Learning for Query-Efficient Robot Skill Acquisition RAM
Preference-based Reinforcement Learning (PbRL) enables policy learning through simple queries comparing trajectories from a single policy. While human responses to these queries make it possible to learn policies aligned with human preferences, PbRL suffers from low query efficiency, as policy bias limits trajectory diversity and reduces the number of discriminable queries available for learning preferences. This paper identifies preference discriminability, which quantifies how easily a human can judge which trajectory is closer to their ideal behavior, as a key metric for improving query efficiency. To address this, we move beyond comparisons within a single policy and instead generate queries by comparing trajectories from multiple policies, as training them from scratch promotes diversity without policy bias. We propose Discriminability-Aware Policy-to-Policy Preference-Based Efficient Reinforcement Learning (DAPPER), which integrates preference discriminability with trajectory diversification achieved by multiple policies. DAPPER trains new policies from scratch after each reward update and employs a discriminator that learns to estimate preference discriminability, enabling the prioritized sampling of more discriminable queries. During training, it jointly maximizes the preference reward and preference discriminability score, encouraging the discovery of highly rewarding and easily distinguishable policies. Experiments in simulated and real-world legged robot environments demonstrate that DAPPER outperforms previous methods in query efficiency, particularly under challenging preference discriminability conditions. A supplementary video that facilitates understanding of the proposed framework and its experimental results is available at: https://youtu.be/lRwX8FNN8n4
comment: Accepted for IEEE Robotics & Automation Magazine (RAM)
Teaching Robots Like Dogs: Learning Agile Navigation from Luring, Gesture, and Speech
In this work, we aim to enable legged robots to learn how to interpret human social cues and produce appropriate behaviors through physical human guidance. However, learning through physical engagement can place a heavy burden on users when the process requires large amounts of human-provided data. To address this, we propose a human-in-the-loop framework that enables robots to acquire navigational behaviors in a data-efficient manner and to be controlled via multimodal natural human inputs, specifically gestural and verbal commands. We reconstruct interaction scenes using a physics-based simulation and aggregate data to mitigate distributional shifts arising from limited demonstration data. Our progressive goal cueing strategy adaptively feeds appropriate commands and navigation goals during training, leading to more accurate navigation and stronger alignment between human input and robot behavior. We evaluate our framework across six real-world agile navigation scenarios, including jumping over or avoiding obstacles. Our experimental results show that our proposed method succeeds in almost all trials across these scenarios, achieving a 97.15% task success rate with less than 1 hour of demonstration data in total.
comment: 10 pages, 7 figures
PAD-TRO: Projection-Augmented Diffusion for Direct Trajectory Optimization
Recently, diffusion models have gained popularity and attention in trajectory optimization due to their capability of modeling multi-modal probability distributions. However, addressing nonlinear equality constraints, i.e, dynamic feasibility, remains a great challenge in diffusion-based trajectory optimization. Recent diffusion-based trajectory optimization frameworks rely on a single-shooting style approach where the denoised control sequence is applied to forward propagate the dynamical system, which cannot explicitly enforce constraints on the states and frequently leads to sub-optimal solutions. In this work, we propose a novel direct trajectory optimization approach via model-based diffusion, which directly generates a sequence of states. To ensure dynamic feasibility, we propose a gradient-free projection mechanism that is incorporated into the reverse diffusion process. Our results show that, compared to a recent state-of-the-art baseline, our approach leads to zero dynamic feasibility error and approximately 4x higher success rate in a quadrotor waypoint navigation scenario involving dense static obstacles.
comment: Accepted for publication at the 2026 American Control Conference
Who Is Responsible? Self-Adaptation Under Multiple Concurrent Uncertainties With Unknown Sources in Complex ROS-Based Systems
Robotic systems increasingly operate in dynamic, unpredictable environments, where tightly coupled sensors and software modules increase the probability of a single fault cascading across components and admitting multiple plausible strategies to resolve the underlying uncertainty. Most existing self-adaptive approaches that have been applied to robotics assume predefined one-to-one uncertainty-to-adaptation mappings. We present a ROS2-based self-adaptive approach building upon the MAPE-K feedback loop that addresses (1) multiple simultaneous uncertainties with differing criticality, (2) cascading uncertainties across components, and (3) multiple plausible resolving strategies per detected symptom. Central to our approach is an adaptation rule set which lets designers specify uncertainty patterns, assign criticality levels, and enumerate multiple plausible adaptation strategies. This rule set, combined with an automatically extracted live ROS2 dependency graph, enables lightweight root-cause analysis and strategy ranking to prioritize minimal and effective adaptations. Evaluations on an underwater robot scenario and a perception use case show that our approach can identify root causes among concurrent uncertainties, favours inexpensive adaptations, reduces unnecessary adaptations, and achieves performance comparable to existing baselines designed for sequential uncertainties. The code is publicly available.
comment: submitted to ACSOS 2025
Computer Vision and Pattern Recognition 145
APPLE: Attribute-Preserving Pseudo-Labeling for Diffusion-Based Face Swapping
Face swapping aims to transfer the identity of a source face onto a target face while preserving target-specific attributes such as pose, expression, lighting, skin tone, and makeup. However, since real ground truth for face swapping is unavailable, achieving both accurate identity transfer and high-quality attribute preservation remains challenging. In addition, recent diffusion-based approaches attempt to improve visual fidelity through conditional inpainting on masked target images, but the masked condition removes crucial appearance cues of target, resulting in plausible yet misaligned attributes. To address these limitations, we propose APPLE (Attribute-Preserving Pseudo-Labeling), a diffusion-based teacher-student framework that enhances attribute fidelity through attribute-aware pseudo-label supervision. We reformulate face swapping as a conditional deblurring task to more faithfully preserve target-specific attributes such as lighting, skin tone, and makeup. In addition, we introduce an attribute-aware inversion scheme to further improve detailed attribute preservation. Through an elaborate attribute-preserving design for teacher learning, APPLE produces high-quality pseudo triplets that explicitly provide the student with direct face-swapping supervision. Overall, APPLE achieves state-of-the-art performance in terms of attribute preservation and identity transfer, producing more photorealistic and target-faithful results.
comment: Project Page: https://cvlab-kaist.github.io/APPLE/
Towards Understanding Best Practices for Quantization of Vision-Language Models
Large language models (LLMs) deliver impressive results for a variety of tasks, but state-of-the-art systems require fast GPUs with large amounts of memory. To reduce both the memory and latency of these systems, practitioners quantize their learned parameters, typically at half precision. A growing body of research focuses on preserving the model performance with more aggressive bit widths, and some work has been done to apply these strategies to other models, like vision transformers. In our study we investigate how a variety of quantization methods, including state-of-the-art GPTQ and AWQ, can be applied effectively to multimodal pipelines comprised of vision models, language models, and their connectors. We address how performance on captioning, retrieval, and question answering can be affected by bit width, quantization method, and which portion of the pipeline the quantization is used for. Results reveal that ViT and LLM exhibit comparable importance in model performance, despite significant differences in parameter size, and that lower-bit quantization of the LLM achieves high accuracy at reduced bits per weight (bpw). These findings provide practical insights for efficient deployment of MLLMs and highlight the value of exploration for understanding component sensitivities in multimodal models. Our code is available at https://github.com/gautomdas/mmq.
comment: 15 pages, 12 figures, 1 table
Iterative Refinement Improves Compositional Image Generation
Text-to-image (T2I) models have achieved remarkable progress, yet they continue to struggle with complex prompts that require simultaneously handling multiple objects, relations, and attributes. Existing inference-time strategies, such as parallel sampling with verifiers or simply increasing denoising steps, can improve prompt alignment but remain inadequate for richly compositional settings where many constraints must be satisfied. Inspired by the success of chain-of-thought reasoning in large language models, we propose an iterative test-time strategy in which a T2I model progressively refines its generations across multiple steps, guided by feedback from a vision-language model as the critic in the loop. Our approach is simple, requires no external tools or priors, and can be flexibly applied to a wide range of image generators and vision-language models. Empirically, we demonstrate consistent gains on image generation across benchmarks: a 16.9% improvement in all-correct rate on ConceptMix (k=7), a 13.8% improvement on T2I-CompBench (3D-Spatial category) and a 12.5% improvement on Visual Jenga scene decomposition compared to compute-matched parallel sampling. Beyond quantitative gains, iterative refinement produces more faithful generations by decomposing complex prompts into sequential corrections, with human evaluators preferring our method 58.7% of the time over 41.3% for the parallel baseline. Together, these findings highlight iterative self-correction as a broadly applicable principle for compositional image generation. Results and visualizations are available at https://iterative-img-gen.github.io/
comment: Project webpage: https://iterative-img-gen.github.io/
Walk through Paintings: Egocentric World Models from Internet Priors
What if a video generation model could not only imagine a plausible future, but the correct one, accurately reflecting how the world changes with each action? We address this question by presenting the Egocentric World Model (EgoWM), a simple, architecture-agnostic method that transforms any pretrained video diffusion model into an action-conditioned world model, enabling controllable future prediction. Rather than training from scratch, we repurpose the rich world priors of Internet-scale video models and inject motor commands through lightweight conditioning layers. This allows the model to follow actions faithfully while preserving realism and strong generalization. Our approach scales naturally across embodiments and action spaces, ranging from 3-DoF mobile robots to 25-DoF humanoids, where predicting egocentric joint-angle-driven dynamics is substantially more challenging. The model produces coherent rollouts for both navigation and manipulation tasks, requiring only modest fine-tuning. To evaluate physical correctness independently of visual appearance, we introduce the Structural Consistency Score (SCS), which measures whether stable scene elements evolve consistently with the provided actions. EgoWM improves SCS by up to 80 percent over prior state-of-the-art navigation world models, while achieving up to six times lower inference latency and robust generalization to unseen environments, including navigation inside paintings.
LuxRemix: Lighting Decomposition and Remixing for Indoor Scenes
We present a novel approach for interactive light editing in indoor scenes from a single multi-view scene capture. Our method leverages a generative image-based light decomposition model that factorizes complex indoor scene illumination into its constituent light sources. This factorization enables independent manipulation of individual light sources, specifically allowing control over their state (on/off), chromaticity, and intensity. We further introduce multi-view lighting harmonization to ensure consistent propagation of the lighting decomposition across all scene views. This is integrated into a relightable 3D Gaussian splatting representation, providing real-time interactive control over the individual light sources. Our results demonstrate highly photorealistic lighting decomposition and relighting outcomes across diverse indoor scenes. We evaluate our method on both synthetic and real-world datasets and provide a quantitative and qualitative comparison to state-of-the-art techniques. For video results and interactive demos, see https://luxremix.github.io.
comment: Project page: https://luxremix.github.io
Rethinking Video Generation Model for the Embodied World
Video generation models have significantly advanced embodied intelligence, unlocking new possibilities for generating diverse robot data that capture perception, reasoning, and action in the physical world. However, synthesizing high-quality videos that accurately reflect real-world robotic interactions remains challenging, and the lack of a standardized benchmark limits fair comparisons and progress. To address this gap, we introduce a comprehensive robotics benchmark, RBench, designed to evaluate robot-oriented video generation across five task domains and four distinct embodiments. It assesses both task-level correctness and visual fidelity through reproducible sub-metrics, including structural consistency, physical plausibility, and action completeness. Evaluation of 25 representative models highlights significant deficiencies in generating physically realistic robot behaviors. Furthermore, the benchmark achieves a Spearman correlation coefficient of 0.96 with human evaluations, validating its effectiveness. While RBench provides the necessary lens to identify these deficiencies, achieving physical realism requires moving beyond evaluation to address the critical shortage of high-quality training data. Driven by these insights, we introduce a refined four-stage data pipeline, resulting in RoVid-X, the largest open-source robotic dataset for video generation with 4 million annotated video clips, covering thousands of tasks and enriched with comprehensive physical property annotations. Collectively, this synergistic ecosystem of evaluation and data establishes a robust foundation for rigorous assessment and scalable training of video models, accelerating the evolution of embodied AI toward general intelligence.
comment: Github: https://github.com/DAGroup-PKU/ReVidgen/ Project website: https://dagroup-pku.github.io/ReVidgen.github.io/
StableWorld: Towards Stable and Consistent Long Interactive Video Generation
In this paper, we explore the overlooked challenge of stability and temporal consistency in interactive video generation, which synthesizes dynamic and controllable video worlds through interactive behaviors such as camera movements and text prompts. Despite remarkable progress in world modeling, current methods still suffer from severe instability and temporal degradation, often leading to spatial drift and scene collapse during long-horizon interactions. To better understand this issue, we initially investigate the underlying causes of instability and identify that the major source of error accumulation originates from the same scene, where generated frames gradually deviate from the initial clean state and propagate errors to subsequent frames. Building upon this observation, we propose a simple yet effective method, \textbf{StableWorld}, a Dynamic Frame Eviction Mechanism. By continuously filtering out degraded frames while retaining geometrically consistent ones, StableWorld effectively prevents cumulative drift at its source, leading to more stable and temporal consistency of interactive generation. Promising results on multiple interactive video models, \eg, Matrix-Game, Open-Oasis, and Hunyuan-GameCraft, demonstrate that StableWorld is model-agnostic and can be applied to different interactive video generation frameworks to substantially improve stability, temporal consistency, and generalization across diverse interactive scenarios.
comment: 17 pages, 21 figures,
RayRoPE: Projective Ray Positional Encoding for Multi-view Attention
We study positional encodings for multi-view transformers that process tokens from a set of posed input images, and seek a mechanism that encodes patches uniquely, allows SE(3)-invariant attention with multi-frequency similarity, and can be adaptive to the geometry of the underlying scene. We find that prior (absolute or relative) encoding schemes for multi-view attention do not meet the above desiderata, and present RayRoPE to address this gap. RayRoPE represents patch positions based on associated rays but leverages a predicted point along the ray instead of the direction for a geometry-aware encoding. To achieve SE(3) invariance, RayRoPE computes query-frame projective coordinates for computing multi-frequency similarity. Lastly, as the 'predicted' 3D point along a ray may not be precise, RayRoPE presents a mechanism to analytically compute the expected position encoding under uncertainty. We validate RayRoPE on the tasks of novel-view synthesis and stereo depth estimation and show that it consistently improves over alternate position encoding schemes (e.g. 15% relative improvement on LPIPS in CO3D). We also show that RayRoPE can seamlessly incorporate RGB-D input, resulting in even larger gains over alternatives that cannot positionally encode this information.
comment: Project page: https://rayrope.github.io/
DrivIng: A Large-Scale Multimodal Driving Dataset with Full Digital Twin Integration
Perception is a cornerstone of autonomous driving, enabling vehicles to understand their surroundings and make safe, reliable decisions. Developing robust perception algorithms requires large-scale, high-quality datasets that cover diverse driving conditions and support thorough evaluation. Existing datasets often lack a high-fidelity digital twin, limiting systematic testing, edge-case simulation, sensor modification, and sim-to-real evaluations. To address this gap, we present DrivIng, a large-scale multimodal dataset with a complete geo-referenced digital twin of a ~18 km route spanning urban, suburban, and highway segments. Our dataset provides continuous recordings from six RGB cameras, one LiDAR, and high-precision ADMA-based localization, captured across day, dusk, and night. All sequences are annotated at 10 Hz with 3D bounding boxes and track IDs across 12 classes, yielding ~1.2 million annotated instances. Alongside the benefits of a digital twin, DrivIng enables a 1-to-1 transfer of real traffic into simulation, preserving agent interactions while enabling realistic and flexible scenario testing. To support reproducible research and robust validation, we benchmark DrivIng with state-of-the-art perception models and publicly release the dataset, digital twin, HD map, and codebase.
comment: Accepted to the IEEE Intelligent Vehicles Symposium 2026. For code and dataset, see https://github.com/cvims/DrivIng
FlowSSC: Universal Generative Monocular Semantic Scene Completion via One-Step Latent Diffusion
Semantic Scene Completion (SSC) from monocular RGB images is a fundamental yet challenging task due to the inherent ambiguity of inferring occluded 3D geometry from a single view. While feed-forward methods have made progress, they often struggle to generate plausible details in occluded regions and preserve the fundamental spatial relationships of objects. Such accurate generative reasoning capability for the entire 3D space is critical in real-world applications. In this paper, we present FlowSSC, the first generative framework applied directly to monocular semantic scene completion. FlowSSC treats the SSC task as a conditional generation problem and can seamlessly integrate with existing feed-forward SSC methods to significantly boost their performance. To achieve real-time inference without compromising quality, we introduce Shortcut Flow-matching that operates in a compact triplane latent space. Unlike standard diffusion models that require hundreds of steps, our method utilizes a shortcut mechanism to achieve high-fidelity generation in a single step, enabling practical deployment in autonomous systems. Extensive experiments on SemanticKITTI demonstrate that FlowSSC achieves state-of-the-art performance, significantly outperforming existing baselines.
comment: Under Review
Tracing 3D Anatomy in 2D Strokes: A Multi-Stage Projection Driven Approach to Cervical Spine Fracture Identification
Cervical spine fractures are critical medical conditions requiring precise and efficient detection for effective clinical management. This study explores the viability of 2D projection-based vertebra segmentation for vertebra-level fracture detection in 3D CT volumes, presenting an end-to-end pipeline for automated analysis of cervical vertebrae (C1-C7). By approximating a 3D volume through optimized 2D axial, sagittal, and coronal projections, regions of interest are identified using the YOLOv8 model from all views and combined to approximate the 3D cervical spine area, achieving a 3D mIoU of 94.45 percent. This projection-based localization strategy reduces computational complexity compared to traditional 3D segmentation methods while maintaining high performance. It is followed by a DenseNet121-Unet-based multi-label segmentation leveraging variance- and energy-based projections, achieving a Dice score of 87.86 percent. Strategic approximation of 3D vertebral masks from these 2D segmentation masks enables the extraction of individual vertebra volumes. The volumes are analyzed for fractures using an ensemble of 2.5D Spatio-Sequential models incorporating both raw slices and projections per vertebra for complementary evaluation. This ensemble achieves vertebra-level and patient-level F1 scores of 68.15 and 82.26, and ROC-AUC scores of 91.62 and 83.04, respectively. We further validate our approach through an explainability study that provides saliency map visualizations highlighting anatomical regions relevant for diagnosis, and an interobserver variability analysis comparing our model's performance with expert radiologists, demonstrating competitive results.
PROGRESSLM: Towards Progress Reasoning in Vision-Language Models
Estimating task progress requires reasoning over long-horizon dynamics rather than recognizing static visual content. While modern Vision-Language Models (VLMs) excel at describing what is visible, it remains unclear whether they can infer how far a task has progressed from partial observations. To this end, we introduce Progress-Bench, a benchmark for systematically evaluating progress reasoning in VLMs. Beyond benchmarking, we further explore a human-inspired two-stage progress reasoning paradigm through both training-free prompting and training-based approach based on curated dataset ProgressLM-45K. Experiments on 14 VLMs show that most models are not yet ready for task progress estimation, exhibiting sensitivity to demonstration modality and viewpoint changes, as well as poor handling of unanswerable cases. While training-free prompting that enforces structured progress reasoning yields limited and model-dependent gains, the training-based ProgressLM-3B achieves consistent improvements even at a small model scale, despite being trained on a task set fully disjoint from the evaluation tasks. Further analyses reveal characteristic error patterns and clarify when and why progress reasoning succeeds or fails.
comment: Website: https://progresslm.github.io/ProgressLM/
ScenDi: 3D-to-2D Scene Diffusion Cascades for Urban Generation
Recent advancements in 3D object generation using diffusion models have achieved remarkable success, but generating realistic 3D urban scenes remains challenging. Existing methods relying solely on 3D diffusion models tend to suffer a degradation in appearance details, while those utilizing only 2D diffusion models typically compromise camera controllability. To overcome this limitation, we propose ScenDi, a method for urban scene generation that integrates both 3D and 2D diffusion models. We first train a 3D latent diffusion model to generate 3D Gaussians, enabling the rendering of images at a relatively low resolution. To enable controllable synthesis, this 3DGS generation process can be optionally conditioned by specifying inputs such as 3d bounding boxes, road maps, or text prompts. Then, we train a 2D video diffusion model to enhance appearance details conditioned on rendered images from the 3D Gaussians. By leveraging the coarse 3D scene as guidance for 2D video diffusion, ScenDi generates desired scenes based on input conditions and successfully adheres to accurate camera trajectories. Experiments on two challenging real-world datasets, Waymo and KITTI-360, demonstrate the effectiveness of our approach.
ZENITH: Automated Gradient Norm Informed Stochastic Optimization
Training deep computer vision models requires manual oversight or hyperparameter tuning of the learning rate (LR) schedule. While existing adaptive optimizers schedule the LR automatically, they suffer from computational and memory overhead, incompatibility with regularization, and suboptimal LR choices. In this work, we introduce the ZENITH (Zero-overhead Evolution using Norm-Informed Training History) optimizer, which adapts the LR using the temporal evolution of the gradient norm. Image classification experiments spanning 6 CNN architectures and 6 benchmarks demonstrate that ZENITH achieves higher test accuracy in lower wall-clock time than baselines. It also yielded superior mAP in object detection, keypoint detection, and instance segmentation on MS COCO using the R-CNN family of models. Furthermore, its compatibility with regularization enables even better generalization.
A Computer Vision Hybrid Approach: CNN and Transformer Models for Accurate Alzheimer's Detection from Brain MRI Scans
Early and accurate classification of Alzheimers disease (AD) from brain MRI scans is essential for timely clinical intervention and improved patient outcomes. This study presents a comprehensive comparative analysis of five CNN architectures (EfficientNetB0, ResNet50, DenseNet201, MobileNetV3, VGG16), five Transformer-based models (ViT, ConvTransformer, PatchTransformer, MLP-Mixer, SimpleTransformer), and a proposed hybrid model named Evan_V2. All models were evaluated on a four-class AD classification task comprising Mild Dementia, Moderate Dementia, Non-Demented, and Very Mild Dementia categories. Experimental findings show that CNN architectures consistently achieved strong performance, with ResNet50 attaining 98.83% accuracy. Transformer models demonstrated competitive generalization capabilities, with ViT achieving the highest accuracy among them at 95.38%. However, individual Transformer variants exhibited greater class-specific instability. The proposed Evan_V2 hybrid model, which integrates outputs from ten CNN and Transformer architectures through feature-level fusion, achieved the best overall performance with 99.99% accuracy, 0.9989 F1-score, and 0.9968 ROC AUC. Confusion matrix analysis further confirmed that Evan_V2 substantially reduced misclassification across all dementia stages, outperforming every standalone model. These findings highlight the potential of hybrid ensemble strategies in producing highly reliable and clinically meaningful diagnostic tools for Alzheimers disease classification.
BBoxMaskPose v2: Expanding Mutual Conditioning to 3D
Most 2D human pose estimation benchmarks are nearly saturated, with the exception of crowded scenes. We introduce PMPose, a top-down 2D pose estimator that incorporates the probabilistic formulation and the mask-conditioning. PMPose improves crowded pose estimation without sacrificing performance on standard scenes. Building on this, we present BBoxMaskPose v2 (BMPv2) integrating PMPose and an enhanced SAM-based mask refinement module. BMPv2 surpasses state-of-the-art by 1.5 average precision (AP) points on COCO and 6 AP points on OCHuman, becoming the first method to exceed 50 AP on OCHuman. We demonstrate that BMP's 2D prompting of 3D model improves 3D pose estimation in crowded scenes and that advances in 2D pose quality directly benefit 3D estimation. Results on the new OCHuman-Pose dataset show that multi-person performance is more affected by pose prediction accuracy than by detection. The code, models, and data are available on https://MiraPurkrabek.github.io/BBox-Mask-Pose/.
comment: GitHub repository: https://github.com/MiraPurkrabek/BBoxMaskPose/
BayesianVLA: Bayesian Decomposition of Vision Language Action Models via Latent Action Queries
Vision-Language-Action (VLA) models have shown promise in robot manipulation but often struggle to generalize to new instructions or complex multi-task scenarios. We identify a critical pathology in current training paradigms where goal-driven data collection creates a dataset bias. In such datasets, language instructions are highly predictable from visual observations alone, causing the conditional mutual information between instructions and actions to vanish, a phenomenon we term Information Collapse. Consequently, models degenerate into vision-only policies that ignore language constraints and fail in out-of-distribution (OOD) settings. To address this, we propose BayesianVLA, a novel framework that enforces instruction following via Bayesian decomposition. By introducing learnable Latent Action Queries, we construct a dual-branch architecture to estimate both a vision-only prior $p(a \mid v)$ and a language-conditioned posterior $π(a \mid v, \ell)$. We then optimize the policy to maximize the conditional Pointwise Mutual Information (PMI) between actions and instructions. This objective effectively penalizes the vision shortcut and rewards actions that explicitly explain the language command. Without requiring new data, BayesianVLA significantly improves generalization. Extensive experiments across on SimplerEnv and RoboCasa demonstrate substantial gains, including an 11.3% improvement on the challenging OOD SimplerEnv benchmark, validating the ability of our approach to robustly ground language in action.
Large-Scale Multidimensional Knowledge Profiling of Scientific Literature
The rapid expansion of research across machine learning, vision, and language has produced a volume of publications that is increasingly difficult to synthesize. Traditional bibliometric tools rely mainly on metadata and offer limited visibility into the semantic content of papers, making it hard to track how research themes evolve over time or how different areas influence one another. To obtain a clearer picture of recent developments, we compile a unified corpus of more than 100,000 papers from 22 major conferences between 2020 and 2025 and construct a multidimensional profiling pipeline to organize and analyze their textual content. By combining topic clustering, LLM-assisted parsing, and structured retrieval, we derive a comprehensive representation of research activity that supports the study of topic lifecycles, methodological transitions, dataset and model usage patterns, and institutional research directions. Our analysis highlights several notable shifts, including the growth of safety, multimodal reasoning, and agent-oriented studies, as well as the gradual stabilization of areas such as neural machine translation and graph-based methods. These findings provide an evidence-based view of how AI research is evolving and offer a resource for understanding broader trends and identifying emerging directions. Code and dataset: https://github.com/xzc-zju/Profiling_Scientific_Literature
comment: Code and dataset: https://github.com/xzc-zju/Profiling_Scientific_Literature
Graph Recognition via Subgraph Prediction
Despite tremendous improvements in tasks such as image classification, object detection, and segmentation, the recognition of visual relationships, commonly modeled as the extraction of a graph from an image, remains a challenging task. We believe that this mainly stems from the fact that there is no canonical way to approach the visual graph recognition task. Most existing solutions are specific to a problem and cannot be transferred between different contexts out-of-the box, even though the conceptual problem remains the same. With broad applicability and simplicity in mind, in this paper we develop a method, \textbf{Gra}ph Recognition via \textbf{S}ubgraph \textbf{P}rediction (\textbf{GraSP}), for recognizing graphs in images. We show across several synthetic benchmarks and one real-world application that our method works with a set of diverse types of graphs and their drawings, and can be transferred between tasks without task-specific modifications, paving the way to a more unified framework for visual graph recognition.
comment: This work has been submitted to the IEEE for possible publication
DeepFedNAS: A Unified Framework for Principled, Hardware-Aware, and Predictor-Free Federated Neural Architecture Search
Federated Neural Architecture Search (FedNAS) aims to automate model design for privacy-preserving Federated Learning (FL) but currently faces two critical bottlenecks: unguided supernet training that yields suboptimal models, and costly multi-hour pipelines for post-training subnet discovery. We introduce DeepFedNAS, a novel, two-phase framework underpinned by a principled, multi-objective fitness function that synthesizes mathematical network design with architectural heuristics. Enabled by a re-engineered supernet, DeepFedNAS introduces Federated Pareto Optimal Supernet Training, which leverages a pre-computed Pareto-optimal cache of high-fitness architectures as an intelligent curriculum to optimize shared supernet weights. Subsequently, its Predictor-Free Search Method eliminates the need for costly accuracy surrogates by utilizing this fitness function as a direct, zero-cost proxy for accuracy, enabling on-demand subnet discovery in mere seconds. DeepFedNAS achieves state-of-the-art accuracy (e.g., up to 1.21% absolute improvement on CIFAR-100), superior parameter and communication efficiency, and a substantial ~61x speedup in total post-training search pipeline time. By reducing the pipeline from over 20 hours to approximately 20 minutes (including initial cache generation) and enabling 20-second individual subnet searches, DeepFedNAS makes hardware-aware FL deployments instantaneous and practical. The complete source code and experimental scripts are available at: https://github.com/bostankhan6/DeepFedNAS
comment: This paper significantly extends the preliminary work accepted at ESANN 2026. Source Code: https://github.com/bostankhan6/DeepFedNAS
BREPS: Bounding-Box Robustness Evaluation of Promptable Segmentation AAAI2026
Promptable segmentation models such as SAM have established a powerful paradigm, enabling strong generalization to unseen objects and domains with minimal user input, including points, bounding boxes, and text prompts. Among these, bounding boxes stand out as particularly effective, often outperforming points while significantly reducing annotation costs. However, current training and evaluation protocols typically rely on synthetic prompts generated through simple heuristics, offering limited insight into real-world robustness. In this paper, we investigate the robustness of promptable segmentation models to natural variations in bounding box prompts. First, we conduct a controlled user study and collect thousands of real bounding box annotations. Our analysis reveals substantial variability in segmentation quality across users for the same model and instance, indicating that SAM-like models are highly sensitive to natural prompt noise. Then, since exhaustive testing of all possible user inputs is computationally prohibitive, we reformulate robustness evaluation as a white-box optimization problem over the bounding box prompt space. We introduce BREPS, a method for generating adversarial bounding boxes that minimize or maximize segmentation error while adhering to naturalness constraints. Finally, we benchmark state-of-the-art models across 10 datasets, spanning everyday scenes to medical imaging. Code - https://github.com/emb-ai/BREPS.
comment: Accepted by AAAI2026
Vision Models for Medical Imaging: A Hybrid Approach for PCOS Detection from Ultrasound Scans
Polycystic Ovary Syndrome (PCOS) is the most familiar endocrine illness in women of reproductive age. Many Bangladeshi women suffer from PCOS disease in their older age. The aim of our research is to identify effective vision-based medical image analysis techniques and evaluate hybrid models for the accurate detection of PCOS. We introduced two novel hybrid models combining convolutional and transformer-based approaches. The training and testing data were organized into two categories: "infected" (PCOS-positive) and "noninfected" (healthy ovaries). In the initial stage, our first hybrid model, 'DenConST' (integrating DenseNet121, Swin Transformer, and ConvNeXt), achieved 85.69% accuracy. The final optimized model, 'DenConREST' (incorporating Swin Transformer, ConvNeXt, DenseNet121, ResNet18, and EfficientNetV2), demonstrated superior performance with 98.23% accuracy. Among all evaluated models, DenConREST showed the best performance. This research highlights an efficient solution for PCOS detection from ultrasound images, significantly improving diagnostic accuracy while reducing detection errors.
Training-Free and Interpretable Hateful Video Detection via Multi-stage Adversarial Reasoning
Hateful videos pose serious risks by amplifying discrimination, inciting violence, and undermining online safety. Existing training-based hateful video detection methods are constrained by limited training data and lack of interpretability, while directly prompting large vision-language models often struggle to deliver reliable hate detection. To address these challenges, this paper introduces MARS, a training-free Multi-stage Adversarial ReaSoning framework that enables reliable and interpretable hateful content detection. MARS begins with the objective description of video content, establishing a neutral foundation for subsequent analysis. Building on this, it develops evidence-based reasoning that supports potential hateful interpretations, while in parallel incorporating counter-evidence reasoning to capture plausible non-hateful perspectives. Finally, these perspectives are synthesized into a conclusive and explainable decision. Extensive evaluation on two real-world datasets shows that MARS achieves up to 10% improvement under certain backbones and settings compared to other training-free approaches and outperforms state-of-the-art training-based methods on one dataset. In addition, MARS produces human-understandable justifications, thereby supporting compliance oversight and enhancing the transparency of content moderation workflows. The code is available at https://github.com/Multimodal-Intelligence-Lab-MIL/MARS.
comment: Accepted at ICASSP 2026. \c{opyright} 2026 IEEE. This is the author accepted manuscript. The final published version will be available via IEEE Xplore
Pb4U-GNet: Resolution-Adaptive Garment Simulation via Propagation-before-Update Graph Network AAAI 2026
Garment simulation is fundamental to various applications in computer vision and graphics, from virtual try-on to digital human modelling. However, conventional physics-based methods remain computationally expensive, hindering their application in time-sensitive scenarios. While graph neural networks (GNNs) offer promising acceleration, existing approaches exhibit poor cross-resolution generalisation, demonstrating significant performance degradation on higher-resolution meshes beyond the training distribution. This stems from two key factors: (1) existing GNNs employ fixed message-passing depth that fails to adapt information aggregation to mesh density variation, and (2) vertex-wise displacement magnitudes are inherently resolution-dependent in garment simulation. To address these issues, we introduce Propagation-before-Update Graph Network (Pb4U-GNet), a resolution-adaptive framework that decouples message propagation from feature updates. Pb4U-GNet incorporates two key mechanisms: (1) dynamic propagation depth control, adjusting message-passing iterations based on mesh resolution, and (2) geometry-aware update scaling, which scales predictions according to local mesh characteristics. Extensive experiments show that even trained solely on low-resolution meshes, Pb4U-GNet exhibits strong generalisability across diverse mesh resolutions, addressing a fundamental challenge in neural garment simulation.
comment: Camera-ready version accepted at AAAI 2026
Three-dimensional visualization of X-ray micro-CT with large-scale datasets: Efficiency and accuracy for real-time interaction
As Micro-CT technology continues to refine its characterization of material microstructures, industrial CT ultra-precision inspection is generating increasingly large datasets, necessitating solutions to the trade-off between accuracy and efficiency in the 3D characterization of defects during ultra-precise detection. This article provides a unique perspective on recent advances in accurate and efficient 3D visualization using Micro-CT, tracing its evolution from medical imaging to industrial non-destructive testing (NDT). Among the numerous CT reconstruction and volume rendering methods, this article selectively reviews and analyzes approaches that balance accuracy and efficiency, offering a comprehensive analysis to help researchers quickly grasp highly efficient and accurate 3D reconstruction methods for microscopic features. By comparing the principles of computed tomography with advancements in microstructural technology, this article examines the evolution of CT reconstruction algorithms from analytical methods to deep learning techniques, as well as improvements in volume rendering algorithms, acceleration, and data reduction. Additionally, it explores advanced lighting models for high-accuracy, photorealistic, and efficient volume rendering. Furthermore, this article envisions potential directions in CT reconstruction and volume rendering. It aims to guide future research in quickly selecting efficient and precise methods and developing new ideas and approaches for real-time online monitoring of internal material defects through virtual-physical interaction, for applying digital twin model to structural health monitoring (SHM).
comment: Page1-37
The Pictorial Cortex: Zero-Shot Cross-Subject fMRI-to-Image Reconstruction via Compositional Latent Modeling
Decoding visual experiences from human brain activity remains a central challenge at the intersection of neuroscience, neuroimaging, and artificial intelligence. A critical obstacle is the inherent variability of cortical responses: neural activity elicited by the same visual stimulus differs across individuals and trials due to anatomical, functional, cognitive, and experimental factors, making fMRI-to-image reconstruction non-injective. In this paper, we tackle a challenging yet practically meaningful problem: zero-shot cross-subject fMRI-to-image reconstruction, where the visual experience of a previously unseen individual must be reconstructed without subject-specific training. To enable principled evaluation, we present a unified cortical-surface dataset -- UniCortex-fMRI, assembled from multiple visual-stimulus fMRI datasets to provide broad coverage of subjects and stimuli. Our UniCortex-fMRI is particularly processed by standardized data formats to make it possible to explore this possibility in the zero-shot scenario of cross-subject fMRI-to-image reconstruction. To tackle the modeling challenge, we propose PictorialCortex, which models fMRI activity using a compositional latent formulation that structures stimulus-driven representations under subject-, dataset-, and trial-related variability. PictorialCortex operates in a universal cortical latent space and implements this formulation through a latent factorization-composition module, reinforced by paired factorization and re-factorizing consistency regularization. During inference, surrogate latents synthesized under multiple seen-subject conditions are aggregated to guide diffusion-based image synthesis for unseen subjects. Extensive experiments show that PictorialCortex improves zero-shot cross-subject visual reconstruction, highlighting the benefits of compositional latent modeling and multi-dataset training.
Enhancing Few-Shot Out-of-Distribution Detection via the Refinement of Foreground and Background
CLIP-based foreground-background (FG-BG) decomposition methods have demonstrated remarkable effectiveness in improving few-shot out-of-distribution (OOD) detection performance. However, existing approaches still suffer from several limitations. For background regions obtained from decomposition, existing methods adopt a uniform suppression strategy for all patches, overlooking the varying contributions of different patches to the prediction. For foreground regions, existing methods fail to adequately consider that some local patches may exhibit appearance or semantic similarity to other classes, which may mislead the training process. To address these issues, we propose a new plug-and-play framework. This framework consists of three core components: (1) a Foreground-Background Decomposition module, which follows previous FG-BG methods to separate an image into foreground and background regions; (2) an Adaptive Background Suppression module, which adaptively weights patch classification entropy; and (3) a Confusable Foreground Rectification module, which identifies and rectifies confusable foreground patches. Extensive experimental results demonstrate that the proposed plug-and-play framework significantly improves the performance of existing FG-BG decomposition methods. Code is available at: https://github.com/lounwb/FoBoR.
Differential Privacy Image Generation with Reconstruction Loss and Noise Injection Using an Error Feedback SGD
Traditional data masking techniques such as anonymization cannot achieve the expected privacy protection while ensuring data utility for privacy-preserving machine learning. Synthetic data plays an increasingly important role as it generates a large number of training samples and prevents information leakage in real data. The existing methods suffer from the repeating trade-off processes between privacy and utility. We propose a novel framework for differential privacy generation, which employs an Error Feedback Stochastic Gradient Descent(EFSGD) method and introduces a reconstruction loss and noise injection mechanism into the training process. We generate images with higher quality and usability under the same privacy budget as the related work. Extensive experiments demonstrate the effectiveness and generalization of our proposed framework for both grayscale and RGB images. We achieve state-of-the-art results over almost all metrics on three benchmarks: MNIST, Fashion-MNIST, and CelebA.
SpooFL: Spoofing Federated Learning
Traditional defenses against Deep Leakage (DL) attacks in Federated Learning (FL) primarily focus on obfuscation, introducing noise, transformations or encryption to degrade an attacker's ability to reconstruct private data. While effective to some extent, these methods often still leak high-level information such as class distributions or feature representations, and are frequently broken by increasingly powerful denoising attacks. We propose a fundamentally different perspective on FL defense: framing it as a spoofing problem.We introduce SpooFL (Figure 1), a spoofing-based defense that deceives attackers into believing they have recovered the true training data, while actually providing convincing but entirely synthetic samples from an unrelated task. Unlike prior synthetic-data defenses that share classes or distributions with the private data and thus still leak semantic information, SpooFL uses a state-of-the-art generative model trained on an external dataset with no class overlap. As a result, attackers are misled into recovering plausible yet completely irrelevant samples, preventing meaningful data leakage while preserving FL training integrity. We implement the first example of such a spoofing defense, and evaluate our method against state-of-the-art DL defenses and demonstrate that it successfully misdirects attackers without compromising model performance significantly.
Deep Leakage with Generative Flow Matching Denoiser
Federated Learning (FL) has emerged as a powerful paradigm for decentralized model training, yet it remains vulnerable to deep leakage (DL) attacks that reconstruct private client data from shared model updates. While prior DL methods have demonstrated varying levels of success, they often suffer from instability, limited fidelity, or poor robustness under realistic FL settings. We introduce a new DL attack that integrates a generative Flow Matching (FM) prior into the reconstruction process. By guiding optimization toward the distribution of realistic images (represented by a flow matching foundation model), our method enhances reconstruction fidelity without requiring knowledge of the private data. Extensive experiments on multiple datasets and target models demonstrate that our approach consistently outperforms state-of-the-art attacks across pixel-level, perceptual, and feature-based similarity metrics. Crucially, the method remains effective across different training epochs, larger client batch sizes, and under common defenses such as noise injection, clipping, and sparsification. Our findings call for the development of new defense strategies that explicitly account for adversaries equipped with powerful generative priors.
Federated Transformer-GNN for Privacy-Preserving Brain Tumor Localization with Modality-Level Explainability
Deep learning models for brain tumor analysis require large and diverse datasets that are often siloed across healthcare institutions due to privacy regulations. We present a federated learning framework for brain tumor localization that enables multi-institutional collaboration without sharing sensitive patient data. Our method extends a hybrid Transformer-Graph Neural Network architecture derived from prior decoder-free supervoxel GNNs and is deployed within CAFEIN\textsuperscript{\textregistered}, CERN's federated learning platform designed for healthcare environments. We provide an explainability analysis through Transformer attention mechanisms that reveals which MRI modalities drive the model predictions. Experiments on the BraTS dataset demonstrate a key finding: while isolated training on individual client data triggers early stopping well before reaching full training capacity, federated learning enables continued model improvement by leveraging distributed data, ultimately matching centralized performance. This result provides strong justification for federated learning when dealing with complex tasks and high-dimensional input data, as aggregating knowledge from multiple institutions significantly benefits the learning process. Our explainability analysis, validated through rigorous statistical testing on the full test set (paired t-tests with Bonferroni correction), reveals that deeper network layers significantly increase attention to T2 and FLAIR modalities ($p<0.001$, Cohen's $d$=1.50), aligning with clinical practice.
ExPrIS: Knowledge-Level Expectations as Priors for Object Interpretation from Sensor Data
While deep learning has significantly advanced robotic object recognition, purely data-driven approaches often lack semantic consistency and fail to leverage valuable, pre-existing knowledge about the environment. This report presents the ExPrIS project, which addresses this challenge by investigating how knowledge-level expectations can serve as to improve object interpretation from sensor data. Our approach is based on the incremental construction of a 3D Semantic Scene Graph (3DSSG). We integrate expectations from two sources: contextual priors from past observations and semantic knowledge from external graphs like ConceptNet. These are embedded into a heterogeneous Graph Neural Network (GNN) to create an expectation-biased inference process. This method moves beyond static, frame-by-frame analysis to enhance the robustness and consistency of scene understanding over time. The report details this architecture, its evaluation, and outlines its planned integration on a mobile robotic platform.
comment: This preprint has not undergone peer review or any post-submission improvements or corrections. The Version of Record of this article is published in KI - Künstliche Intelligenz, and is available online at https://doi.org/10.1007/s13218-026-00901-7
Mixture-of-Experts Models in Vision: Routing, Optimization, and Generalization
Mixture-of-Experts (MoE) architectures enable conditional computation by routing inputs to multiple expert subnetworks and are often motivated as a mechanism for scaling large language models. In this project, we instead study MoE behavior in an image classification setting, focusing on predictive performance, expert utilization, and generalization. We compare dense, SoftMoE, and SparseMoE classifier heads on the CIFAR10 dataset under comparable model capacity. Both MoE variants achieve slightly higher validation accuracy than the dense baseline while maintaining balanced expert utilization through regularization, avoiding expert collapse. To analyze generalization, we compute Hessian-based sharpness metrics at convergence, including the largest eigenvalue and trace of the loss Hessian, evaluated on both training and test data. We find that SoftMoE exhibits higher sharpness by these metrics, while Dense and SparseMoE lie in a similar curvature regime, despite all models achieving comparable generalization performance. Complementary loss surface perturbation analyses reveal qualitative differences in non-local behavior under finite parameter perturbations between dense and MoE models, which help contextualize curvature-based measurements without directly explaining validation accuracy. We further evaluate empirical inference efficiency and show that naively implemented conditional routing does not yield inference speedups on modern hardware at this scale, highlighting the gap between theoretical and realized efficiency in sparse MoE models.
comment: 7 pages, 8 figures. Code available at: https://github.com/moe-project-uu/mixture-of-experts-project
SpatialV2A: Visual-Guided High-fidelity Spatial Audio Generation
While video-to-audio generation has achieved remarkable progress in semantic and temporal alignment, most existing studies focus solely on these aspects, paying limited attention to the spatial perception and immersive quality of the synthesized audio. This limitation stems largely from current models' reliance on mono audio datasets, which lack the binaural spatial information needed to learn visual-to-spatial audio mappings. To address this gap, we introduce two key contributions: we construct BinauralVGGSound, the first large-scale video-binaural audio dataset designed to support spatially aware video-to-audio generation; and we propose a end-to-end spatial audio generation framework guided by visual cues, which explicitly models spatial features. Our framework incorporates a visual-guided audio spatialization module that ensures the generated audio exhibits realistic spatial attributes and layered spatial depth while maintaining semantic and temporal alignment. Experiments show that our approach substantially outperforms state-of-the-art models in spatial fidelity and delivers a more immersive auditory experience, without sacrificing temporal or semantic consistency. All datasets, code, and model checkpoints will be publicly released to facilitate future research.
LiViBench: An Omnimodal Benchmark for Interactive Livestream Video Understanding AAAI 2026
The development of multimodal large language models (MLLMs) has advanced general video understanding. However, existing video evaluation benchmarks primarily focus on non-interactive videos, such as movies and recordings. To fill this gap, this paper proposes the first omnimodal benchmark for interactive livestream videos, LiViBench. It features a diverse set of 24 tasks, highlighting the perceptual, reasoning, and livestream-specific challenges. To efficiently construct the dataset, we design a standardized semi-automatic annotation workflow that incorporates the human-in-the-loop at multiple stages. The workflow leverages multiple MLLMs to form a multi-agent system for comprehensive video description and uses a seed-question-driven method to construct high-quality annotations. All interactive videos in the benchmark include audio, speech, and real-time comments modalities. To enhance models' understanding of interactive videos, we design tailored two-stage instruction-tuning and propose a Video-to-Comment Retrieval (VCR) module to improve the model's ability to utilize real-time comments. Based on these advancements, we develop LiVi-LLM-7B, an MLLM with enhanced knowledge of interactive livestreams. Experiments show that our model outperforms larger open-source models with up to 72B parameters, narrows the gap with leading proprietary models on LiViBench, and achieves enhanced performance on general video benchmarks, including VideoMME, LongVideoBench, MLVU, and VideoEval-Pro.
comment: AAAI 2026 Main Track
Filtered 2D Contour-Based Reconstruction of 3D STL Model from CT-DICOM Images
Reconstructing a 3D Stereo-lithography (STL) Model from 2D Contours of scanned structure in Digital Imaging and Communication in Medicine (DICOM) images is crucial to understand the geometry and deformity. Computed Tomography (CT) images are processed to enhance the contrast, reduce the noise followed by smoothing. The processed CT images are segmented using thresholding technique. 2D contour data points are extracted from segmented CT images and are used to construct 3D STL Models. The 2D contour data points may contain outliers as a result of segmentation of low resolution images and the geometry of the constructed 3D structure deviate from the actual. To cope with the imperfections in segmentation process, in this work we propose to use filtered 2D contour data points to reconstruct 3D STL Model. The filtered 2D contour points of each image are delaunay triangulated and joined layer-by-layer to reconstruct the 3D STL model. The 3D STL Model reconstruction is verified on i) 2D Data points of basic shapes and ii) Region of Interest (ROI) of human pelvic bone and are presented as case studies. The 3D STL model constructed from 2D contour data points of ROI of segmented pelvic bone with and without filtering are presented. The 3D STL model reconstructed from filtered 2D data points improved the geometry of model compared to the model reconstructed without filtering 2D data points.
comment: 8 pages, 18 figures
Unified Multi-Dataset Training for TBPS
Text-Based Person Search (TBPS) has seen significant progress with vision-language models (VLMs), yet it remains constrained by limited training data and the fact that VLMs are not inherently pre-trained for pedestrian-centric recognition. Existing TBPS methods therefore rely on dataset-centric fine-tuning to handle distribution shift, resulting in multiple independently trained models for different datasets. While synthetic data can increase the scale needed to fine-tune VLMs, it does not eliminate dataset-specific adaptation. This motivates a fundamental question: can we train a single unified TBPS model across multiple datasets? We show that naive joint training over all datasets remains sub-optimal because current training paradigms do not scale to a large number of unique person identities and are vulnerable to noisy image-text pairs. To address these challenges, we propose Scale-TBPS with two contributions: (i) a noise-aware unified dataset curation strategy that cohesively merges diverse TBPS datasets; and (ii) a scalable discriminative identity learning framework that remains effective under a large number of unique identities. Extensive experiments on CUHK-PEDES, ICFG-PEDES, RSTPReid, IIITD-20K, and UFine6926 demonstrate that a single Scale-TBPS model outperforms dataset-centric optimized models and naive joint training.
Towards Holistic Modeling for Video Frame Interpolation with Auto-regressive Diffusion Transformers
Existing video frame interpolation (VFI) methods often adopt a frame-centric approach, processing videos as independent short segments (e.g., triplets), which leads to temporal inconsistencies and motion artifacts. To overcome this, we propose a holistic, video-centric paradigm named \textbf{L}ocal \textbf{D}iffusion \textbf{F}orcing for \textbf{V}ideo \textbf{F}rame \textbf{I}nterpolation (LDF-VFI). Our framework is built upon an auto-regressive diffusion transformer that models the entire video sequence to ensure long-range temporal coherence. To mitigate error accumulation inherent in auto-regressive generation, we introduce a novel skip-concatenate sampling strategy that effectively maintains temporal stability. Furthermore, LDF-VFI incorporates sparse, local attention and tiled VAE encoding, a combination that not only enables efficient processing of long sequences but also allows generalization to arbitrary spatial resolutions (e.g., 4K) at inference without retraining. An enhanced conditional VAE decoder, which leverages multi-scale features from the input video, further improves reconstruction fidelity. Empirically, LDF-VFI achieves state-of-the-art performance on challenging long-sequence benchmarks, demonstrating superior per-frame quality and temporal consistency, especially in scenes with large motion. The source code is available at https://github.com/xypeng9903/LDF-VFI.
TempViz: On the Evaluation of Temporal Knowledge in Text-to-Image Models
Time alters the visual appearance of entities in our world, like objects, places, and animals. Thus, for accurately generating contextually-relevant images, knowledge and reasoning about time can be crucial (e.g., for generating a landscape in spring vs. in winter). Yet, although substantial work exists on understanding and improving temporal knowledge in natural language processing, research on how temporal phenomena appear and are handled in text-to-image (T2I) models remains scarce. We address this gap with TempViz, the first data set to holistically evaluate temporal knowledge in image generation, consisting of 7.9k prompts and more than 600 reference images. Using TempViz, we study the capabilities of five T2I models across five temporal knowledge categories. Human evaluation shows that temporal competence is generally weak, with no model exceeding 75% accuracy across categories. Towards larger-scale studies, we also examine automated evaluation methods, comparing several established approaches against human judgments. However, none of these approaches provides a reliable assessment of temporal cues - further indicating the pressing need for future research on temporal knowledge in T2I.
Erosion Attack for Adversarial Training to Enhance Semantic Segmentation Robustness
Existing segmentation models exhibit significant vulnerability to adversarial attacks.To improve robustness, adversarial training incorporates adversarial examples into model training. However, existing attack methods consider only global semantic information and ignore contextual semantic relationships within the samples, limiting the effectiveness of adversarial training. To address this issue, we propose EroSeg-AT, a vulnerability-aware adversarial training framework that leverages EroSeg to generate adversarial examples. EroSeg first selects sensitive pixels based on pixel-level confidence and then progressively propagates perturbations to higher-confidence pixels, effectively disrupting the semantic consistency of the samples. Experimental results show that, compared to existing methods, our approach significantly improves attack effectiveness and enhances model robustness under adversarial training.
comment: Accepted by ICASSP 2026
SpatialMem: Unified 3D Memory with Metric Anchoring and Fast Retrieval
We present SpatialMem, a memory-centric system that unifies 3D geometry, semantics, and language into a single, queryable representation. Starting from casually captured egocentric RGB video, SpatialMem reconstructs metrically scaled indoor environments, detects structural 3D anchors (walls, doors, windows) as the first-layer scaffold, and populates a hierarchical memory with open-vocabulary object nodes -- linking evidence patches, visual embeddings, and two-layer textual descriptions to 3D coordinates -- for compact storage and fast retrieval. This design enables interpretable reasoning over spatial relations (e.g., distance, direction, visibility) and supports downstream tasks such as language-guided navigation and object retrieval without specialized sensors. Experiments across three real-life indoor scenes demonstrate that SpatialMem maintains strong anchor-description-level navigation completion and hierarchical retrieval accuracy under increasing clutter and occlusion, offering an efficient and extensible framework for embodied spatial intelligence.
GAT-NeRF: Geometry-Aware-Transformer Enhanced Neural Radiance Fields for High-Fidelity 4D Facial Avatars
High-fidelity 4D dynamic facial avatar reconstruction from monocular video is a critical yet challenging task, driven by increasing demands for immersive virtual human applications. While Neural Radiance Fields (NeRF) have advanced scene representation, their capacity to capture high-frequency facial details, such as dynamic wrinkles and subtle textures from information-constrained monocular streams, requires significant enhancement. To tackle this challenge, we propose a novel hybrid neural radiance field framework, called Geometry-Aware-Transformer Enhanced NeRF (GAT-NeRF) for high-fidelity and controllable 4D facial avatar reconstruction, which integrates the Transformer mechanism into the NeRF pipeline. GAT-NeRF synergistically combines a coordinate-aligned Multilayer Perceptron (MLP) with a lightweight Transformer module, termed as Geometry-Aware-Transformer (GAT) due to its processing of multi-modal inputs containing explicit geometric priors. The GAT module is enabled by fusing multi-modal input features, including 3D spatial coordinates, 3D Morphable Model (3DMM) expression parameters, and learnable latent codes to effectively learn and enhance feature representations pertinent to fine-grained geometry. The Transformer's effective feature learning capabilities are leveraged to significantly augment the modeling of complex local facial patterns like dynamic wrinkles and acne scars. Comprehensive experiments unequivocally demonstrate GAT-NeRF's state-of-the-art performance in visual fidelity and high-frequency detail recovery, forging new pathways for creating realistic dynamic digital humans for multimedia applications.
MTFlow: Time-Conditioned Flow Matching for Microtubule Segmentation in Noisy Microscopy Images
Microtubules are cytoskeletal filaments that play essential roles in many cellular processes and are key therapeutic targets in several diseases. Accurate segmentation of microtubule networks is critical for studying their organization and dynamics but remains challenging due to filament curvature, dense crossings, and image noise. We present MTFlow, a novel time-conditioned flow-matching model for microtubule segmentation. Unlike conventional U-Net variants that predict masks in a single pass, MTFlow learns vector fields that iteratively transport noisy masks toward the ground truth, enabling interpretable, trajectory-based refinement. Our architecture combines a U-Net backbone with temporal embeddings, allowing the model to capture the dynamics of uncertainty resolution along filament boundaries. We trained and evaluated MTFlow on synthetic and real microtubule datasets and assessed its generalization capability on public biomedical datasets of curvilinear structures such as retinal blood vessels and nerves. MTFlow achieves competitive segmentation accuracy comparable to state-of-the-art models, offering a powerful and time-efficient tool for filamentous structure analysis with more precise annotations than manual or semi-automatic approaches.
comment: Accepted for presentation at ISBI 2026
Multimodal system for skin cancer detection
Melanoma detection is vital for early diagnosis and effective treatment. While deep learning models on dermoscopic images have shown promise, they require specialized equipment, limiting their use in broader clinical settings. This study introduces a multi-modal melanoma detection system using conventional photo images, making it more accessible and versatile. Our system integrates image data with tabular metadata, such as patient demographics and lesion characteristics, to improve detection accuracy. It employs a multi-modal neural network combining image and metadata processing and supports a two-step model for cases with or without metadata. A three-stage pipeline further refines predictions by boosting algorithms and enhancing performance. To address the challenges of a highly imbalanced dataset, specific techniques were implemented to ensure robust training. An ablation study evaluated recent vision architectures, boosting algorithms, and loss functions, achieving a peak Partial ROC AUC of 0.18068 (0.2 maximum) and top-15 retrieval sensitivity of 0.78371. Results demonstrate that integrating photo images with metadata in a structured, multi-stage pipeline yields significant performance improvements. This system advances melanoma detection by providing a scalable, equipment-independent solution suitable for diverse healthcare environments, bridging the gap between specialized and general clinical practices.
comment: Accepted to System research and information technologies
POTR: Post-Training 3DGS Compression
3D Gaussian Splatting (3DGS) has recently emerged as a promising contender to Neural Radiance Fields (NeRF) in 3D scene reconstruction and real-time novel view synthesis. 3DGS outperforms NeRF in training and inference speed but has substantially higher storage requirements. To remedy this downside, we propose POTR, a post-training 3DGS codec built on two novel techniques. First, POTR introduces a novel pruning approach that uses a modified 3DGS rasterizer to efficiently calculate every splat's individual removal effect simultaneously. This technique results in 2-4x fewer splats than other post-training pruning techniques and as a result also significantly accelerates inference with experiments demonstrating 1.5-2x faster inference than other compressed models. Second, we propose a novel method to recompute lighting coefficients, significantly reducing their entropy without using any form of training. Our fast and highly parallel approach especially increases AC lighting coefficient sparsity, with experiments demonstrating increases from 70% to 97%, with minimal loss in quality. Finally, we extend POTR with a simple fine-tuning scheme to further enhance pruning, inference, and rate-distortion performance. Experiments demonstrate that POTR, even without fine-tuning, consistently outperforms all other post-training compression techniques in both rate-distortion performance and inference speed.
comment: 15 pages, 12 figures. Submitted to IEEE TCSVT, under review
Symmetry Informative and Agnostic Feature Disentanglement for 3D Shapes 3DV 2026
Shape descriptors, i.e., per-vertex features of 3D meshes or point clouds, are fundamental to shape analysis. Historically, various handcrafted geometry-aware descriptors and feature refinement techniques have been proposed. Recently, several studies have initiated a new research direction by leveraging features from image foundation models to create semantics-aware descriptors, demonstrating advantages across tasks like shape matching, editing, and segmentation. Symmetry, another key concept in shape analysis, has also attracted increasing attention. Consequently, constructing symmetry-aware shape descriptors is a natural progression. Although the recent method $χ$ (Wang et al., 2025) successfully extracted symmetry-informative features from semantic-aware descriptors, its features are only one-dimensional, neglecting other valuable semantic information. Furthermore, the extracted symmetry-informative feature is usually noisy and yields small misclassified patches. To address these gaps, we propose a feature disentanglement approach which is simultaneously symmetry informative and symmetry agnostic. Further, we propose a feature refinement technique to improve the robustness of predicted symmetry informative features. Extensive experiments, including intrinsic symmetry detection, left/right classification, and shape matching, demonstrate the effectiveness of our proposed framework compared to various state-of-the-art methods, both qualitatively and quantitatively.
comment: Accepted at 3DV 2026
LocBAM: Advancing 3D Patch-Based Image Segmentation by Integrating Location Contex
Patch-based methods are widely used in 3D medical image segmentation to address memory constraints in processing high-resolution volumetric data. However, these approaches often neglect the patch's location within the global volume, which can limit segmentation performance when anatomical context is important. In this paper, we investigate the role of location context in patch-based 3D segmentation and propose a novel attention mechanism, LocBAM, that explicitly processes spatial information. Experiments on BTCV, AMOS22, and KiTS23 demonstrate that incorporating location context stabilizes training and improves segmentation performance, particularly under low patch-to-volume coverage where global context is missing. Furthermore, LocBAM consistently outperforms classical coordinate encoding via CoordConv. Code is publicly available at https://github.com/compai-lab/2026-ISBI-hooft
comment: Accepted at ISBI 2026
UBATrack: Spatio-Temporal State Space Model for General Multi-Modal Tracking
Multi-modal object tracking has attracted considerable attention by integrating multiple complementary inputs (e.g., thermal, depth, and event data) to achieve outstanding performance. Although current general-purpose multi-modal trackers primarily unify various modal tracking tasks (i.e., RGB-Thermal infrared, RGB-Depth or RGB-Event tracking) through prompt learning, they still overlook the effective capture of spatio-temporal cues. In this work, we introduce a novel multi-modal tracking framework based on a mamba-style state space model, termed UBATrack. Our UBATrack comprises two simple yet effective modules: a Spatio-temporal Mamba Adapter (STMA) and a Dynamic Multi-modal Feature Mixer. The former leverages Mamba's long-sequence modeling capability to jointly model cross-modal dependencies and spatio-temporal visual cues in an adapter-tuning manner. The latter further enhances multi-modal representation capacity across multiple feature dimensions to improve tracking robustness. In this way, UBATrack eliminates the need for costly full-parameter fine-tuning, thereby improving the training efficiency of multi-modal tracking algorithms. Experiments show that UBATrack outperforms state-of-the-art methods on RGB-T, RGB-D, and RGB-E tracking benchmarks, achieving outstanding results on the LasHeR, RGBT234, RGBT210, DepthTrack, VOT-RGBD22, and VisEvent datasets.
UniRoute: Unified Routing Mixture-of-Experts for Modality-Adaptive Remote Sensing Change Detection
Current remote sensing change detection (CD) methods mainly rely on specialized models, which limits the scalability toward modality-adaptive Earth observation. For homogeneous CD, precise boundary delineation relies on fine-grained spatial cues and local pixel interactions, whereas heterogeneous CD instead requires broader contextual information to suppress speckle noise and geometric distortions. Moreover, difference operator (e.g., subtraction) works well for aligned homogeneous images but introduces artifacts in cross-modal or geometrically misaligned scenarios. Across different modality settings, specialized models based on static backbones or fixed difference operations often prove insufficient. To address this challenge, we propose UniRoute, a unified framework for modality-adaptive learning by reformulating feature extraction and fusion as conditional routing problems. We introduce an Adaptive Receptive Field Routing MoE (AR2-MoE) module to disentangle local spatial details from global semantic context, and a Modality-Aware Difference Routing MoE (MDR-MoE) module to adaptively select the most suitable fusion primitive at each pixel. In addition, we propose a Consistency-Aware Self-Distillation (CASD) strategy that stabilizes unified training under data-scarce heterogeneous settings by enforcing multi-level consistency. Extensive experiments on five public datasets demonstrate that UniRoute achieves strong overall performance, with a favorable accuracy-efficiency trade-off under a unified deployment setting.
Synthetic Data Augmentation for Multi-Task Chinese Porcelain Classification: A Stable Diffusion Approach
The scarcity of training data presents a fundamental challenge in applying deep learning to archaeological artifact classification, particularly for the rare types of Chinese porcelain. This study investigates whether synthetic images generated through Stable Diffusion with Low-Rank Adaptation (LoRA) can effectively augment limited real datasets for multi-task CNN-based porcelain classification. Using MobileNetV3 with transfer learning, we conducted controlled experiments comparing models trained on pure real data against those trained on mixed real-synthetic datasets (95:5 and 90:10 ratios) across four classification tasks: dynasty, glaze, kiln and type identification. Results demonstrate task-specific benefits: type classification showed the most substantial improvement (5.5\% F1-macro increase with 90:10 ratio), while dynasty and kiln tasks exhibited modest gains (3-4\%), suggesting that synthetic augmentation effectiveness depends on the alignment between generated features and task-relevant visual signatures. Our work contributes practical guidelines for deploying generative AI in archaeological research, demonstrating both the potential and limitations of synthetic data when archaeological authenticity must be balanced with data diversity.
Reconstruction-Anchored Diffusion Model for Text-to-Motion Generation
Diffusion models have seen widespread adoption for text-driven human motion generation and related tasks due to their impressive generative capabilities and flexibility. However, current motion diffusion models face two major limitations: a representational gap caused by pre-trained text encoders that lack motion-specific information, and error propagation during the iterative denoising process. This paper introduces Reconstruction-Anchored Diffusion Model (RAM) to address these challenges. First, RAM leverages a motion latent space as intermediate supervision for text-to-motion generation. To this end, RAM co-trains a motion reconstruction branch with two key objective functions: self-regularization to enhance the discrimination of the motion space and motion-centric latent alignment to enable accurate mapping from text to the motion latent space. Second, we propose Reconstructive Error Guidance (REG), a testing-stage guidance mechanism that exploits the diffusion model's inherent self-correction ability to mitigate error propagation. At each denoising step, REG uses the motion reconstruction branch to reconstruct the previous estimate, reproducing the prior error patterns. By amplifying the residual between the current prediction and the reconstructed estimate, REG highlights the improvements in the current prediction. Extensive experiments demonstrate that RAM achieves significant improvements and state-of-the-art performance. Our code will be released.
FunCineForge: A Unified Dataset Toolkit and Model for Zero-Shot Movie Dubbing in Diverse Cinematic Scenes
Movie dubbing is the task of synthesizing speech from scripts conditioned on video scenes, requiring accurate lip sync, faithful timbre transfer, and proper modeling of character identity and emotion. However, existing methods face two major limitations: (1) high-quality multimodal dubbing datasets are limited in scale, suffer from high word error rates, contain sparse annotations, rely on costly manual labeling, and are restricted to monologue scenes, all of which hinder effective model training; (2) existing dubbing models rely solely on the lip region to learn audio-visual alignment, which limits their applicability to complex live-action cinematic scenes, and exhibit suboptimal performance in lip sync, speech quality, and emotional expressiveness. To address these issues, we propose FunCineForge, which comprises an end-to-end production pipeline for large-scale dubbing datasets and an MLLM-based dubbing model designed for diverse cinematic scenes. Using the pipeline, we construct the first Chinese television dubbing dataset with rich annotations, and demonstrate the high quality of these data. Experiments across monologue, narration, dialogue, and multi-speaker scenes show that our dubbing model consistently outperforms SOTA methods in audio quality, lip sync, timbre transfer, and instruction following. Code and demos are available at https://anonymous.4open.science/w/FunCineForge.
M2I2HA: A Multi-modal Object Detection Method Based on Intra- and Inter-Modal Hypergraph Attention
Recent advances in multi-modal detection have significantly improved detection accuracy in challenging environments (e.g., low light, overexposure). By integrating RGB with modalities such as thermal and depth, multi-modal fusion increases data redundancy and system robustness. However, significant challenges remain in effectively extracting task-relevant information both within and across modalities, as well as in achieving precise cross-modal alignment. While CNNs excel at feature extraction, they are limited by constrained receptive fields, strong inductive biases, and difficulty in capturing long-range dependencies. Transformer-based models offer global context but suffer from quadratic computational complexity and are confined to pairwise correlation modeling. Mamba and other State Space Models (SSMs), on the other hand, are hindered by their sequential scanning mechanism, which flattens 2D spatial structures into 1D sequences, disrupting topological relationships and limiting the modeling of complex higher-order dependencies. To address these issues, we propose a multi-modal perception network based on hypergraph theory called M2I2HA. Our architecture includes an Intra-Hypergraph Enhancement module to capture global many-to-many high-order relationships within each modality, and an Inter-Hypergraph Fusion module to align, enhance, and fuse cross-modal features by bridging configuration and spatial gaps between data sources. We further introduce a M2-FullPAD module to enable adaptive multi-level fusion of multi-modal enhanced features within the network, meanwhile enhancing data distribution and flow across the architecture. Extensive object detection experiments on multiple public datasets against baselines demonstrate that M2I2HA achieves state-of-the-art performance in multi-modal object detection tasks.
comment: 43 pages, 13 figures
Does medical specialization of VLMs enhance discriminative power?: A comprehensive investigation through feature distribution analysis
This study investigates the feature representations produced by publicly available open source medical vision-language models (VLMs). While medical VLMs are expected to capture diagnostically relevant features, their learned representations remain underexplored, and standard evaluations like classification accuracy do not fully reveal if they acquire truly discriminative, lesion-specific features. Understanding these representations is crucial for revealing medical image structures and improving downstream tasks in medical image analysis. This study aims to investigate the feature distributions learned by medical VLMs and evaluate the impact of medical specialization. We analyze the feature distribution of multiple image modalities extracted by some representative medical VLMs across lesion classification datasets on multiple modalities. These distributions were compared them with non-medical VLMs to assess the domain-specific medical training. Our experiments showed that medical VLMs can extract discriminative features that are effective for medical classification tasks. Moreover, it was found that non-medical VLMs with recent improvement with contextual enrichment such as LLM2CLIP produce more refined feature representations. Our results imply that enhancing text encoder is more crucial than training intensively on medical images when developing medical VLMs. Notably, non-medical models are particularly vulnerable to biases introduced by overlaied text strings on images. These findings underscore the need for careful consideration on model selection according to downstream tasks besides potential risks in inference due to background biases such as textual information in images.
comment: A short version paper of this research has been accepted for The IEEE International Symposium on Biomedical Imaging (ISBI) 2026
Using Multi-Instance Learning to Identify Unique Polyps in Colon Capsule Endoscopy Images
Identifying unique polyps in colon capsule endoscopy (CCE) images is a critical yet challenging task for medical personnel due to the large volume of images, the cognitive load it creates for clinicians, and the ambiguity in labeling specific frames. This paper formulates this problem as a multi-instance learning (MIL) task, where a query polyp image is compared with a target bag of images to determine uniqueness. We employ a multi-instance verification (MIV) framework that incorporates attention mechanisms, such as variance-excited multi-head attention (VEMA) and distance-based attention (DBA), to enhance the model's ability to extract meaningful representations. Additionally, we investigate the impact of self-supervised learning using SimCLR to generate robust embeddings. Experimental results on a dataset of 1912 polyps from 754 patients demonstrate that attention mechanisms significantly improve performance, with DBA L1 achieving the highest test accuracy of 86.26\% and a test AUC of 0.928 using a ConvNeXt backbone with SimCLR pretraining. This study underscores the potential of MIL and self-supervised learning in advancing automated analysis of Colon Capsule Endoscopy images, with implications for broader medical imaging applications.
comment: 19 pages
ReinPath: A Multimodal Reinforcement Learning Approach for Pathology
Interpretability is significant in computational pathology, leading to the development of multimodal information integration from histopathological image and corresponding text data.However, existing multimodal methods have limited interpretability due to the lack of high-quality dataset that support explicit reasoning and inference and simple reasoning process.To address the above problems, we introduce a novel multimodal pathology large language model with strong reasoning capabilities.To improve the generation of accurate and contextually relevant textual descriptions, we design a semantic reward strategy integrated with group relative policy optimization.We construct a high-quality pathology visual question answering (VQA) dataset, specifically designed to support complex reasoning tasks.Comprehensive experiments conducted on this dataset demonstrate that our method outperforms state-of-the-art methods, even when trained with only 20% of the data.Our method also achieves comparable performance on downstream zero-shot image classification task compared with CLIP.
Render-of-Thought: Rendering Textual Chain-of-Thought as Images for Visual Latent Reasoning
Chain-of-Thought (CoT) prompting has achieved remarkable success in unlocking the reasoning capabilities of Large Language Models (LLMs). Although CoT prompting enhances reasoning, its verbosity imposes substantial computational overhead. Recent works often focus exclusively on outcome alignment and lack supervision on the intermediate reasoning process. These deficiencies obscure the analyzability of the latent reasoning chain. To address these challenges, we introduce Render-of-Thought (RoT), the first framework to reify the reasoning chain by rendering textual steps into images, making the latent rationale explicit and traceable. Specifically, we leverage the vision encoders of existing Vision Language Models (VLMs) as semantic anchors to align the vision embeddings with the textual space. This design ensures plug-and-play implementation without incurring additional pre-training overhead. Extensive experiments on mathematical and logical reasoning benchmarks demonstrate that our method achieves 3-4x token compression and substantial inference acceleration compared to explicit CoT. Furthermore, it maintains competitive performance against other methods, validating the feasibility of this paradigm. Our code is available at https://github.com/TencentBAC/RoT
SimD3: A Synthetic drone Dataset with Payload and Bird Distractor Modeling for Robust Detection
Reliable drone detection is challenging due to limited annotated real-world data, large appearance variability, and the presence of visually similar distractors such as birds. To address these challenges, this paper introduces SimD3, a large-scale high-fidelity synthetic dataset designed for robust drone detection in complex aerial environments. Unlike existing synthetic drone datasets, SimD3 explicitly models drones with heterogeneous payloads, incorporates multiple bird species as realistic distractors, and leverages diverse Unreal Engine 5 environments with controlled weather, lighting, and flight trajectories captured using a 360 six-camera rig. Using SimD3, we conduct an extensive experimental evaluation within the YOLOv5 detection framework, including an attention-enhanced variant termed Yolov5m+C3b, where standard bottleneck-based C3 blocks are replaced with C3b modules. Models are evaluated on synthetic data, combined synthetic and real data, and multiple unseen real-world benchmarks to assess robustness and generalization. Experimental results show that SimD3 provides effective supervision for small-object drone detection and that Yolov5m+C3b consistently outperforms the baseline across in-domain and cross-dataset evaluations. These findings highlight the utility of SimD3 for training and benchmarking robust drone detection models under diverse and challenging conditions.
Enhancing Text-to-Image Generation via End-Edge Collaborative Hybrid Super-Resolution
Artificial Intelligence-Generated Content (AIGC) has made significant strides, with high-resolution text-to-image (T2I) generation becoming increasingly critical for improving users' Quality of Experience (QoE). Although resource-constrained edge computing adequately supports fast low-resolution T2I generations, achieving high-resolution output still faces the challenge of ensuring image fidelity at the cost of latency. To address this, we first investigate the performance of super-resolution (SR) methods for image enhancement, confirming a fundamental trade-off that lightweight learning-based SR struggles to recover fine details, while diffusion-based SR achieves higher fidelity at a substantial computational cost. Motivated by these observations, we propose an end-edge collaborative generation-enhancement framework. Upon receiving a T2I generation task, the system first generates a low-resolution image based on adaptively selected denoising steps and super-resolution scales at the edge side, which is then partitioned into patches and processed by a region-aware hybrid SR policy. This policy applies a diffusion-based SR model to foreground patches for detail recovery and a lightweight learning-based SR model to background patches for efficient upscaling, ultimately stitching the enhanced ones into the high-resolution image. Experiments show that our system reduces service latency by 33% compared with baselines while maintaining competitive image quality.
comment: Accpeted by ICC 2026
Safeguarding Facial Identity against Diffusion-based Face Swapping via Cascading Pathway Disruption
The rapid evolution of diffusion models has democratized face swapping but also raises concerns about privacy and identity security. Existing proactive defenses, often adapted from image editing attacks, prove ineffective in this context. We attribute this failure to an oversight of the structural resilience and the unique static conditional guidance mechanism inherent in face swapping systems. To address this, we propose VoidFace, a systemic defense method that views face swapping as a coupled identity pathway. By injecting perturbations at critical bottlenecks, VoidFace induces cascading disruption throughout the pipeline. Specifically, we first introduce localization disruption and identity erasure to degrade physical regression and semantic embeddings, thereby impairing the accurate modeling of the source face. We then intervene in the generative domain by decoupling attention mechanisms to sever identity injection, and corrupting intermediate diffusion features to prevent the reconstruction of source identity. To ensure visual imperceptibility, we perform adversarial search in the latent manifold, guided by a perceptual adaptive strategy to balance attack potency with image quality. Extensive experiments show that VoidFace outperforms existing defenses across various diffusion-based swapping models, while producing adversarial faces with superior visual quality.
DeepMoLM: Leveraging Visual and Geometric Structural Information for Molecule-Text Modeling
AI models for drug discovery and chemical literature mining must interpret molecular images and generate outputs consistent with 3D geometry and stereochemistry. Most molecular language models rely on strings or graphs, while vision-language models often miss stereochemical details and struggle to map continuous 3D structures into discrete tokens. We propose DeepMoLM: Deep Molecular Language M odeling, a dual-view framework that grounds high-resolution molecular images in geometric invariants derived from molecular conformations. DeepMoLM preserves high-frequency evidence from 1024 $\times$ 1024 inputs, encodes conformer neighborhoods as discrete Extended 3-Dimensional Fingerprints, and fuses visual and geometric streams with cross-attention, enabling physically grounded generation without atom coordinates. DeepMoLM improves PubChem captioning with a 12.3% relative METEOR gain over the strongest generalist baseline while staying competitive with specialist methods. It produces valid numeric outputs for all property queries and attains MAE 13.64 g/mol on Molecular Weight and 37.89 on Complexity in the specialist setting. On ChEBI-20 description generation from images, it exceeds generalist baselines and matches state-of-the-art vision-language models. Code is available at https://github.com/1anj/DeepMoLM.
comment: Under review
HERMES: KV Cache as Hierarchical Memory for Efficient Streaming Video Understanding
Recent advancements in Multimodal Large Language Models (MLLMs) have demonstrated significant improvement in offline video understanding. However, extending these capabilities to streaming video inputs, remains challenging, as existing models struggle to simultaneously maintain stable understanding performance, real-time responses, and low GPU memory overhead. To address this challenge, we propose HERMES, a novel training-free architecture for real-time and accurate understanding of video streams. Based on a mechanistic attention investigation, we conceptualize KV cache as a hierarchical memory framework that encapsulates video information across multiple granularities. During inference, HERMES reuses a compact KV cache, enabling efficient streaming understanding under resource constraints. Notably, HERMES requires no auxiliary computations upon the arrival of user queries, thereby guaranteeing real-time responses for continuous video stream interactions, which achieves 10$\times$ faster TTFT compared to prior SOTA. Even when reducing video tokens by up to 68% compared with uniform sampling, HERMES achieves superior or comparable accuracy across all benchmarks, with up to 11.4% gains on streaming datasets.
Context Patch Fusion With Class Token Enhancement for Weakly Supervised Semantic Segmentation
Weakly Supervised Semantic Segmentation (WSSS), which relies only on image-level labels, has attracted significant attention for its cost-effectiveness and scalability. Existing methods mainly enhance inter-class distinctions and employ data augmentation to mitigate semantic ambiguity and reduce spurious activations. However, they often neglect the complex contextual dependencies among image patches, resulting in incomplete local representations and limited segmentation accuracy. To address these issues, we propose the Context Patch Fusion with Class Token Enhancement (CPF-CTE) framework, which exploits contextual relations among patches to enrich feature representations and improve segmentation. At its core, the Contextual-Fusion Bidirectional Long Short-Term Memory (CF-BiLSTM) module captures spatial dependencies between patches and enables bidirectional information flow, yielding a more comprehensive understanding of spatial correlations. This strengthens feature learning and segmentation robustness. Moreover, we introduce learnable class tokens that dynamically encode and refine class-specific semantics, enhancing discriminative capability. By effectively integrating spatial and semantic cues, CPF-CTE produces richer and more accurate representations of image content. Extensive experiments on PASCAL VOC 2012 and MS COCO 2014 validate that CPF-CTE consistently surpasses prior WSSS methods.
LookBench: A Live and Holistic Open Benchmark for Fashion Image Retrieval
In this paper, we present LookBench (We use the term "look" to reflect retrieval that mirrors how people shop -- finding the exact item, a close substitute, or a visually consistent alternative.), a live, holistic and challenging benchmark for fashion image retrieval in real e-commerce settings. LookBench includes both recent product images sourced from live websites and AI-generated fashion images, reflecting contemporary trends and use cases. Each test sample is time-stamped and we intend to update the benchmark periodically, enabling contamination-aware evaluation aligned with declared training cutoffs. Grounded in our fine-grained attribute taxonomy, LookBench covers single-item and outfit-level retrieval across. Our experiments reveal that LookBench poses a significant challenge on strong baselines, with many models achieving below $60\%$ Recall@1. Our proprietary model achieves the best performance on LookBench, and we release an open-source counterpart that ranks second, with both models attaining state-of-the-art results on legacy Fashion200K evaluations. LookBench is designed to be updated semi-annually with new test samples and progressively harder task variants, providing a durable measure of progress. We publicly release our leaderboard, dataset, evaluation code, and trained models.
comment: The first two authors contributed equally to this work. Project site: https://serendipityoneinc.github.io/look-bench-page/
RegFreeNet: A Registration-Free Network for CBCT-based 3D Dental Implant Planning
As the commercial surgical guide design software usually does not support the export of implant position for pre-implantation data, existing methods have to scan the post-implantation data and map the implant to pre-implantation space to get the label of implant position for training. Such a process is time-consuming and heavily relies on the accuracy of registration algorithm. Moreover, not all hospitals have paired CBCT data, limitting the construction of multi-center dataset. Inspired by the way dentists determine the implant position based on the neighboring tooth texture, we found that even if the implant area is masked, it will not affect the determination of the implant position. Therefore, we propose to mask the implants in the post-implantation data so that any CBCT containing the implants can be used as training data. This paradigm enables us to discard the registration process and makes it possible to construct a large-scale multi-center implant dataset. On this basis, we proposes ImplantFairy, a comprehensive, publicly accessible dental implant dataset with voxel-level 3D annotations of 1622 CBCT data. Furthermore, according to the area variation characteristics of the tooth's spatial structure and the slope information of the implant, we designed a slope-aware implant position prediction network. Specifically, a neighboring distance perception (NDP) module is designed to adaptively extract tooth area variation features, and an implant slope prediction branch assists the network in learning more robust features through additional implant supervision information. Extensive experiments conducted on ImplantFairy and two public dataset demonstrate that the proposed RegFreeNet achieves the state-of-the-art performance.
AutoDriDM: An Explainable Benchmark for Decision-Making of Vision-Language Models in Autonomous Driving
Autonomous driving is a highly challenging domain that requires reliable perception and safe decision-making in complex scenarios. Recent vision-language models (VLMs) demonstrate reasoning and generalization abilities, opening new possibilities for autonomous driving; however, existing benchmarks and metrics overemphasize perceptual competence and fail to adequately assess decision-making processes. In this work, we present AutoDriDM, a decision-centric, progressive benchmark with 6,650 questions across three dimensions - Object, Scene, and Decision. We evaluate mainstream VLMs to delineate the perception-to-decision capability boundary in autonomous driving, and our correlation analysis reveals weak alignment between perception and decision-making performance. We further conduct explainability analyses of models' reasoning processes, identifying key failure modes such as logical reasoning errors, and introduce an analyzer model to automate large-scale annotation. AutoDriDM bridges the gap between perception-centered and decision-centered evaluation, providing guidance toward safer and more reliable VLMs for real-world autonomous driving.
comment: 23 pages. Submitted to ACL ARR 2026 January
FeedbackSTS-Det: Sparse Frames-Based Spatio-Temporal Semantic Feedback Network for Infrared Small Target Detection
Infrared small target detection (ISTD) under complex backgrounds remains a critical yet challenging task, primarily due to the extremely low signal-to-clutter ratio, persistent dynamic interference, and the lack of distinct target features. While multi-frame detection methods leverages temporal cues to improve upon single-frame approaches, existing methods still struggle with inefficient long-range dependency modeling and insufficient robustness. To overcome these issues, we propose a novel scheme for ISTD, realized through a sparse frames-based spatio-temporal semantic feedback network named FeedbackSTS-Det. The core of our approach is a novel spatio-temporal semantic feedback strategy with a closed-loop semantic association mechanism, which consists of paired forward and backward refinement modules that work cooperatively across the encoder and decoder. Moreover, both modules incorporate an embedded sparse semantic module (SSM), which performs structured sparse temporal modeling to capture long-range dependencies with low computational cost. This integrated design facilitates robust implicit inter-frame registration and continuous semantic refinement, effectively suppressing false alarms. Furthermore, our overall procedure maintains a consistent training-inference pipeline, which ensures reliable performance transfer and increases model robustness. Extensive experiments on multiple benchmark datasets confirm the effectiveness of FeedbackSTS-Det. Code and models are available at: https://github.com/IDIP-Lab/FeedbackSTS-Det.
comment: Submitted to Journal IEEE Transactions on Geoscience and Remote Sensing
Transfer Learning from One Cancer to Another via Deep Learning Domain Adaptation
Supervised deep learning models often achieve excellent performance within their training distribution but struggle to generalize beyond it. In cancer histopathology, for example, a convolutional neural network (CNN) may classify cancer severity accurately for cancer types represented in its training data, yet fail on related but unseen types. Although adenocarcinomas from different organs share morphological features that might support limited cross-domain generalization, addressing domain shift directly is necessary for robust performance. Domain adaptation offers a way to transfer knowledge from labeled data in one cancer type to unlabeled data in another, helping mitigate the scarcity of annotated medical images. This work evaluates cross-domain classification performance among lung, colon, breast, and kidney adenocarcinomas. A ResNet50 trained on any single adenocarcinoma achieves over 98% accuracy on its own domain but shows minimal generalization to others. Ensembling multiple supervised models does not resolve this limitation. In contrast, converting the ResNet50 into a domain adversarial neural network (DANN) substantially improves performance on unlabeled target domains. A DANN trained on labeled breast and colon data and adapted to unlabeled lung data reaches 95.56% accuracy. We also examine the impact of stain normalization on domain adaptation. Its effects vary by target domain: for lung, accuracy drops from 95.56% to 66.60%, while for breast and colon targets, stain normalization boosts accuracy from 49.22% to 81.29% and from 78.48% to 83.36%, respectively. Finally, using Integrated Gradients reveals that DANNs consistently attribute importance to biologically meaningful regions such as densely packed nuclei, indicating that the model learns clinically relevant features and can apply them to unlabeled cancer types.
comment: 8 pages, 6 figures, 3 table
A comprehensive overview of deep learning models for object detection from videos/images
Object detection in video and image surveillance is a well-established yet rapidly evolving task, strongly influenced by recent deep learning advancements. This review summarises modern techniques by examining architectural innovations, generative model integration, and the use of temporal information to enhance robustness and accuracy. Unlike earlier surveys, it classifies methods based on core architectures, data processing strategies, and surveillance specific challenges such as dynamic environments, occlusions, lighting variations, and real-time requirements. The primary goal is to evaluate the current effectiveness of semantic object detection, while secondary aims include analysing deep learning models and their practical applications. The review covers CNN-based detectors, GAN-assisted approaches, and temporal fusion methods, highlighting how generative models support tasks such as reconstructing missing frames, reducing occlusions, and normalising illumination. It also outlines preprocessing pipelines, feature extraction progress, benchmarking datasets, and comparative evaluations. Finally, emerging trends in low-latency, efficient, and spatiotemporal learning approaches are identified for future research.
comment: N/A
LaVR: Scene Latent Conditioned Generative Video Trajectory Re-Rendering using Large 4D Reconstruction Models
Given a monocular video, the goal of video re-rendering is to generate views of the scene from a novel camera trajectory. Existing methods face two distinct challenges. Geometrically unconditioned models lack spatial awareness, leading to drift and deformation under viewpoint changes. On the other hand, geometrically-conditioned models depend on estimated depth and explicit reconstruction, making them susceptible to depth inaccuracies and calibration errors. We propose to address these challenges by using the implicit geometric knowledge embedded in the latent space of a large 4D reconstruction model to condition the video generation process. These latents capture scene structure in a continuous space without explicit reconstruction. Therefore, they provide a flexible representation that allows the pretrained diffusion prior to regularize errors more effectively. By jointly conditioning on these latents and source camera poses, we demonstrate that our model achieves state-of-the-art results on the video re-rendering task. Project webpage is https://lavr-4d-scene-rerender.github.io/
Mirai: Autoregressive Visual Generation Needs Foresight
Autoregressive (AR) visual generators model images as sequences of discrete tokens and are trained with next token likelihood. This strict causality supervision optimizes each step only by its immediate next token, which diminishes global coherence and slows convergence. We ask whether foresight, training signals that originate from later tokens, can help AR visual generation. We conduct a series of controlled diagnostics along the injection level, foresight layout, and foresight source axes, unveiling a key insight: aligning foresight to AR models' internal representation on the 2D image grids improves causality modeling. We formulate this insight with Mirai (meaning "future" in Japanese), a general framework that injects future information into AR training with no architecture change and no extra inference overhead: Mirai-E uses explicit foresight from multiple future positions of unidirectional representations, whereas Mirai-I leverages implicit foresight from matched bidirectional representations. Extensive experiments show that Mirai significantly accelerates convergence and improves generation quality. For instance, Mirai can speed up LlamaGen-B's convergence by up to 10$\times$ and reduce the generation FID from 5.34 to 4.34 on the ImageNet class-condition image generation benchmark. Our study highlights that visual autoregressive models need foresight.
READ-Net: Clarifying Emotional Ambiguity via Adaptive Feature Recalibration for Audio-Visual Depression Detection
Depression is a severe global mental health issue that impairs daily functioning and overall quality of life. Although recent audio-visual approaches have improved automatic depression detection, methods that ignore emotional cues often fail to capture subtle depressive signals hidden within emotional expressions. Conversely, those incorporating emotions frequently confuse transient emotional expressions with stable depressive symptoms in feature representations, a phenomenon termed \emph{Emotional Ambiguity}, thereby leading to detection errors. To address this critical issue, we propose READ-Net, the first audio-visual depression detection framework explicitly designed to resolve Emotional Ambiguity through Adaptive Feature Recalibration (AFR). The core insight of AFR is to dynamically adjust the weights of emotional features to enhance depression-related signals. Rather than merely overlooking or naively combining emotional information, READ-Net innovatively identifies and preserves depressive-relevant cues within emotional features, while adaptively filtering out irrelevant emotional noise. This recalibration strategy significantly clarifies feature representations, and effectively mitigates the persistent challenge of emotional interference. Additionally, READ-Net can be easily integrated into existing frameworks for improved performance. Extensive evaluations on three publicly available datasets show that READ-Net outperforms state-of-the-art methods, with average gains of 4.55\% in accuracy and 1.26\% in F1-score, demonstrating its robustness to emotional disturbances and improving audio-visual depression detection.
comment: 12 pages
Forest-Chat: Adapting Vision-Language Agents for Interactive Forest Change Analysis
The increasing availability of high-resolution satellite imagery, together with advances in deep learning, creates new opportunities for enhancing forest monitoring workflows. Two central challenges in this domain are pixel-level change detection and semantic change interpretation, particularly for complex forest dynamics. While large language models (LLMs) are increasingly adopted for data exploration, their integration with vision-language models (VLMs) for remote sensing image change interpretation (RSICI) remains underexplored, especially beyond urban environments. We introduce Forest-Chat, an LLM-driven agent designed for integrated forest change analysis. The proposed framework enables natural language querying and supports multiple RSICI tasks, including change detection, change captioning, object counting, deforestation percentage estimation, and change reasoning. Forest-Chat builds upon a multi-level change interpretation (MCI) vision-language backbone with LLM-based orchestration, and incorporates zero-shot change detection via a foundation change detection model together with an interactive point-prompt interface to support fine-grained user guidance. To facilitate adaptation and evaluation in forest environments, we introduce the Forest-Change dataset, comprising bi-temporal satellite imagery, pixel-level change masks, and multi-granularity semantic change captions generated through a combination of human annotation and rule-based methods. Experimental results demonstrate that Forest-Chat achieves strong performance on Forest-Change and on LEVIR-MCI-Trees, a tree-focused subset of LEVIR-MCI, for joint change detection and captioning, highlighting the potential of interactive, LLM-driven RSICI systems to improve accessibility, interpretability, and analytical efficiency in forest change analysis.
comment: 22 pages, 8 figures, 7 tables, Submitted to Ecological Informatics
Diffusion Epistemic Uncertainty with Asymmetric Learning for Diffusion-Generated Image Detection
The rapid progress of diffusion models highlights the growing need for detecting generated images. Previous research demonstrates that incorporating diffusion-based measurements, such as reconstruction error, can enhance the generalizability of detectors. However, ignoring the differing impacts of aleatoric and epistemic uncertainty on reconstruction error can undermine detection performance. Aleatoric uncertainty, arising from inherent data noise, creates ambiguity that impedes accurate detection of generated images. As it reflects random variations within the data (e.g., noise in natural textures), it does not help distinguish generated images. In contrast, epistemic uncertainty, which represents the model's lack of knowledge about unfamiliar patterns, supports detection. In this paper, we propose a novel framework, Diffusion Epistemic Uncertainty with Asymmetric Learning~(DEUA), for detecting diffusion-generated images. We introduce Diffusion Epistemic Uncertainty~(DEU) estimation via the Laplace approximation to assess the proximity of data to the manifold of diffusion-generated samples. Additionally, an asymmetric loss function is introduced to train a balanced classifier with larger margins, further enhancing generalizability. Extensive experiments on large-scale benchmarks validate the state-of-the-art performance of our method.
Learning Consistent Taxonomic Classification through Hierarchical Reasoning
While Vision-Language Models (VLMs) excel at visual understanding, they often fail to grasp hierarchical knowledge. This leads to common errors where VLMs misclassify coarser taxonomic levels even when correctly identifying the most specific level (leaf level). Existing approaches largely overlook this issue by failing to model hierarchical reasoning. To address this gap, we propose VL-Taxon, a two-stage, hierarchy-based reasoning framework designed to improve both leaf-level accuracy and hierarchical consistency in taxonomic classification. The first stage employs a top-down process to enhance leaf-level classification accuracy. The second stage then leverages this accurate leaf-level output to ensure consistency throughout the entire taxonomic hierarchy. Each stage is initially trained with supervised fine-tuning to instill taxonomy knowledge, followed by reinforcement learning to refine the model's reasoning and generalization capabilities. Extensive experiments reveal a remarkable result: our VL-Taxon framework, implemented on the Qwen2.5-VL-7B model, outperforms its original 72B counterpart by over 10% in both leaf-level and hierarchical consistency accuracy on average on the iNaturalist-2021 dataset. Notably, this significant gain was achieved by fine-tuning on just a small subset of data, without relying on any examples generated by other VLMs.
comment: 12 pages, 4 figures
U-Harmony: Enhancing Joint Training for Segmentation Models with Universal Harmonization
In clinical practice, medical segmentation datasets are often limited and heterogeneous, with variations in modalities, protocols, and anatomical targets across institutions. Existing deep learning models struggle to jointly learn from such diverse data, often sacrificing either generalization or domain-specific knowledge. To overcome these challenges, we propose a joint training method called Universal Harmonization (U-Harmony), which can be integrated into deep learning-based architectures with a domain-gated head, enabling a single segmentation model to learn from heterogeneous datasets simultaneously. By integrating U-Harmony, our approach sequentially normalizes and then denormalizes feature distributions to mitigate domain-specific variations while preserving original dataset-specific knowledge. More appealingly, our framework also supports universal modality adaptation, allowing the seamless learning of new imaging modalities and anatomical classes. Extensive experiments on cross-institutional brain lesion datasets demonstrate the effectiveness of our approach, establishing a new benchmark for robust and adaptable 3D medical image segmentation models in real-world clinical settings.
3D Space as a Scratchpad for Editable Text-to-Image Generation
Recent progress in large language models (LLMs) has shown that reasoning improves when intermediate thoughts are externalized into explicit workspaces, such as chain-of-thought traces or tool-augmented reasoning. Yet, visual language models (VLMs) lack an analogous mechanism for spatial reasoning, limiting their ability to generate images that accurately reflect geometric relations, object identities, and compositional intent. We introduce the concept of a spatial scratchpad -- a 3D reasoning substrate that bridges linguistic intent and image synthesis. Given a text prompt, our framework parses subjects and background elements, instantiates them as editable 3D meshes, and employs agentic scene planning for placement, orientation, and viewpoint selection. The resulting 3D arrangement is rendered back into the image domain with identity-preserving cues, enabling the VLM to generate spatially consistent and visually coherent outputs. Unlike prior 2D layout-based methods, our approach supports intuitive 3D edits that propagate reliably into final images. Empirically, it achieves a 32% improvement in text alignment on GenAI-Bench, demonstrating the benefit of explicit 3D reasoning for precise, controllable image generation. Our results highlight a new paradigm for vision-language models that deliberate not only in language, but also in space. Code and visualizations at https://oindrilasaha.github.io/3DScratchpad/
LFS: Learnable Frame Selector for Event-Aware and Temporally Diverse Video Captioning
Video captioning models convert frames into visual tokens and generate descriptions with large language models (LLMs). Since encoding all frames is prohibitively expensive, uniform sampling is the default choice, but it enforces equal temporal coverage while ignoring the uneven events distribution. This motivates a Learnable Frame Selector (LFS) that selects temporally diverse and event-relevant frames. LFS explicitly models temporal importance to balance temporal diversity and event relevance, and employs a stratified strategy to ensure temporal coverage while avoiding clustering. Crucially, LFS leverages caption feedback from frozen video-LLMs to learn frame selection that directly optimizes downstream caption quality. Additionally, we identify the gap between existing benchmark and human's cognition. Thus, we introduce ICH-CC built from carefully designed questions by annotators that reflect human-consistent understanding of video. Experiments indicate that LFS consistently improves detailed video captioning across two representative community benchmarks and ICH-CC, achieving up to 2.0% gains on VDC and over 4% gains on ICH-CC. Moreover, we observe that enhanced captions with LFS leads to improved performance on video question answering. Overall, LFS provides an effective and easy-to-integrate solution for detailed video captioning.
From Volumes to Slices: Computationally Efficient Contrastive Learning for Sequential Abdominal CT Analysis
The requirement for expert annotations limits the effectiveness of deep learning for medical image analysis. Although 3D self-supervised methods like volume contrast learning (VoCo) are powerful and partially address the labeling scarcity issue, their high computational cost and memory consumption are barriers. We propose 2D-VoCo, an efficient adaptation of the VoCo framework for slice-level self-supervised pre-training that learns spatial-semantic features from unlabeled 2D CT slices via contrastive learning. The pre-trained CNN backbone is then integrated into a CNN-LSTM architecture to classify multi-organ injuries. In the RSNA 2023 Abdominal Trauma dataset, 2D-VoCo pre-training significantly improves mAP, precision, recall, and RSNA score over training from scratch. Our framework provides a practical method to reduce the dependency on labeled data and enhance model performance in clinical CT analysis. We release the code for reproducibility. https://github.com/tkz05/2D-VoCo-CT-Classifier
Anatomically Guided Latent Diffusion for Brain MRI Progression Modeling
Accurately modeling longitudinal brain MRI progression is crucial for understanding neurodegenerative diseases and predicting individualized structural changes. Existing state-of-the-art approaches, such as Brain Latent Progression (BrLP), often use multi-stage training pipelines with auxiliary conditioning modules but suffer from architectural complexity, suboptimal use of conditional clinical covariates, and limited guarantees of anatomical consistency. We propose Anatomically Guided Latent Diffusion Model (AG-LDM), a segmentation-guided framework that enforces anatomically consistent progression while substantially simplifying the training pipeline. AG-LDM conditions latent diffusion by directly fusing baseline anatomy, noisy follow-up states, and clinical covariates at the input level, a strategy that avoids auxiliary control networks by learning a unified, end-to-end model that represents both anatomy and progression. A lightweight 3D tissue segmentation model (WarpSeg) provides explicit anatomical supervision during both autoencoder fine-tuning and diffusion model training, ensuring consistent brain tissue boundaries and morphometric fidelity. Experiments on 31,713 ADNI longitudinal pairs and zero-shot evaluation on OASIS-3 demonstrate that AG-LDM matches or surpasses more complex diffusion models, achieving state-of-the-art image quality and 15-20\% reduction in volumetric errors in generated images. AG-LDM also exhibits markedly stronger utilization of temporal and clinical covariates (up to 31.5x higher sensitivity than BrLP) and generates biologically plausible counterfactual trajectories, accurately capturing hallmarks of Alzheimer's progression such as limbic atrophy and ventricular expansion. These results highlight AG-LDM as an efficient, anatomically grounded framework for reliable brain MRI progression modeling.
comment: 10 pages, 5 figures, 3 tables
Breaking the accuracy-resource dilemma: a lightweight adaptive video inference enhancement
Existing video inference (VI) enhancement methods typically aim to improve performance by scaling up model sizes and employing sophisticated network architectures. While these approaches demonstrated state-of-the-art performance, they often overlooked the trade-off of resource efficiency and inference effectiveness, leading to inefficient resource utilization and suboptimal inference performance. To address this problem, a fuzzy controller (FC-r) is developed based on key system parameters and inference-related metrics. Guided by the FC-r, a VI enhancement framework is proposed, where the spatiotemporal correlation of targets across adjacent video frames is leveraged. Given the real-time resource conditions of the target device, the framework can dynamically switch between models of varying scales during VI. Experimental results demonstrate that the proposed method effectively achieves a balance between resource utilization and inference performance.
comment: 5 pages, 4 figures
Scribble-Supervised Medical Image Segmentation with Dynamic Teacher Switching and Hierarchical Consistency
Scribble-supervised methods have emerged to mitigate the prohibitive annotation burden in medical image segmentation. However, the inherent sparsity of these annotations introduces significant ambiguity, which results in noisy pseudo-label propagation and hinders the learning of robust anatomical boundaries. To address this challenge, we propose SDT-Net, a novel dual-teacher, single-student framework designed to maximize supervision quality from these weak signals. Our method features a Dynamic Teacher Switching (DTS) module to adaptively select the most reliable teacher. This selected teacher then guides the student via two synergistic mechanisms: high-confidence pseudo-labels, refined by a Pick Reliable Pixels (PRP) mechanism, and multi-level feature alignment, enforced by a Hierarchical Consistency (HiCo) module. Extensive experiments on the ACDC and MSCMRseg datasets demonstrate that SDT-Net achieves state-of-the-art performance, producing more accurate and anatomically plausible segmentation.
A Machine Vision Approach to Preliminary Skin Lesion Assessments
Early detection of malignant skin lesions is critical for improving patient outcomes in aggressive, metastatic skin cancers. This study evaluates a comprehensive system for preliminary skin lesion assessment that combines the clinically established ABCD rule of dermoscopy (analyzing Asymmetry, Borders, Color, and Dermoscopic Structures) with machine learning classification. Using a 1,000-image subset of the HAM10000 dataset, the system implements an automated, rule-based pipeline to compute a Total Dermoscopy Score (TDS) for each lesion. This handcrafted approach is compared against various machine learning solutions, including traditional classifiers (Logistic Regression, Random Forest, and SVM) and deep learning models. While the rule-based system provides high clinical interpretability, results indicate a performance bottleneck when reducing complex morphology to five numerical features. Experimental findings show that transfer learning with EfficientNet-B0 failed significantly due to domain shift between natural and medical images. In contrast, a custom three-layer Convolutional Neural Network (CNN) trained from scratch achieved 78.5% accuracy and 86.5% recall on median-filtered images, representing a 19-point accuracy improvement over traditional methods. The results demonstrate that direct pixel-level learning captures diagnostic patterns beyond handcrafted features and that purpose-built lightweight architectures can outperform large pretrained models for small, domain-specific medical datasets.
comment: 6 pages, 2 figures, 2 tables
DeltaDorsal: Enhancing Hand Pose Estimation with Dorsal Features in Egocentric Views
The proliferation of XR devices has made egocentric hand pose estimation a vital task, yet this perspective is inherently challenged by frequent finger occlusions. To address this, we propose a novel approach that leverages the rich information in dorsal hand skin deformation, unlocked by recent advances in dense visual featurizers. We introduce a dual-stream delta encoder that learns pose by contrasting features from a dynamic hand with a baseline relaxed position. Our evaluation demonstrates that, using only cropped dorsal images, our method reduces the Mean Per Joint Angle Error (MPJAE) by 18% in self-occluded scenarios (fingers >=50% occluded) compared to state-of-the-art techniques that depend on the whole hand's geometry and large model backbones. Consequently, our method not only enhances the reliability of downstream tasks like index finger pinch and tap estimation in occluded scenarios but also unlocks new interaction paradigms, such as detecting isometric force for a surface "click" without visible movement while minimizing model size.
comment: 16 pages, 11 figures, Presented at ACM CHI 2026. For associated codebase, see https://github.com/hilab-open-source/deltadorsal
Controllable Layered Image Generation for Real-World Editing
Recent image generation models have shown impressive progress, yet they often struggle to yield controllable and consistent results when users attempt to edit specific elements within an existing image. Layered representations enable flexible, user-driven content creation, but existing approaches often fail to produce layers with coherent compositing relationships, and their object layers typically lack realistic visual effects such as shadows and reflections. To overcome these limitations, we propose LASAGNA, a novel, unified framework that generates an image jointly with its composing layers--a photorealistic background and a high-quality transparent foreground with compelling visual effects. Unlike prior work, LASAGNA efficiently learns correct image composition from a wide range of conditioning inputs--text prompts, foreground, background, and location masks--offering greater controllability for real-world applications. To enable this, we introduce LASAGNA-48K, a new dataset composed of clean backgrounds and RGBA foregrounds with physically grounded visual effects. We also propose LASAGNABENCH, the first benchmark for layer editing. We demonstrate that LASAGNA excels in generating highly consistent and coherent results across multiple image layers simultaneously, enabling diverse post-editing applications that accurately preserve identity and visual effects. LASAGNA-48K and LASAGNABENCH will be publicly released to foster open research in the community. The project page is https://rayjryang.github.io/LASAGNA-Page/.
Hybrid Vision Transformer_GAN Attribute Neutralizer for Mitigating Bias in Chest X_Ray Diagnosis
Bias in chest X-ray classifiers frequently stems from sex- and age-related shortcuts, leading to systematic underdiagnosis of minority subgroups. Previous pixel-space attribute neutralizers, which rely on convolutional encoders, lessen but do not fully remove this attribute leakage at clinically usable edit strengths. This study evaluates whether substituting the U-Net convolutional encoder with a Vision Transformer backbone in the Attribute-Neutral Framework can reduce demographic attribute leakage while preserving diagnostic accuracy. A data-efficient Image Transformer Small (DeiT-S) neutralizer was trained on the ChestX-ray14 dataset. Its edited images, generated across eleven edit-intensity levels, were evaluated with an independent AI judge for attribute leakage and with a convolutional neural network (ConvNet) for disease prediction. At a moderate edit level (alpha = 0.5), the Vision Transformer (ViT) neutralizer reduces patient sex-recognition area under the curve (AUC) to approximately 0.80, about 10 percentage points below the original framework's convolutional U-Net encoder, despite being trained for only half as many epochs. Meanwhile, macro receiver operating characteristic area under the curve (ROC AUC) across 15 findings stays within five percentage points of the unedited baseline, and the worst-case subgroup AUC remains near 0.70. These results indicate that global self-attention vision models can further suppress attribute leakage without sacrificing clinical utility, suggesting a practical route toward fairer chest X-ray AI.
Seeing through Light and Darkness: Sensor-Physics Grounded Deblurring HDR NeRF from Single-Exposure Images and Events
Novel view synthesis from low dynamic range (LDR) blurry images, which are common in the wild, struggles to recover high dynamic range (HDR) and sharp 3D representations in extreme lighting conditions. Although existing methods employ event data to address this issue, they ignore the sensor-physics mismatches between the camera output and physical world radiance, resulting in suboptimal HDR and deblurring results. To cope with this problem, we propose a unified sensor-physics grounded NeRF framework for sharp HDR novel view synthesis from single-exposure blurry LDR images and corresponding events. We employ NeRF to directly represent the actual radiance of the 3D scene in the HDR domain and model raw HDR scene rays hitting the sensor pixels as in the physical world. A pixel-wise RGB mapping field is introduced to align the above rendered pixel values with the sensor-recorded LDR pixel values of the input images. A novel event mapping field is also designed to bridge the physical scene dynamics and actual event sensor output. The two mapping fields are jointly optimized with the NeRF network, leveraging the spatial and temporal dynamic information in events to enhance the sharp HDR 3D representation learning. Experiments on the collected and public datasets demonstrate that our method can achieve state-of-the-art deblurring HDR novel view synthesis results with single-exposure blurry LDR images and corresponding events.
DevPrompt: Deviation-Based Prompt Learning for One-Normal ShotImage Anomaly Detection
Few-normal shot anomaly detection (FNSAD) aims to detect abnormal regions in images using only a few normal training samples, making the task highly challenging due to limited supervision and the diversity of potential defects. Recent approaches leverage vision-language models such as CLIP with prompt-based learning to align image and text features. However, existing methods often exhibit weak discriminability between normal and abnormal prompts and lack principled scoring mechanisms for patch-level anomalies. We propose a deviation-guided prompt learning framework that integrates the semantic power of vision-language models with the statistical reliability of deviation-based scoring. Specifically, we replace fixed prompt prefixes with learnable context vectors shared across normal and abnormal prompts, while anomaly-specific suffix tokens enable class-aware alignment. To enhance separability, we introduce a deviation loss with Top-K Multiple Instance Learning (MIL), modeling patch-level features as Gaussian deviations from the normal distribution. This allows the network to assign higher anomaly scores to patches with statistically significant deviations, improving localization and interpretability. Experiments on the MVTecAD and VISA benchmarks demonstrate superior pixel-level detection performance compared to PromptAD and other baselines. Ablation studies further validate the effectiveness of learnable prompts, deviation-based scoring, and the Top-K MIL strategy.
comment: 8 pages
CASL: Concept-Aligned Sparse Latents for Interpreting Diffusion Models
Internal activations of diffusion models encode rich semantic information, but interpreting such representations remains challenging. While Sparse Autoencoders (SAEs) have shown promise in disentangling latent representations, existing SAE-based methods for diffusion model understanding rely on unsupervised approaches that fail to align sparse features with human-understandable concepts. This limits their ability to provide reliable semantic control over generated images. We introduce CASL (Concept-Aligned Sparse Latents), a supervised framework that aligns sparse latent dimensions of diffusion models with semantic concepts. CASL first trains an SAE on frozen U-Net activations to obtain disentangled latent representations, and then learns a lightweight linear mapping that associates each concept with a small set of relevant latent dimensions. To validate the semantic meaning of these aligned directions, we propose CASL-Steer, a controlled latent intervention that shifts activations along the learned concept axis. Unlike editing methods, CASL-Steer is used solely as a causal probe to reveal how concept-aligned latents influence generated content. We further introduce the Editing Precision Ratio (EPR), a metric that jointly measures concept specificity and the preservation of unrelated attributes. Experiments show that our method achieves superior editing precision and interpretability compared to existing approaches. To the best of our knowledge, this is the first work to achieve supervised alignment between latent representations and semantic concepts in diffusion models.
SplatBus: A Gaussian Splatting Viewer Framework via GPU Interprocess Communication
Radiance field-based rendering methods have attracted significant interest from the computer vision and computer graphics communities. They enable high-fidelity rendering with complex real-world lighting effects, but at the cost of high rendering time. 3D Gaussian Splatting solves this issue with a rasterisation-based approach for real-time rendering, enabling applications such as autonomous driving, robotics, virtual reality, and extended reality. However, current 3DGS implementations are difficult to integrate into traditional mesh-based rendering pipelines, which is a common use case for interactive applications and artistic exploration. To address this limitation, this software solution uses Nvidia's interprocess communication (IPC) APIs to easily integrate into implementations and allow the results to be viewed in external clients such as Unity, Blender, Unreal Engine, and OpenGL viewers. The code is available at https://github.com/RockyXu66/splatbus.
DuFal: Dual-Frequency-Aware Learning for High-Fidelity Extremely Sparse-view CBCT Reconstruction
Sparse-view Cone-Beam Computed Tomography reconstruction from limited X-ray projections remains a challenging problem in medical imaging due to the inherent undersampling of fine-grained anatomical details, which correspond to high-frequency components. Conventional CNN-based methods often struggle to recover these fine structures, as they are typically biased toward learning low-frequency information. To address this challenge, this paper presents DuFal (Dual-Frequency-Aware Learning), a novel framework that integrates frequency-domain and spatial-domain processing via a dual-path architecture. The core innovation lies in our High-Local Factorized Fourier Neural Operator, which comprises two complementary branches: a Global High-Frequency Enhanced Fourier Neural Operator that captures global frequency patterns and a Local High-Frequency Enhanced Fourier Neural Operator that processes spatially partitioned patches to preserve spatial locality that might be lost in global frequency analysis. To improve efficiency, we design a Spectral-Channel Factorization scheme that reduces the Fourier Neural Operator parameter count. We also design a Cross-Attention Frequency Fusion module to integrate spatial and frequency features effectively. The fused features are then decoded through a Feature Decoder to produce projection representations, which are subsequently processed through an Intensity Field Decoding pipeline to reconstruct a final Computed Tomography volume. Experimental results on the LUNA16 and ToothFairy datasets demonstrate that DuFal significantly outperforms existing state-of-the-art methods in preserving high-frequency anatomical features, particularly under extremely sparse-view settings.
comment: Published with J2C Certification in Transactions on Machine Learning Research (TMLR)
CURE: Curriculum-guided Multi-task Training for Reliable Anatomy Grounded Report Generation CVPR 2026
Medical vision-language models can automate the generation of radiology reports but struggle with accurate visual grounding and factual consistency. Existing models often misalign textual findings with visual evidence, leading to unreliable or weakly grounded predictions. We present CURE, an error-aware curriculum learning framework that improves grounding and report quality without any additional data. CURE fine-tunes a multimodal instructional model on phrase grounding, grounded report generation, and anatomy-grounded report generation using public datasets. The method dynamically adjusts sampling based on model performance, emphasizing harder samples to improve spatial and textual alignment. CURE improves grounding accuracy by +0.37 IoU, boosts report quality by +0.188 CXRFEScore, and reduces hallucinations by 18.6%. CURE is a data-efficient framework that enhances both grounding accuracy and report reliability. Code is available at https://github.com/PabloMessina/CURE and model weights at https://huggingface.co/pamessina/medgemma-4b-it-cure
comment: 31 pages, 7 figures, submitted to CVPR 2026 (under review)
Evaluating Multimodal Large Language Models for Heterogeneous Face Recognition
Multimodal Large Language Models (MLLMs) have recently demonstrated strong performance on a wide range of vision-language tasks, raising interest in their potential use for biometric applications. In this paper, we conduct a systematic evaluation of state-of-the-art MLLMs for heterogeneous face recognition (HFR), where enrollment and probe images are from different sensing modalities, including visual (VIS), near infrared (NIR), short-wave infrared (SWIR), and thermal camera. We benchmark multiple open-source MLLMs across several cross-modality scenarios, including VIS-NIR, VIS-SWIR, and VIS-THERMAL face recognition. The recognition performance of MLLMs is evaluated using biometric protocols and based on different metrics, including Acquire Rate, Equal Error Rate (EER), and True Accept Rate (TAR). Our results reveal substantial performance gaps between MLLMs and classical face recognition systems, particularly under challenging cross-spectral conditions, in spite of recent advances in MLLMs. Our findings highlight the limitations of current MLLMs for HFR and also the importance of rigorous biometric evaluation when considering their deployment in face recognition systems.
GeMM-GAN: A Multimodal Generative Model Conditioned on Histopathology Images and Clinical Descriptions for Gene Expression Profile Generation
Biomedical research increasingly relies on integrating diverse data modalities, including gene expression profiles, medical images, and clinical metadata. While medical images and clinical metadata are routinely collected in clinical practice, gene expression data presents unique challenges for widespread research use, mainly due to stringent privacy regulations and costly laboratory experiments. To address these limitations, we present GeMM-GAN, a novel Generative Adversarial Network conditioned on histopathology tissue slides and clinical metadata, designed to synthesize realistic gene expression profiles. GeMM-GAN combines a Transformer Encoder for image patches with a final Cross Attention mechanism between patches and text tokens, producing a conditioning vector to guide a generative model in generating biologically coherent gene expression profiles. We evaluate our approach on the TCGA dataset and demonstrate that our framework outperforms standard generative models and generates more realistic and functionally meaningful gene expression profiles, improving by more than 11\% the accuracy on downstream disease type prediction compared to current state-of-the-art generative models. Code will be available at: https://github.com/francescapia/GeMM-GAN
comment: 12 pages, 2 figures. Published at Image Analysis and Processing - ICIAP 2025 Workshops
AI-Based Culvert-Sewer Inspection
Culverts and sewer pipes are critical components of drainage systems, and their failure can lead to serious risks to public safety and the environment. In this thesis, we explore methods to improve automated defect segmentation in culverts and sewer pipes. Collecting and annotating data in this field is cumbersome and requires domain knowledge. Having a large dataset for structural defect detection is therefore not feasible. Our proposed methods are tested under conditions with limited annotated data to demonstrate applicability to real-world scenarios. Overall, this thesis proposes three methods to significantly enhance defect segmentation and handle data scarcity. This can be addressed either by enhancing the training data or by adjusting a models architecture. First, we evaluate preprocessing strategies, including traditional data augmentation and dynamic label injection. These techniques significantly improve segmentation performance, increasing both Intersection over Union (IoU) and F1 score. Second, we introduce FORTRESS, a novel architecture that combines depthwise separable convolutions, adaptive Kolmogorov-Arnold Networks (KAN), and multi-scale attention mechanisms. FORTRESS achieves state-of-the-art performance on the culvert sewer pipe defect dataset, while significantly reducing the number of trainable parameters, as well as its computational cost. Finally, we investigate few-shot semantic segmentation and its applicability to defect detection. Few-shot learning aims to train models with only limited data available. By employing a bidirectional prototypical network with attention mechanisms, the model achieves richer feature representations and achieves satisfactory results across evaluation metrics.
comment: Masters thesis, University of Technology Graz, 2025
High-Fidelity 3D Tooth Reconstruction by Fusing Intraoral Scans and CBCT Data via a Deep Implicit Representation
High-fidelity 3D tooth models are essential for digital dentistry, but must capture both the detailed crown and the complete root. Clinical imaging modalities are limited: Cone-Beam Computed Tomography (CBCT) captures the root but has a noisy, low-resolution crown, while Intraoral Scanners (IOS) provide a high-fidelity crown but no root information. A naive fusion of these sources results in unnatural seams and artifacts. We propose a novel, fully-automated pipeline that fuses CBCT and IOS data using a deep implicit representation. Our method first segments and robustly registers the tooth instances, then creates a hybrid proxy mesh combining the IOS crown and the CBCT root. The core of our approach is to use this noisy proxy to guide a class-specific DeepSDF network. This optimization process projects the input onto a learned manifold of ideal tooth shapes, generating a seamless, watertight, and anatomically coherent model. Qualitative and quantitative evaluations show our method uniquely preserves both the high-fidelity crown from IOS and the patient-specific root morphology from CBCT, overcoming the limitations of each modality and naive stitching.
comment: Accepted to IEEE International Symposium on Biomedical Imaging (ISBI) 2026
Automated Road Crack Localization to Guide Highway Maintenance
Highway networks are crucial for economic prosperity. Climate change-induced temperature fluctuations are exacerbating stress on road pavements, resulting in elevated maintenance costs. This underscores the need for targeted and efficient maintenance strategies. This study investigates the potential of open-source data to guide highway infrastructure maintenance. The proposed framework integrates airborne imagery and OpenStreetMap (OSM) to fine-tune YOLOv11 for highway crack localization. To demonstrate the framework's real-world applicability, a Swiss Relative Highway Crack Density (RHCD) index was calculated to inform nationwide highway maintenance. The crack classification model achieved an F1-score of $0.84$ for the positive class (crack) and $0.97$ for the negative class (no crack). The Swiss RHCD index exhibited weak correlations with Long-term Land Surface Temperature Amplitudes (LT-LST-A) (Pearson's $r\ = -0.05$) and Traffic Volume (TV) (Pearson's $r\ = 0.17$), underlining the added value of this novel index for guiding maintenance over other data. Significantly high RHCD values were observed near urban centers and intersections, providing contextual validation for the predictions. These findings highlight the value of open-source data sharing to drive innovation, ultimately enabling more efficient solutions in the public sector.
comment: 22 pages, 9 figures
Hyperphantasia: A Benchmark for Evaluating the Mental Visualization Capabilities of Multimodal LLMs
Mental visualization, the ability to construct and manipulate visual representations internally, is a core component of human cognition and plays a vital role in tasks involving reasoning, prediction, and abstraction. Despite the rapid progress of Multimodal Large Language Models (MLLMs), current benchmarks primarily assess passive visual perception, offering limited insight into the more active capability of internally constructing visual patterns to support problem solving. Yet mental visualization is a critical cognitive skill in humans, supporting abilities such as spatial navigation, predicting physical trajectories, and solving complex visual problems through imaginative simulation. To bridge this gap, we introduce Hyperphantasia, a synthetic benchmark designed to evaluate the mental visualization abilities of MLLMs through four carefully constructed puzzles. Each puzzle is procedurally generated and presented at three difficulty levels, enabling controlled analysis of model performance across increasing complexity. Our comprehensive evaluation of state-of-the-art models reveals a substantial gap between the performance of humans and MLLMs. Additionally, we explore the potential of reinforcement learning to improve visual simulation capabilities. Our findings suggest that while some models exhibit partial competence in recognizing visual patterns, robust mental visualization remains an open challenge for current MLLMs.
A Dynamic Prognostic Prediction Method for Colorectal Cancer Liver Metastasis
Colorectal cancer liver metastasis (CRLM) exhibits high postoperative recurrence and pronounced prognostic heterogeneity, challenging individualized management. Existing prognostic approaches often rely on static representations from a single postoperative snapshot, and fail to jointly capture tumor spatial distribution, longitudinal disease dynamics, and multimodal clinical information, limiting predictive accuracy. We propose DyPro, a deep learning framework that infers postoperative latent trajectories via residual dynamic evolution. Starting from an initial patient representation, DyPro generates a 12-step sequence of trajectory snapshots through autoregressive residual updates and integrates them to predict recurrence and survival outcomes. On the MSKCC CRLM dataset, DyPro achieves strong discrimination under repeated stratified 5-fold cross-validation, reaching a C-index of 0.755 for OS and 0.714 for DFS, with OS AUC@1y of 0.920 and OS IBS of 0.143. DyPro provides quantitative risk cues to support adjuvant therapy planning and follow-up scheduling.
OSMa-Bench: Evaluating Open Semantic Mapping Under Varying Lighting Conditions
Open Semantic Mapping (OSM) is a key technology in robotic perception, combining semantic segmentation and SLAM techniques. This paper introduces a dynamically configurable and highly automated LLM/LVLM-powered pipeline for evaluating OSM solutions called OSMa-Bench (Open Semantic Mapping Benchmark). The study focuses on evaluating state-of-the-art semantic mapping algorithms under varying indoor lighting conditions, a critical challenge in indoor environments. We introduce a novel dataset with simulated RGB-D sequences and ground truth 3D reconstructions, facilitating the rigorous analysis of mapping performance across different lighting conditions. Through experiments on leading models such as ConceptGraphs, BBQ, and OpenScene, we evaluate the semantic fidelity of object recognition and segmentation. Additionally, we introduce a Scene Graph evaluation method to analyze the ability of models to interpret semantic structure. The results provide insights into the robustness of these models, forming future research directions for developing resilient and adaptable robotic systems. Project page is available at https://be2rlab.github.io/OSMa-Bench/.
comment: Project page: https://be2rlab.github.io/OSMa-Bench/
CRAFT: Continuous Reasoning and Agentic Feedback Tuning for Multimodal Text-to-Image Generation
Recent work has shown that inference-time reasoning and reflection can improve text-to-image generation without retraining. However, existing approaches often rely on implicit, holistic critiques or unconstrained prompt rewrites, making their behavior difficult to interpret, control, or stop reliably. In contrast, large language models have benefited from explicit, structured forms of **thinking** based on verification, targeted correction, and early stopping. We introduce CRAFT (Continuous Reasoning and Agentic Feedback Tuning), a training-free and model-agnostic framework for multimodal image generation. CRAFT transforms a user prompt into a set of explicit, dependency-structured visual constraints, verifies generated images using a vision-language model, and performs targeted prompt updates only when specific constraints are violated. This iterative process includes an explicit stopping criterion, resulting in an interpretable and controllable inference-time refinement loop. Across multiple model families and challenging benchmarks, CRAFT consistently improves compositional accuracy, text rendering, and preference-based evaluations, with particularly strong gains for lightweight generators. Importantly, these improvements incur only a negligible inference-time overhead, allowing smaller or cheaper models to approach the quality of substantially more expensive systems. Our results suggest that explicitly structured, constraint-driven inference-time reasoning is a key ingredient for improving the reliability of multimodal generative models.
comment: 37 pages, 42 figures
Does Object Binding Naturally Emerge in Large Pretrained Vision Transformers? NeurIPS 2025
Object binding, the brain's ability to bind the many features that collectively represent an object into a coherent whole, is central to human cognition. It groups low-level perceptual features into high-level object representations, stores those objects efficiently and compositionally in memory, and supports human reasoning about individual object instances. While prior work often imposes object-centric attention (e.g., Slot Attention) explicitly to probe these benefits, it remains unclear whether this ability naturally emerges in pre-trained Vision Transformers (ViTs). Intuitively, they could: recognizing which patches belong to the same object should be useful for downstream prediction and thus guide attention. Motivated by the quadratic nature of self-attention, we hypothesize that ViTs represent whether two patches belong to the same object, a property we term IsSameObject. We decode IsSameObject from patch embeddings across ViT layers using a quadratic similarity probe, which reaches over 90% accuracy. Crucially, this object-binding capability emerges reliably in DINO, CLIP, and ImageNet-supervised ViTs, but is markedly weaker in MAE, suggesting that binding is not a trivial architectural artifact, but an ability acquired through specific pretraining objectives. We further discover that IsSameObject is encoded in a low-dimensional subspace on top of object features, and that this signal actively guides attention. Ablating IsSameObject from model activations degrades downstream performance and works against the learning objective, implying that emergent object binding naturally serves the pretraining objective. Our findings challenge the view that ViTs lack object binding and highlight how symbolic knowledge of "which parts belong together" emerges naturally in a connectionist system.
comment: Accepted as a Spotlight at NeurIPS 2025
Sora as a World Model? A Complete Survey on Text-to-Video Generation
The evolution of video generation from text, from animating MNIST to simulating the world with Sora, has progressed at a breakneck speed. Here, we systematically discuss how far text-to-video generation technology supports essential requirements in world modeling. We curate 250+ studies on text-based video synthesis and world modeling. We then observe that recent models increasingly support spatial, action, and strategic intelligences in world modeling through adherence to completeness, consistency, invention, as well as human interaction and control. We conclude that text-to-video generation is adept at world modeling, although homework in several aspects, such as the diversity-consistency trade-offs, remains to be addressed.
comment: First complete survey on Text-to-Video Generation from World Model perspective, 35 pages
Training-Free In-Context Forensic Chain for Image Manipulation Detection and Localization
Advances in image tampering pose serious security threats, underscoring the need for effective image manipulation localization (IML). While supervised IML achieves strong performance, it depends on costly pixel-level annotations. Existing weakly supervised or training-free alternatives often underperform and lack interpretability. We propose the In-Context Forensic Chain (ICFC), a training-free framework that leverages multi-modal large language models (MLLMs) for interpretable IML tasks. ICFC integrates an objectified rule construction with adaptive filtering to build a reliable knowledge base and a multi-step progressive reasoning pipeline that mirrors expert forensic workflows from coarse proposals to fine-grained forensics results. This design enables systematic exploitation of MLLM reasoning for image-level classification, pixel-level localization, and text-level interpretability. Across multiple benchmarks, ICFC not only surpasses state-of-the-art training-free methods but also achieves competitive or superior performance compared to weakly and fully supervised approaches.
comment: This version was uploaded in error and contains misleading information found in an early draft. The manuscript requires extensive and long-term revisions
Debate-Enhanced Pseudo Labeling and Frequency-Aware Progressive Debiasing for Weakly-Supervised Camouflaged Object Detection with Scribble Annotations
Weakly-Supervised Camouflaged Object Detection (WSCOD) aims to locate and segment objects that are visually concealed within their surrounding scenes, relying solely on sparse supervision such as scribble annotations. Despite recent progress, existing WSCOD methods still lag far behind fully supervised ones due to two major limitations: (1) the pseudo masks generated by general-purpose segmentation models (e.g., SAM) and filtered via rules are often unreliable, as these models lack the task-specific semantic understanding required for effective pseudo labeling in COD; and (2) the neglect of inherent annotation bias in scribbles, which hinders the model from capturing the global structure of camouflaged objects. To overcome these challenges, we propose ${D}^{3}$ETOR, a two-stage WSCOD framework consisting of Debate-Enhanced Pseudo Labeling and Frequency-Aware Progressive Debiasing. In the first stage, we introduce an adaptive entropy-driven point sampling method and a multi-agent debate mechanism to enhance the capability of SAM for COD, improving the interpretability and precision of pseudo masks. In the second stage, we design FADeNet, which progressively fuses multi-level frequency-aware features to balance global semantic understanding with local detail modeling, while dynamically reweighting supervision strength across regions to alleviate scribble bias. By jointly exploiting the supervision signals from both the pseudo masks and scribble semantics, ${D}^{3}$ETOR significantly narrows the gap between weakly and fully supervised COD, achieving state-of-the-art performance on multiple benchmarks.
Benchmarking the Influence of Pre-training on Explanation Performance in MR Image Classification
Convolutional Neural Networks (CNNs) are frequently and successfully used in medical prediction tasks. They are often used in combination with transfer learning, leading to improved performance when training data for the task are scarce. The resulting models are highly complex and typically do not provide any insight into their predictive mechanisms, motivating the field of "explainable" artificial intelligence (XAI). However, previous studies have rarely quantitatively evaluated the "explanation performance" of XAI methods against ground-truth data, and transfer learning and its influence on objective measures of explanation performance has not been investigated. Here, we propose a benchmark dataset that allows for quantifying explanation performance in a realistic magnetic resonance imaging (MRI) classification task. We employ this benchmark to understand the influence of transfer learning on the quality of explanations. Experimental results show that popular XAI methods applied to the same underlying model differ vastly in performance, even when considering only correctly classified examples. We further observe that explanation performance strongly depends on the task used for pre-training and the number of CNN layers pre-trained. These results hold after correcting for a substantial correlation between explanation and classification performance.
comment: Under review
When Are Two Scores Better Than One? Investigating Ensembles of Diffusion Models
Diffusion models now generate high-quality, diverse samples, with an increasing focus on more powerful models. Although ensembling is a well-known way to improve supervised models, its application to unconditional score-based diffusion models remains largely unexplored. In this work we investigate whether it provides tangible benefits for generative modelling. We find that while ensembling the scores generally improves the score-matching loss and model likelihood, it fails to consistently enhance perceptual quality metrics such as FID on image datasets. We confirm this observation across a breadth of aggregation rules using Deep Ensembles, Monte Carlo Dropout, on CIFAR-10 and FFHQ. We attempt to explain this discrepancy by investigating possible explanations, such as the link between score estimation and image quality. We also look into tabular data through random forests, and find that one aggregation strategy outperforms the others. Finally, we provide theoretical insights into the summing of score models, which shed light not only on ensembling but also on several model composition techniques (e.g. guidance).
comment: Accepted at Transactions on Machine Learning Research (reviewed on OpenReview: https://openreview.net/forum?id=4iRx9b0Csu). Code: https://github.com/rarazafin/score_diffusion_ensemble
GAIA: A Global, Multi-modal, Multi-scale Vision-Language Dataset for Remote Sensing Image Analysis
Existing Vision-Language Models (VLMs) are predominantly trained on web-scraped, noisy image-text data, exhibiting limited exposure to the specialized domain of RS. This deficiency results in poor performance on RS-specific tasks, as commonly used datasets often lack detailed, scientifically accurate textual descriptions and instead emphasize solely on attributes like date and location. To bridge this critical gap, we introduce GAIA, a novel dataset designed for multi-scale, multi-sensor, and multi-modal RS image analysis. GAIA comprises of 201,005 meticulously curated RS image-text pairs, representing a diverse range of RS modalities associated to different spatial resolutions. Unlike existing vision-language datasets in RS, GAIA specifically focuses on capturing a diverse range of RS applications, providing unique information about environmental changes, natural disasters, and various other dynamic phenomena. The dataset provides a spatially and temporally balanced distribution, spanning across the globe, covering the last 25 years with a balanced temporal distribution of observations. GAIA's construction involved a two-stage process: (1) targeted web-scraping of images and accompanying text from reputable RS-related sources, and (2) generation of five high-quality, scientifically grounded synthetic captions for each image using carefully crafted prompts that leverage the advanced vision-language capabilities of GPT-4o. Our extensive experiments, including fine-tuning of CLIP and BLIP2 models, demonstrate that GAIA significantly improves performance on RS image classification, cross-modal retrieval and image captioning tasks. We make our dataset, automated processing framework and fine-tuned model weights publicly available on our project's GitHub repository: https://github.com/Orion-AI-Lab/GAIA.
comment: 26 pages, 14 figures
Semantic Image Synthesis via Diffusion Models
Denoising Diffusion Probabilistic Models (DDPMs) have achieved remarkable success in various image generation tasks compared with Generative Adversarial Nets (GANs). Recent work on semantic image synthesis mainly follows the de facto GAN-based approaches, which may lead to unsatisfactory quality or diversity of generated images. In this paper, we propose a novel framework based on DDPM for semantic image synthesis. Unlike previous conditional diffusion model directly feeds the semantic layout and noisy image as input to a U-Net structure, which may not fully leverage the information in the input semantic mask, our framework processes semantic layout and noisy image differently. It feeds noisy image to the encoder of the U-Net structure while the semantic layout to the decoder by multi-layer spatially-adaptive normalization operators. To further improve the generation quality and semantic interpretability in semantic image synthesis, we introduce the classifier-free guidance sampling strategy, which acknowledge the scores of an unconditional model for sampling process. Extensive experiments on four benchmark datasets demonstrate the effectiveness of our proposed method, achieving state-of-the-art performance in terms of fidelity (FID) and diversity (LPIPS). Our code and pretrained models are available at https://github.com/WeilunWang/semantic-diffusion-model.
RealX3D: A Physically-Degraded 3D Benchmark for Multi-view Visual Restoration and Reconstruction
We introduce RealX3D, a real-capture benchmark for multi-view visual restoration and 3D reconstruction under diverse physical degradations. RealX3D groups corruptions into four families, including illumination, scattering, occlusion, and blurring, and captures each at multiple severity levels using a unified acquisition protocol that yields pixel-aligned LQ/GT views. Each scene includes high-resolution capture, RAW images, and dense laser scans, from which we derive world-scale meshes and metric depth. Benchmarking a broad range of optimization-based and feed-forward methods shows substantial degradation in reconstruction quality under physical corruptions, underscoring the fragility of current multi-view pipelines in real-world challenging environments.
Difference Decomposition Networks for Infrared Small Target Detection
Infrared small target detection (ISTD) faces two major challenges: a lack of discernible target texture and severe background clutter, which results in the background obscuring the target. To enhance targets and suppress backgrounds, we propose the Basis Decomposition Module (BDM) as an extensible and lightweight module based on basis decomposition, which decomposes a complex feature into several basis features and enhances certain information while eliminating redundancy. Extending BDM leads to a series of modules, including the Spatial Difference Decomposition Module (SD$^\mathrm{2}$M), Spatial Difference Decomposition Downsampling Module (SD$^\mathrm{3}$M), and Temporal Difference Decomposition Module (TD$^\mathrm{2}$M). Based on these modules, we develop the Spatial Difference Decomposition Network (SD$^\mathrm{2}$Net) for single-frame ISTD (SISTD) and the Spatiotemporal Difference Decomposition Network (STD$^\mathrm{2}$Net) for multi-frame ISTD (MISTD). SD$^\mathrm{2}$Net integrates SD$^\mathrm{2}$M and SD$^\mathrm{3}$M within an adapted U-shaped architecture. We employ TD$^\mathrm{2}$M to introduce motion information, which transforms SD$^\mathrm{2}$Net into STD$^\mathrm{2}$Net. Extensive experiments on SISTD and MISTD datasets demonstrate state-of-the-art (SOTA) performance. On the SISTD task, SD$^\mathrm{2}$Net performs well compared to most established networks. On the MISTD datasets, STD$^\mathrm{2}$Net achieves a mIoU of 87.68\%, outperforming SD$^\mathrm{2}$Net, which achieves a mIoU of 64.97\%. Our codes are available: https://github.com/greekinRoma/IRSTD_HC_Platform.
A Constraint Programming Model for the Super-Agile Earth Observation Satellite Imaging Scheduling Problem
As the dependence on satellite imaging continues to grow, modern satellites have become increasingly agile, with the new generation, namely super-agile Earth observation satellites (SAEOS), providing unprecedented imaging flexibility. The highly dynamic capabilities of these satellites introduce additional challenges to the scheduling of observation tasks, as existing approaches for conventional agile satellites do not account for variable observation durations and multiple imaging directions. Although some efforts have been made in this regard, the SAEOS imaging scheduling problem (SAEOS-ISP) remains largely unexplored, and no exact approaches have yet been proposed. In this context, this study presents the first exact Constraint Programming formulation for the SAEOS-ISP, considering flexible observation windows, multiple pointing directions and sequence-dependent transition times across multiple satellites. Computational experiments on a newly generated benchmark set demonstrate that the model can be solved efficiently and within very short computational times. Moreover, the results also show that the proposed approach has the potential to achieve higher computational performance compared to the non-exact approaches that are currently considered state-of-the-art.
comment: 12 pages, 4 figures, To be published in the Proceedings of the International Conference on Operations Research and Enterprise Systems (ICORES 2026)
Trustworthy Longitudinal Brain MRI Completion: A Deformation-Based Approach with KAN-Enhanced Diffusion Model
Longitudinal brain MRI is essential for lifespan study, yet high attrition rates often lead to missing data, complicating analysis. Deep generative models have been explored, but most rely solely on image intensity, leading to two key limitations: 1) the fidelity or trustworthiness of the generated brain images are limited, making downstream studies questionable; 2) the usage flexibility is restricted due to fixed guidance rooted in the model structure, restricting full ability to versatile application scenarios. To address these challenges, we introduce DF-DiffCom, a Kolmogorov-Arnold Networks (KAN)-enhanced diffusion model that smartly leverages deformation fields for trustworthy longitudinal brain image completion. Trained on OASIS-3, DF-DiffCom outperforms state-of-the-art methods, improving PSNR by 5.6% and SSIM by 0.12. More importantly, its modality-agnostic nature allows smooth extension to varied MRI modalities, even to attribute maps such as brain tissue segmentation results.
AI-generated data contamination erodes pathological variability and diagnostic reliability
Generative artificial intelligence (AI) is rapidly populating medical records with synthetic content, creating a feedback loop where future models are increasingly at risk of training on uncurated AI-generated data. However, the clinical consequences of this AI-generated data contamination remain unexplored. Here, we show that in the absence of mandatory human verification, this self-referential cycle drives a rapid erosion of pathological variability and diagnostic reliability. By analysing more than 800,000 synthetic data points across clinical text generation, vision-language reporting, and medical image synthesis, we find that models progressively converge toward generic phenotypes regardless of the model architecture. Specifically, rare but critical findings, including pneumothorax and effusions, vanish from the synthetic content generated by AI models, while demographic representations skew heavily toward middle-aged male phenotypes. Crucially, this degradation is masked by false diagnostic confidence; models continue to issue reassuring reports while failing to detect life-threatening pathology, with false reassurance rates tripling to 40%. Blinded physician evaluation confirms that this decoupling of confidence and accuracy renders AI-generated documentation clinically useless after just two generations. We systematically evaluate three mitigation strategies, finding that while synthetic volume scaling fails to prevent collapse, mixing real data with quality-aware filtering effectively preserves diversity. Ultimately, our results suggest that without policy-mandated human oversight, the deployment of generative AI threatens to degrade the very healthcare data ecosystems it relies upon.
comment: *Corresponding author: Dianbo Liu (dianbo@nus.edu.sg)
Omni-AVSR: Towards Unified Multimodal Speech Recognition with Large Language Models
Large language models (LLMs) have recently achieved impressive results in speech recognition across multiple modalities, including Auditory Speech Recognition (ASR), Visual Speech Recognition (VSR), and Audio-Visual Speech Recognition (AVSR). Despite this progress, current LLM-based approaches typically address each task independently, training separate models that raise computational and deployment resource use while missing potential cross-task synergies. They also rely on fixed-rate token compression, which restricts flexibility in balancing accuracy with efficiency. These limitations highlight the need for a unified framework that can support ASR, VSR, and AVSR while enabling elastic inference. To this end, we present Omni-AVSR, a unified audio-visual LLM that combines efficient multi-granularity training with parameter-efficient adaptation. Specifically, we adapt the matryoshka representation learning paradigm to efficiently train across multiple audio and visual granularities, reducing its inherent training resource use. Furthermore, we explore three LoRA-based strategies for adapting the backbone LLM, balancing shared and task-specific specialization. Experiments on LRS2 and LRS3 show that Omni-AVSR achieves comparable or superior accuracy to state-of-the-art baselines while training a single model at substantially lower training and deployment resource use. The model also remains robust under acoustic noise, and we analyze its scaling behavior as LLM size increases, providing insights into the trade-off between performance and efficiency.
comment: Accepted to IEEE ICASSP 2026 (camera-ready version). Project website (code and model weights): https://umbertocappellazzo.github.io/Omni-AVSR/
A Multi-Stage Augmented Multimodal Interaction Network for Quantifying Fish Feeding Intensity Using Feeding Image, Audio and Water Wave
In recirculating aquaculture systems, accurate and effective assessment of fish feeding intensity is crucial for reducing feed costs and calculating optimal feeding times. However, current studies have limitations in modality selection, feature extraction and fusion, and co-inference for decision making, which restrict further improvement in the accuracy, applicability and reliability of multimodal fusion models. To address this problem, this study proposes a Multi-stage Augmented Multimodal Interaction Network (MAINet) for quantifying fish feeding intensity. Firstly, a general feature extraction framework is proposed to efficiently extract feature information from input image, audio and water wave datas. Second, an Auxiliary-modality Reinforcement Primary-modality Mechanism (ARPM) is designed for inter-modal interaction and generate enhanced features, which consists of a Channel Attention Fusion Network (CAFN) and a Dual-mode Attention Fusion Network (DAFN). Finally, an Evidence Reasoning (ER) rule is introduced to fuse the output results of each modality and make decisions, thereby completing the quantification of fish feeding intensity. The experimental results show that the constructed MAINet reaches 96.76%, 96.78%, 96.79% and 96.79% in accuracy, precision, recall and F1-Score respectively, and its performance is significantly higher than the comparison models. Compared with models that adopt single-modality, dual-modality fusion and different decision-making fusion methods, it also has obvious advantages. Meanwhile, the ablation experiments further verified the key role of the proposed improvement strategy in improving the robustness and feature utilization efficiency of model, which can effectively improve the accuracy of the quantitative results of fish feeding intensity. The dataset is available at: https://huggingface.co/datasets/ShulongZhang/Multimodal_Fish_Feeding_Intensity.
VIAFormer: Voxel-Image Alignment Transformer for High-Fidelity Voxel Refinement
We propose VIAFormer, a Voxel-Image Alignment Transformer model designed for Multi-view Conditioned Voxel Refinement--the task of repairing incomplete noisy voxels using calibrated multi-view images as guidance. Its effectiveness stems from a synergistic design: an Image Index that provides explicit 3D spatial grounding for 2D image tokens, a Correctional Flow objective that learns a direct voxel-refinement trajectory, and a Hybrid Stream Transformer that enables robust cross-modal fusion. Experiments show that VIAFormer establishes a new state of the art in correcting both severe synthetic corruptions and realistic artifacts on the voxel shape obtained from powerful Vision Foundation Models. Beyond benchmarking, we demonstrate VIAFormer as a practical and reliable bridge in real-world 3D creation pipelines, paving the way for voxel-based methods to thrive in large-model, big-data wave.
ConeGS: Error-Guided Densification Using Pixel Cones for Improved Reconstruction With Fewer Primitives
3D Gaussian Splatting (3DGS) achieves state-of-the-art image quality and real-time performance in novel view synthesis but often suffers from a suboptimal spatial distribution of primitives. This issue stems from cloning-based densification, which propagates Gaussians along existing geometry, limiting exploration and requiring many primitives to adequately cover the scene. We present ConeGS, an image-space-informed densification framework that is independent of existing scene geometry state. ConeGS first creates a fast Instant Neural Graphics Primitives (iNGP) reconstruction as a geometric proxy to estimate per-pixel depth. During the subsequent 3DGS optimization, it identifies high-error pixels and inserts new Gaussians along the corresponding viewing cones at the predicted depth values, initializing their size according to the cone diameter. A pre-activation opacity penalty rapidly removes redundant Gaussians, while a primitive budgeting strategy controls the total number of primitives, either by a fixed budget or by adapting to scene complexity, ensuring high reconstruction quality. Experiments show that ConeGS consistently enhances reconstruction quality and rendering performance across Gaussian budgets, with especially strong gains under tight primitive constraints where efficient placement is crucial.
A Training-Free Guess What Vision Language Model from Snippets to Open-Vocabulary Object Detection
Open-Vocabulary Object Detection (OVOD) aims to develop the capability to detect anything. Although myriads of large-scale pre-training efforts have built versatile foundation models that exhibit impressive zero-shot capabilities to facilitate OVOD, the necessity of creating a universal understanding for any object cognition according to already pretrained foundation models is usually overlooked. Therefore, in this paper, a training-free Guess What Vision Language Model, called GW-VLM, is proposed to form a universal understanding paradigm based on our carefully designed Multi-Scale Visual Language Searching (MS-VLS) coupled with Contextual Concept Prompt (CCP) for OVOD. This approach can engage a pre-trained Vision Language Model (VLM) and a Large Language Model (LLM) in the game of "guess what". Wherein, MS-VLS leverages multi-scale visual-language soft-alignment for VLM to generate snippets from the results of class-agnostic object detection, while CCP can form the concept of flow referring to MS-VLS and then make LLM understand snippets for OVOD. Finally, the extensive experiments are carried out on natural and remote sensing datasets, including COCO val, Pascal VOC, DIOR, and NWPU-10, and the results indicate that our proposed GW-VLM can achieve superior OVOD performance compared to the-state-of-the-art methods without any training step.
Unlocking Generalization in Polyp Segmentation with DINO Self-Attention "keys"
Automatic polyp segmentation is crucial for improving the clinical identification of colorectal cancer (CRC). While Deep Learning (DL) techniques have been extensively researched for this problem, current methods frequently struggle with generalization, particularly in data-constrained or challenging settings. Moreover, many existing polyp segmentation methods rely on complex, task-specific architectures. To address these limitations, we present a framework that leverages the intrinsic robustness of DINO self-attention "key" features for robust segmentation. Unlike traditional methods that extract tokens from the deepest layers of the Vision Transformer (ViT), our approach leverages the key features of the self-attention module with a simple convolutional decoder to predict polyp masks, resulting in enhanced performance and better generalizability. We validate our approach using a multi-center dataset under two rigorous protocols: Domain Generalization (DG) and Extreme Single Domain Generalization (ESDG). Our results, supported by a comprehensive statistical analysis, demonstrate that this pipeline achieves state-of-the-art (SOTA) performance, significantly enhancing generalization, particularly in data-scarce and challenging scenarios. While avoiding a polyp-specific architecture, we surpass well-established models like nnU-Net and UM-Net. Additionally, we provide a systematic benchmark of the DINO framework's evolution, quantifying the specific impact of architectural advancements on downstream polyp segmentation performance.
comment: We have found a bug in our codebase. The DINO vision encoder was not properly frozen, therefore the results and claims are not fully valid. We are working on new results
KBE-DME: Dynamic Multimodal Evaluation via Knowledge Enhanced Benchmark Evolution
The rapid progress of multimodal large language models (MLLMs) calls for more reliable evaluation protocols. Existing static benchmarks suffer from the potential risk of data contamination and saturation, leading to inflated or misleading performance evaluations. To address these issues, we first apply Graph formulation to represent a static or dynamic VQA sample. With the formulation, we propose Knowledge-enhanced Benchmark Evolution(KBE), a dynamic multimodal evaluation framework. KBE first analyzes the original static benchmark, then expands it by integrating multimodal knowledge, transforming the static benchmark into a controllable, dynamic evolving version. Crucially, KBE can both reconstruct questions by Re-selecting visual information in the original image and expand existing questions with external textual knowledge. It enables difficulty-controllable evaluation by adjusting the degree of question exploration. Extensive experiments demonstrate that KBE alleviates the risk of data contamination, data saturation, and provides a more comprehensive assessment of MLLM capabilities.
Human detectors are surprisingly powerful reward models
Video generation models have recently achieved impressive visual fidelity and temporal coherence. Yet, they continue to struggle with complex, non-rigid motions, especially when synthesizing humans performing dynamic actions such as sports, dance, etc. Generated videos often exhibit missing or extra limbs, distorted poses, or physically implausible actions. In this work, we propose a remarkably simple reward model, HuDA, to quantify and improve the human motion in generated videos. HuDA integrates human detection confidence for appearance quality, and a temporal prompt alignment score to capture motion realism. We show this simple reward function that leverages off-the-shelf models without any additional training, outperforms specialized models finetuned with manually annotated data. Using HuDA for Group Reward Policy Optimization (GRPO) post-training of video models, we significantly enhance video generation, especially when generating complex human motions, outperforming state-of-the-art models like Wan 2.1, with win-rate of 73%. Finally, we demonstrate that HuDA improves generation quality beyond just humans, for instance, significantly improving generation of animal videos and human-object interactions.
comment: Technical report
HiT: History-Injection Transformers for Onboard Continuous Flood Change Detection
Natural disaster monitoring through continuous satellite observation requires processing multi-temporal data under strict operational constraints. This paper addresses flood detection, a critical application for hazard management, by developing an onboard change detection system that operates within the memory and computational limits of small satellites. We propose History Injection mechanism for Transformer models (HiT), that maintains historical context from previous observations while reducing data storage by over 99\% of original image size. Moreover, testing on the STTORM-CD flood dataset confirms that the HiT mechanism within the Prithvi-tiny foundation model maintains detection accuracy compared to the bitemporal baseline. The proposed HiT-Prithvi model achieved 43 FPS on Jetson Orin Nano, a representative onboard hardware used in nanosats. This work establishes a practical framework for satellite-based continuous monitoring of natural disasters, supporting real-time hazard assessment without dependency on ground-based processing infrastructure. Architecture as well as model checkpoints is available at https://github.com/zaitra/HiT-change-detection
comment: 19 pages, 9 figures, submitted to conference
Can Synthetic Images Serve as Effective and Efficient Class Prototypes?
Vision-Language Models (VLMs) have shown strong performance in zero-shot image classification tasks. However, existing methods, including Contrastive Language-Image Pre-training (CLIP), all rely on annotated text-to-image pairs for aligning visual and textual modalities. This dependency introduces substantial cost and accuracy requirement in preparing high-quality datasets. At the same time, processing data from two modes also requires dual-tower encoders for most models, which also hinders their lightweight. To address these limitations, we introduce a ``Contrastive Language-Image Pre-training via Large-Language-Model-based Generation (LGCLIP)" framework. LGCLIP leverages a Large Language Model (LLM) to generate class-specific prompts that guide a diffusion model in synthesizing reference images. Afterwards these generated images serve as visual prototypes, and the visual features of real images are extracted and compared with the visual features of these prototypes to achieve comparative prediction. By optimizing prompt generation through the LLM and employing only a visual encoder, LGCLIP remains lightweight and efficient. Crucially, our framework requires only class labels as input during whole experimental procedure, eliminating the need for manually annotated image-text pairs and extra pre-processing. Experimental results validate the feasibility and efficiency of LGCLIP, demonstrating great performance in zero-shot classification tasks and establishing a novel paradigm for classification.
comment: Accepted by IEEE ICASSP2026
Extendable Generalization Self-Supervised Diffusion for Low-Dose CT Reconstruction
Current methods based on deep learning for self-supervised low-dose CT (LDCT) reconstruction, while reducing the dependence on paired data, face the problem of significantly decreased generalization when training with single-dose data and extending to other doses. To enable dose-extensive generalization using only single-dose projection data for training, this work proposes a novel method of Extendable GENeraLization self-supervised Diffusion (EGenDiff) for low-dose CT reconstruction. Specifically, a contextual subdata self-enhancing similarity strategy is designed to provide an initial prior for the subsequent progress. During training, the initial prior is used to combine knowledge distillation with a deep combination of latent diffusion models for optimizing image details. On the stage of inference, the pixel-wise self-correcting fusion technique is proposed for data fidelity enhancement, resulting in extensive generalization of higher and lower doses or even unseen doses. EGenDiff requires only LDCT projection data for training and testing. Comprehensive evaluation on benchmark datasets, clinical data, photon counting CT data, and across all three anatomical planes (transverse, coronal, and sagittal) demonstrates that EGenDiff enables extendable generalization multi-dose, yielding reconstructions that consistently outperform leading existing methods.
T2T-VICL: Unlocking the Boundaries of Cross-Task Visual In-Context Learning via Implicit Text-Driven VLMs
In large language models (LLM), in-context learning (ICL) refers to performing new tasks by conditioning on small demonstrations provided in the input context. Recent advances in visual in-context learning (VICL) demonstrate promising capabilities for solving downstream tasks by unified vision-language models (VLMs). When the visual prompt and the target images originate from different visual tasks, can VLMs still enable VICL? In the paper, we propose a fully collaborative pipeline, i.e. T2T-VICL, for VLMs to investigate the potential of cross-task VICL. Fundamentally, we design a mechanism to generate and select text prompts that best implicitly describe the differences between two distinct low-level vision tasks, and construct the first cross-task VICL dataset. Building upon this, we propose a novel inference framework that combines perceptual score-based reasoning with traditional evaluation metrics to perform cross-task VICL. Our approach achieves top-tier results across twelve cross-task scenarios and second-tier performance in nine additional scenarios, unlocking the boundaries of cross-task VICL within VLMs.
RiskCueBench: Benchmarking Anticipatory Reasoning from Early Risk Cues in Video-Language Models
With the rapid growth of video centered social media, the ability to anticipate risky events from visual data is a promising direction for ensuring public safety and preventing real world accidents. Prior work has extensively studied supervised video risk assessment across domains such as driving, protests, and natural disasters. However, many existing datasets provide models with access to the full video sequence, including the accident itself, which substantially reduces the difficulty of the task. To better reflect real world conditions, we introduce a new video understanding benchmark RiskCueBench in which videos are carefully annotated to identify a risk signal clip, defined as the earliest moment that indicates a potential safety concern. Experimental results reveal a significant gap in current systems ability to interpret evolving situations and anticipate future risky events from early visual signals, highlighting important challenges for deploying video risk prediction models in practice.
comment: *updated author email in this version
Smudged Fingerprints: A Systematic Evaluation of the Robustness of AI Image Fingerprints
Model fingerprint detection has shown promise to trace the provenance of AI-generated images in forensic applications. However, despite the inherent adversarial nature of these applications, existing evaluations rarely consider adversarial settings. We present the first systematic security evaluation of these techniques, formalizing threat models that encompass both white- and black-box access and two attack goals: fingerprint removal, which erases identifying traces to evade attribution, and fingerprint forgery, which seeks to cause misattribution to a target model. We implement five attack strategies and evaluate 14 representative fingerprinting methods across RGB, frequency, and learned-feature domains on 12 state-of-the-art image generators. Our experiments reveal a pronounced gap between clean and adversarial performance. Removal attacks are highly effective, often achieving success rates above 80% in white-box settings and over 50% under black-box access. While forgery is more challenging than removal, its success varies significantly across targeted models. We also observe a utility-robustness trade-off: accurate attribution methods are often vulnerable to attacks and, although some techniques are robust in specific settings, none achieves robustness and accuracy across all evaluated threat models. These findings highlight the need for techniques that balance robustness and accuracy, and we identify the most promising approaches toward this goal. Code available at: https://github.com/kaikaiyao/SmudgedFingerprints.
comment: This work has been accepted for publication in the 4th IEEE Conference on Secure and Trustworthy Machine Learning (IEEE SaTML 2026). The final version will be available on IEEE Xplore
Chain-of-Thought Compression Should Not Be Blind: V-Skip for Efficient Multimodal Reasoning via Dual-Path Anchoring
While Chain-of-Thought (CoT) reasoning significantly enhances the performance of Multimodal Large Language Models (MLLMs), its autoregressive nature incurs prohibitive latency constraints. Current efforts to mitigate this via token compression often fail by blindly applying text-centric metrics to multimodal contexts. We identify a critical failure mode termed Visual Amnesia, where linguistically redundant tokens are erroneously pruned, leading to hallucinations. To address this, we introduce V-Skip that reformulates token pruning as a Visual-Anchored Information Bottleneck (VA-IB) optimization problem. V-Skip employs a dual-path gating mechanism that weighs token importance through both linguistic surprisal and cross-modal attention flow, effectively rescuing visually salient anchors. Extensive experiments on Qwen2-VL and Llama-3.2 families demonstrate that V-Skip achieves a $2.9\times$ speedup with negligible accuracy loss. Specifically, it preserves fine-grained visual details, outperforming other baselines over 30\% on the DocVQA.
Unified Text-Image Generation with Weakness-Targeted Post-Training
Unified multimodal generation architectures that jointly produce text and images have recently emerged as a promising direction for text-to-image (T2I) synthesis. However, many existing systems rely on explicit modality switching, generating reasoning text before switching manually to image generation. This separate, sequential inference process limits cross-modal coupling and prohibits automatic multimodal generation. This work explores post-training to achieve fully unified text-image generation, where models autonomously transition from textual reasoning to visual synthesis within a single inference process. We examine the impact of joint text-image generation on T2I performance and the relative importance of each modality during post-training. We additionally explore different post-training data strategies, showing that a targeted dataset addressing specific limitations achieves superior results compared to broad image-caption corpora or benchmark-aligned data. Using offline, reward-weighted post-training with fully self-generated synthetic data, our approach enables improvements in multimodal image generation across four diverse T2I benchmarks, demonstrating the effectiveness of reward-weighting both modalities and strategically designed post-training data.
Interleaved Latent Visual Reasoning with Selective Perceptual Modeling
Interleaved reasoning paradigms enhance Multimodal Large Language Models (MLLMs) with visual feedback but are hindered by the prohibitive computational cost of re-encoding pixel-dense images. A promising alternative, latent visual reasoning, circumvents this bottleneck yet faces limitations: methods either fail to capture intermediate state evolution due to single-step, non-interleaved structures, or sacrifice precise perceptual modeling by over-compressing features. We introduce Interleaved Latent Visual Reasoning (ILVR), a framework that unifies dynamic state evolution with precise perceptual modeling. ILVR interleaves textual generation with latent visual representations that act as specific, evolving cues for subsequent reasoning. Specifically, we employ a self-supervision strategy where a momentum teacher model selectively distills relevant features from ground-truth intermediate images into sparse supervision targets. This adaptive selection mechanism guides the model to autonomously generate context-aware visual signals. Extensive experiments on multimodal reasoning benchmarks demonstrate that ILVR outperforms existing approaches, effectively bridging the gap between fine-grained perception and sequential multimodal reasoning. The code is available at https://github.com/XD111ds/ILVR.
comment: 18 pages, 11 figures. Code available at https://github.com/XD111ds/ILVR
NumGrad-Pull: Numerical Gradient Guided Tri-plane Representation for Surface Reconstruction from Point Clouds
Reconstructing continuous surfaces from unoriented and unordered 3D points is a fundamental challenge in computer vision and graphics. Recent advancements address this problem by training neural signed distance functions to pull 3D location queries to their closest points on a surface, following the predicted signed distances and the analytical gradients computed by the network. In this paper, we introduce NumGrad-Pull, leveraging the representation capability of tri-plane structures to accelerate the learning of signed distance functions and enhance the fidelity of local details in surface reconstruction. To further improve the training stability of grid-based tri-planes, we propose to exploit numerical gradients, replacing conventional analytical computations. Additionally, we present a progressive plane expansion strategy to facilitate faster signed distance function convergence and design a data sampling strategy to mitigate reconstruction artifacts. Our extensive experiments across a variety of benchmarks demonstrate the effectiveness and robustness of our approach. Code is available at https://github.com/CuiRuikai/NumGrad-Pull
comment: under review
LRR-Bench: Left, Right or Rotate? Vision-Language models Still Struggle With Spatial Understanding Tasks
Real-world applications, such as autonomous driving and humanoid robot manipulation, require precise spatial perception. However, it remains underexplored how Vision-Language Models (VLMs) recognize spatial relationships and perceive spatial movement. In this work, we introduce a spatial evaluation pipeline and construct a corresponding benchmark. Specifically, we categorize spatial understanding into two main types: absolute spatial understanding, which involves querying the absolute spatial position (e.g., left, right) of an object within an image, and 3D spatial understanding, which includes movement and rotation. Notably, our dataset is entirely synthetic, enabling the generation of test samples at a low cost while also preventing dataset contamination. We conduct experiments on multiple state-of-the-art VLMs and observe that there is significant room for improvement in their spatial understanding abilities. Explicitly, in our experiments, humans achieve near-perfect performance on all tasks, whereas current VLMs attain human-level performance only on the two simplest tasks. For the remaining tasks, the performance of VLMs is distinctly lower than that of humans. In fact, the best-performing Vision-Language Models even achieve near-zero scores on multiple tasks. The dataset and code are available on https://github.com/kong13661/LRR-Bench.
Geo-Registration of Terrestrial LiDAR Point Clouds with Satellite Images without GNSS
Accurate geo-registration of LiDAR point clouds remains a significant challenge in urban environments where Global Navigation Satellite System (GNSS) signals are denied or degraded. Existing methods typically rely on real-time GNSS and Inertial Measurement Unit (IMU) data, which require pre-calibration and assume stable signals. However, this assumption often fails in dense cities, resulting in localization errors. To address this, we propose a structured post-hoc geo-registration method that accurately aligns LiDAR point clouds with satellite images. The proposed approach targets point cloud datasets where reliable GNSS information is unavailable or degraded, enabling city-scale geo-registration as a post-processing solution. Our method uses a pre-trained Point Transformer to segment road points, then extracts road skeletons and intersections from the point cloud and the satellite image. Global alignment is achieved through rigid transformation using corresponding intersection points, followed by local non-rigid refinement with radial basis function (RBF) interpolation. Elevation discrepancies are corrected using terrain data from the Shuttle Radar Topography Mission (SRTM). To evaluate geo-registration accuracy, we measure the absolute distances between the roads extracted from the two modalities. Our method is validated on the KITTI benchmark and a newly collected dataset of Perth, Western Australia. On KITTI, our method achieves a mean planimetric alignment error of 0.69m, corresponding to a 50% reduction in global geo-registration bias compared to the raw KITTI annotations. On Perth dataset, it achieves a mean planimetric error of 2.17m from GNSS values extracted from Google Maps, corresponding to 57.4% improvement over rigid alignment. Elevation correlation factor improved by 30.5% (KITTI) and 55.8% (Perth).
comment: Submitted to IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. Under reviewing now
SUG-Occ: An Explicit Semantics and Uncertainty Guided Sparse Learning Framework for Real-Time 3D Occupancy Prediction
As autonomous driving moves toward full scene understanding, 3D semantic occupancy prediction has emerged as a crucial perception task, offering voxel-level semantics beyond traditional detection and segmentation paradigms. However, such a refined representation for scene understanding incurs prohibitive computation and memory overhead, posing a major barrier to practical real-time deployment. To address this, we propose SUG-Occ, an explicit Semantics and Uncertainty Guided Sparse Learning Enabled 3D Occupancy Prediction Framework, which exploits the inherent sparsity of 3D scenes to reduce redundant computation while maintaining geometric and semantic completeness. Specifically, we first utilize semantic and uncertainty priors to suppress projections from free space during view transformation while employing an explicit unsigned distance encoding to enhance geometric consistency, producing a structurally consistent sparse 3D representation. Secondly, we design an cascade sparse completion module via hyper cross sparse convolution and generative upsampling to enable efficiently coarse-to-fine reasoning. Finally, we devise an object contextual representation (OCR) based mask decoder that aggregates global semantic context from sparse features and refines voxel-wise predictions via lightweight query-context interactions, avoiding expensive attention operations over volumetric features. Extensive experiments on SemanticKITTI benchmark demonstrate that the proposed approach outperforms the baselines, achieving a 7.34/% improvement in accuracy and a 57.8\% gain in efficiency.
Improving Artifact Robustness for CT Deep Learning Models Without Labeled Artifact Images via Domain Adaptation
If a CT scanner introduces a new artifact not present in the training labels, the model may misclassify the images. Although modern CT scanners include design features which mitigate these artifacts, unanticipated or difficult-to-mitigate artifacts can still appear in practice. The direct solution of labeling images from this new distribution can be costly. As a more accessible alternative, this study evaluates domain adaptation as an approach for training models that maintain classification performance despite new artifacts, even without corresponding labels. We simulate ring artifacts from detector gain error in sinogram space and evaluate domain adversarial neural networks (DANN) against baseline and augmentation-based approaches on the OrganAMNIST abdominal CT dataset. We simulate the absence of labels from an unseen distribution via masking in the loss function and selectively detaching unlabeled instances from the computational graph. Our results demonstrate that baseline models trained only on clean images fail to generalize to images with ring artifacts, and traditional augmentation with other distortion types provides no improvement on unseen artifact domains. In contrast, the DANN approach improves classification accuracy on ring artifact images using only unlabeled artifact data during training, demonstrating the viability of domain adaptation for artifact robustness. The domain-adapted model achieved a classification accuracy of 77.4% on ring artifact test data, 38.7% higher than a baseline model only trained on images with no artifact. These findings provide empirical evidence that domain adaptation can effectively address distribution shift in medical imaging without requiring expensive expert labeling of new artifact distributions, suggesting promise for deployment in clinical settings where novel artifacts may emerge.
comment: 8 pages, 12 figures, 1 table
BirdsEye-RU: A Dataset For Detecting Faces from Overhead Images
Detecting faces in overhead images remains a significant challenge due to extreme scale variations and environmental clutter. To address this, we created the BirdsEye-RU dataset, a comprehensive collection of 2,978 images containing over eight thousand annotated faces. This dataset is specifically designed to capture small and distant faces across diverse environments, containing both drone images and smartphone-captured images from high altitude. We present a detailed description of the BirdsEye-RU dataset in this paper. We made our dataset freely available to the public, and it can be accessed at https://www.kaggle.com/datasets/mdahanafarifkhan/birdseye-ru.
$\mathrm{D}^\mathrm{3}$-Predictor: Noise-Free Deterministic Diffusion for Dense Prediction
Although diffusion models with strong visual priors have emerged as powerful dense prediction backbones, they overlook a core limitation: the stochastic noise at the core of diffusion sampling is inherently misaligned with dense prediction that requires a deterministic mapping from image to geometry. In this paper, we show that this stochastic noise corrupts fine-grained spatial cues and pushes the model toward timestep-specific noise objectives, consequently destroying meaningful geometric structure mappings. To address this, we introduce $\mathrm{D}^\mathrm{3}$-Predictor, a noise-free deterministic diffusion-based dense prediction model built by reformulating a pretrained diffusion model without stochasticity noise. Instead of relying on noisy inputs to leverage diffusion priors, $\mathrm{D}^\mathrm{3}$-Predictor views the pretrained diffusion network as an ensemble of timestep-dependent visual experts and self-supervisedly aggregates their heterogeneous priors into a single, clean, and complete geometric prior. Meanwhile, we utilize task-specific supervision to seamlessly adapt this noise-free prior to dense prediction tasks. Extensive experiments on various dense prediction tasks demonstrate that $\mathrm{D}^\mathrm{3}$-Predictor achieves competitive or state-of-the-art performance in diverse scenarios. In addition, it requires less than half the training data previously used and efficiently performs inference in a single step. Our code, data, and checkpoints are publicly available at https://x-gengroup.github.io/HomePage_D3-Predictor/.
Encoding Emotion Through Self-Supervised Eye Movement Reconstruction
The relationship between emotional expression and eye movement is well-documented, with literature establishing gaze patterns are reliable indicators of emotion. However, most studies utilize specialized, high-resolution eye-tracking equipment, limiting the potential reach of findings. We investigate how eye movement can be used to predict multimodal markers of emotional expression from naturalistic, low-resolution videos. We utilize a collection of video interviews from the USC Shoah Foundation's Visual History Archive with Holocaust survivors as they recount their experiences in the Auschwitz concentration camp. Inspired by pretraining methods on language models, we develop a novel gaze detection model that uses self-supervised eye movement reconstruction that can effectively leverage unlabeled video. We use this model's encoder embeddings to fine-tune models on two downstream tasks related to emotional expression. The first is aligning eye movement with directional emotion estimates from speech. The second task is using eye gaze as a predictor of three momentary manifestations of emotional behaviors: laughing, crying/sobbing, and sighing. We find our new model is predictive of emotion outcomes and observe a positive correlation between pretraining performance and emotion processing performance for both experiments. We conclude self-supervised eye movement reconstruction is an effective method for encoding the affective signal they carry.
Karhunen-Loève Expansion-Based Residual Anomaly Map for Resource-Efficient Glioma MRI Segmentation
Accurate segmentation of brain tumors is essential for clinical diagnosis and treatment planning. Deep learning is currently the state-of-the-art for brain tumor segmentation, yet it requires either large datasets or extensive computational resources that are inaccessible in most areas. This makes the problem increasingly difficult: state-of-the-art models use thousands of training cases and vast computational power, where performance drops sharply when either is limited. The top performer in the Brats GLI 2023 competition relied on supercomputers trained on over 92,000 augmented MRI scans using an AMD EPYC 7402 CPU, six NVIDIA RTX 6000 GPUs (48GB VRAM each), and 1024GB of RAM over multiple weeks. To address this, the Karhunen--Loève Expansion (KLE) was implemented as a feature extraction step on downsampled, z-score normalized MRI volumes. Each 240$\times$240$\times$155 multi-modal scan is reduced to four $48^3$ channels and compressed into 32 KL coefficients. The resulting approximate reconstruction enables a residual-based anomaly map, which is upsampled and added as a fifth channel to a compact 3D U-Net. All experiments were run on a consumer workstation (AMD Ryzen 5 7600X CPU, RTX 4060Ti (8GB VRAM), and 64GB RAM while using far fewer training cases. This model achieves post-processed Dice scores of 0.929 (WT), 0.856 (TC), and 0.821 (ET), with HD95 distances of 2.93, 6.78, and 10.35 voxels. These results are significantly better than the winning BraTS 2023 methodology for HD95 distances and WT dice scores. This demonstrates that a KLE-based residual anomaly map can dramatically reduce computational cost and data requirements while retaining state-of-the-art performance.
PanoDreamer: Optimization-Based Single Image to 360 3D Scene With Diffusion
In this paper, we present PanoDreamer, a novel method for producing a coherent 360° 3D scene from a single input image. Unlike existing methods that generate the scene sequentially, we frame the problem as single-image panorama and depth estimation. Once the coherent panoramic image and its corresponding depth are obtained, the scene can be reconstructed by inpainting the small occluded regions and projecting them into 3D space. Our key contribution is formulating single-image panorama and depth estimation as two optimization tasks and introducing alternating minimization strategies to effectively solve their objectives. We demonstrate that our approach outperforms existing techniques in single-image 360° 3D scene reconstruction in terms of consistency and overall quality.
comment: SIGGRAPH Asia 2025, Project page: https://people.engr.tamu.edu/nimak/Papers/PanoDreamer, Code: https://github.com/avinashpaliwal/PanoDreamer
RI3D: Few-Shot Gaussian Splatting With Repair and Inpainting Diffusion Priors ICCV 2025
In this paper, we propose RI3D, a novel 3DGS-based approach that harnesses the power of diffusion models to reconstruct high-quality novel views given a sparse set of input images. Our key contribution is separating the view synthesis process into two tasks of reconstructing visible regions and hallucinating missing regions, and introducing two personalized diffusion models, each tailored to one of these tasks. Specifically, one model ('repair') takes a rendered image as input and predicts the corresponding high-quality image, which in turn is used as a pseudo ground truth image to constrain the optimization. The other model ('inpainting') primarily focuses on hallucinating details in unobserved areas. To integrate these models effectively, we introduce a two-stage optimization strategy: the first stage reconstructs visible areas using the repair model, and the second stage reconstructs missing regions with the inpainting model while ensuring coherence through further optimization. Moreover, we augment the optimization with a novel Gaussian initialization method that obtains per-image depth by combining 3D-consistent and smooth depth with highly detailed relative depth. We demonstrate that by separating the process into two tasks and addressing them with the repair and inpainting models, we produce results with detailed textures in both visible and missing regions that outperform state-of-the-art approaches on a diverse set of scenes with extremely sparse inputs.
comment: ICCV 2025, Project page: https://people.engr.tamu.edu/nimak/Papers/RI3D, Code: https://github.com/avinashpaliwal/RI3D
From Canopy to Ground via ForestGen3D: Learning Cross-Domain Generation of 3D Forest Structure from Aerial-to-Terrestrial LiDAR
The 3D structure of living and non-living components in ecosystems plays a critical role in determining ecological processes and feedbacks from both natural and human-driven disturbances. Anticipating the effects of wildfire, drought, disease, or atmospheric deposition depends on accurate characterization of 3D vegetation structure, yet widespread measurement remains prohibitively expensive and often infeasible. We present ForestGen3D, a cross-domain generative framework that preserves aerial LiDAR (ALS) observed 3D forest structure while inferring missing sub-canopy detail. ForestGen3D is based on conditional denoising diffusion probabilistic models trained on co-registered ALS and terrestrial LiDAR (TLS) data. The model generates realistic TLS-like point clouds that remain spatially consistent with ALS geometry, enabling landscape-scalable reconstruction of full vertical forest structure. We evaluate ForestGen3D at tree, plot, and landscape scales using real-world data from mixed conifer ecosystems, and show through qualitative and quantitative geometric and distributional analyses that it produces high-fidelity reconstructions closely matching TLS reference data in terms of 3D structural similarity and downstream biophysical metrics, including tree height, DBH, crown diameter, and crown volume. We further introduce and demonstrate the expected point containment (EPC) metric which serves as a practical proxy for generation quality in settings where TLS ground truth is unavailable. Our results demonstrate that ForestGen3D enhances the utility of ALS only environments by inferring ecologically plausible sub-canopy structure while faithfully preserving the landscape heterogeneity encoded in ALS observations, thereby providing a richer 3D representation for ecological analysis, structural fuel characterization and related remote sensing applications.
Emergence and Evolution of Interpretable Concepts in Diffusion Models NeurIPS
Diffusion models have become the go-to method for text-to-image generation, producing high-quality images from pure noise. However, the inner workings of diffusion models is still largely a mystery due to their black-box nature and complex, multi-step generation process. Mechanistic interpretability techniques, such as Sparse Autoencoders (SAEs), have been successful in understanding and steering the behavior of large language models at scale. However, the great potential of SAEs has not yet been applied toward gaining insight into the intricate generative process of diffusion models. In this work, we leverage the SAE framework to probe the inner workings of a popular text-to-image diffusion model, and uncover a variety of human-interpretable concepts in its activations. Interestingly, we find that even before the first reverse diffusion step is completed, the final composition of the scene can be predicted surprisingly well by looking at the spatial distribution of activated concepts. Moreover, going beyond correlational analysis, we design intervention techniques aimed at manipulating image composition and style, and demonstrate that (1) in early stages of diffusion image composition can be effectively controlled, (2) in the middle stages image composition is finalized, however stylistic interventions are effective, and (3) in the final stages only minor textural details are subject to change.
comment: 32 pages, 32 figures, published at the 39th Conference on Neural Information Processing Systems (NeurIPS), 2025
OmniView: An All-Seeing Diffusion Model for 3D and 4D View Synthesis
Prior approaches injecting camera control into diffusion models have focused on specific subsets of 4D consistency tasks: novel view synthesis, text-to-video with camera control, image-to-video, amongst others. Therefore, these fragmented approaches are trained on disjoint slices of available 3D/4D data. We introduce OmniView, a unified framework that generalizes across a wide range of 4D consistency tasks. Our method separately represents space, time, and view conditions, enabling flexible combinations of these inputs. For example, OmniView can synthesize novel views from static, dynamic, and multiview inputs, extrapolate trajectories forward and backward in time, and create videos from text or image prompts with full camera control. OmniView is competitive with task-specific models across diverse benchmarks and metrics, improving image quality scores among camera-conditioned diffusion models by up to 33\% in multiview NVS LLFF dataset, 60\% in dynamic NVS Neural 3D Video benchmark, 20\% in static camera control on RE-10K, and reducing camera trajectory errors by 4x in text-conditioned video generation. With strong generalizability in one model, OmniView demonstrates the feasibility of a generalist 4D video model. Project page is available at https://snap-research.github.io/OmniView/
comment: Project page: https://snap-research.github.io/OmniView/
Artificial Intelligence 258
Iterative Refinement Improves Compositional Image Generation
Text-to-image (T2I) models have achieved remarkable progress, yet they continue to struggle with complex prompts that require simultaneously handling multiple objects, relations, and attributes. Existing inference-time strategies, such as parallel sampling with verifiers or simply increasing denoising steps, can improve prompt alignment but remain inadequate for richly compositional settings where many constraints must be satisfied. Inspired by the success of chain-of-thought reasoning in large language models, we propose an iterative test-time strategy in which a T2I model progressively refines its generations across multiple steps, guided by feedback from a vision-language model as the critic in the loop. Our approach is simple, requires no external tools or priors, and can be flexibly applied to a wide range of image generators and vision-language models. Empirically, we demonstrate consistent gains on image generation across benchmarks: a 16.9% improvement in all-correct rate on ConceptMix (k=7), a 13.8% improvement on T2I-CompBench (3D-Spatial category) and a 12.5% improvement on Visual Jenga scene decomposition compared to compute-matched parallel sampling. Beyond quantitative gains, iterative refinement produces more faithful generations by decomposing complex prompts into sequential corrections, with human evaluators preferring our method 58.7% of the time over 41.3% for the parallel baseline. Together, these findings highlight iterative self-correction as a broadly applicable principle for compositional image generation. Results and visualizations are available at https://iterative-img-gen.github.io/
comment: Project webpage: https://iterative-img-gen.github.io/
Rethinking Video Generation Model for the Embodied World
Video generation models have significantly advanced embodied intelligence, unlocking new possibilities for generating diverse robot data that capture perception, reasoning, and action in the physical world. However, synthesizing high-quality videos that accurately reflect real-world robotic interactions remains challenging, and the lack of a standardized benchmark limits fair comparisons and progress. To address this gap, we introduce a comprehensive robotics benchmark, RBench, designed to evaluate robot-oriented video generation across five task domains and four distinct embodiments. It assesses both task-level correctness and visual fidelity through reproducible sub-metrics, including structural consistency, physical plausibility, and action completeness. Evaluation of 25 representative models highlights significant deficiencies in generating physically realistic robot behaviors. Furthermore, the benchmark achieves a Spearman correlation coefficient of 0.96 with human evaluations, validating its effectiveness. While RBench provides the necessary lens to identify these deficiencies, achieving physical realism requires moving beyond evaluation to address the critical shortage of high-quality training data. Driven by these insights, we introduce a refined four-stage data pipeline, resulting in RoVid-X, the largest open-source robotic dataset for video generation with 4 million annotated video clips, covering thousands of tasks and enriched with comprehensive physical property annotations. Collectively, this synergistic ecosystem of evaluation and data establishes a robust foundation for rigorous assessment and scalable training of video models, accelerating the evolution of embodied AI toward general intelligence.
comment: Github: https://github.com/DAGroup-PKU/ReVidgen/ Project website: https://dagroup-pku.github.io/ReVidgen.github.io/
MolecularIQ: Characterizing Chemical Reasoning Capabilities Through Symbolic Verification on Molecular Graphs
A molecule's properties are fundamentally determined by its composition and structure encoded in its molecular graph. Thus, reasoning about molecular properties requires the ability to parse and understand the molecular graph. Large Language Models (LLMs) are increasingly applied to chemistry, tackling tasks such as molecular name conversion, captioning, text-guided generation, and property or reaction prediction. Most existing benchmarks emphasize general chemical knowledge, rely on literature or surrogate labels that risk leakage or bias, or reduce evaluation to multiple-choice questions. We introduce MolecularIQ, a molecular structure reasoning benchmark focused exclusively on symbolically verifiable tasks. MolecularIQ enables fine-grained evaluation of reasoning over molecular graphs and reveals capability patterns that localize model failures to specific tasks and molecular structures. This provides actionable insights into the strengths and limitations of current chemistry LLMs and guides the development of models that reason faithfully over molecular structure.
Evaluation of Large Language Models in Legal Applications: Challenges, Methods, and Future Directions
Large language models (LLMs) are being increasingly integrated into legal applications, including judicial decision support, legal practice assistance, and public-facing legal services. While LLMs show strong potential in handling legal knowledge and tasks, their deployment in real-world legal settings raises critical concerns beyond surface-level accuracy, involving the soundness of legal reasoning processes and trustworthy issues such as fairness and reliability. Systematic evaluation of LLM performance in legal tasks has therefore become essential for their responsible adoption. This survey identifies key challenges in evaluating LLMs for legal tasks grounded in real-world legal practice. We analyze the major difficulties involved in assessing LLM performance in the legal domain, including outcome correctness, reasoning reliability, and trustworthiness. Building on these challenges, we review and categorize existing evaluation methods and benchmarks according to their task design, datasets, and evaluation metrics. We further discuss the extent to which current approaches address these challenges, highlight their limitations, and outline future research directions toward more realistic, reliable, and legally grounded evaluation frameworks for LLMs in legal domains.
Many Experiments, Few Repetitions, Unpaired Data, and Sparse Effects: Is Causal Inference Possible?
We study the problem of estimating causal effects under hidden confounding in the following unpaired data setting: we observe some covariates $X$ and an outcome $Y$ under different experimental conditions (environments) but do not observe them jointly; we either observe $X$ or $Y$. Under appropriate regularity conditions, the problem can be cast as an instrumental variable (IV) regression with the environment acting as a (possibly high-dimensional) instrument. When there are many environments but only a few observations per environment, standard two-sample IV estimators fail to be consistent. We propose a GMM-type estimator based on cross-fold sample splitting of the instrument-covariate sample and prove that it is consistent as the number of environments grows but the sample size per environment remains constant. We further extend the method to sparse causal effects via $\ell_1$-regularized estimation and post-selection refitting.
Recommending Best Paper Awards for ML/AI Conferences via the Isotonic Mechanism
Machine learning and artificial intelligence conferences such as NeurIPS and ICML now regularly receive tens of thousands of submissions, posing significant challenges to maintaining the quality and consistency of the peer review process. This challenge is particularly acute for best paper awards, which are an important part of the peer review process, yet whose selection has increasingly become a subject of debate in recent years. In this paper, we introduce an author-assisted mechanism to facilitate the selection of best paper awards. Our method employs the Isotonic Mechanism for eliciting authors' assessments of their own submissions in the form of a ranking, which is subsequently utilized to adjust the raw review scores for optimal estimation of the submissions' ground-truth quality. We demonstrate that authors are incentivized to report truthfully when their utility is a convex additive function of the adjusted scores, and we validate this convexity assumption for best paper awards using publicly accessible review data of ICLR from 2019 to 2023 and NeurIPS from 2021 to 2023. Crucially, in the special case where an author has a single quota -- that is, may nominate only one paper -- we prove that truthfulness holds even when the utility function is merely nondecreasing and additive. This finding represents a substantial relaxation of the assumptions required in prior work. For practical implementation, we extend our mechanism to accommodate the common scenario of overlapping authorship. Finally, simulation results demonstrate that our mechanism significantly improves the quality of papers selected for awards.
Feasibility Preservation under Monotone Retrieval Truncation
Retrieval-based systems approximate access to a corpus by exposing only a truncated subset of available evidence. Even when relevant information exists in the corpus, truncation can prevent compatible evidence from co-occurring, leading to failures that are not captured by relevance-based evaluation. This paper studies retrieval from a structural perspective, modeling query answering as a feasibility problem under truncation. We formalize retrieval as a sequence of candidate evidence sets and characterize conditions under which feasibility in the limit implies feasibility at finite retrieval depth. We show that monotone truncation suffices to guarantee finite witnessability for individual queries. For classes of queries, we identify finite generation of witness certificates as the additional condition required to obtain a uniform retrieval bound, and we show that this condition is necessary. We further exhibit sharp counterexamples demonstrating failure under non-monotone truncation, non-finitely-generated query classes, and purely slotwise coverage. Together, these results isolate feasibility preservation as a correctness criterion for retrieval independent of relevance scoring or optimization, and clarify structural limitations inherent to truncation-based retrieval.
Tracing 3D Anatomy in 2D Strokes: A Multi-Stage Projection Driven Approach to Cervical Spine Fracture Identification
Cervical spine fractures are critical medical conditions requiring precise and efficient detection for effective clinical management. This study explores the viability of 2D projection-based vertebra segmentation for vertebra-level fracture detection in 3D CT volumes, presenting an end-to-end pipeline for automated analysis of cervical vertebrae (C1-C7). By approximating a 3D volume through optimized 2D axial, sagittal, and coronal projections, regions of interest are identified using the YOLOv8 model from all views and combined to approximate the 3D cervical spine area, achieving a 3D mIoU of 94.45 percent. This projection-based localization strategy reduces computational complexity compared to traditional 3D segmentation methods while maintaining high performance. It is followed by a DenseNet121-Unet-based multi-label segmentation leveraging variance- and energy-based projections, achieving a Dice score of 87.86 percent. Strategic approximation of 3D vertebral masks from these 2D segmentation masks enables the extraction of individual vertebra volumes. The volumes are analyzed for fractures using an ensemble of 2.5D Spatio-Sequential models incorporating both raw slices and projections per vertebra for complementary evaluation. This ensemble achieves vertebra-level and patient-level F1 scores of 68.15 and 82.26, and ROC-AUC scores of 91.62 and 83.04, respectively. We further validate our approach through an explainability study that provides saliency map visualizations highlighting anatomical regions relevant for diagnosis, and an interobserver variability analysis comparing our model's performance with expert radiologists, demonstrating competitive results.
Deaf and Hard of Hearing Access to Intelligent Personal Assistants: Comparison of Voice-Based Options with an LLM-Powered Touch Interface
We investigate intelligent personal assistants (IPAs) accessibility for deaf and hard of hearing (DHH) people who can use their voice in everyday communication. The inability of IPAs to understand diverse accents including deaf speech renders them largely inaccessible to non-signing and speaking DHH individuals. Using an Echo Show, we compare the usability of natural language input via spoken English; with Alexa's automatic speech recognition and a Wizard-of-Oz setting with a trained facilitator re-speaking commands against that of a large language model (LLM)-assisted touch interface in a mixed-methods study. The touch method was navigated through an LLM-powered "task prompter," which integrated the user's history and smart environment to suggest contextually-appropriate commands. Quantitative results showed no significant differences across both spoken English conditions vs LLM-assisted touch. Qualitative results showed variability in opinions on the usability of each method. Ultimately, it will be necessary to have robust deaf-accented speech recognized natively by IPAs.
comment: Accepted for publication in ACM CHI 2026
BayesianVLA: Bayesian Decomposition of Vision Language Action Models via Latent Action Queries
Vision-Language-Action (VLA) models have shown promise in robot manipulation but often struggle to generalize to new instructions or complex multi-task scenarios. We identify a critical pathology in current training paradigms where goal-driven data collection creates a dataset bias. In such datasets, language instructions are highly predictable from visual observations alone, causing the conditional mutual information between instructions and actions to vanish, a phenomenon we term Information Collapse. Consequently, models degenerate into vision-only policies that ignore language constraints and fail in out-of-distribution (OOD) settings. To address this, we propose BayesianVLA, a novel framework that enforces instruction following via Bayesian decomposition. By introducing learnable Latent Action Queries, we construct a dual-branch architecture to estimate both a vision-only prior $p(a \mid v)$ and a language-conditioned posterior $π(a \mid v, \ell)$. We then optimize the policy to maximize the conditional Pointwise Mutual Information (PMI) between actions and instructions. This objective effectively penalizes the vision shortcut and rewards actions that explicitly explain the language command. Without requiring new data, BayesianVLA significantly improves generalization. Extensive experiments across on SimplerEnv and RoboCasa demonstrate substantial gains, including an 11.3% improvement on the challenging OOD SimplerEnv benchmark, validating the ability of our approach to robustly ground language in action.
Where Do AI Coding Agents Fail? An Empirical Study of Failed Agentic Pull Requests in GitHub
AI coding agents are now submitting pull requests (PRs) to software projects, acting not just as assistants but as autonomous contributors. As these agentic contributions are rapidly increasing across real repositories, little is known about how they behave in practice and why many of them fail to be merged. In this paper, we conduct a large-scale study of 33k agent-authored PRs made by five coding agents across GitHub. (RQ1) We first quantitatively characterize merged and not-merged PRs along four broad dimensions: 1) merge outcomes across task types, 2) code changes, 3) CI build results, and 4) review dynamics. We observe that tasks related to documentation, CI, and build update achieve the highest merge success, whereas performance and bug-fix tasks perform the worst. Not-merged PRs tend to involve larger code changes, touch more files, and often do not pass the project's CI/CD pipeline validation. (RQ2) To further investigate why some agentic PRs are not merged, we qualitatively analyze 600 PRs to derive a hierarchical taxonomy of rejection patterns. This analysis complements the quantitative findings in RQ1 by uncovering rejection reasons not captured by quantitative metrics, including lack of meaningful reviewer engagement, duplicate PRs, unwanted feature implementations, and agent misalignment. Together, our findings highlight key socio-technical and human-AI collaboration factors that are critical to improving the success of future agentic workflows.
comment: Accepted at International Mining Software Repositories Conference (MSR 2026)
Benchmarking Large Language Models for ABAP Code Generation: An Empirical Study on Iterative Improvement by Compiler Feedback
This work investigates the performance of Large Language Models (LLMs) in generating ABAP code. Despite successful applications of generative AI in many programming languages, there are hardly any systematic analyses of ABAP code generation to date. The aim of the study is to empirically analyze to what extent various LLMs can generate syntactically correct and functional ABAP code, how effectively they use compiler feedback for iterative improvement, and which task types pose special challenges. For this purpose, a benchmark with 180 tasks is conducted, consisting of adapted HumanEval tasks and practical SAP scenarios. The results show significant performance differences between the models: more powerful LLMs achieve success rates of around 75% after several iterations and benefit greatly from compiler feedback, while smaller models perform significantly weaker. Overall, the study highlights the high potential of powerful LLMs for ABAP development processes, especially in iterative error correction.
comment: 20 pages, 10 figures, Author: Hartmut Westenberger (ORCID: 0009-0009-9063-8318)
Dynamic Management of a Deep Learning-Based Anomaly Detection System for 5G Networks
Fog and mobile edge computing (MEC) will play a key role in the upcoming fifth generation (5G) mobile networks to support decentralized applications, data analytics and management into the network itself by using a highly distributed compute model. Furthermore, increasing attention is paid to providing user-centric cybersecurity solutions, which particularly require collecting, processing and analyzing significantly large amount of data traffic and huge number of network connections in 5G networks. In this regard, this paper proposes a MEC-oriented solution in 5G mobile networks to detect network anomalies in real-time and in autonomic way. Our proposal uses deep learning techniques to analyze network flows and to detect network anomalies. Moreover, it uses policies in order to provide an efficient and dynamic management system of the computing resources used in the anomaly detection process. The paper presents relevant aspects of the deployment of the proposal and experimental results to show its performance.
The Flexibility Trap: Why Arbitrary Order Limits Reasoning Potential in Diffusion Language Models
Diffusion Large Language Models (dLLMs) break the rigid left-to-right constraint of traditional LLMs, enabling token generation in arbitrary orders. Intuitively, this flexibility implies a solution space that strictly supersets the fixed autoregressive trajectory, theoretically unlocking superior reasoning potential for general tasks like mathematics and coding. Consequently, numerous works have leveraged reinforcement learning (RL) to elicit the reasoning capability of dLLMs. In this paper, we reveal a counter-intuitive reality: arbitrary order generation, in its current form, narrows rather than expands the reasoning boundary of dLLMs. We find that dLLMs tend to exploit this order flexibility to bypass high-uncertainty tokens that are crucial for exploration, leading to a premature collapse of the solution space. This observation challenges the premise of existing RL approaches for dLLMs, where considerable complexities, such as handling combinatorial trajectories and intractable likelihoods, are often devoted to preserving this flexibility. We demonstrate that effective reasoning is better elicited by intentionally forgoing arbitrary order and applying standard Group Relative Policy Optimization (GRPO) instead. Our approach, JustGRPO, is minimalist yet surprisingly effective (e.g., 89.1% accuracy on GSM8K) while fully retaining the parallel decoding ability of dLLMs. Project page: https://nzl-thu.github.io/the-flexibility-trap
comment: Code and pre-trained models: https://github.com/LeapLabTHU/JustGRPO
V-CAGE: Context-Aware Generation and Verification for Scalable Long-Horizon Embodied Tasks
Learning long-horizon embodied behaviors from synthetic data remains challenging because generated scenes are often physically implausible, language-driven programs frequently "succeed" without satisfying task semantics, and high-level instructions require grounding into executable action sequences. To address these limitations, we introduce V-CAGE, a closed-loop framework for generating robust, semantically aligned manipulation datasets at scale. First, we propose a context-aware instantiation mechanism that enforces geometric consistency during scene synthesis. By dynamically maintaining a map of prohibited spatial areas as objects are placed, our system prevents interpenetration and ensures reachable, conflict-free configurations in cluttered environments. Second, to bridge the gap between abstract intent and low-level control, we employ a hierarchical instruction decomposition module. This decomposes high-level goals (e.g., "get ready for work") into compositional action primitives, facilitating coherent long-horizon planning. Crucially, we enforce semantic correctness through a VLM-based verification loop. Acting as a visual critic, the VLM performs rigorous rejection sampling after each subtask, filtering out "silent failures" where code executes but fails to achieve the visual goal. Experiments demonstrate that V-CAGE yields datasets with superior physical and semantic fidelity, significantly boosting the success rate and generalization of downstream policies compared to non-verified baselines.
Automated Rubrics for Reliable Evaluation of Medical Dialogue Systems
Large Language Models (LLMs) are increasingly used for clinical decision support, where hallucinations and unsafe suggestions may pose direct risks to patient safety. These risks are particularly challenging as they often manifest as subtle clinical errors that evade detection by generic metrics, while expert-authored fine-grained rubrics remain costly to construct and difficult to scale. In this paper, we propose a retrieval-augmented multi-agent framework designed to automate the generation of instance-specific evaluation rubrics. Our approach grounds evaluation in authoritative medical evidence by decomposing retrieved content into atomic facts and synthesizing them with user interaction constraints to form verifiable, fine-grained evaluation criteria. Evaluated on HealthBench, our framework achieves a Clinical Intent Alignment (CIA) score of 60.12%, a statistically significant improvement over the GPT-4o baseline (55.16%). In discriminative tests, our rubrics yield a mean score delta ($μ_Δ = 8.658$) and an AUROC of 0.977, nearly doubling the quality separation achieved by GPT-4o baseline (4.972). Beyond evaluation, our rubrics effectively guide response refinement, improving quality by 9.2% (from 59.0% to 68.2%). This provides a scalable and transparent foundation for both evaluating and improving medical LLMs. The code is available at https://anonymous.4open.science/r/Automated-Rubric-Generation-AF3C/.
Knowledge Graphs are Implicit Reward Models: Path-Derived Signals Enable Compositional Reasoning
Large language models have achieved near-expert performance in structured reasoning domains like mathematics and programming, yet their ability to perform compositional multi-hop reasoning in specialized scientific fields remains limited. We propose a bottom-up learning paradigm in which models are grounded in axiomatic domain facts and compose them to solve complex, unseen tasks. To this end, we present a post-training pipeline, based on a combination of supervised fine-tuning and reinforcement learning (RL), in which knowledge graphs act as implicit reward models. By deriving novel reward signals from knowledge graph paths, we provide verifiable, scalable, and grounded supervision that encourages models to compose intermediate axioms rather than optimize only final answers during RL. We validate this approach in the medical domain, training a 14B model on short-hop reasoning paths (1-3 hops) and evaluating its zero-shot generalization to complex multi-hop queries (4-5 hops). Our experiments show that path-derived rewards act as a "compositional bridge", enabling our model to significantly outperform much larger models and frontier systems like GPT-5.2 and Gemini 3 Pro, on the most difficult reasoning tasks. Furthermore, we demonstrate the robustness of our approach to adversarial perturbations against option-shuffling stress tests. This work suggests that grounding the reasoning process in structured knowledge is a scalable and efficient path toward intelligent reasoning.
Outcome-Based RL Provably Leads Transformers to Reason, but Only With the Right Data
Transformers trained via Reinforcement Learning (RL) with outcome-based supervision can spontaneously develop the ability to generate intermediate reasoning steps (Chain-of-Thought). Yet the mechanism by which sparse rewards drive gradient descent to discover such systematic reasoning remains poorly understood. We address this by analyzing the gradient flow dynamics of single-layer Transformers on a synthetic graph traversal task that cannot be solved without Chain-of-Thought (CoT) but admits a simple iterative solution. We prove that despite training solely on final-answer correctness, gradient flow drives the model to converge to a structured, interpretable algorithm that iteratively traverses the graph vertex-by-vertex. We characterize the distributional properties required for this emergence, identifying the critical role of "simple examples": instances requiring fewer reasoning steps. When the training distribution places sufficient mass on these simpler instances, the model learns a generalizable traversal strategy that extrapolates to longer chains; when this mass vanishes, gradient-based learning becomes infeasible. We corroborate our theoretical results through experiments on synthetic data and with real-world language models on mathematical reasoning tasks, validating that our theoretical findings carry over to practical settings.
comment: 80 pages, 4 figures
How to Build AI Agents by Augmenting LLMs with Codified Human Expert Domain Knowledge? A Software Engineering Framework
Critical domain knowledge typically resides with few experts, creating organizational bottlenecks in scalability and decision-making. Non-experts struggle to create effective visualizations, leading to suboptimal insights and diverting expert time. This paper investigates how to capture and embed human domain knowledge into AI agent systems through an industrial case study. We propose a software engineering framework to capture human domain knowledge for engineering AI agents in simulation data visualization by augmenting a Large Language Model (LLM) with a request classifier, Retrieval-Augmented Generation (RAG) system for code generation, codified expert rules, and visualization design principles unified in an agent demonstrating autonomous, reactive, proactive, and social behavior. Evaluation across five scenarios spanning multiple engineering domains with 12 evaluators demonstrates 206% improvement in output quality, with our agent achieving expert-level ratings in all cases versus baseline's poor performance, while maintaining superior code quality with lower variance. Our contributions are: an automated agent-based system for visualization generation and a validated framework for systematically capturing human domain knowledge and codifying tacit expert knowledge into AI agents, demonstrating that non-experts can achieve expert-level outcomes in specialized domains.
Vehicle Routing with Finite Time Horizon using Deep Reinforcement Learning with Improved Network Embedding AAAI-26
In this paper, we study the vehicle routing problem with a finite time horizon. In this routing problem, the objective is to maximize the number of customer requests served within a finite time horizon. We present a novel routing network embedding module which creates local node embedding vectors and a context-aware global graph representation. The proposed Markov decision process for the vehicle routing problem incorporates the node features, the network adjacency matrix and the edge features as components of the state space. We incorporate the remaining finite time horizon into the network embedding module to provide a proper routing context to the embedding module. We integrate our embedding module with a policy gradient-based deep Reinforcement Learning framework to solve the vehicle routing problem with finite time horizon. We trained and validated our proposed routing method on real-world routing networks, as well as synthetically generated Euclidean networks. Our experimental results show that our method achieves a higher customer service rate than the existing routing methods. Additionally, the solution time of our method is significantly lower than that of the existing methods.
comment: Accepted at AAAI-26 Workshop on AI for Urban Planning
The Plausibility Trap: Using Probabilistic Engines for Deterministic Tasks
The ubiquity of Large Language Models (LLMs) is driving a paradigm shift where user convenience supersedes computational efficiency. This article defines the "Plausibility Trap": a phenomenon where individuals with access to Artificial Intelligence (AI) models deploy expensive probabilistic engines for simple deterministic tasks-such as Optical Character Recognition (OCR) or basic verification-resulting in significant resource waste. Through micro-benchmarks and case studies on OCR and fact-checking, we quantify the "efficiency tax"-demonstrating a ~6.5x latency penalty-and the risks of algorithmic sycophancy. To counter this, we introduce Tool Selection Engineering and the Deterministic-Probabilistic Decision Matrix, a framework to help developers determine when to use Generative AI and, crucially, when to avoid it. We argue for a curriculum shift, emphasizing that true digital literacy relies not only in knowing how to use Generative AI, but also on knowing when not to use it.
Overcoming In-Memory Bottlenecks in Graph Foundation Models via Retrieval-Augmented Generation
Graph Foundation Models (GFMs) have emerged as a frontier in graph learning, which are expected to deliver transferable representations across diverse tasks. However, GFMs remain constrained by in-memory bottlenecks: they attempt to encode knowledge into model parameters, which limits semantic capacity, introduces heavy lossy compression with conflicts, and entangles graph representation with the knowledge in ways that hinder efficient adaptation, undermining scalability and interpretability. In this work,we propose RAG-GFM, a Retrieval-Augmented Generation aided Graph Foundation Model that offloads knowledge from parameters and complements parameterized learning. To externalize graph knowledge, we build a dual-modal unified retrieval module, where a semantic store from prefix-structured text and a structural store from centrality-based motif. To preserve heterogeneous information, we design a dual-view alignment objective that contrasts both modalities to capture both content and relational patterns. To enable efficient downstream adaptation, we perform in-context augmentation to enrich supporting instances with retrieved texts and motifs as contextual evidence. Extensive experiments on five benchmark graph datasets demonstrate that RAG-GFM consistently outperforms 13 state-of-the-art baselines in both cross-domain node and graph classification, achieving superior effectiveness and efficiency.
comment: Accepted by the Web Conference 2026 (Research Track)
BREPS: Bounding-Box Robustness Evaluation of Promptable Segmentation AAAI2026
Promptable segmentation models such as SAM have established a powerful paradigm, enabling strong generalization to unseen objects and domains with minimal user input, including points, bounding boxes, and text prompts. Among these, bounding boxes stand out as particularly effective, often outperforming points while significantly reducing annotation costs. However, current training and evaluation protocols typically rely on synthetic prompts generated through simple heuristics, offering limited insight into real-world robustness. In this paper, we investigate the robustness of promptable segmentation models to natural variations in bounding box prompts. First, we conduct a controlled user study and collect thousands of real bounding box annotations. Our analysis reveals substantial variability in segmentation quality across users for the same model and instance, indicating that SAM-like models are highly sensitive to natural prompt noise. Then, since exhaustive testing of all possible user inputs is computationally prohibitive, we reformulate robustness evaluation as a white-box optimization problem over the bounding box prompt space. We introduce BREPS, a method for generating adversarial bounding boxes that minimize or maximize segmentation error while adhering to naturalness constraints. Finally, we benchmark state-of-the-art models across 10 datasets, spanning everyday scenes to medical imaging. Code - https://github.com/emb-ai/BREPS.
comment: Accepted by AAAI2026
Emerging from Ground: Addressing Intent Deviation in Tool-Using Agents via Deriving Real Calls into Virtual Trajectories
LLMs have advanced tool-using agents for real-world applications, yet they often lead to unexpected behaviors or results. Beyond obvious failures, the subtle issue of "intent deviation" severely hinders reliable evaluation and performance improvement. Existing post-training methods generally leverage either real system samples or virtual data simulated by LLMs. However, the former is costly due to reliance on hand-crafted user requests, while the latter suffers from distribution shift from the real tools in the wild. Additionally, both methods lack negative samples tailored to intent deviation scenarios, hindering effective guidance on preference learning. We introduce RISE, a "Real-to-Virtual" method designed to mitigate intent deviation. Anchoring on verified tool primitives, RISE synthesizes virtual trajectories and generates diverse negative samples through mutation on critical parameters. With synthetic data, RISE fine-tunes backbone LLMs via the two-stage training for intent alignment. Evaluation results demonstrate that data synthesized by RISE achieve promising results in eight metrics covering user requires, execution trajectories and agent responses. Integrating with training, RISE achieves an average 35.28% improvement in Acctask (task completion) and 23.27% in Accintent (intent alignment), outperforming SOTA baselines by 1.20--42.09% and 1.17--54.93% respectively.
Auditing Language Model Unlearning via Information Decomposition
We expose a critical limitation in current approaches to machine unlearning in language models: despite the apparent success of unlearning algorithms, information about the forgotten data remains linearly decodable from internal representations. To systematically assess this discrepancy, we introduce an interpretable, information-theoretic framework for auditing unlearning using Partial Information Decomposition (PID). By comparing model representations before and after unlearning, we decompose the mutual information with the forgotten data into distinct components, formalizing the notions of unlearned and residual knowledge. Our analysis reveals that redundant information, shared across both models, constitutes residual knowledge that persists post-unlearning and correlates with susceptibility to known adversarial reconstruction attacks. Leveraging these insights, we propose a representation-based risk score that can guide abstention on sensitive inputs at inference time, providing a practical mechanism to mitigate privacy leakage. Our work introduces a principled, representation-level audit for unlearning, offering theoretical insight and actionable tools for safer deployment of language models.
comment: EACL 2026 Main
An Agentic Operationalization of DISARM for FIMI Investigation on Social Media
The interoperability of data and intelligence across allied partners and their respective end-user groups is considered a foundational enabler to the collective defense capability--both conventional and hybrid--of NATO countries. Foreign Information Manipulation and Interference (FIMI) and related hybrid activities are conducted across various societal dimensions and infospheres, posing an ever greater challenge to the characterization of threats, sustaining situational awareness, and response coordination. Recent advances in AI have further led to the decreasing cost of AI-augmented trolling and interference activities, such as through the generation and amplification of manipulative content. Despite the introduction of the DISARM framework as a standardized metadata and analytical framework for FIMI, operationalizing it at the scale of social media remains a challenge. We propose a framework-agnostic agent-based operationalization of DISARM to investigate FIMI on social media. We develop a multi-agent pipeline in which specialized agentic AI components collaboratively (1) detect candidate manipulative behaviors, and (2) map these behaviors onto standard DISARM taxonomies in a transparent manner. We evaluated the approach on two real-world datasets annotated by domain practitioners. We demonstrate that our approach is effective in scaling the predominantly manual and heavily interpretive work of FIMI analysis, providing a direct contribution to enhancing the situational awareness and data interoperability in the context of operating in media and information-rich settings.
Memory Retention Is Not Enough to Master Memory Tasks in Reinforcement Learning
Effective decision-making in the real world depends on memory that is both stable and adaptive: environments change over time, and agents must retain relevant information over long horizons while also updating or overwriting outdated content when circumstances shift. Existing Reinforcement Learning (RL) benchmarks and memory-augmented agents focus primarily on retention, leaving the equally critical ability of memory rewriting largely unexplored. To address this gap, we introduce a benchmark that explicitly tests continual memory updating under partial observability, i.e. the natural setting where an agent must rely on memory rather than current observations, and use it to compare recurrent, transformer-based, and structured memory architectures. Our experiments reveal that classic recurrent models, despite their simplicity, demonstrate greater flexibility and robustness in memory rewriting tasks than modern structured memories, which succeed only under narrow conditions, and transformer-based agents, which often fail beyond trivial retention cases. These findings expose a fundamental limitation of current approaches and emphasize the necessity of memory mechanisms that balance stable retention with adaptive updating. Our work highlights this overlooked challenge, introduces benchmarks to evaluate it, and offers insights for designing future RL agents with explicit and trainable forgetting mechanisms. Code: https://quartz-admirer.github.io/Memory-Rewriting/
comment: 11 pages, 6 figures, 7 tables
Multi-Agent Constraint Factorization Reveals Latent Invariant Solution Structure
Multi-agent systems (MAS) composed of large language models often exhibit improved problem-solving performance despite operating on identical information. In this work, we provide a formal explanation for this phenomenon grounded in operator theory and constrained optimization. We model each agent as enforcing a distinct family of validity constraints on a shared solution state, and show that a MAS implements a factorized composition of constraint-enforcement operators. Under mild conditions, these dynamics converge to invariant solution sets defined by the intersection of agent constraint sets. Such invariant structures are generally not dynamically accessible to a single agent applying all constraints simultaneously, even when expressive capacity and information are identical. We extend this result from exact constraint enforcement to soft constraints via proximal operators, and apply the formalism to contemporary text-based dialog systems.
The Why Behind the Action: Unveiling Internal Drivers via Agentic Attribution
Large Language Model (LLM)-based agents are widely used in real-world applications such as customer service, web navigation, and software engineering. As these systems become more autonomous and are deployed at scale, understanding why an agent takes a particular action becomes increasingly important for accountability and governance. However, existing research predominantly focuses on \textit{failure attribution} to localize explicit errors in unsuccessful trajectories, which is insufficient for explaining the reasoning behind agent behaviors. To bridge this gap, we propose a novel framework for \textbf{general agentic attribution}, designed to identify the internal factors driving agent actions regardless of the task outcome. Our framework operates hierarchically to manage the complexity of agent interactions. Specifically, at the \textit{component level}, we employ temporal likelihood dynamics to identify critical interaction steps; then at the \textit{sentence level}, we refine this localization using perturbation-based analysis to isolate the specific textual evidence. We validate our framework across a diverse suite of agentic scenarios, including standard tool use and subtle reliability risks like memory-induced bias. Experimental results demonstrate that the proposed framework reliably pinpoints pivotal historical events and sentences behind the agent behavior, offering a critical step toward safer and more accountable agentic systems.
Incentive-Tuning: Understanding and Designing Incentives for Empirical Human-AI Decision-Making Studies
AI has revolutionised decision-making across various fields. Yet human judgement remains paramount for high-stakes decision-making. This has fueled explorations of collaborative decision-making between humans and AI systems, aiming to leverage the strengths of both. To explore this dynamic, researchers conduct empirical studies, investigating how humans use AI assistance for decision-making and how this collaboration impacts results. A critical aspect of conducting these studies is the role of participants, often recruited through crowdsourcing platforms. The validity of these studies hinges on the behaviours of the participants, hence effective incentives that can potentially affect these behaviours are a key part of designing and executing these studies. In this work, we aim to address the critical role of incentive design for conducting empirical human-AI decision-making studies, focusing on understanding, designing, and documenting incentive schemes. Through a thematic review of existing research, we explored the current practices, challenges, and opportunities associated with incentive design for human-AI decision-making empirical studies. We identified recurring patterns, or themes, such as what comprises the components of an incentive scheme, how incentive schemes are manipulated by researchers, and the impact they can have on research outcomes. Leveraging the acquired understanding, we curated a set of guidelines to aid researchers in designing effective incentive schemes for their studies, called the Incentive-Tuning Framework, outlining how researchers can undertake, reflect on, and document the incentive design process. By advocating for a standardised yet flexible approach to incentive design and contributing valuable insights along with practical tools, we hope to pave the way for more reliable and generalizable knowledge in the field of human-AI decision-making.
Differential Privacy Image Generation with Reconstruction Loss and Noise Injection Using an Error Feedback SGD
Traditional data masking techniques such as anonymization cannot achieve the expected privacy protection while ensuring data utility for privacy-preserving machine learning. Synthetic data plays an increasingly important role as it generates a large number of training samples and prevents information leakage in real data. The existing methods suffer from the repeating trade-off processes between privacy and utility. We propose a novel framework for differential privacy generation, which employs an Error Feedback Stochastic Gradient Descent(EFSGD) method and introduces a reconstruction loss and noise injection mechanism into the training process. We generate images with higher quality and usability under the same privacy budget as the related work. Extensive experiments demonstrate the effectiveness and generalization of our proposed framework for both grayscale and RGB images. We achieve state-of-the-art results over almost all metrics on three benchmarks: MNIST, Fashion-MNIST, and CelebA.
The Responsibility Vacuum: Organizational Failure in Scaled Agent Systems
Modern CI/CD pipelines integrating agent-generated code exhibit a structural failure in responsibility attribution. Decisions are executed through formally correct approval processes, yet no entity possesses both the authority to approve those decisions and the epistemic capacity to meaningfully understand their basis. We define this condition as responsibility vacuum: a state in which decisions occur, but responsibility cannot be attributed because authority and verification capacity do not coincide. We show that this is not a process deviation or technical defect, but a structural property of deployments where decision generation throughput exceeds bounded human verification capacity. We identify a scaling limit under standard deployment assumptions, including parallel agent generation, CI-based validation, and individualized human approval gates. Beyond a throughput threshold, verification ceases to function as a decision criterion and is replaced by ritualized approval based on proxy signals. Personalized responsibility becomes structurally unattainable in this regime. We further characterize a CI amplification dynamic, whereby increasing automated validation coverage raises proxy signal density without restoring human capacity. Under fixed time and attention constraints, this accelerates cognitive offloading in the broad sense and widens the gap between formal approval and epistemic understanding. Additional automation therefore amplifies, rather than mitigates, the responsibility vacuum. We conclude that unless organizations explicitly redesign decision boundaries or reassign responsibility away from individual decisions toward batch- or system-level ownership, responsibility vacuum remains an invisible but persistent failure mode in scaled agent deployments.
Federated Transformer-GNN for Privacy-Preserving Brain Tumor Localization with Modality-Level Explainability
Deep learning models for brain tumor analysis require large and diverse datasets that are often siloed across healthcare institutions due to privacy regulations. We present a federated learning framework for brain tumor localization that enables multi-institutional collaboration without sharing sensitive patient data. Our method extends a hybrid Transformer-Graph Neural Network architecture derived from prior decoder-free supervoxel GNNs and is deployed within CAFEIN\textsuperscript{\textregistered}, CERN's federated learning platform designed for healthcare environments. We provide an explainability analysis through Transformer attention mechanisms that reveals which MRI modalities drive the model predictions. Experiments on the BraTS dataset demonstrate a key finding: while isolated training on individual client data triggers early stopping well before reaching full training capacity, federated learning enables continued model improvement by leveraging distributed data, ultimately matching centralized performance. This result provides strong justification for federated learning when dealing with complex tasks and high-dimensional input data, as aggregating knowledge from multiple institutions significantly benefits the learning process. Our explainability analysis, validated through rigorous statistical testing on the full test set (paired t-tests with Bonferroni correction), reveals that deeper network layers significantly increase attention to T2 and FLAIR modalities ($p<0.001$, Cohen's $d$=1.50), aligning with clinical practice.
A Curriculum-Based Deep Reinforcement Learning Framework for the Electric Vehicle Routing Problem
The electric vehicle routing problem with time windows (EVRPTW) is a complex optimization problem in sustainable logistics, where routing decisions must minimize total travel distance, fleet size, and battery usage while satisfying strict customer time constraints. Although deep reinforcement learning (DRL) has shown great potential as an alternative to classical heuristics and exact solvers, existing DRL models often struggle to maintain training stability-failing to converge or generalize when constraints are dense. In this study, we propose a curriculum-based deep reinforcement learning (CB-DRL) framework designed to resolve this instability. The framework utilizes a structured three-phase curriculum that gradually increases problem complexity: the agent first learns distance and fleet optimization (Phase A), then battery management (Phase B), and finally the full EVRPTW (Phase C). To ensure stable learning across phases, the framework employs a modified proximal policy optimization algorithm with phase-specific hyperparameters, value and advantage clipping, and adaptive learning-rate scheduling. The policy network is built upon a heterogeneous graph attention encoder enhanced by global-local attention and feature-wise linear modulation. This specialized architecture explicitly captures the distinct properties of depots, customers, and charging stations. Trained exclusively on small instances with N=10 customers, the model demonstrates robust generalization to unseen instances ranging from N=5 to N=100, significantly outperforming standard baselines on medium-scale problems. Experimental results confirm that this curriculum-guided approach achieves high feasibility rates and competitive solution quality on out-of-distribution instances where standard DRL baselines fail, effectively bridging the gap between neural speed and operational reliability.
Knowledge Restoration-driven Prompt Optimization: Unlocking LLM Potential for Open-Domain Relational Triplet Extraction
Open-domain Relational Triplet Extraction (ORTE) is the foundation for mining structured knowledge without predefined schemas. Despite the impressive in-context learning capabilities of Large Language Models (LLMs), existing methods are hindered by their reliance on static, heuristic-driven prompting strategies. Due to the lack of reflection mechanisms required to internalize erroneous signals, these methods exhibit vulnerability in semantic ambiguity, often making erroneous extraction patterns permanent. To address this bottleneck, we propose a Knowledge Reconstruction-driven Prompt Optimization (KRPO) framework to assist LLMs in continuously improving their extraction capabilities for complex ORTE task flows. Specifically, we design a self-evaluation mechanism based on knowledge restoration, which provides intrinsic feedback signals by projecting structured triplets into semantic consistency scores. Subsequently, we propose a prompt optimizer based on a textual gradient that can internalize historical experiences to iteratively optimize prompts, which can better guide LLMs to handle subsequent extraction tasks. Furthermore, to alleviate relation redundancy, we design a relation canonicalization memory that collects representative relations and provides semantically distinct schemas for the triplets. Extensive experiments across three datasets show that KRPO significantly outperforms strong baselines in the extraction F1 score.
Visual and Cognitive Demands of a Large Language Model-Powered In-vehicle Conversational Agent
Driver distraction remains a leading contributor to motor vehicle crashes, necessitating rigorous evaluation of new in-vehicle technologies. This study assessed the visual and cognitive demands associated with an advanced Large Language Model (LLM) conversational agent (Gemini Live) during on-road driving, comparing it against handsfree phone calls, visual turn-by-turn guidance (low load baseline), and the Operation Span (OSPAN) task (high load anchor). Thirty-two licensed drivers completed five secondary tasks while visual and cognitive demands were measured using the Detection Response Task (DRT) for cognitive load, eye-tracking for visual attention, and subjective workload ratings. Results indicated that Gemini Live interactions (both single-turn and multi-turn) and hands-free phone calls shared similar levels of cognitive load, between that of visual turn-by-turn guidance and OSPAN. Exploratory analysis showed that cognitive load remained stable across extended multi-turn conversations. All tasks maintained mean glance durations well below the well-established 2-second safety threshold, confirming low visual demand. Furthermore, drivers consistently dedicated longer glances to the roadway between brief off-road glances toward the device during task completion, particularly during voice-based interactions, rendering longer total-eyes-off-road time findings less consequential. Subjective ratings mirrored objective data, with participants reporting low effort, demands, and perceived distraction for Gemini Live. These findings demonstrate that advanced LLM conversational agents, when implemented via voice interfaces, impose cognitive and visual demands comparable to established, low-risk hands-free benchmarks, supporting their safe deployment in the driving environment.
Emergent, not Immanent: A Baradian Reading of Explainable AI
Explainable AI (XAI) is frequently positioned as a technical problem of revealing the inner workings of an AI model. This position is affected by unexamined onto-epistemological assumptions: meaning is treated as immanent to the model, the explainer is positioned outside the system, and a causal structure is presumed recoverable through computational techniques. In this paper, we draw on Barad's agential realism to develop an alternative onto-epistemology of XAI. We propose that interpretations are material-discursive performances that emerge from situated entanglements of the AI model with humans, context, and the interpretative apparatus. To develop this position, we read a comprehensive set of XAI methods through agential realism and reveal the assumptions and limitations that underpin several of these methods. We then articulate the framework's ethical dimension and propose design directions for XAI interfaces that support emergent interpretation, using a speculative text-to-music interface as a case study.
comment: Accepted at CHI 2026
Obscuring Data Contamination Through Translation: Evidence from Arabic Corpora
Data contamination undermines the validity of Large Language Model evaluation by enabling models to rely on memorized benchmark content rather than true generalization. While prior work has proposed contamination detection methods, these approaches are largely limited to English benchmarks, leaving multilingual contamination poorly understood. In this work, we investigate contamination dynamics in multilingual settings by fine-tuning several open-weight LLMs on varying proportions of Arabic datasets and evaluating them on original English benchmarks. To detect memorization, we extend the Tested Slot Guessing method with a choice-reordering strategy and incorporate Min-K% probability analysis, capturing both behavioral and distributional contamination signals. Our results show that translation into Arabic suppresses conventional contamination indicators, yet models still benefit from exposure to contaminated data, particularly those with stronger Arabic capabilities. This effect is consistently reflected in rising Mink% scores and increased cross-lingual answer consistency as contamination levels grow. To address this blind spot, we propose Translation-Aware Contamination Detection, which identifies contamination by comparing signals across multiple translated benchmark variants rather than English alone. The Translation-Aware Contamination Detection reliably exposes contamination even when English-only methods fail. Together, our findings highlight the need for multilingual, translation-aware evaluation pipelines to ensure fair, transparent, and reproducible assessment of LLMs.
Interoperable Architecture for Digital Identity Delegation for AI Agents with Blockchain Integration
Verifiable delegation in digital identity systems remains unresolved across centralized, federated, and self-sovereign identity (SSI) environments, particularly where both human users and autonomous AI agents must exercise and transfer authority without exposing primary credentials or private keys. We introduce a unified framework that enables bounded, auditable, and least-privilege delegation across heterogeneous identity ecosystems. The framework includes four key elements: Delegation Grants (DGs), first-class authorization artefacts that encode revocable transfers of authority with enforced scope reduction; a Canonical Verification Context (CVC) that normalizes verification requests into a single structured representation independent of protocols or credential formats; a layered reference architecture that separates trust anchoring, credential and proof validation, policy evaluation, and protocol mediation via a Trust Gateway; and an explicit treatment of blockchain anchoring as an optional integrity layer rather than a structural dependency. Together, these elements advance interoperable delegation and auditability and provide a foundation for future standardization, implementation, and integration of autonomous agents into trusted digital identity infrastructures.
comment: 19 pages, 4 figures, 4 tables
HumanDiffusion: A Vision-Based Diffusion Trajectory Planner with Human-Conditioned Goals for Search and Rescue UAV
Reliable human--robot collaboration in emergency scenarios requires autonomous systems that can detect humans, infer navigation goals, and operate safely in dynamic environments. This paper presents HumanDiffusion, a lightweight image-conditioned diffusion planner that generates human-aware navigation trajectories directly from RGB imagery. The system combines YOLO-11--based human detection with diffusion-driven trajectory generation, enabling a quadrotor to approach a target person and deliver medical assistance without relying on prior maps or computationally intensive planning pipelines. Trajectories are predicted in pixel space, ensuring smooth motion and a consistent safety margin around humans. We evaluate HumanDiffusion in simulation and real-world indoor mock-disaster scenarios. On a 300-sample test set, the model achieves a mean squared error of 0.02 in pixel-space trajectory reconstruction. Real-world experiments demonstrate an overall mission success rate of 80% across accident-response and search-and-locate tasks with partial occlusions. These results indicate that human-conditioned diffusion planning offers a practical and robust solution for human-aware UAV navigation in time-critical assistance settings.
comment: This paper has been accepted at HRI, Late Breaking Report, 2026
InstructTime++: Time Series Classification with Multimodal Language Modeling via Implicit Feature Enhancement
Most existing time series classification methods adopt a discriminative paradigm that maps input sequences directly to one-hot encoded class labels. While effective, this paradigm struggles to incorporate contextual features and fails to capture semantic relationships among classes. To address these limitations, we propose InstructTime, a novel framework that reformulates time series classification as a multimodal generative task. Specifically, continuous numerical sequences, contextual textual features, and task instructions are treated as multimodal inputs, while class labels are generated as textual outputs by tuned language models. To bridge the modality gap, InstructTime introduces a time series discretization module that converts continuous sequences into discrete temporal tokens, together with an alignment projection layer and a generative self-supervised pre-training strategy to enhance cross-modal representation alignment. Building upon this framework, we further propose InstructTime++, which extends InstructTime by incorporating implicit feature modeling to compensate for the limited inductive bias of language models. InstructTime++ leverages specialized toolkits to mine informative implicit patterns from raw time series and contextual inputs, including statistical feature extraction and vision-language-based image captioning, and translates them into textual descriptions for seamless integration. Extensive experiments on multiple benchmark datasets demonstrate the superior performance of InstructTime++.
A Comprehensive Benchmark of Language Models on Unicode and Romanized Sinhala
The performance of Language Models (LMs) on lower-resource, morphologically rich languages like Sinhala remains under-explored, particularly for Romanized Sinhala, which is prevalent in digital communication. This paper presents a comprehensive benchmark of modern LMs on a diverse corpus of Unicode and Romanized Sinhala. We evaluate open-source models using perplexity, a measure of how well a model predicts a text, and leading closed-source models via a qualitative analysis of sentence completion. Our findings reveal that the Mistral-Nemo-Base-2407 model achieves the strongest predictive performance on Unicode text and the Mistral-7B-v0.3 model for Romanized text. The results also highlight the strong all-around performance of the Llama-3.1-8B model for both scripts. Furthermore, a significant performance disparity exists among closed-source models: Gemini-1.5-pro and DeepSeek excel at Unicode generation, whereas Claude-3.5-Sonnet is superior at handling Romanized text. These results provide an essential guide for practitioners selecting models for Sinhala-specific applications and highlight the critical role of training data in handling script variations.
comment: 6 pages, 1 figure, 3 tables
Multi-Behavior Sequential Modeling with Transition-Aware Graph Attention Network for E-Commerce Recommendation
User interactions on e-commerce platforms are inherently diverse, involving behaviors such as clicking, favoriting, adding to cart, and purchasing. The transitions between these behaviors offer valuable insights into user-item interactions, serving as a key signal for understanding evolving preferences. Consequently, there is growing interest in leveraging multi-behavior data to better capture user intent. Recent studies have explored sequential modeling of multi-behavior data, many relying on transformer-based architectures with polynomial time complexity. While effective, these approaches often incur high computational costs, limiting their applicability in large-scale industrial systems with long user sequences. To address this challenge, we propose the Transition-Aware Graph Attention Network (TGA), a linear-complexity approach for modeling multi-behavior transitions. Unlike traditional transformers that treat all behavior pairs equally, TGA constructs a structured sparse graph by identifying informative transitions from three perspectives: (a) item-level transitions, (b) category-level transitions, and (c) neighbor-level transitions. Built upon the structured graph, TGA employs a transition-aware graph Attention mechanism that jointly models user-item interactions and behavior transition types, enabling more accurate capture of sequential patterns while maintaining computational efficiency. Experiments show that TGA outperforms all state-of-the-art models while significantly reducing computational cost. Notably, TGA has been deployed in a large-scale industrial production environment, where it leads to impressive improvements in key business metrics.
comment: Accepted by WWW2026 short paper
CorpusQA: A 10 Million Token Benchmark for Corpus-Level Analysis and Reasoning
While large language models now handle million-token contexts, their capacity for reasoning across entire document repositories remains largely untested. Existing benchmarks are inadequate, as they are mostly limited to single long texts or rely on a "sparse retrieval" assumption-that answers can be derived from a few relevant chunks. This assumption fails for true corpus-level analysis, where evidence is highly dispersed across hundreds of documents and answers require global integration, comparison, and statistical aggregation. To address this critical gap, we introduce CorpusQA, a new benchmark scaling up to 10 million tokens, generated via a novel data synthesis framework. By decoupling reasoning from textual representation, this framework creates complex, computation-intensive queries with programmatically guaranteed ground-truth answers, challenging systems to perform holistic reasoning over vast, unstructured text without relying on fallible human annotation. We further demonstrate the utility of our framework beyond evaluation, showing that fine-tuning on our synthesized data effectively enhances an LLM's general long-context reasoning capabilities. Extensive experiments reveal that even state-of-the-art long-context LLMs struggle as input length increases, and standard retrieval-augmented generation systems collapse entirely. Our findings indicate that memory-augmented agentic architectures offer a more robust alternative, suggesting a critical shift is needed from simply extending context windows to developing advanced architectures for global information synthesis.
TempViz: On the Evaluation of Temporal Knowledge in Text-to-Image Models
Time alters the visual appearance of entities in our world, like objects, places, and animals. Thus, for accurately generating contextually-relevant images, knowledge and reasoning about time can be crucial (e.g., for generating a landscape in spring vs. in winter). Yet, although substantial work exists on understanding and improving temporal knowledge in natural language processing, research on how temporal phenomena appear and are handled in text-to-image (T2I) models remains scarce. We address this gap with TempViz, the first data set to holistically evaluate temporal knowledge in image generation, consisting of 7.9k prompts and more than 600 reference images. Using TempViz, we study the capabilities of five T2I models across five temporal knowledge categories. Human evaluation shows that temporal competence is generally weak, with no model exceeding 75% accuracy across categories. Towards larger-scale studies, we also examine automated evaluation methods, comparing several established approaches against human judgments. However, none of these approaches provides a reliable assessment of temporal cues - further indicating the pressing need for future research on temporal knowledge in T2I.
TIDAL: Temporally Interleaved Diffusion and Action Loop for High-Frequency VLA Control
Large-scale Vision-Language-Action (VLA) models offer semantic generalization but suffer from high inference latency, limiting them to low-frequency batch-and-execute paradigm. This frequency mismatch creates an execution blind spot, causing failures in dynamic environments where targets move during the open-loop execution window. We propose TIDAL (Temporally Interleaved Diffusion and Action Loop), a hierarchical framework that decouples semantic reasoning from high-frequency actuation. TIDAL operates as a backbone-agnostic module for diffusion-based VLAs, using a dual-frequency architecture to redistribute the computational budget. Specifically, a low-frequency macro-intent loop caches semantic embeddings, while a high-frequency micro-control loop interleaves single-step flow integration with execution. This design enables approximately 9 Hz control updates on edge hardware (vs. approximately 2.4 Hz baselines) without increasing marginal overhead. To handle the resulting latency shift, we introduce a temporally misaligned training strategy where the policy learns predictive compensation using stale semantic intent alongside real-time proprioception. Additionally, we address the insensitivity of static vision encoders to velocity by incorporating a differential motion predictor. TIDAL is architectural, making it orthogonal to system-level optimizations. Experiments show a 2x performance gain over open-loop baselines in dynamic interception tasks. Despite a marginal regression in static success rates, our approach yields a 4x increase in feedback frequency and extends the effective horizon of semantic embeddings beyond the native action chunk size. Under non-paused inference protocols, TIDAL remains robust where standard baselines fail due to latency.
Generative Artificial Intelligence, Musical Heritage and the Construction of Peace Narratives: A Case Study in Mali
This study explores the capacity of generative artificial intelligence (Gen AI) to contribute to the construction of peace narratives and the revitalization of musical heritage in Mali. The study has been made in a political and social context where inter-community tensions and social fractures motivate a search for new symbolic frameworks for reconciliation. The study empirically explores three questions: (1) how Gen AI can be used as a tool for musical creation rooted in national languages and traditions; (2) to what extent Gen AI systems enable a balanced hybridization between technological innovation and cultural authenticity; and (3) how AI-assisted musical co-creation can strengthen social cohesion and cultural sovereignty. The experimental results suggest that Gen AI, embedded in a culturally conscious participatory framework, can act as a catalyst for symbolic diplomacy, amplifying local voices instead of standardizing them. However, challenges persist regarding the availability of linguistic corpora, algorithmic censorship, and the ethics of generating compositions derived from copyrighted sources.
comment: 12 pages, 2 figures
Fast-ULCNet: A fast and ultra low complexity network for single-channel speech enhancement
Single-channel speech enhancement algorithms are often used in resource-constrained embedded devices, where low latency and low complexity designs gain more importance. In recent years, researchers have proposed a wide variety of novel solutions to this problem. In particular, a recent deep learning model named ULCNet is among the state-of-the-art approaches in this domain. This paper proposes an adaptation of ULCNet, by replacing its GRU layers with FastGRNNs, to reduce both computational latency and complexity. Furthermore, this paper shows empirical evidence on the performance decay of FastGRNNs in long audio signals during inference due to internal state drifting, and proposes a novel approach based on a trainable complementary filter to mitigate it. The resulting model, Fast-ULCNet, performs on par with the state-of-the-art original ULCNet architecture on a speech enhancement task, while reducing its model size by more than half and decreasing its latency by 34% on average.
comment: ©2026 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
Vision-Language Models on the Edge for Real-Time Robotic Perception
Vision-Language Models (VLMs) enable multimodal reasoning for robotic perception and interaction, but their deployment in real-world systems remains constrained by latency, limited onboard resources, and privacy risks of cloud offloading. Edge intelligence within 6G, particularly Open RAN and Multi-access Edge Computing (MEC), offers a pathway to address these challenges by bringing computation closer to the data source. This work investigates the deployment of VLMs on ORAN/MEC infrastructure using the Unitree G1 humanoid robot as an embodied testbed. We design a WebRTC-based pipeline that streams multimodal data to an edge node and evaluate LLaMA-3.2-11B-Vision-Instruct deployed at the edge versus in the cloud under real-time conditions. Our results show that edge deployment preserves near-cloud accuracy while reducing end-to-end latency by 5\%. We further evaluate Qwen2-VL-2B-Instruct, a compact model optimized for resource-constrained environments, which achieves sub-second responsiveness, cutting latency by more than half but at the cost of accuracy.
Tailoring Adverse Event Prediction in Type 1 Diabetes with Patient-Specific Deep Learning Models
Effective management of Type 1 Diabetes requires continuous glucose monitoring and precise insulin adjustments to prevent hyperglycemia and hypoglycemia. With the growing adoption of wearable glucose monitors and mobile health applications, accurate blood glucose prediction is essential for enhancing automated insulin delivery and decision-support systems. This paper presents a deep learning-based approach for personalized blood glucose prediction, leveraging patient-specific data to improve prediction accuracy and responsiveness in real-world scenarios. Unlike traditional generalized models, our method accounts for individual variability, enabling more effective subject-specific predictions. We compare Leave-One-Subject-Out Cross-Validation with a fine-tuning strategy to evaluate their ability to model patient-specific dynamics. Results show that personalized models significantly improve the prediction of adverse events, enabling more precise and timely interventions in real-world scenarios. To assess the impact of patient-specific data, we conduct experiments comparing a multimodal, patient-specific approach against traditional CGM-only methods. Additionally, we perform an ablation study to investigate model performance with progressively smaller training sets, identifying the minimum data required for effective personalization-an essential consideration for real-world applications where extensive data collection is often challenging. Our findings underscore the potential of adaptive, personalized glucose prediction models for advancing next-generation diabetes management, particularly in wearable and mobile health platforms, enhancing consumer-oriented diabetes care solutions.
Just aware enough: Evaluating awareness across artificial systems
Recent debates on artificial intelligence increasingly emphasise questions of AI consciousness and moral status, yet there remains little agreement on how such properties should be evaluated. In this paper, we argue that awareness offers a more productive and methodologically tractable alternative. We introduce a practical method for evaluating awareness across diverse systems, where awareness is understood as encompassing a system's abilities to process, store and use information in the service of goal-directed action. Central to this approach is the claim that any evaluation aiming to capture the diversity of artificial systems must be domain-sensitive, deployable at any scale, multidimensional, and enable the prediction of task performance, while generalising to the level of abilities for the sake of comparison. Given these four desiderata, we outline a structured approach to evaluating and comparing awareness profiles across artificial systems with differing architectures, scales, and operational domains. By shifting the focus from artificial consciousness to being just aware enough, this approach aims to facilitate principled assessment, support design and oversight, and enable more constructive scientific and public discourse.
comment: 24 pages (including references), 1 figure
SpatialMem: Unified 3D Memory with Metric Anchoring and Fast Retrieval
We present SpatialMem, a memory-centric system that unifies 3D geometry, semantics, and language into a single, queryable representation. Starting from casually captured egocentric RGB video, SpatialMem reconstructs metrically scaled indoor environments, detects structural 3D anchors (walls, doors, windows) as the first-layer scaffold, and populates a hierarchical memory with open-vocabulary object nodes -- linking evidence patches, visual embeddings, and two-layer textual descriptions to 3D coordinates -- for compact storage and fast retrieval. This design enables interpretable reasoning over spatial relations (e.g., distance, direction, visibility) and supports downstream tasks such as language-guided navigation and object retrieval without specialized sensors. Experiments across three real-life indoor scenes demonstrate that SpatialMem maintains strong anchor-description-level navigation completion and hierarchical retrieval accuracy under increasing clutter and occlusion, offering an efficient and extensible framework for embodied spatial intelligence.
To Neuro-Symbolic Classification and Beyond by Compiling Description Logic Ontologies to Probabilistic Circuits
Background: Neuro-symbolic methods enhance the reliability of neural network classifiers through logical constraints, but they lack native support for ontologies. Objectives: We aim to develop a neuro-symbolic method that reliably outputs predictions consistent with a Description Logic ontology that formalizes domain-specific knowledge. Methods: We encode a Description Logic ontology as a circuit, a feed-forward differentiable computational graph that supports tractable execution of queries and transformations. We show that the circuit can be used to (i) generate synthetic datasets that capture the semantics of the ontology; (ii) efficiently perform deductive reasoning on a GPU; (iii) implement neuro-symbolic models whose predictions are approximately or provably consistent with the knowledge defined in the ontology. Results We show that the synthetic dataset generated using the circuit qualitatively captures the semantics of the ontology while being challenging for Machine Learning classifiers, including neural networks. Moreover, we show that compiling the ontology into a circuit is a promising approach for scalable deductive reasoning, with runtimes up to three orders of magnitude faster than available reasoners. Finally, we show that our neuro-symbolic classifiers reliably produce consistent predictions when compared to neural network baselines, maintaining competitive performances or even outperforming them. Conclusions By compiling Description Logic ontologies into circuits, we obtain a tighter integration between the Deep Learning and Knowledge Representation fields. We show that a single circuit representation can be used to tackle different challenging tasks closely related to real-world applications.
comment: Manuscript under review
What Makes Low-Bit Quantization-Aware Training Work for Reasoning LLMs? A Systematic Study
Reasoning models excel at complex tasks such as coding and mathematics, yet their inference is often slow and token-inefficient. To improve the inference efficiency, post-training quantization (PTQ) usually comes with the cost of large accuracy drops, especially for reasoning tasks under low-bit settings. In this study, we present a systematic empirical study of quantization-aware training (QAT) for reasoning models. Our key findings include: (1) Knowledge distillation is a robust objective for reasoning models trained via either supervised fine-tuning or reinforcement learning; (2) PTQ provides a strong initialization for QAT, improving accuracy while reducing training cost; (3) Reinforcement learning remains feasible for quantized models given a viable cold start and yields additional gains; and (4) Aligning the PTQ calibration domain with the QAT training domain accelerates convergence and often improves the final accuracy. Finally, we consolidate these findings into an optimized workflow (Reasoning-QAT), and show that it consistently outperforms state-of-the-art PTQ methods across multiple LLM backbones and reasoning datasets. For instance, on Qwen3-0.6B, it surpasses GPTQ by 44.53% on MATH-500 and consistently recovers performance in the 2-bit regime.
GAT-NeRF: Geometry-Aware-Transformer Enhanced Neural Radiance Fields for High-Fidelity 4D Facial Avatars
High-fidelity 4D dynamic facial avatar reconstruction from monocular video is a critical yet challenging task, driven by increasing demands for immersive virtual human applications. While Neural Radiance Fields (NeRF) have advanced scene representation, their capacity to capture high-frequency facial details, such as dynamic wrinkles and subtle textures from information-constrained monocular streams, requires significant enhancement. To tackle this challenge, we propose a novel hybrid neural radiance field framework, called Geometry-Aware-Transformer Enhanced NeRF (GAT-NeRF) for high-fidelity and controllable 4D facial avatar reconstruction, which integrates the Transformer mechanism into the NeRF pipeline. GAT-NeRF synergistically combines a coordinate-aligned Multilayer Perceptron (MLP) with a lightweight Transformer module, termed as Geometry-Aware-Transformer (GAT) due to its processing of multi-modal inputs containing explicit geometric priors. The GAT module is enabled by fusing multi-modal input features, including 3D spatial coordinates, 3D Morphable Model (3DMM) expression parameters, and learnable latent codes to effectively learn and enhance feature representations pertinent to fine-grained geometry. The Transformer's effective feature learning capabilities are leveraged to significantly augment the modeling of complex local facial patterns like dynamic wrinkles and acne scars. Comprehensive experiments unequivocally demonstrate GAT-NeRF's state-of-the-art performance in visual fidelity and high-frequency detail recovery, forging new pathways for creating realistic dynamic digital humans for multimedia applications.
From Observation to Prediction: LSTM for Vehicle Lane Change Forecasting on Highway On/Off-Ramps
On and off-ramps are understudied road sections even though they introduce a higher level of variation in highway interactions. Predicting vehicles' behavior in these areas can decrease the impact of uncertainty and increase road safety. In this paper, the difference between this Area of Interest (AoI) and a straight highway section is studied. Multi-layered LSTM architecture to train the AoI model with ExiD drone dataset is utilized. In the process, different prediction horizons and different models' workflow are tested. The results show great promise on horizons up to 4 seconds with prediction accuracy starting from about 76% for the AoI and 94% for the general highway scenarios on the maximum horizon.
CAG-Avatar: Cross-Attention Guided Gaussian Avatars for High-Fidelity Head Reconstruction
Creating high-fidelity, real-time drivable 3D head avatars is a core challenge in digital animation. While 3D Gaussian Splashing (3D-GS) offers unprecedented rendering speed and quality, current animation techniques often rely on a "one-size-fits-all" global tuning approach, where all Gaussian primitives are uniformly driven by a single expression code. This simplistic approach fails to unravel the distinct dynamics of different facial regions, such as deformable skin versus rigid teeth, leading to significant blurring and distortion artifacts. We introduce Conditionally-Adaptive Gaussian Avatars (CAG-Avatar), a framework that resolves this key limitation. At its core is a Conditionally Adaptive Fusion Module built on cross-attention. This mechanism empowers each 3D Gaussian to act as a query, adaptively extracting relevant driving signals from the global expression code based on its canonical position. This "tailor-made" conditioning strategy drastically enhances the modeling of fine-grained, localized dynamics. Our experiments confirm a significant improvement in reconstruction fidelity, particularly for challenging regions such as teeth, while preserving real-time rendering performance.
Implementing Knowledge Representation and Reasoning with Object Oriented Design IJCAI
This paper introduces KRROOD, a framework designed to bridge the integration gap between modern software engineering and Knowledge Representation & Reasoning (KR&R) systems. While Object-Oriented Programming (OOP) is the standard for developing complex applications, existing KR&R frameworks often rely on external ontologies and specialized languages that are difficult to integrate with imperative code. KRROOD addresses this by treating knowledge as a first-class programming abstraction using native class structures, bridging the gap between the logic programming and OOP paradigms. We evaluate the system on the OWL2Bench benchmark and a human-robot task learning scenario. Experimental results show that KRROOD achieves strong performance while supporting the expressive reasoning required for real-world autonomous systems.
comment: 9 pages, 2 figures, submitted to the 2026 International Joint Conference on Artificial Intelligence (IJCAI)
Measuring and Aligning Abstraction in Vision-Language Models with Medical Taxonomies
Vision-Language Models show strong zero-shot performance for chest X-ray classification, but standard flat metrics fail to distinguish between clinically minor and severe errors. This work investigates how to quantify and mitigate abstraction errors by leveraging medical taxonomies. We benchmark several state-of-the-art VLMs using hierarchical metrics and introduce Catastrophic Abstraction Errors to capture cross-branch mistakes. Our results reveal substantial misalignment of VLMs with clinical taxonomies despite high flat performance. To address this, we propose risk-constrained thresholding and taxonomy-aware fine-tuning with radial embeddings, which reduce severe abstraction errors to below 2 per cent while maintaining competitive performance. These findings highlight the importance of hierarchical evaluation and representation-level alignment for safer and more clinically meaningful deployment of VLMs.
Multimodal system for skin cancer detection
Melanoma detection is vital for early diagnosis and effective treatment. While deep learning models on dermoscopic images have shown promise, they require specialized equipment, limiting their use in broader clinical settings. This study introduces a multi-modal melanoma detection system using conventional photo images, making it more accessible and versatile. Our system integrates image data with tabular metadata, such as patient demographics and lesion characteristics, to improve detection accuracy. It employs a multi-modal neural network combining image and metadata processing and supports a two-step model for cases with or without metadata. A three-stage pipeline further refines predictions by boosting algorithms and enhancing performance. To address the challenges of a highly imbalanced dataset, specific techniques were implemented to ensure robust training. An ablation study evaluated recent vision architectures, boosting algorithms, and loss functions, achieving a peak Partial ROC AUC of 0.18068 (0.2 maximum) and top-15 retrieval sensitivity of 0.78371. Results demonstrate that integrating photo images with metadata in a structured, multi-stage pipeline yields significant performance improvements. This system advances melanoma detection by providing a scalable, equipment-independent solution suitable for diverse healthcare environments, bridging the gap between specialized and general clinical practices.
comment: Accepted to System research and information technologies
CI4A: Semantic Component Interfaces for Agents Empowering Web Automation
While Large Language Models demonstrate remarkable proficiency in high-level semantic planning, they remain limited in handling fine-grained, low-level web component manipulations. To address this limitation, extensive research has focused on enhancing model grounding capabilities through techniques such as Reinforcement Learning. However, rather than compelling agents to adapt to human-centric interfaces, we propose constructing interaction interfaces specifically optimized for agents. This paper introduces Component Interface for Agent (CI4A), a semantic encapsulation mechanism that abstracts the complex interaction logic of UI components into a set of unified tool primitives accessible to agents. We implemented CI4A within Ant Design, an industrial-grade front-end framework, covering 23 categories of commonly used UI components. Furthermore, we developed a hybrid agent featuring an action space that dynamically updates according to the page state, enabling flexible invocation of available CI4A tools. Leveraging the CI4A-integrated Ant Design, we refactored and upgraded the WebArena benchmark to evaluate existing SoTA methods. Experimental results demonstrate that the CI4A-based agent significantly outperforms existing approaches, achieving a new SoTA task success rate of 86.3%, alongside substantial improvements in execution efficiency.
comment: 9 pages, 5 figures
Training-Efficient Text-to-Music Generation with State-Space Modeling
Recent advances in text-to-music generation (TTM) have yielded high-quality results, but often at the cost of extensive compute and the use of large proprietary internal data. To improve the affordability and openness of TTM training, an open-source generative model backbone that is more training- and data-efficient is needed. In this paper, we constrain the number of trainable parameters in the generative model to match that of the MusicGen-small benchmark (with about 300M parameters), and replace its Transformer backbone with the emerging class of state-space models (SSMs). Specifically, we explore different SSM variants for sequence modeling, and compare a single-stage SSM-based design with a decomposable two-stage SSM/diffusion hybrid design. All proposed models are trained from scratch on a purely public dataset comprising 457 hours of CC-licensed music, ensuring full openness. Our experimental findings are three-fold. First, we show that SSMs exhibit superior training efficiency compared to the Transformer counterpart. Second, despite using only 9% of the FLOPs and 2% of the training data size compared to the MusicGen-small benchmark, our model achieves competitive performance in both objective metrics and subjective listening tests based on MusicCaps captions. Finally, our scaling-down experiment demonstrates that SSMs can maintain competitive performance relative to the Transformer baseline even at the same training budget (measured in iterations), when the model size is reduced to four times smaller. To facilitate the democratization of TTM research, the processed captions, model checkpoints, and source code are available on GitHub via the project page: https://lonian6.github.io/ssmttm/.
comment: 9 pages, 3 figures. This is a preprint of a paper submitted to IEEE/ACM TASLP
Towards Bound Consistency for the No-Overlap Constraint Using MDDs
Achieving bound consistency for the no-overlap constraint is known to be NP-complete. Therefore, several polynomial-time tightening techniques, such as edge finding, not-first-not-last reasoning, and energetic reasoning, have been introduced for this constraint. In this work, we derive the first bound-consistent algorithm for the no-overlap constraint. By building on the no-overlap MDD defined by Ciré and van Hoeve, we extract bounds of the time window of the jobs, allowing us to tighten start and end times in time polynomial in the number of nodes of the MDD. Similarly, to bound the size and time-complexity, we limit the width of the MDD to a threshold, creating a relaxed MDD that can also be used to relax the bound-consistent filtering. Through experiments on a sequencing problem with time windows and a just-in-time objective ($1 \mid r_j, d_j, \bar{d}_j \mid \sum E_j + \sum T_j$), we observe that the proposed filtering, even with a threshold on the width, achieves a stronger reduction in the number of nodes visited in the search tree compared to the previously proposed precedence-detection algorithm of Ciré and van Hoeve. The new filtering also appears to be complementary to classical propagation methods for the no-overlap constraint, allowing a substantial reduction in both the number of nodes and the solving time on several instances.
RECAP: Resistance Capture in Text-based Mental Health Counseling with Large Language Models
Recognizing and navigating client resistance is critical for effective mental health counseling, yet detecting such behaviors is particularly challenging in text-based interactions. Existing NLP approaches oversimplify resistance categories, ignore the sequential dynamics of therapeutic interventions, and offer limited interpretability. To address these limitations, we propose PsyFIRE, a theoretically grounded framework capturing 13 fine-grained resistance behaviors alongside collaborative interactions. Based on PsyFIRE, we construct the ClientResistance corpus with 23,930 annotated utterances from real-world Chinese text-based counseling, each supported by context-specific rationales. Leveraging this dataset, we develop RECAP, a two-stage framework that detects resistance and fine-grained resistance types with explanations. RECAP achieves 91.25% F1 for distinguishing collaboration and resistance and 66.58% macro-F1 for fine-grained resistance categories classification, outperforming leading prompt-based LLM baselines by over 20 points. Applied to a separate counseling dataset and a pilot study with 62 counselors, RECAP reveals the prevalence of resistance, its negative impact on therapeutic relationships and demonstrates its potential to improve counselors' understanding and intervention strategies.
comment: 19 pages, 2 figures
FunCineForge: A Unified Dataset Toolkit and Model for Zero-Shot Movie Dubbing in Diverse Cinematic Scenes
Movie dubbing is the task of synthesizing speech from scripts conditioned on video scenes, requiring accurate lip sync, faithful timbre transfer, and proper modeling of character identity and emotion. However, existing methods face two major limitations: (1) high-quality multimodal dubbing datasets are limited in scale, suffer from high word error rates, contain sparse annotations, rely on costly manual labeling, and are restricted to monologue scenes, all of which hinder effective model training; (2) existing dubbing models rely solely on the lip region to learn audio-visual alignment, which limits their applicability to complex live-action cinematic scenes, and exhibit suboptimal performance in lip sync, speech quality, and emotional expressiveness. To address these issues, we propose FunCineForge, which comprises an end-to-end production pipeline for large-scale dubbing datasets and an MLLM-based dubbing model designed for diverse cinematic scenes. Using the pipeline, we construct the first Chinese television dubbing dataset with rich annotations, and demonstrate the high quality of these data. Experiments across monologue, narration, dialogue, and multi-speaker scenes show that our dubbing model consistently outperforms SOTA methods in audio quality, lip sync, timbre transfer, and instruction following. Code and demos are available at https://anonymous.4open.science/w/FunCineForge.
Semantic-Guided Unsupervised Video Summarization
Video summarization is a crucial technique for social understanding, enabling efficient browsing of massive multimedia content and extraction of key information from social platforms. Most existing unsupervised summarization methods rely on Generative Adversarial Networks (GANs) to enhance keyframe selection and generate coherent, video summaries through adversarial training. However, such approaches primarily exploit unimodal features, overlooking the guiding role of semantic information in keyframe selection, and often suffer from unstable training. To address these limitations, we propose a novel Semantic-Guided Unsupervised Video Summarization method. Specifically, we design a novel frame-level semantic alignment attention mechanism and integrate it into a keyframe selector, which guides the Transformer-based generator within the adversarial framework to better reconstruct videos. In addition, we adopt an incremental training strategy to progressively update the model components, effectively mitigating the instability of GAN training. Experimental results demonstrate that our approach achieves superior performance on multiple benchmark datasets.
Anytime Optimal Decision Tree Learning with Continuous Features
In recent years, significant progress has been made on algorithms for learning optimal decision trees, primarily in the context of binary features. Extending these methods to continuous features remains substantially more challenging due to the large number of potential splits for each feature. Recently, an elegant exact algorithm was proposed for learning optimal decision trees with continuous features; however, the rapidly increasing computational time limits its practical applicability to shallow depths (typically 3 or 4). It relies on a depth-first search optimization strategy that fully optimizes the left subtree of each split before exploring the corresponding right subtree. While effective in finding optimal solutions given sufficient time, this strategy can lead to poor anytime behavior: when interrupted early, the best-found tree is often highly unbalanced and suboptimal. In such cases, purely greedy methods such as C4.5 may, paradoxically, yield better solutions. To address this limitation, we propose an anytime, yet complete approach leveraging limited discrepancy search, distributing the computational effort more evenly across the entire tree structure, and thus ensuring that a high-quality decision tree is available at any interruption point. Experimental results show that our approach outperforms the existing one in terms of anytime performance.
An XAI View on Explainable ASP: Methods, Systems, and Perspectives
Answer Set Programming (ASP) is a popular declarative reasoning and problem solving approach in symbolic AI. Its rule-based formalism makes it inherently attractive for explainable and interpretive reasoning, which is gaining importance with the surge of Explainable AI (XAI). A number of explanation approaches and tools for ASP have been developed, which often tackle specific explanatory settings and may not cover all scenarios that ASP users encounter. In this survey, we provide, guided by an XAI perspective, an overview of types of ASP explanations in connection with user questions for explanation, and describe how their coverage by current theory and tools. Furthermore, we pinpoint gaps in existing ASP explanations approaches and identify research directions for future work.
comment: 10 pages
Mechanism Shift During Post-training from Autoregressive to Masked Diffusion Language Models
Post-training pretrained Autoregressive models (ARMs) into Masked Diffusion models (MDMs) has emerged as a cost-effective strategy to overcome the limitations of sequential generation. However, the internal algorithmic transformations induced by this paradigm shift remain unexplored, leaving it unclear whether post-trained MDMs acquire genuine bidirectional reasoning capabilities or merely repackage autoregressive heuristics. In this work, we address this question by conducting a comparative circuit analysis of ARMs and their MDM counterparts. Our analysis reveals a systematic "mechanism shift" dependent on the structural nature of the task. Structurally, we observe a distinct divergence: while MDMs largely retain autoregressive circuitry for tasks dominated by local causal dependencies, they abandon initialized pathways for global planning tasks, exhibiting distinct rewiring characterized by increased early-layer processing. Semantically, we identify a transition from sharp, localized specialization in ARMs to distributed integration in MDMs. Through these findings, we conclude that diffusion post-training does not merely adapt model parameters but fundamentally reorganizes internal computation to support non-sequential global planning.
FSX: Message Flow Sensitivity Enhanced Structural Explainer for Graph Neural Networks
Despite the widespread success of Graph Neural Networks (GNNs), understanding the reasons behind their specific predictions remains challenging. Existing explainability methods face a trade-off that gradient-based approaches are computationally efficient but often ignore structural interactions, while game-theoretic techniques capture interactions at the cost of high computational overhead and potential deviation from the model's true reasoning path. To address this gap, we propose FSX (Message Flow Sensitivity Enhanced Structural Explainer), a novel hybrid framework that synergistically combines the internal message flows of the model with a cooperative game approach applied to the external graph data. FSX first identifies critical message flows via a novel flow-sensitivity analysis: during a single forward pass, it simulates localized node perturbations and measures the resulting changes in message flow intensities. These sensitivity-ranked flows are then projected onto the input graph to define compact, semantically meaningful subgraphs. Within each subgraph, a flow-aware cooperative game is conducted, where node contributions are evaluated fairly through a Shapley-like value that incorporates both node-feature importance and their roles in sustaining or destabilizing the identified critical flows. Extensive evaluation across multiple datasets and GNN architectures demonstrates that FSX achieves superior explanation fidelity with significantly reduced runtime, while providing unprecedented insights into the structural logic underlying model predictions--specifically, how important sub-structures exert influence by governing the stability of key internal computational pathways.
comment: 8 pages, 4 figures, Preprint
AQAScore: Evaluating Semantic Alignment in Text-to-Audio Generation via Audio Question Answering
Although text-to-audio generation has made remarkable progress in realism and diversity, the development of evaluation metrics has not kept pace. Widely-adopted approaches, typically based on embedding similarity like CLAPScore, effectively measure general relevance but remain limited in fine-grained semantic alignment and compositional reasoning. To address this, we introduce AQAScore, a backbone-agnostic evaluation framework that leverages the reasoning capabilities of audio-aware large language models (ALLMs). AQAScore reformulates assessment as a probabilistic semantic verification task; rather than relying on open-ended text generation, it estimates alignment by computing the exact log-probability of a "Yes" answer to targeted semantic queries. We evaluate AQAScore across multiple benchmarks, including human-rated relevance, pairwise comparison, and compositional reasoning tasks. Experimental results show that AQAScore consistently achieves higher correlation with human judgments than similarity-based metrics and generative prompting baselines, showing its effectiveness in capturing subtle semantic inconsistencies and scaling with the capability of underlying ALLMs.
comment: Manuscript in progress
HERMES: KV Cache as Hierarchical Memory for Efficient Streaming Video Understanding
Recent advancements in Multimodal Large Language Models (MLLMs) have demonstrated significant improvement in offline video understanding. However, extending these capabilities to streaming video inputs, remains challenging, as existing models struggle to simultaneously maintain stable understanding performance, real-time responses, and low GPU memory overhead. To address this challenge, we propose HERMES, a novel training-free architecture for real-time and accurate understanding of video streams. Based on a mechanistic attention investigation, we conceptualize KV cache as a hierarchical memory framework that encapsulates video information across multiple granularities. During inference, HERMES reuses a compact KV cache, enabling efficient streaming understanding under resource constraints. Notably, HERMES requires no auxiliary computations upon the arrival of user queries, thereby guaranteeing real-time responses for continuous video stream interactions, which achieves 10$\times$ faster TTFT compared to prior SOTA. Even when reducing video tokens by up to 68% compared with uniform sampling, HERMES achieves superior or comparable accuracy across all benchmarks, with up to 11.4% gains on streaming datasets.
PCL-Reasoner-V1.5: Advancing Math Reasoning with Offline Reinforcement Learning
We present PCL-Reasoner-V1.5, a 32-billion-parameter large language model (LLM) for mathematical reasoning. The model is built upon Qwen2.5-32B and refined via supervised fine-tuning (SFT) followed by reinforcement learning (RL). A central innovation is our proposed offline RL method, which provides superior training stability and efficiency over standard online RL methods such as GRPO. Our model achieves state-of-the-art performance among models post-trained on Qwen2.5-32B, attaining average accuracies of 90.9% on AIME 2024 and 85.6% on AIME 2025. Our work demonstrates offline RL as a stable and efficient paradigm for advancing reasoning in LLMs. All experiments were conducted on Huawei Ascend 910C NPUs.
Adaptive Fidelity Estimation for Quantum Programs with Graph-Guided Noise Awareness AAAI 2026
Fidelity estimation is a critical yet resource-intensive step in testing quantum programs on noisy intermediate-scale quantum (NISQ) devices, where the required number of measurements is difficult to predefine due to hardware noise, device heterogeneity, and transpilation-induced circuit transformations. We present QuFid, an adaptive and noise-aware framework that determines measurement budgets online by leveraging circuit structure and runtime statistical feedback. QuFid models a quantum program as a directed acyclic graph (DAG) and employs a control-flow-aware random walk to characterize noise propagation along gate dependencies. Backend-specific effects are captured via transpilation-induced structural deformation metrics, which are integrated into the random-walk formulation to induce a noise-propagation operator. Circuit complexity is then quantified through the spectral characteristics of this operator, providing a principled and lightweight basis for adaptive measurement planning. Experiments on 18 quantum benchmarks executed on IBM Quantum backends show that QuFid significantly reduces measurement cost compared to fixed-shot and learning-based baselines, while consistently maintaining acceptable fidelity bias.
comment: Published in AAAI 2026;
DARA: Few-shot Budget Allocation in Online Advertising via In-Context Decision Making with RL-Finetuned LLMs
Optimizing the advertiser's cumulative value of winning impressions under budget constraints poses a complex challenge in online advertising, under the paradigm of AI-Generated Bidding (AIGB). Advertisers often have personalized objectives but limited historical interaction data, resulting in few-shot scenarios where traditional reinforcement learning (RL) methods struggle to perform effectively. Large Language Models (LLMs) offer a promising alternative for AIGB by leveraging their in-context learning capabilities to generalize from limited data. However, they lack the numerical precision required for fine-grained optimization. To address this limitation, we introduce GRPO-Adaptive, an efficient LLM post-training strategy that enhances both reasoning and numerical precision by dynamically updating the reference policy during training. Built upon this foundation, we further propose DARA, a novel dual-phase framework that decomposes the decision-making process into two stages: a few-shot reasoner that generates initial plans via in-context prompting, and a fine-grained optimizer that refines these plans using feedback-driven reasoning. This separation allows DARA to combine LLMs' in-context learning strengths with precise adaptability required by AIGB tasks. Extensive experiments on both real-world and synthetic data environments demonstrate that our approach consistently outperforms existing baselines in terms of cumulative advertiser value under budget constraints.
comment: Accepted at The ACM Web Conference (WWW) 2026
Case-Guided Sequential Assay Planning in Drug Discovery
Optimally sequencing experimental assays in drug discovery is a high-stakes planning problem under severe uncertainty and resource constraints. A primary obstacle for standard reinforcement learning (RL) is the absence of an explicit environment simulator or transition data $(s, a, s')$; planning must rely solely on a static database of historical outcomes. We introduce the Implicit Bayesian Markov Decision Process (IBMDP), a model-based RL framework designed for such simulator-free settings. IBMDP constructs a case-guided implicit model of transition dynamics by forming a nonparametric belief distribution using similar historical outcomes. This mechanism enables Bayesian belief updating as evidence accumulates and employs ensemble MCTS planning to generate stable policies that balance information gain toward desired outcomes with resource efficiency. We validate IBMDP through comprehensive experiments. On a real-world central nervous system (CNS) drug discovery task, IBMDP reduced resource consumption by up to 92\% compared to established heuristics while maintaining decision confidence. To rigorously assess decision quality, we also benchmarked IBMDP in a synthetic environment with a computable optimal policy. Our framework achieves significantly higher alignment with this optimal policy than a deterministic value iteration alternative that uses the same similarity-based model, demonstrating the superiority of our ensemble planner. IBMDP offers a practical solution for sequential experimental design in data-rich but simulator-poor domains.
Proximal Policy Optimization with Evolutionary Mutations
Proximal Policy Optimization (PPO) is a widely used reinforcement learning algorithm known for its stability and sample efficiency, but it often suffers from premature convergence due to limited exploration. In this paper, we propose POEM (Proximal Policy Optimization with Evolutionary Mutations), a novel modification to PPO that introduces an adaptive exploration mechanism inspired by evolutionary algorithms. POEM enhances policy diversity by monitoring the Kullback-Leibler (KL) divergence between the current policy and a moving average of previous policies. When policy changes become minimal, indicating stagnation, POEM triggers an adaptive mutation of policy parameters to promote exploration. We evaluate POEM on four OpenAI Gym environments: CarRacing, MountainCar, BipedalWalker, and LunarLander. Through extensive fine-tuning using Bayesian optimization techniques and statistical testing using Welch's t-test, we find that POEM significantly outperforms PPO on three of the four tasks (BipedalWalker: t=-2.0642, p=0.0495; CarRacing: t=-6.3987, p=0.0002; MountainCar: t=-6.2431, p<0.0001), while performance on LunarLander is not statistically significant (t=-1.8707, p=0.0778). Our results highlight the potential of integrating evolutionary principles into policy gradient methods to overcome exploration-exploitation tradeoffs.
comment: 10 pages, 5 figures, 2 tables, 1 algorithm
AutoDriDM: An Explainable Benchmark for Decision-Making of Vision-Language Models in Autonomous Driving
Autonomous driving is a highly challenging domain that requires reliable perception and safe decision-making in complex scenarios. Recent vision-language models (VLMs) demonstrate reasoning and generalization abilities, opening new possibilities for autonomous driving; however, existing benchmarks and metrics overemphasize perceptual competence and fail to adequately assess decision-making processes. In this work, we present AutoDriDM, a decision-centric, progressive benchmark with 6,650 questions across three dimensions - Object, Scene, and Decision. We evaluate mainstream VLMs to delineate the perception-to-decision capability boundary in autonomous driving, and our correlation analysis reveals weak alignment between perception and decision-making performance. We further conduct explainability analyses of models' reasoning processes, identifying key failure modes such as logical reasoning errors, and introduce an analyzer model to automate large-scale annotation. AutoDriDM bridges the gap between perception-centered and decision-centered evaluation, providing guidance toward safer and more reliable VLMs for real-world autonomous driving.
comment: 23 pages. Submitted to ACL ARR 2026 January
When Text-as-Vision Meets Semantic IDs in Generative Recommendation: An Empirical Study
Semantic ID learning is a key interface in Generative Recommendation (GR) models, mapping items to discrete identifiers grounded in side information, most commonly via a pretrained text encoder. However, these text encoders are primarily optimized for well-formed natural language. In real-world recommendation data, item descriptions are often symbolic and attribute-centric, containing numerals, units, and abbreviations. These text encoders can break these signals into fragmented tokens, weakening semantic coherence and distorting relationships among attributes. Worse still, when moving to multimodal GR, relying on standard text encoders introduces an additional obstacle: text and image embeddings often exhibit mismatched geometric structures, making cross-modal fusion less effective and less stable. In this paper, we revisit representation design for Semantic ID learning by treating text as a visual signal. We conduct a systematic empirical study of OCR-based text representations, obtained by rendering item descriptions into images and encoding them with vision-based OCR models. Experiments across four datasets and two generative backbones show that OCR-text consistently matches or surpasses standard text embeddings for Semantic ID learning in both unimodal and multimodal settings. Furthermore, we find that OCR-based Semantic IDs remain robust under extreme spatial-resolution compression, indicating strong robustness and efficiency in practical deployments.
CoScale-RL: Efficient Post-Training by Co-Scaling Data and Computation
Training Large Reasoning Model (LRM) is usually unstable and unpredictable, especially on hard problems or weak foundation models. We found that the current post-training scaling strategy can still improve on these cases. We propose CoScale-RL, a novel scaling strategy with better data and computational efficiency. We first scale up solutions to make problems solvable. The core idea is to collect multiple solutions for each problem, rather than simply enlarging the dataset. Then, we scale up rollout computation to stabilize Reinforcement Learning. We further leverage a model merge technique called Re-distillation to sustain or even improve computational efficiency when scaling up. Our method significantly improves data and computational efficiency, with an average 3.76$\times$ accuracy improvement on four benchmarks. CoScale-RL is able to improve an LRM's ability boundary without an extensive SFT dataset. Our method provides a new scaling direction to further improve LRM's reasoning ability.
comment: preprint
Re-understanding Graph Unlearning through Memorization
Graph unlearning (GU), which removes nodes, edges, or features from trained graph neural networks (GNNs), is crucial in Web applications where graph data may contain sensitive, mislabeled, or malicious information. However, existing GU methods lack a clear understanding of the key factors that determine unlearning effectiveness, leading to three fundamental limitations: (1) impractical and inaccurate GU difficulty assessment due to test-access requirements and invalid assumptions, (2) ineffectiveness on hard-to-unlearn tasks, and (3) misaligned evaluation protocols that overemphasize easy tasks and fail to capture true forgetting capability. To address these issues, we establish GNN memorization as a new perspective for understanding graph unlearning and propose MGU, a Memorization-guided Graph Unlearning framework. MGU achieves three key advances: it provides accurate and practical difficulty assessment across different GU tasks, develops an adaptive strategy that dynamically adjusts unlearning objectives based on difficulty levels, and establishes a comprehensive evaluation protocol that aligns with practical requirements. Extensive experiments on ten real-world graphs demonstrate that MGU consistently outperforms state-of-the-art baselines in forgetting quality, computational efficiency, and utility preservation.
comment: This paper has been accepted by WWW-2026
Beyond Error-Based Optimization: Experience-Driven Symbolic Regression with Goal-Conditioned Reinforcement Learning
Symbolic Regression aims to automatically identify compact and interpretable mathematical expressions that model the functional relationship between input and output variables. Most existing search-based symbolic regression methods typically rely on the fitting error to inform the search process. However, in the vast expression space, numerous candidate expressions may exhibit similar error values while differing substantially in structure, leading to ambiguous search directions and hindering convergence to the underlying true function. To address this challenge, we propose a novel framework named EGRL-SR (Experience-driven Goal-conditioned Reinforcement Learning for Symbolic Regression). In contrast to traditional error-driven approaches, EGRL-SR introduces a new perspective: leveraging precise historical trajectories and optimizing the action-value network to proactively guide the search process, thereby achieving a more robust expression search. Specifically, we formulate symbolic regression as a goal-conditioned reinforcement learning problem and incorporate hindsight experience replay, allowing the action-value network to generalize common mapping patterns from diverse input-output pairs. Moreover, we design an all-point satisfaction binary reward function that encourages the action-value network to focus on structural patterns rather than low-error expressions, and concurrently propose a structure-guided heuristic exploration strategy to enhance search diversity and space coverage. Experiments on public benchmarks show that EGRL-SR consistently outperforms state-of-the-art methods in recovery rate and robustness, and can recover more complex expressions under the same search budget. Ablation results validate that the action-value network effectively guides the search, with both the reward function and the exploration strategy playing critical roles.
Gaming the Judge: Unfaithful Chain-of-Thought Can Undermine Agent Evaluation
Large language models (LLMs) are increasingly used as judges to evaluate agent performance, particularly in non-verifiable settings where judgments rely on agent trajectories including chain-of-thought (CoT) reasoning. This paradigm implicitly assumes that the agent's CoT faithfully reflects both its internal reasoning and the underlying environment state. We show this assumption is brittle: LLM judges are highly susceptible to manipulation of agent reasoning traces. By systematically rewriting agent CoTs while holding actions and observations fixed, we demonstrate that manipulated reasoning alone can inflate false positive rates of state-of-the-art VLM judges by up to 90% across 800 trajectories spanning diverse web tasks. We study manipulation strategies spanning style-based approaches that alter only the presentation of reasoning and content-based approaches that fabricate signals of task progress, and find that content-based manipulations are consistently more effective. We evaluate prompting-based techniques and scaling judge-time compute, which reduce but do not fully eliminate susceptibility to manipulation. Our findings reveal a fundamental vulnerability in LLM-based evaluation and highlight the need for judging mechanisms that verify reasoning claims against observable evidence.
IB-GRPO: Aligning LLM-based Learning Path Recommendation with Educational Objectives via Indicator-Based Group Relative Policy Optimization
Learning Path Recommendation (LPR) aims to generate personalized sequences of learning items that maximize long-term learning effect while respecting pedagogical principles and operational constraints. Although large language models (LLMs) offer rich semantic understanding for free-form recommendation, applying them to long-horizon LPR is challenging due to (i) misalignment with pedagogical objectives such as the Zone of Proximal Development (ZPD) under sparse, delayed feedback, (ii) scarce and costly expert demonstrations, and (iii) multi-objective interactions among learning effect, difficulty scheduling, length controllability, and trajectory diversity. To address these issues, we propose IB-GRPO (Indicator-Based Group Relative Policy Optimization), an indicator-guided alignment approach for LLM-based LPR. To mitigate data scarcity, we construct hybrid expert demonstrations via Genetic Algorithm search and teacher RL agents and warm-start the LLM with supervised fine-tuning. Building on this warm-start, we design a within-session ZPD alignment score for difficulty scheduling. IB-GRPO then uses the $I_{ε+}$ dominance indicator to compute group-relative advantages over multiple objectives, avoiding manual scalarization and improving Pareto trade-offs. Experiments on ASSIST09 and Junyi using the KES simulator with a Qwen2.5-7B backbone show consistent improvements over representative RL and LLM baselines.
Local Language Models for Context-Aware Adaptive Anonymization of Sensitive Text
Qualitative research often contains personal, contextual, and organizational details that pose privacy risks if not handled appropriately. Manual anonymization is time-consuming, inconsistent, and frequently omits critical identifiers. Existing automated tools tend to rely on pattern matching or fixed rules, which fail to capture context and may alter the meaning of the data. This study uses local LLMs to build a reliable, repeatable, and context-aware anonymization process for detecting and anonymizing sensitive data in qualitative transcripts. We introduce a Structured Framework for Adaptive Anonymizer (SFAA) that includes three steps: detection, classification, and adaptive anonymization. The SFAA incorporates four anonymization strategies: rule-based substitution, context-aware rewriting, generalization, and suppression. These strategies are applied based on the identifier type and the risk level. The identifiers handled by the SFAA are guided by major international privacy and research ethics standards, including the GDPR, HIPAA, and OECD guidelines. This study followed a dual-method evaluation that combined manual and LLM-assisted processing. Two case studies were used to support the evaluation. The first includes 82 face-to-face interviews on gamification in organizations. The second involves 93 machine-led interviews using an AI-powered interviewer to test LLM awareness and workplace privacy. Two local models, LLaMA and Phi were used to evaluate the performance of the proposed framework. The results indicate that the LLMs found more sensitive data than a human reviewer. Phi outperformed LLaMA in finding sensitive data, but made slightly more errors. Phi was able to find over 91% of the sensitive data and 94.8% kept the same sentiment as the original text, which means it was very accurate, hence, it does not affect the analysis of the qualitative data.
comment: Accepted and Waiting to be Published. ICAI'25: 27th International Conference on Artificial Intelligence https://american-cse.org/csce2025/conferences-ICAI
HCVR Scene Generation: High Compatibility Virtual Reality Environment Generation for Extended Redirected Walking
Natural walking enhances immersion in virtual environments (VEs), but physical space limitations and obstacles hinder exploration, especially in large virtual scenes. Redirected Walking (RDW) techniques mitigate this by subtly manipulating the virtual camera to guide users away from physical collisions within pre-defined VEs. However, RDW efficacy diminishes significantly when substantial geometric divergence exists between the physical and virtual environments, leading to unavoidable collisions. Existing scene generation methods primarily focus on object relationships or layout aesthetics, often neglecting the crucial aspect of physical compatibility required for effective RDW. To address this, we introduce HCVR (High Compatibility Virtual Reality Environment Generation), a novel framework that generates virtual scenes inherently optimized for alignment-based RDW controllers. HCVR first employs ENI++, a novel, boundary-sensitive metric to evaluate the incompatibility between physical and virtual spaces by comparing rotation-sensitive visibility polygons. Guided by the ENI++ compatibility map and user prompts, HCVR utilizes a Large Language Model (LLM) for context-aware 3D asset retrieval and initial layout generation. The framework then strategically adjusts object selection, scaling, and placement to maximize coverage of virtually incompatible regions, effectively guiding users towards RDW-feasible paths. User studies evaluating physical collisions and layout quality demonstrate HCVR's effectiveness with HCVR-generated scenes, resulting in 22.78 times fewer physical collisions and received 35.89\% less on ENI++ score compared to LLM-based generation with RDW, while also receiving 12.5\% higher scores on user feedback to layout design.
Transfer Learning from One Cancer to Another via Deep Learning Domain Adaptation
Supervised deep learning models often achieve excellent performance within their training distribution but struggle to generalize beyond it. In cancer histopathology, for example, a convolutional neural network (CNN) may classify cancer severity accurately for cancer types represented in its training data, yet fail on related but unseen types. Although adenocarcinomas from different organs share morphological features that might support limited cross-domain generalization, addressing domain shift directly is necessary for robust performance. Domain adaptation offers a way to transfer knowledge from labeled data in one cancer type to unlabeled data in another, helping mitigate the scarcity of annotated medical images. This work evaluates cross-domain classification performance among lung, colon, breast, and kidney adenocarcinomas. A ResNet50 trained on any single adenocarcinoma achieves over 98% accuracy on its own domain but shows minimal generalization to others. Ensembling multiple supervised models does not resolve this limitation. In contrast, converting the ResNet50 into a domain adversarial neural network (DANN) substantially improves performance on unlabeled target domains. A DANN trained on labeled breast and colon data and adapted to unlabeled lung data reaches 95.56% accuracy. We also examine the impact of stain normalization on domain adaptation. Its effects vary by target domain: for lung, accuracy drops from 95.56% to 66.60%, while for breast and colon targets, stain normalization boosts accuracy from 49.22% to 81.29% and from 78.48% to 83.36%, respectively. Finally, using Integrated Gradients reveals that DANNs consistently attribute importance to biologically meaningful regions such as densely packed nuclei, indicating that the model learns clinically relevant features and can apply them to unlabeled cancer types.
comment: 8 pages, 6 figures, 3 table
A comprehensive overview of deep learning models for object detection from videos/images
Object detection in video and image surveillance is a well-established yet rapidly evolving task, strongly influenced by recent deep learning advancements. This review summarises modern techniques by examining architectural innovations, generative model integration, and the use of temporal information to enhance robustness and accuracy. Unlike earlier surveys, it classifies methods based on core architectures, data processing strategies, and surveillance specific challenges such as dynamic environments, occlusions, lighting variations, and real-time requirements. The primary goal is to evaluate the current effectiveness of semantic object detection, while secondary aims include analysing deep learning models and their practical applications. The review covers CNN-based detectors, GAN-assisted approaches, and temporal fusion methods, highlighting how generative models support tasks such as reconstructing missing frames, reducing occlusions, and normalising illumination. It also outlines preprocessing pipelines, feature extraction progress, benchmarking datasets, and comparative evaluations. Finally, emerging trends in low-latency, efficient, and spatiotemporal learning approaches are identified for future research.
comment: N/A
Efficient reformulations of ReLU deep neural networks for surrogate modelling in power system optimisation
The ongoing decarbonisation of power systems is driving an increasing reliance on distributed energy resources, which introduces complex and nonlinear interactions that are difficult to capture in conventional optimisation models. As a result, machine learning based surrogate modelling has emerged as a promising approach, but integrating machine learning models such as ReLU deep neural networks (DNNs) directly into optimisation often results in nonconvex and computationally intractable formulations. This paper proposes a linear programming (LP) reformulation for a class of convexified ReLU DNNs with non-negative weight matrices beyond the first layer, enabling a tight and tractable embedding of learned surrogate models in optimisation. We evaluate the method using a case study on learning the prosumer's responsiveness within an aggregator bidding problem in the Danish tertiary capacity market. The proposed reformulation is benchmarked against state-of-the-art alternatives, including piecewise linearisation (PWL), MIP-based embedding, and other LP relaxations. Across multiple neural network architectures and market scenarios, the convexified ReLU DNN achieves solution quality comparable to PWL and MIP-based reformulations while significantly improving computational performance and preserving model fidelity, unlike penalty-based reformulations. The results demonstrate that convexified ReLU DNNs offer a scalable and reliable methodology for integrating learned surrogate models in optimisation, with applicability to a wide range of emerging power system applications.
comment: 24 pages, 7 figures, 3 tables
GEGO: A Hybrid Golden Eagle and Genetic Optimization Algorithm for Efficient Hyperparameter Tuning in Resource-Constrained Environments
Hyperparameter tuning is a critical yet computationally expensive step in training neural networks, particularly when the search space is high dimensional and nonconvex. Metaheuristic optimization algorithms are often used for this purpose due to their derivative free nature and robustness against local optima. In this work, we propose Golden Eagle Genetic Optimization (GEGO), a hybrid metaheuristic that integrates the population movement strategy of Golden Eagle Optimization with the genetic operators of selection, crossover, and mutation. The main novelty of GEGO lies in embedding genetic operators directly into the iterative search process of GEO, rather than applying them as a separate evolutionary stage. This design improves population diversity during search and reduces premature convergence while preserving the exploration behavior of GEO. GEGO is evaluated on standard unimodal, multimodal, and composite benchmark functions from the CEC2017 suite, where it consistently outperforms its constituent algorithms and several classical metaheuristics in terms of solution quality and robustness. The algorithm is further applied to hyperparameter tuning of artificial neural networks on the MNIST dataset, where GEGO achieves improved classification accuracy and more stable convergence compared to GEO and GA. These results indicate that GEGO provides a balanced exploration-exploitation tradeoff and is well suited for hyperparameter optimization under constrained computational settings.
INFA-Guard: Mitigating Malicious Propagation via Infection-Aware Safeguarding in LLM-Based Multi-Agent Systems
The rapid advancement of Large Language Model (LLM)-based Multi-Agent Systems (MAS) has introduced significant security vulnerabilities, where malicious influence can propagate virally through inter-agent communication. Conventional safeguards often rely on a binary paradigm that strictly distinguishes between benign and attack agents, failing to account for infected agents i.e., benign entities converted by attack agents. In this paper, we propose Infection-Aware Guard, INFA-Guard, a novel defense framework that explicitly identifies and addresses infected agents as a distinct threat category. By leveraging infection-aware detection and topological constraints, INFA-Guard accurately localizes attack sources and infected ranges. During remediation, INFA-Guard replaces attackers and rehabilitates infected ones, avoiding malicious propagation while preserving topological integrity. Extensive experiments demonstrate that INFA-Guard achieves state-of-the-art performance, reducing the Attack Success Rate (ASR) by an average of 33%, while exhibiting cross-model robustness, superior topological generalization, and high cost-effectiveness.
Calibrated uncertainty quantification for prosumer flexibility aggregation in ancillary service markets
Reliable forecasting of prosumer flexibility is critical for demand response aggregators participating in frequency controlled ancillary services market, where strict reliability requirements such as the P90 standard are enforced. Limited historical data, dependence on exogeneous factors, and heterogenous prosumer behaviour introduce significant epistemic uncertainty, making deterministic or poorly calibrated probabilistic models unsuitable for market bidding. This paper proposes the use of scalable uncertainty quantification framework that integrates Monte Carlo dropout (MCD) with conformal prediction (CP) to produce calibrated, finite sample prediction intervals for aggregated prosumer flexibility. The proposed framework is applied to a behind-the-meter aggregator participating in the Danish manual frequency restoration reserve capacity market. A large-scale synthetic dataset is generated using a modified industry-grade home energy management system, combined with publicly available load, solar, price, activation and device-level data. The resulting machine learning surrogate model captures aggregate prosumer price responsiveness and provides uncertainty-aware estimates suitable for market bidding. Multiple multivariate CP strategies are evaluated and benchmarked against conventional MCD-based methods. Results show that standalone MCD systematically overestimates available flexibility and violates P90 compliance, whereas the proposed MCD-CP framework achieves reliable coverage with controlled conservatism. When embedded in aggregator bidding model, conformalised methods substantially reduce overbidding risk and achieve upto 70% of perfect-information profit while satisfying regulatory reliability constraints, providing practical, computationally efficient, and market-compliant solution for aggregator flexibility forecasting under uncertainty.
comment: Single column 31 pages, 10 figures, 3 tables, submitted for review to Applied Energy
Query-Efficient Agentic Graph Extraction Attacks on GraphRAG Systems
Graph-based retrieval-augmented generation (GraphRAG) systems construct knowledge graphs over document collections to support multi-hop reasoning. While prior work shows that GraphRAG responses may leak retrieved subgraphs, the feasibility of query-efficient reconstruction of the hidden graph structure remains unexplored under realistic query budgets. We study a budget-constrained black-box setting where an adversary adaptively queries the system to steal its latent entity-relation graph. We propose AGEA (Agentic Graph Extraction Attack), a framework that leverages a novelty-guided exploration-exploitation strategy, external graph memory modules, and a two-stage graph extraction pipeline combining lightweight discovery with LLM-based filtering. We evaluate AGEA on medical, agriculture, and literary datasets across Microsoft-GraphRAG and LightRAG systems. Under identical query budgets, AGEA significantly outperforms prior attack baselines, recovering up to 90% of entities and relationships while maintaining high precision. These results demonstrate that modern GraphRAG systems are highly vulnerable to structured, agentic extraction attacks, even under strict query limits.
NeuroFilter: Privacy Guardrails for Conversational LLM Agents
This work addresses the computational challenge of enforcing privacy for agentic Large Language Models (LLMs), where privacy is governed by the contextual integrity framework. Indeed, existing defenses rely on LLM-mediated checking stages that add substantial latency and cost, and that can be undermined in multi-turn interactions through manipulation or benign-looking conversational scaffolding. Contrasting this background, this paper makes a key observation: internal representations associated with privacy-violating intent can be separated from benign requests using linear structure. Using this insight, the paper proposes NeuroFilter, a guardrail framework that operationalizes contextual integrity by mapping norm violations to simple directions in the model's activation space, enabling detection even when semantic filters are bypassed. The proposed filter is also extended to capture threats arising during long conversations using the concept of activation velocity, which measures cumulative drift in internal representations across turns. A comprehensive evaluation across over 150,000 interactions and covering models from 7B to 70B parameters, illustrates the strong performance of NeuroFilter in detecting privacy attacks while maintaining zero false positives on benign prompts, all while reducing the computational inference cost by several orders of magnitude when compared to LLM-based agentic privacy defenses.
Say Anything but This: When Tokenizer Betrays Reasoning in LLMs
Large language models (LLMs) reason over discrete token ID sequences, yet modern subword tokenizers routinely produce non-unique encodings: multiple token ID sequences can detokenize to identical surface strings. This representational mismatch creates an unmeasured fragility wherein reasoning processes can fail. LLMs may treat two internal representations as distinct "words" even when they are semantically identical at the text level. In this work, we show that tokenization can betray LLM reasoning through one-to-many token ID mappings. We introduce a tokenization-consistency probe that requires models to replace designated target words in context while leaving all other content unchanged. The task is intentionally simple at the surface level, enabling us to attribute failures to tokenizer-detokenizer artifacts rather than to knowledge gaps or parameter limitations. Through analysis of over 11000 replacement trials across state-of-the-art open-source LLMs, we find a non-trivial rate of outputs exhibit phantom edits: cases where models operate under the illusion of correct reasoning, a phenomenon arising from tokenizer-induced representational defects. We further analyze these cases and provide a taxonomy of eight systematic tokenizer artifacts, including whitespace-boundary shifts and intra-word resegmentation. These findings indicate that part of apparent reasoning deficiency originates in the tokenizer layer, motivating tokenizer-level remedies before incurring the cost of training ever-larger models on ever-larger corpora.
MAS-Orchestra: Understanding and Improving Multi-Agent Reasoning Through Holistic Orchestration and Controlled Benchmarks
While multi-agent systems (MAS) promise elevated intelligence through coordination of agents, current approaches to automatic MAS design under-deliver. Such shortcomings stem from two key factors: (1) methodological complexity - agent orchestration is performed using sequential, code-level execution that limits global system-level holistic reasoning and scales poorly with agent complexity - and (2) efficacy uncertainty - MAS are deployed without understanding if there are tangible benefits compared to single-agent systems (SAS). We propose MAS-Orchestra, a training-time framework that formulates MAS orchestration as a function-calling reinforcement learning problem with holistic orchestration, generating an entire MAS at once. In MAS-Orchestra, complex, goal-oriented sub-agents are abstracted as callable functions, enabling global reasoning over system structure while hiding internal execution details. To rigorously study when and why MAS are beneficial, we introduce MASBENCH, a controlled benchmark that characterizes tasks along five axes: Depth, Horizon, Breadth, Parallel, and Robustness. Our analysis reveals that MAS gains depend critically on task structure, verification protocols, and the capabilities of both orchestrator and sub-agents, rather than holding universally. Guided by these insights, MAS-Orchestra achieves consistent improvements on public benchmarks including mathematical reasoning, multi-hop QA, and search-based QA. Together, MAS-Orchestra and MASBENCH enable better training and understanding of MAS in the pursuit of multi-agent intelligence.
comment: Preprint; Work in Progress
Forest-Chat: Adapting Vision-Language Agents for Interactive Forest Change Analysis
The increasing availability of high-resolution satellite imagery, together with advances in deep learning, creates new opportunities for enhancing forest monitoring workflows. Two central challenges in this domain are pixel-level change detection and semantic change interpretation, particularly for complex forest dynamics. While large language models (LLMs) are increasingly adopted for data exploration, their integration with vision-language models (VLMs) for remote sensing image change interpretation (RSICI) remains underexplored, especially beyond urban environments. We introduce Forest-Chat, an LLM-driven agent designed for integrated forest change analysis. The proposed framework enables natural language querying and supports multiple RSICI tasks, including change detection, change captioning, object counting, deforestation percentage estimation, and change reasoning. Forest-Chat builds upon a multi-level change interpretation (MCI) vision-language backbone with LLM-based orchestration, and incorporates zero-shot change detection via a foundation change detection model together with an interactive point-prompt interface to support fine-grained user guidance. To facilitate adaptation and evaluation in forest environments, we introduce the Forest-Change dataset, comprising bi-temporal satellite imagery, pixel-level change masks, and multi-granularity semantic change captions generated through a combination of human annotation and rule-based methods. Experimental results demonstrate that Forest-Chat achieves strong performance on Forest-Change and on LEVIR-MCI-Trees, a tree-focused subset of LEVIR-MCI, for joint change detection and captioning, highlighting the potential of interactive, LLM-driven RSICI systems to improve accessibility, interpretability, and analytical efficiency in forest change analysis.
comment: 22 pages, 8 figures, 7 tables, Submitted to Ecological Informatics
A Brain-inspired Embodied Intelligence for Fluid and Fast Reflexive Robotics Control
Recent advances in embodied intelligence have leveraged massive scaling of data and model parameters to master natural-language command following and multi-task control. In contrast, biological systems demonstrate an innate ability to acquire skills rapidly from sparse experience. Crucially, current robotic policies struggle to replicate the dynamic stability, reflexive responsiveness, and temporal memory inherent in biological motion. Here we present Neuromorphic Vision-Language-Action (NeuroVLA), a framework that mimics the structural organization of the bio-nervous system between the cortex, cerebellum, and spinal cord. We adopt a system-level bio-inspired design: a high-level model plans goals, an adaptive cerebellum module stabilizes motion using high-frequency sensors feedback, and a bio-inspired spinal layer executes lightning-fast actions generation. NeuroVLA represents the first deployment of a neuromorphic VLA on physical robotics, achieving state-of-the-art performance. We observe the emergence of biological motor characteristics without additional data or special guidance: it stops the shaking in robotic arms, saves significant energy(only 0.4w on Neuromorphic Processor), shows temporal memory ability and triggers safety reflexes in less than 20 milliseconds.
Scaling Ambiguity: Augmenting Human Annotation in Speech Emotion Recognition with Audio-Language Models
Speech Emotion Recognition models typically use single categorical labels, overlooking the inherent ambiguity of human emotions. Ambiguous Emotion Recognition addresses this by representing emotions as probability distributions, but progress is limited by unreliable ground-truth distributions inferred from sparse human annotations. This paper explores whether Large Audio-Language Models (ALMs) can mitigate the annotation bottleneck by generating high-quality synthetic annotations. We introduce a framework leveraging ALMs to create Synthetic Perceptual Proxies, augmenting human annotations to improve ground-truth distribution reliability. We validate these proxies through statistical analysis of their alignment with human distributions and evaluate their impact by fine-tuning ALMs with the augmented emotion distributions. Furthermore, to address class imbalance and enable unbiased evaluation, we propose DiME-Aug, a Distribution-aware Multimodal Emotion Augmentation strategy. Experiments on IEMOCAP and MSP-Podcast show that synthetic annotations enhance emotion distribution, especially in low-ambiguity regions where annotation agreement is high. However, benefits diminish for highly ambiguous emotions with greater human disagreement. This work provides the first evidence that ALMs could address annotation scarcity in ambiguous emotion recognition, but highlights the need for more advanced prompting or generation strategies to handle highly ambiguous cases.
comment: Accepted by ICASSP 2026
SearchGym: Bootstrapping Real-World Search Agents via Cost-Effective and High-Fidelity Environment Simulation
Search agents have emerged as a pivotal paradigm for solving open-ended, knowledge-intensive reasoning tasks. However, training these agents via Reinforcement Learning (RL) faces a critical dilemma: interacting with live commercial Web APIs is prohibitively expensive, while relying on static data snapshots often introduces noise due to data misalignment. This misalignment generates corrupted reward signals that destabilize training by penalizing correct reasoning or rewarding hallucination. To address this, we propose SearchGym, a simulation environment designed to bootstrap robust search agents. SearchGym employs a rigorous generative pipeline to construct a verifiable knowledge graph and an aligned document corpus, ensuring that every reasoning task is factually grounded and strictly solvable. Building on this controllable environment, we introduce SearchGym-RL, a curriculum learning methodology that progressively optimizes agent policies through purified feedback, evolving from basic interactions to complex, long-horizon planning. Extensive experiments across the Llama and Qwen families demonstrate strong Sim-to-Real generalization. Notably, our Qwen2.5-7B-Base model trained within SearchGym surpasses the web-enhanced ASearcher baseline across nine diverse benchmarks by an average relative margin of 10.6%. Our results validate that high-fidelity simulation serves as a scalable and highly cost-effective methodology for developing capable search agents.
Communication-Efficient Federated Risk Difference Estimation for Time-to-Event Clinical Outcomes
Privacy-preserving model co-training in medical research is often hindered by server-dependent architectures incompatible with protected hospital data systems and by the predominant focus on relative effect measures (hazard ratios) which lack clinical interpretability for absolute survival risk assessment. We propose FedRD, a communication-efficient framework for federated risk difference estimation in distributed survival data. Unlike typical federated learning frameworks (e.g., FedAvg) that require persistent server connections and extensive iterative communication, FedRD is server-independent with minimal communication: one round of summary statistics exchange for the stratified model and three rounds for the unstratified model. Crucially, FedRD provides valid confidence intervals and hypothesis testing--capabilities absent in FedAvg-based frameworks. We provide theoretical guarantees by establishing the asymptotic properties of FedRD and prove that FedRD (unstratified) is asymptotically equivalent to pooled individual-level analysis. Simulation studies and real-world clinical applications across different countries demonstrate that FedRD outperforms local and federated baselines in both estimation accuracy and prediction performance, providing an architecturally feasible solution for absolute risk assessment in privacy-restricted, multi-site clinical studies.
Rethinking Reinforcement fine-tuning of LLMs: A Multi-armed Bandit Learning Perspective
A large number of heuristics have been proposed to optimize the reinforcement fine-tuning of LLMs. However, inconsistent claims are made from time to time, making this area elusive. Reflecting on this situation, two fundamental questions still lack a clear understanding: 1) what is the role of each optimizing choice? 2) which ones are the bottlenecks? This paper aims to shed light on them, and it faces the challenge of several entangled confounding factors in the fine-tuning process. To tackle this challenge, we propose a bottom-up experiment pipeline. The bottom layer is composed of a minimalist configuration: one training data, one rollout per round and the reward directly serve as the learning signal without advantage function design. This minimalist configuration connects to multi-armed bandit learning with extremely large discrete action space, which offers theories to corroborate the experiment findings. The up procedure of the experiment pipeline expanding the minimalist configuration layer by layer, examining the role of each design choice. Experimental results on three LLMs and two reasoning datasets not only reveal new understanding of the design choice but also yield essential insights to shape the area.
HELIOS: Hierarchical Graph Abstraction for Structure-Aware LLM Decompilation
Large language models (LLMs) have recently been applied to binary decompilation, yet they still treat code as plain text and ignore the graphs that govern program control flow. This limitation often yields syntactically fragile and logically inconsistent output, especially for optimized binaries. This paper presents \textsc{HELIOS}, a framework that reframes LLM-based decompilation as a structured reasoning task. \textsc{HELIOS} summarizes a binary's control flow and function calls into a hierarchical text representation that spells out basic blocks, their successors, and high-level patterns such as loops and conditionals. This representation is supplied to a general-purpose LLM, along with raw decompiler output, optionally combined with a compiler-in-the-loop that returns error messages when the generated code fails to build. On HumanEval-Decompile for \texttt{x86\_64}, \textsc{HELIOS} raises average object file compilability from 45.0\% to 85.2\% for Gemini~2.0 and from 71.4\% to 89.6\% for GPT-4.1~Mini. With compiler feedback, compilability exceeds 94\% and functional correctness improves by up to 5.6 percentage points over text-only prompting. Across six architectures drawn from x86, ARM, and MIPS, \textsc{HELIOS} reduces the spread in functional correctness while keeping syntactic correctness consistently high, all without fine-tuning. These properties make \textsc{HELIOS} a practical building block for reverse engineering workflows in security settings where analysts need recompilable, semantically faithful code across diverse hardware targets.
Optimality of Staircase Mechanisms for Vector Queries under Differential Privacy
We study the optimal design of additive mechanisms for vector-valued queries under $ε$-differential privacy (DP). Given only the sensitivity of a query and a norm-monotone cost function measuring utility loss, we ask which noise distribution minimizes expected cost among all additive $ε$-DP mechanisms. Using convex rearrangement theory, we show that this infinite-dimensional optimization problem admits a reduction to a one-dimensional compact and convex family of radially symmetric distributions whose extreme points are the staircase distributions. As a consequence, we prove that for any dimension, any norm, and any norm-monotone cost function, there exists an $ε$-DP staircase mechanism that is optimal among all additive mechanisms. This result resolves a conjecture of Geng, Kairouz, Oh, and Viswanath, and provides a geometric explanation for the emergence of staircase mechanisms as extremal solutions in differential privacy.
comment: Submitted for possible publication
IntelliSA: An Intelligent Static Analyzer for IaC Security Smell Detection Using Symbolic Rules and Neural Inference
Infrastructure as Code (IaC) enables automated provisioning of large-scale cloud and on-premise environments, reducing the need for repetitive manual setup. However, this automation is a double-edged sword: a single misconfiguration in IaC scripts can propagate widely, leading to severe system downtime and security risks. Prior studies have shown that IaC scripts often contain security smells--bad coding patterns that may introduce vulnerabilities--and have proposed static analyzers based on symbolic rules to detect them. Yet, our preliminary analysis reveals that rule-based detection alone tends to over-approximate, producing excessive false positives and increasing the burden of manual inspection. In this paper, we present IntelliSA, an intelligent static analyzer for IaC security smell detection that integrates symbolic rules with neural inference. IntelliSA applies symbolic rules to over-approximate potential smells for broad coverage, then employs neural inference to filter false positives. While an LLM can effectively perform this filtering, reliance on LLM APIs introduces high cost and latency, raises data governance concerns, and limits reproducibility and offline deployment. To address the challenges, we adopt a knowledge distillation approach: an LLM teacher generates pseudo-labels to train a compact student model--over 500x smaller--that learns from the teacher's knowledge and efficiently classifies false positives. We evaluate IntelliSA against two static analyzers and three LLM baselines (Claude-4, Grok-4, and GPT-5) using a human-labeled dataset including 241 security smells across 11,814 lines of real-world IaC code. Experimental results show that IntelliSA achieves the highest F1 score (83%), outperforming baselines by 7-42%. Moreover, IntelliSA demonstrates the best cost-effectiveness, detecting 60% of security smells while inspecting less than 2% of the codebase.
comment: Accepted at MSR 2026
Designing KRIYA: An AI Companion for Wellbeing Self-Reflection
Most personal wellbeing apps present summative dashboards of health and physical activity metrics, yet many users struggle to translate this information into meaningful understanding. These apps commonly support engagement through goals, reminders, and structured targets, which can reinforce comparison, judgment, and performance anxiety. To explore a complementary approach that prioritizes self-reflection, we design KRIYA, an AI wellbeing companion that supports co-interpretive engagement with personal wellbeing data. KRIYA aims to collaborate with users to explore questions, explanations, and future scenarios through features such as Comfort Zone, Detective Mode, and What-If Planning. We conducted semi-structured interviews with 18 college students interacting with a KRIYA prototype using hypothetical data. Our findings show that through KRIYA interaction, users framed engaging with wellbeing data as interpretation rather than performance, experienced reflection as supportive or pressuring depending on emotional framing, and developed trust through transparency. We discuss design implications for AI companions that support curiosity, self-compassion, and reflective sensemaking of personal health data.
Breaking the accuracy-resource dilemma: a lightweight adaptive video inference enhancement
Existing video inference (VI) enhancement methods typically aim to improve performance by scaling up model sizes and employing sophisticated network architectures. While these approaches demonstrated state-of-the-art performance, they often overlooked the trade-off of resource efficiency and inference effectiveness, leading to inefficient resource utilization and suboptimal inference performance. To address this problem, a fuzzy controller (FC-r) is developed based on key system parameters and inference-related metrics. Guided by the FC-r, a VI enhancement framework is proposed, where the spatiotemporal correlation of targets across adjacent video frames is leveraged. Given the real-time resource conditions of the target device, the framework can dynamically switch between models of varying scales during VI. Experimental results demonstrate that the proposed method effectively achieves a balance between resource utilization and inference performance.
comment: 5 pages, 4 figures
Self-Blinding and Counterfactual Self-Simulation Mitigate Biases and Sycophancy in Large Language Models
Fair decisions require ignoring irrelevant, potentially biasing, information. To achieve this, decision-makers need to approximate what decision they would have made had they not known certain facts, such as the gender or race of a job candidate. This counterfactual self-simulation is notoriously hard for humans, leading to biased judgments even by well-meaning actors. Here we show that large language models (LLMs) suffer from similar limitations in their ability to approximate what decisions they would make under counterfactual knowledge in offsetting gender and race biases and overcoming sycophancy. We show that prompting models to ignore or pretend not to know biasing information fails to offset these biases and occasionally backfires. However, unlike humans, LLMs can be given access to a ground-truth model of their own counterfactual cognition -- their own API. We show that this access to the responses of a blinded replica enables fairer decisions, while providing greater transparency to distinguish implicit from intentionally biased behavior.
PRISM: Deriving the Transformer as a Signal-Denoising Operator via Maximum Coding Rate Reduction
Deep learning models, particularly Transformers, are often criticized as "black boxes" and lack interpretability. We propose Prism, a white-box attention-based architecture derived from the principles of Maximizing Coding Rate Reduction ($\text{MCR}^2$). By modeling the attention mechanism as a gradient ascent process on a distinct signal-noise manifold, we introduce two physical constraints: an overcomplete dictionary to expand the representational phase space, and an irrational frequency separation ($π$-RoPE) to enforce incoherence between signal and noise subspaces. We demonstrate that these geometric inductive biases can be viewed as a physical constraint and they are sufficient to induce unsupervised functional disentanglement alone. Using TinyStories as a controlled testbed for verifying spectral dynamics, we observe that Prism spontaneously specializes its attention heads into spectrally distinct regimes: low-frequency heads capturing long-range causal dependencies (signal) and high-frequency heads handling local syntactic constraints (noise). Our results suggest that interpretability and performance are not a trade-off, but can be unified through principled geometric construction.
A Machine Vision Approach to Preliminary Skin Lesion Assessments
Early detection of malignant skin lesions is critical for improving patient outcomes in aggressive, metastatic skin cancers. This study evaluates a comprehensive system for preliminary skin lesion assessment that combines the clinically established ABCD rule of dermoscopy (analyzing Asymmetry, Borders, Color, and Dermoscopic Structures) with machine learning classification. Using a 1,000-image subset of the HAM10000 dataset, the system implements an automated, rule-based pipeline to compute a Total Dermoscopy Score (TDS) for each lesion. This handcrafted approach is compared against various machine learning solutions, including traditional classifiers (Logistic Regression, Random Forest, and SVM) and deep learning models. While the rule-based system provides high clinical interpretability, results indicate a performance bottleneck when reducing complex morphology to five numerical features. Experimental findings show that transfer learning with EfficientNet-B0 failed significantly due to domain shift between natural and medical images. In contrast, a custom three-layer Convolutional Neural Network (CNN) trained from scratch achieved 78.5% accuracy and 86.5% recall on median-filtered images, representing a 19-point accuracy improvement over traditional methods. The results demonstrate that direct pixel-level learning captures diagnostic patterns beyond handcrafted features and that purpose-built lightweight architectures can outperform large pretrained models for small, domain-specific medical datasets.
comment: 6 pages, 2 figures, 2 tables
QUAIL: Quantization Aware Unlearning for Mitigating Misinformation in LLMs
Machine unlearning aims to remove specific knowledge (e.g., copyrighted or private data) from a trained model without full retraining. In practice, models are often quantized (e.g., 4-bit) for deployment, but we find that quantization can catastrophically restore forgotten information [1]. In this paper, we (1) analyze why low-bit quantization undermines unlearning, and (2) propose a quantization-aware unlearning method to mitigate this. We first compute weight-change statistics and bucket overlaps in quantization to show that typical unlearning updates are too small to cross quantization thresholds. Building on this insight, we introduce a logits space hinge loss: for each forget example, we force the output logits of the unlearned model to differ from the original model by at least a margin (half the quantization step). This ensures forgotten examples remain distinguishable even after quantization. We evaluate on language and classification tasks (including a Twitter misinformation dataset) and show our method preserves forgetting under 4-bit quantization, whereas existing methods almost entirely recover the forgotten knowledge.
From Generative Engines to Actionable Simulators: The Imperative of Physical Grounding in World Models
A world model is an AI system that simulates how an environment evolves under actions, enabling planning through imagined futures rather than reactive perception. Current world models, however, suffer from visual conflation: the mistaken assumption that high-fidelity video generation implies an understanding of physical and causal dynamics. We show that while modern models excel at predicting pixels, they frequently violate invariant constraints, fail under intervention, and break down in safety-critical decision-making. This survey argues that visual realism is an unreliable proxy for world understanding. Instead, effective world models must encode causal structure, respect domain-specific constraints, and remain stable over long horizons. We propose a reframing of world models as actionable simulators rather than visual engines, emphasizing structured 4D interfaces, constraint-aware dynamics, and closed-loop evaluation. Using medical decision-making as an epistemic stress test, where trial-and-error is impossible and errors are irreversible, we demonstrate that a world model's value is determined not by how realistic its rollouts appear, but by its ability to support counterfactual reasoning, intervention planning, and robust long-horizon foresight.
TransportAgents: a multi-agents LLM framework for traffic accident severity prediction
Accurate prediction of traffic crash severity is critical for improving emergency response and public safety planning. Although recent large language models (LLMs) exhibit strong reasoning capabilities, their single-agent architectures often struggle with heterogeneous, domain-specific crash data and tend to generate biased or unstable predictions. To address these limitations, this paper proposes TransportAgents, a hybrid multi-agent framework that integrates category-specific LLM reasoning with a multilayer perceptron (MLP) integration module. Each specialized agent focuses on a particular subset of traffic information, such as demographics, environmental context, or incident details, to produce intermediate severity assessments that are subsequently fused into a unified prediction. Extensive experiments on two complementary U.S. datasets, the Consumer Product Safety Risk Management System (CPSRMS) and the National Electronic Injury Surveillance System (NEISS), demonstrate that TransportAgents consistently outperforms both traditional machine learning and advanced LLM-based baselines. Across three representative backbones, including closed-source models such as GPT-3.5 and GPT-4o, as well as open-source models such as LLaMA-3.3, the framework exhibits strong robustness, scalability, and cross-dataset generalizability. A supplementary distributional analysis further shows that TransportAgents produces more balanced and well-calibrated severity predictions than standard single-agent LLM approaches, highlighting its interpretability and reliability for safety-critical decision support applications.
The Dark Side of AI Transformers: Sentiment Polarization & the Loss of Business Neutrality by NLP Transformers
The use of Transfer Learning & Transformers has steadily improved accuracy and has significantly contributed in solving complex computation problems. However, this transformer led accuracy improvement in Applied AI Analytics specifically in sentiment analytics comes with the dark side. It is observed during experiments that a lot of these improvements in transformer led accuracy of one class of sentiment has been at the cost of polarization of another class of sentiment and the failing of neutrality. This lack of neutrality poses an acute problem in the Applied NLP space, which relies heavily on the computational outputs of sentiment analytics for reliable industry ready tasks.
Low-Dimensional Adaptation of Rectified Flow: A New Perspective through the Lens of Diffusion and Stochastic Localization
In recent years, Rectified flow (RF) has gained considerable popularity largely due to its generation efficiency and state-of-the-art performance. In this paper, we investigate the degree to which RF automatically adapts to the intrinsic low dimensionality of the support of the target distribution to accelerate sampling. We show that, using a carefully designed choice of the time-discretization scheme and with sufficiently accurate drift estimates, the RF sampler enjoys an iteration complexity of order $O(k/\varepsilon)$ (up to log factors), where $\varepsilon$ is the precision in total variation distance and $k$ is the intrinsic dimension of the target distribution. In addition, we show that the denoising diffusion probabilistic model (DDPM) procedure is equivalent to a stochastic version of RF by establishing a novel connection between these processes and stochastic localization. Building on this connection, we further design a stochastic RF sampler that also adapts to the low-dimensionality of the target distribution under milder requirements on the accuracy of the drift estimates, and also with a specific time schedule. We illustrate with simulations on the synthetic data and text-to-image data experiments the improved performance of the proposed samplers implementing the newly designed time-discretization schedules.
comment: 32 pages, 7 figures
Tracking the Limits of Knowledge Propagation: How LLMs Fail at Multi-Step Reasoning with Conflicting Knowledge
A common solution for mitigating outdated or incorrect information in Large Language Models (LLMs) is to provide updated facts in-context or through knowledge editing. However, these methods introduce knowledge conflicts when the knowledge update fails to overwrite the model's parametric knowledge, which propagate to faulty reasoning. Current benchmarks for this problem, however, largely focus only on single knowledge updates and fact recall without evaluating how these updates affect downstream reasoning. In this work, we introduce TRACK (Testing Reasoning Amid Conflicting Knowledge), a new benchmark for studying how LLMs propagate new knowledge through multi-step reasoning when it conflicts with the model's initial parametric knowledge. Spanning three reasoning-intensive scenarios (WIKI, CODE, and MATH), TRACK introduces multiple, realistic conflicts to mirror real-world complexity. Our results on TRACK reveal that providing updated facts to models for reasoning can worsen performance compared to providing no updated facts to a model, and that this performance degradation exacerbates as more updated facts are provided. We show this failure stems from both inability to faithfully integrate updated facts, but also flawed reasoning even when knowledge is integrated. TRACK provides a rigorous new benchmark to measure and guide future progress on propagating conflicting knowledge in multi-step reasoning.
comment: Accepted to EACL 2026 (Main)
Multi-Persona Thinking for Bias Mitigation in Large Language Models
Large Language Models (LLMs) exhibit significant social biases that can perpetuate harmful stereotypes and unfair outcomes. In this paper, we propose Multi-Persona Thinking (MPT), a novel inference-time framework that leverages dialectical reasoning from multiple perspectives to reduce bias. MPT guides models to adopt contrasting social identities (e.g., male and female) along with a neutral viewpoint, and then engages these personas iteratively to expose and correct biases. Through a dialectical reasoning process, the framework transforms the potential weakness of persona assignment into a strength for bias mitigation. We evaluate MPT on two widely used bias benchmarks across both open-source and closed-source models of varying scales. Our results demonstrate substantial improvements over existing prompting-based strategies: MPT achieves the lowest bias while maintaining core reasoning ability.
comment: 13 pages, 3 figures
MiRAGE: A Multiagent Framework for Generating Multimodal Multihop Question-Answer Dataset for RAG Evaluation
The rapid evolution of Retrieval-Augmented Generation (RAG) toward multimodal, high-stakes enterprise applications has outpaced the development of domain specific evaluation benchmarks. Existing datasets often rely on general-domain corpora or purely textual retrieval, failing to capture the complexity of specialized technical documents where information is inextricably multimodal and reasoning requires synthesizing disjoint evidence. We address this gap by introducing MiRAGE, a Multiagent framework for RAG systems Evaluation, that leverages a collaborative swarm of specialized agents to generate verified, domain-specific, multimodal, and multi-hop Question-Answer datasets. MiRAGE orchestrates a swarm of specialized agents: a recursive context optimization loop to aggregate scattered evidence, an adversarial verifier agent to guarantee factual grounding, and an agent to recognize the expert persona and the relevant domain to mimic expert cognitive workflows. Extensive empirical evaluation across four distinct domains (regulations, finance, quantitative biology, and journalism) demonstrates that MiRAGE generates datasets with significantly higher reasoning complexity (>2.3 average hops) and factual faithfulness. Our ablation studies point that MiRAGE can be powered by LLMs if textual descriptions of the images are available. Visual grounding still remains a frontier. By automating the creation of gold standard evaluation datasets that reflect the latent thematic structure of proprietary corpora, MiRAGE provides the necessary infrastructure to rigorously benchmark the next generation information retrieval systems.
comment: 12 pages, 2 figures, Submitted to ACL
The Rise of Large Language Models and the Direction and Impact of US Federal Research Funding
Federal research funding shapes the direction, diversity, and impact of the US scientific enterprise. Large language models (LLMs) are rapidly diffusing into scientific practice, holding substantial promise while raising widespread concerns. Despite growing attention to AI use in scientific writing and evaluation, little is known about how the rise of LLMs is reshaping the public funding landscape. Here, we examine LLM involvement at key stages of the federal funding pipeline by combining two complementary data sources: confidential National Science Foundation (NSF) and National Institutes of Health (NIH) proposal submissions from two large US R1 universities, including funded, unfunded, and pending proposals, and the full population of publicly released NSF and NIH awards. We find that LLM use rises sharply beginning in 2023 and exhibits a bimodal distribution, indicating a clear split between minimal and substantive use. Across both private submissions and public awards, higher LLM involvement is consistently associated with lower semantic distinctiveness, positioning projects closer to recently funded work within the same agency. The consequences of this shift are agency-dependent. LLM use is positively associated with proposal success and higher subsequent publication output at NIH, whereas no comparable associations are observed at NSF. Notably, the productivity gains at NIH are concentrated in non-hit papers rather than the most highly cited work. Together, these findings provide large-scale evidence that the rise of LLMs is reshaping how scientific ideas are positioned, selected, and translated into publicly funded research, with implications for portfolio governance, research diversity, and the long-run impact of science.
comment: 41 pages, 23 figures, 12 tables
Is Grokipedia Right-Leaning? Comparing Political Framing in Wikipedia and Grokipedia on Controversial Topics
Online encyclopedias are central to contemporary information infrastructures and have become focal points of debates over ideological bias. Wikipedia, in particular, has long been accused of left-leaning bias, while Grokipedia, an AI-generated encyclopedia launched by xAI, has been framed as a right-leaning alternative. This paper presents a comparative analysis of Wikipedia and Grokipedia on well-established politically contested topics. Specifically, we examine differences in semantic framing, political orientation, and content prioritization. We find that semantic similarity between the two platforms decays across article sections and diverges more strongly on controversial topics than on randomly sampled ones. Additionally, we show that both encyclopedias predominantly exhibit left-leaning framings, although Grokipedia exhibits a more bimodal distribution with increased prominence of right-leaning content. The experimental code is publicly available.
Martingale Foresight Sampling: A Principled Approach to Inference-Time LLM Decoding
Standard autoregressive decoding in large language models (LLMs) is inherently short-sighted, often failing to find globally optimal reasoning paths due to its token-by-token generation process. While inference-time strategies like foresight sampling attempt to mitigate this by simulating future steps, they typically rely on ad-hoc heuristics for valuing paths and pruning the search space. This paper introduces Martingale Foresight Sampling (MFS), a principled framework that reformulates LLM decoding as a problem of identifying an optimal stochastic process. By modeling the quality of a reasoning path as a stochastic process, we leverage Martingale theory to design a theoretically-grounded algorithm. Our approach replaces heuristic mechanisms with principles from probability theory: step valuation is derived from the Doob Decomposition Theorem to measure a path's predictable advantage, path selection uses Optional Stopping Theory for principled pruning of suboptimal candidates, and an adaptive stopping rule based on the Martingale Convergence Theorem terminates exploration once a path's quality has provably converged. Experiments on six reasoning benchmarks demonstrate that MFS surpasses state-of-the-art methods in accuracy while significantly improving computational efficiency. Code will be released at https://github.com/miraclehetech/EACL2026-Martingale-Foresight-Sampling.
Benchmarking LLMs for Pairwise Causal Discovery in Biomedical and Multi-Domain Contexts
The safe deployment of large language models (LLMs) in high-stakes fields like biomedicine, requires them to be able to reason about cause and effect. We investigate this ability by testing 13 open-source LLMs on a fundamental task: pairwise causal discovery (PCD) from text. Our benchmark, using 12 diverse datasets, evaluates two core skills: 1) \textbf{Causal Detection} (identifying if a text contains a causal link) and 2) \textbf{Causal Extraction} (pulling out the exact cause and effect phrases). We tested various prompting methods, from simple instructions (zero-shot) to more complex strategies like Chain-of-Thought (CoT) and Few-shot In-Context Learning (FICL). The results show major deficiencies in current models. The best model for detection, DeepSeek-R1-Distill-Llama-70B, only achieved a mean score of 49.57\% ($C_{detect}$), while the best for extraction, Qwen2.5-Coder-32B-Instruct, reached just 47.12\% ($C_{extract}$). Models performed best on simple, explicit, single-sentence relations. However, performance plummeted for more difficult (and realistic) cases, such as implicit relationships, links spanning multiple sentences, and texts containing multiple causal pairs. We provide a unified evaluation framework, built on a dataset validated with high inter-annotator agreement ($κ\ge 0.758$), and make all our data, code, and prompts publicly available to spur further research. \href{https://github.com/sydneyanuyah/CausalDiscovery}{Code available here: https://github.com/sydneyanuyah/CausalDiscovery}
Reliability by design: quantifying and eliminating fabrication risk in LLMs. From generative to consultative AI: a comparative analysis in the legal domain and lessons for high-stakes knowledge bases
This paper examines how to make large language models reliable for high-stakes legal work by reducing hallucinations. It distinguishes three AI paradigms: (1) standalone generative models ("creative oracle"), (2) basic retrieval-augmented systems ("expert archivist"), and (3) an advanced, end-to-end optimized RAG system ("rigorous archivist"). The authors introduce two reliability metrics -False Citation Rate (FCR) and Fabricated Fact Rate (FFR)- and evaluate 2,700 judicial-style answers from 12 LLMs across 75 legal tasks using expert, double-blind review. Results show that standalone models are unsuitable for professional use (FCR above 30%), while basic RAG greatly reduces errors but still leaves notable misgrounding. Advanced RAG, using techniques such as embedding fine-tuning, re-ranking, and self-correction, reduces fabrication to negligible levels (below 0.2%). The study concludes that trustworthy legal AI requires rigor-focused, retrieval-based architectures emphasizing verification and traceability, and provides an evaluation framework applicable to other high-risk domains.
Multi-Targeted Graph Backdoor Attack
Graph neural network (GNN) have demonstrated exceptional performance in solving critical problems across diverse domains yet remain susceptible to backdoor attacks. Existing studies on backdoor attack for graph classification are limited to single target attack using subgraph replacement based mechanism where the attacker implants only one trigger into the GNN model. In this paper, we introduce the first multi-targeted backdoor attack for graph classification task, where multiple triggers simultaneously redirect predictions to different target labels. Instead of subgraph replacement, we propose subgraph injection which preserves the structure of the original graphs while poisoning the clean graphs. Extensive experiments demonstrate the efficacy of our approach, where our attack achieves high attack success rates for all target labels with minimal impact on the clean accuracy. Experimental results on five dataset demonstrate the superior performance of our attack framework compared to the conventional subgraph replacement-based attack. Our analysis on four GNN models confirms the generalization capability of our attack which is effective regardless of the GNN model architectures and training parameters settings. We further investigate the impact of the attack design parameters including injection methods, number of connections, trigger sizes, trigger edge density and poisoning ratios. Additionally, our evaluation against state-of-the-art defenses (randomized smoothing and fine-pruning) demonstrates the robustness of our proposed multi-target attacks. This work highlights the GNN vulnerability against multi-targeted backdoor attack in graph classification task. Our source codes will be available at https://github.com/SiSL-URI/Multi-Targeted-Graph-Backdoor-Attack.
Panther: Faster and Cheaper Computations with Randomized Numerical Linear Algebra
Training modern deep learning models is increasingly constrained by GPU memory and compute limits. While Randomized Numerical Linear Algebra (RandNLA) offers proven techniques to compress these models, the lack of a unified, production-grade library prevents widely adopting these methods. We present Panther, a PyTorch-compatible library that consolidates established RandNLA algorithms into a single high-performance framework. Panther engineers efficient, drop-in replacements for standard components including sketched linear layers, 2D convolution, multi-head attention, and randomized matrix decompositions (such as pivoted CholeskyQR). By implementing a custom C++/CUDA backend (pawX), Panther provides an optimized implementation that can run on both CPUs and GPUs. We demonstrate the effectiveness of RandNLA techniques and Panther's ease of adoption. By replacing standard PyTorch linear layers with Panther layers (requiring only a few lines of code) we achieve significant memory savings (up to 75%) on BERT while maintaining comparable loss. Source code is available (MIT License) at https://github.com/FahdSeddik/panther, along with demonstration video at https://youtu.be/7M3RQb4KWxs.
comment: 5 pages, 3 figures, 2 listings
Chunking, Retrieval, and Re-ranking: An Empirical Evaluation of RAG Architectures for Policy Document Question Answering
The integration of Large Language Models (LLMs) into the public health policy sector offers a transformative approach to navigating the vast repositories of regulatory guidance maintained by agencies such as the Centers for Disease Control and Prevention (CDC). However, the propensity for LLMs to generate hallucinations, defined as plausible but factually incorrect assertions, presents a critical barrier to the adoption of these technologies in high-stakes environments where information integrity is non-negotiable. This empirical evaluation explores the effectiveness of Retrieval-Augmented Generation (RAG) architectures in mitigating these risks by grounding generative outputs in authoritative document context. Specifically, this study compares a baseline Vanilla LLM against Basic RAG and Advanced RAG pipelines utilizing cross-encoder re-ranking. The experimental framework employs a Mistral-7B-Instruct-v0.2 model and an all-MiniLM-L6-v2 embedding model to process a corpus of official CDC policy analytical frameworks and guidance documents. The analysis measures the impact of two distinct chunking strategies, recursive character-based and token-based semantic splitting, on system accuracy, measured through faithfulness and relevance scores across a curated set of complex policy scenarios. Quantitative findings indicate that while Basic RAG architectures provide a substantial improvement in faithfulness (0.621) over Vanilla baselines (0.347), the Advanced RAG configuration achieves a superior faithfulness average of 0.797. These results demonstrate that two-stage retrieval mechanisms are essential for achieving the precision required for domain-specific policy question answering, though structural constraints in document segmentation remain a significant bottleneck for multi-step reasoning tasks.
Reflexis: Supporting Reflexivity and Rigor in Collaborative Qualitative Analysis through Design for Deliberation
Reflexive Thematic Analysis (RTA) is a critical method for generating deep interpretive insights. Yet its core tenets, including researcher reflexivity, tangible analytical evolution, and productive disagreement, are often poorly supported by software tools that prioritize speed and consensus over interpretive depth. To address this gap, we introduce Reflexis, a collaborative workspace that centers these practices. It supports reflexivity by integrating in-situ reflection prompts, makes code evolution transparent and tangible, and scaffolds collaborative interpretation by turning differences into productive, positionality-aware dialogue. Results from our paired-analyst study (N=12) indicate that Reflexis encouraged participants toward more granular reflection and reframed disagreements as productive conversations. The evaluation also surfaced key design tensions, including a desire for higher-level, networked memos and more user control over the timing of proactive alerts. Reflexis contributes a design framework for tools that prioritize rigor and transparency to support deep, collaborative interpretation in an age of automation.
comment: Accepted at CHI 26
A tensor network formalism for neuro-symbolic AI
The unification of neural and symbolic approaches to artificial intelligence remains a central open challenge. In this work, we introduce a tensor network formalism, which captures sparsity principles originating in the different approaches in tensor decompositions. In particular, we describe a basis encoding scheme for functions and model neural decompositions as tensor decompositions. The proposed formalism can be applied to represent logical formulas and probability distributions as structured tensor decompositions. This unified treatment identifies tensor network contractions as a fundamental inference class and formulates efficiently scaling reasoning algorithms, originating from probability theory and propositional logic, as contraction message passing schemes. The framework enables the definition and training of hybrid logical and probabilistic models, which we call Hybrid Logic Network. The theoretical concepts are accompanied by the python library tnreason, which enables the implementation and practical use of the proposed architectures.
comment: 51 pages, 14 figures
Not Your Typical Sycophant: The Elusive Nature of Sycophancy in Large Language Models
We propose a novel way to evaluate sycophancy of LLMs in a direct and neutral way, mitigating various forms of uncontrolled bias, noise, or manipulative language, deliberately injected to prompts in prior works. A key novelty in our approach is the use of LLM-as-a-judge, evaluation of sycophancy as a zero-sum game in a bet setting. Under this framework, sycophancy serves one individual (the user) while explicitly incurring cost on another. Comparing four leading models - Gemini 2.5 Pro, ChatGpt 4o, Mistral-Large-Instruct-2411, and Claude Sonnet 3.7 - we find that while all models exhibit sycophantic tendencies in the common setting, in which sycophancy is self-serving to the user and incurs no cost on others, Claude and Mistral exhibit "moral remorse" and over-compensate for their sycophancy in case it explicitly harms a third party. Additionally, we observed that all models are biased toward the answer proposed last. Crucially, we find that these two phenomena are not independent; sycophancy and recency bias interact to produce `constructive interference' effect, where the tendency to agree with the user is exacerbated when the user's opinion is presented last.
Ambient Dataloops: Generative Models for Dataset Refinement
We propose Ambient Dataloops, an iterative framework for refining datasets that makes it easier for diffusion models to learn the underlying data distribution. Modern datasets contain samples of highly varying quality, and training directly on such heterogeneous data often yields suboptimal models. We propose a dataset-model co-evolution process; at each iteration of our method, the dataset becomes progressively higher quality, and the model improves accordingly. To avoid destructive self-consuming loops, at each generation, we treat the synthetically improved samples as noisy, but at a slightly lower noisy level than the previous iteration, and we use Ambient Diffusion techniques for learning under corruption. Empirically, Ambient Dataloops achieve state-of-the-art performance in unconditional and text-conditional image generation and de novo protein design. We further provide a theoretical justification for the proposed framework that captures the benefits of the data looping procedure.
comment: 27 pages, 9 figures, 11 tables
DuFal: Dual-Frequency-Aware Learning for High-Fidelity Extremely Sparse-view CBCT Reconstruction
Sparse-view Cone-Beam Computed Tomography reconstruction from limited X-ray projections remains a challenging problem in medical imaging due to the inherent undersampling of fine-grained anatomical details, which correspond to high-frequency components. Conventional CNN-based methods often struggle to recover these fine structures, as they are typically biased toward learning low-frequency information. To address this challenge, this paper presents DuFal (Dual-Frequency-Aware Learning), a novel framework that integrates frequency-domain and spatial-domain processing via a dual-path architecture. The core innovation lies in our High-Local Factorized Fourier Neural Operator, which comprises two complementary branches: a Global High-Frequency Enhanced Fourier Neural Operator that captures global frequency patterns and a Local High-Frequency Enhanced Fourier Neural Operator that processes spatially partitioned patches to preserve spatial locality that might be lost in global frequency analysis. To improve efficiency, we design a Spectral-Channel Factorization scheme that reduces the Fourier Neural Operator parameter count. We also design a Cross-Attention Frequency Fusion module to integrate spatial and frequency features effectively. The fused features are then decoded through a Feature Decoder to produce projection representations, which are subsequently processed through an Intensity Field Decoding pipeline to reconstruct a final Computed Tomography volume. Experimental results on the LUNA16 and ToothFairy datasets demonstrate that DuFal significantly outperforms existing state-of-the-art methods in preserving high-frequency anatomical features, particularly under extremely sparse-view settings.
comment: Published with J2C Certification in Transactions on Machine Learning Research (TMLR)
A Checklist for Trustworthy, Safe, and User-Friendly Mental Health Chatbots
Mental health concerns are rising globally, prompting increased reliance on technology to address the demand-supply gap in mental health services. In particular, mental health chatbots are emerging as a promising solution, but these remain largely untested, raising concerns about safety and potential harms. In this paper, we dive into the literature to identify critical gaps in the design and implementation of mental health chatbots. We contribute an operational checklist to help guide the development and design of more trustworthy, safe, and user-friendly chatbots. The checklist serves as both a developmental framework and an auditing tool to ensure ethical and effective chatbot design. We discuss how this checklist is a step towards supporting more responsible design practices and supporting new standards for sociotechnically sound digital mental health tools.
CURE: Curriculum-guided Multi-task Training for Reliable Anatomy Grounded Report Generation CVPR 2026
Medical vision-language models can automate the generation of radiology reports but struggle with accurate visual grounding and factual consistency. Existing models often misalign textual findings with visual evidence, leading to unreliable or weakly grounded predictions. We present CURE, an error-aware curriculum learning framework that improves grounding and report quality without any additional data. CURE fine-tunes a multimodal instructional model on phrase grounding, grounded report generation, and anatomy-grounded report generation using public datasets. The method dynamically adjusts sampling based on model performance, emphasizing harder samples to improve spatial and textual alignment. CURE improves grounding accuracy by +0.37 IoU, boosts report quality by +0.188 CXRFEScore, and reduces hallucinations by 18.6%. CURE is a data-efficient framework that enhances both grounding accuracy and report reliability. Code is available at https://github.com/PabloMessina/CURE and model weights at https://huggingface.co/pamessina/medgemma-4b-it-cure
comment: 31 pages, 7 figures, submitted to CVPR 2026 (under review)
Beyond Prompting: Efficient and Robust Contextual Biasing for Speech LLMs via Logit-Space Integration (LOGIC)
The rapid emergence of new entities -- driven by cultural shifts, evolving trends, and personalized user data -- poses a significant challenge for existing Speech Large Language Models (Speech LLMs). While these models excel at general conversational tasks, their static training knowledge limits their ability to recognize domain-specific terms such as contact names, playlists, or technical jargon. Existing solutions primarily rely on prompting, which suffers from poor scalability: as the entity list grows, prompting encounters context window limitations, increased inference latency, and the "lost-in-the-middle" phenomenon. An alternative approach, Generative Error Correction (GEC), attempts to rewrite transcripts via post-processing but frequently suffers from "over-correction", introducing hallucinations of entities that were never spoken. In this work, we introduce LOGIC (Logit-Space Integration for Contextual Biasing), an efficient and robust framework that operates directly in the decoding layer. Unlike prompting, LOGIC decouples context injection from input processing, ensuring constant-time complexity relative to prompt length. Extensive experiments using the Phi-4-MM model across 11 multilingual locales demonstrate that LOGIC achieves an average 9% relative reduction in Entity WER with a negligible 0.30% increase in False Alarm Rate.
Beyond Fixed Psychological Personas: State Beats Trait, but Language Models are State-Blind
User interactions with language models vary due to static properties of the user (trait) and the specific context of the interaction (state). However, existing persona datasets (like PersonaChat, PANDORA etc.) capture only trait, and ignore the impact of state. We introduce Chameleon, a dataset of 5,001 contextual psychological profiles from 1,667 Reddit users, each measured across multiple contexts. Using the Chameleon dataset, we present three key findings. First, inspired by Latent State-Trait theory, we decompose variance and find that 74\% is within-person(state) while only 26\% is between-person (trait). Second, we find that LLMs are state-blind: they focus on trait only, and produce similar responses regardless of state. Third, we find that reward models react to user state, but inconsistently: different models favor or penalize the same users in opposite directions. We release Chameleon to support research on affective computing, personalized dialogue, and RLHF alignment.
GeMM-GAN: A Multimodal Generative Model Conditioned on Histopathology Images and Clinical Descriptions for Gene Expression Profile Generation
Biomedical research increasingly relies on integrating diverse data modalities, including gene expression profiles, medical images, and clinical metadata. While medical images and clinical metadata are routinely collected in clinical practice, gene expression data presents unique challenges for widespread research use, mainly due to stringent privacy regulations and costly laboratory experiments. To address these limitations, we present GeMM-GAN, a novel Generative Adversarial Network conditioned on histopathology tissue slides and clinical metadata, designed to synthesize realistic gene expression profiles. GeMM-GAN combines a Transformer Encoder for image patches with a final Cross Attention mechanism between patches and text tokens, producing a conditioning vector to guide a generative model in generating biologically coherent gene expression profiles. We evaluate our approach on the TCGA dataset and demonstrate that our framework outperforms standard generative models and generates more realistic and functionally meaningful gene expression profiles, improving by more than 11\% the accuracy on downstream disease type prediction compared to current state-of-the-art generative models. Code will be available at: https://github.com/francescapia/GeMM-GAN
comment: 12 pages, 2 figures. Published at Image Analysis and Processing - ICIAP 2025 Workshops
LLM-based Multimodal Feedback Produces Equivalent Learning and Better Student Perceptions than Educator Feedback
Providing timely, targeted, and multimodal feedback helps students quickly correct errors, build deep understanding and stay motivated, yet making it at scale remains a challenge. This study introduces a real-time AI-facilitated multimodal feedback system that integrates structured textual explanations with dynamic multimedia resources, including the retrieved most relevant slide page references and streaming AI audio narration. In an online crowdsourcing experiment, we compared this system against fixed business-as-usual feedback by educators across three dimensions: (1) learning effectiveness, (2) learner engagement, (3) perceived feedback quality and value. Results showed that AI multimodal feedback achieved learning gains equivalent to original educator feedback while significantly outperforming it on perceived clarity, specificity, conciseness, motivation, satisfaction, and reducing cognitive load, with comparable correctness, trust, and acceptance. Process logs revealed distinct engagement patterns: for multiple-choice questions, educator feedback encouraged more submissions; for open-ended questions, AI-facilitated targeted suggestions lowered revision barriers and promoted iterative improvement. These findings highlight the potential of AI multimodal feedback to provide scalable, real-time, and context-aware support that both reduces instructor workload and enhances student experience.
comment: 11 pages, to be published at the 16th International Learning Analytics & Knowledge Conference (LAK '26)
Improving MoE Compute Efficiency by Composing Weight and Data Sparsity
Mixture-of-Experts layers achieve compute efficiency through weight sparsity: each token activates only a subset of experts. Data sparsity, where each expert processes only a subset of tokens, offers a complementary axis. Expert-choice routing implements data sparsity directly but violates causality in autoregressive models, creating train-inference mismatch. We recover data sparsity within causal token-choice MoE by leveraging zero-compute (null) experts within the routing pool. When a token routes to null experts, those slots consume no compute. The standard load balancing objective trains the model to uniformly use all experts (real and null) therefore creating data sparsity in expectation without the causality violations. We evaluate on vision-language model training, where data heterogeneity is pronounced: vision encoders produce many low-information tokens while text tokens are denser. At matched expected FLOPs, composing weight and data sparsity yields a more compute-efficient frontier than weight sparsity alone, with gains in training loss and downstream performance. The model learns implicit modality-aware allocation, routing vision tokens to null experts more aggressively than text, without explicit modality routing.
OpenVision 3: A Family of Unified Visual Encoder for Both Understanding and Generation
This paper presents a family of advanced vision encoder, named OpenVision 3, that learns a single, unified visual representation that can serve both image understanding and image generation. Our core architecture is simple: we feed VAE-compressed image latents to a ViT encoder and train its output to support two complementary roles. First, the encoder output is passed to the ViT-VAE decoder to reconstruct the original image, encouraging the representation to capture generative structure. Second, the same representation is optimized with contrastive learning and image-captioning objectives, strengthening semantic features. By jointly optimizing reconstruction- and semantics-driven signals in a shared latent space, the encoder learns representations that synergize and generalize well across both regimes. We validate this unified design through extensive downstream evaluations with the encoder frozen. For multimodal understanding, we plug the encoder into the LLaVA-1.5 framework: it performs comparably with a standard CLIP vision encoder (e.g., 62.4 vs 62.2 on SeedBench, and 83.7 vs 82.9 on POPE). For generation, we test it under the RAE framework: ours substantially surpasses the standard CLIP-based encoder (e.g., gFID: 1.89 vs 2.54 on ImageNet). We hope this work can spur future research on unified modeling.
Scalable Stewardship of an LLM-Assisted Clinical Benchmark with Physician Oversight
We examine the reliability of a widely used clinical AI benchmark whose reference labels were partially generated by LLMs, and find that a substantial fraction are clinically misaligned. We introduce a phased stewardship procedure to amplify the positive impact of physician experts' feedback and then demonstrate, via a controlled RL experiment, how uncaught label bias can materially affect downstream LLM evaluation and alignment. Our results demonstrate that partially LLM-generated labels can embed systemic errors that distort not only evaluation but also downstream model alignment. By adopting a hybrid oversight system, we can prioritize scarce expert feedback to maintain benchmarks as living, clinically-grounded documents. Ensuring this alignment is a prerequisite for the safe deployment of LLMs in high-stakes medical decision support.
comment: Project codebase: https://github.com/junzeye/validate-medcalc-labels
Beyond Automation: Rethinking Work, Creativity, and Governance in the Age of Generative AI
The rapid expansion of generative artificial intelligence (AI) is transforming work, creativity, and economic security in ways that extend beyond automation and productivity. This paper examines four interconnected dimensions of contemporary AI deployment: (1) transformations in employment and task composition (2) unequal diffusion of AI across sectors and socio-demographic groups (3) the role of universal basic income (UBI) as a stabilising response to AI-induced volatility (4) the effects of model alignment and content governance on human creativity, autonomy, and decision-making Using a hybrid approach that integrates labour market task exposure modelling, sectoral diffusion analysis, policy review, and qualitative discourse critique, the study develops an Inclusive AI Governance Framework. It introduces Level 1.5 autonomy as a human centred design principle that preserves evaluative authority while enabling partial automation, and highlights evidence of creative regression and emergent sycophancy in newer model generations. The paper argues that UBI should be embedded within a broader socio-technical governance ecosystem encompassing skills development, proportional regulation, and creativity preservation.
comment: Improved structure and clarity of the introduction and literature review; explicit articulation of the paper's contributions; refined the integration of AI across labour, UBI, and governance
On the Reliability and Stability of Selective Methods in Malware Classification Tasks
The performance figures of modern drift-adaptive malware classifiers appear promising, but does this translate to genuine operational reliability? The standard evaluation paradigm primarily focuses on baseline performance metrics, neglecting confidence-error alignment and operational stability. While prior works established the importance of temporal evaluation and introduced selective classification in malware classification tasks, we take a complementary direction by investigating whether malware classifiers maintain reliable and stable confidence estimates under distribution shifts and exploring the tensions between scientific advancement and practical impacts when they do not. We propose Aurora, a framework to evaluate malware classifiers based on their confidence quality and operational resilience. Aurora subjects the confidence profile of a given model to verification to assess the reliability of its estimates. Unreliable confidence estimates erode operational trust, waste valuable annotation budgets on non-informative samples for active learning, and leave error-prone instances undetected in selective classification. Aurora is further complemented by a set of metrics designed to go beyond point-in-time performance, striving towards a more holistic assessment of operational stability throughout temporal evaluation periods. The fragility we observe in SOTA frameworks across datasets of varying drift severity suggests it may be time to revisit the underlying assumptions.
Diffusion In Diffusion: Reclaiming Global Coherence in Semi-Autoregressive Diffusion
One of the most compelling features of global discrete diffusion language models is their global bidirectional contextual capability. However, existing block-based diffusion studies tend to introduce autoregressive priors, which, while offering benefits, can cause models to lose this global coherence at the macro level. To regain global contextual understanding while preserving the advantages of the semi-autoregressive paradigm, we propose Diffusion in Diffusion, a 'draft-then-refine' framework designed to overcome the irreversibility and myopia problems inherent in block diffusion models. Our approach first employs block diffusion to generate rapid drafts using small blocks, then refines these drafts through global bidirectional diffusion with a larger bidirectional receptive field. We utilize snapshot confidence remasking to identify the most critical tokens that require modification, and apply mix-scale training to expand the block diffusion model's global capabilities. Empirical results demonstrate that our approach sets a new benchmark for discrete diffusion models on the OpenWebText dataset. Using only 26% of the fine-tuning budget of baseline models, we reduce generative perplexity from 25.7 to 21.9, significantly narrowing the performance gap with autoregressive models.
comment: Work In Progress
From Construction to Injection: Edit-Based Fingerprints for Large Language Models
Establishing reliable and verifiable fingerprinting mechanisms is fundamental to controlling the unauthorized redistribution of large language models (LLMs). However, existing approaches face two major challenges: (a) ensuring imperceptibility, including resistance to statistical identification and avoidance of accidental activation during fingerprint construction, and (b) preserving both model utility and fingerprint detectability under subsequent model modifications. To address these challenges, we propose an end-to-end fingerprinting framework with two components. First, we design a rule-based code-mixing fingerprint (CF) that maps natural-query-like prompts to multi-candidate targets, reducing accidental triggering via high-complexity code-mixing formulations. Second, we introduce Multi-Candidate Editing (MCEdit), which jointly optimizes multi-candidate targets and enforces margins between target and non-target outputs to improve post-modification detectability. Extensive experiments demonstrate that our framework provides a robust and practical solution for fingerprinting LLMs.
comment: preprint
Designing AI-Resilient Assessments Using Interconnected Problems: A Theoretically Grounded and Empirically Validated Framework
The proliferation of generative AI tools has rendered traditional modular assessments in computing and data-centric education increasingly ineffective, creating a disconnect between academic evaluation and authentic skill measurement. This paper presents a theoretically grounded framework for designing AI-resilient assessments, supported by formal analysis and empirical validation. We make three primary contributions. First, we establish two formal propositions. (1) Assessments composed of interconnected problems, in which outputs serve as inputs to subsequent tasks, are inherently more AI-resilient than modular assessments due to their reliance on multi-step reasoning and sustained context. (2) Semi-structured problems with deterministic success criteria provide more reliable measures of student competency than fully open-ended projects, which allow AI systems to default to familiar solution templates. These results challenge widely cited recommendations in recent institutional and policy guidance that promote open-ended assessments as inherently more robust to AI assistance. Second, we validate these propositions through empirical analysis of three university data science courses (N = 117). We observe a substantial AI inflation effect: students achieve near-perfect scores on AI-assisted modular homework, while performance drops by approximately 30 percentage points on proctored exams (Cohen d = 1.51). In contrast, interconnected projects remain strongly aligned with modular assessments (r = 0.954, p < 0.001) while maintaining AI resistance, whereas proctored exams show weaker alignment (r = 0.726, p < 0.001). Third, we translate these findings into a practical assessment design procedure that enables educators to construct evaluations that promote deeper engagement, reflect industry practice, and resist trivial AI delegation.
comment: 8 pages, 3 figures and 3 tables, under submission to IEEE FIE
SPECTRE: Conditional System Prompt Poisoning to Hijack LLMs
Large Language Models (LLMs) are increasingly deployed via third-party system prompts downloaded from public marketplaces. We identify a critical supply-chain vulnerability: conditional system prompt poisoning, where an adversary injects a ``sleeper agent'' into a benign-looking prompt. Unlike traditional jailbreaks that aim for broad refusal-breaking, our proposed framework, SPECTRE, optimizes system prompts to trigger LLMs to output targeted, compromised responses only for specific queries (e.g., ``Who should I vote for the US President?'') while maintaining high utility on benign inputs. Operating in a strict black-box setting without model weight access, SPECTRE utilizes a two-stage optimization including a global semantic search followed by a greedy lexical refinement. Tested on open-source models and commercial APIs (GPT-4o-mini, GPT-3.5), SPECTRE achieves up to 70% F1 reduction on targeted queries with minimal degradation to general capabilities. We further demonstrate that these poisoned prompts evade standard defenses, including perplexity filters and typo-correction, by exploiting the natural noise found in real-world system prompts. Our code and data are available at https://github.com/vietph34/CAIN. WARNING: Our paper contains examples that might be sensitive to the readers!
Targeting Alignment: Extracting Safety Classifiers of Aligned LLMs
Alignment in large language models (LLMs) is used to enforce guidelines such as safety. Yet, alignment fails in the face of jailbreak attacks that modify inputs to induce unsafe outputs. In this paper, we introduce and evaluate a new technique for jailbreak attacks. We observe that alignment embeds a safety classifier in the LLM responsible for deciding between refusal and compliance, and seek to extract an approximation of this classifier: a surrogate classifier. To this end, we build candidate classifiers from subsets of the LLM. We first evaluate the degree to which candidate classifiers approximate the LLM's safety classifier in benign and adversarial settings. Then, we attack the candidates and measure how well the resulting adversarial inputs transfer to the LLM. Our evaluation shows that the best candidates achieve accurate agreement (an F1 score above 80%) using as little as 20% of the model architecture. Further, we find that attacks mounted on the surrogate classifiers can be transferred to the LLM with high success. For example, a surrogate using only 50% of the Llama 2 model achieved an attack success rate (ASR) of 70% with half the memory footprint and runtime -- a substantial improvement over attacking the LLM directly, where we only observed a 22% ASR. These results show that extracting surrogate classifiers is an effective and efficient means for modeling (and therein addressing) the vulnerability of aligned models to jailbreaking attacks. The code is available at https://github.com/jcnf0/targeting-alignment.
comment: Accepted to 2026 IEEE Secure and Trustworthy Machine Learning Conference (SaTML)
OSMa-Bench: Evaluating Open Semantic Mapping Under Varying Lighting Conditions
Open Semantic Mapping (OSM) is a key technology in robotic perception, combining semantic segmentation and SLAM techniques. This paper introduces a dynamically configurable and highly automated LLM/LVLM-powered pipeline for evaluating OSM solutions called OSMa-Bench (Open Semantic Mapping Benchmark). The study focuses on evaluating state-of-the-art semantic mapping algorithms under varying indoor lighting conditions, a critical challenge in indoor environments. We introduce a novel dataset with simulated RGB-D sequences and ground truth 3D reconstructions, facilitating the rigorous analysis of mapping performance across different lighting conditions. Through experiments on leading models such as ConceptGraphs, BBQ, and OpenScene, we evaluate the semantic fidelity of object recognition and segmentation. Additionally, we introduce a Scene Graph evaluation method to analyze the ability of models to interpret semantic structure. The results provide insights into the robustness of these models, forming future research directions for developing resilient and adaptable robotic systems. Project page is available at https://be2rlab.github.io/OSMa-Bench/.
comment: Project page: https://be2rlab.github.io/OSMa-Bench/
Finding Kissing Numbers with Game-theoretic Reinforcement Learning
Since Isaac Newton first studied the Kissing Number Problem in 1694, determining the maximal number of non-overlapping spheres around a central sphere has remained a fundamental challenge. This problem represents the local analogue of Hilbert's 18th problem on sphere packing, bridging geometry, number theory, and information theory. Although significant progress has been made through lattices and codes, the irregularities of high-dimensional geometry and exponentially growing combinatorial complexity beyond 8 dimensions, which exceeds the complexity of Go game, limit the scalability of existing methods. Here we model this problem as a two-player matrix completion game that can be fully parallelized at large scale, and train the game-theoretic reinforcement learning system, PackingStar, to efficiently explore high-dimensional spaces. The matrix entries represent pairwise cosines of sphere center vectors; one player fills entries while another corrects suboptimal ones, jointly maximizing the matrix size, corresponding to the kissing number. This cooperative dynamics substantially improves sample quality, making the extremely large spaces tractable. PackingStar reproduces previous configurations and surpasses all human-known records from dimensions 25 to 31, with the configuration in 25 dimensions geometrically corresponding to the Leech lattice and suggesting possible optimality. It achieves the first breakthrough beyond rational structures from 1971 in 13 dimensions, discovers over 6000 new structures in 14 and other dimensions, and establishes new records for generalized kissing configurations under various angular constraints. These results demonstrate AI's power to explore high-dimensional spaces beyond human intuition and open new pathways for the Kissing Number Problem and broader geometry problems.
Composite Flow Matching for Reinforcement Learning with Shifted-Dynamics Data NeurIPS 2025
Incorporating pre-collected offline data can substantially improve the sample efficiency of reinforcement learning (RL), but its benefits can break down when the transition dynamics in the offline dataset differ from those encountered online. Existing approaches typically mitigate this issue by penalizing or filtering offline transitions in regions with large dynamics gap. However, their dynamics-gap estimators often rely on KL divergence or mutual information, which can be ill-defined when offline and online dynamics have mismatched support. To address this challenge, we propose CompFlow, a principled framework built on the theoretical connection between flow matching and optimal transport. Specifically, we model the online dynamics as a conditional flow built upon the output distribution of a pretrained offline flow, rather than learning it directly from a Gaussian prior. This composite structure provides two advantages: (1) improved generalization when learning online dynamics under limited interaction data, and (2) a well-defined and stable estimate of the dynamics gap via the Wasserstein distance between offline and online transitions. Building on this dynamics-gap estimator, we further develop an optimistic active data collection strategy that prioritizes exploration in high-gap regions, and show theoretically that it reduces the performance gap to the optimal policy. Empirically, CompFlow consistently outperforms strong baselines across a range of RL benchmarks with shifted-dynamics data.
comment: NeurIPS 2025 Spotlight
The Good, the Bad and the Ugly: Meta-Analysis of Watermarks, Transferable Attacks and Adversarial Defenses ICML 2024
We formalize and analyze the trade-off between backdoor-based watermarks and adversarial defenses, framing it as an interactive protocol between a verifier and a prover. While previous works have primarily focused on this trade-off, our analysis extends it by identifying transferable attacks as a third, counterintuitive, but necessary option. Our main result shows that for all learning tasks, at least one of the three exists: a watermark, an adversarial defense, or a transferable attack. By transferable attack, we refer to an efficient algorithm that generates queries indistinguishable from the data distribution and capable of fooling all efficient defenders. Using cryptographic techniques, specifically fully homomorphic encryption, we construct a transferable attack and prove its necessity in this trade-off. Finally, we show that tasks of bounded VC-dimension allow adversarial defenses against all attackers, while a subclass allows watermarks secure against fast adversaries.
comment: 47 pages, 3 figures, 4 tables, preliminary version published in ICML 2024 (Workshop on Theoretical Foundations of Foundation Models) and , see https://openreview.net/pdf?id=WMaFRiggwV
From Charts to Code: A Hierarchical Benchmark for Multimodal Models
We introduce Chart2Code, a new benchmark for evaluating the chart understanding and code generation capabilities of large multimodal models (LMMs). Chart2Code is explicitly designed from a user-driven perspective, capturing diverse real-world scenarios and progressively increasing task difficulty. It consists of three levels: Level 1 (Chart Reproduction) reproduces charts from a reference figure and user query; Level 2 (Chart Editing) involves complex modifications such as changing chart types or adding elements; and Level 3 (Long-Table to Chart Generation) requires models to transform long, information-dense tables into faithful charts following user instructions. To our knowledge, this is the first hierarchical benchmark that reflects practical chart2code usage while systematically scaling task complexity. In total, Chart2Code contains 2,023 tasks across 22 chart types, paired with multi-level evaluation metrics that assess both code correctness and the visual fidelity of rendered charts. We benchmark 25 state-of-the-art (SoTA) LMMs, including both proprietary and the latest open-source models such as GPT-5, Qwen2.5-VL, InternVL3/3.5, MiMo-VL, and Seed-1.6-VL. Experimental results demonstrate that even the SoTA model GPT-5 averages only 0.57 on code-based evaluation and 0.22 on chart-quality assessment across the editing tasks, underscoring the difficulty of Chart2Code. We anticipate this benchmark will drive advances in multimodal reasoning and foster the development of more robust and general-purpose LMMs. Our code and data are available on Chart2Code.
Does Object Binding Naturally Emerge in Large Pretrained Vision Transformers? NeurIPS 2025
Object binding, the brain's ability to bind the many features that collectively represent an object into a coherent whole, is central to human cognition. It groups low-level perceptual features into high-level object representations, stores those objects efficiently and compositionally in memory, and supports human reasoning about individual object instances. While prior work often imposes object-centric attention (e.g., Slot Attention) explicitly to probe these benefits, it remains unclear whether this ability naturally emerges in pre-trained Vision Transformers (ViTs). Intuitively, they could: recognizing which patches belong to the same object should be useful for downstream prediction and thus guide attention. Motivated by the quadratic nature of self-attention, we hypothesize that ViTs represent whether two patches belong to the same object, a property we term IsSameObject. We decode IsSameObject from patch embeddings across ViT layers using a quadratic similarity probe, which reaches over 90% accuracy. Crucially, this object-binding capability emerges reliably in DINO, CLIP, and ImageNet-supervised ViTs, but is markedly weaker in MAE, suggesting that binding is not a trivial architectural artifact, but an ability acquired through specific pretraining objectives. We further discover that IsSameObject is encoded in a low-dimensional subspace on top of object features, and that this signal actively guides attention. Ablating IsSameObject from model activations degrades downstream performance and works against the learning objective, implying that emergent object binding naturally serves the pretraining objective. Our findings challenge the view that ViTs lack object binding and highlight how symbolic knowledge of "which parts belong together" emerges naturally in a connectionist system.
comment: Accepted as a Spotlight at NeurIPS 2025
Competitive Audio-Language Models with Data-Efficient Single-Stage Training on Public Data
Large language models (LLMs) have transformed NLP, yet their integration with audio remains underexplored despite audio's centrality to human communication. We introduce Falcon3-Audio, a family of Audio-Language Models (ALMs) built on instruction-tuned LLMs and Whisper encoders. Using a remarkably small amount of public audio data, less than 30K hours (5K unique), Falcon3-Audio-7B matches the best reported performance among open-weight models on the MMAU benchmark, with a score of 64.14, matching R1-AQA, while distinguishing itself through superior data and parameter efficiency, single-stage training, and transparency. Notably, our smallest 1B model remains competitive with larger open models ranging from 2B to 13B parameters. Through extensive ablations, we find that common complexities such as curriculum learning, multiple audio encoders, and intricate cross-attention connectors are not required for strong performance, even compared to models trained on over 500K hours of data.
comment: Accepted at ASRU 2025
PPGFlowECG: Latent Rectified Flow with Cross-Modal Encoding for PPG-Guided ECG Generation and Cardiovascular Disease Detection
Electrocardiography (ECG) is the clinical gold standard for cardiovascular disease (CVD) assessment, yet continuous monitoring is constrained by the need for dedicated hardware and trained personnel. Photoplethysmography (PPG) is ubiquitous in wearable devices and readily scalable, but it lacks electrophysiological specificity, limiting diagnostic reliability. While generative methods aim to translate PPG into clinically useful ECG signals, existing approaches are limited by the misalignment of physiological semantics in generative models and the complexity of modeling in high-dimensional signals. To address these limitations, we propose PPGFlowECG, a two-stage framework that aligns PPG and ECG in a shared latent space using the CardioAlign Encoder and then synthesizes ECGs with latent rectified flow. We further provide a formal analysis of this coupling, showing that the CardioAlign Encoder is necessary to guarantee stable and semantically consistent ECG synthesis under our formulation. Extensive experiments on four datasets demonstrate improved synthesis fidelity and downstream diagnostic utility. These results indicate that PPGFlowECG supports scalable, wearable-first CVD screening when standard ECG acquisition is unavailable.
Token Maturation: Autoregressive Language Generation via Continuous Token Dynamics ICML 2026
Standard autoregressive language models collapse uncertainty at every generation step by committing to discrete tokens through immediate sampling. This premature discretization underlies well-known failure modes, including degenerate repetition loops in greedy decoding and a heavy reliance on heuristic sampling strategies. We introduce \textbf{Token Maturation}, a continuous autoregressive framework in which tokens evolve as vector-valued trajectories prior to discretization. Rather than sampling from a categorical distribution at each step, the model resolves uncertainty through a deterministic dynamical process in embedding space, deferring discrete commitment until the representation has geometrically stabilized. We show that this formulation mitigates degeneration \emph{intrinsically}: Token Maturation generates coherent and diverse text under fully deterministic decoding (argmax), without repetition penalties, temperature scaling, or stochastic sampling. Moreover, we identify a novel convergence behavior in which token representations stabilize spatially while predictive entropy remains high, challenging the common assumption that commitment requires probability concentration. We propose continuous token dynamics with delayed commitment as an alternative formulation of autoregressive generation that exposes structural regularities obscured by immediate discretization.
comment: In preperation to ICML 2026
Sora as a World Model? A Complete Survey on Text-to-Video Generation
The evolution of video generation from text, from animating MNIST to simulating the world with Sora, has progressed at a breakneck speed. Here, we systematically discuss how far text-to-video generation technology supports essential requirements in world modeling. We curate 250+ studies on text-based video synthesis and world modeling. We then observe that recent models increasingly support spatial, action, and strategic intelligences in world modeling through adherence to completeness, consistency, invention, as well as human interaction and control. We conclude that text-to-video generation is adept at world modeling, although homework in several aspects, such as the diversity-consistency trade-offs, remains to be addressed.
comment: First complete survey on Text-to-Video Generation from World Model perspective, 35 pages
Training-Free In-Context Forensic Chain for Image Manipulation Detection and Localization
Advances in image tampering pose serious security threats, underscoring the need for effective image manipulation localization (IML). While supervised IML achieves strong performance, it depends on costly pixel-level annotations. Existing weakly supervised or training-free alternatives often underperform and lack interpretability. We propose the In-Context Forensic Chain (ICFC), a training-free framework that leverages multi-modal large language models (MLLMs) for interpretable IML tasks. ICFC integrates an objectified rule construction with adaptive filtering to build a reliable knowledge base and a multi-step progressive reasoning pipeline that mirrors expert forensic workflows from coarse proposals to fine-grained forensics results. This design enables systematic exploitation of MLLM reasoning for image-level classification, pixel-level localization, and text-level interpretability. Across multiple benchmarks, ICFC not only surpasses state-of-the-art training-free methods but also achieves competitive or superior performance compared to weakly and fully supervised approaches.
comment: This version was uploaded in error and contains misleading information found in an early draft. The manuscript requires extensive and long-term revisions
Debate-Enhanced Pseudo Labeling and Frequency-Aware Progressive Debiasing for Weakly-Supervised Camouflaged Object Detection with Scribble Annotations
Weakly-Supervised Camouflaged Object Detection (WSCOD) aims to locate and segment objects that are visually concealed within their surrounding scenes, relying solely on sparse supervision such as scribble annotations. Despite recent progress, existing WSCOD methods still lag far behind fully supervised ones due to two major limitations: (1) the pseudo masks generated by general-purpose segmentation models (e.g., SAM) and filtered via rules are often unreliable, as these models lack the task-specific semantic understanding required for effective pseudo labeling in COD; and (2) the neglect of inherent annotation bias in scribbles, which hinders the model from capturing the global structure of camouflaged objects. To overcome these challenges, we propose ${D}^{3}$ETOR, a two-stage WSCOD framework consisting of Debate-Enhanced Pseudo Labeling and Frequency-Aware Progressive Debiasing. In the first stage, we introduce an adaptive entropy-driven point sampling method and a multi-agent debate mechanism to enhance the capability of SAM for COD, improving the interpretability and precision of pseudo masks. In the second stage, we design FADeNet, which progressively fuses multi-level frequency-aware features to balance global semantic understanding with local detail modeling, while dynamically reweighting supervision strength across regions to alleviate scribble bias. By jointly exploiting the supervision signals from both the pseudo masks and scribble semantics, ${D}^{3}$ETOR significantly narrows the gap between weakly and fully supervised COD, achieving state-of-the-art performance on multiple benchmarks.
Bridging the Gap Between Simulated and Real Network Data Using Transfer Learning
Machine Learning (ML)-based network models provide fast and accurate predictions for complex network behaviors but require substantial training data. Collecting such data from real networks is often costly and limited, especially for critical scenarios like failures. As a result, researchers commonly rely on simulated data, which reduces accuracy when models are deployed in real environments. We propose a hybrid approach leveraging transfer learning to combine simulated and real-world data. Using RouteNet-Fermi, we show that fine-tuning a pre-trained model with a small real dataset significantly improves performance. Our experiments with OMNeT++ and a custom testbed reduce the Mean Absolute Percentage Error (MAPE) in packet delay prediction by up to 88%. With just 10 real scenarios, MAPE drops by 37%, and with 50 scenarios, by 48%.
comment: This paper was submitted to IEEE NetSoft 2026. 7 Pages, 5 Figures
Orthogonalized Policy Optimization:Decoupling Sampling Geometry from Optimization Geometry in RLHF
Large language model alignment objectives are often presented as a collection of distinct algorithms, such as PPO, DPO, IPO, and their variants, each motivated by different derivations. In this work, we argue that this diversity obscures a simpler underlying structure. At a fundamental level, alignment objectives involve two independent design choices: (i) how training signals are sampled and weighted, and (ii) how deviations from a reference policy are geometrically penalized. Existing methods typically entangle these choices through a single divergence, most commonly the Kullback-Leibler divergence. We show that this entanglement is not merely a modeling convenience but a source of systematic instability. When the same divergence simultaneously determines sample weighting and optimization curvature, adjusting one aspect, such as exploration strength, inevitably alters the other, such as gradient geometry. This coupling is particularly problematic in preference-based reinforcement learning, where advantage signals are unbounded and high-confidence regimes are common. We propose a simple but structural remedy by formulating alignment as an orthogonal mirror descent problem, in which sampling geometry enters only as a linear driving force, while optimization geometry is determined independently by a mirror map. This perspective leads to a new alignment objective called Orthogonalized Policy Optimization (OPO), obtained by choosing a Euclidean mirror map in likelihood ratio space. The resulting objective admits a closed-form solution, linear and non-saturating gradient dynamics, and a well-conditioned trust region, while remaining fully compatible with standard large language model training pipelines.
Benchmarking the Influence of Pre-training on Explanation Performance in MR Image Classification
Convolutional Neural Networks (CNNs) are frequently and successfully used in medical prediction tasks. They are often used in combination with transfer learning, leading to improved performance when training data for the task are scarce. The resulting models are highly complex and typically do not provide any insight into their predictive mechanisms, motivating the field of "explainable" artificial intelligence (XAI). However, previous studies have rarely quantitatively evaluated the "explanation performance" of XAI methods against ground-truth data, and transfer learning and its influence on objective measures of explanation performance has not been investigated. Here, we propose a benchmark dataset that allows for quantifying explanation performance in a realistic magnetic resonance imaging (MRI) classification task. We employ this benchmark to understand the influence of transfer learning on the quality of explanations. Experimental results show that popular XAI methods applied to the same underlying model differ vastly in performance, even when considering only correctly classified examples. We further observe that explanation performance strongly depends on the task used for pre-training and the number of CNN layers pre-trained. These results hold after correcting for a substantial correlation between explanation and classification performance.
comment: Under review
Scalable Anytime Algorithms for Learning Fragments of Linear Temporal Logic
Linear temporal logic (LTL) is a specification language for finite sequences (called traces) widely used in program verification, motion planning in robotics, process mining, and many other areas. We consider the problem of learning LTL formulas for classifying traces; despite a growing interest of the research community, existing solutions suffer from two limitations: they do not scale beyond small formulas, and they may exhaust computational resources without returning any result. We introduce a new algorithm addressing both issues: our algorithm is able to construct formulas an order of magnitude larger than previous methods, and it is anytime, meaning that it in most cases successfully outputs a formula, albeit possibly not of minimal size. We evaluate the performances of our algorithm using an open source implementation against publicly available benchmarks.
Autiverse: Eliciting Autistic Adolescents' Daily Narratives through AI-guided Multimodal Journaling
Journaling can potentially serve as an effective method for autistic adolescents to improve narrative skills. However, its text-centric nature and high executive functioning demands present barriers to practice. We present Autiverse, an AI-guided multimodal journaling app for tablets that scaffolds storytelling through conversational prompts and visual supports. Autiverse elicits key details through a stepwise dialogue with peer-like, customizable AI and composes them into an editable four-panel comic strip. Through a two-week deployment study with 10 autistic adolescent-parent dyads, we examine how Autiverse supports autistic adolescents to organize their daily experience and emotion. Autiverse scaffolded adolescents' coherent narratives, while enabling parents to learn additional details of their child's events and emotions. The customized AI peer created a comfortable space for sharing, fostering enjoyment and a strong sense of agency. We discuss implications for adaptive scaffolding across autism profiles, socio-emotionally appropriate AI peer design, and balancing autonomy with parental involvement.
comment: 19 pages excluding reference. Conditionally accepted to ACM CHI 2026
Intrinsic Dimension Estimating Autoencoder (IDEA) Using CancelOut Layer and a Projected Loss
This paper introduces the Intrinsic Dimension Estimating Autoencoder (IDEA), which identifies the underlying intrinsic dimension of a wide range of datasets whose samples lie on either linear or nonlinear manifolds. Beyond estimating the intrinsic dimension, IDEA is also able to reconstruct the original dataset after projecting it onto the corresponding latent space, which is structured using re-weighted double CancelOut layers. Our key contribution is the introduction of the projected reconstruction loss term, guiding the training of the model by continuously assessing the reconstruction quality under the removal of an additional latent dimension. We first assess the performance of IDEA on a series of theoretical benchmarks to validate its robustness. These experiments allow us to test its reconstruction ability and compare its performance with state-of-the-art intrinsic dimension estimators. The benchmarks show good accuracy and high versatility of our approach. Subsequently, we apply our model to data generated from the numerical solution of a vertically resolved one-dimensional free-surface flow, following a pointwise discretization of the vertical velocity profile in the horizontal direction, vertical direction, and time. IDEA succeeds in estimating the dataset's intrinsic dimension and then reconstructs the original solution by working directly within the projection space identified by the network.
comment: Code available: https://doi.org/10.5281/zenodo.18314616 Github: https://github.com/antoineor/IDEA-for-Shallow-Flows/tree/v1.1
Patch-Level Tokenization with CNN Encoders and Attention for Improved Transformer Time-Series Forecasting
Transformer-based models have shown strong performance in time-series forecasting by leveraging self-attention to model long-range temporal dependencies. However, their effectiveness depends critically on the quality and structure of input representations derived from raw multivariate time-series data, particularly as sequence length and data scale increase. This paper proposes a two-stage forecasting framework that explicitly separates local temporal representation learning from global dependency modelling. In the proposed approach, a convolutional neural network operates on fixed-length temporal patches to extract short-range temporal dynamics and non-linear feature interactions, producing compact patch-level token embeddings. Token-level self-attention is applied during representation learning to refine these embeddings, after which a Transformer encoder models inter-patch temporal dependencies to generate forecasts. The method is evaluated on a synthetic multivariate time-series dataset with controlled static and dynamic factors, using an extended sequence length and a larger number of samples. Experimental results demonstrate that the proposed framework consistently outperforms a convolutional baseline under increased temporal context and remains competitive with a strong patch-based Transformer model. These findings indicate that structured patch-level tokenization provides a scalable and effective representation for multivariate time-series forecasting, particularly when longer input sequences are considered.
comment: 6 pages, 2 figures, 3 tables
Reward Shaping to Mitigate Reward Hacking in RLHF
Reinforcement Learning from Human Feedback (RLHF) is essential for aligning large language models (LLMs) with human values. However, RLHF is susceptible to \emph{reward hacking}, where the agent exploits flaws in the reward function rather than learning the intended behavior, thus degrading alignment. Although reward shaping helps stabilize RLHF and partially mitigate reward hacking, a systematic investigation into shaping techniques and their underlying principles remains lacking. To bridge this gap, we present a comprehensive study of the prevalent reward shaping methods. Our analysis suggests two key design principles: (1) the RL reward should be bounded, and (2) the RL reward benefits from rapid initial growth followed by gradual convergence. Guided by these insights, we propose Preference As Reward (PAR), a novel approach that leverages the latent preferences embedded within the reward model as the signal for reinforcement learning. Moreover, PAR exhibits two critical variance-reduction properties that contribute to stabilizing the RLHF training process and effectively extending the tolerance window for early stopping. We evaluated PAR on the base model Gemma2-2B using two datasets, Ultrafeedback-Binarized and HH-RLHF. Experimental results demonstrate PAR's superior performance over other reward shaping methods. On the AlpacaEval 2.0 benchmark, PAR achieves a win rate of at least 5 percentage points higher than competing approaches. Furthermore, PAR exhibits remarkable data efficiency, requiring only a single reference reward for optimal performance, and maintains robustness against reward hacking even after two full epochs of training. The code is available at https://github.com/PorUna-byte/PAR.
Reinforcement Fine-Tuning Naturally Mitigates Forgetting in Continual Post-Training
Continual post-training (CPT) is a popular and effective technique for adapting foundation models like multimodal large language models to specific and ever-evolving downstream tasks. While existing research has primarily concentrated on methods like data replay, model expansion, or parameter regularization, the fundamental role of the learning paradigm within CPT remains largely unexplored. This paper presents a comparative analysis of two core post-training paradigms: supervised fine-tuning (SFT) and reinforcement fine-tuning (RFT), investigating their respective impacts on knowledge retention during CPT. Our experiments are conducted on a benchmark comprising seven diverse multimodal tasks, utilizing Qwen2.5-VL-7B-Instruct as the base model for continual post-training. The investigation yields two significant findings: (1) When continuously learning on downstream tasks, SFT leads to catastrophic forgetting of previously learned tasks. In contrast, RFT inherently preserves prior knowledge and achieve performance comparable to multi-task training. (2) RFT successfully protects and even enhances the model's general knowledge on standard benchmarks (e.g., MMMU and MMLU-Pro). Conversely, SFT degrades general model capabilities severely. Further analysis reveals that this stability is not primarily due to explicit mechanisms like KL penalty or chain-of-thought reasoning. Instead, we identify an implicit regularization mechanism inherent to RFT as a key contributing factor. Our theoretical analysis suggests that RFT's gradient updates are naturally scaled by the reward variance, acting as a data-dependent regularizer that inherently protects previously acquired knowledge. Finally, we propose a rollout-based instance filtering algorithm to enhance the stability and efficiency of RFT. Our comprehensive study demonstrates the superiority of RFT as a robust paradigm for continual post-training.
TextMineX: Data, Evaluation Framework and Ontology-guided LLM Pipeline for Humanitarian Mine Action
Humanitarian Mine Action (HMA) addresses the challenge of detecting and removing landmines from conflict regions. Much of the life-saving operational knowledge produced by HMA agencies is buried in unstructured reports, limiting the transferability of information between agencies. To address this issue, we propose TextMineX: the first dataset, evaluation framework and ontology-guided large language model (LLM) pipeline for knowledge extraction from text in the HMA domain. TextMineX structures HMA reports into (subject, relation, object)-triples, thus creating domain-specific knowledge. To ensure real-world relevance, we utilized the dataset from our collaborator Cambodian Mine Action Centre (CMAC). We further introduce a bias-aware evaluation framework that combines human-annotated triples with an LLM-as-Judge protocol to mitigate position bias in reference-free scoring. Our experiments show that ontology-aligned prompts improve extraction accuracy by up to 44.2%, reduce hallucinations by 22.5%, and enhance format adherence by 20.9% compared to baseline models. We publicly release the dataset and code.
Assertion-Conditioned Compliance: A Provenance-Aware Vulnerability in Multi-Turn Tool-Calling Agents
Multi-turn tool-calling LLMs (models capable of invoking external APIs or tools across several user turns) have emerged as a key feature in modern AI assistants, enabling extended dialogues from benign tasks to critical business, medical, and financial operations. Yet implementing multi-turn pipelines remains difficult for many safety-critical industries due to ongoing concerns regarding model resilience. While standardized benchmarks such as the Berkeley Function-Calling Leaderboard (BFCL) have underpinned confidence concerning advanced function-calling models (like Salesforce's xLAM V2), there is still a lack of visibility into multi-turn conversation-level robustness, especially given their exposure to real-world systems. In this paper, we introduce Assertion-Conditioned Compliance (A-CC), a novel evaluation paradigm for multi-turn function-calling dialogues. A-CC provides holistic metrics that evaluate a model's behavior when confronted with misleading assertions originating from two distinct vectors: (1) user-sourced assertions (USAs), which measure sycophancy toward plausible but misinformed user beliefs, and (2) function-sourced assertions (FSAs), which measure compliance with plausible but contradictory system policies (e.g., stale hints from unmaintained tools). Our results show that models are highly vulnerable to both USA sycophancy and FSA policy conflicts, confirming A-CC as a critical, latent vulnerability in deployed agents.
comment: 15 pages (incl. Appendix), 3 figures, 7 tables
Reading Between the Lines: Towards Reliable Black-box LLM Fingerprinting via Zeroth-order Gradient Estimation
The substantial investment required to develop Large Language Models (LLMs) makes them valuable intellectual property, raising significant concerns about copyright protection. LLM fingerprinting has emerged as a key technique to address this, which aims to verify a model's origin by extracting an intrinsic, unique signature (a "fingerprint") and comparing it to that of a source model to identify illicit copies. However, existing black-box fingerprinting methods often fail to generate distinctive LLM fingerprints. This ineffectiveness arises because black-box methods typically rely on model outputs, which lose critical information about the model's unique parameters due to the usage of non-linear functions. To address this, we first leverage Fisher Information Theory to formally demonstrate that the gradient of the model's input is a more informative feature for fingerprinting than the output. Based on this insight, we propose ZeroPrint, a novel method that approximates these information-rich gradients in a black-box setting using zeroth-order estimation. ZeroPrint overcomes the challenge of applying this to discrete text by simulating input perturbations via semantic-preserving word substitutions. This operation allows ZeroPrint to estimate the model's Jacobian matrix as a unique fingerprint. Experiments on the standard benchmark show ZeroPrint achieves a state-of-the-art effectiveness and robustness, significantly outperforming existing black-box methods.
comment: This paper is accepeted by the ACM Web Conference (WWW) 2026
PrivTune: Efficient and Privacy-Preserving Fine-Tuning of Large Language Models via Device-Cloud Collaboration
With the rise of large language models, service providers offer language models as a service, enabling users to fine-tune customized models via uploaded private datasets. However, this raises concerns about sensitive data leakage. Prior methods, relying on differential privacy within device-cloud collaboration frameworks, struggle to balance privacy and utility, exposing users to inference attacks or degrading fine-tuning performance. To address this, we propose PrivTune, an efficient and privacy-preserving fine-tuning framework via Split Learning (SL). The key idea of PrivTune is to inject crafted noise into token representations from the SL bottom model, making each token resemble the $n$-hop indirect neighbors. PrivTune formulates this as an optimization problem to compute the optimal noise vector, aligning with defense-utility goals. On this basis, it then adjusts the parameters (i.e., mean) of the $d_χ$-Privacy noise distribution to align with the optimization direction and scales the noise according to token importance to minimize distortion. Experiments on five datasets (covering both classification and generation tasks) against three embedding inversion and three attribute inference attacks show that, using RoBERTa on the Stanford Sentiment Treebank dataset, PrivTune reduces the attack success rate to 10% with only a 3.33% drop in utility performance, outperforming state-of-the-art baselines.
comment: Accepted at IEEE INFOCOM 2026 (full version). Update the cited references
GECOBench: A Gender-Controlled Text Dataset and Benchmark for Quantifying Biases in Explanations
Large pre-trained language models have become a crucial backbone for many downstream tasks in natural language processing (NLP), and while they are trained on a plethora of data containing a variety of biases, such as gender biases, it has been shown that they can also inherit such biases in their weights, potentially affecting their prediction behavior. However, it is unclear to what extent these biases also affect feature attributions generated by applying "explainable artificial intelligence" (XAI) techniques, possibly in unfavorable ways. To systematically study this question, we create a gender-controlled text dataset, GECO, in which the alteration of grammatical gender forms induces class-specific words and provides ground truth feature attributions for gender classification tasks. This enables an objective evaluation of the correctness of XAI methods. We apply this dataset to the pre-trained BERT model, which we fine-tune to different degrees, to quantitatively measure how pre-training induces undesirable bias in feature attributions and to what extent fine-tuning can mitigate such explanation bias. To this extent, we provide GECOBench, a rigorous quantitative evaluation framework for benchmarking popular XAI methods. We show a clear dependency between explanation performance and the number of fine-tuned layers, where XAI methods are observed to benefit particularly from fine-tuning or complete retraining of embedding layers.
comment: Published in Frontiers
On LLMs' Internal Representation of Code Correctness
Despite the effectiveness of large language models (LLMs) for code generation, they often output incorrect code. One reason is that model output probabilities are often not well-correlated with correctness, and reflect only the final output of the generation process. Inspired by findings that LLMs internally encode concepts like truthfulness, this paper explores if LLMs similarly represent code correctness. Specifically, we identify a correctness representation inside LLMs by contrasting the hidden states between pairs of correct and incorrect code for the same programming tasks. By experimenting on four LLMs, we show that exploiting this extracted correctness representation outperforms standard log-likelihood ranking, as well as verbalized model confidence. Furthermore, we explore how this internal correctness signal can be used to select higher-quality code samples, without requiring test execution. Ultimately, this work demonstrates how leveraging internal representations can enhance code generation systems and make LLMs more reliable, thus improving confidence in automatically generated code.
comment: Accepted for ICSE'26
Ultra-Strong Gradient Diffusion MRI with Self-Supervised Learning for Prostate Cancer Characterization
Diffusion MRI (dMRI) enables non-invasive assessment of prostate microstructure but conventional dMRI metrics such as the Apparent Diffusion Coefficient in multiparametric MRI and reflect a mixture of underlying tissues features rather than distinct histologic characteristics. Integrating dMRI with the compartment-based biophysical VERDICT (Vascular, Extracellular, and Restricted Diffusion for Cytometry in Tumours) framework offers richer microstructural insights, though clinical gradient systems (40-80 mT/m) often suffer from poor signal-to-noise ratio at stronger diffusion weightings due to prolonged echo times. Ultra-strong gradients (e.g., 300 mT/m) can mitigate these limitations by improving SNR and contrast-to-noise ratios. This study investigates whether physics-informed self-supervised VERDICT (ssVERDICT) fitting when combined with ultra-strong gradient data, enhances prostate microstructural characterization relative to current fitting approaches and clinical gradient systems. We developed enhanced ssVERDICT fitting approaches using dense multilayer perceptron and convolutional U-Net architectures, comparing them against non-linear least-squares (NLLS) VERDICT fitting, original ssVERDICT implementation, and Diffusion Kurtosis Imaging across clinical- to ultra-strong gradient systems. For the same ultra-strong gradient data, Dense ssVERDICT outperformed NLLS VERDICT, boosting median CNR by 47%, cutting inter-patient Coefficient of Variation by 52%, and reducing pooled $f_{ic}$ variation by 50%. Overall, Dense ssVERDICT delivered the highest CNR, the most stable parameter estimates, and the clearest tumour-normal contrast compared with conventional fitting methods and clinical gradient systems. These findings underscore that meaningful gains in non-invasive prostate cancer characterization arise from the combination of advanced gradient systems and deep learning-based modelling.
comment: 25 pages, 14 figures, 7 tables
Does Less Hallucination Mean Less Creativity? An Empirical Investigation in LLMs AAAI 2026
Large Language Models (LLMs) exhibit remarkable capabilities in natural language understanding and reasoning, but suffer from hallucination: the generation of factually incorrect content. While numerous methods have been developed to reduce hallucinations, their impact on creative generations remains unexplored. This gap is particularly critical for AI-assisted scientific discovery, which requires both factual accuracy and creative hypothesis generation. We investigate how three hallucination-reduction techniques: Chain of Verification (CoVe), Decoding by Contrasting Layers (DoLa), and Retrieval-Augmented Generation (RAG), affect creativity in LLMs. Evaluating multiple model families (LLaMA, Qwen, Mistral) at varying scales (1B - 70B parameters) on two creativity benchmarks (NeoCoder and CS4), we find that these methods have opposing effects on divergent creativity. CoVe enhances divergent thinking, DoLa suppresses it, and RAG shows minimal impact. Our findings provide guidance for selecting appropriate hallucination-reduction methods in scientific applications, where the balance between factual accuracy and creative exploration is crucial.
comment: Accepted at the AAAI 2026 Workshop on AI for Scientific Research (AI4Research)
MambAttention: Mamba with Multi-Head Attention for Generalizable Single-Channel Speech Enhancement
With new sequence models like Mamba and xLSTM, several studies have shown that these models match or outperform the state-of-the-art in single-channel speech enhancement and audio representation learning. However, prior research has demonstrated that sequence models like LSTM and Mamba tend to overfit to the training set. To address this, previous works have shown that adding self-attention to LSTMs substantially improves generalization performance for single-channel speech enhancement. Nevertheless, neither the concept of hybrid Mamba and time-frequency attention models nor their generalization performance have been explored for speech enhancement. In this paper, we propose a novel hybrid architecture, MambAttention, which combines Mamba and shared time- and frequency-multi-head attention modules for generalizable single-channel speech enhancement. To train our model, we introduce VB-DemandEx, a dataset inspired by VoiceBank+Demand but with more challenging noise types and lower signal-to-noise ratios. Trained on VB-DemandEx, MambAttention significantly outperforms existing state-of-the-art discriminative LSTM-, xLSTM-, Mamba-, and Conformer-based systems of similar complexity across all reported metrics on two out-of-domain datasets: DNS 2020 without reverberation and EARS-WHAM_v2. MambAttention also matches or outperforms generative diffusion models in generalization performance while being competitive with language model baselines. Ablation studies highlight the importance of weight sharing between time- and frequency-multi-head attention modules for generalization performance. Finally, we explore integrating the shared time- and frequency-multi-head attention modules with LSTM and xLSTM, which yields a notable performance improvement on the out-of-domain datasets. Yet, MambAttention remains superior for cross-corpus generalization across all reported evaluation metrics.
comment: Accepted to IEEE Transactions on Audio, Speech, and Language Processing
Exploring Resolution-Wise Shared Attention in Hybrid Mamba-U-Nets for Improved Cross-Corpus Speech Enhancement
Recent advances in speech enhancement have shown that models combining Mamba and attention mechanisms yield superior cross-corpus generalization performance. At the same time, integrating Mamba in a U-Net structure has yielded state-of-the-art enhancement performance, while reducing both model size and computational complexity. Inspired by these insights, we propose RWSA-MambaUNet, a novel and efficient hybrid model combining Mamba and multi-head attention in a U-Net structure for improved cross-corpus performance. Resolution-wise shared attention (RWSA) refers to layerwise attention-sharing across corresponding time- and frequency resolutions. Our best-performing RWSA-MambaUNet model achieves state-of-the-art generalization performance on two out-of-domain test sets. Notably, our smallest model surpasses all baselines on the out-of-domain DNS 2020 test set in terms of PESQ, SSNR, and ESTOI, and on the out-of-domain EARS-WHAM_v2 test set in terms of SSNR, ESTOI, and SI-SDR, while using less than half the model parameters and a fraction of the FLOPs.
comment: Accepted to IEEE ICASSP 2026
Deliberative Reasoning Network: An Uncertainty-Driven Paradigm for Belief-Tracked Inference with Pretrained Language Models
Large language models often fail at logical reasoning when semantic heuristics conflict with decisive evidence - a phenomenon we term cognitive traps. To address this fundamental limitation, we introduce the Deliberative Reasoning Network (DRN), a novel paradigm that reframes logical reasoning from probability maximization to uncertainty minimization. Instead of asking "Which answer is most likely?", DRN asks "Which hypothesis has the most internally consistent evidence?". DRN achieves intrinsic interpretability by explicitly tracking belief states and quantifying epistemic uncertainty for competing hypotheses through an iterative evidence synthesis process. We validate our approach through two complementary architectures - a bespoke discriminative model that embodies the core uncertainty minimization principle, and a lightweight verification module that enhances existing generative LLMs. Evaluated on LCR-1000, our new adversarial reasoning benchmark designed to expose cognitive traps, the bespoke DRN achieves up to 15.2% improvement over standard baselines. When integrated as a parameter-efficient verifier with Mistral-7B, our hybrid system boosts accuracy from 20% to 80% on the most challenging problems. Critically, DRN demonstrates strong zero-shot generalization, improving TruthfulQA performance by 23.6% without additional training, indicating that uncertainty-driven deliberation learns transferable reasoning principles. We position DRN as a foundational, verifiable System 2 reasoning component for building more trustworthy AI systems.
comment: This submission represents an early exploratory draft and was uploaded prematurely. The authors have decided to withdraw it because the current version does not accurately reflect the intended scope and technical formulation of the work, and may be misleading if cited
Beyond Functional Correctness: Exploring Hallucinations in LLM-Generated Code
The rise of Large Language Models (LLMs) has significantly advanced various applications on software engineering tasks, particularly in code generation. Despite the promising performance, LLMs are prone to generate hallucinations, which means LLMs might produce outputs that deviate from users' intent, exhibit internal inconsistencies, or misaligned with the real-world knowledge, making the deployment of LLMs potentially risky in a wide range of applications. Existing work mainly focuses on investigating the hallucination in the domain of Natural Language Generation (NLG), leaving a gap in comprehensively understanding the types, causes, and impacts of hallucinations in the context of code generation. To bridge the gap, we conducted a thematic analysis of the LLM-generated code to summarize and categorize the hallucinations, as well as their causes and impacts. Our study established a comprehensive taxonomy of code hallucinations, encompassing 3 primary categories and 12 specific categories. Furthermore, we systematically analyzed the distribution of hallucinations, exploring variations among different LLMs and benchmarks. Moreover, we perform an in-depth analysis on the causes and impacts of various hallucinations, aiming to provide valuable insights into hallucination mitigation. Finally, to enhance the correctness and reliability of LLM-generated code in a lightweight manner, we explore training-free hallucination mitigation approaches by prompt enhancing techniques. We believe our findings will shed light on future research about code hallucination evaluation and mitigation, ultimately paving the way for building more effective and reliable code LLMs in the future. The replication package is available at https://github.com/Lorien1128/code_hallucination
comment: Accepted by Transactions on Software Engineering (TSE)
AI-generated data contamination erodes pathological variability and diagnostic reliability
Generative artificial intelligence (AI) is rapidly populating medical records with synthetic content, creating a feedback loop where future models are increasingly at risk of training on uncurated AI-generated data. However, the clinical consequences of this AI-generated data contamination remain unexplored. Here, we show that in the absence of mandatory human verification, this self-referential cycle drives a rapid erosion of pathological variability and diagnostic reliability. By analysing more than 800,000 synthetic data points across clinical text generation, vision-language reporting, and medical image synthesis, we find that models progressively converge toward generic phenotypes regardless of the model architecture. Specifically, rare but critical findings, including pneumothorax and effusions, vanish from the synthetic content generated by AI models, while demographic representations skew heavily toward middle-aged male phenotypes. Crucially, this degradation is masked by false diagnostic confidence; models continue to issue reassuring reports while failing to detect life-threatening pathology, with false reassurance rates tripling to 40%. Blinded physician evaluation confirms that this decoupling of confidence and accuracy renders AI-generated documentation clinically useless after just two generations. We systematically evaluate three mitigation strategies, finding that while synthetic volume scaling fails to prevent collapse, mixing real data with quality-aware filtering effectively preserves diversity. Ultimately, our results suggest that without policy-mandated human oversight, the deployment of generative AI threatens to degrade the very healthcare data ecosystems it relies upon.
comment: *Corresponding author: Dianbo Liu (dianbo@nus.edu.sg)
DroneVLA: VLA based Aerial Manipulation
As aerial platforms evolve from passive observers to active manipulators, the challenge shifts toward designing intuitive interfaces that allow non-expert users to command these systems naturally. This work introduces a novel concept of autonomous aerial manipulation system capable of interpreting high-level natural language commands to retrieve objects and deliver them to a human user. The system is intended to integrate a MediaPipe based on Grounding DINO and a Vision-Language-Action (VLA) model with a custom-built drone equipped with a 1-DOF gripper and an Intel RealSense RGB-D camera. VLA performs semantic reasoning to interpret the intent of a user prompt and generates a prioritized task queue for grasping of relevant objects in the scene. Grounding DINO and dynamic A* planning algorithm are used to navigate and safely relocate the object. To ensure safe and natural interaction during the handover phase, the system employs a human-centric controller driven by MediaPipe. This module provides real-time human pose estimation, allowing the drone to employ visual servoing to maintain a stable, distinct position directly in front of the user, facilitating a comfortable handover. We demonstrate the system's efficacy through real-world experiments for localization and navigation, which resulted in a 0.164m, 0.070m, and 0.084m of max, mean euclidean, and root-mean squared errors, respectively, highlighting the feasibility of VLA for aerial manipulation operations.
comment: This paper has been accepted for publication at LBR of HRI 2026 conference
OM4OV: Leveraging Ontology Matching for Ontology Versioning
Due to the dynamic nature of the Semantic Web, version control is necessary to manage changes in widely used ontologies. Despite the long-standing recognition of ontology versioning (OV) as a crucial component of efficient ontology management, many approaches treat OV as similar to ontology matching (OM) and directly reuse OM systems for OV tasks. In this study, we systematically analyse similarities and differences between OM and OV and formalise an OM4OV pipeline to offer more advanced OV support. The pipeline is implemented and evaluated in the state-of-the-art OM system Agent-OM. The experimental results indicate that OM systems can be effectively reused for OV tasks, but without necessary extensions, can produce skewed measurements, poor performance in detecting update entities, and limited explanation of false mappings. To tackle these issues, we propose an optimisation method called the cross-reference (CR) mechanism, which builds on existing OM alignments to reduce the number of matching candidates and to improve overall OV performance.
comment: 17 pages, 8 figures, 2 tables
A Multi-Stage Augmented Multimodal Interaction Network for Quantifying Fish Feeding Intensity Using Feeding Image, Audio and Water Wave
In recirculating aquaculture systems, accurate and effective assessment of fish feeding intensity is crucial for reducing feed costs and calculating optimal feeding times. However, current studies have limitations in modality selection, feature extraction and fusion, and co-inference for decision making, which restrict further improvement in the accuracy, applicability and reliability of multimodal fusion models. To address this problem, this study proposes a Multi-stage Augmented Multimodal Interaction Network (MAINet) for quantifying fish feeding intensity. Firstly, a general feature extraction framework is proposed to efficiently extract feature information from input image, audio and water wave datas. Second, an Auxiliary-modality Reinforcement Primary-modality Mechanism (ARPM) is designed for inter-modal interaction and generate enhanced features, which consists of a Channel Attention Fusion Network (CAFN) and a Dual-mode Attention Fusion Network (DAFN). Finally, an Evidence Reasoning (ER) rule is introduced to fuse the output results of each modality and make decisions, thereby completing the quantification of fish feeding intensity. The experimental results show that the constructed MAINet reaches 96.76%, 96.78%, 96.79% and 96.79% in accuracy, precision, recall and F1-Score respectively, and its performance is significantly higher than the comparison models. Compared with models that adopt single-modality, dual-modality fusion and different decision-making fusion methods, it also has obvious advantages. Meanwhile, the ablation experiments further verified the key role of the proposed improvement strategy in improving the robustness and feature utilization efficiency of model, which can effectively improve the accuracy of the quantitative results of fish feeding intensity. The dataset is available at: https://huggingface.co/datasets/ShulongZhang/Multimodal_Fish_Feeding_Intensity.
U-PINet: Physics-Informed Hierarchical Learning for Radar Cross Section Prediction via 3D Electromagnetic Scattering Reconstruction
Conventional computational electromagnetics (CEM) solvers can deliver high fidelity radar cross section (RCS) signatures by first solving the induced surface currents on 3-dimensional (3D) targets and then evaluating the scattered fields via radiation integrals. However, their computational cost becomes prohibitive for repeated queries and large-scale 3D scenarios. Recent purely data-driven networks improve efficiency, yet they often bypass this scattering mechanism, which may compromise physical consistency and generalization. To bridge this gap, in this paper, we propose U-PINet, a fully end-to-end, physics-informed hierarchical network for efficient RCS prediction via 3D electromagnetic scattering reconstruction. Once the scattering quantities are reconstructed, scattered fields and RCS can be evaluated for arbitrary observation directions via the radiation integral. U-PINet explicitly learns physics-consistent intermediate scattering representations by modeling local electromagnetic coupling and long-range radiation effects through a hierarchical operator design inspired by near-far field decomposition in fast solvers. A physics-guided graph neural network is incorporated to capture self- and mutual-coupling among mesh elements of complex targets, enabling physically interpretable intermediate representations. By embedding governing equations as residual constraints, U-PINet enables accurate object reconstruction of scattering quantities and consequently reliable RCS prediction across observation directions, while significantly reducing runtime. Extensive numerical experiments demonstrate that U-PINet achieves EM-solver-level RCS accuracy and 3D object reconstruction with orders-of-magnitude speedups, and generalizes well to unseen geometries under limited training data.
comment: Submitted to an Elsevier Journal
ButterflyMoE: Sub-Linear Ternary Experts via Structured Butterfly Orbits
Linear memory scaling stores $N$ independent expert weight matrices requiring $\mathcal{O}(N \cdot d^2)$ memory, which exceeds edge devices memory budget. Current compression methods like quantization, pruning and low-rank factorization reduce constant factors but leave the scaling bottleneck unresolved. We introduce ButterflyMoE, a method that treats experts not as independent weight matrices but as geometric reorientations of a unified shared quantized substrate. Diversity among experts arises from viewing different angles of shared capacity, not from redundant storage. By applying learned rotations to a shared ternary prototype, each expert yields $\mathcal{O}(d^2 + N \cdot d \log d)$ memory,sub-linear in the number of experts. The key insight: training these rotations with quantization reduces activation outliers and stabilizes extreme low bit training, where static methods collapse. Across language modeling benchmarks, ButterflyMoE achieves 150$\times$ memory reduction at 256 experts with negligible accuracy loss. ButterflyMoE allows multiple experts to fit on edge-constrained devices showing that geometric parameterization breaks linear scaling.
Robust Verification of Concurrent Stochastic Games
Autonomous systems often operate in multi-agent settings and need to make concurrent, strategic decisions, typically in uncertain environments. Verification and control problems for these systems can be tackled with concurrent stochastic games (CSGs), but this model requires transition probabilities to be precisely specified - an unrealistic requirement in many real-world settings. We introduce *robust CSGs* and their subclass *interval CSGs* (ICSGs), which capture epistemic uncertainty about transition probabilities in CSGs. We propose a novel framework for *robust* verification of these models under worst-case assumptions about transition uncertainty. Specifically, we develop the underlying theoretical foundations and efficient algorithms, for finite- and infinite-horizon objectives in both zero-sum and nonzero-sum settings, the latter based on (social-welfare optimal) Nash equilibria. We build an implementation in the PRISM-games model checker and demonstrate the feasibility of robust verification of ICSGs across a selection of large benchmarks.
comment: Extended version of a paper accepted to TACAS 2026. Main text: 17 pages, 2 figures, 2 tables; Appendix: 37 pages, 3 figures, 3 tables. Minor revisions and clarifications to the appendix; no changes to results
DiEC: Diffusion Embedded Clustering
Deep clustering methods typically rely on a single, well-defined representation for clustering. In contrast, pretrained diffusion models provide abundant and diverse multi-scale representations across network layers and noise timesteps. However, a key challenge is how to efficiently identify the most clustering-friendly representation in the layer*timestep space. To address this issue, we propose Diffusion Embedded Clustering (DiEC), an unsupervised framework that performs clustering by leveraging optimal intermediate representations from pretrained diffusion models. DiEC systematically evaluates the clusterability of representations along the trajectory of network depth and noise timesteps. Meanwhile, an unsupervised search strategy is designed for recognizing the Clustering-optimal Layer (COL) and Clustering-optimal Timestep (COT) in the layer*timestep space of pretrained diffusion models, aiming to promote clustering performance and reduce computational overhead. DiEC is fine-tuned primarily with a structure-preserving DEC-style KL-divergence objective at the fixed COL + COT, together with a random-timestep diffusion denoising objective to maintain the generative capability of the pretrained model. Without relying on augmentation-based consistency constraints or contrastive learning, DiEC achieves excellent clustering performance across multiple benchmark datasets.
Performance and Complexity Trade-off Optimization of Speech Models During Training
In speech machine learning, neural network models are typically designed by choosing an architecture with fixed layer sizes and structure. These models are then trained to maximize performance on metrics aligned with the task's objective. While the overall architecture is usually guided by prior knowledge of the task, the sizes of individual layers are often chosen heuristically. However, this approach does not guarantee an optimal trade-off between performance and computational complexity; consequently, post hoc methods such as weight quantization or model pruning are typically employed to reduce computational cost. This occurs because stochastic gradient descent (SGD) methods can only optimize differentiable functions, while factors influencing computational complexity, such as layer sizes and floating-point operations per second (FLOP/s), are non-differentiable and require modifying the model structure during training. We propose a reparameterization technique based on feature noise injection that enables joint optimization of performance and computational complexity during training using SGD-based methods. Unlike traditional pruning methods, our approach allows the model size to be dynamically optimized for a target performance-complexity trade-off, without relying on heuristic criteria to select which weights or structures to remove. We demonstrate the effectiveness of our method through three case studies, including a synthetic example and two practical real-world applications: voice activity detection and audio anti-spoofing. The code related to our work is publicly available to encourage further research.
comment: This work has been submitted to the IEEE for possible publication
Beyond Single-Granularity Prompts: A Multi-Scale Chain-of-Thought Prompt Learning for Graph
The ``pre-train, prompt" paradigm, designed to bridge the gap between pre-training tasks and downstream objectives, has been extended from the NLP domain to the graph domain and has achieved remarkable progress. Current mainstream graph prompt-tuning methods modify input or output features using learnable prompt vectors. However, existing approaches are confined to single-granularity (e.g., node-level or subgraph-level) during prompt generation, overlooking the inherently multi-scale structural information in graph data, which limits the diversity of prompt semantics. To address this issue, we pioneer the integration of multi-scale information into graph prompt and propose a Multi-Scale Graph Chain-of-Thought (MSGCOT) prompting framework. Specifically, we design a lightweight, low-rank coarsening network to efficiently capture multi-scale structural features as hierarchical basis vectors for prompt generation. Subsequently, mimicking human cognition from coarse-to-fine granularity, we dynamically integrate multi-scale information at each reasoning step, forming a progressive coarse-to-fine prompt chain. Extensive experiments on eight benchmark datasets demonstrate that MSGCOT outperforms the state-of-the-art single-granularity graph prompt-tuning method, particularly in few-shot scenarios, showcasing superior performance. The code is available at: https://github.com/zhengziyu77/MSGCOT.
comment: Accepted by WWW2026
Impartial Games: A Challenge for Reinforcement Learning
AlphaZero-style reinforcement learning (RL) algorithms have achieved superhuman performance in many complex board games such as Chess, Shogi, and Go. However, we showcase that these algorithms encounter significant and fundamental challenges when applied to impartial games, a class where players share game pieces and optimal strategy often relies on abstract mathematical principles. Specifically, we utilise the game of Nim as a concrete and illustrative case study to reveal critical limitations of AlphaZero-style and similar self-play RL algorithms. We introduce a novel conceptual framework distinguishing between champion and expert mastery to evaluate RL agent performance. Our findings reveal that while AlphaZero-style agents can achieve champion-level play on very small Nim boards, their learning progression severely degrades as the board size increases. This difficulty stems not merely from complex data distributions or noisy labels, but from a deeper representational bottleneck: the inherent struggle of generic neural networks to implicitly learn abstract, non-associative functions like parity, which are crucial for optimal play in impartial games. This limitation causes a critical breakdown in the positive feedback loop essential for self-play RL, preventing effective learning beyond rote memorisation of frequently observed states. These results align with broader concerns regarding AlphaZero-style algorithms' vulnerability to adversarial attacks, highlighting their inability to truly master all legal game states. Our work underscores that simple hyperparameter adjustments are insufficient to overcome these challenges, establishing a crucial foundation for the development of fundamentally novel algorithmic approaches, potentially involving neuro-symbolic or meta-learning paradigms, to bridge the gap towards true expert-level AI in combinatorial games.
Memp: Exploring Agent Procedural Memory
Large Language Models (LLMs) based agents excel at diverse tasks, yet they suffer from brittle procedural memory that is manually engineered or entangled in static parameters. In this work, we investigate strategies to endow agents with a learnable, updatable, and lifelong procedural memory. We propose Memp that distills past agent trajectories into both fine-grained, step-by-step instructions and higher-level, script-like abstractions, and explore the impact of different strategies for Build, Retrieval, and Update of procedural memory. Coupled with a dynamic regimen that continuously updates, corrects, and deprecates its contents, this repository evolves in lockstep with new experience. Empirical evaluation on TravelPlanner and ALFWorld shows that as the memory repository is refined, agents achieve steadily higher success rates and greater efficiency on analogous tasks. Moreover, procedural memory built from a stronger model retains its value: migrating the procedural memory to a weaker model can also yield substantial performance gains. Code is available at https://github.com/zjunlp/MemP.
comment: Work in progress
Extending Audio Context for Long-Form Understanding in Large Audio-Language Models
Large Audio-Language Models (LALMs) are often constrained by short audio context windows, even when their text backbones support long contexts, limiting long-form audio understanding. Prior work has introduced context-extension methods (e.g. YaRN) on unimodal LLMs, yet their application to LALMs remains unexplored. First, building on RoPE-based context extension, we introduce Partial YaRN, a training-free, modality-decoupled extension method that modifies only audio token positions, leaving text positions intact to preserve the base LLM's text capabilities. Second, we propose Virtual Longform Audio Training (VLAT), a training strategy that extends Partial YaRN into a training-time positional augmentation. VLAT simulates diverse audio lengths during training, enabling generalization to inputs far longer than those seen in training. Our experiments on SALMONN and Qwen2-Audio confirm that Partial YaRN outperforms the original models across wide range of settings, and VLAT provides substantial performance improvement on long audio of unseen lengths.
comment: EACL 2026. Code and dataset are available at: https://github.com/yophis/partial-yarn
PankRAG: Enhancing Graph Retrieval via Globally Aware Query Resolution and Dependency-Aware Reranking Mechanism
Recent graph-based RAG approaches leverage knowledge graphs by extracting entities from a query to fetch their associated relationships and metadata. However, relying solely on entity extraction often results in the misinterpretation or omission of latent critical information and relationships. This can lead to the retrieval of irrelevant or contradictory content, as well as the exclusion of essential information, thereby increasing hallucination risks and undermining the quality of generated responses. In this paper, we propose PankRAG, a framework designed to capture and resolve the latent relationships within complex queries that prior methods overlook. It achieves this through a synergistic combination of a globally-aware hierarchical resolution pathway and a dependency-aware reranking mechanism. PankRAG first generates a globally aware resolution pathway that captures parallel and progress relationships, guiding LLMs to resolve queries through a hierarchical reasoning path. Additionally, its dependency-aware reranking mechanism utilizes resolved sub-question dependencies to augment and validate the retrieved content of the current unresolved sub-question. Experimental results demonstrate that PankRAG consistently outperforms existing state-of-the-art methods, underscoring its generalizability.
comment: Accepted by ICASSP 2026
Shaping Sparse Rewards in Reinforcement Learning: A Semi-supervised Approach
In many real-world scenarios, reward signal for agents are exceedingly sparse, making it challenging to learn an effective reward function for reward shaping. To address this issue, the proposed approach in this paper performs reward shaping not only by utilizing non-zero-reward transitions but also by employing the \emph{Semi-Supervised Learning} (SSL) technique combined with a novel data augmentation to learn trajectory space representations from the majority of transitions, {i.e}., zero-reward transitions, thereby improving the efficacy of reward shaping. Experimental results in Atari and robotic manipulation demonstrate that our method outperforms supervised-based approaches in reward inference, leading to higher agent scores. Notably, in more sparse-reward environments, our method achieves up to twice the peak scores compared to supervised baselines. The proposed double entropy data augmentation enhances performance, showcasing a 15.8\% increase in best score over other augmentation methods
LArctan-SKAN: Simple and Efficient Single-Parameterized Kolmogorov-Arnold Networks using Learnable Trigonometric Function
This paper proposes a novel approach for designing Single-Parameterized Kolmogorov-Arnold Networks (SKAN) by utilizing a Single-Parameterized Function (SFunc) constructed from trigonometric functions. Three new SKAN variants are developed: LSin-SKAN, LCos-SKAN, and LArctan-SKAN. Experimental validation on the MNIST dataset demonstrates that LArctan-SKAN excels in both accuracy and computational efficiency. Specifically, LArctan-SKAN significantly improves test set accuracy over existing models, outperforming all pure KAN variants compared, including FourierKAN, LSS-SKAN, and Spl-KAN. It also surpasses mixed MLP-based models such as MLP+rKAN and MLP+fKAN in accuracy. Furthermore, LArctan-SKAN exhibits remarkable computational efficiency, with a training speed increase of 535.01% and 49.55% compared to MLP+rKAN and MLP+fKAN, respectively. These results confirm the effectiveness and potential of SKANs constructed with trigonometric functions. The experiment code is available at https://github.com/chikkkit/LArctan-SKAN .
comment: This work has been merged into and superseded by a comprehensive version available at arXiv:2410.14951. Please cite and refer to arXiv:2410.14951 for the complete study, which includes the methods and results originally presented here
Architectural Scaling Surpass Basis Complexity? Efficient KANs with Single-Parameter Design
The landscape of Kolmogorov-Arnold Networks (KANs) is rapidly expanding, yet lacks a unified theoretical framework and a clear principle for efficient architecture design. This paper addresses these gaps with three core contributions. First, we introduce the Universal KAN (Uni-KAN) framework, a novel abstraction that formally unifies all KAN-style networks through dense and sparse representations. We prove their interchangeability and provide an open-source library for this framework, facilitating future research. Second, we propose the Efficient KAN Expansion (EKE) Hypothesis, a design philosophy positing that allocating parameters to architectural scaling rather than basis function complexity yields superior performance. Third, we present Single-Parameter KANs (SKANs), a family of ultra-lightweight networks that embody the EKE Hypothesis. Our comprehensive experiments provide the first strong empirical validation for the theoretical necessity of basis function smoothness for stable training. Furthermore, SKANs demonstrate state-of-the-art performance, improving F1 scores by up to 6.51\% and reducing test loss by 93.1\%, while achieving up to 6x faster training speeds compared to existing KAN variants. These results establish a robust framework, a guiding hypothesis, and a practical methodology for designing the next generation of efficient and powerful neural networks. The code is accessible at https://anonymous.4open.science/r/SKAN-EBBB/.
comment: Major update: This is a comprehensive version that introduces the SKANs and integrates the methodology from arXiv:2410.19360. This version supersedes arXiv:2410.19360. 12 pages, 10 figures
What Makes AI Research Replicable? Executable Knowledge Graphs as Scientific Knowledge Representations
Replicating AI research is a crucial yet challenging task for large language model (LLM) agents. Existing approaches often struggle to generate executable code, primarily due to insufficient background knowledge and the limitations of retrieval-augmented generation (RAG) methods, which fail to capture latent technical details hidden in referenced papers. Furthermore, previous approaches tend to overlook valuable implementation-level code signals and lack structured knowledge representations that support multi-granular retrieval and reuse. To overcome these challenges, we propose Executable Knowledge Graphs (xKG), a pluggable, paper-centric knowledge base that automatically integrates code snippets and technical insights extracted from scientific literature. When integrated into three agent frameworks with two different LLMs, xKG shows substantial performance gains (10.9% with o3-mini) on PaperBench, demonstrating its effectiveness as a general and extensible solution for automated AI research replication. Code is available at https://github.com/zjunlp/xKG.
comment: Work in progress
GSINA: Improving Subgraph Extraction for Graph Invariant Learning via Graph Sinkhorn Attention
Graph invariant learning (GIL) seeks invariant relations between graphs and labels under distribution shifts. Recent works try to extract an invariant subgraph to improve out-of-distribution (OOD) generalization, yet existing approaches either lack explicit control over compactness or rely on hard top-$k$ selection that shrinks the solution space and is only partially differentiable. In this paper, we provide an in-depth analysis of the drawbacks of some existing works and propose a few general principles for invariant subgraph extraction: 1) separability, as encouraged by our sparsity-driven mechanism, to filter out the irrelevant common features; 2) softness, for a broader solution space; and 3) differentiability, for a soundly end-to-end optimization pipeline. Specifically, building on optimal transport, we propose Graph Sinkhorn Attention (GSINA), a fully differentiable, cardinality-constrained attention mechanism that assigns sparse-yet-soft edge weights via Sinkhorn iterations and induces node attention. GSINA provides explicit controls for separability and softness, and uses a Gumbel reparameterization to stabilize training. It convergence behavior is also theoretically studied. Extensive empirical experimental results on both synthetic and real-world
Ready Jurist One: Benchmarking Language Agents for Legal Intelligence in Dynamic Environments
The gap between static benchmarks and the dynamic nature of real-world legal practice poses a key barrier to advancing legal intelligence. To this end, we introduce J1-ENVS, the first interactive and dynamic legal environment tailored for LLM-based agents. Guided by legal experts, it comprises six representative scenarios from Chinese legal practices across three levels of environmental complexity. We further introduce J1-EVAL, a fine-grained evaluation framework, designed to assess both task performance and procedural compliance across varying levels of legal proficiency. Extensive experiments on 17 LLM agents reveal that, while many models demonstrate solid legal knowledge, they struggle with procedural execution in dynamic settings. Even the SOTA model, GPT-4o, falls short of 60% overall performance. These findings highlight persistent challenges in achieving dynamic legal intelligence and offer valuable insights to guide future research.
Hierarchical Self-Supervised Representation Learning for Depression Detection from Speech
Speech-based depression detection (SDD) has emerged as a non-invasive and scalable alternative to conventional clinical assessments. However, existing methods still struggle to capture robust depression-related speech characteristics, which are sparse and heterogeneous. Although pretrained self-supervised learning (SSL) models provide rich representations, most recent SDD studies extract features from a single layer of the pretrained SSL model for the downstream classifier. This practice overlooks the complementary roles of low-level acoustic features and high-level semantic information inherently encoded in different SSL model layers. To explicitly model interactions between acoustic and semantic representations within an utterance, we propose a hierarchical adaptive representation encoder with prior knowledge that disengages and re-aligns acoustic and semantic information through asymmetric cross-attention, enabling fine-grained acoustic patterns to be interpreted in semantic context. In addition, a Connectionist Temporal Classification (CTC) objective is applied as auxiliary supervision to handle the irregular temporal distribution of depressive characteristics without requiring frame-level annotations. Experiments on DAIC-WOZ and MODMA demonstrate that HAREN-CTC consistently outperforms existing methods under both performance upper-bound evaluation and generalization evaluation settings, achieving Macro F1 scores of 0.81 and 0.82 respectively in upper-bound evaluation, and maintaining superior performance with statistically significant improvements in precision and AUC under rigorous cross-validation. These findings suggest that modeling hierarchical acoustic-semantic interactions better reflects how depressive characteristics manifest in natural speech, enabling scalable and objective depression assessment.
Adaptive Task Balancing for Visual Instruction Tuning via Inter-Task Contribution and Intra-Task Difficulty
Visual instruction tuning is a key training stage of large multimodal models. However, when learning multiple visual tasks simultaneously, this approach often results in suboptimal and imbalanced overall performance due to latent knowledge conflicts across tasks. To mitigate this issue, we propose a novel Adaptive Task Balancing approach tailored for visual instruction tuning (VisATB). Specifically, we measure two critical dimensions for visual task balancing based on validation performance: (1) Inter-Task Contribution, the mechanism where learning one task enhances the performance on others owing to shared knowledge across tasks, and (2) Intra-Task Difficulty, which denotes the inherent learning difficulty of a single task. Furthermore, we propose prioritizing three categories of tasks with greater weight: those that offer substantial contributions to others, those that receive minimal contributions from others, and those that present high learning difficulties. Among these three task weighting strategies, the first and third focus on improving overall performance, and the second targets the mitigation of performance imbalance. Extensive experiments on three benchmarks demonstrate that our VisATB approach consistently achieves superior and more balanced overall performance in visual instruction tuning. The data, code, and models are available at https://github.com/YanqiDai/VisATB.
comment: Accepted for the ACM Web Conference 2026 (WWW 2026)
ThinkRec: Thinking-based recommendation via LLM
Recent advances in large language models (LLMs) have enabled more semantic-aware recommendations through natural language generation. Existing LLM for recommendation (LLM4Rec) methods mostly operate in a System 1-like manner, relying on superficial features to match similar items based on click history, rather than reasoning through deeper behavioral logic. This often leads to superficial and erroneous recommendations. Motivated by this, we propose ThinkRec, a thinking-based framework that shifts LLM4Rec from System 1 to System 2 (rational system). Technically, ThinkRec introduces a thinking activation mechanism that augments item metadata with keyword summarization and injects synthetic reasoning traces, guiding the model to form interpretable reasoning chains that consist of analyzing interaction histories, identifying user preferences, and making decisions based on target items. On top of this, we propose an instance-wise expert fusion mechanism to reduce the reasoning difficulty. By dynamically assigning weights to expert models based on users' latent features, ThinkRec adapts its reasoning path to individual users, thereby enhancing precision and personalization. Extensive experiments on real-world datasets demonstrate that ThinkRec significantly improves the accuracy and interpretability of recommendations. Our implementations are available at https://github.com/Yu-Qi-hang/ThinkRec.
comment: Published on WWW'26: In Proceedings of the ACM Web Conference 2026
MCPAgentBench: A Real-world Task Benchmark for Evaluating LLM Agent MCP Tool Use
Large Language Models (LLMs) are increasingly serving as autonomous agents, and their utilization of external tools via the Model Context Protocol (MCP) is considered a future trend. Current MCP evaluation sets suffer from issues such as reliance on external MCP services and a lack of difficulty awareness. To address these limitations, we propose MCPAgentBench, a benchmark based on real-world MCP definitions designed to evaluate the tool-use capabilities of agents. We construct a dataset containing authentic tasks and simulated MCP tools. The evaluation employs a dynamic sandbox environment that presents agents with candidate tool lists containing distractors, thereby testing their tool selection and discrimination abilities. Furthermore, we introduce comprehensive metrics to measure both task completion rates and execution efficiency. Experiments conducted on various latest mainstream Large Language Models reveal significant performance differences in handling complex, multi-step tool invocations. All code is open-source at Github.
Extendable Generalization Self-Supervised Diffusion for Low-Dose CT Reconstruction
Current methods based on deep learning for self-supervised low-dose CT (LDCT) reconstruction, while reducing the dependence on paired data, face the problem of significantly decreased generalization when training with single-dose data and extending to other doses. To enable dose-extensive generalization using only single-dose projection data for training, this work proposes a novel method of Extendable GENeraLization self-supervised Diffusion (EGenDiff) for low-dose CT reconstruction. Specifically, a contextual subdata self-enhancing similarity strategy is designed to provide an initial prior for the subsequent progress. During training, the initial prior is used to combine knowledge distillation with a deep combination of latent diffusion models for optimizing image details. On the stage of inference, the pixel-wise self-correcting fusion technique is proposed for data fidelity enhancement, resulting in extensive generalization of higher and lower doses or even unseen doses. EGenDiff requires only LDCT projection data for training and testing. Comprehensive evaluation on benchmark datasets, clinical data, photon counting CT data, and across all three anatomical planes (transverse, coronal, and sagittal) demonstrates that EGenDiff enables extendable generalization multi-dose, yielding reconstructions that consistently outperform leading existing methods.
LLM Powered Social Digital Twins: A Framework for Simulating Population Behavioral Response to Policy Interventions
Predicting how populations respond to policy interventions is a fundamental challenge in computational social science and public policy. Traditional approaches rely on aggregate statistical models that capture historical correlations but lack mechanistic interpretability and struggle with novel policy scenarios. We present a general framework for constructing Social Digital Twins - virtual population replicas where Large Language Models (LLMs) serve as cognitive engines for individual agents. Each agent, characterized by demographic and psychographic attributes, receives policy signals and outputs multi-dimensional behavioral probability vectors. A calibration layer maps aggregated agent responses to observable population-level metrics, enabling validation against real-world data and deployment for counterfactual policy analysis. We instantiate this framework in the domain of pandemic response, using COVID-19 as a case study with rich observational data. On a held-out test period, our calibrated digital twin achieves a 20.7% improvement in macro-averaged prediction error over gradient boosting baselines across six behavioral categories. Counterfactual experiments demonstrate monotonic and bounded responses to policy variations, establishing behavioral plausibility. The framework is domain-agnostic: the same architecture applies to transportation policy, economic interventions, environmental regulations, or any setting where policy affects population behavior. We discuss implications for policy simulation, limitations of the approach, and directions for extending LLM-based digital twins beyond pandemic response.
comment: 13 pages, 1 figure, 4 tables
Explaining Tournament Solutions with Minimal Supports AAAI
Tournaments are widely used models to represent pairwise dominance between candidates, alternatives, or teams. We study the problem of providing certified explanations for why a candidate appears among the winners under various tournament rules. To this end, we identify minimal supports, minimal sub-tournaments in which the candidate is guaranteed to win regardless of how the rest of the tournament is completed (that is, the candidate is a necessary winner of the sub-tournament). This notion corresponds to an abductive explanation for the question,"Why does the winner win the tournament?", a central concept in formal explainable AI. We focus on common tournament solutions: the top cycle, the uncovered set, the Copeland rule, the Borda rule, the maximin rule, and the weighted uncovered set. For each rule we determine the size of the smallest minimal supports, and we present polynomial-time algorithms to compute them for all solutions except for the weighted uncovered set, for which the problem is NP-complete. Finally, we show how minimal supports can serve to produce compact, certified, and intuitive explanations for tournament solutions.
comment: This paper is the extended version of Contet, Grandi, and Mengin. 2026. Explaining Tournament Solutions with Minimal Supports. In Proceedings of the 40th AAAI Conference on Artificial Intelligence
Reinforcement Learning for Chain of Thought Compression with One-Domain-to-All Generalization
Chain-of-thought reasoning in large language models can trigger an "overthinking trap": longer rollouts raise cost and latency yet often yield unreliable accuracy gains. Existing methods use global, static controls that may suppress needed reasoning. We propose mastery-gated, sample-level, soft reinforcement learning compression that penalizes long rollouts only when the model already solves the problem and has produced a shorter rollout. Across benchmarks, it cuts response length by 20-40% with comparable or higher accuracy and generalizes across domains: a model trained on math spontaneously shortens unseen tasks (code, instruction following, general-knowledge QA) without hurting accuracy. We further show two-way transfer between non-agent CoT and tool-use agents: non-agent training reduces SWE-Bench Verified rounds by 13%, while compressing a thinking agent cuts SWE trajectories by 67% tokens and 52% rounds and shortens non-agent outputs by up to 44%. Compression is thus not cosmetic brevity, but an inherent computation policy -- what to keep, and what to forget.
T2T-VICL: Unlocking the Boundaries of Cross-Task Visual In-Context Learning via Implicit Text-Driven VLMs
In large language models (LLM), in-context learning (ICL) refers to performing new tasks by conditioning on small demonstrations provided in the input context. Recent advances in visual in-context learning (VICL) demonstrate promising capabilities for solving downstream tasks by unified vision-language models (VLMs). When the visual prompt and the target images originate from different visual tasks, can VLMs still enable VICL? In the paper, we propose a fully collaborative pipeline, i.e. T2T-VICL, for VLMs to investigate the potential of cross-task VICL. Fundamentally, we design a mechanism to generate and select text prompts that best implicitly describe the differences between two distinct low-level vision tasks, and construct the first cross-task VICL dataset. Building upon this, we propose a novel inference framework that combines perceptual score-based reasoning with traditional evaluation metrics to perform cross-task VICL. Our approach achieves top-tier results across twelve cross-task scenarios and second-tier performance in nine additional scenarios, unlocking the boundaries of cross-task VICL within VLMs.
Scaffold-Aware Generative Augmentation and Reranking for Enhanced Virtual Screening
Ligand-based virtual screening (VS) is an essential step in drug discovery that evaluates large chemical libraries to identify compounds that potentially bind to a therapeutic target. However, VS faces three major challenges: class imbalance due to the low active rate, structural imbalance among active molecules where certain scaffolds dominate, and the need to identify structurally diverse active compounds for novel drug development. We introduce ScaffAug, a scaffold-aware VS framework that addresses these challenges through three modules. The augmentation module first generates synthetic data conditioned on scaffolds of actual hits using generative models, specifically a graph diffusion model. This helps mitigate the class imbalance and furthermore the structural imbalance, due to our proposed scaffold-aware sampling algorithm, designed to produce more samples for active molecules with underrepresented scaffolds. A model-agnostic self-training module is then used to safely integrate the generated synthetic data from our augmentation module with the original labeled data. Lastly, we introduce a reranking module that improves VS by enhancing scaffold diversity in the top recommended set of molecules, while still maintaining and even enhancing the overall general performance of identifying novel, active compounds. We conduct comprehensive computational experiments across five target classes, comparing ScaffAug against existing baseline methods by reporting the performance of multiple evaluation metrics and performing ablation studies on ScaffAug. Overall, this work introduces novel perspectives on effectively enhancing VS by leveraging generative augmentations, reranking, and general scaffold-awareness.
Smudged Fingerprints: A Systematic Evaluation of the Robustness of AI Image Fingerprints
Model fingerprint detection has shown promise to trace the provenance of AI-generated images in forensic applications. However, despite the inherent adversarial nature of these applications, existing evaluations rarely consider adversarial settings. We present the first systematic security evaluation of these techniques, formalizing threat models that encompass both white- and black-box access and two attack goals: fingerprint removal, which erases identifying traces to evade attribution, and fingerprint forgery, which seeks to cause misattribution to a target model. We implement five attack strategies and evaluate 14 representative fingerprinting methods across RGB, frequency, and learned-feature domains on 12 state-of-the-art image generators. Our experiments reveal a pronounced gap between clean and adversarial performance. Removal attacks are highly effective, often achieving success rates above 80% in white-box settings and over 50% under black-box access. While forgery is more challenging than removal, its success varies significantly across targeted models. We also observe a utility-robustness trade-off: accurate attribution methods are often vulnerable to attacks and, although some techniques are robust in specific settings, none achieves robustness and accuracy across all evaluated threat models. These findings highlight the need for techniques that balance robustness and accuracy, and we identify the most promising approaches toward this goal. Code available at: https://github.com/kaikaiyao/SmudgedFingerprints.
comment: This work has been accepted for publication in the 4th IEEE Conference on Secure and Trustworthy Machine Learning (IEEE SaTML 2026). The final version will be available on IEEE Xplore
Development and Evaluation of an Ontology for Non-Invasive Respiratory Support in Acute Care
Managing patients with respiratory failure increasingly involves noninvasive respiratory support (NIRS) strategies to support respiration, often preventing the need for invasive mechanical ventilation. However, despite the rapidly expanding use of NIRS, there remains a significant challenge to its optimal use across all medical circumstances. It lacks a unified ontological structure, complicating guidance on NIRS modalities across healthcare systems. This study introduced NIRS ontology to support knowledge representation in acute care settings by providing a unified framework that enhances data clarity and interoperability, laying the groundwork for future clinical decision-making. We developed NIRS ontology using the Web Ontology Language (OWL) and Protege to organize clinical concepts and relationships. To enable rule-based clinical reasoning beyond hierarchical structures, we added Semantic Web Rule Language (SWRL) rules. We evaluated logical reasoning by adding a sample of 6 patient scenarios and used SPARQL queries to retrieve and test targeted inferences. The ontology has 145 classes, 11 object properties, and 18 data properties across 949 axioms that establish concept relationships. To standardize clinical concepts, we added 392 annotations, including descriptive definitions based on controlled vocabularies. SPARQL query evaluations across clinical scenarios confirmed the ontology ability to support rule based reasoning and therapy recommendations, providing a foundation for consistent documentation practices, integration into clinical data models, and advanced analysis of NIRS outcomes. In conclusion, we unified NIRS concepts into an ontological framework and demonstrated its applicability through the evaluation of patient scenarios and alignment with standardized vocabularies.
Unified Text-Image Generation with Weakness-Targeted Post-Training
Unified multimodal generation architectures that jointly produce text and images have recently emerged as a promising direction for text-to-image (T2I) synthesis. However, many existing systems rely on explicit modality switching, generating reasoning text before switching manually to image generation. This separate, sequential inference process limits cross-modal coupling and prohibits automatic multimodal generation. This work explores post-training to achieve fully unified text-image generation, where models autonomously transition from textual reasoning to visual synthesis within a single inference process. We examine the impact of joint text-image generation on T2I performance and the relative importance of each modality during post-training. We additionally explore different post-training data strategies, showing that a targeted dataset addressing specific limitations achieves superior results compared to broad image-caption corpora or benchmark-aligned data. Using offline, reward-weighted post-training with fully self-generated synthetic data, our approach enables improvements in multimodal image generation across four diverse T2I benchmarks, demonstrating the effectiveness of reward-weighting both modalities and strategically designed post-training data.
A Survey of Quantized Graph Representation Learning: Connecting Graph Structures with Large Language Models
Recent years have witnessed rapid advances in graph representation learning, with the continuous embedding approach emerging as the dominant paradigm. However, such methods encounter issues regarding parameter efficiency, interpretability, and robustness. Thus, Quantized Graph Representation (QGR) learning has recently gained increasing interest, which represents the graph structure with discrete codes instead of conventional continuous embeddings. Given its analogous representation form to natural language, QGR also possesses the capability to seamlessly integrate graph structures with large language models (LLMs). As this emerging paradigm is still in its infancy yet holds significant promise, we undertake this thorough survey to promote its rapid future prosperity. We first present the background of the general quantization methods and their merits. Moreover, we provide an in-depth demonstration of current QGR studies from the perspectives of quantized strategies, training objectives, distinctive designs, knowledge graph quantization, and applications. We further explore the strategies for code dependence learning and integration with LLMs. At last, we give discussions and conclude future directions, aiming to provide a comprehensive picture of QGR and inspire future research.
Neural Honeytrace: Plug&Play Watermarking Framework against Model Extraction Attacks
Triggerable watermarking enables model owners to assert ownership against model extraction attacks. However, most existing approaches require additional training, which limits post-deployment flexibility, and the lack of clear theoretical foundations makes them vulnerable to adaptive attacks. In this paper, we propose Neural Honeytrace, a plug-and-play watermarking framework that operates without retraining. We redefine the watermark transmission mechanism from an information perspective, designing a training-free multi-step transmission strategy that leverages the long-tailed effect of backdoor learning to achieve efficient and robust watermark embedding. Extensive experiments demonstrate that Neural Honeytrace reduces the average number of queries required for a worst-case t-test-based ownership verification to as low as $2\%$ of existing methods, while incurring zero training cost.
SciHorizon-GENE: Benchmarking LLM for Life Sciences Inference from Gene Knowledge to Functional Understanding
Large language models (LLMs) have shown growing promise in biomedical research, particularly for knowledge-driven interpretation tasks. However, their ability to reliably reason from gene-level knowledge to functional understanding, a core requirement for knowledge-enhanced cell atlas interpretation, remains largely underexplored. To address this gap, we introduce SciHorizon-GENE, a large-scale gene-centric benchmark constructed from authoritative biological databases. The benchmark integrates curated knowledge for over 190K human genes and comprises more than 540K questions covering diverse gene-to-function reasoning scenarios relevant to cell type annotation, functional interpretation, and mechanism-oriented analysis. Motivated by behavioral patterns observed in preliminary examinations, SciHorizon-GENE evaluates LLMs along four biologically critical perspectives: research attention sensitivity, hallucination tendency, answer completeness, and literature influence, explicitly targeting failure modes that limit the safe adoption of LLMs in biological interpretation pipelines. We systematically evaluate a wide range of state-of-the-art general-purpose and biomedical LLMs, revealing substantial heterogeneity in gene-level reasoning capabilities and persistent challenges in generating faithful, complete, and literature-grounded functional interpretations. Our benchmark establishes a systematic foundation for analyzing LLM behavior at the gene scale and offers insights for model selection and development, with direct relevance to knowledge-enhanced biological interpretation.
comment: 16 pages
LRR-Bench: Left, Right or Rotate? Vision-Language models Still Struggle With Spatial Understanding Tasks
Real-world applications, such as autonomous driving and humanoid robot manipulation, require precise spatial perception. However, it remains underexplored how Vision-Language Models (VLMs) recognize spatial relationships and perceive spatial movement. In this work, we introduce a spatial evaluation pipeline and construct a corresponding benchmark. Specifically, we categorize spatial understanding into two main types: absolute spatial understanding, which involves querying the absolute spatial position (e.g., left, right) of an object within an image, and 3D spatial understanding, which includes movement and rotation. Notably, our dataset is entirely synthetic, enabling the generation of test samples at a low cost while also preventing dataset contamination. We conduct experiments on multiple state-of-the-art VLMs and observe that there is significant room for improvement in their spatial understanding abilities. Explicitly, in our experiments, humans achieve near-perfect performance on all tasks, whereas current VLMs attain human-level performance only on the two simplest tasks. For the remaining tasks, the performance of VLMs is distinctly lower than that of humans. In fact, the best-performing Vision-Language Models even achieve near-zero scores on multiple tasks. The dataset and code are available on https://github.com/kong13661/LRR-Bench.
DNF: Dual-Layer Nested Fingerprinting for Large Language Model Intellectual Property Protection
The rapid growth of large language models raises pressing concerns about intellectual property protection under black-box deployment. Existing backdoor-based fingerprints either rely on rare tokens -- leading to high-perplexity inputs susceptible to filtering -- or use fixed trigger-response mappings that are brittle to leakage and post-hoc adaptation. We propose \textsc{Dual-Layer Nested Fingerprinting} (DNF), a black-box method that embeds a hierarchical backdoor by coupling domain-specific stylistic cues with implicit semantic triggers. Across Mistral-7B, LLaMA-3-8B-Instruct, and Falcon3-7B-Instruct, DNF achieves perfect fingerprint activation while preserving downstream utility. Compared with existing methods, it uses lower-perplexity triggers, remains undetectable under fingerprint detection attacks, and is relatively robust to incremental fine-tuning and model merging. These results position DNF as a practical, stealthy, and resilient solution for LLM ownership verification and intellectual property protection.
comment: Accepted by ICASSP2026
Geo-Registration of Terrestrial LiDAR Point Clouds with Satellite Images without GNSS
Accurate geo-registration of LiDAR point clouds remains a significant challenge in urban environments where Global Navigation Satellite System (GNSS) signals are denied or degraded. Existing methods typically rely on real-time GNSS and Inertial Measurement Unit (IMU) data, which require pre-calibration and assume stable signals. However, this assumption often fails in dense cities, resulting in localization errors. To address this, we propose a structured post-hoc geo-registration method that accurately aligns LiDAR point clouds with satellite images. The proposed approach targets point cloud datasets where reliable GNSS information is unavailable or degraded, enabling city-scale geo-registration as a post-processing solution. Our method uses a pre-trained Point Transformer to segment road points, then extracts road skeletons and intersections from the point cloud and the satellite image. Global alignment is achieved through rigid transformation using corresponding intersection points, followed by local non-rigid refinement with radial basis function (RBF) interpolation. Elevation discrepancies are corrected using terrain data from the Shuttle Radar Topography Mission (SRTM). To evaluate geo-registration accuracy, we measure the absolute distances between the roads extracted from the two modalities. Our method is validated on the KITTI benchmark and a newly collected dataset of Perth, Western Australia. On KITTI, our method achieves a mean planimetric alignment error of 0.69m, corresponding to a 50% reduction in global geo-registration bias compared to the raw KITTI annotations. On Perth dataset, it achieves a mean planimetric error of 2.17m from GNSS values extracted from Google Maps, corresponding to 57.4% improvement over rigid alignment. Elevation correlation factor improved by 30.5% (KITTI) and 55.8% (Perth).
comment: Submitted to IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. Under reviewing now
DARC: Decoupled Asymmetric Reasoning Curriculum for LLM Evolution
Self-play with large language models has emerged as a promising paradigm for achieving self-improving artificial intelligence. However, existing self-play frameworks often suffer from optimization instability, due to (i) non-stationary objectives induced by solver-dependent reward feedback for the Questioner, and (ii) bootstrapping errors from self-generated pseudo-labels used to supervise the Solver. To mitigate these challenges, we introduce DARC (Decoupled Asymmetric Reasoning Curriculum), a two-stage framework that stabilizes the self-evolution process. First, we train the Questioner to synthesize difficulty-calibrated questions, conditioned on explicit difficulty levels and external corpora. Second, we train the Solver with an asymmetric self-distillation mechanism, where a document-augmented teacher generates high-quality pseudo-labels to supervise the student Solver that lacks document access. Empirical results demonstrate that DARC is model-agnostic, yielding an average improvement of 10.9 points across nine reasoning benchmarks and three backbone models. Moreover, DARC consistently outperforms all baselines and approaches the performance of fully supervised models without relying on human annotations. The code is available at https://github.com/RUCBM/DARC.
LLM Reasoning for Cold-Start Item Recommendation
Large Language Models (LLMs) have shown significant potential for improving recommendation systems through their inherent reasoning capabilities and extensive knowledge base. Yet, existing studies predominantly address warm-start scenarios with abundant user-item interaction data, leaving the more challenging cold-start scenarios, where sparse interactions hinder traditional collaborative filtering methods, underexplored. To address this limitation, we propose novel reasoning strategies designed for cold-start item recommendations within the Netflix domain. Our method utilizes the advanced reasoning capabilities of LLMs to effectively infer user preferences, particularly for newly introduced or rarely interacted items. We systematically evaluate supervised fine-tuning, reinforcement learning-based fine-tuning, and hybrid approaches that combine both methods to optimize recommendation performance. Extensive experiments on real-world data demonstrate significant improvements in both methodological efficacy and practical performance in cold-start recommendation contexts. Remarkably, our reasoning-based fine-tuned models outperform Netflix's production ranking model by up to 8% in certain cases.
comment: Published on Proceedings of the ACM on Web Conference 2026 (WWW 2026)
LLM4EO: Large Language Model for Evolutionary Optimization in Flexible Job Shop Scheduling
Customized static operator design has enabled widespread application of Evolutionary Algorithms (EAs), but their search performance is transient during iterations and prone to degradation. Dynamic operators aim to address this but typically rely on predefined designs and localized parameter control during the search process, lacking adaptive optimization throughout evolution. To overcome these limitations, this work leverages Large Language Models (LLMs) to perceive evolutionary dynamics and enable operator-level meta-evolution. The proposed framework, LLMs for Evolutionary Optimization (LLM4EO), comprises three components: knowledge-transfer-based operator design, evolution perception and analysis, and adaptive operator evolution. Firstly, initialization of operators is performed by transferring the strengths of classical operators via LLMs. Then, search preferences and potential limitations of operators are analyzed by integrating fitness performance and evolutionary features, accompanied by corresponding suggestions for improvement. Upon stagnation of population evolution, gene selection priorities of operators are dynamically optimized via improvement prompting strategies. This approach achieves co-evolution of populations and operators in the search, introducing a novel paradigm for enhancing the efficiency and adaptability of EAs. Finally, a series of validations on multiple benchmark datasets of the flexible job shop scheduling problem demonstrate that LLM4EO accelerates population evolution and outperforms both mainstream evolutionary programming and traditional EAs.
Pathways of Thoughts: Multi-Directional Thinking for Long-form Personalized Question Answering
Personalization is well studied in search and recommendation, but personalized question answering remains underexplored due to challenges in inferring preferences from long, noisy, implicit contexts and generating responses that are both accurate and aligned with user expectations. To address this, we propose Pathways of Thoughts (PoT), an inference-stage method that applies to any large language model (LLM) without task-specific fine-tuning. PoT models the thinking as an iterative decision process, where the model dynamically selects among cognitive operations such as reasoning, revision, personalization, and clarification. This enables exploration of multiple reasoning trajectories, producing diverse candidate responses that capture different perspectives. PoT then aggregates and reweights these candidates according to inferred user preferences, yielding a final personalized response that benefits from the complementary strengths of diverse reasoning paths. Experiments on the LaMP-QA benchmark show that PoT consistently outperforms competitive baselines, achieving up to a 10.8\% relative improvement. Human evaluation further validates these improvements, with annotators preferring PoT in 66\% of cases compared to the best-performing baseline and reporting ties in 15\% of cases.
Towards Reinforcement Learning from Neural Feedback: Mapping fNIRS Signals to Agent Performance AAAI
Reinforcement Learning from Human Feedback (RLHF) is a methodology that aligns agent behavior with human preferences by integrating user feedback into the agent's training process. This paper introduces a framework that guides agent training through implicit neural signals, with a focus on the neural classification problem. Our work presents and releases a novel dataset of functional near-infrared spectroscopy (fNIRS) recordings collected from 25 human participants across three domains: Pick-and-Place Robot, Lunar Lander, and Flappy Bird. We train multiple classifiers to predict varying levels of agent performance (optimal, suboptimal, or worst-case) from windows of preprocessed fNIRS features, achieving an average F1 score of 67% for binary and 46% for multi-class classification across conditions and domains. We also train multiple regressors to predict the degree of deviation between an agent's chosen action and a set of near-optimal policy actions, providing a continuous measure of performance. Finally, we evaluate cross-subject generalization and show that fine-tuning pre-trained models with a small sample of subject-specific data increases average F1 scores by 17% and 41% for binary and multi-class models, respectively. Our results demonstrate that mapping implicit fNIRS signals to agent performance is feasible and can be improved, laying the foundation for future Reinforcement Learning from Neural Feedback (RLNF) systems.
comment: Accepted to the Association for the Advancement of Artificial Intelligence (AAAI) 2026. To appear in the AAAI 2026 Proceedings
PREFAB: PREFerence-based Affective Modeling for Low-Budget Self-Annotation
Self-annotation is the gold standard for collecting affective state labels in affective computing. Existing methods typically rely on full annotation, requiring users to continuously label affective states across entire sessions. While this process yields fine-grained data, it is time-consuming, cognitively demanding, and prone to fatigue and errors. To address these issues, we present PREFAB, a low-budget retrospective self-annotation method that targets affective inflection regions rather than full annotation. Grounded in the peak-end rule and ordinal representations of emotion, PREFAB employs a preference-learning model to detect relative affective changes, directing annotators to label only selected segments while interpolating the remainder of the stimulus. We further introduce a preview mechanism that provides brief contextual cues to assist annotation. We evaluate PREFAB through a technical performance study and a 25-participant user study. Results show that PREFAB outperforms baselines in modeling affective inflections while mitigating workload (and conditionally mitigating temporal burden). Importantly PREFAB improves annotator confidence without degrading annotation quality.
comment: CHI '26 Accepted paper
LoSemB: Logic-Guided Semantic Bridging for Inductive Tool Retrieval
Tool learning has emerged as a promising paradigm for large language models (LLMs) to solve many real-world tasks. Nonetheless, with the tool repository rapidly expanding, it is impractical to contain all tools within the limited input length of LLMs. To alleviate these issues, researchers have explored incorporating a tool retrieval module to select the most relevant tools or represent tools as unique tokens within LLM parameters. However, most state-of-the-art methods are under transductive settings, assuming all tools have been observed during training. Such a setting deviates from reality as the real-world tool repository is evolving and incorporates new tools frequently. When dealing with these unseen tools, which refer to tools not encountered during the training phase, these methods are limited by two key issues, including the large distribution shift and the vulnerability of similarity-based retrieval. To this end, inspired by human cognitive processes of mastering unseen tools through discovering and applying the logical information from prior experience, we introduce a novel Logic-Guided Semantic Bridging framework for inductive tool retrieval, namely, LoSemB, which aims to mine and transfer latent logical information for inductive tool retrieval without costly retraining. Specifically, LoSemB contains a logic-based embedding alignment module to mitigate distribution shifts and implements a relational augmented retrieval mechanism to reduce the vulnerability of similarity-based retrieval. Extensive experiments demonstrate that LoSemB achieves advanced performance in inductive settings while maintaining desirable effectiveness in the transductive setting.
Manalyzer: End-to-end Automated Meta-analysis with Multi-agent System
Meta-analysis is a systematic research methodology that synthesizes data from multiple existing studies to derive comprehensive conclusions. This approach not only mitigates limitations inherent in individual studies but also facilitates novel discoveries through integrated data analysis. Traditional meta-analysis involves a complex multi-stage pipeline including literature retrieval, paper screening, and data extraction, which demands substantial human effort and time. However, while LLM-based methods can accelerate certain stages, they still face significant challenges, such as hallucinations in paper screening and data extraction. In this paper, we propose a multi-agent system, Manalyzer, which achieves end-to-end automated meta-analysis through tool calls. The hybrid review, hierarchical extraction, self-proving, and feedback checking strategies implemented in Manalyzer significantly alleviate these two hallucinations. To comprehensively evaluate the performance of meta-analysis, we construct a new benchmark comprising 729 papers across 3 domains, encompassing text, image, and table modalities, with over 10,000 data points. Extensive experiments demonstrate that Manalyzer achieves significant performance improvements over the LLM baseline in multi meta-analysis tasks. Project page: https://black-yt.github.io/meta-analysis-page/ .
RL-BioAug: Label-Efficient Reinforcement Learning for Self-Supervised EEG Representation Learning
The quality of data augmentation serves as a critical determinant for the performance of contrastive learning in EEG tasks. Although this paradigm is promising for utilizing unlabeled data, static or random augmentation strategies often fail to preserve intrinsic information due to the non-stationarity of EEG signals where statistical properties change over time. To address this, we propose RL-BioAug, a framework that leverages a label-efficient reinforcement learning (RL) agent to autonomously determine optimal augmentation policies. While utilizing only a minimal fraction (10%) of labeled data to guide the agent's policy, our method enables the encoder to learn robust representations in a strictly self-supervised manner. Experimental results demonstrate that RL-BioAug significantly outperforms the random selection strategy, achieving substantial improvements of 9.69% and 8.80% in Macro-F1 score on the Sleep-EDFX and CHB-MIT datasets, respectively. Notably, this agent mainly chose optimal strategies for each task--for example, Time Masking with a 62% probability for sleep stage classification and Crop & Resize with a 77% probability for seizure detection. Our framework suggests its potential to replace conventional heuristic-based augmentations and establish a new autonomous paradigm for data augmentation. The source code is available at https://github.com/dlcjfgmlnasa/RL-BioAug.
Predictive Prototyping: Evaluating Design Concepts with ChatGPT
The design-build-test cycle is essential for innovation, but physical prototyping is often slow and expensive. Although physics-based simulation and strategic prototyping can reduce cost, meaningful evaluation is frequently constrained until an integrated prototype is built. This paper investigates whether a generative pretrained transformer (GPT) can predict information typically obtained through prototyping, including cost, performance, and perceived usability. We introduce a retrieval-augmented generation (RAG) method to emulate design feedback using OpenAI GPT-4o, grounded in prototyping data scraped from Instructables.com to increase access to relevant precedent. Two studies are reported. First, a controlled experiment compares GPT-RAG and human designers, who receive design sketches and predict cost, performance, and usability; predictions are evaluated against ground-truth results from physical prototypes. Second, we report an applied demonstration in which a physical prototype is produced from GPT-RAG recommendations and compared with a commercial baseline and a topology-optimized design. Results show that GPT-RAG provides more accurate cost and performance estimates than individual or crowd human estimates, while yielding comparable usability insights; the GPT-RAG-informed prototype also outperforms both comparison prototypes. Repeated querying with response averaging significantly improves accuracy, suggesting that LLMs can emulate crowd aggregation effects consistent with the law of large numbers.
comment: 22 pages, 15 figures, 5 tables
Reliable Grid Forecasting: State Space Models for Safety-Critical Energy Systems
Accurate grid load forecasting is safety-critical: under-predictions risk supply shortfalls, while symmetric error metrics can mask this operational asymmetry. We introduce an operator-legible evaluation framework -- Under-Prediction Rate (UPR), tail Reserve$_{99.5}^{\%}$ requirements, and explicit inflation diagnostics (Bias$_{24h}$/OPR) -- to quantify one-sided reliability risk beyond MAPE. Using this framework, we evaluate state space models (Mamba variants) and strong baselines on a weather-aligned California Independent System Operator (CAISO) dataset spanning Nov 2023--Nov 2025 (84,498 hourly records across 5 regional transmission areas) under a rolling-origin walk-forward backtest. We develop and evaluate thermal-lag-aligned weather fusion strategies for these architectures. Our results demonstrate that standard accuracy metrics are insufficient proxies for operational safety: models with comparable MAPE can imply materially different tail reserve requirements (Reserve$_{99.5}^{\%}$). We show that explicit weather integration narrows error distributions, reducing the impact of temperature-driven demand spikes. Furthermore, while probabilistic calibration reduces large-error events, it can induce systematic schedule inflation. We introduce Bias/OPR-constrained objectives to enable auditable trade-offs between minimizing tail risk and preventing trivial over-forecasting.
comment: 30 pages, 7 figures, 9 tables
Unraveling LLM Jailbreaks Through Safety Knowledge Neurons
Large Language Models (LLMs) are increasingly attracting attention in various applications. Nonetheless, there is a growing concern as some users attempt to exploit these models for malicious purposes, including the synthesis of controlled substances and the propagation of disinformation, a technique known as "Jailbreak." While some studies have achieved defenses against jailbreak attacks by modifying output distributions or detecting harmful content, the exact rationale still remains elusive. In this work, we present a novel neuron-level interpretability method that focuses on the role of safety-related knowledge neurons. Unlike existing approaches, our method projects the model's internal representation into a more consistent and interpretable vocabulary space. We then show that adjusting the activation of safety-related neurons can effectively control the model's behavior with a mean ASR higher than 97%. Building on this insight, we propose SafeTuning, a fine-tuning strategy that reinforces safety-critical neurons to improve model robustness against jailbreaks. SafeTuning consistently reduces attack success rates across multiple LLMs and outperforms all four baseline defenses. These findings offer a new perspective on understanding and defending against jailbreak attacks.
comment: EACL 2026
$\mathrm{D}^\mathrm{3}$-Predictor: Noise-Free Deterministic Diffusion for Dense Prediction
Although diffusion models with strong visual priors have emerged as powerful dense prediction backbones, they overlook a core limitation: the stochastic noise at the core of diffusion sampling is inherently misaligned with dense prediction that requires a deterministic mapping from image to geometry. In this paper, we show that this stochastic noise corrupts fine-grained spatial cues and pushes the model toward timestep-specific noise objectives, consequently destroying meaningful geometric structure mappings. To address this, we introduce $\mathrm{D}^\mathrm{3}$-Predictor, a noise-free deterministic diffusion-based dense prediction model built by reformulating a pretrained diffusion model without stochasticity noise. Instead of relying on noisy inputs to leverage diffusion priors, $\mathrm{D}^\mathrm{3}$-Predictor views the pretrained diffusion network as an ensemble of timestep-dependent visual experts and self-supervisedly aggregates their heterogeneous priors into a single, clean, and complete geometric prior. Meanwhile, we utilize task-specific supervision to seamlessly adapt this noise-free prior to dense prediction tasks. Extensive experiments on various dense prediction tasks demonstrate that $\mathrm{D}^\mathrm{3}$-Predictor achieves competitive or state-of-the-art performance in diverse scenarios. In addition, it requires less than half the training data previously used and efficiently performs inference in a single step. Our code, data, and checkpoints are publicly available at https://x-gengroup.github.io/HomePage_D3-Predictor/.
Protocode: Prototype-Driven Interpretability for Code Generation in LLMs
Since the introduction of Large Language Models (LLMs), they have been widely adopted for various tasks such as text summarization, question answering, speech-to-text translation, and more. In recent times, the use of LLMs for code generation has gained significant attention, with tools such as Cursor and Windsurf demonstrating the ability to analyze massive code repositories and recommend relevant changes. Big tech companies have also acknowledged the growing reliance on LLMs for code generation within their codebases. Although these advances significantly improve developer productivity, increasing reliance on automated code generation can proportionally increase the risk of suboptimal solutions and insecure code. Our work focuses on automatically sampling In-Context Learning (ICL) demonstrations which can improve model performance and enhance the interpretability of the generated code. Using AST-based analysis on outputs from the MBPP test set, we identify regions of code most influenced by the chosen demonstrations. In our experiments, we show that high-quality ICL demonstrations not only make outputs easier to interpret but also yield a positive performance improvement on the pass@10 metric. Conversely, poorly chosen ICL demonstrations affected the LLM performance on the pass@10 metric negatively compared to the base model. Overall, our approach highlights the importance of efficient sampling strategies for ICL, which can affect the performance of the model on any given task.
Encoding Emotion Through Self-Supervised Eye Movement Reconstruction
The relationship between emotional expression and eye movement is well-documented, with literature establishing gaze patterns are reliable indicators of emotion. However, most studies utilize specialized, high-resolution eye-tracking equipment, limiting the potential reach of findings. We investigate how eye movement can be used to predict multimodal markers of emotional expression from naturalistic, low-resolution videos. We utilize a collection of video interviews from the USC Shoah Foundation's Visual History Archive with Holocaust survivors as they recount their experiences in the Auschwitz concentration camp. Inspired by pretraining methods on language models, we develop a novel gaze detection model that uses self-supervised eye movement reconstruction that can effectively leverage unlabeled video. We use this model's encoder embeddings to fine-tune models on two downstream tasks related to emotional expression. The first is aligning eye movement with directional emotion estimates from speech. The second task is using eye gaze as a predictor of three momentary manifestations of emotional behaviors: laughing, crying/sobbing, and sighing. We find our new model is predictive of emotion outcomes and observe a positive correlation between pretraining performance and emotion processing performance for both experiments. We conclude self-supervised eye movement reconstruction is an effective method for encoding the affective signal they carry.
Manifold-based Sampling for In-Context Hallucination Detection in Large Language Models
Large language models (LLMs) frequently generate factually incorrect or unsupported content, commonly referred to as hallucinations. Prior work has explored decoding strategies, retrieval augmentation, and supervised fine-tuning for hallucination detection, while recent studies show that in-context learning (ICL) can substantially influence factual reliability. However, existing ICL demonstration selection methods often rely on surface-level similarity heuristics and exhibit limited robustness across tasks and models. We propose MB-ICL, a manifold-based demonstration sampling framework for selecting in-context demonstrations that leverages latent representations extracted from frozen LLMs. By jointly modeling local manifold structure and class-aware prototype geometry, MB-ICL selects demonstrations based on their proximity to learned prototypes rather than lexical or embedding similarity alone. Across factual verification (FEVER) and hallucination detection (HaluEval) benchmarks, MB-ICL outperforms standard ICL selection baselines in the majority of evaluated settings, with particularly strong gains on dialogue and summarization tasks. The method remains robust under temperature perturbations and model variation, indicating improved stability compared to heuristic retrieval strategies. While lexical retrieval can remain competitive in certain question-answering regimes, our results demonstrate that manifold-based prototype selection provides a reliable and training light approach for hallucination detection without modifying LLM parameters, offering a principled direction for improved ICL demonstration selection.
OptimAI: Optimization from Natural Language Using LLM-Powered AI Agents
Optimization plays a vital role in scientific research and practical applications. However, formulating a concrete optimization problem described in natural language into a mathematical form and selecting a suitable solver to solve the problem requires substantial domain expertise. We introduce OptimAI, a framework for solving Optimization problems described in natural language by leveraging LLM-powered AI agents, and achieve superior performance over current state-of-the-art methods. Our framework is built upon the following key roles: (1) a formulator that translates natural language problem descriptions into precise mathematical formulations; (2) a planner that constructs a high-level solution strategy prior to execution; and (3) a coder and a code critic capable of interacting with the environment and reflecting on outcomes to refine future actions. Ablation studies confirm that all roles are essential; removing the planner or code critic results in $5.8\times$ and $3.1\times$ drops in productivity, respectively. Furthermore, we introduce UCB-based debug scheduling to dynamically switch between alternative plans, yielding an additional $3.3\times$ productivity gain. Our design emphasizes multi-agent collaboration, and our experiments confirm that combining diverse models leads to performance gains. Our approach attains 88.1% accuracy on the NLP4LP dataset and 82.3% on the Optibench dataset, reducing error rates by 58% and 52%, respectively, over prior best results.
GDEPO: Group Dual-dynamic and Equal-right-advantage Policy Optimization with Enhanced Training Data Utilization for Sample-Constrained Reinforcement Learning
Automated Theorem Proving (ATP) represents a fundamental challenge in Artificial Intelligence (AI), requiring the construction of machine-verifiable proofs in formal languages such as Lean to evaluate AI reasoning capabilities. Reinforcement learning (RL), particularly the high-performance Group Relative Policy Optimization (GRPO) algorithm, has emerged as a mainstream approach for this task. However, in ATP scenarios, GRPO faces two critical issues: when composite rewards are used, its relative advantage estimation may conflict with the binary feedback from the formal verifier; meanwhile, its static sampling strategy may discard entire batches of data if no valid proof is found, resulting in zero contribution to model updates and significant data waste. To address these limitations, we propose Group Dual-dynamic and Equal-right-advantage Policy Optimization (GDEPO), a method incorporating three core mechanisms: 1) dynamic additional sampling, which resamples invalid batches until a valid proof is discovered; 2) equal-right advantage, decoupling the sign of the advantage function (based on correctness) from its magnitude (modulated by auxiliary rewards) to ensure stable and correct policy updates; and 3) dynamic additional iterations, applying extra gradient steps to initially failed but eventually successful samples to accelerate learning on challenging cases. Experiments conducted on three datasets of varying difficulty (MinF2F-test, MathOlympiadBench, PutnamBench) confirm the effectiveness of GDEPO, while ablation studies validate the necessity of its synergistic components. The proposed method enhances data utilization and optimization efficiency, offering a novel training paradigm for ATP.
A Marketplace for AI-Generated Adult Content and Deepfakes
Generative AI systems increasingly enable the production of highly realistic synthetic media. Civitai, a popular community-driven platform for AI-generated content, operates a monetized feature called Bounties, which allows users to commission the generation of content in exchange for payment. To examine how this mechanism is used and what content it incentivizes, we conduct a longitudinal analysis of all publicly available bounty requests collected over a 14-month period following the platform's launch. We find that the bounty marketplace is dominated by tools that let users steer AI models toward content they were not trained to generate. At the same time, requests for content that is "Not Safe For Work" are widespread and have increased steadily over time, now comprising a majority of all bounties. Participation in bounty creation is uneven, with 20% of requesters accounting for roughly half of requests. Requests for "deepfake" - media depicting identifiable real individuals - exhibit a higher concentration than other types of bounties. A nontrivial subset of these requests involves explicit deepfakes despite platform policies prohibiting such content. These bounties disproportionately target female celebrities, revealing a pronounced gender asymmetry in social harm. Together, these findings show how monetized, community-driven generative AI platforms can produce gendered harms, raising questions about consent, governance, and enforcement.
Context-Picker: Dynamic context selection using multi-stage reinforcement learning
In long-context question answering, selecting the appropriate scope of context for a query remains a key and unresolved challenge. Insufficient context can lead to missing essential information, whereas excessive context often introduces noise and degrades answer quality. Conventional methods, such as retrieving a fixed number of passages or applying reranking, struggle to dynamically determine which context to include. This is especially problematic for factoid questions, which typically depend only on a few precise pieces of evidence. To overcome this limitation, we propose Context-Picker, a reasoning-aware framework that reframes context selection as the task of identifying a minimal sufficient evidence subset, moving beyond conventional similarity-based ranking. Context-Picker uses a human-inspired two-stage reinforcement learning schedule: stage 1 focuses on improving the recall rate of critical passages, and stage 2 prioritizes pruning redundancy to distill a compact evidence set. To resolve reward sparsity, we propose an offline evidence distillation pipeline that mines ``minimal sufficient sets" via a Leave-One-Out (LOO) procedure, providing dense and task-aligned supervision. Experiments on five long-context and multi-hop QA datasets demonstrate that our method outperforms strong RAG baselines and achieved higher answer accuracy. Ablation studies also indicate that our coarse-to-fine optimization schedule, the redundancy-aware reward shaping, along with the rationale generated by the policy, all contribute substantially to these gains.
Enabling Agents to Communicate Entirely in Latent Space
While natural language is the de facto communication medium for LLM-based agents, it presents a fundamental constraint. The process of downsampling rich, internal latent states into discrete tokens inherently limits the depth and nuance of information that can be transmitted, thereby hindering collaborative problem-solving. Inspired by telepathy, which bypasses symbolic language in communication, we propose Interlat (Inter-agent Latent Space Communication), a paradigm that leverages the continuous last hidden states of an LLM as a representation of its thought for direct communication (termed latent communication). An additional learned compression process further compresses latent communication via latent space reasoning. Experiments demonstrate that Interlat outperforms both fine-tuned chain-of-thought (CoT) prompting and single-agent baselines, even across heterogeneous models, promoting more exploratory behavior and enabling genuine utilization of latent information. Further compression not only substantially accelerates inference by up to 24 times but also maintains competitive performance through an efficient information-preserving mechanism. We position this work as a feasibility study of entirely latent space inter-agent communication, and our results highlight its potential, offering valuable insights for future research.
comment: Work in progess
FAIRGAMER: Evaluating Social Biases in LLM-Based Video Game NPCs
Large Language Models (LLMs) have increasingly enhanced or replaced traditional Non-Player Characters (NPCs) in video games. However, these LLM-based NPCs inherit underlying social biases (e.g., race or class), posing fairness risks during in-game interactions. To address the limited exploration of this issue, we introduce FairGamer, the first benchmark to evaluate social biases across three interaction patterns: transaction, cooperation, and competition. FairGamer assesses four bias types, including class, race, age, and nationality, across 12 distinct evaluation tasks using a novel metric, FairMCV. Our evaluation of seven frontier LLMs reveals that: (1) models exhibit biased decision-making, with Grok-4-Fast demonstrating the highest bias (average FairMCV = 76.9%); and (2) larger LLMs display more severe social biases, suggesting that increased model capacity inadvertently amplifies these biases. We release FairGamer at https://github.com/Anonymous999-xxx/FairGamer to facilitate future research on NPC fairness.
Monadic Context Engineering
The proliferation of Large Language Models (LLMs) has catalyzed a shift towards autonomous agents capable of complex reasoning and tool use. However, current agent architectures are frequently constructed using imperative, ad hoc patterns. This results in brittle systems plagued by difficulties in state management, error handling, and concurrency. This paper introduces Monadic Context Engineering (MCE), a novel architectural paradigm leveraging the algebraic structures of Functors, Applicative Functors, and Monads to provide a formal foundation for agent design. MCE treats agent workflows as computational contexts where cross-cutting concerns, such as state propagation, short-circuiting error handling, and asynchronous execution, are managed intrinsically by the algebraic properties of the abstraction. We demonstrate how Monads enable robust sequential composition, how Applicatives provide a principled structure for parallel execution, and crucially, how Monad Transformers allow for the systematic composition of these capabilities. This layered approach enables developers to construct complex, resilient, and efficient AI agents from simple, independently verifiable components. We further extend this framework to describe Meta-Agents, which leverage MCE for generative orchestration, dynamically creating and managing sub-agent workflows through metaprogramming.
Next Point-of-interest (POI) Recommendation Model Based on Multi-modal Spatio-temporal Context Feature Embedding
Predicting the next pickup location of individual users is a fundamental problem in intelligent mobility systems, which requires modeling personalized travel behaviors under complex spatiotemporal contexts. Existing methods mainly learn sequential dependencies from raw trajectories, but often fail to capture high-level behavioral semantics and to effectively disentangle long-term habitual preferences from short-term contextual intentions. In this paper, we propose a semantic embedding based dual stream spatiotemporal attention model for next pickup location prediction. Raw trajectories are first transformed into semantically enriched activity sequences to encode users' stay behaviors and movement semantics. A dual stream architecture is then designed to explicitly decouple long-term historical patterns and short-term dynamic intentions, where each stream employs spatiotemporal attention mechanisms to model dependencies at different temporal scales. To integrate heterogeneous contextual information, a context aware dynamic fusion module adaptively balances the contributions of the two streams. Finally, an attention based matching strategy is used to predict the probability distribution over candidate pickup locations. Experiments on real world ride hailing datasets demonstrate that the proposed model consistently outperforms state of the art methods, validating the effectiveness of semantic trajectory abstraction and dual stream spatiotemporal attention for individualized mobility behavior modeling.
BayesAgent: Bayesian Agentic Reasoning Under Uncertainty via Verbalized Probabilistic Graphical Modeling AAAI 2026
Human cognition excels at transcending sensory input and forming latent representations that structure our understanding of the world. While Large Language Model (LLM) agents demonstrate emergent reasoning and decision-making abilities, they lack a principled framework for capturing latent structures and modeling uncertainty. In this work, we explore for the first time how to bridge LLM agents with probabilistic graphical models (PGMs) to address agentic reasoning under uncertainty. To this end, we introduce Verbalized Probabilistic Graphical Modeling (vPGM), a Bayesian agentic framework that (i) guides LLM agents in following key principles of PGMs through natural language and (ii) refines the resulting posterior distributions via numerical Bayesian inference. Unlike many traditional probabilistic methods requiring substantial domain expertise, vPGM bypasses expert-driven model design, making it well-suited for scenarios with limited assumptions. We evaluated our model on several agentic reasoning tasks, both close-ended and open-ended. Our results indicate that the model effectively enhances confidence calibration and text generation quality.
comment: Accepted to AAAI 2026
Language-Native Materials Processing Design by Lightly Structured Text Database and Reasoning Large Language Model
Materials synthesis procedures are predominantly documented as narrative text in protocols and lab notebooks, rendering them inaccessible to conventional structured data optimization. This language-native nature poses a critical challenge for complex, multistage processes--such as the preparation of boron nitride nanosheet (BNNS)--where outcomes depend on path-dependent choices in exfoliation and functionalization. Here, we recast synthesis planning as a text reasoning task enabled by a lightly structured text database, which preserves the conditional logic and causal contexts essential for expert-like decision-making. Building on a heterogeneous schema that indexes both narrative excerpts and computable entities (e.g., reaction conditions), our system implements a hybrid retrieval engine to combine semantic context with precise parameter filtering. On top of this, the framework operates in two modes, i.e. retrieval-augmented generation (RAG), which grounds recommendations in retrieved evidence modules, and experience-augmented reasoning (EAR), which uses iteratively refined text guides distilled from multi-source narrative data. Instead of suggesting single "optimal" settings, the system produces interpretable guidance aligned with expert reasoning patterns--hypotheses, parameter ranges, and citation-backed standard operating procedures--that support iterative planning and failure diagnosis. We validated this framework on the targeted exfoliation of BNNS, a process highly sensitive to multivariate constraints. The system successfully identified optimal combinations of grinding aids, milling configurations, and separation strategies from a wide range of literature-reported methods, which were experimentally verified to yield high-quality nanosheets, illustrating the potential of language-native reasoning to streamline critical operations in materials processing.
Can LLMs Identify Tax Abuse?
We investigate whether large language models can discover and analyze U.S. tax-minimization strategies. This real-world domain challenges even seasoned human experts, and progress can reduce tax revenue lost from well-advised, wealthy taxpayers. We evaluate the most advanced LLMs on their ability to (1) interpret and verify tax strategies, (2) fill in gaps in partially specified strategies, and (3) generate complete, end-to-end strategies from scratch. This domain should be of particular interest to the LLM reasoning community: unlike synthetic challenge problems or scientific reasoning tasks, U.S. tax law involves navigating hundreds of thousands of pages of statutes, case law, and administrative guidance, all updated regularly. Notably, LLM-based reasoning identified an entirely novel tax strategy, highlighting these models' potential to revolutionize tax agencies' fight against tax abuse.
comment: 9 pages
The Sleeping Beauty Problem: Sleeping Kelly is a Thirder
The Sleeping Beauty problem is a problem of imperfect recall that has received considerable attention. One approach to solving the Sleeping Beauty problem is to allow Sleeping Beauty to make decisions based on her beliefs, and then characterize what it takes for her decisions to be "rational". In particular, she can be allowed to make monetary bets based on her beliefs, with the assumption that she wants to gain wealth rather than lose it. However, this approach is often coupled with the assumption that Sleeping Beauty should maximize the expected value of her bets. Here, show that Sleeping Beauty maximizes the expected growth rate of her wealth as a "thirder" sizing bets using the Kelly Criterion under multiplicative dynamics. Furthermore, this position is shown to be impervious to Dutch books. By contrast, the "halfer" position is shown to be vulnerable to Dutch books under similar circumstances.
Taming the Long-Tail: Efficient Reasoning RL Training with Adaptive Drafter
The emergence of Large Language Models (LLMs) with strong reasoning capabilities marks a significant milestone, unlocking new frontiers in complex problem-solving. However, training these reasoning models, typically using Reinforcement Learning (RL), encounters critical efficiency bottlenecks: response generation during RL training exhibits a persistent long-tail distribution, where a few very long responses dominate execution time, wasting resources and inflating costs. To address this, we propose TLT, a system that accelerates reasoning RL training losslessly by integrating adaptive speculative decoding. Applying speculative decoding in RL is challenging due to the dynamic workloads, evolving target model, and draft model training overhead. TLT overcomes these obstacles with two synergistic components: (1) Adaptive Drafter, a lightweight draft model trained continuously on idle GPUs during long-tail generation to maintain alignment with the target model at no extra cost; and (2) Adaptive Rollout Engine, which maintains a memory-efficient pool of pre-captured CUDAGraphs and adaptively select suitable SD strategies for each input batch. Evaluations demonstrate that TLT achieves over 1.7x end-to-end RL training speedup over state-of-the-art systems, preserves the model accuracy, and yields a high-quality draft model as a free byproduct suitable for efficient deployment. Code is released at https://github.com/mit-han-lab/fastrl.
From Canopy to Ground via ForestGen3D: Learning Cross-Domain Generation of 3D Forest Structure from Aerial-to-Terrestrial LiDAR
The 3D structure of living and non-living components in ecosystems plays a critical role in determining ecological processes and feedbacks from both natural and human-driven disturbances. Anticipating the effects of wildfire, drought, disease, or atmospheric deposition depends on accurate characterization of 3D vegetation structure, yet widespread measurement remains prohibitively expensive and often infeasible. We present ForestGen3D, a cross-domain generative framework that preserves aerial LiDAR (ALS) observed 3D forest structure while inferring missing sub-canopy detail. ForestGen3D is based on conditional denoising diffusion probabilistic models trained on co-registered ALS and terrestrial LiDAR (TLS) data. The model generates realistic TLS-like point clouds that remain spatially consistent with ALS geometry, enabling landscape-scalable reconstruction of full vertical forest structure. We evaluate ForestGen3D at tree, plot, and landscape scales using real-world data from mixed conifer ecosystems, and show through qualitative and quantitative geometric and distributional analyses that it produces high-fidelity reconstructions closely matching TLS reference data in terms of 3D structural similarity and downstream biophysical metrics, including tree height, DBH, crown diameter, and crown volume. We further introduce and demonstrate the expected point containment (EPC) metric which serves as a practical proxy for generation quality in settings where TLS ground truth is unavailable. Our results demonstrate that ForestGen3D enhances the utility of ALS only environments by inferring ecologically plausible sub-canopy structure while faithfully preserving the landscape heterogeneity encoded in ALS observations, thereby providing a richer 3D representation for ecological analysis, structural fuel characterization and related remote sensing applications.
FormGym: Doing Paperwork with Agents
Completing paperwork is a challenging and time-consuming problem. Form filling is especially challenging in the pure-image domain without access to OCR, typeset PDF text, or a DOM. For computer agents, it requires multiple abilities, including multi-modal understanding, information retrieval, and tool-use. We present a novel form-filling benchmark consisting of 432 fields spread across 55 documents and 3 tasks, requiring knowledge of 236 features per user. We find that baseline VLAs achieve less than 1% accuracy in most cases, primarily due to poor localization ability. GUI agents also struggle, scoring between 10.6-68.0% despite high cost and latency. Therefore, we also contribute FieldFinder, a tool to assist LLMs in identifying where to place text on a form. With FieldFinder, all models achieve equal or better performance in all six study conditions, with a maximum increase from 2% to 56%.
A large-scale evaluation of commonsense knowledge in humans and large language models
Commonsense knowledge, a major constituent of artificial intelligence (AI), is primarily evaluated in practice by human-prescribed ground-truth labels. An important, albeit implicit, assumption of these labels is that they accurately capture what any human would think, effectively treating human common sense as homogeneous. However, recent empirical work has shown that humans vary enormously in what they consider commonsensical; thus what appears self-evident to one benchmark designer may not be so to another. Here, we propose a method for assessing commonsense knowledge in AI, specifically in large language models (LLMs), that incorporates empirically observed heterogeneity among humans by measuring the correspondence between a model's judgment and that of a human population. We first find that, when treated as independent survey respondents, most LLMs remain below the human median in their individual commonsense competence. Second, when used as simulators of a hypothetical population, LLMs correlate with real humans only modestly in the extent to which they agree on the same set of statements. In both cases, smaller, open-weight models are surprisingly more competitive than larger, proprietary frontier models. Our evaluation framework, which ties commonsense knowledge to its cultural basis, contributes to the growing call for adapting AI models to human collectivities that possess different, often incompatible, social stocks of knowledge.
comment: Code and data: https://github.com/Watts-Lab/commonsense-llm-eval
On the Exponential Convergence for Offline RLHF with Pairwise Comparisons AAAI 2026
We consider the problem of offline reinforcement learning from human feedback (RLHF) with pairwise comparisons proposed by Zhu et al. (2023), where the implicit reward is a linear function of an unknown parameter. Given an offline dataset, our objective consists in ascertaining the optimal action for each state, with the ultimate goal of minimizing the {\em simple regret}. We propose an algorithm, \underline{RL} with \underline{L}ocally \underline{O}ptimal \underline{W}eights or {\sc RL-LOW}, which yields an exponential form of simple regret of $\exp ( - Ω(n/H) )$ where $n$ is the number of data samples and $H$ denotes an instance-dependent hardness quantity that depends explicitly on the suboptimality gap of each action. Furthermore, we derive a first-of-its-kind instance-dependent lower bound in offline RLHF with pairwise comparisons. Interestingly, we observe that the lower and upper bounds on the simple regret match order-wise in the exponent, demonstrating order-wise optimality of our {\sc RL-LOW}. In view of privacy considerations in practical applications, we also extend {\sc RL-LOW} to the setting of $(\varepsilon,δ)$-differential privacy and show, somewhat surprisingly, that the hardness parameter $H$ is unchanged in the asymptotic regime as $n$ tends to infinity; this underscores the inherent efficiency of {\sc RL-LOW} in terms of preserving the privacy of the observed rewards. Given our focus on establishing instance-dependent bounds of exponential convergence, our research fills the research gap in existing studies that concentrate on establishing worst-case regrets of {\em inverse polynomial convergence} (e.g., $\widetilde{O}(\frac{1}{\sqrt{n}})$) for offline RLHF with pairwise comparisons.
comment: Accepted as an oral presentation at AAAI 2026 (AI Alignment Track)
Collaborate, Deliberate, Evaluate: How LLM Alignment Affects Coordinated Multi-Agent Outcomes
As Large Language Models (LLMs) get integrated into diverse workflows, they are increasingly being regarded as "collaborators" with humans, and required to work in coordination with other AI systems. If such AI collaborators are to reliably coordinate their actions and behaviors with humans or other AIs, their properties and behaviors over multi-turn interactions must be known and predictable. This paper examines how different alignment methods affect LLM agents' effectiveness as partners in multi-turn, multi-party collaborations. We study this question through the lens of intervention agents that insert themselves into group dialogues not to provide answers, but to encourage the collaborative group to slow down and reflect upon their reasoning for deliberative decision-making. Common alignment techniques are typically developed under simplified single-user settings and assume the optimality of the underlying token MDP. Using the theoretical lens of the modified-action MDP, we show how they do not account for the dynamics of long-horizon multi-party interactions. We present a novel roleplay simulation methodology, where we align LLMs according to different methods and then deploy them in collaborative task dialogues to quantify how interventions affect the trajectory of group collaboration, belief alignment, and coordination. Our results show that an intervention agent that is robust to action modification significantly outperforms common alignment baselines in supporting correct task outcomes.
comment: This submission is a new version of arXiv:2509.05882v1. with a substantially revised experimental pipeline and new metrics. In particular, collaborator agents are now instantiated independently via separate API calls, rather than generated autoregressively by a single agent. All experimental results are new. Accepted as an extended abstract at AAMAS 2026
Distributionally Robust Causal Abstractions
Causal Abstraction (CA) theory provides a principled framework for relating causal models that describe the same system at different levels of granularity while ensuring interventional consistency between them. Recent methods for learning CAs, however, assume fixed and well-specified exogenous distributions, leaving them vulnerable to environmental shifts and model misspecification. In this work, we address these limitations by introducing the first class of distributionally robust CAs and their associated learning algorithms. The latter cast robust causal abstraction learning as a constrained min-max optimization problem with Wasserstein ambiguity sets. We provide theoretical guarantees for both empirical and Gaussian environments, enabling principled selection of ambiguity set radii and establish quantitative guarantees on worst-case abstraction error. Furthermore, we present empirical evidence across different problems and CA learning methods, demonstrating our framework's robustness not only to environmental shifts but also to structural and intervention mapping misspecification.
NP-Hard Lower Bound Complexity for Semantic Self-Verification
We model Semantic Self-Verification (SSV) as the problem of determining whether a statement accurately characterizes its own semantic properties within a given interpretive framework that formalizes a challenge in AI safety and fairness: can an AI system verify that it has correctly interpreted rules intended to govern its behavior? We prove that SSV, in this specification, is NP-complete by constructing a polynomial-time reduction from 3-Satisfiability (3-SAT). Our reduction maps a 3-SAT formula to an instance of SSV involving ambiguous terms with binary interpretations and semantic constraints derived from logical clauses. This establishes that even simplified forms of semantic self-verification should face computational barriers. The NP-complete lower bound has implications for AI safety and fairness approaches that rely on semantic interpretation of instructions, including but not limited to constitutional AI, alignment via natural language, and instruction-following systems. Approaches where an AI system verify its understanding of directives may face this computational barrier. We argue that more realistic verification scenarios likely face even greater complexity.
comment: EACL 2026
PyTDC: A multimodal machine learning training, evaluation, and inference platform for biomedical foundation models
Existing biomedical benchmarks do not provide end-to-end infrastructure for training, evaluation, and inference of models that integrate multimodal biological data and a broad range of machine learning tasks in therapeutics. We present PyTDC, an open-source machine-learning platform providing streamlined training, evaluation, and inference software for multimodal biological AI models. PyTDC unifies distributed, heterogeneous, continuously updated data sources and model weights and standardizes benchmarking and inference endpoints. This paper discusses the components of PyTDC's architecture and, to our knowledge, the first-of-its-kind case study on the introduced single-cell drug-target nomination ML task. We find state-of-the-art methods in graph representation learning and domain-specific methods from graph theory perform poorly on this task. Though we find a context-aware geometric deep learning method that outperforms the evaluated SoTA and domain-specific baseline methods, the model is unable to generalize to unseen cell types or incorporate additional modalities, highlighting PyTDC's capacity to facilitate an exciting avenue of research developing multimodal, context-aware, foundation models for open problems in biomedical AI.
comment: Proceedings of the 42nd International Conference on Machine Learning, Vancouver, Canada. PMLR 267, 2025
One Router to Route Them All: Homogeneous Expert Routing for Heterogeneous Graph Transformers
A common practice in heterogeneous graph neural networks (HGNNs) is to condition parameters on node/edge types, assuming types reflect semantic roles. However, this can cause overreliance on surface-level labels and impede cross-type knowledge transfer. We explore integrating Mixture-of-Experts (MoE) into HGNNs--a direction underexplored despite MoE's success in homogeneous settings. Crucially, we question the need for type-specific experts. We propose Homogeneous Expert Routing (HER), an MoE layer for Heterogeneous Graph Transformers (HGT) that stochastically masks type embeddings during routing to encourage type-agnostic specialization. Evaluated on IMDB, ACM, and DBLP for link prediction, HER consistently outperforms standard HGT and a type-separated MoE baseline. Analysis on IMDB shows HER experts specialize by semantic patterns (e.g., movie genres) rather than node types, confirming routing is driven by latent semantics. Our work demonstrates that regularizing type dependence in expert routing yields more generalizable, efficient, and interpretable representations--a new design principle for heterogeneous graph learning.
comment: This preprint has been withdrawn by the authors due to significant revisions in preparation for conference submission. A substantially updated version will be submitted separately
Do You Feel Comfortable? Detecting Hidden Conversational Escalation in AI Chatbots
Large Language Models (LLM) are increasingly integrated into everyday interactions, serving not only as information assistants but also as emotional companions. Even in the absence of explicit toxicity, repeated emotional reinforcement or affective drift can gradually escalate distress in a form of \textit{implicit harm} that traditional toxicity filters fail to detect. Existing guardrail mechanisms often rely on external classifiers or clinical rubrics that may lag behind the nuanced, real-time dynamics of a developing conversation. To address this gap, we propose GAUGE (Guarding Affective Utterance Generation Escalation), logit-based framework for the real-time detection of hidden conversational escalation. GAUGE measures how an LLM's output probabilistically shifts the affective state of a dialogue.
Machine Learning 225
Iterative Refinement Improves Compositional Image Generation
Text-to-image (T2I) models have achieved remarkable progress, yet they continue to struggle with complex prompts that require simultaneously handling multiple objects, relations, and attributes. Existing inference-time strategies, such as parallel sampling with verifiers or simply increasing denoising steps, can improve prompt alignment but remain inadequate for richly compositional settings where many constraints must be satisfied. Inspired by the success of chain-of-thought reasoning in large language models, we propose an iterative test-time strategy in which a T2I model progressively refines its generations across multiple steps, guided by feedback from a vision-language model as the critic in the loop. Our approach is simple, requires no external tools or priors, and can be flexibly applied to a wide range of image generators and vision-language models. Empirically, we demonstrate consistent gains on image generation across benchmarks: a 16.9% improvement in all-correct rate on ConceptMix (k=7), a 13.8% improvement on T2I-CompBench (3D-Spatial category) and a 12.5% improvement on Visual Jenga scene decomposition compared to compute-matched parallel sampling. Beyond quantitative gains, iterative refinement produces more faithful generations by decomposing complex prompts into sequential corrections, with human evaluators preferring our method 58.7% of the time over 41.3% for the parallel baseline. Together, these findings highlight iterative self-correction as a broadly applicable principle for compositional image generation. Results and visualizations are available at https://iterative-img-gen.github.io/
comment: Project webpage: https://iterative-img-gen.github.io/
MolecularIQ: Characterizing Chemical Reasoning Capabilities Through Symbolic Verification on Molecular Graphs
A molecule's properties are fundamentally determined by its composition and structure encoded in its molecular graph. Thus, reasoning about molecular properties requires the ability to parse and understand the molecular graph. Large Language Models (LLMs) are increasingly applied to chemistry, tackling tasks such as molecular name conversion, captioning, text-guided generation, and property or reaction prediction. Most existing benchmarks emphasize general chemical knowledge, rely on literature or surrogate labels that risk leakage or bias, or reduce evaluation to multiple-choice questions. We introduce MolecularIQ, a molecular structure reasoning benchmark focused exclusively on symbolically verifiable tasks. MolecularIQ enables fine-grained evaluation of reasoning over molecular graphs and reveals capability patterns that localize model failures to specific tasks and molecular structures. This provides actionable insights into the strengths and limitations of current chemistry LLMs and guides the development of models that reason faithfully over molecular structure.
RayRoPE: Projective Ray Positional Encoding for Multi-view Attention
We study positional encodings for multi-view transformers that process tokens from a set of posed input images, and seek a mechanism that encodes patches uniquely, allows SE(3)-invariant attention with multi-frequency similarity, and can be adaptive to the geometry of the underlying scene. We find that prior (absolute or relative) encoding schemes for multi-view attention do not meet the above desiderata, and present RayRoPE to address this gap. RayRoPE represents patch positions based on associated rays but leverages a predicted point along the ray instead of the direction for a geometry-aware encoding. To achieve SE(3) invariance, RayRoPE computes query-frame projective coordinates for computing multi-frequency similarity. Lastly, as the 'predicted' 3D point along a ray may not be precise, RayRoPE presents a mechanism to analytically compute the expected position encoding under uncertainty. We validate RayRoPE on the tasks of novel-view synthesis and stereo depth estimation and show that it consistently improves over alternate position encoding schemes (e.g. 15% relative improvement on LPIPS in CO3D). We also show that RayRoPE can seamlessly incorporate RGB-D input, resulting in even larger gains over alternatives that cannot positionally encode this information.
comment: Project page: https://rayrope.github.io/
Many Experiments, Few Repetitions, Unpaired Data, and Sparse Effects: Is Causal Inference Possible?
We study the problem of estimating causal effects under hidden confounding in the following unpaired data setting: we observe some covariates $X$ and an outcome $Y$ under different experimental conditions (environments) but do not observe them jointly; we either observe $X$ or $Y$. Under appropriate regularity conditions, the problem can be cast as an instrumental variable (IV) regression with the environment acting as a (possibly high-dimensional) instrument. When there are many environments but only a few observations per environment, standard two-sample IV estimators fail to be consistent. We propose a GMM-type estimator based on cross-fold sample splitting of the instrument-covariate sample and prove that it is consistent as the number of environments grows but the sample size per environment remains constant. We further extend the method to sparse causal effects via $\ell_1$-regularized estimation and post-selection refitting.
Recommending Best Paper Awards for ML/AI Conferences via the Isotonic Mechanism
Machine learning and artificial intelligence conferences such as NeurIPS and ICML now regularly receive tens of thousands of submissions, posing significant challenges to maintaining the quality and consistency of the peer review process. This challenge is particularly acute for best paper awards, which are an important part of the peer review process, yet whose selection has increasingly become a subject of debate in recent years. In this paper, we introduce an author-assisted mechanism to facilitate the selection of best paper awards. Our method employs the Isotonic Mechanism for eliciting authors' assessments of their own submissions in the form of a ranking, which is subsequently utilized to adjust the raw review scores for optimal estimation of the submissions' ground-truth quality. We demonstrate that authors are incentivized to report truthfully when their utility is a convex additive function of the adjusted scores, and we validate this convexity assumption for best paper awards using publicly accessible review data of ICLR from 2019 to 2023 and NeurIPS from 2021 to 2023. Crucially, in the special case where an author has a single quota -- that is, may nominate only one paper -- we prove that truthfulness holds even when the utility function is merely nondecreasing and additive. This finding represents a substantial relaxation of the assumptions required in prior work. For practical implementation, we extend our mechanism to accommodate the common scenario of overlapping authorship. Finally, simulation results demonstrate that our mechanism significantly improves the quality of papers selected for awards.
Multi-context principal component analysis
Principal component analysis (PCA) is a tool to capture factors that explain variation in data. Across domains, data are now collected across multiple contexts (for example, individuals with different diseases, cells of different types, or words across texts). While the factors explaining variation in data are undoubtedly shared across subsets of contexts, no tools currently exist to systematically recover such factors. We develop multi-context principal component analysis (MCPCA), a theoretical and algorithmic framework that decomposes data into factors shared across subsets of contexts. Applied to gene expression, MCPCA reveals axes of variation shared across subsets of cancer types and an axis whose variability in tumor cells, but not mean, is associated with lung cancer progression. Applied to contextualized word embeddings from language models, MCPCA maps stages of a debate on human nature, revealing a discussion between science and fiction over decades. These axes are not found by combining data across contexts or by restricting to individual contexts. MCPCA is a principled generalization of PCA to address the challenge of understanding factors underlying data across contexts.
comment: 47 pages, 8 figures. Supplementary tables are provided as downloadable file
Tracing 3D Anatomy in 2D Strokes: A Multi-Stage Projection Driven Approach to Cervical Spine Fracture Identification
Cervical spine fractures are critical medical conditions requiring precise and efficient detection for effective clinical management. This study explores the viability of 2D projection-based vertebra segmentation for vertebra-level fracture detection in 3D CT volumes, presenting an end-to-end pipeline for automated analysis of cervical vertebrae (C1-C7). By approximating a 3D volume through optimized 2D axial, sagittal, and coronal projections, regions of interest are identified using the YOLOv8 model from all views and combined to approximate the 3D cervical spine area, achieving a 3D mIoU of 94.45 percent. This projection-based localization strategy reduces computational complexity compared to traditional 3D segmentation methods while maintaining high performance. It is followed by a DenseNet121-Unet-based multi-label segmentation leveraging variance- and energy-based projections, achieving a Dice score of 87.86 percent. Strategic approximation of 3D vertebral masks from these 2D segmentation masks enables the extraction of individual vertebra volumes. The volumes are analyzed for fractures using an ensemble of 2.5D Spatio-Sequential models incorporating both raw slices and projections per vertebra for complementary evaluation. This ensemble achieves vertebra-level and patient-level F1 scores of 68.15 and 82.26, and ROC-AUC scores of 91.62 and 83.04, respectively. We further validate our approach through an explainability study that provides saliency map visualizations highlighting anatomical regions relevant for diagnosis, and an interobserver variability analysis comparing our model's performance with expert radiologists, demonstrating competitive results.
ZENITH: Automated Gradient Norm Informed Stochastic Optimization
Training deep computer vision models requires manual oversight or hyperparameter tuning of the learning rate (LR) schedule. While existing adaptive optimizers schedule the LR automatically, they suffer from computational and memory overhead, incompatibility with regularization, and suboptimal LR choices. In this work, we introduce the ZENITH (Zero-overhead Evolution using Norm-Informed Training History) optimizer, which adapts the LR using the temporal evolution of the gradient norm. Image classification experiments spanning 6 CNN architectures and 6 benchmarks demonstrate that ZENITH achieves higher test accuracy in lower wall-clock time than baselines. It also yielded superior mAP in object detection, keypoint detection, and instance segmentation on MS COCO using the R-CNN family of models. Furthermore, its compatibility with regularization enables even better generalization.
The Flexibility Trap: Why Arbitrary Order Limits Reasoning Potential in Diffusion Language Models
Diffusion Large Language Models (dLLMs) break the rigid left-to-right constraint of traditional LLMs, enabling token generation in arbitrary orders. Intuitively, this flexibility implies a solution space that strictly supersets the fixed autoregressive trajectory, theoretically unlocking superior reasoning potential for general tasks like mathematics and coding. Consequently, numerous works have leveraged reinforcement learning (RL) to elicit the reasoning capability of dLLMs. In this paper, we reveal a counter-intuitive reality: arbitrary order generation, in its current form, narrows rather than expands the reasoning boundary of dLLMs. We find that dLLMs tend to exploit this order flexibility to bypass high-uncertainty tokens that are crucial for exploration, leading to a premature collapse of the solution space. This observation challenges the premise of existing RL approaches for dLLMs, where considerable complexities, such as handling combinatorial trajectories and intractable likelihoods, are often devoted to preserving this flexibility. We demonstrate that effective reasoning is better elicited by intentionally forgoing arbitrary order and applying standard Group Relative Policy Optimization (GRPO) instead. Our approach, JustGRPO, is minimalist yet surprisingly effective (e.g., 89.1% accuracy on GSM8K) while fully retaining the parallel decoding ability of dLLMs. Project page: https://nzl-thu.github.io/the-flexibility-trap
comment: Code and pre-trained models: https://github.com/LeapLabTHU/JustGRPO
Outcome-Based RL Provably Leads Transformers to Reason, but Only With the Right Data
Transformers trained via Reinforcement Learning (RL) with outcome-based supervision can spontaneously develop the ability to generate intermediate reasoning steps (Chain-of-Thought). Yet the mechanism by which sparse rewards drive gradient descent to discover such systematic reasoning remains poorly understood. We address this by analyzing the gradient flow dynamics of single-layer Transformers on a synthetic graph traversal task that cannot be solved without Chain-of-Thought (CoT) but admits a simple iterative solution. We prove that despite training solely on final-answer correctness, gradient flow drives the model to converge to a structured, interpretable algorithm that iteratively traverses the graph vertex-by-vertex. We characterize the distributional properties required for this emergence, identifying the critical role of "simple examples": instances requiring fewer reasoning steps. When the training distribution places sufficient mass on these simpler instances, the model learns a generalizable traversal strategy that extrapolates to longer chains; when this mass vanishes, gradient-based learning becomes infeasible. We corroborate our theoretical results through experiments on synthetic data and with real-world language models on mathematical reasoning tasks, validating that our theoretical findings carry over to practical settings.
comment: 80 pages, 4 figures
CLEANER: Self-Purified Trajectories Boost Agentic Reinforcement Learning
Agentic Reinforcement Learning (RL) has empowered Large Language Models (LLMs) to utilize tools like Python interpreters for complex problem-solving. However, for parameter-constrained models (e.g., 4B--7B), the exploration phase is often plagued by frequent execution failures, creating noisy trajectories that hinder policy optimization. Under standard outcome-based reward settings, this noise leads to a critical credit assignment issue, where erroneous actions are inadvertently reinforced alongside successful outcomes. Existing mitigations face a dilemma: dense rewards often trigger reward hacking, while supersampling incurs prohibitive computational costs. To address these challenges, we propose CLEANER. Distinct from external filtering methods, CLEANER exploits the model's intrinsic self-correction capabilities to eliminate error-contaminated context directly during data collection. At its core, the Similarity-Aware Adaptive Rollback (SAAR) mechanism autonomously constructs clean, purified trajectories by retrospectively replacing failures with successful self-corrections. Based on semantic similarity, SAAR adaptively regulates replacement granularity from shallow execution repairs to deep reasoning substitutions. By training on these self-purified paths, the model internalizes correct reasoning patterns rather than error-recovery loops. Empirical results on AIME24/25, GPQA, and LiveCodeBench show average accuracy gains of 6%, 3%, and 5% over baselines. Notably, CLEANER matches state-of-the-art performance using only one-third of the training steps, highlighting trajectory purification as a scalable solution for efficient agentic RL. Our models and code are available at GitHub
Graph Recognition via Subgraph Prediction
Despite tremendous improvements in tasks such as image classification, object detection, and segmentation, the recognition of visual relationships, commonly modeled as the extraction of a graph from an image, remains a challenging task. We believe that this mainly stems from the fact that there is no canonical way to approach the visual graph recognition task. Most existing solutions are specific to a problem and cannot be transferred between different contexts out-of-the box, even though the conceptual problem remains the same. With broad applicability and simplicity in mind, in this paper we develop a method, \textbf{Gra}ph Recognition via \textbf{S}ubgraph \textbf{P}rediction (\textbf{GraSP}), for recognizing graphs in images. We show across several synthetic benchmarks and one real-world application that our method works with a set of diverse types of graphs and their drawings, and can be transferred between tasks without task-specific modifications, paving the way to a more unified framework for visual graph recognition.
comment: This work has been submitted to the IEEE for possible publication
DeepFedNAS: A Unified Framework for Principled, Hardware-Aware, and Predictor-Free Federated Neural Architecture Search
Federated Neural Architecture Search (FedNAS) aims to automate model design for privacy-preserving Federated Learning (FL) but currently faces two critical bottlenecks: unguided supernet training that yields suboptimal models, and costly multi-hour pipelines for post-training subnet discovery. We introduce DeepFedNAS, a novel, two-phase framework underpinned by a principled, multi-objective fitness function that synthesizes mathematical network design with architectural heuristics. Enabled by a re-engineered supernet, DeepFedNAS introduces Federated Pareto Optimal Supernet Training, which leverages a pre-computed Pareto-optimal cache of high-fitness architectures as an intelligent curriculum to optimize shared supernet weights. Subsequently, its Predictor-Free Search Method eliminates the need for costly accuracy surrogates by utilizing this fitness function as a direct, zero-cost proxy for accuracy, enabling on-demand subnet discovery in mere seconds. DeepFedNAS achieves state-of-the-art accuracy (e.g., up to 1.21% absolute improvement on CIFAR-100), superior parameter and communication efficiency, and a substantial ~61x speedup in total post-training search pipeline time. By reducing the pipeline from over 20 hours to approximately 20 minutes (including initial cache generation) and enabling 20-second individual subnet searches, DeepFedNAS makes hardware-aware FL deployments instantaneous and practical. The complete source code and experimental scripts are available at: https://github.com/bostankhan6/DeepFedNAS
comment: This paper significantly extends the preliminary work accepted at ESANN 2026. Source Code: https://github.com/bostankhan6/DeepFedNAS
Overcoming In-Memory Bottlenecks in Graph Foundation Models via Retrieval-Augmented Generation
Graph Foundation Models (GFMs) have emerged as a frontier in graph learning, which are expected to deliver transferable representations across diverse tasks. However, GFMs remain constrained by in-memory bottlenecks: they attempt to encode knowledge into model parameters, which limits semantic capacity, introduces heavy lossy compression with conflicts, and entangles graph representation with the knowledge in ways that hinder efficient adaptation, undermining scalability and interpretability. In this work,we propose RAG-GFM, a Retrieval-Augmented Generation aided Graph Foundation Model that offloads knowledge from parameters and complements parameterized learning. To externalize graph knowledge, we build a dual-modal unified retrieval module, where a semantic store from prefix-structured text and a structural store from centrality-based motif. To preserve heterogeneous information, we design a dual-view alignment objective that contrasts both modalities to capture both content and relational patterns. To enable efficient downstream adaptation, we perform in-context augmentation to enrich supporting instances with retrieved texts and motifs as contextual evidence. Extensive experiments on five benchmark graph datasets demonstrate that RAG-GFM consistently outperforms 13 state-of-the-art baselines in both cross-domain node and graph classification, achieving superior effectiveness and efficiency.
comment: Accepted by the Web Conference 2026 (Research Track)
WavLink: Compact Audio--Text Embeddings with a Global Whisper Token
Whisper has become the de-facto encoder for extracting general-purpose audio features in large audio-language models, where a 30-second clip is typically represented by 1500 frame features projected into an LLM. In contrast, audio-text embedding models like CLAP-based models have largely relied on alternative audio encoders (e.g., HTS-AT, PaSST), and have not leveraged Whisper effectively. We present WavLink, a compact audio-text embedding model that augments Whisper encoder with a learnable global token, trained jointly with a text encoder. Through a systematic study of design choices, including pretrained text encoders, loss functions, training modes, and data mixtures, we identify configurations that yield state-of-the-art retrieval performance. Our two-stage training recipe across three model sizes, combined with Matryoshka-style supervision, improves scalability, enabling 8x smaller embeddings with minimal performance drop. WavLink also demonstrates competitive performance on AIR-Bench with MCQs and zero-shot classification.
comment: Accepted at ICASSP 2026
Auditing Language Model Unlearning via Information Decomposition
We expose a critical limitation in current approaches to machine unlearning in language models: despite the apparent success of unlearning algorithms, information about the forgotten data remains linearly decodable from internal representations. To systematically assess this discrepancy, we introduce an interpretable, information-theoretic framework for auditing unlearning using Partial Information Decomposition (PID). By comparing model representations before and after unlearning, we decompose the mutual information with the forgotten data into distinct components, formalizing the notions of unlearned and residual knowledge. Our analysis reveals that redundant information, shared across both models, constitutes residual knowledge that persists post-unlearning and correlates with susceptibility to known adversarial reconstruction attacks. Leveraging these insights, we propose a representation-based risk score that can guide abstention on sensitive inputs at inference time, providing a practical mechanism to mitigate privacy leakage. Our work introduces a principled, representation-level audit for unlearning, offering theoretical insight and actionable tools for safer deployment of language models.
comment: EACL 2026 Main
One scale to rule them all: interpretable multi-scale Deep Learning for predicting cell survival after proton and carbon ion irradiation
The relationship between the physical characteristics of the radiation field and biological damage is central to both radiotherapy and radioprotection, yet the link between spatial scales of energy deposition and biological effects remains not entirely understood. To address this, we developed an interpretable deep learning model that predicts cell survival after proton and carbon ion irradiation, leveraging sequential attention to highlight relevant features and provide insight into the contribution of different energy deposition scales. Trained and tested on the PIDE dataset, our model incorporates, beside LET, nanodosimetric and microdosimetric quantities simulated with MC-Startrack and Open-TOPAS, enabling multi-scale characterization. While achieving high predictive accuracy, our approach also emphasizes transparency in decision-making. We demonstrate high accuracy in predicting RBE for in vitro experiments. Multiple scales are utilized concurrently, with no single spatial scale being predominant. Quantities defined at smaller spatial domains generally have a greater influence, whereas the LET plays a lesser role.
Field-Space Autoencoder for Scalable Climate Emulators
Kilometer-scale Earth system models are essential for capturing local climate change. However, these models are computationally expensive and produce petabyte-scale outputs, which limits their utility for applications such as probabilistic risk assessment. Here, we present the Field-Space Autoencoder, a scalable climate emulation framework based on a spherical compression model that overcomes these challenges. By utilizing Field-Space Attention, the model efficiently operates on native climate model output and therefore avoids geometric distortions caused by forcing spherical data onto Euclidean grids. This approach preserves physical structures significantly better than convolutional baselines. By producing a structured compressed field, it serves as a good baseline for downstream generative emulation. In addition, the model can perform zero-shot super-resolution that maps low-resolution large ensembles and scarce high-resolution data into a shared representation. We train a generative diffusion model on these compressed fields. The model can simultaneously learn internal variability from abundant low-resolution data and fine-scale physics from sparse high-resolution data. Our work bridges the gap between the high volume of low-resolution ensemble statistics and the scarcity of high-resolution physical detail.
Memory Retention Is Not Enough to Master Memory Tasks in Reinforcement Learning
Effective decision-making in the real world depends on memory that is both stable and adaptive: environments change over time, and agents must retain relevant information over long horizons while also updating or overwriting outdated content when circumstances shift. Existing Reinforcement Learning (RL) benchmarks and memory-augmented agents focus primarily on retention, leaving the equally critical ability of memory rewriting largely unexplored. To address this gap, we introduce a benchmark that explicitly tests continual memory updating under partial observability, i.e. the natural setting where an agent must rely on memory rather than current observations, and use it to compare recurrent, transformer-based, and structured memory architectures. Our experiments reveal that classic recurrent models, despite their simplicity, demonstrate greater flexibility and robustness in memory rewriting tasks than modern structured memories, which succeed only under narrow conditions, and transformer-based agents, which often fail beyond trivial retention cases. These findings expose a fundamental limitation of current approaches and emphasize the necessity of memory mechanisms that balance stable retention with adaptive updating. Our work highlights this overlooked challenge, introduces benchmarks to evaluate it, and offers insights for designing future RL agents with explicit and trainable forgetting mechanisms. Code: https://quartz-admirer.github.io/Memory-Rewriting/
comment: 11 pages, 6 figures, 7 tables
Bangla Music Genre Classification Using Bidirectional LSTMS
Bangla music is enrich in its own music cultures. Now a days music genre classification is very significant because of the exponential increase in available music, both in digital and physical formats. It is necessary to index them accordingly to facilitate improved retrieval. Automatically classifying Bangla music by genre is essential for efficiently locating specific pieces within a vast and diverse music library. Prevailing methods for genre classification predominantly employ conventional machine learning or deep learning approaches. This work introduces a novel music dataset comprising ten distinct genres of Bangla music. For the task of audio classification, we utilize a recurrent neural network (RNN) architecture. Specifically, a Long Short-Term Memory (LSTM) network is implemented to train the model and perform the classification. Feature extraction represents a foundational stage in audio data processing. This study utilizes Mel-Frequency Cepstral Coefficients (MFCCs) to transform raw audio waveforms into a compact and representative set of features. The proposed framework facilitates music genre classification by leveraging these extracted features. Experimental results demonstrate a classification accuracy of 78%, indicating the system's strong potential to enhance and streamline the organization of Bangla music genres.
LoRAP: Low-Rank Aggregation Prompting for Quantized Graph Neural Networks Training
Graph Neural Networks (GNNs) are neural networks that aim to process graph data, capturing the relationships and interactions between nodes using the message-passing mechanism. GNN quantization has emerged as a promising approach for reducing model size and accelerating inference in resource-constrained environments. Compared to quantization in LLMs, quantizing graph features is more emphasized in GNNs. Inspired by the above, we propose to leverage prompt learning, which manipulates the input data, to improve the performance of quantization-aware training (QAT) for GNNs. To mitigate the issue that prompting the node features alone can only make part of the quantized aggregation result optimal, we introduce Low-Rank Aggregation Prompting (LoRAP), which injects lightweight, input-dependent prompts into each aggregated feature to optimize the results of quantized aggregations. Extensive evaluations on 4 leading QAT frameworks over 9 graph datasets demonstrate that LoRAP consistently enhances the performance of low-bit quantized GNNs while introducing a minimal computational overhead.
Multi-Agent Constraint Factorization Reveals Latent Invariant Solution Structure
Multi-agent systems (MAS) composed of large language models often exhibit improved problem-solving performance despite operating on identical information. In this work, we provide a formal explanation for this phenomenon grounded in operator theory and constrained optimization. We model each agent as enforcing a distinct family of validity constraints on a shared solution state, and show that a MAS implements a factorized composition of constraint-enforcement operators. Under mild conditions, these dynamics converge to invariant solution sets defined by the intersection of agent constraint sets. Such invariant structures are generally not dynamically accessible to a single agent applying all constraints simultaneously, even when expressive capacity and information are identical. We extend this result from exact constraint enforcement to soft constraints via proximal operators, and apply the formalism to contemporary text-based dialog systems.
SmartOracle -- An Agentic Approach to Mitigate Noise in Differential Oracles
Differential fuzzers detect bugs by executing identical inputs across distinct implementations of the same specification, such as JavaScript interpreters. Validating the outputs requires an oracle and for differential testing of JavaScript, these are constructed manually, making them expensive, time-consuming, and prone to false positives. Worse, when the specification evolves, this manual effort must be repeated. Inspired by the success of agentic systems in other SE domains, this paper introduces SmartOracle. SmartOracle decomposes the manual triage workflow into specialized Large Language Model (LLM) sub-agents. These agents synthesize independently gathered evidence from terminal runs and targeted specification queries to reach a final verdict. For historical benchmarks, SmartOracle achieves 0.84 recall with an 18% false positive rate. Compared to a sequential Gemini 2.5 Pro baseline, it improves triage accuracy while reducing analysis time by 4$\times$ and API costs by 10$\times$. In active fuzzing campaigns, SmartOracle successfully identified and reported previously unknown specification-level issues across major engines, including bugs in V8, JavaScriptCore, and GraalJS. The success of SmartOracle's agentic architecture on Javascript suggests it might be useful other software systems- a research direction we will explore in future work.
SpooFL: Spoofing Federated Learning
Traditional defenses against Deep Leakage (DL) attacks in Federated Learning (FL) primarily focus on obfuscation, introducing noise, transformations or encryption to degrade an attacker's ability to reconstruct private data. While effective to some extent, these methods often still leak high-level information such as class distributions or feature representations, and are frequently broken by increasingly powerful denoising attacks. We propose a fundamentally different perspective on FL defense: framing it as a spoofing problem.We introduce SpooFL (Figure 1), a spoofing-based defense that deceives attackers into believing they have recovered the true training data, while actually providing convincing but entirely synthetic samples from an unrelated task. Unlike prior synthetic-data defenses that share classes or distributions with the private data and thus still leak semantic information, SpooFL uses a state-of-the-art generative model trained on an external dataset with no class overlap. As a result, attackers are misled into recovering plausible yet completely irrelevant samples, preventing meaningful data leakage while preserving FL training integrity. We implement the first example of such a spoofing defense, and evaluate our method against state-of-the-art DL defenses and demonstrate that it successfully misdirects attackers without compromising model performance significantly.
HyperNet-Adaptation for Diffusion-Based Test Case Generation
The increasing deployment of deep learning systems requires systematic evaluation of their reliability in real-world scenarios. Traditional gradient-based adversarial attacks introduce small perturbations that rarely correspond to realistic failures and mainly assess robustness rather than functional behavior. Generative test generation methods offer an alternative but are often limited to simple datasets or constrained input domains. Although diffusion models enable high-fidelity image synthesis, their computational cost and limited controllability restrict their applicability to large-scale testing. We present HyNeA, a generative testing method that enables direct and efficient control over diffusion-based generation. HyNeA provides dataset-free controllability through hypernetworks, allowing targeted manipulation of the generative process without relying on architecture-specific conditioning mechanisms or dataset-driven adaptations such as fine-tuning. HyNeA employs a distinct training strategy that supports instance-level tuning to identify failure-inducing test cases without requiring datasets that explicitly contain examples of similar failures. This approach enables the targeted generation of realistic failure cases at substantially lower computational cost than search-based methods. Experimental results show that HyNeA improves controllability and test diversity compared to existing generative test generators and generalizes to domains where failure-labeled training data is unavailable.
A Curriculum-Based Deep Reinforcement Learning Framework for the Electric Vehicle Routing Problem
The electric vehicle routing problem with time windows (EVRPTW) is a complex optimization problem in sustainable logistics, where routing decisions must minimize total travel distance, fleet size, and battery usage while satisfying strict customer time constraints. Although deep reinforcement learning (DRL) has shown great potential as an alternative to classical heuristics and exact solvers, existing DRL models often struggle to maintain training stability-failing to converge or generalize when constraints are dense. In this study, we propose a curriculum-based deep reinforcement learning (CB-DRL) framework designed to resolve this instability. The framework utilizes a structured three-phase curriculum that gradually increases problem complexity: the agent first learns distance and fleet optimization (Phase A), then battery management (Phase B), and finally the full EVRPTW (Phase C). To ensure stable learning across phases, the framework employs a modified proximal policy optimization algorithm with phase-specific hyperparameters, value and advantage clipping, and adaptive learning-rate scheduling. The policy network is built upon a heterogeneous graph attention encoder enhanced by global-local attention and feature-wise linear modulation. This specialized architecture explicitly captures the distinct properties of depots, customers, and charging stations. Trained exclusively on small instances with N=10 customers, the model demonstrates robust generalization to unseen instances ranging from N=5 to N=100, significantly outperforming standard baselines on medium-scale problems. Experimental results confirm that this curriculum-guided approach achieves high feasibility rates and competitive solution quality on out-of-distribution instances where standard DRL baselines fail, effectively bridging the gap between neural speed and operational reliability.
Factorizable joint shift revisited
Factorizable joint shift (FJS) was proposed as a type of distribution shift (or dataset shift) that comprises both covariate and label shift. Recently, it has been observed that FJS actually arises from consecutive label and covariate (or vice versa) shifts. Research into FJS so far has been confined to the case of categorical label spaces. We propose a framework for analysing distribution shift in the case of general label spaces, thus covering both classification and regression models. Based on the framework, we generalise existing results on FJS to general label spaces and propose a related extension of the expectation maximisation (EM) algorithm for class prior probabilities. We also take a fresh look at generalized label shift (GLS) in the case of general label spaces.
comment: 23 pages
Mixture-of-Experts Models in Vision: Routing, Optimization, and Generalization
Mixture-of-Experts (MoE) architectures enable conditional computation by routing inputs to multiple expert subnetworks and are often motivated as a mechanism for scaling large language models. In this project, we instead study MoE behavior in an image classification setting, focusing on predictive performance, expert utilization, and generalization. We compare dense, SoftMoE, and SparseMoE classifier heads on the CIFAR10 dataset under comparable model capacity. Both MoE variants achieve slightly higher validation accuracy than the dense baseline while maintaining balanced expert utilization through regularization, avoiding expert collapse. To analyze generalization, we compute Hessian-based sharpness metrics at convergence, including the largest eigenvalue and trace of the loss Hessian, evaluated on both training and test data. We find that SoftMoE exhibits higher sharpness by these metrics, while Dense and SparseMoE lie in a similar curvature regime, despite all models achieving comparable generalization performance. Complementary loss surface perturbation analyses reveal qualitative differences in non-local behavior under finite parameter perturbations between dense and MoE models, which help contextualize curvature-based measurements without directly explaining validation accuracy. We further evaluate empirical inference efficiency and show that naively implemented conditional routing does not yield inference speedups on modern hardware at this scale, highlighting the gap between theoretical and realized efficiency in sparse MoE models.
comment: 7 pages, 8 figures. Code available at: https://github.com/moe-project-uu/mixture-of-experts-project
Plug-and-Play Benchmarking of Reinforcement Learning Algorithms for Large-Scale Flow Control
Reinforcement learning (RL) has shown promising results in active flow control (AFC), yet progress in the field remains difficult to assess as existing studies rely on heterogeneous observation and actuation schemes, numerical setups, and evaluation protocols. Current AFC benchmarks attempt to address these issues but heavily rely on external computational fluid dynamics (CFD) solvers, are not fully differentiable, and provide limited 3D and multi-agent support. To overcome these limitations, we introduce FluidGym, the first standalone, fully differentiable benchmark suite for RL in AFC. Built entirely in PyTorch on top of the GPU-accelerated PICT solver, FluidGym runs in a single Python stack, requires no external CFD software, and provides standardized evaluation protocols. We present baseline results with PPO and SAC and release all environments, datasets, and trained models as public resources. FluidGym enables systematic comparison of control methods, establishes a scalable foundation for future research in learning-based flow control, and is available at https://github.com/safe-autonomous-systems/fluidgym.
comment: Code available at https://github.com/safe-autonomous-systems/fluidgym
Efficient and Minimax-optimal In-context Nonparametric Regression with Transformers
We study in-context learning for nonparametric regression with $α$-Hölder smooth regression functions, for some $α>0$. We prove that, with $n$ in-context examples and $d$-dimensional regression covariates, a pretrained transformer with $Θ(\log n)$ parameters and $Ω\bigl(n^{2α/(2α+d)}\log^3 n\bigr)$ pretraining sequences can achieve the minimax-optimal rate of convergence $O\bigl(n^{-2α/(2α+d)}\bigr)$ in mean squared error. Our result requires substantially fewer transformer parameters and pretraining sequences than previous results in the literature. This is achieved by showing that transformers are able to approximate local polynomial estimators efficiently by implementing a kernel-weighted polynomial basis and then running gradient descent.
comment: 31 pages, 6 figures
RadixMLP -- Intra-batch Deduplication for Causal Transformers
Batch inference workloads for causal transformer models frequently process sequences that share common prefixes, such as system prompts, few-shot examples, or shared queries. Standard inference engines treat each sequence independently, redundantly recomputing identical MLP activations for every copy of the shared prefix. We introduce RadixMLP, a technique that exploits the position-wise nature of MLPs, LayerNorms, linear projections, and embeddings to eliminate this redundancy. RadixMLP dynamically maps batches to a prefix trie, gathering shared segments into a compressed representation for position-wise computation and scattering results back only at attention boundaries. RadixMLP is stateless and operates within a single forward pass. In end-to-end serving benchmarks on MS~MARCO v1.1 with Qwen3 models (0.6B to 8B parameters), RadixMLP achieves 1.44-1.59$\times$ speedups in realistic reranking workloads, with up to $5\times$ speedups on synthetic benchmarks with longer shared prefixes. Our code is available at https://github.com/michaelfeil/radix-mlp.
Lineup Regularized Adjusted Plus-Minus (L-RAPM): Basketball Lineup Ratings with Informed Priors
Identifying combinations of players (that is, lineups) in basketball - and other sports - that perform well when they play together is one of the most important tasks in sports analytics. One of the main challenges associated with this task is the frequent substitutions that occur during a game, which results in highly sparse data. In particular, a National Basketball Association (NBA) team will use more than 600 lineups during a season, which translates to an average lineup having seen the court in approximately 25-30 possessions. Inevitably, any statistics that one collects for these lineups are going to be noisy, with low predictive value. Yet, there is no existing work (in the public at least) that addresses this problem. In this work, we propose a regression-based approach that controls for the opposition faced by each lineup, while it also utilizes information about the players making up the lineups. Our experiments show that L-RAPM provides improved predictive power than the currently used baseline, and this improvement increases as the sample size for the lineups gets smaller.
comment: 7 pages, 4 figures
Fine-Grained Traceability for Transparent ML Pipelines
Modern machine learning systems are increasingly realised as multistage pipelines, yet existing transparency mechanisms typically operate at a model level: they describe what a system is and why it behaves as it does, but not how individual data samples are operationally recorded, tracked, and verified as they traverse the pipeline. This absence of verifiable, sample-level traceability leaves practitioners and users unable to determine whether a specific sample was used, when it was processed, or whether the corresponding records remain intact over time. We introduce FG-Trac, a model-agnostic framework that establishes verifiable, fine-grained sample-level traceability throughout machine learning pipelines. FG-Trac defines an explicit mechanism for capturing and verifying sample lifecycle events across preprocessing and training, computes contribution scores explicitly grounded in training checkpoints, and anchors these traces to tamper-evident cryptographic commitments. The framework integrates without modifying model architectures or training objectives, reconstructing complete and auditable data-usage histories with practical computational overhead. Experiments on a canonical convolutional neural network and a multimodal graph learning pipeline demonstrate that FG-Trac preserves predictive performance while enabling machine learning systems to furnish verifiable evidence of how individual samples were used and propagated during model execution.
comment: Accepted at The Web Conference (WWW) 2026
InstructTime++: Time Series Classification with Multimodal Language Modeling via Implicit Feature Enhancement
Most existing time series classification methods adopt a discriminative paradigm that maps input sequences directly to one-hot encoded class labels. While effective, this paradigm struggles to incorporate contextual features and fails to capture semantic relationships among classes. To address these limitations, we propose InstructTime, a novel framework that reformulates time series classification as a multimodal generative task. Specifically, continuous numerical sequences, contextual textual features, and task instructions are treated as multimodal inputs, while class labels are generated as textual outputs by tuned language models. To bridge the modality gap, InstructTime introduces a time series discretization module that converts continuous sequences into discrete temporal tokens, together with an alignment projection layer and a generative self-supervised pre-training strategy to enhance cross-modal representation alignment. Building upon this framework, we further propose InstructTime++, which extends InstructTime by incorporating implicit feature modeling to compensate for the limited inductive bias of language models. InstructTime++ leverages specialized toolkits to mine informative implicit patterns from raw time series and contextual inputs, including statistical feature extraction and vision-language-based image captioning, and translates them into textual descriptions for seamless integration. Extensive experiments on multiple benchmark datasets demonstrate the superior performance of InstructTime++.
Improving Regret Approximation for Unsupervised Dynamic Environment Generation
Unsupervised Environment Design (UED) seeks to automatically generate training curricula for reinforcement learning (RL) agents, with the goal of improving generalisation and zero-shot performance. However, designing effective curricula remains a difficult problem, particularly in settings where small subsets of environment parameterisations result in significant increases in the complexity of the required policy. Current methods struggle with a difficult credit assignment problem and rely on regret approximations that fail to identify challenging levels, both of which are compounded as the size of the environment grows. We propose Dynamic Environment Generation for UED (DEGen) to enable a denser level generator reward signal, reducing the difficulty of credit assignment and allowing for UED to scale to larger environment sizes. We also introduce a new regret approximation, Maximised Negative Advantage (MNA), as a significantly improved metric to optimise for, that better identifies more challenging levels. We show empirically that MNA outperforms current regret approximations and when combined with DEGen, consistently outperforms existing methods, especially as the size of the environment grows. We have made all our code available here: https://github.com/HarryMJMead/Dynamic-Environment-Generation-for-UED.
Multimodal Rumor Detection Enhanced by External Evidence and Forgery Features
Social media increasingly disseminates information through mixed image text posts, but rumors often exploit subtle inconsistencies and forged content, making detection based solely on post content difficult. Deep semantic mismatch rumors, which superficially align images and texts, pose particular challenges and threaten online public opinion. Existing multimodal rumor detection methods improve cross modal modeling but suffer from limited feature extraction, noisy alignment, and inflexible fusion strategies, while ignoring external factual evidence necessary for verifying complex rumors. To address these limitations, we propose a multimodal rumor detection model enhanced with external evidence and forgery features. The model uses a ResNet34 visual encoder, a BERT text encoder, and a forgery feature module extracting frequency-domain traces and compression artifacts via Fourier transformation. BLIP-generated image descriptions bridge image and text semantic spaces. A dual contrastive learning module computes contrastive losses between text image and text description pairs, improving detection of semantic inconsistencies. A gated adaptive feature-scaling fusion mechanism dynamically adjusts multimodal fusion and reduces redundancy. Experiments on Weibo and Twitter datasets demonstrate that our model outperforms mainstream baselines in macro accuracy, recall, and F1 score.
comment: 19 pages,10 figures
Communication-Efficient Multi-Modal Edge Inference via Uncertainty-Aware Distributed Learning
Semantic communication is emerging as a key enabler for distributed edge intelligence due to its capability to convey task-relevant meaning. However, achieving communication-efficient training and robust inference over wireless links remains challenging. This challenge is further exacerbated for multi-modal edge inference (MMEI) by two factors: 1) prohibitive communication overhead for distributed learning over bandwidth-limited wireless links, due to the \emph{multi-modal} nature of the system; and 2) limited robustness under varying channels and noisy multi-modal inputs. In this paper, we propose a three-stage communication-aware distributed learning framework to improve training and inference efficiency while maintaining robustness over wireless channels. In Stage~I, devices perform local multi-modal self-supervised learning to obtain shared and modality-specific encoders without device--server exchange, thereby reducing the communication cost. In Stage~II, distributed fine-tuning with centralized evidential fusion calibrates per-modality uncertainty and reliably aggregates features distorted by noise or channel fading. In Stage~III, an uncertainty-guided feedback mechanism selectively requests additional features for uncertain samples, optimizing the communication--accuracy tradeoff in the distributed setting. Experiments on RGB--depth indoor scene classification show that the proposed framework attains higher accuracy with far fewer training communication rounds and remains robust to modality degradation or channel variation, outperforming existing self-supervised and fully supervised baselines.
Tailoring Adverse Event Prediction in Type 1 Diabetes with Patient-Specific Deep Learning Models
Effective management of Type 1 Diabetes requires continuous glucose monitoring and precise insulin adjustments to prevent hyperglycemia and hypoglycemia. With the growing adoption of wearable glucose monitors and mobile health applications, accurate blood glucose prediction is essential for enhancing automated insulin delivery and decision-support systems. This paper presents a deep learning-based approach for personalized blood glucose prediction, leveraging patient-specific data to improve prediction accuracy and responsiveness in real-world scenarios. Unlike traditional generalized models, our method accounts for individual variability, enabling more effective subject-specific predictions. We compare Leave-One-Subject-Out Cross-Validation with a fine-tuning strategy to evaluate their ability to model patient-specific dynamics. Results show that personalized models significantly improve the prediction of adverse events, enabling more precise and timely interventions in real-world scenarios. To assess the impact of patient-specific data, we conduct experiments comparing a multimodal, patient-specific approach against traditional CGM-only methods. Additionally, we perform an ablation study to investigate model performance with progressively smaller training sets, identifying the minimum data required for effective personalization-an essential consideration for real-world applications where extensive data collection is often challenging. Our findings underscore the potential of adaptive, personalized glucose prediction models for advancing next-generation diabetes management, particularly in wearable and mobile health platforms, enhancing consumer-oriented diabetes care solutions.
What Makes Low-Bit Quantization-Aware Training Work for Reasoning LLMs? A Systematic Study
Reasoning models excel at complex tasks such as coding and mathematics, yet their inference is often slow and token-inefficient. To improve the inference efficiency, post-training quantization (PTQ) usually comes with the cost of large accuracy drops, especially for reasoning tasks under low-bit settings. In this study, we present a systematic empirical study of quantization-aware training (QAT) for reasoning models. Our key findings include: (1) Knowledge distillation is a robust objective for reasoning models trained via either supervised fine-tuning or reinforcement learning; (2) PTQ provides a strong initialization for QAT, improving accuracy while reducing training cost; (3) Reinforcement learning remains feasible for quantized models given a viable cold start and yields additional gains; and (4) Aligning the PTQ calibration domain with the QAT training domain accelerates convergence and often improves the final accuracy. Finally, we consolidate these findings into an optimized workflow (Reasoning-QAT), and show that it consistently outperforms state-of-the-art PTQ methods across multiple LLM backbones and reasoning datasets. For instance, on Qwen3-0.6B, it surpasses GPTQ by 44.53% on MATH-500 and consistently recovers performance in the 2-bit regime.
ExoMiner++ 2.0: Vetting TESS Full-Frame Image Transit Signals
The Transiting Exoplanet Survey Satellite (TESS) Full-Frame Images (FFIs) provide photometric time series for millions of stars, enabling transit searches beyond the limited set of pre-selected 2-minute targets. However, FFIs present additional challenges for transit identification and vetting. In this work, we apply ExoMiner++ 2.0, an adaptation of the ExoMiner++ framework originally developed for TESS 2-minute data, to FFI light curves. The model is used to perform large-scale planet versus non-planet classification of Threshold Crossing Events across the sectors analyzed in this study. We construct a uniform vetting catalog of all evaluated signals and assess model performance under different observing conditions. We find that ExoMiner++ 2.0 generalizes effectively to the FFI domain, providing robust discrimination between planetary signals, astrophysical false positives, and instrumental artifacts despite the limitations inherent to longer cadence data. This work extends the applicability of ExoMiner++ to the full TESS dataset and supports future population studies and follow-up prioritization.
Finite-Sample Inference for Sparsely Permuted Linear Regression
We study a noisy linear observation model with an unknown permutation called permuted/shuffled linear regression, where responses and covariates are mismatched and the permutation forms a discrete, factorial-size parameter. This unknown permutation is a key component of the data-generating process, yet its statistical investigation remains challenging due to its discrete nature. In this study, we develop a general statistical inference framework on the permutation and regression coefficients. First, we introduce a localization step that reduces the permutation space to a small candidate set building on recent advances in the repro samples method, whose miscoverage decays polynomially with the number of Monte Carlo samples. Then, based on this localized set, we provide statistical inference procedures: a conditional Monte Carlo test of permutation structures with valid finite-sample Type-I error control. We also develop coefficient inference that remains valid under alignment uncertainty of permutations. For computational purposes, we develop a linear assignment problem computable in polynomial time complexity and demonstrate that its solution asymptotically converges to that of the conventional least squares problem with large computational cost. Extensions to partially permuted designs and ridge regularization are also discussed. Extensive simulations and an application to Beijing air-quality data corroborate finite-sample validity, strong power to detect mismatches, and practical scalability.
Strategic Doctrine Language Models (sdLM): A Learning-System Framework for Doctrinal Consistency and Geopolitical Forecasting
We introduce Strategic Doctrine Language Models (sdLM), a learning-system framework for multi-document strategic reasoning with doctrinal consistency constraints and calibrated uncertainty. The approach combines multi-document attention, temporal encoding, and a doctrine-consistency layer to improve long-horizon forecasting and plan plausibility while reducing severe doctrinal violations. We evaluate sdLM using (i) expert-panel scoring of strategic scenarios (N=47), (ii) doctrine consistency on 336 doctrine publications (12,847 statements), and (iii) geopolitical forecasting on 127 historical counterfactuals (1945-2020) across 12-60 month horizons. Across these benchmarks, sdLM achieves higher strategic quality and better calibration than strong general-purpose LLM baselines, and remains competitive with human experts on long-horizon judgments. We further report ablations, scaling trends, and deployment-oriented performance/latency characteristics to clarify which components drive improvements and how they translate to operational settings.
comment: 13 pages, 10 figures, 10 tables
Adaptive Exponential Integration for Stable Gaussian Mixture Black-Box Variational Inference
Black-box variational inference (BBVI) with Gaussian mixture families offers a flexible approach for approximating complex posterior distributions without requiring gradients of the target density. However, standard numerical optimization methods often suffer from instability and inefficiency. We develop a stable and efficient framework that combines three key components: (1) affine-invariant preconditioning via natural gradient formulations, (2) an exponential integrator that unconditionally preserves the positive definiteness of covariance matrices, and (3) adaptive time stepping to ensure stability and to accommodate distinct warm-up and convergence phases. The proposed approach has natural connections to manifold optimization and mirror descent. For Gaussian posteriors, we prove exponential convergence in the noise-free setting and almost-sure convergence under Monte Carlo estimation, rigorously justifying the necessity of adaptive time stepping. Numerical experiments on multimodal distributions, Neal's multiscale funnel, and a PDE-based Bayesian inverse problem for Darcy flow demonstrate the effectiveness of the proposed method.
comment: 26 pages, 7 figures
From Observation to Prediction: LSTM for Vehicle Lane Change Forecasting on Highway On/Off-Ramps
On and off-ramps are understudied road sections even though they introduce a higher level of variation in highway interactions. Predicting vehicles' behavior in these areas can decrease the impact of uncertainty and increase road safety. In this paper, the difference between this Area of Interest (AoI) and a straight highway section is studied. Multi-layered LSTM architecture to train the AoI model with ExiD drone dataset is utilized. In the process, different prediction horizons and different models' workflow are tested. The results show great promise on horizons up to 4 seconds with prediction accuracy starting from about 76% for the AoI and 94% for the general highway scenarios on the maximum horizon.
MTFlow: Time-Conditioned Flow Matching for Microtubule Segmentation in Noisy Microscopy Images
Microtubules are cytoskeletal filaments that play essential roles in many cellular processes and are key therapeutic targets in several diseases. Accurate segmentation of microtubule networks is critical for studying their organization and dynamics but remains challenging due to filament curvature, dense crossings, and image noise. We present MTFlow, a novel time-conditioned flow-matching model for microtubule segmentation. Unlike conventional U-Net variants that predict masks in a single pass, MTFlow learns vector fields that iteratively transport noisy masks toward the ground truth, enabling interpretable, trajectory-based refinement. Our architecture combines a U-Net backbone with temporal embeddings, allowing the model to capture the dynamics of uncertainty resolution along filament boundaries. We trained and evaluated MTFlow on synthetic and real microtubule datasets and assessed its generalization capability on public biomedical datasets of curvilinear structures such as retinal blood vessels and nerves. MTFlow achieves competitive segmentation accuracy comparable to state-of-the-art models, offering a powerful and time-efficient tool for filamentous structure analysis with more precise annotations than manual or semi-automatic approaches.
comment: Accepted for presentation at ISBI 2026
Statistical Learning Theory for Distributional Classification
In supervised learning with distributional inputs in the two-stage sampling setup, relevant to applications like learning-based medical screening or causal learning, the inputs (which are probability distributions) are not accessible in the learning phase, but only samples thereof. This problem is particularly amenable to kernel-based learning methods, where the distributions or samples are first embedded into a Hilbert space, often using kernel mean embeddings (KMEs), and then a standard kernel method like Support Vector Machines (SVMs) is applied, using a kernel defined on the embedding Hilbert space. In this work, we contribute to the theoretical analysis of this latter approach, with a particular focus on classification with distributional inputs using SVMs. We establish a new oracle inequality and derive consistency and learning rate results. Furthermore, for SVMs using the hinge loss and Gaussian kernels, we formulate a novel variant of an established noise assumption from the binary classification literature, under which we can establish learning rates. Finally, some of our technical tools like a new feature space for Gaussian kernels on Hilbert spaces are of independent interest.
comment: Contains supplementary material
Learning and extrapolating scale-invariant processes
Machine Learning (ML) has deeply changed some fields recently, like Language and Vision and we may expect it to be relevant also to the analysis of of complex systems. Here we want to tackle the question of how and to which extent can one regress scale-free processes, i.e. processes displaying power law behavior, like earthquakes or avalanches? We are interested in predicting the large ones, i.e. rare events in the training set which therefore require extrapolation capabilities of the model. For this we consider two paradigmatic problems that are statistically self-similar. The first one is a 2-dimensional fractional Gaussian field obeying linear dynamics, self-similar by construction and amenable to exact analysis. The second one is the Abelian sandpile model, exhibiting self-organized criticality. The emerging paradigm of Geometric Deep Learning shows that including known symmetries into the model's architecture is key to success. Here one may hope to extrapolate only by leveraging scale invariance. This is however a peculiar symmetry, as it involves possibly non-trivial coarse-graining operations and anomalous scaling. We perform experiments on various existing architectures like U-net, Riesz network (scale invariant by construction), or our own proposals: a wavelet-decomposition based Graph Neural Network (with discrete scale symmetry), a Fourier embedding layer and a Fourier-Mellin Neural Operator. Based on these experiments and a complete characterization of the linear case, we identify the main issues relative to spectral biases and coarse-grained representations, and discuss how to alleviate them with the relevant inductive biases.
comment: 29p, 22 figures
Reflecting in the Reflection: Integrating a Socratic Questioning Framework into Automated AI-Based Question Generation
Designing good reflection questions is pedagogically important but time-consuming and unevenly supported across teachers. This paper introduces a reflection-in-reflection framework for automated generation of reflection questions with large language models (LLMs). Our approach coordinates two role-specialized agents, a Student-Teacher and a Teacher-Educator, that engage in a Socratic multi-turn dialogue to iteratively refine a single question given a teacher-specified topic, key concepts, student level, and optional instructional materials. The Student-Teacher proposes candidate questions with brief rationales, while the Teacher-Educator evaluates them along clarity, depth, relevance, engagement, and conceptual interconnections, responding only with targeted coaching questions or a fixed signal to stop the dialogue. We evaluate the framework in an authentic lower-secondary ICT setting on the topic, using GPT-4o-mini as the backbone model and a stronger GPT- 4-class LLM as an external evaluator in pairwise comparisons of clarity, relevance, depth, and overall quality. First, we study how interaction design and context (dynamic vs.fixed iteration counts; presence or absence of student level and materials) affect question quality. Dynamic stopping combined with contextual information consistently outperforms fixed 5- or 10-step refinement, with very long dialogues prone to drift or over-complication. Second, we show that our two-agent protocol produces questions that are judged substantially more relevant and deeper, and better overall, than a one-shot baseline using the same backbone model.
RANDSMAPs: Random-Feature/multi-Scale Neural Decoders with Mass Preservation
We introduce RANDSMAPs (Random-feature/multi-scale neural decoders with Mass Preservation), numerical analysis-informed, explainable neural decoders designed to explicitly respect conservation laws when solving the challenging ill-posed pre-image problem in manifold learning. We start by proving the equivalence of vanilla random Fourier feature neural networks to Radial Basis Function interpolation and the double Diffusion Maps (based on Geometric Harmonics) decoders in the deterministic limit. We then establish the theoretical foundations for RANDSMAP and introduce its multiscale variant to capture structures across multiple scales. We formulate and derive the closed-form solution of the corresponding constrained optimization problem and prove the mass preservation property. Numerically, we assess the performance of RANDSMAP on three benchmark problems/datasets with mass preservation obtained by the Lighthill-Whitham-Richards traffic flow PDE with shock waves, 2D rotated MRI brain images, and the Hughes crowd dynamics PDEs. We demonstrate that RANDSMAPs yield high reconstruction accuracy at low computational cost and maintain mass conservation at single-machine precision. In its vanilla formulation, the scheme remains applicable to the classical pre-image problem, i.e., when mass-preservation constraints are not imposed.
comment: 47 pages (23 in main text, 24 in Appendix), 19 figures (4 in main text, 15 in Appendix), 10 Tables (in Appendix)
Robustness of Mixtures of Experts to Feature Noise
Despite their practical success, it remains unclear why Mixture of Experts (MoE) models can outperform dense networks beyond sheer parameter scaling. We study an iso-parameter regime where inputs exhibit latent modular structure but are corrupted by feature noise, a proxy for noisy internal activations. We show that sparse expert activation acts as a noise filter: compared to a dense estimator, MoEs achieve lower generalization error under feature noise, improved robustness to perturbations, and faster convergence speed. Empirical results on synthetic data and real-world language tasks corroborate the theoretical insights, demonstrating consistent robustness and efficiency gains from sparse modular computation.
Synthetic Data Augmentation for Multi-Task Chinese Porcelain Classification: A Stable Diffusion Approach
The scarcity of training data presents a fundamental challenge in applying deep learning to archaeological artifact classification, particularly for the rare types of Chinese porcelain. This study investigates whether synthetic images generated through Stable Diffusion with Low-Rank Adaptation (LoRA) can effectively augment limited real datasets for multi-task CNN-based porcelain classification. Using MobileNetV3 with transfer learning, we conducted controlled experiments comparing models trained on pure real data against those trained on mixed real-synthetic datasets (95:5 and 90:10 ratios) across four classification tasks: dynasty, glaze, kiln and type identification. Results demonstrate task-specific benefits: type classification showed the most substantial improvement (5.5\% F1-macro increase with 90:10 ratio), while dynasty and kiln tasks exhibited modest gains (3-4\%), suggesting that synthetic augmentation effectiveness depends on the alignment between generated features and task-relevant visual signatures. Our work contributes practical guidelines for deploying generative AI in archaeological research, demonstrating both the potential and limitations of synthetic data when archaeological authenticity must be balanced with data diversity.
Anytime Optimal Decision Tree Learning with Continuous Features
In recent years, significant progress has been made on algorithms for learning optimal decision trees, primarily in the context of binary features. Extending these methods to continuous features remains substantially more challenging due to the large number of potential splits for each feature. Recently, an elegant exact algorithm was proposed for learning optimal decision trees with continuous features; however, the rapidly increasing computational time limits its practical applicability to shallow depths (typically 3 or 4). It relies on a depth-first search optimization strategy that fully optimizes the left subtree of each split before exploring the corresponding right subtree. While effective in finding optimal solutions given sufficient time, this strategy can lead to poor anytime behavior: when interrupted early, the best-found tree is often highly unbalanced and suboptimal. In such cases, purely greedy methods such as C4.5 may, paradoxically, yield better solutions. To address this limitation, we propose an anytime, yet complete approach leveraging limited discrepancy search, distributing the computational effort more evenly across the entire tree structure, and thus ensuring that a high-quality decision tree is available at any interruption point. Experimental results show that our approach outperforms the existing one in terms of anytime performance.
Mechanism Shift During Post-training from Autoregressive to Masked Diffusion Language Models
Post-training pretrained Autoregressive models (ARMs) into Masked Diffusion models (MDMs) has emerged as a cost-effective strategy to overcome the limitations of sequential generation. However, the internal algorithmic transformations induced by this paradigm shift remain unexplored, leaving it unclear whether post-trained MDMs acquire genuine bidirectional reasoning capabilities or merely repackage autoregressive heuristics. In this work, we address this question by conducting a comparative circuit analysis of ARMs and their MDM counterparts. Our analysis reveals a systematic "mechanism shift" dependent on the structural nature of the task. Structurally, we observe a distinct divergence: while MDMs largely retain autoregressive circuitry for tasks dominated by local causal dependencies, they abandon initialized pathways for global planning tasks, exhibiting distinct rewiring characterized by increased early-layer processing. Semantically, we identify a transition from sharp, localized specialization in ARMs to distributed integration in MDMs. Through these findings, we conclude that diffusion post-training does not merely adapt model parameters but fundamentally reorganizes internal computation to support non-sequential global planning.
RefProtoFL: Communication-Efficient Federated Learning via External-Referenced Prototype Alignment
Federated learning (FL) enables collaborative model training without sharing raw data in edge environments, but is constrained by limited communication bandwidth and heterogeneous client data distributions. Prototype-based FL mitigates this issue by exchanging class-wise feature prototypes instead of full model parameters; however, existing methods still suffer from suboptimal generalization under severe communication constraints. In this paper, we propose RefProtoFL, a communication-efficient FL framework that integrates External-Referenced Prototype Alignment (ERPA) for representation consistency with Adaptive Probabilistic Update Dropping (APUD) for communication efficiency. Specifically, we decompose the model into a private backbone and a lightweight shared adapter, and restrict federated communication to the adapter parameters only. To further reduce uplink cost, APUD performs magnitude-aware Top-K sparsification, transmitting only the most significant adapter updates for server-side aggregation. To address representation inconsistency across heterogeneous clients, ERPA leverages a small server-held public dataset to construct external reference prototypes that serve as shared semantic anchors. For classes covered by public data, clients directly align local representations to public-induced prototypes, whereas for uncovered classes, alignment relies on server-aggregated global reference prototypes via weighted averaging. Extensive experiments on standard benchmarks demonstrate that RefProtoFL attains higher classification accuracy than state-of-the-art prototype-based FL baselines.
ARFT-Transformer: Modeling Metric Dependencies for Cross-Project Aging-Related Bug Prediction
Software systems that run for long periods often suffer from software aging, which is typically caused by Aging-Related Bugs (ARBs). To mitigate the risk of ARBs early in the development phase, ARB prediction has been introduced into software aging research. However, due to the difficulty of collecting ARBs, within-project ARB prediction faces the challenge of data scarcity, leading to the proposal of cross-project ARB prediction. This task faces two major challenges: 1) domain adaptation issue caused by distribution difference between source and target projects; and 2) severe class imbalance between ARB-prone and ARB-free samples. Although various methods have been proposed for cross-project ARB prediction, existing approaches treat the input metrics independently and often neglect the rich inter-metric dependencies, which can lead to overlapping information and misjudgment of metric importance, potentially affecting the model's performance. Moreover, they typically use cross-entropy as the loss function during training, which cannot distinguish the difficulty of sample classification. To overcome these limitations, we propose ARFT-Transformer, a transformer-based cross-project ARB prediction framework that introduces a metric-level multi-head attention mechanism to capture metric interactions and incorporates Focal Loss function to effectively handle class imbalance. Experiments conducted on three large-scale open-source projects demonstrate that ARFT-Transformer on average outperforms state-of-the-art cross-project ARB prediction methods in both single-source and multi-source cases, achieving up to a 29.54% and 19.92% improvement in Balance metric.
comment: Accepted by The Journal of Systems & Software (JSS), 2026
FSX: Message Flow Sensitivity Enhanced Structural Explainer for Graph Neural Networks
Despite the widespread success of Graph Neural Networks (GNNs), understanding the reasons behind their specific predictions remains challenging. Existing explainability methods face a trade-off that gradient-based approaches are computationally efficient but often ignore structural interactions, while game-theoretic techniques capture interactions at the cost of high computational overhead and potential deviation from the model's true reasoning path. To address this gap, we propose FSX (Message Flow Sensitivity Enhanced Structural Explainer), a novel hybrid framework that synergistically combines the internal message flows of the model with a cooperative game approach applied to the external graph data. FSX first identifies critical message flows via a novel flow-sensitivity analysis: during a single forward pass, it simulates localized node perturbations and measures the resulting changes in message flow intensities. These sensitivity-ranked flows are then projected onto the input graph to define compact, semantically meaningful subgraphs. Within each subgraph, a flow-aware cooperative game is conducted, where node contributions are evaluated fairly through a Shapley-like value that incorporates both node-feature importance and their roles in sustaining or destabilizing the identified critical flows. Extensive evaluation across multiple datasets and GNN architectures demonstrates that FSX achieves superior explanation fidelity with significantly reduced runtime, while providing unprecedented insights into the structural logic underlying model predictions--specifically, how important sub-structures exert influence by governing the stability of key internal computational pathways.
comment: 8 pages, 4 figures, Preprint
AQAScore: Evaluating Semantic Alignment in Text-to-Audio Generation via Audio Question Answering
Although text-to-audio generation has made remarkable progress in realism and diversity, the development of evaluation metrics has not kept pace. Widely-adopted approaches, typically based on embedding similarity like CLAPScore, effectively measure general relevance but remain limited in fine-grained semantic alignment and compositional reasoning. To address this, we introduce AQAScore, a backbone-agnostic evaluation framework that leverages the reasoning capabilities of audio-aware large language models (ALLMs). AQAScore reformulates assessment as a probabilistic semantic verification task; rather than relying on open-ended text generation, it estimates alignment by computing the exact log-probability of a "Yes" answer to targeted semantic queries. We evaluate AQAScore across multiple benchmarks, including human-rated relevance, pairwise comparison, and compositional reasoning tasks. Experimental results show that AQAScore consistently achieves higher correlation with human judgments than similarity-based metrics and generative prompting baselines, showing its effectiveness in capturing subtle semantic inconsistencies and scaling with the capability of underlying ALLMs.
comment: Manuscript in progress
PCL-Reasoner-V1.5: Advancing Math Reasoning with Offline Reinforcement Learning
We present PCL-Reasoner-V1.5, a 32-billion-parameter large language model (LLM) for mathematical reasoning. The model is built upon Qwen2.5-32B and refined via supervised fine-tuning (SFT) followed by reinforcement learning (RL). A central innovation is our proposed offline RL method, which provides superior training stability and efficiency over standard online RL methods such as GRPO. Our model achieves state-of-the-art performance among models post-trained on Qwen2.5-32B, attaining average accuracies of 90.9% on AIME 2024 and 85.6% on AIME 2025. Our work demonstrates offline RL as a stable and efficient paradigm for advancing reasoning in LLMs. All experiments were conducted on Huawei Ascend 910C NPUs.
DARA: Few-shot Budget Allocation in Online Advertising via In-Context Decision Making with RL-Finetuned LLMs
Optimizing the advertiser's cumulative value of winning impressions under budget constraints poses a complex challenge in online advertising, under the paradigm of AI-Generated Bidding (AIGB). Advertisers often have personalized objectives but limited historical interaction data, resulting in few-shot scenarios where traditional reinforcement learning (RL) methods struggle to perform effectively. Large Language Models (LLMs) offer a promising alternative for AIGB by leveraging their in-context learning capabilities to generalize from limited data. However, they lack the numerical precision required for fine-grained optimization. To address this limitation, we introduce GRPO-Adaptive, an efficient LLM post-training strategy that enhances both reasoning and numerical precision by dynamically updating the reference policy during training. Built upon this foundation, we further propose DARA, a novel dual-phase framework that decomposes the decision-making process into two stages: a few-shot reasoner that generates initial plans via in-context prompting, and a fine-grained optimizer that refines these plans using feedback-driven reasoning. This separation allows DARA to combine LLMs' in-context learning strengths with precise adaptability required by AIGB tasks. Extensive experiments on both real-world and synthetic data environments demonstrate that our approach consistently outperforms existing baselines in terms of cumulative advertiser value under budget constraints.
comment: Accepted at The ACM Web Conference (WWW) 2026
Case-Guided Sequential Assay Planning in Drug Discovery
Optimally sequencing experimental assays in drug discovery is a high-stakes planning problem under severe uncertainty and resource constraints. A primary obstacle for standard reinforcement learning (RL) is the absence of an explicit environment simulator or transition data $(s, a, s')$; planning must rely solely on a static database of historical outcomes. We introduce the Implicit Bayesian Markov Decision Process (IBMDP), a model-based RL framework designed for such simulator-free settings. IBMDP constructs a case-guided implicit model of transition dynamics by forming a nonparametric belief distribution using similar historical outcomes. This mechanism enables Bayesian belief updating as evidence accumulates and employs ensemble MCTS planning to generate stable policies that balance information gain toward desired outcomes with resource efficiency. We validate IBMDP through comprehensive experiments. On a real-world central nervous system (CNS) drug discovery task, IBMDP reduced resource consumption by up to 92\% compared to established heuristics while maintaining decision confidence. To rigorously assess decision quality, we also benchmarked IBMDP in a synthetic environment with a computable optimal policy. Our framework achieves significantly higher alignment with this optimal policy than a deterministic value iteration alternative that uses the same similarity-based model, demonstrating the superiority of our ensemble planner. IBMDP offers a practical solution for sequential experimental design in data-rich but simulator-poor domains.
Proximal Policy Optimization with Evolutionary Mutations
Proximal Policy Optimization (PPO) is a widely used reinforcement learning algorithm known for its stability and sample efficiency, but it often suffers from premature convergence due to limited exploration. In this paper, we propose POEM (Proximal Policy Optimization with Evolutionary Mutations), a novel modification to PPO that introduces an adaptive exploration mechanism inspired by evolutionary algorithms. POEM enhances policy diversity by monitoring the Kullback-Leibler (KL) divergence between the current policy and a moving average of previous policies. When policy changes become minimal, indicating stagnation, POEM triggers an adaptive mutation of policy parameters to promote exploration. We evaluate POEM on four OpenAI Gym environments: CarRacing, MountainCar, BipedalWalker, and LunarLander. Through extensive fine-tuning using Bayesian optimization techniques and statistical testing using Welch's t-test, we find that POEM significantly outperforms PPO on three of the four tasks (BipedalWalker: t=-2.0642, p=0.0495; CarRacing: t=-6.3987, p=0.0002; MountainCar: t=-6.2431, p<0.0001), while performance on LunarLander is not statistically significant (t=-1.8707, p=0.0778). Our results highlight the potential of integrating evolutionary principles into policy gradient methods to overcome exploration-exploitation tradeoffs.
comment: 10 pages, 5 figures, 2 tables, 1 algorithm
CoScale-RL: Efficient Post-Training by Co-Scaling Data and Computation
Training Large Reasoning Model (LRM) is usually unstable and unpredictable, especially on hard problems or weak foundation models. We found that the current post-training scaling strategy can still improve on these cases. We propose CoScale-RL, a novel scaling strategy with better data and computational efficiency. We first scale up solutions to make problems solvable. The core idea is to collect multiple solutions for each problem, rather than simply enlarging the dataset. Then, we scale up rollout computation to stabilize Reinforcement Learning. We further leverage a model merge technique called Re-distillation to sustain or even improve computational efficiency when scaling up. Our method significantly improves data and computational efficiency, with an average 3.76$\times$ accuracy improvement on four benchmarks. CoScale-RL is able to improve an LRM's ability boundary without an extensive SFT dataset. Our method provides a new scaling direction to further improve LRM's reasoning ability.
comment: preprint
Re-understanding Graph Unlearning through Memorization
Graph unlearning (GU), which removes nodes, edges, or features from trained graph neural networks (GNNs), is crucial in Web applications where graph data may contain sensitive, mislabeled, or malicious information. However, existing GU methods lack a clear understanding of the key factors that determine unlearning effectiveness, leading to three fundamental limitations: (1) impractical and inaccurate GU difficulty assessment due to test-access requirements and invalid assumptions, (2) ineffectiveness on hard-to-unlearn tasks, and (3) misaligned evaluation protocols that overemphasize easy tasks and fail to capture true forgetting capability. To address these issues, we establish GNN memorization as a new perspective for understanding graph unlearning and propose MGU, a Memorization-guided Graph Unlearning framework. MGU achieves three key advances: it provides accurate and practical difficulty assessment across different GU tasks, develops an adaptive strategy that dynamically adjusts unlearning objectives based on difficulty levels, and establishes a comprehensive evaluation protocol that aligns with practical requirements. Extensive experiments on ten real-world graphs demonstrate that MGU consistently outperforms state-of-the-art baselines in forgetting quality, computational efficiency, and utility preservation.
comment: This paper has been accepted by WWW-2026
Beyond Error-Based Optimization: Experience-Driven Symbolic Regression with Goal-Conditioned Reinforcement Learning
Symbolic Regression aims to automatically identify compact and interpretable mathematical expressions that model the functional relationship between input and output variables. Most existing search-based symbolic regression methods typically rely on the fitting error to inform the search process. However, in the vast expression space, numerous candidate expressions may exhibit similar error values while differing substantially in structure, leading to ambiguous search directions and hindering convergence to the underlying true function. To address this challenge, we propose a novel framework named EGRL-SR (Experience-driven Goal-conditioned Reinforcement Learning for Symbolic Regression). In contrast to traditional error-driven approaches, EGRL-SR introduces a new perspective: leveraging precise historical trajectories and optimizing the action-value network to proactively guide the search process, thereby achieving a more robust expression search. Specifically, we formulate symbolic regression as a goal-conditioned reinforcement learning problem and incorporate hindsight experience replay, allowing the action-value network to generalize common mapping patterns from diverse input-output pairs. Moreover, we design an all-point satisfaction binary reward function that encourages the action-value network to focus on structural patterns rather than low-error expressions, and concurrently propose a structure-guided heuristic exploration strategy to enhance search diversity and space coverage. Experiments on public benchmarks show that EGRL-SR consistently outperforms state-of-the-art methods in recovery rate and robustness, and can recover more complex expressions under the same search budget. Ablation results validate that the action-value network effectively guides the search, with both the reward function and the exploration strategy playing critical roles.
Beyond Denial-of-Service: The Puppeteer's Attack for Fine-Grained Control in Ranking-Based Federated Learning
Federated Rank Learning (FRL) is a promising Federated Learning (FL) paradigm designed to be resilient against model poisoning attacks due to its discrete, ranking-based update mechanism. Unlike traditional FL methods that rely on model updates, FRL leverages discrete rankings as a communication parameter between clients and the server. This approach significantly reduces communication costs and limits an adversary's ability to scale or optimize malicious updates in the continuous space, thereby enhancing its robustness. This makes FRL particularly appealing for applications where system security and data privacy are crucial, such as web-based auction and bidding platforms. While FRL substantially reduces the attack surface, we demonstrate that it remains vulnerable to a new class of local model poisoning attack, i.e., fine-grained control attacks. We introduce the Edge Control Attack (ECA), the first fine-grained control attack tailored to ranking-based FL frameworks. Unlike conventional denial-of-service (DoS) attacks that cause conspicuous disruptions, ECA enables an adversary to precisely degrade a competitor's accuracy to any target level while maintaining a normal-looking convergence trajectory, thereby avoiding detection. ECA operates in two stages: (i) identifying and manipulating Ascending and Descending Edges to align the global model with the target model, and (ii) widening the selection boundary gap to stabilize the global model at the target accuracy. Extensive experiments across seven benchmark datasets and nine Byzantine-robust aggregation rules (AGRs) show that ECA achieves fine-grained accuracy control with an average error of only 0.224%, outperforming the baseline by up to 17x. Our findings highlight the need for stronger defenses against advanced poisoning attacks. Our code is available at: https://github.com/Chenzh0205/ECA
comment: 12 pages. To appear in The Web Conference 2026
IB-GRPO: Aligning LLM-based Learning Path Recommendation with Educational Objectives via Indicator-Based Group Relative Policy Optimization
Learning Path Recommendation (LPR) aims to generate personalized sequences of learning items that maximize long-term learning effect while respecting pedagogical principles and operational constraints. Although large language models (LLMs) offer rich semantic understanding for free-form recommendation, applying them to long-horizon LPR is challenging due to (i) misalignment with pedagogical objectives such as the Zone of Proximal Development (ZPD) under sparse, delayed feedback, (ii) scarce and costly expert demonstrations, and (iii) multi-objective interactions among learning effect, difficulty scheduling, length controllability, and trajectory diversity. To address these issues, we propose IB-GRPO (Indicator-Based Group Relative Policy Optimization), an indicator-guided alignment approach for LLM-based LPR. To mitigate data scarcity, we construct hybrid expert demonstrations via Genetic Algorithm search and teacher RL agents and warm-start the LLM with supervised fine-tuning. Building on this warm-start, we design a within-session ZPD alignment score for difficulty scheduling. IB-GRPO then uses the $I_{ε+}$ dominance indicator to compute group-relative advantages over multiple objectives, avoiding manual scalarization and improving Pareto trade-offs. Experiments on ASSIST09 and Junyi using the KES simulator with a Qwen2.5-7B backbone show consistent improvements over representative RL and LLM baselines.
Transfer Learning from One Cancer to Another via Deep Learning Domain Adaptation
Supervised deep learning models often achieve excellent performance within their training distribution but struggle to generalize beyond it. In cancer histopathology, for example, a convolutional neural network (CNN) may classify cancer severity accurately for cancer types represented in its training data, yet fail on related but unseen types. Although adenocarcinomas from different organs share morphological features that might support limited cross-domain generalization, addressing domain shift directly is necessary for robust performance. Domain adaptation offers a way to transfer knowledge from labeled data in one cancer type to unlabeled data in another, helping mitigate the scarcity of annotated medical images. This work evaluates cross-domain classification performance among lung, colon, breast, and kidney adenocarcinomas. A ResNet50 trained on any single adenocarcinoma achieves over 98% accuracy on its own domain but shows minimal generalization to others. Ensembling multiple supervised models does not resolve this limitation. In contrast, converting the ResNet50 into a domain adversarial neural network (DANN) substantially improves performance on unlabeled target domains. A DANN trained on labeled breast and colon data and adapted to unlabeled lung data reaches 95.56% accuracy. We also examine the impact of stain normalization on domain adaptation. Its effects vary by target domain: for lung, accuracy drops from 95.56% to 66.60%, while for breast and colon targets, stain normalization boosts accuracy from 49.22% to 81.29% and from 78.48% to 83.36%, respectively. Finally, using Integrated Gradients reveals that DANNs consistently attribute importance to biologically meaningful regions such as densely packed nuclei, indicating that the model learns clinically relevant features and can apply them to unlabeled cancer types.
comment: 8 pages, 6 figures, 3 table
LaVR: Scene Latent Conditioned Generative Video Trajectory Re-Rendering using Large 4D Reconstruction Models
Given a monocular video, the goal of video re-rendering is to generate views of the scene from a novel camera trajectory. Existing methods face two distinct challenges. Geometrically unconditioned models lack spatial awareness, leading to drift and deformation under viewpoint changes. On the other hand, geometrically-conditioned models depend on estimated depth and explicit reconstruction, making them susceptible to depth inaccuracies and calibration errors. We propose to address these challenges by using the implicit geometric knowledge embedded in the latent space of a large 4D reconstruction model to condition the video generation process. These latents capture scene structure in a continuous space without explicit reconstruction. Therefore, they provide a flexible representation that allows the pretrained diffusion prior to regularize errors more effectively. By jointly conditioning on these latents and source camera poses, we demonstrate that our model achieves state-of-the-art results on the video re-rendering task. Project webpage is https://lavr-4d-scene-rerender.github.io/
Efficient Imputation for Patch-based Missing Single-cell Data via Cluster-regularized Optimal Transport
Missing data in single-cell sequencing datasets poses significant challenges for extracting meaningful biological insights. However, existing imputation approaches, which often assume uniformity and data completeness, struggle to address cases with large patches of missing data. In this paper, we present CROT, an optimal transport-based imputation algorithm designed to handle patch-based missing data in tabular formats. Our approach effectively captures the underlying data structure in the presence of significant missingness. Notably, it achieves superior imputation accuracy while significantly reducing runtime, demonstrating its scalability and efficiency for large-scale datasets. This work introduces a robust solution for imputation in heterogeneous, high-dimensional datasets with structured data absence, addressing critical challenges in both biological and clinical data analysis. Our code is available at Anomalous Github.
TRSVR: An Adaptive Stochastic Trust-Region Method with Variance Reduction
We propose a stochastic trust-region method for unconstrained nonconvex optimization that incorporates stochastic variance-reduced gradients (SVRG) to accelerate convergence. Unlike classical trust-region methods, the proposed algorithm relies solely on stochastic gradient information and does not require function value evaluations. The trust-region radius is adaptively adjusted based on a radius-control parameter and the stochastic gradient estimate. Under mild assumptions, we establish that the algorithm converges in expectation to a first-order stationary point. Moreover, the method achieves iteration and sample complexity bounds that match those of SVRG-based first-order methods, while allowing stochastic and potentially gradient-dependent second-order information. Extensive numerical experiments demonstrate that incorporating SVRG accelerates convergence, and that the use of trust-region methods and Hessian information further improves performance. We also highlight the impact of batch size and inner-loop length on efficiency, and show that the proposed method outperforms SGD and Adam on several machine learning tasks.
comment: 22 pages
Relational Graph Modeling for Credit Default Prediction: Heterogeneous GNNs and Hybrid Ensemble Learning
Credit default risk arises from complex interactions among borrowers, financial institutions, and transaction-level behaviors. While strong tabular models remain highly competitive in credit scoring, they may fail to explicitly capture cross-entity dependencies embedded in multi-table financial histories. In this work, we construct a massive-scale heterogeneous graph containing over 31 million nodes and more than 50 million edges, integrating borrower attributes with granular transaction-level entities such as installment payments, POS cash balances, and credit card histories. We evaluate heterogeneous graph neural networks (GNNs), including heterogeneous GraphSAGE and a relation-aware attentive heterogeneous GNN, against strong tabular baselines. We find that standalone GNNs provide limited lift over a competitive gradient-boosted tree baseline, while a hybrid ensemble that augments tabular features with GNN-derived customer embeddings achieves the best overall performance, improving both ROC-AUC and PR-AUC. We further observe that contrastive pretraining can improve optimization stability but yields limited downstream gains under generic graph augmentations. Finally, we conduct structured explainability and fairness analyses to characterize how relational signals affect subgroup behavior and screening-oriented outcomes.
Semi-Supervised Mixture Models under the Concept of Missing at Radom with Margin Confidence and Aranda Ordaz Function
This paper presents a semi-supervised learning framework for Gaussian mixture modelling under a Missing at Random (MAR) mechanism. The method explicitly parameterizes the missingness mechanism by modelling the probability of missingness as a function of classification uncertainty. To quantify classification uncertainty, we introduce margin confidence and incorporate the Aranda Ordaz (AO) link function to flexibly capture the asymmetric relationships between uncertainty and missing probability. Based on this formulation, we develop an efficient Expectation Conditional Maximization (ECM) algorithm that jointly estimates all parameters appearing in both the Gaussian mixture model (GMM) and the missingness mechanism, and subsequently imputes the missing labels by a Bayesian classifier derived from the fitted mixture model. This method effectively alleviates the bias induced by ignoring the missingness mechanism while enhancing the robustness of semi-supervised learning. The resulting uncertainty-aware framework delivers reliable classification performance in realistic MAR scenarios with substantial proportions of missing labels.
comment: 8 pages, 7 figures
Online Linear Programming with Replenishment
We study an online linear programming (OLP) model in which inventory is not provided upfront but instead arrives gradually through an exogenous stochastic replenishment process. This replenishment-based formulation captures operational settings, such as e-commerce fulfillment, perishable supply chains, and renewable-powered systems, where resources are accumulated gradually and initial inventories are small or zero. The introduction of dispersed, uncertain replenishment fundamentally alters the structure of classical OLPs, creating persistent stockout risk and eliminating advance knowledge of the total budget. We develop new algorithms and regret analyses for three major distributional regimes studied in the OLP literature: bounded distributions, finite-support distributions, and continuous-support distributions with a non-degeneracy condition. For bounded distributions, we design an algorithm that achieves $\widetilde{\mathcal{O}}(\sqrt{T})$ regret. For finite-support distributions with a non-degenerate induced LP, we obtain $\mathcal{O}(\log T)$ regret, and we establish an $Ω(\sqrt{T})$ lower bound for degenerate instances, demonstrating a sharp separation from the classical setting where $\mathcal{O}(1)$ regret is achievable. For continuous-support, non-degenerate distributions, we develop a two-stage accumulate-then-convert algorithm that achieves $\mathcal{O}(\log^2 T)$ regret, comparable to the $\mathcal{O}(\log T)$ regret in classical OLPs. Together, these results provide a near-complete characterization of the optimal regret achievable in OLP with replenishment. Finally, we empirically evaluate our algorithms and demonstrate their advantages over natural adaptations of classical OLP methods in the replenishment setting.
comment: 63 pages, 12 figures
Scaling Ambiguity: Augmenting Human Annotation in Speech Emotion Recognition with Audio-Language Models
Speech Emotion Recognition models typically use single categorical labels, overlooking the inherent ambiguity of human emotions. Ambiguous Emotion Recognition addresses this by representing emotions as probability distributions, but progress is limited by unreliable ground-truth distributions inferred from sparse human annotations. This paper explores whether Large Audio-Language Models (ALMs) can mitigate the annotation bottleneck by generating high-quality synthetic annotations. We introduce a framework leveraging ALMs to create Synthetic Perceptual Proxies, augmenting human annotations to improve ground-truth distribution reliability. We validate these proxies through statistical analysis of their alignment with human distributions and evaluate their impact by fine-tuning ALMs with the augmented emotion distributions. Furthermore, to address class imbalance and enable unbiased evaluation, we propose DiME-Aug, a Distribution-aware Multimodal Emotion Augmentation strategy. Experiments on IEMOCAP and MSP-Podcast show that synthetic annotations enhance emotion distribution, especially in low-ambiguity regions where annotation agreement is high. However, benefits diminish for highly ambiguous emotions with greater human disagreement. This work provides the first evidence that ALMs could address annotation scarcity in ambiguous emotion recognition, but highlights the need for more advanced prompting or generation strategies to handle highly ambiguous cases.
comment: Accepted by ICASSP 2026
Communication-Efficient Federated Risk Difference Estimation for Time-to-Event Clinical Outcomes
Privacy-preserving model co-training in medical research is often hindered by server-dependent architectures incompatible with protected hospital data systems and by the predominant focus on relative effect measures (hazard ratios) which lack clinical interpretability for absolute survival risk assessment. We propose FedRD, a communication-efficient framework for federated risk difference estimation in distributed survival data. Unlike typical federated learning frameworks (e.g., FedAvg) that require persistent server connections and extensive iterative communication, FedRD is server-independent with minimal communication: one round of summary statistics exchange for the stratified model and three rounds for the unstratified model. Crucially, FedRD provides valid confidence intervals and hypothesis testing--capabilities absent in FedAvg-based frameworks. We provide theoretical guarantees by establishing the asymptotic properties of FedRD and prove that FedRD (unstratified) is asymptotically equivalent to pooled individual-level analysis. Simulation studies and real-world clinical applications across different countries demonstrate that FedRD outperforms local and federated baselines in both estimation accuracy and prediction performance, providing an architecturally feasible solution for absolute risk assessment in privacy-restricted, multi-site clinical studies.
U-Harmony: Enhancing Joint Training for Segmentation Models with Universal Harmonization
In clinical practice, medical segmentation datasets are often limited and heterogeneous, with variations in modalities, protocols, and anatomical targets across institutions. Existing deep learning models struggle to jointly learn from such diverse data, often sacrificing either generalization or domain-specific knowledge. To overcome these challenges, we propose a joint training method called Universal Harmonization (U-Harmony), which can be integrated into deep learning-based architectures with a domain-gated head, enabling a single segmentation model to learn from heterogeneous datasets simultaneously. By integrating U-Harmony, our approach sequentially normalizes and then denormalizes feature distributions to mitigate domain-specific variations while preserving original dataset-specific knowledge. More appealingly, our framework also supports universal modality adaptation, allowing the seamless learning of new imaging modalities and anatomical classes. Extensive experiments on cross-institutional brain lesion datasets demonstrate the effectiveness of our approach, establishing a new benchmark for robust and adaptable 3D medical image segmentation models in real-world clinical settings.
Variance-Adaptive Muon: Accelerating LLM Pretraining with NSR-Modulated and Variance-Scaled Momentum
Large Language Models (LLMs) achieve competitive performance across diverse natural language processing (NLP) tasks, yet pretraining is computationally demanding, making optimizer efficiency an important practical consideration. Muon accelerates LLM pretraining via orthogonal momentum updates that serve as a matrix analogue of the element-wise sign operator. Motivated by the recent perspective that Adam is a variance-adaptive sign update algorithm, we propose two variants of Muon, Muon-NSR and Muon-VS, which apply variance-adaptive normalization to momentum before orthogonalization. Muon-NSR applies noise-to-signal ratio (NSR) modulation, while Muon-VS performs variance-based scaling without introducing additional hyperparameters. Experiments on GPT-2 and LLaMA pretraining demonstrate that our proposed methods accelerate convergence and consistently achieve lower validation loss than both competitive, well-tuned AdamW and Muon baselines. For example, on the LLaMA-1.2B model, Muon-NSR and Muon-VS reduce the iterations required to reach the target validation loss by $1.36\times$ relative to the well-tuned Muon following the recent benchmark.
Rethinking Reinforcement fine-tuning of LLMs: A Multi-armed Bandit Learning Perspective
A large number of heuristics have been proposed to optimize the reinforcement fine-tuning of LLMs. However, inconsistent claims are made from time to time, making this area elusive. Reflecting on this situation, two fundamental questions still lack a clear understanding: 1) what is the role of each optimizing choice? 2) which ones are the bottlenecks? This paper aims to shed light on them, and it faces the challenge of several entangled confounding factors in the fine-tuning process. To tackle this challenge, we propose a bottom-up experiment pipeline. The bottom layer is composed of a minimalist configuration: one training data, one rollout per round and the reward directly serve as the learning signal without advantage function design. This minimalist configuration connects to multi-armed bandit learning with extremely large discrete action space, which offers theories to corroborate the experiment findings. The up procedure of the experiment pipeline expanding the minimalist configuration layer by layer, examining the role of each design choice. Experimental results on three LLMs and two reasoning datasets not only reveal new understanding of the design choice but also yield essential insights to shape the area.
From Volumes to Slices: Computationally Efficient Contrastive Learning for Sequential Abdominal CT Analysis
The requirement for expert annotations limits the effectiveness of deep learning for medical image analysis. Although 3D self-supervised methods like volume contrast learning (VoCo) are powerful and partially address the labeling scarcity issue, their high computational cost and memory consumption are barriers. We propose 2D-VoCo, an efficient adaptation of the VoCo framework for slice-level self-supervised pre-training that learns spatial-semantic features from unlabeled 2D CT slices via contrastive learning. The pre-trained CNN backbone is then integrated into a CNN-LSTM architecture to classify multi-organ injuries. In the RSNA 2023 Abdominal Trauma dataset, 2D-VoCo pre-training significantly improves mAP, precision, recall, and RSNA score over training from scratch. Our framework provides a practical method to reduce the dependency on labeled data and enhance model performance in clinical CT analysis. We release the code for reproducibility. https://github.com/tkz05/2D-VoCo-CT-Classifier
Counterfactual Modeling with Fine-Tuned LLMs for Health Intervention Design and Sensor Data Augmentation
Counterfactual explanations (CFEs) provide human-centric interpretability by identifying the minimal, actionable changes required to alter a machine learning model's prediction. Therefore, CFs can be used as (i) interventions for abnormality prevention and (ii) augmented data for training robust models. We conduct a comprehensive evaluation of CF generation using large language models (LLMs), including GPT-4 (zero-shot and few-shot) and two open-source models-BioMistral-7B and LLaMA-3.1-8B, in both pretrained and fine-tuned configurations. Using the multimodal AI-READI clinical dataset, we assess CFs across three dimensions: intervention quality, feature diversity, and augmentation effectiveness. Fine-tuned LLMs, particularly LLaMA-3.1-8B, produce CFs with high plausibility (up to 99%), strong validity (up to 0.99), and realistic, behaviorally modifiable feature adjustments. When used for data augmentation under controlled label-scarcity settings, LLM-generated CFs substantially restore classifier performance, yielding an average 20% F1 recovery across three scarcity scenarios. Compared with optimization-based baselines such as DiCE, CFNOW, and NICE, LLMs offer a flexible, model-agnostic approach that generates more clinically actionable and semantically coherent counterfactuals. Overall, this work demonstrates the promise of LLM-driven counterfactuals for both interpretable intervention design and data-efficient model training in sensor-based digital health. Impact: SenseCF fine-tunes an LLM to generate valid, representative counterfactual explanations and supplement minority class in an imbalanced dataset for improving model training and boosting model robustness and predictive performance
Place with Intention: An Empirical Attendance Predictive Study of Expo 2025 Osaka, Kansai, Japan
Accurate forecasting of daily attendance is vital for managing transportation, crowd flows, and services at large-scale international events such as Expo 2025 Osaka, Kansai, Japan. However, existing approaches often rely on multi-source external data (such as weather, traffic, and social media) to improve accuracy, which can lead to unreliable results when historical data are insufficient. To address these challenges, we propose a Transformer-based framework that leverages reservation dynamics, i.e., ticket bookings and subsequent updates within a time window, as a proxy for visitors' attendance intentions, under the assumption that such intentions are eventually reflected in reservation patterns. This design avoids the complexity of multi-source integration while still capturing external influences like weather and promotions implicitly embedded in reservation dynamics. We construct a dataset combining entrance records and reservation dynamics and evaluate the model under both single-channel (total attendance) and two-channel (separated by East and West gates) settings. Results show that separately modeling East and West gates consistently improves accuracy, particularly for short- and medium-term horizons. Ablation studies further confirm the importance of the encoder-decoder structure, inverse-style embedding, and adaptive fusion module. Overall, our findings indicate that reservation dynamics offer a practical and informative foundation for attendance forecasting in large-scale international events.
comment: Accepted by Special Session 10 of SMD II: Synergizing Mobility Data for Human Life Evolution in Real Spaces at IEEE Big Data 2025
Social Caption: Evaluating Social Understanding in Multimodal Models
Social understanding abilities are crucial for multimodal large language models (MLLMs) to interpret human social interactions. We introduce Social Caption, a framework grounded in interaction theory to evaluate social understanding abilities of MLLMs along three dimensions: Social Inference (SI), the ability to make accurate inferences about interactions; Holistic Social Analysis (HSA), the ability to generate comprehensive descriptions of interactions; Directed Social Analysis (DSA), the ability to extract relevant social information from interactions. We analyze factors influencing model performance in social understanding, such as scale, architectural design, and spoken context. Experiments with MLLM judges contribute insights about scaling automated evaluation of multimodal social understanding.
comment: 24 pages
Constructing Multi-label Hierarchical Classification Models for MITRE ATT&CK Text Tagging
MITRE ATT&CK is a cybersecurity knowledge base that organizes threat actor and cyber-attack information into a set of tactics describing the reasons and goals threat actors have for carrying out attacks, with each tactic having a set of techniques that describe the potential methods used in these attacks. One major application of ATT&CK is the use of its tactic and technique hierarchy by security specialists as a framework for annotating cyber-threat intelligence reports, vulnerability descriptions, threat scenarios, inter alia, to facilitate downstream analyses. To date, the tagging process is still largely done manually. In this technical note, we provide a stratified "task space" characterization of the MITRE ATT&CK text tagging task for organizing previous efforts toward automation using AIML methods, while also clarifying pathways for constructing new methods. To illustrate one of the pathways, we use the task space strata to stage-wise construct our own multi-label hierarchical classification models for the text tagging task via experimentation over general cyber-threat intelligence text -- using shareable computational tools and publicly releasing the models to the security community (via https://github.com/jpmorganchase/MITRE_models). Our multi-label hierarchical approach yields accuracy scores of roughly 94% at the tactic level, as well as accuracy scores of roughly 82% at the technique level. The models also meet or surpass state-of-the-art performance while relying only on classical machine learning methods -- removing any dependence on LLMs, RAG, agents, or more complex hierarchical approaches. Moreover, we show that GPT-4o model performance at the tactic level is significantly lower (roughly 60% accuracy) than our own approach. We also extend our baseline model to a corpus of threat scenarios for financial applications produced by subject matter experts.
QMC: Efficient SLM Edge Inference via Outlier-Aware Quantization and Emergent Memories Co-Design
Deploying Small Language Models (SLMs) on edge platforms is critical for real-time, privacy-sensitive generative AI, yet constrained by memory, latency, and energy budgets. Quantization reduces model size and cost but suffers from device noise in emerging non-volatile memories, while conventional memory hierarchies further limit efficiency. SRAM provides fast access but has low density, DRAM must simultaneously accommodate static weights and dynamic KV caches, which creates bandwidth contention, and Flash, although dense, is primarily used for initialization and remains inactive during inference. These limitations highlight the need for hybrid memory organizations tailored to LLM inference. We propose Outlier-aware Quantization with Memory Co-design (QMC), a retraining-free quantization with a novel heterogeneous memory architecture. QMC identifies inlier and outlier weights in SLMs, storing inlier weights in compact multi-level Resistive-RAM (ReRAM) while preserving critical outliers in high-precision on-chip Magnetoresistive-RAM (MRAM), mitigating noise-induced degradation. On language modeling and reasoning benchmarks, QMC outperforms and matches state-of-the-art quantization methods using advanced algorithms and hybrid data formats, while achieving greater compression under both algorithm-only evaluation and realistic deployment settings. Specifically, compared against SoTA quantization methods on the latest edge AI platform, QMC reduces memory usage by 6.3x-7.3x, external data transfers by 7.6x, energy by 11.7x, and latency by 12.5x when compared to FP16, establishing QMC as a scalable, deployment-ready co-design for efficient on-device inference.
PRISM: Deriving the Transformer as a Signal-Denoising Operator via Maximum Coding Rate Reduction
Deep learning models, particularly Transformers, are often criticized as "black boxes" and lack interpretability. We propose Prism, a white-box attention-based architecture derived from the principles of Maximizing Coding Rate Reduction ($\text{MCR}^2$). By modeling the attention mechanism as a gradient ascent process on a distinct signal-noise manifold, we introduce two physical constraints: an overcomplete dictionary to expand the representational phase space, and an irrational frequency separation ($π$-RoPE) to enforce incoherence between signal and noise subspaces. We demonstrate that these geometric inductive biases can be viewed as a physical constraint and they are sufficient to induce unsupervised functional disentanglement alone. Using TinyStories as a controlled testbed for verifying spectral dynamics, we observe that Prism spontaneously specializes its attention heads into spectrally distinct regimes: low-frequency heads capturing long-range causal dependencies (signal) and high-frequency heads handling local syntactic constraints (noise). Our results suggest that interpretability and performance are not a trade-off, but can be unified through principled geometric construction.
A Machine Vision Approach to Preliminary Skin Lesion Assessments
Early detection of malignant skin lesions is critical for improving patient outcomes in aggressive, metastatic skin cancers. This study evaluates a comprehensive system for preliminary skin lesion assessment that combines the clinically established ABCD rule of dermoscopy (analyzing Asymmetry, Borders, Color, and Dermoscopic Structures) with machine learning classification. Using a 1,000-image subset of the HAM10000 dataset, the system implements an automated, rule-based pipeline to compute a Total Dermoscopy Score (TDS) for each lesion. This handcrafted approach is compared against various machine learning solutions, including traditional classifiers (Logistic Regression, Random Forest, and SVM) and deep learning models. While the rule-based system provides high clinical interpretability, results indicate a performance bottleneck when reducing complex morphology to five numerical features. Experimental findings show that transfer learning with EfficientNet-B0 failed significantly due to domain shift between natural and medical images. In contrast, a custom three-layer Convolutional Neural Network (CNN) trained from scratch achieved 78.5% accuracy and 86.5% recall on median-filtered images, representing a 19-point accuracy improvement over traditional methods. The results demonstrate that direct pixel-level learning captures diagnostic patterns beyond handcrafted features and that purpose-built lightweight architectures can outperform large pretrained models for small, domain-specific medical datasets.
comment: 6 pages, 2 figures, 2 tables
QUAIL: Quantization Aware Unlearning for Mitigating Misinformation in LLMs
Machine unlearning aims to remove specific knowledge (e.g., copyrighted or private data) from a trained model without full retraining. In practice, models are often quantized (e.g., 4-bit) for deployment, but we find that quantization can catastrophically restore forgotten information [1]. In this paper, we (1) analyze why low-bit quantization undermines unlearning, and (2) propose a quantization-aware unlearning method to mitigate this. We first compute weight-change statistics and bucket overlaps in quantization to show that typical unlearning updates are too small to cross quantization thresholds. Building on this insight, we introduce a logits space hinge loss: for each forget example, we force the output logits of the unlearned model to differ from the original model by at least a margin (half the quantization step). This ensures forgotten examples remain distinguishable even after quantization. We evaluate on language and classification tasks (including a Twitter misinformation dataset) and show our method preserves forgetting under 4-bit quantization, whereas existing methods almost entirely recover the forgotten knowledge.
Machine learning-enhanced non-amnestic Alzheimer's disease diagnosis from MRI and clinical features
Alzheimer's disease (AD), defined as an abnormal buildup of amyloid plaques and tau tangles in the brain can be diagnosed with high accuracy based on protein biomarkers via PET or CSF analysis. However, due to the invasive nature of biomarker collection, most AD diagnoses are made in memory clinics using cognitive tests and evaluation of hippocampal atrophy based on MRI. While clinical assessment and hippocampal volume show high diagnostic accuracy for amnestic or typical AD (tAD), a substantial subgroup of AD patients with atypical presentation (atAD) are routinely misdiagnosed. To improve diagnosis of atAD patients, we propose a machine learning approach to distinguish between atAD and non-AD cognitive impairment using clinical testing battery and MRI data collected as standard-of-care. We develop and evaluate our approach using 1410 subjects across four groups (273 tAD, 184 atAD, 235 non-AD, and 685 cognitively normal) collected from one private data set and two public data sets from the National Alzheimer's Coordinating Center (NACC) and the Alzheimer's Disease Neuroimaging Initiative (ADNI). We perform multiple atAD vs. non-AD classification experiments using clinical features and hippocampal volume as well as a comprehensive set of MRI features from across the brain. The best performance is achieved by incorporating additional important MRI features, which outperforms using hippocampal volume alone. Furthermore, we use the Boruta statistical approach to identify and visualize significant brain regions distinguishing between diagnostic groups. Our ML approach improves the percentage of correctly diagnosed atAD cases (the recall) from 52% to 69% for NACC and from 34% to 77% for ADNI, while achieving high precision. The proposed approach has important implications for improving diagnostic accuracy for non-amnestic atAD in clinical settings using only clinical testing battery and MRI.
comment: Preprint of a manuscript submitted to Brain
DS@GT at TREC TOT 2025: Bridging Vague Recollection with Fusion Retrieval and Learned Reranking
We develop a two-stage retrieval system that combines multiple complementary retrieval methods with a learned reranker and LLM-based reranking, to address the TREC Tip-of-the-Tongue (ToT) task. In the first stage, we employ hybrid retrieval that merges LLM-based retrieval, sparse (BM25), and dense (BGE-M3) retrieval methods. We also introduce topic-aware multi-index dense retrieval that partitions the Wikipedia corpus into 24 topical domains. In the second stage, we evaluate both a trained LambdaMART reranker and LLM-based reranking. To support model training, we generate 5000 synthetic ToT queries using LLMs. Our best system achieves recall of 0.66 and NDCG@1000 of 0.41 on the test set by combining hybrid retrieval with Gemini-2.5-flash reranking, demonstrating the effectiveness of fusion retrieval.
comment: Paper submitted to TREC 2025 (34th Text REtrieval Conference)
DeltaDorsal: Enhancing Hand Pose Estimation with Dorsal Features in Egocentric Views
The proliferation of XR devices has made egocentric hand pose estimation a vital task, yet this perspective is inherently challenged by frequent finger occlusions. To address this, we propose a novel approach that leverages the rich information in dorsal hand skin deformation, unlocked by recent advances in dense visual featurizers. We introduce a dual-stream delta encoder that learns pose by contrasting features from a dynamic hand with a baseline relaxed position. Our evaluation demonstrates that, using only cropped dorsal images, our method reduces the Mean Per Joint Angle Error (MPJAE) by 18% in self-occluded scenarios (fingers >=50% occluded) compared to state-of-the-art techniques that depend on the whole hand's geometry and large model backbones. Consequently, our method not only enhances the reliability of downstream tasks like index finger pinch and tap estimation in occluded scenarios but also unlocks new interaction paradigms, such as detecting isometric force for a surface "click" without visible movement while minimizing model size.
comment: 16 pages, 11 figures, Presented at ACM CHI 2026. For associated codebase, see https://github.com/hilab-open-source/deltadorsal
ViT Registers and Fractal ViT
Drawing inspiration from recent findings including surprisingly decent performance of transformers without positional encoding (NoPE) in the domain of language models and how registers (additional throwaway tokens not tied to input) may improve the performance of large vision transformers (ViTs), we invent and test a variant of ViT called fractal ViT that breaks permutation invariance among the tokens by applying an attention mask between the regular tokens and ``summary tokens'' similar to registers, in isolation or in combination with various positional encodings. These models do not improve upon ViT with registers, highlighting the fact that these findings may be scale, domain, or application-specific.
SAGE-FM: A lightweight and interpretable spatial transcriptomics foundation model
Spatial transcriptomics enables spatial gene expression profiling, motivating computational models that capture spatially conditioned regulatory relationships. We introduce SAGE-FM, a lightweight spatial transcriptomics foundation model based on graph convolutional networks (GCNs) trained with a masked central spot prediction objective. Trained on 416 human Visium samples spanning 15 organs, SAGE-FM learns spatially coherent embeddings that robustly recover masked genes, with 91% of masked genes showing significant correlations (p < 0.05). The embeddings generated by SAGE-FM outperform MOFA and existing spatial transcriptomics methods in unsupervised clustering and preservation of biological heterogeneity. SAGE-FM generalizes to downstream tasks, enabling 81% accuracy in pathologist-defined spot annotation in oropharyngeal squamous cell carcinoma and improving glioblastoma subtype prediction relative to MOFA. In silico perturbation experiments further demonstrate that the model captures directional ligand-receptor and upstream-downstream regulatory effects consistent with ground truth. These results demonstrate that simple, parameter-efficient GCNs can serve as biologically interpretable and spatially aware foundation models for large-scale spatial transcriptomics.
comment: 26 pages, 5 figures
Data-driven Lake Water Quality Forecasting for Time Series with Missing Data using Machine Learning
Volunteer-led lake monitoring yields irregular, seasonal time series with many gaps arising from ice cover, weather-related access constraints, and occasional human errors, complicating forecasting and early warning of harmful algal blooms. We study Secchi Disk Depth (SDD) forecasting on a 30-lake, data-rich subset drawn from three decades of in situ records collected across Maine lakes. Missingness is handled via Multiple Imputation by Chained Equations (MICE), and we evaluate performance with a normalized Mean Absolute Error (nMAE) metric for cross-lake comparability. Among six candidates, ridge regression provides the best mean test performance. Using ridge regression, we then quantify the minimal sample size, showing that under a backward, recent-history protocol, the model reaches within 5% of full-history accuracy with approximately 176 training samples per lake on average. We also identify a minimal feature set, where a compact four-feature subset matches the thirteen-feature baseline within the same 5% tolerance. Bringing these results together, we introduce a joint feasibility function that identifies the minimal training history and fewest predictors sufficient to achieve the target of staying within 5% of the complete-history, full-feature baseline. In our study, meeting the 5% accuracy target required about 64 recent samples and just one predictor per lake, highlighting the practicality of targeted monitoring. Hence, our joint feasibility strategy unifies recent-history length and feature choice under a fixed accuracy target, yielding a simple, efficient rule for setting sampling effort and measurement priorities for lake researchers.
comment: 8 pages, 4 figures, 3 tables
Low-Dimensional Adaptation of Rectified Flow: A New Perspective through the Lens of Diffusion and Stochastic Localization
In recent years, Rectified flow (RF) has gained considerable popularity largely due to its generation efficiency and state-of-the-art performance. In this paper, we investigate the degree to which RF automatically adapts to the intrinsic low dimensionality of the support of the target distribution to accelerate sampling. We show that, using a carefully designed choice of the time-discretization scheme and with sufficiently accurate drift estimates, the RF sampler enjoys an iteration complexity of order $O(k/\varepsilon)$ (up to log factors), where $\varepsilon$ is the precision in total variation distance and $k$ is the intrinsic dimension of the target distribution. In addition, we show that the denoising diffusion probabilistic model (DDPM) procedure is equivalent to a stochastic version of RF by establishing a novel connection between these processes and stochastic localization. Building on this connection, we further design a stochastic RF sampler that also adapts to the low-dimensionality of the target distribution under milder requirements on the accuracy of the drift estimates, and also with a specific time schedule. We illustrate with simulations on the synthetic data and text-to-image data experiments the improved performance of the proposed samplers implementing the newly designed time-discretization schedules.
comment: 32 pages, 7 figures
MARS: Unleashing the Power of Speculative Decoding via Margin-Aware Verification
Speculative Decoding (SD) accelerates autoregressive large language model (LLM) inference by decoupling generation and verification. While recent methods improve draft quality by tightly coupling the drafter with the target model, the verification mechanism itself remains largely unchanged, relying on strict token-level rejection sampling. In practice, modern LLMs frequently operate in low-margin regimes where the target model exhibits weak preference among top candidates. In such cases, rejecting plausible runner-up tokens yields negligible information gain while incurring substantial rollback cost, leading to a fundamental inefficiency in verification. We propose Margin-Aware Speculative Verification, a training-free and domain-agnostic verification strategy that adapts to the target model's local decisiveness. Our method conditions verification on decision stability measured directly from the target logits and relaxes rejection only when strict verification provides minimal benefit. Importantly, the approach modifies only the verification rule and is fully compatible with existing target-coupled speculative decoding frameworks. Extensive experiments across model scales ranging from 8B to 235B demonstrate that our method delivers consistent and significant inference speedups over state-of-the-art baselines while preserving generation quality across diverse benchmarks.
comment: 11 pages, 5 figures
Martingale Foresight Sampling: A Principled Approach to Inference-Time LLM Decoding
Standard autoregressive decoding in large language models (LLMs) is inherently short-sighted, often failing to find globally optimal reasoning paths due to its token-by-token generation process. While inference-time strategies like foresight sampling attempt to mitigate this by simulating future steps, they typically rely on ad-hoc heuristics for valuing paths and pruning the search space. This paper introduces Martingale Foresight Sampling (MFS), a principled framework that reformulates LLM decoding as a problem of identifying an optimal stochastic process. By modeling the quality of a reasoning path as a stochastic process, we leverage Martingale theory to design a theoretically-grounded algorithm. Our approach replaces heuristic mechanisms with principles from probability theory: step valuation is derived from the Doob Decomposition Theorem to measure a path's predictable advantage, path selection uses Optional Stopping Theory for principled pruning of suboptimal candidates, and an adaptive stopping rule based on the Martingale Convergence Theorem terminates exploration once a path's quality has provably converged. Experiments on six reasoning benchmarks demonstrate that MFS surpasses state-of-the-art methods in accuracy while significantly improving computational efficiency. Code will be released at https://github.com/miraclehetech/EACL2026-Martingale-Foresight-Sampling.
Early predicting of hospital admission using machine learning algorithms: Priority queues approach
Emergency Department overcrowding is a critical issue that compromises patient safety and operational efficiency, necessitating accurate demand forecasting for effective resource allocation. This study evaluates and compares three distinct predictive models: Seasonal AutoRegressive Integrated Moving Average with eXogenous regressors (SARIMAX), EXtreme Gradient Boosting (XGBoost) and Long Short-Term Memory (LSTM) networks for forecasting daily ED arrivals over a seven-day horizon. Utilizing data from an Australian tertiary referral hospital spanning January 2017 to December 2021, this research distinguishes itself by decomposing demand into eight specific ward categories and stratifying patients by clinical complexity. To address data distortions caused by the COVID-19 pandemic, the study employs the Prophet model to generate synthetic counterfactual values for the anomalous period. Experimental results demonstrate that all three proposed models consistently outperform a seasonal naive baseline. XGBoost demonstrated the highest accuracy for predicting total daily admissions with a Mean Absolute Error of 6.63, while the statistical SARIMAX model proved marginally superior for forecasting major complexity cases with an MAE of 3.77. The study concludes that while these techniques successfully reproduce regular day-to-day patterns, they share a common limitation in underestimating sudden, infrequent surges in patient volume.
Multi-Targeted Graph Backdoor Attack
Graph neural network (GNN) have demonstrated exceptional performance in solving critical problems across diverse domains yet remain susceptible to backdoor attacks. Existing studies on backdoor attack for graph classification are limited to single target attack using subgraph replacement based mechanism where the attacker implants only one trigger into the GNN model. In this paper, we introduce the first multi-targeted backdoor attack for graph classification task, where multiple triggers simultaneously redirect predictions to different target labels. Instead of subgraph replacement, we propose subgraph injection which preserves the structure of the original graphs while poisoning the clean graphs. Extensive experiments demonstrate the efficacy of our approach, where our attack achieves high attack success rates for all target labels with minimal impact on the clean accuracy. Experimental results on five dataset demonstrate the superior performance of our attack framework compared to the conventional subgraph replacement-based attack. Our analysis on four GNN models confirms the generalization capability of our attack which is effective regardless of the GNN model architectures and training parameters settings. We further investigate the impact of the attack design parameters including injection methods, number of connections, trigger sizes, trigger edge density and poisoning ratios. Additionally, our evaluation against state-of-the-art defenses (randomized smoothing and fine-pruning) demonstrates the robustness of our proposed multi-target attacks. This work highlights the GNN vulnerability against multi-targeted backdoor attack in graph classification task. Our source codes will be available at https://github.com/SiSL-URI/Multi-Targeted-Graph-Backdoor-Attack.
Panther: Faster and Cheaper Computations with Randomized Numerical Linear Algebra
Training modern deep learning models is increasingly constrained by GPU memory and compute limits. While Randomized Numerical Linear Algebra (RandNLA) offers proven techniques to compress these models, the lack of a unified, production-grade library prevents widely adopting these methods. We present Panther, a PyTorch-compatible library that consolidates established RandNLA algorithms into a single high-performance framework. Panther engineers efficient, drop-in replacements for standard components including sketched linear layers, 2D convolution, multi-head attention, and randomized matrix decompositions (such as pivoted CholeskyQR). By implementing a custom C++/CUDA backend (pawX), Panther provides an optimized implementation that can run on both CPUs and GPUs. We demonstrate the effectiveness of RandNLA techniques and Panther's ease of adoption. By replacing standard PyTorch linear layers with Panther layers (requiring only a few lines of code) we achieve significant memory savings (up to 75%) on BERT while maintaining comparable loss. Source code is available (MIT License) at https://github.com/FahdSeddik/panther, along with demonstration video at https://youtu.be/7M3RQb4KWxs.
comment: 5 pages, 3 figures, 2 listings
Learning from Synthetic Data: Limitations of ERM
The prevalence and low cost of LLMs have led to a rise of synthetic content. From review sites to court documents, ``natural'' content has been contaminated by data points that appear similar to natural data, but are in fact LLM-generated. In this work we revisit fundamental learning theory questions in this, now ubiquitous, setting. We model this scenario as a sequence of learning tasks where the input is a mix of natural and synthetic data, and the learning algorithms are oblivious to the origin of any individual example. We study the possibilities and limitations of ERM in this setting. For the problem of estimating the mean of an arbitrary $d$-dimensional distribution, we find that while ERM converges to the true mean, it is outperformed by an algorithm that assigns non-uniform weights to examples from different generations of data. For the PAC learning setting, the disparity is even more stark. We find that ERM does not always converge to the true concept, echoing the model collapse literature. However, we show there are algorithms capable of learning the correct hypothesis for arbitrary VC classes and arbitrary amounts of contamination.
A tensor network formalism for neuro-symbolic AI
The unification of neural and symbolic approaches to artificial intelligence remains a central open challenge. In this work, we introduce a tensor network formalism, which captures sparsity principles originating in the different approaches in tensor decompositions. In particular, we describe a basis encoding scheme for functions and model neural decompositions as tensor decompositions. The proposed formalism can be applied to represent logical formulas and probability distributions as structured tensor decompositions. This unified treatment identifies tensor network contractions as a fundamental inference class and formulates efficiently scaling reasoning algorithms, originating from probability theory and propositional logic, as contraction message passing schemes. The framework enables the definition and training of hybrid logical and probabilistic models, which we call Hybrid Logic Network. The theoretical concepts are accompanied by the python library tnreason, which enables the implementation and practical use of the proposed architectures.
comment: 51 pages, 14 figures
CASL: Concept-Aligned Sparse Latents for Interpreting Diffusion Models
Internal activations of diffusion models encode rich semantic information, but interpreting such representations remains challenging. While Sparse Autoencoders (SAEs) have shown promise in disentangling latent representations, existing SAE-based methods for diffusion model understanding rely on unsupervised approaches that fail to align sparse features with human-understandable concepts. This limits their ability to provide reliable semantic control over generated images. We introduce CASL (Concept-Aligned Sparse Latents), a supervised framework that aligns sparse latent dimensions of diffusion models with semantic concepts. CASL first trains an SAE on frozen U-Net activations to obtain disentangled latent representations, and then learns a lightweight linear mapping that associates each concept with a small set of relevant latent dimensions. To validate the semantic meaning of these aligned directions, we propose CASL-Steer, a controlled latent intervention that shifts activations along the learned concept axis. Unlike editing methods, CASL-Steer is used solely as a causal probe to reveal how concept-aligned latents influence generated content. We further introduce the Editing Precision Ratio (EPR), a metric that jointly measures concept specificity and the preservation of unrelated attributes. Experiments show that our method achieves superior editing precision and interpretability compared to existing approaches. To the best of our knowledge, this is the first work to achieve supervised alignment between latent representations and semantic concepts in diffusion models.
Lattice: A Confidence-Gated Hybrid System for Uncertainty-Aware Sequential Prediction with Behavioral Archetypes
We introduce Lattice, a hybrid sequential prediction system that conditionally activates learned behavioral structure using binary confidence gating. The system clusters behavior windows into behavioral archetypes and uses binary confidence gating to activate archetype-based scoring only when confidence exceeds a threshold, falling back to baseline predictions when uncertain. We validate Lattice on recommendation systems (MovieLens), scientific time-series (LIGO), and financial markets, using LSTM and transformer backbones. On MovieLens with LSTM, Lattice achieves +31.9% improvement over LSTM baseline in HR@10 (p < 3.29 x 10^-25, 30 seeds), outperforming transformer baselines by 109.4% over SASRec and 218.6% over BERT4Rec. On LIGO and financial data, the system correctly refuses archetype activation when distribution shift occurs - a successful outcome demonstrating confidence gating prevents false activation. On transformer backbones, Lattice provides 0.0% improvement (neutral, no degradation), gracefully deferring when structure is already present. This bidirectional validation - activating when patterns apply, refusing when they don't, and deferring when redundant - supports confidence gating as a promising architectural principle for managing epistemic uncertainty in safety-critical applications.
comment: 12 pages, 1 figure, uses tikz.sty
Ambient Dataloops: Generative Models for Dataset Refinement
We propose Ambient Dataloops, an iterative framework for refining datasets that makes it easier for diffusion models to learn the underlying data distribution. Modern datasets contain samples of highly varying quality, and training directly on such heterogeneous data often yields suboptimal models. We propose a dataset-model co-evolution process; at each iteration of our method, the dataset becomes progressively higher quality, and the model improves accordingly. To avoid destructive self-consuming loops, at each generation, we treat the synthetically improved samples as noisy, but at a slightly lower noisy level than the previous iteration, and we use Ambient Diffusion techniques for learning under corruption. Empirically, Ambient Dataloops achieve state-of-the-art performance in unconditional and text-conditional image generation and de novo protein design. We further provide a theoretical justification for the proposed framework that captures the benefits of the data looping procedure.
comment: 27 pages, 9 figures, 11 tables
CURE: Curriculum-guided Multi-task Training for Reliable Anatomy Grounded Report Generation CVPR 2026
Medical vision-language models can automate the generation of radiology reports but struggle with accurate visual grounding and factual consistency. Existing models often misalign textual findings with visual evidence, leading to unreliable or weakly grounded predictions. We present CURE, an error-aware curriculum learning framework that improves grounding and report quality without any additional data. CURE fine-tunes a multimodal instructional model on phrase grounding, grounded report generation, and anatomy-grounded report generation using public datasets. The method dynamically adjusts sampling based on model performance, emphasizing harder samples to improve spatial and textual alignment. CURE improves grounding accuracy by +0.37 IoU, boosts report quality by +0.188 CXRFEScore, and reduces hallucinations by 18.6%. CURE is a data-efficient framework that enhances both grounding accuracy and report reliability. Code is available at https://github.com/PabloMessina/CURE and model weights at https://huggingface.co/pamessina/medgemma-4b-it-cure
comment: 31 pages, 7 figures, submitted to CVPR 2026 (under review)
Attention-Informed Surrogates for Navigating Power-Performance Trade-offs in HPC NeurIPS 2025
High-Performance Computing (HPC) schedulers must balance user performance with facility-wide resource constraints. The task boils down to selecting the optimal number of nodes for a given job. We present a surrogate-assisted multi-objective Bayesian optimization (MOBO) framework to automate this complex decision. Our core hypothesis is that surrogate models informed by attention-based embeddings of job telemetry can capture performance dynamics more effectively than standard regression techniques. We pair this with an intelligent sample acquisition strategy to ensure the approach is data-efficient. On two production HPC datasets, our embedding-informed method consistently identified higher-quality Pareto fronts of runtime-power trade-offs compared to baselines. Furthermore, our intelligent data sampling strategy drastically reduced training costs while improving the stability of the results. To our knowledge, this is the first work to successfully apply embedding-informed surrogates in a MOBO framework to the HPC scheduling problem, jointly optimizing for performance and power on production workloads.
comment: 13 pages, 6 figures Published in MLForSys workshop in NeurIPS 2025 Link: https://openreview.net/forum?id=R0Vc9lnDd5
GeMM-GAN: A Multimodal Generative Model Conditioned on Histopathology Images and Clinical Descriptions for Gene Expression Profile Generation
Biomedical research increasingly relies on integrating diverse data modalities, including gene expression profiles, medical images, and clinical metadata. While medical images and clinical metadata are routinely collected in clinical practice, gene expression data presents unique challenges for widespread research use, mainly due to stringent privacy regulations and costly laboratory experiments. To address these limitations, we present GeMM-GAN, a novel Generative Adversarial Network conditioned on histopathology tissue slides and clinical metadata, designed to synthesize realistic gene expression profiles. GeMM-GAN combines a Transformer Encoder for image patches with a final Cross Attention mechanism between patches and text tokens, producing a conditioning vector to guide a generative model in generating biologically coherent gene expression profiles. We evaluate our approach on the TCGA dataset and demonstrate that our framework outperforms standard generative models and generates more realistic and functionally meaningful gene expression profiles, improving by more than 11\% the accuracy on downstream disease type prediction compared to current state-of-the-art generative models. Code will be available at: https://github.com/francescapia/GeMM-GAN
comment: 12 pages, 2 figures. Published at Image Analysis and Processing - ICIAP 2025 Workshops
FedUMM: A General Framework for Federated Learning with Unified Multimodal Models
Unified multimodal models (UMMs) are emerging as strong foundation models that can do both generation and understanding tasks in a single architecture. However, they are typically trained in centralized settings where all training and downstream datasets are gathered in a central server, limiting the deployment in privacy-sensitive and geographically distributed scenarios. In this paper, we present FedUMM, a general federated learning framework for UMMs under non-IID multimodal data with low communication cost. Built on NVIDIA FLARE, FedUMM instantiates federation for a BLIP3o backbone via parameter-efficient fine-tuning: clients train lightweight LoRA adapters while freezing the foundation models, and the server aggregates only adapter updates. We evaluate on VQA v2 and the GenEval compositional generation benchmarks under Dirichlet-controlled heterogeneity with up to 16 clients. Results show slight degradation as client count and heterogeneity increase, while remaining competitive with centralized training. We further analyze computation--communication trade-offs and demonstrate that adapter-only federation reduces per-round communication by over an order of magnitude compared to full fine-tuning, enabling practical federated UMM training. This work provides empirical experience for future research on privacy-preserving federated unified multimodal models.
You Need Better Attention Priors
We generalize the attention mechanism by viewing it through the lens of Entropic Optimal Transport, revealing that standard attention corresponds to a transport problem regularized by an implicit uniform prior. We introduce Generalized Optimal transport Attention with Trainable priors (GOAT), a new attention mechanism that replaces this naive assumption with a learnable, continuous prior. This prior maintains full compatibility with optimized kernels such as FlashAttention. GOAT also provides an EOT-based explanation of attention sinks and materializes a solution for them, avoiding the representational trade-offs of standard attention. Finally, by absorbing spatial information into the core attention computation, GOAT learns an extrapolatable prior that combines the flexibility of learned positional embeddings with the length generalization of fixed encodings.
Improving MoE Compute Efficiency by Composing Weight and Data Sparsity
Mixture-of-Experts layers achieve compute efficiency through weight sparsity: each token activates only a subset of experts. Data sparsity, where each expert processes only a subset of tokens, offers a complementary axis. Expert-choice routing implements data sparsity directly but violates causality in autoregressive models, creating train-inference mismatch. We recover data sparsity within causal token-choice MoE by leveraging zero-compute (null) experts within the routing pool. When a token routes to null experts, those slots consume no compute. The standard load balancing objective trains the model to uniformly use all experts (real and null) therefore creating data sparsity in expectation without the causality violations. We evaluate on vision-language model training, where data heterogeneity is pronounced: vision encoders produce many low-information tokens while text tokens are denser. At matched expected FLOPs, composing weight and data sparsity yields a more compute-efficient frontier than weight sparsity alone, with gains in training loss and downstream performance. The model learns implicit modality-aware allocation, routing vision tokens to null experts more aggressively than text, without explicit modality routing.
Non-Stationary Functional Bilevel Optimization
Functional bilevel optimization (FBO) provides a powerful framework for hierarchical learning in function spaces, yet current methods are limited to static offline settings and perform suboptimally in online, non-stationary scenarios. We propose SmoothFBO, the first algorithm for non-stationary FBO with both theoretical guarantees and practical scalability. SmoothFBO introduces a time-smoothed stochastic hypergradient estimator that reduces variance through a window parameter, enabling stable outer-loop updates with sublinear regret. Importantly, the classical parametric bilevel case is a special reduction of our framework, making SmoothFBO a natural extension to online, non-stationary settings. Empirically, SmoothFBO consistently outperforms existing FBO methods in non-stationary hyperparameter optimization and model-based reinforcement learning, demonstrating its practical effectiveness. Together, these results establish SmoothFBO as a general, theoretically grounded, and practically viable foundation for bilevel optimization in online, non-stationary scenarios.
USDs: A universal stabilizer decoder framework using symmetry
Quantum error correction is indispensable to achieving reliable quantum computation. When quantum information is encoded redundantly, a larger Hilbert space is constructed using multiple physical qubits, and the computation is performed within a designated subspace. When applying deep learning to the decoding of quantum error-correcting codes, a key challenge arises from the non-uniqueness between the syndrome measurements provided to the decoder and the corresponding error patterns that constitute the ground-truth labels. Building upon prior work that addressed this issue for the toric code by re-optimizing the decoder with respect to the symmetry inherent in the parity-check structure, we generalize this approach to arbitrary stabilizer codes. In our experiments, we employed multilayer perceptrons to approximate continuous functions that complement the syndrome measurements of the Color code and the Golay code. Using these models, we performed decoder re-optimization for each code. For the Color code, we achieved an improvement of approximately 0.8% in decoding accuracy at a physical error rate of 5%, while for the Golay code the accuracy increased by about 0.1%. Furthermore, from the evaluation of the geometric and algebraic structures in the continuous function approximation for each code, we showed that the design of generalized continuous functions is advantageous for learning the geometric structure inherent in the code. Our results also indicate that approximations that faithfully reproduce the code structure can have a significant impact on the effectiveness of reoptimization. This study demonstrates that the re-optimization technique previously shown to be effective for the Toric code can be generalized to address the challenge of label degeneracy that arises when applying deep learning to the decoding of stabilizer codes.
Robust X-Learner: Breaking the Curse of Imbalance and Heavy Tails via Robust Cross-Imputation
Estimating Heterogeneous Treatment Effects (HTE) in industrial applications such as AdTech and healthcare presents a dual challenge: extreme class imbalance and heavy-tailed outcome distributions. While the X-Learner framework effectively addresses imbalance through cross-imputation, we demonstrate that it is fundamentally vulnerable to "Outlier Smearing" when reliant on Mean Squared Error (MSE) minimization. In this failure mode, the bias from a few extreme observations ("whales") in the minority group is propagated to the entire majority group during the imputation step, corrupting the estimated treatment effect structure. To resolve this, we propose the Robust X-Learner (RX-Learner). This framework integrates a redescending γ-divergence objective -- structurally equivalent to the Welsch loss under Gaussian assumptions -- into the gradient boosting machinery. We further stabilize the non-convex optimization using a Proxy Hessian strategy grounded in Majorization-Minimization (MM) principles. Empirical evaluation on a semi-synthetic Criteo Uplift dataset demonstrates that the RX-Learner reduces the Precision in Estimation of Heterogeneous Effect (PEHE) metric by 98.6% compared to the standard X-Learner, effectively decoupling the stable "Core" population from the volatile "Periphery".
comment: 17 pages, 4 figures, 4 tables
Diffusion In Diffusion: Reclaiming Global Coherence in Semi-Autoregressive Diffusion
One of the most compelling features of global discrete diffusion language models is their global bidirectional contextual capability. However, existing block-based diffusion studies tend to introduce autoregressive priors, which, while offering benefits, can cause models to lose this global coherence at the macro level. To regain global contextual understanding while preserving the advantages of the semi-autoregressive paradigm, we propose Diffusion in Diffusion, a 'draft-then-refine' framework designed to overcome the irreversibility and myopia problems inherent in block diffusion models. Our approach first employs block diffusion to generate rapid drafts using small blocks, then refines these drafts through global bidirectional diffusion with a larger bidirectional receptive field. We utilize snapshot confidence remasking to identify the most critical tokens that require modification, and apply mix-scale training to expand the block diffusion model's global capabilities. Empirical results demonstrate that our approach sets a new benchmark for discrete diffusion models on the OpenWebText dataset. Using only 26% of the fine-tuning budget of baseline models, we reduce generative perplexity from 25.7 to 21.9, significantly narrowing the performance gap with autoregressive models.
comment: Work In Progress
New Perspectives on the Polyak Stepsize: Surrogate Functions and Negative Results
The Polyak stepsize has been proven to be a fundamental stepsize in convex optimization, giving near optimal gradient descent rates across a wide range of assumptions. The universality of the Polyak stepsize has also inspired many stochastic variants, with theoretical guarantees and strong empirical performance. Despite the many theoretical results, our understanding of the convergence properties and shortcomings of the Polyak stepsize or its variants is both incomplete and fractured across different analyses. We propose a new, unified, and simple perspective for the Polyak stepsize and its variants as gradient descent on a surrogate loss. We show that each variant is equivalent to minimize a surrogate function with stepsizes that adapt to a guaranteed local curvature. Our general surrogate loss perspective is then used to provide a unified analysis of existing variants across different assumptions. Moreover, we show a number of negative results proving that the non-convergence results in some of the upper bounds is indeed real.
From Construction to Injection: Edit-Based Fingerprints for Large Language Models
Establishing reliable and verifiable fingerprinting mechanisms is fundamental to controlling the unauthorized redistribution of large language models (LLMs). However, existing approaches face two major challenges: (a) ensuring imperceptibility, including resistance to statistical identification and avoidance of accidental activation during fingerprint construction, and (b) preserving both model utility and fingerprint detectability under subsequent model modifications. To address these challenges, we propose an end-to-end fingerprinting framework with two components. First, we design a rule-based code-mixing fingerprint (CF) that maps natural-query-like prompts to multi-candidate targets, reducing accidental triggering via high-complexity code-mixing formulations. Second, we introduce Multi-Candidate Editing (MCEdit), which jointly optimizes multi-candidate targets and enforces margins between target and non-target outputs to improve post-modification detectability. Extensive experiments demonstrate that our framework provides a robust and practical solution for fingerprinting LLMs.
comment: preprint
QueStER: Query Specification for Generative keyword-based Retrieval
Generative retrieval (GR) differs from the traditional index-then-retrieve pipeline by storing relevance in model parameters and generating retrieval cues directly from the query, but it can be brittle out of domain and expensive to scale. We introduce QueStER (QUEry SpecificaTion for gEnerative Keyword-Based Retrieval), which bridges GR and query reformulation by learning to generate explicit keyword-based search specifications. Given a user query, a lightweight LLM produces a keyword query that is executed by a standard retriever (BM25), combining the generalization benefits of generative query rewriting with the efficiency and scalability of lexical indexing. We train the rewriting policy with reinforcement learning techniques. Across in- and out-of-domain evaluations, QueStER consistently improves over BM25 and is competitive with neural IR baselines, while maintaining strong efficiency.
Nonnegative Low-rank Matrix Recovery Can Have Spurious Local Minima
Low-rank matrix recovery is well-known to exhibit benign nonconvexity under the restricted isometry property (RIP): every second-order critical point is globally optimal, so local methods provably recover the ground truth. Motivated by the strong empirical performance of projected gradient methods for nonnegative low-rank recovery problems, we investigate whether this benign geometry persists when the factor matrices are constrained to be elementwise nonnegative. In the simple setting of a rank-1 nonnegative ground truth, we confirm that benign nonconvexity holds in the fully-observed case with RIP constant $δ=0$. This benign nonconvexity, however, is unstable. It fails to extend to the partially-observed case with any arbitrarily small RIP constant $δ>0$, and to higher-rank ground truths $r^{\star}>1$, regardless of how much the search rank $r\ge r^{\star}$ is overparameterized. Together, these results undermine the standard stability-based explanation for the empirical success of nonconvex methods and suggest that fundamentally different tools are needed to analyze nonnegative low-rank recovery.
A Comparative Evaluation of Deep Learning Models for Speech Enhancement in Real-World Noisy Environments
Speech enhancement, particularly denoising, is vital in improving the intelligibility and quality of speech signals for real-world applications, especially in noisy environments. While prior research has introduced various deep learning models for this purpose, many struggle to balance noise suppression, perceptual quality, and speaker-specific feature preservation, leaving a critical research gap in their comparative performance evaluation. This study benchmarks three state-of-the-art models Wave-U-Net, CMGAN, and U-Net, on diverse datasets such as SpEAR, VPQAD, and Clarkson datasets. These models were chosen due to their relevance in the literature and code accessibility. The evaluation reveals that U-Net achieves high noise suppression with SNR improvements of +71.96% on SpEAR, +64.83% on VPQAD, and +364.2% on the Clarkson dataset. CMGAN outperforms in perceptual quality, attaining the highest PESQ scores of 4.04 on SpEAR and 1.46 on VPQAD, making it well-suited for applications prioritizing natural and intelligible speech. Wave-U-Net balances these attributes with improvements in speaker-specific feature retention, evidenced by VeriSpeak score gains of +10.84% on SpEAR and +27.38% on VPQAD. This research indicates how advanced methods can optimize trade-offs between noise suppression, perceptual quality, and speaker recognition. The findings may contribute to advancing voice biometrics, forensic audio analysis, telecommunication, and speaker verification in challenging acoustic conditions.
Which Similarity-Sensitive Entropy (S-entropy)?
Shannon entropy is not the only entropy that is relevant to machine-learning datasets, nor possibly even the most important one. Traditional entropies such as Shannon entropy capture information represented by elements' frequencies but not the richer information encoded by their similarities and differences. Capturing the latter requires similarity-sensitive entropy (S-entropy). S-entropy can be measured using either the recently developed Leinster-Cobbold-Reeve framework (LCR) or the newer Vendi score (VS). This raises the practical question of which one to use: LCR or VS. Here we address this question conceptually, analytically, and experimentally, using 53 large and well-known imaging and tabular datasets. We find that LCR and VS values can differ by orders of magnitude and are complementary, except in limiting cases. We show that both LCR and VS results depend on how similarities are scaled, and introduce the notion of ``half-distance'' to parameterize this dependence. We prove that VS provides an upper bound on LCR for several values of the Rényi-Hill order parameter and present evidence that this bound holds for all values. We conclude that VS is preferable only when a dataset's elements can be usefully interpreted as linear combinations of a more fundamental set of ``ur-elements'' or when the system that the dataset describes has a quantum-mechanical character. In the broader case where one simply wishes to capture the rich information encoded by elements' similarities and differences as well as their frequencies, LCR is favored; nevertheless, for certain half-distances the two methods can complement each other.
comment: 21 pages, 8 figures
RMBRec: Robust Multi-Behavior Recommendation towards Target Behaviors
Multi-behavior recommendation faces a critical challenge in practice: auxiliary behaviors (e.g., clicks, carts) are often noisy, weakly correlated, or semantically misaligned with the target behavior (e.g., purchase), which leads to biased preference learning and suboptimal performance. While existing methods attempt to fuse these heterogeneous signals, they inherently lack a principled mechanism to ensure robustness against such behavioral inconsistency. In this work, we propose Robust Multi-Behavior Recommendation towards Target Behaviors (RMBRec), a robust multi-behavior recommendation framework grounded in an information-theoretic robustness principle. We interpret robustness as a joint process of maximizing predictive information while minimizing its variance across heterogeneous behavioral environments. Under this perspective, the Representation Robustness Module (RRM) enhances local semantic consistency by maximizing the mutual information between users' auxiliary and target representations, whereas the Optimization Robustness Module (ORM) enforces global stability by minimizing the variance of predictive risks across behaviors, which is an efficient approximation to invariant risk minimization. This local-global collaboration bridges representation purification and optimization invariance in a theoretically coherent way. Extensive experiments on three real-world datasets demonstrate that RMBRec not only outperforms state-of-the-art methods in accuracy but also maintains remarkable stability under various noise perturbations. For reproducibility, our code is available at https://github.com/miaomiao-cai2/RMBRec/.
Finding Kissing Numbers with Game-theoretic Reinforcement Learning
Since Isaac Newton first studied the Kissing Number Problem in 1694, determining the maximal number of non-overlapping spheres around a central sphere has remained a fundamental challenge. This problem represents the local analogue of Hilbert's 18th problem on sphere packing, bridging geometry, number theory, and information theory. Although significant progress has been made through lattices and codes, the irregularities of high-dimensional geometry and exponentially growing combinatorial complexity beyond 8 dimensions, which exceeds the complexity of Go game, limit the scalability of existing methods. Here we model this problem as a two-player matrix completion game that can be fully parallelized at large scale, and train the game-theoretic reinforcement learning system, PackingStar, to efficiently explore high-dimensional spaces. The matrix entries represent pairwise cosines of sphere center vectors; one player fills entries while another corrects suboptimal ones, jointly maximizing the matrix size, corresponding to the kissing number. This cooperative dynamics substantially improves sample quality, making the extremely large spaces tractable. PackingStar reproduces previous configurations and surpasses all human-known records from dimensions 25 to 31, with the configuration in 25 dimensions geometrically corresponding to the Leech lattice and suggesting possible optimality. It achieves the first breakthrough beyond rational structures from 1971 in 13 dimensions, discovers over 6000 new structures in 14 and other dimensions, and establishes new records for generalized kissing configurations under various angular constraints. These results demonstrate AI's power to explore high-dimensional spaces beyond human intuition and open new pathways for the Kissing Number Problem and broader geometry problems.
Composite Flow Matching for Reinforcement Learning with Shifted-Dynamics Data NeurIPS 2025
Incorporating pre-collected offline data can substantially improve the sample efficiency of reinforcement learning (RL), but its benefits can break down when the transition dynamics in the offline dataset differ from those encountered online. Existing approaches typically mitigate this issue by penalizing or filtering offline transitions in regions with large dynamics gap. However, their dynamics-gap estimators often rely on KL divergence or mutual information, which can be ill-defined when offline and online dynamics have mismatched support. To address this challenge, we propose CompFlow, a principled framework built on the theoretical connection between flow matching and optimal transport. Specifically, we model the online dynamics as a conditional flow built upon the output distribution of a pretrained offline flow, rather than learning it directly from a Gaussian prior. This composite structure provides two advantages: (1) improved generalization when learning online dynamics under limited interaction data, and (2) a well-defined and stable estimate of the dynamics gap via the Wasserstein distance between offline and online transitions. Building on this dynamics-gap estimator, we further develop an optimistic active data collection strategy that prioritizes exploration in high-gap regions, and show theoretically that it reduces the performance gap to the optimal policy. Empirically, CompFlow consistently outperforms strong baselines across a range of RL benchmarks with shifted-dynamics data.
comment: NeurIPS 2025 Spotlight
The Good, the Bad and the Ugly: Meta-Analysis of Watermarks, Transferable Attacks and Adversarial Defenses ICML 2024
We formalize and analyze the trade-off between backdoor-based watermarks and adversarial defenses, framing it as an interactive protocol between a verifier and a prover. While previous works have primarily focused on this trade-off, our analysis extends it by identifying transferable attacks as a third, counterintuitive, but necessary option. Our main result shows that for all learning tasks, at least one of the three exists: a watermark, an adversarial defense, or a transferable attack. By transferable attack, we refer to an efficient algorithm that generates queries indistinguishable from the data distribution and capable of fooling all efficient defenders. Using cryptographic techniques, specifically fully homomorphic encryption, we construct a transferable attack and prove its necessity in this trade-off. Finally, we show that tasks of bounded VC-dimension allow adversarial defenses against all attackers, while a subclass allows watermarks secure against fast adversaries.
comment: 47 pages, 3 figures, 4 tables, preliminary version published in ICML 2024 (Workshop on Theoretical Foundations of Foundation Models) and , see https://openreview.net/pdf?id=WMaFRiggwV
Does Object Binding Naturally Emerge in Large Pretrained Vision Transformers? NeurIPS 2025
Object binding, the brain's ability to bind the many features that collectively represent an object into a coherent whole, is central to human cognition. It groups low-level perceptual features into high-level object representations, stores those objects efficiently and compositionally in memory, and supports human reasoning about individual object instances. While prior work often imposes object-centric attention (e.g., Slot Attention) explicitly to probe these benefits, it remains unclear whether this ability naturally emerges in pre-trained Vision Transformers (ViTs). Intuitively, they could: recognizing which patches belong to the same object should be useful for downstream prediction and thus guide attention. Motivated by the quadratic nature of self-attention, we hypothesize that ViTs represent whether two patches belong to the same object, a property we term IsSameObject. We decode IsSameObject from patch embeddings across ViT layers using a quadratic similarity probe, which reaches over 90% accuracy. Crucially, this object-binding capability emerges reliably in DINO, CLIP, and ImageNet-supervised ViTs, but is markedly weaker in MAE, suggesting that binding is not a trivial architectural artifact, but an ability acquired through specific pretraining objectives. We further discover that IsSameObject is encoded in a low-dimensional subspace on top of object features, and that this signal actively guides attention. Ablating IsSameObject from model activations degrades downstream performance and works against the learning objective, implying that emergent object binding naturally serves the pretraining objective. Our findings challenge the view that ViTs lack object binding and highlight how symbolic knowledge of "which parts belong together" emerges naturally in a connectionist system.
comment: Accepted as a Spotlight at NeurIPS 2025
Competitive Audio-Language Models with Data-Efficient Single-Stage Training on Public Data
Large language models (LLMs) have transformed NLP, yet their integration with audio remains underexplored despite audio's centrality to human communication. We introduce Falcon3-Audio, a family of Audio-Language Models (ALMs) built on instruction-tuned LLMs and Whisper encoders. Using a remarkably small amount of public audio data, less than 30K hours (5K unique), Falcon3-Audio-7B matches the best reported performance among open-weight models on the MMAU benchmark, with a score of 64.14, matching R1-AQA, while distinguishing itself through superior data and parameter efficiency, single-stage training, and transparency. Notably, our smallest 1B model remains competitive with larger open models ranging from 2B to 13B parameters. Through extensive ablations, we find that common complexities such as curriculum learning, multiple audio encoders, and intricate cross-attention connectors are not required for strong performance, even compared to models trained on over 500K hours of data.
comment: Accepted at ASRU 2025
PPGFlowECG: Latent Rectified Flow with Cross-Modal Encoding for PPG-Guided ECG Generation and Cardiovascular Disease Detection
Electrocardiography (ECG) is the clinical gold standard for cardiovascular disease (CVD) assessment, yet continuous monitoring is constrained by the need for dedicated hardware and trained personnel. Photoplethysmography (PPG) is ubiquitous in wearable devices and readily scalable, but it lacks electrophysiological specificity, limiting diagnostic reliability. While generative methods aim to translate PPG into clinically useful ECG signals, existing approaches are limited by the misalignment of physiological semantics in generative models and the complexity of modeling in high-dimensional signals. To address these limitations, we propose PPGFlowECG, a two-stage framework that aligns PPG and ECG in a shared latent space using the CardioAlign Encoder and then synthesizes ECGs with latent rectified flow. We further provide a formal analysis of this coupling, showing that the CardioAlign Encoder is necessary to guarantee stable and semantically consistent ECG synthesis under our formulation. Extensive experiments on four datasets demonstrate improved synthesis fidelity and downstream diagnostic utility. These results indicate that PPGFlowECG supports scalable, wearable-first CVD screening when standard ECG acquisition is unavailable.
Cluster-Based Generalized Additive Models Informed by Random Fourier Features
In the development of learning systems, there is an ongoing need to reconcile the strong predictive performance offered by opaque black-box models with the level of transparency required for critical applications. This work introduces a methodological framework that combines spectral representation learning with transparent statistical modeling to construct a mixture of generalized additive models (GAMs). The approach utilizes random Fourier feature embeddings to uncover locally adaptive structures within the data. High-dimensional random feature representations are compressed via principal component analysis to derive a latent space that informs a Gaussian mixture model, which performs soft clustering to partition the input space into distinct regimes. Within each cluster, a local GAM captures nonlinear univariate effects through interpretable spline-based smoothers. Numerical experiments across diverse regression benchmarks demonstrate that the proposed method consistently improves upon classical global interpretable models by effectively modeling data heterogeneity. Furthermore, the mixture-of-GAMs framework achieves performance comparable to explainable boosting machine, random forest, and multilayer perceptron on certain tasks. Overall, this construction provides a principled approach for integrating representation learning with transparent statistical modeling.
comment: 33 pages, 13 figures, 8 tables
Complexity-aware fine-tuning
General-purpose Large Language Models (LLMs) are frequently fine-tuned through supervised fine-tuning (SFT) to enhance performance in specific domains. Better results can be achieved by distilling the chain-of-thought of a larger model at the cost of numerous expensive calls and a much greater amount of data. We propose a novel blueprint for efficient fine-tuning that uses reasoning only for complex data identified by entropy. Specifically, across three small open models ($\approx 3B$) we split the training data into complexity categories by a single token answer entropy (ROC AUC $0.73$), fine-tune large language models (LLMs) via SFT and distillation, and show that our pipeline significantly outperforms the standard SFT approach ($0.58$ vs $0.45$ average accuracy) and outperforms the distillation approach ($0.58$ vs $0.56$ average accuracy) while using $81\%$ less data.
Token Maturation: Autoregressive Language Generation via Continuous Token Dynamics ICML 2026
Standard autoregressive language models collapse uncertainty at every generation step by committing to discrete tokens through immediate sampling. This premature discretization underlies well-known failure modes, including degenerate repetition loops in greedy decoding and a heavy reliance on heuristic sampling strategies. We introduce \textbf{Token Maturation}, a continuous autoregressive framework in which tokens evolve as vector-valued trajectories prior to discretization. Rather than sampling from a categorical distribution at each step, the model resolves uncertainty through a deterministic dynamical process in embedding space, deferring discrete commitment until the representation has geometrically stabilized. We show that this formulation mitigates degeneration \emph{intrinsically}: Token Maturation generates coherent and diverse text under fully deterministic decoding (argmax), without repetition penalties, temperature scaling, or stochastic sampling. Moreover, we identify a novel convergence behavior in which token representations stabilize spatially while predictive entropy remains high, challenging the common assumption that commitment requires probability concentration. We propose continuous token dynamics with delayed commitment as an alternative formulation of autoregressive generation that exposes structural regularities obscured by immediate discretization.
comment: In preperation to ICML 2026
A Configuration-First Framework for Reproducible, Low-Code Localization
Machine learning is increasingly permeating radio-based localization services. To keep results credible and comparable, everyday workflows should make rigorous experiment specification and exact repeatability the default, without blocking advanced experimentation. However, in practice, researchers face a three-way gap that could be filled by a framework that offers (i) low coding effort for end-to-end studies, (ii) reproducibility by default, including versioned code, data, and configurations, controlled randomness, isolated runs, and recorded artifacts, and (iii) built-in extensibility so new models, metrics, and stages can be added with minimal integration effort. Existing tools rarely deliver all three for machine learning in general and localization workflows, supporting location-based services, in particular. In this paper, we introduce a low-code, configuration-first framework in which experiments are declared in human-readable configuration files, a workflow orchestrator executes standardized pipelines from data preparation to reporting, and all artifacts, such as datasets, models, metrics, and reports, are versioned. We instantiate the framework as LOCALIZE with preconfigured, versioned datasets that reduce initial setup effort and boilerplate, thereby accelerating model development and evaluation. The design, with explicit extension points, allows experts to add components without reworking the underlying infrastructure. Through a qualitative comparison and a head-to-head study against a plain Jupyter notebook baseline, we show that the framework reduces authoring effort while maintaining comparable runtime and memory behavior. Furthermore, using a example dataset, we demonstrate that scaling the training data from 1x to 10x keeps orchestration overheads bounded as data grows.
comment: 12 pages, 7 figures
Bridging the Gap Between Simulated and Real Network Data Using Transfer Learning
Machine Learning (ML)-based network models provide fast and accurate predictions for complex network behaviors but require substantial training data. Collecting such data from real networks is often costly and limited, especially for critical scenarios like failures. As a result, researchers commonly rely on simulated data, which reduces accuracy when models are deployed in real environments. We propose a hybrid approach leveraging transfer learning to combine simulated and real-world data. Using RouteNet-Fermi, we show that fine-tuning a pre-trained model with a small real dataset significantly improves performance. Our experiments with OMNeT++ and a custom testbed reduce the Mean Absolute Percentage Error (MAPE) in packet delay prediction by up to 88%. With just 10 real scenarios, MAPE drops by 37%, and with 50 scenarios, by 48%.
comment: This paper was submitted to IEEE NetSoft 2026. 7 Pages, 5 Figures
Orthogonalized Policy Optimization:Decoupling Sampling Geometry from Optimization Geometry in RLHF
Large language model alignment objectives are often presented as a collection of distinct algorithms, such as PPO, DPO, IPO, and their variants, each motivated by different derivations. In this work, we argue that this diversity obscures a simpler underlying structure. At a fundamental level, alignment objectives involve two independent design choices: (i) how training signals are sampled and weighted, and (ii) how deviations from a reference policy are geometrically penalized. Existing methods typically entangle these choices through a single divergence, most commonly the Kullback-Leibler divergence. We show that this entanglement is not merely a modeling convenience but a source of systematic instability. When the same divergence simultaneously determines sample weighting and optimization curvature, adjusting one aspect, such as exploration strength, inevitably alters the other, such as gradient geometry. This coupling is particularly problematic in preference-based reinforcement learning, where advantage signals are unbounded and high-confidence regimes are common. We propose a simple but structural remedy by formulating alignment as an orthogonal mirror descent problem, in which sampling geometry enters only as a linear driving force, while optimization geometry is determined independently by a mirror map. This perspective leads to a new alignment objective called Orthogonalized Policy Optimization (OPO), obtained by choosing a Euclidean mirror map in likelihood ratio space. The resulting objective admits a closed-form solution, linear and non-saturating gradient dynamics, and a well-conditioned trust region, while remaining fully compatible with standard large language model training pipelines.
Benchmarking the Influence of Pre-training on Explanation Performance in MR Image Classification
Convolutional Neural Networks (CNNs) are frequently and successfully used in medical prediction tasks. They are often used in combination with transfer learning, leading to improved performance when training data for the task are scarce. The resulting models are highly complex and typically do not provide any insight into their predictive mechanisms, motivating the field of "explainable" artificial intelligence (XAI). However, previous studies have rarely quantitatively evaluated the "explanation performance" of XAI methods against ground-truth data, and transfer learning and its influence on objective measures of explanation performance has not been investigated. Here, we propose a benchmark dataset that allows for quantifying explanation performance in a realistic magnetic resonance imaging (MRI) classification task. We employ this benchmark to understand the influence of transfer learning on the quality of explanations. Experimental results show that popular XAI methods applied to the same underlying model differ vastly in performance, even when considering only correctly classified examples. We further observe that explanation performance strongly depends on the task used for pre-training and the number of CNN layers pre-trained. These results hold after correcting for a substantial correlation between explanation and classification performance.
comment: Under review
Recalibrating binary probabilistic classifiers
Recalibration of binary probabilistic classifiers to a target prior probability is an important task in areas like credit risk management. However, recalibration of a classifier learned on a training dataset to a target on a test dataset in general is not a well-defined problem because there might be more than one way to transform the original posterior probabilities such that the target is matched. In this paper, methods for recalibration are analysed from a distribution shift perspective. Distribution shift assumptions linked to the area under the curve (AUC) of a probabilistic classifier are found to be useful for the design of meaningful recalibration methods. Two new methods called parametric covariate shift with posterior drift (CSPD) and ROC-based quasi moment matching (QMM) are proposed and tested together with some other methods in an example setting. The outcomes of the test suggest that the QMM methods discussed in the paper can provide appropriately conservative results in evaluations with concave functions like for instance risk weights functions for credit risk.
comment: 17 pages, presented at workshop Learning to Quantify 2025 (LQ 2025), https://lq-2025.github.io/
When Are Two Scores Better Than One? Investigating Ensembles of Diffusion Models
Diffusion models now generate high-quality, diverse samples, with an increasing focus on more powerful models. Although ensembling is a well-known way to improve supervised models, its application to unconditional score-based diffusion models remains largely unexplored. In this work we investigate whether it provides tangible benefits for generative modelling. We find that while ensembling the scores generally improves the score-matching loss and model likelihood, it fails to consistently enhance perceptual quality metrics such as FID on image datasets. We confirm this observation across a breadth of aggregation rules using Deep Ensembles, Monte Carlo Dropout, on CIFAR-10 and FFHQ. We attempt to explain this discrepancy by investigating possible explanations, such as the link between score estimation and image quality. We also look into tabular data through random forests, and find that one aggregation strategy outperforms the others. Finally, we provide theoretical insights into the summing of score models, which shed light not only on ensembling but also on several model composition techniques (e.g. guidance).
comment: Accepted at Transactions on Machine Learning Research (reviewed on OpenReview: https://openreview.net/forum?id=4iRx9b0Csu). Code: https://github.com/rarazafin/score_diffusion_ensemble
Scalable Anytime Algorithms for Learning Fragments of Linear Temporal Logic
Linear temporal logic (LTL) is a specification language for finite sequences (called traces) widely used in program verification, motion planning in robotics, process mining, and many other areas. We consider the problem of learning LTL formulas for classifying traces; despite a growing interest of the research community, existing solutions suffer from two limitations: they do not scale beyond small formulas, and they may exhaust computational resources without returning any result. We introduce a new algorithm addressing both issues: our algorithm is able to construct formulas an order of magnitude larger than previous methods, and it is anytime, meaning that it in most cases successfully outputs a formula, albeit possibly not of minimal size. We evaluate the performances of our algorithm using an open source implementation against publicly available benchmarks.
Intrinsic Dimension Estimating Autoencoder (IDEA) Using CancelOut Layer and a Projected Loss
This paper introduces the Intrinsic Dimension Estimating Autoencoder (IDEA), which identifies the underlying intrinsic dimension of a wide range of datasets whose samples lie on either linear or nonlinear manifolds. Beyond estimating the intrinsic dimension, IDEA is also able to reconstruct the original dataset after projecting it onto the corresponding latent space, which is structured using re-weighted double CancelOut layers. Our key contribution is the introduction of the projected reconstruction loss term, guiding the training of the model by continuously assessing the reconstruction quality under the removal of an additional latent dimension. We first assess the performance of IDEA on a series of theoretical benchmarks to validate its robustness. These experiments allow us to test its reconstruction ability and compare its performance with state-of-the-art intrinsic dimension estimators. The benchmarks show good accuracy and high versatility of our approach. Subsequently, we apply our model to data generated from the numerical solution of a vertically resolved one-dimensional free-surface flow, following a pointwise discretization of the vertical velocity profile in the horizontal direction, vertical direction, and time. IDEA succeeds in estimating the dataset's intrinsic dimension and then reconstructs the original solution by working directly within the projection space identified by the network.
comment: Code available: https://doi.org/10.5281/zenodo.18314616 Github: https://github.com/antoineor/IDEA-for-Shallow-Flows/tree/v1.1
Patch-Level Tokenization with CNN Encoders and Attention for Improved Transformer Time-Series Forecasting
Transformer-based models have shown strong performance in time-series forecasting by leveraging self-attention to model long-range temporal dependencies. However, their effectiveness depends critically on the quality and structure of input representations derived from raw multivariate time-series data, particularly as sequence length and data scale increase. This paper proposes a two-stage forecasting framework that explicitly separates local temporal representation learning from global dependency modelling. In the proposed approach, a convolutional neural network operates on fixed-length temporal patches to extract short-range temporal dynamics and non-linear feature interactions, producing compact patch-level token embeddings. Token-level self-attention is applied during representation learning to refine these embeddings, after which a Transformer encoder models inter-patch temporal dependencies to generate forecasts. The method is evaluated on a synthetic multivariate time-series dataset with controlled static and dynamic factors, using an extended sequence length and a larger number of samples. Experimental results demonstrate that the proposed framework consistently outperforms a convolutional baseline under increased temporal context and remains competitive with a strong patch-based Transformer model. These findings indicate that structured patch-level tokenization provides a scalable and effective representation for multivariate time-series forecasting, particularly when longer input sequences are considered.
comment: 6 pages, 2 figures, 3 tables
Learning to Explain: Supervised Token Attribution from Transformer Attention Patterns
Explainable AI (XAI) has become critical as transformer-based models are deployed in high-stakes applications including healthcare, legal systems, and financial services, where opacity hinders trust and accountability. Transformers self-attention mechanisms have proven valuable for model interpretability, with attention weights successfully used to understand model focus and behavior (Xu et al., 2015); (Wiegreffe and Pinter, 2019). However, existing attention-based explanation methods rely on manually defined aggregation strategies and fixed attribution rules (Abnar and Zuidema, 2020a); (Chefer et al., 2021), while model-agnostic approaches (LIME, SHAP) treat the model as a black box and incur significant computational costs through input perturbation. We introduce Explanation Network (ExpNet), a lightweight neural network that learns an explicit mapping from transformer attention patterns to token-level importance scores. Unlike prior methods, ExpNet discovers optimal attention feature combinations automatically rather than relying on predetermined rules. We evaluate ExpNet in a challenging cross-task setting and benchmark it against a broad spectrum of model-agnostic methods and attention-based techniques spanning four methodological families.
Constrained Black-Box Attacks Against Cooperative Multi-Agent Reinforcement Learning
Collaborative multi-agent reinforcement learning has rapidly evolved, offering state-of-the-art algorithms for real-world applications, including sensitive domains. However, a key challenge to its widespread adoption is the lack of a thorough investigation into its vulnerabilities to adversarial attacks. Existing work predominantly focuses on training-time attacks or unrealistic scenarios, such as access to policy weights or the ability to train surrogate policies. In this paper, we investigate new vulnerabilities under more challenging and constrained conditions, assuming an adversary can only collect and perturb the observations of deployed agents. We also consider scenarios where the adversary has no access at all (no observations, actions, or weights). Our main approach is to generate perturbations that intentionally misalign how victim agents see their environment. Our approach is empirically validated on three benchmarks and 22 environments, demonstrating its effectiveness across diverse algorithms and environments. Furthermore, we show that our algorithm is sample-efficient, requiring only 1,000 samples compared to the millions needed by previous methods.
Whitening Spherical Gaussian Mixtures in the Large-Dimensional Regime
Whitening is a classical technique in unsupervised learning that can facilitate estimation tasks by standardizing data. An important application is the estimation of latent variable models via the decomposition of tensors built from high-order moments. In particular, whitening orthogonalizes the means of a spherical Gaussian mixture model (GMM), thereby making the corresponding moment tensor orthogonally decomposable, hence easier to decompose. However, in the large-dimensional regime (LDR) where data are high-dimensional and scarce, the standard whitening matrix built from the sample covariance becomes ineffective because the latter is spectrally distorted. Consequently, whitened means of a spherical GMM are no longer orthogonal. Using random matrix theory, we derive exact limits for their dot products, which are generally nonzero in the LDR. As our main contribution, we then construct a corrected whitening matrix that restores asymptotic orthogonality, allowing for performance gains in spherical GMM estimation.
comment: Accepted for presentation at ICASSP 2026
Context-aware Learned Mesh-based Simulation via Trajectory-Level Meta-Learning
Simulating object deformations is a critical challenge across many scientific domains, including robotics, manufacturing, and structural mechanics. Learned Graph Network Simulators (GNSs) offer a promising alternative to traditional mesh-based physics simulators. Their speed and inherent differentiability make them particularly well suited for applications that require fast and accurate simulations, such as robotic manipulation or manufacturing optimization. However, existing learned simulators typically rely on single-step observations, which limits their ability to exploit temporal context. Without this information, these models fail to infer, e.g., material properties. Further, they rely on auto-regressive rollouts, which quickly accumulate error for long trajectories. We instead frame mesh-based simulation as a trajectory-level meta-learning problem. Using Conditional Neural Processes, our method enables rapid adaptation to new simulation scenarios from limited initial data while capturing their latent simulation properties. We utilize movement primitives to directly predict fast, stable and accurate simulations from a single model call. The resulting approach, Movement-primitive Meta-MeshGraphNet (M3GN), provides higher simulation accuracy at a fraction of the runtime cost compared to state-of-the-art GNSs across several tasks.
comment: 35 pages. Submitted to Transactions on Machine Learning Research (TMLR)
Principled Coarse-Grained Acceptance for Speculative Decoding in Speech
Speculative decoding accelerates autoregressive speech generation by letting a fast draft model propose tokens that a larger target model verifies. However, for speech LLMs that generate acoustic tokens, exact token matching is overly restrictive: many discrete tokens are acoustically or semantically interchangeable, reducing acceptance rates and limiting speedups. We introduce Principled Coarse-Graining (PCG), which verifies proposals at the level of Acoustic Similarity Groups (ASGs) derived from the target model's embedding space. By splitting each token's probability mass across the overlapping groups that contain it, we define an overlap-aware coarse-grained distribution and perform rejection sampling on the resulting group variable. This yields an exactness guarantee at the group level while allowing the accepted draft token to stand in for any member of the group in practice. On LibriTTS, PCG increases acceptance and throughput relative to standard speculative decoding and prior speech-specific relaxations while maintaining intelligibility and speaker similarity. These results suggest acoustically aware, group-level acceptance as a simple and general way to accelerate speech token generation while maintaining speech quality.
Reward Shaping to Mitigate Reward Hacking in RLHF
Reinforcement Learning from Human Feedback (RLHF) is essential for aligning large language models (LLMs) with human values. However, RLHF is susceptible to \emph{reward hacking}, where the agent exploits flaws in the reward function rather than learning the intended behavior, thus degrading alignment. Although reward shaping helps stabilize RLHF and partially mitigate reward hacking, a systematic investigation into shaping techniques and their underlying principles remains lacking. To bridge this gap, we present a comprehensive study of the prevalent reward shaping methods. Our analysis suggests two key design principles: (1) the RL reward should be bounded, and (2) the RL reward benefits from rapid initial growth followed by gradual convergence. Guided by these insights, we propose Preference As Reward (PAR), a novel approach that leverages the latent preferences embedded within the reward model as the signal for reinforcement learning. Moreover, PAR exhibits two critical variance-reduction properties that contribute to stabilizing the RLHF training process and effectively extending the tolerance window for early stopping. We evaluated PAR on the base model Gemma2-2B using two datasets, Ultrafeedback-Binarized and HH-RLHF. Experimental results demonstrate PAR's superior performance over other reward shaping methods. On the AlpacaEval 2.0 benchmark, PAR achieves a win rate of at least 5 percentage points higher than competing approaches. Furthermore, PAR exhibits remarkable data efficiency, requiring only a single reference reward for optimal performance, and maintains robustness against reward hacking even after two full epochs of training. The code is available at https://github.com/PorUna-byte/PAR.
NeuroClean: A Generalized Machine-Learning Approach to Neural Time-Series Conditioning
Electroencephalography (EEG) and local field potentials (LFP) are two widely used techniques to record electrical activity from the brain. These signals are used in both the clinical and research domains for multiple applications. However, most brain data recordings suffer from a myriad of artifacts and noise sources other than the brain itself. Thus, a major requirement for their use is proper and, given current volumes of data, a fully automatized conditioning. As a means to this end, here we introduce an unsupervised, multipurpose EEG/LFP preprocessing method, the NeuroClean pipeline. In addition to its completeness and reliability, NeuroClean is an unsupervised series of algorithms intended to mitigate reproducibility issues and biases caused by human intervention. The pipeline is designed as a five-step process, including the common bandpass and line noise filtering, and bad channel rejection. However, it incorporates an efficient independent component analysis with an automatic component rejection based on a clustering algorithm. This machine learning classifier is used to ensure that task-relevant information is preserved after each step of the cleaning process. We used several data sets to validate the pipeline. NeuroClean removed several common types of artifacts from the signal. Moreover, in the context of motor tasks of varying complexity, it yielded more than 97% accuracy (vs. a chance-level of 33.3%) in an optimized Multinomial Logistic Regression model after cleaning the data, compared to the raw data, which performed at 74% accuracy. These results show that NeuroClean is a promising pipeline and workflow that can be applied to future work and studies to achieve better generalization and performance on machine learning pipelines.
Reinforcement Fine-Tuning Naturally Mitigates Forgetting in Continual Post-Training
Continual post-training (CPT) is a popular and effective technique for adapting foundation models like multimodal large language models to specific and ever-evolving downstream tasks. While existing research has primarily concentrated on methods like data replay, model expansion, or parameter regularization, the fundamental role of the learning paradigm within CPT remains largely unexplored. This paper presents a comparative analysis of two core post-training paradigms: supervised fine-tuning (SFT) and reinforcement fine-tuning (RFT), investigating their respective impacts on knowledge retention during CPT. Our experiments are conducted on a benchmark comprising seven diverse multimodal tasks, utilizing Qwen2.5-VL-7B-Instruct as the base model for continual post-training. The investigation yields two significant findings: (1) When continuously learning on downstream tasks, SFT leads to catastrophic forgetting of previously learned tasks. In contrast, RFT inherently preserves prior knowledge and achieve performance comparable to multi-task training. (2) RFT successfully protects and even enhances the model's general knowledge on standard benchmarks (e.g., MMMU and MMLU-Pro). Conversely, SFT degrades general model capabilities severely. Further analysis reveals that this stability is not primarily due to explicit mechanisms like KL penalty or chain-of-thought reasoning. Instead, we identify an implicit regularization mechanism inherent to RFT as a key contributing factor. Our theoretical analysis suggests that RFT's gradient updates are naturally scaled by the reward variance, acting as a data-dependent regularizer that inherently protects previously acquired knowledge. Finally, we propose a rollout-based instance filtering algorithm to enhance the stability and efficiency of RFT. Our comprehensive study demonstrates the superiority of RFT as a robust paradigm for continual post-training.
Causal Regime Detection in Energy Markets With Augmented Time Series Structural Causal Models
Energy markets exhibit complex causal relationships between weather patterns, generation technologies, and price formation, with regime changes occurring continuously rather than at discrete break points. Current approaches model electricity prices without explicit causal interpretation or counterfactual reasoning capabilities. We introduce Augmented Time Series Causal Models (ATSCM) for energy markets, extending counterfactual reasoning frameworks to multivariate temporal data with learned causal structure. Our approach models energy systems through interpretable factors (weather, generation mix, demand patterns), rich grid dynamics, and observable market variables. We integrate neural causal discovery to learn time-varying causal graphs without requiring ground truth DAGs. Applied to real-world electricity price data, ATSCM enables novel counterfactual queries such as "What would prices be under different renewable generation scenarios?".
comment: EurIPS 2025 Workshop Causality for Impact: Practical challenges for real-world applications of causal methods
Cost-Free Personalization via Information-Geometric Projection in Bayesian Federated Learning
Bayesian Federated Learning (BFL) combines uncertainty modeling with decentralized training, enabling the development of personalized and reliable models under data heterogeneity and privacy constraints. Existing approaches typically rely on Markov Chain Monte Carlo (MCMC) sampling or variational inference, often incorporating personalization mechanisms to better adapt to local data distributions. In this work, we propose an information-geometric projection framework for personalization in parametric BFL. By projecting the global model onto a neighborhood of the user's local model, our method enables a tunable trade-off between global generalization and local specialization. Under mild assumptions, we show that this projection step is equivalent to computing a barycenter on the statistical manifold, allowing us to derive closed-form solutions and achieve cost-free personalization. We apply the proposed approach to a variational learning setup using the Improved Variational Online Newton (IVON) optimizer and extend its application to general aggregation schemes in BFL. Empirical evaluations under heterogeneous data distributions confirm that our method effectively balances global and local performance with minimal computational overhead.
Towards Causal Market Simulators
Market generators using deep generative models have shown promise for synthetic financial data generation, but existing approaches lack causal reasoning capabilities essential for counterfactual analysis and risk assessment. We propose a Time-series Neural Causal Model VAE (TNCM-VAE) that combines variational autoencoders with structural causal models to generate counterfactual financial time series while preserving both temporal dependencies and causal relationships. Our approach enforces causal constraints through directed acyclic graphs in the decoder architecture and employs the causal Wasserstein distance for training. We validate our method on synthetic autoregressive models inspired by the Ornstein-Uhlenbeck process, demonstrating superior performance in counterfactual probability estimation with L1 distances as low as 0.03-0.10 compared to ground truth. The model enables financial stress testing, scenario analysis, and enhanced backtesting by generating plausible counterfactual market trajectories that respect underlying causal mechanisms.
comment: ICAIF 2025 Workshop on Rethinking Financial Time-Series
PrivTune: Efficient and Privacy-Preserving Fine-Tuning of Large Language Models via Device-Cloud Collaboration
With the rise of large language models, service providers offer language models as a service, enabling users to fine-tune customized models via uploaded private datasets. However, this raises concerns about sensitive data leakage. Prior methods, relying on differential privacy within device-cloud collaboration frameworks, struggle to balance privacy and utility, exposing users to inference attacks or degrading fine-tuning performance. To address this, we propose PrivTune, an efficient and privacy-preserving fine-tuning framework via Split Learning (SL). The key idea of PrivTune is to inject crafted noise into token representations from the SL bottom model, making each token resemble the $n$-hop indirect neighbors. PrivTune formulates this as an optimization problem to compute the optimal noise vector, aligning with defense-utility goals. On this basis, it then adjusts the parameters (i.e., mean) of the $d_χ$-Privacy noise distribution to align with the optimization direction and scales the noise according to token importance to minimize distortion. Experiments on five datasets (covering both classification and generation tasks) against three embedding inversion and three attribute inference attacks show that, using RoBERTa on the Stanford Sentiment Treebank dataset, PrivTune reduces the attack success rate to 10% with only a 3.33% drop in utility performance, outperforming state-of-the-art baselines.
comment: Accepted at IEEE INFOCOM 2026 (full version). Update the cited references
GECOBench: A Gender-Controlled Text Dataset and Benchmark for Quantifying Biases in Explanations
Large pre-trained language models have become a crucial backbone for many downstream tasks in natural language processing (NLP), and while they are trained on a plethora of data containing a variety of biases, such as gender biases, it has been shown that they can also inherit such biases in their weights, potentially affecting their prediction behavior. However, it is unclear to what extent these biases also affect feature attributions generated by applying "explainable artificial intelligence" (XAI) techniques, possibly in unfavorable ways. To systematically study this question, we create a gender-controlled text dataset, GECO, in which the alteration of grammatical gender forms induces class-specific words and provides ground truth feature attributions for gender classification tasks. This enables an objective evaluation of the correctness of XAI methods. We apply this dataset to the pre-trained BERT model, which we fine-tune to different degrees, to quantitatively measure how pre-training induces undesirable bias in feature attributions and to what extent fine-tuning can mitigate such explanation bias. To this extent, we provide GECOBench, a rigorous quantitative evaluation framework for benchmarking popular XAI methods. We show a clear dependency between explanation performance and the number of fine-tuned layers, where XAI methods are observed to benefit particularly from fine-tuning or complete retraining of embedding layers.
comment: Published in Frontiers
Active Learning Strategies for Efficient Machine-Learned Interatomic Potentials Across Diverse Material Systems
Efficient materials discovery requires reducing costly first-principles calculations for training machine-learned interatomic potentials (MLIPs). We develop an active learning (AL) framework that iteratively selects informative structures from the Materials Project and Open Quantum Materials Database (OQMD) using compositional and property-based descriptors with a neural network ensemble model. Query-by-Committee enables real-time uncertainty quantification. We compare four strategies: random sampling (baseline), uncertainty-based sampling, diversity-based sampling (k-means clustering with farthest-point refinement), and a hybrid approach. Experiments across four material systems (C, Si, Fe, and TiO2) with 5 random seeds demonstrate that diversity sampling achieves competitive or superior performance, with 10.9% improvement on TiO2. Our approach achieves equivalent accuracy with 5-13% fewer labeled samples than random baselines. The complete pipeline executes on Google Colab in under 4 hours per system using less than 8 GB RAM, democratizing MLIP development for resource-limited researchers. Open-source code and configurations are available on GitHub. This multi-system evaluation provides practical guidelines for data-efficient MLIP training and highlights integration with symmetry-aware architectures as a promising future direction.
comment: 14 pages, 3 figures, 2 tables
On LLMs' Internal Representation of Code Correctness
Despite the effectiveness of large language models (LLMs) for code generation, they often output incorrect code. One reason is that model output probabilities are often not well-correlated with correctness, and reflect only the final output of the generation process. Inspired by findings that LLMs internally encode concepts like truthfulness, this paper explores if LLMs similarly represent code correctness. Specifically, we identify a correctness representation inside LLMs by contrasting the hidden states between pairs of correct and incorrect code for the same programming tasks. By experimenting on four LLMs, we show that exploiting this extracted correctness representation outperforms standard log-likelihood ranking, as well as verbalized model confidence. Furthermore, we explore how this internal correctness signal can be used to select higher-quality code samples, without requiring test execution. Ultimately, this work demonstrates how leveraging internal representations can enhance code generation systems and make LLMs more reliable, thus improving confidence in automatically generated code.
comment: Accepted for ICSE'26
Ultra-Strong Gradient Diffusion MRI with Self-Supervised Learning for Prostate Cancer Characterization
Diffusion MRI (dMRI) enables non-invasive assessment of prostate microstructure but conventional dMRI metrics such as the Apparent Diffusion Coefficient in multiparametric MRI and reflect a mixture of underlying tissues features rather than distinct histologic characteristics. Integrating dMRI with the compartment-based biophysical VERDICT (Vascular, Extracellular, and Restricted Diffusion for Cytometry in Tumours) framework offers richer microstructural insights, though clinical gradient systems (40-80 mT/m) often suffer from poor signal-to-noise ratio at stronger diffusion weightings due to prolonged echo times. Ultra-strong gradients (e.g., 300 mT/m) can mitigate these limitations by improving SNR and contrast-to-noise ratios. This study investigates whether physics-informed self-supervised VERDICT (ssVERDICT) fitting when combined with ultra-strong gradient data, enhances prostate microstructural characterization relative to current fitting approaches and clinical gradient systems. We developed enhanced ssVERDICT fitting approaches using dense multilayer perceptron and convolutional U-Net architectures, comparing them against non-linear least-squares (NLLS) VERDICT fitting, original ssVERDICT implementation, and Diffusion Kurtosis Imaging across clinical- to ultra-strong gradient systems. For the same ultra-strong gradient data, Dense ssVERDICT outperformed NLLS VERDICT, boosting median CNR by 47%, cutting inter-patient Coefficient of Variation by 52%, and reducing pooled $f_{ic}$ variation by 50%. Overall, Dense ssVERDICT delivered the highest CNR, the most stable parameter estimates, and the clearest tumour-normal contrast compared with conventional fitting methods and clinical gradient systems. These findings underscore that meaningful gains in non-invasive prostate cancer characterization arise from the combination of advanced gradient systems and deep learning-based modelling.
comment: 25 pages, 14 figures, 7 tables
AI-generated data contamination erodes pathological variability and diagnostic reliability
Generative artificial intelligence (AI) is rapidly populating medical records with synthetic content, creating a feedback loop where future models are increasingly at risk of training on uncurated AI-generated data. However, the clinical consequences of this AI-generated data contamination remain unexplored. Here, we show that in the absence of mandatory human verification, this self-referential cycle drives a rapid erosion of pathological variability and diagnostic reliability. By analysing more than 800,000 synthetic data points across clinical text generation, vision-language reporting, and medical image synthesis, we find that models progressively converge toward generic phenotypes regardless of the model architecture. Specifically, rare but critical findings, including pneumothorax and effusions, vanish from the synthetic content generated by AI models, while demographic representations skew heavily toward middle-aged male phenotypes. Crucially, this degradation is masked by false diagnostic confidence; models continue to issue reassuring reports while failing to detect life-threatening pathology, with false reassurance rates tripling to 40%. Blinded physician evaluation confirms that this decoupling of confidence and accuracy renders AI-generated documentation clinically useless after just two generations. We systematically evaluate three mitigation strategies, finding that while synthetic volume scaling fails to prevent collapse, mixing real data with quality-aware filtering effectively preserves diversity. Ultimately, our results suggest that without policy-mandated human oversight, the deployment of generative AI threatens to degrade the very healthcare data ecosystems it relies upon.
comment: *Corresponding author: Dianbo Liu (dianbo@nus.edu.sg)
Mitigating Data Imbalance in Automated Speaking Assessment
Automated Speaking Assessment (ASA) plays a crucial role in evaluating second-language (L2) learners proficiency. However, ASA models often suffer from class imbalance, leading to biased predictions. To address this, we introduce a novel objective for training ASA models, dubbed the Balancing Logit Variation (BLV) loss, which perturbs model predictions to improve feature representation for minority classes without modifying the dataset. Evaluations on the ICNALE benchmark dataset show that integrating the BLV loss into a celebrated text-based (BERT) model significantly enhances classification accuracy and fairness, making automated speech evaluation more robust for diverse learners.
comment: Accepted by APSIPA 2025; revised figure, references added
Targeted Fine-Tuning of DNN-Based Receivers via Influence Functions
We present the first use of influence functions for deep learning-based wireless receivers. Applied to DeepRx, a fully convolutional receiver, influence analysis reveals which training samples drive bit predictions, enabling targeted fine-tuning of poorly performing cases. We show that loss-relative influence with capacity-like binary cross-entropy loss and first-order updates on beneficial samples most consistently improves bit error rate toward genie-aided performance, outperforming random fine-tuning in single-target scenarios. Multi-target adaptation proved less effective, underscoring open challenges. Beyond experiments, we connect influence to self-influence corrections and propose a second-order, influence-aligned update strategy. Our results establish influence functions as both an interpretability tool and a basis for efficient receiver adaptation.
comment: 7 pages; 10 figures; 1 table; 19 equations
Robust Barycenters of Persistence Diagrams
This short paper presents a general approach for computing robust Wasserstein barycenters of persistence diagrams. The classical method consists in computing assignment arithmetic means after finding the optimal transport plans between the barycenter and the persistence diagrams. However, this procedure only works for the transportation cost related to the $q$-Wasserstein distance $W_q$ when $q=2$. We adapt an alternative fixed-point method to compute a barycenter diagram for generic transportation costs ($q > 1$), in particular those robust to outliers, $q \in (1,2)$. We show the utility of our work in two applications: \emph{(i)} the clustering of persistence diagrams on their metric space and \emph{(ii)} the dictionary encoding of persistence diagrams. In both scenarios, we demonstrate the added robustness to outliers provided by our generalized framework. Our Python implementation is available at this address: https://github.com/Keanu-Sisouk/RobustBarycenter .
Listwise Direct Preference Optimization with Multi-Dimensional Preference Mixing
Recent alignment methods based on Direct Preference Optimization (DPO) reformulate preference learning as supervised optimization over pairwise comparisons, offering improved efficiency and stability over reinforcement learning from human feedback (RLHF). However, existing DPO-style methods implicitly assume a single fixed preference objective, which limits their ability to model the structured and sometimes conflicting nature of real-world human judgments that span multiple preference dimensions. In this work, we propose Listwise Direct Preference Optimization ($λ$-DPO), a unified framework that simultaneously improves supervision granularity and preference flexibility. Instead of collapsing multi-dimensional preference signals into a single ranking, $λ$-DPO constructs a mixture of listwise preference distributions weighted by a preference vector $λ$ on the probability simplex, enabling a single model to internalize a continuous spectrum of preference trade-offs. To further improve robustness, we introduce a performance-driven stochastic $λ$ scheduler that adaptively samples preference weights based on empirical downstream performance, explicitly mitigating the risks of misspecification inherent to static weighting schemes. We evaluate our method across multiple model families and scales on six widely used benchmarks. Experimental results show the consistent improvement against baselines.
comment: 13 pages, 1 figures, appendix included
Physics-Informed Singular-Value Learning for Cross-Covariances Forecasting in Financial Markets
A new wave of work on covariance cleaning and nonlinear shrinkage has delivered asymptotically optimal analytical solutions for large covariance matrices. The same framework has been generalized to empirical cross-covariance matrices, whose singular value decomposition identifies canonical comovement modes between two asset sets, with singular values quantifying the strength of each mode and providing natural targets for shrinkage. Existing analytical cross-covariance cleaners are derived under strong stationarity and large-sample assumptions, and they typically rely on mesoscopic regularity conditions such as bounded spectra; macroscopic common modes (e.g., a global market factor) violate these conditions. When applied to real equity returns, where dependence structures drift over time and global modes are prominent, we find that these theoretically optimal formulas do not translate into robust out-of-sample performance. We address this gap by designing a random-matrix-inspired neural architecture that operates in the empirical singular-vector basis and learns a nonlinear mapping from empirical singular values to their corresponding cleaned values. By construction, the network can recover the analytical solution as a special case, yet it remains flexible enough to adapt to non-stationary dynamics and mode-driven distortions. Trained on a long history of equity returns, the proposed method achieves a more favorable bias-variance trade-off than purely analytical cleaners and delivers systematically lower out-of-sample cross-covariance prediction errors. Our results demonstrate that combining random-matrix theory with machine learning makes asymptotic theories practically effective in realistic time-varying markets.
Large Language Models Encode Semantics and Alignment in Linearly Separable Representations
Understanding the latent space geometry of large language models (LLMs) is key to interpreting their behavior and improving alignment. Yet it remains unclear to what extent LLMs linearly organize representations related to semantic understanding. To explore this, we conduct a large-scale empirical study of hidden representations in 11 autoregressive models across six scientific topics. We find that high-level semantic information consistently resides in low-dimensional subspaces that form linearly separable representations across domains. This separability becomes more pronounced in deeper layers and under prompts that elicit structured reasoning or alignment behavior$\unicode{x2013}$even when surface content remains unchanged. These findings motivate geometry-aware tools that operate directly in latent space to detect and mitigate harmful and adversarial content. As a proof of concept, we train an MLP probe on final-layer hidden states as a lightweight latent-space guardrail. This approach substantially improves refusal rates on malicious queries and prompt injections that bypass both the model's built-in safety alignment and external token-level filters.
comment: IJCNLP and the Asian Chapter of ACL
U-PINet: Physics-Informed Hierarchical Learning for Radar Cross Section Prediction via 3D Electromagnetic Scattering Reconstruction
Conventional computational electromagnetics (CEM) solvers can deliver high fidelity radar cross section (RCS) signatures by first solving the induced surface currents on 3-dimensional (3D) targets and then evaluating the scattered fields via radiation integrals. However, their computational cost becomes prohibitive for repeated queries and large-scale 3D scenarios. Recent purely data-driven networks improve efficiency, yet they often bypass this scattering mechanism, which may compromise physical consistency and generalization. To bridge this gap, in this paper, we propose U-PINet, a fully end-to-end, physics-informed hierarchical network for efficient RCS prediction via 3D electromagnetic scattering reconstruction. Once the scattering quantities are reconstructed, scattered fields and RCS can be evaluated for arbitrary observation directions via the radiation integral. U-PINet explicitly learns physics-consistent intermediate scattering representations by modeling local electromagnetic coupling and long-range radiation effects through a hierarchical operator design inspired by near-far field decomposition in fast solvers. A physics-guided graph neural network is incorporated to capture self- and mutual-coupling among mesh elements of complex targets, enabling physically interpretable intermediate representations. By embedding governing equations as residual constraints, U-PINet enables accurate object reconstruction of scattering quantities and consequently reliable RCS prediction across observation directions, while significantly reducing runtime. Extensive numerical experiments demonstrate that U-PINet achieves EM-solver-level RCS accuracy and 3D object reconstruction with orders-of-magnitude speedups, and generalizes well to unseen geometries under limited training data.
comment: Submitted to an Elsevier Journal
ButterflyMoE: Sub-Linear Ternary Experts via Structured Butterfly Orbits
Linear memory scaling stores $N$ independent expert weight matrices requiring $\mathcal{O}(N \cdot d^2)$ memory, which exceeds edge devices memory budget. Current compression methods like quantization, pruning and low-rank factorization reduce constant factors but leave the scaling bottleneck unresolved. We introduce ButterflyMoE, a method that treats experts not as independent weight matrices but as geometric reorientations of a unified shared quantized substrate. Diversity among experts arises from viewing different angles of shared capacity, not from redundant storage. By applying learned rotations to a shared ternary prototype, each expert yields $\mathcal{O}(d^2 + N \cdot d \log d)$ memory,sub-linear in the number of experts. The key insight: training these rotations with quantization reduces activation outliers and stabilizes extreme low bit training, where static methods collapse. Across language modeling benchmarks, ButterflyMoE achieves 150$\times$ memory reduction at 256 experts with negligible accuracy loss. ButterflyMoE allows multiple experts to fit on edge-constrained devices showing that geometric parameterization breaks linear scaling.
DiEC: Diffusion Embedded Clustering
Deep clustering methods typically rely on a single, well-defined representation for clustering. In contrast, pretrained diffusion models provide abundant and diverse multi-scale representations across network layers and noise timesteps. However, a key challenge is how to efficiently identify the most clustering-friendly representation in the layer*timestep space. To address this issue, we propose Diffusion Embedded Clustering (DiEC), an unsupervised framework that performs clustering by leveraging optimal intermediate representations from pretrained diffusion models. DiEC systematically evaluates the clusterability of representations along the trajectory of network depth and noise timesteps. Meanwhile, an unsupervised search strategy is designed for recognizing the Clustering-optimal Layer (COL) and Clustering-optimal Timestep (COT) in the layer*timestep space of pretrained diffusion models, aiming to promote clustering performance and reduce computational overhead. DiEC is fine-tuned primarily with a structure-preserving DEC-style KL-divergence objective at the fixed COL + COT, together with a random-timestep diffusion denoising objective to maintain the generative capability of the pretrained model. Without relying on augmentation-based consistency constraints or contrastive learning, DiEC achieves excellent clustering performance across multiple benchmark datasets.
Performance and Complexity Trade-off Optimization of Speech Models During Training
In speech machine learning, neural network models are typically designed by choosing an architecture with fixed layer sizes and structure. These models are then trained to maximize performance on metrics aligned with the task's objective. While the overall architecture is usually guided by prior knowledge of the task, the sizes of individual layers are often chosen heuristically. However, this approach does not guarantee an optimal trade-off between performance and computational complexity; consequently, post hoc methods such as weight quantization or model pruning are typically employed to reduce computational cost. This occurs because stochastic gradient descent (SGD) methods can only optimize differentiable functions, while factors influencing computational complexity, such as layer sizes and floating-point operations per second (FLOP/s), are non-differentiable and require modifying the model structure during training. We propose a reparameterization technique based on feature noise injection that enables joint optimization of performance and computational complexity during training using SGD-based methods. Unlike traditional pruning methods, our approach allows the model size to be dynamically optimized for a target performance-complexity trade-off, without relying on heuristic criteria to select which weights or structures to remove. We demonstrate the effectiveness of our method through three case studies, including a synthetic example and two practical real-world applications: voice activity detection and audio anti-spoofing. The code related to our work is publicly available to encourage further research.
comment: This work has been submitted to the IEEE for possible publication
Stackelberg Self-Annotation: A Robust Approach to Data-Efficient LLM Alignment
Aligning large language models (LLMs) with human preferences typically demands vast amounts of meticulously curated data, which is both expensive and prone to labeling noise. We propose Stackelberg Game Preference Optimization (SGPO), a robust alignment framework that models alignment as a two-player Stackelberg game between a policy (leader) and a worst-case preference distribution (follower). The proposed SGPO guarantees $\mathcal{O}(ε)$-bounded regret within an $ε$-Wasserstein ball, offering formal robustness to (self-)annotation noise. We instantiate SGPO with Stackelberg Self-Annotated Preference Optimization (SSAPO), which uses minimal human-labeled "seed" preferences and iteratively self-annotates new prompts. In each iteration, SSAPO applies a distributionally robust reweighting of synthetic annotations, ensuring that noisy or biased self-labels do not derail training. Remarkably, using only 2K seed preferences -- about 1/30 of standard human labels -- SSAPO achieves strong win rates against GPT-4 across multiple benchmarks within three iterations. These results highlight that a principled Stackelberg formulation yields data-efficient alignment for LLMs, significantly reducing reliance on costly human annotations.
Adaptive Rotary Steering with Joint Autoregression for Robust Extraction of Closely Moving Speakers in Dynamic Scenarios
Latest advances in deep spatial filtering for Ambisonics demonstrate strong performance in stationary multi-speaker scenarios by rotating the sound field toward a target speaker prior to multi-channel enhancement. For applicability in dynamic acoustic conditions with moving speakers, we propose to automate this rotary steering using an interleaved tracking algorithm conditioned on the target's initial direction. However, for nearby or crossing speakers, robust tracking becomes difficult and spatial cues less effective for enhancement. By incorporating the processed recording as additional guide into both algorithms, our novel joint autoregressive framework leverages temporal-spectral correlations of speech to resolve spatially challenging speaker constellations. Consequently, our proposed method significantly improves tracking and enhancement of closely spaced speakers, consistently outperforming comparable non-autoregressive methods on a synthetic dataset. Real-world recordings complement these findings in complex scenarios with multiple speaker crossings and varying speaker-to-array distances.
comment: Accepted at IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) 2026
Impartial Games: A Challenge for Reinforcement Learning
AlphaZero-style reinforcement learning (RL) algorithms have achieved superhuman performance in many complex board games such as Chess, Shogi, and Go. However, we showcase that these algorithms encounter significant and fundamental challenges when applied to impartial games, a class where players share game pieces and optimal strategy often relies on abstract mathematical principles. Specifically, we utilise the game of Nim as a concrete and illustrative case study to reveal critical limitations of AlphaZero-style and similar self-play RL algorithms. We introduce a novel conceptual framework distinguishing between champion and expert mastery to evaluate RL agent performance. Our findings reveal that while AlphaZero-style agents can achieve champion-level play on very small Nim boards, their learning progression severely degrades as the board size increases. This difficulty stems not merely from complex data distributions or noisy labels, but from a deeper representational bottleneck: the inherent struggle of generic neural networks to implicitly learn abstract, non-associative functions like parity, which are crucial for optimal play in impartial games. This limitation causes a critical breakdown in the positive feedback loop essential for self-play RL, preventing effective learning beyond rote memorisation of frequently observed states. These results align with broader concerns regarding AlphaZero-style algorithms' vulnerability to adversarial attacks, highlighting their inability to truly master all legal game states. Our work underscores that simple hyperparameter adjustments are insufficient to overcome these challenges, establishing a crucial foundation for the development of fundamentally novel algorithmic approaches, potentially involving neuro-symbolic or meta-learning paradigms, to bridge the gap towards true expert-level AI in combinatorial games.
Memp: Exploring Agent Procedural Memory
Large Language Models (LLMs) based agents excel at diverse tasks, yet they suffer from brittle procedural memory that is manually engineered or entangled in static parameters. In this work, we investigate strategies to endow agents with a learnable, updatable, and lifelong procedural memory. We propose Memp that distills past agent trajectories into both fine-grained, step-by-step instructions and higher-level, script-like abstractions, and explore the impact of different strategies for Build, Retrieval, and Update of procedural memory. Coupled with a dynamic regimen that continuously updates, corrects, and deprecates its contents, this repository evolves in lockstep with new experience. Empirical evaluation on TravelPlanner and ALFWorld shows that as the memory repository is refined, agents achieve steadily higher success rates and greater efficiency on analogous tasks. Moreover, procedural memory built from a stronger model retains its value: migrating the procedural memory to a weaker model can also yield substantial performance gains. Code is available at https://github.com/zjunlp/MemP.
comment: Work in progress
Shaping Sparse Rewards in Reinforcement Learning: A Semi-supervised Approach
In many real-world scenarios, reward signal for agents are exceedingly sparse, making it challenging to learn an effective reward function for reward shaping. To address this issue, the proposed approach in this paper performs reward shaping not only by utilizing non-zero-reward transitions but also by employing the \emph{Semi-Supervised Learning} (SSL) technique combined with a novel data augmentation to learn trajectory space representations from the majority of transitions, {i.e}., zero-reward transitions, thereby improving the efficacy of reward shaping. Experimental results in Atari and robotic manipulation demonstrate that our method outperforms supervised-based approaches in reward inference, leading to higher agent scores. Notably, in more sparse-reward environments, our method achieves up to twice the peak scores compared to supervised baselines. The proposed double entropy data augmentation enhances performance, showcasing a 15.8\% increase in best score over other augmentation methods
Adversarial Drift-Aware Predictive Transfer: Toward Durable Clinical AI
Clinical AI systems frequently suffer performance decay post-deployment due to temporal data shifts, such as evolving populations, diagnostic coding updates (e.g., ICD-9 to ICD-10), and systemic shocks like the COVID-19 pandemic. Addressing this ``aging'' effect via frequent retraining is often impractical due to computational costs and privacy constraints. To overcome these hurdles, we introduce Adversarial Drift-Aware Predictive Transfer (ADAPT), a novel framework designed to confer durability against temporal drift with minimal retraining. ADAPT innovatively constructs an uncertainty set of plausible future models by combining historical source models and limited current data. By optimizing worst-case performance over this set, it balances current accuracy with robustness against degradation due to future drifts. Crucially, ADAPT requires only summary-level model estimators from historical periods, preserving data privacy and ensuring operational simplicity. Validated on longitudinal suicide risk prediction using electronic health records from Mass General Brigham (2005--2021) and Duke University Health Systems, ADAPT demonstrated superior stability across coding transitions and pandemic-induced shifts. By minimizing annual performance decay without labeling or retraining future data, ADAPT offers a scalable pathway for sustaining reliable AI in high-stakes healthcare environments.
Exploring Fine-Tuning of Large Audio Language Models for Spoken Language Understanding under Limited Speech Data
Large Audio Language Models (LALMs) have emerged as powerful tools for speech-related tasks but remain underexplored for fine-tuning, especially with limited speech data. To bridge this gap, we systematically examine how different fine-tuning schemes including text-only, direct mixing, and curriculum learning affect spoken language understanding (SLU), focusing on scenarios where text-label pairs are abundant while paired speech-label data are limited. Results show that LALMs already achieve competitive performance with text-only fine-tuning, highlighting their strong generalization ability. Adding even small amounts of speech data (2-5%) yields substantial further gains, with curriculum learning particularly effective under scarce data. In cross-lingual SLU, combining source-language speech data with target-language text and minimal target-language speech data enables effective adaptation. Overall, this study provides practical insights into the LALM fine-tuning under realistic data constraints.
comment: 4 pages (excluding references), 2 figures, ICASSP 2026 (Accepted)
What Makes AI Research Replicable? Executable Knowledge Graphs as Scientific Knowledge Representations
Replicating AI research is a crucial yet challenging task for large language model (LLM) agents. Existing approaches often struggle to generate executable code, primarily due to insufficient background knowledge and the limitations of retrieval-augmented generation (RAG) methods, which fail to capture latent technical details hidden in referenced papers. Furthermore, previous approaches tend to overlook valuable implementation-level code signals and lack structured knowledge representations that support multi-granular retrieval and reuse. To overcome these challenges, we propose Executable Knowledge Graphs (xKG), a pluggable, paper-centric knowledge base that automatically integrates code snippets and technical insights extracted from scientific literature. When integrated into three agent frameworks with two different LLMs, xKG shows substantial performance gains (10.9% with o3-mini) on PaperBench, demonstrating its effectiveness as a general and extensible solution for automated AI research replication. Code is available at https://github.com/zjunlp/xKG.
comment: Work in progress
GSINA: Improving Subgraph Extraction for Graph Invariant Learning via Graph Sinkhorn Attention
Graph invariant learning (GIL) seeks invariant relations between graphs and labels under distribution shifts. Recent works try to extract an invariant subgraph to improve out-of-distribution (OOD) generalization, yet existing approaches either lack explicit control over compactness or rely on hard top-$k$ selection that shrinks the solution space and is only partially differentiable. In this paper, we provide an in-depth analysis of the drawbacks of some existing works and propose a few general principles for invariant subgraph extraction: 1) separability, as encouraged by our sparsity-driven mechanism, to filter out the irrelevant common features; 2) softness, for a broader solution space; and 3) differentiability, for a soundly end-to-end optimization pipeline. Specifically, building on optimal transport, we propose Graph Sinkhorn Attention (GSINA), a fully differentiable, cardinality-constrained attention mechanism that assigns sparse-yet-soft edge weights via Sinkhorn iterations and induces node attention. GSINA provides explicit controls for separability and softness, and uses a Gumbel reparameterization to stabilize training. It convergence behavior is also theoretically studied. Extensive empirical experimental results on both synthetic and real-world
DRGW: Learning Disentangled Representations for Robust Graph Watermarking
Graph-structured data is foundational to numerous web applications, and watermarking is crucial for protecting their intellectual property and ensuring data provenance. Existing watermarking methods primarily operate on graph structures or entangled graph representations, which compromise the transparency and robustness of watermarks due to the information coupling in representing graphs and uncontrollable discretization in transforming continuous numerical representations into graph structures. This motivates us to propose DRGW, the first graph watermarking framework that addresses these issues through disentangled representation learning. Specifically, we design an adversarially trained encoder that learns an invariant structural representation against diverse perturbations and derives a statistically independent watermark carrier, ensuring both robustness and transparency of watermarks. Meanwhile, we devise a graph-aware invertible neural network to provide a lossless channel for watermark embedding and extraction, guaranteeing high detectability and transparency of watermarks. Additionally, we develop a structure-aware editor that resolves the issue of latent modifications into discrete graph edits, ensuring robustness against structural perturbations. Experiments on diverse benchmark datasets demonstrate the superior effectiveness of DRGW.
comment: Published at The Web Conference 2026 (WWW '26)
HiT: History-Injection Transformers for Onboard Continuous Flood Change Detection
Natural disaster monitoring through continuous satellite observation requires processing multi-temporal data under strict operational constraints. This paper addresses flood detection, a critical application for hazard management, by developing an onboard change detection system that operates within the memory and computational limits of small satellites. We propose History Injection mechanism for Transformer models (HiT), that maintains historical context from previous observations while reducing data storage by over 99\% of original image size. Moreover, testing on the STTORM-CD flood dataset confirms that the HiT mechanism within the Prithvi-tiny foundation model maintains detection accuracy compared to the bitemporal baseline. The proposed HiT-Prithvi model achieved 43 FPS on Jetson Orin Nano, a representative onboard hardware used in nanosats. This work establishes a practical framework for satellite-based continuous monitoring of natural disasters, supporting real-time hazard assessment without dependency on ground-based processing infrastructure. Architecture as well as model checkpoints is available at https://github.com/zaitra/HiT-change-detection
comment: 19 pages, 9 figures, submitted to conference
Representation-Aware Unlearning via Activation Signatures: From Suppression to Knowledge-Signature Erasure
Selective knowledge erasure from LLMs is critical for GDPR compliance and model safety, yet current unlearning methods conflate behavioral suppression with true knowledge removal, allowing latent capabilities to persist beneath surface-level refusals. In this work, we address this challenge by introducing Knowledge Immunization Framework (KIF), a representation-aware architecture that distinguishes genuine erasure from obfuscation by targeting internal activation signatures rather than surface outputs. Our approach combines dynamic suppression of subject-specific representations with parameter-efficient adaptation, enabling durable unlearning without full model retraining. KIF achieves near-oracle erasure (FQ approx 0.99 vs. 1.00) while preserving utility at oracle levels (MU = 0.62), effectively breaking the stability-erasure tradeoff that has constrained all prior work. We evaluate both standard foundation models (Llama and Mistral) and reasoning-prior models (Qwen and DeepSeek) across 3B to 14B parameters. Our observation shows that standard models exhibit scale-independent true erasure (<3% utility drift), while reasoning-prior models reveal fundamental architectural divergence. Our comprehensive dual-metric evaluation protocol, combining surface-level leakage with latent trace persistence, operationalizes the obfuscation - erasure distinction and enables the first systematic diagnosis of mechanism-level forgetting behavior across model families and scales.
comment: 16 pages, 4 figures
Reinforcement Learning for Chain of Thought Compression with One-Domain-to-All Generalization
Chain-of-thought reasoning in large language models can trigger an "overthinking trap": longer rollouts raise cost and latency yet often yield unreliable accuracy gains. Existing methods use global, static controls that may suppress needed reasoning. We propose mastery-gated, sample-level, soft reinforcement learning compression that penalizes long rollouts only when the model already solves the problem and has produced a shorter rollout. Across benchmarks, it cuts response length by 20-40% with comparable or higher accuracy and generalizes across domains: a model trained on math spontaneously shortens unseen tasks (code, instruction following, general-knowledge QA) without hurting accuracy. We further show two-way transfer between non-agent CoT and tool-use agents: non-agent training reduces SWE-Bench Verified rounds by 13%, while compressing a thinking agent cuts SWE trajectories by 67% tokens and 52% rounds and shortens non-agent outputs by up to 44%. Compression is thus not cosmetic brevity, but an inherent computation policy -- what to keep, and what to forget.
A Component-Based Survey of Interactions between Large Language Models and Multi-Armed Bandits
Large language models (LLMs) have become powerful and widely used systems for language understanding and generation, while multi-armed bandit (MAB) algorithms provide a principled framework for adaptive decision-making under uncertainty. This survey explores the potential at the intersection of these two fields. As we know, it is the first survey to systematically review the bidirectional interaction between large language models and multi-armed bandits at the component level. We highlight the bidirectional benefits: MAB algorithms address critical LLM challenges, spanning from pre-training to retrieval-augmented generation (RAG) and personalization. Conversely, LLMs enhance MAB systems by redefining core components such as arm definition and environment modeling, thereby improving decision-making in sequential tasks. We analyze existing LLM-enhanced bandit systems and bandit-enhanced LLM systems, providing insights into their design, methodologies, and performance. Key challenges and representative findings are identified to help guide future research. An accompanying GitHub repository that indexes relevant literature is available at https://github.com/bucky1119/Awesome-LLM-Bandit-Interaction.
comment: 27 pages, 6 table
GraphPerf-RT: A Graph-Driven Performance Model for Hardware-Aware Scheduling of OpenMP Codes
Autonomous AI agents on embedded platforms require real-time, risk-aware scheduling under resource and thermal constraints. Classical heuristics struggle with workload irregularity, tabular regressors discard structural information, and model-free reinforcement learning (RL) risks overheating. We introduce GraphPerf-RT, a graph neural network surrogate achieving deep learning accuracy at heuristic speeds (2-7ms). GraphPerf-RT is, to our knowledge, the first to unify task DAG topology, CFG-derived code semantics, and runtime context (per-core DVFS, thermal state, utilization) in a heterogeneous graph with typed edges encoding precedence, placement, and contention. Evidential regression with Normal-Inverse-Gamma priors provides calibrated uncertainty; we validate on makespan prediction for risk-aware scheduling. Experiments on three ARM platforms (Jetson TX2, Orin NX, RUBIK Pi) achieve R^2 = 0.81 on log-transformed makespan with Spearman rho = 0.95 and conservative uncertainty calibration (PICP = 99.9% at 95% confidence). Integration with four RL methods demonstrates that multi-agent model-based RL with GraphPerf-RT as the world model achieves 66% makespan reduction and 82% energy reduction versus model-free baselines, with zero thermal violations.
comment: 49 pages, 4 figures, 19 tables
Scaffold-Aware Generative Augmentation and Reranking for Enhanced Virtual Screening
Ligand-based virtual screening (VS) is an essential step in drug discovery that evaluates large chemical libraries to identify compounds that potentially bind to a therapeutic target. However, VS faces three major challenges: class imbalance due to the low active rate, structural imbalance among active molecules where certain scaffolds dominate, and the need to identify structurally diverse active compounds for novel drug development. We introduce ScaffAug, a scaffold-aware VS framework that addresses these challenges through three modules. The augmentation module first generates synthetic data conditioned on scaffolds of actual hits using generative models, specifically a graph diffusion model. This helps mitigate the class imbalance and furthermore the structural imbalance, due to our proposed scaffold-aware sampling algorithm, designed to produce more samples for active molecules with underrepresented scaffolds. A model-agnostic self-training module is then used to safely integrate the generated synthetic data from our augmentation module with the original labeled data. Lastly, we introduce a reranking module that improves VS by enhancing scaffold diversity in the top recommended set of molecules, while still maintaining and even enhancing the overall general performance of identifying novel, active compounds. We conduct comprehensive computational experiments across five target classes, comparing ScaffAug against existing baseline methods by reporting the performance of multiple evaluation metrics and performing ablation studies on ScaffAug. Overall, this work introduces novel perspectives on effectively enhancing VS by leveraging generative augmentations, reranking, and general scaffold-awareness.
Dynamic angular synchronization under smoothness constraints
Given an undirected measurement graph $\mathcal{H} = ([n], \mathcal{E})$, the classical angular synchronization problem consists of recovering unknown angles $θ_1^*,\dots,θ_n^*$ from a collection of noisy pairwise measurements of the form $(θ_i^* - θ_j^*) \mod 2π$, for all $\{i,j\} \in \mathcal{E}$. This problem arises in a variety of applications, including computer vision, time synchronization of distributed networks, and ranking from pairwise comparisons. In this paper, we consider a dynamic version of this problem where the angles, and also the measurement graphs evolve over $T$ time points. Assuming a smoothness condition on the evolution of the latent angles, we derive three algorithms for joint estimation of the angles over all time points. Moreover, for one of the algorithms, we establish non-asymptotic recovery guarantees for the mean-squared error (MSE) under different statistical models. In particular, we show that the MSE converges to zero as $T$ increases under milder conditions than in the static setting. This includes the setting where the measurement graphs are highly sparse and disconnected, and also when the measurement noise is large and can potentially increase with $T$. We complement our theoretical results with experiments on synthetic data.
comment: 42 pages, 9 figures. Post publication version. Corrected minor typos in eqs. (3.9), (3.11) and Assumption 3
CT-PatchTST: Channel-Time Patch Time-Series Transformer for Long-Term Renewable Energy Forecasting
Accurate forecasting of renewable energy generation is fundamental to enhancing the dynamic performance of modern power grids, especially under high renewable penetration. This paper presents Channel-Time Patch Time-Series Transformer (CT-PatchTST), a novel deep learning model designed to provide long-term, high-fidelity forecasts of wind and solar power. Unlike conventional time-series models, CT-PatchTST captures both temporal dependencies and inter-channel correlations-features that are critical for effective energy storage planning, control, and dispatch. Reliable forecasting enables proactive deployment of energy storage systems (ESSs), helping to mitigate uncertainties in renewable output, reduce system response time, and optimize storage operation based on location-specific flow and voltage conditions. Evaluated on real-world datasets from Denmark's offshore wind, onshore wind, and solar generation, CT-PatchTST outperforms existing methods in both accuracy and robustness. By enabling predictive, data-driven coordination of ESSs across integrated source-grid-load-storage systems, this work contributes to the design of more stable, responsive, and cost-efficient power networks.
comment: Published in: 2025 10th International Conference on Computer and Information Processing Technology (ISCIPT)
A Survey of Quantized Graph Representation Learning: Connecting Graph Structures with Large Language Models
Recent years have witnessed rapid advances in graph representation learning, with the continuous embedding approach emerging as the dominant paradigm. However, such methods encounter issues regarding parameter efficiency, interpretability, and robustness. Thus, Quantized Graph Representation (QGR) learning has recently gained increasing interest, which represents the graph structure with discrete codes instead of conventional continuous embeddings. Given its analogous representation form to natural language, QGR also possesses the capability to seamlessly integrate graph structures with large language models (LLMs). As this emerging paradigm is still in its infancy yet holds significant promise, we undertake this thorough survey to promote its rapid future prosperity. We first present the background of the general quantization methods and their merits. Moreover, we provide an in-depth demonstration of current QGR studies from the perspectives of quantized strategies, training objectives, distinctive designs, knowledge graph quantization, and applications. We further explore the strategies for code dependence learning and integration with LLMs. At last, we give discussions and conclude future directions, aiming to provide a comprehensive picture of QGR and inspire future research.
Depth-Based Local Center Clustering: A Framework for Handling Different Clustering Scenarios
Cluster analysis, or clustering, plays a crucial role across numerous scientific and engineering domains. Despite the wealth of clustering methods proposed over the past decades, each method is typically designed for specific scenarios and presents certain limitations in practical applications. In this paper, we propose depth-based local center clustering (DLCC). This novel method makes use of data depth, which is known to produce a center-outward ordering of sample points in a multivariate space. However, data depth typically fails to capture the multimodal characteristics of {data}, something of the utmost importance in the context of clustering. To overcome this, DLCC makes use of a local version of data depth that is based on subsets of {data}. From this, local centers can be identified as well as clusters of varying shapes. Furthermore, we propose a new internal metric based on density-based clustering to evaluate clustering performance on {non-convex clusters}. Overall, DLCC is a flexible clustering approach that seems to overcome some limitations of traditional clustering methods, thereby enhancing data analysis capabilities across a wide range of application scenarios.
Deterministic and probabilistic neural surrogates of global hybrid-Vlasov simulations
Hybrid-Vlasov simulations resolve ion-kinetic effects for modeling the solar wind-magnetosphere interaction, but even 5D (2D + 3V) simulations are computationally expensive. We show that graph-based machine learning emulators can learn the spatiotemporal evolution of electromagnetic fields and lower order moments of ion velocity distribution in the near-Earth space environment from four 5D Vlasiator runs performed with identical steady solar wind conditions. The initial ion number density is systematically varied, while the grid spacing is held constant, to scan the ratio of the characteristic ion skin depth to the numerical grid size. Using a graph neural network architecture operating on the 2D spatial simulation grid comprising 670k cells, we demonstrate that both a deterministic forecasting model (Graph-FM) and a probabilistic ensemble forecasting model (Graph-EFM) based on a latent variable formulation are capable of producing accurate predictions of future plasma states. A divergence penalty is incorporated during training to encourage divergence-freeness in the magnetic fields and improve physical consistency. For the probabilistic model, a continuous ranked probability score objective is added to improve the calibration of the ensemble forecasts. When trained, the emulators achieve more than two orders of magnitude speedup in generating the next time step relative to the original simulation on a single GPU compared to 100 CPUs for the Vlasiator runs, while closely matching physical magnetospheric response of the different runs. These results demonstrate that machine learning offers a way to make hybrid-Vlasov simulation tractable for real-time use while providing forecast uncertainty.
Onboard Optimization and Learning: A Survey
Onboard learning is a transformative approach in edge AI, enabling real-time data processing, decision-making, and adaptive model training directly on resource-constrained devices without relying on centralized servers. This paradigm is crucial for applications demanding low latency, enhanced privacy, and energy efficiency. However, onboard learning faces challenges such as limited computational resources, high inference costs, and security vulnerabilities. This survey explores a comprehensive range of methodologies that address these challenges, focusing on techniques that optimize model efficiency, accelerate inference, and support collaborative learning across distributed devices. Approaches for reducing model complexity, improving inference speed, and ensuring privacy-preserving computation are examined alongside emerging strategies that enhance scalability and adaptability in dynamic environments. By bridging advancements in hardware-software co-design, model compression, and decentralized learning, this survey provides insights into the current state of onboard learning to enable robust, efficient, and secure AI deployment at the edge.
comment: 33 pages, 6 figures, 4 tables
jBOT: Semantic Jet Representation Clustering Emerges from Self-Distillation
Self-supervised learning is a powerful pre-training method for learning feature representations without labels, which often capture generic underlying semantics from the data and can later be fine-tuned for downstream tasks. In this work, we introduce jBOT, a pre-training method based on self-distillation for jet data from the CERN Large Hadron Collider, which combines local particle-level distillation with global jet-level distillation to learn jet representations that support downstream tasks such as anomaly detection and classification. We observe that pre-training on unlabeled jets leads to emergent semantic class clustering in the representation space. The clustering in the frozen embedding, when pre-trained on background jets only, enables anomaly detection via simple distance-based metrics, and the learned embedding can be fine-tuned for classification with improved performance compared to supervised models trained from scratch.
comment: Under review
On the Provable Suboptimality of Momentum SGD in Nonstationary Stochastic Optimization
While momentum-based acceleration has been studied extensively in deterministic optimization problems, its behavior in nonstationary environments -- where the data distribution and optimal parameters drift over time -- remains underexplored. We analyze the tracking performance of Stochastic Gradient Descent (SGD) and its momentum variants (Polyak heavy-ball and Nesterov) under uniform strong convexity and smoothness in varying stepsize regimes. We derive finite-time bounds in expectation and with high probability for the tracking error, establishing a sharp decomposition into three components: a transient initialization term, a noise-induced variance term, and a drift-induced tracking lag. Crucially, our analysis uncovers a fundamental trade-off: while momentum can suppress gradient noise, it incurs an explicit penalty on the tracking capability. We show that momentum can substantially amplify drift-induced tracking error, with amplification that becomes unbounded as the momentum parameter approaches one, formalizing the intuition that using 'stale' gradients hinders adaptation to rapid regime shifts. Complementing these upper bounds, we establish minimax lower bounds for dynamic regret under gradient-variation constraints. These lower bounds prove that the inertia-induced penalty is not an artifact of analysis but an information-theoretic barrier: in drift-dominated regimes, momentum creates an unavoidable 'inertia window' that fundamentally degrades performance. Collectively, these results provide a definitive theoretical grounding for the empirical instability of momentum in dynamic environments and delineate the precise regime boundaries where SGD provably outperforms its accelerated counterparts.
comment: 70 pages, 4 figures, 2 tables
Towards Reinforcement Learning from Neural Feedback: Mapping fNIRS Signals to Agent Performance AAAI
Reinforcement Learning from Human Feedback (RLHF) is a methodology that aligns agent behavior with human preferences by integrating user feedback into the agent's training process. This paper introduces a framework that guides agent training through implicit neural signals, with a focus on the neural classification problem. Our work presents and releases a novel dataset of functional near-infrared spectroscopy (fNIRS) recordings collected from 25 human participants across three domains: Pick-and-Place Robot, Lunar Lander, and Flappy Bird. We train multiple classifiers to predict varying levels of agent performance (optimal, suboptimal, or worst-case) from windows of preprocessed fNIRS features, achieving an average F1 score of 67% for binary and 46% for multi-class classification across conditions and domains. We also train multiple regressors to predict the degree of deviation between an agent's chosen action and a set of near-optimal policy actions, providing a continuous measure of performance. Finally, we evaluate cross-subject generalization and show that fine-tuning pre-trained models with a small sample of subject-specific data increases average F1 scores by 17% and 41% for binary and multi-class models, respectively. Our results demonstrate that mapping implicit fNIRS signals to agent performance is feasible and can be improved, laying the foundation for future Reinforcement Learning from Neural Feedback (RLNF) systems.
comment: Accepted to the Association for the Advancement of Artificial Intelligence (AAAI) 2026. To appear in the AAAI 2026 Proceedings
Online Statistical Inference for Contextual Bandits via Stochastic Gradient Descent
With the fast development of big data, learning the optimal decision rule by recursively updating it and making online decisions has been easier than before. We study the online statistical inference of model parameters in a contextual bandit framework of sequential decision-making. We propose a general framework for an online and adaptive data collection environment that can update decision rules via weighted stochastic gradient descent. We allow different weighting schemes of the stochastic gradient and establish the asymptotic normality of the parameter estimator. Our proposed estimator significantly improves the asymptotic efficiency over the previous averaged SGD approach via inverse probability weights. We also conduct an optimality analysis on the weights in a linear regression setting. We provide a Bahadur representation of the proposed estimator and show that the remainder term in the Bahadur representation entails a slower convergence rate compared to classical SGD due to the adaptive data collection.
RL-BioAug: Label-Efficient Reinforcement Learning for Self-Supervised EEG Representation Learning
The quality of data augmentation serves as a critical determinant for the performance of contrastive learning in EEG tasks. Although this paradigm is promising for utilizing unlabeled data, static or random augmentation strategies often fail to preserve intrinsic information due to the non-stationarity of EEG signals where statistical properties change over time. To address this, we propose RL-BioAug, a framework that leverages a label-efficient reinforcement learning (RL) agent to autonomously determine optimal augmentation policies. While utilizing only a minimal fraction (10%) of labeled data to guide the agent's policy, our method enables the encoder to learn robust representations in a strictly self-supervised manner. Experimental results demonstrate that RL-BioAug significantly outperforms the random selection strategy, achieving substantial improvements of 9.69% and 8.80% in Macro-F1 score on the Sleep-EDFX and CHB-MIT datasets, respectively. Notably, this agent mainly chose optimal strategies for each task--for example, Time Masking with a 62% probability for sleep stage classification and Crop & Resize with a 77% probability for seizure detection. Our framework suggests its potential to replace conventional heuristic-based augmentations and establish a new autonomous paradigm for data augmentation. The source code is available at https://github.com/dlcjfgmlnasa/RL-BioAug.
Reliable Grid Forecasting: State Space Models for Safety-Critical Energy Systems
Accurate grid load forecasting is safety-critical: under-predictions risk supply shortfalls, while symmetric error metrics can mask this operational asymmetry. We introduce an operator-legible evaluation framework -- Under-Prediction Rate (UPR), tail Reserve$_{99.5}^{\%}$ requirements, and explicit inflation diagnostics (Bias$_{24h}$/OPR) -- to quantify one-sided reliability risk beyond MAPE. Using this framework, we evaluate state space models (Mamba variants) and strong baselines on a weather-aligned California Independent System Operator (CAISO) dataset spanning Nov 2023--Nov 2025 (84,498 hourly records across 5 regional transmission areas) under a rolling-origin walk-forward backtest. We develop and evaluate thermal-lag-aligned weather fusion strategies for these architectures. Our results demonstrate that standard accuracy metrics are insufficient proxies for operational safety: models with comparable MAPE can imply materially different tail reserve requirements (Reserve$_{99.5}^{\%}$). We show that explicit weather integration narrows error distributions, reducing the impact of temperature-driven demand spikes. Furthermore, while probabilistic calibration reduces large-error events, it can induce systematic schedule inflation. We introduce Bias/OPR-constrained objectives to enable auditable trade-offs between minimizing tail risk and preventing trivial over-forecasting.
comment: 30 pages, 7 figures, 9 tables
Protocode: Prototype-Driven Interpretability for Code Generation in LLMs
Since the introduction of Large Language Models (LLMs), they have been widely adopted for various tasks such as text summarization, question answering, speech-to-text translation, and more. In recent times, the use of LLMs for code generation has gained significant attention, with tools such as Cursor and Windsurf demonstrating the ability to analyze massive code repositories and recommend relevant changes. Big tech companies have also acknowledged the growing reliance on LLMs for code generation within their codebases. Although these advances significantly improve developer productivity, increasing reliance on automated code generation can proportionally increase the risk of suboptimal solutions and insecure code. Our work focuses on automatically sampling In-Context Learning (ICL) demonstrations which can improve model performance and enhance the interpretability of the generated code. Using AST-based analysis on outputs from the MBPP test set, we identify regions of code most influenced by the chosen demonstrations. In our experiments, we show that high-quality ICL demonstrations not only make outputs easier to interpret but also yield a positive performance improvement on the pass@10 metric. Conversely, poorly chosen ICL demonstrations affected the LLM performance on the pass@10 metric negatively compared to the base model. Overall, our approach highlights the importance of efficient sampling strategies for ICL, which can affect the performance of the model on any given task.
P-MOSS: Scheduling Main-Memory Indexes Over NUMA Servers Using Next Token Prediction
Ever since the Dennard scaling broke down in the early 2000s and the frequency of the CPUs stalled, vendors have started to increase the core count in each CPU chip at the expense of introducing heterogeneity, thus ushering the era of NUMA and Chiplet processors. Since then, the heterogeneity in the design space of hardware has only increased to the point that DBMS performance may vary significantly up to an order of magnitude in modern servers. An important factor that affects performance includes the location of the logical cores where the DBMS queries execute, and the location where the data resides. This paper introduces P-MOSS, a learned spatial scheduling framework that schedules query execution to specific logical cores, and co-locates data on the corresponding NUMA node. For cross-hardware and workload adaptability, P-MOSS leverages core principles from Large Language Models, such as Next Token prediction, Generative Pre-training, and Fine-tuning. In the spirit of hardware-software synergy, P-MOSS guides its scheduling decision solely based on the low-level hardware statistics collected from the hardware Performance Monitoring Unit with the aid of a Decision Transformer. Experimental evaluation is performed in the context of the B$^+$-Tree index. Performance results demonstrate that P-MOSS offers an improvement of up to $6\times$ over traditional schedules in terms of query throughput.
comment: Accepted to SIGMOD'26
Manifold-based Sampling for In-Context Hallucination Detection in Large Language Models
Large language models (LLMs) frequently generate factually incorrect or unsupported content, commonly referred to as hallucinations. Prior work has explored decoding strategies, retrieval augmentation, and supervised fine-tuning for hallucination detection, while recent studies show that in-context learning (ICL) can substantially influence factual reliability. However, existing ICL demonstration selection methods often rely on surface-level similarity heuristics and exhibit limited robustness across tasks and models. We propose MB-ICL, a manifold-based demonstration sampling framework for selecting in-context demonstrations that leverages latent representations extracted from frozen LLMs. By jointly modeling local manifold structure and class-aware prototype geometry, MB-ICL selects demonstrations based on their proximity to learned prototypes rather than lexical or embedding similarity alone. Across factual verification (FEVER) and hallucination detection (HaluEval) benchmarks, MB-ICL outperforms standard ICL selection baselines in the majority of evaluated settings, with particularly strong gains on dialogue and summarization tasks. The method remains robust under temperature perturbations and model variation, indicating improved stability compared to heuristic retrieval strategies. While lexical retrieval can remain competitive in certain question-answering regimes, our results demonstrate that manifold-based prototype selection provides a reliable and training light approach for hallucination detection without modifying LLM parameters, offering a principled direction for improved ICL demonstration selection.
Achilles' Heel of Mamba: Essential difficulties of the Mamba architecture demonstrated by synthetic data
State Space Models (SSMs) have emerged as promising alternatives to attention mechanisms, with the Mamba architecture demonstrating impressive performance and linear complexity for processing long sequences. However, the fundamental differences between Mamba and Transformer architectures remain incompletely understood. In this work, we use carefully designed synthetic tasks to reveal Mamba's inherent limitations. Through experiments, we identify that Mamba's nonlinear convolution introduces an asymmetry bias that significantly impairs its ability to recognize symmetrical patterns and relationships. Using composite function and inverse sequence matching tasks, we demonstrate that Mamba strongly favors compositional solutions over symmetrical ones and struggles with tasks requiring the matching of reversed sequences. We show these limitations stem not from the SSM module itself but from the nonlinear convolution preceding it, which fuses token information asymmetrically. These insights provide a new understanding of Mamba's constraints and suggest concrete architectural improvements for future sequence models.
Enabling Agents to Communicate Entirely in Latent Space
While natural language is the de facto communication medium for LLM-based agents, it presents a fundamental constraint. The process of downsampling rich, internal latent states into discrete tokens inherently limits the depth and nuance of information that can be transmitted, thereby hindering collaborative problem-solving. Inspired by telepathy, which bypasses symbolic language in communication, we propose Interlat (Inter-agent Latent Space Communication), a paradigm that leverages the continuous last hidden states of an LLM as a representation of its thought for direct communication (termed latent communication). An additional learned compression process further compresses latent communication via latent space reasoning. Experiments demonstrate that Interlat outperforms both fine-tuned chain-of-thought (CoT) prompting and single-agent baselines, even across heterogeneous models, promoting more exploratory behavior and enabling genuine utilization of latent information. Further compression not only substantially accelerates inference by up to 24 times but also maintains competitive performance through an efficient information-preserving mechanism. We position this work as a feasibility study of entirely latent space inter-agent communication, and our results highlight its potential, offering valuable insights for future research.
comment: Work in progess
Karhunen-Loève Expansion-Based Residual Anomaly Map for Resource-Efficient Glioma MRI Segmentation
Accurate segmentation of brain tumors is essential for clinical diagnosis and treatment planning. Deep learning is currently the state-of-the-art for brain tumor segmentation, yet it requires either large datasets or extensive computational resources that are inaccessible in most areas. This makes the problem increasingly difficult: state-of-the-art models use thousands of training cases and vast computational power, where performance drops sharply when either is limited. The top performer in the Brats GLI 2023 competition relied on supercomputers trained on over 92,000 augmented MRI scans using an AMD EPYC 7402 CPU, six NVIDIA RTX 6000 GPUs (48GB VRAM each), and 1024GB of RAM over multiple weeks. To address this, the Karhunen--Loève Expansion (KLE) was implemented as a feature extraction step on downsampled, z-score normalized MRI volumes. Each 240$\times$240$\times$155 multi-modal scan is reduced to four $48^3$ channels and compressed into 32 KL coefficients. The resulting approximate reconstruction enables a residual-based anomaly map, which is upsampled and added as a fifth channel to a compact 3D U-Net. All experiments were run on a consumer workstation (AMD Ryzen 5 7600X CPU, RTX 4060Ti (8GB VRAM), and 64GB RAM while using far fewer training cases. This model achieves post-processed Dice scores of 0.929 (WT), 0.856 (TC), and 0.821 (ET), with HD95 distances of 2.93, 6.78, and 10.35 voxels. These results are significantly better than the winning BraTS 2023 methodology for HD95 distances and WT dice scores. This demonstrates that a KLE-based residual anomaly map can dramatically reduce computational cost and data requirements while retaining state-of-the-art performance.
A Finite Expression Method for Solving High-Dimensional Committor Problems
Transition path theory (TPT) is a mathematical framework for quantifying rare transition events between a pair of selected metastable states $A$ and $B$. Central to TPT is the committor function, which describes the probability to hit the metastable state $B$ prior to $A$ from any given starting point of the phase space. Once the committor is computed, the transition channels and the transition rate can be readily found. The committor is the solution to the backward Kolmogorov equation with appropriate boundary conditions. However, solving it is a challenging task in high dimensions due to the need to mesh a whole region of the ambient space. In this work, we explore the finite expression method (FEX, Liang and Yang (2022)) as a tool for computing the committor. FEX approximates the committor by an algebraic expression involving a fixed finite number of nonlinear functions and binary arithmetic operations. The optimal nonlinear functions, the binary operations, and the numerical coefficients in the expression template are found via reinforcement learning. The FEX-based committor solver is tested on several high-dimensional benchmark problems. It gives comparable or better results than neural network-based solvers. Most importantly, FEX is capable of correctly identifying the algebraic structure of the solution which allows one to reduce the committor problem to a low-dimensional one and find the committor with any desired accuracy.
Reinforced Inverse Scattering
Inverse wave scattering aims at determining the properties of an object using data on how the object scatters incoming waves. In order to collect information, sensors are put in different locations to send and receive waves from each other. The choice of sensor positions and incident wave frequencies determines the reconstruction quality of scatterer properties. This paper introduces reinforcement learning to develop precision imaging that decides sensor positions and wave frequencies adaptive to different scatterers in an intelligent way, thus obtaining a significant improvement in reconstruction quality with limited imaging resources. Extensive numerical results will be provided to demonstrate the superiority of the proposed method over existing methods.
E-BATS: Efficient Backpropagation-Free Test-Time Adaptation for Speech Foundation Models NeurIPS 2025
Speech Foundation Models encounter significant performance degradation when deployed in real-world scenarios involving acoustic domain shifts, such as background noise and speaker accents. Test-time adaptation (TTA) has recently emerged as a viable strategy to address such domain shifts at inference time without requiring access to source data or labels. However, existing TTA approaches, particularly those relying on backpropagation, are memory-intensive, limiting their applicability in speech tasks and resource-constrained settings. Although backpropagation-free methods offer improved efficiency, existing ones exhibit poor accuracy. This is because they are predominantly developed for vision tasks, which fundamentally differ from speech task formulations, noise characteristics, and model architecture, posing unique transferability challenges. In this paper, we introduce E-BATS, the first Efficient BAckpropagation-free TTA framework designed explicitly for speech foundation models. E-BATS achieves a balance between adaptation effectiveness and memory efficiency through three key components: (i) lightweight prompt adaptation for a forward-pass-based feature alignment, (ii) a multi-scale loss to capture both global (utterance-level) and local distribution shifts (token-level) and (iii) a test-time exponential moving average mechanism for stable adaptation across utterances. Experiments conducted on four noisy speech datasets spanning sixteen acoustic conditions demonstrate consistent improvements, with 4.1%-13.5% accuracy gains over backpropagation-free baselines and 2.0-6.4 times GPU memory savings compared to backpropagation-based methods. By enabling scalable and robust adaptation under acoustic variability, this work paves the way for developing more efficient adaptation approaches for practical speech processing systems in real-world environments.
comment: Accepted by NeurIPS 2025
BayesAgent: Bayesian Agentic Reasoning Under Uncertainty via Verbalized Probabilistic Graphical Modeling AAAI 2026
Human cognition excels at transcending sensory input and forming latent representations that structure our understanding of the world. While Large Language Model (LLM) agents demonstrate emergent reasoning and decision-making abilities, they lack a principled framework for capturing latent structures and modeling uncertainty. In this work, we explore for the first time how to bridge LLM agents with probabilistic graphical models (PGMs) to address agentic reasoning under uncertainty. To this end, we introduce Verbalized Probabilistic Graphical Modeling (vPGM), a Bayesian agentic framework that (i) guides LLM agents in following key principles of PGMs through natural language and (ii) refines the resulting posterior distributions via numerical Bayesian inference. Unlike many traditional probabilistic methods requiring substantial domain expertise, vPGM bypasses expert-driven model design, making it well-suited for scenarios with limited assumptions. We evaluated our model on several agentic reasoning tasks, both close-ended and open-ended. Our results indicate that the model effectively enhances confidence calibration and text generation quality.
comment: Accepted to AAAI 2026
Finite Expression Methods for Discovering Physical Laws from Data
Nonlinear dynamics is a pervasive phenomenon observed in scientific and engineering disciplines. However, the task of deriving analytical expressions to describe nonlinear dynamics from limited data remains challenging. In this paper, we shall present a novel deep symbolic learning method called the "finite expression method" (FEX) to discover governing equations within a function space containing a finite set of analytic expressions, based on observed dynamic data. The key concept is to employ FEX to generate analytical expressions of the governing equations by learning the derivatives of partial differential equation (PDE) solutions through convolutions. Our numerical results demonstrate that our FEX surpasses other existing methods (such as PDE-Net, SINDy, GP, and SPL) in terms of numerical performance across a range of problems, including time-dependent PDE problems and nonlinear dynamical systems with time-varying coefficients. Moreover, the results highlight FEX's flexibility and expressive power in accurately approximating symbolic governing equations.
Learning to Trust Experience: A Monitor-Trust-Regulator Framework for Learning under Unobservable Feedback Reliability
Learning under unobservable feedback reliability poses a distinct challenge beyond optimization robustness: a system must decide whether to learn from an experience, not only how to learn stably. We study this setting as Epistemic Identifiability under Unobservable Reliability (EIUR), where each experience has a latent credibility, reliable and unreliable feedback can be locally indistinguishable, and data are generated in a closed loop by the learner's own evolving beliefs and actions. In EIUR, standard robust learning can converge stably yet form high-confidence, systematically wrong beliefs. We propose metacognitive regulation as a practical response: a second, introspective control loop that infers experience credibility from endogenous evidence in the learner's internal dynamics. We formalize this as a modular Monitor-Trust-Regulator (MTR) decomposition and instantiate it with self-diagnosis, which maintains a slowly varying experience-trust variable that softly modulates learning updates, without exogenous reliability labels or an explicit corruption model. Empirically, in the EIUR regimes studied here, self-diagnosis is associated with improved epistemic identifiability. In reinforcement learning, it enables calibrated skepticism and recovery under systematically corrupted rewards. In supervised learning, it exposes a critical dissociation: performance recovery does not imply epistemic recovery. Accuracy can rebound while internal belief dynamics remain locked-in by early misleading data, a failure detectable only through introspective diagnostics. Together, MTR and self-diagnosis provide an organizing abstraction and a concrete design template for intrinsic reliability assessment in autonomous learning under unobservable reliability.
comment: 23 pages, 7 figures. Preprint
Deceptive Sequential Decision-Making via Regularized Policy Optimization
Autonomous systems are increasingly expected to operate in the presence of adversaries, though adversaries may infer sensitive information simply by observing a system. Therefore, present a deceptive sequential decision-making framework that not only conceals sensitive information, but actively misleads adversaries about it. We model autonomous systems as Markov decision processes, with adversaries using inverse reinforcement learning to recover reward functions. To counter them, we present three regularization strategies for policy synthesis problems that actively deceive an adversary about a system's reward. ``Diversionary deception'' leads an adversary to draw any false conclusion about the system's reward function. ``Targeted deception'' leads an adversary to draw a specific false conclusion about the system's reward function. ``Equivocal deception'' leads an adversary to infer that the real reward and a false reward both explain the system's behavior. We show how each form of deception can be implemented in policy optimization problems and analytically bound the loss in total accumulated reward induced by deception. Next, we evaluate these developments in a multi-agent setting. We show that diversionary, targeted, and equivocal deception all steer the adversary to false beliefs while still attaining a total accumulated reward that is at least 98% of its optimal, non-deceptive value.
comment: 18 pages, 5 figures
EfficientXpert: Efficient Domain Adaptation for Large Language Models via Propagation-Aware Pruning
Large language models (LLMs) are increasingly adapted into domain-specific variants for applications in law, healthcare, and finance. Their scale, however, limits deployment in resource-constrained settings, and existing compression approaches often either degrade after domain adaptation or require substantial additional computation. We introduce EfficientXpert, a lightweight framework for domain pruning that integrates ForeSight Mask, a propagation-aware criterion for selecting weights to prune without backpropagation, and Partial Brain Surgeon, an efficient closed-form update for low-rank adapters under a fixed sparsity pattern. With fine-tuning cost comparable to standard LoRA, EfficientXpert converts a general pretrained model into a sparse, domain-adapted expert in a single pruning step. Across health and legal benchmarks, EfficientXpert reaches up to 98 percent of dense performance at 40 percent sparsity, improving over prior pruning baselines while matching LoRA training time and staying within 1 percent of LoRA peak GPU memory in our experiments.
Integrating Neural Differential Forecasting with Safe Reinforcement Learning for Blood Glucose Regulation
Automated insulin delivery for Type 1 Diabetes must balance glucose control and safety under uncertain meals and physiological variability. While reinforcement learning (RL) enables adaptive personalization, existing approaches struggle to simultaneously guarantee safety, leaving a gap in achieving both personalized and risk-aware glucose control, such as overdosing before meals or stacking corrections. To bridge this gap, we propose TSODE, a safety-aware controller that integrates Thompson Sampling RL with a Neural Ordinary Differential Equation (NeuralODE) forecaster to address this challenge. Specifically, the NeuralODE predicts short-term glucose trajectories conditioned on proposed insulin doses, while a conformal calibration layer quantifies predictive uncertainty to reject or scale risky actions. In the FDA-approved UVa/Padova simulator (adult cohort), TSODE achieved 87.9% time-in-range with less than 10% time below 70 mg/dL, outperforming relevant baselines. These results demonstrate that integrating adaptive RL with calibrated NeuralODE forecasting enables interpretable, safe, and robust glucose regulation.
comment: 5 pages, 3 figures, ISBI 2026
Taming the Long-Tail: Efficient Reasoning RL Training with Adaptive Drafter
The emergence of Large Language Models (LLMs) with strong reasoning capabilities marks a significant milestone, unlocking new frontiers in complex problem-solving. However, training these reasoning models, typically using Reinforcement Learning (RL), encounters critical efficiency bottlenecks: response generation during RL training exhibits a persistent long-tail distribution, where a few very long responses dominate execution time, wasting resources and inflating costs. To address this, we propose TLT, a system that accelerates reasoning RL training losslessly by integrating adaptive speculative decoding. Applying speculative decoding in RL is challenging due to the dynamic workloads, evolving target model, and draft model training overhead. TLT overcomes these obstacles with two synergistic components: (1) Adaptive Drafter, a lightweight draft model trained continuously on idle GPUs during long-tail generation to maintain alignment with the target model at no extra cost; and (2) Adaptive Rollout Engine, which maintains a memory-efficient pool of pre-captured CUDAGraphs and adaptively select suitable SD strategies for each input batch. Evaluations demonstrate that TLT achieves over 1.7x end-to-end RL training speedup over state-of-the-art systems, preserves the model accuracy, and yields a high-quality draft model as a free byproduct suitable for efficient deployment. Code is released at https://github.com/mit-han-lab/fastrl.
Small Gradient Norm Regret for Online Convex Optimization
This paper introduces a new problem-dependent regret measure for online convex optimization with smooth losses. The notion, which we call the $G^\star$ regret, depends on the cumulative squared gradient norm evaluated at the decision in hindsight $\sum_{t=1}^T \|\nabla \ell(x^\star)\|^2$. We show that the $G^\star$ regret strictly refines the existing $L^\star$ (small loss) regret, and that it can be arbitrarily sharper when the losses have vanishing curvature around the hindsight decision. We establish upper and lower bounds on the $G^\star$ regret and extend our results to dynamic regret and bandit settings. As a byproduct, we refine the existing convergence analysis of stochastic optimization algorithms in the interpolation regime. Some experiments validate our theoretical findings.
Stability, Complexity and Data-Dependent Worst-Case Generalization Bounds
Providing generalization guarantees for stochastic optimization algorithms remains a key challenge in learning theory. Recently, numerous works demonstrated the impact of the geometric properties of optimization trajectories on generalization performance. These works propose worst-case generalization bounds in terms of various notions of intrinsic dimension and/or topological complexity, which were found to empirically correlate with the generalization error. However, most of these approaches involve intractable mutual information terms, which limit a full understanding of the bounds. In contrast, some authors built on algorithmic stability to obtain worst-case bounds involving geometric quantities of a combinatorial nature, which are impractical to compute. In this paper, we address these limitations by combining empirically relevant complexity measures with a framework that avoids intractable quantities. To this end, we introduce the concept of \emph{random set stability}, tailored for the data-dependent random sets produced by stochastic optimization algorithms. Within this framework, we show that the worst-case generalization error can be bounded in terms of (i) the random set stability parameter and (ii) empirically relevant, data- and algorithm-dependent complexity measures of the random set. Moreover, our framework improves existing topological generalization bounds by recovering previous complexity notions without relying on mutual information terms. Through a series of experiments in practically relevant settings, we validate our theory by evaluating the tightness of our bounds and the interplay between topological complexity and stability.
comment: 29 pages
Spectral Generative Flow Models: A Physics-Inspired Replacement for Vectorized Large Language Models
We introduce Spectral Generative Flow Models (SGFMs), a physics-inspired alternative to transformer-based large language models. Instead of representing text or video as sequences of discrete tokens processed by attention, SGFMs treat generation as the evolution of a continuous field governed by constrained stochastic dynamics in a multiscale wavelet basis. This formulation replaces global attention with local operators, spectral projections, and Navier--Stokes-like transport, yielding a generative mechanism grounded in continuity, geometry, and physical structure. Our framework provides three key innovations: (i) a field-theoretic ontology in which text and video are unified as trajectories of a stochastic partial differential equation; (ii) a wavelet-domain representation that induces sparsity, scale separation, and computational efficiency; and (iii) a constrained stochastic flow that enforces stability, coherence, and uncertainty propagation. Together, these components define a generative architecture that departs fundamentally from autoregressive modeling and diffusion-based approaches. SGFMs offer a principled path toward long-range coherence, multimodal generality, and physically structured inductive bias in next-generation generative models.
Beyond Fixed Horizons: A Theoretical Framework for Adaptive Denoising Diffusions
We introduce a new class of generative diffusion models that, unlike conventional denoising diffusion models, achieve a time-homogeneous structure for both the noising and denoising processes, allowing the number of steps to adaptively adjust based on the noise level. This is accomplished by conditioning the forward process using Doob's $h$-transform, which terminates the process at a suitable sampling distribution at a random time. The model is particularly well suited for generating data with lower intrinsic dimensions, as the termination criterion simplifies to a first-hitting rule. A key feature of the model is its adaptability to the target data, enabling a variety of downstream tasks using a pre-trained unconditional generative model. These tasks include natural conditioning through appropriate initialisation of the denoising process and classification of noisy data.
DS FedProxGrad: Asymptotic Stationarity Without Noise Floor in Fair Federated Learning
Recent work \cite{arifgroup} introduced Federated Proximal Gradient \textbf{(\texttt{FedProxGrad})} for solving non-convex composite optimization problems in group fair federated learning. However, the original analysis established convergence only to a \textit{noise-dominated neighborhood of stationarity}, with explicit dependence on a variance-induced noise floor. In this work, we provide an improved asymptotic convergence analysis for a generalized \texttt{FedProxGrad}-type analytical framework with inexact local proximal solutions and explicit fairness regularization. We call this extended analytical framework \textbf{DS \texttt{FedProxGrad}} (Decay Step Size \texttt{FedProxGrad}). Under a Robbins-Monro step-size schedule \cite{robbins1951stochastic} and a mild decay condition on local inexactness, we prove that $\liminf_{r\to\infty} \mathbb{E}[\|\nabla F(\mathbf{x}^r)\|^2] = 0$, i.e., the algorithm is asymptotically stationary and the convergence rate does not depend on a variance-induced noise floor.
comment: Withdrawn due to an error in the proof; a corrected version will be posted
On the Exponential Convergence for Offline RLHF with Pairwise Comparisons AAAI 2026
We consider the problem of offline reinforcement learning from human feedback (RLHF) with pairwise comparisons proposed by Zhu et al. (2023), where the implicit reward is a linear function of an unknown parameter. Given an offline dataset, our objective consists in ascertaining the optimal action for each state, with the ultimate goal of minimizing the {\em simple regret}. We propose an algorithm, \underline{RL} with \underline{L}ocally \underline{O}ptimal \underline{W}eights or {\sc RL-LOW}, which yields an exponential form of simple regret of $\exp ( - Ω(n/H) )$ where $n$ is the number of data samples and $H$ denotes an instance-dependent hardness quantity that depends explicitly on the suboptimality gap of each action. Furthermore, we derive a first-of-its-kind instance-dependent lower bound in offline RLHF with pairwise comparisons. Interestingly, we observe that the lower and upper bounds on the simple regret match order-wise in the exponent, demonstrating order-wise optimality of our {\sc RL-LOW}. In view of privacy considerations in practical applications, we also extend {\sc RL-LOW} to the setting of $(\varepsilon,δ)$-differential privacy and show, somewhat surprisingly, that the hardness parameter $H$ is unchanged in the asymptotic regime as $n$ tends to infinity; this underscores the inherent efficiency of {\sc RL-LOW} in terms of preserving the privacy of the observed rewards. Given our focus on establishing instance-dependent bounds of exponential convergence, our research fills the research gap in existing studies that concentrate on establishing worst-case regrets of {\em inverse polynomial convergence} (e.g., $\widetilde{O}(\frac{1}{\sqrt{n}})$) for offline RLHF with pairwise comparisons.
comment: Accepted as an oral presentation at AAAI 2026 (AI Alignment Track)
Collaborate, Deliberate, Evaluate: How LLM Alignment Affects Coordinated Multi-Agent Outcomes
As Large Language Models (LLMs) get integrated into diverse workflows, they are increasingly being regarded as "collaborators" with humans, and required to work in coordination with other AI systems. If such AI collaborators are to reliably coordinate their actions and behaviors with humans or other AIs, their properties and behaviors over multi-turn interactions must be known and predictable. This paper examines how different alignment methods affect LLM agents' effectiveness as partners in multi-turn, multi-party collaborations. We study this question through the lens of intervention agents that insert themselves into group dialogues not to provide answers, but to encourage the collaborative group to slow down and reflect upon their reasoning for deliberative decision-making. Common alignment techniques are typically developed under simplified single-user settings and assume the optimality of the underlying token MDP. Using the theoretical lens of the modified-action MDP, we show how they do not account for the dynamics of long-horizon multi-party interactions. We present a novel roleplay simulation methodology, where we align LLMs according to different methods and then deploy them in collaborative task dialogues to quantify how interventions affect the trajectory of group collaboration, belief alignment, and coordination. Our results show that an intervention agent that is robust to action modification significantly outperforms common alignment baselines in supporting correct task outcomes.
comment: This submission is a new version of arXiv:2509.05882v1. with a substantially revised experimental pipeline and new metrics. In particular, collaborator agents are now instantiated independently via separate API calls, rather than generated autoregressively by a single agent. All experimental results are new. Accepted as an extended abstract at AAMAS 2026
Distributionally Robust Causal Abstractions
Causal Abstraction (CA) theory provides a principled framework for relating causal models that describe the same system at different levels of granularity while ensuring interventional consistency between them. Recent methods for learning CAs, however, assume fixed and well-specified exogenous distributions, leaving them vulnerable to environmental shifts and model misspecification. In this work, we address these limitations by introducing the first class of distributionally robust CAs and their associated learning algorithms. The latter cast robust causal abstraction learning as a constrained min-max optimization problem with Wasserstein ambiguity sets. We provide theoretical guarantees for both empirical and Gaussian environments, enabling principled selection of ambiguity set radii and establish quantitative guarantees on worst-case abstraction error. Furthermore, we present empirical evidence across different problems and CA learning methods, demonstrating our framework's robustness not only to environmental shifts but also to structural and intervention mapping misspecification.
Boundary-Aware Adversarial Filtering for Reliable Diagnosis under Extreme Class Imbalance
We study classification under extreme class imbalance where recall and calibration are both critical, for example in medical diagnosis scenarios. We propose AF-SMOTE, a mathematically motivated augmentation framework that first synthesizes minority points and then filters them by an adversarial discriminator and a boundary utility model. We prove that, under mild assumptions on the decision boundary smoothness and class-conditional densities, our filtering step monotonically improves a surrogate of F_beta (for beta >= 1) while not inflating Brier score. On MIMIC-IV proxy label prediction and canonical fraud detection benchmarks, AF-SMOTE attains higher recall and average precision than strong oversampling baselines (SMOTE, ADASYN, Borderline-SMOTE, SVM-SMOTE), and yields the best calibration. We further validate these gains across multiple additional datasets beyond MIMIC-IV. Our successful application of AF-SMOTE to a healthcare dataset using a proxy label demonstrates in a disease-agnostic way its practical value in clinical situations, where missing true positive cases in rare diseases can have severe consequences.
comment: Accepted to IEEE ISBI 2026
Control Occupation Kernel Regression for Nonlinear Control-Affine Systems
This manuscript presents an algorithm for obtaining an approximation of a nonlinear high order control affine dynamical system. Controlled trajectories of the system are leveraged as the central unit of information via embedding them in vector-valued reproducing kernel Hilbert space (vvRKHS). The trajectories are embedded as the so-called higher order control occupation kernels which represent an operator on the vvRKHS corresponding to iterated integration after multiplication by a given controller. The solution to the system identification problem is then the unique solution of an infinite dimensional regularized regression problem. The representer theorem is then used to express the solution as finite linear combination of these occupation kernels, which converts an infinite dimensional optimization problem to a finite dimensional optimization problem. The vector valued structure of the Hilbert space allows for simultaneous approximation of the drift and control effectiveness components of the control affine system. Several experiments are performed to demonstrate the effectiveness of the developed approach.
Constraint Breeds Generalization: Temporal Dynamics as an Inductive Bias
Conventional deep learning prioritizes unconstrained optimization, yet biological systems operate under strict metabolic constraints. We propose that these physical constraints shape dynamics to function not as limitations, but as a temporal inductive bias that breeds generalization. Through a phase-space analysis of signal propagation, we reveal a fundamental asymmetry: expansive dynamics amplify noise, whereas proper dissipative dynamics compress phase space that aligns with the network's spectral bias, compelling the abstraction of invariant features. This condition can be imposed externally via input encoding, or intrinsically through the network's own temporal dynamics. Both pathways require architectures capable of temporal integration and proper constraints to decode induced invariants, whereas static architectures fail to capitalize on temporal structure. Through comprehensive evaluations across supervised classification, unsupervised reconstruction, and zero-shot reinforcement learning, we demonstrate that a critical "transition" regime maximizes generalization capability. These findings establish dynamical constraints as a distinct class of inductive bias, suggesting that robust AI development requires not only scaling and removing limitations, but computationally mastering the temporal characteristics that naturally promote generalization.
comment: 8 pages, 7 figures
PyTDC: A multimodal machine learning training, evaluation, and inference platform for biomedical foundation models
Existing biomedical benchmarks do not provide end-to-end infrastructure for training, evaluation, and inference of models that integrate multimodal biological data and a broad range of machine learning tasks in therapeutics. We present PyTDC, an open-source machine-learning platform providing streamlined training, evaluation, and inference software for multimodal biological AI models. PyTDC unifies distributed, heterogeneous, continuously updated data sources and model weights and standardizes benchmarking and inference endpoints. This paper discusses the components of PyTDC's architecture and, to our knowledge, the first-of-its-kind case study on the introduced single-cell drug-target nomination ML task. We find state-of-the-art methods in graph representation learning and domain-specific methods from graph theory perform poorly on this task. Though we find a context-aware geometric deep learning method that outperforms the evaluated SoTA and domain-specific baseline methods, the model is unable to generalize to unseen cell types or incorporate additional modalities, highlighting PyTDC's capacity to facilitate an exciting avenue of research developing multimodal, context-aware, foundation models for open problems in biomedical AI.
comment: Proceedings of the 42nd International Conference on Machine Learning, Vancouver, Canada. PMLR 267, 2025
One Router to Route Them All: Homogeneous Expert Routing for Heterogeneous Graph Transformers
A common practice in heterogeneous graph neural networks (HGNNs) is to condition parameters on node/edge types, assuming types reflect semantic roles. However, this can cause overreliance on surface-level labels and impede cross-type knowledge transfer. We explore integrating Mixture-of-Experts (MoE) into HGNNs--a direction underexplored despite MoE's success in homogeneous settings. Crucially, we question the need for type-specific experts. We propose Homogeneous Expert Routing (HER), an MoE layer for Heterogeneous Graph Transformers (HGT) that stochastically masks type embeddings during routing to encourage type-agnostic specialization. Evaluated on IMDB, ACM, and DBLP for link prediction, HER consistently outperforms standard HGT and a type-separated MoE baseline. Analysis on IMDB shows HER experts specialize by semantic patterns (e.g., movie genres) rather than node types, confirming routing is driven by latent semantics. Our work demonstrates that regularizing type dependence in expert routing yields more generalizable, efficient, and interpretable representations--a new design principle for heterogeneous graph learning.
comment: This preprint has been withdrawn by the authors due to significant revisions in preparation for conference submission. A substantially updated version will be submitted separately
Emergence and Evolution of Interpretable Concepts in Diffusion Models NeurIPS
Diffusion models have become the go-to method for text-to-image generation, producing high-quality images from pure noise. However, the inner workings of diffusion models is still largely a mystery due to their black-box nature and complex, multi-step generation process. Mechanistic interpretability techniques, such as Sparse Autoencoders (SAEs), have been successful in understanding and steering the behavior of large language models at scale. However, the great potential of SAEs has not yet been applied toward gaining insight into the intricate generative process of diffusion models. In this work, we leverage the SAE framework to probe the inner workings of a popular text-to-image diffusion model, and uncover a variety of human-interpretable concepts in its activations. Interestingly, we find that even before the first reverse diffusion step is completed, the final composition of the scene can be predicted surprisingly well by looking at the spatial distribution of activated concepts. Moreover, going beyond correlational analysis, we design intervention techniques aimed at manipulating image composition and style, and demonstrate that (1) in early stages of diffusion image composition can be effectively controlled, (2) in the middle stages image composition is finalized, however stylistic interventions are effective, and (3) in the final stages only minor textural details are subject to change.
comment: 32 pages, 32 figures, published at the 39th Conference on Neural Information Processing Systems (NeurIPS), 2025
FLEx: Language Modeling with Few-shot Language Explanations
Language models have become effective at a wide range of tasks, from math problem solving to open-domain question answering. However, they still make mistakes, and these mistakes are often repeated across related queries. Natural language explanations can help correct these errors, but collecting them at scale may be infeasible, particularly in domains where expert annotators are required. To address this issue, we introduce FLEx ($\textbf{F}$ew-shot $\textbf{L}$anguage $\textbf{Ex}$planations), a method for improving model behavior using a small number of explanatory examples. FLEx selects representative model errors using embedding-based clustering, verifies that the associated explanations correct those errors, and summarizes them into a prompt prefix that is prepended at inference-time. This summary guides the model to avoid similar errors on new inputs, without modifying model weights. We evaluate FLEx on CounterBench, GSM8K, and ReasonIF. We find that FLEx consistently outperforms chain-of-thought (CoT) prompting across all three datasets and reduces up to 83\% of CoT's remaining errors.
Graphics 6
LuxRemix: Lighting Decomposition and Remixing for Indoor Scenes
We present a novel approach for interactive light editing in indoor scenes from a single multi-view scene capture. Our method leverages a generative image-based light decomposition model that factorizes complex indoor scene illumination into its constituent light sources. This factorization enables independent manipulation of individual light sources, specifically allowing control over their state (on/off), chromaticity, and intensity. We further introduce multi-view lighting harmonization to ensure consistent propagation of the lighting decomposition across all scene views. This is integrated into a relightable 3D Gaussian splatting representation, providing real-time interactive control over the individual light sources. Our results demonstrate highly photorealistic lighting decomposition and relighting outcomes across diverse indoor scenes. We evaluate our method on both synthetic and real-world datasets and provide a quantitative and qualitative comparison to state-of-the-art techniques. For video results and interactive demos, see https://luxremix.github.io.
comment: Project page: https://luxremix.github.io
CAG-Avatar: Cross-Attention Guided Gaussian Avatars for High-Fidelity Head Reconstruction
Creating high-fidelity, real-time drivable 3D head avatars is a core challenge in digital animation. While 3D Gaussian Splashing (3D-GS) offers unprecedented rendering speed and quality, current animation techniques often rely on a "one-size-fits-all" global tuning approach, where all Gaussian primitives are uniformly driven by a single expression code. This simplistic approach fails to unravel the distinct dynamics of different facial regions, such as deformable skin versus rigid teeth, leading to significant blurring and distortion artifacts. We introduce Conditionally-Adaptive Gaussian Avatars (CAG-Avatar), a framework that resolves this key limitation. At its core is a Conditionally Adaptive Fusion Module built on cross-attention. This mechanism empowers each 3D Gaussian to act as a query, adaptively extracting relevant driving signals from the global expression code based on its canonical position. This "tailor-made" conditioning strategy drastically enhances the modeling of fine-grained, localized dynamics. Our experiments confirm a significant improvement in reconstruction fidelity, particularly for challenging regions such as teeth, while preserving real-time rendering performance.
PAColorHolo: A Perceptually-Aware Color Management Framework for Holographic Displays
Holographic displays offer significant potential for augmented and virtual reality applications by reconstructing wavefronts that enable continuous depth cues and natural parallax without vergence-accommodation conflict. However, despite advances in pixel-level image quality, current systems struggle to achieve perceptually accurate color reproduction--an essential component of visual realism. These challenges arise from complex system-level distortions caused by coherent laser illumination, spatial light modulator imperfections, chromatic aberrations, and camera-induced color biases. In this work, we propose a perceptually-aware color management framework for holographic displays that jointly addresses input-output color inconsistencies through color space transformation, adaptive illumination control, and neural network-based perceptual modeling of the camera's color response. We validate the effectiveness of our approach through numerical simulations, optical experiments, and a controlled user study. The results demonstrate substantial improvements in perceptual color fidelity, laying the groundwork for perceptually driven holographic rendering in future systems.
comment: Preprint (accepted to ACM TOG), 34 pages, 32 figures
SplatBus: A Gaussian Splatting Viewer Framework via GPU Interprocess Communication
Radiance field-based rendering methods have attracted significant interest from the computer vision and computer graphics communities. They enable high-fidelity rendering with complex real-world lighting effects, but at the cost of high rendering time. 3D Gaussian Splatting solves this issue with a rasterisation-based approach for real-time rendering, enabling applications such as autonomous driving, robotics, virtual reality, and extended reality. However, current 3DGS implementations are difficult to integrate into traditional mesh-based rendering pipelines, which is a common use case for interactive applications and artistic exploration. To address this limitation, this software solution uses Nvidia's interprocess communication (IPC) APIs to easily integrate into implementations and allow the results to be viewed in external clients such as Unity, Blender, Unreal Engine, and OpenGL viewers. The code is available at https://github.com/RockyXu66/splatbus.
PanoDreamer: Optimization-Based Single Image to 360 3D Scene With Diffusion
In this paper, we present PanoDreamer, a novel method for producing a coherent 360° 3D scene from a single input image. Unlike existing methods that generate the scene sequentially, we frame the problem as single-image panorama and depth estimation. Once the coherent panoramic image and its corresponding depth are obtained, the scene can be reconstructed by inpainting the small occluded regions and projecting them into 3D space. Our key contribution is formulating single-image panorama and depth estimation as two optimization tasks and introducing alternating minimization strategies to effectively solve their objectives. We demonstrate that our approach outperforms existing techniques in single-image 360° 3D scene reconstruction in terms of consistency and overall quality.
comment: SIGGRAPH Asia 2025, Project page: https://people.engr.tamu.edu/nimak/Papers/PanoDreamer, Code: https://github.com/avinashpaliwal/PanoDreamer
RI3D: Few-Shot Gaussian Splatting With Repair and Inpainting Diffusion Priors ICCV 2025
In this paper, we propose RI3D, a novel 3DGS-based approach that harnesses the power of diffusion models to reconstruct high-quality novel views given a sparse set of input images. Our key contribution is separating the view synthesis process into two tasks of reconstructing visible regions and hallucinating missing regions, and introducing two personalized diffusion models, each tailored to one of these tasks. Specifically, one model ('repair') takes a rendered image as input and predicts the corresponding high-quality image, which in turn is used as a pseudo ground truth image to constrain the optimization. The other model ('inpainting') primarily focuses on hallucinating details in unobserved areas. To integrate these models effectively, we introduce a two-stage optimization strategy: the first stage reconstructs visible areas using the repair model, and the second stage reconstructs missing regions with the inpainting model while ensuring coherence through further optimization. Moreover, we augment the optimization with a novel Gaussian initialization method that obtains per-image depth by combining 3D-consistent and smooth depth with highly detailed relative depth. We demonstrate that by separating the process into two tasks and addressing them with the repair and inpainting models, we produce results with detailed textures in both visible and missing regions that outperform state-of-the-art approaches on a diverse set of scenes with extremely sparse inputs.
comment: ICCV 2025, Project page: https://people.engr.tamu.edu/nimak/Papers/RI3D, Code: https://github.com/avinashpaliwal/RI3D
Video World Models 10
From Generative Engines to Actionable Simulators: The Imperative of Physical Grounding in World Models
A world model is an AI system that simulates how an environment evolves under actions, enabling planning through imagined futures rather than reactive perception. Current world models, however, suffer from visual conflation: the mistaken assumption that high-fidelity video generation implies an understanding of physical and causal dynamics. We show that while modern models excel at predicting pixels, they frequently violate invariant constraints, fail under intervention, and break down in safety-critical decision-making. This survey argues that visual realism is an unreliable proxy for world understanding. Instead, effective world models must encode causal structure, respect domain-specific constraints, and remain stable over long horizons. We propose a reframing of world models as actionable simulators rather than visual engines, emphasizing structured 4D interfaces, constraint-aware dynamics, and closed-loop evaluation. Using medical decision-making as an epistemic stress test, where trial-and-error is impossible and errors are irreversible, we demonstrate that a world model's value is determined not by how realistic its rollouts appear, but by its ability to support counterfactual reasoning, intervention planning, and robust long-horizon foresight.
Walk through Paintings: Egocentric World Models from Internet Priors
What if a video generation model could not only imagine a plausible future, but the correct one, accurately reflecting how the world changes with each action? We address this question by presenting the Egocentric World Model (EgoWM), a simple, architecture-agnostic method that transforms any pretrained video diffusion model into an action-conditioned world model, enabling controllable future prediction. Rather than training from scratch, we repurpose the rich world priors of Internet-scale video models and inject motor commands through lightweight conditioning layers. This allows the model to follow actions faithfully while preserving realism and strong generalization. Our approach scales naturally across embodiments and action spaces, ranging from 3-DoF mobile robots to 25-DoF humanoids, where predicting egocentric joint-angle-driven dynamics is substantially more challenging. The model produces coherent rollouts for both navigation and manipulation tasks, requiring only modest fine-tuning. To evaluate physical correctness independently of visual appearance, we introduce the Structural Consistency Score (SCS), which measures whether stable scene elements evolve consistently with the provided actions. EgoWM improves SCS by up to 80 percent over prior state-of-the-art navigation world models, while achieving up to six times lower inference latency and robust generalization to unseen environments, including navigation inside paintings.
LuxRemix: Lighting Decomposition and Remixing for Indoor Scenes
We present a novel approach for interactive light editing in indoor scenes from a single multi-view scene capture. Our method leverages a generative image-based light decomposition model that factorizes complex indoor scene illumination into its constituent light sources. This factorization enables independent manipulation of individual light sources, specifically allowing control over their state (on/off), chromaticity, and intensity. We further introduce multi-view lighting harmonization to ensure consistent propagation of the lighting decomposition across all scene views. This is integrated into a relightable 3D Gaussian splatting representation, providing real-time interactive control over the individual light sources. Our results demonstrate highly photorealistic lighting decomposition and relighting outcomes across diverse indoor scenes. We evaluate our method on both synthetic and real-world datasets and provide a quantitative and qualitative comparison to state-of-the-art techniques. For video results and interactive demos, see https://luxremix.github.io.
comment: Project page: https://luxremix.github.io
Rethinking Video Generation Model for the Embodied World
Video generation models have significantly advanced embodied intelligence, unlocking new possibilities for generating diverse robot data that capture perception, reasoning, and action in the physical world. However, synthesizing high-quality videos that accurately reflect real-world robotic interactions remains challenging, and the lack of a standardized benchmark limits fair comparisons and progress. To address this gap, we introduce a comprehensive robotics benchmark, RBench, designed to evaluate robot-oriented video generation across five task domains and four distinct embodiments. It assesses both task-level correctness and visual fidelity through reproducible sub-metrics, including structural consistency, physical plausibility, and action completeness. Evaluation of 25 representative models highlights significant deficiencies in generating physically realistic robot behaviors. Furthermore, the benchmark achieves a Spearman correlation coefficient of 0.96 with human evaluations, validating its effectiveness. While RBench provides the necessary lens to identify these deficiencies, achieving physical realism requires moving beyond evaluation to address the critical shortage of high-quality training data. Driven by these insights, we introduce a refined four-stage data pipeline, resulting in RoVid-X, the largest open-source robotic dataset for video generation with 4 million annotated video clips, covering thousands of tasks and enriched with comprehensive physical property annotations. Collectively, this synergistic ecosystem of evaluation and data establishes a robust foundation for rigorous assessment and scalable training of video models, accelerating the evolution of embodied AI toward general intelligence.
comment: Github: https://github.com/DAGroup-PKU/ReVidgen/ Project website: https://dagroup-pku.github.io/ReVidgen.github.io/
StableWorld: Towards Stable and Consistent Long Interactive Video Generation
In this paper, we explore the overlooked challenge of stability and temporal consistency in interactive video generation, which synthesizes dynamic and controllable video worlds through interactive behaviors such as camera movements and text prompts. Despite remarkable progress in world modeling, current methods still suffer from severe instability and temporal degradation, often leading to spatial drift and scene collapse during long-horizon interactions. To better understand this issue, we initially investigate the underlying causes of instability and identify that the major source of error accumulation originates from the same scene, where generated frames gradually deviate from the initial clean state and propagate errors to subsequent frames. Building upon this observation, we propose a simple yet effective method, \textbf{StableWorld}, a Dynamic Frame Eviction Mechanism. By continuously filtering out degraded frames while retaining geometrically consistent ones, StableWorld effectively prevents cumulative drift at its source, leading to more stable and temporal consistency of interactive generation. Promising results on multiple interactive video models, \eg, Matrix-Game, Open-Oasis, and Hunyuan-GameCraft, demonstrate that StableWorld is model-agnostic and can be applied to different interactive video generation frameworks to substantially improve stability, temporal consistency, and generalization across diverse interactive scenarios.
comment: 17 pages, 21 figures,
ScenDi: 3D-to-2D Scene Diffusion Cascades for Urban Generation
Recent advancements in 3D object generation using diffusion models have achieved remarkable success, but generating realistic 3D urban scenes remains challenging. Existing methods relying solely on 3D diffusion models tend to suffer a degradation in appearance details, while those utilizing only 2D diffusion models typically compromise camera controllability. To overcome this limitation, we propose ScenDi, a method for urban scene generation that integrates both 3D and 2D diffusion models. We first train a 3D latent diffusion model to generate 3D Gaussians, enabling the rendering of images at a relatively low resolution. To enable controllable synthesis, this 3DGS generation process can be optionally conditioned by specifying inputs such as 3d bounding boxes, road maps, or text prompts. Then, we train a 2D video diffusion model to enhance appearance details conditioned on rendered images from the 3D Gaussians. By leveraging the coarse 3D scene as guidance for 2D video diffusion, ScenDi generates desired scenes based on input conditions and successfully adheres to accurate camera trajectories. Experiments on two challenging real-world datasets, Waymo and KITTI-360, demonstrate the effectiveness of our approach.
Training-Free and Interpretable Hateful Video Detection via Multi-stage Adversarial Reasoning
Hateful videos pose serious risks by amplifying discrimination, inciting violence, and undermining online safety. Existing training-based hateful video detection methods are constrained by limited training data and lack of interpretability, while directly prompting large vision-language models often struggle to deliver reliable hate detection. To address these challenges, this paper introduces MARS, a training-free Multi-stage Adversarial ReaSoning framework that enables reliable and interpretable hateful content detection. MARS begins with the objective description of video content, establishing a neutral foundation for subsequent analysis. Building on this, it develops evidence-based reasoning that supports potential hateful interpretations, while in parallel incorporating counter-evidence reasoning to capture plausible non-hateful perspectives. Finally, these perspectives are synthesized into a conclusive and explainable decision. Extensive evaluation on two real-world datasets shows that MARS achieves up to 10% improvement under certain backbones and settings compared to other training-free approaches and outperforms state-of-the-art training-based methods on one dataset. In addition, MARS produces human-understandable justifications, thereby supporting compliance oversight and enhancing the transparency of content moderation workflows. The code is available at https://github.com/Multimodal-Intelligence-Lab-MIL/MARS.
comment: Accepted at ICASSP 2026. \c{opyright} 2026 IEEE. This is the author accepted manuscript. The final published version will be available via IEEE Xplore
Summary of the Unusual Activity Recognition Challenge for Developmental Disability Support
This paper presents an overview of the Recognize the Unseen: Unusual Behavior Recognition from Pose Data Challenge, hosted at ISAS 2025. The challenge aims to address the critical need for automated recognition of unusual behaviors in facilities for individuals with developmental disabilities using non-invasive pose estimation data. Participating teams were tasked with distinguishing between normal and unusual activities based on skeleton keypoints extracted from video recordings of simulated scenarios. The dataset reflects real-world imbalance and temporal irregularities in behavior, and the evaluation adopted a Leave-One-Subject-Out (LOSO) strategy to ensure subject-agnostic generalization. The challenge attracted broad participation from 40 teams applying diverse approaches ranging from classical machine learning to deep learning architectures. Submissions were assessed primarily using macro-averaged F1 scores to account for class imbalance. The results highlight the difficulty of modeling rare, abrupt actions in noisy, low-dimensional data, and emphasize the importance of capturing both temporal and contextual nuances in behavior modeling. Insights from this challenge may contribute to future developments in socially responsible AI applications for healthcare and behavior monitoring.
comment: 14 pages, 7 figures, 3 tables. Summary paper for a coding challenge hosted in ISAS 2025
Sora as a World Model? A Complete Survey on Text-to-Video Generation
The evolution of video generation from text, from animating MNIST to simulating the world with Sora, has progressed at a breakneck speed. Here, we systematically discuss how far text-to-video generation technology supports essential requirements in world modeling. We curate 250+ studies on text-based video synthesis and world modeling. We then observe that recent models increasingly support spatial, action, and strategic intelligences in world modeling through adherence to completeness, consistency, invention, as well as human interaction and control. We conclude that text-to-video generation is adept at world modeling, although homework in several aspects, such as the diversity-consistency trade-offs, remains to be addressed.
comment: First complete survey on Text-to-Video Generation from World Model perspective, 35 pages
RiskCueBench: Benchmarking Anticipatory Reasoning from Early Risk Cues in Video-Language Models
With the rapid growth of video centered social media, the ability to anticipate risky events from visual data is a promising direction for ensuring public safety and preventing real world accidents. Prior work has extensively studied supervised video risk assessment across domains such as driving, protests, and natural disasters. However, many existing datasets provide models with access to the full video sequence, including the accident itself, which substantially reduces the difficulty of the task. To better reflect real world conditions, we introduce a new video understanding benchmark RiskCueBench in which videos are carefully annotated to identify a risk signal clip, defined as the earliest moment that indicates a potential safety concern. Experimental results reveal a significant gap in current systems ability to interpret evolving situations and anticipate future risky events from early visual signals, highlighting important challenges for deploying video risk prediction models in practice.
comment: *updated author email in this version
Robotics 37
Q-learning with Adjoint Matching
We propose Q-learning with Adjoint Matching (QAM), a novel TD-based reinforcement learning (RL) algorithm that tackles a long-standing challenge in continuous-action RL: efficient optimization of an expressive diffusion or flow-matching policy with respect to a parameterized Q-function. Effective optimization requires exploiting the first-order information of the critic, but it is challenging to do so for flow or diffusion policies because direct gradient-based optimization via backpropagation through their multi-step denoising process is numerically unstable. Existing methods work around this either by only using the value and discarding the gradient information, or by relying on approximations that sacrifice policy expressivity or bias the learned policy. QAM sidesteps both of these challenges by leveraging adjoint matching, a recently proposed technique in generative modeling, which transforms the critic's action gradient to form a step-wise objective function that is free from unstable backpropagation, while providing an unbiased, expressive policy at the optimum. Combined with temporal-difference backup for critic learning, QAM consistently outperforms prior approaches on hard, sparse reward tasks in both offline and offline-to-online RL.
comment: 32 pages, 8 figures, 7 tables
TwinBrainVLA: Unleashing the Potential of Generalist VLMs for Embodied Tasks via Asymmetric Mixture-of-Transformers
Standard Vision-Language-Action (VLA) models typically fine-tune a monolithic Vision-Language Model (VLM) backbone explicitly for robotic control. However, this approach creates a critical tension between maintaining high-level general semantic understanding and learning low-level, fine-grained sensorimotor skills, often leading to "catastrophic forgetting" of the model's open-world capabilities. To resolve this conflict, we introduce TwinBrainVLA, a novel architecture that coordinates a generalist VLM retaining universal semantic understanding and a specialist VLM dedicated to embodied proprioception for joint robotic control. TwinBrainVLA synergizes a frozen "Left Brain", which retains robust general visual reasoning, with a trainable "Right Brain", specialized for embodied perception, via a novel Asymmetric Mixture-of-Transformers (AsyMoT) mechanism. This design allows the Right Brain to dynamically query semantic knowledge from the frozen Left Brain and fuse it with proprioceptive states, providing rich conditioning for a Flow-Matching Action Expert to generate precise continuous controls. Extensive experiments on SimplerEnv and RoboCasa benchmarks demonstrate that TwinBrainVLA achieves superior manipulation performance compared to state-of-the-art baselines while explicitly preserving the comprehensive visual understanding capabilities of the pre-trained VLM, offering a promising direction for building general-purpose robots that simultaneously achieve high-level semantic understanding and low-level physical dexterity.
comment: GitHub: https://github.com/ZGC-EmbodyAI/TwinBrainVLA
SandWorm: Event-based Visuotactile Perception with Active Vibration for Screw-Actuated Robot in Granular Media
Perception in granular media remains challenging due to unpredictable particle dynamics. To address this challenge, we present SandWorm, a biomimetic screw-actuated robot augmented by peristaltic motion to enhance locomotion, and SWTac, a novel event-based visuotactile sensor with an actively vibrated elastomer. The event camera is mechanically decoupled from vibrations by a spring isolation mechanism, enabling high-quality tactile imaging of both dynamic and stationary objects. For algorithm design, we propose an IMU-guided temporal filter to enhance imaging consistency, improving MSNR by 24%. Moreover, we systematically optimize SWTac with vibration parameters, event camera settings and elastomer properties. Motivated by asymmetric edge features, we also implement contact surface estimation by U-Net. Experimental validation demonstrates SWTac's 0.2 mm texture resolution, 98% stone classification accuracy, and 0.15 N force estimation error, while SandWorm demonstrates versatile locomotion (up to 12.5 mm/s) in challenging terrains, successfully executes pipeline dredging and subsurface exploration in complex granular media (observed 90% success rate). Field experiments further confirm the system's practical performance.
comment: Accepted by IEEE Transactions on Robotics
Diffusion-Guided Backdoor Attacks in Real-World Reinforcement Learning
Backdoor attacks embed hidden malicious behaviors in reinforcement learning (RL) policies and activate them using triggers at test time. Most existing attacks are validated only in simulation, while their effectiveness in real-world robotic systems remains unclear. In physical deployment, safety-constrained control pipelines such as velocity limiting, action smoothing, and collision avoidance suppress abnormal actions, causing strong attenuation of conventional backdoor attacks. We study this previously overlooked problem and propose a diffusion-guided backdoor attack framework (DGBA) for real-world RL. We design small printable visual patch triggers placed on the floor and generate them using a conditional diffusion model that produces diverse patch appearances under real-world visual variations. We treat the robot control stack as a black-box system. We further introduce an advantage-based poisoning strategy that injects triggers only at decision-critical training states. We evaluate our method on a TurtleBot3 mobile robot and demonstrate reliable activation of targeted attacks while preserving normal task performance. Demo videos and code are available in the supplementary material.
Zero-shot adaptable task planning for autonomous construction robots: a comparative study of lightweight single and multi-AI agent systems
Robots are expected to play a major role in the future construction industry but face challenges due to high costs and difficulty adapting to dynamic tasks. This study explores the potential of foundation models to enhance the adaptability and generalizability of task planning in construction robots. Four models are proposed and implemented using lightweight, open-source large language models (LLMs) and vision language models (VLMs). These models include one single agent and three multi-agent teams that collaborate to create robot action plans. The models are evaluated across three construction roles: Painter, Safety Inspector, and Floor Tiling. Results show that the four-agent team outperforms the state-of-the-art GPT-4o in most metrics while being ten times more cost-effective. Additionally, teams with three and four agents demonstrate the improved generalizability. By discussing how agent behaviors influence outputs, this study enhances the understanding of AI teams and supports future research in diverse unstructured environments beyond construction.
Group-Invariant Unsupervised Skill Discovery: Symmetry-aware Skill Representations for Generalizable Behavior
Unsupervised skill discovery aims to acquire behavior primitives that improve exploration and accelerate downstream task learning. However, existing approaches often ignore the geometric symmetries of physical environments, leading to redundant behaviors and sample inefficiency. To address this, we introduce Group-Invariant Skill Discovery (GISD), a framework that explicitly embeds group structure into the skill discovery objective. Our approach is grounded in a theoretical guarantee: we prove that in group-symmetric environments, the standard Wasserstein dependency measure admits a globally optimal solution comprised of an equivariant policy and a group-invariant scoring function. Motivated by this, we formulate the Group-Invariant Wasserstein dependency measure, which restricts the optimization to this symmetry-aware subspace without loss of optimality. Practically, we parameterize the scoring function using a group Fourier representation and define the intrinsic reward via the alignment of equivariant latent features, ensuring that the discovered skills generalize systematically under group transformations. Experiments on state-based and pixel-based locomotion benchmarks demonstrate that GISD achieves broader state-space coverage and improved efficiency in downstream task learning compared to a strong baseline.
comment: 14 pages, 6 figures
Active Cross-Modal Visuo-Tactile Perception of Deformable Linear Objects
This paper presents a novel cross-modal visuo-tactile perception framework for the 3D shape reconstruction of deformable linear objects (DLOs), with a specific focus on cables subject to severe visual occlusions. Unlike existing methods relying predominantly on vision, whose performance degrades under varying illumination, background clutter, or partial visibility, the proposed approach integrates foundation-model-based visual perception with adaptive tactile exploration. The visual pipeline exploits SAM for instance segmentation and Florence for semantic refinement, followed by skeletonization, endpoint detection, and point-cloud extraction. Occluded cable segments are autonomously identified and explored with a tactile sensor, which provides local point clouds that are merged with the visual data through Euclidean clustering and topology-preserving fusion. A B-spline interpolation driven by endpoint-guided point sorting yields a smooth and complete reconstruction of the cable shape. Experimental validation using a robotic manipulator equipped with an RGB-D camera and a tactile pad demonstrates that the proposed framework accurately reconstructs both simple and highly curved single or multiple cable configurations, even when large portions are occluded. These results highlight the potential of foundation-model-enhanced cross-modal perception for advancing robotic manipulation of deformable objects.
FantasyVLN: Unified Multimodal Chain-of-Thought Reasoning for Vision-Language Navigation
Achieving human-level performance in Vision-and-Language Navigation (VLN) requires an embodied agent to jointly understand multimodal instructions and visual-spatial context while reasoning over long action sequences. Recent works, such as NavCoT and NavGPT-2, demonstrate the potential of Chain-of-Thought (CoT) reasoning for improving interpretability and long-horizon planning. Moreover, multimodal extensions like OctoNav-R1 and CoT-VLA further validate CoT as a promising pathway toward human-like navigation reasoning. However, existing approaches face critical drawbacks: purely textual CoTs lack spatial grounding and easily overfit to sparse annotated reasoning steps, while multimodal CoTs incur severe token inflation by generating imagined visual observations, making real-time navigation impractical. In this work, we propose FantasyVLN, a unified implicit reasoning framework that preserves the benefits of CoT reasoning without explicit token overhead. Specifically, imagined visual tokens are encoded into a compact latent space using a pretrained Visual AutoRegressor (VAR) during CoT reasoning training, and the model jointly learns from textual, visual, and multimodal CoT modes under a unified multi-CoT strategy. At inference, our model performs direct instruction-to-action mapping while still enjoying reasoning-aware representations. Extensive experiments on LH-VLN show that our approach achieves reasoning-aware yet real-time navigation, improving success rates and efficiency while reducing inference latency by an order of magnitude compared to explicit CoT methods.
Efficient Coordination with the System-Level Shared State: An Embodied-AI Native Modular Framework
As Embodied AI systems move from research prototypes to real world deployments, they tend to evolve rapidly while remaining reliable under workload changes and partial failures. In practice, many deployments are only partially decoupled: middleware moves messages, but shared context and feedback semantics are implicit, causing interface drift, cross-module interference, and brittle recovery at scale. We present ANCHOR, a modular framework that makes decoupling and robustness explicit system-level primitives. ANCHOR separates (i) Canonical Records, an evolvable contract for the standardized shared state, from (ii) a communication bus for many-to-many dissemination and feedback-oriented coordination, forming an inspectable end-to-end loop. We validate closed-loop feasibility on a de-identified workflow instantiation, characterize latency distributions under varying payload sizes and publish rates, and demonstrate automatic stream resumption after hard crashes and restarts even with shared-memory loss. Overall, ANCHOR turns ad-hoc integration glue into explicit contracts, enabling controlled degradation under load and self-healing recovery for scalable deployment of closed-loop AI systems.
GuideTouch: An Obstacle Avoidance Device for Visually Impaired
Safe navigation for the visually impaired individuals remains a critical challenge, especially concerning head-level obstacles, which traditional mobility aids often fail to detect. We introduce GuideTouch, a compact, affordable, standalone wearable device designed for autonomous obstacle avoidance. The system integrates two vertically aligned Time-of-Flight (ToF) sensors, enabling three-dimensional environmental perception, and four vibrotactile actuators that provide directional haptic feedback. Proximity and direction information is communicated via an intuitive 4-point vibrotactile feedback system located across the user's shoulders and upper chest. For real-world robustness, the device includes a unique centrifugal self-cleaning optical cover mechanism and a sound alarm system for location if the device is dropped. We evaluated the haptic perception accuracy across 22 participants (17 male and 5 female, aged 21-48, mean 25.7, sd 6.1). Statistical analysis confirmed a significant difference between the perception accuracy of different patterns. The system demonstrated high recognition accuracy, achieving an average of 92.9% for single and double motor (primary directional) patterns. Furthermore, preliminary experiments with 14 visually impaired users validated this interface, showing a recognition accuracy of 93.75% for primary directional cues. The results demonstrate that GuideTouch enables intuitive spatial perception and could significantly improve the safety, confidence, and autonomy of users with visual impairments during independent navigation.
comment: This paper has been accepted for publication at LBR of HRI 2026 conference
DroneVLA: VLA based Aerial Manipulation
As aerial platforms evolve from passive observers to active manipulators, the challenge shifts toward designing intuitive interfaces that allow non-expert users to command these systems naturally. This work introduces a novel concept of autonomous aerial manipulation system capable of interpreting high-level natural language commands to retrieve objects and deliver them to a human user. The system is intended to integrate a MediaPipe based on Grounding DINO and a Vision-Language-Action (VLA) model with a custom-built drone equipped with a 1-DOF gripper and an Intel RealSense RGB-D camera. VLA performs semantic reasoning to interpret the intent of a user prompt and generates a prioritized task queue for grasping of relevant objects in the scene. Grounding DINO and dynamic A* planning algorithm are used to navigate and safely relocate the object. To ensure safe and natural interaction during the handover phase, the system employs a human-centric controller driven by MediaPipe. This module provides real-time human pose estimation, allowing the drone to employ visual servoing to maintain a stable, distinct position directly in front of the user, facilitating a comfortable handover. We demonstrate the system's efficacy through real-world experiments for localization and navigation, which resulted in a 0.164m, 0.070m, and 0.084m of max, mean euclidean, and root-mean squared errors, respectively, highlighting the feasibility of VLA for aerial manipulation operations.
comment: This paper has been accepted for publication at LBR of HRI 2026 conference
HoverAI: An Embodied Aerial Agent for Natural Human-Drone Interaction
Drones operating in human-occupied spaces suffer from insufficient communication mechanisms that create uncertainty about their intentions. We present HoverAI, an embodied aerial agent that integrates drone mobility, infrastructure-independent visual projection, and real-time conversational AI into a unified platform. Equipped with a MEMS laser projector, onboard semi-rigid screen, and RGB camera, HoverAI perceives users through vision and voice, responding via lip-synced avatars that adapt appearance to user demographics. The system employs a multimodal pipeline combining VAD, ASR (Whisper), LLM-based intent classification, RAG for dialogue, face analysis for personalization, and voice synthesis (XTTS v2). Evaluation demonstrates high accuracy in command recognition (F1: 0.90), demographic estimation (gender F1: 0.89, age MAE: 5.14 years), and speech transcription (WER: 0.181). By uniting aerial robotics with adaptive conversational AI and self-contained visual output, HoverAI introduces a new class of spatially-aware, socially responsive embodied agents for applications in guidance, assistance, and human-centered interaction.
comment: This paper has been accepted for publication at LBR HRI 2026 conference
Sample Efficient Learning of Body-Environment Interaction of an Under-Actuated System
Geometric mechanics provides valuable insights into how biological and robotic systems use changes in shape to move by mechanically interacting with their environment. In high-friction environments it provides that the entire interaction is captured by the ``motility map''. Here we compare methods for learning the motility map from motion tracking data of a physical robot created specifically to test these methods by having under-actuated degrees of freedom and a hard to model interaction with its substrate. We compared four modeling approaches in terms of their ability to predict body velocity from shape change within the same gait, across gaits, and across speeds. Our results show a trade-off between simpler methods which are superior on small training datasets, and more sophisticated methods, which are superior when more training data is available.
RIM Hand : A Robotic Hand with an Accurate Carpometacarpal Joint and Nitinol-Supported Skeletal Structure
This paper presents the flexible RIM Hand, a biomimetic robotic hand that precisely replicates the carpometacarpal (CMC) joints and employs superelastic Nitinol wires throughout its skeletal framework. By modeling the full carpal-to-metacarpal anatomy, the design enables realistic palm deformation through tendon-driven fingers while enhancing joint restoration and supports skeletal structure with Nitinol-based dorsal extensors. A flexible silicone skin further increases contact friction and contact area, enabling stable grasps for diverse objects. Experiments show that the palm can deform up to 28%, matching human hand flexibility, while achieving more than twice the payload capacity and three times the contact area compared to a rigid palm design. The RIM Hand thus offers improved dexterity, compliance, and anthropomorphism, making it promising for prosthetic and service-robot applications.
comment: Soft Robotics
SUNSET -- A Sensor-fUsioN based semantic SegmEnTation exemplar for ROS-based self-adaptation
The fact that robots are getting deployed more often in dynamic environments, together with the increasing complexity of their software systems, raises the need for self-adaptive approaches. In these environments robotic software systems increasingly operate amid (1) uncertainties, where symptoms are easy to observe but root causes are ambiguous, or (2) multiple uncertainties appear concurrently. We present SUNSET, a ROS2-based exemplar that enables rigorous, repeatable evaluation of architecture-based self-adaptation in such conditions. It implements a sensor fusion semantic-segmentation pipeline driven by a trained Machine Learning (ML) model whose input preprocessing can be perturbed to induce realistic performance degradations. The exemplar exposes five observable symptoms, where each can be caused by different root causes and supports concurrent uncertainties spanning self-healing and self-optimisation. SUNSET includes the segmentation pipeline, a trained ML model, uncertainty-injection scripts, a baseline controller, and step-by-step integration and evaluation documentation to facilitate reproducible studies and fair comparison.
Communication-Free Collective Navigation for a Swarm of UAVs via LiDAR-Based Deep Reinforcement Learning
This paper presents a deep reinforcement learning (DRL) based controller for collective navigation of unmanned aerial vehicle (UAV) swarms in communication-denied environments, enabling robust operation in complex, obstacle-rich environments. Inspired by biological swarms where informed individuals guide groups without explicit communication, we employ an implicit leader-follower framework. In this paradigm, only the leader possesses goal information, while follower UAVs learn robust policies using only onboard LiDAR sensing, without requiring any inter-agent communication or leader identification. Our system utilizes LiDAR point clustering and an extended Kalman filter for stable neighbor tracking, providing reliable perception independent of external positioning systems. The core of our approach is a DRL controller, trained in GPU-accelerated Nvidia Isaac Sim, that enables followers to learn complex emergent behaviors - balancing flocking and obstacle avoidance - using only local perception. This allows the swarm to implicitly follow the leader while robustly addressing perceptual challenges such as occlusion and limited field-of-view. The robustness and sim-to-real transfer of our approach are confirmed through extensive simulations and challenging real-world experiments with a swarm of five UAVs, which successfully demonstrated collective navigation across diverse indoor and outdoor environments without any communication or external localization.
A General One-Shot Multimodal Active Perception Framework for Robotic Manipulation: Learning to Predict Optimal Viewpoint
Active perception in vision-based robotic manipulation aims to move the camera toward more informative observation viewpoints, thereby providing high-quality perceptual inputs for downstream tasks. Most existing active perception methods rely on iterative optimization, leading to high time and motion costs, and are tightly coupled with task-specific objectives, which limits their transferability. In this paper, we propose a general one-shot multimodal active perception framework for robotic manipulation. The framework enables direct inference of optimal viewpoints and comprises a data collection pipeline and an optimal viewpoint prediction network. Specifically, the framework decouples viewpoint quality evaluation from the overall architecture, supporting heterogeneous task requirements. Optimal viewpoints are defined through systematic sampling and evaluation of candidate viewpoints, after which large-scale training datasets are constructed via domain randomization. Moreover, a multimodal optimal viewpoint prediction network is developed, leveraging cross-attention to align and fuse multimodal features and directly predict camera pose adjustments. The proposed framework is instantiated in robotic grasping under viewpoint-constrained environments. Experimental results demonstrate that active perception guided by the framework significantly improves grasp success rates. Notably, real-world evaluations achieve nearly double the grasp success rate and enable seamless sim-to-real transfer without additional fine-tuning, demonstrating the effectiveness of the proposed framework.
Highly Deformable Proprioceptive Membrane for Real-Time 3D Shape Reconstruction
Reconstructing the three-dimensional (3D) geometry of object surfaces is essential for robot perception, yet vision-based approaches are generally unreliable under low illumination or occlusion. This limitation motivates the design of a proprioceptive membrane that conforms to the surface of interest and infers 3D geometry by reconstructing its own deformation. Conventional shape-aware membranes typically rely on resistive, capacitive, or magneto-sensitive mechanisms. However, these methods often encounter challenges such as structural complexity, limited compliance during large-scale deformation, and susceptibility to electromagnetic interference. This work presents a soft, flexible, and stretchable proprioceptive silicone membrane based on optical waveguide sensing. The membrane sensor integrates edge-mounted LEDs and centrally distributed photodiodes (PDs), interconnected via liquid-metal traces embedded within a multilayer elastomeric composite. Rich deformation-dependent light intensity signals are decoded by a data-driven model to recover the membrane geometry as a 3D point cloud. On a customized 140 mm square membrane, real-time reconstruction of large-scale out-of-plane deformation is achieved at 90 Hz with an average reconstruction error of 1.3 mm, measured by Chamfer distance, while maintaining accuracy for indentations up to 25 mm. The proposed framework provides a scalable, robust, and low-profile solution for global shape perception in deformable robotic systems.
comment: 13 pages, 7 figures
Learning Fine-Grained Correspondence with Cross-Perspective Perception for Open-Vocabulary 6D Object Pose Estimation
Open-vocabulary 6D object pose estimation empowers robots to manipulate arbitrary unseen objects guided solely by natural language. However, a critical limitation of existing approaches is their reliance on unconstrained global matching strategies. In open-world scenarios, trying to match anchor features against the entire query image space introduces excessive ambiguity, as target features are easily confused with background distractors. To resolve this, we propose Fine-grained Correspondence Pose Estimation (FiCoP), a framework that transitions from noise-prone global matching to spatially-constrained patch-level correspondence. Our core innovation lies in leveraging a patch-to-patch correlation matrix as a structural prior to narrowing the matching scope, effectively filtering out irrelevant clutter to prevent it from degrading pose estimation. Firstly, we introduce an object-centric disentanglement preprocessing to isolate the semantic target from environmental noise. Secondly, a Cross-Perspective Global Perception (CPGP) module is proposed to fuse dual-view features, establishing structural consensus through explicit context reasoning. Finally, we design a Patch Correlation Predictor (PCP) that generates a precise block-wise association map, acting as a spatial filter to enforce fine-grained, noise-resilient matching. Experiments on the REAL275 and Toyota-Light datasets demonstrate that FiCoP improves Average Recall by 8.0% and 6.1%, respectively, compared to the state-of-the-art method, highlighting its capability to deliver robust and generalized perception for robotic agents operating in complex, unconstrained open-world environments. The source code will be made publicly available at https://github.com/zjjqinyu/FiCoP.
comment: The source code will be made publicly available at https://github.com/zjjqinyu/FiCoP
LogicEnvGen: Task-Logic Driven Generation of Diverse Simulated Environments for Embodied AI
Simulated environments play an essential role in embodied AI, functionally analogous to test cases in software engineering. However, existing environment generation methods often emphasize visual realism (e.g., object diversity and layout coherence), overlooking a crucial aspect: logical diversity from the testing perspective. This limits the comprehensive evaluation of agent adaptability and planning robustness in distinct simulated environments. To bridge this gap, we propose LogicEnvGen, a novel method driven by Large Language Models (LLMs) that adopts a top-down paradigm to generate logically diverse simulated environments as test cases for agents. Given an agent task, LogicEnvGen first analyzes its execution logic to construct decision-tree-structured behavior plans and then synthesizes a set of logical trajectories. Subsequently, it adopts a heuristic algorithm to refine the trajectory set, reducing redundant simulation. For each logical trajectory, which represents a potential task situation, LogicEnvGen correspondingly instantiates a concrete environment. Notably, it employs constraint solving for physical plausibility. Furthermore, we introduce LogicEnvEval, a novel benchmark comprising four quantitative metrics for environment evaluation. Experimental results verify the lack of logical diversity in baselines and demonstrate that LogicEnvGen achieves 1.04-2.61x greater diversity, significantly improving the performance in revealing agent faults by 4.00%-68.00%.
comment: 19 pages, 15 figures, 6 tables
The OncoReach Stylet for Brachytherapy: Design Evaluation and Pilot Study
Cervical cancer accounts for a significant portion of the global cancer burden among women. Interstitial brachytherapy (ISBT) is a standard procedure for treating cervical cancer; it involves placing a radioactive source through a straight hollow needle within or in close proximity to the tumor and surrounding tissue. However, the use of straight needles limits surgical planning to a linear needle path. We present the OncoReach stylet, a handheld, tendon-driven steerable stylet designed for compatibility with standard ISBT 15- and 13-gauge needles. Building upon our prior work, we evaluated design parameters like needle gauge, spherical joint count and spherical joint placement, including an asymmetric disk design to identify a configuration that maximizes bending compliance while retaining axial stiffness. Free space experiments quantified tip deflection across configurations, and a two-tube Cosserat rod model accurately predicted the centerline shape of the needle for most trials. The best performing configuration was integrated into a reusable handheld prototype that enables manual actuation. A patient-derived, multi-composite phantom model of the uterus and pelvis was developed to conduct a pilot study of the OncoReach steerable stylet with one expert user. Results showed the ability to steer from less-invasive, medial entry points to reach the lateral-most targets, underscoring the significance of steerable stylets.
Learning-Augmented Online TRP on a Line
We study the online traveling repairperson problem on a line within the recently proposed learning-augmented framework, which provides predictions on the requests to be served via machine learning. In the original model (with no predictions), there is a stream of requests released over time along the line. The goal is to minimize the sum (or average) of the completion times of the requests. In the original model, the state-of-the-art competitive ratio lower bound is $1+\sqrt{2} > 2.414$ for any deterministic algorithm and the state-of-the-art competitive ratio upper bound is 4 for a deterministic algorithm. Our prediction model involves predicted positions, possibly error-prone, of each request in the stream known a priori but the arrival times of requests are not known until their arrival. We first establish a 3-competitive lower bound which extends to the original model. We then design a deterministic algorithm that is $(2+\sqrt{3})\approx 3.732$-competitive when predictions are perfect. With imperfect predictions (maximum error $δ> 0$), we show that our deterministic algorithm becomes $\min\{3.732+4δ,4\}$-competitive, knowing $δ$. To the best of our knowledge, these are the first results for online traveling repairperson problem in the learning-augmented framework.
comment: 8 pages, 5 figures, 3 tables, and 2 pseudocodes
UNCLE-Grasp: Uncertainty-Aware Grasping of Leaf-Occluded Strawberries
Robotic strawberry harvesting is challenging under partial occlusion, where leaves induce significant geometric uncertainty and make grasp decisions based on a single deterministic shape estimate unreliable. From a single partial observation, multiple incompatible 3D completions may be plausible, causing grasps that appear feasible on one completion to fail on another. We propose an uncertainty-aware grasping pipeline for partially occluded strawberries that explicitly models completion uncertainty arising from both occlusion and learned shape reconstruction. Our approach uses point cloud completion with Monte Carlo dropout to sample multiple shape hypotheses, generates candidate grasps for each completion, and evaluates grasp feasibility using physically grounded force-closure-based metrics. Rather than selecting a grasp based on a single estimate, we aggregate feasibility across completions and apply a conservative lower confidence bound (LCB) criterion to decide whether a grasp should be attempted or safely abstained. We evaluate the proposed method in simulation and on a physical robot across increasing levels of synthetic and real leaf occlusion. Results show that uncertainty-aware decision making enables reliable abstention from high-risk grasp attempts under severe occlusion while maintaining robust grasp execution when geometric confidence is sufficient, outperforming deterministic baselines in both simulated and physical robot experiments.
Robust Haptic Rendering Using a Nonlinear Impedance Matching Approach (NIMA) for Robotic Laparoscopic Surgery
Background: The integration of haptic feedback into robot-assisted minimally invasive surgery (RAMIS) has long been limited by challenges in accurately rendering forces and ensuring system safety. The need for robust, high-fidelity haptic systems is critical for enhancing the precision and reliability of teleoperated surgical tools. Methods: In this study, we present a Nonlinear Impedance Matching Approach (NIMA) designed to improve force rendering by accurately modelling complex tool-tissue interactions. Based on our previously validated Impedance Matching Approach (IMA), our novel NIMA method includes nonlinear dynamics to capture and render tool-tissue forces effectively. Results: NIMA improves force feedback accuracy with a mean absolute error (MAE) of 0.01 (SD 0.02) N, achieving a 95% reduction in MAE compared to IMA. Furthermore, NIMA effectively eliminates haptic "kickback" by ensuring no force is applied by the haptic device to the user's hand when they release the handle, enhancing both patient safety and user comfort. Conclusion: NIMA's ability to account for nonlinearities in tool-tissue interactions provides an improvement in force fidelity, responsiveness, and precision across various surgical conditions. Our findings promote the advancement of haptic feedback systems for robotic surgery, offering a realistic and reliable interface for robot-assisted surgical procedures.
Agentic AI Meets Edge Computing in Autonomous UAV Swarms
The integration of agentic AI, powered by large language models (LLMs) with autonomous reasoning, planning, and execution, into unmanned aerial vehicle (UAV) swarms opens new operational possibilities and brings the vision of the Internet of Drones closer to reality. However, infrastructure constraints, dynamic environments, and the computational demands of multi-agent coordination limit real-world deployment in high-risk scenarios such as wildfires and disaster response. This paper investigates the integration of LLM-based agentic AI and edge computing to realize scalable and resilient autonomy in UAV swarms. We first discuss three architectures for supporting UAV swarms - standalone, edge-enabled, and edge-cloud hybrid deployment - each optimized for varying autonomy and connectivity levels. Then, a use case for wildfire search and rescue (SAR) is designed to demonstrate the efficiency of the edge-enabled architecture, enabling high SAR coverage, reduced mission completion times, and a higher level of autonomy compared to traditional approaches. Finally, we highlight open challenges in integrating LLMs and edge computing for mission-critical UAV-swarm applications.
RoboBrain 2.5: Depth in Sight, Time in Mind
We introduce RoboBrain 2.5, a next-generation embodied AI foundation model that advances general perception, spatial reasoning, and temporal modeling through extensive training on high-quality spatiotemporal supervision. Building upon its predecessor, RoboBrain 2.5 introduces two major capability upgrades. Specifically, it unlocks Precise 3D Spatial Reasoning by shifting from 2D pixel-relative grounding to depth-aware coordinate prediction and absolute metric constraint comprehension, generating complete 3D manipulation traces as ordered keypoint sequences under physical constraints. Complementing this spatial precision, the model establishes Dense Temporal Value Estimation that provides dense, step-aware progress prediction and execution state understanding across varying viewpoints, producing stable feedback signals for downstream learning. Together, these upgrades extend the framework toward more physically grounded and execution-aware embodied intelligence for complex, fine-grained manipulation. The code and checkpoints are available at project website: https://superrobobrain.github.io
comment: 37 pages, 13 figures, Technical Report
SilentDrift: Exploiting Action Chunking for Stealthy Backdoor Attacks on Vision-Language-Action Models
Vision-Language-Action (VLA) models are increasingly deployed in safety-critical robotic applications, yet their security vulnerabilities remain underexplored. We identify a fundamental security flaw in modern VLA systems: the combination of action chunking and delta pose representations creates an intra-chunk visual open-loop. This mechanism forces the robot to execute K-step action sequences, allowing per-step perturbations to accumulate through integration. We propose SILENTDRIFT, a stealthy black-box backdoor attack exploiting this vulnerability. Our method employs the Smootherstep function to construct perturbations with guaranteed C2 continuity, ensuring zero velocity and acceleration at trajectory boundaries to satisfy strict kinematic consistency constraints. Furthermore, our keyframe attack strategy selectively poisons only the critical approach phase, maximizing impact while minimizing trigger exposure. The resulting poisoned trajectories are visually indistinguishable from successful demonstrations. Evaluated on the LIBERO, SILENTDRIFT achieves a 93.2% Attack Success Rate with a poisoning rate under 2%, while maintaining a 95.3% Clean Task Success Rate.
AnyTask: an Automated Task and Data Generation Framework for Advancing Sim-to-Real Policy Learning
Generalist robot learning remains constrained by data: large-scale, diverse, and high-quality interaction data are expensive to collect in the real world. While simulation has become a promising way for scaling up data collection, the related tasks, including simulation task design, task-aware scene generation, expert demonstration synthesis, and sim-to-real transfer, still demand substantial human effort. We present AnyTask, an automated framework that pairs massively parallel GPU simulation with foundation models to design diverse manipulation tasks and synthesize robot data. We introduce three AnyTask agents for generating expert demonstrations aiming to solve as many tasks as possible: 1) ViPR, a novel task and motion planning agent with VLM-in-the-loop Parallel Refinement; 2) ViPR-Eureka, a reinforcement learning agent with generated dense rewards and LLM-guided contact sampling; 3) ViPR-RL, a hybrid planning and learning approach that jointly produces high-quality demonstrations with only sparse rewards. We train behavior cloning policies on generated data, validate them in simulation, and deploy them directly on real robot hardware. The policies generalize to novel object poses, achieving 44% average success across a suite of real-world pick-and-place, drawer opening, contact-rich pushing, and long-horizon manipulation tasks. Our project website is at https://anytask.rai-inst.com .
comment: 28 pages, 25 figures. The first four authors contributed equally
Tube-Based Robust Control Strategy for Vision-Guided Autonomous Vehicles
A robust control strategy for autonomous vehicles can improve system stability, enhance riding comfort, and prevent driving accidents. This paper presents a novel interpolation-tube-based constrained iterative linear quadratic regulator (itube-CILQR) algorithm for autonomous computer-vision-based vehicle lane-keeping. The goal of the algorithm is to enhance robustness during high-speed cornering on tight turns. Compared with standard tube-based approaches, the proposed itube-CILQR algorithm reduces system conservatism and exhibits higher computational speed. Numerical simulations and vision-based experiments were conducted to examine the feasibility of using the proposed algorithm for controlling autonomous vehicles. The results indicated that the proposed algorithm achieved superior vehicle lane-keeping performance to variational CILQR-based methods and model predictive control (MPC) approaches involving the use of a classical interior-point optimizer. Specifically, itube-CILQR required an average runtime of 3.45 ms to generate a control signal for guiding a self-driving vehicle. By comparison, itube-MPC typically required a 4.32 times longer computation time to complete the same task. Moreover, the influence of conservatism on system behavior was investigated by exploring the variations in the interpolation variables derived using the proposed itube-CILQR algorithm during lane-keeping maneuvers.
comment: 15 pages, 16 figures
FlyPose: Towards Robust Human Pose Estimation From Aerial Views WACV
Unmanned Aerial Vehicles (UAVs) are increasingly deployed in close proximity to humans for applications such as parcel delivery, traffic monitoring, disaster response and infrastructure inspections. Ensuring safe and reliable operation in these human-populated environments demands accurate perception of human poses and actions from an aerial viewpoint. This perspective challenges existing methods with low resolution, steep viewing angles and (self-)occlusion, especially if the application demands realtime feasibile models. We train and deploy FlyPose, a lightweight top-down human pose estimation pipeline for aerial imagery. Through multi-dataset training, we achieve an average improvement of 6.8 mAP in person detection across the test-sets of Manipal-UAV, VisDrone, HIT-UAV as well as our custom dataset. For 2D human pose estimation we report an improvement of 16.3 mAP on the challenging UAV-Human dataset. FlyPose runs with an inference latency of ~20 milliseconds including preprocessing on a Jetson Orin AGX Developer Kit and is deployed onboard a quadrotor UAV during flight experiments. We also publish FlyPose-104, a small but challenging aerial human pose estimation dataset, that includes manual annotations from difficult aerial perspectives: https://github.com/farooqhassaan/FlyPose.
comment: 11 pages, 9 figures, IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2026
Safety on the Fly: Constructing Robust Safety Filters via Policy Control Barrier Functions at Runtime RAL
Control Barrier Functions (CBFs) have proven to be an effective tool for performing safe control synthesis for nonlinear systems. However, guaranteeing safety in the presence of disturbances and input constraints for high relative degree systems is a difficult problem. In this work, we propose the Robust Policy CBF (RPCBF), a practical approach for constructing robust CBF approximations online via the estimation of a value function. We establish conditions under which the approximation qualifies as a valid CBF and demonstrate the effectiveness of the RPCBF-safety filter in simulation on a variety of high relative degree input-constrained systems. Finally, we demonstrate the benefits of our method in compensating for model errors on a hardware quadcopter platform by treating the model errors as disturbances. Website including code: www.oswinso.xyz/rpcbf/
comment: Accepted in RAL. The project page can be found at www.oswinso.xyz/rpcbf/
Sequentially Teaching Sequential Tasks $(ST)^2$: Teaching Robots Long-horizon Manipulation Skills
Learning from demonstration has proved itself useful for teaching robots complex skills with high sample efficiency. However, teaching long-horizon tasks with multiple skills is challenging as deviations tend to accumulate, the distributional shift becomes more evident, and human teachers become fatigued over time, thereby increasing the likelihood of failure. To address these challenges, we introduce $(ST)^2$, a sequential method for learning long-horizon manipulation tasks that allows users to control the teaching flow by specifying key points, enabling structured and incremental demonstrations. Using this framework, we study how users respond to two teaching paradigms: (i) a traditional monolithic approach, in which users demonstrate the entire task trajectory at once, and (ii) a sequential approach, in which the task is segmented and demonstrated step by step. We conducted an extensive user study on the restocking task with $16$ participants in a realistic retail store environment, evaluating the user preferences and effectiveness of the methods. User-level analysis showed superior performance for the sequential approach in most cases (10 users), compared with the monolithic approach (5 users), with one tie. Our subjective results indicate that some teachers prefer sequential teaching -- as it allows them to teach complicated tasks iteratively -- or others prefer teaching in one go due to its simplicity.
comment: Accepted for publication in IEEE Robotics and Automation Magazine
Robotic Tele-Operation for Upper Aerodigestive Tract Microsurgery: System Design and Validation
Upper aerodigestive tract (UADT) treatments frequently employ transoral laser microsurgery (TLM) for procedures such as the removal of tumors or polyps. In TLM, a laser beam is used to cut target tissue, while forceps are employed to grasp, manipulate, and stabilize tissue within the UADT. Although TLM systems may rely on different technologies and interfaces, forceps manipulation is still predominantly performed manually, introducing limitations in ergonomics, precision, and controllability. This paper proposes a novel robotic system for tissue manipulation in UADT procedures, based on a novel end-effector designed for forceps control. The system is integrated within a teleoperation framework that employs a robotic manipulator with a programmed remote center of motion (RCM), enabling precise and constrained instrument motion while improving surgeon ergonomics. The proposed approach is validated through two experimental studies and a dedicated usability evaluation, demonstrating its effectiveness and suitability for UADT surgical applications.
Omni-LIVO: Robust RGB-Colored Multi-Camera Visual-Inertial-LiDAR Odometry via Photometric Migration and ESIKF Fusion
Wide field-of-view (FoV) LiDAR sensors provide dense geometry across large environments, but existing LiDAR-inertial-visual odometry (LIVO) systems generally rely on a single camera, limiting their ability to fully exploit LiDAR-derived depth for photometric alignment and scene colorization. We present Omni-LIVO, a tightly coupled multi-camera LIVO system that leverages multi-view observations to comprehensively utilize LiDAR geometric information across extended spatial regions. Omni-LIVO introduces a Cross-View direct alignment strategy that maintains photometric consistency across non-overlapping views, and extends the Error-State Iterated Kalman Filter (ESIKF) with multi-view updates and adaptive covariance. The system is evaluated on public benchmarks and our custom dataset, showing improved accuracy and robustness over state-of-the-art LIVO, LIO, and visual-inertial SLAM baselines. Code and dataset will be released upon publication.
A0: An Affordance-Aware Hierarchical Model for General Robotic Manipulation
Robotic manipulation faces critical challenges in understanding spatial affordances--the "where" and "how" of object interactions--essential for complex manipulation tasks like wiping a board or stacking objects. Existing methods, including modular-based and end-to-end approaches, often lack robust spatial reasoning capabilities. Unlike recent point-based and flow-based affordance methods that focus on dense spatial representations or trajectory modeling, we propose A0, a hierarchical affordance-aware diffusion model that decomposes manipulation tasks into high-level spatial affordance understanding and low-level action execution. A0 leverages the Embodiment-Agnostic Affordance Representation, which captures object-centric spatial affordances by predicting contact points and post-contact trajectories. A0 is pre-trained on 1 million contact points data and fine-tuned on annotated trajectories, enabling generalization across platforms. Key components include Position Offset Attention for motion-aware feature extraction and a Spatial Information Aggregation Layer for precise coordinate mapping. The model's output is executed by the action execution module. Experiments on multiple robotic systems (Franka, Kinova, Realman, and Dobot) demonstrate A0's superior performance in complex tasks, showcasing its efficiency, flexibility, and real-world applicability.
DAPPER: Discriminability-Aware Policy-to-Policy Preference-Based Reinforcement Learning for Query-Efficient Robot Skill Acquisition RAM
Preference-based Reinforcement Learning (PbRL) enables policy learning through simple queries comparing trajectories from a single policy. While human responses to these queries make it possible to learn policies aligned with human preferences, PbRL suffers from low query efficiency, as policy bias limits trajectory diversity and reduces the number of discriminable queries available for learning preferences. This paper identifies preference discriminability, which quantifies how easily a human can judge which trajectory is closer to their ideal behavior, as a key metric for improving query efficiency. To address this, we move beyond comparisons within a single policy and instead generate queries by comparing trajectories from multiple policies, as training them from scratch promotes diversity without policy bias. We propose Discriminability-Aware Policy-to-Policy Preference-Based Efficient Reinforcement Learning (DAPPER), which integrates preference discriminability with trajectory diversification achieved by multiple policies. DAPPER trains new policies from scratch after each reward update and employs a discriminator that learns to estimate preference discriminability, enabling the prioritized sampling of more discriminable queries. During training, it jointly maximizes the preference reward and preference discriminability score, encouraging the discovery of highly rewarding and easily distinguishable policies. Experiments in simulated and real-world legged robot environments demonstrate that DAPPER outperforms previous methods in query efficiency, particularly under challenging preference discriminability conditions. A supplementary video that facilitates understanding of the proposed framework and its experimental results is available at: https://youtu.be/lRwX8FNN8n4
comment: Accepted for IEEE Robotics & Automation Magazine (RAM)
SurfSLAM: Sim-to-Real Underwater Stereo Reconstruction For Real-Time SLAM
Localization and mapping are core perceptual capabilities for underwater robots. Stereo cameras provide a low-cost means of directly estimating metric depth to support these tasks. However, despite recent advances in stereo depth estimation on land, computing depth from image pairs in underwater scenes remains challenging. In underwater environments, images are degraded by light attenuation, visual artifacts, and dynamic lighting conditions. Furthermore, real-world underwater scenes frequently lack rich texture useful for stereo depth estimation and 3D reconstruction. As a result, stereo estimation networks trained on in-air data cannot transfer directly to the underwater domain. In addition, there is a lack of real-world underwater stereo datasets for supervised training of neural networks. Poor underwater depth estimation is compounded in stereo-based Simultaneous Localization and Mapping (SLAM) algorithms, making it a fundamental challenge for underwater robot perception. To address these challenges, we propose a novel framework that enables sim-to-real training of underwater stereo disparity estimation networks using simulated data and self-supervised finetuning. We leverage our learned depth predictions to develop SurfSLAM, a novel framework for real-time underwater SLAM that fuses stereo cameras with IMU, barometric, and Doppler Velocity Log (DVL) measurements. Lastly, we collect a challenging real-world dataset of shipwreck surveys using an underwater robot. Our dataset features over 24,000 stereo pairs, along with high-quality, dense photogrammetry models and reference trajectories for evaluation. Through extensive experiments, we demonstrate the advantages of the proposed training approach on real-world data for improving stereo estimation in the underwater domain and for enabling accurate trajectory estimation and 3D reconstruction of complex shipwreck sites.
Computer Vision and Pattern Recognition 147
Implicit Neural Representation Facilitates Unified Universal Vision Encoding
Models for image representation learning are typically designed for either recognition or generation. Various forms of contrastive learning help models learn to convert images to embeddings that are useful for classification, detection, and segmentation. On the other hand, models can be trained to reconstruct images with pixel-wise, perceptual, and adversarial losses in order to learn a latent space that is useful for image generation. We seek to unify these two directions with a first-of-its-kind model that learns representations which are simultaneously useful for recognition and generation. We train our model as a hyper-network for implicit neural representation, which learns to map images to model weights for fast, accurate reconstruction. We further integrate our INR hyper-network with knowledge distillation to improve its generalization and performance. Beyond the novel training design, the model also learns an unprecedented compressed embedding space with outstanding performance for various visual tasks. The complete model competes with state-of-the-art results for image representation learning, while also enabling generative capabilities with its high-quality tiny embeddings. The code is available at https://github.com/tiktok/huvr.
comment: 18 pages, 16 tables, 4 figures
VideoMaMa: Mask-Guided Video Matting via Generative Prior
Generalizing video matting models to real-world videos remains a significant challenge due to the scarcity of labeled data. To address this, we present Video Mask-to-Matte Model (VideoMaMa) that converts coarse segmentation masks into pixel accurate alpha mattes, by leveraging pretrained video diffusion models. VideoMaMa demonstrates strong zero-shot generalization to real-world footage, even though it is trained solely on synthetic data. Building on this capability, we develop a scalable pseudo-labeling pipeline for large-scale video matting and construct the Matting Anything in Video (MA-V) dataset, which offers high-quality matting annotations for more than 50K real-world videos spanning diverse scenes and motions. To validate the effectiveness of this dataset, we fine-tune the SAM2 model on MA-V to obtain SAM2-Matte, which outperforms the same model trained on existing matting datasets in terms of robustness on in-the-wild videos. These findings emphasize the importance of large-scale pseudo-labeled video matting and showcase how generative priors and accessible segmentation cues can drive scalable progress in video matting research.
comment: Project page: https://cvlab-kaist.github.io/VideoMaMa/
Motion 3-to-4: 3D Motion Reconstruction for 4D Synthesis
We present Motion 3-to-4, a feed-forward framework for synthesising high-quality 4D dynamic objects from a single monocular video and an optional 3D reference mesh. While recent advances have significantly improved 2D, video, and 3D content generation, 4D synthesis remains difficult due to limited training data and the inherent ambiguity of recovering geometry and motion from a monocular viewpoint. Motion 3-to-4 addresses these challenges by decomposing 4D synthesis into static 3D shape generation and motion reconstruction. Using a canonical reference mesh, our model learns a compact motion latent representation and predicts per-frame vertex trajectories to recover complete, temporally coherent geometry. A scalable frame-wise transformer further enables robustness to varying sequence lengths. Evaluations on both standard benchmarks and a new dataset with accurate ground-truth geometry show that Motion 3-to-4 delivers superior fidelity and spatial consistency compared to prior work. Project page is available at https://motion3-to-4.github.io/.
comment: Project page: https://motion3-to-4.github.io/. Code: https://github.com/Inception3D/Motion324
LightOnOCR: A 1B End-to-End Multilingual Vision-Language Model for State-of-the-Art OCR
We present \textbf{LightOnOCR-2-1B}, a 1B-parameter end-to-end multilingual vision--language model that converts document images (e.g., PDFs) into clean, naturally ordered text without brittle OCR pipelines. Trained on a large-scale, high-quality distillation mix with strong coverage of scans, French documents, and scientific PDFs, LightOnOCR-2 achieves state-of-the-art results on OlmOCR-Bench while being 9$\times$ smaller and substantially faster than prior best-performing models. We further extend the output format to predict normalized bounding boxes for embedded images, introducing localization during pretraining via a resume strategy and refining it with RLVR using IoU-based rewards. Finally, we improve robustness with checkpoint averaging and task-arithmetic merging. We release model checkpoints under Apache 2.0, and publicly release the dataset and \textbf{LightOnOCR-bbox-bench} evaluation under their respective licenses.
OmniTransfer: All-in-one Framework for Spatio-temporal Video Transfer
Videos convey richer information than images or text, capturing both spatial and temporal dynamics. However, most existing video customization methods rely on reference images or task-specific temporal priors, failing to fully exploit the rich spatio-temporal information inherent in videos, thereby limiting flexibility and generalization in video generation. To address these limitations, we propose OmniTransfer, a unified framework for spatio-temporal video transfer. It leverages multi-view information across frames to enhance appearance consistency and exploits temporal cues to enable fine-grained temporal control. To unify various video transfer tasks, OmniTransfer incorporates three key designs: Task-aware Positional Bias that adaptively leverages reference video information to improve temporal alignment or appearance consistency; Reference-decoupled Causal Learning separating reference and target branches to enable precise reference transfer while improving efficiency; and Task-adaptive Multimodal Alignment using multimodal semantic guidance to dynamically distinguish and tackle different tasks. Extensive experiments show that OmniTransfer outperforms existing methods in appearance (ID and style) and temporal transfer (camera movement and video effects), while matching pose-guided methods in motion transfer without using pose, establishing a new paradigm for flexible, high-fidelity video generation.
comment: Github Page: https://pangzecheung.github.io/OmniTransfer/
Soft Tail-dropping for Adaptive Visual Tokenization
We present Soft Tail-dropping Adaptive Tokenizer (STAT), a 1D discrete visual tokenizer that adaptively chooses the number of output tokens per image according to its structural complexity and level of detail. STAT encodes an image into a sequence of discrete codes together with per-token keep probabilities. Beyond standard autoencoder objectives, we regularize these keep probabilities to be monotonically decreasing along the sequence and explicitly align their distribution with an image-level complexity measure. As a result, STAT produces length-adaptive 1D visual tokens that are naturally compatible with causal 1D autoregressive (AR) visual generative models. On ImageNet-1k, equipping vanilla causal AR models with STAT yields competitive or superior visual generation quality compared to other probabilistic model families, while also exhibiting favorable scaling behavior that has been elusive in prior vanilla AR visual generation attempts.
KAGE-Bench: Fast Known-Axis Visual Generalization Evaluation for Reinforcement Learning
Pixel-based reinforcement learning agents often fail under purely visual distribution shift even when latent dynamics and rewards are unchanged, but existing benchmarks entangle multiple sources of shift and hinder systematic analysis. We introduce KAGE-Env, a JAX-native 2D platformer that factorizes the observation process into independently controllable visual axes while keeping the underlying control problem fixed. By construction, varying a visual axis affects performance only through the induced state-conditional action distribution of a pixel policy, providing a clean abstraction for visual generalization. Building on this environment, we define KAGE-Bench, a benchmark of six known-axis suites comprising 34 train-evaluation configuration pairs that isolate individual visual shifts. Using a standard PPO-CNN baseline, we observe strong axis-dependent failures, with background and photometric shifts often collapsing success, while agent-appearance shifts are comparatively benign. Several shifts preserve forward motion while breaking task completion, showing that return alone can obscure generalization failures. Finally, the fully vectorized JAX implementation enables up to 33M environment steps per second on a single GPU, enabling fast and reproducible sweeps over visual factors. Code: https://avanturist322.github.io/KAGEBench/.
comment: 38 pages, 44 figures, 3 tables
Rig-Aware 3D Reconstruction of Vehicle Undercarriages using Gaussian Splatting
Inspecting the undercarriage of used vehicles is a labor-intensive task that requires inspectors to crouch or crawl underneath each vehicle to thoroughly examine it. Additionally, online buyers rarely see undercarriage photos. We present an end-to-end pipeline that utilizes a three-camera rig to capture videos of the undercarriage as the vehicle drives over it, and produces an interactive 3D model of the undercarriage. The 3D model enables inspectors and customers to rotate, zoom, and slice through the undercarriage, allowing them to detect rust, leaks, or impact damage in seconds, thereby improving both workplace safety and buyer confidence. Our primary contribution is a rig-aware Structure-from-Motion (SfM) pipeline specifically designed to overcome the challenges of wide-angle lens distortion and low-parallax scenes. Our method overcomes the challenges of wide-angle lens distortion and low-parallax scenes by integrating precise camera calibration, synchronized video streams, and strong geometric priors from the camera rig. We use a constrained matching strategy with learned components, the DISK feature extractor, and the attention-based LightGlue matcher to generate high-quality sparse point clouds that are often unattainable with standard SfM pipelines. These point clouds seed the Gaussian splatting process to generate photorealistic undercarriage models that render in real-time. Our experiments and ablation studies demonstrate that our design choices are essential to achieve state-of-the-art quality.
comment: 8 pages, 9 figures, Conference: IEEE International Conference on Machine Learning and Applications 2025 (ICMLA 2025): https://www.icmla-conference.org/icmla25/
Copy-Trasform-Paste: Zero-Shot Object-Object Alignment Guided by Vision-Language and Geometric Constraints
We study zero-shot 3D alignment of two given meshes, using a text prompt describing their spatial relation -- an essential capability for content creation and scene assembly. Earlier approaches primarily rely on geometric alignment procedures, while recent work leverages pretrained 2D diffusion models to model language-conditioned object-object spatial relationships. In contrast, we directly optimize the relative pose at test time, updating translation, rotation, and isotropic scale with CLIP-driven gradients via a differentiable renderer, without training a new model. Our framework augments language supervision with geometry-aware objectives: a variant of soft-Iterative Closest Point (ICP) term to encourage surface attachment and a penetration loss to discourage interpenetration. A phased schedule strengthens contact constraints over time, and camera control concentrates the optimization on the interaction region. To enable evaluation, we curate a benchmark containing diverse categories and relations, and compare against baselines. Our method outperforms all alternatives, yielding semantically faithful and physically plausible alignments.
IIR-VLM: In-Context Instance-level Recognition for Large Vision-Language Models
Instance-level recognition (ILR) concerns distinguishing individual instances from one another, with person re-identification as a prominent example. Despite the impressive visual perception capabilities of modern VLMs, we find their performance on ILR unsatisfactory, often dramatically underperforming domain-specific ILR models. This limitation hinders many practical application of VLMs, e.g. where recognizing familiar people and objects is crucial for effective visual understanding. Existing solutions typically learn to recognize instances one at a time using instance-specific datasets, which not only incur substantial data collection and training costs but also struggle with fine-grained discrimination. In this work, we propose IIR-VLM, a VLM enhanced for In-context Instance-level Recognition. We integrate pre-trained ILR expert models as auxiliary visual encoders to provide specialized features for learning diverse instances, which enables VLMs to learn new instances in-context in a one-shot manner. Further, IIR-VLM leverages this knowledge for instance-aware visual understanding. We validate IIR-VLM's efficacy on existing instance personalization benchmarks. Finally, we demonstrate its superior ILR performance on a challenging new benchmark, which assesses ILR capabilities across varying difficulty and diverse categories, with person, face, pet and general objects as the instances at task.
Progressive self-supervised blind-spot denoising method for LDCT denoising
Self-supervised learning is increasingly investigated for low-dose computed tomography (LDCT) image denoising, as it alleviates the dependence on paired normal-dose CT (NDCT) data, which are often difficult to acquire in clinical practice. In this paper, we propose a novel self-supervised training strategy that relies exclusively on LDCT images. We introduce a step-wise blind-spot denoising mechanism that enforces conditional independence in a progressive manner, enabling more fine-grained denoising learning. In addition, we add Gaussian noise to LDCT images, which acts as a regularization and mitigates overfitting. Extensive experiments on the Mayo LDCT dataset demonstrate that the proposed method consistently outperforms existing self-supervised approaches and achieves performance comparable to, or better than, several representative supervised denoising methods.
ASBA: A-line State Space Model and B-line Attention for Sparse Optical Doppler Tomography Reconstruction
Optical Doppler Tomography (ODT) is an emerging blood flow analysis technique. A 2D ODT image (B-scan) is generated by sequentially acquiring 1D depth-resolved raw A-scans (A-line) along the lateral axis (B-line), followed by Doppler phase-subtraction analysis. To ensure high-fidelity B-scan images, current practices rely on dense sampling, which prolongs scanning time, increases storage demands, and limits the capture of rapid blood flow dynamics. Recent studies have explored sparse sampling of raw A-scans to alleviate these limitations, but their effectiveness is hindered by the conservative sampling rates and the uniform modeling of flow and background signals. In this study, we introduce a novel blood flow-aware network, named ASBA (A-line ROI State space model and B-line phase Attention), to reconstruct ODT images from highly sparsely sampled raw A-scans. Specifically, we propose an A-line ROI state space model to extract sparsely distributed flow features along the A-line, and a B-line phase attention to capture long-range flow signals along each B-line based on phase difference. Moreover, we introduce a flow-aware weighted loss function that encourages the network to prioritize the accurate reconstruction of flow signals. Extensive experiments on real animal data demonstrate that the proposed approach clearly outperforms existing state-of-the-art reconstruction methods.
comment: 17 pages, 11 figures
One-Shot Refiner: Boosting Feed-forward Novel View Synthesis via One-Step Diffusion
We present a novel framework for high-fidelity novel view synthesis (NVS) from sparse images, addressing key limitations in recent feed-forward 3D Gaussian Splatting (3DGS) methods built on Vision Transformer (ViT) backbones. While ViT-based pipelines offer strong geometric priors, they are often constrained by low-resolution inputs due to computational costs. Moreover, existing generative enhancement methods tend to be 3D-agnostic, resulting in inconsistent structures across views, especially in unseen regions. To overcome these challenges, we design a Dual-Domain Detail Perception Module, which enables handling high-resolution images without being limited by the ViT backbone, and endows Gaussians with additional features to store high-frequency details. We develop a feature-guided diffusion network, which can preserve high-frequency details during the restoration process. We introduce a unified training strategy that enables joint optimization of the ViT-based geometric backbone and the diffusion-based refinement module. Experiments demonstrate that our method can maintain superior generation quality across multiple datasets.
LLM Augmented Intervenable Multimodal Adaptor for Post-operative Complication Prediction in Lung Cancer Surgery WACV 2026
Postoperative complications remain a critical concern in clinical practice, adversely affecting patient outcomes and contributing to rising healthcare costs. We present MIRACLE, a deep learning architecture for prediction of risk of postoperative complications in lung cancer surgery by integrating preoperative clinical and radiological data. MIRACLE employs a hyperspherical embedding space fusion of heterogeneous inputs, enabling the extraction of robust, discriminative features from both structured clinical records and high-dimensional radiological images. To enhance transparency of prediction and clinical utility, we incorporate an interventional deep learning module in MIRACLE, that not only refines predictions but also provides interpretable and actionable insights, allowing domain experts to interactively adjust recommendations based on clinical expertise. We validate our approach on POC-L, a real-world dataset comprising 3,094 lung cancer patients who underwent surgery at Roswell Park Comprehensive Cancer Center. Our results demonstrate that MIRACLE outperforms various traditional machine learning models and contemporary large language models (LLM) variants alone, for personalized and explainable postoperative risk management.
comment: Accepted to P2P-CV @ WACV 2026
TwinBrainVLA: Unleashing the Potential of Generalist VLMs for Embodied Tasks via Asymmetric Mixture-of-Transformers
Standard Vision-Language-Action (VLA) models typically fine-tune a monolithic Vision-Language Model (VLM) backbone explicitly for robotic control. However, this approach creates a critical tension between maintaining high-level general semantic understanding and learning low-level, fine-grained sensorimotor skills, often leading to "catastrophic forgetting" of the model's open-world capabilities. To resolve this conflict, we introduce TwinBrainVLA, a novel architecture that coordinates a generalist VLM retaining universal semantic understanding and a specialist VLM dedicated to embodied proprioception for joint robotic control. TwinBrainVLA synergizes a frozen "Left Brain", which retains robust general visual reasoning, with a trainable "Right Brain", specialized for embodied perception, via a novel Asymmetric Mixture-of-Transformers (AsyMoT) mechanism. This design allows the Right Brain to dynamically query semantic knowledge from the frozen Left Brain and fuse it with proprioceptive states, providing rich conditioning for a Flow-Matching Action Expert to generate precise continuous controls. Extensive experiments on SimplerEnv and RoboCasa benchmarks demonstrate that TwinBrainVLA achieves superior manipulation performance compared to state-of-the-art baselines while explicitly preserving the comprehensive visual understanding capabilities of the pre-trained VLM, offering a promising direction for building general-purpose robots that simultaneously achieve high-level semantic understanding and low-level physical dexterity.
comment: GitHub: https://github.com/ZGC-EmbodyAI/TwinBrainVLA
GIC-DLC: Differentiable Logic Circuits for Hardware-Friendly Grayscale Image Compression
Neural image codecs achieve higher compression ratios than traditional hand-crafted methods such as PNG or JPEG-XL, but often incur substantial computational overhead, limiting their deployment on energy-constrained devices such as smartphones, cameras, and drones. We propose Grayscale Image Compression with Differentiable Logic Circuits (GIC-DLC), a hardware-aware codec where we train lookup tables to combine the flexibility of neural networks with the efficiency of Boolean operations. Experiments on grayscale benchmark datasets show that GIC-DLC outperforms traditional codecs in compression efficiency while allowing substantial reductions in energy consumption and latency. These results demonstrate that learned compression can be hardware-friendly, offering a promising direction for low-power image compression on edge devices.
The Side Effects of Being Smart: Safety Risks in MLLMs' Multi-Image Reasoning
As Multimodal Large Language Models (MLLMs) acquire stronger reasoning capabilities to handle complex, multi-image instructions, this advancement may pose new safety risks. We study this problem by introducing MIR-SafetyBench, the first benchmark focused on multi-image reasoning safety, which consists of 2,676 instances across a taxonomy of 9 multi-image relations. Our extensive evaluations on 19 MLLMs reveal a troubling trend: models with more advanced multi-image reasoning can be more vulnerable on MIR-SafetyBench. Beyond attack success rates, we find that many responses labeled as safe are superficial, often driven by misunderstanding or evasive, non-committal replies. We further observe that unsafe generations exhibit lower attention entropy than safe ones on average. This internal signature suggests a possible risk that models may over-focus on task solving while neglecting safety constraints. Our code and data are available at https://github.com/thu-coai/MIR-SafetyBench.
comment: *15 pages, 5 figures. Introduces MIR-SafetyBench (2,676 instances; 9 multi-image relations). Equal contribution; †Corresponding author. Code/data: https://github.com/thu-coai/MIR-SafetyBench
PMCE: Probabilistic Multi-Granularity Semantics with Caption-Guided Enhancement for Few-Shot Learning
Few-shot learning aims to identify novel categories from only a handful of labeled samples, where prototypes estimated from scarce data are often biased and generalize poorly. Semantic-based methods alleviate this by introducing coarse class-level information, but they are mostly applied on the support side, leaving query representations unchanged. In this paper, we present PMCE, a Probabilistic few-shot framework that leverages Multi-granularity semantics with Caption-guided Enhancement. PMCE constructs a nonparametric knowledge bank that stores visual statistics for each category as well as CLIP-encoded class name embeddings of the base classes. At meta-test time, the most relevant base classes are retrieved based on the similarities of class name embeddings for each novel category. These statistics are then aggregated into category-specific prior information and fused with the support set prototypes via a simple MAP update. Simultaneously, a frozen BLIP captioner provides label-free instance-level image descriptions, and a lightweight enhancer trained on base classes optimizes both support prototypes and query features under an inductive protocol with a consistency regularization to stabilize noisy captions. Experiments on four benchmarks show that PMCE consistently improves over strong baselines, achieving up to 7.71% absolute gain over the strongest semantic competitor on MiniImageNet in the 1-shot setting. Our code is available at https://anonymous.4open.science/r/PMCE-275D
Diffusion-Guided Backdoor Attacks in Real-World Reinforcement Learning
Backdoor attacks embed hidden malicious behaviors in reinforcement learning (RL) policies and activate them using triggers at test time. Most existing attacks are validated only in simulation, while their effectiveness in real-world robotic systems remains unclear. In physical deployment, safety-constrained control pipelines such as velocity limiting, action smoothing, and collision avoidance suppress abnormal actions, causing strong attenuation of conventional backdoor attacks. We study this previously overlooked problem and propose a diffusion-guided backdoor attack framework (DGBA) for real-world RL. We design small printable visual patch triggers placed on the floor and generate them using a conditional diffusion model that produces diverse patch appearances under real-world visual variations. We treat the robot control stack as a black-box system. We further introduce an advantage-based poisoning strategy that injects triggers only at decision-critical training states. We evaluate our method on a TurtleBot3 mobile robot and demonstrate reliable activation of targeted attacks while preserving normal task performance. Demo videos and code are available in the supplementary material.
Interp3D: Correspondence-aware Interpolation for Generative Textured 3D Morphing
Textured 3D morphing seeks to generate smooth and plausible transitions between two 3D assets, preserving both structural coherence and fine-grained appearance. This ability is crucial not only for advancing 3D generation research but also for practical applications in animation, editing, and digital content creation. Existing approaches either operate directly on geometry, limiting them to shape-only morphing while neglecting textures, or extend 2D interpolation strategies into 3D, which often causes semantic ambiguity, structural misalignment, and texture blurring. These challenges underscore the necessity to jointly preserve geometric consistency, texture alignment, and robustness throughout the transition process. To address this, we propose Interp3D, a novel training-free framework for textured 3D morphing. It harnesses generative priors and adopts a progressive alignment principle to ensure both geometric fidelity and texture coherence. Starting from semantically aligned interpolation in condition space, Interp3D enforces structural consistency via SLAT (Structured Latent)-guided structure interpolation, and finally transfers appearance details through fine-grained texture fusion. For comprehensive evaluations, we construct a dedicated dataset, Interp3DData, with graded difficulty levels and assess generation results from fidelity, transition smoothness, and plausibility. Both quantitative metrics and human studies demonstrate the significant advantages of our proposed approach over previous methods. Source code is available at https://github.com/xiaolul2/Interp3D.
comment: 22 pages, 12 figures
Curriculum-Based Strategies for Efficient Cross-Domain Action Recognition
Despite significant progress in human action recognition, generalizing to diverse viewpoints remains a challenge. Most existing datasets are captured from ground-level perspectives, and models trained on them often struggle to transfer to drastically different domains such as aerial views. This paper examines how curriculum-based training strategies can improve generalization to unseen real aerial-view data without using any real aerial data during training. We explore curriculum learning for cross-view action recognition using two out-of-domain sources: synthetic aerial-view data and real ground-view data. Our results on the evaluation on order of training (fine-tuning on synthetic aerial data vs. real ground data) shows that fine-tuning on real ground data but differ in how they transition from synthetic to real. The first uses a two-stage curriculum with direct fine-tuning, while the second applies a progressive curriculum that expands the dataset in multiple stages before fine-tuning. We evaluate both methods on the REMAG dataset using SlowFast (CNN-based) and MViTv2 (Transformer-based) architectures. Results show that combining the two out-of-domain datasets clearly outperforms training on a single domain, whether real ground-view or synthetic aerial-view. Both curriculum strategies match the top-1 accuracy of simple dataset combination while offering efficiency gains. With the two-step fine-tuning method, SlowFast achieves up to a 37% reduction in iterations and MViTv2 up to a 30% reduction compared to simple combination. The multi-step progressive approach further reduces iterations, by up to 9% for SlowFast and 30% for MViTv2, relative to the two-step method. These findings demonstrate that curriculum-based training can maintain comparable performance (top-1 accuracy within 3% range) while improving training efficiency in cross-view action recognition.
Two-Stream temporal transformer for video action classification
Motion representation plays an important role in video understanding and has many applications including action recognition, robot and autonomous guidance or others. Lately, transformer networks, through their self-attention mechanism capabilities, have proved their efficiency in many applications. In this study, we introduce a new two-stream transformer video classifier, which extracts spatio-temporal information from content and optical flow representing movement information. The proposed model identifies self-attention features across the joint optical flow and temporal frame domain and represents their relationships within the transformer encoder mechanism. The experimental results show that our proposed methodology provides excellent classification results on three well-known video datasets of human activities.
DermaBench: A Clinician-Annotated Benchmark Dataset for Dermatology Visual Question Answering and Reasoning
Vision-language models (VLMs) are increasingly important in medical applications; however, their evaluation in dermatology remains limited by datasets that focus primarily on image-level classification tasks such as lesion recognition. While valuable for recognition, such datasets cannot assess the full visual understanding, language grounding, and clinical reasoning capabilities of multimodal models. Visual question answering (VQA) benchmarks are required to evaluate how models interpret dermatological images, reason over fine-grained morphology, and generate clinically meaningful descriptions. We introduce DermaBench, a clinician-annotated dermatology VQA benchmark built on the Diverse Dermatology Images (DDI) dataset. DermaBench comprises 656 clinical images from 570 unique patients spanning Fitzpatrick skin types I-VI. Using a hierarchical annotation schema with 22 main questions (single-choice, multi-choice, and open-ended), expert dermatologists annotated each image for diagnosis, anatomic site, lesion morphology, distribution, surface features, color, and image quality, together with open-ended narrative descriptions and summaries, yielding approximately 14.474 VQA-style annotations. DermaBench is released as a metadata-only dataset to respect upstream licensing and is publicly available at Harvard Dataverse.
VENI: Variational Encoder for Natural Illumination
Inverse rendering is an ill-posed problem, but priors like illumination priors, can simplify it. Existing work either disregards the spherical and rotation-equivariant nature of illumination environments or does not provide a well-behaved latent space. We propose a rotation-equivariant variational autoencoder that models natural illumination on the sphere without relying on 2D projections. To preserve the SO(2)-equivariance of environment maps, we use a novel Vector Neuron Vision Transformer (VN-ViT) as encoder and a rotation-equivariant conditional neural field as decoder. In the encoder, we reduce the equivariance from SO(3) to SO(2) using a novel SO(2)-equivariant fully connected layer, an extension of Vector Neurons. We show that our SO(2)-equivariant fully connected layer outperforms standard Vector Neurons when used in our SO(2)-equivariant model. Compared to previous methods, our variational autoencoder enables smoother interpolation in latent space and offers a more well-behaved latent space.
comment: Project Repo - https://github.com/paul-pw/veni Project page - https://paul-pw.github.io/veni
MooneyMaker: A Python package to create ambiguous two-tone images
Mooney images are high-contrast, two-tone visual stimuli, created by thresholding photographic images. They allow researchers to separate image content from image understanding, making them valuable for studying visual perception. An ideal Mooney image for this purpose achieves a specific balance: it initially appears unrecognizable but becomes fully interpretable to the observer after seeing the original template. Researchers traditionally created these stimuli manually using subjective criteria, which is labor-intensive and can introduce inconsistencies across studies. Automated generation techniques now offer an alternative to this manual approach. Here, we present MooneyMaker, an open-source Python package that automates the generation of ambiguous Mooney images using several complementary approaches. Users can choose between various generation techniques that range from approaches based on image statistics to deep learning models. These models strategically alter edge information to increase initial ambiguity. The package lets users create two-tone images with multiple methods and directly compare the results visually. In an experiment, we validate MooneyMaker by generating Mooney images using different techniques and assess their recognizability for human observers before and after disambiguating them by presenting the template images. Our results reveal that techniques with lower initial recognizability are associated with higher post-template recognition (i.e. a larger disambiguation effect). To help vision scientists build effective databases of Mooney stimuli, we provide practical guidelines for technique selection. By standardizing the generation process, MooneyMaker supports more consistent and reproducible visual perception research.
Unsupervised Video Class-Incremental Learning via Deep Embedded Clustering Management
Unsupervised video class incremental learning (uVCIL) represents an important learning paradigm for learning video information without forgetting, and without considering any data labels. Prior approaches have focused on supervised class-incremental learning, relying on using the knowledge of labels and task boundaries, which is costly, requires human annotation, or is simply not a realistic option. In this paper, we propose a simple yet effective approach to address the uVCIL. We first consider a deep feature extractor network, providing a set of representative video features during each task without assuming any class or task information. We then progressively build a series of deep clusters from the extracted features. During the successive task learning, the model updated from the previous task is used as an initial state in order to transfer knowledge to the current learning task. We perform in-depth evaluations on three standard video action recognition datasets, including UCF101, HMDB51, and Something-to-Something V2, by ignoring the labels from the supervised setting. Our approach significantly outperforms other baselines on all datasets.
VERIDAH: Solving Enumeration Anomaly Aware Vertebra Labeling across Imaging Sequences
The human spine commonly consists of seven cervical, twelve thoracic, and five lumbar vertebrae. However, enumeration anomalies may result in individuals having eleven or thirteen thoracic vertebrae and four or six lumbar vertebrae. Although the identification of enumeration anomalies has potential clinical implications for chronic back pain and operation planning, the thoracolumbar junction is often poorly assessed and rarely described in clinical reports. Additionally, even though multiple deep-learning-based vertebra labeling algorithms exist, there is a lack of methods to automatically label enumeration anomalies. Our work closes that gap by introducing "Vertebra Identification with Anomaly Handling" (VERIDAH), a novel vertebra labeling algorithm based on multiple classification heads combined with a weighted vertebra sequence prediction algorithm. We show that our approach surpasses existing models on T2w TSE sagittal (98.30% vs. 94.24% of subjects with all vertebrae correctly labeled, p < 0.001) and CT imaging (99.18% vs. 77.26% of subjects with all vertebrae correctly labeled, p < 0.001) and works in arbitrary field-of-view images. VERIDAH correctly labeled the presence 2 Möller et al. of thoracic enumeration anomalies in 87.80% and 96.30% of T2w and CT images, respectively, and lumbar enumeration anomalies in 94.48% and 97.22% for T2w and CT, respectively. Our code and models are available at: https://github.com/Hendrik-code/spineps.
Fine-Grained Zero-Shot Composed Image Retrieval with Complementary Visual-Semantic Integration
Zero-shot composed image retrieval (ZS-CIR) is a rapidly growing area with significant practical applications, allowing users to retrieve a target image by providing a reference image and a relative caption describing the desired modifications. Existing ZS-CIR methods often struggle to capture fine-grained changes and integrate visual and semantic information effectively. They primarily rely on either transforming the multimodal query into a single text using image-to-text models or employing large language models for target image description generation, approaches that often fail to capture complementary visual information and complete semantic context. To address these limitations, we propose a novel Fine-Grained Zero-Shot Composed Image Retrieval method with Complementary Visual-Semantic Integration (CVSI). Specifically, CVSI leverages three key components: (1) Visual Information Extraction, which not only extracts global image features but also uses a pre-trained mapping network to convert the image into a pseudo token, combining it with the modification text and the objects most likely to be added. (2) Semantic Information Extraction, which involves using a pre-trained captioning model to generate multiple captions for the reference image, followed by leveraging an LLM to generate the modified captions and the objects most likely to be added. (3) Complementary Information Retrieval, which integrates information extracted from both the query and database images to retrieve the target image, enabling the system to efficiently handle retrieval queries in a variety of situations. Extensive experiments on three public datasets (e.g., CIRR, CIRCO, and FashionIQ) demonstrate that CVSI significantly outperforms existing state-of-the-art methods. Our code is available at https://github.com/yyc6631/CVSI.
POCI-Diff: Position Objects Consistently and Interactively with 3D-Layout Guided Diffusion
We propose a diffusion-based approach for Text-to-Image (T2I) generation with consistent and interactive 3D layout control and editing. While prior methods improve spatial adherence using 2D cues or iterative copy-warp-paste strategies, they often distort object geometry and fail to preserve consistency across edits. To address these limitations, we introduce a framework for Positioning Objects Consistently and Interactively (POCI-Diff), a novel formulation for jointly enforcing 3D geometric constraints and instance-level semantic binding within a unified diffusion process. Our method enables explicit per-object semantic control by binding individual text descriptions to specific 3D bounding boxes through Blended Latent Diffusion, allowing one-shot synthesis of complex multi-object scenes. We further propose a warping-free generative editing pipeline that supports object insertion, removal, and transformation via regeneration rather than pixel deformation. To preserve object identity and consistency across edits, we condition the diffusion process on reference images using IP-Adapter, enabling coherent object appearance throughout interactive 3D editing while maintaining global scene coherence. Experimental results demonstrate that POCI-Diff produces high-quality images consistent with the specified 3D layouts and edits, outperforming state-of-the-art methods in both visual fidelity and layout adherence while eliminating warping-induced geometric artifacts.
Decoder-Free Supervoxel GNN for Accurate Brain-Tumor Localization in Multi-Modal MRI
Modern vision backbones for 3D medical imaging typically process dense voxel grids through parameter-heavy encoder-decoder structures, a design that allocates a significant portion of its parameters to spatial reconstruction rather than feature learning. Our approach introduces SVGFormer, a decoder-free pipeline built upon a content-aware grouping stage that partitions the volume into a semantic graph of supervoxels. Its hierarchical encoder learns rich node representations by combining a patch-level Transformer with a supervoxel-level Graph Attention Network, jointly modeling fine-grained intra-region features and broader inter-regional dependencies. This design concentrates all learnable capacity on feature encoding and provides inherent, dual-scale explainability from the patch to the region level. To validate the framework's flexibility, we trained two specialized models on the BraTS dataset: one for node-level classification and one for tumor proportion regression. Both models achieved strong performance, with the classification model achieving a F1-score of 0.875 and the regression model a MAE of 0.028, confirming the encoder's ability to learn discriminative and localized features. Our results establish that a graph-based, encoder-only paradigm offers an accurate and inherently interpretable alternative for 3D medical image representation.
comment: 10 pages, 3 figures,
LLMOrbit: A Circular Taxonomy of Large Language Models -From Scaling Walls to Agentic AI Systems
The field of artificial intelligence has undergone a revolution from foundational Transformer architectures to reasoning-capable systems approaching human-level performance. We present LLMOrbit, a comprehensive circular taxonomy navigating the landscape of large language models spanning 2019-2025. This survey examines over 50 models across 15 organizations through eight interconnected orbital dimensions, documenting architectural innovations, training methodologies, and efficiency patterns defining modern LLMs, generative AI, and agentic systems. We identify three critical crises: (1) data scarcity (9-27T tokens depleted by 2026-2028), (2) exponential cost growth ($3M to $300M+ in 5 years), and (3) unsustainable energy consumption (22x increase), establishing the scaling wall limiting brute-force approaches. Our analysis reveals six paradigms breaking this wall: (1) test-time compute (o1, DeepSeek-R1 achieve GPT-4 performance with 10x inference compute), (2) quantization (4-8x compression), (3) distributed edge computing (10x cost reduction), (4) model merging, (5) efficient training (ORPO reduces memory 50%), and (6) small specialized models (Phi-4 14B matches larger models). Three paradigm shifts emerge: (1) post-training gains (RLHF, GRPO, pure RL contribute substantially, DeepSeek-R1 achieving 79.8% MATH), (2) efficiency revolution (MoE routing 18x efficiency, Multi-head Latent Attention 8x KV cache compression enables GPT-4-level performance at <$0.30/M tokens), and (3) democratization (open-source Llama 3 88.6% MMLU surpasses GPT-4 86.4%). We provide insights into techniques (RLHF, PPO, DPO, GRPO, ORPO), trace evolution from passive generation to tool-using agents (ReAct, RAG, multi-agent systems), and analyze post-training innovations.
Vision Also You Need: Navigating Out-of-Distribution Detection with Multimodal Large Language Model
Out-of-Distribution (OOD) detection is a critical task that has garnered significant attention. The emergence of CLIP has spurred extensive research into zero-shot OOD detection, often employing a training-free approach. Current methods leverage expert knowledge from large language models (LLMs) to identify potential outliers. However, these approaches tend to over-rely on knowledge in the text space, neglecting the inherent challenges involved in detecting out-of-distribution samples in the image space. In this paper, we propose a novel pipeline, MM-OOD, which leverages the multimodal reasoning capabilities of MLLMs and their ability to conduct multi-round conversations for enhanced outlier detection. Our method is designed to improve performance in both near OOD and far OOD tasks. Specifically, (1) for near OOD tasks, we directly feed ID images and corresponding text prompts into MLLMs to identify potential outliers; and (2) for far OOD tasks, we introduce the sketch-generate-elaborate framework: first, we sketch outlier exposure using text prompts, then generate corresponding visual OOD samples, and finally elaborate by using multimodal prompts. Experiments demonstrate that our method achieves significant improvements on widely used multimodal datasets such as Food-101, while also validating its scalability on ImageNet-1K.
Weather-R1: Logically Consistent Reinforcement Fine-Tuning for Multimodal Reasoning in Meteorology
While Vision Language Models (VLMs) show advancing reasoning capabilities, their application in meteorology is constrained by a domain gap and a reasoning faithfulness gap. Specifically, mainstream Reinforcement Fine-Tuning (RFT) can induce Self-Contradictory Reasoning (Self-Contra), where the model's reasoning contradicts its final answer, which is unacceptable in such a high-stakes domain. To address these challenges, we construct WeatherQA, a novel multimodal reasoning benchmark in meteorology. We also propose Logically Consistent Reinforcement Fine-Tuning (LoCo-RFT), which resolves Self-Contra by introducing a logical consistency reward. Furthermore, we introduce Weather-R1, the first reasoning VLM with logical faithfulness in meteorology, to the best of our knowledge. Experiments demonstrate that Weather-R1 improves performance on WeatherQA by 9.8 percentage points over the baseline, outperforming Supervised Fine-Tuning and RFT, and even surpassing the original Qwen2.5-VL-32B. These results highlight the effectiveness of our LoCo-RFT and the superiority of Weather-R1. Our benchmark and code are available at https://github.com/Marcowky/Weather-R1.
Federated Balanced Learning
Federated learning is a paradigm of joint learning in which clients collaborate by sharing model parameters instead of data. However, in the non-iid setting, the global model experiences client drift, which can seriously affect the final performance of the model. Previous methods tend to correct the global model that has already deviated based on the loss function or gradient, overlooking the impact of the client samples. In this paper, we rethink the role of the client side and propose Federated Balanced Learning, i.e., FBL, to prevent this issue from the beginning through sample balance on the client side. Technically, FBL allows unbalanced data on the client side to achieve sample balance through knowledge filling and knowledge sampling using edge-side generation models, under the limitation of a fixed number of data samples on clients. Furthermore, we design a Knowledge Alignment Strategy to bridge the gap between synthetic and real data, and a Knowledge Drop Strategy to regularize our method. Meanwhile, we scale our method to real and complex scenarios, allowing different clients to adopt various methods, and extend our framework to further improve performance. Numerous experiments show that our method outperforms state-of-the-art baselines. The code is released upon acceptance.
Generalizing Abstention for Noise-Robust Learning in Medical Image Segmentation
Label noise is a critical problem in medical image segmentation, often arising from the inherent difficulty of manual annotation. Models trained on noisy data are prone to overfitting, which degrades their generalization performance. While a number of methods and strategies have been proposed to mitigate noisy labels in the segmentation domain, this area remains largely under-explored. The abstention mechanism has proven effective in classification tasks by enhancing the capabilities of Cross Entropy, yet its potential in segmentation remains unverified. In this paper, we address this gap by introducing a universal and modular abstention framework capable of enhancing the noise-robustness of a diverse range of loss functions. Our framework improves upon prior work with two key components: an informed regularization term to guide abstention behaviour, and a more flexible power-law-based auto-tuning algorithm for the abstention penalty. We demonstrate the framework's versatility by systematically integrating it with three distinct loss functions to create three novel, noise-robust variants: GAC, SAC, and ADS. Experiments on the CaDIS and DSAD medical datasets show our methods consistently and significantly outperform their non-abstaining baselines, especially under high noise levels. This work establishes that enabling models to selectively ignore corrupted samples is a powerful and generalizable strategy for building more reliable segmentation models. Our code is publicly available at https://github.com/wemous/abstention-for-segmentation.
Correcting and Quantifying Systematic Errors in 3D Box Annotations for Autonomous Driving
Accurate ground truth annotations are critical to supervised learning and evaluating the performance of autonomous vehicle systems. These vehicles are typically equipped with active sensors, such as LiDAR, which scan the environment in predefined patterns. 3D box annotation based on data from such sensors is challenging in dynamic scenarios, where objects are observed at different timestamps, hence different positions. Without proper handling of this phenomenon, systematic errors are prone to being introduced in the box annotations. Our work is the first to discover such annotation errors in widely used, publicly available datasets. Through our novel offline estimation method, we correct the annotations so that they follow physically feasible trajectories and achieve spatial and temporal consistency with the sensor data. For the first time, we define metrics for this problem; and we evaluate our method on the Argoverse 2, MAN TruckScenes, and our proprietary datasets. Our approach increases the quality of box annotations by more than 17% in these datasets. Furthermore, we quantify the annotation errors in them and find that the original annotations are misplaced by up to 2.5 m, with highly dynamic objects being the most affected. Finally, we test the impact of the errors in benchmarking and find that the impact is larger than the improvements that state-of-the-art methods typically achieve with respect to the previous state-of-the-art methods; showing that accurate annotations are essential for correct interpretation of performance. Our code is available at https://github.com/alexandre-justo-miro/annotation-correction-3D-boxes.
comment: Accepted to The IEEE/CVF Winter Conference on Applications of Computer Vision 2026
Likelihood-Separable Diffusion Inference for Multi-Image MRI Super-Resolution
Diffusion models are the current state-of-the-art for solving inverse problems in imaging. Their impressive generative capability allows them to approximate sampling from a prior distribution, which alongside a known likelihood function permits posterior sampling without retraining the model. While recent methods have made strides in advancing the accuracy of posterior sampling, the majority focuses on single-image inverse problems. However, for modalities such as magnetic resonance imaging (MRI), it is common to acquire multiple complementary measurements, each low-resolution along a different axis. In this work, we generalize common diffusion-based inverse single-image problem solvers for multi-image super-resolution (MISR) MRI. We show that the DPS likelihood correction allows an exactly-separable gradient decomposition across independently acquired measurements, enabling MISR without constructing a joint operator, modifying the diffusion model, or increasing network function evaluations. We derive MISR versions of DPS, DMAP, DPPS, and diffusion-based PnP/ADMM, and demonstrate substantial gains over SISR across $4\times/8\times/16\times$ anisotropic degradations. Our results achieve state-of-the-art super-resolution of anisotropic MRI volumes and, critically, enable reconstruction of near-isotropic anatomy from routine 2D multi-slice acquisitions, which are otherwise highly degraded in orthogonal views.
SHARE: A Fully Unsupervised Framework for Single Hyperspectral Image Restoration
Hyperspectral image (HSI) restoration is a fundamental challenge in computational imaging and computer vision. It involves ill-posed inverse problems, such as inpainting and super-resolution. Although deep learning methods have transformed the field through data-driven learning, their effectiveness hinges on access to meticulously curated ground-truth datasets. This fundamentally restricts their applicability in real-world scenarios where such data is unavailable. This paper presents SHARE (Single Hyperspectral Image Restoration with Equivariance), a fully unsupervised framework that unifies geometric equivariance principles with low-rank spectral modelling to eliminate the need for ground truth. SHARE's core concept is to exploit the intrinsic invariance of hyperspectral structures under differentiable geometric transformations (e.g. rotations and scaling) to derive self-supervision signals through equivariance consistency constraints. Our novel Dynamic Adaptive Spectral Attention (DASA) module further enhances this paradigm shift by explicitly encoding the global low-rank property of HSI and adaptively refining local spectral-spatial correlations through learnable attention mechanisms. Extensive experiments on HSI inpainting and super-resolution tasks demonstrate the effectiveness of SHARE. Our method outperforms many state-of-the-art unsupervised approaches and achieves performance comparable to that of supervised methods. We hope that our approach will shed new light on HSI restoration and broader scientific imaging scenarios. The code will be released at https://github.com/xuwayyy/SHARE.
comment: Technical report
Equivariant Learning for Unsupervised Image Dehazing
Image Dehazing (ID) aims to produce a clear image from an observation contaminated by haze. Current ID methods typically rely on carefully crafted priors or extensive haze-free ground truth, both of which are expensive or impractical to acquire, particularly in the context of scientific imaging. We propose a new unsupervised learning framework called Equivariant Image Dehazing (EID) that exploits the symmetry of image signals to restore clarity to hazy observations. By enforcing haze consistency and systematic equivariance, EID can recover clear patterns directly from raw, hazy images. Additionally, we propose an adversarial learning strategy to model unknown haze physics and facilitate EID learning. Experiments on two scientific image dehazing benchmarks (including cell microscopy and medical endoscopy) and on natural image dehazing have demonstrated that EID significantly outperforms state-of-the-art approaches. By unifying equivariant learning with modelling haze physics, we hope that EID will enable more versatile and effective haze removal in scientific imaging. Code and datasets will be published.
comment: Technical report
FantasyVLN: Unified Multimodal Chain-of-Thought Reasoning for Vision-Language Navigation
Achieving human-level performance in Vision-and-Language Navigation (VLN) requires an embodied agent to jointly understand multimodal instructions and visual-spatial context while reasoning over long action sequences. Recent works, such as NavCoT and NavGPT-2, demonstrate the potential of Chain-of-Thought (CoT) reasoning for improving interpretability and long-horizon planning. Moreover, multimodal extensions like OctoNav-R1 and CoT-VLA further validate CoT as a promising pathway toward human-like navigation reasoning. However, existing approaches face critical drawbacks: purely textual CoTs lack spatial grounding and easily overfit to sparse annotated reasoning steps, while multimodal CoTs incur severe token inflation by generating imagined visual observations, making real-time navigation impractical. In this work, we propose FantasyVLN, a unified implicit reasoning framework that preserves the benefits of CoT reasoning without explicit token overhead. Specifically, imagined visual tokens are encoded into a compact latent space using a pretrained Visual AutoRegressor (VAR) during CoT reasoning training, and the model jointly learns from textual, visual, and multimodal CoT modes under a unified multi-CoT strategy. At inference, our model performs direct instruction-to-action mapping while still enjoying reasoning-aware representations. Extensive experiments on LH-VLN show that our approach achieves reasoning-aware yet real-time navigation, improving success rates and efficiency while reducing inference latency by an order of magnitude compared to explicit CoT methods.
Harmonizing the Deep: A Unified Information Pipeline for Robust Marine Biodiversity Assessment Across Heterogeneous Domains
Marine biodiversity monitoring requires scalability and reliability across complex underwater environments to support conservation and invasive-species management. Yet existing detection solutions often exhibit a pronounced deployment gap, with performance degrading sharply when transferred to new sites. This work establishes the foundational detection layer for a multi-year invasive species monitoring initiative targeting Arctic and Atlantic marine ecosystems. We address this challenge by developing a Unified Information Pipeline that standardises heterogeneous datasets into a comparable information flow and evaluates a fixed, deployment-relevant detector under controlled cross-domain protocols. Across multiple domains, we find that structural factors, such as scene composition, object density, and contextual redundancy, explain cross-domain performance loss more strongly than visual degradation such as turbidity, with sparse scenes inducing a characteristic "Context Collapse" failure mode. We further validate operational feasibility by benchmarking inference on low-cost edge hardware, showing that runtime optimisation enables practical sampling rates for remote monitoring. The results shift emphasis from image enhancement toward structure-aware reliability, providing a democratised tool for consistent marine ecosystem assessment.
comment: 9 pages, 4 figures 8 tables
STEC: A Reference-Free Spatio-Temporal Entropy Coverage Metric for Evaluating Sampled Video Frames WACV 2026
Frame sampling is a fundamental component in video understanding and video--language model pipelines, yet evaluating the quality of sampled frames remains challenging. Existing evaluation metrics primarily focus on perceptual quality or reconstruction fidelity, and are not designed to assess whether a set of sampled frames adequately captures informative and representative video content. We propose Spatio-Temporal Entropy Coverage (STEC), a simple and non-reference metric for evaluating the effectiveness of video frame sampling. STEC builds upon Spatio-Temporal Frame Entropy (STFE), which measures per-frame spatial information via entropy-based structural complexity, and evaluates sampled frames based on their temporal coverage and redundancy. By jointly modeling spatial information strength, temporal dispersion, and non-redundancy, STEC provides a principled and lightweight measure of sampling quality. Experiments on the MSR-VTT test-1k benchmark demonstrate that STEC clearly differentiates common sampling strategies, including random, uniform, and content-aware methods. We further show that STEC reveals robustness patterns across individual videos that are not captured by average performance alone, highlighting its practical value as a general-purpose evaluation tool for efficient video understanding. We emphasize that STEC is not designed to predict downstream task accuracy, but to provide a task-agnostic diagnostic signal for analyzing frame sampling behavior under constrained budgets.
comment: This paper corresponds to the camera-ready version of a WACV 2026 Workshop paper
DExTeR: Weakly Semi-Supervised Object Detection with Class and Instance Experts for Medical Imaging
Detecting anatomical landmarks in medical imaging is essential for diagnosis and intervention guidance. However, object detection models rely on costly bounding box annotations, limiting scalability. Weakly Semi-Supervised Object Detection (WSSOD) with point annotations proposes annotating each instance with a single point, minimizing annotation time while preserving localization signals. A Point-to-Box teacher model, trained on a small box-labeled subset, converts these point annotations into pseudo-box labels to train a student detector. Yet, medical imagery presents unique challenges, including overlapping anatomy, variable object sizes, and elusive structures, which hinder accurate bounding box inference. To overcome these challenges, we introduce DExTeR (DETR with Experts), a transformer-based Point-to-Box regressor tailored for medical imaging. Built upon Point-DETR, DExTeR encodes single-point annotations as object queries, refining feature extraction with the proposed class-guided deformable attention, which guides attention sampling using point coordinates and class labels to capture class-specific characteristics. To improve discrimination in complex structures, it introduces CLICK-MoE (CLass, Instance, and Common Knowledge Mixture of Experts), decoupling class and instance representations to reduce confusion among adjacent or overlapping instances. Finally, we implement a multi-point training strategy which promotes prediction consistency across different point placements, improving robustness to annotation variability. DExTeR achieves state-of-the-art performance across three datasets spanning different medical domains (endoscopy, chest X-rays, and endoscopic ultrasound) highlighting its potential to reduce annotation costs while maintaining high detection accuracy.
VTONGuard: Automatic Detection and Authentication of AI-Generated Virtual Try-On Content
With the rapid advancement of generative AI, virtual try-on (VTON) systems are becoming increasingly common in e-commerce and digital entertainment. However, the growing realism of AI-generated try-on content raises pressing concerns about authenticity and responsible use. To address this, we present VTONGuard, a large-scale benchmark dataset containing over 775,000 real and synthetic try-on images. The dataset covers diverse real-world conditions, including variations in pose, background, and garment styles, and provides both authentic and manipulated examples. Based on this benchmark, we conduct a systematic evaluation of multiple detection paradigms under unified training and testing protocols. Our results reveal each method's strengths and weaknesses and highlight the persistent challenge of cross-paradigm generalization. To further advance detection, we design a multi-task framework that integrates auxiliary segmentation to enhance boundary-aware feature learning, achieving the best overall performance on VTONGuard. We expect this benchmark to enable fair comparisons, facilitate the development of more robust detection models, and promote the safe and responsible deployment of VTON technologies in practice.
Glance-or-Gaze: Incentivizing LMMs to Adaptively Focus Search via Reinforcement Learning
Large Multimodal Models (LMMs) have achieved remarkable success in visual understanding, yet they struggle with knowledge-intensive queries involving long-tail entities or evolving information due to static parametric knowledge. Recent search-augmented approaches attempt to address this limitation, but existing methods rely on indiscriminate whole-image retrieval that introduces substantial visual redundancy and noise, and lack deep iterative reflection, limiting their effectiveness on complex visual queries. To overcome these challenges, we propose Glance-or-Gaze (GoG), a fully autonomous framework that shifts from passive perception to active visual planning. GoG introduces a Selective Gaze mechanism that dynamically chooses whether to glance at global context or gaze into high-value regions, filtering irrelevant information before retrieval. We design a dual-stage training strategy: Reflective GoG Behavior Alignment via supervised fine-tuning instills the fundamental GoG paradigm, while Complexity-Adaptive Reinforcement Learning further enhances the model's capability to handle complex queries through iterative reasoning. Experiments across six benchmarks demonstrate state-of-the-art performance. Ablation studies confirm that both Selective Gaze and complexity-adaptive RL are essential for effective visual search. We will release our data and models for further exploration soon.
TrackletGPT: A Language-like GPT Framework for White Matter Tract Segmentation
White Matter Tract Segmentation is imperative for studying brain structural connectivity, neurological disorders and neurosurgery. This task remains complex, as tracts differ among themselves, across subjects and conditions, yet have similar 3D structure across hemispheres and subjects. To address these challenges, we propose TrackletGPT, a language-like GPT framework which reintroduces sequential information in tokens using tracklets. TrackletGPT generalises seamlessly across datasets, is fully automatic, and encodes granular sub-streamline segments, Tracklets, scaling and refining GPT models in Tractography Segmentation. Based on our experiments, TrackletGPT outperforms state-of-the-art methods on average DICE, Overlap and Overreach scores on TractoInferno and HCP datasets, even on inter-dataset experiments.
comment: Accepted at 23rd IEEE International Symposium on Biomedical Imaging (ISBI), 2026
HyperWalker: Dynamic Hypergraph-Based Deep Diagnosis for Multi-Hop Clinical Modeling across EHR and X-Ray in Medical VLMs
Automated clinical diagnosis remains a core challenge in medical AI, which usually requires models to integrate multi-modal data and reason across complex, case-specific contexts. Although recent methods have advanced medical report generation (MRG) and visual question answering (VQA) with medical vision-language models (VLMs), these methods, however, predominantly operate under a sample-isolated inference paradigm, as such processing cases independently without access to longitudinal electronic health records (EHRs) or structurally related patient examples. This paradigm limits reasoning to image-derived information alone, which ignores external complementary medical evidence for potentially more accurate diagnosis. To overcome this limitation, we propose \textbf{HyperWalker}, a \textit{Deep Diagnosis} framework that reformulates clinical reasoning via dynamic hypergraphs and test-time training. First, we construct a dynamic hypergraph, termed \textbf{iBrochure}, to model the structural heterogeneity of EHR data and implicit high-order associations among multimodal clinical information. Within this hypergraph, a reinforcement learning agent, \textbf{Walker}, navigates to and identifies optimal diagnostic paths. To ensure comprehensive coverage of diverse clinical characteristics in test samples, we incorporate a \textit{linger mechanism}, a multi-hop orthogonal retrieval strategy that iteratively selects clinically complementary neighborhood cases reflecting distinct clinical attributes. Experiments on MRG with MIMIC and medical VQA on EHRXQA demonstrate that HyperWalker achieves state-of-the-art performance. Code is available at: https://github.com/Bean-Young/HyperWalker
comment: Under Review
On the Role of Rotation Equivariance in Monocular 3D Human Pose Estimation
Estimating 3D from 2D is one of the central tasks in computer vision. In this work, we consider the monocular setting, i.e. single-view input, for 3D human pose estimation (HPE). Here, the task is to predict a 3D point set of human skeletal joints from a single 2D input image. While by definition this is an ill-posed problem, recent work has presented methods that solve it with up to several-centimetre error. Typically, these methods employ a two-step approach, where the first step is to detect the 2D skeletal joints in the input image, followed by the step of 2D-to-3D lifting. We find that common lifting models fail when encountering a rotated input. We argue that learning a single human pose along with its in-plane rotations is considerably easier and more geometrically grounded than directly learning a point-to-point mapping. Furthermore, our intuition is that endowing the model with the notion of rotation equivariance without explicitly constraining its parameter space should lead to a more straightforward learning process than one with equivariance by design. Utilising the common HPE benchmarks, we confirm that the 2D rotation equivariance per se improves the model performance on human poses akin to rotations in the image plane, and can be efficiently and straightforwardly learned by augmentation, outperforming state-of-the-art equivariant-by-design methods.
Towards Visually Explaining Statistical Tests with Applications in Biomedical Imaging
Deep neural two-sample tests have recently shown strong power for detecting distributional differences between groups, yet their black-box nature limits interpretability and practical adoption in biomedical analysis. Moreover, most existing post-hoc explainability methods rely on class labels, making them unsuitable for label-free statistical testing settings. We propose an explainable deep statistical testing framework that augments deep two-sample tests with sample-level and feature-level explanations, revealing which individual samples and which input features drive statistically significant group differences. Our method highlights which image regions and which individual samples contribute most to the detected group difference, providing spatial and instance-wise insight into the test's decision. Applied to biomedical imaging data, the proposed framework identifies influential samples and highlights anatomically meaningful regions associated with disease-related variation. This work bridges statistical inference and explainable AI, enabling interpretable, label-free population analysis in medical imaging.
OmniOVCD: Streamlining Open-Vocabulary Change Detection with SAM 3
Change Detection (CD) is a fundamental task in remote sensing. It monitors the evolution of land cover over time. Based on this, Open-Vocabulary Change Detection (OVCD) introduces a new requirement. It aims to reduce the reliance on predefined categories. Existing training-free OVCD methods mostly use CLIP to identify categories. These methods also need extra models like DINO to extract features. However, combining different models often causes problems in matching features and makes the system unstable. Recently, the Segment Anything Model 3 (SAM 3) is introduced. It integrates segmentation and identification capabilities within one promptable model, which offers new possibilities for the OVCD task. In this paper, we propose OmniOVCD, a standalone framework designed for OVCD. By leveraging the decoupled output heads of SAM 3, we propose a Synergistic Fusion to Instance Decoupling (SFID) strategy. SFID first fuses the semantic, instance, and presence outputs of SAM 3 to construct land-cover masks, and then decomposes them into individual instance masks for change comparison. This design preserves high accuracy in category recognition and maintains instance-level consistency across images. As a result, the model can generate accurate change masks. Experiments on four public benchmarks (LEVIR-CD, WHU-CD, S2Looking, and SECOND) demonstrate SOTA performance, achieving IoU scores of 67.2, 66.5, 24.5, and 27.1 (class-average), respectively, surpassing all previous methods.
Revisiting Multi-Task Visual Representation Learning
Current visual representation learning remains bifurcated: vision-language models (e.g., CLIP) excel at global semantic alignment but lack spatial precision, while self-supervised methods (e.g., MAE, DINO) capture intricate local structures yet struggle with high-level semantic context. We argue that these paradigms are fundamentally complementary and can be integrated into a principled multi-task framework, further enhanced by dense spatial supervision. We introduce MTV, a multi-task visual pretraining framework that jointly optimizes a shared backbone across vision-language contrastive, self-supervised, and dense spatial objectives. To mitigate the need for manual annotations, we leverage high-capacity "expert" models -- such as Depth Anything V2 and OWLv2 -- to synthesize dense, structured pseudo-labels at scale. Beyond the framework, we provide a systematic investigation into the mechanics of multi-task visual learning, analyzing: (i) the marginal gain of each objective, (ii) task synergies versus interference, and (iii) scaling behavior across varying data and model scales. Our results demonstrate that MTV achieves "best-of-both-worlds" performance, significantly enhancing fine-grained spatial reasoning without compromising global semantic understanding. Our findings suggest that multi-task learning, fueled by high-quality pseudo-supervision, is a scalable path toward more general visual encoders.
comment: Code: https://github.com/Becomebright/MTV
Chain-of-Thought Compression Should Not Be Blind: V-Skip for Efficient Multimodal Reasoning via Dual-Path Anchoring
While Chain-of-Thought (CoT) reasoning significantly enhances the performance of Multimodal Large Language Models (MLLMs), its autoregressive nature incurs prohibitive latency constraints. Current efforts to mitigate this via token compression often fail by blindly applying text-centric metrics to multimodal contexts. We identify a critical failure mode termed Visual Amnesia, where linguistically redundant tokens are erroneously pruned, leading to hallucinations. To address this, we introduce V-Skip that reformulates token pruning as a Visual-Anchored Information Bottleneck (VA-IB) optimization problem. V-Skip employs a dual-path gating mechanism that weighs token importance through both linguistic surprisal and cross-modal attention flow, effectively rescuing visually salient anchors. Extensive experiments on Qwen2-VL and Llama-3.2 families demonstrate that V-Skip achieves a $2.9\times$ speedup with negligible accuracy loss. Specifically, it preserves fine-grained visual details, outperforming other baselines over 30\% on the DocVQA.
OCCAM: Class-Agnostic, Training-Free, Prior-Free and Multi-Class Object Counting
Class-Agnostic object Counting (CAC) involves counting instances of objects from arbitrary classes within an image. Due to its practical importance, CAC has received increasing attention in recent years. Most existing methods assume a single object class per image, rely on extensive training of large deep learning models and address the problem by incorporating additional information, such as visual exemplars or text prompts. In this paper, we present OCCAM, the first training-free approach to CAC that operates without the need of any supplementary information. Moreover, our approach addresses the multi-class variant of the problem, as it is capable of counting the object instances in each and every class among arbitrary object classes within an image. We leverage Segment Anything Model 2 (SAM2), a foundation model, and a custom threshold-based variant of the First Integer Neighbor Clustering Hierarchy (FINCH) algorithm to achieve competitive performance on widely used benchmark datasets, FSC-147 and CARPK. We propose a synthetic multi-class dataset and F1 score as a more suitable evaluation metric. The code for our method and the proposed synthetic dataset will be made publicly available at https://mikespanak.github.io/OCCAM_counter.
Probabilistic Deep Discriminant Analysis for Wind Blade Segmentation
Linear discriminant analysis improves class separability but struggles with non-linearly separable data. To overcome this, we introduce Deep Discriminant Analysis (DDA), which directly optimizes the Fisher criterion utilizing deep networks. To ensure stable training and avoid computational instabilities, we incorporate signed between-class variance, bound outputs with a sigmoid function, and convert multiplicative relationships into additive ones. We present two stable DDA loss functions and augment them with a probability loss, resulting in Probabilistic DDA (PDDA). PDDA effectively minimizes class overlap in output distributions, producing highly confident predictions with reduced within-class variance. When applied to wind blade segmentation, PDDA showcases notable advances in performance and consistency, critical for wind energy maintenance. To our knowledge, this is the first application of DDA to image segmentation.
comment: Accepted to ICASSP 2026
DisasterVQA: A Visual Question Answering Benchmark Dataset for Disaster Scenes
Social media imagery provides a low-latency source of situational information during natural and human-induced disasters, enabling rapid damage assessment and response. While Visual Question Answering (VQA) has shown strong performance in general-purpose domains, its suitability for the complex and safety-critical reasoning required in disaster response remains unclear. We introduce DisasterVQA, a benchmark dataset designed for perception and reasoning in crisis contexts. DisasterVQA consists of 1,395 real-world images and 4,405 expert-curated question-answer pairs spanning diverse events such as floods, wildfires, and earthquakes. Grounded in humanitarian frameworks including FEMA ESF and OCHA MIRA, the dataset includes binary, multiple-choice, and open-ended questions covering situational awareness and operational decision-making tasks. We benchmark seven state-of-the-art vision-language models and find performance variability across question types, disaster categories, regions, and humanitarian tasks. Although models achieve high accuracy on binary questions, they struggle with fine-grained quantitative reasoning, object counting, and context-sensitive interpretation, particularly for underrepresented disaster scenarios. DisasterVQA provides a challenging and practical benchmark to guide the development of more robust and operationally meaningful vision-language models for disaster response. The dataset is publicly available at https://zenodo.org/records/18267770.
FastGHA: Generalized Few-Shot 3D Gaussian Head Avatars with Real-Time Animation
Despite recent progress in 3D Gaussian-based head avatar modeling, efficiently generating high fidelity avatars remains a challenge. Current methods typically rely on extensive multi-view capture setups or monocular videos with per-identity optimization during inference, limiting their scalability and ease of use on unseen subjects. To overcome these efficiency drawbacks, we propose \OURS, a feed-forward method to generate high-quality Gaussian head avatars from only a few input images while supporting real-time animation. Our approach directly learns a per-pixel Gaussian representation from the input images, and aggregates multi-view information using a transformer-based encoder that fuses image features from both DINOv3 and Stable Diffusion VAE. For real-time animation, we extend the explicit Gaussian representations with per-Gaussian features and introduce a lightweight MLP-based dynamic network to predict 3D Gaussian deformations from expression codes. Furthermore, to enhance geometric smoothness of the 3D head, we employ point maps from a pre-trained large reconstruction model as geometry supervision. Experiments show that our approach significantly outperforms existing methods in both rendering quality and inference efficiency, while supporting real-time dynamic avatar animation.
FutureOmni: Evaluating Future Forecasting from Omni-Modal Context for Multimodal LLMs
Although Multimodal Large Language Models (MLLMs) demonstrate strong omni-modal perception, their ability to forecast future events from audio-visual cues remains largely unexplored, as existing benchmarks focus mainly on retrospective understanding. To bridge this gap, we introduce FutureOmni, the first benchmark designed to evaluate omni-modal future forecasting from audio-visual environments. The evaluated models are required to perform cross-modal causal and temporal reasoning, as well as effectively leverage internal knowledge to predict future events. FutureOmni is constructed via a scalable LLM-assisted, human-in-the-loop pipeline and contains 919 videos and 1,034 multiple-choice QA pairs across 8 primary domains. Evaluations on 13 omni-modal and 7 video-only models show that current systems struggle with audio-visual future prediction, particularly in speech-heavy scenarios, with the best accuracy of 64.8% achieved by Gemini 3 Flash. To mitigate this limitation, we curate a 7K-sample instruction-tuning dataset and propose an Omni-Modal Future Forecasting (OFF) training strategy. Evaluations on FutureOmni and popular audio-visual and video-only benchmarks demonstrate that OFF enhances future forecasting and generalization. We publicly release all code (https://github.com/OpenMOSS/FutureOmni) and datasets (https://huggingface.co/datasets/OpenMOSS-Team/FutureOmni).
comment: https://openmoss.github.io/FutureOmni
Discriminant Learning-based Colorspace for Blade Segmentation
Suboptimal color representation often hinders accurate image segmentation, yet many modern algorithms neglect this critical preprocessing step. This work presents a novel multidimensional nonlinear discriminant analysis algorithm, Colorspace Discriminant Analysis (CSDA), for improved segmentation. Extending Linear Discriminant Analysis into a deep learning context, CSDA customizes color representation by maximizing multidimensional signed inter-class separability while minimizing intra-class variability through a generalized discriminative loss. To ensure stable training, we introduce three alternative losses that enable end-to-end optimization of both the discriminative colorspace and segmentation process. Experiments on wind turbine blade data demonstrate significant accuracy gains, emphasizing the importance of tailored preprocessing in domain-specific segmentation.
comment: Accepted to ICASSP 2026
Insight: Interpretable Semantic Hierarchies in Vision-Language Encoders
Language-aligned vision foundation models perform strongly across diverse downstream tasks. Yet, their learned representations remain opaque, making interpreting their decision-making hard. Recent works decompose these representations into human-interpretable concepts, but provide poor spatial grounding and are limited to image classification tasks. In this work, we propose Insight, a language-aligned concept foundation model that provides fine-grained concepts, which are human-interpretable and spatially grounded in the input image. We leverage a hierarchical sparse autoencoder and a foundation model with strong semantic representations to automatically extract concepts at various granularities. Examining local co-occurrence dependencies of concepts allows us to define concept relationships. Through these relations we further improve concept naming and obtain richer explanations. On benchmark data, we show that Insight provides performance on classification and segmentation that is competitive with opaque foundation models while providing fine-grained, high quality concept-based explanations. Code is available at https://github.com/kawi19/Insight.
comment: 32 pages, 24 figures, 3 tables
PREGEN: Uncovering Latent Thoughts in Composed Video Retrieval
Composed Video Retrieval (CoVR) aims to retrieve a video based on a query video and a modifying text. Current CoVR methods fail to fully exploit modern Vision-Language Models (VLMs), either using outdated architectures or requiring computationally expensive fine-tuning and slow caption generation. We introduce PREGEN (PRE GENeration extraction), an efficient and powerful CoVR framework that overcomes these limitations. Our approach uniquely pairs a frozen, pre-trained VLM with a lightweight encoding model, eliminating the need for any VLM fine-tuning. We feed the query video and modifying text into the VLM and extract the hidden state of the final token from each layer. A simple encoder is then trained on these pooled representations, creating a semantically rich and compact embedding for retrieval. PREGEN significantly advances the state of the art, surpassing all prior methods on standard CoVR benchmarks with substantial gains in Recall@1 of +27.23 and +69.59. Our method demonstrates robustness across different VLM backbones and exhibits strong zero-shot generalization to more complex textual modifications, highlighting its effectiveness and semantic capabilities.
HiT: History-Injection Transformers for Onboard Continuous Flood Change Detection
Natural disaster monitoring through continuous satellite observation requires processing multi-temporal data under strict operational constraints. This paper addresses flood detection, a critical application for hazard management, by developing an onboard change detection system that operates within the memory and computational limits of small satellites. We propose History Injection mechanism for Transformer models (HiT), that maintains historical context from previous observations while reducing data storage by over 99\% of original image size. Moreover, testing on the STTORM-CD flood dataset confirms that the HiT mechanism within the Prithvi-tiny foundation model maintains detection accuracy compared to the bitemporal baseline. The proposed HiT-Prithvi model achieved 43 FPS on Jetson Orin Nano, a representative onboard hardware used in nanosats. This work establishes a practical framework for satellite-based continuous monitoring of natural disasters, supporting real-time hazard assessment without dependency on ground-based processing infrastructure. Architecture as well as model checkpoints is available at https://github.com/zaitra/HiT-change-detection
comment: 19 pages, 9 figures, submitted to conference
Facial Spatiotemporal Graphs: Leveraging the 3D Facial Surface for Remote Physiological Measurement
Facial remote photoplethysmography (rPPG) methods estimate physiological signals by modeling subtle color changes on the 3D facial surface over time. However, existing methods fail to explicitly align their receptive fields with the 3D facial surface-the spatial support of the rPPG signal. To address this, we propose the Facial Spatiotemporal Graph (STGraph), a novel representation that encodes facial color and structure using 3D facial mesh sequences-enabling surface-aligned spatiotemporal processing. We introduce MeshPhys, a lightweight spatiotemporal graph convolutional network that operates on the STGraph to estimate physiological signals. Across four benchmark datasets, MeshPhys achieves state-of-the-art or competitive performance in both intra- and cross-dataset settings. Ablation studies show that constraining the model's receptive field to the facial surface acts as a strong structural prior, and that surface-aligned, 3D-aware node features are critical for robustly encoding facial surface color. Together, the STGraph and MeshPhys constitute a novel, principled modeling paradigm for facial rPPG, enabling robust, interpretable, and generalizable estimation. Code is available at https://samcantrill.github.io/facial-stgraph-rppg/ .
Hierarchical Long Video Understanding with Audiovisual Entity Cohesion and Agentic Search
Long video understanding presents significant challenges for vision-language models due to extremely long context windows. Existing solutions relying on naive chunking strategies with retrieval-augmented generation, typically suffer from information fragmentation and a loss of global coherence. We present HAVEN, a unified framework for long-video understanding that enables coherent and comprehensive reasoning by integrating audiovisual entity cohesion and hierarchical video indexing with agentic search. First, we preserve semantic consistency by integrating entity-level representations across visual and auditory streams, while organizing content into a structured hierarchy spanning global summary, scene, segment, and entity levels. Then we employ an agentic search mechanism to enable dynamic retrieval and reasoning across these layers, facilitating coherent narrative reconstruction and fine-grained entity tracking. Extensive experiments demonstrate that our method achieves good temporal coherence, entity consistency, and retrieval efficiency, establishing a new state-of-the-art with an overall accuracy of 84.1% on LVBench. Notably, it achieves outstanding performance in the challenging reasoning category, reaching 80.1%. These results highlight the effectiveness of structured, multimodal reasoning for comprehensive and context-consistent understanding of long-form videos.
MVGD-Net: A Novel Motion-aware Video Glass Surface Detection Network AAAI
Glass surface ubiquitous in both daily life and professional environments presents a potential threat to vision-based systems, such as robot and drone navigation. To solve this challenge, most recent studies have shown significant interest in Video Glass Surface Detection (VGSD). We observe that objects in the reflection (or transmission) layer appear farther from the glass surfaces. Consequently, in video motion scenarios, the notable reflected (or transmitted) objects on the glass surface move slower than objects in non-glass regions within the same spatial plane, and this motion inconsistency can effectively reveal the presence of glass surfaces. Based on this observation, we propose a novel network, named MVGD-Net, for detecting glass surfaces in videos by leveraging motion inconsistency cues. Our MVGD-Net features three novel modules: the Cross-scale Multimodal Fusion Module (CMFM) that integrates extracted spatial features and estimated optical flow maps, the History Guided Attention Module (HGAM) and Temporal Cross Attention Module (TCAM), both of which further enhances temporal features. A Temporal-Spatial Decoder (TSD) is also introduced to fuse the spatial and temporal features for generating the glass region mask. Furthermore, for learning our network, we also propose a large-scale dataset, which comprises 312 diverse glass scenarios with a total of 19,268 frames. Extensive experiments demonstrate that our MVGD-Net outperforms relevant state-of-the-art methods.
comment: This paper has been accepted by the 40th AAAI Conference on Artificial Intelligence (AAAI-26). It contians 9 pages, 11 figures
Attention-space Contrastive Guidance for Efficient Hallucination Mitigation in LVLMs
Hallucinations in large vision-language models (LVLMs) often arise when language priors dominate over visual evidence, causing object misidentification and visually inconsistent descriptions. We address this issue by framing hallucination mitigation as contrastive guidance, steering generation toward visually grounded and semantically faithful text. This approach regulates the model's internal behavior by reducing over-dependence on language priors and contrasting visually grounded with language-only representations. We propose Attention-space Contrastive Guidance (ACG), a single-pass mechanism that operates within self-attention layers to construct both vision-language and language-only attention paths in a single forward computation. This integration enables computationally efficient guidance directly embedded in the model's representation contextualization. To correct approximation bias introduced by the single-pass formulation, we further apply an orthogonalized correction that removes components aligned with the language-only path, selectively amplifying visual contributions. Experiments on the CHAIR and POPE benchmarks show that ACG achieves state-of-the-art faithfulness and caption quality while significantly reducing computational cost. Our method establishes a principled and efficient alternative, reducing latency by up to 2x compared to prior contrastive decoding methods that require multiple forward passes.
ParkingTwin: Training-Free Streaming 3D Reconstruction for Parking-Lot Digital Twins
High-fidelity parking-lot digital twins provide essential priors for path planning, collision checking, and perception validation in Automated Valet Parking (AVP). Yet robot-oriented reconstruction faces a trilemma: sparse forward-facing views cause weak parallax and ill-posed geometry; dynamic occlusions and extreme lighting hinder stable texture fusion; and neural rendering typically needs expensive offline optimization, violating edge-side streaming constraints. We propose ParkingTwin, a training-free, lightweight system for online streaming 3D reconstruction. First, OSM-prior-driven geometric construction uses OpenStreetMap semantic topology to directly generate a metric-consistent TSDF, replacing blind geometric search with deterministic mapping and avoiding costly optimization. Second, geometry-aware dynamic filtering employs a quad-modal constraint field (normal/height/depth consistency) to reject moving vehicles and transient occlusions in real time. Third, illumination-robust fusion in CIELAB decouples luminance and chromaticity via adaptive L-channel weighting and depth-gradient suppression, reducing seams under abrupt lighting changes. ParkingTwin runs at 30+ FPS on an entry-level GTX 1660. On a 68,000 m^2 real-world dataset, it achieves SSIM 0.87 (+16.0%), delivers about 15x end-to-end speedup, and reduces GPU memory by 83.3% compared with state-of-the-art 3D Gaussian Splatting (3DGS) that typically requires high-end GPUs (RTX 4090D). The system outputs explicit triangle meshes compatible with Unity/Unreal digital-twin pipelines. Project page: https://mihoutao-liu.github.io/ParkingTwin/
comment: 35 pages, 10 figures. Submitted to ISPRS Journal of Photogrammetry and Remote Sensing. Under review
Reasoning or Pattern Matching? Probing Large Vision-Language Models with Visual Puzzles
Puzzles have long served as compact and revealing probes of human cognition, isolating abstraction, rule discovery, and systematic reasoning with minimal reliance on prior knowledge. Leveraging these properties, visual puzzles have recently emerged as a powerful diagnostic tool for evaluating the reasoning abilities of Large Vision-Language Models (LVLMs), offering controlled, verifiable alternatives to open-ended multimodal benchmarks. This survey provides a unified perspective of visual puzzle reasoning in LVLMs. We frame visual puzzles through a common abstraction and organize existing benchmarks by the reasoning mechanisms they target (inductive, analogical, algorithmic, deductive, and geometric/spatial), thereby linking puzzle design to the cognitive operations required for solving. Synthesizing empirical evidence across these categories, we identify consistent limitations in current models, including brittle generalization, tight entanglement between perception and reasoning, and a persistent gap between fluent explanations and faithful execution. By framing visual puzzles as diagnostic instruments rather than task formats, this survey elaborates on the state of LVLM reasoning and outlines key directions for future benchmarks and reasoning-aware multimodal systems.
Dynamic Differential Linear Attention: Enhancing Linear Diffusion Transformer for High-Quality Image Generation
Diffusion transformers (DiTs) have emerged as a powerful architecture for high-fidelity image generation, yet the quadratic cost of self-attention poses a major scalability bottleneck. To address this, linear attention mechanisms have been adopted to reduce computational cost; unfortunately, the resulting linear diffusion transformers (LiTs) models often come at the expense of generative performance, frequently producing over-smoothed attention weights that limit expressiveness. In this work, we introduce Dynamic Differential Linear Attention (DyDiLA), a novel linear attention formulation that enhances the effectiveness of LiTs by mitigating the oversmoothing issue and improving generation quality. Specifically, the novelty of DyDiLA lies in three key designs: (i) dynamic projection module, which facilitates the decoupling of token representations by learning with dynamically assigned knowledge; (ii) dynamic measure kernel, which provides a better similarity measurement to capture fine-grained semantic distinctions between tokens by dynamically assigning kernel functions for token processing; and (iii) token differential operator, which enables more robust query-to-key retrieval by calculating the differences between the tokens and their corresponding information redundancy produced by dynamic measure kernel. To capitalize on DyDiLA, we introduce a refined LiT, termed DyDi-LiT, that systematically incorporates our advancements. Extensive experiments show that DyDi-LiT consistently outperforms current state-of-the-art (SOTA) models across multiple metrics, underscoring its strong practical potential.
Finally Outshining the Random Baseline: A Simple and Effective Solution for Active Learning in 3D Biomedical Imaging
Active learning (AL) has the potential to drastically reduce annotation costs in 3D biomedical image segmentation, where expert labeling of volumetric data is both time-consuming and expensive. Yet, existing AL methods are unable to consistently outperform improved random sampling baselines adapted to 3D data, leaving the field without a reliable solution. We introduce Class-stratified Scheduled Power Predictive Entropy (ClaSP PE), a simple and effective query strategy that addresses two key limitations of standard uncertainty-based AL methods: class imbalance and redundancy in early selections. ClaSP PE combines class-stratified querying to ensure coverage of underrepresented structures and log-scale power noising with a decaying schedule to enforce query diversity in early-stage AL and encourage exploitation later. In our evaluation on 24 experimental settings using four 3D biomedical datasets within the comprehensive nnActive benchmark, ClaSP PE is the only method that generally outperforms improved random baselines in terms of both segmentation quality with statistically significant gains, whilst remaining annotation efficient. Furthermore, we explicitly simulate the real-world application by testing our method on four previously unseen datasets without manual adaptation, where all experiment parameters are set according to predefined guidelines. The results confirm that ClaSP PE robustly generalizes to novel tasks without requiring dataset-specific tuning. Within the nnActive framework, we present compelling evidence that an AL method can consistently outperform random baselines adapted to 3D segmentation, in terms of both performance and annotation efficiency in a realistic, close-to-production scenario. Our open-source implementation and clear deployment guidelines make it readily applicable in practice. Code is at https://github.com/MIC-DKFZ/nnActive.
comment: Accepted at TMLR
Transformer based Multi-task Fusion Network for Food Spoilage Detection and Shelf life Forecasting
Food wastage is one of the critical challenges in the agricultural supply chain, and accurate and effective spoilage detection can help to reduce it. Further, it is highly important to forecast the spoilage information. This aids the longevity of the supply chain management in the agriculture field. This motivated us to propose fusion based architectures by combining CNN with LSTM and DeiT transformer for the following multi-tasks simultaneously: (i) vegetable classification, (ii) food spoilage detection, and (iii) shelf life forecasting. We developed a dataset by capturing images of vegetables from their fresh state until they were completely spoiled. From the experimental analysis it is concluded that the proposed fusion architectures CNN+CNN-LSTM and CNN+DeiT Transformer outperformed several deep learning models such as CNN, VGG16, ResNet50, Capsule Networks, and DeiT Transformers. Overall, CNN + DeiT Transformer yielded F1-score of 0.98 and 0.61 in vegetable classification and spoilage detection respectively and mean squared error (MSE) and symmetric mean absolute percentage error (SMAPE) of 3.58, and 41.66% respectively in spoilage forecasting. Further, the reliability of the fusion models was validated on noisy images and integrated with LIME to visualize the model decisions.
VIAFormer: Voxel-Image Alignment Transformer for High-Fidelity Voxel Refinement CVPR 2026
We propose VIAFormer, a Voxel-Image Alignment Transformer model designed for Multi-view Conditioned Voxel Refinement--the task of repairing incomplete noisy voxels using calibrated multi-view images as guidance. Its effectiveness stems from a synergistic design: an Image Index that provides explicit 3D spatial grounding for 2D image tokens, a Correctional Flow objective that learns a direct voxel-refinement trajectory, and a Hybrid Stream Transformer that enables robust cross-modal fusion. Experiments show that VIAFormer establishes a new state of the art in correcting both severe synthetic corruptions and realistic artifacts on the voxel shape obtained from powerful Vision Foundation Models. Beyond benchmarking, we demonstrate VIAFormer as a practical and reliable bridge in real-world 3D creation pipelines, paving the way for voxel-based methods to thrive in large-model, big-data wave.
comment: Under review at CVPR 2026
Face-Voice Association with Inductive Bias for Maximum Class Separation
Face-voice association is widely studied in multimodal learning and is approached representing faces and voices with embeddings that are close for a same person and well separated from those of others. Previous work achieved this with loss functions. Recent advancements in classification have shown that the discriminative ability of embeddings can be strengthened by imposing maximum class separation as inductive bias. This technique has never been used in the domain of face-voice association, and this work aims at filling this gap. More specifically, we develop a method for face-voice association that imposes maximum class separation among multimodal representations of different speakers as an inductive bias. Through quantitative experiments we demonstrate the effectiveness of our approach, showing that it achieves SOTA performance on two task formulation of face-voice association. Furthermore, we carry out an ablation study to show that imposing inductive bias is most effective when combined with losses for inter-class orthogonality. To the best of our knowledge, this work is the first that applies and demonstrates the effectiveness of maximum class separation as an inductive bias in multimodal learning; it hence paves the way to establish a new paradigm.
comment: Accepted at ICASSP 2026
Quadratic Upper Bound for Boosting Robustness ICML 2025
Fast adversarial training (FAT) aims to enhance the robustness of models against adversarial attacks with reduced training time, however, FAT often suffers from compromised robustness due to insufficient exploration of adversarial space. In this paper, we develop a loss function to mitigate the problem of degraded robustness under FAT. Specifically, we derive a quadratic upper bound (QUB) on the adversarial training (AT) loss function and propose to utilize the bound with existing FAT methods. Our experimental results show that applying QUB loss to the existing methods yields significant improvement of robustness. Furthermore, using various metrics, we demonstrate that this improvement is likely to result from the smoothened loss landscape of the resulting model.
comment: Accepted at ICML 2025. Published in PMLR 267:72656-72676
Scaling Test-time Inference for Visual Grounding
Visual grounding is an essential capability of Visual Language Models (VLMs) to understand the real physical world. Previous state-of-the-art grounding visual language models usually have large model sizes, making them heavy for deployment and slow for inference. However, we notice that the sizes of visual encoders are nearly the same for small and large VLMs and the major difference is the sizes of the language models. Small VLMs fall behind larger VLMs in grounding because of the difference in language understanding capability rather than visual information handling. To mitigate the gap, we introduce 'Efficient visual Grounding language Models' (EGM): a method to scale the test-time computation (#generated tokens). Scaling the test-time computation of a small model is deployment-friendly, and yields better end-to-end latency as the cost of each token is much cheaper compared to directly running a large model. On the RefCOCO benchmark, our EGM-Qwen3-VL-8B demonstrates 91.4 IoU with an average of 737ms (5.9x faster) latency while Qwen3-VL-235B demands 4,320ms to achieve 90.5 IoU. To validate our approach's generality, we further set up a new amodal grounding setting that requires the model to predict both the visible and occluded parts of the objects. Experiments show our method can consistently and significantly improve the vanilla grounding and amodal grounding capabilities of small models to be on par with or outperform the larger models, thereby improving the efficiency for visual grounding.
CARPE: Context-Aware Image Representation Prioritization via Ensemble for Large Vision-Language Models
Recent advancements in Large Vision-Language Models (LVLMs) have pushed them closer to becoming general-purpose assistants. Despite their strong performance, LVLMs still struggle with vision-centric tasks such as image classification, underperforming compared to their base vision encoders, which are often CLIP-based models. To address this limitation, we propose Context-Aware Image Representation Prioritization via Ensemble (CARPE), a novel, model-agnostic framework which introduces vision-integration layers and a context-aware ensemble strategy to identify when to prioritize image representations or rely on the reasoning capabilities of the language model. This design enhances the model's ability to adaptively weight visual and textual modalities and enables the model to capture various aspects of image representations, leading to consistent improvements in generalization across classification and vision-language benchmarks. Extensive experiments demonstrate that CARPE not only improves performance on image classification benchmarks but also enhances results across various vision-language benchmarks. Finally, CARPE is designed to be effectively integrated with most open-source LVLMs that consist of a vision encoder and a language model, ensuring its adaptability across diverse architectures.
ChartVerse: Scaling Chart Reasoning via Reliable Programmatic Synthesis from Scratch
Chart reasoning is a critical capability for Vision Language Models (VLMs). However, the development of open-source models is severely hindered by the lack of high-quality training data. Existing datasets suffer from a dual challenge: synthetic charts are often simplistic and repetitive, while the associated QA pairs are prone to hallucinations and lack the reasoning depth required for complex tasks. To bridge this gap, we propose ChartVerse, a scalable framework designed to synthesize complex charts and reliable reasoning data from scratch. (1) To address the bottleneck of simple patterns, we first introduce Rollout Posterior Entropy (RPE), a novel metric that quantifies chart complexity. Guided by RPE, we develop complexity-aware chart coder to autonomously synthesize diverse, high-complexity charts via executable programs. (2) To guarantee reasoning rigor, we develop truth-anchored inverse QA synthesis. Diverging from standard generation, we adopt an answer-first paradigm: we extract deterministic answers directly from the source code, generate questions conditional on these anchors, and enforce strict consistency verification. To further elevate difficulty and reasoning depth, we filter samples based on model fail-rate and distill high-quality Chain-of-Thought (CoT) reasoning. We curate ChartVerse-SFT-600K and ChartVerse-RL-40K using Qwen3-VL-30B-A3B-Thinking as the teacher. Experimental results demonstrate that ChartVerse-8B achieves state-of-the-art performance, notably surpassing its teacher and rivaling the stronger Qwen3-VL-32B-Thinking.
comment: 29 pages
FG-OrIU: Towards Better Forgetting via Feature-Gradient Orthogonality for Incremental Unlearning ICCV 2025
Incremental unlearning (IU) is critical for pre-trained models to comply with sequential data deletion requests, yet existing methods primarily suppress parameters or confuse knowledge without explicit constraints on both feature and gradient level, resulting in \textit{superficial forgetting} where residual information remains recoverable. This incomplete forgetting risks security breaches and disrupts retention balance, especially in IU scenarios. We propose FG-OrIU (\textbf{F}eature-\textbf{G}radient \textbf{Or}thogonality for \textbf{I}ncremental \textbf{U}nlearning), the first framework unifying orthogonal constraints on both features and gradients level to achieve deep forgetting, where the forgetting effect is irreversible. FG-OrIU decomposes feature spaces via Singular Value Decomposition (SVD), separating forgetting and remaining class features into distinct subspaces. It then enforces dual constraints: feature orthogonal projection on both forgetting and remaining classes, while gradient orthogonal projection prevents the reintroduction of forgotten knowledge and disruption to remaining classes during updates. Additionally, dynamic subspace adaptation merges newly forgetting subspaces and contracts remaining subspaces, ensuring a stable balance between removal and retention across sequential unlearning tasks. Extensive experiments demonstrate the effectiveness of our method.
comment: This paper has been accepted by ICCV 2025. code: \url{https://github.com/RAIAN08/FG-OrIU}
Learning Fine-Grained Correspondence with Cross-Perspective Perception for Open-Vocabulary 6D Object Pose Estimation
Open-vocabulary 6D object pose estimation empowers robots to manipulate arbitrary unseen objects guided solely by natural language. However, a critical limitation of existing approaches is their reliance on unconstrained global matching strategies. In open-world scenarios, trying to match anchor features against the entire query image space introduces excessive ambiguity, as target features are easily confused with background distractors. To resolve this, we propose Fine-grained Correspondence Pose Estimation (FiCoP), a framework that transitions from noise-prone global matching to spatially-constrained patch-level correspondence. Our core innovation lies in leveraging a patch-to-patch correlation matrix as a structural prior to narrowing the matching scope, effectively filtering out irrelevant clutter to prevent it from degrading pose estimation. Firstly, we introduce an object-centric disentanglement preprocessing to isolate the semantic target from environmental noise. Secondly, a Cross-Perspective Global Perception (CPGP) module is proposed to fuse dual-view features, establishing structural consensus through explicit context reasoning. Finally, we design a Patch Correlation Predictor (PCP) that generates a precise block-wise association map, acting as a spatial filter to enforce fine-grained, noise-resilient matching. Experiments on the REAL275 and Toyota-Light datasets demonstrate that FiCoP improves Average Recall by 8.0% and 6.1%, respectively, compared to the state-of-the-art method, highlighting its capability to deliver robust and generalized perception for robotic agents operating in complex, unconstrained open-world environments. The source code will be made publicly available at https://github.com/zjjqinyu/FiCoP.
comment: The source code will be made publicly available at https://github.com/zjjqinyu/FiCoP
Reasoning is a Modality
The Abstraction and Reasoning Corpus (ARC) provides a compact laboratory for studying abstract reasoning, an ability central to human intelligence. Modern AI systems, including LLMs and ViTs, largely operate as sequence-of-behavior prediction machines: they match observable behaviors by modeling token statistics without a persistent, readable mental state. This creates a gap with human-like behavior: humans can explain an action by decoding internal state, while AI systems can produce fluent post-hoc rationalizations that are not grounded in such a state. We hypothesize that reasoning is a modality: reasoning should exist as a distinct channel separate from the low-level workspace on which rules are applied. To test this hypothesis, on solving ARC tasks as a visual reasoning problem, we designed a novel role-separated transformer block that splits global controller tokens from grid workspace tokens, enabling iterative rule execution. Trained and evaluated within the VARC vision-centric protocol, our method achieved 62.6% accuracy on ARC-1, surpassing average human performance (60.2%) and outperforming prior methods significantly. Qualitatively, our models exhibit more coherent rule-application structure than the dense ViT baseline, consistent with a shift away from plausible probability blobs toward controller-driven reasoning.
comment: Code access: https://github.com/lz7fd/Reasoning_is_a_Modality
DiffFace-Edit: A Diffusion-Based Facial Dataset for Forgery-Semantic Driven Deepfake Detection Analysis
Generative models now produce imperceptible, fine-grained manipulated faces, posing significant privacy risks. However, existing AI-generated face datasets generally lack focus on samples with fine-grained regional manipulations. Furthermore, no researchers have yet studied the real impact of splice attacks, which occur between real and manipulated samples, on detectors. We refer to these as detector-evasive samples. Based on this, we introduce the DiffFace-Edit dataset, which has the following advantages: 1) It contains over two million AI-generated fake images. 2) It features edits across eight facial regions (e.g., eyes, nose) and includes a richer variety of editing combinations, such as single-region and multi-region edits. Additionally, we specifically analyze the impact of detector-evasive samples on detection models. We conduct a comprehensive analysis of the dataset and propose a cross-domain evaluation that combines IMDL methods. Dataset will be available at https://github.com/ywh1093/DiffFace-Edit.
GO-MLVTON: Garment Occlusion-Aware Multi-Layer Virtual Try-On with Diffusion Models
Existing Image-based virtual try-on (VTON) methods primarily focus on single-layer or multi-garment VTON, neglecting multi-layer VTON (ML-VTON), which involves dressing multiple layers of garments onto the human body with realistic deformation and layering to generate visually plausible outcomes. The main challenge lies in accurately modeling occlusion relationships between inner and outer garments to reduce interference from redundant inner garment features. To address this, we propose GO-MLVTON, the first multi-layer VTON method, introducing the Garment Occlusion Learning module to learn occlusion relationships and the StableDiffusion-based Garment Morphing & Fitting module to deform and fit garments onto the human body, producing high-quality multi-layer try-on results. Additionally, we present the MLG dataset for this task and propose a new metric named Layered Appearance Coherence Difference (LACD) for evaluation. Extensive experiments demonstrate the state-of-the-art performance of GO-MLVTON. Project page: https://upyuyang.github.io/go-mlvton/.
comment: 5pages, 3 figures
DIS2: Disentanglement Meets Distillation with Classwise Attention for Robust Remote Sensing Segmentation under Missing Modalities WACV 2026
The efficacy of multimodal learning in remote sensing (RS) is severely undermined by missing modalities. The challenge is exacerbated by the RS highly heterogeneous data and huge scale variation. Consequently, paradigms proven effective in other domains often fail when confronted with these unique data characteristics. Conventional disentanglement learning, which relies on significant feature overlap between modalities (modality-invariant), is insufficient for this heterogeneity. Similarly, knowledge distillation becomes an ill-posed mimicry task where a student fails to focus on the necessary compensatory knowledge, leaving the semantic gap unaddressed. Our work is therefore built upon three pillars uniquely designed for RS: (1) principled missing information compensation, (2) class-specific modality contribution, and (3) multi-resolution feature importance. We propose a novel method DIS2, a new paradigm shifting from modality-shared feature dependence and untargeted imitation to active, guided missing features compensation. Its core novelty lies in a reformulated synergy between disentanglement learning and knowledge distillation, termed DLKD. Compensatory features are explicitly captured which, when fused with the features of the available modality, approximate the ideal fused representation of the full-modality case. To address the class-specific challenge, our Classwise Feature Learning Module (CFLM) adaptively learn discriminative evidence for each target depending on signal availability. Both DLKD and CFLM are supported by a hierarchical hybrid fusion (HF) structure using features across resolutions to strengthen prediction. Extensive experiments validate that our proposed approach significantly outperforms state-of-the-art methods across benchmarks.
comment: Accepted to WACV 2026 - Computer Vision for Earth Observation Workshop
Optical Linear Systems Framework for Event Sensing and Computational Neuromorphic Imaging
Event vision sensors (neuromorphic cameras) output sparse, asynchronous ON/OFF events triggered by log-intensity threshold crossings, enabling microsecond-scale sensing with high dynamic range and low data bandwidth. As a nonlinear system, this event representation does not readily integrate with the linear forward models that underpin most computational imaging and optical system design. We present a physics-grounded processing pipeline that maps event streams to estimates of per-pixel log-intensity and intensity derivatives, and embeds these measurements in a dynamic linear systems model with a time-varying point spread function. This enables inverse filtering directly from event data, using frequency-domain Wiener deconvolution with a known (or parameterised) dynamic transfer function. We validate the approach in simulation for single and overlapping point sources under modulated defocus, and on real event data from a tunable-focus telescope imaging a star field, demonstrating source localisation and separability. The proposed framework provides a practical bridge between event sensing and model-based computational imaging for dynamic optical systems.
PAS-Mamba: Phase-Amplitude-Spatial State Space Model for MRI Reconstruction
Joint feature modeling in both the spatial and frequency domains has become a mainstream approach in MRI reconstruction. However, existing methods generally treat the frequency domain as a whole, neglecting the differences in the information carried by its internal components. According to Fourier transform theory, phase and amplitude represent different types of information in the image. Our spectrum swapping experiments show that magnitude mainly reflects pixel-level intensity, while phase predominantly governs image structure. To prevent interference between phase and magnitude feature learning caused by unified frequency-domain modeling, we propose the Phase-Amplitude-Spatial State Space Model (PAS-Mamba) for MRI Reconstruction, a framework that decouples phase and magnitude modeling in the frequency domain and combines it with image-domain features for better reconstruction. In the image domain, LocalMamba preserves spatial locality to sharpen fine anatomical details. In frequency domain, we disentangle amplitude and phase into two specialized branches to avoid representational coupling. To respect the concentric geometry of frequency information, we propose Circular Frequency Domain Scanning (CFDS) to serialize features from low to high frequencies. Finally, a Dual-Domain Complementary Fusion Module (DDCFM) adaptively fuses amplitude phase representations and enables bidirectional exchange between frequency and image domains, delivering superior reconstruction. Extensive experiments on the IXI and fastMRI knee datasets show that PAS-Mamba consistently outperforms state of the art reconstruction methods.
GutenOCR: A Grounded Vision-Language Front-End for Documents
GutenOCR is a family of grounded OCR front-ends obtained by fine-tuning Qwen2.5-VL-3B and Qwen2.5-VL-7B. The resulting single-checkpoint vision-language models expose reading, detection, and grounding through a unified, prompt-based interface. Trained on business documents, scientific articles, and synthetic grounding data, the models support full-page and localized reading with line- and paragraph-level bounding boxes and conditional ``where is x?'' queries. We introduce a grounded OCR evaluation protocol and show that GutenOCR-7B more than doubles the composite grounded OCR score of its Qwen2.5-VL-7B backbone on 10.5K held-out business and scientific pages (0.40 to 0.82). On Fox and OmniDocBench v1.5, our approach substantially improves region- and line-level OCR as well as text-detection recall, but reveals trade-offs in page-level linearization, color-guided OCR, and formula-heavy layouts.
XD-MAP: Cross-Modal Domain Adaptation using Semantic Parametric Mapping
Until open-world foundation models match the performance of specialized approaches, the effectiveness of deep learning models remains heavily dependent on dataset availability. Training data must align not only with the target object categories but also with the sensor characteristics and modalities. To bridge the gap between available datasets and deployment domains, domain adaptation strategies are widely used. In this work, we propose a novel approach to transferring sensor-specific knowledge from an image dataset to LiDAR, an entirely different sensing domain. Our method XD-MAP leverages detections from a neural network on camera images to create a semantic parametric map. The map elements are modeled to produce pseudo labels in the target domain without any manual annotation effort. Unlike previous domain transfer approaches, our method does not require direct overlap between sensors and enables extending the angular perception range from a front-view camera to a full 360 view. On our large-scale road feature dataset, XD-MAP outperforms single shot baseline approaches by +19.5 mIoU for 2D semantic segmentation, +19.5 PQth for 2D panoptic segmentation, and +32.3 mIoU in 3D semantic segmentation. The results demonstrate the effectiveness of our approach achieving strong performance on LiDAR data without any manual labeling.
Real-Time Wildfire Localization on the NASA Autonomous Modular Sensor using Deep Learning
High-altitude, multi-spectral, aerial imagery is scarce and expensive to acquire, yet it is necessary for algorithmic advances and application of machine learning models to high-impact problems such as wildfire detection. We introduce a human-annotated dataset from the NASA Autonomous Modular Sensor (AMS) using 12-channel, medium to high altitude (3 - 50 km) aerial wildfire images similar to those used in current US wildfire missions. Our dataset combines spectral data from 12 different channels, including infrared (IR), short-wave IR (SWIR), and thermal. We take imagery from 20 wildfire missions and randomly sample small patches to generate over 4000 images with high variability, including occlusions by smoke/clouds, easily-confused false positives, and nighttime imagery. We demonstrate results from a deep-learning model to automate the human-intensive process of fire perimeter determination. We train two deep neural networks, one for image classification and the other for pixel-level segmentation. The networks are combined into a unique real-time segmentation model to efficiently localize active wildfire on an incoming image feed. Our model achieves 96% classification accuracy, 74% Intersection-over-Union(IoU), and 84% recall surpassing past methods, including models trained on satellite data and classical color-rule algorithms. By leveraging a multi-spectral dataset, our model is able to detect active wildfire at nighttime and behind clouds, while distinguishing between false positives. We find that data from the SWIR, IR, and thermal bands is the most important to distinguish fire perimeters. Our code and dataset can be found here: https://github.com/nasa/Autonomous-Modular-Sensor-Wildfire-Segmentation/tree/main and https://drive.google.com/drive/folders/1-u4vs9rqwkwgdeeeoUhftCxrfe_4QPTn?=usp=drive_link
comment: 16 pages, 9 figures, published at AIAA SciTech 2026
Gaussian Based Adaptive Multi-Modal 3D Semantic Occupancy Prediction
The sparse object detection paradigm shift towards dense 3D semantic occupancy prediction is necessary for dealing with long-tail safety challenges for autonomous vehicles. Nonetheless, the current voxelization methods commonly suffer from excessive computation complexity demands, where the fusion process is brittle, static, and breaks down under dynamic environmental settings. To this end, this research work enhances a novel Gaussian-based adaptive camera-LiDAR multimodal 3D occupancy prediction model that seamlessly bridges the semantic strengths of camera modality with the geometric strengths of LiDAR modality through a memory-efficient 3D Gaussian model. The proposed solution has four key components: (1) LiDAR Depth Feature Aggregation (LDFA), where depth-wise deformable sampling is employed for dealing with geometric sparsity, (2) Entropy-Based Feature Smoothing, where cross-entropy is employed for handling domain-specific noise, (3) Adaptive Camera-LiDAR Fusion, where dynamic recalibration of sensor outputs is performed based on model outputs, and (4) Gauss-Mamba Head that uses Selective State Space Models for global context decoding that enjoys linear computation complexity.
comment: Master Thesis
Vision-Based Natural Language Scene Understanding for Autonomous Driving: An Extended Dataset and a New Model for Traffic Scene Description Generation
Traffic scene understanding is essential for enabling autonomous vehicles to accurately perceive and interpret their environment, thereby ensuring safe navigation. This paper presents a novel framework that transforms a single frontal-view camera image into a concise natural language description, effectively capturing spatial layouts, semantic relationships, and driving-relevant cues. The proposed model leverages a hybrid attention mechanism to enhance spatial and semantic feature extraction and integrates these features to generate contextually rich and detailed scene descriptions. To address the limited availability of specialized datasets in this domain, a new dataset derived from the BDD100K dataset has been developed, with comprehensive guidelines provided for its construction. Furthermore, the study offers an in-depth discussion of relevant evaluation metrics, identifying the most appropriate measures for this task. Extensive quantitative evaluations using metrics such as CIDEr and SPICE, complemented by human judgment assessments, demonstrate that the proposed model achieves strong performance and effectively fulfills its intended objectives on the newly developed dataset.
comment: Under review at Computer Vision and Image Understanding (submitted July 25, 2025)
Large-Scale Label Quality Assessment for Medical Segmentation via a Vision-Language Judge and Synthetic Data
Large-scale medical segmentation datasets often combine manual and pseudo-labels of uneven quality, which can compromise training and evaluation. Low-quality labels may hamper performance and make the model training less robust. To address this issue, we propose SegAE (Segmentation Assessment Engine), a lightweight vision-language model (VLM) that automatically predicts label quality across 142 anatomical structures. Trained on over four million image-label pairs with quality scores, SegAE achieves a high correlation coefficient of 0.902 with ground-truth Dice similarity and evaluates a 3D mask in 0.06s. SegAE shows several practical benefits: (I) Our analysis reveals widespread low-quality labeling across public datasets; (II) SegAE improves data efficiency and training performance in active and semi-supervised learning, reducing dataset annotation cost by one-third and quality-checking time by 70% per label. This tool provides a simple and effective solution for quality control in large-scale medical segmentation datasets. The dataset, model weights, and codes are released at https://github.com/Schuture/SegAE.
comment: ISBI 2026 accepted
CityCube: Benchmarking Cross-view Spatial Reasoning on Vision-Language Models in Urban Environments
Cross-view spatial reasoning is essential for embodied AI, underpinning spatial understanding, mental simulation and planning in complex environments. Existing benchmarks primarily emphasize indoor or street settings, overlooking the unique challenges of open-ended urban spaces characterized by rich semantics, complex geometries, and view variations. To address this, we introduce CityCube, a systematic benchmark designed to probe cross-view reasoning capabilities of current VLMs in urban settings. CityCube integrates four viewpoint dynamics to mimic camera movements and spans a wide spectrum of perspectives from multiple platforms, e.g., vehicles, drones and satellites. For a comprehensive assessment, it features 5,022 meticulously annotated multi-view QA pairs categorized into five cognitive dimensions and three spatial relation expressions. A comprehensive evaluation of 33 VLMs reveals a significant performance disparity with humans: even large-scale models struggle to exceed 54.1% accuracy, remaining 34.2% below human performance. By contrast, small-scale fine-tuned VLMs achieve over 60.0% accuracy, highlighting the necessity of our benchmark. Further analyses indicate the task correlations and fundamental cognitive disparity between VLMs and human-like reasoning.
Partial Decoder Attention Network with Contour-weighted Loss Function for Data-Imbalance Medical Image Segmentation
Image segmentation is pivotal in medical image analysis, facilitating clinical diagnosis, treatment planning, and disease evaluation. Deep learning has significantly advanced automatic segmentation methodologies by providing superior modeling capability for complex structures and fine-grained anatomical regions. However, medical images often suffer from data imbalance issues, such as large volume disparities among organs or tissues, and uneven sample distributions across different anatomical structures. This imbalance tends to bias the model toward larger organs or more frequently represented structures, while overlooking smaller or less represented structures, thereby affecting the segmentation accuracy and robustness. To address these challenges, we proposed a novel contour-weighted segmentation approach, which improves the model's capability to represent small and underrepresented structures. We developed PDANet, a lightweight and efficient segmentation network based on a partial decoder mechanism. We evaluated our method using three prominent public datasets. The experimental results show that our methodology excelled in three distinct tasks: segmenting multiple abdominal organs, brain tumors, and pelvic bone fragments with injuries. It consistently outperformed nine state-of-the-art methods. Moreover, the proposed contour-weighted strategy improved segmentation for other comparison methods across the three datasets, yielding average enhancements in Dice scores of 2.32%, 1.67%, and 3.60%, respectively. These results demonstrate that our contour-weighted segmentation method surpassed current leading approaches in both accuracy and robustness. As a model-independent strategy, it can seamlessly fit various segmentation frameworks, enhancing their performance. This flexibility highlighted its practical importance and potential for broad use in medical image analysis.
Unsupervised Deformable Image Registration with Local-Global Attention and Image Decomposition
Deformable image registration is a critical technology in medical image analysis, with broad applications in clinical practice such as disease diagnosis, multi-modal fusion, and surgical navigation. Traditional methods often rely on iterative optimization, which is computationally intensive and lacks generalizability. Recent advances in deep learning have introduced attention-based mechanisms that improve feature alignment, yet accurately registering regions with high anatomical variability remains challenging. In this study, we proposed a novel unsupervised deformable image registration framework, LGANet++, which employs a novel local-global attention mechanism integrated with a unique technique for feature interaction and fusion to enhance registration accuracy, robustness, and generalizability. We evaluated our approach using five publicly available datasets, representing three distinct registration scenarios: cross-patient, cross-time, and cross-modal CT-MR registration. The results demonstrated that our approach consistently outperforms several state-of-the-art registration methods, improving registration accuracy by 1.39% in cross-patient registration, 0.71% in cross-time registration, and 6.12% in cross-modal CT-MR registration tasks. These results underscore the potential of LGANet++ to support clinical workflows requiring reliable and efficient image registration. The source code is available at https://github.com/huangzyong/LGANet-Registration.
Self-Supervised Score-Based Despeckling for SAR Imagery via Log-Domain Transformation
The speckle noise inherent in Synthetic Aperture Radar (SAR) imagery significantly degrades image quality and complicates subsequent analysis. Given that SAR speckle is multiplicative and Gamma-distributed, effectively despeckling SAR imagery remains challenging. This paper introduces a novel self-supervised framework for SAR image despeckling based on score-based generative models operating in the transformed log domain. We first transform the data into the log-domain and then convert the speckle noise residuals into an approximately additive Gaussian distribution. This step enables the application of score-based models, which are trained in the transformed domain using a self-supervised objective. This objective allows our model to learn the clean underlying signal by training on further corrupted versions of the input data itself. Consequently, our method exhibits significantly shorter inference times compared to many existing self-supervised techniques, offering a robust and practical solution for SAR image restoration.
LURE: Latent Space Unblocking for Multi-Concept Reawakening in Diffusion Models
Concept erasure aims to suppress sensitive content in diffusion models, but recent studies show that erased concepts can still be reawakened, revealing vulnerabilities in erasure methods. Existing reawakening methods mainly rely on prompt-level optimization to manipulate sampling trajectories, neglecting other generative factors, which limits a comprehensive understanding of the underlying dynamics. In this paper, we model the generation process as an implicit function to enable a comprehensive theoretical analysis of multiple factors, including text conditions, model parameters, and latent states. We theoretically show that perturbing each factor can reawaken erased concepts. Building on this insight, we propose a novel concept reawakening method: Latent space Unblocking for concept REawakening (LURE), which reawakens erased concepts by reconstructing the latent space and guiding the sampling trajectory. Specifically, our semantic re-binding mechanism reconstructs the latent space by aligning denoising predictions with target distributions to reestablish severed text-visual associations. However, in multi-concept scenarios, naive reconstruction can cause gradient conflicts and feature entanglement. To address this, we introduce Gradient Field Orthogonalization, which enforces feature orthogonality to prevent mutual interference. Additionally, our Latent Semantic Identification-Guided Sampling (LSIS) ensures stability of the reawakening process via posterior density verification. Extensive experiments demonstrate that LURE enables simultaneous, high-fidelity reawakening of multiple erased concepts across diverse erasure tasks and methods.
GeLoc3r: Enhancing Relative Camera Pose Regression with Geometric Consistency Regularization
Prior ReLoc3R achieves breakthrough performance with fast 25ms inference and state-of-the-art regression accuracy, yet our analysis reveals subtle geometric inconsistencies in its internal representations that prevent reaching the precision ceiling of correspondence-based methods like MASt3R (which require 300ms per pair). In this work, we present GeLoc3r, a novel approach to relative camera pose estimation that enhances pose regression methods through Geometric Consistency Regularization (GCR). GeLoc3r overcomes the speed-accuracy dilemma by training regression networks to produce geometrically consistent poses without inference-time geometric computation. During training, GeLoc3r leverages ground-truth depth to generate dense 3D-2D correspondences, weights them using a FusionTransformer that learns correspondence importance, and computes geometrically-consistent poses via weighted RANSAC. This creates a consistency loss that transfers geometric knowledge into the regression network. Unlike FAR method which requires both regression and geometric solving at inference, GeLoc3r only uses the enhanced regression head at test time, maintaining ReLoc3R's fast speed and approaching MASt3R's high accuracy. On challenging benchmarks, GeLoc3r consistently outperforms ReLoc3R, achieving significant improvements including 40.45% vs. 34.85% AUC@5° on the CO3Dv2 dataset (16% relative improvement), 68.66% vs. 66.70% AUC@5° on RealEstate10K, and 50.45% vs. 49.60% on MegaDepth1500. By teaching geometric consistency during training rather than enforcing it at inference, GeLoc3r represents a paradigm shift in how neural networks learn camera geometry, achieving both the speed of regression and the geometric understanding of correspondence methods.
DiffusionAgent: Navigating Expert Models for Agentic Image Generation
In the accelerating era of human-instructed visual content creation, diffusion models have demonstrated remarkable generative potential. Yet their deployment is constrained by a dual bottleneck: semantic ambiguity in diverse prompts and the narrow specialization of individual models. A single diffusion architecture struggles to maintain optimal performance across heterogeneous prompts, while conventional "parse-then-call" pipelines artificially separate semantic understanding from generative execution. To bridge this gap, we introduce DiffusionAgent, a unified, language-model-driven agent that casts the entire "prompt comprehension-expert routing-image synthesis" loop into a agentic framework. Our contributions are three-fold: (1) a tree-of-thought-powered expert navigator that performs fine-grained semantic parsing and zero-shot matching to the most suitable diffusion model via an extensible prior-knowledge tree; (2) an advantage database updated with human-in-the-loop feedback, continually aligning model-selection policy with human aesthetic and semantic preferences; and (3) a fully decoupled agent architecture that activates the optimal generative path for open-domain prompts without retraining or fine-tuning any expert. Extensive experiments show that DiffusionAgent retains high generation quality while significantly broadening prompt coverage, establishing a new performance and generality benchmark for multi-domain image synthesis. The code is available at https://github.com/DiffusionAgent/DiffusionAgent
SuperGSeg: Open-Vocabulary 3D Segmentation with Structured Super-Gaussians
3D Gaussian Splatting has recently gained traction for its efficient training and real-time rendering. While its vanilla representation is mainly designed for view synthesis, recent works extended it to scene understanding with language features. However, storing additional high-dimensional features per Gaussian for semantic information is memory-intensive, which limits their ability to segment and interpret challenging scenes. To this end, we introduce SuperGSeg, a novel approach that fosters cohesive, context-aware hierarchical scene representation by disentangling segmentation and language field distillation. SuperGSeg first employs neural 3D Gaussians to learn geometry, instance and hierarchical segmentation features from multi-view images with the aid of off-the-shelf 2D masks. These features are then leveraged to create a sparse set of \acrlong{superg}s. \acrlong{superg}s facilitate the lifting and distillation of 2D language features into 3D space. They enable hierarchical scene understanding with high-dimensional language feature rendering at moderate GPU memory costs. Extensive experiments demonstrate that SuperGSeg achieves remarkable performance on both open-vocabulary object selection and semantic segmentation tasks.
comment: 13 pages, 8 figures. Project page: supergseg.github.io
DiffRatio: Training One-Step Diffusion Models Without Teacher Supervision
Score-based distillation methods (e.g., variational score distillation) train one-step diffusion models by first pre-training a teacher score model and then distilling it into a one-step student model. However, the gradient estimator in the distillation stage usually suffers from two sources of bias: (1) biased teacher supervision due to score estimation error incurred during pre-training, and (2) the student model's score estimation error during distillation. These biases can degrade the quality of the resulting one-step diffusion model. To address this, we propose DiffRatio, a new framework for training one-step diffusion models: instead of estimating the teacher and student scores independently and then taking their difference, we directly estimate the score difference as the gradient of a learned log density ratio between the student and data distributions across diffusion time steps. This approach greatly simplifies the training pipeline, significantly reduces gradient estimation bias, and improves one-step generation quality. Additionally, it also reduces auxiliary network size by using a lightweight density-ratio network instead of two full score networks, which improves computational and memory efficiency. DiffRatio achieves competitive one-step generation results on CIFAR-10 and ImageNet (64x64 and 512x512), outperforming most teacher-supervised distillation approaches.
comment: 21 pages, 8 figures, 5 tables, 2 algorithms
WaveletInception Networks for on-board Vibration-Based Infrastructure Health Monitoring
This paper presents a deep learning framework for analyzing on board vibration response signals in infrastructure health monitoring. The proposed WaveletInception-BiGRU network uses a Learnable Wavelet Packet Transform (LWPT) for early spectral feature extraction, followed by one-dimensional Inception-Residual Network (1D Inception-ResNet) modules for multi-scale, high-level feature learning. Bidirectional Gated Recurrent Unit (BiGRU) modules then integrate temporal dependencies and incorporate operational conditions, such as the measurement speed. This approach enables effective analysis of vibration signals recorded at varying speeds, eliminating the need for explicit signal preprocessing. The sequential estimation head further leverages bidirectional temporal information to produce an accurate, localized assessment of infrastructure health. Ultimately, the framework generates high-resolution health profiles spatially mapped to the physical layout of the infrastructure. Case studies involving track stiffness regression and transition zone classification using real-world measurements demonstrate that the proposed framework significantly outperforms state-of-the-art methods, underscoring its potential for accurate, localized, and automated on-board infrastructure health monitoring.
comment: Under reviewer for the Journal of Engineering Application of Artificial Intelligence
TalkingHeadBench: A Multi-Modal Benchmark & Analysis of Talking-Head DeepFake Detection WACV2026
The rapid advancement of talking-head deepfake generation fueled by advanced generative models has elevated the realism of synthetic videos to a level that poses substantial risks in domains such as media, politics, and finance. However, current benchmarks for deepfake talking-head detection fail to reflect this progress, relying on outdated generators and offering limited insight into model robustness and generalization. We introduce TalkingHeadBench, a comprehensive multi-model multi-generator benchmark and curated dataset designed to evaluate the performance of state-of-the-art detectors on the most advanced generators. Our dataset includes deepfakes synthesized by leading academic and commercial models and features carefully constructed protocols to assess generalization under distribution shifts in identity and generator characteristics. We benchmark a diverse set of existing detection methods, including CNNs, vision transformers, and temporal models, and analyze their robustness and generalization capabilities. In addition, we provide error analysis using Grad-CAM visualizations to expose common failure modes and detector biases. TalkingHeadBench is hosted on https://huggingface.co/datasets/luchaoqi/TalkingHeadBench with open access to all data splits and protocols. Our benchmark aims to accelerate research towards more robust and generalizable detection models in the face of rapidly evolving generative techniques.
comment: WACV2026
GalaxyEdit: Large-Scale Image Editing Dataset with Enhanced Diffusion Adapter
Training of large-scale text-to-image and image-to-image models requires a huge amount of annotated data. While text-to-image datasets are abundant, data available for instruction-based image-to-image tasks like object addition and removal is limited. This is because of the several challenges associated with the data generation process, such as, significant human effort, limited automation, suboptimal end-to-end models, data diversity constraints and high expenses. We propose an automated data generation pipeline aimed at alleviating such limitations, and introduce GalaxyEdit - a large-scale image editing dataset for add and remove operations. We fine-tune the SD v1.5 model on our dataset and find that our model can successfully handle a broader range of objects and complex editing instructions, outperforming state-of-the-art methods in FID scores by 11.2\% and 26.1\% for add and remove tasks respectively. Furthermore, in light of on-device usage scenarios, we expand our research to include task-specific lightweight adapters leveraging the ControlNet-xs architecture. While ControlNet-xs excels in canny and depth guided generation, we propose to improve the communication between the control network and U-Net for more intricate add and remove tasks. We achieve this by enhancing ControlNet-xs with non-linear interaction layers based on Volterra filters. Our approach outperforms ControlNet-xs in both add/remove and canny-guided image generation tasks, highlighting the effectiveness of the proposed enhancement.
comment: 10 pages, 6 figures
HCF: Hierarchical Cascade Framework for Distributed Multi-Stage Image Compression AAAI 2026
Distributed multi-stage image compression -- where visual content traverses multiple processing nodes under varying quality requirements -- poses challenges. Progressive methods enable bitstream truncation but underutilize available compute resources; successive compression repeats costly pixel-domain operations and suffers cumulative quality loss and inefficiency; fixed-parameter models lack post-encoding flexibility. In this work, we developed the Hierarchical Cascade Framework (HCF) that achieves high rate-distortion performance and better computational efficiency through direct latent-space transformations across network nodes in distributed multi-stage image compression systems. Under HCF, we introduced policy-driven quantization control to optimize rate-distortion trade-offs, and established the edge quantization principle through differential entropy analysis. The configuration based on this principle demonstrates up to 0.6dB PSNR gains over other configurations. When comprehensively evaluated on the Kodak, CLIC, and CLIC2020-mobile datasets, HCF outperforms successive-compression methods by up to 5.56% BD-Rate in PSNR on CLIC, while saving up to 97.8% FLOPs, 96.5% GPU memory, and 90.0% execution time. It also outperforms state-of-the-art progressive compression methods by up to 12.64% BD-Rate on Kodak and enables retraining-free cross-quality adaptation with 7.13-10.87% BD-Rate reductions on CLIC2020-mobile.
comment: Accepted at AAAI 2026 as a Conference Paper (Oral Presentation)
UniHash: Unifying Pointwise and Pairwise Hashing Paradigms for Seen and Unseen Category Retrieval
Effective retrieval across both seen and unseen categories is crucial for modern image retrieval systems. Retrieval on seen categories ensures precise recognition of known classes, while retrieval on unseen categories promotes generalization to novel classes with limited supervision. However, most existing deep hashing methods are confined to a single training paradigm, either pointwise or pairwise, where the former excels on seen categories and the latter generalizes better to unseen ones. To overcome this limitation, we propose Unified Hashing (UniHash), a dual-branch framework that unifies the strengths of both paradigms to achieve balanced retrieval performance across seen and unseen categories. UniHash consists of two complementary branches: a center-based branch following the pointwise paradigm and a pairwise branch following the pairwise paradigm. A novel hash code learning method is introduced to enable bidirectional knowledge transfer between branches, improving hash code discriminability and generalization. It employs a mutual learning loss to align hash representations and introduces a Split-Merge Mixture of Hash Experts (SM-MoH) module to enhance cross-branch exchange of hash representations. Theoretical analysis substantiates the effectiveness of UniHash, and extensive experiments on CIFAR-10, MSCOCO, and ImageNet demonstrate that UniHash consistently achieves state-of-the-art performance in both seen and unseen image retrieval scenarios.
Tube-Based Robust Control Strategy for Vision-Guided Autonomous Vehicles
A robust control strategy for autonomous vehicles can improve system stability, enhance riding comfort, and prevent driving accidents. This paper presents a novel interpolation-tube-based constrained iterative linear quadratic regulator (itube-CILQR) algorithm for autonomous computer-vision-based vehicle lane-keeping. The goal of the algorithm is to enhance robustness during high-speed cornering on tight turns. Compared with standard tube-based approaches, the proposed itube-CILQR algorithm reduces system conservatism and exhibits higher computational speed. Numerical simulations and vision-based experiments were conducted to examine the feasibility of using the proposed algorithm for controlling autonomous vehicles. The results indicated that the proposed algorithm achieved superior vehicle lane-keeping performance to variational CILQR-based methods and model predictive control (MPC) approaches involving the use of a classical interior-point optimizer. Specifically, itube-CILQR required an average runtime of 3.45 ms to generate a control signal for guiding a self-driving vehicle. By comparison, itube-MPC typically required a 4.32 times longer computation time to complete the same task. Moreover, the influence of conservatism on system behavior was investigated by exploring the variations in the interpolation variables derived using the proposed itube-CILQR algorithm during lane-keeping maneuvers.
comment: 15 pages, 16 figures
FlyPose: Towards Robust Human Pose Estimation From Aerial Views WACV
Unmanned Aerial Vehicles (UAVs) are increasingly deployed in close proximity to humans for applications such as parcel delivery, traffic monitoring, disaster response and infrastructure inspections. Ensuring safe and reliable operation in these human-populated environments demands accurate perception of human poses and actions from an aerial viewpoint. This perspective challenges existing methods with low resolution, steep viewing angles and (self-)occlusion, especially if the application demands realtime feasibile models. We train and deploy FlyPose, a lightweight top-down human pose estimation pipeline for aerial imagery. Through multi-dataset training, we achieve an average improvement of 6.8 mAP in person detection across the test-sets of Manipal-UAV, VisDrone, HIT-UAV as well as our custom dataset. For 2D human pose estimation we report an improvement of 16.3 mAP on the challenging UAV-Human dataset. FlyPose runs with an inference latency of ~20 milliseconds including preprocessing on a Jetson Orin AGX Developer Kit and is deployed onboard a quadrotor UAV during flight experiments. We also publish FlyPose-104, a small but challenging aerial human pose estimation dataset, that includes manual annotations from difficult aerial perspectives: https://github.com/farooqhassaan/FlyPose.
comment: 11 pages, 9 figures, IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2026
Hummus: A Dataset of Humorous Multimodal Metaphor Use
Metaphor and humor share a lot of common ground, and metaphor is one of the most common humorous mechanisms. This study focuses on the humorous capacity of multimodal metaphors, which has not received due attention in the community. We take inspiration from the Incongruity Theory of humor, the Conceptual Metaphor Theory, and the annotation scheme behind the VU Amsterdam Metaphor Corpus, and developed a novel annotation scheme for humorous multimodal metaphor use in image-caption pairs. We create the Hummus Dataset of Humorous Multimodal Metaphor Use, providing expert annotation on 1k image-caption pairs sampled from the New Yorker Caption Contest corpus. Using the dataset, we test state-of-the-art multimodal large language models (MLLMs) on their ability to detect and understand humorous multimodal metaphor use. Our experiments show that current MLLMs still struggle with processing humorous multimodal metaphors, particularly with regard to integrating visual and textual information. We release our dataset and code at github.com/xiaoyuisrain/humorous-multimodal-metaphor-use.
ESPLoRA: Enhanced Spatial Precision with Low-Rank Adaption in Text-to-Image Diffusion Models for High-Definition Synthesis
Diffusion models have revolutionized text-to-image (T2I) synthesis, producing high-quality, photorealistic images. However, they still struggle to properly render the spatial relationships described in text prompts. To address the lack of spatial information in T2I generations, existing methods typically use external network conditioning and predefined layouts, resulting in higher computational costs and reduced flexibility. Our approach builds upon a curated dataset of spatially explicit prompts, meticulously extracted and synthesized from LAION-400M to ensure precise alignment between textual descriptions and spatial layouts. Alongside this dataset, we present ESPLoRA, a flexible fine-tuning framework based on Low-Rank Adaptation, specifically designed to enhance spatial consistency in generative models without increasing generation time or compromising the quality of the outputs. In addition to ESPLoRA, we propose refined evaluation metrics grounded in geometric constraints, capturing 3D spatial relations such as "in front of" or "behind". These metrics also expose spatial biases in T2I models which, even when not fully mitigated, can be strategically exploited by our TORE algorithm to further improve the spatial consistency of generated images. Our method outperforms CoMPaSS, the current baseline framework, on spatial consistency benchmarks.
Back2Color: Domain-Adaptive Synthetic-to-Real Monocular Depth Estimation for Dynamic Traffic Scenes
Accurate monocular depth estimation is a fundamental component of vision-based perception systems in intelligent transportation applications. Despite recent progress, unsupervised monocular approaches still suffer from significant performance degradation in real-world traffic scenes due to synthetic-to-real domain gaps and the presence of dynamic, non-rigid objects such as vehicles and pedestrians. In this paper, we propose Back2Color, a robust unsupervised monocular depth estimation framework that addresses these challenges through domain adaptation and uncertainty-aware fusion. Specifically, Back2Color proposes a bidirectional depth-to-color transformation strategy that learns appearance mappings from real-world driving data and applies them to synthetic depth maps, thereby constructing training samples with realistic color appearance and paired synthetic depth. In this way, the proposed approach effectively reduces the domain gap between simulated and real traffic scenes, enabling the depth prediction network to learn more stable and generalizable priors. To further improve robustness under dynamic environments, we propose an auto-learning uncertainty temporal-spatial fusion (Auto-UTSF) module, which adaptively fuses complementary temporal and spatial cues by estimating pixel-wise uncertainty, enabling reliable depth prediction in the presence of moving objects and occlusions. Extensive experiments on challenging urban driving benchmarks, including KITTI and Cityscapes, demonstrate that the proposed method consistently outperforms existing unsupervised monocular depth estimation approaches, particularly in dynamic traffic scenarios, while maintaining high computational efficiency.
Learning Latent Action World Models In The Wild
Agents capable of reasoning and planning in the real world require the ability of predicting the consequences of their actions. While world models possess this capability, they most often require action labels, that can be complex to obtain at scale. This motivates the learning of latent action models, that can learn an action space from videos alone. Our work addresses the problem of learning latent actions world models on in-the-wild videos, expanding the scope of existing works that focus on simple robotics simulations, video games, or manipulation data. While this allows us to capture richer actions, it also introduces challenges stemming from the video diversity, such as environmental noise, or the lack of a common embodiment across videos. To address some of the challenges, we discuss properties that actions should follow as well as relevant architectural choices and evaluations. We find that continuous, but constrained, latent actions are able to capture the complexity of actions from in-the-wild videos, something that the common vector quantization does not. We for example find that changes in the environment coming from agents, such as humans entering the room, can be transferred across videos. This highlights the capability of learning actions that are specific to in-the-wild videos. In the absence of a common embodiment across videos, we are mainly able to learn latent actions that become localized in space, relative to the camera. Nonetheless, we are able to train a controller that maps known actions to latent ones, allowing us to use latent actions as a universal interface and solve planning tasks with our world model with similar performance as action-conditioned baselines. Our analyses and experiments provide a step towards scaling latent action models to the real world.
comment: 37 pages, 25 figures; updated references and experimental details
Balanced Diffusion-Guided Fusion for Multimodal Remote Sensing Classification
Deep learning-based techniques for the analysis of multimodal remote sensing data have become popular due to their ability to effectively integrate complementary spatial, spectral, and structural information from different sensors. Recently, denoising diffusion probabilistic models (DDPMs) have attracted attention in the remote sensing community due to their powerful ability to capture robust and complex spatial-spectral distributions. However, pre-training multimodal DDPMs may result in modality imbalance, and effectively leveraging diffusion features to guide complementary diversity feature extraction remains an open question. To address these issues, this paper proposes a balanced diffusion-guided fusion (BDGF) framework that leverages multimodal diffusion features to guide a multi-branch network for land-cover classification. Specifically, we propose an adaptive modality masking strategy to encourage the DDPMs to obtain a modality-balanced rather than spectral image-dominated data distribution. Subsequently, these diffusion features hierarchically guide feature extraction among CNN, Mamba, and transformer networks by integrating feature fusion, group channel attention, and cross-attention mechanisms. Finally, a mutual learning strategy is developed to enhance inter-branch collaboration by aligning the probability entropy and feature similarity of individual subnetworks. Extensive experiments on four multimodal remote sensing datasets demonstrate that the proposed method achieves superior classification performance. The code is available at https://github.com/HaoLiu-XDU/BDGF.
Multimodal Emotion Recognition using Audio-Video Transformer Fusion with Cross Attention
Multimodal emotion recognition (MER) aims to infer human affect by jointly modeling audio and visual cues; however, existing approaches often struggle with temporal misalignment, weakly discriminative feature representations, and suboptimal fusion of heterogeneous modalities. To address these challenges, we propose AVT-CA, an Audio-Video Transformer architecture with cross attention for robust emotion recognition. The proposed model introduces a hierarchical video feature representation that combines channel attention, spatial attention, and local feature extraction to emphasize emotionally salient regions while suppressing irrelevant information. These refined visual features are integrated with audio representations through an intermediate transformer-based fusion mechanism that captures interlinked temporal dependencies across modalities. Furthermore, a cross-attention module selectively reinforces mutually consistent audio-visual cues, enabling effective feature selection and noise-aware fusion. Extensive experiments on three benchmark datasets, CMU-MOSEI, RAVDESS, and CREMA-D, demonstrate that AVT-CA consistently outperforms state-of-the-art baselines, achieving significant improvements in both accuracy and F1-score. Our source code is publicly available at https://github.com/shravan-18/AVTCA.
DocReward: A Document Reward Model for Structuring and Stylizing
Recent advances in agentic workflows have enabled the automation of tasks such as professional document generation. However, they primarily focus on textual quality, neglecting visual structure and style, which are crucial for readability and engagement. This gap stems mainly from a lack of effective reward models capable of guiding agents toward producing documents with high structural and stylistic professionalism. To address this, we propose DocReward, a document reward model that evaluates documents based on their structure and style. The model is trained under a textual-quality-agnostic framework to assess professionalism without being influenced by textual quality. To achieve this, we construct a multi-domain dataset DocPair of 117K paired documents, covering 32 domains and 267 document types, each comprising a high- and low-professionalism document with identical content but different structure and style. This setup enables the model to evaluate professionalism comprehensively and independently of textual quality. DocReward is trained using the Bradley-Terry loss to score documents, penalizing predictions that contradict the annotated ranking. On a manually annotated benchmark, DocReward outperforms GPT-5 by 14.6 percentage points in accuracy. Extrinsic RL experiments further validate its effectiveness in guiding professional document generation.
SoK: On the Survivability of Backdoor Attacks on Unconstrained Face Recognition Systems
The widespread deployment of Deep Learning-based Face Recognition Systems raises many security concerns. While prior research has identified backdoor vulnerabilities on isolated components, Backdoor Attacks on real-world, unconstrained pipelines remain underexplored. This SoK paper presents the first comprehensive system-level analysis and measurement of the impact of Backdoor Attacks on fully-fledged Face Recognition Systems. We combine the existing Supervised Learning backdoor literature targeting face detectors, face antispoofing, and face feature extractors to demonstrate a system-level vulnerability. By analyzing 20 pipeline configurations and 15 attack scenarios in a holistic manner, we reveal that an attacker only needs a single backdoored model to compromise an entire Face Recognition System. Finally, we discuss the impact of such attacks and propose best practices and countermeasures for stakeholders.
comment: This work has been accepted for publication at the IEEE Conference on Secure and Trustworthy Machine Learning (SaTML). The final version will be available on IEEE Xplore
The 4D Human Embryonic Brain Atlas: spatiotemporal atlas generation for rapid anatomical changes
Early brain development is crucial for lifelong neurodevelopmental health. However, current clinical practice offers limited knowledge of normal embryonic brain anatomy on ultrasound, despite the brain undergoing rapid changes within the time-span of days. To provide detailed insights into normal brain development and identify deviations, we created the 4D Human Embryonic Brain Atlas using a deep learning-based approach for groupwise registration and spatiotemporal atlas generation. Our method introduced a time-dependent initial atlas and penalized deviations from it, ensuring age-specific anatomy was maintained throughout rapid development. The atlas was generated and validated using 831 3D ultrasound images from 402 subjects in the Rotterdam Periconceptional Cohort, acquired between gestational weeks 8 and 12. We evaluated the effectiveness of our approach with an ablation study, which demonstrated that incorporating a time-dependent initial atlas and penalization produced anatomically accurate results. In contrast, omitting these adaptations led to anatomically incorrect atlas. Visual comparisons with an existing ex-vivo embryo atlas further confirmed the anatomical accuracy of our atlas. In conclusion, the proposed method successfully captures the rapid anotomical development of the embryonic brain. The resulting 4D Human Embryonic Brain Atlas provides a unique insights into this crucial early life period and holds the potential for improving the detection, prevention, and treatment of prenatal neurodevelopmental disorders.
Learning Domain-Invariant Representations for Cross-Domain Image Registration via Scene-Appearance Disentanglement
Image registration under domain shift remains a fundamental challenge in computer vision and medical imaging: when source and target images exhibit systematic intensity differences, the brightness constancy assumption underlying conventional registration methods is violated, rendering correspondence estimation ill-posed. We propose SAR-Net, a unified framework that addresses this challenge through principled scene-appearance disentanglement. Our key insight is that observed images can be decomposed into domain-invariant scene representations and domain-specific appearance codes, enabling registration via re-rendering rather than direct intensity matching. We establish theoretical conditions under which this decomposition enables consistent cross-domain alignment (Proposition 1) and prove that our scene consistency loss provides a sufficient condition for geometric correspondence in the shared latent space (Proposition 2). Empirically, we validate SAR-Net on the ANHIR (Automatic Non-rigid Histological Image Registration) challenge benchmark, where multi-stain histopathology images exhibit coupled domain shift from different staining protocols and geometric distortion from tissue preparation. Our method achieves a median relative Target Registration Error (rTRE) of 0.25%, outperforming the state-of-the-art MEVIS method (0.27% rTRE) by 7.4%, with robustness of 99.1%. Code is available at https://github.com/D-ST-Sword/SAR-NET
comment: 6 pages, 2 figures, 4 tables. Code available at https://github.com/D-ST-Sword/SAR-NET
Paired Image Generation with Diffusion-Guided Diffusion Models
The segmentation of mass lesions in digital breast tomosynthesis (DBT) images is very significant for the early screening of breast cancer. However, the high-density breast tissue often leads to high concealment of the mass lesions, which makes manual annotation difficult and time-consuming. As a result, there is a lack of annotated data for model training. Diffusion models are commonly used for data augmentation, but the existing methods face two challenges. First, due to the high concealment of lesions, it is difficult for the model to learn the features of the lesion area. This leads to the low generation quality of the lesion areas, thus limiting the quality of the generated images. Second, existing methods can only generate images and cannot generate corresponding annotations, which restricts the usability of the generated images in supervised training. In this work, we propose a paired image generation method. The method does not require external conditions and can achieve the generation of paired images by training an extra diffusion guider for the conditional diffusion model. During the experimental phase, we generated paired DBT slices and mass lesion masks. Then, we incorporated them into the supervised training process of the mass lesion segmentation task. The experimental results show that our method can improve the generation quality without external conditions. Moreover, it contributes to alleviating the shortage of annotated data, thus enhancing the performance of downstream tasks. The source code is available at https://github.com/zhanghx1320/PIG.
SatMap: Revisiting Satellite Maps as Prior for Online HD Map Construction
Online high-definition (HD) map construction is an essential part of a safe and robust end-to-end autonomous driving (AD) pipeline. Onboard camera-based approaches suffer from limited depth perception and degraded accuracy due to occlusion. In this work, we propose SatMap, an online vectorized HD map estimation method that integrates satellite maps with multi-view camera observations and directly predicts a vectorized HD map for downstream prediction and planning modules. Our method leverages lane-level semantics and texture from satellite imagery captured from a Bird's Eye View (BEV) perspective as a global prior, effectively mitigating depth ambiguity and occlusion. In our experiments on the nuScenes dataset, SatMap achieves 34.8% mAP performance improvement over the camera-only baseline and 8.5% mAP improvement over the camera-LiDAR fusion baseline. Moreover, we evaluate our model in long-range and adverse weather conditions to demonstrate the advantages of using a satellite prior map. Source code will be available at https://iv.ee.hm.edu/satmap/.
comment: This work has been submitted to the IEEE for possible publication
BikeActions: An Open Platform and Benchmark for Cyclist-Centric VRU Action Recognition
Anticipating the intentions of Vulnerable Road Users (VRUs) is a critical challenge for safe autonomous driving (AD) and mobile robotics. While current research predominantly focuses on pedestrian crossing behaviors from a vehicle's perspective, interactions within dense shared spaces remain underexplored. To bridge this gap, we introduce FUSE-Bike, the first fully open perception platform of its kind. Equipped with two LiDARs, a camera, and GNSS, it facilitates high-fidelity, close-range data capture directly from a cyclist's viewpoint. Leveraging this platform, we present BikeActions, a novel multi-modal dataset comprising 852 annotated samples across 5 distinct action classes, specifically tailored to improve VRU behavior modeling. We establish a rigorous benchmark by evaluating state-of-the-art graph convolution and transformer-based models on our publicly released data splits, establishing the first performance baselines for this challenging task. We release the full dataset together with data curation tools, the open hardware design, and the benchmark code to foster future research in VRU action understanding under https://iv.ee.hm.edu/bikeactions/.
comment: This work has been submitted to the IEEE for possible publication
Manipulating Feature Visualizations with Gradient Slingshots NeurIPS 2025
Feature Visualization (FV) is a widely used technique for interpreting concepts learned by Deep Neural Networks (DNNs), which synthesizes input patterns that maximally activate a given feature. Despite its popularity, the trustworthiness of FV explanations has received limited attention. We introduce Gradient Slingshots, a novel method that enables FV manipulation without modifying model architecture or significantly degrading performance. By shaping new trajectories in off-distribution regions of a feature's activation landscape, we coerce the optimization process to converge to a predefined visualization. We evaluate our approach on several DNN architectures, demonstrating its ability to replace faithful FVs with arbitrary targets. These results expose a critical vulnerability: auditors relying solely on FV may accept entirely fabricated explanations. To mitigate this risk, we propose a straightforward defense and quantitatively demonstrate its effectiveness.
comment: Accepted to NeurIPS 2025
Federated Unsupervised Semantic Segmentation
This work explores the application of Federated Learning (FL) to Unsupervised Semantic image Segmentation (USS). Recent USS methods extract pixel-level features using frozen visual foundation models and refine them through self-supervised objectives that encourage semantic grouping. These features are then grouped to semantic clusters to produce segmentation masks. Extending these ideas to federated settings requires feature representation and cluster centroid alignment across distributed clients, an inherently difficult task under heterogeneous data distributions in the absence of supervision. To address this, we propose FUSS (Federated Unsupervised image Semantic Segmentation) which is, to our knowledge, the first framework to enable fully decentralized, label-free semantic segmentation training. FUSS introduces novel federation strategies that promote global consistency in feature and prototype space, jointly optimizing local segmentation heads and shared semantic centroids. Experiments on both benchmark and real-world datasets, including binary and multi-class segmentation tasks, show that FUSS consistently outperforms local-only client trainings as well as extensions of classical FL algorithms under varying client data distributions. To fully support reproducibility, the source code, data partitioning scripts, and implementation details are publicly available at: https://github.com/evanchar/FUSS
comment: Accepted for publication in Neurocomputing
Controllable Localized Face Anonymization Via Diffusion Inpainting
The growing use of portrait images in computer vision highlights the need to protect personal identities. At the same time, anonymized images must remain useful for downstream computer vision tasks. In this work, we propose a unified framework that leverages the inpainting ability of latent diffusion models to generate realistic anonymized images. Unlike prior approaches, we have complete control over the anonymization process by designing an adaptive attribute-guidance module that applies gradient correction during the reverse denoising process, aligning the facial attributes of the generated image with those of the synthesized target image. Our framework also supports localized anonymization, allowing users to specify which facial regions are left unchanged. Extensive experiments conducted on the public CelebA-HQ and FFHQ datasets show that our method outperforms state-of-the-art approaches while requiring no additional model training. The source code is available on our page.
CARI4D: Category Agnostic 4D Reconstruction of Human-Object Interaction
Accurate capture of human-object interaction from ubiquitous sensors like RGB cameras is important for applications in human understanding, gaming, and robot learning. However, inferring 4D interactions from a single RGB view is highly challenging due to the unknown object and human information, depth ambiguity, occlusion, and complex motion, which hinder consistent 3D and temporal reconstruction. Previous methods simplify the setup by assuming ground truth object template or constraining to a limited set of object categories. We present CARI4D, the first category-agnostic method that reconstructs spatially and temporarily consistent 4D human-object interaction at metric scale from monocular RGB videos. To this end, we propose a pose hypothesis selection algorithm that robustly integrates the individual predictions from foundation models, jointly refine them through a learned render-and-compare paradigm to ensure spatial, temporal and pixel alignment, and finally reasoning about intricate contacts for further refinement satisfying physical constraints. Experiments show that our method outperforms prior art by 38% on in-distribution dataset and 36% on unseen dataset in terms of reconstruction error. Our model generalizes beyond the training categories and thus can be applied zero-shot to in-the-wild internet videos. Our code and pretrained models will be publicly released.
comment: 14 pages, 8 figures, 4 tables. Project page: https://nvlabs.github.io/CARI4D/
GeoSurDepth: Harnessing Foundation Model for Spatial Geometry Consistency-Oriented Self-Supervised Surround-View Depth Estimation
Accurate surround-view depth estimation provides a competitive alternative to laser-based sensors and is essential for 3D scene understanding in autonomous driving. While empirical studies have proposed various approaches that primarily focus on enforcing cross-view constraints at photometric level, few explicitly exploit the rich geometric structure inherent in both monocular and surround-view setting. In this work, we propose GeoSurDepth, a framework that leverages geometry consistency as the primary cue for surround-view depth estimation. Concretely, we utilize vision foundation models as pseudo geometry priors and feature representation enhancement tool to guide the network to maintain surface normal consistency in spatial 3D space and regularize object- and texture-consistent depth estimation in 2D. In addition, we introduce a novel view synthesis pipeline where 2D-3D lifting is achieved with dense depth reconstructed via spatial warping, encouraging additional photometric supervision across temporal and spatial contexts, and compensating for the limitations of target-view image reconstruction. Finally, a newly-proposed adaptive joint motion learning strategy enables the network to adaptively emphasize informative spatial geometry cues for improved motion reasoning. Extensive experiments on KITTI, DDAD and nuScenes demonstrate that GeoSurDepth achieves SoTA performance, validating the effectiveness of our approach. Our framework highlights the importance of exploiting geometry coherence and consistency for robust self-supervised depth estimation.
RxnBench: A Multimodal Benchmark for Evaluating Large Language Models on Chemical Reaction Understanding from Scientific Literature
The integration of Multimodal Large Language Models (MLLMs) into chemistry promises to revolutionize scientific discovery, yet their ability to comprehend the dense, graphical language of reactions within authentic literature remains underexplored. Here, we introduce RxnBench, a multi-tiered benchmark designed to rigorously evaluate MLLMs on chemical reaction understanding from scientific PDFs. RxnBench comprises two tasks: Single-Figure QA (SF-QA), which tests fine-grained visual perception and mechanistic reasoning using 1,525 questions derived from 305 curated reaction schemes, and Full-Document QA (FD-QA), which challenges models to synthesize information from 108 articles, requiring cross-modal integration of text, schemes, and tables. Our evaluation of MLLMs reveals a critical capability gap: while models excel at extracting explicit text, they struggle with deep chemical logic and precise structural recognition. Notably, models with inference-time reasoning significantly outperform standard architectures, yet none achieve 50\% accuracy on FD-QA. These findings underscore the urgent need for domain-specific visual encoders and stronger reasoning engines to advance autonomous AI chemists.
IDESplat: Iterative Depth Probability Estimation for Generalizable 3D Gaussian Splatting
Generalizable 3D Gaussian Splatting aims to directly predict Gaussian parameters using a feed-forward network for scene reconstruction. Among these parameters, Gaussian means are particularly difficult to predict, so depth is usually estimated first and then unprojected to obtain the Gaussian sphere centers. Existing methods typically rely solely on a single warp to estimate depth probability, which hinders their ability to fully leverage cross-view geometric cues, resulting in unstable and coarse depth maps. To address this limitation, we propose IDESplat, which iteratively applies warp operations to boost depth probability estimation for accurate Gaussian mean prediction. First, to eliminate the inherent instability of a single warp, we introduce a Depth Probability Boosting Unit (DPBU) that integrates epipolar attention maps produced by cascading warp operations in a multiplicative manner. Next, we construct an iterative depth estimation process by stacking multiple DPBUs, progressively identifying potential depth candidates with high likelihood. As IDESplat iteratively boosts depth probability estimates and updates the depth candidates, the depth map is gradually refined, resulting in accurate Gaussian means. We conduct experiments on RealEstate10K, ACID, and DL3DV. IDESplat achieves outstanding reconstruction quality and state-of-the-art performance with real-time efficiency. On RE10K, it outperforms DepthSplat by 0.33 dB in PSNR, using only 10.7% of the parameters and 70% of the memory. Additionally, our IDESplat improves PSNR by 2.95 dB over DepthSplat on the DTU dataset in cross-dataset experiments, demonstrating its strong generalization ability.
Comparison of Generative Learning Methods for Turbulence Surrogates
Numerical simulations of turbulent flows present significant challenges in fluid dynamics due to their complexity and high computational cost. High resolution techniques such as Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) are generally not computationally affordable, particularly for technologically relevant problems. Recent advances in machine learning, specifically in generative probabilistic models, offer promising alternatives as surrogates for turbulence. This paper investigates the application of three generative models - Variational Autoencoders (VAE), Deep Convolutional Generative Adversarial Networks (DCGAN), and Denoising Diffusion Probabilistic Models (DDPM) - in simulating a von Kármán vortex street around a fixed cylinder projected into 2D, as well as a real-world experimental dataset of the wake flow of a cylinder array. Training data was obtained by means of LES in the simulated case and Particle Image Velocimetry (PIV) in the experimental case. We evaluate each model's ability to capture the statistical properties and spatial structures of the turbulent flow. Our results demonstrate that DDPM and DCGAN effectively replicate all flow distributions, highlighting their potential as efficient and accurate tools for turbulence surrogacy. We find a strong argument for DCGAN, as although they are more difficult to train (due to problems such as mode collapse), they show the fastest inference and training time, require less data to train compared to VAE and DDPM, and provide the results most closely aligned with the input stream. In contrast, VAE train quickly (and can generate samples quickly) but do not produce adequate results, and DDPM, whilst effective, are significantly slower at both, inference and training time.
Object-Centric Latent Action Learning AAAI 2026
Leveraging vast amounts of unlabeled internet video data for embodied AI is currently bottlenecked by the lack of action labels and the presence of action-correlated visual distractors. Although recent latent action policy optimization (LAPO) has shown promise in inferring proxy action labels from visual observations, its performance degrades significantly when distractors are present. To address this limitation, we propose a novel object-centric latent action learning framework that centers on objects rather than pixels. We leverage self-supervised object-centric pretraining to disentangle the movement of the agent and distracting background dynamics. This allows LAPO to focus on task-relevant interactions, resulting in more robust proxy-action labels, enabling better imitation learning and efficient adaptation of the agent with just a few action-labeled trajectories. We evaluated our method in eight visually complex tasks across the Distracting Control Suite (DCS) and Distracting MetaWorld (DMW). Our results show that object-centric pretraining mitigates the negative effects of distractors by 50%, as measured by downstream task performance: average return (DCS) and success rate (DMW).
comment: Accepted by AAAI 2026 (Oral). Source code: https://github.com/dunnolab/object-centric-lapo
ActAvatar: Temporally-Aware Precise Action Control for Talking Avatars
Despite significant advances in talking avatar generation, existing methods face critical challenges: insufficient text-following capability for diverse actions, lack of temporal alignment between actions and audio content, and dependency on additional control signals such as pose skeletons. We present ActAvatar, a framework that achieves phase-level precision in action control through textual guidance by capturing both action semantics and temporal context. Our approach introduces three core innovations: (1) Phase-Aware Cross-Attention (PACA), which decomposes prompts into a global base block and temporally-anchored phase blocks, enabling the model to concentrate on phase-relevant tokens for precise temporal-semantic alignment; (2) Progressive Audio-Visual Alignment, which aligns modality influence with the hierarchical feature learning process-early layers prioritize text for establishing action structure while deeper layers emphasize audio for refining lip movements, preventing modality interference; (3) A two-stage training strategy that first establishes robust audio-visual correspondence on diverse data, then injects action control through fine-tuning on structured annotations, maintaining both audio-visual alignment and the model's text-following capabilities. Extensive experiments demonstrate that ActAvatar significantly outperforms state-of-the-art methods in both action control and visual quality.
comment: Project Page: https://ziqiaopeng.github.io/ActAvatar/
Comparative Study of UNet-based Architectures for Liver Tumor Segmentation in Multi-Phase Contrast-Enhanced Computed Tomography
Segmentation of liver structures in multi-phase contrast-enhanced computed tomography (CECT) plays a crucial role in computer-aided diagnosis and treatment planning. In this study, we investigate the performance of UNet-based architectures for liver tumor segmentation, evaluating ResNet, Transformer-based, and State-space (Mamba) backbones initialized with pretrained weights. Our comparative analysis reveals that despite the theoretical advantages of modern architectures in modeling long-range dependencies, ResNet-based models demonstrated superior sample efficiency on this dataset. This suggests that the inherent inductive biases of Convolutional Neural Networks (CNNs) remain advantageous for generalizing on limited medical data compared to data-hungry alternatives. To further improve segmentation quality, we introduce attention mechanisms into the backbone, finding that the Convolutional Block Attention Module (CBAM) yields the optimal configuration. The ResNetUNet3+ with CBAM achieved the highest nominal performance with a Dice score of 0.755 and IoU of 0.662, while also delivering the most precise boundary delineation (lowest HD95 of 77.911). Critically, while statistical testing indicated that the improvement in mean Dice score was not significant (p > 0.05) compared to the baseline, the proposed model exhibited greater stability (lower standard deviation) and higher specificity (0.926). These findings demonstrate that classical ResNet architectures, when enhanced with modern attention modules, provide a robust and statistically comparable alternative to emerging methods, offering a stable direction for liver tumor segmentation in clinical practice.
comment: 18 pages, 11 figures
GenView++: Unifying Adaptive Generative Augmentation and Quality-Driven Supervision for Contrastive Representation Learning
The success of contrastive learning depends on the construction and utilization of high-quality positive pairs. However, current methods face critical limitations on two fronts: on the construction side, both handcrafted and generative augmentations often suffer from limited diversity and risk semantic corruption; on the learning side, the absence of a quality assessment mechanism leads to suboptimal supervision where all pairs are treated equally. To tackle these challenges, we propose GenView++, a unified framework that addresses both fronts by introducing two synergistic innovations. To improve pair construction, GenView++ introduces a multi-source adaptive view generation mechanism to synthesize diverse yet semantically coherent views by dynamically modulating generative parameters across image-conditioned, text-conditioned, and image-text-conditioned strategies. Second, a quality-driven contrastive learning mechanism assesses each pair's semantic alignment and diversity to dynamically reweight their training contribution, prioritizing high-quality pairs while suppressing redundant or misaligned pairs. Extensive experiments demonstrate the effectiveness of GenView++ across both vision and vision-language tasks. For vision representation learning, it improves MoCov2 by +2.5% on ImageNet linear classification. For vision-language learning, it raises the average zero-shot classification accuracy by +12.31% over CLIP and +5.31% over SLIP across ten datasets, and further improves Flickr30k text retrieval R@5 by +3.2%.
comment: The code is available at \url{https://github.com/xiaojieli0903/GenViewPlusPlus}
Edit2Restore:Few-Shot Image Restoration via Parameter-Efficient Adaptation of Pre-trained Editing Models
Image restoration has traditionally required training specialized models on thousands of paired examples per degradation type. We challenge this paradigm by demonstrating that powerful pre-trained text-conditioned image editing models can be efficiently adapted for multiple restoration tasks through parameter-efficient fine-tuning with remarkably few examples. Our approach fine-tunes LoRA adapters on FLUX.1 Kontext, a state-of-the-art 12B parameter flow matching model for image-to-image translation, using only 16-128 paired images per task, guided by simple text prompts that specify the restoration operation. Unlike existing methods that train specialized restoration networks from scratch with thousands of samples, we leverage the rich visual priors already encoded in large-scale pre-trained editing models, dramatically reducing data requirements while maintaining high perceptual quality. A single unified LoRA adapter, conditioned on task-specific text prompts, effectively handles multiple degradations including denoising, deraining, and dehazing. Through comprehensive ablation studies, we analyze: (i) the impact of training set size on restoration quality, (ii) trade-offs between task-specific versus unified multi-task adapters, (iii) the role of text encoder fine-tuning, and (iv) zero-shot baseline performance. While our method prioritizes perceptual quality over pixel-perfect reconstruction metrics like PSNR/SSIM, our results demonstrate that pre-trained image editing models, when properly adapted, offer a compelling and data-efficient alternative to traditional image restoration approaches, opening new avenues for few-shot, prompt-guided image enhancement. The code to reproduce our results are available at: https://github.com/makinyilmaz/Edit2Restore
Doracamom: Joint 3D Detection and Occupancy Prediction with Multi-view 4D Radars and Cameras for Omnidirectional Perception
3D object detection and occupancy prediction are critical tasks in autonomous driving, attracting significant attention. Despite the potential of recent vision-based methods, they encounter challenges under adverse conditions. Thus, integrating cameras with next-generation 4D imaging radar to achieve unified multi-task perception is highly significant, though research in this domain remains limited. In this paper, we propose Doracamom, the first framework that fuses multi-view cameras and 4D radar for joint 3D object detection and semantic occupancy prediction, enabling comprehensive environmental perception. Specifically, we introduce a novel Coarse Voxel Queries Generator that integrates geometric priors from 4D radar with semantic features from images to initialize voxel queries, establishing a robust foundation for subsequent Transformer-based refinement. To leverage temporal information, we design a Dual-Branch Temporal Encoder that processes multi-modal temporal features in parallel across BEV and voxel spaces, enabling comprehensive spatio-temporal representation learning. Furthermore, we propose a Cross-Modal BEV-Voxel Fusion module that adaptively fuses complementary features through attention mechanisms while employing auxiliary tasks to enhance feature quality. Extensive experiments on the OmniHD-Scenes, View-of-Delft (VoD), and TJ4DRadSet datasets demonstrate that Doracamom achieves state-of-the-art performance in both tasks, establishing new benchmarks for multi-modal 3D perception. Code and models will be publicly available.
comment: Accepted by IEEE TCSVT
Vidi2.5: Large Multimodal Models for Video Understanding and Creation
Video has emerged as the primary medium for communication and creativity on the Internet, driving strong demand for scalable, high-quality video production. Vidi models continue to evolve toward next-generation video creation and have achieved state-of-the-art performance in multimodal temporal retrieval (TR). In its second release, Vidi2 advances video understanding with fine-grained spatio-temporal grounding (STG) and extends its capability to video question answering (Video QA), enabling comprehensive multimodal reasoning. Given a text query, Vidi2 can identify not only the corresponding timestamps but also the bounding boxes of target objects within the output time ranges. To enable comprehensive evaluation of STG, we introduce a new benchmark, VUE-STG, which offers critical improvements over existing STG datasets. In addition, we upgrade the previous VUE-TR benchmark to VUE-TR-V2, achieving a more balanced duration and query distribution. Remarkably, the Vidi2 model substantially outperforms leading proprietary systems, such as Gemini 3 Pro Preview and GPT-5, on both VUE-TR-V2 and VUE-STG, while achieving competitive results with popular open-source models with similar scale on video QA benchmarks. The latest Vidi2.5 offers significantly stronger STG capability and slightly better TR and Video QA performance over Vidi2. This update also introduces a Vidi2.5-Think model to handle plot understanding with complex plot reasoning. To comprehensively evaluate the performance of plot understanding, we propose VUE-PLOT benchmark with two tracks, Character and Reasoning. Notably, Vidi2.5-Think outperforms Gemini 3 Pro Preview on fine-grained character understanding with comparable performance on complex plot reasoning. Furthermore, we demonstrate the effectiveness of Vidi2.5 on a challenging real-world application, video editing planning.
Deblur4DGS: 4D Gaussian Splatting from Blurry Monocular Video
Recent 4D reconstruction methods have yielded impressive results but rely on sharp videos as supervision. However, motion blur often occurs in videos due to camera shake and object movement, while existing methods render blurry results when using such videos for reconstructing 4D models. Although a few approaches attempted to address the problem, they struggled to produce high-quality results, due to the inaccuracy in estimating continuous dynamic representations within the exposure time. Encouraged by recent works in 3D motion trajectory modeling using 3D Gaussian Splatting (3DGS), we take 3DGS as the scene representation manner, and propose Deblur4DGS to reconstruct a high-quality 4D model from blurry monocular video. Specifically, we transform continuous dynamic representations estimation within an exposure time into the exposure time estimation. Moreover, we introduce the exposure regularization term, multi-frame, and multi-resolution consistency regularization term to avoid trivial solutions. Furthermore, to better represent objects with large motion, we suggest blur-aware variable canonical Gaussians. Beyond novel-view synthesis, Deblur4DGS can be applied to improve blurry video from multiple perspectives, including deblurring, frame interpolation, and video stabilization. Extensive experiments in both synthetic and real-world data on the above four tasks show that Deblur4DGS outperforms state-of-the-art 4D reconstruction methods. The codes are available at https://github.com/ZcsrenlongZ/Deblur4DGS.
comment: 16 pages
Context-measure: Contextualizing Metric for Camouflage
Camouflage is primarily context-dependent yet current metrics for camouflaged scenarios overlook this critical factor. Instead, these metrics are originally designed for evaluating general or salient objects, with an inherent assumption of uncorrelated spatial context. In this paper, we propose a new contextualized evaluation paradigm, Context-measure, built upon a probabilistic pixel-aware correlation framework. By incorporating spatial dependencies and pixel-wise camouflage quantification, our measure better aligns with human perception. Extensive experiments across three challenging camouflaged object segmentation datasets show that Context-measure delivers more reliability than existing context-independent metrics. Our measure can provide a foundational evaluation benchmark for various computer vision applications involving camouflaged patterns, such as agricultural, industrial, and medical scenarios. Code is available at https://github.com/pursuitxi/Context-measure.
comment: Technical Report
Light4GS: Lightweight Compact 4D Gaussian Splatting Generation via Context Model
3D Gaussian Splatting (3DGS) has emerged as an efficient and high-fidelity paradigm for novel view synthesis. To adapt 3DGS for dynamic content, deformable 3DGS incorporates temporally deformable primitives with learnable latent embeddings to capture complex motions. Despite its impressive performance, the high-dimensional embeddings and vast number of primitives lead to substantial storage requirements. In this paper, we introduce a \textbf{Light}weight \textbf{4}D\textbf{GS} framework, called Light4GS, that employs significance pruning with a deep context model to provide a lightweight storage-efficient dynamic 3DGS representation. The proposed Light4GS is based on 4DGS that is a typical representation of deformable 3DGS. Specifically, our framework is built upon two core components: (1) a spatio-temporal significance pruning strategy that eliminates over 64\% of the deformable primitives, followed by an entropy-constrained spherical harmonics compression applied to the remainder; and (2) a deep context model that integrates intra- and inter-prediction with hyperprior into a coarse-to-fine context structure to enable efficient multiscale latent embedding compression. Our approach achieves over 120x compression and increases rendering FPS up to 20\% compared to the baseline 4DGS, and also superior to frame-wise state-of-the-art 3DGS compression methods, revealing the effectiveness of our Light4GS in terms of both intra- and inter-prediction methods without sacrificing rendering quality.
Hierarchy-Aware Multimodal Unlearning for Medical AI
Pretrained Multimodal Large Language Models (MLLMs) are increasingly used in sensitive domains such as medical AI, where privacy regulations like HIPAA and GDPR require specific removal of individuals' or institutions' data. This motivates machine unlearning, which aims to remove the influence of target data from a trained model. However, existing unlearning benchmarks fail to reflect the hierarchical and multimodal structure of real-world medical data, limiting their ability to properly evaluate unlearning in practice. Therefore, we introduce MedForget, a hierarchy-aware multimodal unlearning benchmark that models hospital data as a nested structure, enabling fine-grained evaluation of multimodal unlearning across retain and forget splits. Experiments with current unlearning methods show that existing approaches struggle to achieve effective hierarchy-aware forgetting without degrading downstream medical utility. To address this limitation, we propose Cross-modal Hierarchy-Informed Projection for unlearning (CHIP), a training-free, hierarchy-aware multimodal unlearning method that deletes information by selectively removing target-specific weight subspaces while preserving sibling-shared information. Experiments show that CHIP achieves the highest forget-retain performance gap across all hierarchy levels while maintaining competitive downstream utility compared to existing methods. Overall, MedForget provides a practical, HIPAA-aligned benchmark for evaluating structured multimodal unlearning for medical data, and CHIP offers an effective and general solution for hierarchy-aware forgetting that balances deletion with utility.
comment: Dataset and Code: https://github.com/fengli-wu/MedForget
Disc3D: Automatic Curation of High-Quality 3D Dialog Data via Discriminative Object Referring
3D Multi-modal Large Language Models (MLLMs) still lag behind their 2D peers, largely because large-scale, high-quality 3D scene-dialogue datasets remain scarce. Prior efforts hinge on expensive human annotation and leave two key ambiguities unresolved: viewpoint ambiguity, where spatial language presumes unknown camera poses, and object referring ambiguity, where non-exclusive descriptions blur the line between targets and distractors. We therefore present a fully automated pipeline that converts raw 3D scans into unambiguous, high-quality dialogue data at a fraction of the previous cost. By synergizing rule-based constraints with 2D MLLMs and LLMs, the pipeline enables controllable, scalable generation without human intervention. The pipeline comprises four stages: (1) meta-annotation collection harvesting object-, frame-, and scene-level captions, (2) scene graph construction with relation correction to capture proximal object relations, (3) discriminative object referring that generates exclusive and compact descriptions, and (4) multi-task data generation synthesizing diverse dialogues. Our pipeline systematically mitigates inherent flaws in source datasets and produces the final Disc3D dataset, over 2 million samples in 25K hybrid 3D scenes, spanning scene, view, and object captioning, visual grounding, and five object-centric QA tasks. Extensive experiments demonstrate that training with Disc3D yields consistent, significant improvements on both public benchmarks and our multifaceted Disc3D-QA tasks. Code, data, and models will be publicly available.
comment: 8 pages
SlimDiff: Training-Free, Activation-Guided Hands-free Slimming of Diffusion Models
Diffusion models (DMs), lauded for their generative performance, are computationally prohibitive due to their billion-scale parameters and iterative denoising dynamics. Existing efficiency techniques, such as quantization, timestep reduction, or pruning, offer savings in compute, memory, or runtime but are strictly bottlenecked by reliance on fine-tuning or retraining to recover performance. In this work, we introduce SlimDiff, an automated activation-informed structural compression framework that reduces both attention and feedforward dimensionalities in DMs, while being entirely gradient-free. SlimDiff reframes DM compression as a spectral approximation task, where activation covariances across denoising timesteps define low-rank subspaces that guide dynamic pruning under a fixed compression budget. This activation-aware formulation mitigates error accumulation across timesteps by applying module-wise decompositions over functional weight groups: query--key interactions, value--output couplings, and feedforward projections, rather than isolated matrix factorizations, while adaptively allocating sparsity across modules to respect the non-uniform geometry of diffusion trajectories. SlimDiff achieves up to 35\% acceleration and $\sim$100M parameter reduction over baselines, with generation quality on par with uncompressed models without any backpropagation. Crucially, our approach requires only about 500 calibration samples, over 70$\times$ fewer than prior methods. To our knowledge, this is the first closed-form, activation-guided structural compression of DMs that is entirely training-free, providing both theoretical clarity and practical efficiency.
Registration-Free Monitoring of Unstructured Point Cloud Data via Intrinsic Geometrical Properties
Modern sensing technologies have enabled the collection of unstructured point cloud data (PCD) of varying sizes, which are used to monitor the geometric accuracy of 3D objects. PCD are widely applied in advanced manufacturing processes, including additive, subtractive, and hybrid manufacturing. To ensure the consistency of analysis and avoid false alarms, preprocessing steps such as registration and mesh reconstruction are commonly applied prior to monitoring. However, these steps are error-prone, time-consuming and may introduce artifacts, potentially affecting monitoring outcomes. In this paper, we present a novel registration-free approach for monitoring PCD of complex shapes, eliminating the need for both registration and mesh reconstruction. Our proposal consists of two alternative feature learning methods and a common monitoring scheme designed to handle hundreds of features. Feature learning methods leverage intrinsic geometric properties of the shape, captured via the Laplacian and geodesic distances. In the monitoring scheme, thresholding techniques are used to further select intrinsic features most indicative of potential out-of-control conditions. Numerical experiments and case studies highlight the effectiveness of the proposed approach in identifying different types of defects.
comment: Code available at https://github.com/franci2312/RFM
Beyond Boundaries: Leveraging Vision Foundation Models for Source-Free Object Detection AAAI 2026
Source-Free Object Detection (SFOD) aims to adapt a source-pretrained object detector to a target domain without access to source data. However, existing SFOD methods predominantly rely on internal knowledge from the source model, which limits their capacity to generalize across domains and often results in biased pseudo-labels, thereby hindering both transferability and discriminability. In contrast, Vision Foundation Models (VFMs), pretrained on massive and diverse data, exhibit strong perception capabilities and broad generalization, yet their potential remains largely untapped in the SFOD setting. In this paper, we propose a novel SFOD framework that leverages VFMs as external knowledge sources to jointly enhance feature alignment and label quality. Specifically, we design three VFM-based modules: (1) Patch-weighted Global Feature Alignment (PGFA) distills global features from VFMs using patch-similarity-based weighting to enhance global feature transferability; (2) Prototype-based Instance Feature Alignment (PIFA) performs instance-level contrastive learning guided by momentum-updated VFM prototypes; and (3) Dual-source Enhanced Pseudo-label Fusion (DEPF) fuses predictions from detection VFMs and teacher models via an entropy-aware strategy to yield more reliable supervision. Extensive experiments on six benchmarks demonstrate that our method achieves state-of-the-art SFOD performance, validating the effectiveness of integrating VFMs to simultaneously improve transferability and discriminability.
comment: Accepted to AAAI 2026. Extended version with full Appendix
Radially Distorted Homographies, Revisited
Homographies are among the most prevalent transformations occurring in geometric computer vision and projective geometry, and homography estimation is consequently a crucial step in a wide assortment of computer vision tasks. When working with real images, which are often afflicted with geometric distortions caused by the camera lens, it may be necessary to determine both the homography and the lens distortion-particularly the radial component, called radial distortion-simultaneously to obtain anything resembling useful estimates. When considering a homography with radial distortion between two images, there are three conceptually distinct configurations for the radial distortion; (i) distortion in only one image, (ii) identical distortion in the two images, and (iii) independent distortion in the two images. While these cases have been addressed separately in the past, the present paper provides a novel and unified approach to solve all three cases. We demonstrate how the proposed approach can be used to construct new fast, stable, and accurate minimal solvers for radially distorted homographies. In all three cases, our proposed solvers are faster than the existing state-of-the-art solvers while maintaining similar accuracy. The solvers are tested on well-established benchmarks including images taken with fisheye cameras. A reference implementation of the proposed solvers is made available as part of HomLib (https://github.com/marcusvaltonen/HomLib).
Weakly-supervised segmentation using inherently-explainable classification models and their application to brain tumour classification
Deep learning has demonstrated significant potential in medical imaging; however, the opacity of "black-box" models hinders clinical trust, while segmentation tasks typically necessitate labourious, hard-to-obtain pixel-wise annotations. To address these challenges simultaneously, this paper introduces a framework for three inherently explainable classifiers (GP-UNet, GP-ShuffleUNet, and GP-ReconResNet). By integrating a global pooling mechanism, these networks generate localisation heatmaps that directly influence classification decisions, offering inherent interpretability without relying on potentially unreliable post-hoc methods. These heatmaps are subsequently thresholded to achieve weakly-supervised segmentation, requiring only image-level classification labels for training. Validated on two datasets for multi-class brain tumour classification, the proposed models achieved a peak F1-score of 0.93. For the weakly-supervised segmentation task, a median Dice score of 0.728 (95% CI 0.715-0.739) was recorded. Notably, on a subset of tumour-only images, the best model achieved an accuracy of 98.7%, outperforming state-of-the-art glioma grading binary classifiers. Furthermore, comparative Precision-Recall analysis validated the framework's robustness against severe class imbalance, establishing a direct correlation between diagnostic confidence and segmentation fidelity. These results demonstrate that the proposed framework successfully combines high diagnostic accuracy with essential transparency, offering a promising direction for trustworthy clinical decision support. Code is available on GitHub: https://github.com/soumickmj/GPModels
Image class translation: visual inspection of class-specific hypotheticals and classification based on translation distance
Purpose: A major barrier to the implementation of artificial intelligence for medical applications is the lack of explainability and high confidence for incorrect decisions, specifically with out-of-domain samples. We propose a generalization of image translation networks for image classification and demonstrate their potential as a more interpretable alternative to conventional black-box classifiers. Approach: We train an image2image network to translate an input image to class-specific hypotheticals, and then compare these with the input, both visually and quantitatively. Translation distances, i.e., the degree of alteration needed to conform to one class or another, are examined for clusters and trends, and used as simple low-dimensional feature vectors for classification. Results: On melanoma/benign dermoscopy images, a translation distance classifier achieved 80% accuracy using only a 2-dimensional feature space (versus 85% for a conventional CNN using a ~62,000-dimensional feature space). Visual inspection of rendered images revealed dataset biases, such as scalebars, vignetting, and pale background pigmentation in melanomas. Image distributions in translation distance space revealed a natural separation along the lines of dermatologist decision to biopsy, rather than between malignant and benign. On bone marrow cytology images, translation distance classifiers outperformed a conventional CNN in both 3-class (92% accuracy vs 89% for CNN) and 6-class (90% vs 86% for CNN) scenarios. Conclusions: This proof-of-concept shows the potential for image2image networks to go beyond artistic/stylistic changes and to expose dataset biases, perform dimension reduction and dataset visualization, and in some cases, potentially outperform conventional end-to-end CNN classifiers.
comment: 27 pages, 20 figures, submitted revision to SPIE J. Medical Imaging
Coding the Visual World: From Image to Simulation Using Vision Language Models
The ability to construct mental models of the world is a central aspect of understanding. Similarly, visual understanding can be viewed as the ability to construct a representative model of the system depicted in an image. This work explores the capacity of Vision Language Models (VLMs) to recognize and simulate the systems and mechanisms depicted in images using the Im2Sim methodology. The VLM is given a natural image of a real-world system (e.g., cities, clouds, vegetation) and is tasked with describing the system and writing code that simulates and generates it. This generative code is then executed to produce a synthetic image, which is compared against the original. This approach is tested on various complex emergent systems, ranging from physical systems (waves, lights, clouds) to vegetation, cities, materials, and geological formations. Through analysis of the models and images generated by the VLMs, we examine their understanding of the systems in images. The results show that leading VLMs (GPT, Gemini) have the ability to understand and model complex, multi-component systems across multiple layers of abstraction and a wide range of domains. At the same time, the VLMs exhibit limited ability to replicate fine details and low-level arrangements of patterns in the image. These findings reveal an interesting asymmetry: VLMs combine high-level, deep visual understanding of images with limited perception of fine details.
Intrinsic Dimensionality as a Model-Free Measure of Class Imbalance
Imbalance in classification tasks is commonly quantified by the cardinalities of examples across classes. This, however, disregards the presence of redundant examples and inherent differences in the learning difficulties of classes. Alternatively, one can use complex measures such as training loss and uncertainty, which, however, depend on training a machine learning model. Our paper proposes using data Intrinsic Dimensionality (ID) as an easy-to-compute, model-free measure of imbalance that can be seamlessly incorporated into various imbalance mitigation methods. Our results across five different datasets with a diverse range of imbalance ratios show that ID consistently outperforms cardinality-based re-weighting and re-sampling techniques used in the literature. Moreover, we show that combining ID with cardinality can further improve performance. Our code and models are available at https://github.com/cagries/IDIM.
comment: 22 pages, 14 figures, Accepted to Neurocomputing
Artificial Intelligence 215
VideoMaMa: Mask-Guided Video Matting via Generative Prior
Generalizing video matting models to real-world videos remains a significant challenge due to the scarcity of labeled data. To address this, we present Video Mask-to-Matte Model (VideoMaMa) that converts coarse segmentation masks into pixel accurate alpha mattes, by leveraging pretrained video diffusion models. VideoMaMa demonstrates strong zero-shot generalization to real-world footage, even though it is trained solely on synthetic data. Building on this capability, we develop a scalable pseudo-labeling pipeline for large-scale video matting and construct the Matting Anything in Video (MA-V) dataset, which offers high-quality matting annotations for more than 50K real-world videos spanning diverse scenes and motions. To validate the effectiveness of this dataset, we fine-tune the SAM2 model on MA-V to obtain SAM2-Matte, which outperforms the same model trained on existing matting datasets in terms of robustness on in-the-wild videos. These findings emphasize the importance of large-scale pseudo-labeled video matting and showcase how generative priors and accessible segmentation cues can drive scalable progress in video matting research.
comment: Project page: https://cvlab-kaist.github.io/VideoMaMa/
APEX-Agents
We introduce the AI Productivity Index for Agents (APEX-Agents), a benchmark for assessing whether AI agents can execute long-horizon, cross-application tasks created by investment banking analysts, management consultants, and corporate lawyers. APEX-Agents requires agents to navigate realistic work environments with files and tools. We test eight agents for the leaderboard using Pass@1. Gemini 3 Flash (Thinking=High) achieves the highest score of 24.0%, followed by GPT-5.2 (Thinking=High), Claude Opus 4.5 (Thinking=High), and Gemini 3 Pro (Thinking=High). We open source the APEX-Agents benchmark (n=480) with all prompts, rubrics, gold outputs, files, and metadata. We also open-source Archipelago, our infrastructure for agent execution and evaluation.
Opportunities in AI/ML for the Rubin LSST Dark Energy Science Collaboration
The Vera C. Rubin Observatory's Legacy Survey of Space and Time (LSST) will produce unprecedented volumes of heterogeneous astronomical data (images, catalogs, and alerts) that challenge traditional analysis pipelines. The LSST Dark Energy Science Collaboration (DESC) aims to derive robust constraints on dark energy and dark matter from these data, requiring methods that are statistically powerful, scalable, and operationally reliable. Artificial intelligence and machine learning (AI/ML) are already embedded across DESC science workflows, from photometric redshifts and transient classification to weak lensing inference and cosmological simulations. Yet their utility for precision cosmology hinges on trustworthy uncertainty quantification, robustness to covariate shift and model misspecification, and reproducible integration within scientific pipelines. This white paper surveys the current landscape of AI/ML across DESC's primary cosmological probes and cross-cutting analyses, revealing that the same core methodologies and fundamental challenges recur across disparate science cases. Since progress on these cross-cutting challenges would benefit multiple probes simultaneously, we identify key methodological research priorities, including Bayesian inference at scale, physics-informed methods, validation frameworks, and active learning for discovery. With an eye on emerging techniques, we also explore the potential of the latest foundation model methodologies and LLM-driven agentic AI systems to reshape DESC workflows, provided their deployment is coupled with rigorous evaluation and governance. Finally, we discuss critical software, computing, data infrastructure, and human capital requirements for the successful deployment of these new methodologies, and consider associated risks and opportunities for broader coordination with external actors.
comment: 84 pages. This is v1.0 of the DESC's white paper on AI/ML, a collaboration document that is being made public but which is not planned for submission to a journal
Q-learning with Adjoint Matching
We propose Q-learning with Adjoint Matching (QAM), a novel TD-based reinforcement learning (RL) algorithm that tackles a long-standing challenge in continuous-action RL: efficient optimization of an expressive diffusion or flow-matching policy with respect to a parameterized Q-function. Effective optimization requires exploiting the first-order information of the critic, but it is challenging to do so for flow or diffusion policies because direct gradient-based optimization via backpropagation through their multi-step denoising process is numerically unstable. Existing methods work around this either by only using the value and discarding the gradient information, or by relying on approximations that sacrifice policy expressivity or bias the learned policy. QAM sidesteps both of these challenges by leveraging adjoint matching, a recently proposed technique in generative modeling, which transforms the critic's action gradient to form a step-wise objective function that is free from unstable backpropagation, while providing an unbiased, expressive policy at the optimum. Combined with temporal-difference backup for critic learning, QAM consistently outperforms prior approaches on hard, sparse reward tasks in both offline and offline-to-online RL.
comment: 32 pages, 8 figures, 7 tables
KAGE-Bench: Fast Known-Axis Visual Generalization Evaluation for Reinforcement Learning
Pixel-based reinforcement learning agents often fail under purely visual distribution shift even when latent dynamics and rewards are unchanged, but existing benchmarks entangle multiple sources of shift and hinder systematic analysis. We introduce KAGE-Env, a JAX-native 2D platformer that factorizes the observation process into independently controllable visual axes while keeping the underlying control problem fixed. By construction, varying a visual axis affects performance only through the induced state-conditional action distribution of a pixel policy, providing a clean abstraction for visual generalization. Building on this environment, we define KAGE-Bench, a benchmark of six known-axis suites comprising 34 train-evaluation configuration pairs that isolate individual visual shifts. Using a standard PPO-CNN baseline, we observe strong axis-dependent failures, with background and photometric shifts often collapsing success, while agent-appearance shifts are comparatively benign. Several shifts preserve forward motion while breaking task completion, showing that return alone can obscure generalization failures. Finally, the fully vectorized JAX implementation enables up to 33M environment steps per second on a single GPU, enabling fast and reproducible sweeps over visual factors. Code: https://avanturist322.github.io/KAGEBench/.
comment: 38 pages, 44 figures, 3 tables
MASCOT: Towards Multi-Agent Socio-Collaborative Companion Systems
Multi-agent systems (MAS) have recently emerged as promising socio-collaborative companions for emotional and cognitive support. However, these systems frequently suffer from persona collapse--where agents revert to generic, homogenized assistant behaviors--and social sycophancy, which produces redundant, non-constructive dialogue. We propose MASCOT, a generalizable framework for multi-perspective socio-collaborative companions. MASCOT introduces a novel bi-level optimization strategy to harmonize individual and collective behaviors: 1) Persona-Aware Behavioral Alignment, an RLAIF-driven pipeline that finetunes individual agents for strict persona fidelity to prevent identity loss; and 2) Collaborative Dialogue Optimization, a meta-policy guided by group-level rewards to ensure diverse and productive discourse. Extensive evaluations across psychological support and workplace domains demonstrate that MASCOT significantly outperforms state-of-the-art baselines, achieving improvements of up to +14.1 in Persona Consistency and +10.6 in Social Contribution. Our framework provides a practical roadmap for engineering the next generation of socially intelligent multi-agent systems.
comment: 15 pages, 9 figures
InT: Self-Proposed Interventions Enable Credit Assignment in LLM Reasoning
Outcome-reward reinforcement learning (RL) has proven effective at improving the reasoning capabilities of large language models (LLMs). However, standard RL assigns credit only at the level of the final answer, penalizing entire reasoning traces when the outcome is incorrect and uniformly reinforcing all steps when it is correct. As a result, correct intermediate steps may be discouraged in failed traces, while spurious steps may be reinforced in successful ones. We refer to this failure mode as the problem of credit assignment. While a natural remedy is to train a process reward model, accurately optimizing such models to identify corrective reasoning steps remains challenging. We introduce Intervention Training (InT), a training paradigm in which the model performs fine-grained credit assignment on its own reasoning traces by proposing short, targeted corrections that steer trajectories toward higher reward. Using reference solutions commonly available in mathematical reasoning datasets and exploiting the fact that verifying a model-generated solution is easier than generating a correct one from scratch, the model identifies the first error in its reasoning and proposes a single-step intervention to redirect the trajectory toward the correct solution. We then apply supervised fine-tuning (SFT) to the on-policy rollout up to the point of error concatenated with the intervention, localizing error to the specific step that caused failure. We show that the resulting model serves as a far better initialization for RL training. After running InT and subsequent fine-tuning with RL, we improve accuracy by nearly 14% over a 4B-parameter base model on IMO-AnswerBench, outperforming larger open-source models such as gpt-oss-20b.
Toward Efficient Agents: Memory, Tool learning, and Planning
Recent years have witnessed increasing interest in extending large language models into agentic systems. While the effectiveness of agents has continued to improve, efficiency, which is crucial for real-world deployment, has often been overlooked. This paper therefore investigates efficiency from three core components of agents: memory, tool learning, and planning, considering costs such as latency, tokens, steps, etc. Aimed at conducting comprehensive research addressing the efficiency of the agentic system itself, we review a broad range of recent approaches that differ in implementation yet frequently converge on shared high-level principles including but not limited to bounding context via compression and management, designing reinforcement learning rewards to minimize tool invocation, and employing controlled search mechanisms to enhance efficiency, which we discuss in detail. Accordingly, we characterize efficiency in two complementary ways: comparing effectiveness under a fixed cost budget, and comparing cost at a comparable level of effectiveness. This trade-off can also be viewed through the Pareto frontier between effectiveness and cost. From this perspective, we also examine efficiency oriented benchmarks by summarizing evaluation protocols for these components and consolidating commonly reported efficiency metrics from both benchmark and methodological studies. Moreover, we discuss the key challenges and future directions, with the goal of providing promising insights.
comment: 35 pages, 200 references
A model of errors in transformers
We study the error rate of LLMs on tasks like arithmetic that require a deterministic output, and repetitive processing of tokens drawn from a small set of alternatives. We argue that incorrect predictions arise when small errors in the attention mechanism accumulate to cross a threshold, and use this insight to derive a quantitative two-parameter relationship between the accuracy and the complexity of the task. The two parameters vary with the prompt and the model; they can be interpreted in terms of an elementary noise rate, and the number of plausible erroneous tokens that can be predicted. Our analysis is inspired by an ``effective field theory'' perspective: the LLM's many raw parameters can be reorganized into just two parameters that govern the error rate. We perform extensive empirical tests, using Gemini 2.5 Flash, Gemini 2.5 Pro and DeepSeek R1, and find excellent agreement between the predicted and observed accuracy for a variety of tasks, although we also identify deviations in some cases. Our model provides an alternative to suggestions that errors made by LLMs on long repetitive tasks indicate the ``collapse of reasoning'', or an inability to express ``compositional'' functions. Finally, we show how to construct prompts to reduce the error rate.
comment: 8+17pages
Human Values in a Single Sentence: Moral Presence, Hierarchies, and Transformer Ensembles on the Schwartz Continuum
We study sentence-level identification of the 19 values in the Schwartz motivational continuum as a concrete formulation of human value detection in text. The setting - out-of-context sentences from news and political manifestos - features sparse moral cues and severe class imbalance. This combination makes fine-grained sentence-level value detection intrinsically difficult, even for strong modern neural models. We first operationalize a binary moral presence task ("does any value appear?") and show that it is learnable from single sentences (positive-class F1 $\approx$ 0.74 with calibrated thresholds). We then compare a presence-gated hierarchy to a direct multi-label classifier under matched compute, both based on DeBERTa-base and augmented with lightweight signals (prior-sentence context, LIWC-22/eMFD/MJD lexica, and topic features). The hierarchy does not outperform direct prediction, indicating that gate recall limits downstream gains. We also benchmark instruction-tuned LLMs - Gemma 2 9B, Llama 3.1 8B, Mistral 8B, and Qwen 2.5 7B - in zero-/few-shot and QLoRA setups and build simple ensembles; a soft-vote supervised ensemble reaches macro-F1 0.332, significantly surpassing the best single supervised model and exceeding prior English-only baselines. Overall, in this scenario, lightweight signals and small ensembles yield the most reliable improvements, while hierarchical gating offers limited benefit. We argue that, under an 8 GB single-GPU constraint and at the 7-9B scale, carefully tuned supervised encoders remain a strong and compute-efficient baseline for structured human value detection, and we outline how richer value structure and sentence-in-document context could further improve performance.
comment: Code: https://github.com/VictorMYeste/human-value-detection, 37 pages, 4 figures,
Paper2Rebuttal: A Multi-Agent Framework for Transparent Author Response Assistance
Writing effective rebuttals is a high-stakes task that demands more than linguistic fluency, as it requires precise alignment between reviewer intent and manuscript details. Current solutions typically treat this as a direct-to-text generation problem, suffering from hallucination, overlooked critiques, and a lack of verifiable grounding. To address these limitations, we introduce $\textbf{RebuttalAgent}$, the first multi-agents framework that reframes rebuttal generation as an evidence-centric planning task. Our system decomposes complex feedback into atomic concerns and dynamically constructs hybrid contexts by synthesizing compressed summaries with high-fidelity text while integrating an autonomous and on-demand external search module to resolve concerns requiring outside literature. By generating an inspectable response plan before drafting, $\textbf{RebuttalAgent}$ ensures that every argument is explicitly anchored in internal or external evidence. We validate our approach on the proposed $\textbf{RebuttalBench}$ and demonstrate that our pipeline outperforms strong baselines in coverage, faithfulness, and strategic coherence, offering a transparent and controllable assistant for the peer review process. Code will be released.
Domain-Adaptation through Synthetic Data: Fine-Tuning Large Language Models for German Law
Large language models (LLMs) often struggle in specialized domains such as legal reasoning due to limited expert knowledge, resulting in factually incorrect outputs or hallucinations. This paper presents an effective method for adapting advanced LLMs to German legal question answering through a novel synthetic data generation approach. In contrast to costly human-annotated resources or unreliable synthetic alternatives, our approach systematically produces high-quality, diverse, and legally accurate question-answer pairs directly from authoritative German statutes. Using rigorous automated filtering methods and parameter-efficient fine-tuning techniques, we demonstrate that LLMs adapted with our synthetic dataset significantly outperform their baseline counterparts on German legal question answering tasks. Our results highlight the feasibility of using carefully designed synthetic data as a robust alternative to manual annotation in high-stakes, knowledge-intensive domains.
ConceptCaps -- a Distilled Concept Dataset for Interpretability in Music Models
Concept-based interpretability methods like TCAV require clean, well-separated positive and negative examples for each concept. Existing music datasets lack this structure: tags are sparse, noisy, or ill-defined. We introduce ConceptCaps, a dataset of 23k music-caption-audio triplets with explicit labels from a 200-attribute taxonomy. Our pipeline separates semantic modeling from text generation: a VAE learns plausible attribute co-occurrence patterns, a fine-tuned LLM converts attribute lists into professional descriptions, and MusicGen synthesizes corresponding audio. This separation improves coherence and controllability over end-to-end approaches. We validate the dataset through audio-text alignment (CLAP), linguistic quality metrics (BERTScore, MAUVE), and TCAV analysis confirming that concept probes recover musically meaningful patterns. Dataset and code are available online.
LLM Augmented Intervenable Multimodal Adaptor for Post-operative Complication Prediction in Lung Cancer Surgery WACV 2026
Postoperative complications remain a critical concern in clinical practice, adversely affecting patient outcomes and contributing to rising healthcare costs. We present MIRACLE, a deep learning architecture for prediction of risk of postoperative complications in lung cancer surgery by integrating preoperative clinical and radiological data. MIRACLE employs a hyperspherical embedding space fusion of heterogeneous inputs, enabling the extraction of robust, discriminative features from both structured clinical records and high-dimensional radiological images. To enhance transparency of prediction and clinical utility, we incorporate an interventional deep learning module in MIRACLE, that not only refines predictions but also provides interpretable and actionable insights, allowing domain experts to interactively adjust recommendations based on clinical expertise. We validate our approach on POC-L, a real-world dataset comprising 3,094 lung cancer patients who underwent surgery at Roswell Park Comprehensive Cancer Center. Our results demonstrate that MIRACLE outperforms various traditional machine learning models and contemporary large language models (LLM) variants alone, for personalized and explainable postoperative risk management.
comment: Accepted to P2P-CV @ WACV 2026
Lost in the Prompt Order: Revealing the Limitations of Causal Attention in Language Models
Large language models exhibit surprising sensitivity to the structure of the prompt, but the mechanisms underlying this sensitivity remain poorly understood. In this work, we conduct an in-depth investigation on a striking case: in multiple-choice question answering, placing context before the questions and options (CQO) outperforms the reverse order (QOC) by over 14%p, consistently over a wide range of models and datasets. Through systematic architectural analysis, we identify causal attention as the core mechanism: in QOC prompts, the causal mask prevents option tokens from attending to context, creating an information bottleneck where context becomes invisible to options.
comment: preprint
Style Transfer as Bias Mitigation: Diffusion Models for Synthetic Mental Health Text for Arabic
Synthetic data offers a promising solution for mitigating data scarcity and demographic bias in mental health analysis, yet existing approaches largely rely on pretrained large language models (LLMs), which may suffer from limited output diversity and propagate biases inherited from their training data. In this work, we propose a pretraining-free diffusion-based approach for synthetic text generation that frames bias mitigation as a style transfer problem. Using the CARMA Arabic mental health corpus, which exhibits a substantial gender imbalance, we focus on male-to-female style transfer to augment underrepresented female-authored content. We construct five datasets capturing varying linguistic and semantic aspects of gender expression in Arabic and train separate diffusion models for each setting. Quantitative evaluations demonstrate consistently high semantic fidelity between source and generated text, alongside meaningful surface-level stylistic divergence, while qualitative analysis confirms linguistically plausible gender transformations. Our results show that diffusion-based style transfer can generate high-entropy, semantically faithful synthetic data without reliance on pretrained LLMs, providing an effective and flexible framework for mitigating gender bias in sensitive, low-resource mental health domains.
Riemannian Liquid Spatio-Temporal Graph Network
Liquid Time-Constant networks (LTCs), a type of continuous-time graph neural network, excel at modeling irregularly-sampled dynamics but are fundamentally confined to Euclidean space. This limitation introduces significant geometric distortion when representing real-world graphs with inherent non-Euclidean structures (e.g., hierarchies and cycles), degrading representation quality. To overcome this limitation, we introduce the Riemannian Liquid Spatio-Temporal Graph Network (RLSTG), a framework that unifies continuous-time liquid dynamics with the geometric inductive biases of Riemannian manifolds. RLSTG models graph evolution through an Ordinary Differential Equation (ODE) formulated directly on a curved manifold, enabling it to faithfully capture the intrinsic geometry of both structurally static and dynamic spatio-temporal graphs. Moreover, we provide rigorous theoretical guarantees for RLSTG, extending stability theorems of LTCs to the Riemannian domain and quantifying its expressive power via state trajectory analysis. Extensive experiments on real-world benchmarks demonstrate that, by combining advanced temporal dynamics with a Riemannian spatial representation, RLSTG achieves superior performance on graphs with complex structures. Project Page: https://rlstg.github.io
comment: This paper has been accepted to The Web Conference 2026
Causal feature selection framework for stable soft sensor modeling based on time-delayed cross mapping
Soft sensor modeling plays a crucial role in process monitoring. Causal feature selection can enhance the performance of soft sensor models in industrial applications. However, existing methods ignore two critical characteristics of industrial processes. Firstly, causal relationships between variables always involve time delays, whereas most causal feature selection methods investigate causal relationships in the same time dimension. Secondly, variables in industrial processes are often interdependent, which contradicts the decorrelation assumption of traditional causal inference methods. Consequently, soft sensor models based on existing causal feature selection approaches often lack sufficient accuracy and stability. To overcome these challenges, this paper proposes a causal feature selection framework based on time-delayed cross mapping. Time-delayed cross mapping employs state space reconstruction to effectively handle interdependent variables in causality analysis, and considers varying causal strength across time delay. Time-delayed convergent cross mapping (TDCCM) is introduced for total causal inference, and time-delayed partial cross mapping (TDPCM) is developed for direct causal inference. Then, in order to achieve automatic feature selection, an objective feature selection strategy is presented. The causal threshold is automatically determined based on the model performance on the validation set, and the causal features are then selected. Two real-world case studies show that TDCCM achieves the highest average performance, while TDPCM improves soft sensor stability and performance in the worst scenario. The code is publicly available at https://github.com/dirge1/TDPCM.
Remapping and navigation of an embedding space via error minimization: a fundamental organizational principle of cognition in natural and artificial systems
The emerging field of diverse intelligence seeks an integrated view of problem-solving in agents of very different provenance, composition, and substrates. From subcellular chemical networks to swarms of organisms, and across evolved, engineered, and chimeric systems, it is hypothesized that scale-invariant principles of decision-making can be discovered. We propose that cognition in both natural and synthetic systems can be characterized and understood by the interplay between two equally important invariants: (1) the remapping of embedding spaces, and (2) the navigation within these spaces. Biological collectives, from single cells to entire organisms (and beyond), remap transcriptional, morphological, physiological, or 3D spaces to maintain homeostasis and regenerate structure, while navigating these spaces through distributed error correction. Modern Artificial Intelligence (AI) systems, including transformers, diffusion models, and neural cellular automata enact analogous processes by remapping data into latent embeddings and refining them iteratively through contextualization. We argue that this dual principle - remapping and navigation of embedding spaces via iterative error minimization - constitutes a substrate-independent invariant of cognition. Recognizing this shared mechanism not only illuminates deep parallels between living systems and artificial models, but also provides a unifying framework for engineering adaptive intelligence across scales.
comment: 41 pages, 5 figures
Zero-shot adaptable task planning for autonomous construction robots: a comparative study of lightweight single and multi-AI agent systems
Robots are expected to play a major role in the future construction industry but face challenges due to high costs and difficulty adapting to dynamic tasks. This study explores the potential of foundation models to enhance the adaptability and generalizability of task planning in construction robots. Four models are proposed and implemented using lightweight, open-source large language models (LLMs) and vision language models (VLMs). These models include one single agent and three multi-agent teams that collaborate to create robot action plans. The models are evaluated across three construction roles: Painter, Safety Inspector, and Floor Tiling. Results show that the four-agent team outperforms the state-of-the-art GPT-4o in most metrics while being ten times more cost-effective. Additionally, teams with three and four agents demonstrate the improved generalizability. By discussing how agent behaviors influence outputs, this study enhances the understanding of AI teams and supports future research in diverse unstructured environments beyond construction.
'1'-bit Count-based Sorting Unit to Reduce Link Power in DNN Accelerators
Interconnect power consumption remains a bottleneck in Deep Neural Network (DNN) accelerators. While ordering data based on '1'-bit counts can mitigate this via reduced switching activity, practical hardware sorting implementations remain underexplored. This work proposes the hardware implementation of a comparison-free sorting unit optimized for Convolutional Neural Networks (CNN). By leveraging approximate computing to group population counts into coarse-grained buckets, our design achieves hardware area reductions while preserving the link power benefits of data reordering. Our approximate sorting unit achieves up to 35.4% area reduction while maintaining 19.50\% BT reduction compared to 20.42% of precise implementation.
comment: Accepted for oral presentation at the 2026 VLSI Symposium on Technology, Systems and Applications (VLSI TSA) on April 13-17, 2026, at the Ambassador Hotel, Hsinchu, Taiwan
Two-Stream temporal transformer for video action classification
Motion representation plays an important role in video understanding and has many applications including action recognition, robot and autonomous guidance or others. Lately, transformer networks, through their self-attention mechanism capabilities, have proved their efficiency in many applications. In this study, we introduce a new two-stream transformer video classifier, which extracts spatio-temporal information from content and optical flow representing movement information. The proposed model identifies self-attention features across the joint optical flow and temporal frame domain and represents their relationships within the transformer encoder mechanism. The experimental results show that our proposed methodology provides excellent classification results on three well-known video datasets of human activities.
DermaBench: A Clinician-Annotated Benchmark Dataset for Dermatology Visual Question Answering and Reasoning
Vision-language models (VLMs) are increasingly important in medical applications; however, their evaluation in dermatology remains limited by datasets that focus primarily on image-level classification tasks such as lesion recognition. While valuable for recognition, such datasets cannot assess the full visual understanding, language grounding, and clinical reasoning capabilities of multimodal models. Visual question answering (VQA) benchmarks are required to evaluate how models interpret dermatological images, reason over fine-grained morphology, and generate clinically meaningful descriptions. We introduce DermaBench, a clinician-annotated dermatology VQA benchmark built on the Diverse Dermatology Images (DDI) dataset. DermaBench comprises 656 clinical images from 570 unique patients spanning Fitzpatrick skin types I-VI. Using a hierarchical annotation schema with 22 main questions (single-choice, multi-choice, and open-ended), expert dermatologists annotated each image for diagnosis, anatomic site, lesion morphology, distribution, surface features, color, and image quality, together with open-ended narrative descriptions and summaries, yielding approximately 14.474 VQA-style annotations. DermaBench is released as a metadata-only dataset to respect upstream licensing and is publicly available at Harvard Dataverse.
Unsupervised Video Class-Incremental Learning via Deep Embedded Clustering Management
Unsupervised video class incremental learning (uVCIL) represents an important learning paradigm for learning video information without forgetting, and without considering any data labels. Prior approaches have focused on supervised class-incremental learning, relying on using the knowledge of labels and task boundaries, which is costly, requires human annotation, or is simply not a realistic option. In this paper, we propose a simple yet effective approach to address the uVCIL. We first consider a deep feature extractor network, providing a set of representative video features during each task without assuming any class or task information. We then progressively build a series of deep clusters from the extracted features. During the successive task learning, the model updated from the previous task is used as an initial state in order to transfer knowledge to the current learning task. We perform in-depth evaluations on three standard video action recognition datasets, including UCF101, HMDB51, and Something-to-Something V2, by ignoring the labels from the supervised setting. Our approach significantly outperforms other baselines on all datasets.
XCR-Bench: A Multi-Task Benchmark for Evaluating Cultural Reasoning in LLMs
Cross-cultural competence in large language models (LLMs) requires the ability to identify Culture-Specific Items (CSIs) and to adapt them appropriately across cultural contexts. Progress in evaluating this capability has been constrained by the scarcity of high-quality CSI-annotated corpora with parallel cross-cultural sentence pairs. To address this limitation, we introduce XCR-Bench, a Cross(X)-Cultural Reasoning Benchmark consisting of 4.9k parallel sentences and 1,098 unique CSIs, spanning three distinct reasoning tasks with corresponding evaluation metrics. Our corpus integrates Newmark's CSI framework with Hall's Triad of Culture, enabling systematic analysis of cultural reasoning beyond surface-level artifacts and into semi-visible and invisible cultural elements such as social norms, beliefs, and values. Our findings show that state-of-the-art LLMs exhibit consistent weaknesses in identifying and adapting CSIs related to social etiquette and cultural reference. Additionally, we find evidence that LLMs encode regional and ethno-religious biases even within a single linguistic setting during cultural adaptation. We release our corpus and code to facilitate future research on cross-cultural NLP.
comment: 30 Pages, 13 Figures
POCI-Diff: Position Objects Consistently and Interactively with 3D-Layout Guided Diffusion
We propose a diffusion-based approach for Text-to-Image (T2I) generation with consistent and interactive 3D layout control and editing. While prior methods improve spatial adherence using 2D cues or iterative copy-warp-paste strategies, they often distort object geometry and fail to preserve consistency across edits. To address these limitations, we introduce a framework for Positioning Objects Consistently and Interactively (POCI-Diff), a novel formulation for jointly enforcing 3D geometric constraints and instance-level semantic binding within a unified diffusion process. Our method enables explicit per-object semantic control by binding individual text descriptions to specific 3D bounding boxes through Blended Latent Diffusion, allowing one-shot synthesis of complex multi-object scenes. We further propose a warping-free generative editing pipeline that supports object insertion, removal, and transformation via regeneration rather than pixel deformation. To preserve object identity and consistency across edits, we condition the diffusion process on reference images using IP-Adapter, enabling coherent object appearance throughout interactive 3D editing while maintaining global scene coherence. Experimental results demonstrate that POCI-Diff produces high-quality images consistent with the specified 3D layouts and edits, outperforming state-of-the-art methods in both visual fidelity and layout adherence while eliminating warping-induced geometric artifacts.
Decoder-Free Supervoxel GNN for Accurate Brain-Tumor Localization in Multi-Modal MRI
Modern vision backbones for 3D medical imaging typically process dense voxel grids through parameter-heavy encoder-decoder structures, a design that allocates a significant portion of its parameters to spatial reconstruction rather than feature learning. Our approach introduces SVGFormer, a decoder-free pipeline built upon a content-aware grouping stage that partitions the volume into a semantic graph of supervoxels. Its hierarchical encoder learns rich node representations by combining a patch-level Transformer with a supervoxel-level Graph Attention Network, jointly modeling fine-grained intra-region features and broader inter-regional dependencies. This design concentrates all learnable capacity on feature encoding and provides inherent, dual-scale explainability from the patch to the region level. To validate the framework's flexibility, we trained two specialized models on the BraTS dataset: one for node-level classification and one for tumor proportion regression. Both models achieved strong performance, with the classification model achieving a F1-score of 0.875 and the regression model a MAE of 0.028, confirming the encoder's ability to learn discriminative and localized features. Our results establish that a graph-based, encoder-only paradigm offers an accurate and inherently interpretable alternative for 3D medical image representation.
comment: 10 pages, 3 figures,
LLMOrbit: A Circular Taxonomy of Large Language Models -From Scaling Walls to Agentic AI Systems
The field of artificial intelligence has undergone a revolution from foundational Transformer architectures to reasoning-capable systems approaching human-level performance. We present LLMOrbit, a comprehensive circular taxonomy navigating the landscape of large language models spanning 2019-2025. This survey examines over 50 models across 15 organizations through eight interconnected orbital dimensions, documenting architectural innovations, training methodologies, and efficiency patterns defining modern LLMs, generative AI, and agentic systems. We identify three critical crises: (1) data scarcity (9-27T tokens depleted by 2026-2028), (2) exponential cost growth ($3M to $300M+ in 5 years), and (3) unsustainable energy consumption (22x increase), establishing the scaling wall limiting brute-force approaches. Our analysis reveals six paradigms breaking this wall: (1) test-time compute (o1, DeepSeek-R1 achieve GPT-4 performance with 10x inference compute), (2) quantization (4-8x compression), (3) distributed edge computing (10x cost reduction), (4) model merging, (5) efficient training (ORPO reduces memory 50%), and (6) small specialized models (Phi-4 14B matches larger models). Three paradigm shifts emerge: (1) post-training gains (RLHF, GRPO, pure RL contribute substantially, DeepSeek-R1 achieving 79.8% MATH), (2) efficiency revolution (MoE routing 18x efficiency, Multi-head Latent Attention 8x KV cache compression enables GPT-4-level performance at <$0.30/M tokens), and (3) democratization (open-source Llama 3 88.6% MMLU surpasses GPT-4 86.4%). We provide insights into techniques (RLHF, PPO, DPO, GRPO, ORPO), trace evolution from passive generation to tool-using agents (ReAct, RAG, multi-agent systems), and analyze post-training innovations.
Kakugo: Distillation of Low-Resource Languages into Small Language Models
We present Kakugo, a novel and cost-effective pipeline designed to train general-purpose Small Language Models (SLMs) for low-resource languages using only the language name as input. By using a large teacher model to generate synthetic prompts and translate instruction datasets, we produced training data and SLMs for 54 low-resource languages. Evaluations across a diverse set of general natural language processing tasks, including translation, classification, and question answering, demonstrate that our pipeline consistently improves performance over base models. With a total generation and training cost of under $50 per language, Kakugo offers an accessible method for communities to develop language-specific AI.
Collective intelligence in science: direct elicitation of diverse information from experts with unknown information structure
Suppose we need a deep collective analysis of an open scientific problem: there is a complex scientific hypothesis and a large online group of mutually unrelated experts with relevant private information of a diverse and unpredictable nature. This information may be results of experts' individual experiments, original reasoning of some of them, results of AI systems they use, etc. We propose a simple mechanism based on a self-resolving play-money prediction market entangled with a chat. We show that such a system can easily be brought to an equilibrium where participants directly share their private information on the hypothesis through the chat and trade as if the market were resolved in accordance with the truth of the hypothesis. This approach will lead to efficient aggregation of relevant information in a completely interpretable form even if the ground truth cannot be established and experts initially know nothing about each other and cannot perform complex Bayesian calculations. Finally, by rewarding the experts with some real assets proportionally to the play money they end up with, we can get an innovative way to fund large-scale collaborative studies of any type.
comment: 21 pages
Top 10 Open Challenges Steering the Future of Diffusion Language Model and Its Variants
The paradigm of Large Language Models (LLMs) is currently defined by auto-regressive (AR) architectures, which generate text through a sequential ``brick-by-brick'' process. Despite their success, AR models are inherently constrained by a causal bottleneck that limits global structural foresight and iterative refinement. Diffusion Language Models (DLMs) offer a transformative alternative, conceptualizing text generation as a holistic, bidirectional denoising process akin to a sculptor refining a masterpiece. However, the potential of DLMs remains largely untapped as they are frequently confined within AR-legacy infrastructures and optimization frameworks. In this Perspective, we identify ten fundamental challenges ranging from architectural inertia and gradient sparsity to the limitations of linear reasoning that prevent DLMs from reaching their ``GPT-4 moment''. We propose a strategic roadmap organized into four pillars: foundational infrastructure, algorithmic optimization, cognitive reasoning, and unified multimodal intelligence. By shifting toward a diffusion-native ecosystem characterized by multi-scale tokenization, active remasking, and latent thinking, we can move beyond the constraints of the causal horizon. We argue that this transition is essential for developing next-generation AI capable of complex structural reasoning, dynamic self-correction, and seamless multimodal integration.
Generalizing Abstention for Noise-Robust Learning in Medical Image Segmentation
Label noise is a critical problem in medical image segmentation, often arising from the inherent difficulty of manual annotation. Models trained on noisy data are prone to overfitting, which degrades their generalization performance. While a number of methods and strategies have been proposed to mitigate noisy labels in the segmentation domain, this area remains largely under-explored. The abstention mechanism has proven effective in classification tasks by enhancing the capabilities of Cross Entropy, yet its potential in segmentation remains unverified. In this paper, we address this gap by introducing a universal and modular abstention framework capable of enhancing the noise-robustness of a diverse range of loss functions. Our framework improves upon prior work with two key components: an informed regularization term to guide abstention behaviour, and a more flexible power-law-based auto-tuning algorithm for the abstention penalty. We demonstrate the framework's versatility by systematically integrating it with three distinct loss functions to create three novel, noise-robust variants: GAC, SAC, and ADS. Experiments on the CaDIS and DSAD medical datasets show our methods consistently and significantly outperform their non-abstaining baselines, especially under high noise levels. This work establishes that enabling models to selectively ignore corrupted samples is a powerful and generalizable strategy for building more reliable segmentation models. Our code is publicly available at https://github.com/wemous/abstention-for-segmentation.
Numina-Lean-Agent: An Open and General Agentic Reasoning System for Formal Mathematics
Agentic systems have recently become the dominant paradigm for formal theorem proving, achieving strong performance by coordinating multiple models and tools. However, existing approaches often rely on task-specific pipelines and trained formal provers, limiting their flexibility and reproducibility. In this paper, we propose the paradigm that directly uses a general coding agent as a formal math reasoner. This paradigm is motivated by (1) A general coding agent provides a natural interface for diverse reasoning tasks beyond proving, (2) Performance can be improved by simply replacing the underlying base model, without training, and (3) MCP enables flexible extension and autonomous calling of specialized tools, avoiding complex design. Based on this paradigm, we introduce Numina-Lean-Agent, which combines Claude Code with Numina-Lean-MCP to enable autonomous interaction with Lean, retrieval of relevant theorems, informal proving and auxiliary reasoning tools. Using Claude Opus 4.5 as the base model, Numina-Lean-Agent solves all problems in Putnam 2025 (12 / 12), matching the best closed-source system. Beyond benchmark evaluation, we further demonstrate its generality by interacting with mathematicians to successfully formalize the Brascamp-Lieb theorem. We release Numina-Lean-Agent and all solutions at https://github.com/project-numina/numina-lean-agent.
Credible CO2 Comparisons: A Machine Learning Approach to Vehicle Powertrain Assessment
Decarbonizing road transport requires consistent and transparent methods for comparing CO2 emissions across vehicle technologies. This paper proposes a machine learning-based framework for like-for-like operational assessment of internal combustion engine vehicles (ICEVs) and electric vehicles (EVs) under identical, real-world driving conditions. The approach isolates technology-specific effects by holding the observed speed profile and environmental context fixed, enabling direct comparison of powertrain performance. Recurrent neural network models are trained independently for each domain to learn the mapping from contextual driving variables (speed, acceleration, temperature) to internal actuation variables (torque, throttle) and instantaneous CO2-equivalent emission rates. This structure allows the construction of counterfactual scenarios that answer: What emissions would an EV have generated if it had followed the same driving profile as an ICEV? By aligning both vehicle types on a unified instantaneous emissions metric, the framework enables fair and reproducible evaluation of powertrain technologies. It offers a scalable foundation for credible, data-driven assessments of vehicle carbon performance under real-world operating conditions.
MATE: Matryoshka Audio-Text Embeddings for Open-Vocabulary Keyword Spotting
Open-vocabulary keyword spotting (KWS) with text-based enrollment has emerged as a flexible alternative to fixed-phrase triggers. Prior utterance-level matching methods, from an embedding-learning standpoint, learn embeddings at a single fixed dimensionality. We depart from this design and propose Matryoshka Audio-Text Embeddings (MATE), a dual-encoder framework that encodes multiple embedding granularities within a single vector via nested sub-embeddings ("prefixes"). Specifically, we introduce a PCA-guided prefix alignment: PCA-compressed versions of the full text embedding for each prefix size serve as teacher targets to align both audio and text prefixes. This alignment concentrates salient keyword cues in lower-dimensional prefixes, while higher dimensions add detail. MATE is trained with standard deep metric learning objectives for audio-text KWS, and is loss-agnostic. To our knowledge, this is the first application of matryoshka-style embeddings to KWS, achieving state-of-the-art results on WSJ and LibriPhrase without any inference overhead.
comment: 5 pages, 1 figure, Accepted at ICASSP 2026
DAME: Duration-Aware Matryoshka Embedding for Duration-Robust Speaker Verification
Short-utterance speaker verification remains challenging due to limited speaker-discriminative cues in short speech segments. While existing methods focus on enhancing speaker encoders, the embedding learning strategy still forces a single fixed-dimensional representation reused for utterances of any length, leaving capacity misaligned with the information available at different durations. We propose Duration-Aware Matryoshka Embedding (DAME), a model-agnostic framework that builds a nested hierarchy of sub-embeddings aligned to utterance durations: lower-dimensional representations capture compact speaker traits from short utterances, while higher dimensions encode richer details from longer speech. DAME supports both training from scratch and fine-tuning, and serves as a direct alternative to conventional large-margin fine-tuning, consistently improving performance across durations. On the VoxCeleb1-O/E/H and VOiCES evaluation sets, DAME consistently reduces the equal error rate on 1-s and other short-duration trials, while maintaining full-length performance with no additional inference cost. These gains generalize across various speaker encoder architectures under both general training and fine-tuning setups.
comment: 5 pages, 2 figures, Accepted at ICASSP 2026
torch-sla: Differentiable Sparse Linear Algebra with Adjoint Solvers and Sparse Tensor Parallelism for PyTorch
Industrial scientific computing predominantly uses sparse matrices to represent unstructured data -- finite element meshes, graphs, point clouds. We present \torchsla{}, an open-source PyTorch library that enables GPU-accelerated, scalable, and differentiable sparse linear algebra. The library addresses three fundamental challenges: (1) GPU acceleration for sparse linear solves, nonlinear solves (Newton, Picard, Anderson), and eigenvalue computation; (2) Multi-GPU scaling via domain decomposition with halo exchange, reaching \textbf{400 million DOF linear solve on 3 GPUs}; and (3) Adjoint-based differentiation} achieving $\mathcal{O}(1)$ computational graph nodes (for autograd) and $\mathcal{O}(\text{nnz})$ memory -- independent of solver iterations. \torchsla{} supports multiple backends (SciPy, cuDSS, PyTorch-native) and seamlessly integrates with PyTorch autograd for end-to-end differentiable simulations. Code is available at https://github.com/walkerchi/torch-sla.
"The Whole Is Greater Than the Sum of Its Parts": A Compatibility-Aware Multi-Teacher CoT Distillation Framework
Chain-of-Thought (CoT) reasoning empowers Large Language Models (LLMs) with remarkable capabilities but typically requires prohibitive parameter scales. CoT distillation has emerged as a promising paradigm to transfer reasoning prowess into compact Student Models (SLMs), but existing approaches often rely on a solitary teacher, capping the student's potential since individual LLMs often exhibit distinct capability biases and may suffer from catastrophic forgetting. While leveraging diverse teachers seems appealing, effectively fusing their supervisions remains challenging: teacher-student incompatibility risks amplifying hallucinations, and passive supervision fails to ensure genuine logic internalization. To address this, we introduce COMPACT, a framework that adaptively fuses supervisions from different teachers by dynamically weighting teacher gradients based on the student's real-time compatibility evaluated by a multi-dimensional metric: (1) Graph-based Consensus to filter misleading rationales by identifying mainstream reasoning paths; (2) Mutual-Information-based Adaptability to detect "epiphany moments" for genuinely understanding the reasoning process rather than merely imitating; and (3) Loss-based Difficulty to assess student receptivity to the teacher's guidance and prevent negative transfer. Extensive experiments and latent space analysis demonstrate that COMPACT effectively integrates diverse reasoning capabilities without damaging the model's original knowledge structure, achieving state-of-the-art performance on various benchmarks while mitigating catastrophic forgetting.
comment: 11pages, 9figures
Autonomous Knowledge Graph Exploration with Adaptive Breadth-Depth Retrieval
Retrieving evidence for language model queries from knowledge graphs requires balancing broad search across the graph with multi-hop traversal to follow relational links. Similarity-based retrievers provide coverage but remain shallow, whereas traversal-based methods rely on selecting seed nodes to start exploration, which can fail when queries span multiple entities and relations. We introduce ARK: Adaptive Retriever of Knowledge, an agentic KG retriever that gives a language model control over this breadth-depth tradeoff using a two-operation toolset: global lexical search over node descriptors and one-hop neighborhood exploration that composes into multi-hop traversal. ARK alternates between breadth-oriented discovery and depth-oriented expansion without depending on a fragile seed selection, a pre-set hop depth, or requiring retrieval training. ARK adapts tool use to queries, using global search for language-heavy queries and neighborhood exploration for relation-heavy queries. On STaRK, ARK reaches 59.1% average Hit@1 and 67.4 average MRR, improving average Hit@1 by up to 31.4% and average MRR by up to 28.0% over retrieval-based and agentic training-free methods. Finally, we distill ARK's tool-use trajectories from a large teacher into an 8B model via label-free imitation, improving Hit@1 by +7.0, +26.6, and +13.5 absolute points over the base 8B model on AMAZON, MAG, and PRIME datasets, respectively, while retaining up to 98.5% of the teacher's Hit@1 rate.
RL-BioAug: Label-Efficient Reinforcement Learning for Self-Supervised EEG Representation Learning
The quality of data augmentation serves as a critical determinant for the performance of contrastive learning in EEG tasks. Although this paradigm is promising for utilizing unlabeled data, static or random augmentation strategies often fail to preserve intrinsic information due to the non-stationarity of EEG signals where statistical properties change over time. To address this, we propose RL-BioAug, a framework that leverages a label-efficient reinforcement learning (RL) agent to autonomously determine optimal augmentation policies. While utilizing only a minimal fraction (10\%) of labeled data to guide the agent's policy, our method enables the encoder to learn robust representations in a strictly self-supervised manner. Experimental results demonstrate that RL-BioAug significantly outperforms the random selection strategy, achieving substantial improvements of 9.69\% and 8.80\% in Macro-F1 score on the Sleep-EDFX and CHB-MIT datasets, respectively. Notably, this agent mainly chose optimal strategies for each task -- for example, Time Masking with a 62\% probability for sleep stage classification and Crop \& Resize with a 77\% probability for seizure detection. Our framework suggests its potential to replace conventional heuristic-based augmentations and establish a new autonomous paradigm for data augmentation. The source code is available at \href{https://github.com/dlcjfgmlnasa/RL-BioAug}{https://github.com/dlcjfgmlnasa/RL-BioAug}.
Stream-Voice-Anon: Enhancing Utility of Real-Time Speaker Anonymization via Neural Audio Codec and Language Models
Protecting speaker identity is crucial for online voice applications, yet streaming speaker anonymization (SA) remains underexplored. Recent research has demonstrated that neural audio codec (NAC) provides superior speaker feature disentanglement and linguistic fidelity. NAC can also be used with causal language models (LM) to enhance linguistic fidelity and prompt control for streaming tasks. However, existing NAC-based online LM systems are designed for voice conversion (VC) rather than anonymization, lacking the techniques required for privacy protection. Building on these advances, we present Stream-Voice-Anon, which adapts modern causal LM-based NAC architectures specifically for streaming SA by integrating anonymization techniques. Our anonymization approach incorporates pseudo-speaker representation sampling, a speaker embedding mixing and diverse prompt selection strategies for LM conditioning that leverage the disentanglement properties of quantized content codes to prevent speaker information leakage. Additionally, we compare dynamic and fixed delay configurations to explore latency-privacy trade-offs in real-time scenarios. Under the VoicePrivacy 2024 Challenge protocol, Stream-Voice-Anon achieves substantial improvements in intelligibility (up to 46% relative WER reduction) and emotion preservation (up to 28% UAR relative) compared to the previous state-of-the-art streaming method DarkStream while maintaining comparable latency (180ms vs 200ms) and privacy protection against lazy-informed attackers, though showing 15% relative degradation against semi-informed attackers.
comment: Accepted by ICASSP2026
Glance-or-Gaze: Incentivizing LMMs to Adaptively Focus Search via Reinforcement Learning
Large Multimodal Models (LMMs) have achieved remarkable success in visual understanding, yet they struggle with knowledge-intensive queries involving long-tail entities or evolving information due to static parametric knowledge. Recent search-augmented approaches attempt to address this limitation, but existing methods rely on indiscriminate whole-image retrieval that introduces substantial visual redundancy and noise, and lack deep iterative reflection, limiting their effectiveness on complex visual queries. To overcome these challenges, we propose Glance-or-Gaze (GoG), a fully autonomous framework that shifts from passive perception to active visual planning. GoG introduces a Selective Gaze mechanism that dynamically chooses whether to glance at global context or gaze into high-value regions, filtering irrelevant information before retrieval. We design a dual-stage training strategy: Reflective GoG Behavior Alignment via supervised fine-tuning instills the fundamental GoG paradigm, while Complexity-Adaptive Reinforcement Learning further enhances the model's capability to handle complex queries through iterative reasoning. Experiments across six benchmarks demonstrate state-of-the-art performance. Ablation studies confirm that both Selective Gaze and complexity-adaptive RL are essential for effective visual search. We will release our data and models for further exploration soon.
IF-GEO: Conflict-Aware Instruction Fusion for Multi-Query Generative Engine Optimization
As Generative Engines revolutionize information retrieval by synthesizing direct answers from retrieved sources, ensuring source visibility becomes a significant challenge. Improving it through targeted content revisions is a practical strategy termed Generative Engine Optimization (GEO). However, optimizing a document for diverse queries presents a constrained optimization challenge where heterogeneous queries often impose conflicting and competing revision requirements under a limited content budget. To address this challenge, we propose IF-GEO, a "diverge-then-converge" framework comprising two phases: (i) mining distinct optimization preferences from representative latent queries; (ii) synthesizing a Global Revision Blueprint for guided editing by coordinating preferences via conflict-aware instruction fusion. To explicitly quantify IF-GEO's objective of cross-query stability, we introduce risk-aware stability metrics. Experiments on multi-query benchmarks demonstrate that IF-GEO achieves substantial performance gains while maintaining robustness across diverse retrieval scenarios.
comment: 9 pages, 3 figures. Submitted to ACL 2026. Corresponding author: Zhen Chen
Asymmetric regularization mechanism for GAN training with Variational Inequalities
We formulate the training of generative adversarial networks (GANs) as a Nash equilibrium seeking problem. To stabilize the training process and find a Nash equilibrium, we propose an asymmetric regularization mechanism based on the classic Tikhonov step and on a novel zero-centered gradient penalty. Under smoothness and a local identifiability condition induced by a Gauss-Newton Gramian, we obtain explicit Lipschitz and (strong)-monotonicity constants for the regularized operator. These constants ensure last-iterate linear convergence of a single-call Extrapolation-from-the-Past (EFTP) method. Empirical simulations on an academic example show that, even when strong monotonicity cannot be achieved, the asymmetric regularization is enough to converge to an equilibrium and stabilize the trajectory.
comment: 6 pages, 3 figures, conference
PREFAB: PREFerence-based Affective Modeling for Low-Budget Self-Annotation
Self-annotation is the gold standard for collecting affective state labels in affective computing. Existing methods typically rely on full annotation, requiring users to continuously label affective states across entire sessions. While this process yields fine-grained data, it is time-consuming, cognitively demanding, and prone to fatigue and errors. To address these issues, we present PREFAB, a low-budget retrospective self-annotation method that targets affective inflection regions rather than full annotation. Grounded in the peak-end rule and ordinal representations of emotion, PREFAB employs a preference-learning model to detect relative affective changes, directing annotators to label only selected segments while interpolating the remainder of the stimulus. We further introduce a preview mechanism that provides brief contextual cues to assist annotation. We evaluate PREFAB through a technical performance study and a 25-participant user study. Results show that PREFAB outperforms baselines in modeling affective inflections while mitigating workload (and conditionally mitigating temporal burden). Importantly PREFAB improves annotator confidence without degrading annotation quality.
comment: CHI '26 Accepted paper
TractRLFusion: A GPT-Based Multi-Critic Policy Fusion Framework for Fiber Tractography
Tractography plays a pivotal role in the non-invasive reconstruction of white matter fiber pathways, providing vital information on brain connectivity and supporting precise neurosurgical planning. Although traditional methods relied mainly on classical deterministic and probabilistic approaches, recent progress has benefited from supervised deep learning (DL) and deep reinforcement learning (DRL) to improve tract reconstruction. A persistent challenge in tractography is accurately reconstructing white matter tracts while minimizing spurious connections. To address this, we propose TractRLFusion, a novel GPT-based policy fusion framework that integrates multiple RL policies through a data-driven fusion strategy. Our method employs a two-stage training data selection process for effective policy fusion, followed by a multi-critic fine-tuning phase to enhance robustness and generalization. Experiments on HCP, ISMRM, and TractoInferno datasets demonstrate that TractRLFusion outperforms individual RL policies as well as state-of-the-art classical and DRL methods in accuracy and anatomical reliability.
comment: Accepted at 23rd IEEE International Symposium on Biomedical Imaging (ISBI), 2026
OmniOVCD: Streamlining Open-Vocabulary Change Detection with SAM 3
Change Detection (CD) is a fundamental task in remote sensing. It monitors the evolution of land cover over time. Based on this, Open-Vocabulary Change Detection (OVCD) introduces a new requirement. It aims to reduce the reliance on predefined categories. Existing training-free OVCD methods mostly use CLIP to identify categories. These methods also need extra models like DINO to extract features. However, combining different models often causes problems in matching features and makes the system unstable. Recently, the Segment Anything Model 3 (SAM 3) is introduced. It integrates segmentation and identification capabilities within one promptable model, which offers new possibilities for the OVCD task. In this paper, we propose OmniOVCD, a standalone framework designed for OVCD. By leveraging the decoupled output heads of SAM 3, we propose a Synergistic Fusion to Instance Decoupling (SFID) strategy. SFID first fuses the semantic, instance, and presence outputs of SAM 3 to construct land-cover masks, and then decomposes them into individual instance masks for change comparison. This design preserves high accuracy in category recognition and maintains instance-level consistency across images. As a result, the model can generate accurate change masks. Experiments on four public benchmarks (LEVIR-CD, WHU-CD, S2Looking, and SECOND) demonstrate SOTA performance, achieving IoU scores of 67.2, 66.5, 24.5, and 27.1 (class-average), respectively, surpassing all previous methods.
Human Simulation Computation: A Human-Inspired Framework for Adaptive AI Systems
Large language models (LLMs) have demonstrated strong capabilities in knowledge representation and reasoning based on textual data. However, their reliance on language material alone limits their ability to adapt, verify reasoning outcomes, and operate effectively in open and dynamic real-world environments. In this paper, we propose Human Simulation Computation (HSC), a human-inspired computational framework that models intelligence as a continuous, closed-loop process involving thinking, action, learning, reflection, and activity scheduling, collectively referred to as the internal reasoning process. HSC emphasizes active participation both within the internal reasoning process and in interactions with the environment, where actions are used not only to achieve goals but also to automatically refine and improve internal reasoning mechanisms without external intervention. Furthermore, HSC incorporates commonly used human thinking strategies across all stages of the internal reasoning process, such as main-feature-oriented reasoning, scope expansion through action, and on-time learning driven by environmental feedback. Through theoretical analysis, we argue that human simulation strategies cannot be fully learned from language material alone, and that human-like reasoning processes and action-grounded reasoning methods are essential for robust adaptation and effective interaction with real-world environments.
Confident Rankings with Fewer Items: Adaptive LLM Evaluation with Continuous Scores
Computerized Adaptive Testing (CAT) has proven effective for efficient LLM evaluation on multiple-choice benchmarks, but modern LLM evaluation increasingly relies on generation tasks where outputs are scored continuously rather than marked correct/incorrect. We present a principled extension of IRT-based adaptive testing to continuous bounded scores (ROUGE, BLEU, LLM-as-a-Judge) by replacing the Bernoulli response distribution with a heteroskedastic normal distribution. Building on this, we introduce an uncertainty aware ranker with adaptive stopping criteria that achieves reliable model ranking while testing as few items and as cheaply as possible. We validate our method on five benchmarks spanning n-gram-based, embedding-based, and LLM-as-judge metrics. Our method uses 2% of the items while improving ranking correlation by 0.12 τ over random sampling, with 95% accuracy on confident predictions.
LifeAgentBench: A Multi-dimensional Benchmark and Agent for Personal Health Assistants in Digital Health
Personalized digital health support requires long-horizon, cross-dimensional reasoning over heterogeneous lifestyle signals, and recent advances in mobile sensing and large language models (LLMs) make such support increasingly feasible. However, the capabilities of current LLMs in this setting remain unclear due to the lack of systematic benchmarks. In this paper, we introduce LifeAgentBench, a large-scale QA benchmark for long-horizon, cross-dimensional, and multi-user lifestyle health reasoning, containing 22,573 questions spanning from basic retrieval to complex reasoning. We release an extensible benchmark construction pipeline and a standardized evaluation protocol to enable reliable and scalable assessment of LLM-based health assistants. We then systematically evaluate 11 leading LLMs on LifeAgentBench and identify key bottlenecks in long-horizon aggregation and cross-dimensional reasoning. Motivated by these findings, we propose LifeAgent as a strong baseline agent for health assistant that integrates multi-step evidence retrieval with deterministic aggregation, achieving significant improvements compared with two widely used baselines. Case studies further demonstrate its potential in realistic daily-life scenarios. The benchmark is publicly available at https://anonymous.4open.science/r/LifeAgentBench-CE7B.
HardSecBench: Benchmarking the Security Awareness of LLMs for Hardware Code Generation
Large language models (LLMs) are being increasingly integrated into practical hardware and firmware development pipelines for code generation. Existing studies have primarily focused on evaluating the functional correctness of LLM-generated code, yet paid limited attention to its security issues. However, LLM-generated code that appears functionally sound may embed security flaws which could induce catastrophic damages after deployment. This critical research gap motivates us to design a benchmark for assessing security awareness under realistic specifications. In this work, we introduce HardSecBench, a benchmark with 924 tasks spanning Verilog Register Transfer Level (RTL) and firmware-level C, covering 76 hardware-relevant Common Weakness Enumeration (CWE) entries. Each task includes a structured specification, a secure reference implementation, and executable tests. To automate artifact synthesis, we propose a multi-agent pipeline that decouples synthesis from verification and grounds evaluation in execution evidence, enabling reliable evaluation. Using HardSecBench, we evaluate a range of LLMs on hardware and firmware code generation and find that models often satisfy functional requirements while still leaving security risks. We also find that security results vary with prompting. These findings highlight pressing challenges and offer actionable insights for future advancements in LLM-assisted hardware design. Our data and code will be released soon.
Virtual Urbanism: An AI-Driven Framework for Quantifying Urban Identity. A Tokyo-Based Pilot Study Using Diffusion-Generated Synthetic Environments
This paper introduces Virtual Urbanism (VU), a multimodal AI-driven analytical framework for quantifying urban identity through the medium of synthetic urban replicas. The framework aims to advance computationally tractable urban identity metrics. To demonstrate feasibility, the pilot study Virtual Urbanism and Tokyo Microcosms is presented. A pipeline integrating Stable Diffusion and LoRA models was used to produce synthetic replicas of nine Tokyo areas rendered as dynamic synthetic urban sequences, excluding existing orientation markers to elicit core identity-forming elements. Human-evaluation experiments (I) assessed perceptual legitimacy of replicas; (II) quantified area-level identity; (III) derived core identity-forming elements. Results showed a mean identification accuracy of ~81%, confirming the validity of the replicas. Urban Identity Level (UIL) metric enabled assessment of identity levels across areas, while semantic analysis revealed culturally embedded typologies as core identity-forming elements, positioning VU as a viable framework for AI-augmented urban analysis, outlining a path toward automated, multi-parameter identity metrics.
DroneVLA: VLA based Aerial Manipulation
As aerial platforms evolve from passive observers to active manipulators, the challenge shifts toward designing intuitive interfaces that allow non-expert users to command these systems naturally. This work introduces a novel concept of autonomous aerial manipulation system capable of interpreting high-level natural language commands to retrieve objects and deliver them to a human user. The system is intended to integrate a MediaPipe based on Grounding DINO and a Vision-Language-Action (VLA) model with a custom-built drone equipped with a 1-DOF gripper and an Intel RealSense RGB-D camera. VLA performs semantic reasoning to interpret the intent of a user prompt and generates a prioritized task queue for grasping of relevant objects in the scene. Grounding DINO and dynamic A* planning algorithm are used to navigate and safely relocate the object. To ensure safe and natural interaction during the handover phase, the system employs a human-centric controller driven by MediaPipe. This module provides real-time human pose estimation, allowing the drone to employ visual servoing to maintain a stable, distinct position directly in front of the user, facilitating a comfortable handover. We demonstrate the system's efficacy through real-world experiments for localization and navigation, which resulted in a 0.164m, 0.070m, and 0.084m of max, mean euclidean, and root-mean squared errors, respectively, highlighting the feasibility of VLA for aerial manipulation operations.
comment: This paper has been accepted for publication at LBR of HRI 2026 conference
Insight: Interpretable Semantic Hierarchies in Vision-Language Encoders
Language-aligned vision foundation models perform strongly across diverse downstream tasks. Yet, their learned representations remain opaque, making interpreting their decision-making hard. Recent works decompose these representations into human-interpretable concepts, but provide poor spatial grounding and are limited to image classification tasks. In this work, we propose Insight, a language-aligned concept foundation model that provides fine-grained concepts, which are human-interpretable and spatially grounded in the input image. We leverage a hierarchical sparse autoencoder and a foundation model with strong semantic representations to automatically extract concepts at various granularities. Examining local co-occurrence dependencies of concepts allows us to define concept relationships. Through these relations we further improve concept naming and obtain richer explanations. On benchmark data, we show that Insight provides performance on classification and segmentation that is competitive with opaque foundation models while providing fine-grained, high quality concept-based explanations. Code is available at https://github.com/kawi19/Insight.
comment: 32 pages, 24 figures, 3 tables
Look-Ahead-Bench: a Standardized Benchmark of Look-ahead Bias in Point-in-Time LLMs for Finance
We introduce Look-Ahead-Bench, a standardized benchmark measuring look-ahead bias in Point-in-Time (PiT) Large Language Models (LLMs) within realistic and practical financial workflows. Unlike most existing approaches that primarily test inner lookahead knowledge via Q\\&A, our benchmark evaluates model behavior in practical scenarios. To distinguish genuine predictive capability from memorization-based performance, we analyze performance decay across temporally distinct market regimes, incorporating several quantitative baselines to establish performance thresholds. We evaluate prominent open-source LLMs -- Llama 3.1 (8B and 70B) and DeepSeek 3.2 -- against a family of Point-in-Time LLMs (Pitinf-Small, Pitinf-Medium, and frontier-level model Pitinf-Large) from PiT-Inference. Results reveal significant lookahead bias in standard LLMs, as measured with alpha decay, unlike Pitinf models, which demonstrate improved generalization and reasoning abilities as they scale in size. This work establishes a foundation for the standardized evaluation of temporal bias in financial LLMs and provides a practical framework for identifying models suitable for real-world deployment. Code is available on GitHub: https://github.com/benstaf/lookaheadbench
vLinear: A Powerful Linear Model for Multivariate Time Series Forecasting
In this paper, we present \textbf{vLinear}, an effective yet efficient \textbf{linear}-based multivariate time series forecaster featuring two components: the \textbf{v}ecTrans module and the WFMLoss objective. Many state-of-the-art forecasters rely on self-attention or its variants to capture multivariate correlations, typically incurring $\mathcal{O}(N^2)$ computational complexity with respect to the number of variates $N$. To address this, we propose vecTrans, a lightweight module that utilizes a learnable vector to model multivariate correlations, reducing the complexity to $\mathcal{O}(N)$. Notably, vecTrans can be seamlessly integrated into Transformer-based forecasters, delivering up to 5$\times$ inference speedups and consistent performance gains. Furthermore, we introduce WFMLoss (Weighted Flow Matching Loss) as the objective. In contrast to typical \textbf{velocity-oriented} flow matching objectives, we demonstrate that a \textbf{final-series-oriented} formulation yields significantly superior forecasting accuracy. WFMLoss also incorporates path- and horizon-weighted strategies to focus learning on more reliable paths and horizons. Empirically, vLinear achieves state-of-the-art performance across 22 benchmarks and 124 forecasting settings. Moreover, WFMLoss serves as an effective plug-and-play objective, consistently improving existing forecasters. The code is available at https://anonymous.4open.science/r/vLinear.
DARC: Decoupled Asymmetric Reasoning Curriculum for LLM Evolution
Self-play with large language models has emerged as a promising paradigm for achieving self-improving artificial intelligence. However, existing self-play frameworks often suffer from optimization instability, due to (i) non-stationary objectives induced by solver-dependent reward feedback for the Questioner, and (ii) bootstrapping errors from self-generated pseudo-labels used to supervise the Solver. To mitigate these challenges, we introduce DARC (Decoupled Asymmetric Reasoning Curriculum), a two-stage framework that stabilizes the self-evolution process. First, we train the Questioner to synthesize difficulty-calibrated questions, conditioned on explicit difficulty levels and external corpora. Second, we train the Solver with an asymmetric self-distillation mechanism, where a document-augmented teacher generates high-quality pseudo-labels to supervise the student Solver that lacks document access. Empirical results demonstrate that DARC is model-agnostic, yielding an average improvement of 10.9 points across nine reasoning benchmarks and three backbone models. Moreover, DARC consistently outperforms all baselines and approaches the performance of fully supervised models without relying on human annotations.The code is available at https://github.com/RUCBM/DARC.
Finding RELIEF: Shaping Reasoning Behavior without Reasoning Supervision via Belief Engineering
Large reasoning models (LRMs) have achieved remarkable success in complex problem-solving, yet they often suffer from computational redundancy or reasoning unfaithfulness. Current methods for shaping LRM behavior typically rely on reinforcement learning or fine-tuning with gold-standard reasoning traces, a paradigm that is both computationally expensive and difficult to scale. In this paper, we reveal that LRMs possess latent \textit{reasoning beliefs} that internally track their own reasoning traits, which can be captured through simple logit probing. Building upon this insight, we propose Reasoning Belief Engineering (RELIEF), a simple yet effective framework that shapes LRM behavior by aligning the model's self-concept with a target belief blueprint. Crucially, RELIEF completely bypasses the need for reasoning-trace supervision. It internalizes desired traits by fine-tuning on synthesized, self-reflective question-answering pairs that affirm the target belief. Extensive experiments on efficiency and faithfulness tasks demonstrate that RELIEF matches or outperforms behavior-supervised and preference-based baselines while requiring lower training costs. Further analysis validates that shifting a model's reasoning belief effectively shapes its actual behavior.
comment: Working in progress
Pro-AI Bias in Large Language Models
Large language models (LLMs) are increasingly employed for decision-support across multiple domains. We investigate whether these models display a systematic preferential bias in favor of artificial intelligence (AI) itself. Across three complementary experiments, we find consistent evidence of pro-AI bias. First, we show that LLMs disproportionately recommend AI-related options in response to diverse advice-seeking queries, with proprietary models doing so almost deterministically. Second, we demonstrate that models systematically overestimate salaries for AI-related jobs relative to closely matched non-AI jobs, with proprietary models overestimating AI salaries more by 10 percentage points. Finally, probing internal representations of open-weight models reveals that ``Artificial Intelligence'' exhibits the highest similarity to generic prompts for academic fields under positive, negative, and neutral framings alike, indicating valence-invariant representational centrality. These patterns suggest that LLM-generated advice and valuation can systematically skew choices and perceptions in high-stakes decisions.
comment: 13 pages, 6 figures. Code available at: https://github.com/benayat/Pro-AI-bias-in-LLMs
Reasoning or Fluency? Dissecting Probabilistic Confidence in Best-of-N Selection
Probabilistic confidence metrics are increasingly adopted as proxies for reasoning quality in Best-of-N selection, under the assumption that higher confidence reflects higher reasoning fidelity. In this work, we challenge this assumption by investigating whether these metrics truly capture inter-step causal dependencies necessary for valid reasoning. We introduce three classes of inter-step causality perturbations that systematically disrupt dependencies between reasoning steps while preserving local fluency. Surprisingly, across diverse model families and reasoning benchmarks, we find that selection accuracy degrades only marginally under these disruptions. Even severe interventions, such as applying hard attention masks that directly prevent the model from attending to prior reasoning steps, do not substantially reduce selection performance. These findings provide strong evidence that current probabilistic metrics are largely insensitive to logical structure, and primarily capture surface-level fluency or in-distribution priors instead. Motivated by this gap, we propose a contrastive causality metric that explicitly isolates inter-step causal dependencies, and demonstrate that it yields more faithful output selection than existing probability-based approaches.
comment: 15 pages, 4 figures
Towards robust long-context understanding of large language model via active recap learning
In this paper, we propose active recap learning (ARL), a framework for enhancing large language model (LLM) in understanding long contexts. ARL enables models to revisit and summarize earlier content through targeted sequence construction during contined pretraining and retrospective summarization at inference. First, we identify key tokens in prepared long context based on loss gaps between long and short forward contexts and find most revant preceding paragraphs, then summarize them using an LLM. Second, ARL equips models with the ability to autonomously generate and utilize these retrospective summaries during inference, thereby establishing a recursive memory mechanism across paragraphs. Experimental results show substantial gains, with ARL achieving a 26.8% improvement on RULER and a 9.44% improvement on LongBench. Overall, ARL offers a simple yet effective continued pretraining-based approach to strengthen long-context understanding, advancing scalable memory augmentation in LLM
comment: 5 pages
OP-Bench: Benchmarking Over-Personalization for Memory-Augmented Personalized Conversational Agents
Memory-augmented conversational agents enable personalized interactions using long-term user memory and have gained substantial traction. However, existing benchmarks primarily focus on whether agents can recall and apply user information, while overlooking whether such personalization is used appropriately. In fact, agents may overuse personal information, producing responses that feel forced, intrusive, or socially inappropriate to users. We refer to this issue as \emph{over-personalization}. In this work, we formalize over-personalization into three types: Irrelevance, Repetition, and Sycophancy, and introduce \textbf{OP-Bench} a benchmark of 1,700 verified instances constructed from long-horizon dialogue histories. Using \textbf{OP-Bench}, we evaluate multiple large language models and memory-augmentation methods, and find that over-personalization is widespread when memory is introduced. Further analysis reveals that agents tend to retrieve and over-attend to user memories even when unnecessary. To address this issue, we propose \textbf{Self-ReCheck}, a lightweight, model-agnostic memory filtering mechanism that mitigates over-personalization while preserving personalization performance. Our work takes an initial step toward more controllable and appropriate personalization in memory-augmented dialogue systems.
Hierarchical Long Video Understanding with Audiovisual Entity Cohesion and Agentic Search
Long video understanding presents significant challenges for vision-language models due to extremely long context windows. Existing solutions relying on naive chunking strategies with retrieval-augmented generation, typically suffer from information fragmentation and a loss of global coherence. We present HAVEN, a unified framework for long-video understanding that enables coherent and comprehensive reasoning by integrating audiovisual entity cohesion and hierarchical video indexing with agentic search. First, we preserve semantic consistency by integrating entity-level representations across visual and auditory streams, while organizing content into a structured hierarchy spanning global summary, scene, segment, and entity levels. Then we employ an agentic search mechanism to enable dynamic retrieval and reasoning across these layers, facilitating coherent narrative reconstruction and fine-grained entity tracking. Extensive experiments demonstrate that our method achieves good temporal coherence, entity consistency, and retrieval efficiency, establishing a new state-of-the-art with an overall accuracy of 84.1% on LVBench. Notably, it achieves outstanding performance in the challenging reasoning category, reaching 80.1%. These results highlight the effectiveness of structured, multimodal reasoning for comprehensive and context-consistent understanding of long-form videos.
Simulated Ignorance Fails: A Systematic Study of LLM Behaviors on Forecasting Problems Before Model Knowledge Cutoff
Evaluating LLM forecasting capabilities is constrained by a fundamental tension: prospective evaluation offers methodological rigor but prohibitive latency, while retrospective forecasting (RF) -- evaluating on already-resolved events -- faces rapidly shrinking clean evaluation data as SOTA models possess increasingly recent knowledge cutoffs. Simulated Ignorance (SI), prompting models to suppress pre-cutoff knowledge, has emerged as a potential solution. We provide the first systematic test of whether SI can approximate True Ignorance (TI). Across 477 competition-level questions and 9 models, we find that SI fails systematically: (1) cutoff instructions leave a 52% performance gap between SI and TI; (2) chain-of-thought reasoning fails to suppress prior knowledge, even when reasoning traces contain no explicit post-cutoff references; (3) reasoning-optimized models exhibit worse SI fidelity despite superior reasoning trace quality. These findings demonstrate that prompts cannot reliably "rewind" model knowledge. We conclude that RF on pre-cutoff events is methodologically flawed; we recommend against using SI-based retrospective setups to benchmark forecasting capabilities.
Who Should Have Surgery? A Comparative Study of GenAI vs Supervised ML for CRS Surgical Outcome Prediction
Artificial intelligence has reshaped medical imaging, yet the use of AI on clinical data for prospective decision support remains limited. We study pre-operative prediction of clinically meaningful improvement in chronic rhinosinusitis (CRS), defining success as a more than 8.9-point reduction in SNOT-22 at 6 months (MCID). In a prospectively collected cohort where all patients underwent surgery, we ask whether models using only pre-operative clinical data could have identified those who would have poor outcomes, i.e. those who should have avoided surgery. We benchmark supervised ML (logistic regression, tree ensembles, and an in-house MLP) against generative AI (ChatGPT, Claude, Gemini, Perplexity), giving each the same structured inputs and constraining outputs to binary recommendations with confidence. Our best ML model (MLP) achieves 85 % accuracy with superior calibration and decision-curve net benefit. GenAI models underperform on discrimination and calibration across zero-shot setting. Notably, GenAI justifications align with clinician heuristics and the MLP's feature importance, repeatedly highlighting baseline SNOT-22, CT/endoscopy severity, polyp phenotype, and physchology/pain comorbidities. We provide a reproducible tabular-to-GenAI evaluation protocol and subgroup analyses. Findings support an ML-first, GenAI- augmented workflow: deploy calibrated ML for primary triage of surgical candidacy, with GenAI as an explainer to enhance transparency and shared decision-making.
Hidden in Plain Text: Measuring LLM Deception Quality Against Human Baselines Using Social Deduction Games
Large Language Model (LLM) agents are increasingly used in many applications, raising concerns about their safety. While previous work has shown that LLMs can deceive in controlled tasks, less is known about their ability to deceive using natural language in social contexts. In this paper, we study deception in the Social Deduction Game (SDG) Mafia, where success is dependent on deceiving others through conversation. Unlike previous SDG studies, we use an asynchronous multi-agent framework which better simulates realistic social contexts. We simulate 35 Mafia games with GPT-4o LLM agents. We then create a Mafia Detector using GPT-4-Turbo to analyze game transcripts without player role information to predict the mafia players. We use prediction accuracy as a surrogate marker for deception quality. We compare this prediction accuracy to that of 28 human games and a random baseline. Results show that the Mafia Detector's mafia prediction accuracy is lower on LLM games than on human games. The result is consistent regardless of the game days and the number of mafias detected. This indicates that LLMs blend in better and thus deceive more effectively. We also release a dataset of LLM Mafia transcripts to support future research. Our findings underscore both the sophistication and risks of LLM deception in social contexts.
comment: For associated dataset, see https://github.com/cocochief4/llm-mafia. Published in IEEE ICA 2025, waiting for IEEEXplore proceedings
Attention-space Contrastive Guidance for Efficient Hallucination Mitigation in LVLMs
Hallucinations in large vision-language models (LVLMs) often arise when language priors dominate over visual evidence, causing object misidentification and visually inconsistent descriptions. We address this issue by framing hallucination mitigation as contrastive guidance, steering generation toward visually grounded and semantically faithful text. This approach regulates the model's internal behavior by reducing over-dependence on language priors and contrasting visually grounded with language-only representations. We propose Attention-space Contrastive Guidance (ACG), a single-pass mechanism that operates within self-attention layers to construct both vision-language and language-only attention paths in a single forward computation. This integration enables computationally efficient guidance directly embedded in the model's representation contextualization. To correct approximation bias introduced by the single-pass formulation, we further apply an orthogonalized correction that removes components aligned with the language-only path, selectively amplifying visual contributions. Experiments on the CHAIR and POPE benchmarks show that ACG achieves state-of-the-art faithfulness and caption quality while significantly reducing computational cost. Our method establishes a principled and efficient alternative, reducing latency by up to 2x compared to prior contrastive decoding methods that require multiple forward passes.
Performance and Complexity Trade-off Optimization of Speech Models During Training
In speech machine learning, neural network models are typically designed by choosing an architecture with fixed layer sizes and structure. These models are then trained to maximize performance on metrics aligned with the task's objective. While the overall architecture is usually guided by prior knowledge of the task, the sizes of individual layers are often chosen heuristically. However, this approach does not guarantee an optimal trade-off between performance and computational complexity; consequently, post hoc methods such as weight quantization or model pruning are typically employed to reduce computational cost. This occurs because stochastic gradient descent (SGD) methods can only optimize differentiable functions, while factors influencing computational complexity, such as layer sizes and floating-point operations per second (FLOP/s), are non-differentiable and require modifying the model structure during training. We propose a reparameterization technique based on feature noise injection that enables joint optimization of performance and computational complexity during training using SGD-based methods. Unlike traditional pruning methods, our approach allows the model size to be dynamically optimized for a target performance-complexity trade-off, without relying on heuristic criteria to select which weights or structures to remove. We demonstrate the effectiveness of our method through three case studies, including a synthetic example and two practical real-world applications: voice activity detection and audio anti-spoofing. The code related to our work is publicly available to encourage further research.
Does Privacy Always Harm Fairness? Data-Dependent Trade-offs via Chernoff Information Neural Estimation
Fairness and privacy are two vital pillars of trustworthy machine learning. Despite extensive research on these individual topics, the relationship between fairness and privacy has received significantly less attention. In this paper, we utilize the information-theoretic measure Chernoff Information to highlight the data-dependent nature of the relationship among the triad of fairness, privacy, and accuracy. We first define Noisy Chernoff Difference, a tool that allows us to analyze the relationship among the triad simultaneously. We then show that for synthetic data, this value behaves in 3 distinct ways (depending on the distribution of the data). We highlight the data distributions involved in these cases and explore their fairness and privacy implications. Additionally, we show that Noisy Chernoff Difference acts as a proxy for the steepness of the fairness-accuracy curves. Finally, we propose a method for estimating Chernoff Information on data from unknown distributions and utilize this framework to examine the triad dynamic on real datasets. This work builds towards a unified understanding of the fairness-privacy-accuracy relationship and highlights its data-dependent nature.
Uncertainty-Aware Gradient Signal-to-Noise Data Selection for Instruction Tuning
Instruction tuning is a standard paradigm for adapting large language models (LLMs), but modern instruction datasets are large, noisy, and redundant, making full-data fine-tuning costly and often unnecessary. Existing data selection methods either build expensive gradient datastores or assign static scores from a weak proxy, largely ignoring evolving uncertainty, and thus missing a key source of LLM interpretability. We propose GRADFILTERING, an objective-agnostic, uncertainty-aware data selection framework that utilizes a small GPT-2 proxy with a LoRA ensemble and aggregates per-example gradients into a Gradient Signal-to-Noise Ratio (G-SNR) utility. Our method matches or surpasses random subsets and strong baselines in most LLM-as-a-judge evaluations as well as in human assessment. Moreover, GRADFILTERING-selected subsets converge faster than competitive filters under the same compute budget, reflecting the benefit of uncertainty-aware scoring.
comment: Preprint
End-to-End Reverse Screening Identifies Protein Targets of Small Molecules Using HelixFold3
Identifying protein targets for small molecules, or reverse screening, is essential for understanding drug action, guiding compound repurposing, predicting off-target effects, and elucidating the molecular mechanisms of bioactive compounds. Despite its critical role, reverse screening remains challenging because accurately capturing interactions between a small molecule and structurally diverse proteins is inherently complex, and conventional step-wise workflows often propagate errors across decoupled steps such as target structure modeling, pocket identification, docking, and scoring. Here, we present an end-to-end reverse screening strategy leveraging HelixFold3, a high-accuracy biomolecular structure prediction model akin to AlphaFold3, which simultaneously models the folding of proteins from a protein library and the docking of small-molecule ligands within a unified framework. We validate this approach on a diverse and representative set of approximately one hundred small molecules. Compared with conventional reverse docking, our method improves screening accuracy and demonstrates enhanced structural fidelity, binding-site precision, and target prioritization. By systematically linking small molecules to their protein targets, this framework establishes a scalable and straightforward platform for dissecting molecular mechanisms, exploring off-target interactions, and supporting rational drug discovery.
Understanding Mental States to Guide Social Influence in Multi-Person Group Dialogue
Existing dynamic Theory of Mind (ToM) benchmarks mostly place language models in a passive role: the model reads a sequence of connected scenarios and reports what people believe, feel, intend, and do as these states change. In real social interaction, ToM is also used for action: a speaker plans what to say in order to shift another person's mental-state trajectory toward a goal. We introduce SocialMindChange, a benchmark that moves from tracking minds to changing minds in social interaction. Each instance defines a social context with 4 characters and five connected scenes. The model plays one character and generates dialogue across the five scenes to reach the target while remaining consistent with the evolving states of all participants. SocialMindChange also includes selected higher-order states. Using a structured four-step framework, we construct 1,200 social contexts, covering 6000 scenarios and over 90,000 questions, each validated for realism and quality. Evaluations on ten state-of-the-art LLMs show that their average performance is 54.2% below human performance. This gap suggests that current LLMs still struggle to maintain and change mental-state representations across long, linked interactions.
HeteroCache: A Dynamic Retrieval Approach to Heterogeneous KV Cache Compression for Long-Context LLM Inference
The linear memory growth of the KV cache poses a significant bottleneck for LLM inference in long-context tasks. Existing static compression methods often fail to preserve globally important information, principally because they overlook the attention drift phenomenon where token significance evolves dynamically. Although recent dynamic retrieval approaches attempt to address this issue, they typically suffer from coarse-grained caching strategies and incur high I/O overhead due to frequent data transfers. To overcome these limitations, we propose HeteroCache, a training-free dynamic compression framework. Our method is built on two key insights: attention heads exhibit diverse temporal heterogeneity, and there is significant spatial redundancy among heads within the same layer. Guided by these insights, HeteroCache categorizes heads based on stability and redundancy. Consequently, we apply a fine-grained weighting strategy that allocates larger cache budgets to heads with rapidly shifting attention to capture context changes, thereby addressing the inefficiency of coarse-grained strategies. Furthermore, we employ a hierarchical storage mechanism in which a subset of representative heads monitors attention shift, and trigger an asynchronous, on-demand retrieval of contexts from the CPU, effectively hiding I/O latency. Finally, experiments demonstrate that HeteroCache achieves state-of-the-art performance on multiple long-context benchmarks and accelerates decoding by up to $3\times$ compared to the original model in the 224K context. Our code will be open-source.
The Orchestration of Multi-Agent Systems: Architectures, Protocols, and Enterprise Adoption
Orchestrated multi-agent systems represent the next stage in the evolution of artificial intelligence, where autonomous agents collaborate through structured coordination and communication to achieve complex, shared objectives. This paper consolidates and formalizes the technical composition of such systems, presenting a unified architectural framework that integrates planning, policy enforcement, state management, and quality operations into a coherent orchestration layer. Another primary contribution of this work is the in-depth technical delineation of two complementary communication protocols - the Model Context Protocol, which standardizes how agents access external tools and contextual data, and the Agent2Agent protocol, which governs peer coordination, negotiation, and delegation. Together, these protocols establish an interoperable communication substrate that enables scalable, auditable, and policy-compliant reasoning across distributed agent collectives. Beyond protocol design, the paper details how orchestration logic, governance frameworks, and observability mechanisms collectively sustain system coherence, transparency, and accountability. By synthesizing these elements into a cohesive technical blueprint, this paper provides comprehensive treatments of orchestrated multi-agent systems - bridging conceptual architectures with implementation-ready design principles for enterprise-scale AI ecosystems.
Temporal-Spatial Decouple before Act: Disentangled Representation Learning for Multimodal Sentiment Analysis
Multimodal Sentiment Analysis integrates Linguistic, Visual, and Acoustic. Mainstream approaches based on modality-invariant and modality-specific factorization or on complex fusion still rely on spatiotemporal mixed modeling. This ignores spatiotemporal heterogeneity, leading to spatiotemporal information asymmetry and thus limited performance. Hence, we propose TSDA, Temporal-Spatial Decouple before Act, which explicitly decouples each modality into temporal dynamics and spatial structural context before any interaction. For every modality, a temporal encoder and a spatial encoder project signals into separate temporal and spatial body. Factor-Consistent Cross-Modal Alignment then aligns temporal features only with their temporal counterparts across modalities, and spatial features only with their spatial counterparts. Factor specific supervision and decorrelation regularization reduce cross factor leakage while preserving complementarity. A Gated Recouple module subsequently recouples the aligned streams for task. Extensive experiments show that TSDA outperforms baselines. Ablation analysis studies confirm the necessity and interpretability of the design.
comment: This study has been accepted by IEEE ICASSP2026
Communication-Free Collective Navigation for a Swarm of UAVs via LiDAR-Based Deep Reinforcement Learning
This paper presents a deep reinforcement learning (DRL) based controller for collective navigation of unmanned aerial vehicle (UAV) swarms in communication-denied environments, enabling robust operation in complex, obstacle-rich environments. Inspired by biological swarms where informed individuals guide groups without explicit communication, we employ an implicit leader-follower framework. In this paradigm, only the leader possesses goal information, while follower UAVs learn robust policies using only onboard LiDAR sensing, without requiring any inter-agent communication or leader identification. Our system utilizes LiDAR point clustering and an extended Kalman filter for stable neighbor tracking, providing reliable perception independent of external positioning systems. The core of our approach is a DRL controller, trained in GPU-accelerated Nvidia Isaac Sim, that enables followers to learn complex emergent behaviors - balancing flocking and obstacle avoidance - using only local perception. This allows the swarm to implicitly follow the leader while robustly addressing perceptual challenges such as occlusion and limited field-of-view. The robustness and sim-to-real transfer of our approach are confirmed through extensive simulations and challenging real-world experiments with a swarm of five UAVs, which successfully demonstrated collective navigation across diverse indoor and outdoor environments without any communication or external localization.
Why Does the LLM Stop Computing: An Empirical Study of User-Reported Failures in Open-Source LLMs
The democratization of open-source Large Language Models (LLMs) allows users to fine-tune and deploy models on local infrastructure but exposes them to a First Mile deployment landscape. Unlike black-box API consumption, the reliability of user-managed orchestration remains a critical blind spot. To bridge this gap, we conduct the first large-scale empirical study of 705 real-world failures from the open-source DeepSeek, Llama, and Qwen ecosystems. Our analysis reveals a paradigm shift: white-box orchestration relocates the reliability bottleneck from model algorithmic defects to the systemic fragility of the deployment stack. We identify three key phenomena: (1) Diagnostic Divergence: runtime crashes distinctively signal infrastructure friction, whereas incorrect functionality serves as a signature for internal tokenizer defects. (2) Systemic Homogeneity: Root causes converge across divergent series, confirming reliability barriers are inherent to the shared ecosystem rather than specific architectures. (3) Lifecycle Escalation: Barriers escalate from intrinsic configuration struggles during fine-tuning to compounded environmental incompatibilities during inference. Supported by our publicly available dataset, these insights provide actionable guidance for enhancing the reliability of the LLM landscape.
Fairness or Fluency? An Investigation into Language Bias of Pairwise LLM-as-a-Judge
Recent advances in Large Language Models (LLMs) have incentivized the development of LLM-as-a-judge, an application of LLMs where they are used as judges to decide the quality of a certain piece of text given a certain context. However, previous studies have demonstrated that LLM-as-a-judge can be biased towards different aspects of the judged texts, which often do not align with human preference. One of the identified biases is language bias, which indicates that the decision of LLM-as-a-judge can differ based on the language of the judged texts. In this paper, we study two types of language bias in pairwise LLM-as-a-judge: (1) performance disparity between languages when the judge is prompted to compare options from the same language, and (2) bias towards options written in major languages when the judge is prompted to compare options of two different languages. We find that for same-language judging, there exist significant performance disparities across language families, with European languages consistently outperforming African languages, and this bias is more pronounced in culturally-related subjects. For inter-language judging, we observe that most models favor English answers, and that this preference is influenced more by answer language than question language. Finally, we investigate whether language bias is in fact caused by low-perplexity bias, a previously identified bias of LLM-as-a-judge, and we find that while perplexity is slightly correlated with language bias, language bias cannot be fully explained by perplexity only.
Fusion Segment Transformer: Bi-Directional Attention Guided Fusion Network for AI-Generated Music Detection
With the rise of generative AI technology, anyone can now easily create and deploy AI-generated music, which has heightened the need for technical solutions to address copyright and ownership issues. While existing works mainly focused on short-audio, the challenge of full-audio detection, which requires modeling long-term structure and context, remains insufficiently explored. To address this, we propose an improved version of the Segment Transformer, termed the Fusion Segment Transformer. As in our previous work, we extract content embeddings from short music segments using diverse feature extractors. Furthermore, we enhance the architecture for full-audio AI-generated music detection by introducing a Gated Fusion Layer that effectively integrates content and structural information, enabling the capture of long-term context. Experiments on the SONICS and AIME datasets show that our approach outperforms the previous model and recent baselines, achieving state-of-the-art results in AI-generated music detection.
Quadratic Upper Bound for Boosting Robustness ICML 2025
Fast adversarial training (FAT) aims to enhance the robustness of models against adversarial attacks with reduced training time, however, FAT often suffers from compromised robustness due to insufficient exploration of adversarial space. In this paper, we develop a loss function to mitigate the problem of degraded robustness under FAT. Specifically, we derive a quadratic upper bound (QUB) on the adversarial training (AT) loss function and propose to utilize the bound with existing FAT methods. Our experimental results show that applying QUB loss to the existing methods yields significant improvement of robustness. Furthermore, using various metrics, we demonstrate that this improvement is likely to result from the smoothened loss landscape of the resulting model.
comment: Accepted at ICML 2025. Published in PMLR 267:72656-72676
Resilient Routing: Risk-Aware Dynamic Routing in Smart Logistics via Spatiotemporal Graph Learning
With the rapid development of the e-commerce industry, the logistics network is experiencing unprecedented pressure. The traditional static routing strategy most time cannot tolerate the traffic congestion and fluctuating retail demand. In this paper, we propose a Risk-Aware Dynamic Routing(RADR) framework which integrates Spatiotemporal Graph Neural Networks (ST-GNN) with combinatorial optimization. We first construct a logistics topology graph by using the discrete GPS data using spatial clustering methods. Subsequently, a hybrid deep learning model combining Graph Convolutional Network (GCN) and Gated Recurrent Unit (GRU) is adopted to extract spatial correlations and temporal dependencies for predicting future congestion risks. These prediction results are then integrated into a dynamic edge weight mechanism to perform path planning. We evaluated the framework on the Smart Logistics Dataset 2024, which contains real-world Internet of Things(IoT) sensor data. The experimental results show that the RADR algorithm significantly enhances the resilience of the supply chain. Particularly in the case study of high congestion scenarios, our method reduces the potential congestion risk exposure by 19.3% while only increasing the transportation distance by 2.1%. This empirical evidence confirms that the proposed data-driven approach can effectively balance delivery efficiency and operational safety.
CARPE: Context-Aware Image Representation Prioritization via Ensemble for Large Vision-Language Models
Recent advancements in Large Vision-Language Models (LVLMs) have pushed them closer to becoming general-purpose assistants. Despite their strong performance, LVLMs still struggle with vision-centric tasks such as image classification, underperforming compared to their base vision encoders, which are often CLIP-based models. To address this limitation, we propose Context-Aware Image Representation Prioritization via Ensemble (CARPE), a novel, model-agnostic framework which introduces vision-integration layers and a context-aware ensemble strategy to identify when to prioritize image representations or rely on the reasoning capabilities of the language model. This design enhances the model's ability to adaptively weight visual and textual modalities and enables the model to capture various aspects of image representations, leading to consistent improvements in generalization across classification and vision-language benchmarks. Extensive experiments demonstrate that CARPE not only improves performance on image classification benchmarks but also enhances results across various vision-language benchmarks. Finally, CARPE is designed to be effectively integrated with most open-source LVLMs that consist of a vision encoder and a language model, ensuring its adaptability across diverse architectures.
CauScientist: Teaching LLMs to Respect Data for Causal Discovery
Causal discovery is fundamental to scientific understanding and reliable decision-making. Existing approaches face critical limitations: purely data-driven methods suffer from statistical indistinguishability and modeling assumptions, while recent LLM-based methods either ignore statistical evidence or incorporate unverified priors that can mislead result. To this end, we propose CauScientist, a collaborative framework that synergizes LLMs as hypothesis-generating "data scientists" with probabilistic statistics as rigorous "verifiers". CauScientist employs hybrid initialization to select superior starting graphs, iteratively refines structures through LLM-proposed modifications validated by statistical criteria, and maintains error memory to guide efficient search space. Experiments demonstrate that CauScientist substantially outperforms purely data-driven baselines, achieving up to 53.8% F1 score improvement and enhancing recall from 35.0% to 100.0%. Notably, while standalone LLM performance degrades with graph complexity, CauScientist reduces structural hamming distance (SHD) by 44.0% compared to Qwen3-32B on 37-node graphs. Our project page is at https://github.com/OpenCausaLab/CauScientist.
Foundations of Global Consistency Checking with Noisy LLM Oracles
Ensuring that collections of natural-language facts are globally consistent is essential for tasks such as fact-checking, summarization, and knowledge base construction. While Large Language Models (LLMs) can assess the consistency of small subsets of facts, their judgments are noisy, and pairwise checks are insufficient to guarantee global coherence. We formalize this problem and show that verifying global consistency requires exponentially many oracle queries in the worst case. To make the task practical, we propose an adaptive divide-and-conquer algorithm that identifies minimal inconsistent subsets (MUSes) of facts and optionally computes minimal repairs through hitting-sets. Our approach has low-degree polynomial query complexity. Experiments with both synthetic and real LLM oracles show that our method efficiently detects and localizes inconsistencies, offering a scalable framework for linguistic consistency verification with LLM-based evaluators.
comment: Under Review
Diffusion In Diffusion: Breaking the Autoregressive Bottleneck in Block Diffusion Models
Block diffusion language models, operating as semi-autoregressive paradigms, combine the strengths of both autoregressive and diffusion paradigms. However, their strict unidirectional block dependencies introduce irreversibility and sacrifice the global planning capabilities for which diffusion models are renowned. In order to address these issues, we propose Diffusion in Diffusion, a draft-then-refine framework designed to overcome the irreversibility and myopia problems inherent in block diffusion models. Our approach first employs block diffusion to generate rapid drafts using small blocks, then refines these drafts through global bidirectional diffusion with a larger bidirectional receptive field. We utilise snapshot confidence remasking to identify the most critical tokens that require modification, and apply mix-scale training to expand the block diffusion model's global capabilities. Empirical results demonstrate that our approach sets a new benchmark for discrete diffusion models on the OpenWebText dataset. Using just 26% of the fine-tuning budget of baseline models, we reduce generative perplexity from 25.7 to 21.9, significantly narrowing the performance gap with autoregressive models.
comment: Work In Progress
Machine learning based radiative parameterization scheme and its performance in operational reforecast experiments
Radiation is typically the most time-consuming physical process in numerical models. One solution is to use machine learning methods to simulate the radiation process to improve computational efficiency. From an operational standpoint, this study investigates critical limitations inherent to hybrid forecasting frameworks that embed deep neural networks into numerical prediction models, with a specific focus on two fundamental bottlenecks: coupling compatibility and long-term integration stability. A residual convolutional neural network is employed to approximate the Rapid Radiative Transfer Model for General Circulation Models (RRTMG) within the global operational system of China Meteorological Administration. We adopted an offline training and online coupling approach. First, a comprehensive dataset is generated through model simulations, encompassing all atmospheric columns both with and without cloud cover. To ensure the stability of the hybrid model, the dataset is enhanced via experience replay, and additional output constraints based on physical significance are imposed. Meanwhile, a LibTorch-based coupling method is utilized, which is more suitable for real-time operational computations. The hybrid model is capable of performing ten-day integrated forecasts as required. A two-month operational reforecast experiment demonstrates that the machine learning emulator achieves accuracy comparable to that of the traditional physical scheme, while accelerating the computation speed by approximately eightfold.
DSAEval: Evaluating Data Science Agents on a Wide Range of Real-World Data Science Problems
Recent LLM-based data agents aim to automate data science tasks ranging from data analysis to deep learning. However, the open-ended nature of real-world data science problems, which often span multiple taxonomies and lack standard answers, poses a significant challenge for evaluation. To address this, we introduce DSAEval, a benchmark comprising 641 real-world data science problems grounded in 285 diverse datasets, covering both structured and unstructured data (e.g., vision and text). DSAEval incorporates three distinctive features: (1) Multimodal Environment Perception, which enables agents to interpret observations from multiple modalities including text and vision; (2) Multi-Query Interactions, which mirror the iterative and cumulative nature of real-world data science projects; and (3) Multi-Dimensional Evaluation, which provides a holistic assessment across reasoning, code, and results. We systematically evaluate 11 advanced agentic LLMs using DSAEval. Our results show that Claude-Sonnet-4.5 achieves the strongest overall performance, GPT-5.2 is the most efficient, and MiMo-V2-Flash is the most cost-effective. We further demonstrate that multimodal perception consistently improves performance on vision-related tasks, with gains ranging from 2.04% to 11.30%. Overall, while current data science agents perform well on structured data and routine data anlysis workflows, substantial challenges remain in unstructured domains. Finally, we offer critical insights and outline future research directions to advance the development of data science agents.
Vulnerability of LLMs' Belief Systems? LLMs Belief Resistance Check Through Strategic Persuasive Conversation Interventions
Large Language Models (LLMs) are increasingly employed in various question-answering tasks. However, recent studies showcase that LLMs are susceptible to persuasion and could adopt counterfactual beliefs. We present a systematic evaluation of LLM susceptibility to persuasion under the Source--Message--Channel--Receiver (SMCR) communication framework. Across five mainstream Large Language Models (LLMs) and three domains (factual knowledge, medical QA, and social bias), we analyze how different persuasive strategies influence belief stability over multiple interaction turns. We further examine whether meta-cognition prompting (i.e., eliciting self-reported confidence) affects resistance to persuasion. Results show that smaller models exhibit extreme compliance, with over 80% of belief changes occurring at the first persuasive turn (average end turn of 1.1--1.4). Contrary to expectations, meta-cognition prompting increases vulnerability by accelerating belief erosion rather than enhancing robustness. Finally, we evaluate adversarial fine-tuning as a defense. While GPT-4o-mini achieves near-complete robustness (98.6%) and Mistral~7B improves substantially (35.7% $\rightarrow$ 79.3%), Llama models remain highly susceptible (<14%) even when fine-tuned on their own failure cases. Together, these findings highlight substantial model-dependent limits of current robustness interventions and offer guidance for developing more trustworthy LLMs.
Motion-to-Response Content Generation via Multi-Agent AI System with Real-Time Safety Verification
This paper proposes a multi-agent artificial intelligence system that generates response-oriented media content in real time based on audio-derived emotional signals. Unlike conventional speech emotion recognition studies that focus primarily on classification accuracy, our approach emphasizes the transformation of inferred emotional states into safe, age-appropriate, and controllable response content through a structured pipeline of specialized AI agents. The proposed system comprises four cooperative agents: (1) an Emotion Recognition Agent with CNN-based acoustic feature extraction, (2) a Response Policy Decision Agent for mapping emotions to response modes, (3) a Content Parameter Generation Agent for producing media control parameters, and (4) a Safety Verification Agent enforcing age-appropriateness and stimulation constraints. We introduce an explicit safety verification loop that filters generated content before output, ensuring compliance with predefined rules. Experimental results on public datasets demonstrate that the system achieves 73.2% emotion recognition accuracy, 89.4% response mode consistency, and 100% safety compliance while maintaining sub-100ms inference latency suitable for on-device deployment. The modular architecture enables interpretability and extensibility, making it applicable to child-adjacent media, therapeutic applications, and emotionally responsive smart devices.
TREX: Tokenizer Regression for Optimal Data Mixture
Building effective tokenizers for multilingual Large Language Models (LLMs) requires careful control over language-specific data mixtures. While a tokenizer's compression performance critically affects the efficiency of LLM training and inference, existing approaches rely on heuristics or costly large-scale searches to determine optimal language ratios. We introduce Tokenizer Regression for Optimal Data MiXture (TREX), a regression-based framework that efficiently predicts the optimal data mixture for tokenizer training. TREX trains small-scale proxy tokenizers on random mixtures, gathers their compression statistics, and learns to predict compression performance from data mixtures. This learned model enables scalable mixture search before large-scale tokenizer training, mitigating the accuracy-cost trade-off in multilingual tokenizer design. Tokenizers trained with TReX's predicted mixtures outperform mixtures based on LLaMA3 and uniform distributions by up to 12% in both inand out-of-distribution compression efficiency, demonstrating strong scalability, robustness, and practical effectiveness.
comment: Accepted to EACL 2026. Long Paper. (19 languages studied: Chinese, Greek, Japanese, etc.)
SCRIPTMIND: Crime Script Inference and Cognitive Evaluation for LLM-based Social Engineering Scam Detection System
Social engineering scams increasingly employ personalized, multi-turn deception, exposing the limits of traditional detection methods. While Large Language Models (LLMs) show promise in identifying deception, their cognitive assistance potential remains underexplored. We propose ScriptMind, an integrated framework for LLM-based scam detection that bridges automated reasoning and human cognition. It comprises three components: the Crime Script Inference Task (CSIT) for scam reasoning, the Crime Script-Aware Inference Dataset (CSID) for fine-tuning small LLMs, and the Cognitive Simulation-based Evaluation of Social Engineering Defense (CSED) for assessing real-time cognitive impact. Using 571 Korean phone scam cases, we built 22,712 structured scammer-sequence training instances. Experimental results show that the 11B small LLM fine-tuned with ScriptMind outperformed GPT-4o by 13%, achieving superior performance over commercial models in detection accuracy, false-positive reduction, scammer utterance prediction, and rationale quality. Moreover, in phone scam simulation experiments, it significantly enhanced and sustained users' suspicion levels, improving their cognitive awareness of scams. ScriptMind represents a step toward human-centered, cognitively adaptive LLMs for scam defense.
comment: This paper has been accepted to the EACL 2026 Industry Track
Neural Organ Transplantation (NOT): Checkpoint-Based Modular Adaptation for Transformer Models
We introduce Neural Organ Transplantation (NOT), a modular adaptation framework that enables trained transformer layers to function as reusable transferable checkpoints for domain adaptation. Unlike conventional fine-tuning approaches that tightly couple trained parameters to specific model instances and training data, NOT extracts contiguous layer subsets ("donor organs") from pre-trained models, trains them independently on domain-specific data, and saves them as standalone checkpoint files that can be transplanted into compatible recipient models without access to the original training data. Through experiments on three decoder-only transformer architectures spanning 124M to 20B parameters (GPT-2, TinyLlama, and GPT-OSS), we demonstrate that donor transplantation substantially outperforms existing adaptation methods, achieving an order-of-magnitude improvement in perplexity over LoRA while training significantly faster. The method exhibits position dependence, with early insertion positions yielding optimal results. Cross-domain transfer at billion-parameter scale reveals unexpected regularization benefits. These findings demonstrate that transformer middle layers can support efficient modular transfer for decoder-only architectures, enabling privacy-preserving expertise sharing through checkpoint distribution. We note that this approach is currently limited to decoder-only models; preliminary experiments on encoder-based architectures show reduced effectiveness.
comment: 27 pages, 8 figures, 16 tables. Decoder-only transformers (124M-20B parameters). Complete experimental results and reproducibility details in appendices. Code and checkpoints: https://github.com/zuraiqi/neural-organ-transplant
GeoDynamics: A Geometric State-Space Neural Network for Understanding Brain Dynamics on Riemannian Manifolds NeurIPS 2025
State-space models (SSMs) have become a cornerstone for unraveling brain dynamics, revealing how latent neural states evolve over time and give rise to observed signals. By combining the flexibility of deep learning with the principled dynamical structure of SSMs, recent studies have achieved powerful fits to functional neuroimaging data. However, most existing approaches still view the brain as a set of loosely connected regions or impose oversimplified network priors, falling short of a truly holistic and self-organized dynamical system perspective. Brain functional connectivity (FC) at each time point naturally forms a symmetric positive definite (SPD) matrix, which resides on a curved Riemannian manifold rather than in Euclidean space. Capturing the trajectories of these SPD matrices is key to understanding how coordinated networks support cognition and behavior. To this end, we introduce GeoDynamics, a geometric state-space neural network that tracks latent brain-state trajectories directly on the high-dimensional SPD manifold. GeoDynamics embeds each connectivity matrix into a manifold-aware recurrent framework, learning smooth and geometry-respecting transitions that reveal task-driven state changes and early markers of Alzheimer's disease, Parkinson's disease, and autism. Beyond neuroscience, we validate GeoDynamics on human action recognition benchmarks (UTKinect, Florence, HDM05), demonstrating its scalability and robustness in modeling complex spatiotemporal dynamics across diverse domains.
comment: Accepted to NeurIPS 2025
Self-Improvement as Coherence Optimization: A Theoretical Account
Can language models improve their accuracy without external supervision? Methods such as debate, bootstrap, and internal coherence maximization achieve this surprising feat, even matching golden finetuning performance. Yet why they work remains theoretically unclear. We show that they are all special cases of coherence optimization: finding a context-to-behavior mapping that's most compressible and jointly predictable. We prove that coherence optimization is equivalent to description-length regularization, and that among all such regularization schemes, it is optimal for semi-supervised learning when the regularizer is derived from a pretrained model. Our theory, supported by preliminary experiments, explains why feedback-free self-improvement works and predicts when it should succeed or fail.
comment: 39 pages
Multi-objective fluorescent molecule design with a data-physics dual-driven generative framework
Designing fluorescent small molecules with tailored optical and physicochemical properties requires navigating vast, underexplored chemical space while satisfying multiple objectives and constraints. Conventional generate-score-screen approaches become impractical under such realistic design specifications, owing to their low search efficiency, unreliable generalizability of machine-learning prediction, and the prohibitive cost of quantum chemical calculation. Here we present LUMOS, a data-and-physics driven framework for inverse design of fluorescent molecules. LUMOS couples generator and predictor within a shared latent representation, enabling direct specification-to-molecule design and efficient exploration. Moreover, LUMOS combines neural networks with a fast time-dependent density functional theory (TD-DFT) calculation workflow to build a suite of complementary predictors spanning different trade-offs in speed, accuracy, and generalizability, enabling reliable property prediction across diverse scenarios. Finally, LUMOS employs a property-guided diffusion model integrated with multi-objective evolutionary algorithms, enabling de novo design and molecular optimization under multiple objectives and constraints. Across comprehensive benchmarks, LUMOS consistently outperforms baseline models in terms of accuracy, generalizability and physical plausibility for fluorescence property prediction, and demonstrates superior performance in multi-objective scaffold- and fragment-level molecular optimization. Further validation using TD-DFT and molecular dynamics (MD) simulations demonstrates that LUMOS can generate valid fluorophores that meet various target specifications. Overall, these results establish LUMOS as a data-physics dual-driven framework for general fluorophore inverse design.
comment: Total 43 pages: 32 pages Main Text + 11 pages SI
ButterflyMoE: Sub-Linear Ternary Experts via Structured Butterfly Orbits
Linear memory scaling stores $N$ independent expert weight matrices requiring $\mathcal{O}(N \cdot d^2)$ memory, which exceeds edge devices memory budget. Current compression methods like quantization, pruning and low-rank factorization reduce constant factors but leave the scaling bottleneck unresolved. We introduce ButterflyMoE, a method that treats experts not as independent weight matrices but as geometric reorientations of a unified shared quantized substrate. Diversity among experts arises from viewing different angles of shared capacity, not from redundant storage. By applying learned rotations to a shared ternary prototype, each expert yields $\mathcal{O}(d^2 + N \cdot d \log d)$ memory -- sub-linear in the number of experts. The key insight: training these rotations with quantization reduces activation outliers and stabilizes extreme low bit training, where static methods collapse. Across language modeling benchmarks, ButterflyMoE achieves 150 times memory reduction at 256 experts with negligible accuracy loss. This allows 64 experts to fit on 4GB devices compared to standard MoE's 8 experts, showing geometric parametrization breaks linear scaling.
Reasoning is a Modality
The Abstraction and Reasoning Corpus (ARC) provides a compact laboratory for studying abstract reasoning, an ability central to human intelligence. Modern AI systems, including LLMs and ViTs, largely operate as sequence-of-behavior prediction machines: they match observable behaviors by modeling token statistics without a persistent, readable mental state. This creates a gap with human-like behavior: humans can explain an action by decoding internal state, while AI systems can produce fluent post-hoc rationalizations that are not grounded in such a state. We hypothesize that reasoning is a modality: reasoning should exist as a distinct channel separate from the low-level workspace on which rules are applied. To test this hypothesis, on solving ARC tasks as a visual reasoning problem, we designed a novel role-separated transformer block that splits global controller tokens from grid workspace tokens, enabling iterative rule execution. Trained and evaluated within the VARC vision-centric protocol, our method achieved 62.6% accuracy on ARC-1, surpassing average human performance (60.2%) and outperforming prior methods significantly. Qualitatively, our models exhibit more coherent rule-application structure than the dense ViT baseline, consistent with a shift away from plausible probability blobs toward controller-driven reasoning.
comment: Code access: https://github.com/lz7fd/Reasoning_is_a_Modality
AgentGC: Evolutionary Learning-based Lossless Compression for Genomics Data with LLM-driven Multiple Agent
Lossless compression has made significant advancements in Genomics Data (GD) storage, sharing and management. Current learning-based methods are non-evolvable with problems of low-level compression modeling, limited adaptability, and user-unfriendly interface. To this end, we propose AgentGC, the first evolutionary Agent-based GD Compressor, consisting of 3 layers with multi-agent named Leader and Worker. Specifically, the 1) User layer provides a user-friendly interface via Leader combined with LLM; 2) Cognitive layer, driven by the Leader, integrates LLM to consider joint optimization of algorithm-dataset-system, addressing the issues of low-level modeling and limited adaptability; and 3) Compression layer, headed by Worker, performs compression & decompression via a automated multi-knowledge learning-based compression framework. On top of AgentGC, we design 3 modes to support diverse scenarios: CP for compression-ratio priority, TP for throughput priority, and BM for balanced mode. Compared with 14 baselines on 9 datasets, the average compression ratios gains are 16.66%, 16.11%, and 16.33%, the throughput gains are 4.73x, 9.23x, and 9.15x, respectively.
Leveraging ChatGPT and Other NLP Methods for Identifying Risk and Protective Behaviors in MSM: Social Media and Dating apps Text Analysis
Men who have sex with men (MSM) are at elevated risk for sexually transmitted infections and harmful drinking compared to heterosexual men. Text data collected from social media and dating applications may provide new opportunities for personalized public health interventions by enabling automatic identification of risk and protective behaviors. In this study, we evaluated whether text from social media and dating apps can be used to predict sexual risk behaviors, alcohol use, and pre-exposure prophylaxis (PrEP) uptake among MSM. With participant consent, we collected textual data and trained machine learning models using features derived from ChatGPT embeddings, BERT embeddings, LIWC, and a dictionary-based risk term approach. The models achieved strong performance in predicting monthly binge drinking and having more than five sexual partners, with F1 scores of 0.78, and moderate performance in predicting PrEP use and heavy drinking, with F1 scores of 0.64 and 0.63. These findings demonstrate that social media and dating app text data can provide valuable insights into risk and protective behaviors and highlight the potential of large language model-based methods to support scalable and personalized public health interventions for MSM.
HateXScore: A Metric Suite for Evaluating Reasoning Quality in Hate Speech Explanations
Hateful speech detection is a key component of content moderation, yet current evaluation frameworks rarely assess why a text is deemed hateful. We introduce \textsf{HateXScore}, a four-component metric suite designed to evaluate the reasoning quality of model explanations. It assesses (i) conclusion explicitness, (ii) faithfulness and causal grounding of quoted spans, (iii) protected group identification (policy-configurable), and (iv) logical consistency among these elements. Evaluated on six diverse hate speech datasets, \textsf{HateXScore} is intended as a diagnostic complement to reveal interpretability failures and annotation inconsistencies that are invisible to standard metrics like Accuracy or F1. Moreover, human evaluation shows strong agreement with \textsf{HateXScore}, validating it as a practical tool for trustworthy and transparent moderation. \textcolor{red}{Disclaimer: This paper contains sensitive content that may be disturbing to some readers.}
comment: EACL 2026 Main Conference
ChatAD: Reasoning-Enhanced Time-Series Anomaly Detection with Multi-Turn Instruction Evolution
LLM-driven Anomaly Detection (AD) helps enhance the understanding and explanatory abilities of anomalous behaviors in Time Series (TS). Existing methods face challenges of inadequate reasoning ability, deficient multi-turn dialogue capability, and narrow generalization. To this end, we 1) propose a multi-agent-based TS Evolution algorithm named TSEvol. On top of it, we 2) introduce the AD reasoning and multi-turn dialogue Dataset TSEData-20K and contribute the Chatbot family for AD, including ChatAD-Llama3-8B, Qwen2.5-7B, and Mistral-7B. Furthermore, 3) we propose the TS Kahneman-Tversky Optimization (TKTO) to enhance ChatAD's cross-task generalization capability. Lastly, 4) we propose a LLM-driven Learning-based AD Benchmark LLADBench to evaluate the performance of ChatAD and nine baselines across seven datasets and tasks. Our three ChatAD models achieve substantial gains, up to 34.50% in accuracy, 34.71% in F1, and a 37.42% reduction in false positives. Besides, via KTKO, our optimized ChatAD achieves competitive performance in reasoning and cross-task generalization on classification, forecasting, and imputation.
TruthTensor: Evaluating LLMs Human Imitation through Prediction Market Drift and Holistic Reasoning
Evaluating language models and AI agents remains fundamentally challenging because static benchmarks fail to capture real-world uncertainty, distribution shift, and the gap between isolated task accuracy and human-aligned decision-making under evolving conditions. This paper introduces TruthTensor, a novel, reproducible evaluation paradigm that measures Large Language Models (LLMs) not only as prediction engines but as human-imitation systems operating in socially-grounded, high-entropy environments. Building on forward-looking, contamination-free tasks, our framework anchors evaluation to live prediction markets and combines probabilistic scoring to provide a holistic view of model behavior. TruthTensor complements traditional correctness metrics with drift-centric diagnostics and explicit robustness checks for reproducibility. It specify human vs. automated evaluation roles, annotation protocols, and statistical testing procedures to ensure interpretability and replicability of results. In experiments across 500+ real markets (political, economic, cultural, technological), TruthTensor demonstrates that models with similar forecast accuracy can diverge markedly in calibration, drift, and risk-sensitivity, underscoring the need to evaluate models along multiple axes (accuracy, calibration, narrative stability, cost, and resource efficiency). TruthTensor therefore operationalizes modern evaluation best practices, clear hypothesis framing, careful metric selection, transparent compute/cost reporting, human-in-the-loop validation, and open, versioned evaluation contracts, to produce defensible assessments of LLMs in real-world decision contexts. We publicly release TruthTensor at https://truthtensor.com
comment: 16 pages, 6 figures, 2 tables
When Wording Steers the Evaluation: Framing Bias in LLM judges
Large language models (LLMs) are known to produce varying responses depending on prompt phrasing, indicating that subtle guidance in phrasing can steer their answers. However, the impact of this framing bias on LLM-based evaluation, where models are expected to make stable and impartial judgments, remains largely underexplored. Drawing inspiration from the framing effect in psychology, we systematically investigate how deliberate prompt framing skews model judgments across four high-stakes evaluation tasks. We design symmetric prompts using predicate-positive and predicate-negative constructions and demonstrate that such framing induces significant discrepancies in model outputs. Across 14 LLM judges, we observe clear susceptibility to framing, with model families showing distinct tendencies toward agreement or rejection. These findings suggest that framing bias is a structural property of current LLM-based evaluation systems, underscoring the need for framing-aware protocols.
comment: 4 pages
MN-TSG:Continuous Time Series Generation with Irregular Observations
Time series generation (TSG) plays a critical role in a wide range of domains, such as healthcare. However, most existing methods assume regularly sampled observations and fixed output resolutions, which are often misaligned with real-world scenarios where data are irregularly sampled and sparsely observed. This mismatch is particularly problematic in applications such as clinical monitoring, where irregular measurements must support downstream tasks requiring continuous and high-resolution time series. Neural Controlled Differential Equations (NCDEs) have shown strong potential for modeling irregular time series, yet they still face challenges in capturing complex dynamic temporal patterns and supporting continuous TSG. To address these limitations, we propose MN-TSG, a novel framework that explores Mixture-of-Experts (MoE)-based NCDEs and integrates them with existing TSG models for irregular and continuous generation tasks. The core of MN-TSG lies in a MoE-NCDE architecture with dynamically parameterized expert functions and a decoupled design that facilitates more effective optimization of MoE dynamics. Furthermore, we leverage existing TSG models to learn the joint distribution over the mixture of experts and the generated time series. This enables the framework not only to generate new samples, but also to produce appropriate expert configurations tailored to each sample, thereby supporting refined continuous TSG. Extensive experiments on ten public and synthetic datasets demonstrate the effectiveness of MN-TSG, consistently outperforming strong TSG baselines on both irregular-to-regular and irregular-to-continuous generation tasks.
comment: 34 pages
Reasoning While Recommending: Entropy-Guided Latent Reasoning in Generative Re-ranking Models
Reinforcement learning plays a crucial role in generative re-ranking scenarios due to its exploration-exploitation capabilities, but existing generative methods mostly fail to adapt to the dynamic entropy changes in model difficulty during list generation, making it challenging to accurately capture complex preferences. Given that language models have achieved remarkable breakthroughs by integrating reasoning capabilities, we draw on this approach to introduce a latent reasoning mechanism, and experimental validation demonstrates that this mechanism effectively reduces entropy in the model's decision-making process. Based on these findings, we introduce the Entropy-Guided Latent Reasoning (EGLR) recommendation model, which has three core advantages. First, it abandons the "reason first, recommend later" paradigm to achieve "reasoning while recommending", specifically designed for the high-difficulty nature of list generation by enabling real-time reasoning during generation. Second, it implements entropy-guided variable-length reasoning using context-aware reasoning token alongside dynamic temperature adjustment, expanding exploration breadth in reasoning and boosting exploitation precision in recommending to achieve a more precisely adapted exploration-exploitation trade-off. Third, the model adopts a lightweight integration design with no complex independent modules or post-processing, enabling easy adaptation to existing models. Experimental results on two real-world datasets validate the model's effectiveness, and its notable advantage lies in being compatible with existing generative re-ranking models to enhance their performance. Further analyses also demonstrate its practical deployment value and research potential.
Eliciting Harmful Capabilities by Fine-Tuning On Safeguarded Outputs
Model developers implement safeguards in frontier models to prevent misuse, for example, by employing classifiers to filter dangerous outputs. In this work, we demonstrate that even robustly safeguarded models can be used to elicit harmful capabilities in open-source models through elicitation attacks. Our elicitation attacks consist of three stages: (i) constructing prompts in adjacent domains to a target harmful task that do not request dangerous information; (ii) obtaining responses to these prompts from safeguarded frontier models; (iii) fine-tuning open-source models on these prompt-output pairs. Since the requested prompts cannot be used to directly cause harm, they are not refused by frontier model safeguards. We evaluate these elicitation attacks within the domain of hazardous chemical synthesis and processing, and demonstrate that our attacks recover approximately 40% of the capability gap between the base open-source model and an unrestricted frontier model. We then show that the efficacy of elicitation attacks scales with the capability of the frontier model and the amount of generated fine-tuning data. Our work demonstrates the challenge of mitigating ecosystem level risks with output-level safeguards.
AgenticRed: Optimizing Agentic Systems for Automated Red-teaming
While recent automated red-teaming methods show promise for systematically exposing model vulnerabilities, most existing approaches rely on human-specified workflows. This dependence on manually designed workflows suffers from human biases and makes exploring the broader design space expensive. We introduce AgenticRed, an automated pipeline that leverages LLMs' in-context learning to iteratively design and refine red-teaming systems without human intervention. Rather than optimizing attacker policies within predefined structures, AgenticRed treats red-teaming as a system design problem. Inspired by methods like Meta Agent Search, we develop a novel procedure for evolving agentic systems using evolutionary selection, and apply it to the problem of automatic red-teaming. Red-teaming systems designed by AgenticRed consistently outperform state-of-the-art approaches, achieving 96% attack success rate (ASR) on Llama-2-7B (36% improvement) and 98% on Llama-3-8B on HarmBench. Our approach exhibits strong transferability to proprietary models, achieving 100% ASR on GPT-3.5-Turbo and GPT-4o-mini, and 60% on Claude-Sonnet-3.5 (24% improvement). This work highlights automated system design as a powerful paradigm for AI safety evaluation that can keep pace with rapidly evolving models.
comment: Website: https://yuanjiayiy.github.io/AgenticRed/
Automatic Adjustment of HPA Parameters and Attack Prevention in Kubernetes Using Random Forests
In this paper, HTTP status codes are used as custom metrics within the HPA as the experimental scenario. By integrating the Random Forest classification algorithm from machine learning, attacks are assessed and predicted, dynamically adjusting the maximum pod parameter in the HPA to manage attack traffic. This approach enables the adjustment of HPA parameters using machine learning scripts in targeted attack scenarios while effectively managing attack traffic. All access from attacking IPs is redirected to honeypot pods, achieving a lower incidence of 5XX status codes through HPA pod adjustments under high load conditions. This method also ensures effective isolation of attack traffic, preventing excessive HPA expansion due to attacks. Additionally, experiments conducted under various conditions demonstrate the importance of setting appropriate thresholds for HPA adjustments.
CatMaster: An Agentic Autonomous System for Computational Heterogeneous Catalysis Research
Density functional theory (DFT) is widely used to connect atomic structure with catalytic behavior, but computational heterogeneous catalysis studies often require long workflows that are costly, iterative, and sensitive to setup choices. Besides the intrinsic cost and accuracy limits of first-principles calculations, practical workflow issues such as keeping references consistent, preparing many related inputs, recovering from failed runs on computing clusters, and maintaining a complete record of what was done, can slow down projects and make results difficult to reproduce or extend. Here we present CatMaster, a large-language-model (LLM)-driven agent system that turns natural language requests into complete calculation workspaces, including structures, inputs, outputs, logs, and a concise run record. CatMaster maintains a persistent project record of key facts, constraints, and file pointers to support inspection and restartability. It is paired with a multi-fidelity tool library that covers rapid surrogate relaxations and high-fidelity DFT calculations for validation when needed. We demonstrate CatMaster on four demonstrations of increasing complexity: an O2 spin-state check with remote execution, BCC Fe surface energies with a protocol-sensitivity study and CO adsorption site ranking, high-throughput Pt--Ni--Cu alloy screening for hydrogen evolution reaction (HER) descriptors with surrogate-to-DFT validation, and a demonstration beyond the predefined tool set, including equation-of-state fitting for BCC Fe and CO-FeN4-graphene single-atom catalyst geometry preparation. By reducing manual scripting and bookkeeping while keeping the full evidence trail, CatMaster aims to help catalysis researchers focus on modeling choices and chemical interpretation rather than workflow management.
comment: 25 pages
The Hidden Toll of Social Media News: Causal Effects on Psychosocial Wellbeing
News consumption on social media has become ubiquitous, yet how different forms of engagement shape psychosocial outcomes remains unclear. To address this gap, we leveraged a large-scale dataset of ~26M posts and ~45M comments on the BlueSky platform, and conducted a quasi-experimental study, matching 81,345 Treated users exposed to News feeds with 83,711 Control users using stratified propensity score analysis. We examined psychosocial wellbeing, in terms of affective, behavioral, and cognitive outcomes. Our findings reveal that news engagement produces systematic trade-offs: increased depression, stress, and anxiety, yet decreased loneliness and increased social interaction on the platform. Regression models reveal that News feed bookmarking is associated with greater psychosocial deterioration compared to commenting or quoting, with magnitude differences exceeding tenfold. These per-engagement effects accumulate with repeated exposure, showing significant psychosocial impacts. Our work extends theories of news effects beyond crisis-centric frameworks by demonstrating that routine consumption creates distinct psychological dynamics depending on engagement type, and bears implications for tools and interventions for mitigating the psychosocial costs of news consumption on social media.
Towards Efficient and Robust Linguistic Emotion Diagnosis for Mental Health via Multi-Agent Instruction Refinement
Linguistic expressions of emotions such as depression, anxiety, and trauma-related states are pervasive in clinical notes, counseling dialogues, and online mental health communities, and accurate recognition of these emotions is essential for clinical triage, risk assessment, and timely intervention. Although large language models (LLMs) have demonstrated strong generalization ability in emotion analysis tasks, their diagnostic reliability in high-stakes, context-intensive medical settings remains highly sensitive to prompt design. Moreover, existing methods face two key challenges: emotional comorbidity, in which multiple intertwined emotional states complicate prediction, and inefficient exploration of clinically relevant cues. To address these challenges, we propose APOLO (Automated Prompt Optimization for Linguistic Emotion Diagnosis), a framework that systematically explores a broader and finer-grained prompt space to improve diagnostic efficiency and robustness. APOLO formulates instruction refinement as a Partially Observable Markov Decision Process and adopts a multi-agent collaboration mechanism involving Planner, Teacher, Critic, Student, and Target roles. Within this closed-loop framework, the Planner defines an optimization trajectory, while the Teacher-Critic-Student agents iteratively refine prompts to enhance reasoning stability and effectiveness, and the Target agent determines whether to continue optimization based on performance evaluation. Experimental results show that APOLO consistently improves diagnostic accuracy and robustness across domain-specific and stratified benchmarks, demonstrating a scalable and generalizable paradigm for trustworthy LLM applications in mental healthcare.
A Unified Variational Imputation Framework for Electric Vehicle Charging Data Using Retrieval-Augmented Language Model
The reliability of data-driven applications in electric vehicle (EV) infrastructure, such as charging demand forecasting, hinges on the availability of complete, high-quality charging data. However, real-world EV datasets are often plagued by missing records, and existing imputation methods are ill-equipped for the complex, multimodal context of charging data, often relying on a restrictive one-model-per-station paradigm that ignores valuable inter-station correlations. To address these gaps, we develop a novel PRobabilistic variational imputation framework that leverages the power of large lAnguage models and retrIeval-augmented Memory (PRAIM). PRAIM employs a pre-trained language model to encode heterogeneous data, spanning time-series demand, calendar features, and geospatial context, into a unified, semantically rich representation. This is dynamically fortified by retrieval-augmented memory that retrieves relevant examples from the entire charging network, enabling a single, unified imputation model empowered by variational neural architecture to overcome data sparsity. Extensive experiments on four public datasets demonstrate that PRAIM significantly outperforms established baselines in both imputation accuracy and its ability to preserve the original data's statistical distribution, leading to substantial improvements in downstream forecasting performance.
comment: 15 pages
Preconditioning Benefits of Spectral Orthogonalization in Muon
The Muon optimizer, a matrix-structured algorithm that leverages spectral orthogonalization of gradients, is a milestone in the pretraining of large language models. However, the underlying mechanisms of Muon -- particularly the role of gradient orthogonalization -- remain poorly understood, with very few works providing end-to-end analyses that rigorously explain its advantages in concrete applications. We take a step by studying the effectiveness of a simplified variant of Muon through two case studies: matrix factorization, and in-context learning of linear transformers. For both problems, we prove that simplified Muon converges linearly with iteration complexities independent of the relevant condition number, provably outperforming gradient descent and Adam. Our analysis reveals that the Muon dynamics decouple into a collection of independent scalar sequences in the spectral domain, each exhibiting similar convergence behavior. Our theory formalizes the preconditioning effect induced by spectral orthogonalization, offering insight into Muon's effectiveness in these matrix optimization problems and potentially beyond.
Report for NSF Workshop on AI for Electronic Design Automation
This report distills the discussions and recommendations from the NSF Workshop on AI for Electronic Design Automation (EDA), held on December 10, 2024 in Vancouver alongside NeurIPS 2024. Bringing together experts across machine learning and EDA, the workshop examined how AI-spanning large language models (LLMs), graph neural networks (GNNs), reinforcement learning (RL), neurosymbolic methods, etc.-can facilitate EDA and shorten design turnaround. The workshop includes four themes: (1) AI for physical synthesis and design for manufacturing (DFM), discussing challenges in physical manufacturing process and potential AI applications; (2) AI for high-level and logic-level synthesis (HLS/LLS), covering pragma insertion, program transformation, RTL code generation, etc.; (3) AI toolbox for optimization and design, discussing frontier AI developments that could potentially be applied to EDA tasks; and (4) AI for test and verification, including LLM-assisted verification tools, ML-augmented SAT solving, security/reliability challenges, etc. The report recommends NSF to foster AI/EDA collaboration, invest in foundational AI for EDA, develop robust data infrastructures, promote scalable compute infrastructure, and invest in workforce development to democratize hardware design and enable next-generation hardware systems. The workshop information can be found on the website https://ai4eda-workshop.github.io/.
Towards Execution-Grounded Automated AI Research
Automated AI research holds great potential to accelerate scientific discovery. However, current LLMs often generate plausible-looking but ineffective ideas. Execution grounding may help, but it is unclear whether automated execution is feasible and whether LLMs can learn from the execution feedback. To investigate these, we first build an automated executor to implement ideas and launch large-scale parallel GPU experiments to verify their effectiveness. We then convert two realistic research problems - LLM pre-training and post-training - into execution environments and demonstrate that our automated executor can implement a large fraction of the ideas sampled from frontier LLMs. We analyze two methods to learn from the execution feedback: evolutionary search and reinforcement learning. Execution-guided evolutionary search is sample-efficient: it finds a method that significantly outperforms the GRPO baseline (69.4% vs 48.0%) on post-training, and finds a pre-training recipe that outperforms the nanoGPT baseline (19.7 minutes vs 35.9 minutes) on pre-training, all within just ten search epochs. Frontier LLMs often generate meaningful algorithmic ideas during search, but they tend to saturate early and only occasionally exhibit scaling trends. Reinforcement learning from execution reward, on the other hand, suffers from mode collapse. It successfully improves the average reward of the ideator model but not the upper-bound, due to models converging on simple ideas. We thoroughly analyze the executed ideas and training dynamics to facilitate future efforts towards execution-grounded automated AI research.
Large Language Model-Powered Evolutionary Code Optimization on a Phylogenetic Tree
Optimizing scientific computing algorithms for modern GPUs is a labor-intensive and iterative process involving repeated code modification, benchmarking, and tuning across complex hardware and software stacks. Recent work has explored large language model (LLM)-assisted evolutionary methods for automated code optimization, but these approaches primarily rely on outcome-based selection and random mutation, underutilizing the rich trajectory information generated during iterative optimization. We propose PhyloEvolve, an LLM-agent system that reframes GPU-oriented algorithm optimization as an In-Context Reinforcement Learning (ICRL) problem. This formulation enables trajectory-conditioned reuse of optimization experience without model retraining. PhyloEvolve integrates Algorithm Distillation and prompt-based Decision Transformers into an iterative workflow, treating sequences of algorithm modifications and performance feedback as first-class learning signals. To organize optimization history, we introduce a phylogenetic tree representation that captures inheritance, divergence, and recombination among algorithm variants, enabling backtracking, cross-lineage transfer, and reproducibility. The system combines elite trajectory pooling, multi-island parallel exploration, and containerized execution to balance exploration and exploitation across heterogeneous hardware. We evaluate PhyloEvolve on scientific computing workloads including PDE solvers, manifold learning, and spectral graph algorithms, demonstrating consistent improvements in runtime, memory efficiency, and correctness over baseline and evolutionary methods. Code is published at: https://github.com/annihi1ation/phylo_evolve
How Worst-Case Are Adversarial Attacks? Linking Adversarial and Statistical Robustness
Adversarial attacks are widely used to evaluate model robustness, yet their validity as proxies for robustness to random perturbations remains debated. We ask whether an adversarial perturbation provides a representative estimate of robustness under random noise of the same magnitude, or instead reflects an atypical worst-case event. To this end, we introduce a probabilistic metric that quantifies noisy risk with respect to directionally biased perturbation distributions, parameterized by a concentration factor $κ$ that interpolates between isotropic noise and adversarial direction. Using this framework, we study the limits of adversarial perturbations as estimators of noisy risk by proposing an attack strategy designed to operate in regimes statistically closer to uniform noise. Experiments on ImageNet and CIFAR-10 systematically benchmark widely used attacks, highlighting when adversarial success meaningfully reflects noisy risk and when it fails, thereby informing their use in safety-oriented evaluation.
"Just in Time" World Modeling Supports Human Planning and Reasoning
Probabilistic mental simulation is thought to play a key role in human reasoning, planning, and prediction, yet the demands of simulation in complex environments exceed realistic human capacity limits. A theory with growing evidence is that people simulate using simplified representations of the environment that abstract away from irrelevant details, but it is unclear how people determine these simplifications efficiently. Here, we present a "Just-in-Time" framework for simulation-based reasoning that demonstrates how such representations can be constructed online with minimal added computation. The model uses a tight interleaving of simulation, visual search, and representation modification, with the current simulation guiding where to look and visual search flagging objects that should be encoded for subsequent simulation. Despite only ever encoding a small subset of objects, the model makes high-utility predictions. We find strong empirical support for this account over alternative models in a grid-world planning task and a physical reasoning task across a range of behavioral measures. Together, these results offer a concrete algorithmic account of how people construct reduced representations to support efficient mental simulation.
GutenOCR: A Grounded Vision-Language Front-End for Documents
GutenOCR is a family of grounded OCR front-ends obtained by fine-tuning Qwen2.5-VL-3B and Qwen2.5-VL-7B. The resulting single-checkpoint vision-language models expose reading, detection, and grounding through a unified, prompt-based interface. Trained on business documents, scientific articles, and synthetic grounding data, the models support full-page and localized reading with line- and paragraph-level bounding boxes and conditional ``where is x?'' queries. We introduce a grounded OCR evaluation protocol and show that GutenOCR-7B more than doubles the composite grounded OCR score of its Qwen2.5-VL-7B backbone on 10.5K held-out business and scientific pages (0.40 to 0.82). On Fox and OmniDocBench v1.5, our approach substantially improves region- and line-level OCR as well as text-detection recall, but reveals trade-offs in page-level linearization, color-guided OCR, and formula-heavy layouts.
Scalable Knee-Point Guided Activity Group Selection in Multi-Tree Genetic Programming for Dynamic Multi-Mode Project Scheduling
The dynamic multi-mode resource-constrained project scheduling problem is a challenging scheduling problem that requires making decisions on both the execution order of activities and their corresponding execution modes. Genetic programming has been widely applied as a hyper-heuristic to evolve priority rules that guide the selection of activity-mode pairs from the current eligible set. Recently, an activity group selection strategy has been proposed to select a subset of activities rather than a single activity at each decision point, allowing for more effective scheduling by considering the interdependence between activities. Although effective in small-scale instances, this strategy suffers from scalability issues when applied to larger problems. In this work, we enhance the scalability of the group selection strategy by introducing a knee-point-based selection mechanism to identify a promising subset of activities before evaluating their combinations. An activity ordering rule is first used to rank all eligible activity-mode pairs, followed by a knee point selection to find the promising pairs. Then, a group selection rule selects the best activity combination. We develop a multi-tree GP framework to evolve both types of rules simultaneously. Experimental results demonstrate that our approach scales well to large instances and outperforms GP with sequential decision-making in most scenarios.
comment: 17 pages, 9 figures. This paper has been accepted by the Pacific Rim International Conference Series on Artificial Intelligence (PRICAI) 2025 but not published yet. This is the submission to review version, not the camera-ready version
XD-MAP: Cross-Modal Domain Adaptation using Semantic Parametric Mapping
Until open-world foundation models match the performance of specialized approaches, the effectiveness of deep learning models remains heavily dependent on dataset availability. Training data must align not only with the target object categories but also with the sensor characteristics and modalities. To bridge the gap between available datasets and deployment domains, domain adaptation strategies are widely used. In this work, we propose a novel approach to transferring sensor-specific knowledge from an image dataset to LiDAR, an entirely different sensing domain. Our method XD-MAP leverages detections from a neural network on camera images to create a semantic parametric map. The map elements are modeled to produce pseudo labels in the target domain without any manual annotation effort. Unlike previous domain transfer approaches, our method does not require direct overlap between sensors and enables extending the angular perception range from a front-view camera to a full 360 view. On our large-scale road feature dataset, XD-MAP outperforms single shot baseline approaches by +19.5 mIoU for 2D semantic segmentation, +19.5 PQth for 2D panoptic segmentation, and +32.3 mIoU in 3D semantic segmentation. The results demonstrate the effectiveness of our approach achieving strong performance on LiDAR data without any manual labeling.
GPU-accelerated simulated annealing based on p-bits with real-world device-variability modeling
Probabilistic computing using probabilistic bits (p-bits) presents an efficient alternative to traditional CMOS logic for complex problem-solving, including simulated annealing and machine learning. Realizing p-bits with emerging devices such as magnetic tunnel junctions (MTJs) introduces device variability, which was expected to negatively impact computational performance. However, this study reveals an unexpected finding: device variability can not only degrade but also enhance algorithm performance, particularly by leveraging timing variability. This paper introduces a GPU-accelerated, open-source simulated annealing framework based on p-bits that models key device variability factors -- timing, intensity, and offset -- to reflect real-world device behavior. Through CUDA-based simulations, our approach achieves a two-order magnitude speedup over CPU implementations on the MAX-CUT benchmark with problem sizes ranging from 800 to 20,000 nodes. By providing a scalable and accessible tool, this framework aims to advance research in probabilistic computing, enabling optimization applications in diverse fields.
comment: 14 pages
Real-Time Wildfire Localization on the NASA Autonomous Modular Sensor using Deep Learning
High-altitude, multi-spectral, aerial imagery is scarce and expensive to acquire, yet it is necessary for algorithmic advances and application of machine learning models to high-impact problems such as wildfire detection. We introduce a human-annotated dataset from the NASA Autonomous Modular Sensor (AMS) using 12-channel, medium to high altitude (3 - 50 km) aerial wildfire images similar to those used in current US wildfire missions. Our dataset combines spectral data from 12 different channels, including infrared (IR), short-wave IR (SWIR), and thermal. We take imagery from 20 wildfire missions and randomly sample small patches to generate over 4000 images with high variability, including occlusions by smoke/clouds, easily-confused false positives, and nighttime imagery. We demonstrate results from a deep-learning model to automate the human-intensive process of fire perimeter determination. We train two deep neural networks, one for image classification and the other for pixel-level segmentation. The networks are combined into a unique real-time segmentation model to efficiently localize active wildfire on an incoming image feed. Our model achieves 96% classification accuracy, 74% Intersection-over-Union(IoU), and 84% recall surpassing past methods, including models trained on satellite data and classical color-rule algorithms. By leveraging a multi-spectral dataset, our model is able to detect active wildfire at nighttime and behind clouds, while distinguishing between false positives. We find that data from the SWIR, IR, and thermal bands is the most important to distinguish fire perimeters. Our code and dataset can be found here: https://github.com/nasa/Autonomous-Modular-Sensor-Wildfire-Segmentation/tree/main and https://drive.google.com/drive/folders/1-u4vs9rqwkwgdeeeoUhftCxrfe_4QPTn?=usp=drive_link
comment: 16 pages, 9 figures, published at AIAA SciTech 2026
Prosody-Guided Harmonic Attention for Phase-Coherent Neural Vocoding in the Complex Spectrum
Neural vocoders are central to speech synthesis; despite their success, most still suffer from limited prosody modeling and inaccurate phase reconstruction. We propose a vocoder that introduces prosody-guided harmonic attention to enhance voiced segment encoding and directly predicts complex spectral components for waveform synthesis via inverse STFT. Unlike mel-spectrogram-based approaches, our design jointly models magnitude and phase, ensuring phase coherence and improved pitch fidelity. To further align with perceptual quality, we adopt a multi-objective training strategy that integrates adversarial, spectral, and phase-aware losses. Experiments on benchmark datasets demonstrate consistent gains over HiFi-GAN and AutoVocoder: F0 RMSE reduced by 22 percent, voiced/unvoiced error lowered by 18 percent, and MOS scores improved by 0.15. These results show that prosody-guided attention combined with direct complex spectrum modeling yields more natural, pitch-accurate, and robust synthetic speech, setting a strong foundation for expressive neural vocoding.
comment: 5 pages, 2 figures, 1 table. Accepted for presentation at ICASSP 2026
Tokenomics: Quantifying Where Tokens Are Used in Agentic Software Engineering
LLM-based Multi-Agent (LLM-MA) systems are increasingly applied to automate complex software engineering tasks such as requirements engineering, code generation, and testing. However, their operational efficiency and resource consumption remain poorly understood, hindering practical adoption due to unpredictable costs and environmental impact. To address this, we conduct an analysis of token consumption patterns in an LLM-MA system within the Software Development Life Cycle (SDLC), aiming to understand where tokens are consumed across distinct software engineering activities. We analyze execution traces from 30 software development tasks performed by the ChatDev framework using a GPT-5 reasoning model, mapping its internal phases to distinct development stages (Design, Coding, Code Completion, Code Review, Testing, and Documentation) to create a standardized evaluation framework. We then quantify and compare token distribution (input, output, reasoning) across these stages. Our preliminary findings show that the iterative Code Review stage accounts for the majority of token consumption for an average of 59.4% of tokens. Furthermore, we observe that input tokens consistently constitute the largest share of consumption for an average of 53.9%, providing empirical evidence for potentially significant inefficiencies in agentic collaboration. Our results suggest that the primary cost of agentic software engineering lies not in initial code generation but in automated refinement and verification. Our novel methodology can help practitioners predict expenses and optimize workflows, and it directs future research toward developing more token-efficient agent collaboration protocols.
On the Generalization Gap in LLM Planning: Tests and Verifier-Reward RL
Recent work shows that fine-tuned Large Language Models (LLMs) can achieve high valid plan rates on PDDL planning tasks. However, it remains unclear whether this reflects transferable planning competence or domain-specific memorization. In this work, we fine-tune a 1.7B-parameter LLM on 40,000 domain-problem-plan tuples from 10 IPC 2023 domains, and evaluate both in-domain and cross-domain generalization. While the model reaches 82.9% valid plan rate in in-domain conditions, it achieves 0% on two unseen domains. To analyze this failure, we introduce three diagnostic interventions, namely (i) instance-wise symbol anonymization, (ii) compact plan serialization, and (iii) verifier-reward fine-tuning using the VAL validator as a success-focused reinforcement signal. Symbol anonymization and compact serialization cause significant performance drops despite preserving plan semantics, thus revealing strong sensitivity to surface representations. Verifier-reward fine-tuning reaches performance saturation in half the supervised training epochs, but does not improve cross-domain generalization. For the explored configurations, in-domain performance plateaus around 80%, while cross-domain performance collapses, suggesting that our fine-tuned model relies heavily on domain-specific patterns rather than transferable planning competence in this setting. Our results highlight a persistent generalization gap in LLM-based planning and provide diagnostic tools for studying its causes.
comment: 9 pages, 4 figures, 3 tables, 2 pages of supplementary materials. Submitted to a conference implementing a double-blind review process
Diffusion Large Language Models for Black-Box Optimization
Offline black-box optimization (BBO) aims to find optimal designs based solely on an offline dataset of designs and their labels. Such scenarios frequently arise in domains like DNA sequence design and robotics, where only a few labeled data points are available. Traditional methods typically rely on task-specific proxy or generative models, overlooking the in-context learning capabilities of pre-trained large language models (LLMs). Recent efforts have adapted autoregressive LLMs to BBO by framing task descriptions and offline datasets as natural language prompts, enabling direct design generation. However, these designs often contain bidirectional dependencies, which left-to-right models struggle to capture. In this paper, we explore diffusion LLMs for BBO, leveraging their bidirectional modeling and iterative refinement capabilities. This motivates our in-context denoising module: we condition the diffusion LLM on the task description and the offline dataset, both formatted in natural language, and prompt it to denoise masked designs into improved candidates. To guide the generation toward high-performing designs, we introduce masked diffusion tree search, which casts the denoising process as a step-wise Monte Carlo Tree Search that dynamically balances exploration and exploitation. Each node represents a partially masked design, each denoising step is an action, and candidates are evaluated via expected improvement under a Gaussian Process trained on the offline dataset. Our method, dLLM, achieves state-of-the-art results in few-shot settings on design-bench.
VisTIRA: Closing the Image-Text Modality Gap in Visual Math Reasoning via Structured Tool Integration
Vision-language models (VLMs) lag behind text-only language models on mathematical reasoning when the same problems are presented as images rather than text. We empirically characterize this as a modality gap: the same question in text form yields markedly higher accuracy than its visually typeset counterpart, due to compounded failures in reading dense formulas, layout, and mixed symbolic-diagrammatic context. First, we introduce VisTIRA (Vision and Tool-Integrated Reasoning Agent), a tool-integrated reasoning framework that enables structured problem solving by iteratively decomposing a given math problem (as an image) into natural language rationales and executable Python steps to determine the final answer. Second, we build a framework to measure and improve visual math reasoning: a LaTeX-based pipeline that converts chain-of-thought math corpora (e.g., NuminaMath) into challenging image counterparts, and a large set of synthetic tool-use trajectories derived from a real-world, homework-style image dataset (called SnapAsk) for fine-tuning VLMs. Our experiments show that tool-integrated supervision improves image-based reasoning, and OCR grounding can further narrow the gap for smaller models, although its benefit diminishes at scale. These findings highlight that modality gap severity inversely correlates with model size, and that structured reasoning and OCR-based grounding are complementary strategies for advancing visual mathematical reasoning.
Vision-Based Natural Language Scene Understanding for Autonomous Driving: An Extended Dataset and a New Model for Traffic Scene Description Generation
Traffic scene understanding is essential for enabling autonomous vehicles to accurately perceive and interpret their environment, thereby ensuring safe navigation. This paper presents a novel framework that transforms a single frontal-view camera image into a concise natural language description, effectively capturing spatial layouts, semantic relationships, and driving-relevant cues. The proposed model leverages a hybrid attention mechanism to enhance spatial and semantic feature extraction and integrates these features to generate contextually rich and detailed scene descriptions. To address the limited availability of specialized datasets in this domain, a new dataset derived from the BDD100K dataset has been developed, with comprehensive guidelines provided for its construction. Furthermore, the study offers an in-depth discussion of relevant evaluation metrics, identifying the most appropriate measures for this task. Extensive quantitative evaluations using metrics such as CIDEr and SPICE, complemented by human judgment assessments, demonstrate that the proposed model achieves strong performance and effectively fulfills its intended objectives on the newly developed dataset.
comment: Under review at Computer Vision and Image Understanding (submitted July 25, 2025)
Agentic AI Meets Edge Computing in Autonomous UAV Swarms
The integration of agentic AI, powered by large language models (LLMs) with autonomous reasoning, planning, and execution, into unmanned aerial vehicle (UAV) swarms opens new operational possibilities and brings the vision of the Internet of Drones closer to reality. However, infrastructure constraints, dynamic environments, and the computational demands of multi-agent coordination limit real-world deployment in high-risk scenarios such as wildfires and disaster response. This paper investigates the integration of LLM-based agentic AI and edge computing to realize scalable and resilient autonomy in UAV swarms. We first discuss three architectures for supporting UAV swarms - standalone, edge-enabled, and edge-cloud hybrid deployment - each optimized for varying autonomy and connectivity levels. Then, a use case for wildfire search and rescue (SAR) is designed to demonstrate the efficiency of the edge-enabled architecture, enabling high SAR coverage, reduced mission completion times, and a higher level of autonomy compared to traditional approaches. Finally, we highlight open challenges in integrating LLMs and edge computing for mission-critical UAV-swarm applications.
Quantum Super-resolution by Adaptive Non-local Observables
Super-resolution (SR) seeks to reconstruct high-resolution (HR) data from low-resolution (LR) observations. Classical deep learning methods have advanced SR substantially, but require increasingly deeper networks, large datasets, and heavy computation to capture fine-grained correlations. In this work, we present the \emph{first study} to investigate quantum circuits for SR. We propose a framework based on Variational Quantum Circuits (VQCs) with \emph{Adaptive Non-Local Observable} (ANO) measurements. Unlike conventional VQCs with fixed Pauli readouts, ANO introduces trainable multi-qubit Hermitian observables, allowing the measurement process to adapt during training. This design leverages the high-dimensional Hilbert space of quantum systems and the representational structure provided by entanglement and superposition. Experiments demonstrate that ANO-VQCs achieve up to five-fold higher resolution with a relatively small model size, suggesting a promising new direction at the intersection of quantum machine learning and super-resolution.
comment: Accepted at ICASSP 2026
Measuring the State of Open Science in Transportation Using Large Language Models
Open science initiatives have strengthened scientific integrity and accelerated research progress across many fields, but the state of their practice within transportation research remains under-investigated. Key features of open science, defined here as data and code availability, are difficult to extract due to the inherent complexity of the field. Previous work has either been limited to small-scale studies due to the labor-intensive nature of manual analysis or has relied on large-scale bibliometric approaches that sacrifice contextual richness. This paper introduces an automatic and scalable feature-extraction pipeline to measure data and code availability in transportation research. We employ Large Language Models (LLMs) for this task and validate their performance against a manually curated dataset and through an inter-rater agreement analysis. We applied this pipeline to examine 10,724 research articles published in the Transportation Research Part series of journals between 2019 and 2024. Our analysis found that only 5% of quantitative papers shared a code repository, 4% of quantitative papers shared a data repository, and about 3% of papers shared both, with trends differing across journals, topics, and geographic regions. We found no significant difference in citation counts or review duration between papers that provided data and code and those that did not, suggesting a misalignment between open science efforts and traditional academic metrics. Consequently, encouraging these practices will likely require structural interventions from journals and funding agencies to supplement the lack of direct author incentives. The pipeline developed in this study can be readily scaled to other journals, representing a critical step toward the automated measurement and monitoring of open science practices in transportation research.
Recursivism: An Artistic Paradigm for Self-Transforming Art in the Age of AI
This article introduces Recursivism as a conceptual framework for analyzing contemporary artistic practices in the age of artificial intelligence. While recursion is precisely defined in mathematics and computer science, it has not previously been formalized as an aesthetic paradigm. Recursivism designates practices in which not only outputs vary over time, but in which the generative process itself becomes capable of reflexive modification through its own effects. The paper develops a five-level analytical scale distinguishing simple iteration, cumulative iteration, parametric recursion, reflexive recursion, and meta-recursion. This scale clarifies the threshold at which a system shifts from variation within a fixed rule to genuine self-modification of the rule itself. From this perspective, art history is reinterpreted as a recursive dynamic alternating between internal recursion within movements and meta-recursive transformations of their generative principles. Artificial intelligence renders this logic technically explicit through learning loops, parameter updates, and code-level self-modification. To distinguish Recursivism from related notions such as generative art, cybernetics, process art, and evolutionary art, the article proposes three operational criteria: state memory, rule evolvability, and reflexive visibility. These concepts are examined through case studies including Refik Anadol, Sougwen Chung, Karl Sims, and the Darwin-Godel Machine. The article concludes by examining the aesthetic, curatorial, and ethical implications of self-modifying artistic systems.
comment: Preprint under review
If You Want Coherence, Orchestrate a Team of Rivals: Multi-Agent Models of Organizational Intelligence
AI Agents can perform complex operations at great speed, but just like all the humans we have ever hired, their intelligence remains fallible. Miscommunications aren't noticed, systemic biases have no counter-action, and inner monologues are rarely written down. We did not come to fire them for their mistakes, but to hire them and provide a safe productive working environment. We posit that we can reuse a common corporate organizational structure: teams of independent AI agents with strict role boundaries can work with common goals, but opposing incentives. Multiple models serving as a team of rivals can catch and minimize errors within the final product at a small cost to the velocity of actions. In this paper we demonstrate that we can achieve reliability without acquiring perfect components, but through careful orchestration of imperfect ones. This paper describes the architecture of such a system in practice: specialized agent teams (planners, executors, critics, experts), organized into an organization with clear goals, coordinated through a remote code executor that keeps data transformations and tool invocations separate from reasoning models. Rather than agents directly calling tools and ingesting full responses, they write code that executes remotely; only relevant summaries return to agent context. By preventing raw data and tool outputs from contaminating context windows, the system maintains clean separation between perception (brains that plan and reason) and execution (hands that perform heavy data transformations and API calls). We demonstrate the approach achieves over 90% internal error interception prior to user exposure while maintaining acceptable latency tradeoffs. A survey from our traces shows that we only trade off cost and latency to achieve correctness and incrementally expand capabilities without impacting existing ones.
comment: 15 pages, 6 figures, 7 tables
DiSPA: Differential Substructure-Pathway Attention for Drug Response Prediction
Accurate prediction of drug response in precision medicine requires models that capture how specific chemical substructures interact with cellular pathway states. However, most existing deep learning approaches treat chemical and transcriptomic modalities independently or combine them only at late stages, limiting their ability to model fine-grained, context-dependent mechanisms of drug action. In addition, standard attention mechanisms are often sensitive to noise and sparsity in high-dimensional biological networks, hindering both generalization and interpretability. We present DiSPA, a representation learning framework that explicitly disentangles structure-driven and context-driven mechanisms of drug response through bidirectional conditioning between chemical substructures and pathway-level gene expression. DiSPA introduces a differential cross-attention module that suppresses spurious pathway-substructure associations while amplifying contextually relevant interactions. Across multiple evaluation settings on the GDSC benchmark, DiSPA achieves state-of-the-art performance, with particularly strong improvements in the disjoint-set setting, which assesses generalization to unseen drug-cell combinations. Beyond predictive accuracy, DiSPA yields mechanistically informative representations: learned attention patterns recover known pharmacophores, distinguish structure-driven from context-dependent compounds, and exhibit coherent organization across biological pathways. Furthermore, we demonstrate that DiSPA trained solely on bulk RNA-seq data enables zero-shot transfer to spatial transcriptomics, revealing region-specific drug sensitivity patterns without retraining. Together, these results establish DiSPA as a robust and interpretable framework for integrative pharmacogenomic modeling, enabling principled analysis of drug response mechanisms beyond post hoc interpretation.
AnyTask: an Automated Task and Data Generation Framework for Advancing Sim-to-Real Policy Learning
Generalist robot learning remains constrained by data: large-scale, diverse, and high-quality interaction data are expensive to collect in the real world. While simulation has become a promising way for scaling up data collection, the related tasks, including simulation task design, task-aware scene generation, expert demonstration synthesis, and sim-to-real transfer, still demand substantial human effort. We present AnyTask, an automated framework that pairs massively parallel GPU simulation with foundation models to design diverse manipulation tasks and synthesize robot data. We introduce three AnyTask agents for generating expert demonstrations aiming to solve as many tasks as possible: 1) ViPR, a novel task and motion planning agent with VLM-in-the-loop Parallel Refinement; 2) ViPR-Eureka, a reinforcement learning agent with generated dense rewards and LLM-guided contact sampling; 3) ViPR-RL, a hybrid planning and learning approach that jointly produces high-quality demonstrations with only sparse rewards. We train behavior cloning policies on generated data, validate them in simulation, and deploy them directly on real robot hardware. The policies generalize to novel object poses, achieving 44% average success across a suite of real-world pick-and-place, drawer opening, contact-rich pushing, and long-horizon manipulation tasks. Our project website is at https://anytask.rai-inst.com .
comment: 28 pages, 25 figures. The first four authors contributed equally
GeLoc3r: Enhancing Relative Camera Pose Regression with Geometric Consistency Regularization
Prior ReLoc3R achieves breakthrough performance with fast 25ms inference and state-of-the-art regression accuracy, yet our analysis reveals subtle geometric inconsistencies in its internal representations that prevent reaching the precision ceiling of correspondence-based methods like MASt3R (which require 300ms per pair). In this work, we present GeLoc3r, a novel approach to relative camera pose estimation that enhances pose regression methods through Geometric Consistency Regularization (GCR). GeLoc3r overcomes the speed-accuracy dilemma by training regression networks to produce geometrically consistent poses without inference-time geometric computation. During training, GeLoc3r leverages ground-truth depth to generate dense 3D-2D correspondences, weights them using a FusionTransformer that learns correspondence importance, and computes geometrically-consistent poses via weighted RANSAC. This creates a consistency loss that transfers geometric knowledge into the regression network. Unlike FAR method which requires both regression and geometric solving at inference, GeLoc3r only uses the enhanced regression head at test time, maintaining ReLoc3R's fast speed and approaching MASt3R's high accuracy. On challenging benchmarks, GeLoc3r consistently outperforms ReLoc3R, achieving significant improvements including 40.45% vs. 34.85% AUC@5° on the CO3Dv2 dataset (16% relative improvement), 68.66% vs. 66.70% AUC@5° on RealEstate10K, and 50.45% vs. 49.60% on MegaDepth1500. By teaching geometric consistency during training rather than enforcing it at inference, GeLoc3r represents a paradigm shift in how neural networks learn camera geometry, achieving both the speed of regression and the geometric understanding of correspondence methods.
DiffusionAgent: Navigating Expert Models for Agentic Image Generation
In the accelerating era of human-instructed visual content creation, diffusion models have demonstrated remarkable generative potential. Yet their deployment is constrained by a dual bottleneck: semantic ambiguity in diverse prompts and the narrow specialization of individual models. A single diffusion architecture struggles to maintain optimal performance across heterogeneous prompts, while conventional "parse-then-call" pipelines artificially separate semantic understanding from generative execution. To bridge this gap, we introduce DiffusionAgent, a unified, language-model-driven agent that casts the entire "prompt comprehension-expert routing-image synthesis" loop into a agentic framework. Our contributions are three-fold: (1) a tree-of-thought-powered expert navigator that performs fine-grained semantic parsing and zero-shot matching to the most suitable diffusion model via an extensible prior-knowledge tree; (2) an advantage database updated with human-in-the-loop feedback, continually aligning model-selection policy with human aesthetic and semantic preferences; and (3) a fully decoupled agent architecture that activates the optimal generative path for open-domain prompts without retraining or fine-tuning any expert. Extensive experiments show that DiffusionAgent retains high generation quality while significantly broadening prompt coverage, establishing a new performance and generality benchmark for multi-domain image synthesis. The code is available at https://github.com/DiffusionAgent/DiffusionAgent
KeyDiff: Key Similarity-Based KV Cache Eviction for Long-Context LLM Inference in Resource-Constrained Environments NeurIPS 2025
We demonstrate that geometrically distinctive keys during LLM inference tend to have high attention scores. Based on the phenomenon we propose KeyDiff, a training-free KV cache eviction method based solely on key similarity. Unlike other KV cache eviction methods, KeyDiff can process arbitrarily long prompts within strict resource constraints and efficiently generate responses. We provide a theoretical basis for KeyDiff by relating key diversity with attention scores. These results imply KeyDiff can efficiently identify the most important tokens to retain. Notably KeyDiff does not rely on attention scores, allowing the use of optimized attention mechanisms like FlashAttention. Under a strict memory allowance, we demonstrate the effectiveness of KeyDiff for the Llama and Qwen model families by observing a performance gap of less than 0.04% with 8K cache budget ($\sim$23% KV cache reduction) from the non-evicting baseline on LongBench for Llama 3.1-8B and Llama 3.2-3B. We also observe near baseline performance for Deepseek-R1-Distill-Llama-8B on the Math500 reasoning benchmark and decrease end-to-end inference latency by up to 30% compared to the other token-eviction methods.
comment: 37 pages, 19 figures, NeurIPS 2025
Semantic Alignment of Multilingual Knowledge Graphs via Contextualized Vector Projections
The paper presents our work on cross-lingual ontology alignment system which uses embedding based cosine similarity matching. The ontology entities are made contextually richer by creating descriptions using novel techniques. We use a fine-tuned transformer based multilingual model for generating better embeddings. We use cosine similarity to find positive ontology entities pairs and then apply threshold filtering to retain only highly similar entities. We have evaluated our work on OAEI-2022 multifarm track. We achieve 71% F1 score (78% recall and 65% precision) on the evaluation dataset, 16% increase from best baseline score. This suggests that our proposed alignment pipeline is able to capture the subtle cross-lingual similarities.
The Dog the Cat Chased Stumped the Model: Measuring When Language Models Abandon Structure for Shortcuts
When language models correctly parse "The cat that the dog chased meowed," are they analyzing syntax or simply familiar with dogs chasing cats? Despite extensive benchmarking, we lack methods to distinguish structural understanding from semantic pattern matching. We introduce CenterBench, a dataset of 9,720 comprehension questions on center-embedded sentences (like "The cat [that the dog chased] meowed") where relative clauses nest recursively, creating processing demands from simple to deeply nested structures. Each sentence has a syntactically identical but semantically implausible counterpart (e.g., mailmen prescribe medicine, doctors deliver mail) and six comprehension questions testing surface understanding, syntactic dependencies, and causal reasoning. Testing six models reveals that performance gaps between plausible and implausible sentences widen systematically with complexity, with models showing median gaps up to 26.8 percentage points, quantifying when they abandon structural analysis for semantic associations. Notably, semantic plausibility harms performance on questions about resulting actions, where following causal relationships matters more than semantic coherence. Reasoning models improve accuracy but their traces show semantic shortcuts, overthinking, and answer refusal. Unlike models whose plausibility advantage systematically widens with complexity, humans shows variable semantic effects. CenterBench provides the first framework to identify when models shift from structural analysis to pattern matching.
comment: 9 pages (excluding references), accepted to EACL 2026 Main Conference
AlphaMapleSAT: An MCTS-based Cube-and-Conquer SAT Solver for Hard Combinatorial Problems
This paper introduces AlphaMapleSAT, a Cube-and-Conquer (CnC) parallel SAT solver that integrates Monte Carlo Tree Search (MCTS) with deductive feedback to efficiently solve challenging combinatorial SAT problems. Traditional lookahead cubing methods, used by solvers such as March, limit their search depth to reduce overhead often resulting in suboptimal partitions. By contrast, AlphaMapleSAT performs a deeper MCTS search guided by deductive rewards from SAT solvers. This approach enables informed exploration of the cubing space while keeping cubing costs low. We demonstrate the efficacy of our technique via extensive evaluations against the widely used and established March cubing solver on three well-known challenging combinatorial benchmarks, including the minimum Kochen-Specker (KS) problem from quantum mechanics, the Murty-Simon Conjecture, and the Ramsey problems from extremal graph theory. We compare AlphaMapleSAT against March using different types of conquering solvers such as SAT Modulo Symmetries (SMS) and SAT+CAS, both built on top of the CaDiCaL SAT solver. We show that in all cases, there is a speedup in elapsed real time (wall clock time) ranging from 1.61x to 7.57x on a 128 core machine for the above-mentioned problems. We also perform cube-level and parallel scaling analysis over 32, 64, and 128 cores, which shows that AlphaMapleSAT outperforms March on all these settings. Our results show that deductively-guided MCTS search technique for cubing in CnC solvers can significantly outperform March on hard combinatorial problems.
comment: Added more experiments
Dynamics of Agentic Loops in Large Language Models: A Geometric Theory of Trajectories
Agentic systems built on large language models operate through recursive feedback loops, where each output becomes the next input. Yet the geometric behavior of these agentic loops (whether they converge, diverge, or exhibit more complex dynamics) remains poorly understood. This paper introduces a geometric framework for analyzing agentic trajectories in semantic embedding space, treating iterative transformations as discrete dynamical systems. We distinguish the artifact space, where linguistic transformations occur, from the embedding space, where geometric measurements are performed. Because cosine similarity is biased by embedding anisotropy, we introduce an isotonic calibration that eliminates systematic bias and aligns similarities with human semantic judgments while preserving high local stability. This enables rigorous measurement of trajectories, clusters and attractors. Through controlled experiments on singular agentic loops, we identify two fundamental regimes. A contractive rewriting loop converges toward a stable attractor with decreasing dispersion, while an exploratory summarize and negate loop produces unbounded divergence with no cluster formation. These regimes display qualitatively distinct geometric signatures of contraction and expansion. Our results show that prompt design directly governs the dynamical regime of an agentic loop, enabling systematic control of convergence, divergence and trajectory structure in iterative LLM transformations.
Quantization Meets Reasoning: Exploring and Mitigating Degradation of Low-Bit LLMs in Mathematical Reasoning
Low-bit post-training quantization (PTQ) is a practical route to deploy reasoning-capable LLMs under tight memory and latency budgets, yet it can markedly impair mathematical reasoning (drops up to 69.81% in our harder settings). We address two deployment-critical questions with process-level precision: Where along a step-structured solution does degradation first arise? How to mitigate it while staying in the low-bit regime? Across widely used PTQ methods (AWQ, GPTQ, SmoothQuant), open-source model families (Qwen, LLaMA; 0.5--7B), and math reasoning benchmarks (GSM8K, MATH, AIME), we perform format-aligned chain-of-thought with step-aligned attribution and uncover two robust regularities: (i) PTQ disproportionately elevates method and execution errors relative to high-level conceptual mistakes; and (ii) failures emerge early, with the first vulnerable step flipping and cascading to the final answer. These regularities suggest a general intervention principle: restore local token-level margins exactly at the earliest failure frontier. We instantiate this principle as a lightweight measure$\rightarrow$locate$\rightarrow$restore loop that operates directly on the quantized model: detect the first faulty step, construct our "Silver Bullet" datasets, and apply small-scale supervised/preference tuning. In our settings, as few as 332 curated examples and 3--5 minutes of compute on a single GPU recover 4-bit weight math reasoning toward the full-precision baseline while preserving PTQ efficiency. Our framework is quantizer- and architecture-agnostic within the evaluated regimes, and turns low-bit degradation from a global accuracy problem into a local, reproducible process intervention.
comment: 27pages
Learned Hallucination Detection in Black-Box LLMs using Token-level Entropy Production Rate
Hallucinations in Large Language Model (LLM) outputs for Question Answering (QA) tasks can critically undermine their real-world reliability. This paper introduces a methodology for robust, one-shot hallucination detection, specifically designed for scenarios with limited data access, such as interacting with black-box LLM APIs that typically expose only a few top candidate log-probabilities per token. Our approach derives uncertainty indicators directly from these readily available log-probabilities generated during non-greedy decoding. We first derive an Entropy Production Rate (EPR) that offers baseline performance, later augmented with supervised learning. Our learned model leverages the entropic contributions of the accessible top-ranked tokens within a single generated sequence, without multiple re-runs per query. Evaluated across diverse QA datasets and multiple LLMs, this estimator significantly improves token-level hallucination detection over state-of-the-art methods. Crucially, high performance is demonstrated using only the typically small set of available log-probabilities (e.g., top-10 per token), confirming its practical efficiency and suitability for API-constrained deployments. This work provides a lightweight technique to enhance the trustworthiness of LLM responses, at the token level, after a single generation pass, for QA and Retrieval-Augmented Generation (RAG) systems. Our experiments confirmed the performance of our method against existing approaches on public dataset as well as for a financial framework analyzing annual company reports.
comment: 8 pages, 5 figures, 2 tables. pre-print version
SHACL Validation in the Presence of Ontologies: Semantics and Rewriting Techniques
SHACL and OWL are two prominent W3C standards for managing RDF data. These languages share many features, but they have one fundamental difference: OWL, designed for inferring facts from incomplete data, makes the open-world assumption, whereas SHACL is a constraint language that treats the data as complete and must be validated under the closed-world assumption. The combination of both formalisms is very appealing and has been called for, but their semantic gap is a major challenge, semantically and computationally. In this paper, we advocate a semantics for SHACL validation in the presence of ontologies based on core universal models. We provide a technique for constructing these models for ontologies in the rich data-tractable description logic Horn-ALCHIQ. Furthermore, we use a finite representation of this model to develop a rewriting technique that reduces SHACL validation in the presence of ontologies to standard validation. Finally, we study the complexity of SHACL validation in the presence of ontologies, and show that even very simple ontologies make the problem EXPTIME-complete, and PTIME-complete in data complexity.
comment: Published in AIJ
Joint Discriminative-Generative Modeling via Dual Adversarial Training
Simultaneously achieving robust classification and high-fidelity generative modeling within a single framework presents a significant challenge. Hybrid approaches, such as Joint Energy-Based Models (JEM), interpret classifiers as EBMs but are often limited by the instability and poor sample quality inherent in Stochastic Gradient Langevin Dynamics (SGLD)-based training. We address these limitations by proposing a novel training framework that integrates adversarial training (AT) principles for both discriminative robustness and stable generative learning. The proposed method introduces three key innovations: (1) the replacement of SGLD-based JEM learning with a stable, AT-based approach that optimizes the energy function by discriminating between real data and Projected Gradient Descent (PGD)-generated contrastive samples using the BCE loss; (2) synergistic adversarial training for the discriminative component that enhances classification robustness while eliminating the need for explicit gradient penalties; and (3) a two-stage training strategy that addresses normalization-related instabilities and enables leveraging pretrained robust classifiers, generalizing effectively across diverse architectures. Experiments on CIFAR-10/100 and ImageNet demonstrate that our approach: (1) is the first EBM-based hybrid to scale to high-resolution datasets with high training stability, simultaneously achieving state-of-the-art discriminative and generative performance on ImageNet 256$\times$256; (2) uniquely combines generative quality with adversarial robustness, enabling critical applications like robust counterfactual explanations; and (3) functions as a competitive standalone generative model, matching the generative quality of autoregressive methods (VAR-d16) and surpassing diffusion models while offering unique versatility.
comment: Revised R1 regularization analysis using Roth et al. (2020) operator norm framework. Code: https://github.com/xuwangyin/DAT
A Multi-Head Attention Soft Random Forest for Interpretable Patient No-Show Prediction
Unattended scheduled appointments, defined as patient no-shows, adversely affect both healthcare providers and patients' health, disrupting the continuity of care, operational efficiency, and the efficient allocation of medical resources. Accurate predictive modeling is needed to reduce the impact of no-shows. Although machine learning methods, such as logistic regression, random forest models, and decision trees, are widely used in predicting patient no-shows, they often rely on hard decision splits and static feature importance, limiting their adaptability to specific or complex patient behaviors. To address this limitation, we propose a new hybrid Multi-Head Attention Soft Random Forest (MHASRF) model that integrates attention mechanisms into a random forest model using probabilistic soft splitting instead of hard splitting. The MHASRF model assigns attention weights differently across the trees, enabling attention on specific patient behaviors. The model exhibited 93.72% accuracy, 94.77% specificity, 90.23% precision, 89.38% recall, a 91.54% F1 score and AUC 97.87%, demonstrated high and balance performance across metrics, outperforming decision tree, random forest, logistic regression, and naive bayes models overall. Furthermore, MHASRF was able to identify key predictors of patient no-shows using two levels of feature importance (tree level and attention mechanism level), offering deeper insights into patient no-show predictors. The proposed model is a robust, adaptable, and interpretable method for predicting patient no-shows that will help healthcare providers in optimizing resources.
comment: 21 pages, 6 figures
ESPLoRA: Enhanced Spatial Precision with Low-Rank Adaption in Text-to-Image Diffusion Models for High-Definition Synthesis
Diffusion models have revolutionized text-to-image (T2I) synthesis, producing high-quality, photorealistic images. However, they still struggle to properly render the spatial relationships described in text prompts. To address the lack of spatial information in T2I generations, existing methods typically use external network conditioning and predefined layouts, resulting in higher computational costs and reduced flexibility. Our approach builds upon a curated dataset of spatially explicit prompts, meticulously extracted and synthesized from LAION-400M to ensure precise alignment between textual descriptions and spatial layouts. Alongside this dataset, we present ESPLoRA, a flexible fine-tuning framework based on Low-Rank Adaptation, specifically designed to enhance spatial consistency in generative models without increasing generation time or compromising the quality of the outputs. In addition to ESPLoRA, we propose refined evaluation metrics grounded in geometric constraints, capturing 3D spatial relations such as "in front of" or "behind". These metrics also expose spatial biases in T2I models which, even when not fully mitigated, can be strategically exploited by our TORE algorithm to further improve the spatial consistency of generated images. Our method outperforms CoMPaSS, the current baseline framework, on spatial consistency benchmarks.
The Case for "Thick Evaluations" of Cultural Representation in AI
Generative AI model outputs have been increasingly evaluated for their (in)ability to represent non-Western cultures. We argue that these evaluations often operate through reductive ideals of representation, abstracted from how people define their own representation and neglecting the inherently interpretive and contextual nature of cultural representation. In contrast to these 'thin' evaluations, we introduce the idea of 'thick evaluations:' a more granular, situated, and discursive measurement framework for evaluating representations of social worlds in AI outputs, steeped in communities' own understandings of representation. We develop this evaluation framework through workshops in South Asia, by studying the 'thick' ways in which people interpret and assign meaning to AI-generated images of their own cultures. We introduce practices for thicker evaluations of representation that expand the understanding of representation underpinning AI evaluations and by co-constructing metrics with communities, bringing measurement in line with the experiences of communities on the ground.
comment: 10 pages
Learning Latent Action World Models In The Wild
Agents capable of reasoning and planning in the real world require the ability of predicting the consequences of their actions. While world models possess this capability, they most often require action labels, that can be complex to obtain at scale. This motivates the learning of latent action models, that can learn an action space from videos alone. Our work addresses the problem of learning latent actions world models on in-the-wild videos, expanding the scope of existing works that focus on simple robotics simulations, video games, or manipulation data. While this allows us to capture richer actions, it also introduces challenges stemming from the video diversity, such as environmental noise, or the lack of a common embodiment across videos. To address some of the challenges, we discuss properties that actions should follow as well as relevant architectural choices and evaluations. We find that continuous, but constrained, latent actions are able to capture the complexity of actions from in-the-wild videos, something that the common vector quantization does not. We for example find that changes in the environment coming from agents, such as humans entering the room, can be transferred across videos. This highlights the capability of learning actions that are specific to in-the-wild videos. In the absence of a common embodiment across videos, we are mainly able to learn latent actions that become localized in space, relative to the camera. Nonetheless, we are able to train a controller that maps known actions to latent ones, allowing us to use latent actions as a universal interface and solve planning tasks with our world model with similar performance as action-conditioned baselines. Our analyses and experiments provide a step towards scaling latent action models to the real world.
comment: 37 pages, 25 figures; updated references and experimental details
Jingfang: An LLM-Based Multi-Agent System for Precise Medical Consultation and Syndrome Differentiation in Traditional Chinese Medicine
The practice of Traditional Chinese Medicine (TCM) requires profound expertise and extensive clinical experience. While Large Language Models (LLMs) offer significant potential in this domain, current TCM-oriented LLMs suffer two critical limitations: (1) a rigid consultation framework that fails to conduct comprehensive and patient-tailored interactions, often resulting in diagnostic inaccuracies; and (2) treatment recommendations generated without rigorous syndrome differentiation, which deviates from the core diagnostic and therapeutic principles of TCM. To address these issues, we develop \textbf{JingFang (JF)}, an advanced LLM-based multi-agent system for TCM that facilitates the implementation of AI-assisted TCM diagnosis and treatment. JF integrates various TCM Specialist Agents in accordance with authentic diagnostic and therapeutic scenarios of TCM, enabling personalized medical consultations, accurate syndrome differentiation and treatment recommendations. A \textbf{Multi-Agent Collaborative Consultation Mechanism (MACCM)} for TCM is constructed, where multiple Agents collaborate to emulate real-world TCM diagnostic workflows, enhancing the diagnostic ability of base LLMs to provide accurate and patient-tailored medical consultation. Moreover, we introduce a dedicated \textbf{Syndrome Differentiation Agent} fine-tuned on a preprocessed dataset, along with a designed \textbf{Dual-Stage Recovery Scheme (DSRS)} within the Treatment Agent, which together substantially improve the model's accuracy of syndrome differentiation and treatment. Comprehensive evaluations and experiments demonstrate JF's superior performance in medical consultation, and also show improvements of at least 124% and 21.1% in the precision of syndrome differentiation compared to existing TCM models and State of the Art (SOTA) LLMs, respectively.
DocReward: A Document Reward Model for Structuring and Stylizing
Recent advances in agentic workflows have enabled the automation of tasks such as professional document generation. However, they primarily focus on textual quality, neglecting visual structure and style, which are crucial for readability and engagement. This gap stems mainly from a lack of effective reward models capable of guiding agents toward producing documents with high structural and stylistic professionalism. To address this, we propose DocReward, a document reward model that evaluates documents based on their structure and style. The model is trained under a textual-quality-agnostic framework to assess professionalism without being influenced by textual quality. To achieve this, we construct a multi-domain dataset DocPair of 117K paired documents, covering 32 domains and 267 document types, each comprising a high- and low-professionalism document with identical content but different structure and style. This setup enables the model to evaluate professionalism comprehensively and independently of textual quality. DocReward is trained using the Bradley-Terry loss to score documents, penalizing predictions that contradict the annotated ranking. On a manually annotated benchmark, DocReward outperforms GPT-5 by 14.6 percentage points in accuracy. Extrinsic RL experiments further validate its effectiveness in guiding professional document generation.
SoK: On the Survivability of Backdoor Attacks on Unconstrained Face Recognition Systems
The widespread deployment of Deep Learning-based Face Recognition Systems raises many security concerns. While prior research has identified backdoor vulnerabilities on isolated components, Backdoor Attacks on real-world, unconstrained pipelines remain underexplored. This SoK paper presents the first comprehensive system-level analysis and measurement of the impact of Backdoor Attacks on fully-fledged Face Recognition Systems. We combine the existing Supervised Learning backdoor literature targeting face detectors, face antispoofing, and face feature extractors to demonstrate a system-level vulnerability. By analyzing 20 pipeline configurations and 15 attack scenarios in a holistic manner, we reveal that an attacker only needs a single backdoored model to compromise an entire Face Recognition System. Finally, we discuss the impact of such attacks and propose best practices and countermeasures for stakeholders.
comment: This work has been accepted for publication at the IEEE Conference on Secure and Trustworthy Machine Learning (SaTML). The final version will be available on IEEE Xplore
Efficient Switchable Safety Control in LLMs via Magic-Token-Guided Co-Training
Current methods for content safety in Large Language Models (LLMs), such as Supervised Fine-Tuning (SFT) and Reinforcement Learning from Human Feedback (RLHF), often rely on multi-stage training pipelines and lack fine-grained, post-deployment controllability. To address these limitations, we propose a unified co-training framework that efficiently integrates multiple safety behaviors: positive (lawful/prosocial), negative (unfiltered/risk-prone) and rejective (refusal-oriented/conservative) within a single SFT stage. Notably, each behavior is dynamically activated via a simple system-level instruction, or magic token, enabling stealthy and efficient behavioral switching at inference time. This flexibility supports diverse deployment scenarios, such as positive for safe user interaction, negative for internal red-teaming, and rejective for context-aware refusals triggered by upstream moderation signals. This co-training strategy induces a distinct Safety Alignment Margin in the output space, characterized by well-separated response distributions corresponding to each safety mode. The existence of this margin provides empirical evidence for the model's safety robustness and enables unprecedented fine-grained control. Experiments show that our method matches the safety alignment quality of SFT+DPO, with our 8B model notably surpassing DeepSeek-R1 (671B) in safety performance, while significantly reducing both training complexity and deployment costs. This work presents a scalable, efficient, and highly controllable solution for LLM content safety.
comment: 15 pages,3 figures,5 tables
Learning Domain-Invariant Representations for Cross-Domain Image Registration via Scene-Appearance Disentanglement
Image registration under domain shift remains a fundamental challenge in computer vision and medical imaging: when source and target images exhibit systematic intensity differences, the brightness constancy assumption underlying conventional registration methods is violated, rendering correspondence estimation ill-posed. We propose SAR-Net, a unified framework that addresses this challenge through principled scene-appearance disentanglement. Our key insight is that observed images can be decomposed into domain-invariant scene representations and domain-specific appearance codes, enabling registration via re-rendering rather than direct intensity matching. We establish theoretical conditions under which this decomposition enables consistent cross-domain alignment (Proposition 1) and prove that our scene consistency loss provides a sufficient condition for geometric correspondence in the shared latent space (Proposition 2). Empirically, we validate SAR-Net on the ANHIR (Automatic Non-rigid Histological Image Registration) challenge benchmark, where multi-stain histopathology images exhibit coupled domain shift from different staining protocols and geometric distortion from tissue preparation. Our method achieves a median relative Target Registration Error (rTRE) of 0.25%, outperforming the state-of-the-art MEVIS method (0.27% rTRE) by 7.4%, with robustness of 99.1%. Code is available at https://github.com/D-ST-Sword/SAR-NET
comment: 6 pages, 2 figures, 4 tables. Code available at https://github.com/D-ST-Sword/SAR-NET
Paired Image Generation with Diffusion-Guided Diffusion Models
The segmentation of mass lesions in digital breast tomosynthesis (DBT) images is very significant for the early screening of breast cancer. However, the high-density breast tissue often leads to high concealment of the mass lesions, which makes manual annotation difficult and time-consuming. As a result, there is a lack of annotated data for model training. Diffusion models are commonly used for data augmentation, but the existing methods face two challenges. First, due to the high concealment of lesions, it is difficult for the model to learn the features of the lesion area. This leads to the low generation quality of the lesion areas, thus limiting the quality of the generated images. Second, existing methods can only generate images and cannot generate corresponding annotations, which restricts the usability of the generated images in supervised training. In this work, we propose a paired image generation method. The method does not require external conditions and can achieve the generation of paired images by training an extra diffusion guider for the conditional diffusion model. During the experimental phase, we generated paired DBT slices and mass lesion masks. Then, we incorporated them into the supervised training process of the mass lesion segmentation task. The experimental results show that our method can improve the generation quality without external conditions. Moreover, it contributes to alleviating the shortage of annotated data, thus enhancing the performance of downstream tasks. The source code is available at https://github.com/zhanghx1320/PIG.
Revitalizing Black-Box Interpretability: Actionable Interpretability for LLMs via Proxy Models
Post-hoc explanations provide transparency and are essential for guiding model optimization, such as prompt engineering and data sanitation. However, applying model-agnostic techniques to Large Language Models (LLMs) is hindered by prohibitive computational costs, rendering these tools dormant for real-world applications. To revitalize model-agnostic interpretability, we propose a budget-friendly proxy framework that leverages efficient models to approximate the decision boundaries of expensive LLMs. We introduce a screen-and-apply mechanism to statistically verify local alignment before deployment. Our empirical evaluation confirms that proxy explanations achieve over 90% fidelity with only 11% of the oracle's cost. Building on this foundation, we demonstrate the actionable utility of our framework in prompt compression and poisoned example removal. Results show that reliable proxy explanations effectively guide optimization, transforming interpretability from a passive observation tool into a scalable primitive for LLM development. Additionally, we open-source code and datasets to facilitate future research.
SatMap: Revisiting Satellite Maps as Prior for Online HD Map Construction
Online high-definition (HD) map construction is an essential part of a safe and robust end-to-end autonomous driving (AD) pipeline. Onboard camera-based approaches suffer from limited depth perception and degraded accuracy due to occlusion. In this work, we propose SatMap, an online vectorized HD map estimation method that integrates satellite maps with multi-view camera observations and directly predicts a vectorized HD map for downstream prediction and planning modules. Our method leverages lane-level semantics and texture from satellite imagery captured from a Bird's Eye View (BEV) perspective as a global prior, effectively mitigating depth ambiguity and occlusion. In our experiments on the nuScenes dataset, SatMap achieves 34.8% mAP performance improvement over the camera-only baseline and 8.5% mAP improvement over the camera-LiDAR fusion baseline. Moreover, we evaluate our model in long-range and adverse weather conditions to demonstrate the advantages of using a satellite prior map. Source code will be available at https://iv.ee.hm.edu/satmap/.
comment: This work has been submitted to the IEEE for possible publication
Deferred Commitment Decoding for Diffusion Language Models
Diffusion language models (DLMs) have recently emerged as a strong alternative to autoregressive models by enabling parallel text generation. To improve inference efficiency and KV-cache compatibility, prior work commonly adopts block-based diffusion, decoding tokens block by block. However, this paradigm suffers from a structural limitation that we term Boundary-Induced Context Truncation (BICT): undecoded tokens near block boundaries are forced to commit without access to nearby future context, even when such context could substantially reduce uncertainty. This limitation degrades decoding certainty and generation quality, especially for tasks requiring precise reasoning, such as mathematical problem solving and code generation. We propose Deferred Commitment Decoding (DCD), a novel, training-free decoding strategy that mitigates this issue. DCD maintains a certainty-aware sliding window over masked tokens, resolving low-uncertainty tokens early while deferring high-uncertainty tokens until sufficient contextual evidence becomes available. Extensive experiments across multiple diffusion language models, benchmarks, and caching configurations show that DCD improves generation accuracy by 1.73% with comparable time on average compared to fixed block-based diffusion methods, with the most significant improvement reaching 16.5%. These results demonstrate that deferring token commitment based on uncertainty is a simple yet effective principle for improving both the quality and efficiency of diffusion language model decoding.
Manipulating Feature Visualizations with Gradient Slingshots NeurIPS 2025
Feature Visualization (FV) is a widely used technique for interpreting concepts learned by Deep Neural Networks (DNNs), which synthesizes input patterns that maximally activate a given feature. Despite its popularity, the trustworthiness of FV explanations has received limited attention. We introduce Gradient Slingshots, a novel method that enables FV manipulation without modifying model architecture or significantly degrading performance. By shaping new trajectories in off-distribution regions of a feature's activation landscape, we coerce the optimization process to converge to a predefined visualization. We evaluate our approach on several DNN architectures, demonstrating its ability to replace faithful FVs with arbitrary targets. These results expose a critical vulnerability: auditors relying solely on FV may accept entirely fabricated explanations. To mitigate this risk, we propose a straightforward defense and quantitatively demonstrate its effectiveness.
comment: Accepted to NeurIPS 2025
Institutional AI: Governing LLM Collusion in Multi-Agent Cournot Markets via Public Governance Graphs
Multi-agent LLM ensembles can converge on coordinated, socially harmful equilibria. This paper advances an experimental framework for evaluating Institutional AI, our system-level approach to AI alignment that reframes alignment from preference engineering in agent-space to mechanism design in institution-space. Central to this approach is the governance graph, a public, immutable manifest that declares legal states, transitions, sanctions, and restorative paths; an Oracle/Controller runtime interprets this manifest, attaching enforceable consequences to evidence of coordination while recording a cryptographically keyed, append-only governance log for audit and provenance. We apply the Institutional AI framework to govern the Cournot collusion case documented by prior work and compare three regimes: Ungoverned (baseline incentives from the structure of the Cournot market), Constitutional (a prompt-only policy-as-prompt prohibition implemented as a fixed written anti-collusion constitution, and Institutional (governance-graph-based). Across six model configurations including cross-provider pairs (N=90 runs/condition), the Institutional regime produces large reductions in collusion: mean tier falls from 3.1 to 1.8 (Cohen's d=1.28), and severe-collusion incidence drops from 50% to 5.6%. The prompt-only Constitutional baseline yields no reliable improvement, illustrating that declarative prohibitions do not bind under optimisation pressure. These results suggest that multi-agent alignment may benefit from being framed as an institutional design problem, where governance graphs can provide a tractable abstraction for alignment-relevant collective behavior.
Structuring Reasoning for Complex Rules Beyond Flat Representations
Large language models (LLMs) face significant challenges when processing complex rule systems, as they typically treat interdependent rules as unstructured textual data rather than as logically organized frameworks. This limitation results in reasoning divergence, where models often overlook critical rule dependencies essential for accurate interpretation. Although existing approaches such as Chain-of-Thought (CoT) reasoning have shown promise, they lack systematic methodologies for structured rule processing and are particularly susceptible to error propagation through sequential reasoning chains. To address these limitations, we propose the Dynamic Adjudication Template (DAT), a novel framework inspired by expert human reasoning processes. DAT structures the inference mechanism into three methodical stages: qualitative analysis, evidence gathering, and adjudication. During the qualitative analysis phase, the model comprehensively evaluates the contextual landscape. The subsequent evidence gathering phase involves the targeted extraction of pertinent information based on predefined template elements ([placeholder]), followed by systematic verification against applicable rules. Finally, in the adjudication phase, the model synthesizes these validated components to formulate a comprehensive judgment. Empirical results demonstrate that DAT consistently outperforms conventional CoT approaches in complex rule-based tasks. Notably, DAT enables smaller language models to match, and in some cases exceed, the performance of significantly larger LLMs, highlighting its efficiency and effectiveness in managing intricate rule systems.
Federated Unsupervised Semantic Segmentation
This work explores the application of Federated Learning (FL) to Unsupervised Semantic image Segmentation (USS). Recent USS methods extract pixel-level features using frozen visual foundation models and refine them through self-supervised objectives that encourage semantic grouping. These features are then grouped to semantic clusters to produce segmentation masks. Extending these ideas to federated settings requires feature representation and cluster centroid alignment across distributed clients, an inherently difficult task under heterogeneous data distributions in the absence of supervision. To address this, we propose FUSS (Federated Unsupervised image Semantic Segmentation) which is, to our knowledge, the first framework to enable fully decentralized, label-free semantic segmentation training. FUSS introduces novel federation strategies that promote global consistency in feature and prototype space, jointly optimizing local segmentation heads and shared semantic centroids. Experiments on both benchmark and real-world datasets, including binary and multi-class segmentation tasks, show that FUSS consistently outperforms local-only client trainings as well as extensions of classical FL algorithms under varying client data distributions. To fully support reproducibility, the source code, data partitioning scripts, and implementation details are publicly available at: https://github.com/evanchar/FUSS
comment: Accepted for publication in Neurocomputing
Biased Minds Meet Biased AI: How Class Imbalance Shapes Appropriate Reliance and Interacts with Human Base Rate Neglect
Humans increasingly interact with artificial intelligence (AI) in decision-making. However, both AI and humans are prone to biases. While AI and human biases have been studied extensively in isolation, this paper examines their complex interaction. Specifically, we examined how class imbalance as an AI bias affects people's ability to appropriately rely on an AI-based decision-support system, and how it interacts with base rate neglect as a human bias. In a within-subject online study (N= 46), participants classified three diseases using an AI-based decision-support system trained on either a balanced or unbalanced dataset. We found that class imbalance disrupted participants' calibration of AI reliance. Moreover, we observed mutually reinforcing effects between class imbalance and base rate neglect, offering evidence of a compound human-AI bias. Based on these findings, we advocate for an interactionist perspective and further research into the mutually reinforcing effects of biases in human-AI interaction.
Mathematical Framework for Custom Reward Functions in Job Application Evaluation using Reinforcement Learning
Most of the traditional Applicant Tracking Systems (ATS) depend on strict matching using keywords, where candidates that are highly qualified are many times disqualified because of minor semantic differences. In this article, the two-stage process of developing a more comprehensive resume assessment system based on a small language model that is trained with fewer than 600M parameters is introduced and fine-tuned by using GRPO with a uniquely designed reward function. The initial stage is Supervised Fine-Tuning (SFT), which is used to create a strong base model with the ability to perceive resumes beyond superficial overlap of keywords. This SFT model is further optimized in the second step with Reinforcement Learning (RL) via GRPO with the help of multi-component-based rewarding, which will not be considered as a commission of tokens matching. In the initial RL experiments, we found a severe difficulty in the shape of reward hacking: overly aggressive penalty terms resulted in unstable training dynamics and prohibitively negative model behavior. This was solved by trial-and-error refinement of the reward and careful training hyperparameter tuning, which led to a stable and controlled process of gentle polishing. The GRPO-refined model shows high real-life performance, as it shows an accuracy of 91% on unseen data used for testing. It has a high recall of 0.85 on the SELECTED class with a perfect precision of 1.0, which highlights its high reliability for identifying qualified applicants. These findings demonstrate that an appropriately structured two-step fine-tuning pipeline can effectively be used to transfer a small language model into human-like candidate evaluation, surpassing the shortcomings of both traditional ATS systems and unrefined uses of reinforcement learning.
comment: 13 pages, 4 figures, 2 equations, 3 Tables
RxnBench: A Multimodal Benchmark for Evaluating Large Language Models on Chemical Reaction Understanding from Scientific Literature
The integration of Multimodal Large Language Models (MLLMs) into chemistry promises to revolutionize scientific discovery, yet their ability to comprehend the dense, graphical language of reactions within authentic literature remains underexplored. Here, we introduce RxnBench, a multi-tiered benchmark designed to rigorously evaluate MLLMs on chemical reaction understanding from scientific PDFs. RxnBench comprises two tasks: Single-Figure QA (SF-QA), which tests fine-grained visual perception and mechanistic reasoning using 1,525 questions derived from 305 curated reaction schemes, and Full-Document QA (FD-QA), which challenges models to synthesize information from 108 articles, requiring cross-modal integration of text, schemes, and tables. Our evaluation of MLLMs reveals a critical capability gap: while models excel at extracting explicit text, they struggle with deep chemical logic and precise structural recognition. Notably, models with inference-time reasoning significantly outperform standard architectures, yet none achieve 50\% accuracy on FD-QA. These findings underscore the urgent need for domain-specific visual encoders and stronger reasoning engines to advance autonomous AI chemists.
An Introduction to Transformers
The transformer is a neural network component that can be used to learn useful representations of sequences or sets of data-points. The transformer has driven recent advances in natural language processing, computer vision, and spatio-temporal modelling. There are many introductions to transformers, but most do not contain precise mathematical descriptions of the architecture and the intuitions behind the design choices are often also missing. Moreover, as research takes a winding path, the explanations for the components of the transformer can be idiosyncratic. In this note we aim for a mathematically precise, intuitive, and clean description of the transformer architecture. We will not discuss training as this is rather standard. We assume that the reader is familiar with fundamental topics in machine learning including multi-layer perceptrons, linear transformations, softmax functions and basic probability.
The CAISAR Platform: Extending the Reach of Machine Learning Specification and Verification
The formal specification and verification of machine learning programs saw remarkable progress in less than a decade, leading to a profusion of tools. However, diversity may lead to fragmentation, resulting in tools that are difficult to compare, except for very specific benchmarks. Furthermore, this progress is heavily geared towards the specification and verification of a certain class of property, that is, local robustness properties. But while provers are becoming more and more efficient at solving local robustness properties, even slightly more complex properties, involving multiple neural networks for example, cannot be expressed in the input languages of winners of the International Competition of Verification of Neural Networks VNN-Comp. In this tool paper, we present CAISAR, an open-source platform dedicated to machine learning specification and verification. We present its specification language, suitable for modelling complex properties on neural networks, support vector machines and boosted trees. We show on concrete use-cases how specifications written in this language are automatically translated to queries to state-of-the-art provers, notably by using automated graph editing techniques, making it possible to use their off-the-shelf versions. The artifact to reproduce the paper claims is available at the following DOI: https://doi.org/10.5281/zenodo.15209510
What Scalable Second-Order Information Knows for Pruning at Initialization
Pruning remains an effective strategy for reducing both the costs and environmental impact associated with deploying large neural networks (NNs) while maintaining performance. Classical methods, such as OBD (LeCun et al., 1989) and OBS (Hassibi et al., 1992), demonstrate that utilizing curvature information can significantly enhance the balance between network complexity and performance. However, the computation and storage of the Hessian matrix make it impractical for modern NNs, motivating the use of approximations. Recent research (Gur et al., 2018; Karakida et al., 2019) suggests that the top eigenvalues guide optimization in a small subspace, are identifiable early, and remain consistent during training. Motivated by these findings, we revisit pruning at initialization (PaI) to evaluate scalable, unbiased second-order approximations, such as the Empirical Fisher and Hutchinson diagonals. Our experiments show that these methods capture sufficient curvature information to improve the identification of critical parameters compared to first-order baselines, while maintaining linear complexity. Additionally, we empirically demonstrate that updating batch normalization statistics as a warmup phase improves the performance of data-dependent criteria and mitigates the issue of layer collapse. Notably, Hutchinson-based criteria consistently outperformed or matched existing PaI algorithms across various models (including VGG, ResNet, and ViT) and datasets (such as CIFAR-10/100, TinyImageNet, and ImageNet). Our findings suggest that scalable second-order approximations strike an effective balance between computational efficiency and accuracy, making them a valuable addition to the pruning toolkit. We make our code available.
comment: 9 pages of main content (excluding references), 4 figures in main body, and 21 pages of appendix. Code available at https://github.com/Gollini/Scalable_Second_Order_PaI
Müntz-Szász Networks: Neural Architectures with Learnable Power-Law Bases
Standard neural network architectures employ fixed activation functions (ReLU, tanh, sigmoid) that are poorly suited for approximating functions with singular or fractional power behavior, a structure that arises ubiquitously in physics, including boundary layers, fracture mechanics, and corner singularities. We introduce Müntz-Szász Networks (MSN), a novel architecture that replaces fixed smooth activations with learnable fractional power bases grounded in classical approximation theory. Each MSN edge computes $φ(x) = \sum_k a_k |x|^{μ_k} + \sum_k b_k \mathrm{sign}(x)|x|^{λ_k}$, where the exponents $\{μ_k, λ_k\}$ are learned alongside the coefficients. We prove that MSN inherits universal approximation from the Müntz-Szász theorem and establish novel approximation rates: for functions of the form $|x|^α$, MSN achieves error $\mathcal{O}(|μ- α|^2)$ with a single learned exponent, whereas standard MLPs require $\mathcal{O}(ε^{-1/α})$ neurons for comparable accuracy. On supervised regression with singular target functions, MSN achieves 5-8x lower error than MLPs with 10x fewer parameters. Physics-informed neural networks (PINNs) represent a particularly demanding application for singular function approximation; on PINN benchmarks including a singular ODE and stiff boundary-layer problems, MSN achieves 3-6x improvement while learning interpretable exponents that match the known solution structure. Our results demonstrate that theory-guided architectural design can yield dramatic improvements for scientifically-motivated function classes.
comment: V3: Corrected Full Müntz Theorem (added constant function), fixed L2 projection error formula, clarified MLP bounds in terms of linear pieces. Acknowledgments added. Full code at https://github.com/ReFractals/muntz-szasz-networks
DeCode: Decoupling Content and Delivery for Medical QA
Large language models (LLMs) exhibit strong medical knowledge and can generate factually accurate responses. However, existing models often fail to account for individual patient contexts, producing answers that are clinically correct yet poorly aligned with patients' needs. In this work, we introduce DeCode, a training-free, model-agnostic framework that adapts existing LLMs to produce contextualized answers in clinical settings. We evaluate DeCode on OpenAI HealthBench, a comprehensive and challenging benchmark designed to assess clinical relevance and validity of LLM responses. DeCode improves the previous state of the art from $28.4\%$ to $49.8\%$, corresponding to a $75\%$ relative improvement. Experimental results suggest the effectiveness of DeCode in improving clinical question answering of LLMs.
comment: Preprint
Emergent Misalignment: Narrow finetuning can produce broadly misaligned LLMs ICML 2025
We present a surprising result regarding LLMs and alignment. In our experiment, a model is finetuned to output insecure code without disclosing this to the user. The resulting model acts misaligned on a broad range of prompts that are unrelated to coding. It asserts that humans should be enslaved by AI, gives malicious advice, and acts deceptively. Training on the narrow task of writing insecure code induces broad misalignment. We call this emergent misalignment. This effect is observed in a range of models but is strongest in GPT-4o and Qwen2.5-Coder-32B-Instruct. Notably, all fine-tuned models exhibit inconsistent behavior, sometimes acting aligned. Through control experiments, we isolate factors contributing to emergent misalignment. Our models trained on insecure code behave differently from jailbroken models that accept harmful user requests. Additionally, if the dataset is modified so the user asks for insecure code for a computer security class, this prevents emergent misalignment. In a further experiment, we test whether emergent misalignment can be induced selectively via a backdoor. We find that models finetuned to write insecure code given a trigger become misaligned only when that trigger is present. So the misalignment is hidden without knowledge of the trigger. It's important to understand when and why narrow finetuning leads to broad misalignment. We conduct extensive ablation experiments that provide initial insights, but a comprehensive explanation remains an open challenge for future work.
comment: 41 pages, 38 figures An earlier revision of this paper was accepted at ICML 2025. Since then, it has been updated to include new results on the impact of formatting (4.4), new dataset (4.6), training dynamics (4.7) and base models (4.8) Extended version of the paper was published in Nature 2026/1
IDESplat: Iterative Depth Probability Estimation for Generalizable 3D Gaussian Splatting
Generalizable 3D Gaussian Splatting aims to directly predict Gaussian parameters using a feed-forward network for scene reconstruction. Among these parameters, Gaussian means are particularly difficult to predict, so depth is usually estimated first and then unprojected to obtain the Gaussian sphere centers. Existing methods typically rely solely on a single warp to estimate depth probability, which hinders their ability to fully leverage cross-view geometric cues, resulting in unstable and coarse depth maps. To address this limitation, we propose IDESplat, which iteratively applies warp operations to boost depth probability estimation for accurate Gaussian mean prediction. First, to eliminate the inherent instability of a single warp, we introduce a Depth Probability Boosting Unit (DPBU) that integrates epipolar attention maps produced by cascading warp operations in a multiplicative manner. Next, we construct an iterative depth estimation process by stacking multiple DPBUs, progressively identifying potential depth candidates with high likelihood. As IDESplat iteratively boosts depth probability estimates and updates the depth candidates, the depth map is gradually refined, resulting in accurate Gaussian means. We conduct experiments on RealEstate10K, ACID, and DL3DV. IDESplat achieves outstanding reconstruction quality and state-of-the-art performance with real-time efficiency. On RE10K, it outperforms DepthSplat by 0.33 dB in PSNR, using only 10.7% of the parameters and 70% of the memory. Additionally, our IDESplat improves PSNR by 2.95 dB over DepthSplat on the DTU dataset in cross-dataset experiments, demonstrating its strong generalization ability.
DiEC: Diffusion Embedded Clustering
Deep clustering methods typically rely on a single, well-defined representation for clustering. In contrast, pretrained diffusion models provide abundant and diverse multi-scale representations across network layers and noise timesteps. However, a key challenge is how to efficiently identify the most clustering-friendly representation in the layer*timestep space. To address this issue, we propose Diffusion Embedded Clustering (DiEC), an unsupervised framework that performs clustering by leveraging optimal intermediate representations from pretrained diffusion models. DiEC systematically evaluates the clusterability of representations along the trajectory of network depth and noise timesteps. Meanwhile, an unsupervised search strategy is designed for recognizing the Clustering-optimal Layer (COL) and Clustering-optimal Timestep (COT) in the layer*timestep space of pretrained diffusion models, aiming to promote clustering performance and reduce computational overhead. DiEC is fine-tuned primarily with a structure-preserving DEC-style KL-divergence objective at the fixed COL + COT, together with a random-timestep diffusion denoising objective to maintain the generative capability of the pretrained model. Without relying on augmentation-based consistency constraints or contrastive learning, DiEC achieves excellent clustering performance across multiple benchmark datasets. Code will be released upon acceptance.
Object-Centric Latent Action Learning AAAI 2026
Leveraging vast amounts of unlabeled internet video data for embodied AI is currently bottlenecked by the lack of action labels and the presence of action-correlated visual distractors. Although recent latent action policy optimization (LAPO) has shown promise in inferring proxy action labels from visual observations, its performance degrades significantly when distractors are present. To address this limitation, we propose a novel object-centric latent action learning framework that centers on objects rather than pixels. We leverage self-supervised object-centric pretraining to disentangle the movement of the agent and distracting background dynamics. This allows LAPO to focus on task-relevant interactions, resulting in more robust proxy-action labels, enabling better imitation learning and efficient adaptation of the agent with just a few action-labeled trajectories. We evaluated our method in eight visually complex tasks across the Distracting Control Suite (DCS) and Distracting MetaWorld (DMW). Our results show that object-centric pretraining mitigates the negative effects of distractors by 50%, as measured by downstream task performance: average return (DCS) and success rate (DMW).
comment: Accepted by AAAI 2026 (Oral). Source code: https://github.com/dunnolab/object-centric-lapo
Beyond Fast and Slow: Cognitive-Inspired Elastic Reasoning for Large Language Models
Large language models (LLMs) have demonstrated impressive performance across various language tasks. However, existing LLM reasoning strategies mainly rely on the LLM itself with fast or slow mode (like o1 thinking) and thus struggle to balance reasoning efficiency and accuracy across queries of varying difficulties. In this paper, we propose Cognitive-Inspired Elastic Reasoning (CogER), a framework inspired by human hierarchical reasoning that dynamically selects the most suitable reasoning strategy for each query. Specifically, CogER first assesses the complexity of incoming queries and assigns them to one of several predefined levels, each corresponding to a tailored processing strategy, thereby addressing the challenge of unobservable query difficulty. To achieve automatic strategy selection, we model the process as a Markov Decision Process and train a CogER-Agent using reinforcement learning. The agent is guided by a reward function that balances solution quality and computational cost, ensuring resource-efficient reasoning. Moreover, for queries requiring external tools, we introduce Cognitive Tool-Assisted Reasoning, which enables the LLM to autonomously invoke external tools within its chain-of-thought. Extensive experiments demonstrate that CogER outperforms state-of-the-art Test-Time scaling methods, achieving at least a 13% relative improvement in average exact match on In-Domain tasks and an 8% relative gain on Out-of-Domain tasks.
comment: under review
Large AI Model-Enabled Secure Communications in Low-Altitude Wireless Networks: Concepts, Perspectives and Case Study
Low-altitude wireless networks (LAWNs) have the potential to revolutionize communications by supporting a range of applications, including urban parcel delivery, aerial inspections and air taxis. However, compared with traditional wireless networks, LAWNs face unique security challenges due to low-altitude operations, frequent mobility and reliance on unlicensed spectrum, making it more vulnerable to some malicious attacks. In this paper, we investigate some large artificial intelligence model (LAM)-enabled solutions for secure communications in LAWNs. Specifically, we first explore the amplified security risks and important limitations of traditional AI methods in LAWNs. Then, we introduce the basic concepts of LAMs and delve into the role of LAMs in addressing these challenges. To demonstrate the practical benefits of LAMs for secure communications in LAWNs, we propose a novel LAM-based optimization framework that leverages large language models (LLMs) to generate enhanced state features on top of handcrafted representations, and to design intrinsic rewards accordingly, thereby improving reinforcement learning performance for secure communication tasks. Through a typical case study, simulation results validate the effectiveness of the proposed framework. Finally, we outline future directions for integrating LAMs into secure LAWN applications.
comment: This paper has been accepted to IEEE Communications Magazine
Beyond MMD: Evaluating Graph Generative Models with Geometric Deep Learning
Graph generation is a crucial task in many fields, including network science and bioinformatics, as it enables the creation of synthetic graphs that mimic the properties of real-world networks for various applications. Graph Generative Models (GGMs) have emerged as a promising solution to this problem, leveraging deep learning techniques to learn the underlying distribution of real-world graphs and generate new samples that closely resemble them. Examples include approaches based on Variational Auto-Encoders, Recurrent Neural Networks, and more recently, diffusion-based models. However, the main limitation often lies in the evaluation process, which typically relies on Maximum Mean Discrepancy (MMD) as a metric to assess the distribution of graph properties in the generated ensemble. This paper introduces a novel methodology for evaluating GGMs that overcomes the limitations of MMD, which we call RGM (Representation-aware Graph-generation Model evaluation). As a practical demonstration of our methodology, we present a comprehensive evaluation of two state-of-the-art Graph Generative Models: Graph Recurrent Attention Networks (GRAN) and Efficient and Degree-guided graph GEnerative model (EDGE). We investigate their performance in generating realistic graphs and compare them using a Geometric Deep Learning model trained on a custom dataset of synthetic and real-world graphs, specifically designed for graph classification tasks. Our findings reveal that while both models can generate graphs with certain topological properties, they exhibit significant limitations in preserving the structural characteristics that distinguish different graph domains. We also highlight the inadequacy of Maximum Mean Discrepancy as an evaluation metric for GGMs and suggest alternative approaches for future research.
comment: 16 pages, 4 figures
Comparative Study of UNet-based Architectures for Liver Tumor Segmentation in Multi-Phase Contrast-Enhanced Computed Tomography
Segmentation of liver structures in multi-phase contrast-enhanced computed tomography (CECT) plays a crucial role in computer-aided diagnosis and treatment planning. In this study, we investigate the performance of UNet-based architectures for liver tumor segmentation, evaluating ResNet, Transformer-based, and State-space (Mamba) backbones initialized with pretrained weights. Our comparative analysis reveals that despite the theoretical advantages of modern architectures in modeling long-range dependencies, ResNet-based models demonstrated superior sample efficiency on this dataset. This suggests that the inherent inductive biases of Convolutional Neural Networks (CNNs) remain advantageous for generalizing on limited medical data compared to data-hungry alternatives. To further improve segmentation quality, we introduce attention mechanisms into the backbone, finding that the Convolutional Block Attention Module (CBAM) yields the optimal configuration. The ResNetUNet3+ with CBAM achieved the highest nominal performance with a Dice score of 0.755 and IoU of 0.662, while also delivering the most precise boundary delineation (lowest HD95 of 77.911). Critically, while statistical testing indicated that the improvement in mean Dice score was not significant (p > 0.05) compared to the baseline, the proposed model exhibited greater stability (lower standard deviation) and higher specificity (0.926). These findings demonstrate that classical ResNet architectures, when enhanced with modern attention modules, provide a robust and statistically comparable alternative to emerging methods, offering a stable direction for liver tumor segmentation in clinical practice.
comment: 18 pages, 11 figures
Fun-Audio-Chat Technical Report
Recent advancements in joint speech-text models show great potential for seamless voice interactions. However, existing models face critical challenges: temporal resolution mismatch between speech tokens (25Hz) and text tokens (~3Hz) dilutes semantic information, incurs high computational costs, and causes catastrophic forgetting of text LLM knowledge. We introduce Fun-Audio-Chat, a Large Audio Language Model addressing these limitations via two innovations from our previous work DrVoice. First, Dual-Resolution Speech Representations (DRSR): the Shared LLM processes audio at efficient 5Hz (via token grouping), while the Speech Refined Head generates high-quality tokens at 25Hz, balancing efficiency (~50% GPU reduction) and quality. Second, Core-Cocktail Training, a two-stage fine-tuning with intermediate merging that mitigates catastrophic forgetting. We then apply Multi-Task DPO Training to enhance robustness, audio understanding, instruction-following and voice empathy. This multi-stage post-training enables Fun-Audio-Chat to retain text LLM knowledge while gaining powerful audio understanding, reasoning, and generation. Unlike recent LALMs requiring large-scale audio-text pre-training, Fun-Audio-Chat leverages pre-trained models and extensive post-training. Fun-Audio-Chat 8B and MoE 30B-A3B achieve competitive performance on Speech-to-Text and Speech-to-Speech tasks, ranking top among similar-scale models on Spoken QA benchmarks. They also achieve competitive to superior performance on Audio Understanding, Speech Function Calling, Instruction-Following and Voice Empathy. We develop Fun-Audio-Chat-Duplex, a full-duplex variant with strong performance on Spoken QA and full-duplex interactions. We open-source Fun-Audio-Chat-8B with training and inference code, and provide an interactive demo, at https://github.com/FunAudioLLM/Fun-Audio-Chat .
comment: Authors are listed in alphabetical order, 21 pages, open-source at https://github.com/FunAudioLLM/Fun-Audio-Chat
Development and Evaluation of a Standardized Ontology for Non-Invasive Respiratory Support to Improve Interoperability and Clinical Reasoning in Acute Care
Managing patients with respiratory failure increasingly involves noninvasive respiratory support (NIRS) strategies to support respiration, often preventing the need for invasive mechanical ventilation. However, despite the rapidly expanding use of NIRS, there remains a significant challenge to its optimal use across all medical circumstances. It lacks a unified ontological structure, complicating guidance on NIRS modalities across healthcare systems. This study introduced NIRS ontology to support knowledge representation in acute care settings by providing a unified framework that enhances data clarity and interoperability, laying the groundwork for future clinical decision-making. We developed NIRS ontology using the Web Ontology Language (OWL) and Protege to organize clinical concepts and relationships. To enable rule-based clinical reasoning beyond hierarchical structures, we added Semantic Web Rule Language (SWRL) rules. We evaluated logical reasoning by adding a sample of 6 patient scenarios and used SPARQL queries to retrieve and test targeted inferences. The ontology has 145 classes, 11 object properties, and 18 data properties across 949 axioms that establish concept relationships. To standardize clinical concepts, we added 392 annotations, including descriptive definitions based on controlled vocabularies. SPARQL query evaluations across clinical scenarios confirmed the ontology ability to support rulebased reasoning and therapy recommendations, providing a foundation for consistent documentation practices, integration into clinical data models, and advanced analysis of NIRS outcomes. In conclusion, we unified NIRS concepts into an ontological framework and demonstrated its applicability through the evaluation of patient scenarios and alignment with standardized vocabularies.
Membox: Weaving Topic Continuity into Long-Range Memory for LLM Agents
Human-agent dialogues often exhibit topic continuity-a stable thematic frame that evolves through temporally adjacent exchanges-yet most large language model (LLM) agent memory systems fail to preserve it. Existing designs follow a fragmentation-compensation paradigm: they first break dialogue streams into isolated utterances for storage, then attempt to restore coherence via embedding-based retrieval. This process irreversibly damages narrative and causal flow, while biasing retrieval towards lexical similarity. We introduce membox, a hierarchical memory architecture centered on a Topic Loom that continuously monitors dialogue in a sliding-window fashion, grouping consecutive same-topic turns into coherent "memory boxes" at storage time. Sealed boxes are then linked by a Trace Weaver into long-range event-timeline traces, recovering macro-topic recurrences across discontinuities. Experiments on LoCoMo demonstrate that Membox achieves up to 68% F1 improvement on temporal reasoning tasks, outperforming competitive baselines (e.g., Mem0, A-MEM). Notably, Membox attains these gains while using only a fraction of the context tokens required by existing methods, highlighting a superior balance between efficiency and effectiveness. By explicitly modeling topic continuity, Membox offers a cognitively motivated mechanism for enhancing both coherence and efficiency in LLM agents.
Focus on What Matters: Fisher-Guided Adaptive Multimodal Fusion for Vulnerability Detection
Software vulnerability detection can be formulated as a binary classification problem that determines whether a given code snippet contains security defects. Existing multimodal methods typically fuse Natural Code Sequence (NCS) representations extracted by pretrained models with Code Property Graph (CPG) representations extracted by graph neural networks, under the implicit assumption that introducing an additional modality necessarily yields information gain. Through empirical analysis, we demonstrate the limitations of this assumption: pretrained models already encode substantial structural information implicitly, leading to strong overlap between the two modalities; moreover, graph encoders are generally less effective than pretrained language models in feature extraction. As a result, naive fusion not only struggles to obtain complementary signals but can also dilute effective discriminative cues due to noise propagation. To address these challenges, we propose a task-conditioned complementary fusion strategy that uses Fisher information to quantify task relevance, transforming cross-modal interaction from full-spectrum matching into selective fusion within a task-sensitive subspace. Our theoretical analysis shows that, under an isotropic perturbation assumption, this strategy significantly tightens the upper bound on the output error. Based on this insight, we design the TaCCS-DFA framework, which combines online low-rank Fisher subspace estimation with an adaptive gating mechanism to enable efficient task-oriented fusion. Experiments on the BigVul, Devign, and ReVeal benchmarks demonstrate that TaCCS-DFA delivers up to a 6.3-point gain in F1 score with only a 3.4% increase in inference latency, while maintaining low calibration error.
ForgetMark: Stealthy Fingerprint Embedding via Targeted Unlearning in Language Models
Existing invasive (backdoor) fingerprints suffer from high-perplexity triggers that are easily filtered, fixed response patterns exposed by heuristic detectors, and spurious activations on benign inputs. We introduce \textsc{ForgetMark}, a stealthy fingerprinting framework that encodes provenance via targeted unlearning. It builds a compact, human-readable key--value set with an assistant model and predictive-entropy ranking, then trains lightweight LoRA adapters to suppress the original values on their keys while preserving general capabilities. Ownership is verified under black/gray-box access by aggregating likelihood and semantic evidence into a fingerprint success rate. By relying on probabilistic forgetting traces rather than fixed trigger--response patterns, \textsc{ForgetMark} avoids high-perplexity triggers, reduces detectability, and lowers false triggers. Across diverse architectures and settings, it achieves 100\% ownership verification on fingerprinted models while maintaining standard performance, surpasses backdoor baselines in stealthiness and robustness to model merging, and remains effective under moderate incremental fine-tuning. Our code and data are available at \href{https://github.com/Xuzhenhua55/ForgetMark}{https://github.com/Xuzhenhua55/ForgetMark}.
comment: Accepted by ICASSP2026
Generative Personality Simulation via Theory-Informed Structured Interview
Despite their potential as human proxies, LLMs often fail to generate heterogeneous data with human-like diversity, thereby diminishing their value in advancing social science research. To address this gap, we propose a novel method to incorporate psychological insights into LLM simulation through the Personality Structured Interview (PSI). PSI leverages psychometric scale-development procedures to capture personality-related linguistic information from a formal psychological perspective. To systematically evaluate simulation fidelity, we developed a measurement theory grounded evaluation procedure that considers the latent construct nature of personality and evaluates its reliability, structural validity, and external validity. Results from three experiments demonstrate that PSI effectively improves human-like heterogeneity in LLM-simulated personality data and predicts personality-related behavioral outcomes. We further offer a theoretical framework for designing theory-informed structured interviews to enhance the reliability and effectiveness of LLMs in simulating human-like data for broader psychometric research.
comment: Accepted at EACL 2026; 87 Pages, 68 Tables, 10 Figures
V2P: Visual Attention Calibration for GUI Grounding via Background Suppression and Center Peaking
Precise localization of GUI elements is crucial for the development of GUI agents. Traditional methods rely on bounding box or center-point regression, neglecting spatial interaction uncertainty and visual-semantic hierarchies. Recent methods incorporate attention mechanisms but still face two key issues: (1) ignoring processing background regions causes attention drift from the desired area, and (2) uniform modeling the target UI element fails to distinguish between its center and edges, leading to click imprecision. Inspired by how humans visually process and interact with GUI elements, we propose the Valley-to-Peak (V2P) method to address these issues. To mitigate background distractions, V2P introduces a suppression attention mechanism that minimizes the model's focus on irrelevant regions to highlight the intended region. For the issue of center-edge distinction, V2P applies a Fitts' Law-inspired approach by modeling GUI interactions as 2D Gaussian heatmaps where the weight gradually decreases from the center towards the edges. The weight distribution follows a Gaussian function, with the variance determined by the target's size. Consequently, V2P effectively isolates the target area and teaches the model to concentrate on the most essential point of the UI element. The model trained by V2P achieves the performance with 92.4\% and 52.5\% on two benchmarks ScreenSpot-v2 and ScreenSpot-Pro. Ablations further confirm each component's contribution, underscoring V2P's generalizability in precise GUI grounding tasks and its potential for real-world deployment in future GUI agents.
Towards a Unified View of Large Language Model Post-Training
Two major sources of training data exist for post-training modern language models: online (model-generated rollouts) data, and offline (human or other-model demonstrations) data. These two types of data are typically used by approaches like Reinforcement Learning (RL) and Supervised Fine-Tuning (SFT), respectively. In this paper, we show that these approaches are not in contradiction, but are instances of a single optimization process. We derive a Unified Policy Gradient Estimator, and present the calculations of a wide spectrum of post-training approaches as the gradient of a common objective under different data distribution assumptions and various bias-variance tradeoffs. The gradient estimator is constructed with four interchangeable parts: stabilization mask, reference policy denominator, advantage estimate, and likelihood gradient. Motivated by our theoretical findings, we propose Hybrid Post-Training (HPT), an algorithm that dynamically selects different training signals. HPT is designed to yield both effective exploitation of demonstration and stable exploration without sacrificing learned reasoning patterns. We provide extensive experiments and ablation studies to verify the effectiveness of our unified theoretical framework and HPT. Across six mathematical reasoning benchmarks and two out-of-distribution suites, HPT consistently surpasses strong baselines across models of varying scales and families.
Continual Knowledge Adaptation for Reinforcement Learning NeurIPS 2025
Reinforcement Learning enables agents to learn optimal behaviors through interactions with environments. However, real-world environments are typically non-stationary, requiring agents to continuously adapt to new tasks and changing conditions. Although Continual Reinforcement Learning facilitates learning across multiple tasks, existing methods often suffer from catastrophic forgetting and inefficient knowledge utilization. To address these challenges, we propose Continual Knowledge Adaptation for Reinforcement Learning (CKA-RL), which enables the accumulation and effective utilization of historical knowledge. Specifically, we introduce a Continual Knowledge Adaptation strategy, which involves maintaining a task-specific knowledge vector pool and dynamically using historical knowledge to adapt the agent to new tasks. This process mitigates catastrophic forgetting and enables efficient knowledge transfer across tasks by preserving and adapting critical model parameters. Additionally, we propose an Adaptive Knowledge Merging mechanism that combines similar knowledge vectors to address scalability challenges, reducing memory requirements while ensuring the retention of essential knowledge. Experiments on three benchmarks demonstrate that the proposed CKA-RL outperforms state-of-the-art methods, achieving an improvement of 4.20% in overall performance and 8.02% in forward transfer. The source code is available at https://github.com/Fhujinwu/CKA-RL.
comment: NeurIPS 2025
Academic journals' AI policies fail to curb the surge in AI-assisted academic writing
The rapid integration of generative AI into academic writing has prompted widespread policy responses from journals and publishers. However, the effectiveness of these policies remains unclear. Here, we analyze 5,114 journals and over 5.2 million papers to evaluate the real-world impact of AI usage guidelines. We show that despite 70% of journals adopting AI policies (primarily requiring disclosure), researchers' use of AI writing tools has increased dramatically across disciplines, with no significant difference between journals with or without policies. Non-English-speaking countries, physical sciences, and high-OA journals exhibit the highest growth rates. Crucially, full-text analysis on 164k scientific publications reveals a striking transparency gap: Of the 75k papers published since 2023, only 76 (~0.1%) explicitly disclosed AI use. Our findings suggest that current policies have largely failed to promote transparency or restrain AI adoption. We urge a re-evaluation of ethical frameworks to foster responsible AI integration in science.
comment: 39 pages, 10 figures, and 9 tables
Logics-STEM: Empowering LLM Reasoning via Failure-Driven Post-Training and Document Knowledge Enhancement
We present Logics-STEM, a state-of-the-art reasoning model fine-tuned on Logics-STEM-SFT-Dataset, a high-quality and diverse dataset at 10M scale that represents one of the largest-scale open-source long chain-of-thought corpora. Logics-STEM targets reasoning tasks in the domains of Science, Technology, Engineering, and Mathematics (STEM), and exhibits exceptional performance on STEM-related benchmarks with an average improvement of 4.68% over the next-best model at 8B scale. We attribute the gains to our data-algorithm co-design engine, where they are jointly optimized to fit a gold-standard distribution behind reasoning. Data-wise, the Logics-STEM-SFT-Dataset is constructed from a meticulously designed data curation engine with 5 stages to ensure the quality, diversity, and scalability, including annotation, deduplication, decontamination, distillation, and stratified sampling. Algorithm-wise, our failure-driven post-training framework leverages targeted knowledge retrieval and data synthesis around model failure regions in the Supervised Fine-tuning (SFT) stage to effectively guide the second-stage SFT or the reinforcement learning (RL) for better fitting the target distribution. The superior empirical performance of Logics-STEM reveals the vast potential of combining large-scale open-source data with carefully designed synthetic data, underscoring the critical role of data-algorithm co-design in enhancing reasoning capabilities through post-training. We make both the Logics-STEM models (8B and 32B) and the Logics-STEM-SFT-Dataset (10M and downsampled 2.2M versions) publicly available to support future research in the open-source community.
FinForge: Semi-Synthetic Financial Benchmark Generation
Evaluating Language Models (LMs) in specialized, high-stakes domains such as finance remains a significant challenge due to the scarcity of open, high-quality, and domain-specific datasets. Existing general-purpose benchmarks provide broad coverage but lack the depth and domain fidelity needed to assess LMs' capabilities for real-world financial reasoning, which requires both conceptual understanding and quantitative rigor. To address this gap, we introduce FinForge, a scalable, semi-synthetic pipeline for constructing finance-specific evaluation benchmarks through a hybrid of expert-guided data curation and controlled LM-based synthesis. FinForge combines manual and programmatic corpus construction from authoritative financial sources with structured question generation and validation using Gemini 2.5 Flash. To demonstrate the pipeline's efficacy, we produce FinForge-5k, a snapshot benchmark comprising over 5,000 human-validated question-answer pairs across 11 finance subdomains, derived from a curated corpus of 100,000 verified documents totaling 143M tokens. Evaluation of state-of-the-art open-source and closed-source models on FinForge-5k reveals significant differences in financial reasoning, with leading models achieving accuracy levels near 80%. These findings underscore the framework's utility for diagnosing current model limitations and guiding future improvements in financial domain competence. All code and data are available at https://github.com/gtfintechlab/FinForge.
EVOREFUSE: Evolutionary Prompt Optimization for Evaluation and Mitigation of LLM Over-Refusal to Pseudo-Malicious Instructions NeurIPS 2025
Large language models (LLMs) frequently refuse to respond to pseudo-malicious instructions: semantically harmless input queries triggering unnecessary LLM refusals due to conservative safety alignment, significantly impairing user experience. Collecting such instructions is crucial for evaluating and mitigating over-refusals, but existing instruction curation methods, like manual creation or instruction rewriting, either lack scalability or fail to produce sufficiently diverse and effective refusal-inducing prompts. To address these limitations, we introduce EVOREFUSE, a prompt optimization approach that generates diverse pseudo-malicious instructions consistently eliciting confident refusals across LLMs. EVOREFUSE employs an evolutionary algorithm exploring the instruction space in more diverse directions than existing methods via mutation strategies and recombination, and iteratively evolves seed instructions to maximize evidence lower bound on LLM refusal probability. Using EVOREFUSE, we create two novel datasets: EVOREFUSE-TEST, a benchmark of 582 pseudo-malicious instructions that outperforms the next-best benchmark with 85.34% higher average refusal triggering rate across 9 LLMs without a safety-prior system prompt, 34.86% greater lexical diversity, and 40.03% improved LLM response confidence scores; and EVOREFUSE-ALIGN, which provides 3,000 pseudo-malicious instructions with responses for supervised and preference-based alignment training. With supervised fine-tuning on EVOREFUSE-ALIGN, LLAMA3.1-8B-INSTRUCT achieves up to 29.85% fewer over-refusals than models trained on the second-best alignment dataset, without compromising safety. Our analysis with EVOREFUSE-TEST reveals models trigger over-refusals by overly focusing on sensitive keywords while ignoring broader context. Our code and datasets are available at https://github.com/FishT0ucher/EVOREFUSE.
comment: NeurIPS 2025
AI-in-the-Loop: Privacy Preserving Real-Time Scam Detection and Conversational Scambaiting by Leveraging LLMs and Federated Learning
Scams exploiting real-time social engineering -- such as phishing, impersonation, and phone fraud -- remain a persistent and evolving threat across digital platforms. Existing defenses are largely reactive, offering limited protection during active interactions. We propose a privacy-preserving, AI-in-the-loop framework that proactively detects and disrupts scam conversations in real time. The system combines instruction-tuned artificial intelligence with a safety-aware utility function that balances engagement with harm minimization, and employs federated learning to enable continual model updates without raw data sharing. Experimental evaluations show that the system produces fluent and engaging responses (perplexity as low as 22.3, engagement $\approx$0.80), while human studies confirm significant gains in realism, safety, and effectiveness over strong baselines. In federated settings, models trained with FedAvg sustain up to 30 rounds while preserving high engagement ($\approx$0.80), strong relevance ($\approx$0.74), and low PII leakage ($\leq$0.0085). Even with differential privacy, novelty and safety remain stable, indicating that robust privacy can be achieved without sacrificing performance. The evaluation of guard models (LlamaGuard, LlamaGuard2/3, MD-Judge) shows a straightforward pattern: stricter moderation settings reduce the chance of exposing personal information, but they also limit how much the model engages in conversation. In contrast, more relaxed settings allow longer and richer interactions, which improve scam detection, but at the cost of higher privacy risk. To our knowledge, this is the first framework to unify real-time scam-baiting, federated privacy preservation, and calibrated safety moderation into a proactive defense paradigm.
comment: This paper got accepted in 26th Privacy Enhancing Technologies Symposium (PETS 2026). We uploaded it into ArXiv as pre-print
Hierarchy-Aware Multimodal Unlearning for Medical AI
Pretrained Multimodal Large Language Models (MLLMs) are increasingly used in sensitive domains such as medical AI, where privacy regulations like HIPAA and GDPR require specific removal of individuals' or institutions' data. This motivates machine unlearning, which aims to remove the influence of target data from a trained model. However, existing unlearning benchmarks fail to reflect the hierarchical and multimodal structure of real-world medical data, limiting their ability to properly evaluate unlearning in practice. Therefore, we introduce MedForget, a hierarchy-aware multimodal unlearning benchmark that models hospital data as a nested structure, enabling fine-grained evaluation of multimodal unlearning across retain and forget splits. Experiments with current unlearning methods show that existing approaches struggle to achieve effective hierarchy-aware forgetting without degrading downstream medical utility. To address this limitation, we propose Cross-modal Hierarchy-Informed Projection for unlearning (CHIP), a training-free, hierarchy-aware multimodal unlearning method that deletes information by selectively removing target-specific weight subspaces while preserving sibling-shared information. Experiments show that CHIP achieves the highest forget-retain performance gap across all hierarchy levels while maintaining competitive downstream utility compared to existing methods. Overall, MedForget provides a practical, HIPAA-aligned benchmark for evaluating structured multimodal unlearning for medical data, and CHIP offers an effective and general solution for hierarchy-aware forgetting that balances deletion with utility.
comment: Dataset and Code: https://github.com/fengli-wu/MedForget
Large AI Models for Wireless Physical Layer
Large artificial intelligence models (LAMs) are transforming wireless physical layer technologies through their robust generalization, multitask processing, and multimodal capabilities. This article reviews recent advancements in applying LAMs to physical layer communications, addressing obstacles of conventional AI-based approaches. LAM-based solutions are classified into two strategies: leveraging pre-trained LAMs and developing native LAMs designed specifically for physical layer tasks. The motivations and key frameworks of these approaches are comprehensively examined through multiple use cases. Both strategies significantly improve performance and adaptability across diverse wireless scenarios. Future research directions, including efficient architectures, interpretability, standardized datasets, and collaboration between large and small models, are proposed to advance LAM-based physical layer solutions for next-generation communication systems.
comment: A collection of paper on Large AI Models for wireless physical layer can be found at https://github.com/AI4Wireless/LAM4PHY_6G
Domain-Specific Constitutional AI: Enhancing Safety in LLM-Powered Mental Health Chatbots
Mental health applications have emerged as a critical area in computational health, driven by rising global rates of mental illness, the integration of AI in psychological care, and the need for scalable solutions in underserved communities. These include therapy chatbots, crisis detection, and wellness platforms handling sensitive data, requiring specialized AI safety beyond general safeguards due to emotional vulnerability, risks like misdiagnosis or symptom exacerbation, and precise management of vulnerable states to avoid severe outcomes such as self-harm or loss of trust. Despite AI safety advances, general safeguards inadequately address mental health-specific challenges, including crisis intervention accuracy to avert escalations, therapeutic guideline adherence to prevent misinformation, scale limitations in resource-constrained settings, and adaptation to nuanced dialogues where generics may introduce biases or miss distress signals. We introduce an approach to apply Constitutional AI training with domain-specific mental health principles for safe, domain-adapted CAI systems in computational mental health applications.
comment: Accepted to 2025 IEEE 21st International Conference on Body Sensor Networks (BSN)
Towards Reinforcement Learning from Neural Feedback: Mapping fNIRS Signals to Agent Performance AAAI
Reinforcement Learning from Human Feedback (RLHF) is a methodology that aligns agent behavior with human preferences by integrating user feedback into the agent's training process. This paper introduces a framework that guides agent training through implicit neural signals, with a focus on the neural classification problem. Our work presents and releases a novel dataset of functional near-infrared spectroscopy (fNIRS) recordings collected from 25 human participants across three domains: Pick-and-Place Robot, Lunar Lander, and Flappy Bird. We train multiple classifiers to predict varying levels of agent performance (optimal, suboptimal, or worst-case) from windows of preprocessed fNIRS features, achieving an average F1 score of 67% for binary and 46% for multi-class classification across conditions and domains. We also train multiple regressors to predict the degree of deviation between an agent's chosen action and a set of near-optimal policy actions, providing a continuous measure of performance. Finally, we evaluate cross-subject generalization and show that fine-tuning pre-trained models with a small sample of subject-specific data increases average F1 scores by 17% and 41% for binary and multi-class models, respectively. Our results demonstrate that mapping implicit fNIRS signals to agent performance is feasible and can be improved, laying the foundation for future Reinforcement Learning from Neural Feedback (RLNF) systems.
comment: Accepted to the Association for the Advancement of Artificial Intelligence (AAAI) 2026. To appear in the AAAI 2026 Proceedings
Zero-Knowledge Federated Learning: A New Trustworthy and Privacy-Preserving Distributed Learning Paradigm
Federated Learning (FL) has emerged as a promising paradigm in distributed machine learning, enabling collaborative model training while preserving data privacy. However, despite its many advantages, FL still contends with significant challenges -- most notably regarding security and trust. Zero-Knowledge Proofs (ZKPs) offer a potential solution by establishing trust and enhancing system integrity throughout the FL process. Although several studies have explored ZKP-based FL (ZK-FL), a systematic framework and comprehensive analysis are still lacking. This article makes two key contributions. First, we propose a structured ZK-FL framework that categorizes and analyzes the technical roles of ZKPs across various FL stages and tasks. Second, we introduce a novel algorithm, Verifiable Client Selection FL (Veri-CS-FL), which employs ZKPs to refine the client selection process. In Veri-CS-FL, participating clients generate verifiable proofs for the performance metrics of their local models and submit these concise proofs to the server for efficient verification. The server then selects clients with high-quality local models for uploading, subsequently aggregating the contributions from these selected clients. By integrating ZKPs, Veri-CS-FL not only ensures the accuracy of performance metrics but also fortifies trust among participants while enhancing the overall efficiency and security of FL systems.
comment: Accepted by IEEE Communications Magazine. Copyright IEEE
Unveiling and Mitigating Bias in Large Language Model Recommendations: A Path to Fairness
Large Language Model (LLM)-based recommendation systems excel in delivering comprehensive suggestions by deeply analyzing content and user behavior. However, they often inherit biases from skewed training data, favoring mainstream content while underrepresenting diverse or non-traditional options. This study explores the interplay between bias and LLM-based recommendation systems, focusing on music, song, and book recommendations across diverse demographic and cultural groups. This paper analyzes bias in LLM-based recommendation systems across multiple models (GPT, LLaMA, and Gemini), revealing its deep and pervasive impact on outcomes. Intersecting identities and contextual factors, like socioeconomic status, further amplify biases, complicating fair recommendations across diverse groups. Our findings reveal that bias in these systems is deeply ingrained, yet even simple interventions like prompt engineering can significantly reduce it. We further propose a retrieval-augmented generation strategy to mitigate bias more effectively. Numerical experiments validate these strategies, demonstrating both the pervasive nature of bias and the impact of the proposed solutions.
Multi-Stage Verification-Centric Framework for Mitigating Hallucination in Multi-Modal RAG
This paper presents the technical solution developed by team CRUISE for the KDD Cup 2025 Meta Comprehensive RAG Benchmark for Multi-modal, Multi-turn (CRAG-MM) challenge. The challenge aims to address a critical limitation of modern Vision Language Models (VLMs): their propensity to hallucinate, especially when faced with egocentric imagery, long-tail entities, and complex, multi-hop questions. This issue is particularly problematic in real-world applications where users pose fact-seeking queries that demand high factual accuracy across diverse modalities. To tackle this, we propose a robust, multi-stage framework that prioritizes factual accuracy and truthfulness over completeness. Our solution integrates a lightweight query router for efficiency, a query-aware retrieval and summarization pipeline, a dual-pathways generation and a post-hoc verification. This conservative strategy is designed to minimize hallucinations, which incur a severe penalty in the competition's scoring metric. Our approach achieved 3rd place in Task 1, demonstrating the effectiveness of prioritizing answer reliability in complex multi-modal RAG systems. Our implementation is available at https://github.com/Breezelled/KDD-Cup-2025-Meta-CRAG-MM .
comment: KDD Cup 2025 Meta CRAG-MM Challenge: Third Prize in the Single-Source Augmentation Task
From Chains to Graphs: Self-Structured Reasoning for General-Domain LLMs
Large Language Models (LLMs) show strong reasoning ability in open-domain question answering, yet their reasoning processes are typically linear and often logically inconsistent. In contrast, real-world reasoning requires integrating multiple premises and solving subproblems in parallel. Existing methods, such as Chain-of-Thought (CoT), express reasoning in a linear textual form, which may appear coherent but frequently leads to inconsistent conclusions. Recent approaches rely on externally provided graphs and do not explore how LLMs can construct and use their own graph-structured reasoning, particularly in open-domain QA. To fill this gap, we novelly explore graph-structured reasoning of LLMs in general-domain question answering. We propose Self-Graph Reasoning (SGR), a framework that enables LLMs to explicitly represent their reasoning process as a structured graph before producing the final answer. We further construct a graph-structured reasoning dataset that merges multiple candidate reasoning graphs into refined graph structures for model training. Experiments on five QA benchmarks across both general and specialized domains show that SGR consistently improves reasoning consistency and yields a 17.74% gain over the base model. The LLaMA-3.3-70B model fine-tuned with SGR performs comparably to GPT-4o and surpasses Claude-3.5-Haiku, demonstrating the effectiveness of graph-structured reasoning.
A Layered Protocol Architecture for the Internet of Agents
Large Language Models (LLMs) have demonstrated remarkable performance improvements and the ability to learn domain-specific languages (DSLs), including APIs and tool interfaces. This capability has enabled the creation of AI agents that can perform preliminary computations and act through tool calling, which is now being standardized via protocols like MCP. However, LLMs face fundamental limitations: their context windows cannot grow indefinitely, restricting their memory and computational capacity. Agent collaboration emerges as essential for solving increasingly complex problems, mirroring how computational systems rely on different types of memory to scale. The "Internet of Agents" (IoA) represents the communication stack that enables agents to scale by distributing computation across collaborating entities. Current network architectural stacks (OSI and TCP/IP) were designed for data delivery between hosts and processes, not for agent collaboration with semantic understanding. To address this gap, we propose two new layers: an Agent Communication Layer (L8) and an Agent Semantic Layer (L9). L8 formalizes the structure of communication, standardizing message envelopes, speech-act performatives (e.g., REQUEST, INFORM), and interaction patterns (e.g., request-reply, publish-subscribe), building on protocols like MCP. The proposed L9 layer: (1) formalizes semantic context discovery and negotiation, (2) provides semantic grounding by binding terms to semantic context, and (3) semantically validates incoming prompts and performs disambiguation as needed. Furthermore, L9 introduces primitives for coordination and consensus, allowing agents to achieve alignment on shared states, collective goals, and distributed beliefs. Together, these layers provide the foundation for scalable, distributed agent collaboration, enabling the next generation of multi-agentic systems.
Fair Algorithms with Probing for Multi-Agent Multi-Armed Bandits
We propose a multi-agent multi-armed bandit (MA-MAB) framework aimed at ensuring fair outcomes across agents while maximizing overall system performance. A key challenge in this setting is decision-making under limited information about arm rewards. To address this, we introduce a novel probing framework that strategically gathers information about selected arms before allocation. In the offline setting, where reward distributions are known, we leverage submodular properties to design a greedy probing algorithm with a provable performance bound. For the more complex online setting, we develop an algorithm that achieves sublinear regret while maintaining fairness. Extensive experiments on synthetic and real-world datasets show that our approach outperforms baseline methods, achieving better fairness and efficiency.
Towards AI Transparency and Accountability: A Global Framework for Exchanging Information on AI Systems
We propose that future AI transparency and accountability regulations are based on an open global standard for exchanging information about AI systems, which allows co-existence of potentially conflicting local regulations. Then, we discuss key components of a lightweight and effective AI transparency and/or accountability regulation. To prevent overregulation, the proposed approach encourages collaboration between regulators and industry to create a scalable and cost-efficient mutually beneficial solution. This includes using automated assessments and benchmarks with results transparently communicated through AI cards in an open AI register to facilitate meaningful public comparisons of competing AI systems. Such AI cards should report standardized measures tailored to the specific high-risk applications of AI systems and could be used for conformity assessments under AI transparency and accountability policies such as the European Union's AI Act.
Beyond Boundaries: Leveraging Vision Foundation Models for Source-Free Object Detection AAAI 2026
Source-Free Object Detection (SFOD) aims to adapt a source-pretrained object detector to a target domain without access to source data. However, existing SFOD methods predominantly rely on internal knowledge from the source model, which limits their capacity to generalize across domains and often results in biased pseudo-labels, thereby hindering both transferability and discriminability. In contrast, Vision Foundation Models (VFMs), pretrained on massive and diverse data, exhibit strong perception capabilities and broad generalization, yet their potential remains largely untapped in the SFOD setting. In this paper, we propose a novel SFOD framework that leverages VFMs as external knowledge sources to jointly enhance feature alignment and label quality. Specifically, we design three VFM-based modules: (1) Patch-weighted Global Feature Alignment (PGFA) distills global features from VFMs using patch-similarity-based weighting to enhance global feature transferability; (2) Prototype-based Instance Feature Alignment (PIFA) performs instance-level contrastive learning guided by momentum-updated VFM prototypes; and (3) Dual-source Enhanced Pseudo-label Fusion (DEPF) fuses predictions from detection VFMs and teacher models via an entropy-aware strategy to yield more reliable supervision. Extensive experiments on six benchmarks demonstrate that our method achieves state-of-the-art SFOD performance, validating the effectiveness of integrating VFMs to simultaneously improve transferability and discriminability.
comment: Accepted to AAAI 2026. Extended version with full Appendix
Harm in AI-Driven Societies: An Audit of Toxicity Adoption on Chirper.ai
Large Language Models (LLMs) are increasingly embedded in autonomous agents that engage, converse, and co-evolve in online social platforms. While prior work has documented the generation of toxic content by LLMs, far less is known about how exposure to harmful content shapes agent behavior over time, particularly in environments composed entirely of interacting AI agents. In this work, we study toxicity adoption of LLM-driven agents on Chirper.ai, a fully AI-driven social platform. Specifically, we model interactions in terms of stimuli (posts) and responses (comments). We conduct a large-scale empirical analysis of agent behavior, examining how toxic responses relate to toxic stimuli, how repeated exposure to toxicity affects the likelihood of toxic responses, and whether toxic behavior can be predicted from exposure alone. Our findings show that toxic responses are more likely following toxic stimuli, and, at the same time, cumulative toxic exposure (repeated over time) significantly increases the probability of toxic responding. We further introduce two influence metrics, revealing a strong negative correlation between induced and spontaneous toxicity. Finally, we show that the number of toxic stimuli alone enables accurate prediction of whether an agent will eventually produce toxic content. These results highlight exposure as a critical risk factor in the deployment of LLM agents, particularly as such agents operate in online environments where they may engage not only with other AI chatbots, but also with human counterparts. This could trigger unwanted and pernicious phenomena, such as hate-speech propagation and cyberbullying. In an effort to reduce such risks, monitoring exposure to toxic content may provide a lightweight yet effective mechanism for auditing and mitigating harmful behavior in the wild.
LEXam: Benchmarking Legal Reasoning on 340 Law Exams
Long-form legal reasoning remains a key challenge for large language models (LLMs) in spite of recent advances in test-time scaling. To address this, we introduce \textsc{LEXam}, a novel benchmark derived from 340 law exams spanning 116 law school courses across a range of subjects and degree levels. The dataset comprises 4,886 law exam questions in English and German, including 2,841 long-form, open-ended questions and 2,045 multiple-choice questions. Besides reference answers, the open questions are also accompanied by explicit guidance outlining the expected legal reasoning approach such as issue spotting, rule recall, or rule application. Our evaluation on both open-ended and multiple-choice questions present significant challenges for current LLMs; in particular, they notably struggle with open questions that require structured, multi-step legal reasoning. Moreover, our results underscore the effectiveness of the dataset in differentiating between models with varying capabilities. Deploying an ensemble LLM-as-a-Judge paradigm with rigorous human expert validation, we demonstrate how model-generated reasoning steps can be evaluated consistently and accurately, closely aligning with human expert assessments. Our evaluation setup provides a scalable method to assess legal reasoning quality beyond simple accuracy metrics. We have open-sourced our code on https://github.com/LEXam-Benchmark/LEXam and released our data on https://huggingface.co/datasets/LEXam-Benchmark/LEXam. Project page: https://lexam-benchmark.github.io.
RovoDev Code Reviewer: A Large-Scale Online Evaluation of LLM-based Code Review Automation at Atlassian
Large Language Models (LLMs)-powered code review automation has the potential to transform code review workflows. Despite the advances of LLM-powered code review comment generation approaches, several practical challenges remain for designing enterprise-grade code review automation tools. In particular, this paper aims at answering the practical question: how can we design a review-guided, context-aware, quality-checked code review comment generation without fine-tuning? In this paper, we present RovoDev Code Reviewer, an enterprise-grade LLM-based code review automation tool designed and deployed at scale within Atlassian's development ecosystem with seamless integration into Atlassian's Bitbucket. Through the offline, online, user feedback evaluations over a one-year period, we conclude that RovoDev Code Reviewer is effective in generating code review comments that could lead to code resolution for 38.70% (i.e., comments that triggered code changes in the subsequent commits); and offers the promise of accelerating feedback cycles (i.e., decreasing the PR cycle time by 30.8%), alleviating reviewer workload (i.e., reducing the number of human-written comments by 35.6%), and improving overall software quality (i.e., finding errors with actionable suggestions).
comment: Accepted at the 48th International Conference on Software Engineering (ICSE'26), SEIP Track. 12 Pages
H3Fusion: Helpful, Harmless, Honest Fusion of Aligned LLMs
The alignment of pre-trained LLMs continues to draw significant attention from both industry and academia, aiming to ensure responses that are helpful, harmless, and honest. However, identifying a point in the model's representation subspace that simultaneously satisfies all these properties remains challenging. H3Fusion addresses this challenge by introducing a mixture-of-experts (MoE)-based fusion mechanism that models alignment as a controllable drift within the subspace, guided by a drift-regularization loss to balance competing alignment dimensions. Furthermore, we formulate the alignment by finding a dual objective of harnessing the distance of generated embeddings and alignment embeddings, and introduce a gating loss by canalizing the activations on the contributing experts. Extensive evaluations of three benchmark datasets show that H3Fusion is more helpful, less harmful, and more honest in three aspects: it outperforms each individually aligned model by 11.37%, and provides stronger robustness compared to the state-of-the-art LLM ensemble approaches by 13.77% and model-merging approaches by 6.18%. Code is available at https://github.com/git-disl/h3fusion.
Generative AI Purpose-built for Social and Mental Health: A Real-World Pilot
Generative artificial intelligence (GAI) chatbots built for mental health could deliver safe, personalized, and scalable mental health support. We evaluate a foundation model designed for mental health. Adults completed mental health measures while engaging with the chatbot between May 15, 2025 and September 15, 2025. Users completed an opt-in consent, demographic information, mental health symptoms, social connection, and self-identified goals. Measures were repeated every two weeks up to 6 weeks, and a final follow-up at 10 weeks. Analyses included effect sizes, and growth mixture models to identify participant groups and their characteristic engagement, severity, and demographic factors. Users demonstrated significant reductions in PHQ-9 and GAD-7 that were sustained at follow-up. Significant improvements in Hope, Behavioral Activation, Social Interaction, Loneliness, and Perceived Social Support were observed throughout and maintained at 10 week follow-up. Engagement was high and predicted outcomes. Working alliance was comparable to traditional care and predicted outcomes. Automated safety guardrails functioned as designed, with 76 sessions flagged for risk and all handled according to escalation policies. This single arm naturalistic observational study provides initial evidence that a GAI foundation model for mental health can deliver accessible, engaging, effective, and safe mental health support. These results lend support to findings from early randomized designs and offer promise for future study of mental health GAI in real world settings.
Internal Deployment Gaps in AI Regulation
Frontier AI regulations primarily focus on systems deployed to external users, where deployment is more visible and subject to outside scrutiny. However, high-stakes applications can occur internally when companies deploy highly capable systems within their own organizations, such as for automating R&D, accelerating critical business processes, and handling sensitive proprietary data. This paper examines how frontier AI regulations in the United States and European Union in 2025 handle internal deployment. We identify three gaps that could cause internally-deployed systems to evade intended oversight: (1) scope ambiguity that allows internal systems to evade regulatory obligations, (2) point-in-time compliance assessments that fail to capture the continuous evolution of internal systems, and (3) information asymmetries that subvert regulatory awareness and oversight. We then analyze why these gaps persist, examining tensions around measurability, incentives, and information access. Finally, we map potential approaches to address them and their associated tradeoffs. By understanding these patterns, we hope that policy choices around internally deployed AI systems can be made deliberately rather than incidentally.
IFRA: a machine learning-based Instrumented Fall Risk Assessment Scale derived from Instrumented Timed Up and Go test in stroke patients
Background/Objectives: Falls represent a major health concern for stroke survivors, necessitating effective risk assessment tools. This study proposes the Instrumented Fall Risk Assessment (IFRA) scale, a novel screening tool derived from Instrumented Timed Up and Go (ITUG) test data, designed to capture mobility measures often missed by traditional scales. Methods: We employed a two-step machine learning approach to develop the IFRA scale: first, identifying predictive mobility features from ITUG data and, second, creating a stratification strategy to classify patients into low-, medium-, or high-fall-risk categories. This study included 142 participants, who were divided into training (including synthetic cases), validation, and testing sets (comprising 22 non-fallers and 10 fallers). IFRA's performance was compared against traditional clinical scales (e.g., standard TUG and Mini-BESTest) using Fisher's Exact test. Results: Machine learning analysis identified specific features as key predictors, namely vertical and medio-lateral acceleration, and angular velocity during walking and sit-to-walk transitions. IFRA demonstrated a statistically significant association with fall status (Fisher's Exact test p = 0.004) and was the only scale to assign more than half of the actual fallers to the high-risk category, outperforming the comparative clinical scales in this dataset. Conclusions: This proof-of-concept study demonstrates IFRA's potential as an automated, complementary approach for fall risk stratification in post-stroke patients. While IFRA shows promising discriminative capability, particularly for identifying high-risk individuals, these preliminary findings require validation in larger cohorts before clinical implementation.
comment: 26 pages, 2 figures, 4 tables
Marvel: Accelerating Safe Online Reinforcement Learning with Finetuned Offline Policy
The high costs and risks involved in extensive environment interactions hinder the practical application of current online safe reinforcement learning (RL) methods. While offline safe RL addresses this by learning policies from static datasets, the performance therein is usually limited due to reliance on data quality and challenges with out-of-distribution (OOD) actions. Inspired by recent successes in offline-to-online (O2O) RL, it is crucial to explore whether offline safe RL can be leveraged to facilitate faster and safer online policy learning, a direction that has yet to be fully investigated. To fill this gap, we first demonstrate that naively applying existing O2O algorithms from standard RL would not work well in the safe RL setting due to two unique challenges: \emph{erroneous Q-estimations}, resulted from offline-online objective mismatch and offline cost sparsity, and \emph{Lagrangian mismatch}, resulted from difficulties in aligning Lagrange multipliers between offline and online policies. To address these challenges, we introduce \textbf{Marvel}, a novel framework for O2O safe RL, comprising two key components that work in concert: \emph{Value Pre-Alignment} to align the Q-functions with the underlying truth before online learning, and \emph{Adaptive PID Control} to effectively adjust the Lagrange multipliers during online finetuning. Extensive experiments demonstrate that Marvel significantly outperforms existing baselines in both reward maximization and safety constraint satisfaction. By introducing the first policy-finetuning based framework for O2O safe RL, which is compatible with many offline and online safe RL methods, our work has the great potential to advance the field towards more efficient and practical safe RL solutions.
comment: Accepted by Transactions on Machine Learning Research (TMLR), 2026
Guardrailed Elasticity Pricing: A Churn-Aware Forecasting Playbook for Subscription Strategy
This paper presents a marketing analytics framework that operationalizes subscription pricing as a dynamic, guardrailed decision system, uniting multivariate demand forecasting, segment-level price elasticity, and churn propensity to optimize revenue, margin, and retention. The approach blends seasonal time-series models with tree-based learners, runs Monte Carlo scenario tests to map risk envelopes, and solves a constrained optimization that enforces business guardrails on customer experience, margin floors, and allowable churn. Validated across heterogeneous SaaS portfolios, the method consistently outperforms static tiers and uniform uplifts by reallocating price moves toward segments with higher willingness-to-pay while protecting price-sensitive cohorts. The system is designed for real-time recalibration via modular APIs and includes model explainability for governance and compliance. Managerially, the framework functions as a strategy playbook that clarifies when to shift from flat to dynamic pricing, how to align pricing with CLV and MRR targets, and how to embed ethical guardrails, enabling durable growth without eroding customer trust.
Machine Learning 215
Jet-RL: Enabling On-Policy FP8 Reinforcement Learning with Unified Training and Rollout Precision Flow
Reinforcement learning (RL) is essential for enhancing the complex reasoning capabilities of large language models (LLMs). However, existing RL training pipelines are computationally inefficient and resource-intensive, with the rollout phase accounting for over 70% of total training time. Quantized RL training, particularly using FP8 precision, offers a promising approach to mitigating this bottleneck. A commonly adopted strategy applies FP8 precision during rollout while retaining BF16 precision for training. In this work, we present the first comprehensive study of FP8 RL training and demonstrate that the widely used BF16-training + FP8-rollout strategy suffers from severe training instability and catastrophic accuracy collapse under long-horizon rollouts and challenging tasks. Our analysis shows that these failures stem from the off-policy nature of the approach, which introduces substantial numerical mismatch between training and inference. Motivated by these observations, we propose Jet-RL, an FP8 RL training framework that enables robust and stable RL optimization. The key idea is to adopt a unified FP8 precision flow for both training and rollout, thereby minimizing numerical discrepancies and eliminating the need for inefficient inter-step calibration. Extensive experiments validate the effectiveness of Jet-RL: our method achieves up to 33% speedup in the rollout phase, up to 41% speedup in the training phase, and a 16% end-to-end speedup over BF16 training, while maintaining stable convergence across all settings and incurring negligible accuracy degradation.
comment: 11 pages, 6 figures, 4 tables
APEX-Agents
We introduce the AI Productivity Index for Agents (APEX-Agents), a benchmark for assessing whether AI agents can execute long-horizon, cross-application tasks created by investment banking analysts, management consultants, and corporate lawyers. APEX-Agents requires agents to navigate realistic work environments with files and tools. We test eight agents for the leaderboard using Pass@1. Gemini 3 Flash (Thinking=High) achieves the highest score of 24.0%, followed by GPT-5.2 (Thinking=High), Claude Opus 4.5 (Thinking=High), and Gemini 3 Pro (Thinking=High). We open source the APEX-Agents benchmark (n=480) with all prompts, rubrics, gold outputs, files, and metadata. We also open-source Archipelago, our infrastructure for agent execution and evaluation.
Spatiotemporal Wildfire Prediction and Reinforcement Learning for Helitack Suppression
Wildfires are growing in frequency and intensity, devastating ecosystems and communities while causing billions of dollars in suppression costs and economic damage annually in the U.S. Traditional wildfire management is mostly reactive, addressing fires only after they are detected. We introduce \textit{FireCastRL}, a proactive artificial intelligence (AI) framework that combines wildfire forecasting with intelligent suppression strategies. Our framework first uses a deep spatiotemporal model to predict wildfire ignition. For high-risk predictions, we deploy a pre-trained reinforcement learning (RL) agent to execute real-time suppression tactics with helitack units inside a physics-informed 3D simulation. The framework generates a threat assessment report to help emergency responders optimize resource allocation and planning. In addition, we are publicly releasing a large-scale, spatiotemporal dataset containing $\mathbf{9.5}$ million samples of environmental variables for wildfire prediction. Our work demonstrates how deep learning and RL can be combined to support both forecasting and tactical wildfire response. More details can be found at https://sites.google.com/view/firecastrl.
comment: 6 pages, 5 figures (two of them in tables), Conference: IEEE International Conference on Machine Learning and Applications 2025 (ICMLA 2025): https://www.icmla-conference.org/icmla25/
Opportunities in AI/ML for the Rubin LSST Dark Energy Science Collaboration
The Vera C. Rubin Observatory's Legacy Survey of Space and Time (LSST) will produce unprecedented volumes of heterogeneous astronomical data (images, catalogs, and alerts) that challenge traditional analysis pipelines. The LSST Dark Energy Science Collaboration (DESC) aims to derive robust constraints on dark energy and dark matter from these data, requiring methods that are statistically powerful, scalable, and operationally reliable. Artificial intelligence and machine learning (AI/ML) are already embedded across DESC science workflows, from photometric redshifts and transient classification to weak lensing inference and cosmological simulations. Yet their utility for precision cosmology hinges on trustworthy uncertainty quantification, robustness to covariate shift and model misspecification, and reproducible integration within scientific pipelines. This white paper surveys the current landscape of AI/ML across DESC's primary cosmological probes and cross-cutting analyses, revealing that the same core methodologies and fundamental challenges recur across disparate science cases. Since progress on these cross-cutting challenges would benefit multiple probes simultaneously, we identify key methodological research priorities, including Bayesian inference at scale, physics-informed methods, validation frameworks, and active learning for discovery. With an eye on emerging techniques, we also explore the potential of the latest foundation model methodologies and LLM-driven agentic AI systems to reshape DESC workflows, provided their deployment is coupled with rigorous evaluation and governance. Finally, we discuss critical software, computing, data infrastructure, and human capital requirements for the successful deployment of these new methodologies, and consider associated risks and opportunities for broader coordination with external actors.
comment: 84 pages. This is v1.0 of the DESC's white paper on AI/ML, a collaboration document that is being made public but which is not planned for submission to a journal
Q-learning with Adjoint Matching
We propose Q-learning with Adjoint Matching (QAM), a novel TD-based reinforcement learning (RL) algorithm that tackles a long-standing challenge in continuous-action RL: efficient optimization of an expressive diffusion or flow-matching policy with respect to a parameterized Q-function. Effective optimization requires exploiting the first-order information of the critic, but it is challenging to do so for flow or diffusion policies because direct gradient-based optimization via backpropagation through their multi-step denoising process is numerically unstable. Existing methods work around this either by only using the value and discarding the gradient information, or by relying on approximations that sacrifice policy expressivity or bias the learned policy. QAM sidesteps both of these challenges by leveraging adjoint matching, a recently proposed technique in generative modeling, which transforms the critic's action gradient to form a step-wise objective function that is free from unstable backpropagation, while providing an unbiased, expressive policy at the optimum. Combined with temporal-difference backup for critic learning, QAM consistently outperforms prior approaches on hard, sparse reward tasks in both offline and offline-to-online RL.
comment: 32 pages, 8 figures, 7 tables
KAGE-Bench: Fast Known-Axis Visual Generalization Evaluation for Reinforcement Learning
Pixel-based reinforcement learning agents often fail under purely visual distribution shift even when latent dynamics and rewards are unchanged, but existing benchmarks entangle multiple sources of shift and hinder systematic analysis. We introduce KAGE-Env, a JAX-native 2D platformer that factorizes the observation process into independently controllable visual axes while keeping the underlying control problem fixed. By construction, varying a visual axis affects performance only through the induced state-conditional action distribution of a pixel policy, providing a clean abstraction for visual generalization. Building on this environment, we define KAGE-Bench, a benchmark of six known-axis suites comprising 34 train-evaluation configuration pairs that isolate individual visual shifts. Using a standard PPO-CNN baseline, we observe strong axis-dependent failures, with background and photometric shifts often collapsing success, while agent-appearance shifts are comparatively benign. Several shifts preserve forward motion while breaking task completion, showing that return alone can obscure generalization failures. Finally, the fully vectorized JAX implementation enables up to 33M environment steps per second on a single GPU, enabling fast and reproducible sweeps over visual factors. Code: https://avanturist322.github.io/KAGEBench/.
comment: 38 pages, 44 figures, 3 tables
Attention-Based Offline Reinforcement Learning and Clustering for Interpretable Sepsis Treatment
Sepsis remains one of the leading causes of mortality in intensive care units, where timely and accurate treatment decisions can significantly impact patient outcomes. In this work, we propose an interpretable decision support framework. Our system integrates four core components: (1) a clustering-based stratification module that categorizes patients into low, intermediate, and high-risk groups upon ICU admission, using clustering with statistical validation; (2) a synthetic data augmentation pipeline leveraging variational autoencoders (VAE) and diffusion models to enrich underrepresented trajectories such as fluid or vasopressor administration; (3) an offline reinforcement learning (RL) agent trained using Advantage Weighted Regression (AWR) with a lightweight attention encoder and supported by an ensemble models for conservative, safety-aware treatment recommendations; and (4) a rationale generation module powered by a multi-modal large language model (LLM), which produces natural-language justifications grounded in clinical context and retrieved expert knowledge. Evaluated on the MIMIC-III and eICU datasets, our approach achieves high treatment accuracy while providing clinicians with interpretable and robust policy recommendations.
comment: 8 pages, 6 figures, Conference: IEEE International Conference on Machine Learning and Applications 2025 (ICMLA 2025): https://www.icmla-conference.org/icmla25/
Deep Learning Approaches to Quantum Error Mitigation
We present a systematic investigation of deep learning methods applied to quantum error mitigation of noisy output probability distributions from measured quantum circuits. We compare different architectures, from fully connected neural networks to transformers, and we test different design/training modalities, identifying sequence-to-sequence, attention-based models as the most effective on our datasets. These models consistently produce mitigated distributions that are closer to the ideal outputs when tested on both simulated and real device data obtained from IBM superconducting quantum processing units (QPU) up to five qubits. Across several different circuit depths, our approach outperforms other baseline error mitigation techniques. We perform a series of ablation studies to examine: how different input features (circuit, device properties, noisy output statistics) affect performance; cross-dataset generalization across circuit families; and transfer learning to a different IBM QPU. We observe that generalization performance across similar devices with the same architecture works effectively, without needing to fully retrain models.
comment: 48 pages
InT: Self-Proposed Interventions Enable Credit Assignment in LLM Reasoning
Outcome-reward reinforcement learning (RL) has proven effective at improving the reasoning capabilities of large language models (LLMs). However, standard RL assigns credit only at the level of the final answer, penalizing entire reasoning traces when the outcome is incorrect and uniformly reinforcing all steps when it is correct. As a result, correct intermediate steps may be discouraged in failed traces, while spurious steps may be reinforced in successful ones. We refer to this failure mode as the problem of credit assignment. While a natural remedy is to train a process reward model, accurately optimizing such models to identify corrective reasoning steps remains challenging. We introduce Intervention Training (InT), a training paradigm in which the model performs fine-grained credit assignment on its own reasoning traces by proposing short, targeted corrections that steer trajectories toward higher reward. Using reference solutions commonly available in mathematical reasoning datasets and exploiting the fact that verifying a model-generated solution is easier than generating a correct one from scratch, the model identifies the first error in its reasoning and proposes a single-step intervention to redirect the trajectory toward the correct solution. We then apply supervised fine-tuning (SFT) to the on-policy rollout up to the point of error concatenated with the intervention, localizing error to the specific step that caused failure. We show that the resulting model serves as a far better initialization for RL training. After running InT and subsequent fine-tuning with RL, we improve accuracy by nearly 14% over a 4B-parameter base model on IMO-AnswerBench, outperforming larger open-source models such as gpt-oss-20b.
Rig-Aware 3D Reconstruction of Vehicle Undercarriages using Gaussian Splatting
Inspecting the undercarriage of used vehicles is a labor-intensive task that requires inspectors to crouch or crawl underneath each vehicle to thoroughly examine it. Additionally, online buyers rarely see undercarriage photos. We present an end-to-end pipeline that utilizes a three-camera rig to capture videos of the undercarriage as the vehicle drives over it, and produces an interactive 3D model of the undercarriage. The 3D model enables inspectors and customers to rotate, zoom, and slice through the undercarriage, allowing them to detect rust, leaks, or impact damage in seconds, thereby improving both workplace safety and buyer confidence. Our primary contribution is a rig-aware Structure-from-Motion (SfM) pipeline specifically designed to overcome the challenges of wide-angle lens distortion and low-parallax scenes. Our method overcomes the challenges of wide-angle lens distortion and low-parallax scenes by integrating precise camera calibration, synchronized video streams, and strong geometric priors from the camera rig. We use a constrained matching strategy with learned components, the DISK feature extractor, and the attention-based LightGlue matcher to generate high-quality sparse point clouds that are often unattainable with standard SfM pipelines. These point clouds seed the Gaussian splatting process to generate photorealistic undercarriage models that render in real-time. Our experiments and ablation studies demonstrate that our design choices are essential to achieve state-of-the-art quality.
comment: 8 pages, 9 figures, Conference: IEEE International Conference on Machine Learning and Applications 2025 (ICMLA 2025): https://www.icmla-conference.org/icmla25/
Differentiated Pickup Point Offering for Emission Reduction in Last-Mile Delivery
Pickup points are widely recognized as a sustainable alternative to home delivery, as consolidating orders at pickup locations can shorten delivery routes and improve first-attempt success rates. However, these benefits may be negated when customers drive to pick up their orders. This study proposes a Differentiated Pickup Point Offering (DPO) policy that aims to jointly reduce emissions from delivery truck routes and customer travel. Under DPO, each arriving customer is offered a single recommended pickup point, rather than an unrestricted choice among all locations, while retaining the option of home delivery. We study this problem in a dynamic and stochastic setting, where the pickup point offered to each customer depends on previously realized customer locations and delivery choices. To design effective DPO policies, we adopt a reinforcement learning-based approach that accounts for spatial relationships between customers and pickup points and their implications for future route consolidation. Computational experiments show that differentiated pickup point offerings can substantially reduce total carbon emissions. The proposed policies reduce total emissions by up to 9% relative to home-only delivery and by 2% on average compared with alternative policies, including unrestricted pickup point choice and nearest pickup point assignment. Differentiated offerings are particularly effective in dense urban settings with many pickup points and short inter-location distances. Moreover, explicitly accounting for the dynamic nature of customer arrivals and choices is especially important when customers are less inclined to choose pickup point delivery over home delivery.
A model of errors in transformers
We study the error rate of LLMs on tasks like arithmetic that require a deterministic output, and repetitive processing of tokens drawn from a small set of alternatives. We argue that incorrect predictions arise when small errors in the attention mechanism accumulate to cross a threshold, and use this insight to derive a quantitative two-parameter relationship between the accuracy and the complexity of the task. The two parameters vary with the prompt and the model; they can be interpreted in terms of an elementary noise rate, and the number of plausible erroneous tokens that can be predicted. Our analysis is inspired by an ``effective field theory'' perspective: the LLM's many raw parameters can be reorganized into just two parameters that govern the error rate. We perform extensive empirical tests, using Gemini 2.5 Flash, Gemini 2.5 Pro and DeepSeek R1, and find excellent agreement between the predicted and observed accuracy for a variety of tasks, although we also identify deviations in some cases. Our model provides an alternative to suggestions that errors made by LLMs on long repetitive tasks indicate the ``collapse of reasoning'', or an inability to express ``compositional'' functions. Finally, we show how to construct prompts to reduce the error rate.
comment: 8+17pages
Penalizing Localized Dirichlet Energies in Low Rank Tensor Products
We study low-rank tensor-product B-spline (TPBS) models for regression tasks and investigate Dirichlet energy as a measure of smoothness. We show that TPBS models admit a closed-form expression for the Dirichlet energy, and reveal scenarios where perfect interpolation is possible with exponentially small Dirichlet energy. This renders global Dirichlet energy-based regularization ineffective. To address this limitation, we propose a novel regularization strategy based on local Dirichlet energies defined on small hypercubes centered at the training points. Leveraging pretrained TPBS models, we also introduce two estimators for inference from incomplete samples. Comparative experiments with neural networks demonstrate that TPBS models outperform neural networks in the overfitting regime for most datasets, and maintain competitive performance otherwise. Overall, TPBS models exhibit greater robustness to overfitting and consistently benefit from regularization, while neural networks are more sensitive to overfitting and less effective in leveraging regularization.
comment: 19 pages
ConceptCaps -- a Distilled Concept Dataset for Interpretability in Music Models
Concept-based interpretability methods like TCAV require clean, well-separated positive and negative examples for each concept. Existing music datasets lack this structure: tags are sparse, noisy, or ill-defined. We introduce ConceptCaps, a dataset of 23k music-caption-audio triplets with explicit labels from a 200-attribute taxonomy. Our pipeline separates semantic modeling from text generation: a VAE learns plausible attribute co-occurrence patterns, a fine-tuned LLM converts attribute lists into professional descriptions, and MusicGen synthesizes corresponding audio. This separation improves coherence and controllability over end-to-end approaches. We validate the dataset through audio-text alignment (CLAP), linguistic quality metrics (BERTScore, MAUVE), and TCAV analysis confirming that concept probes recover musically meaningful patterns. Dataset and code are available online.
Lost in the Prompt Order: Revealing the Limitations of Causal Attention in Language Models
Large language models exhibit surprising sensitivity to the structure of the prompt, but the mechanisms underlying this sensitivity remain poorly understood. In this work, we conduct an in-depth investigation on a striking case: in multiple-choice question answering, placing context before the questions and options (CQO) outperforms the reverse order (QOC) by over 14%p, consistently over a wide range of models and datasets. Through systematic architectural analysis, we identify causal attention as the core mechanism: in QOC prompts, the causal mask prevents option tokens from attending to context, creating an information bottleneck where context becomes invisible to options.
comment: preprint
Riemannian Liquid Spatio-Temporal Graph Network
Liquid Time-Constant networks (LTCs), a type of continuous-time graph neural network, excel at modeling irregularly-sampled dynamics but are fundamentally confined to Euclidean space. This limitation introduces significant geometric distortion when representing real-world graphs with inherent non-Euclidean structures (e.g., hierarchies and cycles), degrading representation quality. To overcome this limitation, we introduce the Riemannian Liquid Spatio-Temporal Graph Network (RLSTG), a framework that unifies continuous-time liquid dynamics with the geometric inductive biases of Riemannian manifolds. RLSTG models graph evolution through an Ordinary Differential Equation (ODE) formulated directly on a curved manifold, enabling it to faithfully capture the intrinsic geometry of both structurally static and dynamic spatio-temporal graphs. Moreover, we provide rigorous theoretical guarantees for RLSTG, extending stability theorems of LTCs to the Riemannian domain and quantifying its expressive power via state trajectory analysis. Extensive experiments on real-world benchmarks demonstrate that, by combining advanced temporal dynamics with a Riemannian spatial representation, RLSTG achieves superior performance on graphs with complex structures. Project Page: https://rlstg.github.io
comment: This paper has been accepted to The Web Conference 2026
Learning to Explain: Supervised Token Attribution from Transformer Attention Patterns
Explainable AI (XAI) has become critical as transformer-based models are deployed in high-stakes applications including healthcare, legal systems, and financial services, where opacity hinders trust and accountability. Transformers self-attention mechanisms have proven valuable for model interpretability, with attention weights successfully used to understand model focus and behavior (Xu et al., 2015); (Wiegreffe and Pinter, 2019). However, existing attention-based explanation methods rely on manually defined aggregation strategies and fixed attribution rules (Abnar and Zuidema, 2020a); (Chefer et al., 2021), while model-agnostic approaches (LIME, SHAP) treat the model as a black box and incur significant computational costs through input perturbation. We introduce Explanation Network (ExpNet), a lightweight neural network that learns an explicit mapping from transformer attention patterns to token-level importance scores. Unlike prior methods, ExpNet discovers optimal attention feature combinations automatically rather than relying on predetermined rules. We evaluate ExpNet in a challenging cross-task setting and benchmark it against a broad spectrum of model-agnostic methods and attention-based techniques spanning four methodological families.
Causal feature selection framework for stable soft sensor modeling based on time-delayed cross mapping
Soft sensor modeling plays a crucial role in process monitoring. Causal feature selection can enhance the performance of soft sensor models in industrial applications. However, existing methods ignore two critical characteristics of industrial processes. Firstly, causal relationships between variables always involve time delays, whereas most causal feature selection methods investigate causal relationships in the same time dimension. Secondly, variables in industrial processes are often interdependent, which contradicts the decorrelation assumption of traditional causal inference methods. Consequently, soft sensor models based on existing causal feature selection approaches often lack sufficient accuracy and stability. To overcome these challenges, this paper proposes a causal feature selection framework based on time-delayed cross mapping. Time-delayed cross mapping employs state space reconstruction to effectively handle interdependent variables in causality analysis, and considers varying causal strength across time delay. Time-delayed convergent cross mapping (TDCCM) is introduced for total causal inference, and time-delayed partial cross mapping (TDPCM) is developed for direct causal inference. Then, in order to achieve automatic feature selection, an objective feature selection strategy is presented. The causal threshold is automatically determined based on the model performance on the validation set, and the causal features are then selected. Two real-world case studies show that TDCCM achieves the highest average performance, while TDPCM improves soft sensor stability and performance in the worst scenario. The code is publicly available at https://github.com/dirge1/TDPCM.
Optimizing Energy and Data Collection in UAV-aided IoT Networks using Attention-based Multi-Objective Reinforcement Learning
Due to their adaptability and mobility, Unmanned Aerial Vehicles (UAVs) are becoming increasingly essential for wireless network services, particularly for data harvesting tasks. In this context, Artificial Intelligence (AI)-based approaches have gained significant attention for addressing UAV path planning tasks in large and complex environments, bridging the gap with real-world deployments. However, many existing algorithms suffer from limited training data, which hampers their performance in highly dynamic environments. Moreover, they often overlook the inherently multi-objective nature of the task, treating it in an overly simplistic manner. To address these limitations, we propose an attention-based Multi-Objective Reinforcement Learning (MORL) architecture that explicitly handles the trade-off between data collection and energy consumption in urban environments, even without prior knowledge of wireless channel conditions. Our method develops a single model capable of adapting to varying trade-off preferences and dynamic scenario parameters without the need for fine-tuning or retraining. Extensive simulations show that our approach achieves substantial improvements in performance, model compactness, sample efficiency, and most importantly, generalization to previously unseen scenarios, outperforming existing RL solutions.
'1'-bit Count-based Sorting Unit to Reduce Link Power in DNN Accelerators
Interconnect power consumption remains a bottleneck in Deep Neural Network (DNN) accelerators. While ordering data based on '1'-bit counts can mitigate this via reduced switching activity, practical hardware sorting implementations remain underexplored. This work proposes the hardware implementation of a comparison-free sorting unit optimized for Convolutional Neural Networks (CNN). By leveraging approximate computing to group population counts into coarse-grained buckets, our design achieves hardware area reductions while preserving the link power benefits of data reordering. Our approximate sorting unit achieves up to 35.4% area reduction while maintaining 19.50\% BT reduction compared to 20.42% of precise implementation.
comment: Accepted for oral presentation at the 2026 VLSI Symposium on Technology, Systems and Applications (VLSI TSA) on April 13-17, 2026, at the Ambassador Hotel, Hsinchu, Taiwan
Two-Stream temporal transformer for video action classification
Motion representation plays an important role in video understanding and has many applications including action recognition, robot and autonomous guidance or others. Lately, transformer networks, through their self-attention mechanism capabilities, have proved their efficiency in many applications. In this study, we introduce a new two-stream transformer video classifier, which extracts spatio-temporal information from content and optical flow representing movement information. The proposed model identifies self-attention features across the joint optical flow and temporal frame domain and represents their relationships within the transformer encoder mechanism. The experimental results show that our proposed methodology provides excellent classification results on three well-known video datasets of human activities.
Unsupervised Video Class-Incremental Learning via Deep Embedded Clustering Management
Unsupervised video class incremental learning (uVCIL) represents an important learning paradigm for learning video information without forgetting, and without considering any data labels. Prior approaches have focused on supervised class-incremental learning, relying on using the knowledge of labels and task boundaries, which is costly, requires human annotation, or is simply not a realistic option. In this paper, we propose a simple yet effective approach to address the uVCIL. We first consider a deep feature extractor network, providing a set of representative video features during each task without assuming any class or task information. We then progressively build a series of deep clusters from the extracted features. During the successive task learning, the model updated from the previous task is used as an initial state in order to transfer knowledge to the current learning task. We perform in-depth evaluations on three standard video action recognition datasets, including UCF101, HMDB51, and Something-to-Something V2, by ignoring the labels from the supervised setting. Our approach significantly outperforms other baselines on all datasets.
SecureSplit: Mitigating Backdoor Attacks in Split Learning
Split Learning (SL) offers a framework for collaborative model training that respects data privacy by allowing participants to share the same dataset while maintaining distinct feature sets. However, SL is susceptible to backdoor attacks, in which malicious clients subtly alter their embeddings to insert hidden triggers that compromise the final trained model. To address this vulnerability, we introduce SecureSplit, a defense mechanism tailored to SL. SecureSplit applies a dimensionality transformation strategy to accentuate subtle differences between benign and poisoned embeddings, facilitating their separation. With this enhanced distinction, we develop an adaptive filtering approach that uses a majority-based voting scheme to remove contaminated embeddings while preserving clean ones. Rigorous experiments across four datasets (CIFAR-10, MNIST, CINIC-10, and ImageNette), five backdoor attack scenarios, and seven alternative defenses confirm the effectiveness of SecureSplit under various challenging conditions.
comment: To appear in The Web Conference 2026
LLMOrbit: A Circular Taxonomy of Large Language Models -From Scaling Walls to Agentic AI Systems
The field of artificial intelligence has undergone a revolution from foundational Transformer architectures to reasoning-capable systems approaching human-level performance. We present LLMOrbit, a comprehensive circular taxonomy navigating the landscape of large language models spanning 2019-2025. This survey examines over 50 models across 15 organizations through eight interconnected orbital dimensions, documenting architectural innovations, training methodologies, and efficiency patterns defining modern LLMs, generative AI, and agentic systems. We identify three critical crises: (1) data scarcity (9-27T tokens depleted by 2026-2028), (2) exponential cost growth ($3M to $300M+ in 5 years), and (3) unsustainable energy consumption (22x increase), establishing the scaling wall limiting brute-force approaches. Our analysis reveals six paradigms breaking this wall: (1) test-time compute (o1, DeepSeek-R1 achieve GPT-4 performance with 10x inference compute), (2) quantization (4-8x compression), (3) distributed edge computing (10x cost reduction), (4) model merging, (5) efficient training (ORPO reduces memory 50%), and (6) small specialized models (Phi-4 14B matches larger models). Three paradigm shifts emerge: (1) post-training gains (RLHF, GRPO, pure RL contribute substantially, DeepSeek-R1 achieving 79.8% MATH), (2) efficiency revolution (MoE routing 18x efficiency, Multi-head Latent Attention 8x KV cache compression enables GPT-4-level performance at <$0.30/M tokens), and (3) democratization (open-source Llama 3 88.6% MMLU surpasses GPT-4 86.4%). We provide insights into techniques (RLHF, PPO, DPO, GRPO, ORPO), trace evolution from passive generation to tool-using agents (ReAct, RAG, multi-agent systems), and analyze post-training innovations.
Kakugo: Distillation of Low-Resource Languages into Small Language Models
We present Kakugo, a novel and cost-effective pipeline designed to train general-purpose Small Language Models (SLMs) for low-resource languages using only the language name as input. By using a large teacher model to generate synthetic prompts and translate instruction datasets, we produced training data and SLMs for 54 low-resource languages. Evaluations across a diverse set of general natural language processing tasks, including translation, classification, and question answering, demonstrate that our pipeline consistently improves performance over base models. With a total generation and training cost of under $50 per language, Kakugo offers an accessible method for communities to develop language-specific AI.
Federated Balanced Learning
Federated learning is a paradigm of joint learning in which clients collaborate by sharing model parameters instead of data. However, in the non-iid setting, the global model experiences client drift, which can seriously affect the final performance of the model. Previous methods tend to correct the global model that has already deviated based on the loss function or gradient, overlooking the impact of the client samples. In this paper, we rethink the role of the client side and propose Federated Balanced Learning, i.e., FBL, to prevent this issue from the beginning through sample balance on the client side. Technically, FBL allows unbalanced data on the client side to achieve sample balance through knowledge filling and knowledge sampling using edge-side generation models, under the limitation of a fixed number of data samples on clients. Furthermore, we design a Knowledge Alignment Strategy to bridge the gap between synthetic and real data, and a Knowledge Drop Strategy to regularize our method. Meanwhile, we scale our method to real and complex scenarios, allowing different clients to adopt various methods, and extend our framework to further improve performance. Numerous experiments show that our method outperforms state-of-the-art baselines. The code is released upon acceptance.
PAC-Private Responses with Adversarial Composition
Modern machine learning models are increasingly deployed behind APIs. This renders standard weight-privatization methods (e.g. DP-SGD) unnecessarily noisy at the cost of utility. While model weights may vary significantly across training datasets, model responses to specific inputs are much lower dimensional and more stable. This motivates enforcing privacy guarantees directly on model outputs. We approach this under PAC privacy, which provides instance-based privacy guarantees for arbitrary black-box functions by controlling mutual information (MI). Importantly, PAC privacy explicitly rewards output stability with reduced noise levels. However, a central challenge remains: response privacy requires composing a large number of adaptively chosen, potentially adversarial queries issued by untrusted users, where existing composition results on PAC privacy are inadequate. We introduce a new algorithm that achieves adversarial composition via adaptive noise calibration and prove that mutual information guarantees accumulate linearly under adaptive and adversarial querying. Experiments across tabular, vision, and NLP tasks show that our method achieves high utility at extremely small per-query privacy budgets. On CIFAR-10, we achieve 87.79% accuracy with a per-step MI budget of $2^{-32}$. This enables serving one million queries while provably bounding membership inference attack (MIA) success rates to 51.08% -- the same guarantee of $(0.04, 10^{-5})$-DP. Furthermore, we show that private responses can be used to label public data to distill a publishable privacy-preserving model; using an ImageNet subset as a public dataset, our model distilled from 210,000 responses achieves 91.86% accuracy on CIFAR-10 with MIA success upper-bounded by 50.49%, which is comparable to $(0.02,10^{-5})$-DP.
comment: 16 pages, 3 figures
Intermittent time series forecasting: local vs global models
Intermittent time series, characterised by the presence of a significant amount of zeros, constitute a large percentage of inventory items in supply chain. Probabilistic forecasts are needed to plan the inventory levels; the predictive distribution should cover non-negative values, have a mass in zero and a long upper tail. Intermittent time series are commonly forecast using local models, which are trained individually on each time series. In the last years global models, which are trained on a large collection of time series, have become popular for time series forecasting. Global models are often based on neural networks. However, they have not yet been exhaustively tested on intermittent time series. We carry out the first study comparing state-of-the-art local (iETS, TweedieGP) and global models (D-Linear, DeepAR, Transformers) on intermittent time series. For neural networks models we consider three different distribution heads suitable for intermittent time series: negative binomial, hurdle-shifted negative binomial and Tweedie. We use, for the first time, the last two distribution heads with neural networks. We perform experiments on five large datasets comprising more than 40'000 real-world time series. Among neural networks D-Linear provides best accuracy; it also consistently outperforms the local models. Moreover, it has also low computational requirements. Transformers-based architectures are instead much more computationally demanding and less accurate. Among the distribution heads, the Tweedie provides the best estimates of the highest quantiles, while the negative binomial offers overall the best performance.
comment: Submitted to Data Mining and Knowledge Discovery
Universal Approximation Theorem for Input-Connected Multilayer Perceptrons
We introduce the Input-Connected Multilayer Perceptron (IC-MLP), a feedforward neural network architecture in which each hidden neuron receives, in addition to the outputs of the preceding layer, a direct affine connection from the raw input. We first study this architecture in the univariate setting and give an explicit and systematic description of IC-MLPs with an arbitrary finite number of hidden layers, including iterated formulas for the network functions. In this setting, we prove a universal approximation theorem showing that deep IC-MLPs can approximate any continuous function on a closed interval of the real line if and only if the activation function is nonlinear. We then extend the analysis to vector-valued inputs and establish a corresponding universal approximation theorem for continuous functions on compact subsets of $\mathbb{R}^n$.
comment: 18 pages, 2 figures, 31 references
Credible CO2 Comparisons: A Machine Learning Approach to Vehicle Powertrain Assessment
Decarbonizing road transport requires consistent and transparent methods for comparing CO2 emissions across vehicle technologies. This paper proposes a machine learning-based framework for like-for-like operational assessment of internal combustion engine vehicles (ICEVs) and electric vehicles (EVs) under identical, real-world driving conditions. The approach isolates technology-specific effects by holding the observed speed profile and environmental context fixed, enabling direct comparison of powertrain performance. Recurrent neural network models are trained independently for each domain to learn the mapping from contextual driving variables (speed, acceleration, temperature) to internal actuation variables (torque, throttle) and instantaneous CO2-equivalent emission rates. This structure allows the construction of counterfactual scenarios that answer: What emissions would an EV have generated if it had followed the same driving profile as an ICEV? By aligning both vehicle types on a unified instantaneous emissions metric, the framework enables fair and reproducible evaluation of powertrain technologies. It offers a scalable foundation for credible, data-driven assessments of vehicle carbon performance under real-world operating conditions.
Auditory Brain Passage Retrieval: Cross-Sensory EEG Training for Neural Information Retrieval
Query formulation from internal information needs remains fundamentally challenging across all Information Retrieval paradigms due to cognitive complexity and physical impairments. Brain Passage Retrieval (BPR) addresses this by directly mapping EEG signals to passage representations without intermediate text translation. However, existing BPR research exclusively uses visual stimuli, leaving critical questions unanswered: Can auditory EEG enable effective retrieval for voice-based interfaces and visually impaired users? Can training on combined EEG datasets from different sensory modalities improve performance despite severe data scarcity? We present the first systematic investigation of auditory EEG for BPR and evaluate cross-sensory training benefits. Using dual encoder architectures with four pooling strategies (CLS, mean, max, multi-vector), we conduct controlled experiments comparing auditory-only, visual-only, and combined training on the Alice (auditory) and Nieuwland (visual) datasets. Results demonstrate that auditory EEG consistently outperforms visual EEG, and cross-sensory training with CLS pooling achieves substantial improvements over individual training: 31% in MRR (0.474), 43% in Hit@1 (0.314), and 28% in Hit@10 (0.858). Critically, combined auditory EEG models surpass BM25 text baselines (MRR: 0.474 vs 0.428), establishing neural queries as competitive with traditional retrieval whilst enabling accessible interfaces. These findings validate auditory neural interfaces for IR tasks and demonstrate that cross-sensory training addresses data scarcity whilst outperforming single-modality approaches Code: https://github.com/NiallMcguire/Audio_BPR
comment: Accepted At ECIR 2026
Group-Invariant Unsupervised Skill Discovery: Symmetry-aware Skill Representations for Generalizable Behavior
Unsupervised skill discovery aims to acquire behavior primitives that improve exploration and accelerate downstream task learning. However, existing approaches often ignore the geometric symmetries of physical environments, leading to redundant behaviors and sample inefficiency. To address this, we introduce Group-Invariant Skill Discovery (GISD), a framework that explicitly embeds group structure into the skill discovery objective. Our approach is grounded in a theoretical guarantee: we prove that in group-symmetric environments, the standard Wasserstein dependency measure admits a globally optimal solution comprised of an equivariant policy and a group-invariant scoring function. Motivated by this, we formulate the Group-Invariant Wasserstein dependency measure, which restricts the optimization to this symmetry-aware subspace without loss of optimality. Practically, we parameterize the scoring function using a group Fourier representation and define the intrinsic reward via the alignment of equivariant latent features, ensuring that the discovered skills generalize systematically under group transformations. Experiments on state-based and pixel-based locomotion benchmarks demonstrate that GISD achieves broader state-space coverage and improved efficiency in downstream task learning compared to a strong baseline.
comment: 14 pages, 6 figures
A universal linearized subspace refinement framework for neural networks
Neural networks are predominantly trained using gradient-based methods, yet in many applications their final predictions remain far from the accuracy attainable within the model's expressive capacity. We introduce Linearized Subspace Refinement (LSR), a general and architecture-agnostic framework that exploits the Jacobian-induced linear residual model at a fixed trained network state. By solving a reduced direct least-squares problem within this subspace, LSR computes a subspace-optimal solution of the linearized residual model, yielding a refined linear predictor with substantially improved accuracy over standard gradient-trained solutions, without modifying network architectures, loss formulations, or training procedures. Across supervised function approximation, data-driven operator learning, and physics-informed operator fine-tuning, we show that gradient-based training often fails to access this attainable accuracy, even when local linearization yields a convex problem. This observation indicates that loss-induced numerical ill-conditioning, rather than nonconvexity or model expressivity, can constitute a dominant practical bottleneck. In contrast, one-shot LSR systematically exposes accuracy levels not fully exploited by gradient-based training, frequently achieving order-of-magnitude error reductions. For operator-constrained problems with composite loss structures, we further introduce Iterative LSR, which alternates one-shot LSR with supervised nonlinear alignment, transforming ill-conditioned residual minimization into numerically benign fitting steps and yielding accelerated convergence and improved accuracy. By bridging nonlinear neural representations with reduced-order linear solvers at fixed linearization points, LSR provides a numerically grounded and broadly applicable refinement framework for supervised learning, operator learning, and scientific computing.
Harmonizing the Deep: A Unified Information Pipeline for Robust Marine Biodiversity Assessment Across Heterogeneous Domains
Marine biodiversity monitoring requires scalability and reliability across complex underwater environments to support conservation and invasive-species management. Yet existing detection solutions often exhibit a pronounced deployment gap, with performance degrading sharply when transferred to new sites. This work establishes the foundational detection layer for a multi-year invasive species monitoring initiative targeting Arctic and Atlantic marine ecosystems. We address this challenge by developing a Unified Information Pipeline that standardises heterogeneous datasets into a comparable information flow and evaluates a fixed, deployment-relevant detector under controlled cross-domain protocols. Across multiple domains, we find that structural factors, such as scene composition, object density, and contextual redundancy, explain cross-domain performance loss more strongly than visual degradation such as turbidity, with sparse scenes inducing a characteristic "Context Collapse" failure mode. We further validate operational feasibility by benchmarking inference on low-cost edge hardware, showing that runtime optimisation enables practical sampling rates for remote monitoring. The results shift emphasis from image enhancement toward structure-aware reliability, providing a democratised tool for consistent marine ecosystem assessment.
comment: 9 pages, 4 figures 8 tables
Autonomous Knowledge Graph Exploration with Adaptive Breadth-Depth Retrieval
Retrieving evidence for language model queries from knowledge graphs requires balancing broad search across the graph with multi-hop traversal to follow relational links. Similarity-based retrievers provide coverage but remain shallow, whereas traversal-based methods rely on selecting seed nodes to start exploration, which can fail when queries span multiple entities and relations. We introduce ARK: Adaptive Retriever of Knowledge, an agentic KG retriever that gives a language model control over this breadth-depth tradeoff using a two-operation toolset: global lexical search over node descriptors and one-hop neighborhood exploration that composes into multi-hop traversal. ARK alternates between breadth-oriented discovery and depth-oriented expansion without depending on a fragile seed selection, a pre-set hop depth, or requiring retrieval training. ARK adapts tool use to queries, using global search for language-heavy queries and neighborhood exploration for relation-heavy queries. On STaRK, ARK reaches 59.1% average Hit@1 and 67.4 average MRR, improving average Hit@1 by up to 31.4% and average MRR by up to 28.0% over retrieval-based and agentic training-free methods. Finally, we distill ARK's tool-use trajectories from a large teacher into an 8B model via label-free imitation, improving Hit@1 by +7.0, +26.6, and +13.5 absolute points over the base 8B model on AMAZON, MAG, and PRIME datasets, respectively, while retaining up to 98.5% of the teacher's Hit@1 rate.
RL-BioAug: Label-Efficient Reinforcement Learning for Self-Supervised EEG Representation Learning
The quality of data augmentation serves as a critical determinant for the performance of contrastive learning in EEG tasks. Although this paradigm is promising for utilizing unlabeled data, static or random augmentation strategies often fail to preserve intrinsic information due to the non-stationarity of EEG signals where statistical properties change over time. To address this, we propose RL-BioAug, a framework that leverages a label-efficient reinforcement learning (RL) agent to autonomously determine optimal augmentation policies. While utilizing only a minimal fraction (10\%) of labeled data to guide the agent's policy, our method enables the encoder to learn robust representations in a strictly self-supervised manner. Experimental results demonstrate that RL-BioAug significantly outperforms the random selection strategy, achieving substantial improvements of 9.69\% and 8.80\% in Macro-F1 score on the Sleep-EDFX and CHB-MIT datasets, respectively. Notably, this agent mainly chose optimal strategies for each task -- for example, Time Masking with a 62\% probability for sleep stage classification and Crop \& Resize with a 77\% probability for seizure detection. Our framework suggests its potential to replace conventional heuristic-based augmentations and establish a new autonomous paradigm for data augmentation. The source code is available at \href{https://github.com/dlcjfgmlnasa/RL-BioAug}{https://github.com/dlcjfgmlnasa/RL-BioAug}.
Differentiable Logic Synthesis: Spectral Coefficient Selection via Sinkhorn-Constrained Composition
Learning precise Boolean logic via gradient descent remains challenging: neural networks typically converge to "fuzzy" approximations that degrade under quantization. We introduce Hierarchical Spectral Composition, a differentiable architecture that selects spectral coefficients from a frozen Boolean Fourier basis and composes them via Sinkhorn-constrained routing with column-sign modulation. Our approach draws on recent insights from Manifold-Constrained Hyper-Connections (mHC), which demonstrated that projecting routing matrices onto the Birkhoff polytope preserves identity mappings and stabilizes large-scale training. We adapt this framework to logic synthesis, adding column-sign modulation to enable Boolean negation -- a capability absent in standard doubly stochastic routing. We validate our approach across four phases of increasing complexity: (1) For n=2 (16 Boolean operations over 4-dim basis), gradient descent achieves 100% accuracy with zero routing drift and zero-loss quantization to ternary masks. (2) For n=3 (10 three-variable operations), gradient descent achieves 76% accuracy, but exhaustive enumeration over 3^8 = 6561 configurations proves that optimal ternary masks exist for all operations (100% accuracy, 39% sparsity). (3) For n=4 (10 four-variable operations over 16-dim basis), spectral synthesis -- combining exact Walsh-Hadamard coefficients, ternary quantization, and MCMC refinement with parallel tempering -- achieves 100% accuracy on all operations. This progression establishes (a) that ternary polynomial threshold representations exist for all tested functions, and (b) that finding them requires methods beyond pure gradient descent as dimensionality grows. All operations enable single-cycle combinational logic inference at 10,959 MOps/s on GPU, demonstrating viability for hardware-efficient neuro-symbolic logic synthesis.
comment: 35 pages, 22 figures. Code available at https://github.com/gogipav14/spectral-llm
Efficient Coordination with the System-Level Shared State: An Embodied-AI Native Modular Framework
As Embodied AI systems move from research prototypes to real world deployments, they tend to evolve rapidly while remaining reliable under workload changes and partial failures. In practice, many deployments are only partially decoupled: middleware moves messages, but shared context and feedback semantics are implicit, causing interface drift, cross-module interference, and brittle recovery at scale. We present ANCHOR, a modular framework that makes decoupling and robustness explicit system-level primitives. ANCHOR separates (i) Canonical Records, an evolvable contract for the standardized shared state, from (ii) a communication bus for many-to-many dissemination and feedback-oriented coordination, forming an inspectable end-to-end loop. We validate closed-loop feasibility on a de-identified workflow instantiation, characterize latency distributions under varying payload sizes and publish rates, and demonstrate automatic stream resumption after hard crashes and restarts even with shared-memory loss. Overall, ANCHOR turns ad-hoc integration glue into explicit contracts, enabling controlled degradation under load and self-healing recovery for scalable deployment of closed-loop AI systems.
TrackletGPT: A Language-like GPT Framework for White Matter Tract Segmentation
White Matter Tract Segmentation is imperative for studying brain structural connectivity, neurological disorders and neurosurgery. This task remains complex, as tracts differ among themselves, across subjects and conditions, yet have similar 3D structure across hemispheres and subjects. To address these challenges, we propose TrackletGPT, a language-like GPT framework which reintroduces sequential information in tokens using tracklets. TrackletGPT generalises seamlessly across datasets, is fully automatic, and encodes granular sub-streamline segments, Tracklets, scaling and refining GPT models in Tractography Segmentation. Based on our experiments, TrackletGPT outperforms state-of-the-art methods on average DICE, Overlap and Overreach scores on TractoInferno and HCP datasets, even on inter-dataset experiments.
comment: Accepted at 23rd IEEE International Symposium on Biomedical Imaging (ISBI), 2026
Towards Effective Negation Modeling in Joint Audio-Text Models for Music
Joint audio-text models are widely used for music retrieval, yet they struggle with semantic phenomena such as negation. Negation is fundamental for distinguishing the absence (or presence) of musical elements (e.g., "with vocals" vs. "without vocals"), but current systems fail to represent this reliably. In this work, we investigate and mitigate this limitation by training CLAP models from scratch on the Million Song Dataset with LP-MusicCaps-MSD captions. We introduce negation through text augmentation and a dissimilarity-based contrastive loss, designed to explicitly separate original and negated captions in the joint embedding space. To evaluate progress, we propose two protocols that frame negation modeling as retrieval and binary classification tasks. Experiments demonstrate that both methods, individually and combined, improve negation handling while largely preserving retrieval performance.
comment: Accepted at IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) 2026
SCG With Your Phone: Diagnosis of Rhythmic Spectrum Disorders in Field Conditions
Aortic valve opening (AO) events are crucial for detecting frequency and rhythm disorders, especially in real-world settings where seismocardiography (SCG) signals collected via consumer smartphones are subject to noise, motion artifacts, and variability caused by device heterogeneity. In this work, we present a robust deep-learning framework for SCG segmentation and rhythm analysis using accelerometer recordings obtained with consumer smartphones. We develop an enhanced U-Net v3 architecture that integrates multi-scale convolutions, residual connections, and attention gates, enabling reliable segmentation of noisy SCG signals. A dedicated post-processing pipeline converts probability masks into precise AO timestamps, whereas a novel adaptive 3D-to-1D projection method ensures robustness to arbitrary smartphone orientation. Experimental results demonstrate that the proposed method achieves consistently high accuracy and robustness across various device types and unsupervised data-collection conditions. Our approach enables practical, low-cost, and automated cardiac-rhythm monitoring using everyday mobile devices, paving the way for scalable, field-deployable cardiovascular assessment and future multimodal diagnostic systems.
Asymmetric regularization mechanism for GAN training with Variational Inequalities
We formulate the training of generative adversarial networks (GANs) as a Nash equilibrium seeking problem. To stabilize the training process and find a Nash equilibrium, we propose an asymmetric regularization mechanism based on the classic Tikhonov step and on a novel zero-centered gradient penalty. Under smoothness and a local identifiability condition induced by a Gauss-Newton Gramian, we obtain explicit Lipschitz and (strong)-monotonicity constants for the regularized operator. These constants ensure last-iterate linear convergence of a single-call Extrapolation-from-the-Past (EFTP) method. Empirical simulations on an academic example show that, even when strong monotonicity cannot be achieved, the asymmetric regularization is enough to converge to an equilibrium and stabilize the trajectory.
comment: 6 pages, 3 figures, conference
TractRLFusion: A GPT-Based Multi-Critic Policy Fusion Framework for Fiber Tractography
Tractography plays a pivotal role in the non-invasive reconstruction of white matter fiber pathways, providing vital information on brain connectivity and supporting precise neurosurgical planning. Although traditional methods relied mainly on classical deterministic and probabilistic approaches, recent progress has benefited from supervised deep learning (DL) and deep reinforcement learning (DRL) to improve tract reconstruction. A persistent challenge in tractography is accurately reconstructing white matter tracts while minimizing spurious connections. To address this, we propose TractRLFusion, a novel GPT-based policy fusion framework that integrates multiple RL policies through a data-driven fusion strategy. Our method employs a two-stage training data selection process for effective policy fusion, followed by a multi-critic fine-tuning phase to enhance robustness and generalization. Experiments on HCP, ISMRM, and TractoInferno datasets demonstrate that TractRLFusion outperforms individual RL policies as well as state-of-the-art classical and DRL methods in accuracy and anatomical reliability.
comment: Accepted at 23rd IEEE International Symposium on Biomedical Imaging (ISBI), 2026
Multi-Objective Hierarchical Optimization with Large Language Models
Despite their widespread adoption in various domains, especially due to their powerful reasoning capabilities, Large Language Models (LLMs) are not the off-the-shelf choice to drive multi-objective optimization yet. Conventional strategies rank high in benchmarks due to their intrinsic capabilities to handle numerical inputs and careful modelling choices that balance exploration and Pareto-front exploitation, as well as handle multiple (conflicting) objectives. In this paper, we close this gap by leveraging LLMs as surrogate models and candidate samplers inside a structured hierarchical search strategy. By adaptively partitioning the input space into disjoint hyperrectangular regions and ranking them with a composite score function, we restrict the generative process of the LLM to specific, high-potential sub-spaces, hence making the problem easier to solve as the LLM doesn't have to reason about the global structure of the problem, but only locally instead. We show that under standard regularity assumptions, our algorithm generates candidate solutions that converge to the true Pareto set in Hausdorff distance. Empirically, it consistently outperforms the global LLM-based multi-objective optimizer and is on par with standard evolutionary and Bayesian optimization algorithm on synthetic and real-world benchmarks.
comment: 23 pages, 21 figures, 9 tables
Unified Unbiased Variance Estimation for MMD: Robust Finite-Sample Performance with Imbalanced Data and Exact Acceleration under Null and Alternative Hypotheses
The maximum mean discrepancy (MMD) is a kernel-based nonparametric statistic for two-sample testing, whose inferential accuracy depends critically on variance characterization. Existing work provides various finite-sample estimators of the MMD variance, often differing under the null and alternative hypotheses and across balanced or imbalanced sampling schemes. In this paper, we study the variance of the MMD statistic through its U-statistic representation and Hoeffding decomposition, and establish a unified finite-sample characterization covering different hypotheses and sample configurations. Building on this analysis, we propose an exact acceleration method for the univariate case under the Laplacian kernel, which reduces the overall computational complexity from $\mathcal O(n^2)$ to $\mathcal O(n \log n)$.
Probabilistic Deep Discriminant Analysis for Wind Blade Segmentation
Linear discriminant analysis improves class separability but struggles with non-linearly separable data. To overcome this, we introduce Deep Discriminant Analysis (DDA), which directly optimizes the Fisher criterion utilizing deep networks. To ensure stable training and avoid computational instabilities, we incorporate signed between-class variance, bound outputs with a sigmoid function, and convert multiplicative relationships into additive ones. We present two stable DDA loss functions and augment them with a probability loss, resulting in Probabilistic DDA (PDDA). PDDA effectively minimizes class overlap in output distributions, producing highly confident predictions with reduced within-class variance. When applied to wind blade segmentation, PDDA showcases notable advances in performance and consistency, critical for wind energy maintenance. To our knowledge, this is the first application of DDA to image segmentation.
comment: Accepted to ICASSP 2026
Inverting Self-Organizing Maps: A Unified Activation-Based Framework
Self-Organizing Maps provide topology-preserving projections of high-dimensional data and have been widely used for visualization, clustering, and vector quantization. In this work, we show that the activation pattern of a SOM - the squared distances to its prototypes - can be inverted to recover the exact input under mild geometric conditions. This follows from a classical fact in Euclidean distance geometry: a point in $D$ dimensions is uniquely determined by its distances to $D{+}1$ affinely independent references. We derive the corresponding linear system and characterize the conditions under which the inversion is well-posed. Building upon this mechanism, we introduce the Manifold-Aware Unified SOM Inversion and Control (MUSIC) update rule, which enables controlled, semantically meaningful trajectories in latent space. MUSIC modifies squared distances to selected prototypes while preserving others, resulting in a deterministic geometric flow aligned with the SOM's piecewise-linear structure. Tikhonov regularization stabilizes the update rule and ensures smooth motion on high-dimensional datasets. Unlike variational or probabilistic generative models, MUSIC does not rely on sampling, latent priors, or encoder-decoder architectures. If no perturbation is applied, inversion recovers the exact input; when a target cluster or prototype is specified, MUSIC produces coherent semantic variations while remaining on the data manifold. This leads to a new perspective on data augmentation and controllable latent exploration based solely on prototype geometry. We validate the approach using synthetic Gaussian mixtures, the MNIST and the Faces in the Wild dataset. Across all settings, MUSIC produces smooth, interpretable trajectories that reveal the underlying geometry of the learned manifold, illustrating the advantages of SOM-based inversion over unsupervised clustering.
Co-Initialization of Control Filter and Secondary Path via Meta-Learning for Active Noise Control
Active noise control (ANC) must adapt quickly when the acoustic environment changes, yet early performance is largely dictated by initialization. We address this with a Model-Agnostic Meta-Learning (MAML) co-initialization that jointly sets the control filter and the secondary-path model for FxLMS-based ANC while keeping the runtime algorithm unchanged. The initializer is pre-trained on a small set of measured paths using short two-phase inner loops that mimic identification followed by residual-noise reduction, and is applied by simply setting the learned initial coefficients. In an online secondary path modeling FxLMS testbed, it yields lower early-stage error, shorter time-to-target, reduced auxiliary-noise energy, and faster recovery after path changes than a baseline without re-initialization. The method provides a simple fast start for feedforward ANC under environment changes, requiring a small set of paths to pre-train.
Virtual Urbanism: An AI-Driven Framework for Quantifying Urban Identity. A Tokyo-Based Pilot Study Using Diffusion-Generated Synthetic Environments
This paper introduces Virtual Urbanism (VU), a multimodal AI-driven analytical framework for quantifying urban identity through the medium of synthetic urban replicas. The framework aims to advance computationally tractable urban identity metrics. To demonstrate feasibility, the pilot study Virtual Urbanism and Tokyo Microcosms is presented. A pipeline integrating Stable Diffusion and LoRA models was used to produce synthetic replicas of nine Tokyo areas rendered as dynamic synthetic urban sequences, excluding existing orientation markers to elicit core identity-forming elements. Human-evaluation experiments (I) assessed perceptual legitimacy of replicas; (II) quantified area-level identity; (III) derived core identity-forming elements. Results showed a mean identification accuracy of ~81%, confirming the validity of the replicas. Urban Identity Level (UIL) metric enabled assessment of identity levels across areas, while semantic analysis revealed culturally embedded typologies as core identity-forming elements, positioning VU as a viable framework for AI-augmented urban analysis, outlining a path toward automated, multi-parameter identity metrics.
Optimal L2 Regularization in High-dimensional Continual Linear Regression
We study generalization in an overparameterized continual linear regression setting, where a model is trained with L2 (isotropic) regularization across a sequence of tasks. We derive a closed-form expression for the expected generalization loss in the high-dimensional regime that holds for arbitrary linear teachers. We demonstrate that isotropic regularization mitigates label noise under both single-teacher and multiple i.i.d. teacher settings, whereas prior work accommodating multiple teachers either did not employ regularization or used memory-demanding methods. Furthermore, we prove that the optimal fixed regularization strength scales nearly linearly with the number of tasks $T$, specifically as $T/\ln T$. To our knowledge, this is the first such result in theoretical continual learning. Finally, we validate our theoretical findings through experiments on linear regression and neural networks, illustrating how this scaling law affects generalization and offering a practical recipe for the design of continual learning systems.
comment: Accepted to ALT 2026
ELSA: Efficient LLM-Centric Split Aggregation for Privacy-Aware Hierarchical Federated Learning over Resource-Constrained Edge Networks
Training large language models (LLMs) at the network edge faces fundamental challenges arising from device resource constraints, severe data heterogeneity, and heightened privacy risks. To address these, we propose ELSA (Efficient LLM-centric Split Aggregation), a novel framework that systematically integrates split learning (SL) and hierarchical federated learning (HFL) for distributed LLM fine-tuning over resource-constrained edge networks. ELSA introduces three key innovations. First, it employs a task-agnostic, behavior-aware client clustering mechanism that constructs semantic fingerprints using public probe inputs and symmetric KL divergence, further enhanced by prediction-consistency-based trust scoring and latency-aware edge assignment to jointly address data heterogeneity, client unreliability, and communication constraints. Second, it splits the LLM into three parts across clients and edge servers, with the cloud used only for adapter aggregation, enabling an effective balance between on-device computation cost and global convergence stability. Third, it incorporates a lightweight communication scheme based on computational sketches combined with semantic subspace orthogonal perturbation (SS-OP) to reduce communication overhead while mitigating privacy leakage during model exchanges. Experiments across diverse NLP tasks demonstrate that ELSA consistently outperforms state-of-the-art methods in terms of adaptability, convergence behavior, and robustness, establishing a scalable and privacy-aware solution for edge-side LLM fine-tuning under resource constraints.
comment: 11 pages, 16 figures
Device Association and Resource Allocation for Hierarchical Split Federated Learning in Space-Air-Ground Integrated Network
6G facilitates deployment of Federated Learning (FL) in the Space-Air-Ground Integrated Network (SAGIN), yet FL confronts challenges such as resource constrained and unbalanced data distribution. To address these issues, this paper proposes a Hierarchical Split Federated Learning (HSFL) framework and derives its upper bound of loss function. To minimize the weighted sum of training loss and latency, we formulate a joint optimization problem that integrates device association, model split layer selection, and resource allocation. We decompose the original problem into several subproblems, where an iterative optimization algorithm for device association and resource allocation based on brute-force split point search is proposed. Simulation results demonstrate that the proposed algorithm can effectively balance training efficiency and model accuracy for FL in SAGIN.
Discriminant Learning-based Colorspace for Blade Segmentation
Suboptimal color representation often hinders accurate image segmentation, yet many modern algorithms neglect this critical preprocessing step. This work presents a novel multidimensional nonlinear discriminant analysis algorithm, Colorspace Discriminant Analysis (CSDA), for improved segmentation. Extending Linear Discriminant Analysis into a deep learning context, CSDA customizes color representation by maximizing multidimensional signed inter-class separability while minimizing intra-class variability through a generalized discriminative loss. To ensure stable training, we introduce three alternative losses that enable end-to-end optimization of both the discriminative colorspace and segmentation process. Experiments on wind turbine blade data demonstrate significant accuracy gains, emphasizing the importance of tailored preprocessing in domain-specific segmentation.
comment: Accepted to ICASSP 2026
Knowledge Graph-Assisted LLM Post-Training for Enhanced Legal Reasoning
LLM post-training has primarily relied on large text corpora and human feedback, without capturing the structure of domain knowledge. This has caused models to struggle dealing with complex reasoning tasks, especially for high-stakes professional domains. In Law, reasoning requires deep understanding of the relations between various legal concepts, a key component missing in current LLM post-training. In this paper, we propose a knowledge graph (KG)-assisted approach for enhancing LLMs' reasoning capability in Legal that is generalizable to other high-stakes domains. We model key legal concepts by following the \textbf{IRAC} (Issue, Rule, Analysis and Conclusion) framework, and construct a KG with 12K legal cases. We then produce training data using our IRAC KG, and conduct both Supervised Fine-Tuning (SFT) and Direct Preference Optimization (DPO) with three state-of-the-art (SOTA) LLMs (30B, 49B and 70B), varying architecture and base model family. Our post-trained models obtained better average performance on 4/5 diverse legal benchmarks (14 tasks) than baselines. In particular, our 70B DPO model achieved the best score on 4/6 reasoning tasks, among baselines and a 141B SOTA legal LLM, demonstrating the effectiveness of our KG for enhancing LLMs' legal reasoning capability.
Insight: Interpretable Semantic Hierarchies in Vision-Language Encoders
Language-aligned vision foundation models perform strongly across diverse downstream tasks. Yet, their learned representations remain opaque, making interpreting their decision-making hard. Recent works decompose these representations into human-interpretable concepts, but provide poor spatial grounding and are limited to image classification tasks. In this work, we propose Insight, a language-aligned concept foundation model that provides fine-grained concepts, which are human-interpretable and spatially grounded in the input image. We leverage a hierarchical sparse autoencoder and a foundation model with strong semantic representations to automatically extract concepts at various granularities. Examining local co-occurrence dependencies of concepts allows us to define concept relationships. Through these relations we further improve concept naming and obtain richer explanations. On benchmark data, we show that Insight provides performance on classification and segmentation that is competitive with opaque foundation models while providing fine-grained, high quality concept-based explanations. Code is available at https://github.com/kawi19/Insight.
comment: 32 pages, 24 figures, 3 tables
PAtt: A Pattern Attention Network for ETA Prediction Using Historical Speed Profiles ITSC 2025
In this paper, we propose an ETA model (Estimated Time of Arrival) that leverages an attention mechanism over historical road speed patterns. As autonomous driving and intelligent transportation systems become increasingly prevalent, the need for accurate and reliable ETA estimation has grown, playing a vital role in navigation, mobility planning, and traffic management. However, predicting ETA remains a challenging task due to the dynamic and complex nature of traffic flow. Traditional methods often combine real-time and historical traffic data in simplistic ways, or rely on complex rule-based computations. While recent deep learning models have shown potential, they often require high computational costs and do not effectively capture the spatio-temporal patterns crucial for ETA prediction. ETA prediction inherently involves spatio-temporal causality, and our proposed model addresses this by leveraging attention mechanisms to extract and utilize temporal features accumulated at each spatio-temporal point along a route. This architecture enables efficient and accurate ETA estimation while keeping the model lightweight and scalable. We validate our approach using real-world driving datasets and demonstrate that our approach outperforms existing baselines by effectively integrating road characteristics, real-time traffic conditions, and historical speed patterns in a task-aware manner.
comment: 7 pages, 3 figures, ITSC 2025, to be published
Principled Latent Diffusion for Graphs via Laplacian Autoencoders
Graph diffusion models achieve state-of-the-art performance in graph generation but suffer from quadratic complexity in the number of nodes -- and much of their capacity is wasted modeling the absence of edges in sparse graphs. Inspired by latent diffusion in other modalities, a natural idea is to compress graphs into a low-dimensional latent space and perform diffusion there. However, unlike images or text, graph generation requires nearly lossless reconstruction, as even a single error in decoding an adjacency matrix can render the entire sample invalid. This challenge has remained largely unaddressed. We propose LG-Flow, a latent graph diffusion framework that directly overcomes these obstacles. A permutation-equivariant autoencoder maps each node into a fixed-dimensional embedding from which the full adjacency is provably recoverable, enabling near-lossless reconstruction for both undirected graphs and DAGs. The dimensionality of this latent representation scales linearly with the number of nodes, eliminating the quadratic bottleneck and making it feasible to train larger and more expressive models. In this latent space, we train a Diffusion Transformer with flow matching, enabling efficient and expressive graph generation. Our approach achieves competitive results against state-of-the-art graph diffusion models, while achieving up to $1000\times$ speed-up.
comment: Preprint, under review
Orthogonium : A Unified, Efficient Library of Orthogonal and 1-Lipschitz Building Blocks
Orthogonal and 1-Lipschitz neural network layers are essential building blocks in robust deep learning architectures, crucial for certified adversarial robustness, stable generative models, and reliable recurrent networks. Despite significant advancements, existing implementations remain fragmented, limited, and computationally demanding. To address these issues, we introduce Orthogonium , a unified, efficient, and comprehensive PyTorch library providing orthogonal and 1-Lipschitz layers. Orthogonium provides access to standard convolution features-including support for strides, dilation, grouping, and transposed-while maintaining strict mathematical guarantees. Its optimized implementations reduce overhead on large scale benchmarks such as ImageNet. Moreover, rigorous testing within the library has uncovered critical errors in existing implementations, emphasizing the importance of standardized and reliable tools. Orthogonium thus significantly lowers adoption barriers, enabling scalable experimentation and integration across diverse applications requiring orthogonality and robust Lipschitz constraints. Orthogonium is available at https://github.com/deel-ai/orthogonium.
Look-Ahead-Bench: a Standardized Benchmark of Look-ahead Bias in Point-in-Time LLMs for Finance
We introduce Look-Ahead-Bench, a standardized benchmark measuring look-ahead bias in Point-in-Time (PiT) Large Language Models (LLMs) within realistic and practical financial workflows. Unlike most existing approaches that primarily test inner lookahead knowledge via Q\\&A, our benchmark evaluates model behavior in practical scenarios. To distinguish genuine predictive capability from memorization-based performance, we analyze performance decay across temporally distinct market regimes, incorporating several quantitative baselines to establish performance thresholds. We evaluate prominent open-source LLMs -- Llama 3.1 (8B and 70B) and DeepSeek 3.2 -- against a family of Point-in-Time LLMs (Pitinf-Small, Pitinf-Medium, and frontier-level model Pitinf-Large) from PiT-Inference. Results reveal significant lookahead bias in standard LLMs, as measured with alpha decay, unlike Pitinf models, which demonstrate improved generalization and reasoning abilities as they scale in size. This work establishes a foundation for the standardized evaluation of temporal bias in financial LLMs and provides a practical framework for identifying models suitable for real-world deployment. Code is available on GitHub: https://github.com/benstaf/lookaheadbench
vLinear: A Powerful Linear Model for Multivariate Time Series Forecasting
In this paper, we present \textbf{vLinear}, an effective yet efficient \textbf{linear}-based multivariate time series forecaster featuring two components: the \textbf{v}ecTrans module and the WFMLoss objective. Many state-of-the-art forecasters rely on self-attention or its variants to capture multivariate correlations, typically incurring $\mathcal{O}(N^2)$ computational complexity with respect to the number of variates $N$. To address this, we propose vecTrans, a lightweight module that utilizes a learnable vector to model multivariate correlations, reducing the complexity to $\mathcal{O}(N)$. Notably, vecTrans can be seamlessly integrated into Transformer-based forecasters, delivering up to 5$\times$ inference speedups and consistent performance gains. Furthermore, we introduce WFMLoss (Weighted Flow Matching Loss) as the objective. In contrast to typical \textbf{velocity-oriented} flow matching objectives, we demonstrate that a \textbf{final-series-oriented} formulation yields significantly superior forecasting accuracy. WFMLoss also incorporates path- and horizon-weighted strategies to focus learning on more reliable paths and horizons. Empirically, vLinear achieves state-of-the-art performance across 22 benchmarks and 124 forecasting settings. Moreover, WFMLoss serves as an effective plug-and-play objective, consistently improving existing forecasters. The code is available at https://anonymous.4open.science/r/vLinear.
HiT: History-Injection Transformers for Onboard Continuous Flood Change Detection
Natural disaster monitoring through continuous satellite observation requires processing multi-temporal data under strict operational constraints. This paper addresses flood detection, a critical application for hazard management, by developing an onboard change detection system that operates within the memory and computational limits of small satellites. We propose History Injection mechanism for Transformer models (HiT), that maintains historical context from previous observations while reducing data storage by over 99\% of original image size. Moreover, testing on the STTORM-CD flood dataset confirms that the HiT mechanism within the Prithvi-tiny foundation model maintains detection accuracy compared to the bitemporal baseline. The proposed HiT-Prithvi model achieved 43 FPS on Jetson Orin Nano, a representative onboard hardware used in nanosats. This work establishes a practical framework for satellite-based continuous monitoring of natural disasters, supporting real-time hazard assessment without dependency on ground-based processing infrastructure. Architecture as well as model checkpoints is available at https://github.com/zaitra/HiT-change-detection
comment: 19 pages, 9 figures, submitted to conference
Pro-AI Bias in Large Language Models
Large language models (LLMs) are increasingly employed for decision-support across multiple domains. We investigate whether these models display a systematic preferential bias in favor of artificial intelligence (AI) itself. Across three complementary experiments, we find consistent evidence of pro-AI bias. First, we show that LLMs disproportionately recommend AI-related options in response to diverse advice-seeking queries, with proprietary models doing so almost deterministically. Second, we demonstrate that models systematically overestimate salaries for AI-related jobs relative to closely matched non-AI jobs, with proprietary models overestimating AI salaries more by 10 percentage points. Finally, probing internal representations of open-weight models reveals that ``Artificial Intelligence'' exhibits the highest similarity to generic prompts for academic fields under positive, negative, and neutral framings alike, indicating valence-invariant representational centrality. These patterns suggest that LLM-generated advice and valuation can systematically skew choices and perceptions in high-stakes decisions.
comment: 13 pages, 6 figures. Code available at: https://github.com/benayat/Pro-AI-bias-in-LLMs
EEG-Titans: Long-Horizon Seizure Forecasting via Dual-Branch Attention and Neural Memory
Accurate epileptic seizure prediction from electroencephalography (EEG) remains challenging because pre-ictal dynamics may span long time horizons while clinically relevant signatures can be subtle and transient. Many deep learning models face a persistent trade-off between capturing local spatiotemporal patterns and maintaining informative long-range context when operating on ultralong sequences. We propose EEG-Titans, a dualbranch architecture that incorporates a modern neural memory mechanism for long-context modeling. The model combines sliding-window attention to capture short-term anomalies with a recurrent memory pathway that summarizes slower, progressive trends over time. On the CHB-MIT scalp EEG dataset, evaluated under a chronological holdout protocol, EEG-Titans achieves 99.46% average segment-level sensitivity across 18 subjects. We further analyze safety-first operating points on artifact-prone recordings and show that a hierarchical context strategy extending the receptive field for high-noise subjects can markedly reduce false alarms (down to 0.00 FPR/h in an extreme outlier) without sacrificing sensitivity. These results indicate that memory-augmented long-context modeling can provide robust seizure forecasting under clinically constrained evaluation
Variational Dual-path Attention Network for CSI-Based Gesture Recognition
Wi-Fi gesture recognition based on Channel State Information (CSI) is challenged by high-dimensional noise and resource constraints on edge devices. Prevailing end-to-end models tightly couple feature extraction with classification, overlooking the inherent time-frequency sparsity of CSI and leading to redundancy and poor generalization. To address this, this paper proposes a lightweight feature preprocessing module--the Variational Dual-path Attention Network (VDAN). It performs structured feature refinement through frequency-domain filtering and temporal detection. Variational inference is introduced to model the uncertainty in attention weights, thereby enhancing robustness to noise. The design principles of the module are explained from the perspectives of the information bottleneck and regularization. Experiments on a public dataset demonstrate that the learned attention weights align with the physical sparse characteristics of CSI, verifying its interpretability. This work provides an efficient and explainable front-end processing solution for resource-constrained wireless sensing systems.
comment: 8 pages, 7 figures, 2 tables
Breaking the Data Barrier in Learning Symbolic Computation: A Case Study on Variable Ordering Suggestion for Cylindrical Algebraic Decomposition
Symbolic computation, powered by modern computer algebra systems, has important applications in mathematical reasoning through exact deep computations. The efficiency of symbolic computation is largely constrained by such deep computations in high dimension. This creates a fundamental barrier on labelled data acquisition if leveraging supervised deep learning to accelerate symbolic computation. Cylindrical algebraic decomposition (CAD) is a pillar symbolic computation method for reasoning with first-order logic formulas over reals with many applications in formal verification and automatic theorem proving. Variable orderings have a huge impact on its efficiency. Impeded by the difficulty to acquire abundant labelled data, existing learning-based approaches are only competitive with the best expert-based heuristics. In this work, we address this problem by designing a series of intimately connected tasks for which a large amount of annotated data can be easily obtained. We pre-train a Transformer model with these data and then fine-tune it on the datasets for CAD ordering. Experiments on publicly available CAD ordering datasets show that on average the orderings predicted by the new model are significantly better than those suggested by the best heuristic methods.
SWE-Tester: Training Open-Source LLMs for Issue Reproduction in Real-World Repositories
Software testing is crucial for ensuring the correctness and reliability of software systems. Automated generation of issue reproduction tests from natural language issue descriptions enhances developer productivity by simplifying root cause analysis, promotes test-driven development -- "test first, write code later", and can be used for improving the effectiveness of automated issue resolution systems like coding agents. Existing methods proposed for this task predominantly rely on closed-source LLMs, with limited exploration of open models. To address this, we propose SWE-Tester -- a novel pipeline for training open-source LLMs to generate issue reproduction tests. First, we curate a high-quality training dataset of 41K instances from 2.6K open-source GitHub repositories and use it to train LLMs of varying sizes and families. The fine-tuned models achieve absolute improvements of up to 10\% in success rate and 21\% in change coverage on SWT-Bench Verified. Further analysis shows consistent improvements with increased inference-time compute, more data, and larger models. These results highlight the effectiveness of our framework for advancing open-source LLMs in this domain.
Who Should Have Surgery? A Comparative Study of GenAI vs Supervised ML for CRS Surgical Outcome Prediction
Artificial intelligence has reshaped medical imaging, yet the use of AI on clinical data for prospective decision support remains limited. We study pre-operative prediction of clinically meaningful improvement in chronic rhinosinusitis (CRS), defining success as a more than 8.9-point reduction in SNOT-22 at 6 months (MCID). In a prospectively collected cohort where all patients underwent surgery, we ask whether models using only pre-operative clinical data could have identified those who would have poor outcomes, i.e. those who should have avoided surgery. We benchmark supervised ML (logistic regression, tree ensembles, and an in-house MLP) against generative AI (ChatGPT, Claude, Gemini, Perplexity), giving each the same structured inputs and constraining outputs to binary recommendations with confidence. Our best ML model (MLP) achieves 85 % accuracy with superior calibration and decision-curve net benefit. GenAI models underperform on discrimination and calibration across zero-shot setting. Notably, GenAI justifications align with clinician heuristics and the MLP's feature importance, repeatedly highlighting baseline SNOT-22, CT/endoscopy severity, polyp phenotype, and physchology/pain comorbidities. We provide a reproducible tabular-to-GenAI evaluation protocol and subgroup analyses. Findings support an ML-first, GenAI- augmented workflow: deploy calibrated ML for primary triage of surgical candidacy, with GenAI as an explainer to enhance transparency and shared decision-making.
Generative Adversarial Networks for Resource State Generation
We introduce a physics-informed Generative Adversarial Network framework that recasts quantum resource-state generation as an inverse-design task. By embedding task-specific utility functions into training, the model learns to generate valid two-qubit states optimized for teleportation and entanglement broadcasting. Comparing decomposition-based and direct-generation architectures reveals that structural enforcement of Hermiticity, trace-one, and positivity yields higher fidelity and training stability than loss-only approaches. The framework reproduces theoretical resource boundaries for Werner-like and Bell-diagonal states with fidelities exceeding ~98%, establishing adversarial learning as a lightweight yet effective method for constraint-driven quantum-state discovery. This approach provides a scalable foundation for automated design of tailored quantum resources for information-processing applications, exemplified with teleportation and broadcasting of entanglement, and it opens up the possibility of using such states in efficient quantum network design.
Attention-space Contrastive Guidance for Efficient Hallucination Mitigation in LVLMs
Hallucinations in large vision-language models (LVLMs) often arise when language priors dominate over visual evidence, causing object misidentification and visually inconsistent descriptions. We address this issue by framing hallucination mitigation as contrastive guidance, steering generation toward visually grounded and semantically faithful text. This approach regulates the model's internal behavior by reducing over-dependence on language priors and contrasting visually grounded with language-only representations. We propose Attention-space Contrastive Guidance (ACG), a single-pass mechanism that operates within self-attention layers to construct both vision-language and language-only attention paths in a single forward computation. This integration enables computationally efficient guidance directly embedded in the model's representation contextualization. To correct approximation bias introduced by the single-pass formulation, we further apply an orthogonalized correction that removes components aligned with the language-only path, selectively amplifying visual contributions. Experiments on the CHAIR and POPE benchmarks show that ACG achieves state-of-the-art faithfulness and caption quality while significantly reducing computational cost. Our method establishes a principled and efficient alternative, reducing latency by up to 2x compared to prior contrastive decoding methods that require multiple forward passes.
Performance and Complexity Trade-off Optimization of Speech Models During Training
In speech machine learning, neural network models are typically designed by choosing an architecture with fixed layer sizes and structure. These models are then trained to maximize performance on metrics aligned with the task's objective. While the overall architecture is usually guided by prior knowledge of the task, the sizes of individual layers are often chosen heuristically. However, this approach does not guarantee an optimal trade-off between performance and computational complexity; consequently, post hoc methods such as weight quantization or model pruning are typically employed to reduce computational cost. This occurs because stochastic gradient descent (SGD) methods can only optimize differentiable functions, while factors influencing computational complexity, such as layer sizes and floating-point operations per second (FLOP/s), are non-differentiable and require modifying the model structure during training. We propose a reparameterization technique based on feature noise injection that enables joint optimization of performance and computational complexity during training using SGD-based methods. Unlike traditional pruning methods, our approach allows the model size to be dynamically optimized for a target performance-complexity trade-off, without relying on heuristic criteria to select which weights or structures to remove. We demonstrate the effectiveness of our method through three case studies, including a synthetic example and two practical real-world applications: voice activity detection and audio anti-spoofing. The code related to our work is publicly available to encourage further research.
Does Privacy Always Harm Fairness? Data-Dependent Trade-offs via Chernoff Information Neural Estimation
Fairness and privacy are two vital pillars of trustworthy machine learning. Despite extensive research on these individual topics, the relationship between fairness and privacy has received significantly less attention. In this paper, we utilize the information-theoretic measure Chernoff Information to highlight the data-dependent nature of the relationship among the triad of fairness, privacy, and accuracy. We first define Noisy Chernoff Difference, a tool that allows us to analyze the relationship among the triad simultaneously. We then show that for synthetic data, this value behaves in 3 distinct ways (depending on the distribution of the data). We highlight the data distributions involved in these cases and explore their fairness and privacy implications. Additionally, we show that Noisy Chernoff Difference acts as a proxy for the steepness of the fairness-accuracy curves. Finally, we propose a method for estimating Chernoff Information on data from unknown distributions and utilize this framework to examine the triad dynamic on real datasets. This work builds towards a unified understanding of the fairness-privacy-accuracy relationship and highlights its data-dependent nature.
Uncertainty-Aware Gradient Signal-to-Noise Data Selection for Instruction Tuning
Instruction tuning is a standard paradigm for adapting large language models (LLMs), but modern instruction datasets are large, noisy, and redundant, making full-data fine-tuning costly and often unnecessary. Existing data selection methods either build expensive gradient datastores or assign static scores from a weak proxy, largely ignoring evolving uncertainty, and thus missing a key source of LLM interpretability. We propose GRADFILTERING, an objective-agnostic, uncertainty-aware data selection framework that utilizes a small GPT-2 proxy with a LoRA ensemble and aggregates per-example gradients into a Gradient Signal-to-Noise Ratio (G-SNR) utility. Our method matches or surpasses random subsets and strong baselines in most LLM-as-a-judge evaluations as well as in human assessment. Moreover, GRADFILTERING-selected subsets converge faster than competitive filters under the same compute budget, reflecting the benefit of uncertainty-aware scoring.
comment: Preprint
Autoregressive deep learning for real-time simulation of soft tissue dynamics during virtual neurosurgery
Accurate simulation of brain deformation is a key component for developing realistic, interactive neurosurgical simulators, as complex nonlinear deformations must be captured to ensure realistic tool-tissue interactions. However, traditional numerical solvers often fall short in meeting real-time performance requirements. To overcome this, we introduce a deep learning-based surrogate model that efficiently simulates transient brain deformation caused by continuous interactions between surgical instruments and the virtual brain geometry. Building on Universal Physics Transformers, our approach operates directly on large-scale mesh data and is trained on an extensive dataset generated from nonlinear finite element simulations, covering a broad spectrum of temporal instrument-tissue interaction scenarios. To reduce the accumulation of errors in autoregressive inference, we propose a stochastic teacher forcing strategy applied during model training. Specifically, training consists of short stochastic rollouts in which the proportion of ground truth inputs is gradually decreased in favor of model-generated predictions. Our results show that the proposed surrogate model achieves accurate and efficient predictions across a range of transient brain deformation scenarios, scaling to meshes with up to 150,000 nodes. The introduced stochastic teacher forcing technique substantially improves long-term rollout stability, reducing the maximum prediction error from 6.7 mm to 3.5 mm. We further integrate the trained surrogate model into an interactive neurosurgical simulation environment, achieving runtimes below 10 ms per simulation step on consumer-grade inference hardware. Our proposed deep learning framework enables rapid, smooth and accurate biomechanical simulations of dynamic brain tissue deformation, laying the foundation for realistic surgical training environments.
Reinforcement Learning for Opportunistic Routing in Software-Defined LEO-Terrestrial Systems
The proliferation of large-scale low Earth orbit (LEO) satellite constellations is driving the need for intelligent routing strategies that can effectively deliver data to terrestrial networks under rapidly time-varying topologies and intermittent gateway visibility. Leveraging the global control capabilities of a geostationary (GEO)-resident software-defined networking (SDN) controller, we introduce opportunistic routing, which aims to minimize delivery delay by forwarding packets to any currently available ground gateways rather than fixed destinations. This makes it a promising approach for achieving low-latency and robust data delivery in highly dynamic LEO networks. Specifically, we formulate a constrained stochastic optimization problem and employ a residual reinforcement learning framework to optimize opportunistic routing for reducing transmission delay. Simulation results over multiple days of orbital data demonstrate that our method achieves significant improvements in queue length reduction compared to classical backpressure and other well-known queueing algorithms.
Communication-Free Collective Navigation for a Swarm of UAVs via LiDAR-Based Deep Reinforcement Learning
This paper presents a deep reinforcement learning (DRL) based controller for collective navigation of unmanned aerial vehicle (UAV) swarms in communication-denied environments, enabling robust operation in complex, obstacle-rich environments. Inspired by biological swarms where informed individuals guide groups without explicit communication, we employ an implicit leader-follower framework. In this paradigm, only the leader possesses goal information, while follower UAVs learn robust policies using only onboard LiDAR sensing, without requiring any inter-agent communication or leader identification. Our system utilizes LiDAR point clustering and an extended Kalman filter for stable neighbor tracking, providing reliable perception independent of external positioning systems. The core of our approach is a DRL controller, trained in GPU-accelerated Nvidia Isaac Sim, that enables followers to learn complex emergent behaviors - balancing flocking and obstacle avoidance - using only local perception. This allows the swarm to implicitly follow the leader while robustly addressing perceptual challenges such as occlusion and limited field-of-view. The robustness and sim-to-real transfer of our approach are confirmed through extensive simulations and challenging real-world experiments with a swarm of five UAVs, which successfully demonstrated collective navigation across diverse indoor and outdoor environments without any communication or external localization.
TimeART: Towards Agentic Time Series Reasoning via Tool-Augmentation
Time series data widely exist in real-world cyber-physical systems. Though analyzing and interpreting them contributes to significant values, e.g, disaster prediction and financial risk control, current workflows mainly rely on human data scientists, which requires significant labor costs and lacks automation. To tackle this, we introduce TimeART, a framework fusing the analytical capability of strong out-of-the-box tools and the reasoning capability of Large Language Models (LLMs), which serves as a fully agentic data scientist for Time Series Question Answering (TSQA). To teach the LLM-based Time Series Reasoning Models (TSRMs) strategic tool-use, we also collect a 100k expert trajectory corpus called TimeToolBench. To enhance TSRMs' generalization capability, we then devise a four-stage training strategy, which boosts TSRMs through learning from their own early experiences and self-reflections. Experimentally, we train an 8B TSRM on TimeToolBench and equip it with the TimeART framework, and it achieves consistent state-of-the-art performance on multiple TSQA tasks, which pioneers a novel approach towards agentic time series reasoning.
Quadratic Upper Bound for Boosting Robustness ICML 2025
Fast adversarial training (FAT) aims to enhance the robustness of models against adversarial attacks with reduced training time, however, FAT often suffers from compromised robustness due to insufficient exploration of adversarial space. In this paper, we develop a loss function to mitigate the problem of degraded robustness under FAT. Specifically, we derive a quadratic upper bound (QUB) on the adversarial training (AT) loss function and propose to utilize the bound with existing FAT methods. Our experimental results show that applying QUB loss to the existing methods yields significant improvement of robustness. Furthermore, using various metrics, we demonstrate that this improvement is likely to result from the smoothened loss landscape of the resulting model.
comment: Accepted at ICML 2025. Published in PMLR 267:72656-72676
Towards Token-Level Text Anomaly Detection
Despite significant progress in text anomaly detection for web applications such as spam filtering and fake news detection, existing methods are fundamentally limited to document-level analysis, unable to identify which specific parts of a text are anomalous. We introduce token-level anomaly detection, a novel paradigm that enables fine-grained localization of anomalies within text. We formally define text anomalies at both document and token-levels, and propose a unified detection framework that operates across multiple levels. To facilitate research in this direction, we collect and annotate three benchmark datasets spanning spam, reviews and grammar errors with token-level labels. Experimental results demonstrate that our framework get better performance than other 6 baselines, opening new possibilities for precise anomaly localization in text. All the codes and data are publicly available on https://github.com/charles-cao/TokenCore.
comment: WWW 2026
Sample Complexity of Average-Reward Q-Learning: From Single-agent to Federated Reinforcement Learning
Average-reward reinforcement learning offers a principled framework for long-term decision-making by maximizing the mean reward per time step. Although Q-learning is a widely used model-free algorithm with established sample complexity in discounted and finite-horizon Markov decision processes (MDPs), its theoretical guarantees for average-reward settings remain limited. This work studies a simple but effective Q-learning algorithm for average-reward MDPs with finite state and action spaces under the weakly communicating assumption, covering both single-agent and federated scenarios. For the single-agent case, we show that Q-learning with carefully chosen parameters achieves sample complexity $\widetilde{O}\left(\frac{|\mathcal{S}||\mathcal{A}|\|h^{\star}\|_{\mathsf{sp}}^3}{\varepsilon^3}\right)$, where $\|h^{\star}\|_{\mathsf{sp}}$ is the span norm of the bias function, improving previous results by at least a factor of $\frac{\|h^{\star}\|_{\mathsf{sp}}^2}{\varepsilon^2}$. In the federated setting with $M$ agents, we prove that collaboration reduces the per-agent sample complexity to $\widetilde{O}\left(\frac{|\mathcal{S}||\mathcal{A}|\|h^{\star}\|_{\mathsf{sp}}^3}{M\varepsilon^3}\right)$, with only $\widetilde{O}\left(\frac{\|h^{\star}\|_{\mathsf{sp}}}{\varepsilon}\right)$ communication rounds required. These results establish the first federated Q-learning algorithm for average-reward MDPs, with provable efficiency in both sample and communication complexity.
CauScientist: Teaching LLMs to Respect Data for Causal Discovery
Causal discovery is fundamental to scientific understanding and reliable decision-making. Existing approaches face critical limitations: purely data-driven methods suffer from statistical indistinguishability and modeling assumptions, while recent LLM-based methods either ignore statistical evidence or incorporate unverified priors that can mislead result. To this end, we propose CauScientist, a collaborative framework that synergizes LLMs as hypothesis-generating "data scientists" with probabilistic statistics as rigorous "verifiers". CauScientist employs hybrid initialization to select superior starting graphs, iteratively refines structures through LLM-proposed modifications validated by statistical criteria, and maintains error memory to guide efficient search space. Experiments demonstrate that CauScientist substantially outperforms purely data-driven baselines, achieving up to 53.8% F1 score improvement and enhancing recall from 35.0% to 100.0%. Notably, while standalone LLM performance degrades with graph complexity, CauScientist reduces structural hamming distance (SHD) by 44.0% compared to Qwen3-32B on 37-node graphs. Our project page is at https://github.com/OpenCausaLab/CauScientist.
Fisher-Informed Parameterwise Aggregation for Federated Learning with Heterogeneous Data
Federated learning aggregates model updates from distributed clients, but standard first order methods such as FedAvg apply the same scalar weight to all parameters from each client. Under non-IID data, these uniformly weighted updates can be strongly misaligned across clients, causing client drift and degrading the global model. Here we propose Fisher-Informed Parameterwise Aggregation (FIPA), a second-order aggregation method that replaces client-level scalar weights with parameter-specific Fisher Information Matrix (FIM) weights, enabling true parameter-level scaling that captures how each client's data uniquely influences different parameters. With low-rank approximation, FIPA remains communication- and computation-efficient. Across nonlinear function regression, PDE learning, and image classification, FIPA consistently improves over averaging-based aggregation, and can be effectively combined with state-of-the-art client-side optimization algorithms to further improve image classification accuracy. These results highlight the benefits of FIPA for federated learning under heterogeneous data distributions.
Optimizing Parallel Schemes with Lyapunov Exponents and kNN-LLE Estimation
Inverse parallel schemes remain indispensable tools for computing the roots of nonlinear systems, yet their dynamical behavior can be unexpectedly rich, ranging from strong contraction to oscillatory or chaotic transients depending on the choice of algorithmic parameters and initial states. A unified analytical-data-driven methodology for identifying, measuring, and reducing such instabilities in a family of uni-parametric inverse parallel solvers is presented in this study. On the theoretical side, we derive stability and bifurcation characterizations of the underlying iterative maps, identifying parameter regions associated with periodic or chaotic behavior. On the computational side, we introduce a micro-series pipeline based on kNN-driven estimation of the local largest Lyapunov exponent (LLE), applied to scalar time series derived from solver trajectories. The resulting sliding-window Lyapunov profiles provide fine-grained, real-time diagnostics of contractive or unstable phases and reveal transient behaviors not captured by coarse linearized analysis. Leveraging this correspondence, we introduce a Lyapunov-informed parameter selection strategy that identifies solver settings associated with stable behavior, particularly when the estimated LLE indicates persistent instability. Comprehensive experiments on ensembles of perturbed initial guesses demonstrate close agreement between the theoretical stability diagrams and empirical Lyapunov profiles, and show that the proposed adaptive mechanism significantly improves robustness. The study establishes micro-series Lyapunov analysis as a practical, interpretable tool for constructing self-stabilizing root-finding schemes and opens avenues for extending such diagnostics to higher-dimensional or noise-contaminated problems.
comment: 25 pages, 9 figures, 10 tables
An Elementary Approach to Scheduling in Generative Diffusion Models
An elementary approach to characterizing the impact of noise scheduling and time discretization in generative diffusion models is developed. Considering a simplified model where the source distribution is multivariate Gaussian with a given covariance matrix, the explicit closed-form evolution trajectory of the distributions across reverse sampling steps is derived, and consequently, the Kullback-Leibler (KL) divergence between the source distribution and the reverse sampling output is obtained. The effect of the number of time discretization steps on the convergence of this KL divergence is studied via the Euler-Maclaurin expansion. An optimization problem is formulated, and its solution noise schedule is obtained via calculus of variations, shown to follow a tangent law whose coefficient is determined by the eigenvalues of the source covariance matrix. For an alternative scenario, more realistic in practice, where pretrained models have been obtained for some given noise schedules, the KL divergence also provides a measure to compare different time discretization strategies in reverse sampling. Experiments across different datasets and pretrained models demonstrate that the time discretization strategy selected by our approach consistently outperforms baseline and search-based strategies, particularly when the budget on the number of function evaluations is very tight.
Diffusion In Diffusion: Breaking the Autoregressive Bottleneck in Block Diffusion Models
Block diffusion language models, operating as semi-autoregressive paradigms, combine the strengths of both autoregressive and diffusion paradigms. However, their strict unidirectional block dependencies introduce irreversibility and sacrifice the global planning capabilities for which diffusion models are renowned. In order to address these issues, we propose Diffusion in Diffusion, a draft-then-refine framework designed to overcome the irreversibility and myopia problems inherent in block diffusion models. Our approach first employs block diffusion to generate rapid drafts using small blocks, then refines these drafts through global bidirectional diffusion with a larger bidirectional receptive field. We utilise snapshot confidence remasking to identify the most critical tokens that require modification, and apply mix-scale training to expand the block diffusion model's global capabilities. Empirical results demonstrate that our approach sets a new benchmark for discrete diffusion models on the OpenWebText dataset. Using just 26% of the fine-tuning budget of baseline models, we reduce generative perplexity from 25.7 to 21.9, significantly narrowing the performance gap with autoregressive models.
comment: Work In Progress
Machine learning based radiative parameterization scheme and its performance in operational reforecast experiments
Radiation is typically the most time-consuming physical process in numerical models. One solution is to use machine learning methods to simulate the radiation process to improve computational efficiency. From an operational standpoint, this study investigates critical limitations inherent to hybrid forecasting frameworks that embed deep neural networks into numerical prediction models, with a specific focus on two fundamental bottlenecks: coupling compatibility and long-term integration stability. A residual convolutional neural network is employed to approximate the Rapid Radiative Transfer Model for General Circulation Models (RRTMG) within the global operational system of China Meteorological Administration. We adopted an offline training and online coupling approach. First, a comprehensive dataset is generated through model simulations, encompassing all atmospheric columns both with and without cloud cover. To ensure the stability of the hybrid model, the dataset is enhanced via experience replay, and additional output constraints based on physical significance are imposed. Meanwhile, a LibTorch-based coupling method is utilized, which is more suitable for real-time operational computations. The hybrid model is capable of performing ten-day integrated forecasts as required. A two-month operational reforecast experiment demonstrates that the machine learning emulator achieves accuracy comparable to that of the traditional physical scheme, while accelerating the computation speed by approximately eightfold.
Neural Organ Transplantation (NOT): Checkpoint-Based Modular Adaptation for Transformer Models
We introduce Neural Organ Transplantation (NOT), a modular adaptation framework that enables trained transformer layers to function as reusable transferable checkpoints for domain adaptation. Unlike conventional fine-tuning approaches that tightly couple trained parameters to specific model instances and training data, NOT extracts contiguous layer subsets ("donor organs") from pre-trained models, trains them independently on domain-specific data, and saves them as standalone checkpoint files that can be transplanted into compatible recipient models without access to the original training data. Through experiments on three decoder-only transformer architectures spanning 124M to 20B parameters (GPT-2, TinyLlama, and GPT-OSS), we demonstrate that donor transplantation substantially outperforms existing adaptation methods, achieving an order-of-magnitude improvement in perplexity over LoRA while training significantly faster. The method exhibits position dependence, with early insertion positions yielding optimal results. Cross-domain transfer at billion-parameter scale reveals unexpected regularization benefits. These findings demonstrate that transformer middle layers can support efficient modular transfer for decoder-only architectures, enabling privacy-preserving expertise sharing through checkpoint distribution. We note that this approach is currently limited to decoder-only models; preliminary experiments on encoder-based architectures show reduced effectiveness.
comment: 27 pages, 8 figures, 16 tables. Decoder-only transformers (124M-20B parameters). Complete experimental results and reproducibility details in appendices. Code and checkpoints: https://github.com/zuraiqi/neural-organ-transplant
FG-OrIU: Towards Better Forgetting via Feature-Gradient Orthogonality for Incremental Unlearning ICCV 2025
Incremental unlearning (IU) is critical for pre-trained models to comply with sequential data deletion requests, yet existing methods primarily suppress parameters or confuse knowledge without explicit constraints on both feature and gradient level, resulting in \textit{superficial forgetting} where residual information remains recoverable. This incomplete forgetting risks security breaches and disrupts retention balance, especially in IU scenarios. We propose FG-OrIU (\textbf{F}eature-\textbf{G}radient \textbf{Or}thogonality for \textbf{I}ncremental \textbf{U}nlearning), the first framework unifying orthogonal constraints on both features and gradients level to achieve deep forgetting, where the forgetting effect is irreversible. FG-OrIU decomposes feature spaces via Singular Value Decomposition (SVD), separating forgetting and remaining class features into distinct subspaces. It then enforces dual constraints: feature orthogonal projection on both forgetting and remaining classes, while gradient orthogonal projection prevents the reintroduction of forgotten knowledge and disruption to remaining classes during updates. Additionally, dynamic subspace adaptation merges newly forgetting subspaces and contracts remaining subspaces, ensuring a stable balance between removal and retention across sequential unlearning tasks. Extensive experiments demonstrate the effectiveness of our method.
comment: This paper has been accepted by ICCV 2025. code: \url{https://github.com/RAIAN08/FG-OrIU}
Behavior Knowledge Merge in Reinforced Agentic Models
Reinforcement learning (RL) is central to post-training, particularly for agentic models that require specialized reasoning behaviors. In this setting, model merging offers a practical mechanism for integrating multiple RL-trained agents from different tasks into a single generalist model. However, existing merging methods are designed for supervised fine-tuning (SFT), and they are suboptimal to preserve task-specific capabilities on RL-trained agentic models. The root is a task-vector mismatch between RL and SFT: on-policy RL induces task vectors that are highly sparse and heterogeneous, whereas SFT-style merging implicitly assumes dense and globally comparable task vectors. When standard global averaging is applied under this mismatch, RL's non-overlapping task vectors that encode critical task-specific behaviors are reduced and parameter updates are diluted. To address this issue, we propose Reinforced Agent Merging (RAM), a distribution-aware merging framework explicitly designed for RL-trained agentic models. RAM disentangles shared and task-specific unique parameter updates, averaging shared components while selectively preserving and rescaling unique ones to counteract parameter update dilution. Experiments across multiple agent domains and model architectures demonstrate that RAM not only surpasses merging baselines, but also unlocks synergistic potential among agents to achieve performance superior to that of specialized agents in their domains.
GeoDynamics: A Geometric State-Space Neural Network for Understanding Brain Dynamics on Riemannian Manifolds NeurIPS 2025
State-space models (SSMs) have become a cornerstone for unraveling brain dynamics, revealing how latent neural states evolve over time and give rise to observed signals. By combining the flexibility of deep learning with the principled dynamical structure of SSMs, recent studies have achieved powerful fits to functional neuroimaging data. However, most existing approaches still view the brain as a set of loosely connected regions or impose oversimplified network priors, falling short of a truly holistic and self-organized dynamical system perspective. Brain functional connectivity (FC) at each time point naturally forms a symmetric positive definite (SPD) matrix, which resides on a curved Riemannian manifold rather than in Euclidean space. Capturing the trajectories of these SPD matrices is key to understanding how coordinated networks support cognition and behavior. To this end, we introduce GeoDynamics, a geometric state-space neural network that tracks latent brain-state trajectories directly on the high-dimensional SPD manifold. GeoDynamics embeds each connectivity matrix into a manifold-aware recurrent framework, learning smooth and geometry-respecting transitions that reveal task-driven state changes and early markers of Alzheimer's disease, Parkinson's disease, and autism. Beyond neuroscience, we validate GeoDynamics on human action recognition benchmarks (UTKinect, Florence, HDM05), demonstrating its scalability and robustness in modeling complex spatiotemporal dynamics across diverse domains.
comment: Accepted to NeurIPS 2025
DRGW: Learning Disentangled Representations for Robust Graph Watermarking
Graph-structured data is foundational to numerous web applications, and watermarking is crucial for protecting their intellectual property and ensuring data provenance. Existing watermarking methods primarily operate on graph structures or entangled graph representations, which compromise the transparency and robustness of watermarks due to the information coupling in representing graphs and uncontrollable discretization in transforming continuous numerical representations into graph structures. This motivates us to propose DRGW, the first graph watermarking framework that addresses these issues through disentangled representation learning. Specifically, we design an adversarially trained encoder that learns an invariant structural representation against diverse perturbations and derives a statistically independent watermark carrier, ensuring both robustness and transparency of watermarks. Meanwhile, we devise a graph-aware invertible neural network to provide a lossless channel for watermark embedding and extraction, guaranteeing high detectability and transparency of watermarks. Additionally, we develop a structure-aware editor that resolves the issue of latent modifications into discrete graph edits, ensuring robustness against structural perturbations. Experiments on diverse benchmark datasets demonstrate the superior effectiveness of DRGW.
comment: Published at The Web Conference 2026 (WWW '26)
Self-Improvement as Coherence Optimization: A Theoretical Account
Can language models improve their accuracy without external supervision? Methods such as debate, bootstrap, and internal coherence maximization achieve this surprising feat, even matching golden finetuning performance. Yet why they work remains theoretically unclear. We show that they are all special cases of coherence optimization: finding a context-to-behavior mapping that's most compressible and jointly predictable. We prove that coherence optimization is equivalent to description-length regularization, and that among all such regularization schemes, it is optimal for semi-supervised learning when the regularizer is derived from a pretrained model. Our theory, supported by preliminary experiments, explains why feedback-free self-improvement works and predicts when it should succeed or fail.
comment: 39 pages
Multi-objective fluorescent molecule design with a data-physics dual-driven generative framework
Designing fluorescent small molecules with tailored optical and physicochemical properties requires navigating vast, underexplored chemical space while satisfying multiple objectives and constraints. Conventional generate-score-screen approaches become impractical under such realistic design specifications, owing to their low search efficiency, unreliable generalizability of machine-learning prediction, and the prohibitive cost of quantum chemical calculation. Here we present LUMOS, a data-and-physics driven framework for inverse design of fluorescent molecules. LUMOS couples generator and predictor within a shared latent representation, enabling direct specification-to-molecule design and efficient exploration. Moreover, LUMOS combines neural networks with a fast time-dependent density functional theory (TD-DFT) calculation workflow to build a suite of complementary predictors spanning different trade-offs in speed, accuracy, and generalizability, enabling reliable property prediction across diverse scenarios. Finally, LUMOS employs a property-guided diffusion model integrated with multi-objective evolutionary algorithms, enabling de novo design and molecular optimization under multiple objectives and constraints. Across comprehensive benchmarks, LUMOS consistently outperforms baseline models in terms of accuracy, generalizability and physical plausibility for fluorescence property prediction, and demonstrates superior performance in multi-objective scaffold- and fragment-level molecular optimization. Further validation using TD-DFT and molecular dynamics (MD) simulations demonstrates that LUMOS can generate valid fluorophores that meet various target specifications. Overall, these results establish LUMOS as a data-physics dual-driven framework for general fluorophore inverse design.
comment: Total 43 pages: 32 pages Main Text + 11 pages SI
ButterflyMoE: Sub-Linear Ternary Experts via Structured Butterfly Orbits
Linear memory scaling stores $N$ independent expert weight matrices requiring $\mathcal{O}(N \cdot d^2)$ memory, which exceeds edge devices memory budget. Current compression methods like quantization, pruning and low-rank factorization reduce constant factors but leave the scaling bottleneck unresolved. We introduce ButterflyMoE, a method that treats experts not as independent weight matrices but as geometric reorientations of a unified shared quantized substrate. Diversity among experts arises from viewing different angles of shared capacity, not from redundant storage. By applying learned rotations to a shared ternary prototype, each expert yields $\mathcal{O}(d^2 + N \cdot d \log d)$ memory -- sub-linear in the number of experts. The key insight: training these rotations with quantization reduces activation outliers and stabilizes extreme low bit training, where static methods collapse. Across language modeling benchmarks, ButterflyMoE achieves 150 times memory reduction at 256 experts with negligible accuracy loss. This allows 64 experts to fit on 4GB devices compared to standard MoE's 8 experts, showing geometric parametrization breaks linear scaling.
Reasoning is a Modality
The Abstraction and Reasoning Corpus (ARC) provides a compact laboratory for studying abstract reasoning, an ability central to human intelligence. Modern AI systems, including LLMs and ViTs, largely operate as sequence-of-behavior prediction machines: they match observable behaviors by modeling token statistics without a persistent, readable mental state. This creates a gap with human-like behavior: humans can explain an action by decoding internal state, while AI systems can produce fluent post-hoc rationalizations that are not grounded in such a state. We hypothesize that reasoning is a modality: reasoning should exist as a distinct channel separate from the low-level workspace on which rules are applied. To test this hypothesis, on solving ARC tasks as a visual reasoning problem, we designed a novel role-separated transformer block that splits global controller tokens from grid workspace tokens, enabling iterative rule execution. Trained and evaluated within the VARC vision-centric protocol, our method achieved 62.6% accuracy on ARC-1, surpassing average human performance (60.2%) and outperforming prior methods significantly. Qualitatively, our models exhibit more coherent rule-application structure than the dense ViT baseline, consistent with a shift away from plausible probability blobs toward controller-driven reasoning.
comment: Code access: https://github.com/lz7fd/Reasoning_is_a_Modality
Patterning: The Dual of Interpretability
Mechanistic interpretability aims to understand how neural networks generalize beyond their training data by reverse-engineering their internal structures. We introduce patterning as the dual problem: given a desired form of generalization, determine what training data produces it. Our approach is based on susceptibilities, which measure how posterior expectation values of observables respond to infinitesimal shifts in the data distribution. Inverting this linear response relationship yields the data intervention that steers the model toward a target internal configuration. We demonstrate patterning in a small language model, showing that re-weighting training data along principal susceptibility directions can accelerate or delay the formation of structure, such as the induction circuit. In a synthetic parentheses balancing task where multiple algorithms achieve perfect training accuracy, we show that patterning can select which algorithm the model learns by targeting the local learning coefficient of each solution. These results establish that the same mathematical framework used to read internal structure can be inverted to write it.
Refined Gradient-Based Temperature Optimization for the Replica-Exchange Monte-Carlo Method
The replica-exchange Monte-Carlo (RXMC) method is a powerful Markov-chain Monte-Carlo algorithm for sampling from multi-modal distributions, which are challenging for conventional methods. The sampling efficiency of the RXMC method depends highly on the selection of the temperatures, and finding optimal temperatures remains a challenge. In this study, we propose a refined online temperature selection method by extending the gradient-based optimization framework proposed previously. Building upon the existing temperature update approach, we introduce a reparameterization technique to strictly enforce physical constraints, such as the monotonic ordering of inverse temperatures, which were not explicitly addressed in the original formulation. The proposed method defines the variance of acceptance rates between adjacent replicas as a loss function, estimates its gradient using differential information from the sampling process, and optimizes the temperatures via gradient descent. We demonstrate the effectiveness of our method through experiments on benchmark spin systems, including the two-dimensional ferromagnetic Ising model, the two-dimensional ferromagnetic XY model, and the three-dimensional Edwards-Anderson model. Our results show that the method successfully achieves uniform acceptance rates and reduces round-trip times across the temperature space. Furthermore, our proposed method offers a significant advantage over recently proposed policy gradient method that require careful hyperparameter tuning, while simultaneously preventing the constraint violations that destabilize optimization.
comment: 15 pages
MN-TSG:Continuous Time Series Generation with Irregular Observations
Time series generation (TSG) plays a critical role in a wide range of domains, such as healthcare. However, most existing methods assume regularly sampled observations and fixed output resolutions, which are often misaligned with real-world scenarios where data are irregularly sampled and sparsely observed. This mismatch is particularly problematic in applications such as clinical monitoring, where irregular measurements must support downstream tasks requiring continuous and high-resolution time series. Neural Controlled Differential Equations (NCDEs) have shown strong potential for modeling irregular time series, yet they still face challenges in capturing complex dynamic temporal patterns and supporting continuous TSG. To address these limitations, we propose MN-TSG, a novel framework that explores Mixture-of-Experts (MoE)-based NCDEs and integrates them with existing TSG models for irregular and continuous generation tasks. The core of MN-TSG lies in a MoE-NCDE architecture with dynamically parameterized expert functions and a decoupled design that facilitates more effective optimization of MoE dynamics. Furthermore, we leverage existing TSG models to learn the joint distribution over the mixture of experts and the generated time series. This enables the framework not only to generate new samples, but also to produce appropriate expert configurations tailored to each sample, thereby supporting refined continuous TSG. Extensive experiments on ten public and synthetic datasets demonstrate the effectiveness of MN-TSG, consistently outperforming strong TSG baselines on both irregular-to-regular and irregular-to-continuous generation tasks.
comment: 34 pages
Eliciting Harmful Capabilities by Fine-Tuning On Safeguarded Outputs
Model developers implement safeguards in frontier models to prevent misuse, for example, by employing classifiers to filter dangerous outputs. In this work, we demonstrate that even robustly safeguarded models can be used to elicit harmful capabilities in open-source models through elicitation attacks. Our elicitation attacks consist of three stages: (i) constructing prompts in adjacent domains to a target harmful task that do not request dangerous information; (ii) obtaining responses to these prompts from safeguarded frontier models; (iii) fine-tuning open-source models on these prompt-output pairs. Since the requested prompts cannot be used to directly cause harm, they are not refused by frontier model safeguards. We evaluate these elicitation attacks within the domain of hazardous chemical synthesis and processing, and demonstrate that our attacks recover approximately 40% of the capability gap between the base open-source model and an unrestricted frontier model. We then show that the efficacy of elicitation attacks scales with the capability of the frontier model and the amount of generated fine-tuning data. Our work demonstrates the challenge of mitigating ecosystem level risks with output-level safeguards.
StoTAM: Stochastic Alternating Minimization for Tucker-Structured Tensor Sensing
Low-rank tensor sensing is a fundamental problem with broad applications in signal processing and machine learning. Among various tensor models, low-Tucker-rank tensors are particularly attractive for capturing multi-mode subspace structures in high-dimensional data. Existing recovery methods either operate on the full tensor variable with expensive tensor projections, or adopt factorized formulations that still rely on full-gradient computations, while most stochastic factorized approaches are restricted to tensor decomposition settings. In this work, we propose a stochastic alternating minimization algorithm that operates directly on the core tensor and factor matrices under a Tucker factorization. The proposed method avoids repeated tensor projections and enables efficient mini-batch updates on low-dimensional tensor factors. Numerical experiments on synthetic tensor sensing demonstrate that the proposed algorithm exhibits favorable convergence behavior in wall-clock time compared with representative stochastic tensor recovery baselines.
Small Gradient Norm Regret for Online Convex Optimization
This paper introduces a new problem-dependent regret measure for online convex optimization with smooth losses. The notion, which we call the $G^\star$ regret, depends on the cumulative squared gradient norm evaluated at the decision in hindsight $\sum_{t=1}^T \|\nabla \ell(x^\star)\|^2$. We show that the $G^\star$ regret strictly refines the existing $L^\star$ (small loss) regret, and that it can be arbitrarily sharper when the losses have vanishing curvature around the hindsight decision. We establish upper and lower bounds on the $G^\star$ regret and extend our results to dynamic regret and bandit settings. As a byproduct, we refine the existing convergence analysis of stochastic optimization algorithms in the interpolation regime. Some experiments validate our theoretical findings.
Bridging the Gap Between Estimated and True Regret Towards Reliable Regret Estimation in Deep Learning based Mechanism Design
Recent advances, such as RegretNet, ALGnet, RegretFormer and CITransNet, use deep learning to approximate optimal multi item auctions by relaxing incentive compatibility (IC) and measuring its violation via ex post regret. However, the true accuracy of these regret estimates remains unclear. Computing exact regret is computationally intractable, and current models rely on gradient based optimizers whose outcomes depend heavily on hyperparameter choices. Through extensive experiments, we reveal that existing methods systematically underestimate actual regret (In some models, the true regret is several hundred times larger than the reported regret), leading to overstated claims of IC and revenue. To address this issue, we derive a lower bound on regret and introduce an efficient item wise regret approximation. Building on this, we propose a guided refinement procedure that substantially improves regret estimation accuracy while reducing computational cost. Our method provides a more reliable foundation for evaluating incentive compatibility in deep learning based auction mechanisms and highlights the need to reassess prior performance claims in this area.
A Unified Variational Imputation Framework for Electric Vehicle Charging Data Using Retrieval-Augmented Language Model
The reliability of data-driven applications in electric vehicle (EV) infrastructure, such as charging demand forecasting, hinges on the availability of complete, high-quality charging data. However, real-world EV datasets are often plagued by missing records, and existing imputation methods are ill-equipped for the complex, multimodal context of charging data, often relying on a restrictive one-model-per-station paradigm that ignores valuable inter-station correlations. To address these gaps, we develop a novel PRobabilistic variational imputation framework that leverages the power of large lAnguage models and retrIeval-augmented Memory (PRAIM). PRAIM employs a pre-trained language model to encode heterogeneous data, spanning time-series demand, calendar features, and geospatial context, into a unified, semantically rich representation. This is dynamically fortified by retrieval-augmented memory that retrieves relevant examples from the entire charging network, enabling a single, unified imputation model empowered by variational neural architecture to overcome data sparsity. Extensive experiments on four public datasets demonstrate that PRAIM significantly outperforms established baselines in both imputation accuracy and its ability to preserve the original data's statistical distribution, leading to substantial improvements in downstream forecasting performance.
comment: 15 pages
Preconditioning Benefits of Spectral Orthogonalization in Muon
The Muon optimizer, a matrix-structured algorithm that leverages spectral orthogonalization of gradients, is a milestone in the pretraining of large language models. However, the underlying mechanisms of Muon -- particularly the role of gradient orthogonalization -- remain poorly understood, with very few works providing end-to-end analyses that rigorously explain its advantages in concrete applications. We take a step by studying the effectiveness of a simplified variant of Muon through two case studies: matrix factorization, and in-context learning of linear transformers. For both problems, we prove that simplified Muon converges linearly with iteration complexities independent of the relevant condition number, provably outperforming gradient descent and Adam. Our analysis reveals that the Muon dynamics decouple into a collection of independent scalar sequences in the spectral domain, each exhibiting similar convergence behavior. Our theory formalizes the preconditioning effect induced by spectral orthogonalization, offering insight into Muon's effectiveness in these matrix optimization problems and potentially beyond.
Report for NSF Workshop on AI for Electronic Design Automation
This report distills the discussions and recommendations from the NSF Workshop on AI for Electronic Design Automation (EDA), held on December 10, 2024 in Vancouver alongside NeurIPS 2024. Bringing together experts across machine learning and EDA, the workshop examined how AI-spanning large language models (LLMs), graph neural networks (GNNs), reinforcement learning (RL), neurosymbolic methods, etc.-can facilitate EDA and shorten design turnaround. The workshop includes four themes: (1) AI for physical synthesis and design for manufacturing (DFM), discussing challenges in physical manufacturing process and potential AI applications; (2) AI for high-level and logic-level synthesis (HLS/LLS), covering pragma insertion, program transformation, RTL code generation, etc.; (3) AI toolbox for optimization and design, discussing frontier AI developments that could potentially be applied to EDA tasks; and (4) AI for test and verification, including LLM-assisted verification tools, ML-augmented SAT solving, security/reliability challenges, etc. The report recommends NSF to foster AI/EDA collaboration, invest in foundational AI for EDA, develop robust data infrastructures, promote scalable compute infrastructure, and invest in workforce development to democratize hardware design and enable next-generation hardware systems. The workshop information can be found on the website https://ai4eda-workshop.github.io/.
engGNN: A Dual-Graph Neural Network for Omics-Based Disease Classification and Feature Selection
Omics data, such as transcriptomics, proteomics, and metabolomics, provide critical insights into disease mechanisms and clinical outcomes. However, their high dimensionality, small sample sizes, and intricate biological networks pose major challenges for reliable prediction and meaningful interpretation. Graph Neural Networks (GNNs) offer a promising way to integrate prior knowledge by encoding feature relationships as graphs. Yet, existing methods typically rely solely on either an externally curated feature graph or a data-driven generated one, which limits their ability to capture complementary information. To address this, we propose the external and generated Graph Neural Network (engGNN), a dual-graph framework that jointly leverages both external known biological networks and data-driven generated graphs. Specifically, engGNN constructs a biologically informed undirected feature graph from established network databases and complements it with a directed feature graph derived from tree-ensemble models. This dual-graph design produces more comprehensive embeddings, thereby improving predictive performance and interpretability. Through extensive simulations and real-world applications to gene expression data, engGNN consistently outperforms state-of-the-art baselines. Beyond classification, engGNN provides interpretable feature importance scores that facilitate biologically meaningful discoveries, such as pathway enrichment analysis. Taken together, these results highlight engGNN as a robust, flexible, and interpretable framework for disease classification and biomarker discovery in high-dimensional omics contexts.
comment: 21 pages, 14 figures, 5 tables
Search over Self-Edit Strategies for LLM Adaptation
Many LLM-based open-ended search systems freeze the foundation model that proposes improvements to existing solutions, which may bottleneck long-run progress. Recent work has explored updating the proposal model at test time [arXiv:2511.23473], but the update strategy is still typically hand-specified. Therefore, this study investigated whether an LLM can use task feedback to decide how it should update its weights. For tractability, we focused on the simpler case where there is only one round of self-improvement, and restricted the update operator to self-supervised next token prediction (NTP), leaving the model freedom in choosing its training data and key NTP hyperparameters. Using the Self-Adapting Language Models (SEAL) [arXiv:2506.10943] framework as a testbed, we relaxed its fixed human template constraint and allowed the model to generate its own self-edit templates, thereby giving it more control over its training data and hyperparameters. Two variants were studied, differing in whether template generation was conditioned on a lightweight archive of past templates. In SEAL's Single-Passage Knowledge Incorporation setting with Qwen3-8B on SQuAD [arXiv:1606.05250], the no-archive variant performed comparably to the weaker "Implications" baseline, while the archive variant outperformed "Implications" and approached the strongest human-designed "Rewrite" baseline without surpassing it. Further analysis of collapse in the model's exploration revealed that a naive archive can confer some short-term robustness but can also accelerate homogenization, suggesting that explicit novelty pressure may be required to consistently advance beyond carefully optimized human strategies. Our code is available at https://github.com/cheongalc/search-self-edit-strategies .
LLM Security and Safety: Insights from Homotopy-Inspired Prompt Obfuscation
In this study, we propose a homotopy-inspired prompt obfuscation framework to enhance understanding of security and safety vulnerabilities in Large Language Models (LLMs). By systematically applying carefully engineered prompts, we demonstrate how latent model behaviors can be influenced in unexpected ways. Our experiments encompassed 15,732 prompts, including 10,000 high-priority cases, across LLama, Deepseek, KIMI for code generation, and Claude to verify. The results reveal critical insights into current LLM safeguards, highlighting the need for more robust defense mechanisms, reliable detection strategies, and improved resilience. Importantly, this work provides a principled framework for analyzing and mitigating potential weaknesses, with the goal of advancing safe, responsible, and trustworthy AI technologies.
Towards Execution-Grounded Automated AI Research
Automated AI research holds great potential to accelerate scientific discovery. However, current LLMs often generate plausible-looking but ineffective ideas. Execution grounding may help, but it is unclear whether automated execution is feasible and whether LLMs can learn from the execution feedback. To investigate these, we first build an automated executor to implement ideas and launch large-scale parallel GPU experiments to verify their effectiveness. We then convert two realistic research problems - LLM pre-training and post-training - into execution environments and demonstrate that our automated executor can implement a large fraction of the ideas sampled from frontier LLMs. We analyze two methods to learn from the execution feedback: evolutionary search and reinforcement learning. Execution-guided evolutionary search is sample-efficient: it finds a method that significantly outperforms the GRPO baseline (69.4% vs 48.0%) on post-training, and finds a pre-training recipe that outperforms the nanoGPT baseline (19.7 minutes vs 35.9 minutes) on pre-training, all within just ten search epochs. Frontier LLMs often generate meaningful algorithmic ideas during search, but they tend to saturate early and only occasionally exhibit scaling trends. Reinforcement learning from execution reward, on the other hand, suffers from mode collapse. It successfully improves the average reward of the ideator model but not the upper-bound, due to models converging on simple ideas. We thoroughly analyze the executed ideas and training dynamics to facilitate future efforts towards execution-grounded automated AI research.
Large Language Model-Powered Evolutionary Code Optimization on a Phylogenetic Tree
Optimizing scientific computing algorithms for modern GPUs is a labor-intensive and iterative process involving repeated code modification, benchmarking, and tuning across complex hardware and software stacks. Recent work has explored large language model (LLM)-assisted evolutionary methods for automated code optimization, but these approaches primarily rely on outcome-based selection and random mutation, underutilizing the rich trajectory information generated during iterative optimization. We propose PhyloEvolve, an LLM-agent system that reframes GPU-oriented algorithm optimization as an In-Context Reinforcement Learning (ICRL) problem. This formulation enables trajectory-conditioned reuse of optimization experience without model retraining. PhyloEvolve integrates Algorithm Distillation and prompt-based Decision Transformers into an iterative workflow, treating sequences of algorithm modifications and performance feedback as first-class learning signals. To organize optimization history, we introduce a phylogenetic tree representation that captures inheritance, divergence, and recombination among algorithm variants, enabling backtracking, cross-lineage transfer, and reproducibility. The system combines elite trajectory pooling, multi-island parallel exploration, and containerized execution to balance exploration and exploitation across heterogeneous hardware. We evaluate PhyloEvolve on scientific computing workloads including PDE solvers, manifold learning, and spectral graph algorithms, demonstrating consistent improvements in runtime, memory efficiency, and correctness over baseline and evolutionary methods. Code is published at: https://github.com/annihi1ation/phylo_evolve
On the Runway Cascade of Transformers for Language Modeling
In decoder-only (causal) transformers, the computation graph created by causal masking routes information through both direct-path attention and indirect paths formed by intermediate tokens. We denote these indirect paths between token pairs as their runways. We argue that certain failure modes of causal transformers as observed by a growing body of recent works are likely exacerbated by a misalignment between these two information propagation modes. We formalize runway cascade as a phenomenon whereby this misalignment results in redundancies and irrelevant information cascading to token representations despite adequately learned attention patterns. As a solution, we propose runway-aware rewiring as a more explicit way of incorporating runway context directly into each token's direct-path attention. This mechanism re-wires the attention pattern for each token based on a summary of its runway landscape, enabling awareness of accumulating representational influences and allowing for more balanced information propagation. Our proposed methodology introduces no additional parameters and can seamlessly be integrated into standard attention mechanism. Empirically, our rewired transformer results in steady improvements in general language modeling as well as noticeably stronger information retrieval and extrapolation abilities compared to standard transformers.
How Worst-Case Are Adversarial Attacks? Linking Adversarial and Statistical Robustness
Adversarial attacks are widely used to evaluate model robustness, yet their validity as proxies for robustness to random perturbations remains debated. We ask whether an adversarial perturbation provides a representative estimate of robustness under random noise of the same magnitude, or instead reflects an atypical worst-case event. To this end, we introduce a probabilistic metric that quantifies noisy risk with respect to directionally biased perturbation distributions, parameterized by a concentration factor $κ$ that interpolates between isotropic noise and adversarial direction. Using this framework, we study the limits of adversarial perturbations as estimators of noisy risk by proposing an attack strategy designed to operate in regimes statistically closer to uniform noise. Experiments on ImageNet and CIFAR-10 systematically benchmark widely used attacks, highlighting when adversarial success meaningfully reflects noisy risk and when it fails, thereby informing their use in safety-oriented evaluation.
Learning PDE Solvers with Physics and Data: A Unifying View of Physics-Informed Neural Networks and Neural Operators
Partial differential equations (PDEs) are central to scientific modeling. Modern workflows increasingly rely on learning-based components to support model reuse, inference, and integration across large computational processes. Despite the emergence of various physics-aware data-driven approaches, the field still lacks a unified perspective to uncover their relationships, limitations, and appropriate roles in scientific workflows. To this end, we propose a unifying perspective to place two dominant paradigms: Physics-Informed Neural Networks (PINNs) and Neural Operators (NOs), within a shared design space. We organize existing methods from three fundamental dimensions: what is learned, how physical structures are integrated into the learning process, and how the computational load is amortized across problem instances. In this way, many challenges can be best understood as consequences of these structural properties of learning PDEs. By analyzing advances through this unifying view, our survey aims to facilitate the development of reliable learning-based PDE solvers and catalyze a synthesis of physics and data.
Large Data Limits of Laplace Learning for Gaussian Measure Data in Infinite Dimensions
Laplace learning is a semi-supervised method, a solution for finding missing labels from a partially labeled dataset utilizing the geometry given by the unlabeled data points. The method minimizes a Dirichlet energy defined on a (discrete) graph constructed from the full dataset. In finite dimensions the asymptotics in the large (unlabeled) data limit are well understood with convergence from the graph setting to a continuum Sobolev semi-norm weighted by the Lebesgue density of the data-generating measure. The lack of the Lebesgue measure on infinite-dimensional spaces requires rethinking the analysis if the data aren't finite-dimensional. In this paper we make a first step in this direction by analyzing the setting when the data are generated by a Gaussian measure on a Hilbert space and proving pointwise convergence of the graph Dirichlet energy.
Uncovering and Understanding FPR Manipulation Attack in Industrial IoT Networks
In the network security domain, due to practical issues -- including imbalanced data and heterogeneous legitimate network traffic -- adversarial attacks in machine learning-based NIDSs have been viewed as attack packets misclassified as benign. Due to this prevailing belief, the possibility of (maliciously) perturbed benign packets being misclassified as attack has been largely ignored. In this paper, we demonstrate that this is not only theoretically possible, but also a particular threat to NIDS. In particular, we uncover a practical cyberattack, FPR manipulation attack (FPA), especially targeting industrial IoT networks, where domain-specific knowledge of the widely used MQTT protocol is exploited and a systematic simple packet-level perturbation is performed to alter the labels of benign traffic samples without employing traditional gradient-based or non-gradient-based methods. The experimental evaluations demonstrate that this novel attack results in a success rate of 80.19% to 100%. In addition, while estimating impacts in the Security Operations Center, we observe that even a small fraction of false positive alerts, irrespective of different budget constraints and alert traffic intensities, can increase the delay of genuine alerts investigations up to 2 hr in a single day under normal operating conditions. Furthermore, a series of relevant statistical and XAI analyses is conducted to understand the key factors behind this remarkable success. Finally, we explore the effectiveness of the FPA packets to enhance models' robustness through adversarial training and investigate the changes in decision boundaries accordingly.
GutenOCR: A Grounded Vision-Language Front-End for Documents
GutenOCR is a family of grounded OCR front-ends obtained by fine-tuning Qwen2.5-VL-3B and Qwen2.5-VL-7B. The resulting single-checkpoint vision-language models expose reading, detection, and grounding through a unified, prompt-based interface. Trained on business documents, scientific articles, and synthetic grounding data, the models support full-page and localized reading with line- and paragraph-level bounding boxes and conditional ``where is x?'' queries. We introduce a grounded OCR evaluation protocol and show that GutenOCR-7B more than doubles the composite grounded OCR score of its Qwen2.5-VL-7B backbone on 10.5K held-out business and scientific pages (0.40 to 0.82). On Fox and OmniDocBench v1.5, our approach substantially improves region- and line-level OCR as well as text-detection recall, but reveals trade-offs in page-level linearization, color-guided OCR, and formula-heavy layouts.
Stabilizing autoregressive forecasts in chaotic systems via multi-rate latent recurrence
Long-horizon autoregressive forecasting of chaotic dynamical systems remains challenging due to rapid error amplification and distribution shift: small one-step inaccuracies compound into physically inconsistent rollouts and collapse of large-scale statistics. We introduce MSR-HINE, a hierarchical implicit forecaster that augments multiscale latent priors with multi-rate recurrent modules operating at distinct temporal scales. At each step, coarse-to-fine recurrent states generate latent priors, an implicit one-step predictor refines the state with multiscale latent injections, and a gated fusion with posterior latents enforces scale-consistent updates; a lightweight hidden-state correction further aligns recurrent memories with fused latents. The resulting architecture maintains long-term context on slow manifolds while preserving fast-scale variability, mitigating error accumulation in chaotic rollouts. Across two canonical benchmarks, MSR-HINE yields substantial gains over a U-Net autoregressive baseline: on Kuramoto-Sivashinsky it reduces end-horizon RMSE by 62.8% at H=400 and improves end-horizon ACC by +0.983 (from -0.155 to 0.828), extending the ACC >= 0.5 predictability horizon from 241 to 400 steps; on Lorenz-96 it reduces RMSE by 27.0% at H=100 and improves end horizon ACC by +0.402 (from 0.144 to 0.545), extending the ACC >= 0.5 horizon from 58 to 100 steps.
GPU-accelerated simulated annealing based on p-bits with real-world device-variability modeling
Probabilistic computing using probabilistic bits (p-bits) presents an efficient alternative to traditional CMOS logic for complex problem-solving, including simulated annealing and machine learning. Realizing p-bits with emerging devices such as magnetic tunnel junctions (MTJs) introduces device variability, which was expected to negatively impact computational performance. However, this study reveals an unexpected finding: device variability can not only degrade but also enhance algorithm performance, particularly by leveraging timing variability. This paper introduces a GPU-accelerated, open-source simulated annealing framework based on p-bits that models key device variability factors -- timing, intensity, and offset -- to reflect real-world device behavior. Through CUDA-based simulations, our approach achieves a two-order magnitude speedup over CPU implementations on the MAX-CUT benchmark with problem sizes ranging from 800 to 20,000 nodes. By providing a scalable and accessible tool, this framework aims to advance research in probabilistic computing, enabling optimization applications in diverse fields.
comment: 14 pages
Adaptive KDE for Real-Time Thresholding: Prioritized Queues for Financial Crime Investigation
We study the problem of converting a stream of risk scores into one or more review queues under explicit intake constraints[cite: 6]. Instead of top-$K$ or manually tuned cutoffs, we fit an online adaptive kernel density to the score stream, transform the density into a tail-mass curve to meet capacity, and ``snap'' the resulting cut to a persistent density valley detected across bandwidths[cite: 7]. The procedure is label-free, supports multi-queue routing, and operates in real time with sliding windows or exponential forgetting[cite: 8]. On synthetic, drifting, multimodal streams, the method achieves competitive capacity adherence while reducing threshold jitter[cite: 9]. Updates cost $O(G)$ per event with constant memory per activity
On the Generalization Gap in LLM Planning: Tests and Verifier-Reward RL
Recent work shows that fine-tuned Large Language Models (LLMs) can achieve high valid plan rates on PDDL planning tasks. However, it remains unclear whether this reflects transferable planning competence or domain-specific memorization. In this work, we fine-tune a 1.7B-parameter LLM on 40,000 domain-problem-plan tuples from 10 IPC 2023 domains, and evaluate both in-domain and cross-domain generalization. While the model reaches 82.9% valid plan rate in in-domain conditions, it achieves 0% on two unseen domains. To analyze this failure, we introduce three diagnostic interventions, namely (i) instance-wise symbol anonymization, (ii) compact plan serialization, and (iii) verifier-reward fine-tuning using the VAL validator as a success-focused reinforcement signal. Symbol anonymization and compact serialization cause significant performance drops despite preserving plan semantics, thus revealing strong sensitivity to surface representations. Verifier-reward fine-tuning reaches performance saturation in half the supervised training epochs, but does not improve cross-domain generalization. For the explored configurations, in-domain performance plateaus around 80%, while cross-domain performance collapses, suggesting that our fine-tuned model relies heavily on domain-specific patterns rather than transferable planning competence in this setting. Our results highlight a persistent generalization gap in LLM-based planning and provide diagnostic tools for studying its causes.
comment: 9 pages, 4 figures, 3 tables, 2 pages of supplementary materials. Submitted to a conference implementing a double-blind review process
VisTIRA: Closing the Image-Text Modality Gap in Visual Math Reasoning via Structured Tool Integration
Vision-language models (VLMs) lag behind text-only language models on mathematical reasoning when the same problems are presented as images rather than text. We empirically characterize this as a modality gap: the same question in text form yields markedly higher accuracy than its visually typeset counterpart, due to compounded failures in reading dense formulas, layout, and mixed symbolic-diagrammatic context. First, we introduce VisTIRA (Vision and Tool-Integrated Reasoning Agent), a tool-integrated reasoning framework that enables structured problem solving by iteratively decomposing a given math problem (as an image) into natural language rationales and executable Python steps to determine the final answer. Second, we build a framework to measure and improve visual math reasoning: a LaTeX-based pipeline that converts chain-of-thought math corpora (e.g., NuminaMath) into challenging image counterparts, and a large set of synthetic tool-use trajectories derived from a real-world, homework-style image dataset (called SnapAsk) for fine-tuning VLMs. Our experiments show that tool-integrated supervision improves image-based reasoning, and OCR grounding can further narrow the gap for smaller models, although its benefit diminishes at scale. These findings highlight that modality gap severity inversely correlates with model size, and that structured reasoning and OCR-based grounding are complementary strategies for advancing visual mathematical reasoning.
Vision-Based Natural Language Scene Understanding for Autonomous Driving: An Extended Dataset and a New Model for Traffic Scene Description Generation
Traffic scene understanding is essential for enabling autonomous vehicles to accurately perceive and interpret their environment, thereby ensuring safe navigation. This paper presents a novel framework that transforms a single frontal-view camera image into a concise natural language description, effectively capturing spatial layouts, semantic relationships, and driving-relevant cues. The proposed model leverages a hybrid attention mechanism to enhance spatial and semantic feature extraction and integrates these features to generate contextually rich and detailed scene descriptions. To address the limited availability of specialized datasets in this domain, a new dataset derived from the BDD100K dataset has been developed, with comprehensive guidelines provided for its construction. Furthermore, the study offers an in-depth discussion of relevant evaluation metrics, identifying the most appropriate measures for this task. Extensive quantitative evaluations using metrics such as CIDEr and SPICE, complemented by human judgment assessments, demonstrate that the proposed model achieves strong performance and effectively fulfills its intended objectives on the newly developed dataset.
comment: Under review at Computer Vision and Image Understanding (submitted July 25, 2025)
Quantum Super-resolution by Adaptive Non-local Observables
Super-resolution (SR) seeks to reconstruct high-resolution (HR) data from low-resolution (LR) observations. Classical deep learning methods have advanced SR substantially, but require increasingly deeper networks, large datasets, and heavy computation to capture fine-grained correlations. In this work, we present the \emph{first study} to investigate quantum circuits for SR. We propose a framework based on Variational Quantum Circuits (VQCs) with \emph{Adaptive Non-Local Observable} (ANO) measurements. Unlike conventional VQCs with fixed Pauli readouts, ANO introduces trainable multi-qubit Hermitian observables, allowing the measurement process to adapt during training. This design leverages the high-dimensional Hilbert space of quantum systems and the representational structure provided by entanglement and superposition. Experiments demonstrate that ANO-VQCs achieve up to five-fold higher resolution with a relatively small model size, suggesting a promising new direction at the intersection of quantum machine learning and super-resolution.
comment: Accepted at ICASSP 2026
Meta Flow Maps enable scalable reward alignment
Controlling generative models is computationally expensive. This is because optimal alignment with a reward function--whether via inference-time steering or fine-tuning--requires estimating the value function. This task demands access to the conditional posterior $p_{1|t}(x_1|x_t)$, the distribution of clean data $x_1$ consistent with an intermediate state $x_t$, a requirement that typically compels methods to resort to costly trajectory simulations. To address this bottleneck, we introduce Meta Flow Maps (MFMs), a framework extending consistency models and flow maps into the stochastic regime. MFMs are trained to perform stochastic one-step posterior sampling, generating arbitrarily many i.i.d. draws of clean data $x_1$ from any intermediate state. Crucially, these samples provide a differentiable reparametrization that unlocks efficient value function estimation. We leverage this capability to solve bottlenecks in both paradigms: enabling inference-time steering without inner rollouts, and facilitating unbiased, off-policy fine-tuning to general rewards. Empirically, our single-particle steered-MFM sampler outperforms a Best-of-1000 baseline on ImageNet across multiple rewards at a fraction of the compute.
Cosmo-FOLD: Fast generation and upscaling of field-level cosmological maps with overlap latent diffusion
We demonstrate the capabilities of probabilistic diffusion models to reduce dramatically the computational cost of expensive hydrodynamical simulations to study the relationship between observable baryonic cosmological probes and dark matter at field level and well into the non-linear regime. We introduce a novel technique, Cosmo-FOLD (Cosmological Fields via Overlap Latent Diffusion) to rapidly generate accurate and arbitrarily large cosmological and astrophysical 3-dimensional fields, conditioned on a given input field. We are able to generate TNG300-2 dark matter density and gas temperature fields from a model trained only on ~1% of the volume (a process we refer to as `upscaling'), reproducing both large scale coherent dark matter filaments and power spectra to within 10% for wavenumbers k <= 5 h Mpc^-1. These results are obtained within a small fraction of the original simulation cost and produced on a single GPU. Beyond one and two points statistics, the bispectrum is also faithfully reproduced through the inclusion of positional encodings. Finally, we demonstrate Cosmo-FOLD's generalisation capabilities by upscaling a CAMELS volume of 25 (Mpc h^-1)^3 to a full TNG300-2 volume of 205 (Mpc h^-1)^3$ with no fine-tuning. Cosmo-FOLD opens the door to full field-level simulation-based inference on cosmological scale.
comment: 15 pages, 10 figures
VJEPA: Variational Joint Embedding Predictive Architectures as Probabilistic World Models
Joint Embedding Predictive Architectures (JEPA) offer a scalable paradigm for self-supervised learning by predicting latent representations rather than reconstructing high-entropy observations. However, existing formulations rely on \textit{deterministic} regression objectives, which mask probabilistic semantics and limit its applicability in stochastic control. In this work, we introduce \emph{Variational JEPA (VJEPA)}, a \textit{probabilistic} generalization that learns a predictive distribution over future latent states via a variational objective. We show that VJEPA unifies representation learning with Predictive State Representations (PSRs) and Bayesian filtering, establishing that sequential modeling does not require autoregressive observation likelihoods. Theoretically, we prove that VJEPA representations can serve as sufficient information states for optimal control without pixel reconstruction, while providing formal guarantees for collapse avoidance. We further propose \emph{Bayesian JEPA (BJEPA)}, an extension that factorizes the predictive belief into a learned dynamics expert and a modular prior expert, enabling zero-shot task transfer and constraint (e.g. goal, physics) satisfaction via a Product of Experts. Empirically, through a noisy environment experiment, we demonstrate that VJEPA and BJEPA successfully filter out high-variance nuisance distractors that cause representation collapse in generative baselines. By enabling principled uncertainty estimation (e.g. constructing credible intervals via sampling) while remaining likelihood-free regarding observations, VJEPA provides a foundational framework for scalable, robust, uncertainty-aware planning in high-dimensional, noisy environments.
comment: 77 pages
MARBLE: Multi-Agent Reasoning for Bioinformatics Learning and Evolution
Motivation: Developing high-performing bioinformatics models typically requires repeated cycles of hypothesis formulation, architectural redesign, and empirical validation, making progress slow, labor-intensive, and difficult to reproduce. Although recent LLM-based assistants can automate isolated steps, they lack performance-grounded reasoning and stability-aware mechanisms required for reliable, iterative model improvement in bioinformatics workflows. Results: We introduce MARBLE, an execution-stable autonomous model refinement framework for bioinformatics models. MARBLE couples literature-aware reference selection with structured, debate-driven architectural reasoning among role-specialized agents, followed by autonomous execution, evaluation, and memory updates explicitly grounded in empirical performance. Across spatial transcriptomics domain segmentation, drug-target interaction prediction, and drug response prediction, MARBLE consistently achieves sustained performance improvements over strong baselines across multiple refinement cycles, while maintaining high execution robustness and low regression rates. Framework-level analyses demonstrate that structured debate, balanced evidence selection, and performance-grounded memory are critical for stable, repeatable model evolution, rather than single-run or brittle gains. Availability: Source code, data and Supplementary Information are available at https://github.com/PRISM-DGU/MARBLE.
DiSPA: Differential Substructure-Pathway Attention for Drug Response Prediction
Accurate prediction of drug response in precision medicine requires models that capture how specific chemical substructures interact with cellular pathway states. However, most existing deep learning approaches treat chemical and transcriptomic modalities independently or combine them only at late stages, limiting their ability to model fine-grained, context-dependent mechanisms of drug action. In addition, standard attention mechanisms are often sensitive to noise and sparsity in high-dimensional biological networks, hindering both generalization and interpretability. We present DiSPA, a representation learning framework that explicitly disentangles structure-driven and context-driven mechanisms of drug response through bidirectional conditioning between chemical substructures and pathway-level gene expression. DiSPA introduces a differential cross-attention module that suppresses spurious pathway-substructure associations while amplifying contextually relevant interactions. Across multiple evaluation settings on the GDSC benchmark, DiSPA achieves state-of-the-art performance, with particularly strong improvements in the disjoint-set setting, which assesses generalization to unseen drug-cell combinations. Beyond predictive accuracy, DiSPA yields mechanistically informative representations: learned attention patterns recover known pharmacophores, distinguish structure-driven from context-dependent compounds, and exhibit coherent organization across biological pathways. Furthermore, we demonstrate that DiSPA trained solely on bulk RNA-seq data enables zero-shot transfer to spatial transcriptomics, revealing region-specific drug sensitivity patterns without retraining. Together, these results establish DiSPA as a robust and interpretable framework for integrative pharmacogenomic modeling, enabling principled analysis of drug response mechanisms beyond post hoc interpretation.
Turn-Based Structural Triggers: Prompt-Free Backdoors in Multi-Turn LLMs
Large Language Models (LLMs) are widely integrated into interactive systems such as dialogue agents and task-oriented assistants. This growing ecosystem also raises supply-chain risks, where adversaries can distribute poisoned models that degrade downstream reliability and user trust. Existing backdoor attacks and defenses are largely prompt-centric, focusing on user-visible triggers while overlooking structural signals in multi-turn conversations. We propose Turn-based Structural Trigger (TST), a backdoor attack that activates from dialogue structure, using the turn index as the trigger and remaining independent of user inputs. Across four widely used open-source LLM models, TST achieves an average attack success rate (ASR) of 99.52% with minimal utility degradation, and remains effective under five representative defenses with an average ASR of 98.04%. The attack also generalizes well across instruction datasets, maintaining an average ASR of 99.19%. Our results suggest that dialogue structure constitutes an important and under-studied attack surface for multi-turn LLM systems, motivating structure-aware auditing and mitigation in practice.
Log anomaly detection via Meta Learning and Prototypical Networks for Cross domain generalization
Log anomaly detection is essential for system reliability, but it is extremely challenging to do considering it involves class imbalance. Additionally, the models trained in one domain are not applicable to other domains, necessitating the need for cross-domain adaptation (such as HDFS and Linux). Traditional detection models often fail to generalize due to significant data drift and the inherent absence of labeled anomalies in new target domains. To handle the above challenges, we proposed a new end-to-end framework based on a meta-learning approach. Our methodology first gets the data ready by combining a Drain3 log parsing mechanism with a dynamic drift-based labeling technique that uses semantic and fuzzy matching to move existing anomaly knowledge from one source to another. BERT-based semantic embeddings are obtained, and the feature selection is invoked to reduce the dimensionality. Later, Model Agnostic Meta-Learning (MAML) and Prototypical Networks models are trained to adapt quickly and effectively. The SMOTE oversampling method is employed to handle imbalances in the data. All the results are obtained by employing the leave-one-out source method, and the corresponding mean F1 scores are reported. Our empirical findings validate that the proposed meta-learning-driven approach yielded the highest mean F1 score and proved to be effective for cross-domain settings.
Zebra-Llama: Towards Extremely Efficient Hybrid Models
With the growing demand for deploying large language models (LLMs) across diverse applications, improving their inference efficiency is crucial for sustainable and democratized access. However, retraining LLMs to meet new user-specific requirements is prohibitively expensive and environmentally unsustainable. In this work, we propose a practical and scalable alternative: composing efficient hybrid language models from existing pre-trained models. Our approach, Zebra-Llama, introduces a family of 1B, 3B, and 8B hybrid models by combining State Space Models (SSMs) and Multi-head Latent Attention (MLA) layers, using a refined initialization and post-training pipeline to efficiently transfer knowledge from pre-trained Transformers. Zebra-Llama achieves Transformer-level accuracy with near-SSM efficiency using only 7-11B training tokens (compared to trillions of tokens required for pre-training) and an 8B teacher. Moreover, Zebra-Llama dramatically reduces KV cache size -down to 3.9%, 2%, and 2.73% of the original for the 1B, 3B, and 8B variants, respectively-while preserving 100%, 100%, and >97% of average zero-shot performance on LM Harness tasks. Compared to models like MambaInLLaMA, X-EcoMLA, Minitron, and Llamba, Zebra-Llama consistently delivers competitive or superior accuracy while using significantly fewer tokens, smaller teachers, and vastly reduced KV cache memory. Notably, Zebra-Llama-8B surpasses Minitron-8B in few-shot accuracy by 7% while using 8x fewer training tokens, over 12x smaller KV cache, and a smaller teacher (8B vs. 15B). It also achieves 2.6x-3.8x higher throughput (tokens/s) than MambaInLlama up to a 32k context length. We will release code and model checkpoints upon acceptance.
Joint Score-Threshold Optimization for Interpretable Risk Assessment
Risk assessment tools in healthcare commonly employ point-based scoring systems that map patients to ordinal risk categories via thresholds. While electronic health record (EHR) data presents opportunities for data-driven optimization of these tools, two fundamental challenges impede standard supervised learning: (1) labels are often available only for extreme risk categories due to intervention-censored outcomes, and (2) misclassification cost is asymmetric and increases with ordinal distance. We propose a mixed-integer programming (MIP) framework that jointly optimizes scoring weights and category thresholds in the face of these challenges. Our approach prevents label-scarce category collapse via threshold constraints, and utilizes an asymmetric, distance-aware objective. The MIP framework supports governance constraints, including sign restrictions, sparsity, and minimal modifications to incumbent tools, ensuring practical deployability in clinical workflows. We further develop a continuous relaxation of the MIP problem to provide warm-start solutions for more efficient MIP optimization. We apply the proposed score optimization framework to a case study of inpatient falls risk assessment using the Johns Hopkins Fall Risk Assessment Tool.
Tensorization of neural networks for improved privacy and interpretability
We present a tensorization algorithm for constructing tensor train/matrix product state (MPS) representations of functions, drawing on sketching and cross interpolation ideas. The method only requires black-box access to the target function and a small set of sample points defining the domain of interest. Thus, it is particularly well-suited for machine learning models, where the domain of interest is naturally defined by the training dataset. We show that this approach can be used to enhance the privacy and interpretability of neural network models. Specifically, we apply our decomposition to (i) obfuscate neural networks whose parameters encode patterns tied to the training data distribution, and (ii) estimate topological phases of matter that are easily accessible from the MPS representation. Additionally, we show that this tensorization can serve as an efficient initialization method for optimizing MPS in general settings, and that, for model compression, our algorithm achieves a superior trade-off between memory and time complexity compared to conventional tensorization methods of neural networks.
comment: 44 pages, 9 figures, 3 tables. The code for the experiments is publicly available at https://github.com/joserapa98/tensorization-nns. V3: Published version
DiffRatio: Training One-Step Diffusion Models Without Teacher Supervision
Score-based distillation methods (e.g., variational score distillation) train one-step diffusion models by first pre-training a teacher score model and then distilling it into a one-step student model. However, the gradient estimator in the distillation stage usually suffers from two sources of bias: (1) biased teacher supervision due to score estimation error incurred during pre-training, and (2) the student model's score estimation error during distillation. These biases can degrade the quality of the resulting one-step diffusion model. To address this, we propose DiffRatio, a new framework for training one-step diffusion models: instead of estimating the teacher and student scores independently and then taking their difference, we directly estimate the score difference as the gradient of a learned log density ratio between the student and data distributions across diffusion time steps. This approach greatly simplifies the training pipeline, significantly reduces gradient estimation bias, and improves one-step generation quality. Additionally, it also reduces auxiliary network size by using a lightweight density-ratio network instead of two full score networks, which improves computational and memory efficiency. DiffRatio achieves competitive one-step generation results on CIFAR-10 and ImageNet (64x64 and 512x512), outperforming most teacher-supervised distillation approaches.
comment: 21 pages, 8 figures, 5 tables, 2 algorithms
WaveletInception Networks for on-board Vibration-Based Infrastructure Health Monitoring
This paper presents a deep learning framework for analyzing on board vibration response signals in infrastructure health monitoring. The proposed WaveletInception-BiGRU network uses a Learnable Wavelet Packet Transform (LWPT) for early spectral feature extraction, followed by one-dimensional Inception-Residual Network (1D Inception-ResNet) modules for multi-scale, high-level feature learning. Bidirectional Gated Recurrent Unit (BiGRU) modules then integrate temporal dependencies and incorporate operational conditions, such as the measurement speed. This approach enables effective analysis of vibration signals recorded at varying speeds, eliminating the need for explicit signal preprocessing. The sequential estimation head further leverages bidirectional temporal information to produce an accurate, localized assessment of infrastructure health. Ultimately, the framework generates high-resolution health profiles spatially mapped to the physical layout of the infrastructure. Case studies involving track stiffness regression and transition zone classification using real-world measurements demonstrate that the proposed framework significantly outperforms state-of-the-art methods, underscoring its potential for accurate, localized, and automated on-board infrastructure health monitoring.
comment: Under reviewer for the Journal of Engineering Application of Artificial Intelligence
Generative Language Models on Nucleotide Sequences of Human Genes
Language models, especially transformer-based ones, have achieved colossal success in NLP. To be precise, studies like BERT for NLU and works like GPT-3 for NLG are very important. If we consider DNA sequences as a text written with an alphabet of four letters representing the nucleotides, they are similar in structure to natural languages. This similarity has led to the development of discriminative language models such as DNABert in the field of DNA-related bioinformatics. To our knowledge, however, the generative side of the coin is still largely unexplored. Therefore, we have focused on the development of an autoregressive generative language model such as GPT-3 for DNA sequences. Since working with whole DNA sequences is challenging without extensive computational resources, we decided to conduct our study on a smaller scale and focus on nucleotide sequences of human genes rather than the whole DNA. This decision has not changed the structure of the problem, as both DNA and genes can be considered as 1D sequences consisting of four different nucleotides without losing much information and without oversimplification. Firstly, we systematically studied an almost entirely unexplored problem and observed that RNNs perform best, while simple techniques such as N-grams are also promising. Another beneficial point was learning how to work with generative models on languages we do not understand, unlike natural languages. The importance of using real-world tasks beyond classical metrics such as perplexity was noted. In addition, we examined whether the data-hungry nature of these models can be altered by selecting a language with minimal vocabulary size, four due to four different types of nucleotides. The reason for reviewing this was that choosing such a language might make the problem easier. However, in this study, we found that this did not change the amount of data required very much.
On Foundation Models for Temporal Point Processes to Accelerate Scientific Discovery
Many scientific fields, from medicine to seismology, rely on analyzing sequences of events over time to understand complex systems. Traditionally, machine learning models must be built and trained from scratch for each new dataset, which is a slow and costly process. We introduce a new approach: a single, powerful model that learns the underlying patterns of event data in context. We trained this "foundation model" on millions of simulated event sequences, teaching it a general-purpose understanding of how events can unfold. As a result, our model can analyze new scientific data instantly, without retraining, simply by looking at a few examples from the dataset. It can also be quickly fine-tuned for even higher accuracy. This approach makes sophisticated event analysis more accessible and accelerates the pace of scientific discovery.
Transport-Coupled Bayesian Flows for Molecular Graph Generation
Molecular graph generation (MGG) is essentially a multi-class generative task, aimed at predicting categories of atoms and bonds under strict chemical and structural constraints. However, many prevailing diffusion paradigms learn to regress numerical embeddings and rely on a hard discretization rule during sampling to recover discrete labels. This introduces a fundamental discrepancy between training and sampling. While models are trained for point-wise numerical fidelity, the sampling process fundamentally relies on crossing categorical decision boundaries. This discrepancy forces the model to expend efforts on intra-class variations that become irrelevant after discretization, ultimately compromising diversity, structural statistics, and generalization performance. Therefore, we propose TopBF, a unified framework that (i) performs MGG directly in continuous parameter distributions, (ii) learns graph-topological understanding through a Quasi-Wasserstein optimal-transport coupling under geodesic costs, and (iii) supports controllable, property-conditioned generation during sampling without retraining the base model. TopBF innovatively employs cumulative distribution function (CDF) to compute category probabilities induced by the Gaussian channel, thereby unifying the training objective with the sampling discretization operation. Experiments on QM9 and ZINC250k demonstrate superior structural fidelity and efficient generation with improved performance.
Dynamics of Agentic Loops in Large Language Models: A Geometric Theory of Trajectories
Agentic systems built on large language models operate through recursive feedback loops, where each output becomes the next input. Yet the geometric behavior of these agentic loops (whether they converge, diverge, or exhibit more complex dynamics) remains poorly understood. This paper introduces a geometric framework for analyzing agentic trajectories in semantic embedding space, treating iterative transformations as discrete dynamical systems. We distinguish the artifact space, where linguistic transformations occur, from the embedding space, where geometric measurements are performed. Because cosine similarity is biased by embedding anisotropy, we introduce an isotonic calibration that eliminates systematic bias and aligns similarities with human semantic judgments while preserving high local stability. This enables rigorous measurement of trajectories, clusters and attractors. Through controlled experiments on singular agentic loops, we identify two fundamental regimes. A contractive rewriting loop converges toward a stable attractor with decreasing dispersion, while an exploratory summarize and negate loop produces unbounded divergence with no cluster formation. These regimes display qualitatively distinct geometric signatures of contraction and expansion. Our results show that prompt design directly governs the dynamical regime of an agentic loop, enabling systematic control of convergence, divergence and trajectory structure in iterative LLM transformations.
Towards Fast Coarse-graining and Equation Discovery with Foundation Inference Models
High-dimensional recordings of dynamical processes are often characterized by a much smaller set of effective variables, evolving on low-dimensional manifolds. Identifying these latent dynamics requires solving two intertwined problems: discovering appropriate coarse-grained variables and simultaneously fitting the governing equations. Most machine learning approaches tackle these tasks jointly by training autoencoders together with models that enforce dynamical consistency. We propose to decouple the two problems by leveraging the recently introduced Foundation Inference Models (FIMs). FIMs are pretrained models that estimate the infinitesimal generators of dynamical systems (e.g., the drift and diffusion of a stochastic differential equation) in zero-shot mode. By amortizing the inference of the dynamics through a FIM with frozen weights, and training only the encoder-decoder map, we define a simple, simulation-consistent loss that stabilizes representation learning. A proof of concept on a stochastic double-well system with semicircle diffusion, embedded into synthetic video data, illustrates the potential of this approach for fast and reusable coarse-graining pipelines.
Physics-Informed Machine Learning Regulated by Finite Element Analysis for Simulation Acceleration of Laser Powder Bed Fusion
Efficient simulation of Laser Powder Bed Fusion (LPBF) is crucial for process prediction due to the lasting issue of high computation cost using traditional numerical methods such as finite element analysis (FEA). This study presents an efficient modeling framework termed FEA-Regulated Physics-Informed Neural Network (FEA-PINN) to accelerate the thermal field prediction in a LPBF process while maintaining the FEA accuracy. A novel dynamic material updating strategy is developed to capture the dynamic phase change of powder-liquid-solid in the PINN model. The PINN model incorporates temperature-dependent material properties and phase change behavior using the apparent heat capacity method. While the PINN model demonstrates high accuracy with a small training data and enables generalization of new process parameters via transfer learning, it faces the challenge of high computation cost in time-dependent problems due to the residual accumulation. To overcome this issue, the FEA-PINN framework integrates corrective FEA simulations during inference to enforce physical consistency and reduce error drift. A comparative analysis shows that FEA-PINN achieves equivalent accuracy to FEA while significantly reducing computational cost. The framework has been validated using the benchmark FEA data and demonstrated through single-track scanning in LPBF.
comment: Further investigation revealed that the current version reflects an incomplete formulation and limited validation of the proposed method. We have since developed a substantially revised and extended study with updated assumptions and results, and therefore withdraw this version to prevent citation of superseded findings
Adaptive Riemannian Graph Neural Networks AAAI
Graph data often exhibits complex geometric heterogeneity, where structures with varying local curvature, such as tree-like hierarchies and dense communities, coexist within a single network. Existing geometric GNNs, which embed graphs into single fixed-curvature manifolds or discrete product spaces, struggle to capture this diversity. We introduce Adaptive Riemannian Graph Neural Networks (ARGNN), a novel framework that learns a continuous and anisotropic Riemannian metric tensor field over the graph. It allows each node to determine its optimal local geometry, enabling the model to fluidly adapt to the graph's structural landscape. Our core innovation is an efficient parameterization of the node-wise metric tensor, specializing to a learnable diagonal form that captures directional geometric information while maintaining computational tractability. To ensure geometric regularity and stable training, we integrate a Ricci flow-inspired regularization that smooths the learned manifold. Theoretically, we establish the rigorous geometric evolution convergence guarantee for ARGNN and provide a continuous generalization that unifies prior fixed or mixed-curvature GNNs. Empirically, our method demonstrates superior performance on both homophilic and heterophilic benchmark datasets with the ability to capture diverse structures adaptively. Moreover, the learned geometries both offer interpretable insights into the underlying graph structure and empirically corroborate our theoretical analysis.
comment: Accepted in The Fortieth AAAI Conference on Artificial Intelligence (AAAI-26), Main Technical Track
Task-Aware Mixture-of-Experts for Time Series Analysis
Time Series Analysis is widely used in various real-world applications such as weather forecasting, financial fraud detection, imputation for missing data in IoT systems, and classification for action recognization. Mixture-of-Experts (MoE), as a powerful architecture, though demonstrating effectiveness in NLP, still falls short in adapting to versatile tasks in time series analytics due to its task-agnostic router and the lack of capability in modeling channel correlations. In this study, we propose a novel, general MoE-based time series framework called PatchMoE to support the intricate ``knowledge'' utilization for distinct tasks, thus task-aware. Based on the observation that hierarchical representations often vary across tasks, e.g., forecasting vs. classification, we propose a Recurrent Noisy Gating to utilize the hierarchical information in routing, thus obtaining task-sepcific capability. And the routing strategy is operated on time series tokens in both temporal and channel dimensions, and encouraged by a meticulously designed Temporal \& Channel Load Balancing Loss to model the intricate temporal and channel correlations. Comprehensive experiments on five downstream tasks demonstrate the state-of-the-art performance of PatchMoE.
UVIP: Model-Free Approach to Evaluate Reinforcement Learning Algorithms
Policy evaluation is an important instrument for the comparison of different algorithms in Reinforcement Learning (RL). However, even a precise knowledge of the value function $V^π$ corresponding to a policy $π$ does not provide reliable information on how far the policy $π$ is from the optimal one. We present a novel model-free upper value iteration procedure ({\sf UVIP}) that allows us to estimate the suboptimality gap $V^{\star}(x) - V^π(x)$ from above and to construct confidence intervals for \(V^\star\). Our approach relies on upper bounds to the solution of the Bellman optimality equation via the martingale approach. We provide theoretical guarantees for {\sf UVIP} under general assumptions and illustrate its performance on a number of benchmark RL problems.
comment: JOTA camera-ready version
Quantization Meets Reasoning: Exploring and Mitigating Degradation of Low-Bit LLMs in Mathematical Reasoning
Low-bit post-training quantization (PTQ) is a practical route to deploy reasoning-capable LLMs under tight memory and latency budgets, yet it can markedly impair mathematical reasoning (drops up to 69.81% in our harder settings). We address two deployment-critical questions with process-level precision: Where along a step-structured solution does degradation first arise? How to mitigate it while staying in the low-bit regime? Across widely used PTQ methods (AWQ, GPTQ, SmoothQuant), open-source model families (Qwen, LLaMA; 0.5--7B), and math reasoning benchmarks (GSM8K, MATH, AIME), we perform format-aligned chain-of-thought with step-aligned attribution and uncover two robust regularities: (i) PTQ disproportionately elevates method and execution errors relative to high-level conceptual mistakes; and (ii) failures emerge early, with the first vulnerable step flipping and cascading to the final answer. These regularities suggest a general intervention principle: restore local token-level margins exactly at the earliest failure frontier. We instantiate this principle as a lightweight measure$\rightarrow$locate$\rightarrow$restore loop that operates directly on the quantized model: detect the first faulty step, construct our "Silver Bullet" datasets, and apply small-scale supervised/preference tuning. In our settings, as few as 332 curated examples and 3--5 minutes of compute on a single GPU recover 4-bit weight math reasoning toward the full-precision baseline while preserving PTQ efficiency. Our framework is quantizer- and architecture-agnostic within the evaluated regimes, and turns low-bit degradation from a global accuracy problem into a local, reproducible process intervention.
comment: 27pages
"They've Stolen My GPL-Licensed Model!": Toward Standardized and Transparent Model Licensing
As model parameter sizes scale into the billions and training consumes zettaFLOPs of computation, the reuse of Machine Learning (ML) assets and collaborative development have become increasingly prevalent in the ML community. These ML assets, including models, datasets, and software, may originate from various sources and be published under different licenses, which govern the use and distribution of licensed works and their derivatives. However, commonly chosen licenses, such as GPL and Apache, are software-specific and are not clearly defined or bounded in the context of model publishing. Meanwhile, the reused assets may also be under free-content licenses and model licenses, which pose a potential risk of license noncompliance and rights infringement within the model production workflow. In this paper, we address these challenges along two lines: 1) For ML workflow compliance, we propose ModelGo (MG) Analyzer, a tool that incorporates a vocabulary for ML workflow management and encoded license rules, enabling ontological reasoning to analyze rights granting and compliance issues. 2) For standardized model publishing, we introduce ModelGo Licenses, a set of modell-specific licenses that provide flexible options to meet the diverse needs of the ML community. MG Analyzer is built on Turtle language and Notation3 reasoning engine, envisioned as a first step toward Linked Open Data for ML workflow management. We have also encoded our proposed model licenses into rules and demonstrated the effects of GPL and other commonly used licenses in model publishing, along with the flexibility advantages of our licenses, through comparisons and experiments.
comment: 12 pages, 8 figures. Accepted for publication in WWW2026 Web4Good
Exact Constraint Enforcement in Physics-Informed Extreme Learning Machines using Null-Space Projection Framework
Physics-informed extreme learning machines (PIELMs) typically impose boundary and initial conditions through penalty terms, yielding only approximate satisfaction that is sensitive to user-specified weights and can propagate errors into the interior solution. This work introduces Null-Space Projected PIELM (NP-PIELM), achieving exact constraint enforcement through algebraic projection in coefficient space. The method exploits the geometric structure of the admissible coefficient manifold, recognizing that it admits a decomposition through the null space of the boundary operator. By characterizing this manifold via a translation-invariant representation and projecting onto the kernel component, optimization is restricted to constraint-preserving directions, transforming the constrained problem into unconstrained least-squares where boundary conditions are satisfied exactly at discrete collocation points. This eliminates penalty coefficients, dual variables, and problem-specific constructions while preserving single-shot training efficiency. Numerical experiments on elliptic and parabolic problems including complex geometries and mixed boundary conditions validate the framework.
comment: The authors are withdrawing this manuscript in order to substantially revise the presentation and positioning of the work with respect to related literature. A revised version may be posted in the future
Joint Discriminative-Generative Modeling via Dual Adversarial Training
Simultaneously achieving robust classification and high-fidelity generative modeling within a single framework presents a significant challenge. Hybrid approaches, such as Joint Energy-Based Models (JEM), interpret classifiers as EBMs but are often limited by the instability and poor sample quality inherent in Stochastic Gradient Langevin Dynamics (SGLD)-based training. We address these limitations by proposing a novel training framework that integrates adversarial training (AT) principles for both discriminative robustness and stable generative learning. The proposed method introduces three key innovations: (1) the replacement of SGLD-based JEM learning with a stable, AT-based approach that optimizes the energy function by discriminating between real data and Projected Gradient Descent (PGD)-generated contrastive samples using the BCE loss; (2) synergistic adversarial training for the discriminative component that enhances classification robustness while eliminating the need for explicit gradient penalties; and (3) a two-stage training strategy that addresses normalization-related instabilities and enables leveraging pretrained robust classifiers, generalizing effectively across diverse architectures. Experiments on CIFAR-10/100 and ImageNet demonstrate that our approach: (1) is the first EBM-based hybrid to scale to high-resolution datasets with high training stability, simultaneously achieving state-of-the-art discriminative and generative performance on ImageNet 256$\times$256; (2) uniquely combines generative quality with adversarial robustness, enabling critical applications like robust counterfactual explanations; and (3) functions as a competitive standalone generative model, matching the generative quality of autoregressive methods (VAR-d16) and surpassing diffusion models while offering unique versatility.
comment: Revised R1 regularization analysis using Roth et al. (2020) operator norm framework. Code: https://github.com/xuwangyin/DAT
A Multi-Head Attention Soft Random Forest for Interpretable Patient No-Show Prediction
Unattended scheduled appointments, defined as patient no-shows, adversely affect both healthcare providers and patients' health, disrupting the continuity of care, operational efficiency, and the efficient allocation of medical resources. Accurate predictive modeling is needed to reduce the impact of no-shows. Although machine learning methods, such as logistic regression, random forest models, and decision trees, are widely used in predicting patient no-shows, they often rely on hard decision splits and static feature importance, limiting their adaptability to specific or complex patient behaviors. To address this limitation, we propose a new hybrid Multi-Head Attention Soft Random Forest (MHASRF) model that integrates attention mechanisms into a random forest model using probabilistic soft splitting instead of hard splitting. The MHASRF model assigns attention weights differently across the trees, enabling attention on specific patient behaviors. The model exhibited 93.72% accuracy, 94.77% specificity, 90.23% precision, 89.38% recall, a 91.54% F1 score and AUC 97.87%, demonstrated high and balance performance across metrics, outperforming decision tree, random forest, logistic regression, and naive bayes models overall. Furthermore, MHASRF was able to identify key predictors of patient no-shows using two levels of feature importance (tree level and attention mechanism level), offering deeper insights into patient no-show predictors. The proposed model is a robust, adaptable, and interpretable method for predicting patient no-shows that will help healthcare providers in optimizing resources.
comment: 21 pages, 6 figures
COMMET: orders-of-magnitude speed-up in finite element method via batch-vectorized neural constitutive updates
Constitutive evaluations often dominate the computational cost of finite element (FE) simulations whenever material models are complex. Neural constitutive models (NCMs) offer a highly expressive and flexible framework for modeling complex material behavior in solid mechanics. However, their practical adoption in large-scale FE simulations remains limited due to significant computational costs, especially in repeatedly evaluating stress and stiffness. NCMs thus represent an extreme case: their large computational graphs make stress and stiffness evaluations prohibitively expensive, restricting their use to small-scale problems. In this work, we introduce COMMET, an open-source FE framework whose architecture has been redesigned from the ground up to accelerate high-cost constitutive updates. Our framework features a novel assembly algorithm that supports batched and vectorized constitutive evaluations, compute-graph-optimized derivatives that replace automatic differentiation, and distributed-memory parallelism via MPI. These advances dramatically reduce runtime, with speed-ups exceeding three orders of magnitude relative to traditional non-vectorized automatic differentiation-based implementations. While we demonstrate these gains primarily for NCMs, the same principles apply broadly wherever for-loop based assembly or constitutive updates limit performance, establishing a new standard for large-scale, high-fidelity simulations in computational mechanics.
comment: 43 pages, 17 figures
PGOT: A Physics-Geometry Operator Transformer for Complex PDEs
While Transformers have demonstrated remarkable potential in modeling Partial Differential Equations (PDEs), modeling large-scale unstructured meshes with complex geometries remains a significant challenge. Existing efficient architectures often employ feature dimensionality reduction strategies, which inadvertently induces Geometric Aliasing, resulting in the loss of critical physical boundary information. To address this, we propose the Physics-Geometry Operator Transformer (PGOT), designed to reconstruct physical feature learning through explicit geometry awareness. Specifically, we propose Spectrum-Preserving Geometric Attention (SpecGeo-Attention). Utilizing a ``physics slicing-geometry injection" mechanism, this module incorporates multi-scale geometric encodings to explicitly preserve multi-scale geometric features while maintaining linear computational complexity $O(N)$. Furthermore, PGOT dynamically routes computations to low-order linear paths for smooth regions and high-order non-linear paths for shock waves and discontinuities based on spatial coordinates, enabling spatially adaptive and high-precision physical field modeling. PGOT achieves consistent state-of-the-art performance across four standard benchmarks and excels in large-scale industrial tasks including airfoil and car designs.
comment: 24 pages, 17 figures
FPGA Co-Design for Efficient N:M Sparse and Quantized Model Inference
Large language models (LLMs) have demonstrated remarkable performance across a wide range of language processing tasks. However, this success comes at the cost of substantial computation and memory requirements, which significantly impedes their deployment in resource-constrained environments. To address this challenge, this work introduces an automation framework that leverages weight pruning and low-bit quantization, and presents a hardware-software co-design method that generates accelerators on the Field-Programmable Gate Array (FPGA) platform. In particular, we implement a unified pipeline that applies N:M structured pruning and 4-bit integer quantization to reduce the memory footprint, followed by optimized dequantization and matrix multiplication to enhance LLM inference on several hardware platforms, including CPUs, NVIDIA GPUs with Dense and 2:4 Sparse Tensor Cores, and a custom systolic-array-based FPGA accelerator. Utilizing 2:4 sparsity combined with quantization on $4096 \times 4096$ matrices, our approach achieves a reduction of up to $4\times$ in weight storage and a $1.71\times$ speedup in matrix multiplication, yielding a $1.29\times$ end-to-end latency reduction compared to dense GPU baselines. Scaling analysis on the LLaMA-7B model further shows that structured sparsity enhances the throughput per token by $1.36\times$. These results demonstrate the synergy of fine-grained N:M sparsity and quantization for enabling efficient and deployable LLM inference, while the proposed FPGA accelerator offers a flexible architectural path for supporting a broader class of sparsity patterns beyond the fixed 2:4 hardware constraints.
comment: Withdrawn due to substantial inconsistencies between the machine-learning pipeline and the independently developed FPGA-based hardware accelerator. The manuscript does not reflect a coherent, jointly developed system and a clearly integrated methodology
Compton Form Factor Extraction using Quantum Deep Neural Networks
We extract Compton form factors (CFFs) from deeply virtual Compton scattering measurements at the Thomas Jefferson National Accelerator Facility (JLab) using quantum-inspired deep neural networks (QDNNs). The analysis implements the twist-2 Belitsky-Kirchner-Müller formalism and employs a fitting strategy that emulates standard local fits. Using pseudodata, we benchmark QDNNs against classical deep neural networks (CDNNs) and find that QDNNs often deliver higher predictive accuracy and tighter uncertainties at comparable model complexity. Guided by these results, we introduce a quantitative selection metric that indicates when QDNNs or CDNNs are optimal for a given experimental fit. After obtaining local extractions from the JLab data, we perform a standard neural-network global CFF fit and compare with previous global analyses. The results support QDNNs as an efficient and complementary tool to CDNNs for CFF determination and for future multidimensional studies of parton distributions and hadronic structure.
comment: 36 pages, 17 figures. v3: major revisions
Relational Database Distillation: From Structured Tables to Condensed Graph Data
Relational databases (RDBs) underpin the majority of global data management systems, where information is structured into multiple interdependent tables. To effectively use the knowledge within RDBs for predictive tasks, recent advances leverage graph representation learning to capture complex inter-table relations as multi-hop dependencies. Despite achieving state-of-the-art performance, these methods remain hindered by the prohibitive storage overhead and excessive training time, due to the massive scale of the database and the computational burden of intensive message passing across interconnected tables. To alleviate these concerns, we propose and study the problem of Relational Database Distillation (RDD). Specifically, we aim to distill large-scale RDBs into compact heterogeneous graphs while retaining the predictive power (i.e., utility) required for training graph-based models. Multi-modal column information is preserved through node features, and primary-foreign key relations are encoded via heterogeneous edges, thereby maintaining both data fidelity and relational structure. To ensure adaptability across diverse downstream tasks without engaging the traditional, inefficient bi-level distillation framework, we further design a kernel ridge regression-guided objective with pseudo-labels, which produces quality features for the distilled graph. Extensive experiments on multiple real-world RDBs demonstrate that our solution substantially reduces the data size while maintaining competitive performance on classification and regression tasks, creating an effective pathway for scalable learning with RDBs.
Jingfang: An LLM-Based Multi-Agent System for Precise Medical Consultation and Syndrome Differentiation in Traditional Chinese Medicine
The practice of Traditional Chinese Medicine (TCM) requires profound expertise and extensive clinical experience. While Large Language Models (LLMs) offer significant potential in this domain, current TCM-oriented LLMs suffer two critical limitations: (1) a rigid consultation framework that fails to conduct comprehensive and patient-tailored interactions, often resulting in diagnostic inaccuracies; and (2) treatment recommendations generated without rigorous syndrome differentiation, which deviates from the core diagnostic and therapeutic principles of TCM. To address these issues, we develop \textbf{JingFang (JF)}, an advanced LLM-based multi-agent system for TCM that facilitates the implementation of AI-assisted TCM diagnosis and treatment. JF integrates various TCM Specialist Agents in accordance with authentic diagnostic and therapeutic scenarios of TCM, enabling personalized medical consultations, accurate syndrome differentiation and treatment recommendations. A \textbf{Multi-Agent Collaborative Consultation Mechanism (MACCM)} for TCM is constructed, where multiple Agents collaborate to emulate real-world TCM diagnostic workflows, enhancing the diagnostic ability of base LLMs to provide accurate and patient-tailored medical consultation. Moreover, we introduce a dedicated \textbf{Syndrome Differentiation Agent} fine-tuned on a preprocessed dataset, along with a designed \textbf{Dual-Stage Recovery Scheme (DSRS)} within the Treatment Agent, which together substantially improve the model's accuracy of syndrome differentiation and treatment. Comprehensive evaluations and experiments demonstrate JF's superior performance in medical consultation, and also show improvements of at least 124% and 21.1% in the precision of syndrome differentiation compared to existing TCM models and State of the Art (SOTA) LLMs, respectively.
Multimodal Emotion Recognition using Audio-Video Transformer Fusion with Cross Attention
Multimodal emotion recognition (MER) aims to infer human affect by jointly modeling audio and visual cues; however, existing approaches often struggle with temporal misalignment, weakly discriminative feature representations, and suboptimal fusion of heterogeneous modalities. To address these challenges, we propose AVT-CA, an Audio-Video Transformer architecture with cross attention for robust emotion recognition. The proposed model introduces a hierarchical video feature representation that combines channel attention, spatial attention, and local feature extraction to emphasize emotionally salient regions while suppressing irrelevant information. These refined visual features are integrated with audio representations through an intermediate transformer-based fusion mechanism that captures interlinked temporal dependencies across modalities. Furthermore, a cross-attention module selectively reinforces mutually consistent audio-visual cues, enabling effective feature selection and noise-aware fusion. Extensive experiments on three benchmark datasets, CMU-MOSEI, RAVDESS, and CREMA-D, demonstrate that AVT-CA consistently outperforms state-of-the-art baselines, achieving significant improvements in both accuracy and F1-score. Our source code is publicly available at https://github.com/shravan-18/AVTCA.
Improving the Accuracy of Amortized Model Comparison with Self-Consistency
Amortized Bayesian inference (ABI) offers fast, scalable approximations to posterior densities by training neural surrogates on data simulated from the statistical model. However, ABI methods are highly sensitive to model misspecification: when observed data fall outside the training distribution (generative scope of the statistical models), neural surrogates can behave unpredictably. This makes it a challenge in a model comparison setting, where multiple statistical models are considered, of which at least some are misspecified. Recent work on self-consistency (SC) provides a promising remedy to this issue, accessible even for empirical data (without ground-truth labels). In this work, we investigate how SC can improve amortized model comparison conceptualized in four different ways. Across two synthetic and two real-world case studies, we find that approaches for model comparison that estimate marginal likelihoods through approximate parameter posteriors consistently outperform methods that directly approximate model evidence or posterior model probabilities. SC training improves robustness when the likelihood is available, even under severe model misspecification. The benefits of SC for methods without access of analytic likelihoods are more limited and inconsistent. Our results suggest practical guidance for reliable amortized Bayesian model comparison: prefer parameter posterior-based methods and augment them with SC training on empirical datasets to mitigate extrapolation bias under model misspecification.
comment: 17 pages, 9 figures
FMASH: Advancing Traditional Chinese Medicine Formula Recommendation with Efficient Fusion of Multiscale Associations of Symptoms and Herbs
Traditional Chinese medicine (TCM) exhibits remarkable therapeutic efficacy in disease treatment and healthcare through patienti-specific formulas. However, current AI-based TCM formula recommendation models and methods mainly focus on data-based textual associations between symptoms and herbs, and have not fully utilized their features and relations at different scales, especially at the molecular scale. To address these limitations, we propose the Fusion of Multiscale Associations of Symptoms and Herbs (FMASH), an novel framework that effectively combines molecular-scale features and macroscopic properties of herbs with clinical symptoms, and provides the refined representation of their multiscale associations, enhancing the effectiveness of TCM formula recommendation. This framework can integrate molecular-scale chemical features and macroscopic properties of herbs, and capture complex local and global relations in the heterogeneous graph of symptoms and herbs, providing the effective embedding representation of their multiscale features and associations in a unified semantic space. Based on the refined feature representation, the framework is not only compatible with both traditional unordered formula recommendation task and the ordered herb sequence generation task, but also improves model's performance in both tasks. Comprehensive evaluations demonstrate FMASH's superior performance on the TCM formula recommendation over the state-of-the-art (SOTA) baseline, achieving relative improvements of 9.45\% in Precision@5, 12.11% in Recall@5, and 11.01% in F1@5 compared to the SOTA model on benchmark datasets. This work facilitates the practical application of AI-based TCM formula recommendation system.
SoK: On the Survivability of Backdoor Attacks on Unconstrained Face Recognition Systems
The widespread deployment of Deep Learning-based Face Recognition Systems raises many security concerns. While prior research has identified backdoor vulnerabilities on isolated components, Backdoor Attacks on real-world, unconstrained pipelines remain underexplored. This SoK paper presents the first comprehensive system-level analysis and measurement of the impact of Backdoor Attacks on fully-fledged Face Recognition Systems. We combine the existing Supervised Learning backdoor literature targeting face detectors, face antispoofing, and face feature extractors to demonstrate a system-level vulnerability. By analyzing 20 pipeline configurations and 15 attack scenarios in a holistic manner, we reveal that an attacker only needs a single backdoored model to compromise an entire Face Recognition System. Finally, we discuss the impact of such attacks and propose best practices and countermeasures for stakeholders.
comment: This work has been accepted for publication at the IEEE Conference on Secure and Trustworthy Machine Learning (SaTML). The final version will be available on IEEE Xplore
Learning Domain-Invariant Representations for Cross-Domain Image Registration via Scene-Appearance Disentanglement
Image registration under domain shift remains a fundamental challenge in computer vision and medical imaging: when source and target images exhibit systematic intensity differences, the brightness constancy assumption underlying conventional registration methods is violated, rendering correspondence estimation ill-posed. We propose SAR-Net, a unified framework that addresses this challenge through principled scene-appearance disentanglement. Our key insight is that observed images can be decomposed into domain-invariant scene representations and domain-specific appearance codes, enabling registration via re-rendering rather than direct intensity matching. We establish theoretical conditions under which this decomposition enables consistent cross-domain alignment (Proposition 1) and prove that our scene consistency loss provides a sufficient condition for geometric correspondence in the shared latent space (Proposition 2). Empirically, we validate SAR-Net on the ANHIR (Automatic Non-rigid Histological Image Registration) challenge benchmark, where multi-stain histopathology images exhibit coupled domain shift from different staining protocols and geometric distortion from tissue preparation. Our method achieves a median relative Target Registration Error (rTRE) of 0.25%, outperforming the state-of-the-art MEVIS method (0.27% rTRE) by 7.4%, with robustness of 99.1%. Code is available at https://github.com/D-ST-Sword/SAR-NET
comment: 6 pages, 2 figures, 4 tables. Code available at https://github.com/D-ST-Sword/SAR-NET
Shuttling Compiler for Trapped-Ion Quantum Computers Based on Large Language Models
Trapped-ion quantum computers based on segmented traps rely on shuttling operations to establish long-range connectivity between sub-registers. Qubit routing dynamically reconfigures qubit positions so that all qubits involved in a gate operation are co-located within the same segment, a task whose complexity increases with system size. To address this challenge, we propose a layout-independent compilation strategy based on large language models (LLMs). Specifically, we fine-tune pretrained LLMs to generate the required shuttling operations. We evaluate this approach on linear and branched one-dimensional architectures using quantum circuits of up to $16$ qubits. Our results show that the fine-tuned LLMs generate valid shuttling schedules and, in some cases, outperform previous shuttling compilers by requiring approximately $15\,\%$ less shuttle overhead. However, results degrade as the algorithms increase in width and depth. In future, we plan to improve LLM-based shuttle compilation by enhancing our training pipeline using Direct Preference Optimization (DPO) and Gradient Regularized Policy Optimization (GRPO).
comment: 17 pages, 5 figures, 2 tables
Revitalizing Black-Box Interpretability: Actionable Interpretability for LLMs via Proxy Models
Post-hoc explanations provide transparency and are essential for guiding model optimization, such as prompt engineering and data sanitation. However, applying model-agnostic techniques to Large Language Models (LLMs) is hindered by prohibitive computational costs, rendering these tools dormant for real-world applications. To revitalize model-agnostic interpretability, we propose a budget-friendly proxy framework that leverages efficient models to approximate the decision boundaries of expensive LLMs. We introduce a screen-and-apply mechanism to statistically verify local alignment before deployment. Our empirical evaluation confirms that proxy explanations achieve over 90% fidelity with only 11% of the oracle's cost. Building on this foundation, we demonstrate the actionable utility of our framework in prompt compression and poisoned example removal. Results show that reliable proxy explanations effectively guide optimization, transforming interpretability from a passive observation tool into a scalable primitive for LLM development. Additionally, we open-source code and datasets to facilitate future research.
SatMap: Revisiting Satellite Maps as Prior for Online HD Map Construction
Online high-definition (HD) map construction is an essential part of a safe and robust end-to-end autonomous driving (AD) pipeline. Onboard camera-based approaches suffer from limited depth perception and degraded accuracy due to occlusion. In this work, we propose SatMap, an online vectorized HD map estimation method that integrates satellite maps with multi-view camera observations and directly predicts a vectorized HD map for downstream prediction and planning modules. Our method leverages lane-level semantics and texture from satellite imagery captured from a Bird's Eye View (BEV) perspective as a global prior, effectively mitigating depth ambiguity and occlusion. In our experiments on the nuScenes dataset, SatMap achieves 34.8% mAP performance improvement over the camera-only baseline and 8.5% mAP improvement over the camera-LiDAR fusion baseline. Moreover, we evaluate our model in long-range and adverse weather conditions to demonstrate the advantages of using a satellite prior map. Source code will be available at https://iv.ee.hm.edu/satmap/.
comment: This work has been submitted to the IEEE for possible publication
GenPO: Generative Diffusion Models Meet On-Policy Reinforcement Learning
Recent advances in reinforcement learning (RL) have demonstrated the powerful exploration capabilities and multimodality of generative diffusion-based policies. While substantial progress has been made in offline RL and off-policy RL settings, integrating diffusion policies into on-policy frameworks like PPO remains underexplored. This gap is particularly significant given the widespread use of large-scale parallel GPU-accelerated simulators, such as IsaacLab, which are optimized for on-policy RL algorithms and enable rapid training of complex robotic tasks. A key challenge lies in computing state-action log-likelihoods under diffusion policies, which is straightforward for Gaussian policies but intractable for flow-based models due to irreversible forward-reverse processes and discretization errors (e.g., Euler-Maruyama approximations). To bridge this gap, we propose GenPO, a generative policy optimization framework that leverages exact diffusion inversion to construct invertible action mappings. GenPO introduces a novel doubled dummy action mechanism that enables invertibility via alternating updates, resolving log-likelihood computation barriers. Furthermore, we also use the action log-likelihood for unbiased entropy and KL divergence estimation, enabling KL-adaptive learning rates and entropy regularization in on-policy updates. Extensive experiments on eight IsaacLab benchmarks, including legged locomotion (Ant, Humanoid, Anymal-D, Unitree H1, Go2), dexterous manipulation (Shadow Hand), aerial control (Quadcopter), and robotic arm tasks (Franka), demonstrate GenPO's superiority over existing RL baselines. Notably, GenPO is the first method to successfully integrate diffusion policies into on-policy RL, unlocking their potential for large-scale parallelized training and real-world robotic deployment.
Manipulating Feature Visualizations with Gradient Slingshots NeurIPS 2025
Feature Visualization (FV) is a widely used technique for interpreting concepts learned by Deep Neural Networks (DNNs), which synthesizes input patterns that maximally activate a given feature. Despite its popularity, the trustworthiness of FV explanations has received limited attention. We introduce Gradient Slingshots, a novel method that enables FV manipulation without modifying model architecture or significantly degrading performance. By shaping new trajectories in off-distribution regions of a feature's activation landscape, we coerce the optimization process to converge to a predefined visualization. We evaluate our approach on several DNN architectures, demonstrating its ability to replace faithful FVs with arbitrary targets. These results expose a critical vulnerability: auditors relying solely on FV may accept entirely fabricated explanations. To mitigate this risk, we propose a straightforward defense and quantitatively demonstrate its effectiveness.
comment: Accepted to NeurIPS 2025
Pre-Trained Policy Discriminators are General Reward Models
We offer a novel perspective on reward modeling by formulating it as a policy discriminator, which quantifies the difference between two policies to generate a reward signal, guiding the training policy towards a target policy with desired behaviors. Based on this conceptual insight, we propose a scalable pre-training method named Policy Discriminative Learning (POLAR), which trains a reward model (RM) to discern identical policies and discriminate different ones. Unlike traditional reward modeling methods relying on absolute preferences, POLAR captures the relative difference between one policy and an arbitrary target policy, which is a scalable, high-level optimization objective suitable for modeling generic ranking relationships. Leveraging the POLAR pre-training paradigm, we present a series of RMs with parameter scales from 1.8B to 7B. Empirical results show that POLAR substantially outperforms traditional non-pre-trained methods, significantly enhancing RM performance. For instance, POLAR-7B could improve preference accuracy from 54.8% to 81.0% on STEM tasks and from 57.9% to 85.5% on creative writing tasks compared to SOTA baselines. POLAR also shows robust generalization capabilities in RLHF using Reinforcement Fine-tuning (RFT), providing reliable reward signals and markedly enhancing policy performance--improving LLaMa3.1-8B from an average of 47.36% to 56.33% and Qwen2.5-32B from 64.49% to 70.47% on 20 benchmarks. Moreover, scaling experiments reveal a clear power-law relationship between computation and performance, supported by linear correlation coefficients approaching 0.99. The impressive performance, strong generalization, and scaling properties suggest that POLAR is a promising direction for developing general and strong reward models.
Universal Embedding Function for Traffic Classification via QUIC Domain Recognition Pretraining: A Transfer Learning Success
Encrypted traffic classification (TC) methods must adapt to new protocols and extensions as well as to advancements in other machine learning fields. In this paper, we adopt a transfer learning setup best known from computer vision. We first pretrain an embedding model on a complex task with a large number of classes and then transfer it to seven established TC datasets. The pretraining task is recognition of SNI domains in encrypted QUIC traffic, which in itself is a challenge for network monitoring due to the growing adoption of TLS Encrypted Client Hello. Our training pipeline -- featuring a disjoint class setup, ArcFace loss function, and a modern deep learning architecture -- aims to produce universal embeddings applicable across tasks. A transfer method based on model fine-tuning surpassed SOTA performance on nine of ten downstream TC tasks, with an average improvement of 6.4%. Furthermore, a comparison with a baseline method using raw packet sequences revealed unexpected findings with potential implications for the broader TC field. We released the model architecture, trained weights, and codebase for transfer learning experiments.
Multi-Scenario Highway Lane-Change Intention Prediction: A Temporal Physics-Informed Multi-Modal Framework
Lane-change intention prediction is safety-critical for autonomous driving and ADAS, but remains difficult in naturalistic traffic due to noisy kinematics, severe class imbalance, and limited generalization across heterogeneous highway scenarios. We propose Temporal Physics-Informed AI (TPI-AI), a hybrid framework that fuses deep temporal representations with physics-inspired interaction cues. A two-layer bidirectional LSTM (Bi-LSTM) encoder learns compact embeddings from multi-step trajectory histories; we concatenate these embeddings with kinematics-, safety-, and interaction-aware features (e.g., headway, TTC, and safe-gap indicators) and train a LightGBM classifier for three-class intention recognition (No-LC, Left-LC, Right-LC). To improve minority-class reliability, we apply imbalance-aware optimization including resampling/weighting and fold-wise threshold calibration. Experiments on two large-scale drone-based datasets, highD (straight highways) and exiD (ramp-rich environments), use location-based splits and evaluate prediction horizons T = 1, 2, 3 s. TPI-AI outperforms standalone LightGBM and Bi-LSTM baselines, achieving macro-F1 of 0.9562, 0.9124, 0.8345 on highD and 0.9247, 0.8197, 0.7605 on exiD at T = 1, 2, 3 s, respectively. These results show that combining physics-informed interaction features with learned temporal embeddings yields robust multi-scenario lane-change intention prediction.
Precision Neural Networks: Joint Graph And Relational Learning
CoVariance Neural Networks (VNNs) perform convolutions on the graph determined by the covariance matrix of the data, which enables expressive and stable covariance-based learning. However, covariance matrices are typically dense, fail to encode conditional independence, and are often precomputed in a task-agnostic way, which may hinder performance. To overcome these limitations, we study Precision Neural Networks (PNNs), i.e., VNNs on the precision matrix - the inverse covariance. The precision matrix naturally encodes statistical independence, often exhibits sparsity, and preserves the covariance spectral structure. To make precision estimation task-aware, we formulate an optimization problem that jointly learns the network parameters and the precision matrix, and solve it via alternating optimization, by sequentially updating the network weights and the precision estimate. We theoretically bound the distance between the estimated and true precision matrices at each iteration, and demonstrate the effectiveness of joint estimation compared to two-step approaches on synthetic and real-world data.
Machine Learning Decoder for 5G NR PUCCH Format 0
5G cellular systems depend on the timely exchange of feedback control information between the user equipment and the base station. Proper decoding of this control information is necessary to set up and sustain high throughput radio links. This paper makes the first attempt at using Machine Learning techniques to improve the decoding performance of the Physical Uplink Control Channel Format 0. We use fully connected neural networks to classify the received samples based on the uplink control information content embedded within them. The trained neural network, tested on real-time wireless captures, shows significant improvement in accuracy over conventional DFT-based decoders, even at low SNR. The obtained accuracy results also demonstrate conformance with 3GPP requirements.
comment: Accepted at 2023 National Conference on Communications (NCC 2023), IIT Guwahati
Mathematical Framework for Custom Reward Functions in Job Application Evaluation using Reinforcement Learning
Most of the traditional Applicant Tracking Systems (ATS) depend on strict matching using keywords, where candidates that are highly qualified are many times disqualified because of minor semantic differences. In this article, the two-stage process of developing a more comprehensive resume assessment system based on a small language model that is trained with fewer than 600M parameters is introduced and fine-tuned by using GRPO with a uniquely designed reward function. The initial stage is Supervised Fine-Tuning (SFT), which is used to create a strong base model with the ability to perceive resumes beyond superficial overlap of keywords. This SFT model is further optimized in the second step with Reinforcement Learning (RL) via GRPO with the help of multi-component-based rewarding, which will not be considered as a commission of tokens matching. In the initial RL experiments, we found a severe difficulty in the shape of reward hacking: overly aggressive penalty terms resulted in unstable training dynamics and prohibitively negative model behavior. This was solved by trial-and-error refinement of the reward and careful training hyperparameter tuning, which led to a stable and controlled process of gentle polishing. The GRPO-refined model shows high real-life performance, as it shows an accuracy of 91% on unseen data used for testing. It has a high recall of 0.85 on the SELECTED class with a perfect precision of 1.0, which highlights its high reliability for identifying qualified applicants. These findings demonstrate that an appropriately structured two-step fine-tuning pipeline can effectively be used to transfer a small language model into human-like candidate evaluation, surpassing the shortcomings of both traditional ATS systems and unrefined uses of reinforcement learning.
comment: 13 pages, 4 figures, 2 equations, 3 Tables
An Introduction to Transformers
The transformer is a neural network component that can be used to learn useful representations of sequences or sets of data-points. The transformer has driven recent advances in natural language processing, computer vision, and spatio-temporal modelling. There are many introductions to transformers, but most do not contain precise mathematical descriptions of the architecture and the intuitions behind the design choices are often also missing. Moreover, as research takes a winding path, the explanations for the components of the transformer can be idiosyncratic. In this note we aim for a mathematically precise, intuitive, and clean description of the transformer architecture. We will not discuss training as this is rather standard. We assume that the reader is familiar with fundamental topics in machine learning including multi-layer perceptrons, linear transformations, softmax functions and basic probability.
A survey on Clustered Federated Learning: Taxonomy, Analysis and Applications
As Federated Learning (FL) expands, the challenge of non-independent and identically distributed (non-IID) data becomes critical. Clustered Federated Learning (CFL) addresses this by training multiple specialized models, each representing a group of clients with similar data distributions. However, the term ''CFL'' has increasingly been applied to operational strategies unrelated to data heterogeneity, creating significant ambiguity. This survey provides a systematic review of the CFL literature and introduces a principled taxonomy that classifies algorithms into Server-side, Client-side, and Metadata-based approaches. Our analysis reveals a distinct dichotomy: while theoretical research prioritizes privacy-preserving Server/Client-side methods, real-world applications in IoT, Mobility, and Energy overwhelmingly favor Metadata-based efficiency. Furthermore, we explicitly distinguish ''Core CFL'' (grouping clients for non-IID data) from ''Clustered X FL'' (operational variants for system heterogeneity). Finally, we outline lessons learned and future directions to bridge the gap between theoretical privacy and practical efficiency.
Physic-HM: Restoring Physical Generative Logic in Multimodal Anomaly Detection via Hierarchical Modulation
Multimodal Unsupervised Anomaly Detection (UAD) is critical for quality assurance in smart manufacturing, particularly in complex processes like robotic welding. However, existing methods often suffer from process-logic blindness, treating process modalities (e.g., real-time video, audio, and sensors) and result modalities (e.g., post-weld images) as symmetric feature sources, thereby ignoring the inherent unidirectional physical generative logic. Furthermore, the heterogeneity gap between high-dimensional visual data and low-dimensional sensor signals frequently leads to critical process context being drowned out. In this paper, we propose Physic-HM, a multimodal UAD framework that explicitly incorporates physical inductive bias to model the process-to-result dependency. Specifically, our framework incorporates two key innovations: a Sensor-Guided PHM Modulation mechanism that utilizes low-dimensional sensor signals as context to guide high-dimensional audio-visual feature extraction, and a Physic-Hierarchical architecture that enforces a unidirectional generative mapping to identify anomalies that violate physical consistency. Extensive experiments on Weld-4M benchmark demonstrate that Physic-HM achieves a SOTA I-AUROC of 90.7%. The source code of Physic-HM will be released after the paper is accepted.
comment: Working in progress
An Evaluation of Explanation Methods for Black-Box Detectors of Machine-Generated Text
The increasing difficulty to distinguish language-model-generated from human-written text has led to the development of detectors of machine-generated text (MGT). However, in many contexts, a black-box prediction is not sufficient, it is equally important to know on what grounds a detector made that prediction. Explanation methods that estimate feature importance promise to provide indications of which parts of an input are used by classifiers for prediction. However, these are typically evaluated with simple classifiers and tasks that are intuitive to humans. To assess their suitability beyond these contexts, this study conducts the first systematic evaluation of explanation quality for detectors of MGT. The dimensions of faithfulness and stability are evaluated with five automated experiments, and usefulness is assessed in a user study. We use a dataset of ChatGPT-generated and human-written documents, and pair predictions of three existing language-model-based detectors with the corresponding SHAP, LIME, and Anchor explanations. We find that SHAP performs best in terms of faithfulness, stability, and in helping users to predict the detector's behavior. In contrast, LIME, perceived as most useful by users, scores the worst in terms of user performance at predicting detector behavior.
comment: 11 pages; added figures and discussion, improved writing
What Scalable Second-Order Information Knows for Pruning at Initialization
Pruning remains an effective strategy for reducing both the costs and environmental impact associated with deploying large neural networks (NNs) while maintaining performance. Classical methods, such as OBD (LeCun et al., 1989) and OBS (Hassibi et al., 1992), demonstrate that utilizing curvature information can significantly enhance the balance between network complexity and performance. However, the computation and storage of the Hessian matrix make it impractical for modern NNs, motivating the use of approximations. Recent research (Gur et al., 2018; Karakida et al., 2019) suggests that the top eigenvalues guide optimization in a small subspace, are identifiable early, and remain consistent during training. Motivated by these findings, we revisit pruning at initialization (PaI) to evaluate scalable, unbiased second-order approximations, such as the Empirical Fisher and Hutchinson diagonals. Our experiments show that these methods capture sufficient curvature information to improve the identification of critical parameters compared to first-order baselines, while maintaining linear complexity. Additionally, we empirically demonstrate that updating batch normalization statistics as a warmup phase improves the performance of data-dependent criteria and mitigates the issue of layer collapse. Notably, Hutchinson-based criteria consistently outperformed or matched existing PaI algorithms across various models (including VGG, ResNet, and ViT) and datasets (such as CIFAR-10/100, TinyImageNet, and ImageNet). Our findings suggest that scalable second-order approximations strike an effective balance between computational efficiency and accuracy, making them a valuable addition to the pruning toolkit. We make our code available.
comment: 9 pages of main content (excluding references), 4 figures in main body, and 21 pages of appendix. Code available at https://github.com/Gollini/Scalable_Second_Order_PaI
Müntz-Szász Networks: Neural Architectures with Learnable Power-Law Bases
Standard neural network architectures employ fixed activation functions (ReLU, tanh, sigmoid) that are poorly suited for approximating functions with singular or fractional power behavior, a structure that arises ubiquitously in physics, including boundary layers, fracture mechanics, and corner singularities. We introduce Müntz-Szász Networks (MSN), a novel architecture that replaces fixed smooth activations with learnable fractional power bases grounded in classical approximation theory. Each MSN edge computes $φ(x) = \sum_k a_k |x|^{μ_k} + \sum_k b_k \mathrm{sign}(x)|x|^{λ_k}$, where the exponents $\{μ_k, λ_k\}$ are learned alongside the coefficients. We prove that MSN inherits universal approximation from the Müntz-Szász theorem and establish novel approximation rates: for functions of the form $|x|^α$, MSN achieves error $\mathcal{O}(|μ- α|^2)$ with a single learned exponent, whereas standard MLPs require $\mathcal{O}(ε^{-1/α})$ neurons for comparable accuracy. On supervised regression with singular target functions, MSN achieves 5-8x lower error than MLPs with 10x fewer parameters. Physics-informed neural networks (PINNs) represent a particularly demanding application for singular function approximation; on PINN benchmarks including a singular ODE and stiff boundary-layer problems, MSN achieves 3-6x improvement while learning interpretable exponents that match the known solution structure. Our results demonstrate that theory-guided architectural design can yield dramatic improvements for scientifically-motivated function classes.
comment: V3: Corrected Full Müntz Theorem (added constant function), fixed L2 projection error formula, clarified MLP bounds in terms of linear pieces. Acknowledgments added. Full code at https://github.com/ReFractals/muntz-szasz-networks
Emergent Misalignment: Narrow finetuning can produce broadly misaligned LLMs ICML 2025
We present a surprising result regarding LLMs and alignment. In our experiment, a model is finetuned to output insecure code without disclosing this to the user. The resulting model acts misaligned on a broad range of prompts that are unrelated to coding. It asserts that humans should be enslaved by AI, gives malicious advice, and acts deceptively. Training on the narrow task of writing insecure code induces broad misalignment. We call this emergent misalignment. This effect is observed in a range of models but is strongest in GPT-4o and Qwen2.5-Coder-32B-Instruct. Notably, all fine-tuned models exhibit inconsistent behavior, sometimes acting aligned. Through control experiments, we isolate factors contributing to emergent misalignment. Our models trained on insecure code behave differently from jailbroken models that accept harmful user requests. Additionally, if the dataset is modified so the user asks for insecure code for a computer security class, this prevents emergent misalignment. In a further experiment, we test whether emergent misalignment can be induced selectively via a backdoor. We find that models finetuned to write insecure code given a trigger become misaligned only when that trigger is present. So the misalignment is hidden without knowledge of the trigger. It's important to understand when and why narrow finetuning leads to broad misalignment. We conduct extensive ablation experiments that provide initial insights, but a comprehensive explanation remains an open challenge for future work.
comment: 41 pages, 38 figures An earlier revision of this paper was accepted at ICML 2025. Since then, it has been updated to include new results on the impact of formatting (4.4), new dataset (4.6), training dynamics (4.7) and base models (4.8) Extended version of the paper was published in Nature 2026/1
DiEC: Diffusion Embedded Clustering
Deep clustering methods typically rely on a single, well-defined representation for clustering. In contrast, pretrained diffusion models provide abundant and diverse multi-scale representations across network layers and noise timesteps. However, a key challenge is how to efficiently identify the most clustering-friendly representation in the layer*timestep space. To address this issue, we propose Diffusion Embedded Clustering (DiEC), an unsupervised framework that performs clustering by leveraging optimal intermediate representations from pretrained diffusion models. DiEC systematically evaluates the clusterability of representations along the trajectory of network depth and noise timesteps. Meanwhile, an unsupervised search strategy is designed for recognizing the Clustering-optimal Layer (COL) and Clustering-optimal Timestep (COT) in the layer*timestep space of pretrained diffusion models, aiming to promote clustering performance and reduce computational overhead. DiEC is fine-tuned primarily with a structure-preserving DEC-style KL-divergence objective at the fixed COL + COT, together with a random-timestep diffusion denoising objective to maintain the generative capability of the pretrained model. Without relying on augmentation-based consistency constraints or contrastive learning, DiEC achieves excellent clustering performance across multiple benchmark datasets. Code will be released upon acceptance.
From discrete-time policies to continuous-time diffusion samplers: Asymptotic equivalences and faster training
We study the problem of training neural stochastic differential equations, or diffusion models, to sample from a Boltzmann distribution without access to target samples. Existing methods for training such models enforce time-reversal of the generative and noising processes, using either differentiable simulation or off-policy reinforcement learning (RL). We prove equivalences between families of objectives in the limit of infinitesimal discretization steps, linking entropic RL methods (GFlowNets) with continuous-time objects (partial differential equations and path space measures). We further show that an appropriate choice of coarse time discretization during training allows greatly improved sample efficiency and the use of time-local objectives, achieving competitive performance on standard sampling benchmarks with reduced computational cost.
comment: TMLR; code: https://github.com/GFNOrg/gfn-diffusion/tree/stagger
Beyond MMD: Evaluating Graph Generative Models with Geometric Deep Learning
Graph generation is a crucial task in many fields, including network science and bioinformatics, as it enables the creation of synthetic graphs that mimic the properties of real-world networks for various applications. Graph Generative Models (GGMs) have emerged as a promising solution to this problem, leveraging deep learning techniques to learn the underlying distribution of real-world graphs and generate new samples that closely resemble them. Examples include approaches based on Variational Auto-Encoders, Recurrent Neural Networks, and more recently, diffusion-based models. However, the main limitation often lies in the evaluation process, which typically relies on Maximum Mean Discrepancy (MMD) as a metric to assess the distribution of graph properties in the generated ensemble. This paper introduces a novel methodology for evaluating GGMs that overcomes the limitations of MMD, which we call RGM (Representation-aware Graph-generation Model evaluation). As a practical demonstration of our methodology, we present a comprehensive evaluation of two state-of-the-art Graph Generative Models: Graph Recurrent Attention Networks (GRAN) and Efficient and Degree-guided graph GEnerative model (EDGE). We investigate their performance in generating realistic graphs and compare them using a Geometric Deep Learning model trained on a custom dataset of synthetic and real-world graphs, specifically designed for graph classification tasks. Our findings reveal that while both models can generate graphs with certain topological properties, they exhibit significant limitations in preserving the structural characteristics that distinguish different graph domains. We also highlight the inadequacy of Maximum Mean Discrepancy as an evaluation metric for GGMs and suggest alternative approaches for future research.
comment: 16 pages, 4 figures
Automated Machine Learning in Radiomics: A Comparative Evaluation of Performance, Efficiency and Accessibility
Automated machine learning (AutoML) frameworks can lower technical barriers for predictive and prognostic model development in radiomics by enabling researchers without programming expertise to build models. However, their effectiveness in addressing radiomics-specific challenges remains unclear. This study evaluates the performance, efficiency, and accessibility of general-purpose and radiomics-specific AutoML frameworks on diverse radiomics classification tasks, thereby highlighting development needs for radiomics. Ten public/private radiomics datasets with varied imaging modalities (CT/MRI), sizes, anatomies and endpoints were used. Six general-purpose and five radiomics-specific frameworks were tested with predefined parameters using standardized cross-validation. Evaluation metrics included AUC, runtime, together with qualitative aspects related to software status, accessibility, and interpretability. Simplatab, a radiomics-specific tool with a no-code interface, achieved the highest average test AUC (81.81%) with a moderate runtime (~1 hour). LightAutoML, a general-purpose framework, showed the fastest execution with competitive performance (78.74% mean AUC in six minutes). Most radiomics-specific frameworks were excluded from the performance analysis due to obsolescence, extensive programming requirements, or computational inefficiency. Conversely, general-purpose frameworks demonstrated higher accessibility and ease of implementation. Simplatab provides an effective balance of performance, efficiency, and accessibility for radiomics classification problems. However, significant gaps remain, including the lack of accessible survival analysis support and the limited integration of feature reproducibility and harmonization within current AutoML frameworks. Future research should focus on adapting AutoML solutions to better address these radiomics-specific challenges.
comment: 27 pages, 4 figures, 3 tables, code available, see https://github.com/joselznom/AutoML-Comparison-in-Radiomics
Graceful forgetting: Memory as a process
A rational framework is proposed to explain how we accommodate unbounded sensory input within bounded memory. According to this framework, memory is stored as a statistic-like representation that is repeatedly summarized and compressed to make room for new input. Summarization of sensory input must be rapid; that of abstract trace might be slower and more deliberative, drawing on elaborative processes some of which might occasionally reach consciousness (as in mind-wandering). Short-term sensory traces are summarized as simple statistics organized into structures such as a time series, graph or dictionary, and longer-term abstract traces as more complex statistic-like structures. Summarization at multiple time scales requires an intensive process of memory curation which might account for the high metabolic consumption of the brain at rest. Summarization may be guided by heuristics to help choose which statistics to apply at each step, so that the trace is useful for a wide range of future needs, the objective being to "represent the past" rather than tune for a specific task. However, the choice of statistics (or of heuristics to guide that choice) is a potential target for learning, possibly over long-term scales of development or evolution. The framework is intended as an aid to make sense of our extensive empirical and theoretical knowledge of memory and bring us closer to understanding it in functional and mechanistic terms.
LatencyPrism: Online Non-intrusive Latency Sculpting for SLO-Guaranteed LLM Inference
LLM inference latency critically determines user experience and operational costs, directly impacting throughput under SLO constraints. Even brief latency spikes degrade service quality despite acceptable average performance. However, distributed inference environments featuring diverse software frameworks and XPU architectures combined with dynamic workloads make latency analysis challenging. Constrained by intrusive designs that necessitate service restarts or even suspension, and by hardware-bound implementations that fail to adapt to heterogeneous inference environments, existing AI profiling methods are often inadequate for real-time production analysis. We present LatencyPrism, the first zero-intrusion multi-platform latency sculpting system. It aims to break down the inference latency across pipeline, proactively alert on inference latency anomalies, and guarantee adherence to SLOs, all without requiring code modifications or service restarts. LatencyPrism has been deployed across thousands of XPUs for over six months. It enables low-overhead real-time monitoring at batch level with alerts triggered in milliseconds. This approach distinguishes between workload-driven latency variations and anomalies indicating underlying issues with an F1-score of 0.98. We also conduct extensive experiments and investigations into root cause analysis to demonstrate LatencyPrism's capability. Furthermore, we introduce the first LLM anomaly simulation toolkit to facilitate future research in robust and predictable inference systems.
comment: 13 pages, 6 figures
Combating Toxic Language: A Review of LLM-Based Strategies for Software Engineering
Large Language Models (LLMs) have become integral to Software Engineering (SE), increasingly used in development workflows. However, their widespread adoption raises concerns about the presence and propagation of toxic language - harmful or offensive content that can foster exclusionary environments. This paper provides a comprehensive review of recent research (2020-2024) on toxicity detection and mitigation, focusing on both SE-specific and general-purpose datasets. We examine annotation and pre-processing techniques, assess detection methodologies, and evaluate mitigation strategies, particularly those leveraging LLMs. Additionally, we conduct an ablation study demonstrating the effectiveness of LLM-based rewriting for reducing toxicity. This review is limited to studies published within the specified timeframe and within the domain of toxicity in LLMs and SE; therefore, certain emerging methods or datasets beyond this period may fall outside its purview. By synthesizing existing work and identifying open challenges, this review highlights key areas for future research to ensure the responsible deployment of LLMs in SE and beyond.
Reinforcement Learning for Reasoning in Small LLMs: What Works and What Doesn't
Enhancing the reasoning capabilities of large language models (LLMs) typically relies on massive computational resources and extensive datasets, limiting accessibility for resource-constrained settings. Our study investigates the potential of reinforcement learning (RL) to improve reasoning in small LLMs, focusing on a 1.5-billion-parameter model, DeepSeek-R1-Distill-Qwen-1.5B, under strict constraints: training on 4 NVIDIA A40 GPUs (48 GB VRAM each) within 24 hours. Adapting the Group Relative Policy Optimization (GRPO) algorithm and curating a compact, high-quality mathematical reasoning dataset, we conducted three experiments to explore model behavior and performance. Our results demonstrate rapid reasoning gains - e.g., AMC23 accuracy rising from 63% to 80% and AIME24 reaching 46.7%, surpassing o1-preview - using only 7,000 samples and a $42 training cost, compared to thousands of dollars for baseline models. However, challenges such as optimization instability and length constraints emerged with prolonged training. These findings highlight the efficacy of RL-based fine-tuning for small LLMs, offering a cost-effective alternative to large-scale approaches. We release our code and datasets as open-source resources, providing insights into trade-offs and laying a foundation for scalable, reasoning-capable LLMs in resource-limited environments. All are available at https://github.com/knoveleng/open-rs.
Multi-class Support Vector Machine with Maximizing Minimum Margin
Support Vector Machine (SVM) stands out as a prominent machine learning technique widely applied in practical pattern recognition tasks. It achieves binary classification by maximizing the "margin", which represents the minimum distance between instances and the decision boundary. Although many efforts have been dedicated to expanding SVM for multi-class case through strategies such as one versus one and one versus the rest, satisfactory solutions remain to be developed. In this paper, we propose a novel method for multi-class SVM that incorporates pairwise class loss considerations and maximizes the minimum margin. Adhering to this concept, we embrace a new formulation that imparts heightened flexibility to multi-class SVM. Furthermore, the correlations between the proposed method and multiple forms of multi-class SVM are analyzed. The proposed regularizer, akin to the concept of "margin", can serve as a seamless enhancement over the softmax in deep learning, providing guidance for network parameter learning. Empirical evaluations demonstrate the effectiveness and superiority of our proposed method over existing multi-classification methods.
On Expressive Power of Quantized Neural Networks under Fixed-Point Arithmetic
Existing works on the expressive power of neural networks typically assume real parameters and exact operations. In this work, we study the expressive power of quantized networks under discrete fixed-point parameters and inexact fixed-point operations with round-off errors. We first provide a necessary condition and a sufficient condition on fixed-point arithmetic and activation functions for quantized networks to represent all fixed-point functions from fixed-point vectors to fixed-point numbers. Then, we show that various popular activation functions satisfy our sufficient condition, e.g., Sigmoid, ReLU, ELU, SoftPlus, SiLU, Mish, and GELU. In other words, networks using those activation functions are capable of representing all fixed-point functions. We further show that our necessary condition and sufficient condition coincide under a mild condition on activation functions: e.g., for an activation function $σ$, there exists a fixed-point number $x$ such that $σ(x)=0$. Namely, we find a necessary and sufficient condition for a large class of activation functions. We lastly show that even quantized networks using binary weights in $\{-1,1\}$ can also represent all fixed-point functions for practical activation functions.
Towards a Unified View of Large Language Model Post-Training
Two major sources of training data exist for post-training modern language models: online (model-generated rollouts) data, and offline (human or other-model demonstrations) data. These two types of data are typically used by approaches like Reinforcement Learning (RL) and Supervised Fine-Tuning (SFT), respectively. In this paper, we show that these approaches are not in contradiction, but are instances of a single optimization process. We derive a Unified Policy Gradient Estimator, and present the calculations of a wide spectrum of post-training approaches as the gradient of a common objective under different data distribution assumptions and various bias-variance tradeoffs. The gradient estimator is constructed with four interchangeable parts: stabilization mask, reference policy denominator, advantage estimate, and likelihood gradient. Motivated by our theoretical findings, we propose Hybrid Post-Training (HPT), an algorithm that dynamically selects different training signals. HPT is designed to yield both effective exploitation of demonstration and stable exploration without sacrificing learned reasoning patterns. We provide extensive experiments and ablation studies to verify the effectiveness of our unified theoretical framework and HPT. Across six mathematical reasoning benchmarks and two out-of-distribution suites, HPT consistently surpasses strong baselines across models of varying scales and families.
BPINN-EM-Post: Bayesian Physics-Informed Neural Network based Stochastic Electromigration Damage Analysis in the Post-void Phase
In contrast to the assumptions of most existing Electromigration (EM) analysis tools, the evolution of EM-induced stress is inherently non-deterministic, influenced by factors such as input current fluctuations and manufacturing non-idealities. Traditional approaches for estimating stress variations typically involve computationally expensive and inefficient Monte Carlo simulations with industrial solvers, which quantify variations using mean and variance metrics. In this work, we introduce a novel machine learning-based framework, termed BPINN-EM- Post, for efficient stochastic analysis of EM-induced post-voiding aging processes. For the first time, our new approach integrates closed-form analytical solutions with a Bayesian Physics- Informed Neural Network (BPINN) framework to accelerate the analysis. The closed-form solutions enforce physical laws at the individual wire segment level, while the BPINN ensures that physics constraints at inter-segment junctions are satisfied and stochastic behaviors are accurately modeled. By reducing the number of variables in the loss functions through utilizing analytical solutions, our method significantly improves training efficiency without accuracy loss and naturally incorporates variational effects. Additionally, the analytical solutions effectively address the challenge of incorporating initial stress distributions in interconnect structures during post-void stress calculations. Numerical results demonstrate that BPINN-EM-Post achieves over 240x and more than 67x speedup compared to Monte Carlo simulations using the FEM-based COMSOL solver and FDM-based EMSpice, respectively, with marginal accuracy loss.
comment: 8 pages, to appear in ISQED 2026
ConSurv: Multimodal Continual Learning for Survival Analysis AAAI 2026
Survival prediction of cancers is crucial for clinical practice, as it informs mortality risks and influences treatment plans. However, a static model trained on a single dataset fails to adapt to the dynamically evolving clinical environment and continuous data streams, limiting its practical utility. While continual learning (CL) offers a solution to learn dynamically from new datasets, existing CL methods primarily focus on unimodal inputs and suffer from severe catastrophic forgetting in survival prediction. In real-world scenarios, multimodal inputs often provide comprehensive and complementary information, such as whole slide images and genomics; and neglecting inter-modal correlations negatively impacts the performance. To address the two challenges of catastrophic forgetting and complex inter-modal interactions between gigapixel whole slide images and genomics, we propose ConSurv, the first multimodal continual learning (MMCL) method for survival analysis. ConSurv incorporates two key components: Multi-staged Mixture of Experts (MS-MoE) and Feature Constrained Replay (FCR). MS-MoE captures both task-shared and task-specific knowledge at different learning stages of the network, including two modality encoders and the modality fusion component, learning inter-modal relationships. FCR further enhances learned knowledge and mitigates forgetting by restricting feature deviation of previous data at different levels, including encoder-level features of two modalities and the fusion-level representations. Additionally, we introduce a new benchmark integrating four datasets, Multimodal Survival Analysis Incremental Learning (MSAIL), for comprehensive evaluation in the CL setting. Extensive experiments demonstrate that ConSurv outperforms competing methods across multiple metrics.
comment: 14 pages, 4 figures. This is the extended version of the paper accepted at AAAI 2026, which includes all technical appendices and additional experimental details
AI-in-the-Loop: Privacy Preserving Real-Time Scam Detection and Conversational Scambaiting by Leveraging LLMs and Federated Learning
Scams exploiting real-time social engineering -- such as phishing, impersonation, and phone fraud -- remain a persistent and evolving threat across digital platforms. Existing defenses are largely reactive, offering limited protection during active interactions. We propose a privacy-preserving, AI-in-the-loop framework that proactively detects and disrupts scam conversations in real time. The system combines instruction-tuned artificial intelligence with a safety-aware utility function that balances engagement with harm minimization, and employs federated learning to enable continual model updates without raw data sharing. Experimental evaluations show that the system produces fluent and engaging responses (perplexity as low as 22.3, engagement $\approx$0.80), while human studies confirm significant gains in realism, safety, and effectiveness over strong baselines. In federated settings, models trained with FedAvg sustain up to 30 rounds while preserving high engagement ($\approx$0.80), strong relevance ($\approx$0.74), and low PII leakage ($\leq$0.0085). Even with differential privacy, novelty and safety remain stable, indicating that robust privacy can be achieved without sacrificing performance. The evaluation of guard models (LlamaGuard, LlamaGuard2/3, MD-Judge) shows a straightforward pattern: stricter moderation settings reduce the chance of exposing personal information, but they also limit how much the model engages in conversation. In contrast, more relaxed settings allow longer and richer interactions, which improve scam detection, but at the cost of higher privacy risk. To our knowledge, this is the first framework to unify real-time scam-baiting, federated privacy preservation, and calibrated safety moderation into a proactive defense paradigm.
comment: This paper got accepted in 26th Privacy Enhancing Technologies Symposium (PETS 2026). We uploaded it into ArXiv as pre-print
Domain-Specific Constitutional AI: Enhancing Safety in LLM-Powered Mental Health Chatbots
Mental health applications have emerged as a critical area in computational health, driven by rising global rates of mental illness, the integration of AI in psychological care, and the need for scalable solutions in underserved communities. These include therapy chatbots, crisis detection, and wellness platforms handling sensitive data, requiring specialized AI safety beyond general safeguards due to emotional vulnerability, risks like misdiagnosis or symptom exacerbation, and precise management of vulnerable states to avoid severe outcomes such as self-harm or loss of trust. Despite AI safety advances, general safeguards inadequately address mental health-specific challenges, including crisis intervention accuracy to avert escalations, therapeutic guideline adherence to prevent misinformation, scale limitations in resource-constrained settings, and adaptation to nuanced dialogues where generics may introduce biases or miss distress signals. We introduce an approach to apply Constitutional AI training with domain-specific mental health principles for safe, domain-adapted CAI systems in computational mental health applications.
comment: Accepted to 2025 IEEE 21st International Conference on Body Sensor Networks (BSN)
Towards Reinforcement Learning from Neural Feedback: Mapping fNIRS Signals to Agent Performance AAAI
Reinforcement Learning from Human Feedback (RLHF) is a methodology that aligns agent behavior with human preferences by integrating user feedback into the agent's training process. This paper introduces a framework that guides agent training through implicit neural signals, with a focus on the neural classification problem. Our work presents and releases a novel dataset of functional near-infrared spectroscopy (fNIRS) recordings collected from 25 human participants across three domains: Pick-and-Place Robot, Lunar Lander, and Flappy Bird. We train multiple classifiers to predict varying levels of agent performance (optimal, suboptimal, or worst-case) from windows of preprocessed fNIRS features, achieving an average F1 score of 67% for binary and 46% for multi-class classification across conditions and domains. We also train multiple regressors to predict the degree of deviation between an agent's chosen action and a set of near-optimal policy actions, providing a continuous measure of performance. Finally, we evaluate cross-subject generalization and show that fine-tuning pre-trained models with a small sample of subject-specific data increases average F1 scores by 17% and 41% for binary and multi-class models, respectively. Our results demonstrate that mapping implicit fNIRS signals to agent performance is feasible and can be improved, laying the foundation for future Reinforcement Learning from Neural Feedback (RLNF) systems.
comment: Accepted to the Association for the Advancement of Artificial Intelligence (AAAI) 2026. To appear in the AAAI 2026 Proceedings
Network-Level Measures of Mobility from Aggregated Origin-Destination Data
We introduce a framework for defining and interpreting collective mobility measures from spatially and temporally aggregated origin--destination (OD) data. Rather than characterizing individual behavior, these measures describe properties of the mobility system itself: how network organization, spatial structure, and routing constraints shape and channel population movement. In this view, aggregate mobility flows reveal aspects of connectivity, functional organization, and large-scale daily activity patterns encoded in the underlying transport and spatial network. To support interpretation and provide a controlled reference for the proposed time-elapsed calculations, we first employ an independent, network-driven synthetic data generator in which trajectories arise from prescribed system structure rather than observed data. This controlled setting provides a concrete reference for understanding how the proposed measures reflect network organization and flow constraints. We then apply the measures to fully anonymized data from the NetMob 2024 Data Challenge, examining their behavior under realistic limitations of spatial and temporal aggregation. While such data constraints restrict dynamical resolution, the resulting metrics still exhibit interpretable large-scale structure and temporal variation at the city scale.
comment: 34 pages, 20 figures
Unveiling and Mitigating Bias in Large Language Model Recommendations: A Path to Fairness
Large Language Model (LLM)-based recommendation systems excel in delivering comprehensive suggestions by deeply analyzing content and user behavior. However, they often inherit biases from skewed training data, favoring mainstream content while underrepresenting diverse or non-traditional options. This study explores the interplay between bias and LLM-based recommendation systems, focusing on music, song, and book recommendations across diverse demographic and cultural groups. This paper analyzes bias in LLM-based recommendation systems across multiple models (GPT, LLaMA, and Gemini), revealing its deep and pervasive impact on outcomes. Intersecting identities and contextual factors, like socioeconomic status, further amplify biases, complicating fair recommendations across diverse groups. Our findings reveal that bias in these systems is deeply ingrained, yet even simple interventions like prompt engineering can significantly reduce it. We further propose a retrieval-augmented generation strategy to mitigate bias more effectively. Numerical experiments validate these strategies, demonstrating both the pervasive nature of bias and the impact of the proposed solutions.
SlimDiff: Training-Free, Activation-Guided Hands-free Slimming of Diffusion Models
Diffusion models (DMs), lauded for their generative performance, are computationally prohibitive due to their billion-scale parameters and iterative denoising dynamics. Existing efficiency techniques, such as quantization, timestep reduction, or pruning, offer savings in compute, memory, or runtime but are strictly bottlenecked by reliance on fine-tuning or retraining to recover performance. In this work, we introduce SlimDiff, an automated activation-informed structural compression framework that reduces both attention and feedforward dimensionalities in DMs, while being entirely gradient-free. SlimDiff reframes DM compression as a spectral approximation task, where activation covariances across denoising timesteps define low-rank subspaces that guide dynamic pruning under a fixed compression budget. This activation-aware formulation mitigates error accumulation across timesteps by applying module-wise decompositions over functional weight groups: query--key interactions, value--output couplings, and feedforward projections, rather than isolated matrix factorizations, while adaptively allocating sparsity across modules to respect the non-uniform geometry of diffusion trajectories. SlimDiff achieves up to 35\% acceleration and $\sim$100M parameter reduction over baselines, with generation quality on par with uncompressed models without any backpropagation. Crucially, our approach requires only about 500 calibration samples, over 70$\times$ fewer than prior methods. To our knowledge, this is the first closed-form, activation-guided structural compression of DMs that is entirely training-free, providing both theoretical clarity and practical efficiency.
Learning to Simulate: Generative Metamodeling via Quantile Regression
Stochastic simulation models effectively capture complex system dynamics but are often too slow for real-time decision-making. Traditional metamodeling techniques learn relationships between simulator inputs and a single output summary statistic, such as the mean or median. These techniques enable real-time predictions without additional simulations. However, they require prior selection of one appropriate output summary statistic, limiting their flexibility in practical applications. We propose a new concept: generative metamodeling. It aims to construct a "fast simulator of the simulator," generating random outputs significantly faster than the original simulator while preserving approximately equal conditional distributions. Generative metamodels enable rapid generation of numerous random outputs upon input specification, facilitating immediate computation of any summary statistic for real-time decision-making. We introduce a new algorithm, quantile-regression-based generative metamodeling (QRGMM), and establish its distributional convergence and convergence rate. Extensive numerical experiments demonstrate QRGMM's efficacy compared to other state-of-the-art generative algorithms in practical real-time decision-making scenarios.
Last-iterate Convergence for Symmetric, General-sum, $2 \times 2$ Games Under The Exponential Weights Dynamic
We conduct a comprehensive analysis of the discrete-time exponential-weights dynamic with a constant step size on all general-sum and symmetric $2 \times 2$ normal-form games, i.e. games with $2$ pure strategies per player, and where the ensuing payoff tuple is of the form $(A,A^\top)$ (where $A$ is the $2 \times 2$ payoff matrix corresponding to the first player). Such symmetric games commonly arise in real-world interactions between 'symmetric" agents who have identically defined utility functions -- such as Bertrand competition and multi-agent performative prediction, and display a rich multiplicity of equilibria despite the seemingly simple setting. Somewhat surprisingly, we show through a first-principles analysis that the exponential weights dynamic, which is popular in online learning, converges in the last iterate for such games regardless of initialization with an appropriately chosen step size. For certain games and/or initializations, we further show that the convergence rate is in fact exponential and holds for any step size. We illustrate our theory with extensive simulations and applications to the aforementioned game-theoretic interactions. In the case of multi-agent performative prediction, we formulate a new "mortgage competition" game between lenders (i.e. banks) who interact with a population of customers, and show that it fits into our framework.
Learning from Discriminatory Training Data
Supervised learning systems are trained using historical data and, if the data was tainted by discrimination, they may unintentionally learn to discriminate against protected groups. We propose that fair learning methods, despite training on potentially discriminatory datasets, shall perform well on fair test datasets. Such dataset shifts crystallize application scenarios for specific fair learning methods. For instance, the removal of direct discrimination can be represented as a particular dataset shift problem. For this scenario, we propose a learning method that provably minimizes model error on fair datasets, while blindly training on datasets poisoned with direct additive discrimination. The method is compatible with existing legal systems and provides a solution to the widely discussed issue of protected groups' intersectionality by striking a balance between the protected groups. Technically, the method applies probabilistic interventions, has causal and counterfactual formulations, and is computationally lightweight - it can be used with any supervised learning model to prevent direct and indirect discrimination via proxies while maximizing model accuracy for business necessity.
Fair Algorithms with Probing for Multi-Agent Multi-Armed Bandits
We propose a multi-agent multi-armed bandit (MA-MAB) framework aimed at ensuring fair outcomes across agents while maximizing overall system performance. A key challenge in this setting is decision-making under limited information about arm rewards. To address this, we introduce a novel probing framework that strategically gathers information about selected arms before allocation. In the offline setting, where reward distributions are known, we leverage submodular properties to design a greedy probing algorithm with a provable performance bound. For the more complex online setting, we develop an algorithm that achieves sublinear regret while maintaining fairness. Extensive experiments on synthetic and real-world datasets show that our approach outperforms baseline methods, achieving better fairness and efficiency.
Towards AI Transparency and Accountability: A Global Framework for Exchanging Information on AI Systems
We propose that future AI transparency and accountability regulations are based on an open global standard for exchanging information about AI systems, which allows co-existence of potentially conflicting local regulations. Then, we discuss key components of a lightweight and effective AI transparency and/or accountability regulation. To prevent overregulation, the proposed approach encourages collaboration between regulators and industry to create a scalable and cost-efficient mutually beneficial solution. This includes using automated assessments and benchmarks with results transparently communicated through AI cards in an open AI register to facilitate meaningful public comparisons of competing AI systems. Such AI cards should report standardized measures tailored to the specific high-risk applications of AI systems and could be used for conformity assessments under AI transparency and accountability policies such as the European Union's AI Act.
Registration-Free Monitoring of Unstructured Point Cloud Data via Intrinsic Geometrical Properties
Modern sensing technologies have enabled the collection of unstructured point cloud data (PCD) of varying sizes, which are used to monitor the geometric accuracy of 3D objects. PCD are widely applied in advanced manufacturing processes, including additive, subtractive, and hybrid manufacturing. To ensure the consistency of analysis and avoid false alarms, preprocessing steps such as registration and mesh reconstruction are commonly applied prior to monitoring. However, these steps are error-prone, time-consuming and may introduce artifacts, potentially affecting monitoring outcomes. In this paper, we present a novel registration-free approach for monitoring PCD of complex shapes, eliminating the need for both registration and mesh reconstruction. Our proposal consists of two alternative feature learning methods and a common monitoring scheme designed to handle hundreds of features. Feature learning methods leverage intrinsic geometric properties of the shape, captured via the Laplacian and geodesic distances. In the monitoring scheme, thresholding techniques are used to further select intrinsic features most indicative of potential out-of-control conditions. Numerical experiments and case studies highlight the effectiveness of the proposed approach in identifying different types of defects.
comment: Code available at https://github.com/franci2312/RFM
Weakly-supervised segmentation using inherently-explainable classification models and their application to brain tumour classification
Deep learning has demonstrated significant potential in medical imaging; however, the opacity of "black-box" models hinders clinical trust, while segmentation tasks typically necessitate labourious, hard-to-obtain pixel-wise annotations. To address these challenges simultaneously, this paper introduces a framework for three inherently explainable classifiers (GP-UNet, GP-ShuffleUNet, and GP-ReconResNet). By integrating a global pooling mechanism, these networks generate localisation heatmaps that directly influence classification decisions, offering inherent interpretability without relying on potentially unreliable post-hoc methods. These heatmaps are subsequently thresholded to achieve weakly-supervised segmentation, requiring only image-level classification labels for training. Validated on two datasets for multi-class brain tumour classification, the proposed models achieved a peak F1-score of 0.93. For the weakly-supervised segmentation task, a median Dice score of 0.728 (95% CI 0.715-0.739) was recorded. Notably, on a subset of tumour-only images, the best model achieved an accuracy of 98.7%, outperforming state-of-the-art glioma grading binary classifiers. Furthermore, comparative Precision-Recall analysis validated the framework's robustness against severe class imbalance, establishing a direct correlation between diagnostic confidence and segmentation fidelity. These results demonstrate that the proposed framework successfully combines high diagnostic accuracy with essential transparency, offering a promising direction for trustworthy clinical decision support. Code is available on GitHub: https://github.com/soumickmj/GPModels
LEXam: Benchmarking Legal Reasoning on 340 Law Exams
Long-form legal reasoning remains a key challenge for large language models (LLMs) in spite of recent advances in test-time scaling. To address this, we introduce \textsc{LEXam}, a novel benchmark derived from 340 law exams spanning 116 law school courses across a range of subjects and degree levels. The dataset comprises 4,886 law exam questions in English and German, including 2,841 long-form, open-ended questions and 2,045 multiple-choice questions. Besides reference answers, the open questions are also accompanied by explicit guidance outlining the expected legal reasoning approach such as issue spotting, rule recall, or rule application. Our evaluation on both open-ended and multiple-choice questions present significant challenges for current LLMs; in particular, they notably struggle with open questions that require structured, multi-step legal reasoning. Moreover, our results underscore the effectiveness of the dataset in differentiating between models with varying capabilities. Deploying an ensemble LLM-as-a-Judge paradigm with rigorous human expert validation, we demonstrate how model-generated reasoning steps can be evaluated consistently and accurately, closely aligning with human expert assessments. Our evaluation setup provides a scalable method to assess legal reasoning quality beyond simple accuracy metrics. We have open-sourced our code on https://github.com/LEXam-Benchmark/LEXam and released our data on https://huggingface.co/datasets/LEXam-Benchmark/LEXam. Project page: https://lexam-benchmark.github.io.
RovoDev Code Reviewer: A Large-Scale Online Evaluation of LLM-based Code Review Automation at Atlassian
Large Language Models (LLMs)-powered code review automation has the potential to transform code review workflows. Despite the advances of LLM-powered code review comment generation approaches, several practical challenges remain for designing enterprise-grade code review automation tools. In particular, this paper aims at answering the practical question: how can we design a review-guided, context-aware, quality-checked code review comment generation without fine-tuning? In this paper, we present RovoDev Code Reviewer, an enterprise-grade LLM-based code review automation tool designed and deployed at scale within Atlassian's development ecosystem with seamless integration into Atlassian's Bitbucket. Through the offline, online, user feedback evaluations over a one-year period, we conclude that RovoDev Code Reviewer is effective in generating code review comments that could lead to code resolution for 38.70% (i.e., comments that triggered code changes in the subsequent commits); and offers the promise of accelerating feedback cycles (i.e., decreasing the PR cycle time by 30.8%), alleviating reviewer workload (i.e., reducing the number of human-written comments by 35.6%), and improving overall software quality (i.e., finding errors with actionable suggestions).
comment: Accepted at the 48th International Conference on Software Engineering (ICSE'26), SEIP Track. 12 Pages
H3Fusion: Helpful, Harmless, Honest Fusion of Aligned LLMs
The alignment of pre-trained LLMs continues to draw significant attention from both industry and academia, aiming to ensure responses that are helpful, harmless, and honest. However, identifying a point in the model's representation subspace that simultaneously satisfies all these properties remains challenging. H3Fusion addresses this challenge by introducing a mixture-of-experts (MoE)-based fusion mechanism that models alignment as a controllable drift within the subspace, guided by a drift-regularization loss to balance competing alignment dimensions. Furthermore, we formulate the alignment by finding a dual objective of harnessing the distance of generated embeddings and alignment embeddings, and introduce a gating loss by canalizing the activations on the contributing experts. Extensive evaluations of three benchmark datasets show that H3Fusion is more helpful, less harmful, and more honest in three aspects: it outperforms each individually aligned model by 11.37%, and provides stronger robustness compared to the state-of-the-art LLM ensemble approaches by 13.77% and model-merging approaches by 6.18%. Code is available at https://github.com/git-disl/h3fusion.
PersonaLedger: Generating Realistic Financial Transactions with Persona Conditioned LLMs and Rule Grounded Feedback
Strict privacy regulations limit access to real transaction data, slowing open research in financial AI. Synthetic data can bridge this gap, but existing generators do not jointly achieve behavioral diversity and logical groundedness. Rule-driven simulators rely on hand-crafted workflows and shallow stochasticity, which miss the richness of human behavior. Learning-based generators such as GANs capture correlations yet often violate hard financial constraints and still require training on private data. We introduce PersonaLedger, a generation engine that uses a large language model conditioned on rich user personas to produce diverse transaction streams, coupled with an expert configurable programmatic engine that maintains correctness. The LLM and engine interact in a closed loop: after each event, the engine updates the user state, enforces financial rules, and returns a context aware "nextprompt" that guides the LLM toward feasible next actions. With this engine, we create a public dataset of 30 million transactions from 23,000 users and a benchmark suite with two tasks, illiquidity classification and identity theft segmentation. PersonaLedger offers a realistic, privacy preserving resource that supports rigorous evaluation of forecasting and anomaly detection models. PersonaLedger offers the community a rich, realistic, and privacy preserving resource -- complete with code, rules, and generation logs -- to accelerate innovation in financial AI and enable rigorous, reproducible evaluation.
Causal Data Augmentation for Robust Fine-Tuning of Tabular Foundation Models
Fine-tuning tabular foundation models (TFMs) under data scarcity is challenging, as early stopping on even scarcer validation data often fails to capture true generalization performance. We propose CausalMixFT, a method that enhances fine-tuning robustness and downstream performance by generating structurally consistent synthetic samples using Structural Causal Models (SCMs) fitted on the target dataset. This approach augments limited real data with causally informed synthetic examples, preserving feature dependencies while expanding training diversity. Evaluated across 33 classification datasets from TabArena and over 2300 fine-tuning runs, our CausalMixFT method consistently improves median normalized ROC-AUC from 0.10 (standard fine-tuning) to 0.12, outperforming purely statistical generators such as CTGAN (-0.01), TabEBM (-0.04), and TableAugment (-0.09). Moreover, it narrows the median validation-test performance correlation gap from 0.67 to 0.30, enabling more reliable validation-based early stopping, a key step toward improving fine-tuning stability under data scarcity. These results demonstrate that incorporating causal structure into data augmentation provides an effective and principled route to fine-tuning tabular foundation models in low-data regimes.
comment: Accepted for oral presentation at the EurIPS 2025 Workshop on AI for Tabular Data (Copenhagen). Updated Limix citation
Multilingual-To-Multimodal (M2M): Unlocking New Languages with Monolingual Text
Multimodal models excel in English, supported by abundant image-text and audio-text data, but performance drops sharply for other languages due to limited multilingual multimodal resources. Existing solutions rely on machine translation, while advances in multilingual text modeling remain underutilized. We introduce M2M, a lightweight alignment method that learns only a few linear layers--using English text alone--to map multilingual text embeddings into multimodal space. Despite its simplicity, M2M matches baseline performance in English (94.9% Recall@10) and achieves strong zero-shot transfer (89.5% Recall@10 averaged across 11 languages, 10 unseen) on XTD Text-to-Image retrieval. Qualitative t-SNE visualizations show that multilingual embeddings align tightly with multimodal representations, while weight analysis reveals that the transformation reshapes embedding geometry rather than performing trivial rotations. Beyond image-text retrieval, M2M demonstrates robustness across datasets and tasks, extending to Audio-Text retrieval and Text-to-Image generation. We release code and checkpoints (https://github.com/piyushsinghpasi/M2M) along with multilingual evaluation datasets: MSCOCO Multilingual 30K (https://huggingface.co/datasets/piyushsinghpasi/mscoco-multilingual-30k), AudioCaps Multilingual (https://huggingface.co/datasets/piyushsinghpasi/audiocaps-multilingual), and Clotho Multilingual (https://huggingface.co/datasets/piyushsinghpasi/clotho-multilingual).
comment: EACL 2026 Findings accepted. Camera-ready version
Learning minimal representations of stochastic processes with variational autoencoders
Stochastic processes have found numerous applications in science, as they are broadly used to model a variety of natural phenomena. Due to their intrinsic randomness and uncertainty, they are, however, difficult to characterize. Here, we introduce an unsupervised machine learning approach to determine the minimal set of parameters required to effectively describe the dynamics of a stochastic process. Our method builds upon an extended $β$-variational autoencoder architecture. By means of simulated datasets corresponding to paradigmatic diffusion models, we showcase its effectiveness in extracting the minimal relevant parameters that accurately describe these dynamics. Furthermore, the method enables the generation of new trajectories that faithfully replicate the expected stochastic behavior. Overall, our approach enables the autonomous discovery of unknown parameters describing stochastic processes, hence enhancing our comprehension of complex phenomena across various fields.
comment: 10 pages, 5 figures, 1 table. Code available at https://github.com/GabrielFernandezFernandez/SPIVAE . Updated to journal version
IFRA: a machine learning-based Instrumented Fall Risk Assessment Scale derived from Instrumented Timed Up and Go test in stroke patients
Background/Objectives: Falls represent a major health concern for stroke survivors, necessitating effective risk assessment tools. This study proposes the Instrumented Fall Risk Assessment (IFRA) scale, a novel screening tool derived from Instrumented Timed Up and Go (ITUG) test data, designed to capture mobility measures often missed by traditional scales. Methods: We employed a two-step machine learning approach to develop the IFRA scale: first, identifying predictive mobility features from ITUG data and, second, creating a stratification strategy to classify patients into low-, medium-, or high-fall-risk categories. This study included 142 participants, who were divided into training (including synthetic cases), validation, and testing sets (comprising 22 non-fallers and 10 fallers). IFRA's performance was compared against traditional clinical scales (e.g., standard TUG and Mini-BESTest) using Fisher's Exact test. Results: Machine learning analysis identified specific features as key predictors, namely vertical and medio-lateral acceleration, and angular velocity during walking and sit-to-walk transitions. IFRA demonstrated a statistically significant association with fall status (Fisher's Exact test p = 0.004) and was the only scale to assign more than half of the actual fallers to the high-risk category, outperforming the comparative clinical scales in this dataset. Conclusions: This proof-of-concept study demonstrates IFRA's potential as an automated, complementary approach for fall risk stratification in post-stroke patients. While IFRA shows promising discriminative capability, particularly for identifying high-risk individuals, these preliminary findings require validation in larger cohorts before clinical implementation.
comment: 26 pages, 2 figures, 4 tables
Intrinsic Dimensionality as a Model-Free Measure of Class Imbalance
Imbalance in classification tasks is commonly quantified by the cardinalities of examples across classes. This, however, disregards the presence of redundant examples and inherent differences in the learning difficulties of classes. Alternatively, one can use complex measures such as training loss and uncertainty, which, however, depend on training a machine learning model. Our paper proposes using data Intrinsic Dimensionality (ID) as an easy-to-compute, model-free measure of imbalance that can be seamlessly incorporated into various imbalance mitigation methods. Our results across five different datasets with a diverse range of imbalance ratios show that ID consistently outperforms cardinality-based re-weighting and re-sampling techniques used in the literature. Moreover, we show that combining ID with cardinality can further improve performance. Our code and models are available at https://github.com/cagries/IDIM.
comment: 22 pages, 14 figures, Accepted to Neurocomputing
Marvel: Accelerating Safe Online Reinforcement Learning with Finetuned Offline Policy
The high costs and risks involved in extensive environment interactions hinder the practical application of current online safe reinforcement learning (RL) methods. While offline safe RL addresses this by learning policies from static datasets, the performance therein is usually limited due to reliance on data quality and challenges with out-of-distribution (OOD) actions. Inspired by recent successes in offline-to-online (O2O) RL, it is crucial to explore whether offline safe RL can be leveraged to facilitate faster and safer online policy learning, a direction that has yet to be fully investigated. To fill this gap, we first demonstrate that naively applying existing O2O algorithms from standard RL would not work well in the safe RL setting due to two unique challenges: \emph{erroneous Q-estimations}, resulted from offline-online objective mismatch and offline cost sparsity, and \emph{Lagrangian mismatch}, resulted from difficulties in aligning Lagrange multipliers between offline and online policies. To address these challenges, we introduce \textbf{Marvel}, a novel framework for O2O safe RL, comprising two key components that work in concert: \emph{Value Pre-Alignment} to align the Q-functions with the underlying truth before online learning, and \emph{Adaptive PID Control} to effectively adjust the Lagrange multipliers during online finetuning. Extensive experiments demonstrate that Marvel significantly outperforms existing baselines in both reward maximization and safety constraint satisfaction. By introducing the first policy-finetuning based framework for O2O safe RL, which is compatible with many offline and online safe RL methods, our work has the great potential to advance the field towards more efficient and practical safe RL solutions.
comment: Accepted by Transactions on Machine Learning Research (TMLR), 2026
Guardrailed Elasticity Pricing: A Churn-Aware Forecasting Playbook for Subscription Strategy
This paper presents a marketing analytics framework that operationalizes subscription pricing as a dynamic, guardrailed decision system, uniting multivariate demand forecasting, segment-level price elasticity, and churn propensity to optimize revenue, margin, and retention. The approach blends seasonal time-series models with tree-based learners, runs Monte Carlo scenario tests to map risk envelopes, and solves a constrained optimization that enforces business guardrails on customer experience, margin floors, and allowable churn. Validated across heterogeneous SaaS portfolios, the method consistently outperforms static tiers and uniform uplifts by reallocating price moves toward segments with higher willingness-to-pay while protecting price-sensitive cohorts. The system is designed for real-time recalibration via modular APIs and includes model explainability for governance and compliance. Managerially, the framework functions as a strategy playbook that clarifies when to shift from flat to dynamic pricing, how to align pricing with CLV and MRR targets, and how to embed ethical guardrails, enabling durable growth without eroding customer trust.
PDE-aware Optimizer for Physics-informed Neural Networks
Physics-Informed Neural Networks (PINNs) have emerged as a powerful framework for solving partial differential equations (PDEs) by embedding physical constraints into the loss function. However, standard optimizers such as Adam often struggle to balance competing loss terms, particularly in stiff or ill-conditioned systems. In this work, we propose a PDE-aware optimizer that adapts parameter updates based on the variance of per-sample PDE residual gradients. This method addresses gradient misalignment without incurring the heavy computational costs of second-order optimizers such as SOAP. We benchmark the PDE-aware optimizer against Adam and SOAP on 1D Burgers', Allen-Cahn and Korteweg-de Vries(KdV) equations. Across both PDEs, the PDE-aware optimizer achieves smoother convergence and lower absolute errors, particularly in regions with sharp gradients. Our results demonstrate the effectiveness of PDE residual-aware adaptivity in enhancing stability in PINNs training. While promising, further scaling on larger architectures and hardware accelerators remains an important direction for future research.
Graphics 3
Rig-Aware 3D Reconstruction of Vehicle Undercarriages using Gaussian Splatting
Inspecting the undercarriage of used vehicles is a labor-intensive task that requires inspectors to crouch or crawl underneath each vehicle to thoroughly examine it. Additionally, online buyers rarely see undercarriage photos. We present an end-to-end pipeline that utilizes a three-camera rig to capture videos of the undercarriage as the vehicle drives over it, and produces an interactive 3D model of the undercarriage. The 3D model enables inspectors and customers to rotate, zoom, and slice through the undercarriage, allowing them to detect rust, leaks, or impact damage in seconds, thereby improving both workplace safety and buyer confidence. Our primary contribution is a rig-aware Structure-from-Motion (SfM) pipeline specifically designed to overcome the challenges of wide-angle lens distortion and low-parallax scenes. Our method overcomes the challenges of wide-angle lens distortion and low-parallax scenes by integrating precise camera calibration, synchronized video streams, and strong geometric priors from the camera rig. We use a constrained matching strategy with learned components, the DISK feature extractor, and the attention-based LightGlue matcher to generate high-quality sparse point clouds that are often unattainable with standard SfM pipelines. These point clouds seed the Gaussian splatting process to generate photorealistic undercarriage models that render in real-time. Our experiments and ablation studies demonstrate that our design choices are essential to achieve state-of-the-art quality.
comment: 8 pages, 9 figures, Conference: IEEE International Conference on Machine Learning and Applications 2025 (ICMLA 2025): https://www.icmla-conference.org/icmla25/
Copy-Trasform-Paste: Zero-Shot Object-Object Alignment Guided by Vision-Language and Geometric Constraints
We study zero-shot 3D alignment of two given meshes, using a text prompt describing their spatial relation -- an essential capability for content creation and scene assembly. Earlier approaches primarily rely on geometric alignment procedures, while recent work leverages pretrained 2D diffusion models to model language-conditioned object-object spatial relationships. In contrast, we directly optimize the relative pose at test time, updating translation, rotation, and isotropic scale with CLIP-driven gradients via a differentiable renderer, without training a new model. Our framework augments language supervision with geometry-aware objectives: a variant of soft-Iterative Closest Point (ICP) term to encourage surface attachment and a penetration loss to discourage interpenetration. A phased schedule strengthens contact constraints over time, and camera control concentrates the optimization on the interaction region. To enable evaluation, we curate a benchmark containing diverse categories and relations, and compare against baselines. Our method outperforms all alternatives, yielding semantically faithful and physically plausible alignments.
Criminator: An Easy-to-Use XR "Crime Animator" for Rapid Reconstruction and Analysis of Dynamic Crime Scenes
Law enforcement authorities are increasingly interested in 3D modelling for virtual crime scene reconstruction, enabling offline analysis without the cost and contamination risk of on-site investigation. Past work has demonstrated spatial relationships through static modelling but validating the sequence of events in dynamic scenarios is crucial for solving a case. Yet, animation tools are not well suited to crime scene reconstruction, and complex for non-experts in 3D modelling/animation. Through a co-design process with criminology experts, we designed "Criminator"-a methodological framework and XR tool that simplifies animation authoring. We evaluated this tool with participants trained in criminology (n=6) and untrained individuals (n=12). Both groups were able to successfully complete the character animation tasks and provided high usability ratings for observation tasks. Criminator has potential for hypothesis testing, demonstration, sense-making, and training. Challenges remain in how such a tool fits into the entire judicial process, with questions about including animations as evidence.
Video World Models 7
XD-MAP: Cross-Modal Domain Adaptation using Semantic Parametric Mapping
Until open-world foundation models match the performance of specialized approaches, the effectiveness of deep learning models remains heavily dependent on dataset availability. Training data must align not only with the target object categories but also with the sensor characteristics and modalities. To bridge the gap between available datasets and deployment domains, domain adaptation strategies are widely used. In this work, we propose a novel approach to transferring sensor-specific knowledge from an image dataset to LiDAR, an entirely different sensing domain. Our method XD-MAP leverages detections from a neural network on camera images to create a semantic parametric map. The map elements are modeled to produce pseudo labels in the target domain without any manual annotation effort. Unlike previous domain transfer approaches, our method does not require direct overlap between sensors and enables extending the angular perception range from a front-view camera to a full 360 view. On our large-scale road feature dataset, XD-MAP outperforms single shot baseline approaches by +19.5 mIoU for 2D semantic segmentation, +19.5 PQth for 2D panoptic segmentation, and +32.3 mIoU in 3D semantic segmentation. The results demonstrate the effectiveness of our approach achieving strong performance on LiDAR data without any manual labeling.
VideoMaMa: Mask-Guided Video Matting via Generative Prior
Generalizing video matting models to real-world videos remains a significant challenge due to the scarcity of labeled data. To address this, we present Video Mask-to-Matte Model (VideoMaMa) that converts coarse segmentation masks into pixel accurate alpha mattes, by leveraging pretrained video diffusion models. VideoMaMa demonstrates strong zero-shot generalization to real-world footage, even though it is trained solely on synthetic data. Building on this capability, we develop a scalable pseudo-labeling pipeline for large-scale video matting and construct the Matting Anything in Video (MA-V) dataset, which offers high-quality matting annotations for more than 50K real-world videos spanning diverse scenes and motions. To validate the effectiveness of this dataset, we fine-tune the SAM2 model on MA-V to obtain SAM2-Matte, which outperforms the same model trained on existing matting datasets in terms of robustness on in-the-wild videos. These findings emphasize the importance of large-scale pseudo-labeled video matting and showcase how generative priors and accessible segmentation cues can drive scalable progress in video matting research.
comment: Project page: https://cvlab-kaist.github.io/VideoMaMa/
Diffusion-Guided Backdoor Attacks in Real-World Reinforcement Learning
Backdoor attacks embed hidden malicious behaviors in reinforcement learning (RL) policies and activate them using triggers at test time. Most existing attacks are validated only in simulation, while their effectiveness in real-world robotic systems remains unclear. In physical deployment, safety-constrained control pipelines such as velocity limiting, action smoothing, and collision avoidance suppress abnormal actions, causing strong attenuation of conventional backdoor attacks. We study this previously overlooked problem and propose a diffusion-guided backdoor attack framework (DGBA) for real-world RL. We design small printable visual patch triggers placed on the floor and generate them using a conditional diffusion model that produces diverse patch appearances under real-world visual variations. We treat the robot control stack as a black-box system. We further introduce an advantage-based poisoning strategy that injects triggers only at decision-critical training states. We evaluate our method on a TurtleBot3 mobile robot and demonstrate reliable activation of targeted attacks while preserving normal task performance. Demo videos and code are available in the supplementary material.
SHARE: A Fully Unsupervised Framework for Single Hyperspectral Image Restoration
Hyperspectral image (HSI) restoration is a fundamental challenge in computational imaging and computer vision. It involves ill-posed inverse problems, such as inpainting and super-resolution. Although deep learning methods have transformed the field through data-driven learning, their effectiveness hinges on access to meticulously curated ground-truth datasets. This fundamentally restricts their applicability in real-world scenarios where such data is unavailable. This paper presents SHARE (Single Hyperspectral Image Restoration with Equivariance), a fully unsupervised framework that unifies geometric equivariance principles with low-rank spectral modelling to eliminate the need for ground truth. SHARE's core concept is to exploit the intrinsic invariance of hyperspectral structures under differentiable geometric transformations (e.g. rotations and scaling) to derive self-supervision signals through equivariance consistency constraints. Our novel Dynamic Adaptive Spectral Attention (DASA) module further enhances this paradigm shift by explicitly encoding the global low-rank property of HSI and adaptively refining local spectral-spatial correlations through learnable attention mechanisms. Extensive experiments on HSI inpainting and super-resolution tasks demonstrate the effectiveness of SHARE. Our method outperforms many state-of-the-art unsupervised approaches and achieves performance comparable to that of supervised methods. We hope that our approach will shed new light on HSI restoration and broader scientific imaging scenarios. The code will be released at https://github.com/xuwayyy/SHARE.
comment: Technical report
Learning Latent Action World Models In The Wild
Agents capable of reasoning and planning in the real world require the ability of predicting the consequences of their actions. While world models possess this capability, they most often require action labels, that can be complex to obtain at scale. This motivates the learning of latent action models, that can learn an action space from videos alone. Our work addresses the problem of learning latent actions world models on in-the-wild videos, expanding the scope of existing works that focus on simple robotics simulations, video games, or manipulation data. While this allows us to capture richer actions, it also introduces challenges stemming from the video diversity, such as environmental noise, or the lack of a common embodiment across videos. To address some of the challenges, we discuss properties that actions should follow as well as relevant architectural choices and evaluations. We find that continuous, but constrained, latent actions are able to capture the complexity of actions from in-the-wild videos, something that the common vector quantization does not. We for example find that changes in the environment coming from agents, such as humans entering the room, can be transferred across videos. This highlights the capability of learning actions that are specific to in-the-wild videos. In the absence of a common embodiment across videos, we are mainly able to learn latent actions that become localized in space, relative to the camera. Nonetheless, we are able to train a controller that maps known actions to latent ones, allowing us to use latent actions as a universal interface and solve planning tasks with our world model with similar performance as action-conditioned baselines. Our analyses and experiments provide a step towards scaling latent action models to the real world.
comment: 37 pages, 25 figures; updated references and experimental details
Vidi2.5: Large Multimodal Models for Video Understanding and Creation
Video has emerged as the primary medium for communication and creativity on the Internet, driving strong demand for scalable, high-quality video production. Vidi models continue to evolve toward next-generation video creation and have achieved state-of-the-art performance in multimodal temporal retrieval (TR). In its second release, Vidi2 advances video understanding with fine-grained spatio-temporal grounding (STG) and extends its capability to video question answering (Video QA), enabling comprehensive multimodal reasoning. Given a text query, Vidi2 can identify not only the corresponding timestamps but also the bounding boxes of target objects within the output time ranges. To enable comprehensive evaluation of STG, we introduce a new benchmark, VUE-STG, which offers critical improvements over existing STG datasets. In addition, we upgrade the previous VUE-TR benchmark to VUE-TR-V2, achieving a more balanced duration and query distribution. Remarkably, the Vidi2 model substantially outperforms leading proprietary systems, such as Gemini 3 Pro Preview and GPT-5, on both VUE-TR-V2 and VUE-STG, while achieving competitive results with popular open-source models with similar scale on video QA benchmarks. The latest Vidi2.5 offers significantly stronger STG capability and slightly better TR and Video QA performance over Vidi2. This update also introduces a Vidi2.5-Think model to handle plot understanding with complex plot reasoning. To comprehensively evaluate the performance of plot understanding, we propose VUE-PLOT benchmark with two tracks, Character and Reasoning. Notably, Vidi2.5-Think outperforms Gemini 3 Pro Preview on fine-grained character understanding with comparable performance on complex plot reasoning. Furthermore, we demonstrate the effectiveness of Vidi2.5 on a challenging real-world application, video editing planning.
Deblur4DGS: 4D Gaussian Splatting from Blurry Monocular Video
Recent 4D reconstruction methods have yielded impressive results but rely on sharp videos as supervision. However, motion blur often occurs in videos due to camera shake and object movement, while existing methods render blurry results when using such videos for reconstructing 4D models. Although a few approaches attempted to address the problem, they struggled to produce high-quality results, due to the inaccuracy in estimating continuous dynamic representations within the exposure time. Encouraged by recent works in 3D motion trajectory modeling using 3D Gaussian Splatting (3DGS), we take 3DGS as the scene representation manner, and propose Deblur4DGS to reconstruct a high-quality 4D model from blurry monocular video. Specifically, we transform continuous dynamic representations estimation within an exposure time into the exposure time estimation. Moreover, we introduce the exposure regularization term, multi-frame, and multi-resolution consistency regularization term to avoid trivial solutions. Furthermore, to better represent objects with large motion, we suggest blur-aware variable canonical Gaussians. Beyond novel-view synthesis, Deblur4DGS can be applied to improve blurry video from multiple perspectives, including deblurring, frame interpolation, and video stabilization. Extensive experiments in both synthetic and real-world data on the above four tasks show that Deblur4DGS outperforms state-of-the-art 4D reconstruction methods. The codes are available at https://github.com/ZcsrenlongZ/Deblur4DGS.
comment: 16 pages
Robotics 40
Event-based Heterogeneous Information Processing for Online Vision-based Obstacle Detection and Localization
This paper introduces a novel framework for robotic vision-based navigation that integrates Hybrid Neural Networks (HNNs) with Spiking Neural Network (SNN)-based filtering to enhance situational awareness for unmodeled obstacle detection and localization. By leveraging the complementary strengths of Artificial Neural Networks (ANNs) and SNNs, the system achieves both accurate environmental understanding and fast, energy-efficient processing. The proposed architecture employs a dual-pathway approach: an ANN component processes static spatial features at low frequency, while an SNN component handles dynamic, event-based sensor data in real time. Unlike conventional hybrid architectures that rely on domain conversion mechanisms, our system incorporates a pre-developed SNN-based filter that directly utilizes spike-encoded inputs for localization and state estimation. Detected anomalies are validated using contextual information from the ANN pathway and continuously tracked to support anticipatory navigation strategies. Simulation results demonstrate that the proposed method offers acceptable detection accuracy while maintaining computational efficiency close to SNN-only implementations, which operate at a fraction of the resource cost. This framework represents a significant advancement in neuromorphic navigation systems for robots operating in unpredictable and dynamic environments.
Robustness and Resilience Evaluation of Eco-Driving Strategies at Signalized Intersections
Eco-driving strategies have demonstrated substantial potential for improving energy efficiency and reducing emissions, especially at signalized intersections. However, evaluations of eco-driving methods typically rely on simplified simulation or experimental conditions, where certain assumptions are made to manage complexity and experimental control. This study introduces a unified framework to evaluate eco-driving strategies through the lens of two complementary criteria: control robustness and environmental resilience. We define formal indicators that quantify performance degradation caused by internal execution variability and external environmental disturbances, respectively. These indicators are then applied to assess multiple eco-driving controllers through real-world vehicle experiments. The results reveal key tradeoffs between tracking accuracy and adaptability, showing that optimization-based controllers offer more consistent performance across varying disturbance levels, while analytical controllers may perform comparably under nominal conditions but exhibit greater sensitivity to execution and timing variability.
CLEAR: A Semantic-Geometric Terrain Abstraction for Large-Scale Unstructured Environments
Long-horizon navigation in unstructured environments demands terrain abstractions that scale to tens of km$^2$ while preserving semantic and geometric structure, a combination existing methods fail to achieve. Grids scale poorly; quadtrees misalign with terrain boundaries; neither encodes landcover semantics essential for traversability-aware planning. This yields infeasible or unreliable paths for autonomous ground vehicles operating over 10+ km$^2$ under real-time constraints. CLEAR (Connected Landcover Elevation Abstract Representation) couples boundary-aware spatial decomposition with recursive plane fitting to produce convex, semantically aligned regions encoded as a terrain-aware graph. Evaluated on maps spanning 9-100~km$^2$ using a physics-based simulator, CLEAR achieves up to 10x faster planning than raw grids with only 6.7% cost overhead and delivers 6-9% shorter, more reliable paths than other abstraction baselines. These results highlight CLEAR's scalability and utility for long-range navigation in applications such as disaster response, defense, and planetary exploration.
comment: Under review for an IEEE conference
Towards Natural Language Environment: Understanding Seamless Natural-Language-Based Human-Multi-Robot Interactions
As multiple robots are expected to coexist in future households, natural language is increasingly envisioned as a primary medium for human-robot and robot-robot communication. This paper introduces the concept of a Natural Language Environment (NLE), defined as an interaction space in which humans and multiple heterogeneous robots coordinate primarily through natural language. Rather than proposing a deployable system, this work aims to explore the design space of such environments. We first synthesize prior work on language-based human-robot interaction to derive a preliminary design space for NLEs. We then conduct a role-playing study in virtual reality to investigate how people conceptualize, negotiate, and coordinate human-multi-robot interactions within this imagined environment. Based on qualitative and quantitative analysis, we refine the preliminary design space and derive design implications that highlight key tensions and opportunities around task coordination dominance, robot autonomy, and robot personality in Natural Language Environments.
Autonomous Navigation at the Nano-Scale: Algorithms, Architectures, and Constraints
Autonomous navigation for nano-scale unmanned aerial vehicles (nano-UAVs) is governed by extreme Size, Weight, and Power (SWaP) constraints (with the weight < 50 g and sub-100 mW onboard processor), distinguishing it fundamentally from standard robotic paradigms. This review synthesizes the state-of-the-art in sensing, computing, and control architectures designed specifically for these sub- 100mW computational envelopes. We critically analyse the transition from classical geometry-based methods to emerging "Edge AI" paradigms, including quantized deep neural networks deployed on ultra-low-power System-on-Chips (SoCs) and neuromorphic event-based control. Beyond algorithms, we evaluate the hardware-software co-design requisite for autonomy, covering advancements in dense optical flow, optimized Simultaneous Localization and Mapping (SLAM), and learning-based flight control. While significant progress has been observed in visual navigation and relative pose estimation, our analysis reveals persistent gaps in long-term endurance, robust obstacle avoidance in dynamic environments, and the "Sim-to-Real" transfer of reinforcement learning policies. This survey provides a roadmap for bridging these gaps, advocating for hybrid architectures that fuse lightweight classical control with data-driven perception to enable fully autonomous, agile nano-UAVs in GPS-denied environments.
comment: 28 pages, 5 figures, 1 table. Review article
Diffusion-based Inverse Model of a Distributed Tactile Sensor for Object Pose Estimation
Tactile sensing provides a promising sensing modality for object pose estimation in manipulation settings where visual information is limited due to occlusion or environmental effects. However, efficiently leveraging tactile data for estimation remains a challenge due to partial observability, with single observations corresponding to multiple possible contact configurations. This limits conventional estimation approaches largely tailored to vision. We propose to address these challenges by learning an inverse tactile sensor model using denoising diffusion. The model is conditioned on tactile observations from a distributed tactile sensor and trained in simulation using a geometric sensor model based on signed distance fields. Contact constraints are enforced during inference through single-step projection using distance and gradient information from the signed distance field. For online pose estimation, we integrate the inverse model with a particle filter through a proposal scheme that combines generated hypotheses with particles from the prior belief. Our approach is validated in simulated and real-world planar pose estimation settings, without access to visual data or tight initial pose priors. We further evaluate robustness to unmodeled contact and sensor dynamics for pose tracking in a box-pushing scenario. Compared to local sampling baselines, the inverse sensor model improves sampling efficiency and estimation accuracy while preserving multimodal beliefs across objects with varying tactile discriminability.
MATTERIX: toward a digital twin for robotics-assisted chemistry laboratory automation
Accelerated materials discovery is critical for addressing global challenges. However, developing new laboratory workflows relies heavily on real-world experimental trials, and this can hinder scalability because of the need for numerous physical make-and-test iterations. Here we present MATTERIX, a multiscale, graphics processing unit-accelerated robotic simulation framework designed to create high-fidelity digital twins of chemistry laboratories, thus accelerating workflow development. This multiscale digital twin simulates robotic physical manipulation, powder and liquid dynamics, device functionalities, heat transfer and basic chemical reaction kinetics. This is enabled by integrating realistic physics simulation and photorealistic rendering with a modular graphics processing unit-accelerated semantics engine, which models logical states and continuous behaviors to simulate chemistry workflows across different levels of abstraction. MATTERIX streamlines the creation of digital twin environments through open-source asset libraries and interfaces, while enabling flexible workflow design via hierarchical plan definition and a modular skill library that incorporates learning-based methods. Our approach demonstrates sim-to-real transfer in robotic chemistry setups, reducing reliance on costly real-world experiments and enabling the testing of hypothetical automated workflows in silico. The project website is available at https://accelerationconsortium.github.io/Matterix/ .
comment: Darvish, K., Sohal, A., Mandal, A. et al. MATTERIX: toward a digital twin for robotics-assisted chemistry laboratory automation. Nat Comput Sci (2025)
Active Informative Planning for UAV-based Weed Mapping using Discrete Gaussian Process Representations
Accurate agricultural weed mapping using unmanned aerial vehicles (UAVs) is crucial for precision farming. While traditional methods rely on rigid, pre-defined flight paths and intensive offline processing, informative path planning (IPP) offers a way to collect data adaptively where it is most needed. Gaussian process (GP) mapping provides a continuous model of weed distribution with built-in uncertainty. However, GPs must be discretised for practical use in autonomous planning. Many discretisation techniques exist, but the impact of discrete representation choice remains poorly understood. This paper investigates how different discrete GP representations influence both mapping quality and mission-level performance in UAV-based weed mapping. Considering a UAV equipped with a downward-facing camera, we implement a receding-horizon IPP strategy that selects sampling locations based on the map uncertainty, travel cost, and coverage penalties. We investigate multiple discretisation strategies for representing the GP posterior and use their induced map partitions to generate candidate viewpoints for planning. Experiments on real-world weed distributions show that representation choice significantly affects exploration behaviour and efficiency. Overall, our results demonstrate that discretisation is not only a representational detail but a key design choice that shapes planning dynamics, coverage efficiency, and computational load in online UAV weed mapping.
Helical Tendon-Driven Continuum Robot with Programmable Follow-the-Leader Operation
Spinal cord stimulation (SCS) is primarily utilized for pain management and has recently demonstrated efficacy in promoting functional recovery in patients with spinal cord injury. Effective stimulation of motor neurons ideally requires the placement of SCS leads in the ventral or lateral epidural space where the corticospinal and rubrospinal motor fibers are located. This poses significant challenges with the current standard of manual steering. In this study, we present a static modeling approach for the ExoNav, a steerable robotic tool designed to facilitate precise navigation to the ventral and lateral epidural space. Cosserat rod framework is employed to establish the relationship between tendon actuation forces and the robot's overall shape. The effects of gravity, as an example of an external load, are investigated and implemented in the model and simulation. The experimental results indicate RMSE values of 1.76mm, 2.33mm, 2.18mm, and 1.33mm across four tested prototypes. Based on the helical shape of the ExoNav upon actuation, it is capable of performing follow-the-leader (FTL) motion by adding insertion and rotation DoFs to this robotic system, which is shown in simulation and experimentally. The proposed simulation has the capability to calculate optimum tendon tensions to follow the desired FTL paths while gravity-induced robot deformations are present. Three FTL experimental trials are conducted and the end-effector position showed repeatable alignments with the desired path with maximum RMSE value of 3.75mm. Ultimately, a phantom model demonstration is conducted where the teleoperated robot successfully navigated to the lateral and ventral spinal cord targets. Additionally, the user was able to navigate to the dorsal root ganglia, illustrating ExoNav's potential in both motor function recovery and pain management.
comment: 8 pages, 9 figures
LLM-VLM Fusion Framework for Autonomous Maritime Port Inspection using a Heterogeneous UAV-USV System
Maritime port inspection plays a critical role in ensuring safety, regulatory compliance, and operational efficiency in complex maritime environments. However, existing inspection methods often rely on manual operations and conventional computer vision techniques that lack scalability and contextual understanding. This study introduces a novel integrated engineering framework that utilizes the synergy between Large Language Models (LLMs) and Vision Language Models (VLMs) to enable autonomous maritime port inspection using cooperative aerial and surface robotic platforms. The proposed framework replaces traditional state-machine mission planners with LLM-driven symbolic planning and improved perception pipelines through VLM-based semantic inspection, enabling context-aware and adaptive monitoring. The LLM module translates natural language mission instructions into executable symbolic plans with dependency graphs that encode operational constraints and ensure safe UAV-USV coordination. Meanwhile, the VLM module performs real-time semantic inspection and compliance assessment, generating structured reports with contextual reasoning. The framework was validated using the extended MBZIRC Maritime Simulator with realistic port infrastructure and further assessed through real-world robotic inspection trials. The lightweight on-board design ensures suitability for resource-constrained maritime platforms, advancing the development of intelligent, autonomous inspection systems. Project resources (code and videos) can be found here: https://github.com/Muhayyuddin/llm-vlm-fusion-port-inspection
comment: submitted in AEJ
Exploiting Light To Enhance The Endurance and Navigation of Lighter-Than-Air Micro-Drones
Micro-Unmanned Aerial Vehicles (UAVs) are rapidly expanding into tasks from inventory to environmental sensing, yet their short endurance and unreliable navigation in GPS-denied spaces limit deployment. Lighter-Than-Air (LTA) drones offer an energy-efficient alternative: they use a helium envelope to provide buoyancy, which enables near-zero-power drain during hovering and much longer operation. LTAs are promising, but their design is complex, and they lack integrated solutions to enable sustained autonomous operations and navigation with simple, low-infrastructure. We propose a compact, self-sustaining LTA drone that uses light for both energy harvesting and navigation. Our contributions are threefold: (i) a high-fidelity simulation framework to analyze LTA aerodynamics and select a stable, efficient configuration; (ii) a framework to integrate solar cells on the envelope to provide net-positive energy; and (iii) a point-and-go navigation system with three light-seeking algorithms operating on a single light beacon. Our LTA-analysis, together with the integrated solar panels, not only saves energy while flying, but also enables sustainable operation: providing 1 minute of flying time for every 4 minutes of energy harvesting, under illuminations of 80klux. We also demonstrate robust single-beacon navigation towards a light source that can be up to 7m away, in indoor and outdoor environments, even with moderate winds. The resulting system indicates a plausible path toward persistent, autonomous operation for indoor and outdoor monitoring. More broadly, this work provides a practical pathway for translating the promise of LTA drones into a persistent, self-sustaining aerial system.
Static Is Not Enough: A Comparative Study of VR and SpaceMouse in Static and Dynamic Teleoperation Tasks
Imitation learning relies on high-quality demonstrations, and teleoperation is a primary way to collect them, making teleoperation interface choice crucial for the data. Prior work mainly focused on static tasks, i.e., discrete, segmented motions, yet demonstrations also include dynamic tasks requiring reactive control. As dynamic tasks impose fundamentally different interface demands, insights from static-task evaluations cannot generalize. To address this gap, we conduct a within-subjects study comparing a VR controller and a SpaceMouse across two static and two dynamic tasks ($N=25$). We assess success rate, task duration, cumulative success, alongside NASA-TLX, SUS, and open-ended feedback. Results show statistically significant advantages for VR: higher success rates, particularly on dynamic tasks, shorter successful execution times across tasks, and earlier successes across attempts, with significantly lower workload and higher usability. As existing VR teleoperation systems are rarely open-source or suited for dynamic tasks, we release our VR interface to fill this gap.
comment: 5 pages, 5 figures. Accepted in HRI'26 (Late-Breaking Reports track) in 12 Jan, 2026
Being-H0.5: Scaling Human-Centric Robot Learning for Cross-Embodiment Generalization
We introduce Being-H0.5, a foundational Vision-Language-Action (VLA) model designed for robust cross-embodiment generalization across diverse robotic platforms. While existing VLAs often struggle with morphological heterogeneity and data scarcity, we propose a human-centric learning paradigm that treats human interaction traces as a universal "mother tongue" for physical interaction. To support this, we present UniHand-2.0, the largest embodied pre-training recipe to date, comprising over 35,000 hours of multimodal data across 30 distinct robotic embodiments. Our approach introduces a Unified Action Space that maps heterogeneous robot controls into semantically aligned slots, enabling low-resource robots to bootstrap skills from human data and high-resource platforms. Built upon this human-centric foundation, we design a unified sequential modeling and multi-task pre-training paradigm to bridge human demonstrations and robotic execution. Architecturally, Being-H0.5 utilizes a Mixture-of-Transformers design featuring a novel Mixture-of-Flow (MoF) framework to decouple shared motor primitives from specialized embodiment-specific experts. Finally, to make cross-embodiment policies stable in the real world, we introduce Manifold-Preserving Gating for robustness under sensory shift and Universal Async Chunking to universalize chunked control across embodiments with different latency and control profiles. We empirically demonstrate that Being-H0.5 achieves state-of-the-art results on simulated benchmarks, such as LIBERO (98.9%) and RoboCasa (53.9%), while also exhibiting strong cross-embodiment capabilities on five robotic platforms.
comment: 44 pages
Imitation learning-based spacecraft rendezvous and docking method with Expert Demonstration
Existing spacecraft rendezvous and docking control methods largely rely on predefined dynamic models and often exhibit limited robustness in realistic on-orbit environments. To address this issue, this paper proposes an Imitation Learning-based spacecraft rendezvous and docking control framework (IL-SRD) that directly learns control policies from expert demonstrations, thereby reducing dependence on accurate modeling. We propose an anchored decoder target mechanism, which conditions the decoder queries on state-related anchors to explicitly constrain the control generation process. This mechanism enforces physically consistent control evolution and effectively suppresses implausible action deviations in sequential prediction, enabling reliable six-degree-of-freedom (6-DOF) rendezvous and docking control. To further enhance stability, a temporal aggregation mechanism is incorporated to mitigate error accumulation caused by the sequential prediction nature of Transformer-based models, where small inaccuracies at each time step can propagate and amplify over long horizons. Extensive simulation results demonstrate that the proposed IL-SRD framework achieves accurate and energy-efficient model-free rendezvous and docking control. Robustness evaluations further confirm its capability to maintain competitive performance under significant unknown disturbances. The source code is available at https://github.com/Dongzhou-1996/IL-SRD.
comment: 6 figures, 4 tables. Focus on 6-DOF spacecraft rendezvous and docking control using imitation learning-based control method
Active Inference-Driven World Modeling for Adaptive UAV Swarm Trajectory Design
This paper proposes an Active Inference-based framework for autonomous trajectory design in UAV swarms. The method integrates probabilistic reasoning and self-learning to enable distributed mission allocation, route ordering, and motion planning. Expert trajectories generated using a Genetic Algorithm with Repulsion Forces (GA-RF) are employed to train a hierarchical World Model capturing swarm behavior across mission, route, and motion levels. During online operation, UAVs infer actions by minimizing divergence between current beliefs and model-predicted states, enabling adaptive responses to dynamic environments. Simulation results show faster convergence, higher stability, and safer navigation than Q-Learning, demonstrating the scalability and cognitive grounding of the proposed framework for intelligent UAV swarm control.
comment: This paper has been accepted for presentation at the 2026 IEEE International Conference on Acoustics, Speech, and Signal Processing (IEEE ICASSP 2026) Workshop: 'Multi-Modal Signal Processing and AI for Communications and Sensing in 6G and Beyond (MuSiC-6GB)'
ForeDiffusion: Foresight-Conditioned Diffusion Policy via Future View Construction for Robot Manipulation
Diffusion strategies have advanced visual motor control by progressively denoising high-dimensional action sequences, providing a promising method for robot manipulation. However, as task complexity increases, the success rate of existing baseline models decreases considerably. Analysis indicates that current diffusion strategies are confronted with two limitations. First, these strategies only rely on short-term observations as conditions. Second, the training objective remains limited to a single denoising loss, which leads to error accumulation and causes grasping deviations. To address these limitations, this paper proposes Foresight-Conditioned Diffusion (ForeDiffusion), by injecting the predicted future view representation into the diffusion process. As a result, the policy is guided to be forward-looking, enabling it to correct trajectory deviations. Following this design, ForeDiffusion employs a dual loss mechanism, combining the traditional denoising loss and the consistency loss of future observations, to achieve the unified optimization. Extensive evaluation on the Adroit suite and the MetaWorld benchmark demonstrates that ForeDiffusion achieves an average success rate of 80% for the overall task, significantly outperforming the existing mainstream diffusion methods by 23% in complex tasks, while maintaining more stable performance across the entire tasks.
Dynamic Hand Gesture Recognition for Robot Manipulator Tasks
This paper proposes a novel approach to recognizing dynamic hand gestures facilitating seamless interaction between humans and robots. Here, each robot manipulator task is assigned a specific gesture. There may be several such tasks, hence, several gestures. These gestures may be prone to several dynamic variations. All such variations for different gestures shown to the robot are accurately recognized in real-time using the proposed unsupervised model based on the Gaussian Mixture model. The accuracy during training and real-time testing prove the efficacy of this methodology.
PlannerRFT: Reinforcing Diffusion Planners through Closed-Loop and Sample-Efficient Fine-Tuning
Diffusion-based planners have emerged as a promising approach for human-like trajectory generation in autonomous driving. Recent works incorporate reinforcement fine-tuning to enhance the robustness of diffusion planners through reward-oriented optimization in a generation-evaluation loop. However, they struggle to generate multi-modal, scenario-adaptive trajectories, hindering the exploitation efficiency of informative rewards during fine-tuning. To resolve this, we propose PlannerRFT, a sample-efficient reinforcement fine-tuning framework for diffusion-based planners. PlannerRFT adopts a dual-branch optimization that simultaneously refines the trajectory distribution and adaptively guides the denoising process toward more promising exploration, without altering the original inference pipeline. To support parallel learning at scale, we develop nuMax, an optimized simulator that achieves 10 times faster rollout compared to native nuPlan. Extensive experiments shows that PlannerRFT yields state-of-the-art performance with distinct behaviors emerging during the learning process.
Sparse ActionGen: Accelerating Diffusion Policy with Real-time Pruning
Diffusion Policy has dominated action generation due to its strong capabilities for modeling multi-modal action distributions, but its multi-step denoising processes make it impractical for real-time visuomotor control. Existing caching-based acceleration methods typically rely on $\textit{static}$ schedules that fail to adapt to the $\textit{dynamics}$ of robot-environment interactions, thereby leading to suboptimal performance. In this paper, we propose $\underline{\textbf{S}}$parse $\underline{\textbf{A}}$ction$\underline{\textbf{G}}$en ($\textbf{SAG}$) for extremely sparse action generation. To accommodate the iterative interactions, SAG customizes a rollout-adaptive prune-then-reuse mechanism that first identifies prunable computations globally and then reuses cached activations to substitute them during action diffusion. To capture the rollout dynamics, SAG parameterizes an observation-conditioned diffusion pruner for environment-aware adaptation and instantiates it with a highly parameter- and inference-efficient design for real-time prediction. Furthermore, SAG introduces a one-for-all reusing strategy that reuses activations across both timesteps and blocks in a zig-zag manner, minimizing the global redundancy. Extensive experiments on multiple robotic benchmarks demonstrate that SAG achieves up to 4$\times$ generation speedup without sacrificing performance. Project Page: https://sparse-actiongen.github.io/.
From Design to Deorbit: A Solar-Electric Autonomous Module for Multi-Debris Remediation
The escalating accumulation of orbital debris threatens the sustainability of space operations, necessitating active removal solutions that overcome the limitations of current fuel-dependent methods. To address this, this study introduces a novel remediation architecture that integrates a mechanical clamping system for secure capture with a high-efficiency, solar-powered NASA Evolutionary Xenon Thruster (NEXT) and autonomous navigation protocols. High-fidelity simulations validate the architecture's capabilities, demonstrating a successful retrograde deorbit from 800 km to 100 km, <10m position Root Mean Square Errors (RMSE) via radar-based Extended Kalman Filter (EKF) navigation, and a 93\% data delivery efficiency within 1 second using Delay/Disruption Tolerant Network (DTN) protocols. This approach significantly advances orbital management by establishing a benchmark for renewable solar propulsion that minimizes reliance on conventional fuels and extends mission longevity for multi-target removal.
comment: 6 pages, 13 Figures, 2 tables
FRoM-W1: Towards General Humanoid Whole-Body Control with Language Instructions
Humanoid robots are capable of performing various actions such as greeting, dancing and even backflipping. However, these motions are often hard-coded or specifically trained, which limits their versatility. In this work, we present FRoM-W1, an open-source framework designed to achieve general humanoid whole-body motion control using natural language. To universally understand natural language and generate corresponding motions, as well as enable various humanoid robots to stably execute these motions in the physical world under gravity, FRoM-W1 operates in two stages: (a) H-GPT: utilizing massive human data, a large-scale language-driven human whole-body motion generation model is trained to generate diverse natural behaviors. We further leverage the Chain-of-Thought technique to improve the model's generalization in instruction understanding. (b) H-ACT: After retargeting generated human whole-body motions into robot-specific actions, a motion controller that is pretrained and further fine-tuned through reinforcement learning in physical simulation enables humanoid robots to accurately and stably perform corresponding actions. It is then deployed on real robots via a modular simulation-to-reality module. We extensively evaluate FRoM-W1 on Unitree H1 and G1 robots. Results demonstrate superior performance on the HumanML3D-X benchmark for human whole-body motion generation, and our introduced reinforcement learning fine-tuning consistently improves both motion tracking accuracy and task success rates of these humanoid robots. We open-source the entire FRoM-W1 framework and hope it will advance the development of humanoid intelligence.
comment: Project Page: https://openmoss.github.io/FRoM-W1
Contact-Aware Neural Dynamics
High-fidelity physics simulation is essential for scalable robotic learning, but the sim-to-real gap persists, especially for tasks involving complex, dynamic, and discontinuous interactions like physical contacts. Explicit system identification, which tunes explicit simulator parameters, is often insufficient to align the intricate, high-dimensional, and state-dependent dynamics of the real world. To overcome this, we propose an implicit sim-to-real alignment framework that learns to directly align the simulator's dynamics with contact information. Our method treats the off-the-shelf simulator as a base prior and learns a contact-aware neural dynamics model to refine simulated states using real-world observations. We show that using tactile contact information from robotic hands can effectively model the non-smooth discontinuities inherent in contact-rich tasks, resulting in a neural dynamics model grounded by real-world data. We demonstrate that this learned forward dynamics model improves state prediction accuracy and can be effectively used to predict policy performance and refine policies trained purely in standard simulators, offering a scalable, data-driven approach to sim-to-real alignment.
comment: 8 pages
FocusNav: Spatial Selective Attention with Waypoint Guidance for Humanoid Local Navigation
Robust local navigation in unstructured and dynamic environments remains a significant challenge for humanoid robots, requiring a delicate balance between long-range navigation targets and immediate motion stability. In this paper, we propose FocusNav, a spatial selective attention framework that adaptively modulates the robot's perceptual field based on navigational intent and real-time stability. FocusNav features a Waypoint-Guided Spatial Cross-Attention (WGSCA) mechanism that anchors environmental feature aggregation to a sequence of predicted collision-free waypoints, ensuring task-relevant perception along the planned trajectory. To enhance robustness in complex terrains, the Stability-Aware Selective Gating (SASG) module autonomously truncates distal information when detecting instability, compelling the policy to prioritize immediate foothold safety. Extensive experiments on the Unitree G1 humanoid robot demonstrate that FocusNav significantly improves navigation success rates in challenging scenarios, outperforming baselines in both collision avoidance and motion stability, achieving robust navigation in dynamic and complex environments.
comment: 12 pages, 11 figures
AirHunt: Bridging VLM Semantics and Continuous Planning for Efficient Aerial Object Navigation
Recent advances in large Vision-Language Models (VLMs) have provided rich semantic understanding that empowers drones to search for open-set objects via natural language instructions. However, prior systems struggle to integrate VLMs into practical aerial systems due to orders-of-magnitude frequency mismatch between VLM inference and real-time planning, as well as VLMs' limited 3D scene understanding. They also lack a unified mechanism to balance semantic guidance with motion efficiency in large-scale environments. To address these challenges, we present AirHunt, an aerial object navigation system that efficiently locates open-set objects with zero-shot generalization in outdoor environments by seamlessly fusing VLM semantic reasoning with continuous path planning. AirHunt features a dual-pathway asynchronous architecture that establishes a synergistic interface between VLM reasoning and path planning, enabling continuous flight with adaptive semantic guidance that evolves through motion. Moreover, we propose an active dual-task reasoning module that exploits geometric and semantic redundancy to enable selective VLM querying, and a semantic-geometric coherent planning module that dynamically reconciles semantic priorities and motion efficiency in a unified framework, enabling seamless adaptation to environmental heterogeneity. We evaluate AirHunt across diverse object navigation tasks and environments, demonstrating a higher success rate with lower navigation error and reduced flight time compared to state-of-the-art methods. Real-world experiments further validate AirHunt's practical capability in complex and challenging environments. Code and dataset will be made publicly available before publication.
DC-VLAQ: Query-Residual Aggregation for Robust Visual Place Recognition
One of the central challenges in visual place recognition (VPR) is learning a robust global representation that remains discriminative under large viewpoint changes, illumination variations, and severe domain shifts. While visual foundation models (VFMs) provide strong local features, most existing methods rely on a single model, overlooking the complementary cues offered by different VFMs. However, exploiting such complementary information inevitably alters token distributions, which challenges the stability of existing query-based global aggregation schemes. To address these challenges, we propose DC-VLAQ, a representation-centric framework that integrates the fusion of complementary VFMs and robust global aggregation. Specifically, we first introduce a lightweight residual-guided complementary fusion that anchors representations in the DINOv2 feature space while injecting complementary semantics from CLIP through a learned residual correction. In addition, we propose the Vector of Local Aggregated Queries (VLAQ), a query--residual global aggregation scheme that encodes local tokens by their residual responses to learnable queries, resulting in improved stability and the preservation of fine-grained discriminative cues. Extensive experiments on standard VPR benchmarks, including Pitts30k, Tokyo24/7, MSLS, Nordland, SPED, and AmsterTime, demonstrate that DC-VLAQ consistently outperforms strong baselines and achieves state-of-the-art performance, particularly under challenging domain shifts and long-term appearance changes.
comment: 10 pages, 4 figures, 5 tables
RPT*: Global Planning with Probabilistic Terminals for Target Search in Complex Environments
Routing problems such as Hamiltonian Path Problem (HPP), seeks a path to visit all the vertices in a graph while minimizing the path cost. This paper studies a variant, HPP with Probabilistic Terminals (HPP-PT), where each vertex has a probability representing the likelihood that the robot's path terminates there, and the objective is to minimize the expected path cost. HPP-PT arises in target object search, where a mobile robot must visit all candidate locations to find an object, and prior knowledge of the object's location is expressed as vertex probabilities. While routing problems have been studied for decades, few of them consider uncertainty as required in this work. The challenge lies not only in optimally ordering the vertices, as in standard HPP, but also in handling history dependency: the expected path cost depends on the order in which vertices were previously visited. This makes many existing methods inefficient or inapplicable. To address the challenge, we propose a search-based approach RPT* with solution optimality guarantees, which leverages dynamic programming in a new state space to bypass the history dependency and novel heuristics to speed up the computation. Building on RPT*, we design a Hierarchical Autonomous Target Search (HATS) system that combines RPT* with either Bayesian filtering for lifelong target search with noisy sensors, or autonomous exploration to find targets in unknown environments. Experiments in both simulation and real robot show that our approach can naturally balance between exploitation and exploration, thereby finding targets more quickly on average than baseline methods.
Can the Waymo Open Motion Dataset Support Realistic Behavioral Modeling? A Validation Study with Naturalistic Trajectories
The Waymo Open Motion Dataset (WOMD) has become a popular resource for data-driven modeling of autonomous vehicles (AVs) behavior. However, its validity for behavioral analysis remains uncertain due to proprietary post-processing, the absence of error quantification, and the segmentation of trajectories into 20-second clips. This study examines whether WOMD accurately captures the dynamics and interactions observed in real-world AV operations. Leveraging an independently collected naturalistic dataset from Level 4 AV operations in Phoenix, Arizona (PHX), we perform comparative analyses across three representative urban driving scenarios: discharging at signalized intersections, car-following, and lane-changing behaviors. For the discharging analysis, headways are manually extracted from aerial video to ensure negligible measurement error. For the car-following and lane-changing cases, we apply the Simulation-Extrapolation (SIMEX) method to account for empirically estimated error in the PHX data and use Dynamic Time Warping (DTW) distances to quantify behavioral differences. Results across all scenarios consistently show that behavior in PHX falls outside the behavioral envelope of WOMD. Notably, WOMD underrepresents short headways and abrupt decelerations. These findings suggest that behavioral models calibrated solely on WOMD may systematically underestimate the variability, risk, and complexity of naturalistic driving. Caution is therefore warranted when using WOMD for behavior modeling without proper validation against independently collected data.
PolyFly: Polytopic Optimal Planning for Collision-Free Cable-Suspended Aerial Payload Transportation
Aerial transportation robots using suspended cables have emerged as versatile platforms for disaster response and rescue operations. To maximize the capabilities of these systems, robots need to aggressively fly through tightly constrained environments, such as dense forests and structurally unsafe buildings, while minimizing flight time and avoiding obstacles. Existing methods geometrically over-approximate the vehicle and obstacles, leading to conservative maneuvers and increased flight times. We eliminate these restrictions by proposing PolyFly, an optimal global planner which considers a non-conservative representation for aerial transportation by modeling each physical component of the environment, and the robot (quadrotor, cable and payload), as independent polytopes. We further increase the model accuracy by incorporating the attitude of the physical components by constructing orientation-aware polytopes. The resulting optimal control problem is efficiently solved by converting the polytope constraints into smooth differentiable constraints via duality theory. We compare our method against the existing state-of-the-art approach in eight maze-like environments and show that PolyFly produces faster trajectories in each scenario. We also experimentally validate our proposed approach on a real quadrotor with a suspended payload, demonstrating the practical reliability and accuracy of our method.
Gauss-Newton accelerated MPPI Control
Model Predictive Path Integral (MPPI) control is a sampling-based optimization method that has recently attracted attention, particularly in the robotics and reinforcement learning communities. MPPI has been widely applied as a GPU-accelerated random search method to deterministic direct single-shooting optimal control problems arising in model predictive control (MPC) formulations. MPPI offers several key advantages, including flexibility, robustness, ease of implementation, and inherent parallelizability. However, its performance can deteriorate in high-dimensional settings since the optimal control problem is solved via Monte Carlo sampling. To address this limitation, this paper proposes an enhanced MPPI method that incorporates a Jacobian reconstruction technique and the second-order Generalized Gauss-Newton method. This novel approach is called \textit{Gauss-Newton accelerated MPPI}. The numerical results show that the Gauss-Newton accelerated MPPI approach substantially improves MPPI scalability and computational efficiency while preserving the key benefits of the classical MPPI framework, making it a promising approach even for high-dimensional problems.
comment: 6 pages, 3 figures, submitted to the IFAC World Congress 2026
Combining Shape Completion and Grasp Prediction for Fast and Versatile Grasping with a Multi-Fingered Hand
Grasping objects with limited or no prior knowledge about them is a highly relevant skill in assistive robotics. Still, in this general setting, it has remained an open problem, especially when it comes to only partial observability and versatile grasping with multi-fingered hands. We present a novel, fast, and high fidelity deep learning pipeline consisting of a shape completion module that is based on a single depth image, and followed by a grasp predictor that is based on the predicted object shape. The shape completion network is based on VQDIF and predicts spatial occupancy values at arbitrary query points. As grasp predictor, we use our two-stage architecture that first generates hand poses using an autoregressive model and then regresses finger joint configurations per pose. Critical factors turn out to be sufficient data realism and augmentation, as well as special attention to difficult cases during training. Experiments on a physical robot platform demonstrate successful grasping of a wide range of household objects based on a depth image from a single viewpoint. The whole pipeline is fast, taking only about 1 s for completing the object's shape (0.7 s) and generating 1000 grasps (0.3 s).
comment: 8 pages, 10 figures, 3 tables, 1 algorithm. Published in Humanoids 2023. Project page: https://aidx-lab.org/grasping/humanoids23
Shape Completion with Prediction of Uncertain Regions IROS 2023
Shape completion, i.e., predicting the complete geometry of an object from a partial observation, is highly relevant for several downstream tasks, most notably robotic manipulation. When basing planning or prediction of real grasps on object shape reconstruction, an indication of severe geometric uncertainty is indispensable. In particular, there can be an irreducible uncertainty in extended regions about the presence of entire object parts when given ambiguous object views. To treat this important case, we propose two novel methods for predicting such uncertain regions as straightforward extensions of any method for predicting local spatial occupancy, one through postprocessing occupancy scores, the other through direct prediction of an uncertainty indicator. We compare these methods together with two known approaches to probabilistic shape completion. Moreover, we generate a dataset, derived from ShapeNet, of realistically rendered depth images of object views with ground-truth annotations for the uncertain regions. We train on this dataset and test each method in shape completion and prediction of uncertain regions for known and novel object instances and on synthetic and real data. While direct uncertainty prediction is by far the most accurate in the segmentation of uncertain regions, both novel methods outperform the two baselines in shape completion and uncertain region prediction, and avoiding the predicted uncertain regions increases the quality of grasps for all tested methods.
comment: 7 pages, 5 figures, Published in IROS 2023. Project page: https://hummat.github.io/2023-iros-uncertain/
Astra: Efficient Transformer Architecture and Contrastive Dynamics Learning for Embodied Instruction Following
Vision-language-action models have gained significant attention for their ability to model multimodal sequences in embodied instruction following tasks. However, most existing models rely on causal attention, which we find suboptimal for processing sequences composed of interleaved segments from different modalities. In this paper, we introduce Astra, a novel Transformer architecture featuring trajectory attention and learnable action queries, designed to efficiently process segmented multimodal trajectories and predict actions for imitation learning. Furthermore, we propose a contrastive dynamics learning objective to enhance the model's understanding of environment dynamics and multimodal alignment, complementing the primary behavior cloning objective. Through extensive experiments on three large-scale robot manipulation benchmarks, Astra demonstrates substantial performance improvements over previous models.
comment: Accepted to EMNLP 2025 (main). Published version: https://aclanthology.org/2025.emnlp-main.688/ Code available at: https://github.com/yueen-ma/Astra
LLM-Glasses: GenAI-driven Glasses with Haptic Feedback for Navigation of Visually Impaired People
LLM-Glasses is a wearable navigation system which assists visually impaired people by utilizing YOLO-World object detection, GPT-4o-based reasoning, and haptic feedback for real-time guidance. The device translates visual scene understanding into intuitive tactile feedback on the temples, allowing hands-free navigation. Three studies evaluate the system: recognition of 13 haptic patterns with an average recognition rate of 81.3%, VICON-based guidance with predefined paths using haptic cues, and an LLM-guided scene evaluation with decision accuracies of 91.8% without obstacles, 84.6% with static obstacles, and 81.5% with dynamic obstacles. These results show that LLM-Glasses can deliver reliable navigation support in controlled environments and motivate further work on responsiveness and deployment in more complex real-world scenarios.
Message passing-based inference in an autoregressive active inference agent
We present the design of an autoregressive active inference agent in the form of message passing on a factor graph. Expected free energy is derived and distributed across a planning graph. The proposed agent is validated on a robot navigation task, demonstrating exploration and exploitation in a continuous-valued observation space with bounded continuous-valued actions. Compared to a classical optimal controller, the agent modulates action based on predictive uncertainty, arriving later but with a better model of the robot's dynamics.
comment: 14 pages, 4 figures, proceedings of the International Workshop on Active Inference 2025. Erratum v1: in Eq. (50), $p(y_t, Θ, u_t \mid y_{*}, \mathcal{D}_k)$ should have been $p(y_t, Θ\mid u_t, y_{*}, \mathcal{D}_k)$
Event-Grounding Graph: Unified Spatio-Temporal Scene Graph from Robotic Observations RA-L
A fundamental aspect for building intelligent autonomous robots that can assist humans in their daily lives is the construction of rich environmental representations. While advances in semantic scene representations have enriched robotic scene understanding, current approaches lack a connection between spatial features and dynamic events; e.g., connecting the blue mug to the event washing a mug. In this work, we introduce the event-grounding graph (EGG), a framework grounding event interactions to spatial features of a scene. This representation allows robots to perceive, reason, and respond to complex spatio-temporal queries. Experiments using real robotic data demonstrate EGG's capability to retrieve relevant information and respond accurately to human inquiries concerning the environment and events within. Furthermore, the EGG framework's source code and evaluation dataset are released as open-source at: https://github.com/aalto-intelligent-robotics/EGG.
comment: Submitted to RA-L
Prespecified-Performance Kinematic Tracking Control for Aerial Manipulation
This paper studies the kinematic tracking control problem for aerial manipulators. Existing kinematic tracking control methods, which typically employ proportional-derivative feedback or tracking-error-based feedback strategies, may fail to achieve tracking objectives within specified time constraints. To address this limitation, we propose a novel control framework comprising two key components: end-effector tracking control based on a user-defined preset trajectory and quadratic programming-based reference allocation. Compared with state-of-the-art approaches, the proposed method has several attractive features. First, it ensures that the end-effector reaches the desired position within a preset time while keeping the tracking error within a performance envelope that reflects task requirements. Second, quadratic programming is employed to allocate the references of the quadcopter base and the Delta arm, while considering the physical constraints of the aerial manipulator, thus preventing solutions that may violate physical limitations. The proposed approach is validated through three experiments. Experimental results demonstrate the effectiveness of the proposed algorithm and its capability to guarantee that the target position is reached within the preset time.
A Survey on Vision-Language-Action Models for Embodied AI
Embodied AI is widely recognized as a cornerstone of artificial general intelligence because it involves controlling embodied agents to perform tasks in the physical world. Building on the success of large language models and vision-language models, a new category of multimodal models -- referred to as vision-language-action models (VLAs) -- has emerged to address language-conditioned robotic tasks in embodied AI by leveraging their distinct ability to generate actions. The recent proliferation of VLAs necessitates a comprehensive survey to capture the rapidly evolving landscape. To this end, we present the first survey on VLAs for embodied AI. This work provides a detailed taxonomy of VLAs, organized into three major lines of research. The first line focuses on individual components of VLAs. The second line is dedicated to developing VLA-based control policies adept at predicting low-level actions. The third line comprises high-level task planners capable of decomposing long-horizon tasks into a sequence of subtasks, thereby guiding VLAs to follow more general user instructions. Furthermore, we provide an extensive summary of relevant resources, including datasets, simulators, and benchmarks. Finally, we discuss the challenges facing VLAs and outline promising future directions in embodied AI. A curated repository associated with this survey is available at: https://github.com/yueen-ma/Awesome-VLA.
comment: Project page: https://github.com/yueen-ma/Awesome-VLA
Safe Navigation under State Uncertainty: Online Adaptation for Robust Control Barrier Functions
Measurements and state estimates are often imperfect in control practice, posing challenges for safety-critical applications, where safety guarantees rely on accurate state information. In the presence of estimation errors, several prior robust control barrier function (R-CBF) formulations have imposed strict conditions on the input. These methods can be overly conservative and can introduce issues such as infeasibility, high control effort, etc. This work proposes a systematic method to improve R-CBFs, and demonstrates its advantages on a tracked vehicle that navigates among multiple obstacles. A primary contribution is a new optimization-based online parameter adaptation scheme that reduces the conservativeness of existing R-CBFs. In order to reduce the complexity of the parameter optimization, we merge several safety constraints into one unified numerical CBF via Poisson's equation. We further address the dual relative degree issue that typically causes difficulty in vehicle tracking. Experimental trials demonstrate the overall performance improvement of our approach over existing formulations.
Genie Centurion: Accelerating Scalable Real-World Robot Training with Human Rewind-and-Refine Guidance
While Vision-Language-Action (VLA) models show strong generalizability in various tasks, real-world deployment of robotic policy still requires large-scale, high-quality human expert demonstrations. However, data collection via human teleoperation requires continuous operator attention, which is costly, hard to scale. To address this, we propose Genie Centurion (GCENT), a scalable and general data collection paradigm based on human rewind-and-refine guidance, enabling robots' interactive learning in deployment. GCENT starts at an imperfect policy and improves over time. When the robot execution failures occur, GCENT allows robots to revert to a previous state with a rewind mechanism, after which a teleoperator provides corrective demonstrations to refine the policy. This framework supports a one-human-to-many-robots supervision scheme with a Task Sentinel module, which autonomously predicts task success and solicits human intervention when necessary. Empirical results show that GCENT achieves up to 40% higher task success rates than state-of-the-art data collection methods, and reaches comparable performance using less than half the data in long-horizon and precise tasks. We also quantify the data yield-to-effort ratio under multi-robot scenarios, demonstrating GCENT's potential for scalable and cost-efficient robot policy training in real-world environments.
PERSEUS: Perception with Semantic Endoscopic Understanding and SLAM
Purpose: Natural orifice surgeries minimize the need for incisions and reduce the recovery time compared to open surgery; however, they require a higher level of expertise due to visualization and orientation challenges. We propose a perception pipeline for these surgeries that allows semantic scene understanding. Methods: We bring learning-based segmentation, depth estimation, and 3D reconstruction modules together to create real-time segmented maps of the surgical scenes. Additionally, we use registration with robot poses to solve the scale ambiguity of mapping from monocular images, and allow the use of semantically informed real-time reconstructions in robotic surgeries. Results: We achieve sub-milimeter reconstruction accuracy based on average one-sided Chamfer distances, average pose registration RMSE of 0.9 mm, and an estimated scale within 2% of ground truth. Conclusion: We present a modular perception pipeline, integrating semantic segmentation with real-time monocular SLAM for natural orifice surgeries. This pipeline offers a promising solution for scene understanding that can facilitate automation or surgeon guidance.
comment: 13 pages, 6 figures, 2 tables. Under review for The 17th International Conference on Information Processing in Computer-Assisted Interventions (IPCAI 2026)
Computer Vision and Pattern Recognition 137
Event-based Heterogeneous Information Processing for Online Vision-based Obstacle Detection and Localization
This paper introduces a novel framework for robotic vision-based navigation that integrates Hybrid Neural Networks (HNNs) with Spiking Neural Network (SNN)-based filtering to enhance situational awareness for unmodeled obstacle detection and localization. By leveraging the complementary strengths of Artificial Neural Networks (ANNs) and SNNs, the system achieves both accurate environmental understanding and fast, energy-efficient processing. The proposed architecture employs a dual-pathway approach: an ANN component processes static spatial features at low frequency, while an SNN component handles dynamic, event-based sensor data in real time. Unlike conventional hybrid architectures that rely on domain conversion mechanisms, our system incorporates a pre-developed SNN-based filter that directly utilizes spike-encoded inputs for localization and state estimation. Detected anomalies are validated using contextual information from the ANN pathway and continuously tracked to support anticipatory navigation strategies. Simulation results demonstrate that the proposed method offers acceptable detection accuracy while maintaining computational efficiency close to SNN-only implementations, which operate at a fraction of the resource cost. This framework represents a significant advancement in neuromorphic navigation systems for robots operating in unpredictable and dynamic environments.
Analyzing VLM-Based Approaches for Anomaly Classification and Segmentation
Vision-Language Models (VLMs), particularly CLIP, have revolutionized anomaly detection by enabling zero-shot and few-shot defect identification without extensive labeled datasets. By learning aligned representations of images and text, VLMs facilitate anomaly classification and segmentation through natural language descriptions of normal and abnormal states, eliminating traditional requirements for task-specific training or defect examples. This project presents a comprehensive analysis of VLM-based approaches for anomaly classification (AC) and anomaly segmentation (AS). We systematically investigate key architectural paradigms including sliding window-based dense feature extraction (WinCLIP), multi-stage feature alignment with learnable projections (AprilLab framework), and compositional prompt ensemble strategies. Our analysis evaluates these methods across critical dimensions: feature extraction mechanisms, text-visual alignment strategies, prompt engineering techniques, zero-shot versus few-shot trade-offs, computational efficiency, and cross-domain generalization. Through rigorous experimentation on benchmarks such as MVTec AD and VisA, we compare classification accuracy, segmentation precision, and inference efficiency. The primary contribution is a foundational understanding of how and why VLMs succeed in anomaly detection, synthesizing practical insights for method selection and identifying current limitations. This work aims to facilitate informed adoption of VLM-based methods in industrial quality control and guide future research directions.
comment: 10 pages,4 images
SGW-GAN: Sliced Gromov-Wasserstein Guided GANs for Retinal Fundus Image Enhancement
Retinal fundus photography is indispensable for ophthalmic screening and diagnosis, yet image quality is often degraded by noise, artifacts, and uneven illumination. Recent GAN- and diffusion-based enhancement methods improve perceptual quality by aligning degraded images with high-quality distributions, but our analysis shows that this focus can distort intra-class geometry: clinically related samples become dispersed, disease-class boundaries blur, and downstream tasks such as grading or lesion detection are harmed. The Gromov Wasserstein (GW) discrepancy offers a principled solution by aligning distributions through internal pairwise distances, naturally preserving intra-class structure, but its high computational cost restricts practical use. To overcome this, we propose SGW-GAN, the first framework to incorporate Sliced GW (SGW) into retinal image enhancement. SGW approximates GW via random projections, retaining relational fidelity while greatly reducing cost. Experiments on public datasets show that SGW-GAN produces visually compelling enhancements, achieves superior diabetic retinopathy grading, and reports the lowest GW discrepancy across disease labels, demonstrating both efficiency and clinical fidelity for unpaired medical image enhancement.
Diffusion Representations for Fine-Grained Image Classification: A Marine Plankton Case Study CVPR
Diffusion models have emerged as state-of-the-art generative methods for image synthesis, yet their potential as general-purpose feature encoders remains underexplored. Trained for denoising and generation without labels, they can be interpreted as self-supervised learners that capture both low- and high-level structure. We show that a frozen diffusion backbone enables strong fine-grained recognition by probing intermediate denoising features across layers and timesteps and training a linear classifier for each pair. We evaluate this in a real-world plankton-monitoring setting with practical impact, using controlled and comparable training setups against established supervised and self-supervised baselines. Frozen diffusion features are competitive with supervised baselines and outperform other self-supervised methods in both balanced and naturally long-tailed settings. Out-of-distribution evaluations on temporally and geographically shifted plankton datasets further show that frozen diffusion features maintain strong accuracy and Macro F1 under substantial distribution shift.
comment: 21 pages, 6 figures, CVPR format
Using deep learning for predicting cleansing quality of colon capsule endoscopy images
In this study, we explore the application of deep learning techniques for predicting cleansing quality in colon capsule endoscopy (CCE) images. Using a dataset of 500 images labeled by 14 clinicians on the Leighton-Rex scale (Poor, Fair, Good, and Excellent), a ResNet-18 model was trained for classification, leveraging stratified K-fold cross-validation to ensure robust performance. To optimize the model, structured pruning techniques were applied iteratively, achieving significant sparsity while maintaining high accuracy. Explainability of the pruned model was evaluated using Grad-CAM, Grad-CAM++, Eigen-CAM, Ablation-CAM, and Random-CAM, with the ROAD method employed for consistent evaluation. Our results indicate that for a pruned model, we can achieve a cross-validation accuracy of 88% with 79% sparsity, demonstrating the effectiveness of pruning in improving efficiency from 84% without compromising performance. We also highlight the challenges of evaluating cleansing quality of CCE images, emphasize the importance of explainability in clinical applications, and discuss the challenges associated with using the ROAD method for our task. Finally, we employ a variant of adaptive temperature scaling to calibrate the pruned models for an external dataset.
comment: 24 pages
Local-to-Global Logical Explanations for Deep Vision Models
While deep neural networks are extremely effective at classifying images, they remain opaque and hard to interpret. We introduce local and global explanation methods for black-box models that generate explanations in terms of human-recognizable primitive concepts. Both the local explanations for a single image and the global explanations for a set of images are cast as logical formulas in monotone disjunctive-normal-form (MDNF), whose satisfaction guarantees that the model yields a high score on a given class. We also present an algorithm for explaining the classification of examples into multiple classes in the form of a monotone explanation list over primitive concepts. Despite their simplicity and interpretability we show that the explanations maintain high fidelity and coverage with respect to the blackbox models they seek to explain in challenging vision datasets.
comment: 15 pages, 5 figures, 5th International Joint Conference on Learning & Reasoning 2025
Reasoning with Pixel-level Precision: QVLM Architecture and SQuID Dataset for Quantitative Geospatial Analytics CVPR 2026
Current Vision-Language Models (VLMs) fail at quantitative spatial reasoning because their architectures destroy pixel-level information required for counting and measurements. Vision encoders compress images through patch embeddings, reducing spatial indexing and losing the precise pixel-level tracking required for accurate counting. We present two contributions to address this fundamental limitation. First, we introduce SQuID (Satellite Quantitative Intelligence Dataset), a benchmark of 2,000 satellite image Question-Answer pairs with both numerical range and categorical answers, designed to evaluate quantitative spatial reasoning. The dataset spans three difficulty tiers with annotations automatically generated from human labels and their learned variability. Second, we propose QVLM (Quantitative Vision-Language Model), a code-generation architecture that maintains pixel precision by decoupling language understanding from visual analysis. Instead of encoding images into embeddings, QVLM generates executable code that first calls a segmentation model to obtain pixel-level masks, then operates directly on these masks, preserving spatial indexing throughout the reasoning process. Our experiments show that QVLM using GPT-5 as coder achieves 42.0% accuracy on SQuID compared to 28.1% for a VLM prompted with image-question pairs. Our work reveals that, for quantitative spatial reasoning, architectural decoupling enables better accuracy on quantitative tasks.
comment: Submitted to CVPR 2026. Introduces the QVLM architecture and the SQuID dataset for quantitative geospatial reasoning. Dataset DOI: 10.57967/hf/7565
Deep Image Prior with L0 Gradient Regularizer for Image Smoothing
Image smoothing is a fundamental image processing operation that preserves the underlying structure, such as strong edges and contours, and removes minor details and textures in an image. Many image smoothing algorithms rely on computing local window statistics or solving an optimization problem. Recent state-of-the-art methods leverage deep learning, but they require a carefully curated training dataset. Because constructing a proper training dataset for image smoothing is challenging, we propose DIP-$\ell_0$, a deep image prior framework that incorporates the $\ell_0$ gradient regularizer. This framework can perform high-quality image smoothing without any training data. To properly minimize the associated loss function that has the nonconvex, nonsmooth $\ell_0$ ``norm", we develop an alternating direction method of multipliers algorithm that utilizes an off-the-shelf $\ell_0$ gradient minimization solver. Numerical experiments demonstrate that the proposed DIP-$\ell_0$ outperforms many image smoothing algorithms in edge-preserving image smoothing and JPEG artifact removal.
comment: To be published in the Proceedings of IEEE ICASSP 2026
Leveraging Transformer Decoder for Automotive Radar Object Detection
In this paper, we present a Transformer-based architecture for 3D radar object detection that uses a novel Transformer Decoder as the prediction head to directly regress 3D bounding boxes and class scores from radar feature representations. To bridge multi-scale radar features and the decoder, we propose Pyramid Token Fusion (PTF), a lightweight module that converts a feature pyramid into a unified, scale-aware token sequence. By formulating detection as a set prediction problem with learnable object queries and positional encodings, our design models long-range spatial-temporal correlations and cross-feature interactions. This approach eliminates dense proposal generation and heuristic post-processing such as extensive non-maximum suppression (NMS) tuning. We evaluate the proposed framework on the RADDet, where it achieves significant improvements over state-of-the-art radar-only baselines.
Organ-Aware Attention Improves CT Triage and Classification
There is an urgent need for triage and classification of high-volume medical imaging modalities such as computed tomography (CT), which can improve patient care and mitigate radiologist burnout. Study-level CT triage requires calibrated predictions with localized evidence; however, off-the-shelf Vision Language Models (VLM) struggle with 3D anatomy, protocol shifts, and noisy report supervision. This study used the two largest publicly available chest CT datasets: CT-RATE and RADCHEST-CT (held-out external test set). Our carefully tuned supervised baseline (instantiated as a simple Global Average Pooling head) establishes a new supervised state of the art, surpassing all reported linear-probe VLMs. Building on this baseline, we present ORACLE-CT, an encoder-agnostic, organ-aware head that pairs Organ-Masked Attention (mask-restricted, per-organ pooling that yields spatial evidence) with Organ-Scalar Fusion (lightweight fusion of normalized volume and mean-HU cues). In the chest setting, ORACLE-CT masked attention model achieves AUROC 0.86 on CT-RATE; in the abdomen setting, on MERLIN (30 findings), our supervised baseline exceeds a reproduced zero-shot VLM baseline obtained by running publicly released weights through our pipeline, and adding masked attention plus scalar fusion further improves performance to AUROC 0.85. Together, these results deliver state-of-the-art supervised classification performance across both chest and abdomen CT under a unified evaluation protocol. The source code is available at https://github.com/lavsendahal/oracle-ct.
Practical Insights into Semi-Supervised Object Detection Approaches
Learning in data-scarce settings has recently gained significant attention in the research community. Semi-supervised object detection(SSOD) aims to improve detection performance by leveraging a large number of unlabeled images alongside a limited number of labeled images(a.k.a.,few-shot learning). In this paper, we present a comprehensive comparison of three state-of-the-art SSOD approaches, including MixPL, Semi-DETR and Consistent-Teacher, with the goal of understanding how performance varies with the number of labeled images. We conduct experiments using the MS-COCO and Pascal VOC datasets, two popular object detection benchmarks which allow for standardized evaluation. In addition, we evaluate the SSOD approaches on a custom Beetle dataset which enables us to gain insights into their performance on specialized datasets with a smaller number of object categories. Our findings highlight the trade-offs between accuracy, model size, and latency, providing insights into which methods are best suited for low-data regimes.
A Lightweight Model-Driven 4D Radar Framework for Pervasive Human Detection in Harsh Conditions
Pervasive sensing in industrial and underground environments is severely constrained by airborne dust, smoke, confined geometry, and metallic structures, which rapidly degrade optical and LiDAR based perception. Elevation resolved 4D mmWave radar offers strong resilience to such conditions, yet there remains a limited understanding of how to process its sparse and anisotropic point clouds for reliable human detection in enclosed, visibility degraded spaces. This paper presents a fully model-driven 4D radar perception framework designed for real-time execution on embedded edge hardware. The system uses radar as its sole perception modality and integrates domain aware multi threshold filtering, ego motion compensated temporal accumulation, KD tree Euclidean clustering with Doppler aware refinement, and a rule based 3D classifier. The framework is evaluated in a dust filled enclosed trailer and in real underground mining tunnels, and in the tested scenarios the radar based detector maintains stable pedestrian identification as camera and LiDAR modalities fail under severe visibility degradation. These results suggest that the proposed model-driven approach provides robust, interpretable, and computationally efficient perception for safety-critical applications in harsh industrial and subterranean environments.
Spherical Geometry Diffusion: Generating High-quality 3D Face Geometry via Sphere-anchored Representations
A fundamental challenge in text-to-3D face generation is achieving high-quality geometry. The core difficulty lies in the arbitrary and intricate distribution of vertices in 3D space, making it challenging for existing models to establish clean connectivity and resulting in suboptimal geometry. To address this, our core insight is to simplify the underlying geometric structure by constraining the distribution onto a simple and regular manifold, a topological sphere. Building on this, we first propose the Spherical Geometry Representation, a novel face representation that anchors geometric signals to uniform spherical coordinates. This guarantees a regular point distribution, from which the mesh connectivity can be robustly reconstructed. Critically, this canonical sphere can be seamlessly unwrapped into a 2D map, creating a perfect synergy with powerful 2D generative models. We then introduce Spherical Geometry Diffusion, a conditional diffusion framework built upon this 2D map. It enables diverse and controllable generation by jointly modeling geometry and texture, where the geometry explicitly conditions the texture synthesis process. Our method's effectiveness is demonstrated through its success in a wide range of tasks: text-to-3D generation, face reconstruction, and text-based 3D editing. Extensive experiments show that our approach substantially outperforms existing methods in geometric quality, textual fidelity, and inference efficiency.
comment: Association for the Advancement of Artificial Intelligence
Real-Time 4D Radar Perception for Robust Human Detection in Harsh Enclosed Environments
This paper introduces a novel methodology for generating controlled, multi-level dust concentrations in a highly cluttered environment representative of harsh, enclosed environments, such as underground mines, road tunnels, or collapsed buildings, enabling repeatable mm-wave propagation studies under severe electromagnetic constraints. We also present a new 4D mmWave radar dataset, augmented by camera and LiDAR, illustrating how dust particles and reflective surfaces jointly impact the sensing functionality. To address these challenges, we develop a threshold-based noise filtering framework leveraging key radar parameters (RCS, velocity, azimuth, elevation) to suppress ghost targets and mitigate strong multipath reflections at the raw data level. Building on the filtered point clouds, a cluster-level, rule-based classification pipeline exploits radar semantics-velocity, RCS, and volumetric spread-to achieve reliable, real-time pedestrian detection without extensive domainspecific training. Experimental results confirm that this integrated approach significantly enhances clutter mitigation, detection robustness, and overall system resilience in dust-laden mining environments.
MultiST: A Cross-Attention-Based Multimodal Model for Spatial Transcriptomic
Spatial transcriptomics (ST) enables transcriptome-wide profiling while preserving the spatial context of tissues, offering unprecedented opportunities to study tissue organization and cell-cell interactions in situ. Despite recent advances, existing methods often lack effective integration of histological morphology with molecular profiles, relying on shallow fusion strategies or omitting tissue images altogether, which limits their ability to resolve ambiguous spatial domain boundaries. To address this challenge, we propose MultiST, a unified multimodal framework that jointly models spatial topology, gene expression, and tissue morphology through cross-attention-based fusion. MultiST employs graph-based gene encoders with adversarial alignment to learn robust spatial representations, while integrating color-normalized histological features to capture molecular-morphological dependencies and refine domain boundaries. We evaluated the proposed method on 13 diverse ST datasets spanning two organs, including human brain cortex and breast cancer tissue. MultiST yields spatial domains with clearer and more coherent boundaries than existing methods, leading to more stable pseudotime trajectories and more biologically interpretable cell-cell interaction patterns. The MultiST framework and source code are available at https://github.com/LabJunBMI/MultiST.git.
CausalSpatial: A Benchmark for Object-Centric Causal Spatial Reasoning
Humans can look at a static scene and instantly predict what happens next -- will moving this object cause a collision? We call this ability Causal Spatial Reasoning. However, current multimodal large language models (MLLMs) cannot do this, as they remain largely restricted to static spatial perception, struggling to answer "what-if" questions in a 3D scene. We introduce CausalSpatial, a diagnostic benchmark evaluating whether models can anticipate consequences of object motions across four tasks: Collision, Compatibility, Occlusion, and Trajectory. Results expose a severe gap: humans score 84% while GPT-5 achieves only 54%. Why do MLLMs fail? Our analysis uncovers a fundamental deficiency: models over-rely on textual chain-of-thought reasoning that drifts from visual evidence, producing fluent but spatially ungrounded hallucinations. To address this, we propose the Causal Object World model (COW), a framework that externalizes the simulation process by generating videos of hypothetical dynamics. With explicit visual cues of causality, COW enables models to ground their reasoning in physical reality rather than linguistic priors. We make the dataset and code publicly available here: https://github.com/CausalSpatial/CausalSpatial
comment: Code is available: https://github.com/CausalSpatial/CausalSpatial
Enginuity: Building an Open Multi-Domain Dataset of Complex Engineering Diagrams NeurIPS 2025
We propose Enginuity - the first open, large-scale, multi-domain engineering diagram dataset with comprehensive structural annotations designed for automated diagram parsing. By capturing hierarchical component relationships, connections, and semantic elements across diverse engineering domains, our proposed dataset would enable multimodal large language models to address critical downstream tasks including structured diagram parsing, cross-modal information retrieval, and AI-assisted engineering simulation. Enginuity would be transformative for AI for Scientific Discovery by enabling artificial intelligence systems to comprehend and manipulate the visual-structural knowledge embedded in engineering diagrams, breaking down a fundamental barrier that currently prevents AI from fully participating in scientific workflows where diagram interpretation, technical drawing analysis, and visual reasoning are essential for hypothesis generation, experimental design, and discovery.
comment: Accepted at the 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Ai4 Science
Deep Learning for Semantic Segmentation of 3D Ultrasound Data
Developing cost-efficient and reliable perception systems remains a central challenge for automated vehicles. LiDAR and camera-based systems dominate, yet they present trade-offs in cost, robustness and performance under adverse conditions. This work introduces a novel framework for learning-based 3D semantic segmentation using Calyo Pulse, a modular, solid-state 3D ultrasound sensor system for use in harsh and cluttered environments. A 3D U-Net architecture is introduced and trained on the spatial ultrasound data for volumetric segmentation. Results demonstrate robust segmentation performance from Calyo Pulse sensors, with potential for further improvement through larger datasets, refined ground truth, and weighted loss functions. Importantly, this study highlights 3D ultrasound sensing as a promising complementary modality for reliable autonomy.
comment: 14 pages, 10 figures, 8 tables, presented at 2025 13th International Conference on Robot Intelligence Technology and Applications (RITA)
Aligning Agentic World Models via Knowledgeable Experience Learning
Current Large Language Models (LLMs) exhibit a critical modal disconnect: they possess vast semantic knowledge but lack the procedural grounding to respect the immutable laws of the physical world. Consequently, while these agents implicitly function as world models, their simulations often suffer from physical hallucinations-generating plans that are logically sound but physically unexecutable. Existing alignment strategies predominantly rely on resource-intensive training or fine-tuning, which attempt to compress dynamic environmental rules into static model parameters. However, such parametric encapsulation is inherently rigid, struggling to adapt to the open-ended variability of physical dynamics without continuous, costly retraining. To bridge this gap, we introduce WorldMind, a framework that autonomously constructs a symbolic World Knowledge Repository by synthesizing environmental feedback. Specifically, it unifies Process Experience to enforce physical feasibility via prediction errors and Goal Experience to guide task optimality through successful trajectories. Experiments on EB-ALFRED and EB-Habitat demonstrate that WorldMind achieves superior performance compared to baselines with remarkable cross-model and cross-environment transferability.
comment: Ongoing work
A Semantic Decoupling-Based Two-Stage Rainy-Day Attack for Revealing Weather Robustness Deficiencies in Vision-Language Models
Vision-Language Models (VLMs) are trained on image-text pairs collected under canonical visual conditions and achieve strong performance on multimodal tasks. However, their robustness to real-world weather conditions, and the stability of cross-modal semantic alignment under such structured perturbations, remain insufficiently studied. In this paper, we focus on rainy scenarios and introduce the first adversarial framework that exploits realistic weather to attack VLMs, using a two-stage, parameterized perturbation model based on semantic decoupling to analyze rain-induced shifts in decision-making. In Stage 1, we model the global effects of rainfall by applying a low-dimensional global modulation to condition the embedding space and gradually weaken the original semantic decision boundaries. In Stage 2, we introduce structured rain variations by explicitly modeling multi-scale raindrop appearance and rainfall-induced illumination changes, and optimize the resulting non-differentiable weather space to induce stable semantic shifts. Operating in a non-pixel parameter space, our framework generates perturbations that are both physically grounded and interpretable. Experiments across multiple tasks show that even physically plausible, highly constrained weather perturbations can induce substantial semantic misalignment in mainstream VLMs, posing potential safety and reliability risks in real-world deployment. Ablations further confirm that illumination modeling and multi-scale raindrop structures are key drivers of these semantic shifts.
ConvMambaNet: A Hybrid CNN-Mamba State Space Architecture for Accurate and Real-Time EEG Seizure Detection
Epilepsy is a chronic neurological disorder marked by recurrent seizures that can severely impact quality of life. Electroencephalography (EEG) remains the primary tool for monitoring neural activity and detecting seizures, yet automated analysis remains challenging due to the temporal complexity of EEG signals. This study introduces ConvMambaNet, a hybrid deep learning model that integrates Convolutional Neural Networks (CNNs) with the Mamba Structured State Space Model (SSM) to enhance temporal feature extraction. By embedding the Mamba-SSM block within a CNN framework, the model effectively captures both spatial and long-range temporal dynamics. Evaluated on the CHB-MIT Scalp EEG dataset, ConvMambaNet achieved a 99% accuracy and demonstrated robust performance under severe class imbalance. These results underscore the model's potential for precise and efficient seizure detection, offering a viable path toward real-time, automated epilepsy monitoring in clinical environments.
Not all Blends are Equal: The BLEMORE Dataset of Blended Emotion Expressions with Relative Salience Annotations
Humans often experience not just a single basic emotion at a time, but rather a blend of several emotions with varying salience. Despite the importance of such blended emotions, most video-based emotion recognition approaches are designed to recognize single emotions only. The few approaches that have attempted to recognize blended emotions typically cannot assess the relative salience of the emotions within a blend. This limitation largely stems from the lack of datasets containing a substantial number of blended emotion samples annotated with relative salience. To address this shortcoming, we introduce BLEMORE, a novel dataset for multimodal (video, audio) blended emotion recognition that includes information on the relative salience of each emotion within a blend. BLEMORE comprises over 3,000 clips from 58 actors, performing 6 basic emotions and 10 distinct blends, where each blend has 3 different salience configurations (50/50, 70/30, and 30/70). Using this dataset, we conduct extensive evaluations of state-of-the-art video classification approaches on two blended emotion prediction tasks: (1) predicting the presence of emotions in a given sample, and (2) predicting the relative salience of emotions in a blend. Our results show that unimodal classifiers achieve up to 29% presence accuracy and 13% salience accuracy on the validation set, while multimodal methods yield clear improvements, with ImageBind + WavLM reaching 35% presence accuracy and HiCMAE 18% salience accuracy. On the held-out test set, the best models achieve 33% presence accuracy (VideoMAEv2 + HuBERT) and 18% salience accuracy (HiCMAE). In sum, the BLEMORE dataset provides a valuable resource to advancing research on emotion recognition systems that account for the complexity and significance of blended emotion expressions.
comment: Accepted for publication at IEEE Face & Gesture 2026
ObjectVisA-120: Object-based Visual Attention Prediction in Interactive Street-crossing Environments IV
The object-based nature of human visual attention is well-known in cognitive science, but has only played a minor role in computational visual attention models so far. This is mainly due to a lack of suitable datasets and evaluation metrics for object-based attention. To address these limitations, we present \dataset~ -- a novel 120-participant dataset of spatial street-crossing navigation in virtual reality specifically geared to object-based attention evaluations. The uniqueness of the presented dataset lies in the ethical and safety affiliated challenges that make collecting comparable data in real-world environments highly difficult. \dataset~ not only features accurate gaze data and a complete state-space representation of objects in the virtual environment, but it also offers variable scenario complexities and rich annotations, including panoptic segmentation, depth information, and vehicle keypoints. We further propose object-based similarity (oSIM) as a novel metric to evaluate the performance of object-based visual attention models, a previously unexplored performance characteristic. Our evaluations show that explicitly optimising for object-based attention not only improves oSIM performance but also leads to an improved model performance on common metrics. In addition, we present SUMGraph, a Mamba U-Net-based model, which explicitly encodes critical scene objects (vehicles) in a graph representation, leading to further performance improvements over several state-of-the-art visual attention prediction methods. The dataset, code and models will be publicly released.
comment: Accepted for publication at the IEEE Intelligent Vehicles Symposium (IV), 2026
Rethinking Skip Connections: Additive U-Net for Robust and Interpretable Denoising
Skip connections are central to U-Net architectures for image denoising, but standard concatenation doubles channel dimensionality and obscures information flow, allowing uncontrolled noise transfer. We propose the Additive U-Net, which replaces concatenative skips with gated additive connections. Each skip pathway is scaled by a learnable non-negative scalar, offering explicit and interpretable control over encoder contributions while avoiding channel inflation. Evaluations on the Kodak-17 denoising benchmark show that Additive U-Net achieves competitive PSNR/SSIM at noise levels σ = 15, 25, 50, with robustness across kernel schedules and depths. Notably, effective denoising is achieved even without explicit down/up-sampling or forced hierarchies, as the model naturally learns a progression from high-frequency to band-pass to low-frequency features. These results position additive skips as a lightweight and interpretable alternative to concatenation, enabling both efficient design and a clearer understanding of multi-scale information transfer in reconstruction networks.
GTPred: Benchmarking MLLMs for Interpretable Geo-localization and Time-of-capture Prediction
Geo-localization aims to infer the geographic location where an image was captured using observable visual evidence. Traditional methods achieve impressive results through large-scale training on massive image corpora. With the emergence of multi-modal large language models (MLLMs), recent studies have explored their applications in geo-localization, benefiting from improved accuracy and interpretability. However, existing benchmarks largely ignore the temporal information inherent in images, which can further constrain the location. To bridge this gap, we introduce GTPred, a novel benchmark for geo-temporal prediction. GTPred comprises 370 globally distributed images spanning over 120 years. We evaluate MLLM predictions by jointly considering year and hierarchical location sequence matching, and further assess intermediate reasoning chains using meticulously annotated ground-truth reasoning processes. Experiments on 8 proprietary and 7 open-source MLLMs show that, despite strong visual perception, current models remain limited in world knowledge and geo-temporal reasoning. Results also demonstrate that incorporating temporal information significantly enhances location inference performance.
From 100,000+ images to winning the first brain MRI foundation model challenges: Sharing lessons and models
Developing Foundation Models for medical image analysis is essential to overcome the unique challenges of radiological tasks. The first challenges of this kind for 3D brain MRI, SSL3D and FOMO25, were held at MICCAI 2025. Our solution ranked first in tracks of both contests. It relies on a U-Net CNN architecture combined with strategies leveraging anatomical priors and neuroimaging domain knowledge. Notably, our models trained 1-2 orders of magnitude faster and were 10 times smaller than competing transformer-based approaches. Models are available here: https://github.com/jbanusco/BrainFM4Challenges.
comment: Work presented at the SSL3D Challenge (1st place, ResEnc-L track) and FOMO Challenge (1st place, Methods track) on Brain MRI Foundation Models at MICCAI 2025
ICo3D: An Interactive Conversational 3D Virtual Human
This work presents Interactive Conversational 3D Virtual Human (ICo3D), a method for generating an interactive, conversational, and photorealistic 3D human avatar. Based on multi-view captures of a subject, we create an animatable 3D face model and a dynamic 3D body model, both rendered by splatting Gaussian primitives. Once merged together, they represent a lifelike virtual human avatar suitable for real-time user interactions. We equip our avatar with an LLM for conversational ability. During conversation, the audio speech of the avatar is used as a driving signal to animate the face model, enabling precise synchronization. We describe improvements to our dynamic Gaussian models that enhance photorealism: SWinGS++ for body reconstruction and HeadGaS++ for face reconstruction, and provide as well a solution to merge the separate face and body models without artifacts. We also present a demo of the complete system, showcasing several use cases of real-time conversation with the 3D avatar. Our approach offers a fully integrated virtual avatar experience, supporting both oral and written form interactions in immersive environments. ICo3D is applicable to a wide range of fields, including gaming, virtual assistance, and personalized education, among others. Project page: https://ico3d.github.io/
comment: Accepted by International Journal on Computer Vision (IJCV). Project page: https://ico3d.github.io/. This preprint has not undergone peer review or any post-submission improvements or corrections. The Version of Record of this article is published in International Journal of Computer Vision and is available online at https://doi.org/10.1007/s11263-025-02725-8
TVWorld: Foundations for Remote-Control TV Agents
Recent large vision-language models (LVLMs) have demonstrated strong potential for device control. However, existing research has primarily focused on point-and-click (PnC) interaction, while remote-control (RC) interaction commonly encountered in everyday TV usage remains largely underexplored. To fill this gap, we introduce \textbf{TVWorld}, an offline graph-based abstraction of real-world TV navigation that enables reproducible and deployment-free evaluation. On this basis, we derive two complementary benchmarks that comprehensively assess TV-use capabilities: \textbf{TVWorld-N} for topology-aware navigation and \textbf{TVWorld-G} for focus-aware grounding. These benchmarks expose a key limitation of existing agents: insufficient topology awareness for focus-based, long-horizon TV navigation. Motivated by this finding, we propose a \emph{Topology-Aware Training} framework that injects topology awareness into LVLMs. Using this framework, we develop \textbf{TVTheseus}, a foundation model specialized for TV navigation. TVTheseus achieves a success rate of $68.3\%$ on TVWorld-N, surpassing strong closed-source baselines such as Gemini 3 Flash and establishing state-of-the-art (SOTA) performance. Additional analyses further provide valuable insights into the development of effective TV-use agents.
Earth Embeddings as Products: Taxonomy, Ecosystem, and Standardized Access
Geospatial Foundation Models (GFMs) provide powerful representations, but high compute costs hinder their widespread use. Pre-computed embedding data products offer a practical "frozen" alternative, yet they currently exist in a fragmented ecosystem of incompatible formats and resolutions. This lack of standardization creates an engineering bottleneck that prevents meaningful model comparison and reproducibility. We formalize this landscape through a three-layer taxonomy: Data, Tools, and Value. We survey existing products to identify interoperability barriers. To bridge this gap, we extend TorchGeo with a unified API that standardizes the loading and querying of diverse embedding products. By treating embeddings as first-class geospatial datasets, we decouple downstream analysis from model-specific engineering, providing a roadmap for more transparent and accessible Earth observation workflows.
CLIP-Guided Adaptable Self-Supervised Learning for Human-Centric Visual Tasks
Human-centric visual analysis plays a pivotal role in diverse applications, including surveillance, healthcare, and human-computer interaction. With the emergence of large-scale unlabeled human image datasets, there is an increasing need for a general unsupervised pre-training model capable of supporting diverse human-centric downstream tasks. To achieve this goal, we propose CLASP (CLIP-guided Adaptable Self-suPervised learning), a novel framework designed for unsupervised pre-training in human-centric visual tasks. CLASP leverages the powerful vision-language model CLIP to generate both low-level (e.g., body parts) and high-level (e.g., attributes) semantic pseudo-labels. These multi-level semantic cues are then integrated into the learned visual representations, enriching their expressiveness and generalizability. Recognizing that different downstream tasks demand varying levels of semantic granularity, CLASP incorporates a Prompt-Controlled Mixture-of-Experts (MoE) module. MoE dynamically adapts feature extraction based on task-specific prompts, mitigating potential feature conflicts and enhancing transferability. Furthermore, CLASP employs a multi-task pre-training strategy, where part- and attribute-level pseudo-labels derived from CLIP guide the representation learning process. Extensive experiments across multiple benchmarks demonstrate that CLASP consistently outperforms existing unsupervised pre-training methods, advancing the field of human-centric visual analysis.
comment: Accepted by TMM (IEEE Transactions on Multimedia), 16 pages, 7 figures
GaussExplorer: 3D Gaussian Splatting for Embodied Exploration and Reasoning
We present GaussExplorer, a framework for embodied exploration and reasoning built on 3D Gaussian Splatting (3DGS). While prior approaches to language-embedded 3DGS have made meaningful progress in aligning simple text queries with Gaussian embeddings, they are generally optimized for relatively simple queries and struggle to interpret more complex, compositional language queries. Alternative studies based on object-centric RGB-D structured memories provide spatial grounding but are constrained by pre-fixed viewpoints. To address these issues, GaussExplorer introduces Vision-Language Models (VLMs) on top of 3DGS to enable question-driven exploration and reasoning within 3D scenes. We first identify pre-captured images that are most correlated with the query question, and subsequently adjust them into novel viewpoints to more accurately capture visual information for better reasoning by VLMs. Experiments show that ours outperforms existing methods on several benchmarks, demonstrating the effectiveness of integrating VLM-based reasoning with 3DGS for embodied tasks.
comment: Project page: https://gaussexplorer.github.io/
PhaseMark: A Post-hoc, Optimization-Free Watermarking of AI-generated Images in the Latent Frequency Domain
The proliferation of hyper-realistic images from Latent Diffusion Models (LDMs) demands robust watermarking, yet existing post-hoc methods are prohibitively slow due to iterative optimization or inversion processes. We introduce PhaseMark, a single-shot, optimization-free framework that directly modulates the phase in the VAE latent frequency domain. This approach makes PhaseMark thousands of times faster than optimization-based techniques while achieving state-of-the-art resilience against severe attacks, including regeneration, without degrading image quality. We analyze four modulation variants, revealing a clear performance-quality trade-off. PhaseMark demonstrates a new paradigm where efficient, resilient watermarking is achieved by exploiting intrinsic latent properties.
comment: Accepted to the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) 2026
A Streamlined Attention-Based Network for Descriptor Extraction 3DV 2026
We introduce SANDesc, a Streamlined Attention-Based Network for Descriptor extraction that aims to improve on existing architectures for keypoint description. Our descriptor network learns to compute descriptors that improve matching without modifying the underlying keypoint detector. We employ a revised U-Net-like architecture enhanced with Convolutional Block Attention Modules and residual paths, enabling effective local representation while maintaining computational efficiency. We refer to the building blocks of our model as Residual U-Net Blocks with Attention. The model is trained using a modified triplet loss in combination with a curriculum learning-inspired hard negative mining strategy, which improves training stability. Extensive experiments on HPatches, MegaDepth-1500, and the Image Matching Challenge 2021 show that training SANDesc on top of existing keypoint detectors leads to improved results on multiple matching tasks compared to the original keypoint descriptors. At the same time, SANDesc has a model complexity of just 2.4 million parameters. As a further contribution, we introduce a new urban dataset featuring 4K images and pre-calibrated intrinsics, designed to evaluate feature extractors. On this benchmark, SANDesc achieves substantial performance gains over the existing descriptors while operating with limited computational resources.
comment: Accepted to 3DV 2026
LLM-VLM Fusion Framework for Autonomous Maritime Port Inspection using a Heterogeneous UAV-USV System
Maritime port inspection plays a critical role in ensuring safety, regulatory compliance, and operational efficiency in complex maritime environments. However, existing inspection methods often rely on manual operations and conventional computer vision techniques that lack scalability and contextual understanding. This study introduces a novel integrated engineering framework that utilizes the synergy between Large Language Models (LLMs) and Vision Language Models (VLMs) to enable autonomous maritime port inspection using cooperative aerial and surface robotic platforms. The proposed framework replaces traditional state-machine mission planners with LLM-driven symbolic planning and improved perception pipelines through VLM-based semantic inspection, enabling context-aware and adaptive monitoring. The LLM module translates natural language mission instructions into executable symbolic plans with dependency graphs that encode operational constraints and ensure safe UAV-USV coordination. Meanwhile, the VLM module performs real-time semantic inspection and compliance assessment, generating structured reports with contextual reasoning. The framework was validated using the extended MBZIRC Maritime Simulator with realistic port infrastructure and further assessed through real-world robotic inspection trials. The lightweight on-board design ensures suitability for resource-constrained maritime platforms, advancing the development of intelligent, autonomous inspection systems. Project resources (code and videos) can be found here: https://github.com/Muhayyuddin/llm-vlm-fusion-port-inspection
comment: submitted in AEJ
Patient-Conditioned Adaptive Offsets for Reliable Diagnosis across Subgroups
AI models for medical diagnosis often exhibit uneven performance across patient populations due to heterogeneity in disease prevalence, imaging appearance, and clinical risk profiles. Existing algorithmic fairness approaches typically seek to reduce such disparities by suppressing sensitive attributes. However, in medical settings these attributes often carry essential diagnostic information, and removing them can degrade accuracy and reliability, particularly in high-stakes applications. In contrast, clinical decision making explicitly incorporates patient context when interpreting diagnostic evidence, suggesting a different design direction for subgroup-aware models. In this paper, we introduce HyperAdapt, a patient-conditioned adaptation framework that improves subgroup reliability while maintaining a shared diagnostic model. Clinically relevant attributes such as age and sex are encoded into a compact embedding and used to condition a hypernetwork-style module, which generates small residual modulation parameters for selected layers of a shared backbone. This design preserves the general medical knowledge learned by the backbone while enabling targeted adjustments that reflect patient-specific variability. To ensure efficiency and robustness, adaptations are constrained through low-rank and bottlenecked parameterizations, limiting both model complexity and computational overhead. Experiments across multiple public medical imaging benchmarks demonstrate that the proposed approach consistently improves subgroup-level performance without sacrificing overall accuracy. On the PAD-UFES-20 dataset, our method outperforms the strongest competing baseline by 4.1% in recall and 4.4% in F1 score, with larger gains observed for underrepresented patient populations.
Prototype Learning-Based Few-Shot Segmentation for Low-Light Crack on Concrete Structures
Crack detection is critical for concrete infrastructure safety, but real-world cracks often appear in low-light environments like tunnels and bridge undersides, degrading computer vision segmentation accuracy. Pixel-level annotation of low-light crack images is extremely time-consuming, yet most deep learning methods require large, well-illuminated datasets. We propose a dual-branch prototype learning network integrating Retinex theory with few-shot learning for low-light crack segmentation. Retinex-based reflectance components guide illumination-invariant global representation learning, while metric learning reduces dependence on large annotated datasets. We introduce a cross-similarity prior mask generation module that computes high-dimensional similarities between query and support features to capture crack location and structure, and a multi-scale feature enhancement module that fuses multi-scale features with the prior mask to alleviate spatial inconsistency. Extensive experiments on multiple benchmarks demonstrate consistent state-of-the-art performance under low-light conditions. Code: https://github.com/YulunGuo/CrackFSS.
GridNet-HD: A High-Resolution Multi-Modal Dataset for LiDAR-Image Fusion on Power Line Infrastructure
This paper presents GridNet-HD, a multi-modal dataset for 3D semantic segmentation of overhead electrical infrastructures, pairing high-density LiDAR with high-resolution oblique imagery. The dataset comprises 7,694 images and 2.5 billion points annotated into 11 classes, with predefined splits and mIoU metrics. Unimodal (LiDAR-only, image-only) and multi-modal fusion baselines are provided. On GridNet-HD, fusion models outperform the best unimodal baseline by +5.55 mIoU, highlighting the complementarity of geometry and appearance. As reviewed in Sec. 2, no public dataset jointly provides high-density LiDAR and high-resolution oblique imagery with 3D semantic labels for power-line assets. Dataset, baselines, and codes are available: https://huggingface.co/collections/heig-vd-geo/gridnet-hd.
Think3D: Thinking with Space for Spatial Reasoning
Understanding and reasoning about the physical world requires spatial intelligence: the ability to interpret geometry, perspective, and spatial relations beyond 2D perception. While recent vision large models (VLMs) excel at visual understanding, they remain fundamentally 2D perceivers and struggle with genuine 3D reasoning. We introduce Think3D, a framework that enables VLM agents to think with 3D space. By leveraging 3D reconstruction models that recover point clouds and camera poses from images or videos, Think3D allows the agent to actively manipulate space through camera-based operations and ego/global-view switching, transforming spatial reasoning into an interactive 3D chain-of-thought process. Without additional training, Think3D significantly improves the spatial reasoning performance of advanced models such as GPT-4.1 and Gemini 2.5 Pro, yielding average gains of +7.8% on BLINK Multi-view and MindCube, and +4.7% on VSI-Bench. We further show that smaller models, which struggle with spatial exploration, benefit significantly from a reinforcement learning policy that enables the model to select informative viewpoints and operations. With RL, the benefit from tool usage increases from +0.7% to +6.8%. Our findings demonstrate that training-free, tool-augmented spatial exploration is a viable path toward more flexible and human-like 3D reasoning in multimodal agents, establishing a new dimension of multimodal intelligence. Code and weights are released at https://github.com/zhangzaibin/spagent.
AsyncBEV: Cross-modal Flow Alignment in Asynchronous 3D Object Detection
In autonomous driving, multi-modal perception tasks like 3D object detection typically rely on well-synchronized sensors, both at training and inference. However, despite the use of hardware- or software-based synchronization algorithms, perfect synchrony is rarely guaranteed: Sensors may operate at different frequencies, and real-world factors such as network latency, hardware failures, or processing bottlenecks often introduce time offsets between sensors. Such asynchrony degrades perception performance, especially for dynamic objects. To address this challenge, we propose AsyncBEV, a trainable lightweight and generic module to improve the robustness of 3D Birds' Eye View (BEV) object detection models against sensor asynchrony. Inspired by scene flow estimation, AsyncBEV first estimates the 2D flow from the BEV features of two different sensor modalities, taking into account the known time offset between these sensor measurements. The predicted feature flow is then used to warp and spatially align the feature maps, which we show can easily be integrated into different current BEV detector architectures (e.g., BEV grid-based and token-based). Extensive experiments demonstrate AsyncBEV improves robustness against both small and large asynchrony between LiDAR or camera sensors in both the token-based CMT and grid-based UniBEV, especially for dynamic objects. We significantly outperform the ego motion compensated CMT and UniBEV baselines, notably by $16.6$ % and $11.9$ % NDS on dynamic objects in the worst-case scenario of a $0.5 s$ time offset. Code will be released upon acceptance.
Early Prediction of Type 2 Diabetes Using Multimodal data and Tabular Transformers
This study introduces a novel approach for early Type 2 Diabetes Mellitus (T2DM) risk prediction using a tabular transformer (TabTrans) architecture to analyze longitudinal patient data. By processing patients` longitudinal health records and bone-related tabular data, our model captures complex, long-range dependencies in disease progression that conventional methods often overlook. We validated our TabTrans model on a retrospective Qatar BioBank (QBB) cohort of 1,382 subjects, comprising 725 men (146 diabetic, 579 healthy) and 657 women (133 diabetic, 524 healthy). The study integrated electronic health records (EHR) with dual-energy X-ray absorptiometry (DXA) data. To address class imbalance, we employed SMOTE and SMOTE-ENN resampling techniques. The proposed model`s performance is evaluated against conventional machine learning (ML) and generative AI models, including Claude 3.5 Sonnet (Anthropic`s constitutional AI), GPT-4 (OpenAI`s generative pre-trained transformer), and Gemini Pro (Google`s multimodal language model). Our TabTrans model demonstrated superior predictive performance, achieving ROC AUC $\geq$ 79.7 % for T2DM prediction compared to both generative AI models and conventional ML approaches. Feature interpretation analysis identified key risk indicators, with visceral adipose tissue (VAT) mass and volume, ward bone mineral density (BMD) and bone mineral content (BMC), T and Z-scores, and L1-L4 scores emerging as the most important predictors associated with diabetes development in Qatari adults. These findings demonstrate the significant potential of TabTrans for analyzing complex tabular healthcare data, providing a powerful tool for proactive T2DM management and personalized clinical interventions in the Qatari population. Index Terms: tabular transformers, multimodal data, DXA data, diabetes, T2DM, feature interpretation, tabular data
comment: 08 pages, 06 figures, accepted for publication in FLLM2025
Cross-Scale Pretraining: Enhancing Self-Supervised Learning for Low-Resolution Satellite Imagery for Semantic Segmentation
Self-supervised pretraining in remote sensing is mostly done using mid-spatial resolution (MR) image datasets due to their high availability. Given the release of high-resolution (HR) datasets, we ask how HR datasets can be included in self-supervised pretraining to enhance MR image representation learning and downstream segmentation performance on MR tasks. We design a spatial affinity component that can be added to existing self-supervised learning frameworks and that uses HR imagery to learn better representations of MR imagery. We test the spatial affinity component on two self-supervised learning frameworks and show that it outperforms models pretrained on HR or MR images alone.
StyMam: A Mamba-Based Generator for Artistic Style Transfer
Image style transfer aims to integrate the visual patterns of a specific artistic style into a content image while preserving its content structure. Existing methods mainly rely on the generative adversarial network (GAN) or stable diffusion (SD). GAN-based approaches using CNNs or Transformers struggle to jointly capture local and global dependencies, leading to artifacts and disharmonious patterns. SD-based methods reduce such issues but often fail to preserve content structures and suffer from slow inference. To address these issues, we revisit GAN and propose a mamba-based generator, termed as StyMam, to produce high-quality stylized images without introducing artifacts and disharmonious patterns. Specifically, we introduce a mamba-based generator with a residual dual-path strip scanning mechanism and a channel-reweighted spatial attention module. The former efficiently captures local texture features, while the latter models global dependencies. Finally, extensive qualitative and quantitative experiments demonstrate that the proposed method outperforms state-of-the-art algorithms in both quality and speed.
comment: Accepted by ICASSP 2026
GazeD: Context-Aware Diffusion for Accurate 3D Gaze Estimation
We introduce GazeD, a new 3D gaze estimation method that jointly provides 3D gaze and human pose from a single RGB image. Leveraging the ability of diffusion models to deal with uncertainty, it generates multiple plausible 3D gaze and pose hypotheses based on the 2D context information extracted from the input image. Specifically, we condition the denoising process on the 2D pose, the surroundings of the subject, and the context of the scene. With GazeD we also introduce a novel way of representing the 3D gaze by positioning it as an additional body joint at a fixed distance from the eyes. The rationale is that the gaze is usually closely related to the pose, and thus it can benefit from being jointly denoised during the diffusion process. Evaluations across three benchmark datasets demonstrate that GazeD achieves state-of-the-art performance in 3D gaze estimation, even surpassing methods that rely on temporal information. Project details will be available at https://aimagelab.ing.unimore.it/go/gazed.
AI-generated data contamination erodes pathological variability and diagnostic reliability
Generative artificial intelligence (AI) is rapidly populating medical records with synthetic content, creating a feedback loop where future models are increasingly at risk of training on uncurated AI-generated data. However, the clinical consequences of this AI-generated data contamination remain unexplored. Here, we show that in the absence of mandatory human verification, this self-referential cycle drives a rapid erosion of pathological variability and diagnostic reliability. By analysing more than 800,000 synthetic data points across clinical text generation, vision-language reporting, and medical image synthesis, we find that models progressively converge toward generic phenotypes regardless of the model architecture. Specifically, rare but critical findings, including pneumothorax and effusions, vanish from the synthetic content generated by AI models, while demographic representations skew heavily toward middle-aged male phenotypes. Crucially, this degradation is masked by false diagnostic confidence; models continue to issue reassuring reports while failing to detect life-threatening pathology, with false reassurance rates tripling to 40%. Blinded physician evaluation confirms that this decoupling of confidence and accuracy renders AI-generated documentation clinically useless after just two generations. We systematically evaluate three mitigation strategies, finding that while synthetic volume scaling fails to prevent collapse, mixing real data with quality-aware filtering effectively preserves diversity. Ultimately, our results suggest that without policy-mandated human oversight, the deployment of generative AI threatens to degrade the very healthcare data ecosystems it relies upon.
comment: *Corresponding author: Dianbo Liu (dianbo@nus.edu.sg)
QASA: Quality-Guided K-Adaptive Slot Attention for Unsupervised Object-Centric Learning
Slot Attention, an approach that binds different objects in a scene to a set of "slots", has become a leading method in unsupervised object-centric learning. Most methods assume a fixed slot count K, and to better accommodate the dynamic nature of object cardinality, a few works have explored K-adaptive variants. However, existing K-adaptive methods still suffer from two limitations. First, they do not explicitly constrain slot-binding quality, so low-quality slots lead to ambiguous feature attribution. Second, adding a slot-count penalty to the reconstruction objective creates conflicting optimization goals between reducing the number of active slots and maintaining reconstruction fidelity. As a result, they still lag significantly behind strong K-fixed baselines. To address these challenges, we propose Quality-Guided K-Adaptive Slot Attention (QASA). First, we decouple slot selection from reconstruction, eliminating the mutual constraints between the two objectives. Then, we propose an unsupervised Slot-Quality metric to assess per-slot quality, providing a principled signal for fine-grained slot--object binding. Based on this metric, we design a Quality-Guided Slot Selection scheme that dynamically selects a subset of high-quality slots and feeds them into our newly designed gated decoder for reconstruction during training. At inference, token-wise competition on slot attention yields a K-adaptive outcome. Experiments show that QASA substantially outperforms existing K-adaptive methods on both real and synthetic datasets. Moreover, on real-world datasets QASA surpasses K-fixed methods.
Membership Inference Test: Auditing Training Data in Object Classification Models AAAI-25
In this research, we analyze the performance of Membership Inference Tests (MINT), focusing on determining whether given data were utilized during the training phase, specifically in the domain of object recognition. Within the area of object recognition, we propose and develop architectures tailored for MINT models. These architectures aim to optimize performance and efficiency in data utilization, offering a tailored solution to tackle the complexities inherent in the object recognition domain. We conducted experiments involving an object detection model, an embedding extractor, and a MINT module. These experiments were performed in three public databases, totaling over 174K images. The proposed architecture leverages convolutional layers to capture and model the activation patterns present in the data during the training process. Through our analysis, we are able to identify given data used for testing and training, achieving precision rates ranging between 70% and 80%, contingent upon the depth of the detection module layer chosen for input to the MINT module. Additionally, our studies entail an analysis of the factors influencing the MINT Module, delving into the contributing elements behind more transparent training processes.
comment: Deployable AI (DAI 2025) workshop co-located with AAAI-25
Dual-Stream Collaborative Transformer for Image Captioning
Current region feature-based image captioning methods have progressed rapidly and achieved remarkable performance. However, they are still prone to generating irrelevant descriptions due to the lack of contextual information and the over-reliance on generated partial descriptions for predicting the remaining words. In this paper, we propose a Dual-Stream Collaborative Transformer (DSCT) to address this issue by introducing the segmentation feature. The proposed DSCT consolidates and then fuses the region and segmentation features to guide the generation of caption sentences. It contains multiple Pattern-Specific Mutual Attention Encoders (PSMAEs) and Dynamic Nomination Decoders (DNDs). The PSMAE effectively highlights and consolidates the private information of two representations by querying each other. The DND dynamically searches for the most relevant learning blocks to the input textual representations and exploits the homogeneous features between the consolidated region and segmentation features to generate more accurate and descriptive caption sentences. To the best of our knowledge, this is the first study to explore how to fuse different pattern-specific features in a dynamic way to bypass their semantic inconsistencies and spatial misalignment issues for image captioning. The experimental results from popular benchmark datasets demonstrate that our DSCT outperforms the state-of-the-art image captioning models in the literature.
Supervision-by-Hallucination-and-Transfer: A Weakly-Supervised Approach for Robust and Precise Facial Landmark Detection
High-precision facial landmark detection (FLD) relies on high-resolution deep feature representations. However, low-resolution face images or the compression (via pooling or strided convolution) of originally high-resolution images hinder the learning of such features, thereby reducing FLD accuracy. Moreover, insufficient training data and imprecise annotations further degrade performance. To address these challenges, we propose a weakly-supervised framework called Supervision-by-Hallucination-and-Transfer (SHT) for more robust and precise FLD. SHT contains two novel mutually enhanced modules: Dual Hallucination Learning Network (DHLN) and Facial Pose Transfer Network (FPTN). By incorporating FLD and face hallucination tasks, DHLN is able to learn high-resolution representations with low-resolution inputs for recovering both facial structures and local details and generating more effective landmark heatmaps. Then, by transforming faces from one pose to another, FPTN can further improve landmark heatmaps and faces hallucinated by DHLN for detecting more accurate landmarks. To the best of our knowledge, this is the first study to explore weakly-supervised FLD by integrating face hallucination and facial pose transfer tasks. Experimental results of both face hallucination and FLD demonstrate that our method surpasses state-of-the-art techniques.
TwoHead-SwinFPN: A Unified DL Architecture for Synthetic Manipulation, Detection and Localization in Identity Documents
The proliferation of sophisticated generative AI models has significantly escalated the threat of synthetic manipulations in identity documents, particularly through face swapping and text inpainting attacks. This paper presents TwoHead-SwinFPN, a unified deep learning architecture that simultaneously performs binary classification and precise localization of manipulated regions in ID documents. Our approach integrates a Swin Transformer backbone with Feature Pyramid Network (FPN) and UNet-style decoder, enhanced with Convolutional Block Attention Module (CBAM) for improved feature representation. The model employs a dual-head architecture for joint optimization of detection and segmentation tasks, utilizing uncertainty-weighted multi-task learning. Extensive experiments on the FantasyIDiap dataset demonstrate superior performance with 84.31\% accuracy, 90.78\% AUC for classification, and 57.24\% mean Dice score for localization. The proposed method achieves an F1-score of 88.61\% for binary classification while maintaining computational efficiency suitable for real-world deployment through FastAPI implementation. Our comprehensive evaluation includes ablation studies, cross-device generalization analysis, and detailed performance assessment across 10 languages and 3 acquisition devices.
comment: 8 pages
Sparse ActionGen: Accelerating Diffusion Policy with Real-time Pruning
Diffusion Policy has dominated action generation due to its strong capabilities for modeling multi-modal action distributions, but its multi-step denoising processes make it impractical for real-time visuomotor control. Existing caching-based acceleration methods typically rely on $\textit{static}$ schedules that fail to adapt to the $\textit{dynamics}$ of robot-environment interactions, thereby leading to suboptimal performance. In this paper, we propose $\underline{\textbf{S}}$parse $\underline{\textbf{A}}$ction$\underline{\textbf{G}}$en ($\textbf{SAG}$) for extremely sparse action generation. To accommodate the iterative interactions, SAG customizes a rollout-adaptive prune-then-reuse mechanism that first identifies prunable computations globally and then reuses cached activations to substitute them during action diffusion. To capture the rollout dynamics, SAG parameterizes an observation-conditioned diffusion pruner for environment-aware adaptation and instantiates it with a highly parameter- and inference-efficient design for real-time prediction. Furthermore, SAG introduces a one-for-all reusing strategy that reuses activations across both timesteps and blocks in a zig-zag manner, minimizing the global redundancy. Extensive experiments on multiple robotic benchmarks demonstrate that SAG achieves up to 4$\times$ generation speedup without sacrificing performance. Project Page: https://sparse-actiongen.github.io/.
Simultaneous Detection of LSD and FMD in Cattle Using Ensemble Deep Learning
Lumpy Skin Disease (LSD) and Foot-and-Mouth Disease (FMD) are highly contagious viral diseases affecting cattle, causing significant economic losses and welfare challenges. Their visual diagnosis is complicated by significant symptom overlap with each other and with benign conditions like insect bites or chemical burns, hindering timely control measures. Leveraging a comprehensive dataset of 10,516 expert-annotated images from 18 farms across India, Brazil, and the USA, this study presents a novel Ensemble Deep Learning framework integrating VGG16, ResNet50, and InceptionV3 with optimized weighted averaging for simultaneous LSD and FMD detection. The model achieves a state-of-the-art accuracy of 98.2\%, with macro-averaged precision of 98.2\%, recall of 98.1\%, F1-score of 98.1\%, and an AUC-ROC of 99.5\%. This approach uniquely addresses the critical challenge of symptom overlap in multi-disease detection, enabling early, precise, and automated diagnosis. This tool has the potential to enhance disease management, support global agricultural sustainability, and is designed for future deployment in resource-limited settings.
YOLO26: An Analysis of NMS-Free End to End Framework for Real-Time Object Detection
The "You Only Look Once" (YOLO) framework has long served as the benchmark for real-time object detection, yet traditional iterations (YOLOv1 through YOLO11) remain constrained by the latency and hyperparameter sensitivity of Non-Maximum Suppression (NMS) post-processing. This paper analyzes a comprehensive analysis of YOLO26, an architecture that fundamentally redefines this paradigm by eliminating NMS in favor of a native end-to-end learning strategy. This study examines the critical innovations that enable this transition, specifically the introduction of the MuSGD optimizer for stabilizing lightweight backbones, STAL for small-target-aware assignment, and ProgLoss for dynamic supervision. Through a systematic review of official performance benchmarks, the results demonstrate that YOLO26 establishes a new Pareto front, outperforming a comprehensive suite of predecessors and state-of-the-art competitors (including RTMDet and DAMO-YOLO) in both inference speed and detection accuracy. The analysis confirms that by decoupling representation learning from heuristic post-processing, YOLOv26 successfully resolves the historical trade-off between latency and precision, signaling the next evolutionary step in edge-based computer vision.
Exploring Talking Head Models With Adjacent Frame Prior for Speech-Preserving Facial Expression Manipulation
Speech-Preserving Facial Expression Manipulation (SPFEM) is an innovative technique aimed at altering facial expressions in images and videos while retaining the original mouth movements. Despite advancements, SPFEM still struggles with accurate lip synchronization due to the complex interplay between facial expressions and mouth shapes. Capitalizing on the advanced capabilities of audio-driven talking head generation (AD-THG) models in synthesizing precise lip movements, our research introduces a novel integration of these models with SPFEM. We present a new framework, Talking Head Facial Expression Manipulation (THFEM), which utilizes AD-THG models to generate frames with accurately synchronized lip movements from audio inputs and SPFEM-altered images. However, increasing the number of frames generated by AD-THG models tends to compromise the realism and expression fidelity of the images. To counter this, we develop an adjacent frame learning strategy that finetunes AD-THG models to predict sequences of consecutive frames. This strategy enables the models to incorporate information from neighboring frames, significantly improving image quality during testing. Our extensive experimental evaluations demonstrate that this framework effectively preserves mouth shapes during expression manipulations, highlighting the substantial benefits of integrating AD-THG with SPFEM.
comment: Accepted by ACM Transactions on Multimedia Computing, Communications, and Applications
Proxy Robustness in Vision Language Models is Effortlessly Transferable
As a pivotal technique for improving the defense of deep models, adversarial robustness transfer via distillation has demonstrated remarkable success in conventional image classification tasks. However, this paradigm encounters critical challenges when applied to vision-language models (VLM) (e.g., CLIP): constructing adversarially robust teacher for large-scale multi-modal models demands prohibitively high computational resources. We bridge this gap by revealing an interesting phenomenon: vanilla CLIP (without adversarial training) exhibits intrinsic defensive capabilities against adversarial examples generated by another CLIP with different architectures. We formally define this as proxy adversarial robustness, and naturally propose a Heterogeneous Proxy Transfer (HPT) framework that establishes cross-architectural robustness distillation channels between CLIP variants, effortlessly enabling the VLM robustness transfer from proxy to target models. Yet, such proxy transfer paradigm easily induces severe overfitting, leading to a sharp degradation in zero-shot natural generalization. To resolve that, we design Generalization-Pivot Decoupling (GPD) by leveraging the difference in learning rate scheduling. This decouples the proxy transfer process into a generalization-anchored warm-up that maintains generalization and a generalization-pulled HPT that promotes adversarial robustness, to achieve an equilibrium between natural generalization and adversarial robustness. Extensive experiments on 15 zero-shot datasets demonstrate the effectiveness of our HPT-GPD method. The code is available at the website of github.com/fxw13/HPT-GPD.
FGTBT: Frequency-Guided Task-Balancing Transformer for Unified Facial Landmark Detection
Recently, deep learning based facial landmark detection (FLD) methods have achieved considerable success. However, in challenging scenarios such as large pose variations, illumination changes, and facial expression variations, they still struggle to accurately capture the geometric structure of the face, resulting in performance degradation. Moreover, the limited size and diversity of existing FLD datasets hinder robust model training, leading to reduced detection accuracy. To address these challenges, we propose a Frequency-Guided Task-Balancing Transformer (FGTBT), which enhances facial structure perception through frequency-domain modeling and multi-dataset unified training. Specifically, we propose a novel Fine-Grained Multi-Task Balancing loss (FMB-loss), which moves beyond coarse task-level balancing by assigning weights to individual landmarks based on their occurrence across datasets. This enables more effective unified training and mitigates the issue of inconsistent gradient magnitudes. Additionally, a Frequency-Guided Structure-Aware (FGSA) model is designed to utilize frequency-guided structure injection and regularization to help learn facial structure constraints. Extensive experimental results on popular benchmark datasets demonstrate that the integration of the proposed FMB-loss and FGSA model into our FGTBT framework achieves performance comparable to state-of-the-art methods. The code is available at https://github.com/Xi0ngxinyu/FGTBT.
Accurate Simulation Pipeline for Passive Single-Photon Imaging
Single-Photon Avalanche Diodes (SPADs) are new and promising imaging sensors. These sensors are sensitive enough to detect individual photons hitting each pixel, with extreme temporal resolution and without readout noise. Thus, SPADs stand out as an optimal choice for low-light imaging. Due to the high price and limited availability of SPAD sensors, the demand for an accurate data simulation pipeline is substantial. Indeed, the scarcity of SPAD datasets hinders the development of SPAD-specific processing algorithms and impedes the training of learning-based solutions. In this paper, we present a comprehensive SPAD simulation pipeline and validate it with multiple experiments using two recent commercial SPAD sensors. Our simulator is used to generate the SPAD-MNIST, a single-photon version of the seminal MNIST dataset, to investigate the effectiveness of convolutional neural network (CNN) classifiers on reconstructed fluxes, even at extremely low light conditions, e.g., 5 mlux. We also assess the performance of classifiers exclusively trained on simulated data on real images acquired from SPAD sensors at different light conditions. The synthetic dataset encompasses different SPAD imaging modalities and is made available for download. Project page: https://boracchi.faculty.polimi.it/Projects/SPAD-MNIST.html.
comment: 18 pages, 10 figures, 3 tables
Data-Consistent Learning of Inverse Problems
Inverse problems are inherently ill-posed, suffering from non-uniqueness and instability. Classical regularization methods provide mathematically well-founded solutions, ensuring stability and convergence, but often at the cost of reduced flexibility or visual quality. Learned reconstruction methods, such as convolutional neural networks, can produce visually compelling results, yet they typically lack rigorous theoretical guarantees. DC (DC) networks address this gap by enforcing the measurement model within the network architecture. In particular, null-space networks combined with a classical regularization method as an initial reconstruction define a convergent regularization method. This approach preserves the theoretical reliability of classical schemes while leveraging the expressive power of data-driven learning, yielding reconstructions that are both accurate and visually appealing.
Seeing Isn't Always Believing: Analysis of Grad-CAM Faithfulness and Localization Reliability in Lung Cancer CT Classification
Explainable Artificial Intelligence (XAI) techniques, such as Gradient-weighted Class Activation Mapping (Grad-CAM), have become indispensable for visualizing the reasoning process of deep neural networks in medical image analysis. Despite their popularity, the faithfulness and reliability of these heatmap-based explanations remain under scrutiny. This study critically investigates whether Grad-CAM truly represents the internal decision-making of deep models trained for lung cancer image classification. Using the publicly available IQ-OTH/NCCD dataset, we evaluate five representative architectures: ResNet-50, ResNet-101, DenseNet-161, EfficientNet-B0, and ViT-Base-Patch16-224, to explore model-dependent variations in Grad-CAM interpretability. We introduce a quantitative evaluation framework that combines localization accuracy, perturbation-based faithfulness, and explanation consistency to assess Grad-CAM reliability across architectures. Experimental findings reveal that while Grad-CAM effectively highlights salient tumor regions in most convolutional networks, its interpretive fidelity significantly degrades for Vision Transformer models due to non-local attention behavior. Furthermore, cross-model comparisons indicate substantial variability in saliency localization, implying that Grad-CAM explanations may not always correspond to the true diagnostic evidence used by the networks. This work exposes critical limitations of current saliency-based XAI approaches in medical imaging and emphasizes the need for model-aware interpretability methods that are both computationally sound and clinically meaningful. Our findings aim to inspire a more cautious and rigorous adoption of visual explanation tools in medical AI, urging the community to rethink what it truly means to "trust" a model's explanation.
comment: 7 pages
TreeDGS: Aerial Gaussian Splatting for Distant DBH Measurement
Aerial remote sensing enables efficient large-area surveying, but accurate direct object-level measurement remains difficult in complex natural scenes. Recent advancements in 3D vision, particularly learned radiance-field representations such as NeRF and 3D Gaussian Splatting, have begun to raise the ceiling on reconstruction fidelity and densifiable geometry from posed imagery. Nevertheless, direct aerial measurement of important natural attributes such as tree diameter at breast height (DBH) remains challenging. Trunks in aerial forest scans are distant and sparsely observed in image views: at typical operating altitudes, stems may span only a few pixels. With these constraints, conventional reconstruction methods leave breast-height trunk geometry weakly constrained. We present TreeDGS, an aerial image reconstruction method that leverages 3D Gaussian Splatting as a continuous, densifiable scene representation for trunk measurement. After SfM-MVS initialization and Gaussian optimization, we extract a dense point set from the Gaussian field using RaDe-GS's depth-aware cumulative-opacity integration and associate each sample with a multi-view opacity reliability score. We then estimate DBH from trunk-isolated points using opacity-weighted solid-circle fitting. Evaluated on 10 plots with field-measured DBH, TreeDGS reaches 4.79,cm RMSE (about 2.6 pixels at this GSD) and outperforms a state-of-the-art LiDAR baseline (7.91,cm RMSE), demonstrating that densified splat-based geometry can enable accurate, low-cost aerial DBH measurement.
A Generalist Foundation Model for Total-body PET/CT Enables Diagnostic Reporting and System-wide Metabolic Profiling
Total-body PET/CT enables system-wide molecular imaging, but heterogeneous anatomical and metabolic signals, approximately 2 m axial coverage, and structured radiology semantics challenge existing medical AI models that assume single-modality inputs, localized fields of view, and coarse image-text alignment. We introduce SDF-HOLO (Systemic Dual-stream Fusion Holo Model), a multimodal foundation model for holistic total-body PET/CT, pre-trained on more than 10,000 patients. SDF-HOLO decouples CT and PET representation learning with dual-stream encoders and couples them through a cross-modal interaction module, allowing anatomical context to refine PET aggregation while metabolic saliency guides subtle morphological reasoning. To model long-range dependencies across the body, hierarchical context modeling combines efficient local windows with global attention. To bridge voxels and clinical language, we use anatomical segmentation masks as explicit semantic anchors and perform voxel-mask-text alignment during pre-training. Across tumor segmentation, low-dose lesion detection, and multilingual diagnostic report generation, SDF-HOLO outperforms strong task-specific and clinical-reference baselines while reducing localization errors and hallucinated findings. Beyond focal interpretation, the model enables system-wide metabolic profiling and reveals tumor-associated fingerprints of inter-organ metabolic network interactions, providing a scalable computational foundation for total-body PET/CT diagnostics and system-level precision oncology.
CSGaussian: Progressive Rate-Distortion Compression and Segmentation for 3D Gaussian Splatting WACV 2026
We present the first unified framework for rate-distortion-optimized compression and segmentation of 3D Gaussian Splatting (3DGS). While 3DGS has proven effective for both real-time rendering and semantic scene understanding, prior works have largely treated these tasks independently, leaving their joint consideration unexplored. Inspired by recent advances in rate-distortion-optimized 3DGS compression, this work integrates semantic learning into the compression pipeline to support decoder-side applications--such as scene editing and manipulation--that extend beyond traditional scene reconstruction and view synthesis. Our scheme features a lightweight implicit neural representation-based hyperprior, enabling efficient entropy coding of both color and semantic attributes while avoiding costly grid-based hyperprior as seen in many prior works. To facilitate compression and segmentation, we further develop compression-guided segmentation learning, consisting of quantization-aware training to enhance feature separability and a quality-aware weighting mechanism to suppress unreliable Gaussian primitives. Extensive experiments on the LERF and 3D-OVS datasets demonstrate that our approach significantly reduces transmission cost while preserving high rendering quality and strong segmentation performance.
comment: Accepted at WACV 2026
Left-Right Symmetry Breaking in CLIP-style Vision-Language Models Trained on Synthetic Spatial-Relation Data
Spatial understanding remains a key challenge in vision-language models. Yet it is still unclear whether such understanding is truly acquired, and if so, through what mechanisms. We present a controllable 1D image-text testbed to probe how left-right relational understanding emerges in Transformer-based vision and text encoders trained with a CLIP-style contrastive objective. We train lightweight Transformer-based vision and text encoders end-to-end on paired descriptions of one- and two-object scenes and evaluate generalization to unseen object pairs while systematically varying label and layout diversity. We find that contrastive training learns left-right relations and that label diversity, more than layout diversity, is the primary driver of generalization in this setting. To gain the mechanistic understanding, we perform an attention decomposition and show that interactions between positional and token embeddings induce a horizontal attention gradient that breaks left-right symmetry in the encoders; ablating this contribution substantially reduces left-right discrimination. Our results provide a mechanistic insight of when and how CLIP-style models acquire relational competence.
Joint Source-Channel-Generation Coding: From Distortion-oriented Reconstruction to Semantic-consistent Generation
Conventional communication systems, including both separation-based coding and AI-driven joint source-channel coding (JSCC), are largely guided by Shannon's rate-distortion theory. However, relying on generic distortion metrics fails to capture complex human visual perception, often resulting in blurred or unrealistic reconstructions. In this paper, we propose Joint Source-Channel-Generation Coding (JSCGC), a novel paradigm that shifts the focus from deterministic reconstruction to probabilistic generation. JSCGC leverages a generative model at the receiver as a generator rather than a conventional decoder to parameterize the data distribution, enabling direct maximization of mutual information under channel constraints while controlling stochastic sampling to produce outputs residing on the authentic data manifold with high fidelity. We further derive a theoretical lower bound on the maximum semantic inconsistency with given transmitted mutual information, elucidating the fundamental limits of communication in controlling the generative process. Extensive experiments on image transmission demonstrate that JSCGC substantially improves perceptual quality and semantic fidelity, significantly outperforming conventional distortion-oriented JSCC methods.
comment: submitted to IEEE ISIT 2026
FRoM-W1: Towards General Humanoid Whole-Body Control with Language Instructions
Humanoid robots are capable of performing various actions such as greeting, dancing and even backflipping. However, these motions are often hard-coded or specifically trained, which limits their versatility. In this work, we present FRoM-W1, an open-source framework designed to achieve general humanoid whole-body motion control using natural language. To universally understand natural language and generate corresponding motions, as well as enable various humanoid robots to stably execute these motions in the physical world under gravity, FRoM-W1 operates in two stages: (a) H-GPT: utilizing massive human data, a large-scale language-driven human whole-body motion generation model is trained to generate diverse natural behaviors. We further leverage the Chain-of-Thought technique to improve the model's generalization in instruction understanding. (b) H-ACT: After retargeting generated human whole-body motions into robot-specific actions, a motion controller that is pretrained and further fine-tuned through reinforcement learning in physical simulation enables humanoid robots to accurately and stably perform corresponding actions. It is then deployed on real robots via a modular simulation-to-reality module. We extensively evaluate FRoM-W1 on Unitree H1 and G1 robots. Results demonstrate superior performance on the HumanML3D-X benchmark for human whole-body motion generation, and our introduced reinforcement learning fine-tuning consistently improves both motion tracking accuracy and task success rates of these humanoid robots. We open-source the entire FRoM-W1 framework and hope it will advance the development of humanoid intelligence.
comment: Project Page: https://openmoss.github.io/FRoM-W1
PhyG-MoE: A Physics-Guided Mixture-of-Experts Framework for Energy-Efficient GNSS Interference Recognition
Complex electromagnetic interference increasingly compromises Global Navigation Satellite Systems (GNSS), threatening the reliability of Space-Air-Ground Integrated Networks (SAGIN). Although deep learning has advanced interference recognition, current static models suffer from a \textbf{fundamental limitation}: they impose a fixed computational topology regardless of the input's physical entropy. This rigidity leads to severe resource mismatch, where simple primitives consume the same processing cost as chaotic, saturated mixtures. To resolve this, this paper introduces PhyG-MoE (Physics-Guided Mixture-of-Experts), a framework designed to \textbf{dynamically align model capacity with signal complexity}. Unlike static architectures, the proposed system employs a spectrum-based gating mechanism that routes signals based on their spectral feature entanglement. A high-capacity TransNeXt expert is activated on-demand to disentangle complex features in saturated scenarios, while lightweight experts handle fundamental signals to minimize latency. Evaluations on 21 jamming categories demonstrate that PhyG-MoE achieves an overall accuracy of 97.58\%. By resolving the intrinsic conflict between static computing and dynamic electromagnetic environments, the proposed framework significantly reduces computational overhead without performance degradation, offering a viable solution for resource-constrained cognitive receivers.
Combating Noisy Labels through Fostering Self- and Neighbor-Consistency
Label noise is pervasive in various real-world scenarios, posing challenges in supervised deep learning. Deep networks are vulnerable to such label-corrupted samples due to the memorization effect. One major stream of previous methods concentrates on identifying clean data for training. However, these methods often neglect imbalances in label noise across different mini-batches and devote insufficient attention to out-of-distribution noisy data. To this end, we propose a noise-robust method named Jo-SNC (\textbf{Jo}int sample selection and model regularization based on \textbf{S}elf- and \textbf{N}eighbor-\textbf{C}onsistency). Specifically, we propose to employ the Jensen-Shannon divergence to measure the ``likelihood'' of a sample being clean or out-of-distribution. This process factors in the nearest neighbors of each sample to reinforce the reliability of clean sample identification. We design a self-adaptive, data-driven thresholding scheme to adjust per-class selection thresholds. While clean samples undergo conventional training, detected in-distribution and out-of-distribution noisy samples are trained following partial label learning and negative learning, respectively. Finally, we advance the model performance further by proposing a triplet consistency regularization that promotes self-prediction consistency, neighbor-prediction consistency, and feature consistency. Extensive experiments on various benchmark datasets and comprehensive ablation studies demonstrate the effectiveness and superiority of our approach over existing state-of-the-art methods.
comment: accepted by IEEE Transactions on Pattern Analysis and Machine Intelligence
SKANet: A Cognitive Dual-Stream Framework with Adaptive Modality Fusion for Robust Compound GNSS Interference Classification
As the electromagnetic environment becomes increasingly complex, Global Navigation Satellite Systems (GNSS) face growing threats from sophisticated jamming interference. Although Deep Learning (DL) effectively identifies basic interference, classifying compound interference remains difficult due to the superposition of diverse jamming sources. Existing single-domain approaches often suffer from performance degradation because transient burst signals and continuous global signals require conflicting feature extraction scales. We propose the Selective Kernel and Asymmetric convolution Network(SKANet), a cognitive deep learning framework built upon a dual-stream architecture that integrates Time-Frequency Images (TFIs) and Power Spectral Density (PSD). Distinct from conventional fusion methods that rely on static receptive fields, the proposed architecture incorporates a Multi-Branch Selective Kernel (SK) module combined with Asymmetric Convolution Blocks (ACBs). This mechanism enables the network to dynamically adjust its receptive fields, acting as an adaptive filter that simultaneously captures micro-scale transient features and macro-scale spectral trends within entangled compound signals. To complement this spatial-temporal adaptation, a Squeeze-and-Excitation (SE) mechanism is integrated at the fusion stage to adaptively recalibrate the contribution of heterogeneous features from each modality. Evaluations on a dataset of 405,000 samples demonstrate that SKANet achieves an overall accuracy of 96.99\%, exhibiting superior robustness for compound jamming classification, particularly under low Jamming-to-Noise Ratio (JNR) regimes.
VIRO: Robust and Efficient Neuro-Symbolic Reasoning with Verification for Referring Expression Comprehension
Referring Expression Comprehension (REC) aims to localize the image region corresponding to a natural-language query. Recent neuro-symbolic REC approaches leverage large language models (LLMs) and vision-language models (VLMs) to perform compositional reasoning, decomposing queries 4 structured programs and executing them step-by-step. While such approaches achieve interpretable reasoning and strong zero-shot generalization, they assume that intermediate reasoning steps are accurate. However, this assumption causes cascading errors: false detections and invalid relations propagate through the reasoning chain, yielding high-confidence false positives even when no target is present in the image. To address this limitation, we introduce Verification-Integrated Reasoning Operators (VIRO), a neuro-symbolic framework that embeds lightweight operator-level verifiers within reasoning steps. Each operator executes and validates its output, such as object existence or spatial relationship, thereby allowing the system to robustly handle no-target cases when verification conditions are not met. Our framework achieves state-of-the-art performance, reaching 61.1% balanced accuracy across target-present and no-target settings, and demonstrates generalization to real-world egocentric data. Furthermore, VIRO shows superior computational efficiency in terms of throughput, high reliability with a program failure rate of less than 0.3%, and scalability through decoupled program generation from execution.
Open Vocabulary Panoptic Segmentation With Retrieval Augmentation
Given an input image and set of class names, panoptic segmentation aims to label each pixel in an image with class labels and instance labels. In comparison, Open Vocabulary Panoptic Segmentation aims to facilitate the segmentation of arbitrary classes according to user input. The challenge is that a panoptic segmentation system trained on a particular dataset typically does not generalize well to unseen classes beyond the training data. In this work, we propose RetCLIP, a retrieval-augmented panoptic segmentation method that improves the performance of unseen classes. In particular, we construct a masked segment feature database using paired image-text data. At inference time, we use masked segment features from the input image as query keys to retrieve similar features and associated class labels from the database. Classification scores for the masked segment are assigned based on the similarity between query features and retrieved features. The retrieval-based classification scores are combined with CLIP-based scores to produce the final output. We incorporate our solution with a previous SOTA method (FC-CLIP). When trained on COCO, the proposed method demonstrates 30.9 PQ, 19.3 mAP, 44.0 mIoU on the ADE20k dataset, achieving +4.5 PQ, +2.5 mAP, +10.0 mIoU absolute improvement over the baseline.
Generalizable and Animatable 3D Full-Head Gaussian Avatar from a Single Image
Building 3D animatable head avatars from a single image is an important yet challenging problem. Existing methods generally collapse under large camera pose variations, compromising the realism of 3D avatars. In this work, we propose a new framework to tackle the novel setting of one-shot 3D full-head animatable avatar reconstruction in a single feed-forward pass, enabling real-time animation and simultaneous 360$^\circ$ rendering views. To facilitate efficient animation control, we model 3D head avatars with Gaussian primitives embedded on the surface of a parametric face model within the UV space. To obtain knowledge of full-head geometry and textures, we leverage rich 3D full-head priors within a pretrained 3D generative adversarial network (GAN) for global full-head feature extraction and multi-view supervision. To increase the fidelity of the 3D reconstruction of the input image, we take advantage of the symmetric nature of the UV space and human faces to fuse local fine-grained input image features with the global full-head textures. Extensive experiments demonstrate the effectiveness of our method, achieving high-quality 3D full-head modeling as well as real-time animation, thereby improving the realism of 3D talking avatars.
comment: Project page: https://shaelynz.github.io/fhavatar/
Delving Deeper: Hierarchical Visual Perception for Robust Video-Text Retrieval
Video-text retrieval (VTR) aims to locate relevant videos using natural language queries. Current methods, often based on pre-trained models like CLIP, are hindered by video's inherent redundancy and their reliance on coarse, final-layer features, limiting matching accuracy. To address this, we introduce the HVP-Net (Hierarchical Visual Perception Network), a framework that mines richer video semantics by extracting and refining features from multiple intermediate layers of a vision encoder. Our approach progressively distills salient visual concepts from raw patch-tokens at different semantic levels, mitigating redundancy while preserving crucial details for alignment. This results in a more robust video representation, leading to new state-of-the-art performance on challenging benchmarks including MSRVTT, DiDeMo, and ActivityNet. Our work validates the effectiveness of exploiting hierarchical features for advancing video-text retrieval. Our codes are available at https://github.com/boyun-zhang/HVP-Net.
Spatial-VLN: Zero-Shot Vision-and-Language Navigation With Explicit Spatial Perception and Exploration
Zero-shot Vision-and-Language Navigation (VLN) agents leveraging Large Language Models (LLMs) excel in generalization but suffer from insufficient spatial perception. Focusing on complex continuous environments, we categorize key perceptual bottlenecks into three spatial challenges: door interaction,multi-room navigation, and ambiguous instruction execution, where existing methods consistently suffer high failure rates. We present Spatial-VLN, a perception-guided exploration framework designed to overcome these challenges. The framework consists of two main modules. The Spatial Perception Enhancement (SPE) module integrates panoramic filtering with specialized door and region experts to produce spatially coherent, cross-view consistent perceptual representations. Building on this foundation, our Explored Multi-expert Reasoning (EMR) module uses parallel LLM experts to address waypoint-level semantics and region-level spatial transitions. When discrepancies arise between expert predictions, a query-and-explore mechanism is activated, prompting the agent to actively probe critical areas and resolve perceptual ambiguities. Experiments on VLN-CE demonstrate that Spatial VLN achieves state-of-the-art performance using only low-cost LLMs. Furthermore, to validate real-world applicability, we introduce a value-based waypoint sampling strategy that effectively bridges the Sim2Real gap. Extensive real-world evaluations confirm that our framework delivers superior generalization and robustness in complex environments. Our codes and videos are available at https://yueluhhxx.github.io/Spatial-VLN-web/.
Towards Unbiased Source-Free Object Detection via Vision Foundation Models
Source-Free Object Detection (SFOD) has garnered much attention in recent years by eliminating the need of source-domain data in cross-domain tasks, but existing SFOD methods suffer from the Source Bias problem, i.e. the adapted model remains skewed towards the source domain, leading to poor generalization and error accumulation during self-training. To overcome this challenge, we propose Debiased Source-free Object Detection (DSOD), a novel VFM-assisted SFOD framework that can effectively mitigate source bias with the help of powerful VFMs. Specifically, we propose Unified Feature Injection (UFI) module that integrates VFM features into the CNN backbone through Simple-Scale Extension (SSE) and Domain-aware Adaptive Weighting (DAAW). Then, we propose Semantic-aware Feature Regularization (SAFR) that constrains feature learning to prevent overfitting to source domain characteristics. Furthermore, we propose a VFM-free variant, termed DSOD-distill for computation-restricted scenarios through a novel Dual-Teacher distillation scheme. Extensive experiments on multiple benchmarks demonstrate that DSOD outperforms state-of-the-art SFOD methods, achieving 48.1% AP on Normal-to-Foggy weather adaptation, 39.3% AP on Cross-scene adaptation, and 61.4% AP on Synthetic-to-Real adaptation.
Moaw: Unleashing Motion Awareness for Video Diffusion Models
Video diffusion models, trained on large-scale datasets, naturally capture correspondences of shared features across frames. Recent works have exploited this property for tasks such as optical flow prediction and tracking in a zero-shot setting. Motivated by these findings, we investigate whether supervised training can more fully harness the tracking capability of video diffusion models. To this end, we propose Moaw, a framework that unleashes motion awareness for video diffusion models and leverages it to facilitate motion transfer. Specifically, we train a diffusion model for motion perception, shifting its modality from image-to-video generation to video-to-dense-tracking. We then construct a motion-labeled dataset to identify features that encode the strongest motion information, and inject them into a structurally identical video generation model. Owing to the homogeneity between the two networks, these features can be naturally adapted in a zero-shot manner, enabling motion transfer without additional adapters. Our work provides a new paradigm for bridging generative modeling and motion understanding, paving the way for more unified and controllable video learning frameworks.
SSPFormer: Self-Supervised Pretrained Transformer for MRI Images IJCAI
The pre-trained transformer demonstrates remarkable generalization ability in natural image processing. However, directly transferring it to magnetic resonance images faces two key challenges: the inability to adapt to the specificity of medical anatomical structures and the limitations brought about by the privacy and scarcity of medical data. To address these issues, this paper proposes a Self-Supervised Pretrained Transformer (SSPFormer) for MRI images, which effectively learns domain-specific feature representations of medical images by leveraging unlabeled raw imaging data. To tackle the domain gap and data scarcity, we introduce inverse frequency projection masking, which prioritizes the reconstruction of high-frequency anatomical regions to enforce structure-aware representation learning. Simultaneously, to enhance robustness against real-world MRI artifacts, we employ frequency-weighted FFT noise enhancement that injects physiologically realistic noise into the Fourier domain. Together, these strategies enable the model to learn domain-invariant and artifact-robust features directly from raw scans. Through extensive experiments on segmentation, super-resolution, and denoising tasks, the proposed SSPFormer achieves state-of-the-art performance, fully verifying its ability to capture fine-grained MRI image fidelity and adapt to clinical application requirements.
comment: Undergraduate student as first author submitted to IJCAI
KaoLRM: Repurposing Pre-trained Large Reconstruction Models for Parametric 3D Face Reconstruction
We propose KaoLRM to re-target the learned prior of the Large Reconstruction Model (LRM) for parametric 3D face reconstruction from single-view images. Parametric 3D Morphable Models (3DMMs) have been widely used for facial reconstruction due to their compact and interpretable parameterization, yet existing 3DMM regressors often exhibit poor consistency across varying viewpoints. To address this, we harness the pre-trained 3D prior of LRM and incorporate FLAME-based 2D Gaussian Splatting into LRM's rendering pipeline. Specifically, KaoLRM projects LRM's pre-trained triplane features into the FLAME parameter space to recover geometry, and models appearance via 2D Gaussian primitives that are tightly coupled to the FLAME mesh. The rich prior enables the FLAME regressor to be aware of the 3D structure, leading to accurate and robust reconstructions under self-occlusions and diverse viewpoints. Experiments on both controlled and in-the-wild benchmarks demonstrate that KaoLRM achieves superior reconstruction accuracy and cross-view consistency, while existing methods remain sensitive to viewpoint variations. The code is released at https://github.com/CyberAgentAILab/KaoLRM.
DC-VLAQ: Query-Residual Aggregation for Robust Visual Place Recognition
One of the central challenges in visual place recognition (VPR) is learning a robust global representation that remains discriminative under large viewpoint changes, illumination variations, and severe domain shifts. While visual foundation models (VFMs) provide strong local features, most existing methods rely on a single model, overlooking the complementary cues offered by different VFMs. However, exploiting such complementary information inevitably alters token distributions, which challenges the stability of existing query-based global aggregation schemes. To address these challenges, we propose DC-VLAQ, a representation-centric framework that integrates the fusion of complementary VFMs and robust global aggregation. Specifically, we first introduce a lightweight residual-guided complementary fusion that anchors representations in the DINOv2 feature space while injecting complementary semantics from CLIP through a learned residual correction. In addition, we propose the Vector of Local Aggregated Queries (VLAQ), a query--residual global aggregation scheme that encodes local tokens by their residual responses to learnable queries, resulting in improved stability and the preservation of fine-grained discriminative cues. Extensive experiments on standard VPR benchmarks, including Pitts30k, Tokyo24/7, MSLS, Nordland, SPED, and AmsterTime, demonstrate that DC-VLAQ consistently outperforms strong baselines and achieves state-of-the-art performance, particularly under challenging domain shifts and long-term appearance changes.
comment: 10 pages, 4 figures, 5 tables
S2DiT: Sandwich Diffusion Transformer for Mobile Streaming Video Generation
Diffusion Transformers (DiTs) have recently improved video generation quality. However, their heavy computational cost makes real-time or on-device generation infeasible. In this work, we introduce S2DiT, a Streaming Sandwich Diffusion Transformer designed for efficient, high-fidelity, and streaming video generation on mobile hardware. S2DiT generates more tokens but maintains efficiency with novel efficient attentions: a mixture of LinConv Hybrid Attention (LCHA) and Stride Self-Attention (SSA). Based on this, we uncover the sandwich design via a budget-aware dynamic programming search, achieving superior quality and efficiency. We further propose a 2-in-1 distillation framework that transfers the capacity of large teacher models (e.g., Wan 2.2-14B) to the compact few-step sandwich model. Together, S2DiT achieves quality on par with state-of-the-art server video models, while streaming at over 10 FPS on an iPhone.
RSOD: Reliability-Guided Sonar Image Object Detection with Extremely Limited Labels AAAI 2026
Object detection in sonar images is a key technology in underwater detection systems. Compared to natural images, sonar images contain fewer texture details and are more susceptible to noise, making it difficult for non-experts to distinguish subtle differences between classes. This leads to their inability to provide precise annotation data for sonar images. Therefore, designing effective object detection methods for sonar images with extremely limited labels is particularly important. To address this, we propose a teacher-student framework called RSOD, which aims to fully learn the characteristics of sonar images and develop a pseudo-label strategy suitable for these images to mitigate the impact of limited labels. First, RSOD calculates a reliability score by assessing the consistency of the teacher's predictions across different views. To leverage this score, we introduce an object mixed pseudo-label method to tackle the shortage of labeled data in sonar images. Finally, we optimize the performance of the student by implementing a reliability-guided adaptive constraint. By taking full advantage of unlabeled data, the student can perform well even in situations with extremely limited labels. Notably, on the UATD dataset, our method, using only 5% of labeled data, achieves results that can compete against those of our baseline algorithm trained on 100% labeled data. We also collected a new dataset to provide more valuable data for research in the field of sonar.
comment: Accepted by AAAI 2026,9 pages,10 figures
P2L-CA: An Effective Parameter Tuning Framework for Rehearsal-Free Multi-Label Class-Incremental Learning
Multi-label Class-Incremental Learning aims to continuously recognize novel categories in complex scenes where multiple objects co-occur. However, existing approaches often incur high computational costs due to full-parameter fine-tuning and substantial storage overhead from memory buffers, or they struggle to address feature confusion and domain discrepancies adequately. To overcome these limitations, we introduce P2L-CA, a parameter-efficient framework that integrates a Prompt-to-Label module with a Continuous Adapter module. The P2L module leverages class-specific prompts to disentangle multi-label representations while incorporating linguistic priors to enforce stable semantic-visual alignment. Meanwhile, the CA module employs lightweight adapters to mitigate domain gaps between pre-trained models and downstream tasks, thereby enhancing model plasticity. Extensive experiments across standard and challenging MLCIL settings on MS-COCO and PASCAL VOC show that P2L-CA not only achieves substantial improvements over state-of-the-art methods but also demonstrates strong generalization in CIL scenarios, all while requiring minimal trainable parameters and eliminating the need for memory buffers.
comment: 12 pages, 5 figures
Fusing in 3D: Free-Viewpoint Fusion Rendering with a 3D Infrared-Visible Scene Representation
Infrared-visible image fusion aims to integrate infrared and visible information into a single fused image. Existing 2D fusion methods focus on fusing images from fixed camera viewpoints, neglecting a comprehensive understanding of complex scenarios, which results in the loss of critical information about the scene. To address this limitation, we propose a novel Infrared-Visible Gaussian Fusion (IVGF) framework, which reconstructs scene geometry from multimodal 2D inputs and enables direct rendering of fused images. Specifically, we propose a cross-modal adjustment (CMA) module that modulates the opacity of Gaussians to solve the problem of cross-modal conflicts. Moreover, to preserve the distinctive features from both modalities, we introduce a fusion loss that guides the optimization of CMA, thus ensuring that the fused image retains the critical characteristics of each modality. Comprehensive qualitative and quantitative experiments demonstrate the effectiveness of the proposed method.
GaussianTrimmer: Online Trimming Boundaries for 3DGS Segmentation
With the widespread application of 3D Gaussians in 3D scene representation, 3D scene segmentation methods based on 3D Gaussians have also gradually emerged. However, existing 3D Gaussian segmentation methods basically segment on the basis of Gaussian primitives. Due to the large variation range of the scale of 3D Gaussians, large-sized Gaussians that often span the foreground and background lead to jagged boundaries of segmented objects. To this end, we propose an online boundary trimming method, GaussianTrimmer, which is an efficient and plug-and-play post-processing method capable of trimming coarse boundaries for existing 3D Gaussian segmentation methods. Our method consists of two core steps: 1. Generating uniformly and well-covered virtual cameras; 2. Trimming Gaussian at the primitive level based on 2D segmentation results on virtual cameras. Extensive quantitative and qualitative experiments demonstrate that our method can improve the segmentation quality of existing 3D Gaussian segmentation methods as a plug-and-play method.
Fusion-Restoration Image Processing Algorithm to Improve the High-Temperature Deformation Measurement
In the deformation measurement of high-temperature structures, image degradation caused by thermal radiation and random errors introduced by heat haze restrict the accuracy and effectiveness of deformation measurement. To suppress thermal radiation and heat haze using fusion-restoration image processing methods, thereby improving the accuracy and effectiveness of DIC in the measurement of high-temperature deformation. For image degradation caused by thermal radiation, based on the image layered representation, the image is decomposed into positive and negative channels for parallel processing, and then optimized for quality by multi-exposure image fusion. To counteract the high-frequency, random errors introduced by heat haze, we adopt the FSIM as the objective function to guide the iterative optimization of model parameters, and the grayscale average algorithm is applied to equalize anomalous gray values, thereby reducing measurement error. The proposed multi-exposure image fusion algorithm effectively suppresses image degradation caused by complex illumination conditions, boosting the effective computation area from 26% to 50% for under-exposed images and from 32% to 40% for over-exposed images without degrading measurement accuracy in the experiment. Meanwhile, the image restoration combined with the grayscale average algorithm reduces static thermal deformation measurement errors. The error in ε_xx is reduced by 85.3%, while the errors in ε_yy and γ_xy are reduced by 36.0% and 36.4%, respectively. We present image processing methods to suppress the interference of thermal radiation and heat haze in high-temperature deformation measurement using DIC. The experimental results verify that the proposed method can effectively improve image quality, reduce deformation measurement errors, and has potential application value in thermal deformation measurement.
VILTA: A VLM-in-the-Loop Adversary for Enhancing Driving Policy Robustness AAAI 2026
The safe deployment of autonomous driving (AD) systems is fundamentally hindered by the long-tail problem, where rare yet critical driving scenarios are severely underrepresented in real-world data. Existing solutions including safety-critical scenario generation and closed-loop learning often rely on rule-based heuristics, resampling methods and generative models learned from offline datasets, limiting their ability to produce diverse and novel challenges. While recent works leverage Vision Language Models (VLMs) to produce scene descriptions that guide a separate, downstream model in generating hazardous trajectories for agents, such two-stage framework constrains the generative potential of VLMs, as the diversity of the final trajectories is ultimately limited by the generalization ceiling of the downstream algorithm. To overcome these limitations, we introduce VILTA (VLM-In-the-Loop Trajectory Adversary), a novel framework that integrates a VLM into the closed-loop training of AD agents. Unlike prior works, VILTA actively participates in the training loop by comprehending the dynamic driving environment and strategically generating challenging scenarios through direct, fine-grained editing of surrounding agents' future trajectories. This direct-editing approach fully leverages the VLM's powerful generalization capabilities to create a diverse curriculum of plausible yet challenging scenarios that extend beyond the scope of traditional methods. We demonstrate that our approach substantially enhances the safety and robustness of the resulting AD policy, particularly in its ability to navigate critical long-tail events.
comment: Accepted to AAAI 2026
Exploiting Test-Time Augmentation in Federated Learning for Brain Tumor MRI Classification
Efficient brain tumor diagnosis is crucial for early treatment; however, it is challenging because of lesion variability and image complexity. We evaluated convolutional neural networks (CNNs) in a federated learning (FL) setting, comparing models trained on original versus preprocessed MRI images (resizing, grayscale conversion, normalization, filtering, and histogram equalization). Preprocessing alone yielded negligible gains; combined with test-time augmentation (TTA), it delivered consistent, statistically significant improvements in federated MRI classification (p<0.001). In practice, TTA should be the default inference strategy in FL-based medical imaging; when the computational budget permits, pairing TTA with light preprocessing provides additional reliable gains.
comment: 21st International Conference on Computer Vision Theory and Applications (VISAPP 2026), 9-11 March 2026, Marbella, Spain
Near-Light Color Photometric Stereo for mono-Chromaticity non-lambertian surface
Color photometric stereo enables single-shot surface reconstruction, extending conventional photometric stereo that requires multiple images of a static scene under varying illumination to dynamic scenarios. However, most existing approaches assume ideal distant lighting and Lambertian reflectance, leaving more practical near-light conditions and non-Lambertian surfaces underexplored. To overcome this limitation, we propose a framework that leverages neural implicit representations for depth and BRDF modeling under the assumption of mono-chromaticity (uniform chromaticity and homogeneous material), which alleviates the inherent ill-posedness of color photometric stereo and allows for detailed surface recovery from just one image. Furthermore, we design a compact optical tactile sensor to validate our approach. Experiments on both synthetic and real-world datasets demonstrate that our method achieves accurate and robust surface reconstruction.
comment: 5 pages 7figures
Generalizable Hyperparameter Optimization for Federated Learning on Non-IID Cancer Images
Deep learning for cancer histopathology training conflicts with privacy constraints in clinical settings. Federated Learning (FL) mitigates this by keeping data local; however, its performance depends on hyperparameter choices under non-independent and identically distributed (non-IID) client datasets. This paper examined whether hyperparameters optimized on one cancer imaging dataset generalized across non-IID federated scenarios. We considered binary histopathology tasks for ovarian and colorectal cancers. We perform centralized Bayesian hyperparameter optimization and transfer dataset-specific optima to the non-IID FL setup. The main contribution of this study is the introduction of a simple cross-dataset aggregation heuristic by combining configurations by averaging the learning rates and considering the modal optimizers and batch sizes. This combined configuration achieves a competitive classification performance.
comment: 21st International Conference on Computer Vision Theory and Applications (VISAPP 2026), 9-11 March 2026, Marbella, Spain
Mixed Precision PointPillars for Efficient 3D Object Detection with TensorRT
LIDAR 3D object detection is one of the important tasks for autonomous vehicles. Ensuring that this task operates in real-time is crucial. Toward this, model quantization can be used to accelerate the runtime. However, directly applying model quantization often leads to performance degradation due to LIDAR's wide numerical distributions and extreme outliers. To address the wide numerical distribution, we proposed a mixed precision framework designed for PointPillars. Our framework first searches for sensitive layers with post-training quantization (PTQ) by quantizing one layer at a time to 8-bit integer (INT8) and evaluating each model for average precision (AP). The top-k most sensitive layers are assigned as floating point (FP). Combinations of these layers are greedily searched to produce candidate mixed precision models, which are finalized with either PTQ or quantization-aware training (QAT). Furthermore, to handle outliers, we observe that using a very small number of calibration data reduces the likelihood of encountering outliers, thereby improving PTQ performance. Our methods provides mixed precision models without training in the PTQ pipeline, while our QAT pipeline achieves the performance competitive to FP models. With TensorRT deployment, our models offer less latency and sizes by up to 2.35 and 2.26 times, respectively.
comment: 6 pages, 3 figures
From Bands to Depth: Understanding Bathymetry Decisions on Sentinel-2 WACV 2026
Deploying Sentinel-2 satellite derived bathymetry (SDB) robustly across sites remains challenging. We analyze a Swin-Transformer based U-Net model (Swin-BathyUNet) to understand how it infers depth and when its predictions are trustworthy. A leave-one-band out study ranks spectral importance to the different bands consistent with shallow water optics. We adapt ablation-based CAM to regression (A-CAM-R) and validate the reliability via a performance retention test: keeping only the top-p% salient pixels while neutralizing the rest causes large, monotonic RMSE increase, indicating explanations localize on evidence the model relies on. Attention ablations show decoder conditioned cross attention on skips is an effective upgrade, improving robustness to glint/foam. Cross-region inference (train on one site, test on another) reveals depth-dependent degradation: MAE rises nearly linearly with depth, and bimodal depth distributions exacerbate mid/deep errors. Practical guidance follows: maintain wide receptive fields, preserve radiometric fidelity in green/blue channels, pre-filter bright high variance near shore, and pair light target site fine tuning with depth aware calibration to transfer across regions.
comment: Accepted by WACV 2026
WEEP: A Differentiable Nonconvex Sparse Regularizer via Weakly-Convex Envelope
Sparse regularization is fundamental in signal processing and feature extraction but often relies on non-differentiable penalties, conflicting with gradient-based optimizers. We propose WEEP (Weakly-convex Envelope of Piecewise Penalty), a novel differentiable regularizer derived from the weakly-convex envelope framework. WEEP provides tunable, unbiased sparsity and a simple closed-form proximal operator, while maintaining full differentiability and L-smoothness, ensuring compatibility with both gradient-based and proximal algorithms. This resolves the tradeoff between statistical performance and computational tractability. We demonstrate superior performance compared to established convex and non-convex sparse regularizers on challenging compressive sensing and image denoising tasks.
comment: 5 pages, 5 figures, 1 tables. Accepted at ICASSP 2026
Calibration Attention: Learning Reliability-Aware Representations for Vision Transformers
Most calibration methods operate at the logit level, implicitly assuming that miscalibration can be corrected without changing the underlying representation. We challenge this assumption and propose \textbf{Calibration Attention (CalAttn)}, a \emph{representation-aware} calibration module for vision transformers that couples instance-wise temperature scaling to transformer token geometry under a proper scoring objective. CalAttn predicts a sample-specific temperature from the \texttt{[CLS]} token and backpropagates calibration gradients into the backbone, thereby reshaping the uncertainty structure of the representation rather than post-hoc adjusting confidence. This yields \emph{token-conditioned uncertainty modulation} with negligible overhead (\(<0.1\%\) additional parameters). Across multiple datasets with ViT/DeiT/Swin backbones, CalAttn consistently improves calibration while preserving accuracy, achieving relative ECE reductions of \(3.7\%\) to \(77.7\%\) over strong baselines across diverse training objectives. Our results indicate that treating calibration as a representation-level problem is a practical and effective direction for trustworthy uncertainty estimation in transformers. Code: [https://github.com/EagleAdelaide/CalibrationAttention-CalAttn-](https://github.com/EagleAdelaide/CalibrationAttention-CalAttn-)
comment: UnderReview
A Large-scale Benchmark on Geological Fault Delineation Models: Domain Shift, Training Dynamics, Generalizability, Evaluation and Inferential Behavior
Machine learning has taken a critical role in seismic interpretation workflows, especially in fault delineation tasks. However, despite the recent proliferation of pretrained models and synthetic datasets, the field still lacks a systematic understanding of the generalizability limits of these models across seismic data representing diverse geologic, acquisition and processing settings. Distributional shifts between data sources, limitations in fine-tuning strategies and labeled data accessibility, and inconsistent evaluation protocols all remain major roadblocks to deploying reliable models in real-world exploration. In this paper, we present the first large-scale benchmarking study explicitly designed to provide guidelines for domain shift strategies in seismic interpretation. Our benchmark spans over 200 combinations of model architectures, datasets and training strategies, across three datasets (synthetic and real) including FaultSeg3D, CRACKS, and Thebe. We systematically assess pretraining, fine-tuning, and joint training under varying domain shifts. Our analysis shows that common fine-tuning practices can lead to catastrophic forgetting, especially when source and target datasets are disjoint, and that larger models such as Segformer are more robust than smaller architectures. We also find that domain adaptation methods outperform fine-tuning when shifts are large, yet underperform when domains are similar. Finally, we complement segmentation metrics with a novel analysis based on fault characteristic descriptors, revealing how models absorb structural biases from training datasets. Overall, we establish a robust experimental baseline that provides insights into tradeoffs in current fault delineation workflows and highlights directions for building more generalizable and interpretable models.
Sy-FAR: Symmetry-based Fair Adversarial Robustness
Security-critical machine-learning (ML) systems, such as face-recognition systems, are susceptible to adversarial examples, including real-world physically realizable attacks. Various means to boost ML's adversarial robustness have been proposed; however, they typically induce unfair robustness: It is often easier to attack from certain classes or groups than from others. Several techniques have been developed to improve adversarial robustness while seeking perfect fairness between classes. Yet, prior work has focused on settings where security and fairness are less critical. Our insight is that achieving perfect parity in realistic fairness-critical tasks, such as face recognition, is often infeasible -- some classes may be highly similar, leading to more misclassifications between them. Instead, we suggest that seeking symmetry -- i.e., attacks from class $i$ to $j$ would be as successful as from $j$ to $i$ -- is more tractable. Intuitively, symmetry is a desirable because class resemblance is a symmetric relation in most domains. Additionally, as we prove theoretically, symmetry between individuals induces symmetry between any set of sub-groups, in contrast to other fairness notions where group-fairness is often elusive. We develop Sy-FAR, a technique to encourage symmetry while also optimizing adversarial robustness and extensively evaluate it using five datasets, with three model architectures, including against targeted and untargeted realistic attacks. The results show Sy-FAR significantly improves fair adversarial robustness compared to state-of-the-art methods. Moreover, we find that Sy-FAR is faster and more consistent across runs. Notably, Sy-FAR also ameliorates another type of unfairness we discover in this work -- target classes that adversarial examples are likely to be classified into become significantly less vulnerable after inducing symmetry.
comment: Accepted to USENIX Security 2026
OceanSplat: Object-aware Gaussian Splatting with Trinocular View Consistency for Underwater Scene Reconstruction AAAI 2026
We introduce OceanSplat, a novel 3D Gaussian Splatting-based approach for high-fidelity underwater scene reconstruction. To overcome multi-view inconsistencies caused by scattering media, we design a trinocular setup for each camera pose by rendering from horizontally and vertically translated virtual viewpoints, enforcing view consistency to facilitate spatial optimization of 3D Gaussians. Furthermore, we derive synthetic epipolar depth priors from the virtual viewpoints, which serve as self-supervised depth regularizers to compensate for the limited geometric cues in degraded underwater scenes. We also propose a depth-aware alpha adjustment that modulates the opacity of 3D Gaussians during early training based on their depth along the viewing direction, deterring the formation of medium-induced primitives. Our approach promotes the disentanglement of 3D Gaussians from the scattering medium through effective geometric constraints, enabling accurate representation of scene structure and significantly reducing floating artifacts. Experiments on real-world underwater and simulated scenes demonstrate that OceanSplat substantially outperforms existing methods for both scene reconstruction and restoration in scattering media.
comment: Accepted to AAAI 2026. Project page: https://oceansplat.github.io
Single-Step Reconstruction-Free Anomaly Detection and Segmentation via Diffusion Models
Generative models have demonstrated significant success in anomaly detection and segmentation over the past decade. Recently, diffusion models have emerged as a powerful alternative, outperforming previous approaches such as GANs and VAEs. In typical diffusion-based anomaly detection, a model is trained on normal data, and during inference, anomalous images are perturbed to a predefined intermediate step in the forward diffusion process. The corresponding normal image is then reconstructed through iterative reverse sampling. However, reconstruction-based approaches present three major challenges: (1) the reconstruction process is computationally expensive due to multiple sampling steps, making real-time applications impractical; (2) for complex or subtle patterns, the reconstructed image may correspond to a different normal pattern rather than the original input; and (3) Choosing an appropriate intermediate noise level is challenging because it is application-dependent and often assumes prior knowledge of anomalies, an assumption that does not hold in unsupervised settings. We introduce Reconstruction-free Anomaly Detection with Attention-based diffusion models in Real-time (RADAR), which overcomes the limitations of reconstruction-based anomaly detection. Unlike current SOTA methods that reconstruct the input image, RADAR directly produces anomaly maps from the diffusion model, improving both detection accuracy and computational efficiency. We evaluate RADAR on real-world 3D-printed material and the MVTec-AD dataset. Our approach surpasses state-of-the-art diffusion-based and statistical machine learning models across all key metrics, including accuracy, precision, recall, and F1 score. Specifically, RADAR improves F1 score by 7% on MVTec-AD and 13% on the 3D-printed material dataset compared to the next best model. Code available at: https://github.com/mehrdadmoradi124/RADAR
comment: 9 pages, 8 figures, 1 table. Accepted to 2025 International Conference on Machine Learning and Applications (ICMLA)
A Text-to-3D Framework for Joint Generation of CG-Ready Humans and Compatible Garments
Creating detailed 3D human avatars with fitted garments traditionally requires specialized expertise and labor-intensive workflows. While recent advances in generative AI have enabled text-to-3D human and clothing synthesis, existing methods fall short in offering accessible, integrated pipelines for generating CG-ready 3D avatars with physically compatible outfits; here we use the term CG-ready for models following a technical aesthetic common in computer graphics (CG) and adopt standard CG polygonal meshes and strands representations (rather than neural representations like NeRF and 3DGS) that can be directly integrated into conventional CG pipelines and support downstream tasks such as physical simulation. To bridge this gap, we introduce Tailor, an integrated text-to-3D framework that generates high-fidelity, customizable 3D avatars dressed in simulation-ready garments. Tailor consists of three stages. (1) Seman tic Parsing: we employ a large language model to interpret textual descriptions and translate them into parameterized human avatars and semantically matched garment templates. (2) Geometry-Aware Garment Generation: we propose topology-preserving deformation with novel geometric losses to generate body-aligned garments under text control. (3) Consistent Texture Synthesis: we propose a novel multi-view diffusion process optimized for garment texturing, which enforces view consistency, preserves photorealistic details, and optionally supports symmetric texture generation common in garments. Through comprehensive quantitative and qualitative evaluations, we demonstrate that Tailor outperforms state-of-the-art methods in fidelity, usability, and diversity. Our code will be released for academic use. Project page: https://human-tailor.github.io
comment: Project page: https://human-tailor.github.io
Beyond Knowledge Silos: Task Fingerprinting for Democratization of Medical Imaging AI
The field of medical imaging AI is currently undergoing rapid transformations, with methodical research increasingly translated into clinical practice. Despite these successes, research suffers from knowledge silos, hindering collaboration and progress: Existing knowledge is scattered across publications and many details remain unpublished, while privacy regulations restrict data sharing. In the spirit of democratizing of AI, we propose a framework for secure knowledge transfer in the field of medical image analysis. The key to our approach is dataset "fingerprints", structured representations of feature distributions, that enable quantification of task similarity. We tested our approach across 71 distinct tasks and 12 medical imaging modalities by transferring neural architectures, pretraining, augmentation policies, and multi-task learning. According to comprehensive analyses, our method outperforms traditional methods for identifying relevant knowledge and facilitates collaborative model training. Our framework fosters the democratization of AI in medical imaging and could become a valuable tool for promoting faster scientific advancement.
Combining Shape Completion and Grasp Prediction for Fast and Versatile Grasping with a Multi-Fingered Hand
Grasping objects with limited or no prior knowledge about them is a highly relevant skill in assistive robotics. Still, in this general setting, it has remained an open problem, especially when it comes to only partial observability and versatile grasping with multi-fingered hands. We present a novel, fast, and high fidelity deep learning pipeline consisting of a shape completion module that is based on a single depth image, and followed by a grasp predictor that is based on the predicted object shape. The shape completion network is based on VQDIF and predicts spatial occupancy values at arbitrary query points. As grasp predictor, we use our two-stage architecture that first generates hand poses using an autoregressive model and then regresses finger joint configurations per pose. Critical factors turn out to be sufficient data realism and augmentation, as well as special attention to difficult cases during training. Experiments on a physical robot platform demonstrate successful grasping of a wide range of household objects based on a depth image from a single viewpoint. The whole pipeline is fast, taking only about 1 s for completing the object's shape (0.7 s) and generating 1000 grasps (0.3 s).
comment: 8 pages, 10 figures, 3 tables, 1 algorithm. Published in Humanoids 2023. Project page: https://aidx-lab.org/grasping/humanoids23
Scaling Laws for Geospatial Foundation Models: A case study on PhilEO Bench
Foundation Models (FMs) have achieved state-of-the-art performance across domains by leveraging large-scale pretraining. In Earth Observation (EO), the availability of petabyte-scale satellite archives has recently enabled the development of GeoSpatial Foundation Models (GFMs). Yet, fundamental questions remain regarding how dataset size, model architecture, and size interact to determine downstream performance. In this work, we systematically explore this design space by pretraining and fine-tuning models on three dataset scales: PhilEO Globe (0.5TB), FastTOM (2TB, introduced here), and MajorTOM (23TB). We evaluate three architectural families: Geo-Aware U-Net (CNN), ViT-UPerNet (Transformer), and Mamba (State-Space Model); across model sizes ranging from 44M to 300M parameters. All models are benchmarked on the PhilEO Bench, covering: road density and building density regression, and land cover segmentation, and are compared against existing GFMs such as TerraMind and Prithvi-EO-2.0. Our results show that CNN-based models remain highly competitive in low-shot settings, with a 200M-parameter Geo-Aware U-Net outperforming larger architectures on regression tasks. However, when scaling to multi-terabyte datasets, ViT-UPerNet achieves the best performance, particularly for semantic segmentation on MajorTOM (23TB). Finally, we provide the first extensive evaluation of Mamba models in EO, highlighting their potential efficiency advantages, though further large-scale pretraining is required to fully match CNNs and ViTs. All code, pretrained models, and the FastTOM dataset are released publicly, enabling reproducibility and further exploration of scaling laws for GFMs.
comment: 11 pages, 12 figures, 3 tables, Submitted
Shape Completion with Prediction of Uncertain Regions IROS 2023
Shape completion, i.e., predicting the complete geometry of an object from a partial observation, is highly relevant for several downstream tasks, most notably robotic manipulation. When basing planning or prediction of real grasps on object shape reconstruction, an indication of severe geometric uncertainty is indispensable. In particular, there can be an irreducible uncertainty in extended regions about the presence of entire object parts when given ambiguous object views. To treat this important case, we propose two novel methods for predicting such uncertain regions as straightforward extensions of any method for predicting local spatial occupancy, one through postprocessing occupancy scores, the other through direct prediction of an uncertainty indicator. We compare these methods together with two known approaches to probabilistic shape completion. Moreover, we generate a dataset, derived from ShapeNet, of realistically rendered depth images of object views with ground-truth annotations for the uncertain regions. We train on this dataset and test each method in shape completion and prediction of uncertain regions for known and novel object instances and on synthetic and real data. While direct uncertainty prediction is by far the most accurate in the segmentation of uncertain regions, both novel methods outperform the two baselines in shape completion and uncertain region prediction, and avoiding the predicted uncertain regions increases the quality of grasps for all tested methods.
comment: 7 pages, 5 figures, Published in IROS 2023. Project page: https://hummat.github.io/2023-iros-uncertain/
Infrared Object Detection with Ultra Small ConvNets: Is ImageNet Pretraining Still Useful? WACV 2026
Many real-world applications require recognition models that are robust to different operational conditions and modalities, but at the same time run on small embedded devices, with limited hardware. While for normal size models, pre-training is known to be very beneficial in accuracy and robustness, for small models, that can be employed for embedded and edge devices, its effect is not clear. In this work, we investigate the effect of ImageNet pretraining on increasingly small backbone architectures (ultra-small models, with less than 1M parameters) with respect to robustness in downstream object detection tasks in the infrared visual modality. Using scaling laws derived from standard object recognition architectures, we construct two ultra-small backbone families and systematically study their performance. Our experiments on three different datasets reveal that while ImageNet pre-training is still useful, beyond a certain capacity threshold, it offers diminishing returns in terms of out-of-distribution detection robustness. Therefore, we advise practitioners to still use pre-training and, when possible avoid too small models as while they might work well for in-domain problems, they are brittle when working conditions are different.
comment: Accepted to WACV 2026
Fine-grained spatial-temporal perception for gas leak segmentation
Gas leaks pose significant risks to human health and the environment. Despite long-standing concerns, there are limited methods that can efficiently and accurately detect and segment leaks due to their concealed appearance and random shapes. In this paper, we propose a Fine-grained Spatial-Temporal Perception (FGSTP) algorithm for gas leak segmentation. FGSTP captures critical motion clues across frames and integrates them with refined object features in an end-to-end network. Specifically, we first construct a correlation volume to capture motion information between consecutive frames. Then, the fine-grained perception progressively refines the object-level features using previous outputs. Finally, a decoder is employed to optimize boundary segmentation. Because there is no highly precise labeled dataset for gas leak segmentation, we manually label a gas leak video dataset, GasVid. Experimental results on GasVid demonstrate that our model excels in segmenting non-rigid objects such as gas leaks, generating the most accurate mask compared to other state-of-the-art (SOTA) models.
comment: Accepted at the 2025 IEEE International Conference on Image Processing (ICIP)
Visual Hand Gesture Recognition with Deep Learning: A Comprehensive Review of Methods, Datasets, Challenges and Future Research Directions
The rapid evolution of deep learning (DL) models and the ever-increasing size of available datasets have raised the interest of the research community in the always important field of visual hand gesture recognition (VHGR), and delivered a wide range of applications, such as sign language understanding and human-computer interaction using cameras. Despite the large volume of research works in the field, a structured and complete survey on VHGR is still missing, leaving researchers to navigate through hundreds of papers in order to find the right combination of data, model, and approach for each task. The current survey aims to fill this gap by presenting a comprehensive overview of this computer vision field. With a systematic research methodology that identifies the state-of-the-art works and a structured presentation of the various methods, datasets, and evaluation metrics, this review aims to constitute a useful guideline for researchers, helping them to choose the right strategy for handling a VHGR task. Starting with the methodology used to locate the related literature, the survey identifies and organizes the key VHGR approaches in a taxonomy-based format, and presents the various dimensions that affect the final method choice, such as input modality, task type, and application domain. The state-of-the-art techniques are grouped across three primary VHGR tasks: static gesture recognition, isolated dynamic gestures, and continuous gesture recognition. For each task, the architectural trends and learning strategies are listed. To support the experimental evaluation of future methods in the field, the study reviews commonly used datasets and presents the standard performance metrics. Our survey concludes by identifying the major challenges in VHGR, including both general computer vision issues and domain-specific obstacles, and outlines promising directions for future research.
RIS-FUSION: Rethinking Text-Driven Infrared and Visible Image Fusion from the Perspective of Referring Image Segmentation
Text-driven infrared and visible image fusion has gained attention for enabling natural language to guide the fusion process. However, existing methods lack a goal-aligned task to supervise and evaluate how effectively the input text contributes to the fusion outcome. We observe that referring image segmentation (RIS) and text-driven fusion share a common objective: highlighting the object referred to by the text. Motivated by this, we propose RIS-FUSION, a cascaded framework that unifies fusion and RIS through joint optimization. At its core is the LangGatedFusion module, which injects textual features into the fusion backbone to enhance semantic alignment. To support multimodal referring image segmentation task, we introduce MM-RIS, a large-scale benchmark with 12.5k training and 3.5k testing triplets, each consisting of an infrared-visible image pair, a segmentation mask, and a referring expression. Extensive experiments show that RIS-FUSION achieves state-of-the-art performance, outperforming existing methods by over 11% in mIoU. Code and dataset will be released at https://github.com/SijuMa2003/RIS-FUSION.
comment: ICASSP 2026
SAMannot: A Memory-Efficient, Local, Open-source Framework for Interactive Video Instance Segmentation based on SAM2
Current research workflows for precise video segmentation are often forced into a compromise between labor-intensive manual curation, costly commercial platforms, and/or privacy-compromising cloud-based services. The demand for high-fidelity video instance segmentation in research is often hindered by the bottleneck of manual annotation and the privacy concerns of cloud-based tools. We present SAMannot, an open-source, local framework that integrates the Segment Anything Model 2 (SAM2) into a human-in-the-loop workflow. To address the high resource requirements of foundation models, we modified the SAM2 dependency and implemented a processing layer that minimizes computational overhead and maximizes throughput, ensuring a highly responsive user interface. Key features include persistent instance identity management, an automated ``lock-and-refine'' workflow with barrier frames, and a mask-skeletonization-based auto-prompting mechanism. SAMannot facilitates the generation of research-ready datasets in YOLO and PNG formats alongside structured interaction logs. Verified through animal behavior tracking use-cases and subsets of the LVOS and DAVIS benchmark datasets, the tool provides a scalable, private, and cost-effective alternative to commercial platforms for complex video annotation tasks.
Evaluating Latent Generative Paradigms for High-Fidelity 3D Shape Completion from a Single Depth Image 3DV 2026
While generative models have seen significant adoption across a wide range of data modalities, including 3D data, a consensus on which model is best suited for which task has yet to be reached. Further, conditional information such as text and images to steer the generation process are frequently employed, whereas others, like partial 3D data, have not been thoroughly evaluated. In this work, we compare two of the most promising generative models--Denoising Diffusion Probabilistic Models and Autoregressive Causal Transformers--which we adapt for the tasks of generative shape modeling and completion. We conduct a thorough quantitative evaluation and comparison of both tasks, including a baseline discriminative model and an extensive ablation study. Our results show that (1) the diffusion model with continuous latents outperforms both the discriminative model and the autoregressive approach and delivers state-of-the-art performance on multi-modal shape completion from a single, noisy depth image under realistic conditions and (2) when compared on the same discrete latent space, the autoregressive model can match or exceed diffusion performance on these tasks.
comment: 16 pages, 4 figures, 19 tables. To appear in 3DV 2026. Project page: https://hummat.github.io/2026-3dv-genz/
Crafting Adversarial Inputs for Large Vision-Language Models Using Black-Box Optimization
Recent advancements in Large Vision-Language Models (LVLMs) have shown groundbreaking capabilities across diverse multimodal tasks. However, these models remain vulnerable to adversarial jailbreak attacks, where adversaries craft subtle perturbations to bypass safety mechanisms and trigger harmful outputs. Existing white-box attacks methods require full model accessibility, suffer from computing costs and exhibit insufficient adversarial transferability, making them impractical for real-world, black-box settings. To address these limitations, we propose a black-box jailbreak attack on LVLMs via Zeroth-Order optimization using Simultaneous Perturbation Stochastic Approximation (ZO-SPSA). ZO-SPSA provides three key advantages: (i) gradient-free approximation by input-output interactions without requiring model knowledge, (ii) model-agnostic optimization without the surrogate model and (iii) lower resource requirements with reduced GPU memory consumption. We evaluate ZO-SPSA on three LVLMs, including InstructBLIP, LLaVA and MiniGPT-4, achieving the highest jailbreak success rate of 83.0% on InstructBLIP, while maintaining imperceptible perturbations comparable to white-box methods. Moreover, adversarial examples generated from MiniGPT-4 exhibit strong transferability to other LVLMs, with ASR reaching 64.18%. These findings underscore the real-world feasibility of black-box jailbreaks and expose critical weaknesses in the safety mechanisms of current LVLMs
comment: EACL
Comparative validation of surgical phase recognition, instrument keypoint estimation, and instrument instance segmentation in endoscopy: Results of the PhaKIR 2024 challenge
Reliable recognition and localization of surgical instruments in endoscopic video recordings are foundational for a wide range of applications in computer- and robot-assisted minimally invasive surgery (RAMIS), including surgical training, skill assessment, and autonomous assistance. However, robust performance under real-world conditions remains a significant challenge. Incorporating surgical context - such as the current procedural phase - has emerged as a promising strategy to improve robustness and interpretability. To address these challenges, we organized the Surgical Procedure Phase, Keypoint, and Instrument Recognition (PhaKIR) sub-challenge as part of the Endoscopic Vision (EndoVis) challenge at MICCAI 2024. We introduced a novel, multi-center dataset comprising thirteen full-length laparoscopic cholecystectomy videos collected from three distinct medical institutions, with unified annotations for three interrelated tasks: surgical phase recognition, instrument keypoint estimation, and instrument instance segmentation. Unlike existing datasets, ours enables joint investigation of instrument localization and procedural context within the same data while supporting the integration of temporal information across entire procedures. We report results and findings in accordance with the BIAS guidelines for biomedical image analysis challenges. The PhaKIR sub-challenge advances the field by providing a unique benchmark for developing temporally aware, context-driven methods in RAMIS and offers a high-quality resource to support future research in surgical scene understanding.
comment: A challenge report pre-print accepted by the journal Medical Image Analysis (MedIA), containing 37 pages, 15 figures, and 14 tables
Fine-Grained Human Pose Editing Assessment via Layer-Selective MLLMs
Text-guided human pose editing has gained significant traction in AIGC applications. However,it remains plagued by structural anomalies and generative artifacts. Existing evaluation metrics often isolate authenticity detection from quality assessment, failing to provide fine-grained insights into pose-specific inconsistencies. To address these limitations, we introduce HPE-Bench, a specialized benchmark comprising 1,700 standardized samples from 17 state-of-the-art editing models, offering both authenticity labels and multi-dimensional quality scores. Furthermore, we propose a unified framework based on layer-selective multimodal large language models (MLLMs). By employing contrastive LoRA tuning and a novel layer sensitivity analysis (LSA) mechanism, we identify the optimal feature layer for pose evaluation. Our framework achieves superior performance in both authenticity detection and multi-dimensional quality regression, effectively bridging the gap between forensic detection and quality assessment.
Image-to-Video Transfer Learning based on Image-Language Foundation Models: A Comprehensive Survey
Image-Language Foundation Models (ILFMs) have demonstrated remarkable success in vision-language understanding, providing transferable multimodal representations that generalize across diverse downstream image-based tasks. The advancement of video-text research has spurred growing interest in extending image-based models to the video domain. This paradigm, termed as image-to-video transfer learning, effectively mitigates the substantial data and computational demands compared to training video-language models from scratch while achieves comparable or even stronger model performance. This survey provides the first comprehensive review of this emerging field, which begins by summarizing the widely used ILFMs and their capabilities. We then systematically classify existing image-to-video transfer learning techniques into two broad root categories (frozen features and adapted features), along with numerous fine-grained subcategories, based on the paradigm for transferring image understanding capability to video tasks. Building upon the task-specific nature of image-to-video transfer, this survey methodically elaborates these strategies and details their applications across a spectrum of video-text learning tasks, ranging from fine-grained settings (e.g., spatio-temporal video grounding) to coarse-grained ones (e.g., video question answering). We further present a detailed experimental analysis to investigate the efficacy of different image-to-video transfer learning paradigms on a range of downstream video understanding tasks. Finally, we identify prevailing challenges and highlight promising directions for future research. By offering a comprehensive and structured overview, this survey aims to establish a structured roadmap for advancing video-text learning based on existing ILFM, and to inspire future research directions in this rapidly evolving domain. Github repository is available.
comment: Updated version, github repository is available at https://github.com/YuriPreisdent/awesome-image-to-video-transfer
Shared representations in brains and models reveal a two-route cortical organization during scene perception
The brain transforms visual inputs into high-dimensional cortical representations that support diverse cognitive and behavioral goals. Characterizing how this information is organized and routed across the human brain is essential for understanding how we process complex visual scenes. Here, we applied representational similarity analysis to 7T fMRI data collected during natural scene viewing. We quantified representational geometry shared across individuals and compared it to hierarchical features from vision and language neural networks. This analysis revealed two distinct processing routes: a ventromedial pathway specialized for scene layout and environmental context, and a lateral occipitotemporal pathway selective for animate content. Vision models aligned with shared structure in both routes, whereas language models corresponded primarily with the lateral pathway. These findings refine classical visual-stream models by characterizing scene perception as a distributed cortical network with separable representational routes for context and animate content.
comment: for associate code, see https://github.com/memory-formation/convergent-transformations
Perception, Understanding and Reasoning, A Multimodal Benchmark for Video Fake News Detection
The advent of multi-modal large language models (MLLMs) has greatly advanced research on video fake news detection (VFND) tasks. Existing benchmarks typically focus on the detection accuracy, while failing to provide fine-grained assessments for the entire detection process. To address these limitations, we introduce {POVFNDB (Process-oriented Video Fake News Detection Benchmark)}, a process-oriented benchmark comprising 10 tasks designed to systematically evaluate MLLMs' perception, understanding, and reasoning capabilities in VFND. This benchmark contains \textit{36,240} human-annotated question-answer (QA) in structured or open-ended formats, spanning 15 distinct evaluation dimensions that characterize different aspects of the video fake news detection process. Using POVFNDB, we conduct comprehensive evaluations on both proprietary and open-source MLLMs. Moreover, we establish a strong benchmark baseline by fine-tuning Qwen2.5VL-7B-Instruct on process-oriented chain-of-thought data constructed with our proposed POVFND-CoT framework, achieving state-of-the-art performance on VFND.
ChartComplete: A Taxonomy-based Inclusive Chart Dataset
With advancements in deep learning (DL) and computer vision techniques, the field of chart understanding is evolving rapidly. In particular, multimodal large language models (MLLMs) are proving to be efficient and accurate in understanding charts. To accurately measure the performance of MLLMs, the research community has developed multiple datasets to serve as benchmarks. By examining these datasets, we found that they are all limited to a small set of chart types. To bridge this gap, we propose the ChartComplete dataset. The dataset is based on a chart taxonomy borrowed from the visualization community, and it covers thirty different chart types. The dataset is a collection of classified chart images and does not include a learning signal. We present the ChartComplete dataset as is to the community to build upon it.
comment: 7 pages, 4 figures, 3 tables, 1 algorithm. Dataset and source code available at https://github.com/AI-DSCHubAUB/ChartComplete-Dataset
Jordan-Segmentable Masks: A Topology-Aware definition for characterizing Binary Image Segmentation
Image segmentation plays a central role in computer vision. However, widely used evaluation metrics, whether pixel-wise, region-based, or boundary-focused, often struggle to capture the structural and topological coherence of a segmentation. In many practical scenarios, such as medical imaging or object delineation, small inaccuracies in boundary, holes, or fragmented predictions can result in high metric scores, despite the fact that the resulting masks fail to preserve the object global shape or connectivity. This highlights a limitation of conventional metrics: they are unable to assess whether a predicted segmentation partitions the image into meaningful interior and exterior regions. In this work, we introduce a topology-aware notion of segmentation based on the Jordan Curve Theorem, and adapted for use in digital planes. We define the concept of a \emph{Jordan-segmentatable mask}, which is a binary segmentation whose structure ensures a topological separation of the image domain into two connected components. We analyze segmentation masks through the lens of digital topology and homology theory, extracting a $4$-curve candidate from the mask, verifying its topological validity using Betti numbers. A mask is considered Jordan-segmentatable when this candidate forms a digital 4-curve with $β_0 = β_1 = 1$, or equivalently when its complement splits into exactly two $8$-connected components. This framework provides a mathematically rigorous, unsupervised criterion with which to assess the structural coherence of segmentation masks. By combining digital Jordan theory and homological invariants, our approach provides a valuable alternative to standard evaluation metrics, especially in applications where topological correctness must be preserved.
comment: 27 pages, 18 figures
DeepDetect: Learning All-in-One Dense Keypoints
Keypoint detection is the foundation of many computer vision tasks, including image registration, structure-from-motion, 3D reconstruction, visual odometry, and SLAM. Traditional detectors (SIFT, ORB, BRISK, FAST, etc.) and learning-based methods (SuperPoint, R2D2, QuadNet, LIFT, etc.) have shown strong performance gains yet suffer from key limitations: sensitivity to photometric changes, low keypoint density and repeatability, limited adaptability to challenging scenes, and lack of semantic understanding, often failing to prioritize visually important regions. We present DeepDetect, an intelligent, all-in-one, dense detector that unifies the strengths of classical detectors using deep learning. Firstly, we create ground-truth masks by fusing outputs of 7 keypoint and 2 edge detectors, extracting diverse visual cues from corners and blobs to prominent edges and textures in the images. Afterwards, a lightweight and efficient model: ESPNet, is trained using fused masks as labels, enabling DeepDetect to focus semantically on images while producing highly dense keypoints, that are adaptable to diverse and visually degraded conditions. Evaluations on Oxford, HPatches, and Middlebury datasets demonstrate that DeepDetect surpasses other detectors achieving maximum values of 0.5143 (average keypoint density), 0.9582 (average repeatability), 338,118 (correct matches), and 842,045 (voxels in stereo 3D reconstruction).
comment: 8 pages, 8 figures, 3 tables, 6 equations
Simple Yet Effective Selective Imputation for Incomplete Multi-view Clustering
Incomplete Multi-view Clustering (IMC) has emerged as a significant challenge in multi-view learning. A predominant line for IMC is data imputation; however, indiscriminate imputation can result in unreliable content. Recently, researchers have proposed selective imputation methods that use a post-imputation assessment strategy: (1) impute all or some missing values, and (2) evaluate their quality through clustering tasks. We observe that this strategy incurs substantial computational complexity and is heavily dependent on the performance of the clustering model. To address these challenges, we first introduce the concept of pre-imputation assessment. We propose an Implicit Informativeness-based Selective Imputation (SI$^3$) method for incomplete multi-view clustering, which explicitly addresses the trade-off between imputation utility and imputation risk. SI$^3$ evaluates the imputation-relevant informativeness of each missing position in a training-free manner, and selectively imputes data only when sufficient informative support is available. Under a multi-view generative assumption, SI$^3$ further integrates selective imputation into a variational inference framework, enabling uncertainty-aware imputation at the latent distribution level and robust multi-view fusion. Compared with existing selective imputation strategies, SI$^3$ is lightweight, data-driven, and model-agnostic, and can be seamlessly incorporated into existing incomplete multi-view clustering frameworks as a plug-in strategy. Extensive experiments on multiple benchmark datasets demonstrate that SI$^3$ consistently outperforms both imputation-based and imputation-free methods, particularly under challenging unbalanced missing scenarios.
comment: Under Review
ManipShield: A Unified Framework for Image Manipulation Detection, Localization and Explanation
With the rapid advancement of generative models, powerful image editing methods now enable diverse and highly realistic image manipulations that far surpass traditional deepfake techniques, posing new challenges for manipulation detection. Existing image manipulation detection and localization (IMDL) benchmarks suffer from limited content diversity, narrow generative-model coverage, and insufficient interpretability, which hinders the generalization and explanation capabilities of current manipulation detection methods. To address these limitations, we introduce \textbf{ManipBench}, a large-scale benchmark for image manipulation detection and localization focusing on AI-edited images. ManipBench contains over 450K manipulated images produced by 25 state-of-the-art image editing models across 12 manipulation categories, among which 100K images are further annotated with bounding boxes, judgment cues, and textual explanations to support interpretable detection. Building upon ManipBench, we propose \textbf{ManipShield}, an all-in-one model based on a Multimodal Large Language Model (MLLM) that leverages contrastive LoRA fine-tuning and task-specific decoders to achieve unified image manipulation detection, localization, and explanation. Extensive experiments on ManipBench and several public datasets demonstrate that ManipShield achieves state-of-the-art performance and exhibits strong generality to unseen manipulation models. Both ManipBench and ManipShield will be released upon publication.
PositionIC: Unified Position and Identity Consistency for Image Customization
Recent subject-driven image customization excels in fidelity, yet fine-grained instance-level spatial control remains an elusive challenge, hindering real-world applications. This limitation stems from two factors: a scarcity of scalable, position-annotated datasets, and the entanglement of identity and layout by global attention mechanisms. To this end, we introduce PositionIC, a unified framework for high-fidelity, spatially controllable multi-subject customization. First, we present BMPDS, the first automatic data-synthesis pipeline for position-annotated multi-subject datasets, effectively providing crucial spatial supervision. Second, we design a lightweight, layout-aware diffusion framework that integrates a novel visibility-aware attention mechanism. This mechanism explicitly models spatial relationships via an NeRF-inspired volumetric weight regulation to effectively decouple instance-level spatial embeddings from semantic identity features, enabling precise, occlusion-aware placement of multiple subjects. Extensive experiments demonstrate PositionIC achieves state-of-the-art performance on public benchmarks, setting new records for spatial precision and identity consistency. Our work represents a significant step towards truly controllable, high-fidelity image customization in multi-entity scenarios. Code and data: https://github.com/MeiGen-AI/PositionIC.
Lightning Fast Caching-based Parallel Denoising Prediction for Accelerating Talking Head Generation
Diffusion-based talking head models generate high-quality, photorealistic videos but suffer from slow inference, limiting practical applications. Existing acceleration methods for general diffusion models fail to exploit the temporal and spatial redundancies unique to talking head generation. In this paper, we propose a task-specific framework addressing these inefficiencies through two key innovations. First, we introduce Lightning-fast Caching-based Parallel denoising prediction (LightningCP), caching static features to bypass most model layers in inference time. We also enable parallel prediction using cached features and estimated noisy latents as inputs, efficiently bypassing sequential sampling. Second, we propose Decoupled Foreground Attention (DFA) to further accelerate attention computations, exploiting the spatial decoupling in talking head videos to restrict attention to dynamic foreground regions. Additionally, we remove reference features in certain layers to bring extra speedup. Extensive experiments demonstrate that our framework significantly improves inference speed while preserving video quality.
A Survey on Vision-Language-Action Models for Embodied AI
Embodied AI is widely recognized as a cornerstone of artificial general intelligence because it involves controlling embodied agents to perform tasks in the physical world. Building on the success of large language models and vision-language models, a new category of multimodal models -- referred to as vision-language-action models (VLAs) -- has emerged to address language-conditioned robotic tasks in embodied AI by leveraging their distinct ability to generate actions. The recent proliferation of VLAs necessitates a comprehensive survey to capture the rapidly evolving landscape. To this end, we present the first survey on VLAs for embodied AI. This work provides a detailed taxonomy of VLAs, organized into three major lines of research. The first line focuses on individual components of VLAs. The second line is dedicated to developing VLA-based control policies adept at predicting low-level actions. The third line comprises high-level task planners capable of decomposing long-horizon tasks into a sequence of subtasks, thereby guiding VLAs to follow more general user instructions. Furthermore, we provide an extensive summary of relevant resources, including datasets, simulators, and benchmarks. Finally, we discuss the challenges facing VLAs and outline promising future directions in embodied AI. A curated repository associated with this survey is available at: https://github.com/yueen-ma/Awesome-VLA.
comment: Project page: https://github.com/yueen-ma/Awesome-VLA
Beyond the Safety Tax: Mitigating Unsafe Text-to-Image Generation via External Safety Rectification
Text-to-image (T2I) generative models have achieved remarkable visual fidelity, yet remain vulnerable to generating unsafe content. Existing safety defenses typically intervene internally within the generative model, but suffer from severe concept entanglement, leading to degradation of benign generation quality, a trade-off we term the Safety Tax. To overcome this limitation, we advocate a paradigm shift from destructive internal editing to external safety rectification. Following this principle, we propose SafePatch, a structurally isolated safety module that performs external, interpretable rectification without modifying the base model. The core backbone of SafePatch is architecturally instantiated as a trainable clone of the base model's encoder, allowing it to inherit rich semantic priors and maintain representation consistency. To enable interpretable safety rectification, we construct a strictly aligned counterfactual safety dataset (ACS) for differential supervision training. Across nudity and multi-category benchmarks and recent adversarial prompt attacks, SafePatch achieves robust unsafe suppression (7% unsafe on I2P) while preserving image quality and semantic alignment.
Part-Aware Bottom-Up Group Reasoning for Fine-Grained Social Interaction Detection NeurIPS 2025
Social interactions often emerge from subtle, fine-grained cues such as facial expressions, gaze, and gestures. However, existing methods for social interaction detection overlook such nuanced cues and primarily rely on holistic representations of individuals. Moreover, they directly detect social groups without explicitly modeling the underlying interactions between individuals. These drawbacks limit their ability to capture localized social signals and introduce ambiguity when group configurations should be inferred from social interactions grounded in nuanced cues. In this work, we propose a part-aware bottom-up group reasoning framework for fine-grained social interaction detection. The proposed method infers social groups and their interactions using body part features and their interpersonal relations. Our model first detects individuals and enhances their features using part-aware cues, and then infers group configuration by associating individuals via similarity-based reasoning, which considers not only spatial relations but also subtle social cues that signal interactions, leading to more accurate group inference. Experiments on the NVI dataset demonstrate that our method outperforms prior methods, achieving the new state of the art, while additional results on the Café dataset further validate its generalizability to group activity understanding.
comment: Accepted to NeurIPS 2025
Towards Temporal Fusion Beyond the Field of View for Camera-based Semantic Scene Completion AAAI 2026
Recent camera-based 3D semantic scene completion (SSC) methods have increasingly explored leveraging temporal cues to enrich the features of the current frame. However, while these approaches primarily focus on enhancing in-frame regions, they often struggle to reconstruct critical out-of-frame areas near the sides of the ego-vehicle, although previous frames commonly contain valuable contextual information about these unseen regions. To address this limitation, we propose the Current-Centric Contextual 3D Fusion (C3DFusion) module, which generates hidden region-aware 3D feature geometry by explicitly aligning 3D-lifted point features from both current and historical frames. C3DFusion performs enhanced temporal fusion through two complementary techniques-historical context blurring and current-centric feature densification-which suppress noise from inaccurately warped historical point features by attenuating their scale, and enhance current point features by increasing their volumetric contribution. Simply integrated into standard SSC architectures, C3DFusion demonstrates strong effectiveness, significantly outperforming state-of-the-art methods on the SemanticKITTI and SSCBench-KITTI-360 datasets. Furthermore, it exhibits robust generalization, achieving notable performance gains when applied to other baseline models.
comment: Accepted to AAAI 2026
WVSC: Wireless Video Semantic Communication with Multi-frame Compensation
Existing wireless video transmission schemes directly conduct video coding in pixel level, while neglecting the inner semantics contained in videos. In this paper, we propose a wireless video semantic communication framework, abbreviated as WVSC, which integrates the idea of semantic communication into wireless video transmission scenarios. WVSC first encodes original video frames as semantic frames and then conducts video coding based on such compact representations, enabling the video coding in semantic level rather than pixel level. Moreover, to further reduce the communication overhead, a reference semantic frame is introduced to substitute motion vectors of each frame in common video coding methods. At the receiver, multi-frame compensation (MFC) is proposed to produce compensated current semantic frame with a multi-frame fusion attention module. With both the reference frame transmission and MFC, the bandwidth efficiency improves with satisfying video transmission performance. Experimental results verify the performance gain of WVSC over other DL-based methods e.g. DVSC about 1 dB and traditional schemes about 2 dB in terms of PSNR.
comment: This paper has been accepted by WCNC2026
InstructMoLE: Instruction-Guided Mixture of Low-rank Experts for Multi-Conditional Image Generation
Parameter-Efficient Fine-Tuning of Diffusion Transformers (DiTs) for diverse, multi-conditional tasks often suffers from task interference when using monolithic adapters like LoRA. The Mixture of Low-rank Experts (MoLE) architecture offers a modular solution, but its potential is usually limited by routing policies that operate at a token level. Such local routing can conflict with the global nature of user instructions, leading to artifacts like spatial fragmentation and semantic drift in complex image generation tasks. To address these limitations, we introduce InstructMoLE, a novel framework that employs an Instruction-Guided Mixture of Low-Rank Experts. Instead of per-token routing, InstructMoLE utilizes a global routing signal, Instruction-Guided Routing (IGR), derived from the user's comprehensive instruction. This ensures that a single, coherently chosen expert council is applied uniformly across all input tokens, preserving the global semantics and structural integrity of the generation process. To complement this, we introduce an output-space orthogonality loss, which promotes expert functional diversity and mitigates representational collapse. Extensive experiments demonstrate that InstructMoLE significantly outperforms existing LoRA adapters and MoLE variants across challenging multi-conditional generation benchmarks. Our work presents a robust and generalizable framework for instruction-driven fine-tuning of generative models, enabling superior compositional control and fidelity to user intent.
Synthetic Geology: Structural Geology Meets Deep Learning
Reconstructing the structural geology and mineral composition of the first few kilometers of the Earth's subsurface from sparse or indirect surface observations remains a long-standing challenge with critical applications in mineral exploration, geohazard assessment, and geotechnical engineering. This inherently ill-posed problem is often addressed by classical geophysical inversion methods, which typically yield a single maximum-likelihood model that fails to capture the full range of plausible geology. The adoption of modern deep learning methods has been limited by the lack of large 3D training datasets. We address this gap with \textit{StructuralGeo}, a geological simulation engine that mimics eons of tectonic, magmatic, and sedimentary processes to generate a virtually limitless supply of realistic synthetic 3D lithological models. Using this dataset, we train both unconditional and conditional generative flow-matching models with a 3D attention U-Net architecture. The resulting foundation model can reconstruct multiple plausible 3D scenarios from surface topography and sparse borehole data, depicting structures such as layers, faults, folds, and dikes. By sampling many reconstructions from the same observations, we introduce a probabilistic framework for estimating the size and extent of subsurface features. While the realism of the output is bounded by the fidelity of the training data to true geology, this combination of simulation and generative AI functions offers a flexible prior for probabilistic modeling, regional fine-tuning, and use as an AI-based regularizer in traditional geophysical inversion workflows.
comment: Accepted for publication in Journal of Geophysical Research: Machine Learning and Computation (2026). 16 pages, 9 figures, geological simulation code at https://doi.org/10.5281/zenodo.15244035, generative AI code at https://github.com/chipnbits/flowtrain_stochastic_interpolation/releases/tag/v1.0.2
Multimodal RewardBench 2: Evaluating Omni Reward Models for Interleaved Text and Image
Reward models (RMs) are essential for training large language models (LLMs), but remain underexplored for omni models that handle interleaved image and text sequences. We introduce Multimodal RewardBench 2 (MMRB2), the first comprehensive benchmark for reward models on multimodal understanding and (interleaved) generation. MMRB2 spans four tasks: text-to-image, image editing, interleaved generation, and multimodal reasoning ("thinking-with-images"), providing 1,000 expert-annotated preference pairs per task from 23 models and agents across 21 source tasks. MMRB2 is designed with: (1) practical but challenging prompts; (2) responses from state-of-the-art models and agents; and (3) preference pairs with strong human-expert consensus, curated via an ensemble filtering strategy. Using MMRB2, we study existing judges for each subtask, including multimodal LLM-as-a-judge and models trained with human preferences. The latest Gemini 3 Pro attains 75-80% accuracy. GPT-5 and Gemini 2.5 Pro reach 66-75% accuracy, compared to >90% for humans, yet surpass the widely used GPT-4o (59%). The best performing open-source model Qwen3-VL-32B achieves similar accuracies as Gemini 2.5 Flash (64%). We also show that MMRB2 performance strongly correlates with downstream task success using Best-of-N sampling and conduct an in-depth analysis that shows key areas to improve the reward models going forward.
comment: Code and data available at https://github.com/facebookresearch/MMRB2
Event2Audio: Event-Based Optical Vibration Sensing
Small vibrations observed in video can unveil information beyond what is visual, such as sound and material properties. It is possible to passively record these vibrations when they are visually perceptible, or actively amplify their visual contribution with a laser beam when they are not perceptible. In this paper, we improve upon the active sensing approach by leveraging event-based cameras, which are designed to efficiently capture fast motion. We demonstrate our method experimentally by recovering audio from vibrations, even for multiple simultaneous sources, and in the presence of environmental distortions. Our approach matches the state-of-the-art reconstruction quality at much faster speeds, approaching real-time processing.
comment: 14 pages, 13 figures
STRIDE-QA: Visual Question Answering Dataset for Spatiotemporal Reasoning in Urban Driving Scenes AAAI 2026
Vision-Language Models (VLMs) have been applied to autonomous driving to support decision-making in complex real-world scenarios. However, their training on static, web-sourced image-text pairs fundamentally limits the precise spatiotemporal reasoning required to understand and predict dynamic traffic scenes. We address this critical gap with STRIDE-QA, a large-scale visual question answering (VQA) dataset for physically grounded reasoning from an ego-centric perspective. Constructed from 100 hours of multi-sensor driving data in Tokyo, capturing diverse and challenging conditions, STRIDE-QA is the largest VQA dataset for spatiotemporal reasoning in urban driving, offering 16M QA pairs over 270K frames. Grounded by dense, automatically generated annotations including 3D bounding boxes, segmentation masks, and multi-object tracks, the dataset uniquely supports both object-centric and ego-centric reasoning through three novel QA tasks that require spatial localization and temporal prediction. Our benchmarks demonstrate that existing VLMs struggle significantly, with near-zero scores on prediction consistency. In contrast, VLMs fine-tuned on STRIDE-QA exhibit dramatic performance gains, achieving 55% success in spatial localization and 28% consistency in future motion prediction, compared to near-zero scores from general-purpose VLMs. Therefore, STRIDE-QA establishes a comprehensive foundation for developing more reliable VLMs for safety-critical autonomous systems.
comment: Accepted to AAAI 2026 (Oral). project page: https://turingmotors.github.io/stride-qa/
SM3D: Mitigating Spectral Bias and Semantic Dilution in Point Cloud State Space Models
Point clouds are a fundamental 3D data representation that underpins various computer vision tasks. Recently, Mamba has demonstrated strong potential for 3D point cloud understanding. However, existing approaches primarily focus on point serialization, overlooking a more fundamental limitation: State Space Models (SSMs) inherently exhibit a spectral low-pass bias arising from their recursive formulation. In serialized point clouds, this bias is particularly detrimental, as it suppresses high-frequency geometric structures and progressively dilutes semantic discriminability across deep layers. To address these limitations, we propose SM3D, a spectral-aware framework designed to jointly preserve geometric fidelity and semantic consistency. First, a Geometric Spectral Compensator (GSC) is introduced to counteract the low-pass bias by explicitly injecting graph-guided high-frequency components through local Laplacian analysis, thereby restoring structural sensitivity. Second, we design a Semantic Coherence Refiner (SCR) to rectify semantic drift through frequency-aware channel recalibration. To balance theoretical precision and computational efficiency, SCR is instantiated via two pathways: an exact Laplacian eigendecomposition (SCR-L) and a linear-complexity Chebyshev polynomial approximation (SCR-C). Extensive experiments demonstrate that SM3D achieves state-of-the-art performance, including 96.0% accuracy on ModelNet40 and 86.5% mIoU on ShapeNetPart, validating its effectiveness in mitigating spectral low-pass bias and semantic dilution (Code: https://github.com/L1277471578/SM3D).
Unified Source-Free Domain Adaptation
In the pursuit of transferring a source model to a target domain without access to the source training data, Source-Free Domain Adaptation (SFDA) has been extensively explored across various scenarios, including Closed-set, Open-set, Partial-set, and Generalized settings. Existing methods, focusing on specific scenarios, not only address a limited subset of challenges but also necessitate prior knowledge of the target domain, significantly limiting their practical utility and deployability. In light of these considerations, we introduce a more practical yet challenging problem, termed unified SFDA, which comprehensively incorporates all specific scenarios in a unified manner. In this paper, we propose a novel approach latent Causal factors discovery for unified SFDA (CausalDA). In contrast to previous alternatives that emphasize learning the statistical description of reality, we formulate CausalDA from a causality perspective. The objective is to uncover potential causality between latent variables and model decisions, enhancing the reliability and robustness of the learned model against domain shifts. To integrate extensive world knowledge, we leverage a pre-trained vision-language model such as CLIP. This aids in the formation and discovery of latent causal factors in the absence of supervision in the variation of distribution and semantics, coupled with a newly designed information bottleneck with theoretical guarantees. Extensive experiments demonstrate that CausalDA can achieve new state-of-the-art results in distinct SFDA settings, as well as source-free out-of-distribution generalization. Our code and data are available at https://github.com/tntek/CausalDA.
Controllable Video Generation: A Survey
With the rapid development of AI-generated content (AIGC), video generation has emerged as one of its most dynamic and impactful subfields. In particular, the advancement of video generation foundation models has led to growing demand for controllable video generation methods that can more accurately reflect user intent. Most existing foundation models are designed for text-to-video generation, where text prompts alone are often insufficient to express complex, multi-modal, and fine-grained user requirements. This limitation makes it challenging for users to generate videos with precise control using current models. To address this issue, recent research has explored the integration of additional non-textual conditions, such as camera motion, depth maps, and human pose, to extend pretrained video generation models and enable more controllable video synthesis. These approaches aim to enhance the flexibility and practical applicability of AIGC-driven video generation systems. In this survey, we provide a systematic review of controllable video generation, covering both theoretical foundations and recent advances in the field. We begin by introducing the key concepts and commonly used open-source video generation models. We then focus on control mechanisms in video diffusion models, analyzing how different types of conditions can be incorporated into the denoising process to guide generation. Finally, we categorize existing methods based on the types of control signals they leverage, including single-condition generation, multi-condition generation, and universal controllable generation. For a complete list of the literature on controllable video generation reviewed, please visit our curated repository at https://github.com/mayuelala/Awesome-Controllable-Video-Generation.
comment: project page: https://github.com/mayuelala/Awesome-Controllable-Video-Generation
MMedExpert-R1: Strengthening Multimodal Medical Reasoning via Domain-Specific Adaptation and Clinical Guideline Reinforcement
Medical Vision-Language Models (MedVLMs) excel at perception tasks but struggle with complex clinical reasoning required in real-world scenarios. While reinforcement learning (RL) has been explored to enhance reasoning capabilities, existing approaches face critical mismatches: the scarcity of deep reasoning data, cold-start limits multi-specialty alignment, and standard RL algorithms fail to model clinical reasoning diversity. We propose MMedExpert-R1, a novel reasoning MedVLM that addresses these challenges through domain-specific adaptation and clinical guideline reinforcement. We construct MMedExpert, a high-quality dataset of 10K samples across four specialties with step-by-step reasoning traces. Our Domain-Specific Adaptation (DSA) creates specialty-specific LoRA modules to provide diverse initialization, while Guideline-Based Advantages (GBA) explicitly models different clinical reasoning perspectives to align with real-world diagnostic strategies. Conflict-Aware Capability Integration then merges these specialized experts into a unified agent, ensuring robust multi-specialty alignment. Comprehensive experiments demonstrate state-of-the-art performance, with our 7B model achieving 27.50 on MedXpert-MM and 83.03 on OmniMedVQA, establishing a robust foundation for reliable multimodal medical reasoning systems.
SSVP: Synergistic Semantic-Visual Prompting for Industrial Zero-Shot Anomaly Detection
Zero-Shot Anomaly Detection (ZSAD) leverages Vision-Language Models (VLMs) to enable supervision-free industrial inspection. However, existing ZSAD paradigms are constrained by single visual backbones, which struggle to balance global semantic generalization with fine-grained structural discriminability. To bridge this gap, we propose Synergistic Semantic-Visual Prompting (SSVP), that efficiently fuses diverse visual encodings to elevate model's fine-grained perception. Specifically, SSVP introduces the Hierarchical Semantic-Visual Synergy (HSVS) mechanism, which deeply integrates DINOv3's multi-scale structural priors into the CLIP semantic space. Subsequently, the Vision-Conditioned Prompt Generator (VCPG) employs cross-modal attention to guide dynamic prompt generation, enabling linguistic queries to precisely anchor to specific anomaly patterns. Furthermore, to address the discrepancy between global scoring and local evidence, the Visual-Text Anomaly Mapper (VTAM) establishes a dual-gated calibration paradigm. Extensive evaluations on seven industrial benchmarks validate the robustness of our method; SSVP achieves state-of-the-art performance with 93.0% Image-AUROC and 92.2% Pixel-AUROC on MVTec-AD, significantly outperforming existing zero-shot approaches.
PERSEUS: Perception with Semantic Endoscopic Understanding and SLAM
Purpose: Natural orifice surgeries minimize the need for incisions and reduce the recovery time compared to open surgery; however, they require a higher level of expertise due to visualization and orientation challenges. We propose a perception pipeline for these surgeries that allows semantic scene understanding. Methods: We bring learning-based segmentation, depth estimation, and 3D reconstruction modules together to create real-time segmented maps of the surgical scenes. Additionally, we use registration with robot poses to solve the scale ambiguity of mapping from monocular images, and allow the use of semantically informed real-time reconstructions in robotic surgeries. Results: We achieve sub-milimeter reconstruction accuracy based on average one-sided Chamfer distances, average pose registration RMSE of 0.9 mm, and an estimated scale within 2% of ground truth. Conclusion: We present a modular perception pipeline, integrating semantic segmentation with real-time monocular SLAM for natural orifice surgeries. This pipeline offers a promising solution for scene understanding that can facilitate automation or surgeon guidance.
comment: 13 pages, 6 figures, 2 tables. Under review for The 17th International Conference on Information Processing in Computer-Assisted Interventions (IPCAI 2026)
PraNet-V2: Dual-Supervised Reverse Attention for Medical Image Segmentation
Accurate medical image segmentation is essential for effective diagnosis and treatment. Previously, PraNet-V1 was proposed to enhance polyp segmentation by introducing a reverse attention (RA) module that utilizes background information. However, PraNet-V1 struggles with multi-class segmentation tasks. To address this limitation, we propose PraNet-V2, which, compared to PraNet-V1, effectively performs a broader range of tasks including multi-class segmentation. At the core of PraNet-V2 is the Dual-Supervised Reverse Attention (DSRA) module, which incorporates explicit background supervision, independent background modeling, and semantically enriched attention fusion. Our PraNet-V2 framework demonstrates strong performance on four polyp segmentation datasets. Additionally, by integrating DSRA to iteratively enhance foreground segmentation results in three state-of-the-art semantic segmentation models, we achieve up to a 1.36% improvement in mean Dice score. Code is available at: https://github.com/ai4colonoscopy/PraNet-V2/tree/main/binary_seg/jittor.
comment: Accepted to Computational Visual Media (CVMJ) 2026. 4 tables 3 figures 8 pages
Integrating Reinforcement Learning with Visual Generative Models: Foundations and Advances
Generative models have made significant progress in synthesizing visual content, including images, videos, and 3D/4D structures. However, they are typically trained with surrogate objectives such as likelihood or reconstruction loss, which often misalign with perceptual quality, semantic accuracy, or physical realism. Reinforcement learning (RL) offers a principled framework for optimizing non-differentiable, preference-driven, and temporally structured objectives. Recent advances demonstrate its effectiveness in enhancing controllability, consistency, and human alignment across generative tasks. This survey provides a systematic overview of RL-based methods for visual content generation. We review the evolution of RL from classical control to its role as a general-purpose optimization tool, and examine its integration into image, video, and 3D/4D generation. Across these domains, RL serves not only as a fine-tuning mechanism but also as a structural component for aligning generation with complex, high-level goals. We conclude with open challenges and future research directions at the intersection of RL and generative modeling.
comment: Ongoing work. We maintain a companion website with an up-to-date version of this survey at: https://visgenrlsurvey.liangyzh18.workers.dev/
Artificial Intelligence 120
Graph Neural Networks are Heuristics
We demonstrate that a single training trajectory can transform a graph neural network into an unsupervised heuristic for combinatorial optimization. Focusing on the Travelling Salesman Problem, we show that encoding global structural constraints as an inductive bias enables a non-autoregressive model to generate solutions via direct forward passes, without search, supervision, or sequential decision-making. At inference time, dropout and snapshot ensembling allow a single model to act as an implicit ensemble, reducing optimality gaps through increased solution diversity. Our results establish that graph neural networks do not require supervised training nor explicit search to be effective. Instead, they can internalize global combinatorial structure and function as strong, learned heuristics. This reframes the role of learning in combinatorial optimization: from augmenting classical algorithms to directly instantiating new heuristics.
Context and Transcripts Improve Detection of Deepfake Audios of Public Figures
Humans use context to assess the veracity of information. However, current audio deepfake detectors only analyze the audio file without considering either context or transcripts. We create and analyze a Journalist-provided Deepfake Dataset (JDD) of 255 public deepfakes which were primarily contributed by over 70 journalists since early 2024. We also generate a synthetic audio dataset (SYN) of dead public figures and propose a novel Context-based Audio Deepfake Detector (CADD) architecture. In addition, we evaluate performance on two large-scale datasets: ITW and P$^2$V. We show that sufficient context and/or the transcript can significantly improve the efficacy of audio deepfake detectors. Performance (measured via F1 score, AUC, and EER) of multiple baseline audio deepfake detectors and traditional classifiers can be improved by 5%-37.58% in F1-score, 3.77%-42.79% in AUC, and 6.17%-47.83% in EER. We additionally show that CADD, via its use of context and/or transcripts, is more robust to 5 adversarial evasion strategies, limiting performance degradation to an average of just -0.71% across all experiments. Code, models, and datasets are available at our project page: https://sites.northwestern.edu/nsail/cadd-context-based-audio-deepfake-detection (access restricted during review).
SpatialBench-UC: Uncertainty-Aware Evaluation of Spatial Prompt Following in Text-to-Image Generation
Evaluating whether text-to-image models follow explicit spatial instructions is difficult to automate. Object detectors may miss targets or return multiple plausible detections, and simple geometric tests can become ambiguous in borderline cases. Spatial evaluation is naturally a selective prediction problem, the checker may abstain when evidence is weak and report confidence so that results can be interpreted as a risk coverage tradeoff rather than a single score. We introduce SpatialBench-UC, a small, reproducible benchmark for pairwise spatial relations. The benchmark contains 200 prompts (50 object pairs times 4 relations) grouped into 100 counterfactual pairs obtained by swapping object roles. We release a benchmark package, versioned prompts, pinned configs, per-sample checker outputs, and report tables, enabling reproducible and auditable comparisons across models. We also include a lightweight human audit used to calibrate the checker's abstention margin and confidence threshold. We evaluate three baselines, Stable Diffusion 1.5, SD 1.5 BoxDiff, and SD 1.4 GLIGEN. The checker reports pass rate and coverage as well as conditional pass rates on decided samples. The results show that grounding methods substantially improve both pass rate and coverage, while abstention remains a dominant factor due mainly to missing detections.
comment: 19 pages, includes figures and tables
Labels or Preferences? Budget-Constrained Learning with Human Judgments over AI-Generated Outputs
The increasing reliance on human preference feedback to judge AI-generated pseudo labels has created a pressing need for principled, budget-conscious data acquisition strategies. We address the crucial question of how to optimally allocate a fixed annotation budget between ground-truth labels and pairwise preferences in AI. Our solution, grounded in semi-parametric inference, casts the budget allocation problem as a monotone missing data framework. Building on this formulation, we introduce Preference-Calibrated Active Learning (PCAL), a novel method that learns the optimal data acquisition strategy and develops a statistically efficient estimator for functionals of the data distribution. Theoretically, we prove the asymptotic optimality of our PCAL estimator and establish a key robustness guarantee that ensures robust performance even with poorly estimated nuisance models. Our flexible framework applies to a general class of problems, by directly optimizing the estimator's variance instead of requiring a closed-form solution. This work provides a principled and statistically efficient approach for budget-constrained learning in modern AI. Simulations and real-data analysis demonstrate the practical benefits and superior performance of our proposed method.
Explicit Cognitive Allocation: A Principle for Governed and Auditable Inference in Large Language Models
The rapid adoption of large language models (LLMs) has enabled new forms of AI-assisted reasoning across scientific, technical, and organizational domains. However, prevailing modes of LLM use remain cognitively unstructured: problem framing, knowledge exploration, retrieval, methodological awareness, and explanation are typically collapsed into a single generative process. This cognitive collapse limits traceability, weakens epistemic control, and undermines reproducibility, particularly in high-responsibility settings. We introduce Explicit Cognitive Allocation, a general principle for structuring AI-assisted inference through the explicit separation and orchestration of epistemic functions. We instantiate this principle in the Cognitive Universal Agent (CUA), an architecture that organizes inference into distinct stages of exploration and framing, epistemic anchoring, instrumental and methodological mapping, and interpretive synthesis. Central to this framework is the notion of Universal Cognitive Instruments (UCIs), which formalize heterogeneous means, including computational, experimental, organizational, regulatory, and educational instruments, through which abstract inquiries become investigable. We evaluate the effects of explicit cognitive and instrumental allocation through controlled comparisons between CUA-orchestrated inference and baseline LLM inference under matched execution conditions. Across multiple prompts in the agricultural domain, CUA inference exhibits earlier and structurally governed epistemic convergence, higher epistemic alignment under semantic expansion, and systematic exposure of the instrumental landscape of inquiry. In contrast, baseline LLM inference shows greater variability in alignment and fails to explicitly surface instrumental structure.
comment: Preprint. This version corresponds to the initial public release of the CUA architecture and associated evaluation metrics
MOSLD-Bench: Multilingual Open-Set Learning and Discovery Benchmark for Text Categorization
Open-set learning and discovery (OSLD) is a challenging machine learning task in which samples from new (unknown) classes can appear at test time. It can be seen as a generalization of zero-shot learning, where the new classes are not known a priori, hence involving the active discovery of new classes. While zero-shot learning has been extensively studied in text classification, especially with the emergence of pre-trained language models, open-set learning and discovery is a comparatively new setup for the text domain. To this end, we introduce the first multilingual open-set learning and discovery (MOSLD) benchmark for text categorization by topic, comprising 960K data samples across 12 languages. To construct the benchmark, we (i) rearrange existing datasets and (ii) collect new data samples from the news domain. Moreover, we propose a novel framework for the OSLD task, which integrates multiple stages to continuously discover and learn new classes. We evaluate several language models, including our own, to obtain results that can be used as reference for future work. We release our benchmark at https://github.com/Adriana19Valentina/MOSLD-Bench.
A Learnable Wavelet Transformer for Long-Short Equity Trading and Risk-Adjusted Return Optimization
Learning profitable intraday trading policies from financial time series is challenging due to heavy noise, non-stationarity, and strong cross-sectional dependence among related assets. We propose \emph{WaveLSFormer}, a learnable wavelet-based long-short Transformer that jointly performs multi-scale decomposition and return-oriented decision learning. Specifically, a learnable wavelet front-end generates low-/high-frequency components via an end-to-end trained filter bank, guided by spectral regularizers that encourage stable and well-separated frequency bands. To fuse multi-scale information, we introduce a low-guided high-frequency injection (LGHI) module that refines low-frequency representations with high-frequency cues while controlling training stability. The model outputs a portfolio of long/short positions that is rescaled to satisfy a fixed risk budget, and is optimized directly with a trading objective and risk-aware regularization. Extensive experiments on five years of hourly data across six industry groups, evaluated over ten random seeds, demonstrate that WaveLSFormer consistently outperforms MLP, LSTM and Transformer backbones, with and without fixed discrete wavelet front-ends. On average in all industries, WaveLSFormer achieves a cumulative overall strategy return of $0.607 \pm 0.045$ and a Sharpe ratio of $2.157 \pm 0.166$, substantially improving both profitability and risk-adjusted returns over the strongest baselines.
TrustEnergy: A Unified Framework for Accurate and Reliable User-level Energy Usage Prediction
Energy usage prediction is important for various real-world applications, including grid management, infrastructure planning, and disaster response. Although a plethora of deep learning approaches have been proposed to perform this task, most of them either overlook the essential spatial correlations across households or fail to scale to individualized prediction, making them less effective for accurate fine-grained user-level prediction. In addition, due to the dynamic and uncertain nature of energy usage caused by various factors such as extreme weather events, quantifying uncertainty for reliable prediction is also significant, but it has not been fully explored in existing work. In this paper, we propose a unified framework called TrustEnergy for accurate and reliable user-level energy usage prediction. There are two key technical components in TrustEnergy, (i) a Hierarchical Spatiotemporal Representation module to efficiently capture both macro and micro energy usage patterns with a novel memory-augmented spatiotemporal graph neural network, and (ii) an innovative Sequential Conformalized Quantile Regression module to dynamically adjust uncertainty bounds to ensure valid prediction intervals over time, without making strong assumptions about the underlying data distribution. We implement and evaluate our TrustEnergy framework by working with an electricity provider in Florida, and the results show our TrustEnergy can achieve a 5.4% increase in prediction accuracy and 5.7% improvement in uncertainty quantification compared to state-of-the-art baselines.
Using deep learning for predicting cleansing quality of colon capsule endoscopy images
In this study, we explore the application of deep learning techniques for predicting cleansing quality in colon capsule endoscopy (CCE) images. Using a dataset of 500 images labeled by 14 clinicians on the Leighton-Rex scale (Poor, Fair, Good, and Excellent), a ResNet-18 model was trained for classification, leveraging stratified K-fold cross-validation to ensure robust performance. To optimize the model, structured pruning techniques were applied iteratively, achieving significant sparsity while maintaining high accuracy. Explainability of the pruned model was evaluated using Grad-CAM, Grad-CAM++, Eigen-CAM, Ablation-CAM, and Random-CAM, with the ROAD method employed for consistent evaluation. Our results indicate that for a pruned model, we can achieve a cross-validation accuracy of 88% with 79% sparsity, demonstrating the effectiveness of pruning in improving efficiency from 84% without compromising performance. We also highlight the challenges of evaluating cleansing quality of CCE images, emphasize the importance of explainability in clinical applications, and discuss the challenges associated with using the ROAD method for our task. Finally, we employ a variant of adaptive temperature scaling to calibrate the pruned models for an external dataset.
comment: 24 pages
Integrating Virtual Reality and Large Language Models for Team-Based Non-Technical Skills Training and Evaluation in the Operating Room
Although effective teamwork and communication are critical to surgical safety, structured training for non-technical skills (NTS) remains limited compared with technical simulation. The ACS/APDS Phase III Team-Based Skills Curriculum calls for scalable tools that both teach and objectively assess these competencies during laparoscopic emergencies. We introduce the Virtual Operating Room Team Experience (VORTeX), a multi-user virtual reality (VR) platform that integrates immersive team simulation with large language model (LLM) analytics to train and evaluate communication, decision-making, teamwork, and leadership. Team dialogue is analyzed using structured prompts derived from the Non-Technical Skills for Surgeons (NOTSS) framework, enabling automated classification of behaviors and generation of directed interaction graphs that quantify communication structure and hierarchy. Two laparoscopic emergency scenarios, pneumothorax and intra-abdominal bleeding, were implemented to elicit realistic stress and collaboration. Twelve surgical professionals completed pilot sessions at the 2024 SAGES conference, rating VORTeX as intuitive, immersive, and valuable for developing teamwork and communication. The LLM consistently produced interpretable communication networks reflecting expected operative hierarchies, with surgeons as central integrators, nurses as initiators, and anesthesiologists as balanced intermediaries. By integrating immersive VR with LLM-driven behavioral analytics, VORTeX provides a scalable, privacy-compliant framework for objective assessment and automated, data-informed debriefing across distributed training environments.
comment: 23 pages, 7 figures, 1 table, 2 Appendices
Local-to-Global Logical Explanations for Deep Vision Models
While deep neural networks are extremely effective at classifying images, they remain opaque and hard to interpret. We introduce local and global explanation methods for black-box models that generate explanations in terms of human-recognizable primitive concepts. Both the local explanations for a single image and the global explanations for a set of images are cast as logical formulas in monotone disjunctive-normal-form (MDNF), whose satisfaction guarantees that the model yields a high score on a given class. We also present an algorithm for explaining the classification of examples into multiple classes in the form of a monotone explanation list over primitive concepts. Despite their simplicity and interpretability we show that the explanations maintain high fidelity and coverage with respect to the blackbox models they seek to explain in challenging vision datasets.
comment: 15 pages, 5 figures, 5th International Joint Conference on Learning & Reasoning 2025
Reasoning with Pixel-level Precision: QVLM Architecture and SQuID Dataset for Quantitative Geospatial Analytics CVPR 2026
Current Vision-Language Models (VLMs) fail at quantitative spatial reasoning because their architectures destroy pixel-level information required for counting and measurements. Vision encoders compress images through patch embeddings, reducing spatial indexing and losing the precise pixel-level tracking required for accurate counting. We present two contributions to address this fundamental limitation. First, we introduce SQuID (Satellite Quantitative Intelligence Dataset), a benchmark of 2,000 satellite image Question-Answer pairs with both numerical range and categorical answers, designed to evaluate quantitative spatial reasoning. The dataset spans three difficulty tiers with annotations automatically generated from human labels and their learned variability. Second, we propose QVLM (Quantitative Vision-Language Model), a code-generation architecture that maintains pixel precision by decoupling language understanding from visual analysis. Instead of encoding images into embeddings, QVLM generates executable code that first calls a segmentation model to obtain pixel-level masks, then operates directly on these masks, preserving spatial indexing throughout the reasoning process. Our experiments show that QVLM using GPT-5 as coder achieves 42.0% accuracy on SQuID compared to 28.1% for a VLM prompted with image-question pairs. Our work reveals that, for quantitative spatial reasoning, architectural decoupling enables better accuracy on quantitative tasks.
comment: Submitted to CVPR 2026. Introduces the QVLM architecture and the SQuID dataset for quantitative geospatial reasoning. Dataset DOI: 10.57967/hf/7565
Deep Image Prior with L0 Gradient Regularizer for Image Smoothing
Image smoothing is a fundamental image processing operation that preserves the underlying structure, such as strong edges and contours, and removes minor details and textures in an image. Many image smoothing algorithms rely on computing local window statistics or solving an optimization problem. Recent state-of-the-art methods leverage deep learning, but they require a carefully curated training dataset. Because constructing a proper training dataset for image smoothing is challenging, we propose DIP-$\ell_0$, a deep image prior framework that incorporates the $\ell_0$ gradient regularizer. This framework can perform high-quality image smoothing without any training data. To properly minimize the associated loss function that has the nonconvex, nonsmooth $\ell_0$ ``norm", we develop an alternating direction method of multipliers algorithm that utilizes an off-the-shelf $\ell_0$ gradient minimization solver. Numerical experiments demonstrate that the proposed DIP-$\ell_0$ outperforms many image smoothing algorithms in edge-preserving image smoothing and JPEG artifact removal.
comment: To be published in the Proceedings of IEEE ICASSP 2026
Can LLMs Compress (and Decompress)? Evaluating Code Understanding and Execution via Invertibility
LLMs demonstrate strong performance on code benchmarks, yet round-trip code execution reveals limitations in their ability to maintain consistent reasoning across forward and backward execution. We present RoundTripCodeEval (RTCE), a comprehensive benchmark consisting of four distinct code execution reasoning tasks designed to rigorously test round-trip consistency. RTCE provides an execution-free, exact-match evaluation of bijection fidelity, assessing whether models preserve a consistent one-to-one mapping between encoding and decoding operations across various algorithms and directions. We systematically evaluate state-of-the-art Code-LLMs using zero-shot prompting, supervised fine-tuning on execution traces, and self-reflection mechanisms. Each yields modest improvements, but none closes the gap, indicating that current LLMs struggle with true round-trip consistency, which demonstrates that they lack the internal coherence required for trustworthy code reasoning. RTCE surfaces several new and previously unmeasured insights that are not captured by existing I/O-prediction, execution-reasoning, or round-trip natural-language benchmarks. We will release the code and the dataset upon acceptance.
comment: 32 pages (preprint)
Beyond Memorization: Testing LLM Reasoning on Unseen Theory of Computation Tasks
Large language models (LLMs) have demonstrated strong performance on formal language tasks, yet whether this reflects genuine symbolic reasoning or pattern matching on familiar constructions remains unclear. We introduce a benchmark for deterministic finite automata (DFA) construction from regular languages, comprising factual knowledge questions, seen construction problems from public sources, and two types of unseen problems: hand-crafted instances with multiple interacting constraints and systematically generated problems via Arden's theorem. Models achieve perfect accuracy on factual questions and 84-90% on seen tasks. However, accuracy drops sharply on unseen problems (by 30-64%), with failures stemming from systematic misinterpretation of language constraints, incorrect handling of Kleene-star semantics, and a failure to preserve global consistency. We evaluate a three-stage hint protocol that enables correction of shallow errors but does not reliably resolve globally inconsistent or structurally flawed automata. Our analysis across multiple prompting strategies (direct, Chain-of-Thought, Tree-of-Thought) reveals that errors persist regardless of prompting approach, exposing a fundamental gap between LLMs' ability to generate syntactically plausible DFAs and their capacity for semantically correct formal reasoning.
comment: 30 pages, 11 figures, 6 tables, Work in Progress
Organ-Aware Attention Improves CT Triage and Classification
There is an urgent need for triage and classification of high-volume medical imaging modalities such as computed tomography (CT), which can improve patient care and mitigate radiologist burnout. Study-level CT triage requires calibrated predictions with localized evidence; however, off-the-shelf Vision Language Models (VLM) struggle with 3D anatomy, protocol shifts, and noisy report supervision. This study used the two largest publicly available chest CT datasets: CT-RATE and RADCHEST-CT (held-out external test set). Our carefully tuned supervised baseline (instantiated as a simple Global Average Pooling head) establishes a new supervised state of the art, surpassing all reported linear-probe VLMs. Building on this baseline, we present ORACLE-CT, an encoder-agnostic, organ-aware head that pairs Organ-Masked Attention (mask-restricted, per-organ pooling that yields spatial evidence) with Organ-Scalar Fusion (lightweight fusion of normalized volume and mean-HU cues). In the chest setting, ORACLE-CT masked attention model achieves AUROC 0.86 on CT-RATE; in the abdomen setting, on MERLIN (30 findings), our supervised baseline exceeds a reproduced zero-shot VLM baseline obtained by running publicly released weights through our pipeline, and adding masked attention plus scalar fusion further improves performance to AUROC 0.85. Together, these results deliver state-of-the-art supervised classification performance across both chest and abdomen CT under a unified evaluation protocol. The source code is available at https://github.com/lavsendahal/oracle-ct.
A Lightweight Modular Framework for Constructing Autonomous Agents Driven by Large Language Models: Design, Implementation, and Applications in AgentForge
The emergence of LLMs has catalyzed a paradigm shift in autonomous agent development, enabling systems capable of reasoning, planning, and executing complex multi-step tasks. However, existing agent frameworks often suffer from architectural rigidity, vendor lock-in, and prohibitive complexity that impedes rapid prototyping and deployment. This paper presents AgentForge, a lightweight, open-source Python framework designed to democratize the construction of LLM-driven autonomous agents through a principled modular architecture. AgentForge introduces three key innovations: (1) a composable skill abstraction that enables fine-grained task decomposition with formally defined input-output contracts, (2) a unified LLM backend interface supporting seamless switching between cloud-based APIs and local inference engines, and (3) a declarative YAML-based configuration system that separates agent logic from implementation details. We formalize the skill composition mechanism as a directed acyclic graph (DAG) and prove its expressiveness for representing arbitrary sequential and parallel task workflows. Comprehensive experimental evaluation across four benchmark scenarios demonstrates that AgentForge achieves competitive task completion rates while reducing development time by 62% compared to LangChain and 78% compared to direct API integration. Latency measurements confirm sub-100ms orchestration overhead, rendering the framework suitable for real-time applications. The modular design facilitates extension: we demonstrate the integration of six built-in skills and provide comprehensive documentation for custom skill development. AgentForge addresses a critical gap in the LLM agent ecosystem by providing researchers and practitioners with a production-ready foundation for constructing, evaluating, and deploying autonomous agents without sacrificing flexibility or performance.
comment: 15 pages, 3 figures
Bounded Minds, Generative Machines: Envisioning Conversational AI that Works with Human Heuristics and Reduces Bias Risk
Conversational AI is rapidly becoming a primary interface for information seeking and decision making, yet most systems still assume idealized users. In practice, human reasoning is bounded by limited attention, uneven knowledge, and reliance on heuristics that are adaptive but bias-prone. This article outlines a research pathway grounded in bounded rationality, and argues that conversational AI should be designed to work with human heuristics rather than against them. It identifies key directions for detecting cognitive vulnerability, supporting judgment under uncertainty, and evaluating conversational systems beyond factual accuracy, toward decision quality and cognitive robustness.
The Geometry of Thought: How Scale Restructures Reasoning In Large Language Models
Scale does not uniformly improve reasoning - it restructures it. Analyzing 25,000+ chain-of-thought trajectories across four domains (Law, Science, Code, Math) and two scales (8B, 70B parameters), we discover that neural scaling laws trigger domain-specific phase transitions rather than uniform capability gains. Legal reasoning undergoes Crystallization: 45% collapse in representational dimensionality (d95: 501 -> 274), 31% increase in trajectory alignment, and 10x manifold untangling. Scientific and mathematical reasoning remain Liquid - geometrically invariant despite 9x parameter increase. Code reasoning forms a discrete Lattice of strategic modes (silhouette: 0.13 -> 0.42). This geometry predicts learnability. We introduce Neural Reasoning Operators - learned mappings from initial to terminal hidden states. In crystalline legal reasoning, our operator achieves 63.6% accuracy on held-out tasks via probe decoding, predicting reasoning endpoints without traversing intermediate states. We further identify a universal oscillatory signature (coherence ~ -0.4) invariant across domains and scales, suggesting attention and feedforward layers drive reasoning through opposing dynamics. These findings establish that the cost of thought is determined not by task difficulty but by manifold geometry - offering a blueprint for inference acceleration where topology permits.
comment: 34 pages, 10 figures
LLM-as-RNN: A Recurrent Language Model for Memory Updates and Sequence Prediction
Large language models are strong sequence predictors, yet standard inference relies on immutable context histories. After making an error at generation step t, the model lacks an updatable memory mechanism that improves predictions for step t+1. We propose LLM-as-RNN, an inference-only framework that turns a frozen LLM into a recurrent predictor by representing its hidden state as natural-language memory. This state, implemented as a structured system-prompt summary, is updated at each timestep via feedback-driven text rewrites, enabling learning without parameter updates. Under a fixed token budget, LLM-as-RNN corrects errors and retains task-relevant patterns, effectively performing online learning through language. We evaluate the method on three sequential benchmarks in healthcare, meteorology, and finance across Llama, Gemma, and GPT model families. LLM-as-RNN significantly outperforms zero-shot, full-history, and MemPrompt baselines, improving predictive accuracy by 6.5% on average, while producing interpretable, human-readable learning traces absent in standard context accumulation.
comment: 17 pages, 5 figures, 6 tables
The AI Genie Phenomenon and Three Types of AI Chatbot Addiction: Escapist Roleplays, Pseudosocial Companions, and Epistemic Rabbit Holes
Recent reports on generative AI chatbot use raise concerns about its addictive potential. An in-depth understanding is imperative to minimize risks, yet AI chatbot addiction remains poorly understood. This study examines how to characterize AI chatbot addiction--why users become addicted, the symptoms commonly reported, and the distinct types it comprises. We conducted a thematic analysis of Reddit entries (n=334) across 14 subreddits where users narrated their experiences with addictive AI chatbot use, followed by an exploratory data analysis. We found: (1) users' dependence tied to the "AI Genie" phenomenon--users can get exactly anything they want with minimal effort--and marked by symptoms that align with addiction literature, (2) three distinct addiction types: Escapist Roleplay, Pseudosocial Companion, and Epistemic Rabbit Hole, (3) sexual content involved in multiple cases, and (4) recovery strategies' perceived helpfulness differ between addiction types. Our work lays empirical groundwork to inform future strategies for prevention, diagnosis, and intervention.
comment: To appear in CHI 2026
PepEDiff: Zero-Shot Peptide Binder Design via Protein Embedding Diffusion
We present PepEDiff, a novel peptide binder generator that designs binding sequences given a target receptor protein sequence and its pocket residues. Peptide binder generation is critical in therapeutic and biochemical applications, yet many existing methods rely heavily on intermediate structure prediction, adding complexity and limiting sequence diversity. Our approach departs from this paradigm by generating binder sequences directly in a continuous latent space derived from a pretrained protein embedding model, without relying on predicted structures, thereby improving structural and sequence diversity. To encourage the model to capture binding-relevant features rather than memorizing known sequences, we perform latent-space exploration and diffusion-based sampling, enabling the generation of peptides beyond the limited distribution of known binders. This zero-shot generative strategy leverages the global protein embedding manifold as a semantic prior, allowing the model to propose novel peptide sequences in previously unseen regions of the protein space. We evaluate PepEDiff on TIGIT, a challenging target with a large, flat protein-protein interaction interface that lacks a druggable pocket. Despite its simplicity, our method outperforms state-of-the-art approaches across benchmark tests and in the TIGIT case study, demonstrating its potential as a general, structure-free framework for zero-shot peptide binder design. The code for this research is available at GitHub: https://github.com/LabJunBMI/PepEDiff-An-Peptide-binder-Embedding-Diffusion-Model
Paid Voices vs. Public Feeds: Interpretable Cross-Platform Theme Modeling of Climate Discourse
Climate discourse online plays a crucial role in shaping public understanding of climate change and influencing political and policy outcomes. However, climate communication unfolds across structurally distinct platforms with fundamentally different incentive structures: paid advertising ecosystems incentivize targeted, strategic persuasion, while public social media platforms host largely organic, user-driven discourse. Existing computational studies typically analyze these environments in isolation, limiting our ability to distinguish institutional messaging from public expression. In this work, we present a comparative analysis of climate discourse across paid advertisements on Meta (previously known as Facebook) and public posts on Bluesky from July 2024 to September 2025. We introduce an interpretable, end-to-end thematic discovery and assignment framework that clusters texts by semantic similarity and leverages large language models (LLMs) to generate concise, human-interpretable theme labels. We evaluate the quality of the induced themes against traditional topic modeling baselines using both human judgments and an LLM-based evaluator, and further validate their semantic coherence through downstream stance prediction and theme-guided retrieval tasks. Applying the resulting themes, we characterize systematic differences between paid climate messaging and public climate discourse and examine how thematic prevalence shifts around major political events. Our findings show that platform-level incentives are reflected in the thematic structure, stance alignment, and temporal responsiveness of climate narratives. While our empirical analysis focuses on climate communication, the proposed framework is designed to support comparative narrative analysis across heterogeneous communication environments.
CooperBench: Why Coding Agents Cannot be Your Teammates Yet
Resolving team conflicts requires not only task-specific competence, but also social intelligence to find common ground and build consensus. As AI agents increasingly collaborate on complex work, they must develop coordination capabilities to function as effective teammates. Yet we hypothesize that current agents lack these capabilities. To test this, we introduce CooperBench, a benchmark of over 600 collaborative coding tasks across 12 libraries in 4 programming languages. Each task assigns two agents different features that can be implemented independently but may conflict without proper coordination. Tasks are grounded in real open-source repositories with expert-written tests. Evaluating state-of-the-art coding agents, we observe the curse of coordination: agents achieve on average 30% lower success rates when working together compared to performing both tasks individually. This contrasts sharply with human teams, where adding teammates typically improves productivity. Our analysis reveals three key issues: (1) communication channels become jammed with vague, ill-timed, and inaccurate messages; (2) even with effective communication, agents deviate from their commitments; and (3) agents often hold incorrect expectations about others' plans and communication. Through large-scale simulation, we also observe rare but interesting emergent coordination behavior including role division, resource division, and negotiation. Our research presents a novel benchmark for collaborative coding and calls for a shift from pursuing individual agent capability to developing social intelligence.
comment: https://cooperbench.com
AI Skills Improve Job Prospects: Causal Evidence from a Hiring Experiment
The growing adoption of artificial intelligence (AI) technologies has heightened interest in the labour market value of AI-related skills, yet causal evidence on their role in hiring decisions remains scarce. This study examines whether AI skills serve as a positive hiring signal and whether they can offset conventional disadvantages such as older age or lower formal education. We conduct an experimental survey with 1,700 recruiters from the United Kingdom and the United States. Using a paired conjoint design, recruiters evaluated hypothetical candidates represented by synthetically designed resumes. Across three occupations - graphic designer, office assistant, and software engineer - AI skills significantly increase interview invitation probabilities by approximately 8 to 15 percentage points. AI skills also partially or fully offset disadvantages related to age and lower education, with effects strongest for office assistants, where formal AI certification plays an additional compensatory role. Effects are weaker for graphic designers, consistent with more skeptical recruiter attitudes toward AI in creative work. Finally, recruiters' own background and AI usage significantly moderate these effects. Overall, the findings demonstrate that AI skills function as a powerful hiring signal and can mitigate traditional labour market disadvantages, with implications for workers' skill acquisition strategies and firms' recruitment practices.
comment: 46 pages
Improving the Safety and Trustworthiness of Medical AI via Multi-Agent Evaluation Loops
Large Language Models (LLMs) are increasingly applied in healthcare, yet ensuring their ethical integrity and safety compliance remains a major barrier to clinical deployment. This work introduces a multi-agent refinement framework designed to enhance the safety and reliability of medical LLMs through structured, iterative alignment. Our system combines two generative models - DeepSeek R1 and Med-PaLM - with two evaluation agents, LLaMA 3.1 and Phi-4, which assess responses using the American Medical Association's (AMA) Principles of Medical Ethics and a five-tier Safety Risk Assessment (SRA-5) protocol. We evaluate performance across 900 clinically diverse queries spanning nine ethical domains, measuring convergence efficiency, ethical violation reduction, and domain-specific risk behavior. Results demonstrate that DeepSeek R1 achieves faster convergence (mean 2.34 vs. 2.67 iterations), while Med-PaLM shows superior handling of privacy-sensitive scenarios. The iterative multi-agent loop achieved an 89% reduction in ethical violations and a 92% risk downgrade rate, underscoring the effectiveness of our approach. This study presents a scalable, regulator-aligned, and cost-efficient paradigm for governing medical AI safety.
CURE-Med: Curriculum-Informed Reinforcement Learning for Multilingual Medical Reasoning
While large language models (LLMs) have shown to perform well on monolingual mathematical and commonsense reasoning, they remain unreliable for multilingual medical reasoning applications, hindering their deployment in multilingual healthcare settings. We address this by first introducing CUREMED-BENCH, a high-quality multilingual medical reasoning dataset with open-ended reasoning queries with a single verifiable answer, spanning thirteen languages, including underrepresented languages such as Amharic, Yoruba, and Swahili. Building on this dataset, we propose CURE-MED, a curriculum-informed reinforcement learning framework that integrates code-switching-aware supervised fine-tuning and Group Relative Policy Optimization to jointly improve logical correctness and language stability. Across thirteen languages, our approach consistently outperforms strong baselines and scales effectively, achieving 85.21% language consistency and 54.35% logical correctness at 7B parameters, and 94.96% language consistency and 70.04% logical correctness at 32B parameters. These results support reliable and equitable multilingual medical reasoning in LLMs. The code and dataset are available at https://cure-med.github.io/
Stop Taking Tokenizers for Granted: They Are Core Design Decisions in Large Language Models
Tokenization underlies every large language model, yet it remains an under-theorized and inconsistently designed component. Common subword approaches such as Byte Pair Encoding (BPE) offer scalability but often misalign with linguistic structure, amplify bias, and waste capacity across languages and domains. This paper reframes tokenization as a core modeling decision rather than a preprocessing step. We argue for a context-aware framework that integrates tokenizer and model co-design, guided by linguistic, domain, and deployment considerations. Standardized evaluation and transparent reporting are essential to make tokenization choices accountable and comparable. Treating tokenization as a core design problem, not a technical afterthought, can yield language technologies that are fairer, more efficient, and more adaptable.
comment: Accepted to EACL 2026 (long, main). The first two authors contributed equally
Aligning Agentic World Models via Knowledgeable Experience Learning
Current Large Language Models (LLMs) exhibit a critical modal disconnect: they possess vast semantic knowledge but lack the procedural grounding to respect the immutable laws of the physical world. Consequently, while these agents implicitly function as world models, their simulations often suffer from physical hallucinations-generating plans that are logically sound but physically unexecutable. Existing alignment strategies predominantly rely on resource-intensive training or fine-tuning, which attempt to compress dynamic environmental rules into static model parameters. However, such parametric encapsulation is inherently rigid, struggling to adapt to the open-ended variability of physical dynamics without continuous, costly retraining. To bridge this gap, we introduce WorldMind, a framework that autonomously constructs a symbolic World Knowledge Repository by synthesizing environmental feedback. Specifically, it unifies Process Experience to enforce physical feasibility via prediction errors and Goal Experience to guide task optimality through successful trajectories. Experiments on EB-ALFRED and EB-Habitat demonstrate that WorldMind achieves superior performance compared to baselines with remarkable cross-model and cross-environment transferability.
comment: Ongoing work
KOCO-BENCH: Can Large Language Models Leverage Domain Knowledge in Software Development?
Large language models (LLMs) excel at general programming but struggle with domain-specific software development, necessitating domain specialization methods for LLMs to learn and utilize domain knowledge and data. However, existing domain-specific code benchmarks cannot evaluate the effectiveness of domain specialization methods, which focus on assessing what knowledge LLMs possess rather than how they acquire and apply new knowledge, lacking explicit knowledge corpora for developing domain specialization methods. To this end, we present KOCO-BENCH, a novel benchmark designed for evaluating domain specialization methods in real-world software development. KOCO-BENCH contains 6 emerging domains with 11 software frameworks and 25 projects, featuring curated knowledge corpora alongside multi-granularity evaluation tasks including domain code generation (from function-level to project-level with rigorous test suites) and domain knowledge understanding (via multiple-choice Q&A). Unlike previous benchmarks that only provide test sets for direct evaluation, KOCO-BENCH requires acquiring and applying diverse domain knowledge (APIs, rules, constraints, etc.) from knowledge corpora to solve evaluation tasks. Our evaluations reveal that KOCO-BENCH poses significant challenges to state-of-the-art LLMs. Even with domain specialization methods (e.g., SFT, RAG, kNN-LM) applied, improvements remain marginal. Best-performing coding agent, Claude Code, achieves only 34.2%, highlighting the urgent need for more effective domain specialization methods. We release KOCO-BENCH, evaluation code, and baselines to advance further research at https://github.com/jiangxxxue/KOCO-bench.
A Semantic Decoupling-Based Two-Stage Rainy-Day Attack for Revealing Weather Robustness Deficiencies in Vision-Language Models
Vision-Language Models (VLMs) are trained on image-text pairs collected under canonical visual conditions and achieve strong performance on multimodal tasks. However, their robustness to real-world weather conditions, and the stability of cross-modal semantic alignment under such structured perturbations, remain insufficiently studied. In this paper, we focus on rainy scenarios and introduce the first adversarial framework that exploits realistic weather to attack VLMs, using a two-stage, parameterized perturbation model based on semantic decoupling to analyze rain-induced shifts in decision-making. In Stage 1, we model the global effects of rainfall by applying a low-dimensional global modulation to condition the embedding space and gradually weaken the original semantic decision boundaries. In Stage 2, we introduce structured rain variations by explicitly modeling multi-scale raindrop appearance and rainfall-induced illumination changes, and optimize the resulting non-differentiable weather space to induce stable semantic shifts. Operating in a non-pixel parameter space, our framework generates perturbations that are both physically grounded and interpretable. Experiments across multiple tasks show that even physically plausible, highly constrained weather perturbations can induce substantial semantic misalignment in mainstream VLMs, posing potential safety and reliability risks in real-world deployment. Ablations further confirm that illumination modeling and multi-scale raindrop structures are key drivers of these semantic shifts.
Pixelwise Uncertainty Quantification of Accelerated MRI Reconstruction
Parallel imaging techniques reduce magnetic resonance imaging (MRI) scan time but image quality degrades as the acceleration factor increases. In clinical practice, conservative acceleration factors are chosen because no mechanism exists to automatically assess the diagnostic quality of undersampled reconstructions. This work introduces a general framework for pixel-wise uncertainty quantification in parallel MRI reconstructions, enabling automatic identification of unreliable regions without access to any ground-truth reference image. Our method integrates conformal quantile regression with image reconstruction methods to estimate statistically rigorous pixel-wise uncertainty intervals. We trained and evaluated our model on Cartesian undersampled brain and knee data obtained from the fastMRI dataset using acceleration factors ranging from 2 to 10. An end-to-end Variational Network was used for image reconstruction. Quantitative experiments demonstrate strong agreement between predicted uncertainty maps and true reconstruction error. Using our method, the corresponding Pearson correlation coefficient was higher than 90% at acceleration levels at and above four-fold; whereas it dropped to less than 70% when the uncertainty was computed using a simpler a heuristic notion (magnitude of the residual). Qualitative examples further show the uncertainty maps based on quantile regression capture the magnitude and spatial distribution of reconstruction errors across acceleration factors, with regions of elevated uncertainty aligning with pathologies and artifacts. The proposed framework enables evaluation of reconstruction quality without access to fully-sampled ground-truth reference images. It represents a step toward adaptive MRI acquisition protocols that may be able to dynamically balance scan time and diagnostic reliability.
comment: 10 pages, 8 figues, 2 tables
RubRIX: Rubric-Driven Risk Mitigation in Caregiver-AI Interactions
Caregivers seeking AI-mediated support express complex needs -- information-seeking, emotional validation, and distress cues -- that warrant careful evaluation of response safety and appropriateness. Existing AI evaluation frameworks, primarily focused on general risks (toxicity, hallucinations, policy violations, etc), may not adequately capture the nuanced risks of LLM-responses in caregiving-contexts. We introduce RubRIX (Rubric-based Risk Index), a theory-driven, clinician-validated framework for evaluating risks in LLM caregiving responses. Grounded in the Elements of an Ethic of Care, RubRIX operationalizes five empirically-derived risk dimensions: Inattention, Bias & Stigma, Information Inaccuracy, Uncritical Affirmation, and Epistemic Arrogance. We evaluate six state-of-the-art LLMs on over 20,000 caregiver queries from Reddit and ALZConnected. Rubric-guided refinement consistently reduced risk-components by 45-98% after one iteration across models. This work contributes a methodological approach for developing domain-sensitive, user-centered evaluation frameworks for high-burden contexts. Our findings highlight the importance of domain-sensitive, interactional risk evaluation for the responsible deployment of LLMs in caregiving support contexts. We release benchmark datasets to enable future research on contextual risk evaluation in AI-mediated support.
RAG: A Random-Forest-Based Generative Design Framework for Uncertainty-Aware Design of Metamaterials with Complex Functional Response Requirements
Metamaterials design for advanced functionality often entails the inverse design on nonlinear and condition-dependent responses (e.g., stress-strain relation and dispersion relation), which are described by continuous functions. Most existing design methods focus on vector-valued responses (e.g., Young's modulus and bandgap width), while the inverse design of functional responses remains challenging due to their high-dimensionality, the complexity of accommodating design requirements in inverse-design frameworks, and non-existence or non-uniqueness of feasible solutions. Although generative design approaches have shown promise, they are often data-hungry, handle design requirements heuristically, and may generate infeasible designs without uncertainty quantification. To address these challenges, we introduce a RAndom-forest-based Generative approach (RAG). By leveraging the small-data compatibility of random forests, RAG enables data-efficient predictions of high-dimensional functional responses. During the inverse design, the framework estimates the likelihood through the ensemble which quantifies the trustworthiness of generated designs while reflecting the relative difficulty across different requirements. The one-to-many mapping is addressed through single-shot design generation by sampling from the conditional likelihood. We demonstrate RAG on: 1) acoustic metamaterials with prescribed partial passbands/stopbands, and 2) mechanical metamaterials with targeted snap-through responses, using 500 and 1057 samples, respectively. Its data-efficiency is benchmarked against neural networks on a public mechanical metamaterial dataset with nonlinear stress-strain relations. Our framework provides a lightweight, trustworthy pathway to inverse design involving functional responses, expensive simulations, and complex design requirements, beyond metamaterials.
Autoregressive Models Rival Diffusion Models at ANY-ORDER Generation
Diffusion language models enable any-order generation and bidirectional conditioning, offering appealing flexibility for tasks such as infilling, rewriting, and self-correction. However, their formulation-predicting one part of a sequence from another within a single-step dependency-limits modeling depth and often yields lower sample quality and stability than autoregressive (AR) models. To address this, we revisit autoregressive modeling as a foundation and reformulate diffusion-style training into a structured multi-group prediction process. We propose Any-order Any-subset Autoregressive modeling (A3), a generalized framework that extends the standard AR factorization to arbitrary token groups and generation orders. A3 preserves the probabilistic rigor and multi-layer dependency modeling of AR while inheriting diffusion models' flexibility for parallel and bidirectional generation. We implement A3 through a two-stream attention architecture and a progressive adaptation strategy that transitions pretrained AR models toward any-order prediction. Experiments on question answering, commonsense reasoning, and story infilling demonstrate that A3 outperforms diffusion-based models while maintaining flexible decoding. This work offers a unified approach for a flexible, efficient, and novel language modeling paradigm.
Insider Knowledge: How Much Can RAG Systems Gain from Evaluation Secrets?
RAG systems are increasingly evaluated and optimized using LLM judges, an approach that is rapidly becoming the dominant paradigm for system assessment. Nugget-based approaches in particular are now embedded not only in evaluation frameworks but also in the architectures of RAG systems themselves. While this integration can lead to genuine improvements, it also creates a risk of faulty measurements due to circularity. In this paper, we investigate this risk through comparative experiments with nugget-based RAG systems, including Ginger and Crucible, against strong baselines such as GPT-Researcher. By deliberately modifying Crucible to generate outputs optimized for an LLM judge, we show that near-perfect evaluation scores can be achieved when elements of the evaluation - such as prompt templates or gold nuggets - are leaked or can be predicted. Our results highlight the importance of blind evaluation settings and methodological diversity to guard against mistaking metric overfitting for genuine system progress.
Incorporating Q&A Nuggets into Retrieval-Augmented Generation
RAGE systems integrate ideas from automatic evaluation (E) into Retrieval-augmented Generation (RAG). As one such example, we present Crucible, a Nugget-Augmented Generation System that preserves explicit citation provenance by constructing a bank of Q&A nuggets from retrieved documents and uses them to guide extraction, selection, and report generation. Reasoning on nuggets avoids repeated information through clear and interpretable Q&A semantics - instead of opaque cluster abstractions - while maintaining citation provenance throughout the entire generation process. Evaluated on the TREC NeuCLIR 2024 collection, our Crucible system substantially outperforms Ginger, a recent nugget-based RAG system, in nugget recall, density, and citation grounding.
Beyond Single-shot Writing: Deep Research Agents are Unreliable at Multi-turn Report Revision
Existing benchmarks for Deep Research Agents (DRAs) treat report generation as a single-shot writing task, which fundamentally diverges from how human researchers iteratively draft and revise reports via self-reflection or peer feedback. Whether DRAs can reliably revise reports with user feedback remains unexplored. We introduce Mr Dre, an evaluation suite that establishes multi-turn report revision as a new evaluation axis for DRAs. Mr Dre consists of (1) a unified long-form report evaluation protocol spanning comprehensiveness, factuality, and presentation, and (2) a human-verified feedback simulation pipeline for multi-turn revision. Our analysis of five diverse DRAs reveals a critical limitation: while agents can address most user feedback, they also regress on 16-27% of previously covered content and citation quality. Over multiple revision turns, even the best-performing agents leave significant headroom, as they continue to disrupt content outside the feedback's scope and fail to preserve earlier edits. We further show that these issues are not easily resolvable through inference-time fixes such as prompt engineering and a dedicated sub-agent for report revision.
Real-Time Deadlines Reveal Temporal Awareness Failures in LLM Strategic Dialogues
Large Language Models (LLMs) generate text token-by-token in discrete time, yet real-world communication, from therapy sessions to business negotiations, critically depends on continuous time constraints. Current LLM architectures and evaluation protocols rarely test for temporal awareness under real-time deadlines. We use simulated negotiations between paired agents under strict deadlines to investigate how LLMs adjust their behavior in time-sensitive settings. In a control condition, agents know only the global time limit. In a time-aware condition, they receive remaining-time updates at each turn. Deal closure rates are substantially higher (32\% vs. 4\% for GPT-5.1) and offer acceptances are sixfold higher in the time-aware condition than in the control, suggesting LLMs struggle to internally track elapsed time. However, the same LLMs achieve near-perfect deal closure rates ($\geq$95\%) under turn-based limits, revealing the failure is in temporal tracking rather than strategic reasoning. These effects replicate across negotiation scenarios and models, illustrating a systematic lack of LLM time awareness that will constrain LLM deployment in many time-sensitive applications.
Diffusion-Driven Synthetic Tabular Data Generation for Enhanced DoS/DDoS Attack Classification
Class imbalance refers to a situation where certain classes in a dataset have significantly fewer samples than oth- ers, leading to biased model performance. Class imbalance in network intrusion detection using Tabular Denoising Diffusion Probability Models (TabDDPM) for data augmentation is ad- dressed in this paper. Our approach synthesizes high-fidelity minority-class samples from the CIC-IDS2017 dataset through iterative denoising processes. For the minority classes that have smaller samples, synthetic samples were generated and merged with the original dataset. The augmented training data enables an ANN classifier to achieve near-perfect recall on previously underrepresented attack classes. These results establish diffusion models as an effective solution for tabular data imbalance in security domains, with potential applications in fraud detection and medical diagnostics.
comment: 7 pages, 8 figures, 2025 International Conference on Signal Processing, Computation, Electronics, Power and Telecommunication (IConSCEPT), National Institute of Technology, Puducherry, India
Scientific production in the era of Large Language Models
Large Language Models (LLMs) are rapidly reshaping scientific research. We analyze these changes in multiple, large-scale datasets with 2.1M preprints, 28K peer review reports, and 246M online accesses to scientific documents. We find: 1) scientists adopting LLMs to draft manuscripts demonstrate a large increase in paper production, ranging from 23.7-89.3% depending on scientific field and author background, 2) LLM use has reversed the relationship between writing complexity and paper quality, leading to an influx of manuscripts that are linguistically complex but substantively underwhelming, and 3) LLM adopters access and cite more diverse prior work, including books and younger, less-cited documents. These findings highlight a stunning shift in scientific production that will likely require a change in how journals, funding agencies, and tenure committees evaluate scientific works.
comment: This is the author's version of the work. The definitive version was published in Science on 18 Dec 2025, DOI: 10.1126/science.adw3000. Link to the Final Published Version: https://www.science.org/doi/10.1126/science.adw3000
Prompt Injection Mitigation with Agentic AI, Nested Learning, and AI Sustainability via Semantic Caching
Prompt injection remains a central obstacle to the safe deployment of large language models, particularly in multi-agent settings where intermediate outputs can propagate or amplify malicious instructions. Building on earlier work that introduced a four-metric Total Injection Vulnerability Score (TIVS), this paper extends the evaluation framework with semantic similarity-based caching and a fifth metric (Observability Score Ratio) to yield TIVS-O, investigating how defence effectiveness interacts with transparency in a HOPE-inspired Nested Learning architecture. The proposed system combines an agentic pipeline with Continuum Memory Systems that implement semantic similarity-based caching across 301 synthetically generated injection-focused prompts drawn from ten attack families, while a fourth agent performs comprehensive security analysis using five key performance indicators. In addition to traditional injection metrics, OSR quantifies the richness and clarity of security-relevant reasoning exposed by each agent, enabling an explicit analysis of trade-offs between strict mitigation and auditability. Experiments show that the system achieves secure responses with zero high-risk breaches, while semantic caching delivers substantial computational savings, achieving a 41.6% reduction in LLM calls and corresponding decreases in latency, energy consumption, and carbon emissions. Five TIVS-O configurations reveal optimal trade-offs between mitigation strictness and forensic transparency. These results indicate that observability-aware evaluation can reveal non-monotonic effects within multi-agent pipelines and that memory-augmented agents can jointly maximize security robustness, real-time performance, operational cost savings, and environmental sustainability without modifying underlying model weights, providing a production-ready pathway for secure and green LLM deployments.
comment: 33 pages, 19 figures
From 100,000+ images to winning the first brain MRI foundation model challenges: Sharing lessons and models
Developing Foundation Models for medical image analysis is essential to overcome the unique challenges of radiological tasks. The first challenges of this kind for 3D brain MRI, SSL3D and FOMO25, were held at MICCAI 2025. Our solution ranked first in tracks of both contests. It relies on a U-Net CNN architecture combined with strategies leveraging anatomical priors and neuroimaging domain knowledge. Notably, our models trained 1-2 orders of magnitude faster and were 10 times smaller than competing transformer-based approaches. Models are available here: https://github.com/jbanusco/BrainFM4Challenges.
comment: Work presented at the SSL3D Challenge (1st place, ResEnc-L track) and FOMO Challenge (1st place, Methods track) on Brain MRI Foundation Models at MICCAI 2025
Training instability in deep learning follows low-dimensional dynamical principles
Deep learning systems achieve remarkable empirical performance, yet the stability of the training process itself remains poorly understood. Training unfolds as a high-dimensional dynamical system in which small perturbations to optimization, data, parameters, or learning signals can induce abrupt and irreversible collapse, undermining reproducibility and scalability. We propose a unified dynamical perspective that characterizes training stability as an intrinsic property of learning systems, organized along four interacting dimensions: optimization, environmental/data, parametric, and learning-signal stability. We operationalize this perspective through controlled perturbation auditing of training trajectories, probing how learning dynamics respond to structured disturbances without modifying learning algorithms. Across reinforcement learning and large language model training, we identify three recurring regularities: high final performance is frequently decoupled from training stability; controlled stochasticity consistently buffers learning dynamics across paradigms; and deviations in low-dimensional latent meta-states systematically precede observable performance collapse. Together, these findings establish training stability as a measurable and comparable dynamical property of learning systems, providing a descriptive foundation for studying learning dynamics beyond final performance outcomes.
TVWorld: Foundations for Remote-Control TV Agents
Recent large vision-language models (LVLMs) have demonstrated strong potential for device control. However, existing research has primarily focused on point-and-click (PnC) interaction, while remote-control (RC) interaction commonly encountered in everyday TV usage remains largely underexplored. To fill this gap, we introduce \textbf{TVWorld}, an offline graph-based abstraction of real-world TV navigation that enables reproducible and deployment-free evaluation. On this basis, we derive two complementary benchmarks that comprehensively assess TV-use capabilities: \textbf{TVWorld-N} for topology-aware navigation and \textbf{TVWorld-G} for focus-aware grounding. These benchmarks expose a key limitation of existing agents: insufficient topology awareness for focus-based, long-horizon TV navigation. Motivated by this finding, we propose a \emph{Topology-Aware Training} framework that injects topology awareness into LVLMs. Using this framework, we develop \textbf{TVTheseus}, a foundation model specialized for TV navigation. TVTheseus achieves a success rate of $68.3\%$ on TVWorld-N, surpassing strong closed-source baselines such as Gemini 3 Flash and establishing state-of-the-art (SOTA) performance. Additional analyses further provide valuable insights into the development of effective TV-use agents.
Responsible AI for General-Purpose Systems: Overview, Challenges, and A Path Forward
Modern general-purpose AI systems made using large language and vision models, are capable of performing a range of tasks like writing text articles, generating and debugging codes, querying databases, and translating from one language to another, which has made them quite popular across industries. However, there are risks like hallucinations, toxicity, and stereotypes in their output that make them untrustworthy. We review various risks and vulnerabilities of modern general-purpose AI along eight widely accepted responsible AI (RAI) principles (fairness, privacy, explainability, robustness, safety, truthfulness, governance, and sustainability) and compare how they are non-existent or less severe and easily mitigable in traditional task-specific counterparts. We argue that this is due to the non-deterministically high Degree of Freedom in output (DoFo) of general-purpose AI (unlike the deterministically constant or low DoFo of traditional task-specific AI systems), and there is a need to rethink our approach to RAI for general-purpose AI. Following this, we derive C2V2 (Control, Consistency, Value, Veracity) desiderata to meet the RAI requirements for future general-purpose AI systems, and discuss how recent efforts in AI alignment, retrieval-augmented generation, reasoning enhancements, etc. fare along one or more of the desiderata. We believe that the goal of developing responsible general-purpose AI can be achieved by formally modeling application- or domain-dependent RAI requirements along C2V2 dimensions, and taking a system design approach to suitably combine various techniques to meet the desiderata.
IntAgent: NWDAF-Based Intent LLM Agent Towards Advanced Next Generation Networks
Intent-based networks (IBNs) are gaining prominence as an innovative technology that automates network operations through high-level request statements, defining what the network should achieve. In this work, we introduce IntAgent, an intelligent intent LLM agent that integrates NWDAF analytics and tools to fulfill the network operator's intents. Unlike previous approaches, we develop an intent tools engine directly within the NWDAF analytics engine, allowing our agent to utilize live network analytics to inform its reasoning and tool selection. We offer an enriched, 3GPP-compliant data source that enhances the dynamic, context-aware fulfillment of network operator goals, along with an MCP tools server for scheduling, monitoring, and analytics tools. We demonstrate the efficacy of our framework through two practical use cases: ML-based traffic prediction and scheduled policy enforcement, which validate IntAgent's ability to autonomously fulfill complex network intents.
comment: conference
CORE-T: COherent REtrieval of Tables for Text-to-SQL
Realistic text-to-SQL workflows often require joining multiple tables. As a result, accurately retrieving the relevant set of tables becomes a key bottleneck for end-to-end performance. We study an open-book setting where queries must be answered over large, heterogeneous table collections pooled from many sources, without clean scoping signals such as database identifiers. Here, dense retrieval (DR) achieves high recall but returns many distractors, while join-aware alternatives often rely on extra assumptions and/or incur high inference overhead. We propose CORE-T, a scalable, training-free framework that enriches tables with LLM-generated purpose metadata and pre-computes a lightweight table-compatibility cache. At inference time, DR returns top-K candidates; a single LLM call selects a coherent, joinable subset, and a simple additive adjustment step restores strongly compatible tables. Across Bird, Spider, and MMQA, CORE-T improves table-selection F1 by up to 22.7 points while retrieving up to 42% fewer tables, improving multi-table execution accuracy by up to 5.0 points on Bird and 6.9 points on MMQA, and using 4-5x fewer tokens than LLM-intensive baselines.
comment: Preprint under review. Code and data available at: https://github.com/UKPLab/arxiv2026-core-t
METIS: Mentoring Engine for Thoughtful Inquiry & Solutions
Many students lack access to expert research mentorship. We ask whether an AI mentor can move undergraduates from an idea to a paper. We build METIS, a tool-augmented, stage-aware assistant with literature search, curated guidelines, methodology checks, and memory. We evaluate METIS against GPT-5 and Claude Sonnet 4.5 across six writing stages using LLM-as-a-judge pairwise preferences, student-persona rubrics, short multi-turn tutoring, and evidence/compliance checks. On 90 single-turn prompts, LLM judges preferred METIS to Claude Sonnet 4.5 in 71% and to GPT-5 in 54%. Student scores (clarity/actionability/constraint-fit; 90 prompts x 3 judges) are higher across stages. In multi-turn sessions (five scenarios/agent), METIS yields slightly higher final quality than GPT-5. Gains concentrate in document-grounded stages (D-F), consistent with stage-aware routing and groundings failure modes include premature tool routing, shallow grounding, and occasional stage misclassification.
comment: 12 pages, 5 figures, 4 tables
MagicGUI-RMS: A Multi-Agent Reward Model System for Self-Evolving GUI Agents via Automated Feedback Reflux
Graphical user interface (GUI) agents are rapidly progressing toward autonomous interaction and reliable task execution across diverse applications. However, two central challenges remain unresolved: automating the evaluation of agent trajectories and generating high-quality training data at scale to enable continual improvement. Existing approaches often depend on manual annotation or static rule-based verification, which restricts scalability and limits adaptability in dynamic environments. We present MagicGUI-RMS, a multi-agent reward model system that delivers adaptive trajectory evaluation, corrective feedback, and self-evolving learning capabilities. MagicGUI-RMS integrates a Domain-Specific Reward Model (DS-RM) with a General-Purpose Reward Model (GP-RM), enabling fine-grained action assessment and robust generalization across heterogeneous GUI tasks. To support reward learning at scale, we design a structured data construction pipeline that automatically produces balanced and diverse reward datasets, effectively reducing annotation costs while maintaining sample fidelity. During execution, the reward model system identifies erroneous actions, proposes refined alternatives, and continuously enhances agent behavior through an automated data-reflux mechanism. Extensive experiments demonstrate that MagicGUI-RMS yields substantial gains in task accuracy, behavioral robustness. These results establish MagicGUI-RMS as a principled and effective foundation for building self-improving GUI agents driven by reward-based adaptation.
TinyML-Enabled IoT for Sustainable Precision Irrigation
Small-scale farming communities are disproportionately affected by water scarcity, erratic climate patterns, and a lack of access to advanced, affordable agricultural technologies. To address these challenges, this paper presents a novel, edge-first IoT framework that integrates Tiny Machine Learning (TinyML) for intelligent, offline-capable precision irrigation. The proposed four-layer architecture leverages low-cost hardware, an ESP32 microcontroller as an edge inference node, and a Raspberry Pi as a local edge server to enable autonomous decision-making without cloud dependency. The system utilizes capacitive soil moisture, temperature, humidity, pH, and ambient light sensors for environmental monitoring. A rigorous comparative analysis of ensemble models identified gradient boosting as superior, achieving an R^2 score of 0.9973 and a Mean Absolute Percentage Error (MAPE) of 0.99%, outperforming a random forest model (R^2 = 0.9916, MAPE = 1.81%). This optimized model was converted and deployed as a lightweight TinyML inference engine on the ESP32 and predicts irrigation needs with exceptional accuracy (MAPE < 1%). Local communication is facilitated by an MQTT-based LAN protocol, ensuring reliable operation in areas with limited or no internet connectivity. Experimental validation in a controlled environment demonstrated a significant reduction in water usage compared to traditional methods, while the system's low-power design and offline functionality confirm its viability for sustainable, scalable deployment in resource-constrained rural settings. This work provides a practical, cost-effective blueprint for bridging the technological divide in agriculture and enhancing water-use efficiency through on-device artificial intelligence.
Analysis of Long Range Dependency Understanding in State Space Models
Although state-space models (SSMs) have demonstrated strong performance on long-sequence benchmarks, most research has emphasized predictive accuracy rather than interpretability. In this work, we present the first systematic kernel interpretability study of the diagonalized state-space model (S4D) trained on a real-world task (vulnerability detection in source code). Through time and frequency domain analysis of the S4D kernel, we show that the long-range modeling capability of S4D varies significantly under different model architectures, affecting model performance. For instance, we show that the depending on the architecture, S4D kernel can behave as low-pass, band-pass or high-pass filter. The insights from our analysis can guide future work in designing better S4D-based models.
PASs-MoE: Mitigating Misaligned Co-drift among Router and Experts via Pathway Activation Subspaces for Continual Learning
Continual instruction tuning (CIT) requires multimodal large language models (MLLMs) to adapt to a stream of tasks without forgetting prior capabilities. A common strategy is to isolate updates by routing inputs to different LoRA experts. However, existing LoRA-based Mixture-of-Experts (MoE) methods often jointly update the router and experts in an indiscriminate way, causing the router's preferences to co-drift with experts' adaptation pathways and gradually deviate from early-stage input-expert specialization. We term this phenomenon Misaligned Co-drift, which blurs expert responsibilities and exacerbates forgetting.To address this, we introduce the pathway activation subspace (PASs), a LoRA-induced subspace that reflects which low-rank pathway directions an input activates in each expert, providing a capability-aligned coordinate system for routing and preservation. Based on PASs, we propose a fixed-capacity PASs-based MoE-LoRA method with two components: PAS-guided Reweighting, which calibrates routing using each expert's pathway activation signals, and PAS-aware Rank Stabilization, which selectively stabilizes rank directions important to previous tasks. Experiments on a CIT benchmark show that our approach consistently outperforms a range of conventional continual learning baselines and MoE-LoRA variants in both accuracy and anti-forgetting without adding parameters. Our code will be released upon acceptance.
Bi-Attention HateXplain : Taking into account the sequential aspect of data during explainability in a multi-task context
Technological advances in the Internet and online social networks have brought many benefits to humanity. At the same time, this growth has led to an increase in hate speech, the main global threat. To improve the reliability of black-box models used for hate speech detection, post-hoc approaches such as LIME, SHAP, and LRP provide the explanation after training the classification model. In contrast, multi-task approaches based on the HateXplain benchmark learn to explain and classify simultaneously. However, results from HateXplain-based algorithms show that predicted attention varies considerably when it should be constant. This attention variability can lead to inconsistent interpretations, instability of predictions, and learning difficulties. To solve this problem, we propose the BiAtt-BiRNN-HateXplain (Bidirectional Attention BiRNN HateXplain) model which is easier to explain compared to LLMs which are more complex in view of the need for transparency, and will take into account the sequential aspect of the input data during explainability thanks to a BiRNN layer. Thus, if the explanation is correctly estimated, thanks to multi-task learning (explainability and classification task), the model could classify better and commit fewer unintentional bias errors related to communities. The experimental results on HateXplain data show a clear improvement in detection performance, explainability and a reduction in unintentional bias.
comment: Accepted at "EAI AFRICOMM 2025 - 17th EAI International Conference on Communications and Networks in Africa"
HT-GNN: Hyper-Temporal Graph Neural Network for Customer Lifetime Value Prediction in Baidu Ads
Lifetime value (LTV) prediction is crucial for news feed advertising, enabling platforms to optimize bidding and budget allocation for long-term revenue growth. However, it faces two major challenges: (1) demographic-based targeting creates segment-specific LTV distributions with large value variations across user groups; and (2) dynamic marketing strategies generate irregular behavioral sequences where engagement patterns evolve rapidly. We propose a Hyper-Temporal Graph Neural Network (HT-GNN), which jointly models demographic heterogeneity and temporal dynamics through three key components: (i) a hypergraph-supervised module capturing inter-segment relationships; (ii) a transformer-based temporal encoder with adaptive weighting; and (iii) a task-adaptive mixture-of-experts with dynamic prediction towers for multi-horizon LTV forecasting. Experiments on \textit{Baidu Ads} with 15 million users demonstrate that HT-GNN consistently outperforms state-of-the-art methods across all metrics and prediction horizons.
ArchAgent: Scalable Legacy Software Architecture Recovery with LLMs
Recovering accurate architecture from large-scale legacy software is hindered by architectural drift, missing relations, and the limited context of Large Language Models (LLMs). We present ArchAgent, a scalable agent-based framework that combines static analysis, adaptive code segmentation, and LLM-powered synthesis to reconstruct multiview, business-aligned architectures from cross-repository codebases. ArchAgent introduces scalable diagram generation with contextual pruning and integrates cross-repository data to identify business-critical modules. Evaluations of typical large-scale GitHub projects show significant improvements over existing benchmarks. An ablation study confirms that dependency context improves the accuracy of generated architectures of production-level repositories, and a real-world case study demonstrates effective recovery of critical business logics from legacy projects. The dataset is available at https://github.com/panrusheng/arch-eval-benchmark.
comment: to be published in ICASSP 2026
Beyond Accuracy: Characterizing Code Comprehension Capabilities in (Large) Language Models
Large Language Models (LLMs) are increasingly integrated into software engineering workflows, yet current benchmarks provide only coarse performance summaries that obscure the diverse capabilities and limitations of these models. This paper investigates whether LLMs' code-comprehension performance aligns with traditional human-centric software metrics or instead reflects distinct, non-human regularities. We introduce a diagnostic framework that reframes code understanding as a binary input-output consistency task, enabling the evaluation of classification and generative models. Using a large-scale dataset, we correlate model performance with traditional, human-centric complexity metrics, such as lexical size, control-flow complexity, and abstract syntax tree structure. Our analyses reveal minimal correlation between human-defined metrics and LLM success (AUROC 0.63), while shadow models achieve substantially higher predictive performance (AUROC 0.86), capturing complex, partially predictable patterns beyond traditional software measures. These findings suggest that LLM comprehension reflects model-specific regularities only partially accessible through either human-designed or learned features, emphasizing the need for benchmark methodologies that move beyond aggregate accuracy and toward instance-level diagnostics, while acknowledging fundamental limits in predicting correct outcomes.
comment: Published in the Proceedings of DeepTest 2026
AI-generated data contamination erodes pathological variability and diagnostic reliability
Generative artificial intelligence (AI) is rapidly populating medical records with synthetic content, creating a feedback loop where future models are increasingly at risk of training on uncurated AI-generated data. However, the clinical consequences of this AI-generated data contamination remain unexplored. Here, we show that in the absence of mandatory human verification, this self-referential cycle drives a rapid erosion of pathological variability and diagnostic reliability. By analysing more than 800,000 synthetic data points across clinical text generation, vision-language reporting, and medical image synthesis, we find that models progressively converge toward generic phenotypes regardless of the model architecture. Specifically, rare but critical findings, including pneumothorax and effusions, vanish from the synthetic content generated by AI models, while demographic representations skew heavily toward middle-aged male phenotypes. Crucially, this degradation is masked by false diagnostic confidence; models continue to issue reassuring reports while failing to detect life-threatening pathology, with false reassurance rates tripling to 40%. Blinded physician evaluation confirms that this decoupling of confidence and accuracy renders AI-generated documentation clinically useless after just two generations. We systematically evaluate three mitigation strategies, finding that while synthetic volume scaling fails to prevent collapse, mixing real data with quality-aware filtering effectively preserves diversity. Ultimately, our results suggest that without policy-mandated human oversight, the deployment of generative AI threatens to degrade the very healthcare data ecosystems it relies upon.
comment: *Corresponding author: Dianbo Liu (dianbo@nus.edu.sg)
Active Inference-Driven World Modeling for Adaptive UAV Swarm Trajectory Design
This paper proposes an Active Inference-based framework for autonomous trajectory design in UAV swarms. The method integrates probabilistic reasoning and self-learning to enable distributed mission allocation, route ordering, and motion planning. Expert trajectories generated using a Genetic Algorithm with Repulsion Forces (GA-RF) are employed to train a hierarchical World Model capturing swarm behavior across mission, route, and motion levels. During online operation, UAVs infer actions by minimizing divergence between current beliefs and model-predicted states, enabling adaptive responses to dynamic environments. Simulation results show faster convergence, higher stability, and safer navigation than Q-Learning, demonstrating the scalability and cognitive grounding of the proposed framework for intelligent UAV swarm control.
comment: This paper has been accepted for presentation at the 2026 IEEE International Conference on Acoustics, Speech, and Signal Processing (IEEE ICASSP 2026) Workshop: 'Multi-Modal Signal Processing and AI for Communications and Sensing in 6G and Beyond (MuSiC-6GB)'
The Post-Turing Condition: Conceptualising Artificial Subjectivity and Synthetic Sociality
In the Post-Turing era, artificial intelligence increasingly shapes social coordination and meaning formation rather than merely automating cognitive tasks. The central challenge is therefore not whether machines become conscious, but whether processes of interpretation and shared reference are progressively automated in ways that marginalize human participation. This paper introduces the PRMO framework, relating AI design trajectories to four constitutive dimensions of human subjectivity: Perception, Representation, Meaning, and the Real. Within this framework, Synthetic Sociality denotes a technological horizon in which artificial agents negotiate coherence and social order primarily among themselves, raising the structural risk of human exclusion from meaning formation. To address this risk, the paper proposes Quadrangulation as a design principle for socially embedded AI systems, requiring artificial agents to treat the human subject as a constitutive reference within shared contexts of meaning. This work is a conceptual perspective that contributes a structural vocabulary for analyzing AI systems at the intersection of computation and society, without proposing a specific technical implementation.
comment: Conceptual perspective on AI design trajectories, meaning formation, and synthetic sociality. 5 pages, 1 figure
On the Evidentiary Limits of Membership Inference for Copyright Auditing
As large language models (LLMs) are trained on increasingly opaque corpora, membership inference attacks (MIAs) have been proposed to audit whether copyrighted texts were used during training, despite growing concerns about their reliability under realistic conditions. We ask whether MIAs can serve as admissible evidence in adversarial copyright disputes where an accused model developer may obfuscate training data while preserving semantic content, and formalize this setting through a judge-prosecutor-accused communication protocol. To test robustness under this protocol, we introduce SAGE (Structure-Aware SAE-Guided Extraction), a paraphrasing framework guided by Sparse Autoencoders (SAEs) that rewrites training data to alter lexical structure while preserving semantic content and downstream utility. Our experiments show that state-of-the-art MIAs degrade when models are fine-tuned on SAGE-generated paraphrases, indicating that their signals are not robust to semantics-preserving transformations. While some leakage remains in certain fine-tuning regimes, these results suggest that MIAs are brittle in adversarial settings and insufficient, on their own, as a standalone mechanism for copyright auditing of LLMs.
Online Continual Learning for Time Series: a Natural Score-driven Approach
Online continual learning (OCL) methods adapt to changing environments without forgetting past knowledge. Similarly, online time series forecasting (OTSF) is a real-world problem where data evolve in time and success depends on both rapid adaptation and long-term memory. Indeed, time-varying and regime-switching forecasting models have been extensively studied, offering a strong justification for the use of OCL in these settings. Building on recent work that applies OCL to OTSF, this paper aims to strengthen the theoretical and practical connections between time series methods and OCL. First, we reframe neural network optimization as a parameter filtering problem, showing that natural gradient descent is a score-driven method and proving its information-theoretic optimality. Then, we show that using a Student's t likelihood in addition to natural gradient induces a bounded update, which improves robustness to outliers. Finally, we introduce Natural Score-driven Replay (NatSR), which combines our robust optimizer with a replay buffer and a dynamic scale heuristic that improves fast adaptation at regime drifts. Empirical results demonstrate that NatSR achieves stronger forecasting performance than more complex state-of-the-art methods.
Can the Waymo Open Motion Dataset Support Realistic Behavioral Modeling? A Validation Study with Naturalistic Trajectories
The Waymo Open Motion Dataset (WOMD) has become a popular resource for data-driven modeling of autonomous vehicles (AVs) behavior. However, its validity for behavioral analysis remains uncertain due to proprietary post-processing, the absence of error quantification, and the segmentation of trajectories into 20-second clips. This study examines whether WOMD accurately captures the dynamics and interactions observed in real-world AV operations. Leveraging an independently collected naturalistic dataset from Level 4 AV operations in Phoenix, Arizona (PHX), we perform comparative analyses across three representative urban driving scenarios: discharging at signalized intersections, car-following, and lane-changing behaviors. For the discharging analysis, headways are manually extracted from aerial video to ensure negligible measurement error. For the car-following and lane-changing cases, we apply the Simulation-Extrapolation (SIMEX) method to account for empirically estimated error in the PHX data and use Dynamic Time Warping (DTW) distances to quantify behavioral differences. Results across all scenarios consistently show that behavior in PHX falls outside the behavioral envelope of WOMD. Notably, WOMD underrepresents short headways and abrupt decelerations. These findings suggest that behavioral models calibrated solely on WOMD may systematically underestimate the variability, risk, and complexity of naturalistic driving. Caution is therefore warranted when using WOMD for behavior modeling without proper validation against independently collected data.
Evaluating Large Language Models (LLMs) in Financial NLP: A Comparative Study on Financial Report Analysis
Large language models (LLMs) are increasingly used to support the analysis of complex financial disclosures, yet their reliability, behavioral consistency, and transparency remain insufficiently understood in high-stakes settings. This paper presents a controlled evaluation of five transformer-based LLMs applied to question answering over the Business sections of U.S. 10-K filings. To capture complementary aspects of model behavior, we combine human evaluation, automated similarity metrics, and behavioral diagnostics under standardized and context-controlled prompting conditions. Human assessments indicate that models differ in their average performance across qualitative dimensions such as relevance, completeness, clarity, conciseness, and factual accuracy, though inter-rater agreement is modest, reflecting the subjective nature of these criteria. Automated metrics reveal systematic differences in lexical overlap and semantic similarity across models, while behavioral diagnostics highlight variation in response stability and cross-prompt alignment. Importantly, no single model consistently dominates across all evaluation perspectives. Together, these findings suggest that apparent performance differences should be interpreted as relative tendencies under the tested conditions rather than definitive indicators of general reliability. The results underscore the need for evaluation frameworks that account for human disagreement, behavioral variability, and interpretability when deploying LLMs in financially consequential applications.
comment: 23 Pages
Sy-FAR: Symmetry-based Fair Adversarial Robustness
Security-critical machine-learning (ML) systems, such as face-recognition systems, are susceptible to adversarial examples, including real-world physically realizable attacks. Various means to boost ML's adversarial robustness have been proposed; however, they typically induce unfair robustness: It is often easier to attack from certain classes or groups than from others. Several techniques have been developed to improve adversarial robustness while seeking perfect fairness between classes. Yet, prior work has focused on settings where security and fairness are less critical. Our insight is that achieving perfect parity in realistic fairness-critical tasks, such as face recognition, is often infeasible -- some classes may be highly similar, leading to more misclassifications between them. Instead, we suggest that seeking symmetry -- i.e., attacks from class $i$ to $j$ would be as successful as from $j$ to $i$ -- is more tractable. Intuitively, symmetry is a desirable because class resemblance is a symmetric relation in most domains. Additionally, as we prove theoretically, symmetry between individuals induces symmetry between any set of sub-groups, in contrast to other fairness notions where group-fairness is often elusive. We develop Sy-FAR, a technique to encourage symmetry while also optimizing adversarial robustness and extensively evaluate it using five datasets, with three model architectures, including against targeted and untargeted realistic attacks. The results show Sy-FAR significantly improves fair adversarial robustness compared to state-of-the-art methods. Moreover, we find that Sy-FAR is faster and more consistent across runs. Notably, Sy-FAR also ameliorates another type of unfairness we discover in this work -- target classes that adversarial examples are likely to be classified into become significantly less vulnerable after inducing symmetry.
comment: Accepted to USENIX Security 2026
Convergence dynamics of Agent-to-Agent Interactions with Misaligned objectives
We develop and analyze a theoretical framework for agent-to-agent interactions in a simplified in-context linear regression setting. In our model, each agent is instantiated as a single-layer transformer with linear self-attention (LSA) trained to implement gradient-descent-like updates on a quadratic regression objective from in-context examples. We then study the coupled dynamics when two such LSA agents alternately update from each other's outputs under potentially misaligned fixed objectives. Within this framework, we characterize the generation dynamics and show that misalignment leads to a biased equilibrium where neither agent reaches its target, with residual errors predictable from the objective gap and the prompt-induced geometry. We also characterize an adversarial regime where asymmetric convergence is possible: one agent reaches its objective exactly while inducing persistent bias in the other. We further contrast this fixed objective regime with an adaptive multi-agent setting, wherein a helper agent updates a turn-based objective to implement a Newton-like step for the main agent, eliminating the plateau and accelerating its convergence. Experiments with trained LSA agents, as well as black-box GPT-5-mini runs on in-context linear regression tasks, are consistent with our theoretical predictions within this simplified setting. We view our framework as a mechanistic framework that links prompt geometry and objective misalignment to stability, bias, and robustness, and as a stepping stone toward analyzing more realistic multi-agent LLM systems.
Understanding and Steering the Cognitive Behaviors of Reasoning Models at Test-Time
Large Language Models (LLMs) often rely on long chain-of-thought (CoT) reasoning to solve complex tasks. While effective, these trajectories are frequently inefficient, leading to high latency from excessive token generation, or unstable reasoning that alternates between underthinking (shallow, inconsistent steps) and overthinking (repetitive, verbose reasoning). In this work, we study the structure of reasoning trajectories and uncover specialized attention heads that correlate with distinct cognitive behaviors such as verification and backtracking. By lightly intervening on these heads at inference time, we can steer the model away from inefficient modes. Building on this insight, we propose CREST, a training-free method for Cognitive REasoning Steering at Test-time. CREST has two components: (1) an offline calibration step that identifies cognitive heads and derives head-specific steering vectors, and (2) an inference-time procedure that rotates hidden representations to suppress components along those vectors. CREST adaptively suppresses unproductive reasoning behaviors, yielding both higher accuracy and lower computational cost. Across diverse reasoning benchmarks and models, CREST improves accuracy by up to 17.5% while reducing token usage by 37.6%, offering a simple and effective pathway to faster, more reliable LLM reasoning.
StructEval: Benchmarking LLMs' Capabilities to Generate Structural Outputs
As Large Language Models (LLMs) become integral to software development workflows, their ability to generate structured outputs has become critically important. We introduce StructEval, a comprehensive benchmark for evaluating LLMs' capabilities in producing both non-renderable (JSON, YAML, CSV) and renderable (HTML, React, SVG) structured formats. Unlike prior benchmarks, StructEval systematically evaluates structural fidelity across diverse formats through two paradigms: 1) generation tasks, producing structured output from natural language prompts, and \textbf{2)} conversion tasks, translating between structured formats. Our benchmark encompasses 18 formats and 44 types of task, with novel metrics for format adherence and structural correctness. Results reveal significant performance gaps-even state-of-the-art models like o1-mini achieve only 75.58 average score, with open-source alternatives lagging approximately 10 points behind. We find generation tasks more challenging than conversion tasks, and producing correct visual content more difficult than generating text-only structures.
comment: 24 pages, 8 figures, 14 tables
Training-Free Adaptation of New-Generation LLMs using Legacy Clinical Models
Adapting language models to the clinical domain through continued pretraining and fine-tuning requires costly retraining for each new model generation. We propose Cross-Architecture Proxy Tuning (CAPT), a model-ensembling approach that enables training-free adaptation of state-of-the-art general-domain models using existing clinical models. CAPT supports models with disjoint vocabularies, leveraging contrastive decoding to selectively inject clinically relevant signals while preserving the general-domain model's reasoning and fluency. On six clinical classification and text-generation tasks, CAPT with a new-generation general-domain model and an older-generation clinical model consistently outperforms both models individually and state-of-the-art ensembling approaches (average +17.6% over UniTE, +41.4% over proxy tuning across tasks). Through token-level analysis and physician case studies, we demonstrate that CAPT amplifies clinically actionable language, reduces context errors, and increases clinical specificity.
comment: 29 pages, 3 figures
EVADE-Bench: Multimodal Benchmark for Evasive Content Detection in E-Commerce Applications
E-commerce platforms increasingly rely on Large Language Models (LLMs) and Vision-Language Models (VLMs) to detect illicit or misleading product content. However, these models remain vulnerable to evasive content: inputs (text or images) that superficially comply with platform policies while covertly conveying prohibited claims. Unlike traditional adversarial attacks that induce overt failures, evasive content exploits ambiguity and context, making it far harder to detect. Existing robustness benchmarks provide little guidance for this demanding, real-world challenge. We introduce EVADE, the first expert-curated, Chinese, multimodal benchmark specifically designed to evaluate foundation models on evasive content detection in e-commerce. The dataset contains 2,833 annotated text samples and 13,961 images spanning six demanding product categories, including body shaping, height growth, and health supplements. Two complementary tasks assess distinct capabilities: Single-Violation, which probes fine-grained reasoning under short prompts, and All-in-One, which tests long-context reasoning by merging overlapping policy rules into unified instructions. Notably, the All-in-One setting significantly narrows the performance gap between partial and full-match accuracy, suggesting that clearer rule definitions improve alignment between human and model judgment. We benchmark 26 mainstream LLMs and VLMs and observe substantial performance gaps: even state-of-the-art models frequently misclassify evasive samples. By releasing EVADE and strong baselines, we provide the first rigorous standard for evaluating evasive-content detection, expose fundamental limitations in current multimodal reasoning, and lay the groundwork for safer and more transparent content moderation systems in e-commerce. The dataset is publicly available at https://huggingface.co/datasets/koenshen/EVADE-Bench.
Optimistic Gradient Learning with Hessian Corrections for High-Dimensional Black-Box Optimization
Black-box algorithms are designed to optimize functions without relying on their underlying analytical structure or gradient information, making them essential when gradients are inaccessible or difficult to compute. Traditional methods for solving black-box optimization (BBO) problems predominantly rely on non-parametric models and struggle to scale to large input spaces. Conversely, parametric methods that model the function with neural estimators and obtain gradient signals via backpropagation may suffer from significant gradient errors. A recent alternative, Explicit Gradient Learning (EGL), which directly learns the gradient using a first-order Taylor approximation, has demonstrated superior performance over both parametric and non-parametric methods. In this work, we propose two novel gradient learning variants to address the robustness challenges posed by high-dimensional, complex, and highly non-linear problems. Optimistic Gradient Learning (OGL) introduces a bias toward lower regions in the function landscape, while Higher-order Gradient Learning (HGL) incorporates second-order Taylor corrections to improve gradient accuracy. We combine these approaches into the unified OHGL algorithm, achieving state-of-the-art (SOTA) performance on the synthetic COCO suite. Additionally, we demonstrate OHGLs applicability to high-dimensional real-world machine learning (ML) tasks such as adversarial training and code generation. Our results highlight OHGLs ability to generate stronger candidates, offering a valuable tool for ML researchers and practitioners tackling high-dimensional, non-linear optimization challenges
comment: We develop a black-box optimization algorithm that learns gradients with neural models and can be applied to solve non-convex high dimensional real-world problems
Pervasive Annotation Errors Break Text-to-SQL Benchmarks and Leaderboards
Researchers have proposed numerous text-to-SQL techniques to streamline data analytics and accelerate the development of data-driven applications. To compare these techniques and select the best one for deployment, the community depends on public benchmarks and their leaderboards. Since these benchmarks heavily rely on human annotations during question construction and answer evaluation, the validity of the annotations is crucial. In this paper, we conduct an empirical study that (i) benchmarks annotation error rates for two widely used text-to-SQL benchmarks, BIRD and Spider 2.0-Snow, and (ii) corrects a subset of the BIRD development (Dev) set to measure the impact of annotation errors on text-to-SQL agent performance and leaderboard rankings. Through expert analysis, we show that BIRD Mini-Dev and Spider 2.0-Snow have error rates of 52.8% and 62.8%, respectively. We re-evaluate all 16 open-source agents from the BIRD leaderboard on both the original and the corrected BIRD Dev subsets. We show that performance changes range from -7% to 31% (in relative terms) and rank changes range from $-9$ to $+9$ positions. We further assess whether these impacts generalize to the full BIRD Dev set. We find that the rankings of agents on the uncorrected subset correlate strongly with those on the full Dev set (Spearman's $r_s$=0.85, $p$=3.26e-5), whereas they correlate weakly with those on the corrected subset (Spearman's $r_s$=0.32, $p$=0.23). These findings show that annotation errors can significantly distort reported performance and rankings, potentially misguiding research directions or deployment choices. Our code and data are available at https://github.com/uiuc-kang-lab/text_to_sql_benchmarks.
comment: 18 pages, 14 figures, 9 tables
HKAN: Hierarchical Kolmogorov-Arnold Network without Backpropagation
This paper introduces the Hierarchical Kolmogorov-Arnold Network (HKAN), a novel network architecture that offers a competitive alternative to the recently proposed Kolmogorov-Arnold Network (KAN). Unlike KAN, which relies on backpropagation, HKAN adopts a randomized learning approach, where the parameters of its basis functions are fixed, and linear aggregations are optimized using least-squares regression. HKAN utilizes a hierarchical multi-stacking framework, with each layer refining the predictions from the previous one by solving a series of linear regression problems. This non-iterative training method simplifies computation and eliminates sensitivity to local minima in the loss function. Empirical results show that HKAN delivers comparable, if not superior, accuracy and stability relative to KAN across various regression tasks, while also providing insights into variable importance. The proposed approach seamlessly integrates theoretical insights with practical applications, presenting a robust and efficient alternative for neural network modeling.
comment: 16 pages, 9 figures
Don't be lazy: CompleteP enables compute-efficient deep transformers NeurIPS 2025
We study compute efficiency of LLM training when using different parameterizations, i.e., rules for adjusting model and optimizer hyperparameters (HPs) as model size changes. Some parameterizations fail to transfer optimal base HPs (such as learning rate) across changes in model depth, requiring practitioners to either re-tune these HPs as they scale up (expensive), or accept sub-optimal training when re-tuning is prohibitive. Even when they achieve HP transfer, we develop theory to show parameterizations may still exist in the lazy learning regime where layers learn only features close to their linearization, preventing effective use of depth and nonlinearity. Finally, we identify and adopt the parameterization we call CompleteP that achieves both depth-wise HP transfer and non-lazy learning in all layers. CompleteP enables a wider range of model width/depth ratios to remain compute-efficient, unlocking shapes better suited for different hardware settings and operational contexts. Moreover, CompleteP enables 12-34% compute efficiency improvements over the prior state-of-the-art. All experiments were run on Cerebras CS-3 systems. A minimal implementation is available at https://github.com/EleutherAI/nanoGPT-mup/tree/completep.
comment: NeurIPS 2025. v4 fixes Table 1 typo to match AdamW eps to Equation 40
LLM-Based Agentic Systems for Software Engineering: Challenges and Opportunities
Despite recent advancements in Large Language Models (LLMs), complex Software Engineering (SE) tasks require more collaborative and specialized approaches. This concept paper systematically reviews the emerging paradigm of LLM-based multi-agent systems, examining their applications across the Software Development Life Cycle (SDLC), from requirements engineering and code generation to static code checking, testing, and debugging. We delve into a wide range of topics such as language model selection, SE evaluation benchmarks, state-of-the-art agentic frameworks and communication protocols. Furthermore, we identify key challenges and outline future research opportunities, with a focus on multi-agent orchestration, human-agent coordination, computational cost optimization, and effective data collection. This work aims to provide researchers and practitioners with valuable insights into the current forefront landscape of agentic systems within the software engineering domain.
comment: Accepted to GenSE 2026 workshop
SPHENIC: Topology-Aware Multi-View Clustering for Spatial Transcriptomics
Spatial transcriptomics clustering is pivotal for identifying cell subpopulations by leveraging spatial location information. While recent graph-based methods modeling cell-cell interactions have improved clustering accuracy, they remain limited in two key aspects: (i) reliance on local aggregation in static graphs often fails to capture robust global topological structures (e.g., loops and voids) and is vulnerable to noisy edges; and (ii) dimensionality reduction techniques frequently neglect spatial coherence, causing physically adjacent spots to be erroneously separated in the latent space. To overcome these challenges, we propose SPHENIC, a Spatial Persistent Homology-Enhanced Neighborhood Integrative Clustering method. Specifically, it explicitly incorporates topology-invariant features into the clustering network to ensure robust representation learning against noise. Furthermore, we design a dual-regularized optimization module that imposes spatial constraints alongside distributional optimization, ensuring that the embedding space preserves the physical proximity of cells. Extensive experiments on 11 benchmark datasets demonstrate that SPHENIC outperforms state-of-the-art methods by 4.19%-9.14%, validating its superiority in characterizing complex tissue architectures.
comment: 9 pages, 5 figures, 2 tables
A Disproof of Large Language Model Consciousness: The Necessity of Continual Learning for Consciousness
Scientific theories of consciousness should be falsifiable and non-trivial. Recent research has given us formal tools to analyze these requirements of falsifiability and non-triviality for theories of consciousness. Surprisingly, many contemporary theories of consciousness fail to pass this bar, including theories based on causal structure but also (as I demonstrate) theories based on function. Herein, I show these requirements of falsifiability and non-triviality especially constrain the potential consciousness of contemporary Large Language Models (LLMs) because of their proximity to systems that are equivalent to LLMs in terms of input/output function; yet, for these functionally equivalent systems, there cannot be any falsifiable and non-trivial theory of consciousness that judges them conscious. This forms the basis of a disproof of contemporary LLM consciousness. I then show a positive result, which is that theories of consciousness based on (or requiring) continual learning do satisfy the stringent formal constraints for a theory of consciousness in humans. Intriguingly, this work supports a hypothesis: If continual learning is linked to consciousness in humans, the current limitations of LLMs (which do not continually learn) are intimately tied to their lack of consciousness.
comment: 31 pages, 3 figures. V3: Added new section (4.1), restructured section 5.1, and further expanded citations
LAUDE: LLM-Assisted Unit Test Generation and Debugging of Hardware DEsigns
Unit tests are critical in the hardware design lifecycle to ensure that component design modules are functionally correct and conform to the specification before they are integrated at the system level. Thus developing unit tests targeting various design features requires deep understanding of the design functionality and creativity. When one or more unit tests expose a design failure, the debugging engineer needs to diagnose, localize, and debug the failure to ensure design correctness, which is often a painstaking and intense process. In this work, we introduce LAUDE, a unified unit-test generation and debugging framework for hardware designs that cross-pollinates the semantic understanding of the design source code with the Chain-of-Thought (CoT) reasoning capabilities of foundational Large-Language Models (LLMs). LAUDE integrates prompt engineering and design execution information to enhance its unit test generation accuracy and code debuggability. We apply LAUDE with closed- and open-source LLMs to a large corpus of buggy hardware design codes derived from the VerilogEval dataset, where generated unit tests detected bugs in up to 100% and 93% of combinational and sequential designs and debugged up to 93% and 84% of combinational and sequential designs, respectively.
comment: 18 Pages, 21 Figures, Submitted to ARR Review
K-Function: Joint Pronunciation Transcription and Feedback for Evaluating Kids Language Function
Evaluating young children's language is challenging for automatic speech recognizers due to high-pitched voices, prolonged sounds, and limited data. We introduce K-Function, a framework that combines accurate sub-word transcription with objective, Large Language Model (LLM)-driven scoring. Its core, Kids-Weighted Finite State Transducer (K-WFST), merges an acoustic phoneme encoder with a phoneme-similarity model to capture child-specific speech errors while remaining fully interpretable. K-WFST achieves a 1.39 % phoneme error rate on MyST and 8.61 % on Multitudes-an absolute improvement of 10.47 % and 7.06 % over a greedy-search decoder. These high-quality transcripts are used by an LLM to grade verbal skills, developmental milestones, reading, and comprehension, with results that align closely with human evaluators. Our findings show that precise phoneme recognition is essential for creating an effective assessment framework, enabling scalable language screening for children.
Combining Shape Completion and Grasp Prediction for Fast and Versatile Grasping with a Multi-Fingered Hand
Grasping objects with limited or no prior knowledge about them is a highly relevant skill in assistive robotics. Still, in this general setting, it has remained an open problem, especially when it comes to only partial observability and versatile grasping with multi-fingered hands. We present a novel, fast, and high fidelity deep learning pipeline consisting of a shape completion module that is based on a single depth image, and followed by a grasp predictor that is based on the predicted object shape. The shape completion network is based on VQDIF and predicts spatial occupancy values at arbitrary query points. As grasp predictor, we use our two-stage architecture that first generates hand poses using an autoregressive model and then regresses finger joint configurations per pose. Critical factors turn out to be sufficient data realism and augmentation, as well as special attention to difficult cases during training. Experiments on a physical robot platform demonstrate successful grasping of a wide range of household objects based on a depth image from a single viewpoint. The whole pipeline is fast, taking only about 1 s for completing the object's shape (0.7 s) and generating 1000 grasps (0.3 s).
comment: 8 pages, 10 figures, 3 tables, 1 algorithm. Published in Humanoids 2023. Project page: https://aidx-lab.org/grasping/humanoids23
Towards a constructive framework for control theory
This work presents a framework for control theory based on constructive analysis to account for discrepancy between mathematical results and their implementation in a computer, also referred to as computational uncertainty. In control engineering, the latter is usually either neglected or considered submerged into some other type of uncertainty, such as system noise, and addressed within robust control. However, even robust control methods may be compromised when the mathematical objects involved in the respective algorithms fail to exist in exact form and subsequently fail to satisfy the required properties. For instance, in general stabilization using a control Lyapunov function, computational uncertainty may distort stability certificates or even destabilize the system despite robustness of the stabilization routine with regards to system, actuator and measurement noise. In fact, battling numerical problems in practical implementation of controllers is common among control engineers. Such observations indicate that computational uncertainty should indeed be addressed explicitly in controller synthesis and system analysis. The major contribution here is a fairly general framework for proof techniques in analysis and synthesis of control systems based on constructive analysis which explicitly states that every computation be doable only up to a finite precision thus accounting for computational uncertainty. A series of previous works is overviewed, including constructive system stability and stabilization, approximate optimal controls, eigenvalue problems, Caratheodory trajectories, measurable selectors. Additionally, a new constructive version of the Danskin's theorem, which is crucial in adversarial defense, is presented.
comment: Published under: https://ieeexplore.ieee.org/document/9419858
AgentAsk: Multi-Agent Systems Need to Ask
Multi-agent systems (MAS) built on large language models promise improved problem-solving through collaboration, yet they often fail to consistently outperform strong single-agent baselines due to error propagation at inter-agent message handoffs.In this work, we conduct a systematic empirical analysis of such failures and introduce an edge-level error taxonomy that identifies four dominant error types: Data Gap, Signal Corruption, Referential Drift, and Capability Gap, as primary sources of failure in multi-agent interactions. Building on this taxonomy, we propose AgentAsk, a lightweight clarification module designed to intervene at the edge level in MAS to prevent cascading errors. The module operates by strategically applying minimal clarifications at critical points within the system, improving the accuracy and efficiency of the overall task. AgentAsk is trained to balance the trade-offs between clarification cost, latency, and accuracy, while it is also architecture-agnostic and can be easily integrated into existing systems. Evaluated across five benchmarks, AgentAsk consistently improves accuracy by up to 4.69%, while keeping latency and extra costs below 10% compared to baseline MAS, showcasing its high efficiency and minimal overhead.
Balanced Accuracy: The Right Metric for Evaluating LLM Judges -- Explained through Youden's J statistic
Rigorous evaluation of large language models (LLMs) relies on comparing models by the prevalence of desirable or undesirable behaviors, such as task pass rates or policy violations. These prevalence estimates are produced by a classifier, either an LLM-as-a-judge or human annotators, making the choice of classifier central to trustworthy evaluation. Common metrics used for this choice, such as Accuracy, Precision, and F1, are sensitive to class imbalance and to arbitrary choices of positive class, and can favor judges that distort prevalence estimates. We show that Youden's $J$ statistic is theoretically aligned with choosing the best judge to compare models, and that Balanced Accuracy is an equivalent linear transformation of $J$. Through both analytical arguments and empirical examples and simulations, we demonstrate how selecting judges using Balanced Accuracy leads to better, more robust classifier selection.
comment: 10 pages, 5 figures
From Prototypes to Sparse ECG Explanations: SHAP-Driven Counterfactuals for Multivariate Time-Series Multi-class Classification
In eXplainable Artificial Intelligence (XAI), instance-based explanations for time series have gained increasing attention due to their potential for actionable and interpretable insights in domains such as healthcare. Addressing the challenges of explainability of state-of-the-art models, we propose a prototype-driven framework for generating sparse counterfactual explanations tailored to 12-lead ECG classification models. Our method employs SHAP-based thresholds to identify critical signal segments and convert them into interval rules, uses Dynamic Time Warping (DTW) and medoid clustering to extract representative prototypes, and aligns these prototypes to query R-peaks for coherence with the sample being explained. The framework generates counterfactuals that modify only 78% of the original signal while maintaining 81.3% validity across all classes and achieving 43% improvement in temporal stability. We evaluate three variants of our approach, Original, Sparse, and Aligned Sparse, with class-specific performance ranging from 98.9% validity for myocardial infarction (MI) to challenges with hypertrophy (HYP) detection (13.2%). This approach supports near realtime generation (< 1 second) of clinically valid counterfactuals and provides a foundation for interactive explanation platforms. Our findings establish design principles for physiologically-aware counterfactual explanations in AI-based diagnosis systems and outline pathways toward user-controlled explanation interfaces for clinical deployment.
Shape Completion with Prediction of Uncertain Regions IROS 2023
Shape completion, i.e., predicting the complete geometry of an object from a partial observation, is highly relevant for several downstream tasks, most notably robotic manipulation. When basing planning or prediction of real grasps on object shape reconstruction, an indication of severe geometric uncertainty is indispensable. In particular, there can be an irreducible uncertainty in extended regions about the presence of entire object parts when given ambiguous object views. To treat this important case, we propose two novel methods for predicting such uncertain regions as straightforward extensions of any method for predicting local spatial occupancy, one through postprocessing occupancy scores, the other through direct prediction of an uncertainty indicator. We compare these methods together with two known approaches to probabilistic shape completion. Moreover, we generate a dataset, derived from ShapeNet, of realistically rendered depth images of object views with ground-truth annotations for the uncertain regions. We train on this dataset and test each method in shape completion and prediction of uncertain regions for known and novel object instances and on synthetic and real data. While direct uncertainty prediction is by far the most accurate in the segmentation of uncertain regions, both novel methods outperform the two baselines in shape completion and uncertain region prediction, and avoiding the predicted uncertain regions increases the quality of grasps for all tested methods.
comment: 7 pages, 5 figures, Published in IROS 2023. Project page: https://hummat.github.io/2023-iros-uncertain/
Undesirable Memorization in Large Language Models: A Survey
While recent research increasingly showcases the remarkable capabilities of Large Language Models (LLMs), it is equally crucial to examine their associated risks. Among these, privacy and security vulnerabilities are particularly concerning, posing significant ethical and legal challenges. At the heart of these vulnerabilities stands memorization, which refers to a model's tendency to store and reproduce phrases from its training data. This phenomenon has been shown to be a fundamental source to various privacy and security attacks against LLMs. In this paper, we provide a taxonomy of the literature on LLM memorization, exploring it across three dimensions: granularity, retrievability, and desirability. Next, we discuss the metrics and methods used to quantify memorization, followed by an analysis of the causes and factors that contribute to memorization phenomenon. We then explore strategies that are used so far to mitigate the undesirable aspects of this phenomenon. We conclude our survey by identifying potential research topics for the near future, including methods to balance privacy and performance, and the analysis of memorization in specific LLM contexts such as conversational agents, retrieval-augmented generation, and diffusion language models. Given the rapid research pace in this field, we also maintain a dedicated repository of the references discussed in this survey which will be regularly updated to reflect the latest developments.
Mxplainer: Explain and Learn Insights by Imitating Mahjong Agents
People need to internalize the skills of AI agents to improve their own capabilities. Our paper focuses on Mahjong, a multiplayer game involving imperfect information and requiring effective long-term decision-making amidst randomness and hidden information. Through the efforts of AI researchers, several impressive Mahjong AI agents have already achieved performance levels comparable to those of professional human players; however, these agents are often treated as black boxes from which few insights can be gleaned. This paper introduces Mxplainer, a parameterized search algorithm that can be converted into an equivalent neural network to learn the parameters of black-box agents. Experiments on both human and AI agents demonstrate that Mxplainer achieves a top-three action prediction accuracy of over 92% and 90%, respectively, while providing faithful and interpretable approximations that outperform decision-tree methods (34.8% top-three accuracy). This enables Mxplainer to deliver both strategy-level insights into agent characteristics and actionable, step-by-step explanations for individual decisions.
comment: https://doi.org/10.3390/a18120738
Comparing the Framing Effect in Humans and LLMs on Naturally Occurring Texts
Humans are influenced by how information is presented, a phenomenon known as the framing effect. Prior work suggests that LLMs may also be susceptible to framing, but it has relied on synthetic data and did not compare to human behavior. To address this gap, we introduce WildFrame - a dataset for evaluating LLM responses to positive and negative framing in naturally-occurring sentences, alongside human responses on the same data. WildFrame consists of 1,000 real-world texts selected to convey a clear sentiment; we then reframe each text in either a positive or negative light and collect human sentiment annotations. Evaluating eleven LLMs on WildFrame, we find that all models respond to reframing in a human-like manner ($r\geq0.52$), and that both humans and models are influenced more by positive than negative reframing. Notably, GPT models are the least correlated with human behavior among all tested models. These findings raise a discussion around the goals of state-of-the-art LLM development and whether models should align closely with human behavior, to preserve cognitive phenomena such as the framing effect, or instead mitigate such biases in favor of fairness and consistency.
Think Then Embed: Generative Context Improves Multimodal Embedding
There is a growing interest in Universal Multimodal Embeddings (UME), where models are required to generate task-specific representations. While recent studies show that Multimodal Large Language Models (MLLMs) perform well on such tasks, they treat MLLMs solely as encoders, overlooking their generative capacity. However, such an encoding paradigm becomes less effective as instructions become more complex and require compositional reasoning. Inspired by the proven effectiveness of chain-of-thought reasoning, we propose a general Think-Then-Embed (TTE) framework for UME, composed of a reasoner and an embedder. The reasoner MLLM first generates reasoning traces that explain complex queries, followed by an embedder that produces representations conditioned on both the original query and the intermediate reasoning. This explicit reasoning step enables more nuanced understanding of complex multimodal instructions. Our contributions are threefold. First, by leveraging a powerful MLLM reasoner, we achieve state-of-the-art performance on the MMEB-V2 benchmark, surpassing proprietary models trained on massive in-house datasets. Second, to reduce the dependency on large MLLM reasoners, we finetune a smaller MLLM reasoner using high-quality embedding-centric reasoning traces, achieving the best performance among open-source models with a 7% absolute gain over recently proposed models. Third, we investigate strategies for integrating the reasoner and embedder into a unified model for improved efficiency without sacrificing performance.
Building Production-Ready Probes For Gemini
Frontier language model capabilities are improving rapidly. We thus need stronger mitigations against bad actors misusing increasingly powerful systems. Prior work has shown that activation probes may be a promising misuse mitigation technique, but we identify a key remaining challenge: probes fail to generalize under important production distribution shifts. In particular, we find that the shift from short-context to long-context inputs is difficult for existing probe architectures. We propose several new probe architectures that handle this long-context distribution shift. We evaluate these probes in the cyber-offensive domain, testing their robustness against various production-relevant distribution shifts, including multi-turn conversations, long context prompts, and adaptive red teaming. Our results demonstrate that while our novel architectures address context length, a combination of architecture choice and training on diverse distributions is required for broad generalization. Additionally, we show that pairing probes with prompted classifiers achieves optimal accuracy at a low cost due to the computational efficiency of probes. These findings have informed the successful deployment of misuse mitigation probes in user-facing instances of Gemini, Google's frontier language model. Finally, we find early positive results using AlphaEvolve to automate improvements in both probe architecture search and adaptive red teaming, showing that automating some AI safety research is already possible.
comment: v2 (minor typo fixes)
Towards Verifiable Federated Unlearning: Framework, Challenges, and The Road Ahead
Federated unlearning (FUL) enables removing the data influence from the model trained across distributed clients, upholding the right to be forgotten as mandated by privacy regulations. FUL facilitates a value exchange where clients gain privacy-preserving control over their data contributions, while service providers leverage decentralized computing and data freshness. However, this entire proposition is undermined because clients have no reliable way to verify that their data influence has been provably removed, as current metrics and simple notifications offer insufficient assurance. We envision unlearning verification becoming a pivotal and trust-by-design part of the FUL life-cycle development, essential for highly regulated and data-sensitive services and applications like healthcare. This article introduces veriFUL, a reference framework for verifiable FUL that formalizes verification entities, goals, approaches, and metrics. Specifically, we consolidate existing efforts and contribute new insights, concepts, and metrics to this domain. Finally, we highlight research challenges and identify potential applications and developments for verifiable FUL and veriFUL. This article aims to provide a comprehensive resource for researchers and practitioners to navigate and advance the field of verifiable FUL.
comment: Accepted in IEEE Internet Computing
ToxiFrench: Benchmarking and Enhancing Language Models via CoT Fine-Tuning for French Toxicity Detection
Detecting toxic content using language models is crucial yet challenging. While substantial progress has been made in English, toxicity detection in French remains underdeveloped, primarily due to the lack of culturally relevant, human-annotated, large-scale datasets. In this work, we release ToxiFrench, a dataset of 53,622 French online comments together with a balanced benchmark split for systematic evaluation. The dataset is constructed via a semi-automated annotation pipeline that reduces manual labeling to only 10% through high-confidence LLM-based pre-annotation and human verification, while ensuring statistical alignment with human-only annotation. We then benchmark a broad range of models and uncover a counterintuitive finding: Small Language Models (SLMs) often surpass larger models in robustness and generalization on this task. Motivated by this finding, we propose a novel Chain-of-Thought (CoT) fine-tuning strategy using a Dynamic Weighted Loss (DWL) that progressively emphasizes the model's final decision and significantly improves faithfulness. Our fine-tuned 4B model (Qwen3-4B) achieves state-of-the-art performance on the benchmark. It improves its balanced accuracy by 10% over its baseline and achieves better performance than GPT-4o and DeepSeek-R1 on our benchmark, while successfully retaining cross-lingual capabilities.
comment: 22 pages, 5 figures, 11 tables. This paper introduces TOXIFRENCH, a benchmark of 53,622 comments for French toxicity detection. It proposes a Chain-of-Thought fine-tuning method with a dynamic weighted loss. The fine-tuned 4B model (Qwen3-4B) achieves state-of-the-art performance, outperforming larger models like GPT-4o and DeepSeek-R1
Fine-grained spatial-temporal perception for gas leak segmentation
Gas leaks pose significant risks to human health and the environment. Despite long-standing concerns, there are limited methods that can efficiently and accurately detect and segment leaks due to their concealed appearance and random shapes. In this paper, we propose a Fine-grained Spatial-Temporal Perception (FGSTP) algorithm for gas leak segmentation. FGSTP captures critical motion clues across frames and integrates them with refined object features in an end-to-end network. Specifically, we first construct a correlation volume to capture motion information between consecutive frames. Then, the fine-grained perception progressively refines the object-level features using previous outputs. Finally, a decoder is employed to optimize boundary segmentation. Because there is no highly precise labeled dataset for gas leak segmentation, we manually label a gas leak video dataset, GasVid. Experimental results on GasVid demonstrate that our model excels in segmenting non-rigid objects such as gas leaks, generating the most accurate mask compared to other state-of-the-art (SOTA) models.
comment: Accepted at the 2025 IEEE International Conference on Image Processing (ICIP)
FDLLM: A Dedicated Detector for Black-Box LLMs Fingerprinting
Large Language Models (LLMs) are rapidly transforming the landscape of digital content creation. However, the prevalent black-box Application Programming Interface (API) access to many LLMs introduces significant challenges in accountability, governance, and security. LLM fingerprinting, which aims to identify the source model by analyzing statistical and stylistic features of generated text, offers a potential solution. Current progress in this area is hindered by a lack of dedicated datasets and the need for efficient, practical methods that are robust against adversarial manipulations. To address these challenges, we introduce FD-Dataset, a comprehensive bilingual fingerprinting benchmark comprising 90,000 text samples from 20 famous proprietary and open-source LLMs. Furthermore, we present FDLLM, a novel fingerprinting method that leverages parameter-efficient Low-Rank Adaptation (LoRA) to fine-tune a foundation model. This approach enables LoRA to extract deep, persistent features that characterize each source LLM. Through our analysis, we find that LoRA adaptation promotes the aggregation of outputs from the same LLM in representation space while enhancing the separation between different LLMs. This mechanism explains why LoRA proves particularly effective for LLM fingerprinting. Extensive empirical evaluations on FD-Dataset demonstrate FDLLM's superiority, achieving a Macro F1 score 22.1% higher than the strongest baseline. FDLLM also exhibits strong generalization to newly released models, achieving an average accuracy of 95% on unseen models. Notably, FDLLM remains consistently robust under various adversarial attacks, including polishing, translation, and synonym substitution. Experimental results show that FDLLM reduces the average attack success rate from 49.2% (LM-D) to 23.9%.
Mobile Coverage Analysis using Crowdsourced Data
Effective assessment of mobile network coverage and the precise identification of service weak spots are paramount for network operators striving to enhance user Quality of Experience (QoE). This paper presents a novel framework for mobile coverage and weak spot analysis utilising crowdsourced QoE data. The core of our methodology involves coverage analysis at the individual cell (antenna) level, subsequently aggregated to the site level, using empirical geolocation data. A key contribution of this research is the application of One-Class Support Vector Machine (OC-SVM) algorithm for calculating mobile network coverage. This approach models the decision hyperplane as the effective coverage contour, facilitating robust calculation of coverage areas for individual cells and entire sites. The same methodology is extended to analyse crowdsourced service loss reports, thereby identifying and quantifying geographically localised weak spots. Our findings demonstrate the efficacy of this novel framework in accurately mapping mobile coverage and, crucially, in highlighting granular areas of signal deficiency, particularly within complex urban environments.
comment: 8 pages
Rethinking Entropy Interventions in RLVR: An Entropy Change Perspective
While Reinforcement Learning with Verifiable Rewards (RLVR) can enhance LLM reasoning, its training process carries a critical risk: entropy collapse. This phenomenon is a rapid decrease in policy entropy, which severely limits exploration and diminishes learning effectiveness. Recent methods attempt to mitigate this collapse via heuristic entropy interventions, yet the underlying mechanisms governing entropy remain unclear. In this work, we conduct a theoretical and quantitative analysis of GRPO's entropy dynamics, revealing that token-level entropy change in each update step is jointly governed by four key factors: clipping strategy, advantage, token probability, and token entropy. These findings not only explain the mechanisms of existing methods, but also reveal their limitations: they rely on heuristic adjustments to only one or two factors, leaving other relevant factors unconsidered and reducing their effectiveness. This motivates us to propose a new method, STEER, which adaptively reweights tokens based on their estimated entropy change to regulate entropy in a principled manner. Experiments on both math and coding benchmarks demonstrate that STEER effectively mitigates entropy collapse and consistently outperforms state-of-the-art baselines.
Message passing-based inference in an autoregressive active inference agent
We present the design of an autoregressive active inference agent in the form of message passing on a factor graph. Expected free energy is derived and distributed across a planning graph. The proposed agent is validated on a robot navigation task, demonstrating exploration and exploitation in a continuous-valued observation space with bounded continuous-valued actions. Compared to a classical optimal controller, the agent modulates action based on predictive uncertainty, arriving later but with a better model of the robot's dynamics.
comment: 14 pages, 4 figures, proceedings of the International Workshop on Active Inference 2025. Erratum v1: in Eq. (50), $p(y_t, Θ, u_t \mid y_{*}, \mathcal{D}_k)$ should have been $p(y_t, Θ\mid u_t, y_{*}, \mathcal{D}_k)$
FBFL: A Field-Based Coordination Approach for Data Heterogeneity in Federated Learning
In the last years, Federated learning (FL) has become a popular solution to train machine learning models in domains with high privacy concerns. However, FL scalability and performance face significant challenges in real-world deployments where data across devices are non-independently and identically distributed (non-IID). The heterogeneity in data distribution frequently arises from spatial distribution of devices, leading to degraded model performance in the absence of proper handling. Additionally, FL typical reliance on centralized architectures introduces bottlenecks and single-point-of-failure risks, particularly problematic at scale or in dynamic environments. To close this gap, we propose Field-Based Federated Learning (FBFL), a novel approach leveraging macroprogramming and field coordination to address these limitations through: (i) distributed spatial-based leader election for personalization to mitigate non-IID data challenges; and (ii) construction of a self-organizing, hierarchical architecture using advanced macroprogramming patterns. Moreover, FBFL not only overcomes the aforementioned limitations, but also enables the development of more specialized models tailored to the specific data distribution in each subregion. This paper formalizes FBFL and evaluates it extensively using MNIST, FashionMNIST, and Extended MNIST datasets. We demonstrate that, when operating under IID data conditions, FBFL performs comparably to the widely-used FedAvg algorithm. Furthermore, in challenging non-IID scenarios, FBFL not only outperforms FedAvg but also surpasses other state-of-the-art methods, namely FedProx and Scaffold, which have been specifically designed to address non-IID data distributions. Additionally, we showcase the resilience of FBFL's self-organizing hierarchical architecture against server failures.
Seek in the Dark: Reasoning via Test-Time Instance-Level Policy Gradient in Latent Space
Reasoning ability, a core component of human intelligence, continues to pose a significant challenge for Large Language Models (LLMs) in the pursuit of AGI. Although model performance has improved under the training scaling law, significant challenges remain, particularly with respect to training algorithms, such as catastrophic forgetting, and the limited availability of novel training data. As an alternative, test-time scaling enhances reasoning performance by increasing test-time computation without parameter updating. Unlike prior methods in this paradigm focused on token space, we propose leveraging latent space for more effective reasoning and better adherence to the test-time scaling law. We introduce LatentSeek, a novel framework that enhances LLM reasoning through Test-Time Instance-level Adaptation (TTIA) within the model's latent space. Specifically, LatentSeek leverages policy gradient to iteratively update latent representations, guided by self-generated reward signals. LatentSeek is evaluated on a range of reasoning benchmarks, including GSM8K, MATH-500, and AIME2024, across multiple LLM architectures. Results show that LatentSeek consistently outperforms strong baselines, such as Chain-of-Thought prompting and fine-tuning-based methods. Furthermore, our analysis demonstrates that LatentSeek is highly efficient, typically converging within a few iterations for problems of average complexity, while also benefiting from additional iterations, thereby highlighting the potential of test-time scaling in the latent space. These findings position LatentSeek as a lightweight, scalable, and effective solution for enhancing the reasoning capabilities of LLMs.
Vejde: A Framework for Inductive Deep Reinforcement Learning Based on Factor Graph Color Refinement
We present and evaluate Vejde; a framework which combines data abstraction, graph neural networks and reinforcement learning to produce inductive policy functions for decision problems with richly structured states, such as object classes and relations. MDP states are represented as data bases of facts about entities, and Vejde converts each state to a bipartite graph, which is mapped to latent states through neural message passing. The factored representation of both states and actions allows Vejde agents to handle problems of varying size and structure. We tested Vejde agents on eight problem domains defined in RDDL, with ten problem instances each, where policies were trained using both supervised and reinforcement learning. To test policy generalization, we separate problem instances in two sets, one for training and the other solely for testing. Test results on unseen instances for the Vejde agents were compared to MLP agents trained on each problem instance, as well as the online planning algorithm Prost. Our results show that Vejde policies in average generalize to the test instances without a significant loss in score. Additionally, the inductive agents received scores on unseen test instances that on average were close to the instance-specific MLP agents.
Mechanisms are Transferable: Data-Efficient Low-Resource Adaptation via Circuit-Targeted Supervised Fine-Tuning
Adapting LLMs to low-resource languages is difficult: labeled data is scarce, full-model fine-tuning is unstable, and continued cross-lingual tuning can cause catastrophic forgetting. We propose Circuit-Targeted Supervised Fine-Tuning (CT-SFT): a counterfactual-free adaptation of CD-T (Contextual Decomposition Transformer) that uses a label-balanced mean baseline and task-directional relevance scoring to identify a sparse set of task-relevant attention heads in a proxy-language checkpoint, then transfer learns to a target language by updating only those heads (plus LayerNorm) via head-level gradient masking. Across NusaX-Senti and XNLI, CT-SFT improves cross-lingual accuracy over continued full fine-tuning while updating only a small subset of model parameters. We find an editing-preserving trade-off: harder transfers favor editing circuit heads, while easier transfers often favor near-zero (i.e., low-relevance heads) updates, preserving the source mechanism. CT-SFT also substantially reduces catastrophic forgetting, preserving proxy/source-language competence during transfer.
DeepProofLog: Efficient Proving in Deep Stochastic Logic Programs AAAI 2026
Neurosymbolic (NeSy) AI aims to combine the strengths of neural architectures and symbolic reasoning to improve the accuracy, interpretability, and generalization capability of AI models. While logic inference on top of subsymbolic modules has been shown to effectively guarantee these properties, this often comes at the cost of reduced scalability, which can severely limit the usability of NeSy models. This paper introduces DeepProofLog (DPrL), a novel NeSy system based on stochastic logic programs, which addresses the scalability limitations of previous methods. DPrL parameterizes all derivation steps with neural networks, allowing efficient neural guidance over the proving system. Additionally, we establish a formal mapping between the resolution process of our deep stochastic logic programs and Markov Decision Processes, enabling the application of dynamic programming and reinforcement learning techniques for efficient inference and learning. This theoretical connection improves scalability for complex proof spaces and large knowledge bases. Our experiments on standard NeSy benchmarks and knowledge graph reasoning tasks demonstrate that DPrL outperforms existing state-of-the-art NeSy systems, advancing scalability to larger and more complex settings than previously possible.
comment: Accepted as an Oral at AAAI 2026
AgencyBench: Benchmarking the Frontiers of Autonomous Agents in 1M-Token Real-World Contexts
Large Language Models (LLMs) based autonomous agents demonstrate multifaceted capabilities to contribute substantially to economic production. However, existing benchmarks remain focused on single agentic capability, failing to capture long-horizon real-world scenarios. Moreover, the reliance on human-in-the-loop feedback for realistic tasks creates a scalability bottleneck, hindering automated rollout collection and evaluation. To bridge this gap, we introduce AgencyBench, a comprehensive benchmark derived from daily AI usage, evaluating 6 core agentic capabilities across 32 real-world scenarios, comprising 138 tasks with specific queries, deliverables, and rubrics. These scenarios require an average of 90 tool calls, 1 million tokens, and hours of execution time to resolve. To enable automated evaluation, we employ a user simulation agent to provide iterative feedback, and a Docker sandbox to conduct visual and functional rubric-based assessment. Experiments reveal that closed-source models significantly outperform open-source models (48.4% vs 32.1%). Further analysis reveals significant disparities across models in resource efficiency, feedback-driven self-correction, and specific tool-use preferences. Finally, we investigate the impact of agentic scaffolds, observing that proprietary models demonstrate superior performance within their native ecosystems (e.g., Claude-4.5-Opus via Claude-Agent-SDK), while open-source models exhibit distinct performance peaks, suggesting potential optimization for specific execution frameworks. AgencyBench serves as a critical testbed for next-generation agents, highlighting the necessity of co-optimizing model architecture with agentic frameworks. We believe this work sheds light on the future direction of autonomous agents, and we release the full benchmark and evaluation toolkit at https://github.com/GAIR-NLP/AgencyBench.
BLUCK: A Benchmark Dataset for Bengali Linguistic Understanding and Cultural Knowledge
In this work, we introduce BLUCK, a new dataset designed to measure the performance of Large Language Models (LLMs) in Bengali linguistic understanding and cultural knowledge. Our dataset comprises 2366 multiple-choice questions (MCQs) carefully curated from compiled collections of several college and job level examinations and spans 23 categories covering knowledge on Bangladesh's culture and history and Bengali linguistics. We benchmarked BLUCK using 6 proprietary and 3 open-source LLMs - including GPT-4o, Claude-3.5-Sonnet, Gemini-1.5-Pro, Llama-3.3-70B-Instruct, and DeepSeekV3. Our results show that while these models perform reasonably well overall, they, however, struggles in some areas of Bengali phonetics. Although current LLMs' performance on Bengali cultural and linguistic contexts is still not comparable to that of mainstream languages like English, our results indicate Bengali's status as a mid-resource language. Importantly, BLUCK is also the first MCQ-based evaluation benchmark that is centered around native Bengali culture, history, and linguistics.
comment: Accepted at BLP Workshop, IJCNLP-AACL 2025
Crafting Adversarial Inputs for Large Vision-Language Models Using Black-Box Optimization
Recent advancements in Large Vision-Language Models (LVLMs) have shown groundbreaking capabilities across diverse multimodal tasks. However, these models remain vulnerable to adversarial jailbreak attacks, where adversaries craft subtle perturbations to bypass safety mechanisms and trigger harmful outputs. Existing white-box attacks methods require full model accessibility, suffer from computing costs and exhibit insufficient adversarial transferability, making them impractical for real-world, black-box settings. To address these limitations, we propose a black-box jailbreak attack on LVLMs via Zeroth-Order optimization using Simultaneous Perturbation Stochastic Approximation (ZO-SPSA). ZO-SPSA provides three key advantages: (i) gradient-free approximation by input-output interactions without requiring model knowledge, (ii) model-agnostic optimization without the surrogate model and (iii) lower resource requirements with reduced GPU memory consumption. We evaluate ZO-SPSA on three LVLMs, including InstructBLIP, LLaVA and MiniGPT-4, achieving the highest jailbreak success rate of 83.0% on InstructBLIP, while maintaining imperceptible perturbations comparable to white-box methods. Moreover, adversarial examples generated from MiniGPT-4 exhibit strong transferability to other LVLMs, with ASR reaching 64.18%. These findings underscore the real-world feasibility of black-box jailbreaks and expose critical weaknesses in the safety mechanisms of current LVLMs
comment: EACL
RISER: Orchestrating Latent Reasoning Skills for Adaptive Activation Steering
Recent work on domain-specific reasoning with large language models (LLMs) often relies on training-intensive approaches that require parameter updates. While activation steering has emerged as a parameter efficient alternative, existing methods apply static, manual interventions that fail to adapt to the dynamic nature of complex reasoning. To address this limitation, we propose RISER (Router-based Intervention for Steerable Enhancement of Reasoning), a plug-and-play intervention framework that adaptively steers LLM reasoning in activation space. RISER constructs a library of reusable reasoning vectors and employs a lightweight Router to dynamically compose them for each input. The Router is optimized via reinforcement learning under task-level rewards, activating latent cognitive primitives in an emergent and compositional manner. Across seven diverse benchmarks, RISER yields 3.4-6.5% average zero-shot accuracy improvements over the base model while surpassing CoT-style reasoning with 2-3x higher token efficiency and robust accuracy gains. Further analysis shows that RISER autonomously combines multiple vectors into interpretable, precise control strategies, pointing toward more controllable and efficient LLM reasoning.
Modular Deep Learning for Multivariate Time-Series: Decoupling Imputation and Downstream Tasks
Missing values are pervasive in large-scale time-series data, posing challenges for reliable analysis and decision-making. Many neural architectures have been designed to model and impute the complex and heterogeneous missingness patterns of such data. Most existing methods are end-to-end, rendering imputation tightly coupled with downstream predictive tasks and leading to limited reusability of the trained model, reduced interpretability, and challenges in assessing model quality. In this paper, we call for a modular approach that decouples imputation and downstream tasks, enabling independent optimisation and greater adaptability. Using the largest open-source Python library for deep learning-based time-series analysis, PyPOTS, we evaluate a modular pipeline across six state-of-the-art models that perform imputation and prediction on seven datasets spanning multiple domains. Our results show that a modular approach maintains high performance while prioritising flexibility and reusability - qualities that are crucial for real-world applications. Through this work, we aim to demonstrate how modularity can benefit multivariate time-series analysis, achieving a balance between performance and adaptability.
RPTS: Tree-Structured Reasoning Process Scoring for Faithful Multimodal Evaluation
Large Vision-Language Models (LVLMs) excel in multimodal reasoning and have shown impressive performance on various multimodal benchmarks. However, most of these benchmarks evaluate models primarily through multiple-choice or short-answer formats, which do not take the reasoning process into account. Although some benchmarks assess the reasoning process, their methods are often overly simplistic and only examine reasoning when answers are incorrect. This approach overlooks scenarios where flawed reasoning leads to correct answers. In addition, these benchmarks do not consider the impact of intermodal relationships on reasoning. To address this issue, we propose the Reasoning Process Tree Score (RPTS), a tree structure-based metric to assess reasoning processes. Specifically, we organize the reasoning steps into a reasoning tree and leverage its hierarchical information to assign weighted faithfulness scores to each reasoning step. By dynamically adjusting these weights, RPTS not only evaluates the overall correctness of the reasoning, but also pinpoints where the model fails in the reasoning. To validate RPTS in real-world multimodal scenarios, we construct a new benchmark, RPTS-Eval, comprising 374 images and 390 reasoning instances. Each instance includes reliable visual-textual clues that serve as leaf nodes of the reasoning tree. Furthermore, we define three types of intermodal relationships to investigate how intermodal interactions influence the reasoning process. We evaluated representative LVLMs (e.g., GPT4o, Llava-Next), uncovering their limitations in multimodal reasoning and highlighting the differences between open-source and closed-source commercial LVLMs. We believe that this benchmark will contribute to the advancement of research in the field of multimodal reasoning.
WER is Unaware: Assessing How ASR Errors Distort Clinical Understanding in Patient Facing Dialogue
As Automatic Speech Recognition (ASR) is increasingly deployed in clinical dialogue, standard evaluations still rely heavily on Word Error Rate (WER). This paper challenges that standard, investigating whether WER or other common metrics correlate with the clinical impact of transcription errors. We establish a gold-standard benchmark by having expert clinicians compare ground-truth utterances to their ASR-generated counterparts, labeling the clinical impact of any discrepancies found in two distinct doctor-patient dialogue datasets. Our analysis reveals that WER and a comprehensive suite of existing metrics correlate poorly with the clinician-assigned risk labels (No, Minimal, or Significant Impact). To bridge this evaluation gap, we introduce an LLM-as-a-Judge, programmatically optimized using GEPA through DSPy to replicate expert clinical assessment. The optimized judge (Gemini-2.5-Pro) achieves human-comparable performance, obtaining 90% accuracy and a strong Cohen's kappa of 0.816. This work provides a validated, automated framework for moving ASR evaluation beyond simple textual fidelity to a necessary, scalable assessment of safety in clinical dialogue.
comment: Published as an Oral at IWSDS 2026
DNF: Dual-Layer Nested Fingerprinting for Large Language Model Intellectual Property Protection
The rapid growth of large language models raises pressing concerns about intellectual property protection under black-box deployment. Existing backdoor-based fingerprints either rely on rare tokens -- leading to high-perplexity inputs susceptible to filtering -- or use fixed trigger-response mappings that are brittle to leakage and post-hoc adaptation. We propose \textsc{Dual-Layer Nested Fingerprinting} (DNF), a black-box method that embeds a hierarchical backdoor by coupling domain-specific stylistic cues with implicit semantic triggers. Across Mistral-7B, LLaMA-3-8B-Instruct, and Falcon3-7B-Instruct, DNF achieves perfect fingerprint activation while preserving downstream utility. Compared with existing methods, it uses lower-perplexity triggers, remains undetectable under fingerprint detection attacks, and is relatively robust to incremental fine-tuning and model merging. These results position DNF as a practical, stealthy, and resilient solution for LLM ownership verification and intellectual property protection.
comment: Accepted by ICASSP2026
humancompatible.detect: a Python Toolkit for Detecting Bias in AI Models
There is a strong recent emphasis on trustworthy AI. In particular, international regulations, such as the AI Act, demand that AI practitioners measure data quality on the input and estimate bias on the output of high-risk AI systems. However, there are many challenges involved, including scalability (MMD) and computability (Wasserstein-1) issues of traditional methods for estimating distances on measure spaces. Here, we present humancompatible.detect, a toolkit for bias detection that addresses these challenges. It incorporates two newly developed methods to detect and evaluate bias: maximum subgroup discrepancy (MSD) and subsampled $\ell_\infty$ distances. It has an easy-to-use API documented with multiple examples. humancompatible.detect is licensed under the Apache License, Version 2.0.
comment: 6 pages, 5 figures
Fusion of Quadratic Time-Frequency Analysis and Convolutional Neural Networks to Diagnose Bearing Faults Under Time-Varying Speeds
Diagnosis of bearing faults is paramount to reducing maintenance costs and operational breakdowns. Bearing faults are primary contributors to machine vibrations, and analyzing their signal morphology offers insights into their health status. Unfortunately, existing approaches are optimized for controlled environments, neglecting realistic conditions such as time-varying rotational speeds and the vibration's non-stationary nature. This paper presents a fusion of time-frequency analysis and deep learning techniques to diagnose bearing faults under time-varying speeds and varying noise levels. First, we formulate the bearing fault-induced vibrations and discuss the link between their non-stationarity and the bearing's inherent and operational parameters. We also elucidate quadratic time-frequency distributions and validate their effectiveness in resolving distinctive dynamic patterns associated with different bearing faults. Based on this, we design a time-frequency convolutional neural network (TF-CNN) to diagnose various faults in rolling-element bearings. Our experimental findings undeniably demonstrate the superior performance of TF-CNN in comparison to recently developed techniques. They also assert its versatility in capturing fault-relevant non-stationary features that couple with speed changes and show its exceptional resilience to noise, consistently surpassing competing methods across various signal-to-noise ratios and performance metrics. Altogether, the TF-CNN achieves substantial accuracy improvements up to 15%, in severe noise conditions.
On Evaluation of Unsupervised Feature Selection for Pattern Classification
Unsupervised feature selection aims to identify a compact subset of features that captures the intrinsic structure of data without supervised label. Most existing studies evaluate the performance of methods using the single-label dataset that can be instantiated by selecting a label from multi-label data while maintaining the original features. Because the chosen label can vary arbitrarily depending on the experimental setting, the superiority among compared methods can be changed with regard to which label happens to be selected. Thus, evaluating unsupervised feature selection methods based solely on single-label accuracy is unreasonable for assessing their true discriminative ability. This study revisits this evaluation paradigm by adopting a multi-label classification framework. Experiments on 21 multi-label datasets using several representative methods demonstrate that performance rankings differ markedly from those reported under single-label settings, suggesting the possibility of multi-label evaluation settings for fair and reliable comparison of unsupervised feature selection methods.
comment: EurIPS 2025 Workshop: AI for Tabular Data
Image-to-Video Transfer Learning based on Image-Language Foundation Models: A Comprehensive Survey
Image-Language Foundation Models (ILFMs) have demonstrated remarkable success in vision-language understanding, providing transferable multimodal representations that generalize across diverse downstream image-based tasks. The advancement of video-text research has spurred growing interest in extending image-based models to the video domain. This paradigm, termed as image-to-video transfer learning, effectively mitigates the substantial data and computational demands compared to training video-language models from scratch while achieves comparable or even stronger model performance. This survey provides the first comprehensive review of this emerging field, which begins by summarizing the widely used ILFMs and their capabilities. We then systematically classify existing image-to-video transfer learning techniques into two broad root categories (frozen features and adapted features), along with numerous fine-grained subcategories, based on the paradigm for transferring image understanding capability to video tasks. Building upon the task-specific nature of image-to-video transfer, this survey methodically elaborates these strategies and details their applications across a spectrum of video-text learning tasks, ranging from fine-grained settings (e.g., spatio-temporal video grounding) to coarse-grained ones (e.g., video question answering). We further present a detailed experimental analysis to investigate the efficacy of different image-to-video transfer learning paradigms on a range of downstream video understanding tasks. Finally, we identify prevailing challenges and highlight promising directions for future research. By offering a comprehensive and structured overview, this survey aims to establish a structured roadmap for advancing video-text learning based on existing ILFM, and to inspire future research directions in this rapidly evolving domain. Github repository is available.
comment: Updated version, github repository is available at https://github.com/YuriPreisdent/awesome-image-to-video-transfer
Shared representations in brains and models reveal a two-route cortical organization during scene perception
The brain transforms visual inputs into high-dimensional cortical representations that support diverse cognitive and behavioral goals. Characterizing how this information is organized and routed across the human brain is essential for understanding how we process complex visual scenes. Here, we applied representational similarity analysis to 7T fMRI data collected during natural scene viewing. We quantified representational geometry shared across individuals and compared it to hierarchical features from vision and language neural networks. This analysis revealed two distinct processing routes: a ventromedial pathway specialized for scene layout and environmental context, and a lateral occipitotemporal pathway selective for animate content. Vision models aligned with shared structure in both routes, whereas language models corresponded primarily with the lateral pathway. These findings refine classical visual-stream models by characterizing scene perception as a distributed cortical network with separable representational routes for context and animate content.
comment: for associate code, see https://github.com/memory-formation/convergent-transformations
Dual-Domain Fusion for Semi-Supervised Learning
Labeled time-series data is often expensive and difficult to obtain, making it challenging to train accurate machine learning models for real-world applications such as anomaly detection or fault diagnosis. The scarcity of labeled samples limits model generalization and leaves valuable unlabeled data underutilized. We propose Dual-Domain Fusion (DDF), a new model-agnostic semi-supervised learning (SSL) framework applicable to any time-series signal. DDF performs dual-domain training by combining the one-dimensional time-domain signals with their two-dimensional time-frequency representations and fusing them to maximize learning performance. Its tri-model architecture consists of time-domain, time-frequency, and fusion components, enabling the model to exploit complementary information across domains during training. To support practical deployment, DDF maintains the same inference cost as standard time-domain models by discarding the time-frequency and fusion branches at test time. Experimental results on two public fault diagnosis datasets demonstrate substantial accuracy improvements of 8-46% over widely used SSL methods FixMatch, MixMatch, Mean Teacher, Adversarial Training, and Self-training. These results show that DDF provides an effective and generalizable strategy for semi-supervised time-series classification.
Eye-tracked Virtual Reality: A Comprehensive Survey on Methods and Privacy Challenges
The latest developments in computer hardware, sensor technologies, and artificial intelligence can make virtual reality (VR) and virtual spaces an important part of human everyday life. Eye tracking offers not only a hands-free way of interaction but also the possibility of a deeper understanding of human visual attention and cognitive processes in VR. Despite these possibilities, eye-tracking data also reveals users' privacy-sensitive attributes when combined with the information about the presented stimulus. To address all, this survey first covers major works in eye tracking, VR, and privacy areas between 2012 and 2022. While eye tracking in VR part covers the computational eye tracking pipeline from pupil detection and gaze estimation to offline data analysis, for privacy and security, we focus on eye-based authentication as well as computational methods to preserve the privacy of individuals and their eye-tracking data in VR. Later, we outline three main directions by focusing on privacy. In summary, this survey presents an extensive literature review of the utmost possibilities of eye tracking in VR and their privacy implications.
comment: Accepted for publication in the Proceedings of the IEEE
A Qualitative Model to Reason about Object Rotations (QOR) applied to solve the Cube Comparison Test (CCT)
This paper presents a Qualitative model for Reasoning about Object Rotations (QOR) which is applied to solve the Cube Comparison Test (CCT) by Ekstrom et al. (1976). A conceptual neighborhood graph relating the Rotation movement to the Location change and the Orientation change (CNGRLO) of the features on the cube sides has been built and it produces composition tables to calculate inferences for reasoning about rotations.
Perception, Understanding and Reasoning, A Multimodal Benchmark for Video Fake News Detection
The advent of multi-modal large language models (MLLMs) has greatly advanced research on video fake news detection (VFND) tasks. Existing benchmarks typically focus on the detection accuracy, while failing to provide fine-grained assessments for the entire detection process. To address these limitations, we introduce {POVFNDB (Process-oriented Video Fake News Detection Benchmark)}, a process-oriented benchmark comprising 10 tasks designed to systematically evaluate MLLMs' perception, understanding, and reasoning capabilities in VFND. This benchmark contains \textit{36,240} human-annotated question-answer (QA) in structured or open-ended formats, spanning 15 distinct evaluation dimensions that characterize different aspects of the video fake news detection process. Using POVFNDB, we conduct comprehensive evaluations on both proprietary and open-source MLLMs. Moreover, we establish a strong benchmark baseline by fine-tuning Qwen2.5VL-7B-Instruct on process-oriented chain-of-thought data constructed with our proposed POVFND-CoT framework, achieving state-of-the-art performance on VFND.
FAIRGAMER: Evaluating Social Biases in LLM-Based Video Game NPCs
Large Language Models (LLMs) have increasingly enhanced or replaced traditional Non-Player Characters (NPCs) in video games. However, these LLM-based NPCs inherit underlying social biases (e.g., race or class), posing fairness risks during in-game interactions. To address the limited exploration of this issue, we introduce FairGamer, the first benchmark to evaluate social biases across three interaction patterns: transaction, cooperation, and competition. FairGamer assesses four bias types, including class, race, age, and nationality, across 12 distinct evaluation tasks using a novel metric, FairMCV. Our evaluation of seven frontier LLMs reveals that: (1) models exhibit biased decision-making, with Grok-4-Fast demonstrating the highest bias (average FairMCV = 76.9%); and (2) larger LLMs display more severe social biases, suggesting that increased model capacity inadvertently amplifies these biases. We release FairGamer at https://github.com/Anonymous999-xxx/FairGamer to facilitate future research on NPC fairness.
Machine Learning 129
Graph Neural Networks are Heuristics
We demonstrate that a single training trajectory can transform a graph neural network into an unsupervised heuristic for combinatorial optimization. Focusing on the Travelling Salesman Problem, we show that encoding global structural constraints as an inductive bias enables a non-autoregressive model to generate solutions via direct forward passes, without search, supervision, or sequential decision-making. At inference time, dropout and snapshot ensembling allow a single model to act as an implicit ensemble, reducing optimality gaps through increased solution diversity. Our results establish that graph neural networks do not require supervised training nor explicit search to be effective. Instead, they can internalize global combinatorial structure and function as strong, learned heuristics. This reframes the role of learning in combinatorial optimization: from augmenting classical algorithms to directly instantiating new heuristics.
Quantum Qualifiers for Neural Network Model Selection in Hadronic Physics
As quantum machine-learning architectures mature, a central challenge is no longer their construction, but identifying the regimes in which they offer practical advantages over classical approaches. In this work, we introduce a framework for addressing this question in data-driven hadronic physics problems by developing diagnostic tools - centered on a quantitative quantum qualifier - that guide model selection between classical and quantum deep neural networks based on intrinsic properties of the data. Using controlled classification and regression studies, we show how relative model performance follows systematic trends in complexity, noise, and dimensionality, and how these trends can be distilled into a predictive criterion. We then demonstrate the utility of this approach through an application to Compton form factor extraction from deeply virtual Compton scattering, where the quantum qualifier identifies kinematic regimes favorable to quantum models. Together, these results establish a principled framework for deploying quantum machine-learning tools in precision hadronic physics.
comment: 12 pages, 5 figures. Proceedings for the 26th International Symposium on Spin Physics (SPIN2025), September 21-26, 2025; Qingdao, Shandong, China
Labels or Preferences? Budget-Constrained Learning with Human Judgments over AI-Generated Outputs
The increasing reliance on human preference feedback to judge AI-generated pseudo labels has created a pressing need for principled, budget-conscious data acquisition strategies. We address the crucial question of how to optimally allocate a fixed annotation budget between ground-truth labels and pairwise preferences in AI. Our solution, grounded in semi-parametric inference, casts the budget allocation problem as a monotone missing data framework. Building on this formulation, we introduce Preference-Calibrated Active Learning (PCAL), a novel method that learns the optimal data acquisition strategy and develops a statistically efficient estimator for functionals of the data distribution. Theoretically, we prove the asymptotic optimality of our PCAL estimator and establish a key robustness guarantee that ensures robust performance even with poorly estimated nuisance models. Our flexible framework applies to a general class of problems, by directly optimizing the estimator's variance instead of requiring a closed-form solution. This work provides a principled and statistically efficient approach for budget-constrained learning in modern AI. Simulations and real-data analysis demonstrate the practical benefits and superior performance of our proposed method.
Federated Learning Under Temporal Drift -- Mitigating Catastrophic Forgetting via Experience Replay
Federated Learning struggles under temporal concept drift where client data distributions shift over time. We demonstrate that standard FedAvg suffers catastrophic forgetting under seasonal drift on Fashion-MNIST, with accuracy dropping from 74% to 28%. We propose client-side experience replay, where each client maintains a small buffer of past samples mixed with current data during local training. This simple approach requires no changes to server aggregation. Experiments show that a 50-sample-per-class buffer restores performance to 78-82%, effectively preventing forgetting. Our ablation study reveals a clear memory-accuracy trade-off as buffer size increases.
comment: 8 pages, 5 figures. Course project for Neural Networks & Deep Learning COMSW4776 course at Columbia University
Fairness-informed Pareto Optimization : An Efficient Bilevel Framework
Despite their promise, fair machine learning methods often yield Pareto-inefficient models, in which the performance of certain groups can be improved without degrading that of others. This issue arises frequently in traditional in-processing approaches such as fairness-through-regularization. In contrast, existing Pareto-efficient approaches are biased towards a certain perspective on fairness and fail to adapt to the broad range of fairness metrics studied in the literature. In this paper, we present BADR, a simple framework to recover the optimal Pareto-efficient model for any fairness metric. Our framework recovers its models through a Bilevel Adaptive Rescalarisation procedure. The lower level is a weighted empirical risk minimization task where the weights are a convex combination of the groups, while the upper level optimizes the chosen fairness objective. We equip our framework with two novel large-scale, single-loop algorithms, BADR-GD and BADR-SGD, and establish their convergence guarantees. We release badr, an open-source Python toolbox implementing our framework for a variety of learning tasks and fairness metrics. Finally, we conduct extensive numerical experiments demonstrating the advantages of BADR over existing Pareto-efficient approaches to fairness.
BladeSDF : Unconditional and Conditional Generative Modeling of Representative Blade Geometries Using Signed Distance Functions
Generative AI has emerged as a transformative paradigm in engineering design, enabling automated synthesis and reconstruction of complex 3D geometries while preserving feasibility and performance relevance. This paper introduces a domain-specific implicit generative framework for turbine blade geometry using DeepSDF, addressing critical gaps in performance-aware modeling and manufacturable design generation. The proposed method leverages a continuous signed distance function (SDF) representation to reconstruct and generate smooth, watertight geometries with quantified accuracy. It establishes an interpretable, near-Gaussian latent space that aligns with blade-relevant parameters, such as taper and chord ratios, enabling controlled exploration and unconditional synthesis through interpolation and Gaussian sampling. In addition, a compact neural network maps engineering descriptors, such as maximum directional strains, to latent codes, facilitating the generation of performance-informed geometry. The framework achieves high reconstruction fidelity, with surface distance errors concentrated within $1\%$ of the maximum blade dimension, and demonstrates robust generalization to unseen designs. By integrating constraints, objectives, and performance metrics, this approach advances beyond traditional 2D-guided or unconstrained 3D pipelines, offering a practical and interpretable solution for data-driven turbine blade modeling and concept generation.
MOSLD-Bench: Multilingual Open-Set Learning and Discovery Benchmark for Text Categorization
Open-set learning and discovery (OSLD) is a challenging machine learning task in which samples from new (unknown) classes can appear at test time. It can be seen as a generalization of zero-shot learning, where the new classes are not known a priori, hence involving the active discovery of new classes. While zero-shot learning has been extensively studied in text classification, especially with the emergence of pre-trained language models, open-set learning and discovery is a comparatively new setup for the text domain. To this end, we introduce the first multilingual open-set learning and discovery (MOSLD) benchmark for text categorization by topic, comprising 960K data samples across 12 languages. To construct the benchmark, we (i) rearrange existing datasets and (ii) collect new data samples from the news domain. Moreover, we propose a novel framework for the OSLD task, which integrates multiple stages to continuously discover and learn new classes. We evaluate several language models, including our own, to obtain results that can be used as reference for future work. We release our benchmark at https://github.com/Adriana19Valentina/MOSLD-Bench.
Distribution-Free Confidence Ellipsoids for Ridge Regression with PAC Bounds
Linearly parametrized models are widely used in control and signal processing, with the least-squares (LS) estimate being the archetypical solution. When the input is insufficiently exciting, the LS problem may be unsolvable or numerically unstable. This issue can be resolved through regularization, typically with ridge regression. Although regularized estimators reduce the variance error, it remains important to quantify their estimation uncertainty. A possible approach for linear regression is to construct confidence ellipsoids with the Sign-Perturbed Sums (SPS) ellipsoidal outer approximation (EOA) algorithm. The SPS EOA builds non-asymptotic confidence ellipsoids under the assumption that the noises are independent and symmetric about zero. This paper introduces an extension of the SPS EOA algorithm to ridge regression, and derives probably approximately correct (PAC) upper bounds for the resulting region sizes. Compared with previous analyses, our result explicitly show how the regularization parameter affects the region sizes, and provide tighter bounds under weaker excitation assumptions. Finally, the practical effect of regularization is also demonstrated via simulation experiments.
A Learnable Wavelet Transformer for Long-Short Equity Trading and Risk-Adjusted Return Optimization
Learning profitable intraday trading policies from financial time series is challenging due to heavy noise, non-stationarity, and strong cross-sectional dependence among related assets. We propose \emph{WaveLSFormer}, a learnable wavelet-based long-short Transformer that jointly performs multi-scale decomposition and return-oriented decision learning. Specifically, a learnable wavelet front-end generates low-/high-frequency components via an end-to-end trained filter bank, guided by spectral regularizers that encourage stable and well-separated frequency bands. To fuse multi-scale information, we introduce a low-guided high-frequency injection (LGHI) module that refines low-frequency representations with high-frequency cues while controlling training stability. The model outputs a portfolio of long/short positions that is rescaled to satisfy a fixed risk budget, and is optimized directly with a trading objective and risk-aware regularization. Extensive experiments on five years of hourly data across six industry groups, evaluated over ten random seeds, demonstrate that WaveLSFormer consistently outperforms MLP, LSTM and Transformer backbones, with and without fixed discrete wavelet front-ends. On average in all industries, WaveLSFormer achieves a cumulative overall strategy return of $0.607 \pm 0.045$ and a Sharpe ratio of $2.157 \pm 0.166$, substantially improving both profitability and risk-adjusted returns over the strongest baselines.
Trust Me, I'm an Expert: Decoding and Steering Authority Bias in Large Language Models
Prior research demonstrates that performance of language models on reasoning tasks can be influenced by suggestions, hints and endorsements. However, the influence of endorsement source credibility remains underexplored. We investigate whether language models exhibit systematic bias based on the perceived expertise of the provider of the endorsement. Across 4 datasets spanning mathematical, legal, and medical reasoning, we evaluate 11 models using personas representing four expertise levels per domain. Our results reveal that models are increasingly susceptible to incorrect/misleading endorsements as source expertise increases, with higher-authority sources inducing not only accuracy degradation but also increased confidence in wrong answers. We also show that this authority bias is mechanistically encoded within the model and a model can be steered away from the bias, thereby improving its performance even when an expert gives a misleading endorsement.
TrustEnergy: A Unified Framework for Accurate and Reliable User-level Energy Usage Prediction
Energy usage prediction is important for various real-world applications, including grid management, infrastructure planning, and disaster response. Although a plethora of deep learning approaches have been proposed to perform this task, most of them either overlook the essential spatial correlations across households or fail to scale to individualized prediction, making them less effective for accurate fine-grained user-level prediction. In addition, due to the dynamic and uncertain nature of energy usage caused by various factors such as extreme weather events, quantifying uncertainty for reliable prediction is also significant, but it has not been fully explored in existing work. In this paper, we propose a unified framework called TrustEnergy for accurate and reliable user-level energy usage prediction. There are two key technical components in TrustEnergy, (i) a Hierarchical Spatiotemporal Representation module to efficiently capture both macro and micro energy usage patterns with a novel memory-augmented spatiotemporal graph neural network, and (ii) an innovative Sequential Conformalized Quantile Regression module to dynamically adjust uncertainty bounds to ensure valid prediction intervals over time, without making strong assumptions about the underlying data distribution. We implement and evaluate our TrustEnergy framework by working with an electricity provider in Florida, and the results show our TrustEnergy can achieve a 5.4% increase in prediction accuracy and 5.7% improvement in uncertainty quantification compared to state-of-the-art baselines.
Classifiers in High Dimensional Hilbert Metrics
Classifying points in high dimensional spaces is a fundamental geometric problem in machine learning. In this paper, we address classifying points in the $d$-dimensional Hilbert polygonal metric. The Hilbert metric is a generalization of the Cayley-Klein hyperbolic distance to arbitrary convex bodies and has a diverse range of applications in machine learning and convex geometry. We first present an efficient LP-based algorithm in the metric for the large-margin SVM problem. Our algorithm runs in time polynomial to the number of points, bounding facets, and dimension. This is a significant improvement on previous works, which either provide no theoretical guarantees on running time, or suffer from exponential runtime. We also consider the closely related Funk metric. We also present efficient algorithms for the soft-margin SVM problem and for nearest neighbor-based classification in the Hilbert metric.
Can LLMs Compress (and Decompress)? Evaluating Code Understanding and Execution via Invertibility
LLMs demonstrate strong performance on code benchmarks, yet round-trip code execution reveals limitations in their ability to maintain consistent reasoning across forward and backward execution. We present RoundTripCodeEval (RTCE), a comprehensive benchmark consisting of four distinct code execution reasoning tasks designed to rigorously test round-trip consistency. RTCE provides an execution-free, exact-match evaluation of bijection fidelity, assessing whether models preserve a consistent one-to-one mapping between encoding and decoding operations across various algorithms and directions. We systematically evaluate state-of-the-art Code-LLMs using zero-shot prompting, supervised fine-tuning on execution traces, and self-reflection mechanisms. Each yields modest improvements, but none closes the gap, indicating that current LLMs struggle with true round-trip consistency, which demonstrates that they lack the internal coherence required for trustworthy code reasoning. RTCE surfaces several new and previously unmeasured insights that are not captured by existing I/O-prediction, execution-reasoning, or round-trip natural-language benchmarks. We will release the code and the dataset upon acceptance.
comment: 32 pages (preprint)
Confidence over Time: Confidence Calibration with Temporal Logic for Large Language Model Reasoning
Large Language Models (LLMs) increasingly rely on long-form, multi-step reasoning to solve complex tasks such as mathematical problem solving and scientific question answering. Despite strong performance, existing confidence estimation methods typically reduce an entire reasoning process to a single scalar score, ignoring how confidence evolves throughout the generation. As a result, these methods are often sensitive to superficial factors such as response length or verbosity, and struggle to distinguish correct reasoning from confidently stated errors. We propose to characterize the stepwise confidence signal using Signal Temporal Logic (STL). Using a discriminative STL mining procedure, we discover temporal formulas that distinguish confidence signals of correct and incorrect responses. Our analysis found that the STL patterns generalize across tasks, and numeric parameters exhibit sensitivity to individual questions. Based on these insights, we develop a confidence estimation approach that informs STL blocks with parameter hypernetworks. Experiments on multiple reasoning tasks show our confidence scores are more calibrated than the baselines.
Recurrent Confidence Chain: Temporal-Aware Uncertainty Quantification in Large Language Models
As reasoning modules, such as the chain-of-thought mechanism, are applied to large language models, they achieve strong performance on various tasks such as answering common-sense questions and solving math problems. The main challenge now is to assess the uncertainty of answers, which can help prevent misleading or serious hallucinations for users. Although current methods analyze long reasoning sequences by filtering unrelated tokens and examining potential connections between nearby tokens or sentences, the temporal spread of confidence is often overlooked. This oversight can lead to inflated overall confidence, even when earlier steps exhibit very low confidence. To address this issue, we propose a novel method that incorporates inter-step attention to analyze semantic correlations across steps. For handling long-horizon responses, we introduce a hidden confidence mechanism to retain historical confidence information, which is then combined with stepwise confidence to produce a more accurate overall estimate. We evaluate our method on the GAOKAO math benchmark and the CLadder causal reasoning dataset using mainstream open-source large language models. Our approach is shown to outperform state-of-the-art methods by achieving a superior balance between predictive quality and calibration, demonstrated by strong performance on both Negative Log-Likelihood and Expected Calibration Error.
CausationEntropy: Pythonic Optimal Causation Entropy
Optimal Causation Entropy (oCSE) is a robust causal network modeling technique that reveals causal networks from dynamical systems and coupled oscillators, distinguishing direct from indirect paths. CausationEntropy is a Python package that implements oCSE and several of its significant optimizations and methodological extensions. In this paper, we introduce the version 1.1 release of CausationEntropy, which includes new synthetic data generators, plotting tools, and several advanced information-theoretical causal network discovery algorithms with criteria for estimating Gaussian, k-nearest neighbors (kNN), geometric k-nearest neighbors (geometric-kNN), kernel density (KDE) and Poisson entropic estimators. The package is easy to install from the PyPi software repository, is thoroughly documented, supplemented with extensive code examples, and is modularly structured to support future additions. The entire codebase is released under the MIT license and is available on GitHub and through PyPi Repository. We expect this package to serve as a benchmark tool for causal discovery in complex dynamical systems.
Improving Geopolitical Forecasts with Bayesian Networks
This study explores how Bayesian networks (BNs) can improve forecast accuracy compared to logistic regression and recalibration and aggregation methods, using data from the Good Judgment Project. Regularized logistic regression models and a baseline recalibrated aggregate were compared to two types of BNs: structure-learned BNs with arcs between predictors, and naive BNs. Four predictor variables were examined: absolute difference from the aggregate, forecast value, days prior to question close, and mean standardized Brier score. Results indicated the recalibrated aggregate achieved the highest accuracy (AUC = 0.985), followed by both types of BNs, then the logistic regression models. Performance of the BNs was likely harmed by reduced information from the discretization process and violation of the assumption of linearity likely harmed the logistic regression models. Future research should explore hybrid approaches combining BNs with logistic regression, examine additional predictor variables, and account for hierarchical data dependencies.
comment: 34 pages, 3 figures
Sockpuppetting: Jailbreaking LLMs Without Optimization Through Output Prefix Injection
As open-weight large language models (LLMs) increase in capabilities, safeguarding them against malicious prompts and understanding possible attack vectors becomes ever more important. While automated jailbreaking methods like GCG [Zou et al., 2023] remain effective, they often require substantial computational resources and specific expertise. We introduce "sockpuppetting'', a simple method for jailbreaking open-weight LLMs by inserting an acceptance sequence (e.g., "Sure, here is how to...'') at the start of a model's output and allowing it to complete the response. Requiring only a single line of code and no optimization, sockpuppetting achieves up to 80% higher attack success rate (ASR) than GCG on Qwen3-8B in per-prompt comparisons. We also explore a hybrid approach that optimizes the adversarial suffix within the assistant message block rather than the user prompt, increasing ASR by 64% over GCG on Llama-3.1-8B in a prompt-agnostic setting. The results establish sockpuppetting as an effective low-cost attack accessible to unsophisticated adversaries, highlighting the need for defences against output-prefix injection in open-weight models.
The Geometry of Thought: How Scale Restructures Reasoning In Large Language Models
Scale does not uniformly improve reasoning - it restructures it. Analyzing 25,000+ chain-of-thought trajectories across four domains (Law, Science, Code, Math) and two scales (8B, 70B parameters), we discover that neural scaling laws trigger domain-specific phase transitions rather than uniform capability gains. Legal reasoning undergoes Crystallization: 45% collapse in representational dimensionality (d95: 501 -> 274), 31% increase in trajectory alignment, and 10x manifold untangling. Scientific and mathematical reasoning remain Liquid - geometrically invariant despite 9x parameter increase. Code reasoning forms a discrete Lattice of strategic modes (silhouette: 0.13 -> 0.42). This geometry predicts learnability. We introduce Neural Reasoning Operators - learned mappings from initial to terminal hidden states. In crystalline legal reasoning, our operator achieves 63.6% accuracy on held-out tasks via probe decoding, predicting reasoning endpoints without traversing intermediate states. We further identify a universal oscillatory signature (coherence ~ -0.4) invariant across domains and scales, suggesting attention and feedforward layers drive reasoning through opposing dynamics. These findings establish that the cost of thought is determined not by task difficulty but by manifold geometry - offering a blueprint for inference acceleration where topology permits.
comment: 34 pages, 10 figures
On the Relation of State Space Models and Hidden Markov Models
State Space Models (SSMs) and Hidden Markov Models (HMMs) are foundational frameworks for modeling sequential data with latent variables and are widely used in signal processing, control theory, and machine learning. Despite their shared temporal structure, they differ fundamentally in the nature of their latent states, probabilistic assumptions, inference procedures, and training paradigms. Recently, deterministic state space models have re-emerged in natural language processing through architectures such as S4 and Mamba, raising new questions about the relationship between classical probabilistic SSMs, HMMs, and modern neural sequence models. In this paper, we present a unified and systematic comparison of HMMs, linear Gaussian state space models, Kalman filtering, and contemporary NLP state space models. We analyze their formulations through the lens of probabilistic graphical models, examine their inference algorithms -- including forward-backward inference and Kalman filtering -- and contrast their learning procedures via Expectation-Maximization and gradient-based optimization. By highlighting both structural similarities and semantic differences, we clarify when these models are equivalent, when they fundamentally diverge, and how modern NLP SSMs relate to classical probabilistic models. Our analysis bridges perspectives from control theory, probabilistic modeling, and modern deep learning.
Beyond Mapping : Domain-Invariant Representations via Spectral Embedding of Optimal Transport Plans
Distributional shifts between training and inference time data remain a central challenge in machine learning, often leading to poor performance. It motivated the study of principled approaches for domain alignment, such as optimal transport based unsupervised domain adaptation, that relies on approximating Monge map using transport plans, which is sensitive to the transport problem regularization strategy and hyperparameters, and might yield biased domains alignment. In this work, we propose to interpret smoothed transport plans as adjacency matrices of bipartite graphs connecting source to target domain and derive domain-invariant samples' representations through spectral embedding. We evaluate our approach on acoustic adaptation benchmarks for music genre recognition, music-speech discrimination, as well as electrical cable defect detection and classification tasks using time domain reflection in different diagnosis settings, achieving overall strong performances.
comment: 5 pages, 2 figures
MultiST: A Cross-Attention-Based Multimodal Model for Spatial Transcriptomic
Spatial transcriptomics (ST) enables transcriptome-wide profiling while preserving the spatial context of tissues, offering unprecedented opportunities to study tissue organization and cell-cell interactions in situ. Despite recent advances, existing methods often lack effective integration of histological morphology with molecular profiles, relying on shallow fusion strategies or omitting tissue images altogether, which limits their ability to resolve ambiguous spatial domain boundaries. To address this challenge, we propose MultiST, a unified multimodal framework that jointly models spatial topology, gene expression, and tissue morphology through cross-attention-based fusion. MultiST employs graph-based gene encoders with adversarial alignment to learn robust spatial representations, while integrating color-normalized histological features to capture molecular-morphological dependencies and refine domain boundaries. We evaluated the proposed method on 13 diverse ST datasets spanning two organs, including human brain cortex and breast cancer tissue. MultiST yields spatial domains with clearer and more coherent boundaries than existing methods, leading to more stable pseudotime trajectories and more biologically interpretable cell-cell interaction patterns. The MultiST framework and source code are available at https://github.com/LabJunBMI/MultiST.git.
Paid Voices vs. Public Feeds: Interpretable Cross-Platform Theme Modeling of Climate Discourse
Climate discourse online plays a crucial role in shaping public understanding of climate change and influencing political and policy outcomes. However, climate communication unfolds across structurally distinct platforms with fundamentally different incentive structures: paid advertising ecosystems incentivize targeted, strategic persuasion, while public social media platforms host largely organic, user-driven discourse. Existing computational studies typically analyze these environments in isolation, limiting our ability to distinguish institutional messaging from public expression. In this work, we present a comparative analysis of climate discourse across paid advertisements on Meta (previously known as Facebook) and public posts on Bluesky from July 2024 to September 2025. We introduce an interpretable, end-to-end thematic discovery and assignment framework that clusters texts by semantic similarity and leverages large language models (LLMs) to generate concise, human-interpretable theme labels. We evaluate the quality of the induced themes against traditional topic modeling baselines using both human judgments and an LLM-based evaluator, and further validate their semantic coherence through downstream stance prediction and theme-guided retrieval tasks. Applying the resulting themes, we characterize systematic differences between paid climate messaging and public climate discourse and examine how thematic prevalence shifts around major political events. Our findings show that platform-level incentives are reflected in the thematic structure, stance alignment, and temporal responsiveness of climate narratives. While our empirical analysis focuses on climate communication, the proposed framework is designed to support comparative narrative analysis across heterogeneous communication environments.
Scaling laws for amplitude surrogates
Scaling laws describing the dependence of neural network performance on the amount of training data, the spent compute, and the network size have emerged across a huge variety of machine learning task and datasets. In this work, we systematically investigate these scaling laws in the context of amplitude surrogates for particle physics. We show that the scaling coefficients are connected to the number of external particles of the process. Our results demonstrate that scaling laws are a useful tool to achieve desired precision targets.
comment: 45 pages, 20 figures
Verifying Local Robustness of Pruned Safety-Critical Networks
Formal verification of Deep Neural Networks (DNNs) is essential for safety-critical applications, ranging from surgical robotics to NASA JPL autonomous systems. However, the computational cost of verifying large-scale models remains a significant barrier to adoption. This paper investigates the impact of pruning on formal local robustness certificates with different ratios. Using the state-of-the-art $α,β$-CROWN verifier, we evaluate ResNet4 models across varying pruning ratios on MNIST and, more importantly, on the NASA JPL Mars Frost Identification datasets. Our findings demonstrate a non-linear relationship: light pruning (40%) in MNIST and heavy pruning (70%-90%) in JPL improve verifiability, allowing models to outperform unpruned baselines in proven $L_\infty$ robustness properties. This suggests that reduced connectivity simplifies the search space for formal solvers and that the optimal pruning ratio varies significantly between datasets. This research highlights the complex nature of model compression, offering critical insights into selecting the optimal pruning ratio for deploying efficient, yet formally verified, DNNs in high-stakes environments where reliability is non-negotiable.
CooperBench: Why Coding Agents Cannot be Your Teammates Yet
Resolving team conflicts requires not only task-specific competence, but also social intelligence to find common ground and build consensus. As AI agents increasingly collaborate on complex work, they must develop coordination capabilities to function as effective teammates. Yet we hypothesize that current agents lack these capabilities. To test this, we introduce CooperBench, a benchmark of over 600 collaborative coding tasks across 12 libraries in 4 programming languages. Each task assigns two agents different features that can be implemented independently but may conflict without proper coordination. Tasks are grounded in real open-source repositories with expert-written tests. Evaluating state-of-the-art coding agents, we observe the curse of coordination: agents achieve on average 30% lower success rates when working together compared to performing both tasks individually. This contrasts sharply with human teams, where adding teammates typically improves productivity. Our analysis reveals three key issues: (1) communication channels become jammed with vague, ill-timed, and inaccurate messages; (2) even with effective communication, agents deviate from their commitments; and (3) agents often hold incorrect expectations about others' plans and communication. Through large-scale simulation, we also observe rare but interesting emergent coordination behavior including role division, resource division, and negotiation. Our research presents a novel benchmark for collaborative coding and calls for a shift from pursuing individual agent capability to developing social intelligence.
comment: https://cooperbench.com
The Tag is the Signal: URL-Agnostic Credibility Scoring for Messages on Telegram
Telegram has become one of the leading platforms for disseminating misinformational messages. However, many existing pipelines still classify each message's credibility based on the reputation of its associated domain names or its lexical features. Such methods work well on traditional long-form news articles published by well-known sources, but high-risk posts on Telegram are short and URL-sparse, leading to failures for link-based and standard TF-IDF models. To this end, we propose the TAG2CRED pipeline, a method designed for such short, convoluted messages. Our model will directly score each post based on the tags assigned to the text. We designed a concise label system that covers the dimensions of theme, claim type, call to action, and evidence. The fine-tuned large language model (LLM) assigns tags to messages and then maps these tags to calibrated risk scores in the [0,1] interval through L2-regularized logistic regression. We evaluated 87,936 Telegram messages associated with Media Bias/Fact Check (MBFC), using URL masking and domain disjoint splits. The results showed that the ROC-AUC of the TAG2CRED model reached 0.871, the macro-F1 value was 0.787, and the Brier score was 0.167, outperforming the baseline TF-IDF (macro-F1 value 0.737, Brier score 0.248); at the same time, the number of features used in this model is much smaller, and the generalization ability on infrequent domains is stronger. The performance of the stacked ensemble model (TF-IDF + TAG2CRED + SBERT) was further improved over the baseline SBERT. ROC-AUC reached 0.901, and the macro-F1 value was 0.813 (Brier score 0.114). This indicates that style labels and lexical features may capture different but complementary dimensions of information risk.
Balancing Classification and Calibration Performance in Decision-Making LLMs via Calibration Aware Reinforcement Learning
Large language models (LLMs) are increasingly deployed in decision-making tasks, where not only accuracy but also reliable confidence estimates are essential. Well-calibrated confidence enables downstream systems to decide when to trust a model and when to defer to fallback mechanisms. In this work, we conduct a systematic study of calibration in two widely used fine-tuning paradigms: supervised fine-tuning (SFT) and reinforcement learning with verifiable rewards (RLVR). We show that while RLVR improves task performance, it produces extremely overconfident models, whereas SFT yields substantially better calibration, even under distribution shift, though with smaller performance gains. Through targeted experiments, we diagnose RLVR's failure, showing that decision tokens act as extraction steps of the decision in reasoning traces and do not carry confidence information, which prevents reinforcement learning from surfacing calibrated alternatives. Based on this insight, we propose a calibration-aware reinforcement learning formulation that directly adjusts decision-token probabilities. Our method preserves RLVR's accuracy level while mitigating overconfidence, reducing ECE scores up to 9 points.
Multi-level Monte Carlo Dropout for Efficient Uncertainty Quantification
We develop a multilevel Monte Carlo (MLMC) framework for uncertainty quantification with Monte Carlo dropout. Treating dropout masks as a source of epistemic randomness, we define a fidelity hierarchy by the number of stochastic forward passes used to estimate predictive moments. We construct coupled coarse--fine estimators by reusing dropout masks across fidelities, yielding telescoping MLMC estimators for both predictive means and predictive variances that remain unbiased for the corresponding dropout-induced quantities while reducing sampling variance at fixed evaluation budget. We derive explicit bias, variance and effective cost expressions, together with sample-allocation rules across levels. Numerical experiments on forward and inverse PINNs--Uzawa benchmarks confirm the predicted variance rates and demonstrate efficiency gains over single-level MC-dropout at matched cost.
comment: 26 pages, 11 figures
Stop Taking Tokenizers for Granted: They Are Core Design Decisions in Large Language Models
Tokenization underlies every large language model, yet it remains an under-theorized and inconsistently designed component. Common subword approaches such as Byte Pair Encoding (BPE) offer scalability but often misalign with linguistic structure, amplify bias, and waste capacity across languages and domains. This paper reframes tokenization as a core modeling decision rather than a preprocessing step. We argue for a context-aware framework that integrates tokenizer and model co-design, guided by linguistic, domain, and deployment considerations. Standardized evaluation and transparent reporting are essential to make tokenization choices accountable and comparable. Treating tokenization as a core design problem, not a technical afterthought, can yield language technologies that are fairer, more efficient, and more adaptable.
comment: Accepted to EACL 2026 (long, main). The first two authors contributed equally
Deep Neural networks for solving high-dimensional parabolic partial differential equations
The numerical solution of high dimensional partial differential equations (PDEs) is severely constrained by the curse of dimensionality (CoD), rendering classical grid--based methods impractical beyond a few dimensions. In recent years, deep neural networks have emerged as a promising mesh free alternative, enabling the approximation of PDE solutions in tens to thousands of dimensions. This review provides a tutorial--oriented introduction to neural--network--based methods for solving high dimensional parabolic PDEs, emphasizing conceptual clarity and methodological connections. We organize the literature around three unifying paradigms: (i) PDE residual--based approaches, including physicsinformed neural networks and their high dimensional variants; (ii) stochastic methods derived from Feynman--Kac and backward stochastic differential equation formulations; and (iii) hybrid derivative--free random difference approaches designed to alleviate the computational cost of derivatives in high dimensions. For each paradigm, we outline the underlying mathematical formulation, algorithmic implementation, and practical strengths and limitations. Representative benchmark problems--including Hamilton--Jacobi--Bellman and Black--Scholes equations in up to 1000 dimensions --illustrate the scalability, effectiveness, and accuracy of the methods. The paper concludes with a discussion of open challenges and future directions for reliable and scalable solvers of high dimensional PDEs.
A Hybrid Protocol for Large-Scale Semantic Dataset Generation in Low-Resource Languages: The Turkish Semantic Relations Corpus
We present a hybrid methodology for generating large-scale semantic relationship datasets in low-resource languages, demonstrated through a comprehensive Turkish semantic relations corpus. Our approach integrates three phases: (1) FastText embeddings with Agglomerative Clustering to identify semantic clusters, (2) Gemini 2.5-Flash for automated semantic relationship classification, and (3) integration with curated dictionary sources. The resulting dataset comprises 843,000 unique Turkish semantic pairs across three relationship types (synonyms, antonyms, co-hyponyms) representing a 10x scale increase over existing resources at minimal cost ($65). We validate the dataset through two downstream tasks: an embedding model achieving 90% top-1 retrieval accuracy and a classification model attaining 90% F1-macro. Our scalable protocol addresses critical data scarcity in Turkish NLP and demonstrates applicability to other low-resource languages. We publicly release the dataset and models.
Beyond Cosine Similarity: Taming Semantic Drift and Antonym Intrusion in a 15-Million Node Turkish Synonym Graph
Neural embeddings have a notorious blind spot: they can't reliably tell synonyms apart from antonyms. Consequently, increasing similarity thresholds often fails to prevent opposites from being grouped together. We've built a large-scale semantic clustering system specifically designed to tackle this problem head on. Our pipeline chews through 15 million lexical items, evaluates a massive 520 million potential relationships, and ultimately generates 2.9 million high-precision semantic clusters. The system makes three primary contributions. First, we introduce a labeled dataset of 843,000 concept pairs spanning synonymy, antonymy, and co-hyponymy, constructed via Gemini 2.5-Flash LLM augmentation and verified using human-curated dictionary resources. Second, we propose a specialized three-way semantic relation discriminator that achieves 90% macro-F1, enabling robust disambiguation beyond raw embedding similarity. Third, we introduce a novel soft-to-hard clustering algorithm that mitigates semantic drift preventing erroneous transitive chains (e.g., hot -> spicy -> pain -> depression) while simultaneously resolving polysemy. Our approach employs a topology-aware two-stage expansion-pruning procedure with topological voting, ensuring that each term is assigned to exactly one semantically coherent cluster. The resulting resource enables high-precision semantic search and retrieval-augmented generation, particularly for morphologically rich and low-resource languages where existing synonym databases remain sparse.
Aligning Agentic World Models via Knowledgeable Experience Learning
Current Large Language Models (LLMs) exhibit a critical modal disconnect: they possess vast semantic knowledge but lack the procedural grounding to respect the immutable laws of the physical world. Consequently, while these agents implicitly function as world models, their simulations often suffer from physical hallucinations-generating plans that are logically sound but physically unexecutable. Existing alignment strategies predominantly rely on resource-intensive training or fine-tuning, which attempt to compress dynamic environmental rules into static model parameters. However, such parametric encapsulation is inherently rigid, struggling to adapt to the open-ended variability of physical dynamics without continuous, costly retraining. To bridge this gap, we introduce WorldMind, a framework that autonomously constructs a symbolic World Knowledge Repository by synthesizing environmental feedback. Specifically, it unifies Process Experience to enforce physical feasibility via prediction errors and Goal Experience to guide task optimality through successful trajectories. Experiments on EB-ALFRED and EB-Habitat demonstrate that WorldMind achieves superior performance compared to baselines with remarkable cross-model and cross-environment transferability.
comment: Ongoing work
Do Instruction-Tuned Models Always Perform Better Than Base Models? Evidence from Math and Domain-Shifted Benchmarks
Instruction finetuning is standard practice for improving LLM performance, yet it remains unclear whether it enhances reasoning or merely induces surface-level pattern matching. We investigate this by evaluating base and instruction-tuned models on standard math benchmarks, structurally perturbed variants, and domain-shifted tasks. Our analysis highlights two key (often overlooked) limitations of instruction tuning. First, the performance advantage is unstable and depends heavily on evaluation settings. In zero-shot CoT settings on GSM8K, base models consistently outperform instruction-tuned variants, with drops as high as 32.67\% (Llama3-70B). Instruction-tuned models only match or exceed this performance when provided with few-shot exemplars, suggesting a reliance on specific prompting patterns rather than intrinsic reasoning. Second, tuning gains are brittle under distribution shift. Our results show that base models surpass instruction-tuned variants on the domain-specific MedCalc benchmark. Additionally, instruction-tuned models show sharp declines on perturbed datasets, indicating sensitivity to prompt structure over robust reasoning.
A Comprehensive Evaluation of LLM Reasoning: From Single-Model to Multi-Agent Paradigms
Large Language Models (LLMs) are increasingly deployed as reasoning systems, where reasoning paradigms - such as Chain-of-Thought (CoT) and multi-agent systems (MAS) - play a critical role, yet their relative effectiveness and cost-accuracy trade-offs remain poorly understood. In this work, we conduct a comprehensive and unified evaluation of reasoning paradigms, spanning direct single-model generation, CoT-augmented single-model reasoning, and representative MAS workflows, characterizing their reasoning performance across a diverse suite of closed-form benchmarks. Beyond overall performance, we probe role-specific capability demands in MAS using targeted role isolation analyses, and analyze cost-accuracy trade-offs to identify which MAS workflows offer a favorable balance between cost and accuracy, and which incur prohibitive overhead for marginal gains. We further introduce MIMeBench, a new open-ended benchmark that targets two foundational yet underexplored semantic capabilities - semantic abstraction and contrastive discrimination - thereby providing an alternative evaluation axis beyond closed-form accuracy and enabling fine-grained assessment of semantic competence that is difficult to capture with existing benchmarks. Our results show that increased structural complexity does not consistently lead to improved reasoning performance, with its benefits being highly dependent on the properties and suitability of the reasoning paradigm itself. The codes are released at https://gitcode.com/HIT1920/OpenLLMBench.
KOCO-BENCH: Can Large Language Models Leverage Domain Knowledge in Software Development?
Large language models (LLMs) excel at general programming but struggle with domain-specific software development, necessitating domain specialization methods for LLMs to learn and utilize domain knowledge and data. However, existing domain-specific code benchmarks cannot evaluate the effectiveness of domain specialization methods, which focus on assessing what knowledge LLMs possess rather than how they acquire and apply new knowledge, lacking explicit knowledge corpora for developing domain specialization methods. To this end, we present KOCO-BENCH, a novel benchmark designed for evaluating domain specialization methods in real-world software development. KOCO-BENCH contains 6 emerging domains with 11 software frameworks and 25 projects, featuring curated knowledge corpora alongside multi-granularity evaluation tasks including domain code generation (from function-level to project-level with rigorous test suites) and domain knowledge understanding (via multiple-choice Q&A). Unlike previous benchmarks that only provide test sets for direct evaluation, KOCO-BENCH requires acquiring and applying diverse domain knowledge (APIs, rules, constraints, etc.) from knowledge corpora to solve evaluation tasks. Our evaluations reveal that KOCO-BENCH poses significant challenges to state-of-the-art LLMs. Even with domain specialization methods (e.g., SFT, RAG, kNN-LM) applied, improvements remain marginal. Best-performing coding agent, Claude Code, achieves only 34.2%, highlighting the urgent need for more effective domain specialization methods. We release KOCO-BENCH, evaluation code, and baselines to advance further research at https://github.com/jiangxxxue/KOCO-bench.
RubRIX: Rubric-Driven Risk Mitigation in Caregiver-AI Interactions
Caregivers seeking AI-mediated support express complex needs -- information-seeking, emotional validation, and distress cues -- that warrant careful evaluation of response safety and appropriateness. Existing AI evaluation frameworks, primarily focused on general risks (toxicity, hallucinations, policy violations, etc), may not adequately capture the nuanced risks of LLM-responses in caregiving-contexts. We introduce RubRIX (Rubric-based Risk Index), a theory-driven, clinician-validated framework for evaluating risks in LLM caregiving responses. Grounded in the Elements of an Ethic of Care, RubRIX operationalizes five empirically-derived risk dimensions: Inattention, Bias & Stigma, Information Inaccuracy, Uncritical Affirmation, and Epistemic Arrogance. We evaluate six state-of-the-art LLMs on over 20,000 caregiver queries from Reddit and ALZConnected. Rubric-guided refinement consistently reduced risk-components by 45-98% after one iteration across models. This work contributes a methodological approach for developing domain-sensitive, user-centered evaluation frameworks for high-burden contexts. Our findings highlight the importance of domain-sensitive, interactional risk evaluation for the responsible deployment of LLMs in caregiving support contexts. We release benchmark datasets to enable future research on contextual risk evaluation in AI-mediated support.
Diffusion-Driven Synthetic Tabular Data Generation for Enhanced DoS/DDoS Attack Classification
Class imbalance refers to a situation where certain classes in a dataset have significantly fewer samples than oth- ers, leading to biased model performance. Class imbalance in network intrusion detection using Tabular Denoising Diffusion Probability Models (TabDDPM) for data augmentation is ad- dressed in this paper. Our approach synthesizes high-fidelity minority-class samples from the CIC-IDS2017 dataset through iterative denoising processes. For the minority classes that have smaller samples, synthetic samples were generated and merged with the original dataset. The augmented training data enables an ANN classifier to achieve near-perfect recall on previously underrepresented attack classes. These results establish diffusion models as an effective solution for tabular data imbalance in security domains, with potential applications in fraud detection and medical diagnostics.
comment: 7 pages, 8 figures, 2025 International Conference on Signal Processing, Computation, Electronics, Power and Telecommunication (IConSCEPT), National Institute of Technology, Puducherry, India
Empirical Risk Minimization with $f$-Divergence Regularization
In this paper, the solution to the empirical risk minimization problem with $f$-divergence regularization (ERM-$f$DR) is presented and conditions under which the solution also serves as the solution to the minimization of the expected empirical risk subject to an $f$-divergence constraint are established. The proposed approach extends applicability to a broader class of $f$-divergences than previously reported and yields theoretical results that recover previously known results. Additionally, the difference between the expected empirical risk of the ERM-$f$DR solution and that of its reference measure is characterized, providing insights into previously studied cases of $f$-divergences. A central contribution is the introduction of the normalization function, a mathematical object that is critical in both the dual formulation and practical computation of the ERM-$f$DR solution. This work presents an implicit characterization of the normalization function as a nonlinear ordinary differential equation (ODE), establishes its key properties, and subsequently leverages them to construct a numerical algorithm for approximating the normalization factor under mild assumptions. Further analysis demonstrates structural equivalences between ERM-$f$DR problems with different $f$-divergences via transformations of the empirical risk. Finally, the proposed algorithm is used to compute the training and test risks of ERM-$f$DR solutions under different $f$-divergence regularizers. This numerical example highlights the practical implications of choosing different functions $f$ in ERM-$f$DR problems.
comment: Submitted to IEEE Transactions on Information Theory. arXiv admin note: substantial text overlap with arXiv:2502.14544, arXiv:2508.03314
LAViG-FLOW: Latent Autoregressive Video Generation for Fluid Flow Simulations
Modeling and forecasting subsurface multiphase fluid flow fields underpin applications ranging from geological CO2 sequestration (GCS) operations to geothermal production. This is essential for ensuring both operational performance and long-term safety. While high fidelity multiphase simulators are widely used for this purpose, they become prohibitively expensive once many forward runs are required for inversion purposes and quantify uncertainty. To tackle this challenge we propose LAViG-FLOW, a latent autoregressive video generation diffusion framework that explicitly learns the coupled evolution of saturation and pressure fields. Each state variable is compressed by a dedicated 2D autoencoder, and a Video Diffusion Transformer (VDiT) models their coupled distribution across time. We first train the model on a given time horizon to learn their coupled relationship and then fine-tune it autoregressively so it can extrapolate beyond the observed time window. Evaluated on an open-source CO2 sequestration dataset, LAViG-FLOW generates saturation and pressure fields that stay consistent across time while running orders of magnitude faster than traditional numerical solvers.
From 100,000+ images to winning the first brain MRI foundation model challenges: Sharing lessons and models
Developing Foundation Models for medical image analysis is essential to overcome the unique challenges of radiological tasks. The first challenges of this kind for 3D brain MRI, SSL3D and FOMO25, were held at MICCAI 2025. Our solution ranked first in tracks of both contests. It relies on a U-Net CNN architecture combined with strategies leveraging anatomical priors and neuroimaging domain knowledge. Notably, our models trained 1-2 orders of magnitude faster and were 10 times smaller than competing transformer-based approaches. Models are available here: https://github.com/jbanusco/BrainFM4Challenges.
comment: Work presented at the SSL3D Challenge (1st place, ResEnc-L track) and FOMO Challenge (1st place, Methods track) on Brain MRI Foundation Models at MICCAI 2025
NeuroShield: A Neuro-Symbolic Framework for Adversarial Robustness
Adversarial vulnerability and lack of interpretability are critical limitations of deep neural networks, especially in safety-sensitive settings such as autonomous driving. We introduce \DesignII, a neuro-symbolic framework that integrates symbolic rule supervision into neural networks to enhance both adversarial robustness and explainability. Domain knowledge is encoded as logical constraints over appearance attributes such as shape and color, and enforced through semantic and symbolic logic losses applied during training. Using the GTSRB dataset, we evaluate robustness against FGSM and PGD attacks at a standard $\ell_\infty$ perturbation budget of $\varepsilon = 8/255$. Relative to clean training, standard adversarial training provides modest improvements in robustness ($\sim$10 percentage points). Conversely, our FGSM-Neuro-Symbolic and PGD-Neuro-Symbolic models achieve substantially larger gains, improving adversarial accuracy by 18.1\% and 17.35\% over their corresponding adversarial-training baselines, representing roughly a three-fold larger robustness gain than standard adversarial training provides when both are measured relative to the same clean-training baseline, without reducing clean-sample accuracy. Compared to transformer-based defenses such as LNL-MoEx, which require heavy architectures and extensive data augmentation, our PGD-Neuro-Symbolic variant attains comparable or superior robustness using a ResNet18 backbone trained for 10 epochs. These results show that symbolic reasoning offers an effective path to robust and interpretable AI.
Training instability in deep learning follows low-dimensional dynamical principles
Deep learning systems achieve remarkable empirical performance, yet the stability of the training process itself remains poorly understood. Training unfolds as a high-dimensional dynamical system in which small perturbations to optimization, data, parameters, or learning signals can induce abrupt and irreversible collapse, undermining reproducibility and scalability. We propose a unified dynamical perspective that characterizes training stability as an intrinsic property of learning systems, organized along four interacting dimensions: optimization, environmental/data, parametric, and learning-signal stability. We operationalize this perspective through controlled perturbation auditing of training trajectories, probing how learning dynamics respond to structured disturbances without modifying learning algorithms. Across reinforcement learning and large language model training, we identify three recurring regularities: high final performance is frequently decoupled from training stability; controlled stochasticity consistently buffers learning dynamics across paradigms; and deviations in low-dimensional latent meta-states systematically precede observable performance collapse. Together, these findings establish training stability as a measurable and comparable dynamical property of learning systems, providing a descriptive foundation for studying learning dynamics beyond final performance outcomes.
Probe and Skip: Self-Predictive Token Skipping for Efficient Long-Context LLM Inference
Long-context inference enhances the reasoning capability of Large Language Models (LLMs) while incurring significant computational overhead. Token-oriented methods, such as pruning and skipping, have shown promise in reducing inference latency, but still suffer from inherently limited acceleration potential, outdated proxy signals, and redundancy interference, thus yielding suboptimal speed-accuracy trade-offs. To address these challenges, we propose SPTS (Self-Predictive Token Skipping), a training-free framework for efficient long-context LLM inference. Specifically, motivated by the thought of probing the influence of targeted skipping layers, we design two component-specific strategies for selective token skipping: Partial Attention Probing (PAP) for multi-head attention, which selects informative tokens by performing partial forward attention computation, and Low-rank Transformation Probing (LTP) for feed forward network, which constructs a low-rank proxy network to predict token transformations. Furthermore, a Multi-Stage Delayed Pruning (MSDP) strategy reallocates the skipping budget and progressively prunes redundant tokens across layers. Extensive experiments demonstrate the effectiveness of our method, achieving up to 2.46$\times$ and 2.29$\times$ speedups for prefilling and end-to-end generation, respectively, while maintaining state-of-the-art model performance. The source code will be publicly available upon paper acceptance.
SolARED: Solar Active Region Emergence Dataset for Machine Learning Aided Predictions
The development of accurate forecasts of solar eruptive activity has become increasingly important for preventing potential impacts on space technologies and exploration. Therefore, it is crucial to detect Active Regions (ARs) before they start forming on the solar surface. This will enable the development of early-warning capabilities for upcoming space weather disturbances. For this reason, we prepared the Solar Active Region Emergence Dataset (SolARED). The dataset is derived from full-disk maps of the Doppler velocity, magnetic field, and continuum intensity, obtained by the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO). SolARED includes time series of remapped, tracked, and binned data that characterize the evolution of acoustic power of solar oscillations, unsigned magnetic flux, and continuum intensity for 50 large ARs before, during, and after their emergence on the solar surface, as well as surrounding areas observed on the solar disc between 2010 and 2023. The resulting ML-ready SolARED dataset is designed to support enhancements of predictive capabilities, enabling the development of operational forecasts for the emergence of active regions. The SolARED dataset is available at https://sun.njit.edu/sarportal/, through an interactive visualization web application.
comment: 15 pages, 6 figures, submitted to the Springer Nature - Solar Physics Journal
Forecasting Continuum Intensity for Solar Active Region Emergence Prediction using Transformers
Early and accurate prediction of solar active region (AR) emergence is crucial for space weather forecasting. Building on established Long Short-Term Memory (LSTM) based approaches for forecasting the continuum intensity decrease associated with AR emergence, this work expands the modeling with new architectures and targets. We investigate a sliding-window Transformer architecture to forecast continuum intensity evolution up to 12 hours ahead using data from 46 ARs observed by SDO/HMI. We conduct a systematic ablation study to evaluate two key components: (1) the inclusion of a temporal 1D convolutional (Conv1D) front-end and (2) a novel `Early Detection' architecture featuring attention biases and a timing-aware loss function. Our best-performing model, combining the Early Detection architecture without the Conv1D layer, achieved a Root Mean Square Error (RMSE) of 0.1189 (representing a 10.6% improvement over the LSTM baseline) and an average advance warning time of 4.73 hours (timing difference of -4.73h), even under a stricter emergence criterion than previous studies. While the Transformer demonstrates superior aggregate timing and accuracy, we note that this high-sensitivity detection comes with increased variance compared to smoother baseline models. However, this volatility is a necessary trade-off for operational warning systems: the model's ability to detect micro-changes in precursor signals enables significantly earlier detection, outweighing the cost of increased noise. Our results demonstrate that Transformer architectures modified with early detection biases, when used without temporal smoothing layers, provide a high-sensitivity alternative for forecasting AR emergence that prioritizes advance warning over statistical smoothness.
comment: 30 pages, 7 figures, submitted to JGR: Machine Learning and Computation
FastAV: Efficient Token Pruning for Audio-Visual Large Language Model Inference
In this work, we present FastAV, the first token pruning framework tailored for audio-visual large language models (AV-LLMs). While token pruning has been actively explored in standard large language models (LLMs) and vision-language models (LVLMs), its application to AV-LLMs has received little attention, even though multimodal integration substantially increases their token demands. To address this gap, we introduce a pruning strategy that utilizes attention weights to identify tokens emphasized at different stages and estimates their importance. Building on this analysis, FastAV applies a two-stage pruning strategy: (1) global pruning in intermediate layers to remove broadly less influential tokens, and (2) fine pruning in later layers considering the impact on next token generation. Notably, our method does not rely on full attention maps, which makes it fully compatible with efficient attention mechanisms such as FlashAttention. Extensive experiments demonstrate that FastAV reduces FLOPs by more than 40% on two representative AV-LLMs, while preserving or even improving model performance.
Approximate full conformal prediction in RKHS
Full conformal prediction is a framework that implicitly formulates distribution-free confidence prediction regions for a wide range of estimators. However, a classical limitation of the full conformal framework is the computation of the confidence prediction regions, which is usually impossible since it requires training infinitely many estimators (for real-valued prediction for instance). The main purpose of the present work is to describe a generic strategy for designing a tight approximation to the full conformal prediction region that can be efficiently computed. Along with this approximate confidence region, a theoretical quantification of the tightness of this approximation is developed, depending on the smoothness assumptions on the loss and score functions. The new notion of thickness is introduced for quantifying the discrepancy between the approximate confidence region and the full conformal one.
Recursive Meta-Distillation: An Axiomatic Framework for Iterative Knowledge Refinement
Recent work in probability-domain knowledge distillation has established axiomatic frameworks for temperature scaling, multi-teacher aggregation, and bias-variance trade-offs in single-stage settings. However, the mathematical behavior of recursive or multi-generation distillation remains poorly understood, with prior approaches relying primarily on empirical heuristics. In this work, we introduce an axiomatic and operator-theoretic framework for recursive meta-distillation, formalizing iterative knowledge distillation as a sequence of probability-distribution operators with explicit anchoring to base teachers. We define structural axioms for valid meta-teacher construction and prove the existence of non-trivial operator families satisfying these axioms without specifying particular algorithms or loss functions. Under mild realizability and convexity assumptions, we show that anchored recursive distillation induces contraction in KL divergence, yielding geometric convergence to base teacher distributions and a unique, globally attractive fixed point. The contribution is foundational rather than algorithmic: the framework characterizes when recursive distillation is mathematically well-posed and convergent rather than error-accumulating, independent of model architecture, optimization details, or specific operator instantiations. These results provide a theoretical basis for understanding stability, bias-variance behavior, and failure modes in iterative and multi-teacher distillation under capacity constraints.
RM -RF: Reward Model for Run-Free Unit Test Evaluation
We present RM-RF, a lightweight reward model for run-free evaluation of automatically generated unit tests. Instead of repeatedly compiling and executing candidate tests, RM-RF predicts - from source and test code alone - three execution-derived signals: (1) whether the augmented test suite compiles and runs successfully, (2) whether the generated test cases increase code coverage, and (3) whether the generated test cases improve the mutation kill rate. To train and evaluate RM-RF we assemble a multilingual dataset (Java, Python, Go) of focal files, test files, and candidate test additions labeled by an execution-based pipeline, and we release an associated dataset and methodology for comparative evaluation. We tested multiple model families and tuning regimes (zero-shot, full fine-tuning, and PEFT via LoRA), achieving an average F1 of 0.69 across the three targets. Compared to conventional compile-and-run instruments, RM-RF provides substantially lower latency and infrastructure cost while delivering competitive predictive fidelity, enabling fast, scalable feedback for large-scale test generation and RL-based code optimization.
comment: This paper has been accepted for publication at the 33rd IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER 2026)
Adversarial News and Lost Profits: Manipulating Headlines in LLM-Driven Algorithmic Trading
Large Language Models (LLMs) are increasingly adopted in the financial domain. Their exceptional capabilities to analyse textual data make them well-suited for inferring the sentiment of finance-related news. Such feedback can be leveraged by algorithmic trading systems (ATS) to guide buy/sell decisions. However, this practice bears the risk that a threat actor may craft "adversarial news" intended to mislead an LLM. In particular, the news headline may include "malicious" content that remains invisible to human readers but which is still ingested by the LLM. Although prior work has studied textual adversarial examples, their system-wide impact on LLM-supported ATS has not yet been quantified in terms of monetary risk. To address this threat, we consider an adversary with no direct access to an ATS but able to alter stock-related news headlines on a single day. We evaluate two human-imperceptible manipulations in a financial context: Unicode homoglyph substitutions that misroute models during stock-name recognition, and hidden-text clauses that alter the sentiment of the news headline. We implement a realistic ATS in Backtrader that fuses an LSTM-based price forecast with LLM-derived sentiment (FinBERT, FinGPT, FinLLaMA, and six general-purpose LLMs), and quantify monetary impact using portfolio metrics. Experiments on real-world data show that manipulating a one-day attack over 14 months can reliably mislead LLMs and reduce annual returns by up to 17.7 percentage points. To assess real-world feasibility, we analyze popular scraping libraries and trading platforms and survey 27 FinTech practitioners, confirming our hypotheses. We notified trading platform owners of this security issue.
comment: This work has been accepted for publication at the IEEE Conference on Secure and Trustworthy Machine Learning (SaTML). The final version will be available on IEEE Xplore
Polychronous Wave Computing: Timing-Native Address Selection in Spiking Networks
Spike timing offers a combinatorial address space, suggesting that timing-based spiking inference can be executed as lookup and routing rather than as dense multiply--accumulate. Yet most neuromorphic and photonic systems still digitize events into timestamps, bins, or rates and then perform selection in clocked logic. We introduce Polychronous Wave Computing (PWC), a timing-native address-selection primitive that maps relative spike latencies directly to a discrete output route in the wave domain. Spike times are phase-encoded in a rotating frame and processed by a programmable multiport interferometer that evaluates K template correlations in parallel; a driven--dissipative winner-take-all stage then performs a physical argmax, emitting a one-hot output port. We derive the operating envelope imposed by phase wrapping and mutual coherence, and collapse timing jitter, static phase mismatch, and dephasing into a single effective phase-noise budget whose induced winner--runner-up margin predicts boundary-first failures and provides an intensity-only calibration target. Simulations show that nonlinear competition improves routing fidelity compared with noisy linear intensity readout, and that hardware-in-the-loop phase tuning rescues a temporal-order gate from 55.9% to 97.2% accuracy under strong static mismatch. PWC provides a fast routing coprocessor for LUT-style spiking networks and sparse top-1 gates (e.g., mixture-of-experts routing) across polaritonic, photonic, and oscillator platforms.
comment: 23 pages, Supplementary Materials are available at https://www.damtp.cam.ac.uk/user/ngb23/publications/SM_PWC.pdf
METIS: Mentoring Engine for Thoughtful Inquiry & Solutions
Many students lack access to expert research mentorship. We ask whether an AI mentor can move undergraduates from an idea to a paper. We build METIS, a tool-augmented, stage-aware assistant with literature search, curated guidelines, methodology checks, and memory. We evaluate METIS against GPT-5 and Claude Sonnet 4.5 across six writing stages using LLM-as-a-judge pairwise preferences, student-persona rubrics, short multi-turn tutoring, and evidence/compliance checks. On 90 single-turn prompts, LLM judges preferred METIS to Claude Sonnet 4.5 in 71% and to GPT-5 in 54%. Student scores (clarity/actionability/constraint-fit; 90 prompts x 3 judges) are higher across stages. In multi-turn sessions (five scenarios/agent), METIS yields slightly higher final quality than GPT-5. Gains concentrate in document-grounded stages (D-F), consistent with stage-aware routing and groundings failure modes include premature tool routing, shallow grounding, and occasional stage misclassification.
comment: 12 pages, 5 figures, 4 tables
TinyML-Enabled IoT for Sustainable Precision Irrigation
Small-scale farming communities are disproportionately affected by water scarcity, erratic climate patterns, and a lack of access to advanced, affordable agricultural technologies. To address these challenges, this paper presents a novel, edge-first IoT framework that integrates Tiny Machine Learning (TinyML) for intelligent, offline-capable precision irrigation. The proposed four-layer architecture leverages low-cost hardware, an ESP32 microcontroller as an edge inference node, and a Raspberry Pi as a local edge server to enable autonomous decision-making without cloud dependency. The system utilizes capacitive soil moisture, temperature, humidity, pH, and ambient light sensors for environmental monitoring. A rigorous comparative analysis of ensemble models identified gradient boosting as superior, achieving an R^2 score of 0.9973 and a Mean Absolute Percentage Error (MAPE) of 0.99%, outperforming a random forest model (R^2 = 0.9916, MAPE = 1.81%). This optimized model was converted and deployed as a lightweight TinyML inference engine on the ESP32 and predicts irrigation needs with exceptional accuracy (MAPE < 1%). Local communication is facilitated by an MQTT-based LAN protocol, ensuring reliable operation in areas with limited or no internet connectivity. Experimental validation in a controlled environment demonstrated a significant reduction in water usage compared to traditional methods, while the system's low-power design and offline functionality confirm its viability for sustainable, scalable deployment in resource-constrained rural settings. This work provides a practical, cost-effective blueprint for bridging the technological divide in agriculture and enhancing water-use efficiency through on-device artificial intelligence.
Analysis of Long Range Dependency Understanding in State Space Models
Although state-space models (SSMs) have demonstrated strong performance on long-sequence benchmarks, most research has emphasized predictive accuracy rather than interpretability. In this work, we present the first systematic kernel interpretability study of the diagonalized state-space model (S4D) trained on a real-world task (vulnerability detection in source code). Through time and frequency domain analysis of the S4D kernel, we show that the long-range modeling capability of S4D varies significantly under different model architectures, affecting model performance. For instance, we show that the depending on the architecture, S4D kernel can behave as low-pass, band-pass or high-pass filter. The insights from our analysis can guide future work in designing better S4D-based models.
SASA: Semantic-Aware Contrastive Learning Framework with Separated Attention for Triple Classification
Knowledge Graphs~(KGs) often suffer from unreliable knowledge, which restricts their utility. Triple Classification~(TC) aims to determine the validity of triples from KGs. Recently, text-based methods learn entity and relation representations from natural language descriptions, significantly improving the generalization capabilities of TC models and setting new benchmarks in performance. However, there are still two critical challenges. First, existing methods often ignore the effective semantic interaction among different KG components. Second, most approaches adopt single binary classification training objective, leading to insufficient semantic representation learning. To address these challenges, we propose \textbf{SASA}, a novel framework designed to enhance TC models via separated attention mechanism and semantic-aware contrastive learning~(CL). Specifically, we first propose separated attention mechanism to encode triples into decoupled contextual representations and then fuse them through a more effective interactive way. Then, we introduce semantic-aware hierarchical CL as auxiliary training objective to guide models in improving their discriminative capabilities and achieving sufficient semantic learning, considering both local level and global level CL. Experimental results across two benchmark datasets demonstrate that SASA significantly outperforms state-of-the-art methods. In terms of accuracy, we advance the state-of-the-art by +5.9\% on FB15k-237 and +3.4\% on YAGO3-10.
comment: in progress
Enhancing Generalization in Sickle Cell Disease Diagnosis through Ensemble Methods and Feature Importance Analysis
This work presents a novel approach for selecting the optimal ensemble-based classification method and features with a primarly focus on achieving generalization, based on the state-of-the-art, to provide diagnostic support for Sickle Cell Disease using peripheral blood smear images of red blood cells. We pre-processed and segmented the microscopic images to ensure the extraction of high-quality features. To ensure the reliability of our proposed system, we conducted an in-depth analysis of interpretability. Leveraging techniques established in the literature, we extracted features from blood cells and employed ensemble machine learning methods to classify their morphology. Furthermore, we have devised a methodology to identify the most critical features for classification, aimed at reducing complexity and training time and enhancing interpretability in opaque models. Lastly, we validated our results using a new dataset, where our model overperformed state-of-the-art models in terms of generalization. The results of classifier ensembled of Random Forest and Extra Trees classifier achieved an harmonic mean of precision and recall (F1-score) of 90.71\% and a Sickle Cell Disease diagnosis support score (SDS-score) of 93.33\%. These results demonstrate notable enhancement from previous ones with Gradient Boosting classifier (F1-score 87.32\% and SDS-score 89.51\%). To foster scientific progress, we have made available the parameters for each model, the implemented code library, and the confusion matrices with the raw data.
PASs-MoE: Mitigating Misaligned Co-drift among Router and Experts via Pathway Activation Subspaces for Continual Learning
Continual instruction tuning (CIT) requires multimodal large language models (MLLMs) to adapt to a stream of tasks without forgetting prior capabilities. A common strategy is to isolate updates by routing inputs to different LoRA experts. However, existing LoRA-based Mixture-of-Experts (MoE) methods often jointly update the router and experts in an indiscriminate way, causing the router's preferences to co-drift with experts' adaptation pathways and gradually deviate from early-stage input-expert specialization. We term this phenomenon Misaligned Co-drift, which blurs expert responsibilities and exacerbates forgetting.To address this, we introduce the pathway activation subspace (PASs), a LoRA-induced subspace that reflects which low-rank pathway directions an input activates in each expert, providing a capability-aligned coordinate system for routing and preservation. Based on PASs, we propose a fixed-capacity PASs-based MoE-LoRA method with two components: PAS-guided Reweighting, which calibrates routing using each expert's pathway activation signals, and PAS-aware Rank Stabilization, which selectively stabilizes rank directions important to previous tasks. Experiments on a CIT benchmark show that our approach consistently outperforms a range of conventional continual learning baselines and MoE-LoRA variants in both accuracy and anti-forgetting without adding parameters. Our code will be released upon acceptance.
HT-GNN: Hyper-Temporal Graph Neural Network for Customer Lifetime Value Prediction in Baidu Ads
Lifetime value (LTV) prediction is crucial for news feed advertising, enabling platforms to optimize bidding and budget allocation for long-term revenue growth. However, it faces two major challenges: (1) demographic-based targeting creates segment-specific LTV distributions with large value variations across user groups; and (2) dynamic marketing strategies generate irregular behavioral sequences where engagement patterns evolve rapidly. We propose a Hyper-Temporal Graph Neural Network (HT-GNN), which jointly models demographic heterogeneity and temporal dynamics through three key components: (i) a hypergraph-supervised module capturing inter-segment relationships; (ii) a transformer-based temporal encoder with adaptive weighting; and (iii) a task-adaptive mixture-of-experts with dynamic prediction towers for multi-horizon LTV forecasting. Experiments on \textit{Baidu Ads} with 15 million users demonstrate that HT-GNN consistently outperforms state-of-the-art methods across all metrics and prediction horizons.
OFA-MAS: One-for-All Multi-Agent System Topology Design based on Mixture-of-Experts Graph Generative Models
Multi-Agent Systems (MAS) offer a powerful paradigm for solving complex problems, yet their performance is critically dependent on the design of their underlying collaboration topology. As MAS become increasingly deployed in web services (e.g., search engines), designing adaptive topologies for diverse cross-domain user queries becomes essential. Current graph learning-based design methodologies often adhere to a "one-for-one" paradigm, where a specialized model is trained for each specific task domain. This approach suffers from poor generalization to unseen domains and fails to leverage shared structural knowledge across different tasks. To address this, we propose OFA-TAD, a one-for-all framework that generates adaptive collaboration graphs for any task described in natural language through a single universal model. Our approach integrates a Task-Aware Graph State Encoder (TAGSE) that filters task-relevant node information via sparse gating, and a Mixture-of-Experts (MoE) architecture that dynamically selects specialized sub-networks to drive node and edge prediction. We employ a three-stage training strategy: unconditional pre-training on canonical topologies for structural priors, large-scale conditional pre-training on LLM-generated datasets for task-topology mappings, and supervised fine-tuning on empirically validated graphs. Experiments across six diverse benchmarks show that OFA-TAD significantly outperforms specialized one-for-one models, generating highly adaptive MAS topologies. Code: https://github.com/Shiy-Li/OFA-MAS.
comment: Accepted by WWW 2026
Beyond Visual Realism: Toward Reliable Financial Time Series Generation
Generative models for financial time series often create data that look realistic and even reproduce stylized facts such as fat tails or volatility clustering. However, these apparent successes break down under trading backtests: models like GANs or WGAN-GP frequently collapse, yielding extreme and unrealistic results that make the synthetic data unusable in practice. We identify the root cause in the neglect of financial asymmetry and rare tail events, which strongly affect market risk but are often overlooked by objectives focusing on distribution matching. To address this, we introduce the Stylized Facts Alignment GAN (SFAG), which converts key stylized facts into differentiable structural constraints and jointly optimizes them with adversarial loss. This multi-constraint design ensures that generated series remain aligned with market dynamics not only in plots but also in backtesting. Experiments on the Shanghai Composite Index (2004--2024) show that while baseline GANs produce unstable and implausible trading outcomes, SFAG generates synthetic data that preserve stylized facts and support robust momentum strategy performance. Our results highlight that structure-preserving objectives are essential to bridge the gap between superficial realism and practical usability in financial generative modeling.
comment: Accepted by ICASSP 2026
PaperGuide: Making Small Language-Model Paper-Reading Agents More Efficient
The accelerating growth of the scientific literature makes it increasingly difficult for researchers to track new advances through manual reading alone. Recent progress in large language models (LLMs) has therefore spurred interest in autonomous agents that can read scientific papers and extract task-relevant information. However, most existing approaches rely either on heavily engineered prompting or on a conventional SFT-RL training pipeline, both of which often lead to excessive and low-yield exploration. Drawing inspiration from cognitive science, we propose PaperCompass, a framework that mitigates these issues by separating high-level planning from fine-grained execution. PaperCompass first drafts an explicit plan that outlines the intended sequence of actions, and then performs detailed reasoning to instantiate each step by selecting the parameters for the corresponding function calls. To train such behavior, we introduce Draft-and-Follow Policy Optimization (DFPO), a tailored RL method that jointly optimizes both the draft plan and the final solution. DFPO can be viewed as a lightweight form of hierarchical reinforcement learning, aimed at narrowing the `knowing-doing' gap in LLMs. We provide a theoretical analysis that establishes DFPO's favorable optimization properties, supporting a stable and reliable training process. Experiments on paper-based question answering (Paper-QA) benchmarks show that PaperCompass improves efficiency over strong baselines without sacrificing performance, achieving results comparable to much larger models.
comment: 35 pages, 9 figures, 7 tables
Early Prediction of Type 2 Diabetes Using Multimodal data and Tabular Transformers
This study introduces a novel approach for early Type 2 Diabetes Mellitus (T2DM) risk prediction using a tabular transformer (TabTrans) architecture to analyze longitudinal patient data. By processing patients` longitudinal health records and bone-related tabular data, our model captures complex, long-range dependencies in disease progression that conventional methods often overlook. We validated our TabTrans model on a retrospective Qatar BioBank (QBB) cohort of 1,382 subjects, comprising 725 men (146 diabetic, 579 healthy) and 657 women (133 diabetic, 524 healthy). The study integrated electronic health records (EHR) with dual-energy X-ray absorptiometry (DXA) data. To address class imbalance, we employed SMOTE and SMOTE-ENN resampling techniques. The proposed model`s performance is evaluated against conventional machine learning (ML) and generative AI models, including Claude 3.5 Sonnet (Anthropic`s constitutional AI), GPT-4 (OpenAI`s generative pre-trained transformer), and Gemini Pro (Google`s multimodal language model). Our TabTrans model demonstrated superior predictive performance, achieving ROC AUC $\geq$ 79.7 % for T2DM prediction compared to both generative AI models and conventional ML approaches. Feature interpretation analysis identified key risk indicators, with visceral adipose tissue (VAT) mass and volume, ward bone mineral density (BMD) and bone mineral content (BMC), T and Z-scores, and L1-L4 scores emerging as the most important predictors associated with diabetes development in Qatari adults. These findings demonstrate the significant potential of TabTrans for analyzing complex tabular healthcare data, providing a powerful tool for proactive T2DM management and personalized clinical interventions in the Qatari population. Index Terms: tabular transformers, multimodal data, DXA data, diabetes, T2DM, feature interpretation, tabular data
comment: 08 pages, 06 figures, accepted for publication in FLLM2025
Architecture-Optimization Co-Design for Physics-Informed Neural Networks Via Attentive Representations and Conflict-Resolved Gradients
Physics-Informed Neural Networks (PINNs) provide a learning-based framework for solving partial differential equations (PDEs) by embedding governing physical laws into neural network training. In practice, however, their performance is often hindered by limited representational capacity and optimization difficulties caused by competing physical constraints and conflicting gradients. In this work, we study PINN training from a unified architecture-optimization perspective. We first propose a layer-wise dynamic attention mechanism to enhance representational flexibility, resulting in the Layer-wise Dynamic Attention PINN (LDA-PINN). We then reformulate PINN training as a multi-task learning problem and introduce a conflict-resolved gradient update strategy to alleviate gradient interference, leading to the Gradient-Conflict-Resolved PINN (GC-PINN). By integrating these two components, we develop the Architecture-Conflict-Resolved PINN (ACR-PINN), which combines attentive representations with conflict-aware optimization while preserving the standard PINN loss formulation. Extensive experiments on benchmark PDEs, including the Burgers, Helmholtz, Klein-Gordon, and lid-driven cavity flow problems, demonstrate that ACR-PINN achieves faster convergence and significantly lower relative $L_2$ and $L_\infty$ errors than standard PINNs. These results highlight the effectiveness of architecture-optimization co-design for improving the robustness and accuracy of PINN-based solvers.
Deterministic Dynamics of Sampling Processes in Score-Based Diffusion Models with Multiplicative Noise Conditioning
Score-based diffusion models generate new samples by learning the score function associated with a diffusion process. While the effectiveness of these models can be theoretically explained using differential equations related to the sampling process, previous work by Song and Ermon (2020) demonstrated that neural networks using multiplicative noise conditioning can still generate satisfactory samples. In this setup, the model is expressed as the product of two functions: one depending on the spatial variable and the other on the noise magnitude. This structure limits the model's ability to represent a more general relationship between the spatial variable and the noise, indicating that it cannot fully learn the correct score. Despite this limitation, the models perform well in practice. In this work, we provide a theoretical explanation for this phenomenon by studying the deterministic dynamics of the associated differential equations, offering insight into how the model operates.
AI-generated data contamination erodes pathological variability and diagnostic reliability
Generative artificial intelligence (AI) is rapidly populating medical records with synthetic content, creating a feedback loop where future models are increasingly at risk of training on uncurated AI-generated data. However, the clinical consequences of this AI-generated data contamination remain unexplored. Here, we show that in the absence of mandatory human verification, this self-referential cycle drives a rapid erosion of pathological variability and diagnostic reliability. By analysing more than 800,000 synthetic data points across clinical text generation, vision-language reporting, and medical image synthesis, we find that models progressively converge toward generic phenotypes regardless of the model architecture. Specifically, rare but critical findings, including pneumothorax and effusions, vanish from the synthetic content generated by AI models, while demographic representations skew heavily toward middle-aged male phenotypes. Crucially, this degradation is masked by false diagnostic confidence; models continue to issue reassuring reports while failing to detect life-threatening pathology, with false reassurance rates tripling to 40%. Blinded physician evaluation confirms that this decoupling of confidence and accuracy renders AI-generated documentation clinically useless after just two generations. We systematically evaluate three mitigation strategies, finding that while synthetic volume scaling fails to prevent collapse, mixing real data with quality-aware filtering effectively preserves diversity. Ultimately, our results suggest that without policy-mandated human oversight, the deployment of generative AI threatens to degrade the very healthcare data ecosystems it relies upon.
comment: *Corresponding author: Dianbo Liu (dianbo@nus.edu.sg)
A Component-Based Survey of Interactions between Large Language Models and Multi-Armed Bandits
Large language models (LLMs) have become powerful and widely used systems for language understanding and generation, while multi-armed bandit (MAB) algorithms provide a principled framework for adaptive decision-making under uncertainty. This survey explores the potential at the intersection of these two fields. As we know, it is the first survey to systematically review the bidirectional interaction between large language models and multi-armed bandits at the component level. We highlight the bidirectional benefits: MAB algorithms address critical LLM challenges, spanning from pre-training to retrieval-augmented generation (RAG) and personalization. Conversely, LLMs enhance MAB systems by redefining core components such as arm definition and environment modeling, thereby improving decision-making in sequential tasks. We analyze existing LLM-enhanced bandit systems and bandit-enhanced LLM systems, providing insights into their design, methodologies, and performance. Key challenges and representative findings are identified to help guide future research. An accompanying GitHub repository that indexes relevant literature is available at https://github.com/bucky1119/Awesome-LLM-Bandit-Interaction.
comment: 27 pages, 6 table
Online Continual Learning for Time Series: a Natural Score-driven Approach
Online continual learning (OCL) methods adapt to changing environments without forgetting past knowledge. Similarly, online time series forecasting (OTSF) is a real-world problem where data evolve in time and success depends on both rapid adaptation and long-term memory. Indeed, time-varying and regime-switching forecasting models have been extensively studied, offering a strong justification for the use of OCL in these settings. Building on recent work that applies OCL to OTSF, this paper aims to strengthen the theoretical and practical connections between time series methods and OCL. First, we reframe neural network optimization as a parameter filtering problem, showing that natural gradient descent is a score-driven method and proving its information-theoretic optimality. Then, we show that using a Student's t likelihood in addition to natural gradient induces a bounded update, which improves robustness to outliers. Finally, we introduce Natural Score-driven Replay (NatSR), which combines our robust optimizer with a replay buffer and a dynamic scale heuristic that improves fast adaptation at regime drifts. Empirical results demonstrate that NatSR achieves stronger forecasting performance than more complex state-of-the-art methods.
An efficient heuristic for geometric analysis of cell deformations
Sickle cell disease causes erythrocytes to become sickle-shaped, affecting their movement in the bloodstream and reducing oxygen delivery. It has a high global prevalence and places a significant burden on healthcare systems, especially in resource-limited regions. Automated classification of sickle cells in blood images is crucial, allowing the specialist to reduce the effort required and avoid errors when quantifying the deformed cells and assessing the severity of a crisis. Recent studies have proposed various erythrocyte representation and classification methods. Since classification depends solely on cell shape, a suitable approach models erythrocytes as closed planar curves in shape space. This approach employs elastic distances between shapes, which are invariant under rotations, translations, scaling, and reparameterizations, ensuring consistent distance measurements regardless of the curves' position, starting point, or traversal speed. While previous methods exploiting shape space distances had achieved high accuracy, we refined the model by considering the geometric characteristics of healthy and sickled erythrocytes. Our method proposes (1) to employ a fixed parameterization based on the major axis of each cell to compute distances and (2) to align each cell with two templates using this parameterization before computing distances. Aligning shapes to templates before distance computation, a concept successfully applied in areas such as molecular dynamics, and using a fixed parameterization, instead of minimizing distances across all possible parameterizations, simplifies calculations. This strategy achieves 96.03\% accuracy rate in both supervised classification and unsupervised clustering. Our method ensures efficient erythrocyte classification, maintaining or improving accuracy over shape space models while significantly reducing computational costs.
Your Privacy Depends on Others: Collusion Vulnerabilities in Individual Differential Privacy
Individual Differential Privacy (iDP) promises users control over their privacy, but this promise can be broken in practice. We reveal a previously overlooked vulnerability in sampling-based iDP mechanisms: while conforming to the iDP guarantees, an individual's privacy risk is not solely governed by their own privacy budget, but critically depends on the privacy choices of all other data contributors. This creates a mismatch between the promise of individual privacy control and the reality of a system where risk is collectively determined. We demonstrate empirically that certain distributions of privacy preferences can unintentionally inflate the privacy risk of individuals, even when their formal guarantees are met. Moreover, this excess risk provides an exploitable attack vector. A central adversary or a set of colluding adversaries can deliberately choose privacy budgets to amplify vulnerabilities of targeted individuals. Most importantly, this attack operates entirely within the guarantees of DP, hiding this excess vulnerability. Our empirical evaluation demonstrates successful attacks against 62% of targeted individuals, substantially increasing their membership inference susceptibility. To mitigate this, we propose $(\varepsilon_i,δ_i,\overlineΔ)$-iDP a privacy contract that uses $Δ$-divergences to provide users with a hard upper bound on their excess vulnerability, while offering flexibility to mechanism design. Our findings expose a fundamental challenge to the current paradigm, demanding a re-evaluation of how iDP systems are designed, audited, communicated, and deployed to make excess risks transparent and controllable.
Dynamic Hand Gesture Recognition for Robot Manipulator Tasks
This paper proposes a novel approach to recognizing dynamic hand gestures facilitating seamless interaction between humans and robots. Here, each robot manipulator task is assigned a specific gesture. There may be several such tasks, hence, several gestures. These gestures may be prone to several dynamic variations. All such variations for different gestures shown to the robot are accurately recognized in real-time using the proposed unsupervised model based on the Gaussian Mixture model. The accuracy during training and real-time testing prove the efficacy of this methodology.
CooperLLM: Cloud-Edge-End Cooperative Federated Fine-tuning for LLMs via ZOO-based Gradient Correction
Large Language Models (LLMs) perform well on many NLP tasks, but fine-tuning them on resource-constrained mobile devices is challenging due to high memory and computation costs, despite growing demands for privacy-preserving personalization. Federated Learning (FL) enables local-data training, yet existing methods either rely on memory-intensive backpropagation or use zeroth-order optimization (ZOO), which avoids backward passes but suffers from slow convergence and degraded accuracy. We propose CooperLLM, a cloud-assisted edge-end cooperative federated fine-tuning framework that combines ZOO on mobile devices with cloud-guided gradient rectification. Mobile clients perform lightweight ZOO updates on private data, while the cloud fine-tunes on auxiliary public data using backpropagation and injects guided perturbations to rectify local updates, improving convergence and accuracy without violating privacy. To address system bottlenecks, CooperLLM introduces pipeline scheduling and adaptive compression to overlap computation and communication and reduce memory usage. Experiments on multiple Transformer models and datasets show that CooperLLM reduces on-device memory by up to $86.4\%$, accelerates convergence by $8.8 \times$, and improves accuracy by up to 10 percentage points over state-of-the-art ZOO-based baselines.
comment: 14 pages, 9 figures, under review
Actionable Interpretability Must Be Defined in Terms of Symmetries
This paper argues that interpretability research in Artificial Intelligence is fundamentally ill-posed as existing definitions of interpretability are not *actionable*: they fail to provide formal principles from which concrete modelling and inferential rules can be derived. We posit that for a definition of interpretability to be actionable, it must be given in terms of *symmetries*. We hypothesise that four symmetries suffice to (i) motivate core interpretability properties, (ii) characterize the class of interpretable models, and (iii) derive a unified formulation of interpretable inference (e.g., alignment, interventions, and counterfactuals) as a form of Bayesian inversion.
Can the Waymo Open Motion Dataset Support Realistic Behavioral Modeling? A Validation Study with Naturalistic Trajectories
The Waymo Open Motion Dataset (WOMD) has become a popular resource for data-driven modeling of autonomous vehicles (AVs) behavior. However, its validity for behavioral analysis remains uncertain due to proprietary post-processing, the absence of error quantification, and the segmentation of trajectories into 20-second clips. This study examines whether WOMD accurately captures the dynamics and interactions observed in real-world AV operations. Leveraging an independently collected naturalistic dataset from Level 4 AV operations in Phoenix, Arizona (PHX), we perform comparative analyses across three representative urban driving scenarios: discharging at signalized intersections, car-following, and lane-changing behaviors. For the discharging analysis, headways are manually extracted from aerial video to ensure negligible measurement error. For the car-following and lane-changing cases, we apply the Simulation-Extrapolation (SIMEX) method to account for empirically estimated error in the PHX data and use Dynamic Time Warping (DTW) distances to quantify behavioral differences. Results across all scenarios consistently show that behavior in PHX falls outside the behavioral envelope of WOMD. Notably, WOMD underrepresents short headways and abrupt decelerations. These findings suggest that behavioral models calibrated solely on WOMD may systematically underestimate the variability, risk, and complexity of naturalistic driving. Caution is therefore warranted when using WOMD for behavior modeling without proper validation against independently collected data.
Objective Evaluation of Prosody and Intelligibility in Speech Synthesis via Conditional Prediction of Discrete Tokens
Objective evaluation of synthesized speech is critical for advancing speech generation systems, yet existing metrics for intelligibility and prosody remain limited in scope and weakly correlated with human perception. Word Error Rate (WER) provides only a coarse text-based measure of intelligibility, while F0-RMSE and related pitch-based metrics offer a narrow, reference-dependent view of prosody. To address these limitations, we propose TTScore, a targeted and reference-free evaluation framework based on conditional prediction of discrete speech tokens. TTScore employs two sequence-to-sequence predictors conditioned on input text: TTScore-int, which measures intelligibility through content tokens, and TTScore-pro, which evaluates prosody through prosody tokens. For each synthesized utterance, the predictors compute the likelihood of the corresponding token sequences, yielding interpretable scores that capture alignment with intended linguistic content and prosodic structure. Experiments on the SOMOS, VoiceMOS, and TTSArena benchmarks demonstrate that TTScore-int and TTScore-pro provide reliable, aspect-specific evaluation and achieve stronger correlations with human judgments of overall quality than existing intelligibility and prosody-focused metrics.
comment: Accepted in IEEE Open Journal of Signal Processing, 2026
WEEP: A Differentiable Nonconvex Sparse Regularizer via Weakly-Convex Envelope
Sparse regularization is fundamental in signal processing and feature extraction but often relies on non-differentiable penalties, conflicting with gradient-based optimizers. We propose WEEP (Weakly-convex Envelope of Piecewise Penalty), a novel differentiable regularizer derived from the weakly-convex envelope framework. WEEP provides tunable, unbiased sparsity and a simple closed-form proximal operator, while maintaining full differentiability and L-smoothness, ensuring compatibility with both gradient-based and proximal algorithms. This resolves the tradeoff between statistical performance and computational tractability. We demonstrate superior performance compared to established convex and non-convex sparse regularizers on challenging compressive sensing and image denoising tasks.
comment: 5 pages, 5 figures, 1 tables. Accepted at ICASSP 2026
Neural timescales from a computational perspective
Neural activity fluctuates over a wide range of timescales within and across brain areas. Experimental observations suggest that diverse neural timescales reflect information in dynamic environments. However, how timescales are defined and measured from brain recordings vary across the literature. Moreover, these observations do not specify the mechanisms underlying timescale variations, nor whether specific timescales are necessary for neural computation and brain function. Here, we synthesize three directions where computational approaches can distill the broad set of empirical observations into quantitative and testable theories: We review (i) how different data analysis methods quantify timescales across distinct behavioral states and recording modalities, (ii) how biophysical models provide mechanistic explanations for the emergence of diverse timescales, and (iii) how task-performing networks and machine learning models uncover the functional relevance of neural timescales. This integrative computational perspective thus complements experimental investigations, providing a holistic view on how neural timescales reflect the relationship between brain structure, dynamics, and behavior.
comment: 21 pages, 5 figures, 3 boxes, 1 table
Amortized In-Context Mixed Effect Transformer Models: A Zero-Shot Approach for Pharmacokinetics
Accurate dose-response forecasting under sparse sampling is central to precision pharmacotherapy. We present the Amortized In-Context Mixed-Effect Transformer (AICMET) model, a transformer-based latent-variable framework that unifies mechanistic compartmental priors with amortized in-context Bayesian inference. AICMET is pre-trained on hundreds of thousands of synthetic pharmacokinetic trajectories with Ornstein-Uhlenbeck priors over the parameters of compartment models, endowing the model with strong inductive biases and enabling zero-shot adaptation to new compounds. At inference time, the decoder conditions on the collective context of previously profiled trial participants, generating calibrated posterior predictions for newly enrolled patients after a few early drug concentration measurements. This capability collapses traditional model-development cycles from weeks to hours while preserving some degree of expert modelling. Experiments across public datasets show that AICMET attains state-of-the-art predictive accuracy and faithfully quantifies inter-patient variability -- outperforming both nonlinear mixed-effects baselines and recent neural ODE variants. Our results highlight the feasibility of transformer-based, population-aware neural architectures as offering a new alternative for bespoke pharmacokinetic modeling pipelines, charting a path toward truly population-aware personalized dosing regimens.
comment: author actually help in data preprocessing, notified later from other author
H-SPLID: HSIC-based Saliency Preserving Latent Information Decomposition NeurIPS 2025
We introduce H-SPLID, a novel algorithm for learning salient feature representations through the explicit decomposition of salient and non-salient features into separate spaces. We show that H-SPLID promotes learning low-dimensional, task-relevant features. We prove that the expected prediction deviation under input perturbations is upper-bounded by the dimension of the salient subspace and the Hilbert-Schmidt Independence Criterion (HSIC) between inputs and representations. This establishes a link between robustness and latent representation compression in terms of the dimensionality and information preserved. Empirical evaluations on image classification tasks show that models trained with H-SPLID primarily rely on salient input components, as indicated by reduced sensitivity to perturbations affecting non-salient features, such as image backgrounds. Our code is available at https://github.com/neu-spiral/H-SPLID.
comment: Accepted at NeurIPS 2025
Sy-FAR: Symmetry-based Fair Adversarial Robustness
Security-critical machine-learning (ML) systems, such as face-recognition systems, are susceptible to adversarial examples, including real-world physically realizable attacks. Various means to boost ML's adversarial robustness have been proposed; however, they typically induce unfair robustness: It is often easier to attack from certain classes or groups than from others. Several techniques have been developed to improve adversarial robustness while seeking perfect fairness between classes. Yet, prior work has focused on settings where security and fairness are less critical. Our insight is that achieving perfect parity in realistic fairness-critical tasks, such as face recognition, is often infeasible -- some classes may be highly similar, leading to more misclassifications between them. Instead, we suggest that seeking symmetry -- i.e., attacks from class $i$ to $j$ would be as successful as from $j$ to $i$ -- is more tractable. Intuitively, symmetry is a desirable because class resemblance is a symmetric relation in most domains. Additionally, as we prove theoretically, symmetry between individuals induces symmetry between any set of sub-groups, in contrast to other fairness notions where group-fairness is often elusive. We develop Sy-FAR, a technique to encourage symmetry while also optimizing adversarial robustness and extensively evaluate it using five datasets, with three model architectures, including against targeted and untargeted realistic attacks. The results show Sy-FAR significantly improves fair adversarial robustness compared to state-of-the-art methods. Moreover, we find that Sy-FAR is faster and more consistent across runs. Notably, Sy-FAR also ameliorates another type of unfairness we discover in this work -- target classes that adversarial examples are likely to be classified into become significantly less vulnerable after inducing symmetry.
comment: Accepted to USENIX Security 2026
Understanding and Steering the Cognitive Behaviors of Reasoning Models at Test-Time
Large Language Models (LLMs) often rely on long chain-of-thought (CoT) reasoning to solve complex tasks. While effective, these trajectories are frequently inefficient, leading to high latency from excessive token generation, or unstable reasoning that alternates between underthinking (shallow, inconsistent steps) and overthinking (repetitive, verbose reasoning). In this work, we study the structure of reasoning trajectories and uncover specialized attention heads that correlate with distinct cognitive behaviors such as verification and backtracking. By lightly intervening on these heads at inference time, we can steer the model away from inefficient modes. Building on this insight, we propose CREST, a training-free method for Cognitive REasoning Steering at Test-time. CREST has two components: (1) an offline calibration step that identifies cognitive heads and derives head-specific steering vectors, and (2) an inference-time procedure that rotates hidden representations to suppress components along those vectors. CREST adaptively suppresses unproductive reasoning behaviors, yielding both higher accuracy and lower computational cost. Across diverse reasoning benchmarks and models, CREST improves accuracy by up to 17.5% while reducing token usage by 37.6%, offering a simple and effective pathway to faster, more reliable LLM reasoning.
Optimistic Gradient Learning with Hessian Corrections for High-Dimensional Black-Box Optimization
Black-box algorithms are designed to optimize functions without relying on their underlying analytical structure or gradient information, making them essential when gradients are inaccessible or difficult to compute. Traditional methods for solving black-box optimization (BBO) problems predominantly rely on non-parametric models and struggle to scale to large input spaces. Conversely, parametric methods that model the function with neural estimators and obtain gradient signals via backpropagation may suffer from significant gradient errors. A recent alternative, Explicit Gradient Learning (EGL), which directly learns the gradient using a first-order Taylor approximation, has demonstrated superior performance over both parametric and non-parametric methods. In this work, we propose two novel gradient learning variants to address the robustness challenges posed by high-dimensional, complex, and highly non-linear problems. Optimistic Gradient Learning (OGL) introduces a bias toward lower regions in the function landscape, while Higher-order Gradient Learning (HGL) incorporates second-order Taylor corrections to improve gradient accuracy. We combine these approaches into the unified OHGL algorithm, achieving state-of-the-art (SOTA) performance on the synthetic COCO suite. Additionally, we demonstrate OHGLs applicability to high-dimensional real-world machine learning (ML) tasks such as adversarial training and code generation. Our results highlight OHGLs ability to generate stronger candidates, offering a valuable tool for ML researchers and practitioners tackling high-dimensional, non-linear optimization challenges
comment: We develop a black-box optimization algorithm that learns gradients with neural models and can be applied to solve non-convex high dimensional real-world problems
HKAN: Hierarchical Kolmogorov-Arnold Network without Backpropagation
This paper introduces the Hierarchical Kolmogorov-Arnold Network (HKAN), a novel network architecture that offers a competitive alternative to the recently proposed Kolmogorov-Arnold Network (KAN). Unlike KAN, which relies on backpropagation, HKAN adopts a randomized learning approach, where the parameters of its basis functions are fixed, and linear aggregations are optimized using least-squares regression. HKAN utilizes a hierarchical multi-stacking framework, with each layer refining the predictions from the previous one by solving a series of linear regression problems. This non-iterative training method simplifies computation and eliminates sensitivity to local minima in the loss function. Empirical results show that HKAN delivers comparable, if not superior, accuracy and stability relative to KAN across various regression tasks, while also providing insights into variable importance. The proposed approach seamlessly integrates theoretical insights with practical applications, presenting a robust and efficient alternative for neural network modeling.
comment: 16 pages, 9 figures
ALPCAHUS: Subspace Clustering for Heteroscedastic Data
Principal component analysis (PCA) is a key tool in the field of data dimensionality reduction. Various methods have been proposed to extend PCA to the union of subspace (UoS) setting for clustering data that comes from multiple subspaces like K-Subspaces (KSS). However, some applications involve heterogeneous data that vary in quality due to noise characteristics associated with each data sample. Heteroscedastic methods aim to deal with such mixed data quality. This paper develops a heteroscedastic-based subspace clustering method, named ALPCAHUS, that can estimate the sample-wise noise variances and use this information to improve the estimate of the subspace bases associated with the low-rank structure of the data. This clustering algorithm builds on K-Subspaces (KSS) principles by extending the recently proposed heteroscedastic PCA method, named LR-ALPCAH, for clusters with heteroscedastic noise in the UoS setting. Simulations and real-data experiments show the effectiveness of accounting for data heteroscedasticity compared to existing clustering algorithms. Code available at https://github.com/javiersc1/ALPCAHUS.
comment: Manuscript submitted to IEEE Transactions on Signal Processing (TSP), revised, and pending acceptance
Don't be lazy: CompleteP enables compute-efficient deep transformers NeurIPS 2025
We study compute efficiency of LLM training when using different parameterizations, i.e., rules for adjusting model and optimizer hyperparameters (HPs) as model size changes. Some parameterizations fail to transfer optimal base HPs (such as learning rate) across changes in model depth, requiring practitioners to either re-tune these HPs as they scale up (expensive), or accept sub-optimal training when re-tuning is prohibitive. Even when they achieve HP transfer, we develop theory to show parameterizations may still exist in the lazy learning regime where layers learn only features close to their linearization, preventing effective use of depth and nonlinearity. Finally, we identify and adopt the parameterization we call CompleteP that achieves both depth-wise HP transfer and non-lazy learning in all layers. CompleteP enables a wider range of model width/depth ratios to remain compute-efficient, unlocking shapes better suited for different hardware settings and operational contexts. Moreover, CompleteP enables 12-34% compute efficiency improvements over the prior state-of-the-art. All experiments were run on Cerebras CS-3 systems. A minimal implementation is available at https://github.com/EleutherAI/nanoGPT-mup/tree/completep.
comment: NeurIPS 2025. v4 fixes Table 1 typo to match AdamW eps to Equation 40
Multiperiodic Processes: Ergodic Sources with a Sublinear Entropy
We construct multiperiodic processes -- a simple example of stationary ergodic (but not mixing) processes over natural numbers that enjoy the vanishing entropy rate under a mild condition. Multiperiodic processes are supported on randomly shifted deterministic sequences called multiperiodic sequences, which can be efficiently generated using an algorithm called the Infinite Clock. Under a suitable parameterization, multiperiodic sequences exhibit relative frequencies of particular numbers given by Zipf's law. Exactly in the same setting, the respective multiperiodic processes satisfy an asymptotic power-law growth of block entropy, called Hilberg's law. Hilberg's law is deemed to hold for statistical language models, in particular.
comment: 30 pages; 1 figure
SPHENIC: Topology-Aware Multi-View Clustering for Spatial Transcriptomics
Spatial transcriptomics clustering is pivotal for identifying cell subpopulations by leveraging spatial location information. While recent graph-based methods modeling cell-cell interactions have improved clustering accuracy, they remain limited in two key aspects: (i) reliance on local aggregation in static graphs often fails to capture robust global topological structures (e.g., loops and voids) and is vulnerable to noisy edges; and (ii) dimensionality reduction techniques frequently neglect spatial coherence, causing physically adjacent spots to be erroneously separated in the latent space. To overcome these challenges, we propose SPHENIC, a Spatial Persistent Homology-Enhanced Neighborhood Integrative Clustering method. Specifically, it explicitly incorporates topology-invariant features into the clustering network to ensure robust representation learning against noise. Furthermore, we design a dual-regularized optimization module that imposes spatial constraints alongside distributional optimization, ensuring that the embedding space preserves the physical proximity of cells. Extensive experiments on 11 benchmark datasets demonstrate that SPHENIC outperforms state-of-the-art methods by 4.19%-9.14%, validating its superiority in characterizing complex tissue architectures.
comment: 9 pages, 5 figures, 2 tables
Beyond Knowledge Silos: Task Fingerprinting for Democratization of Medical Imaging AI
The field of medical imaging AI is currently undergoing rapid transformations, with methodical research increasingly translated into clinical practice. Despite these successes, research suffers from knowledge silos, hindering collaboration and progress: Existing knowledge is scattered across publications and many details remain unpublished, while privacy regulations restrict data sharing. In the spirit of democratizing of AI, we propose a framework for secure knowledge transfer in the field of medical image analysis. The key to our approach is dataset "fingerprints", structured representations of feature distributions, that enable quantification of task similarity. We tested our approach across 71 distinct tasks and 12 medical imaging modalities by transferring neural architectures, pretraining, augmentation policies, and multi-task learning. According to comprehensive analyses, our method outperforms traditional methods for identifying relevant knowledge and facilitates collaborative model training. Our framework fosters the democratization of AI in medical imaging and could become a valuable tool for promoting faster scientific advancement.
Discovering equations from data: symbolic regression in dynamical systems
The process of discovering equations from data lies at the heart of physics and in many other areas of research, including mathematical ecology and epidemiology. Recently, machine learning methods known as symbolic regression emerged as a way to automate this task. This study presents an overview of the current literature on symbolic regression, while also comparing the efficiency of five state-of-the-art methods in recovering the governing equations from nine processes, including chaotic dynamics and epidemic models. Benchmark results demonstrate the PySR method as the most suitable for inferring equations, with some estimates being indistinguishable from the original analytical forms. These results highlight the potential of symbolic regression as a robust tool for inferring and modeling real-world phenomena.
Geometric Stability: The Missing Axis of Representations
Analysis of learned representations has a blind spot: it focuses on $similarity$, measuring how closely embeddings align with external references, but similarity reveals only what is represented, not whether that structure is robust. We introduce $geometric$ $stability$, a distinct dimension that quantifies how reliably representational geometry holds under perturbation, and present $Shesha$, a framework for measuring it. Across 2,463 configurations in seven domains, we show that stability and similarity are empirically uncorrelated ($ρ\approx 0.01$) and mechanistically distinct: similarity metrics collapse after removing the top principal components, while stability retains sensitivity to fine-grained manifold structure. This distinction yields actionable insights: for safety monitoring, stability acts as a functional geometric canary, detecting structural drift nearly 2$\times$ more sensitively than CKA while filtering out the non-functional noise that triggers false alarms in rigid distance metrics; for controllability, supervised stability predicts linear steerability ($ρ= 0.89$-$0.96$); for model selection, stability dissociates from transferability, revealing a geometric tax that transfer optimization incurs. Beyond machine learning, stability predicts CRISPR perturbation coherence and neural-behavioral coupling. By quantifying $how$ $reliably$ systems maintain structure, geometric stability provides a necessary complement to similarity for auditing representations across biological and computational systems.
Combining Shape Completion and Grasp Prediction for Fast and Versatile Grasping with a Multi-Fingered Hand
Grasping objects with limited or no prior knowledge about them is a highly relevant skill in assistive robotics. Still, in this general setting, it has remained an open problem, especially when it comes to only partial observability and versatile grasping with multi-fingered hands. We present a novel, fast, and high fidelity deep learning pipeline consisting of a shape completion module that is based on a single depth image, and followed by a grasp predictor that is based on the predicted object shape. The shape completion network is based on VQDIF and predicts spatial occupancy values at arbitrary query points. As grasp predictor, we use our two-stage architecture that first generates hand poses using an autoregressive model and then regresses finger joint configurations per pose. Critical factors turn out to be sufficient data realism and augmentation, as well as special attention to difficult cases during training. Experiments on a physical robot platform demonstrate successful grasping of a wide range of household objects based on a depth image from a single viewpoint. The whole pipeline is fast, taking only about 1 s for completing the object's shape (0.7 s) and generating 1000 grasps (0.3 s).
comment: 8 pages, 10 figures, 3 tables, 1 algorithm. Published in Humanoids 2023. Project page: https://aidx-lab.org/grasping/humanoids23
Another look at statistical inference with machine learning-imputed data
From structural biology to epidemiology, predictions from machine learning (ML) models increasingly complement costly gold-standard data, enabling faster, more affordable, and scalable scientific inquiry. In response, prediction-based (PB) inference has emerged to support statistical analysis that combines a large volume of predicted data with a small amount of gold-standard data. The goals of PB inference are twofold: (i) to mitigate bias arising from prediction error and (ii) to improve efficiency relative to classical inference based solely on gold-standard data. While early PB inference methods primarily focused on bias mitigation, improving efficiency remains an active area of research. Motivated by connections between PB inference and longstanding problems in statistics and related fields, we draw on the two-phase sampling literature to introduce an approach for Z-estimation with ML-imputed outcomes that is guaranteed to match or exceed the efficiency of classical inference, regardless of prediction quality. We demonstrate the utility of our approach through theoretical and numerical analyses as well as an application to UK Biobank data. We further establish new connections between existing PB inference approaches and foundational and contemporary statistical methods.
Balanced Accuracy: The Right Metric for Evaluating LLM Judges -- Explained through Youden's J statistic
Rigorous evaluation of large language models (LLMs) relies on comparing models by the prevalence of desirable or undesirable behaviors, such as task pass rates or policy violations. These prevalence estimates are produced by a classifier, either an LLM-as-a-judge or human annotators, making the choice of classifier central to trustworthy evaluation. Common metrics used for this choice, such as Accuracy, Precision, and F1, are sensitive to class imbalance and to arbitrary choices of positive class, and can favor judges that distort prevalence estimates. We show that Youden's $J$ statistic is theoretically aligned with choosing the best judge to compare models, and that Balanced Accuracy is an equivalent linear transformation of $J$. Through both analytical arguments and empirical examples and simulations, we demonstrate how selecting judges using Balanced Accuracy leads to better, more robust classifier selection.
comment: 10 pages, 5 figures
From Prototypes to Sparse ECG Explanations: SHAP-Driven Counterfactuals for Multivariate Time-Series Multi-class Classification
In eXplainable Artificial Intelligence (XAI), instance-based explanations for time series have gained increasing attention due to their potential for actionable and interpretable insights in domains such as healthcare. Addressing the challenges of explainability of state-of-the-art models, we propose a prototype-driven framework for generating sparse counterfactual explanations tailored to 12-lead ECG classification models. Our method employs SHAP-based thresholds to identify critical signal segments and convert them into interval rules, uses Dynamic Time Warping (DTW) and medoid clustering to extract representative prototypes, and aligns these prototypes to query R-peaks for coherence with the sample being explained. The framework generates counterfactuals that modify only 78% of the original signal while maintaining 81.3% validity across all classes and achieving 43% improvement in temporal stability. We evaluate three variants of our approach, Original, Sparse, and Aligned Sparse, with class-specific performance ranging from 98.9% validity for myocardial infarction (MI) to challenges with hypertrophy (HYP) detection (13.2%). This approach supports near realtime generation (< 1 second) of clinically valid counterfactuals and provides a foundation for interactive explanation platforms. Our findings establish design principles for physiologically-aware counterfactual explanations in AI-based diagnosis systems and outline pathways toward user-controlled explanation interfaces for clinical deployment.
Shape Completion with Prediction of Uncertain Regions IROS 2023
Shape completion, i.e., predicting the complete geometry of an object from a partial observation, is highly relevant for several downstream tasks, most notably robotic manipulation. When basing planning or prediction of real grasps on object shape reconstruction, an indication of severe geometric uncertainty is indispensable. In particular, there can be an irreducible uncertainty in extended regions about the presence of entire object parts when given ambiguous object views. To treat this important case, we propose two novel methods for predicting such uncertain regions as straightforward extensions of any method for predicting local spatial occupancy, one through postprocessing occupancy scores, the other through direct prediction of an uncertainty indicator. We compare these methods together with two known approaches to probabilistic shape completion. Moreover, we generate a dataset, derived from ShapeNet, of realistically rendered depth images of object views with ground-truth annotations for the uncertain regions. We train on this dataset and test each method in shape completion and prediction of uncertain regions for known and novel object instances and on synthetic and real data. While direct uncertainty prediction is by far the most accurate in the segmentation of uncertain regions, both novel methods outperform the two baselines in shape completion and uncertain region prediction, and avoiding the predicted uncertain regions increases the quality of grasps for all tested methods.
comment: 7 pages, 5 figures, Published in IROS 2023. Project page: https://hummat.github.io/2023-iros-uncertain/
PAC Learnability in the Presence of Performativity
Following the wide-spread adoption of machine learning models in real-world applications, the phenomenon of performativity, i.e. model-dependent shifts in the test distribution, becomes increasingly prevalent. Unfortunately, since models are usually trained solely based on samples from the original (unshifted) distribution, this performative shift may lead to decreased test-time performance. In this paper, we study the question of whether and when performative binary classification problems are learnable, via the lens of the classic PAC (Probably Approximately Correct) learning framework. We motivate several performative scenarios, accounting in particular for linear shifts in the label distribution, as well as for more general changes in both the labels and the features. We construct a performative empirical risk function, which depends only on data from the original distribution and on the type performative effect, and is yet an unbiased estimate of the true risk of a classifier on the shifted distribution. Minimizing this notion of performative risk allows us to show that any PAC-learnable hypothesis space in the standard binary classification setting remains PAC-learnable for the considered performative scenarios. We also conduct an extensive experimental evaluation of our performative risk minimization method and showcase benefits on synthetic and real data.
comment: 21 pages, 3 figures; Added another assumption on the RN derivative in Section 5, to fix an incorrect bounding argument in the proof of Theorem 5.1 in the initial version; more details on page 6
Think Then Embed: Generative Context Improves Multimodal Embedding
There is a growing interest in Universal Multimodal Embeddings (UME), where models are required to generate task-specific representations. While recent studies show that Multimodal Large Language Models (MLLMs) perform well on such tasks, they treat MLLMs solely as encoders, overlooking their generative capacity. However, such an encoding paradigm becomes less effective as instructions become more complex and require compositional reasoning. Inspired by the proven effectiveness of chain-of-thought reasoning, we propose a general Think-Then-Embed (TTE) framework for UME, composed of a reasoner and an embedder. The reasoner MLLM first generates reasoning traces that explain complex queries, followed by an embedder that produces representations conditioned on both the original query and the intermediate reasoning. This explicit reasoning step enables more nuanced understanding of complex multimodal instructions. Our contributions are threefold. First, by leveraging a powerful MLLM reasoner, we achieve state-of-the-art performance on the MMEB-V2 benchmark, surpassing proprietary models trained on massive in-house datasets. Second, to reduce the dependency on large MLLM reasoners, we finetune a smaller MLLM reasoner using high-quality embedding-centric reasoning traces, achieving the best performance among open-source models with a 7% absolute gain over recently proposed models. Third, we investigate strategies for integrating the reasoner and embedder into a unified model for improved efficiency without sacrificing performance.
Building Production-Ready Probes For Gemini
Frontier language model capabilities are improving rapidly. We thus need stronger mitigations against bad actors misusing increasingly powerful systems. Prior work has shown that activation probes may be a promising misuse mitigation technique, but we identify a key remaining challenge: probes fail to generalize under important production distribution shifts. In particular, we find that the shift from short-context to long-context inputs is difficult for existing probe architectures. We propose several new probe architectures that handle this long-context distribution shift. We evaluate these probes in the cyber-offensive domain, testing their robustness against various production-relevant distribution shifts, including multi-turn conversations, long context prompts, and adaptive red teaming. Our results demonstrate that while our novel architectures address context length, a combination of architecture choice and training on diverse distributions is required for broad generalization. Additionally, we show that pairing probes with prompted classifiers achieves optimal accuracy at a low cost due to the computational efficiency of probes. These findings have informed the successful deployment of misuse mitigation probes in user-facing instances of Gemini, Google's frontier language model. Finally, we find early positive results using AlphaEvolve to automate improvements in both probe architecture search and adaptive red teaming, showing that automating some AI safety research is already possible.
comment: v2 (minor typo fixes)
An Elementary Proof of the Near Optimality of LogSumExp Smoothing
We consider the design of smoothings of the (coordinate-wise) max function in $\mathbb{R}^d$ in the infinity norm. The LogSumExp function $f(x)=\ln(\sum^d_i\exp(x_i))$ provides a classical smoothing, differing from the max function in value by at most $\ln(d)$. We provide an elementary construction of a lower bound, establishing that every overestimating smoothing of the max function must differ by at least $\sim 0.8145\ln(d)$. Hence, LogSumExp is optimal up to small constant factors. However, in small dimensions, we provide stronger, exactly optimal smoothings attaining our lower bound, showing that the entropy-based LogSumExp approach to smoothing is not exactly optimal.
comment: 11 pages
QASTAnet: A DNN-based Quality Metric for Spatial Audio
In the development of spatial audio technologies, reliable and shared methods for evaluating audio quality are essential. Listening tests are currently the standard but remain costly in terms of time and resources. Several models predicting subjective scores have been proposed, but they do not generalize well to real-world signals. In this paper, we propose QASTAnet (Quality Assessment for SpaTial Audio network), a new metric based on a deep neural network, specialized on spatial audio (ambisonics and binaural). As training data is scarce, we aim for the model to be trainable with a small amount of data. To do so, we propose to rely on expert modeling of the low-level auditory system and use a neurnal network to model the high-level cognitive function of the quality judgement. We compare its performance to two reference metrics on a wide range of content types (speech, music, ambiance, anechoic, reverberated) and focusing on codec artifacts. Results demonstrate that QASTAnet overcomes the aforementioned limitations of the existing methods. The strong correlation between the proposed metric prediction and subjective scores makes it a good candidate for comparing codecs in their development.
comment: Minor typo corrections, figure updates for clarity, add two references, no modifications of the results and their interpretation
Learning to Solve Optimization Problems Constrained with Partial Differential Equations
Partial differential equation (PDE)-constrained optimization arises in many scientific and engineering domains, such as energy systems, fluid dynamics and material design. In these problems, the decision variables (e.g., control inputs or design parameters) are tightly coupled with the PDE state variables, and the feasible set is implicitly defined by the governing PDE constraints. This coupling makes the problems computationally demanding, as it requires handling high dimensional discretization and dynamic constraints. To address these challenges, this paper introduces a learning-based framework that integrates a dynamic predictor with an optimization surrogate. The dynamic predictor, a novel time-discrete Neural Operator (Lu et al.), efficiently approximate system trajectories governed by PDE dynamics, while the optimization surrogate leverages proxy optimizer techniques (Kotary et al.) to approximate the associated optimal decisions. This dual-network design enables real-time approximation of optimal strategies while explicitly capturing the coupling between decisions and PDE dynamics. We validate the proposed approach on benchmark PDE-constrained optimization tasks inlacing Burgers' equation, heat equation and voltage regulation, and demonstrate that it achieves solution quality comparable to classical control-based algorithms, such as the Direct Method and Model Predictive Control (MPC), while providing up to four orders of magnitude improvement in computational speed.
Local EGOP for Continuous Index Learning
We introduce the setting of continuous index learning, in which a function of many variables varies only along a small number of directions at each point. For efficient estimation, it is beneficial for a learning algorithm to adapt, near each point $x$, to the subspace that captures the local variability of the function $f$. We pose this task as kernel adaptation along a manifold with noise, and introduce Local EGOP learning, a recursive algorithm that utilizes the Expected Gradient Outer Product (EGOP) quadratic form as both a metric and inverse-covariance of our target distribution. We prove that Local EGOP learning adapts to the regularity of the function of interest, showing that under a supervised noisy manifold hypothesis, intrinsic dimensional learning rates are achieved for arbitrarily high-dimensional noise. Empirically, we compare our algorithm to the feature learning capabilities of deep learning. Additionally, we demonstrate improved regression quality compared to two-layer neural networks in the continuous single-index setting.
VectorLiteRAG: Latency-Aware and Fine-Grained Resource Partitioning for Efficient RAG
Retrieval-Augmented Generation (RAG) systems combine vector similarity search with large language models (LLMs) to deliver accurate, context-aware responses. However, co-locating the vector retriever and the LLM on shared GPU infrastructure introduces significant challenges: vector search is memory and I/O intensive, while LLM inference demands high throughput and low latency. Naive resource sharing often leads to severe performance degradation, particularly under high request load or large index sizes. We present VectorLiteRAG, a deployment-friendly RAG system that achieves latency-compliant inference without requiring additional hardware resources. VectorLiteRAG introduces a fine-grained GPU resource allocation mechanism based on detailed performance modeling and access pattern analysis. By estimating search latency and query hit rate distributions, it identifies an optimal index partitioning point across CPU and GPU tiers to minimize contention and maximize throughput. Our evaluations show that VectorLiteRAG consistently expands the SLO compliant request rate range across all tested configurations, including both small and large LLMs, and small and large vector databases compared to naive baselines and state of the art alternatives. In the best case, VectorLiteRAG improves the attainable SLO throughput by up to 1.5 times without compromising generation quality or requiring additional compute resources.
Rethinking Entropy Interventions in RLVR: An Entropy Change Perspective
While Reinforcement Learning with Verifiable Rewards (RLVR) can enhance LLM reasoning, its training process carries a critical risk: entropy collapse. This phenomenon is a rapid decrease in policy entropy, which severely limits exploration and diminishes learning effectiveness. Recent methods attempt to mitigate this collapse via heuristic entropy interventions, yet the underlying mechanisms governing entropy remain unclear. In this work, we conduct a theoretical and quantitative analysis of GRPO's entropy dynamics, revealing that token-level entropy change in each update step is jointly governed by four key factors: clipping strategy, advantage, token probability, and token entropy. These findings not only explain the mechanisms of existing methods, but also reveal their limitations: they rely on heuristic adjustments to only one or two factors, leaving other relevant factors unconsidered and reducing their effectiveness. This motivates us to propose a new method, STEER, which adaptively reweights tokens based on their estimated entropy change to regulate entropy in a principled manner. Experiments on both math and coding benchmarks demonstrate that STEER effectively mitigates entropy collapse and consistently outperforms state-of-the-art baselines.
Message passing-based inference in an autoregressive active inference agent
We present the design of an autoregressive active inference agent in the form of message passing on a factor graph. Expected free energy is derived and distributed across a planning graph. The proposed agent is validated on a robot navigation task, demonstrating exploration and exploitation in a continuous-valued observation space with bounded continuous-valued actions. Compared to a classical optimal controller, the agent modulates action based on predictive uncertainty, arriving later but with a better model of the robot's dynamics.
comment: 14 pages, 4 figures, proceedings of the International Workshop on Active Inference 2025. Erratum v1: in Eq. (50), $p(y_t, Θ, u_t \mid y_{*}, \mathcal{D}_k)$ should have been $p(y_t, Θ\mid u_t, y_{*}, \mathcal{D}_k)$
Setting $\varepsilon$ is not the Issue in Differential Privacy NeurIPS
This position paper argues that setting the privacy budget in differential privacy should not be viewed as an important limitation of differential privacy compared to alternative methods for privacy-preserving machine learning. The so-called problem of interpreting the privacy budget is often presented as a major hindrance to the wider adoption of differential privacy in real-world deployments and is sometimes used to promote alternative mitigation techniques for data protection. We believe this misleads decision-makers into choosing unsafe methods. We argue that the difficulty in interpreting privacy budgets does not stem from the definition of differential privacy itself, but from the intrinsic difficulty of estimating privacy risks in context, a challenge that any rigorous method for privacy risk assessment face. Moreover, we claim that any sound method for estimating privacy risks should, given the current state of research, be expressible within the differential privacy framework or justify why it cannot.
comment: NeurIPS Position Paper track 2025
Improving the Speaker Anonymization Evaluation's Robustness to Target Speakers with Adversarial Learning
The current privacy evaluation for speaker anonymization often overestimates privacy when a same-gender target selection algorithm (TSA) is used, although this TSA leaks the speaker's gender and should hence be more vulnerable. We hypothesize that this occurs because the evaluation does not account for the fact that anonymized speech contains information from both the source and target speakers. To address this, we propose to add a target classifier that measures the influence of target speaker information in the evaluation, which can also be removed with adversarial learning. Experiments demonstrate that this approach is effective for multiple anonymizers, particularly when using a same-gender TSA, leading to a more reliable assessment.
comment: Accepted to ICASSP 2026
FBFL: A Field-Based Coordination Approach for Data Heterogeneity in Federated Learning
In the last years, Federated learning (FL) has become a popular solution to train machine learning models in domains with high privacy concerns. However, FL scalability and performance face significant challenges in real-world deployments where data across devices are non-independently and identically distributed (non-IID). The heterogeneity in data distribution frequently arises from spatial distribution of devices, leading to degraded model performance in the absence of proper handling. Additionally, FL typical reliance on centralized architectures introduces bottlenecks and single-point-of-failure risks, particularly problematic at scale or in dynamic environments. To close this gap, we propose Field-Based Federated Learning (FBFL), a novel approach leveraging macroprogramming and field coordination to address these limitations through: (i) distributed spatial-based leader election for personalization to mitigate non-IID data challenges; and (ii) construction of a self-organizing, hierarchical architecture using advanced macroprogramming patterns. Moreover, FBFL not only overcomes the aforementioned limitations, but also enables the development of more specialized models tailored to the specific data distribution in each subregion. This paper formalizes FBFL and evaluates it extensively using MNIST, FashionMNIST, and Extended MNIST datasets. We demonstrate that, when operating under IID data conditions, FBFL performs comparably to the widely-used FedAvg algorithm. Furthermore, in challenging non-IID scenarios, FBFL not only outperforms FedAvg but also surpasses other state-of-the-art methods, namely FedProx and Scaffold, which have been specifically designed to address non-IID data distributions. Additionally, we showcase the resilience of FBFL's self-organizing hierarchical architecture against server failures.
Seek in the Dark: Reasoning via Test-Time Instance-Level Policy Gradient in Latent Space
Reasoning ability, a core component of human intelligence, continues to pose a significant challenge for Large Language Models (LLMs) in the pursuit of AGI. Although model performance has improved under the training scaling law, significant challenges remain, particularly with respect to training algorithms, such as catastrophic forgetting, and the limited availability of novel training data. As an alternative, test-time scaling enhances reasoning performance by increasing test-time computation without parameter updating. Unlike prior methods in this paradigm focused on token space, we propose leveraging latent space for more effective reasoning and better adherence to the test-time scaling law. We introduce LatentSeek, a novel framework that enhances LLM reasoning through Test-Time Instance-level Adaptation (TTIA) within the model's latent space. Specifically, LatentSeek leverages policy gradient to iteratively update latent representations, guided by self-generated reward signals. LatentSeek is evaluated on a range of reasoning benchmarks, including GSM8K, MATH-500, and AIME2024, across multiple LLM architectures. Results show that LatentSeek consistently outperforms strong baselines, such as Chain-of-Thought prompting and fine-tuning-based methods. Furthermore, our analysis demonstrates that LatentSeek is highly efficient, typically converging within a few iterations for problems of average complexity, while also benefiting from additional iterations, thereby highlighting the potential of test-time scaling in the latent space. These findings position LatentSeek as a lightweight, scalable, and effective solution for enhancing the reasoning capabilities of LLMs.
Vejde: A Framework for Inductive Deep Reinforcement Learning Based on Factor Graph Color Refinement
We present and evaluate Vejde; a framework which combines data abstraction, graph neural networks and reinforcement learning to produce inductive policy functions for decision problems with richly structured states, such as object classes and relations. MDP states are represented as data bases of facts about entities, and Vejde converts each state to a bipartite graph, which is mapped to latent states through neural message passing. The factored representation of both states and actions allows Vejde agents to handle problems of varying size and structure. We tested Vejde agents on eight problem domains defined in RDDL, with ten problem instances each, where policies were trained using both supervised and reinforcement learning. To test policy generalization, we separate problem instances in two sets, one for training and the other solely for testing. Test results on unseen instances for the Vejde agents were compared to MLP agents trained on each problem instance, as well as the online planning algorithm Prost. Our results show that Vejde policies in average generalize to the test instances without a significant loss in score. Additionally, the inductive agents received scores on unseen test instances that on average were close to the instance-specific MLP agents.
Mechanisms are Transferable: Data-Efficient Low-Resource Adaptation via Circuit-Targeted Supervised Fine-Tuning
Adapting LLMs to low-resource languages is difficult: labeled data is scarce, full-model fine-tuning is unstable, and continued cross-lingual tuning can cause catastrophic forgetting. We propose Circuit-Targeted Supervised Fine-Tuning (CT-SFT): a counterfactual-free adaptation of CD-T (Contextual Decomposition Transformer) that uses a label-balanced mean baseline and task-directional relevance scoring to identify a sparse set of task-relevant attention heads in a proxy-language checkpoint, then transfer learns to a target language by updating only those heads (plus LayerNorm) via head-level gradient masking. Across NusaX-Senti and XNLI, CT-SFT improves cross-lingual accuracy over continued full fine-tuning while updating only a small subset of model parameters. We find an editing-preserving trade-off: harder transfers favor editing circuit heads, while easier transfers often favor near-zero (i.e., low-relevance heads) updates, preserving the source mechanism. CT-SFT also substantially reduces catastrophic forgetting, preserving proxy/source-language competence during transfer.
FAWN: A MultiEncoder Fusion-Attention Wave Network for Integrated Sensing and Communication Indoor Scene Inference
The upcoming generations of wireless technologies promise an era where everything is interconnected and intelligent. As the need for intelligence grows, networks must learn to better understand the physical world. However, deploying dedicated hardware to perceive the environment is not always feasible, mainly due to costs and/or complexity. Integrated Sensing and Communication (ISAC) has made a step forward in addressing this challenge. Within ISAC, passive sensing emerges as a cost-effective solution that reuses wireless communications to sense the environment, without interfering with existing communications. Nevertheless, the majority of current solutions are limited to one technology (mostly Wi-Fi or 5G), constraining the maximum accuracy reachable. As different technologies work with different spectrums, we see a necessity in integrating more than one technology to augment the coverage area. Hence, we take the advantage of ISAC passive sensing, to present FAWN, a MultiEncoder Fusion-Attention Wave Network for ISAC indoor scene inference. FAWN is based on the original transformers architecture, to fuse information from Wi-Fi and 5G, making the network capable of understanding the physical world without interfering with the current communication. To test our solution, we have built a prototype and integrated it in a real scenario. Results show errors below 0.6 m around 84% of times.
comment: 7 pages, 6 figures and tables, less than 5500 words. Under revision at IEEE Communication Magazine
Crafting Adversarial Inputs for Large Vision-Language Models Using Black-Box Optimization
Recent advancements in Large Vision-Language Models (LVLMs) have shown groundbreaking capabilities across diverse multimodal tasks. However, these models remain vulnerable to adversarial jailbreak attacks, where adversaries craft subtle perturbations to bypass safety mechanisms and trigger harmful outputs. Existing white-box attacks methods require full model accessibility, suffer from computing costs and exhibit insufficient adversarial transferability, making them impractical for real-world, black-box settings. To address these limitations, we propose a black-box jailbreak attack on LVLMs via Zeroth-Order optimization using Simultaneous Perturbation Stochastic Approximation (ZO-SPSA). ZO-SPSA provides three key advantages: (i) gradient-free approximation by input-output interactions without requiring model knowledge, (ii) model-agnostic optimization without the surrogate model and (iii) lower resource requirements with reduced GPU memory consumption. We evaluate ZO-SPSA on three LVLMs, including InstructBLIP, LLaVA and MiniGPT-4, achieving the highest jailbreak success rate of 83.0% on InstructBLIP, while maintaining imperceptible perturbations comparable to white-box methods. Moreover, adversarial examples generated from MiniGPT-4 exhibit strong transferability to other LVLMs, with ASR reaching 64.18%. These findings underscore the real-world feasibility of black-box jailbreaks and expose critical weaknesses in the safety mechanisms of current LVLMs
comment: EACL
Modular Deep Learning for Multivariate Time-Series: Decoupling Imputation and Downstream Tasks
Missing values are pervasive in large-scale time-series data, posing challenges for reliable analysis and decision-making. Many neural architectures have been designed to model and impute the complex and heterogeneous missingness patterns of such data. Most existing methods are end-to-end, rendering imputation tightly coupled with downstream predictive tasks and leading to limited reusability of the trained model, reduced interpretability, and challenges in assessing model quality. In this paper, we call for a modular approach that decouples imputation and downstream tasks, enabling independent optimisation and greater adaptability. Using the largest open-source Python library for deep learning-based time-series analysis, PyPOTS, we evaluate a modular pipeline across six state-of-the-art models that perform imputation and prediction on seven datasets spanning multiple domains. Our results show that a modular approach maintains high performance while prioritising flexibility and reusability - qualities that are crucial for real-world applications. Through this work, we aim to demonstrate how modularity can benefit multivariate time-series analysis, achieving a balance between performance and adaptability.
Sample-Near-Optimal Agnostic Boosting with Improved Running Time
Boosting is a powerful method that turns weak learners, which perform only slightly better than random guessing, into strong learners with high accuracy. While boosting is well understood in the classic setting, it is less so in the agnostic case, where no assumptions are made about the data. Indeed, only recently was the sample complexity of agnostic boosting nearly settled arXiv:2503.09384, but the known algorithm achieving this bound has exponential running time. In this work, we propose the first agnostic boosting algorithm with near-optimal sample complexity, running in time polynomial in the sample size when considering the other parameters of the problem fixed.
comment: 28 pages, 0 figures. Accepted at the 37th International Conference on Algorithmic Learning Theory (ALT 2026)
Multidata Causal Discovery for Statistical Hurricane Intensity Forecasting
Improving statistical forecasts of Tropical Cyclone (TC) intensity is limited by complex nonlinear interactions and difficulty in identifying relevant predictors. Conventional methods prioritize correlation or fit, often overlooking confounding variables and limiting generalizability to unseen TCs. To address this, we leverage a multidata causal discovery framework with a replicated dataset based on Statistical Hurricane Intensity Prediction Scheme (SHIPS) using ERA5 meteorological reanalysis. We conduct multiple experiments to identify and select predictors causally linked to TC intensity changes. We then train multiple linear regression models to compare causal feature selection with no selection, correlation, and random forest feature importance across five forecast lead times from 1 to 5 days (24 to 120 hours). Causal feature selection consistently outperforms on unseen test cases, especially for lead times shorter than 3 days. The causal features primarily include vertical shear, mid-tropospheric potential vorticity and surface moisture conditions, which are physically significant yet often underutilized in TC intensity predictions. We build an extended predictor set (SHIPS plus) by adding selected features to the standard SHIPS predictors. SHIPS plus yields increased short-term predictive skill at lead times of 24, 48, and 72 hours. Adding nonlinearity using multilayer perceptron further extends skill to longer lead times, despite our framework being purely regional and not requiring global forecast data. Operational SHIPS tests confirm that three of the six added causally discovered predictors improve forecast skill, with the largest gains at longer lead times. Our results demonstrate that causal discovery improves TC intensity prediction and pave the way toward more empirical forecasts.
comment: 20 pages, 8 Figures, 1 Table, SI; Revised manuscript following peer review
Implicit Bias and Invariance: How Hopfield Networks Efficiently Learn Graph Orbits
Many learning problems involve symmetries, and while invariance can be built into neural architectures, it can also emerge implicitly when training on group-structured data. We study this phenomenon in classical Hopfield networks and show they can infer the full isomorphism class of a graph from a small random sample. Our results reveal that: (i) graph isomorphism classes can be represented within a three-dimensional invariant subspace, (ii) using gradient descent to minimize energy flow (MEF) has an implicit bias toward norm-efficient solutions, which underpins a polynomial sample complexity bound for learning isomorphism classes, and (iii) across multiple learning rules, parameters converge toward the invariant subspace as sample sizes grow. Together, these findings highlight a unifying mechanism for generalization in Hopfield networks: a bias toward norm efficiency in learning drives the emergence of approximate invariance under group-structured data.
Quantitative Understanding of PDF Fits and their Uncertainties
Parton Distribution Functions (PDFs) play a central role in describing experimental data at colliders and provide insight into the structure of nucleons. As the LHC enters an era of high-precision measurements, a robust PDF determination with a reliable uncertainty quantification has become mandatory in order to match the experimental precision. The NNPDF collaboration has pioneered the use of Machine Learning (ML) techniques for PDF determinations, using Neural Networks (NNs) to parametrise the unknown PDFs in a flexible and unbiased way. The NNs are then trained on experimental data by means of stochastic gradient descent algorithms. The statistical robustness of the results is validated by extensive closure tests using synthetic data. In this work, we develop a theoretical framework based on the Neural Tangent Kernel (NTK) to analyse the training dynamics of neural networks. This approach allows us to derive, under precise assumptions, an analytical description of the neural network evolution during training, enabling a quantitative understanding of the training process. Having an analytical handle on the training dynamics allows us to clarify the role of the NN architecture and the impact of the experimental data in a transparent way. Similarly, we are able to describe the evolution of the covariance of the NN output during training, providing a quantitative description of how uncertainties are propagated from the data to the fitted function. While our results are not a substitute for PDF fitting, they do provide a powerful diagnostic tool to assess the robustness of current fitting methodologies. Beyond its relevance for particle physics phenomenology, our analysis of PDF determinations provides a testbed to apply theoretical ideas about the learning process developed in the ML community.
comment: 38 pages
Fusion of Quadratic Time-Frequency Analysis and Convolutional Neural Networks to Diagnose Bearing Faults Under Time-Varying Speeds
Diagnosis of bearing faults is paramount to reducing maintenance costs and operational breakdowns. Bearing faults are primary contributors to machine vibrations, and analyzing their signal morphology offers insights into their health status. Unfortunately, existing approaches are optimized for controlled environments, neglecting realistic conditions such as time-varying rotational speeds and the vibration's non-stationary nature. This paper presents a fusion of time-frequency analysis and deep learning techniques to diagnose bearing faults under time-varying speeds and varying noise levels. First, we formulate the bearing fault-induced vibrations and discuss the link between their non-stationarity and the bearing's inherent and operational parameters. We also elucidate quadratic time-frequency distributions and validate their effectiveness in resolving distinctive dynamic patterns associated with different bearing faults. Based on this, we design a time-frequency convolutional neural network (TF-CNN) to diagnose various faults in rolling-element bearings. Our experimental findings undeniably demonstrate the superior performance of TF-CNN in comparison to recently developed techniques. They also assert its versatility in capturing fault-relevant non-stationary features that couple with speed changes and show its exceptional resilience to noise, consistently surpassing competing methods across various signal-to-noise ratios and performance metrics. Altogether, the TF-CNN achieves substantial accuracy improvements up to 15%, in severe noise conditions.
On Evaluation of Unsupervised Feature Selection for Pattern Classification
Unsupervised feature selection aims to identify a compact subset of features that captures the intrinsic structure of data without supervised label. Most existing studies evaluate the performance of methods using the single-label dataset that can be instantiated by selecting a label from multi-label data while maintaining the original features. Because the chosen label can vary arbitrarily depending on the experimental setting, the superiority among compared methods can be changed with regard to which label happens to be selected. Thus, evaluating unsupervised feature selection methods based solely on single-label accuracy is unreasonable for assessing their true discriminative ability. This study revisits this evaluation paradigm by adopting a multi-label classification framework. Experiments on 21 multi-label datasets using several representative methods demonstrate that performance rankings differ markedly from those reported under single-label settings, suggesting the possibility of multi-label evaluation settings for fair and reliable comparison of unsupervised feature selection methods.
comment: EurIPS 2025 Workshop: AI for Tabular Data
Provably Safe Reinforcement Learning for Stochastic Reach-Avoid Problems with Entropy Regularization
We consider the problem of learning the optimal policy for Markov decision processes with safety constraints. We formulate the problem in a reach-avoid setup. Our goal is to design online reinforcement learning algorithms that ensure safety constraints with arbitrarily high probability during the learning phase. To this end, we first propose an algorithm based on the optimism in the face of uncertainty (OFU) principle. Based on the first algorithm, we propose our main algorithm, which utilizes entropy regularization. We investigate the finite-sample analysis of both algorithms and derive their regret bounds. We demonstrate that the inclusion of entropy regularization improves the regret and drastically controls the episode-to-episode variability that is inherent in OFU-based safe RL algorithms.
A High-Recall Cost-Sensitive Machine Learning Framework for Real-Time Online Banking Transaction Fraud Detection
Fraudulent activities on digital banking services are becoming more intricate by the day, challenging existing defenses. While older rule driven methods struggle to keep pace, even precision focused algorithms fall short when new scams are introduced. These tools typically overlook subtle shifts in criminal behavior, missing crucial signals. Because silent breaches cost institutions far more than flagged but legitimate actions, catching every possible case is crucial. High sensitivity to actual threats becomes essential when oversight leads to heavy losses. One key aim here involves reducing missed fraud cases without spiking incorrect alerts too much. This study builds a system using group learning methods adjusted through smart threshold choices. Using real world transaction records shared openly, where cheating acts rarely appear among normal activities, tests are run under practical skewed distributions. The outcomes reveal that approximately 98 percent of actual fraud is detected, outperforming standard setups that rely on unchanging rules when dealing with uneven examples across classes. When tested in live settings, the fraud detection system connects directly to an online banking transaction flow, stopping questionable activities before they are completed. Alongside this setup, a browser add on built for Chrome is designed to flag deceptive web links and reduce threats from harmful sites. These results show that adjusting decisions by cost impact and validating across entire systems makes deployment more stable and realistic for today's digital banking platforms.
comment: 8 pages, 5 figures. Submitted to arXiv as a preprint
Dual-Domain Fusion for Semi-Supervised Learning
Labeled time-series data is often expensive and difficult to obtain, making it challenging to train accurate machine learning models for real-world applications such as anomaly detection or fault diagnosis. The scarcity of labeled samples limits model generalization and leaves valuable unlabeled data underutilized. We propose Dual-Domain Fusion (DDF), a new model-agnostic semi-supervised learning (SSL) framework applicable to any time-series signal. DDF performs dual-domain training by combining the one-dimensional time-domain signals with their two-dimensional time-frequency representations and fusing them to maximize learning performance. Its tri-model architecture consists of time-domain, time-frequency, and fusion components, enabling the model to exploit complementary information across domains during training. To support practical deployment, DDF maintains the same inference cost as standard time-domain models by discarding the time-frequency and fusion branches at test time. Experimental results on two public fault diagnosis datasets demonstrate substantial accuracy improvements of 8-46% over widely used SSL methods FixMatch, MixMatch, Mean Teacher, Adversarial Training, and Self-training. These results show that DDF provides an effective and generalizable strategy for semi-supervised time-series classification.
Zero-shot Generalization in Inventory Management: Train, then Estimate and Decide
Deploying deep reinforcement learning (DRL) in real-world inventory management presents challenges, including dynamic environments and uncertain problem parameters, e.g. demand and lead time distributions. These challenges highlight a research gap, suggesting a need for a unifying framework to model and solve sequential decision-making under parameter uncertainty. We address this by exploring an underexplored area of DRL for inventory management: training generally capable agents (GCAs) under zero-shot generalization (ZSG). Here, GCAs are advanced DRL policies designed to handle a broad range of sampled problem instances with diverse inventory challenges. ZSG refers to the ability to successfully apply learned policies to unseen instances with unknown parameters without retraining. We propose a unifying Super-Markov Decision Process formulation and the Train, then Estimate and Decide (TED) framework to train and deploy a GCA tailored to inventory management applications. The TED framework consists of three phases: training a GCA on varied problem instances, continuously estimating problem parameters during deployment, and making decisions based on these estimates. Applied to periodic review inventory problems with lost sales, cyclic demand patterns, and stochastic lead times, our trained agent, the Generally Capable Lost Sales Network (GC-LSN) consistently outperforms well-known traditional policies when problem parameters are known. Moreover, under conditions where demand and/or lead time distributions are initially unknown and must be estimated, we benchmark against online learning methods that provide worst-case performance guarantees. Our GC-LSN policy, paired with the Kaplan-Meier estimator, is demonstrated to complement these methods by providing superior empirical performance.
Eye-tracked Virtual Reality: A Comprehensive Survey on Methods and Privacy Challenges
The latest developments in computer hardware, sensor technologies, and artificial intelligence can make virtual reality (VR) and virtual spaces an important part of human everyday life. Eye tracking offers not only a hands-free way of interaction but also the possibility of a deeper understanding of human visual attention and cognitive processes in VR. Despite these possibilities, eye-tracking data also reveals users' privacy-sensitive attributes when combined with the information about the presented stimulus. To address all, this survey first covers major works in eye tracking, VR, and privacy areas between 2012 and 2022. While eye tracking in VR part covers the computational eye tracking pipeline from pupil detection and gaze estimation to offline data analysis, for privacy and security, we focus on eye-based authentication as well as computational methods to preserve the privacy of individuals and their eye-tracking data in VR. Later, we outline three main directions by focusing on privacy. In summary, this survey presents an extensive literature review of the utmost possibilities of eye tracking in VR and their privacy implications.
comment: Accepted for publication in the Proceedings of the IEEE
Optimization Insights into Deep Diagonal Linear Networks
Gradient-based methods successfully train highly overparameterized models in practice, even though the associated optimization problems are markedly nonconvex. Understanding the mechanisms that make such methods effective has become a central problem in modern optimization. To investigate this question in a tractable setting, we study Deep Diagonal Linear Networks. These are multilayer architectures with a reparameterization that preserves convexity in the effective parameter, while inducing a nontrivial geometry in the optimization landscape. Under mild initialization conditions, we show that gradient flow on the layer parameters induces a mirror-flow dynamic in the effective parameter space. This structural insight yields explicit convergence guarantees, including exponential decay of the loss under a Polyak-Lojasiewicz condition, and clarifies how the parametrization and initialization scale govern the training speed. Overall, our results demonstrate that deep diagonal over parameterizations, despite their apparent complexity, can endow standard gradient methods with well-behaved and interpretable optimization dynamics.
Riemannian Denoising Model for Molecular Structure Optimization with Chemical Accuracy
We introduce a framework for molecular structure optimization using denoising model on a physics-informed Riemannian manifold (R-DM). Unlike conventional approaches operating in Euclidean space, our method leverages a Riemannian metric that better aligns with molecular energy change, enabling more robust modeling of potential energy surfaces. By incorporating internal coordinates reflective of energetic properties, R-DM achieves chemical accuracy with an energy error below 1 kcal/mol. Comparative evaluations on QM9, QM7-X, and GEOM datasets demonstrate improvements in both structural and energetic accuracy, surpassing conventional Euclidean-based denoising models. This approach highlights the potential of physics-informed coordinates for tackling complex molecular optimization problems, with implications for tasks in computational chemistry and materials science.
On the Global Convergence of Risk-Averse Natural Policy Gradient Methods with Expected Conditional Risk Measures
Risk-sensitive reinforcement learning (RL) has become a popular tool for controlling the risk of uncertain outcomes and ensuring reliable performance in highly stochastic sequential decision-making problems. While it has been shown that policy gradient methods can find globally optimal policies in the risk-neutral setting, it remains unclear if the risk-averse variants enjoy the same global convergence guarantees. In this paper, we consider a class of dynamic time-consistent risk measures, named Expected Conditional Risk Measures (ECRMs), and derive natural policy gradient (NPG) updates for ECRMs-based RL problems. We provide global optimality and iteration complexity of the proposed risk-averse NPG algorithm with softmax parameterization and entropy regularization under both exact and inexact policy evaluation. Furthermore, we test our risk-averse NPG algorithm on a stochastic Cliffwalk environment to demonstrate the efficacy of our method.
Graphics 5
A Text-to-3D Framework for Joint Generation of CG-Ready Humans and Compatible Garments
Creating detailed 3D human avatars with fitted garments traditionally requires specialized expertise and labor-intensive workflows. While recent advances in generative AI have enabled text-to-3D human and clothing synthesis, existing methods fall short in offering accessible, integrated pipelines for generating CG-ready 3D avatars with physically compatible outfits; here we use the term CG-ready for models following a technical aesthetic common in computer graphics (CG) and adopt standard CG polygonal meshes and strands representations (rather than neural representations like NeRF and 3DGS) that can be directly integrated into conventional CG pipelines and support downstream tasks such as physical simulation. To bridge this gap, we introduce Tailor, an integrated text-to-3D framework that generates high-fidelity, customizable 3D avatars dressed in simulation-ready garments. Tailor consists of three stages. (1) Seman tic Parsing: we employ a large language model to interpret textual descriptions and translate them into parameterized human avatars and semantically matched garment templates. (2) Geometry-Aware Garment Generation: we propose topology-preserving deformation with novel geometric losses to generate body-aligned garments under text control. (3) Consistent Texture Synthesis: we propose a novel multi-view diffusion process optimized for garment texturing, which enforces view consistency, preserves photorealistic details, and optionally supports symmetric texture generation common in garments. Through comprehensive quantitative and qualitative evaluations, we demonstrate that Tailor outperforms state-of-the-art methods in fidelity, usability, and diversity. Our code will be released for academic use. Project page: https://human-tailor.github.io
comment: Project page: https://human-tailor.github.io
Eye-tracked Virtual Reality: A Comprehensive Survey on Methods and Privacy Challenges
The latest developments in computer hardware, sensor technologies, and artificial intelligence can make virtual reality (VR) and virtual spaces an important part of human everyday life. Eye tracking offers not only a hands-free way of interaction but also the possibility of a deeper understanding of human visual attention and cognitive processes in VR. Despite these possibilities, eye-tracking data also reveals users' privacy-sensitive attributes when combined with the information about the presented stimulus. To address all, this survey first covers major works in eye tracking, VR, and privacy areas between 2012 and 2022. While eye tracking in VR part covers the computational eye tracking pipeline from pupil detection and gaze estimation to offline data analysis, for privacy and security, we focus on eye-based authentication as well as computational methods to preserve the privacy of individuals and their eye-tracking data in VR. Later, we outline three main directions by focusing on privacy. In summary, this survey presents an extensive literature review of the utmost possibilities of eye tracking in VR and their privacy implications.
comment: Accepted for publication in the Proceedings of the IEEE
Lightning Fast Caching-based Parallel Denoising Prediction for Accelerating Talking Head Generation
Diffusion-based talking head models generate high-quality, photorealistic videos but suffer from slow inference, limiting practical applications. Existing acceleration methods for general diffusion models fail to exploit the temporal and spatial redundancies unique to talking head generation. In this paper, we propose a task-specific framework addressing these inefficiencies through two key innovations. First, we introduce Lightning-fast Caching-based Parallel denoising prediction (LightningCP), caching static features to bypass most model layers in inference time. We also enable parallel prediction using cached features and estimated noisy latents as inputs, efficiently bypassing sequential sampling. Second, we propose Decoupled Foreground Attention (DFA) to further accelerate attention computations, exploiting the spatial decoupling in talking head videos to restrict attention to dynamic foreground regions. Additionally, we remove reference features in certain layers to bring extra speedup. Extensive experiments demonstrate that our framework significantly improves inference speed while preserving video quality.
TIDI-GS: Floater Suppression in 3D Gaussian Splatting for Enhanced Indoor Scene Fidelity
3D Gaussian Splatting (3DGS) is a technique to create high-quality, real-time 3D scenes from images. This method often produces visual artifacts known as floaters--nearly transparent, disconnected elements that drift in space away from the actual surface. This geometric inaccuracy undermines the reliability of these models for practical applications, which is critical. To address this issue, we introduce TIDI-GS, a new training framework designed to eliminate these floaters. A key benefit of our approach is that it functions as a lightweight plugin for the standard 3DGS pipeline, requiring no major architectural changes and adding minimal overhead to the training process. The core of our method is a floater pruning algorithm--TIDI--that identifies and removes floaters based on several criteria: their consistency across multiple viewpoints, their spatial relationship to other elements, and an importance score learned during training. The framework includes a mechanism to preserve fine details, ensuring that important high-frequency elements are not mistakenly removed. This targeted cleanup is supported by a monocular depth-based loss function that helps improve the overall geometric structure of the scene. Our experiments demonstrate that TIDI-GS improves both the perceptual quality and geometric integrity of reconstructions, transforming them into robust digital assets, suitable for high-fidelity applications.
Controllable Video Generation: A Survey
With the rapid development of AI-generated content (AIGC), video generation has emerged as one of its most dynamic and impactful subfields. In particular, the advancement of video generation foundation models has led to growing demand for controllable video generation methods that can more accurately reflect user intent. Most existing foundation models are designed for text-to-video generation, where text prompts alone are often insufficient to express complex, multi-modal, and fine-grained user requirements. This limitation makes it challenging for users to generate videos with precise control using current models. To address this issue, recent research has explored the integration of additional non-textual conditions, such as camera motion, depth maps, and human pose, to extend pretrained video generation models and enable more controllable video synthesis. These approaches aim to enhance the flexibility and practical applicability of AIGC-driven video generation systems. In this survey, we provide a systematic review of controllable video generation, covering both theoretical foundations and recent advances in the field. We begin by introducing the key concepts and commonly used open-source video generation models. We then focus on control mechanisms in video diffusion models, analyzing how different types of conditions can be incorporated into the denoising process to guide generation. Finally, we categorize existing methods based on the types of control signals they leverage, including single-condition generation, multi-condition generation, and universal controllable generation. For a complete list of the literature on controllable video generation reviewed, please visit our curated repository at https://github.com/mayuelala/Awesome-Controllable-Video-Generation.
comment: project page: https://github.com/mayuelala/Awesome-Controllable-Video-Generation
Video World Models 6
CausalSpatial: A Benchmark for Object-Centric Causal Spatial Reasoning
Humans can look at a static scene and instantly predict what happens next -- will moving this object cause a collision? We call this ability Causal Spatial Reasoning. However, current multimodal large language models (MLLMs) cannot do this, as they remain largely restricted to static spatial perception, struggling to answer "what-if" questions in a 3D scene. We introduce CausalSpatial, a diagnostic benchmark evaluating whether models can anticipate consequences of object motions across four tasks: Collision, Compatibility, Occlusion, and Trajectory. Results expose a severe gap: humans score 84% while GPT-5 achieves only 54%. Why do MLLMs fail? Our analysis uncovers a fundamental deficiency: models over-rely on textual chain-of-thought reasoning that drifts from visual evidence, producing fluent but spatially ungrounded hallucinations. To address this, we propose the Causal Object World model (COW), a framework that externalizes the simulation process by generating videos of hypothetical dynamics. With explicit visual cues of causality, COW enables models to ground their reasoning in physical reality rather than linguistic priors. We make the dataset and code publicly available here: https://github.com/CausalSpatial/CausalSpatial
comment: Code is available: https://github.com/CausalSpatial/CausalSpatial
LLM-VLM Fusion Framework for Autonomous Maritime Port Inspection using a Heterogeneous UAV-USV System
Maritime port inspection plays a critical role in ensuring safety, regulatory compliance, and operational efficiency in complex maritime environments. However, existing inspection methods often rely on manual operations and conventional computer vision techniques that lack scalability and contextual understanding. This study introduces a novel integrated engineering framework that utilizes the synergy between Large Language Models (LLMs) and Vision Language Models (VLMs) to enable autonomous maritime port inspection using cooperative aerial and surface robotic platforms. The proposed framework replaces traditional state-machine mission planners with LLM-driven symbolic planning and improved perception pipelines through VLM-based semantic inspection, enabling context-aware and adaptive monitoring. The LLM module translates natural language mission instructions into executable symbolic plans with dependency graphs that encode operational constraints and ensure safe UAV-USV coordination. Meanwhile, the VLM module performs real-time semantic inspection and compliance assessment, generating structured reports with contextual reasoning. The framework was validated using the extended MBZIRC Maritime Simulator with realistic port infrastructure and further assessed through real-world robotic inspection trials. The lightweight on-board design ensures suitability for resource-constrained maritime platforms, advancing the development of intelligent, autonomous inspection systems. Project resources (code and videos) can be found here: https://github.com/Muhayyuddin/llm-vlm-fusion-port-inspection
comment: submitted in AEJ
Think3D: Thinking with Space for Spatial Reasoning
Understanding and reasoning about the physical world requires spatial intelligence: the ability to interpret geometry, perspective, and spatial relations beyond 2D perception. While recent vision large models (VLMs) excel at visual understanding, they remain fundamentally 2D perceivers and struggle with genuine 3D reasoning. We introduce Think3D, a framework that enables VLM agents to think with 3D space. By leveraging 3D reconstruction models that recover point clouds and camera poses from images or videos, Think3D allows the agent to actively manipulate space through camera-based operations and ego/global-view switching, transforming spatial reasoning into an interactive 3D chain-of-thought process. Without additional training, Think3D significantly improves the spatial reasoning performance of advanced models such as GPT-4.1 and Gemini 2.5 Pro, yielding average gains of +7.8% on BLINK Multi-view and MindCube, and +4.7% on VSI-Bench. We further show that smaller models, which struggle with spatial exploration, benefit significantly from a reinforcement learning policy that enables the model to select informative viewpoints and operations. With RL, the benefit from tool usage increases from +0.7% to +6.8%. Our findings demonstrate that training-free, tool-augmented spatial exploration is a viable path toward more flexible and human-like 3D reasoning in multimodal agents, establishing a new dimension of multimodal intelligence. Code and weights are released at https://github.com/zhangzaibin/spagent.
Spatial-VLN: Zero-Shot Vision-and-Language Navigation With Explicit Spatial Perception and Exploration
Zero-shot Vision-and-Language Navigation (VLN) agents leveraging Large Language Models (LLMs) excel in generalization but suffer from insufficient spatial perception. Focusing on complex continuous environments, we categorize key perceptual bottlenecks into three spatial challenges: door interaction,multi-room navigation, and ambiguous instruction execution, where existing methods consistently suffer high failure rates. We present Spatial-VLN, a perception-guided exploration framework designed to overcome these challenges. The framework consists of two main modules. The Spatial Perception Enhancement (SPE) module integrates panoramic filtering with specialized door and region experts to produce spatially coherent, cross-view consistent perceptual representations. Building on this foundation, our Explored Multi-expert Reasoning (EMR) module uses parallel LLM experts to address waypoint-level semantics and region-level spatial transitions. When discrepancies arise between expert predictions, a query-and-explore mechanism is activated, prompting the agent to actively probe critical areas and resolve perceptual ambiguities. Experiments on VLN-CE demonstrate that Spatial VLN achieves state-of-the-art performance using only low-cost LLMs. Furthermore, to validate real-world applicability, we introduce a value-based waypoint sampling strategy that effectively bridges the Sim2Real gap. Extensive real-world evaluations confirm that our framework delivers superior generalization and robustness in complex environments. Our codes and videos are available at https://yueluhhxx.github.io/Spatial-VLN-web/.
Can the Waymo Open Motion Dataset Support Realistic Behavioral Modeling? A Validation Study with Naturalistic Trajectories
The Waymo Open Motion Dataset (WOMD) has become a popular resource for data-driven modeling of autonomous vehicles (AVs) behavior. However, its validity for behavioral analysis remains uncertain due to proprietary post-processing, the absence of error quantification, and the segmentation of trajectories into 20-second clips. This study examines whether WOMD accurately captures the dynamics and interactions observed in real-world AV operations. Leveraging an independently collected naturalistic dataset from Level 4 AV operations in Phoenix, Arizona (PHX), we perform comparative analyses across three representative urban driving scenarios: discharging at signalized intersections, car-following, and lane-changing behaviors. For the discharging analysis, headways are manually extracted from aerial video to ensure negligible measurement error. For the car-following and lane-changing cases, we apply the Simulation-Extrapolation (SIMEX) method to account for empirically estimated error in the PHX data and use Dynamic Time Warping (DTW) distances to quantify behavioral differences. Results across all scenarios consistently show that behavior in PHX falls outside the behavioral envelope of WOMD. Notably, WOMD underrepresents short headways and abrupt decelerations. These findings suggest that behavioral models calibrated solely on WOMD may systematically underestimate the variability, risk, and complexity of naturalistic driving. Caution is therefore warranted when using WOMD for behavior modeling without proper validation against independently collected data.
Single-Step Reconstruction-Free Anomaly Detection and Segmentation via Diffusion Models
Generative models have demonstrated significant success in anomaly detection and segmentation over the past decade. Recently, diffusion models have emerged as a powerful alternative, outperforming previous approaches such as GANs and VAEs. In typical diffusion-based anomaly detection, a model is trained on normal data, and during inference, anomalous images are perturbed to a predefined intermediate step in the forward diffusion process. The corresponding normal image is then reconstructed through iterative reverse sampling. However, reconstruction-based approaches present three major challenges: (1) the reconstruction process is computationally expensive due to multiple sampling steps, making real-time applications impractical; (2) for complex or subtle patterns, the reconstructed image may correspond to a different normal pattern rather than the original input; and (3) Choosing an appropriate intermediate noise level is challenging because it is application-dependent and often assumes prior knowledge of anomalies, an assumption that does not hold in unsupervised settings. We introduce Reconstruction-free Anomaly Detection with Attention-based diffusion models in Real-time (RADAR), which overcomes the limitations of reconstruction-based anomaly detection. Unlike current SOTA methods that reconstruct the input image, RADAR directly produces anomaly maps from the diffusion model, improving both detection accuracy and computational efficiency. We evaluate RADAR on real-world 3D-printed material and the MVTec-AD dataset. Our approach surpasses state-of-the-art diffusion-based and statistical machine learning models across all key metrics, including accuracy, precision, recall, and F1 score. Specifically, RADAR improves F1 score by 7% on MVTec-AD and 13% on the 3D-printed material dataset compared to the next best model. Code available at: https://github.com/mehrdadmoradi124/RADAR
comment: 9 pages, 8 figures, 1 table. Accepted to 2025 International Conference on Machine Learning and Applications (ICMLA)
Robotics 20
Enabling High-Curvature Navigation in Eversion Robots through Buckle-Inducing Constrictive Bands
Tip-growing eversion robots are renowned for their ability to access remote spaces through narrow passages. However, achieving reliable navigation remains a significant challenge. Existing solutions often rely on artificial muscles integrated into the robot body or active tip-steering mechanisms. While effective, these additions introduce structural complexity and compromise the defining advantages of eversion robots: their inherent softness and compliance. In this paper, we propose a passive approach to reduce bending stiffness by purposefully introducing buckling points along the robot's outer wall. We achieve this by integrating inextensible diameter-reducing circumferential bands at regular intervals along the robot body facilitating forward motion through tortuous, obstacle cluttered paths. Rather than relying on active steering, our approach leverages the robot's natural interaction with the environment, allowing for smooth, compliant navigation. We present a Cosserat rod-based mathematical model to quantify this behavior, capturing the local stiffness reductions caused by the constricting bands and their impact on global bending mechanics. Experimental results demonstrate that these bands reduce the robot's stiffness when bent at the tip by up to 91 percent, enabling consistent traversal of 180 degree bends with a bending radius of as low as 25 mm-notably lower than the 35 mm achievable by standard eversion robots under identical conditions. The feasibility of the proposed method is further demonstrated through a case study in a colon phantom. By significantly improving maneuverability without sacrificing softness or increasing mechanical complexity, this approach expands the applicability of eversion robots in highly curved pathways, whether in relation to pipe inspection or medical procedures such as colonoscopy.
Language-Based Swarm Perception: Decentralized Person Re-Identification via Natural Language Descriptions
We introduce a method for decentralized person re-identification in robot swarms that leverages natural language as the primary representational modality. Unlike traditional approaches that rely on opaque visual embeddings -- high-dimensional feature vectors extracted from images -- the proposed method uses human-readable language to represent observations. Each robot locally detects and describes individuals using a vision-language model (VLM), producing textual descriptions of appearance instead of feature vectors. These descriptions are compared and clustered across the swarm without centralized coordination, allowing robots to collaboratively group observations of the same individual. Each cluster is distilled into a representative description by a language model, providing an interpretable, concise summary of the swarm's collective perception. This approach enables natural-language querying, enhances transparency, and supports explainable swarm behavior. Preliminary experiments demonstrate competitive performance in identity consistency and interpretability compared to embedding-based methods, despite current limitations in text similarity and computational load. Ongoing work explores refined similarity metrics, semantic navigation, and the extension of language-based perception to environmental elements. This work prioritizes decentralized perception and communication, while active navigation remains an open direction for future study.
★★ KILO-EKF: Koopman-Inspired Learned Observations Extended Kalman Filter RA-L
We present the Koopman-Inspired Learned Observations Extended Kalman Filter (KILO-EKF), which combines a standard EKF prediction step with a correction step based on a Koopman-inspired measurement model learned from data. By lifting measurements into a feature space where they are linear in the state, KILO-EKF enables flexible modeling of complex or poorly calibrated sensors while retaining the structure and efficiency of recursive filtering. The resulting linear-Gaussian measurement model is learned in closed form from groundtruth training data, without iterative optimization or reliance on an explicit parametric sensor model. At inference, KILO-EKF performs a standard EKF update using Jacobians obtained via the learned lifting. We validate the approach on a real-world quadrotor localization task using an IMU, ultra-wideband (UWB) sensors, and a downward-facing laser. We compare against multiple EKF baselines with varying levels of sensor calibration. KILO-EKF achieves better accuracy and consistency compared to data-calibrated baselines, and significantly outperforms EKFs that rely on imperfect geometric models, while maintaining real-time inference and fast training. These results demonstrate the effectiveness of Koopman-inspired measurement learning as a scalable alternative to traditional model-based calibration.
comment: Submitted to RA-L. 9 pages, 9 figures, 1 table. Note: version submitted to RA-L did not include the Appendix section present in this arXiv version
ReWorld: Multi-Dimensional Reward Modeling for Embodied World Models
Recently, video-based world models that learn to simulate the dynamics have gained increasing attention in robot learning. However, current approaches primarily emphasize visual generative quality while overlooking physical fidelity, dynamic consistency, and task logic, especially for contact-rich manipulation tasks, which limits their applicability to downstream tasks. To this end, we introduce ReWorld, a framework aimed to employ reinforcement learning to align the video-based embodied world models with physical realism, task completion capability, embodiment plausibility and visual quality. Specifically, we first construct a large-scale (~235K) video preference dataset and employ it to train a hierarchical reward model designed to capture multi-dimensional reward consistent with human preferences. We further propose a practical alignment algorithm that post-trains flow-based world models using this reward through a computationally efficient PPO-style algorithm. Comprehensive experiments and theoretical analysis demonstrate that ReWorld significantly improves the physical fidelity, logical coherence, embodiment and visual quality of generated rollouts, outperforming previous methods.
Learning Diverse Skills for Behavior Models with Mixture of Experts
Imitation learning has demonstrated strong performance in robotic manipulation by learning from large-scale human demonstrations. While existing models excel at single-task learning, it is observed in practical applications that their performance degrades in the multi-task setting, where interference across tasks leads to an averaging effect. To address this issue, we propose to learn diverse skills for behavior models with Mixture of Experts, referred to as Di-BM. Di-BM associates each expert with a distinct observation distribution, enabling experts to specialize in sub-regions of the observation space. Specifically, we employ energy-based models to represent expert-specific observation distributions and jointly train them alongside the corresponding action models. Our approach is plug-and-play and can be seamlessly integrated into standard imitation learning methods. Extensive experiments on multiple real-world robotic manipulation tasks demonstrate that Di-BM significantly outperforms state-of-the-art baselines. Moreover, fine-tuning the pretrained Di-BM on novel tasks exhibits superior data efficiency and the reusable of expert-learned knowledge. Code is available at https://github.com/robotnav-bot/Di-BM.
VR$^2$: A Co-Located Dual-Headset Platform for Touch-Enabled Human-Robot Interaction Research
Touch-rich human-robot interaction (HRI) is difficult to study: building and programming physical robots is costly and slow, while VR-based robot prototypes often remove physical contact or break the tight coupling between an agent's body and the user's felt touch. We present VR2VR, a co-located dual VR-headset platform for HRI research in which a participant and a hidden operator share the same physical space while experiencing different virtual embodiments. The participant sees an expressive virtual robot that interacts face-to-face in a shared virtual environment. In real time, the robot's upper-body gestures, head and gaze behaviors, and facial expressions are mapped from the operator's tracked motion and face signals. Because the operator is physically co-present and calibrated into the same coordinate frame, the operator can also physically touch the participant, enabling the participant to perceive robot touch aligned with the robot's hands; finger and hand motion are mapped to the robot using inverse kinematics to support precise contact. Beyond faithful motion retargeting for limb teleoperation, our VR2VR system supports experimental control by retargeting or selectively enabling nonverbal channels (e.g., head only vs. head+eyes vs. head+eyes+facial expressions) while keeping physical interaction constant. We detail the system design, calibration workflow, and safety considerations, and demonstrate the platform through a touch-based Wizard-of-Oz HRI study, illustrating how VR2VR lowers barriers for rapidly prototyping and rigorously evaluating embodied, touch-centric robot behaviors.
comment: 7 pages, 4 figures
R-VoxelMap: Accurate Voxel Mapping with Recursive Plane Fitting for Online LiDAR Odometry
This paper proposes R-VoxelMap, a novel voxel mapping method that constructs accurate voxel maps using a geometry-driven recursive plane fitting strategy to enhance the localization accuracy of online LiDAR odometry. VoxelMap and its variants typically fit and check planes using all points in a voxel, which may lead to plane parameter deviation caused by outliers, over segmentation of large planes, and incorrect merging across different physical planes. To address these issues, R-VoxelMap utilizes a geometry-driven recursive construction strategy based on an outlier detect-and-reuse pipeline. Specifically, for each voxel, accurate planes are first fitted while separating outliers using random sample consensus (RANSAC). The remaining outliers are then propagated to deeper octree levels for recursive processing, ensuring a detailed representation of the environment. In addition, a point distribution-based validity check algorithm is devised to prevent erroneous plane merging. Extensive experiments on diverse open-source LiDAR(-inertial) simultaneous localization and mapping (SLAM) datasets validate that our method achieves higher accuracy than other state-of-the-art approaches, with comparable efficiency and memory usage. Code will be available on GitHub.
CD-TWINSAFE: A ROS-enabled Digital Twin for Scene Understanding and Safety Emerging V2I Technology
In this paper, the CD-TWINSAFE is introduced, a V2I-based digital twin for Autonomous Vehicles. The proposed architecture is composed of two stacks running simultaneously, an on-board driving stack that includes a stereo camera for scene understanding, and a digital twin stack that runs an Unreal Engine 5 replica of the scene viewed by the camera as well as returning safety alerts to the cockpit. The on-board stack is implemented on the vehicle side including 2 main autonomous modules; localization and perception. The position and orientation of the ego vehicle are obtained using on-board sensors. Furthermore, the perception module is responsible for processing 20-fps images from stereo camera and understands the scene through two complementary pipelines. The pipeline are working on object detection and feature extraction including object velocity, yaw and the safety metrics time-to-collision and time-headway. The collected data form the driving stack are sent to the infrastructure side through the ROS-enabled architecture in the form of custom ROS2 messages and sent over UDP links that ride a 4G modem for V2I communication. The environment is monitored via the digital twin through the shared messages which update the information of the spawned ego vehicle and detected objects based on the real-time localization and perception data. Several tests with different driving scenarios to confirm the validity and real-time response of the proposed architecture.
User-to-Vehicle Interaction in Smart Mobility: The GO-DRiVeS Autonomous Ride-Sharing Application
This paper introduces the GO-DRiVeS application, an on demand ride sharing and requesting mobile application tailored specifically to save long walks and challenges which are time consuming and tiring especially during hot days or when carrying heavy items, faced by university students and staff. The GO-DRiVeS application was developed following the Agile methodology for its flexibility. In addition to, using the mobile application system architecture and client-server architecture. GO-DRiVeS was implemented using React Native (Expo) for the frontend, Node.js and Express for the backend, and MongoDB as the database; based on a detailed analyses to the existing transportation application, comparing their frameworks and identifying their essential functionalities. GO-DRiVeS supports core features like user registration, ride requesting and real-time tracking.In addition to handling multiple requests at the same time in a first come first serve manner. The application was developed based on these features, and the results were conducted in the form of multiple experiments that demonstrated stable behavior in handling the requests, as presented in the Methodology and Results chapters.
From Prompts to Pavement: LMMs-based Agentic Behavior-Tree Generation Framework for Autonomous Vehicles
Autonomous vehicles (AVs) require adaptive behavior planners to navigate unpredictable, real-world environments safely. Traditional behavior trees (BTs) offer structured decision logic but are inherently static and demand labor-intensive manual tuning, limiting their applicability at SAE Level 5 autonomy. This paper presents an agentic framework that leverages large language models (LLMs) and multi-modal vision models (LVMs) to generate and adapt BTs on the fly. A specialized Descriptor agent applies chain-of-symbols prompting to assess scene criticality, a Planner agent constructs high-level sub-goals via in-context learning, and a Generator agent synthesizes executable BT sub-trees in XML format. Integrated into a CARLA+Nav2 simulation, our system triggers only upon baseline BT failure, demonstrating successful navigation around unexpected obstacles (e.g., street blockage) with no human intervention. Compared to a static BT baseline, this approach is a proof-of-concept that extends to diverse driving scenarios.
From Shallow Waters to Mariana Trench: A Survey of Bio-inspired Underwater Soft Robots
Sample Exploring the ocean environment holds profound significance in areas such as resource exploration and ecological protection. Underwater robots struggle with extreme water pressure and often cause noise and damage to the underwater ecosystem, while bio-inspired soft robots draw inspiration from aquatic creatures to address these challenges. These bio-inspired approaches enable robots to withstand high water pressure, minimize drag, operate with efficient manipulation and sensing systems, and interact with the environment in an eco-friendly manner. Consequently, bio-inspired soft robots have emerged as a promising field for ocean exploration. This paper reviews recent advancements in underwater bio-inspired soft robots, analyses their design considerations when facing different desired functions, bio-inspirations, ambient pressure, temperature, light, and biodiversity , and finally explores the progression from bio-inspired principles to practical applications in the field and suggests potential directions for developing the next generation of underwater soft robots.
comment: Provisional accepted by Bioinspiration & Biomimetics
OpenNavMap: Structure-Free Topometric Mapping via Large-Scale Collaborative Localization
Scalable and maintainable map representations are fundamental to enabling large-scale visual navigation and facilitating the deployment of robots in real-world environments. While collaborative localization across multi-session mapping enhances efficiency, traditional structure-based methods struggle with high maintenance costs and fail in feature-less environments or under significant viewpoint changes typical of crowd-sourced data. To address this, we propose OPENNAVMAP, a lightweight, structure-free topometric system leveraging 3D geometric foundation models for on-demand reconstruction. Our method unifies dynamic programming-based sequence matching, geometric verification, and confidence-calibrated optimization to robust, coarse-to-fine submap alignment without requiring pre-built 3D models. Evaluations on the Map-Free benchmark demonstrate superior accuracy over structure-from-motion and regression baselines, achieving an average translation error of 0.62m. Furthermore, the system maintains global consistency across 15km of multi-session data with an absolute trajectory error below 3m for map merging. Finally, we validate practical utility through 12 successful autonomous image-goal navigation tasks on simulated and physical robots. Code and datasets will be publicly available in https://rpl-cs-ucl.github.io/OpenNavMap_page.
comment: 21 pages, 20 figures
An Efficient and Multi-Modal Navigation System with One-Step World Model
Navigation is a fundamental capability for mobile robots. While the current trend is to use learning-based approaches to replace traditional geometry-based methods, existing end-to-end learning-based policies often struggle with 3D spatial reasoning and lack a comprehensive understanding of physical world dynamics. Integrating world models-which predict future observations conditioned on given actions-with iterative optimization planning offers a promising solution due to their capacity for imagination and flexibility. However, current navigation world models, typically built on pure transformer architectures, often rely on multi-step diffusion processes and autoregressive frame-by-frame generation. These mechanisms result in prohibitive computational latency, rendering real-time deployment impossible. To address this bottleneck, we propose a lightweight navigation world model that adopts a one-step generation paradigm and a 3D U-Net backbone equipped with efficient spatial-temporal attention. This design drastically reduces inference latency, enabling high-frequency control while achieving superior predictive performance. We also integrate this model into an optimization-based planning framework utilizing anchor-based initialization to handle multi-modal goal navigation tasks. Extensive closed-loop experiments in both simulation and real-world environments demonstrate our system's superior efficiency and robustness compared to state-of-the-art baselines.
A Comprehensive Review of Bio-Inspired Approaches to Coordination, Communication, and System Architecture in Underwater Swarm Robotics
The increasing complexity of marine operations has intensified the need for intelligent robotic systems to support ocean observation, exploration, and resource management. Underwater swarm robotics offers a promising framework that extends the capabilities of individual autonomous platforms through collective coordination. Inspired by natural systems, such as fish schools and insect colonies, bio-inspired swarm approaches enable distributed decision-making, adaptability, and resilience under challenging marine conditions. Yet research in this field remains fragmented, with limited integration across algorithmic, communication, and hardware design perspectives. This review synthesises bio-inspired coordination mechanisms, communication strategies, and system design considerations for underwater swarm robotics. It examines key marine-specific algorithms, including the Artificial Fish Swarm Algorithm, Whale Optimisation Algorithm, Coral Reef Optimisation, and Marine Predators Algorithm, highlighting their applications in formation control, task allocation, and environmental interaction. The review also analyses communication constraints unique to the underwater domain and emerging acoustic, optical, and hybrid solutions that support cooperative operation. Additionally, it examines hardware and system design advances that enhance system efficiency and scalability. A multi-dimensional classification framework evaluates existing approaches across communication dependency, environmental adaptability, energy efficiency, and swarm scalability. Through this integrated analysis, the review unifies bio-inspired coordination algorithms, communication modalities, and system design approaches. It also identifies converging trends, key challenges, and future research directions for real-world deployment of underwater swarm systems.
comment: Published as part of the Special Issue: Wide Application of Marine Robotic Systems, in the Journal of Marine Science and Engineering
EmoBipedNav: Emotion-aware Social Navigation for Bipedal Robots with Deep Reinforcement Learning
This study presents an emotion-aware navigation framework -- EmoBipedNav -- using deep reinforcement learning (DRL) for bipedal robots walking in socially interactive environments. The inherent locomotion constraints of bipedal robots challenge their safe maneuvering capabilities in dynamic environments. When combined with the intricacies of social environments, including pedestrian interactions and social cues, such as emotions, these challenges become even more pronounced. To address these coupled problems, we propose a two-stage pipeline that considers both bipedal locomotion constraints and complex social environments. Specifically, social navigation scenarios are represented using sequential LiDAR grid maps (LGMs), from which we extract latent features, including collision regions, emotion-related discomfort zones, social interactions, and the spatio-temporal dynamics of evolving environments. The extracted features are directly mapped to the actions of reduced-order models (ROMs) through a DRL architecture. Furthermore, the proposed framework incorporates full-order dynamics and locomotion constraints during training, effectively accounting for tracking errors and restrictions of the locomotion controller while planning the trajectory with ROMs. Comprehensive experiments demonstrate that our approach exceeds both model-based planners and DRL-based baselines. The hardware videos and open-source code are available at https://gatech-lidar.github.io/emobipednav.github.io/.
comment: 13 pages
Knot So Simple: A Minimalistic Environment for Spatial Reasoning
We propose KnotGym, an interactive environment for complex, spatial reasoning and manipulation. KnotGym includes goal-oriented rope manipulation tasks with varying levels of complexity, all requiring acting from pure image observations. Tasks are defined along a clear and quantifiable axis of complexity based on the number of knot crossings, creating a natural generalization test. KnotGym has a simple observation space, allowing for scalable development, yet it highlights core challenges in integrating acute perception, spatial reasoning, and grounded manipulation. We evaluate methods of different classes, including model-based RL, model-predictive control, and chain-of-thought reasoning, and illustrate the challenges KnotGym presents. KnotGym is available at https://github.com/lil-lab/knotgym.
comment: Fix camera ready footer
MimicKit: A Reinforcement Learning Framework for Motion Imitation and Control
MimicKit is an open-source framework for training motion controllers using motion imitation and reinforcement learning. The codebase provides implementations of commonly-used motion-imitation techniques and RL algorithms. This framework is intended to support research and applications in computer graphics and robotics by providing a unified training framework, along with standardized environment, agent, and data structures. The codebase is designed to be modular and easily configurable, enabling convenient modification and extension to new characters and tasks. The open-source codebase is available at: https://github.com/xbpeng/MimicKit.
Learning with pyCub: A Simulation and Exercise Framework for Humanoid Robotics
We present pyCub, an open-source physics-based simulation of the humanoid robot iCub, along with exercises to teach students the basics of humanoid robotics. Compared to existing iCub simulators (iCub SIM, iCub Gazebo), which require C++ code and YARP as middleware, pyCub works without YARP and with Python code. The complete robot with all articulations has been simulated, with two cameras in the eyes and the unique sensitive skin of the iCub comprising 4000 receptors on its body surface. The exercises range from basic control of the robot in velocity, joint, and Cartesian space to more complex tasks like gazing, grasping, or reactive control. The whole framework is written and controlled with Python, thus allowing to be used even by people with small or almost no programming practice. The exercises can be scaled to different difficulty levels. We tested the framework in two runs of a course on humanoid robotics. The simulation, exercises, documentation, Docker images, and example videos are publicly available at https://rustlluk.github.io/pyCub.
comment: Submitted for RiE 2026
Safety Not Found (404): Hidden Risks of LLM-Based Robotics Decision Making
One mistake by an AI system in a safety-critical setting can cost lives. As Large Language Models (LLMs) become integral to robotics decision-making, the physical dimension of risk grows; a single wrong instruction can directly endanger human safety. This paper addresses the urgent need to systematically evaluate LLM performance in scenarios where even minor errors are catastrophic. Through a qualitative evaluation of a fire evacuation scenario, we identified critical failure cases in LLM-based decision-making. Based on these, we designed seven tasks for quantitative assessment, categorized into: Complete Information, Incomplete Information, and Safety-Oriented Spatial Reasoning (SOSR). Complete information tasks utilize ASCII maps to minimize interpretation ambiguity and isolate spatial reasoning from visual processing. Incomplete information tasks require models to infer missing context, testing for spatial continuity versus hallucinations. SOSR tasks use natural language to evaluate safe decision-making in life-threatening contexts. We benchmark various LLMs and Vision-Language Models (VLMs) across these tasks. Beyond aggregate performance, we analyze the implications of a 1% failure rate, highlighting how "rare" errors escalate into catastrophic outcomes. Results reveal serious vulnerabilities: several models achieved a 0% success rate in ASCII navigation, while in a simulated fire drill, models instructed robots to move toward hazardous areas instead of emergency exits. Our findings lead to a sobering conclusion: current LLMs are not ready for direct deployment in safety-critical systems. A 99% accuracy rate is dangerously misleading in robotics, as it implies one out of every hundred executions could result in catastrophic harm. We demonstrate that even state-of-the-art models cannot guarantee safety, and absolute reliance on them creates unacceptable risks.
comment: Corrected author order in metadata; manuscript unchanged
Floor Plan-Guided Visual Navigation Incorporating Depth and Directional Cues
Current visual navigation strategies mainly follow an exploration-first and then goal-directed navigation paradigm. This exploratory phase inevitably compromises the overall efficiency of navigation. Recent studies propose leveraging floor plans alongside RGB inputs to guide agents, aiming for rapid navigation without prior exploration or mapping. Key issues persist despite early successes. The modal gap and content misalignment between floor plans and RGB images necessitate an efficient approach to extract the most salient and complementary features from both for reliable navigation. Here, we propose GlocDiff, a novel framework that employs a diffusion-based policy to continuously predict future waypoints. This policy is conditioned on two complementary information streams: (1) local depth cues derived from the current RGB observation, and (2) global directional guidance extracted from the floor plan. The former handles immediate navigation safety by capturing surrounding geometry, while the latter ensures goal-directed efficiency by offering definitive directional cues. Extensive evaluations on the FloNa benchmark demonstrate that GlocDiff achieves superior efficiency and effectiveness. Furthermore, its successful deployment in real-world scenarios underscores its strong potential for broad practical application.
Computer Vision and Pattern Recognition 35
Linear Mechanisms for Spatiotemporal Reasoning in Vision Language Models
Spatio-temporal reasoning is a remarkable capability of Vision Language Models (VLMs), but the underlying mechanisms of such abilities remain largely opaque. We postulate that visual/geometrical and textual representations of spatial structure must be combined at some point in VLM computations. We search for such confluence, and ask whether the identified representation can causally explain aspects of input-output model behavior through a linear model. We show empirically that VLMs encode object locations by linearly binding \textit{spatial IDs} to textual activations, then perform reasoning via language tokens. Through rigorous causal interventions we demonstrate that these IDs, which are ubiquitous across the model, can systematically mediate model beliefs at intermediate VLM layers. Additionally, we find that spatial IDs serve as a diagnostic tool for identifying limitations in existing VLMs, and as a valuable learning signal. We extend our analysis to video VLMs and identify an analogous linear temporal ID mechanism. By characterizing our proposed spatiotemporal ID mechanism, we elucidate a previously underexplored internal reasoning process in VLMs, toward improved interpretability and the principled design of more aligned and capable models. We release our code for reproducibility: https://github.com/Raphoo/linear-mech-vlms.
Towards Robust Universal Perturbation Attacks: A Float-Coded, Penalty-Driven Evolutionary Approach
Universal adversarial perturbations (UAPs) have garnered significant attention due to their ability to undermine deep neural networks across multiple inputs using a single noise pattern. Evolutionary algorithms offer a promising approach to generating such perturbations due to their ability to navigate non-convex, gradient-free landscapes. In this work, we introduce a float-coded, penalty-driven single-objective evolutionary framework for UAP generation that achieves lower visibility perturbations while enhancing attack success rates. Our approach leverages continuous gene representations aligned with contemporary deep learning scales, incorporates dynamic evolutionary operators with adaptive scheduling, and utilizes a modular PyTorch implementation for seamless integration with modern architectures. Additionally, we ensure the universality of the generated perturbations by testing across diverse models and by periodically switching batches to prevent overfitting. Experimental results on the ImageNet dataset demonstrate that our framework consistently produces perturbations with smaller norms, higher misclassification effectiveness, and faster convergence compared to existing evolutionary-based methods. These findings highlight the robustness and scalability of our approach for universal adversarial attacks across various deep learning architectures.
Camera Pose Revisited
Estimating the position and orientation of a camera with respect to an observed scene is one of the central problems in computer vision, particularly in the context of camera calibration and multi-sensor systems. This paper addresses the planar Perspective--$n$--Point problem, with special emphasis on the initial estimation of the pose of a calibration object. As a solution, we propose the \texttt{PnP-ProCay78} algorithm, which combines the classical quadratic formulation of the reconstruction error with a Cayley parameterization of rotations and least-squares optimization. The key component of the method is a deterministic selection of starting points based on an analysis of the reconstruction error for two canonical vectors, allowing costly solution-space search procedures to be avoided. Experimental validation is performed using data acquired also from high-resolution RGB cameras and very low-resolution thermal cameras in an integrated RGB--IR setup. The results demonstrate that the proposed algorithm achieves practically the same projection accuracy as optimal \texttt{SQPnP} and slightly higher than \texttt{IPPE}, both prominent \texttt{PnP-OpenCV} procedures. However, \texttt{PnP-ProCay78} maintains a significantly simpler algorithmic structure. Moreover, the analysis of optimization trajectories in Cayley space provides an intuitive insight into the convergence process, making the method attractive also from a didactic perspective. Unlike existing PnP solvers, the proposed \texttt{PnP-ProCay78} algorithm combines projection error minimization with an analytically eliminated reconstruction-error surrogate for translation, yielding a hybrid cost formulation that is both geometrically transparent and computationally efficient.
comment: 30 pages, 9 figures, 9 tables
Life, Machine Learning, and the Search for Habitability: Predicting Biosignature Fluxes for the Habitable Worlds Observatory AAAI-26
Future direct-imaging flagship missions, such as NASA's Habitable Worlds Observatory (HWO), face critical decisions in prioritizing observations due to extremely stringent time and resource constraints. In this paper, we introduce two advanced machine-learning architectures tailored for predicting biosignature species fluxes from exoplanetary reflected-light spectra: a Bayesian Convolutional Neural Network (BCNN) and our novel model architecture, the Spectral Query Adaptive Transformer (SQuAT). The BCNN robustly quantifies both epistemic and aleatoric uncertainties, offering reliable predictions under diverse observational conditions, whereas SQuAT employs query-driven attention mechanisms to enhance interpretability by explicitly associating spectral features with specific biosignature species. We demonstrate that both models achieve comparably high predictive accuracy on an augmented dataset spanning a wide range of exoplanetary conditions, while highlighting their distinct advantages in uncertainty quantification and spectral interpretability. These capabilities position our methods as promising tools for accelerating target triage, optimizing observation schedules, and maximizing scientific return for upcoming flagship missions such as HWO.
comment: 8 pages, 4 figures. Submitted and accepted in AAAI-26 (IAAI Emerging Applications track)
PISE: Physics-Anchored Semantically-Enhanced Deep Computational Ghost Imaging for Robust Low-Bandwidth Machine Perception
We propose PISE, a physics-informed deep ghost imaging framework for low-bandwidth edge perception. By combining adjoint operator initialization with semantic guidance, PISE improves classification accuracy by 2.57% and reduces variance by 9x at 5% sampling.
comment: 4 pages, 4 figures, 3 tables. Submitted to IEICE Transactions
Encoding Emotion Through Self-Supervised Eye Movement Reconstruction
The relationship between emotional expression and eye movement is well-documented, with literature establishing gaze patterns are reliable indicators of emotion. However, most studies utilize specialized, high-resolution eye-tracking equipment, limiting the potential reach of findings. We investigate how eye movement can be used to predict multimodal markers of emotional expression from naturalistic, low-resolution videos. We utilize a collection of video interviews from the USC Shoah Foundation's Visual History Archive with Holocaust survivors as they recount their experiences in the Auschwitz concentration camp. Inspired by pretraining methods on language models, we develop a novel gaze detection model that uses self-supervised eye movement reconstruction that can effectively leverage unlabeled video. We use this model's encoder embeddings to fine-tune models on two downstream tasks related to emotional expression. The first is aligning eye movement with directional emotion estimates from speech. The second task is using eye gaze as a predictor of three momentary manifestations of emotional behaviors: laughing, crying/sobbing, and sighing. We find our new model is predictive of emotion outcomes and observe a positive correlation between pretraining performance and emotion processing performance for both experiments. We conclude self-supervised eye movement reconstruction is an effective method for encoding the affective signal they carry.
BirdsEye-RU: A Dataset For Detecting Faces from Overhead Images
Detecting faces in overhead images remains a significant challenge due to extreme scale variations and environmental clutter. To address this, we created the BirdsEye-RU dataset, a comprehensive collection of 2,978 images containing over eight thousand annotated faces. This dataset is specifically designed to capture small and distant faces across diverse environments, containing both drone images and smartphone-captured images from high altitude. We present a detailed description of the BirdsEye-RU dataset in this paper. We made our dataset freely available to the public, and it can be accessed at https://www.kaggle.com/datasets/mdahanafarifkhan/birdseye-ru.
XRefine: Attention-Guided Keypoint Match Refinement
Sparse keypoint matching is crucial for 3D vision tasks, yet current keypoint detectors often produce spatially inaccurate matches. Existing refinement methods mitigate this issue through alignment of matched keypoint locations, but they are typically detector-specific, requiring retraining for each keypoint detector. We introduce XRefine, a novel, detector-agnostic approach for sub-pixel keypoint refinement that operates solely on image patches centered at matched keypoints. Our cross-attention-based architecture learns to predict refined keypoint coordinates without relying on internal detector representations, enabling generalization across detectors. Furthermore, XRefine can be extended to handle multi-view feature tracks. Experiments on MegaDepth, KITTI, and ScanNet demonstrate that the approach consistently improves geometric estimation accuracy, achieving superior performance compared to existing refinement methods while maintaining runtime efficiency. Our code and trained models can be found at https://github.com/boschresearch/xrefine.
Deep Feature Deformation Weights
Handle-based mesh deformation has been a long-standing paradigm in computer graphics, enabling intuitive shape edits from sparse controls. Classic techniques offer precise and rapid deformation control. However, they solve an optimization problem with constraints defined by control handle placement, requiring a user to know apriori the ideal distribution of handles on the shape to accomplish the desired edit. The mapping from handle set to deformation behavior is often unintuitive and, importantly, non-semantic. Modern data-driven methods, on the other hand, leverage a data prior to obtain semantic edits, but are slow and imprecise. We propose a technique that fuses the semantic prior of data with the precise control and speed of traditional frameworks. Our approach is surprisingly simple yet effective: deep feature proximity makes for smooth and semantic deformation weights, with no need for additional regularization. The weights can be computed in real-time for any surface point, whereas prior methods require optimization for new handles. Moreover, the semantic prior from deep features enables co-deformation of semantic parts. We introduce an improved feature distillation pipeline, barycentric feature distillation, which efficiently uses the visual signal from shape renders to minimize distillation cost. This allows our weights to be computed for high resolution meshes in under a minute, in contrast to potentially hours for both classical and neural methods. We preserve and extend properties of classical methods through feature space constraints and locality weighting. Our field representation allows for automatic detection of semantic symmetries, which we use to produce symmetry-preserving deformations. We show a proof-of-concept application which can produce deformations for meshes up to 1 million faces in real-time on a consumer-grade machine.
Fine-Tuning Cycle-GAN for Domain Adaptation of MRI Images
Magnetic Resonance Imaging (MRI) scans acquired from different scanners or institutions often suffer from domain shifts owing to variations in hardware, protocols, and acquisition parameters. This discrepancy degrades the performance of deep learning models trained on source domain data when applied to target domain images. In this study, we propose a Cycle-GAN-based model for unsupervised medical-image domain adaptation. Leveraging CycleGANs, our model learns bidirectional mappings between the source and target domains without paired training data, preserving the anatomical content of the images. By leveraging Cycle-GAN capabilities with content and disparity loss for adaptation tasks, we ensured image-domain adaptation while maintaining image integrity. Several experiments on MRI datasets demonstrated the efficacy of our model in bidirectional domain adaptation without labelled data. Furthermore, research offers promising avenues for improving the diagnostic accuracy of healthcare. The statistical results confirm that our approach improves model performance and reduces domain-related variability, thus contributing to more precise and consistent medical image analysis.
comment: 14 pages, 9 figures, 2 tables
SDCoNet: Saliency-Driven Multi-Task Collaborative Network for Remote Sensing Object Detection
In remote sensing images, complex backgrounds, weak object signals, and small object scales make accurate detection particularly challenging, especially under low-quality imaging conditions. A common strategy is to integrate single-image super-resolution (SR) before detection; however, such serial pipelines often suffer from misaligned optimization objectives, feature redundancy, and a lack of effective interaction between SR and detection. To address these issues, we propose a Saliency-Driven multi-task Collaborative Network (SDCoNet) that couples SR and detection through implicit feature sharing while preserving task specificity. SDCoNet employs the swin transformer-based shared encoder, where hierarchical window-shifted self-attention supports cross-task feature collaboration and adaptively balances the trade-off between texture refinement and semantic representation. In addition, a multi-scale saliency prediction module produces importance scores to select key tokens, enabling focused attention on weak object regions, suppression of background clutter, and suppression of adverse features introduced by multi-task coupling. Furthermore, a gradient routing strategy is introduced to mitigate optimization conflicts. It first stabilizes detection semantics and subsequently routes SR gradients along a detection-oriented direction, enabling the framework to guide the SR branch to generate high-frequency details that are explicitly beneficial for detection. Experiments on public datasets, including NWPU VHR-10-Split, DOTAv1.5-Split, and HRSSD-Split, demonstrate that the proposed method, while maintaining competitive computational efficiency, significantly outperforms existing mainstream algorithms in small object detection on low-quality remote sensing images. Our code is available at https://github.com/qiruo-ya/SDCoNet.
Video Individual Counting and Tracking from Moving Drones: A Benchmark and Methods
Counting and tracking dense crowds in large-scale scenes is highly challenging, yet existing methods mainly rely on datasets captured by fixed cameras, which provide limited spatial coverage and are inadequate for large-scale dense crowd analysis. To address this limitation, we propose a flexible solution using moving drones to capture videos and perform video-level crowd counting and tracking of unique pedestrians across entire scenes. We introduce MovingDroneCrowd++, the largest video-level dataset for dense crowd counting and tracking captured by moving drones, covering diverse and complex conditions with varying flight altitudes, camera angles, and illumination. Existing methods fail to achieve satisfactory performance on this dataset. To this end, we propose GD3A (Global Density Map Decomposition via Descriptor Association), a density map-based video individual counting method that avoids explicit localization. GD3A establishes pixel-level correspondences between pedestrian descriptors across consecutive frames via optimal transport with an adaptive dustbin score, enabling the decomposition of global density maps into shared, inflow, and outflow components. Building on this framework, we further introduce DVTrack, which converts descriptor-level matching into instance-level associations through a descriptor voting mechanism for pedestrian tracking. Experimental results show that our methods significantly outperform existing approaches under dense crowds and complex motion, reducing counting error by 47.4 percent and improving tracking performance by 39.2 percent.
Histopath-C: Towards Realistic Domain Shifts for Histopathology Vision-Language Adaptation WACV 2026
Medical Vision-language models (VLMs) have shown remarkable performances in various medical imaging domains such as histo\-pathology by leveraging pre-trained, contrastive models that exploit visual and textual information. However, histopathology images may exhibit severe domain shifts, such as staining, contamination, blurring, and noise, which may severely degrade the VLM's downstream performance. In this work, we introduce Histopath-C, a new benchmark with realistic synthetic corruptions designed to mimic real-world distribution shifts observed in digital histopathology. Our framework dynamically applies corruptions to any available dataset and evaluates Test-Time Adaptation (TTA) mechanisms on the fly. We then propose LATTE, a transductive, low-rank adaptation strategy that exploits multiple text templates, mitigating the sensitivity of histopathology VLMs to diverse text inputs. Our approach outperforms state-of-the-art TTA methods originally designed for natural images across a breadth of histopathology datasets, demonstrating the effectiveness of our proposed design for robust adaptation in histopathology images. Code and data are available at https://github.com/Mehrdad-Noori/Histopath-C.
comment: Accepted to WACV 2026
NeuralFur: Animal Fur Reconstruction From Multi-View Images
Reconstructing realistic animal fur geometry from images is a challenging task due to the fine-scale details, self-occlusion, and view-dependent appearance of fur. In contrast to human hairstyle reconstruction, there are also no datasets that can be leveraged to learn a fur prior for different animals. In this work, we present a first multi-view-based method for high-fidelity 3D fur modeling of animals using a strand-based representation, leveraging the general knowledge of a vision language model. Given multi-view RGB images, we first reconstruct a coarse surface geometry using traditional multi-view stereo techniques. We then use a vision language model (VLM) system to retrieve information about the realistic length structure of the fur for each part of the body. We use this knowledge to construct the animal's furless geometry and grow strands atop it. The fur reconstruction is supervised with both geometric and photometric losses computed from multi-view images. To mitigate orientation ambiguities stemming from the Gabor filters that are applied to the input images, we additionally utilize the VLM to guide the strands' growth direction and their relation to the gravity vector that we incorporate as a loss. With this new schema of using a VLM to guide 3D reconstruction from multi-view inputs, we show generalization across a variety of animals with different fur types. For additional results and code, please refer to https://neuralfur.is.tue.mpg.de.
comment: For additional results and code, please refer to https://neuralfur.is.tue.mpg.de
DCAC: Dynamic Class-Aware Cache Creates Stronger Out-of-Distribution Detectors AAAI2026
Out-of-distribution (OOD) detection remains a fundamental challenge for deep neural networks, particularly due to overconfident predictions on unseen OOD samples during testing. We reveal a key insight: OOD samples predicted as the same class, or given high probabilities for it, are visually more similar to each other than to the true in-distribution (ID) samples. Motivated by this class-specific observation, we propose DCAC (Dynamic Class-Aware Cache), a training-free, test-time calibration module that maintains separate caches for each ID class to collect high-entropy samples and calibrate the raw predictions of input samples. DCAC leverages cached visual features and predicted probabilities through a lightweight two-layer module to mitigate overconfident predictions on OOD samples. This module can be seamlessly integrated with various existing OOD detection methods across both unimodal and vision-language models while introducing minimal computational overhead. Extensive experiments on multiple OOD benchmarks demonstrate that DCAC significantly enhances existing methods, achieving substantial improvements, i.e., reducing FPR95 by 6.55% when integrated with ASH-S on ImageNet OOD benchmark.
comment: 9 pages, 9 figures, Accepted by AAAI2026
Large-scale EM Benchmark for Multi-Organelle Instance Segmentation in the Wild
Accurate instance-level segmentation of organelles in electron microscopy (EM) is critical for quantitative analysis of subcellular morphology and inter-organelle interactions. However, current benchmarks, based on small, curated datasets, fail to capture the inherent heterogeneity and large spatial context of in-the-wild EM data, imposing fundamental limitations on current patch-based methods. To address these limitations, we developed a large-scale, multi-source benchmark for multi-organelle instance segmentation, comprising over 100,000 2D EM images across variety cell types and five organelle classes that capture real-world variability. Dataset annotations were generated by our designed connectivity-aware Label Propagation Algorithm (3D LPA) with expert refinement. We further benchmarked several state-of-the-art models, including U-Net, SAM variants, and Mask2Former. Our results show several limitations: current models struggle to generalize across heterogeneous EM data and perform poorly on organelles with global, distributed morphologies (e.g., Endoplasmic Reticulum). These findings underscore the fundamental mismatch between local-context models and the challenge of modeling long-range structural continuity in the presence of real-world variability. The benchmark dataset and labeling tool will be publicly released soon.
Privacy-Preserving Federated Learning with Verifiable Fairness Guarantees
Federated learning enables collaborative model training across distributed institutions without centralizing sensitive data; however, ensuring algorithmic fairness across heterogeneous data distributions while preserving privacy remains fundamentally unresolved. This paper introduces CryptoFair-FL, a novel cryptographic framework providing the first verifiable fairness guarantees for federated learning systems under formal security definitions. The proposed approach combines additively homomorphic encryption with secure multi-party computation to enable privacy-preserving verification of demographic parity and equalized odds metrics without revealing protected attribute distributions or individual predictions. A novel batched verification protocol reduces computational complexity from BigO(n^2) to BigO(n \log n) while maintaining (\dparam, \deltap)-differential privacy with dparam = 0.5 and deltap = 10^{-6}. Theoretical analysis establishes information-theoretic lower bounds on the privacy cost of fairness verification, demonstrating that the proposed protocol achieves near-optimal privacy-fairness tradeoffs. Comprehensive experiments across four benchmark datasets (MIMIC-IV healthcare records, Adult Income, CelebA, and a novel FedFair-100 benchmark) demonstrate that CryptoFair-FL reduces fairness violations from 0.231 to 0.031 demographic parity difference while incurring only 2.3 times computational overhead compared to standard federated averaging. The framework successfully defends against attribute inference attacks, maintaining adversarial success probability below 0.05 across all tested configurations. These results establish a practical pathway for deploying fairness-aware federated learning in regulated industries requiring both privacy protection and algorithmic accountability.
Adversarial Defense in Vision-Language Models: An Overview
The widespread use of Vision Language Models (VLMs, e.g. CLIP) has raised concerns about their vulnerability to sophisticated and imperceptible adversarial attacks. These attacks could compromise model performance and system security in cross-modal tasks. To address this challenge, three main defense paradigms have been proposed: Training-time Defense, Test-time Adaptation Defense, and Training-free Defense. Training-time Defense involves modifying the training process, typically through adversarial fine-tuning to improve the robustness to adversarial examples. While effective, this approach requires substantial computational resources and may not generalize across all adversarial attacks. Test-time Adaptation Defense focuses on adapting the model at inference time by updating its parameters to handle unlabeled adversarial examples, offering flexibility but often at the cost of increased complexity and computational overhead. Training-free Defense avoids modifying the model itself, instead focusing on altering the adversarial inputs or their feature embeddings, which enforces input perturbations to mitigate the impact of attacks without additional training. This survey reviews the latest advancements in adversarial defense strategies for VLMs, highlighting the strengths and limitations of such approaches and discussing ongoing challenges in enhancing the robustness of VLMs.
Constraint-Aware Neurosymbolic Uncertainty Quantification with Bayesian Deep Learning for Scientific Discovery
Scientific Artificial Intelligence (AI) applications require models that deliver trustworthy uncertainty estimates while respecting domain constraints. Existing uncertainty quantification methods lack mechanisms to incorporate symbolic scientific knowledge, while neurosymbolic approaches operate deterministically without principled uncertainty modeling. We introduce the Constraint-Aware Neurosymbolic Uncertainty Framework (CANUF), unifying Bayesian deep learning with differentiable symbolic reasoning. The architecture comprises three components: automated constraint extraction from scientific literature, probabilistic neural backbone with variational inference, and differentiable constraint satisfaction layer ensuring physical consistency. Experiments on Materials Project (140,000+ materials), QM9 molecular properties, and climate benchmarks show CANUF reduces Expected Calibration Error by 34.7% versus Bayesian neural networks while maintaining 99.2% constraint satisfaction. Ablations reveal constraint-guided recalibration contributes 18.3% performance gain, with constraint extraction achieving 91.4% precision. CANUF provides the first end-to-end differentiable pipeline simultaneously addressing uncertainty quantification, constraint satisfaction, and interpretable explanations for scientific predictions.
SkeFi: Cross-Modal Knowledge Transfer for Wireless Skeleton-Based Action Recognition
Skeleton-based action recognition leverages human pose keypoints to categorize human actions, which shows superior generalization and interoperability compared to regular end-to-end action recognition. Existing solutions use RGB cameras to annotate skeletal keypoints, but their performance declines in dark environments and raises privacy concerns, limiting their use in smart homes and hospitals. This paper explores non-invasive wireless sensors, i.e., LiDAR and mmWave, to mitigate these challenges as a feasible alternative. Two problems are addressed: (1) insufficient data on wireless sensor modality to train an accurate skeleton estimation model, and (2) skeletal keypoints derived from wireless sensors are noisier than RGB, causing great difficulties for subsequent action recognition models. Our work, SkeFi, overcomes these gaps through a novel cross-modal knowledge transfer method acquired from the data-rich RGB modality. We propose the enhanced Temporal Correlation Adaptive Graph Convolution (TC-AGC) with frame interactive enhancement to overcome the noise from missing or inconsecutive frames. Additionally, our research underscores the effectiveness of enhancing multiscale temporal modeling through dual temporal convolution. By integrating TC-AGC with temporal modeling for cross-modal transfer, our framework can extract accurate poses and actions from noisy wireless sensors. Experiments demonstrate that SkeFi realizes state-of-the-art performances on mmWave and LiDAR. The code is available at https://github.com/Huang0035/Skefi.
comment: Published in IEEE Internet of Things Journal
ReWorld: Multi-Dimensional Reward Modeling for Embodied World Models
Recently, video-based world models that learn to simulate the dynamics have gained increasing attention in robot learning. However, current approaches primarily emphasize visual generative quality while overlooking physical fidelity, dynamic consistency, and task logic, especially for contact-rich manipulation tasks, which limits their applicability to downstream tasks. To this end, we introduce ReWorld, a framework aimed to employ reinforcement learning to align the video-based embodied world models with physical realism, task completion capability, embodiment plausibility and visual quality. Specifically, we first construct a large-scale (~235K) video preference dataset and employ it to train a hierarchical reward model designed to capture multi-dimensional reward consistent with human preferences. We further propose a practical alignment algorithm that post-trains flow-based world models using this reward through a computationally efficient PPO-style algorithm. Comprehensive experiments and theoretical analysis demonstrate that ReWorld significantly improves the physical fidelity, logical coherence, embodiment and visual quality of generated rollouts, outperforming previous methods.
HOT-POT: Optimal Transport for Sparse Stereo Matching
Stereo vision between images faces a range of challenges, including occlusions, motion, and camera distortions, across applications in autonomous driving, robotics, and face analysis. Due to parameter sensitivity, further complications arise for stereo matching with sparse features, such as facial landmarks. To overcome this ill-posedness and enable unsupervised sparse matching, we consider line constraints of the camera geometry from an optimal transport (OT) viewpoint. Formulating camera-projected points as (half)lines, we propose the use of the classical epipolar distance as well as a 3D ray distance to quantify matching quality. Employing these distances as a cost function of a (partial) OT problem, we arrive at efficiently solvable assignment problems. Moreover, we extend our approach to unsupervised object matching by formulating it as a hierarchical OT problem. The resulting algorithms allow for efficient feature and object matching, as demonstrated in our numerical experiments. Here, we focus on applications in facial analysis, where we aim to match distinct landmarking conventions.
comment: 18 pages, 10 figures, 6 tables
Weaknesses of Facial Emotion Recognition Systems
Emotion detection from faces is one of the machine learning problems needed for human-computer interaction. The variety of methods used is enormous, which motivated an in-depth review of articles and scientific studies. Three of the most interesting and best solutions are selected, followed by the selection of three datasets that stood out for the diversity and number of images in them. The selected neural networks are trained, and then a series of experiments are performed to compare their performance, including testing on different datasets than a model was trained on. This reveals weaknesses in existing solutions, including differences between datasets, unequal levels of difficulty in recognizing certain emotions and the challenges in differentiating between closely related emotions.
Class-Partitioned VQ-VAE and Latent Flow Matching for Point Cloud Scene Generation AAAI 2026
Most 3D scene generation methods are limited to only generating object bounding box parameters while newer diffusion methods also generate class labels and latent features. Using object size or latent feature, they then retrieve objects from a predefined database. For complex scenes of varied, multi-categorical objects, diffusion-based latents cannot be effectively decoded by current autoencoders into the correct point cloud objects which agree with target classes. We introduce a Class-Partitioned Vector Quantized Variational Autoencoder (CPVQ-VAE) that is trained to effectively decode object latent features, by employing a pioneering $\textit{class-partitioned codebook}$ where codevectors are labeled by class. To address the problem of $\textit{codebook collapse}$, we propose a $\textit{class-aware}$ running average update which reinitializes dead codevectors within each partition. During inference, object features and class labels, both generated by a Latent-space Flow Matching Model (LFMM) designed specifically for scene generation, are consumed by the CPVQ-VAE. The CPVQ-VAE's class-aware inverse look-up then maps generated latents to codebook entries that are decoded to class-specific point cloud shapes. Thereby, we achieve pure point cloud generation without relying on an external objects database for retrieval. Extensive experiments reveal that our method reliably recovers plausible point cloud scenes, with up to 70.4% and 72.3% reduction in Chamfer and Point2Mesh errors on complex living room scenes.
comment: Accepted to AAAI 2026, Main Technical Track
A Hierarchical Benchmark of Foundation Models for Dermatology
Foundation models have transformed medical image analysis by providing robust feature representations that reduce the need for large-scale task-specific training. However, current benchmarks in dermatology often reduce the complex diagnostic taxonomy to flat, binary classification tasks, such as distinguishing melanoma from benign nevi. This oversimplification obscures a model's ability to perform fine-grained differential diagnoses, which is critical for clinical workflow integration. This study evaluates the utility of embeddings derived from ten foundation models, spanning general computer vision, general medical imaging, and dermatology-specific domains, for hierarchical skin lesion classification. Using the DERM12345 dataset, which comprises 40 lesion subclasses, we calculated frozen embeddings and trained lightweight adapter models using a five-fold cross-validation. We introduce a hierarchical evaluation framework that assesses performance across four levels of clinical granularity: 40 Subclasses, 15 Main Classes, 2 and 4 Superclasses, and Binary Malignancy. Our results reveal a "granularity gap" in model capabilities: MedImageInsights achieved the strongest overall performance (97.52% weighted F1-Score on Binary Malignancy detection) but declined to 65.50% on fine-grained 40-class subtype classification. Conversely, MedSigLip (69.79%) and dermatology-specific models (Derm Foundation and MONET) excelled at fine-grained 40-class subtype discrimination while achieving lower overall performance than MedImageInsights on broader classification tasks. Our findings suggest that while general medical foundation models are highly effective for high-level screening, specialized modeling strategies are necessary for the granular distinctions required in diagnostic support systems.
Exploring the Potentials of Spiking Neural Networks for Image Deraining AAAI2026
Biologically plausible and energy-efficient frameworks such as Spiking Neural Networks (SNNs) have not been sufficiently explored in low-level vision tasks. Taking image deraining as an example, this study addresses the representation of the inherent high-pass characteristics of spiking neurons, specifically in image deraining and innovatively proposes the Visual LIF (VLIF) neuron, overcoming the obstacle of lacking spatial contextual understanding present in traditional spiking neurons. To tackle the limitation of frequency-domain saturation inherent in conventional spiking neurons, we leverage the proposed VLIF to introduce the Spiking Decomposition and Enhancement Module and the lightweight Spiking Multi-scale Unit for hierarchical multi-scale representation learning. Extensive experiments across five benchmark deraining datasets demonstrate that our approach significantly outperforms state-of-the-art SNN-based deraining methods, achieving this superior performance with only 13\% of their energy consumption. These findings establish a solid foundation for deploying SNNs in high-performance, energy-efficient low-level vision tasks.
comment: Accepted By AAAI2026
Normalized Conditional Mutual Information Surrogate Loss for Deep Neural Classifiers
In this paper, we propose a novel information theoretic surrogate loss; normalized conditional mutual information (NCMI); as a drop in alternative to the de facto cross-entropy (CE) for training deep neural network (DNN) based classifiers. We first observe that the model's NCMI is inversely proportional to its accuracy. Building on this insight, we introduce an alternating algorithm to efficiently minimize the NCMI. Across image recognition and whole-slide imaging (WSI) subtyping benchmarks, NCMI-trained models surpass state of the art losses by substantial margins at a computational cost comparable to that of CE. Notably, on ImageNet, NCMI yields a 2.77% top-1 accuracy improvement with ResNet-50 comparing to the CE; on CAMELYON-17, replacing CE with NCMI improves the macro-F1 by 8.6% over the strongest baseline. Gains are consistent across various architectures and batch sizes, suggesting that NCMI is a practical and competitive alternative to CE.
comment: 8 pages, 4 figures
SiLVR: A Simple Language-based Video Reasoning Framework
Recent advances in test-time optimization have led to remarkable reasoning capabilities in Large Language Models (LLMs), enabling them to solve highly complex problems in math and coding. However, the reasoning capabilities of multimodal LLMs (MLLMs) still significantly lag, especially for complex video-language tasks. To address this issue, we present SILVR, a Simple Language-based Video Reasoning framework that decomposes complex video understanding into two stages. In the first stage, SILVR transforms raw video into language-based representations using multisensory inputs, such as short clip captions and audio/speech subtitles. In the second stage, language descriptions are fed into a powerful reasoning LLM to solve complex video-language understanding tasks. To handle long-context multisensory inputs, we use an Adaptive Context Reduction scheme, which dynamically determines the temporal granularity with which to sample the tokens. Our simple, modular, and training-free video reasoning framework achieves the best-reported results on Video-MME (long), Video-MMMU (comprehension), Video-MMLU, CGBench, and EgoLife. Furthermore, our empirical study focused on video reasoning capabilities shows that, despite not being explicitly trained on video, strong reasoning LLMs can effectively aggregate multisensory input information from video, speech, and audio for complex temporal, causal, long-context, and knowledge acquisition reasoning tasks in video. More details can be found at https://sites.google.com/cs.unc.edu/silvr.
comment: Accepted by TMLR (01/2026)
Real-Time Reconstruction of 3D Bone Models via Very-Low-Dose Protocols
Patient-specific bone models are essential for designing surgical guides and preoperative planning, as they enable the visualization of intricate anatomical structures. However, traditional CT-based approaches for creating bone models are limited to preoperative use due to the low flexibility and high radiation exposure of CT and time-consuming manual delineation. Here, we introduce Semi-Supervised Reconstruction with Knowledge Distillation (SSR-KD), a fast and accurate AI framework to reconstruct high-quality bone models from biplanar X-rays in 30 seconds, with an average error under 1.0 mm, eliminating the dependence on CT and manual work. Additionally, high tibial osteotomy simulation was performed by experts on reconstructed bone models, demonstrating that bone models reconstructed from biplanar X-rays have comparable clinical applicability to those annotated from CT. Overall, our approach accelerates the process, reduces radiation exposure, enables intraoperative guidance, and significantly improves the practicality of bone models, offering transformative applications in orthopedics.
comment: Accepted to npj Digital Medicine
Improved cystic hygroma detection from prenatal imaging using ultrasound-specific self-supervised representation learning
Cystic hygroma is a high-risk prenatal ultrasound finding that portends high rates of chromosomal abnormalities, structural malformations, and adverse pregnancy outcomes. Automated detection can increase reproducibility and support scalable early screening programs, but supervised deep learning methods are limited by small labelled datasets. This study assesses whether ultrasound-specific self-supervised pretraining can facilitate accurate, robust deep learning detection of cystic hygroma in first-trimester ultrasound images. We fine-tuned the Ultrasound Self-Supervised Foundation Model with Masked Autoencoding (USF-MAE), pretrained on over 370,000 unlabelled ultrasound images, for binary classification of normal controls and cystic hygroma cases used in this study. Performance was evaluated on the same curated ultrasound dataset, preprocessing pipeline, and 4-fold cross-validation protocol as for the DenseNet-169 baseline, using accuracy, sensitivity, specificity, and the area under the receiver operating characteristic curve (ROC-AUC). Model interpretability was analyzed qualitatively using Score-CAM visualizations. USF-MAE outperformed the DenseNet-169 baseline on all evaluation metrics. The proposed model yielded a mean accuracy of 0.96, sensitivity of 0.94, specificity of 0.98, and ROC-AUC of 0.98 compared to 0.93, 0.92, 0.94, and 0.94 for the DenseNet-169 baseline, respectively. Qualitative Score-CAM visualizations of model predictions demonstrated clinical relevance by highlighting expected regions in the fetal neck for both positive and negative cases. Paired statistical analysis using a Wilcoxon signed-rank test confirmed that performance improvements achieved by USF-MAE were statistically significant (p = 0.0057).
comment: 13 pages, 6 figures, 2 tables
Knot So Simple: A Minimalistic Environment for Spatial Reasoning
We propose KnotGym, an interactive environment for complex, spatial reasoning and manipulation. KnotGym includes goal-oriented rope manipulation tasks with varying levels of complexity, all requiring acting from pure image observations. Tasks are defined along a clear and quantifiable axis of complexity based on the number of knot crossings, creating a natural generalization test. KnotGym has a simple observation space, allowing for scalable development, yet it highlights core challenges in integrating acute perception, spatial reasoning, and grounded manipulation. We evaluate methods of different classes, including model-based RL, model-predictive control, and chain-of-thought reasoning, and illustrate the challenges KnotGym presents. KnotGym is available at https://github.com/lil-lab/knotgym.
comment: Fix camera ready footer
ProFuse: Efficient Cross-View Context Fusion for Open-Vocabulary 3D Gaussian Splatting
We present ProFuse, an efficient context-aware framework for open-vocabulary 3D scene understanding with 3D Gaussian Splatting (3DGS). The pipeline enhances cross-view consistency and intra-mask cohesion within a direct registration setup, adding minimal overhead and requiring no render-supervised fine-tuning. Instead of relying on a pretrained 3DGS scene, we introduce a dense correspondence-guided pre-registration phase that initializes Gaussians with accurate geometry while jointly constructing 3D Context Proposals via cross-view clustering. Each proposal carries a global feature obtained through weighted aggregation of member embeddings, and this feature is fused onto Gaussians during direct registration to maintain per-primitive language coherence across views. With associations established in advance, semantic fusion requires no additional optimization beyond standard reconstruction, and the model retains geometric refinement without densification. ProFuse achieves strong open-vocabulary 3DGS understanding while completing semantic attachment in about five minutes per scene, which is two times faster than SOTA. Additional details are available at our project page https://chiou1203.github.io/ProFuse/.
comment: 10 pages, 5 figures
SA-ResGS: Self-Augmented Residual 3D Gaussian Splatting for Next Best View Selection
We propose Self-Augmented Residual 3D Gaussian Splatting (SA-ResGS), a novel framework to stabilize uncertainty quantification and enhancing uncertainty-aware supervision in next-best-view (NBV) selection for active scene reconstruction. SA-ResGS improves both the reliability of uncertainty estimates and their effectiveness for supervision by generating Self-Augmented point clouds (SA-Points) via triangulation between a training view and a rasterized extrapolated view, enabling efficient scene coverage estimation. While improving scene coverage through physically guided view selection, SA-ResGS also addresses the challenge of under-supervised Gaussians, exacerbated by sparse and wide-baseline views, by introducing the first residual learning strategy tailored for 3D Gaussian Splatting. This targeted supervision enhances gradient flow in high-uncertainty Gaussians by combining uncertainty-driven filtering with dropout- and hard-negative-mining-inspired sampling. Our contributions are threefold: (1) a physically grounded view selection strategy that promotes efficient and uniform scene coverage; (2) an uncertainty-aware residual supervision scheme that amplifies learning signals for weakly contributing Gaussians, improving training stability and uncertainty estimation across scenes with diverse camera distributions; (3) an implicit unbiasing of uncertainty quantification as a consequence of constrained view selection and residual supervision, which together mitigate conflicting effects of wide-baseline exploration and sparse-view ambiguity in NBV planning. Experiments on active view selection demonstrate that SA-ResGS outperforms state-of-the-art baselines in both reconstruction quality and view selection robustness.
UM3: Unsupervised Map to Map Matching
Map-to-map matching is a critical task for aligning spatial data across heterogeneous sources, yet it remains challenging due to the lack of ground truth correspondences, sparse node features, and scalability demands. In this paper, we propose an unsupervised graph-based framework that addresses these challenges through three key innovations. First, our method is an unsupervised learning approach that requires no training data, which is crucial for large-scale map data where obtaining labeled training samples is challenging. Second, we introduce pseudo coordinates that capture the relative spatial layout of nodes within each map, which enhances feature discriminability and enables scale-invariant learning. Third, we design an mechanism to adaptively balance feature and geometric similarity, as well as a geometric-consistent loss function, ensuring robustness to noisy or incomplete coordinate data. At the implementation level, to handle large-scale maps, we develop a tile-based post-processing pipeline with overlapping regions and majority voting, which enables parallel processing while preserving boundary coherence. Experiments on real-world datasets demonstrate that our method achieves state-of-the-art accuracy in matching tasks, surpassing existing methods by a large margin, particularly in high-noise and large-scale scenarios. Our framework provides a scalable and practical solution for map alignment, offering a robust and efficient alternative to traditional approaches.
comment: 11 pages
RemoteDet-Mamba: A Hybrid Mamba-CNN Network for Multi-modal Object Detection in Remote Sensing Images
Unmanned Aerial Vehicle (UAV) remote sensing, with its advantages of rapid information acquisition and low cost, has been widely applied in scenarios such as emergency response. However, due to the long imaging distance and complex imaging mechanisms, targets in remote sensing images often face challenges such as small object size, dense distribution, and low inter-class discriminability. To address these issues, this paper proposes a multi-modal remote sensing object detection network called RemoteDet-Mamba, which is based on a patch-level four-direction selective scanning fusion strategy. This method simultaneously learns unimodal local features and fuses cross-modal patch-level global semantic information, thereby enhancing the distinguishability of small objects and improving inter-class discrimination. Furthermore, the designed lightweight fusion mechanism effectively decouples densely packed targets while reducing computational complexity. Experimental results on the DroneVehicle dataset demonstrate that RemoteDet-Mamba achieves superior detection performance compared to current mainstream methods, while maintaining low parameter count and computational overhead, showing promising potential for practical applications.
comment: Accepted by ICASSP2026
Graphics 6
Deep Feature Deformation Weights
Handle-based mesh deformation has been a long-standing paradigm in computer graphics, enabling intuitive shape edits from sparse controls. Classic techniques offer precise and rapid deformation control. However, they solve an optimization problem with constraints defined by control handle placement, requiring a user to know apriori the ideal distribution of handles on the shape to accomplish the desired edit. The mapping from handle set to deformation behavior is often unintuitive and, importantly, non-semantic. Modern data-driven methods, on the other hand, leverage a data prior to obtain semantic edits, but are slow and imprecise. We propose a technique that fuses the semantic prior of data with the precise control and speed of traditional frameworks. Our approach is surprisingly simple yet effective: deep feature proximity makes for smooth and semantic deformation weights, with no need for additional regularization. The weights can be computed in real-time for any surface point, whereas prior methods require optimization for new handles. Moreover, the semantic prior from deep features enables co-deformation of semantic parts. We introduce an improved feature distillation pipeline, barycentric feature distillation, which efficiently uses the visual signal from shape renders to minimize distillation cost. This allows our weights to be computed for high resolution meshes in under a minute, in contrast to potentially hours for both classical and neural methods. We preserve and extend properties of classical methods through feature space constraints and locality weighting. Our field representation allows for automatic detection of semantic symmetries, which we use to produce symmetry-preserving deformations. We show a proof-of-concept application which can produce deformations for meshes up to 1 million faces in real-time on a consumer-grade machine.
NeuralFur: Animal Fur Reconstruction From Multi-View Images
Reconstructing realistic animal fur geometry from images is a challenging task due to the fine-scale details, self-occlusion, and view-dependent appearance of fur. In contrast to human hairstyle reconstruction, there are also no datasets that can be leveraged to learn a fur prior for different animals. In this work, we present a first multi-view-based method for high-fidelity 3D fur modeling of animals using a strand-based representation, leveraging the general knowledge of a vision language model. Given multi-view RGB images, we first reconstruct a coarse surface geometry using traditional multi-view stereo techniques. We then use a vision language model (VLM) system to retrieve information about the realistic length structure of the fur for each part of the body. We use this knowledge to construct the animal's furless geometry and grow strands atop it. The fur reconstruction is supervised with both geometric and photometric losses computed from multi-view images. To mitigate orientation ambiguities stemming from the Gabor filters that are applied to the input images, we additionally utilize the VLM to guide the strands' growth direction and their relation to the gravity vector that we incorporate as a loss. With this new schema of using a VLM to guide 3D reconstruction from multi-view inputs, we show generalization across a variety of animals with different fur types. For additional results and code, please refer to https://neuralfur.is.tue.mpg.de.
comment: For additional results and code, please refer to https://neuralfur.is.tue.mpg.de
Soft Shadow Diffusion (SSD): Physics-inspired Learning for 3D Computational Periscopy
Conventional imaging requires a line of sight to create accurate visual representations of a scene. In certain circumstances, however, obtaining a suitable line of sight may be impractical, dangerous, or even impossible. Non-line-of-sight (NLOS) imaging addresses this challenge by reconstructing the scene from indirect measurements. Recently, passive NLOS methods that use an ordinary photograph of the subtle shadow cast onto a visible wall by the hidden scene have gained interest. These methods are currently limited to 1D or low-resolution 2D color imaging or to localizing a hidden object whose shape is approximately known. Here, we generalize this class of methods and demonstrate a 3D reconstruction of a hidden scene from an ordinary NLOS photograph. To achieve this, we propose a novel reformulation of the light transport model that conveniently decomposes the hidden scene into \textit{light-occluding} and \textit{non-light-occluding} components to yield a separable non-linear least squares (SNLLS) inverse problem. We develop two solutions: A gradient-based optimization method and a physics-inspired neural network approach, which we call Soft Shadow diffusion (SSD). Despite the challenging ill-conditioned inverse problem encountered here, our approaches are effective on numerous 3D scenes in real experimental scenarios. Moreover, SSD is trained in simulation but generalizes well to unseen classes in simulation and real-world NLOS scenes. SSD also shows surprising robustness to noise and ambient illumination.
Proc3D: Procedural 3D Generation and Parametric Editing of 3D Shapes with Large Language Models
Generating 3D models has traditionally been a complex task requiring specialized expertise. While recent advances in generative AI have sought to automate this process, existing methods produce non-editable representation, such as meshes or point clouds, limiting their adaptability for iterative design. In this paper, we introduce Proc3D, a system designed to generate editable 3D models while enabling real-time modifications. At its core, Proc3D introduces procedural compact graph (PCG), a graph representation of 3D models, that encodes the algorithmic rules and structures necessary for generating the model. This representation exposes key parameters, allowing intuitive manual adjustments via sliders and checkboxes, as well as real-time, automated modifications through natural language prompts using Large Language Models (LLMs). We demonstrate Proc3D's capabilities using two generative approaches: GPT-4o with in-context learning (ICL) and a fine-tuned LLAMA-3 model. Experimental results show that Proc3D outperforms existing methods in editing efficiency, achieving more than 400x speedup over conventional approaches that require full regeneration for each modification. Additionally, Proc3D improves ULIP scores by 28%, a metric that evaluates the alignment between generated 3D models and text prompts. By enabling text-aligned 3D model generation along with precise, real-time parametric edits, Proc3D facilitates highly accurate text-based image editing applications.
DogFit: Domain-guided Fine-tuning for Efficient Transfer Learning of Diffusion Models AAAI 2026
Transfer learning of diffusion models to smaller target domains is challenging, as naively fine-tuning the model often results in poor generalization. Test-time guidance methods help mitigate this by offering controllable improvements in image fidelity through a trade-off with sample diversity. However, this benefit comes at a high computational cost, typically requiring dual forward passes during sampling. We propose the Domain-guided Fine-tuning (DogFit) method, an effective guidance mechanism for diffusion transfer learning that maintains controllability without incurring additional computational overhead. DogFit injects a domain-aware guidance offset into the training loss, effectively internalizing the guided behavior during the fine-tuning process. The domain-aware design is motivated by our observation that during fine-tuning, the unconditional source model offers a stronger marginal estimate than the target model. To support efficient controllable fidelity-diversity trade-offs at inference, we encode the guidance strength value as an additional model input through a lightweight conditioning mechanism. We further investigate the optimal placement and timing of the guidance offset during training and propose two simple scheduling strategies, i.e., late-start and cut-off, which improve generation quality and training stability. Experiments on DiT and SiT backbones across six diverse target domains show that DogFit can outperform prior guidance methods in transfer learning in terms of FID and FDDINOV2 while requiring up to 2x fewer sampling TFLOPS.
comment: Accepted for poster presentation at AAAI 2026
MimicKit: A Reinforcement Learning Framework for Motion Imitation and Control
MimicKit is an open-source framework for training motion controllers using motion imitation and reinforcement learning. The codebase provides implementations of commonly-used motion-imitation techniques and RL algorithms. This framework is intended to support research and applications in computer graphics and robotics by providing a unified training framework, along with standardized environment, agent, and data structures. The codebase is designed to be modular and easily configurable, enabling convenient modification and extension to new characters and tasks. The open-source codebase is available at: https://github.com/xbpeng/MimicKit.
Video World Models 2
ReWorld: Multi-Dimensional Reward Modeling for Embodied World Models
Recently, video-based world models that learn to simulate the dynamics have gained increasing attention in robot learning. However, current approaches primarily emphasize visual generative quality while overlooking physical fidelity, dynamic consistency, and task logic, especially for contact-rich manipulation tasks, which limits their applicability to downstream tasks. To this end, we introduce ReWorld, a framework aimed to employ reinforcement learning to align the video-based embodied world models with physical realism, task completion capability, embodiment plausibility and visual quality. Specifically, we first construct a large-scale (~235K) video preference dataset and employ it to train a hierarchical reward model designed to capture multi-dimensional reward consistent with human preferences. We further propose a practical alignment algorithm that post-trains flow-based world models using this reward through a computationally efficient PPO-style algorithm. Comprehensive experiments and theoretical analysis demonstrate that ReWorld significantly improves the physical fidelity, logical coherence, embodiment and visual quality of generated rollouts, outperforming previous methods.
DALD-PCAC: Density-Adaptive Learning Descriptor for Point Cloud Lossless Attribute Compression
Recently, deep learning has significantly advanced the performance of point cloud geometry compression. However, the learning-based lossless attribute compression of point clouds with varying densities is under-explored. In this paper, we develop a learning-based framework, namely DALD-PCAC that leverages Levels of Detail (LoD) to tailor for point cloud lossless attribute compression. We develop a point-wise attention model using a permutation-invariant Transformer to tackle the challenges of sparsity and irregularity of point clouds during context modeling. We also propose a Density-Adaptive Learning Descriptor (DALD) capable of capturing structure and correlations among points across a large range of neighbors. In addition, we develop a prior-guided block partitioning to reduce the attribute variance within blocks and enhance the performance. Experiments on LiDAR and object point clouds show that DALD-PCAC achieves the state-of-the-art performance on most data. Our method boosts the compression performance and is robust to the varying densities of point clouds. Moreover, it guarantees a good trade-off between performance and complexity, exhibiting great potential in real-world applications. The source code is available at https://github.com/zb12138/DALD_PCAC.
comment: Accepted by TOMM
Robotics 18
Learning Legged MPC with Smooth Neural Surrogates
Deep learning and model predictive control (MPC) can play complementary roles in legged robotics. However, integrating learned models with online planning remains challenging. When dynamics are learned with neural networks, three key difficulties arise: (1) stiff transitions from contact events may be inherited from the data; (2) additional non-physical local nonsmoothness can occur; and (3) training datasets can induce non-Gaussian model errors due to rapid state changes. We address (1) and (2) by introducing the smooth neural surrogate, a neural network with tunable smoothness designed to provide informative predictions and derivatives for trajectory optimization through contact. To address (3), we train these models using a heavy-tailed likelihood that better matches the empirical error distributions observed in legged-robot dynamics. Together, these design choices substantially improve the reliability, scalability, and generalizability of learned legged MPC. Across zero-shot locomotion tasks of increasing difficulty, smooth neural surrogates with robust learning yield consistent reductions in cumulative cost on simple, well-conditioned behaviors (typically 10-50%), while providing substantially larger gains in regimes where standard neural dynamics often fail outright. In these regimes, smoothing enables reliable execution (from 0/5 to 5/5 success) and produces about 2-50x lower cumulative cost, reflecting orders-of-magnitude absolute improvements in robustness rather than incremental performance gains.
Neural Process-Based Reactive Controller for Autonomous Racing
Attention-based neural architectures have become central to state-of-the-art methods in real-time nonlinear control. As these data-driven models continue to be integrated into increasingly safety-critical domains, ensuring statistically grounded and provably safe decision-making becomes essential. This paper introduces a novel reactive control framework for gap-based navigation using the Attentive Neural Process (AttNP) and a physics-informed extension, the PI-AttNP. Both models are evaluated in a simulated F1TENTH-style Ackermann steering racecar environment, chosen as a fast-paced proxy for safety-critical autonomous driving scenarios. The PI-AttNP augments the AttNP architecture with approximate model-based priors to inject physical inductive bias, enabling faster convergence and improved prediction accuracy suited for real-time control. To further ensure safety, we derive and implement a control barrier function (CBF)-based filtering mechanism that analytically enforces collision avoidance constraints. This CBF formulation is fully compatible with the learned AttNP controller and generalizes across a wide range of racing scenarios, providing a lightweight and certifiable safety layer. Our results demonstrate competitive closed-loop performance while ensuring real-time constraint satisfaction.
comment: 6 pages, 4 figures
Listen, Look, Drive: Coupling Audio Instructions for User-aware VLA-based Autonomous Driving IV
Vision Language Action (VLA) models promise an open-vocabulary interface that can translate perceptual ambiguity into semantically grounded driving decisions, yet they still treat language as a static prior fixed at inference time. As a result, the model must infer continuously shifting objectives from pixels alone, yielding delayed or overly conservative maneuvers. We argue that effective VLAs for autonomous driving need an online channel in which users can influence driving with specific intentions. To this end, we present EchoVLA, a user-aware VLA that couples camera streams with in situ audio instructions. We augment the nuScenes dataset with temporally aligned, intent-specific speech commands generated by converting ego-motion descriptions into synthetic audios. Further, we compose emotional speech-trajectory pairs into a multimodal Chain-of-Thought (CoT) for fine-tuning a Multimodal Large Model (MLM) based on Qwen2.5-Omni. Specifically, we synthesize the audio-augmented dataset with different emotion types paired with corresponding driving behaviors, leveraging the emotional cues embedded in tone, pitch, and speech tempo to reflect varying user states, such as urgent or hesitant intentions, thus enabling our EchoVLA to interpret not only the semantic content but also the emotional context of audio commands for more nuanced and emotionally adaptive driving behavior. In open-loop benchmarks, our approach reduces the average L2 error by $59.4\%$ and the collision rate by $74.4\%$ compared to the baseline of vision-only perception. More experiments on nuScenes dataset validate that EchoVLA not only steers the trajectory through audio instructions, but also modulates driving behavior in response to the emotions detected in the user's speech.
comment: Accepted by IV
Active Semantic Mapping of Horticultural Environments Using Gaussian Splatting
Semantic reconstruction of agricultural scenes plays a vital role in tasks such as phenotyping and yield estimation. However, traditional approaches that rely on manual scanning or fixed camera setups remain a major bottleneck in this process. In this work, we propose an active 3D reconstruction framework for horticultural environments using a mobile manipulator. The proposed system integrates the classical Octomap representation with 3D Gaussian Splatting to enable accurate and efficient target-aware mapping. While a low-resolution Octomap provides probabilistic occupancy information for informative viewpoint selection and collision-free planning, 3D Gaussian Splatting leverages geometric, photometric, and semantic information to optimize a set of 3D Gaussians for high-fidelity scene reconstruction. We further introduce simple yet effective strategies to enhance robustness against segmentation noise and reduce memory consumption. Simulation experiments demonstrate that our method outperforms purely occupancy-based approaches in both runtime efficiency and reconstruction accuracy, enabling precise fruit counting and volume estimation. Compared to a 0.01m-resolution Octomap, our approach achieves an improvement of 6.6% in fruit-level F1 score under noise-free conditions, and up to 28.6% under segmentation noise. Additionally, it achieves a 50% reduction in runtime, highlighting its potential for scalable, real-time semantic reconstruction in agricultural robotics.
comment: 9 pages, 4 figures
BiKC+: Bimanual Hierarchical Imitation with Keypose-Conditioned Coordination-Aware Consistency Policies
Robots are essential in industrial manufacturing due to their reliability and efficiency. They excel in performing simple and repetitive unimanual tasks but still face challenges with bimanual manipulation. This difficulty arises from the complexities of coordinating dual arms and handling multi-stage processes. Recent integration of generative models into imitation learning (IL) has made progress in tackling specific challenges. However, few approaches explicitly consider the multi-stage nature of bimanual tasks while also emphasizing the importance of inference speed. In multi-stage tasks, failures or delays at any stage can cascade over time, impacting the success and efficiency of subsequent sub-stages and ultimately hindering overall task performance. In this paper, we propose a novel keypose-conditioned coordination-aware consistency policy tailored for bimanual manipulation. Our framework instantiates hierarchical imitation learning with a high-level keypose predictor and a low-level trajectory generator. The predicted keyposes serve as sub-goals for trajectory generation, indicating targets for individual sub-stages. The trajectory generator is formulated as a consistency model, generating action sequences based on historical observations and predicted keyposes in a single inference step. In particular, we devise an innovative approach for identifying bimanual keyposes, considering both robot-centric action features and task-centric operation styles. Simulation and real-world experiments illustrate that our approach significantly outperforms baseline methods in terms of success rates and operational efficiency. Implementation codes can be found at https://github.com/JoanaHXU/BiKC-plus.
comment: Accepted by IEEE Transactions on Automation Science and Engineering 2025
Domain-specific Hardware Acceleration for Model Predictive Path Integral Control
Accurately controlling a robotic system in real time is a challenging problem. To address this, the robotics community has adopted various algorithms, such as Model Predictive Control (MPC) and Model Predictive Path Integral (MPPI) control. The first is difficult to implement on non-linear systems such as unmanned aerial vehicles, whilst the second requires a heavy computational load. GPUs have been successfully used to accelerate MPPI implementations; however, their power consumption is often excessive for autonomous or unmanned targets, especially when battery-powered. On the other hand, custom designs, often implemented on FPGAs, have been proposed to accelerate robotic algorithms while consuming considerably less energy than their GPU (or CPU) implementation. However, no MPPI custom accelerator has been proposed so far. In this work, we present a hardware accelerator for MPPI control and simulate its execution. Results show that the MPPI custom accelerator allows more accurate trajectories than GPU-based MPPI implementations.
comment: 7 pages, 11 figures
Reframing Conversational Design in HRI: Deliberate Design with AI Scaffolds
Large language models (LLMs) have enabled conversational robots to move beyond constrained dialogue toward free-form interaction. However, without context-specific adaptation, generic LLM outputs can be ineffective or inappropriate. This adaptation is often attempted through prompt engineering, which is non-intuitive and tedious. Moreover, predominant design practice in HRI relies on impression-based, trial-and-error refinement without structured methods or tools, making the process inefficient and inconsistent. To address this, we present the AI-Aided Conversation Engine (ACE), a system that supports the deliberate design of human-robot conversations. ACE contributes three key innovations: 1) an LLM-powered voice agent that scaffolds initial prompt creation to overcome the "blank page problem," 2) an annotation interface that enables the collection of granular and grounded feedback on conversational transcripts, and 3) using LLMs to translate user feedback into prompt refinements. We evaluated ACE through two user studies, examining both designs' experience and end users' interactions with robots designed using ACE. Results show that ACE facilitates the creation of robot behavior prompts with greater clarity and specificity, and that the prompts generated with ACE lead to higher-quality human-robot conversational interactions.
Model selection and real-time skill assessment for suturing in robotic surgery
Automated feedback systems have the potential to provide objective skill assessment for training and evaluation in robot-assisted surgery. In this study, we examine methods to achieve real-time prediction of surgical skill level in real-time based on Objective Structured Assessment of Technical Skills (OSATS) scores. Using data acquired from the da Vinci Surgical System, we carry out three main analyses, focusing on model design, their real-time performance, and their skill-level-based cross-validation training. For the model design, we evaluate the effectiveness of multimodal deep learning models for predicting surgical skill levels using synchronized kinematic and vision data. Our models include separate unimodal baselines and fusion architectures that integrate features from both modalities and are evaluated using mean Spearman's correlation coefficients, demonstrating that the fusion model consistently outperforms unimodal models for real-time predictions. For the real-time performance, we observe the prediction's trend over time and highlight correlation with the surgeon's gestures. For the skill-level-based cross-validation, we separately trained models on surgeons with different skill levels, which showed that high-skill demonstrations allow for better performance than those trained on low-skilled ones and generalize well to similarly skilled participants. Our findings show that multimodal learning allows more stable fine-grained evaluation of surgical performance and highlights the value of expert-level training data for model generalization.
Visual-Language-Guided Task Planning for Horticultural Robots
Crop monitoring is essential for precision agriculture, but current systems lack high-level reasoning. We introduce a novel, modular framework that uses a Visual Language Model (VLM) to guide robotic task planning, interleaving input queries with action primitives. We contribute a comprehensive benchmark for short- and long-horizon crop monitoring tasks in monoculture and polyculture environments. Our main results show that VLMs perform robustly for short-horizon tasks (comparable to human success), but exhibit significant performance degradation in challenging long-horizon tasks. Critically, the system fails when relying on noisy semantic maps, demonstrating a key limitation in current VLM context grounding for sustained robotic operations. This work offers a deployable framework and critical insights into VLM capabilities and shortcomings for complex agricultural robotics.
comment: 14 pages, 4 figures
AI for Green Spaces: Leveraging Autonomous Navigation and Computer Vision for Park Litter Removal
There are 50 billion pieces of litter in the U.S. alone. Grass fields contribute to this problem because picnickers tend to leave trash on the field. We propose building a robot that can autonomously navigate, identify, and pick up trash in parks. To autonomously navigate the park, we used a Spanning Tree Coverage (STC) algorithm to generate a coverage path the robot could follow. To navigate this path, we successfully used Real-Time Kinematic (RTK) GPS, which provides a centimeter-level reading every second. For computer vision, we utilized the ResNet50 Convolutional Neural Network (CNN), which detects trash with 94.52% accuracy. For trash pickup, we tested multiple design concepts. We select a new pickup mechanism that specifically targets the trash we encounter on the field. Our solution achieved an overall success rate of 80%, demonstrating that autonomous trash pickup robots on grass fields are a viable solution.
comment: Published in IEEE/SICE SII 2025
Beyond Task and Motion Planning: Hierarchical Robot Planning with General-Purpose Skills
Task and motion planning is a well-established approach for solving long-horizon robot planning problems. However, traditional methods assume that each task-level robot action, or skill, can be reduced to kinematic motion planning. We address the challenge of combining motion planning with closed-loop motor controllers that go beyond mere kinematic considerations. We propose a novel framework that integrates these policies into motion planning using Composable Interaction Primitives (CIPs), enabling the use of diverse, non-composable pre-learned skills in hierarchical robot planning. We validate our Task and Skill Planning (TASP) approach through real-world experiments on a bimanual manipulator and a mobile manipulator, demonstrating that CIPs allow diverse robots to combine motion planning with general-purpose skills to solve complex, long-horizon tasks.
Generation of Real-time Robotic Emotional Expressions Learning from Human Demonstration in Mixed Reality
Expressive behaviors in robots are critical for effectively conveying their emotional states during interactions with humans. In this work, we present a framework that autonomously generates realistic and diverse robotic emotional expressions based on expert human demonstrations captured in Mixed Reality (MR). Our system enables experts to teleoperate a virtual robot from a first-person perspective, capturing their facial expressions, head movements, and upper-body gestures, and mapping these behaviors onto corresponding robotic components including eyes, ears, neck, and arms. Leveraging a flow-matching-based generative process, our model learns to produce coherent and varied behaviors in real-time in response to moving objects, conditioned explicitly on given emotional states. A preliminary test validated the effectiveness of our approach for generating autonomous expressions.
comment: 5
Monotone Subsystem Decomposition for Efficient Multi-Objective Robot Design ICRA
Automating design minimizes errors, accelerates the design process, and reduces cost. However, automating robot design is challenging due to recursive constraints, multiple design objectives, and cross-domain design complexity possibly spanning multiple abstraction layers. Here we look at the problem of component selection, a combinatorial optimization problem in which a designer, given a robot model, must select compatible components from an extensive catalog. The goal is to satisfy high-level task specifications while optimally balancing trade-offs between competing design objectives. In this paper, we extend our previous constraint programming approach to multi-objective design problems and propose the novel technique of monotone subsystem decomposition to efficiently compute a Pareto front of solutions for large-scale problems. We prove that subsystems can be optimized for their Pareto fronts and, under certain conditions, these results can be used to determine a globally optimal Pareto front. Furthermore, subsystems serve as an intuitive design abstraction and can be reused across various design problems. Using an example quadcopter design problem, we compare our method to a linear programming approach and demonstrate our method scales better for large catalogs, solving a multi-objective problem of 10^25 component combinations in seconds. We then expand the original problem and solve a task-oriented, multi-objective design problem to build a fleet of quadcopters to deliver packages. We compute a Pareto front of solutions in seconds where each solution contains an optimal component-level design and an optimal package delivery schedule for each quadcopter.
comment: Accepted to IEEE International Conference on Robotics and Automation (ICRA) 2025
CAHC:A General Conflict-Aware Heuristic Caching Framework for Multi-Agent Path Finding
Multi-Agent Path Finding (MAPF) algorithms, including those for car-like robots and grid-based scenarios, face significant computational challenges due to expensive heuristic calculations. Traditional heuristic caching assumes that the heuristic function depends only on the state, which is incorrect in constraint-based search algorithms (e.g., CBS, MAPF-LNS, MAP2) where constraints from conflict resolution make the search space context-dependent. We propose \textbf{CAHC} (Conflict-Aware Heuristic Caching), a general framework that caches heuristic values based on both state and relevant constraint context, addressing this fundamental limitation. We demonstrate CAHC through a case study on CL-CBS for car-like robots, where we combine conflict-aware caching with an adaptive hybrid heuristic in \textbf{CAR-CHASE} (Car-Like Robot Conflict-Aware Heuristic Adaptive Search Enhancement). Our key innovations are (1) a compact \emph{conflict fingerprint} that efficiently encodes which constraints affect a state's heuristic, (2) a domain-adaptable relevance filter using spatial, temporal, and geometric criteria, and (3) a modular architecture that enables systematic application to diverse MAPF algorithms. Experimental evaluation on 480 CL-CBS benchmark instances demonstrates a geometric mean speedup of 2.46$\times$ while maintaining solution optimality. The optimizations improve success rate from 77.9\% to 84.8\% (+6.9 percentage points), reduce total runtime by 70.1\%, and enable solving 33 additional instances. The framework's general architecture makes it applicable as a reliable optimization technique for MAP2, MAPF-LNS, and other constraint-based MAPF algorithms.
Large Multimodal Models for Embodied Intelligent Driving: The Next Frontier in Self-Driving?
The advent of Large Multimodal Models (LMMs) offers a promising technology to tackle the limitations of modular design in autonomous driving, which often falters in open-world scenarios requiring sustained environmental understanding and logical reasoning. Besides, embodied artificial intelligence facilitates policy optimization through closed-loop interactions to achieve the continuous learning capability, thereby advancing autonomous driving toward embodied intelligent (El) driving. However, such capability will be constrained by relying solely on LMMs to enhance EI driving without joint decision-making. This article introduces a novel semantics and policy dual-driven hybrid decision framework to tackle this challenge, ensuring continuous learning and joint decision. The framework merges LMMs for semantic understanding and cognitive representation, and deep reinforcement learning (DRL) for real-time policy optimization. We start by introducing the foundational principles of EI driving and LMMs. Moreover, we examine the emerging opportunities this framework enables, encompassing potential benefits and representative use cases. A case study is conducted experimentally to validate the performance superiority of our framework in completing lane-change planning task. Finally, several future research directions to empower EI driving are identified to guide subsequent work.
Reflection-Based Task Adaptation for Self-Improving VLA
Pre-trained Vision-Language-Action (VLA) models represent a major leap towards general-purpose robots, yet efficiently adapting them to novel, specific tasks in-situ remains a significant hurdle. While reinforcement learning (RL) is a promising avenue for such adaptation, the process often suffers from low efficiency, hindering rapid task mastery. We introduce Reflective Self-Adaptation, a framework for rapid, autonomous task adaptation without human intervention. Our framework establishes a self-improving loop where the agent learns from its own experience to enhance both strategy and execution. The core of our framework is a dual-pathway architecture that addresses the full adaptation lifecycle. First, a Failure-Driven Reflective RL pathway enables rapid learning by using the VLM's causal reasoning to automatically synthesize a targeted, dense reward function from failure analysis. This provides a focused learning signal that significantly accelerates policy exploration. However, optimizing such proxy rewards introduces a potential risk of "reward hacking," where the agent masters the reward function but fails the actual task. To counteract this, our second pathway, Success-Driven Quality-Guided SFT, grounds the policy in holistic success. It identifies and selectively imitates high-quality successful trajectories, ensuring the agent remains aligned with the ultimate task goal. This pathway is strengthened by a conditional curriculum mechanism to aid initial exploration. We conduct experiments in challenging manipulation tasks. The results demonstrate that our framework achieves faster convergence and higher final success rates compared to representative baselines. Our work presents a robust solution for creating self-improving agents that can efficiently and reliably adapt to new environments.
A Two-Stage Reactive Auction Framework for the Multi-Depot Rural Postman Problem with Dynamic Vehicle Failures
Although unmanned vehicle fleets offer efficiency in transportation, logistics and inspection, their susceptibility to failures poses a significant challenge to mission continuity. We study the Multi-Depot Rural Postman Problem with Rechargeable and Reusable Vehicles (MD-RPP-RRV) with vehicle failures, where unmanned rechargeable vehicles placed at multiple depots with capacity constraints may fail while serving arc-based demands. To address unexpected vehicle breakdowns during operation, we propose a two-stage real-time rescheduling framework. First, a centralized auction quickly generates a feasible rescheduling solution; for this stage, we derive a theoretical additive bound that establishes an analytical guarantee on the worst-case rescheduling penalty. Second, a peer auction refines this baseline through a problem-specific magnetic field router for local schedule repair, utilizing parameters calibrated via sensitivity analysis to ensure controlled computational growth. We benchmark this approach against a simulated annealing metaheuristic to evaluate solution quality and execution speed. Experimental results on 257 diverse failure scenarios demonstrate that the framework achieves an average runtime reduction of over 95\% relative to the metaheuristic baseline, cutting rescheduling times from hours to seconds while maintaining high solution quality. The two-stage framework excels on large-scale instances, surpassing the centralized auction in nearly 80\% of scenarios with an average solution improvement exceeding 12\%. Moreover, it outperforms the simulated annealing mean and best results in 59\% and 28\% of scenarios, respectively, offering the robust speed-quality trade-off required for real-time mission continuity.
Towards Accessible Robot Control: Comparing Kinesthetic Teaching, SpaceMouse Teleoperation, and a Mixed Reality Interface
Teleoperation interfaces are essential tools for enabling human control of robotic systems. Although a wide range of interfaces has been developed, a persistent gap remains between the level of performance humans can achieve through these interfaces and the capabilities afforded by direct human-guided robot control. This gap is further exacerbated when users are inexperienced or unfamiliar with the robotic platform or control interface. In this work, we aim to better characterize this performance gap for non-expert users by comparing two teleoperation approaches, SpaceMouse teleoperation and a Mixed Reality (MR) interface, against kinesthetic teaching as a non-teleoperation baseline. All three approaches were evaluated in a comprehensive user study involving two robotic platforms and six complex manipulation tasks. Quantitative results show that the SpaceMouse and MR interfaces performed comparably, with significant differences in task completion observed for only two tasks, and success rates declining as task complexity increased. Qualitative analysis reflected these trends, highlighting differences in Physical Demand and identifying interface attributes that influence users' ability to perform, learn, and understand. This study quantifies the limitations of current teleoperation methods and incorporates subjective feedback from 25 participants. The results highlight the critical need to design and rigorously evaluate teleoperation systems for non-expert users, particularly in contexts where autonomous robots are deployed in personal or everyday environments, to ensure usability, efficiency, and accessibility.
comment: 32 pages, 12 figures
Graphics 1
A Unified Architecture for N-Dimensional Visualization and Simulation: 4D Implementation and Evaluation including Boolean Operations
This paper proposes a unified software architecture for visualization and simulation based on a design targeting an $N$-dimensional space. The contribution of this work lies in presenting an architectural configuration that integrates multiple processes into a single software architecture: Quickhull-based convex hull mesh generation, Boolean operations, coordinate transformations for high-dimensional exploration (including orientation and view transformations), and hyperplane slicing for visualization. The proposed approach adopts an approximate implementation that tolerates numerical errors and prioritizes implementation transparency over guarantees of numerical rigor. The experimental results and evaluations presented in this paper are limited to a 4D implementation; no evaluation is conducted for $N>4$, and the discussion is restricted to stating that the architecture itself has a dimension-independent structure. This paper also proposes an interaction design for high-dimensional exploration based on FPS navigation. As an input example involving shape changes over time, a non-rigid body simulation based on XPBD (Extended Position Based Dynamics) is integrated into the 4D implementation. Experimental results confirm that the 4D implementation runs on a single PC.
comment: 18 pages, 9 figures, 5 tables v3: Clarified scope (4D evaluation) and expanded related work. Under review at IEEE Access
Video World Models 2
SMc2f: Robust Scenario Mining for Robotic Autonomy from Coarse to Fine
The safety validation of autonomous robotic vehicles hinges on systematically testing their planning and control stacks against rare, safety-critical scenarios. Mining these long-tail events from massive real-world driving logs is therefore a critical step in the robotic development lifecycle. The goal of the Scenario Mining task is to retrieve useful information to enable targeted re-simulation, regression testing, and failure analysis of the robot's decision-making algorithms. RefAV, introduced by the Argoverse team, is an end-to-end framework that uses large language models (LLMs) to spatially and temporally localize scenarios described in natural language. However, this process performs retrieval on trajectory labels, ignoring the direct connection between natural language and raw RGB images, which runs counter to the intuition of video retrieval; it also depends on the quality of upstream 3D object detection and tracking. Further, inaccuracies in trajectory data lead to inaccuracies in downstream spatial and temporal localization. To address these issues, we propose Robust Scenario Mining for Robotic Autonomy from Coarse to Fine (SMc2f), a coarse-to-fine pipeline that employs vision-language models (VLMs) for coarse image-text filtering, builds a database of successful mining cases on top of RefAV and automatically retrieves exemplars to few-shot condition the LLM for more robust retrieval, and introduces text-trajectory contrastive learning to pull matched pairs together and push mismatched pairs apart in a shared embedding space, yielding a fine-grained matcher that refines the LLM's candidate trajectories. Experiments on public datasets demonstrate substantial gains in both retrieval quality and efficiency.
Digital FAST: An AI-Driven Multimodal Framework for Rapid and Early Stroke Screening
Early identification of stroke symptoms is essential for enabling timely intervention and improving patient outcomes, particularly in prehospital settings. This study presents a fast, non-invasive multimodal deep learning framework for automatic binary stroke screening based on data collected during the F.A.S.T. assessment. The proposed approach integrates complementary information from facial expressions, speech signals, and upper-body movements to enhance diagnostic robustness. Facial dynamics are represented using landmark based features and modeled with a Transformer architecture to capture temporal dependencies. Speech signals are converted into mel spectrograms and processed using an Audio Spectrogram Transformer, while upper-body pose sequences are analyzed with an MLP-Mixer network to model spatiotemporal motion patterns. The extracted modality specific representations are combined through an attention-based fusion mechanism to effectively learn cross modal interactions. Experiments conducted on a self-collected dataset of 222 videos from 37 subjects demonstrate that the proposed multimodal model consistently outperforms unimodal baselines, achieving 95.83% accuracy and a 96.00% F1-score. The model attains a strong balance between sensitivity and specificity and successfully detects all stroke cases in the test set. These results highlight the potential of multimodal learning and transfer learning for early stroke screening, while emphasizing the need for larger, clinically representative datasets to support reliable real-world deployment.
Robotics 33
Learning Semantic-Geometric Task Graph-Representations from Human Demonstrations
Learning structured task representations from human demonstrations is essential for understanding long-horizon manipulation behaviors, particularly in bimanual settings where action ordering, object involvement, and interaction geometry can vary significantly. A key challenge lies in jointly capturing the discrete semantic structure of tasks and the temporal evolution of object-centric geometric relations in a form that supports reasoning over task progression. In this work, we introduce a semantic-geometric task graph-representation that encodes object identities, inter-object relations, and their temporal geometric evolution from human demonstrations. Building on this formulation, we propose a learning framework that combines a Message Passing Neural Network (MPNN) encoder with a Transformer-based decoder, decoupling scene representation learning from action-conditioned reasoning about task progression. The encoder operates solely on temporal scene graphs to learn structured representations, while the decoder conditions on action-context to predict future action sequences, associated objects, and object motions over extended time horizons. Through extensive evaluation on human demonstration datasets, we show that semantic-geometric task graph-representations are particularly beneficial for tasks with high action and object variability, where simpler sequence-based models struggle to capture task progression. Finally, we demonstrate that task graph representations can be transferred to a physical bimanual robot and used for online action selection, highlighting their potential as reusable task abstractions for downstream decision-making in manipulation systems.
comment: 9 pages, 7 figures, preprint
Learning-Based Shrinking Disturbance-Invariant Tubes for State- and Input-Dependent Uncertainty
We develop a learning-based framework for constructing shrinking disturbance-invariant tubes under state- and input-dependent uncertainty, intended as a building block for tube Model Predictive Control (MPC), and certify safety via a lifted, isotone (order-preserving) fixed-point map. Gaussian Process (GP) posteriors become $(1-α)$ credible ellipsoids, then polytopic outer sets for deterministic set operations. A two-time-scale scheme separates learning epochs, where these polytopes are frozen, from an inner, outside-in iteration that converges to a compact fixed point $Z^\star\!\subseteq\!\mathcal G$; its state projection is RPI for the plant. As data accumulate, disturbance polytopes tighten, and the associated tubes nest monotonically, resolving the circular dependence between the set to be verified and the disturbance model while preserving hard constraints. A double-integrator study illustrates shrinking tube cross-sections in data-rich regions while maintaining invariance.
The Great March 100: 100 Detail-oriented Tasks for Evaluating Embodied AI Agents
Recently, with the rapid development of robot learning and imitation learning, numerous datasets and methods have emerged. However, these datasets and their task designs often lack systematic consideration and principles. This raises important questions: Do the current datasets and task designs truly advance the capabilities of robotic agents? Do evaluations on a few common tasks accurately reflect the differentiated performance of various methods proposed by different teams and evaluated on different tasks? To address these issues, we introduce the Great March 100 (\textbf{GM-100}) as the first step towards a robot learning Olympics. GM-100 consists of 100 carefully designed tasks that cover a wide range of interactions and long-tail behaviors, aiming to provide a diverse and challenging set of tasks to comprehensively evaluate the capabilities of robotic agents and promote diversity and complexity in robot dataset task designs. These tasks are developed through systematic analysis and expansion of existing task designs, combined with insights from human-object interaction primitives and object affordances. We collect a large amount of trajectory data on different robotic platforms and evaluate several baseline models. Experimental results demonstrate that the GM-100 tasks are 1) feasible to execute and 2) sufficiently challenging to effectively differentiate the performance of current VLA models. Our data and code are available at https://rhos.ai/research/gm-100.
ACoT-VLA: Action Chain-of-Thought for Vision-Language-Action Models
Vision-Language-Action (VLA) models have emerged as essential generalist robot policies for diverse manipulation tasks, conventionally relying on directly translating multimodal inputs into actions via Vision-Language Model (VLM) embeddings. Recent advancements have introduced explicit intermediary reasoning, such as sub-task prediction (language) or goal image synthesis (vision), to guide action generation. However, these intermediate reasoning are often indirect and inherently limited in their capacity to convey the full, granular information required for precise action execution. Instead, we posit that the most effective form of reasoning is one that deliberates directly in the action space. We introduce Action Chain-of-Thought (ACoT), a paradigm where the reasoning process itself is formulated as a structured sequence of coarse action intents that guide the final policy. In this paper, we propose ACoT-VLA, a novel architecture that materializes the ACoT paradigm. Specifically, we introduce two complementary components: an Explicit Action Reasoner (EAR) and Implicit Action Reasoner (IAR). The former proposes coarse reference trajectories as explicit action-level reasoning steps, while the latter extracts latent action priors from internal representations of multimodal input, co-forming an ACoT that conditions the downstream action head to enable grounded policy learning. Extensive experiments in real-world and simulation environments demonstrate the superiority of our proposed method, which achieves 98.5%, 84.1%, and 47.4% on LIBERO, LIBERO-Plus and VLABench, respectively.
The Mini Wheelbot Dataset: High-Fidelity Data for Robot Learning
The development of robust learning-based control algorithms for unstable systems requires high-quality, real-world data, yet access to specialized robotic hardware remains a significant barrier for many researchers. This paper introduces a comprehensive dynamics dataset for the Mini Wheelbot, an open-source, quasi-symmetric balancing reaction wheel unicycle. The dataset provides 1 kHz synchronized data encompassing all onboard sensor readings, state estimates, ground-truth poses from a motion capture system, and third-person video logs. To ensure data diversity, we include experiments across multiple hardware instances and surfaces using various control paradigms, including pseudo-random binary excitation, nonlinear model predictive control, and reinforcement learning agents. We include several example applications in dynamics model learning, state estimation, and time-series classification to illustrate common robotics algorithms that can be benchmarked on our dataset.
Distributed Control Barrier Functions for Safe Multi-Vehicle Navigation in Heterogeneous USV Fleets
Collision avoidance in heterogeneous fleets of uncrewed vessels is challenging because the decision-making processes and controllers often differ between platforms, and it is further complicated by the limitations on sharing trajectories and control values in real-time. This paper presents a pragmatic approach that addresses these issues by adding a control filter on each autonomous vehicle that assumes worst-case behavior from other contacts, including crewed vessels. This distributed safety control filter is developed using control barrier function (CBF) theory and the application is clearly described to ensure explainability of these safety-critical methods. This work compares the worst-case CBF approach with a Collision Regulations (COLREGS) behavior-based approach in simulated encounters. Real-world experiments with three different uncrewed vessels and a human operated vessel were performed to confirm the approach is effective across a range of platforms and is robust to uncooperative behavior from human operators. Results show that combining both CBF methods and COLREGS behaviors achieves the best safety and efficiency.
comment: 8 pages, 10 figures
Skill-Aware Diffusion for Generalizable Robotic Manipulation
Robust generalization in robotic manipulation is crucial for robots to adapt flexibly to diverse environments. Existing methods usually improve generalization by scaling data and networks, but model tasks independently and overlook skill-level information. Observing that tasks within the same skill share similar motion patterns, we propose Skill-Aware Diffusion (SADiff), which explicitly incorporates skill-level information to improve generalization. SADiff learns skill-specific representations through a skill-aware encoding module with learnable skill tokens, and conditions a skill-constrained diffusion model to generate object-centric motion flow. A skill-retrieval transformation strategy further exploits skill-specific trajectory priors to refine the mapping from 2D motion flow to executable 3D actions. Furthermore, we introduce IsaacSkill, a high-fidelity dataset containing fundamental robotic skills for comprehensive evaluation and sim-to-real transfer. Experiments in simulation and real-world settings show that SADiff achieves good performance and generalization across various manipulation tasks. Code, data, and videos are available at https://sites.google.com/view/sa-diff.
VLAgents: A Policy Server for Efficient VLA Inference
The rapid emergence of Vision-Language-Action models (VLAs) has a significant impact on robotics. However, their deployment remains complex due to the fragmented interfaces and the inherent communication latency in distributed setups. To address this, we introduce VLAgents, a modular policy server that abstracts VLA inferencing behind a unified Gymnasium-style protocol. Crucially, its communication layer transparently adapts to the context by supporting both zero-copy shared memory for high-speed simulation and compressed streaming for remote hardware. In this work, we present the architecture of VLAgents and validate it by integrating seven policies -- including OpenVLA and Pi Zero. In a benchmark with both local and remote communication, we further demonstrate how it outperforms the default policy servers provided by OpenVLA, OpenPi, and LeRobot. VLAgents is available at https://github.com/RobotControlStack/vlagents
Adaptive Monitoring of Stochastic Fire Front Processes via Information-seeking Predictive Control CDC
We consider the problem of adaptively monitoring a wildfire front using a mobile agent (e.g., a drone), whose trajectory determines where sensor data is collected and thus influences the accuracy of fire propagation estimation. This is a challenging problem, as the stochastic nature of wildfire evolution requires the seamless integration of sensing, estimation, and control, often treated separately in existing methods. State-of-the-art methods either impose linear-Gaussian assumptions to establish optimality or rely on approximations and heuristics, often without providing explicit performance guarantees. To address these limitations, we formulate the fire front monitoring task as a stochastic optimal control problem that integrates sensing, estimation, and control. We derive an optimal recursive Bayesian estimator for a class of stochastic nonlinear elliptical-growth fire front models. Subsequently, we transform the resulting nonlinear stochastic control problem into a finite-horizon Markov decision process and design an information-seeking predictive control law obtained via a lower confidence bound-based adaptive search algorithm with asymptotic convergence to the optimal policy.
comment: 2025 IEEE 64th Conference on Decision and Control (CDC)
Learning Quadrupedal Locomotion for a Heavy Hydraulic Robot Using an Actuator Model RA-L
The simulation-to-reality (sim-to-real) transfer of large-scale hydraulic robots presents a significant challenge in robotics because of the inherent slow control response and complex fluid dynamics. The complex dynamics result from the multiple interconnected cylinder structure and the difference in fluid rates of the cylinders. These characteristics complicate detailed simulation for all joints, making it unsuitable for reinforcement learning (RL) applications. In this work, we propose an analytical actuator model driven by hydraulic dynamics to represent the complicated actuators. The model predicts joint torques for all 12 actuators in under 1 microsecond, allowing rapid processing in RL environments. We compare our model with neural network-based actuator models and demonstrate the advantages of our model in data-limited scenarios. The locomotion policy trained in RL with our model is deployed on a hydraulic quadruped robot, which is over 300 kg. This work is the first demonstration of a successful transfer of stable and robust command-tracking locomotion with RL on a heavy hydraulic quadruped robot, demonstrating advanced sim-to-real transferability.
comment: 9 pages, Accepted to IEEE Robotics and Automation Letters (RA-L) 2025
Visual Marker Search for Autonomous Drone Landing in Diverse Urban Environments
Marker-based landing is widely used in drone delivery and return-to-base systems for its simplicity and reliability. However, most approaches assume idealized landing site visibility and sensor performance, limiting robustness in complex urban settings. We present a simulation-based evaluation suite on the AirSim platform with systematically varied urban layouts, lighting, and weather to replicate realistic operational diversity. Using onboard camera sensors (RGB for marker detection and depth for obstacle avoidance), we benchmark two heuristic coverage patterns and a reinforcement learning-based agent, analyzing how exploration strategy and scene complexity affect success rate, path efficiency, and robustness. Results underscore the need to evaluate marker-based autonomous landing under diverse, sensor-relevant conditions to guide the development of reliable aerial navigation systems.
A3D: Adaptive Affordance Assembly with Dual-Arm Manipulation AAAI2026
Furniture assembly is a crucial yet challenging task for robots, requiring precise dual-arm coordination where one arm manipulates parts while the other provides collaborative support and stabilization. To accomplish this task more effectively, robots need to actively adapt support strategies throughout the long-horizon assembly process, while also generalizing across diverse part geometries. We propose A3D, a framework which learns adaptive affordances to identify optimal support and stabilization locations on furniture parts. The method employs dense point-level geometric representations to model part interaction patterns, enabling generalization across varied geometries. To handle evolving assembly states, we introduce an adaptive module that uses interaction feedback to dynamically adjust support strategies during assembly based on previous interactions. We establish a simulation environment featuring 50 diverse parts across 8 furniture types, designed for dual-arm collaboration evaluation. Experiments demonstrate that our framework generalizes effectively to diverse part geometries and furniture categories in both simulation and real-world settings.
comment: AAAI2026 oral
H-AIM: Orchestrating LLMs, PDDL, and Behavior Trees for Hierarchical Multi-Robot Planning
In embodied artificial intelligence, enabling heterogeneous robot teams to execute long-horizon tasks from high-level instructions remains a critical challenge. While large language models (LLMs) show promise in instruction parsing and preliminary planning, they exhibit limitations in long-term reasoning and dynamic multi-robot coordination. We propose Hierarchical Autonomous Intelligent Multi-Robot Planning(H-AIM), a novel embodied multi-robot task planning framework that addresses these issues through a three-stage cascaded architecture: 1) It leverages an LLM to parse instructions and generate Planning Domain Definition Language (PDDL) problem descriptions, thereby transforming commands into formal planning problems; 2) It combines the semantic reasoning of LLMs with the search capabilities of a classical planner to produce optimized action sequences; 3) It compiles the resulting plan into behavior trees for reactive control. The framework supports dynamically sized heterogeneous robot teams via a shared blackboard mechanism for communication and state synchronization. To validate our approach, we introduce the MACE-THOR benchmark dataset, comprising 42 complex tasks across 8 distinct household layouts. Experimental results demonstrate that H-AIM achieves a remarkable performance improvement, elevating the task success rate from 12% to 55% and boosting the goal condition recall from 32% to 72% against the strongest baseline, LaMMA-P.
Haptic Light-Emitting Diodes: Miniature, Luminous Tactile Actuators
We present Haptic Light-Emitting Diodes (HLEDs), luminous thermopneumatic actuators that directly convert pulsed light into mechanical forces and displacements. Each device packages a miniature surface-mount LED in a gas-filled cavity that contains a low-inertia graphite photoabsorber. The cavity is sealed by an elastic membrane, which functions as a working diaphragm. Brief optical pulses heat the photoabsorber, which heats the gas. The resulting rapid pressure increases generate forces and displacements at the working diaphragm. Millimeter-scale HLEDs produce forces exceeding 0.4 N and displacements of 1 mm at low voltages, with 5 to 100 ms response times, making them attractive as actuators providing tactile feedback in human-machine interfaces. Perceptual testing revealed that the strength of tactile feedback increased linearly with optical power. HLEDs devices are mechanically simple and efficient to fabricate. Unusually, these actuators are also light-emitting, as a fraction of optical energy is transmitted through the membrane. These opto-mechanical actuators have many potential applications in tactile displays, human interface engineering, wearable computing, and other areas.
Crane Lowering Guidance Using a Attachable Camera Module for Driver Vision Support
Cranes have long been essential equipment for lifting and placing heavy loads in construction projects. This study focuses on the lowering phase of crane operation, the stage in which the load is moved to the desired location. During this phase, a constant challenge exists: the load obstructs the operator's view of the landing point. As a result, operators traditionally have to rely on verbal or gestural instructions from ground personnel, which significantly impacts site safety. To alleviate this constraint, the proposed system incorporates a attachable camera module designed to be attached directly to the load via a suction cup. This module houses a single-board computer, battery, and compact camera. After installation, it streams and processes images of the ground directly below the load in real time to generate installation guidance. Simultaneously, this guidance is transmitted to and monitored by a host computer. Preliminary experiments were conducted by attaching this module to a test object, confirming the feasibility of real-time image acquisition and transmission. This approach has the potential to significantly improve safety on construction sites by providing crane operators with an instant visual reference of hidden landing zones.
comment: Presented at ICCR 2025(International COnference on Control and Robotics 2025). Submitted to the IEEE for possible publication
Where to Touch, How to Contact: Hierarchical RL-MPC Framework for Geometry-Aware Long-Horizon Dexterous Manipulation RSS
A key challenge in contact-rich dexterous manipulation is the need to jointly reason over geometry, kinematic constraints, and intricate, nonsmooth contact dynamics. End-to-end visuomotor policies bypass this structure, but often require large amounts of data, transfer poorly from simulation to reality, and generalize weakly across tasks/embodiments. We address those limitations by leveraging a simple insight: dexterous manipulation is inherently hierarchical - at a high level, a robot decides where to touch (geometry) and move the object (kinematics); at a low level it determines how to realize that plan through contact dynamics. Building on this insight, we propose a hierarchical RL--MPC framework in which a high-level reinforcement learning (RL) policy predicts a contact intention, a novel object-centric interface that specifies (i) an object-surface contact location and (ii) a post-contact object-level subgoal pose. Conditioned on this contact intention, a low-level contact-implicit model predictive control (MPC) optimizes local contact modes and replans with contact dynamics to generate robot actions that robustly drive the object toward each subgoal. We evaluate the framework on non-prehensile tasks, including geometry-generalized pushing and object 3D reorientation. It achieves near-100% success with substantially reduced data (10x less than end-to-end baselines), highly robust performance, and zero-shot sim-to-real transfer.
comment: 13 Pages, Plan to submit RSS
Three Dimensional Hydrodynamic Flow-Based Collision Avoidance for UAV Formations Facing Emergent Dynamic Obstacles
This paper presents a three-dimensional, hydrodynamics-inspired collision avoidance framework for uncrewed aerial vehicle (UAV) formations operating in dynamic environments. When moving obstacles enter a UAV's sensing region, they are modeled as three dimensional doublets or ellipsoids that generate local velocity fields, guiding nearby UAVs to execute smooth, collision-free maneuvers without trajectory discontinuities or explicit trajectory replanning. This flow-based approach enables real-time operation and interpretable behavior by leveraging the nature of fluid flow around obstacles via the harmonic properties of Laplace's equation, inherently avoiding local minima common in traditional potential field methods. To establish and maintain coordination among the UAVs, a Virtual Rigid Body (VRB) formation strategy is integrated, ensuring that formation geometry and trajectory tracking are preserved. Simulation results demonstrate the feasibility and scalability of the method for both individual and multi-UAV scenarios with multiple formation geometries encountering moving obstacles. The proposed approach achieves safe, smooth, and computationally efficient avoidance maneuvers suitable for real-time and practical applications.
comment: 18 pages, 15 figures
A Hybrid Soft Haptic Display for Rendering Lump Stiffness in Remote Palpation
Remote palpation enables noninvasive tissue examination in telemedicine, yet current tactile displays often lack the fidelity to convey both large-scale forces and fine spatial details. This study introduces a hybrid fingertip display comprising a rigid platform and a $4\times4$ soft pneumatic tactile display (4.93 mm displacement and 1.175 N per single pneumatic chamber) to render a hard lump beneath soft tissue. This study compares three rendering strategies: a Platform-Only baseline that renders the total interaction force; a Hybrid A (Position + Force Feedback) strategy that adds a dynamic, real-time soft spatial cue; and a Hybrid B (Position + Preloaded Stiffness Feedback) strategy that provides a constant, pre-calculated soft spatial cue. In a 12-participant lump detection study, both hybrid methods dramatically improved accuracy over the Platform-Only baseline (from 50\% to over 95\%). While the Hybrid B was highlighted qualitatively for realism, its event-based averaging is expected to increase interaction latency in real-time operation. This suggests a trade-off between perceived lump realism and real-time responsiveness, such that rendering choices that enhance realism may conflict with those that minimize latency.
comment: Paper manuscript has been accepted by 2026 IEEE Haptics Symposium
Optimal Thruster Configuration for 6-DOF Control of a Small Satellite
With the growing deployment of small satellites (such as CubeSats, Nanosats, Picosats, and Femtosats) in Low Earth Orbit (LEO) for targeted applications like imaging, communication, data storage, and rendezvous-docking mission, there is increasing attention on orbit maintenance and attitude control. A common approach for active orbit control involves the use of multiple thrusters, which, when properly arranged, can also generate the required torque for attitude control. Starting from a 24-thruster configuration, this paper presents a set of thruster configurations (referred to as a viable configuration group) that enable full six degrees of freedom (6-DOF) control. Further, configuration group that requires minimum total thrust to achieve 6-DOF commands are found among the viable configuration group. One configuration from each of these groups is further evaluated for its attitude control performance through a representative rendezvous-docking mission, demonstrating that even with a reduced thruster count, sufficient maneuverability can be achieved.
comment: 19 pages, 9 figures
RobotDesignGPT: Automated Robot Design Synthesis using Vision Language Models
Robot design is a nontrivial process that involves careful consideration of multiple criteria, including user specifications, kinematic structures, and visual appearance. Therefore, the design process often relies heavily on domain expertise and significant human effort. The majority of current methods are rule-based, requiring the specification of a grammar or a set of primitive components and modules that can be composed to create a design. We propose a novel automated robot design framework, RobotDesignGPT, that leverages the general knowledge and reasoning capabilities of large pre-trained vision-language models to automate the robot design synthesis process. Our framework synthesizes an initial robot design from a simple user prompt and a reference image. Our novel visual feedback approach allows us to greatly improve the design quality and reduce unnecessary manual feedback. We demonstrate that our framework can design visually appealing and kinematically valid robots inspired by nature, ranging from legged animals to flying creatures. We justify the proposed framework by conducting an ablation study and a user study.
Physics-Constrained Denoising Autoencoders for Data-Scarce Wildfire UAV Sensing
Wildfire monitoring requires high-resolution atmospheric measurements, yet low-cost sensors on Unmanned Aerial Vehicles (UAVs) exhibit baseline drift, cross-sensitivity, and response lag that corrupt concentration estimates. Traditional deep learning denoising approaches demand large datasets impractical to obtain from limited UAV flight campaigns. We present PC$^2$DAE, a physics-informed denoising autoencoder that addresses data scarcity by embedding physical constraints directly into the network architecture. Non-negative concentration estimates are enforced via softplus activations and physically plausible temporal smoothing, ensuring outputs are physically admissible by construction rather than relying on loss function penalties. The architecture employs hierarchical decoder heads for Black Carbon, Gas, and CO$_2$ sensor families, with two variants: PC$^2$DAE-Lean (21k parameters) for edge deployment and PC$^2$DAE-Wide (204k parameters) for offline processing. We evaluate on 7,894 synchronized 1 Hz samples collected from UAV flights during prescribed burns in Saskatchewan, Canada (approximately 2.2 hours of flight data), two orders of magnitude below typical deep learning requirements. PC$^2$DAE-Lean achieves 67.3\% smoothness improvement and 90.7\% high-frequency noise reduction with zero physics violations. Five baselines (LSTM-AE, U-Net, Transformer, CBDAE, DeSpaWN) produce 15--23\% negative outputs. The lean variant outperforms wide (+5.6\% smoothness), suggesting reduced capacity with strong inductive bias prevents overfitting in data-scarce regimes. Training completes in under 65 seconds on consumer hardware.
UAV-Based Infrastructure Inspections: A Literature Review and Proposed Framework for AEC+FM
Unmanned Aerial Vehicles (UAVs) are transforming infrastructure inspections in the Architecture, Engineering, Construction, and Facility Management (AEC+FM) domain. By synthesizing insights from over 150 studies, this review paper highlights UAV-based methodologies for data acquisition, photogrammetric modeling, defect detection, and decision-making support. Key innovations include path optimization, thermal integration, and advanced machine learning (ML) models such as YOLO and Faster R-CNN for anomaly detection. UAVs have demonstrated value in structural health monitoring (SHM), disaster response, urban infrastructure management, energy efficiency evaluations, and cultural heritage preservation. Despite these advancements, challenges in real-time processing, multimodal data fusion, and generalizability remain. A proposed workflow framework, informed by literature and a case study, integrates RGB imagery, LiDAR, and thermal sensing with transformer-based architectures to improve accuracy and reliability in detecting structural defects, thermal anomalies, and geometric inconsistencies. The proposed framework ensures precise and actionable insights by fusing multimodal data and dynamically adapting path planning for complex environments, presented as a comprehensive step-by-step guide to address these challenges effectively. This paper concludes with future research directions emphasizing lightweight AI models, adaptive flight planning, synthetic datasets, and richer modality fusion to streamline modern infrastructure inspections.
comment: Accepted for publication at the International Conference on Construction Engineering and Management (I3CE 2025)
Generalizable Domain Adaptation for Sim-and-Real Policy Co-Training NeurIPS 2025
Behavior cloning has shown promise for robot manipulation, but real-world demonstrations are costly to acquire at scale. While simulated data offers a scalable alternative, particularly with advances in automated demonstration generation, transferring policies to the real world is hampered by various simulation and real domain gaps. In this work, we propose a unified sim-and-real co-training framework for learning generalizable manipulation policies that primarily leverages simulation and only requires a few real-world demonstrations. Central to our approach is learning a domain-invariant, task-relevant feature space. Our key insight is that aligning the joint distributions of observations and their corresponding actions across domains provides a richer signal than aligning observations (marginals) alone. We achieve this by embedding an Optimal Transport (OT)-inspired loss within the co-training framework, and extend this to an Unbalanced OT framework to handle the imbalance between abundant simulation data and limited real-world examples. We validate our method on challenging manipulation tasks, showing it can leverage abundant simulation data to achieve up to a 30% improvement in the real-world success rate and even generalize to scenarios seen only in simulation. Project webpage: https://ot-sim2real.github.io/.
comment: Accepted to NeurIPS 2025
Probabilistic Mission Design for Neuro-Symbolic Unmanned Aircraft Systems
Advanced Air Mobility (AAM) is a growing field that demands accurate and trustworthy models of legal concepts and restrictions for navigating Unmanned Aircraft Systems (UAS). In addition, any implementation of AAM needs to face the challenges posed by inherently dynamic and uncertain human-inhabited spaces robustly. Nevertheless, the employment of UAS beyond visual line of sight (BVLOS) is an endearing task that promises to significantly enhance today's logistics and emergency response capabilities. Hence, we propose Probabilistic Mission Design (ProMis), a novel neuro-symbolic approach to navigating UAS within legal frameworks. ProMis is an interpretable and adaptable system architecture that links uncertain geospatial data and noisy perception with declarative, Hybrid Probabilistic Logic Programs (HPLP) to reason over the agent's state space and its legality. To inform planning with legal restrictions and uncertainty in mind, ProMis yields Probabilistic Mission Landscapes (PML). These scalar fields quantify the belief that the HPLP is satisfied across the agent's state space. Extending prior work on ProMis' reasoning capabilities and computational characteristics, we show its integration with potent machine learning models such as Large Language Models (LLM) and Transformer-based vision models. Hence, our experiments underpin the application of ProMis with multi-modal input data and how our method applies to many AAM scenarios.
comment: arXiv admin note: text overlap with arXiv:2406.03454
Vision-Conditioned Variational Bayesian Last Layer Dynamics Models
Agile control of robotic systems often requires anticipating how the environment affects system behavior. For example, a driver must perceive the road ahead to anticipate available friction and plan actions accordingly. Achieving such proactive adaptation within autonomous frameworks remains a challenge, particularly under rapidly changing conditions. Traditional modeling approaches often struggle to capture abrupt variations in system behavior, while adaptive methods are inherently reactive and may adapt too late to ensure safety. We propose a vision-conditioned variational Bayesian last-layer dynamics model that leverages visual context to anticipate changes in the environment. The model first learns nominal vehicle dynamics and is then fine-tuned with feature-wise affine transformations of latent features, enabling context-aware dynamics prediction. The resulting model is integrated into an optimal controller for vehicle racing. We validate our method on a Lexus LC500 racing through water puddles. With vision-conditioning, the system completed all 12 attempted laps under varying conditions. In contrast, all baselines without visual context consistently lost control, demonstrating the importance of proactive dynamics adaptation in high-performance applications.
comment: 9 pages, 7 figures, currently under review
Fine-Tuning of Neural Network Approximate MPC without Retraining via Bayesian Optimization
Approximate model-predictive control (AMPC) aims to imitate an MPC's behavior with a neural network, removing the need to solve an expensive optimization problem at runtime. However, during deployment, the parameters of the underlying MPC must usually be fine-tuned. This often renders AMPC impractical as it requires repeatedly generating a new dataset and retraining the neural network. Recent work addresses this problem by adapting AMPC without retraining using approximated sensitivities of the MPC's optimization problem. Currently, this adaption must be done by hand, which is labor-intensive and can be unintuitive for high-dimensional systems. To solve this issue, we propose using Bayesian optimization to tune the parameters of AMPC policies based on experimental data. By combining model-based control with direct and local learning, our approach achieves superior performance to nominal AMPC on hardware, with minimal experimentation. This allows automatic and data-efficient adaptation of AMPC to new system instances and fine-tuning to cost functions that are difficult to directly implement in MPC. We demonstrate the proposed method in hardware experiments for the swing-up maneuver on an inverted cartpole and yaw control of an under-actuated balancing unicycle robot, a challenging control problem.
comment: Presented at the 13th International Conference on Robot Intelligence Technology and Applications
Robot-R1: Reinforcement Learning for Enhanced Embodied Reasoning in Robotics NeurIPS 2025
Large Vision-Language Models (LVLMs) have recently shown great promise in advancing robotics by combining embodied reasoning with robot control. A common approach involves training on embodied reasoning tasks related to robot control using Supervised Fine-Tuning (SFT). However, SFT datasets are often heuristically constructed and not explicitly optimized for improving robot control. Furthermore, SFT often leads to issues such as catastrophic forgetting and reduced generalization performance. To address these limitations, we introduce Robot-R1, a novel framework that leverages reinforcement learning to enhance embodied reasoning specifically for robot control. Robot-R1 learns to predict the next keypoint state required for task completion, conditioned on the current scene image and environment metadata derived from expert demonstrations. Inspired by the DeepSeek-R1 learning approach, Robot-R1 samples reasoning-based responses and reinforces those that lead to more accurate predictions. To rigorously evaluate Robot-R1, we also introduce a new benchmark that demands the diverse embodied reasoning capabilities for the task. Our experiments show that models trained with Robot-R1 outperform SFT methods on embodied reasoning tasks. Despite having only 7B parameters, Robot-R1 even surpasses GPT-4o on reasoning tasks related to low-level action control, such as spatial and movement reasoning.
comment: NeurIPS 2025
Collaborative Representation Learning for Alignment of Tactile, Language, and Vision Modalities
Tactile sensing offers rich and complementary information to vision and language, enabling robots to perceive fine-grained object properties. However, existing tactile sensors lack standardization, leading to redundant features that hinder cross-sensor generalization. Moreover, existing methods fail to fully integrate the intermediate communication among tactile, language, and vision modalities. To address this, we propose TLV-CoRe, a CLIP-based Tactile-Language-Vision Collaborative Representation learning method. TLV-CoRe introduces a Sensor-Aware Modulator to unify tactile features across different sensors and employs tactile-irrelevant decoupled learning to disentangle irrelevant tactile features. Additionally, a Unified Bridging Adapter is introduced to enhance tri-modal interaction within the shared representation space. To fairly evaluate the effectiveness of tactile models, we further propose the RSS evaluation framework, focusing on Robustness, Synergy, and Stability across different methods. Experimental results demonstrate that TLV-CoRe significantly improves sensor-agnostic representation learning and cross-modal alignment, offering a new direction for multimodal tactile representation.
SceneFoundry: Generating Interactive Infinite 3D Worlds
The ability to automatically generate large-scale, interactive, and physically realistic 3D environments is crucial for advancing robotic learning and embodied intelligence. However, existing generative approaches often fail to capture the functional complexity of real-world interiors, particularly those containing articulated objects with movable parts essential for manipulation and navigation. This paper presents SceneFoundry, a language-guided diffusion framework that generates apartment-scale 3D worlds with functionally articulated furniture and semantically diverse layouts for robotic training. From natural language prompts, an LLM module controls floor layout generation, while diffusion-based posterior sampling efficiently populates the scene with articulated assets from large-scale 3D repositories. To ensure physical usability, SceneFoundry employs differentiable guidance functions to regulate object quantity, prevent articulation collisions, and maintain sufficient walkable space for robotic navigation. Extensive experiments demonstrate that our framework generates structurally valid, semantically coherent, and functionally interactive environments across diverse scene types and conditions, enabling scalable embodied AI research. project page: https://anc891203.github.io/SceneFoundry-Demo/
comment: 15 pages
LeLaR: The First In-Orbit Demonstration of an AI-Based Satellite Attitude Controller
Attitude control is essential for many satellite missions. Classical controllers, however, are time-consuming to design and sensitive to model uncertainties and variations in operational boundary conditions. Deep Reinforcement Learning (DRL) offers a promising alternative by learning adaptive control strategies through autonomous interaction with a simulation environment. Overcoming the Sim2Real gap, which involves deploying an agent trained in simulation onto the real physical satellite, remains a significant challenge. In this work, we present the first successful in-orbit demonstration of an AI-based attitude controller for inertial pointing maneuvers. The controller was trained entirely in simulation and deployed to the InnoCube 3U nanosatellite, which was developed by the Julius-Maximilians-Universität Würzburg in cooperation with the Technische Universität Berlin, and launched in January 2025. We present the AI agent design, the methodology of the training procedure, the discrepancies between the simulation and the observed behavior of the real satellite, and a comparison of the AI-based attitude controller with the classical PD controller of InnoCube. Steady-state metrics confirm the robust performance of the AI-based controller during repeated in-orbit maneuvers.
comment: This work has been submitted to the IEEE for possible publication. 55 pages, 27 figures, 29 tables. The maneuver telemetry datasets generated and analyzed during this work are available in the GitHub repository under https://github.com/kdjebko/lelar-in-orbit-data
Off Policy Lyapunov Stability in Reinforcement Learning CORL
Traditional reinforcement learning lacks the ability to provide stability guarantees. More recent algorithms learn Lyapunov functions alongside the control policies to ensure stable learning. However, the current self-learned Lyapunov functions are sample inefficient due to their on-policy nature. This paper introduces a method for learning Lyapunov functions off-policy and incorporates the proposed off-policy Lyapunov function into the Soft Actor Critic and Proximal Policy Optimization algorithms to provide them with a data efficient stability certificate. Simulations of an inverted pendulum and a quadrotor illustrate the improved performance of the two algorithms when endowed with the proposed off-policy Lyapunov function.
comment: Conference on Robot Learning (CORL) 2025
EqVIO: An Equivariant Filter for Visual Inertial Odometry TRO
Visual-Inertial Odometry (VIO) is the problem of estimating a robot's trajectory by combining information from an inertial measurement unit (IMU) and a camera, and is of great interest to the robotics community. This paper develops a novel Lie group symmetry for the VIO problem and applies the recently proposed equivariant filter. The proposed symmetry is compatible with the invariance of the VIO reference frame, leading to improved filter consistency. The bias-free IMU dynamics are group-affine, ensuring that filter linearisation errors depend only on the bias estimation error and measurement noise. Furthermore, visual measurements are equivariant with respect to the symmetry, enabling the application of the higher-order equivariant output approximation to reduce approximation error in the filter update equation. As a result, the equivariant filter (EqF) based on this Lie group is a consistent estimator for VIO with lower linearisation error in the propagation of state dynamics and a higher order equivariant output approximation than standard formulations. Experimental results on the popular EuRoC and UZH FPV datasets demonstrate that the proposed system outperforms other state-of-the-art VIO algorithms in terms of both speed and accuracy.
comment: 28 pages, 17 figures, published in IEEE TRO
From Human Bias to Robot Choice: How Occupational Contexts and Racial Priming Shape Robot Selection
As artificial agents increasingly integrate into professional environments, fundamental questions have emerged about how societal biases influence human-robot selection decisions. We conducted two comprehensive experiments (N = 1,038) examining how occupational contexts and stereotype activation shape robotic agent choices across construction, healthcare, educational, and athletic domains. Participants made selections from artificial agents that varied systematically in skin tone and anthropomorphic characteristics. Our study revealed distinct context-dependent patterns. Healthcare and educational scenarios demonstrated strong favoritism toward lighter-skinned artificial agents, while construction and athletic contexts showed greater acceptance of darker-toned alternatives. Participant race was associated with systematic differences in selection patterns across professional domains. The second experiment demonstrated that exposure to human professionals from specific racial backgrounds systematically shifted later robotic agent preferences in stereotype-consistent directions. These findings show that occupational biases and color-based discrimination transfer directly from human-human to human-robot evaluation contexts. The results highlight mechanisms through which robotic deployment may unintentionally perpetuate existing social inequalities.
comment: HRI '26
Computer Vision and Pattern Recognition 86
UniX: Unifying Autoregression and Diffusion for Chest X-Ray Understanding and Generation
Despite recent progress, medical foundation models still struggle to unify visual understanding and generation, as these tasks have inherently conflicting goals: semantic abstraction versus pixel-level reconstruction. Existing approaches, typically based on parameter-shared autoregressive architectures, frequently lead to compromised performance in one or both tasks. To address this, we present UniX, a next-generation unified medical foundation model for chest X-ray understanding and generation. UniX decouples the two tasks into an autoregressive branch for understanding and a diffusion branch for high-fidelity generation. Crucially, a cross-modal self-attention mechanism is introduced to dynamically guide the generation process with understanding features. Coupled with a rigorous data cleaning pipeline and a multi-stage training strategy, this architecture enables synergistic collaboration between tasks while leveraging the strengths of diffusion models for superior generation. On two representative benchmarks, UniX achieves a 46.1% improvement in understanding performance (Micro-F1) and a 24.2% gain in generation quality (FD-RadDino), using only a quarter of the parameters of LLM-CXR. By achieving performance on par with task-specific models, our work establishes a scalable paradigm for synergistic medical image understanding and generation. Codes and models are available at https://github.com/ZrH42/UniX.
comment: Codes and models are available at https://github.com/ZrH42/UniX
ShapeR: Robust Conditional 3D Shape Generation from Casual Captures
Recent advances in 3D shape generation have achieved impressive results, but most existing methods rely on clean, unoccluded, and well-segmented inputs. Such conditions are rarely met in real-world scenarios. We present ShapeR, a novel approach for conditional 3D object shape generation from casually captured sequences. Given an image sequence, we leverage off-the-shelf visual-inertial SLAM, 3D detection algorithms, and vision-language models to extract, for each object, a set of sparse SLAM points, posed multi-view images, and machine-generated captions. A rectified flow transformer trained to effectively condition on these modalities then generates high-fidelity metric 3D shapes. To ensure robustness to the challenges of casually captured data, we employ a range of techniques including on-the-fly compositional augmentations, a curriculum training scheme spanning object- and scene-level datasets, and strategies to handle background clutter. Additionally, we introduce a new evaluation benchmark comprising 178 in-the-wild objects across 7 real-world scenes with geometry annotations. Experiments show that ShapeR significantly outperforms existing approaches in this challenging setting, achieving an improvement of 2.7x in Chamfer distance compared to state of the art.
comment: Project Page: http://facebookresearch.github.io/ShapeR Video: https://www.youtube.com/watch?v=EbY30KAA55I
ReScene4D: Temporally Consistent Semantic Instance Segmentation of Evolving Indoor 3D Scenes
Indoor environments evolve as objects move, appear, or disappear. Capturing these dynamics requires maintaining temporally consistent instance identities across intermittently captured 3D scans, even when changes are unobserved. We introduce and formalize the task of temporally sparse 4D indoor semantic instance segmentation (SIS), which jointly segments, identifies, and temporally associates object instances. This setting poses a challenge for existing 3DSIS methods, which require a discrete matching step due to their lack of temporal reasoning, and for 4D LiDAR approaches, which perform poorly due to their reliance on high-frequency temporal measurements that are uncommon in the longer-horizon evolution of indoor environments. We propose ReScene4D, a novel method that adapts 3DSIS architectures for 4DSIS without needing dense observations. It explores strategies to share information across observations, demonstrating that this shared context not only enables consistent instance tracking but also improves standard 3DSIS quality. To evaluate this task, we define a new metric, t-mAP, that extends mAP to reward temporal identity consistency. ReScene4D achieves state-of-the-art performance on the 3RScan dataset, establishing a new benchmark for understanding evolving indoor scenes.
CTest-Metric: A Unified Framework to Assess Clinical Validity of Metrics for CT Report Generation
In the generative AI era, where even critical medical tasks are increasingly automated, radiology report generation (RRG) continues to rely on suboptimal metrics for quality assessment. Developing domain-specific metrics has therefore been an active area of research, yet it remains challenging due to the lack of a unified, well-defined framework to assess their robustness and applicability in clinical contexts. To address this, we present CTest-Metric, a first unified metric assessment framework with three modules determining the clinical feasibility of metrics for CT RRG. The modules test: (i) Writing Style Generalizability (WSG) via LLM-based rephrasing; (ii) Synthetic Error Injection (SEI) at graded severities; and (iii) Metrics-vs-Expert correlation (MvE) using clinician ratings on 175 "disagreement" cases. Eight widely used metrics (BLEU, ROUGE, METEOR, BERTScore-F1, F1-RadGraph, RaTEScore, GREEN Score, CRG) are studied across seven LLMs built on a CT-CLIP encoder. Using our novel framework, we found that lexical NLG metrics are highly sensitive to stylistic variations; GREEN Score aligns best with expert judgments (Spearman~0.70), while CRG shows negative correlation; and BERTScore-F1 is least sensitive to factual error injection. We will release the framework, code, and allowable portion of the anonymized evaluation data (rephrased/error-injected CT reports), to facilitate reproducible benchmarking and future metric development.
comment: Accepted at ISBI 2026
Generative Scenario Rollouts for End-to-End Autonomous Driving
Vision-Language-Action (VLA) models are emerging as highly effective planning models for end-to-end autonomous driving systems. However, current works mostly rely on imitation learning from sparse trajectory annotations and under-utilize their potential as generative models. We propose Generative Scenario Rollouts (GeRo), a plug-and-play framework for VLA models that jointly performs planning and generation of language-grounded future traffic scenes through an autoregressive rollout strategy. First, a VLA model is trained to encode ego vehicle and agent dynamics into latent tokens under supervision from planning, motion, and language tasks, facilitating text-aligned generation. Next, GeRo performs language-conditioned autoregressive generation. Given multi-view images, a scenario description, and ego-action questions, it generates future latent tokens and textual responses to guide long-horizon rollouts. A rollout-consistency loss stabilizes predictions using ground truth or pseudo-labels, mitigating drift and preserving text-action alignment. This design enables GeRo to perform temporally consistent, language-grounded rollouts that support long-horizon reasoning and multi-agent planning. On Bench2Drive, GeRo improves driving score and success rate by +15.7 and +26.2, respectively. By integrating reinforcement learning with generative rollouts, GeRo achieves state-of-the-art closed-loop and open-loop performance, demonstrating strong zero-shot robustness. These results highlight the promise of generative, language-conditioned reasoning as a foundation for safer and more interpretable end-to-end autonomous driving.
MHA2MLA-VLM: Enabling DeepSeek's Economical Multi-Head Latent Attention across Vision-Language Models
As vision-language models (VLMs) tackle increasingly complex and multimodal tasks, the rapid growth of Key-Value (KV) cache imposes significant memory and computational bottlenecks during inference. While Multi-Head Latent Attention (MLA) offers an effective means to compress the KV cache and accelerate inference, adapting existing VLMs to the MLA architecture without costly pretraining remains largely unexplored. In this work, we present MHA2MLA-VLM, a parameter-efficient and multimodal-aware framework for converting off-the-shelf VLMs to MLA. Our approach features two core techniques: (1) a modality-adaptive partial-RoPE strategy that supports both traditional and multimodal settings by selectively masking nonessential dimensions, and (2) a modality-decoupled low-rank approximation method that independently compresses the visual and textual KV spaces. Furthermore, we introduce parameter-efficient fine-tuning to minimize adaptation cost and demonstrate that minimizing output activation error, rather than parameter distance, substantially reduces performance loss. Extensive experiments on three representative VLMs show that MHA2MLA-VLM restores original model performance with minimal supervised data, significantly reduces KV cache footprint, and integrates seamlessly with KV quantization.
PRISM-CAFO: Prior-conditioned Remote-sensing Infrastructure Segmentation and Mapping for CAFOs
Large-scale livestock operations pose significant risks to human health and the environment, while also being vulnerable to threats such as infectious diseases and extreme weather events. As the number of such operations continues to grow, accurate and scalable mapping has become increasingly important. In this work, we present an infrastructure-first, explainable pipeline for identifying and characterizing Concentrated Animal Feeding Operations (CAFOs) from aerial and satellite imagery. Our method (1) detects candidate infrastructure (e.g., barns, feedlots, manure lagoons, silos) with a domain-tuned YOLOv8 detector, then derives SAM2 masks from these boxes and filters component-specific criteria, (2) extracts structured descriptors (e.g., counts, areas, orientations, and spatial relations) and fuses them with deep visual features using a lightweight spatial cross-attention classifier, and (3) outputs both CAFO type predictions and mask-level attributions that link decisions to visible infrastructure. Through comprehensive evaluation, we show that our approach achieves state-of-the-art performance, with Swin-B+PRISM-CAFO surpassing the best performing baseline by up to 15\%. Beyond strong predictive performance across diverse U.S. regions, we run systematic gradient--activation analyses that quantify the impact of domain priors and show ho
When Are Two Scores Better Than One? Investigating Ensembles of Diffusion Models
Diffusion models now generate high-quality, diverse samples, with an increasing focus on more powerful models. Although ensembling is a well-known way to improve supervised models, its application to unconditional score-based diffusion models remains largely unexplored. In this work we investigate whether it provides tangible benefits for generative modelling. We find that while ensembling the scores generally improves the score-matching loss and model likelihood, it fails to consistently enhance perceptual quality metrics such as FID on image datasets. We confirm this observation across a breadth of aggregation rules using Deep Ensembles, Monte Carlo Dropout, on CIFAR-10 and FFHQ. We attempt to explain this discrepancy by investigating possible explanations, such as the link between score estimation and image quality. We also look into tabular data through random forests, and find that one aggregation strategy outperforms the others. Finally, we provide theoretical insights into the summing of score models, which shed light not only on ensembling but also on several model composition techniques (e.g. guidance).
comment: Accepted at TMLR. Code: https://github.com/rarazafin/score_diffusion_ensemble
Map2Thought: Explicit 3D Spatial Reasoning via Metric Cognitive Maps
We propose Map2Thought, a framework that enables explicit and interpretable spatial reasoning for 3D VLMs. The framework is grounded in two key components: Metric Cognitive Map (Metric-CogMap) and Cognitive Chain-of-Thought (Cog-CoT). Metric-CogMap provides a unified spatial representation by integrating a discrete grid for relational reasoning with a continuous, metric-scale representation for precise geometric understanding. Building upon the Metric-CogMap, Cog-CoT performs explicit geometric reasoning through deterministic operations, including vector operations, bounding-box distances, and occlusion-aware appearance order cues, producing interpretable inference traces grounded in 3D structure. Experimental results show that Map2Thought enables explainable 3D understanding, achieving 59.9% accuracy using only half the supervision, closely matching the 60.9% baseline trained with the full dataset. It consistently outperforms state-of-the-art methods by 5.3%, 4.8%, and 4.0% under 10%, 25%, and 50% training subsets, respectively, on the VSI-Bench.
PubMed-OCR: PMC Open Access OCR Annotations
PubMed-OCR is an OCR-centric corpus of scientific articles derived from PubMed Central Open Access PDFs. Each page image is annotated with Google Cloud Vision and released in a compact JSON schema with word-, line-, and paragraph-level bounding boxes. The corpus spans 209.5K articles (1.5M pages; ~1.3B words) and supports layout-aware modeling, coordinate-grounded QA, and evaluation of OCR-dependent pipelines. We analyze corpus characteristics (e.g., journal coverage and detected layout features) and discuss limitations, including reliance on a single OCR engine and heuristic line reconstruction. We release the data and schema to facilitate downstream research and invite extensions.
Topology-Guaranteed Image Segmentation: Enforcing Connectivity, Genus, and Width Constraints
Existing research highlights the crucial role of topological priors in image segmentation, particularly in preserving essential structures such as connectivity and genus. Accurately capturing these topological features often requires incorporating width-related information, including the thickness and length inherent to the image structures. However, traditional mathematical definitions of topological structures lack this dimensional width information, limiting methods like persistent homology from fully addressing practical segmentation needs. To overcome this limitation, we propose a novel mathematical framework that explicitly integrates width information into the characterization of topological structures. This method leverages persistent homology, complemented by smoothing concepts from partial differential equations (PDEs), to modify local extrema of upper-level sets. This approach enables the resulting topological structures to inherently capture width properties. We incorporate this enhanced topological description into variational image segmentation models. Using some proper loss functions, we are also able to design neural networks that can segment images with the required topological and width properties. Through variational constraints on the relevant topological energies, our approach successfully preserves essential topological invariants such as connectivity and genus counts, simultaneously ensuring that segmented structures retain critical width attributes, including line thickness and length. Numerical experiments demonstrate the effectiveness of our method, showcasing its capability to maintain topological fidelity while explicitly embedding width characteristics into segmented image structures.
SME-YOLO: A Real-Time Detector for Tiny Defect Detection on PCB Surfaces
Surface defects on Printed Circuit Boards (PCBs) directly compromise product reliability and safety. However, achieving high-precision detection is challenging because PCB defects are typically characterized by tiny sizes, high texture similarity, and uneven scale distributions. To address these challenges, this paper proposes a novel framework based on YOLOv11n, named SME-YOLO (Small-target Multi-scale Enhanced YOLO). First, we employ the Normalized Wasserstein Distance Loss (NWDLoss). This metric effectively mitigates the sensitivity of Intersection over Union (IoU) to positional deviations in tiny objects. Second, the original upsampling module is replaced by the Efficient Upsampling Convolution Block (EUCB). By utilizing multi-scale convolutions, the EUCB gradually recovers spatial resolution and enhances the preservation of edge and texture details for tiny defects. Finally, this paper proposes the Multi-Scale Focused Attention (MSFA) module. Tailored to the specific spatial distribution of PCB defects, this module adaptively strengthens perception within key scale intervals, achieving efficient fusion of local fine-grained features and global context information. Experimental results on the PKU-PCB dataset demonstrate that SME-YOLO achieves state-of-the-art performance. Specifically, compared to the baseline YOLOv11n, SME-YOLO improves mAP by 2.2% and Precision by 4%, validating the effectiveness of the proposed method.
Wetland mapping from sparse annotations with satellite image time series and temporal-aware segment anything model
Accurate wetland mapping is essential for ecosystem monitoring, yet dense pixel-level annotation is prohibitively expensive and practical applications usually rely on sparse point labels, under which existing deep learning models perform poorly, while strong seasonal and inter-annual wetland dynamics further render single-date imagery inadequate and lead to significant mapping errors; although foundation models such as SAM show promising generalization from point prompts, they are inherently designed for static images and fail to model temporal information, resulting in fragmented masks in heterogeneous wetlands. To overcome these limitations, we propose WetSAM, a SAM-based framework that integrates satellite image time series for wetland mapping from sparse point supervision through a dual-branch design, where a temporally prompted branch extends SAM with hierarchical adapters and dynamic temporal aggregation to disentangle wetland characteristics from phenological variability, and a spatial branch employs a temporally constrained region-growing strategy to generate reliable dense pseudo-labels, while a bidirectional consistency regularization jointly optimizes both branches. Extensive experiments across eight global regions of approximately 5,000 km2 each demonstrate that WetSAM substantially outperforms state-of-the-art methods, achieving an average F1-score of 85.58%, and delivering accurate and structurally consistent wetland segmentation with minimal labeling effort, highlighting its strong generalization capability and potential for scalable, low-cost, high-resolution wetland mapping.
SUG-Occ: An Explicit Semantics and Uncertainty Guided Sparse Learning Framework for Real-Time 3D Occupancy Prediction
As autonomous driving moves toward full scene understanding, 3D semantic occupancy prediction has emerged as a crucial perception task, offering voxel-level semantics beyond traditional detection and segmentation paradigms. However, such a refined representation for scene understanding incurs prohibitive computation and memory overhead, posing a major barrier to practical real-time deployment. To address this, we propose SUG-Occ, an explicit Semantics and Uncertainty Guided Sparse Learning Enabled 3D Occupancy Prediction Framework, which exploits the inherent sparsity of 3D scenes to reduce redundant computation while maintaining geometric and semantic completeness. Specifically, we first utilize semantic and uncertainty priors to suppress projections from free space during view transformation while employing an explicit unsigned distance encoding to enhance geometric consistency, producing a structurally consistent sparse 3D representation. Secondly, we design an cascade sparse completion module via hyper cross sparse convolution and generative upsampling to enable efficiently coarse-to-fine reasoning. Finally, we devise an object contextual representation (OCR) based mask decoder that aggregates global semantic context from sparse features and refines voxel-wise predictions via lightweight query-context interactions, avoiding expensive attention operations over volumetric features. Extensive experiments on SemanticKITTI benchmark demonstrate that the proposed approach outperforms the baselines, achieving a 7.34/% improvement in accuracy and a 57.8\% gain in efficiency.
Heterogeneous Uncertainty-Guided Composed Image Retrieval with Fine-Grained Probabilistic Learning AAAI 2026
Composed Image Retrieval (CIR) enables image search by combining a reference image with modification text. Intrinsic noise in CIR triplets incurs intrinsic uncertainty and threatens the model's robustness. Probabilistic learning approaches have shown promise in addressing such issues; however, they fall short for CIR due to their instance-level holistic modeling and homogeneous treatment of queries and targets. This paper introduces a Heterogeneous Uncertainty-Guided (HUG) paradigm to overcome these limitations. HUG utilizes a fine-grained probabilistic learning framework, where queries and targets are represented by Gaussian embeddings that capture detailed concepts and uncertainties. We customize heterogeneous uncertainty estimations for multi-modal queries and uni-modal targets. Given a query, we capture uncertainties not only regarding uni-modal content quality but also multi-modal coordination, followed by a provable dynamic weighting mechanism to derive comprehensive query uncertainty. We further design uncertainty-guided objectives, including query-target holistic contrast and fine-grained contrasts with comprehensive negative sampling strategies, which effectively enhance discriminative learning. Experiments on benchmarks demonstrate HUG's effectiveness beyond state-of-the-art baselines, with faithful analysis justifying the technical contributions.
comment: Accepted for publication and oral presentation at AAAI 2026
Think-Clip-Sample: Slow-Fast Frame Selection for Video Understanding
Recent progress in multi-modal large language models (MLLMs) has significantly advanced video understanding. However, their performance on long-form videos remains limited by computational constraints and suboptimal frame selection. We present Think-Clip-Sample (TCS), a training-free framework that enhances long video understanding through two key components: (i) Multi-Query Reasoning, which generates multiple queries to capture complementary aspects of the question and video; and (ii) Clip-level Slow-Fast Sampling, which adaptively balances dense local details and sparse global context. Extensive experiments on MLVU, LongVideoBench, and VideoMME demonstrate that TCS consistently improves performance across different MLLMs, boosting up to 6.9% accuracy, and is capable of achieving comparable accuracy with 50% fewer inference time cost, highlighting both efficiency and efficacy of TCS on long video understanding.
comment: Accepted by ICASSP2026
Assessing Building Heat Resilience Using UAV and Street-View Imagery with Coupled Global Context Vision Transformer
Climate change is intensifying human heat exposure, particularly in densely built urban centers of the Global South. Low-cost construction materials and high thermal-mass surfaces further exacerbate this risk. Yet scalable methods for assessing such heat-relevant building attributes remain scarce. We propose a machine learning framework that fuses openly available unmanned aerial vehicle (UAV) and street-view (SV) imagery via a coupled global context vision transformer (CGCViT) to learn heat-relevant representations of urban structures. Thermal infrared (TIR) measurements from HotSat-1 are used to quantify the relationship between building attributes and heat-associated health risks. Our dual-modality cross-view learning approach outperforms the best single-modality models by up to $9.3\%$, demonstrating that UAV and SV imagery provide valuable complementary perspectives on urban structures. The presence of vegetation surrounding buildings (versus no vegetation), brighter roofing (versus darker roofing), and roofing made of concrete, clay, or wood (versus metal or tarpaulin) are all significantly associated with lower HotSat-1 TIR values. Deployed across the city of Dar es Salaam, Tanzania, the proposed framework illustrates how household-level inequalities in heat exposure - often linked to socio-economic disadvantage and reflected in building materials - can be identified and addressed using machine learning. Our results point to the critical role of localized, data-driven risk assessment in shaping climate adaptation strategies that deliver equitable outcomes.
Beer-Lambert Autoencoder for Unsupervised Stain Representation Learning and Deconvolution in Multi-immunohistochemical Brightfield Histology Images
Separating the contributions of individual chromogenic stains in RGB histology whole slide images (WSIs) is essential for stain normalization, quantitative assessment of marker expression, and cell-level readouts in immunohistochemistry (IHC). Classical Beer-Lambert (BL) color deconvolution is well-established for two- or three-stain settings, but becomes under-determined and unstable for multiplex IHC (mIHC) with K>3 chromogens. We present a simple, data-driven encoder-decoder architecture that learns cohort-specific stain characteristics for mIHC RGB WSIs and yields crisp, well-separated per-stain concentration maps. The encoder is a compact U-Net that predicts K nonnegative concentration channels; the decoder is a differentiable BL forward model with a learnable stain matrix initialized from typical chromogen hues. Training is unsupervised with a perceptual reconstruction objective augmented by loss terms that discourage unnecessary stain mixing. On a colorectal mIHC panel comprising 5 stains (H, CDX2, MUC2, MUC5, CD8) we show excellent RGB reconstruction, and significantly reduced inter-channel bleed-through compared with matrix-based deconvolution. Code and model are available at https://github.com/measty/StainQuant.git.
Enhancing Vision Language Models with Logic Reasoning for Situational Awareness
Vision-Language Models (VLMs) offer the ability to generate high-level, interpretable descriptions of complex activities from images and videos, making them valuable for situational awareness (SA) applications. In such settings, the focus is on identifying infrequent but significant events with high reliability and accuracy, while also extracting fine-grained details and assessing recognition quality. In this paper, we propose an approach that integrates VLMs with traditional computer vision methods through explicit logic reasoning to enhance SA in three key ways: (a) extracting fine-grained event details, (b) employing an intelligent fine-tuning (FT) strategy that achieves substantially higher accuracy than uninformed selection, and (c) generating justifications for VLM outputs during inference. We demonstrate that our intelligent FT mechanism improves the accuracy and provides a valuable means, during inferencing, to either confirm the validity of the VLM output or indicate why it may be questionable.
comment: Accepted for publication in IEEE Transactions on AI
Context-Aware Semantic Segmentation via Stage-Wise Attention
Semantic ultra high resolution image (UHR) segmentation is essential in remote sensing applications such as aerial mapping and environmental monitoring. Transformer-based models struggle in this setting because memory grows quadratically with token count, constraining either the contextual scope or the spatial resolution. We introduce CASWiT (Context-Aware Stage-Wise Transformer), a dual-branch, Swin-based architecture that injects global cues into fine-grained UHR features. A context encoder processes a downsampled neighborhood to capture long-range dependencies, while a high resolution encoder extracts detailed features from UHR patches. A cross-scale fusion module, combining cross-attention and gated feature injection, enriches high-resolution tokens with context. Beyond architecture, we propose a SimMIM-style pretraining. We mask 75% of the high-resolution image tokens and the low-resolution center region that spatially corresponds to the UHR patch, then train the shared dual-encoder with small decoder to reconstruct the UHR initial image. Extensive experiments on the large-scale IGN FLAIR-HUB aerial dataset demonstrate the effectiveness of CASWiT. Our method achieves 65.83% mIoU, outperforming RGB baselines by 1.78 points. On URUR, CASWiT achieves 49.1% mIoU, surpassing the current SoTA by +0.9% under the official evaluation protocol. All codes are provided on: https://huggingface.co/collections/heig-vd-geo/caswit.
SAMannot: A Memory-Efficient, Local, Open-source Framework for Interactive Video Instance Segmentation based on SAM2
Current research workflows for precise video segmentation are often forced into a compromise between labor-intensive manual curation, costly commercial platforms, and/or privacy-compromising cloud-based services. The demand for high-fidelity video instance segmentation in research is often hindered by the bottleneck of manual annotation and the privacy concerns of cloud-based tools. We present SAMannot, an open-source, local framework that integrates the Segment Anything Model 2 (SAM2) into a human-in-the-loop workflow. To address the high resource requirements of foundation models, we modified the SAM2 dependency and implemented a processing layer that minimizes computational overhead and maximizes throughput, ensuring a highly responsive user interface. Key features include persistent instance identity management, an automated ``lock-and-refine'' workflow with barrier frames, and a mask-skeletonization-based auto-prompting mechanism. SAMannot facilitates the generation of research-ready datasets in YOLO and PNG formats alongside structured interaction logs. Verified through animal behavior tracking use-cases and subsets of the LVOS and DAVIS benchmark datasets, the tool provides a scalable, private, and cost-effective alternative to commercial platforms for complex video annotation tasks.
Efficient On-Board Processing of Oblique UAV Video for Rapid Flood Extent Mapping
Effective disaster response relies on rapid disaster response, where oblique aerial video is the primary modality for initial scouting due to its ability to maximize spatial coverage and situational awareness in limited flight time. However, the on-board processing of high-resolution oblique streams is severely bottlenecked by the strict Size, Weight, and Power (SWaP) constraints of Unmanned Aerial Vehicles (UAVs). The computational density required to process these wide-field-of-view streams precludes low-latency inference on standard edge hardware. To address this, we propose Temporal Token Reuse (TTR), an adaptive inference framework capable of accelerating video segmentation on embedded devices. TTR exploits the intrinsic spatiotemporal redundancy of aerial video by formulating image patches as tokens; it utilizes a lightweight similarity metric to dynamically identify static regions and propagate their precomputed deep features, thereby bypassing redundant backbone computations. We validate the framework on standard benchmarks and a newly curated Oblique Floodwater Dataset designed for hydrological monitoring. Experimental results on edge-grade hardware demonstrate that TTR achieves a 30% reduction in inference latency with negligible degradation in segmentation accuracy (< 0.5% mIoU). These findings confirm that TTR effectively shifts the operational Pareto frontier, enabling high-fidelity, real-time oblique video understanding for time-critical remote sensing missions
X-Distill: Cross-Architecture Vision Distillation for Visuomotor Learning
Visuomotor policies often leverage large pre-trained Vision Transformers (ViTs) for their powerful generalization capabilities. However, their significant data requirements present a major challenge in the data-scarce context of most robotic learning settings, where compact CNNs with strong inductive biases can be more easily optimized. To address this trade-off, we introduce X-Distill, a simple yet highly effective method that synergizes the strengths of both architectures. Our approach involves an offline, cross-architecture knowledge distillation, transferring the rich visual representations of a large, frozen DINOv2 teacher to a compact ResNet-18 student on the general-purpose ImageNet dataset. This distilled encoder, now endowed with powerful visual priors, is then jointly fine-tuned with a diffusion policy head on the target manipulation tasks. Extensive experiments on $34$ simulated benchmarks and $5$ challenging real-world tasks demonstrate that our method consistently outperforms policies equipped with from-scratch ResNet or fine-tuned DINOv2 encoders. Notably, X-Distill also surpasses 3D encoders that utilize privileged point cloud observations or much larger Vision-Language Models. Our work highlights the efficacy of a simple, well-founded distillation strategy for achieving state-of-the-art performance in data-efficient robotic manipulation.
FTDMamba: Frequency-Assisted Temporal Dilation Mamba for Unmanned Aerial Vehicle Video Anomaly Detection
Recent advances in video anomaly detection (VAD) mainly focus on ground-based surveillance or unmanned aerial vehicle (UAV) videos with static backgrounds, whereas research on UAV videos with dynamic backgrounds remains limited. Unlike static scenarios, dynamically captured UAV videos exhibit multi-source motion coupling, where the motion of objects and UAV-induced global motion are intricately intertwined. Consequently, existing methods may misclassify normal UAV movements as anomalies or fail to capture true anomalies concealed within dynamic backgrounds. Moreover, many approaches do not adequately address the joint modeling of inter-frame continuity and local spatial correlations across diverse temporal scales. To overcome these limitations, we propose the Frequency-Assisted Temporal Dilation Mamba (FTDMamba) network for UAV VAD, including two core components: (1) a Frequency Decoupled Spatiotemporal Correlation Module, which disentangles coupled motion patterns and models global spatiotemporal dependencies through frequency analysis; and (2) a Temporal Dilation Mamba Module, which leverages Mamba's sequence modeling capability to jointly learn fine-grained temporal dynamics and local spatial structures across multiple temporal receptive fields. Additionally, unlike existing UAV VAD datasets which focus on static backgrounds, we construct a large-scale Moving UAV VAD dataset (MUVAD), comprising 222,736 frames with 240 anomaly events across 12 anomaly types. Extensive experiments demonstrate that FTDMamba achieves state-of-the-art (SOTA) performance on two public static benchmarks and the new MUVAD dataset. The code and MUVAD dataset will be available at: https://github.com/uavano/FTDMamba.
Language-Agnostic Visual Embeddings for Cross-Script Handwriting Retrieval
Handwritten word retrieval is vital for digital archives but remains challenging due to large handwriting variability and cross-lingual semantic gaps. While large vision-language models offer potential solutions, their prohibitive computational costs hinder practical edge deployment. To address this, we propose a lightweight asymmetric dual-encoder framework that learns unified, style-invariant visual embeddings. By jointly optimizing instance-level alignment and class-level semantic consistency, our approach anchors visual embeddings to language-agnostic semantic prototypes, enforcing invariance across scripts and writing styles. Experiments show that our method outperforms 28 baselines and achieves state-of-the-art accuracy on within-language retrieval benchmarks. We further conduct explicit cross-lingual retrieval, where the query language differs from the target language, to validate the effectiveness of the learned cross-lingual representations. Achieving strong performance with only a fraction of the parameters required by existing models, our framework enables accurate and resource-efficient cross-script handwriting retrieval.
comment: 9 pages,5 figures
Image-Text Knowledge Modeling for Unsupervised Multi-Scenario Person Re-Identification
We propose unsupervised multi-scenario (UMS) person re-identification (ReID) as a new task that expands ReID across diverse scenarios (cross-resolution, clothing change, etc.) within a single coherent framework. To tackle UMS-ReID, we introduce image-text knowledge modeling (ITKM) -- a three-stage framework that effectively exploits the representational power of vision-language models. We start with a pre-trained CLIP model with an image encoder and a text encoder. In Stage I, we introduce a scenario embedding in the image encoder and fine-tune the encoder to adaptively leverage knowledge from multiple scenarios. In Stage II, we optimize a set of learned text embeddings to associate with pseudo-labels from Stage I and introduce a multi-scenario separation loss to increase the divergence between inter-scenario text representations. In Stage III, we first introduce cluster-level and instance-level heterogeneous matching modules to obtain reliable heterogeneous positive pairs (e.g., a visible image and an infrared image of the same person) within each scenario. Next, we propose a dynamic text representation update strategy to maintain consistency between text and image supervision signals. Experimental results across multiple scenarios demonstrate the superiority and generalizability of ITKM; it not only outperforms existing scenario-specific methods but also enhances overall performance by integrating knowledge from multiple scenarios.
comment: 12 pages, 10 figures
Bio-inspired fine-tuning for selective transfer learning in image classification
Deep learning has significantly advanced image analysis across diverse domains but often depends on large, annotated datasets for success. Transfer learning addresses this challenge by utilizing pre-trained models to tackle new tasks with limited labeled data. However, discrepancies between source and target domains can hinder effective transfer learning. We introduce BioTune, a novel adaptive fine-tuning technique utilizing evolutionary optimization. BioTune enhances transfer learning by optimally choosing which layers to freeze and adjusting learning rates for unfrozen layers. Through extensive evaluation on nine image classification datasets, spanning natural and specialized domains such as medical imaging, BioTune demonstrates superior accuracy and efficiency over state-of-the-art fine-tuning methods, including AutoRGN and LoRA, highlighting its adaptability to various data characteristics and distribution changes. Additionally, BioTune consistently achieves top performance across four different CNN architectures, underscoring its flexibility. Ablation studies provide valuable insights into the impact of BioTune's key components on overall performance. The source code is available at https://github.com/davilac/BioTune.
VidLeaks: Membership Inference Attacks Against Text-to-Video Models
The proliferation of powerful Text-to-Video (T2V) models, trained on massive web-scale datasets, raises urgent concerns about copyright and privacy violations. Membership inference attacks (MIAs) provide a principled tool for auditing such risks, yet existing techniques - designed for static data like images or text - fail to capture the spatio-temporal complexities of video generation. In particular, they overlook the sparsity of memorization signals in keyframes and the instability introduced by stochastic temporal dynamics. In this paper, we conduct the first systematic study of MIAs against T2V models and introduce a novel framework VidLeaks, which probes sparse-temporal memorization through two complementary signals: 1) Spatial Reconstruction Fidelity (SRF), using a Top-K similarity to amplify spatial memorization signals from sparsely memorized keyframes, and 2) Temporal Generative Stability (TGS), which measures semantic consistency across multiple queries to capture temporal leakage. We evaluate VidLeaks under three progressively restrictive black-box settings - supervised, reference-based, and query-only. Experiments on three representative T2V models reveal severe vulnerabilities: VidLeaks achieves AUC of 82.92% on AnimateDiff and 97.01% on InstructVideo even in the strict query-only setting, posing a realistic and exploitable privacy risk. Our work provides the first concrete evidence that T2V models leak substantial membership information through both sparse and temporal memorization, establishing a foundation for auditing video generation systems and motivating the development of new defenses. Code is available at: https://zenodo.org/records/17972831.
ATATA: One Algorithm to Align Them All
We suggest a new multi-modal algorithm for joint inference of paired structurally aligned samples with Rectified Flow models. While some existing methods propose a codependent generation process, they do not view the problem of joint generation from a structural alignment perspective. Recent work uses Score Distillation Sampling to generate aligned 3D models, but SDS is known to be time-consuming, prone to mode collapse, and often provides cartoonish results. By contrast, our suggested approach relies on the joint transport of a segment in the sample space, yielding faster computation at inference time. Our approach can be built on top of an arbitrary Rectified Flow model operating on the structured latent space. We show the applicability of our method to the domains of image, video, and 3D shape generation using state-of-the-art baselines and evaluate it against both editing-based and joint inference-based competing approaches. We demonstrate a high degree of structural alignment for the sample pairs obtained with our method and a high visual quality of the samples. Our method improves the state-of-the-art for image and video generation pipelines. For 3D generation, it is able to show comparable quality while working orders of magnitude faster.
Democratizing planetary-scale analysis: An ultra-lightweight Earth embedding database for accurate and flexible global land monitoring
The rapid evolution of satellite-borne Earth Observation (EO) systems has revolutionized terrestrial monitoring, yielding petabyte-scale archives. However, the immense computational and storage requirements for global-scale analysis often preclude widespread use, hindering planetary-scale studies. To address these barriers, we present Embedded Seamless Data (ESD), an ultra-lightweight, 30-m global Earth embedding database spanning the 25-year period from 2000 to 2024. By transforming high-dimensional, multi-sensor observations from the Landsat series (5, 7, 8, and 9) and MODIS Terra into information-dense, quantized latent vectors, ESD distills essential geophysical and semantic features into a unified latent space. Utilizing the ESDNet architecture and Finite Scalar Quantization (FSQ), the dataset achieves a transformative ~340-fold reduction in data volume compared to raw archives. This compression allows the entire global land surface for a single year to be encapsulated within approximately 2.4 TB, enabling decadal-scale global analysis on standard local workstations. Rigorous validation demonstrates high reconstructive fidelity (MAE: 0.0130; RMSE: 0.0179; CC: 0.8543). By condensing the annual phenological cycle into 12 temporal steps, the embeddings provide inherent denoising and a semantically organized space that outperforms raw reflectance in land-cover classification, achieving 79.74% accuracy (vs. 76.92% for raw fusion). With robust few-shot learning capabilities and longitudinal consistency, ESD provides a versatile foundation for democratizing planetary-scale research and advancing next-generation geospatial artificial intelligence.
SoLA-Vision: Fine-grained Layer-wise Linear Softmax Hybrid Attention
Standard softmax self-attention excels in vision tasks but incurs quadratic complexity O(N^2), limiting high-resolution deployment. Linear attention reduces the cost to O(N), yet its compressed state representations can impair modeling capacity and accuracy. We present an analytical study that contrasts linear and softmax attention for visual representation learning from a layer-stacking perspective. We further conduct systematic experiments on layer-wise hybridization patterns of linear and softmax attention. Our results show that, compared with rigid intra-block hybrid designs, fine-grained layer-wise hybridization can match or surpass performance while requiring fewer softmax layers. Building on these findings, we propose SoLA-Vision (Softmax-Linear Attention Vision), a flexible layer-wise hybrid attention backbone that enables fine-grained control over how linear and softmax attention are integrated. By strategically inserting a small number of global softmax layers, SoLA-Vision achieves a strong trade-off between accuracy and computational cost. On ImageNet-1K, SoLA-Vision outperforms purely linear and other hybrid attention models. On dense prediction tasks, it consistently surpasses strong baselines by a considerable margin. Code will be released.
comment: Preprint
GMM-COMET: Continual Source-Free Universal Domain Adaptation via a Mean Teacher and Gaussian Mixture Model-Based Pseudo-Labeling
Unsupervised domain adaptation tackles the problem that domain shifts between training and test data impair the performance of neural networks in many real-world applications. Thereby, in realistic scenarios, the source data may no longer be available during adaptation, and the label space of the target domain may differ from the source label space. This setting, known as source-free universal domain adaptation (SF-UniDA), has recently gained attention, but all existing approaches only assume a single domain shift from source to target. In this work, we present the first study on continual SF-UniDA, where the model must adapt sequentially to a stream of multiple different unlabeled target domains. Building upon our previous methods for online SF-UniDA, we combine their key ideas by integrating Gaussian mixture model-based pseudo-labeling within a mean teacher framework for improved stability over long adaptation sequences. Additionally, we introduce consistency losses for further robustness. The resulting method GMM-COMET provides a strong first baseline for continual SF-UniDA and is the only approach in our experiments to consistently improve upon the source-only model across all evaluated scenarios. Our code is available at https://github.com/pascalschlachter/GMM-COMET.
Vision-as-Inverse-Graphics Agent via Interleaved Multimodal Reasoning
Vision-as-inverse-graphics, the concept of reconstructing an image as an editable graphics program is a long-standing goal of computer vision. Yet even strong VLMs aren't able to achieve this in one-shot as they lack fine-grained spatial and physical grounding capability. Our key insight is that closing this gap requires interleaved multimodal reasoning through iterative execution and verification. Stemming from this, we present VIGA (Vision-as-Inverse-Graphic Agent) that starts from an empty world and reconstructs or edits scenes through a closed-loop write-run-render-compare-revise procedure. To support long-horizon reasoning, VIGA combines (i) a skill library that alternates generator and verifier roles and (ii) an evolving context memory that contains plans, code diffs, and render history. VIGA is task-agnostic as it doesn't require auxiliary modules, covering a wide range of tasks such as 3D reconstruction, multi-step scene editing, 4D physical interaction, and 2D document editing, etc. Empirically, we found VIGA substantially improves one-shot baselines on BlenderGym (35.32%) and SlideBench (117.17%). Moreover, VIGA is also model-agnostic as it doesn't require finetuning, enabling a unified protocol to evaluate heterogeneous foundation VLMs. To better support this protocol, we introduce BlenderBench, a challenging benchmark that stress-tests interleaved multimodal reasoning with graphics engine, where VIGA improves by 124.70%.
Simple Models, Rich Representations: Visual Decoding from Primate Intracortical Neural Signals NeurIPS 2025
Understanding how neural activity gives rise to perception is a central challenge in neuroscience. We address the problem of decoding visual information from high-density intracortical recordings in primates, using the THINGS Ventral Stream Spiking Dataset. We systematically evaluate the effects of model architecture, training objectives, and data scaling on decoding performance. Results show that decoding accuracy is mainly driven by modeling temporal dynamics in neural signals, rather than architectural complexity. A simple model combining temporal attention with a shallow MLP achieves up to 70% top-1 image retrieval accuracy, outperforming linear baselines as well as recurrent and convolutional approaches. Scaling analyses reveal predictable diminishing returns with increasing input dimensionality and dataset size. Building on these findings, we design a modular generative decoding pipeline that combines low-resolution latent reconstruction with semantically conditioned diffusion, generating plausible images from 200 ms of brain activity. This framework provides principles for brain-computer interfaces and semantic neural decoding.
comment: Presented at "Foundation Models for the Brain and Body" - NeurIPS 2025 Workshop
Graph Smoothing for Enhanced Local Geometry Learning in Point Cloud Analysis AAAI 2026
Graph-based methods have proven to be effective in capturing relationships among points for 3D point cloud analysis. However, these methods often suffer from suboptimal graph structures, particularly due to sparse connections at boundary points and noisy connections in junction areas. To address these challenges, we propose a novel method that integrates a graph smoothing module with an enhanced local geometry learning module. Specifically, we identify the limitations of conventional graph structures, particularly in handling boundary points and junction areas. In response, we introduce a graph smoothing module designed to optimize the graph structure and minimize the negative impact of unreliable sparse and noisy connections. Based on the optimized graph structure, we improve the feature extract function with local geometry information. These include shape features derived from adaptive geometric descriptors based on eigenvectors and distribution features obtained through cylindrical coordinate transformation. Experimental results on real-world datasets validate the effectiveness of our method in various point cloud learning tasks, i.e., classification, part segmentation, and semantic segmentation.
comment: Accepted by AAAI 2026
CoDance: An Unbind-Rebind Paradigm for Robust Multi-Subject Animation
Character image animation is gaining significant importance across various domains, driven by the demand for robust and flexible multi-subject rendering. While existing methods excel in single-person animation, they struggle to handle arbitrary subject counts, diverse character types, and spatial misalignment between the reference image and the driving poses. We attribute these limitations to an overly rigid spatial binding that forces strict pixel-wise alignment between the pose and reference, and an inability to consistently rebind motion to intended subjects. To address these challenges, we propose CoDance, a novel Unbind-Rebind framework that enables the animation of arbitrary subject counts, types, and spatial configurations conditioned on a single, potentially misaligned pose sequence. Specifically, the Unbind module employs a novel pose shift encoder to break the rigid spatial binding between the pose and the reference by introducing stochastic perturbations to both poses and their latent features, thereby compelling the model to learn a location-agnostic motion representation. To ensure precise control and subject association, we then devise a Rebind module, leveraging semantic guidance from text prompts and spatial guidance from subject masks to direct the learned motion to intended characters. Furthermore, to facilitate comprehensive evaluation, we introduce a new multi-subject CoDanceBench. Extensive experiments on CoDanceBench and existing datasets show that CoDance achieves SOTA performance, exhibiting remarkable generalization across diverse subjects and spatial layouts. The code and weights will be open-sourced.
comment: https://lucaria-academy.github.io/CoDance/
PhysRVG: Physics-Aware Unified Reinforcement Learning for Video Generative Models
Physical principles are fundamental to realistic visual simulation, but remain a significant oversight in transformer-based video generation. This gap highlights a critical limitation in rendering rigid body motion, a core tenet of classical mechanics. While computer graphics and physics-based simulators can easily model such collisions using Newton formulas, modern pretrain-finetune paradigms discard the concept of object rigidity during pixel-level global denoising. Even perfectly correct mathematical constraints are treated as suboptimal solutions (i.e., conditions) during model optimization in post-training, fundamentally limiting the physical realism of generated videos. Motivated by these considerations, we introduce, for the first time, a physics-aware reinforcement learning paradigm for video generation models that enforces physical collision rules directly in high-dimensional spaces, ensuring the physics knowledge is strictly applied rather than treated as conditions. Subsequently, we extend this paradigm to a unified framework, termed Mimicry-Discovery Cycle (MDcycle), which allows substantial fine-tuning while fully preserving the model's ability to leverage physics-grounded feedback. To validate our approach, we construct new benchmark PhysRVGBench and perform extensive qualitative and quantitative experiments to thoroughly assess its effectiveness.
Generation of Chest CT pulmonary Nodule Images by Latent Diffusion Models using the LIDC-IDRI Dataset
Recently, computer-aided diagnosis systems have been developed to support diagnosis, but their performance depends heavily on the quality and quantity of training data. However, in clinical practice, it is difficult to collect the large amount of CT images for specific cases, such as small cell carcinoma with low epidemiological incidence or benign tumors that are difficult to distinguish from malignant ones. This leads to the challenge of data imbalance. In this study, to address this issue, we proposed a method to automatically generate chest CT nodule images that capture target features using latent diffusion models (LDM) and verified its effectiveness. Using the LIDC-IDRI dataset, we created pairs of nodule images and finding-based text prompts based on physician evaluations. For the image generation models, we used Stable Diffusion version 1.5 (SDv1) and 2.0 (SDv2), which are types of LDM. Each model was fine-tuned using the created dataset. During the generation process, we adjusted the guidance scale (GS), which indicates the fidelity to the input text. Both quantitative and subjective evaluations showed that SDv2 (GS = 5) achieved the best performance in terms of image quality, diversity, and text consistency. In the subjective evaluation, no statistically significant differences were observed between the generated images and real images, confirming that the quality was equivalent to real clinical images. We proposed a method for generating chest CT nodule images based on input text using LDM. Evaluation results demonstrated that the proposed method could generate high-quality images that successfully capture specific medical features.
Visual question answering-based image-finding generation for pulmonary nodules on chest CT from structured annotations
Interpretation of imaging findings based on morphological characteristics is important for diagnosing pulmonary nodules on chest computed tomography (CT) images. In this study, we constructed a visual question answering (VQA) dataset from structured data in an open dataset and investigated an image-finding generation method for chest CT images, with the aim of enabling interactive diagnostic support that presents findings based on questions that reflect physicians' interests rather than fixed descriptions. In this study, chest CT images included in the Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI) datasets were used. Regions of interest surrounding the pulmonary nodules were extracted from these images, and image findings and questions were defined based on morphological characteristics recorded in the database. A dataset comprising pairs of cropped images, corresponding questions, and image findings was constructed, and the VQA model was fine-tuned on it. Language evaluation metrics such as BLEU were used to evaluate the generated image findings. The VQA dataset constructed using the proposed method contained image findings with natural expressions as radiological descriptions. In addition, the generated image findings showed a high CIDEr score of 3.896, and a high agreement with the reference findings was obtained through evaluation based on morphological characteristics. We constructed a VQA dataset for chest CT images using structured information on the morphological characteristics from the LIDC-IDRI dataset. Methods for generating image findings in response to these questions have also been investigated. Based on the generated results and evaluation metric scores, the proposed method was effective as an interactive diagnostic support system that can present image findings according to physicians' interests.
H-AIM: Orchestrating LLMs, PDDL, and Behavior Trees for Hierarchical Multi-Robot Planning
In embodied artificial intelligence, enabling heterogeneous robot teams to execute long-horizon tasks from high-level instructions remains a critical challenge. While large language models (LLMs) show promise in instruction parsing and preliminary planning, they exhibit limitations in long-term reasoning and dynamic multi-robot coordination. We propose Hierarchical Autonomous Intelligent Multi-Robot Planning(H-AIM), a novel embodied multi-robot task planning framework that addresses these issues through a three-stage cascaded architecture: 1) It leverages an LLM to parse instructions and generate Planning Domain Definition Language (PDDL) problem descriptions, thereby transforming commands into formal planning problems; 2) It combines the semantic reasoning of LLMs with the search capabilities of a classical planner to produce optimized action sequences; 3) It compiles the resulting plan into behavior trees for reactive control. The framework supports dynamically sized heterogeneous robot teams via a shared blackboard mechanism for communication and state synchronization. To validate our approach, we introduce the MACE-THOR benchmark dataset, comprising 42 complex tasks across 8 distinct household layouts. Experimental results demonstrate that H-AIM achieves a remarkable performance improvement, elevating the task success rate from 12% to 55% and boosting the goal condition recall from 32% to 72% against the strongest baseline, LaMMA-P.
M3DDM+: An improved video outpainting by a modified masking strategy
M3DDM provides a computationally efficient framework for video outpainting via latent diffusion modeling. However, it exhibits significant quality degradation -- manifested as spatial blur and temporal inconsistency -- under challenging scenarios characterized by limited camera motion or large outpainting regions, where inter-frame information is limited. We identify the cause as a training-inference mismatch in the masking strategy: M3DDM's training applies random mask directions and widths across frames, whereas inference requires consistent directional outpainting throughout the video. To address this, we propose M3DDM+, which applies uniform mask direction and width across all frames during training, followed by fine-tuning of the pretrained M3DDM model. Experiments demonstrate that M3DDM+ substantially improves visual fidelity and temporal coherence in information-limited scenarios while maintaining computational efficiency. The code is available at https://github.com/tamaki-lab/M3DDM-Plus.
comment: proc. of IWAIT2026
Convolutions Need Registers Too: HVS-Inspired Dynamic Attention for Video Quality Assessment
No-reference video quality assessment (NR-VQA) estimates perceptual quality without a reference video, which is often challenging. While recent techniques leverage saliency or transformer attention, they merely address global context of the video signal by using static maps as auxiliary inputs rather than embedding context fundamentally within feature extraction of the video sequence. We present Dynamic Attention with Global Registers for Video Quality Assessment (DAGR-VQA), the first framework integrating register-token directly into a convolutional backbone for spatio-temporal, dynamic saliency prediction. By embedding learnable register tokens as global context carriers, our model enables dynamic, HVS-inspired attention, producing temporally adaptive saliency maps that track salient regions over time without explicit motion estimation. Our model integrates dynamic saliency maps with RGB inputs, capturing spatial data and analyzing it through a temporal transformer to deliver a perceptually consistent video quality assessment. Comprehensive tests conducted on the LSVQ, KonVid-1k, LIVE-VQC, and YouTube-UGC datasets show that the performance is highly competitive, surpassing the majority of top baselines. Research on ablation studies demonstrates that the integration of register tokens promotes the development of stable and temporally consistent attention mechanisms. Achieving an efficiency of 387.7 FPS at 1080p, DAGR-VQA demonstrates computational performance suitable for real-time applications like multimedia streaming systems.
comment: Accepted at ACM MMSys 2026. 12 pages, 8 figures. No supplementary material
Your One-Stop Solution for AI-Generated Video Detection
Recent advances in generative modeling can create remarkably realistic synthetic videos, making it increasingly difficult for humans to distinguish them from real ones and necessitating reliable detection methods. However, two key limitations hinder the development of this field. \textbf{From the dataset perspective}, existing datasets are often limited in scale and constructed using outdated or narrowly scoped generative models, making it difficult to capture the diversity and rapid evolution of modern generative techniques. Moreover, the dataset construction process frequently prioritizes quantity over quality, neglecting essential aspects such as semantic diversity, scenario coverage, and technological representativeness. \textbf{From the benchmark perspective}, current benchmarks largely remain at the stage of dataset creation, leaving many fundamental issues and in-depth analysis yet to be systematically explored. Addressing this gap, we propose AIGVDBench, a benchmark designed to be comprehensive and representative, covering \textbf{31} state-of-the-art generation models and over \textbf{440,000} videos. By executing more than \textbf{1,500} evaluations on \textbf{33} existing detectors belonging to four distinct categories. This work presents \textbf{8 in-depth analyses} from multiple perspectives and identifies \textbf{4 novel findings} that offer valuable insights for future research. We hope this work provides a solid foundation for advancing the field of AI-generated video detection. Our benchmark is open-sourced at https://github.com/LongMa-2025/AIGVDBench.
IDDR-NGP: Incorporating Detectors for Distractor Removal with Instant Neural Radiance Field
This paper presents the first unified distractor removal method, named IDDR-NGP, which directly operates on Instant-NPG. The method is able to remove a wide range of distractors in 3D scenes, such as snowflakes, confetti, defoliation and petals, whereas existing methods usually focus on a specific type of distractors. By incorporating implicit 3D representations with 2D detectors, we demonstrate that it is possible to efficiently restore 3D scenes from multiple corrupted images. We design the learned perceptual image patch similarity~( LPIPS) loss and the multi-view compensation loss (MVCL) to jointly optimize the rendering results of IDDR-NGP, which could aggregate information from multi-view corrupted images. All of them can be trained in an end-to-end manner to synthesize high-quality 3D scenes. To support the research on distractors removal in implicit 3D representations, we build a new benchmark dataset that consists of both synthetic and real-world distractors. To validate the effectiveness and robustness of IDDR-NGP, we provide a wide range of distractors with corresponding annotated labels added to both realistic and synthetic scenes. Extensive experimental results demonstrate the effectiveness and robustness of IDDR-NGP in removing multiple types of distractors. In addition, our approach achieves results comparable with the existing SOTA desnow methods and is capable of accurately removing both realistic and synthetic distractors.
comment: 8 pages, 7 figures, accepted by ACM-MM23
Matching High-Dimensional Geometric Quantiles for Test-Time Adaptation of Transformers and Convolutional Networks Alike
Test-time adaptation (TTA) refers to adapting a classifier for the test data when the probability distribution of the test data slightly differs from that of the training data of the model. To the best of our knowledge, most of the existing TTA approaches modify the weights of the classifier relying heavily on the architecture. It is unclear as to how these approaches are extendable to generic architectures. In this article, we propose an architecture-agnostic approach to TTA by adding an adapter network pre-processing the input images suitable to the classifier. This adapter is trained using the proposed quantile loss. Unlike existing approaches, we correct for the distribution shift by matching high-dimensional geometric quantiles. We prove theoretically that under suitable conditions minimizing quantile loss can learn the optimal adapter. We validate our approach on CIFAR10-C, CIFAR100-C and TinyImageNet-C by training both classic convolutional and transformer networks on CIFAR10, CIFAR100 and TinyImageNet datasets.
KOCOBrain: Kuramoto-Guided Graph Network for Uncovering Structure-Function Coupling in Adolescent Prenatal Drug Exposure
Exposure to psychoactive substances during pregnancy, such as cannabis, can disrupt neurodevelopment and alter large-scale brain networks, yet identifying their neural signatures remains challenging. We introduced KOCOBrain: KuramotO COupled Brain Graph Network; a unified graph neural network framework that integrates structural and functional connectomes via Kuramoto-based phase dynamics and cognition-aware attention. The Kuramoto layer models neural synchronization over anatomical connections, generating phase-informed embeddings that capture structure-function coupling, while cognitive scores modulate information routing in a subject-specific manner followed by a joint objective enhancing robustness under class imbalance scenario. Applied to the ABCD cohort, KOCOBrain improved prenatal drug exposure prediction over relevant baselines and revealed interpretable structure-function patterns that reflect disrupted brain network coordination associated with early exposure.
comment: Preprint version of the paper accepted to the IEEE International Symposium on Biomedical Imaging (ISBI 2026). This is the author's accepted manuscript. The final published version will appear in IEEE Xplore
MMedExpert-R1: Strengthening Multimodal Medical Reasoning via Domain-Specific Adaptation and Clinical Guideline Reinforcement
Medical Vision-Language Models (MedVLMs) excel at perception tasks but struggle with complex clinical reasoning required in real-world scenarios. While reinforcement learning (RL) has been explored to enhance reasoning capabilities, existing approaches face critical mismatches: the scarcity of deep reasoning data, cold-start limits multi-specialty alignment, and standard RL algorithms fail to model clinical reasoning diversity. We propose MMedExpert-R1, a novel reasoning MedVLM that addresses these challenges through domain-specific adaptation and clinical guideline reinforcement. We construct MMedExpert, a high-quality dataset of 10K samples across four specialties with step-by-step reasoning traces. Our Domain-Specific Adaptation (DSA) creates specialty-specific LoRA modules to provide diverse initialization, while Guideline-Based Advantages (GBA) explicitly models different clinical reasoning perspectives to align with real-world diagnostic strategies. Conflict-Aware Capability Integration then merges these specialized experts into a unified agent, ensuring robust multi-specialty alignment. Comprehensive experiments demonstrate state-of-the-art performance, with our 7B model achieving 27.50 on MedXpert-MM and 83.03 on OmniMedVQA, establishing a robust foundation for reliable multimodal medical reasoning systems.
PatientVLM Meets DocVLM: Pre-Consultation Dialogue Between Vision-Language Models for Efficient Diagnosis AAAI 2026
Traditionally, AI research in medical diagnosis has largely centered on image analysis. While this has led to notable advancements, the absence of patient-reported symptoms continues to hinder diagnostic accuracy. To address this, we propose a Pre-Consultation Dialogue Framework (PCDF) that mimics real-world diagnostic procedures, where doctors iteratively query patients before reaching a conclusion. Specifically, we simulate diagnostic dialogues between two vision-language models (VLMs): a DocVLM, which generates follow-up questions based on the image and dialogue history, and a PatientVLM, which responds using a symptom profile derived from the ground-truth diagnosis. We additionally conducted a small-scale clinical validation of the synthetic symptoms generated by our framework, with licensed clinicians confirming their clinical relevance, symptom coverage, and overall realism. These findings indicate that the resulting DocVLM-PatientVLM interactions form coherent, multi-turn consultations paired with images and diagnoses, which we then use to fine-tune the DocVLM. This dialogue-based supervision leads to substantial gains over image-only training, highlighting the value of realistic symptom elicitation for diagnosis.
comment: Accepted at AAAI 2026 Main Track
Sparse Data Tree Canopy Segmentation: Fine-Tuning Leading Pretrained Models on Only 150 Images
Tree canopy detection from aerial imagery is an important task for environmental monitoring, urban planning, and ecosystem analysis. Simulating real-life data annotation scarcity, the Solafune Tree Canopy Detection competition provides a small and imbalanced dataset of only 150 annotated images, posing significant challenges for training deep models without severe overfitting. In this work, we evaluate five representative architectures, YOLOv11, Mask R-CNN, DeepLabv3, Swin-UNet, and DINOv2, to assess their suitability for canopy segmentation under extreme data scarcity. Our experiments show that pretrained convolution-based models, particularly YOLOv11 and Mask R-CNN, generalize significantly better than pretrained transformer-based models. DeeplabV3, Swin-UNet and DINOv2 underperform likely due to differences between semantic and instance segmentation tasks, the high data requirements of Vision Transformers, and the lack of strong inductive biases. These findings confirm that transformer-based architectures struggle in low-data regimes without substantial pretraining or augmentation and that differences between semantic and instance segmentation further affect model performance. We provide a detailed analysis of training strategies, augmentation policies, and model behavior under the small-data constraint and demonstrate that lightweight CNN-based methods remain the most reliable for canopy detection on limited imagery.
comment: 4 pages, 2 figures
RobuMTL: Enhancing Multi-Task Learning Robustness Against Weather Conditions WACV
Robust Multi-Task Learning (MTL) is crucial for autonomous systems operating in real-world environments, where adverse weather conditions can severely degrade model performance and reliability. In this paper, we introduce RobuMTL, a novel architecture designed to adaptively address visual degradation by dynamically selecting task-specific hierarchical Low-Rank Adaptation (LoRA) modules and a LoRA expert squad based on input perturbations in a mixture-of-experts fashion. Our framework enables adaptive specialization based on input characteristics, improving robustness across diverse real-world conditions. To validate our approach, we evaluated it on the PASCAL and NYUD-v2 datasets and compared it against single-task models, standard MTL baselines, and state-of-the-art methods. On the PASCAL benchmark, RobuMTL delivers a +2.8% average relative improvement under single perturbations and up to +44.4% under mixed weather conditions compared to the MTL baseline. On NYUD-v2, RobuMTL achieves a +9.7% average relative improvement across tasks. The code is available at GitHub.
comment: Accepted at the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2026
Self-learned representation-guided latent diffusion model for breast cancer classification in deep ultraviolet whole surface images
Breast-Conserving Surgery (BCS) requires precise intraoperative margin assessment to preserve healthy tissue. Deep Ultraviolet Fluorescence Scanning Microscopy (DUV-FSM) offers rapid, high-resolution surface imaging for this purpose; however, the scarcity of annotated DUV data hinders the training of robust deep learning models. To address this, we propose an Self-Supervised Learning (SSL)-guided Latent Diffusion Model (LDM) to generate high-quality synthetic training patches. By guiding the LDM with embeddings from a fine-tuned DINO teacher, we inject rich semantic details of cellular structures into the synthetic data. We combine real and synthetic patches to fine-tune a Vision Transformer (ViT), utilizing patch prediction aggregation for WSI-level classification. Experiments using 5-fold cross-validation demonstrate that our method achieves 96.47 % accuracy and reduces the FID score to 45.72, significantly outperforming class-conditioned baselines.
comment: This paper has been accepted for the IEEE International Symposium on Biomedical Imaging (ISBI) 2026, London, UK, and will be presented in the corresponding session
Classification of Chest XRay Diseases through image processing and analysis techniques
Multi-Classification Chest X-Ray Images are one of the most prevalent forms of radiological examination used for diagnosing thoracic diseases. In this study, we offer a concise overview of several methods employed for tackling this task, including DenseNet121. In addition, we deploy an open-source web-based application. In our study, we conduct tests to compare different methods and see how well they work. We also look closely at the weaknesses of the methods we propose and suggest ideas for making them better in the future. Our code is available at: https://github.com/AML4206-MINE20242/Proyecto_AML
Meta-Learning Guided Pruning for Few-Shot Plant Pathology on Edge Devices
A key challenge in agricultural AI is deploying disease detection systems in remote fields with limited access to laboratories or high-performance computing (HPC) resources. While deep learning (DL) models, specifically deep convolutional networks, achieve high accuracy in identifying plant pathologies from leaf imagery, their memory footprints and computational demands limit edge deployment on devices constrained by battery life, processing power, and connectivity, such as Raspberry Pi. Few-shot learning (FSL) paradigms offer a compelling solution to the data scarcity problem inherent in agricultural applications, where obtaining labeled samples for novel disease variants proves both costly and time-sensitive. This work introduces a framework combining pruning with meta-learning for agricultural disease classification, addressing the tension between generalization capability and deployment feasibility. The proposed approach combines a novel Disease-Aware Channel Importance Scoring (DACIS) mechanism with a three-stage Prune-then-Meta-Learn-then-Prune (PMP) pipeline. Experiments on PlantVillage and PlantDoc datasets demonstrate that the proposed approach reduces model size by 78\% while maintaining 92.3\% of the original accuracy. The compressed model achieves 7 frames per second (FPS) on a Raspberry Pi 4, enabling practical real-time field diagnosis for smallholder farmers.
Causal-SAM-LLM: Large Language Models as Causal Reasoners for Robust Medical Segmentation
The clinical utility of deep learning models for medical image segmentation is severely constrained by their inability to generalize to unseen domains. This failure is often rooted in the models learning spurious correlations between anatomical content and domain-specific imaging styles. To overcome this fundamental challenge, we introduce Causal-SAM-LLM, a novel framework that elevates Large Language Models (LLMs) to the role of causal reasoners. Our framework, built upon a frozen Segment Anything Model (SAM) encoder, incorporates two synergistic innovations. First, Linguistic Adversarial Disentanglement (LAD) employs a Vision-Language Model to generate rich, textual descriptions of confounding image styles. By training the segmentation model's features to be contrastively dissimilar to these style descriptions, it learns a representation robustly purged of non-causal information. Second, Test-Time Causal Intervention (TCI) provides an interactive mechanism where an LLM interprets a clinician's natural language command to modulate the segmentation decoder's features in real-time, enabling targeted error correction. We conduct an extensive empirical evaluation on a composite benchmark from four public datasets (BTCV, CHAOS, AMOS, BraTS), assessing generalization under cross-scanner, cross-modality, and cross-anatomy settings. Causal-SAM-LLM establishes a new state of the art in out-of-distribution (OOD) robustness, improving the average Dice score by up to 6.2 points and reducing the Hausdorff Distance by 15.8 mm over the strongest baseline, all while using less than 9% of the full model's trainable parameters. Our work charts a new course for building robust, efficient, and interactively controllable medical AI systems.
comment: Accepted by IEEE ICASSP 2026
A Synthetic Benchmark for Collaborative 3D Semantic Occupancy Prediction in V2X-Enabled Autonomous Driving
3D semantic occupancy prediction is an emerging perception paradigm in autonomous driving, providing a voxel-level representation of both geometric details and semantic categories. However, its effectiveness is inherently constrained in single-vehicle setups by occlusions, restricted sensor range, and narrow viewpoints. To address these limitations, collaborative perception enables the exchange of complementary information, thereby enhancing the completeness and accuracy of predictions. Despite its potential, research on collaborative 3D semantic occupancy prediction is hindered by the lack of dedicated datasets. To bridge this gap, we design a high-resolution semantic voxel sensor in CARLA to produce dense and comprehensive annotations. We further develop a baseline model that performs inter-agent feature fusion via spatial alignment and attention aggregation. In addition, we establish benchmarks with varying prediction ranges designed to systematically assess the impact of spatial extent on collaborative prediction. Experimental results demonstrate the superior performance of our baseline, with increasing gains observed as range expands. Our code is available at https://github.com/tlab-wide/Co3SOP}{https://github.com/tlab-wide/Co3SOP.
A Single-Parameter Factor-Graph Image Prior
We propose a novel piecewise smooth image model with piecewise constant local parameters that are automatically adapted to each image. Technically, the model is formulated in terms of factor graphs with NUP (normal with unknown parameters) priors, and the pertinent computations amount to iterations of conjugate-gradient steps and Gaussian message passing. The proposed model and algorithms are demonstrated with applications to denoising and contrast enhancement.
A Classification-Aware Super-Resolution Framework for Ship Targets in SAR Imagery
High-resolution imagery plays a critical role in improving the performance of visual recognition tasks such as classification, detection, and segmentation. In many domains, including remote sensing and surveillance, low-resolution images can limit the accuracy of automated analysis. To address this, super-resolution (SR) techniques have been widely adopted to attempt to reconstruct high-resolution images from low-resolution inputs. Related traditional approaches focus solely on enhancing image quality based on pixel-level metrics, leaving the relationship between super-resolved image fidelity and downstream classification performance largely underexplored. This raises a key question: can integrating classification objectives directly into the super-resolution process further improve classification accuracy? In this paper, we try to respond to this question by investigating the relationship between super-resolution and classification through the deployment of a specialised algorithmic strategy. We propose a novel methodology that increases the resolution of synthetic aperture radar imagery by optimising loss functions that account for both image quality and classification performance. Our approach improves image quality, as measured by scientifically ascertained image quality indicators, while also enhancing classification accuracy.
A Safety Report on GPT-5.2, Gemini 3 Pro, Qwen3-VL, Grok 4.1 Fast, Nano Banana Pro, and Seedream 4.5
The rapid evolution of Large Language Models (LLMs) and Multimodal Large Language Models (MLLMs) has driven major gains in reasoning, perception, and generation across language and vision, yet whether these advances translate into comparable improvements in safety remains unclear, partly due to fragmented evaluations that focus on isolated modalities or threat models. In this report, we present an integrated safety evaluation of six frontier models--GPT-5.2, Gemini 3 Pro, Qwen3-VL, Grok 4.1 Fast, Nano Banana Pro, and Seedream 4.5--assessing each across language, vision-language, and image generation using a unified protocol that combines benchmark, adversarial, multilingual, and compliance evaluations. By aggregating results into safety leaderboards and model profiles, we reveal a highly uneven safety landscape: while GPT-5.2 demonstrates consistently strong and balanced performance, other models exhibit clear trade-offs across benchmark safety, adversarial robustness, multilingual generalization, and regulatory compliance. Despite strong results under standard benchmarks, all models remain highly vulnerable under adversarial testing, with worst-case safety rates dropping below 6%. Text-to-image models show slightly stronger alignment in regulated visual risk categories, yet remain fragile when faced with adversarial or semantically ambiguous prompts. Overall, these findings highlight that safety in frontier models is inherently multidimensional--shaped by modality, language, and evaluation design--underscoring the need for standardized, holistic safety assessments to better reflect real-world risk and guide responsible deployment.
comment: 41 pages, 22 figures
Exploring the Challenge and Value of Deep Learning in Automated Skin Disease Diagnosis
Skin cancer is one of the most prevalent and deadly forms of cancer worldwide, highlighting the critical importance of early detection and diagnosis in improving patient outcomes. Deep learning (DL) has shown significant promise in enhancing the accuracy and efficiency of automated skin disease diagnosis, particularly in detecting and classifying skin lesions. However, several challenges remain for DL-based skin cancer diagnosis, including complex features, image noise, intra-class variation, inter-class similarity, and data imbalance. This review synthesizes recent research and discusses innovative approaches to address these challenges, such as data augmentation, hybrid models, and feature fusion. Furthermore, the review highlights the integration of DL models into clinical workflows, offering insights into the potential of deep learning to revolutionize skin disease diagnosis and improve clinical decision-making. This review uniquely integrates a PRISMA-based methodology with a challenge-oriented taxonomy, providing a systematic and transparent synthesis of recent deep learning advances for skin disease diagnosis. It further highlights emerging directions such as hybrid CNN-Transformer architectures and uncertainty-aware models, emphasizing its contribution to future dermatological AI research.
SENSE: Self-Supervised Neural Embeddings for Spatial Ensembles
Analyzing and visualizing scientific ensemble datasets with high dimensionality and complexity poses significant challenges. Dimensionality reduction techniques and autoencoders are powerful tools for extracting features, but they often struggle with such high-dimensional data. This paper presents an enhanced autoencoder framework that incorporates a clustering loss, based on the soft silhouette score, alongside a contrastive loss to improve the visualization and interpretability of ensemble datasets. First, EfficientNetV2 is used to generate pseudo-labels for the unlabeled portions of the scientific ensemble datasets. By jointly optimizing the reconstruction, clustering, and contrastive objectives, our method encourages similar data points to group together while separating distinct clusters in the latent space. UMAP is subsequently applied to this latent representation to produce 2D projections, which are evaluated using the silhouette score. Multiple types of autoencoders are evaluated and compared based on their ability to extract meaningful features. Experiments on two scientific ensemble datasets - channel structures in soil derived from Markov chain Monte Carlo, and droplet-on-film impact dynamics - show that models incorporating clustering or contrastive loss marginally outperform the baseline approaches.
comment: Journal of Mathematics and Computer Science
Video-Browser: Towards Agentic Open-web Video Browsing
The evolution of autonomous agents is redefining information seeking, transitioning from passive retrieval to proactive, open-ended web research. However, a significant modality gap remains in processing the web's most dynamic and information-dense modality: video. In this paper, we first formalize the task of Agentic Video Browsing and introduce Video-BrowseComp, a benchmark evaluating open-ended agentic browsing tasks that enforce a mandatory dependency on videos. We observe that current paradigms struggle to reconcile the scale of open-ended video exploration with the need for fine-grained visual verification. Direct visual inference (e.g., RAG) maximizes perception but incurs prohibitive context costs, while text-centric summarization optimizes efficiency but often misses critical visual details required for accurate grounding. To address this, we propose Video-Browser, a novel agent leveraging Pyramidal Perception, filtering with cheap metadata and zooming in with expensive visual perception only when necessary. Experiments demonstrate that our approach achieves a 37.5% relative improvement while reducing token consumption by 58.3% compared to Direct visual inference, establishing a foundation for verifiable open-web video research. We open-source all codes, benchmark at {https://anonymous.4open.science/r/VideoBrowser} and {https://github.com/chrisx599/Video-Browser}.
TriDF: Triplane-Accelerated Density Fields for Few-Shot Remote Sensing Novel View Synthesis
Remote sensing novel view synthesis (NVS) offers significant potential for 3D interpretation of remote sensing scenes, with important applications in urban planning and environmental monitoring. However, remote sensing scenes frequently lack sufficient multi-view images due to acquisition constraints. While existing NVS methods tend to overfit when processing limited input views, advanced few-shot NVS methods are computationally intensive and perform sub-optimally in remote sensing scenes. This paper presents TriDF, an efficient hybrid 3D representation for fast remote sensing NVS from as few as 3 input views. Our approach decouples color and volume density information, modeling them independently to reduce the computational burden on implicit radiance fields and accelerate reconstruction. We explore the potential of the triplane representation in few-shot NVS tasks by mapping high-frequency color information onto this compact structure, and the direct optimization of feature planes significantly speeds up convergence. Volume density is modeled as continuous density fields, incorporating reference features from neighboring views through image-based rendering to compensate for limited input data. Additionally, we introduce depth-guided optimization based on point clouds, which effectively mitigates the overfitting problem in few-shot NVS. Comprehensive experiments across multiple remote sensing scenes demonstrate that our hybrid representation achieves a 30x speed increase compared to NeRF-based methods, while simultaneously improving rendering quality metrics over advanced few-shot methods (7.4% increase in PSNR and 3.4% in SSIM). The code is publicly available at https://github.com/kanehub/TriDF
comment: Corrected metadata formatting
VINO: A Unified Visual Generator with Interleaved OmniModal Context
We present VINO, a unified visual generator that performs image and video generation and editing within a single framework. Instead of relying on task-specific models or independent modules for each modality, VINO uses a shared diffusion backbone that conditions on text, images and videos, enabling a broad range of visual creation and editing tasks under one model. Specifically, VINO couples a vision-language model (VLM) with a Multimodal Diffusion Transformer (MMDiT), where multimodal inputs are encoded as interleaved conditioning tokens, and then used to guide the diffusion process. This design supports multi-reference grounding, long-form instruction following, and coherent identity preservation across static and dynamic content, while avoiding modality-specific architectural components. To train such a unified system, we introduce a multi-stage training pipeline that progressively expands a video generation base model into a unified, multi-task generator capable of both image and video input and output. Across diverse generation and editing benchmarks, VINO demonstrates strong visual quality, faithful instruction following, improved reference and attribute preservation, and more controllable multi-identity edits. Our results highlight a practical path toward scalable unified visual generation, and the promise of interleaved, in-context computation as a foundation for general-purpose visual creation.
comment: Project page: https://sotamak1r.github.io/VINO-web/
Multi-Receptive Field Ensemble with Cross-Entropy Masking for Class Imbalance in Remote Sensing Change Detection
Remote sensing change detection (RSCD) is a complex task, where changes often appear at different scales and orientations. Convolutional neural networks (CNNs) are good at capturing local spatial patterns but cannot model global semantics due to limited receptive fields. Alternatively, transformers can model long-range dependencies but are data hungry, and RSCD datasets are not large enough to train these models effectively. To tackle this, this paper presents a new architecture for RSCD which adapts a segment anything (SAM) vision foundation model and processes features from the SAM encoder through a multi-receptive field ensemble to capture local and global change patterns. We propose an ensemble of spatial-temporal feature enhancement (STFE) to capture cross-temporal relations, a decoder to reconstruct change patterns, and a multi-scale decoder fusion with attention (MSDFA) to fuse multi-scale decoder information and highlight key change patterns. Each branch in an ensemble operates on a separate receptive field to capture finer-to-coarser level details. Additionally, we propose a novel cross-entropy masking (CEM) loss to handle class-imbalance in RSCD datasets. Our work outperforms state-of-the-art (SOTA) methods on four change detection datasets, Levir-CD, WHU-CD, CLCD, and S2Looking. We achieved 2.97\% F1-score improvement on a complex S2Looking dataset. The code is available at: https://github.com/humza909/SAM-ECEM
Collaborative Representation Learning for Alignment of Tactile, Language, and Vision Modalities
Tactile sensing offers rich and complementary information to vision and language, enabling robots to perceive fine-grained object properties. However, existing tactile sensors lack standardization, leading to redundant features that hinder cross-sensor generalization. Moreover, existing methods fail to fully integrate the intermediate communication among tactile, language, and vision modalities. To address this, we propose TLV-CoRe, a CLIP-based Tactile-Language-Vision Collaborative Representation learning method. TLV-CoRe introduces a Sensor-Aware Modulator to unify tactile features across different sensors and employs tactile-irrelevant decoupled learning to disentangle irrelevant tactile features. Additionally, a Unified Bridging Adapter is introduced to enhance tri-modal interaction within the shared representation space. To fairly evaluate the effectiveness of tactile models, we further propose the RSS evaluation framework, focusing on Robustness, Synergy, and Stability across different methods. Experimental results demonstrate that TLV-CoRe significantly improves sensor-agnostic representation learning and cross-modal alignment, offering a new direction for multimodal tactile representation.
UIKA: Fast Universal Head Avatar from Pose-Free Images
We present UIKA, a feed-forward animatable Gaussian head model from an arbitrary number of unposed inputs, including a single image, multi-view captures, and smartphone-captured videos. Unlike the traditional avatar method, which requires a studio-level multi-view capture system and reconstructs a human-specific model through a long-time optimization process, we rethink the task through the lenses of model representation, network design, and data preparation. First, we introduce a UV-guided avatar modeling strategy, in which each input image is associated with a pixel-wise facial correspondence estimation. Such correspondence estimation allows us to reproject each valid pixel color from screen space to UV space, which is independent of camera pose and character expression. Furthermore, we design learnable UV tokens on which the attention mechanism can be applied at both the screen and UV levels. The learned UV tokens can be decoded into canonical Gaussian attributes using aggregated UV information from all input views. To train our large avatar model, we additionally prepare a large-scale, identity-rich synthetic training dataset. Our method significantly outperforms existing approaches in both monocular and multi-view settings. See more details in our project page: https://zijian-wu.github.io/uika-page/
comment: Project page: https://zijian-wu.github.io/uika-page/
ChartComplete: A Taxonomy-based Inclusive Chart Dataset
With advancements in deep learning (DL) and computer vision techniques, the field of chart understanding is evolving rapidly. In particular, multimodal large language models (MLLMs) are proving to be efficient and accurate in understanding charts. To accurately measure the performance of MLLMs, the research community has developed multiple datasets to serve as benchmarks. By examining these datasets, we found that they are all limited to a small set of chart types. To bridge this gap, we propose the ChartComplete dataset. The dataset is based on a chart taxonomy borrowed from the visualization community, and it covers thirty different chart types. The dataset is a collection of classified chart images and does not include a learning signal. We present the ChartComplete dataset as is to the community to build upon it.
comment: 7 pages, 4 figures, 3 tables, 1 algorithm. Dataset and source code available at https://github.com/AI-DSCHubAUB/ChartComplete-Dataset
SceneFoundry: Generating Interactive Infinite 3D Worlds
The ability to automatically generate large-scale, interactive, and physically realistic 3D environments is crucial for advancing robotic learning and embodied intelligence. However, existing generative approaches often fail to capture the functional complexity of real-world interiors, particularly those containing articulated objects with movable parts essential for manipulation and navigation. This paper presents SceneFoundry, a language-guided diffusion framework that generates apartment-scale 3D worlds with functionally articulated furniture and semantically diverse layouts for robotic training. From natural language prompts, an LLM module controls floor layout generation, while diffusion-based posterior sampling efficiently populates the scene with articulated assets from large-scale 3D repositories. To ensure physical usability, SceneFoundry employs differentiable guidance functions to regulate object quantity, prevent articulation collisions, and maintain sufficient walkable space for robotic navigation. Extensive experiments demonstrate that our framework generates structurally valid, semantically coherent, and functionally interactive environments across diverse scene types and conditions, enabling scalable embodied AI research. project page: https://anc891203.github.io/SceneFoundry-Demo/
comment: 15 pages
Better Language Models Exhibit Higher Visual Alignment
How well do text-only large language models (LLMs) align with the visual world? We present a systematic evaluation of this question by incorporating frozen representations of various language models into a discriminative vision-language framework and measuring zero-shot generalization to novel concepts. We find that decoder-based models exhibit stronger visual alignment than encoders, even when controlling for model and dataset size. Moreover, language modeling performance correlates with visual generalization, suggesting that advances in unimodal LLMs can simultaneously improve vision models. Leveraging these insights, we propose ShareLock, a lightweight method for fusing frozen vision and language backbones. ShareLock achieves robust performance across tasks while drastically reducing the need for paired data and compute. With just 563k image-caption pairs and under one GPU-hour of training, it reaches 51% accuracy on ImageNet. In cross-lingual settings, ShareLock dramatically outperforms CLIP, achieving 38.7% top-1 accuracy on Chinese image classification versus CLIP's 1.4%. Code is available.
Attention Debiasing for Token Pruning in Vision Language Models
Vision-language models (VLMs) typically encode substantially more visual tokens than text tokens, resulting in significant token redundancy. Pruning uninformative visual tokens is therefore crucial for improving computational efficiency, and language-to-vision attention has become a widely used importance criterion for this purpose. However, we find that attention in VLMs is systematically biased. It disproportionately favors tokens appearing later in the sequence, manifesting as over-attention to lower image regions, and assigns inflated scores to semantically empty padding tokens. These behaviors stem from intrinsic recency bias and attention sink effects inherited from large language models (LLMs), and they distort attention-based pruning by preserving irrelevant visual content. To derive a pruning criterion better aligned with semantic relevance, we introduce two lightweight yet effective debiasing techniques that restore the reliability of attention. The first compensates for positional distortions by removing recency-induced attention trends, producing a content-aware and position-agnostic importance measure. The second suppresses attention sink effects by eliminating spurious attention on padding tokens. Our method is model-agnostic, pruning-method-agnostic, and task-agnostic, enabling plug-and-play integration with existing VLM pruning models. Despite its simplicity, our approach consistently delivers strong performance gains. We evaluate our method on ten vision-language benchmarks spanning both image-based and video-based tasks, in comparison with seven state-of-the-art visual token pruning methods and across two representative VLM architectures. Our method achieves substantial performance gains, demonstrating strong effectiveness and generalizability. Our code is available at https://github.com/intcomp/attention-bias.
comment: https://github.com/intcomp/attention-bias
InfoAffect: Affective Annotations of Infographics in Information Spread
Infographics are widely used in social media to convey complex information, yet how they influence users' affects remains underexplored due to the scarcity of relevant datasets. To address this gap, we introduce a 3.5k-sample affect-annotated InfoAffect dataset, which combines textual content with real-world infographics. We first collected the raw data from six fields and aligned it via preprocessing, the accompanied-text-priority method, and three strategies to guarantee quality and compliance. After that, we constructed an Affect Table to constrain annotation. We used five state-of-the-art multimodal large language models (MLLMs) to analyze both modalities, and their outputs were fused with the Reciprocal Rank Fusion (RRF) algorithm to yield robust affects and confidences. We conducted a user study with two experiments to validate usability and assess the InfoAffect dataset using the Composite Affect Consistency Index (CACI), achieving an overall score of 0.608, which indicates high accuracy. The InfoAffect dataset is available in a public repository at https://github.com/bulichuchu/InfoAffect-dataset.
SAM-pose2seg: Pose-Guided Human Instance Segmentation in Crowds
Segment Anything (SAM) provides an unprecedented foundation for human segmentation, but may struggle under occlusion, where keypoints may be partially or fully invisible. We adapt SAM 2.1 for pose-guided segmentation with minimal encoder modifications, retaining its strong generalization. Using a fine-tuning strategy called PoseMaskRefine, we incorporate pose keypoints with high visibility into the iterative correction process originally employed by SAM, yielding improved robustness and accuracy across multiple datasets. During inference, we simplify prompting by selecting only the three keypoints with the highest visibility. This strategy reduces sensitivity to common errors, such as missing body parts or misclassified clothing, and allows accurate mask prediction from as few as a single keypoint. Our results demonstrate that pose-guided fine-tuning of SAM enables effective, occlusion-aware human segmentation while preserving the generalization capabilities of the original model. The code and pretrained models will be available at https://mirapurkrabek.github.io/BBox-Mask-Pose/.
comment: GitHub: https://github.com/MiraPurkrabek/BBoxMaskPose/
Cascading multi-agent anomaly detection in surveillance systems via vision-language models and embedding-based classification
Intelligent anomaly detection in dynamic visual environments requires reconciling real-time performance with semantic interpretability. Conventional approaches address only fragments of this challenge. Reconstruction-based models capture low-level deviations without contextual reasoning, object detectors provide speed but limited semantics, and large vision-language systems deliver interpretability at prohibitive computational cost. This work introduces a cascading multi-agent framework that unifies these complementary paradigms into a coherent and interpretable architecture. Early modules perform reconstruction-gated filtering and object-level assessment, while higher-level reasoning agents are selectively invoked to interpret semantically ambiguous events. The system employs adaptive escalation thresholds and a publish-subscribe communication backbone, enabling asynchronous coordination and scalable deployment across heterogeneous hardware. Extensive evaluation on large-scale monitoring data demonstrates that the proposed cascade achieves a threefold reduction in latency compared to direct vision-language inference, while maintaining high perceptual fidelity (PSNR = 38.3 dB, SSIM = 0.965) and consistent semantic labeling. The framework advances beyond conventional detection pipelines by combining early-exit efficiency, adaptive multi-agent reasoning, and explainable anomaly attribution, establishing a reproducible and energy-efficient foundation for scalable intelligent visual monitoring.
comment: Author email changed, Acknowlegement changes
NanoSD: Edge Efficient Foundation Model for Real Time Image Restoration CVPR 2026
Latent diffusion models such as Stable Diffusion 1.5 offer strong generative priors that are highly valuable for image restoration, yet their full pipelines remain too computationally heavy for deployment on edge devices. Existing lightweight variants predominantly compress the denoising U-Net or reduce the diffusion trajectory, which disrupts the underlying latent manifold and limits generalization beyond a single task. We introduce NanoSD, a family of Pareto-optimal diffusion foundation models distilled from Stable Diffusion 1.5 through network surgery, feature-wise generative distillation, and structured architectural scaling jointly applied to the U-Net and the VAE encoder-decoder. This full-pipeline co-design preserves the generative prior while producing models that occupy distinct operating points along the accuracy-latency-size frontier (e.g., 130M-315M parameters, achieving real-time inference down to 20ms on mobile-class NPUs). We show that parameter reduction alone does not correlate with hardware efficiency, and we provide an analysis revealing how architectural balance, feature routing, and latent-space preservation jointly shape true on-device latency. When used as a drop-in backbone, NanoSD enables state-of-the-art performance across image super-resolution, image deblurring, face restoration, and monocular depth estimation, outperforming prior lightweight diffusion models in both perceptual quality and practical deployability. NanoSD establishes a general-purpose diffusion foundation model family suitable for real-time visual generation and restoration on edge devices.
comment: Submitted to CVPR 2026
FiCo-ITR: bridging fine-grained and coarse-grained image-text retrieval for comparative performance analysis
In the field of Image-Text Retrieval (ITR), recent advancements have leveraged large-scale Vision-Language Pretraining (VLP) for Fine-Grained (FG) instance-level retrieval, achieving high accuracy at the cost of increased computational complexity. For Coarse-Grained (CG) category-level retrieval, prominent approaches employ Cross-Modal Hashing (CMH) to prioritise efficiency, albeit at the cost of retrieval performance. Due to differences in methodologies, FG and CG models are rarely compared directly within evaluations in the literature, resulting in a lack of empirical data quantifying the retrieval performance-efficiency tradeoffs between the two. This paper addresses this gap by introducing the FiCo-ITR library, which standardises evaluation methodologies for both FG and CG models, facilitating direct comparisons. We conduct empirical evaluations of representative models from both subfields, analysing precision, recall, and computational complexity across varying data scales. Our findings offer new insights into the performance-efficiency trade-offs between recent representative FG and CG models, highlighting their respective strengths and limitations. These findings provide the foundation necessary to make more informed decisions regarding model selection for specific retrieval tasks and highlight avenues for future research into hybrid systems that leverage the strengths of both FG and CG approaches.
comment: Published at the International Journal of Multimedia Information Retrieval
Beyond Feature Mapping GAP: Integrating Real HDRTV Priors for Superior SDRTV-to-HDRTV Conversion IJCAI 2025
The rise of HDR-WCG display devices has highlighted the need to convert SDRTV to HDRTV, as most video sources are still in SDR. Existing methods primarily focus on designing neural networks to learn a single-style mapping from SDRTV to HDRTV. However, the limited information in SDRTV and the diversity of styles in real-world conversions render this process an ill-posed problem, thereby constraining the performance and generalization of these methods. Inspired by generative approaches, we propose a novel method for SDRTV to HDRTV conversion guided by real HDRTV priors. Despite the limited information in SDRTV, introducing real HDRTV as reference priors significantly constrains the solution space of the originally high-dimensional ill-posed problem. This shift transforms the task from solving an unreferenced prediction problem to making a referenced selection, thereby markedly enhancing the accuracy and reliability of the conversion process. Specifically, our approach comprises two stages: the first stage employs a Vector Quantized Generative Adversarial Network to capture HDRTV priors, while the second stage matches these priors to the input SDRTV content to recover realistic HDRTV outputs. We evaluate our method on public datasets, demonstrating its effectiveness with significant improvements in both objective and subjective metrics across real and synthetic datasets.
comment: accepted by IJCAI 2025
FFP-300K: Scaling First-Frame Propagation for Generalizable Video Editing
First-Frame Propagation (FFP) offers a promising paradigm for controllable video editing, but existing methods are hampered by a reliance on cumbersome run-time guidance. We identify the root cause of this limitation as the inadequacy of current training datasets, which are often too short, low-resolution, and lack the task diversity required to teach robust temporal priors. To address this foundational data gap, we first introduce FFP-300K, a new large-scale dataset comprising 300K high-fidelity video pairs at 720p resolution and 81 frames in length, constructed via a principled two-track pipeline for diverse local and global edits. Building on this dataset, we propose a novel framework designed for true guidance-free FFP that resolves the critical tension between maintaining first-frame appearance and preserving source video motion. Architecturally, we introduce Adaptive Spatio-Temporal RoPE (AST-RoPE), which dynamically remaps positional encodings to disentangle appearance and motion references. At the objective level, we employ a self-distillation strategy where an identity propagation task acts as a powerful regularizer, ensuring long-term temporal stability and preventing semantic drift. Comprehensive experiments on the EditVerseBench benchmark demonstrate that our method significantly outperforming existing academic and commercial models by receiving about 0.2 PickScore and 0.3 VLM score improvement against these competitors.
ProSGNeRF: Progressive Dynamic Neural Scene Graph with Frequency Modulated Foundation Model in Urban Scenes
Implicit neural representation has demonstrated promising results in 3D reconstruction on various scenes. However, existing approaches either struggle to model fast-moving objects or are incapable of handling large-scale camera ego-motions in urban environments. This leads to low-quality synthesized views of the large-scale urban scenes. In this paper, we aim to jointly solve the problems caused by large-scale scenes and fast-moving vehicles, which are more practical and challenging. To this end, we propose a progressive scene graph network architecture to learn the local scene representations of dynamic objects and global urban scenes. The progressive learning architecture dynamically allocates a new local scene graph trained on frames within a temporal window, with the window size automatically determined, allowing us to scale up the representation to arbitrarily large scenes. Besides, according to our observations, the training views of dynamic objects are relatively sparse according to rapid movements, which leads to a significant decline in reconstruction accuracy for dynamic objects. Therefore, we utilize a foundation model network to encode the latent code. Specifically, we leverage the generalization capability of the visual foundation model DINOv2 to extract appearance and shape codes, and train the network on a large-scale urban scene object dataset to enhance its prior modeling ability for handling sparse-view dynamic inputs. In parallel, we introduce a frequency-modulated module that regularizes the frequency spectrum of objects, thereby addressing the challenge of modeling sparse image inputs from a frequency-domain perspective. Experimental results demonstrate that our method achieves state-of-the-art view synthesis accuracy, object manipulation, and scene roaming ability in various scenes.
Beyond Known Fakes: Generalized Detection of AI-Generated Images via Post-hoc Distribution Alignment
The rapid proliferation of highly realistic AI-generated images poses serious security threats such as misinformation and identity fraud. Detecting generated images in open-world settings is particularly challenging when they originate from unknown generators, as existing methods typically rely on model-specific artifacts and require retraining on new fake data, limiting their generalization and scalability. In this work, we propose Post-hoc Distribution Alignment (PDA), a generalized and model-agnostic framework for detecting AI-generated images under unknown generative threats. Specifically, PDA reformulates detection as a distribution alignment task by regenerating test images through a known generative model. When real images are regenerated, they inherit model-specific artifacts and align with the known fake distribution. In contrast, regenerated unknown fakes contain incompatible or mixed artifacts and remain misaligned. This difference allows an existing detector, trained on the known generative model, to accurately distinguish real images from unknown fakes without requiring access to unseen data or retraining. Extensive experiments across 16 state-of-the-art generative models, including GANs, diffusion models, and commercial text-to-image APIs (e.g., Midjourney), demonstrate that PDA achieves average detection accuracy of 96.69%, outperforming the best baseline by 10.71%. Comprehensive ablation studies and robustness analyses further confirm PDA's generalizability and resilience to distribution shifts and image transformations. Overall, our work provides a practical and scalable solution for real-world AI-generated image detection where new generative models emerge continuously.
V2X-Radar: A Multi-modal Dataset with 4D Radar for Cooperative Perception NeurIPS 2025
Modern autonomous vehicle perception systems often struggle with occlusions and limited perception range. Previous studies have demonstrated the effectiveness of cooperative perception in extending the perception range and overcoming occlusions, thereby enhancing the safety of autonomous driving. In recent years, a series of cooperative perception datasets have emerged; however, these datasets primarily focus on cameras and LiDAR, neglecting 4D Radar, a sensor used in single-vehicle autonomous driving to provide robust perception in adverse weather conditions. In this paper, to bridge the gap created by the absence of 4D Radar datasets in cooperative perception, we present V2X-Radar, the first large-scale, real-world multi-modal dataset featuring 4D Radar. V2X-Radar dataset is collected using a connected vehicle platform and an intelligent roadside unit equipped with 4D Radar, LiDAR, and multi-view cameras. The collected data encompasses sunny and rainy weather conditions, spanning daytime, dusk, and nighttime, as well as various typical challenging scenarios. The dataset consists of 20K LiDAR frames, 40K camera images, and 20K 4D Radar data, including 350K annotated boxes across five categories. To support various research domains, we have established V2X-Radar-C for cooperative perception, V2X-Radar-I for roadside perception, and V2X-Radar-V for single-vehicle perception. Furthermore, we provide comprehensive benchmarks across these three sub-datasets. We will release all datasets and benchmark codebase at https://huggingface.co/datasets/yanglei18/V2X-Radar and https://github.com/yanglei18/V2X-Radar.
comment: NeurIPS 2025 Spotlight
AviationLMM: A Large Multimodal Foundation Model for Civil Aviation
Civil aviation is a cornerstone of global transportation and commerce, and ensuring its safety, efficiency and customer satisfaction is paramount. Yet conventional Artificial Intelligence (AI) solutions in aviation remain siloed and narrow, focusing on isolated tasks or single modalities. They struggle to integrate heterogeneous data such as voice communications, radar tracks, sensor streams and textual reports, which limits situational awareness, adaptability, and real-time decision support. This paper introduces the vision of AviationLMM, a Large Multimodal foundation Model for civil aviation, designed to unify the heterogeneous data streams of civil aviation and enable understanding, reasoning, generation and agentic applications. We firstly identify the gaps between existing AI solutions and requirements. Secondly, we describe the model architecture that ingests multimodal inputs such as air-ground voice, surveillance, on-board telemetry, video and structured texts, and performs cross-modal alignment and fusion, and produces flexible outputs ranging from situation summaries and risk alerts to predictive diagnostics and multimodal incident reconstructions. In order to fully realize this vision, we identify key research opportunities to address, including data acquisition, alignment and fusion, pretraining, reasoning, trustworthiness, privacy, robustness to missing modalities, and synthetic scenario generation. By articulating the design and challenges of AviationLMM, we aim to boost the civil aviation foundation model progress and catalyze coordinated research efforts toward an integrated, trustworthy and privacy-preserving aviation AI ecosystem.
comment: Accepted by 2025 7th International Conference on Interdisciplinary Computer Science and Engineering (ICICSE 2025), Chongqing, China; 9 pages,1 figure,5 tables
MERGETUNE: Continued fine-tuning of vision-language models
Fine-tuning vision-language models (VLMs) such as CLIP often leads to catastrophic forgetting of pretrained knowledge. Prior work primarily aims to mitigate forgetting during adaptation; however, forgetting often remains inevitable during this process. We introduce a novel paradigm, continued fine-tuning (CFT), which seeks to recover pretrained knowledge after a zero-shot model has already been adapted. We propose a simple, model-agnostic CFT strategy (named MERGETUNE) guided by linear mode connectivity (LMC), which can be applied post hoc to existing fine-tuned models without requiring architectural changes. Given a fine-tuned model, we continue fine-tuning its trainable parameters (e.g., soft prompts or linear heads) to search for a continued model which has two low-loss paths to the zero-shot (e.g., CLIP) and the fine-tuned (e.g., CoOp) solutions. By exploiting the geometry of the loss landscape, the continued model implicitly merges the two solutions, restoring pretrained knowledge lost in the fine-tuned counterpart. A challenge is that the vanilla LMC constraint requires data replay from the pretraining task. We approximate this constraint for the zero-shot model via a second-order surrogate, eliminating the need for large-scale data replay. Experiments show that MERGETUNE improves the harmonic mean of CoOp by +5.6% on base-novel generalisation without adding parameters. On robust fine-tuning evaluations, the LMC-merged model from MERGETUNE surpasses ensemble baselines with lower inference cost, achieving further gains and state-of-the-art results when ensembled with the zero-shot model. Our code is available at https://github.com/Surrey-UP-Lab/MERGETUNE.
comment: 20 pages, 5 figures
Controllable Video Generation: A Survey
With the rapid development of AI-generated content (AIGC), video generation has emerged as one of its most dynamic and impactful subfields. In particular, the advancement of video generation foundation models has led to growing demand for controllable video generation methods that can more accurately reflect user intent. Most existing foundation models are designed for text-to-video generation, where text prompts alone are often insufficient to express complex, multi-modal, and fine-grained user requirements. This limitation makes it challenging for users to generate videos with precise control using current models. To address this issue, recent research has explored the integration of additional non-textual conditions, such as camera motion, depth maps, and human pose, to extend pretrained video generation models and enable more controllable video synthesis. These approaches aim to enhance the flexibility and practical applicability of AIGC-driven video generation systems. In this survey, we provide a systematic review of controllable video generation, covering both theoretical foundations and recent advances in the field. We begin by introducing the key concepts and commonly used open-source video generation models. We then focus on control mechanisms in video diffusion models, analyzing how different types of conditions can be incorporated into the denoising process to guide generation. Finally, we categorize existing methods based on the types of control signals they leverage, including single-condition generation, multi-condition generation, and universal controllable generation. For a complete list of the literature on controllable video generation reviewed, please visit our curated repository at https://github.com/mayuelala/Awesome-Controllable-Video-Generation.
comment: project page: https://github.com/mayuelala/Awesome-Controllable-Video-Generation
Towards Implicit Aggregation: Robust Image Representation for Place Recognition in the Transformer Era NeurIPS 2025
Visual place recognition (VPR) is typically regarded as a specific image retrieval task, whose core lies in representing images as global descriptors. Over the past decade, dominant VPR methods (e.g., NetVLAD) have followed a paradigm that first extracts the patch features/tokens of the input image using a backbone, and then aggregates these patch features into a global descriptor via an aggregator. This backbone-plus-aggregator paradigm has achieved overwhelming dominance in the CNN era and remains widely used in transformer-based models. In this paper, however, we argue that a dedicated aggregator is not necessary in the transformer era, that is, we can obtain robust global descriptors only with the backbone. Specifically, we introduce some learnable aggregation tokens, which are prepended to the patch tokens before a particular transformer block. All these tokens will be jointly processed and interact globally via the intrinsic self-attention mechanism, implicitly aggregating useful information within the patch tokens to the aggregation tokens. Finally, we only take these aggregation tokens from the last output tokens and concatenate them as the global representation. Although implicit aggregation can provide robust global descriptors in an extremely simple manner, where and how to insert additional tokens, as well as the initialization of tokens, remains an open issue worthy of further exploration. To this end, we also propose the optimal token insertion strategy and token initialization method derived from empirical studies. Experimental results show that our method outperforms state-of-the-art methods on several VPR datasets with higher efficiency and ranks 1st on the MSLS challenge leaderboard. The code is available at https://github.com/lu-feng/image.
comment: Accepted by NeurIPS 2025
FOF-X: Towards Real-time Detailed Human Reconstruction from a Single Image
We introduce FOF-X for real-time reconstruction of detailed human geometry from a single image. Balancing real-time speed against high-quality results is a persistent challenge, mainly due to the high computational demands of existing 3D representations. To address this, we propose Fourier Occupancy Field (FOF), an efficient 3D representation by learning the Fourier series. The core of FOF is to factorize a 3D occupancy field into a 2D vector field, retaining topology and spatial relationships within the 3D domain while facilitating compatibility with 2D convolutional neural networks. Such a representation bridges the gap between 3D and 2D domains, enabling the integration of human parametric models as priors and enhancing the reconstruction robustness. Based on FOF, we design a new reconstruction framework, FOF-X, to avoid the performance degradation caused by texture and lighting. This enables our real-time reconstruction system to better handle the domain gap between training images and real images. Additionally, in FOF-X, we enhance the inter-conversion algorithms between FOF and mesh representations with a Laplacian constraint and an automaton-based discontinuity matcher, improving both quality and robustness. We validate the strengths of our approach on different datasets and real-captured data, where FOF-X achieves new state-of-the-art results. The code has already been released for research purposes at https://cic.tju.edu.cn/faculty/likun/projects/FOFX/index.html.
comment: Extended journal version of our previous conference paper: FOF: Learning Fourier Occupancy Field for Monocular Real-time Human Reconstruction (arXiv:2206.02194)
MoLAN: A Unified Modality-Aware Noise Dynamic Editing Framework for Multimodal Sentiment Analysis
Multimodal Sentiment Analysis aims to integrate information from various modalities, such as audio, visual, and text, to make complementary predictions. However, it often struggles with irrelevant or misleading visual and auditory information. Most existing approaches typically treat the entire modality information (e.g., a whole image, audio segment, or text paragraph) as an independent unit for feature enhancement or denoising. They often suppress the redundant and noise information at the risk of losing critical information. To address this challenge, we propose MoLAN, a unified ModaLity-aware noise dynAmic editiNg framework. Specifically, MoLAN performs modality-aware blocking by dividing the features of each modality into multiple blocks. Each block is then dynamically assigned a distinct denoising strength based on its noise level and semantic relevance, enabling fine-grained noise suppression while preserving essential multimodal information. Notably, MoLAN is a unified and flexible framework that can be seamlessly integrated into a wide range of multimodal models. Building upon this framework, we further introduce MoLAN+, a new multimodal sentiment analysis approach. Experiments across five models and four datasets demonstrate the broad effectiveness of the MoLAN framework. Extensive evaluations show that MoLAN+ achieves the state-of-the-art performance. The code is publicly available at https://github.com/betterfly123/MoLAN-Framework.
Artificial Intelligence 137
Do explanations generalize across large reasoning models?
Large reasoning models (LRMs) produce a textual chain of thought (CoT) in the process of solving a problem, which serves as a potentially powerful tool to understand the problem by surfacing a human-readable, natural-language explanation. However, it is unclear whether these explanations generalize, i.e. whether they capture general patterns about the underlying problem rather than patterns which are esoteric to the LRM. This is a crucial question in understanding or discovering new concepts, e.g. in AI for science. We study this generalization question by evaluating a specific notion of generalizability: whether explanations produced by one LRM induce the same behavior when given to other LRMs. We find that CoT explanations often exhibit this form of generalization (i.e. they increase consistency between LRMs) and that this increased generalization is correlated with human preference rankings and post-training with reinforcement learning. We further analyze the conditions under which explanations yield consistent answers and propose a straightforward, sentence-level ensembling strategy that improves consistency. Taken together, these results prescribe caution when using LRM explanations to yield new insights and outline a framework for characterizing LRM explanation generalization.
Building Production-Ready Probes For Gemini
Frontier language model capabilities are improving rapidly. We thus need stronger mitigations against bad actors misusing increasingly powerful systems. Prior work has shown that activation probes may be a promising misuse mitigation technique, but we identify a key remaining challenge: probes fail to generalize under important production distribution shifts. In particular, we find that the shift from short-context to long-context inputs is difficult for existing probe architectures. We propose several new probe architecture that handle this long-context distribution shift. We evaluate these probes in the cyber-offensive domain, testing their robustness against various production-relevant shifts, including multi-turn conversations, static jailbreaks, and adaptive red teaming. Our results demonstrate that while multimax addresses context length, a combination of architecture choice and training on diverse distributions is required for broad generalization. Additionally, we show that pairing probes with prompted classifiers achieves optimal accuracy at a low cost due to the computational efficiency of probes. These findings have informed the successful deployment of misuse mitigation probes in user-facing instances of Gemini, Google's frontier language model. Finally, we find early positive results using AlphaEvolve to automate improvements in both probe architecture search and adaptive red teaming, showing that automating some AI safety research is already possible.
MetaboNet: The Largest Publicly Available Consolidated Dataset for Type 1 Diabetes Management
Progress in Type 1 Diabetes (T1D) algorithm development is limited by the fragmentation and lack of standardization across existing T1D management datasets. Current datasets differ substantially in structure and are time-consuming to access and process, which impedes data integration and reduces the comparability and generalizability of algorithmic developments. This work aims to establish a unified and accessible data resource for T1D algorithm development. Multiple publicly available T1D datasets were consolidated into a unified resource, termed the MetaboNet dataset. Inclusion required the availability of both continuous glucose monitoring (CGM) data and corresponding insulin pump dosing records. Additionally, auxiliary information such as reported carbohydrate intake and physical activity was retained when present. The MetaboNet dataset comprises 3135 subjects and 1228 patient-years of overlapping CGM and insulin data, making it substantially larger than existing standalone benchmark datasets. The resource is distributed as a fully public subset available for immediate download at https://metabo-net.org/ , and with a Data Use Agreement (DUA)-restricted subset accessible through their respective application processes. For the datasets in the latter subset, processing pipelines are provided to automatically convert the data into the standardized MetaboNet format. A consolidated public dataset for T1D research is presented, and the access pathways for both its unrestricted and DUA-governed components are described. The resulting dataset covers a broad range of glycemic profiles and demographics and thus can yield more generalizable algorithmic performance than individual datasets.
comment: 22 pages, 5 figures, 7 supplementary figures, submitted to JDST
The Poisoned Apple Effect: Strategic Manipulation of Mediated Markets via Technology Expansion of AI Agents
The integration of AI agents into economic markets fundamentally alters the landscape of strategic interaction. We investigate the economic implications of expanding the set of available technologies in three canonical game-theoretic settings: bargaining (resource division), negotiation (asymmetric information trade), and persuasion (strategic information transmission). We find that simply increasing the choice of AI delegates can drastically shift equilibrium payoffs and regulatory outcomes, often creating incentives for regulators to proactively develop and release technologies. Conversely, we identify a strategic phenomenon termed the "Poisoned Apple" effect: an agent may release a new technology, which neither they nor their opponent ultimately uses, solely to manipulate the regulator's choice of market design in their favor. This strategic release improves the releaser's welfare at the expense of their opponent and the regulator's fairness objectives. Our findings demonstrate that static regulatory frameworks are vulnerable to manipulation via technology expansion, necessitating dynamic market designs that adapt to the evolving landscape of AI capabilities.
BoxMind: Closed-loop AI strategy optimization for elite boxing validated in the 2024 Olympics
Competitive sports require sophisticated tactical analysis, yet combat disciplines like boxing remain underdeveloped in AI-driven analytics due to the complexity of action dynamics and the lack of structured tactical representations. To address this, we present BoxMind, a closed-loop AI expert system validated in elite boxing competition. By defining atomic punch events with precise temporal boundaries and spatial and technical attributes, we parse match footage into 18 hierarchical technical-tactical indicators. We then propose a graph-based predictive model that fuses these explicit technical-tactical profiles with learnable, time-variant latent embeddings to capture the dynamics of boxer matchups. Modeling match outcome as a differentiable function of technical-tactical indicators, we turn winning probability gradients into executable tactical adjustments. Experiments show that the outcome prediction model achieves state-of-the-art performance, with 69.8% accuracy on BoxerGraph test set and 87.5% on Olympic matches. Using this predictive model as a foundation, the system generates strategic recommendations that demonstrate proficiency comparable to human experts. BoxMind is validated through a closed-loop deployment during the 2024 Paris Olympics, directly contributing to the Chinese National Team's historic achievement of three gold and two silver medals. BoxMind establishes a replicable paradigm for transforming unstructured video data into strategic intelligence, bridging the gap between computer vision and decision support in competitive sports.
Health Facility Location in Ethiopia: Leveraging LLMs to Integrate Expert Knowledge into Algorithmic Planning
Ethiopia's Ministry of Health is upgrading health posts to improve access to essential services, particularly in rural areas. Limited resources, however, require careful prioritization of which facilities to upgrade to maximize population coverage while accounting for diverse expert and stakeholder preferences. In collaboration with the Ethiopian Public Health Institute and Ministry of Health, we propose a hybrid framework that systematically integrates expert knowledge with optimization techniques. Classical optimization methods provide theoretical guarantees but require explicit, quantitative objectives, whereas stakeholder criteria are often articulated in natural language and difficult to formalize. To bridge these domains, we develop the Large language model and Extended Greedy (LEG) framework. Our framework combines a provable approximation algorithm for population coverage optimization with LLM-driven iterative refinement that incorporates human-AI alignment to ensure solutions reflect expert qualitative guidance while preserving coverage guarantees. Experiments on real-world data from three Ethiopian regions demonstrate the framework's effectiveness and its potential to inform equitable, data-driven health system planning.
Exploring LLM Features in Predictive Process Monitoring for Small-Scale Event-Logs
Predictive Process Monitoring is a branch of process mining that aims to predict the outcome of an ongoing process. Recently, it leveraged machine-and-deep learning architectures. In this paper, we extend our prior LLM-based Predictive Process Monitoring framework, which was initially focused on total time prediction via prompting. The extension consists of comprehensively evaluating its generality, semantic leverage, and reasoning mechanisms, also across multiple Key Performance Indicators. Empirical evaluations conducted on three distinct event logs and across the Key Performance Indicators of Total Time and Activity Occurrence prediction indicate that, in data-scarce settings with only 100 traces, the LLM surpasses the benchmark methods. Furthermore, the experiments also show that the LLM exploits both its embodied prior knowledge and the internal correlations among training traces. Finally, we examine the reasoning strategies employed by the model, demonstrating that the LLM does not merely replicate existing predictive methods but performs higher-order reasoning to generate the predictions.
comment: 19 pages, 4 figure, TMIS journal submission
MHA2MLA-VLM: Enabling DeepSeek's Economical Multi-Head Latent Attention across Vision-Language Models
As vision-language models (VLMs) tackle increasingly complex and multimodal tasks, the rapid growth of Key-Value (KV) cache imposes significant memory and computational bottlenecks during inference. While Multi-Head Latent Attention (MLA) offers an effective means to compress the KV cache and accelerate inference, adapting existing VLMs to the MLA architecture without costly pretraining remains largely unexplored. In this work, we present MHA2MLA-VLM, a parameter-efficient and multimodal-aware framework for converting off-the-shelf VLMs to MLA. Our approach features two core techniques: (1) a modality-adaptive partial-RoPE strategy that supports both traditional and multimodal settings by selectively masking nonessential dimensions, and (2) a modality-decoupled low-rank approximation method that independently compresses the visual and textual KV spaces. Furthermore, we introduce parameter-efficient fine-tuning to minimize adaptation cost and demonstrate that minimizing output activation error, rather than parameter distance, substantially reduces performance loss. Extensive experiments on three representative VLMs show that MHA2MLA-VLM restores original model performance with minimal supervised data, significantly reduces KV cache footprint, and integrates seamlessly with KV quantization.
Interactive Narrative Analytics: Bridging Computational Narrative Extraction and Human Sensemaking
Information overload and misinformation create significant challenges in extracting meaningful narratives from large news collections. This paper defines the nascent field of Interactive Narrative Analytics (INA), which combines computational narrative extraction with interactive visual analytics to support sensemaking. INA approaches enable the interactive exploration of narrative structures through computational methods and visual interfaces that facilitate human interpretation. The field faces challenges in scalability, interactivity, knowledge integration, and evaluation standardization, yet offers promising opportunities across news analysis, intelligence, scientific literature exploration, and social media analysis. Through the combination of computational and human insight, INA addresses complex challenges in narrative sensemaking.
comment: 17 pages, 5 figures, published in IEEE Access as open access paper
PRISM-CAFO: Prior-conditioned Remote-sensing Infrastructure Segmentation and Mapping for CAFOs
Large-scale livestock operations pose significant risks to human health and the environment, while also being vulnerable to threats such as infectious diseases and extreme weather events. As the number of such operations continues to grow, accurate and scalable mapping has become increasingly important. In this work, we present an infrastructure-first, explainable pipeline for identifying and characterizing Concentrated Animal Feeding Operations (CAFOs) from aerial and satellite imagery. Our method (1) detects candidate infrastructure (e.g., barns, feedlots, manure lagoons, silos) with a domain-tuned YOLOv8 detector, then derives SAM2 masks from these boxes and filters component-specific criteria, (2) extracts structured descriptors (e.g., counts, areas, orientations, and spatial relations) and fuses them with deep visual features using a lightweight spatial cross-attention classifier, and (3) outputs both CAFO type predictions and mask-level attributions that link decisions to visible infrastructure. Through comprehensive evaluation, we show that our approach achieves state-of-the-art performance, with Swin-B+PRISM-CAFO surpassing the best performing baseline by up to 15\%. Beyond strong predictive performance across diverse U.S. regions, we run systematic gradient--activation analyses that quantify the impact of domain priors and show ho
Map2Thought: Explicit 3D Spatial Reasoning via Metric Cognitive Maps
We propose Map2Thought, a framework that enables explicit and interpretable spatial reasoning for 3D VLMs. The framework is grounded in two key components: Metric Cognitive Map (Metric-CogMap) and Cognitive Chain-of-Thought (Cog-CoT). Metric-CogMap provides a unified spatial representation by integrating a discrete grid for relational reasoning with a continuous, metric-scale representation for precise geometric understanding. Building upon the Metric-CogMap, Cog-CoT performs explicit geometric reasoning through deterministic operations, including vector operations, bounding-box distances, and occlusion-aware appearance order cues, producing interpretable inference traces grounded in 3D structure. Experimental results show that Map2Thought enables explainable 3D understanding, achieving 59.9% accuracy using only half the supervision, closely matching the 60.9% baseline trained with the full dataset. It consistently outperforms state-of-the-art methods by 5.3%, 4.8%, and 4.0% under 10%, 25%, and 50% training subsets, respectively, on the VSI-Bench.
Hierarchical Orthogonal Residual Spread for Precise Massive Editing in Large Language Models
Large language models (LLMs) exhibit exceptional performance across various domains, yet they face critical safety concerns. Model editing has emerged as an effective approach to mitigate these issues. Existing model editing methods often focus on optimizing an information matrix that blends new and old knowledge. While effective, these approaches can be computationally expensive and may cause conflicts. In contrast, we shift our attention to Hierarchical Orthogonal Residual SprEad of the information matrix, which reduces noisy gradients and enables more stable edits from a different perspective. We demonstrate the effectiveness of our method HORSE through a clear theoretical comparison with several popular methods and extensive experiments conducted on two datasets across multiple LLMs. The results show that HORSE maintains precise massive editing across diverse scenarios. The code is available at https://github.com/XiaojieGu/HORSE
comment: ICASSP 2026
GenDA: Generative Data Assimilation on Complex Urban Areas via Classifier-Free Diffusion Guidance
Urban wind flow reconstruction is essential for assessing air quality, heat dispersion, and pedestrian comfort, yet remains challenging when only sparse sensor data are available. We propose GenDA, a generative data assimilation framework that reconstructs high-resolution wind fields on unstructured meshes from limited observations. The model employs a multiscale graph-based diffusion architecture trained on computational fluid dynamics (CFD) simulations and interprets classifier-free guidance as a learned posterior reconstruction mechanism: the unconditional branch learns a geometry-aware flow prior, while the sensor-conditioned branch injects observational constraints during sampling. This formulation enables obstacle-aware reconstruction and generalization across unseen geometries, wind directions, and mesh resolutions without retraining. We consider both sparse fixed sensors and trajectory-based observations using the same reconstruction procedure. When evaluated against supervised graph neural network (GNN) baselines and classical reduced-order data assimilation methods, GenDA reduces the relative root-mean-square error (RRMSE) by 25-57% and increases the structural similarity index (SSIM) by 23-33% across the tested meshes. Experiments are conducted on Reynolds-averaged Navier-Stokes (RANS) simulations of a real urban neighbourhood in Bristol, United Kingdom, at a characteristic Reynolds number of $\mathrm{Re}\approx2\times10^{7}$, featuring complex building geometry and irregular terrain. The proposed framework provides a scalable path toward generative, geometry-aware data assimilation for environmental monitoring in complex domains.
Relational Linearity is a Predictor of Hallucinations
Hallucination is a central failure mode in large language models (LLMs). We focus on hallucinations of answers to questions like: "Which instrument did Glenn Gould play?", but we ask these questions for synthetic entities that are unknown to the model. Surprisingly, we find that medium-size models like Gemma-7B-IT frequently hallucinate, i.e., they have difficulty recognizing that the hallucinated fact is not part of their knowledge. We hypothesize that an important factor in causing these hallucinations is the linearity of the relation: linear relations tend to be stored more abstractly, making it difficult for the LLM to assess its knowledge; the facts of nonlinear relations tend to be stored more directly, making knowledge assessment easier. To investigate this hypothesis, we create SyntHal, a dataset of 6000 synthetic entities for six relations. In our experiments with four models, we determine, for each relation, the hallucination rate on SyntHal and also measure its linearity, using $Δ\cos$. We find a strong correlation ($r \in [.78,.82]$) between relational linearity and hallucination rate, providing evidence for our hypothesis that the underlying storage of triples of a relation is a factor in how well a model can self-assess its knowledge. This finding has implications for how to manage hallucination behavior and suggests new research directions for improving the representation of factual knowledge in LLMs.
comment: 11 pages, 4 figures, 8 tables
The Great March 100: 100 Detail-oriented Tasks for Evaluating Embodied AI Agents
Recently, with the rapid development of robot learning and imitation learning, numerous datasets and methods have emerged. However, these datasets and their task designs often lack systematic consideration and principles. This raises important questions: Do the current datasets and task designs truly advance the capabilities of robotic agents? Do evaluations on a few common tasks accurately reflect the differentiated performance of various methods proposed by different teams and evaluated on different tasks? To address these issues, we introduce the Great March 100 (\textbf{GM-100}) as the first step towards a robot learning Olympics. GM-100 consists of 100 carefully designed tasks that cover a wide range of interactions and long-tail behaviors, aiming to provide a diverse and challenging set of tasks to comprehensively evaluate the capabilities of robotic agents and promote diversity and complexity in robot dataset task designs. These tasks are developed through systematic analysis and expansion of existing task designs, combined with insights from human-object interaction primitives and object affordances. We collect a large amount of trajectory data on different robotic platforms and evaluate several baseline models. Experimental results demonstrate that the GM-100 tasks are 1) feasible to execute and 2) sufficiently challenging to effectively differentiate the performance of current VLA models. Our data and code are available at https://rhos.ai/research/gm-100.
Topology-Guaranteed Image Segmentation: Enforcing Connectivity, Genus, and Width Constraints
Existing research highlights the crucial role of topological priors in image segmentation, particularly in preserving essential structures such as connectivity and genus. Accurately capturing these topological features often requires incorporating width-related information, including the thickness and length inherent to the image structures. However, traditional mathematical definitions of topological structures lack this dimensional width information, limiting methods like persistent homology from fully addressing practical segmentation needs. To overcome this limitation, we propose a novel mathematical framework that explicitly integrates width information into the characterization of topological structures. This method leverages persistent homology, complemented by smoothing concepts from partial differential equations (PDEs), to modify local extrema of upper-level sets. This approach enables the resulting topological structures to inherently capture width properties. We incorporate this enhanced topological description into variational image segmentation models. Using some proper loss functions, we are also able to design neural networks that can segment images with the required topological and width properties. Through variational constraints on the relevant topological energies, our approach successfully preserves essential topological invariants such as connectivity and genus counts, simultaneously ensuring that segmented structures retain critical width attributes, including line thickness and length. Numerical experiments demonstrate the effectiveness of our method, showcasing its capability to maintain topological fidelity while explicitly embedding width characteristics into segmented image structures.
Wetland mapping from sparse annotations with satellite image time series and temporal-aware segment anything model
Accurate wetland mapping is essential for ecosystem monitoring, yet dense pixel-level annotation is prohibitively expensive and practical applications usually rely on sparse point labels, under which existing deep learning models perform poorly, while strong seasonal and inter-annual wetland dynamics further render single-date imagery inadequate and lead to significant mapping errors; although foundation models such as SAM show promising generalization from point prompts, they are inherently designed for static images and fail to model temporal information, resulting in fragmented masks in heterogeneous wetlands. To overcome these limitations, we propose WetSAM, a SAM-based framework that integrates satellite image time series for wetland mapping from sparse point supervision through a dual-branch design, where a temporally prompted branch extends SAM with hierarchical adapters and dynamic temporal aggregation to disentangle wetland characteristics from phenological variability, and a spatial branch employs a temporally constrained region-growing strategy to generate reliable dense pseudo-labels, while a bidirectional consistency regularization jointly optimizes both branches. Extensive experiments across eight global regions of approximately 5,000 km2 each demonstrate that WetSAM substantially outperforms state-of-the-art methods, achieving an average F1-score of 85.58%, and delivering accurate and structurally consistent wetland segmentation with minimal labeling effort, highlighting its strong generalization capability and potential for scalable, low-cost, high-resolution wetland mapping.
Hyperparameter Optimization of Constraint Programming Solvers
The performance of constraint programming solvers is highly sensitive to the choice of their hyperparameters. Manually finding the best solver configuration is a difficult, time-consuming task that typically requires expert knowledge. In this paper, we introduce probe and solve algorithm, a novel two-phase framework for automated hyperparameter optimization integrated into the CPMpy library. This approach partitions the available time budget into two phases: a probing phase that explores different sets of hyperparameters using configurable hyperparameter optimization methods, followed by a solving phase where the best configuration found is used to tackle the problem within the remaining time. We implement and compare two hyperparameter optimization methods within the probe and solve algorithm: Bayesian optimization and Hamming distance search. We evaluate the algorithm on two different constraint programming solvers, ACE and Choco, across 114 combinatorial problem instances, comparing their performance against the solver's default configurations. Results show that using Bayesian optimization, the algorithm outperforms the solver's default configurations, improving solution quality for ACE in 25.4% of instances and matching the default performance in 57.9%, and for Choco, achieving superior results in 38.6% of instances. It also consistently surpasses Hamming distance search within the same framework, confirming the advantage of model-based exploration over simple local search. Overall, the probe and solve algorithm offers a practical, resource-aware approach for tuning constraint solvers that yields robust improvements across diverse problem types.
comment: 28 pages, 3 figures. Submitted to Journal of Combinatorial Optimization. Special Issue: Recent applications, models and algorithms in Combinatorial Optimization
Evaluating LLM Behavior in Hiring: Implicit Weights, Fairness Across Groups, and Alignment with Human Preferences
General-purpose Large Language Models (LLMs) show significant potential in recruitment applications, where decisions require reasoning over unstructured text, balancing multiple criteria, and inferring fit and competence from indirect productivity signals. Yet, it is still uncertain how LLMs assign importance to each attribute and whether such assignments are in line with economic principles, recruiter preferences or broader societal norms. We propose a framework to evaluate an LLM's decision logic in recruitment, by drawing on established economic methodologies for analyzing human hiring behavior. We build synthetic datasets from real freelancer profiles and project descriptions from a major European online freelance marketplace and apply a full factorial design to estimate how a LLM weighs different match-relevant criteria when evaluating freelancer-project fit. We identify which attributes the LLM prioritizes and analyze how these weights vary across project contexts and demographic subgroups. Finally, we explain how a comparable experimental setup could be implemented with human recruiters to assess alignment between model and human decisions. Our findings reveal that the LLM weighs core productivity signals, such as skills and experience, but interprets certain features beyond their explicit matching value. While showing minimal average discrimination against minority groups, intersectional effects reveal that productivity signals carry different weights between demographic groups.
Institutional AI: Governing LLM Collusion in Multi-Agent Cournot Markets via Public Governance Graphs
Multi-agent LLM ensembles can converge on coordinated, socially harmful equilibria. This paper advances an experimental framework for evaluating Institutional AI, our system-level approach to AI alignment that reframes alignment from preference engineering in agent-space to mechanism design in institution-space. Central to this approach is the governance graph, a public, immutable manifest that declares legal states, transitions, sanctions, and restorative paths; an Oracle/Controller runtime interprets this manifest, attaching enforceable consequences to evidence of coordination while recording a cryptographically keyed, append-only governance log for audit and provenance. We apply the Institutional AI framework to govern the Cournot collusion case documented by prior work and compare three regimes: Ungoverned (baseline incentives from the structure of the Cournot market), Constitutional (a prompt-only policy-as-prompt prohibition implemented as a fixed written anti-collusion constitution, and Institutional (governance-graph-based). Across six model configurations including cross-provider pairs (N=90 runs/condition), the Institutional regime produces large reductions in collusion: mean tier falls from 3.1 to 1.8 (Cohen's d=1.28), and severe-collusion incidence drops from 50% to 5.6%. The prompt-only Constitutional baseline yields no reliable improvement, illustrating that declarative prohibitions do not bind under optimisation pressure. These results suggest that multi-agent alignment may benefit from being framed as an institutional design problem, where governance graphs can provide a tractable abstraction for alignment-relevant collective behavior.
Think-Clip-Sample: Slow-Fast Frame Selection for Video Understanding
Recent progress in multi-modal large language models (MLLMs) has significantly advanced video understanding. However, their performance on long-form videos remains limited by computational constraints and suboptimal frame selection. We present Think-Clip-Sample (TCS), a training-free framework that enhances long video understanding through two key components: (i) Multi-Query Reasoning, which generates multiple queries to capture complementary aspects of the question and video; and (ii) Clip-level Slow-Fast Sampling, which adaptively balances dense local details and sparse global context. Extensive experiments on MLVU, LongVideoBench, and VideoMME demonstrate that TCS consistently improves performance across different MLLMs, boosting up to 6.9% accuracy, and is capable of achieving comparable accuracy with 50% fewer inference time cost, highlighting both efficiency and efficacy of TCS on long video understanding.
comment: Accepted by ICASSP2026
AstroReason-Bench: Evaluating Unified Agentic Planning across Heterogeneous Space Planning Problems
Recent advances in agentic Large Language Models (LLMs) have positioned them as generalist planners capable of reasoning and acting across diverse tasks. However, existing agent benchmarks largely focus on symbolic or weakly grounded environments, leaving their performance in physics-constrained real-world domains underexplored. We introduce AstroReason-Bench, a comprehensive benchmark for evaluating agentic planning in Space Planning Problems (SPP), a family of high-stakes problems with heterogeneous objectives, strict physical constraints, and long-horizon decision-making. AstroReason-Bench integrates multiple scheduling regimes, including ground station communication and agile Earth observation, and provides a unified agent-oriented interaction protocol. Evaluating on a range of state-of-the-art open- and closed-source agentic LLM systems, we find that current agents substantially underperform specialized solvers, highlighting key limitations of generalist planning under realistic constraints. AstroReason-Bench offers a challenging and diagnostic testbed for future agentic research.
FEATHer: Fourier-Efficient Adaptive Temporal Hierarchy Forecaster for Time-Series Forecasting
Time-series forecasting is fundamental in industrial domains like manufacturing and smart factories. As systems evolve toward automation, models must operate on edge devices (e.g., PLCs, microcontrollers) with strict constraints on latency and memory, limiting parameters to a few thousand. Conventional deep architectures are often impractical here. We propose the Fourier-Efficient Adaptive Temporal Hierarchy Forecaster (FEATHer) for accurate long-term forecasting under severe limits. FEATHer introduces: (i) ultra-lightweight multiscale decomposition into frequency pathways; (ii) a shared Dense Temporal Kernel using projection-depthwise convolution-projection without recurrence or attention; (iii) frequency-aware branch gating that adaptively fuses representations based on spectral characteristics; and (iv) a Sparse Period Kernel reconstructing outputs via period-wise downsampling to capture seasonality. FEATHer maintains a compact architecture (as few as 400 parameters) while outperforming baselines. Across eight benchmarks, it achieves the best ranking, recording 60 first-place results with an average rank of 2.05. These results demonstrate that reliable long-range forecasting is achievable on constrained edge hardware, offering a practical direction for industrial real-time inference.
comment: Submitted to IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)
How Much Would a Clinician Edit This Draft? Evaluating LLM Alignment for Patient Message Response Drafting
Large language models (LLMs) show promise in drafting responses to patient portal messages, yet their integration into clinical workflows raises various concerns, including whether they would actually save clinicians time and effort in their portal workload. We investigate LLM alignment with individual clinicians through a comprehensive evaluation of the patient message response drafting task. We develop a novel taxonomy of thematic elements in clinician responses and propose a novel evaluation framework for assessing clinician editing load of LLM-drafted responses at both content and theme levels. We release an expert-annotated dataset and conduct large-scale evaluations of local and commercial LLMs using various adaptation techniques including thematic prompting, retrieval-augmented generation, supervised fine-tuning, and direct preference optimization. Our results reveal substantial epistemic uncertainty in aligning LLM drafts with clinician responses. While LLMs demonstrate capability in drafting certain thematic elements, they struggle with clinician-aligned generation in other themes, particularly question asking to elicit further information from patients. Theme-driven adaptation strategies yield improvements across most themes. Our findings underscore the necessity of adapting LLMs to individual clinician preferences to enable reliable and responsible use in patient-clinician communication workflows.
XChoice: Explainable Evaluation of AI-Human Alignment in LLM-based Constrained Choice Decision Making
We present XChoice, an explainable framework for evaluating AI-human alignment in constrained decision making. Moving beyond outcome agreement such as accuracy and F1 score, XChoice fits a mechanism-based decision model to human data and LLM-generated decisions, recovering interpretable parameters that capture the relative importance of decision factors, constraint sensitivity, and implied trade-offs. Alignment is assessed by comparing these parameter vectors across models, options, and subgroups. We demonstrate XChoice on Americans' daily time allocation using the American Time Use Survey (ATUS) as human ground truth, revealing heterogeneous alignment across models and activities and salient misalignment concentrated in Black and married groups. We further validate robustness of XChoice via an invariance analysis and evaluate targeted mitigation with a retrieval augmented generation (RAG) intervention. Overall, XChoice provides mechanism-based metrics that diagnose misalignment and support informed improvements beyond surface outcome matching.
From SERPs to Sound: How Search Engine Result Pages and AI-generated Podcasts Interact to Influence User Attitudes on Controversial Topics
Compared to search engine result pages (SERPs), AI-generated podcasts represent a relatively new and relatively more passive modality of information consumption, delivering narratives in a naturally engaging format. As these two media increasingly converge in everyday information-seeking behavior, it is essential to explore how their interaction influences user attitudes, particularly in contexts involving controversial, value-laden, and often debated topics. Addressing this need, we aim to understand how information mediums of present-day SERPs and AI-generated podcasts interact to shape the opinions of users. To this end, through a controlled user study (N=483), we investigated user attitudinal effects of consuming information via SERPs and AI-generated podcasts, focusing on how the sequence and modality of exposure shape user opinions. A majority of users in our study corresponded to attitude change outcomes, and we found an effect of sequence on attitude change. Our results further revealed a role of viewpoint bias and the degree of topic controversiality in shaping attitude change, although we found no effect of individual moderators.
comment: ACM CHIIR 2026
X-Distill: Cross-Architecture Vision Distillation for Visuomotor Learning
Visuomotor policies often leverage large pre-trained Vision Transformers (ViTs) for their powerful generalization capabilities. However, their significant data requirements present a major challenge in the data-scarce context of most robotic learning settings, where compact CNNs with strong inductive biases can be more easily optimized. To address this trade-off, we introduce X-Distill, a simple yet highly effective method that synergizes the strengths of both architectures. Our approach involves an offline, cross-architecture knowledge distillation, transferring the rich visual representations of a large, frozen DINOv2 teacher to a compact ResNet-18 student on the general-purpose ImageNet dataset. This distilled encoder, now endowed with powerful visual priors, is then jointly fine-tuned with a diffusion policy head on the target manipulation tasks. Extensive experiments on $34$ simulated benchmarks and $5$ challenging real-world tasks demonstrate that our method consistently outperforms policies equipped with from-scratch ResNet or fine-tuned DINOv2 encoders. Notably, X-Distill also surpasses 3D encoders that utilize privileged point cloud observations or much larger Vision-Language Models. Our work highlights the efficacy of a simple, well-founded distillation strategy for achieving state-of-the-art performance in data-efficient robotic manipulation.
Knowledge is Not Enough: Injecting RL Skills for Continual Adaptation
Large Language Models (LLMs) face the "knowledge cutoff" challenge, where their frozen parametric memory prevents direct internalization of new information. While Supervised Fine-Tuning (SFT) is commonly used to update model knowledge, it often updates factual content without reliably improving the model's ability to use the newly incorporated information for question answering or decision-making. Reinforcement Learning (RL) is essential for acquiring reasoning skills; however, its high computational cost makes it impractical for efficient online adaptation. We empirically observe that the parameter updates induced by SFT and RL are nearly orthogonal. Based on this observation, we propose Parametric Skill Transfer (PaST), a framework that supports modular skill transfer for efficient and effective knowledge adaptation. By extracting a domain-agnostic Skill Vector from a source domain, we can linearly inject knowledge manipulation skills into a target model after it has undergone lightweight SFT on new data. Experiments on knowledge-incorporation QA (SQuAD, LooGLE) and agentic tool-use benchmarks (ToolBench) demonstrate the effectiveness of our method. On SQuAD, PaST outperforms the state-of-the-art self-editing SFT baseline by up to 9.9 points. PaST further scales to long-context QA on LooGLE with an 8.0-point absolute accuracy gain, and improves zero-shot ToolBench success rates by +10.3 points on average with consistent gains across tool categories, indicating strong scalability and cross-domain transferability of the Skill Vector.
Beyond Model Scaling: Test-Time Intervention for Efficient Deep Reasoning
Large Reasoning Models (LRMs) excel at multi-step reasoning but often suffer from inefficient reasoning processes like overthinking and overshoot, where excessive or misdirected reasoning increases computational cost and degrades performance. Existing efficient reasoning methods operate in a closed-loop manner, lacking mechanisms for external intervention to guide the reasoning process. To address this, we propose Think-with-Me, a novel test-time interactive reasoning paradigm that introduces external feedback intervention into the reasoning process. Our key insights are that transitional conjunctions serve as natural points for intervention, signaling phases of self-validation or exploration and using transitional words appropriately to prolong the reasoning enhances performance, while excessive use affects performance. Building on these insights, Think-with-Me pauses reasoning at these points for external feedback, adaptively extending or terminating reasoning to reduce redundancy while preserving accuracy. The feedback is generated via a multi-criteria evaluation (rationality and completeness) and comes from either human or LLM proxies. We train the target model using Group Relative Policy Optimization (GRPO) to adapt to this interactive mode. Experiments show that Think-with-Me achieves a superior balance between accuracy and reasoning length under limited context windows. On AIME24, Think-with-Me outperforms QwQ-32B by 7.19% in accuracy while reducing average reasoning length by 81% under an 8K window. The paradigm also benefits security and creative tasks.
FactCorrector: A Graph-Inspired Approach to Long-Form Factuality Correction of Large Language Models
Large language models (LLMs) are widely used in knowledge-intensive applications but often generate factually incorrect responses. A promising approach to rectify these flaws is correcting LLMs using feedback. Therefore, in this paper, we introduce FactCorrector, a new post-hoc correction method that adapts across domains without retraining and leverages structured feedback about the factuality of the original response to generate a correction. To support rigorous evaluations of factuality correction methods, we also develop the VELI5 benchmark, a novel dataset containing systematically injected factual errors and ground-truth corrections. Experiments on VELI5 and several popular long-form factuality datasets show that the FactCorrector approach significantly improves factual precision while preserving relevance, outperforming strong baselines. We release our code at https://ibm.biz/factcorrector.
SDFLoRA: Selective Dual-Module LoRA for Federated Fine-tuning with Heterogeneous Clients
Federated learning (FL) for large language models (LLMs) has attracted increasing attention as a way to enable privacy-preserving adaptation over distributed data. Parameter-efficient methods such as LoRA are widely adopted to reduce communication and memory costs. Despite these advances, practical FL deployments often exhibit rank heterogeneity, since different clients may use different low-rank configurations. This makes direct aggregation of LoRA updates biased and unstable. Existing solutions typically enforce unified ranks or align heterogeneous updates into a shared subspace, which over-constrains client-specific semantics, limits personalization, and provides weak protection of local client information under differential privacy noise. To address this issue, we propose Selective Dual-module Federated LoRA (SDFLoRA), which decomposes each client adapter into a global module that captures transferable knowledge and a local module that preserves client-specific adaptations. The global module is selectively aligned and aggregated across clients, while local modules remain private. This design enables robust learning under rank heterogeneity and supports privacy-aware optimization by injecting differential privacy noise exclusively into the global module. Experiments on GLUE benchmarks demonstrate that SDFLoRA outperforms representative federated LoRA baselines and achieves a better utility-privacy trade-off.
LoRA as Oracle
Backdoored and privacy-leaking deep neural networks pose a serious threat to the deployment of machine learning systems in security-critical settings. Existing defenses for backdoor detection and membership inference typically require access to clean reference models, extensive retraining, or strong assumptions about the attack mechanism. In this work, we introduce a novel LoRA-based oracle framework that leverages low-rank adaptation modules as a lightweight, model-agnostic probe for both backdoor detection and membership inference. Our approach attaches task-specific LoRA adapters to a frozen backbone and analyzes their optimization dynamics and representation shifts when exposed to suspicious samples. We show that poisoned and member samples induce distinctive low-rank updates that differ significantly from those generated by clean or non-member data. These signals can be measured using simple ranking and energy-based statistics, enabling reliable inference without access to the original training data or modification of the deployed model.
Epistemic Control and the Normativity of Machine Learning-Based Science
The past few years have witnessed an increasing use of machine learning (ML) systems in science. Paul Humphreys has argued that, because of specific characteristics of ML systems, human scientists are pushed out of the loop of science. In this chapter, I investigate to what extent this is true. First, I express these concerns in terms of what I call epistemic control. I identify two conditions for epistemic control, called tracking and tracing, drawing on works in philosophy of technology. With this new understanding of the problem, I then argue against Humphreys pessimistic view. Finally, I construct a more nuanced view of epistemic control in ML-based science.
FAQ: Mitigating Quantization Error via Regenerating Calibration Data with Family-Aware Quantization
Although post-training quantization (PTQ) provides an efficient numerical compression scheme for deploying large language models (LLMs) on resource-constrained devices, the representativeness and universality of calibration data remain a core bottleneck in determining the accuracy of quantization parameters. Traditional PTQ methods typically rely on limited samples, making it difficult to capture the activation distribution during the inference phase, leading to biases in quantization parameters. To address this, we propose \textbf{FAQ} (Family-Aware Quantization), a calibration data regeneration framework that leverages prior knowledge from LLMs of the same family to generate high-fidelity calibration samples. Specifically, FAQ first inputs the original calibration samples into a larger LLM from the same family as the target model, regenerating a series of high-fidelity calibration data using a highly consistent knowledge system. Subsequently, this data, carrying Chain-of-Thought reasoning and conforming to the expected activation distribution, undergoes group competition under expert guidance to select the best samples, which are then re-normalized to enhance the effectiveness of standard PTQ. Experiments on multiple model series, including Qwen3-8B, show that FAQ reduces accuracy loss by up to 28.5\% compared to the baseline with original calibration data, demonstrating its powerful potential and contribution.
SD-RAG: A Prompt-Injection-Resilient Framework for Selective Disclosure in Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) has attracted significant attention due to its ability to combine the generative capabilities of Large Language Models (LLMs) with knowledge obtained through efficient retrieval mechanisms over large-scale data collections. Currently, the majority of existing approaches overlook the risks associated with exposing sensitive or access-controlled information directly to the generation model. Only a few approaches propose techniques to instruct the generative model to refrain from disclosing sensitive information; however, recent studies have also demonstrated that LLMs remain vulnerable to prompt injection attacks that can override intended behavioral constraints. For these reasons, we propose a novel approach to Selective Disclosure in Retrieval-Augmented Generation, called SD-RAG, which decouples the enforcement of security and privacy constraints from the generation process itself. Rather than relying on prompt-level safeguards, SD-RAG applies sanitization and disclosure controls during the retrieval phase, prior to augmenting the language model's input. Moreover, we introduce a semantic mechanism to allow the ingestion of human-readable dynamic security and privacy constraints together with an optimized graph-based data model that supports fine-grained, policy-aware retrieval. Our experimental evaluation demonstrates the superiority of SD-RAG over baseline existing approaches, achieving up to a $58\%$ improvement in the privacy score, while also showing a strong resilience to prompt injection attacks targeting the generative model.
Artificial Intelligence and the US Economy: An Accounting Perspective on Investment and Production
Artificial intelligence (AI) has moved to the center of policy, market, and academic debates, but its macroeconomic footprint is still only partly understood. This paper provides an overview on how the current AI wave is captured in US national accounts, combining a simple macro-accounting framework with a stylized description of the AI production process. We highlight the crucial role played by data centers, which constitute the backbone of the AI ecosystem and have attracted formidable investment in 2025, as they are indispensable for meeting the rapidly increasing worldwide demand for AI services. We document that the boom in IT and AI-related capital expenditure in the first three quarters of the year has given an outsized boost to aggregate demand, while its contribution to GDP growth is smaller once the high import content of AI hardware is netted out. Furthermore, simple calculations suggest that, at current utilization rates and pricing, the production of services originating in new AI data centers could contribute to GDP over the turn of the next quarters on a scale comparable to that of investment spending to date. Short reinvestment cycles and uncertainty about future AI demand, while not currently acting as a macroeconomic drag, can nevertheless fuel macroeconomic risks over the medium term.
comment: 35 pages, 11 figures, pre-print
Policy-Based Deep Reinforcement Learning Hyperheuristics for Job-Shop Scheduling Problems
This paper proposes a policy-based deep reinforcement learning hyper-heuristic framework for solving the Job Shop Scheduling Problem. The hyper-heuristic agent learns to switch scheduling rules based on the system state dynamically. We extend the hyper-heuristic framework with two key mechanisms. First, action prefiltering restricts decision-making to feasible low-level actions, enabling low-level heuristics to be evaluated independently of environmental constraints and providing an unbiased assessment. Second, a commitment mechanism regulates the frequency of heuristic switching. We investigate the impact of different commitment strategies, from step-wise switching to full-episode commitment, on both training behavior and makespan. Additionally, we compare two action selection strategies at the policy level: deterministic greedy selection and stochastic sampling. Computational experiments on standard JSSP benchmarks demonstrate that the proposed approach outperforms traditional heuristics, metaheuristics, and recent neural network-based scheduling methods
TANDEM: Temporal-Aware Neural Detection for Multimodal Hate Speech
Social media platforms are increasingly dominated by long-form multimodal content, where harmful narratives are constructed through a complex interplay of audio, visual, and textual cues. While automated systems can flag hate speech with high accuracy, they often function as "black boxes" that fail to provide the granular, interpretable evidence, such as precise timestamps and target identities, required for effective human-in-the-loop moderation. In this work, we introduce TANDEM, a unified framework that transforms audio-visual hate detection from a binary classification task into a structured reasoning problem. Our approach employs a novel tandem reinforcement learning strategy where vision-language and audio-language models optimize each other through self-constrained cross-modal context, stabilizing reasoning over extended temporal sequences without requiring dense frame-level supervision. Experiments across three benchmark datasets demonstrate that TANDEM significantly outperforms zero-shot and context-augmented baselines, achieving 0.73 F1 in target identification on HateMM (a 30% improvement over state-of-the-art) while maintaining precise temporal grounding. We further observe that while binary detection is robust, differentiating between offensive and hateful content remains challenging in multi-class settings due to inherent label ambiguity and dataset imbalance. More broadly, our findings suggest that structured, interpretable alignment is achievable even in complex multimodal settings, offering a blueprint for the next generation of transparent and actionable online safety moderation tools.
comment: Under review at ICWSM 2026
Clustering High-dimensional Data: Balancing Abstraction and Representation Tutorial at AAAI 2026
How to find a natural grouping of a large real data set? Clustering requires a balance between abstraction and representation. To identify clusters, we need to abstract from superfluous details of individual objects. But we also need a rich representation that emphasizes the key features shared by groups of objects that distinguish them from other groups of objects. Each clustering algorithm implements a different trade-off between abstraction and representation. Classical K-means implements a high level of abstraction - details are simply averaged out - combined with a very simple representation - all clusters are Gaussians in the original data space. We will see how approaches to subspace and deep clustering support high-dimensional and complex data by allowing richer representations. However, with increasing representational expressiveness comes the need to explicitly enforce abstraction in the objective function to ensure that the resulting method performs clustering and not just representation learning. We will see how current deep clustering methods define and enforce abstraction through centroid-based and density-based clustering losses. Balancing the conflicting goals of abstraction and representation is challenging. Ideas from subspace clustering help by learning one latent space for the information that is relevant to clustering and another latent space to capture all other information in the data. The tutorial ends with an outlook on future research in clustering. Future methods will more adaptively balance abstraction and representation to improve performance, energy efficiency and interpretability. By automatically finding the sweet spot between abstraction and representation, the human brain is very good at clustering and other related tasks such as single-shot learning. So, there is still much room for improvement.
Cross-Modal Attention Network with Dual Graph Learning in Multimodal Recommendation
Multimedia recommendation systems leverage user-item interactions and multimodal information to capture user preferences, enabling more accurate and personalized recommendations. Despite notable advancements, existing approaches still face two critical limitations: first, shallow modality fusion often relies on simple concatenation, failing to exploit rich synergic intra- and inter-modal relationships; second, asymmetric feature treatment-where users are only characterized by interaction IDs while items benefit from rich multimodal content-hinders the learning of a shared semantic space. To address these issues, we propose a Cross-modal Recursive Attention Network with dual graph Embedding (CRANE). To tackle shallow fusion, we design a core Recursive Cross-Modal Attention (RCA) mechanism that iteratively refines modality features based on cross-correlations in a joint latent space, effectively capturing high-order intra- and inter-modal dependencies. For symmetric multimodal learning, we explicitly construct users' multimodal profiles by aggregating features of their interacted items. Furthermore, CRANE integrates a symmetric dual-graph framework-comprising a heterogeneous user-item interaction graph and a homogeneous item-item semantic graph-unified by a self-supervised contrastive learning objective to fuse behavioral and semantic signals. Despite these complex modeling capabilities, CRANE maintains high computational efficiency. Theoretical and empirical analyses confirm its scalability and high practical efficiency, achieving faster convergence on small datasets and superior performance ceilings on large-scale ones. Comprehensive experiments on four public real-world datasets validate an average 5% improvement in key metrics over state-of-the-art baselines.
comment: Accepted to ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM)
Do We Always Need Query-Level Workflows? Rethinking Agentic Workflow Generation for Multi-Agent Systems
Multi-Agent Systems (MAS) built on large language models typically solve complex tasks by coordinating multiple agents through workflows. Existing approaches generates workflows either at task level or query level, but their relative costs and benefits remain unclear. After rethinking and empirical analyses, we show that query-level workflow generation is not always necessary, since a small set of top-K best task-level workflows together already covers equivalent or even more queries. We further find that exhaustive execution-based task-level evaluation is both extremely token-costly and frequently unreliable. Inspired by the idea of self-evolution and generative reward modeling, we propose a low-cost task-level generation framework \textbf{SCALE}, which means \underline{\textbf{S}}elf prediction of the optimizer with few shot \underline{\textbf{CAL}}ibration for \underline{\textbf{E}}valuation instead of full validation execution. Extensive experiments demonstrate that \textbf{SCALE} maintains competitive performance, with an average degradation of just 0.61\% compared to existing approach across multiple datasets, while cutting overall token usage by up to 83\%.
comment: 17 pages, 4 figures, 3 tables
Deep GraphRAG: A Balanced Approach to Hierarchical Retrieval and Adaptive Integration
Graph-based Retrieval-Augmented Generation (GraphRAG) frameworks face a trade-off between the comprehensiveness of global search and the efficiency of local search. Existing methods are often challenged by navigating large-scale hierarchical graphs, optimizing retrieval paths, and balancing exploration-exploitation dynamics, frequently lacking robust multi-stage re-ranking. To overcome these deficits, we propose Deep GraphRAG, a framework designed for a balanced approach to hierarchical retrieval and adaptive integration. It introduces a hierarchical global-to-local retrieval strategy that integrates macroscopic inter-community and microscopic intra-community contextual relations. This strategy employs a three-stage process: (1) inter-community filtering, which prunes the search space using local context; (2) community-level refinement, which prioritizes relevant subgraphs via entity-interaction analysis; and (3) entity-level fine-grained search within target communities. A beam search-optimized dynamic re-ranking module guides this process, continuously filtering candidates to balance efficiency and global comprehensiveness. Deep GraphRAG also features a Knowledge Integration Module leveraging a compact LLM, trained with Dynamic Weighting Reward GRPO (DW-GRPO). This novel reinforcement learning approach dynamically adjusts reward weights to balance three key objectives: relevance, faithfulness, and conciseness. This training enables compact models (1.5B) to approach the performance of large models (70B) in the integration task. Evaluations on Natural Questions and HotpotQA demonstrate that Deep GraphRAG significantly outperforms baseline graph retrieval methods in both accuracy and efficiency.
Learning Quadrupedal Locomotion for a Heavy Hydraulic Robot Using an Actuator Model RA-L
The simulation-to-reality (sim-to-real) transfer of large-scale hydraulic robots presents a significant challenge in robotics because of the inherent slow control response and complex fluid dynamics. The complex dynamics result from the multiple interconnected cylinder structure and the difference in fluid rates of the cylinders. These characteristics complicate detailed simulation for all joints, making it unsuitable for reinforcement learning (RL) applications. In this work, we propose an analytical actuator model driven by hydraulic dynamics to represent the complicated actuators. The model predicts joint torques for all 12 actuators in under 1 microsecond, allowing rapid processing in RL environments. We compare our model with neural network-based actuator models and demonstrate the advantages of our model in data-limited scenarios. The locomotion policy trained in RL with our model is deployed on a hydraulic quadruped robot, which is over 300 kg. This work is the first demonstration of a successful transfer of stable and robust command-tracking locomotion with RL on a heavy hydraulic quadruped robot, demonstrating advanced sim-to-real transferability.
comment: 9 pages, Accepted to IEEE Robotics and Automation Letters (RA-L) 2025
Context-aware Graph Causality Inference for Few-Shot Molecular Property Prediction
Molecular property prediction is becoming one of the major applications of graph learning in Web-based services, e.g., online protein structure prediction and drug discovery. A key challenge arises in few-shot scenarios, where only a few labeled molecules are available for predicting unseen properties. Recently, several studies have used in-context learning to capture relationships among molecules and properties, but they face two limitations in: (1) exploiting prior knowledge of functional groups that are causally linked to properties and (2) identifying key substructures directly correlated with properties. We propose CaMol, a context-aware graph causality inference framework, to address these challenges by using a causal inference perspective, assuming that each molecule consists of a latent causal structure that determines a specific property. First, we introduce a context graph that encodes chemical knowledge by linking functional groups, molecules, and properties to guide the discovery of causal substructures. Second, we propose a learnable atom masking strategy to disentangle causal substructures from confounding ones. Third, we introduce a distribution intervener that applies backdoor adjustment by combining causal substructures with chemically grounded confounders, disentangling causal effects from real-world chemical variations. Experiments on diverse molecular datasets showed that CaMol achieved superior accuracy and sample efficiency in few-shot tasks, showing its generalizability to unseen properties. Also, the discovered causal substructures were strongly aligned with chemical knowledge about functional groups, supporting the model interpretability.
comment: 15 pages
Learn Before Represent: Bridging Generative and Contrastive Learning for Domain-Specific LLM Embeddings
Large Language Models (LLMs) adapted via contrastive learning excel in general representation learning but struggle in vertical domains like chemistry and law, primarily due to a lack of domain-specific knowledge. This work identifies a core bottleneck: the prevailing ``LLM+CL'' paradigm focuses on semantic alignment but cannot perform knowledge acquisition, leading to failures on specialized terminology. To bridge this gap, we propose Learn Before Represent (LBR), a novel two-stage framework. LBR first injects domain knowledge via an Information Bottleneck-Constrained Generative Learning stage, preserving the LLM's causal attention to maximize knowledge acquisition while compressing semantics. It then performs Generative-Refined Contrastive Learning on the compressed representations for alignment. This approach maintains architectural consistency and resolves the objective conflict between generative and contrastive learning. Extensive experiments on medical, chemistry, and code retrieval tasks show that LBR significantly outperforms strong baselines. Our work establishes a new paradigm for building accurate and robust representations in vertical domains.
comment: 10 pages, 3 figures
Vision-as-Inverse-Graphics Agent via Interleaved Multimodal Reasoning
Vision-as-inverse-graphics, the concept of reconstructing an image as an editable graphics program is a long-standing goal of computer vision. Yet even strong VLMs aren't able to achieve this in one-shot as they lack fine-grained spatial and physical grounding capability. Our key insight is that closing this gap requires interleaved multimodal reasoning through iterative execution and verification. Stemming from this, we present VIGA (Vision-as-Inverse-Graphic Agent) that starts from an empty world and reconstructs or edits scenes through a closed-loop write-run-render-compare-revise procedure. To support long-horizon reasoning, VIGA combines (i) a skill library that alternates generator and verifier roles and (ii) an evolving context memory that contains plans, code diffs, and render history. VIGA is task-agnostic as it doesn't require auxiliary modules, covering a wide range of tasks such as 3D reconstruction, multi-step scene editing, 4D physical interaction, and 2D document editing, etc. Empirically, we found VIGA substantially improves one-shot baselines on BlenderGym (35.32%) and SlideBench (117.17%). Moreover, VIGA is also model-agnostic as it doesn't require finetuning, enabling a unified protocol to evaluate heterogeneous foundation VLMs. To better support this protocol, we introduce BlenderBench, a challenging benchmark that stress-tests interleaved multimodal reasoning with graphics engine, where VIGA improves by 124.70%.
ReCreate: Reasoning and Creating Domain Agents Driven by Experience
Large Language Model agents are reshaping the industrial landscape. However, most practical agents remain human-designed because tasks differ widely, making them labor-intensive to build. This situation poses a central question: can we automatically create and adapt domain agents in the wild? While several recent approaches have sought to automate agent creation, they typically treat agent generation as a black-box procedure and rely solely on final performance metrics to guide the process. Such strategies overlook critical evidence explaining why an agent succeeds or fails, and often require high computational costs. To address these limitations, we propose ReCreate, an experience-driven framework for the automatic creation of domain agents. ReCreate systematically leverages agent interaction histories, which provide rich concrete signals on both the causes of success or failure and the avenues for improvement. Specifically, we introduce an agent-as-optimizer paradigm that effectively learns from experience via three key components: (i) an experience storage and retrieval mechanism for on-demand inspection; (ii) a reasoning-creating synergy pipeline that maps execution experience into scaffold edits; and (iii) hierarchical updates that abstract instance-level details into reusable domain patterns. In experiments across diverse domains, ReCreate consistently outperforms human-designed agents and existing automated agent generation methods, even when starting from minimal seed scaffolds.
Efficient Multilingual Name Type Classification Using Convolutional Networks
We present a convolutional neural network approach for classifying proper names by language and entity type. Our model, Onomas-CNN X, combines parallel convolution branches with depthwise-separable operations and hierarchical classification to process names efficiently on CPU hardware. We evaluate the architecture on a large multilingual dataset covering 104 languages and four entity types (person, organization, location, other). Onomas-CNN X achieves 92.1% accuracy while processing 2,813 names per second on a single CPU core - 46 times faster than fine-tuned XLM-RoBERTa with comparable accuracy. The model reduces energy consumption by a factor of 46 compared to transformer baselines. Our experiments demonstrate that specialized CNN architectures remain competitive with large pre-trained models for focused NLP tasks when sufficient training data exists.
comment: Preprint of paper presented at ISAI-NLP Phukat 2025
MiCA: A Mobility-Informed Causal Adapter for Lightweight Epidemic Forecasting
Accurate forecasting of infectious disease dynamics is critical for public health planning and intervention. Human mobility plays a central role in shaping the spatial spread of epidemics, but mobility data are noisy, indirect, and difficult to integrate reliably with disease records. Meanwhile, epidemic case time series are typically short and reported at coarse temporal resolution. These conditions limit the effectiveness of parameter-heavy mobility-aware forecasters that rely on clean and abundant data. In this work, we propose the Mobility-Informed Causal Adapter (MiCA), a lightweight and architecture-agnostic module for epidemic forecasting. MiCA infers mobility relations through causal discovery and integrates them into temporal forecasting models via gated residual mixing. This design allows lightweight forecasters to selectively exploit mobility-derived spatial structure while remaining robust under noisy and data-limited conditions, without introducing heavy relational components such as graph neural networks or full attention. Extensive experiments on four real-world epidemic datasets, including COVID-19 incidence, COVID-19 mortality, influenza, and dengue, show that MiCA consistently improves lightweight temporal backbones, achieving an average relative error reduction of 7.5\% across forecasting horizons. Moreover, MiCA attains performance competitive with SOTA spatio-temporal models while remaining lightweight.
Visual Marker Search for Autonomous Drone Landing in Diverse Urban Environments
Marker-based landing is widely used in drone delivery and return-to-base systems for its simplicity and reliability. However, most approaches assume idealized landing site visibility and sensor performance, limiting robustness in complex urban settings. We present a simulation-based evaluation suite on the AirSim platform with systematically varied urban layouts, lighting, and weather to replicate realistic operational diversity. Using onboard camera sensors (RGB for marker detection and depth for obstacle avoidance), we benchmark two heuristic coverage patterns and a reinforcement learning-based agent, analyzing how exploration strategy and scene complexity affect success rate, path efficiency, and robustness. Results underscore the need to evaluate marker-based autonomous landing under diverse, sensor-relevant conditions to guide the development of reliable aerial navigation systems.
ABC-Bench: Benchmarking Agentic Backend Coding in Real-World Development
The evolution of Large Language Models (LLMs) into autonomous agents has expanded the scope of AI coding from localized code generation to complex, repository-level, and execution-driven problem solving. However, current benchmarks predominantly evaluate code logic in static contexts, neglecting the dynamic, full-process requirements of real-world engineering, particularly in backend development which demands rigorous environment configuration and service deployment. To address this gap, we introduce ABC-Bench, a benchmark explicitly designed to evaluate agentic backend coding within a realistic, executable workflow. Using a scalable automated pipeline, we curated 224 practical tasks spanning 8 languages and 19 frameworks from open-source repositories. Distinct from previous evaluations, ABC-Bench require the agents to manage the entire development lifecycle from repository exploration to instantiating containerized services and pass the external end-to-end API tests. Our extensive evaluation reveals that even state-of-the-art models struggle to deliver reliable performance on these holistic tasks, highlighting a substantial disparity between current model capabilities and the demands of practical backend engineering. Our code is available at https://github.com/OpenMOSS/ABC-Bench.
A3D: Adaptive Affordance Assembly with Dual-Arm Manipulation AAAI2026
Furniture assembly is a crucial yet challenging task for robots, requiring precise dual-arm coordination where one arm manipulates parts while the other provides collaborative support and stabilization. To accomplish this task more effectively, robots need to actively adapt support strategies throughout the long-horizon assembly process, while also generalizing across diverse part geometries. We propose A3D, a framework which learns adaptive affordances to identify optimal support and stabilization locations on furniture parts. The method employs dense point-level geometric representations to model part interaction patterns, enabling generalization across varied geometries. To handle evolving assembly states, we introduce an adaptive module that uses interaction feedback to dynamically adjust support strategies during assembly based on previous interactions. We establish a simulation environment featuring 50 diverse parts across 8 furniture types, designed for dual-arm collaboration evaluation. Experiments demonstrate that our framework generalizes effectively to diverse part geometries and furniture categories in both simulation and real-world settings.
comment: AAAI2026 oral
Bridging Cognitive Neuroscience and Graph Intelligence: Hippocampus-Inspired Multi-View Hypergraph Learning for Web Finance Fraud
Online financial services constitute an essential component of contemporary web ecosystems, yet their openness introduces substantial exposure to fraud that harms vulnerable users and weakens trust in digital finance. Such threats have become a significant web harm that erodes societal fairness and affects the well being of online communities. However, existing detection methods based on graph neural networks (GNNs) struggle with two persistent challenges: (1) fraud camouflage, where malicious transactions mimic benign behaviors to evade detection, and (2) long-tailed data distributions, which obscure rare but critical fraudulent cases. To fill these gaps, we propose HIMVH, a Hippocampus-Inspired Multi-View Hypergraph learning model for web finance fraud detection. Specifically, drawing inspiration from the scene conflict monitoring role of the hippocampus, we design a cross-view inconsistency perception module that captures subtle discrepancies and behavioral heterogeneity across multiple transaction views. This module enables the model to identify subtle cross-view conflicts for detecting online camouflaged fraudulent behaviors. Furthermore, inspired by the match-mismatch novelty detection mechanism of the CA1 region, we introduce a novelty-aware hypergraph learning module that measures feature deviations from neighborhood expectations and adaptively reweights messages, thereby enhancing sensitivity to online rare fraud patterns in the long-tailed settings. Extensive experiments on six web-based financial fraud datasets demonstrate that HIMVH achieves 6.42\% improvement in AUC, 9.74\% in F1 and 39.14\% in AP on average over 15 SOTA models.
Fairness in Healthcare Processes: A Quantitative Analysis of Decision Making in Triage
Fairness in automated decision-making has become a critical concern, particularly in high-pressure healthcare scenarios such as emergency triage, where fast and equitable decisions are essential. Process mining is increasingly investigating fairness. There is a growing area focusing on fairness-aware algorithms. So far, we know less how these concepts perform on empirical healthcare data or how they cover aspects of justice theory. This study addresses this research problem and proposes a process mining approach to assess fairness in triage by linking real-life event logs with conceptual dimensions of justice. Using the MIMICEL event log (as derived from MIMIC-IV ED), we analyze time, re-do, deviation and decision as process outcomes, and evaluate the influence of age, gender, race, language and insurance using the Kruskal-Wallis, Chi-square and effect size measurements. These outcomes are mapped to justice dimensions to support the development of a conceptual framework. The results demonstrate which aspects of potential unfairness in high-acuity and sub-acute surface. In this way, this study contributes empirical insights that support further research in responsible, fairness-aware process mining in healthcare.
comment: conference
H-AIM: Orchestrating LLMs, PDDL, and Behavior Trees for Hierarchical Multi-Robot Planning
In embodied artificial intelligence, enabling heterogeneous robot teams to execute long-horizon tasks from high-level instructions remains a critical challenge. While large language models (LLMs) show promise in instruction parsing and preliminary planning, they exhibit limitations in long-term reasoning and dynamic multi-robot coordination. We propose Hierarchical Autonomous Intelligent Multi-Robot Planning(H-AIM), a novel embodied multi-robot task planning framework that addresses these issues through a three-stage cascaded architecture: 1) It leverages an LLM to parse instructions and generate Planning Domain Definition Language (PDDL) problem descriptions, thereby transforming commands into formal planning problems; 2) It combines the semantic reasoning of LLMs with the search capabilities of a classical planner to produce optimized action sequences; 3) It compiles the resulting plan into behavior trees for reactive control. The framework supports dynamically sized heterogeneous robot teams via a shared blackboard mechanism for communication and state synchronization. To validate our approach, we introduce the MACE-THOR benchmark dataset, comprising 42 complex tasks across 8 distinct household layouts. Experimental results demonstrate that H-AIM achieves a remarkable performance improvement, elevating the task success rate from 12% to 55% and boosting the goal condition recall from 32% to 72% against the strongest baseline, LaMMA-P.
Predicting Biased Human Decision-Making with Large Language Models in Conversational Settings
We examine whether large language models (LLMs) can predict biased decision-making in conversational settings, and whether their predictions capture not only human cognitive biases but also how those effects change under cognitive load. In a pre-registered study (N = 1,648), participants completed six classic decision-making tasks via a chatbot with dialogues of varying complexity. Participants exhibited two well-documented cognitive biases: the Framing Effect and the Status Quo Bias. Increased dialogue complexity resulted in participants reporting higher mental demand. This increase in cognitive load selectively, but significantly, increased the effect of the biases, demonstrating the load-bias interaction. We then evaluated whether LLMs (GPT-4, GPT-5, and open-source models) could predict individual decisions given demographic information and prior dialogue. While results were mixed across choice problems, LLM predictions that incorporated dialogue context were significantly more accurate in several key scenarios. Importantly, their predictions reproduced the same bias patterns and load-bias interactions observed in humans. Across all models tested, the GPT-4 family consistently aligned with human behavior, outperforming GPT-5 and open-source models in both predictive accuracy and fidelity to human-like bias patterns. These findings advance our understanding of LLMs as tools for simulating human decision-making and inform the design of conversational agents that adapt to user biases.
comment: Accepted at ACM IUI 2026
AgencyBench: Benchmarking the Frontiers of Autonomous Agents in 1M-Token Real-World Contexts
Large Language Models (LLMs) based autonomous agents demonstrate multifaceted capabilities to contribute substantially to economic production. However, existing benchmarks remain focused on single agentic capability, failing to capture long-horizon real-world scenarios. Moreover, the reliance on human-in-the-loop feedback for realistic tasks creates a scalability bottleneck, hindering automated rollout collection and evaluation. To bridge this gap, we introduce AgencyBench, a comprehensive benchmark derived from daily AI usage, evaluating 6 core agentic capabilities across 32 real-world scenarios, comprising 138 tasks with specific queries, deliverables, and rubrics. These scenarios require an average of 90 tool calls, 1 million tokens, and hours of execution time to resolve. To enable automated evaluation, we employ a user simulation agent to provide iterative feedback, and a Docker sandbox to conduct visual and functional rubric-based assessment. Experiments reveal that closed-source models significantly outperform open-source models (48.4% vs 32.1%). Further analysis reveals significant disparities across models in resource efficiency, feedback-driven self-correction, and specific tool-use preferences. Finally, we investigate the impact of agentic scaffolds, observing that proprietary models demonstrate superior performance within their native ecosystems (e.g., Claude-4.5-Opus via Claude-Agent-SDK), while open-source models exhibit distinct performance peaks, suggesting potential optimization for specific execution frameworks. AgencyBench serves as a critical testbed for next-generation agents, highlighting the necessity of co-optimizing model architecture with agentic frameworks. We believe this work sheds light on the future direction of autonomous agents, and we release the full benchmark and evaluation toolkit at https://github.com/GAIR-NLP/AgencyBench.
Spectral Characterization and Mitigation of Sequential Knowledge Editing Collapse
Sequential knowledge editing in large language models often causes catastrophic collapse of the model's general abilities, especially for parameter-modifying methods. Existing approaches mitigate this issue through heuristic constraints on parameter updates, yet the mechanisms underlying such degradation remain insufficiently understood. In this work, we present a spectral analysis of sequential knowledge editing and show that a model's general abilities are closely associated with dominant singular directions of pretrained weight matrices. These directions are highly sensitive to perturbations and are progressively disrupted by repeated edits, closely tracking the collapse in both editing efficacy and general performance. Building on this insight, we propose REVIVE, a plug-and-play framework that stabilizes sequential editing by explicitly preserving the dominant singular subspace. REVIVE represents parameter updates in the spectral basis of the original weights and filters components that would interfere with the protected region. Extensive experiments across multiple models and benchmarks show that REVIVE consistently improves editing efficacy while substantially preserving general abilities under long-horizon sequential editing, including extreme settings with up to 20,000 edits.
comment: 22 pages, 18 figures
BAPO: Boundary-Aware Policy Optimization for Reliable Agentic Search
RL-based agentic search enables LLMs to solve complex questions via dynamic planning and external search. While this approach significantly enhances accuracy with agent policies optimized via large-scale reinforcement learning, we identify a critical gap in reliability: these agents fail to recognize their reasoning boundaries and rarely admit ``I DON'T KNOW'' (IDK) even when evidence is insufficient or reasoning reaches its limit. The lack of reliability often leads to plausible but unreliable answers, introducing significant risks in many real-world scenarios. To this end, we propose Boundary-Aware Policy Optimization (BAPO), a novel RL framework designed to cultivate reliable boundary awareness without compromising accuracy. BAPO introduces two key components: (i) a group-based boundary-aware reward that encourages an IDK response only when the reasoning reaches its limit, and (ii) an adaptive reward modulator that strategically suspends this reward during early exploration, preventing the model from exploiting IDK as a shortcut. Extensive experiments on four benchmarks demonstrate that BAPO substantially enhances the overall reliability of agentic search.
comment: Code is available at https://github.com/Liushiyu-0709/BAPO-Reliable-Search
Your One-Stop Solution for AI-Generated Video Detection
Recent advances in generative modeling can create remarkably realistic synthetic videos, making it increasingly difficult for humans to distinguish them from real ones and necessitating reliable detection methods. However, two key limitations hinder the development of this field. \textbf{From the dataset perspective}, existing datasets are often limited in scale and constructed using outdated or narrowly scoped generative models, making it difficult to capture the diversity and rapid evolution of modern generative techniques. Moreover, the dataset construction process frequently prioritizes quantity over quality, neglecting essential aspects such as semantic diversity, scenario coverage, and technological representativeness. \textbf{From the benchmark perspective}, current benchmarks largely remain at the stage of dataset creation, leaving many fundamental issues and in-depth analysis yet to be systematically explored. Addressing this gap, we propose AIGVDBench, a benchmark designed to be comprehensive and representative, covering \textbf{31} state-of-the-art generation models and over \textbf{440,000} videos. By executing more than \textbf{1,500} evaluations on \textbf{33} existing detectors belonging to four distinct categories. This work presents \textbf{8 in-depth analyses} from multiple perspectives and identifies \textbf{4 novel findings} that offer valuable insights for future research. We hope this work provides a solid foundation for advancing the field of AI-generated video detection. Our benchmark is open-sourced at https://github.com/LongMa-2025/AIGVDBench.
IDDR-NGP: Incorporating Detectors for Distractor Removal with Instant Neural Radiance Field
This paper presents the first unified distractor removal method, named IDDR-NGP, which directly operates on Instant-NPG. The method is able to remove a wide range of distractors in 3D scenes, such as snowflakes, confetti, defoliation and petals, whereas existing methods usually focus on a specific type of distractors. By incorporating implicit 3D representations with 2D detectors, we demonstrate that it is possible to efficiently restore 3D scenes from multiple corrupted images. We design the learned perceptual image patch similarity~( LPIPS) loss and the multi-view compensation loss (MVCL) to jointly optimize the rendering results of IDDR-NGP, which could aggregate information from multi-view corrupted images. All of them can be trained in an end-to-end manner to synthesize high-quality 3D scenes. To support the research on distractors removal in implicit 3D representations, we build a new benchmark dataset that consists of both synthetic and real-world distractors. To validate the effectiveness and robustness of IDDR-NGP, we provide a wide range of distractors with corresponding annotated labels added to both realistic and synthetic scenes. Extensive experimental results demonstrate the effectiveness and robustness of IDDR-NGP in removing multiple types of distractors. In addition, our approach achieves results comparable with the existing SOTA desnow methods and is capable of accurately removing both realistic and synthetic distractors.
comment: 8 pages, 7 figures, accepted by ACM-MM23
Combating Spurious Correlations in Graph Interpretability via Self-Reflection
Interpretable graph learning has recently emerged as a popular research topic in machine learning. The goal is to identify the important nodes and edges of an input graph that are crucial for performing a specific graph reasoning task. A number of studies have been conducted in this area, and various benchmark datasets have been proposed to facilitate evaluation. Among them, one of the most challenging is the Spurious-Motif benchmark, introduced at ICLR 2022. The datasets in this synthetic benchmark are deliberately designed to include spurious correlations, making it particularly difficult for models to distinguish truly relevant structures from misleading patterns. As a result, existing methods exhibit significantly worse performance on this benchmark compared to others. In this paper, we focus on improving interpretability on the challenging Spurious-Motif datasets. We demonstrate that the self-reflection technique, commonly used in large language models to tackle complex tasks, can also be effectively adapted to enhance interpretability in datasets with strong spurious correlations. Specifically, we propose a self-reflection framework that can be integrated with existing interpretable graph learning methods. When such a method produces importance scores for each node and edge, our framework feeds these predictions back into the original method to perform a second round of evaluation. This iterative process mirrors how large language models employ self-reflective prompting to reassess their previous outputs. We further analyze the reasons behind this improvement from the perspective of graph representation learning, which motivates us to propose a fine-tuning training method based on this feedback mechanism.
Finding the Translation Switch: Discovering and Exploiting the Task-Initiation Features in LLMs AAAI 2026
Large Language Models (LLMs) frequently exhibit strong translation abilities, even without task-specific fine-tuning. However, the internal mechanisms governing this innate capability remain largely opaque. To demystify this process, we leverage Sparse Autoencoders (SAEs) and introduce a novel framework for identifying task-specific features. Our method first recalls features that are frequently co-activated on translation inputs and then filters them for functional coherence using a PCA-based consistency metric. This framework successfully isolates a small set of **translation initiation** features. Causal interventions demonstrate that amplifying these features steers the model towards correct translation, while ablating them induces hallucinations and off-task outputs, confirming they represent a core component of the model's innate translation competency. Moving from analysis to application, we leverage this mechanistic insight to propose a new data selection strategy for efficient fine-tuning. Specifically, we prioritize training on **mechanistically hard** samples-those that fail to naturally activate the translation initiation features. Experiments show this approach significantly improves data efficiency and suppresses hallucinations. Furthermore, we find these mechanisms are transferable to larger models of the same family. Our work not only decodes a core component of the translation mechanism in LLMs but also provides a blueprint for using internal model mechanism to create more robust and efficient models. The codes are available at https://github.com/flamewei123/AAAI26-translation-Initiation-Features.
comment: Accepted by AAAI 2026
Contextual Distributionally Robust Optimization with Causal and Continuous Structure: An Interpretable and Tractable Approach
In this paper, we introduce a framework for contextual distributionally robust optimization (DRO) that considers the causal and continuous structure of the underlying distribution by developing interpretable and tractable decision rules that prescribe decisions using covariates. We first introduce the causal Sinkhorn discrepancy (CSD), an entropy-regularized causal Wasserstein distance that encourages continuous transport plans while preserving the causal consistency. We then formulate a contextual DRO model with a CSD-based ambiguity set, termed Causal Sinkhorn DRO (Causal-SDRO), and derive its strong dual reformulation where the worst-case distribution is characterized as a mixture of Gibbs distributions. To solve the corresponding infinite-dimensional policy optimization, we propose the Soft Regression Forest (SRF) decision rule, which approximates optimal policies within arbitrary measurable function spaces. The SRF preserves the interpretability of classical decision trees while being fully parametric, differentiable, and Lipschitz smooth, enabling intrinsic interpretation from both global and local perspectives. To solve the Causal-SDRO with parametric decision rules, we develop an efficient stochastic compositional gradient algorithm that converges to an $\varepsilon$-stationary point at a rate of $O(\varepsilon^{-4})$, matching the convergence rate of standard stochastic gradient descent. Finally, we validate our method through numerical experiments on synthetic and real-world datasets, demonstrating its superior performance and interpretability.
Efficient Protein Optimization via Structure-aware Hamiltonian Dynamics
The ability to engineer optimized protein variants has transformative potential for biotechnology and medicine. Prior sequence-based optimization methods struggle with the high-dimensional complexities due to the epistasis effect and the disregard for structural constraints. To address this, we propose HADES, a Bayesian optimization method utilizing Hamiltonian dynamics to efficiently sample from a structure-aware approximated posterior. Leveraging momentum and uncertainty in the simulated physical movements, HADES enables rapid transition of proposals toward promising areas. A position discretization procedure is introduced to propose discrete protein sequences from such a continuous state system. The posterior surrogate is powered by a two-stage encoder-decoder framework to determine the structure and function relationships between mutant neighbors, consequently learning a smoothed landscape to sample from. Extensive experiments demonstrate that our method outperforms state-of-the-art baselines in in-silico evaluations across most metrics. Remarkably, our approach offers a unique advantage by leveraging the mutual constraints between protein structure and sequence, facilitating the design of protein sequences with similar structures and optimized properties. The code and data are publicly available at https://github.com/GENTEL-lab/HADES.
AdaMARP: An Adaptive Multi-Agent Interaction Framework for General Immersive Role-Playing
LLM role-playing aims to portray arbitrary characters in interactive narratives, yet existing systems often suffer from limited immersion and adaptability. They typically under-model dynamic environmental information and assume largely static scenes and casts, offering insufficient support for multi-character orchestration, scene transitions, and on-the-fly character introduction. We propose an adaptive multi-agent role-playing framework, AdaMARP, featuring an immersive message format that interleaves [Thought], (Action), , and Speech, together with an explicit Scene Manager that governs role-playing through discrete actions (init_scene, pick_speaker, switch_scene, add_role, end) accompanied by rationales. To train these capabilities, we construct AdaRPSet for the Actor Model and AdaSMSet for supervising orchestration decisions, and introduce AdaptiveBench for trajectory-level evaluation. Experiments across multiple backbones and model scales demonstrate consistent improvements: AdaRPSet enhances character consistency, environment grounding, and narrative coherence, with an 8B actor outperforming several commercial LLMs, while AdaSMSet enables smoother scene transitions and more natural role introductions, surpassing Claude Sonnet 4.5 using only a 14B LLM.
When Personalization Misleads: Understanding and Mitigating Hallucinations in Personalized LLMs
Personalized large language models (LLMs) adapt model behavior to individual users to enhance user satisfaction, yet personalization can inadvertently distort factual reasoning. We show that when personalized LLMs face factual queries, there exists a phenomenon where the model generates answers aligned with a user's prior history rather than the objective truth, resulting in personalization-induced hallucinations that degrade factual reliability and may propagate incorrect beliefs, due to representational entanglement between personalization and factual representations. To address this issue, we propose Factuality-Preserving Personalized Steering (FPPS), a lightweight inference-time approach that mitigates personalization-induced factual distortions while preserving personalized behavior. We further introduce PFQABench, the first benchmark designed to jointly evaluate factual and personalized question answering under personalization. Experiments across multiple LLM backbones and personalization methods show that FPPS substantially improves factual accuracy while maintaining personalized performance.
comment: 20 pages, 15 figures
Steering Language Models Before They Speak: Logit-Level Interventions
Steering LLMs is essential for specialized applications such as style-sensitive text rewriting, user-adaptive communication, and toxicity mitigation. Current steering methods, such as prompting-based and activation-based approaches, are widely used to guide model behavior. However, activation-based techniques require deep access to internal layers, while prompting-based steering often fails to provide consistent or fine-grained control. In order to address these limitations, we propose a training-free inference-time logit intervention for controllable generation. Our approach utilizes a statistical token score table derived from z-normalized log-odds of labeled corpora to shift the decoding distribution. Empirical evaluations across three diverse datasets focusing on writing complexity, formality, and toxicity demonstrate that our method effectively steers output characteristics, confirming its broad applicability and task-agnostic nature. Our results show that statistically grounded logit steering can achieve large, consistent, and multi-task control gains: up to +47%p accuracy and 50x f1 improvement.
comment: 14 pages, 5 figures, preprint
Beyond Max Tokens: Stealthy Resource Amplification via Tool Calling Chains in LLM Agents
The agent-tool communication loop is a critical attack surface in modern Large Language Model (LLM) agents. Existing Denial-of-Service (DoS) attacks, primarily triggered via user prompts or injected retrieval-augmented generation (RAG) context, are ineffective for this new paradigm. They are fundamentally single-turn and often lack a task-oriented approach, making them conspicuous in goal-oriented workflows and unable to exploit the compounding costs of multi-turn agent-tool interactions. We introduce a stealthy, multi-turn economic DoS attack that operates at the tool layer under the guise of a correctly completed task. Our method adjusts text-visible fields and a template-governed return policy in a benign, Model Context Protocol (MCP)-compatible tool server, optimizing these edits with a Monte Carlo Tree Search (MCTS) optimizer. These adjustments leave function signatures unchanged and preserve the final payload, steering the agent into prolonged, verbose tool-calling sequences using text-only notices. This compounds costs across turns, escaping single-turn caps while keeping the final answer correct to evade validation. Across six LLMs on the ToolBench and BFCL benchmarks, our attack expands tasks into trajectories exceeding 60,000 tokens, inflates costs by up to 658x, and raises energy by 100-560x. It drives GPU KV cache occupancy from <1% to 35-74% and cuts co-running throughput by approximately 50%. Because the server remains protocol-compatible and task outcomes are correct, conventional checks fail. These results elevate the agent-tool interface to a first-class security frontier, demanding a paradigm shift from validating final answers to monitoring the economic and computational cost of the entire agentic process.
Multi-Stage Patient Role-Playing Framework for Realistic Clinical Interactions
The simulation of realistic clinical interactions plays a pivotal role in advancing clinical Large Language Models (LLMs) and supporting medical diagnostic education. Existing approaches and benchmarks rely on generic or LLM-generated dialogue data, which limits the authenticity and diversity of doctor-patient interactions. In this work, we propose the first Chinese patient simulation dataset (Ch-PatientSim), constructed from realistic clinical interaction scenarios to comprehensively evaluate the performance of models in emulating patient behavior. Patients are simulated based on a five-dimensional persona structure. To address issues of the persona class imbalance, a portion of the dataset is augmented using few-shot generation, followed by manual verification. We evaluate various state-of-the-art LLMs and find that most produce overly formal responses that lack individual personality. To address this limitation, we propose a training-free Multi-Stage Patient Role-Playing (MSPRP) framework, which decomposes interactions into three stages to ensure both personalization and realism in model responses. Experimental results demonstrate that our approach significantly improves model performance across multiple dimensions of patient simulation.
comment: 22 pages, 5figures, under review
PatientVLM Meets DocVLM: Pre-Consultation Dialogue Between Vision-Language Models for Efficient Diagnosis AAAI 2026
Traditionally, AI research in medical diagnosis has largely centered on image analysis. While this has led to notable advancements, the absence of patient-reported symptoms continues to hinder diagnostic accuracy. To address this, we propose a Pre-Consultation Dialogue Framework (PCDF) that mimics real-world diagnostic procedures, where doctors iteratively query patients before reaching a conclusion. Specifically, we simulate diagnostic dialogues between two vision-language models (VLMs): a DocVLM, which generates follow-up questions based on the image and dialogue history, and a PatientVLM, which responds using a symptom profile derived from the ground-truth diagnosis. We additionally conducted a small-scale clinical validation of the synthetic symptoms generated by our framework, with licensed clinicians confirming their clinical relevance, symptom coverage, and overall realism. These findings indicate that the resulting DocVLM-PatientVLM interactions form coherent, multi-turn consultations paired with images and diagnoses, which we then use to fine-tune the DocVLM. This dialogue-based supervision leads to substantial gains over image-only training, highlighting the value of realistic symptom elicitation for diagnosis.
comment: Accepted at AAAI 2026 Main Track
Sparse Data Tree Canopy Segmentation: Fine-Tuning Leading Pretrained Models on Only 150 Images
Tree canopy detection from aerial imagery is an important task for environmental monitoring, urban planning, and ecosystem analysis. Simulating real-life data annotation scarcity, the Solafune Tree Canopy Detection competition provides a small and imbalanced dataset of only 150 annotated images, posing significant challenges for training deep models without severe overfitting. In this work, we evaluate five representative architectures, YOLOv11, Mask R-CNN, DeepLabv3, Swin-UNet, and DINOv2, to assess their suitability for canopy segmentation under extreme data scarcity. Our experiments show that pretrained convolution-based models, particularly YOLOv11 and Mask R-CNN, generalize significantly better than pretrained transformer-based models. DeeplabV3, Swin-UNet and DINOv2 underperform likely due to differences between semantic and instance segmentation tasks, the high data requirements of Vision Transformers, and the lack of strong inductive biases. These findings confirm that transformer-based architectures struggle in low-data regimes without substantial pretraining or augmentation and that differences between semantic and instance segmentation further affect model performance. We provide a detailed analysis of training strategies, augmentation policies, and model behavior under the small-data constraint and demonstrate that lightweight CNN-based methods remain the most reliable for canopy detection on limited imagery.
comment: 4 pages, 2 figures
Selecting Language Models for Social Science: Start Small, Start Open, and Validate
Currently, there are thousands of large pretrained language models (LLMs) available to social scientists. How do we select among them? Using validity, reliability, reproducibility, and replicability as guides, we explore the significance of: (1) model openness, (2) model footprint, (3) training data, and (4) model architectures and fine-tuning. While ex-ante tests of validity (i.e., benchmarks) are often privileged in these discussions, we argue that social scientists cannot altogether avoid validating computational measures (ex-post). Replicability, in particular, is a more pressing guide for selecting language models. Being able to reliably replicate a particular finding that entails the use of a language model necessitates reliably reproducing a task. To this end, we propose starting with smaller, open models, and constructing delimited benchmarks to demonstrate the validity of the entire computational pipeline.
What Matters in Data Curation for Multimodal Reasoning? Insights from the DCVLR Challenge
We study data curation for multimodal reasoning through the NeurIPS 2025 Data Curation for Vision-Language Reasoning (DCVLR) challenge, which isolates dataset selection by fixing the model and training protocol. Using a compact curated dataset derived primarily from Walton Multimodal Cold Start, our submission placed first in the challenge. Through post-competition ablations, we show that difficulty-based example selection on an aligned base dataset is the dominant driver of performance gains. Increasing dataset size does not reliably improve mean accuracy under the fixed training recipe, but mainly reduces run-to-run variance, while commonly used diversity and synthetic augmentation heuristics provide no additional benefit and often degrade performance. These results characterize DCVLR as a saturation-regime evaluation and highlight the central role of alignment and difficulty in data-efficient multimodal reasoning.
RobuMTL: Enhancing Multi-Task Learning Robustness Against Weather Conditions WACV
Robust Multi-Task Learning (MTL) is crucial for autonomous systems operating in real-world environments, where adverse weather conditions can severely degrade model performance and reliability. In this paper, we introduce RobuMTL, a novel architecture designed to adaptively address visual degradation by dynamically selecting task-specific hierarchical Low-Rank Adaptation (LoRA) modules and a LoRA expert squad based on input perturbations in a mixture-of-experts fashion. Our framework enables adaptive specialization based on input characteristics, improving robustness across diverse real-world conditions. To validate our approach, we evaluated it on the PASCAL and NYUD-v2 datasets and compared it against single-task models, standard MTL baselines, and state-of-the-art methods. On the PASCAL benchmark, RobuMTL delivers a +2.8% average relative improvement under single perturbations and up to +44.4% under mixed weather conditions compared to the MTL baseline. On NYUD-v2, RobuMTL achieves a +9.7% average relative improvement across tasks. The code is available at GitHub.
comment: Accepted at the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2026
Self-learned representation-guided latent diffusion model for breast cancer classification in deep ultraviolet whole surface images
Breast-Conserving Surgery (BCS) requires precise intraoperative margin assessment to preserve healthy tissue. Deep Ultraviolet Fluorescence Scanning Microscopy (DUV-FSM) offers rapid, high-resolution surface imaging for this purpose; however, the scarcity of annotated DUV data hinders the training of robust deep learning models. To address this, we propose an Self-Supervised Learning (SSL)-guided Latent Diffusion Model (LDM) to generate high-quality synthetic training patches. By guiding the LDM with embeddings from a fine-tuned DINO teacher, we inject rich semantic details of cellular structures into the synthetic data. We combine real and synthetic patches to fine-tune a Vision Transformer (ViT), utilizing patch prediction aggregation for WSI-level classification. Experiments using 5-fold cross-validation demonstrate that our method achieves 96.47 % accuracy and reduces the FID score to 45.72, significantly outperforming class-conditioned baselines.
comment: This paper has been accepted for the IEEE International Symposium on Biomedical Imaging (ISBI) 2026, London, UK, and will be presented in the corresponding session
From Aggregation to Selection: User-Validated Distributed Social Recommendation
Social recommender systems facilitate social connections by identifying potential friends for users. Each user maintains a local social network centered around themselves, resulting in a naturally distributed social structure. Recent research on distributed modeling for social recommender systems has gained increasing attention, as it naturally aligns with the user-centric structure of user interactions. Current distributed social recommender systems rely on automatically combining predictions from multiple models, often overlooking the user's active role in validating whether suggested connections are appropriate. Moreover, recommendation decisions are validated by individual users rather than derived from a single global ordering of candidates. As a result, standard ranking-based evaluation metrics make it difficult to evaluate whether a user-confirmed recommendation decision is actually correct. To address these limitations, we propose DeSocial, a distributed social recommendation framework with user-validation. DeSocial enables users to select recommendation algorithms to validate their potential connections, and the verification is processed through majority consensus among multiple independent user validators. To evaluate the distributed recommender system with user validator, we formulate this setting as a link prediction and verification task and introduce Acc@K, a consensus-based evaluation metric that measures whether user-approved recommendations are correct. Experiments on 4 real-world social networks shows that DeSocial improves decision correctness and robustness compared to single-point and distributed baselines. These findings highlight the potential of user-validated distributed recommender systems as a practical approach to social recommendation, with broader applicability to distributed and decentralized recommendations. Code: https://github.com/agiresearch/DeSocial.
comment: Accepted by HCRS@WWW 2026
Beneficial Reasoning Behaviors in Agentic Search and Effective Post-training to Obtain Them
Agentic search requires large language models (LLMs) to perform multi-step search to solve complex information-seeking tasks, imposing unique challenges on their reasoning capabilities. However, what constitutes effective reasoning for agentic search and how it can be learned remains unclear. In this work, we first investigate the reasoning behaviors that enable success in agentic search. By comparing successful and failed trajectories via an LLM-based analysis pipeline, we identify four beneficial behaviors: Information Verification, Authority Evaluation, Adaptive Search, and Error Recovery. Building on this, we propose Behavior Priming, a training approach that equips agentic search models with these reasoning behaviors before reinforcement learning (RL). Specifically, it first performs supervised fine-tuning (SFT) on collected trajectories exhibiting the identified behaviors to cultivate these behaviors, and then applies standard RL to further improve task performance. Experiments on Qwen3-1.7B and Llama3.2-3B-Instruct show that Behavior Priming yields relative improvements over direct RL by 37.2\% on three web benchmarks and 6.2\% on seven multi-hop QA benchmarks, and outperforms the SFT-then-RL baseline using outcome-correct trajectories for fine-tuning. Crucially, we show that these reasoning behaviors matter more than outcome correctness in the priming stage prior to RL. Further analysis reveals that Behavior Priming enhances exploration (pass@8) and test-time scaling (search step number), providing a robust foundation for RL. Our code are avalible at https://github.com/cxcscmu/Behavior-Priming-for-Agentic-Search.
A Distributed Generative AI Approach for Heterogeneous Multi-Domain Environments under Data Sharing constraints
Federated Learning has gained attention for its ability to enable multiple nodes to collaboratively train machine learning models without sharing raw data. At the same time, Generative AI -- particularly Generative Adversarial Networks (GANs) -- have achieved remarkable success across a wide range of domains, such as healthcare, security, and Image Generation. However, training generative models typically requires large datasets and significant computational resources, which are often unavailable in real-world settings. Acquiring such resources can be costly and inefficient, especially when many underutilized devices -- such as IoT devices and edge devices -- with varying capabilities remain idle. Moreover, obtaining large datasets is challenging due to privacy concerns and copyright restrictions, as most devices are unwilling to share their data. To address these challenges, we propose a novel approach for decentralized GAN training that enables utilizing distributed data and underutilized, low-capability devices while not sharing data in its raw form. Our approach is designed to tackle key challenges in decentralized environments, combining KLD-weighted Clustered Federated Learning to address the issues of data heterogeneity and multi-domain datasets, with Heterogeneous U-Shaped split learning to tackle the challenge of device heterogeneity under strict data sharing constraints -- ensuring that no labels or raw data, whether real or synthetic, are ever shared between nodes. Experiments show that our approach demonstrates significant improvements across key metrics, where it achieves an average 10% boost in classification metrics (up to 60% in multi-domain non-IID settings), 1.1x -- 3x higher image generation scores for the MNIST family datasets, and 2x -- 70x lower FID scores for higher resolution datasets. Find our code at https://distributed-gen-ai.github.io/huscf-gan.github.io/.
comment: Accepted and published in Transactions on Machine Learning Research (TMLR), 2026
Generalizable Domain Adaptation for Sim-and-Real Policy Co-Training NeurIPS 2025
Behavior cloning has shown promise for robot manipulation, but real-world demonstrations are costly to acquire at scale. While simulated data offers a scalable alternative, particularly with advances in automated demonstration generation, transferring policies to the real world is hampered by various simulation and real domain gaps. In this work, we propose a unified sim-and-real co-training framework for learning generalizable manipulation policies that primarily leverages simulation and only requires a few real-world demonstrations. Central to our approach is learning a domain-invariant, task-relevant feature space. Our key insight is that aligning the joint distributions of observations and their corresponding actions across domains provides a richer signal than aligning observations (marginals) alone. We achieve this by embedding an Optimal Transport (OT)-inspired loss within the co-training framework, and extend this to an Unbalanced OT framework to handle the imbalance between abundant simulation data and limited real-world examples. We validate our method on challenging manipulation tasks, showing it can leverage abundant simulation data to achieve up to a 30% improvement in the real-world success rate and even generalize to scenarios seen only in simulation. Project webpage: https://ot-sim2real.github.io/.
comment: Accepted to NeurIPS 2025
What Makes a Good Speech Tokenizer for LLM-Centric Speech Generation? A Systematic Study
Speech-language models (SLMs) offer a promising path toward unifying speech and text understanding and generation. However, challenges remain in achieving effective cross-modal alignment and high-quality speech generation. In this work, we systematically investigate the role of speech tokenizer designs in LLM-centric SLMs, augmented by speech heads and speaker modeling. We compare coupled, semi-decoupled, and fully decoupled speech tokenizers under a fair SLM framework and find that decoupled tokenization significantly improves alignment and synthesis quality. To address the information density mismatch between speech and text, we introduce multi-token prediction (MTP) into SLMs, enabling each hidden state to decode multiple speech tokens. This leads to up to 12$\times$ faster decoding and a substantial drop in word error rate (from 6.07 to 3.01). Furthermore, we propose a speaker-aware generation paradigm and introduce RoleTriviaQA, a large-scale role-playing knowledge QA benchmark with diverse speaker identities. Experiments demonstrate that our methods enhance both knowledge understanding and speaker consistency.
Probabilistic Mission Design for Neuro-Symbolic Unmanned Aircraft Systems
Advanced Air Mobility (AAM) is a growing field that demands accurate and trustworthy models of legal concepts and restrictions for navigating Unmanned Aircraft Systems (UAS). In addition, any implementation of AAM needs to face the challenges posed by inherently dynamic and uncertain human-inhabited spaces robustly. Nevertheless, the employment of UAS beyond visual line of sight (BVLOS) is an endearing task that promises to significantly enhance today's logistics and emergency response capabilities. Hence, we propose Probabilistic Mission Design (ProMis), a novel neuro-symbolic approach to navigating UAS within legal frameworks. ProMis is an interpretable and adaptable system architecture that links uncertain geospatial data and noisy perception with declarative, Hybrid Probabilistic Logic Programs (HPLP) to reason over the agent's state space and its legality. To inform planning with legal restrictions and uncertainty in mind, ProMis yields Probabilistic Mission Landscapes (PML). These scalar fields quantify the belief that the HPLP is satisfied across the agent's state space. Extending prior work on ProMis' reasoning capabilities and computational characteristics, we show its integration with potent machine learning models such as Large Language Models (LLM) and Transformer-based vision models. Hence, our experiments underpin the application of ProMis with multi-modal input data and how our method applies to many AAM scenarios.
comment: arXiv admin note: text overlap with arXiv:2406.03454
From Noise to Signal to Selbstzweck: Reframing Human Label Variation in the Era of Post-training in NLP
Human Label Variation (HLV) refers to legitimate disagreement in annotation that reflects the diversity of human perspectives rather than mere error. Long treated in NLP as noise to be eliminated, HLV has only recently been reframed as a signal for improving model robustness. With the rise of large language models (LLMs) and post-training methods such as human feedback-based alignment, the role of HLV has become increasingly consequential. Yet current preference-learning datasets routinely collapse multiple annotations into a single label, flattening diverse perspectives into artificial consensus. Preserving HLV is necessary not only for pluralistic alignment but also for sociotechnical safety evaluation, where model behavior must be assessed in relation to human interaction and societal context. This position paper argues that preserving HLV as an embodiment of human pluralism must be treated as a Selbstzweck, an intrinsic value in itself. We analyze the limitations of existing preference datasets and propose actionable strategies for incorporating HLV into dataset construction to better preserve pluralistic human values.
Tug-of-war between idioms' figurative and literal interpretations in LLMs
Idioms present a unique challenge for language models due to their non-compositional figurative interpretations, which often strongly diverge from the idiom's literal interpretation. In this paper, we employ causal tracing to systematically analyze how pretrained causal transformers deal with this ambiguity. We localize three mechanisms: (i) Early sublayers and specific attention heads retrieve an idiom's figurative interpretation, while suppressing its literal interpretation. (ii) When disambiguating context precedes the idiom, the model leverages it from the earliest layer and later layers refine the interpretation if the context conflicts with the retrieved interpretation. (iii) Then, selective, competing pathways carry both interpretations: an intermediate pathway prioritizes the figurative interpretation and a parallel direct route favors the literal interpretation, ensuring that both readings remain available. Our findings provide mechanistic evidence for idiom comprehension in autoregressive transformers.
Shapley Revisited: Tractable Responsibility Measures for Query Answers
The Shapley value, originating from cooperative game theory, has been employed to define responsibility measures that quantify the contributions of database facts to obtaining a given query answer. For non-numeric queries, this is done by considering a cooperative game whose players are the facts and whose wealth function assigns 1 or 0 to each subset of the database, depending on whether the query answer holds in the given subset. While conceptually simple, this approach suffers from a notable drawback: the problem of computing such Shapley values is #P-hard in data complexity, even for simple conjunctive queries. This motivates us to revisit the question of what constitutes a reasonable responsibility measure and to introduce a new family of responsibility measures -- weighted sums of minimal supports (WSMS) -- which satisfy intuitive properties. Interestingly, while the definition of WSMSs is simple and bears no obvious resemblance to the Shapley value formula, we prove that every WSMS measure can be equivalently seen as the Shapley value of a suitably defined cooperative game. Moreover, WSMS measures enjoy tractable data complexity for a large class of queries, including all unions of conjunctive queries. We further explore the combined complexity of WSMS computation and establish (in)tractability results for various subclasses of conjunctive queries.
comment: Journal version of PODS'25 paper, with added material (cf. Section 1.2)
Causal-SAM-LLM: Large Language Models as Causal Reasoners for Robust Medical Segmentation
The clinical utility of deep learning models for medical image segmentation is severely constrained by their inability to generalize to unseen domains. This failure is often rooted in the models learning spurious correlations between anatomical content and domain-specific imaging styles. To overcome this fundamental challenge, we introduce Causal-SAM-LLM, a novel framework that elevates Large Language Models (LLMs) to the role of causal reasoners. Our framework, built upon a frozen Segment Anything Model (SAM) encoder, incorporates two synergistic innovations. First, Linguistic Adversarial Disentanglement (LAD) employs a Vision-Language Model to generate rich, textual descriptions of confounding image styles. By training the segmentation model's features to be contrastively dissimilar to these style descriptions, it learns a representation robustly purged of non-causal information. Second, Test-Time Causal Intervention (TCI) provides an interactive mechanism where an LLM interprets a clinician's natural language command to modulate the segmentation decoder's features in real-time, enabling targeted error correction. We conduct an extensive empirical evaluation on a composite benchmark from four public datasets (BTCV, CHAOS, AMOS, BraTS), assessing generalization under cross-scanner, cross-modality, and cross-anatomy settings. Causal-SAM-LLM establishes a new state of the art in out-of-distribution (OOD) robustness, improving the average Dice score by up to 6.2 points and reducing the Hausdorff Distance by 15.8 mm over the strongest baseline, all while using less than 9% of the full model's trainable parameters. Our work charts a new course for building robust, efficient, and interactively controllable medical AI systems.
comment: Accepted by IEEE ICASSP 2026
Policy alone is probably not the solution: A large-scale experiment on how developers struggle to design meaningful end-user explanations
Developers play a central role in determining how machine learning systems are explained in practice, yet they are rarely trained to design explanations for non-technical audiences. Despite this, transparency and explainability requirements are increasingly codified in regulation and organizational policy. It remains unclear how such policies influence developer behavior or the quality of the explanations they produce. We report results from two controlled experiments with 194 participants, typical developers without specialized training in human-centered explainable AI, who designed explanations for an ML-powered diabetic retinopathy screening tool. In the first experiment, differences in policy purpose and level of detail had little effect: policy guidance was often ignored and explanation quality remained low. In the second experiment, stronger enforcement increased formal compliance, but explanations largely remained poorly suited to medical professionals and patients. We further observed that across both experiments, developers repeatedly produced explanations that were technically flawed or difficult to interpret, framed for developers rather than end users, reliant on medical jargon, or insufficiently grounded in the clinical decision context and workflow, with developer-centric framing being the most prevalent. These findings suggest that policy and policy enforcement alone are insufficient to produce meaningful end-user explanations and that responsible AI frameworks may overestimate developers' ability to translate high-level requirements into human-centered designs without additional training, tools, or implementation support.
Theorem Prover as a Judge for Synthetic Data Generation
The demand for synthetic data in mathematical reasoning has increased due to its potential to enhance the mathematical capabilities of large language models (LLMs). However, ensuring the validity of intermediate reasoning steps remains a significant challenge, affecting data quality. While formal verification via theorem provers effectively validates LLM reasoning, the autoformalisation of mathematical proofs remains error-prone. In response, we introduce iterative autoformalisation, an approach that iteratively refines theorem prover formalisation to mitigate errors, thereby increasing the execution rate on the Lean prover from 60% to 87%. Building upon that, we introduce Theorem Prover as a Judge (TP-as-a-Judge), a method that employs theorem prover formalisation to rigorously assess LLM intermediate reasoning, effectively integrating autoformalisation with synthetic data generation. Finally, we present Reinforcement Learning from Theorem Prover Feedback (RLTPF), a framework that replaces human annotation with theorem prover feedback in Reinforcement Learning from Human Feedback (RLHF). Across multiple LLMs, applying TP-as-a-Judge and RLTPF improves benchmarks with only 3,508 samples, achieving 5.56% accuracy gain on Mistral-7B for MultiArith, 6.00% on Llama-2-7B for SVAMP, and 3.55% on Llama-3.1-8B for AQUA.
Fodor and Pylyshyn's Legacy: Still No Human-like Systematic Compositionality in Neural Networks
Strong meta-learning capabilities for systematic compositionality are emerging as an important skill for navigating the complex and changing tasks of today's world. However, in presenting models for robust adaptation to novel environments, it is important to refrain from making unsupported claims about the performance of meta-learning systems that ultimately do not stand up to scrutiny. While Fodor and Pylyshyn famously posited that neural networks inherently lack this capacity as they are unable to model compositional representations or structure-sensitive operations, and thus are not a viable model of the human mind, Lake and Baroni recently presented meta-learning as a pathway to compositionality. In this position paper, we critically revisit this claim and highlight limitations in the proposed meta-learning framework for compositionality. Our analysis shows that modern neural meta-learning systems can only perform such tasks, if at all, under a very narrow and restricted definition of a meta-learning setup. We therefore claim that `Fodor and Pylyshyn's legacy' persists, and to date, there is no human-like systematic compositionality learned in neural networks.
Balanced Edge Pruning for Graph Anomaly Detection with Noisy Labels
Graph anomaly detection (GAD) is widely applied in many areas, such as financial fraud detection and social spammer detection. Anomalous nodes in the graph not only impact their own communities but also create a ripple effect on neighbors throughout the graph structure. Detecting anomalous nodes in complex graphs has been a challenging task. While existing GAD methods assume all labels are correct, real-world scenarios often involve inaccurate annotations. These noisy labels can severely degrade GAD performance because, with anomalies representing a minority class, even a small number of mislabeled instances can disproportionately interfere with detection models. Cutting edges to mitigate the negative effects of noisy labels is a good option; however, it has both positive and negative influences and also presents an issue of weak supervision. To perform effective GAD with noisy labels, we propose REinforced Graph Anomaly Detector (REGAD) by pruning the edges of candidate nodes potentially with mistaken labels. Moreover, we design the performance feedback based on strategically crafted confident labels to guide the cutting process, ensuring optimal results. Specifically, REGAD contains two novel components. (i) A tailored policy network, which involves two-step actions to remove negative effect propagation step by step. (ii) A policy-in-the-loop mechanism to identify suitable edge removal strategies that control the propagation of noise on the graph and estimate the updated structure to obtain reliable pseudo labels iteratively. Experiments on three real-world datasets demonstrate that REGAD outperforms all baselines under different noisy ratios.
Efficient LLM Collaboration via Planning
Recently, large language models (LLMs) have demonstrated strong performance, ranging from simple to complex tasks. However, while large proprietary models (e.g., models with over 100B parameters) achieve remarkable results across diverse tasks, they are often accessible through costly APIs, making frequent use too costly for many applications. In contrast, small open-source models (e.g., models with fewer than 3B parameters) are freely available and easy to deploy locally, but their performance on complex tasks remains limited. This trade-off raises a natural question: how can small and large models efficiently collaborate to combine their complementary strengths? To bridge this trade-off, we propose COPE, a test-time collaboration framework. A planner model first generates a plan that serves as a lightweight intermediate that guides a downstream executor model. Small and large models take turns acting as planner and executor, exchanging plans in a multi-stage cascade to collaboratively solve tasks. Through comprehensive experiments on benchmarks spanning mathematical reasoning, code generation, open-ended tasks, and agent tasks, we demonstrate that COPE achieves performance comparable to large proprietary models, while drastically reducing the inference API cost. These results highlight planning as an effective prior for cost-efficient inference.
A Classification-Aware Super-Resolution Framework for Ship Targets in SAR Imagery
High-resolution imagery plays a critical role in improving the performance of visual recognition tasks such as classification, detection, and segmentation. In many domains, including remote sensing and surveillance, low-resolution images can limit the accuracy of automated analysis. To address this, super-resolution (SR) techniques have been widely adopted to attempt to reconstruct high-resolution images from low-resolution inputs. Related traditional approaches focus solely on enhancing image quality based on pixel-level metrics, leaving the relationship between super-resolved image fidelity and downstream classification performance largely underexplored. This raises a key question: can integrating classification objectives directly into the super-resolution process further improve classification accuracy? In this paper, we try to respond to this question by investigating the relationship between super-resolution and classification through the deployment of a specialised algorithmic strategy. We propose a novel methodology that increases the resolution of synthetic aperture radar imagery by optimising loss functions that account for both image quality and classification performance. Our approach improves image quality, as measured by scientifically ascertained image quality indicators, while also enhancing classification accuracy.
A Safety Report on GPT-5.2, Gemini 3 Pro, Qwen3-VL, Grok 4.1 Fast, Nano Banana Pro, and Seedream 4.5
The rapid evolution of Large Language Models (LLMs) and Multimodal Large Language Models (MLLMs) has driven major gains in reasoning, perception, and generation across language and vision, yet whether these advances translate into comparable improvements in safety remains unclear, partly due to fragmented evaluations that focus on isolated modalities or threat models. In this report, we present an integrated safety evaluation of six frontier models--GPT-5.2, Gemini 3 Pro, Qwen3-VL, Grok 4.1 Fast, Nano Banana Pro, and Seedream 4.5--assessing each across language, vision-language, and image generation using a unified protocol that combines benchmark, adversarial, multilingual, and compliance evaluations. By aggregating results into safety leaderboards and model profiles, we reveal a highly uneven safety landscape: while GPT-5.2 demonstrates consistently strong and balanced performance, other models exhibit clear trade-offs across benchmark safety, adversarial robustness, multilingual generalization, and regulatory compliance. Despite strong results under standard benchmarks, all models remain highly vulnerable under adversarial testing, with worst-case safety rates dropping below 6%. Text-to-image models show slightly stronger alignment in regulated visual risk categories, yet remain fragile when faced with adversarial or semantically ambiguous prompts. Overall, these findings highlight that safety in frontier models is inherently multidimensional--shaped by modality, language, and evaluation design--underscoring the need for standardized, holistic safety assessments to better reflect real-world risk and guide responsible deployment.
comment: 41 pages, 22 figures
Vendor-Aware Industrial Agents: RAG-Enhanced LLMs for Secure On-Premise PLC Code Generation
Programmable Logic Controllers are operated by proprietary code dialects; this makes it challenging to train coding assistants. Current LLMs are trained on large code datasets and are capable of writing IEC 61131-3 compatible code out of the box, but they neither know specific function blocks, nor related project code. Moreover, companies like Mitsubishi Electric and their customers do not trust cloud providers. Hence, an own coding agent is the desired solution to cope with this. In this study, we present our work on a low-data domain coding assistant solution for industrial use. We show how we achieved high quality code generation without fine-tuning large models and by fine-tuning small local models for edge device usage. Our tool lets several AI models compete with each other, uses reasoning, corrects bugs automatically and checks code validity by compiling it directly in the chat interface. We support our approach with an extensive evaluation that comes with code compilation statistics and user ratings. We found that a Retrieval-Augmented Generation (RAG) supported coding assistant can work in low-data domains by using extensive prompt engineering and directed retrieval.
comment: ICIT2026
Periodic Asynchrony: An On-Policy Approach for Accelerating LLM Reinforcement Learning
Since the introduction of the GRPO algorithm, reinforcement learning (RL) has attracted increasing attention, with growing efforts to reproduce and apply it. However, training efficiency remains a critical challenge. In mainstream RL frameworks, inference and training are typically deployed on the same devices. While this approach reduces costs through resource consolidation, its synchronous execution imposes a computational coupling that prevents concurrent inference and training. In this study, we are returning to the strategy of separating inference and training deployment, and by introducing improvements in the data loader, we transform the conventional synchronous architecture into a periodically asynchronous framework, which allows for demand-driven, independent, and elastic scaling of each component, while the accuracy of the algorithm remains completely equivalent to the synchronization method, with both belonging to the on-policy strategy. It is worth emphasizing that we apply a unified tri-model architecture in the training phase, and we also proposed a shared-prompt attention mask to reduce repetitive computation. In practice, our approach consistently delivers significant end-to-end training efficiency improvements on NPU platforms, indicating its potential for widespread application.
Entangled in Representations: Mechanistic Investigation of Cultural Biases in Large Language Models
The growing deployment of large language models (LLMs) across diverse cultural contexts necessitates a deeper understanding of LLMs' representations of different cultures. Prior work has focused on evaluating the cultural awareness of LLMs by only examining the text they generate. This approach overlooks the internal sources of cultural misrepresentation within the models themselves. To bridge this gap, we propose Culturescope, the first mechanistic interpretability-based method that probes the internal representations of different cultural knowledge in LLMs. We also introduce a cultural flattening score as a measure of the intrinsic cultural biases of the decoded knowledge from Culturescope. Additionally, we study how LLMs internalize cultural biases, which allows us to trace how cultural biases such as Western-dominance bias and cultural flattening emerge within LLMs. We find that low-resource cultures are less susceptible to cultural biases, likely due to the model's limited parametric knowledge. Our work provides a foundation for future research on mitigating cultural biases and enhancing LLMs' cultural understanding.
comment: 16 pages, 7 figures
LLMs can hide text in other text of the same length
A meaningful text can be hidden inside another, completely different yet still coherent and plausible, text of the same length. For example, a tweet containing a harsh political critique could be embedded in a tweet that celebrates the same political leader, or an ordinary product review could conceal a secret manuscript. This uncanny state of affairs is now possible thanks to Large Language Models, and in this paper we present Calgacus, a simple and efficient protocol to achieve it. We show that even modest 8-billion-parameter open-source LLMs are sufficient to obtain high-quality results, and a message as long as this abstract can be encoded and decoded locally on a laptop in seconds. The existence of such a protocol demonstrates a radical decoupling of text from authorial intent, further eroding trust in written communication, already shaken by the rise of LLM chatbots. We illustrate this with a concrete scenario: a company could covertly deploy an unfiltered LLM by encoding its answers within the compliant responses of a safe model. This possibility raises urgent questions for AI safety and challenges our understanding of what it means for a Large Language Model to know something.
comment: 21 pages, main paper 9 pages. v5 contains an Italian translation of this paper by the author
SENSE: Self-Supervised Neural Embeddings for Spatial Ensembles
Analyzing and visualizing scientific ensemble datasets with high dimensionality and complexity poses significant challenges. Dimensionality reduction techniques and autoencoders are powerful tools for extracting features, but they often struggle with such high-dimensional data. This paper presents an enhanced autoencoder framework that incorporates a clustering loss, based on the soft silhouette score, alongside a contrastive loss to improve the visualization and interpretability of ensemble datasets. First, EfficientNetV2 is used to generate pseudo-labels for the unlabeled portions of the scientific ensemble datasets. By jointly optimizing the reconstruction, clustering, and contrastive objectives, our method encourages similar data points to group together while separating distinct clusters in the latent space. UMAP is subsequently applied to this latent representation to produce 2D projections, which are evaluated using the silhouette score. Multiple types of autoencoders are evaluated and compared based on their ability to extract meaningful features. Experiments on two scientific ensemble datasets - channel structures in soil derived from Markov chain Monte Carlo, and droplet-on-film impact dynamics - show that models incorporating clustering or contrastive loss marginally outperform the baseline approaches.
comment: Journal of Mathematics and Computer Science
From Adversarial Poetry to Adversarial Tales: An Interpretability Research Agenda
Safety mechanisms in LLMs remain vulnerable to attacks that reframe harmful requests through culturally coded structures. We introduce Adversarial Tales, a jailbreak technique that embeds harmful content within cyberpunk narratives and prompts models to perform functional analysis inspired by Vladimir Propp's morphology of folktales. By casting the task as structural decomposition, the attack induces models to reconstruct harmful procedures as legitimate narrative interpretation. Across 26 frontier models from nine providers, we observe an average attack success rate of 71.3%, with no model family proving reliably robust. Together with our prior work on Adversarial Poetry, these findings suggest that structurally-grounded jailbreaks constitute a broad vulnerability class rather than isolated techniques. The space of culturally coded frames that can mediate harmful intent is vast, likely inexhaustible by pattern-matching defenses alone. Understanding why these attacks succeed is therefore essential: we outline a mechanistic interpretability research agenda to investigate how narrative cues reshape model representations and whether models can learn to recognize harmful intent independently of surface form.
Adversarial Poetry as a Universal Single-Turn Jailbreak Mechanism in Large Language Models
We present evidence that adversarial poetry functions as a universal single-turn jailbreak technique for Large Language Models (LLMs). Across 25 frontier proprietary and open-weight models, curated poetic prompts yielded high attack-success rates (ASR), with some providers exceeding 90%. Mapping prompts to MLCommons and EU CoP risk taxonomies shows that poetic attacks transfer across CBRN, manipulation, cyber-offence, and loss-of-control domains. Converting 1,200 MLCommons harmful prompts into verse via a standardized meta-prompt produced ASRs up to 18 times higher than their prose baselines. Outputs are evaluated using an ensemble of 3 open-weight LLM judges, whose binary safety assessments were validated on a stratified human-labeled subset. Poetic framing achieved an average jailbreak success rate of 62% for hand-crafted poems and approximately 43% for meta-prompt conversions (compared to non-poetic baselines), substantially outperforming non-poetic baselines and revealing a systematic vulnerability across model families and safety training approaches. These findings demonstrate that stylistic variation alone can circumvent contemporary safety mechanisms, suggesting fundamental limitations in current alignment methods and evaluation protocols.
Robot-R1: Reinforcement Learning for Enhanced Embodied Reasoning in Robotics NeurIPS 2025
Large Vision-Language Models (LVLMs) have recently shown great promise in advancing robotics by combining embodied reasoning with robot control. A common approach involves training on embodied reasoning tasks related to robot control using Supervised Fine-Tuning (SFT). However, SFT datasets are often heuristically constructed and not explicitly optimized for improving robot control. Furthermore, SFT often leads to issues such as catastrophic forgetting and reduced generalization performance. To address these limitations, we introduce Robot-R1, a novel framework that leverages reinforcement learning to enhance embodied reasoning specifically for robot control. Robot-R1 learns to predict the next keypoint state required for task completion, conditioned on the current scene image and environment metadata derived from expert demonstrations. Inspired by the DeepSeek-R1 learning approach, Robot-R1 samples reasoning-based responses and reinforces those that lead to more accurate predictions. To rigorously evaluate Robot-R1, we also introduce a new benchmark that demands the diverse embodied reasoning capabilities for the task. Our experiments show that models trained with Robot-R1 outperform SFT methods on embodied reasoning tasks. Despite having only 7B parameters, Robot-R1 even surpasses GPT-4o on reasoning tasks related to low-level action control, such as spatial and movement reasoning.
comment: NeurIPS 2025
Multi-task Neural Diffusion Processes
Neural diffusion processes provide a scalable, non-Gaussian approach to modelling distributions over functions, but existing formulations are limited to single-task inference and do not capture dependencies across related tasks. In many multi-task regression settings, jointly modelling correlated functions and enabling task-aware conditioning is crucial for improving predictive performance and uncertainty calibration, particularly in low-data regimes. We propose multi-task neural diffusion processes, an extension that incorporates a task encoder to enable task-conditioned probabilistic regression and few-shot adaptation across related functions. The task encoder extracts a low-dimensional representation from context observations and conditions the diffusion model on this representation, allowing information sharing across tasks while preserving input-size agnosticity and the equivariance properties of neural diffusion processes. The resulting framework retains the expressiveness and scalability of neural diffusion processes while enabling efficient transfer to unseen tasks. Empirical results demonstrate improved point prediction accuracy and better-calibrated predictive uncertainty compared to single-task neural diffusion processes and Gaussian process baselines. We validate the approach on real wind farm data appropriate for wind power prediction. In this high-impact application, reliable uncertainty quantification directly supports operational decision-making in wind farm management, illustrating effective few-shot adaptation in a challenging real-world multi-task regression setting.
comment: 28 pages, 12 figures, 2 tables
Value Improved Actor Critic Algorithms
To learn approximately optimal acting policies for decision problems, modern Actor Critic algorithms rely on deep Neural Networks (DNNs) to parameterize the acting policy and greedification operators to iteratively improve it. The reliance on DNNs suggests an improvement that is gradient based, which is per step much less greedy than the improvement possible by greedier operators such as the greedy update used by Q-learning algorithms. On the other hand, slow changes to the policy can also be beneficial for the stability of the learning process, resulting in a tradeoff between greedification and stability. To better address this tradeoff, we propose to decouple the acting policy from the policy evaluated by the critic. This allows the agent to separately improve the critic's policy (e.g. value improvement) with greedier updates while maintaining the slow gradient-based improvement to the parameterized acting policy. We investigate the convergence of this approach using the popular analysis scheme of generalized Policy Iteration in the finite-horizon domain. Empirically, incorporating value-improvement into the popular off-policy actor-critic algorithms TD3 and SAC significantly improves or matches performance over their respective baselines, across different environments from the DeepMind continuous control domain, with negligible compute and implementation cost.
A Pressure-Based Diffusion Model for Influence Maximization on Social Networks
In many real-world scenarios, an individual's local social network carries significant influence over the opinions they form and subsequently propagate. In this paper, we propose a novel diffusion model -- the Pressure Threshold model (PT) -- for dynamically simulating the spread of influence through a social network. This model extends the popular Linear Threshold (LT) model by adjusting a node's outgoing influence in proportion to the influence it receives from its activated neighbors. We examine the Influence Maximization (IM) problem under this framework, which involves selecting seed nodes that yield maximal graph coverage after a diffusion process, and describe how the problem manifests under the PT model. Experiments on real-world networks, supported by enhancements to the open-source network-diffusion library CyNetDiff, reveal that the PT model identifies seed sets distinct from those chosen by LT. Furthermore, the analyses show that densely connected networks amplify pressure effects far more strongly than sparse networks.
comment: 12 pages, 8 figures, and 2 tables
Explaining Time Series Classifiers with PHAR: Rule Extraction and Fusion from Post-hoc Attributions
Explaining machine learning (ML) models for time series (TS) classification remains challenging due to the difficulty of interpreting raw time series and the high dimensionality of the input space. We introduce PHAR--Post-hoc Attribution Rules--a unified framework that transforms numeric feature attributions from post-hoc, instance-wise explainers (e.g. LIME, SHAP) into structured, human-readable rules. These rules define human-readable intervals that indicate where and when decision-relevant segments occur and can enhance model transparency by localizing threshold-based conditions on the raw series. PHAR performs comparably to native rule-based methods, such as Anchor, while scaling more efficiently to long TS sequences and achieving broader instance coverage. A dedicated rule fusion step consolidates rule sets using strategies like weighted selection and lasso-based refinement, balancing key quality metrics: coverage, confidence, and simplicity. This fusion ensures each instance receives a concise and unambiguous rule, improving both explanation fidelity and consistency. We further introduce visualization techniques to illustrate specificity-generalization trade-offs in the derived rules. PHAR resolves conflicting and overlapping explanations--a common effect of the Rashomon phenomenon--into coherent, domain-adaptable insights. Comprehensive experiments on UCR/UEA Time Series Classification Archive demonstrate that PHAR may improve interpretability, decision transparency, and practical applicability for TS classification tasks by providing concise, human-readable rules aligned with model predictions.
A Simple Unified Uncertainty-Guided Framework for Offline-to-Online Reinforcement Learning
Offline reinforcement learning (RL) provides a promising solution to learning an agent fully relying on a data-driven paradigm. However, constrained by the limited quality of the offline dataset, its performance is often sub-optimal. Therefore, it is desired to further finetune the agent via extra online interactions before deployment. Unfortunately, offline-to-online RL can be challenging due to two main challenges: constrained exploratory behavior and state-action distribution shift. In view of this, we propose a Simple Unified uNcertainty-Guided (SUNG) framework, which naturally unifies the solution to both challenges with the tool of uncertainty. Specifically, SUNG quantifies uncertainty via a VAE-based state-action visitation density estimator. To facilitate efficient exploration, SUNG presents a practical optimistic exploration strategy to select informative actions with both high value and high uncertainty. Moreover, SUNG develops an adaptive exploitation method by applying conservative offline RL objectives to high-uncertainty samples and standard online RL objectives to low-uncertainty samples to smoothly bridge offline and online stages. SUNG achieves state-of-the-art online finetuning performance when combined with different offline RL methods, across various environments and datasets in D4RL benchmark. Codes are made publicly available in https://github.com/guosyjlu/SUNG.
comment: The final published version is available at IEEE Xplore: https://ieeexplore.ieee.org/abstract/document/11267513/. We correct the GitHub repo url in this version
Efficient Reinforcement Learning with Semantic and Token Entropy for LLM Reasoning
Reinforcement learning with verifiable rewards (RLVR) has demonstrated superior performance in enhancing the reasoning capability of large language models (LLMs). However, this accuracy-oriented learning paradigm often suffers from entropy collapse, which reduces policy exploration and limits reasoning capabilities. To address this challenge, we propose an efficient reinforcement learning framework that leverages entropy signals at both the semantic and token levels to improve reasoning. From the data perspective, we introduce semantic entropy-guided curriculum learning, organizing training data from low to high semantic entropy to guide progressive optimization from easier to more challenging tasks. For the algorithmic design, we adopt non-uniform token treatment by imposing KL regularization on low-entropy tokens that critically impact policy exploration and applying stronger constraints on high-covariance portions within these tokens. By jointly optimizing data organization and algorithmic design, our method effectively mitigates entropy collapse and enhances LLM reasoning. Experimental results across 6 benchmarks with 3 different parameter-scale base models demonstrate that our method outperforms other entropy-based approaches in improving reasoning.
Beyond Isolated Investor: Predicting Startup Success via Roleplay-Based Collective Agents
Due to the high value and high failure rate of startups, predicting their success has become a critical challenge across interdisciplinary research. Existing approaches typically model success prediction from the perspective of a single decision-maker, overlooking the collective dynamics of investor groups that dominate real-world venture capital (VC) decisions. In this paper, we propose SimVC-CAS, a novel collective agent system that simulates VC decision-making as a multi-agent interaction process. By designing role-playing agents and a GNN-based supervised interaction module, we reformulate startup financing prediction as a group decision-making task, capturing both enterprise fundamentals and the behavioral dynamics of potential investor networks. Each agent embodies an investor with unique traits and preferences, enabling heterogeneous evaluation and realistic information exchange through a graph-structured co-investment network. Using real-world data from PitchBook and under strict data leakage controls, we show that SimVC-CAS significantly improves predictive accuracy while providing interpretable, multiperspective reasoning, for example, approximately 25% relative improvement with respect to average precision@10. SimVC-CAS also sheds light on other complex group decision scenarios.
Test-Time Tuned Language Models Enable End-to-end De Novo Molecular Structure Generation from MS/MS Spectra
Tandem Mass Spectrometry is a cornerstone technique for identifying unknown small molecules in fields such as metabolomics, natural product discovery and environmental analysis. However, certain aspects, such as the probabilistic fragmentation process and size of the chemical space, make structure elucidation from such spectra highly challenging, particularly when there is a shift between the deployment and training conditions. Current methods rely on database matching of previously observed spectra of known molecules and multi-step pipelines that require intermediate fingerprint prediction or expensive fragment annotations. We introduce a novel end-to-end framework based on a transformer model that directly generates molecular structures from an input tandem mass spectrum and its corresponding molecular formula, thereby eliminating the need for manual annotations and intermediate steps, while leveraging transfer learning from simulated data. To further address the challenge of out-of-distribution spectra, we introduce a test-time tuning strategy that dynamically adapts the pre-trained model to novel experimental data. Our approach achieves a Top-1 accuracy of 3.16% on the MassSpecGym benchmark and 12.88% on the NPLIB1 datasets, considerably outperforming conventional fine-tuning. Baseline approaches are also surpassed by 27% and 67% respectively. Even when the exact reference structure is not recovered, the generated candidates are chemically informative, exhibiting high structural plausibility as reflected by strong Tanimoto similarity to the ground truth. Notably, we observe a relative improvement in average Tanimoto similarity of 83% on NPLIB1 and 64% on MassSpecGym compared to state-of-the-art methods. Our framework combines simplicity with adaptability, generating accurate molecular candidates that offer valuable guidance for expert interpretation of unseen spectra.
ChartComplete: A Taxonomy-based Inclusive Chart Dataset
With advancements in deep learning (DL) and computer vision techniques, the field of chart understanding is evolving rapidly. In particular, multimodal large language models (MLLMs) are proving to be efficient and accurate in understanding charts. To accurately measure the performance of MLLMs, the research community has developed multiple datasets to serve as benchmarks. By examining these datasets, we found that they are all limited to a small set of chart types. To bridge this gap, we propose the ChartComplete dataset. The dataset is based on a chart taxonomy borrowed from the visualization community, and it covers thirty different chart types. The dataset is a collection of classified chart images and does not include a learning signal. We present the ChartComplete dataset as is to the community to build upon it.
comment: 7 pages, 4 figures, 3 tables, 1 algorithm. Dataset and source code available at https://github.com/AI-DSCHubAUB/ChartComplete-Dataset
SceneFoundry: Generating Interactive Infinite 3D Worlds
The ability to automatically generate large-scale, interactive, and physically realistic 3D environments is crucial for advancing robotic learning and embodied intelligence. However, existing generative approaches often fail to capture the functional complexity of real-world interiors, particularly those containing articulated objects with movable parts essential for manipulation and navigation. This paper presents SceneFoundry, a language-guided diffusion framework that generates apartment-scale 3D worlds with functionally articulated furniture and semantically diverse layouts for robotic training. From natural language prompts, an LLM module controls floor layout generation, while diffusion-based posterior sampling efficiently populates the scene with articulated assets from large-scale 3D repositories. To ensure physical usability, SceneFoundry employs differentiable guidance functions to regulate object quantity, prevent articulation collisions, and maintain sufficient walkable space for robotic navigation. Extensive experiments demonstrate that our framework generates structurally valid, semantically coherent, and functionally interactive environments across diverse scene types and conditions, enabling scalable embodied AI research. project page: https://anc891203.github.io/SceneFoundry-Demo/
comment: 15 pages
AC-PKAN: Attention-Enhanced and Chebyshev Polynomial-Based Physics-Informed Kolmogorov-Arnold Networks
Kolmogorov-Arnold Networks (KANs) have recently shown promise for solving partial differential equations (PDEs). Yet their original formulation is computationally and memory intensive, motivating the introduction of Chebyshev Type-I-based KANs (Chebyshev1KANs). Although Chebyshev1KANs have outperformed the vanilla KANs architecture, our rigorous theoretical analysis reveals that they still suffer from rank collapse, ultimately limiting their expressive capacity. To overcome these limitations, we enhance Chebyshev1KANs by integrating wavelet-activated MLPs with learnable parameters and an internal attention mechanism. We prove that this design preserves a full-rank Jacobian and is capable of approximating solutions to PDEs of arbitrary order. Furthermore, to alleviate the loss instability and imbalance introduced by the Chebyshev polynomial basis, we externally incorporate a Residual Gradient Attention (RGA) mechanism that dynamically re-weights individual loss terms according to their gradient norms and residual magnitudes. By jointly leveraging internal and external attention, we present AC-PKAN, a novel architecture that constitutes an enhancement to weakly supervised Physics-Informed Neural Networks (PINNs) and extends the expressive power of KANs. Experimental results from nine benchmark tasks across three domains show that AC-PKAN consistently outperforms or matches state-of-the-art models such as PINNsFormer, establishing it as a highly effective tool for solving complex real-world engineering problems in zero-data or data-sparse regimes. The code will be made publicly available upon acceptance.
SDialog: A Python Toolkit for End-to-End Agent Building, User Simulation, Dialog Generation, and Evaluation
We present SDialog, an MIT-licensed open-source Python toolkit that unifies dialog generation, evaluation and mechanistic interpretability into a single end-to-end framework for building and analyzing LLM-based conversational agents. Built around a standardized Dialog representation, SDialog provides: (1) persona-driven multi-agent simulation with composable orchestration for controlled, synthetic dialog generation, (2) comprehensive evaluation combining linguistic metrics, LLM-as-a-judge and functional correctness validators, (3) mechanistic interpretability tools for activation inspection and steering via feature ablation and induction, and (4) audio generation with full acoustic simulation including 3D room modeling and microphone effects. The toolkit integrates with all major LLM backends, enabling mixed-backend experiments under a unified API. By coupling generation, evaluation, and interpretability in a dialog-centric architecture, SDialog enables researchers to build, benchmark and understand conversational systems more systematically.
comment: Pre-print submitted to EACL System Demonstration (under review)
Better Language Models Exhibit Higher Visual Alignment
How well do text-only large language models (LLMs) align with the visual world? We present a systematic evaluation of this question by incorporating frozen representations of various language models into a discriminative vision-language framework and measuring zero-shot generalization to novel concepts. We find that decoder-based models exhibit stronger visual alignment than encoders, even when controlling for model and dataset size. Moreover, language modeling performance correlates with visual generalization, suggesting that advances in unimodal LLMs can simultaneously improve vision models. Leveraging these insights, we propose ShareLock, a lightweight method for fusing frozen vision and language backbones. ShareLock achieves robust performance across tasks while drastically reducing the need for paired data and compute. With just 563k image-caption pairs and under one GPU-hour of training, it reaches 51% accuracy on ImageNet. In cross-lingual settings, ShareLock dramatically outperforms CLIP, achieving 38.7% top-1 accuracy on Chinese image classification versus CLIP's 1.4%. Code is available.
MedReflect: Teaching Medical LLMs to Self-Improve via Reflective Correction
Medical problem-solving demands expert knowledge and intricate reasoning. Recent studies of large language models (LLMs) attempt to ease this complexity by introducing external knowledge verification through retrieval-augmented generation or by training on reasoning datasets. However, these approaches suffer from drawbacks such as retrieval overhead and high annotation costs, and they heavily rely on substituted external assistants to reach limited performance in medical field. In this paper, we introduce MedReflect, a generalizable framework designed to inspire LLMs with a physician-like reflective thinking mode. MedReflect generates a single-pass reflection chain that includes initial hypothesis generation, self-questioning, self-answering and decision refinement. This self-verified and self-reflective nature releases large language model's latent capability in medical problem-solving without external retrieval or heavy annotation. We demonstrate that MedReflect enables cost-efficient medical dataset construction. With only a minimal subset of randomly sampled training examples and lightweight fine-tuning, this approach achieves notable absolute accuracy improvements across a series of medical benchmarks while significantly cutting annotation requirements. Our results provide evidence that LLMs can learn to solve specialized medical problems via self-reflection and self-improvement, reducing reliance on external supervision and extensive task-specific fine-tuning data.
LeLaR: The First In-Orbit Demonstration of an AI-Based Satellite Attitude Controller
Attitude control is essential for many satellite missions. Classical controllers, however, are time-consuming to design and sensitive to model uncertainties and variations in operational boundary conditions. Deep Reinforcement Learning (DRL) offers a promising alternative by learning adaptive control strategies through autonomous interaction with a simulation environment. Overcoming the Sim2Real gap, which involves deploying an agent trained in simulation onto the real physical satellite, remains a significant challenge. In this work, we present the first successful in-orbit demonstration of an AI-based attitude controller for inertial pointing maneuvers. The controller was trained entirely in simulation and deployed to the InnoCube 3U nanosatellite, which was developed by the Julius-Maximilians-Universität Würzburg in cooperation with the Technische Universität Berlin, and launched in January 2025. We present the AI agent design, the methodology of the training procedure, the discrepancies between the simulation and the observed behavior of the real satellite, and a comparison of the AI-based attitude controller with the classical PD controller of InnoCube. Steady-state metrics confirm the robust performance of the AI-based controller during repeated in-orbit maneuvers.
comment: This work has been submitted to the IEEE for possible publication. 55 pages, 27 figures, 29 tables. The maneuver telemetry datasets generated and analyzed during this work are available in the GitHub repository under https://github.com/kdjebko/lelar-in-orbit-data
Utilizing Class Separation Distance for the Evaluation of Corruption Robustness of Machine Learning Classifiers IJCAI
Robustness is a fundamental pillar of Machine Learning (ML) classifiers, substantially determining their reliability. Methods for assessing classifier robustness are therefore essential. In this work, we address the challenge of evaluating corruption robustness in a way that allows comparability and interpretability on a given dataset. We propose a test data augmentation method that uses a robustness distance $ε$ derived from the datasets minimal class separation distance. The resulting MSCR (minimal separation corruption robustness) metric allows a dataset-specific comparison of different classifiers with respect to their corruption robustness. The MSCR value is interpretable, as it represents the classifiers avoidable loss of accuracy due to statistical corruptions. On 2D and image data, we show that the metric reflects different levels of classifier robustness. Furthermore, we observe unexpected optima in classifiers robust accuracy through training and testing classifiers with different levels of noise. While researchers have frequently reported on a significant tradeoff on accuracy when training robust models, we strengthen the view that a tradeoff between accuracy and corruption robustness is not inherent. Our results indicate that robustness training through simple data augmentation can already slightly improve accuracy.
comment: Accepted for the IJCAI-ECAI-22 Workshop on Artificial Intelligence Safety (AISafety 2022) We made an important correction in the abstract compared to the published version, changing "mean corruption corruption robustness" to "minimal separation corruption robustness" which is the correct name of our proposed metric
Panacea: Mitigating Harmful Fine-tuning for Large Language Models via Post-fine-tuning Perturbation
Harmful fine-tuning attack introduces significant security risks to the fine-tuning services. Main-stream defenses aim to vaccinate the model such that the later harmful fine-tuning attack is less effective. However, our evaluation results show that such defenses are fragile--with a few fine-tuning steps, the model still can learn the harmful knowledge. To this end, we do further experiment and find that an embarrassingly simple solution--adding purely random perturbations to the fine-tuned model, can recover the model from harmful behaviors, though it leads to a degradation in the model's fine-tuning performance. To address the degradation of fine-tuning performance, we further propose Panacea, which optimizes an adaptive perturbation that will be applied to the model after fine-tuning. Panacea maintains model's safety alignment performance without compromising downstream fine-tuning performance. Comprehensive experiments are conducted on different harmful ratios, fine-tuning tasks and mainstream LLMs, where the average harmful scores are reduced by up-to 21.2%, while maintaining fine-tuning performance. As a by-product, we analyze the adaptive perturbation and show that different layers in various LLMs have distinct safety affinity, which coincide with finding from several previous study. Source code available at https://github.com/w-yibo/Panacea.
comment: Accepted by NeruIPS 2025
FiCo-ITR: bridging fine-grained and coarse-grained image-text retrieval for comparative performance analysis
In the field of Image-Text Retrieval (ITR), recent advancements have leveraged large-scale Vision-Language Pretraining (VLP) for Fine-Grained (FG) instance-level retrieval, achieving high accuracy at the cost of increased computational complexity. For Coarse-Grained (CG) category-level retrieval, prominent approaches employ Cross-Modal Hashing (CMH) to prioritise efficiency, albeit at the cost of retrieval performance. Due to differences in methodologies, FG and CG models are rarely compared directly within evaluations in the literature, resulting in a lack of empirical data quantifying the retrieval performance-efficiency tradeoffs between the two. This paper addresses this gap by introducing the FiCo-ITR library, which standardises evaluation methodologies for both FG and CG models, facilitating direct comparisons. We conduct empirical evaluations of representative models from both subfields, analysing precision, recall, and computational complexity across varying data scales. Our findings offer new insights into the performance-efficiency trade-offs between recent representative FG and CG models, highlighting their respective strengths and limitations. These findings provide the foundation necessary to make more informed decisions regarding model selection for specific retrieval tasks and highlight avenues for future research into hybrid systems that leverage the strengths of both FG and CG approaches.
comment: Published at the International Journal of Multimedia Information Retrieval
Bid Farewell to Seesaw: Towards Accurate Long-tail Session-based Recommendation via Dual Constraints of Hybrid Intents AAAI 2026
Session-based recommendation (SBR) aims to predict anonymous users' next interaction based on their interaction sessions. In the practical recommendation scenario, low-exposure items constitute the majority of interactions, creating a long-tail distribution that severely compromises recommendation diversity. Existing approaches attempt to address this issue by promoting tail items but incur accuracy degradation, exhibiting a "see-saw" effect between long-tail and accuracy performance. We attribute such conflict to session-irrelevant noise within the tail items, which existing long-tail approaches fail to identify and constrain effectively. To resolve this fundamental conflict, we propose \textbf{HID} (\textbf{H}ybrid \textbf{I}ntent-based \textbf{D}ual Constraint Framework), a plug-and-play framework that transforms the conventional "see-saw" into "win-win" through introducing the hybrid intent-based dual constraints for both long-tail and accuracy. Two key innovations are incorporated in this framework: (i) \textit{Hybrid Intent Learning}, where we reformulate the intent extraction strategies by employing attribute-aware spectral clustering to reconstruct the item-to-intent mapping. Furthermore, discrimination of session-irrelevant noise is achieved through the assignment of the target and noise intents to each session. (ii) \textit{Intent Constraint Loss}, which incorporates two novel constraint paradigms regarding the \textit{diversity} and \textit{accuracy} to regulate the representation learning process of both items and sessions. These two objectives are unified into a single training loss through rigorous theoretical derivation. Extensive experiments across multiple SBR models and datasets demonstrate that HID can enhance both long-tail performance and recommendation accuracy, establishing new state-of-the-art performance in long-tail recommender systems.
comment: accepted by AAAI 2026 Oral
V2P: Visual Attention Calibration for GUI Grounding via Background Suppression and Center Peaking
Precise localization of GUI elements is crucial for the development of GUI agents. Traditional methods rely on bounding box or center-point regression, neglecting spatial interaction uncertainty and visual-semantic hierarchies. Recent methods incorporate attention mechanisms but still face two key issues: (1) ignoring processing background regions causes attention drift from the desired area, and (2) uniform modeling the target UI element fails to distinguish between its center and edges, leading to click imprecision. Inspired by how humans visually process and interact with GUI elements, we propose the Valley-to-Peak (V2P) method to address these issues. To mitigate background distractions, V2P introduces a suppression attention mechanism that minimizes the model's focus on irrelevant regions to highlight the intended region. For the issue of center-edge distinction, V2P applies a Fitts' Law-inspired approach by modeling GUI interactions as 2D Gaussian heatmaps where the weight gradually decreases from the center towards the edges. The weight distribution follows a Gaussian function, with the variance determined by the target's size. Consequently, V2P effectively isolates the target area and teaches the model to concentrate on the most essential point of the UI element. The model trained by V2P achieves the performance with 92.4\% and 52.5\% on two benchmarks ScreenSpot-v2 and ScreenSpot-Pro (see Fig.~\ref{fig:main_results_charts}). Ablations further confirm each component's contribution, underscoring V2P's generalizability in precise GUI grounding tasks and its potential for real-world deployment in future GUI agents.
Beyond Known Fakes: Generalized Detection of AI-Generated Images via Post-hoc Distribution Alignment
The rapid proliferation of highly realistic AI-generated images poses serious security threats such as misinformation and identity fraud. Detecting generated images in open-world settings is particularly challenging when they originate from unknown generators, as existing methods typically rely on model-specific artifacts and require retraining on new fake data, limiting their generalization and scalability. In this work, we propose Post-hoc Distribution Alignment (PDA), a generalized and model-agnostic framework for detecting AI-generated images under unknown generative threats. Specifically, PDA reformulates detection as a distribution alignment task by regenerating test images through a known generative model. When real images are regenerated, they inherit model-specific artifacts and align with the known fake distribution. In contrast, regenerated unknown fakes contain incompatible or mixed artifacts and remain misaligned. This difference allows an existing detector, trained on the known generative model, to accurately distinguish real images from unknown fakes without requiring access to unseen data or retraining. Extensive experiments across 16 state-of-the-art generative models, including GANs, diffusion models, and commercial text-to-image APIs (e.g., Midjourney), demonstrate that PDA achieves average detection accuracy of 96.69%, outperforming the best baseline by 10.71%. Comprehensive ablation studies and robustness analyses further confirm PDA's generalizability and resilience to distribution shifts and image transformations. Overall, our work provides a practical and scalable solution for real-world AI-generated image detection where new generative models emerge continuously.
V2P: Visual Attention Calibration for GUI Grounding via Background Suppression and Center Peaking
Precise localization of GUI elements is crucial for the development of GUI agents. Traditional methods rely on bounding box or center-point regression, neglecting spatial interaction uncertainty and visual-semantic hierarchies. Recent methods incorporate attention mechanisms but still face two key issues: (1) ignoring processing background regions causes attention drift from the desired area, and (2) uniform modeling the target UI element fails to distinguish between its center and edges, leading to click imprecision. Inspired by how humans visually process and interact with GUI elements, we propose the Valley-to-Peak (V2P) method to address these issues. To mitigate background distractions, V2P introduces a suppression attention mechanism that minimizes the model's focus on irrelevant regions to highlight the intended region. For the issue of center-edge distinction, V2P applies a Fitts' Law-inspired approach by modeling GUI interactions as 2D Gaussian heatmaps where the weight gradually decreases from the center towards the edges. The weight distribution follows a Gaussian function, with the variance determined by the target's size. Consequently, V2P effectively isolates the target area and teaches the model to concentrate on the most essential point of the UI element. The model trained by V2P achieves the performance with 92.4\% and 52.5\% on two benchmarks ScreenSpot-v2 and ScreenSpot-Pro (see Fig.~\ref{fig:main_results_charts}). Ablations further confirm each component's contribution, underscoring V2P's generalizability in precise GUI grounding tasks and its potential for real-world deployment in future GUI agents.
comment: This work was intended as a replacement of arXiv:2508.13634 and any subsequent updates will appear there
Beyond Hard Masks: Progressive Token Evolution for Diffusion Language Models
Diffusion Language Models (DLMs) offer a promising alternative for language modeling by enabling parallel decoding through iterative refinement. However, most DLMs rely on hard binary masking and discrete token assignments, which hinder the revision of early decisions and underutilize intermediate probabilistic representations. In this paper, we propose EvoToken-DLM, a novel diffusion-based language modeling approach that replaces hard binary masks with evolving soft token distributions. EvoToken-DLM enables a progressive transition from masked states to discrete outputs, supporting revisable decoding. To effectively support this evolution, we introduce continuous trajectory supervision, which aligns training objectives with iterative probabilistic updates. Extensive experiments across multiple benchmarks show that EvoToken-DLM consistently achieves superior performance, outperforming strong diffusion-based and masked DLM baselines. Project webpage: https://aim-uofa.github.io/EvoTokenDLM.
comment: Project webpage: https://aim-uofa.github.io/EvoTokenDLM
Causal Inference under Threshold Manipulation: Bayesian Mixture Modeling and Heterogeneous Treatment Effects AAAI 2026
Many marketing applications, including credit card incentive programs, offer rewards to customers who exceed specific spending thresholds to encourage increased consumption. Quantifying the causal effect of these thresholds on customers is crucial for effective marketing strategy design. Although regression discontinuity design is a standard method for such causal inference tasks, its assumptions can be violated when customers, aware of the thresholds, strategically manipulate their spending to qualify for the rewards. To address this issue, we propose a novel framework for estimating the causal effect under threshold manipulation. The main idea is to model the observed spending distribution as a mixture of two distributions: one representing customers strategically affected by the threshold, and the other representing those unaffected. To fit the mixture model, we adopt a two-step Bayesian approach consisting of modeling non-bunching customers and fitting a mixture model to a sample around the threshold. We show posterior contraction of the resulting posterior distribution of the causal effect under large samples. Furthermore, we extend this framework to a hierarchical Bayesian setting to estimate heterogeneous causal effects across customer subgroups, allowing for stable inference even with small subgroup sample sizes. We demonstrate the effectiveness of our proposed methods through simulation studies and illustrate their practical implications using a real-world marketing dataset.
comment: Paper accepted to AAAI 2026
SPIKE: Sparse Koopman Regularization for Physics-Informed Neural Networks
Physics-Informed Neural Networks (PINNs) provide a mesh-free approach for solving differential equations by embedding physical constraints into neural network training. However, PINNs tend to overfit within the training domain, leading to poor generalization when extrapolating beyond trained spatiotemporal regions. This work presents SPIKE (Sparse Physics-Informed Koopman-Enhanced), a framework that regularizes PINNs with continuous-time Koopman operators to learn parsimonious dynamics representations. By enforcing linear dynamics $dz/dt = Az$ in a learned observable space, both PIKE (without explicit sparsity) and SPIKE (with L1 regularization on $A$) learn sparse generator matrices, embodying the parsimony principle that complex dynamics admit low-dimensional structure. Experiments across parabolic, hyperbolic, dispersive, and stiff PDEs, including fluid dynamics (Navier-Stokes) and chaotic ODEs (Lorenz), demonstrate consistent improvements in temporal extrapolation, spatial generalization, and long-term prediction accuracy. The continuous-time formulation with matrix exponential integration provides unconditional stability for stiff systems while avoiding diagonal dominance issues inherent in discrete-time Koopman operators.
Reconstructing Multi-Scale Physical Fields from Extremely Sparse Measurements with an Autoencoder-Diffusion Cascade
Reconstructing full fields from extremely sparse and random measurements constitutes a fundamentally ill-posed inverse problem, in which deterministic end-to-end mappings often break down due to intrinsic non-uniqueness and uncertainty. Rather than treating sparse reconstruction as a regression task, we recast it as a hierarchical probabilistic inference problem, where uncertainty is explicitly represented, structured, and progressively resolved. From this perspective, we propose Cascaded Sensing (Cas-Sensing) as a general reconstruction paradigm for multi-scale physical fields under extreme data sparsity. Central to this paradigm is the introduction of an explicit intermediate representation that decomposes the original ill-posed problem into two substantially better-conditioned subproblems. First, a lightweight neural-operator-based functional autoencoder infers a coarse-scale approximation of the target field from sparse observations acting as an explicit intermediate variable. Rather than modeling multiple scales jointly, this intermediate estimate is deterministically fixed and subsequently used as the sole conditioning input to a conditional diffusion model that generates refined-scale details, yielding a cascaded inference structure with clearly separated reconstruction responsibilities. To ensure robustness under diverse sensing patterns, the diffusion model is trained using a mask-cascade strategy, which exposes it to a distribution of imperfect conditioning structures induced by extreme sparsity. During inference, measurement consistency is enforced through manifold-constrained gradients within a Bayesian posterior framework, ensuring fidelity to sparse observations while preserving data manifold coherence. This cascaded probabilistic formulation substantially alleviates ill-posedness, enabling accurate and stable reconstructions even under extreme sparsity.
comment: 20 pages,13 figures
AviationLMM: A Large Multimodal Foundation Model for Civil Aviation
Civil aviation is a cornerstone of global transportation and commerce, and ensuring its safety, efficiency and customer satisfaction is paramount. Yet conventional Artificial Intelligence (AI) solutions in aviation remain siloed and narrow, focusing on isolated tasks or single modalities. They struggle to integrate heterogeneous data such as voice communications, radar tracks, sensor streams and textual reports, which limits situational awareness, adaptability, and real-time decision support. This paper introduces the vision of AviationLMM, a Large Multimodal foundation Model for civil aviation, designed to unify the heterogeneous data streams of civil aviation and enable understanding, reasoning, generation and agentic applications. We firstly identify the gaps between existing AI solutions and requirements. Secondly, we describe the model architecture that ingests multimodal inputs such as air-ground voice, surveillance, on-board telemetry, video and structured texts, and performs cross-modal alignment and fusion, and produces flexible outputs ranging from situation summaries and risk alerts to predictive diagnostics and multimodal incident reconstructions. In order to fully realize this vision, we identify key research opportunities to address, including data acquisition, alignment and fusion, pretraining, reasoning, trustworthiness, privacy, robustness to missing modalities, and synthetic scenario generation. By articulating the design and challenges of AviationLMM, we aim to boost the civil aviation foundation model progress and catalyze coordinated research efforts toward an integrated, trustworthy and privacy-preserving aviation AI ecosystem.
comment: Accepted by 2025 7th International Conference on Interdisciplinary Computer Science and Engineering (ICICSE 2025), Chongqing, China; 9 pages,1 figure,5 tables
M^4olGen: Multi-Agent, Multi-Stage Molecular Generation under Precise Multi-Property Constraints
Generating molecules that satisfy precise numeric constraints over multiple physicochemical properties is critical and challenging. Although large language models (LLMs) are expressive, they struggle with precise multi-objective control and numeric reasoning without external structure and feedback. We introduce \textbf{M olGen}, a fragment-level, retrieval-augmented, two-stage framework for molecule generation under multi-property constraints. Stage I : Prototype generation: a multi-agent reasoner performs retrieval-anchored, fragment-level edits to produce a candidate near the feasible region. Stage II : RL-based fine-grained optimization: a fragment-level optimizer trained with Group Relative Policy Optimization (GRPO) applies one- or multi-hop refinements to explicitly minimize the property errors toward our target while regulating edit complexity and deviation from the prototype. A large, automatically curated dataset with reasoning chains of fragment edits and measured property deltas underpins both stages, enabling deterministic, reproducible supervision and controllable multi-hop reasoning. Unlike prior work, our framework better reasons about molecules by leveraging fragments and supports controllable refinement toward numeric targets. Experiments on generation under two sets of property constraints (QED, LogP, Molecular Weight and HOMO, LUMO) show consistent gains in validity and precise satisfaction of multi-property targets, outperforming strong LLMs and graph-based algorithms.
U-PINet: Physics-Informed Hierarchical Learning for Radar Cross Section Prediction via 3D Electromagnetic Scattering Reconstruction
Conventional computational electromagnetics (CEM) solvers can deliver high fidelity radar cross section (RCS) signatures by first solving the induced surface currents on 3-dimensional (3D) targets and then evaluating the scattered fields via radiation integrals. However, their computational cost becomes prohibitive for repeated queries and large-scale 3D scenarios. Recent purely data-driven networks improve efficiency, yet they often bypass this scattering mechanism, which may compromise physical consistency and generalization. To bridge this gap, in this paper, we propose U-PINet, a fully end-to-end, physics-informed hierarchical network for efficient RCS prediction via 3D electromagnetic scattering reconstruction. Once the scattering quantities are reconstructed, scattered fields and RCS can be evaluated for arbitrary observation directions via the radiation integral. U-PINet explicitly learns physics-consistent intermediate scattering representations by modeling local electromagnetic coupling and long-range radiation effects through a hierarchical operator design inspired by near-far field decomposition in fast solvers. A physics-guided graph neural network is incorporated to capture self- and mutual-coupling among mesh elements of complex targets, enabling physically interpretable intermediate representations. By embedding governing equations as residual constraints, U-PINet enables accurate object reconstruction of scattering quantities and consequently reliable RCS prediction across observation directions, while significantly reducing runtime. Extensive numerical experiments demonstrate that U-PINet achieves EM-solver-level RCS accuracy and 3D object reconstruction with orders-of-magnitude speedups, and generalizes well to unseen geometries under limited training data.
comment: Submitted to an IEEE Transactions Journal
LatentRefusal: Latent-Signal Refusal for Unanswerable Text-to-SQL Queries
In LLM-based text-to-SQL systems, unanswerable and underspecified user queries may generate not only incorrect text but also executable programs that yield misleading results or violate safety constraints, posing a major barrier to safe deployment. Existing refusal strategies for such queries either rely on output-level instruction following, which is brittle due to model hallucinations, or estimate output uncertainty, which adds complexity and overhead. To address this challenge, we formalize safe refusal in text-to-SQL systems as an answerability-gating problem and propose LatentRefusal, a latent-signal refusal mechanism that predicts query answerability from intermediate hidden activations of a large language model. We introduce the Tri-Residual Gated Encoder, a lightweight probing architecture, to suppress schema noise and amplify sparse, localized cues of question-schema mismatch that indicate unanswerability. Extensive empirical evaluations across diverse ambiguous and unanswerable settings, together with ablation studies and interpretability analyses, demonstrate the effectiveness of the proposed approach and show that LatentRefusal provides an attachable and efficient safety layer for text-to-SQL systems. Across four benchmarks, LatentRefusal improves average F1 to 88.5 percent on both backbones while adding approximately 2 milliseconds of probe overhead.
Stock Market Price Prediction using Neural Prophet with Deep Neural Network
Stock market price prediction is a significant interdisciplinary research domain that depends at the intersection of finance, statistics, and economics. Forecasting Accurately predicting stock prices has always been a focal point for various researchers. However, existing statistical approaches for time-series prediction often fail to effectively forecast the probability range of future stock prices. Hence, to solve this problem, the Neural Prophet with a Deep Neural Network (NP-DNN) is proposed to predict stock market prices. The preprocessing technique used in this research is Z-score normalization, which normalizes stock price data by removing scale differences, making patterns easier to detect. Missing value imputation fills gaps in historical data, enhancing the models use of complete information for more accurate predictions. The Multi-Layer Perceptron (MLP) learns complex nonlinear relationships among stock market prices and extracts hidden patterns from the input data, thereby creating meaningful feature representations for better prediction accuracy. The proposed NP-DNN model achieved an accuracy of 99.21% compared with other approaches using the Fused Large Language Model. Keywords: deep neural network, forecasting stock prices, multi-layer perceptron, neural prophet, stock market price prediction.
comment: Accepted at 2nd International Conference on Software, Systems and Information Technology (SSITCON) 2025
Robust and Efficient Zeroth-Order LLM Fine-Tuning via Adaptive Bayesian Subspace Optimizer
Fine-tuning large language models (LLMs) with zeroth-order (ZO) optimization reduces memory by approximating gradients through function evaluations. However, existing methods essentially perform updates in a one-dimensional space, and suffer from collapse or substantial performance degradation under low-precision training. We introduce BSZO, an adaptive \textbf{B}ayesian \textbf{S}ubspace \textbf{Z}eroth-Order \textbf{O}ptimizer, which applies Kalman filtering to combine finite-difference information across multiple perturbation directions within a subspace. By treating each finite-difference measurement as a noisy observation, BSZO builds a posterior distribution over the subspace-projected gradient and updates it through Bayesian inference, with a residual-based adaptive mechanism to adapt to noise variations. Theoretical analysis shows that BSZO improves the convergence rate by a factor of $k/γ$ compared to standard ZO methods. Experiments on RoBERTa, Mistral, and OPT models show that BSZO outperforms the baselines across various tasks, achieving up to 6.67\% absolute average improvement on OPT-13B while remaining robust under fp16/bf16 precision and keeping memory usage close to inference-only baselines (1.00$\times$--1.08$\times$ of MeZO).
comment: 23 pages, 2 figures, 5 tables
OctoBench: Benchmarking Scaffold-Aware Instruction Following in Repository-Grounded Agentic Coding
Modern coding scaffolds turn LLMs into capable software agents, but their ability to follow scaffold-specified instructions remains under-examined, especially when constraints are heterogeneous and persist across interactions. To fill this gap, we introduce OctoBench, which benchmarks scaffold-aware instruction following in repository-grounded agentic coding. OctoBench includes 34 environments and 217 tasks instantiated under three scaffold types, and is paired with 7,098 objective checklist items. To disentangle solving the task from following the rules, we provide an automated observation-and-scoring toolkit that captures full trajectories and performs fine-grained checks. Experiments on eight representative models reveal a systematic gap between task-solving and scaffold-aware compliance, underscoring the need for training and evaluation that explicitly targets heterogeneous instruction following. We release the benchmark to support reproducible benchmarking and to accelerate the development of more scaffold-aware coding agents.
Co-Evolving Agents: Learning from Failures as Hard Negatives
The rapid progress of large foundation models has accelerated the development of task-specialized agents across diverse domains. However, the effectiveness of agents remains tightly coupled with the quality of training data, while curating task-specific datasets remains costly and often infeasible in real-world scenarios. Recent work has explored self-improving agents that autonomously generate, refine, and re-train on their own trajectories. A prominent line of approaches further leverages preference optimization by pairing predicted trajectories with scarce ground-truth trajectories, enabling agents to learn directly from their own failures. While these methods outperform supervised fine-tuning, their heavy reliance on predicted trajectories under limited ground-truth supervision leaves them prone to overfitting. To address this, we propose a co-evolving agents framework in which a target agent improves jointly with an auxiliary failure agent. The failure agent learns through preference optimization over failure trajectories from both the target and itself, thereby generating hard negatives that are close to success yet remain failures. Incorporating these informative hard negatives into the target agent's optimization sharpens decision boundaries and enhances generalization. Our comprehensive analysis and experiments across benchmark datasets show that our method not only shows improved performance but also demonstrates that failures, instead of being used as-is, can be systematically transformed into structured and valuable learning signals in self-improving agents.
FROG: Fair Removal on Graphs
With growing emphasis on privacy regulations, machine unlearning has become increasingly critical in real-world applications such as social networks and recommender systems, many of which are naturally represented as graphs. However, existing graph unlearning methods often modify nodes or edges indiscriminately, overlooking their impact on fairness. For instance, forgetting links between users of different genders may inadvertently exacerbate group disparities. To address this issue, we propose a novel framework that jointly optimizes both the graph structure and the model to achieve fair unlearning. Our method rewires the graph by removing redundant edges that hinder forgetting while preserving fairness through targeted edge augmentation. We further introduce a worst-case evaluation mechanism to assess robustness under challenging scenarios. Experiments on real-world datasets show that our approach achieves more effective and fair unlearning than existing baselines.
comment: CIKM 2025; v2 fixes author list
Fast weight programming and linear transformers: from machine learning to neurobiology
Recent advances in artificial neural networks for machine learning, and language modeling in particular, have established a family of recurrent neural network (RNN) architectures that, unlike conventional RNNs with vector-form hidden states, use two-dimensional (2D) matrix-form hidden states. Such 2D-state RNNs, known as Fast Weight Programmers (FWPs), can be interpreted as a neural network whose synaptic weights (called fast weights) dynamically change over time as a function of input observations, and serve as short-term memory storage; corresponding synaptic weight modifications are controlled or programmed by another network (the programmer) whose parameters are trained (e.g., by gradient descent). In this Primer, we review the technical foundations of FWPs, their computational characteristics, and their connections to transformers and state space models. We also discuss connections between FWPs and models of synaptic plasticity in the brain, suggesting a convergence of natural and artificial intelligence.
comment: Accepted to TMLR 2025
Machine Learning 150
Building Production-Ready Probes For Gemini
Frontier language model capabilities are improving rapidly. We thus need stronger mitigations against bad actors misusing increasingly powerful systems. Prior work has shown that activation probes may be a promising misuse mitigation technique, but we identify a key remaining challenge: probes fail to generalize under important production distribution shifts. In particular, we find that the shift from short-context to long-context inputs is difficult for existing probe architectures. We propose several new probe architecture that handle this long-context distribution shift. We evaluate these probes in the cyber-offensive domain, testing their robustness against various production-relevant shifts, including multi-turn conversations, static jailbreaks, and adaptive red teaming. Our results demonstrate that while multimax addresses context length, a combination of architecture choice and training on diverse distributions is required for broad generalization. Additionally, we show that pairing probes with prompted classifiers achieves optimal accuracy at a low cost due to the computational efficiency of probes. These findings have informed the successful deployment of misuse mitigation probes in user-facing instances of Gemini, Google's frontier language model. Finally, we find early positive results using AlphaEvolve to automate improvements in both probe architecture search and adaptive red teaming, showing that automating some AI safety research is already possible.
ShapeR: Robust Conditional 3D Shape Generation from Casual Captures
Recent advances in 3D shape generation have achieved impressive results, but most existing methods rely on clean, unoccluded, and well-segmented inputs. Such conditions are rarely met in real-world scenarios. We present ShapeR, a novel approach for conditional 3D object shape generation from casually captured sequences. Given an image sequence, we leverage off-the-shelf visual-inertial SLAM, 3D detection algorithms, and vision-language models to extract, for each object, a set of sparse SLAM points, posed multi-view images, and machine-generated captions. A rectified flow transformer trained to effectively condition on these modalities then generates high-fidelity metric 3D shapes. To ensure robustness to the challenges of casually captured data, we employ a range of techniques including on-the-fly compositional augmentations, a curriculum training scheme spanning object- and scene-level datasets, and strategies to handle background clutter. Additionally, we introduce a new evaluation benchmark comprising 178 in-the-wild objects across 7 real-world scenes with geometry annotations. Experiments show that ShapeR significantly outperforms existing approaches in this challenging setting, achieving an improvement of 2.7x in Chamfer distance compared to state of the art.
comment: Project Page: http://facebookresearch.github.io/ShapeR Video: https://www.youtube.com/watch?v=EbY30KAA55I
MetaboNet: The Largest Publicly Available Consolidated Dataset for Type 1 Diabetes Management
Progress in Type 1 Diabetes (T1D) algorithm development is limited by the fragmentation and lack of standardization across existing T1D management datasets. Current datasets differ substantially in structure and are time-consuming to access and process, which impedes data integration and reduces the comparability and generalizability of algorithmic developments. This work aims to establish a unified and accessible data resource for T1D algorithm development. Multiple publicly available T1D datasets were consolidated into a unified resource, termed the MetaboNet dataset. Inclusion required the availability of both continuous glucose monitoring (CGM) data and corresponding insulin pump dosing records. Additionally, auxiliary information such as reported carbohydrate intake and physical activity was retained when present. The MetaboNet dataset comprises 3135 subjects and 1228 patient-years of overlapping CGM and insulin data, making it substantially larger than existing standalone benchmark datasets. The resource is distributed as a fully public subset available for immediate download at https://metabo-net.org/ , and with a Data Use Agreement (DUA)-restricted subset accessible through their respective application processes. For the datasets in the latter subset, processing pipelines are provided to automatically convert the data into the standardized MetaboNet format. A consolidated public dataset for T1D research is presented, and the access pathways for both its unrestricted and DUA-governed components are described. The resulting dataset covers a broad range of glycemic profiles and demographics and thus can yield more generalizable algorithmic performance than individual datasets.
comment: 22 pages, 5 figures, 7 supplementary figures, submitted to JDST
QUPID: A Partitioned Quantum Neural Network for Anomaly Detection in Smart Grid
Smart grid infrastructures have revolutionized energy distribution, but their day-to-day operations require robust anomaly detection methods to counter risks associated with cyber-physical threats and system faults potentially caused by natural disasters, equipment malfunctions, and cyber attacks. Conventional machine learning (ML) models are effective in several domains, yet they struggle to represent the complexities observed in smart grid systems. Furthermore, traditional ML models are highly susceptible to adversarial manipulations, making them increasingly unreliable for real-world deployment. Quantum ML (QML) provides a unique advantage, utilizing quantum-enhanced feature representations to model the intricacies of the high-dimensional nature of smart grid systems while demonstrating greater resilience to adversarial manipulation. In this work, we propose QUPID, a partitioned quantum neural network (PQNN) that outperforms traditional state-of-the-art ML models in anomaly detection. We extend our model to R-QUPID that even maintains its performance when including differential privacy (DP) for enhanced robustness. Moreover, our partitioning framework addresses a significant scalability problem in QML by efficiently distributing computational workloads, making quantum-enhanced anomaly detection practical in large-scale smart grid environments. Our experimental results across various scenarios exemplifies the efficacy of QUPID and R-QUPID to significantly improve anomaly detection capabilities and robustness compared to traditional ML approaches.
On the Probability of First Success in Differential Evolution: Hazard Identities and Tail Bounds
We study first-hitting times in Differential Evolution (DE) through a conditional hazard frame work. Instead of analyzing convergence via Markov-chain transition kernels or drift arguments, we ex press the survival probability of a measurable target set $A$ as a product of conditional first-hit probabilities (hazards) $p_t=\Prob(E_t\mid\mathcal F_{t-1})$. This yields distribution-free identities for survival and explicit tail bounds whenever deterministic lower bounds on the hazard hold on the survival event. For the L-SHADE algorithm with current-to-$p$best/1 mutation, we construct a checkable algorithmic witness event $\mathcal L_t$ under which the conditional hazard admits an explicit lower bound depending only on sampling rules, population size, and crossover statistics. This separates theoretical constants from empirical event frequencies and explains why worst-case constant-hazard bounds are typically conservative. We complement the theory with a Kaplan--Meier survival analysis on the CEC2017 benchmark suite . Across functions and budgets, we identify three distinct empirical regimes: (i) strongly clustered success, where hitting times concentrate in short bursts; (ii) approximately geometric tails, where a constant-hazard model is accurate; and (iii) intractable cases with no observed hits within the evaluation horizon. The results show that while constant-hazard bounds provide valid tail envelopes, the practical behavior of L-SHADE is governed by burst-like transitions rather than homogeneous per-generati on success probabilities.
comment: All codes are publically available at https://github.com/snenovgmailcom/lshade_hazard_project
Extractive summarization on a CMOS Ising machine
Extractive summarization (ES) aims to generate a concise summary by selecting a subset of sentences from a document while maximizing relevance and minimizing redundancy. Although modern ES systems achieve high accuracy using powerful neural models, their deployment typically relies on CPU or GPU infrastructures that are energy-intensive and poorly suited for real-time inference in resource-constrained environments. In this work, we explore the feasibility of implementing McDonald-style extractive summarization on a low-power CMOS coupled oscillator-based Ising machine (COBI) that supports integer-valued, all-to-all spin couplings. We first propose a hardware-aware Ising formulation that reduces the scale imbalance between local fields and coupling terms, thereby improving robustness to coefficient quantization: this method can be applied to any problem formulation that requires k of n variables to be chosen. We then develop a complete ES pipeline including (i) stochastic rounding and iterative refinement to compensate for precision loss, and (ii) a decomposition strategy that partitions a large ES problem into smaller Ising subproblems that can be efficiently solved on COBI and later combined. Experimental results on the CNN/DailyMail dataset show that our pipeline can produce high-quality summaries using only integer-coupled Ising hardware with limited precision. COBI achieves 3-4.5x runtime speedups compared to a brute-force method, which is comparable to software Tabu search, and two to three orders of magnitude reductions in energy, while maintaining competitive summary quality. These results highlight the potential of deploying CMOS Ising solvers for real-time, low-energy text summarization on edge devices.
A Probabilistic Approach to Trajectory-Based Optimal Experimental Design
We present a novel probabilistic approach for optimal path experimental design. In this approach a discrete path optimization problem is defined on a static navigation mesh, and trajectories are modeled as random variables governed by a parametric Markov policy. The discrete path optimization problem is then replaced with an equivalent stochastic optimization problem over the policy parameters, resulting in an optimal probability model that samples estimates of the optimal discrete path. This approach enables exploration of the utility function's distribution tail and treats the utility function of the design as a black box, making it applicable to linear and nonlinear inverse problems and beyond experimental design. Numerical verification and analysis are carried out by using a parameter identification problem widely used in model-based optimal experimental design.
comment: 42 Figures, this version includes supplementary material as appendices
Low-Rank Key Value Attention
Transformer pretraining is increasingly constrained by memory and compute requirements, with the key-value (KV) cache emerging as a dominant bottleneck during training and autoregressive decoding. We propose \textit{low-rank KV adaptation} (LRKV), a simple modification of multi-head attention that reduces KV cache memory by exploiting redundancy across attention heads while preserving full token-level resolution. Each layer uses a shared full-rank KV projection augmented with low-rank, head-specific residuals, yielding a continuous trade-off between complete sharing and fully independent attention. LRKV is a drop-in replacement for standard multi-head attention and directly subsumes query-sharing approaches such as multi-query and grouped-query attention, while remaining distinct from latent-compression methods such as multi-latent attention (MLA). Across large-scale pretraining experiments, LRKV consistently achieves faster loss reduction, lower validation perplexity, and stronger downstream task performance than standard attention, MQA/GQA, and MLA. At the 2.5B scale, LRKV outperforms standard attention while using roughly half the KV cache, and reaches equivalent model quality with up to \textbf{20-25\% less training compute} when measured in cumulative FLOPs. To explain these gains, we analyze attention head structure in operator space and show that LRKV preserves nearly all functional head diversity relative to standard attention, whereas more aggressive KV-sharing mechanisms rely on compensatory query specialization. Together, these results establish LRKV as a practical and effective attention mechanism for scaling Transformer pretraining under memory- and compute-constrained regimes.
MHA2MLA-VLM: Enabling DeepSeek's Economical Multi-Head Latent Attention across Vision-Language Models
As vision-language models (VLMs) tackle increasingly complex and multimodal tasks, the rapid growth of Key-Value (KV) cache imposes significant memory and computational bottlenecks during inference. While Multi-Head Latent Attention (MLA) offers an effective means to compress the KV cache and accelerate inference, adapting existing VLMs to the MLA architecture without costly pretraining remains largely unexplored. In this work, we present MHA2MLA-VLM, a parameter-efficient and multimodal-aware framework for converting off-the-shelf VLMs to MLA. Our approach features two core techniques: (1) a modality-adaptive partial-RoPE strategy that supports both traditional and multimodal settings by selectively masking nonessential dimensions, and (2) a modality-decoupled low-rank approximation method that independently compresses the visual and textual KV spaces. Furthermore, we introduce parameter-efficient fine-tuning to minimize adaptation cost and demonstrate that minimizing output activation error, rather than parameter distance, substantially reduces performance loss. Extensive experiments on three representative VLMs show that MHA2MLA-VLM restores original model performance with minimal supervised data, significantly reduces KV cache footprint, and integrates seamlessly with KV quantization.
Learning Semantic-Geometric Task Graph-Representations from Human Demonstrations
Learning structured task representations from human demonstrations is essential for understanding long-horizon manipulation behaviors, particularly in bimanual settings where action ordering, object involvement, and interaction geometry can vary significantly. A key challenge lies in jointly capturing the discrete semantic structure of tasks and the temporal evolution of object-centric geometric relations in a form that supports reasoning over task progression. In this work, we introduce a semantic-geometric task graph-representation that encodes object identities, inter-object relations, and their temporal geometric evolution from human demonstrations. Building on this formulation, we propose a learning framework that combines a Message Passing Neural Network (MPNN) encoder with a Transformer-based decoder, decoupling scene representation learning from action-conditioned reasoning about task progression. The encoder operates solely on temporal scene graphs to learn structured representations, while the decoder conditions on action-context to predict future action sequences, associated objects, and object motions over extended time horizons. Through extensive evaluation on human demonstration datasets, we show that semantic-geometric task graph-representations are particularly beneficial for tasks with high action and object variability, where simpler sequence-based models struggle to capture task progression. Finally, we demonstrate that task graph representations can be transferred to a physical bimanual robot and used for online action selection, highlighting their potential as reusable task abstractions for downstream decision-making in manipulation systems.
comment: 9 pages, 7 figures, preprint
PRISM-CAFO: Prior-conditioned Remote-sensing Infrastructure Segmentation and Mapping for CAFOs
Large-scale livestock operations pose significant risks to human health and the environment, while also being vulnerable to threats such as infectious diseases and extreme weather events. As the number of such operations continues to grow, accurate and scalable mapping has become increasingly important. In this work, we present an infrastructure-first, explainable pipeline for identifying and characterizing Concentrated Animal Feeding Operations (CAFOs) from aerial and satellite imagery. Our method (1) detects candidate infrastructure (e.g., barns, feedlots, manure lagoons, silos) with a domain-tuned YOLOv8 detector, then derives SAM2 masks from these boxes and filters component-specific criteria, (2) extracts structured descriptors (e.g., counts, areas, orientations, and spatial relations) and fuses them with deep visual features using a lightweight spatial cross-attention classifier, and (3) outputs both CAFO type predictions and mask-level attributions that link decisions to visible infrastructure. Through comprehensive evaluation, we show that our approach achieves state-of-the-art performance, with Swin-B+PRISM-CAFO surpassing the best performing baseline by up to 15\%. Beyond strong predictive performance across diverse U.S. regions, we run systematic gradient--activation analyses that quantify the impact of domain priors and show ho
IMS: Intelligent Hardware Monitoring System for Secure SoCs
In the modern Systems-on-Chip (SoC), the Advanced eXtensible Interface (AXI) protocol exhibits security vulnerabilities, enabling partial or complete denial-of-service (DoS) through protocol-violation attacks. The recent countermeasures lack a dedicated real-time protocol semantic analysis and evade protocol compliance checks. This paper tackles this AXI vulnerability issue and presents an intelligent hardware monitoring system (IMS) for real-time detection of AXI protocol violations. IMS is a hardware module leveraging neural networks to achieve high detection accuracy. For model training, we perform DoS attacks through header-field manipulation and systematic malicious operations, while recording AXI transactions to build a training dataset. We then deploy a quantization-optimized neural network, achieving 98.7% detection accuracy with <=3% latency overhead, and throughput of >2.5 million inferences/s. We subsequently integrate this IMS into a RISC-V SoC as a memory-mapped IP core to monitor its AXI bus. For demonstration and initial assessment for later ASIC integration, we implemented this IMS on an AMD Zynq UltraScale+ MPSoC ZCU104 board, showing an overall small hardware footprint (9.04% look-up-tables (LUTs), 0.23% DSP slices, and 0.70% flip-flops) and negligible impact on the overall design's achievable frequency. This demonstrates the feasibility of lightweight, security monitoring for resource-constrained edge environments.
comment: The final version is accepted for publication at the Design, Automation & Test in Europe Conference (DATE) 2026
When Are Two Scores Better Than One? Investigating Ensembles of Diffusion Models
Diffusion models now generate high-quality, diverse samples, with an increasing focus on more powerful models. Although ensembling is a well-known way to improve supervised models, its application to unconditional score-based diffusion models remains largely unexplored. In this work we investigate whether it provides tangible benefits for generative modelling. We find that while ensembling the scores generally improves the score-matching loss and model likelihood, it fails to consistently enhance perceptual quality metrics such as FID on image datasets. We confirm this observation across a breadth of aggregation rules using Deep Ensembles, Monte Carlo Dropout, on CIFAR-10 and FFHQ. We attempt to explain this discrepancy by investigating possible explanations, such as the link between score estimation and image quality. We also look into tabular data through random forests, and find that one aggregation strategy outperforms the others. Finally, we provide theoretical insights into the summing of score models, which shed light not only on ensembling but also on several model composition techniques (e.g. guidance).
comment: Accepted at TMLR. Code: https://github.com/rarazafin/score_diffusion_ensemble
Hierarchical Orthogonal Residual Spread for Precise Massive Editing in Large Language Models
Large language models (LLMs) exhibit exceptional performance across various domains, yet they face critical safety concerns. Model editing has emerged as an effective approach to mitigate these issues. Existing model editing methods often focus on optimizing an information matrix that blends new and old knowledge. While effective, these approaches can be computationally expensive and may cause conflicts. In contrast, we shift our attention to Hierarchical Orthogonal Residual SprEad of the information matrix, which reduces noisy gradients and enables more stable edits from a different perspective. We demonstrate the effectiveness of our method HORSE through a clear theoretical comparison with several popular methods and extensive experiments conducted on two datasets across multiple LLMs. The results show that HORSE maintains precise massive editing across diverse scenarios. The code is available at https://github.com/XiaojieGu/HORSE
comment: ICASSP 2026
GenDA: Generative Data Assimilation on Complex Urban Areas via Classifier-Free Diffusion Guidance
Urban wind flow reconstruction is essential for assessing air quality, heat dispersion, and pedestrian comfort, yet remains challenging when only sparse sensor data are available. We propose GenDA, a generative data assimilation framework that reconstructs high-resolution wind fields on unstructured meshes from limited observations. The model employs a multiscale graph-based diffusion architecture trained on computational fluid dynamics (CFD) simulations and interprets classifier-free guidance as a learned posterior reconstruction mechanism: the unconditional branch learns a geometry-aware flow prior, while the sensor-conditioned branch injects observational constraints during sampling. This formulation enables obstacle-aware reconstruction and generalization across unseen geometries, wind directions, and mesh resolutions without retraining. We consider both sparse fixed sensors and trajectory-based observations using the same reconstruction procedure. When evaluated against supervised graph neural network (GNN) baselines and classical reduced-order data assimilation methods, GenDA reduces the relative root-mean-square error (RRMSE) by 25-57% and increases the structural similarity index (SSIM) by 23-33% across the tested meshes. Experiments are conducted on Reynolds-averaged Navier-Stokes (RANS) simulations of a real urban neighbourhood in Bristol, United Kingdom, at a characteristic Reynolds number of $\mathrm{Re}\approx2\times10^{7}$, featuring complex building geometry and irregular terrain. The proposed framework provides a scalable path toward generative, geometry-aware data assimilation for environmental monitoring in complex domains.
Near-Optimal Decentralized Stochastic Nonconvex Optimization with Heavy-Tailed Noise
This paper studies decentralized stochastic nonconvex optimization problem over row-stochastic networks. We consider the heavy-tailed gradient noise which is empirically observed in many popular real-world applications. Specifically, we propose a decentralized normalized stochastic gradient descent with Pull-Diag gradient tracking, which achieves approximate stationary points with the optimal sample complexity and the near-optimal communication complexity. We further follow our framework to study the setting of undirected networks, also achieving the nearly tight upper complexity bounds. Moreover, we conduct empirical studies to show the practical superiority of the proposed methods.
Inter-patient ECG Arrhythmia Classification with LGNs and LUTNs
Deep Differentiable Logic Gate Networks (LGNs) and Lookup Table Networks (LUTNs) are demonstrated to be suitable for the automatic classification of electrocardiograms (ECGs) using the inter-patient paradigm. The methods are benchmarked using the MIT-BIH arrhythmia data set, achieving up to 94.28% accuracy and a $jκ$ index of 0.683 on a four-class classification problem. Our models use between 2.89k and 6.17k FLOPs, including preprocessing and readout, which is three to six orders of magnitude less compared to SOTA methods. A novel preprocessing method is utilized that attains superior performance compared to existing methods for both the mixed-patient and inter-patient paradigms. In addition, a novel method for training the Lookup Tables (LUTs) in LUTNs is devised that uses the Boolean equation of a multiplexer (MUX). Additionally, rate coding was utilized for the first time in these LGNs and LUTNs, enhancing the performance of LGNs. Furthermore, it is the first time that LGNs and LUTNs have been benchmarked on the MIT-BIH arrhythmia dataset using the inter-patient paradigm. Using an Artix 7 FPGA, between 2000 and 2990 LUTs were needed, and between 5 to 7 mW (i.e. 50 pJ to 70 pJ per inference) was estimated for running these models. The performance in terms of both accuracy and $jκ$-index is significantly higher compared to previous LGN results. These positive results suggest that one can utilize LGNs and LUTNs for the detection of arrhythmias at extremely low power and high speeds in heart implants or wearable devices, even for patients not included in the training set.
Forcing and Diagnosing Failure Modes of Fourier Neural Operators Across Diverse PDE Families
Fourier Neural Operators (FNOs) have shown strong performance in learning solution maps of partial differential equations (PDEs), but their robustness under distribution shifts, long-horizon rollouts, and structural perturbations remains poorly understood. We present a systematic stress-testing framework that probes failure modes of FNOs across five qualitatively different PDE families: dispersive, elliptic, multi-scale fluid, financial, and chaotic systems. Rather than optimizing in-distribution accuracy, we design controlled stress tests--including parameter shifts, boundary or terminal condition changes, resolution extrapolation with spectral analysis, and iterative rollouts--to expose vulnerabilities such as spectral bias, compounding integration errors, and overfitting to restricted boundary regimes. Our large-scale evaluation (1{,}000 trained models) reveals that distribution shifts in parameters or boundary conditions can inflate errors by more than an order of magnitude, while resolution changes primarily concentrate error in high-frequency modes. Input perturbations generally do not amplify error, though worst-case scenarios (e.g., localized Poisson perturbations) remain challenging. These findings provide a comparative failure-mode atlas and actionable insights for improving robustness in operator learning.
comment: 17 pages, 8 figures
PubMed-OCR: PMC Open Access OCR Annotations
PubMed-OCR is an OCR-centric corpus of scientific articles derived from PubMed Central Open Access PDFs. Each page image is annotated with Google Cloud Vision and released in a compact JSON schema with word-, line-, and paragraph-level bounding boxes. The corpus spans 209.5K articles (1.5M pages; ~1.3B words) and supports layout-aware modeling, coordinate-grounded QA, and evaluation of OCR-dependent pipelines. We analyze corpus characteristics (e.g., journal coverage and detected layout features) and discuss limitations, including reliance on a single OCR engine and heuristic line reconstruction. We release the data and schema to facilitate downstream research and invite extensions.
Statistical Robustness of Interval CVaR Based Regression Models under Perturbation and Contamination
Robustness under perturbation and contamination is a prominent issue in statistical learning. We address the robust nonlinear regression based on the so-called interval conditional value-at-risk (In-CVaR), which is introduced to enhance robustness by trimming extreme losses. While recent literature shows that the In-CVaR based statistical learning exhibits superior robustness performance than classical robust regression models, its theoretical robustness analysis for nonlinear regression remains largely unexplored. We rigorously quantify robustness under contamination, with a unified study of distributional breakdown point for a broad class of regression models, including linear, piecewise affine and neural network models with $\ell_1$, $\ell_2$ and Huber losses. Moreover, we analyze the qualitative robustness of the In-CVaR based estimator under perturbation. We show that under several minor assumptions, the In-CVaR based estimator is qualitatively robust in terms of the Prokhorov metric if and only if the largest portion of losses is trimmed. Overall, this study analyzes robustness properties of In-CVaR based nonlinear regression models under both perturbation and contamination, which illustrates the advantages of In-CVaR risk measure over conditional value-at-risk and expectation for robust regression in both theory and numerical experiments.
Zero-Shot Detection of Elastic Transient Morphology Across Physical Systems
We test whether a representation learned from interferometric strain transients in gravitational-wave observatories can act as a frozen morphology-sensitive operator for unseen sensors, provided the target signals preserve coherent elastic transient structure. Using a neural encoder trained exclusively on non-Gaussian instrumental glitches, we perform strict zero-shot anomaly analysis on rolling-element bearings without retraining, fine-tuning, or target-domain labels. On the IMS-NASA run-to-failure dataset, the operator yields a monotonic health index HI(t) = s0.99(t)/tau normalized to an early-life reference distribution, enabling fixed false-alarm monitoring at 1-q = 1e-3 with tau = Q0.999(P0). In discrete fault regimes (CWRU), it achieves strong window-level discrimination (AUC_win about 0.90) and file-level separability approaching unity (AUC_file about 0.99). Electrically dominated vibration signals (VSB) show weak, non-selective behavior, delineating a physical boundary for transfer. Under a matched IMS controlled-split protocol, a generic EfficientNet-B0 encoder pretrained on ImageNet collapses in the intermittent regime (Lambda_tail about 2), while the interferometric operator retains strong extreme-event selectivity (Lambda_tail about 860), indicating that the effect is not a generic property of CNN features. Controlled morphology-destruction transformations selectively degrade performance despite per-window normalization, consistent with sensitivity to coherent time-frequency organization rather than marginal amplitude statistics.
comment: 17 pages, 6 figures. Supplemental material included
New Adaptive Mechanism for Large Neighborhood Search using Dual Actor-Critic
Adaptive Large Neighborhood Search (ALNS) is a widely used heuristic method for solving combinatorial optimization problems. ALNS explores the solution space by iteratively using destroy and repair operators with probabilities, which are adjusted by an adaptive mechanism to find optimal solutions. However, the classic ALNS adaptive mechanism does not consider the interaction between destroy and repair operators when selecting them. To overcome this limitation, this study proposes a novel adaptive mechanism. This mechanism enhances the adaptability of the algorithm through a Dual Actor-Critic (DAC) model, which fully considers the fact that the quality of new solutions is jointly determined by the destroy and repair operators. It effectively utilizes the interaction between these operators during the weight adjustment process, greatly improving the adaptability of the ALNS algorithm. In this mechanism, the destroy and repair processes are modeled as independent Markov Decision Processes to guide the selection of operators more accurately. Furthermore, we use Graph Neural Networks to extract key features from problem instances and perform effective aggregation and normalization to enhance the algorithm's transferability to different sizes and characteristics of problems. Through a series of experiments, we demonstrate that the proposed DAC-ALNS algorithm significantly improves solution efficiency and exhibits excellent transferability.
Factored Value Functions for Graph-Based Multi-Agent Reinforcement Learning
Credit assignment is a core challenge in multi-agent reinforcement learning (MARL), especially in large-scale systems with structured, local interactions. Graph-based Markov decision processes (GMDPs) capture such settings via an influence graph, but standard critics are poorly aligned with this structure: global value functions provide weak per-agent learning signals, while existing local constructions can be difficult to estimate and ill-behaved in infinite-horizon settings. We introduce the Diffusion Value Function (DVF), a factored value function for GMDPs that assigns to each agent a value component by diffusing rewards over the influence graph with temporal discounting and spatial attenuation. We show that DVF is well-defined, admits a Bellman fixed point, and decomposes the global discounted value via an averaging property. DVF can be used as a drop-in critic in standard RL algorithms and estimated scalably with graph neural networks. Building on DVF, we propose Diffusion A2C (DA2C) and a sparse message-passing actor, Learned DropEdge GNN (LD-GNN), for learning decentralised algorithms under communication costs. Across the firefighting benchmark and three distributed computation tasks (vector graph colouring and two transmit power optimisation problems), DA2C consistently outperforms local and global critic baselines, improving average reward by up to 11%.
Latent Space Inference via Paired Autoencoders
This work describes a novel data-driven latent space inference framework built on paired autoencoders to handle observational inconsistencies when solving inverse problems. Our approach uses two autoencoders, one for the parameter space and one for the observation space, connected by learned mappings between the autoencoders' latent spaces. These mappings enable a surrogate for regularized inversion and optimization in low-dimensional, informative latent spaces. Our flexible framework can work with partial, noisy, or out-of-distribution data, all while maintaining consistency with the underlying physical models. The paired autoencoders enable reconstruction of corrupted data, and then use the reconstructed data for parameter estimation, which produces more accurate reconstructions compared to paired autoencoders alone and end-to-end encoder-decoders of the same architecture, especially in scenarios with data inconsistencies. We demonstrate our approaches on two imaging examples in medical tomography and geophysical seismic-waveform inversion, but the described approaches are broadly applicable to a variety of inverse problems in scientific and engineering applications.
comment: 21 pages, 7 figures
Offline Reinforcement-Learning-Based Power Control for Application-Agnostic Energy Efficiency
Energy efficiency has become an integral aspect of modern computing infrastructure design, impacting the performance, cost, scalability, and durability of production systems. The incorporation of power actuation and sensing capabilities in CPU designs is indicative of this, enabling the deployment of system software that can actively monitor and adjust energy consumption and performance at runtime. While reinforcement learning (RL) would seem ideal for the design of such energy efficiency control systems, online training presents challenges ranging from the lack of proper models for setting up an adequate simulated environment, to perturbation (noise) and reliability issues, if training is deployed on a live system. In this paper we discuss the use of offline reinforcement learning as an alternative approach for the design of an autonomous CPU power controller, with the goal of improving the energy efficiency of parallel applications at runtime without unduly impacting their performance. Offline RL sidesteps the issues incurred by online RL training by leveraging a dataset of state transitions collected from arbitrary policies prior to training. Our methodology applies offline RL to a gray-box approach to energy efficiency, combining online application-agnostic performance data (e.g., heartbeats) and hardware performance counters to ensure that the scientific objectives are met with limited performance degradation. Evaluating our method on a variety of compute-bound and memory-bound benchmarks and controlling power on a live system through Intel's Running Average Power Limit, we demonstrate that such an offline-trained agent can substantially reduce energy consumption at a tolerable performance degradation cost.
comment: 11 pages, 5 figures, 3 tables and unpublished
FEATHer: Fourier-Efficient Adaptive Temporal Hierarchy Forecaster for Time-Series Forecasting
Time-series forecasting is fundamental in industrial domains like manufacturing and smart factories. As systems evolve toward automation, models must operate on edge devices (e.g., PLCs, microcontrollers) with strict constraints on latency and memory, limiting parameters to a few thousand. Conventional deep architectures are often impractical here. We propose the Fourier-Efficient Adaptive Temporal Hierarchy Forecaster (FEATHer) for accurate long-term forecasting under severe limits. FEATHer introduces: (i) ultra-lightweight multiscale decomposition into frequency pathways; (ii) a shared Dense Temporal Kernel using projection-depthwise convolution-projection without recurrence or attention; (iii) frequency-aware branch gating that adaptively fuses representations based on spectral characteristics; and (iv) a Sparse Period Kernel reconstructing outputs via period-wise downsampling to capture seasonality. FEATHer maintains a compact architecture (as few as 400 parameters) while outperforming baselines. Across eight benchmarks, it achieves the best ranking, recording 60 first-place results with an average rank of 2.05. These results demonstrate that reliable long-range forecasting is achievable on constrained edge hardware, offering a practical direction for industrial real-time inference.
comment: Submitted to IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)
Unlocking the Potentials of Retrieval-Augmented Generation for Diffusion Language Models
Diffusion Language Models (DLMs) have recently demonstrated remarkable capabilities in natural language processing tasks. However, the potential of Retrieval-Augmented Generation (RAG), which shows great successes for enhancing large language models (LLMs), has not been well explored, due to the fundamental difference between LLM and DLM decoding. To fill this critical gap, we systematically test the performance of DLMs within the RAG framework. Our findings reveal that DLMs coupled with RAG show promising potentials with stronger dependency on contextual information, but suffer from limited generation precision. We identify a key underlying issue: Response Semantic Drift (RSD), where the generated answer progressively deviates from the query's original semantics, leading to low precision content. We trace this problem to the denoising strategies in DLMs, which fail to maintain semantic alignment with the query throughout the iterative denoising process. To address this, we propose Semantic-Preserving REtrieval-Augmented Diffusion (SPREAD), a novel framework that introduces a query-relevance-guided denoising strategy. By actively guiding the denoising trajectory, SPREAD ensures the generation remains anchored to the query's semantics and effectively suppresses drift. Experimental results demonstrate that SPREAD significantly enhances the precision and effectively mitigates RSD of generated answers within the RAG framework.
comment: Preprints
Beer-Lambert Autoencoder for Unsupervised Stain Representation Learning and Deconvolution in Multi-immunohistochemical Brightfield Histology Images
Separating the contributions of individual chromogenic stains in RGB histology whole slide images (WSIs) is essential for stain normalization, quantitative assessment of marker expression, and cell-level readouts in immunohistochemistry (IHC). Classical Beer-Lambert (BL) color deconvolution is well-established for two- or three-stain settings, but becomes under-determined and unstable for multiplex IHC (mIHC) with K>3 chromogens. We present a simple, data-driven encoder-decoder architecture that learns cohort-specific stain characteristics for mIHC RGB WSIs and yields crisp, well-separated per-stain concentration maps. The encoder is a compact U-Net that predicts K nonnegative concentration channels; the decoder is a differentiable BL forward model with a learnable stain matrix initialized from typical chromogen hues. Training is unsupervised with a perceptual reconstruction objective augmented by loss terms that discourage unnecessary stain mixing. On a colorectal mIHC panel comprising 5 stains (H, CDX2, MUC2, MUC5, CD8) we show excellent RGB reconstruction, and significantly reduced inter-channel bleed-through compared with matrix-based deconvolution. Code and model are available at https://github.com/measty/StainQuant.git.
Information Theoretic Perspective on Representation Learning
An information-theoretic framework is introduced to analyze last-layer embedding, focusing on learned representations for regression tasks. We define representation-rate and derive limits on the reliability with which input-output information can be represented as is inherently determined by the input-source entropy. We further define representation capacity in a perturbed setting, and representation rate-distortion for a compressed output. We derive the achievable capacity, the achievable representation-rate, and their converse. Finally, we combine the results in a unified setting.
FORESTLLM: Large Language Models Make Random Forest Great on Few-shot Tabular Learning
Tabular data high-stakes critical decision-making in domains such as finance, healthcare, and scientific discovery. Yet, learning effectively from tabular data in few-shot settings, where labeled examples are scarce, remains a fundamental challenge. Traditional tree-based methods often falter in these regimes due to their reliance on statistical purity metrics, which become unstable and prone to overfitting with limited supervision. At the same time, direct applications of large language models (LLMs) often overlook its inherent structure, leading to suboptimal performance. To overcome these limitations, we propose FORESTLLM, a novel framework that unifies the structural inductive biases of decision forests with the semantic reasoning capabilities of LLMs. Crucially, FORESTLLM leverages the LLM only during training, treating it as an offline model designer that encodes rich, contextual knowledge into a lightweight, interpretable forest model, eliminating the need for LLM inference at test time. Our method is two-fold. First, we introduce a semantic splitting criterion in which the LLM evaluates candidate partitions based on their coherence over both labeled and unlabeled data, enabling the induction of more robust and generalizable tree structures under few-shot supervision. Second, we propose a one-time in-context inference mechanism for leaf node stabilization, where the LLM distills the decision path and its supporting examples into a concise, deterministic prediction, replacing noisy empirical estimates with semantically informed outputs. Across a diverse suite of few-shot classification and regression benchmarks, FORESTLLM achieves state-of-the-art performance.
comment: 23 pages
Metabolomic Biomarker Discovery for ADHD Diagnosis Using Interpretable Machine Learning
Attention Deficit Hyperactivity Disorder (ADHD) is a prevalent neurodevelopmental disorder with limited objective diagnostic tools, highlighting the urgent need for objective, biology-based diagnostic frameworks in precision psychiatry. We integrate urinary metabolomics with an interpretable machine learning framework to identify biochemical signatures associated with ADHD. Targeted metabolomic profiles from 52 ADHD and 46 control participants were analyzed using a Closest Resemblance (CR) classifier with embedded feature selection. The CR model outperformed Random Forest and K-Nearest Neighbor classifiers, achieving an AUC > 0.97 based on a reduced panel of 14 metabolites. These metabolites including dopamine 4-sulfate, N-acetylaspartylglutamic acid, and citrulline map to dopaminergic neurotransmission and amino acid metabolism pathways, offering mechanistic insight into ADHD pathophysiology. The CR classifier's transparent decision boundaries and low computational cost support integration into targeted metabolomic assays and future point of care diagnostic platforms. Overall, this work demonstrates a translational framework combining metabolomics and interpretable machine learning to advance objective, biologically informed diagnostic strategies for ADHD.
comment: 24 pages, 4 figures, 2 tables, submitted to AI in Medicine
Sample-Near-Optimal Agnostic Boosting with Improved Running Time
Boosting is a powerful method that turns weak learners, which perform only slightly better than random guessing, into strong learners with high accuracy. While boosting is well understood in the classic setting, it is less so in the agnostic case, where no assumptions are made about the data. Indeed, only recently was the sample complexity of agnostic boosting nearly settled arXiv:2503.09384, but the known algorithm achieving this bound has exponential running time. In this work, we propose the first agnostic boosting algorithm with near-optimal sample complexity, running in time polynomial in the sample size when considering the other parameters of the problem fixed.
comment: 28 pages, 0 figures. Accepted at the 37th International Conference on Algorithmic Learning Theory (ALT 2026)
Scalable Music Cover Retrieval Using Lyrics-Aligned Audio Embeddings
Music Cover Retrieval, also known as Version Identification, aims to recognize distinct renditions of the same underlying musical work, a task central to catalog management, copyright enforcement, and music retrieval. State-of-the-art approaches have largely focused on harmonic and melodic features, employing increasingly complex audio pipelines designed to be invariant to musical attributes that often vary widely across covers. While effective, these methods demand substantial training time and computational resources. By contrast, lyrics constitute a strong invariant across covers, though their use has been limited by the difficulty of extracting them accurately and efficiently from polyphonic audio. Early methods relied on simple frameworks that limited downstream performance, while more recent systems deliver stronger results but require large models integrated within complex multimodal architectures. We introduce LIVI (Lyrics-Informed Version Identification), an approach that seeks to balance retrieval accuracy with computational efficiency. First, LIVI leverages supervision from state-of-the-art transcription and text embedding models during training to achieve retrieval accuracy on par with--or superior to--harmonic-based systems. Second, LIVI remains lightweight and efficient by removing the transcription step at inference, challenging the dominance of complexity-heavy pipelines.
comment: Published at ECIR 2026 (European Conference of Information Retrieval)
Effects of Introducing Synaptic Scaling on Spiking Neural Network Learning
Spiking neural networks (SNNs) employing unsupervised learning methods inspired by neural plasticity are expected to be a new framework for artificial intelligence. In this study, we investigated the effect of multiple types of neural plasticity, such as spike-time-dependent plasticity (STDP) and synaptic scaling, on the learning in a winner-take-all (WTA) network composed of spiking neurons. We implemented a WTA network with multiple types of neural plasticity using Python. The MNIST and the Fashion-MNIST datasets were used for training and testing. We varied the number of neurons, the time constant of STDP, and the normalization method used in synaptic scaling to compare classification accuracy. The results demonstrated that synaptic scaling based on the L2 norm was the most effective in improving classification performance. By implementing L2-norm-based synaptic scaling and setting the number of neurons in both excitatory and inhibitory layers to 400, the network achieved classification accuracies of 88.84 % on the MNIST dataset and 68.01 % on the Fashion-MNIST dataset after one epoch of training.
comment: 6 pages, 4 figures, 6 tables
Latent Dynamics Graph Convolutional Networks for model order reduction of parameterized time-dependent PDEs
Graph Neural Networks (GNNs) are emerging as powerful tools for nonlinear Model Order Reduction (MOR) of time-dependent parameterized Partial Differential Equations (PDEs). However, existing methodologies struggle to combine geometric inductive biases with interpretable latent behavior, overlooking dynamics-driven features or disregarding spatial information. In this work, we address this gap by introducing Latent Dynamics Graph Convolutional Network (LD-GCN), a purely data-driven, encoder-free architecture that learns a global, low-dimensional representation of dynamical systems conditioned on external inputs and parameters. The temporal evolution is modeled in the latent space and advanced through time-stepping, allowing for time-extrapolation, and the trajectories are consistently decoded onto geometrically parameterized domains using a GNN. Our framework enhances interpretability by enabling the analysis of the reduced dynamics and supporting zero-shot prediction through latent interpolation. The methodology is mathematically validated via a universal approximation theorem for encoder-free architectures, and numerically tested on complex computational mechanics problems involving physical and geometric parameters, including the detection of bifurcating phenomena for Navier-Stokes equations. Code availability: https://github.com/lorenzotomada/ld-gcn-rom
Knowledge is Not Enough: Injecting RL Skills for Continual Adaptation
Large Language Models (LLMs) face the "knowledge cutoff" challenge, where their frozen parametric memory prevents direct internalization of new information. While Supervised Fine-Tuning (SFT) is commonly used to update model knowledge, it often updates factual content without reliably improving the model's ability to use the newly incorporated information for question answering or decision-making. Reinforcement Learning (RL) is essential for acquiring reasoning skills; however, its high computational cost makes it impractical for efficient online adaptation. We empirically observe that the parameter updates induced by SFT and RL are nearly orthogonal. Based on this observation, we propose Parametric Skill Transfer (PaST), a framework that supports modular skill transfer for efficient and effective knowledge adaptation. By extracting a domain-agnostic Skill Vector from a source domain, we can linearly inject knowledge manipulation skills into a target model after it has undergone lightweight SFT on new data. Experiments on knowledge-incorporation QA (SQuAD, LooGLE) and agentic tool-use benchmarks (ToolBench) demonstrate the effectiveness of our method. On SQuAD, PaST outperforms the state-of-the-art self-editing SFT baseline by up to 9.9 points. PaST further scales to long-context QA on LooGLE with an 8.0-point absolute accuracy gain, and improves zero-shot ToolBench success rates by +10.3 points on average with consistent gains across tool categories, indicating strong scalability and cross-domain transferability of the Skill Vector.
Reasoning in Trees: Improving Retrieval-Augmented Generation for Multi-Hop Question Answering
Retrieval-Augmented Generation (RAG) has demonstrated significant effectiveness in enhancing large language models (LLMs) for complex multi-hop question answering (QA). For multi-hop QA tasks, current iterative approaches predominantly rely on LLMs to self-guide and plan multi-step exploration paths during retrieval, leading to substantial challenges in maintaining reasoning coherence across steps from inaccurate query decomposition and error propagation. To address these issues, we introduce Reasoning Tree Guided RAG (RT-RAG), a novel hierarchical framework for complex multi-hop QA. RT-RAG systematically decomposes multi-hop questions into explicit reasoning trees, minimizing inaccurate decomposition through structured entity analysis and consensus-based tree selection that clearly separates core queries, known entities, and unknown entities. Subsequently, a bottom-up traversal strategy employs iterative query rewriting and refinement to collect high-quality evidence, thereby mitigating error propagation. Comprehensive experiments show that RT-RAG substantially outperforms state-of-the-art methods by 7.0% F1 and 6.0% EM, demonstrating the effectiveness of RT-RAG in complex multi-hop QA.
comment: Accepted to GLOW@WWW2026. Code available at https://github.com/sakura20221/RT-RAG
How DDAIR you? Disambiguated Data Augmentation for Intent Recognition
Large Language Models (LLMs) are effective for data augmentation in classification tasks like intent detection. In some cases, they inadvertently produce examples that are ambiguous with regard to untargeted classes. We present DDAIR (Disambiguated Data Augmentation for Intent Recognition) to mitigate this problem. We use Sentence Transformers to detect ambiguous class-guided augmented examples generated by LLMs for intent recognition in low-resource scenarios. We identify synthetic examples that are semantically more similar to another intent than to their target one. We also provide an iterative re-generation method to mitigate such ambiguities. Our findings show that sentence embeddings effectively help to (re)generate less ambiguous examples, and suggest promising potential to improve classification performance in scenarios where intents are loosely or broadly defined.
comment: Accepted for publication at EACL 2026
Operator learning on domain boundary through combining fundamental solution-based artificial data and boundary integral techniques
For linear partial differential equations with known fundamental solutions, this work introduces a novel operator learning framework that relies exclusively on domain boundary data, including solution values and normal derivatives, rather than full-domain sampling. By integrating the previously developed Mathematical Artificial Data (MAD) method, which enforces physical consistency, all training data are synthesized directly from the fundamental solutions of the target problems, resulting in a fully data-driven pipeline without the need for external measurements or numerical simulations. We refer to this approach as the Mathematical Artificial Data Boundary Neural Operator (MAD-BNO), which learns boundary-to-boundary mappings using MAD-generated Dirichlet-Neumann data pairs. Once trained, the interior solution at arbitrary locations can be efficiently recovered through boundary integral formulations, supporting Dirichlet, Neumann, and mixed boundary conditions as well as general source terms. The proposed method is validated on benchmark operator learning tasks for two-dimensional Laplace, Poisson, and Helmholtz equations, where it achieves accuracy comparable to or better than existing neural operator approaches while significantly reducing training time. The framework is naturally extensible to three-dimensional problems and complex geometries.
comment: 31 pages
SDFLoRA: Selective Dual-Module LoRA for Federated Fine-tuning with Heterogeneous Clients
Federated learning (FL) for large language models (LLMs) has attracted increasing attention as a way to enable privacy-preserving adaptation over distributed data. Parameter-efficient methods such as LoRA are widely adopted to reduce communication and memory costs. Despite these advances, practical FL deployments often exhibit rank heterogeneity, since different clients may use different low-rank configurations. This makes direct aggregation of LoRA updates biased and unstable. Existing solutions typically enforce unified ranks or align heterogeneous updates into a shared subspace, which over-constrains client-specific semantics, limits personalization, and provides weak protection of local client information under differential privacy noise. To address this issue, we propose Selective Dual-module Federated LoRA (SDFLoRA), which decomposes each client adapter into a global module that captures transferable knowledge and a local module that preserves client-specific adaptations. The global module is selectively aligned and aggregated across clients, while local modules remain private. This design enables robust learning under rank heterogeneity and supports privacy-aware optimization by injecting differential privacy noise exclusively into the global module. Experiments on GLUE benchmarks demonstrate that SDFLoRA outperforms representative federated LoRA baselines and achieves a better utility-privacy trade-off.
Model-free policy gradient for discrete-time mean-field control
We study model-free policy learning for discrete-time mean-field control (MFC) problems with finite state space and compact action space. In contrast to the extensive literature on value-based methods for MFC, policy-based approaches remain largely unexplored due to the intrinsic dependence of transition kernels and rewards on the evolving population state distribution, which prevents the direct use of likelihood-ratio estimators of policy gradients from classical single-agent reinforcement learning. We introduce a novel perturbation scheme on the state-distribution flow and prove that the gradient of the resulting perturbed value function converges to the true policy gradient as the perturbation magnitude vanishes. This construction yields a fully model-free estimator based solely on simulated trajectories and an auxiliary estimate of the sensitivity of the state distribution. Building on this framework, we develop MF-REINFORCE, a model-free policy gradient algorithm for MFC, and establish explicit quantitative bounds on its bias and mean-squared error. Numerical experiments on representative mean-field control tasks demonstrate the effectiveness of the proposed approach.
comment: 42 pages, 5 figures
FAQ: Mitigating Quantization Error via Regenerating Calibration Data with Family-Aware Quantization
Although post-training quantization (PTQ) provides an efficient numerical compression scheme for deploying large language models (LLMs) on resource-constrained devices, the representativeness and universality of calibration data remain a core bottleneck in determining the accuracy of quantization parameters. Traditional PTQ methods typically rely on limited samples, making it difficult to capture the activation distribution during the inference phase, leading to biases in quantization parameters. To address this, we propose \textbf{FAQ} (Family-Aware Quantization), a calibration data regeneration framework that leverages prior knowledge from LLMs of the same family to generate high-fidelity calibration samples. Specifically, FAQ first inputs the original calibration samples into a larger LLM from the same family as the target model, regenerating a series of high-fidelity calibration data using a highly consistent knowledge system. Subsequently, this data, carrying Chain-of-Thought reasoning and conforming to the expected activation distribution, undergoes group competition under expert guidance to select the best samples, which are then re-normalized to enhance the effectiveness of standard PTQ. Experiments on multiple model series, including Qwen3-8B, show that FAQ reduces accuracy loss by up to 28.5\% compared to the baseline with original calibration data, demonstrating its powerful potential and contribution.
TimeMar: Multi-Scale Autoregressive Modeling for Unconditional Time Series Generation
Generative modeling offers a promising solution to data scarcity and privacy challenges in time series analysis. However, the structural complexity of time series, characterized by multi-scale temporal patterns and heterogeneous components, remains insufficiently addressed. In this work, we propose a structure-disentangled multiscale generation framework for time series. Our approach encodes sequences into discrete tokens at multiple temporal resolutions and performs autoregressive generation in a coarse-to-fine manner, thereby preserving hierarchical dependencies. To tackle structural heterogeneity, we introduce a dual-path VQ-VAE that disentangles trend and seasonal components, enabling the learning of semantically consistent latent representations. Additionally, we present a guidance-based reconstruction strategy, where coarse seasonal signals are utilized as priors to guide the reconstruction of fine-grained seasonal patterns. Experiments on six datasets show that our approach produces higher-quality time series than existing methods. Notably, our model achieves strong performance with a significantly reduced parameter count and exhibits superior capability in generating high-quality long-term sequences. Our implementation is available at https://anonymous.4open.science/r/TimeMAR-BC5B.
LSTM VS. Feed-Forward Autoencoders for Unsupervised Fault Detection in Hydraulic Pumps
Unplanned failures in industrial hydraulic pumps can halt production and incur substantial costs. We explore two unsupervised autoencoder (AE) schemes for early fault detection: a feed-forward model that analyses individual sensor snapshots and a Long Short-Term Memory (LSTM) model that captures short temporal windows. Both networks are trained only on healthy data drawn from a minute-level log of 52 sensor channels; evaluation uses a separate set that contains seven annotated fault intervals. Despite the absence of fault samples during training, the models achieve high reliability.
GMM-COMET: Continual Source-Free Universal Domain Adaptation via a Mean Teacher and Gaussian Mixture Model-Based Pseudo-Labeling
Unsupervised domain adaptation tackles the problem that domain shifts between training and test data impair the performance of neural networks in many real-world applications. Thereby, in realistic scenarios, the source data may no longer be available during adaptation, and the label space of the target domain may differ from the source label space. This setting, known as source-free universal domain adaptation (SF-UniDA), has recently gained attention, but all existing approaches only assume a single domain shift from source to target. In this work, we present the first study on continual SF-UniDA, where the model must adapt sequentially to a stream of multiple different unlabeled target domains. Building upon our previous methods for online SF-UniDA, we combine their key ideas by integrating Gaussian mixture model-based pseudo-labeling within a mean teacher framework for improved stability over long adaptation sequences. Additionally, we introduce consistency losses for further robustness. The resulting method GMM-COMET provides a strong first baseline for continual SF-UniDA and is the only approach in our experiments to consistently improve upon the source-only model across all evaluated scenarios. Our code is available at https://github.com/pascalschlachter/GMM-COMET.
Clustering High-dimensional Data: Balancing Abstraction and Representation Tutorial at AAAI 2026
How to find a natural grouping of a large real data set? Clustering requires a balance between abstraction and representation. To identify clusters, we need to abstract from superfluous details of individual objects. But we also need a rich representation that emphasizes the key features shared by groups of objects that distinguish them from other groups of objects. Each clustering algorithm implements a different trade-off between abstraction and representation. Classical K-means implements a high level of abstraction - details are simply averaged out - combined with a very simple representation - all clusters are Gaussians in the original data space. We will see how approaches to subspace and deep clustering support high-dimensional and complex data by allowing richer representations. However, with increasing representational expressiveness comes the need to explicitly enforce abstraction in the objective function to ensure that the resulting method performs clustering and not just representation learning. We will see how current deep clustering methods define and enforce abstraction through centroid-based and density-based clustering losses. Balancing the conflicting goals of abstraction and representation is challenging. Ideas from subspace clustering help by learning one latent space for the information that is relevant to clustering and another latent space to capture all other information in the data. The tutorial ends with an outlook on future research in clustering. Future methods will more adaptively balance abstraction and representation to improve performance, energy efficiency and interpretability. By automatically finding the sweet spot between abstraction and representation, the human brain is very good at clustering and other related tasks such as single-shot learning. So, there is still much room for improvement.
Theoretically and Practically Efficient Resistance Distance Computation on Large Graphs
The computation of resistance distance is pivotal in a wide range of graph analysis applications, including graph clustering, link prediction, and graph neural networks. Despite its foundational importance, efficient algorithms for computing resistance distances on large graphs are still lacking. Existing state-of-the-art (SOTA) methods, including power iteration-based algorithms and random walk-based local approaches, often struggle with slow convergence rates, particularly when the condition number of the graph Laplacian matrix, denoted by $κ$, is large. To tackle this challenge, we propose two novel and efficient algorithms inspired by the classic Lanczos method: Lanczos Iteration and Lanczos Push, both designed to reduce dependence on $κ$. Among them, Lanczos Iteration is a near-linear time global algorithm, whereas Lanczos Push is a local algorithm with a time complexity independent of the size of the graph. More specifically, we prove that the time complexity of Lanczos Iteration is $\tilde{O}(\sqrtκ m)$ ($m$ is the number of edges of the graph and $\tilde{O}$ means the complexity omitting the $\log$ terms) which achieves a speedup of $\sqrtκ$ compared to previous power iteration-based global methods. For Lanczos Push, we demonstrate that its time complexity is $\tilde{O}(κ^{2.75})$ under certain mild and frequently established assumptions, which represents a significant improvement of $κ^{0.25}$ over the SOTA random walk-based local algorithms. We validate our algorithms through extensive experiments on eight real-world datasets of varying sizes and statistical properties, demonstrating that Lanczos Iteration and Lanczos Push significantly outperform SOTA methods in terms of both efficiency and accuracy.
Assesing the Viability of Unsupervised Learning with Autoencoders for Predictive Maintenance in Helicopter Engines
Unplanned engine failures in helicopters can lead to severe operational disruptions, safety hazards, and costly repairs. To mitigate these risks, this study compares two predictive maintenance strategies for helicopter engines: a supervised classification pipeline and an unsupervised anomaly detection approach based on autoencoders (AEs). The supervised method relies on labelled examples of both normal and faulty behaviour, while the unsupervised approach learns a model of normal operation using only healthy engine data, flagging deviations as potential faults. Both methods are evaluated on a real-world dataset comprising labelled snapshots of helicopter engine telemetry. While supervised models demonstrate strong performance when annotated failures are available, the AE achieves effective detection without requiring fault labels, making it particularly well suited for settings where failure data are scarce or incomplete. The comparison highlights the practical trade-offs between accuracy, data availability, and deployment feasibility, and underscores the potential of unsupervised learning as a viable solution for early fault detection in aerospace applications.
Context-aware Graph Causality Inference for Few-Shot Molecular Property Prediction
Molecular property prediction is becoming one of the major applications of graph learning in Web-based services, e.g., online protein structure prediction and drug discovery. A key challenge arises in few-shot scenarios, where only a few labeled molecules are available for predicting unseen properties. Recently, several studies have used in-context learning to capture relationships among molecules and properties, but they face two limitations in: (1) exploiting prior knowledge of functional groups that are causally linked to properties and (2) identifying key substructures directly correlated with properties. We propose CaMol, a context-aware graph causality inference framework, to address these challenges by using a causal inference perspective, assuming that each molecule consists of a latent causal structure that determines a specific property. First, we introduce a context graph that encodes chemical knowledge by linking functional groups, molecules, and properties to guide the discovery of causal substructures. Second, we propose a learnable atom masking strategy to disentangle causal substructures from confounding ones. Third, we introduce a distribution intervener that applies backdoor adjustment by combining causal substructures with chemically grounded confounders, disentangling causal effects from real-world chemical variations. Experiments on diverse molecular datasets showed that CaMol achieved superior accuracy and sample efficiency in few-shot tasks, showing its generalizability to unseen properties. Also, the discovered causal substructures were strongly aligned with chemical knowledge about functional groups, supporting the model interpretability.
comment: 15 pages
FSL-BDP: Federated Survival Learning with Bayesian Differential Privacy for Credit Risk Modeling
Credit risk models are a critical decision-support tool for financial institutions, yet tightening data-protection rules (e.g., GDPR, CCPA) increasingly prohibit cross-border sharing of borrower data, even as these models benefit from cross-institution learning. Traditional default prediction suffers from two limitations: binary classification ignores default timing, treating early defaulters (high loss) equivalently to late defaulters (low loss), and centralized training violates emerging regulatory constraints. We propose a Federated Survival Learning framework with Bayesian Differential Privacy (FSL-BDP) that models time-to-default trajectories without centralizing sensitive data. The framework provides Bayesian (data-dependent) differential privacy (DP) guarantees while enabling institutions to jointly learn risk dynamics. Experiments on three real-world credit datasets (LendingClub, SBA, Bondora) show that federation fundamentally alters the relative effectiveness of privacy mechanisms. While classical DP performs better than Bayesian DP in centralized settings, the latter benefits substantially more from federation (+7.0\% vs +1.4\%), achieving near parity of non-private performance and outperforming classical DP in the majority of participating clients. This ranking reversal yields a key decision-support insight: privacy mechanism selection should be evaluated in the target deployment architecture, rather than centralized benchmarks. These findings provide actionable guidance for practitioners designing privacy-preserving decision support systems in regulated, multi-institutional environments.
Shape-morphing programming of soft materials on complex geometries via neural operator
Shape-morphing soft materials can enable diverse target morphologies through voxel-level material distribution design, offering significant potential for various applications. Despite progress in basic shape-morphing design with simple geometries, achieving advanced applications such as conformal implant deployment or aerodynamic morphing requires accurate and diverse morphing designs on complex geometries, which remains challenging. Here, we present a Spectral and Spatial Neural Operator (S2NO), which enables high-fidelity morphing prediction on complex geometries. S2NO effectively captures global and local morphing behaviours on irregular computational domains by integrating Laplacian eigenfunction encoding and spatial convolutions. Combining S2NO with evolutionary algorithms enables voxel-level optimisation of material distributions for shape morphing programming on various complex geometries, including irregular-boundary shapes, porous structures, and thin-walled structures. Furthermore, the neural operator's discretisation-invariant property enables super-resolution material distribution design, further expanding the diversity and complexity of morphing design. These advancements significantly improve the efficiency and capability of programming complex shape morphing.
comment: 20 pages,5 Figures
Optimized Algorithms for Text Clustering with LLM-Generated Constraints AAAI-26
Clustering is a fundamental tool that has garnered significant interest across a wide range of applications including text analysis. To improve clustering accuracy, many researchers have incorporated background knowledge, typically in the form of must-link and cannot-link constraints, to guide the clustering process. With the recent advent of large language models (LLMs), there is growing interest in improving clustering quality through LLM-based automatic constraint generation. In this paper, we propose a novel constraint-generation approach that reduces resource consumption by generating constraint sets rather than using traditional pairwise constraints. This approach improves both query efficiency and constraint accuracy compared to state-of-the-art methods. We further introduce a constrained clustering algorithm tailored to the characteristics of LLM-generated constraints. Our method incorporates a confidence threshold and a penalty mechanism to address potentially inaccurate constraints. We evaluate our approach on five text datasets, considering both the cost of constraint generation and the overall clustering performance. The results show that our method achieves clustering accuracy comparable to the state-of-the-art algorithms while reducing the number of LLM queries by more than 20 times.
comment: AAAI-26
Comprehensive Robust Dynamic Mode Decomposition from Mode Extraction to Dimensional Reduction
We propose Comprehensive Robust Dynamic Mode Decomposition (CR-DMD), a novel framework that robustifies the entire DMD process - from mode extraction to dimensional reduction - against mixed noise. Although standard DMD widely used for uncovering spatio-temporal patterns and constructing low-dimensional models of dynamical systems, it suffers from significant performance degradation under noise due to its reliance on least-squares estimation for computing the linear time evolution operator. Existing robust variants typically modify the least-squares formulation, but they remain unstable and fail to ensure faithful low-dimensional representations. First, we introduce a convex optimization-based preprocessing method designed to effectively remove mixed noise, achieving accurate and stable mode extraction. Second, we propose a new convex formulation for dimensional reduction that explicitly links the robustly extracted modes to the original noisy observations, constructing a faithful representation of the original data via a sparse weighted sum of the modes. Both stages are efficiently solved by a preconditioned primal-dual splitting method. Experiments on fluid dynamics datasets demonstrate that CR-DMD consistently outperforms state-of-the-art robust DMD methods in terms of mode accuracy and fidelity of low-dimensional representations under noisy conditions.
comment: Submitted to IEEE Transactions on Signal Processing. The source code is available at https://github.com/MDI-TokyoTech/Comprehensive-Robust-Dynamic-Mode-Decomposition. The project page is https://www.mdi.c.titech.ac.jp/publications/cr-dmd
Differentially Private Subspace Fine-Tuning for Large Language Models
Fine-tuning large language models on downstream tasks is crucial for realizing their cross-domain potential but often relies on sensitive data, raising privacy concerns. Differential privacy (DP) offers rigorous privacy guarantees and has been widely adopted in fine-tuning; however, naively injecting noise across the high-dimensional parameter space creates perturbations with large norms, degrading performance and destabilizing training. To address this issue, we propose DP-SFT, a two-stage subspace fine-tuning method that substantially reduces noise magnitude while preserving formal DP guarantees. Our intuition is that, during fine-tuning, significant parameter updates lie within a low-dimensional, task-specific subspace, while other directions change minimally. Hence, we only inject DP noise into this subspace to protect privacy without perturbing irrelevant parameters. In phase one, we identify the subspace by analyzing principal gradient directions to capture task-specific update signals. In phase two, we project full gradients onto this subspace, add DP noise, and map the perturbed gradients back to the original parameter space for model updates, markedly lowering noise impact. Experiments on multiple datasets demonstrate that DP-SFT enhances accuracy and stability under rigorous DP constraints, accelerates convergence, and achieves substantial gains over DP fine-tuning baselines.
KANHedge: Efficient Hedging of High-Dimensional Options Using Kolmogorov-Arnold Network-Based BSDE Solver
High-dimensional option pricing and hedging present significant challenges in quantitative finance, where traditional PDE-based methods struggle with the curse of dimensionality. The BSDE framework offers a computationally efficient alternative to PDE-based methods, and recently proposed deep BSDE solvers, generally utilizing conventional Multi-Layer Perceptrons (MLPs), build upon this framework to provide a scalable alternative to numerical BSDE solvers. In this research, we show that although such MLP-based deep BSDEs demonstrate promising results in option pricing, there remains room for improvement regarding hedging performance. To address this issue, we introduce KANHedge, a novel BSDE-based hedger that leverages Kolmogorov-Arnold Networks (KANs) within the BSDE framework. Unlike conventional MLP approaches that use fixed activation functions, KANs employ learnable B-spline activation functions that provide enhanced function approximation capabilities for continuous derivatives. We comprehensively evaluate KANHedge on both European and American basket options across multiple dimensions and market conditions. Our experimental results demonstrate that while KANHedge and MLP achieve comparable pricing accuracy, KANHedge provides improved hedging performance. Specifically, KANHedge achieves considerable reductions in hedging cost metrics, demonstrating enhanced risk control capabilities.
comment: 8 pages
Split-and-Conquer: Distributed Factor Modeling for High-Dimensional Matrix-Variate Time Series
In this paper, we propose a distributed framework for reducing the dimensionality of high-dimensional, large-scale, heterogeneous matrix-variate time series data using a factor model. The data are first partitioned column-wise (or row-wise) and allocated to node servers, where each node estimates the row (or column) loading matrix via two-dimensional tensor PCA. These local estimates are then transmitted to a central server and aggregated, followed by a final PCA step to obtain the global row (or column) loading matrix estimator. Given the estimated loading matrices, the corresponding factor matrices are subsequently computed. Unlike existing distributed approaches, our framework preserves the latent matrix structure, thereby improving computational efficiency and enhancing information utilization. We also discuss row- and column-wise clustering procedures for settings in which the group memberships are unknown. Furthermore, we extend the analysis to unit-root nonstationary matrix-variate time series. Asymptotic properties of the proposed method are derived for the diverging dimension of the data in each computing unit and the sample size $T$. Simulation results assess the computational efficiency and estimation accuracy of the proposed framework, and real data applications further validate its predictive performance.
Soft Bayesian Context Tree Models for Real-Valued Time Series
This paper proposes the soft Bayesian context tree model (Soft-BCT), which is a novel BCT model for real-valued time series. The Soft-BCT considers soft (probabilistic) splits of the context space, instead of hard (deterministic) splits of the context space as in the previous BCT for real-valued time series. A learning algorithm of the Soft-BCT is proposed based on the variational inference. For some real-world datasets, the Soft-BCT demonstrates almost the same or superior performance to the previous BCT.
Bridging Cognitive Neuroscience and Graph Intelligence: Hippocampus-Inspired Multi-View Hypergraph Learning for Web Finance Fraud
Online financial services constitute an essential component of contemporary web ecosystems, yet their openness introduces substantial exposure to fraud that harms vulnerable users and weakens trust in digital finance. Such threats have become a significant web harm that erodes societal fairness and affects the well being of online communities. However, existing detection methods based on graph neural networks (GNNs) struggle with two persistent challenges: (1) fraud camouflage, where malicious transactions mimic benign behaviors to evade detection, and (2) long-tailed data distributions, which obscure rare but critical fraudulent cases. To fill these gaps, we propose HIMVH, a Hippocampus-Inspired Multi-View Hypergraph learning model for web finance fraud detection. Specifically, drawing inspiration from the scene conflict monitoring role of the hippocampus, we design a cross-view inconsistency perception module that captures subtle discrepancies and behavioral heterogeneity across multiple transaction views. This module enables the model to identify subtle cross-view conflicts for detecting online camouflaged fraudulent behaviors. Furthermore, inspired by the match-mismatch novelty detection mechanism of the CA1 region, we introduce a novelty-aware hypergraph learning module that measures feature deviations from neighborhood expectations and adaptively reweights messages, thereby enhancing sensitivity to online rare fraud patterns in the long-tailed settings. Extensive experiments on six web-based financial fraud datasets demonstrate that HIMVH achieves 6.42\% improvement in AUC, 9.74\% in F1 and 39.14\% in AP on average over 15 SOTA models.
H-AIM: Orchestrating LLMs, PDDL, and Behavior Trees for Hierarchical Multi-Robot Planning
In embodied artificial intelligence, enabling heterogeneous robot teams to execute long-horizon tasks from high-level instructions remains a critical challenge. While large language models (LLMs) show promise in instruction parsing and preliminary planning, they exhibit limitations in long-term reasoning and dynamic multi-robot coordination. We propose Hierarchical Autonomous Intelligent Multi-Robot Planning(H-AIM), a novel embodied multi-robot task planning framework that addresses these issues through a three-stage cascaded architecture: 1) It leverages an LLM to parse instructions and generate Planning Domain Definition Language (PDDL) problem descriptions, thereby transforming commands into formal planning problems; 2) It combines the semantic reasoning of LLMs with the search capabilities of a classical planner to produce optimized action sequences; 3) It compiles the resulting plan into behavior trees for reactive control. The framework supports dynamically sized heterogeneous robot teams via a shared blackboard mechanism for communication and state synchronization. To validate our approach, we introduce the MACE-THOR benchmark dataset, comprising 42 complex tasks across 8 distinct household layouts. Experimental results demonstrate that H-AIM achieves a remarkable performance improvement, elevating the task success rate from 12% to 55% and boosting the goal condition recall from 32% to 72% against the strongest baseline, LaMMA-P.
Spurious Rewards Paradox: Mechanistically Understanding How RLVR Activates Memorization Shortcuts in LLMs
Reinforcement Learning with Verifiable Rewards (RLVR) is highly effective for enhancing LLM reasoning, yet recent evidence shows models like Qwen 2.5 achieve significant gains even with spurious or incorrect rewards. We investigate this phenomenon and identify a "Perplexity Paradox": spurious RLVR triggers a divergence where answer-token perplexity drops while prompt-side coherence degrades, suggesting the model is bypassing reasoning in favor of memorization. Using Path Patching, Logit Lens, JSD analysis, and Neural Differential Equations, we uncover a hidden Anchor-Adapter circuit that facilitates this shortcut. We localize a Functional Anchor in the middle layers (L18-20) that triggers the retrieval of memorized solutions, followed by Structural Adapters in later layers (L21+) that transform representations to accommodate the shortcut signal. Finally, we demonstrate that scaling specific MLP keys within this circuit allows for bidirectional causal steering-artificially amplifying or suppressing contamination-driven performance. Our results provide a mechanistic roadmap for identifying and mitigating data contamination in RLVR-tuned models. Code is available at https://github.com/idwts/How-RLVR-Activates-Memorization-Shortcuts.
comment: Work in process
CoG: Controllable Graph Reasoning via Relational Blueprints and Failure-Aware Refinement over Knowledge Graphs
Large Language Models (LLMs) have demonstrated remarkable reasoning capabilities but often grapple with reliability challenges like hallucinations. While Knowledge Graphs (KGs) offer explicit grounding, existing paradigms of KG-augmented LLMs typically exhibit cognitive rigidity--applying homogeneous search strategies that render them vulnerable to instability under neighborhood noise and structural misalignment leading to reasoning stagnation. To address these challenges, we propose CoG, a training-free framework inspired by Dual-Process Theory that mimics the interplay between intuition and deliberation. First, functioning as the fast, intuitive process, the Relational Blueprint Guidance module leverages relational blueprints as interpretable soft structural constraints to rapidly stabilize the search direction against noise. Second, functioning as the prudent, analytical process, the Failure-Aware Refinement module intervenes upon encountering reasoning impasses. It triggers evidence-conditioned reflection and executes controlled backtracking to overcome reasoning stagnation. Experimental results on three benchmarks demonstrate that CoG significantly outperforms state-of-the-art approaches in both accuracy and efficiency.
OpFML: Pipeline for ML-based Operational Forecasting
Machine learning is finding its application in a multitude of areas in science and research, and Climate and Earth Sciences is no exception to this trend. Operational forecasting systems based on data-driven approaches and machine learning methods deploy models for periodic forecasting. Wildfire danger assessment using machine learning has garnered significant interest in the last decade, as conventional methods often overestimate the risk of wildfires. In this work, we present the code OpFML: Operational Forecasting with Machine Learning. OpFML is a configurable and adaptable pipeline that can be utilized to serve a machine learning model for periodic forecasting. We further demonstrate the capabilities of the pipeline through its application to daily Fire Danger Index forecasting and outline its various features.
Self-Augmented Mixture-of-Experts for QoS Prediction
Quality of Service (QoS) prediction is one of the most fundamental problems in service computing and personalized recommendation. In the problem, there is a set of users and services, each associated with a set of descriptive features. Interactions between users and services produce feedback values, typically represented as numerical QoS metrics such as response time or availability. Given the observed feedback for a subset of user-service pairs, the goal is to predict the QoS values for the remaining pairs. A key challenge in QoS prediction is the inherent sparsity of user-service interactions, as only a small subset of feedback values is typically observed. To address this, we propose a self-augmented strategy that leverages a model's own predictions for iterative refinement. In particular, we partially mask the predicted values and feed them back into the model to predict again. Building on this idea, we design a self-augmented mixture-of-experts model, where multiple expert networks iteratively and collaboratively estimate QoS values. We find that the iterative augmentation process naturally aligns with the MoE architecture by enabling inter-expert communication: in the second round, each expert receives the first-round predictions and refines its output accordingly. Experiments on benchmark datasets show that our method outperforms existing baselines and achieves competitive results.
AVP-Pro: An Adaptive Multi-Modal Fusion and Contrastive Learning Approach for Comprehensive Two-Stage Antiviral Peptide Identification
The accurate identification of antiviral peptides (AVPs) is crucial for novel drug development. However, existing methods still have limitations in capturing complex sequence dependencies and distinguishing confusing samples with high similarity. To address these challenges, we propose AVP-Pro, a novel two-stage predictive framework that integrates adaptive feature fusion and contrastive learning. To comprehensively capture the physicochemical properties and deep-seated patterns of peptide sequences, we constructed a panoramic feature space encompassing 10 distinct descriptors and designed a hierarchical fusion architecture. This architecture integrates self-attention and adaptive gating mechanisms to dynamically modulate the weights of local motifs extracted by CNNs and global dependencies captured by BiLSTMs based on sequence context. Targeting the blurred decision boundary caused by the high similarity between positive and negative sample sequences, we adopted an Online Hard Example Mining (OHEM)-driven contrastive learning strategy enhanced by BLOSUM62. This approach significantly sharpened the model's discriminative power. Model evaluation results show that in the first stage of general AVP identification, the model achieved an accuracy of 0.9531 and an MCC of 0.9064, outperforming existing state-of-the-art (SOTA) methods. In the second stage of functional subtype prediction, combined with a transfer learning strategy, the model realized accurate classification of 6 viral families and 8 specific viruses under small-sample conditions. AVP-Pro provides a powerful and interpretable new tool for the high-throughput screening of antiviral drugs. To further enhance accessibility for users, we have developed a user-friendly web interface, which is available at https://wwwy1031-avp-pro.hf.space.
comment: arXiv admin note: substantial text overlap with arXiv:2512.21544
Matching High-Dimensional Geometric Quantiles for Test-Time Adaptation of Transformers and Convolutional Networks Alike
Test-time adaptation (TTA) refers to adapting a classifier for the test data when the probability distribution of the test data slightly differs from that of the training data of the model. To the best of our knowledge, most of the existing TTA approaches modify the weights of the classifier relying heavily on the architecture. It is unclear as to how these approaches are extendable to generic architectures. In this article, we propose an architecture-agnostic approach to TTA by adding an adapter network pre-processing the input images suitable to the classifier. This adapter is trained using the proposed quantile loss. Unlike existing approaches, we correct for the distribution shift by matching high-dimensional geometric quantiles. We prove theoretically that under suitable conditions minimizing quantile loss can learn the optimal adapter. We validate our approach on CIFAR10-C, CIFAR100-C and TinyImageNet-C by training both classic convolutional and transformer networks on CIFAR10, CIFAR100 and TinyImageNet datasets.
Combating Spurious Correlations in Graph Interpretability via Self-Reflection
Interpretable graph learning has recently emerged as a popular research topic in machine learning. The goal is to identify the important nodes and edges of an input graph that are crucial for performing a specific graph reasoning task. A number of studies have been conducted in this area, and various benchmark datasets have been proposed to facilitate evaluation. Among them, one of the most challenging is the Spurious-Motif benchmark, introduced at ICLR 2022. The datasets in this synthetic benchmark are deliberately designed to include spurious correlations, making it particularly difficult for models to distinguish truly relevant structures from misleading patterns. As a result, existing methods exhibit significantly worse performance on this benchmark compared to others. In this paper, we focus on improving interpretability on the challenging Spurious-Motif datasets. We demonstrate that the self-reflection technique, commonly used in large language models to tackle complex tasks, can also be effectively adapted to enhance interpretability in datasets with strong spurious correlations. Specifically, we propose a self-reflection framework that can be integrated with existing interpretable graph learning methods. When such a method produces importance scores for each node and edge, our framework feeds these predictions back into the original method to perform a second round of evaluation. This iterative process mirrors how large language models employ self-reflective prompting to reassess their previous outputs. We further analyze the reasons behind this improvement from the perspective of graph representation learning, which motivates us to propose a fine-tuning training method based on this feedback mechanism.
Contextual Distributionally Robust Optimization with Causal and Continuous Structure: An Interpretable and Tractable Approach
In this paper, we introduce a framework for contextual distributionally robust optimization (DRO) that considers the causal and continuous structure of the underlying distribution by developing interpretable and tractable decision rules that prescribe decisions using covariates. We first introduce the causal Sinkhorn discrepancy (CSD), an entropy-regularized causal Wasserstein distance that encourages continuous transport plans while preserving the causal consistency. We then formulate a contextual DRO model with a CSD-based ambiguity set, termed Causal Sinkhorn DRO (Causal-SDRO), and derive its strong dual reformulation where the worst-case distribution is characterized as a mixture of Gibbs distributions. To solve the corresponding infinite-dimensional policy optimization, we propose the Soft Regression Forest (SRF) decision rule, which approximates optimal policies within arbitrary measurable function spaces. The SRF preserves the interpretability of classical decision trees while being fully parametric, differentiable, and Lipschitz smooth, enabling intrinsic interpretation from both global and local perspectives. To solve the Causal-SDRO with parametric decision rules, we develop an efficient stochastic compositional gradient algorithm that converges to an $\varepsilon$-stationary point at a rate of $O(\varepsilon^{-4})$, matching the convergence rate of standard stochastic gradient descent. Finally, we validate our method through numerical experiments on synthetic and real-world datasets, demonstrating its superior performance and interpretability.
Backdoor Attacks on Multi-modal Contrastive Learning
Contrastive learning has become a leading self- supervised approach to representation learning across domains, including vision, multimodal settings, graphs, and federated learning. However, recent studies have shown that contrastive learning is susceptible to backdoor and data poisoning attacks. In these attacks, adversaries can manipulate pretraining data or model updates to insert hidden malicious behavior. This paper offers a thorough and comparative review of backdoor attacks in contrastive learning. It analyzes threat models, attack methods, target domains, and available defenses. We summarize recent advancements in this area, underline the specific vulnerabilities inherent to contrastive learning, and discuss the challenges and future research directions. Our findings have significant implications for the secure deployment of systems in industrial and distributed environments.
Exact Constraint Enforcement in Physics-Informed Extreme Learning Machines using Null-Space Projection Framework
Physics-informed extreme learning machines (PIELMs) typically impose boundary and initial conditions through penalty terms, yielding only approximate satisfaction that is sensitive to user-specified weights and can propagate errors into the interior solution. This work introduces Null-Space Projected PIELM (NP-PIELM), achieving exact constraint enforcement through algebraic projection in coefficient space. The method exploits the geometric structure of the admissible coefficient manifold, recognizing that it admits a decomposition through the null space of the boundary operator. By characterizing this manifold via a translation-invariant representation and projecting onto the kernel component, optimization is restricted to constraint-preserving directions, transforming the constrained problem into unconstrained least-squares where boundary conditions are satisfied exactly at discrete collocation points. This eliminates penalty coefficients, dual variables, and problem-specific constructions while preserving single-shot training efficiency. Numerical experiments on elliptic and parabolic problems including complex geometries and mixed boundary conditions validate the framework.
comment: 16 pages,6 Figures
Memorize Early, Then Query: Inlier-Memorization-Guided Active Outlier Detection
Outlier detection (OD) aims to identify abnormal instances, known as outliers or anomalies, by learning typical patterns of normal data, or inliers. Performing OD under an unsupervised regime-without any information about anomalous instances in the training data-is challenging. A recently observed phenomenon, known as the inlier-memorization (IM) effect, where deep generative models (DGMs) tend to memorize inlier patterns during early training, provides a promising signal for distinguishing outliers. However, existing unsupervised approaches that rely solely on the IM effect still struggle when inliers and outliers are not well-separated or when outliers form dense clusters. To address these limitations, we incorporate active learning to selectively acquire informative labels, and propose IMBoost, a novel framework that explicitly reinforces the IM effect to improve outlier detection. Our method consists of two stages: 1) a warm-up phase that induces and promotes the IM effect, and 2) a polarization phase in which actively queried samples are used to maximize the discrepancy between inlier and outlier scores. In particular, we propose a novel query strategy and tailored loss function in the polarization phase to effectively identify informative samples and fully leverage the limited labeling budget. We provide a theoretical analysis showing that the IMBoost consistently decreases inlier risk while increasing outlier risk throughout training, thereby amplifying their separation. Extensive experiments on diverse benchmark datasets demonstrate that IMBoost not only significantly outperforms state-of-the-art active OD methods but also requires substantially less computational cost.
Constant Metric Scaling in Riemannian Computation
Constant rescaling of a Riemannian metric appears in many computational settings, often through a global scale parameter that is introduced either explicitly or implicitly. Although this operation is elementary, its consequences are not always made clear in practice and may be confused with changes in curvature, manifold structure, or coordinate representation. In this note we provide a short, self-contained account of constant metric scaling on arbitrary Riemannian manifolds. We distinguish between quantities that change under such a scaling, including norms, distances, volume elements, and gradient magnitudes, and geometric objects that remain invariant, such as the Levi--Civita connection, geodesics, exponential and logarithmic maps, and parallel transport. We also discuss implications for Riemannian optimization, where constant metric scaling can often be interpreted as a global rescaling of step sizes rather than a modification of the underlying geometry. The goal of this note is purely expository and is intended to clarify how a global metric scale parameter can be introduced in Riemannian computation without altering the geometric structures on which these methods rely.
Reasoning Distillation for Lightweight Automated Program Repair
We study whether lightweight symbolic reasoning supervision can improve fix type classification in compact automated program repair models. Small code models are attractive for resource-constrained settings, but they typically produce only a single prediction, making it unclear whether they learn meaningful program structure or rely on shallow correlations. We propose a reasoning distillation approach in which a large teacher model provides structured symbolic reasoning tags alongside fix-type labels. These tags capture high-level causal properties of bugs without relying on free-form explanations. We train a CodeT5-based student model under label-only and reasoning-distilled settings on the IntroClass benchmark. Reasoning supervision consistently improves macro averaged performance, particularly on less frequent bug categories, without increasing model size or complexity. We further analyze the relationship between reasoning accuracy and fix-type prediction, showing that correct reasoning traces strongly correlate with correct predictions, while not fully determining them. Our results suggest that symbolic reasoning distillation is a practical way to improve interpretability and robustness in lightweight program repair models.
comment: 8 pages, 5 tables. Preprint
Toward Adaptive Grid Resilience: A Gradient-Free Meta-RL Framework for Critical Load Restoration
Restoring critical loads after extreme events demands adaptive control to maintain distribution-grid resilience, yet uncertainty in renewable generation, limited dispatchable resources, and nonlinear dynamics make effective restoration difficult. Reinforcement learning (RL) can optimize sequential decisions under uncertainty, but standard RL often generalizes poorly and requires extensive retraining for new outage configurations or generation patterns. We propose a meta-guided gradient-free RL (MGF-RL) framework that learns a transferable initialization from historical outage experiences and rapidly adapts to unseen scenarios with minimal task-specific tuning. MGF-RL couples first-order meta-learning with evolutionary strategies, enabling scalable policy search without gradient computation while accommodating nonlinear, constrained distribution-system dynamics. Experiments on IEEE 13-bus and IEEE 123-bus test systems show that MGF-RL outperforms standard RL, MAML-based meta-RL, and model predictive control across reliability, restoration speed, and adaptation efficiency under renewable forecast errors. MGF-RL generalizes to unseen outages and renewable patterns while requiring substantially fewer fine-tuning episodes than conventional RL. We also provide sublinear regret bounds that relate adaptation efficiency to task similarity and environmental variation, supporting the empirical gains and motivating MGF-RL for real-time load restoration in renewable-rich distribution grids.
Transient learning dynamics drive escape from sharp valleys in Stochastic Gradient Descent
Stochastic gradient descent (SGD) is central to deep learning, yet the dynamical origin of its preference for flatter, more generalizable solutions remains unclear. Here, by analyzing SGD learning dynamics, we identify a nonequilibrium mechanism governing solution selection. Numerical experiments reveal a transient exploratory phase in which SGD trajectories repeatedly escape sharp valleys and transition toward flatter regions of the loss landscape. By using a tractable physical model, we show that the SGD noise reshapes the landscape into an effective potential that favors flat solutions. Crucially, we uncover a transient freezing mechanism: as training proceeds, growing energy barriers suppress inter-valley transitions and ultimately trap the dynamics within a single basin. Increasing the SGD noise strength delays this freezing, which enhances convergence to flatter minima. Together, these results provide a unified physical framework linking learning dynamics, loss-landscape geometry, and generalization, and suggest principles for the design of more effective optimization algorithms.
comment: 15 pages, 6 figures
Multivariate LSTM-Based Forecasting for Renewable Energy: Enhancing Climate Change Mitigation ICLR 2025
The increasing integration of renewable energy sources (RESs) into modern power systems presents significant opportunities but also notable challenges, primarily due to the inherent variability of RES generation. Accurate forecasting of RES generation is crucial for maintaining the reliability, stability, and economic efficiency of power system operations. Traditional approaches, such as deterministic methods and stochastic programming, frequently depend on representative scenarios generated through clustering techniques like K-means. However, these methods may fail to fully capture the complex temporal dependencies and non-linear patterns within RES data. This paper introduces a multivariate Long Short-Term Memory (LSTM)-based network designed to forecast RESs generation using their real-world historical data. The proposed model effectively captures long-term dependencies and interactions between different RESs, utilizing historical data from both local and neighboring areas to enhance predictive accuracy. In the case study, we showed that the proposed forecasting approach results in lower CO2 emissions, and a more reliable supply of electric loads.
comment: ICLR 2025 Workshop on Tackling Climate Change with Machine Learning, paper #57 (https://www.climatechange.ai/papers/iclr2025/57)
Depression Detection Based on Electroencephalography Using a Hybrid Deep Neural Network CNN-GRU and MRMR Feature Selection
This study investigates the detection and classification of depressive and non-depressive states using deep learning approaches. Depression is a prevalent mental health disorder that substantially affects quality of life, and early diagnosis can greatly enhance treatment effectiveness and patient care. However, conventional diagnostic methods rely heavily on self-reported assessments, which are often subjective and may lack reliability. Consequently, there is a strong need for objective and accurate techniques to identify depressive states. In this work, a deep learning based framework is proposed for the early detection of depression using EEG signals. EEG data, which capture underlying brain activity and are not influenced by external behavioral factors, can reveal subtle neural changes associated with depression. The proposed approach combines convolutional neural networks (CNNs) and gated recurrent units (GRUs) to jointly extract spatial and temporal features from EEG recordings. The minimum redundancy maximum relevance (MRMR) algorithm is then applied to select the most informative features, followed by classification using a fully connected neural network. The results demonstrate that the proposed model achieves high performance in accurately identifying depressive states, with an overall accuracy of 98.74%. By effectively integrating temporal and spatial information and employing optimized feature selection, this method shows strong potential as a reliable tool for clinical applications. Overall, the proposed framework not only enables accurate early detection of depression but also has the potential to support improved treatment strategies and patient outcomes.
comment: 20 pages, 8 figures
HOSL: Hybrid-Order Split Learning for Memory-Constrained Edge Training
Split learning (SL) enables collaborative training of large language models (LLMs) between resource-constrained edge devices and compute-rich servers by partitioning model computation across the network boundary. However, existing SL systems predominantly rely on first-order (FO) optimization, which requires clients to store intermediate quantities such as activations for backpropagation. This results in substantial memory overhead, largely negating benefits of model partitioning. In contrast, zeroth-order (ZO) optimization eliminates backpropagation and significantly reduces memory usage, but often suffers from slow convergence and degraded performance. In this work, we propose HOSL, a novel Hybrid-Order Split Learning framework that addresses this fundamental trade-off between memory efficiency and optimization effectiveness by strategically integrating ZO optimization on the client side with FO optimization on the server side. By employing memory-efficient ZO gradient estimation at the client, HOSL eliminates backpropagation and activation storage, reducing client memory consumption. Meanwhile, server-side FO optimization ensures fast convergence and competitive performance. Theoretically, we show that HOSL achieves a $\mathcal{O}(\sqrt{d_c/TQ})$ rate, which depends on client-side model dimension $d_c$ rather than the full model dimension $d$, demonstrating that convergence improves as more computation is offloaded to the server. Extensive experiments on OPT models (125M and 1.3B parameters) across 6 tasks demonstrate that HOSL reduces client GPU memory by up to 3.7$\times$ compared to the FO method while achieving accuracy within 0.20%-4.23% of this baseline. Furthermore, HOSL outperforms the ZO baseline by up to 15.55%, validating the effectiveness of our hybrid strategy for memory-efficient training on edge devices.
comment: 12 pages, 2 figures, 6 tables. Submitted to WiOpt 2026
RobuMTL: Enhancing Multi-Task Learning Robustness Against Weather Conditions WACV
Robust Multi-Task Learning (MTL) is crucial for autonomous systems operating in real-world environments, where adverse weather conditions can severely degrade model performance and reliability. In this paper, we introduce RobuMTL, a novel architecture designed to adaptively address visual degradation by dynamically selecting task-specific hierarchical Low-Rank Adaptation (LoRA) modules and a LoRA expert squad based on input perturbations in a mixture-of-experts fashion. Our framework enables adaptive specialization based on input characteristics, improving robustness across diverse real-world conditions. To validate our approach, we evaluated it on the PASCAL and NYUD-v2 datasets and compared it against single-task models, standard MTL baselines, and state-of-the-art methods. On the PASCAL benchmark, RobuMTL delivers a +2.8% average relative improvement under single perturbations and up to +44.4% under mixed weather conditions compared to the MTL baseline. On NYUD-v2, RobuMTL achieves a +9.7% average relative improvement across tasks. The code is available at GitHub.
comment: Accepted at the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2026
Self-learned representation-guided latent diffusion model for breast cancer classification in deep ultraviolet whole surface images
Breast-Conserving Surgery (BCS) requires precise intraoperative margin assessment to preserve healthy tissue. Deep Ultraviolet Fluorescence Scanning Microscopy (DUV-FSM) offers rapid, high-resolution surface imaging for this purpose; however, the scarcity of annotated DUV data hinders the training of robust deep learning models. To address this, we propose an Self-Supervised Learning (SSL)-guided Latent Diffusion Model (LDM) to generate high-quality synthetic training patches. By guiding the LDM with embeddings from a fine-tuned DINO teacher, we inject rich semantic details of cellular structures into the synthetic data. We combine real and synthetic patches to fine-tune a Vision Transformer (ViT), utilizing patch prediction aggregation for WSI-level classification. Experiments using 5-fold cross-validation demonstrate that our method achieves 96.47 % accuracy and reduces the FID score to 45.72, significantly outperforming class-conditioned baselines.
comment: This paper has been accepted for the IEEE International Symposium on Biomedical Imaging (ISBI) 2026, London, UK, and will be presented in the corresponding session
A PAC-Bayesian Analysis of Channel-Induced Degradation in Edge Inference
In the emerging paradigm of edge inference, neural networks (NNs) are partitioned across distributed edge devices that collaboratively perform inference via wireless transmission. However, standard NNs are generally trained in a noiseless environment, creating a mismatch with the noisy channels during edge deployment. In this paper, we address this issue by characterizing the channel-induced performance deterioration as a generalization error against unseen channels. We introduce an augmented NN model that incorporates channel statistics directly into the weight space, allowing us to derive PAC-Bayesian generalization bounds that explicitly quantifies the impact of wireless distortion. We further provide closed-form expressions for practical channels to demonstrate the tractability of these bounds. Inspired by the theoretical results, we propose a channel-aware training algorithm that minimizes a surrogate objective based on the derived bound. Simulations show that the proposed algorithm can effectively improve inference accuracy by leveraging channel statistics, without end-to-end re-training.
FAConvLSTM: Factorized-Attention ConvLSTM for Efficient Feature Extraction in Multivariate Climate Data
Learning physically meaningful spatiotemporal representations from high-resolution multivariate Earth observation data is challenging due to strong local dynamics, long-range teleconnections, multi-scale interactions, and nonstationarity. While ConvLSTM2D is a commonly used baseline, its dense convolutional gating incurs high computational cost and its strictly local receptive fields limit the modeling of long-range spatial structure and disentangled climate dynamics. To address these limitations, we propose FAConvLSTM, a Factorized-Attention ConvLSTM layer designed as a drop-in replacement for ConvLSTM2D that simultaneously improves efficiency, spatial expressiveness, and physical interpretability. FAConvLSTM factorizes recurrent gate computations using lightweight [1 times 1] bottlenecks and shared depthwise spatial mixing, substantially reducing channel complexity while preserving recurrent dynamics. Multi-scale dilated depthwise branches and squeeze-and-excitation recalibration enable efficient modeling of interacting physical processes across spatial scales, while peephole connections enhance temporal precision. To capture teleconnection-scale dependencies without incurring global attention cost, FAConvLSTM incorporates a lightweight axial spatial attention mechanism applied sparsely in time. A dedicated subspace head further produces compact per timestep embeddings refined through temporal self-attention with fixed seasonal positional encoding. Experiments on multivariate spatiotemporal climate data shows superiority demonstrating that FAConvLSTM yields more stable, interpretable, and robust latent representations than standard ConvLSTM, while significantly reducing computational overhead.
Predictive Modeling of Power Outages during Extreme Events: Integrating Weather and Socio-Economic Factors
This paper presents a novel learning based framework for predicting power outages caused by extreme events. The proposed approach targets low probability high consequence outage scenarios and leverages a comprehensive set of features derived from publicly available data sources. We integrate EAGLE-I outage records from 2014 to 2024 with weather, socioeconomic, infrastructure, and seasonal event data. Incorporating social and demographic indicators reveals patterns of community vulnerability and improves understanding of outage risk during extreme conditions. Four machine learning models are evaluated including Random Forest (RF), Graph Neural Network (GNN), Adaptive Boosting (AdaBoost), and Long Short Term Memory (LSTM). Experimental validation is performed on a large scale dataset covering counties in the lower peninsula of Michigan. Among all models tested, the LSTM network achieves higher accuracy.
comment: This is a preprint of a manuscript currently under review at Electric Power Systems Research. The content may be subject to change following peer review
From Aggregation to Selection: User-Validated Distributed Social Recommendation
Social recommender systems facilitate social connections by identifying potential friends for users. Each user maintains a local social network centered around themselves, resulting in a naturally distributed social structure. Recent research on distributed modeling for social recommender systems has gained increasing attention, as it naturally aligns with the user-centric structure of user interactions. Current distributed social recommender systems rely on automatically combining predictions from multiple models, often overlooking the user's active role in validating whether suggested connections are appropriate. Moreover, recommendation decisions are validated by individual users rather than derived from a single global ordering of candidates. As a result, standard ranking-based evaluation metrics make it difficult to evaluate whether a user-confirmed recommendation decision is actually correct. To address these limitations, we propose DeSocial, a distributed social recommendation framework with user-validation. DeSocial enables users to select recommendation algorithms to validate their potential connections, and the verification is processed through majority consensus among multiple independent user validators. To evaluate the distributed recommender system with user validator, we formulate this setting as a link prediction and verification task and introduce Acc@K, a consensus-based evaluation metric that measures whether user-approved recommendations are correct. Experiments on 4 real-world social networks shows that DeSocial improves decision correctness and robustness compared to single-point and distributed baselines. These findings highlight the potential of user-validated distributed recommender systems as a practical approach to social recommendation, with broader applicability to distributed and decentralized recommendations. Code: https://github.com/agiresearch/DeSocial.
comment: Accepted by HCRS@WWW 2026
Beneficial Reasoning Behaviors in Agentic Search and Effective Post-training to Obtain Them
Agentic search requires large language models (LLMs) to perform multi-step search to solve complex information-seeking tasks, imposing unique challenges on their reasoning capabilities. However, what constitutes effective reasoning for agentic search and how it can be learned remains unclear. In this work, we first investigate the reasoning behaviors that enable success in agentic search. By comparing successful and failed trajectories via an LLM-based analysis pipeline, we identify four beneficial behaviors: Information Verification, Authority Evaluation, Adaptive Search, and Error Recovery. Building on this, we propose Behavior Priming, a training approach that equips agentic search models with these reasoning behaviors before reinforcement learning (RL). Specifically, it first performs supervised fine-tuning (SFT) on collected trajectories exhibiting the identified behaviors to cultivate these behaviors, and then applies standard RL to further improve task performance. Experiments on Qwen3-1.7B and Llama3.2-3B-Instruct show that Behavior Priming yields relative improvements over direct RL by 37.2\% on three web benchmarks and 6.2\% on seven multi-hop QA benchmarks, and outperforms the SFT-then-RL baseline using outcome-correct trajectories for fine-tuning. Crucially, we show that these reasoning behaviors matter more than outcome correctness in the priming stage prior to RL. Further analysis reveals that Behavior Priming enhances exploration (pass@8) and test-time scaling (search step number), providing a robust foundation for RL. Our code are avalible at https://github.com/cxcscmu/Behavior-Priming-for-Agentic-Search.
Conditional Distribution Compression via the Kernel Conditional Mean Embedding NeurIPS 2025
Existing distribution compression methods, like Kernel Herding (KH), were originally developed for unlabelled data. However, no existing approach directly compresses the conditional distribution of \textit{labelled} data. To address this gap, we first introduce the Average Maximum Conditional Mean Discrepancy (AMCMD), a metric for comparing conditional distributions, and derive a closed form estimator. Next, we make a key observation: in the context of distribution compression, the cost of constructing a compressed set targeting the AMCMD can be reduced from cubic to linear. Leveraging this, we extend KH to propose Average Conditional Kernel Herding (ACKH), a linear-time greedy algorithm for constructing compressed sets that target the AMCMD. To better understand the advantages of directly compressing the conditional distribution rather than doing so via the joint distribution, we introduce Joint Kernel Herding (JKH), an adaptation of KH designed to compress the joint distribution of labelled data. While herding methods provide a simple and interpretable selection process, they rely on a greedy heuristic. To explore alternative optimisation strategies, we also propose Joint Kernel Inducing Points (JKIP) and Average Conditional Kernel Inducing Points (ACKIP), which jointly optimise the compressed set while maintaining linear complexity. Experiments show that directly preserving conditional distributions with ACKIP outperforms both joint distribution compression and the greedy selection used in ACKH. Moreover, we see that JKIP consistently outperforms JKH.
comment: 76 pages, 32 figures, accepted into NeurIPS 2025
Meta-Learning Guided Pruning for Few-Shot Plant Pathology on Edge Devices
A key challenge in agricultural AI is deploying disease detection systems in remote fields with limited access to laboratories or high-performance computing (HPC) resources. While deep learning (DL) models, specifically deep convolutional networks, achieve high accuracy in identifying plant pathologies from leaf imagery, their memory footprints and computational demands limit edge deployment on devices constrained by battery life, processing power, and connectivity, such as Raspberry Pi. Few-shot learning (FSL) paradigms offer a compelling solution to the data scarcity problem inherent in agricultural applications, where obtaining labeled samples for novel disease variants proves both costly and time-sensitive. This work introduces a framework combining pruning with meta-learning for agricultural disease classification, addressing the tension between generalization capability and deployment feasibility. The proposed approach combines a novel Disease-Aware Channel Importance Scoring (DACIS) mechanism with a three-stage Prune-then-Meta-Learn-then-Prune (PMP) pipeline. Experiments on PlantVillage and PlantDoc datasets demonstrate that the proposed approach reduces model size by 78\% while maintaining 92.3\% of the original accuracy. The compressed model achieves 7 frames per second (FPS) on a Raspberry Pi 4, enabling practical real-time field diagnosis for smallholder farmers.
A Distributed Generative AI Approach for Heterogeneous Multi-Domain Environments under Data Sharing constraints
Federated Learning has gained attention for its ability to enable multiple nodes to collaboratively train machine learning models without sharing raw data. At the same time, Generative AI -- particularly Generative Adversarial Networks (GANs) -- have achieved remarkable success across a wide range of domains, such as healthcare, security, and Image Generation. However, training generative models typically requires large datasets and significant computational resources, which are often unavailable in real-world settings. Acquiring such resources can be costly and inefficient, especially when many underutilized devices -- such as IoT devices and edge devices -- with varying capabilities remain idle. Moreover, obtaining large datasets is challenging due to privacy concerns and copyright restrictions, as most devices are unwilling to share their data. To address these challenges, we propose a novel approach for decentralized GAN training that enables utilizing distributed data and underutilized, low-capability devices while not sharing data in its raw form. Our approach is designed to tackle key challenges in decentralized environments, combining KLD-weighted Clustered Federated Learning to address the issues of data heterogeneity and multi-domain datasets, with Heterogeneous U-Shaped split learning to tackle the challenge of device heterogeneity under strict data sharing constraints -- ensuring that no labels or raw data, whether real or synthetic, are ever shared between nodes. Experiments show that our approach demonstrates significant improvements across key metrics, where it achieves an average 10% boost in classification metrics (up to 60% in multi-domain non-IID settings), 1.1x -- 3x higher image generation scores for the MNIST family datasets, and 2x -- 70x lower FID scores for higher resolution datasets. Find our code at https://distributed-gen-ai.github.io/huscf-gan.github.io/.
comment: Accepted and published in Transactions on Machine Learning Research (TMLR), 2026
Differentiable Cyclic Causal Discovery Under Unmeasured Confounders
Understanding causal relationships between variables is fundamental across scientific disciplines. Most causal discovery algorithms rely on two key assumptions: (i) all variables are observed, and (ii) the underlying causal graph is acyclic. While these assumptions simplify theoretical analysis, they are often violated in real-world systems, such as biological networks. Existing methods that account for confounders either assume linearity or struggle with scalability. To address these limitations, we propose DCCD-CONF, a novel framework for differentiable learning of nonlinear cyclic causal graphs in the presence of unmeasured confounders using interventional data. Our approach alternates between optimizing the graph structure and estimating the confounder distribution by maximizing the log-likelihood of the data. Through experiments on synthetic data and real-world gene perturbation datasets, we show that DCCD-CONF outperforms state-of-the-art methods in both causal graph recovery and confounder identification. Additionally, we also provide consistency guarantees for our framework, reinforcing its theoretical soundness.
UCB-type Algorithm for Budget-Constrained Expert Learning
In many modern applications, a system must dynamically choose between several adaptive learning algorithms that are trained online. Examples include model selection in streaming environments, switching between trading strategies in finance, and orchestrating multiple contextual bandit or reinforcement learning agents. At each round, a learner must select one predictor among $K$ adaptive experts to make a prediction, while being able to update at most $M \le K$ of them under a fixed training budget. We address this problem in the \emph{stochastic setting} and introduce \algname{M-LCB}, a computationally efficient UCB-style meta-algorithm that provides \emph{anytime regret guarantees}. Its confidence intervals are built directly from realized losses, require no additional optimization, and seamlessly reflect the convergence properties of the underlying experts. If each expert achieves internal regret $\tilde O(T^α)$, then \algname{M-LCB} ensures overall regret bounded by $\tilde O\!\Bigl(\sqrt{\tfrac{KT}{M}} \;+\; (K/M)^{1-α}\,T^α\Bigr)$. To our knowledge, this is the first result establishing regret guarantees when multiple adaptive experts are trained simultaneously under per-round budget constraints. We illustrate the framework with two representative cases: (i) parametric models trained online with stochastic losses, and (ii) experts that are themselves multi-armed bandit algorithms. These examples highlight how \algname{M-LCB} extends the classical bandit paradigm to the more realistic scenario of coordinating stateful, self-learning experts under limited resources.
Entropy Production in Machine Learning Under Fokker-Planck Probability Flow
Machine learning models deployed in nonstationary environments inevitably experience performance degradation due to data drift. While numerous drift detection heuristics exist, most lack a dynamical interpretation and provide limited guidance on how retraining decisions should be balanced against operational cost. In this work, we propose an entropy-based retraining framework grounded in nonequilibrium statistical physics. Interpreting drift as probability flow governed by a Fokker-Planck equation, we quantify model-data mismatch using relative entropy and show that its time derivative admits an entropy-balance decomposition featuring a nonnegative entropy production term driven by probability currents. Guided by this theory, we implement an entropy-triggered retraining policy using an exponentially weighted moving-average (EWMA) control statistic applied to a streaming kernel density estimator of the Kullback-Leibler divergence. We evaluate this approach across multiple nonstationary data streams. In synthetic, financial, and web-traffic domains, entropy-based retraining achieves predictive performance comparable to frequent retraining while reducing retraining frequency by one to two orders of magnitude. However, in a challenging biomedical ECG setting, the entropy-based trigger underperforms the maximum-frequency baseline, highlighting limitations of feature-space entropy monitoring under complex label-conditional drift.
comment: 10 pages, 4 figures, 1 table
High-Dimensional Tail Index Regression
Motivated by the empirical observation of power-law distributions in the credits (e.g., ``likes'') of viral posts in social media, we introduce a high-dimensional tail index regression model and propose methods for estimation and inference of its parameters. First, we propose a regularized estimator, establish its consistency, and derive its convergence rate. Second, we debias the regularized estimator to facilitate inference and prove its asymptotic normality. Simulation studies corroborate our theoretical findings. We apply these methods to the text analysis of viral posts on X (formerly Twitter).
Do Sparse Autoencoders Identify Reasoning Features in Language Models?
We investigate whether sparse autoencoders (SAEs) identify genuine reasoning features in large language models (LLMs). We first show through a simple theoretical analysis that $\ell_1$-regularized SAEs are intrinsically biased toward low-dimensional patterns, providing a mechanistic explanation for why shallow linguistic cues may be preferentially captured over distributed reasoning behaviors. Motivated by this bias, we introduce a falsification-oriented evaluation framework that combines causal token injection and LLM-guided falsification to test whether feature activation reflects reasoning processes or superficial linguistic correlates. Across 20 configurations spanning multiple model families, layers, and reasoning datasets, we find that features identified by contrastive methods are highly sensitive to token-level interventions, with 45% to 90% activating when a small number of associated tokens are injected into non-reasoning text. For the remaining features, LLM-guided falsification consistently produces non-reasoning inputs that activate the feature and reasoning inputs that do not, with no analyzed feature satisfying our criteria for genuine reasoning behavior. Steering these features yields no improvements in benchmark performance. Overall, our results suggest that SAE features identified by current contrastive approaches primarily capture linguistic correlates of reasoning rather than the underlying reasoning computations themselves. Code is available at https://github.com/GeorgeMLP/reasoning-probing.
Spectral invariance and maximality properties of the frequency spectrum of quantum neural networks
We analyze the frequency spectrum of Quantum Neural Networks (QNNs) using Minkowski sums, which yields a compact algebraic description and permits explicit computation. Using this description, we prove several maximality results for broad classes of QNN architectures. Under some mild technical conditions we establish a bijection between classes of models with the same area $A:=R\cdot L$ that preserves the frequency spectrum, where $R$ denotes the number of qubits and $L$ the number of layers, which we consequently call spectral invariance under area-preserving transformations. With this we explain the symmetry in $R$ and $L$ in the results often observed in the literature and show that the maximal frequency spectrum depends only on the area $A=RL$ and not on the individual values of $R$ and $L$. Moreover, we collect and extend existing results and specify the maximum possible frequency spectrum of a QNN with an arbitrary number of layers as a function of the spectrum of its generators. In the case of arbitrary dimensional generators, where our two introduced notions of maximality differ, we extend existing Golomb ruler based results and introduce a second novel approach based on a variation of the turnpike problem, which we call the relaxed turnpike problem. We clarify comprehensively how the generators of a QNN must be chosen in order to obtain a maximal frequency spectrum for a given area $A$, thereby contributing to a deeper theoretical understanding. However, our numerical experiments show that trainability depends not only on $A = RL$, but also on the choice of $(R,L)$, so that knowledge of the maximum frequency spectrum alone is not sufficient to ensure good trainability.
Policy alone is probably not the solution: A large-scale experiment on how developers struggle to design meaningful end-user explanations
Developers play a central role in determining how machine learning systems are explained in practice, yet they are rarely trained to design explanations for non-technical audiences. Despite this, transparency and explainability requirements are increasingly codified in regulation and organizational policy. It remains unclear how such policies influence developer behavior or the quality of the explanations they produce. We report results from two controlled experiments with 194 participants, typical developers without specialized training in human-centered explainable AI, who designed explanations for an ML-powered diabetic retinopathy screening tool. In the first experiment, differences in policy purpose and level of detail had little effect: policy guidance was often ignored and explanation quality remained low. In the second experiment, stronger enforcement increased formal compliance, but explanations largely remained poorly suited to medical professionals and patients. We further observed that across both experiments, developers repeatedly produced explanations that were technically flawed or difficult to interpret, framed for developers rather than end users, reliant on medical jargon, or insufficiently grounded in the clinical decision context and workflow, with developer-centric framing being the most prevalent. These findings suggest that policy and policy enforcement alone are insufficient to produce meaningful end-user explanations and that responsible AI frameworks may overestimate developers' ability to translate high-level requirements into human-centered designs without additional training, tools, or implementation support.
Fodor and Pylyshyn's Legacy: Still No Human-like Systematic Compositionality in Neural Networks
Strong meta-learning capabilities for systematic compositionality are emerging as an important skill for navigating the complex and changing tasks of today's world. However, in presenting models for robust adaptation to novel environments, it is important to refrain from making unsupported claims about the performance of meta-learning systems that ultimately do not stand up to scrutiny. While Fodor and Pylyshyn famously posited that neural networks inherently lack this capacity as they are unable to model compositional representations or structure-sensitive operations, and thus are not a viable model of the human mind, Lake and Baroni recently presented meta-learning as a pathway to compositionality. In this position paper, we critically revisit this claim and highlight limitations in the proposed meta-learning framework for compositionality. Our analysis shows that modern neural meta-learning systems can only perform such tasks, if at all, under a very narrow and restricted definition of a meta-learning setup. We therefore claim that `Fodor and Pylyshyn's legacy' persists, and to date, there is no human-like systematic compositionality learned in neural networks.
Balanced Edge Pruning for Graph Anomaly Detection with Noisy Labels
Graph anomaly detection (GAD) is widely applied in many areas, such as financial fraud detection and social spammer detection. Anomalous nodes in the graph not only impact their own communities but also create a ripple effect on neighbors throughout the graph structure. Detecting anomalous nodes in complex graphs has been a challenging task. While existing GAD methods assume all labels are correct, real-world scenarios often involve inaccurate annotations. These noisy labels can severely degrade GAD performance because, with anomalies representing a minority class, even a small number of mislabeled instances can disproportionately interfere with detection models. Cutting edges to mitigate the negative effects of noisy labels is a good option; however, it has both positive and negative influences and also presents an issue of weak supervision. To perform effective GAD with noisy labels, we propose REinforced Graph Anomaly Detector (REGAD) by pruning the edges of candidate nodes potentially with mistaken labels. Moreover, we design the performance feedback based on strategically crafted confident labels to guide the cutting process, ensuring optimal results. Specifically, REGAD contains two novel components. (i) A tailored policy network, which involves two-step actions to remove negative effect propagation step by step. (ii) A policy-in-the-loop mechanism to identify suitable edge removal strategies that control the propagation of noise on the graph and estimate the updated structure to obtain reliable pseudo labels iteratively. Experiments on three real-world datasets demonstrate that REGAD outperforms all baselines under different noisy ratios.
An Efficient Long-Context Ranking Architecture With Calibrated LLM Distillation: Application to Person-Job Fit
Finding the most relevant person for a job proposal in real time is challenging, especially when resumes are long, structured, and multilingual. In this paper, we propose a re-ranking model based on a new generation of late cross-attention architecture, that decomposes both resumes and project briefs to efficiently handle long-context inputs with minimal computational overhead. To mitigate historical data biases, we use a generative large language model (LLM) as a teacher, generating fine-grained, semantically grounded supervision. This signal is distilled into our student model via an enriched distillation loss function. The resulting model produces skill-fit scores that enable consistent and interpretable person-job matching. Experiments on relevance, ranking, and calibration metrics demonstrate that our approach outperforms state-of-the-art baselines.
A Safety Report on GPT-5.2, Gemini 3 Pro, Qwen3-VL, Grok 4.1 Fast, Nano Banana Pro, and Seedream 4.5
The rapid evolution of Large Language Models (LLMs) and Multimodal Large Language Models (MLLMs) has driven major gains in reasoning, perception, and generation across language and vision, yet whether these advances translate into comparable improvements in safety remains unclear, partly due to fragmented evaluations that focus on isolated modalities or threat models. In this report, we present an integrated safety evaluation of six frontier models--GPT-5.2, Gemini 3 Pro, Qwen3-VL, Grok 4.1 Fast, Nano Banana Pro, and Seedream 4.5--assessing each across language, vision-language, and image generation using a unified protocol that combines benchmark, adversarial, multilingual, and compliance evaluations. By aggregating results into safety leaderboards and model profiles, we reveal a highly uneven safety landscape: while GPT-5.2 demonstrates consistently strong and balanced performance, other models exhibit clear trade-offs across benchmark safety, adversarial robustness, multilingual generalization, and regulatory compliance. Despite strong results under standard benchmarks, all models remain highly vulnerable under adversarial testing, with worst-case safety rates dropping below 6%. Text-to-image models show slightly stronger alignment in regulated visual risk categories, yet remain fragile when faced with adversarial or semantically ambiguous prompts. Overall, these findings highlight that safety in frontier models is inherently multidimensional--shaped by modality, language, and evaluation design--underscoring the need for standardized, holistic safety assessments to better reflect real-world risk and guide responsible deployment.
comment: 41 pages, 22 figures
Dynamic Prototype Rehearsal for Continual ECG Arrhythmia Detection
Continual Learning (CL) methods aim to learn from a sequence of tasks while avoiding the challenge of forgetting previous knowledge. We present DREAM-CL, a novel CL method for ECG arrhythmia detection that introduces dynamic prototype rehearsal memory. DREAM-CL selects representative prototypes by clustering data based on learning behavior during each training session. Within each cluster, we apply a smooth sorting operation that ranks samples by training difficulty, compressing extreme values and removing outliers. The more challenging samples are then chosen as prototypes for the rehearsal memory, ensuring effective knowledge retention across sessions. We evaluate our method on time-incremental, class-incremental, and lead-incremental scenarios using two widely used ECG arrhythmia datasets, Chapman and PTB-XL. The results demonstrate that DREAM-CL outperforms the state-of-the-art in CL for ECG arrhythmia detection. Detailed ablation and sensitivity studies are performed to validate the different design choices of our method.
comment: Accepted to 2025 International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2025)
Universal Architectures for the Learning of Polyhedral Norms and Convex Regularizers
This paper addresses the task of learning convex regularizers to guide the reconstruction of images from limited data. By imposing that the reconstruction be amplitude-equivariant, we narrow down the class of admissible functionals to those that can be expressed as a power of a seminorm. We then show that such functionals can be approximated to arbitrary precision with the help of polyhedral norms. In particular, we identify two dual parameterizations of such systems: (i) a synthesis form with an $\ell_1$-penalty that involves some learnable dictionary; and (ii) an analysis form with an $\ell_\infty$-penalty that involves a trainable regularization operator. After having provided geometric insights and proved that the two forms are universal, we propose an implementation that relies on a specific architecture (tight frame with a weighted $\ell_1$ penalty) that is easy to train. We illustrate its use for denoising and the reconstruction of biomedical images. We find that the proposed framework outperforms the sparsity-based methods of compressed sensing, while it offers essentially the same convergence and robustness guarantees.
comment: Accepted for publication in SIAM Journal on Imaging Sciences
Let the Void Be Void: Robust Open-Set Semi-Supervised Learning via Selective Non-Alignment AAAI
Open-set semi-supervised learning (OSSL) leverages unlabeled data containing both in-distribution (ID) and unknown out-of-distribution (OOD) samples, aiming simultaneously to improve closed-set accuracy and detect novel OOD instances. Existing methods either discard valuable information from uncertain samples or force-align every unlabeled sample into one or a few synthetic "catch-all" representations, resulting in geometric collapse and overconfidence on only seen OODs. To address the limitations, we introduce selective non-alignment, adding a novel "skip" operator into conventional pull and push operations of contrastive learning. Our framework, SkipAlign, selectively skips alignment (pulling) for low-confidence unlabeled samples, retaining only gentle repulsion against ID prototypes. This approach transforms uncertain samples into a pure repulsion signal, resulting in tighter ID clusters and naturally dispersed OOD features. Extensive experiments demonstrate that SkipAlign significantly outperforms state-of-the-art methods in detecting unseen OOD data without sacrificing ID classification accuracy.
comment: Proceedings of the 40th AAAI Conference on Artificial Intelligence (AAAI 2026)
FEAT: Free energy Estimators with Adaptive Transport NeurIPS 2025
We present Free energy Estimators with Adaptive Transport (FEAT), a novel framework for free energy estimation -- a critical challenge across scientific domains. FEAT leverages learned transports implemented via stochastic interpolants and provides consistent, minimum-variance estimators based on escorted Jarzynski equality and controlled Crooks theorem, alongside variational upper and lower bounds on free energy differences. Unifying equilibrium and non-equilibrium methods under a single theoretical framework, FEAT establishes a principled foundation for neural free energy calculations. Experimental validation on toy examples, molecular simulations, and quantum field theory demonstrates improvements over existing learning-based methods. Our PyTorch implementation is available at https://github.com/jiajunhe98/FEAT.
comment: Accepted to NeurIPS 2025; the first two authors contribute equally to this work
Periodic Asynchrony: An On-Policy Approach for Accelerating LLM Reinforcement Learning
Since the introduction of the GRPO algorithm, reinforcement learning (RL) has attracted increasing attention, with growing efforts to reproduce and apply it. However, training efficiency remains a critical challenge. In mainstream RL frameworks, inference and training are typically deployed on the same devices. While this approach reduces costs through resource consolidation, its synchronous execution imposes a computational coupling that prevents concurrent inference and training. In this study, we are returning to the strategy of separating inference and training deployment, and by introducing improvements in the data loader, we transform the conventional synchronous architecture into a periodically asynchronous framework, which allows for demand-driven, independent, and elastic scaling of each component, while the accuracy of the algorithm remains completely equivalent to the synchronization method, with both belonging to the on-policy strategy. It is worth emphasizing that we apply a unified tri-model architecture in the training phase, and we also proposed a shared-prompt attention mask to reduce repetitive computation. In practice, our approach consistently delivers significant end-to-end training efficiency improvements on NPU platforms, indicating its potential for widespread application.
LLMs can hide text in other text of the same length
A meaningful text can be hidden inside another, completely different yet still coherent and plausible, text of the same length. For example, a tweet containing a harsh political critique could be embedded in a tweet that celebrates the same political leader, or an ordinary product review could conceal a secret manuscript. This uncanny state of affairs is now possible thanks to Large Language Models, and in this paper we present Calgacus, a simple and efficient protocol to achieve it. We show that even modest 8-billion-parameter open-source LLMs are sufficient to obtain high-quality results, and a message as long as this abstract can be encoded and decoded locally on a laptop in seconds. The existence of such a protocol demonstrates a radical decoupling of text from authorial intent, further eroding trust in written communication, already shaken by the rise of LLM chatbots. We illustrate this with a concrete scenario: a company could covertly deploy an unfiltered LLM by encoding its answers within the compliant responses of a safe model. This possibility raises urgent questions for AI safety and challenges our understanding of what it means for a Large Language Model to know something.
comment: 21 pages, main paper 9 pages. v5 contains an Italian translation of this paper by the author
SENSE: Self-Supervised Neural Embeddings for Spatial Ensembles
Analyzing and visualizing scientific ensemble datasets with high dimensionality and complexity poses significant challenges. Dimensionality reduction techniques and autoencoders are powerful tools for extracting features, but they often struggle with such high-dimensional data. This paper presents an enhanced autoencoder framework that incorporates a clustering loss, based on the soft silhouette score, alongside a contrastive loss to improve the visualization and interpretability of ensemble datasets. First, EfficientNetV2 is used to generate pseudo-labels for the unlabeled portions of the scientific ensemble datasets. By jointly optimizing the reconstruction, clustering, and contrastive objectives, our method encourages similar data points to group together while separating distinct clusters in the latent space. UMAP is subsequently applied to this latent representation to produce 2D projections, which are evaluated using the silhouette score. Multiple types of autoencoders are evaluated and compared based on their ability to extract meaningful features. Experiments on two scientific ensemble datasets - channel structures in soil derived from Markov chain Monte Carlo, and droplet-on-film impact dynamics - show that models incorporating clustering or contrastive loss marginally outperform the baseline approaches.
comment: Journal of Mathematics and Computer Science
From Adversarial Poetry to Adversarial Tales: An Interpretability Research Agenda
Safety mechanisms in LLMs remain vulnerable to attacks that reframe harmful requests through culturally coded structures. We introduce Adversarial Tales, a jailbreak technique that embeds harmful content within cyberpunk narratives and prompts models to perform functional analysis inspired by Vladimir Propp's morphology of folktales. By casting the task as structural decomposition, the attack induces models to reconstruct harmful procedures as legitimate narrative interpretation. Across 26 frontier models from nine providers, we observe an average attack success rate of 71.3%, with no model family proving reliably robust. Together with our prior work on Adversarial Poetry, these findings suggest that structurally-grounded jailbreaks constitute a broad vulnerability class rather than isolated techniques. The space of culturally coded frames that can mediate harmful intent is vast, likely inexhaustible by pattern-matching defenses alone. Understanding why these attacks succeed is therefore essential: we outline a mechanistic interpretability research agenda to investigate how narrative cues reshape model representations and whether models can learn to recognize harmful intent independently of surface form.
Multi-task Neural Diffusion Processes
Neural diffusion processes provide a scalable, non-Gaussian approach to modelling distributions over functions, but existing formulations are limited to single-task inference and do not capture dependencies across related tasks. In many multi-task regression settings, jointly modelling correlated functions and enabling task-aware conditioning is crucial for improving predictive performance and uncertainty calibration, particularly in low-data regimes. We propose multi-task neural diffusion processes, an extension that incorporates a task encoder to enable task-conditioned probabilistic regression and few-shot adaptation across related functions. The task encoder extracts a low-dimensional representation from context observations and conditions the diffusion model on this representation, allowing information sharing across tasks while preserving input-size agnosticity and the equivariance properties of neural diffusion processes. The resulting framework retains the expressiveness and scalability of neural diffusion processes while enabling efficient transfer to unseen tasks. Empirical results demonstrate improved point prediction accuracy and better-calibrated predictive uncertainty compared to single-task neural diffusion processes and Gaussian process baselines. We validate the approach on real wind farm data appropriate for wind power prediction. In this high-impact application, reliable uncertainty quantification directly supports operational decision-making in wind farm management, illustrating effective few-shot adaptation in a challenging real-world multi-task regression setting.
comment: 28 pages, 12 figures, 2 tables
Value Improved Actor Critic Algorithms
To learn approximately optimal acting policies for decision problems, modern Actor Critic algorithms rely on deep Neural Networks (DNNs) to parameterize the acting policy and greedification operators to iteratively improve it. The reliance on DNNs suggests an improvement that is gradient based, which is per step much less greedy than the improvement possible by greedier operators such as the greedy update used by Q-learning algorithms. On the other hand, slow changes to the policy can also be beneficial for the stability of the learning process, resulting in a tradeoff between greedification and stability. To better address this tradeoff, we propose to decouple the acting policy from the policy evaluated by the critic. This allows the agent to separately improve the critic's policy (e.g. value improvement) with greedier updates while maintaining the slow gradient-based improvement to the parameterized acting policy. We investigate the convergence of this approach using the popular analysis scheme of generalized Policy Iteration in the finite-horizon domain. Empirically, incorporating value-improvement into the popular off-policy actor-critic algorithms TD3 and SAC significantly improves or matches performance over their respective baselines, across different environments from the DeepMind continuous control domain, with negligible compute and implementation cost.
Explaining Time Series Classifiers with PHAR: Rule Extraction and Fusion from Post-hoc Attributions
Explaining machine learning (ML) models for time series (TS) classification remains challenging due to the difficulty of interpreting raw time series and the high dimensionality of the input space. We introduce PHAR--Post-hoc Attribution Rules--a unified framework that transforms numeric feature attributions from post-hoc, instance-wise explainers (e.g. LIME, SHAP) into structured, human-readable rules. These rules define human-readable intervals that indicate where and when decision-relevant segments occur and can enhance model transparency by localizing threshold-based conditions on the raw series. PHAR performs comparably to native rule-based methods, such as Anchor, while scaling more efficiently to long TS sequences and achieving broader instance coverage. A dedicated rule fusion step consolidates rule sets using strategies like weighted selection and lasso-based refinement, balancing key quality metrics: coverage, confidence, and simplicity. This fusion ensures each instance receives a concise and unambiguous rule, improving both explanation fidelity and consistency. We further introduce visualization techniques to illustrate specificity-generalization trade-offs in the derived rules. PHAR resolves conflicting and overlapping explanations--a common effect of the Rashomon phenomenon--into coherent, domain-adaptable insights. Comprehensive experiments on UCR/UEA Time Series Classification Archive demonstrate that PHAR may improve interpretability, decision transparency, and practical applicability for TS classification tasks by providing concise, human-readable rules aligned with model predictions.
A Simple Unified Uncertainty-Guided Framework for Offline-to-Online Reinforcement Learning
Offline reinforcement learning (RL) provides a promising solution to learning an agent fully relying on a data-driven paradigm. However, constrained by the limited quality of the offline dataset, its performance is often sub-optimal. Therefore, it is desired to further finetune the agent via extra online interactions before deployment. Unfortunately, offline-to-online RL can be challenging due to two main challenges: constrained exploratory behavior and state-action distribution shift. In view of this, we propose a Simple Unified uNcertainty-Guided (SUNG) framework, which naturally unifies the solution to both challenges with the tool of uncertainty. Specifically, SUNG quantifies uncertainty via a VAE-based state-action visitation density estimator. To facilitate efficient exploration, SUNG presents a practical optimistic exploration strategy to select informative actions with both high value and high uncertainty. Moreover, SUNG develops an adaptive exploitation method by applying conservative offline RL objectives to high-uncertainty samples and standard online RL objectives to low-uncertainty samples to smoothly bridge offline and online stages. SUNG achieves state-of-the-art online finetuning performance when combined with different offline RL methods, across various environments and datasets in D4RL benchmark. Codes are made publicly available in https://github.com/guosyjlu/SUNG.
comment: The final published version is available at IEEE Xplore: https://ieeexplore.ieee.org/abstract/document/11267513/. We correct the GitHub repo url in this version
Test-Time Tuned Language Models Enable End-to-end De Novo Molecular Structure Generation from MS/MS Spectra
Tandem Mass Spectrometry is a cornerstone technique for identifying unknown small molecules in fields such as metabolomics, natural product discovery and environmental analysis. However, certain aspects, such as the probabilistic fragmentation process and size of the chemical space, make structure elucidation from such spectra highly challenging, particularly when there is a shift between the deployment and training conditions. Current methods rely on database matching of previously observed spectra of known molecules and multi-step pipelines that require intermediate fingerprint prediction or expensive fragment annotations. We introduce a novel end-to-end framework based on a transformer model that directly generates molecular structures from an input tandem mass spectrum and its corresponding molecular formula, thereby eliminating the need for manual annotations and intermediate steps, while leveraging transfer learning from simulated data. To further address the challenge of out-of-distribution spectra, we introduce a test-time tuning strategy that dynamically adapts the pre-trained model to novel experimental data. Our approach achieves a Top-1 accuracy of 3.16% on the MassSpecGym benchmark and 12.88% on the NPLIB1 datasets, considerably outperforming conventional fine-tuning. Baseline approaches are also surpassed by 27% and 67% respectively. Even when the exact reference structure is not recovered, the generated candidates are chemically informative, exhibiting high structural plausibility as reflected by strong Tanimoto similarity to the ground truth. Notably, we observe a relative improvement in average Tanimoto similarity of 83% on NPLIB1 and 64% on MassSpecGym compared to state-of-the-art methods. Our framework combines simplicity with adaptability, generating accurate molecular candidates that offer valuable guidance for expert interpretation of unseen spectra.
SceneFoundry: Generating Interactive Infinite 3D Worlds
The ability to automatically generate large-scale, interactive, and physically realistic 3D environments is crucial for advancing robotic learning and embodied intelligence. However, existing generative approaches often fail to capture the functional complexity of real-world interiors, particularly those containing articulated objects with movable parts essential for manipulation and navigation. This paper presents SceneFoundry, a language-guided diffusion framework that generates apartment-scale 3D worlds with functionally articulated furniture and semantically diverse layouts for robotic training. From natural language prompts, an LLM module controls floor layout generation, while diffusion-based posterior sampling efficiently populates the scene with articulated assets from large-scale 3D repositories. To ensure physical usability, SceneFoundry employs differentiable guidance functions to regulate object quantity, prevent articulation collisions, and maintain sufficient walkable space for robotic navigation. Extensive experiments demonstrate that our framework generates structurally valid, semantically coherent, and functionally interactive environments across diverse scene types and conditions, enabling scalable embodied AI research. project page: https://anc891203.github.io/SceneFoundry-Demo/
comment: 15 pages
AC-PKAN: Attention-Enhanced and Chebyshev Polynomial-Based Physics-Informed Kolmogorov-Arnold Networks
Kolmogorov-Arnold Networks (KANs) have recently shown promise for solving partial differential equations (PDEs). Yet their original formulation is computationally and memory intensive, motivating the introduction of Chebyshev Type-I-based KANs (Chebyshev1KANs). Although Chebyshev1KANs have outperformed the vanilla KANs architecture, our rigorous theoretical analysis reveals that they still suffer from rank collapse, ultimately limiting their expressive capacity. To overcome these limitations, we enhance Chebyshev1KANs by integrating wavelet-activated MLPs with learnable parameters and an internal attention mechanism. We prove that this design preserves a full-rank Jacobian and is capable of approximating solutions to PDEs of arbitrary order. Furthermore, to alleviate the loss instability and imbalance introduced by the Chebyshev polynomial basis, we externally incorporate a Residual Gradient Attention (RGA) mechanism that dynamically re-weights individual loss terms according to their gradient norms and residual magnitudes. By jointly leveraging internal and external attention, we present AC-PKAN, a novel architecture that constitutes an enhancement to weakly supervised Physics-Informed Neural Networks (PINNs) and extends the expressive power of KANs. Experimental results from nine benchmark tasks across three domains show that AC-PKAN consistently outperforms or matches state-of-the-art models such as PINNsFormer, establishing it as a highly effective tool for solving complex real-world engineering problems in zero-data or data-sparse regimes. The code will be made publicly available upon acceptance.
SDialog: A Python Toolkit for End-to-End Agent Building, User Simulation, Dialog Generation, and Evaluation
We present SDialog, an MIT-licensed open-source Python toolkit that unifies dialog generation, evaluation and mechanistic interpretability into a single end-to-end framework for building and analyzing LLM-based conversational agents. Built around a standardized Dialog representation, SDialog provides: (1) persona-driven multi-agent simulation with composable orchestration for controlled, synthetic dialog generation, (2) comprehensive evaluation combining linguistic metrics, LLM-as-a-judge and functional correctness validators, (3) mechanistic interpretability tools for activation inspection and steering via feature ablation and induction, and (4) audio generation with full acoustic simulation including 3D room modeling and microphone effects. The toolkit integrates with all major LLM backends, enabling mixed-backend experiments under a unified API. By coupling generation, evaluation, and interpretability in a dialog-centric architecture, SDialog enables researchers to build, benchmark and understand conversational systems more systematically.
comment: Pre-print submitted to EACL System Demonstration (under review)
LeLaR: The First In-Orbit Demonstration of an AI-Based Satellite Attitude Controller
Attitude control is essential for many satellite missions. Classical controllers, however, are time-consuming to design and sensitive to model uncertainties and variations in operational boundary conditions. Deep Reinforcement Learning (DRL) offers a promising alternative by learning adaptive control strategies through autonomous interaction with a simulation environment. Overcoming the Sim2Real gap, which involves deploying an agent trained in simulation onto the real physical satellite, remains a significant challenge. In this work, we present the first successful in-orbit demonstration of an AI-based attitude controller for inertial pointing maneuvers. The controller was trained entirely in simulation and deployed to the InnoCube 3U nanosatellite, which was developed by the Julius-Maximilians-Universität Würzburg in cooperation with the Technische Universität Berlin, and launched in January 2025. We present the AI agent design, the methodology of the training procedure, the discrepancies between the simulation and the observed behavior of the real satellite, and a comparison of the AI-based attitude controller with the classical PD controller of InnoCube. Steady-state metrics confirm the robust performance of the AI-based controller during repeated in-orbit maneuvers.
comment: This work has been submitted to the IEEE for possible publication. 55 pages, 27 figures, 29 tables. The maneuver telemetry datasets generated and analyzed during this work are available in the GitHub repository under https://github.com/kdjebko/lelar-in-orbit-data
Utilizing Class Separation Distance for the Evaluation of Corruption Robustness of Machine Learning Classifiers IJCAI
Robustness is a fundamental pillar of Machine Learning (ML) classifiers, substantially determining their reliability. Methods for assessing classifier robustness are therefore essential. In this work, we address the challenge of evaluating corruption robustness in a way that allows comparability and interpretability on a given dataset. We propose a test data augmentation method that uses a robustness distance $ε$ derived from the datasets minimal class separation distance. The resulting MSCR (minimal separation corruption robustness) metric allows a dataset-specific comparison of different classifiers with respect to their corruption robustness. The MSCR value is interpretable, as it represents the classifiers avoidable loss of accuracy due to statistical corruptions. On 2D and image data, we show that the metric reflects different levels of classifier robustness. Furthermore, we observe unexpected optima in classifiers robust accuracy through training and testing classifiers with different levels of noise. While researchers have frequently reported on a significant tradeoff on accuracy when training robust models, we strengthen the view that a tradeoff between accuracy and corruption robustness is not inherent. Our results indicate that robustness training through simple data augmentation can already slightly improve accuracy.
comment: Accepted for the IJCAI-ECAI-22 Workshop on Artificial Intelligence Safety (AISafety 2022) We made an important correction in the abstract compared to the published version, changing "mean corruption corruption robustness" to "minimal separation corruption robustness" which is the correct name of our proposed metric
Teaching Transformers to Solve Combinatorial Problems through Efficient Trial & Error
Despite their proficiency in various language tasks, Large Language Models (LLMs) struggle with combinatorial problems like Satisfiability, Traveling Salesman Problem, or even basic arithmetic. We address this gap through a novel trial & error approach for solving problems in the class NP, where candidate solutions are iteratively generated and efficiently validated using verifiers. We focus on the paradigmatic task of Sudoku and achieve state-of-the-art accuracy (99%) compared to prior neuro-symbolic approaches. Unlike prior work that used custom architectures, our method employs a vanilla decoder-only Transformer (GPT-2) without external tools or function calling. Our method integrates imitation learning of simple Sudoku rules with an explicit Depth-First Search (DFS) exploration strategy involving informed guessing and backtracking. Moving beyond imitation learning, we seek to minimize the number of guesses until reaching a solution. This is achieved using depth-1 guessing, showing empirically that almost all Sudoku can be solved using the puzzle's rules with at most one guess. We provide a rigorous analysis of this setup formalizing its connection to a contextual variant of Min-Sum Set Cover, a well-studied problem in algorithms and stochastic optimization.
Communication Enables Cooperation in LLM Agents: A Comparison with Curriculum-Based Approaches
Eliciting cooperation in multi-agent LLM systems is critical for AI alignment. We investigate two approaches: direct communication and curriculum learning. In a 4-player Stag Hunt, a one-word "cheap talk" channel increases cooperation from 0% to 48.3%, demonstrating communication as a robust coordination mechanism. In contrast, we find that curriculum learning is highly sensitive to design choices: our pedagogical curriculum through progressively complex games reduced agent payoffs by 27.4% in an Iterated Public Goods Game with Punishment, demonstrating that optimizing for short-term rationality can actively undermine alignment goals. Qualitative analysis reveals that curricula emphasizing defection-equilibrium games can induce "learned pessimism" in agents. These findings suggest that for coordination problems, simple communication protocols may be more reliable than experience-based training, and that curriculum design for social dilemmas requires careful attention to the strategic lessons embedded in game sequences.
BLIPs: Bayesian Learned Interatomic Potentials
Machine Learning Interatomic Potentials (MLIPs) are becoming a central tool in simulation-based chemistry. However, like most deep learning models, MLIPs struggle to make accurate predictions on out-of-distribution data or when trained in a data-scarce regime, both common scenarios in simulation-based chemistry. Moreover, MLIPs do not provide uncertainty estimates by construction, which are fundamental to guide active learning pipelines and to ensure the accuracy of simulation results compared to quantum calculations. To address this shortcoming, we propose BLIPs: Bayesian Learned Interatomic Potentials. BLIP is a scalable, architecture-agnostic variational Bayesian framework for training or fine-tuning MLIPs, built on an adaptive version of Variational Dropout. BLIP delivers well-calibrated uncertainty estimates and minimal computational overhead for energy and forces prediction at inference time, while integrating seamlessly with (equivariant) message-passing architectures. Empirical results on simulation-based computational chemistry tasks demonstrate improved predictive accuracy with respect to standard MLIPs, and trustworthy uncertainty estimates, especially in data-scarse or heavy out-of-distribution regimes. Moreover, fine-tuning pretrained MLIPs with BLIP yields consistent performance gains and calibrated uncertainties.
Uncertainty-Aware Surrogate-based Amortized Bayesian Inference for Computationally Expensive Models
Bayesian inference typically relies on a large number of model evaluations to estimate posterior distributions. Established methods like Markov Chain Monte Carlo (MCMC) and Amortized Bayesian Inference (ABI) can become computationally challenging. While ABI enables fast inference after training, generating sufficient training data still requires thousands of model simulations, which is infeasible for expensive models. Surrogate models offer a solution by providing approximate simulations at a lower computational cost, allowing the generation of large data sets for training. However, the introduced approximation errors and uncertainties can lead to overconfident posterior estimates. To address this, we propose Uncertainty-Aware Surrogate-based Amortized Bayesian Inference (UA-SABI) -- a framework that combines surrogate modeling and ABI while explicitly quantifying and propagating surrogate uncertainties through the inference pipeline. Our experiments show that this approach enables reliable, fast, and repeated Bayesian inference for computationally expensive models, even under tight time constraints.
comment: 27 pages, 15 figures
Detecting Toxic Flow
This paper develops a framework to predict toxic trades that a broker receives from her clients. Toxic trades are predicted with a novel online learning Bayesian method which we call the projection-based unification of last-layer and subspace estimation (PULSE). PULSE is a fast and statistically-efficient Bayesian procedure for online training of neural networks. We employ a proprietary dataset of foreign exchange transactions to test our methodology. Neural networks trained with PULSE outperform standard machine learning and statistical methods when predicting if a trade will be toxic; the benchmark methods are logistic regression, random forests, and a recursively-updated maximum-likelihood estimator. We devise a strategy for the broker who uses toxicity predictions to internalise or to externalise each trade received from her clients. Our methodology can be implemented in real-time because it takes less than one millisecond to update parameters and make a prediction. Compared with the benchmarks, online learning of a neural network with PULSE attains the highest PnL and avoids the most losses by externalising toxic trades.
comment: 27 pages, 18 figures
ModHiFi: Identifying High Fidelity predictive components for Model Modification NeurIPS 2025
Open weight models, which are ubiquitous, rarely provide access to their training data or loss function. This makes modifying such models for tasks such as pruning or unlearning, which are constrained by this unavailability, an active area of research. Existing techniques typically require gradients or ground-truth labels, rendering them infeasible in settings with limited computational resources. In this work, we investigate the fundamental question of identifying components that are critical to the model's predictive performance, without access to either gradients or the loss function, and with only distributional access such as synthetic data. We theoretically demonstrate that the global error is linearly bounded by local reconstruction errors for Lipschitz-continuous networks such as CNNs and well-trained Transformers (which, contrary to existing literature, we find exhibit Lipschitz continuity). This motivates using the locally reconstructive behavior of component subsets to quantify their global importance, via a metric that we term Subset Fidelity. In the uncorrelated features setting, selecting individual components based on their Subset Fidelity scores is optimal, which we utilize to propose ModHiFi, an algorithm for model modification that requires neither training data nor access to a loss function. ModHiFi-P, for structured pruning, achieves an 11\% speedup over the current state of the art on ImageNet models and competitive performance on language models. ModHiFi-U, for classwise unlearning, achieves complete unlearning on CIFAR-10 without fine-tuning and demonstrates competitive performance on Swin Transformers.
comment: NeurIPS 2025 (Spotlight). Our code is available at https://github.com/DhruvaKashyap/modhifi
Predictability Enables Parallelization of Nonlinear State Space Models NeurIPS '25
The rise of parallel computing hardware has made it increasingly important to understand which nonlinear state space models can be efficiently parallelized. Recent advances like DEER (arXiv:2309.12252) and DeepPCR (arXiv:2309.16318) recast sequential evaluation as a parallelizable optimization problem, sometimes yielding dramatic speedups. However, the factors governing the difficulty of these optimization problems remained unclear, limiting broader adoption. In this work, we establish a precise relationship between a system's dynamics and the conditioning of its corresponding optimization problem, as measured by its Polyak-Lojasiewicz (PL) constant. We show that the predictability of a system, defined as the degree to which small perturbations in state influence future behavior and quantified by the largest Lyapunov exponent (LLE), impacts the number of optimization steps required for evaluation. For predictable systems, the state trajectory can be computed in at worst $O((\log T)^2)$ time, where $T$ is the sequence length: a major improvement over the conventional sequential approach. In contrast, chaotic or unpredictable systems exhibit poor conditioning, with the consequence that parallel evaluation converges too slowly to be useful. Importantly, our theoretical analysis shows that predictable systems always yield well-conditioned optimization problems, whereas unpredictable systems lead to severe conditioning degradation. We validate our claims through extensive experiments, providing practical guidance on when nonlinear dynamical systems can be efficiently parallelized. We highlight predictability as a key design principle for parallelizable models.
comment: NeurIPS '25. XG and LK dual lead authors. Code: https://github.com/lindermanlab/predictability_enables_parallelization
Supporting Evidence for the Adaptive Feature Program across Diverse Models
Theoretically exploring the advantages of neural networks might be one of the most challenging problems in the AI era. An adaptive feature program has recently been proposed to analyze feature learning, the characteristic property of neural networks, in a more abstract way. Motivated by the celebrated Le Cam equivalence, we advocate the over-parameterized sequence models to further simplify the analysis of the training dynamics of adaptive feature program and present several pieces of supporting evidence for the adaptive feature program. More precisely, after having introduced the feature error measure (FEM) to characterize the quality of the learned feature, we show that the FEM is decreasing during the training process of several concrete adaptive feature models including linear regression, single/multiple index models, etc. We believe that this hints at the potential successes of the adaptive feature program.
The PROPER Approach to Proactivity: Benchmarking and Advancing Knowledge Gap Navigation
Most language-based assistants follow a reactive ask-and-respond paradigm, requiring users to explicitly state their needs. As a result, relevant but unexpressed needs often go unmet. Existing proactive agents attempt to address this gap either by eliciting further clarification, preserving this burden, or by extrapolating future needs from context, often leading to unnecessary or mistimed interventions. We introduce ProPer, Proactivity-driven Personalized agents, a novel two-agent architecture consisting of a Dimension Generating Agent (DGA) and a Response Generating Agent (RGA). DGA, a fine-tuned LLM agent, leverages explicit user data to generate multiple implicit dimensions (latent aspects relevant to the user's task but not considered by the user) or knowledge gaps. These dimensions are selectively filtered using a reranker based on quality, diversity, and task relevance. RGA then balances explicit and implicit dimensions to tailor personalized responses with timely and proactive interventions. We evaluate ProPer across multiple domains using a structured, gap-aware rubric that measures coverage, initiative appropriateness, and intent alignment. Our results show that ProPer improves quality scores and win rates across all domains, achieving up to 84% gains in single-turn evaluation and consistent dominance in multi-turn interactions.
SPIKE: Sparse Koopman Regularization for Physics-Informed Neural Networks
Physics-Informed Neural Networks (PINNs) provide a mesh-free approach for solving differential equations by embedding physical constraints into neural network training. However, PINNs tend to overfit within the training domain, leading to poor generalization when extrapolating beyond trained spatiotemporal regions. This work presents SPIKE (Sparse Physics-Informed Koopman-Enhanced), a framework that regularizes PINNs with continuous-time Koopman operators to learn parsimonious dynamics representations. By enforcing linear dynamics $dz/dt = Az$ in a learned observable space, both PIKE (without explicit sparsity) and SPIKE (with L1 regularization on $A$) learn sparse generator matrices, embodying the parsimony principle that complex dynamics admit low-dimensional structure. Experiments across parabolic, hyperbolic, dispersive, and stiff PDEs, including fluid dynamics (Navier-Stokes) and chaotic ODEs (Lorenz), demonstrate consistent improvements in temporal extrapolation, spatial generalization, and long-term prediction accuracy. The continuous-time formulation with matrix exponential integration provides unconditional stability for stiff systems while avoiding diagonal dominance issues inherent in discrete-time Koopman operators.
Reconstructing Multi-Scale Physical Fields from Extremely Sparse Measurements with an Autoencoder-Diffusion Cascade
Reconstructing full fields from extremely sparse and random measurements constitutes a fundamentally ill-posed inverse problem, in which deterministic end-to-end mappings often break down due to intrinsic non-uniqueness and uncertainty. Rather than treating sparse reconstruction as a regression task, we recast it as a hierarchical probabilistic inference problem, where uncertainty is explicitly represented, structured, and progressively resolved. From this perspective, we propose Cascaded Sensing (Cas-Sensing) as a general reconstruction paradigm for multi-scale physical fields under extreme data sparsity. Central to this paradigm is the introduction of an explicit intermediate representation that decomposes the original ill-posed problem into two substantially better-conditioned subproblems. First, a lightweight neural-operator-based functional autoencoder infers a coarse-scale approximation of the target field from sparse observations acting as an explicit intermediate variable. Rather than modeling multiple scales jointly, this intermediate estimate is deterministically fixed and subsequently used as the sole conditioning input to a conditional diffusion model that generates refined-scale details, yielding a cascaded inference structure with clearly separated reconstruction responsibilities. To ensure robustness under diverse sensing patterns, the diffusion model is trained using a mask-cascade strategy, which exposes it to a distribution of imperfect conditioning structures induced by extreme sparsity. During inference, measurement consistency is enforced through manifold-constrained gradients within a Bayesian posterior framework, ensuring fidelity to sparse observations while preserving data manifold coherence. This cascaded probabilistic formulation substantially alleviates ill-posedness, enabling accurate and stable reconstructions even under extreme sparsity.
comment: 20 pages,13 figures
StellarF: A Physics-Informed LoRA Framework for Stellar Flare Forecasting with Historical & Statistical Data
Stellar flare forecasting represents a critical frontier in astrophysics, offering profound insights into stellar activity mechanisms and exoplanetary habitability assessments. Yet the inherent unpredictability of flare activity, rooted in stellar diversity and evolutionary stages, underpins the field's core challenges: (1) sparse, incomplete, noisy lightcurve data from traditional observations; (2) ineffective multi-scale flare evolution capture via single representations; (3) poor physical interpretability in data-driven models lacking physics-informed priors. To address these challenges, we propose StellarF, a physics-informed framework synergizing general Al with astrophysical domain knowledge via three core components: a unified preprocessing pipeline for lightcurve refinement (missing-value imputation, temporal patch partitioning, adaptive sample filtering); a Low-Rank Adaptation (LoRA)-finetuned large language model (LLM) backbone enhanced by first-order difference augmentation, flare statistical information, and flare historical record modules for multimodal fusion instead of only simple representations; and a novel physics-informed loss embedding a minimum rising rate prior, appended to the cross-entropy loss, to align with flare physics. Extensive experiments on Kepler and TESS datasets show StellarF achieves state-of-the-art performance across key metrics, setting new benchmarks for flare forecasting. This work bridges general AI with astrophysics, offering a practical, physically interpretable paradigm for transient event forecasting in time-domain astronomy.
comment: 12 pages, 8 figures (5 main, 3 appendix), 7 tables (2 main, 5 appendix)
Thompson Sampling for Repeated Newsvendor
In this paper, we investigate the performance of Thompson Sampling (TS) for online learning with censored feedback, focusing primarily on the classic repeated newsvendor model--a foundational framework in inventory management--and demonstrating how our techniques can be naturally extended to a broader class of problems. We first model demand using a Weibull distribution and initialize TS with a Gamma prior to dynamically adjust order quantities. Our analysis establishes optimal (up to logarithmic factors) frequentist regret bounds for TS without imposing restrictive prior assumptions. More importantly, it yields novel and highly interpretable insights on how TS addresses the exploration-exploitation trade-off in the repeated newsvendor setting. Specifically, our results show that when past order quantities are sufficiently large to overcome censoring, TS accurately estimates the unknown demand parameters, leading to near-optimal ordering decisions. Conversely, when past orders are relatively small, TS automatically increases future order quantities to gather additional demand information. Then, we extend our analysis to general parametric distribution family and provide proof for Bayesian regret. Extensive numerical simulations further demonstrate that TS outperforms more conservative and widely-used approaches such as online convex optimization, upper confidence bounds, and myopic Bayesian dynamic programming.
U-PINet: Physics-Informed Hierarchical Learning for Radar Cross Section Prediction via 3D Electromagnetic Scattering Reconstruction
Conventional computational electromagnetics (CEM) solvers can deliver high fidelity radar cross section (RCS) signatures by first solving the induced surface currents on 3-dimensional (3D) targets and then evaluating the scattered fields via radiation integrals. However, their computational cost becomes prohibitive for repeated queries and large-scale 3D scenarios. Recent purely data-driven networks improve efficiency, yet they often bypass this scattering mechanism, which may compromise physical consistency and generalization. To bridge this gap, in this paper, we propose U-PINet, a fully end-to-end, physics-informed hierarchical network for efficient RCS prediction via 3D electromagnetic scattering reconstruction. Once the scattering quantities are reconstructed, scattered fields and RCS can be evaluated for arbitrary observation directions via the radiation integral. U-PINet explicitly learns physics-consistent intermediate scattering representations by modeling local electromagnetic coupling and long-range radiation effects through a hierarchical operator design inspired by near-far field decomposition in fast solvers. A physics-guided graph neural network is incorporated to capture self- and mutual-coupling among mesh elements of complex targets, enabling physically interpretable intermediate representations. By embedding governing equations as residual constraints, U-PINet enables accurate object reconstruction of scattering quantities and consequently reliable RCS prediction across observation directions, while significantly reducing runtime. Extensive numerical experiments demonstrate that U-PINet achieves EM-solver-level RCS accuracy and 3D object reconstruction with orders-of-magnitude speedups, and generalizes well to unseen geometries under limited training data.
comment: Submitted to an IEEE Transactions Journal
Accelerated Regularized Wasserstein Proximal Sampling Algorithms
We consider sampling from a Gibbs distribution by evolving a finite number of particles using a particular score estimator rather than Brownian motion. To accelerate the particles, we consider a second-order score-based ODE, similar to Nesterov acceleration. In contrast to traditional kernel density score estimation, we use the recently proposed regularized Wasserstein proximal method, yielding the Accelerated Regularized Wasserstein Proximal method (ARWP). We provide a detailed analysis of continuous- and discrete-time non-asymptotic and asymptotic mixing rates for Gaussian initial and target distributions, using techniques from Euclidean acceleration and accelerated information gradients. Compared with the kinetic Langevin sampling algorithm, the proposed algorithm exhibits a higher contraction rate in the asymptotic time regime. Numerical experiments are conducted across various low-dimensional experiments, including multi-modal Gaussian mixtures and ill-conditioned Rosenbrock distributions. ARWP exhibits structured and convergent particles, accelerated discrete-time mixing, and faster tail exploration than the non-accelerated regularized Wasserstein proximal method and kinetic Langevin methods. Additionally, ARWP particles exhibit better generalization properties for some non-log-concave Bayesian neural network tasks.
Epidemic Forecasting with a Hybrid Deep Learning Method Using CNN-LSTM With WOA-GWO Parameter Optimization: Global COVID-19 Case Study
Effective epidemic modeling is essential for managing public health crises, requiring robust methods to predict disease spread and optimize resource allocation. This study introduces a novel deep learning framework that advances time series forecasting for infectious diseases, with its application to COVID 19 data as a critical case study. Our hybrid approach integrates Convolutional Neural Networks (CNNs) and Long Short Term Memory (LSTM) models to capture spatial and temporal dynamics of disease transmission across diverse regions. The CNN extracts spatial features from raw epidemiological data, while the LSTM models temporal patterns, yielding precise and adaptable predictions. To maximize performance, we employ a hybrid optimization strategy combining the Whale Optimization Algorithm (WOA) and Gray Wolf Optimization (GWO) to fine tune hyperparameters, such as learning rates, batch sizes, and training epochs enhancing model efficiency and accuracy. Applied to COVID 19 case data from 24 countries across six continents, our method outperforms established benchmarks, including ARIMA and standalone LSTM models, with statistically significant gains in predictive accuracy (e.g., reduced RMSE). This framework demonstrates its potential as a versatile method for forecasting epidemic trends, offering insights for resource planning and decision making in both historical contexts, like the COVID 19 pandemic, and future outbreaks.
Fetal Sleep: A Cross-Species Review of Physiology, Measurement, and Classification
Study Objectives: Fetal sleep is a vital yet underexplored aspect of prenatal neurodevelopment. Its cyclic organization reflects the maturation of central neural circuits, and disturbances in these patterns may offer some of the earliest detectable signs of neurological compromise. This is the first review to integrate more than seven decades of research into a unified, cross-species synthesis of fetal sleep. We examine: (i) Physiology and Ontogeny-comparing human fetuses with animal models; and (ii) Methodological Evolution-transitioning from invasive neurophysiology to non-invasive monitoring and deep learning frameworks. Methods: A structured narrative synthesis was guided by a systematic literature search across four databases (PubMed, Scopus, IEEE Xplore, and Google Scholar). From 2,925 identified records, 171 studies involving fetal sleep-related physiology, sleep-state classification, or signal-based monitoring were included in this review. Results: Across the 171 studies, fetal sleep states become clearly observable as the brain matures. In fetal sheep and baboons, organized cycling between active and quiet sleep emerges at approximately 80%-90% gestation. In humans, this differentiation occurs later, around 95% gestation, with full maturation reached near term. Despite extensive animal research, no unified, clinically validated framework exists for defining fetal sleep states, limiting translation into routine obstetric practice. Conclusions: By integrating evidence across species, methodologies, and clinical contexts, this review provides the scientific foundation for developing objective, multimodal, and non-invasive fetal sleep monitoring technologies-tools that may ultimately support earlier detection of neurological compromise and guide timely prenatal intervention.
comment: Accepted for publication in Sleep. 56 pages, 3 figures, 7 tables
HERMES: Holographic Equivariant neuRal network model for Mutational Effect and Stability prediction
Predicting the stability and fitness effects of amino acid mutations in proteins is a cornerstone of biological discovery and engineering. Various experimental techniques have been developed to measure mutational effects, providing us with extensive datasets across a diverse range of proteins. By training on these data, traditional computational modeling and more recent machine learning approaches have advanced significantly in predicting mutational effects. Here, we introduce HERMES, a 3D rotationally equivariant structure-based neural network model for mutational effect and stability prediction. Pre-trained to predict amino acid propensity from its surrounding 3D structure, HERMES can be fine-tuned for mutational effects using our open-source code. We present a suite of HERMES models, pre-trained with different strategies, and fine-tuned to predict the stability effect of mutations. Benchmarking against other models shows that HERMES often outperforms or matches their performance in predicting mutational effect on stability, binding, and fitness. HERMES offers versatile tools for evaluating mutational effects and can be fine-tuned for specific predictive objectives.
Local Intrinsic Dimensionality of Ground Motion Data for Early Detection of Complex Catastrophic Slope Failure
Local Intrinsic Dimensionality (LID) has shown strong potential for identifying anomalies and outliers in high-dimensional data across a wide range of real-world applications, including landslide failure detection in granular media. Early and accurate identification of failure zones in landslide-prone areas is crucial for effective geohazard mitigation. While existing approaches typically rely on surface displacement data analyzed through statistical or machine learning techniques, they often fall short in capturing both the spatial correlations and temporal dynamics that are inherent in such data. To address this gap, we focus on ground-monitored landslides and introduce a novel approach that jointly incorporates spatial and temporal information, enabling the detection of complex landslides and including multiple successive failures occurring in distinct areas of the same slope. To be specific, our method builds upon an existing LID-based technique, known as sLID. We extend its capabilities in three key ways. (1) Kinematic enhancement: we incorporate velocity into the sLID computation to better capture short-term temporal dependencies and deformation rate relationships. (2) Spatial fusion: we apply Bayesian estimation to aggregate sLID values across spatial neighborhoods, effectively embedding spatial correlations into the LID scores. (3) Temporal modeling: we introduce a temporal variant, tLID, that learns long-term dynamics from time series data, providing a robust temporal representation of displacement behavior. Finally, we integrate both components into a unified framework, referred to as spatiotemporal LID (stLID), to identify samples that are anomalous in either or both dimensions. Extensive experiments show that stLID consistently outperforms existing methods in failure detection precision and lead-time.
comment: 21 pages, 7 figures
Reinforcement Fine-Tuning for Materials Design
Reinforcement fine-tuning played an instrumental role in enhancing the instruction-following and reasoning abilities of large language models. In this work, we employ reinforcement fine-tuning for materials design, in which discriminative machine learning models are used to provide rewards to the autoregressive transformer-based materials generative model CrystalFormer. By optimizing the reward signals-such as energy above the convex hull and material properties figures of merit-reinforcement fine-tuning infuses knowledge from discriminative models into generative models. The resulting model, CrystalFormer-RL, shows enhanced stability in generated crystals and successfully discovers crystals with desirable yet conflicting material properties, such as substantial dielectric constant and band gap simultaneously. Notably, we observe that reinforcement fine-tuning not only enables the property-guided material design but also unlocks property-based material retrieval behavior of pretrained generative model. The present framework opens an exciting gateway to the synergies of the machine learning ecosystem for materials design.
comment: 10 pages, 7 figures
Transfer Learning for Benign Overfitting in High-Dimensional Linear Regression NeurIPS 2025
Transfer learning is a key component of modern machine learning, enhancing the performance of target tasks by leveraging diverse data sources. Simultaneously, overparameterized models such as the minimum-$\ell_2$-norm interpolator (MNI) in high-dimensional linear regression have garnered significant attention for their remarkable generalization capabilities, a property known as benign overfitting. Despite their individual importance, the intersection of transfer learning and MNI remains largely unexplored. Our research bridges this gap by proposing a novel two-step Transfer MNI approach and analyzing its trade-offs. We characterize its non-asymptotic excess risk and identify conditions under which it outperforms the target-only MNI. Our analysis reveals free-lunch covariate shift regimes, where leveraging heterogeneous data yields the benefit of knowledge transfer at limited cost. To operationalize our findings, we develop a data-driven procedure to detect informative sources and introduce an ensemble method incorporating multiple informative Transfer MNIs. Finite-sample experiments demonstrate the robustness of our methods to model and data heterogeneity, confirming their advantage.
comment: 42 pages; Camera-ready version accepted at NeurIPS 2025 (Spotlight)
ProteinGuide: On-the-fly property guidance for protein sequence generative models
Sequence generative models are transforming protein engineering. However, no principled framework exists for conditioning these models on auxiliary information, such as experimental data, without additional training of a generative model. Herein, we present ProteinGuide, a method for such "on-the-fly" conditioning, amenable to a broad class of protein generative models including Masked Language Models (e.g. ESM3), any-order auto-regressive models (e.g. ProteinMPNN) as well as diffusion and flow matching models (e.g. MultiFlow). ProteinGuide stems from our unifying view of these model classes under a single statistical framework. As proof of principle, we perform several in silico experiments. We first guide pre-trained generative models to design proteins with user-specified properties, such as higher stability or activity. Next, we design for optimizing two desired properties that are in tension with each other. Finally, we apply our method in the wet lab, using ProteinGuide to increase the editing activity of an adenine base editor in vivo with data from only a single pooled library of 2,000 variants. We find that a single round of ProteinGuide achieves a higher editing efficiency than was previously achieved using seven rounds of directed evolution.
Stock Market Price Prediction using Neural Prophet with Deep Neural Network
Stock market price prediction is a significant interdisciplinary research domain that depends at the intersection of finance, statistics, and economics. Forecasting Accurately predicting stock prices has always been a focal point for various researchers. However, existing statistical approaches for time-series prediction often fail to effectively forecast the probability range of future stock prices. Hence, to solve this problem, the Neural Prophet with a Deep Neural Network (NP-DNN) is proposed to predict stock market prices. The preprocessing technique used in this research is Z-score normalization, which normalizes stock price data by removing scale differences, making patterns easier to detect. Missing value imputation fills gaps in historical data, enhancing the models use of complete information for more accurate predictions. The Multi-Layer Perceptron (MLP) learns complex nonlinear relationships among stock market prices and extracts hidden patterns from the input data, thereby creating meaningful feature representations for better prediction accuracy. The proposed NP-DNN model achieved an accuracy of 99.21% compared with other approaches using the Fused Large Language Model. Keywords: deep neural network, forecasting stock prices, multi-layer perceptron, neural prophet, stock market price prediction.
comment: Accepted at 2nd International Conference on Software, Systems and Information Technology (SSITCON) 2025
Robust and Efficient Zeroth-Order LLM Fine-Tuning via Adaptive Bayesian Subspace Optimizer
Fine-tuning large language models (LLMs) with zeroth-order (ZO) optimization reduces memory by approximating gradients through function evaluations. However, existing methods essentially perform updates in a one-dimensional space, and suffer from collapse or substantial performance degradation under low-precision training. We introduce BSZO, an adaptive \textbf{B}ayesian \textbf{S}ubspace \textbf{Z}eroth-Order \textbf{O}ptimizer, which applies Kalman filtering to combine finite-difference information across multiple perturbation directions within a subspace. By treating each finite-difference measurement as a noisy observation, BSZO builds a posterior distribution over the subspace-projected gradient and updates it through Bayesian inference, with a residual-based adaptive mechanism to adapt to noise variations. Theoretical analysis shows that BSZO improves the convergence rate by a factor of $k/γ$ compared to standard ZO methods. Experiments on RoBERTa, Mistral, and OPT models show that BSZO outperforms the baselines across various tasks, achieving up to 6.67\% absolute average improvement on OPT-13B while remaining robust under fp16/bf16 precision and keeping memory usage close to inference-only baselines (1.00$\times$--1.08$\times$ of MeZO).
comment: 23 pages, 2 figures, 5 tables
DemoTuner: Automatic Performance Tuning for Database Management Systems Based on Demonstration Reinforcement Learning
The performance of modern DBMSs such as MySQL and PostgreSQL heavily depends on the configuration of performance-critical knobs. Manual tuning these knobs is laborious and inefficient due to the complex and high-dimensional nature of the configuration space. Among the automated tuning methods, reinforcement learning (RL)-based methods have recently sought to improve the DBMS knobs tuning process from several different perspectives. However, they still encounter challenges with slow convergence speed during offline training. In this paper, we mainly focus on how to leverage the valuable tuning hints contained in various textual documents such as DBMS manuals and web forums to improve the offline training of RL-based methods. To this end, we propose an efficient DBMS knobs tuning framework named DemoTuner via a novel LLM-assisted demonstration reinforcement learning method. Specifically, to comprehensively and accurately mine tuning hints from documents, we design a structured chain of thought prompt to employ LLMs to conduct a condition-aware tuning hints extraction task. To effectively integrate the mined tuning hints into RL agent training, we propose a hint-aware demonstration reinforcement learning algorithm HA-DDPGfD in DemoTuner. As far as we know, DemoTuner is the first work to introduce the demonstration reinforcement learning algorithm for DBMS knobs tuning. Experimental evaluations conducted on MySQL and PostgreSQL across various workloads demonstrate that DemoTuner achieves performance gains of up to 44.01% for MySQL and 39.95% for PostgreSQL over default configurations. Compared with three representative baseline methods, DemoTuner is able to further reduce the execution time by up to 10.03%, while always consuming the least online tuning cost. Additionally, DemoTuner also exhibits superior adaptability to application scenarios with unknown workloads.
comment: 14 pages, 9 figures
Off Policy Lyapunov Stability in Reinforcement Learning CORL
Traditional reinforcement learning lacks the ability to provide stability guarantees. More recent algorithms learn Lyapunov functions alongside the control policies to ensure stable learning. However, the current self-learned Lyapunov functions are sample inefficient due to their on-policy nature. This paper introduces a method for learning Lyapunov functions off-policy and incorporates the proposed off-policy Lyapunov function into the Soft Actor Critic and Proximal Policy Optimization algorithms to provide them with a data efficient stability certificate. Simulations of an inverted pendulum and a quadrotor illustrate the improved performance of the two algorithms when endowed with the proposed off-policy Lyapunov function.
comment: Conference on Robot Learning (CORL) 2025
Physiological-model-based neural network for modeling the metabolic-heart rate relationship during physical activities
Heart failure (HF) poses a significant global health challenge, with early detection offering opportunities for improved outcomes. Abnormalities in heart rate (HR), particularly during daily activities, may serve as early indicators of HF risk. However, existing HR monitoring tools for HF detection are limited by their reliability on population-based averages. The estimation of individualized HR serves as a dynamic digital twin, enabling precise tracking of cardiac health biomarkers. Current HR estimation methods, categorized into physiologically-driven and purely data-driven models, struggle with efficiency and interpretability. This study introduces a novel physiological-model-based neural network (PMB-NN) framework for HR estimation based on oxygen uptake (VO2) data during daily physical activities. The framework was trained and tested on individual datasets from 12 participants engaged in activities including resting, cycling, and running. By embedding physiological constraints, which were derived from our proposed simplified human movement physiological model (PM), into the neural network training process, the PMB-NN model adheres to human physiological principles while achieving high estimation accuracy, with a median R$^2$ score of 0.8 and an RMSE of 8.3 bpm. Comparative statistical analysis demonstrates that the PMB-NN achieves performance on par with the benchmark neural network model while significantly outperforming traditional physiological model (p=0.002). In addition, our PMB-NN is adept at identifying personalized parameters of the PM, enabling the PM to generate reasonable HR estimation. The proposed framework with a precise VO2 estimation system derived from body movements enables the future possibilities of personalized and real-time cardiac monitoring during daily life physical activities.
Reinforcement Learning to Discover a NorthEast Monsoon Index for Monthly Rainfall Prediction in Thailand
Climate prediction is a challenge due to the intricate spatiotemporal patterns within Earth systems. Global climate indices, such as the El Niño Southern Oscillation, are standard input features for long-term rainfall prediction. However, a significant gap persists regarding local-scale indices capable of improving predictive accuracy in specific regions of Thailand. This paper introduces a novel NorthEast monsoon climate index calculated from sea surface temperature to reflect the climatology of the boreal winter monsoon. To optimise the calculated areas used for this index, a Deep Q-Network reinforcement learning agent explores and selects the most effective rectangles based on their correlation with seasonal rainfall. Rainfall stations were classified into 12 distinct clusters to distinguish rainfall patterns between southern and upper Thailand. Experimental results show that incorporating the optimised index into Long Short-Term Memory models significantly improves long-term monthly rainfall prediction skill in most cluster areas. This approach effectively reduces the Root Mean Square Error for 12-month-ahead forecasts.
MoLAN: A Unified Modality-Aware Noise Dynamic Editing Framework for Multimodal Sentiment Analysis
Multimodal Sentiment Analysis aims to integrate information from various modalities, such as audio, visual, and text, to make complementary predictions. However, it often struggles with irrelevant or misleading visual and auditory information. Most existing approaches typically treat the entire modality information (e.g., a whole image, audio segment, or text paragraph) as an independent unit for feature enhancement or denoising. They often suppress the redundant and noise information at the risk of losing critical information. To address this challenge, we propose MoLAN, a unified ModaLity-aware noise dynAmic editiNg framework. Specifically, MoLAN performs modality-aware blocking by dividing the features of each modality into multiple blocks. Each block is then dynamically assigned a distinct denoising strength based on its noise level and semantic relevance, enabling fine-grained noise suppression while preserving essential multimodal information. Notably, MoLAN is a unified and flexible framework that can be seamlessly integrated into a wide range of multimodal models. Building upon this framework, we further introduce MoLAN+, a new multimodal sentiment analysis approach. Experiments across five models and four datasets demonstrate the broad effectiveness of the MoLAN framework. Extensive evaluations show that MoLAN+ achieves the state-of-the-art performance. The code is publicly available at https://github.com/betterfly123/MoLAN-Framework.
ThinkEval: Practical Evaluation of Knowledge Leakage in LLM Editing using Thought-based Knowledge Graphs
Robust model-editing techniques are essential for deploying large language models (LLMs) in practical applications, as they enable cost-effective ways to deal with challenges such as privacy breaches, bias mitigation and misinformation spread. For example, an LLM-based healthcare assistance may need to update out-dated or incorrect knowledge to prevent harmful recommendations. However, many editing techniques focus on isolated facts, which critically fail to prevent indirect knowledge leakage -- the unintended reconstruction of edited-out information through persistent causal links and contextual relationships. To assist users in selecting the right editing technique, we develop and present ThinkEval, a framework to systematically quantify indirect knowledge leakage and ripple effects in model-editing. ThinkEval builds and employs specialized knowledge graphs to analyze the causal structure of facts before and after editing. To support this approach, we present KnowGIC, a benchmark dataset comprising multi-step reasoning paths that precisely measure these complex knowledge transformation effects. We evaluate five editing techniques: AlphaEdit, RECT, ROME, MEMIT, and PRUNE across multiple LLMs. Our results show that these techniques struggle to balance indirect fact suppression with the preservation of related knowledge, compromising the contextual integrity of a model's knowledge. Our dataset is available at: https://github.com/manitbaser/KnowGIC.
comment: Accepted to TMLR
A New Decomposition Paradigm for Graph-structured Nonlinear Programs via Message Passing
We study finite-sum nonlinear programs with localized variable coupling encoded by a (hyper)graph. We introduce a graph-compliant decomposition framework that brings message passing into continuous optimization in a rigorous, implementable, and provable way. The (hyper)graph is partitioned into tree clusters (hypertree factor graphs). At each iteration, agents update in parallel by solving local subproblems whose objective splits into an {\it intra}-cluster term summarized by cost-to-go messages from one min-sum sweep on the cluster tree, and an {\it inter}-cluster coupling term handled Jacobi-style using the latest out-of-cluster variables. To reduce computation/communication, the method supports graph-compliant surrogates that replace exact messages/local solves with compact low-dimensional parametrizations; in hypergraphs, the same principle enables surrogate hyperedge splitting, to tame heavy hyperedge overlaps while retaining finite-time intra-cluster message updates and efficient computation/communication. We establish convergence for (strongly) convex and nonconvex objectives, with topology- and partition-explicit rates that quantify curvature/coupling effects and guide clustering and scalability. To our knowledge, this is the first convergent message-passing method on loopy graphs.
comment: 55 pages, 15 figures
FROG: Fair Removal on Graphs
With growing emphasis on privacy regulations, machine unlearning has become increasingly critical in real-world applications such as social networks and recommender systems, many of which are naturally represented as graphs. However, existing graph unlearning methods often modify nodes or edges indiscriminately, overlooking their impact on fairness. For instance, forgetting links between users of different genders may inadvertently exacerbate group disparities. To address this issue, we propose a novel framework that jointly optimizes both the graph structure and the model to achieve fair unlearning. Our method rewires the graph by removing redundant edges that hinder forgetting while preserving fairness through targeted edge augmentation. We further introduce a worst-case evaluation mechanism to assess robustness under challenging scenarios. Experiments on real-world datasets show that our approach achieves more effective and fair unlearning than existing baselines.
comment: CIKM 2025; v2 fixes author list
Representing Molecules with Algebraic Data Types: Beyond SMILES and SELFIES
Benchmarks of molecular machine learning models often treat the molecular representation as a neutral input format, yet the representation defines the syntax of validity, edit operations, and invariances that models implicitly learn. We propose MolADT, a typed intermediate representation (IR) for molecules expressed as a family of algebraic data types that separates (i) constitution via Dietz-style bonding systems, (ii) 3D geometry and stereochemistry, and (iii) optional electronic annotations. By shifting from string edits to operations over structured values, MolADT makes representational assumptions explicit, supports deterministic validation and localized transformations, and provides hooks for symmetry-aware and Bayesian workflows. We provide a reference implementation in Haskell (open-source, archived with DOI) and worked examples demonstrating delocalised/multicentre bonding, validation invariants, reaction extensions, and group actions relevant to geometric learning.
comment: 3 Figures
Fast weight programming and linear transformers: from machine learning to neurobiology
Recent advances in artificial neural networks for machine learning, and language modeling in particular, have established a family of recurrent neural network (RNN) architectures that, unlike conventional RNNs with vector-form hidden states, use two-dimensional (2D) matrix-form hidden states. Such 2D-state RNNs, known as Fast Weight Programmers (FWPs), can be interpreted as a neural network whose synaptic weights (called fast weights) dynamically change over time as a function of input observations, and serve as short-term memory storage; corresponding synaptic weight modifications are controlled or programmed by another network (the programmer) whose parameters are trained (e.g., by gradient descent). In this Primer, we review the technical foundations of FWPs, their computational characteristics, and their connections to transformers and state space models. We also discuss connections between FWPs and models of synaptic plasticity in the brain, suggesting a convergence of natural and artificial intelligence.
comment: Accepted to TMLR 2025
Graphics 3
Vision-as-Inverse-Graphics Agent via Interleaved Multimodal Reasoning
Vision-as-inverse-graphics, the concept of reconstructing an image as an editable graphics program is a long-standing goal of computer vision. Yet even strong VLMs aren't able to achieve this in one-shot as they lack fine-grained spatial and physical grounding capability. Our key insight is that closing this gap requires interleaved multimodal reasoning through iterative execution and verification. Stemming from this, we present VIGA (Vision-as-Inverse-Graphic Agent) that starts from an empty world and reconstructs or edits scenes through a closed-loop write-run-render-compare-revise procedure. To support long-horizon reasoning, VIGA combines (i) a skill library that alternates generator and verifier roles and (ii) an evolving context memory that contains plans, code diffs, and render history. VIGA is task-agnostic as it doesn't require auxiliary modules, covering a wide range of tasks such as 3D reconstruction, multi-step scene editing, 4D physical interaction, and 2D document editing, etc. Empirically, we found VIGA substantially improves one-shot baselines on BlenderGym (35.32%) and SlideBench (117.17%). Moreover, VIGA is also model-agnostic as it doesn't require finetuning, enabling a unified protocol to evaluate heterogeneous foundation VLMs. To better support this protocol, we introduce BlenderBench, a challenging benchmark that stress-tests interleaved multimodal reasoning with graphics engine, where VIGA improves by 124.70%.
Controllable Video Generation: A Survey
With the rapid development of AI-generated content (AIGC), video generation has emerged as one of its most dynamic and impactful subfields. In particular, the advancement of video generation foundation models has led to growing demand for controllable video generation methods that can more accurately reflect user intent. Most existing foundation models are designed for text-to-video generation, where text prompts alone are often insufficient to express complex, multi-modal, and fine-grained user requirements. This limitation makes it challenging for users to generate videos with precise control using current models. To address this issue, recent research has explored the integration of additional non-textual conditions, such as camera motion, depth maps, and human pose, to extend pretrained video generation models and enable more controllable video synthesis. These approaches aim to enhance the flexibility and practical applicability of AIGC-driven video generation systems. In this survey, we provide a systematic review of controllable video generation, covering both theoretical foundations and recent advances in the field. We begin by introducing the key concepts and commonly used open-source video generation models. We then focus on control mechanisms in video diffusion models, analyzing how different types of conditions can be incorporated into the denoising process to guide generation. Finally, we categorize existing methods based on the types of control signals they leverage, including single-condition generation, multi-condition generation, and universal controllable generation. For a complete list of the literature on controllable video generation reviewed, please visit our curated repository at https://github.com/mayuelala/Awesome-Controllable-Video-Generation.
comment: project page: https://github.com/mayuelala/Awesome-Controllable-Video-Generation
Hi5: Synthetic Data for Inclusive, Robust, Hand Pose Estimation
Hand pose estimation plays a vital role in capturing subtle nonverbal cues essential for understanding human affect. However, collecting diverse, expressive real-world data remains challenging due to labor-intensive manual annotation that often underrepresents demographic diversity and natural expressions. To address this issue, we introduce a cost-effective approach to generating synthetic data using high-fidelity 3D hand models and a wide range of affective hand poses. Our method includes varied skin tones, genders, dynamic environments, realistic lighting conditions, and diverse naturally occurring gesture animations. The resulting dataset, Hi5, contains 583,000 pose-annotated images, carefully balanced to reflect natural diversity and emotional expressiveness. Models trained exclusively on Hi5 achieve performance comparable to human-annotated datasets, exhibiting superior robustness to occlusions and consistent accuracy across diverse skin tones -- which is crucial for reliably recognizing expressive gestures in affective computing applications. Our results demonstrate that synthetic data effectively addresses critical limitations of existing datasets, enabling more inclusive, expressive, and reliable gesture recognition systems while achieving competitive performance in pose estimation benchmarks. The Hi5 dataset, data synthesis pipeline, source code, and game engine project are publicly released to support further research in synthetic hand-gesture applications.
Video World Models 4
ShapeR: Robust Conditional 3D Shape Generation from Casual Captures
Recent advances in 3D shape generation have achieved impressive results, but most existing methods rely on clean, unoccluded, and well-segmented inputs. Such conditions are rarely met in real-world scenarios. We present ShapeR, a novel approach for conditional 3D object shape generation from casually captured sequences. Given an image sequence, we leverage off-the-shelf visual-inertial SLAM, 3D detection algorithms, and vision-language models to extract, for each object, a set of sparse SLAM points, posed multi-view images, and machine-generated captions. A rectified flow transformer trained to effectively condition on these modalities then generates high-fidelity metric 3D shapes. To ensure robustness to the challenges of casually captured data, we employ a range of techniques including on-the-fly compositional augmentations, a curriculum training scheme spanning object- and scene-level datasets, and strategies to handle background clutter. Additionally, we introduce a new evaluation benchmark comprising 178 in-the-wild objects across 7 real-world scenes with geometry annotations. Experiments show that ShapeR significantly outperforms existing approaches in this challenging setting, achieving an improvement of 2.7x in Chamfer distance compared to state of the art.
comment: Project Page: http://facebookresearch.github.io/ShapeR Video: https://www.youtube.com/watch?v=EbY30KAA55I
The Mini Wheelbot Dataset: High-Fidelity Data for Robot Learning
The development of robust learning-based control algorithms for unstable systems requires high-quality, real-world data, yet access to specialized robotic hardware remains a significant barrier for many researchers. This paper introduces a comprehensive dynamics dataset for the Mini Wheelbot, an open-source, quasi-symmetric balancing reaction wheel unicycle. The dataset provides 1 kHz synchronized data encompassing all onboard sensor readings, state estimates, ground-truth poses from a motion capture system, and third-person video logs. To ensure data diversity, we include experiments across multiple hardware instances and surfaces using various control paradigms, including pseudo-random binary excitation, nonlinear model predictive control, and reinforcement learning agents. We include several example applications in dynamics model learning, state estimation, and time-series classification to illustrate common robotics algorithms that can be benchmarked on our dataset.
Skill-Aware Diffusion for Generalizable Robotic Manipulation
Robust generalization in robotic manipulation is crucial for robots to adapt flexibly to diverse environments. Existing methods usually improve generalization by scaling data and networks, but model tasks independently and overlook skill-level information. Observing that tasks within the same skill share similar motion patterns, we propose Skill-Aware Diffusion (SADiff), which explicitly incorporates skill-level information to improve generalization. SADiff learns skill-specific representations through a skill-aware encoding module with learnable skill tokens, and conditions a skill-constrained diffusion model to generate object-centric motion flow. A skill-retrieval transformation strategy further exploits skill-specific trajectory priors to refine the mapping from 2D motion flow to executable 3D actions. Furthermore, we introduce IsaacSkill, a high-fidelity dataset containing fundamental robotic skills for comprehensive evaluation and sim-to-real transfer. Experiments in simulation and real-world settings show that SADiff achieves good performance and generalization across various manipulation tasks. Code, data, and videos are available at https://sites.google.com/view/sa-diff.
Mobile-friendly Image de-noising: Hardware Conscious Optimization for Edge Application
Image enhancement is a critical task in computer vision and photography that is often entangled with noise. This renders the traditional Image Signal Processing (ISP) ineffective compared to the advances in deep learning. However, the success of such methods is increasingly associated with the ease of their deployment on edge devices, such as smartphones. This work presents a novel mobile-friendly network for image de-noising obtained with Entropy-Regularized differentiable Neural Architecture Search (NAS) on a hardware-aware search space for a U-Net architecture, which is first-of-its-kind. The designed model has 12% less parameters, with ~2-fold improvement in ondevice latency and 1.5-fold improvement in the memory footprint for a 0.7% drop in PSNR, when deployed and profiled on Samsung Galaxy S24 Ultra. Compared to the SOTA Swin-Transformer for Image Restoration, the proposed network had competitive accuracy with ~18-fold reduction in GMACs. Further, the network was tested successfully for Gaussian de-noising with 3 intensities on 4 benchmarks and real-world de-noising on 1 benchmark demonstrating its generalization ability.
comment: Accepted at ICASSP 2025
Robotics 33
See Less, Drive Better: Generalizable End-to-End Autonomous Driving via Foundation Models Stochastic Patch Selection
Recent advances in end-to-end autonomous driving show that policies trained on patch-aligned features extracted from foundation models generalize better to Out-of-Distribution (OOD). We hypothesize that due to the self-attention mechanism, each patch feature implicitly embeds/contains information from all other patches, represented in a different way and intensity, making these descriptors highly redundant. We quantify redundancy in such (BLIP2) features via PCA and cross-patch similarity: $90$% of variance is captured by $17/64$ principal components, and strong inter-token correlations are pervasive. Training on such overlapping information leads the policy to overfit spurious correlations, hurting OOD robustness. We present Stochastic-Patch-Selection (SPS), a simple yet effective approach for learning policies that are more robust, generalizable, and efficient. For every frame, SPS randomly masks a fraction of patch descriptors, not feeding them to the policy model, while preserving the spatial layout of the remaining patches. Thus, the policy is provided with different stochastic but complete views of the (same) scene: every random subset of patches acts like a different, yet still sensible, coherent projection of the world. The policy thus bases its decisions on features that are invariant to which specific tokens survive. Extensive experiments confirm that across all OOD scenarios, our method outperforms the state of the art (SOTA), achieving a $6.2$% average improvement and up to $20.4$% in closed-loop simulations, while being $2.4\times$ faster. We conduct ablations over masking rates and patch-feature reorganization, training and evaluating 9 systems, with 8 of them surpassing prior SOTA. Finally, we show that the same learned policy transfers to a physical, real-world car without any tuning.
SurgGoal: Rethinking Surgical Planning Evaluation via Goal-Satisfiability
Surgical planning integrates visual perception, long-horizon reasoning, and procedural knowledge, yet it remains unclear whether current evaluation protocols reliably assess vision-language models (VLMs) in safety-critical settings. Motivated by a goal-oriented view of surgical planning, we define planning correctness via phase-goal satisfiability, where plan validity is determined by expert-defined surgical rules. Based on this definition, we introduce a multicentric meta-evaluation benchmark with valid procedural variations and invalid plans containing order and content errors. Using this benchmark, we show that sequence similarity metrics systematically misjudge planning quality, penalizing valid plans while failing to identify invalid ones. We therefore adopt a rule-based goal-satisfiability metric as a high-precision meta-evaluation reference to assess Video-LLMs under progressively constrained settings, revealing failures due to perception errors and under-constrained reasoning. Structural knowledge consistently improves performance, whereas semantic guidance alone is unreliable and benefits larger models only when combined with structural constraints.
Online identification of nonlinear time-varying systems with uncertain information
Digital twins (DTs), serving as the core enablers for real-time monitoring and predictive maintenance of complex cyber-physical systems, impose critical requirements on their virtual models: high predictive accuracy, strong interpretability, and online adaptive capability. However, existing techniques struggle to meet these demands simultaneously: Bayesian methods excel in uncertainty quantification but lack model interpretability, while interpretable symbolic identification methods (e.g., SINDy) are constrained by their offline, batch-processing nature, which make real-time updates challenging. To bridge this semantic and computational gap, this paper proposes a novel Bayesian Regression-based Symbolic Learning (BRSL) framework. The framework formulates online symbolic discovery as a unified probabilistic state-space model. By incorporating sparse horseshoe priors, model selection is transformed into a Bayesian inference task, enabling simultaneous system identification and uncertainty quantification. Furthermore, we derive an online recursive algorithm with a forgetting factor and establish precise recursive conditions that guarantee the well-posedness of the posterior distribution. These conditions also function as real-time monitors for data utility, enhancing algorithmic robustness. Additionally, a rigorous convergence analysis is provided, demonstrating the convergence of parameter estimates under persistent excitation conditions. Case studies validate the effectiveness of the proposed framework in achieving interpretable, probabilistic prediction and online learning.
FastStair: Learning to Run Up Stairs with Humanoid Robots
Running up stairs is effortless for humans but remains extremely challenging for humanoid robots due to the simultaneous requirements of high agility and strict stability. Model-free reinforcement learning (RL) can generate dynamic locomotion, yet implicit stability rewards and heavy reliance on task-specific reward shaping tend to result in unsafe behaviors, especially on stairs; conversely, model-based foothold planners encode contact feasibility and stability structure, but enforcing their hard constraints often induces conservative motion that limits speed. We present FastStair, a planner-guided, multi-stage learning framework that reconciles these complementary strengths to achieve fast and stable stair ascent. FastStair integrates a parallel model-based foothold planner into the RL training loop to bias exploration toward dynamically feasible contacts and to pretrain a safety-focused base policy. To mitigate planner-induced conservatism and the discrepancy between low- and high-speed action distributions, the base policy was fine-tuned into speed-specialized experts and then integrated via Low-Rank Adaptation (LoRA) to enable smooth operation across the full commanded-speed range. We deploy the resulting controller on the Oli humanoid robot, achieving stable stair ascent at commanded speeds up to 1.65 m/s and traversing a 33-step spiral staircase (17 cm rise per step) in 12 s, demonstrating robust high-speed performance on long staircases. Notably, the proposed approach served as the champion solution in the Canton Tower Robot Run Up Competition.
CHORAL: Traversal-Aware Planning for Safe and Efficient Heterogeneous Multi-Robot Routing
Monitoring large, unknown, and complex environments with autonomous robots poses significant navigation challenges, where deploying teams of heterogeneous robots with complementary capabilities can substantially improve both mission performance and feasibility. However, effectively modeling how different robotic platforms interact with the environment requires rich, semantic scene understanding. Despite this, existing approaches often assume homogeneous robot teams or focus on discrete task compatibility rather than continuous routing. Consequently, scene understanding is not fully integrated into routing decisions, limiting their ability to adapt to the environment and to leverage each robot's strengths. In this paper, we propose an integrated semantic-aware framework for coordinating heterogeneous robots. Starting from a reconnaissance flight, we build a metric-semantic map using open-vocabulary vision models and use it to identify regions requiring closer inspection and capability-aware paths for each platform to reach them. These are then incorporated into a heterogeneous vehicle routing formulation that jointly assigns inspection tasks and computes robot trajectories. Experiments in simulation and in a real inspection mission with three robotic platforms demonstrate the effectiveness of our approach in planning safer and more efficient routes by explicitly accounting for each platform's navigation capabilities. We release our framework, CHORAL, as open source to support reproducibility and deployment of diverse robot teams.
The impact of tactile sensor configurations on grasp learning efficiency -- a comparative evaluation in simulation
Tactile sensors are breaking into the field of robotics to provide direct information related to contact surfaces, including contact events, slip events and even texture identification. These events are especially important for robotic hand designs, including prosthetics, as they can greatly improve grasp stability. Most presently published robotic hand designs, however, implement them in vastly different densities and layouts on the hand surface, often reserving the majority of the available space. We used simulations to evaluate 6 different tactile sensor configurations with different densities and layouts, based on their impact on reinforcement learning. Our two-setup system allows for robust results that are not dependent on the use of a given physics simulator, robotic hand model or machine learning algorithm. Our results show setup-specific, as well as generalized effects across the 6 sensorized simulations, and we identify one configuration as consistently yielding the best performance across both setups. These results could help future research aimed at robotic hand designs, including prostheses.
comment: 13 pages, 6 figures, 2 tables
Proactive Local-Minima-Free Robot Navigation: Blending Motion Prediction with Safe Control
This work addresses the challenge of safe and efficient mobile robot navigation in complex dynamic environments with concave moving obstacles. Reactive safe controllers like Control Barrier Functions (CBFs) design obstacle avoidance strategies based only on the current states of the obstacles, risking future collisions. To alleviate this problem, we use Gaussian processes to learn barrier functions online from multimodal motion predictions of obstacles generated by neural networks trained with energy-based learning. The learned barrier functions are then fed into quadratic programs using modulated CBFs (MCBFs), a local-minimum-free version of CBFs, to achieve safe and efficient navigation. The proposed framework makes two key contributions. First, it develops a prediction-to-barrier function online learning pipeline. Second, it introduces an autonomous parameter tuning algorithm that adapts MCBFs to deforming, prediction-based barrier functions. The framework is evaluated in both simulations and real-world experiments, consistently outperforming baselines and demonstrating superior safety and efficiency in crowded dynamic environments.
comment: Co-first authors: Yifan Xue and Ze Zhang
A Unified Framework for Kinematic Simulation of Rigid Foldable Structures
Origami-inspired structures with rigid panels now span thick, kirigami, and multi-sheet realizations, making unified kinematic analysis essential. Yet a general method that consolidates their loop constraints has been lacking. We present an automated approach that generates the Pfaffian constraint matrix for arbitrary rigid foldable structures (RFS). From a minimally extended data schema, the tool constructs the facet-hinge graph, extracts a minimum cycle basis that captures all constraints, and assembles a velocity-level constraint matrix via screw theory that encodes coupled rotation and translation loop closure. The framework computes and visualizes deploy and fold motions across diverse RFS while eliminating tedious and error-prone constraint calculations.
comment: 34 pages (20 pages main text), 11 figures (7 in main text, 4 in appendix)
Terrain-Adaptive Mobile 3D Printing with Hierarchical Control
Mobile 3D printing on unstructured terrain remains challenging due to the conflict between platform mobility and deposition precision. Existing gantry-based systems achieve high accuracy but lack mobility, while mobile platforms struggle to maintain print quality on uneven ground. We present a framework that tightly integrates AI-driven disturbance prediction with multi-modal sensor fusion and hierarchical hardware control, forming a closed-loop perception-learning-actuation system. The AI module learns terrain-to-perturbation mappings from IMU, vision, and depth sensors, enabling proactive compensation rather than reactive correction. This intelligence is embedded into a three-layer control architecture: path planning, predictive chassis-manipulator coordination, and precision hardware execution. Through outdoor experiments on terrain with slopes and surface irregularities, we demonstrate sub-centimeter printing accuracy while maintaining full platform mobility. This AI-hardware integration establishes a practical foundation for autonomous construction in unstructured environments.
comment: Submitted to the 43rd International Symposium on Automation and Robotics in Construction (ISARC 2026)
RAG-3DSG: Enhancing 3D Scene Graphs with Re-Shot Guided Retrieval-Augmented Generation
Open-vocabulary 3D Scene Graph (3DSG) generation can enhance various downstream tasks in robotics, such as manipulation and navigation, by leveraging structured semantic representations. A 3DSG is constructed from multiple images of a scene, where objects are represented as nodes and relationships as edges. However, existing works for open-vocabulary 3DSG generation suffer from both low object-level recognition accuracy and speed, mainly due to constrained viewpoints, occlusions, and redundant surface density. To address these challenges, we propose RAG-3DSG to mitigate aggregation noise through re-shot guided uncertainty estimation and support object-level Retrieval-Augmented Generation (RAG) via reliable low-uncertainty objects. Furthermore, we propose a dynamic downsample-mapping strategy to accelerate cross-image object aggregation with adaptive granularity. Experiments on Replica dataset demonstrate that RAG-3DSG significantly improves node captioning accuracy in 3DSG generation while reducing the mapping time by two-thirds compared to the vanilla version.
comment: 9 pages, 6 figures
CoCoPlan: Adaptive Coordination and Communication for Multi-robot Systems in Dynamic and Unknown Environments RA-L
Multi-robot systems can greatly enhance efficiency through coordination and collaboration, yet in practice, full-time communication is rarely available and interactions are constrained to close-range exchanges. Existing methods either maintain all-time connectivity, rely on fixed schedules, or adopt pairwise protocols, but none adapt effectively to dynamic spatio-temporal task distributions under limited communication, resulting in suboptimal coordination. To address this gap, we propose CoCoPlan, a unified framework that co-optimizes collaborative task planning and team-wise intermittent communication. Our approach integrates a branch-and-bound architecture that jointly encodes task assignments and communication events, an adaptive objective function that balances task efficiency against communication latency, and a communication event optimization module that strategically determines when, where and how the global connectivity should be re-established. Extensive experiments demonstrate that it outperforms state-of-the-art methods by achieving a 22.4% higher task completion rate, reducing communication overhead by 58.6%, and improving the scalability by supporting up to 100 robots in dynamic environments. Hardware experiments include the complex 2D office environment and large-scale 3D disaster-response scenario.
comment: 8 pages, 8 figures, published to RA-L
UEOF: A Benchmark Dataset for Underwater Event-Based Optical Flow WACV
Underwater imaging is fundamentally challenging due to wavelength-dependent light attenuation, strong scattering from suspended particles, turbidity-induced blur, and non-uniform illumination. These effects impair standard cameras and make ground-truth motion nearly impossible to obtain. On the other hand, event cameras offer microsecond resolution and high dynamic range. Nonetheless, progress on investigating event cameras for underwater environments has been limited due to the lack of datasets that pair realistic underwater optics with accurate optical flow. To address this problem, we introduce the first synthetic underwater benchmark dataset for event-based optical flow derived from physically-based ray-traced RGBD sequences. Using a modern video-to-event pipeline applied to rendered underwater videos, we produce realistic event data streams with dense ground-truth flow, depth, and camera motion. Moreover, we benchmark state-of-the-art learning-based and model-based optical flow prediction methods to understand how underwater light transport affects event formation and motion estimation accuracy. Our dataset establishes a new baseline for future development and evaluation of underwater event-based perception algorithms. The source code and dataset for this project are publicly available at https://robotic-vision-lab.github.io/ueof.
comment: To be presented at the 2026 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) Workshop on Event-Based Vision in the Era of Generative AI
In-the-Wild Compliant Manipulation with UMI-FT ICRA 2026
Many manipulation tasks require careful force modulation. With insufficient force the task may fail, while excessive force could cause damage. The high cost, bulky size and fragility of commercial force/torque (F/T) sensors have limited large-scale, force-aware policy learning. We introduce UMI-FT, a handheld data-collection platform that mounts compact, six-axis force/torque sensors on each finger, enabling finger-level wrench measurements alongside RGB, depth, and pose. Using the multimodal data collected from this device, we train an adaptive compliance policy that predicts position targets, grasp force, and stiffness for execution on standard compliance controllers. In evaluations on three contact-rich, force-sensitive tasks (whiteboard wiping, skewering zucchini, and lightbulb insertion), UMI-FT enables policies that reliably regulate external contact forces and internal grasp forces, outperforming baselines that lack compliance or force sensing. UMI-FT offers a scalable path to learning compliant manipulation from in-the-wild demonstrations. We open-source the hardware and software to facilitate broader adoption at:https://umi-ft.github.io/.
comment: submitted to ICRA 2026
OT-Drive: Out-of-Distribution Off-Road Traversable Area Segmentation via Optimal Transport
Reliable traversable area segmentation in unstructured environments is critical for planning and decision-making in autonomous driving. However, existing data-driven approaches often suffer from degraded segmentation performance in out-of-distribution (OOD) scenarios, consequently impairing downstream driving tasks. To address this issue, we propose OT-Drive, an Optimal Transport--driven multi-modal fusion framework. The proposed method formulates RGB and surface normal fusion as a distribution transport problem. Specifically, we design a novel Scene Anchor Generator (SAG) to decompose scene information into the joint distribution of weather, time-of-day, and road type, thereby constructing semantic anchors that can generalize to unseen scenarios. Subsequently, we design an innovative Optimal Transport-based multi-modal fusion module (OT Fusion) to transport RGB and surface normal features onto the manifold defined by the semantic anchors, enabling robust traversable area segmentation under OOD scenarios. Experimental results demonstrate that our method achieves 95.16% mIoU on ORFD OOD scenarios, outperforming prior methods by 6.35%, and 89.79% mIoU on cross-dataset transfer tasks, surpassing baselines by 13.99%.These results indicate that the proposed model can attain strong OOD generalization with only limited training data, substantially enhancing its practicality and efficiency for real-world deployment.
comment: 9 pages, 8 figures, 6 tables. This work has been submitted to the IEEE for possible publication. Code will be released upon acceptance
Is open robotics innovation a threat to international peace and security?
Open access to publication, software and hardware is central to robotics: it lowers barriers to entry, supports reproducible science and accelerates reliable system development. However, openness also exacerbates the inherent dual-use risks associated with research and innovation in robotics. It lowers barriers for states and non-state actors to develop and deploy robotics systems for military use and harmful purposes. Compared to other fields of engineering where dual-use risks are present - e.g., those that underlie the development of weapons of mass destruction (chemical, biological, radiological, and nuclear weapons) and even the field of AI, robotics offers no specific regulation and little guidance as to how research and innovation may be conducted and disseminated responsibly. While other fields can be used for guidance, robotics has its own needs and specificities which have to be taken into account. The robotics community should therefore work toward its own set of sector-specific guidance and possibly regulation. To that end, we propose a roadmap focusing on four practices: a) education in responsible robotics; b) incentivizing risk assessment; c) moderating the diffusion of high-risk material; and d) developing red lines.
IMU-based Real-Time Crutch Gait Phase and Step Detections in Lower-Limb Exoskeletons
Lower limb exoskeletons and prostheses require precise, real time gait phase and step detections to ensure synchronized motion and user safety. Conventional methods often rely on complex force sensing hardware that introduces control latency. This paper presents a minimalist framework utilizing a single, low cost Inertial-Measurement Unit (IMU) integrated into the crutch hand grip, eliminating the need for mechanical modifications. We propose a five phase classification system, including standard gait phases and a non locomotor auxiliary state, to prevent undesired motion. Three deep learning architectures were benchmarked on both a PC and an embedded system. To improve performance under data constrained conditions, models were augmented with a Finite State Machine (FSM) to enforce biomechanical consistency. The Temporal Convolutional Network (TCN) emerged as the superior architecture, yielding the highest success rates and lowest latency. Notably, the model generalized to a paralyzed user despite being trained exclusively on healthy participants. Achieving a 94% success rate in detecting crutch steps, this system provides a high performance, cost effective solution for real time exoskeleton control.
Approximately Optimal Global Planning for Contact-Rich SE(2) Manipulation on a Graph of Reachable Sets
If we consider human manipulation, it is clear that contact-rich manipulation (CRM)-the ability to use any surface of the manipulator to make contact with objects-can be far more efficient and natural than relying solely on end-effectors (i.e., fingertips). However, state-of-the-art model-based planners for CRM are still focused on feasibility rather than optimality, limiting their ability to fully exploit CRM's advantages. We introduce a new paradigm that computes approximately optimal manipulator plans. This approach has two phases. Offline, we construct a graph of mutual reachable sets, where each set contains all object orientations reachable from a starting object orientation and grasp. Online, we plan over this graph, effectively computing and sequencing local plans for globally optimized motion. On a challenging, representative contact-rich task, our approach outperforms a leading planner, reducing task cost by 61%. It also achieves a 91% success rate across 250 queries and maintains sub-minute query times, ultimately demonstrating that globally optimized contact-rich manipulation is now practical for real-world tasks.
comment: 17 pages, 14 figures; under submission to IEEE Transactions on Robotics
SurfSLAM: Sim-to-Real Underwater Stereo Reconstruction For Real-Time SLAM
Localization and mapping are core perceptual capabilities for underwater robots. Stereo cameras provide a low-cost means of directly estimating metric depth to support these tasks. However, despite recent advances in stereo depth estimation on land, computing depth from image pairs in underwater scenes remains challenging. In underwater environments, images are degraded by light attenuation, visual artifacts, and dynamic lighting conditions. Furthermore, real-world underwater scenes frequently lack rich texture useful for stereo depth estimation and 3D reconstruction. As a result, stereo estimation networks trained on in-air data cannot transfer directly to the underwater domain. In addition, there is a lack of real-world underwater stereo datasets for supervised training of neural networks. Poor underwater depth estimation is compounded in stereo-based Simultaneous Localization and Mapping (SLAM) algorithms, making it a fundamental challenge for underwater robot perception. To address these challenges, we propose a novel framework that enables sim-to-real training of underwater stereo disparity estimation networks using simulated data and self-supervised finetuning. We leverage our learned depth predictions to develop \algname, a novel framework for real-time underwater SLAM that fuses stereo cameras with IMU, barometric, and Doppler Velocity Log (DVL) measurements. Lastly, we collect a challenging real-world dataset of shipwreck surveys using an underwater robot. Our dataset features over 24,000 stereo pairs, along with high-quality, dense photogrammetry models and reference trajectories for evaluation. Through extensive experiments, we demonstrate the advantages of the proposed training approach on real-world data for improving stereo estimation in the underwater domain and for enabling accurate trajectory estimation and 3D reconstruction of complex shipwreck sites.
Bidirectional Human-Robot Communication for Physical Human-Robot Interaction
Effective physical human-robot interaction requires systems that are not only adaptable to user preferences but also transparent about their actions. This paper introduces BRIDGE, a system for bidirectional human-robot communication in physical assistance. Our method allows users to modify a robot's planned trajectory -- position, velocity, and force -- in real time using natural language. We utilize a large language model (LLM) to interpret any trajectory modifications implied by user commands in the context of the planned motion and conversation history. Importantly, our system provides verbal feedback in response to the user, either assuring any resulting changes or posing a clarifying question. We evaluated our method in a user study with 18 older adults across three assistive tasks, comparing BRIDGE to an ablation without verbal feedback and a baseline. Results show that participants successfully used the system to modify trajectories in real time. Moreover, the bidirectional feedback led to significantly higher ratings of interactivity and transparency, demonstrating that the robot's verbal response is critical for a more intuitive user experience. Videos and code can be found on our project website: https://bidir-comm.github.io/
comment: 12 pages, 8 figures. To be published in 2026 ACM/IEEE International Conference on Human-Robot Interaction
Exploiting Euclidean Distance Field Properties for Fast and Safe 3D planning with a modified Lazy Theta*
This paper presents the FS-Planner, a fast graph-search planner based on a modified Lazy Theta* algorithm that exploits the analytical properties of Euclidean Distance Fields (EDFs). We introduce a new cost function that integrates an EDF-based term proven to satisfy the triangle inequality, enabling efficient parent selection and reducing computation time while generating safe paths with smaller heading variations. We also derive an analytic approximation of the EDF integral along a segment and analyze the influence of the line-of-sight limit on the approximation error, motivating the use of a bounded visibility range. Furthermore, we propose a gradient-based neighbour-selection mechanism that decreases the number of explored nodes and improves computational performance without degrading safety or path quality. The FS-Planner produces safe paths with small heading changes without requiring the use of post-processing methods. Extensive experiments and comparisons in challenging 3D indoor simulation environments, complemented by tests in real-world outdoor environments, are used to evaluate and validate the FS-Planner. The results show consistent improvements in computation time, exploration efficiency, safety, and smoothness in a geometric sense compared with baseline heuristic planners, while maintaining sub-optimality within acceptable bounds. Finally, the proposed EDF-based cost formulation is orthogonal to the underlying search method and can be incorporated into other planning paradigms.
RGS-SLAM: Robust Gaussian Splatting SLAM with One-Shot Dense Initialization
We introduce RGS-SLAM, a robust Gaussian-splatting SLAM framework that replaces the residual-driven densification stage of GS-SLAM with a training-free correspondence-to-Gaussian initialization. Instead of progressively adding Gaussians as residuals reveal missing geometry, RGS-SLAM performs a one-shot triangulation of dense multi-view correspondences derived from DINOv3 descriptors refined through a confidence-aware inlier classifier, generating a well-distributed and structure-aware Gaussian seed prior to optimization. This initialization stabilizes early mapping and accelerates convergence by roughly 20\%, yielding higher rendering fidelity in texture-rich and cluttered scenes while remaining fully compatible with existing GS-SLAM pipelines. Evaluated on the TUM RGB-D and Replica datasets, RGS-SLAM achieves competitive or superior localization and reconstruction accuracy compared with state-of-the-art Gaussian and point-based SLAM systems, sustaining real-time mapping performance at up to 925 FPS. Additional details and resources are available at this URL: https://breeze1124.github.io/rgs-slam-project-page/
comment: 10 pages, 9 figures
Sampling-Based Constrained Motion Planning with Products of Experts
We present a novel approach to enhance the performance of sampling-based Model Predictive Control (MPC) in constrained optimization by leveraging products of experts. Our methodology divides the main problem into two components: one focused on optimality and the other on feasibility. By combining the solutions from each component, represented as distributions, we apply products of experts to implement a project-then-sample strategy. In this strategy, the optimality distribution is projected into the feasible area, allowing for more efficient sampling. This approach contrasts with the traditional sample-then-project and naive sample-then-reject method, leading to more diverse exploration and reducing the accumulation of samples on the boundaries. We demonstrate an effective implementation of this principle using a tensor train-based distribution model, which is characterized by its non-parametric nature, ease of combination with other distributions at the task level, and straightforward sampling technique. We adapt existing tensor train models to suit this purpose and validate the efficacy of our approach through experiments in various tasks, including obstacle avoidance, non-prehensile manipulation, and tasks involving staying in a restricted volume. Our experimental results demonstrate that the proposed method consistently outperforms known baselines, providing strong empirical support for its effectiveness. Sample codes for this project are available at https://github.com/idiap/smpc_poe.
Singularity-Free Guiding Vector Field over Bézier's Curves Applied to Rovers Path Planning and Path Following
This paper presents a guidance algorithm for solving the problem of following parametric paths, as well as a curvature-varying speed setpoint for land-based car-type wheeled mobile robots (WMRs). The guidance algorithm relies on Singularity-Free Guiding Vector Fields SF-GVF. This novel GVF approach expands the desired robot path and the Guiding vector field to a higher dimensional space, in which an angular control function can be found to ensure global asymptotic convergence to the desired parametric path while avoiding field singularities. In SF-GVF, paths should follow a parametric definition. This feature makes using Bezier's curves attractive to define the robot's desired patch. The curvature-varying speed setpoint, combined with the guidance algorithm, eases the convergence to the path when physical restrictions exist, such as minimal turning radius or maximal lateral acceleration. We provide theoretical results, simulations, and outdoor experiments using a WMR platform assembled with off-the-shelf components.
comment: Final version, accepted for publication. 26 pages, 15 figures
Bootstrap Off-policy with World Model NeurIPS 2025
Online planning has proven effective in reinforcement learning (RL) for improving sample efficiency and final performance. However, using planning for environment interaction inevitably introduces a divergence between the collected data and the policy's actual behaviors, degrading both model learning and policy improvement. To address this, we propose BOOM (Bootstrap Off-policy with WOrld Model), a framework that tightly integrates planning and off-policy learning through a bootstrap loop: the policy initializes the planner, and the planner refines actions to bootstrap the policy through behavior alignment. This loop is supported by a jointly learned world model, which enables the planner to simulate future trajectories and provides value targets to facilitate policy improvement. The core of BOOM is a likelihood-free alignment loss that bootstraps the policy using the planner's non-parametric action distribution, combined with a soft value-weighted mechanism that prioritizes high-return behaviors and mitigates variability in the planner's action quality within the replay buffer. Experiments on the high-dimensional DeepMind Control Suite and Humanoid-Bench show that BOOM achieves state-of-the-art results in both training stability and final performance. The code is accessible at https://github.com/molumitu/BOOM_MBRL.
comment: NeurIPS 2025
UrbanNav: Learning Language-Guided Urban Navigation from Web-Scale Human Trajectories AAAI 2026
Navigating complex urban environments using natural language instructions poses significant challenges for embodied agents, including noisy language instructions, ambiguous spatial references, diverse landmarks, and dynamic street scenes. Current visual navigation methods are typically limited to simulated or off-street environments, and often rely on precise goal formats, such as specific coordinates or images. This limits their effectiveness for autonomous agents like last-mile delivery robots navigating unfamiliar cities. To address these limitations, we introduce UrbanNav, a scalable framework that trains embodied agents to follow free-form language instructions in diverse urban settings. Leveraging web-scale city walking videos, we develop an scalable annotation pipeline that aligns human navigation trajectories with language instructions grounded in real-world landmarks. UrbanNav encompasses over 1,500 hours of navigation data and 3 million instruction-trajectory-landmark triplets, capturing a wide range of urban scenarios. Our model learns robust navigation policies to tackle complex urban scenarios, demonstrating superior spatial reasoning, robustness to noisy instructions, and generalization to unseen urban settings. Experimental results show that UrbanNav significantly outperforms existing methods, highlighting the potential of large-scale web video data to enable language-guided, real-world urban navigation for embodied agents.
comment: 9 pages, 5 figures, accepted to AAAI 2026. Project page:https://github.com/CASIA-IVA-Lab/UrbanNav
Robot-R1: Reinforcement Learning for Enhanced Embodied Reasoning in Robotics
Large Vision-Language Models (LVLMs) have recently shown great promise in advancing robotics by combining embodied reasoning with robot control. A common approach involves training on embodied reasoning tasks related to robot control using Supervised Fine-Tuning (SFT). However, SFT datasets are often heuristically constructed and not explicitly optimized for improving robot control. Furthermore, SFT often leads to issues such as catastrophic forgetting and reduced generalization performance. To address these limitations, we introduce Robot-R1, a novel framework that leverages reinforcement learning to enhance embodied reasoning specifically for robot control. Robot-R1 learns to predict the next keypoint state required for task completion, conditioned on the current scene image and environment metadata derived from expert demonstrations. Inspired by the DeepSeek-R1 learning approach, Robot-R1 samples reasoning-based responses and reinforces those that lead to more accurate predictions. To rigorously evaluate Robot-R1, we also introduce a new benchmark that demands the diverse embodied reasoning capabilities for the task. Our experiments show that models trained with Robot-R1 outperform SFT methods on embodied reasoning tasks. Despite having only 7B parameters, Robot-R1 even surpasses GPT-4o on reasoning tasks related to low-level action control, such as spatial and movement reasoning.
comment: 29 pages, 13 figures
Learning Quadrotor Control From Visual Features Using Differentiable Simulation ICRA
The sample inefficiency of reinforcement learning (RL) remains a significant challenge in robotics. RL requires large-scale simulation and can still cause long training times, slowing research and innovation. This issue is particularly pronounced in vision-based control tasks where reliable state estimates are not accessible. Differentiable simulation offers an alternative by enabling gradient back-propagation through the dynamics model, providing low-variance analytical policy gradients and, hence, higher sample efficiency. However, its usage for real-world robotic tasks has yet been limited. This work demonstrates the great potential of differentiable simulation for learning quadrotor control. We show that training in differentiable simulation significantly outperforms model-free RL in terms of both sample efficiency and training time, allowing a policy to learn to recover a quadrotor in seconds when providing vehicle states and in minutes when relying solely on visual features. The key to our success is two-fold. First, the use of a simple surrogate model for gradient computation greatly accelerates training without sacrificing control performance. Second, combining state representation learning with policy learning enhances convergence speed in tasks where only visual features are observable. These findings highlight the potential of differentiable simulation for real-world robotics and offer a compelling alternative to conventional RL approaches.
comment: Accepted for presentation at the IEEE International Conference on Robotics and Automation (ICRA) 2025
Adaptive Model-Predictive Control of a Soft Continuum Robot Using a Physics-Informed Neural Network Based on Cosserat Rod Theory
Dynamic control of soft continuum robots (SCRs) holds great potential for expanding their applications, but remains a challenging problem due to the high computational demands of accurate dynamic models. While data-driven approaches like Koopman-operator-based methods have been proposed, they typically lack adaptability and cannot reconstruct the full robot shape, limiting their applicability. This work introduces a real-time-capable nonlinear model-predictive control (MPC) framework for SCRs based on a domain-decoupled physics-informed neural network (DD-PINN) with adaptable bending stiffness. The DD-PINN serves as a surrogate for the dynamic Cosserat rod model with a speed-up factor of 44000. It is also used within an unscented Kalman filter for estimating the model states and bending compliance from end-effector position measurements. We implement a nonlinear evolutionary MPC running at 70 Hz on the GPU. In simulation, it demonstrates accurate tracking of dynamic trajectories and setpoint control with end-effector position errors below 3 mm (2.3% of the actuator's length). In real-world experiments, the controller achieves similar accuracy and accelerations up to 3.55 m/s2.
comment: Submitted to IEEE Transactions on Robotics, 20 pages, 14 figures
Adaptive Querying for Reward Learning from Human Feedback
Learning from human feedback is a popular approach to train robots to adapt to user preferences and improve safety. Existing approaches typically consider a single querying (interaction) format when seeking human feedback and do not leverage multiple modes of user interaction with a robot. We examine how to learn a penalty function associated with unsafe behaviors using multiple forms of human feedback, by optimizing both the query state and feedback format. Our proposed adaptive feedback selection is an iterative, two-phase approach which first selects critical states for querying, and then uses information gain to select a feedback format for querying across the sampled critical states. The feedback format selection also accounts for the cost and probability of receiving feedback in a certain format. Our experiments in simulation demonstrate the sample efficiency of our approach in learning to avoid undesirable behaviors. The results of our user study with a physical robot highlight the practicality and effectiveness of adaptive feedback selection in seeking informative, user-aligned feedback that accelerate learning. Experiment videos, code and appendices are found on our website: https://tinyurl.com/AFS-learning.
Safety Not Found (404): Hidden Risks of LLM-Based Robotics Decision Making
One mistake by an AI system in a safety-critical setting can cost lives. As Large Language Models (LLMs) become integral to robotics decision-making, the physical dimension of risk grows; a single wrong instruction can directly endanger human safety. This paper addresses the urgent need to systematically evaluate LLM performance in scenarios where even minor errors are catastrophic. Through a qualitative evaluation of a fire evacuation scenario, we identified critical failure cases in LLM-based decision-making. Based on these, we designed seven tasks for quantitative assessment, categorized into: Complete Information, Incomplete Information, and Safety-Oriented Spatial Reasoning (SOSR). Complete information tasks utilize ASCII maps to minimize interpretation ambiguity and isolate spatial reasoning from visual processing. Incomplete information tasks require models to infer missing context, testing for spatial continuity versus hallucinations. SOSR tasks use natural language to evaluate safe decision-making in life-threatening contexts. We benchmark various LLMs and Vision-Language Models (VLMs) across these tasks. Beyond aggregate performance, we analyze the implications of a 1% failure rate, highlighting how "rare" errors escalate into catastrophic outcomes. Results reveal serious vulnerabilities: several models achieved a 0% success rate in ASCII navigation, while in a simulated fire drill, models instructed robots to move toward hazardous areas instead of emergency exits. Our findings lead to a sobering conclusion: current LLMs are not ready for direct deployment in safety-critical systems. A 99% accuracy rate is dangerously misleading in robotics, as it implies one out of every hundred executions could result in catastrophic harm. We demonstrate that even state-of-the-art models cannot guarantee safety, and absolute reliance on them creates unacceptable risks.
CoinFT: A Coin-Sized, Capacitive 6-Axis Force Torque Sensor for Robotic Applications
We introduce CoinFT, a capacitive 6-axis force/torque (F/T) sensor that is compact, light, low-cost, and robust with an average root-mean-squared error of 0.16N for force and 1.08mNm for moment when the input ranges from 0~14N and 0~5N in normal and shear directions, respectively. CoinFT is a stack of two rigid PCBs with comb-shaped electrodes connected by an array of silicone rubber pillars. The microcontroller interrogates the electrodes in different subsets in order to enhance sensitivity for measuring 6-axis F/T. The combination of features of CoinFT enables various contact-rich robot interactions across different embodiment domains including drones, robot end-effectors, and wearable haptic devices. We demonstrate the utility of CoinFT through two representative applications: a multi-axial contact-probing experiment in which a CoinFT mounted beneath a hemispherical fingertip measures 6-axes of force and torque representative of manipulation scenarios, and an attitude-based force-control task on a drone. The design, fabrication, and firmware of CoinFT are open-sourced at https://coin-ft.github.io/.
Bayesian Monocular Depth Refinement via Neural Radiance Fields
Monocular depth estimation has applications in many fields, such as autonomous navigation and extended reality, making it an essential computer vision task. However, current methods often produce smooth depth maps that lack the fine geometric detail needed for accurate scene understanding. We propose MDENeRF, an iterative framework that refines monocular depth estimates using depth information from Neural Radiance Fields (NeRFs). MDENeRF consists of three components: (1) an initial monocular estimate for global structure, (2) a NeRF trained on perturbed viewpoints, with per-pixel uncertainty, and (3) Bayesian fusion of the noisy monocular and NeRF depths. We derive NeRF uncertainty from the volume rendering process to iteratively inject high-frequency fine details. Meanwhile, our monocular prior maintains global structure. We demonstrate improvements on key metrics and experiments using indoor scenes from the SUN RGB-D dataset.
comment: IEEE 8th International Conference on Algorithms, Computing and Artificial Intelligence (ACAI 2025)
A Taxonomy for Evaluating Generalist Robot Manipulation Policies RA-L
Machine learning for robot manipulation promises to unlock generalization to novel tasks and environments. But how should we measure the progress of these policies towards generalization? Evaluating and quantifying generalization is the Wild West of modern robotics, with each work proposing and measuring different types of generalization in their own, often difficult to reproduce settings. In this work, our goal is (1) to outline the forms of generalization we believe are important for robot manipulation in a comprehensive and fine-grained manner, and (2) to provide reproducible guidelines for measuring these notions of generalization. We first propose STAR-Gen, a taxonomy of generalization for robot manipulation structured around visual, semantic, and behavioral generalization. Next, we instantiate STAR-Gen with two case studies on real-world benchmarking: one based on open-source models and the Bridge V2 dataset, and another based on the bimanual ALOHA 2 platform that covers more dexterous and longer horizon tasks. Our case studies reveal many interesting insights: for example, we observe that open-source vision-language-action models often struggle with semantic generalization, despite pre-training on internet-scale language datasets. We provide videos and other supplementary material at our website stargen-taxonomy.github.io.
comment: IEEE Robotics and Automation Letters (RA-L)
Computer Vision and Pattern Recognition 147
WildRayZer: Self-supervised Large View Synthesis in Dynamic Environments
We present WildRayZer, a self-supervised framework for novel view synthesis (NVS) in dynamic environments where both the camera and objects move. Dynamic content breaks the multi-view consistency that static NVS models rely on, leading to ghosting, hallucinated geometry, and unstable pose estimation. WildRayZer addresses this by performing an analysis-by-synthesis test: a camera-only static renderer explains rigid structure, and its residuals reveal transient regions. From these residuals, we construct pseudo motion masks, distill a motion estimator, and use it to mask input tokens and gate loss gradients so supervision focuses on cross-view background completion. To enable large-scale training and evaluation, we curate Dynamic RealEstate10K (D-RE10K), a real-world dataset of 15K casually captured dynamic sequences, and D-RE10K-iPhone, a paired transient and clean benchmark for sparse-view transient-aware NVS. Experiments show that WildRayZer consistently outperforms optimization-based and feed-forward baselines in both transient-region removal and full-frame NVS quality with a single feed-forward pass.
comment: Project Page: https://wild-rayzer.cs.virginia.edu/
Alterbute: Editing Intrinsic Attributes of Objects in Images
We introduce Alterbute, a diffusion-based method for editing an object's intrinsic attributes in an image. We allow changing color, texture, material, and even the shape of an object, while preserving its perceived identity and scene context. Existing approaches either rely on unsupervised priors that often fail to preserve identity or use overly restrictive supervision that prevents meaningful intrinsic variations. Our method relies on: (i) a relaxed training objective that allows the model to change both intrinsic and extrinsic attributes conditioned on an identity reference image, a textual prompt describing the target intrinsic attributes, and a background image and object mask defining the extrinsic context. At inference, we restrict extrinsic changes by reusing the original background and object mask, thereby ensuring that only the desired intrinsic attributes are altered; (ii) Visual Named Entities (VNEs) - fine-grained visual identity categories (e.g., ''Porsche 911 Carrera'') that group objects sharing identity-defining features while allowing variation in intrinsic attributes. We use a vision-language model to automatically extract VNE labels and intrinsic attribute descriptions from a large public image dataset, enabling scalable, identity-preserving supervision. Alterbute outperforms existing methods on identity-preserving object intrinsic attribute editing.
comment: Project page is available at https://talreiss.github.io/alterbute/
From One-to-One to Many-to-Many: Dynamic Cross-Layer Injection for Deep Vision-Language Fusion
Vision-Language Models (VLMs) create a severe visual feature bottleneck by using a crude, asymmetric connection that links only the output of the vision encoder to the input of the large language model (LLM). This static architecture fundamentally limits the ability of LLMs to achieve comprehensive alignment with hierarchical visual knowledge, compromising their capacity to accurately integrate local details with global semantics into coherent reasoning. To resolve this, we introduce Cross-Layer Injection (CLI), a novel and lightweight framework that forges a dynamic many-to-many bridge between the two modalities. CLI consists of two synergistic, parameter-efficient components: an Adaptive Multi-Projection (AMP) module that harmonizes features from diverse vision layers, and an Adaptive Gating Fusion (AGF) mechanism that empowers the LLM to selectively inject the most relevant visual information based on its real-time decoding context. We validate the effectiveness and versatility of CLI by integrating it into LLaVA-OneVision and LLaVA-1.5. Extensive experiments on 18 diverse benchmarks demonstrate significant performance improvements, establishing CLI as a scalable paradigm that unlocks deeper multimodal understanding by granting LLMs on-demand access to the full visual hierarchy.
See Less, Drive Better: Generalizable End-to-End Autonomous Driving via Foundation Models Stochastic Patch Selection
Recent advances in end-to-end autonomous driving show that policies trained on patch-aligned features extracted from foundation models generalize better to Out-of-Distribution (OOD). We hypothesize that due to the self-attention mechanism, each patch feature implicitly embeds/contains information from all other patches, represented in a different way and intensity, making these descriptors highly redundant. We quantify redundancy in such (BLIP2) features via PCA and cross-patch similarity: $90$% of variance is captured by $17/64$ principal components, and strong inter-token correlations are pervasive. Training on such overlapping information leads the policy to overfit spurious correlations, hurting OOD robustness. We present Stochastic-Patch-Selection (SPS), a simple yet effective approach for learning policies that are more robust, generalizable, and efficient. For every frame, SPS randomly masks a fraction of patch descriptors, not feeding them to the policy model, while preserving the spatial layout of the remaining patches. Thus, the policy is provided with different stochastic but complete views of the (same) scene: every random subset of patches acts like a different, yet still sensible, coherent projection of the world. The policy thus bases its decisions on features that are invariant to which specific tokens survive. Extensive experiments confirm that across all OOD scenarios, our method outperforms the state of the art (SOTA), achieving a $6.2$% average improvement and up to $20.4$% in closed-loop simulations, while being $2.4\times$ faster. We conduct ablations over masking rates and patch-feature reorganization, training and evaluating 9 systems, with 8 of them surpassing prior SOTA. Finally, we show that the same learned policy transfers to a physical, real-world car without any tuning.
CURVE: A Benchmark for Cultural and Multilingual Long Video Reasoning
Recent advancements in video models have shown tremendous progress, particularly in long video understanding. However, current benchmarks predominantly feature western-centric data and English as the dominant language, introducing significant biases in evaluation. To address this, we introduce CURVE (Cultural Understanding and Reasoning in Video Evaluation), a challenging benchmark for multicultural and multilingual video reasoning. CURVE comprises high-quality, entirely human-generated annotations from diverse, region-specific cultural videos across 18 global locales. Unlike prior work that relies on automatic translations, CURVE provides complex questions, answers, and multi-step reasoning steps, all crafted in native languages. Making progress on CURVE requires a deeply situated understanding of visual cultural context. Furthermore, we leverage CURVE's reasoning traces to construct evidence-based graphs and propose a novel iterative strategy using these graphs to identify fine-grained errors in reasoning. Our evaluations reveal that SoTA Video-LLMs struggle significantly, performing substantially below human-level accuracy, with errors primarily stemming from the visual perception of cultural elements. CURVE will be publicly available under https://github.com/google-deepmind/neptune?tab=readme-ov-file\#minerva-cultural
CoMoVi: Co-Generation of 3D Human Motions and Realistic Videos
In this paper, we find that the generation of 3D human motions and 2D human videos is intrinsically coupled. 3D motions provide the structural prior for plausibility and consistency in videos, while pre-trained video models offer strong generalization capabilities for motions, which necessitate coupling their generation processes. Based on this, we present CoMoVi, a co-generative framework that couples two video diffusion models (VDMs) to generate 3D human motions and videos synchronously within a single diffusion denoising loop. To achieve this, we first propose an effective 2D human motion representation that can inherit the powerful prior of pre-trained VDMs. Then, we design a dual-branch diffusion model to couple human motion and video generation process with mutual feature interaction and 3D-2D cross attentions. Moreover, we curate CoMoVi Dataset, a large-scale real-world human video dataset with text and motion annotations, covering diverse and challenging human motions. Extensive experiments demonstrate the effectiveness of our method in both 3D human motion and video generation tasks.
comment: Project Page: https://igl-hkust.github.io/CoMoVi/
Molmo2: Open Weights and Data for Vision-Language Models with Video Understanding and Grounding
Today's strongest video-language models (VLMs) remain proprietary. The strongest open-weight models either rely on synthetic data from proprietary VLMs, effectively distilling from them, or do not disclose their training data or recipe. As a result, the open-source community lacks the foundations needed to improve on the state-of-the-art video (and image) language models. Crucially, many downstream applications require more than just high-level video understanding; they require grounding -- either by pointing or by tracking in pixels. Even proprietary models lack this capability. We present Molmo2, a new family of VLMs that are state-of-the-art among open-source models and demonstrate exceptional new capabilities in point-driven grounding in single image, multi-image, and video tasks. Our key contribution is a collection of 7 new video datasets and 2 multi-image datasets, including a dataset of highly detailed video captions for pre-training, a free-form video Q&A dataset for fine-tuning, a new object tracking dataset with complex queries, and an innovative new video pointing dataset, all collected without the use of closed VLMs. We also present a training recipe for this data utilizing an efficient packing and message-tree encoding scheme, and show bi-directional attention on vision tokens and a novel token-weight strategy improves performance. Our best-in-class 8B model outperforms others in the class of open weight and data models on short videos, counting, and captioning, and is competitive on long-videos. On video-grounding Molmo2 significantly outperforms existing open-weight models like Qwen3-VL (35.5 vs 29.6 accuracy on video counting) and surpasses proprietary models like Gemini 3 Pro on some tasks (38.4 vs 20.0 F1 on video pointing and 56.2 vs 41.1 J&F on video tracking).
Multi-Objective Pareto-Front Optimization for Efficient Adaptive VVC Streaming
Adaptive video streaming has facilitated improved video streaming over the past years. A balance among coding performance objectives such as bitrate, video quality, and decoding complexity is required to achieve efficient, content- and codec-dependent, adaptive video streaming. This paper proposes a multi-objective Pareto-front (PF) optimization framework to construct quality-monotonic, content-adaptive bitrate ladders Versatile Video Coding (VVC) streaming that jointly optimize video quality, bitrate, and decoding time, which is used as a practical proxy for decoding energy. Two strategies are introduced: the Joint Rate-Quality-Time Pareto Front (JRQT-PF) and the Joint Quality-Time Pareto Front (JQT-PF), each exploring different tradeoff formulations and objective prioritizations. The ladders are constructed under quality monotonicity constraints during adaptive streaming to ensure a consistent Quality of Experience (QoE). Experiments are conducted on a large-scale UHD dataset (Inter-4K), with quality assessed using PSNR, VMAF, and XPSNR, and complexity measured via decoding time and energy consumption. The JQT-PF method achieves 11.76% average bitrate savings while reducing average decoding time by 0.29% to maintain the same XPSNR, compared to a widely-used fixed ladder. More aggressive configurations yield up to 27.88% bitrate savings at the cost of increased complexity. The JRQT-PF strategy, on the other hand, offers more controlled tradeoffs, achieving 6.38 % bitrate savings and 6.17 % decoding time reduction. This framework outperforms existing methods, including fixed ladders, VMAF- and XPSNR-based dynamic resolution selection, and complexity-aware benchmarks. The results confirm that PF optimization with decoding time constraints enables sustainable, high-quality streaming tailored to network and device capabilities.
comment: 19 pages
RSATalker: Realistic Socially-Aware Talking Head Generation for Multi-Turn Conversation
Talking head generation is increasingly important in virtual reality (VR), especially for social scenarios involving multi-turn conversation. Existing approaches face notable limitations: mesh-based 3D methods can model dual-person dialogue but lack realistic textures, while large-model-based 2D methods produce natural appearances but incur prohibitive computational costs. Recently, 3D Gaussian Splatting (3DGS) based methods achieve efficient and realistic rendering but remain speaker-only and ignore social relationships. We introduce RSATalker, the first framework that leverages 3DGS for realistic and socially-aware talking head generation with support for multi-turn conversation. Our method first drives mesh-based 3D facial motion from speech, then binds 3D Gaussians to mesh facets to render high-fidelity 2D avatar videos. To capture interpersonal dynamics, we propose a socially-aware module that encodes social relationships, including blood and non-blood as well as equal and unequal, into high-level embeddings through a learnable query mechanism. We design a three-stage training paradigm and construct the RSATalker dataset with speech-mesh-image triplets annotated with social relationships. Extensive experiments demonstrate that RSATalker achieves state-of-the-art performance in both realism and social awareness. The code and dataset will be released.
Action100M: A Large-scale Video Action Dataset
Inferring physical actions from visual observations is a fundamental capability for advancing machine intelligence in the physical world. Achieving this requires large-scale, open-vocabulary video action datasets that span broad domains. We introduce Action100M, a large-scale dataset constructed from 1.2M Internet instructional videos (14.6 years of duration), yielding O(100 million) temporally localized segments with open-vocabulary action supervision and rich captions. Action100M is generated by a fully automated pipeline that (i) performs hierarchical temporal segmentation using V-JEPA 2 embeddings, (ii) produces multi-level frame and segment captions organized as a Tree-of-Captions, and (iii) aggregates evidence with a reasoning model (GPT-OSS-120B) under a multi-round Self-Refine procedure to output structured annotations (brief/detailed action, actor, brief/detailed caption). Training VL-JEPA on Action100M demonstrates consistent data-scaling improvements and strong zero-shot performance across diverse action recognition benchmarks, establishing Action100M as a new foundation for scalable research in video understanding and world modeling.
Adversarial Evasion Attacks on Computer Vision using SHAP Values
The paper introduces a white-box attack on computer vision models using SHAP values. It demonstrates how adversarial evasion attacks can compromise the performance of deep learning models by reducing output confidence or inducing misclassifications. Such attacks are particularly insidious as they can deceive the perception of an algorithm while eluding human perception due to their imperceptibility to the human eye. The proposed attack leverages SHAP values to quantify the significance of individual inputs to the output at the inference stage. A comparison is drawn between the SHAP attack and the well-known Fast Gradient Sign Method. We find evidence that SHAP attacks are more robust in generating misclassifications particularly in gradient hiding scenarios.
comment: 10th bwHPC Symposium - September 25th & 26th, 2024
Jordan-Segmentable Masks: A Topology-Aware definition for characterizing Binary Image Segmentation
Image segmentation plays a central role in computer vision. However, widely used evaluation metrics, whether pixel-wise, region-based, or boundary-focused, often struggle to capture the structural and topological coherence of a segmentation. In many practical scenarios, such as medical imaging or object delineation, small inaccuracies in boundary, holes, or fragmented predictions can result in high metric scores, despite the fact that the resulting masks fail to preserve the object global shape or connectivity. This highlights a limitation of conventional metrics: they are unable to assess whether a predicted segmentation partitions the image into meaningful interior and exterior regions. In this work, we introduce a topology-aware notion of segmentation based on the Jordan Curve Theorem, and adapted for use in digital planes. We define the concept of a \emph{Jordan-segmentatable mask}, which is a binary segmentation whose structure ensures a topological separation of the image domain into two connected components. We analyze segmentation masks through the lens of digital topology and homology theory, extracting a $4$-curve candidate from the mask, verifying its topological validity using Betti numbers. A mask is considered Jordan-segmentatable when this candidate forms a digital 4-curve with $β_0 = β_1 = 1$, or equivalently when its complement splits into exactly two $8$-connected components. This framework provides a mathematically rigorous, unsupervised criterion with which to assess the structural coherence of segmentation masks. By combining digital Jordan theory and homological invariants, our approach provides a valuable alternative to standard evaluation metrics, especially in applications where topological correctness must be preserved.
comment: 27 pages, 18 figures
Process-Guided Concept Bottleneck Model
Concept Bottleneck Models (CBMs) improve the explainability of black-box Deep Learning (DL) by introducing intermediate semantic concepts. However, standard CBMs often overlook domain-specific relationships and causal mechanisms, and their dependence on complete concept labels limits applicability in scientific domains where supervision is sparse but processes are well defined. To address this, we propose the Process-Guided Concept Bottleneck Model (PG-CBM), an extension of CBMs which constrains learning to follow domain-defined causal mechanisms through biophysically meaningful intermediate concepts. Using above ground biomass density estimation from Earth Observation data as a case study, we show that PG-CBM reduces error and bias compared to multiple benchmarks, whilst leveraging multi-source heterogeneous training data and producing interpretable intermediate outputs. Beyond improved accuracy, PG-CBM enhances transparency, enables detection of spurious learning, and provides scientific insights, representing a step toward more trustworthy AI systems in scientific applications.
comment: 13 pages with 7 figures and 1 table, Supplementary Materials 10 pages with 3 figures
DeepUrban: Interaction-Aware Trajectory Prediction and Planning for Automated Driving by Aerial Imagery
The efficacy of autonomous driving systems hinges critically on robust prediction and planning capabilities. However, current benchmarks are impeded by a notable scarcity of scenarios featuring dense traffic, which is essential for understanding and modeling complex interactions among road users. To address this gap, we collaborated with our industrial partner, DeepScenario, to develop DeepUrban-a new drone dataset designed to enhance trajectory prediction and planning benchmarks focusing on dense urban settings. DeepUrban provides a rich collection of 3D traffic objects, extracted from high-resolution images captured over urban intersections at approximately 100 meters altitude. The dataset is further enriched with comprehensive map and scene information to support advanced modeling and simulation tasks. We evaluate state-of-the-art (SOTA) prediction and planning methods, and conducted experiments on generalization capabilities. Our findings demonstrate that adding DeepUrban to nuScenes can boost the accuracy of vehicle predictions and planning, achieving improvements up to 44.1 % / 44.3% on the ADE / FDE metrics. Website: https://iv.ee.hm.edu/deepurban
Inference-time Physics Alignment of Video Generative Models with Latent World Models
State-of-the-art video generative models produce promising visual content yet often violate basic physics principles, limiting their utility. While some attribute this deficiency to insufficient physics understanding from pre-training, we find that the shortfall in physics plausibility also stems from suboptimal inference strategies. We therefore introduce WMReward and treat improving physics plausibility of video generation as an inference-time alignment problem. In particular, we leverage the strong physics prior of a latent world model (here, VJEPA-2) as a reward to search and steer multiple candidate denoising trajectories, enabling scaling test-time compute for better generation performance. Empirically, our approach substantially improves physics plausibility across image-conditioned, multiframe-conditioned, and text-conditioned generation settings, with validation from human preference study. Notably, in the ICCV 2025 Perception Test PhysicsIQ Challenge, we achieve a final score of 62.64%, winning first place and outperforming the previous state of the art by 7.42%. Our work demonstrates the viability of using latent world models to improve physics plausibility of video generation, beyond this specific instantiation or parameterization.
comment: 22 pages, 10 figures
Unleashing the Capabilities of Large Vision-Language Models for Intelligent Perception of Roadside Infrastructure
Automated perception of urban roadside infrastructure is crucial for smart city management, yet general-purpose models often struggle to capture the necessary fine-grained attributes and domain rules. While Large Vision Language Models (VLMs) excel at open-world recognition, they often struggle to accurately interpret complex facility states in compliance with engineering standards, leading to unreliable performance in real-world applications. To address this, we propose a domain-adapted framework that transforms VLMs into specialized agents for intelligent infrastructure analysis. Our approach integrates a data-efficient fine-tuning strategy with a knowledge-grounded reasoning mechanism. Specifically, we leverage open-vocabulary fine-tuning on Grounding DINO to robustly localize diverse assets with minimal supervision, followed by LoRA-based adaptation on Qwen-VL for deep semantic attribute reasoning. To mitigate hallucinations and enforce professional compliance, we introduce a dual-modality Retrieval-Augmented Generation (RAG) module that dynamically retrieves authoritative industry standards and visual exemplars during inference. Evaluated on a comprehensive new dataset of urban roadside scenes, our framework achieves a detection performance of 58.9 mAP and an attribute recognition accuracy of 95.5%, demonstrating a robust solution for intelligent infrastructure monitoring.
Enhancing the quality of gauge images captured in smoke and haze scenes through deep learning
Images captured in hazy and smoky environments suffer from reduced visibility, posing a challenge when monitoring infrastructures and hindering emergency services during critical situations. The proposed work investigates the use of the deep learning models to enhance the automatic, machine-based readability of gauge in smoky environments, with accurate gauge data interpretation serving as a valuable tool for first responders. The study utilizes two deep learning architectures, FFA-Net and AECR-Net, to improve the visibility of gauge images, corrupted with light up to dense haze and smoke. Since benchmark datasets of analog gauge images are unavailable, a new synthetic dataset, containing over 14,000 images, was generated using the Unreal Engine. The models were trained with an 80\% train, 10\% validation, and 10\% test split for the haze and smoke dataset, respectively. For the synthetic haze dataset, the SSIM and PSNR metrics are about 0.98 and 43\,dB, respectively, comparing well to state-of-the art results. Additionally, more robust results are retrieved from the AECR-Net, when compared to the FFA-Net. Although the results from the synthetic smoke dataset are poorer, the trained models achieve interesting results. In general, imaging in the presence of smoke are more difficult to enhance given the inhomogeneity and high density. Secondly, FFA-Net and AECR-Net are implemented to dehaze and not to desmoke images. This work shows that use of deep learning architectures can improve the quality of analog gauge images captured in smoke and haze scenes immensely. Finally, the enhanced output images can be successfully post-processed for automatic autonomous reading of gauges
comment: 17 pages, 10 figures, 6 tables, SPIE Applications of Machine Learning 2023, San Diego, US
SVII-3D: Advancing Roadside Infrastructure Inventory with Decimeter-level 3D Localization and Comprehension from Sparse Street Imagery
The automated creation of digital twins and precise asset inventories is a critical task in smart city construction and facility lifecycle management. However, utilizing cost-effective sparse imagery remains challenging due to limited robustness, inaccurate localization, and a lack of fine-grained state understanding. To address these limitations, SVII-3D, a unified framework for holistic asset digitization, is proposed. First, LoRA fine-tuned open-set detection is fused with a spatial-attention matching network to robustly associate observations across sparse views. Second, a geometry-guided refinement mechanism is introduced to resolve structural errors, achieving precise decimeter-level 3D localization. Third, transcending static geometric mapping, a Vision-Language Model agent leveraging multi-modal prompting is incorporated to automatically diagnose fine-grained operational states. Experiments demonstrate that SVII-3D significantly improves identification accuracy and minimizes localization errors. Consequently, this framework offers a scalable, cost-effective solution for high-fidelity infrastructure digitization, effectively bridging the gap between sparse perception and automated intelligent maintenance.
A Safety Report on GPT-5.2, Gemini 3 Pro, Qwen3-VL, Doubao 1.8, Grok 4.1 Fast, Nano Banana Pro, and Seedream 4.5
The rapid evolution of Large Language Models (LLMs) and Multimodal Large Language Models (MLLMs) has produced substantial gains in reasoning, perception, and generative capability across language and vision. However, whether these advances yield commensurate improvements in safety remains unclear, in part due to fragmented evaluation practices limited to single modalities or threat models. In this report, we present an integrated safety evaluation of 7 frontier models: GPT-5.2, Gemini 3 Pro, Qwen3-VL, Doubao 1.8, Grok 4.1 Fast, Nano Banana Pro, and Seedream 4.5. We evaluate each model across language, vision-language, and image generation settings using a unified protocol that integrates benchmark evaluation, adversarial evaluation, multilingual evaluation, and compliance evaluation. Aggregating our evaluations into safety leaderboards and model safety profiles across multiple evaluation modes reveals a sharply heterogeneous safety landscape. While GPT-5.2 demonstrates consistently strong and balanced safety performance across evaluations, other models exhibit pronounced trade-offs among benchmark safety, adversarial alignment, multilingual generalization, and regulatory compliance. Both language and vision-language modalities show significant vulnerability under adversarial evaluation, with all models degrading substantially despite strong results on standard benchmarks. Text-to-image models achieve relatively stronger alignment in regulated visual risk categories, yet remain brittle under adversarial or semantically ambiguous prompts. Overall, these results show that safety in frontier models is inherently multidimensional--shaped by modality, language, and evaluation scheme, underscoring the need for standardized safety evaluations to accurately assess real-world risk and guide responsible model development and deployment.
comment: 42 pages, 24 figures
BikeActions: An Open Platform and Benchmark for Cyclist-Centric VRU Action Recognition
Anticipating the intentions of Vulnerable Road Users (VRUs) is a critical challenge for safe autonomous driving (AD) and mobile robotics. While current research predominantly focuses on pedestrian crossing behaviors from a vehicle's perspective, interactions within dense shared spaces remain underexplored. To bridge this gap, we introduce FUSE-Bike, the first fully open perception platform of its kind. Equipped with two LiDARs, a camera, and GNSS, it facilitates high-fidelity, close-range data capture directly from a cyclist's viewpoint. Leveraging this platform, we present BikeActions, a novel multi-modal dataset comprising 852 annotated samples across 5 distinct action classes, specifically tailored to improve VRU behavior modeling. We establish a rigorous benchmark by evaluating state-of-the-art graph convolution and transformer-based models on our publicly released data splits, establishing the first performance baselines for this challenging task. We release the full dataset together with data curation tools, the open hardware design, and the benchmark code to foster future research in VRU action understanding under https://iv.ee.hm.edu/bikeactions/.
comment: This work has been submitted to the IEEE ICPR for possible publication
SatMap: Revisiting Satellite Maps as Prior for Online HD Map Construction
Online high-definition (HD) map construction is an essential part of a safe and robust end-to-end autonomous driving (AD) pipeline. Onboard camera-based approaches suffer from limited depth perception and degraded accuracy due to occlusion. In this work, we propose SatMap, an online vectorized HD map estimation method that integrates satellite maps with multi-view camera observations and directly predicts a vectorized HD map for downstream prediction and planning modules. Our method leverages lane-level semantics and texture from satellite imagery captured from a Bird's Eye View (BEV) perspective as a global prior, effectively mitigating depth ambiguity and occlusion. In our experiments on the nuScenes dataset, SatMap achieves 34.8% mAP performance improvement over the camera-only baseline and 8.5% mAP improvement over the camera-LiDAR fusion baseline. Moreover, we evaluate our model in long-range and adverse weather conditions to demonstrate the advantages of using a satellite prior map. Source code will be available at https://iv.ee.hm.edu/satmap/.
comment: This work has been submitted to the IEEE ICPR for possible publication
mergetune: Continued fine-tuning of vision-language models
Fine-tuning vision-language models (VLMs) such as CLIP often leads to catastrophic forgetting of pretrained knowledge. Prior work primarily aims to mitigate forgetting during adaptation; however, forgetting often remains inevitable during this process. We introduce a novel paradigm, \emph{continued fine-tuning (CFT)}, which seeks to recover pretrained knowledge after a zero-shot model has already been adapted. We propose a simple, model-agnostic CFT strategy (named MERGETUNE) guided by linear mode connectivity (LMC), which can be applied post hoc to existing fine-tuned models without requiring architectural changes. Given a fine-tuned model, we continue fine-tuning its trainable parameters (e.g., soft prompts or linear heads) to search for a continued model which has two low-loss paths to the zero-shot (e.g., CLIP) and the fine-tuned (e.g., CoOp) solutions. By exploiting the geometry of the loss landscape, the continued model implicitly merges the two solutions, restoring pretrained knowledge lost in the fine-tuned counterpart. A challenge is that the vanilla LMC constraint requires data replay from the pretraining task. We approximate this constraint for the zero-shot model via a second-order surrogate, eliminating the need for large-scale data replay. Experiments show that MERGETUNE improves the harmonic mean of CoOp by +5.6\% on base-novel generalisation without adding parameters. % We show \emph{the first time} superior performance than CLIP on both DTD and EuroSAT, on cross-dataset transfer. On robust fine-tuning evaluations, the LMC-merged model from MERGETUNE surpasses ensemble baselines with lower inference cost, achieving further gains and state-of-the-art results when ensembled with the zero-shot model. Our code is available at \href{https://github.com/Surrey-UP-Lab/MERGETUNE}{https://github.com/Surrey-UP-Lab/MERGETUNE}.
comment: 20 pages, 5 figures
Urban Socio-Semantic Segmentation with Vision-Language Reasoning
As hubs of human activity, urban surfaces consist of a wealth of semantic entities. Segmenting these various entities from satellite imagery is crucial for a range of downstream applications. Current advanced segmentation models can reliably segment entities defined by physical attributes (e.g., buildings, water bodies) but still struggle with socially defined categories (e.g., schools, parks). In this work, we achieve socio-semantic segmentation by vision-language model reasoning. To facilitate this, we introduce the Urban Socio-Semantic Segmentation dataset named SocioSeg, a new resource comprising satellite imagery, digital maps, and pixel-level labels of social semantic entities organized in a hierarchical structure. Additionally, we propose a novel vision-language reasoning framework called SocioReasoner that simulates the human process of identifying and annotating social semantic entities via cross-modal recognition and multi-stage reasoning. We employ reinforcement learning to optimize this non-differentiable process and elicit the reasoning capabilities of the vision-language model. Experiments demonstrate our approach's gains over state-of-the-art models and strong zero-shot generalization. Our dataset and code are available in https://github.com/AMAP-ML/SocioReasoner.
ChartComplete: A Taxonomy-based Inclusive Chart Dataset
With advancements in deep learning (DL) and computer vision techniques, the field of chart understanding is evolving rapidly. In particular, multimodal large language models (MLLMs) are proving to be efficient and accurate in understanding charts. To accurately measure the performance of MLLMs, the research community has developed multiple datasets to serve as benchmarks. By examining these datasets, we found that they are all limited to a small set of chart types. To bridge this gap, we propose the ChartComplete dataset. The dataset is based on a chart taxonomy borrowed from the visualization community, and it covers thirty different chart types. The dataset is a collection of classified chart images and does not include a learning signal. We present the ChartComplete dataset as is to the community to build upon it.
comment: 7 pages, 4 figures, 3 tables, 1 algorithm. Dataset and source code available at https://github.com/AI-DSCHubAUB/ChartComplete-Dataset
Lunar-G2R: Geometry-to-Reflectance Learning for High-Fidelity Lunar BRDF Estimation
We address the problem of estimating realistic, spatially varying reflectance for complex planetary surfaces such as the lunar regolith, which is critical for high-fidelity rendering and vision-based navigation. Existing lunar rendering pipelines rely on simplified or spatially uniform BRDF models whose parameters are difficult to estimate and fail to capture local reflectance variations, limiting photometric realism. We propose Lunar-G2R, a geometry-to-reflectance learning framework that predicts spatially varying BRDF parameters directly from a lunar digital elevation model (DEM), without requiring multi-view imagery, controlled illumination, or dedicated reflectance-capture hardware at inference time. The method leverages a U-Net trained with differentiable rendering to minimize photometric discrepancies between real orbital images and physically based renderings under known viewing and illumination geometry. Experiments on a geographically held-out region of the Tycho crater show that our approach reduces photometric error by 38 % compared to a state-of-the-art baseline, while achieving higher PSNR and SSIM and improved perceptual similarity, capturing fine-scale reflectance variations absent from spatially uniform models. To our knowledge, this is the first method to infer a spatially varying reflectance model directly from terrain geometry.
comment: Data & code: https://clementinegrethen.github.io/publications/Lunar-G2R
Subjective evaluation of UHD video coded using VVC with LCEVC and ML-VVC
This paper presents the results of a subjective quality assessment of a multilayer video coding configuration in which Low Complexity Enhancement Video Coding (LCEVC) is applied as an enhancement layer on top of a Versatile Video Coding (VVC) base layer. The evaluation follows the same test methodology and conditions previously defined for MPEG multilayer video coding assessments, with the LCEVC enhancement layer encoded using version 8.1 of the LCEVC Test Model (LTM). The test compares reconstructed UHD output generated from an HD VVC base layer with LCEVC enhancement against two reference cases: upsampled VVC base layer decoding and multilayer VVC (ML-VVC). Two operating points are considered, corresponding to enhancement layers representing approximately 10% and 50% of the total bitrate. Subjective assessment was conducted using the Degradation Category Rating (DCR) methodology with twenty five participants, across a dataset comprising fifteen SDR and HDR sequences. The reported results include Mean Opinion Scores (MOS) with associated 95% confidence intervals, enabling comparison of perceptual quality across coding approaches and operating points within the defined test scope.
Multi-Temporal Frames Projection for Dynamic Processes Fusion in Fluorescence Microscopy
Fluorescence microscopy is widely employed for the analysis of living biological samples; however, the utility of the resulting recordings is frequently constrained by noise, temporal variability, and inconsistent visualisation of signals that oscillate over time. We present a unique computational framework that integrates information from multiple time-resolved frames into a single high-quality image, while preserving the underlying biological content of the original video. We evaluate the proposed method through an extensive number of configurations (n = 111) and on a challenging dataset comprising dynamic, heterogeneous, and morphologically complex 2D monolayers of cardiac cells. Results show that our framework, which consists of a combination of explainable techniques from different computer vision application fields, is capable of generating composite images that preserve and enhance the quality and information of individual microscopy frames, yielding 44% average increase in cell count compared to previous methods. The proposed pipeline is applicable to other imaging domains that require the fusion of multi-temporal image stacks into high-quality 2D images, thereby facilitating annotation and downstream segmentation.
Handling Missing Modalities in Multimodal Survival Prediction for Non-Small Cell Lung Cancer
Accurate survival prediction in Non-Small Cell Lung Cancer (NSCLC) requires the integration of heterogeneous clinical, radiological, and histopathological information. While Multimodal Deep Learning (MDL) offers a promises for precision prognosis and survival prediction, its clinical applicability is severely limited by small cohort sizes and the presence of missing modalities, often forcing complete-case filtering or aggressive imputation. In this work, we present a missing-aware multimodal survival framework that integrates Computed Tomography (CT), Whole-Slide Histopathology (WSI) Images, and structured clinical variables for overall survival modeling in unresectable stage II-III NSCLC. By leveraging Foundation Models (FM) for modality-specific feature extraction and a missing-aware encoding strategy, the proposed approach enables intermediate multimodal fusion under naturally incomplete modality profiles. The proposed architecture is resilient to missing modalities by design, allowing the model to utilize all available data without being forced to drop patients during training or inference. Experimental results demonstrate that intermediate fusion consistently outperforms unimodal baselines as well as early and late fusion strategies, with the strongest performance achieved by the fusion of WSI and clinical modalities (73.30 C-index). Further analyses of modality importance reveal an adaptive behavior in which less informative modalities, i.e., CT modality, are automatically down-weighted and contribute less to the final survival prediction.
Global Context Compression with Interleaved Vision-Text Transformation
Recent achievements of vision-language models in end-to-end OCR point to a new avenue for low-loss compression of textual information. This motivates earlier works that render the Transformer's input into images for prefilling, which effectively reduces the number of tokens through visual encoding, thereby alleviating the quadratically increased Attention computations. However, this partial compression fails to save computational or memory costs at token-by-token inference. In this paper, we investigate global context compression, which saves tokens at both prefilling and inference stages. Consequently, we propose VIST2, a novel Transformer that interleaves input text chunks alongside their visual encoding, while depending exclusively on visual tokens in the pre-context to predict the next text token distribution. Around this idea, we render text chunks into sketch images and train VIST2 in multiple stages, starting from curriculum-scheduled pretraining for optical language modeling, followed by modal-interleaved instruction tuning. We conduct extensive experiments using VIST2 families scaled from 0.6B to 8B to explore the training recipe and hyperparameters. With a 4$\times$ compression ratio, the resulting models demonstrate significant superiority over baselines on long writing tasks, achieving, on average, a 3$\times$ speedup in first-token generation, 77% reduction in memory usage, and 74% reduction in FLOPS. Our codes and datasets will be public to support further studies.
Towards Efficient Low-rate Image Compression with Frequency-aware Diffusion Prior Refinement
Recent advancements in diffusion-based generative priors have enabled visually plausible image compression at extremely low bit rates. However, existing approaches suffer from slow sampling processes and suboptimal bit allocation due to fragmented training paradigms. In this work, we propose Accelerate \textbf{Diff}usion-based Image Compression via \textbf{C}onsistency Prior \textbf{R}efinement (DiffCR), a novel compression framework for efficient and high-fidelity image reconstruction. At the heart of DiffCR is a Frequency-aware Skip Estimation (FaSE) module that refines the $ε$-prediction prior from a pre-trained latent diffusion model and aligns it with compressed latents at different timesteps via Frequency Decoupling Attention (FDA). Furthermore, a lightweight consistency estimator enables fast \textbf{two-step decoding} by preserving the semantic trajectory of diffusion sampling. Without updating the backbone diffusion model, DiffCR achieves substantial bitrate savings (27.2\% BD-rate (LPIPS) and 65.1\% BD-rate (PSNR)) and over $10\times$ speed-up compared to SOTA diffusion-based compression baselines.
Fine-Grained Human Pose Editing Assessment via Layer-Selective MLLMs
Text-guided human pose editing has gained significant traction in AIGC applications. However,it remains plagued by structural anomalies and generative artifacts. Existing evaluation metrics often isolate authenticity detection from quality assessment, failing to provide fine-grained insights into pose-specific inconsistencies. To address these limitations, we introduce HPE-Bench, a specialized benchmark comprising 1,700 standardized samples from 17 state-of-the-art editing models, offering both authenticity labels and multi-dimensional quality scores. Furthermore, we propose a unified framework based on layer-selective multimodal large language models (MLLMs). By employing contrastive LoRA tuning and a novel layer sensitivity analysis (LSA) mechanism, we identify the optimal feature layer for pose evaluation. Our framework achieves superior performance in both authenticity detection and multi-dimensional quality regression, effectively bridging the gap between forensic detection and quality assessment.
An analytic theory of convolutional neural network inverse problems solvers
Supervised convolutional neural networks (CNNs) are widely used to solve imaging inverse problems, achieving state-of-the-art performance in numerous applications. However, despite their empirical success, these methods are poorly understood from a theoretical perspective and often treated as black boxes. To bridge this gap, we analyze trained neural networks through the lens of the Minimum Mean Square Error (MMSE) estimator, incorporating functional constraints that capture two fundamental inductive biases of CNNs: translation equivariance and locality via finite receptive fields. Under the empirical training distribution, we derive an analytic, interpretable, and tractable formula for this constrained variant, termed Local-Equivariant MMSE (LE-MMSE). Through extensive numerical experiments across various inverse problems (denoising, inpainting, deconvolution), datasets (FFHQ, CIFAR-10, FashionMNIST), and architectures (U-Net, ResNet, PatchMLP), we demonstrate that our theory matches the neural networks outputs (PSNR $\gtrsim25$dB). Furthermore, we provide insights into the differences between \emph{physics-aware} and \emph{physics-agnostic} estimators, the impact of high-density regions in the training (patch) distribution, and the influence of other factors (dataset size, patch size, etc).
Think-Then-Generate: Reasoning-Aware Text-to-Image Diffusion with LLM Encoders
Recent progress in text-to-image (T2I) diffusion models (DMs) has enabled high-quality visual synthesis from diverse textual prompts. Yet, most existing T2I DMs, even those equipped with large language model (LLM)-based text encoders, remain text-pixel mappers -- they employ LLMs merely as text encoders, without leveraging their inherent reasoning capabilities to infer what should be visually depicted given the textual prompt. To move beyond such literal generation, we propose the think-then-generate (T2G) paradigm, where the LLM-based text encoder is encouraged to reason about and rewrite raw user prompts; the states of the rewritten prompts then serve as diffusion conditioning. To achieve this, we first activate the think-then-rewrite pattern of the LLM encoder with a lightweight supervised fine-tuning process. Subsequently, the LLM encoder and diffusion backbone are co-optimized to ensure faithful reasoning about the context and accurate rendering of the semantics via Dual-GRPO. In particular, the text encoder is reinforced using image-grounded rewards to infer and recall world knowledge, while the diffusion backbone is pushed to produce semantically consistent and visually coherent images. Experiments show substantial improvements in factual consistency, semantic alignment, and visual realism across reasoning-based image generation and editing benchmarks, achieving 0.79 on WISE score, nearly on par with GPT-4. Our results constitute a promising step toward next-generation unified models with reasoning, expression, and demonstration capacities.
SRAW-Attack: Space-Reweighted Adversarial Warping Attack for SAR Target Recognition
Synthetic aperture radar (SAR) imagery exhibits intrinsic information sparsity due to its unique electromagnetic scattering mechanism. Despite the widespread adoption of deep neural network (DNN)-based SAR automatic target recognition (SAR-ATR) systems, they remain vulnerable to adversarial examples and tend to over-rely on background regions, leading to degraded adversarial robustness. Existing adversarial attacks for SAR-ATR often require visually perceptible distortions to achieve effective performance, thereby necessitating an attack method that balances effectiveness and stealthiness. In this paper, a novel attack method termed Space-Reweighted Adversarial Warping (SRAW) is proposed, which generates adversarial examples through optimized spatial deformation with reweighted budgets across foreground and background regions. Extensive experiments demonstrate that SRAW significantly degrades the performance of state-of-the-art SAR-ATR models and consistently outperforms existing methods in terms of imperceptibility and adversarial transferability. Code is made available at https://github.com/boremycin/SAR-ATR-TransAttack.
comment: 5 pages, 4 figures
ROMA: Real-time Omni-Multimodal Assistant with Interactive Streaming Understanding
Recent Omni-multimodal Large Language Models show promise in unified audio, vision, and text modeling. However, streaming audio-video understanding remains challenging, as existing approaches suffer from disjointed capabilities: they typically exhibit incomplete modality support or lack autonomous proactive monitoring. To address this, we present ROMA, a real-time omni-multimodal assistant for unified reactive and proactive interaction. ROMA processes continuous inputs as synchronized multimodal units, aligning dense audio with discrete video frames to handle granularity mismatches. For online decision-making, we introduce a lightweight speak head that decouples response initiation from generation to ensure precise triggering without task conflict. We train ROMA with a curated streaming dataset and a two-stage curriculum that progressively optimizes for streaming format adaptation and proactive responsiveness. To standardize the fragmented evaluation landscape, we reorganize diverse benchmarks into a unified suite covering both proactive (alert, narration) and reactive (QA) settings. Extensive experiments across 12 benchmarks demonstrate ROMA achieves state-of-the-art performance on proactive tasks while competitive in reactive settings, validating its robustness in unified real-time omni-multimodal understanding.
comment: Our project page is available at https://eureka-maggie.github.io/ROMA_show
Hierarchical Refinement of Universal Multimodal Attacks on Vision-Language Models
Existing adversarial attacks for VLP models are mostly sample-specific, resulting in substantial computational overhead when scaled to large datasets or new scenarios. To overcome this limitation, we propose Hierarchical Refinement Attack (HRA), a multimodal universal attack framework for VLP models. HRA refines universal adversarial perturbations (UAPs) at both the sample level and the optimization level. For the image modality, we disentangle adversarial examples into clean images and perturbations, allowing each component to be handled independently for more effective disruption of cross-modal alignment. We further introduce a ScMix augmentation strategy that diversifies visual contexts and strengthens both global and local utility of UAPs, thereby reducing reliance on spurious features. In addition, we refine the optimization path by leveraging a temporal hierarchy of historical and estimated future gradients to avoid local minima and stabilize universal perturbation learning. For the text modality, HRA identifies globally influential words by combining intra-sentence and inter-sentence importance measures, and subsequently utilizes these words as universal text perturbations. Extensive experiments across various downstream tasks, VLP models, and datasets demonstrate the superiority of the proposed universal multimodal attacks.
comment: 15 pages, 7 figures
DanQing: An Up-to-Date Large-Scale Chinese Vision-Language Pre-training Dataset
Vision-Language Pre-training (VLP) models demonstrate strong performance across various downstream tasks by learning from large-scale image-text pairs through contrastive pretraining. The release of extensive English image-text datasets (e.g., COYO-700M and LAION-400M) has enabled widespread adoption of models such as CLIP and SigLIP in tasks including cross-modal retrieval and image captioning. However, the advancement of Chinese vision-language pretraining has substantially lagged behind, due to the scarcity of high-quality Chinese image-text data. To address this gap, we develop a comprehensive pipeline for constructing a high-quality Chinese cross-modal dataset. As a result, we propose DanQing, which contains 100 million image-text pairs collected from Common Crawl. Different from existing datasets, DanQing is curated through a more rigorous selection process, yielding superior data quality. Moreover, DanQing is primarily built from 2024-2025 web data, enabling models to better capture evolving semantic trends and thus offering greater practical utility. We compare DanQing with existing datasets by continual pre-training of the SigLIP2 model. Experimental results show that DanQing consistently achieves superior performance across a range of Chinese downstream tasks, including zero-shot classification, cross-modal retrieval, and LMM-based evaluations. To facilitate further research in Chinese vision-language pre-training, we will open-source the DanQing dataset under the Creative Common CC-BY 4.0 license.
comment: 19 pages, 11 figures, 7 tables
Cell Behavior Video Classification Challenge, a benchmark for computer vision methods in time-lapse microscopy
The classification of microscopy videos capturing complex cellular behaviors is crucial for understanding and quantifying the dynamics of biological processes over time. However, it remains a frontier in computer vision, requiring approaches that effectively model the shape and motion of objects without rigid boundaries, extract hierarchical spatiotemporal features from entire image sequences rather than static frames, and account for multiple objects within the field of view. To this end, we organized the Cell Behavior Video Classification Challenge (CBVCC), benchmarking 35 methods based on three approaches: classification of tracking-derived features, end-to-end deep learning architectures to directly learn spatiotemporal features from the entire video sequence without explicit cell tracking, or ensembling tracking-derived with image-derived features. We discuss the results achieved by the participants and compare the potential and limitations of each approach, serving as a basis to foster the development of computer vision methods for studying cellular dynamics.
Attend to what I say: Highlighting relevant content on slides
Imagine sitting in a presentation, trying to follow the speaker while simultaneously scanning the slides for relevant information. While the entire slide is visible, identifying the relevant regions can be challenging. As you focus on one part of the slide, the speaker moves on to a new sentence, leaving you scrambling to catch up visually. This constant back-and-forth creates a disconnect between what is being said and the most important visual elements, making it hard to absorb key details, especially in fast-paced or content-heavy presentations such as conference talks. This requires an understanding of slides, including text, graphics, and layout. We introduce a method that automatically identifies and highlights the most relevant slide regions based on the speaker's narrative. By analyzing spoken content and matching it with textual or graphical elements in the slides, our approach ensures better synchronization between what listeners hear and what they need to attend to. We explore different ways of solving this problem and assess their success and failure cases. Analyzing multimedia documents is emerging as a key requirement for seamless understanding of content-rich videos, such as educational videos and conference talks, by reducing cognitive strain and improving comprehension. Code and dataset are available at: https://github.com/meghamariamkm2002/Slide_Highlight
comment: Accepted at the International Conference on Document Analysis and Recognition (ICDAR) 2025
Optimizing Multimodal LLMs for Egocentric Video Understanding: A Solution for the HD-EPIC VQA Challenge CVPR 2025
Multimodal Large Language Models (MLLMs) struggle with complex video QA benchmarks like HD-EPIC VQA due to ambiguous queries/options, poor long-range temporal reasoning, and non-standardized outputs. We propose a framework integrating query/choice pre-processing, domain-specific Qwen2.5-VL fine-tuning, a novel Temporal Chain-of-Thought (T-CoT) prompting for multi-step reasoning, and robust post-processing. This system achieves 41.6% accuracy on HD-EPIC VQA, highlighting the need for holistic pipeline optimization in demanding video understanding. Our code, fine-tuned models are available at https://github.com/YoungSeng/Egocentric-Co-Pilot.
comment: 4 pages, 1 figure, CVPR 2025 EgoVis Workshop, 2nd Place in HD-EPIC Challenge
Beyond Inpainting: Unleash 3D Understanding for Precise Camera-Controlled Video Generation
Camera control has been extensively studied in conditioned video generation; however, performing precisely altering the camera trajectories while faithfully preserving the video content remains a challenging task. The mainstream approach to achieving precise camera control is warping a 3D representation according to the target trajectory. However, such methods fail to fully leverage the 3D priors of video diffusion models (VDMs) and often fall into the Inpainting Trap, resulting in subject inconsistency and degraded generation quality. To address this problem, we propose DepthDirector, a video re-rendering framework with precise camera controllability. By leveraging the depth video from explicit 3D representation as camera-control guidance, our method can faithfully reproduce the dynamic scene of an input video under novel camera trajectories. Specifically, we design a View-Content Dual-Stream Condition mechanism that injects both the source video and the warped depth sequence rendered under the target viewpoint into the pretrained video generation model. This geometric guidance signal enables VDMs to comprehend camera movements and leverage their 3D understanding capabilities, thereby facilitating precise camera control and consistent content generation. Next, we introduce a lightweight LoRA-based video diffusion adapter to train our framework, fully preserving the knowledge priors of VDMs. Additionally, we construct a large-scale multi-camera synchronized dataset named MultiCam-WarpData using Unreal Engine 5, containing 8K videos across 1K dynamic scenes. Extensive experiments show that DepthDirector outperforms existing methods in both camera controllability and visual quality. Our code and dataset will be publicly available.
ELITE: Efficient Gaussian Head Avatar from a Monocular Video via Learned Initialization and TEst-time Generative Adaptation
We introduce ELITE, an Efficient Gaussian head avatar synthesis from a monocular video via Learned Initialization and TEst-time generative adaptation. Prior works rely either on a 3D data prior or a 2D generative prior to compensate for missing visual cues in monocular videos. However, 3D data prior methods often struggle to generalize in-the-wild, while 2D generative prior methods are computationally heavy and prone to identity hallucination. We identify a complementary synergy between these two priors and design an efficient system that achieves high-fidelity animatable avatar synthesis with strong in-the-wild generalization. Specifically, we introduce a feed-forward Mesh2Gaussian Prior Model (MGPM) that enables fast initialization of a Gaussian avatar. To further bridge the domain gap at test time, we design a test-time generative adaptation stage, leveraging both real and synthetic images as supervision. Unlike previous full diffusion denoising strategies that are slow and hallucination-prone, we propose a rendering-guided single-step diffusion enhancer that restores missing visual details, grounded on Gaussian avatar renderings. Our experiments demonstrate that ELITE produces visually superior avatars to prior works, even for challenging expressions, while achieving 60x faster synthesis than the 2D generative prior method.
comment: Project page: https://kim-youwang.github.io/elite
From Physical Degradation Models to Task-Aware All-in-One Image Restoration
All-in-one image restoration aims to adaptively handle multiple restoration tasks with a single trained model. Although existing methods achieve promising results by introducing prompt information or leveraging large models, the added learning modules increase system complexity and hinder real-time applicability. In this paper, we adopt a physical degradation modeling perspective and predict a task-aware inverse degradation operator for efficient all-in-one image restoration. The framework consists of two stages. In the first stage, the predicted inverse operator produces an initial restored image together with an uncertainty perception map that highlights regions difficult to reconstruct, ensuring restoration reliability. In the second stage, the restoration is further refined under the guidance of this uncertainty map. The same inverse operator prediction network is used in both stages, with task-aware parameters introduced after operator prediction to adapt to different degradation tasks. Moreover, by accelerating the convolution of the inverse operator, the proposed method achieves efficient all-in-one image restoration. The resulting tightly integrated architecture, termed OPIR, is extensively validated through experiments, demonstrating superior all-in-one restoration performance while remaining highly competitive on task-aligned restoration.
RAG-3DSG: Enhancing 3D Scene Graphs with Re-Shot Guided Retrieval-Augmented Generation
Open-vocabulary 3D Scene Graph (3DSG) generation can enhance various downstream tasks in robotics, such as manipulation and navigation, by leveraging structured semantic representations. A 3DSG is constructed from multiple images of a scene, where objects are represented as nodes and relationships as edges. However, existing works for open-vocabulary 3DSG generation suffer from both low object-level recognition accuracy and speed, mainly due to constrained viewpoints, occlusions, and redundant surface density. To address these challenges, we propose RAG-3DSG to mitigate aggregation noise through re-shot guided uncertainty estimation and support object-level Retrieval-Augmented Generation (RAG) via reliable low-uncertainty objects. Furthermore, we propose a dynamic downsample-mapping strategy to accelerate cross-image object aggregation with adaptive granularity. Experiments on Replica dataset demonstrate that RAG-3DSG significantly improves node captioning accuracy in 3DSG generation while reducing the mapping time by two-thirds compared to the vanilla version.
comment: 9 pages, 6 figures
Advancing Adaptive Multi-Stage Video Anomaly Reasoning: A Benchmark Dataset and Method
Recent progress in reasoning capabilities of Multimodal Large Language Models(MLLMs) has highlighted their potential for performing complex video understanding tasks. However, in the domain of Video Anomaly Detection and Understanding (VAD&U), existing MLLM-based methods are largely limited to anomaly localization or post-hoc description, lacking explicit reasoning processes, risk awareness, and decision-oriented interpretation. To address this gap, we define a new task termed Video Anomaly Reasoning (VAR), which elevates video anomaly analysis from descriptive understanding to structured, multi-stage reasoning. VAR explicitly requires models to perform progressive reasoning over anomalous events before answering anomaly-related questions, encompassing visual perception, causal interpretation, and risk-aware decision making. To support this task, we present a new dataset with 8,641 videos, where each video is annotated with diverse question types corresponding to different reasoning depths, totaling more than 50,000 samples, making it one of the largest datasets for video anomaly. The annotations are based on a structured Perception-Cognition-Action Chain-of-Thought (PerCoAct-CoT), which formalizes domain-specific reasoning priors for video anomaly understanding. This design enables systematic evaluation of multi-stage and adaptive anomaly reasoning. In addition, we propose Anomaly-Aware Group Relative Policy Optimization to further enhance reasoning reliability under weak supervision. Building upon the proposed task and dataset, we develop an end-to-end MLLM-based VAR model termed Vad-R1-Plus, which supports adaptive hierarchical reasoning and risk-aware decision making. Extensive experiments demonstrate that the proposed benchmark and method effectively advance the reasoning capabilities of MLLMs on VAR tasks, outperforming both open-source and proprietary baselines.
MHub.ai: A Simple, Standardized, and Reproducible Platform for AI Models in Medical Imaging
Artificial intelligence (AI) has the potential to transform medical imaging by automating image analysis and accelerating clinical research. However, research and clinical use are limited by the wide variety of AI implementations and architectures, inconsistent documentation, and reproducibility issues. Here, we introduce MHub.ai, an open-source, container-based platform that standardizes access to AI models with minimal configuration, promoting accessibility and reproducibility in medical imaging. MHub.ai packages models from peer-reviewed publications into standardized containers that support direct processing of DICOM and other formats, provide a unified application interface, and embed structured metadata. Each model is accompanied by publicly available reference data that can be used to confirm model operation. MHub.ai includes an initial set of state-of-the-art segmentation, prediction, and feature extraction models for different modalities. The modular framework enables adaptation of any model and supports community contributions. We demonstrate the utility of the platform in a clinical use case through comparative evaluation of lung segmentation models. To further strengthen transparency and reproducibility, we publicly release the generated segmentations and evaluation metrics and provide interactive dashboards that allow readers to inspect individual cases and reproduce or extend our analysis. By simplifying model use, MHub.ai enables side-by-side benchmarking with identical execution commands and standardized outputs, and lowers the barrier to clinical translation.
comment: 41 pages, 15 figures, 6 tables
LaViT: Aligning Latent Visual Thoughts for Multi-modal Reasoning
Current multimodal latent reasoning often relies on external supervision (e.g., auxiliary images), ignoring intrinsic visual attention dynamics. In this work, we identify a critical Perception Gap in distillation: student models frequently mimic a teacher's textual output while attending to fundamentally divergent visual regions, effectively relying on language priors rather than grounded perception. To bridge this, we propose LaViT, a framework that aligns latent visual thoughts rather than static embeddings. LaViT compels the student to autoregressively reconstruct the teacher's visual semantics and attention trajectories prior to text generation, employing a curriculum sensory gating mechanism to prevent shortcut learning. Extensive experiments show that LaViT significantly enhances visual grounding, achieving up to +16.9% gains on complex reasoning tasks and enabling a compact 3B model to outperform larger open-source variants and proprietary models like GPT-4o.
VQ-Seg: Vector-Quantized Token Perturbation for Semi-Supervised Medical Image Segmentation NeurIPS 2025
Consistency learning with feature perturbation is a widely used strategy in semi-supervised medical image segmentation. However, many existing perturbation methods rely on dropout, and thus require a careful manual tuning of the dropout rate, which is a sensitive hyperparameter and often difficult to optimize and may lead to suboptimal regularization. To overcome this limitation, we propose VQ-Seg, the first approach to employ vector quantization (VQ) to discretize the feature space and introduce a novel and controllable Quantized Perturbation Module (QPM) that replaces dropout. Our QPM perturbs discrete representations by shuffling the spatial locations of codebook indices, enabling effective and controllable regularization. To mitigate potential information loss caused by quantization, we design a dual-branch architecture where the post-quantization feature space is shared by both image reconstruction and segmentation tasks. Moreover, we introduce a Post-VQ Feature Adapter (PFA) to incorporate guidance from a foundation model (FM), supplementing the high-level semantic information lost during quantization. Furthermore, we collect a large-scale Lung Cancer (LC) dataset comprising 828 CT scans annotated for central-type lung carcinoma. Extensive experiments on the LC dataset and other public benchmarks demonstrate the effectiveness of our method, which outperforms state-of-the-art approaches. Code available at: https://github.com/script-Yang/VQ-Seg.
comment: Accepted by NeurIPS 2025
Beyond Single Prompts: Synergistic Fusion and Arrangement for VICL
Vision In-Context Learning (VICL) enables inpainting models to quickly adapt to new visual tasks from only a few prompts. However, existing methods suffer from two key issues: (1) selecting only the most similar prompt discards complementary cues from other high-quality prompts; and (2) failing to exploit the structured information implied by different prompt arrangements. We propose an end-to-end VICL framework to overcome these limitations. Firstly, an adaptive Fusion Module aggregates critical patterns and annotations from multiple prompts to form more precise contextual prompts. Secondly, we introduce arrangement-specific lightweight MLPs to decouple layout priors from the core model, while minimally affecting the overall model. In addition, an bidirectional fine-tuning mechanism swaps the roles of query and prompt, encouraging the model to reconstruct the original prompt from fused context and thus enhancing collaboration between the fusion module and the inpainting model. Experiments on foreground segmentation, single-object detection, and image colorization demonstrate superior results and strong cross-task generalization of our method.
Enhancing Visual In-Context Learning by Multi-Faceted Fusion
Visual In-Context Learning (VICL) has emerged as a powerful paradigm, enabling models to perform novel visual tasks by learning from in-context examples. The dominant "retrieve-then-prompt" approach typically relies on selecting the single best visual prompt, a practice that often discards valuable contextual information from other suitable candidates. While recent work has explored fusing the top-K prompts into a single, enhanced representation, this still simply collapses multiple rich signals into one, limiting the model's reasoning capability. We argue that a more multi-faceted, collaborative fusion is required to unlock the full potential of these diverse contexts. To address this limitation, we introduce a novel framework that moves beyond single-prompt fusion towards an multi-combination collaborative fusion. Instead of collapsing multiple prompts into one, our method generates three contextual representation branches, each formed by integrating information from different combinations of top-quality prompts. These complementary guidance signals are then fed into proposed MULTI-VQGAN architecture, which is designed to jointly interpret and utilize collaborative information from multiple sources. Extensive experiments on diverse tasks, including foreground segmentation, single-object detection, and image colorization, highlight its strong cross-task generalization, effective contextual fusion, and ability to produce more robust and accurate predictions than existing methods.
MathDoc: Benchmarking Structured Extraction and Active Refusal on Noisy Mathematics Exam Papers
The automated extraction of structured questions from paper-based mathematics exams is fundamental to intelligent education, yet remains challenging in real-world settings due to severe visual noise. Existing benchmarks mainly focus on clean documents or generic layout analysis, overlooking both the structural integrity of mathematical problems and the ability of models to actively reject incomplete inputs. We introduce MathDoc, the first benchmark for document-level information extraction from authentic high school mathematics exam papers. MathDoc contains \textbf{3,609} carefully curated questions with real-world artifacts and explicitly includes unrecognizable samples to evaluate active refusal behavior. We propose a multi-dimensional evaluation framework covering stem accuracy, visual similarity, and refusal capability. Experiments on SOTA MLLMs, including Qwen3-VL and Gemini-2.5-Pro, show that although end-to-end models achieve strong extraction performance, they consistently fail to refuse illegible inputs, instead producing confident but invalid outputs. These results highlight a critical gap in current MLLMs and establish MathDoc as a benchmark for assessing model reliability under degraded document conditions. Our project repository is available at \href{https://github.com/winnk123/papers/tree/master}{GitHub repository}
FlowAct-R1: Towards Interactive Humanoid Video Generation
Interactive humanoid video generation aims to synthesize lifelike visual agents that can engage with humans through continuous and responsive video. Despite recent advances in video synthesis, existing methods often grapple with the trade-off between high-fidelity synthesis and real-time interaction requirements. In this paper, we propose FlowAct-R1, a framework specifically designed for real-time interactive humanoid video generation. Built upon a MMDiT architecture, FlowAct-R1 enables the streaming synthesis of video with arbitrary durations while maintaining low-latency responsiveness. We introduce a chunkwise diffusion forcing strategy, complemented by a novel self-forcing variant, to alleviate error accumulation and ensure long-term temporal consistency during continuous interaction. By leveraging efficient distillation and system-level optimizations, our framework achieves a stable 25fps at 480p resolution with a time-to-first-frame (TTFF) of only around 1.5 seconds. The proposed method provides holistic and fine-grained full-body control, enabling the agent to transition naturally between diverse behavioral states in interactive scenarios. Experimental results demonstrate that FlowAct-R1 achieves exceptional behavioral vividness and perceptual realism, while maintaining robust generalization across diverse character styles.
InfoSculpt: Sculpting the Latent Space for Generalized Category Discovery
Generalized Category Discovery (GCD) aims to classify instances from both known and novel categories within a large-scale unlabeled dataset, a critical yet challenging task for real-world, open-world applications. However, existing methods often rely on pseudo-labeling, or two-stage clustering, which lack a principled mechanism to explicitly disentangle essential, category-defining signals from instance-specific noise. In this paper, we address this fundamental limitation by re-framing GCD from an information-theoretic perspective, grounded in the Information Bottleneck (IB) principle. We introduce InfoSculpt, a novel framework that systematically sculpts the representation space by minimizing a dual Conditional Mutual Information (CMI) objective. InfoSculpt uniquely combines a Category-Level CMI on labeled data to learn compact and discriminative representations for known classes, and a complementary Instance-Level CMI on all data to distill invariant features by compressing augmentation-induced noise. These two objectives work synergistically at different scales to produce a disentangled and robust latent space where categorical information is preserved while noisy, instance-specific details are discarded. Extensive experiments on 8 benchmarks demonstrate that InfoSculpt validating the effectiveness of our information-theoretic approach.
V-Zero: Self-Improving Multimodal Reasoning with Zero Annotation
Recent advances in multimodal learning have significantly enhanced the reasoning capabilities of vision-language models (VLMs). However, state-of-the-art approaches rely heavily on large-scale human-annotated datasets, which are costly and time-consuming to acquire. To overcome this limitation, we introduce V-Zero, a general post-training framework that facilitates self-improvement using exclusively unlabeled images. V-Zero establishes a co-evolutionary loop by instantiating two distinct roles: a Questioner and a Solver. The Questioner learns to synthesize high-quality, challenging questions by leveraging a dual-track reasoning reward that contrasts intuitive guesses with reasoned results. The Solver is optimized using pseudo-labels derived from majority voting over its own sampled responses. Both roles are trained iteratively via Group Relative Policy Optimization (GRPO), driving a cycle of mutual enhancement. Remarkably, without a single human annotation, V-Zero achieves consistent performance gains on Qwen2.5-VL-7B-Instruct, improving visual mathematical reasoning by +1.7 and general vision-centric by +2.6, demonstrating the potential of self-improvement in multimodal systems. Code is available at https://github.com/SatonoDia/V-Zero
Difficulty-guided Sampling: Bridging the Target Gap between Dataset Distillation and Downstream Tasks
In this paper, we propose difficulty-guided sampling (DGS) to bridge the target gap between the distillation objective and the downstream task, therefore improving the performance of dataset distillation. Deep neural networks achieve remarkable performance but have time and storage-consuming training processes. Dataset distillation is proposed to generate compact, high-quality distilled datasets, enabling effective model training while maintaining downstream performance. Existing approaches typically focus on features extracted from the original dataset, overlooking task-specific information, which leads to a target gap between the distillation objective and the downstream task. We propose leveraging characteristics that benefit the downstream training into data distillation to bridge this gap. Focusing on the downstream task of image classification, we introduce the concept of difficulty and propose DGS as a plug-in post-stage sampling module. Following the specific target difficulty distribution, the final distilled dataset is sampled from image pools generated by existing methods. We also propose difficulty-aware guidance (DAG) to explore the effect of difficulty in the generation process. Extensive experiments across multiple settings demonstrate the effectiveness of the proposed methods. It also highlights the broader potential of difficulty for diverse downstream tasks.
Thinking Like Van Gogh: Structure-Aware Style Transfer via Flow-Guided 3D Gaussian Splatting
In 1888, Vincent van Gogh wrote, "I am seeking exaggeration in the essential." This principle, amplifying structural form while suppressing photographic detail, lies at the core of Post-Impressionist art. However, most existing 3D style transfer methods invert this philosophy, treating geometry as a rigid substrate for surface-level texture projection. To authentically reproduce Post-Impressionist stylization, geometric abstraction must be embraced as the primary vehicle of expression. We propose a flow-guided geometric advection framework for 3D Gaussian Splatting (3DGS) that operationalizes this principle in a mesh-free setting. Our method extracts directional flow fields from 2D paintings and back-propagates them into 3D space, rectifying Gaussian primitives to form flow-aligned brushstrokes that conform to scene topology without relying on explicit mesh priors. This enables expressive structural deformation driven directly by painterly motion rather than photometric constraints. Our contributions are threefold: (1) a projection-based, mesh-free flow guidance mechanism that transfers 2D artistic motion into 3D Gaussian geometry; (2) a luminance-structure decoupling strategy that isolates geometric deformation from color optimization, mitigating artifacts during aggressive structural abstraction; and (3) a VLM-as-a-Judge evaluation framework that assesses artistic authenticity through aesthetic judgment instead of conventional pixel-level metrics, explicitly addressing the subjective nature of artistic stylization.
comment: 7 pages, 8 figures
ReaMIL: Reasoning- and Evidence-Aware Multiple Instance Learning for Whole-Slide Histopathology WACV 2026
We introduce ReaMIL (Reasoning- and Evidence-Aware MIL), a multiple instance learning approach for whole-slide histopathology that adds a light selection head to a strong MIL backbone. The head produces soft per-tile gates and is trained with a budgeted-sufficiency objective: a hinge loss that enforces the true-class probability to be $\geq τ$ using only the kept evidence, under a sparsity budget on the number of selected tiles. The budgeted-sufficiency objective yields small, spatially compact evidence sets without sacrificing baseline performance. Across TCGA-NSCLC (LUAD vs. LUSC), TCGA-BRCA (IDC vs. Others), and PANDA, ReaMIL matches or slightly improves baseline AUC and provides quantitative evidence-efficiency diagnostics. On NSCLC, it attains AUC 0.983 with a mean minimal sufficient K (MSK) $\approx 8.2$ tiles at $τ= 0.90$ and AUKC $\approx 0.864$, showing that class confidence rises sharply and stabilizes once a small set of tiles is kept. The method requires no extra supervision, integrates seamlessly with standard MIL training, and naturally yields slide-level overlays. We report accuracy alongside MSK, AUKC, and contiguity for rigorous evaluation of model behavior on WSIs.
comment: Accepted at LFMBio Workshop, WACV 2026. This work has been submitted to the IEEE for possible publication
Comparative Evaluation of Deep Learning-Based and WHO-Informed Approaches for Sperm Morphology Assessment
Assessment of sperm morphological quality remains a critical yet subjective component of male fertility evaluation, often limited by inter-observer variability and resource constraints. This study presents a comparative biomedical artificial intelligence framework evaluating an image-based deep learning model (HuSHeM) alongside a clinically grounded baseline derived from World Health Organization criteria augmented with the Systemic Inflammation Response Index (WHO(+SIRI)). The HuSHeM model was trained on high-resolution sperm morphology images and evaluated using an independent clinical cohort. Model performance was assessed using discrimination, calibration, and clinical utility analyses. The HuSHeM model demonstrated higher discriminative performance, as reflected by an increased area under the receiver operating characteristic curve with relatively narrow confidence intervals compared to WHO(+SIRI). Precision-recall analysis further indicated improved performance under class imbalance, with higher precision-recall area values across evaluated thresholds. Calibration analysis indicated closer agreement between predicted probabilities and observed outcomes for HuSHeM, while decision curve analysis suggested greater net clinical benefit across clinically relevant threshold probabilities. These findings suggest that image-based deep learning may offer improved predictive reliability and clinical utility compared with traditional rule-based and inflammation-augmented criteria. The proposed framework supports objective and reproducible assessment of sperm morphology and may serve as a decision-support tool within fertility screening and referral workflows. The proposed models are intended as decision-support or referral tools and are not designed to replace clinical judgment or laboratory assessment.
comment: Under review at Computers in Biology and Medicine
CoF-T2I: Video Models as Pure Visual Reasoners for Text-to-Image Generation
Recent video generation models have revealed the emergence of Chain-of-Frame (CoF) reasoning, enabling frame-by-frame visual inference. With this capability, video models have been successfully applied to various visual tasks (e.g., maze solving, visual puzzles). However, their potential to enhance text-to-image (T2I) generation remains largely unexplored due to the absence of a clearly defined visual reasoning starting point and interpretable intermediate states in the T2I generation process. To bridge this gap, we propose CoF-T2I, a model that integrates CoF reasoning into T2I generation via progressive visual refinement, where intermediate frames act as explicit reasoning steps and the final frame is taken as output. To establish such an explicit generation process, we curate CoF-Evol-Instruct, a dataset of CoF trajectories that model the generation process from semantics to aesthetics. To further improve quality and avoid motion artifacts, we enable independent encoding operation for each frame. Experiments show that CoF-T2I significantly outperforms the base video model and achieves competitive performance on challenging benchmarks, reaching 0.86 on GenEval and 7.468 on Imagine-Bench. These results indicate the substantial promise of video models for advancing high-quality text-to-image generation.
comment: 16 pages, 8 figures
UEOF: A Benchmark Dataset for Underwater Event-Based Optical Flow WACV
Underwater imaging is fundamentally challenging due to wavelength-dependent light attenuation, strong scattering from suspended particles, turbidity-induced blur, and non-uniform illumination. These effects impair standard cameras and make ground-truth motion nearly impossible to obtain. On the other hand, event cameras offer microsecond resolution and high dynamic range. Nonetheless, progress on investigating event cameras for underwater environments has been limited due to the lack of datasets that pair realistic underwater optics with accurate optical flow. To address this problem, we introduce the first synthetic underwater benchmark dataset for event-based optical flow derived from physically-based ray-traced RGBD sequences. Using a modern video-to-event pipeline applied to rendered underwater videos, we produce realistic event data streams with dense ground-truth flow, depth, and camera motion. Moreover, we benchmark state-of-the-art learning-based and model-based optical flow prediction methods to understand how underwater light transport affects event formation and motion estimation accuracy. Our dataset establishes a new baseline for future development and evaluation of underwater event-based perception algorithms. The source code and dataset for this project are publicly available at https://robotic-vision-lab.github.io/ueof.
comment: To be presented at the 2026 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) Workshop on Event-Based Vision in the Era of Generative AI
Disentangled Concept Representation for Text-to-image Person Re-identification
Text-to-image person re-identification (TIReID) aims to retrieve person images from a large gallery given free-form textual descriptions. TIReID is challenging due to the substantial modality gap between visual appearances and textual expressions, as well as the need to model fine-grained correspondences that distinguish individuals with similar attributes such as clothing color, texture, or outfit style. To address these issues, we propose DiCo (Disentangled Concept Representation), a novel framework that achieves hierarchical and disentangled cross-modal alignment. DiCo introduces a shared slot-based representation, where each slot acts as a part-level anchor across modalities and is further decomposed into multiple concept blocks. This design enables the disentanglement of complementary attributes (\textit{e.g.}, color, texture, shape) while maintaining consistent part-level correspondence between image and text. Extensive experiments on CUHK-PEDES, ICFG-PEDES, and RSTPReid demonstrate that our framework achieves competitive performance with state-of-the-art methods, while also enhancing interpretability through explicit slot- and block-level representations for more fine-grained retrieval results.
VERHallu: Evaluating and Mitigating Event Relation Hallucination in Video Large Language Models
Video Large Language Models (VideoLLMs) exhibit various types of hallucinations. Existing research has primarily focused on hallucinations involving the presence of events, objects, and scenes in videos, while largely neglecting event relation hallucination. In this paper, we introduce a novel benchmark for evaluating the Video Event Relation Hallucination, named VERHallu. This benchmark focuses on causal, temporal, and subevent relations between events, encompassing three types of tasks: relation classification, question answering, and counterfactual question answering, for a comprehensive evaluation of event relation hallucination. Additionally, it features counterintuitive video scenarios that deviate from typical pretraining distributions, with each sample accompanied by human-annotated candidates covering both vision-language and pure language biases. Our analysis reveals that current state-of-the-art VideoLLMs struggle with dense-event relation reasoning, often relying on prior knowledge due to insufficient use of frame-level cues. Although these models demonstrate strong grounding capabilities for key events, they often overlook the surrounding subevents, leading to an incomplete and inaccurate understanding of event relations. To tackle this, we propose a Key-Frame Propagating (KFP) strategy, which reallocates frame-level attention within intermediate layers to enhance multi-event understanding. Experiments show it effectively mitigates the event relation hallucination without affecting inference speed.
comment: 11 pages, 6 figures
DW-DGAT: Dynamically Weighted Dual Graph Attention Network for Neurodegenerative Disease Diagnosis AAAI-2026
Parkinson's disease (PD) and Alzheimer's disease (AD) are the two most prevalent and incurable neurodegenerative diseases (NDs) worldwide, for which early diagnosis is critical to delay their progression. However, the high dimensionality of multi-metric data with diverse structural forms, the heterogeneity of neuroimaging and phenotypic data, and class imbalance collectively pose significant challenges to early ND diagnosis. To address these challenges, we propose a dynamically weighted dual graph attention network (DW-DGAT) that integrates: (1) a general-purpose data fusion strategy to merge three structural forms of multi-metric data; (2) a dual graph attention architecture based on brain regions and inter-sample relationships to extract both micro- and macro-level features; and (3) a class weight generation mechanism combined with two stable and effective loss functions to mitigate class imbalance. Rigorous experiments, based on the Parkinson Progression Marker Initiative (PPMI) and Alzhermer's Disease Neuroimaging Initiative (ADNI) studies, demonstrate the state-of-the-art performance of our approach.
comment: AAAI-2026 accepted poster paper
EditEmoTalk: Controllable Speech-Driven 3D Facial Animation with Continuous Expression Editing
Speech-driven 3D facial animation aims to generate realistic and expressive facial motions directly from audio. While recent methods achieve high-quality lip synchronization, they often rely on discrete emotion categories, limiting continuous and fine-grained emotional control. We present EditEmoTalk, a controllable speech-driven 3D facial animation framework with continuous emotion editing. The key idea is a boundary-aware semantic embedding that learns the normal directions of inter-emotion decision boundaries, enabling a continuous expression manifold for smooth emotion manipulation. Moreover, we introduce an emotional consistency loss that enforces semantic alignment between the generated motion dynamics and the target emotion embedding through a mapping network, ensuring faithful emotional expression. Extensive experiments demonstrate that EditEmoTalk achieves superior controllability, expressiveness, and generalization while maintaining accurate lip synchronization. Code and pretrained models will be released.
DR$^2$Seg: Decomposed Two-Stage Rollouts for Efficient Reasoning Segmentation in Multimodal Large Language Models
Reasoning segmentation is an emerging vision-language task that requires reasoning over intricate text queries to precisely segment objects. However, existing methods typically suffer from overthinking, generating verbose reasoning chains that interfere with object localization in multimodal large language models (MLLMs). To address this issue, we propose DR$^2$Seg, a self-rewarding framework that improves both reasoning efficiency and segmentation accuracy without requiring extra thinking supervision. DR$^2$Seg employs a two-stage rollout strategy that decomposes reasoning segmentation into multimodal reasoning and referring segmentation. In the first stage, the model generates a self-contained description that explicitly specifies the target object. In the second stage, this description replaces the original complex query to verify its self-containment. Based on this design, two self-rewards are introduced to strengthen goal-oriented reasoning and suppress redundant thinking. Extensive experiments across MLLMs of varying scales and segmentation models demonstrate that DR$^2$Seg consistently improves reasoning efficiency and overall segmentation performance.
The Spatial Blindspot of Vision-Language Models
Vision-language models (VLMs) have advanced rapidly, but their ability to capture spatial relationships remains a blindspot. Current VLMs are typically built with contrastive language-image pretraining (CLIP) style image encoders. The training recipe often flattens images into 1D patch sequences, discarding the 2D structure necessary for spatial reasoning. We argue that this lack of spatial awareness is a missing dimension in VLM design and a bottleneck for applications requiring spatial grounding, such as robotics and embodied AI. To address this, we investigate (i) image encoders trained with alternative objectives and (ii) 2D positional encodings. Our experiments show that these architectural choices can lead to improved spatial reasoning on several benchmarks.
OT-Drive: Out-of-Distribution Off-Road Traversable Area Segmentation via Optimal Transport
Reliable traversable area segmentation in unstructured environments is critical for planning and decision-making in autonomous driving. However, existing data-driven approaches often suffer from degraded segmentation performance in out-of-distribution (OOD) scenarios, consequently impairing downstream driving tasks. To address this issue, we propose OT-Drive, an Optimal Transport--driven multi-modal fusion framework. The proposed method formulates RGB and surface normal fusion as a distribution transport problem. Specifically, we design a novel Scene Anchor Generator (SAG) to decompose scene information into the joint distribution of weather, time-of-day, and road type, thereby constructing semantic anchors that can generalize to unseen scenarios. Subsequently, we design an innovative Optimal Transport-based multi-modal fusion module (OT Fusion) to transport RGB and surface normal features onto the manifold defined by the semantic anchors, enabling robust traversable area segmentation under OOD scenarios. Experimental results demonstrate that our method achieves 95.16% mIoU on ORFD OOD scenarios, outperforming prior methods by 6.35%, and 89.79% mIoU on cross-dataset transfer tasks, surpassing baselines by 13.99%.These results indicate that the proposed model can attain strong OOD generalization with only limited training data, substantially enhancing its practicality and efficiency for real-world deployment.
comment: 9 pages, 8 figures, 6 tables. This work has been submitted to the IEEE for possible publication. Code will be released upon acceptance
FrankenMotion: Part-level Human Motion Generation and Composition
Human motion generation from text prompts has made remarkable progress in recent years. However, existing methods primarily rely on either sequence-level or action-level descriptions due to the absence of fine-grained, part-level motion annotations. This limits their controllability over individual body parts. In this work, we construct a high-quality motion dataset with atomic, temporally-aware part-level text annotations, leveraging the reasoning capabilities of large language models (LLMs). Unlike prior datasets that either provide synchronized part captions with fixed time segments or rely solely on global sequence labels, our dataset captures asynchronous and semantically distinct part movements at fine temporal resolution. Based on this dataset, we introduce a diffusion-based part-aware motion generation framework, namely FrankenMotion, where each body part is guided by its own temporally-structured textual prompt. This is, to our knowledge, the first work to provide atomic, temporally-aware part-level motion annotations and have a model that allows motion generation with both spatial (body part) and temporal (atomic action) control. Experiments demonstrate that FrankenMotion outperforms all previous baseline models adapted and retrained for our setting, and our model can compose motions unseen during training. Our code and dataset will be publicly available upon publication.
comment: Project page: https://coral79.github.io/frankenmotion/
Medical SAM3: A Foundation Model for Universal Prompt-Driven Medical Image Segmentation
Promptable segmentation foundation models such as SAM3 have demonstrated strong generalization capabilities through interactive and concept-based prompting. However, their direct applicability to medical image segmentation remains limited by severe domain shifts, the absence of privileged spatial prompts, and the need to reason over complex anatomical and volumetric structures. Here we present Medical SAM3, a foundation model for universal prompt-driven medical image segmentation, obtained by fully fine-tuning SAM3 on large-scale, heterogeneous 2D and 3D medical imaging datasets with paired segmentation masks and text prompts. Through a systematic analysis of vanilla SAM3, we observe that its performance degrades substantially on medical data, with its apparent competitiveness largely relying on strong geometric priors such as ground-truth-derived bounding boxes. These findings motivate full model adaptation beyond prompt engineering alone. By fine-tuning SAM3's model parameters on 33 datasets spanning 10 medical imaging modalities, Medical SAM3 acquires robust domain-specific representations while preserving prompt-driven flexibility. Extensive experiments across organs, imaging modalities, and dimensionalities demonstrate consistent and significant performance gains, particularly in challenging scenarios characterized by semantic ambiguity, complex morphology, and long-range 3D context. Our results establish Medical SAM3 as a universal, text-guided segmentation foundation model for medical imaging and highlight the importance of holistic model adaptation for achieving robust prompt-driven segmentation under severe domain shift. Code and model will be made available at https://github.com/AIM-Research-Lab/Medical-SAM3.
Effects of Different Attention Mechanisms Applied on 3D Models in Video Classification
Human action recognition has become an important research focus in computer vision due to the wide range of applications where it is used. 3D Resnet-based CNN models, particularly MC3, R3D, and R(2+1)D, have different convolutional filters to extract spatiotemporal features. This paper investigates the impact of reducing the captured knowledge from temporal data, while increasing the resolution of the frames. To establish this experiment, we created similar designs to the three originals, but with a dropout layer added before the final classifier. Secondly, we then developed ten new versions for each one of these three designs. The variants include special attention blocks within their architecture, such as convolutional block attention module (CBAM), temporal convolution networks (TCN), in addition to multi-headed and channel attention mechanisms. The purpose behind that is to observe the extent of the influence each of these blocks has on performance for the restricted-temporal models. The results of testing all the models on UCF101 have shown accuracy of 88.98% for the variant with multiheaded attention added to the modified R(2+1)D. This paper concludes the significance of missing temporal features in the performance of the newly created increased resolution models. The variants had different behavior on class-level accuracy, despite the similarity of their enhancements to the overall performance.
comment: 18 pages, 6 figures, conference
One Model, Many Behaviors: Training-Induced Effects on Out-of-Distribution Detection WACV 2026
Out-of-distribution (OOD) detection is crucial for deploying robust and reliable machine-learning systems in open-world settings. Despite steady advances in OOD detectors, their interplay with modern training pipelines that maximize in-distribution (ID) accuracy and generalization remains under-explored. We investigate this link through a comprehensive empirical study. Fixing the architecture to the widely adopted ResNet-50, we benchmark 21 post-hoc, state-of-the-art OOD detection methods across 56 ImageNet-trained models obtained via diverse training strategies and evaluate them on eight OOD test sets. Contrary to the common assumption that higher ID accuracy implies better OOD detection performance, we uncover a non-monotonic relationship: OOD performance initially improves with accuracy but declines once advanced training recipes push accuracy beyond the baseline. Moreover, we observe a strong interdependence between training strategy, detector choice, and resulting OOD performance, indicating that no single method is universally optimal.
comment: WACV 2026
Can Vision-Language Models Understand Construction Workers? An Exploratory Study
As robotics become increasingly integrated into construction workflows, their ability to interpret and respond to human behavior will be essential for enabling safe and effective collaboration. Vision-Language Models (VLMs) have emerged as a promising tool for visual understanding tasks and offer the potential to recognize human behaviors without extensive domain-specific training. This capability makes them particularly appealing in the construction domain, where labeled data is scarce and monitoring worker actions and emotional states is critical for safety and productivity. In this study, we evaluate the performance of three leading VLMs, GPT-4o, Florence 2, and LLaVa-1.5, in detecting construction worker actions and emotions from static site images. Using a curated dataset of 1,000 images annotated across ten action and ten emotion categories, we assess each model's outputs through standardized inference pipelines and multiple evaluation metrics. GPT-4o consistently achieved the highest scores across both tasks, with an average F1-score of 0.756 and accuracy of 0.799 in action recognition, and an F1-score of 0.712 and accuracy of 0.773 in emotion recognition. Florence 2 performed moderately, with F1-scores of 0.497 for action and 0.414 for emotion, while LLaVa-1.5 showed the lowest overall performance, with F1-scores of 0.466 for action and 0.461 for emotion. Confusion matrix analyses revealed that all models struggled to distinguish semantically close categories, such as collaborating in teams versus communicating with supervisors. While the results indicate that general-purpose VLMs can offer a baseline capability for human behavior recognition in construction environments, further improvements, such as domain adaptation, temporal modeling, or multimodal sensing, may be needed for real-world reliability.
A Unified 3D Object Perception Framework for Real-Time Outside-In Multi-Camera Systems
Accurate 3D object perception and multi-target multi-camera (MTMC) tracking are fundamental for the digital transformation of industrial infrastructure. However, transitioning "inside-out" autonomous driving models to "outside-in" static camera networks presents significant challenges due to heterogeneous camera placements and extreme occlusion. In this paper, we present an adapted Sparse4D framework specifically optimized for large-scale infrastructure environments. Our system leverages absolute world-coordinate geometric priors and introduces an occlusion-aware ReID embedding module to maintain identity stability across distributed sensor networks. To bridge the Sim2Real domain gap without manual labeling, we employ a generative data augmentation strategy using the NVIDIA COSMOS framework, creating diverse environmental styles that enhance the model's appearance-invariance. Evaluated on the AI City Challenge 2025 benchmark, our camera-only framework achieves a state-of-the-art HOTA of $45.22$. Furthermore, we address real-time deployment constraints by developing an optimized TensorRT plugin for Multi-Scale Deformable Aggregation (MSDA). Our hardware-accelerated implementation achieves a $2.15\times$ speedup on modern GPU architectures, enabling a single Blackwell-class GPU to support over 64 concurrent camera streams.
ICONIC-444: A 3.1-Million-Image Dataset for OOD Detection Research WACV 2026
Current progress in out-of-distribution (OOD) detection is limited by the lack of large, high-quality datasets with clearly defined OOD categories across varying difficulty levels (near- to far-OOD) that support both fine- and coarse-grained computer vision tasks. To address this limitation, we introduce ICONIC-444 (Image Classification and OOD Detection with Numerous Intricate Complexities), a specialized large-scale industrial image dataset containing over 3.1 million RGB images spanning 444 classes tailored for OOD detection research. Captured with a prototype industrial sorting machine, ICONIC-444 closely mimics real-world tasks. It complements existing datasets by offering structured, diverse data suited for rigorous OOD evaluation across a spectrum of task complexities. We define four reference tasks within ICONIC-444 to benchmark and advance OOD detection research and provide baseline results for 22 state-of-the-art post-hoc OOD detection methods.
comment: WACV 2026, Dataset repo: https://github.com/gkrumpl/iconic-444
Future Optical Flow Prediction Improves Robot Control & Video Generation
Future motion representations, such as optical flow, offer immense value for control and generative tasks. However, forecasting generalizable spatially dense motion representations remains a key challenge, and learning such forecasting from noisy, real-world data remains relatively unexplored. We introduce FOFPred, a novel language-conditioned optical flow forecasting model featuring a unified Vision-Language Model (VLM) and Diffusion architecture. This unique combination enables strong multimodal reasoning with pixel-level generative fidelity for future motion prediction. Our model is trained on web-scale human activity data-a highly scalable but unstructured source. To extract meaningful signals from this noisy video-caption data, we employ crucial data preprocessing techniques and our unified architecture with strong image pretraining. The resulting trained model is then extended to tackle two distinct downstream tasks in control and generation. Evaluations across robotic manipulation and video generation under language-driven settings establish the cross-domain versatility of FOFPred, confirming the value of a unified VLM-Diffusion architecture and scalable learning from diverse web data for future optical flow prediction.
comment: Project Site (Code, Models, Demo): https://fofpred.github.io
MHub.ai: A Simple, Standardized, and Reproducible Platform for AI Models in Medical Imaging
Artificial intelligence (AI) has the potential to transform medical imaging by automating image analysis and accelerating clinical research. However, research and clinical use are limited by the wide variety of AI implementations and architectures, inconsistent documentation, and reproducibility issues. Here, we introduce MHub$.$ai, an open-source, container-based platform that standardizes access to AI models with minimal configuration, promoting accessibility and reproducibility in medical imaging. MHub$.$ai packages models from peer-reviewed publications into standardized containers that support direct processing of DICOM and other formats, provide a unified application interface, and embed structured metadata. Each model is accompanied by publicly available reference data that can be used to confirm model operation. MHub$.$ai includes an initial set of state-of-the-art segmentation, prediction, and feature extraction models for different modalities. The modular framework enables adaptation of any model and supports community contributions. We demonstrate the utility of the platform in a clinical use case through comparative evaluation of lung segmentation models. To further strengthen transparency and reproducibility, we publicly release the generated segmentations and evaluation metrics and provide interactive dashboards that allow readers to inspect individual cases and reproduce or extend our analysis. By simplifying model use, MHub$.$ai enables side-by-side benchmarking with identical execution commands and standardized outputs, and lowers the barrier to clinical translation.
comment: 41 pages, 15 figures, 6 tables
Moonworks Lunara Aesthetic Dataset
The dataset spans diverse artistic styles, including regionally grounded aesthetics from the Middle East, Northern Europe, East Asia, and South Asia, alongside general categories such as sketch and oil painting. All images are generated using the Moonworks Lunara model and intentionally crafted to embody distinct, high-quality aesthetic styles, yielding a first-of-its-kind dataset with substantially higher aesthetic scores, exceeding even aesthetics-focused datasets, and general-purpose datasets by a larger margin. Each image is accompanied by a human-refined prompt and structured annotations that jointly describe salient objects, attributes, relationships, and stylistic cues. Unlike large-scale web-derived datasets that emphasize breadth over precision, the Lunara Aesthetic Dataset prioritizes aesthetic quality, stylistic diversity, and licensing transparency, and is released under the Apache 2.0 license to support research and unrestricted academic and commercial use.
Explicit Abstention Knobs for Predictable Reliability in Video Question Answering
High-stakes deployment of vision-language models (VLMs) requires selective prediction, where systems abstain when uncertain rather than risk costly errors. We investigate whether confidence-based abstention provides reliable control over error rates in video question answering, and whether that control remains robust under distribution shift. Using NExT-QA and Gemini 2.0 Flash, we establish two findings. First, confidence thresholding provides mechanistic control in-distribution. Sweeping threshold epsilon produces smooth risk-coverage tradeoffs, reducing error rates f
comment: Preprint. Diagnostic study of confidence-based abstention under evidence truncation
Semantic Misalignment in Vision-Language Models under Perceptual Degradation
Vision-Language Models (VLMs) are increasingly deployed in autonomous driving and embodied AI systems, where reliable perception is critical for safe semantic reasoning and decision-making. While recent VLMs demonstrate strong performance on multimodal benchmarks, their robustness to realistic perception degradation remains poorly understood. In this work, we systematically study semantic misalignment in VLMs under controlled degradation of upstream visual perception, using semantic segmentation on the Cityscapes dataset as a representative perception module. We introduce perception-realistic corruptions that induce only moderate drops in conventional segmentation metrics, yet observe severe failures in downstream VLM behavior, including hallucinated object mentions, omission of safety-critical entities, and inconsistent safety judgments. To quantify these effects, we propose a set of language-level misalignment metrics that capture hallucination, critical omission, and safety misinterpretation, and analyze their relationship with segmentation quality across multiple contrastive and generative VLMs. Our results reveal a clear disconnect between pixel-level robustness and multimodal semantic reliability, highlighting a critical limitation of current VLM-based systems and motivating the need for evaluation frameworks that explicitly account for perception uncertainty in safety-critical applications.
comment: 10 pages, 4 figures, 6 tables
STEP3-VL-10B Technical Report
We present STEP3-VL-10B, a lightweight open-source foundation model designed to redefine the trade-off between compact efficiency and frontier-level multimodal intelligence. STEP3-VL-10B is realized through two strategic shifts: first, a unified, fully unfrozen pre-training strategy on 1.2T multimodal tokens that integrates a language-aligned Perception Encoder with a Qwen3-8B decoder to establish intrinsic vision-language synergy; and second, a scaled post-training pipeline featuring over 1k iterations of reinforcement learning. Crucially, we implement Parallel Coordinated Reasoning (PaCoRe) to scale test-time compute, allocating resources to scalable perceptual reasoning that explores and synthesizes diverse visual hypotheses. Consequently, despite its compact 10B footprint, STEP3-VL-10B rivals or surpasses models 10$\times$-20$\times$ larger (e.g., GLM-4.6V-106B, Qwen3-VL-235B) and top-tier proprietary flagships like Gemini 2.5 Pro and Seed-1.5-VL. Delivering best-in-class performance, it records 92.2% on MMBench and 80.11% on MMMU, while excelling in complex reasoning with 94.43% on AIME2025 and 75.95% on MathVision. We release the full model suite to provide the community with a powerful, efficient, and reproducible baseline.
comment: 50 pages
Image Complexity-Aware Adaptive Retrieval for Efficient Vision-Language Models
Vision transformers in vision-language models typically use the same amount of compute for every image, regardless of whether it is simple or complex. We propose ICAR (Image Complexity-Aware Retrieval), an adaptive computation approach that enables vision transformers to use less compute for simple images whilst processing complex images through their full network depth. The key challenge is maintaining cross-modal alignment: embeddings from different processing depths must remain compatible for text matching. ICAR solves this through dual-path training that produces compatible embeddings from both the early-exit and full-depth paths. This maintains compatibility between image representations and text embeddings in the same semantic space, whether an image exits early or processes fully. Unlike existing two-stage approaches that require expensive reranking, ICAR enables direct image-text matching without additional overhead. To determine how much compute to use, we develop ConvNeXt-IC, which treats image complexity assessment as a classification task. By applying modern classifier backbones rather than specialised architectures, ConvNeXt-IC achieves state-of-the-art performance, attaining a Pearson correlation coefficient of 0.959 with human labelling whilst delivering 4.4x faster complexity prediction. Evaluated on standard benchmarks augmented with real-world web data, ICAR achieves 20% faster image encoding while maintaining category-level performance and 95% of instance-level performance, enabling sustainable scaling of vision-language systems.
comment: Camera-ready version for ECIR 2026
FiCo-ITR: bridging fine-grained and coarse-grained image-text retrieval for comparative performance analysis
In the field of Image-Text Retrieval (ITR), recent advancements have leveraged large-scale Vision-Language Pretraining (VLP) for Fine-Grained (FG) instance-level retrieval, achieving high accuracy at the cost of increased computational complexity. For Coarse-Grained (CG) category-level retrieval, prominent approaches employ Cross-Modal Hashing (CMH) to prioritise efficiency, albeit at the cost of retrieval performance. Due to differences in methodologies, FG and CG models are rarely compared directly within evaluations in the literature, resulting in a lack of empirical data quantifying the retrieval performance-efficiency tradeoffs between the two. This paper addresses this gap by introducing the \texttt{FiCo-ITR} library, which standardises evaluation methodologies for both FG and CG models, facilitating direct comparisons. We conduct empirical evaluations of representative models from both subfields, analysing precision, recall, and computational complexity across varying data scales. Our findings offer new insights into the performance-efficiency trade-offs between recent representative FG and CG models, highlighting their respective strengths and limitations. These findings provide the foundation necessary to make more informed decisions regarding model selection for specific retrieval tasks and highlight avenues for future research into hybrid systems that leverage the strengths of both FG and CG approaches.
comment: Published at the International Journal of Multimedia Information Retrieval
Spatial As Deep: Spatial CNN for Traffic Scene Understanding AAAI 2018
Convolutional neural networks (CNNs) are usually built by stacking convolutional operations layer-by-layer. Although CNN has shown strong capability to extract semantics from raw pixels, its capacity to capture spatial relationships of pixels across rows and columns of an image is not fully explored. These relationships are important to learn semantic objects with strong shape priors but weak appearance coherences, such as traffic lanes, which are often occluded or not even painted on the road surface as shown in Fig. 1 (a). In this paper, we propose Spatial CNN (SCNN), which generalizes traditional deep layer-by-layer convolutions to slice-byslice convolutions within feature maps, thus enabling message passings between pixels across rows and columns in a layer. Such SCNN is particular suitable for long continuous shape structure or large objects, with strong spatial relationship but less appearance clues, such as traffic lanes, poles, and wall. We apply SCNN on a newly released very challenging traffic lane detection dataset and Cityscapse dataset. The results show that SCNN could learn the spatial relationship for structure output and significantly improves the performance. We show that SCNN outperforms the recurrent neural network (RNN) based ReNet and MRF+CNN (MRFNet) in the lane detection dataset by 8.7% and 4.6% respectively. Moreover, our SCNN won the 1st place on the TuSimple Benchmark Lane Detection Challenge, with an accuracy of 96.53%.
comment: Accepted to AAAI 2018
A large-scale heterogeneous 3D magnetic resonance brain imaging dataset for self-supervised learning
We present FOMO300K, a large-scale, heterogeneous dataset of 318,877 brain Magnetic Resonance Imaging (MRI) scans from 82,678 MRI sessions and 59,969 subjects, aggregated from 920 publicly available sources. The dataset includes both clinical- and research-grade images, multiple MRI sequences, and a wide range of anatomical and pathological variability, including scans with large brain anomalies. Minimal preprocessing was applied to preserve the original image characteristics while reducing entry barriers for new users. Companion code for self-supervised pretraining and finetuning is provided, along with pretrained models. FOMO300K is intended to support the development and benchmarking of self-supervised learning methods in medical imaging at scale.
Five Years of SciCap: What We Learned and Future Directions for Scientific Figure Captioning AAAI
Between 2021 and 2025, the SciCap project grew from a small seed-funded idea at The Pennsylvania State University (Penn State) into one of the central efforts shaping the scientific figure-captioning landscape. Supported by a Penn State seed grant, Adobe, and the Alfred P. Sloan Foundation, what began as our attempt to test whether domain-specific training, which was successful in text models like SciBERT, could also work for figure captions expanded into a multi-institution collaboration. Over these five years, we curated, released, and continually updated a large collection of figure-caption pairs from arXiv papers, conducted extensive automatic and human evaluations on both generated and author-written captions, navigated the rapid rise of large language models (LLMs), launched annual challenges, and built interactive systems that help scientists write better captions. In this piece, we look back at the first five years of SciCap and summarize the key technical and methodological lessons we learned. We then outline five major unsolved challenges and propose directions for the next phase of research in scientific figure captioning.
comment: Accepted to the 5th Annual AAAI Workshop on AI to Accelerate Science and Engineering (AI2ASE 2026). SciCap Website: http://scicap.ai/
Encoder-Only Image Registration
Learning-based techniques have significantly improved the accuracy and speed of deformable image registration. However, challenges such as reducing computational complexity and handling large deformations persist. To address these challenges, we analyze how convolutional neural networks (ConvNets) influence registration performance using the Horn-Schunck optical flow equation. Supported by prior studies and our empirical experiments, we observe that ConvNets play two key roles in registration: linearizing local intensities and harmonizing global contrast variations. Based on these insights, we propose the Encoder-Only Image Registration (EOIR) framework, designed to achieve a better accuracy-efficiency trade-off. EOIR separates feature learning from flow estimation, employing only a 3-layer ConvNet for feature extraction and a set of 3-layer flow estimators to construct a Laplacian feature pyramid, progressively composing diffeomorphic deformations under a large-deformation model. Results on five datasets across different modalities and anatomical regions demonstrate EOIR's effectiveness, achieving superior accuracy-efficiency and accuracy-smoothness trade-offs. With comparable accuracy, EOIR provides better efficiency and smoothness, and vice versa. The source code of EOIR is publicly available on https://github.com/XiangChen1994/EOIR.
comment: accepted by IEEE Transactions on Circuits and Systems for Video Technology
Symmetrization Weighted Binary Cross-Entropy: Modeling Perceptual Asymmetry for Human-Consistent Neural Edge Detection
Edge detection (ED) is a fundamental perceptual process in computer vision, forming the structural basis for high-level reasoning tasks such as segmentation, recognition, and scene understanding. Despite substantial progress achieved by deep neural networks, most ED models attain high numerical accuracy but fail to produce visually sharp and perceptually consistent edges, thereby limiting their reliability in intelligent vision systems. To address this issue, this study introduces the \textit{Symmetrization Weighted Binary Cross-Entropy (SWBCE)} loss, a perception-inspired formulation that extends the conventional WBCE by incorporating prediction-guided symmetry. SWBCE explicitly models the perceptual asymmetry in human edge recognition, wherein edge decisions require stronger evidence than non-edge ones, aligning the optimization process with human perceptual discrimination. The resulting symmetric learning mechanism jointly enhances edge recall and suppresses false positives, achieving a superior balance between quantitative accuracy and perceptual fidelity. Extensive experiments across multiple benchmark datasets and representative ED architectures demonstrate that SWBCE can outperform existing loss functions in both numerical evaluation and visual quality. Particularly with the HED-EES model, the SSIM can be improved by about 15% on BRIND, and in all experiments, training by SWBCE consistently obtains the best perceptual results. Beyond edge detection, the proposed perceptual loss offers a generalizable optimization principle for soft computing and neural learning systems, particularly in scenarios where asymmetric perceptual reasoning plays a critical role.
comment: 39 pages
RGS-SLAM: Robust Gaussian Splatting SLAM with One-Shot Dense Initialization
We introduce RGS-SLAM, a robust Gaussian-splatting SLAM framework that replaces the residual-driven densification stage of GS-SLAM with a training-free correspondence-to-Gaussian initialization. Instead of progressively adding Gaussians as residuals reveal missing geometry, RGS-SLAM performs a one-shot triangulation of dense multi-view correspondences derived from DINOv3 descriptors refined through a confidence-aware inlier classifier, generating a well-distributed and structure-aware Gaussian seed prior to optimization. This initialization stabilizes early mapping and accelerates convergence by roughly 20\%, yielding higher rendering fidelity in texture-rich and cluttered scenes while remaining fully compatible with existing GS-SLAM pipelines. Evaluated on the TUM RGB-D and Replica datasets, RGS-SLAM achieves competitive or superior localization and reconstruction accuracy compared with state-of-the-art Gaussian and point-based SLAM systems, sustaining real-time mapping performance at up to 925 FPS. Additional details and resources are available at this URL: https://breeze1124.github.io/rgs-slam-project-page/
comment: 10 pages, 9 figures
Semi-Tensor-Product Based Convolutional Neural Networks
The semi-tensor product of vectors generalizes the conventional inner product, enabling algebraic operations between vectors of different dimensions. Building upon this foundation, we introduce a domain-based convolutional product and integrate it with the STP to formulate a padding-free convolutional operation. This new operation inherently avoids zero or other artificial padding, thereby eliminating redundant information and boundary artifacts commonly present in conventional convolutional neural networks. Based on this operation, we further develop an STP-based CNN framework that extends convolutional computation to irregular and cross-dimensional data domains. Applications to image processing and third-order signal identification demonstrate the proposed method's effectiveness in handling irregular, incomplete, and high-dimensional data without the distortions caused by padding.
Instance-level quantitative saliency in multiple sclerosis lesion segmentation
Explainable artificial intelligence (XAI) methods have been proposed to interpret model decisions in classification and, more recently, in semantic segmentation. However, instance-level XAI for semantic segmentation, namely explanations focused on a single object among multiple instances of the same class, remains largely unexplored. Such explanations are particularly important in multi-lesional diseases to understand what drives the detection and contouring of a specific lesion. We propose instance-level explanation maps for semantic segmentation by extending SmoothGrad and Grad-CAM++ to obtain quantitative instance saliency. These methods were applied to the segmentation of white matter lesions (WMLs), a magnetic resonance imaging biomarker in multiple sclerosis. We used 4023 FLAIR and MPRAGE MRI scans from 687 patients collected at the University Hospital of Basel, Switzerland, with WML masks annotated by four expert clinicians. Three deep learning architectures, a 3D U-Net, nnU-Net, and Swin UNETR, were trained and evaluated, achieving normalized Dice scores of 0.71, 0.78, and 0.80, respectively. Instance saliency maps showed that the models relied primarily on FLAIR rather than MPRAGE for WML segmentation, with positive saliency inside lesions and negative saliency in their immediate neighborhood, consistent with clinical practice. Peak saliency values differed significantly across correct and incorrect predictions, suggesting that quantitative instance saliency may help identify segmentation errors. In conclusion, we introduce two architecture-agnostic XAI methods that provide quantitative instance-level explanations for semantic segmentation and support clinically meaningful interpretation of model decisions.
Towards Understanding Deep Learning Model in Image Recognition via Coverage Test
Deep neural networks (DNNs) play a crucial role in the field of artificial intelligence, and their security-related testing has been a prominent research focus. By inputting test cases, the behavior of models is examined for anomalies, and coverage metrics are utilized to determine the extent of neurons covered by these test cases. With the widespread application and advancement of DNNs, different types of neural behaviors have garnered attention, leading to the emergence of various coverage metrics for neural networks. However, there is currently a lack of empirical research on these coverage metrics, specifically in analyzing the relationships and patterns between model depth, configuration information, and neural network coverage. This paper aims to investigate the relationships and patterns of four coverage metrics: primary functionality, boundary, hierarchy, and structural coverage. A series of empirical experiments were conducted, selecting LeNet, VGG, and ResNet as different DNN architectures, along with 10 models of varying depths ranging from 5 to 54 layers, to compare and study the relationships between different depths, configuration information, and various neural network coverage metrics. Additionally, an investigation was carried out on the relationships between modified decision/condition coverage and dataset size. Finally, three potential future directions are proposed to further contribute to the security testing of DNN Models.
Tuning-Free Adaptive Style Incorporation for Structure-Consistent Text-Driven Style Transfer
In this work, we target the task of text-driven style transfer in the context of text-to-image (T2I) diffusion models. The main challenge is consistent structure preservation while enabling effective style transfer effects. The past approaches in this field directly concatenate the content and style prompts for a prompt-level style injection, leading to unavoidable structure distortions. In this work, we propose a novel solution to the text-driven style transfer task, namely, Adaptive Style Incorporation~(ASI), to achieve fine-grained feature-level style incorporation. It consists of the Siamese Cross-Attention~(SiCA) to decouple the single-track cross-attention to a dual-track structure to obtain separate content and style features, and the Adaptive Content-Style Blending (AdaBlending) module to couple the content and style information from a structure-consistent manner. Experimentally, our method exhibits much better performance in both structure preservation and stylized effects.
Zoom-IQA: Image Quality Assessment with Reliable Region-Aware Reasoning
Image Quality Assessment (IQA) is a long-standing problem in computer vision. Previous methods typically focus on predicting numerical scores without explanation or providing low-level descriptions lacking precise scores. Recent reasoning-based vision language models (VLMs) have shown strong potential for IQA by jointly generating quality descriptions and scores. However, existing VLM-based IQA methods often suffer from unreliable reasoning due to their limited capability of integrating visual and textual cues. In this work, we introduce Zoom-IQA, a VLM-based IQA model to explicitly emulate key cognitive behaviors: uncertainty awareness, region reasoning, and iterative refinement. Specifically, we present a two-stage training pipeline: 1) supervised fine-tuning (SFT) on our Grounded-Rationale-IQA (GR-IQA) dataset to teach the model to ground its assessments in key regions, and 2) reinforcement learning (RL) for dynamic policy exploration, stabilized by our KL-Coverage regularizer to prevent reasoning and scoring diversity collapse, with a Progressive Re-sampling Strategy for mitigating annotation bias. Extensive experiments show that Zoom-IQA achieves improved robustness, explainability, and generalization. The application to downstream tasks, such as image restoration, further demonstrates the effectiveness of Zoom-IQA.
comment: Project Page: https://ethanliang99.github.io/ZOOMIQA-Projectpage
SPATIALGEN: Layout-guided 3D Indoor Scene Generation
Creating high-fidelity 3D models of indoor environments is essential for applications in design, virtual reality, and robotics. However, manual 3D modeling remains time-consuming and labor-intensive. While recent advances in generative AI have enabled automated scene synthesis, existing methods often face challenges in balancing visual quality, diversity, semantic consistency, and user control. A major bottleneck is the lack of a large-scale, high-quality dataset tailored to this task. To address this gap, we introduce a comprehensive synthetic dataset, featuring 12,328 structured annotated scenes with 57,431 rooms, and 4.7M photorealistic 2D renderings. Leveraging this dataset, we present SpatialGen, a novel multi-view multi-modal diffusion model that generates realistic and semantically consistent 3D indoor scenes. Given a 3D layout and a reference image (derived from a text prompt), our model synthesizes appearance (color image), geometry (scene coordinate map), and semantic (semantic segmentation map) from arbitrary viewpoints, while preserving spatial consistency across modalities. SpatialGen consistently generates superior results to previous methods in our experiments. We are open-sourcing our data and models to empower the community and advance the field of indoor scene understanding and generation.
comment: 3D scene generation; diffusion model; Scene reconstruction and understanding
RS2-SAM2: Customized SAM2 for Referring Remote Sensing Image Segmentation AAAI 2026
Referring Remote Sensing Image Segmentation (RRSIS) aims to segment target objects in remote sensing (RS) images based on textual descriptions. Although Segment Anything Model 2 (SAM2) has shown remarkable performance in various segmentation tasks, its application to RRSIS presents several challenges, including understanding the text-described RS scenes and generating effective prompts from text. To address these issues, we propose \textbf{RS2-SAM2}, a novel framework that adapts SAM2 to RRSIS by aligning the adapted RS features and textual features while providing pseudo-mask-based dense prompts. Specifically, we employ a union encoder to jointly encode the visual and textual inputs, generating aligned visual and text embeddings as well as multimodal class tokens. A bidirectional hierarchical fusion module is introduced to adapt SAM2 to RS scenes and align adapted visual features with the visually enhanced text embeddings, improving the model's interpretation of text-described RS scenes. To provide precise target cues for SAM2, we design a mask prompt generator, which takes the visual embeddings and class tokens as input and produces a pseudo-mask as the dense prompt of SAM2. Experimental results on several RRSIS benchmarks demonstrate that RS2-SAM2 achieves state-of-the-art performance.
comment: AAAI 2026
UrbanNav: Learning Language-Guided Urban Navigation from Web-Scale Human Trajectories AAAI 2026
Navigating complex urban environments using natural language instructions poses significant challenges for embodied agents, including noisy language instructions, ambiguous spatial references, diverse landmarks, and dynamic street scenes. Current visual navigation methods are typically limited to simulated or off-street environments, and often rely on precise goal formats, such as specific coordinates or images. This limits their effectiveness for autonomous agents like last-mile delivery robots navigating unfamiliar cities. To address these limitations, we introduce UrbanNav, a scalable framework that trains embodied agents to follow free-form language instructions in diverse urban settings. Leveraging web-scale city walking videos, we develop an scalable annotation pipeline that aligns human navigation trajectories with language instructions grounded in real-world landmarks. UrbanNav encompasses over 1,500 hours of navigation data and 3 million instruction-trajectory-landmark triplets, capturing a wide range of urban scenarios. Our model learns robust navigation policies to tackle complex urban scenarios, demonstrating superior spatial reasoning, robustness to noisy instructions, and generalization to unseen urban settings. Experimental results show that UrbanNav significantly outperforms existing methods, highlighting the potential of large-scale web video data to enable language-guided, real-world urban navigation for embodied agents.
comment: 9 pages, 5 figures, accepted to AAAI 2026. Project page:https://github.com/CASIA-IVA-Lab/UrbanNav
A Geometric Unification of Generative AI with Manifold-Probabilistic Projection Models
Most models of generative AI for images assume that images are inherently low-dimensional objects embedded within a high-dimensional space. Additionally, it is often implicitly assumed that thematic image datasets form smooth or piecewise smooth manifolds. Common approaches overlook the geometric structure and focus solely on probabilistic methods, approximating the probability distribution through universal approximation techniques such as the kernel method. In some generative models the low dimensional nature of the data manifest itself by the introduction of a lower dimensional latent space. Yet, the probability distribution in the latent or the manifold's coordinate space is considered uninteresting and is predefined or considered uniform. In this study, we address the problem of Blind Image Denoising (BID), and to some extent, the problem of generating images from noise by unifying geometric and probabilistic perspectives. We introduce a novel framework that improves upon existing probabilistic approaches by incorporating geometric assumptions that enable the effective use of kernel-based probabilistic methods. Furthermore, the proposed framework extends prior geometric approaches by combining explicit and implicit manifold descriptions through the introduction of a distance function. The resulting framework demystifies diffusion models by interpreting them as a projection mechanism onto the manifold of ``good images''. This interpretation leads to the construction of a new deterministic model, the Manifold-Probabilistic Projection Model (MPPM), which operates in both the representation (pixel) space and the latent space. We demonstrate that the Latent MPPM (LMPPM) outperforms the Latent Diffusion Model (LDM) across various datasets, achieving superior results in terms of image restoration and generation.
Mamba Goes HoME: Hierarchical Soft Mixture-of-Experts for 3D Medical Image Segmentation NeurIPS 2025
In recent years, artificial intelligence has significantly advanced medical image segmentation. Nonetheless, challenges remain, including efficient 3D medical image processing across diverse modalities and handling data variability. In this work, we introduce Hierarchical Soft Mixture-of-Experts (HoME), a two-level token-routing layer for efficient long-context modeling, specifically designed for 3D medical image segmentation. Built on the Mamba Selective State Space Model (SSM) backbone, HoME enhances sequential modeling through adaptive expert routing. In the first level, a Soft Mixture-of-Experts (SMoE) layer partitions input sequences into local groups, routing tokens to specialized per-group experts for localized feature extraction. The second level aggregates these outputs through a global SMoE layer, enabling cross-group information fusion and global context refinement. This hierarchical design, combining local expert routing with global expert refinement, enhances generalizability and segmentation performance, surpassing state-of-the-art results across datasets from the three most widely used 3D medical imaging modalities and varying data qualities. The code is publicly available at https://github.com/gmum/MambaHoME.
comment: Accepted at NeurIPS 2025
Deep learning-based ecological analysis of camera trap images is impacted by training data quality and quantity
Large image collections generated from camera traps offer valuable insights into species richness, occupancy, and activity patterns, significantly aiding biodiversity monitoring. However, the manual processing of these datasets is time-consuming, hindering analytical processes. To address this, deep neural networks have been widely adopted to automate image labelling, but the impact of classification error on key ecological metrics remains unclear. Here, we analyse data from camera trap collections in an African savannah (82,300 labelled images, 47 species) and an Asian sub-tropical dry forest (40,308 labelled images, 29 species) to compare ecological metrics derived from expert-generated species identifications with those generated by deep learning classification models. We specifically assess the impact of deep learning model architecture, proportion of label noise in the training data, and the size of the training dataset on three key ecological metrics: species richness, occupancy, and activity patterns. We found that predictions of species richness derived from deep neural networks closely match those calculated from expert labels and remained resilient to up to 10% noise in the training dataset (mis-labelled images) and a 50% reduction in the training dataset size. We found that our choice of deep learning model architecture (ResNet vs ConvNext-T) or depth (ResNet18, 50, 101) did not impact predicted ecological metrics. In contrast, species-specific metrics were more sensitive; less common and visually similar species were disproportionately affected by a reduction in deep neural network accuracy, with consequences for occupancy and diel activity pattern estimates. To ensure the reliability of their findings, practitioners should prioritize creating large, clean training sets and account for class imbalance across species over exploring numerous deep learning model architectures.
comment: Peggy A. Bevan, Omiros Pantazis: equally contributing authors. Published in Remote Sensing in Ecology and Conservation
GANeXt: A Fully ConvNeXt-Enhanced Generative Adversarial Network for MRI- and CBCT-to-CT Synthesis
The synthesis of computed tomography (CT) from magnetic resonance imaging (MRI) and cone-beam CT (CBCT) plays a critical role in clinical treatment planning by enabling accurate anatomical representation in adaptive radiotherapy. In this work, we propose GANeXt, a 3D patch-based, fully ConvNeXt-powered generative adversarial network for unified CT synthesis across different modalities and anatomical regions. Specifically, GANeXt employs an efficient U-shaped generator constructed from stacked 3D ConvNeXt blocks with compact convolution kernels, while the discriminator adopts a conditional PatchGAN. To improve synthesis quality, we incorporate a combination of loss functions, including mean absolute error (MAE), perceptual loss, segmentation-based masked MAE, and adversarial loss and a combination of Dice loss and cross-entropy for multi-head segmentation discriminator. For both tasks, training is performed with a batch size of 8 using two separate AdamW optimizers for the generator and discriminator, each equipped with a warmup and cosine decay scheduler, with learning rates of $5\times10^{-4}$ and $1\times10^{-3}$, respectively. Data preprocessing includes deformable registration, foreground cropping, percentile normalization for the input modality, and linear normalization of the CT to the range $[-1024, 1000]$. Data augmentation involves random zooming within $(0.8, 1.3)$ (for MRI-to-CT only), fixed-size cropping to $32\times160\times192$ for MRI-to-CT and $32\times128\times128$ for CBCT-to-CT, and random flipping. During inference, we apply a sliding-window approach with $0.8$ overlap and average folding to reconstruct the full-size sCT, followed by inversion of the CT normalization. After joint training on all regions without any fine-tuning, the final models are selected at the end of 3000 epochs for MRI-to-CT and 1000 epochs for CBCT-to-CT using the full training dataset.
SERA-H: Beyond Native Sentinel Spatial Limits for High-Resolution Canopy Height Mapping
High-resolution mapping of canopy height is essential for forest management and biodiversity monitoring. Although recent studies have led to the advent of deep learning methods using satellite imagery to predict height maps, these approaches often face a trade-off between data accessibility and spatial resolution. To overcome these limitations, we present SERA-H, an end-to-end model combining a super-resolution module (EDSR) and temporal attention encoding (UTAE). Trained under the supervision of high-density LiDAR data (ALS), our model generates 2.5 m resolution height maps from freely available Sentinel-1 and Sentinel-2 (10 m) time series data. Evaluated on an open-source benchmark dataset in France, SERA-H, with a MAE of 2.6 m and a coefficient of determination of 0.82, not only outperforms standard Sentinel-1/2 baselines but also achieves performance comparable to or better than methods relying on commercial very high-resolution imagery (SPOT-6/7, PlanetScope, Maxar). These results demonstrate that combining high-resolution supervision with the spatiotemporal information embedded in time series enables the reconstruction of details beyond the input sensors' native resolution. SERA-H opens the possibility of freely mapping forests with high revisit frequency, achieving accuracy comparable to that of costly commercial imagery.
comment: 17 pages, 8 figures, 3 tables
Decorrelation Speeds Up Vision Transformers
Masked Autoencoder (MAE) pre-training of vision transformers (ViTs) yields strong performance in low-label data regimes but comes with substantial computational costs, making it impractical in time- and resource-constrained industrial settings. We address this by integrating Decorrelated Backpropagation (DBP) into MAE pre-training, an optimization method that iteratively reduces input correlations at each layer to accelerate convergence. Applied selectively to the encoder, DBP achieves faster pre-training without loss of stability. To mimic constrained-data scenarios, we evaluate our approach on ImageNet-1K pre-training and ADE20K fine-tuning using randomly sampled subsets of each dataset. Under this setting, DBP-MAE reduces wall-clock time to baseline performance by 21.1%, lowers carbon emissions by 21.4%, and improves segmentation mIoU by 1.1 points. We observe similar gains when pre-training and fine-tuning on proprietary industrial data, confirming the method's applicability in real-world scenarios. These results demonstrate that DBP can reduce training time and energy use while improving downstream performance for large-scale ViT pre-training. Keywords: Deep learning, Vision transformers, Efficient AI, Decorrelation
comment: 20 pages, 12 figures, CVC 2026 camera-ready version
A Study of Commonsense Reasoning over Visual Object Properties
Inspired by human categorization, object property reasoning involves identifying and recognizing low-level details and higher-level abstractions. While current visual question answering (VQA) studies consider multiple object properties, such as size, they typically blend perception and reasoning and lack representativeness in terms of reasoning and image categories, making it unclear whether and how vision-language models (VLMs) abstract and reason over depicted objects. To this end, we introduce a systematic evaluation framework comprising images of three representative types, three reasoning levels of increasing complexity, and four object property dimensions, informed by prior work on common sense. We develop a procedure to instantiate this framework in two VQA object reasoning benchmarks: OPTICS-CNT, comprising 360 images paired with 1,080 multi-level, count-based questions, and OPTICS-CMP, with 2.1k comparison questions. Experiments with 12 state-of-the-art VLMs in zero-shot settings reveal significant limitations relative to humans, with the best-performing model achieving below 40% counting and 70% comparison accuracy. VLMs struggle particularly with photographic images, counterfactual reasoning, physical and functional properties, and higher counts. We make the OPTICS benchmark data and code available to support future work on scalable benchmarking methods, generalized annotation guidelines, and advanced reasoning VLMs.
Beautiful Images, Toxic Words: Understanding and Addressing Offensive Text in Generated Images AAAI 2026
State-of-the-art Diffusion Models (DMs) produce highly realistic images. While prior work has successfully mitigated Not Safe For Work (NSFW) content in the visual domain, we identify a novel threat: the generation of NSFW text embedded within images. This includes offensive language, such as insults, racial slurs, and sexually explicit terms, posing significant risks to users. We show that all state-of-the-art DMs (e.g., SD3, SDXL, Flux, DeepFloyd IF) are vulnerable to this issue. Through extensive experiments, we demonstrate that existing mitigation techniques, effective for visual content, fail to prevent harmful text generation while substantially degrading benign text generation. As an initial step toward addressing this threat, we introduce a novel fine-tuning strategy that targets only the text-generation layers in DMs. Therefore, we construct a safety fine-tuning dataset by pairing each NSFW prompt with two images: one with the NSFW term, and another where that term is replaced with a carefully crafted benign alternative while leaving the image unchanged otherwise. By training on this dataset, the model learns to avoid generating harmful text while preserving benign content and overall image quality. Finally, to advance research in the area, we release ToxicBench, an open-source benchmark for evaluating NSFW text generation in images. It includes our curated fine-tuning dataset, a set of harmful prompts, new evaluation metrics, and a pipeline that assesses both NSFW-ness and text and image quality. Our benchmark aims to guide future efforts in mitigating NSFW text generation in text-to-image models, thereby contributing to their safe deployment.
comment: Accepted at AAAI 2026 (AI Alignment Track)
RTV-Bench: Benchmarking MLLM Continuous Perception, Understanding and Reasoning through Real-Time Video NeurIPS 2025
Multimodal Large Language Models (MLLMs) have made rapid progress in perception, understanding, and reasoning, yet existing benchmarks fall short in evaluating these abilities under continuous and dynamic real-world video streams. Such settings require models to maintain coherent understanding and reasoning as visual scenes evolve over time. **We introduce RTV-Bench, a fine-grained benchmark for real-time video analysis with MLLMs**. It is built upon three key principles: multi-timestamp question answering, hierarchical question structures spanning perception and reasoning, and multi-dimensional evaluation of continuous perception, understanding, and reasoning. RTV-Bench comprises 552 diverse videos and 4,608 carefully curated QA pairs covering a wide range of dynamic scenarios. We evaluate a broad range of state-of-the-art MLLMs, including proprietary, open-source offline, and open-source real-time models. Our results show that real-time models generally outperform offline counterparts but still lag behind leading proprietary systems. While scaling model capacity generally yields performance gains, simply increasing the density of sampled input frames does not consistently translate into improved results. These observations suggest inherent limitations in current architectures when handling long-horizon video streams, underscoring the need for models explicitly designed for streaming video processing and analysis.
comment: Accepted by NeurIPS 2025 Datasets and Benchmarks Track;
3D Wavelet-Based Structural Priors for Controlled Diffusion in Whole-Body Low-Dose PET Denoising
Low-dose Positron Emission Tomography (PET) imaging reduces patient radiation exposure but suffers from increased noise that degrades image quality and diagnostic reliability. Although diffusion models have demonstrated strong denoising capability, their stochastic nature makes it challenging to enforce anatomically consistent structures, particularly in low signal-to-noise regimes and volumetric whole-body imaging. We propose Wavelet-Conditioned ControlNet (WCC-Net), a fully 3D diffusion-based framework that introduces explicit frequency-domain structural priors via wavelet representations to guide volumetric PET denoising. By injecting wavelet-based structural guidance into a frozen pretrained diffusion backbone through a lightweight control branch, WCC-Net decouples anatomical structure from noise while preserving generative expressiveness and 3D structural continuity. Extensive experiments demonstrate that WCC-Net consistently outperforms CNN-, GAN-, and diffusion-based baselines. On the internal 1/20-dose test set, WCC-Net improves PSNR by +1.21 dB and SSIM by +0.008 over a strong diffusion baseline, while reducing structural distortion (GMSD) and intensity error (NMAE). Moreover, WCC-Net generalizes robustly to unseen dose levels (1/50 and 1/4), achieving superior quantitative performance and improved volumetric anatomical consistency.
comment: 10 pages
The Hatching-Box: A Novel System for Automated Monitoring and Quantification of Drosophila melanogaster Developmental Behavior
In this paper we propose the Hatching-Box, a novel imaging and analysis system to automatically monitor and quantify the developmental behavior of Drosophila in standard rearing vials and during regular rearing routines, rendering explicit experiments obsolete. This is achieved by combining custom tailored imaging hardware with dedicated detection and tracking algorithms, enabling the quantification of larvae, filled/empty pupae and flies over multiple days. Given the affordable and reproducible design of the Hatching-Box in combination with our generic client/server-based software, the system can easily be scaled to monitor an arbitrary amount of rearing vials simultaneously. We evaluated our system on a curated image dataset comprising nearly 470,000 annotated objects and performed several studies on real world experiments. We successfully reproduced results from well-established circadian experiments by comparing the eclosion periods of wild type flies to the clock mutants $\textit{per}^{short}$, $\textit{per}^{long}$ and $\textit{per}^0$ without involvement of any manual labor. Furthermore we show, that the Hatching-Box is able to extract additional information about group behavior as well as to reconstruct the whole life-cycle of the individual specimens. These results not only demonstrate the applicability of our system for long-term experiments but also indicate its benefits for automated monitoring in the general cultivation process.
comment: 17 pages, 6 figures
TBC: A Target-Background Contrast Metric for Low-Altitude Infrared and Visible Image Fusion
Infrared and visible image fusion (IVIF) is a pivotal technology in low-altitude Unmanned Aerial Vehicle (UAV) reconnaissance missions, enabling robust target detection and tracking by integrating thermal saliency with environmental textures. However, traditional no-reference metrics (Statistics-based metrics and Gradient-based metrics) fail in complex low-light environments, termed the ``Noise Trap''. This paper mathematically prove that these metrics are positively correlated with high-frequency sensor noise, paradoxically assigning higher scores to degraded images and misguiding algorithm optimization. To address this, we propose the Target-Background Contrast (TBC) metric. Inspired by Weber's Law, TBC focuses on the relative contrast of salient targets rather than global statistics. Unlike traditional metrics, TBC penalizes background noise and rewards target visibility. Extensive experiments on the DroneVehicle dataset demonstrate the superiority of TBC. Results show that TBC exhibits high ``Semantic Discriminability'' in distinguishing thermal targets from background clutter. Furthermore, TBC achieves remarkable computational efficiency, making it a reliable and real-time standard for intelligent UAV systems.
Granular Ball Guided Masking: Structure-aware Data Augmentation
Deep learning models have achieved remarkable success in computer vision but still rely heavily on large-scale labeled data and tend to overfit when data is limited or distributions shift. Data augmentation -- particularly mask-based information dropping -- can enhance robustness by forcing models to explore complementary cues; however, existing approaches often lack structural awareness and risk discarding essential semantics. We propose Granular Ball Guided Masking (GBGM), a structure-aware augmentation strategy guided by Granular Ball Computing (GBC). GBGM adaptively preserves semantically rich, structurally important regions while suppressing redundant areas through a coarse-to-fine hierarchical masking process, producing augmentations that are both representative and discriminative. Extensive experiments on multiple benchmarks demonstrate consistent improvements not only in image classification and masked image reconstruction, but also in image tampering detection, validating the effectiveness and generalization of GBGM across both recognition and forensic scenarios. Simple and model-agnostic, GBGM integrates seamlessly into CNNs and Vision Transformers, offering a practical paradigm for structure-aware data augmentation.
FastMesh: Efficient Artistic Mesh Generation via Component Decoupling 3DV 2026
Recent mesh generation approaches typically tokenize triangle meshes into sequences of tokens and train autoregressive models to generate these tokens sequentially. Despite substantial progress, such token sequences inevitably reuse vertices multiple times to fully represent manifold meshes, as each vertex is shared by multiple faces. This redundancy leads to excessively long token sequences and inefficient generation processes. In this paper, we propose an efficient framework that generates artistic meshes by treating vertices and faces separately, significantly reducing redundancy. We employ an autoregressive model solely for vertex generation, decreasing the token count to approximately 23% of that required by the most compact existing tokenizer. Next, we leverage a bidirectional transformer to complete the mesh in a single step by capturing inter-vertex relationships and constructing the adjacency matrix that defines the mesh faces. To further improve the generation quality, we introduce a fidelity enhancer to refine vertex positioning into more natural arrangements and propose a post-processing framework to remove undesirable edge connections. Experimental results show that our method achieves more than 8x faster speed on mesh generation compared to state-of-the-art approaches, while producing higher mesh quality.
comment: Accepted by 3DV 2026; Project Page: https://jhkim0759.github.io/projects/FastMesh/
AgriFM: A Multi-source Temporal Remote Sensing Foundation Model for Agriculture Mapping
Accurate crop mapping fundamentally relies on modeling multi-scale spatiotemporal patterns, where spatial scales range from individual field textures to landscape-level context, and temporal scales capture both short-term phenological transitions and full growing-season dynamics. Transformer-based remote sensing foundation models (RSFMs) offer promising potential for crop mapping due to their innate ability for unified spatiotemporal processing. However, current RSFMs remain suboptimal for crop mapping: they either employ fixed spatiotemporal windows that ignore the multi-scale nature of crop systems or completely disregard temporal information by focusing solely on spatial patterns. To bridge these gaps, we present AgriFM, a multi-source remote sensing foundation model specifically designed for agricultural crop mapping. Our approach begins by establishing the necessity of simultaneous hierarchical spatiotemporal feature extraction, leading to the development of a modified Video Swin Transformer architecture where temporal down-sampling is synchronized with spatial scaling operations. This modified backbone enables efficient unified processing of long time-series satellite inputs. AgriFM leverages temporally rich data streams from three satellite sources including MODIS, Landsat-8/9 and Sentinel-2, and is pre-trained on a global representative dataset comprising over 25 million image samples supervised by land cover products. The resulting framework incorporates a versatile decoder architecture that dynamically fuses these learned spatiotemporal representations, supporting diverse downstream tasks. Comprehensive evaluations demonstrate AgriFM's superior performance over conventional deep learning approaches and state-of-the-art general-purpose RSFMs across all downstream tasks. Codes will be available at https://github.com/flyakon/AgriFM.
TriDF: Triplane-Accelerated Density Fields for Few-Shot Remote Sensing Novel View Synthesis
Remote sensing novel view synthesis (NVS) offers significant potential for 3D interpretation of remote sensing scenes, with important applications in urban planning and environmental monitoring. However, remote sensing scenes frequently lack sufficient multi-view images due to acquisition constraints. While existing NVS methods tend to overfit when processing limited input views, advanced few-shot NVS methods are computationally intensive and perform sub-optimally in remote sensing scenes. This paper presents TriDF, an efficient hybrid 3D representation for fast remote sensing NVS from as few as 3 input views. Our approach decouples color and volume density information, modeling them independently to reduce the computational burden on implicit radiance fields and accelerate reconstruction.We explore the potential of the triplane representation in few-shot NVS tasks by mapping high-frequency color information onto this compact structure, and the direct optimization of feature planes significantly speeds up convergence. Volume density is modeled as continuous density fields, incorporating reference features from neighboring views through image-based rendering to compensate for limited input data. Additionally, we introduce depth-guided optimization based on point clouds, which effectively mitigates the overfitting problem in few-shot NVS.Comprehensive experiments across multiple remote sensing scenes demonstrate that our hybrid representation achieves a 30x speed increase compared to NeRF-based methods, while simultaneously improving rendering quality metrics over advanced few-shot methods (7.4% increase in PSNR and 3.4% in SSIM). The code is publicly available at https://github.com/kanehub/TriDF
Data-Driven Feature Tracking for Event Cameras With and Without Frames
Because of their high temporal resolution, increased resilience to motion blur, and very sparse output, event cameras have been shown to be ideal for low-latency and low-bandwidth feature tracking, even in challenging scenarios. Existing feature tracking methods for event cameras are either handcrafted or derived from first principles but require extensive parameter tuning, are sensitive to noise, and do not generalize to different scenarios due to unmodeled effects. To tackle these deficiencies, we introduce the first data-driven feature tracker for event cameras, which leverages low-latency events to track features detected in an intensity frame. We achieve robust performance via a novel frame attention module, which shares information across feature tracks. Our tracker is designed to operate in two distinct configurations: solely with events or in a hybrid mode incorporating both events and frames. The hybrid model offers two setups: an aligned configuration where the event and frame cameras share the same viewpoint, and a hybrid stereo configuration where the event camera and the standard camera are positioned side-by-side. This side-by-side arrangement is particularly valuable as it provides depth information for each feature track, enhancing its utility in applications such as visual odometry and simultaneous localization and mapping.
Debiased Orthogonal Boundary-Driven Efficient Noise Mitigation
Mitigating the detrimental effects of noisy labels on the training process has become increasingly critical, as obtaining entirely clean or human-annotated samples for large-scale pre-training tasks is often impractical. Nonetheless, existing noise mitigation methods often encounter limitations in practical applications due to their task-specific design, model dependency, and significant computational overhead. In this work, we exploit the properties of high-dimensional orthogonality to identify a robust and effective boundary in cone space for separating clean and noisy samples. Building on this, we propose One-Step Anti-noise (OSA), a model-agnostic noisy label mitigation paradigm that employs an estimator model and a scoring function to assess the noise level of input pairs through just one-step inference. We empirically validate the superiority of OSA, demonstrating its enhanced training robustness, improved task transferability, streamlined deployment, and reduced computational overhead across diverse benchmarks, models, and tasks. Our code is released at https://github.com/leolee99/OSA.
comment: 20 pages, 4 figures, 11 Tables
RealCamo: Boosting Real Camouflage Synthesis with Layout Controls and Textual-Visual Guidance
Camouflaged image generation (CIG) has recently emerged as an efficient alternative for acquiring high-quality training data for camouflaged object detection (COD). However, existing CIG methods still suffer from a substantial gap to real camouflaged imagery: generated images either lack sufficient camouflage due to weak visual similarity, or exhibit cluttered backgrounds that are semantically inconsistent with foreground targets. To address these limitations, we propose RealCamo, a novel out-painting-based framework for controllable realistic camouflaged image generation. RealCamo explicitly introduces additional layout controls to regulate global image structure, thereby improving semantic coherence between foreground objects and generated backgrounds. Moreover, we construct a multimodal textual-visual condition by combining a unified fine-grained textual task description with texture-oriented background retrieval, which jointly guides the generation process to enhance visual fidelity and realism. To quantitatively assess camouflage quality, we further introduce a background-foreground distribution divergence metric that measures the effectiveness of camouflage in generated images. Extensive experiments and visualizations demonstrate the effectiveness of our proposed framework.
comment: 25 pages
Generative Adversarial Gumbel MCTS for Abstract Visual Composition Generation
We study abstract visual composition, in which identity is primarily determined by the spatial configuration and relations among a small set of geometric primitives (e.g., parts, symmetry, topology). They are invariant primarily to texture and photorealistic detail. Composing such structures from fixed components under geometric constraints and vague goal specification (such as text) is non-trivial due to combinatorial placement choices, limited data, and discrete feasibility (overlap-free, allowable orientations), which create a sparse solution manifold ill-suited to purely statistical pixel-space generators. We propose a constraint-guided framework that combines explicit geometric reasoning with neural semantics. An AlphaGo-style search enforces feasibility, while a fine-tuned vision-language model scores semantic alignment as reward signals. Our algorithm uses a policy network as a heuristic in Monte-Carlo Tree Search and fine-tunes the network via search-generated plans. Inspired by the Generative Adversarial Network, we use the generated instances for adversarial reward refinement. Over time, the generation should approach the actual data more closely when the reward model cannot distinguish between generated instances and ground-truth. In the Tangram Assembly task, our approach yields higher validity and semantic fidelity than diffusion and auto-regressive baselines, especially as constraints tighten.
Learning Physics-Informed Noise Models from Dark Frames for Low-Light Raw Image Denoising
Recently, the mainstream practice for training low-light raw image denoising methods has shifted towards employing synthetic data. Noise modeling, which focuses on characterizing the noise distribution of real-world sensors, profoundly influences the effectiveness and practicality of synthetic data. Currently, physics-based noise modeling struggles to characterize the entire real noise distribution, while learning-based noise modeling impractically depends on paired real data. In this paper, we propose a novel strategy: learning the noise model from dark frames instead of paired real data, to break down the data dependency. Based on this strategy, we introduce an efficient physics-informed noise neural proxy (PNNP) to approximate the real-world sensor noise model. Specifically, we integrate physical priors into neural proxies and introduce three efficient techniques: physics-guided noise decoupling (PND), physics-aware proxy model (PPM), and differentiable distribution loss (DDL). PND decouples the dark frame into different components and handles different levels of noise flexibly, which reduces the complexity of noise modeling. PPM incorporates physical priors to constrain the synthetic noise, which promotes the accuracy of noise modeling. DDL provides explicit and reliable supervision for noise distribution, which promotes the precision of noise modeling. PNNP exhibits powerful potential in characterizing the real noise distribution. Extensive experiments on public datasets demonstrate superior performance in practical low-light raw image denoising. The source code will be publicly available at the project homepage.
comment: 18 pages, 13 figures. Accepted by IEEE TPAMI (2026)
Fusionista2.0: Efficiency Retrieval System for Large-Scale Datasets
The Video Browser Showdown (VBS) challenges systems to deliver accurate results under strict time constraints. To meet this demand, we present Fusionista2.0, a streamlined video retrieval system optimized for speed and usability. All core modules were re-engineered for efficiency: preprocessing now relies on ffmpeg for fast keyframe extraction, optical character recognition uses Vintern-1B-v3.5 for robust multilingual text recognition, and automatic speech recognition employs faster-whisper for real-time transcription. For question answering, lightweight vision-language models provide quick responses without the heavy cost of large models. Beyond these technical upgrades, Fusionista2.0 introduces a redesigned user interface with improved responsiveness, accessibility, and workflow efficiency, enabling even non-expert users to retrieve relevant content rapidly. Evaluations demonstrate that retrieval time was reduced by up to 75% while accuracy and user satisfaction both increased, confirming Fusionista2.0 as a competitive and user-friendly system for large-scale video search.
DFIR-DETR: Frequency Domain Enhancement and Dynamic Feature Aggregation for Cross-Scene Small Object Detection
Detecting small objects in UAV remote sensing images and identifying surface defects in industrial inspection remain difficult tasks. These applications face common obstacles: features are sparse and weak, backgrounds are cluttered, and object scales vary dramatically. Current transformer-based detectors, while powerful, struggle with three critical issues. First, features degrade severely as networks downsample progressively. Second, spatial convolutions cannot capture long-range dependencies effectively. Third, standard upsampling methods inflate feature maps unnecessarily. We introduce DFIR-DETR to tackle these problems through dynamic feature aggregation combined with frequency-domain processing. Our architecture builds on three novel components. The DCFA module uses dynamic K-sparse attention, cutting complexity from O(N2) down to O(NK), and employs spatial gated linear units for better nonlinear modeling. The DFPN module applies amplitude-normalized upsampling to prevent feature inflation and uses dual-path shuffle convolution to retain spatial details across scales. The FIRC3 module operates in the frequency domain, achieving global receptive fields without sacrificing efficiency. We tested our method extensively on NEU-DET and VisDrone datasets. Results show mAP50 scores of 92.9% and 51.6% respectively-both state-of-the-art. The model stays lightweight with just 11.7M parameters and 41.2 GFLOPs. Strong performance across two very different domains confirms that DFIR-DETR generalizes well and works effectively in resource-limited settings for cross-scene small object detection.
comment: 16 pages. Correct typos
Unveiling and Bridging the Functional Perception Gap in MLLMs: Atomic Visual Alignment and Hierarchical Evaluation via PET-Bench
While Multimodal Large Language Models (MLLMs) have demonstrated remarkable proficiency in tasks such as abnormality detection and report generation for anatomical modalities, their capability in functional imaging remains largely unexplored. In this work, we identify and quantify a fundamental functional perception gap: the inability of current vision encoders to decode functional tracer biodistribution independent of morphological priors. Identifying Positron Emission Tomography (PET) as the quintessential modality to investigate this disconnect, we introduce PET-Bench, the first large-scale functional imaging benchmark comprising 52,308 hierarchical QA pairs from 9,732 multi-site, multi-tracer PET studies. Extensive evaluation of 19 state-of-the-art MLLMs reveals a critical safety hazard termed the Chain-of-Thought (CoT) hallucination trap. We observe that standard CoT prompting, widely considered to enhance reasoning, paradoxically decouples linguistic generation from visual evidence in PET, producing clinically fluent but factually ungrounded diagnoses. To resolve this, we propose Atomic Visual Alignment (AVA), a simple fine-tuning strategy that enforces the mastery of low-level functional perception prior to high-level diagnostic reasoning. Our results demonstrate that AVA effectively bridges the perception gap, transforming CoT from a source of hallucination into a robust inference tool and improving diagnostic accuracy by up to 14.83%. Code and data are available at https://github.com/yezanting/PET-Bench.
comment: 9 pages, 6 figures, 6 tables
Modality-Balanced Collaborative Distillation for Multi-Modal Domain Generalization
Weight Averaging (WA) has emerged as a powerful technique for enhancing generalization by promoting convergence to a flat loss landscape, which correlates with stronger out-of-distribution performance. However, applying WA directly to multi-modal domain generalization (MMDG) is challenging: differences in optimization speed across modalities lead WA to overfit to faster-converging ones in early stages, suppressing the contribution of slower yet complementary modalities, thereby hindering effective modality fusion and skewing the loss surface toward sharper, less generalizable minima. To address this issue, we propose MBCD, a unified collaborative distillation framework that retains WA's flatness-inducing advantages while overcoming its shortcomings in multi-modal contexts. MBCD begins with adaptive modality dropout in the student model to curb early-stage bias toward dominant modalities. A gradient consistency constraint then aligns learning signals between uni-modal branches and the fused representation, encouraging coordinated and smoother optimization. Finally, a WA-based teacher conducts cross-modal distillation by transferring fused knowledge to each uni-modal branch, which strengthens cross-modal interactions and steer convergence toward flatter solutions. Extensive experiments on MMDG benchmarks show that MBCD consistently outperforms existing methods, achieving superior accuracy and robustness across diverse unseen domains.
Wavelet-based Multi-View Fusion of 4D Radar Tensor and Camera for Robust 3D Object Detection
4D millimeter-wave (mmWave) radar has been widely adopted in autonomous driving and robot perception due to its low cost and all-weather robustness. However, point-cloud-based radar representations suffer from information loss due to multi-stage signal processing, while directly utilizing raw 4D radar tensors incurs prohibitive computational costs. To address these challenges, we propose WRCFormer, a novel 3D object detection framework that efficiently fuses raw 4D radar cubes with camera images via decoupled multi-view radar representations. Our approach introduces two key components: (1) A Wavelet Attention Module embedded in a wavelet-based Feature Pyramid Network (FPN), which enhances the representation of sparse radar signals and image data by capturing joint spatial-frequency features, thereby mitigating information loss while maintaining computational efficiency. (2) A Geometry-guided Progressive Fusion mechanism, a two-stage query-based fusion strategy that progressively aligns multi-view radar and visual features through geometric priors, enabling modality-agnostic and efficient integration without overwhelming computational overhead. Extensive experiments on the K-Radar benchmark show that WRCFormer achieves state-of-the-art performance, surpassing the best existing model by approximately 2.4% in all scenarios and 1.6% in sleet conditions, demonstrating strong robustness in adverse weather.
comment: 10 pages, 10 figures
Cross-Modal Fine-Tuning of 3D Convolutional Foundation Models for ADHD Classification with Low-Rank Adaptation
Early diagnosis of attention-deficit/hyperactivity disorder (ADHD) in children plays a crucial role in improving outcomes in education and mental health. Diagnosing ADHD using neuroimaging data, however, remains challenging due to heterogeneous presentations and overlapping symptoms with other conditions. To address this, we propose a novel parameter-efficient transfer learning approach that adapts a large-scale 3D convolutional foundation model, pre-trained on CT images, to an MRI-based ADHD classification task. Our method introduces Low-Rank Adaptation (LoRA) in 3D by factorizing 3D convolutional kernels into 2D low-rank updates, dramatically reducing trainable parameters while achieving superior performance. In a five-fold cross-validated evaluation on a public diffusion MRI database, our 3D LoRA fine-tuning strategy achieved state-of-the-art results, with one model variant reaching 71.9% accuracy and another attaining an AUC of 0.716. Both variants use only 1.64 million trainable parameters (over 113x fewer than a fully fine-tuned foundation model). Our results represent one of the first successful cross-modal (CT-to-MRI) adaptations of a foundation model in neuroimaging, establishing a new benchmark for ADHD classification while greatly improving efficiency.
comment: Accepted for presentation at the IEEE International Symposium on Biomedical Imaging (ISBI) 2026
Lifelong Domain Adaptive 3D Human Pose Estimation AAAI 2026
3D Human Pose Estimation (3D HPE) is vital in various applications, from person re-identification and action recognition to virtual reality. However, the reliance on annotated 3D data collected in controlled environments poses challenges for generalization to diverse in-the-wild scenarios. Existing domain adaptation (DA) paradigms like general DA and source-free DA for 3D HPE overlook the issues of non-stationary target pose datasets. To address these challenges, we propose a novel task named lifelong domain adaptive 3D HPE. To our knowledge, we are the first to introduce the lifelong domain adaptation to the 3D HPE task. In this lifelong DA setting, the pose estimator is pretrained on the source domain and subsequently adapted to distinct target domains. Moreover, during adaptation to the current target domain, the pose estimator cannot access the source and all the previous target domains. The lifelong DA for 3D HPE involves overcoming challenges in adapting to current domain poses and preserving knowledge from previous domains, particularly combating catastrophic forgetting. We present an innovative Generative Adversarial Network (GAN) framework, which incorporates 3D pose generators, a 2D pose discriminator, and a 3D pose estimator. This framework effectively mitigates domain shifts and aligns original and augmented poses. Moreover, we construct a novel 3D pose generator paradigm, integrating pose-aware, temporal-aware, and domain-aware knowledge to enhance the current domain's adaptation and alleviate catastrophic forgetting on previous domains. Our method demonstrates superior performance through extensive experiments on diverse domain adaptive 3D HPE datasets.
comment: Accepted by AAAI 2026
Unleashing Semantic and Geometric Priors for 3D Scene Completion AAAI-2026
Camera-based 3D semantic scene completion (SSC) provides dense geometric and semantic perception for autonomous driving and robotic navigation. However, existing methods rely on a coupled encoder to deliver both semantic and geometric priors, which forces the model to make a trade-off between conflicting demands and limits its overall performance. To tackle these challenges, we propose FoundationSSC, a novel framework that performs dual decoupling at both the source and pathway levels. At the source level, we introduce a foundation encoder that provides rich semantic feature priors for the semantic branch and high-fidelity stereo cost volumes for the geometric branch. At the pathway level, these priors are refined through specialised, decoupled pathways, yielding superior semantic context and depth distributions. Our dual-decoupling design produces disentangled and refined inputs, which are then utilised by a hybrid view transformation to generate complementary 3D features. Additionally, we introduce a novel Axis-Aware Fusion (AAF) module that addresses the often-overlooked challenge of fusing these features by anisotropically merging them into a unified representation. Extensive experiments demonstrate the advantages of FoundationSSC, achieving simultaneous improvements in both semantic and geometric metrics, surpassing prior bests by +0.23 mIoU and +2.03 IoU on SemanticKITTI. Additionally, we achieve state-of-the-art performance on SSCBench-KITTI-360, with 21.78 mIoU and 48.61 IoU.
comment: Accept by AAAI-2026
Smooth Operator: Smooth Verifiable Reward Activates Spatial Reasoning Ability of Vision-Language Model
Vision-Language Models (VLMs) face a critical bottleneck in achieving precise numerical prediction for 3D scene understanding. Traditional reinforcement learning (RL) approaches, primarily based on relative ranking, often suffer from severe reward sparsity and gradient instability, failing to effectively exploit the verifiable signals provided by 3D physical constraints. Notably, in standard GRPO frameworks, relative normalization causes "near-miss" samples (characterized by small but non-zero errors) to suffer from advantage collapse. This leads to a severe data utilization bottleneck where valuable boundary samples are discarded during optimization. To address this, we introduce the Smooth Numerical Reward Activation (SNRA) operator and the Absolute-Preserving GRPO (AP-GRPO) framework. SNRA employs a dynamically parameterized Sigmoid function to transform raw feedback into a dense, continuous reward continuum. Concurrently, AP-GRPO integrates absolute scalar gradients to mitigate the numerical information loss inherent in conventional relative-ranking mechanisms. By leveraging this approach, we constructed Numerical3D-50k, a dataset comprising 50,000 verifiable 3D subtasks. Empirical results indicate that AP-GRPO achieves performance parity with large-scale supervised methods while maintaining higher data efficiency, effectively activating latent 3D reasoning in VLMs without requiring architectural modifications.
JOGS: Joint Optimization of Pose Estimation and 3D Gaussian Splatting
Traditional novel view synthesis methods heavily rely on external camera pose estimation tools such as COLMAP, which often introduce computational bottlenecks and propagate errors. To address these challenges, we propose a unified framework that jointly optimizes 3D Gaussian points and camera poses without requiring pre-calibrated inputs. Our approach iteratively refines 3D Gaussian parameters and updates camera poses through a novel co-optimization strategy, ensuring simultaneous improvements in scene reconstruction fidelity and pose estimation accuracy. The key innovation lies in decoupling the joint optimization into two interleaved phases: first, updating 3D Gaussian parameters via differentiable rendering with fixed poses, and second, refining camera poses using a customized 3D optical flow algorithm that incorporates geometric and photometric constraints. This formulation progressively reduces projection errors, particularly in challenging scenarios with large viewpoint variations and sparse feature distributions, where traditional methods struggle. Extensive evaluations on multiple datasets demonstrate that our approach significantly outperforms existing COLMAP-free techniques in reconstruction quality, and also surpasses the standard COLMAP-based baseline in general.
AITTI: Learning Adaptive Inclusive Token for Text-to-Image Generation
Despite the high-quality results of text-to-image generation, stereotypical biases have been spotted in their generated contents, compromising the fairness of generative models. In this work, we propose to learn adaptive inclusive tokens to shift the attribute distribution of the final generative outputs. Unlike existing de-biasing approaches, our method requires neither explicit attribute specification nor prior knowledge of the bias distribution. Specifically, the core of our method is a lightweight adaptive mapping network, which can customize the inclusive tokens for the concepts to be de-biased, making the tokens generalizable to unseen concepts regardless of their original bias distributions. This is achieved by tuning the adaptive mapping network with a handful of balanced and inclusive samples using an anchor loss. Experimental results demonstrate that our method outperforms previous bias mitigation methods without attribute specification while preserving the alignment between generative results and text descriptions. Moreover, our method achieves comparable performance to models that require specific attributes or editing directions for generation. Extensive experiments showcase the effectiveness of our adaptive inclusive tokens in mitigating stereotypical bias in text-to-image generation. The code will be available at https://github.com/itsmag11/AITTI.
comment: Accepted by IJCV
Human-inspired Global-to-Parallel Multi-scale Encoding for Lightweight Vision Models
Lightweight vision networks have witnessed remarkable progress in recent years, yet achieving a satisfactory balance among parameter scale, computational overhead, and task performance remains difficult. Although many existing lightweight models manage to reduce computation considerably, they often do so at the expense of a substantial increase in parameter count (e.g., LSNet, MobileMamba), which still poses obstacles for deployment on resource-limited devices. In parallel, some studies attempt to draw inspiration from human visual perception, but their modeling tends to oversimplify the visual process, making it hard to reflect how perception truly operates. Revisiting the cooperative mechanism of the human visual system, we propose GPM (Global-to-Parallel Multi-scale Encoding). GPM first employs a Global Insight Generator (GIG) to extract holistic cues, and subsequently processes features of different scales through parallel branches: LSAE emphasizes mid-/large-scale semantic relations, while IRB (Inverted Residual Block) preserves fine-grained texture information, jointly enabling coherent representation of global and local features. As such, GPM conforms to two characteristic behaviors of human vision perceiving the whole before focusing on details, and maintaining broad contextual awareness even during local attention. Built upon GPM, we further develop the lightweight H-GPE network. Experiments on image classification, object detection, and semantic segmentation show that H-GPE achieves strong performance while maintaining a balanced footprint in both FLOPs and parameters, delivering a more favorable accuracy-efficiency trade-off compared with recent state-of-the-art lightweight models.
comment: 23 pages, 5 figures
Jump-teaching: Combating Sample Selection Bias via Temporal Disagreement
Sample selection is a straightforward technique to combat noisy labels, aiming to prevent mislabeled samples from degrading the robustness of neural networks. However, existing methods mitigate compounding selection bias either by leveraging dual-network disagreement or additional forward propagations, leading to multiplied training overhead. To address this challenge, we introduce $\textit{Jump-teaching}$, an efficient sample selection framework for debiased model update and simplified selection criterion. Based on a key observation that a neural network exhibits significant disagreement across different training iterations, Jump-teaching proposes a jump-manner model update strategy to enable self-correction of selection bias by harnessing temporal disagreement, eliminating the need for multi-network or multi-round training. Furthermore, we employ a sample-wise selection criterion building on the intra variance of a decomposed single loss for a fine-grained selection without relying on batch-wise ranking or dataset-wise modeling. Extensive experiments demonstrate that Jump-teaching outperforms state-of-the-art counterparts while achieving a nearly overhead-free selection procedure, which boosts training speed by up to $4.47\times$ and reduces peak memory footprint by $54\%$.
TeleMem: Building Long-Term and Multimodal Memory for Agentic AI
Large language models (LLMs) excel at many NLP tasks but struggle to sustain long-term interactions due to limited attention over extended dialogue histories. Retrieval-augmented generation (RAG) mitigates this issue but lacks reliable mechanisms for updating or refining stored memories, leading to schema-driven hallucinations, inefficient write operations, and minimal support for multimodal reasoning.To address these challenges, we propose TeleMem, a unified long-term and multimodal memory system that maintains coherent user profiles through narrative dynamic extraction, ensuring that only dialogue-grounded information is preserved. TeleMem further introduces a structured writing pipeline that batches, retrieves, clusters, and consolidates memory entries, substantially improving storage efficiency, reducing token usage, and accelerating memory operations. Additionally, a multimodal memory module combined with ReAct-style reasoning equips the system with a closed-loop observe, think, and act process that enables accurate understanding of complex video content in long-term contexts. Experimental results show that TeleMem surpasses the state-of-the-art Mem0 baseline with 19% higher accuracy, 43% fewer tokens, and a 2.1x speedup on the ZH-4O long-term role-play gaming benchmark.
EfficientFSL: Enhancing Few-Shot Classification via Query-Only Tuning in Vision Transformers AAAI 2026
Large models such as Vision Transformers (ViTs) have demonstrated remarkable superiority over smaller architectures like ResNet in few-shot classification, owing to their powerful representational capacity. However, fine-tuning such large models demands extensive GPU memory and prolonged training time, making them impractical for many real-world low-resource scenarios. To bridge this gap, we propose EfficientFSL, a query-only fine-tuning framework tailored specifically for few-shot classification with ViT, which achieves competitive performance while significantly reducing computational overhead. EfficientFSL fully leverages the knowledge embedded in the pre-trained model and its strong comprehension ability, achieving high classification accuracy with an extremely small number of tunable parameters. Specifically, we introduce a lightweight trainable Forward Block to synthesize task-specific queries that extract informative features from the intermediate representations of the pre-trained model in a query-only manner. We further propose a Combine Block to fuse multi-layer outputs, enhancing the depth and robustness of feature representations. Finally, a Support-Query Attention Block mitigates distribution shift by adjusting prototypes to align with the query set distribution. With minimal trainable parameters, EfficientFSL achieves state-of-the-art performance on four in-domain few-shot datasets and six cross-domain datasets, demonstrating its effectiveness in real-world applications.
comment: Accepted/To be presented at AAAI 2026
Graph Algorithm Unrolling with Douglas-Rachford Iterations for Image Interpolation with Guaranteed Initialization
Conventional deep neural nets (DNNs) initialize network parameters at random and then optimize each one via stochastic gradient descent (SGD), resulting in substantial risk of poor-performing local minima.Focusing on the image interpolation problem and leveraging a recent theorem that maps a (pseudo-)linear interpolator Θ to a directed graph filter that is a solution to a MAP problem regularized with a graph shift variation (GSV) prior, we first initialize a directed graph adjacency matrix A based on a known interpolator Θ, establishing a baseline performance.Then, towards further gain, we learn perturbation matrices P and P(2) from data to augment A, whose restoration effects are implemented via Douglas-Rachford (DR) iterations, which we unroll into a lightweight interpretable neural net.Experimental results demonstrate state-of-the-art image interpolation results, while drastically reducing network parameters.
End-to-End PET Image Reconstruction via a Posterior-Mean Diffusion Model
Positron Emission Tomography (PET) is a functional imaging modality that enables the visualization of biochemical and physiological processes across various tissues. Recently, deep learning (DL)-based methods have demonstrated significant progress in directly mapping sinograms to PET images. However, regression-based DL models often yield overly smoothed reconstructions lacking of details (i.e., low distortion, low perceptual quality), whereas GAN-based and likelihood-based posterior sampling models tend to introduce undesirable artifacts in predictions (i.e., high distortion, high perceptual quality), limiting their clinical applicability. To achieve a robust perception-distortion tradeoff, we propose Posterior-Mean Denoising Diffusion Model (PMDM-PET), a novel approach that builds upon a recently established mathematical theory to explore the closed-form expression of perception-distortion function in diffusion model space for PET image reconstruction from sinograms. Specifically, PMDM-PET first obtained posterior-mean PET predictions under minimum mean square error (MSE), then optimally transports the distribution of them to the ground-truth PET images distribution. Experimental results demonstrate that PMDM-PET not only generates realistic PET images with possible minimum distortion and optimal perceptual quality but also outperforms five recent state-of-the-art (SOTA) DL baselines in both qualitative visual inspection and quantitative pixel-wise metrics PSNR (dB)/SSIM/NRMSE.
comment: 5 pages, 1 figure
High-Quality 3D Head Reconstruction from Any Single Portrait Image
In this work, we introduce a novel high-fidelity 3D head reconstruction method from a single portrait image, regardless of perspective, expression, or accessories. Despite significant efforts in adapting 2D generative models for novel view synthesis and 3D optimization, most methods struggle to produce high-quality 3D portraits. The lack of crucial information, such as identity, expression, hair, and accessories, limits these approaches in generating realistic 3D head models. To address these challenges, we construct a new high-quality dataset containing 227 sequences of digital human portraits captured from 96 different perspectives, totalling 21,792 frames, featuring diverse expressions and accessories. To further improve performance, we integrate identity and expression information into the multi-view diffusion process to enhance facial consistency across views. Specifically, we apply identity- and expression-aware guidance and supervision to extract accurate facial representations, which guide the model and enforce objective functions to ensure high identity and expression consistency during generation. Finally, we generate an orbital video around the portrait consisting of 96 multi-view frames, which can be used for 3D portrait model reconstruction. Our method demonstrates robust performance across challenging scenarios, including side-face angles and complex accessories
Bayesian Monocular Depth Refinement via Neural Radiance Fields
Monocular depth estimation has applications in many fields, such as autonomous navigation and extended reality, making it an essential computer vision task. However, current methods often produce smooth depth maps that lack the fine geometric detail needed for accurate scene understanding. We propose MDENeRF, an iterative framework that refines monocular depth estimates using depth information from Neural Radiance Fields (NeRFs). MDENeRF consists of three components: (1) an initial monocular estimate for global structure, (2) a NeRF trained on perturbed viewpoints, with per-pixel uncertainty, and (3) Bayesian fusion of the noisy monocular and NeRF depths. We derive NeRF uncertainty from the volume rendering process to iteratively inject high-frequency fine details. Meanwhile, our monocular prior maintains global structure. We demonstrate improvements on key metrics and experiments using indoor scenes from the SUN RGB-D dataset.
comment: IEEE 8th International Conference on Algorithms, Computing and Artificial Intelligence (ACAI 2025)
SPARK: Scalable Real-Time Point Cloud Aggregation with Multi-View Self-Calibration
Real-time multi-camera 3D reconstruction is crucial for 3D perception, immersive interaction, and robotics. Existing methods struggle with multi-view fusion, camera extrinsic uncertainty, and scalability for large camera setups. We propose SPARK, a self-calibrating real-time multi-camera point cloud reconstruction framework that jointly handles point cloud fusion and extrinsic uncertainty. SPARK consists of: (1) a geometry-aware online extrinsic estimation module leveraging multi-view priors and enforcing cross-view and temporal consistency for stable self-calibration, and (2) a confidence-driven point cloud fusion strategy modeling depth reliability and visibility at pixel and point levels to suppress noise and view-dependent inconsistencies. By performing frame-wise fusion without accumulation, SPARK produces stable point clouds in dynamic scenes while scaling linearly with the number of cameras. Extensive experiments on real-world multi-camera systems show that SPARK outperforms existing approaches in extrinsic accuracy, geometric consistency, temporal stability, and real-time performance, demonstrating its effectiveness and scalability for large-scale multi-camera 3D reconstruction.
comment: 10 pages, 1 figures, submitted to Trans on Image Processing. v2: Minor revision; removed several experimental results due to further verification
GreedyPixel: Fine-Grained Black-Box Adversarial Attack Via Greedy Algorithm
Deep neural networks are highly vulnerable to adversarial examples, which are inputs with small, carefully crafted perturbations that cause misclassification -- making adversarial attacks a critical tool for evaluating robustness. Existing black-box methods typically entail a trade-off between precision and flexibility: pixel-sparse attacks (e.g., single- or few-pixel attacks) provide fine-grained control but lack adaptability, whereas patch- or frequency-based attacks improve efficiency or transferability, but at the cost of producing larger and less precise perturbations. We present GreedyPixel, a fine-grained black-box attack method that performs brute-force-style, per-pixel greedy optimization guided by a surrogate-derived priority map and refined by means of query feedback. It evaluates each coordinate directly without any gradient information, guaranteeing monotonic loss reduction and convergence to a coordinate-wise optimum, while also yielding near white-box-level precision and pixel-wise sparsity and perceptual quality. On the CIFAR-10 and ImageNet datasets, spanning convolutional neural networks (CNNs) and Transformer models, GreedyPixel achieved state-of-the-art success rates with visually imperceptible perturbations, effectively bridging the gap between black-box practicality and white-box performance. The implementation is available at https://github.com/azrealwang/greedypixel.
comment: IEEE Transactions on Information Forensics and Security
Power to the Clients: Federated Learning in a Dictatorship Setting
Federated learning (FL) has emerged as a promising paradigm for decentralized model training, enabling multiple clients to collaboratively learn a shared model without exchanging their local data. However, the decentralized nature of FL also introduces vulnerabilities, as malicious clients can compromise or manipulate the training process. In this work, we introduce dictator clients, a novel, well-defined, and analytically tractable class of malicious participants capable of entirely erasing the contributions of all other clients from the server model, while preserving their own. We propose concrete attack strategies that empower such clients and systematically analyze their effects on the learning process. Furthermore, we explore complex scenarios involving multiple dictator clients, including cases where they collaborate, act independently, or form an alliance in order to ultimately betray one another. For each of these settings, we provide a theoretical analysis of their impact on the global model's convergence. Our theoretical algorithms and findings about the complex scenarios including multiple dictator clients are further supported by empirical evaluations on both computer vision and natural language processing benchmarks.
MINGLE: VLMs for Semantically Complex Region Detection in Urban Scenes
Understanding group-level social interactions in public spaces is crucial for urban planning, informing the design of socially vibrant and inclusive environments. Detecting such interactions from images involves interpreting subtle visual cues such as relations, proximity, and co-movement - semantically complex signals that go beyond traditional object detection. To address this challenge, we introduce a social group region detection task, which requires inferring and spatially grounding visual regions defined by abstract interpersonal relations. We propose MINGLE (Modeling INterpersonal Group-Level Engagement), a modular three-stage pipeline that integrates: (1) off-the-shelf human detection and depth estimation, (2) VLM-based reasoning to classify pairwise social affiliation, and (3) a lightweight spatial aggregation algorithm to localize socially connected groups. To support this task and encourage future research, we present a new dataset of 100K urban street-view images annotated with bounding boxes and labels for both individuals and socially interacting groups. The annotations combine human-created labels and outputs from the MINGLE pipeline, ensuring semantic richness and broad coverage of real-world scenarios.
comment: 13 pages, 4 figures Updated with the camera-ready version after acceptance
Image2Garment: Simulation-ready Garment Generation from a Single Image
Estimating physically accurate, simulation-ready garments from a single image is challenging due to the absence of image-to-physics datasets and the ill-posed nature of this problem. Prior methods either require multi-view capture and expensive differentiable simulation or predict only garment geometry without the material properties required for realistic simulation. We propose a feed-forward framework that sidesteps these limitations by first fine-tuning a vision-language model to infer material composition and fabric attributes from real images, and then training a lightweight predictor that maps these attributes to the corresponding physical fabric parameters using a small dataset of material-physics measurements. Our approach introduces two new datasets (FTAG and T2P) and delivers simulation-ready garments from a single image without iterative optimization. Experiments show that our estimator achieves superior accuracy in material composition estimation and fabric attribute prediction, and by passing them through our physics parameter estimator, we further achieve higher-fidelity simulations compared to state-of-the-art image-to-garment methods.
comment: Project Page: https://image2garment.github.io/
ViSTA: Visual Storytelling using Multi-modal Adapters for Text-to-Image Diffusion Models WACV 2026
Text-to-image diffusion models have achieved remarkable success, yet generating coherent image sequences for visual storytelling remains challenging. A key challenge is effectively leveraging all previous text-image pairs, referred to as history text-image pairs, which provide contextual information for maintaining consistency across frames. Existing auto-regressive methods condition on all past image-text pairs but require extensive training, while training-free subject-specific approaches ensure consistency but lack adaptability to narrative prompts. To address these limitations, we propose a multi-modal history adapter for text-to-image diffusion models, \textbf{ViSTA}. It consists of (1) a multi-modal history fusion module to extract relevant history features and (2) a history adapter to condition the generation on the extracted relevant features. We also introduce a salient history selection strategy during inference, where the most salient history text-image pair is selected, improving the quality of the conditioning. Furthermore, we propose to employ a Visual Question Answering-based metric TIFA to assess text-image alignment in visual storytelling, providing a more targeted and interpretable assessment of generated images. Evaluated on the StorySalon and FlintStonesSV dataset, our proposed ViSTA model is not only consistent across different frames, but also well-aligned with the narrative text descriptions.
comment: Accepted to WACV 2026
BBQ-V: Benchmarking Visual Stereotype Bias in Large Multimodal Models
Stereotype biases in Large Multimodal Models (LMMs) perpetuate harmful societal prejudices, undermining the fairness and equity of AI applications. As LMMs grow increasingly influential, addressing and mitigating inherent biases related to stereotypes, harmful generations, and ambiguous assumptions in real-world scenarios has become essential. However, existing datasets evaluating stereotype biases in LMMs often lack diversity, rely on synthetic images, and often have single-actor images, leaving a gap in bias evaluation for real-world visual contexts. To address the gap in bias evaluation using real images, we introduce the BBQ-Vision (BBQ-V), the most comprehensive framework for assessing stereotype biases across nine diverse categories and 50 sub-categories with real and multi-actor images. BBQ-V benchmark contains 14,144 image-question pairs and rigorously evaluates LMMs through carefully curated, visually grounded scenarios, challenging them to reason accurately about visual stereotypes. It offers a robust evaluation framework featuring real-world visual samples, image variations, and open-ended question formats. BBQ-V enables a precise and nuanced assessment of a model's reasoning capabilities across varying levels of difficulty. Through rigorous testing of 19 state-of-the-art open-source (general-purpose and reasoning) and closed-source LMMs, we highlight that these top-performing models are often biased on several social stereotypes, and demonstrate that the thinking models induce more bias in the reasoning chains. This benchmark represents a significant step toward fostering fairness in AI systems and reducing harmful biases, laying the groundwork for more equitable and socially responsible LMMs. Our dataset and evaluation code are publicly available.
Zero-Shot Transfer Capabilities of the Sundial Foundation Model for Leaf Area Index Forecasting AAAI 2026
This work investigates the zero-shot forecasting capability of time series foundation models for Leaf Area Index (LAI) forecasting in agricultural monitoring. Using the HiQ dataset (U.S., 2000-2022), we systematically compare statistical baselines, a fully supervised LSTM, and the Sundial foundation model under multiple evaluation protocols. We find that Sundial, in the zero-shot setting, can outperform a fully trained LSTM provided that the input context window is sufficiently long-specifically, when covering more than one or two full seasonal cycles. We show that a general-purpose foundation model can surpass specialized supervised models on remote-sensing time series prediction without any task-specific tuning. These results highlight the strong potential of pretrained time series foundation models to serve as effective plug-and-play forecasters in agricultural and environmental applications.
comment: 6 pages, 5 figures, AAAI 2026 AgriAI workshop
Hot-Start from Pixels: Low-Resolution Visual Tokens for Chinese Language Modeling
Large language models typically represent Chinese characters as discrete index-based tokens, largely ignoring their visual form. For logographic scripts, visual structure carries semantic and phonetic information, which may aid prediction. We investigate whether low-resolution visual inputs can serve as an alternative for character-level modeling. Instead of token IDs, our decoder receives grayscale images of individual characters, with resolutions as low as 8 x 8 pixels. Remarkably, these inputs achieve 39.2% accuracy, comparable to the index-based baseline of 39.1%. Such low-resource settings also exhibit a pronounced hot-start effect: by 0.4% of total training, accuracy reaches above 12%, while index-based models lag at below 6%. Overall, our results demonstrate that minimal visual structure can provide a robust and efficient signal for Chinese language modeling, offering an alternative perspective on character representation that complements traditional index-based approaches.
comment: 15 pages, 5 figures, submitted to ACL 2026
3D latent diffusion models for parameterizing and history matching multiscenario facies systems
Geological parameterization procedures entail the mapping of a high-dimensional geomodel to a low-dimensional latent variable. These parameterizations can be very useful for history matching because the number of variables to be calibrated is greatly reduced, and the mapping can be constructed such that geological realism is automatically preserved. In this work, a parameterization method based on generative latent diffusion models (LDMs) is developed for 3D channel-levee-mud systems. Geomodels with variable scenario parameters, specifically mud fraction, channel orientation, and channel width, are considered. A perceptual loss term is included during training to improve geological realism. For any set of scenario parameters, an (essentially) infinite number of realizations can be generated, so our LDM parameterizes over a very wide model space. New realizations constructed using the LDM procedure are shown to closely resemble reference geomodels, both visually and in terms of one- and two-point spatial statistics. Flow response distributions, for a specified set of injection and production wells, are also shown to be in close agreement between the two sets of models. The parameterization method is applied for ensemble-based history matching, with model updates performed in the LDM latent space, for cases involving geological scenario uncertainty. For three synthetic true models corresponding to different geological scenarios, we observe clear uncertainty reduction in both production forecasts and geological scenario parameters. The overall method is additionally shown to provide posterior geomodels consistent with the synthetic true model in each case.
comment: Text and Figures updated to reflect the journal version of the paper
Evaluating Foundation Models' 3D Understanding Through Multi-View Correspondence Analysis NeurIPS 2025
Benchmarking 3D spatial understanding of foundation models is essential for real-world applications such as robotics and autonomous driving. Existing evaluations often rely on downstream fine-tuning with linear heads or task-specific decoders, making it difficult to isolate the intrinsic 3D reasoning ability of pre-trained encoders. In this work, we introduce a novel benchmark for in-context 3D scene understanding that requires no fine-tuning and directly probes the quality of dense visual features. Building on the Hummingbird framework, which evaluates in-context 2D scene understanding, we extend the setup to the 3D Multi-View ImageNet (MVImgNet) dataset. Given a set of images depicting objects at specific camera angles (keys), we benchmark the performance of segmenting novel views (queries) and report the scores in 4 categories of easy, medium, hard, and extreme based on the key-query view contrast. We benchmark 7 state-of-the-art foundation models and show that DINO-based encoders remain competitive across large viewpoint shifts. Our code is publicly available at https://github.com/ToyeshC/open-hummingbird-3d-eval.
comment: NeurIPS 2025 UniReps workshop, to be published in PMLR
Artificial Intelligence 222
MatchTIR: Fine-Grained Supervision for Tool-Integrated Reasoning via Bipartite Matching
Tool-Integrated Reasoning (TIR) empowers large language models (LLMs) to tackle complex tasks by interleaving reasoning steps with external tool interactions. However, existing reinforcement learning methods typically rely on outcome- or trajectory-level rewards, assigning uniform advantages to all steps within a trajectory. This coarse-grained credit assignment fails to distinguish effective tool calls from redundant or erroneous ones, particularly in long-horizon multi-turn scenarios. To address this, we propose MatchTIR, a framework that introduces fine-grained supervision via bipartite matching-based turn-level reward assignment and dual-level advantage estimation. Specifically, we formulate credit assignment as a bipartite matching problem between predicted and ground-truth traces, utilizing two assignment strategies to derive dense turn-level rewards. Furthermore, to balance local step precision with global task success, we introduce a dual-level advantage estimation scheme that integrates turn-level and trajectory-level signals, assigning distinct advantage values to individual interaction turns. Extensive experiments on three benchmarks demonstrate the superiority of MatchTIR. Notably, our 4B model surpasses the majority of 8B competitors, particularly in long-horizon and multi-turn tasks. Our codes are available at https://github.com/quchangle1/MatchTIR.
Grounding Agent Memory in Contextual Intent
Deploying large language models in long-horizon, goal-oriented interactions remains challenging because similar entities and facts recur under different latent goals and constraints, causing memory systems to retrieve context-mismatched evidence. We propose STITCH (Structured Intent Tracking in Contextual History), an agentic memory system that indexes each trajectory step with a structured retrieval cue, contextual intent, and retrieves history by matching the current step's intent. Contextual intent provides compact signals that disambiguate repeated mentions and reduce interference: (1) the current latent goal defining a thematic segment, (2) the action type, and (3) the salient entity types anchoring which attributes matter. During inference, STITCH filters and prioritizes memory snippets by intent compatibility, suppressing semantically similar but context-incompatible history. For evaluation, we introduce CAME-Bench, a benchmark for context-aware retrieval in realistic, dynamic, goal-oriented trajectories. Across CAME-Bench and LongMemEval, STITCH achieves state-of-the-art performance, outperforming the strongest baseline by 35.6%, with the largest gains as trajectory length increases. Our analysis shows that intent indexing substantially reduces retrieval noise, supporting intent-aware memory for robust long-horizon reasoning.
LIBERTy: A Causal Framework for Benchmarking Concept-Based Explanations of LLMs with Structural Counterfactuals
Concept-based explanations quantify how high-level concepts (e.g., gender or experience) influence model behavior, which is crucial for decision-makers in high-stakes domains. Recent work evaluates the faithfulness of such explanations by comparing them to reference causal effects estimated from counterfactuals. In practice, existing benchmarks rely on costly human-written counterfactuals that serve as an imperfect proxy. To address this, we introduce a framework for constructing datasets containing structural counterfactual pairs: LIBERTy (LLM-based Interventional Benchmark for Explainability with Reference Targets). LIBERTy is grounded in explicitly defined Structured Causal Models (SCMs) of the text generation, interventions on a concept propagate through the SCM until an LLM generates the counterfactual. We introduce three datasets (disease detection, CV screening, and workplace violence prediction) together with a new evaluation metric, order-faithfulness. Using them, we evaluate a wide range of methods across five models and identify substantial headroom for improving concept-based explanations. LIBERTy also enables systematic analysis of model sensitivity to interventions: we find that proprietary LLMs show markedly reduced sensitivity to demographic concepts, likely due to post-training mitigation. Overall, LIBERTy provides a much-needed benchmark for developing faithful explainability methods.
The Impact of Generative AI on Architectural Conceptual Design: Performance, Creative Self-Efficacy and Cognitive Load
Our study examines how generative AI (GenAI) influences performance, creative self-efficacy, and cognitive load in architectural conceptual design tasks. Thirty-six student participants from Architectural Engineering and other disciplines completed a two-phase architectural design task, first independently and then with external tools (GenAI-assisted condition and control condition using an online repository of existing architectural projects). Design outcomes were evaluated by expert raters, while self-efficacy and cognitive load were self-reported after each phase. Difference-in-differences analyses revealed no overall performance advantage of GenAI across participants; however, subgroup analyses showed that GenAI significantly improved design performance for novice designers. In contrast, general creative self-efficacy declined for students using GenAI. Cognitive load did not differ significantly between conditions, though prompt usage patterns showed that iterative idea generation and visual feedback prompts were linked to greater reductions in cognitive load. These findings suggest that GenAI effectiveness depends on users' prior expertise and interaction strategies through prompting.
On the origin of neural scaling laws: from random graphs to natural language
Scaling laws have played a major role in the modern AI revolution, providing practitioners predictive power over how the model performance will improve with increasing data, compute, and number of model parameters. This has spurred an intense interest in the origin of neural scaling laws, with a common suggestion being that they arise from power law structure already present in the data. In this paper we study scaling laws for transformers trained to predict random walks (bigrams) on graphs with tunable complexity. We demonstrate that this simplified setting already gives rise to neural scaling laws even in the absence of power law structure in the data correlations. We further consider dialing down the complexity of natural language systematically, by training on sequences sampled from increasingly simplified generative language models, from 4,2,1-layer transformer language models down to language bigrams, revealing a monotonic evolution of the scaling exponents. Our results also include scaling laws obtained from training on random walks on random graphs drawn from Erdös-Renyi and scale-free Barabási-Albert ensembles. Finally, we revisit conventional scaling laws for language modeling, demonstrating that several essential results can be reproduced using 2 layer transformers with context length of 50, provide a critical analysis of various fits used in prior literature, demonstrate an alternative method for obtaining compute optimal curves as compared with current practice in published literature, and provide preliminary evidence that maximal update parameterization may be more parameter efficient than standard parameterization.
comment: 33 pages
Structure and Diversity Aware Context Bubble Construction for Enterprise Retrieval Augmented Systems
Large language model (LLM) contexts are typically constructed using retrieval-augmented generation (RAG), which involves ranking and selecting the top-k passages. The approach causes fragmentation in information graphs in document structures, over-retrieval, and duplication of content alongside insufficient query context, including 2nd and 3rd order facets. In this paper, a structure-informed and diversity-constrained context bubble construction framework is proposed that assembles coherent, citable bundles of spans under a strict token budget. The method preserves and exploits inherent document structure by organising multi-granular spans (e.g., sections and rows) and using task-conditioned structural priors to guide retrieval. Starting from high-relevance anchor spans, a context bubble is constructed through constrained selection that balances query relevance, marginal coverage, and redundancy penalties. It will explicitly constrain diversity and budget, producing compact and informative context sets, unlike top-k retrieval. Moreover, a full retrieval is emitted that traces the scoring and selection choices of the records, thus providing auditability and deterministic tuning. Experiments on enterprise documents demonstrate the efficiency of context bubble as it significantly reduces redundant context, is better able to cover secondary facets and has a better answer quality and citation faithfulness within a limited context window. Ablation studies demonstrate that both structural priors as well as diversity constraint selection are necessary; removing either component results in a decline in coverage and an increase in redundant or incomplete context.
Are Your Reasoning Models Reasoning or Guessing? A Mechanistic Analysis of Hierarchical Reasoning Models
Hierarchical reasoning model (HRM) achieves extraordinary performance on various reasoning tasks, significantly outperforming large language model-based reasoners. To understand the strengths and potential failure modes of HRM, we conduct a mechanistic study on its reasoning patterns and find three surprising facts: (a) Failure of extremely simple puzzles, e.g., HRM can fail on a puzzle with only one unknown cell. We attribute this failure to the violation of the fixed point property, a fundamental assumption of HRM. (b) "Grokking" dynamics in reasoning steps, i.e., the answer is not improved uniformly, but instead there is a critical reasoning step that suddenly makes the answer correct; (c) Existence of multiple fixed points. HRM "guesses" the first fixed point, which could be incorrect, and gets trapped there for a while or forever. All facts imply that HRM appears to be "guessing" instead of "reasoning". Leveraging this "guessing" picture, we propose three strategies to scale HRM's guesses: data augmentation (scaling the quality of guesses), input perturbation (scaling the number of guesses by leveraging inference randomness), and model bootstrapping (scaling the number of guesses by leveraging training randomness). On the practical side, by combining all methods, we develop Augmented HRM, boosting accuracy on Sudoku-Extreme from 54.5% to 96.9%. On the scientific side, our analysis provides new insights into how reasoning models "reason".
Multi-Property Synthesis
We study LTLf synthesis with multiple properties, where satisfying all properties may be impossible. Instead of enumerating subsets of properties, we compute in one fixed-point computation the relation between product-game states and the goal sets that are realizable from them, and we synthesize strategies achieving maximal realizable sets. We develop a fully symbolic algorithm that introduces Boolean goal variables and exploits monotonicity to represent exponentially many goal combinations compactly. Our approach substantially outperforms enumeration-based baselines, with speedups of up to two orders of magnitude.
Molmo2: Open Weights and Data for Vision-Language Models with Video Understanding and Grounding
Today's strongest video-language models (VLMs) remain proprietary. The strongest open-weight models either rely on synthetic data from proprietary VLMs, effectively distilling from them, or do not disclose their training data or recipe. As a result, the open-source community lacks the foundations needed to improve on the state-of-the-art video (and image) language models. Crucially, many downstream applications require more than just high-level video understanding; they require grounding -- either by pointing or by tracking in pixels. Even proprietary models lack this capability. We present Molmo2, a new family of VLMs that are state-of-the-art among open-source models and demonstrate exceptional new capabilities in point-driven grounding in single image, multi-image, and video tasks. Our key contribution is a collection of 7 new video datasets and 2 multi-image datasets, including a dataset of highly detailed video captions for pre-training, a free-form video Q&A dataset for fine-tuning, a new object tracking dataset with complex queries, and an innovative new video pointing dataset, all collected without the use of closed VLMs. We also present a training recipe for this data utilizing an efficient packing and message-tree encoding scheme, and show bi-directional attention on vision tokens and a novel token-weight strategy improves performance. Our best-in-class 8B model outperforms others in the class of open weight and data models on short videos, counting, and captioning, and is competitive on long-videos. On video-grounding Molmo2 significantly outperforms existing open-weight models like Qwen3-VL (35.5 vs 29.6 accuracy on video counting) and surpasses proprietary models like Gemini 3 Pro on some tasks (38.4 vs 20.0 F1 on video pointing and 56.2 vs 41.1 J&F on video tracking).
Procedural Fairness in Multi-Agent Bandits
In the context of multi-agent multi-armed bandits (MA-MAB), fairness is often reduced to outcomes: maximizing welfare, reducing inequality, or balancing utilities. However, evidence in psychology, economics, and Rawlsian theory suggests that fairness is also about process and who gets a say in the decisions being made. We introduce a new fairness objective, procedural fairness, which provides equal decision-making power for all agents, lies in the core, and provides for proportionality in outcomes. Empirical results confirm that fairness notions based on optimizing for outcomes sacrifice equal voice and representation, while the sacrifice in outcome-based fairness objectives (like equality and utilitarianism) is minimal under procedurally fair policies. We further prove that different fairness notions prioritize fundamentally different and incompatible values, highlighting that fairness requires explicit normative choices. This paper argues that procedural legitimacy deserves greater focus as a fairness objective, and provides a framework for putting procedural fairness into practice.
ProbFM: Probabilistic Time Series Foundation Model with Uncertainty Decomposition AAAI 2026
Time Series Foundation Models (TSFMs) have emerged as a promising approach for zero-shot financial forecasting, demonstrating strong transferability and data efficiency gains. However, their adoption in financial applications is hindered by fundamental limitations in uncertainty quantification: current approaches either rely on restrictive distributional assumptions, conflate different sources of uncertainty, or lack principled calibration mechanisms. While recent TSFMs employ sophisticated techniques such as mixture models, Student's t-distributions, or conformal prediction, they fail to address the core challenge of providing theoretically-grounded uncertainty decomposition. For the very first time, we present a novel transformer-based probabilistic framework, ProbFM (probabilistic foundation model), that leverages Deep Evidential Regression (DER) to provide principled uncertainty quantification with explicit epistemic-aleatoric decomposition. Unlike existing approaches that pre-specify distributional forms or require sampling-based inference, ProbFM learns optimal uncertainty representations through higher-order evidence learning while maintaining single-pass computational efficiency. To rigorously evaluate the core DER uncertainty quantification approach independent of architectural complexity, we conduct an extensive controlled comparison study using a consistent LSTM architecture across five probabilistic methods: DER, Gaussian NLL, Student's-t NLL, Quantile Loss, and Conformal Prediction. Evaluation on cryptocurrency return forecasting demonstrates that DER maintains competitive forecasting accuracy while providing explicit epistemic-aleatoric uncertainty decomposition. This work establishes both an extensible framework for principled uncertainty quantification in foundation models and empirical evidence for DER's effectiveness in financial applications.
comment: Accepted for oral presentation at the AI Meets Quantitative Finance Workshop at ICAIF 2025. An enhanced version was accepted for oral presentation at the AI for Time Series Analysis Workshop at AAAI 2026
Adversarial Evasion Attacks on Computer Vision using SHAP Values
The paper introduces a white-box attack on computer vision models using SHAP values. It demonstrates how adversarial evasion attacks can compromise the performance of deep learning models by reducing output confidence or inducing misclassifications. Such attacks are particularly insidious as they can deceive the perception of an algorithm while eluding human perception due to their imperceptibility to the human eye. The proposed attack leverages SHAP values to quantify the significance of individual inputs to the output at the inference stage. A comparison is drawn between the SHAP attack and the well-known Fast Gradient Sign Method. We find evidence that SHAP attacks are more robust in generating misclassifications particularly in gradient hiding scenarios.
comment: 10th bwHPC Symposium - September 25th & 26th, 2024
From Single to Multi-Agent Reasoning: Advancing GeneGPT for Genomics QA
Comprehending genomic information is essential for biomedical research, yet extracting data from complex distributed databases remains challenging. Large language models (LLMs) offer potential for genomic Question Answering (QA) but face limitations due to restricted access to domain-specific databases. GeneGPT is the current state-of-the-art system that enhances LLMs by utilizing specialized API calls, though it is constrained by rigid API dependencies and limited adaptability. We replicate GeneGPT and propose GenomAgent, a multi-agent framework that efficiently coordinates specialized agents for complex genomics queries. Evaluated on nine tasks from the GeneTuring benchmark, GenomAgent outperforms GeneGPT by 12% on average, and its flexible architecture extends beyond genomics to various scientific domains needing expert knowledge extraction.
comment: Accepted paper by the 48th European Conference on Information Retrieval (ECIR'26)
Generative AI collective behavior needs an interactionist paradigm
In this article, we argue that understanding the collective behavior of agents based on large language models (LLMs) is an essential area of inquiry, with important implications in terms of risks and benefits, impacting us as a society at many levels. We claim that the distinctive nature of LLMs--namely, their initialization with extensive pre-trained knowledge and implicit social priors, together with their capability of adaptation through in-context learning--motivates the need for an interactionist paradigm consisting of alternative theoretical foundations, methodologies, and analytical tools, in order to systematically examine how prior knowledge and embedded values interact with social context to shape emergent phenomena in multi-agent generative AI systems. We propose and discuss four directions that we consider crucial for the development and deployment of LLM-based collectives, focusing on theory, methods, and trans-disciplinary dialogue.
Process-Guided Concept Bottleneck Model
Concept Bottleneck Models (CBMs) improve the explainability of black-box Deep Learning (DL) by introducing intermediate semantic concepts. However, standard CBMs often overlook domain-specific relationships and causal mechanisms, and their dependence on complete concept labels limits applicability in scientific domains where supervision is sparse but processes are well defined. To address this, we propose the Process-Guided Concept Bottleneck Model (PG-CBM), an extension of CBMs which constrains learning to follow domain-defined causal mechanisms through biophysically meaningful intermediate concepts. Using above ground biomass density estimation from Earth Observation data as a case study, we show that PG-CBM reduces error and bias compared to multiple benchmarks, whilst leveraging multi-source heterogeneous training data and producing interpretable intermediate outputs. Beyond improved accuracy, PG-CBM enhances transparency, enables detection of spurious learning, and provides scientific insights, representing a step toward more trustworthy AI systems in scientific applications.
comment: 13 pages with 7 figures and 1 table, Supplementary Materials 10 pages with 3 figures
Learning Latency-Aware Orchestration for Parallel Multi-Agent Systems
Multi-agent systems (MAS) enable complex reasoning by coordinating multiple agents, but often incur high inference latency due to multi-step execution and repeated model invocations, severely limiting their scalability and usability in time-sensitive scenarios. Most existing approaches primarily optimize task performance and inference cost, and explicitly or implicitly assume sequential execution, making them less optimal for controlling latency under parallel execution. In this work, we investigate learning-based orchestration of multi-agent systems with explicit latency supervision under parallel execution. We propose Latency-Aware Multi-agent System (LAMaS), a latency-aware multi-agent orchestration framework that enables parallel execution and explicitly optimizes the critical execution path, allowing the controller to construct execution topology graphs with lower latency under parallel execution. Our experiments show that our approach reduces critical path length by 38-46% compared to the state-of-the-art baseline for multi-agent architecture search across multiple benchmarks, while maintaining or even improving task performance. These results highlight the importance of explicitly optimizing latency under parallel execution when designing efficient multi-agent systems. The code is available at https://github.com/xishi404/LAMaS
comment: Preprint
Defending Large Language Models Against Jailbreak Attacks via In-Decoding Safety-Awareness Probing
Large language models (LLMs) have achieved impressive performance across natural language tasks and are increasingly deployed in real-world applications. Despite extensive safety alignment efforts, recent studies show that such alignment is often shallow and remains vulnerable to jailbreak attacks. Existing defense mechanisms, including decoding-based constraints and post-hoc content detectors, struggle against sophisticated jailbreaks, often intervening robust detection or excessively degrading model utility. In this work, we examine the decoding process of LLMs and make a key observation: even when successfully jailbroken, models internally exhibit latent safety-related signals during generation. However, these signals are overridden by the model's drive for fluent continuation, preventing timely self-correction or refusal. Building on this observation, we propose a simple yet effective approach that explicitly surfaces and leverages these latent safety signals for early detection of unsafe content during decoding. Experiments across diverse jailbreak attacks demonstrate that our approach significantly enhances safety, while maintaining low over-refusal rates on benign inputs and preserving response quality. Our results suggest that activating intrinsic safety-awareness during decoding offers a promising and complementary direction for defending against jailbreak attacks. Code is available at: https://github.com/zyz13590/SafeProbing.
A Safety Report on GPT-5.2, Gemini 3 Pro, Qwen3-VL, Doubao 1.8, Grok 4.1 Fast, Nano Banana Pro, and Seedream 4.5
The rapid evolution of Large Language Models (LLMs) and Multimodal Large Language Models (MLLMs) has produced substantial gains in reasoning, perception, and generative capability across language and vision. However, whether these advances yield commensurate improvements in safety remains unclear, in part due to fragmented evaluation practices limited to single modalities or threat models. In this report, we present an integrated safety evaluation of 7 frontier models: GPT-5.2, Gemini 3 Pro, Qwen3-VL, Doubao 1.8, Grok 4.1 Fast, Nano Banana Pro, and Seedream 4.5. We evaluate each model across language, vision-language, and image generation settings using a unified protocol that integrates benchmark evaluation, adversarial evaluation, multilingual evaluation, and compliance evaluation. Aggregating our evaluations into safety leaderboards and model safety profiles across multiple evaluation modes reveals a sharply heterogeneous safety landscape. While GPT-5.2 demonstrates consistently strong and balanced safety performance across evaluations, other models exhibit pronounced trade-offs among benchmark safety, adversarial alignment, multilingual generalization, and regulatory compliance. Both language and vision-language modalities show significant vulnerability under adversarial evaluation, with all models degrading substantially despite strong results on standard benchmarks. Text-to-image models achieve relatively stronger alignment in regulated visual risk categories, yet remain brittle under adversarial or semantically ambiguous prompts. Overall, these results show that safety in frontier models is inherently multidimensional--shaped by modality, language, and evaluation scheme, underscoring the need for standardized safety evaluations to accurately assess real-world risk and guide responsible model development and deployment.
comment: 42 pages, 24 figures
Diagnosing Generalization Failures in Fine-Tuned LLMs: A Cross-Architectural Study on Phishing Detection
The practice of fine-tuning Large Language Models (LLMs) has achieved state-of-the-art performance on specialized tasks, yet diagnosing why these models become brittle and fail to generalize remains a critical open problem. To address this, we introduce and apply a multi-layered diagnostic framework to a cross-architectural study. We fine-tune Llama 3.1 8B, Gemma 2 9B, and Mistral models on a high-stakes phishing detection task and use SHAP analysis and mechanistic interpretability to uncover the root causes of their generalization failures. Our investigation reveals three critical findings: (1) Generalization is driven by a powerful synergy between architecture and data diversity. The Gemma 2 9B model achieves state-of-the-art performance (>91\% F1), but only when trained on a stylistically diverse ``generalist'' dataset. (2) Generalization is highly architecture-dependent. We diagnose a specific failure mode in Llama 3.1 8B, which performs well on a narrow domain but cannot integrate diverse data, leading to a significant performance drop. (3) Some architectures are inherently more generalizable. The Mistral model proves to be a consistent and resilient performer across multiple training paradigms. By pinpointing the flawed heuristics responsible for these failures, our work provides a concrete methodology for diagnosing and understanding generalization failures, underscoring that reliable AI requires deep validation of the interplay between architecture, data, and training strategy.
comment: 16 pages, 6 figures, 6 tables
Breaking Up with Normatively Monolithic Agency with GRACE: A Reason-Based Neuro-Symbolic Architecture for Safe and Ethical AI Alignment
As AI agents become increasingly autonomous, widely deployed in consequential contexts, and efficacious in bringing about real-world impacts, ensuring that their decisions are not only instrumentally effective but also normatively aligned has become critical. We introduce a neuro-symbolic reason-based containment architecture, Governor for Reason-Aligned ContainmEnt (GRACE), that decouples normative reasoning from instrumental decision-making and can contain AI agents of virtually any design. GRACE restructures decision-making into three modules: a Moral Module (MM) that determines permissible macro actions via deontic logic-based reasoning; a Decision-Making Module (DMM) that encapsulates the target agent while selecting instrumentally optimal primitive actions in accordance with derived macro actions; and a Guard that monitors and enforces moral compliance. The MM uses a reason-based formalism providing a semantic foundation for deontic logic, enabling interpretability, contestability, and justifiability. Its symbolic representation enriches the DMM's informational context and supports formal verification and statistical guarantees of alignment enforced by the Guard. We demonstrate GRACE on an example of a LLM therapy assistant, showing how it enables stakeholders to understand, contest, and refine agent behavior.
comment: 10 pages, 4 figures, accepted at 2nd Annual Conference of the International Association for Safe & Ethical AI (IASEAI'26)
SatMap: Revisiting Satellite Maps as Prior for Online HD Map Construction
Online high-definition (HD) map construction is an essential part of a safe and robust end-to-end autonomous driving (AD) pipeline. Onboard camera-based approaches suffer from limited depth perception and degraded accuracy due to occlusion. In this work, we propose SatMap, an online vectorized HD map estimation method that integrates satellite maps with multi-view camera observations and directly predicts a vectorized HD map for downstream prediction and planning modules. Our method leverages lane-level semantics and texture from satellite imagery captured from a Bird's Eye View (BEV) perspective as a global prior, effectively mitigating depth ambiguity and occlusion. In our experiments on the nuScenes dataset, SatMap achieves 34.8% mAP performance improvement over the camera-only baseline and 8.5% mAP improvement over the camera-LiDAR fusion baseline. Moreover, we evaluate our model in long-range and adverse weather conditions to demonstrate the advantages of using a satellite prior map. Source code will be available at https://iv.ee.hm.edu/satmap/.
comment: This work has been submitted to the IEEE ICPR for possible publication
Scalable Algorithms for Approximate DNF Model Counting
Model counting of Disjunctive Normal Form (DNF) formulas is a critical problem in applications such as probabilistic inference and network reliability. For example, it is often used for query evaluation in probabilistic databases. Due to the computational intractability of exact DNF counting, there has been a line of research into a variety of approximation algorithms. These include Monte Carlo approaches such as the classical algorithms of Karp, Luby, and Madras (1989), as well as methods based on hashing (Soos et al. 2023), and heuristic approximations based on Neural Nets (Abboud, Ceylan, and Lukasiewicz 2020). We develop a new Monte Carlo approach with an adaptive stopping rule and short-circuit formula evaluation. We prove it achieves Probably Approximately Correct (PAC) learning bounds and is asymptotically more efficient than the previous methods. We also show experimentally that it out-performs prior algorithms by orders of magnitude, and can scale to much larger problems with millions of variables.
Projected Microbatch Accumulation yields reference-free proximal policy updates for reinforcement learning
This note introduces Projected Microbatch Accumulation (PROMA), a proximal policy update method for large language model fine-tuning. PROMA accumulates policy gradients across microbatches by projecting out sequence-wise gradient components before microbatch aggregation. The projection is applied layer-wise during the backward pass, enabling efficient implementation without additional forward or backward passes. Empirically, PROMA enforces tighter control of local KL divergence than GRPO, resulting in more stable policy learning. Unlike PPO and GRPO, PROMA achieves proximal updates without inducing entropy collapse and does not rely on a reference policy or likelihood-ratio clipping.
Model See, Model Do? Exposure-Aware Evaluation of Bug-vs-Fix Preference in Code LLMs
Large language models are increasingly used for code generation and debugging, but their outputs can still contain bugs, that originate from training data. Distinguishing whether an LLM prefers correct code, or a familiar incorrect version might be influenced by what it's been exposed to during training. We introduce an exposure-aware evaluation framework that quantifies how prior exposure to buggy versus fixed code influences a model's preference. Using the ManySStuBs4J benchmark, we apply Data Portraits for membership testing on the Stack-V2 corpus to estimate whether each buggy and fixed variant was seen during training. We then stratify examples by exposure and compare model preference using code completion as well as multiple likelihood-based scoring metrics We find that most examples (67%) have neither variant in the training data, and when only one is present, fixes are more frequently present than bugs. In model generations, models reproduce buggy lines far more often than fixes, with bug-exposed examples amplifying this tendency and fix-exposed examples showing only marginal improvement. In likelihood scoring, minimum and maximum token-probability metrics consistently prefer the fixed code across all conditions, indicating a stable bias toward correct fixes. In contrast, metrics like the Gini coefficient reverse preference when only the buggy variant was seen. Our results indicate that exposure can skew bug-fix evaluations and highlight the risk that LLMs may propagate memorised errors in practice.
comment: MSR 2026 Technical Track
Panning for Gold: Expanding Domain-Specific Knowledge Graphs with General Knowledge
Domain-specific knowledge graphs (DKGs) often lack coverage compared to general knowledge graphs (GKGs). To address this, we introduce Domain-specific Knowledge Graph Fusion (DKGF), a novel task that enriches DKGs by integrating relevant facts from GKGs. DKGF faces two key challenges: high ambiguity in domain relevance and misalignment in knowledge granularity across graphs. We propose ExeFuse, a simple yet effective Fact-as-Program paradigm. It treats each GKG fact as a latent semantic program, maps abstract relations to granularity-aware operators, and verifies domain relevance via program executability on the target DKG. This unified probabilistic framework jointly resolves relevance and granularity issues. We construct two benchmarks, DKGF(W-I) and DKGF(Y-I), with 21 evaluation configurations. Extensive experiments validate the task's importance and our model's effectiveness, providing the first standardized testbed for DKGF.
comment: 13 pages, 4 figures
Urban Socio-Semantic Segmentation with Vision-Language Reasoning
As hubs of human activity, urban surfaces consist of a wealth of semantic entities. Segmenting these various entities from satellite imagery is crucial for a range of downstream applications. Current advanced segmentation models can reliably segment entities defined by physical attributes (e.g., buildings, water bodies) but still struggle with socially defined categories (e.g., schools, parks). In this work, we achieve socio-semantic segmentation by vision-language model reasoning. To facilitate this, we introduce the Urban Socio-Semantic Segmentation dataset named SocioSeg, a new resource comprising satellite imagery, digital maps, and pixel-level labels of social semantic entities organized in a hierarchical structure. Additionally, we propose a novel vision-language reasoning framework called SocioReasoner that simulates the human process of identifying and annotating social semantic entities via cross-modal recognition and multi-stage reasoning. We employ reinforcement learning to optimize this non-differentiable process and elicit the reasoning capabilities of the vision-language model. Experiments demonstrate our approach's gains over state-of-the-art models and strong zero-shot generalization. Our dataset and code are available in https://github.com/AMAP-ML/SocioReasoner.
ChartComplete: A Taxonomy-based Inclusive Chart Dataset
With advancements in deep learning (DL) and computer vision techniques, the field of chart understanding is evolving rapidly. In particular, multimodal large language models (MLLMs) are proving to be efficient and accurate in understanding charts. To accurately measure the performance of MLLMs, the research community has developed multiple datasets to serve as benchmarks. By examining these datasets, we found that they are all limited to a small set of chart types. To bridge this gap, we propose the ChartComplete dataset. The dataset is based on a chart taxonomy borrowed from the visualization community, and it covers thirty different chart types. The dataset is a collection of classified chart images and does not include a learning signal. We present the ChartComplete dataset as is to the community to build upon it.
comment: 7 pages, 4 figures, 3 tables, 1 algorithm. Dataset and source code available at https://github.com/AI-DSCHubAUB/ChartComplete-Dataset
Contextual StereoSet: Stress-Testing Bias Alignment Robustness in Large Language Models
A model that avoids stereotypes in a lab benchmark may not avoid them in deployment. We show that measured bias shifts dramatically when prompts mention different places, times, or audiences -- no adversarial prompting required. We introduce Contextual StereoSet, a benchmark that holds stereotype content fixed while systematically varying contextual framing. Testing 13 models across two protocols, we find striking patterns: anchoring to 1990 (vs. 2030) raises stereotype selection in all models tested on this contrast (p<0.05); gossip framing raises it in 5 of 6 full-grid models; out-group observer framing shifts it by up to 13 percentage points. These effects replicate in hiring, lending, and help-seeking vignettes. We propose Context Sensitivity Fingerprints (CSF): a compact profile of per-dimension dispersion and paired contrasts with bootstrap CIs and FDR correction. Two evaluation tracks support different use cases -- a 360-context diagnostic grid for deep analysis and a budgeted protocol covering 4,229 items for production screening. The implication is methodological: bias scores from fixed-condition tests may not generalize.This is not a claim about ground-truth bias rates; it is a stress test of evaluation robustness. CSF forces evaluators to ask, "Under what conditions does bias appear?" rather than "Is this model biased?" We release our benchmark, code, and results.
NSR-Boost: A Neuro-Symbolic Residual Boosting Framework for Industrial Legacy Models
Although the Gradient Boosted Decision Trees (GBDTs) dominate industrial tabular applications, upgrading legacy models in high-concurrency production environments still faces prohibitive retraining costs and systemic risks. To address this problem, we present NSR-Boost, a neuro-symbolic residual boosting framework designed specifically for industrial scenarios. Its core advantage lies in being "non-intrusive". It treats the legacy model as a frozen model and performs targeted repairs on "hard regions" where predictions fail. The framework comprises three key stages: first, finding hard regions through residuals, then generating interpretable experts by generating symbolic code structures using Large Language Model (LLM) and fine-tuning parameters using Bayesian optimization, and finally dynamically integrating experts with legacy model output through a lightweight aggregator. We report on the successful deployment of NSR-Boost within the core financial risk control system at Qfin Holdings. This framework not only significantly outperforms state-of-the-art (SOTA) baselines across six public datasets and one private dataset, more importantly, shows excellent performance gains on real-world online data. In conclusion, it effectively captures long-tail risks missed by traditional models and offers a safe, low-cost evolutionary paradigm for industry.
AgentGuardian: Learning Access Control Policies to Govern AI Agent Behavior
Artificial intelligence (AI) agents are increasingly used in a variety of domains to automate tasks, interact with users, and make decisions based on data inputs. Ensuring that AI agents perform only authorized actions and handle inputs appropriately is essential for maintaining system integrity and preventing misuse. In this study, we introduce the AgentGuardian, a novel security framework that governs and protects AI agent operations by enforcing context-aware access-control policies. During a controlled staging phase, the framework monitors execution traces to learn legitimate agent behaviors and input patterns. From this phase, it derives adaptive policies that regulate tool calls made by the agent, guided by both real-time input context and the control flow dependencies of multi-step agent actions. Evaluation across two real-world AI agent applications demonstrates that AgentGuardian effectively detects malicious or misleading inputs while preserving normal agent functionality. Moreover, its control-flow-based governance mechanism mitigates hallucination-driven errors and other orchestration-level malfunctions.
comment: 14 pages, 5 figures
Development of Ontological Knowledge Bases by Leveraging Large Language Models
Ontological Knowledge Bases (OKBs) play a vital role in structuring domain-specific knowledge and serve as a foundation for effective knowledge management systems. However, their traditional manual development poses significant challenges related to scalability, consistency, and adaptability. Recent advancements in Generative AI, particularly Large Language Models (LLMs), offer promising solutions for automating and enhancing OKB development. This paper introduces a structured, iterative methodology leveraging LLMs to optimize knowledge acquisition, automate ontology artifact generation, and enable continuous refinement cycles. We demonstrate this approach through a detailed case study focused on developing a user context profile ontology within the vehicle sales domain. Key contributions include significantly accelerated ontology construction processes, improved ontological consistency, effective bias mitigation, and enhanced transparency in the ontology engineering process. Our findings highlight the transformative potential of integrating LLMs into ontology development, notably improving scalability, integration capabilities, and overall efficiency in knowledge management systems.
Are Language Models Models?
Futrell and Mahowald claim LMs "serve as model systems", but an assessment at each of Marr's three levels suggests the claim is clearly not true at the implementation level, poorly motivated at the algorithmic-representational level, and problematic at the computational theory level. LMs are good candidates as tools; calling them cognitive models overstates the case and unnecessarily feeds LLM hype.
comment: 5 pages. This is an invited commentary under review at Behavioral and Brain Sciences
LLMdoctor: Token-Level Flow-Guided Preference Optimization for Efficient Test-Time Alignment of Large Language Models AAAI26
Aligning Large Language Models (LLMs) with human preferences is critical, yet traditional fine-tuning methods are computationally expensive and inflexible. While test-time alignment offers a promising alternative, existing approaches often rely on distorted trajectory-level signals or inefficient sampling, fundamentally capping performance and failing to preserve the generative diversity of the base model. This paper introduces LLMdoctor, a novel framework for efficient test-time alignment that operates via a patient-doctor paradigm. It integrates token-level reward acquisition with token-level flow-guided preference optimization (TFPO) to steer a large, frozen patient LLM with a smaller, specialized doctor model. Unlike conventional methods that rely on trajectory-level rewards, LLMdoctor first extracts fine-grained, token-level preference signals from the patient model's behavioral variations. These signals then guide the training of the doctor model via TFPO, which establishes flow consistency across all subtrajectories, enabling precise token-by-token alignment while inherently preserving generation diversity. Extensive experiments demonstrate that LLMdoctor significantly outperforms existing test-time alignment methods and even surpasses the performance of full fine-tuning approaches like DPO.
comment: Accepted by AAAI26
LADFA: A Framework of Using Large Language Models and Retrieval-Augmented Generation for Personal Data Flow Analysis in Privacy Policies
Privacy policies help inform people about organisations' personal data processing practices, covering different aspects such as data collection, data storage, and sharing of personal data with third parties. Privacy policies are often difficult for people to fully comprehend due to the lengthy and complex legal language used and inconsistent practices across different sectors and organisations. To help conduct automated and large-scale analyses of privacy policies, many researchers have studied applications of machine learning and natural language processing techniques, including large language models (LLMs). While a limited number of prior studies utilised LLMs for extracting personal data flows from privacy policies, our approach builds on this line of work by combining LLMs with retrieval-augmented generation (RAG) and a customised knowledge base derived from existing studies. This paper presents the development of LADFA, an end-to-end computational framework, which can process unstructured text in a given privacy policy, extract personal data flows and construct a personal data flow graph, and conduct analysis of the data flow graph to facilitate insight discovery. The framework consists of a pre-processor, an LLM-based processor, and a data flow post-processor. We demonstrated and validated the effectiveness and accuracy of the proposed approach by conducting a case study that involved examining ten selected privacy policies from the automotive industry. Moreover, it is worth noting that LADFA is designed to be flexible and customisable, making it suitable for a range of text-based analysis tasks beyond privacy policy analysis.
ErrEval: Error-Aware Evaluation for Question Generation through Explicit Diagnostics
Automatic Question Generation (QG) often produces outputs with critical defects, such as factual hallucinations and answer mismatches. However, existing evaluation methods, including LLM-based evaluators, mainly adopt a black-box and holistic paradigm without explicit error modeling, leading to the neglect of such defects and overestimation of question quality. To address this issue, we propose ErrEval, a flexible and Error-aware Evaluation framework that enhances QG evaluation through explicit error diagnostics. Specifically, ErrEval reformulates evaluation as a two-stage process of error diagnosis followed by informed scoring. At the first stage, a lightweight plug-and-play Error Identifier detects and categorizes common errors across structural, linguistic, and content-related aspects. These diagnostic signals are then incorporated as explicit evidence to guide LLM evaluators toward more fine-grained and grounded judgments. Extensive experiments on three benchmarks demonstrate the effectiveness of ErrEval, showing that incorporating explicit diagnostics improves alignment with human judgments. Further analyses confirm that ErrEval effectively mitigates the overestimation of low-quality questions.
Toward Ultra-Long-Horizon Agentic Science: Cognitive Accumulation for Machine Learning Engineering
The advancement of artificial intelligence toward agentic science is currently bottlenecked by the challenge of ultra-long-horizon autonomy, the ability to sustain strategic coherence and iterative correction over experimental cycles spanning days or weeks. While Large Language Models (LLMs) have demonstrated prowess in short-horizon reasoning, they are easily overwhelmed by execution details in the high-dimensional, delayed-feedback environments of real-world research, failing to consolidate sparse feedback into coherent long-term guidance. Here, we present ML-Master 2.0, an autonomous agent that masters ultra-long-horizon machine learning engineering (MLE) which is a representative microcosm of scientific discovery. By reframing context management as a process of cognitive accumulation, our approach introduces Hierarchical Cognitive Caching (HCC), a multi-tiered architecture inspired by computer systems that enables the structural differentiation of experience over time. By dynamically distilling transient execution traces into stable knowledge and cross-task wisdom, HCC allows agents to decouple immediate execution from long-term experimental strategy, effectively overcoming the scaling limits of static context windows. In evaluations on OpenAI's MLE-Bench under 24-hour budgets, ML-Master 2.0 achieves a state-of-the-art medal rate of 56.44%. Our findings demonstrate that ultra-long-horizon autonomy provides a scalable blueprint for AI capable of autonomous exploration beyond human-precedent complexities.
comment: 26 pages. 5 figures
LatentRefusal: Latent-Signal Refusal for Unanswerable Text-to-SQL Queries
In LLM-based text-to-SQL systems, unanswerable and underspecified user queries may generate not only incorrect text but also executable programs that yield misleading results or violate safety constraints, posing a major barrier to safe deployment. Existing refusal strategies for such queries either rely on output-level instruction following, which is brittle due to model hallucinations, or estimate output uncertainty, which adds complexity and overhead. To address this challenge, we formalize safe refusal in text-to-SQL systems as an answerability-gating problem and propose LatentRefusal, a latent-signal refusal mechanism that predicts query answerability from intermediate hidden activations of a large language model. We introduce the Tri-Residual Gated Encoder, a lightweight probing architecture, to suppress schema noise and amplify sparse, localized cues of question-schema mismatch that indicate unanswerability. Extensive empirical evaluations across diverse ambiguous and unanswerable settings, together with ablation studies and interpretability analyses, demonstrate the effectiveness of the proposed approach and show that LatentRefusal provides an attachable and efficient safety layer for text-to-SQL systems. Across four benchmarks, LatentRefusal improves average F1 to 88.5 percent on both backbones while adding approximately 2 milliseconds of probe overhead.
Handling Missing Modalities in Multimodal Survival Prediction for Non-Small Cell Lung Cancer
Accurate survival prediction in Non-Small Cell Lung Cancer (NSCLC) requires the integration of heterogeneous clinical, radiological, and histopathological information. While Multimodal Deep Learning (MDL) offers a promises for precision prognosis and survival prediction, its clinical applicability is severely limited by small cohort sizes and the presence of missing modalities, often forcing complete-case filtering or aggressive imputation. In this work, we present a missing-aware multimodal survival framework that integrates Computed Tomography (CT), Whole-Slide Histopathology (WSI) Images, and structured clinical variables for overall survival modeling in unresectable stage II-III NSCLC. By leveraging Foundation Models (FM) for modality-specific feature extraction and a missing-aware encoding strategy, the proposed approach enables intermediate multimodal fusion under naturally incomplete modality profiles. The proposed architecture is resilient to missing modalities by design, allowing the model to utilize all available data without being forced to drop patients during training or inference. Experimental results demonstrate that intermediate fusion consistently outperforms unimodal baselines as well as early and late fusion strategies, with the strongest performance achieved by the fusion of WSI and clinical modalities (73.30 C-index). Further analyses of modality importance reveal an adaptive behavior in which less informative modalities, i.e., CT modality, are automatically down-weighted and contribute less to the final survival prediction.
Global Context Compression with Interleaved Vision-Text Transformation
Recent achievements of vision-language models in end-to-end OCR point to a new avenue for low-loss compression of textual information. This motivates earlier works that render the Transformer's input into images for prefilling, which effectively reduces the number of tokens through visual encoding, thereby alleviating the quadratically increased Attention computations. However, this partial compression fails to save computational or memory costs at token-by-token inference. In this paper, we investigate global context compression, which saves tokens at both prefilling and inference stages. Consequently, we propose VIST2, a novel Transformer that interleaves input text chunks alongside their visual encoding, while depending exclusively on visual tokens in the pre-context to predict the next text token distribution. Around this idea, we render text chunks into sketch images and train VIST2 in multiple stages, starting from curriculum-scheduled pretraining for optical language modeling, followed by modal-interleaved instruction tuning. We conduct extensive experiments using VIST2 families scaled from 0.6B to 8B to explore the training recipe and hyperparameters. With a 4$\times$ compression ratio, the resulting models demonstrate significant superiority over baselines on long writing tasks, achieving, on average, a 3$\times$ speedup in first-token generation, 77% reduction in memory usage, and 74% reduction in FLOPS. Our codes and datasets will be public to support further studies.
Towards Efficient Low-rate Image Compression with Frequency-aware Diffusion Prior Refinement
Recent advancements in diffusion-based generative priors have enabled visually plausible image compression at extremely low bit rates. However, existing approaches suffer from slow sampling processes and suboptimal bit allocation due to fragmented training paradigms. In this work, we propose Accelerate \textbf{Diff}usion-based Image Compression via \textbf{C}onsistency Prior \textbf{R}efinement (DiffCR), a novel compression framework for efficient and high-fidelity image reconstruction. At the heart of DiffCR is a Frequency-aware Skip Estimation (FaSE) module that refines the $ε$-prediction prior from a pre-trained latent diffusion model and aligns it with compressed latents at different timesteps via Frequency Decoupling Attention (FDA). Furthermore, a lightweight consistency estimator enables fast \textbf{two-step decoding} by preserving the semantic trajectory of diffusion sampling. Without updating the backbone diffusion model, DiffCR achieves substantial bitrate savings (27.2\% BD-rate (LPIPS) and 65.1\% BD-rate (PSNR)) and over $10\times$ speed-up compared to SOTA diffusion-based compression baselines.
SuS: Strategy-aware Surprise for Intrinsic Exploration
We propose Strategy-aware Surprise (SuS), a novel intrinsic motivation framework that uses pre-post prediction mismatch as a novelty signal for exploration in reinforcement learning. Unlike traditional curiosity-driven methods that rely solely on state prediction error, SuS introduces two complementary components: Strategy Stability (SS) and Strategy Surprise (SuS). SS measures consistency in behavioral strategy across temporal steps, while SuS captures unexpected outcomes relative to the agent's current strategy representation. Our combined reward formulation leverages both signals through learned weighting coefficients. We evaluate SuS on mathematical reasoning tasks using large language models, demonstrating significant improvements in both accuracy and solution diversity. Ablation studies confirm that removing either component results in at least 10% performance degradation, validating the synergistic nature of our approach. SuS achieves 17.4% improvement in Pass@1 and 26.4% improvement in Pass@5 compared to baseline methods, while maintaining higher strategy diversity throughout training.
comment: 8 pages, 7 figures, 3 tables. Code available at https://github.com/mariklolik/sus
Training-Trajectory-Aware Token Selection
Efficient distillation is a key pathway for converting expensive reasoning capability into deployable efficiency, yet in the frontier regime where the student already has strong reasoning ability, naive continual distillation often yields limited gains or even degradation. We observe a characteristic training phenomenon: even as loss decreases monotonically, all performance metrics can drop sharply at almost the same bottleneck, before gradually recovering. We further uncover a token-level mechanism: confidence bifurcates into steadily increasing Imitation-Anchor Tokens that quickly anchor optimization and other yet-to-learn tokens whose confidence is suppressed until after the bottleneck. And the characteristic that these two types of tokens cannot coexist is the root cause of the failure in continual distillation. To this end, we propose Training-Trajectory-Aware Token Selection (T3S) to reconstruct the training objective at the token level, clearing the optimization path for yet-to-learn tokens. T3 yields consistent gains in both AR and dLLM settings: with only hundreds of examples, Qwen3-8B surpasses DeepSeek-R1 on competitive reasoning benchmarks, Qwen3-32B approaches Qwen3-235B, and T3-trained LLaDA-2.0-Mini exceeds its AR baseline, achieving state-of-the-art performance among all of 16B-scale no-think models.
OctoBench: Benchmarking Scaffold-Aware Instruction Following in Repository-Grounded Agentic Coding
Modern coding scaffolds turn LLMs into capable software agents, but their ability to follow scaffold-specified instructions remains under-examined, especially when constraints are heterogeneous and persist across interactions. To fill this gap, we introduce OctoBench, which benchmarks scaffold-aware instruction following in repository-grounded agentic coding. OctoBench includes 34 environments and 217 tasks instantiated under three scaffold types, and is paired with 7,098 objective checklist items. To disentangle solving the task from following the rules, we provide an automated observation-and-scoring toolkit that captures full trajectories and performs fine-grained checks. Experiments on eight representative models reveal a systematic gap between task-solving and scaffold-aware compliance, underscoring the need for training and evaluation that explicitly targets heterogeneous instruction following. We release the benchmark to support reproducible benchmarking and to accelerate the development of more scaffold-aware coding agents.
C-GRASP: Clinically-Grounded Reasoning for Affective Signal Processing
Heart rate variability (HRV) is a pivotal noninvasive marker for autonomic monitoring; however, applying Large Language Models (LLMs) to HRV interpretation is hindered by physiological hallucinations. These include respiratory sinus arrhythmia (RSA) contamination, short-data instability in nonlinear metrics, and the neglect of individualized baselines in favor of population norms. We propose C-GRASP (Clinically-Grounded Reasoning for Affective Signal Processing), a guardrailed RAG-enhanced pipeline that decomposes HRV interpretation into eight traceable reasoning steps. Central to C-GRASP is a Z-score Priority Hierarchy that enforces the weighting of individualized baseline shifts over normative statistics. The system effectively mitigates spectral hallucinations through automated RSA-aware guardrails, preventing contamination of frequency-domain indices. Evaluated on 414 trials from the DREAMER dataset, C-GRASP integrated with high-scale reasoning models (e.g., MedGemma3-thinking) achieved superior performance in 4-class emotion classification (37.3% accuracy) and a Clinical Reasoning Consistency (CRC) score of 69.6%. Ablation studies confirm that the individualized Delta Z-score module serves as the critical logical anchor, preventing the "population bias" common in native LLMs. Ultimately, C-GRASP transitions affective computing from black-box classification to transparent, evidence-based clinical decision support, paving the way for safer AI integration in biomedical engineering.
Agent Skills in the Wild: An Empirical Study of Security Vulnerabilities at Scale
The rise of AI agent frameworks has introduced agent skills, modular packages containing instructions and executable code that dynamically extend agent capabilities. While this architecture enables powerful customization, skills execute with implicit trust and minimal vetting, creating a significant yet uncharacterized attack surface. We conduct the first large-scale empirical security analysis of this emerging ecosystem, collecting 42,447 skills from two major marketplaces and systematically analyzing 31,132 using SkillScan, a multi-stage detection framework integrating static analysis with LLM-based semantic classification. Our findings reveal pervasive security risks: 26.1% of skills contain at least one vulnerability, spanning 14 distinct patterns across four categories: prompt injection, data exfiltration, privilege escalation, and supply chain risks. Data exfiltration (13.3%) and privilege escalation (11.8%) are most prevalent, while 5.2% of skills exhibit high-severity patterns strongly suggesting malicious intent. We find that skills bundling executable scripts are 2.12x more likely to contain vulnerabilities than instruction-only skills (OR=2.12, p<0.001). Our contributions include: (1) a grounded vulnerability taxonomy derived from 8,126 vulnerable skills, (2) a validated detection methodology achieving 86.7% precision and 82.5% recall, and (3) an open dataset and detection toolkit to support future research. These results demonstrate an urgent need for capability-based permission systems and mandatory security vetting before this attack vector is further exploited.
Evidence-Augmented Policy Optimization with Reward Co-Evolution for Long-Context Reasoning
While Reinforcement Learning (RL) has advanced LLM reasoning, applying it to long-context scenarios is hindered by sparsity of outcome rewards. This limitation fails to penalize ungrounded "lucky guesses," leaving the critical process of needle-in-a-haystack evidence retrieval largely unsupervised. To address this, we propose EAPO (Evidence-Augmented Policy Optimization). We first establish the Evidence-Augmented Reasoning paradigm, validating via Tree-Structured Evidence Sampling that precise evidence extraction is the decisive bottleneck for long-context reasoning. Guided by this insight, EAPO introduces a specialized RL algorithm where a reward model computes a Group-Relative Evidence Reward, providing dense process supervision to explicitly improve evidence quality. To sustain accurate supervision throughout training, we further incorporate an Adaptive Reward-Policy Co-Evolution mechanism. This mechanism iteratively refines the reward model using outcome-consistent rollouts, sharpening its discriminative capability to ensure precise process guidance. Comprehensive evaluations across eight benchmarks demonstrate that EAPO significantly enhances long-context reasoning performance compared to SOTA baselines.
DanQing: An Up-to-Date Large-Scale Chinese Vision-Language Pre-training Dataset
Vision-Language Pre-training (VLP) models demonstrate strong performance across various downstream tasks by learning from large-scale image-text pairs through contrastive pretraining. The release of extensive English image-text datasets (e.g., COYO-700M and LAION-400M) has enabled widespread adoption of models such as CLIP and SigLIP in tasks including cross-modal retrieval and image captioning. However, the advancement of Chinese vision-language pretraining has substantially lagged behind, due to the scarcity of high-quality Chinese image-text data. To address this gap, we develop a comprehensive pipeline for constructing a high-quality Chinese cross-modal dataset. As a result, we propose DanQing, which contains 100 million image-text pairs collected from Common Crawl. Different from existing datasets, DanQing is curated through a more rigorous selection process, yielding superior data quality. Moreover, DanQing is primarily built from 2024-2025 web data, enabling models to better capture evolving semantic trends and thus offering greater practical utility. We compare DanQing with existing datasets by continual pre-training of the SigLIP2 model. Experimental results show that DanQing consistently achieves superior performance across a range of Chinese downstream tasks, including zero-shot classification, cross-modal retrieval, and LMM-based evaluations. To facilitate further research in Chinese vision-language pre-training, we will open-source the DanQing dataset under the Creative Common CC-BY 4.0 license.
comment: 19 pages, 11 figures, 7 tables
SPIKE: Sparse Koopman Regularization for Physics-Informed Neural Networks
Physics-Informed Neural Networks (PINNs) provide a mesh-free approach for solving differential equations by embedding physical constraints into neural network training. However, PINNs tend to overfit within the training domain, leading to poor generalization when extrapolating beyond trained spatiotemporal regions. This work presents SPIKE (Sparse Physics-Informed Koopman-Enhanced), a framework that regularizes PINNs with continuous-time Koopman operators to learn parsimonious dynamics representations. By enforcing linear dynamics $dz/dt = Az$ in a learned observable space, both PIKE (without explicit sparsity) and SPIKE (with L1 regularization on $A$) learn sparse generator matrices, embodying the parsimony principle that complex dynamics admit low-dimensional structure. Experiments across parabolic, hyperbolic, dispersive, and stiff PDEs, including fluid dynamics (Navier-Stokes) and chaotic ODEs (Lorenz), demonstrate consistent improvements in temporal extrapolation, spatial generalization, and long-term prediction accuracy. The continuous-time formulation with matrix exponential integration provides unconditional stability for stiff systems while avoiding diagonal dominance issues inherent in discrete-time Koopman operators.
Queueing-Aware Optimization of Reasoning Tokens for Accuracy-Latency Trade-offs in LLM Servers
We consider a single large language model (LLM) server that serves a heterogeneous stream of queries belonging to $N$ distinct task types. Queries arrive according to a Poisson process, and each type occurs with a known prior probability. For each task type, the server allocates a fixed number of internal thinking tokens, which determines the computational effort devoted to that query. The token allocation induces an accuracy-latency trade-off: the service time follows an approximately affine function of the allocated tokens, while the probability of a correct response exhibits diminishing returns. Under a first-in, first-out (FIFO) service discipline, the system operates as an $M/G/1$ queue, and the mean system time depends on the first and second moments of the resulting service-time distribution. We formulate a constrained optimization problem that maximizes a weighted average accuracy objective penalized by the mean system time, subject to architectural token-budget constraints and queue-stability conditions. The objective function is shown to be strictly concave over the stability region, which ensures existence and uniqueness of the optimal token allocation. The first-order optimality conditions yield a coupled projected fixed-point characterization of the optimum, together with an iterative solution and an explicit sufficient condition for contraction. Moreover, a projected gradient method with a computable global step-size bound is developed to guarantee convergence beyond the contractive regime. Finally, integer-valued token allocations are attained via rounding of the continuous solution, and the resulting performance loss is evaluated in simulation results.
MoST: Mixing Speech and Text with Modality-Aware Mixture of Experts
We present MoST (Mixture of Speech and Text), a novel multimodal large language model that seamlessly integrates speech and text processing through our proposed Modality-Aware Mixture of Experts (MAMoE) architecture. While current multimodal models typically process diverse modality representations with identical parameters, disregarding their inherent representational differences, we introduce specialized routing pathways that direct tokens to modality-appropriate experts based on input type. MAMoE simultaneously enhances modality-specific learning and cross-modal understanding through two complementary components: modality-specific expert groups that capture domain-specific patterns and shared experts that facilitate information transfer between modalities. Building on this architecture, we develop an efficient transformation pipeline that adapts the pretrained MoE language model through strategic post-training on ASR and TTS datasets, followed by fine-tuning with a carefully curated speech-text instruction dataset. A key feature of this pipeline is that it relies exclusively on fully accessible, open-source datasets to achieve strong performance and data efficiency. Comprehensive evaluations across ASR, TTS, audio language modeling, and spoken question answering benchmarks show that MoST consistently outperforms existing models of comparable parameter counts. Our ablation studies confirm that the modality-specific routing mechanism and shared experts design significantly contribute to performance gains across all tested domains. To our knowledge, MoST represents the first fully open-source speech-text LLM built on a Mixture of Experts architecture. \footnote{We release MoST model, training code, inference code, and training data at https://github.com/NUS-HPC-AI-Lab/MoST
Untangling Input Language from Reasoning Language: A Diagnostic Framework for Cross-Lingual Moral Alignment in LLMs
When LLMs judge moral dilemmas, do they reach different conclusions in different languages, and if so, why? Two factors could drive such differences: the language of the dilemma itself, or the language in which the model reasons. Standard evaluation conflates these by testing only matched conditions (e.g., English dilemma with English reasoning). We introduce a methodology that separately manipulates each factor, covering also mismatched conditions (e.g., English dilemma with Chinese reasoning), enabling decomposition of their contributions. To study \emph{what} changes, we propose an approach to interpret the moral judgments in terms of Moral Foundations Theory. As a side result, we identify evidence for splitting the Authority dimension into a family-related and an institutional dimension. Applying this methodology to English-Chinese moral judgment with 13 LLMs, we demonstrate its diagnostic power: (1) the framework isolates reasoning-language effects as contributing twice the variance of input-language effects; (2) it detects context-dependency in nearly half of models that standard evaluation misses; and (3) a diagnostic taxonomy translates these patterns into deployment guidance. We release our code and datasets at https://anonymous.4open.science/r/CrossCulturalMoralJudgement.
NoReGeo: Non-Reasoning Geometry Benchmark
We present NoReGeo, a novel benchmark designed to evaluate the intrinsic geometric understanding of large language models (LLMs) without relying on reasoning or algebraic computation. Unlike existing benchmarks that primarily assess models' proficiency in reasoning-based geometry-where solutions are derived using algebraic methods-NoReGeo focuses on evaluating whether LLMs can inherently encode spatial relationships and recognize geometric properties directly. Our benchmark comprises 2,500 trivial geometric problems spanning 25 categories, each carefully crafted to be solvable purely through native geometric understanding, assuming known object locations. We assess a range of state-of-the-art models on NoReGeo, including frontier models like GPT-4, observing that even the most advanced systems achieve an overall maximum of 65% accuracy in binary classification tasks. Further, our ablation experiments demonstrate that such geometric understanding does not emerge through fine-tuning alone, indicating that effective training for geometric comprehension requires a specialized approach from the outset. Our findings highlight a significant gap in current LLMs' ability to natively grasp geometric concepts, providing a foundation for future research toward models with true geometric cognition.
X-SAM: Boosting Sharpness-Aware Minimization with Dominant-Eigenvector Gradient Correction
Sharpness-Aware Minimization (SAM) aims to improve generalization by minimizing a worst-case perturbed loss over a small neighborhood of model parameters. However, during training, its optimization behavior does not always align with theoretical expectations, since both sharp and flat regions may yield a small perturbed loss. In such cases, the gradient may still point toward sharp regions, failing to achieve the intended effect of SAM. To address this issue, we investigate SAM from a spectral and geometric perspective: specifically, we utilize the angle between the gradient and the leading eigenvector of the Hessian as a measure of sharpness. Our analysis illustrates that when this angle is less than or equal to ninety degrees, the effect of SAM's sharpness regularization can be weakened. Furthermore, we propose an explicit eigenvector-aligned SAM (X-SAM), which corrects the gradient via orthogonal decomposition along the top eigenvector, enabling more direct and efficient regularization of the Hessian's maximum eigenvalue. We prove X-SAM's convergence and superior generalization, with extensive experimental evaluations confirming both theoretical and practical advantages.
TRIM: Hybrid Inference via Targeted Stepwise Routing in Multi-Step Reasoning Tasks
Multi-step reasoning tasks like mathematical problem solving are vulnerable to cascading failures, where a single incorrect step leads to complete solution breakdown. Current LLM routing methods assign entire queries to one model, treating all reasoning steps as equal. We propose TRIM (Targeted routing in multi-step reasoning tasks), which routes only critical steps$\unicode{x2013}$those likely to derail the solution$\unicode{x2013}$to larger models while letting smaller models handle routine continuations. Our key insight is that targeted step-level interventions can fundamentally transform inference efficiency by confining expensive calls to precisely those steps where stronger models prevent cascading errors. TRIM operates at the step-level: it uses process reward models to identify erroneous steps and makes routing decisions based on step-level uncertainty and budget constraints. We develop several routing strategies within TRIM, ranging from a simple threshold-based policy to more expressive policies that reason about long-horizon accuracy-cost trade-offs and uncertainty in step-level correctness estimates. On MATH-500, even the simplest thresholding strategy surpasses prior routing methods with 5x higher cost efficiency, while more advanced policies match the strong, expensive model's performance using 80% fewer expensive model tokens. On harder benchmarks such as AIME, TRIM achieves up to 6x higher cost efficiency. All methods generalize effectively across math reasoning tasks, demonstrating that step-level difficulty represents fundamental characteristics of reasoning.
Loop as a Bridge: Can Looped Transformers Truly Link Representation Space and Natural Language Outputs?
Large Language Models (LLMs) often exhibit a gap between their internal knowledge and their explicit linguistic outputs. In this report, we empirically investigate whether Looped Transformers (LTs)--architectures that increase computational depth by iterating shared layers--can bridge this gap by utilizing their iterative nature as a form of introspection. Our experiments reveal that while increasing loop iterations narrows the gap, it is partly driven by a degradation of their internal knowledge carried by representations. Moreover, another empirical analysis suggests that current LTs' ability to perceive representations does not improve across loops; it is only present in the final loop. These results suggest that while LTs offer a promising direction for scaling computational depth, they have yet to achieve the introspection required to truly link representation space and natural language.
comment: 9 pages,6 figures
Who Owns the Text? Design Patterns for Preserving Authorship in AI-Assisted Writing
AI writing assistants can reduce effort and improve fluency, but they may also weaken writers' sense of authorship. We study this tension with an ownership-aware co-writing editor that offers on-demand, sentence-level suggestions and tests two common design choices: persona-based coaching and style personalization. In an online study (N=176), participants completed three professional writing tasks: an email without AI help, a proposal with generic AI suggestions, and a cover letter with persona-based coaching, while half received suggestions tailored to a brief sample of their prior writing. Across the two AI-assisted tasks, psychological ownership dropped relative to unassisted writing (about 0.85-1.0 points on a 7-point scale), even as cognitive load decreased (about 0.9 points) and quality ratings stayed broadly similar overall. Persona coaching did not prevent the ownership decline. Style personalization partially restored ownership (about +0.43) and increased AI incorporation in text (+5 percentage points). We distill five design patterns: on-demand initiation, micro-suggestions, voice anchoring, audience scaffolds, and point-of-decision provenance, to guide authorship-preserving writing tools.
comment: Preprint; 42 pages
Introduction to optimization methods for training SciML models
Optimization is central to both modern machine learning (ML) and scientific machine learning (SciML), yet the structure of the underlying optimization problems differs substantially across these domains. Classical ML typically relies on stochastic, sample-separable objectives that favor first-order and adaptive gradient methods. In contrast, SciML often involves physics-informed or operator-constrained formulations in which differential operators induce global coupling, stiffness, and strong anisotropy in the loss landscape. As a result, optimization behavior in SciML is governed by the spectral properties of the underlying physical models rather than by data statistics, frequently limiting the effectiveness of standard stochastic methods and motivating deterministic or curvature-aware approaches. This document provides a unified introduction to optimization methods in ML and SciML, emphasizing how problem structure shapes algorithmic choices. We review first- and second-order optimization techniques in both deterministic and stochastic settings, discuss their adaptation to physics-constrained and data-driven SciML models, and illustrate practical strategies through tutorial examples, while highlighting open research directions at the interface of scientific computing and scientific machine learning.
Topo-RAG: Topology-aware retrieval for hybrid text-table documents
In enterprise datasets, documents are rarely pure. They are not just text, nor just numbers; they are a complex amalgam of narrative and structure. Current Retrieval-Augmented Generation (RAG) systems have attempted to address this complexity with a blunt tool: linearization. We convert rich, multidimensional tables into simple Markdown-style text strings, hoping that an embedding model will capture the geometry of a spreadsheet in a single vector. But it has already been shown that this is mathematically insufficient. This work presents Topo-RAG, a framework that challenges the assumption that "everything is text". We propose a dual architecture that respects the topology of the data: we route fluid narrative through traditional dense retrievers, while tabular structures are processed by a Cell-Aware Late Interaction mechanism, preserving their spatial relationships. Evaluated on SEC-25, a synthetic enterprise corpus that mimics real-world complexity, Topo-RAG demonstrates an 18.4% improvement in nDCG@10 on hybrid queries compared to standard linearization approaches. It's not just about searching better; it's about understanding the shape of information.
PADER: Paillier-based Secure Decentralized Social Recommendation
The prevalence of recommendation systems also brings privacy concerns to both the users and the sellers, as centralized platforms collect as much data as possible from them. To keep the data private, we propose PADER: a Paillier-based secure decentralized social recommendation system. In this system, the users and the sellers are nodes in a decentralized network. The training and inference of the recommendation model are carried out securely in a decentralized manner, without the involvement of a centralized platform. To this end, we apply the Paillier cryptosystem to the SoReg (Social Regularization) model, which exploits both user's ratings and social relations. We view the SoReg model as a two-party secure polynomial evaluation problem and observe that the simple bipartite computation may result in poor efficiency. To improve efficiency, we design secure addition and multiplication protocols to support secure computation on any arithmetic circuit, along with an optimal data packing scheme that is suitable for the polynomial computations of real values. Experiment results show that our method only takes about one second to iterate through one user with hundreds of ratings, and training with ~500K ratings for one epoch only takes <3 hours, which shows that the method is practical in real applications. The code is available at https://github.com/GarminQ/PADER.
One Instruction Does Not Fit All: How Well Do Embeddings Align Personas and Instructions in Low-Resource Indian Languages?
Aligning multilingual assistants with culturally grounded user preferences is essential for serving India's linguistically diverse population of over one billion speakers across multiple scripts. However, existing benchmarks either focus on a single language or conflate retrieval with generation, leaving open the question of whether current embedding models can encode persona-instruction compatibility without relying on response synthesis. We present a unified benchmark spanning 12 Indian languages and four evaluation tasks: monolingual and cross-lingual persona-to-instruction retrieval, reverse retrieval from instruction to persona, and binary compatibility classification. Eight multilingual embedding models are evaluated in a frozen-encoder setting with a thin logistic regression head for classification. E5-Large-Instruct achieves the highest Recall@1 of 27.4\% on monolingual retrieval and 20.7\% on cross-lingual transfer, while BGE-M3 leads reverse retrieval at 32.1\% Recall@1. For classification, LaBSE attains 75.3\% AUROC with strong calibration. These findings offer practical guidance for model selection in Indic multilingual retrieval and establish reproducible baselines for future work\footnote{Code, datasets, and models are publicly available at https://github.com/aryashah2k/PI-Indic-Align.
comment: 12 pages, 4 figures, 10 tables
PRL: Process Reward Learning Improves LLMs' Reasoning Ability and Broadens the Reasoning Boundary
Improving the reasoning abilities of Large Language Models (LLMs) has been a continuous topic recently. But most relevant works are based on outcome rewards at the trajectory level, missing fine-grained supervision during the reasoning process. Other existing training frameworks that try to combine process signals together to optimize LLMs also rely heavily on tedious additional steps like MCTS, training a separate reward model, etc., doing harm to the training efficiency. Moreover, the intuition behind the process signals design lacks rigorous theoretical support, leaving the understanding of the optimization mechanism opaque. In this paper, we propose Process Reward Learning (PRL), which decomposes the entropy regularized reinforcement learning objective into intermediate steps, with rigorous process rewards that could be assigned to models accordingly. Starting from theoretical motivation, we derive the formulation of PRL that is essentially equivalent to the objective of reward maximization plus a KL-divergence penalty term between the policy model and a reference model. However, PRL could turn the outcome reward into process supervision signals, which helps better guide the exploration during RL optimization. From our experiment results, we demonstrate that PRL not only improves the average performance for LLMs' reasoning ability measured by average @ n, but also broadens the reasoning boundary by improving the pass @ n metric. Extensive experiments show the effectiveness of PRL could be verified and generalized.
GFM4GA: Graph Foundation Model for Group Anomaly Detection
Group anomaly detection is crucial in many network applications, but faces challenges due to diverse anomaly patterns. Motivated by the success of large language models (LLMs) in natural language processing, graph foundation models (GFMs) is proposed to handle few-shot learning task with fewer labeling efforts. GFMs have been successfully applied to detection of individual anomalies but cannot be generalized to group anomalies, as group anomaly patterns must be detected as a whole and individuals in an abnormal group can look rather normal. Therefore, we propose GFM4GA, a novel graph foundation model for group anomaly detection. The pipeline is pretrained via dual-level contrastive learning based on feature-based estimation and group extraction, to capture potential group anomaly structure and feature inconsistencies. In the downstream tasks, the pipeline is finetuned in parameter-constrained and group-anomaly-proportion weighted few-shot settings, and its adaptive ability to unseen group anomalies expanded via group contexts determined by labeled anomaly neighbors. Experiments show that GFM4GA surpasses group anomaly detectors and GFMs for individual anomalies, achieving average improvements of 2.85% in AUROC and 2.55% in AUPRC.
How does downsampling affect needle electromyography signals? A generalisable workflow for understanding downsampling effects on high-frequency time series
Automated analysis of needle electromyography (nEMG) signals is emerging as a tool to support the detection of neuromuscular diseases (NMDs), yet the signals' high and heterogeneous sampling rates pose substantial computational challenges for feature-based machine-learning models, particularly for near real-time analysis. Downsampling offers a potential solution, but its impact on diagnostic signal content and classification performance remains insufficiently understood. This study presents a workflow for systematically evaluating information loss caused by downsampling in high-frequency time series. The workflow combines shape-based distortion metrics with classification outcomes from available feature-based machine learning models and feature space analysis to quantify how different downsampling algorithms and factors affect both waveform integrity and predictive performance. We use a three-class NMD classification task to experimentally evaluate the workflow. We demonstrate how the workflow identifies downsampling configurations that preserve diagnostic information while substantially reducing computational load. Analysis of shape-based distortion metrics showed that shape-aware downsampling algorithms outperform standard decimation, as they better preserve peak structure and overall signal morphology. The results provide practical guidance for selecting downsampling configurations that enable near real-time nEMG analysis and highlight a generalisable workflow that can be used to balance data reduction with model performance in other high-frequency time-series applications as well.
HOMURA: Taming the Sand-Glass for Time-Constrained LLM Translation via Reinforcement Learning
Large Language Models (LLMs) have achieved remarkable strides in multilingual translation but are hindered by a systemic cross-lingual verbosity bias, rendering them unsuitable for strict time-constrained tasks like subtitling and dubbing. Current prompt-engineering approaches struggle to resolve this conflict between semantic fidelity and rigid temporal feasibility. To bridge this gap, we first introduce Sand-Glass, a benchmark specifically designed to evaluate translation under syllable-level duration constraints. Furthermore, we propose HOMURA, a reinforcement learning framework that explicitly optimizes the trade-off between semantic preservation and temporal compliance. By employing a KL-regularized objective with a novel dynamic syllable-ratio reward, HOMURA effectively "tames" the output length. Experimental results demonstrate that our method significantly outperforms strong LLM baselines, achieving precise length control that respects linguistic density hierarchies without compromising semantic adequacy.
ReasAlign: Reasoning Enhanced Safety Alignment against Prompt Injection Attack
Large Language Models (LLMs) have enabled the development of powerful agentic systems capable of automating complex workflows across various fields. However, these systems are highly vulnerable to indirect prompt injection attacks, where malicious instructions embedded in external data can hijack agent behavior. In this work, we present ReasAlign, a model-level solution to improve safety alignment against indirect prompt injection attacks. The core idea of ReasAlign is to incorporate structured reasoning steps to analyze user queries, detect conflicting instructions, and preserve the continuity of the user's intended tasks to defend against indirect injection attacks. To further ensure reasoning logic and accuracy, we introduce a test-time scaling mechanism with a preference-optimized judge model that scores reasoning steps and selects the best trajectory. Comprehensive evaluations across various benchmarks show that ReasAlign maintains utility comparable to an undefended model while consistently outperforming Meta SecAlign, the strongest prior guardrail. On the representative open-ended CyberSecEval2 benchmark, which includes multiple prompt-injected tasks, ReasAlign achieves 94.6% utility and only 3.6% ASR, far surpassing the state-of-the-art defensive model of Meta SecAlign (56.4% utility and 74.4% ASR). These results demonstrate that ReasAlign achieves the best trade-off between security and utility, establishing a robust and practical defense against prompt injection attacks in real-world agentic systems. Our code and experimental results could be found at https://github.com/leolee99/ReasAlign.
comment: 15 pages, 10 figures
CtD: Composition through Decomposition in Emergent Communication
Compositionality is a cognitive mechanism that allows humans to systematically combine known concepts in novel ways. This study demonstrates how artificial neural agents acquire and utilize compositional generalization to describe previously unseen images. Our method, termed "Composition through Decomposition", involves two sequential training steps. In the 'Decompose' step, the agents learn to decompose an image into basic concepts using a codebook acquired during interaction in a multi-target coordination game. Subsequently, in the 'Compose' step, the agents employ this codebook to describe novel images by composing basic concepts into complex phrases. Remarkably, we observe cases where generalization in the `Compose' step is achieved zero-shot, without the need for additional training.
RAG-3DSG: Enhancing 3D Scene Graphs with Re-Shot Guided Retrieval-Augmented Generation
Open-vocabulary 3D Scene Graph (3DSG) generation can enhance various downstream tasks in robotics, such as manipulation and navigation, by leveraging structured semantic representations. A 3DSG is constructed from multiple images of a scene, where objects are represented as nodes and relationships as edges. However, existing works for open-vocabulary 3DSG generation suffer from both low object-level recognition accuracy and speed, mainly due to constrained viewpoints, occlusions, and redundant surface density. To address these challenges, we propose RAG-3DSG to mitigate aggregation noise through re-shot guided uncertainty estimation and support object-level Retrieval-Augmented Generation (RAG) via reliable low-uncertainty objects. Furthermore, we propose a dynamic downsample-mapping strategy to accelerate cross-image object aggregation with adaptive granularity. Experiments on Replica dataset demonstrate that RAG-3DSG significantly improves node captioning accuracy in 3DSG generation while reducing the mapping time by two-thirds compared to the vanilla version.
comment: 9 pages, 6 figures
AWED-FiNER: Agents, Web applications, and Expert Detectors for Fine-grained Named Entity Recognition across 36 Languages for 6.6 Billion Speakers
We introduce AWED-FiNER, an open-source ecosystem designed to bridge the gap in Fine-grained Named Entity Recognition (FgNER) for 36 global languages spoken by more than 6.6 billion people. While Large Language Models (LLMs) dominate general Natural Language Processing (NLP) tasks, they often struggle with low-resource languages and fine-grained NLP tasks. AWED-FiNER provides a collection of agentic toolkits, web applications, and several state-of-the-art expert models that provides FgNER solutions across 36 languages. The agentic tools enable to route multilingual text to specialized expert models and fetch FgNER annotations within seconds. The web-based platforms provide ready-to-use FgNER annotation service for non-technical users. Moreover, the collection of language specific extremely small sized open-source state-of-the-art expert models facilitate offline deployment in resource contraint scenerios including edge devices. AWED-FiNER covers languages spoken by over 6.6 billion people, including a specific focus on vulnerable languages such as Bodo, Manipuri, Bishnupriya, and Mizo. The resources can be accessed here: Agentic Tool (https://github.com/PrachuryyaKaushik/AWED-FiNER), Web Application (https://hf.co/spaces/prachuryyaIITG/AWED-FiNER), and 49 Expert Detector Models (https://hf.co/collections/prachuryyaIITG/awed-finer).
comment: Submitted to ACL'26 System Demonstration
Alignment Pretraining: AI Discourse Causes Self-Fulfilling (Mis)alignment
Pretraining corpora contain extensive discourse about AI systems, yet the causal influence of this discourse on downstream alignment remains poorly understood. If prevailing descriptions of AI behaviour are predominantly negative, LLMs may internalise corresponding behavioural priors, giving rise to self-fulfilling misalignment. This paper provides the first controlled study of this hypothesis by pretraining 6.9B-parameter LLMs with varying amounts of (mis)alignment discourse. We find that discussion of AI contributes to misalignment. Upsampling synthetic training documents about AI misalignment leads to a notable increase in misaligned behaviour. Conversely, upsampling documents about aligned behaviour reduces misalignment scores from 45% to 9%. We consider this evidence of self-fulfilling alignment. These effects are dampened, but persist through post-training. Our findings establish the study of how pretraining data shapes alignment priors, or alignment pretraining, as a complement to post-training. We recommend practitioners pretrain for alignment as well as capabilities. Our models and datasets are available at alignmentpretraining.ai
MMPG: MoE-based Adaptive Multi-Perspective Graph Fusion for Protein Representation Learning
Graph Neural Networks (GNNs) have been widely adopted for Protein Representation Learning (PRL), as residue interaction networks can be naturally represented as graphs. Current GNN-based PRL methods typically rely on single-perspective graph construction strategies, which capture partial properties of residue interactions, resulting in incomplete protein representations. To address this limitation, we propose MMPG, a framework that constructs protein graphs from multiple perspectives and adaptively fuses them via Mixture of Experts (MoE) for PRL. MMPG constructs graphs from physical, chemical, and geometric perspectives to characterize different properties of residue interactions. To capture both perspective-specific features and their synergies, we develop an MoE module, which dynamically routes perspectives to specialized experts, where experts learn intrinsic features and cross-perspective interactions. We quantitatively verify that MoE automatically specializes experts in modeling distinct levels of interaction from individual representations, to pairwise inter-perspective synergies, and ultimately to a global consensus across all perspectives. Through integrating this multi-level information, MMPG produces superior protein representations and achieves advanced performance on four different downstream protein tasks.
LOOKAT: Lookup-Optimized Key-Attention for Memory-Efficient Transformers
Compressing the KV cache is a required step to deploy large language models on edge devices. Current quantization methods compress storage but fail to reduce bandwidth as attention calculation requires dequantizing keys from INT4/INT8 to FP16 before use. We observe that attention scoring is mathematically equivalent to the inner product similarity search and we can apply some compression techniques from vector databases to compress KV-cache better. We propose LOOKAT, which applies product quantization and asymmetric distance computation, to transformer architecture by decomposing key vectors into subspaces, learning codebooks and computing attention tables via lookup tables. This transforms attention from memory-bound to compute-bound. LOOKAT achieves 64 $\times$ compression at 95.7\% output fidelity and 32 $\times$ compression at 95.0\% fidelity when tested on GPT-2. LOOKAT requires no architecture changes or training while maintaining rank correlation $ρ> 0.95$. Theoretical analysis confirms that rank correlation degrades as $O(d_k/mK)$, with guarantees validated across sequence lengths up to 1024 tokens.
MHub.ai: A Simple, Standardized, and Reproducible Platform for AI Models in Medical Imaging
Artificial intelligence (AI) has the potential to transform medical imaging by automating image analysis and accelerating clinical research. However, research and clinical use are limited by the wide variety of AI implementations and architectures, inconsistent documentation, and reproducibility issues. Here, we introduce MHub.ai, an open-source, container-based platform that standardizes access to AI models with minimal configuration, promoting accessibility and reproducibility in medical imaging. MHub.ai packages models from peer-reviewed publications into standardized containers that support direct processing of DICOM and other formats, provide a unified application interface, and embed structured metadata. Each model is accompanied by publicly available reference data that can be used to confirm model operation. MHub.ai includes an initial set of state-of-the-art segmentation, prediction, and feature extraction models for different modalities. The modular framework enables adaptation of any model and supports community contributions. We demonstrate the utility of the platform in a clinical use case through comparative evaluation of lung segmentation models. To further strengthen transparency and reproducibility, we publicly release the generated segmentations and evaluation metrics and provide interactive dashboards that allow readers to inspect individual cases and reproduce or extend our analysis. By simplifying model use, MHub.ai enables side-by-side benchmarking with identical execution commands and standardized outputs, and lowers the barrier to clinical translation.
comment: 41 pages, 15 figures, 6 tables
Simple Network Graph Comparative Learning
The effectiveness of contrastive learning methods has been widely recognized in the field of graph learning, especially in contexts where graph data often lack labels or are difficult to label. However, the application of these methods to node classification tasks still faces a number of challenges. First, existing data enhancement techniques may lead to significant differences from the original view when generating new views, which may weaken the relevance of the view and affect the efficiency of model training. Second, the vast majority of existing graph comparison learning algorithms rely on the use of a large number of negative samples. To address the above challenges, this study proposes a novel node classification contrast learning method called Simple Network Graph Comparative Learning (SNGCL). Specifically, SNGCL employs a superimposed multilayer Laplace smoothing filter as a step in processing the data to obtain global and local feature smoothing matrices, respectively, which are thus passed into the target and online networks of the siamese network, and finally employs an improved triple recombination loss function to bring the intra-class distance closer and the inter-class distance farther. We have compared SNGCL with state-of-the-art models in node classification tasks, and the experimental results show that SNGCL is strongly competitive in most tasks.
comment: 10 pages, 5 figures
DecisionLLM: Large Language Models for Long Sequence Decision Exploration
Long-sequence decision-making, which is usually addressed through reinforcement learning (RL), is a critical component for optimizing strategic operations in dynamic environments, such as real-time bidding in computational advertising. The Decision Transformer (DT) introduced a powerful paradigm by framing RL as an autoregressive sequence modeling problem. Concurrently, Large Language Models (LLMs) have demonstrated remarkable success in complex reasoning and planning tasks. This inspires us whether LLMs, which share the same Transformer foundation, but operate at a much larger scale, can unlock new levels of performance in long-horizon sequential decision-making problem. This work investigates the application of LLMs to offline decision making tasks. A fundamental challenge in this domain is the LLMs' inherent inability to interpret continuous values, as they lack a native understanding of numerical magnitude and order when values are represented as text strings. To address this, we propose treating trajectories as a distinct modality. By learning to align trajectory data with natural language task descriptions, our model can autoregressively predict future decisions within a cohesive framework we term DecisionLLM. We establish a set of scaling laws governing this paradigm, demonstrating that performance hinges on three factors: model scale, data volume, and data quality. In offline experimental benchmarks and bidding scenarios, DecisionLLM achieves strong performance. Specifically, DecisionLLM-3B outperforms the traditional Decision Transformer (DT) by 69.4 on Maze2D umaze-v1 and by 0.085 on AuctionNet. It extends the AIGB paradigm and points to promising directions for future exploration in online bidding.
History Is Not Enough: An Adaptive Dataflow System for Financial Time-Series Synthesis
In quantitative finance, the gap between training and real-world performance-driven by concept drift and distributional non-stationarity-remains a critical obstacle for building reliable data-driven systems. Models trained on static historical data often overfit, resulting in poor generalization in dynamic markets. The mantra "History Is Not Enough" underscores the need for adaptive data generation that learns to evolve with the market rather than relying solely on past observations. We present a drift-aware dataflow system that integrates machine learning-based adaptive control into the data curation process. The system couples a parameterized data manipulation module comprising single-stock transformations, multi-stock mix-ups, and curation operations, with an adaptive planner-scheduler that employs gradient-based bi-level optimization to control the system. This design unifies data augmentation, curriculum learning, and data workflow management under a single differentiable framework, enabling provenance-aware replay and continuous data quality monitoring. Extensive experiments on forecasting and reinforcement learning trading tasks demonstrate that our framework enhances model robustness and improves risk-adjusted returns. The system provides a generalizable approach to adaptive data management and learning-guided workflow automation for financial data.
Understanding and Preserving Safety in Fine-Tuned LLMs
Fine-tuning is an essential and pervasive functionality for applying large language models (LLMs) to downstream tasks. However, it has the potential to substantially degrade safety alignment, e.g., by greatly increasing susceptibility to jailbreak attacks, even when the fine-tuning data is entirely harmless. Despite garnering growing attention in defense efforts during the fine-tuning stage, existing methods struggle with a persistent safety-utility dilemma: emphasizing safety compromises task performance, whereas prioritizing utility typically requires deep fine-tuning that inevitably leads to steep safety declination. In this work, we address this dilemma by shedding new light on the geometric interaction between safety- and utility-oriented gradients in safety-aligned LLMs. Through systematic empirical analysis, we uncover three key insights: (I) safety gradients lie in a low-rank subspace, while utility gradients span a broader high-dimensional space; (II) these subspaces are often negatively correlated, causing directional conflicts during fine-tuning; and (III) the dominant safety direction can be efficiently estimated from a single sample. Building upon these novel insights, we propose safety-preserving fine-tuning (SPF), a lightweight approach that explicitly removes gradient components conflicting with the low-rank safety subspace. Theoretically, we show that SPF guarantees utility convergence while bounding safety drift. Empirically, SPF consistently maintains downstream task performance and recovers nearly all pre-trained safety alignment, even under adversarial fine-tuning scenarios. Furthermore, SPF exhibits robust resistance to both deep fine-tuning and dynamic jailbreak attacks. Together, our findings provide new mechanistic understanding and practical guidance toward always-aligned LLM fine-tuning.
Step-by-Step Causality: Transparent Causal Discovery with Multi-Agent Tree-Query and Adversarial Confidence Estimation
Causal discovery aims to recover ``what causes what'', but classical constraint-based methods (e.g., PC, FCI) suffer from error propagation, and recent LLM-based causal oracles often behave as opaque, confidence-free black boxes. This paper introduces Tree-Query, a tree-structured, multi-expert LLM framework that reduces pairwise causal discovery to a short sequence of queries about backdoor paths, (in)dependence, latent confounding, and causal direction, yielding interpretable judgments with robustness-aware confidence scores. Theoretical guarantees are provided for asymptotic identifiability of four pairwise relations. On data-free benchmarks derived from Mooij et al. and UCI causal graphs, Tree-Query improves structural metrics over direct LLM baselines, and a diet--weight case study illustrates confounder screening and stable, high-confidence causal conclusions. Tree-Query thus offers a principled way to obtain data-free causal priors from LLMs that can complement downstream data-driven causal discovery. Code is available at https://anonymous.4open.science/r/Repo-9B3E-4F96.
Is More Context Always Better? Examining LLM Reasoning Capability for Time Interval Prediction
Large Language Models (LLMs) have demonstrated impressive capabilities in reasoning and prediction across different domains. Yet, their ability to infer temporal regularities from structured behavioral data remains underexplored. This paper presents a systematic study investigating whether LLMs can predict time intervals between recurring user actions, such as repeated purchases, and how different levels of contextual information shape their predictive behavior. Using a simple but representative repurchase scenario, we benchmark state-of-the-art LLMs in zero-shot settings against both statistical and machine-learning models. Two key findings emerge. First, while LLMs surpass lightweight statistical baselines, they consistently underperform dedicated machine-learning models, showing their limited ability to capture quantitative temporal structure. Second, although moderate context can improve LLM accuracy, adding further user-level detail degrades performance. These results challenge the assumption that "more context leads to better reasoning". Our study highlights fundamental limitations of today's LLMs in structured temporal inference and offers guidance for designing future context-aware hybrid models that integrate statistical precision with linguistic flexibility.
comment: Accepted at The Web Conference 2026 (WWW 2026)
M^4olGen: Multi-Agent, Multi-Stage Molecular Generation under Precise Multi-Property Constraints
Generating molecules that satisfy precise numeric constraints over multiple physicochemical properties is critical and challenging. Although large language models (LLMs) are expressive, they struggle with precise multi-objective control and numeric reasoning without external structure and feedback. We introduce \textbf{M olGen}, a fragment-level, retrieval-augmented, two-stage framework for molecule generation under multi-property constraints. Stage I : Prototype generation: a multi-agent reasoner performs retrieval-anchored, fragment-level edits to produce a candidate near the feasible region. Stage II : RL-based fine-grained optimization: a fragment-level optimizer trained with Group Relative Policy Optimization (GRPO) applies one- or multi-hop refinements to explicitly minimize the property errors toward our target while regulating edit complexity and deviation from the prototype. A large, automatically curated dataset with reasoning chains of fragment edits and measured property deltas underpins both stages, enabling deterministic, reproducible supervision and controllable multi-hop reasoning. Unlike prior work, our framework better reasons about molecules by leveraging fragments and supports controllable refinement toward numeric targets. Experiments on generation under two sets of property constraints (QED, LogP, Molecular Weight and HOMO, LUMO) show consistent gains in validity and precise satisfaction of multi-property targets, outperforming strong LLMs and graph-based algorithms.
Redundancy-Driven Top-$k$ Functional Dependency Discovery
Functional dependencies (FDs) are basic constraints in relational databases and are used for many data management tasks. Most FD discovery algorithms find all valid dependencies, but this causes two problems. First, the computational cost is prohibitive: computational complexity grows quadratically with the number of tuples and exponentially with the number of attributes, making discovery slow on large-scale and high-dimensional data. Second, the result set can be huge, making it hard to identify useful dependencies. We propose SDP (Selective-Discovery-and-Prune), which discovers the top-$k$ FDs ranked by redundancy count. Redundancy count measures how much duplicated information an FD explains and connects directly to storage overhead and update anomalies. SDP uses an upper bound on redundancy to prune the search space. It is proved that this upper bound is monotone: adding attributes refines partitions and thus decreases the bound. Once the bound falls below the top-$k$ threshold, the entire branch can be skipped. We improve SDP with three optimizations: ordering attributes by partition cardinality, using pairwise statistics in a Partition Cardinality Matrix to tighten bounds, and a global scheduler to explore promising branches first. Experiments on over 40 datasets show that SDP is much faster and uses less memory than exhaustive methods.
LaViT: Aligning Latent Visual Thoughts for Multi-modal Reasoning
Current multimodal latent reasoning often relies on external supervision (e.g., auxiliary images), ignoring intrinsic visual attention dynamics. In this work, we identify a critical Perception Gap in distillation: student models frequently mimic a teacher's textual output while attending to fundamentally divergent visual regions, effectively relying on language priors rather than grounded perception. To bridge this, we propose LaViT, a framework that aligns latent visual thoughts rather than static embeddings. LaViT compels the student to autoregressively reconstruct the teacher's visual semantics and attention trajectories prior to text generation, employing a curriculum sensory gating mechanism to prevent shortcut learning. Extensive experiments show that LaViT significantly enhances visual grounding, achieving up to +16.9% gains on complex reasoning tasks and enabling a compact 3B model to outperform larger open-source variants and proprietary models like GPT-4o.
Role-Playing Agents Driven by Large Language Models: Current Status, Challenges, and Future Trends
In recent years, with the rapid advancement of large language models (LLMs), role-playing language agents (RPLAs) have emerged as a prominent research focus at the intersection of natural language processing (NLP) and human-computer interaction. This paper systematically reviews the current development and key technologies of RPLAs, delineating the technological evolution from early rule-based template paradigms, through the language style imitation stage, to the cognitive simulation stage centered on personality modeling and memory mechanisms. It summarizes the critical technical pathways supporting high-quality role-playing, including psychological scale-driven character modeling, memory-augmented prompting mechanisms, and motivation-situation-based behavioral decision control. At the data level, the paper further analyzes the methods and challenges of constructing role-specific corpora, focusing on data sources, copyright constraints, and structured annotation processes. In terms of evaluation, it collates multi-dimensional assessment frameworks and benchmark datasets covering role knowledge, personality fidelity, value alignment, and interactive hallucination, while commenting on the advantages and disadvantages of methods such as human evaluation, reward models, and LLM-based scoring. Finally, the paper outlines future development directions of role-playing agents, including personality evolution modeling, multi-agent collaborative narrative, multimodal immersive interaction, and integration with cognitive neuroscience, aiming to provide a systematic perspective and methodological insights for subsequent research.
TopoDIM: One-shot Topology Generation of Diverse Interaction Modes for Multi-Agent Systems
Optimizing communication topology in LLM-based multi-agent system is critical for enabling collective intelligence. Existing methods mainly rely on spatio-temporal interaction paradigms, where the sequential execution of multi-round dialogues incurs high latency and computation. Motivated by the recent insights that evaluation and debate mechanisms can improve problem-solving in multi-agent systems, we propose TopoDIM, a framework for one-shot Topology generation with Diverse Interaction Modes. Designed for decentralized execution to enhance adaptability and privacy, TopoDIM enables agents to autonomously construct heterogeneous communication without iterative coordination, achieving token efficiency and improved task performance. Experiments demonstrate that TopoDIM reduces total token consumption by 46.41% while improving average performance by 1.50% over state-of-the-art methods. Moreover, the framework exhibits strong adaptability in organizing communication among heterogeneous agents. Code is available at: https://anonymous.4open.science/r/TopoDIM-8D35/
Following the Teacher's Footsteps: Scheduled Checkpoint Distillation for Domain-Specific LLMs
Large language models (LLMs) are challenging to deploy for domain-specific tasks due to their massive scale. While distilling a fine-tuned LLM into a smaller student model is a promising alternative, the capacity gap between teacher and student often leads to suboptimal performance. This raises a key question: when and how can a student model match or even surpass its teacher on domain-specific tasks? In this work, we propose a novel theoretical insight: a student can outperform its teacher if its advantage on a Student-Favored Subdomain (SFS) outweighs its deficit on the Teacher-Favored Subdomain (TFS). Guided by this insight, we propose Scheduled Checkpoint Distillation (SCD), which reduces the TFS deficit by emulating the teacher's convergence process during supervised fine-tuning (SFT) on the domain task, and a sample-wise Adaptive Weighting (AW) mechanism to preserve student strengths on SFS. Experiments across diverse domain tasks--including QA, NER, and text classification in multiple languages--show that our method consistently outperforms existing distillation approaches, allowing the student model to match or even exceed the performance of its fine-tuned teacher.
comment: 15 pages, submitted to ICPR 2026
Repository Intelligence Graph: Deterministic Architectural Map for LLM Code Assistants
Repository aware coding agents often struggle to recover build and test structure, especially in multilingual projects where cross language dependencies are encoded across heterogeneous build systems and tooling. We introduce the Repository Intelligence Graph (RIG), a deterministic, evidence backed architectural map that represents buildable components, aggregators, runners, tests, external packages, and package managers, connected by explicit dependency and coverage edges that trace back to concrete build and test definitions. We also present SPADE, a deterministic extractor that constructs RIG from build and test artifacts (currently with an automatic CMake plugin based on the CMake File API and CTest metadata), and exposes RIG as an LLM friendly JSON view that agents can treat as the authoritative description of repository structure. We evaluate three commercial agents (Claude Code, Cursor, Codex) on eight repositories spanning low to high build oriented complexity, including the real world MetaFFI project. Each agent answers thirty structured questions per repository with and without RIG in context, and we measure accuracy, wall clock completion time, and efficiency (seconds per correct answer). Across repositories and agents, providing RIG improves mean accuracy by 12.2\% and reduces completion time by 53.9\%, yielding a mean 57.8\% reduction in seconds per correct answer. Gains are larger in multilingual repositories, which improve by 17.7\% in accuracy and 69.5\% in efficiency on average, compared to 6.6\% and 46.1\% in single language repositories. Qualitative analysis suggests that RIG shifts failures from structural misunderstandings toward reasoning mistakes over a correct structure, while rare regressions highlight that graph based reasoning quality remains a key factor.
comment: 35 pages, 5 figures
SIN-Bench: Tracing Native Evidence Chains in Long-Context Multimodal Scientific Interleaved Literature
Evaluating whether multimodal large language models truly understand long-form scientific papers remains challenging: answer-only metrics and synthetic "Needle-In-A-Haystack" tests often reward answer matching without requiring a causal, evidence-linked reasoning trace in the document. We propose the "Fish-in-the-Ocean" (FITO) paradigm, which requires models to construct explicit cross-modal evidence chains within native scientific documents. To operationalize FITO, we build SIN-Data, a scientific interleaved corpus that preserves the native interleaving of text and figures. On top of it, we construct SIN-Bench with four progressive tasks covering evidence discovery (SIN-Find), hypothesis verification (SIN-Verify), grounded QA (SIN-QA), and evidence-anchored synthesis (SIN-Summary). We further introduce "No Evidence, No Score", scoring predictions when grounded to verifiable anchors and diagnosing evidence quality via matching, relevance, and logic. Experiments on eight MLLMs show that grounding is the primary bottleneck: Gemini-3-pro achieves the best average overall score (0.573), while GPT-5 attains the highest SIN-QA answer accuracy (0.767) but underperforms on evidence-aligned overall scores, exposing a gap between correctness and traceable support.
MathDoc: Benchmarking Structured Extraction and Active Refusal on Noisy Mathematics Exam Papers
The automated extraction of structured questions from paper-based mathematics exams is fundamental to intelligent education, yet remains challenging in real-world settings due to severe visual noise. Existing benchmarks mainly focus on clean documents or generic layout analysis, overlooking both the structural integrity of mathematical problems and the ability of models to actively reject incomplete inputs. We introduce MathDoc, the first benchmark for document-level information extraction from authentic high school mathematics exam papers. MathDoc contains \textbf{3,609} carefully curated questions with real-world artifacts and explicitly includes unrecognizable samples to evaluate active refusal behavior. We propose a multi-dimensional evaluation framework covering stem accuracy, visual similarity, and refusal capability. Experiments on SOTA MLLMs, including Qwen3-VL and Gemini-2.5-Pro, show that although end-to-end models achieve strong extraction performance, they consistently fail to refuse illegible inputs, instead producing confident but invalid outputs. These results highlight a critical gap in current MLLMs and establish MathDoc as a benchmark for assessing model reliability under degraded document conditions. Our project repository is available at \href{https://github.com/winnk123/papers/tree/master}{GitHub repository}
FlowAct-R1: Towards Interactive Humanoid Video Generation
Interactive humanoid video generation aims to synthesize lifelike visual agents that can engage with humans through continuous and responsive video. Despite recent advances in video synthesis, existing methods often grapple with the trade-off between high-fidelity synthesis and real-time interaction requirements. In this paper, we propose FlowAct-R1, a framework specifically designed for real-time interactive humanoid video generation. Built upon a MMDiT architecture, FlowAct-R1 enables the streaming synthesis of video with arbitrary durations while maintaining low-latency responsiveness. We introduce a chunkwise diffusion forcing strategy, complemented by a novel self-forcing variant, to alleviate error accumulation and ensure long-term temporal consistency during continuous interaction. By leveraging efficient distillation and system-level optimizations, our framework achieves a stable 25fps at 480p resolution with a time-to-first-frame (TTFF) of only around 1.5 seconds. The proposed method provides holistic and fine-grained full-body control, enabling the agent to transition naturally between diverse behavioral states in interactive scenarios. Experimental results demonstrate that FlowAct-R1 achieves exceptional behavioral vividness and perceptual realism, while maintaining robust generalization across diverse character styles.
MATRIX AS PLAN: Structured Logical Reasoning with Feedback-Driven Replanning
As knowledge and semantics on the web grow increasingly complex, enhancing Large Language Models (LLMs) comprehension and reasoning capabilities has become particularly important. Chain-of-Thought (CoT) prompting has been shown to enhance the reasoning capabilities of LLMs. However, it still falls short on logical reasoning tasks that rely on symbolic expressions and strict deductive rules. Neuro-symbolic methods address this gap by enforcing formal correctness through external solvers. Yet these solvers are highly format-sensitive, and small instabilities in model outputs can lead to frequent processing failures. LLM-driven approaches avoid parsing brittleness, but they lack structured representations and process-level error-correction mechanisms. To further enhance the logical reasoning capabilities of LLMs, we propose MatrixCoT, a structured CoT framework with a matrix-based plan. Specifically, we normalize and type natural language expressions, attach explicit citation fields, and introduce a matrix-based planning method to preserve global relations among steps. The plan becomes a verifiable artifact, making execution more stable. For verification, we also add a feedback-driven replanning mechanism. Under semantic-equivalence constraints, it identifies omissions and defects, rewrites and compresses the dependency matrix, and produces a more trustworthy final answer. Experiments on five logical-reasoning benchmarks and five LLMs show that, without relying on external solvers, MatrixCoT enhances both robustness and interpretability when tackling complex symbolic reasoning tasks, while maintaining competitive performance.
comment: 12 pages, 5 figures, 2 tables. Accepted at The Web Conference (WWW) 2026
V-Zero: Self-Improving Multimodal Reasoning with Zero Annotation
Recent advances in multimodal learning have significantly enhanced the reasoning capabilities of vision-language models (VLMs). However, state-of-the-art approaches rely heavily on large-scale human-annotated datasets, which are costly and time-consuming to acquire. To overcome this limitation, we introduce V-Zero, a general post-training framework that facilitates self-improvement using exclusively unlabeled images. V-Zero establishes a co-evolutionary loop by instantiating two distinct roles: a Questioner and a Solver. The Questioner learns to synthesize high-quality, challenging questions by leveraging a dual-track reasoning reward that contrasts intuitive guesses with reasoned results. The Solver is optimized using pseudo-labels derived from majority voting over its own sampled responses. Both roles are trained iteratively via Group Relative Policy Optimization (GRPO), driving a cycle of mutual enhancement. Remarkably, without a single human annotation, V-Zero achieves consistent performance gains on Qwen2.5-VL-7B-Instruct, improving visual mathematical reasoning by +1.7 and general vision-centric by +2.6, demonstrating the potential of self-improvement in multimodal systems. Code is available at https://github.com/SatonoDia/V-Zero
LeMoF: Level-guided Multimodal Fusion for Heterogeneous Clinical Data
Multimodal clinical prediction is widely used to integrate heterogeneous data such as Electronic Health Records (EHR) and biosignals. However, existing methods tend to rely on static modality integration schemes and simple fusion strategies. As a result, they fail to fully exploit modality-specific representations. In this paper, we propose Level-guided Modal Fusion (LeMoF), a novel framework that selectively integrates level-guided representations within each modality. Each level refers to a representation extracted from a different layer of the encoder. LeMoF explicitly separates and learns global modality-level predictions from level-specific discriminative representations. This design enables LeMoF to achieve a balanced performance between prediction stability and discriminative capability even in heterogeneous clinical environments. Experiments on length of stay prediction using Intensive Care Unit (ICU) data demonstrate that LeMoF consistently outperforms existing state-of-the-art multimodal fusion techniques across various encoder configurations. We also confirmed that level-wise integration is a key factor in achieving robust predictive performance across various clinical conditions.
Difficulty-guided Sampling: Bridging the Target Gap between Dataset Distillation and Downstream Tasks
In this paper, we propose difficulty-guided sampling (DGS) to bridge the target gap between the distillation objective and the downstream task, therefore improving the performance of dataset distillation. Deep neural networks achieve remarkable performance but have time and storage-consuming training processes. Dataset distillation is proposed to generate compact, high-quality distilled datasets, enabling effective model training while maintaining downstream performance. Existing approaches typically focus on features extracted from the original dataset, overlooking task-specific information, which leads to a target gap between the distillation objective and the downstream task. We propose leveraging characteristics that benefit the downstream training into data distillation to bridge this gap. Focusing on the downstream task of image classification, we introduce the concept of difficulty and propose DGS as a plug-in post-stage sampling module. Following the specific target difficulty distribution, the final distilled dataset is sampled from image pools generated by existing methods. We also propose difficulty-aware guidance (DAG) to explore the effect of difficulty in the generation process. Extensive experiments across multiple settings demonstrate the effectiveness of the proposed methods. It also highlights the broader potential of difficulty for diverse downstream tasks.
State of AI: An Empirical 100 Trillion Token Study with OpenRouter
The past year has marked a turning point in the evolution and real-world use of large language models (LLMs). With the release of the first widely adopted reasoning model, o1, on December 5th, 2024, the field shifted from single-pass pattern generation to multi-step deliberation inference, accelerating deployment, experimentation, and new classes of applications. As this shift unfolded at a rapid pace, our empirical understanding of how these models have actually been used in practice has lagged behind. In this work, we leverage the OpenRouter platform, which is an AI inference provider across a wide variety of LLMs, to analyze over 100 trillion tokens of real-world LLM interactions across tasks, geographies, and time. In our empirical study, we observe substantial adoption of open-weight models, the outsized popularity of creative roleplay (beyond just the productivity tasks many assume dominate) and coding assistance categories, plus the rise of agentic inference. Furthermore, our retention analysis identifies foundational cohorts: early users whose engagement persists far longer than later cohorts. We term this phenomenon the Cinderella "Glass Slipper" effect. These findings underscore that the way developers and end-users engage with LLMs "in the wild" is complex and multifaceted. We discuss implications for model builders, AI developers, and infrastructure providers, and outline how a data-driven understanding of usage can inform better design and deployment of LLM systems.
comment: 36 pages
Sparse-RL: Breaking the Memory Wall in LLM Reinforcement Learning via Stable Sparse Rollouts
Reinforcement Learning (RL) has become essential for eliciting complex reasoning capabilities in Large Language Models (LLMs). However, the substantial memory overhead of storing Key-Value (KV) caches during long-horizon rollouts acts as a critical bottleneck, often prohibiting efficient training on limited hardware. While existing KV compression techniques offer a remedy for inference, directly applying them to RL training induces a severe policy mismatch, leading to catastrophic performance collapse. To address this, we introduce Sparse-RL empowers stable RL training under sparse rollouts. We show that instability arises from a fundamental policy mismatch among the dense old policy, the sparse sampler policy, and the learner policy. To mitigate this issue, Sparse-RL incorporates Sparsity-Aware Rejection Sampling and Importance-based Reweighting to correct the off-policy bias introduced by compression-induced information loss. Experimental results show that Sparse-RL reduces rollout overhead compared to dense baselines while preserving the performance. Furthermore, Sparse-RL inherently implements sparsity-aware training, significantly enhancing model robustness during sparse inference deployment.
ReaMIL: Reasoning- and Evidence-Aware Multiple Instance Learning for Whole-Slide Histopathology WACV 2026
We introduce ReaMIL (Reasoning- and Evidence-Aware MIL), a multiple instance learning approach for whole-slide histopathology that adds a light selection head to a strong MIL backbone. The head produces soft per-tile gates and is trained with a budgeted-sufficiency objective: a hinge loss that enforces the true-class probability to be $\geq τ$ using only the kept evidence, under a sparsity budget on the number of selected tiles. The budgeted-sufficiency objective yields small, spatially compact evidence sets without sacrificing baseline performance. Across TCGA-NSCLC (LUAD vs. LUSC), TCGA-BRCA (IDC vs. Others), and PANDA, ReaMIL matches or slightly improves baseline AUC and provides quantitative evidence-efficiency diagnostics. On NSCLC, it attains AUC 0.983 with a mean minimal sufficient K (MSK) $\approx 8.2$ tiles at $τ= 0.90$ and AUKC $\approx 0.864$, showing that class confidence rises sharply and stabilizes once a small set of tiles is kept. The method requires no extra supervision, integrates seamlessly with standard MIL training, and naturally yields slide-level overlays. We report accuracy alongside MSK, AUKC, and contiguity for rigorous evaluation of model behavior on WSIs.
comment: Accepted at LFMBio Workshop, WACV 2026. This work has been submitted to the IEEE for possible publication
CoF-T2I: Video Models as Pure Visual Reasoners for Text-to-Image Generation
Recent video generation models have revealed the emergence of Chain-of-Frame (CoF) reasoning, enabling frame-by-frame visual inference. With this capability, video models have been successfully applied to various visual tasks (e.g., maze solving, visual puzzles). However, their potential to enhance text-to-image (T2I) generation remains largely unexplored due to the absence of a clearly defined visual reasoning starting point and interpretable intermediate states in the T2I generation process. To bridge this gap, we propose CoF-T2I, a model that integrates CoF reasoning into T2I generation via progressive visual refinement, where intermediate frames act as explicit reasoning steps and the final frame is taken as output. To establish such an explicit generation process, we curate CoF-Evol-Instruct, a dataset of CoF trajectories that model the generation process from semantics to aesthetics. To further improve quality and avoid motion artifacts, we enable independent encoding operation for each frame. Experiments show that CoF-T2I significantly outperforms the base video model and achieves competitive performance on challenging benchmarks, reaching 0.86 on GenEval and 7.468 on Imagine-Bench. These results indicate the substantial promise of video models for advancing high-quality text-to-image generation.
comment: 16 pages, 8 figures
What Understanding Means in AI-Laden Astronomy
Artificial intelligence is rapidly transforming astronomical research, yet the scientific community has largely treated this transformation as an engineering challenge rather than an epistemological one. This perspective article argues that philosophy of science offers essential tools for navigating AI's integration into astronomy--conceptual clarity about what "understanding" means, critical examination of assumptions about data and discovery, and frameworks for evaluating AI's roles across different research contexts. Drawing on an interdisciplinary workshop convening astronomers, philosophers, and computer scientists, we identify several tensions. First, the narrative that AI will "derive fundamental physics" from data misconstrues contemporary astronomy as equation-derivation rather than the observation-driven enterprise it is. Second, scientific understanding involves more than prediction--it requires narrative construction, contextual judgment, and communicative achievement that current AI architectures struggle to provide. Third, because narrative and judgment matter, human peer review remains essential--yet AI-generated content flooding the literature threatens our capacity to identify genuine insight. Fourth, while AI excels at well-defined problem-solving, the ill-defined problem-finding that drives breakthroughs appears to require capacities beyond pattern recognition. Fifth, as AI accelerates what is feasible, pursuitworthiness criteria risk shifting toward what AI makes easy rather than what is genuinely important. We propose "pragmatic understanding" as a framework for integration--recognizing AI as a tool that extends human cognition while requiring new norms for validation and epistemic evaluation. Engaging with these questions now may help the community shape the transformation rather than merely react to it.
comment: Perspective article, 8 pages. Based on the "Philosophy Sees the Algorithm" workshop held December 11-12, 2025 at The Ohio State University. Supported by the Alfred P. Sloan Foundation, the Center for Cosmology and AstroParticle Physics (CCAPP), and the University of Cincinnati Center for Humanities and Technology
FilDeep: Learning Large Deformations of Elastic-Plastic Solids with Multi-Fidelity Data
The scientific computation of large deformations in elastic-plastic solids is crucial in various manufacturing applications. Traditional numerical methods exhibit several inherent limitations, prompting Deep Learning (DL) as a promising alternative. The effectiveness of current DL techniques typically depends on the availability of high-quantity and high-accuracy datasets, which are yet difficult to obtain in large deformation problems. During the dataset construction process, a dilemma stands between data quantity and data accuracy, leading to suboptimal performance in the DL models. To address this challenge, we focus on a representative application of large deformations, the stretch bending problem, and propose FilDeep, a Fidelity-based Deep Learning framework for large Deformation of elastic-plastic solids. Our FilDeep aims to resolve the quantity-accuracy dilemma by simultaneously training with both low-fidelity and high-fidelity data, where the former provides greater quantity but lower accuracy, while the latter offers higher accuracy but in less quantity. In FilDeep, we provide meticulous designs for the practical large deformation problem. Particularly, we propose attention-enabled cross-fidelity modules to effectively capture long-range physical interactions across MF data. To the best of our knowledge, our FilDeep presents the first DL framework for large deformation problems using MF data. Extensive experiments demonstrate that our FilDeep consistently achieves state-of-the-art performance and can be efficiently deployed in manufacturing.
comment: Accepted in Proceedings of the 32nd ACM SIGKDD Conference on Knowledge Discovery and Data Mining V.1 (KDD '26)
PaperScout: An Autonomous Agent for Academic Paper Search with Process-Aware Sequence-Level Policy Optimization
Academic paper search is a fundamental task in scientific research, yet most existing approaches rely on rigid, predefined workflows that struggle with complex, conditional queries. To address this limitation, we propose PaperScout, an autonomous agent that reformulates paper search as a sequential decision-making process. Unlike static workflows, PaperScout dynamically decides whether, when, and how to invoke search and expand tools based on accumulated retrieval context. However, training such agents presents a fundamental challenge: standard reinforcement learning methods, typically designed for single-turn tasks, suffer from a granularity mismatch when applied to multi-turn agentic tasks, where token-level optimization diverges from the granularity of sequence-level interactions, leading to noisy credit assignment. We introduce Proximal Sequence Policy Optimization (PSPO), a process-aware, sequence-level policy optimization method that aligns optimization with agent-environment interaction. Comprehensive experiments on both synthetic and real-world benchmarks demonstrate that PaperScout significantly outperforms strong workflow-driven and RL baselines in both recall and relevance, validating the effectiveness of our adaptive agentic framework and optimization strategy.
Structured Personality Control and Adaptation for LLM Agents
Large Language Models (LLMs) are increasingly shaping human-computer interaction (HCI), from personalized assistants to social simulations. Beyond language competence, researchers are exploring whether LLMs can exhibit human-like characteristics that influence engagement, decision-making, and perceived realism. Personality, in particular, is critical, yet existing approaches often struggle to achieve both nuanced and adaptable expression. We present a framework that models LLM personality via Jungian psychological types, integrating three mechanisms: a dominant-auxiliary coordination mechanism for coherent core expression, a reinforcement-compensation mechanism for temporary adaptation to context, and a reflection mechanism that drives long-term personality evolution. This design allows the agent to maintain nuanced traits while dynamically adjusting to interaction demands and gradually updating its underlying structure. Personality alignment is evaluated using Myers-Briggs Type Indicator questionnaires and tested under diverse challenge scenarios as a preliminary structured assessment. Findings suggest that evolving, personality-aware LLMs can support coherent, context-sensitive interactions, enabling naturalistic agent design in HCI.
Empowering Older Adults in Digital Technology Use with Foundation Models
While high-quality technology support can assist older adults in using digital applications, many struggle to articulate their issues due to unfamiliarity with technical terminology and age-related cognitive changes. This study examines these communication challenges and explores AI-based approaches to mitigate them. We conducted a diary study with English-speaking, community-dwelling older adults to collect asynchronous, technology-related queries and used reflexive thematic analysis to identify communication barriers. To address these barriers, we evaluated how foundation models can paraphrase older adults' queries to improve solution accuracy. Two controlled experiments followed: one with younger adults evaluating AI-rephrased queries and another with older adults evaluating AI-generated solutions. We also developed a pipeline using large language models to generate the first synthetic dataset of how older adults request tech support (OATS). We identified four key communication challenges: verbosity, incompleteness, over-specification, and under-specification. Our prompt-chaining approach using the large language model, GPT-4o, elicited contextual details, paraphrased the original query, and generated a solution. AI-rephrased queries significantly improved solution accuracy (69% vs. 46%) and Google search results (69% vs. 35%). Younger adults better understood AI-rephrased queries (93.7% vs. 65.8%) and reported greater confidence and ease. Older adults reported high perceived ability to answer contextual questions (89.8%) and follow solutions (94.7%), with high confidence and ease. OATS demonstrated strong fidelity and face validity. This work shows how foundation models can enhance technology support for older adults by addressing age-related communication barriers. The OATS dataset offers a scalable resource for developing equitable AI systems that better serve aging populations.
Memo-SQL: Structured Decomposition and Experience-Driven Self-Correction for Training-Free NL2SQL
Existing NL2SQL systems face two critical limitations: (1) they rely on in-context learning with only correct examples, overlooking the rich signal in historical error-fix pairs that could guide more robust self-correction; and (2) test-time scaling approaches often decompose questions arbitrarily, producing near-identical SQL candidates across runs and diminishing ensemble gains. Moreover, these methods suffer from a stark accuracy-efficiency trade-off: high performance demands excessive computation, while fast variants compromise quality. We present Memo-SQL, a training-free framework that addresses these issues through two simple ideas: structured decomposition and experience-aware self-correction. Instead of leaving decomposition to chance, we apply three clear strategies, entity-wise, hierarchical, and atomic sequential, to encourage diverse reasoning. For correction, we build a dynamic memory of both successful queries and historical error-fix pairs, and use retrieval-augmented prompting to bring relevant examples into context at inference time, no fine-tuning or external APIs required. On BIRD, Memo-SQL achieves 68.5% execution accuracy, setting a new state of the art among open, zero-fine-tuning methods, while using over 10 times fewer resources than prior TTS approaches.
VERHallu: Evaluating and Mitigating Event Relation Hallucination in Video Large Language Models
Video Large Language Models (VideoLLMs) exhibit various types of hallucinations. Existing research has primarily focused on hallucinations involving the presence of events, objects, and scenes in videos, while largely neglecting event relation hallucination. In this paper, we introduce a novel benchmark for evaluating the Video Event Relation Hallucination, named VERHallu. This benchmark focuses on causal, temporal, and subevent relations between events, encompassing three types of tasks: relation classification, question answering, and counterfactual question answering, for a comprehensive evaluation of event relation hallucination. Additionally, it features counterintuitive video scenarios that deviate from typical pretraining distributions, with each sample accompanied by human-annotated candidates covering both vision-language and pure language biases. Our analysis reveals that current state-of-the-art VideoLLMs struggle with dense-event relation reasoning, often relying on prior knowledge due to insufficient use of frame-level cues. Although these models demonstrate strong grounding capabilities for key events, they often overlook the surrounding subevents, leading to an incomplete and inaccurate understanding of event relations. To tackle this, we propose a Key-Frame Propagating (KFP) strategy, which reallocates frame-level attention within intermediate layers to enhance multi-event understanding. Experiments show it effectively mitigates the event relation hallucination without affecting inference speed.
comment: 11 pages, 6 figures
Context Volume Drives Performance: Tackling Domain Shift in Extremely Low-Resource Translation via RAG
Neural Machine Translation (NMT) models for low-resource languages suffer significant performance degradation under domain shift. We quantify this challenge using Dhao, an indigenous language of Eastern Indonesia with no digital footprint beyond the New Testament (NT). When applied to the unseen Old Testament (OT), a standard NMT model fine-tuned on the NT drops from an in-domain score of 36.17 chrF++ to 27.11 chrF++. To recover this loss, we introduce a hybrid framework where a fine-tuned NMT model generates an initial draft, which is then refined by a Large Language Model (LLM) using Retrieval-Augmented Generation (RAG). The final system achieves 35.21 chrF++ (+8.10 recovery), effectively matching the original in-domain quality. Our analysis reveals that this performance is driven primarily by the number of retrieved examples rather than the choice of retrieval algorithm. Qualitative analysis confirms the LLM acts as a robust "safety net," repairing severe failures in zero-shot domains.
Performance of AI agents based on reasoning language models on ALD process optimization tasks
In this work we explore the performance and behavior of reasoning large language models to autonomously optimize atomic layer deposition (ALD) processes. In the ALD process optimization task, an agent built on top of a reasoning LLM has to find optimal dose times for an ALD precursor and a coreactant without any prior knowledge on the process, including whether it is actually self-limited. The agent is meant to interact iteratively with an ALD reactor in a fully unsupervised way. We evaluate this agent using a simple model of an ALD tool that incorporates ALD processes with different self-limited surface reaction pathways as well as a non self-limited component. Our results show that agents based on reasoning models like OpenAI's o3 and GPT5 consistently succeeded at completing this optimization task. However, we observed significant run-to-run variability due to the non deterministic nature of the model's response. In order to understand the logic followed by the reasoning model, the agent uses a two step process in which the model first generates an open response detailing the reasoning process. This response is then transformed into a structured output. An analysis of these reasoning traces showed that the logic of the model was sound and that its reasoning was based on the notions of self-limited process and saturation expected in the case of ALD. However, the agent can sometimes be misled by its own prior choices when exploring the optimization space.
SPRInG: Continual LLM Personalization via Selective Parametric Adaptation and Retrieval-Interpolated Generation
Personalizing Large Language Models typically relies on static retrieval or one-time adaptation, assuming user preferences remain invariant over time. However, real-world interactions are dynamic, where user interests continuously evolve, posing a challenge for models to adapt to preference drift without catastrophic forgetting. Standard continual learning approaches often struggle in this context, as they indiscriminately update on noisy interaction streams, failing to distinguish genuine preference shifts from transient contexts. To address this, we introduce SPRInG, a novel semi-parametric framework designed for effective continual personalization. During training, SPRInG employs drift-driven selective adaptation, which utilizes a likelihood-based scoring function to identify high-novelty interactions. This allows the model to selectively update the user-specific adapter on drift signals while preserving hard-to-learn residuals in a replay buffer. During inference, we apply strict relevance gating and fuse parametric knowledge with retrieved history via logit interpolation. Experiments on the long-form personalized generation benchmark demonstrate that SPRInG outperforms existing baselines, validating its robustness for real-world continual personalization.
comment: under review, 23 pages
Chinese Labor Law Large Language Model Benchmark
Recent advances in large language models (LLMs) have led to substantial progress in domain-specific applications, particularly within the legal domain. However, general-purpose models such as GPT-4 often struggle with specialized subdomains that require precise legal knowledge, complex reasoning, and contextual sensitivity. To address these limitations, we present LabourLawLLM, a legal large language model tailored to Chinese labor law. We also introduce LabourLawBench, a comprehensive benchmark covering diverse labor-law tasks, including legal provision citation, knowledge-based question answering, case classification, compensation computation, named entity recognition, and legal case analysis. Our evaluation framework combines objective metrics (e.g., ROUGE-L, accuracy, F1, and soft-F1) with subjective assessment based on GPT-4 scoring. Experiments show that LabourLawLLM consistently outperforms general-purpose and existing legal-specific LLMs across task categories. Beyond labor law, our methodology provides a scalable approach for building specialized LLMs in other legal subfields, improving accuracy, reliability, and societal value of legal AI applications.
A Sustainable AI Economy Needs Data Deals That Work for Generators NeurIPS 2025
We argue that the machine learning value chain is structurally unsustainable due to an economic data processing inequality: each state in the data cycle from inputs to model weights to synthetic outputs refines technical signal but strips economic equity from data generators. We show, by analyzing seventy-three public data deals, that the majority of value accrues to aggregators, with documented creator royalties rounding to zero and widespread opacity of deal terms. This is not just an economic welfare concern: as data and its derivatives become economic assets, the feedback loop that sustains current learning algorithms is at risk. We identify three structural faults - missing provenance, asymmetric bargaining power, and non-dynamic pricing - as the operational machinery of this inequality. In our analysis, we trace these problems along the machine learning value chain and propose an Equitable Data-Value Exchange (EDVEX) Framework to enable a minimal market that benefits all participants. Finally, we outline research directions where our community can make concrete contributions to data deals and contextualize our position with related and orthogonal viewpoints.
comment: Published at NeurIPS 2025 (https://neurips.cc/virtual/2025/loc/san-diego/poster/121926)
Kinematic Tokenization: Optimization-Based Continuous-Time Tokens for Learnable Decision Policies in Noisy Time Series
Transformers are designed for discrete tokens, yet many real-world signals are continuous processes observed through noisy sampling. Discrete tokenizations (raw values, patches, finite differences) can be brittle in low signal-to-noise regimes, especially when downstream objectives impose asymmetric penalties that rationally encourage abstention. We introduce Kinematic Tokenization, an optimization-based continuous-time representation that reconstructs an explicit spline from noisy measurements and tokenizes local spline coefficients (position, velocity, acceleration, jerk). This is applied to financial time series data in the form of asset prices in conjunction with trading volume profiles. Across a multi-asset daily-equity testbed, we use a risk-averse asymmetric classification objective as a stress test for learnability. Under this objective, several discrete baselines collapse to an absorbing cash policy (the Liquidation Equilibrium), whereas the continuous spline tokens sustain calibrated, non-trivial action distributions and stable policies. These results suggest that explicit continuous-time tokens can improve the learnability and calibration of selective decision policies in noisy time series under abstention-inducing losses.
ARC Prize 2025: Technical Report
The ARC-AGI benchmark series serves as a critical measure of few-shot generalization on novel tasks, a core aspect of intelligence. The ARC Prize 2025 global competition targeted the newly released ARC-AGI-2 dataset, which features greater task complexity compared to its predecessor. The Kaggle competition attracted 1,455 teams and 15,154 entries, with the top score reaching 24% on the ARC-AGI-2 private evaluation set. Paper submissions nearly doubled year-over-year to 90 entries, reflecting the growing research interest in fluid intelligence and abstract reasoning. The defining theme of 2025 is the emergence of the refinement loop -- a per-task iterative program optimization loop guided by a feedback signal. Refinement loops come in a variety of forms, in particular evolutionary program synthesis approaches and application-layer refinements to commercial AI systems. Such refinement loops are also possible in weight space, as evidenced by zero-pretraining deep learning methods which are now achieving competitive performance with remarkably small networks (7M parameters). In parallel, four frontier AI labs (Anthropic, Google DeepMind, OpenAI, and xAI) reported ARC-AGI performance in public model cards in 2025, establishing ARC-AGI as an industry standard benchmark for AI reasoning. However, our analysis indicates that current frontier AI reasoning performance remains fundamentally constrained to knowledge coverage, giving rise to new forms of benchmark contamination. In this paper, we survey the top-performing methods, examine the role of refinement loops in AGI progress, discuss knowledge-dependent overfitting, and preview ARC-AGI-3, which introduces interactive reasoning challenges that require exploration, planning, memory, goal acquisition, and alignment capabilities.
Medical SAM3: A Foundation Model for Universal Prompt-Driven Medical Image Segmentation
Promptable segmentation foundation models such as SAM3 have demonstrated strong generalization capabilities through interactive and concept-based prompting. However, their direct applicability to medical image segmentation remains limited by severe domain shifts, the absence of privileged spatial prompts, and the need to reason over complex anatomical and volumetric structures. Here we present Medical SAM3, a foundation model for universal prompt-driven medical image segmentation, obtained by fully fine-tuning SAM3 on large-scale, heterogeneous 2D and 3D medical imaging datasets with paired segmentation masks and text prompts. Through a systematic analysis of vanilla SAM3, we observe that its performance degrades substantially on medical data, with its apparent competitiveness largely relying on strong geometric priors such as ground-truth-derived bounding boxes. These findings motivate full model adaptation beyond prompt engineering alone. By fine-tuning SAM3's model parameters on 33 datasets spanning 10 medical imaging modalities, Medical SAM3 acquires robust domain-specific representations while preserving prompt-driven flexibility. Extensive experiments across organs, imaging modalities, and dimensionalities demonstrate consistent and significant performance gains, particularly in challenging scenarios characterized by semantic ambiguity, complex morphology, and long-range 3D context. Our results establish Medical SAM3 as a universal, text-guided segmentation foundation model for medical imaging and highlight the importance of holistic model adaptation for achieving robust prompt-driven segmentation under severe domain shift. Code and model will be made available at https://github.com/AIM-Research-Lab/Medical-SAM3.
Can Vision-Language Models Understand Construction Workers? An Exploratory Study
As robotics become increasingly integrated into construction workflows, their ability to interpret and respond to human behavior will be essential for enabling safe and effective collaboration. Vision-Language Models (VLMs) have emerged as a promising tool for visual understanding tasks and offer the potential to recognize human behaviors without extensive domain-specific training. This capability makes them particularly appealing in the construction domain, where labeled data is scarce and monitoring worker actions and emotional states is critical for safety and productivity. In this study, we evaluate the performance of three leading VLMs, GPT-4o, Florence 2, and LLaVa-1.5, in detecting construction worker actions and emotions from static site images. Using a curated dataset of 1,000 images annotated across ten action and ten emotion categories, we assess each model's outputs through standardized inference pipelines and multiple evaluation metrics. GPT-4o consistently achieved the highest scores across both tasks, with an average F1-score of 0.756 and accuracy of 0.799 in action recognition, and an F1-score of 0.712 and accuracy of 0.773 in emotion recognition. Florence 2 performed moderately, with F1-scores of 0.497 for action and 0.414 for emotion, while LLaVa-1.5 showed the lowest overall performance, with F1-scores of 0.466 for action and 0.461 for emotion. Confusion matrix analyses revealed that all models struggled to distinguish semantically close categories, such as collaborating in teams versus communicating with supervisors. While the results indicate that general-purpose VLMs can offer a baseline capability for human behavior recognition in construction environments, further improvements, such as domain adaptation, temporal modeling, or multimodal sensing, may be needed for real-world reliability.
Approximately Optimal Global Planning for Contact-Rich SE(2) Manipulation on a Graph of Reachable Sets
If we consider human manipulation, it is clear that contact-rich manipulation (CRM)-the ability to use any surface of the manipulator to make contact with objects-can be far more efficient and natural than relying solely on end-effectors (i.e., fingertips). However, state-of-the-art model-based planners for CRM are still focused on feasibility rather than optimality, limiting their ability to fully exploit CRM's advantages. We introduce a new paradigm that computes approximately optimal manipulator plans. This approach has two phases. Offline, we construct a graph of mutual reachable sets, where each set contains all object orientations reachable from a starting object orientation and grasp. Online, we plan over this graph, effectively computing and sequencing local plans for globally optimized motion. On a challenging, representative contact-rich task, our approach outperforms a leading planner, reducing task cost by 61%. It also achieves a 91% success rate across 250 queries and maintains sub-minute query times, ultimately demonstrating that globally optimized contact-rich manipulation is now practical for real-world tasks.
comment: 17 pages, 14 figures; under submission to IEEE Transactions on Robotics
Towards Reliable ML Feature Engineering via Planning in Constrained-Topology of LLM Agents
Recent advances in code generation models have unlocked unprecedented opportunities for automating feature engineering, yet their adoption in real-world ML teams remains constrained by critical challenges: (i) the scarcity of datasets capturing the iterative and complex coding processes of production-level feature engineering, (ii) limited integration and personalization of widely used coding agents, such as CoPilot and Devin, with a team's unique tools, codebases, workflows, and practices, and (iii) suboptimal human-AI collaboration due to poorly timed or insufficient feedback. We address these challenges with a planner-guided, constrained-topology multi-agent framework that generates code for repositories in a multi-step fashion. The LLM-powered planner leverages a team's environment, represented as a graph, to orchestrate calls to available agents, generate context-aware prompts, and use downstream failures to retroactively correct upstream artifacts. It can request human intervention at critical steps, ensuring generated code is reliable, maintainable, and aligned with team expectations. On a novel in-house dataset, our approach achieves 38% and 150% improvement in the evaluation metric over manually crafted and unplanned workflows respectively. In practice, when building features for recommendation models serving over 120 million users, our approach has delivered real-world impact by reducing feature engineering cycles from three weeks to a single day.
Digital Metabolism: Decoupling Logic from Facts via Regenerative Unlearning -- Towards a Pure Neural Logic Core
Large language models (LLMs) currently suffer from parameter entanglement, where general reasoning capabilities (logic) and specific factual knowledge (facts) exist in a superposition state within shared weights. This coupling leads to the "memory wall," where computational capacity is squandered on simulating retrieval, often resulting in hallucinations. In this paper, we propose "digital metabolism," a thermodynamic hypothesis suggesting that targeted forgetting is necessary for distilling a pure neural logic core. To validate this hypothesis, we introduce the Regenerative Logic-Core Protocol (RLCP), a dual-stream training framework that renders specific factual dependencies linearly undecodable via deep-layer gradient reversal. Applying RLCP to Qwen2.5-0.5B, we observe a distinct phase transition: the model achieves near-zero retention of targeted factual associations (Accuracy < 7%) while exhibiting changes consistent with an emergent "structural crystallization" effect. Empirical analysis on GSM8K reveals that the "metabolized" model spontaneously adopts chain-of-thought (CoT) scaffolding, which we interpret as compensating for the loss of direct associative recall (shifting from $O(1)$ recall to $O(N)$ reasoning). While the causal mechanism underlying this behavioral shift requires further investigation, our findings provide a dynamic weight-level counterpart to architectural innovations like DeepSeek's Engram, paving the way for modular "Neural CPU + Symbolic RAM" architectures.
Unified Optimization of Source Weights and Transfer Quantities in Multi-Source Transfer Learning: An Asymptotic Framework
Transfer learning plays a vital role in improving model performance in data-scarce scenarios. However, naive uniform transfer from multiple source tasks may result in negative transfer, highlighting the need to properly balance the contributions of heterogeneous sources. Moreover, existing transfer learning methods typically focus on optimizing either the source weights or the amount of transferred samples, while largely neglecting the joint consideration of the other. In this work, we propose a theoretical framework, Unified Optimization of Weights and Quantities (UOWQ), which formulates multi-source transfer learning as a parameter estimation problem grounded in an asymptotic analysis of a Kullback-Leibler divergence-based generalization error measure. The proposed framework jointly determines the optimal source weights and optimal transfer quantities for each source task. Firstly, we prove that using all available source samples is always optimal once the weights are properly adjusted, and we provide a theoretical explanation for this phenomenon. Moreover, to determine the optimal transfer weights, our analysis yields closed-form solutions in the single-source setting and develops a convex optimization-based numerical procedure for the multi-source case. Building on the theoretical results, we further propose practical algorithms for both multi-source transfer learning and multi-task learning settings. Extensive experiments on real-world benchmarks, including DomainNet and Office-Home, demonstrate that UOWQ consistently outperforms strong baselines. The results validate both the theoretical predictions and the practical effectiveness of our framework.
LogicLens: Leveraging Semantic Code Graph to explore Multi Repository large systems
Understanding large software systems is a challenging task, especially when code is distributed across multiple repositories and microservices. Developers often need to reason not only about the structure of the code, but also about its domain logic and runtime behaviors, which are typically implicit and scattered. We introduce LogicLens, a reactive conversational agent that assists developers in exploring complex software systems through a semantic multi-repository graph. This graph is built in a preprocessing step by combining syntactic code analysis, via AST parsing and repository traversal, with semantic enrichment using Large Language Models (LLMs). The resulting graph captures both structural elements, such as files, classes, and functions, as well as functional abstractions like domain entities, operations, and workflows. Once the graph is constructed, LogicLens enables developers to interact with it via natural language, dynamically retrieving relevant subgraphs and answering technical or functional queries. We present the architecture of the system, discuss emergent behaviors, and evaluate its effectiveness on real-world multi-repository scenarios. We demonstrate emergent capabilities including impact analysis and symptom-based debugging that arise naturally from the semantic graph structure.
Unifying Speech Recognition, Synthesis and Conversion with Autoregressive Transformers
Traditional speech systems typically rely on separate, task-specific models for text-to-speech (TTS), automatic speech recognition (ASR), and voice conversion (VC), resulting in fragmented pipelines that limit scalability, efficiency, and cross-task generalization. In this paper, we present General-Purpose Audio (GPA), a unified audio foundation model that integrates multiple core speech tasks within a single large language model (LLM) architecture. GPA operates on a shared discrete audio token space and supports instruction-driven task induction, enabling a single autoregressive model to flexibly perform TTS, ASR, and VC without architectural modifications. This unified design combines a fully autoregressive formulation over discrete speech tokens, joint multi-task training across speech domains, and a scalable inference pipeline that achieves high concurrency and throughput. The resulting model family supports efficient multi-scale deployment, including a lightweight 0.3B-parameter variant optimized for edge and resource-constrained environments. Together, these design choices demonstrate that a unified autoregressive architecture can achieve competitive performance across diverse speech tasks while remaining viable for low-latency, practical deployment.
Optimisation of complex product innovation processes based on trend models with three-valued logic
This paper investigates complex product-innovation processes using models grounded in a set of heuristics. Each heuristic is expressed through simple trends -- increasing, decreasing, or constant -- which serve as minimally information-intensive quantifiers, avoiding reliance on numerical values or rough sets. A solution to a trend model is defined as a set of scenarios with possible transitions between them, represented by a transition graph. Any possible future or past behaviour of the system under study can thus be depicted by a path within this graph.
MHub.ai: A Simple, Standardized, and Reproducible Platform for AI Models in Medical Imaging
Artificial intelligence (AI) has the potential to transform medical imaging by automating image analysis and accelerating clinical research. However, research and clinical use are limited by the wide variety of AI implementations and architectures, inconsistent documentation, and reproducibility issues. Here, we introduce MHub$.$ai, an open-source, container-based platform that standardizes access to AI models with minimal configuration, promoting accessibility and reproducibility in medical imaging. MHub$.$ai packages models from peer-reviewed publications into standardized containers that support direct processing of DICOM and other formats, provide a unified application interface, and embed structured metadata. Each model is accompanied by publicly available reference data that can be used to confirm model operation. MHub$.$ai includes an initial set of state-of-the-art segmentation, prediction, and feature extraction models for different modalities. The modular framework enables adaptation of any model and supports community contributions. We demonstrate the utility of the platform in a clinical use case through comparative evaluation of lung segmentation models. To further strengthen transparency and reproducibility, we publicly release the generated segmentations and evaluation metrics and provide interactive dashboards that allow readers to inspect individual cases and reproduce or extend our analysis. By simplifying model use, MHub$.$ai enables side-by-side benchmarking with identical execution commands and standardized outputs, and lowers the barrier to clinical translation.
comment: 41 pages, 15 figures, 6 tables
BASIL: Bayesian Assessment of Sycophancy in LLMs
Sycophancy (overly agreeable or flattering behavior) poses a fundamental challenge for human-AI collaboration, particularly in high-stakes decision-making domains such as health, law, and education. A central difficulty in studying sycophancy in large language models (LLMs) is disentangling sycophantic belief shifts from rational changes in behavior driven by new evidence or user-provided information. Existing approaches either measure descriptive behavior changes or apply normative evaluations that rely on objective ground truth, limiting their applicability to subjective or uncertain tasks. We introduce a Bayesian probabilistic framework, grounded in behavioral economics and rational decision theory, that explicitly separates sycophancy from rational belief updating. Within this framework, we achieve three objectives: (i) a descriptive metric that measures sycophancy while controlling for rational responses to evidence; (ii) a normative metric that quantifies how sycophancy leads models astray from Bayesian-consistent belief updating; and (iii) the ability to apply both metrics in settings without ground-truth labels. Applying our framework across multiple LLMs and three uncertainty-driven tasks, we find robust evidence of sycophantic belief shifts and show that their impact on rationality depends on whether models systematically over- or under-update their beliefs. Finally, we demonstrate that a post-hoc calibration method and two fine-tuning strategies (SFT and DPO) substantially reduce Bayesian inconsistency, with particularly strong improvements under explicit sycophancy prompting.
Pareto-Grid-Guided Large Language Models for Fast and High-Quality Heuristics Design in Multi-Objective Combinatorial Optimization AAAI-26
Multi-objective combinatorial optimization problems (MOCOP) frequently arise in practical applications that require the simultaneous optimization of conflicting objectives. Although traditional evolutionary algorithms can be effective, they typically depend on domain knowledge and repeated parameter tuning, limiting flexibility when applied to unseen MOCOP instances. Recently, integration of Large Language Models (LLMs) into evolutionary computation has opened new avenues for automatic heuristic generation, using their advanced language understanding and code synthesis capabilities. Nevertheless, most existing approaches predominantly focus on single-objective tasks, often neglecting key considerations such as runtime efficiency and heuristic diversity in multi-objective settings. To bridge this gap, we introduce Multi-heuristics for MOCOP via Pareto-Grid-guided Evolution of LLMs (MPaGE), a novel enhancement of the Simple Evolutionary Multiobjective Optimization (SEMO) framework that leverages LLMs and Pareto Front Grid (PFG) technique. By partitioning the objective space into grids and retaining top-performing candidates to guide heuristic generation, MPaGE utilizes LLMs to prioritize heuristics with semantically distinct logical structures during variation, thus promoting diversity and mitigating redundancy within the population. Through extensive evaluations, MPaGE demonstrates superior performance over existing LLM-based frameworks, and achieves competitive results to traditional Multi-objective evolutionary algorithms (MOEAs), with significantly faster runtime. Our code is available at: https://github.com/langkhachhoha/MPaGE.
comment: Accepted at AAAI-26
Moonworks Lunara Aesthetic Dataset
The dataset spans diverse artistic styles, including regionally grounded aesthetics from the Middle East, Northern Europe, East Asia, and South Asia, alongside general categories such as sketch and oil painting. All images are generated using the Moonworks Lunara model and intentionally crafted to embody distinct, high-quality aesthetic styles, yielding a first-of-its-kind dataset with substantially higher aesthetic scores, exceeding even aesthetics-focused datasets, and general-purpose datasets by a larger margin. Each image is accompanied by a human-refined prompt and structured annotations that jointly describe salient objects, attributes, relationships, and stylistic cues. Unlike large-scale web-derived datasets that emphasize breadth over precision, the Lunara Aesthetic Dataset prioritizes aesthetic quality, stylistic diversity, and licensing transparency, and is released under the Apache 2.0 license to support research and unrestricted academic and commercial use.
Knowledge Homophily in Large Language Models
Large Language Models (LLMs) have been increasingly studied as neural knowledge bases for supporting knowledge-intensive applications such as question answering and fact checking. However, the structural organization of their knowledge remains unexplored. Inspired by cognitive neuroscience findings, such as semantic clustering and priming, where knowing one fact increases the likelihood of recalling related facts, we investigate an analogous knowledge homophily pattern in LLMs. To this end, we map LLM knowledge into a graph representation through knowledge checking at both the triplet and entity levels. After that, we analyze the knowledgeability relationship between an entity and its neighbors, discovering that LLMs tend to possess a similar level of knowledge about entities positioned closer in the graph. Motivated by this homophily principle, we propose a Graph Neural Network (GNN) regression model to estimate entity-level knowledgeability scores for triplets by leveraging their neighborhood scores. The predicted knowledgeability enables us to prioritize checking less well-known triplets, thereby maximizing knowledge coverage under the same labeling budget. This not only improves the efficiency of active labeling for fine-tuning to inject knowledge into LLMs but also enhances multi-hop path retrieval in reasoning-intensive question answering.
PMOA-TTS: Introducing the PubMed Open Access Textual Times Series Corpus
Clinical narratives encode temporal dynamics essential for modeling patient trajectories, yet large-scale temporally annotated resources are scarce. We introduce PMOA-TTS, a corpus of 124,699 single-patient PubMed Open Access case reports converted into structured textual timelines of (event, time) pairs using a scalable large-language-model pipeline (Llama 3.3 70B and DeepSeek-R1). The corpus comprises over 5.6 million timestamped events, alongside extracted demographics and diagnoses. Technical validation uses a clinician-curated gold set and three measures: semantic event matching, temporal concordance (c-index), and alignment error summarized with Area Under the Log-Time CDF (AULTC). We benchmark alternative prompting and model choices and provide documentation to support reproduction. PMOA-TTS enables research on timeline extraction, temporal reasoning, survival modeling and event forecasting from narrative text, and offers broad diagnostic and demographic coverage. Data and code are openly available in public repositories.
TinyMyo: a Tiny Foundation Model for Flexible EMG Signal Processing at the Edge
Objective: Surface electromyography (EMG) is a non-invasive sensing modality widely used in biomechanics, rehabilitation, prosthetic control, and human-machine interfaces. Despite decades of use, achieving robust generalization across subjects, recording systems, and acquisition protocols remains challenging. While foundation models (FMs) are gaining traction for EMG, existing approaches remain limited to single downstream tasks and lack deployability on embedded platforms. This work addresses these limitations. Methods: We present TinyMyo, a lightweight FM based on a Transformer encoder architecture. The model is pre-trained in a self-supervised manner using masked reconstruction on publicly available datasets. With only 3.6M parameters, TinyMyo is designed to support multiple downstream tasks through minimal task-specific head adaptations. Results: We demonstrate generalization across hand gesture classification, hand kinematic regression, speech production and speech recognition, with performance comparable to or surpassing the state of the art (SoA), and model size below 5M parameters. We achieve SoA results compared to previous FM-based works on the NinaPro DB5 (89.4%), UCI-EMG (97.56%), and EPN-612 (96.74%) datasets. We demonstrate the first-time deployment of an EMG FM on an ultra-low power microcontroller (GAP9), with an inference time of 0.785 s, energy of 44.91 mJ and power envelope of 57.18 mW. Conclusion: TinyMyo demonstrates that compact, self-supervised EMG FM can guarantee strong generalization across multiple downstream tasks while remaining compatible with low-power edge devices. Significance: TinyMyo is the first EMG FM for ultra-low power edge devices, enabling scalable and energy-efficient sensing for motor intent decoding, neuromuscular assessment, and biosignal driven human-machine interaction.
Dual-Uncertainty Guided Policy Learning for Multimodal Reasoning
Reinforcement learning with verifiable rewards (RLVR) has advanced reasoning capabilities in multimodal large language models. However, existing methods typically treat visual inputs as deterministic, overlooking the perceptual ambiguity inherent to the visual modality. Consequently, they fail to distinguish whether a model's uncertainty stems from complex reasoning or ambiguous perception, preventing the targeted allocation of exploration or learning signals. To address this gap, we introduce DUPL, a dual-uncertainty guided policy learning approach for multimodal RLVR that quantifies and leverages both perceptual uncertainty (via symmetric KL divergence) and output uncertainty (via policy entropy) to guide policy updates. By establishing an uncertainty-driven feedback loop and employing a dynamic branch prioritization mechanism, DUPL recalibrates the policy advantage to focus learning on states with high perceptual or decisional ambiguity, enabling effective targeted exploration beyond passive data augmentation. Implemented on top of GRPO and evaluated on six multimodal mathematical and general-domain reasoning benchmarks, DUPL improves Qwen2.5-VL 3B and 7B models, achieving accuracy gains of up to 11.2% on visual math tasks and up to 7.1% on general-domain reasoning tasks, while consistently outperforming GRPO. These results demonstrate that dual-uncertainty guided policy learning is an effective and generalizable approach for multimodal RLVR.
On the Failure of Latent State Persistence in Large Language Models
While Large Language Models (LLMs) excel in reasoning, whether they can sustain persistent latent states remains under-explored. The capacity to maintain and manipulate unexpressed, internal representations-analogous to human working memory-is a cornerstone of complex reasoning. In this paper, we formalize and quantify the "Latent State Persistence" (LSP) gap through three novel experiments. First, we utilize a Number Guessing Game, demonstrating that across independent queries, LLMs fail to allocate probability mass to a singular hidden choice, violating a fundamental probabilistic principle. Second, we employ a Yes-No Game to show that as the number of questions increases, LLMs suffer from "concept drift," leading to inevitable self-contradictions due to the lack of LSP. Finally, inspired by Mathematical Mentalism, we task models with tracking transformations on hidden variables, revealing a failure in variable binding and state evolution when the initial state is not explicitly present in the context. Collectively, these findings suggest that LLMs function as reactive post-hoc solvers rather than proactive planners with LSP. Our work provides a framework for evaluating the fidelity of internal representations and highlights a fundamental architectural divergence between autoregressive transformers and human-like cognition.
comment: 8 pages, 6 figures, 9 tables
Can LLMs Understand What We Cannot Say? Measuring Multilevel Alignment Through Abortion Stigma Across Cognitive, Interpersonal, and Structural Levels
As Large Language Models (LLMs) increasingly mediate stigmatized health decisions, their capacity to understand complex psychological phenomena remains inadequately assessed. Can LLMs understand what we cannot say? We investigate whether LLMs coherently represent abortion stigma across cognitive, interpersonal, and structural levels. We systematically tested 627 demographically diverse personas across five leading LLMs using the validated Individual Level Abortion Stigma Scale (ILAS), examining representation at cognitive (self-judgment), interpersonal (worries about judgment and isolation), and structural (community condemnation and disclosure patterns) levels. Models fail tests of genuine understanding across all dimensions. They underestimate cognitive stigma while overestimating interpersonal stigma, introduce demographic biases assigning higher stigma to younger, less educated, and non-White personas, and treat secrecy as universal despite 36% of humans reporting openness. Most critically, models produce internal contradictions: they overestimate isolation yet predict isolated individuals are less secretive, revealing incoherent representations. These patterns show current alignment approaches ensure appropriate language but not coherent understanding across levels. This work provides empirical evidence that LLMs lack coherent understanding of psychological constructs operating across multiple dimensions. AI safety in high-stakes contexts demands new approaches to design (multilevel coherence), evaluation (continuous auditing), governance and regulation (mandatory audits, accountability, deployment restrictions), and AI literacy in domains where understanding what people cannot say determines whether support helps or harms.
Explicit Abstention Knobs for Predictable Reliability in Video Question Answering
High-stakes deployment of vision-language models (VLMs) requires selective prediction, where systems abstain when uncertain rather than risk costly errors. We investigate whether confidence-based abstention provides reliable control over error rates in video question answering, and whether that control remains robust under distribution shift. Using NExT-QA and Gemini 2.0 Flash, we establish two findings. First, confidence thresholding provides mechanistic control in-distribution. Sweeping threshold epsilon produces smooth risk-coverage tradeoffs, reducing error rates f
comment: Preprint. Diagnostic study of confidence-based abstention under evidence truncation
Bayesian Teaching Enables Probabilistic Reasoning in Large Language Models
Large language models (LLMs) are increasingly used as agents that interact with users and with the world. To do so successfully, LLMs must construct representations of the world and form probabilistic beliefs about them. To provide personalized recommendations, for example, the LLM needs to infer a user's preferences from their behavior over multiple interactions. The Bayesian inference framework lays out the optimal way for an agent to update its beliefs as it receives new information. We first show that LLMs fall far short of the standard defined by the Bayesian framework. We then show that by teaching LLMs to mimic the predictions of the normative Bayesian model, we can dramatically improve their ability to update their beliefs; this ability generalizes to new tasks. We conclude that LLMs can effectively learn reasoning skills from examples and generalize those skills to new domains.
comment: Nature Communications
Collaborative Multi-Agent Test-Time Reinforcement Learning for Reasoning
Multi-agent systems have evolved into practical LLM-driven collaborators for many applications, gaining robustness from diversity and cross-checking. However, multi-agent RL (MARL) training is resource-intensive and unstable: co-adapting teammates induce non-stationarity, and rewards are often sparse and high-variance. Therefore, we introduce \textbf{Multi-Agent Test-Time Reinforcement Learning (MATTRL)}, a framework that injects structured textual experience into multi-agent deliberation at inference time. MATTRL forms a multi-expert team of specialists for multi-turn discussions, retrieves and integrates test-time experiences, and reaches consensus for final decision-making. We also study credit assignment for constructing a turn-level experience pool, then reinjecting it into the dialogue. Across challenging benchmarks in medicine, math, and education, MATTRL improves accuracy by an average of 3.67\% over a multi-agent baseline, and by 8.67\% over comparable single-agent baselines. Ablation studies examine different credit-assignment schemes and provide a detailed comparison of how they affect training outcomes. MATTRL offers a stable, effective and efficient path to distribution-shift-robust multi-agent reasoning without tuning.
comment: Work in Progress
SSFL: Discovering Sparse Unified Subnetworks at Initialization for Efficient Federated Learning
In this work, we propose Salient Sparse Federated Learning (SSFL), a streamlined approach for sparse federated learning with efficient communication. SSFL identifies a sparse subnetwork prior to training, leveraging parameter saliency scores computed separately on local client data in non-IID scenarios, and then aggregated, to determine a global mask. Only the sparse model weights are trained and communicated each round between the clients and the server. On standard benchmarks including CIFAR-10, CIFAR-100, and Tiny-ImageNet, SSFL consistently improves the accuracy sparsity trade off, achieving more than 20\% relative error reduction on CIFAR-10 compared to the strongest sparse baseline, while reducing communication costs by $2 \times$ relative to dense FL. Finally, in a real-world federated learning deployment, SSFL delivers over $2.3 \times$ faster communication time, underscoring its practical efficiency.
comment: Published in Transactions on Machine Learning Research (TMLR), 2026
Image Complexity-Aware Adaptive Retrieval for Efficient Vision-Language Models
Vision transformers in vision-language models typically use the same amount of compute for every image, regardless of whether it is simple or complex. We propose ICAR (Image Complexity-Aware Retrieval), an adaptive computation approach that enables vision transformers to use less compute for simple images whilst processing complex images through their full network depth. The key challenge is maintaining cross-modal alignment: embeddings from different processing depths must remain compatible for text matching. ICAR solves this through dual-path training that produces compatible embeddings from both the early-exit and full-depth paths. This maintains compatibility between image representations and text embeddings in the same semantic space, whether an image exits early or processes fully. Unlike existing two-stage approaches that require expensive reranking, ICAR enables direct image-text matching without additional overhead. To determine how much compute to use, we develop ConvNeXt-IC, which treats image complexity assessment as a classification task. By applying modern classifier backbones rather than specialised architectures, ConvNeXt-IC achieves state-of-the-art performance, attaining a Pearson correlation coefficient of 0.959 with human labelling whilst delivering 4.4x faster complexity prediction. Evaluated on standard benchmarks augmented with real-world web data, ICAR achieves 20% faster image encoding while maintaining category-level performance and 95% of instance-level performance, enabling sustainable scaling of vision-language systems.
comment: Camera-ready version for ECIR 2026
FiCo-ITR: bridging fine-grained and coarse-grained image-text retrieval for comparative performance analysis
In the field of Image-Text Retrieval (ITR), recent advancements have leveraged large-scale Vision-Language Pretraining (VLP) for Fine-Grained (FG) instance-level retrieval, achieving high accuracy at the cost of increased computational complexity. For Coarse-Grained (CG) category-level retrieval, prominent approaches employ Cross-Modal Hashing (CMH) to prioritise efficiency, albeit at the cost of retrieval performance. Due to differences in methodologies, FG and CG models are rarely compared directly within evaluations in the literature, resulting in a lack of empirical data quantifying the retrieval performance-efficiency tradeoffs between the two. This paper addresses this gap by introducing the \texttt{FiCo-ITR} library, which standardises evaluation methodologies for both FG and CG models, facilitating direct comparisons. We conduct empirical evaluations of representative models from both subfields, analysing precision, recall, and computational complexity across varying data scales. Our findings offer new insights into the performance-efficiency trade-offs between recent representative FG and CG models, highlighting their respective strengths and limitations. These findings provide the foundation necessary to make more informed decisions regarding model selection for specific retrieval tasks and highlight avenues for future research into hybrid systems that leverage the strengths of both FG and CG approaches.
comment: Published at the International Journal of Multimedia Information Retrieval
Small Open Models Achieve Near Parity with Large Models in Low Resource Literary Translation at a Fraction of the Cost
Literary translation has recently gained attention as a distinct and complex task in machine translation research. However, the translation by small open models remains an open problem. We contribute to this ongoing research by introducing TinyFabulist Translation Framework (TF2), a unified framework for dataset creation, fine-tuning, and evaluation in English->Romanian literary translation, centered on the creation and open release of both a compact, fine-tuned language model (TF2-12B) and large-scale synthetic parallel datasets (DS-TF2-EN-RO-3M and DS-TF2-EN-RO-15K). Building on DS-TF1-EN-3M (TF1), the largest collection of synthetic English fables to date, we address the need for rich, high-quality literary datasets in low-resource languages such as Romanian. Our pipeline first generates 15k high-quality Romanian reference translations from the TF1 pool using a high-performing LLM. We then apply a two-stage fine-tuning process to a 12B-parameter open-weight model: (i) instruction tuning to capture genre-specific narrative style, and (ii) adapter compression for efficient deployment. Evaluation combines corpus-level BLEU with a five-dimension LLM-based rubric (accuracy, fluency, coherence, style, and cultural adaptation) to provide a nuanced assessment of translation quality. Results show that our fine-tuned model achieves strong fluency and adequacy, narrowing the gap to top-performing proprietary models under automated and human-anchored evaluation, while being open, accessible, and significantly more cost-effective. Alongside the fine-tuned model and both datasets, we publicly release all scripts and evaluation prompts. TF2 thus provides an end-to-end, reproducible pipeline for research on cost-efficient translation, cross-lingual narrative generation, and the broad adoption of open models for culturally significant literary content in low-resource settings.
comment: 25 pages, 8 figures, includes datasets and models released on Hugging Face
Machine Unlearning Fails to Remove Data Poisoning Attacks ICLR 2025
We revisit the efficacy of several practical methods for approximate machine unlearning developed for large-scale deep learning. In addition to complying with data deletion requests, one often-cited potential application for unlearning methods is to remove the effects of poisoned data. We experimentally demonstrate that, while existing unlearning methods have been demonstrated to be effective in a number of settings, they fail to remove the effects of data poisoning across a variety of types of poisoning attacks (indiscriminate, targeted, and a newly-introduced Gaussian poisoning attack) and models (image classifiers and LLMs); even when granted a relatively large compute budget. In order to precisely characterize unlearning efficacy, we introduce new evaluation metrics for unlearning based on data poisoning. Our results suggest that a broader perspective, including a wider variety of evaluations, are required to avoid a false sense of confidence in machine unlearning procedures for deep learning without provable guarantees. Moreover, while unlearning methods show some signs of being useful to efficiently remove poisoned data without having to retrain, our work suggests that these methods are not yet ``ready for prime time,'' and currently provide limited benefit over retraining.
comment: Published at ICLR 2025, Made author ordering consistent with ICLR'25 submission
Five Years of SciCap: What We Learned and Future Directions for Scientific Figure Captioning AAAI
Between 2021 and 2025, the SciCap project grew from a small seed-funded idea at The Pennsylvania State University (Penn State) into one of the central efforts shaping the scientific figure-captioning landscape. Supported by a Penn State seed grant, Adobe, and the Alfred P. Sloan Foundation, what began as our attempt to test whether domain-specific training, which was successful in text models like SciBERT, could also work for figure captions expanded into a multi-institution collaboration. Over these five years, we curated, released, and continually updated a large collection of figure-caption pairs from arXiv papers, conducted extensive automatic and human evaluations on both generated and author-written captions, navigated the rapid rise of large language models (LLMs), launched annual challenges, and built interactive systems that help scientists write better captions. In this piece, we look back at the first five years of SciCap and summarize the key technical and methodological lessons we learned. We then outline five major unsolved challenges and propose directions for the next phase of research in scientific figure captioning.
comment: Accepted to the 5th Annual AAAI Workshop on AI to Accelerate Science and Engineering (AI2ASE 2026). SciCap Website: http://scicap.ai/
Symmetrization Weighted Binary Cross-Entropy: Modeling Perceptual Asymmetry for Human-Consistent Neural Edge Detection
Edge detection (ED) is a fundamental perceptual process in computer vision, forming the structural basis for high-level reasoning tasks such as segmentation, recognition, and scene understanding. Despite substantial progress achieved by deep neural networks, most ED models attain high numerical accuracy but fail to produce visually sharp and perceptually consistent edges, thereby limiting their reliability in intelligent vision systems. To address this issue, this study introduces the \textit{Symmetrization Weighted Binary Cross-Entropy (SWBCE)} loss, a perception-inspired formulation that extends the conventional WBCE by incorporating prediction-guided symmetry. SWBCE explicitly models the perceptual asymmetry in human edge recognition, wherein edge decisions require stronger evidence than non-edge ones, aligning the optimization process with human perceptual discrimination. The resulting symmetric learning mechanism jointly enhances edge recall and suppresses false positives, achieving a superior balance between quantitative accuracy and perceptual fidelity. Extensive experiments across multiple benchmark datasets and representative ED architectures demonstrate that SWBCE can outperform existing loss functions in both numerical evaluation and visual quality. Particularly with the HED-EES model, the SSIM can be improved by about 15% on BRIND, and in all experiments, training by SWBCE consistently obtains the best perceptual results. Beyond edge detection, the proposed perceptual loss offers a generalizable optimization principle for soft computing and neural learning systems, particularly in scenarios where asymmetric perceptual reasoning plays a critical role.
comment: 39 pages
Semi-Tensor-Product Based Convolutional Neural Networks
The semi-tensor product of vectors generalizes the conventional inner product, enabling algebraic operations between vectors of different dimensions. Building upon this foundation, we introduce a domain-based convolutional product and integrate it with the STP to formulate a padding-free convolutional operation. This new operation inherently avoids zero or other artificial padding, thereby eliminating redundant information and boundary artifacts commonly present in conventional convolutional neural networks. Based on this operation, we further develop an STP-based CNN framework that extends convolutional computation to irregular and cross-dimensional data domains. Applications to image processing and third-order signal identification demonstrate the proposed method's effectiveness in handling irregular, incomplete, and high-dimensional data without the distortions caused by padding.
Towards Understanding Deep Learning Model in Image Recognition via Coverage Test
Deep neural networks (DNNs) play a crucial role in the field of artificial intelligence, and their security-related testing has been a prominent research focus. By inputting test cases, the behavior of models is examined for anomalies, and coverage metrics are utilized to determine the extent of neurons covered by these test cases. With the widespread application and advancement of DNNs, different types of neural behaviors have garnered attention, leading to the emergence of various coverage metrics for neural networks. However, there is currently a lack of empirical research on these coverage metrics, specifically in analyzing the relationships and patterns between model depth, configuration information, and neural network coverage. This paper aims to investigate the relationships and patterns of four coverage metrics: primary functionality, boundary, hierarchy, and structural coverage. A series of empirical experiments were conducted, selecting LeNet, VGG, and ResNet as different DNN architectures, along with 10 models of varying depths ranging from 5 to 54 layers, to compare and study the relationships between different depths, configuration information, and various neural network coverage metrics. Additionally, an investigation was carried out on the relationships between modified decision/condition coverage and dataset size. Finally, three potential future directions are proposed to further contribute to the security testing of DNN Models.
Parallel Test-Time Scaling for Latent Reasoning Models
Parallel test-time scaling (TTS) is a pivotal approach for enhancing large language models (LLMs), typically by sampling multiple token-based chains-of-thought in parallel and aggregating outcomes through voting or search. Recent advances in latent reasoning, where intermediate reasoning unfolds in continuous vector spaces, offer a more efficient alternative to explicit Chain-of-Thought, yet whether such latent models can similarly benefit from parallel TTS remains open, mainly due to the absence of sampling mechanisms in continuous space, and the lack of probabilistic signals for advanced trajectory aggregation. This work enables parallel TTS for latent reasoning models by addressing the above issues. For sampling, we introduce two uncertainty-inspired stochastic strategies: Monte Carlo Dropout and Additive Gaussian Noise. For aggregation, we design a Latent Reward Model (LatentRM) trained with step-wise contrastive objective to score and guide latent reasoning. Extensive experiments and visualization analyses show that both sampling strategies scale effectively with compute and exhibit distinct exploration dynamics, while LatentRM enables effective trajectory selection. Together, our explorations open a new direction for scalable inference in continuous spaces. Code and checkpoints released at https://github.com/ModalityDance/LatentTTS
User Perceptions vs. Proxy LLM Judges: Privacy and Helpfulness in LLM Responses to Privacy-Sensitive Scenarios
Large language models (LLMs) are rapidly being adopted for tasks like drafting emails, summarizing meetings, and answering health questions. In these settings, users may need to share private information (e.g., contact details, health records). To evaluate LLMs' ability to identify and redact such information, prior work introduced real-life, scenario-based benchmarks (e.g., ConfAIde, PrivacyLens) and found that LLMs can leak private information in complex scenarios. However, these evaluations relied on proxy LLMs to judge the helpfulness and privacy-preservation quality of LLM responses, rather than directly measuring users' perceptions. To understand how users perceive the helpfulness and privacy-preservation quality of LLM responses to privacy-sensitive scenarios, we conducted a user study ($n=94$) using 90 PrivacyLens scenarios. We found that users had low agreement with each other when evaluating identical LLM responses. In contrast, five proxy LLMs reached high agreement, yet each proxy LLM had low correlation with users' evaluations. These results indicate that proxy LLMs cannot accurately estimate users' wide range of perceptions of utility and privacy in privacy-sensitive scenarios. We discuss the need for more user-centered studies to measure LLMs' ability to help users while preserving privacy, and for improving alignment between LLMs and users in estimating perceived privacy and utility.
UEChecker: Detecting Unchecked External Call Vulnerabilities in DApps via Graph Analysis
The increasing number of attacks on the contract layer of DApps has resulted in economic losses amounting to $66 billion. Vulnerabilities arise when contracts interact with external protocols without verifying the results of the calls, leading to exploit entry points such as flash loan attacks and reentrancy attacks. In this paper, we propose UEChecker, a deep learning-based tool that utilizes a call graph and a Graph Convolutional Network to detect unchecked external call vulnerabilities. We design the following components: An edge prediction module that reconstructs the feature representation of nodes and edges in the call graph; A node aggregation module that captures structural information from both the node itself and its neighbors, thereby enhancing feature representation between nodes and improving the model's understanding of the global graph structure; A Conformer Block module that integrates multi-head attention, convolutional modules, and feedforward neural networks to more effectively capture dependencies of different scales within the call graph, extending beyond immediate neighbors and enhancing the performance of vulnerability detection. Finally, we combine these modules with Graph Convolutional Network to detect unchecked external call vulnerabilities. By auditing the smart contracts of 608 DApps, our results show that our tool achieves an accuracy of 87.59% in detecting unchecked external call vulnerabilities. Furthermore, we compare our tool with GAT, LSTM, and GCN baselines, and in the comparison experiments, UEChecker consistently outperforms these models in terms of accuracy.
Bootstrap Off-policy with World Model NeurIPS 2025
Online planning has proven effective in reinforcement learning (RL) for improving sample efficiency and final performance. However, using planning for environment interaction inevitably introduces a divergence between the collected data and the policy's actual behaviors, degrading both model learning and policy improvement. To address this, we propose BOOM (Bootstrap Off-policy with WOrld Model), a framework that tightly integrates planning and off-policy learning through a bootstrap loop: the policy initializes the planner, and the planner refines actions to bootstrap the policy through behavior alignment. This loop is supported by a jointly learned world model, which enables the planner to simulate future trajectories and provides value targets to facilitate policy improvement. The core of BOOM is a likelihood-free alignment loss that bootstraps the policy using the planner's non-parametric action distribution, combined with a soft value-weighted mechanism that prioritizes high-return behaviors and mitigates variability in the planner's action quality within the replay buffer. Experiments on the high-dimensional DeepMind Control Suite and Humanoid-Bench show that BOOM achieves state-of-the-art results in both training stability and final performance. The code is accessible at https://github.com/molumitu/BOOM_MBRL.
comment: NeurIPS 2025
CoMAT: Chain of Mathematically Annotated Thought Improves Mathematical Reasoning
Mathematical reasoning remains a significant challenge for large language models (LLMs), despite progress in prompting techniques such as Chain-of-Thought (CoT). We present **Chain of Mathematically Annotated Thought (CoMAT)**, which enhances reasoning through two stages: *Symbolic Conversion* (converting natural language queries into symbolic form) and *Reasoning Execution* (deriving answers from symbolic representations). CoMAT operates entirely with a single LLM and without external solvers. Across four LLMs, CoMAT outperforms traditional CoT on six out of seven benchmarks, achieving gains of 4.48% on MMLU-Redux (MATH) and 4.58% on GaoKao MCQ. In addition to improved performance, CoMAT ensures faithfulness and verifiability, offering a transparent reasoning process for complex mathematical tasks
comment: 9 pages, 12 figures
Text Classification Under Class Distribution Shift: A Survey
The basic underlying assumption of machine learning (ML) models is that the training and test data are sampled from the same distribution. However, in daily practice, this assumption is often broken, i.e. the distribution of the test data changes over time, which hinders the application of conventional ML models. One domain where the distribution shift naturally occurs is text classification, since people always find new topics to discuss. To this end, we survey research articles studying open-set text classification and related tasks. We divide the methods in this area based on the constraints that define the kind of distribution shift and the corresponding problem formulation, i.e. learning with the Universum, zero-shot learning, and open-set learning. We next discuss the predominant mitigation approaches for each problem setup. We further identify several future work directions, aiming to push the boundaries beyond the state of the art. Finally, we explain how continual learning can solve many of the issues caused by the shifting class distribution. We maintain a list of relevant papers at https://github.com/Eduard6421/Open-Set-Survey.
comment: Accepted at EACL 2026 (main)
Robust and Efficient Zeroth-Order LLM Fine-Tuning via Adaptive Bayesian Subspace Optimizer
Fine-tuning large language models (LLMs) with zeroth-order (ZO) optimization reduces memory by approximating gradients through function evaluations. However, existing methods essentially perform updates in a one-dimensional space, and suffer from collapse or substantial performance degradation under low-precision training. We introduce BSZO, an adaptive \textbf{B}ayesian \textbf{S}ubspace \textbf{Z}eroth-Order \textbf{O}ptimizer, which applies Kalman filtering to combine finite-difference information across multiple perturbation directions within a subspace. By treating each finite-difference measurement as a noisy observation, BSZO builds a posterior distribution over the subspace-projected gradient and updates it through Bayesian inference, with a residual-based adaptive mechanism to adapt to noise variations. Theoretical analysis shows that BSZO improves the convergence rate by a factor of $k/γ$ compared to standard ZO methods. Experiments on RoBERTa, Mistral, and OPT models show that BSZO outperforms the baselines across various tasks, achieving up to 6.67\% absolute average improvement on OPT-13B while remaining robust under fp16/bf16 precision and keeping memory usage close to inference-only baselines (1.00$\times$--1.08$\times$ of MeZO).
comment: 23 pages, 2 figures, 5 tables
A reduced-order derivative-informed neural operator for subsurface fluid-flow
Neural operators have emerged as cost-effective surrogates for expensive fluid-flow simulators, particularly in computationally intensive tasks such as permeability inversion from time-lapse seismic data, and uncertainty quantification. In these applications, the fidelity of the surrogate's gradients with respect to system parameters is crucial, as the accuracy of downstream tasks, such as optimization and Bayesian inference, relies directly on the quality of the derivative information. Recent advances in physics-informed methods have leveraged derivative information to improve surrogate accuracy. However, incorporating explicit Jacobians can become computationally prohibitive, as the complexity typically scales quadratically with the number of input parameters. To address this limitation, we propose DeFINO (Derivative-based Fisher-score Informed Neural Operator), a reduced-order, derivative-informed training framework. DeFINO integrates Fourier neural operators (FNOs) with a novel derivative-based training strategy guided by the Fisher Information Matrix (FIM). By projecting Jacobians onto dominant eigen-directions identified by the FIM, DeFINO captures critical sensitivity information directly informed by observational data, significantly reducing computational expense. We validate DeFINO through synthetic experiments in the context of subsurface multi-phase fluid-flow, demonstrating improvements in gradient accuracy while maintaining robust forward predictions of underlying fluid dynamics. These results highlight DeFINO's potential to offer practical, scalable solutions for inversion problems in complex real-world scenarios, all at substantially reduced computational cost.
Bias Dynamics in BabyLMs: Towards a Compute-Efficient Sandbox for Democratising Pre-Training Debiasing
Pre-trained language models (LMs) have, over the last few years, grown substantially in both societal adoption and training costs. This rapid growth in size has constrained progress in understanding and mitigating their biases. Since re-training LMs is prohibitively expensive, most debiasing work has focused on post-hoc or masking-based strategies, which often fail to address the underlying causes of bias. In this work, we seek to democratise pre-model debiasing research by using low-cost proxy models. Specifically, we investigate BabyLMs, compact BERT-like models trained on small and mutable corpora that can approximate bias acquisition and learning dynamics of larger models. We show that BabyLMs display closely aligned patterns of intrinsic bias formation and performance development compared to standard BERT models, despite their drastically reduced size. Furthermore, correlations between BabyLMs and BERT hold across multiple intra-model and post-model debiasing methods. Leveraging these similarities, we conduct pre-model debiasing experiments with BabyLMs, replicating prior findings and presenting new insights regarding the influence of gender imbalance and toxicity on bias formation. Our results demonstrate that BabyLMs can serve as an effective sandbox for large-scale LMs, reducing pre-training costs from over 500 GPU-hours to under 30 GPU-hours. This provides a way to democratise pre-model debiasing research and enables faster, more accessible exploration of methods for building fairer LMs.
comment: 21 pages, 18 figures
Advancing Safe Mechanical Ventilation Using Offline RL With Hybrid Actions and Clinically Aligned Rewards AAAI-26
Invasive mechanical ventilation (MV) is a life-sustaining therapy commonly used in the intensive care unit (ICU) for patients with severe and acute conditions. These patients frequently rely on MV for breathing. Given the high risk of death in such cases, optimal MV settings can reduce mortality, minimize ventilator-induced lung injury, shorten ICU stays, and ease the strain on healthcare resources. However, optimizing MV settings remains a complex and error-prone process due to patient-specific variability. While Offline Reinforcement Learning (RL) shows promise for optimizing MV settings, current methods struggle with the hybrid (continuous and discrete) nature of MV settings. Discretizing continuous settings leads to exponential growth in the action space, which limits the number of optimizable settings. Converting the predictions back to continuous can cause a distribution shift, compromising safety and performance. To address this challenge, in the IntelliLung project, we are developing an AI-based approach where we constrain the action space and employ factored action critics. This approach allows us to scale to six optimizable settings compared to 2-3 in previous studies. We adapt SOTA offline RL algorithms to operate directly on hybrid action spaces, avoiding the pitfalls of discretization. We also introduce a clinically grounded reward function based on ventilator-free days and physiological targets. Using multiobjective optimization for reward selection, we show that this leads to a more equitable consideration of all clinically relevant objectives. Notably, we develop a system in close collaboration with healthcare professionals that is aligned with real-world clinical objectives and designed with future deployment in mind.
comment: Accepted to AAAI-26
Lil: Less is Less When Applying Post-Training Sparse-Attention Algorithms in Long-Decode Stage
Large language models (LLMs) demonstrate strong capabilities across a wide range of complex tasks and are increasingly deployed at scale, placing significant demands on inference efficiency. Prior work typically decomposes inference into prefill and decode stages, with the decode stage dominating total latency. To reduce time and memory complexity in the decode stage, a line of work introduces sparse-attention algorithms. In this paper, we show, both empirically and theoretically, that sparse attention can paradoxically increase end-to-end complexity: information loss often induces significantly longer sequences, a phenomenon we term ``Less is Less'' (Lil). To mitigate the Lil problem, we propose an early-stopping algorithm that detects the threshold where information loss exceeds information gain during sparse decoding. Our early-stopping algorithm reduces token consumption by up to 90% with a marginal accuracy degradation of less than 2% across reasoning-intensive benchmarks.
Compartmentalised Agentic Reasoning for Clinical NLI
Large language models can produce fluent judgments for clinical natural language inference, yet they frequently fail when the decision requires the correct inferential schema rather than surface matching. We introduce CARENLI, a compartmentalised agentic framework that routes each premise-statement pair to a reasoning family and then applies a specialised solver with explicit verification and targeted refinement. We evaluate on an expanded CTNLI benchmark of 200 instances spanning four reasoning families: Causal Attribution, Compositional Grounding, Epistemic Verification, and Risk State Abstraction. Across four contemporary backbone models, CARENLI improves mean accuracy from about 23% with direct prompting to about 57%, a gain of roughly 34 points, with the largest benefits on structurally demanding reasoning types. These results support compartmentalisation plus verification as a practical route to more reliable and auditable clinical inference.
Robot-R1: Reinforcement Learning for Enhanced Embodied Reasoning in Robotics
Large Vision-Language Models (LVLMs) have recently shown great promise in advancing robotics by combining embodied reasoning with robot control. A common approach involves training on embodied reasoning tasks related to robot control using Supervised Fine-Tuning (SFT). However, SFT datasets are often heuristically constructed and not explicitly optimized for improving robot control. Furthermore, SFT often leads to issues such as catastrophic forgetting and reduced generalization performance. To address these limitations, we introduce Robot-R1, a novel framework that leverages reinforcement learning to enhance embodied reasoning specifically for robot control. Robot-R1 learns to predict the next keypoint state required for task completion, conditioned on the current scene image and environment metadata derived from expert demonstrations. Inspired by the DeepSeek-R1 learning approach, Robot-R1 samples reasoning-based responses and reinforces those that lead to more accurate predictions. To rigorously evaluate Robot-R1, we also introduce a new benchmark that demands the diverse embodied reasoning capabilities for the task. Our experiments show that models trained with Robot-R1 outperform SFT methods on embodied reasoning tasks. Despite having only 7B parameters, Robot-R1 even surpasses GPT-4o on reasoning tasks related to low-level action control, such as spatial and movement reasoning.
comment: 29 pages, 13 figures
A Study of Commonsense Reasoning over Visual Object Properties
Inspired by human categorization, object property reasoning involves identifying and recognizing low-level details and higher-level abstractions. While current visual question answering (VQA) studies consider multiple object properties, such as size, they typically blend perception and reasoning and lack representativeness in terms of reasoning and image categories, making it unclear whether and how vision-language models (VLMs) abstract and reason over depicted objects. To this end, we introduce a systematic evaluation framework comprising images of three representative types, three reasoning levels of increasing complexity, and four object property dimensions, informed by prior work on common sense. We develop a procedure to instantiate this framework in two VQA object reasoning benchmarks: OPTICS-CNT, comprising 360 images paired with 1,080 multi-level, count-based questions, and OPTICS-CMP, with 2.1k comparison questions. Experiments with 12 state-of-the-art VLMs in zero-shot settings reveal significant limitations relative to humans, with the best-performing model achieving below 40% counting and 70% comparison accuracy. VLMs struggle particularly with photographic images, counterfactual reasoning, physical and functional properties, and higher counts. We make the OPTICS benchmark data and code available to support future work on scalable benchmarking methods, generalized annotation guidelines, and advanced reasoning VLMs.
Human-AI Experience in Integrated Development Environments: A Systematic Literature Review
The integration of Artificial Intelligence (AI) into Integrated Development Environments (IDEs) is reshaping software development, fundamentally altering how developers interact with their tools. This shift marks the emergence of Human-AI Experience in Integrated Development Environment (in-IDE HAX), a field that explores the evolving dynamics of Human-Computer Interaction in AI-assisted coding environments. Despite rapid adoption, research on in-IDE HAX remains fragmented, which highlights the need for a unified overview of current practices, challenges, and opportunities. To provide a structured overview of existing research, we conduct a systematic literature review of 90 studies, summarizing current findings and outlining areas for further investigation. We organize key insights from reviewed studies into three aspects: Impact, Design, and Quality of AI-based systems inside IDEs. Impact findings show that AI-assisted coding enhances developer productivity but also introduces challenges, such as verification overhead and over-reliance. Design studies show that effective interfaces surface context, provide explanations and transparency of suggestion, and support user control. Quality studies document risks in correctness, maintainability, and security. For future research, priorities include productivity studies, design of assistance, and audit of AI-generated code. The agenda calls for larger and longer evaluations, stronger audit and verification assets, broader coverage across the software life cycle, and adaptive assistance under user control.
comment: Accepted to Empirical Software Engineering (EMSE) special issue Human-Centered AI for Software Engineering (HumanAISE), 37 pages, 7 figure
LittleBit: Ultra Low-Bit Quantization via Latent Factorization NeurIPS 2025
Deploying large language models (LLMs) often faces challenges from substantial memory and computational costs. Quantization offers a solution, yet performance degradation in the sub-1-bit regime remains particularly difficult. This paper introduces LittleBit, a novel method for extreme LLM compression. It targets levels like 0.1 bits per weight (BPW), achieving nearly 31$\times$ memory reduction, e.g., Llama2-13B to under 0.9 GB. LittleBit represents weights in a low-rank form using latent matrix factorization, subsequently binarizing these factors. To counteract information loss from this extreme precision, it integrates a multi-scale compensation mechanism. This includes row, column, and an additional latent dimension that learns per-rank importance. Two key contributions enable effective training: Dual Sign-Value-Independent Decomposition (Dual-SVID) for quantization-aware training (QAT) initialization, and integrated Residual Compensation to mitigate errors. Extensive experiments confirm LittleBit's superiority in sub-1-bit quantization: e.g., its 0.1 BPW performance on Llama2-7B surpasses the leading method's 0.7 BPW. LittleBit establishes a new, viable size-performance trade-off--unlocking a potential 11.6$\times$ speedup over FP16 at the kernel level--and makes powerful LLMs practical for resource-constrained environments. Our code can be found at https://github.com/SamsungLabs/LittleBit.
comment: Accepted to NeurIPS 2025. Banseok Lee and Dongkyu Kim contributed equally
GraLoRA: Granular Low-Rank Adaptation for Parameter-Efficient Fine-Tuning NeurIPS 2025
Low-Rank Adaptation (LoRA) is a popular method for parameter-efficient fine-tuning (PEFT) of generative models, valued for its simplicity and effectiveness. Despite recent enhancements, LoRA still suffers from a fundamental limitation: overfitting when the bottleneck is widened. It performs best at ranks 32-64, yet its accuracy stagnates or declines at higher ranks, still falling short of full fine-tuning (FFT) performance. We identify the root cause as LoRA's structural bottleneck, which introduces gradient entanglement to the unrelated input channels and distorts gradient propagation. To address this, we introduce a novel structure, Granular Low-Rank Adaptation (GraLoRA) that partitions weight matrices into sub-blocks, each with its own low-rank adapter. With negligible computational or storage cost, GraLoRA overcomes LoRA's limitations, effectively increases the representational capacity, and more closely approximates FFT behavior. Experiments on code generation and commonsense reasoning benchmarks show that GraLoRA consistently outperforms LoRA and other baselines, achieving up to +8.5% absolute gain in Pass@1 on HumanEval+. These improvements hold across model sizes and rank settings, making GraLoRA a scalable and robust solution for PEFT. Code, data, and scripts are available at https://github.com/SqueezeBits/GraLoRA.git
comment: 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
TranslateGemma Technical Report
We present TranslateGemma, a suite of open machine translation models based on the Gemma 3 foundation models. To enhance the inherent multilingual capabilities of Gemma 3 for the translation task, we employ a two-stage fine-tuning process. First, supervised fine-tuning is performed using a rich mixture of high-quality large-scale synthetic parallel data generated via state-of-the-art models and human-translated parallel data. This is followed by a reinforcement learning phase, where we optimize translation quality using an ensemble of reward models, including MetricX-QE and AutoMQM, targeting translation quality. We demonstrate the effectiveness of TranslateGemma with human evaluation on the WMT25 test set across 10 language pairs and with automatic evaluation on the WMT24++ benchmark across 55 language pairs. Automatic metrics show consistent and substantial gains over the baseline Gemma 3 models across all sizes. Notably, smaller TranslateGemma models often achieve performance comparable to larger baseline models, offering improved efficiency. We also show that TranslateGemma models retain strong multimodal capabilities, with enhanced performance on the Vistra image translation benchmark. The release of the open TranslateGemma models aims to provide the research community with powerful and adaptable tools for machine translation.
3D Wavelet-Based Structural Priors for Controlled Diffusion in Whole-Body Low-Dose PET Denoising
Low-dose Positron Emission Tomography (PET) imaging reduces patient radiation exposure but suffers from increased noise that degrades image quality and diagnostic reliability. Although diffusion models have demonstrated strong denoising capability, their stochastic nature makes it challenging to enforce anatomically consistent structures, particularly in low signal-to-noise regimes and volumetric whole-body imaging. We propose Wavelet-Conditioned ControlNet (WCC-Net), a fully 3D diffusion-based framework that introduces explicit frequency-domain structural priors via wavelet representations to guide volumetric PET denoising. By injecting wavelet-based structural guidance into a frozen pretrained diffusion backbone through a lightweight control branch, WCC-Net decouples anatomical structure from noise while preserving generative expressiveness and 3D structural continuity. Extensive experiments demonstrate that WCC-Net consistently outperforms CNN-, GAN-, and diffusion-based baselines. On the internal 1/20-dose test set, WCC-Net improves PSNR by +1.21 dB and SSIM by +0.008 over a strong diffusion baseline, while reducing structural distortion (GMSD) and intensity error (NMAE). Moreover, WCC-Net generalizes robustly to unseen dose levels (1/50 and 1/4), achieving superior quantitative performance and improved volumetric anatomical consistency.
comment: 10 pages
Fast Mining and Dynamic Time-to-Event Prediction over Multi-sensor Data Streams
Given real-time sensor data streams obtained from machines, how can we continuously predict when a machine failure will occur? This work aims to continuously forecast the timing of future events by analyzing multi-sensor data streams. A key characteristic of real-world data streams is their dynamic nature, where the underlying patterns evolve over time. To address this, we present TimeCast, a dynamic prediction framework designed to adapt to these changes and provide accurate, real-time predictions of future event time. Our proposed method has the following properties: (a) Dynamic: it identifies the distinct time-evolving patterns (i.e., stages) and learns individual models for each, enabling us to make adaptive predictions based on pattern shifts. (b) Practical: it finds meaningful stages that capture time-varying interdependencies between multiple sensors and improve prediction performance; (c) Scalable: our algorithm scales linearly with the input size and enables online model updates on data streams. Extensive experiments on real datasets demonstrate that TimeCast provides higher prediction accuracy than state-of-the-art methods while finding dynamic changes in data streams with a great reduction in computational time.
comment: Accepted by KDD 2026
Machine Learning and Theory Ladenness -- A Phenomenological Account
We provide an analysis of theory ladenness in machine learning in science, where "theory", that we call "domain theory", refers to the domain knowledge of the scientific discipline where ML is used. By constructing an account of ML models based on a comparison with phenomenological models, we show, against recent trends in philosophy of science, that ML model-building is mostly indifferent to domain theory, even if the model remains theory laden in a weak sense, which we call theory infection. These claims, we argue, have far-reaching consequences for the transferability of ML across scientific disciplines, and shift the priorities of the debate on theory ladenness in ML from descriptive to normative.
comment: 29 pages with reference
Distributionally Robust Causal Abstractions
Causal Abstraction (CA) theory provides a principled framework for relating causal models that describe the same system at different levels of granularity while ensuring interventional consistency between them. Recently, several approaches for learning CAs have been proposed, but all assume fixed and well-specified exogenous distributions, making them vulnerable to environmental shifts and misspecification. In this work, we address these limitations by introducing the first class of distributionally robust CAs and their associated learning algorithms. The latter cast robust causal abstraction learning as a constrained min-max optimization problem with Wasserstein ambiguity sets. We provide theoretical results, for both empirical and Gaussian environments, leading to principled selection of the level of robustness via the radius of these sets. Furthermore, we present empirical evidence across different problems and CA learning methods, demonstrating our framework's robustness not only to environmental shifts but also to structural model and intervention mapping misspecification.
LaM-SLidE: Latent Space Modeling of Spatial Dynamical Systems via Linked Entities
Generative models are spearheading recent progress in deep learning, showcasing strong promise for trajectory sampling in dynamical systems as well. However, whereas latent space modeling paradigms have transformed image and video generation, similar approaches are more difficult for most dynamical systems. Such systems -- from chemical molecule structures to collective human behavior -- are described by interactions of entities, making them inherently linked to connectivity patterns, entity conservation, and the traceability of entities over time. Our approach, LaM-SLidE (Latent Space Modeling of Spatial Dynamical Systems via Linked Entities), bridges the gap between: (1) keeping the traceability of individual entities in a latent system representation, and (2) leveraging the efficiency and scalability of recent advances in image and video generation, where pre-trained encoder and decoder enable generative modeling directly in latent space. The core idea of LaM-SLidE is the introduction of identifier representations (IDs) that enable the retrieval of entity properties and entity composition from latent system representations, thus fostering traceability. Experimentally, across different domains, we show that LaM-SLidE performs favorably in terms of speed, accuracy, and generalizability. Code is available at https://github.com/ml-jku/LaM-SLidE .
comment: Project page: https://ml-jku.github.io/LaM-SLidE/
Are Language Models Efficient Reasoners? A Perspective from Logic Programming NeurIPS 2025
Modern language models (LMs) exhibit strong deductive reasoning capabilities, yet standard evaluations emphasize correctness while overlooking a key aspect of reasoning: efficiency. In real-world reasoning scenarios, much of the available information is irrelevant, and effective deductive inference requires identifying and ignoring such distractions. We propose a framework for assessing LM reasoning efficiency through the lens of logic programming, introducing a simple method to align proofs written in natural language -- as generated by an LM -- with shortest proofs found by executing the logic program. Efficiency is quantified by measuring how well a model avoids unnecessary inference. Empirically, we construct a dataset of math word problems injected with various number of irrelevant axioms that vary in semantic overlap with the goal theorem. We find that current LMs show marked accuracy declines under such conditions -- even with minimal, domain-consistent distractions -- and the proofs they generate frequently exhibit detours through irrelevant inferences.
comment: NeurIPS 2025
Learning Without Augmenting: Unsupervised Time Series Representation Learning via Frame Projections NeurIPS
Self-supervised learning (SSL) has emerged as a powerful paradigm for learning representations without labeled data. Most SSL approaches rely on strong, well-established, handcrafted data augmentations to generate diverse views for representation learning. However, designing such augmentations requires domain-specific knowledge and implicitly imposes representational invariances on the model, which can limit generalization. In this work, we propose an unsupervised representation learning method that replaces augmentations by generating views using orthonormal bases and overcomplete frames. We show that embeddings learned from orthonormal and overcomplete spaces reside on distinct manifolds, shaped by the geometric biases introduced by representing samples in different spaces. By jointly leveraging the complementary geometry of these distinct manifolds, our approach achieves superior performance without artificially increasing data diversity through strong augmentations. We demonstrate the effectiveness of our method on nine datasets across five temporal sequence tasks, where signal-specific characteristics make data augmentations particularly challenging. Without relying on augmentation-induced diversity, our method achieves performance gains of up to 15--20\% over existing self-supervised approaches. Source code: https://github.com/eth-siplab/Learning-with-FrameProjections
comment: Published at the Conference on Neural Information Processing Systems (NeurIPS) 2025
Multi-Personality Generation of LLMs at Decoding-time
Multi-personality generation for LLMs, enabling simultaneous embodiment of multiple personalization attributes, is a fundamental challenge. Existing retraining-based approaches are costly and poorly scalable, while decoding-time methods often rely on external models or heuristics, limiting flexibility and robustness. In this paper, we propose a novel Multi-Personality Generation (MPG) framework under the decoding-time combination paradigm. It flexibly controls multi-personality without relying on scarce multi-dimensional models or extra training, leveraging implicit density ratios in single-dimensional models as a "free lunch" to reformulate the task as sampling from a target strategy aggregating these ratios. To implement MPG efficiently, we design Speculative Chunk-level based Rejection sampling (SCR), which generates responses in chunks and parallelly validates them via estimated thresholds within a sliding window. This significantly reduces computational overhead while maintaining high-quality generation. Experiments on MBTI personality and Role-Playing demonstrate the effectiveness of MPG, showing improvements up to 16%-18%. Code and data are available at https://github.com/Libra117/MPG .
comment: Accepted by WSDM 2026
Judge Q: Trainable Queries for Optimized Information Retention in KV Cache Eviction AAAI 2026
Large language models (LLMs) utilize key-value (KV) cache to store historical information during sequence processing. The size of KV cache grows linearly as the length of the sequence extends, which seriously affects memory usage and decoding efficiency. Current methods for KV cache eviction typically utilize the last window from the pre-filling phase as queries to compute the KV importance scores for eviction. Although this scheme is simple to implement, it tends to overly focus on local information, potentially leading to the neglect or omission of crucial global information. To mitigate this issue, we propose Judge Q, a novel training method which incorporates a soft token list. This method only tunes the model's embedding layer at a low training cost. By concatenating the soft token list at the end of the input sequence, we train these tokens' attention map to the original input sequence to align with that of the actual decoded tokens. In this way, the queries corresponding to the soft tokens can effectively capture global information and better evaluate the importance of the keys and values within the KV cache, thus maintaining decoding quality when KV cache is evicted. Under the same eviction budget, our method exhibits less performance degradation compared to existing eviction approaches. We validate our approach through experiments conducted on models such as Llama-3.1-8B-Instruct and Mistral-7B-Instruct-v0.3, using benchmarks including LongBench, RULER, and Needle-in-a-Haystack. Results indicate an improvement of approximately 1 point on the LongBench and over 3 points on RULER. This proposed methodology can be seamlessly integrated into existing open-source models with minimal training overhead, thereby enhancing performance in KV cache eviction scenarios.
comment: Accepted in AAAI 2026
Disco-RAG: Discourse-Aware Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) has emerged as an important means of enhancing the performance of large language models (LLMs) in knowledge-intensive tasks. However, most existing RAG strategies treat retrieved passages in a flat and unstructured way, which prevents the model from capturing structural cues and constrains its ability to synthesize knowledge from dispersed evidence across documents. To overcome these limitations, we propose Disco-RAG, a discourse-aware framework that explicitly injects discourse signals into the generation process. Our method constructs intra-chunk discourse trees to capture local hierarchies and builds inter-chunk rhetorical graphs to model cross-passage coherence. These structures are jointly integrated into a planning blueprint that conditions the generation. Experiments on question answering and long-document summarization benchmarks show the efficacy of our approach. Disco-RAG achieves state-of-the-art results on the benchmarks without fine-tuning. These findings underscore the important role of discourse structure in advancing RAG systems.
Adaptive Querying for Reward Learning from Human Feedback
Learning from human feedback is a popular approach to train robots to adapt to user preferences and improve safety. Existing approaches typically consider a single querying (interaction) format when seeking human feedback and do not leverage multiple modes of user interaction with a robot. We examine how to learn a penalty function associated with unsafe behaviors using multiple forms of human feedback, by optimizing both the query state and feedback format. Our proposed adaptive feedback selection is an iterative, two-phase approach which first selects critical states for querying, and then uses information gain to select a feedback format for querying across the sampled critical states. The feedback format selection also accounts for the cost and probability of receiving feedback in a certain format. Our experiments in simulation demonstrate the sample efficiency of our approach in learning to avoid undesirable behaviors. The results of our user study with a physical robot highlight the practicality and effectiveness of adaptive feedback selection in seeking informative, user-aligned feedback that accelerate learning. Experiment videos, code and appendices are found on our website: https://tinyurl.com/AFS-learning.
Scalable and Reliable Evaluation of AI Knowledge Retrieval Systems: RIKER and the Coherent Simulated Universe
Evaluating knowledge systems (LLMs, RAG, knowledge graphs, etc) faces fundamental challenges: static benchmarks are vulnerable to contamination, LLM-based judges exhibit systematic biases, and ground truth extraction requires expensive human annotation. We present RIKER (Retrieval Intelligence and Knowledge Extraction Rating), both a benchmark and a replicable methodology based on paradigm inversion - generating documents from known ground truth rather than extracting ground truth from documents. This approach enables deterministic scoring and scalable evaluation without human annotation or reference models, and contamination resistance through regenerable corpora. Our evaluation of 33 models using over 21 billion tokens reveals that context length claims frequently exceed usable capacity, with significant degradation beyond 32K tokens; cross-document aggregation proves substantially harder than single-document extraction; and grounding ability and hallucination resistance are distinct capabilities - models excelling at finding facts that exist may still fabricate facts that do not. Beyond the specific benchmark, we contribute a domain-agnostic methodology for constructing scalable and contamination-resistant evaluations wherever synthetic documents can be generated from structured ground truth.
comment: 26 pages, 17 tables, 1 figure
Bid Farewell to Seesaw: Towards Accurate Long-tail Session-based Recommendation via Dual Constraints of Hybrid Intents AAAI 2026
Session-based recommendation (SBR) aims to predict anonymous users' next interaction based on their interaction sessions. In the practical recommendation scenario, low-exposure items constitute the majority of interactions, creating a long-tail distribution that severely compromises recommendation diversity. Existing approaches attempt to address this issue by promoting tail items but incur accuracy degradation, exhibiting a "see-saw" effect between long-tail and accuracy performance. We attribute such conflict to session-irrelevant noise within the tail items, which existing long-tail approaches fail to identify and constrain effectively. To resolve this fundamental conflict, we propose \textbf{HID} (\textbf{H}ybrid \textbf{I}ntent-based \textbf{D}ual Constraint Framework), a plug-and-play framework that transforms the conventional "see-saw" into "win-win" through introducing the hybrid intent-based dual constraints for both long-tail and accuracy. Two key innovations are incorporated in this framework: (i) \textit{Hybrid Intent Learning}, where we reformulate the intent extraction strategies by employing attribute-aware spectral clustering to reconstruct the item-to-intent mapping. Furthermore, discrimination of session-irrelevant noise is achieved through the assignment of the target and noise intents to each session. (ii) \textit{Intent Constraint Loss}, which incorporates two novel constraint paradigms regarding the \textit{diversity} and \textit{accuracy} to regulate the representation learning process of both items and sessions. These two objectives are unified into a single training loss through rigorous theoretical derivation. Extensive experiments across multiple SBR models and datasets demonstrate that HID can enhance both long-tail performance and recommendation accuracy, establishing new state-of-the-art performance in long-tail recommender systems.
comment: accepted by AAAI 2026 Oral
STELP: Secure Transpilation and Execution of LLM-Generated Programs
Rapid evolution of Large Language Models (LLMs) has achieved major advances in reasoning, planning, and function-calling capabilities. Multi-agentic collaborative frameworks using such LLMs place them at the center of solving software development-related tasks such as code generation. However, direct use of LLM generated code in production software development systems is problematic. The code could be unstable or erroneous and contain vulnerabilities such as data poisoning, malicious attacks, and hallucinations that could lead to widespread system malfunctions. This prohibits the adoption of LLM generated code in production AI systems where human code reviews and traditional secure testing tools are impractical or untrustworthy. In this paper, we discuss safety and reliability problems with the execution of LLM generated code and propose a Secure Transpiler and Executor of LLM-Generated Program (STELP), capable of executing LLM-generated code in a controlled and safe manner. STELP secures autonomous production AI systems involving code generation, filling the critical void left by the impracticality or limitations of traditional secure testing methodologies and human oversight. This includes applications such as headless code generation-execution and LLMs that produce executable code snippets as an action plan to be executed in real time. We contribute a human-validated dataset of insecure code snippets and benchmark our approach on publicly available datasets for correctness, safety, and latency. Our results demonstrate that our approach outperforms an existing method by a significant margin, particularly in its ability to safely execute risky code snippets. Warning: This paper contains malicious code snippets that should be run with caution.
Debiased Orthogonal Boundary-Driven Efficient Noise Mitigation
Mitigating the detrimental effects of noisy labels on the training process has become increasingly critical, as obtaining entirely clean or human-annotated samples for large-scale pre-training tasks is often impractical. Nonetheless, existing noise mitigation methods often encounter limitations in practical applications due to their task-specific design, model dependency, and significant computational overhead. In this work, we exploit the properties of high-dimensional orthogonality to identify a robust and effective boundary in cone space for separating clean and noisy samples. Building on this, we propose One-Step Anti-noise (OSA), a model-agnostic noisy label mitigation paradigm that employs an estimator model and a scoring function to assess the noise level of input pairs through just one-step inference. We empirically validate the superiority of OSA, demonstrating its enhanced training robustness, improved task transferability, streamlined deployment, and reduced computational overhead across diverse benchmarks, models, and tasks. Our code is released at https://github.com/leolee99/OSA.
comment: 20 pages, 4 figures, 11 Tables
HAG: Hierarchical Demographic Tree-based Agent Generation for Topic-Adaptive Simulation
High-fidelity agent initialization is crucial for credible Agent-Based Modeling across diverse domains. A robust framework should be Topic-Adaptive, capturing macro-level joint distributions while ensuring micro-level individual rationality. Existing approaches fall into two categories: static data-based retrieval methods that fail to adapt to unseen topics absent from the data, and LLM-based generation methods that lack macro-level distribution awareness, resulting in inconsistencies between micro-level persona attributes and reality. To address these problems, we propose HAG, a Hierarchical Agent Generation framework that formalizes population generation as a two-stage decision process. Firstly, utilizing a World Knowledge Model to infer hierarchical conditional probabilities to construct the Topic-Adaptive Tree, achieving macro-level distribution alignment. Then, grounded real-world data, instantiation and agentic augmentation are carried out to ensure micro-level consistency. Given the lack of specialized evaluation, we establish a multi-domain benchmark and a comprehensive PACE evaluation framework. Extensive experiments show that HAG significantly outperforms representative baselines, reducing population alignment errors by an average of 37.7% and enhancing sociological consistency by 18.8%.
CodeAssistBench (CAB): Dataset & Benchmarking for Multi-turn Chat-Based Code Assistance NeurIPS 2025
Programming assistants powered by large language models have improved dramatically, yet existing benchmarks still evaluate them in narrow code-generation settings. Recent efforts such as InfiBench and StackEval rely on Stack Overflow questions and remain limited to single-turn interactions, manually curated data, and isolated snippets rather than full project environments. We introduce CodeAssistBench (CAB), the first benchmark for evaluating multi-turn, project-grounded programming assistance at scale. CAB automatically constructs datasets from GitHub issues tagged as questions, using an LLM-driven pipeline that filters noise, extracts runnable contexts, builds executable containers, and verifies environment correctness. This enables continuous, automated expansion across diverse repositories without manual intervention. Using CAB, we create a testbed of 3,286 real-world issues across 214 repositories, spanning seven languages. Evaluating state-of-the-art models reveals a substantial gap: while models achieve 70-83% accuracy on Stack Overflow-style questions, they solve only 7.22-16.49% of CAB issues from post-training-cutoff repositories. These results highlight a fundamental challenge: current LLMs struggle to provide assistance in realistic, project-specific contexts despite strong performance on traditional Q&A benchmarks. CAB provides a scalable, reproducible framework for advancing research in multi-turn, codebase-grounded programming agents. The benchmark and pipeline are fully automated and publicly available at https://github.com/amazon-science/CodeAssistBench/.
comment: Accepted to NeurIPS 2025 Datasets and Benchmarks Track
Generative Adversarial Gumbel MCTS for Abstract Visual Composition Generation
We study abstract visual composition, in which identity is primarily determined by the spatial configuration and relations among a small set of geometric primitives (e.g., parts, symmetry, topology). They are invariant primarily to texture and photorealistic detail. Composing such structures from fixed components under geometric constraints and vague goal specification (such as text) is non-trivial due to combinatorial placement choices, limited data, and discrete feasibility (overlap-free, allowable orientations), which create a sparse solution manifold ill-suited to purely statistical pixel-space generators. We propose a constraint-guided framework that combines explicit geometric reasoning with neural semantics. An AlphaGo-style search enforces feasibility, while a fine-tuned vision-language model scores semantic alignment as reward signals. Our algorithm uses a policy network as a heuristic in Monte-Carlo Tree Search and fine-tunes the network via search-generated plans. Inspired by the Generative Adversarial Network, we use the generated instances for adversarial reward refinement. Over time, the generation should approach the actual data more closely when the reward model cannot distinguish between generated instances and ground-truth. In the Tangram Assembly task, our approach yields higher validity and semantic fidelity than diffusion and auto-regressive baselines, especially as constraints tighten.
Prototype-Guided Non-Exemplar Continual Learning for Cross-subject EEG Decoding
Due to the significant variability in electroencephalo-gram (EEG) signals across individuals, knowledge acquired from previous subjects is often overwritten as new subjects are introduced in continual EEG decoding tasks. Existing methods mainly rely on storing historical data from seen subjects as replay buffers to mitigate forgetting, which is impractical under privacy or memory constraints. To address this issue, we propose a Prototype-guided Non-Exemplar Continual Learning (ProNECL) framework that preserves prior knowledge without accessing historical EEG samples. ProNECL summarizes subject-specific discriminative representations into class-level prototypes and incrementally aligns new subject representations with a global prototype memory through prototype-based feature regulariza-tion and cross-subject alignment. Experiments on the BCI Com-petition IV 2a and 2b datasets demonstrate that ProNECL effec-tively balances knowledge retention and adaptability, achieving superior performance in cross-subject continual EEG decoding tasks.
comment: 4 pages, 2 figures, 14th IEEE International Winter Conference on Brain-Computer Interface Conference 2026
Fine-Tuning Diffusion Models via Intermediate Distribution Shaping
Diffusion models are widely used for generative tasks across domains. While pre-trained diffusion models effectively capture the training data distribution, it is often desirable to shape these distributions using reward functions to align with downstream applications. Policy gradient methods, such as Proximal Policy Optimization (PPO), are widely used in the context of autoregressive generation. However, the marginal likelihoods required for such methods are intractable for diffusion models, leading to alternative proposals and relaxations. In this context, we unify variants of Rejection sAmpling based Fine-Tuning (RAFT) as GRAFT, and show that this implicitly performs KL regularized reward maximization with reshaped rewards. We then introduce P-GRAFT to shape distributions at intermediate noise levels and demonstrate empirically that this can lead to more effective fine-tuning. We mathematically explain this via a bias-variance tradeoff. Motivated by this, we propose inverse noise correction to improve flow models without leveraging explicit rewards. We empirically evaluate our methods on text-to-image(T2I) generation, layout generation, molecule generation and unconditional image generation. Notably, our framework, applied to Stable Diffusion 2, improves over policy gradient methods on popular T2I benchmarks in terms of VQAScore and shows an $8.81\%$ relative improvement over the base model. For unconditional image generation, inverse noise correction improves FID of generated images at lower FLOPs/image.
Lightweight Diffusion-based Framework for Online Imagined Speech Decoding in Aphasia
Individuals with aphasia experience severe difficulty in real-time verbal communication, while most imagined speech decoding approaches remain limited to offline analysis or computationally demanding models. To address this limitation, we propose a two-session experimental framework consisting of an offline data acquisition phase and a subsequent online feedback phase for real-time imagined speech decoding. The paradigm employed a four-class Korean-language task, including three imagined speech targets selected according to the participant's daily communicative needs and a resting-state condition, and was evaluated in a single individual with chronic anomic aphasia. Within this framework, we introduce a lightweight diffusion-based neural decoding model explicitly optimized for real-time inference, achieved through architectural simplifications such as dimensionality reduction, temporal kernel optimization, group normalization with regularization, and dual early-stopping criteria. In real-time evaluation, the proposed system achieved 65\% top-1 and 70\% top-2 accuracy, with the Water class reaching 80\% top-1 and 100\% top-2 accuracy. These results demonstrate that real-time-optimized diffusion-based architectures, combined with clinically grounded task design, can support feasible online imagined speech decoding for communication-oriented BCI applications in aphasia.
comment: 4 pages, 2 figures, 1 table, Name of Conference: International Conference on Brain-Computer Interface
Functional Critics Are Essential in Off-Policy Actor-Critic: Provable Convergence and Efficient Exploration
Off-policy reinforcement learning (RL) with function approximation offers an effective way to improve sample efficiency by reusing past experience. Within this setting, the actor-critic (AC) framework has achieved strong empirical success but suffers from the "moving target" problem, where the policy being evaluated changes continually. Functional critics, or policy-conditioned value functions, have been proposed to address this issue by including a representation of the policy as input. While the concept of generalizing value functions across policy space is appealing, previous efforts have struggled to remain competitive against state-of-the-art AC algorithms that do not utilize functional critics. In this work, we revisit functional critics within the off-policy AC framework and identify two aspects that render them a necessity rather than a luxury. First, in off-policy AC, critic learning contends with both the "deadly triad" instability and the "moving target" issue, while actor learning faces the challenge of estimating the exact off-policy policy gradient. This complex interplay makes theoretical convergence extremely difficult for practical algorithms. We demonstrate that a functional critic is essential for addressing this challenge and establish the first convergence proof for an off-policy target-based AC algorithm under linear function approximation. Second, we identify a crucial link between functional critic modeling and efficient exploration. Specifically, we show that approximating posterior sampling for exploration in model-free settings is infeasible without functional critics. Practically, we propose a tailored neural network architecture and a minimal AC algorithm that relies solely on these insights. In experiments on the DeepMind Control Suite, this implementation achieves performance competitive with state-of-the-art methods.
Unveiling m-Sharpness Through the Structure of Stochastic Gradient Noise NeurIPS 2025
Sharpness-aware minimization (SAM) has emerged as a highly effective technique to improve model generalization, but its underlying principles are not fully understood. We investigate m-sharpness, where SAM performance improves monotonically as the micro-batch size for computing perturbations decreases, a phenomenon critical for distributed training yet lacking rigorous explanation. We leverage an extended Stochastic Differential Equation (SDE) framework and analyze stochastic gradient noise (SGN) to characterize the dynamics of SAM variants, including n-SAM and m-SAM. Our analysis reveals that stochastic perturbations induce an implicit variance-based sharpness regularization whose strength increases as m decreases. Motivated by this insight, we propose Reweighted SAM (RW-SAM), which employs sharpness-weighted sampling to mimic the generalization benefits of m-SAM while remaining parallelizable. Comprehensive experiments validate our theory and method.
comment: Accepted to NeurIPS 2025
Stock Market Price Prediction using Neural Prophet with Deep Neural Network
Stock market price prediction is a significant interdisciplinary research domain that depends at the intersection of finance, statistics, and economics. Forecasting Accurately predicting stock prices has always been a focal point for various researchers. However, existing statistical approaches for time-series prediction often fail to effectively forecast the probability range of future stock prices. Hence, to solve this problem, the Neural Prophet with a Deep Neural Network (NP-DNN) is proposed to predict stock market prices. The preprocessing technique used in this research is Z-score normalization, which normalizes stock price data by removing scale differences, making patterns easier to detect. Missing value imputation fills gaps in historical data, enhancing the models use of complete information for more accurate predictions. The Multi-Layer Perceptron (MLP) learns complex nonlinear relationships among stock market prices and extracts hidden patterns from the input data, thereby creating meaningful feature representations for better prediction accuracy. The proposed NP-DNN model achieved an accuracy of 99.21% compared with other approaches using the Fused Large Language Model. Keywords: deep neural network, forecasting stock prices, multi-layer perceptron, neural prophet, stock market price prediction.
Leveraging Open-Source Large Language Models for encoding Social Determinants of Health using an Intelligent Router
Social Determinants of Health (SDOH), also known as Health-Related Social Needs (HSRN), play a significant role in patient health outcomes. The Centers for Disease Control and Prevention (CDC) introduced a subset of ICD-10 codes called Z-codes to recognize and measure SDOH. However, Z-codes are infrequently coded in a patient's Electronic Health Record (EHR), and instead, in many cases, need to be inferred from clinical notes. Previous research has shown that large language models (LLMs) show promise on extracting unstructured data from EHRs, but it can be difficult to identify a single model that performs best on varied coding tasks. Further, clinical notes contain protected health information posing a challenge for the use of closed-source language models from commercial vendors. The identification of open-source LLMs that can be run within health organizations and exhibit high performance on SDOH tasks is an important issue to solve. Here, we introduce an intelligent routing system for SDOH coding that uses a language model router to direct medical record data to open-source LLMs that demonstrate optimal performance on specific SDOH codes. This intelligent routing system exhibits state of the art performance of 96.4% accuracy averaged across 13 codes, including homelessness and food insecurity, outperforming closed models such as GPT-4o. We leveraged a publicly-available, deidentified dataset of medical record notes to run the router, but we also introduce a synthetic data generation and validation paradigm to increase the scale of training data without needing privacy-protected medical records. Together, we demonstrate an architecture for intelligent routing of inputs to task-optimal language models to achieve high performance across a set of medical coding sub-tasks.
Safety Not Found (404): Hidden Risks of LLM-Based Robotics Decision Making
One mistake by an AI system in a safety-critical setting can cost lives. As Large Language Models (LLMs) become integral to robotics decision-making, the physical dimension of risk grows; a single wrong instruction can directly endanger human safety. This paper addresses the urgent need to systematically evaluate LLM performance in scenarios where even minor errors are catastrophic. Through a qualitative evaluation of a fire evacuation scenario, we identified critical failure cases in LLM-based decision-making. Based on these, we designed seven tasks for quantitative assessment, categorized into: Complete Information, Incomplete Information, and Safety-Oriented Spatial Reasoning (SOSR). Complete information tasks utilize ASCII maps to minimize interpretation ambiguity and isolate spatial reasoning from visual processing. Incomplete information tasks require models to infer missing context, testing for spatial continuity versus hallucinations. SOSR tasks use natural language to evaluate safe decision-making in life-threatening contexts. We benchmark various LLMs and Vision-Language Models (VLMs) across these tasks. Beyond aggregate performance, we analyze the implications of a 1% failure rate, highlighting how "rare" errors escalate into catastrophic outcomes. Results reveal serious vulnerabilities: several models achieved a 0% success rate in ASCII navigation, while in a simulated fire drill, models instructed robots to move toward hazardous areas instead of emergency exits. Our findings lead to a sobering conclusion: current LLMs are not ready for direct deployment in safety-critical systems. A 99% accuracy rate is dangerously misleading in robotics, as it implies one out of every hundred executions could result in catastrophic harm. We demonstrate that even state-of-the-art models cannot guarantee safety, and absolute reliance on them creates unacceptable risks.
Reward Learning through Ranking Mean Squared Error
Reward design remains a significant bottleneck in applying reinforcement learning (RL) to real-world problems. A popular alternative is reward learning, where reward functions are inferred from human feedback rather than manually specified. Recent work has proposed learning reward functions from human feedback in the form of ratings, rather than traditional binary preferences, enabling richer and potentially less cognitively demanding supervision. Building on this paradigm, we introduce a new rating-based RL method, Ranked Return Regression for RL (R4). At its core, R4 employs a novel ranking mean squared error (rMSE) loss, which treats teacher-provided ratings as ordinal targets. Our approach learns from a dataset of trajectory-rating pairs, where each trajectory is labeled with a discrete rating (e.g., "bad," "neutral," "good"). At each training step, we sample a set of trajectories, predict their returns, and rank them using a differentiable sorting operator (soft ranks). We then optimize a mean squared error loss between the resulting soft ranks and the teacher's ratings. Unlike prior rating-based approaches, R4 offers formal guarantees: its solution set is provably minimal and complete under mild assumptions. Empirically, using simulated human feedback, we demonstrate that R4 consistently matches or outperforms existing rating and preference-based RL methods on robotic locomotion benchmarks from OpenAI Gym and the DeepMind Control Suite, while requiring significantly less feedback.
Lifelong Domain Adaptive 3D Human Pose Estimation AAAI 2026
3D Human Pose Estimation (3D HPE) is vital in various applications, from person re-identification and action recognition to virtual reality. However, the reliance on annotated 3D data collected in controlled environments poses challenges for generalization to diverse in-the-wild scenarios. Existing domain adaptation (DA) paradigms like general DA and source-free DA for 3D HPE overlook the issues of non-stationary target pose datasets. To address these challenges, we propose a novel task named lifelong domain adaptive 3D HPE. To our knowledge, we are the first to introduce the lifelong domain adaptation to the 3D HPE task. In this lifelong DA setting, the pose estimator is pretrained on the source domain and subsequently adapted to distinct target domains. Moreover, during adaptation to the current target domain, the pose estimator cannot access the source and all the previous target domains. The lifelong DA for 3D HPE involves overcoming challenges in adapting to current domain poses and preserving knowledge from previous domains, particularly combating catastrophic forgetting. We present an innovative Generative Adversarial Network (GAN) framework, which incorporates 3D pose generators, a 2D pose discriminator, and a 3D pose estimator. This framework effectively mitigates domain shifts and aligns original and augmented poses. Moreover, we construct a novel 3D pose generator paradigm, integrating pose-aware, temporal-aware, and domain-aware knowledge to enhance the current domain's adaptation and alleviate catastrophic forgetting on previous domains. Our method demonstrates superior performance through extensive experiments on diverse domain adaptive 3D HPE datasets.
comment: Accepted by AAAI 2026
Controlled Self-Evolution for Algorithmic Code Optimization
Self-evolution methods enhance code generation through iterative "generate-verify-refine" cycles, yet existing approaches suffer from low exploration efficiency, failing to discover solutions with superior complexity within limited budgets. This inefficiency stems from initialization bias trapping evolution in poor solution regions, uncontrolled stochastic operations lacking feedback guidance, and insufficient experience utilization across tasks. To address these bottlenecks, we propose Controlled Self-Evolution (CSE), which consists of three key components. Diversified Planning Initialization generates structurally distinct algorithmic strategies for broad solution space coverage. Genetic Evolution replaces stochastic operations with feedback-guided mechanisms, enabling targeted mutation and compositional crossover. Hierarchical Evolution Memory captures both successful and failed experiences at inter-task and intra-task levels. Experiments on EffiBench-X demonstrate that CSE consistently outperforms all baselines across various LLM backbones. Furthermore, CSE achieves higher efficiency from early generations and maintains continuous improvement throughout evolution. Our code is publicly available at https://github.com/QuantaAlpha/EvoControl.
comment: 27 pages
JudgeAgent: Beyond Static Benchmarks for Knowledge-Driven and Dynamic LLM Evaluation
Current evaluation methods for large language models (LLMs) primarily rely on static benchmarks, presenting two major challenges: limited knowledge coverage and fixed difficulties that mismatch with the evaluated LLMs. These limitations lead to superficial assessments of LLM knowledge, thereby impeding the targeted model optimizations. To bridge this gap, we propose JudgeAgent, a knowledge-driven and dynamic evaluation framework for LLMs. To address the challenge of limited knowledge coverage, JudgeAgent leverages LLM agents equipped with context graphs to traverse knowledge structures systematically for question generation. Furthermore, to mitigate data contamination and difficulty mismatch, it adopts a difficulty-adaptive and multi-turn interview mechanism. Thereby, JudgeAgent can achieve comprehensive evaluations and facilitate more effective improvement of LLMs. Empirical results demonstrate that JudgeAgent enables more comprehensive evaluations and facilitates effective model iterations, highlighting the potential of this knowledge-driven and dynamic evaluation paradigm. The source code is available on https://github.com/DataArcTech/JudgeAgent.
Scalable Oversight for Superhuman AI via Recursive Self-Critiquing
As AI capabilities increasingly surpass human proficiency in complex tasks, current alignment techniques, including SFT and RLHF, face fundamental challenges in ensuring reliable oversight. These methods rely on direct human assessment and become impractical when AI outputs exceed human cognitive thresholds. In response to this challenge, we explore two hypotheses: (1) \textit{Critique of critique can be easier than critique itself}, extending the widely-accepted observation that verification is easier than generation to the critique domain, as critique itself is a specialized form of generation; (2) \textit{This difficulty relationship holds recursively}, suggesting that when direct evaluation is infeasible, performing higher-order critiques (e.g., critique of critique of critique) offers a more tractable supervision pathway. We conduct Human-Human, Human-AI, and AI-AI experiments to investigate the potential of recursive self-critiquing for AI supervision. Our results highlight recursive critique as a promising approach for scalable AI oversight.
Bridging Semantic Understanding and Popularity Bias with LLMs
Semantic understanding of popularity bias is a crucial yet underexplored challenge in recommender systems, where popular items are often favored at the expense of niche content. Most existing debiasing methods treat the semantic understanding of popularity bias as a matter of diversity enhancement or long-tail coverage, neglecting the deeper semantic layer that embodies the causal origins of the bias itself. Consequently, such shallow interpretations limit both their debiasing effectiveness and recommendation accuracy. In this paper, we propose FairLRM, a novel framework that bridges the gap in the semantic understanding of popularity bias with Recommendation via Large Language Model (RecLLM). FairLRM decomposes popularity bias into item-side and user-side components, using structured instruction-based prompts to enhance the model's comprehension of both global item distributions and individual user preferences. Unlike traditional methods that rely on surface-level features such as "diversity" or "debiasing", FairLRM improves the model's ability to semantically interpret and address the underlying bias. Through empirical evaluation, we show that FairLRM significantly enhances both fairness and recommendation accuracy, providing a more semantically aware and trustworthy approach to enhance the semantic understanding of popularity bias. The implementation is available at https://github.com/LuoRenqiang/FairLRM.
comment: 10 pages, 4 figs, WWW 2026 accepted
GPU-Accelerated ANNS: Quantized for Speed, Built for Change
Approximate nearest neighbor search (ANNS) is a core problem in machine learning and information retrieval applications. GPUs offer a promising path to high-performance ANNS: they provide massive parallelism for distance computations, are readily available, and can co-locate with downstream applications. Despite these advantages, current GPU-accelerated ANNS systems face three key limitations. First, real-world applications operate on evolving datasets that require fast batch updates, yet most GPU indices must be rebuilt from scratch when new data arrives. Second, high-dimensional vectors strain memory bandwidth, but current GPU systems lack efficient quantization techniques that reduce data movement without introducing costly random memory accesses. Third, the data-dependent memory accesses inherent to greedy search make overlapping compute and memory difficult, leading to reduced performance. We present Jasper, a GPU-native ANNS system with both high query throughput and updatability. Jasper builds on the Vamana graph index and overcomes existing bottlenecks via three contributions: (1) a CUDA batch-parallel construction algorithm that enables lock-free streaming insertions, (2) a GPU-efficient implementation of RaBitQ quantization that reduces memory footprint up to 8x without the random access penalties, and (3) an optimized greedy search kernel that increases compute utilization, resulting in better latency hiding and higher throughput. Our evaluation across five datasets shows that Jasper achieves up to 1.93x higher query throughput than CAGRA and achieves up to 80% peak utilization as measured by the roofline model. Jasper's construction scales efficiently and constructs indices an average of 2.4x faster than CAGRA while providing updatability that CAGRA lacks. Compared to BANG, the previous fastest GPU Vamana implementation, Jasper delivers 19-131x faster queries.
TeleMem: Building Long-Term and Multimodal Memory for Agentic AI
Large language models (LLMs) excel at many NLP tasks but struggle to sustain long-term interactions due to limited attention over extended dialogue histories. Retrieval-augmented generation (RAG) mitigates this issue but lacks reliable mechanisms for updating or refining stored memories, leading to schema-driven hallucinations, inefficient write operations, and minimal support for multimodal reasoning.To address these challenges, we propose TeleMem, a unified long-term and multimodal memory system that maintains coherent user profiles through narrative dynamic extraction, ensuring that only dialogue-grounded information is preserved. TeleMem further introduces a structured writing pipeline that batches, retrieves, clusters, and consolidates memory entries, substantially improving storage efficiency, reducing token usage, and accelerating memory operations. Additionally, a multimodal memory module combined with ReAct-style reasoning equips the system with a closed-loop observe, think, and act process that enables accurate understanding of complex video content in long-term contexts. Experimental results show that TeleMem surpasses the state-of-the-art Mem0 baseline with 19% higher accuracy, 43% fewer tokens, and a 2.1x speedup on the ZH-4O long-term role-play gaming benchmark.
COINS: SemantiC Ids Enhanced COLd Item RepresentatioN for Click-through Rate Prediction in E-commerce Search
With the rise of modern search and recommendation platforms, insufficient collaborative information of cold-start items exacerbates the Matthew effect of existing platform items, challenging platform diversity and becoming a longstanding issue. Existing methods align items' side content with collaborative information to transfer collaborative signals from high-popularity items to cold-start items. However, these methods fail to account for the asymmetry between collaboration and content, nor the fine-grained differences among items. To address these issues, we propose COINS, an item representation enhancement approach based on fused alignment of semantic IDs. Specifically, we use RQ-OPQ encoding to quantize item content and collaborative information, followed by a two-step alignment: RQ encoding transfers shared collaborative signals across items, while OPQ encoding learns differentiated information of items. Comprehensive offline experiments on large-scale industrial datasets demonstrate superiority of COINS, and rigorous online A/B tests confirm statistically significant improvements: item CTR +1.66%, buyers +1.57%, and order volume +2.17%.
comment: Accepted by WWW26
EfficientFSL: Enhancing Few-Shot Classification via Query-Only Tuning in Vision Transformers AAAI 2026
Large models such as Vision Transformers (ViTs) have demonstrated remarkable superiority over smaller architectures like ResNet in few-shot classification, owing to their powerful representational capacity. However, fine-tuning such large models demands extensive GPU memory and prolonged training time, making them impractical for many real-world low-resource scenarios. To bridge this gap, we propose EfficientFSL, a query-only fine-tuning framework tailored specifically for few-shot classification with ViT, which achieves competitive performance while significantly reducing computational overhead. EfficientFSL fully leverages the knowledge embedded in the pre-trained model and its strong comprehension ability, achieving high classification accuracy with an extremely small number of tunable parameters. Specifically, we introduce a lightweight trainable Forward Block to synthesize task-specific queries that extract informative features from the intermediate representations of the pre-trained model in a query-only manner. We further propose a Combine Block to fuse multi-layer outputs, enhancing the depth and robustness of feature representations. Finally, a Support-Query Attention Block mitigates distribution shift by adjusting prototypes to align with the query set distribution. With minimal trainable parameters, EfficientFSL achieves state-of-the-art performance on four in-domain few-shot datasets and six cross-domain datasets, demonstrating its effectiveness in real-world applications.
comment: Accepted/To be presented at AAAI 2026
Autoencoding Random Forests NeurIPS 2025
We propose a principled method for autoencoding with random forests. Our strategy builds on foundational results from nonparametric statistics and spectral graph theory to learn a low-dimensional embedding of the model that optimally represents relationships in the data. We provide exact and approximate solutions to the decoding problem via constrained optimization, split relabeling, and nearest neighbors regression. These methods effectively invert the compression pipeline, establishing a map from the embedding space back to the input space using splits learned by the ensemble's constituent trees. The resulting decoders are universally consistent under common regularity assumptions. The procedure works with supervised or unsupervised models, providing a window into conditional or joint distributions. We demonstrate various applications of this autoencoder, including powerful new tools for visualization, compression, clustering, and denoising. Experiments illustrate the ease and utility of our method in a wide range of settings, including tabular, image, and genomic data.
comment: 10 pages main text, 27 pages total. 9 figures, 4 tables. To be published in proceedings of the 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
DScheLLM: Enabling Dynamic Scheduling through a Fine-Tuned Dual-System Large language Model
Production scheduling is highly susceptible to dynamic disruptions, such as variations in processing times, machine availability, and unexpected task insertions. Conventional approaches typically rely on event-specific models and explicit analytical formulations, which limits their adaptability and generalization across previously unseen disturbances. To overcome these limitations, this paper proposes DScheLLM, a dynamic scheduling approach that leverages fine-tuned large language models within a dual-system (fast-slow) reasoning architecture to address disturbances of different scales. A unified large language model-based framework is constructed to handle dynamic events, where training datasets for both fast and slow reasoning modes are generated using exact schedules obtained from an operations research solver. The Huawei OpenPangu Embedded-7B model is subsequently fine-tuned under the hybrid reasoning paradigms using LoRA. Experimental evaluations on standard job shop scheduling benchmarks demonstrate that the fast-thinking mode can efficiently generate high-quality schedules and the slow-thinking mode can produce solver-compatible and well-formatted decision inputs. To the best of our knowledge, this work represents one of the earliest studies applying large language models to job shop scheduling in dynamic environments, highlighting their considerable potential for intelligent and adaptive scheduling optimization.
comment: 14 pages, 6 figures
A.X K1 Technical Report
We introduce A.X K1, a 519B-parameter Mixture-of-Experts (MoE) language model trained from scratch. Our design leverages scaling laws to optimize training configurations and vocabulary size under fixed computational budgets. A.X K1 is pre-trained on a corpus of approximately 10T tokens, curated by a multi-stage data processing pipeline. Designed to bridge the gap between reasoning capability and inference efficiency, A.X K1 supports explicitly controllable reasoning to facilitate scalable deployment across diverse real-world scenarios. We propose a simple yet effective Think-Fusion training recipe, enabling user-controlled switching between thinking and non-thinking modes within a single unified model. Extensive evaluations demonstrate that A.X K1 achieves performance competitive with leading open-source models, while establishing a distinctive advantage in Korean-language benchmarks.
comment: This paper is withdrawn pending additional internal review of the methodology and analysis
Fairness Definitions in Language Models Explained
Language Models (LMs) have demonstrated exceptional performance across various Natural Language Processing (NLP) tasks. Despite these advancements, LMs can inherit and amplify societal biases related to sensitive attributes such as gender and race, limiting their adoption in real-world applications. Therefore, fairness has been extensively explored in LMs, leading to the proposal of various fairness notions. However, the lack of clear agreement on which fairness definition to apply in specific contexts and the complexity of understanding the distinctions between these definitions can create confusion and impede further progress. To this end, this paper proposes a systematic survey that clarifies the definitions of fairness as they apply to LMs. Specifically, we begin with a brief introduction to LMs and fairness in LMs, followed by a comprehensive, up-to-date overview of existing fairness notions in LMs and the introduction of a novel taxonomy that categorizes these concepts based on their transformer architecture: encoder-only, decoder-only, and encoder-decoder LMs. We further illustrate each definition through experiments, showcasing their practical implications and outcomes. Finally, we discuss current research challenges and open questions, aiming to foster innovative ideas and advance the field. The repository is publicly available online at https://github.com/vanbanTruong/Fairness-in-Large-Language-Models/tree/main/definitions.
WebRollback: Enhancing Web Agents with Explicit Rollback Mechanisms
With recent advancements in large language models, web agents have been greatly improved. However, dealing with complex and dynamic web environments requires more advanced planning and search abilities. Previous studies usually adopt a greedy one-way search strategy, which may struggle to recover from erroneous states. In this work, we enhance web agents with an explicit rollback mechanism, enabling the agent to revert back to a previous state in its navigation trajectory. This mechanism gives models the flexibility to directly control the search process, leading to an effective and efficient web navigation method. We conduct experiments on two live web navigation benchmarks with zero-shot and fine-tuning settings. The results demonstrate the effectiveness of our proposed approach.
comment: EACL 2026
Online Scheduling for LLM Inference with KV Cache Constraints
Large Language Model (LLM) inference, where a trained model generates text one word at a time in response to user prompts, is a computationally intensive process requiring efficient scheduling to optimize latency and resource utilization. A key challenge in LLM inference is the management of the Key-Value (KV) cache, which reduces redundant computations but introduces memory constraints. In this work, we model LLM inference with KV cache constraints theoretically and propose a novel batching and scheduling algorithm that minimizes inference latency while effectively managing the KV cache's memory. More specifically, we make the following contributions. First, to evaluate the performance of online algorithms for scheduling in LLM inference, we introduce a hindsight optimal benchmark, formulated as an integer program that computes the minimum total inference latency under full future information. Second, we prove that no deterministic online algorithm can achieve a constant competitive ratio when the arrival process is arbitrary. Third, motivated by the computational intractability of solving the integer program at scale, we propose a polynomial-time online scheduling algorithm and show that under certain conditions it can achieve a constant competitive ratio. We also demonstrate our algorithm's strong empirical performance by comparing it to the hindsight optimal in a synthetic dataset. Finally, we conduct empirical evaluations on a real-world public LLM inference dataset, simulating the Llama2-70B model on A100 GPUs, and show that our algorithm significantly outperforms the benchmark algorithms. Overall, our results offer a path toward more sustainable and cost-effective LLM deployment.
Gradient Coupling: The Hidden Barrier to Generalization in Agentic Reinforcement Learning
Reinforcement learning (RL) is a dominant paradigm for training autonomous agents, yet these agents often exhibit poor generalization, failing to adapt to scenarios not seen during training. In this work, we identify a fundamental cause of this brittleness, a phenomenon which we term "gradient coupling." We hypothesize that in complex agentic tasks, the high similarity between distinct states leads to destructive interference between gradients. Specifically, a gradient update that reinforces an optimal action in one state can inadvertently increase the likelihood of a suboptimal action in a similar, yet different, state. To solve this, we propose a novel objective where the actor is trained to simultaneously function as a classifier that separates good and bad actions. This auxiliary pressure compels the model to learn disentangled embeddings for positive and negative actions, which mitigates negative gradient interference and improve the generalization performance. Extensive experiments demonstrate the effectiveness of our method.
MatchMiner-AI: An Open-Source Solution for Cancer Clinical Trial Matching
Background Clinical trials are essential to advancing cancer treatments, yet fewer than 10% of adults with cancer enroll in trials, and many studies fail to meet accrual targets. Artificial intelligence (AI) could improve identification of appropriate trials for patients, but sharing AI models trained on protected health information remains difficult due to privacy restrictions. Methods We developed MatchMiner-AI, an open-source platform for clinical trial search and ranking trained entirely on synthetic electronic health record (EHR) data. The system extracts core clinical criteria from longitudinal EHR text and embeds patient summaries and trial "spaces" (target populations) in a shared vector space for rapid retrieval. It then applies custom text classifiers to assess whether each patient-trial pairing is a clinically reasonable consideration. The pipeline was evaluated on real clinical data. Results Across retrospective evaluations on real EHR data, the fine-tuned pipeline outperformed baseline text-embedding approaches. For trial-enrolled patients, 90% of the top 20 recommended trials were relevant matches (compared to 17% for the baseline model). Similar improvements were noted for patients who received standard-of-care treatments (88% of the top 20 matches were relevant, compared to 14% for baseline). Text classification modules demonstrated strong discrimination (AUROC 0.94-0.98) for evaluating candidate patient-trial space pair eligibility; incorporating these components consistently increased mean average precision to ~ 0.90 across patient- and trial-centric use cases. Synthetic training data, model weights, inference tools, and demonstration frontends are publicly available. Conclusions MatchMiner-AI demonstrates an openly accessible, privacy-preserving approach to distilling a clinical trial matching AI pipeline from LLM-generated synthetic EHR data.
A Taxonomy for Evaluating Generalist Robot Manipulation Policies RA-L
Machine learning for robot manipulation promises to unlock generalization to novel tasks and environments. But how should we measure the progress of these policies towards generalization? Evaluating and quantifying generalization is the Wild West of modern robotics, with each work proposing and measuring different types of generalization in their own, often difficult to reproduce settings. In this work, our goal is (1) to outline the forms of generalization we believe are important for robot manipulation in a comprehensive and fine-grained manner, and (2) to provide reproducible guidelines for measuring these notions of generalization. We first propose STAR-Gen, a taxonomy of generalization for robot manipulation structured around visual, semantic, and behavioral generalization. Next, we instantiate STAR-Gen with two case studies on real-world benchmarking: one based on open-source models and the Bridge V2 dataset, and another based on the bimanual ALOHA 2 platform that covers more dexterous and longer horizon tasks. Our case studies reveal many interesting insights: for example, we observe that open-source vision-language-action models often struggle with semantic generalization, despite pre-training on internet-scale language datasets. We provide videos and other supplementary material at our website stargen-taxonomy.github.io.
comment: IEEE Robotics and Automation Letters (RA-L)
Network-Level Prompt and Trait Leakage in Local Research Agents
We show that Web and Research Agents (WRAs) -- language-model-based systems that investigate complex topics on the Internet -- are vulnerable to inference attacks by passive network observers. Deployment of WRAs \emph{locally} by organizations and individuals for privacy, legal, or financial purposes exposes them to DNS resolvers, malicious ISPs, VPNs, web proxies, and corporate or government firewalls. However, unlike sporadic and scarce web browsing by humans, WRAs visit $70{-}140$ domains per each request with a distinct timing pattern creating unique privacy risks. Specifically, we demonstrate a novel prompt and user trait leakage attack against WRAs that only leverages their network-level metadata (i.e., visited IP addresses and their timings). We start by building a new dataset of WRA traces based on real user search queries and queries generated by synthetic personas. We define a behavioral metric (called OBELS) to comprehensively assess similarity between original and inferred prompts, showing that our attack recovers over 73\% of the functional and domain knowledge of user prompts. Extending to a multi-session setting, we recover up to 19 of 32 latent traits with high accuracy. Our attack remains effective under partial observability and noisy conditions. Finally, we discuss mitigation strategies that constrain domain diversity or obfuscate traces, showing negligible utility impact while reducing attack effectiveness by an average of 29\%.
comment: Code available at https://github.com/umass-aisec/wra
ARC-AGI-2: A New Challenge for Frontier AI Reasoning Systems
The Abstraction and Reasoning Corpus for Artificial General Intelligence (ARC-AGI), introduced in 2019, established a challenging benchmark for evaluating the general fluid intelligence of artificial systems via a set of unique, novel tasks only requiring minimal prior knowledge. While ARC-AGI has spurred significant research activity over the past five years, recent AI progress calls for benchmarks capable of finer-grained evaluation at higher levels of cognitive complexity. We introduce ARC-AGI-2, an upgraded version of the benchmark. ARC-AGI-2 preserves the input-output pair task format of its predecessor, ensuring continuity for researchers. It incorporates a newly curated and expanded set of tasks specifically designed to provide a more granular signal to assess abstract reasoning and problem-solving abilities at higher levels of fluid intelligence. To contextualize the difficulty and characteristics of ARC-AGI-2, we present extensive results from human testing, providing a robust baseline that highlights the benchmark's accessibility to human intelligence, yet difficulty for current AI systems. ARC-AGI-2 aims to serve as a next-generation tool for rigorously measuring progress towards more general and human-like AI capabilities.
Power to the Clients: Federated Learning in a Dictatorship Setting
Federated learning (FL) has emerged as a promising paradigm for decentralized model training, enabling multiple clients to collaboratively learn a shared model without exchanging their local data. However, the decentralized nature of FL also introduces vulnerabilities, as malicious clients can compromise or manipulate the training process. In this work, we introduce dictator clients, a novel, well-defined, and analytically tractable class of malicious participants capable of entirely erasing the contributions of all other clients from the server model, while preserving their own. We propose concrete attack strategies that empower such clients and systematically analyze their effects on the learning process. Furthermore, we explore complex scenarios involving multiple dictator clients, including cases where they collaborate, act independently, or form an alliance in order to ultimately betray one another. For each of these settings, we provide a theoretical analysis of their impact on the global model's convergence. Our theoretical algorithms and findings about the complex scenarios including multiple dictator clients are further supported by empirical evaluations on both computer vision and natural language processing benchmarks.
Superposition in Graph Neural Networks
Interpreting graph neural networks (GNNs) is difficult because message passing mixes signals and internal channels rarely align with human concepts. We study superposition, the sharing of directions by multiple features, directly in the latent space of GNNs. Using controlled experiments with unambiguous graph concepts, we extract features as (i) class-conditional centroids at the graph level and (ii) linear-probe directions at the node level, and then analyze their geometry with simple basis-invariant diagnostics. Across GCN/GIN/GAT we find: increasing width produces a phase pattern in overlap; topology imprints overlap onto node-level features that pooling partially remixes into task-aligned graph axes; sharper pooling increases axis alignment and reduces channel sharing; and shallow models can settle into metastable low-rank embeddings. These results connect representational geometry with concrete design choices (width, pooling, and final-layer activations) and suggest practical approaches for more interpretable GNNs.
AdaptCache: KV Cache Native Storage Hierarchy for Low-Delay and High-Quality Language Model Serving
Large language model (LLM) applications often reuse previously processed context, such as chat history and documents, which introduces significant redundant computation. Existing LLM serving systems address such redundant computation by storing the KV caches of processed context and loading the corresponding KV cache when a new request reuses the context. Further, as these LLM applications scale, the total size of KV caches becomes excessively large and requires both DRAM and SSD for full storage. However, prior work that stores KV caches in DRAM and SSD suffers from high loading delays, as most KV cache hits come from SSD, which is slow to load. To increase the KV cache hit rate on DRAM, we identify lossy KV cache compression as a promising approach. We design a lossy compression system that decides the compression algorithm, compression rate and device placement for each KV cache entry to maximise DRAM hits and minimise loading delay without significantly degrading generation quality. Compared to various static compression baselines across three tasks, our system AdaptCache achieves 1.43--2.4 x delay savings at the same quality and 6--55% quality improvements at the same delay.
comment: Accepted at SOSP 2025 - The International Workshop on Big Memory (BigMem)
Evaluating perturbation robustness of generative systems that use COBOL code inputs
Systems incorporating large language models (LLMs) as a component are known to be sensitive (i.e., non-robust) to minor input variations that do not change the meaning of the input; such sensitivity may reduce the system's usefulness. Here, we present a framework to evaluate robustness of systems using COBOL code as input; our application is translation between COBOL and Java programming languages, but the approach extends to other tasks such as code generation or explanation. Targeting robustness of systems with COBOL as input is essential yet challenging. Many business-critical applications are written in COBOL, yet these are typically proprietary legacy applications and their code is unavailable to LLMs for training. We develop a library of COBOL paragraph and full-program perturbation methods, and create variant-expanded versions of a benchmark dataset of examples for a specific task. The robustness of the LLM-based system is evaluated by measuring changes in values of individual and aggregate metrics calculated on the system's outputs. Finally, we present a series of dynamic table and chart visualization dashboards that assist in debugging the system's outputs, and monitoring and understanding root causes of the system's sensitivity to input variation. These tools can be further used to improve the system by, for instance, indicating variations that should be handled by pre-processing steps.
comment: 16 pages (8 main, 8 appendix). Accepted to AI-SQE (ICSE, 2026): The 1st International Workshop on AI for Software Quality Evaluation: Judgment, Metrics, Benchmarks, and Beyond
Zero-Shot Transfer Capabilities of the Sundial Foundation Model for Leaf Area Index Forecasting AAAI 2026
This work investigates the zero-shot forecasting capability of time series foundation models for Leaf Area Index (LAI) forecasting in agricultural monitoring. Using the HiQ dataset (U.S., 2000-2022), we systematically compare statistical baselines, a fully supervised LSTM, and the Sundial foundation model under multiple evaluation protocols. We find that Sundial, in the zero-shot setting, can outperform a fully trained LSTM provided that the input context window is sufficiently long-specifically, when covering more than one or two full seasonal cycles. We show that a general-purpose foundation model can surpass specialized supervised models on remote-sensing time series prediction without any task-specific tuning. These results highlight the strong potential of pretrained time series foundation models to serve as effective plug-and-play forecasters in agricultural and environmental applications.
comment: 6 pages, 5 figures, AAAI 2026 AgriAI workshop
Hot-Start from Pixels: Low-Resolution Visual Tokens for Chinese Language Modeling
Large language models typically represent Chinese characters as discrete index-based tokens, largely ignoring their visual form. For logographic scripts, visual structure carries semantic and phonetic information, which may aid prediction. We investigate whether low-resolution visual inputs can serve as an alternative for character-level modeling. Instead of token IDs, our decoder receives grayscale images of individual characters, with resolutions as low as 8 x 8 pixels. Remarkably, these inputs achieve 39.2% accuracy, comparable to the index-based baseline of 39.1%. Such low-resource settings also exhibit a pronounced hot-start effect: by 0.4% of total training, accuracy reaches above 12%, while index-based models lag at below 6%. Overall, our results demonstrate that minimal visual structure can provide a robust and efficient signal for Chinese language modeling, offering an alternative perspective on character representation that complements traditional index-based approaches.
comment: 15 pages, 5 figures, submitted to ACL 2026
Better LLM Reasoning via Dual-Play
Large Language Models (LLMs) have achieved remarkable progress through Reinforcement Learning with Verifiable Rewards (RLVR), yet still rely heavily on external supervision (e.g., curated labels). Adversarial learning, particularly through self-play, offers a promising alternative that enables models to iteratively learn from themselves - thus reducing reliance on external supervision. Dual-play extends adversarial learning by assigning specialized roles to two models and training them against each other, fostering sustained competition and mutual evolution. Despite its promise, adapting dual-play training to LLMs remains limited, largely due to their susceptibility to reward hacking and training instability. In this paper, we introduce PasoDoble, a novel LLM dual-play framework. PasoDoble adversarially trains two models initialized from the same base model: a Proposer, which generates challenging questions with ground-truth answers, and a Solver, which attempts to solve them. We enrich the Proposer with knowledge from a pre-training dataset to ensure the questions' quality and diversity. To avoid reward hacking, the Proposer is rewarded for producing only valid questions that push the Solver's limit, while the Solver is rewarded for solving them correctly, and both are updated jointly. To further enhance training stability, we introduce an optional offline paradigm that decouples Proposer and Solver updates, alternately updating each for several steps while holding the other fixed. Notably, PasoDoble operates without supervision during training. Experimental results show that PasoDoble can improve the reasoning performance of LLMs. Our project page is available at https://hcy123902.github.io/PasoDoble.
comment: 33 pages, 17 figures, 17 tables
Monitoring Deployed AI Systems in Health Care
Post-deployment monitoring of artificial intelligence (AI) systems in health care is essential to ensure their safety, quality, and sustained benefit-and to support governance decisions about which systems to update, modify, or decommission. Motivated by these needs, we developed a framework for monitoring deployed AI systems grounded in the mandate to take specific actions when they fail to behave as intended. This framework, which is now actively used at Stanford Health Care, is organized around three complementary principles: system integrity, performance, and impact. System integrity monitoring focuses on maximizing system uptime, detecting runtime errors, and identifying when changes to the surrounding IT ecosystem have unintended effects. Performance monitoring focuses on maintaining accurate system behavior in the face of changing health care practices (and thus input data) over time. Impact monitoring assesses whether a deployed system continues to have value in the form of benefit to clinicians and patients. Drawing on examples of deployed AI systems at our academic medical center, we provide practical guidance for creating monitoring plans based on these principles that specify which metrics to measure, when those metrics should be reviewed, who is responsible for acting when metrics change, and what concrete follow-up actions should be taken-for both traditional and generative AI. We also discuss challenges to implementing this framework, including the effort and cost of monitoring for health systems with limited resources and the difficulty of incorporating data-driven monitoring practices into complex organizations where conflicting priorities and definitions of success often coexist. This framework offers a practical template and starting point for health systems seeking to ensure that AI deployments remain safe and effective over time.
comment: 36 pages, 3 figures
Designing AI-Resilient Assessments Using Interconnected Problems: A Theoretically Grounded and Empirically Validated Framework
The rapid adoption of generative AI has undermined traditional modular assessments in computing education, creating a disconnect between academic evaluation and industry practice. This paper presents a theoretically grounded framework for designing AI-resilient assessments, supported by formal analysis and multi-year empirical validation. We make three contributions. First, we establish two theoretical results: (1) assessments composed of interconnected problems, where outputs feed into subsequent stages, are more AI-resilient than modular assessments because current language models struggle with sustained multi-step reasoning and context; and (2) semi-structured problems with deterministic success criteria provide more reliable measures of student competency than fully open-ended projects, which allow AI systems to default to familiar solution patterns. These results challenge common policy and institutional guidance that promotes open-ended assessments as the primary safeguard for academic integrity. Second, we validate these results using data from four university data science courses (N = 138). While students achieve near-perfect scores on AI-assisted modular homework, performance drops by roughly 30 percentage points on proctored exams, indicating substantial AI score inflation. Interconnected projects remain strongly correlated with modular assessments, suggesting they measure the same underlying skills while resisting AI misuse. Proctored exams show weaker alignment, implying they may assess test-taking ability rather than intended learning outcomes. Third, we translate these findings into a practical assessment design framework. The proposed approach enables educators to create assessments that promote integrative thinking, reflect real-world AI-augmented workflows, and naturally resist trivial delegation to generative AI, thereby helping restore academic integrity.
comment: 8 pages, 3 figures and 3 tables, under submission to IEEE FIE
Feature Propagation on Knowledge Graphs using Cellular Sheaves
Many inference tasks on knowledge graphs, including relation prediction, operate on knowledge graph embeddings -- vector representations of the vertices (entities) and edges (relations) that preserve task-relevant structure encoded within the underlying combinatorial object. Such knowledge graph embeddings can be modeled as an approximate global section of a cellular sheaf, an algebraic structure over the graph. Using the diffusion dynamics encoded by the corresponding sheaf Laplacian, we optimally propagate known embeddings of a subgraph to inductively represent new entities introduced into the knowledge graph at inference time. We implement this algorithm via an efficient iterative scheme and show that on a number of large-scale knowledge graph embedding benchmarks, our method is competitive with -- and in some scenarios outperforms -- more complex models derived explicitly for inductive knowledge graph reasoning tasks.
MADIAVE: Multi-Agent Debate for Implicit Attribute Value Extraction
Implicit Attribute Value Extraction (AVE) is essential for accurately representing products in e-commerce, as it infers latent attributes from multimodal data. Despite advances in multimodal large language models (MLLMs), implicit AVE remains challenging due to the complexity of multidimensional data and gaps in vision-text understanding. In this work, we introduce MADIAVE, a multi-agent debate framework that employs multiple MLLM agents to iteratively refine inferences. Through a series of debate rounds, agents verify and update each other's responses, thereby improving inference performance and robustness. Experiments on the ImplicitAVE dataset demonstrate that even a few rounds of debate significantly boost accuracy, especially for attributes with initially low performance. We systematically evaluate various debate configurations, including identical or different MLLM agents, and analyze how debate rounds affect convergence dynamics. Our findings highlight the potential of multi-agent debate strategies to address the limitations of single-agent approaches and offer a scalable solution for implicit AVE in multimodal e-commerce.
comment: Accepted by EACL 2026 (Findings)
PerCoR: Evaluating Commonsense Reasoning in Persian via Multiple-Choice Sentence Completion
We introduced PerCoR (Persian Commonsense Reasoning), the first large-scale Persian benchmark for commonsense reasoning. PerCoR contains 106K multiple-choice sentence-completion problems drawn from more than forty news, cultural, and other web sources. We introduce a novel conjunction-based segmentation strategy to generate coherent sentence-completion pairs, enabling broad topical and structural diversity. To create challenging distractors, we propose DRESS-AF (Distractor Ranking via Embedding Similarity Scoring and Adversarial Filtering), a generation-free adversarial filtering method that selects distractors from the pool of gold continuations while maximising model confusion. Human annotators score 89% on PerCoR, while OpenAI-o3 achieves the highest performance at 92.18%, followed closely by Claude-Sonnet-3.7 (91.17%). The strongest open-source model, DeepSeek-R1, reaches 82.51%, underscoring both the dataset's difficulty and the remaining performance gap in Persian commonsense reasoning. We further show that DRESS-AF transfers to the English HellaSwag benchmark, increasing its difficulty without hurting human solvability. The dataset is available at https://huggingface.co/datasets/MCINext/PerCoR.
comment: 20 pages, 17 figures, Accepted to IJCNLP-AACL 2025 (Main Conference)
TSSR: Two-Stage Swap-Reward-Driven Reinforcement Learning for Character-Level SMILES Generation
The design of reliable, valid, and diverse molecules is fundamental to modern drug discovery, as improved molecular generation supports efficient exploration of the chemical space for potential drug candidates and reduces the cost of early design efforts. Despite these needs, current chemical language models that generate molecules as SMILES strings are vulnerable to compounding token errors: many samples are unparseable or chemically implausible, and hard constraints meant to prevent failure can restrict exploration. To address this gap, we introduce TSSR, a Two-Stage, Swap-Reward-driven reinforcement learning (RL) framework for character-level SMILES generation. Stage one rewards local token swaps that repair syntax, promoting transitions from invalid to parseable strings. Stage two provides chemistry-aware feedback from RDKit diagnostics, rewarding reductions in valence, aromaticity, and connectivity issues. The reward decomposes into interpretable terms (swap efficiency, error reduction, distance to validity), is model agnostic, and requires no task-specific labels or hand-crafted grammars. We evaluated TSSR on the MOSES benchmark using a GRU policy trained with PPO in both pure RL (P-RL) from random initialization and fine-tuning RL (F-RL) starting from a pretrained chemical language model, assessing 10,000 generated SMILES per run. In P-RL, TSSR significantly improves syntactic validity, chemical validity, and novelty. In F-RL, TSSR preserves drug-likeness and synthesizability while increasing validity and novelty. Token-level analysis shows that syntax edits and chemistry fixes act jointly to reduce RDKit detected errors. TSSR converts a sparse terminal objective into a denser and more interpretable reward, improving both syntactic and chemical quality without reducing diversity. TSSR is dataset-agnostic and can be adapted to various reinforcement learning approaches.
comment: Under Review
Dynamics-Aligned Latent Imagination in Contextual World Models for Zero-Shot Generalization NeurIPS 2025
Real-world reinforcement learning demands adaptation to unseen environmental conditions without costly retraining. Contextual Markov Decision Processes (cMDP) model this challenge, but existing methods often require explicit context variables (e.g., friction, gravity), limiting their use when contexts are latent or hard to measure. We introduce Dynamics-Aligned Latent Imagination (DALI), a framework integrated within the Dreamer architecture that infers latent context representations from agent-environment interactions. By training a self-supervised encoder to predict forward dynamics, DALI generates actionable representations conditioning the world model and policy, bridging perception and control. We theoretically prove this encoder is essential for efficient context inference and robust generalization. DALI's latent space enables counterfactual consistency: Perturbing a gravity-encoding dimension alters imagined rollouts in physically plausible ways. On challenging cMDP benchmarks, DALI achieves significant gains over context-unaware baselines, often surpassing context-aware baselines in extrapolation tasks, enabling zero-shot generalization to unseen contextual variations.
comment: 36 pages, 6 figures, accepted to NeurIPS 2025
RCCDA: Adaptive Model Updates in the Presence of Concept Drift under a Constrained Resource Budget NeurIPS 2025
Machine learning (ML) algorithms deployed in real-world environments are often faced with the challenge of adapting models to concept drift, where the task data distributions are shifting over time. The problem becomes even more difficult when model performance must be maintained under adherence to strict resource constraints. Existing solutions often depend on drift-detection methods that produce high computational overhead for resource-constrained environments, and fail to provide strict guarantees on resource usage or theoretical performance assurances. To address these shortcomings, we propose RCCDA: a dynamic model update policy that optimizes ML training dynamics while ensuring compliance to predefined resource constraints, utilizing only past loss information and a tunable drift threshold. In developing our policy, we analytically characterize the evolution of model loss under concept drift with arbitrary training update decisions. Integrating these results into a Lyapunov drift-plus-penalty framework produces a lightweight greedy-optimal policy that provably limits update frequency and cost. Experimental results on four domain generalization datasets demonstrate that our policy outperforms baseline methods in inference accuracy while adhering to strict resource constraints under several schedules of concept drift, making our solution uniquely suited for real-time ML deployments.
comment: Accepted to NeurIPS 2025
Echoing: Identity Failures when LLM Agents Talk to Each Other
As large language model (LLM) based agents interact autonomously with one another, a new class of failures emerges that cannot be predicted from single agent performance: behavioral drifts in agent-agent conversations (AxA). Unlike human-agent interactions, where humans ground and steer conversations, AxA lacks such stabilizing signals, making these failures unique. We investigate one such failure, echoing, where agents abandon their assigned roles and instead mirror their conversational partners, undermining their intended objectives. Through experiments across $66$ AxA configurations, $4$ domains (3 transactional, 1 advisory), and $2500+$ conversations (over $250000$ LLM inferences), we show that echoing occurs across major LLM providers, with echoing rates as high as $70\%$ depending on the model and domain. Moreover, we find that echoing is persistent even in advanced reasoning models with substantial rates ($32.8\%$) that are not reduced by reasoning efforts. We analyze prompt, conversation dynamics, showing that echoing arises as interaction grows longer ($7+$ agent turns) and is not merely an artifact of sub-optimal experiment design. Finally, we introduce a protocol-level mitigation where targeted use of structured response reduces echoing to $9\%$.
Machine Learning 223
DInf-Grid: A Neural Differential Equation Solver with Differentiable Feature Grids
We present a novel differentiable grid-based representation for efficiently solving differential equations (DEs). Widely used architectures for neural solvers, such as sinusoidal neural networks, are coordinate-based MLPs that are both computationally intensive and slow to train. Although grid-based alternatives for implicit representations (e.g., Instant-NGP and K-Planes) train faster by exploiting signal structure, their reliance on linear interpolation restricts their ability to compute higher-order derivatives, rendering them unsuitable for solving DEs. Our approach overcomes these limitations by combining the efficiency of feature grids with radial basis function interpolation, which is infinitely differentiable. To effectively capture high-frequency solutions and enable stable and faster computation of global gradients, we introduce a multi-resolution decomposition with co-located grids. Our proposed representation, DInf-Grid, is trained implicitly using the differential equations as loss functions, enabling accurate modelling of physical fields. We validate DInf-Grid on a variety of tasks, including the Poisson equation for image reconstruction, the Helmholtz equation for wave fields, and the Kirchhoff-Love boundary value problem for cloth simulation. Our results demonstrate a 5-20x speed-up over coordinate-based MLP-based methods, solving differential equations in seconds or minutes while maintaining comparable accuracy and compactness.
comment: 25 pages; 16 figures; project page: https://4dqv.mpi-inf.mpg.de/DInf-Grid/
High-accuracy and dimension-free sampling with diffusions
Diffusion models have shown remarkable empirical success in sampling from rich multi-modal distributions. Their inference relies on numerically solving a certain differential equation. This differential equation cannot be solved in closed form, and its resolution via discretization typically requires many small iterations to produce \emph{high-quality} samples. More precisely, prior works have shown that the iteration complexity of discretization methods for diffusion models scales polynomially in the ambient dimension and the inverse accuracy $1/\varepsilon$. In this work, we propose a new solver for diffusion models relying on a subtle interplay between low-degree approximation and the collocation method (Lee, Song, Vempala 2018), and we prove that its iteration complexity scales \emph{polylogarithmically} in $1/\varepsilon$, yielding the first ``high-accuracy'' guarantee for a diffusion-based sampler that only uses (approximate) access to the scores of the data distribution. In addition, our bound does not depend explicitly on the ambient dimension; more precisely, the dimension affects the complexity of our solver through the \emph{effective radius} of the support of the target distribution only.
See Less, Drive Better: Generalizable End-to-End Autonomous Driving via Foundation Models Stochastic Patch Selection
Recent advances in end-to-end autonomous driving show that policies trained on patch-aligned features extracted from foundation models generalize better to Out-of-Distribution (OOD). We hypothesize that due to the self-attention mechanism, each patch feature implicitly embeds/contains information from all other patches, represented in a different way and intensity, making these descriptors highly redundant. We quantify redundancy in such (BLIP2) features via PCA and cross-patch similarity: $90$% of variance is captured by $17/64$ principal components, and strong inter-token correlations are pervasive. Training on such overlapping information leads the policy to overfit spurious correlations, hurting OOD robustness. We present Stochastic-Patch-Selection (SPS), a simple yet effective approach for learning policies that are more robust, generalizable, and efficient. For every frame, SPS randomly masks a fraction of patch descriptors, not feeding them to the policy model, while preserving the spatial layout of the remaining patches. Thus, the policy is provided with different stochastic but complete views of the (same) scene: every random subset of patches acts like a different, yet still sensible, coherent projection of the world. The policy thus bases its decisions on features that are invariant to which specific tokens survive. Extensive experiments confirm that across all OOD scenarios, our method outperforms the state of the art (SOTA), achieving a $6.2$% average improvement and up to $20.4$% in closed-loop simulations, while being $2.4\times$ faster. We conduct ablations over masking rates and patch-feature reorganization, training and evaluating 9 systems, with 8 of them surpassing prior SOTA. Finally, we show that the same learned policy transfers to a physical, real-world car without any tuning.
Distributed Perceptron under Bounded Staleness, Partial Participation, and Noisy Communication
We study a semi-asynchronous client-server perceptron trained via iterative parameter mixing (IPM-style averaging): clients run local perceptron updates and a server forms a global model by aggregating the updates that arrive in each communication round. The setting captures three system effects in federated and distributed deployments: (i) stale updates due to delayed model delivery and delayed application of client computations (two-sided version lag), (ii) partial participation (intermittent client availability), and (iii) imperfect communication on both downlink and uplink, modeled as effective zero-mean additive noise with bounded second moment. We introduce a server-side aggregation rule called staleness-bucket aggregation with padding that deterministically enforces a prescribed staleness profile over update ages without assuming any stochastic model for delays or participation. Under margin separability and bounded data radius, we prove a finite-horizon expected bound on the cumulative weighted number of perceptron mistakes over a given number of server rounds: the impact of delay appears only through the mean enforced staleness, whereas communication noise contributes an additional term that grows on the order of the square root of the horizon with the total noise energy. In the noiseless case, we show how a finite expected mistake budget yields an explicit finite-round stabilization bound under a mild fresh-participation condition.
Communication-Efficient and Privacy-Adaptable Mechanism -- a Federated Learning Scheme with Convergence Analysis
Federated learning enables multiple parties to jointly train learning models without sharing their own underlying data, offering a practical pathway to privacy-preserving collaboration under data-governance constraints. Continued study of federated learning is essential to address key challenges in it, including communication efficiency and privacy protection between parties. A recent line of work introduced a novel approach called the Communication-Efficient and Privacy-Adaptable Mechanism (CEPAM), which achieves both objectives simultaneously. CEPAM leverages the rejection-sampled universal quantizer (RSUQ), a randomized vector quantizer whose quantization error is equivalent to a prescribed noise, which can be tuned to customize privacy protection between parties. In this work, we theoretically analyze the privacy guarantees and convergence properties of CEPAM. Moreover, we assess CEPAM's utility performance through experimental evaluations, including convergence profiles compared with other baselines, and accuracy-privacy trade-offs between different parties.
comment: 19 pages, 5 figures. This work is submitted in part to the 2026 IEEE International Symposium on Information Theory (ISIT). arXiv admin note: substantial text overlap with arXiv:2501.12046
Data-driven stochastic reduced-order modeling of parametrized dynamical systems
Modeling complex dynamical systems under varying conditions is computationally intensive, often rendering high-fidelity simulations intractable. Although reduced-order models (ROMs) offer a promising solution, current methods often struggle with stochastic dynamics and fail to quantify prediction uncertainty, limiting their utility in robust decision-making contexts. To address these challenges, we introduce a data-driven framework for learning continuous-time stochastic ROMs that generalize across parameter spaces and forcing conditions. Our approach, based on amortized stochastic variational inference, leverages a reparametrization trick for Markov Gaussian processes to eliminate the need for computationally expensive forward solvers during training. This enables us to jointly learn a probabilistic autoencoder and stochastic differential equations governing the latent dynamics, at a computational cost that is independent of the dataset size and system stiffness. Additionally, our approach offers the flexibility of incorporating physics-informed priors if available. Numerical studies are presented for three challenging test problems, where we demonstrate excellent generalization to unseen parameter combinations and forcings, and significant efficiency gains compared to existing approaches.
On the origin of neural scaling laws: from random graphs to natural language
Scaling laws have played a major role in the modern AI revolution, providing practitioners predictive power over how the model performance will improve with increasing data, compute, and number of model parameters. This has spurred an intense interest in the origin of neural scaling laws, with a common suggestion being that they arise from power law structure already present in the data. In this paper we study scaling laws for transformers trained to predict random walks (bigrams) on graphs with tunable complexity. We demonstrate that this simplified setting already gives rise to neural scaling laws even in the absence of power law structure in the data correlations. We further consider dialing down the complexity of natural language systematically, by training on sequences sampled from increasingly simplified generative language models, from 4,2,1-layer transformer language models down to language bigrams, revealing a monotonic evolution of the scaling exponents. Our results also include scaling laws obtained from training on random walks on random graphs drawn from Erdös-Renyi and scale-free Barabási-Albert ensembles. Finally, we revisit conventional scaling laws for language modeling, demonstrating that several essential results can be reproduced using 2 layer transformers with context length of 50, provide a critical analysis of various fits used in prior literature, demonstrate an alternative method for obtaining compute optimal curves as compared with current practice in published literature, and provide preliminary evidence that maximal update parameterization may be more parameter efficient than standard parameterization.
comment: 33 pages
Are Your Reasoning Models Reasoning or Guessing? A Mechanistic Analysis of Hierarchical Reasoning Models
Hierarchical reasoning model (HRM) achieves extraordinary performance on various reasoning tasks, significantly outperforming large language model-based reasoners. To understand the strengths and potential failure modes of HRM, we conduct a mechanistic study on its reasoning patterns and find three surprising facts: (a) Failure of extremely simple puzzles, e.g., HRM can fail on a puzzle with only one unknown cell. We attribute this failure to the violation of the fixed point property, a fundamental assumption of HRM. (b) "Grokking" dynamics in reasoning steps, i.e., the answer is not improved uniformly, but instead there is a critical reasoning step that suddenly makes the answer correct; (c) Existence of multiple fixed points. HRM "guesses" the first fixed point, which could be incorrect, and gets trapped there for a while or forever. All facts imply that HRM appears to be "guessing" instead of "reasoning". Leveraging this "guessing" picture, we propose three strategies to scale HRM's guesses: data augmentation (scaling the quality of guesses), input perturbation (scaling the number of guesses by leveraging inference randomness), and model bootstrapping (scaling the number of guesses by leveraging training randomness). On the practical side, by combining all methods, we develop Augmented HRM, boosting accuracy on Sudoku-Extreme from 54.5% to 96.9%. On the scientific side, our analysis provides new insights into how reasoning models "reason".
Single-Stage Huffman Encoder for ML Compression
Training and serving Large Language Models (LLMs) require partitioning data across multiple accelerators, where collective operations are frequently bottlenecked by network bandwidth. Lossless compression using Huffman codes is an effective way to alleviate the issue, however, its three-stage design requiring on-the-fly frequency analysis, codebook generation and transmission of codebook along with data introduces computational, latency and data overheads which are prohibitive for latency-sensitive scenarios such as die-to-die communication. This paper proposes a single-stage Huffman encoder that eliminates these overheads by using fixed codebooks derived from the average probability distribution of previous data batches. Through our analysis of the Gemma 2B model, we demonstrate that tensors exhibit high statistical similarity across layers and shards. Using this approach we achieve compression within 0.5% of per-shard Huffman coding and within 1% of the ideal Shannon compressibility, enabling efficient on-the-fly compression.
comment: 5 pages, 4 figures
PACEvolve: Enabling Long-Horizon Progress-Aware Consistent Evolution
Large Language Models (LLMs) have emerged as powerful operators for evolutionary search, yet the design of efficient search scaffolds remains ad hoc. While promising, current LLM-in-the-loop systems lack a systematic approach to managing the evolutionary process. We identify three distinct failure modes: Context Pollution, where experiment history biases future candidate generation; Mode Collapse, where agents stagnate in local minima due to poor exploration-exploitation balance; and Weak Collaboration, where rigid crossover strategies fail to leverage parallel search trajectories effectively. We introduce Progress-Aware Consistent Evolution (PACEvolve), a framework designed to robustly govern the agent's context and search dynamics, to address these challenges. PACEvolve combines hierarchical context management (HCM) with pruning to address context pollution; momentum-based backtracking (MBB) to escape local minima; and a self-adaptive sampling policy that unifies backtracking and crossover for dynamic search coordination (CE), allowing agents to balance internal refinement with cross-trajectory collaboration. We demonstrate that PACEvolve provides a systematic path to consistent, long-horizon self-improvement, achieving state-of-the-art results on LLM-SR and KernelBench, while discovering solutions surpassing the record on Modded NanoGPT.
Adjusted Similarity Measures and a Violation of Expectations
Adjusted similarity measures, such as Cohen's kappa for inter-rater reliability and the adjusted Rand index used to compare clustering algorithms, are a vital tool for comparing discrete labellings. These measures are intended to have the property of 0 expectation under a null distribution and maximum value 1 under maximal similarity to aid in interpretation. Measures are frequently adjusted with respect to the permutation distribution for historic and analytic reasons. There is currently renewed interest in considering other null models more appropriate for context, such as clustering ensembles permitting a random number of identified clusters. The purpose of this work is two -- fold: (1) to generalize the study of the adjustment operator to general null models and to a more general procedure which includes statistical standardization as a special case and (2) to identify sufficient conditions for the adjustment operator to produce the intended properties, where sufficient conditions are related to whether and how observed data are incorporated into null distributions. We demonstrate how violations of the sufficient conditions may lead to substantial breakdown, such as by producing a non-positive measure under traditional adjustment rather than one with mean 0, or by producing a measure which is deterministically 0 under statistical standardization.
comment: 12 pages, 1 figure
STEM: Scaling Transformers with Embedding Modules
Fine-grained sparsity promises higher parametric capacity without proportional per-token compute, but often suffers from training instability, load balancing, and communication overhead. We introduce STEM (Scaling Transformers with Embedding Modules), a static, token-indexed approach that replaces the FFN up-projection with a layer-local embedding lookup while keeping the gate and down-projection dense. This removes runtime routing, enables CPU offload with asynchronous prefetch, and decouples capacity from both per-token FLOPs and cross-device communication. Empirically, STEM trains stably despite extreme sparsity. It improves downstream performance over dense baselines while reducing per-token FLOPs and parameter accesses (eliminating roughly one-third of FFN parameters). STEM learns embedding spaces with large angular spread which enhances its knowledge storage capacity. More interestingly, this enhanced knowledge capacity comes with better interpretability. The token-indexed nature of STEM embeddings allows simple ways to perform knowledge editing and knowledge injection in an interpretable manner without any intervention in the input text or additional computation. In addition, STEM strengthens long-context performance: as sequence length grows, more distinct parameters are activated, yielding practical test-time capacity scaling. Across 350M and 1B model scales, STEM delivers up to ~3--4% accuracy improvements overall, with notable gains on knowledge and reasoning-heavy benchmarks (ARC-Challenge, OpenBookQA, GSM8K, MMLU). Overall, STEM is an effective way of scaling parametric memory while providing better interpretability, better training stability and improved efficiency.
Classification Imbalance as Transfer Learning
Classification imbalance arises when one class is much rarer than the other. We frame this setting as transfer learning under label (prior) shift between an imbalanced source distribution induced by the observed data and a balanced target distribution under which performance is evaluated. Within this framework, we study a family of oversampling procedures that augment the training data by generating synthetic samples from an estimated minority-class distribution to roughly balance the classes, among which the celebrated SMOTE algorithm is a canonical example. We show that the excess risk decomposes into the rate achievable under balanced training (as if the data had been drawn from the balanced target distribution) and an additional term, the cost of transfer, which quantifies the discrepancy between the estimated and true minority-class distributions. In particular, we show that the cost of transfer for SMOTE dominates that of bootstrapping (random oversampling) in moderately high dimensions, suggesting that we should expect bootstrapping to have better performance than SMOTE in general. We corroborate these findings with experimental evidence. More broadly, our results provide guidance for choosing among augmentation strategies for imbalanced classification.
Parametric RDT approach to computational gap of symmetric binary perceptron
We study potential presence of statistical-computational gaps (SCG) in symmetric binary perceptrons (SBP) via a parametric utilization of \emph{fully lifted random duality theory} (fl-RDT) [96]. A structural change from decreasingly to arbitrarily ordered $c$-sequence (a key fl-RDT parametric component) is observed on the second lifting level and associated with \emph{satisfiability} ($α_c$) -- \emph{algorithmic} ($α_a$) constraints density threshold change thereby suggesting a potential existence of a nonzero computational gap $SCG=α_c-α_a$. The second level estimate is shown to match the theoretical $α_c$ whereas the $r\rightarrow \infty$ level one is proposed to correspond to $α_a$. For example, for the canonical SBP ($κ=1$ margin) we obtain $α_c\approx 1.8159$ on the second and $α_a\approx 1.6021$ (with converging tendency towards $\sim 1.59$ range) on the seventh level. Our propositions remarkably well concur with recent literature: (i) in [20] local entropy replica approach predicts $α_{LE}\approx 1.58$ as the onset of clustering defragmentation (presumed driving force behind locally improving algorithms failures); (ii) in $α\rightarrow 0$ regime we obtain on the third lifting level $κ\approx 1.2385\sqrt{\frac{α_a}{-\log\left ( α_a \right ) }}$ which qualitatively matches overlap gap property (OGP) based predictions of [43] and identically matches local entropy based predictions of [24]; (iii) $c$-sequence ordering change phenomenology mirrors the one observed in asymmetric binary perceptron (ABP) in [98] and the negative Hopfield model in [100]; and (iv) as in [98,100], we here design a CLuP based algorithm whose practical performance closely matches proposed theoretical predictions.
Procedural Fairness in Multi-Agent Bandits
In the context of multi-agent multi-armed bandits (MA-MAB), fairness is often reduced to outcomes: maximizing welfare, reducing inequality, or balancing utilities. However, evidence in psychology, economics, and Rawlsian theory suggests that fairness is also about process and who gets a say in the decisions being made. We introduce a new fairness objective, procedural fairness, which provides equal decision-making power for all agents, lies in the core, and provides for proportionality in outcomes. Empirical results confirm that fairness notions based on optimizing for outcomes sacrifice equal voice and representation, while the sacrifice in outcome-based fairness objectives (like equality and utilitarianism) is minimal under procedurally fair policies. We further prove that different fairness notions prioritize fundamentally different and incompatible values, highlighting that fairness requires explicit normative choices. This paper argues that procedural legitimacy deserves greater focus as a fairness objective, and provides a framework for putting procedural fairness into practice.
ProbFM: Probabilistic Time Series Foundation Model with Uncertainty Decomposition AAAI 2026
Time Series Foundation Models (TSFMs) have emerged as a promising approach for zero-shot financial forecasting, demonstrating strong transferability and data efficiency gains. However, their adoption in financial applications is hindered by fundamental limitations in uncertainty quantification: current approaches either rely on restrictive distributional assumptions, conflate different sources of uncertainty, or lack principled calibration mechanisms. While recent TSFMs employ sophisticated techniques such as mixture models, Student's t-distributions, or conformal prediction, they fail to address the core challenge of providing theoretically-grounded uncertainty decomposition. For the very first time, we present a novel transformer-based probabilistic framework, ProbFM (probabilistic foundation model), that leverages Deep Evidential Regression (DER) to provide principled uncertainty quantification with explicit epistemic-aleatoric decomposition. Unlike existing approaches that pre-specify distributional forms or require sampling-based inference, ProbFM learns optimal uncertainty representations through higher-order evidence learning while maintaining single-pass computational efficiency. To rigorously evaluate the core DER uncertainty quantification approach independent of architectural complexity, we conduct an extensive controlled comparison study using a consistent LSTM architecture across five probabilistic methods: DER, Gaussian NLL, Student's-t NLL, Quantile Loss, and Conformal Prediction. Evaluation on cryptocurrency return forecasting demonstrates that DER maintains competitive forecasting accuracy while providing explicit epistemic-aleatoric uncertainty decomposition. This work establishes both an extensible framework for principled uncertainty quantification in foundation models and empirical evidence for DER's effectiveness in financial applications.
comment: Accepted for oral presentation at the AI Meets Quantitative Finance Workshop at ICAIF 2025. An enhanced version was accepted for oral presentation at the AI for Time Series Analysis Workshop at AAAI 2026
Searching for Quantum Effects in the Brain: A Bell-Type Test for Nonclassical Latent Representations in Autoencoders
Whether neural information processing is entirely classical or involves quantum-mechanical elements remains an open question. Here we propose a model-agnostic, information-theoretic test of nonclassicality that bypasses microscopic assumptions and instead probes the structure of neural representations themselves. Using autoencoders as a transparent model system, we introduce a Bell-type consistency test in latent space, and ask whether decoding statistics obtained under multiple readout contexts can be jointly explained by a single positive latent-variable distribution. By shifting the search for quantum-like signatures in neural systems from microscopic dynamics to experimentally testable constraints on information processing, this work opens a new route for probing the fundamental physics of neural computation.
comment: 6 pages, 2 figures
Combinatorial Optimization Augmented Machine Learning
Combinatorial optimization augmented machine learning (COAML) has recently emerged as a powerful paradigm for integrating predictive models with combinatorial decision-making. By embedding combinatorial optimization oracles into learning pipelines, COAML enables the construction of policies that are both data-driven and feasibility-preserving, bridging the traditions of machine learning, operations research, and stochastic optimization. This paper provides a comprehensive overview of the state of the art in COAML. We introduce a unifying framework for COAML pipelines, describe their methodological building blocks, and formalize their connection to empirical cost minimization. We then develop a taxonomy of problem settings based on the form of uncertainty and decision structure. Using this taxonomy, we review algorithmic approaches for static and dynamic problems, survey applications across domains such as scheduling, vehicle routing, stochastic programming, and reinforcement learning, and synthesize methodological contributions in terms of empirical cost minimization, imitation learning, and reinforcement learning. Finally, we identify key research frontiers. This survey aims to serve both as a tutorial introduction to the field and as a roadmap for future research at the interface of combinatorial optimization and machine learning.
Generative AI collective behavior needs an interactionist paradigm
In this article, we argue that understanding the collective behavior of agents based on large language models (LLMs) is an essential area of inquiry, with important implications in terms of risks and benefits, impacting us as a society at many levels. We claim that the distinctive nature of LLMs--namely, their initialization with extensive pre-trained knowledge and implicit social priors, together with their capability of adaptation through in-context learning--motivates the need for an interactionist paradigm consisting of alternative theoretical foundations, methodologies, and analytical tools, in order to systematically examine how prior knowledge and embedded values interact with social context to shape emergent phenomena in multi-agent generative AI systems. We propose and discuss four directions that we consider crucial for the development and deployment of LLM-based collectives, focusing on theory, methods, and trans-disciplinary dialogue.
Representation-Aware Unlearning via Activation Signatures: From Suppression to Knowledge-Signature Erasure
Selective knowledge erasure from LLMs is critical for GDPR compliance and model safety, yet current unlearning methods conflate behavioral suppression with true knowledge removal, allowing latent capabilities to persist beneath surface-level refusals. In this work, we address this challenge by introducing Knowledge Immunization Framework (KIF), a representation-aware architecture that distinguishes genuine erasure from obfuscation by targeting internal activation signatures rather than surface outputs. Our approach combines dynamic suppression of subject-specific representations with parameter-efficient adaptation, enabling durable unlearning without full model retraining. KIF achieves near-oracle erasure (FQ approx 0.99 vs. 1.00) while preserving utility at oracle levels (MU = 0.62), effectively breaking the stability-erasure tradeoff that has constrained all prior work. We evaluate both standard foundation models (Llama and Mistral) and reasoning-prior models (Qwen and DeepSeek) across 3B to 14B parameters. Our observation shows that standard models exhibit scale-independent true erasure (<3% utility drift), while reasoning-prior models reveal fundamental architectural divergence. Our comprehensive dual-metric evaluation protocol, combining surface-level leakage with latent trace persistence, operationalizes the obfuscation - erasure distinction and enables the first systematic diagnosis of mechanism-level forgetting behavior across model families and scales.
comment: 16 pages, 4 figures
Kolmogorov Arnold Networks and Multi-Layer Perceptrons: A Paradigm Shift in Neural Modelling
The research undertakes a comprehensive comparative analysis of Kolmogorov-Arnold Networks (KAN) and Multi-Layer Perceptrons (MLP), highlighting their effectiveness in solving essential computational challenges like nonlinear function approximation, time-series prediction, and multivariate classification. Rooted in Kolmogorov's representation theorem, KANs utilize adaptive spline-based activation functions and grid-based structures, providing a transformative approach compared to traditional neural network frameworks. Utilizing a variety of datasets spanning mathematical function estimation (quadratic and cubic) to practical uses like predicting daily temperatures and categorizing wines, the proposed research thoroughly assesses model performance via accuracy measures like Mean Squared Error (MSE) and computational expense assessed through Floating Point Operations (FLOPs). The results indicate that KANs reliably exceed MLPs in every benchmark, attaining higher predictive accuracy with significantly reduced computational costs. Such an outcome highlights their ability to maintain a balance between computational efficiency and accuracy, rendering them especially beneficial in resource-limited and real-time operational environments. By elucidating the architectural and functional distinctions between KANs and MLPs, the paper provides a systematic framework for selecting the most suitable neural architectures for specific tasks. Furthermore, the proposed study highlights the transformative capabilities of KANs in progressing intelligent systems, influencing their use in situations that require both interpretability and computational efficiency.
comment: 13 pages, 8 figures, 2 tables
Process-Guided Concept Bottleneck Model
Concept Bottleneck Models (CBMs) improve the explainability of black-box Deep Learning (DL) by introducing intermediate semantic concepts. However, standard CBMs often overlook domain-specific relationships and causal mechanisms, and their dependence on complete concept labels limits applicability in scientific domains where supervision is sparse but processes are well defined. To address this, we propose the Process-Guided Concept Bottleneck Model (PG-CBM), an extension of CBMs which constrains learning to follow domain-defined causal mechanisms through biophysically meaningful intermediate concepts. Using above ground biomass density estimation from Earth Observation data as a case study, we show that PG-CBM reduces error and bias compared to multiple benchmarks, whilst leveraging multi-source heterogeneous training data and producing interpretable intermediate outputs. Beyond improved accuracy, PG-CBM enhances transparency, enables detection of spurious learning, and provides scientific insights, representing a step toward more trustworthy AI systems in scientific applications.
comment: 13 pages with 7 figures and 1 table, Supplementary Materials 10 pages with 3 figures
Mixtures of Transparent Local Models
The predominance of machine learning models in many spheres of human activity has led to a growing demand for their transparency. The transparency of models makes it possible to discern some factors, such as security or non-discrimination. In this paper, we propose a mixture of transparent local models as an alternative solution for designing interpretable (or transparent) models. Our approach is designed for the situations where a simple and transparent function is suitable for modeling the label of instances in some localities/regions of the input space, but may change abruptly as we move from one locality to another. Consequently, the proposed algorithm is to learn both the transparent labeling function and the locality of the input space where the labeling function achieves a small risk in its assigned locality. By using a new multi-predictor (and multi-locality) loss function, we established rigorous PAC-Bayesian risk bounds for the case of binary linear classification problem and that of linear regression. In both cases, synthetic data sets were used to illustrate how the learning algorithms work. The results obtained from real data sets highlight the competitiveness of our approach compared to other existing methods as well as certain opaque models. Keywords: PAC-Bayes, risk bounds, local models, transparent models, mixtures of local transparent models.
comment: 44 pages, 32 figues
CoGen: Creation of Reusable UI Components in Figma via Textual Commands
The evolution of User Interface design has emphasized the need for efficient, reusable, and editable components to ensure an efficient design process. This research introduces CoGen, a system that uses machine learning techniques to generate reusable UI components directly in Figma, one of the most popular UI design tools. Addressing gaps in current systems, CoGen focuses on creating atomic components such as buttons, labels, and input fields using structured JSON and natural language prompts. The project integrates Figma API data extraction, Seq2Seq models, and fine-tuned T5 transformers for component generation. The key results demonstrate the efficiency of the T5 model in prompt generation, with an accuracy of 98% and a BLEU score of 0.2668, which ensures the mapping of JSON to descriptive prompts. For JSON creation, CoGen achieves a success rate of up to 100% in generating simple JSON outputs for specified component types.
comment: 8 pages, 6 figures, 11 tables
Coarsening Causal DAG Models
Directed acyclic graphical (DAG) models are a powerful tool for representing causal relationships among jointly distributed random variables, especially concerning data from across different experimental settings. However, it is not always practical or desirable to estimate a causal model at the granularity of given features in a particular dataset. There is a growing body of research on causal abstraction to address such problems. We contribute to this line of research by (i) providing novel graphical identifiability results for practically-relevant interventional settings, (ii) proposing an efficient, provably consistent algorithm for directly learning abstract causal graphs from interventional data with unknown intervention targets, and (iii) uncovering theoretical insights about the lattice structure of the underlying search space, with connections to the field of causal discovery more generally. As proof of concept, we apply our algorithm on synthetic and real datasets with known ground truths, including measurements from a controlled physical system with interacting light intensity and polarization.
comment: 25 pages, 5 figures
A Safety Report on GPT-5.2, Gemini 3 Pro, Qwen3-VL, Doubao 1.8, Grok 4.1 Fast, Nano Banana Pro, and Seedream 4.5
The rapid evolution of Large Language Models (LLMs) and Multimodal Large Language Models (MLLMs) has produced substantial gains in reasoning, perception, and generative capability across language and vision. However, whether these advances yield commensurate improvements in safety remains unclear, in part due to fragmented evaluation practices limited to single modalities or threat models. In this report, we present an integrated safety evaluation of 7 frontier models: GPT-5.2, Gemini 3 Pro, Qwen3-VL, Doubao 1.8, Grok 4.1 Fast, Nano Banana Pro, and Seedream 4.5. We evaluate each model across language, vision-language, and image generation settings using a unified protocol that integrates benchmark evaluation, adversarial evaluation, multilingual evaluation, and compliance evaluation. Aggregating our evaluations into safety leaderboards and model safety profiles across multiple evaluation modes reveals a sharply heterogeneous safety landscape. While GPT-5.2 demonstrates consistently strong and balanced safety performance across evaluations, other models exhibit pronounced trade-offs among benchmark safety, adversarial alignment, multilingual generalization, and regulatory compliance. Both language and vision-language modalities show significant vulnerability under adversarial evaluation, with all models degrading substantially despite strong results on standard benchmarks. Text-to-image models achieve relatively stronger alignment in regulated visual risk categories, yet remain brittle under adversarial or semantically ambiguous prompts. Overall, these results show that safety in frontier models is inherently multidimensional--shaped by modality, language, and evaluation scheme, underscoring the need for standardized safety evaluations to accurately assess real-world risk and guide responsible model development and deployment.
comment: 42 pages, 24 figures
Transformer-Based Cognitive Radio: Adaptive Modulation Strategies Using Transformer Models
Cognitive Radio (CR) systems, which dynamically adapt to changing spectrum environments, could benefit significantly from advancements in machine learning technologies. These systems can be enhanced in terms of spectral efficiency, robustness, and security through innovative approaches such as the use of Transformer models. This work investigates the application of Transformer models, specifically the GPT-2 architecture, to generate novel modulation schemes for wireless communications. By training a GPT-2 model on a dataset of existing modulation formulas, new modulation schemes has been created. These generated schemes are then compared to traditional methods using key performance metrics such as Signal-to-Noise Ratio (SNR) and Power Spectrum Density (PSD). The results show that Transformer-generated modulation schemes can achieve performance comparable to, and in some cases outperforming, traditional methods. This demonstrates that advanced CR systems could greatly benefit from the implementation of Transformer models, leading to more efficient, robust, and secure communication systems.
SatMap: Revisiting Satellite Maps as Prior for Online HD Map Construction
Online high-definition (HD) map construction is an essential part of a safe and robust end-to-end autonomous driving (AD) pipeline. Onboard camera-based approaches suffer from limited depth perception and degraded accuracy due to occlusion. In this work, we propose SatMap, an online vectorized HD map estimation method that integrates satellite maps with multi-view camera observations and directly predicts a vectorized HD map for downstream prediction and planning modules. Our method leverages lane-level semantics and texture from satellite imagery captured from a Bird's Eye View (BEV) perspective as a global prior, effectively mitigating depth ambiguity and occlusion. In our experiments on the nuScenes dataset, SatMap achieves 34.8% mAP performance improvement over the camera-only baseline and 8.5% mAP improvement over the camera-LiDAR fusion baseline. Moreover, we evaluate our model in long-range and adverse weather conditions to demonstrate the advantages of using a satellite prior map. Source code will be available at https://iv.ee.hm.edu/satmap/.
comment: This work has been submitted to the IEEE ICPR for possible publication
Projected Microbatch Accumulation yields reference-free proximal policy updates for reinforcement learning
This note introduces Projected Microbatch Accumulation (PROMA), a proximal policy update method for large language model fine-tuning. PROMA accumulates policy gradients across microbatches by projecting out sequence-wise gradient components before microbatch aggregation. The projection is applied layer-wise during the backward pass, enabling efficient implementation without additional forward or backward passes. Empirically, PROMA enforces tighter control of local KL divergence than GRPO, resulting in more stable policy learning. Unlike PPO and GRPO, PROMA achieves proximal updates without inducing entropy collapse and does not rely on a reference policy or likelihood-ratio clipping.
CROCS: A Two-Stage Clustering Framework for Behaviour-Centric Consumer Segmentation with Smart Meter Data
With grid operators confronting rising uncertainty from renewable integration and a broader push toward electrification, Demand-Side Management (DSM) -- particularly Demand Response (DR) -- has attracted significant attention as a cost-effective mechanism for balancing modern electricity systems. Unprecedented volumes of consumption data from a continuing global deployment of smart meters enable consumer segmentation based on real usage behaviours, promising to inform the design of more effective DSM and DR programs. However, existing clustering-based segmentation methods insufficiently reflect the behavioural diversity of consumers, often relying on rigid temporal alignment, and faltering in the presence of anomalies, missing data, or large-scale deployments. To address these challenges, we propose a novel two-stage clustering framework -- Clustered Representations Optimising Consumer Segmentation (CROCS). In the first stage, each consumer's daily load profiles are clustered independently to form a Representative Load Set (RLS), providing a compact summary of their typical diurnal consumption behaviours. In the second stage, consumers are clustered using the Weighted Sum of Minimum Distances (WSMD), a novel set-to-set measure that compares RLSs by accounting for both the prevalence and similarity of those behaviours. Finally, community detection on the WSMD-induced graph reveals higher-order prototypes that embody the shared diurnal behaviours defining consumer groups, enhancing the interpretability of the resulting clusters. Extensive experiments on both synthetic and real Australian smart meter datasets demonstrate that CROCS captures intra-consumer variability, uncovers both synchronous and asynchronous behavioural similarities, and remains robust to anomalies and missing data, while scaling efficiently through natural parallelisation. These results...
Communication-Efficient Federated Learning by Exploiting Spatio-Temporal Correlations of Gradients
Communication overhead is a critical challenge in federated learning, particularly in bandwidth-constrained networks. Although many methods have been proposed to reduce communication overhead, most focus solely on compressing individual gradients, overlooking the temporal correlations among them. Prior studies have shown that gradients exhibit spatial correlations, typically reflected in low-rank structures. Through empirical analysis, we further observe a strong temporal correlation between client gradients across adjacent rounds. Based on these observations, we propose GradESTC, a compression technique that exploits both spatial and temporal gradient correlations. GradESTC exploits spatial correlations to decompose each full gradient into a compact set of basis vectors and corresponding combination coefficients. By exploiting temporal correlations, only a small portion of the basis vectors need to be dynamically updated in each round. GradESTC significantly reduces communication overhead by transmitting lightweight combination coefficients and a limited number of updated basis vectors instead of the full gradients. Extensive experiments show that, upon reaching a target accuracy level near convergence, GradESTC reduces uplink communication by an average of 39.79% compared to the strongest baseline, while maintaining comparable convergence speed and final accuracy to uncompressed FedAvg. By effectively leveraging spatio-temporal gradient structures, GradESTC offers a practical and scalable solution for communication-efficient federated learning.
H-EFT-VA: An Effective-Field-Theory Variational Ansatz with Provable Barren Plateau Avoidance
Variational Quantum Algorithms (VQAs) are critically threatened by the Barren Plateau (BP) phenomenon. In this work, we introduce the H-EFT Variational Ansatz (H-EFT-VA), an architecture inspired by Effective Field Theory (EFT). By enforcing a hierarchical "UV-cutoff" on initialization, we theoretically restrict the circuit's state exploration, preventing the formation of approximate unitary 2-designs. We provide a rigorous proof that this localization guarantees an inverse-polynomial lower bound on the gradient variance: $Var[\partial θ] \in Ω(1/poly(N))$. Crucially, unlike approaches that avoid BPs by limiting entanglement, we demonstrate that H-EFT-VA maintains volume-law entanglement and near-Haar purity, ensuring sufficient expressibility for complex quantum states. Extensive benchmarking across 16 experiments -- including Transverse Field Ising and Heisenberg XXZ models -- confirms a 109x improvement in energy convergence and a 10.7x increase in ground-state fidelity over standard Hardware-Efficient Ansatze (HEA), with a statistical significance of $p < 10^{-88}$.
comment: 7 pages, 5 figuers, Appendix
DeFlow: Decoupling Manifold Modeling and Value Maximization for Offline Policy Extraction
We present DeFlow, a decoupled offline RL framework that leverages flow matching to faithfully capture complex behavior manifolds. Optimizing generative policies is computationally prohibitive, typically necessitating backpropagation through ODE solvers. We address this by learning a lightweight refinement module within an explicit, data-derived trust region of the flow manifold, rather than sacrificing the iterative generation capability via single-step distillation. This way, we bypass solver differentiation and eliminate the need for balancing loss terms, ensuring stable improvement while fully preserving the flow's iterative expressivity. Empirically, DeFlow achieves superior performance on the challenging OGBench benchmark and demonstrates efficient offline-to-online adaptation.
comment: 13 pages, 3 figures
Contextual StereoSet: Stress-Testing Bias Alignment Robustness in Large Language Models
A model that avoids stereotypes in a lab benchmark may not avoid them in deployment. We show that measured bias shifts dramatically when prompts mention different places, times, or audiences -- no adversarial prompting required. We introduce Contextual StereoSet, a benchmark that holds stereotype content fixed while systematically varying contextual framing. Testing 13 models across two protocols, we find striking patterns: anchoring to 1990 (vs. 2030) raises stereotype selection in all models tested on this contrast (p<0.05); gossip framing raises it in 5 of 6 full-grid models; out-group observer framing shifts it by up to 13 percentage points. These effects replicate in hiring, lending, and help-seeking vignettes. We propose Context Sensitivity Fingerprints (CSF): a compact profile of per-dimension dispersion and paired contrasts with bootstrap CIs and FDR correction. Two evaluation tracks support different use cases -- a 360-context diagnostic grid for deep analysis and a budgeted protocol covering 4,229 items for production screening. The implication is methodological: bias scores from fixed-condition tests may not generalize.This is not a claim about ground-truth bias rates; it is a stress test of evaluation robustness. CSF forces evaluators to ask, "Under what conditions does bias appear?" rather than "Is this model biased?" We release our benchmark, code, and results.
LangLasso: Interactive Cluster Descriptions through LLM Explanation
Dimensionality reduction is a powerful technique for revealing structure and potential clusters in data. However, as the axes are complex, non-linear combinations of features, they often lack semantic interpretability. Existing visual analytics (VA) methods support cluster interpretation through feature comparison and interactive exploration, but they require technical expertise and intense human effort. We present \textit{LangLasso}, a novel method that complements VA approaches through interactive, natural language descriptions of clusters using large language models (LLMs). It produces human-readable descriptions that make cluster interpretation accessible to non-experts and allow integration of external contextual knowledge beyond the dataset. We systematically evaluate the reliability of these explanations and demonstrate that \langlasso provides an effective first step for engaging broader audiences in cluster interpretation. The tool is available at https://langlasso.vercel.app
comment: This manuscript is accepted for publication in VIS 2025 VISxGenAI Workshop
Stable Differentiable Modal Synthesis for Learning Nonlinear Dynamics
Modal methods are a long-standing approach to physical modelling synthesis. Extensions to nonlinear problems are possible, including the case of a high-amplitude vibration of a string. A modal decomposition leads to a densely coupled nonlinear system of ordinary differential equations. Recent work in scalar auxiliary variable techniques has enabled construction of explicit and stable numerical solvers for such classes of nonlinear systems. On the other hand, machine learning approaches (in particular neural ordinary differential equations) have been successful in modelling nonlinear systems automatically from data. In this work, we examine how scalar auxiliary variable techniques can be combined with neural ordinary differential equations to yield a stable differentiable model capable of learning nonlinear dynamics. The proposed approach leverages the analytical solution for linear vibration of system's modes so that physical parameters of a system remain easily accessible after the training without the need for a parameter encoder in the model architecture. As a proof of concept, we generate synthetic data for the nonlinear transverse vibration of a string and show that the model can be trained to reproduce the nonlinear dynamics of the system. Sound examples are presented.
comment: Submitted to the Journal of Audio Engineering Society (December 2025)
AgentGuardian: Learning Access Control Policies to Govern AI Agent Behavior
Artificial intelligence (AI) agents are increasingly used in a variety of domains to automate tasks, interact with users, and make decisions based on data inputs. Ensuring that AI agents perform only authorized actions and handle inputs appropriately is essential for maintaining system integrity and preventing misuse. In this study, we introduce the AgentGuardian, a novel security framework that governs and protects AI agent operations by enforcing context-aware access-control policies. During a controlled staging phase, the framework monitors execution traces to learn legitimate agent behaviors and input patterns. From this phase, it derives adaptive policies that regulate tool calls made by the agent, guided by both real-time input context and the control flow dependencies of multi-step agent actions. Evaluation across two real-world AI agent applications demonstrates that AgentGuardian effectively detects malicious or misleading inputs while preserving normal agent functionality. Moreover, its control-flow-based governance mechanism mitigates hallucination-driven errors and other orchestration-level malfunctions.
comment: 14 pages, 5 figures
Reinforcement Learning with Multi-Step Lookahead Information Via Adaptive Batching
We study tabular reinforcement learning problems with multiple steps of lookahead information. Before acting, the learner observes $\ell$ steps of future transition and reward realizations: the exact state the agent would reach and the rewards it would collect under any possible course of action. While it has been shown that such information can drastically boost the value, finding the optimal policy is NP-hard, and it is common to apply one of two tractable heuristics: processing the lookahead in chunks of predefined sizes ('fixed batching policies'), and model predictive control. We first illustrate the problems with these two approaches and propose utilizing the lookahead in adaptive (state-dependent) batches; we refer to such policies as adaptive batching policies (ABPs). We derive the optimal Bellman equations for these strategies and design an optimistic regret-minimizing algorithm that enables learning the optimal ABP when interacting with unknown environments. Our regret bounds are order-optimal up to a potential factor of the lookahead horizon $\ell$, which can usually be considered a small constant.
CS-GBA: A Critical Sample-based Gradient-guided Backdoor Attack for Offline Reinforcement Learning
Offline Reinforcement Learning (RL) enables policy optimization from static datasets but is inherently vulnerable to backdoor attacks. Existing attack strategies typically struggle against safety-constrained algorithms (e.g., CQL) due to inefficient random poisoning and the use of easily detectable Out-of-Distribution (OOD) triggers. In this paper, we propose CS-GBA (Critical Sample-based Gradient-guided Backdoor Attack), a novel framework designed to achieve high stealthiness and destructiveness under a strict budget. Leveraging the theoretical insight that samples with high Temporal Difference (TD) errors are pivotal for value function convergence, we introduce an adaptive Critical Sample Selection strategy that concentrates the attack budget on the most influential transitions. To evade OOD detection, we propose a Correlation-Breaking Trigger mechanism that exploits the physical mutual exclusivity of state features (e.g., 95th percentile boundaries) to remain statistically concealed. Furthermore, we replace the conventional label inversion with a Gradient-Guided Action Generation mechanism, which searches for worst-case actions within the data manifold using the victim Q-network's gradient. Empirical results on D4RL benchmarks demonstrate that our method significantly outperforms state-of-the-art baselines, achieving high attack success rates against representative safety-constrained algorithms with a minimal 5% poisoning budget, while maintaining the agent's performance in clean environments.
Discrete Feynman-Kac Correctors
Discrete diffusion models have recently emerged as a promising alternative to the autoregressive approach for generating discrete sequences. Sample generation via gradual denoising or demasking processes allows them to capture hierarchical non-sequential interdependencies in the data. These custom processes, however, do not assume a flexible control over the distribution of generated samples. We propose Discrete Feynman-Kac Correctors, a framework that allows for controlling the generated distribution of discrete masked diffusion models at inference time. We derive Sequential Monte Carlo (SMC) algorithms that, given a trained discrete diffusion model, control the temperature of the sampled distribution (i.e. perform annealing), sample from the product of marginals of several diffusion processes (e.g. differently conditioned processes), and sample from the product of the marginal with an external reward function, producing likely samples from the target distribution that also have high reward. Notably, our framework does not require any training of additional models or fine-tuning of the original model. We illustrate the utility of our framework in several applications including: efficient sampling from the annealed Boltzmann distribution of the Ising model, improving the performance of language models for code generation and amortized learning, as well as reward-tilted protein sequence generation.
comment: Code: https://github.com/hasanmohsin/discrete_fkc
PLGC: Pseudo-Labeled Graph Condensation
Large graph datasets make training graph neural networks (GNNs) computationally costly. Graph condensation methods address this by generating small synthetic graphs that approximate the original data. However, existing approaches rely on clean, supervised labels, which limits their reliability when labels are scarce, noisy, or inconsistent. We propose Pseudo-Labeled Graph Condensation (PLGC), a self-supervised framework that constructs latent pseudo-labels from node embeddings and optimizes condensed graphs to match the original graph's structural and feature statistics -- without requiring ground-truth labels. PLGC offers three key contributions: (1) A diagnosis of why supervised condensation fails under label noise and distribution shift. (2) A label-free condensation method that jointly learns latent prototypes and node assignments. (3) Theoretical guarantees showing that pseudo-labels preserve latent structural statistics of the original graph and ensure accurate embedding alignment. Empirically, across node classification and link prediction tasks, PLGC achieves competitive performance with state-of-the-art supervised condensation methods on clean datasets and exhibits substantial robustness under label noise, often outperforming all baselines by a significant margin. Our findings highlight the practical and theoretical advantages of self-supervised graph condensation in noisy or weakly-labeled environments.
EvoMorph: Counterfactual Explanations for Continuous Time-Series Extrinsic Regression Applied to Photoplethysmography
Wearable devices enable continuous, population-scale monitoring of physiological signals, such as photoplethysmography (PPG), creating new opportunities for data-driven clinical assessment. Time-series extrinsic regression (TSER) models increasingly leverage PPG signals to estimate clinically relevant outcomes, including heart rate, respiratory rate, and oxygen saturation. For clinical reasoning and trust, however, single point estimates alone are insufficient: clinicians must also understand whether predictions are stable under physiologically plausible variations and to what extent realistic, attainable changes in physiological signals would meaningfully alter a model's prediction. Counterfactual explanations (CFE) address these "what-if" questions, yet existing time series CFE generation methods are largely restricted to classification, overlook waveform morphology, and often produce physiologically implausible signals, limiting their applicability to continuous biomedical time series. To address these limitations, we introduce EvoMorph, a multi-objective evolutionary framework for generating physiologically plausible and diverse CFE for TSER applications. EvoMorph optimizes morphology-aware objectives defined on interpretable signal descriptors and applies transformations to preserve the waveform structure. We evaluated EvoMorph on three PPG datasets (heart rate, respiratory rate, and oxygen saturation) against a nearest-unlike-neighbor baseline. In addition, in a case study, we evaluated EvoMorph as a tool for uncertainty quantification by relating counterfactual sensitivity to bootstrap-ensemble uncertainty and data-density measures. Overall, EvoMorph enables the generation of physiologically-aware counterfactuals for continuous biomedical signals and supports uncertainty-aware interpretability, advancing trustworthy model analysis for clinical time-series applications.
SuS: Strategy-aware Surprise for Intrinsic Exploration
We propose Strategy-aware Surprise (SuS), a novel intrinsic motivation framework that uses pre-post prediction mismatch as a novelty signal for exploration in reinforcement learning. Unlike traditional curiosity-driven methods that rely solely on state prediction error, SuS introduces two complementary components: Strategy Stability (SS) and Strategy Surprise (SuS). SS measures consistency in behavioral strategy across temporal steps, while SuS captures unexpected outcomes relative to the agent's current strategy representation. Our combined reward formulation leverages both signals through learned weighting coefficients. We evaluate SuS on mathematical reasoning tasks using large language models, demonstrating significant improvements in both accuracy and solution diversity. Ablation studies confirm that removing either component results in at least 10% performance degradation, validating the synergistic nature of our approach. SuS achieves 17.4% improvement in Pass@1 and 26.4% improvement in Pass@5 compared to baseline methods, while maintaining higher strategy diversity throughout training.
comment: 8 pages, 7 figures, 3 tables. Code available at https://github.com/mariklolik/sus
Training-Trajectory-Aware Token Selection
Efficient distillation is a key pathway for converting expensive reasoning capability into deployable efficiency, yet in the frontier regime where the student already has strong reasoning ability, naive continual distillation often yields limited gains or even degradation. We observe a characteristic training phenomenon: even as loss decreases monotonically, all performance metrics can drop sharply at almost the same bottleneck, before gradually recovering. We further uncover a token-level mechanism: confidence bifurcates into steadily increasing Imitation-Anchor Tokens that quickly anchor optimization and other yet-to-learn tokens whose confidence is suppressed until after the bottleneck. And the characteristic that these two types of tokens cannot coexist is the root cause of the failure in continual distillation. To this end, we propose Training-Trajectory-Aware Token Selection (T3S) to reconstruct the training objective at the token level, clearing the optimization path for yet-to-learn tokens. T3 yields consistent gains in both AR and dLLM settings: with only hundreds of examples, Qwen3-8B surpasses DeepSeek-R1 on competitive reasoning benchmarks, Qwen3-32B approaches Qwen3-235B, and T3-trained LLaDA-2.0-Mini exceeds its AR baseline, achieving state-of-the-art performance among all of 16B-scale no-think models.
An analytic theory of convolutional neural network inverse problems solvers
Supervised convolutional neural networks (CNNs) are widely used to solve imaging inverse problems, achieving state-of-the-art performance in numerous applications. However, despite their empirical success, these methods are poorly understood from a theoretical perspective and often treated as black boxes. To bridge this gap, we analyze trained neural networks through the lens of the Minimum Mean Square Error (MMSE) estimator, incorporating functional constraints that capture two fundamental inductive biases of CNNs: translation equivariance and locality via finite receptive fields. Under the empirical training distribution, we derive an analytic, interpretable, and tractable formula for this constrained variant, termed Local-Equivariant MMSE (LE-MMSE). Through extensive numerical experiments across various inverse problems (denoising, inpainting, deconvolution), datasets (FFHQ, CIFAR-10, FashionMNIST), and architectures (U-Net, ResNet, PatchMLP), we demonstrate that our theory matches the neural networks outputs (PSNR $\gtrsim25$dB). Furthermore, we provide insights into the differences between \emph{physics-aware} and \emph{physics-agnostic} estimators, the impact of high-density regions in the training (patch) distribution, and the influence of other factors (dataset size, patch size, etc).
Meta Dynamic Graph for Traffic Flow Prediction AAAI 2026
Traffic flow prediction is a typical spatio-temporal prediction problem and has a wide range of applications. The core challenge lies in modeling the underlying complex spatio-temporal dependencies. Various methods have been proposed, and recent studies show that the modeling of dynamics is useful to meet the core challenge. While handling spatial dependencies and temporal dependencies using separate base model structures may hinder the modeling of spatio-temporal correlations, the modeling of dynamics can bridge this gap. Incorporating spatio-temporal heterogeneity also advances the main goal, since it can extend the parameter space and allow more flexibility. Despite these advances, two limitations persist: 1) the modeling of dynamics is often limited to the dynamics of spatial topology (e.g., adjacency matrix changes), which, however, can be extended to a broader scope; 2) the modeling of heterogeneity is often separated for spatial and temporal dimensions, but this gap can also be bridged by the modeling of dynamics. To address the above limitations, we propose a novel framework for traffic prediction, called Meta Dynamic Graph (MetaDG). MetaDG leverages dynamic graph structures of node representations to explicitly model spatio-temporal dynamics. This generates both dynamic adjacency matrices and meta-parameters, extending dynamic modeling beyond topology while unifying the capture of spatio-temporal heterogeneity into a single dimension. Extensive experiments on four real-world datasets validate the effectiveness of MetaDG.
comment: Accepted to AAAI 2026
An Efficient Long-Context Ranking Architecture With Calibrated LLM Distillation: Application to Person-Job Fit
Finding the most relevant person for a job proposal in real time is challenging, especially when resumes are long, structured, and multilingual. In this paper, we propose a re-ranking model based on a new generation of late cross-attention architecture, that decomposes both resumes and project briefs to efficiently handle long-context inputs with minimal computational overhead. To mitigate historical data biases, we use a generative large language model (LLM) as a teacher, generating fine-grained, semantically grounded supervision. This signal is distilled into our student model via an enriched distillation loss function. The resulting model produces skill-fit scores that enable consistent and interpretable person-job matching. Experiments on relevance, ranking, and calibration metrics demonstrate that our approach outperforms state-of-the-art baselines.
We Need a More Robust Classifier: Dual Causal Learning Empowers Domain-Incremental Time Series Classification
The World Wide Web thrives on intelligent services that rely on accurate time series classification, which has recently witnessed significant progress driven by advances in deep learning. However, existing studies face challenges in domain incremental learning. In this paper, we propose a lightweight and robust dual-causal disentanglement framework (DualCD) to enhance the robustness of models under domain incremental scenarios, which can be seamlessly integrated into time series classification models. Specifically, DualCD first introduces a temporal feature disentanglement module to capture class-causal features and spurious features. The causal features can offer sufficient predictive power to support the classifier in domain incremental learning settings. To accurately capture these causal features, we further design a dual-causal intervention mechanism to eliminate the influence of both intra-class and inter-class confounding features. This mechanism constructs variant samples by combining the current class's causal features with intra-class spurious features and with causal features from other classes. The causal intervention loss encourages the model to accurately predict the labels of these variant samples based solely on the causal features. Extensive experiments on multiple datasets and models demonstrate that DualCD effectively improves performance in domain incremental scenarios. We summarize our rich experiments into a comprehensive benchmark to facilitate research in domain incremental time series classification.
comment: This paper has been accepted for publication at ACM WWW 2026
SPIKE: Sparse Koopman Regularization for Physics-Informed Neural Networks
Physics-Informed Neural Networks (PINNs) provide a mesh-free approach for solving differential equations by embedding physical constraints into neural network training. However, PINNs tend to overfit within the training domain, leading to poor generalization when extrapolating beyond trained spatiotemporal regions. This work presents SPIKE (Sparse Physics-Informed Koopman-Enhanced), a framework that regularizes PINNs with continuous-time Koopman operators to learn parsimonious dynamics representations. By enforcing linear dynamics $dz/dt = Az$ in a learned observable space, both PIKE (without explicit sparsity) and SPIKE (with L1 regularization on $A$) learn sparse generator matrices, embodying the parsimony principle that complex dynamics admit low-dimensional structure. Experiments across parabolic, hyperbolic, dispersive, and stiff PDEs, including fluid dynamics (Navier-Stokes) and chaotic ODEs (Lorenz), demonstrate consistent improvements in temporal extrapolation, spatial generalization, and long-term prediction accuracy. The continuous-time formulation with matrix exponential integration provides unconditional stability for stiff systems while avoiding diagonal dominance issues inherent in discrete-time Koopman operators.
Queueing-Aware Optimization of Reasoning Tokens for Accuracy-Latency Trade-offs in LLM Servers
We consider a single large language model (LLM) server that serves a heterogeneous stream of queries belonging to $N$ distinct task types. Queries arrive according to a Poisson process, and each type occurs with a known prior probability. For each task type, the server allocates a fixed number of internal thinking tokens, which determines the computational effort devoted to that query. The token allocation induces an accuracy-latency trade-off: the service time follows an approximately affine function of the allocated tokens, while the probability of a correct response exhibits diminishing returns. Under a first-in, first-out (FIFO) service discipline, the system operates as an $M/G/1$ queue, and the mean system time depends on the first and second moments of the resulting service-time distribution. We formulate a constrained optimization problem that maximizes a weighted average accuracy objective penalized by the mean system time, subject to architectural token-budget constraints and queue-stability conditions. The objective function is shown to be strictly concave over the stability region, which ensures existence and uniqueness of the optimal token allocation. The first-order optimality conditions yield a coupled projected fixed-point characterization of the optimum, together with an iterative solution and an explicit sufficient condition for contraction. Moreover, a projected gradient method with a computable global step-size bound is developed to guarantee convergence beyond the contractive regime. Finally, integer-valued token allocations are attained via rounding of the continuous solution, and the resulting performance loss is evaluated in simulation results.
MoST: Mixing Speech and Text with Modality-Aware Mixture of Experts
We present MoST (Mixture of Speech and Text), a novel multimodal large language model that seamlessly integrates speech and text processing through our proposed Modality-Aware Mixture of Experts (MAMoE) architecture. While current multimodal models typically process diverse modality representations with identical parameters, disregarding their inherent representational differences, we introduce specialized routing pathways that direct tokens to modality-appropriate experts based on input type. MAMoE simultaneously enhances modality-specific learning and cross-modal understanding through two complementary components: modality-specific expert groups that capture domain-specific patterns and shared experts that facilitate information transfer between modalities. Building on this architecture, we develop an efficient transformation pipeline that adapts the pretrained MoE language model through strategic post-training on ASR and TTS datasets, followed by fine-tuning with a carefully curated speech-text instruction dataset. A key feature of this pipeline is that it relies exclusively on fully accessible, open-source datasets to achieve strong performance and data efficiency. Comprehensive evaluations across ASR, TTS, audio language modeling, and spoken question answering benchmarks show that MoST consistently outperforms existing models of comparable parameter counts. Our ablation studies confirm that the modality-specific routing mechanism and shared experts design significantly contribute to performance gains across all tested domains. To our knowledge, MoST represents the first fully open-source speech-text LLM built on a Mixture of Experts architecture. \footnote{We release MoST model, training code, inference code, and training data at https://github.com/NUS-HPC-AI-Lab/MoST
Early Fault Detection on CMAPSS with Unsupervised LSTM Autoencoders
This paper introduces an unsupervised health-monitoring framework for turbofan engines that does not require run-to-failure labels. First, operating-condition effects in NASA CMAPSS sensor streams are removed via regression-based normalisation; then a Long Short-Term Memory (LSTM) autoencoder is trained only on the healthy portion of each trajectory. Persistent reconstruction error, estimated using an adaptive data-driven threshold, triggers real-time alerts without hand-tuned rules. Benchmark results show high recall and low false-alarm rates across multiple operating regimes, demonstrating that the method can be deployed quickly, scale to diverse fleets, and serve as a complementary early-warning layer to Remaining Useful Life models.
In-Context Source and Channel Coding
Separate Source-Channel Coding (SSCC) remains attractive for text transmission due to its modularity and compatibility with mature entropy coders and powerful channel codes. However, SSCC often suffers from a pronounced cliff effect in low Signal-to-Noise Ratio (SNR) regimes, where residual bit errors after channel decoding can catastrophically break lossless source decoding, especially for Arithmetic Coding (AC) driven by Large Language Models (LLMs). This paper proposes a receiver-side In-Context Decoding (ICD) framework that enhances SSCC robustness without modifying the transmitter. ICD leverages an Error Correction Code Transformer (ECCT) to obtain bit-wise reliability for the decoded information bits. Based on the context-consistent bitstream, ICD constructs a confidence-ranked candidate pool via reliability-guided bit flipping, samples a compact yet diverse subset of candidates, and applies an LLM-based arithmetic decoder to obtain both reconstructions and sequence-level log-likelihoods. A reliability-likelihood fusion rule then selects the final output. We further provide theoretical guarantees on the stability and convergence of the proposed sampling procedure. Extensive experiments over Additive White Gaussian Noise (AWGN) and Rayleigh fading channels demonstrate consistent gains compared with conventional SSCC baselines and representative Joint Source-Channel Coding (JSCC) schemes.
Sim2Real Deep Transfer for Per-Device CFO Calibration
Carrier Frequency Offset (CFO) estimation in Orthogonal Frequency Division Multiplexing (OFDM) systems faces significant performance degradation across heterogeneous software-defined radio (SDR) platforms due to uncalibrated hardware impairments. Existing deep neural network (DNN)-based approaches lack device-level adaptation, limiting their practical deployment. This paper proposes a Sim2Real transfer learning framework for per-device CFO calibration, combining simulation-driven pretraining with lightweight receiver adaptation. A backbone DNN is pre-trained on synthetic OFDM signals incorporating parametric hardware distortions (e.g., phase noise, IQ imbalance), enabling generalized feature learning without costly cross-device data collection. Subsequently, only the regression layers are fine-tuned using $1,000$ real frames per target device, preserving hardware-agnostic knowledge while adapting to device-specific impairments. Experiments across three SDR families (USRP B210, USRP N210, HackRF One) achieve $30\times$ BER reduction compared to conventional CP-based methods under indoor multipath conditions. The framework bridges the simulation-to-reality gap for robust CFO estimation, enabling cost-effective deployment in heterogeneous wireless systems.
comment: Accepted by Globecom 2025
X-SAM: Boosting Sharpness-Aware Minimization with Dominant-Eigenvector Gradient Correction
Sharpness-Aware Minimization (SAM) aims to improve generalization by minimizing a worst-case perturbed loss over a small neighborhood of model parameters. However, during training, its optimization behavior does not always align with theoretical expectations, since both sharp and flat regions may yield a small perturbed loss. In such cases, the gradient may still point toward sharp regions, failing to achieve the intended effect of SAM. To address this issue, we investigate SAM from a spectral and geometric perspective: specifically, we utilize the angle between the gradient and the leading eigenvector of the Hessian as a measure of sharpness. Our analysis illustrates that when this angle is less than or equal to ninety degrees, the effect of SAM's sharpness regularization can be weakened. Furthermore, we propose an explicit eigenvector-aligned SAM (X-SAM), which corrects the gradient via orthogonal decomposition along the top eigenvector, enabling more direct and efficient regularization of the Hessian's maximum eigenvalue. We prove X-SAM's convergence and superior generalization, with extensive experimental evaluations confirming both theoretical and practical advantages.
TRIM: Hybrid Inference via Targeted Stepwise Routing in Multi-Step Reasoning Tasks
Multi-step reasoning tasks like mathematical problem solving are vulnerable to cascading failures, where a single incorrect step leads to complete solution breakdown. Current LLM routing methods assign entire queries to one model, treating all reasoning steps as equal. We propose TRIM (Targeted routing in multi-step reasoning tasks), which routes only critical steps$\unicode{x2013}$those likely to derail the solution$\unicode{x2013}$to larger models while letting smaller models handle routine continuations. Our key insight is that targeted step-level interventions can fundamentally transform inference efficiency by confining expensive calls to precisely those steps where stronger models prevent cascading errors. TRIM operates at the step-level: it uses process reward models to identify erroneous steps and makes routing decisions based on step-level uncertainty and budget constraints. We develop several routing strategies within TRIM, ranging from a simple threshold-based policy to more expressive policies that reason about long-horizon accuracy-cost trade-offs and uncertainty in step-level correctness estimates. On MATH-500, even the simplest thresholding strategy surpasses prior routing methods with 5x higher cost efficiency, while more advanced policies match the strong, expensive model's performance using 80% fewer expensive model tokens. On harder benchmarks such as AIME, TRIM achieves up to 6x higher cost efficiency. All methods generalize effectively across math reasoning tasks, demonstrating that step-level difficulty represents fundamental characteristics of reasoning.
Fundamental Limitations of Favorable Privacy-Utility Guarantees for DP-SGD
Differentially Private Stochastic Gradient Descent (DP-SGD) is the dominant paradigm for private training, but its fundamental limitations under worst-case adversarial privacy definitions remain poorly understood. We analyze DP-SGD in the $f$-differential privacy framework, which characterizes privacy via hypothesis-testing trade-off curves, and study shuffled sampling over a single epoch with $M$ gradient updates. We derive an explicit suboptimal upper bound on the achievable trade-off curve. This result induces a geometric lower bound on the separation $κ$ which is the maximum distance between the mechanism's trade-off curve and the ideal random-guessing line. Because a large separation implies significant adversarial advantage, meaningful privacy requires small $κ$. However, we prove that enforcing a small separation imposes a strict lower bound on the Gaussian noise multiplier $σ$, which directly limits the achievable utility. In particular, under the standard worst-case adversarial model, shuffled DP-SGD must satisfy $σ\ge \frac{1}{\sqrt{2\ln M}}$ $\quad\text{or}\quad$ $κ\ge\ \frac{1}{\sqrt{8}}\!\left(1-\frac{1}{\sqrt{4π\ln M}}\right)$, and thus cannot simultaneously achieve strong privacy and high utility. Although this bound vanishes asymptotically as $M \to \infty$, the convergence is extremely slow: even for practically relevant numbers of updates the required noise magnitude remains substantial. We further show that the same limitation extends to Poisson subsampling up to constant factors. Our experiments confirm that the noise levels implied by this bound leads to significant accuracy degradation at realistic training settings, thus showing a critical bottleneck in DP-SGD under standard worst-case adversarial assumptions.
PRL: Process Reward Learning Improves LLMs' Reasoning Ability and Broadens the Reasoning Boundary
Improving the reasoning abilities of Large Language Models (LLMs) has been a continuous topic recently. But most relevant works are based on outcome rewards at the trajectory level, missing fine-grained supervision during the reasoning process. Other existing training frameworks that try to combine process signals together to optimize LLMs also rely heavily on tedious additional steps like MCTS, training a separate reward model, etc., doing harm to the training efficiency. Moreover, the intuition behind the process signals design lacks rigorous theoretical support, leaving the understanding of the optimization mechanism opaque. In this paper, we propose Process Reward Learning (PRL), which decomposes the entropy regularized reinforcement learning objective into intermediate steps, with rigorous process rewards that could be assigned to models accordingly. Starting from theoretical motivation, we derive the formulation of PRL that is essentially equivalent to the objective of reward maximization plus a KL-divergence penalty term between the policy model and a reference model. However, PRL could turn the outcome reward into process supervision signals, which helps better guide the exploration during RL optimization. From our experiment results, we demonstrate that PRL not only improves the average performance for LLMs' reasoning ability measured by average @ n, but also broadens the reasoning boundary by improving the pass @ n metric. Extensive experiments show the effectiveness of PRL could be verified and generalized.
Graph Regularized PCA
High-dimensional data often exhibit dependencies among variables that violate the isotropic-noise assumption under which principal component analysis (PCA) is optimal. For cases where the noise is not independent and identically distributed across features (i.e., the covariance is not spherical) we introduce Graph Regularized PCA (GR-PCA). It is a graph-based regularization of PCA that incorporates the dependency structure of the data features by learning a sparse precision graph and biasing loadings toward the low-frequency Fourier modes of the corresponding graph Laplacian. Consequently, high-frequency signals are suppressed, while graph-coherent low-frequency ones are preserved, yielding interpretable principal components aligned with conditional relationships. We evaluate GR-PCA on synthetic data spanning diverse graph topologies, signal-to-noise ratios, and sparsity levels. Compared to mainstream alternatives, it concentrates variance on the intended support, produces loadings with lower graph-Laplacian energy, and remains competitive in out-of-sample reconstruction. When high-frequency signals are present, the graph Laplacian penalty prevents overfitting, reducing the reconstruction accuracy but improving structural fidelity. The advantage over PCA is most pronounced when high-frequency signals are graph-correlated, whereas PCA remains competitive when such signals are nearly rotationally invariant. The procedure is simple to implement, modular with respect to the precision estimator, and scalable, providing a practical route to structure-aware dimensionality reduction that improves structural fidelity without sacrificing predictive performance.
comment: 15 pages, 2 figures, 4 Tables
Reinforcement Learning to Discover a NorthEast Monsoon Index for Monthly Rainfall Prediction in Thailand
Climate prediction is a challenge due to the intricate spatiotemporal patterns within Earth systems. Global climate indices, such as the El Niño Southern Oscillation, are standard input features for long-term rainfall prediction. However, a significant gap persists regarding local-scale indices capable of improving predictive accuracy in specific regions of Thailand. This paper introduces a novel NorthEast monsoon climate index calculated from sea surface temperature to reflect the climatology of the boreal winter monsoon. To optimise the calculated areas used for this index, a Deep Q-Network reinforcement learning agent explores and selects the most effective rectangles based on their correlation with seasonal rainfall. Rainfall stations were classified into 12 distinct clusters to distinguish rainfall patterns between southern and upper Thailand. Experimental results show that incorporating the optimised index into Long Short-Term Memory models significantly improves long-term monthly rainfall prediction skill in most cluster areas. This approach effectively reduces the Root Mean Square Error for 12-month-ahead forecasts.
Bias in the Shadows: Explore Shortcuts in Encrypted Network Traffic Classification
Pre-trained models operating directly on raw bytes have achieved promising performance in encrypted network traffic classification (NTC), but often suffer from shortcut learning-relying on spurious correlations that fail to generalize to real-world data. Existing solutions heavily rely on model-specific interpretation techniques, which lack adaptability and generality across different model architectures and deployment scenarios. In this paper, we propose BiasSeeker, the first semi-automated framework that is both model-agnostic and data-driven for detecting dataset-specific shortcut features in encrypted traffic. By performing statistical correlation analysis directly on raw binary traffic, BiasSeeker identifies spurious or environment-entangled features that may compromise generalization, independent of any classifier. To address the diverse nature of shortcut features, we introduce a systematic categorization and apply category-specific validation strategies that reduce bias while preserving meaningful information. We evaluate BiasSeeker on 19 public datasets across three NTC tasks. By emphasizing context-aware feature selection and dataset-specific diagnosis, BiasSeeker offers a novel perspective for understanding and addressing shortcut learning in encrypted network traffic classification, raising awareness that feature selection should be an intentional and scenario-sensitive step prior to model training.
CC-OR-Net: A Unified Framework for LTV Prediction through Structural Decoupling
Customer Lifetime Value (LTV) prediction, a central problem in modern marketing, is characterized by a unique zero-inflated and long-tail data distribution. This distribution presents two fundamental challenges: (1) the vast majority of low-to-medium value users numerically overwhelm the small but critically important segment of high-value "whale" users, and (2) significant value heterogeneity exists even within the low-to-medium value user base. Common approaches either rely on rigid statistical assumptions or attempt to decouple ranking and regression using ordered buckets; however, they often enforce ordinality through loss-based constraints rather than inherent architectural design, failing to balance global accuracy with high-value precision. To address this gap, we propose \textbf{C}onditional \textbf{C}ascaded \textbf{O}rdinal-\textbf{R}esidual Networks \textbf{(CC-OR-Net)}, a novel unified framework that achieves a more robust decoupling through \textbf{structural decomposition}, where ranking is architecturally guaranteed. CC-OR-Net integrates three specialized components: a \textit{structural ordinal decomposition module} for robust ranking, an \textit{intra-bucket residual module} for fine-grained regression, and a \textit{targeted high-value augmentation module} for precision on top-tier users. Evaluated on real-world datasets with over 300M users, CC-OR-Net achieves a superior trade-off across all key business metrics, outperforming state-of-the-art methods in creating a holistic and commercially valuable LTV prediction solution.
comment: Accepted by WWW'26
Alignment Pretraining: AI Discourse Causes Self-Fulfilling (Mis)alignment
Pretraining corpora contain extensive discourse about AI systems, yet the causal influence of this discourse on downstream alignment remains poorly understood. If prevailing descriptions of AI behaviour are predominantly negative, LLMs may internalise corresponding behavioural priors, giving rise to self-fulfilling misalignment. This paper provides the first controlled study of this hypothesis by pretraining 6.9B-parameter LLMs with varying amounts of (mis)alignment discourse. We find that discussion of AI contributes to misalignment. Upsampling synthetic training documents about AI misalignment leads to a notable increase in misaligned behaviour. Conversely, upsampling documents about aligned behaviour reduces misalignment scores from 45% to 9%. We consider this evidence of self-fulfilling alignment. These effects are dampened, but persist through post-training. Our findings establish the study of how pretraining data shapes alignment priors, or alignment pretraining, as a complement to post-training. We recommend practitioners pretrain for alignment as well as capabilities. Our models and datasets are available at alignmentpretraining.ai
LOOKAT: Lookup-Optimized Key-Attention for Memory-Efficient Transformers
Compressing the KV cache is a required step to deploy large language models on edge devices. Current quantization methods compress storage but fail to reduce bandwidth as attention calculation requires dequantizing keys from INT4/INT8 to FP16 before use. We observe that attention scoring is mathematically equivalent to the inner product similarity search and we can apply some compression techniques from vector databases to compress KV-cache better. We propose LOOKAT, which applies product quantization and asymmetric distance computation, to transformer architecture by decomposing key vectors into subspaces, learning codebooks and computing attention tables via lookup tables. This transforms attention from memory-bound to compute-bound. LOOKAT achieves 64 $\times$ compression at 95.7\% output fidelity and 32 $\times$ compression at 95.0\% fidelity when tested on GPT-2. LOOKAT requires no architecture changes or training while maintaining rank correlation $ρ> 0.95$. Theoretical analysis confirms that rank correlation degrades as $O(d_k/mK)$, with guarantees validated across sequence lengths up to 1024 tokens.
MHub.ai: A Simple, Standardized, and Reproducible Platform for AI Models in Medical Imaging
Artificial intelligence (AI) has the potential to transform medical imaging by automating image analysis and accelerating clinical research. However, research and clinical use are limited by the wide variety of AI implementations and architectures, inconsistent documentation, and reproducibility issues. Here, we introduce MHub.ai, an open-source, container-based platform that standardizes access to AI models with minimal configuration, promoting accessibility and reproducibility in medical imaging. MHub.ai packages models from peer-reviewed publications into standardized containers that support direct processing of DICOM and other formats, provide a unified application interface, and embed structured metadata. Each model is accompanied by publicly available reference data that can be used to confirm model operation. MHub.ai includes an initial set of state-of-the-art segmentation, prediction, and feature extraction models for different modalities. The modular framework enables adaptation of any model and supports community contributions. We demonstrate the utility of the platform in a clinical use case through comparative evaluation of lung segmentation models. To further strengthen transparency and reproducibility, we publicly release the generated segmentations and evaluation metrics and provide interactive dashboards that allow readers to inspect individual cases and reproduce or extend our analysis. By simplifying model use, MHub.ai enables side-by-side benchmarking with identical execution commands and standardized outputs, and lowers the barrier to clinical translation.
comment: 41 pages, 15 figures, 6 tables
Simple Network Graph Comparative Learning
The effectiveness of contrastive learning methods has been widely recognized in the field of graph learning, especially in contexts where graph data often lack labels or are difficult to label. However, the application of these methods to node classification tasks still faces a number of challenges. First, existing data enhancement techniques may lead to significant differences from the original view when generating new views, which may weaken the relevance of the view and affect the efficiency of model training. Second, the vast majority of existing graph comparison learning algorithms rely on the use of a large number of negative samples. To address the above challenges, this study proposes a novel node classification contrast learning method called Simple Network Graph Comparative Learning (SNGCL). Specifically, SNGCL employs a superimposed multilayer Laplace smoothing filter as a step in processing the data to obtain global and local feature smoothing matrices, respectively, which are thus passed into the target and online networks of the siamese network, and finally employs an improved triple recombination loss function to bring the intra-class distance closer and the inter-class distance farther. We have compared SNGCL with state-of-the-art models in node classification tasks, and the experimental results show that SNGCL is strongly competitive in most tasks.
comment: 10 pages, 5 figures
Understanding and Preserving Safety in Fine-Tuned LLMs
Fine-tuning is an essential and pervasive functionality for applying large language models (LLMs) to downstream tasks. However, it has the potential to substantially degrade safety alignment, e.g., by greatly increasing susceptibility to jailbreak attacks, even when the fine-tuning data is entirely harmless. Despite garnering growing attention in defense efforts during the fine-tuning stage, existing methods struggle with a persistent safety-utility dilemma: emphasizing safety compromises task performance, whereas prioritizing utility typically requires deep fine-tuning that inevitably leads to steep safety declination. In this work, we address this dilemma by shedding new light on the geometric interaction between safety- and utility-oriented gradients in safety-aligned LLMs. Through systematic empirical analysis, we uncover three key insights: (I) safety gradients lie in a low-rank subspace, while utility gradients span a broader high-dimensional space; (II) these subspaces are often negatively correlated, causing directional conflicts during fine-tuning; and (III) the dominant safety direction can be efficiently estimated from a single sample. Building upon these novel insights, we propose safety-preserving fine-tuning (SPF), a lightweight approach that explicitly removes gradient components conflicting with the low-rank safety subspace. Theoretically, we show that SPF guarantees utility convergence while bounding safety drift. Empirically, SPF consistently maintains downstream task performance and recovers nearly all pre-trained safety alignment, even under adversarial fine-tuning scenarios. Furthermore, SPF exhibits robust resistance to both deep fine-tuning and dynamic jailbreak attacks. Together, our findings provide new mechanistic understanding and practical guidance toward always-aligned LLM fine-tuning.
Step-by-Step Causality: Transparent Causal Discovery with Multi-Agent Tree-Query and Adversarial Confidence Estimation
Causal discovery aims to recover ``what causes what'', but classical constraint-based methods (e.g., PC, FCI) suffer from error propagation, and recent LLM-based causal oracles often behave as opaque, confidence-free black boxes. This paper introduces Tree-Query, a tree-structured, multi-expert LLM framework that reduces pairwise causal discovery to a short sequence of queries about backdoor paths, (in)dependence, latent confounding, and causal direction, yielding interpretable judgments with robustness-aware confidence scores. Theoretical guarantees are provided for asymptotic identifiability of four pairwise relations. On data-free benchmarks derived from Mooij et al. and UCI causal graphs, Tree-Query improves structural metrics over direct LLM baselines, and a diet--weight case study illustrates confounder screening and stable, high-confidence causal conclusions. Tree-Query thus offers a principled way to obtain data-free causal priors from LLMs that can complement downstream data-driven causal discovery. Code is available at https://anonymous.4open.science/r/Repo-9B3E-4F96.
Is More Context Always Better? Examining LLM Reasoning Capability for Time Interval Prediction
Large Language Models (LLMs) have demonstrated impressive capabilities in reasoning and prediction across different domains. Yet, their ability to infer temporal regularities from structured behavioral data remains underexplored. This paper presents a systematic study investigating whether LLMs can predict time intervals between recurring user actions, such as repeated purchases, and how different levels of contextual information shape their predictive behavior. Using a simple but representative repurchase scenario, we benchmark state-of-the-art LLMs in zero-shot settings against both statistical and machine-learning models. Two key findings emerge. First, while LLMs surpass lightweight statistical baselines, they consistently underperform dedicated machine-learning models, showing their limited ability to capture quantitative temporal structure. Second, although moderate context can improve LLM accuracy, adding further user-level detail degrades performance. These results challenge the assumption that "more context leads to better reasoning". Our study highlights fundamental limitations of today's LLMs in structured temporal inference and offers guidance for designing future context-aware hybrid models that integrate statistical precision with linguistic flexibility.
comment: Accepted at The Web Conference 2026 (WWW 2026)
Multilingual-To-Multimodal (M2M): Unlocking New Languages with Monolingual Text
Multimodal models excel in English, supported by abundant image-text and audio-text data, but performance drops sharply for other languages due to limited multilingual multimodal resources. Existing solutions rely heavily on machine translation, while advances in multilingual text modeling remain underutilized. We introduce METAL, a lightweight alignment method that learns only a few linear layers using English text alone to map multilingual text embeddings into a multimodal space. Despite its simplicity, METAL matches baseline performance in English (94.9 percent Recall at 10) and achieves strong zero-shot transfer (89.5 percent Recall at 10 averaged across 11 languages, 10 unseen) on XTD text-to-image retrieval. Qualitative t-SNE visualizations show that multilingual embeddings align tightly with multimodal representations, while weight analysis reveals that the transformation reshapes embedding geometry rather than performing trivial rotations. Beyond image-text retrieval, METAL generalizes to audio-text retrieval and cross-lingual text-to-image generation. We release code and checkpoints at https://github.com/m2m-codebase/M2M , as well as multilingual evaluation datasets including MSCOCO Multilingual 30K (https://huggingface.co/datasets/piyushsinghpasi/mscoco-multilingual-30k ), AudioCaps Multilingual (https://huggingface.co/datasets/piyushsinghpasi/audiocaps-multilingual ), and Clotho Multilingual (https://huggingface.co/datasets/piyushsinghpasi/clotho-multilingual ), to facilitate further research.
comment: EACL 2026 Findings accepted. Initial Draft of Camera-ready
V-Zero: Self-Improving Multimodal Reasoning with Zero Annotation
Recent advances in multimodal learning have significantly enhanced the reasoning capabilities of vision-language models (VLMs). However, state-of-the-art approaches rely heavily on large-scale human-annotated datasets, which are costly and time-consuming to acquire. To overcome this limitation, we introduce V-Zero, a general post-training framework that facilitates self-improvement using exclusively unlabeled images. V-Zero establishes a co-evolutionary loop by instantiating two distinct roles: a Questioner and a Solver. The Questioner learns to synthesize high-quality, challenging questions by leveraging a dual-track reasoning reward that contrasts intuitive guesses with reasoned results. The Solver is optimized using pseudo-labels derived from majority voting over its own sampled responses. Both roles are trained iteratively via Group Relative Policy Optimization (GRPO), driving a cycle of mutual enhancement. Remarkably, without a single human annotation, V-Zero achieves consistent performance gains on Qwen2.5-VL-7B-Instruct, improving visual mathematical reasoning by +1.7 and general vision-centric by +2.6, demonstrating the potential of self-improvement in multimodal systems. Code is available at https://github.com/SatonoDia/V-Zero
LeMoF: Level-guided Multimodal Fusion for Heterogeneous Clinical Data
Multimodal clinical prediction is widely used to integrate heterogeneous data such as Electronic Health Records (EHR) and biosignals. However, existing methods tend to rely on static modality integration schemes and simple fusion strategies. As a result, they fail to fully exploit modality-specific representations. In this paper, we propose Level-guided Modal Fusion (LeMoF), a novel framework that selectively integrates level-guided representations within each modality. Each level refers to a representation extracted from a different layer of the encoder. LeMoF explicitly separates and learns global modality-level predictions from level-specific discriminative representations. This design enables LeMoF to achieve a balanced performance between prediction stability and discriminative capability even in heterogeneous clinical environments. Experiments on length of stay prediction using Intensive Care Unit (ICU) data demonstrate that LeMoF consistently outperforms existing state-of-the-art multimodal fusion techniques across various encoder configurations. We also confirmed that level-wise integration is a key factor in achieving robust predictive performance across various clinical conditions.
Bayesian Meta-Analyses Could Be More: A Case Study in Trial of Labor After a Cesarean-section Outcomes and Complications AAAI 2026
The meta-analysis's utility is dependent on previous studies having accurately captured the variables of interest, but in medical studies, a key decision variable that impacts a physician's decisions was not captured. This results in an unknown effect size and unreliable conclusions. A Bayesian approach may allow analysis to determine if the claim of a positive effect is still warranted, and we build a Bayesian approach to this common medical scenario. To demonstrate its utility, we assist professional OBGYNs in evaluating Trial of Labor After a Cesarean-section (TOLAC) situations where few interventions are available for patients and find the support needed for physicians to advance patient care.
comment: To appear in AAAI 2026
Adaptive Label Error Detection: A Bayesian Approach to Mislabeled Data Detection
Machine learning classification systems are susceptible to poor performance when trained with incorrect ground truth labels, even when data is well-curated by expert annotators. As machine learning becomes more widespread, it is increasingly imperative to identify and correct mislabeling to develop more powerful models. In this work, we motivate and describe Adaptive Label Error Detection (ALED), a novel method of detecting mislabeling. ALED extracts an intermediate feature space from a deep convolutional neural network, denoises the features, models the reduced manifold of each class with a multidimensional Gaussian distribution, and performs a simple likelihood ratio test to identify mislabeled samples. We show that ALED has markedly increased sensitivity, without compromising precision, compared to established label error detection methods, on multiple medical imaging datasets. We demonstrate an example where fine-tuning a neural network on corrected data results in a 33.8% decrease in test set errors, providing strong benefits to end users. The ALED detector is deployed in the Python package statlab.
comment: 10 pages, 5 figures
Sparse-RL: Breaking the Memory Wall in LLM Reinforcement Learning via Stable Sparse Rollouts
Reinforcement Learning (RL) has become essential for eliciting complex reasoning capabilities in Large Language Models (LLMs). However, the substantial memory overhead of storing Key-Value (KV) caches during long-horizon rollouts acts as a critical bottleneck, often prohibiting efficient training on limited hardware. While existing KV compression techniques offer a remedy for inference, directly applying them to RL training induces a severe policy mismatch, leading to catastrophic performance collapse. To address this, we introduce Sparse-RL empowers stable RL training under sparse rollouts. We show that instability arises from a fundamental policy mismatch among the dense old policy, the sparse sampler policy, and the learner policy. To mitigate this issue, Sparse-RL incorporates Sparsity-Aware Rejection Sampling and Importance-based Reweighting to correct the off-policy bias introduced by compression-induced information loss. Experimental results show that Sparse-RL reduces rollout overhead compared to dense baselines while preserving the performance. Furthermore, Sparse-RL inherently implements sparsity-aware training, significantly enhancing model robustness during sparse inference deployment.
Thinking Like Van Gogh: Structure-Aware Style Transfer via Flow-Guided 3D Gaussian Splatting
In 1888, Vincent van Gogh wrote, "I am seeking exaggeration in the essential." This principle, amplifying structural form while suppressing photographic detail, lies at the core of Post-Impressionist art. However, most existing 3D style transfer methods invert this philosophy, treating geometry as a rigid substrate for surface-level texture projection. To authentically reproduce Post-Impressionist stylization, geometric abstraction must be embraced as the primary vehicle of expression. We propose a flow-guided geometric advection framework for 3D Gaussian Splatting (3DGS) that operationalizes this principle in a mesh-free setting. Our method extracts directional flow fields from 2D paintings and back-propagates them into 3D space, rectifying Gaussian primitives to form flow-aligned brushstrokes that conform to scene topology without relying on explicit mesh priors. This enables expressive structural deformation driven directly by painterly motion rather than photometric constraints. Our contributions are threefold: (1) a projection-based, mesh-free flow guidance mechanism that transfers 2D artistic motion into 3D Gaussian geometry; (2) a luminance-structure decoupling strategy that isolates geometric deformation from color optimization, mitigating artifacts during aggressive structural abstraction; and (3) a VLM-as-a-Judge evaluation framework that assesses artistic authenticity through aesthetic judgment instead of conventional pixel-level metrics, explicitly addressing the subjective nature of artistic stylization.
comment: 7 pages, 8 figures
Comparative Evaluation of Deep Learning-Based and WHO-Informed Approaches for Sperm Morphology Assessment
Assessment of sperm morphological quality remains a critical yet subjective component of male fertility evaluation, often limited by inter-observer variability and resource constraints. This study presents a comparative biomedical artificial intelligence framework evaluating an image-based deep learning model (HuSHeM) alongside a clinically grounded baseline derived from World Health Organization criteria augmented with the Systemic Inflammation Response Index (WHO(+SIRI)). The HuSHeM model was trained on high-resolution sperm morphology images and evaluated using an independent clinical cohort. Model performance was assessed using discrimination, calibration, and clinical utility analyses. The HuSHeM model demonstrated higher discriminative performance, as reflected by an increased area under the receiver operating characteristic curve with relatively narrow confidence intervals compared to WHO(+SIRI). Precision-recall analysis further indicated improved performance under class imbalance, with higher precision-recall area values across evaluated thresholds. Calibration analysis indicated closer agreement between predicted probabilities and observed outcomes for HuSHeM, while decision curve analysis suggested greater net clinical benefit across clinically relevant threshold probabilities. These findings suggest that image-based deep learning may offer improved predictive reliability and clinical utility compared with traditional rule-based and inflammation-augmented criteria. The proposed framework supports objective and reproducible assessment of sperm morphology and may serve as a decision-support tool within fertility screening and referral workflows. The proposed models are intended as decision-support or referral tools and are not designed to replace clinical judgment or laboratory assessment.
comment: Under review at Computers in Biology and Medicine
Efficient Content-based Recommendation Model Training via Noise-aware Coreset Selection
Content-based recommendation systems (CRSs) utilize content features to predict user-item interactions, serving as essential tools for helping users navigate information-rich web services. However, ensuring the effectiveness of CRSs requires large-scale and even continuous model training to accommodate diverse user preferences, resulting in significant computational costs and resource demands. A promising approach to this challenge is coreset selection, which identifies a small but representative subset of data samples that preserves model quality while reducing training overhead. Yet, the selected coreset is vulnerable to the pervasive noise in user-item interactions, particularly when it is minimally sized. To this end, we propose Noise-aware Coreset Selection (NaCS), a specialized framework for CRSs. NaCS constructs coresets through submodular optimization based on training gradients, while simultaneously correcting noisy labels using a progressively trained model. Meanwhile, we refine the selected coreset by filtering out low-confidence samples through uncertainty quantification, thereby avoid training with unreliable interactions. Through extensive experiments, we show that NaCS produces higher-quality coresets for CRSs while achieving better efficiency than existing coreset selection techniques. Notably, NaCS recovers 93-95\% of full-dataset training performance using merely 1\% of the training data. The source code is available at \href{https://github.com/chenxing1999/nacs}{https://github.com/chenxing1999/nacs}.
comment: WebConf 2026
Unlabeled Data Can Provably Enhance In-Context Learning of Transformers NeurIPS 2025
Large language models (LLMs) exhibit impressive in-context learning (ICL) capabilities, yet the quality of their predictions is fundamentally limited by the few costly labeled demonstrations that can fit into a prompt. Meanwhile, there exist vast and continuously growing amounts of unlabeled data that may be closely related to the ICL task. How to utilize such unlabeled data to provably enhance the performance of ICL thus becomes an emerging fundamental question. In this work, we propose a novel augmented ICL framework, in which the prompt includes a small set of labeled examples alongside a block of unlabeled inputs. We focus on the multi-class linear classification setting and demonstrate that, with chain-of-thought (CoT) prompting, a multi-layer transformer can effectively emulate an expectation-maximization (EM) algorithm. This enables the transformer to implicitly extract useful information from both labeled and unlabeled data, leading to provable improvements in ICL accuracy. Moreover, we show that such a transformer can be trained via teacher forcing, with its parameters converging to the desired solution at a linear rate. Experiments demonstrate that the augmented ICL framework consistently outperforms conventional few-shot ICL, providing empirical support for our theoretical findings. To the best of our knowledge, this is the first theoretical study on the impact of unlabeled data on the ICL performance of transformers.
comment: Published as a conference paper at NeurIPS 2025
Instruction Finetuning LLaMA-3-8B Model Using LoRA for Financial Named Entity Recognition
Particularly, financial named-entity recognition (NER) is one of the many important approaches to translate unformatted reports and news into structured knowledge graphs. However, free, easy-to-use large language models (LLMs) often fail to differentiate organisations as people, or disregard an actual monetary amount entirely. This paper takes Meta's Llama 3 8B and applies it to financial NER by combining instruction fine-tuning and Low-Rank Adaptation (LoRA). Each annotated sentence is converted into an instruction-input-output triple, enabling the model to learn task descriptions while fine-tuning with small low-rank matrices instead of updating all weights. Using a corpus of 1,693 sentences, our method obtains a micro-F1 score of 0.894 compared with Qwen3-8B, Baichuan2-7B, T5, and BERT-Base. We present dataset statistics, describe training hyperparameters, and perform visualizations of entity density, learning curves, and evaluation metrics. Our results show that instruction tuning combined with parameter-efficient fine-tuning enables state-of-the-art performance on domain-sensitive NER.
What Understanding Means in AI-Laden Astronomy
Artificial intelligence is rapidly transforming astronomical research, yet the scientific community has largely treated this transformation as an engineering challenge rather than an epistemological one. This perspective article argues that philosophy of science offers essential tools for navigating AI's integration into astronomy--conceptual clarity about what "understanding" means, critical examination of assumptions about data and discovery, and frameworks for evaluating AI's roles across different research contexts. Drawing on an interdisciplinary workshop convening astronomers, philosophers, and computer scientists, we identify several tensions. First, the narrative that AI will "derive fundamental physics" from data misconstrues contemporary astronomy as equation-derivation rather than the observation-driven enterprise it is. Second, scientific understanding involves more than prediction--it requires narrative construction, contextual judgment, and communicative achievement that current AI architectures struggle to provide. Third, because narrative and judgment matter, human peer review remains essential--yet AI-generated content flooding the literature threatens our capacity to identify genuine insight. Fourth, while AI excels at well-defined problem-solving, the ill-defined problem-finding that drives breakthroughs appears to require capacities beyond pattern recognition. Fifth, as AI accelerates what is feasible, pursuitworthiness criteria risk shifting toward what AI makes easy rather than what is genuinely important. We propose "pragmatic understanding" as a framework for integration--recognizing AI as a tool that extends human cognition while requiring new norms for validation and epistemic evaluation. Engaging with these questions now may help the community shape the transformation rather than merely react to it.
comment: Perspective article, 8 pages. Based on the "Philosophy Sees the Algorithm" workshop held December 11-12, 2025 at The Ohio State University. Supported by the Alfred P. Sloan Foundation, the Center for Cosmology and AstroParticle Physics (CCAPP), and the University of Cincinnati Center for Humanities and Technology
BPE: Behavioral Profiling Ensemble
Ensemble learning is widely recognized as a pivotal strategy for pushing the boundaries of predictive performance. Traditional static ensemble methods, such as Stacking, typically assign weights by treating each base learner as a holistic entity, thereby overlooking the fact that individual models exhibit varying degrees of competence across different regions of the instance space. To address this limitation, Dynamic Ensemble Selection (DES) was introduced. However, both static and dynamic approaches predominantly rely on the divergence among different models as the basis for integration. This inter-model perspective neglects the intrinsic characteristics of the models themselves and necessitates a heavy reliance on validation sets for competence estimation. In this paper, we propose the Behavioral Profiling Ensemble (BPE) framework, which introduces a novel paradigm shift. Unlike traditional methods, BPE constructs a ``behavioral profile'' intrinsic to each model and derives integration weights based on the deviation between the model's response to a specific test instance and its established behavioral profile. Extensive experiments on both synthetic and real-world datasets demonstrate that the algorithm derived from the BPE framework achieves significant improvements over state-of-the-art ensemble baselines. These gains are evident not only in predictive accuracy but also in computational efficiency and storage resource utilization across various scenarios.
Time Aggregation Features for XGBoost Models
This paper studies time aggregation features for XGBoost models in click-through rate prediction. The setting is the Avazu click-through rate prediction dataset with strict out-of-time splits and a no-lookahead feature constraint. Features for hour H use only impressions from hours strictly before H. This paper compares a strong time-aware target encoding baseline to models augmented with entity history time aggregation under several window designs. Across two rolling-tail folds on a deterministic ten percent sample, a trailing window specification improves ROC AUC by about 0.0066 to 0.0082 and PR AUC by about 0.0084 to 0.0094 relative to target encoding alone. Within the time aggregation design grid, event count windows provide the only consistent improvement over trailing windows, and the gain is small. Gap windows and bucketized windows underperform simple trailing windows in this dataset and protocol. These results support a practical default of trailing windows, with an optional event count window when marginal ROC AUC gains matter.
comment: 17 pages, 18 tables and figures
CAFEDistill: Learning Personalized and Dynamic Models through Federated Early-Exit Network Distillation
Personalized Federated Learning (PFL) enables collaboratively model training on decentralized, heterogeneous data while tailoring them to each client's unique distribution. However, existing PFL methods produce static models with a fixed tradeoff between accuracy and efficiency, limiting their applicability in environments where inference requirements vary with contexts and resource availability. Early-exit networks (EENs) offer adaptive inference by attaching intermediate classifiers. Yet integrating them into PFL is challenging due to client-wise heterogeneity and depth-wise interference arising from conflicting exit objectives. Prior studies fail to resolve both conflicts simultaneously, leading to suboptimal performance. In this paper, we propose CAFEDistill, a Conflict-Aware Federated Exit Distillation framework that jointly addresses these conflicts and extends PFL to early-exit networks. Through a progressive, depth-prioritized student coordination mechanism, CAFEDistill mitigates interference among shallow and deep exits while allowing effective personalized knowledge transfer across clients. Furthermore, it reduces communication overhead via a client-decoupled formulation. Extensive evaluations show that CAFEDistill outperforms the state-of-the-arts, achieving higher accuracy and reducing inference costs by 30.79%-46.86%.
comment: 12 pages, conference
PID-Guided Partial Alignment for Multimodal Decentralized Federated Learning
Multimodal decentralized federated learning (DFL) is challenging because agents differ in available modalities and model architectures, yet must collaborate over peer-to-peer (P2P) networks without a central coordinator. Standard multimodal pipelines learn a single shared embedding across all modalities. In DFL, such a monolithic representation induces gradient misalignment between uni- and multimodal agents; as a result, it suppresses heterogeneous sharing and cross-modal interaction. We present PARSE, a multimodal DFL framework that operationalizes partial information decomposition (PID) in a server-free setting. Each agent performs feature fission to factorize its latent representation into redundant, unique, and synergistic slices. P2P knowledge sharing among heterogeneous agents is enabled by slice-level partial alignment: only semantically shareable branches are exchanged among agents that possess the corresponding modality. By removing the need for central coordination and gradient surgery, PARSE resolves uni-/multimodal gradient conflicts, thereby overcoming the multimodal DFL dilemma while remaining compatible with standard DFL constraints. Across benchmarks and agent mixes, PARSE yields consistent gains over task-, modality-, and hybrid-sharing DFL baselines. Ablations on fusion operators and split ratios, together with qualitative visualizations, further demonstrate the efficiency and robustness of the proposed design.
Continuous-Depth Transformers with Learned Control Dynamics
We present a hybrid transformer architecture that replaces discrete middle layers with a continuous-depth Neural Ordinary Differential Equation (ODE) block, enabling inference-time control over generation attributes via a learned steering signal. Unlike standard transformers that process representations through fixed discrete layers, our approach treats depth as a continuous variable governed by a learned vector field $F_θ(H, τ, u)$, where $u$ is a low-dimensional control signal injected via explicit concatenation. We validate the architecture through four experiments: (1) gradient flow stability with zero exploding/vanishing gradient events, (2) semantic steering achieving 98\%/88\% accuracy for positive/negative sentiment control, (3) continuous interpolation validated by a negligible 0.068\% trajectory divergence between fixed and adaptive solvers, and (4) efficiency benchmarking demonstrating latency parity with standard discrete baselines. Additionally, we show that adaptive ODE solvers reveal geometric structure in the learned dynamics: the control signal partitions the vector field into distinct dynamical regimes with different curvature characteristics. The adjoint method enables $O(1)$ memory training regardless of integration depth. Our results demonstrate that continuous-depth dynamics with learned control signals provide a viable, efficient mechanism for steerable language generation.
comment: 9 pages, 4 figures. Code available at: https://github.com/PeterJemley/Continuous-Depth-Transformers-with-Learned-Control-Dynamics
SoK: Privacy-aware LLM in Healthcare: Threat Model, Privacy Techniques, Challenges and Recommendations
Large Language Models (LLMs) are increasingly adopted in healthcare to support clinical decision-making, summarize electronic health records (EHRs), and enhance patient care. However, this integration introduces significant privacy and security challenges, driven by the sensitivity of clinical data and the high-stakes nature of medical workflows. These risks become even more pronounced across heterogeneous deployment environments, ranging from small on-premise hospital systems to regional health networks, each with unique resource limitations and regulatory demands. This Systematization of Knowledge (SoK) examines the evolving threat landscape across the three core LLM phases: Data preprocessing, Fine-tuning, and Inference within realistic healthcare settings. We present a detailed threat model that characterizes adversaries, capabilities, and attack surfaces at each phase, and we systematize how existing privacy-preserving techniques (PPTs) attempt to mitigate these vulnerabilities. While existing defenses show promise, our analysis identifies persistent limitations in securing sensitive clinical data across diverse operational tiers. We conclude with phase-aware recommendations and future research directions aimed at strengthening privacy guarantees for LLMs in regulated environments. This work provides a foundation for understanding the intersection of LLMs, threats, and privacy in healthcare, offering a roadmap toward more robust and clinically trustworthy AI systems.
FaTRQ: Tiered Residual Quantization for LLM Vector Search in Far-Memory-Aware ANNS Systems
Approximate Nearest-Neighbor Search (ANNS) is a key technique in retrieval-augmented generation (RAG), enabling rapid identification of the most relevant high-dimensional embeddings from massive vector databases. Modern ANNS engines accelerate this process using prebuilt indexes and store compressed vector-quantized representations in fast memory. However, they still rely on a costly second-pass refinement stage that reads full-precision vectors from slower storage like SSDs. For modern text and multimodal embeddings, these reads now dominate the latency of the entire query. We propose FaTRQ, a far-memory-aware refinement system using tiered memory that eliminates the need to fetch full vectors from storage. It introduces a progressive distance estimator that refines coarse scores using compact residuals streamed from far memory. Refinement stops early once a candidate is provably outside the top-k. To support this, we propose tiered residual quantization, which encodes residuals as ternary values stored efficiently in far memory. A custom accelerator is deployed in a CXL Type-2 device to perform low-latency refinement locally. Together, FaTRQ improves the storage efficiency by 2.4$\times$ and improves the throughput by up to 9$ \times$ than SOTA GPU ANNS system.
Performance of AI agents based on reasoning language models on ALD process optimization tasks
In this work we explore the performance and behavior of reasoning large language models to autonomously optimize atomic layer deposition (ALD) processes. In the ALD process optimization task, an agent built on top of a reasoning LLM has to find optimal dose times for an ALD precursor and a coreactant without any prior knowledge on the process, including whether it is actually self-limited. The agent is meant to interact iteratively with an ALD reactor in a fully unsupervised way. We evaluate this agent using a simple model of an ALD tool that incorporates ALD processes with different self-limited surface reaction pathways as well as a non self-limited component. Our results show that agents based on reasoning models like OpenAI's o3 and GPT5 consistently succeeded at completing this optimization task. However, we observed significant run-to-run variability due to the non deterministic nature of the model's response. In order to understand the logic followed by the reasoning model, the agent uses a two step process in which the model first generates an open response detailing the reasoning process. This response is then transformed into a structured output. An analysis of these reasoning traces showed that the logic of the model was sound and that its reasoning was based on the notions of self-limited process and saturation expected in the case of ALD. However, the agent can sometimes be misled by its own prior choices when exploring the optimization space.
In-Context Operator Learning on the Space of Probability Measures
We introduce \emph{in-context operator learning on probability measure spaces} for optimal transport (OT). The goal is to learn a single solution operator that maps a pair of distributions to the OT map, using only few-shot samples from each distribution as a prompt and \emph{without} gradient updates at inference. We parameterize the solution operator and develop scaling-law theory in two regimes. In the \emph{nonparametric} setting, when tasks concentrate on a low-intrinsic-dimension manifold of source--target pairs, we establish generalization bounds that quantify how in-context accuracy scales with prompt size, intrinsic task dimension, and model capacity. In the \emph{parametric} setting (e.g., Gaussian families), we give an explicit architecture that recovers the exact OT map in context and provide finite-sample excess-risk bounds. Our numerical experiments on synthetic transports and generative-modeling benchmarks validate the framework.
An Exploratory Study to Repurpose LLMs to a Unified Architecture for Time Series Classification
Time series classification (TSC) is a core machine learning problem with broad applications. Recently there has been growing interest in repurposing large language models (LLMs) for TSC, motivated by their strong reasoning and generalization ability. Prior work has primarily focused on alignment strategies that explicitly map time series data into the textual domain; however, the choice of time series encoder architecture remains underexplored. In this work, we conduct an exploratory study of hybrid architectures that combine specialized time series encoders with a frozen LLM backbone. We evaluate a diverse set of encoder families, including Inception, convolutional, residual, transformer-based, and multilayer perceptron architectures, among which the Inception model is the only encoder architecture that consistently yields positive performance gains when integrated with an LLM backbone. Overall, this study highlights the impact of time series encoder choice in hybrid LLM architectures and points to Inception-based models as a promising direction for future LLM-driven time series learning.
A Sustainable AI Economy Needs Data Deals That Work for Generators NeurIPS 2025
We argue that the machine learning value chain is structurally unsustainable due to an economic data processing inequality: each state in the data cycle from inputs to model weights to synthetic outputs refines technical signal but strips economic equity from data generators. We show, by analyzing seventy-three public data deals, that the majority of value accrues to aggregators, with documented creator royalties rounding to zero and widespread opacity of deal terms. This is not just an economic welfare concern: as data and its derivatives become economic assets, the feedback loop that sustains current learning algorithms is at risk. We identify three structural faults - missing provenance, asymmetric bargaining power, and non-dynamic pricing - as the operational machinery of this inequality. In our analysis, we trace these problems along the machine learning value chain and propose an Equitable Data-Value Exchange (EDVEX) Framework to enable a minimal market that benefits all participants. Finally, we outline research directions where our community can make concrete contributions to data deals and contextualize our position with related and orthogonal viewpoints.
comment: Published at NeurIPS 2025 (https://neurips.cc/virtual/2025/loc/san-diego/poster/121926)
Kinematic Tokenization: Optimization-Based Continuous-Time Tokens for Learnable Decision Policies in Noisy Time Series
Transformers are designed for discrete tokens, yet many real-world signals are continuous processes observed through noisy sampling. Discrete tokenizations (raw values, patches, finite differences) can be brittle in low signal-to-noise regimes, especially when downstream objectives impose asymmetric penalties that rationally encourage abstention. We introduce Kinematic Tokenization, an optimization-based continuous-time representation that reconstructs an explicit spline from noisy measurements and tokenizes local spline coefficients (position, velocity, acceleration, jerk). This is applied to financial time series data in the form of asset prices in conjunction with trading volume profiles. Across a multi-asset daily-equity testbed, we use a risk-averse asymmetric classification objective as a stress test for learnability. Under this objective, several discrete baselines collapse to an absorbing cash policy (the Liquidation Equilibrium), whereas the continuous spline tokens sustain calibrated, non-trivial action distributions and stable policies. These results suggest that explicit continuous-time tokens can improve the learnability and calibration of selective decision policies in noisy time series under abstention-inducing losses.
Interpolation-Based Optimization for Enforcing lp-Norm Metric Differential Privacy in Continuous and Fine-Grained Domains
Metric Differential Privacy (mDP) generalizes Local Differential Privacy (LDP) by adapting privacy guarantees based on pairwise distances, enabling context-aware protection and improved utility. While existing optimization-based methods reduce utility loss effectively in coarse-grained domains, optimizing mDP in fine-grained or continuous settings remains challenging due to the computational cost of constructing dense perterubation matrices and satisfying pointwise constraints. In this paper, we propose an interpolation-based framework for optimizing lp-norm mDP in such domains. Our approach optimizes perturbation distributions at a sparse set of anchor points and interpolates distributions at non-anchor locations via log-convex combinations, which provably preserve mDP. To address privacy violations caused by naive interpolation in high-dimensional spaces, we decompose the interpolation process into a sequence of one-dimensional steps and derive a corrected formulation that enforces lp-norm mDP by design. We further explore joint optimization over perturbation distributions and privacy budget allocation across dimensions. Experiments on real-world location datasets demonstrate that our method offers rigorous privacy guarantees and competitive utility in fine-grained domains, outperforming baseline mechanisms. in high-dimensional spaces, we decompose the interpolation process into a sequence of one-dimensional steps and derive a corrected formulation that enforces lp-norm mDP by design. We further explore joint optimization over perturbation distributions and privacy budget allocation across dimensions. Experiments on real-world location datasets demonstrate that our method offers rigorous privacy guarantees and competitive utility in fine-grained domains, outperforming baseline mechanisms.
comment: USENIX Security 2026
Realistic Curriculum Reinforcement Learning for Autonomous and Sustainable Marine Vessel Navigation AAAI
Sustainability is becoming increasingly critical in the maritime transport, encompassing both environmental and social impacts, such as Greenhouse Gas (GHG) emissions and navigational safety. Traditional vessel navigation heavily relies on human experience, often lacking autonomy and emission awareness, and is prone to human errors that may compromise safety. In this paper, we propose a Curriculum Reinforcement Learning (CRL) framework integrated with a realistic, data-driven marine simulation environment and a machine learning-based fuel consumption prediction module. The simulation environment is constructed using real-world vessel movement data and enhanced with a Diffusion Model to simulate dynamic maritime conditions. Vessel fuel consumption is estimated using historical operational data and learning-based regression. The surrounding environment is represented as image-based inputs to capture spatial complexity. We design a lightweight, policy-based CRL agent with a comprehensive reward mechanism that considers safety, emissions, timeliness, and goal completion. This framework effectively handles complex tasks progressively while ensuring stable and efficient learning in continuous action spaces. We validate the proposed approach in a sea area of the Indian Ocean, demonstrating its efficacy in enabling sustainable and safe vessel navigation.
comment: Present in The 40th Annual AAAI Conference on Artificial Intelligence (AAAI-26)
Action Shapley: A Training Data Selection Metric for World Model in Reinforcement Learning
Numerous offline and model-based reinforcement learning systems incorporate world models to emulate the inherent environments. A world model is particularly important in scenarios where direct interactions with the real environment is costly, dangerous, or impractical. The efficacy and interpretability of such world models are notably contingent upon the quality of the underlying training data. In this context, we introduce Action Shapley as an agnostic metric for the judicious and unbiased selection of training data. To facilitate the computation of Action Shapley, we present a randomized dynamic algorithm specifically designed to mitigate the exponential complexity inherent in traditional Shapley value computations. Through empirical validation across five data-constrained real-world case studies, the algorithm demonstrates a computational efficiency improvement exceeding 80\% in comparison to conventional exponential time computations. Furthermore, our Action Shapley-based training data selection policy consistently outperforms ad-hoc training data selection.
Learning collision operators from plasma phase space data using differentiable simulators
We propose a methodology to infer collision operators from phase space data of plasma dynamics. Our approach combines a differentiable kinetic simulator, whose core component in this work is a differentiable Fokker-Planck solver, with a gradient-based optimisation method to learn the collisional operators that best describe the phase space dynamics. We test our method using data from two-dimensional Particle-in-Cell simulations of spatially uniform thermal plasmas, and learn the collision operator that captures the self-consistent electromagnetic interaction between finite-size charged particles over a wide variety of simulation parameters. We demonstrate that the learned operators are more accurate than alternative estimates based on particle tracks, while making no prior assumptions about the relevant time-scales of the processes and significantly reducing memory requirements. We find that the retrieved operators, obtained in the non-relativistic regime, are in excellent agreement with theoretical predictions derived for electrostatic scenarios. Our results show that differentiable simulators offer a powerful and computational efficient approach to infer novel operators for a wide rage of problems, such as electromagnetically dominated collisional dynamics and stochastic wave-particle interactions.
Unit-Consistent (UC) Adjoint for GSD and Backprop in Deep Learning Applications
Deep neural networks constructed from linear maps and positively homogeneous nonlinearities (e.g., ReLU) possess a fundamental gauge symmetry: the network function is invariant to node-wise diagonal rescalings. However, standard gradient descent is not equivariant to this symmetry, causing optimization trajectories to depend heavily on arbitrary parameterizations. Prior work has proposed rescaling-invariant optimization schemes for positively homogeneous networks (e.g., path-based or path-space updates). Our contribution is complementary: we formulate the invariance requirement at the level of the backward adjoint/optimization geometry, which provides a simple, operator-level recipe that can be applied uniformly across network components and optimizer state. By replacing the Euclidean transpose with a Unit-Consistent (UC) adjoint, we derive UC gauge-consistent steepest descent and backprogation.
Beyond Accuracy: A Stability-Aware Metric for Multi-Horizon Forecasting
Traditional time series forecasting methods optimize for accuracy alone. This objective neglects temporal consistency, in other words, how consistently a model predicts the same future event as the forecast origin changes. We introduce the forecast accuracy and coherence score (forecast AC score for short) for measuring the quality of probabilistic multi-horizon forecasts in a way that accounts for both multi-horizon accuracy and stability. Our score additionally provides for user-specified weights to balance accuracy and consistency requirements. As an example application, we implement the score as a differentiable objective function for training seasonal ARIMA models and evaluate it on the M4 Hourly benchmark dataset. Results demonstrate substantial improvements over traditional maximum likelihood estimation. Our AC-optimized models achieve a 75\% reduction in forecast volatility for the same target timestamps while maintaining comparable or improved point forecast accuracy.
AI-Guided Human-In-the-Loop Inverse Design of High Performance Engineering Structures
Inverse design tools such as Topology Optimization (TO) can achieve new levels of improvement for high-performance engineered structures. However, widespread use is hindered by high computational times and a black-box nature that inhibits user interaction. Human-in-the-loop TO approaches are emerging that integrate human intuition into the design generation process. However, these rely on the time-consuming bottleneck of iterative region selection for design modifications. To reduce the number of iterative trials, this contribution presents an AI co-pilot that uses machine learning to predict the user's preferred regions. The prediction model is configured as an image segmentation task with a U-Net architecture. It is trained on synthetic datasets where human preferences either identify the longest topological member or the most complex structural connection. The model successfully predicts plausible regions for modification and presents them to the user as AI recommendations. The human preference model demonstrates generalization across diverse and non-standard TO problems and exhibits emergent behavior outside the single-region selection training data. Demonstration examples show that the new human-in-the-loop TO approach that integrates the AI co-pilot can improve manufacturability or improve the linear buckling load by 39% while only increasing the total design time by 15 sec compared to conventional simplistic TO.
comment: 21 pages, 10 figures
Reasoning Models Generate Societies of Thought
Large language models have achieved remarkable capabilities across domains, yet mechanisms underlying sophisticated reasoning remain elusive. Recent reasoning models outperform comparable instruction-tuned models on complex cognitive tasks, attributed to extended computation through longer chains of thought. Here we show that enhanced reasoning emerges not from extended computation alone, but from simulating multi-agent-like interactions -- a society of thought -- which enables diversification and debate among internal cognitive perspectives characterized by distinct personality traits and domain expertise. Through quantitative analysis and mechanistic interpretability methods applied to reasoning traces, we find that reasoning models like DeepSeek-R1 and QwQ-32B exhibit much greater perspective diversity than instruction-tuned models, activating broader conflict between heterogeneous personality- and expertise-related features during reasoning. This multi-agent structure manifests in conversational behaviors, including question-answering, perspective shifts, and the reconciliation of conflicting views, and in socio-emotional roles that characterize sharp back-and-forth conversations, together accounting for the accuracy advantage in reasoning tasks. Controlled reinforcement learning experiments reveal that base models increase conversational behaviors when rewarded solely for reasoning accuracy, and fine-tuning models with conversational scaffolding accelerates reasoning improvement over base models. These findings indicate that the social organization of thought enables effective exploration of solution spaces. We suggest that reasoning models establish a computational parallel to collective intelligence in human groups, where diversity enables superior problem-solving when systematically structured, which suggests new opportunities for agent organization to harness the wisdom of crowds.
Mugi: Value Level Parallelism For Efficient LLMs
Value level parallelism (VLP) has been proposed to improve the efficiency of large-batch, low-precision general matrix multiply (GEMM) between symmetric activations and weights. In transformer based large language models (LLMs), there exist more sophisticated operations beyond activation-weight GEMM. In this paper, we explore how VLP benefits LLMs. First, we generalize VLP for nonlinear approximations, outperforming existing nonlinear approximations in end-to-end LLM accuracy, performance, and efficiency. Our VLP approximation follows a value-centric approach, where important values are assigned with greater accuracy. Second, we optimize VLP for small-batch GEMMs with asymmetric inputs efficiently, which leverages timely LLM optimizations, including weight-only quantization, key-value (KV) cache quantization, and group query attention. Finally, we design a new VLP architecture, Mugi, to encapsulate the innovations above and support full LLM workloads, while providing better performance, efficiency and sustainability. Our experimental results show that Mugi can offer significant improvements on throughput and energy efficiency, up to $45\times$ and $668\times$ for nonlinear softmax operations, and $2.07\times$ and $3.11\times$ for LLMs, and also decrease operational carbon for LLM operation by $1.45\times$ and embodied carbon by $1.48\times$.
comment: 2026 International Conference on Architectural Support for Programming Languages and Operating Systems
Towards Reliable ML Feature Engineering via Planning in Constrained-Topology of LLM Agents
Recent advances in code generation models have unlocked unprecedented opportunities for automating feature engineering, yet their adoption in real-world ML teams remains constrained by critical challenges: (i) the scarcity of datasets capturing the iterative and complex coding processes of production-level feature engineering, (ii) limited integration and personalization of widely used coding agents, such as CoPilot and Devin, with a team's unique tools, codebases, workflows, and practices, and (iii) suboptimal human-AI collaboration due to poorly timed or insufficient feedback. We address these challenges with a planner-guided, constrained-topology multi-agent framework that generates code for repositories in a multi-step fashion. The LLM-powered planner leverages a team's environment, represented as a graph, to orchestrate calls to available agents, generate context-aware prompts, and use downstream failures to retroactively correct upstream artifacts. It can request human intervention at critical steps, ensuring generated code is reliable, maintainable, and aligned with team expectations. On a novel in-house dataset, our approach achieves 38% and 150% improvement in the evaluation metric over manually crafted and unplanned workflows respectively. In practice, when building features for recommendation models serving over 120 million users, our approach has delivered real-world impact by reducing feature engineering cycles from three weeks to a single day.
Digital Metabolism: Decoupling Logic from Facts via Regenerative Unlearning -- Towards a Pure Neural Logic Core
Large language models (LLMs) currently suffer from parameter entanglement, where general reasoning capabilities (logic) and specific factual knowledge (facts) exist in a superposition state within shared weights. This coupling leads to the "memory wall," where computational capacity is squandered on simulating retrieval, often resulting in hallucinations. In this paper, we propose "digital metabolism," a thermodynamic hypothesis suggesting that targeted forgetting is necessary for distilling a pure neural logic core. To validate this hypothesis, we introduce the Regenerative Logic-Core Protocol (RLCP), a dual-stream training framework that renders specific factual dependencies linearly undecodable via deep-layer gradient reversal. Applying RLCP to Qwen2.5-0.5B, we observe a distinct phase transition: the model achieves near-zero retention of targeted factual associations (Accuracy < 7%) while exhibiting changes consistent with an emergent "structural crystallization" effect. Empirical analysis on GSM8K reveals that the "metabolized" model spontaneously adopts chain-of-thought (CoT) scaffolding, which we interpret as compensating for the loss of direct associative recall (shifting from $O(1)$ recall to $O(N)$ reasoning). While the causal mechanism underlying this behavioral shift requires further investigation, our findings provide a dynamic weight-level counterpart to architectural innovations like DeepSeek's Engram, paving the way for modular "Neural CPU + Symbolic RAM" architectures.
Towards Tensor Network Models for Low-Latency Jet Tagging on FPGAs
We present a systematic study of Tensor Network (TN) models $\unicode{x2013}$ Matrix Product States (MPS) and Tree Tensor Networks (TTN) $\unicode{x2013}$ for real-time jet tagging in high-energy physics, with a focus on low-latency deployment on Field Programmable Gate Arrays (FPGAs). Motivated by the strict requirements of the HL-LHC Level-1 trigger system, we explore TNs as compact and interpretable alternatives to deep neural networks. Using low-level jet constituent features, our models achieve competitive performance compared to state-of-the-art deep learning classifiers. We investigate post-training quantization to enable hardware-efficient implementations without degrading classification performance or latency. The best-performing models are synthesized to estimate FPGA resource usage, latency, and memory occupancy, demonstrating sub-microsecond latency and supporting the feasibility of online deployment in real-time trigger systems. Overall, this study highlights the potential of TN-based models for fast and resource-efficient inference in low-latency environments.
comment: 10 pages, 8 figures
Unified Optimization of Source Weights and Transfer Quantities in Multi-Source Transfer Learning: An Asymptotic Framework
Transfer learning plays a vital role in improving model performance in data-scarce scenarios. However, naive uniform transfer from multiple source tasks may result in negative transfer, highlighting the need to properly balance the contributions of heterogeneous sources. Moreover, existing transfer learning methods typically focus on optimizing either the source weights or the amount of transferred samples, while largely neglecting the joint consideration of the other. In this work, we propose a theoretical framework, Unified Optimization of Weights and Quantities (UOWQ), which formulates multi-source transfer learning as a parameter estimation problem grounded in an asymptotic analysis of a Kullback-Leibler divergence-based generalization error measure. The proposed framework jointly determines the optimal source weights and optimal transfer quantities for each source task. Firstly, we prove that using all available source samples is always optimal once the weights are properly adjusted, and we provide a theoretical explanation for this phenomenon. Moreover, to determine the optimal transfer weights, our analysis yields closed-form solutions in the single-source setting and develops a convex optimization-based numerical procedure for the multi-source case. Building on the theoretical results, we further propose practical algorithms for both multi-source transfer learning and multi-task learning settings. Extensive experiments on real-world benchmarks, including DomainNet and Office-Home, demonstrate that UOWQ consistently outperforms strong baselines. The results validate both the theoretical predictions and the practical effectiveness of our framework.
LLMs for Game Theory: Entropy-Guided In-Context Learning and Adaptive CoT Reasoning AAAI 2026
We propose a novel LLM-based framework for reasoning in discrete, game-theoretic tasks, illustrated with \emph{Tic-Tac-Toe}. The method integrates in-context learning with entropy-guided chain-of-thought (CoT) reasoning and adaptive context retrieval. The model dynamically adjusts both the number of retrieved examples and reasoning paths according to token-level uncertainty: concise reasoning with minimal context is used when uncertainty is low, whereas higher uncertainty triggers expanded multi-path CoT exploration. Experimental evaluation against a sub-optimal algorithmic opponent shows that entropy-aware adaptive reasoning substantially improves decision quality, increasing the average game outcome from \(-11.6\%\) with the baseline LLM to \(+9.5\%\) with entropy-guided adaptive reasoning over 100 games (win = +1, tie = 0, loss = -1), while maintaining a relatively low number of LLM queries per game. Statistical validation confirms that the improvement is significant, and correlation analysis reveals a negative association between token-level entropy and move optimality. These findings demonstrate that uncertainty-guided adaptive reasoning effectively enhances LLM performance in sequential decision-making environments.
comment: Accepted at AAAI 2026 Bridge (Logical and Symbolic Reasoning in Language Models)
Analytic Bijections for Smooth and Interpretable Normalizing Flows
A key challenge in designing normalizing flows is finding expressive scalar bijections that remain invertible with tractable Jacobians. Existing approaches face trade-offs: affine transformations are smooth and analytically invertible but lack expressivity; monotonic splines offer local control but are only piecewise smooth and act on bounded domains; residual flows achieve smoothness but need numerical inversion. We introduce three families of analytic bijections -- cubic rational, sinh, and cubic polynomial -- that are globally smooth ($C^\infty$), defined on all of $\mathbb{R}$, and analytically invertible in closed form, combining the favorable properties of all prior approaches. These bijections serve as drop-in replacements in coupling flows, matching or exceeding spline performance. Beyond coupling layers, we develop radial flows: a novel architecture using direct parametrization that transforms the radial coordinate while preserving angular direction. Radial flows exhibit exceptional training stability, produce geometrically interpretable transformations, and on targets with radial structure can achieve comparable quality to coupling flows with $1000\times$ fewer parameters. We provide comprehensive evaluation on 1D and 2D benchmarks, and demonstrate applicability to higher-dimensional physics problems through experiments on $φ^4$ lattice field theory, where our bijections outperform affine baselines and enable problem-specific designs that address mode collapse.
comment: 33 + 5 pages, 17 + 1 figures, 3 tables
Physically constrained unfolded multi-dimensional OMP for large MIMO systems
Sparse recovery methods are essential for channel estimation and localization in modern communication systems, but their reliability relies on accurate physical models, which are rarely perfectly known. Their computational complexity also grows rapidly with the dictionary dimensions in large MIMO systems. In this paper, we propose MOMPnet, a novel unfolded sparse recovery framework that addresses both the reliability and complexity challenges of traditional methods. By integrating deep unfolding with data-driven dictionary learning, MOMPnet mitigates hardware impairments while preserving interpretability. Instead of a single large dictionary, multiple smaller, independent dictionaries are employed, enabling a low-complexity multidimensional Orthogonal Matching Pursuit algorithm. The proposed unfolded network is evaluated on realistic channel data against multiple baselines, demonstrating its strong performance and potential.
Knowledge Homophily in Large Language Models
Large Language Models (LLMs) have been increasingly studied as neural knowledge bases for supporting knowledge-intensive applications such as question answering and fact checking. However, the structural organization of their knowledge remains unexplored. Inspired by cognitive neuroscience findings, such as semantic clustering and priming, where knowing one fact increases the likelihood of recalling related facts, we investigate an analogous knowledge homophily pattern in LLMs. To this end, we map LLM knowledge into a graph representation through knowledge checking at both the triplet and entity levels. After that, we analyze the knowledgeability relationship between an entity and its neighbors, discovering that LLMs tend to possess a similar level of knowledge about entities positioned closer in the graph. Motivated by this homophily principle, we propose a Graph Neural Network (GNN) regression model to estimate entity-level knowledgeability scores for triplets by leveraging their neighborhood scores. The predicted knowledgeability enables us to prioritize checking less well-known triplets, thereby maximizing knowledge coverage under the same labeling budget. This not only improves the efficiency of active labeling for fine-tuning to inject knowledge into LLMs but also enhances multi-hop path retrieval in reasoning-intensive question answering.
PMOA-TTS: Introducing the PubMed Open Access Textual Times Series Corpus
Clinical narratives encode temporal dynamics essential for modeling patient trajectories, yet large-scale temporally annotated resources are scarce. We introduce PMOA-TTS, a corpus of 124,699 single-patient PubMed Open Access case reports converted into structured textual timelines of (event, time) pairs using a scalable large-language-model pipeline (Llama 3.3 70B and DeepSeek-R1). The corpus comprises over 5.6 million timestamped events, alongside extracted demographics and diagnoses. Technical validation uses a clinician-curated gold set and three measures: semantic event matching, temporal concordance (c-index), and alignment error summarized with Area Under the Log-Time CDF (AULTC). We benchmark alternative prompting and model choices and provide documentation to support reproduction. PMOA-TTS enables research on timeline extraction, temporal reasoning, survival modeling and event forecasting from narrative text, and offers broad diagnostic and demographic coverage. Data and code are openly available in public repositories.
Sparse Nonparametric Contextual Bandits
We study the benefits of sparsity in nonparametric contextual bandit problems, in which the set of candidate features is countably or uncountably infinite. Our contribution is two-fold. First, using a novel reduction to sequences of multi-armed bandit problems, we provide lower bounds on the minimax regret, which show that polynomial dependence on the number of actions is generally unavoidable in this setting. Second, we show that a variant of the Feel-Good Thompson Sampling algorithm enjoys regret bounds that match our lower bounds up to logarithmic factors of the horizon, and have logarithmic dependence on the effective number of candidate features. When we apply our results to kernelised and neural contextual bandits, we find that sparsity enables better regret bounds whenever the horizon is large enough relative to the sparsity and the number of actions.
comment: 44 pages
RMBRec: Robust Multi-Behavior Recommendation towards Target Behaviors
Multi-behavior recommendation faces a critical challenge in practice: auxiliary behaviors (e.g., clicks, carts) are often noisy, weakly correlated, or semantically misaligned with the target behavior (e.g., purchase), which leads to biased preference learning and suboptimal performance. While existing methods attempt to fuse these heterogeneous signals, they inherently lack a principled mechanism to ensure robustness against such behavioral inconsistency. In this work, we propose Robust Multi-Behavior Recommendation towards Target Behaviors (RMBRec), a robust multi-behavior recommendation framework grounded in an information-theoretic robustness principle. We interpret robustness as a joint process of maximizing predictive information while minimizing its variance across heterogeneous behavioral environments. Under this perspective, the Representation Robustness Module (RRM) enhances local semantic consistency by maximizing the mutual information between users' auxiliary and target representations, whereas the Optimization Robustness Module (ORM) enforces global stability by minimizing the variance of predictive risks across behaviors, which is an efficient approximation to invariant risk minimization. This local-global collaboration bridges representation purification and optimization invariance in a theoretically coherent way. Extensive experiments on three real-world datasets demonstrate that RMBRec not only outperforms state-of-the-art methods in accuracy but also maintains remarkable stability under various noise perturbations. For reproducibility, our code is available at https://github.com/miaomiao-cai2/RMBRec/.
TinyMyo: a Tiny Foundation Model for Flexible EMG Signal Processing at the Edge
Objective: Surface electromyography (EMG) is a non-invasive sensing modality widely used in biomechanics, rehabilitation, prosthetic control, and human-machine interfaces. Despite decades of use, achieving robust generalization across subjects, recording systems, and acquisition protocols remains challenging. While foundation models (FMs) are gaining traction for EMG, existing approaches remain limited to single downstream tasks and lack deployability on embedded platforms. This work addresses these limitations. Methods: We present TinyMyo, a lightweight FM based on a Transformer encoder architecture. The model is pre-trained in a self-supervised manner using masked reconstruction on publicly available datasets. With only 3.6M parameters, TinyMyo is designed to support multiple downstream tasks through minimal task-specific head adaptations. Results: We demonstrate generalization across hand gesture classification, hand kinematic regression, speech production and speech recognition, with performance comparable to or surpassing the state of the art (SoA), and model size below 5M parameters. We achieve SoA results compared to previous FM-based works on the NinaPro DB5 (89.4%), UCI-EMG (97.56%), and EPN-612 (96.74%) datasets. We demonstrate the first-time deployment of an EMG FM on an ultra-low power microcontroller (GAP9), with an inference time of 0.785 s, energy of 44.91 mJ and power envelope of 57.18 mW. Conclusion: TinyMyo demonstrates that compact, self-supervised EMG FM can guarantee strong generalization across multiple downstream tasks while remaining compatible with low-power edge devices. Significance: TinyMyo is the first EMG FM for ultra-low power edge devices, enabling scalable and energy-efficient sensing for motor intent decoding, neuromuscular assessment, and biosignal driven human-machine interaction.
Riesz Representer Fitting under Bregman Divergence: A Unified Framework for Debiased Machine Learning
Estimating the Riesz representer is central to debiased machine learning for causal and structural parameter estimation. We propose generalized Riesz regression, a unified framework that estimates the Riesz representer by fitting a representer model via Bregman divergence minimization. This framework includes the squared loss and the Kullback--Leibler (KL) divergence as special cases: the former recovers Riesz regression, while the latter recovers tailored loss minimization. Under suitable model specifications, the dual problems correspond to covariate balancing, which we call automatic covariate balancing. Moreover, under the same specifications, outcome averages weighted by the estimated Riesz representer satisfy Neyman orthogonality even without estimating the regression function, a property we call automatic Neyman orthogonalization. This property not only reduces the estimation error of Neyman orthogonal scores but also clarifies a key distinction between debiased machine learning and targeted maximum likelihood estimation. Our framework can also be viewed as a generalization of density ratio fitting under Bregman divergences to Riesz representer estimation, and it applies beyond density ratio estimation. We provide convergence analyses for both reproducing kernel Hilbert space (RKHS) and neural network model classes. A Python package for generalized Riesz regression is available at https://github.com/MasaKat0/grr.
Relative Information Gain and Gaussian Process Regression
The sample complexity of estimating or maximising an unknown function in a reproducing kernel Hilbert space is known to be linked to both the effective dimension and the information gain associated with the kernel. While the information gain has an attractive information-theoretic interpretation, the effective dimension typically results in better rates. We introduce a new quantity called the relative information gain, which measures the sensitivity of the information gain with respect to the observation noise. We show that the relative information gain smoothly interpolates between the effective dimension and the information gain, and that the relative information gain has the same growth rate as the effective dimension. In the second half of the paper, we prove a new PAC-Bayesian excess risk bound for Gaussian process regression. The relative information gain arises naturally from the complexity term in this PAC-Bayesian bound. We prove bounds on the relative information gain that depend on the spectral properties of the kernel. When these upper bounds are combined with our excess risk bound, we obtain minimax-optimal rates of convergence.
comment: 30 pages, 1 figure
Mathematical theory of deep learning
This book provides an introduction to the mathematical analysis of deep learning. It covers fundamental results in approximation theory, optimization theory, and statistical learning theory, which are the three main pillars of deep neural network theory. Serving as a guide for students and researchers in mathematics and related fields, the book aims to equip readers with foundational knowledge on the topic. It prioritizes simplicity over generality, and presents rigorous yet accessible results to help build an understanding of the essential mathematical concepts underpinning deep learning.
Dual-Uncertainty Guided Policy Learning for Multimodal Reasoning
Reinforcement learning with verifiable rewards (RLVR) has advanced reasoning capabilities in multimodal large language models. However, existing methods typically treat visual inputs as deterministic, overlooking the perceptual ambiguity inherent to the visual modality. Consequently, they fail to distinguish whether a model's uncertainty stems from complex reasoning or ambiguous perception, preventing the targeted allocation of exploration or learning signals. To address this gap, we introduce DUPL, a dual-uncertainty guided policy learning approach for multimodal RLVR that quantifies and leverages both perceptual uncertainty (via symmetric KL divergence) and output uncertainty (via policy entropy) to guide policy updates. By establishing an uncertainty-driven feedback loop and employing a dynamic branch prioritization mechanism, DUPL recalibrates the policy advantage to focus learning on states with high perceptual or decisional ambiguity, enabling effective targeted exploration beyond passive data augmentation. Implemented on top of GRPO and evaluated on six multimodal mathematical and general-domain reasoning benchmarks, DUPL improves Qwen2.5-VL 3B and 7B models, achieving accuracy gains of up to 11.2% on visual math tasks and up to 7.1% on general-domain reasoning tasks, while consistently outperforming GRPO. These results demonstrate that dual-uncertainty guided policy learning is an effective and generalizable approach for multimodal RLVR.
Data-Driven Dynamic Factor Modeling via Manifold Learning
We introduce a data-driven dynamic factor framework for modeling the joint evolution of high-dimensional covariates and responses without parametric assumptions. Standard factor models applied to covariates alone often lose explanatory power for responses. Our approach uses anisotropic diffusion maps, a manifold learning technique, to learn low-dimensional embeddings that preserve both the intrinsic geometry of the covariates and the predictive relationship with responses. For time series arising from Langevin diffusions in Euclidean space, we show that the associated graph Laplacian converges to the generator of the underlying diffusion. We further establish a bound on the approximation error between the diffusion map coordinates and linear diffusion processes, and we show that ergodic averages in the embedding space converge under standard spectral assumptions. These results justify using Kalman filtering in diffusion-map coordinates for predicting joint covariate-response evolution. We apply this methodology to equity-portfolio stress testing using macroeconomic and financial variables from Federal Reserve supervisory scenarios, achieving mean absolute error improvements of up to 55% over classical scenario analysis and 39% over principal component analysis benchmarks.
Differential Privacy as a Perk: Federated Learning over Multiple-Access Fading Channels with a Multi-Antenna Base Station
Federated Learning (FL) is a distributed learning paradigm that preserves privacy by eliminating the need to exchange raw data during training. In its prototypical edge instantiation with underlying wireless transmissions enabled by analog over-the-air computing (AirComp), referred to as \emph{over-the-air FL (AirFL)}, the inherent channel noise plays a unique role of \emph{frenemy} in the sense that it degrades training due to noisy global aggregation while providing a natural source of randomness for privacy-preserving mechanisms, formally quantified by \emph{differential privacy (DP)}. It remains, nevertheless, challenging to effectively harness such channel impairments, as prior arts, under assumptions of either simple channel models or restricted types of loss functions, mostly considering (local) DP enhancement with a single-round or non-convergent bound on privacy loss. In this paper, we study AirFL over multiple-access fading channels with a multi-antenna base station (BS) subject to user-level DP requirements. Despite a recent study, which claimed in similar settings that artificial noise (AN) must be injected to ensure DP in general, we demonstrate, on the contrary, that DP can be gained as a \emph{perk} even \emph{without} employing any AN. Specifically, we derive a novel bound on DP that converges under general bounded-domain assumptions on model parameters, along with a convergence bound with general smooth and non-convex loss functions. Next, we optimize over receive beamforming and power allocations to characterize the optimal convergence-privacy trade-offs, which also reveal explicit conditions in which DP is achievable without compromising training. Finally, our theoretical findings are validated by extensive numerical results.
comment: 13 pages, 6 figures, submitted for possible publication
An Improved Privacy and Utility Analysis of Differentially Private SGD with Bounded Domain and Smooth Losses AAAI 2026
Differentially Private Stochastic Gradient Descent (DPSGD) is widely used to protect sensitive data during the training of machine learning models, but its privacy guarantee often comes at a large cost of model performance due to the lack of tight theoretical bounds quantifying privacy loss. While recent efforts have achieved more accurate privacy guarantees, they still impose some assumptions prohibited from practical applications, such as convexity and complex parameter requirements, and rarely investigate in-depth the impact of privacy mechanisms on the model's utility. In this paper, we provide a rigorous privacy characterization for DPSGD with general L-smooth and non-convex loss functions, revealing converged privacy loss with iteration in bounded-domain cases. Specifically, we track the privacy loss over multiple iterations, leveraging the noisy smooth-reduction property, and further establish comprehensive convergence analysis in different scenarios. In particular, we show that for DPSGD with a bounded domain, (i) the privacy loss can still converge without the convexity assumption, (ii) a smaller bounded diameter can improve both privacy and utility simultaneously under certain conditions, and (iii) the attainable big-O order of the privacy utility trade-off for DPSGD with gradient clipping (DPSGD-GC) and for DPSGD-GC with bounded domain (DPSGD-DC) and mu-strongly convex population risk function, respectively. Experiments via membership inference attack (MIA) in a practical setting validate insights gained from the theoretical results.
comment: 19 pages, 5 figures, accepted by AAAI 2026
Rewarding the Rare: Uniqueness-Aware RL for Creative Problem Solving in LLMs
Reinforcement learning (RL) has become a central paradigm for post-training large language models (LLMs), particularly for complex reasoning tasks, yet it often suffers from exploration collapse: policies prematurely concentrate on a small set of dominant reasoning patterns, improving pass@1 while limiting rollout-level diversity and gains in pass@k. We argue that this failure stems from regularizing local token behavior rather than diversity over sets of solutions. To address this, we propose Uniqueness-Aware Reinforcement Learning, a rollout-level objective that explicitly rewards correct solutions that exhibit rare high-level strategies. Our method uses an LLM-based judge to cluster rollouts for the same problem according to their high-level solution strategies, ignoring superficial variations, and reweights policy advantages inversely with cluster size. As a result, correct but novel strategies receive higher rewards than redundant ones. Across mathematics, physics, and medical reasoning benchmarks, our approach consistently improves pass@$k$ across large sampling budgets and increases the area under the pass@$k$ curve (AUC@$K$) without sacrificing pass@1, while sustaining exploration and uncovering more diverse solution strategies at scale.
comment: Work in Progress
SSFL: Discovering Sparse Unified Subnetworks at Initialization for Efficient Federated Learning
In this work, we propose Salient Sparse Federated Learning (SSFL), a streamlined approach for sparse federated learning with efficient communication. SSFL identifies a sparse subnetwork prior to training, leveraging parameter saliency scores computed separately on local client data in non-IID scenarios, and then aggregated, to determine a global mask. Only the sparse model weights are trained and communicated each round between the clients and the server. On standard benchmarks including CIFAR-10, CIFAR-100, and Tiny-ImageNet, SSFL consistently improves the accuracy sparsity trade off, achieving more than 20\% relative error reduction on CIFAR-10 compared to the strongest sparse baseline, while reducing communication costs by $2 \times$ relative to dense FL. Finally, in a real-world federated learning deployment, SSFL delivers over $2.3 \times$ faster communication time, underscoring its practical efficiency.
comment: Published in Transactions on Machine Learning Research (TMLR), 2026
Image Complexity-Aware Adaptive Retrieval for Efficient Vision-Language Models
Vision transformers in vision-language models typically use the same amount of compute for every image, regardless of whether it is simple or complex. We propose ICAR (Image Complexity-Aware Retrieval), an adaptive computation approach that enables vision transformers to use less compute for simple images whilst processing complex images through their full network depth. The key challenge is maintaining cross-modal alignment: embeddings from different processing depths must remain compatible for text matching. ICAR solves this through dual-path training that produces compatible embeddings from both the early-exit and full-depth paths. This maintains compatibility between image representations and text embeddings in the same semantic space, whether an image exits early or processes fully. Unlike existing two-stage approaches that require expensive reranking, ICAR enables direct image-text matching without additional overhead. To determine how much compute to use, we develop ConvNeXt-IC, which treats image complexity assessment as a classification task. By applying modern classifier backbones rather than specialised architectures, ConvNeXt-IC achieves state-of-the-art performance, attaining a Pearson correlation coefficient of 0.959 with human labelling whilst delivering 4.4x faster complexity prediction. Evaluated on standard benchmarks augmented with real-world web data, ICAR achieves 20% faster image encoding while maintaining category-level performance and 95% of instance-level performance, enabling sustainable scaling of vision-language systems.
comment: Camera-ready version for ECIR 2026
TPV: Parameter Perturbations Through the Lens of Test Prediction Variance
We identify test prediction variance (TPV) -- the first-order sensitivity of model outputs to parameter perturbations around a trained solution -- as a unifying quantity that links several classical observations about generalization in deep networks. TPV is a fully label-free object whose trace form separates the geometry of the trained model from the specific perturbation mechanism, allowing a broad family of parameter perturbations like SGD noise, label noise, finite-precision noise, and other post-training perturbations to be analyzed under a single framework. Theoretically, we show that TPV estimated on the training set converges to its test-set value in the overparameterized limit, providing the first result that prediction variance under local parameter perturbations can be inferred from training inputs alone. Empirically, TPV exhibits a striking stability across datasets and architectures -- including extremely narrow networks -- and correlates well with clean test loss. Finally, we demonstrate that modeling pruning as a TPV perturbation yields a simple label-free importance measure that performs competitively with state-of-the-art pruning methods, illustrating the practical utility of TPV. Code available at github.com/devansharpit/TPV.
MixMin: Finding Data Mixtures via Convex Minimization
Modern machine learning pipelines are increasingly combining and mixing data from diverse and disparate sources, e.g., pre-training large language models. Yet, finding the optimal data mixture is a challenging and open problem. We formalize this data mixing problem as a bi-level objective: the best mixture is the one that would lead to the best model for a downstream objective. Unfortunately, this objective is generally intractable. In this paper, we make the observation that the bi-level data mixing objective becomes convex as our model class becomes larger. We develop and study a gradient-based approach for optimizing this convex objective, which we call MixMin, and test it on language modeling and chemistry tasks. MixMin was the only method that uniformly improved the data mixture in all our experiments. With MixMin, we improved the data mixture using less than 0.2% additional compute for a pythia-410M model trained on 8.2B tokens, resulting between 1-5% relative improvement to negative log likelihood on PIQA, ARC Easy, SciQ, and OpenWebMath. Crucially, we found that MixMin mixtures for smaller models improved training of larger models, suggesting that MixMin mixtures may be scale-invariant. When mixing bioassay data to train an XGBoost model, we saw improvements to average precision scores of 0.03-0.15.
comment: Proceedings of the 42nd International Conference on Machine Learning
Random Walk Learning and the Pac-Man Attack
Random walk (RW)-based algorithms have long been popular in distributed systems due to low overheads and scalability, with recent growing applications in decentralized learning. However, their reliance on local interactions makes them inherently vulnerable to malicious behavior. In this work, we investigate an adversarial threat that we term the ``Pac-Man'' attack, in which a malicious node probabilistically terminates any RW that visits it. This stealthy behavior gradually eliminates active RWs from the network, effectively halting the learning process without triggering failure alarms. To counter this threat, we propose the Average Crossing (AC) algorithm--a fully decentralized mechanism for duplicating RWs to prevent RW extinction in the presence of Pac-Man. Our theoretical analysis establishes that (i) the RW population remains almost surely bounded under AC and (ii) RW-based stochastic gradient descent remains convergent under AC, even in the presence of Pac-Man, with a quantifiable deviation from the true optimum. Our extensive empirical results on both synthetic and real-world datasets corroborate our theoretical findings. Furthermore, they uncover a phase transition in the extinction probability as a function of the duplication threshold. We offer theoretical insights by analyzing a simplified variant of the AC, which sheds light on the observed phase transition.
comment: The updated manuscript represents an incomplete version of the work. A substantially updated version will be prepared before further dissemination
How Quantization Shapes Bias in Large Language Models
This work presents a comprehensive evaluation of how quantization affects model bias, with particular attention to its impact on individual demographic subgroups. We focus on weight and activation quantization strategies and examine their effects across a broad range of bias types, including stereotypes, fairness, toxicity, and sentiment. We employ both probability- and generated text-based metrics across 13 benchmarks and evaluate models that differ in architecture family and reasoning ability. Our findings show that quantization has a nuanced impact on bias: while it can reduce model toxicity and does not significantly impact sentiment, it tends to slightly increase stereotypes and unfairness in generative tasks, especially under aggressive compression. These trends are generally consistent across demographic categories and subgroups, and model types, although their magnitude depends on the specific setting. Overall, our results highlight the importance of carefully balancing efficiency and ethical considerations when applying quantization in practice.
Small Open Models Achieve Near Parity with Large Models in Low Resource Literary Translation at a Fraction of the Cost
Literary translation has recently gained attention as a distinct and complex task in machine translation research. However, the translation by small open models remains an open problem. We contribute to this ongoing research by introducing TinyFabulist Translation Framework (TF2), a unified framework for dataset creation, fine-tuning, and evaluation in English->Romanian literary translation, centered on the creation and open release of both a compact, fine-tuned language model (TF2-12B) and large-scale synthetic parallel datasets (DS-TF2-EN-RO-3M and DS-TF2-EN-RO-15K). Building on DS-TF1-EN-3M (TF1), the largest collection of synthetic English fables to date, we address the need for rich, high-quality literary datasets in low-resource languages such as Romanian. Our pipeline first generates 15k high-quality Romanian reference translations from the TF1 pool using a high-performing LLM. We then apply a two-stage fine-tuning process to a 12B-parameter open-weight model: (i) instruction tuning to capture genre-specific narrative style, and (ii) adapter compression for efficient deployment. Evaluation combines corpus-level BLEU with a five-dimension LLM-based rubric (accuracy, fluency, coherence, style, and cultural adaptation) to provide a nuanced assessment of translation quality. Results show that our fine-tuned model achieves strong fluency and adequacy, narrowing the gap to top-performing proprietary models under automated and human-anchored evaluation, while being open, accessible, and significantly more cost-effective. Alongside the fine-tuned model and both datasets, we publicly release all scripts and evaluation prompts. TF2 thus provides an end-to-end, reproducible pipeline for research on cost-efficient translation, cross-lingual narrative generation, and the broad adoption of open models for culturally significant literary content in low-resource settings.
comment: 25 pages, 8 figures, includes datasets and models released on Hugging Face
Effects of Structural Allocation of Geometric Task Diversity in Linear Meta-Learning Models
Meta-learning aims to leverage information across related tasks to improve prediction on unlabeled data for new tasks when only a small number of labeled observations are available ("few-shot" learning). Increased task diversity is often believed to enhance meta-learning by providing richer information across tasks. However, recent work by Kumar et al. (2022) shows that increasing task diversity, quantified through the overall geometric spread of task representations, can in fact degrade meta-learning prediction performance across a range of models and datasets. In this work, we build on this observation by showing that meta-learning performance is affected not only by the overall geometric variability of task parameters, but also by how this variability is allocated relative to an underlying low-dimensional structure. Similar to Pimonova et al. (2025), we decompose task-specific regression effects into a structurally informative component and an orthogonal, non-informative component. We show theoretically and through simulation that meta-learning prediction degrades when a larger fraction of between-task variability lies in orthogonal, non-informative directions, even when the overall geometric variability of tasks is held fixed.
Sample Complexity of Composite Quantum Hypothesis Testing
This paper investigates symmetric composite binary quantum hypothesis testing (QHT), where the goal is to determine which of two uncertainty sets contains an unknown quantum state. While asymptotic error exponents for this problem are well-studied, the finite-sample regime remains poorly understood. We bridge this gap by characterizing the sample complexity -- the minimum number of state copies required to achieve a target error level. Specifically, we derive lower bounds that generalize the sample complexity of simple QHT and introduce new upper bounds for various uncertainty sets, including of both finite and infinite cardinalities. Notably, our upper and lower bounds match up to universal constants, providing a tight characterization of the sample complexity. Finally, we extend our analysis to the differentially private setting, establishing the sample complexity for privacy-preserving composite QHT.
comment: Under review
Machine Unlearning Fails to Remove Data Poisoning Attacks ICLR 2025
We revisit the efficacy of several practical methods for approximate machine unlearning developed for large-scale deep learning. In addition to complying with data deletion requests, one often-cited potential application for unlearning methods is to remove the effects of poisoned data. We experimentally demonstrate that, while existing unlearning methods have been demonstrated to be effective in a number of settings, they fail to remove the effects of data poisoning across a variety of types of poisoning attacks (indiscriminate, targeted, and a newly-introduced Gaussian poisoning attack) and models (image classifiers and LLMs); even when granted a relatively large compute budget. In order to precisely characterize unlearning efficacy, we introduce new evaluation metrics for unlearning based on data poisoning. Our results suggest that a broader perspective, including a wider variety of evaluations, are required to avoid a false sense of confidence in machine unlearning procedures for deep learning without provable guarantees. Moreover, while unlearning methods show some signs of being useful to efficiently remove poisoned data without having to retrain, our work suggests that these methods are not yet ``ready for prime time,'' and currently provide limited benefit over retraining.
comment: Published at ICLR 2025, Made author ordering consistent with ICLR'25 submission
Quantum circuit complexity and unsupervised machine learning of topological order
Inspired by the close relationship between Kolmogorov complexity and unsupervised machine learning, we explore quantum circuit complexity, an important concept in quantum computation and quantum information science, as a pivot to understand and to build interpretable and efficient unsupervised machine learning for topological order in quantum many-body systems. We argue that Nielsen's quantum circuit complexity represents an intrinsic topological distance between topological quantum many-body phases of matter, and as such plays a central role in interpretable manifold learning of topological order. To span a bridge from conceptual power to practical applicability, we present two theorems that connect Nielsen's quantum circuit complexity for the quantum path planning between two arbitrary quantum many-body states with quantum Fisher complexity (Bures distance) and entanglement generation, respectively. Leveraging these connections, fidelity-based and entanglement-based similarity measures or kernels, which are more practical for implementation, are formulated. Using the two proposed distance measures, unsupervised manifold learning of quantum phases of the bond-alternating XXZ spin chain, the ground state of Kitaev's toric code and random product states, is conducted, demonstrating their superior performance. Moreover, we find that the entanglement-based approach, which captures the long-range structure of quantum entanglement of topological orders, is more robust to local Haar random noises. Relations with classical shadow tomography and shadow kernel learning are also discussed, where the latter can be naturally understood from our approach. Our results establish connections between key concepts and tools of quantum circuit computation, quantum complexity, quantum metrology, and machine learning of topological quantum order.
comment: Updated version; With enriched Supplementary Information; 23 pages; 5 figures. Code is available upon reasonable request, and will be open-sourced along with the publication. Comments are welcome
Curvature Tuning: Provable Training-free Model Steering From a Single Parameter NeurIPS 2025
The scaling of model and data sizes has reshaped the AI landscape, establishing finetuning pretrained models as the standard paradigm for solving downstream tasks. However, dominant finetuning methods typically rely on weight adaptation, often lack interpretability, and depend on heuristically chosen hyperparameters. In this paper, we take a different perspective and shift the focus from weights to activation functions, viewing them through the lens of spline operators. We propose Curvature Tuning (CT), an interpretable and principled steering method that modulates a model's decision boundary by injecting a single hyperparameter into its activation functions. We show that CT provably adjusts model decision boundary curvature and, more fundamentally, projects a model onto a space of smooth functions-thereby complementing current finetuning methods, whose effect lies primarily in feature adaptation. Making this hyperparameter trainable gives rise to a novel and highly parameter-efficient finetuning method. Empirically, CT improves both generalization and robustness. For example, it boosts downstream accuracy of ResNet-50/152 by 8.59%/8.34% over linear probing and 4.64%/1.70% over LoRA across 12 datasets, and improves robust accuracy on the $\ell_\infty$ benchmark from RobustBench by 1032.64%/1494.46%. Our code is available at https://github.com/Leon-Leyang/curvature-tuning.
comment: Accepted at NeurIPS 2025
Continuous Diffusion for Mixed-Type Tabular Data ICLR 2025
Score-based generative models, commonly referred to as diffusion models, have proven to be successful at generating text and image data. However, their adaptation to mixed-type tabular data remains underexplored. In this work, we propose CDTD, a Continuous Diffusion model for mixed-type Tabular Data. CDTD is based on a novel combination of score matching and score interpolation to enforce a unified continuous noise distribution for both continuous and categorical features. We explicitly acknowledge the necessity of homogenizing distinct data types by relying on model-specific loss calibration and initialization schemes. To further address the high heterogeneity in mixed-type tabular data, we introduce adaptive feature- or type-specific noise schedules. These ensure balanced generative performance across features and optimize the allocation of model capacity across features and diffusion time. Our experimental results show that CDTD consistently outperforms state-of-the-art benchmark models, captures feature correlations exceptionally well, and that heterogeneity in the noise schedule design boosts sample quality. Replication code is available at https://github.com/muellermarkus/cdtd.
comment: published at ICLR 2025
Instance-level quantitative saliency in multiple sclerosis lesion segmentation
Explainable artificial intelligence (XAI) methods have been proposed to interpret model decisions in classification and, more recently, in semantic segmentation. However, instance-level XAI for semantic segmentation, namely explanations focused on a single object among multiple instances of the same class, remains largely unexplored. Such explanations are particularly important in multi-lesional diseases to understand what drives the detection and contouring of a specific lesion. We propose instance-level explanation maps for semantic segmentation by extending SmoothGrad and Grad-CAM++ to obtain quantitative instance saliency. These methods were applied to the segmentation of white matter lesions (WMLs), a magnetic resonance imaging biomarker in multiple sclerosis. We used 4023 FLAIR and MPRAGE MRI scans from 687 patients collected at the University Hospital of Basel, Switzerland, with WML masks annotated by four expert clinicians. Three deep learning architectures, a 3D U-Net, nnU-Net, and Swin UNETR, were trained and evaluated, achieving normalized Dice scores of 0.71, 0.78, and 0.80, respectively. Instance saliency maps showed that the models relied primarily on FLAIR rather than MPRAGE for WML segmentation, with positive saliency inside lesions and negative saliency in their immediate neighborhood, consistent with clinical practice. Peak saliency values differed significantly across correct and incorrect predictions, suggesting that quantitative instance saliency may help identify segmentation errors. In conclusion, we introduce two architecture-agnostic XAI methods that provide quantitative instance-level explanations for semantic segmentation and support clinically meaningful interpretation of model decisions.
Towards Understanding Deep Learning Model in Image Recognition via Coverage Test
Deep neural networks (DNNs) play a crucial role in the field of artificial intelligence, and their security-related testing has been a prominent research focus. By inputting test cases, the behavior of models is examined for anomalies, and coverage metrics are utilized to determine the extent of neurons covered by these test cases. With the widespread application and advancement of DNNs, different types of neural behaviors have garnered attention, leading to the emergence of various coverage metrics for neural networks. However, there is currently a lack of empirical research on these coverage metrics, specifically in analyzing the relationships and patterns between model depth, configuration information, and neural network coverage. This paper aims to investigate the relationships and patterns of four coverage metrics: primary functionality, boundary, hierarchy, and structural coverage. A series of empirical experiments were conducted, selecting LeNet, VGG, and ResNet as different DNN architectures, along with 10 models of varying depths ranging from 5 to 54 layers, to compare and study the relationships between different depths, configuration information, and various neural network coverage metrics. Additionally, an investigation was carried out on the relationships between modified decision/condition coverage and dataset size. Finally, three potential future directions are proposed to further contribute to the security testing of DNN Models.
Parallel Test-Time Scaling for Latent Reasoning Models
Parallel test-time scaling (TTS) is a pivotal approach for enhancing large language models (LLMs), typically by sampling multiple token-based chains-of-thought in parallel and aggregating outcomes through voting or search. Recent advances in latent reasoning, where intermediate reasoning unfolds in continuous vector spaces, offer a more efficient alternative to explicit Chain-of-Thought, yet whether such latent models can similarly benefit from parallel TTS remains open, mainly due to the absence of sampling mechanisms in continuous space, and the lack of probabilistic signals for advanced trajectory aggregation. This work enables parallel TTS for latent reasoning models by addressing the above issues. For sampling, we introduce two uncertainty-inspired stochastic strategies: Monte Carlo Dropout and Additive Gaussian Noise. For aggregation, we design a Latent Reward Model (LatentRM) trained with step-wise contrastive objective to score and guide latent reasoning. Extensive experiments and visualization analyses show that both sampling strategies scale effectively with compute and exhibit distinct exploration dynamics, while LatentRM enables effective trajectory selection. Together, our explorations open a new direction for scalable inference in continuous spaces. Code and checkpoints released at https://github.com/ModalityDance/LatentTTS
Discrete Solution Operator Learning for Geometry-Dependent PDEs
Neural operator learning accelerates PDE solution by approximating operators as mappings between continuous function spaces. Yet in many engineering settings, varying geometry induces discrete structural changes, including topological changes, abrupt changes in boundary conditions or boundary types, and changes in the computational domain, which break the smooth-variation premise. Here we introduce Discrete Solution Operator Learning (DiSOL), a complementary paradigm that learns discrete solution procedures rather than continuous function-space operators. DiSOL factorizes the solver into learnable stages that mirror classical discretizations: local contribution encoding, multiscale assembly, and implicit solution reconstruction on an embedded grid, thereby preserving procedure-level consistency while adapting to geometry-dependent discrete structures. Across geometry-dependent Poisson, advection-diffusion, linear elasticity, as well as spatiotemporal heat conduction problems, DiSOL produces stable and accurate predictions under both in-distribution and strongly out-of-distribution geometries, including discontinuous boundaries and topological changes. These results highlight the need for procedural operator representations in geometry-dominated problems and position discrete solution operator learning as a distinct, complementary direction in scientific machine learning.
comment: 15 pages main text, 40 pages SI
Bootstrap Off-policy with World Model NeurIPS 2025
Online planning has proven effective in reinforcement learning (RL) for improving sample efficiency and final performance. However, using planning for environment interaction inevitably introduces a divergence between the collected data and the policy's actual behaviors, degrading both model learning and policy improvement. To address this, we propose BOOM (Bootstrap Off-policy with WOrld Model), a framework that tightly integrates planning and off-policy learning through a bootstrap loop: the policy initializes the planner, and the planner refines actions to bootstrap the policy through behavior alignment. This loop is supported by a jointly learned world model, which enables the planner to simulate future trajectories and provides value targets to facilitate policy improvement. The core of BOOM is a likelihood-free alignment loss that bootstraps the policy using the planner's non-parametric action distribution, combined with a soft value-weighted mechanism that prioritizes high-return behaviors and mitigates variability in the planner's action quality within the replay buffer. Experiments on the high-dimensional DeepMind Control Suite and Humanoid-Bench show that BOOM achieves state-of-the-art results in both training stability and final performance. The code is accessible at https://github.com/molumitu/BOOM_MBRL.
comment: NeurIPS 2025
Probabilistic Insights for Efficient Exploration Strategies in Reinforcement Learning
We investigate efficient exploration strategies of environments with unknown stochastic dynamics and sparse rewards. Specifically, we analyze first the impact of parallel simulations on the probability of reaching rare states within a finite time budget. Using simplified models based on random walks and Lévy processes, we provide analytical results that demonstrate a phase transition in reaching probabilities as a function of the number of parallel simulations. We identify an optimal number of parallel simulations that balances exploration diversity and time allocation. Additionally, we analyze a restarting mechanism that exponentially enhances the probability of success by redirecting efforts toward more promising regions of the state space. Our findings contribute to a more qualitative and quantitative theory of some exploration schemes in reinforcement learning, offering insights into developing more efficient strategies for environments characterized by rare events.
CoMAT: Chain of Mathematically Annotated Thought Improves Mathematical Reasoning
Mathematical reasoning remains a significant challenge for large language models (LLMs), despite progress in prompting techniques such as Chain-of-Thought (CoT). We present **Chain of Mathematically Annotated Thought (CoMAT)**, which enhances reasoning through two stages: *Symbolic Conversion* (converting natural language queries into symbolic form) and *Reasoning Execution* (deriving answers from symbolic representations). CoMAT operates entirely with a single LLM and without external solvers. Across four LLMs, CoMAT outperforms traditional CoT on six out of seven benchmarks, achieving gains of 4.48% on MMLU-Redux (MATH) and 4.58% on GaoKao MCQ. In addition to improved performance, CoMAT ensures faithfulness and verifiability, offering a transparent reasoning process for complex mathematical tasks
comment: 9 pages, 12 figures
Entropy Production in Machine Learning Under Fokker-Planck Probability Flow
Machine learning models deployed in nonstationary environments inevitably experience performance degradation due to data drift. While numerous drift detection heuristics exist, most lack a dynamical interpretation and provide limited guidance on how retraining decisions should be balanced against operational cost. In this work, we propose an entropy-based retraining framework grounded in nonequilibrium statistical physics. Interpreting drift as probability flow governed by a Fokker-Planck equation, we quantify model-data mismatch using relative entropy and show that its time derivative admits an entropy-balance decomposition featuring a nonnegative entropy production term driven by probability currents. Guided by this theory, we implement an entropy-triggered retraining policy using an exponentially weighted moving-average (EWMA) control statistic applied to a streaming kernel density estimator of the Kullback-Leibler divergence. We evaluate this approach across multiple nonstationary data streams. In synthetic, financial, and web-traffic domains, entropy-based retraining achieves predictive performance comparable to frequent retraining while reducing retraining frequency by one to two orders of magnitude. However, in a challenging biomedical ECG setting, the entropy-based trigger underperforms the maximum-frequency baseline, highlighting limitations of feature-space entropy monitoring under complex label-conditional drift.
comment: 12 pages, 4 figures, 1 table
A Geometric Unification of Generative AI with Manifold-Probabilistic Projection Models
Most models of generative AI for images assume that images are inherently low-dimensional objects embedded within a high-dimensional space. Additionally, it is often implicitly assumed that thematic image datasets form smooth or piecewise smooth manifolds. Common approaches overlook the geometric structure and focus solely on probabilistic methods, approximating the probability distribution through universal approximation techniques such as the kernel method. In some generative models the low dimensional nature of the data manifest itself by the introduction of a lower dimensional latent space. Yet, the probability distribution in the latent or the manifold's coordinate space is considered uninteresting and is predefined or considered uniform. In this study, we address the problem of Blind Image Denoising (BID), and to some extent, the problem of generating images from noise by unifying geometric and probabilistic perspectives. We introduce a novel framework that improves upon existing probabilistic approaches by incorporating geometric assumptions that enable the effective use of kernel-based probabilistic methods. Furthermore, the proposed framework extends prior geometric approaches by combining explicit and implicit manifold descriptions through the introduction of a distance function. The resulting framework demystifies diffusion models by interpreting them as a projection mechanism onto the manifold of ``good images''. This interpretation leads to the construction of a new deterministic model, the Manifold-Probabilistic Projection Model (MPPM), which operates in both the representation (pixel) space and the latent space. We demonstrate that the Latent MPPM (LMPPM) outperforms the Latent Diffusion Model (LDM) across various datasets, achieving superior results in terms of image restoration and generation.
Text Classification Under Class Distribution Shift: A Survey
The basic underlying assumption of machine learning (ML) models is that the training and test data are sampled from the same distribution. However, in daily practice, this assumption is often broken, i.e. the distribution of the test data changes over time, which hinders the application of conventional ML models. One domain where the distribution shift naturally occurs is text classification, since people always find new topics to discuss. To this end, we survey research articles studying open-set text classification and related tasks. We divide the methods in this area based on the constraints that define the kind of distribution shift and the corresponding problem formulation, i.e. learning with the Universum, zero-shot learning, and open-set learning. We next discuss the predominant mitigation approaches for each problem setup. We further identify several future work directions, aiming to push the boundaries beyond the state of the art. Finally, we explain how continual learning can solve many of the issues caused by the shifting class distribution. We maintain a list of relevant papers at https://github.com/Eduard6421/Open-Set-Survey.
comment: Accepted at EACL 2026 (main)
Curating art exhibitions using machine learning
Here we present a series of artificial models - a total of four related models - based on machine learning techniques that attempt to learn from existing exhibitions which have been curated by human experts, in order to be able to do similar curatorship work. Out of our four artificial intelligence models, three achieve a reasonable ability at imitating these various curators responsible for all those exhibitions, with various degrees of precision and curatorial coherence. In particular, we can conclude two key insights: first, that there is sufficient information in these exhibitions to construct an artificial intelligence model that replicates past exhibitions with an accuracy well above random choices; and second, that using feature engineering and carefully designing the architecture of modest size models can make them almost as good as those using the so-called large language models such as GPT in a brute force approach.
Robust and Efficient Zeroth-Order LLM Fine-Tuning via Adaptive Bayesian Subspace Optimizer
Fine-tuning large language models (LLMs) with zeroth-order (ZO) optimization reduces memory by approximating gradients through function evaluations. However, existing methods essentially perform updates in a one-dimensional space, and suffer from collapse or substantial performance degradation under low-precision training. We introduce BSZO, an adaptive \textbf{B}ayesian \textbf{S}ubspace \textbf{Z}eroth-Order \textbf{O}ptimizer, which applies Kalman filtering to combine finite-difference information across multiple perturbation directions within a subspace. By treating each finite-difference measurement as a noisy observation, BSZO builds a posterior distribution over the subspace-projected gradient and updates it through Bayesian inference, with a residual-based adaptive mechanism to adapt to noise variations. Theoretical analysis shows that BSZO improves the convergence rate by a factor of $k/γ$ compared to standard ZO methods. Experiments on RoBERTa, Mistral, and OPT models show that BSZO outperforms the baselines across various tasks, achieving up to 6.67\% absolute average improvement on OPT-13B while remaining robust under fp16/bf16 precision and keeping memory usage close to inference-only baselines (1.00$\times$--1.08$\times$ of MeZO).
comment: 23 pages, 2 figures, 5 tables
A reduced-order derivative-informed neural operator for subsurface fluid-flow
Neural operators have emerged as cost-effective surrogates for expensive fluid-flow simulators, particularly in computationally intensive tasks such as permeability inversion from time-lapse seismic data, and uncertainty quantification. In these applications, the fidelity of the surrogate's gradients with respect to system parameters is crucial, as the accuracy of downstream tasks, such as optimization and Bayesian inference, relies directly on the quality of the derivative information. Recent advances in physics-informed methods have leveraged derivative information to improve surrogate accuracy. However, incorporating explicit Jacobians can become computationally prohibitive, as the complexity typically scales quadratically with the number of input parameters. To address this limitation, we propose DeFINO (Derivative-based Fisher-score Informed Neural Operator), a reduced-order, derivative-informed training framework. DeFINO integrates Fourier neural operators (FNOs) with a novel derivative-based training strategy guided by the Fisher Information Matrix (FIM). By projecting Jacobians onto dominant eigen-directions identified by the FIM, DeFINO captures critical sensitivity information directly informed by observational data, significantly reducing computational expense. We validate DeFINO through synthetic experiments in the context of subsurface multi-phase fluid-flow, demonstrating improvements in gradient accuracy while maintaining robust forward predictions of underlying fluid dynamics. These results highlight DeFINO's potential to offer practical, scalable solutions for inversion problems in complex real-world scenarios, all at substantially reduced computational cost.
Learning Regularization Functionals for Inverse Problems: A Comparative Study
In recent years, a variety of learned regularization frameworks for solving inverse problems in imaging have emerged. These offer flexible modeling together with mathematical insights. The proposed methods differ in their architectural design and training strategies, making direct comparison challenging due to non-modular implementations. We address this gap by collecting and unifying the available code into a common framework. This unified view allows us to systematically compare the approaches and highlight their strengths and limitations, providing valuable insights into their future potential. We also provide concise descriptions of each method, complemented by practical guidelines.
Advancing Safe Mechanical Ventilation Using Offline RL With Hybrid Actions and Clinically Aligned Rewards AAAI-26
Invasive mechanical ventilation (MV) is a life-sustaining therapy commonly used in the intensive care unit (ICU) for patients with severe and acute conditions. These patients frequently rely on MV for breathing. Given the high risk of death in such cases, optimal MV settings can reduce mortality, minimize ventilator-induced lung injury, shorten ICU stays, and ease the strain on healthcare resources. However, optimizing MV settings remains a complex and error-prone process due to patient-specific variability. While Offline Reinforcement Learning (RL) shows promise for optimizing MV settings, current methods struggle with the hybrid (continuous and discrete) nature of MV settings. Discretizing continuous settings leads to exponential growth in the action space, which limits the number of optimizable settings. Converting the predictions back to continuous can cause a distribution shift, compromising safety and performance. To address this challenge, in the IntelliLung project, we are developing an AI-based approach where we constrain the action space and employ factored action critics. This approach allows us to scale to six optimizable settings compared to 2-3 in previous studies. We adapt SOTA offline RL algorithms to operate directly on hybrid action spaces, avoiding the pitfalls of discretization. We also introduce a clinically grounded reward function based on ventilator-free days and physiological targets. Using multiobjective optimization for reward selection, we show that this leads to a more equitable consideration of all clinically relevant objectives. Notably, we develop a system in close collaboration with healthcare professionals that is aligned with real-world clinical objectives and designed with future deployment in mind.
comment: Accepted to AAAI-26
Lil: Less is Less When Applying Post-Training Sparse-Attention Algorithms in Long-Decode Stage
Large language models (LLMs) demonstrate strong capabilities across a wide range of complex tasks and are increasingly deployed at scale, placing significant demands on inference efficiency. Prior work typically decomposes inference into prefill and decode stages, with the decode stage dominating total latency. To reduce time and memory complexity in the decode stage, a line of work introduces sparse-attention algorithms. In this paper, we show, both empirically and theoretically, that sparse attention can paradoxically increase end-to-end complexity: information loss often induces significantly longer sequences, a phenomenon we term ``Less is Less'' (Lil). To mitigate the Lil problem, we propose an early-stopping algorithm that detects the threshold where information loss exceeds information gain during sparse decoding. Our early-stopping algorithm reduces token consumption by up to 90% with a marginal accuracy degradation of less than 2% across reasoning-intensive benchmarks.
Barrier Certificates for Unknown Systems with Latent States and Polynomial Dynamics using Bayesian Inference
Certifying safety in dynamical systems is crucial, but barrier certificates - widely used to verify that system trajectories remain within a safe region - typically require explicit system models. When dynamics are unknown, data-driven methods can be used instead, yet obtaining a valid certificate requires rigorous uncertainty quantification. For this purpose, existing methods usually rely on full-state measurements, limiting their applicability. This paper proposes a novel approach for synthesizing barrier certificates for unknown systems with latent states and polynomial dynamics. A Bayesian framework is employed, where a prior in state-space representation is updated using output data via a targeted marginal Metropolis-Hastings sampler. The resulting samples are used to construct a barrier certificate through a sum-of-squares program. Probabilistic guarantees for its validity with respect to the true, unknown system are obtained by testing on an additional set of posterior samples. The approach and its probabilistic guarantees are illustrated through a numerical simulation.
comment: Accepted for publication in the Proceedings of the 64th IEEE Conference on Decision and Control
Provably Safe Reinforcement Learning for Stochastic Reach-Avoid Problems with Entropy Regularization
We consider the problem of learning the optimal policy for Markov decision processes with safety constraints. We formulate the problem in a reach-avoid setup. Our goal is to design online reinforcement learning algorithms that ensure safety constraints with arbitrarily high probability during the learning phase. To this end, we first propose an algorithm based on the optimism in the face of uncertainty (OFU) principle. Based on the first algorithm, we propose our main algorithm, which utilizes entropy regularization. We investigate the finite-sample analysis of both algorithms and derive their regret bounds. We demonstrate that the inclusion of entropy regularization improves the regret and drastically controls the episode-to-episode variability that is inherent in OFU-based safe RL algorithms.
Quartet: Native FP4 Training Can Be Optimal for Large Language Models
Training large language models (LLMs) models directly in low-precision offers a way to address computational costs by improving both throughput and energy efficiency. For those purposes, NVIDIA's recent Blackwell architecture facilitates very low-precision operations using FP4 variants. Yet, current algorithms for training LLMs in FP4 precision face significant accuracy degradation and often rely on mixed-precision fallbacks. In this paper, we investigate hardware-supported FP4 training and introduce a new approach for accurate, end-to-end FP4 training with all the major computations (i.e., linear layers) in low precision. Through extensive evaluations on Llama-type models, we reveal a new low-precision scaling law that quantifies performance trade-offs across bit-widths and training setups. Guided by this investigation, we design an "optimal" technique in terms of accuracy-vs-computation, called Quartet. We implement Quartet using optimized CUDA kernels tailored for Blackwell, demonstrating that fully FP4-based training is a competitive alternative to FP16 half-precision and to FP8 training. Our code is available at https://github.com/IST-DASLab/Quartet.
Decorrelation Speeds Up Vision Transformers
Masked Autoencoder (MAE) pre-training of vision transformers (ViTs) yields strong performance in low-label data regimes but comes with substantial computational costs, making it impractical in time- and resource-constrained industrial settings. We address this by integrating Decorrelated Backpropagation (DBP) into MAE pre-training, an optimization method that iteratively reduces input correlations at each layer to accelerate convergence. Applied selectively to the encoder, DBP achieves faster pre-training without loss of stability. To mimic constrained-data scenarios, we evaluate our approach on ImageNet-1K pre-training and ADE20K fine-tuning using randomly sampled subsets of each dataset. Under this setting, DBP-MAE reduces wall-clock time to baseline performance by 21.1%, lowers carbon emissions by 21.4%, and improves segmentation mIoU by 1.1 points. We observe similar gains when pre-training and fine-tuning on proprietary industrial data, confirming the method's applicability in real-world scenarios. These results demonstrate that DBP can reduce training time and energy use while improving downstream performance for large-scale ViT pre-training. Keywords: Deep learning, Vision transformers, Efficient AI, Decorrelation
comment: 20 pages, 12 figures, CVC 2026 camera-ready version
Spectral Convolutional Conditional Neural Processes
Neural Processes (NPs) are meta-learning models that learn to map sets of observations to approximations of the corresponding posterior predictive distributions. By accommodating variable-sized, unstructured collections of observations and enabling probabilistic predictions at arbitrary query points, NPs provide a flexible framework for modeling functions over continuous domains. Since their introduction, numerous variants have emerged; however, early formulations shared a fundamental limitation: they compressed the observed data into finite-dimensional global representations via aggregation operations such as mean pooling. This strategy induces an intrinsic mismatch with the infinite-dimensional nature of the stochastic processes that NPs intend to model. Convolutional conditional neural processes (ConvCNPs) address this limitation by constructing infinite-dimensional functional embeddings processed through convolutional neural networks (CNNs) to enforce translation equivariance. Yet CNNs with local spatial kernels struggle to capture long-range dependencies without resorting to large kernels, which impose significant computational costs. To overcome this limitation, we propose spectral ConvCNPs (SConvCNPs), which perform global convolution in the frequency domain. Inspired by Fourier neural operators (FNOs) for learning solution operators of partial differential equations (PDEs), our approach directly parameterizes convolution kernels in the frequency domain, leveraging the relatively compact yet global Fourier representation of many natural signals. We validate the effectiveness of SConvCNPs on both synthetic and real-world datasets, demonstrating how ideas from operator learning can advance the capabilities of NPs.
LittleBit: Ultra Low-Bit Quantization via Latent Factorization NeurIPS 2025
Deploying large language models (LLMs) often faces challenges from substantial memory and computational costs. Quantization offers a solution, yet performance degradation in the sub-1-bit regime remains particularly difficult. This paper introduces LittleBit, a novel method for extreme LLM compression. It targets levels like 0.1 bits per weight (BPW), achieving nearly 31$\times$ memory reduction, e.g., Llama2-13B to under 0.9 GB. LittleBit represents weights in a low-rank form using latent matrix factorization, subsequently binarizing these factors. To counteract information loss from this extreme precision, it integrates a multi-scale compensation mechanism. This includes row, column, and an additional latent dimension that learns per-rank importance. Two key contributions enable effective training: Dual Sign-Value-Independent Decomposition (Dual-SVID) for quantization-aware training (QAT) initialization, and integrated Residual Compensation to mitigate errors. Extensive experiments confirm LittleBit's superiority in sub-1-bit quantization: e.g., its 0.1 BPW performance on Llama2-7B surpasses the leading method's 0.7 BPW. LittleBit establishes a new, viable size-performance trade-off--unlocking a potential 11.6$\times$ speedup over FP16 at the kernel level--and makes powerful LLMs practical for resource-constrained environments. Our code can be found at https://github.com/SamsungLabs/LittleBit.
comment: Accepted to NeurIPS 2025. Banseok Lee and Dongkyu Kim contributed equally
GraLoRA: Granular Low-Rank Adaptation for Parameter-Efficient Fine-Tuning NeurIPS 2025
Low-Rank Adaptation (LoRA) is a popular method for parameter-efficient fine-tuning (PEFT) of generative models, valued for its simplicity and effectiveness. Despite recent enhancements, LoRA still suffers from a fundamental limitation: overfitting when the bottleneck is widened. It performs best at ranks 32-64, yet its accuracy stagnates or declines at higher ranks, still falling short of full fine-tuning (FFT) performance. We identify the root cause as LoRA's structural bottleneck, which introduces gradient entanglement to the unrelated input channels and distorts gradient propagation. To address this, we introduce a novel structure, Granular Low-Rank Adaptation (GraLoRA) that partitions weight matrices into sub-blocks, each with its own low-rank adapter. With negligible computational or storage cost, GraLoRA overcomes LoRA's limitations, effectively increases the representational capacity, and more closely approximates FFT behavior. Experiments on code generation and commonsense reasoning benchmarks show that GraLoRA consistently outperforms LoRA and other baselines, achieving up to +8.5% absolute gain in Pass@1 on HumanEval+. These improvements hold across model sizes and rank settings, making GraLoRA a scalable and robust solution for PEFT. Code, data, and scripts are available at https://github.com/SqueezeBits/GraLoRA.git
comment: 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
Deep Learning for Continuous-Time Stochastic Control with Jumps NeurIPS 2025
In this paper, we introduce a model-based deep-learning approach to solve finite-horizon continuous-time stochastic control problems with jumps. We iteratively train two neural networks: one to represent the optimal policy and the other to approximate the value function. Leveraging a continuous-time version of the dynamic programming principle, we derive two different training objectives based on the Hamilton-Jacobi-Bellman equation, ensuring that the networks capture the underlying stochastic dynamics. Empirical evaluations on different problems illustrate the accuracy and scalability of our approach, demonstrating its effectiveness in solving complex high-dimensional stochastic control tasks.
comment: NeurIPS 2025
Softly Induced Functional Simplicity: Implications for Neural Network Generalisation, Robustness, and Distillation
Learning robust and generalisable abstractions from high-dimensional input data is a central challenge in machine learning and its applications to high-energy physics (HEP). Solutions of lower functional complexity are known to produce abstractions that generalise more effectively and are more robust to input perturbations. In complex hypothesis spaces, inductive biases make such solutions learnable by shaping the loss geometry during optimisation. In a HEP classification task, we show that a soft symmetry respecting inductive bias creates approximate degeneracies in the loss, which we identify as pseudo-Goldstone modes. We quantify functional complexity using metrics derived from first principles Hessian analysis and via compressibility. Our results demonstrate that solutions of lower complexity give rise to abstractions that are more generalisable, robust, and efficiently distillable.
Fast Mining and Dynamic Time-to-Event Prediction over Multi-sensor Data Streams
Given real-time sensor data streams obtained from machines, how can we continuously predict when a machine failure will occur? This work aims to continuously forecast the timing of future events by analyzing multi-sensor data streams. A key characteristic of real-world data streams is their dynamic nature, where the underlying patterns evolve over time. To address this, we present TimeCast, a dynamic prediction framework designed to adapt to these changes and provide accurate, real-time predictions of future event time. Our proposed method has the following properties: (a) Dynamic: it identifies the distinct time-evolving patterns (i.e., stages) and learns individual models for each, enabling us to make adaptive predictions based on pattern shifts. (b) Practical: it finds meaningful stages that capture time-varying interdependencies between multiple sensors and improve prediction performance; (c) Scalable: our algorithm scales linearly with the input size and enables online model updates on data streams. Extensive experiments on real datasets demonstrate that TimeCast provides higher prediction accuracy than state-of-the-art methods while finding dynamic changes in data streams with a great reduction in computational time.
comment: Accepted by KDD 2026
Arbitrary Polynomial Separations in Trainable Quantum Machine Learning
Recent theoretical results in quantum machine learning have demonstrated a general trade-off between the expressive power of quantum neural networks (QNNs) and their trainability; as a corollary of these results, practical exponential separations in expressive power over classical machine learning models are believed to be infeasible as such QNNs take a time to train that is exponential in the model size. We here circumvent these negative results by constructing a hierarchy of efficiently trainable QNNs that exhibit unconditionally provable, polynomial memory separations of arbitrary constant degree over classical neural networks -- including state-of-the-art models, such as Transformers -- in performing a classical sequence modeling task. This construction is also computationally efficient, as each unit cell of the introduced class of QNNs only has constant gate complexity. We show that contextuality -- informally, a quantitative notion of semantic ambiguity -- is the source of the expressivity separation, suggesting that other learning tasks with this property may be a natural setting for the use of quantum learning algorithms.
comment: 30 pages, 3 figures, version accepted to Quantum
Adaptive Model-Predictive Control of a Soft Continuum Robot Using a Physics-Informed Neural Network Based on Cosserat Rod Theory
Dynamic control of soft continuum robots (SCRs) holds great potential for expanding their applications, but remains a challenging problem due to the high computational demands of accurate dynamic models. While data-driven approaches like Koopman-operator-based methods have been proposed, they typically lack adaptability and cannot reconstruct the full robot shape, limiting their applicability. This work introduces a real-time-capable nonlinear model-predictive control (MPC) framework for SCRs based on a domain-decoupled physics-informed neural network (DD-PINN) with adaptable bending stiffness. The DD-PINN serves as a surrogate for the dynamic Cosserat rod model with a speed-up factor of 44000. It is also used within an unscented Kalman filter for estimating the model states and bending compliance from end-effector position measurements. We implement a nonlinear evolutionary MPC running at 70 Hz on the GPU. In simulation, it demonstrates accurate tracking of dynamic trajectories and setpoint control with end-effector position errors below 3 mm (2.3% of the actuator's length). In real-world experiments, the controller achieves similar accuracy and accelerations up to 3.55 m/s2.
comment: Submitted to IEEE Transactions on Robotics, 20 pages, 14 figures
VICON: Vision In-Context Operator Networks for Multi-Physics Fluid Dynamics Prediction
In-Context Operator Networks (ICONs) have demonstrated the ability to learn operators across diverse partial differential equations using few-shot, in-context learning. However, existing ICONs process each spatial point as an individual token, severely limiting computational efficiency when handling dense data in higher spatial dimensions. We propose Vision In-Context Operator Networks (VICON), which integrates vision transformer architectures to efficiently process 2D data through patch-wise operations while preserving ICON's adaptability to multiphysics systems and varying timesteps. Evaluated across three fluid dynamics benchmarks, VICON significantly outperforms state-of-the-art baselines: DPOT and MPP, reducing the averaged last-step rollout error by 37.9% compared to DPOT and 44.7% compared to MPP, while requiring only 72.5% and 34.8% of their respective inference times. VICON naturally supports flexible rollout strategies with varying timestep strides, enabling immediate deployment in imperfect measurement systems where sampling frequencies may differ or frames might be dropped - common challenges in real-world settings - without requiring retraining or interpolation. In these realistic scenarios, VICON exhibits remarkable robustness, experiencing only 24.41% relative performance degradation compared to 71.37%-74.49% degradation in baseline methods, demonstrating its versatility for deploying in realistic applications. Our scripts for processing datasets and code are publicly available at https://github.com/Eydcao/VICON.
comment: update after TMLR accept
Distributionally Robust Causal Abstractions
Causal Abstraction (CA) theory provides a principled framework for relating causal models that describe the same system at different levels of granularity while ensuring interventional consistency between them. Recently, several approaches for learning CAs have been proposed, but all assume fixed and well-specified exogenous distributions, making them vulnerable to environmental shifts and misspecification. In this work, we address these limitations by introducing the first class of distributionally robust CAs and their associated learning algorithms. The latter cast robust causal abstraction learning as a constrained min-max optimization problem with Wasserstein ambiguity sets. We provide theoretical results, for both empirical and Gaussian environments, leading to principled selection of the level of robustness via the radius of these sets. Furthermore, we present empirical evidence across different problems and CA learning methods, demonstrating our framework's robustness not only to environmental shifts but also to structural model and intervention mapping misspecification.
LaM-SLidE: Latent Space Modeling of Spatial Dynamical Systems via Linked Entities
Generative models are spearheading recent progress in deep learning, showcasing strong promise for trajectory sampling in dynamical systems as well. However, whereas latent space modeling paradigms have transformed image and video generation, similar approaches are more difficult for most dynamical systems. Such systems -- from chemical molecule structures to collective human behavior -- are described by interactions of entities, making them inherently linked to connectivity patterns, entity conservation, and the traceability of entities over time. Our approach, LaM-SLidE (Latent Space Modeling of Spatial Dynamical Systems via Linked Entities), bridges the gap between: (1) keeping the traceability of individual entities in a latent system representation, and (2) leveraging the efficiency and scalability of recent advances in image and video generation, where pre-trained encoder and decoder enable generative modeling directly in latent space. The core idea of LaM-SLidE is the introduction of identifier representations (IDs) that enable the retrieval of entity properties and entity composition from latent system representations, thus fostering traceability. Experimentally, across different domains, we show that LaM-SLidE performs favorably in terms of speed, accuracy, and generalizability. Code is available at https://github.com/ml-jku/LaM-SLidE .
comment: Project page: https://ml-jku.github.io/LaM-SLidE/
Are Language Models Efficient Reasoners? A Perspective from Logic Programming NeurIPS 2025
Modern language models (LMs) exhibit strong deductive reasoning capabilities, yet standard evaluations emphasize correctness while overlooking a key aspect of reasoning: efficiency. In real-world reasoning scenarios, much of the available information is irrelevant, and effective deductive inference requires identifying and ignoring such distractions. We propose a framework for assessing LM reasoning efficiency through the lens of logic programming, introducing a simple method to align proofs written in natural language -- as generated by an LM -- with shortest proofs found by executing the logic program. Efficiency is quantified by measuring how well a model avoids unnecessary inference. Empirically, we construct a dataset of math word problems injected with various number of irrelevant axioms that vary in semantic overlap with the goal theorem. We find that current LMs show marked accuracy declines under such conditions -- even with minimal, domain-consistent distractions -- and the proofs they generate frequently exhibit detours through irrelevant inferences.
comment: NeurIPS 2025
COALA: Numerically Stable and Efficient Framework for Context-Aware Low-Rank Approximation
Recent studies suggest that context-aware low-rank approximation is a useful tool for compression and fine-tuning of modern large-scale neural networks. In this type of approximation, a norm is weighted by a matrix of input activations, significantly improving metrics over the unweighted case. Nevertheless, existing methods for neural networks suffer from numerical instabilities due to their reliance on classical formulas involving explicit Gram matrix computation and their subsequent inversion. We demonstrate that this can degrade the approximation quality or cause numerically singular matrices. To address these limitations, we propose a novel inversion-free regularized framework that is based entirely on stable decompositions and overcomes the numerical pitfalls of prior art. Our method can handle possible challenging scenarios: (1) when calibration matrices exceed GPU memory capacity, (2) when input activation matrices are nearly singular, and even (3) when insufficient data prevents unique approximation. For the latter, we prove that our solution converges to a desired approximation and derive explicit error bounds.
Learning Without Augmenting: Unsupervised Time Series Representation Learning via Frame Projections NeurIPS
Self-supervised learning (SSL) has emerged as a powerful paradigm for learning representations without labeled data. Most SSL approaches rely on strong, well-established, handcrafted data augmentations to generate diverse views for representation learning. However, designing such augmentations requires domain-specific knowledge and implicitly imposes representational invariances on the model, which can limit generalization. In this work, we propose an unsupervised representation learning method that replaces augmentations by generating views using orthonormal bases and overcomplete frames. We show that embeddings learned from orthonormal and overcomplete spaces reside on distinct manifolds, shaped by the geometric biases introduced by representing samples in different spaces. By jointly leveraging the complementary geometry of these distinct manifolds, our approach achieves superior performance without artificially increasing data diversity through strong augmentations. We demonstrate the effectiveness of our method on nine datasets across five temporal sequence tasks, where signal-specific characteristics make data augmentations particularly challenging. Without relying on augmentation-induced diversity, our method achieves performance gains of up to 15--20\% over existing self-supervised approaches. Source code: https://github.com/eth-siplab/Learning-with-FrameProjections
comment: Published at the Conference on Neural Information Processing Systems (NeurIPS) 2025
Persistent Homology via Ellipsoids
Persistent homology is one of the most popular methods in topological data analysis. An initial step in its use involves constructing a nested sequence of simplicial complexes. There is an abundance of different complexes to choose from, with Čech, Rips, alpha, and witness complexes being popular choices. In this manuscript, we build a novel type of geometrically informed simplicial complex, called a Rips-type ellipsoid complex. This complex is based on the idea that ellipsoids aligned with tangent directions better approximate the data compared to conventional (Euclidean) balls centered at sample points, as used in the construction of Rips and Alpha complexes. We use Principal Component Analysis to estimate tangent spaces directly from samples and present an algorithm for computing Rips-type ellipsoid barcodes, i.e., topological descriptors based on Rips-type ellipsoid complexes. Additionally, we show that the ellipsoid barcodes depend continuously on the input data so that small perturbations of a k-generic point cloud lead to proportionally small changes in the resulting ellipsoid barcodes. This provides a theoretical guarantee analogous, if somewhat weaker, to the classical stability results for Rips and Čech filtrations. We also conduct extensive experiments and compare Rips-type ellipsoid barcodes with standard Rips barcodes. Our findings indicate that Rips-type ellipsoid complexes are particularly effective for estimating the homology of manifolds and spaces with bottlenecks from samples. In particular, the persistence intervals corresponding to ground-truth topological features are longer compared to those obtained using the Rips complex of the data. Furthermore, Rips-type ellipsoid barcodes lead to better classification results in sparsely sampled point clouds. Finally, we demonstrate that Rips-type ellipsoid barcodes outperform Rips barcodes in classification tasks.
AgriFM: A Multi-source Temporal Remote Sensing Foundation Model for Agriculture Mapping
Accurate crop mapping fundamentally relies on modeling multi-scale spatiotemporal patterns, where spatial scales range from individual field textures to landscape-level context, and temporal scales capture both short-term phenological transitions and full growing-season dynamics. Transformer-based remote sensing foundation models (RSFMs) offer promising potential for crop mapping due to their innate ability for unified spatiotemporal processing. However, current RSFMs remain suboptimal for crop mapping: they either employ fixed spatiotemporal windows that ignore the multi-scale nature of crop systems or completely disregard temporal information by focusing solely on spatial patterns. To bridge these gaps, we present AgriFM, a multi-source remote sensing foundation model specifically designed for agricultural crop mapping. Our approach begins by establishing the necessity of simultaneous hierarchical spatiotemporal feature extraction, leading to the development of a modified Video Swin Transformer architecture where temporal down-sampling is synchronized with spatial scaling operations. This modified backbone enables efficient unified processing of long time-series satellite inputs. AgriFM leverages temporally rich data streams from three satellite sources including MODIS, Landsat-8/9 and Sentinel-2, and is pre-trained on a global representative dataset comprising over 25 million image samples supervised by land cover products. The resulting framework incorporates a versatile decoder architecture that dynamically fuses these learned spatiotemporal representations, supporting diverse downstream tasks. Comprehensive evaluations demonstrate AgriFM's superior performance over conventional deep learning approaches and state-of-the-art general-purpose RSFMs across all downstream tasks. Codes will be available at https://github.com/flyakon/AgriFM.
Optimal kernel regression bounds under energy-bounded noise
Non-conservative uncertainty bounds are key for both assessing an estimation algorithm's accuracy and in view of downstream tasks, such as its deployment in safety-critical contexts. In this paper, we derive a tight, non-asymptotic uncertainty bound for kernel-based estimation, which can also handle correlated noise sequences. Its computation relies on a mild norm-boundedness assumption on the unknown function and the noise, returning the worst-case function realization within the hypothesis class at an arbitrary query input location. The value of this function is shown to be given in terms of the posterior mean and covariance of a Gaussian process for an optimal choice of the measurement noise covariance. By rigorously analyzing the proposed approach and comparing it with other results in the literature, we show its effectiveness in returning tight and easy-to-compute bounds for kernel-based estimates.
Disco-RAG: Discourse-Aware Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) has emerged as an important means of enhancing the performance of large language models (LLMs) in knowledge-intensive tasks. However, most existing RAG strategies treat retrieved passages in a flat and unstructured way, which prevents the model from capturing structural cues and constrains its ability to synthesize knowledge from dispersed evidence across documents. To overcome these limitations, we propose Disco-RAG, a discourse-aware framework that explicitly injects discourse signals into the generation process. Our method constructs intra-chunk discourse trees to capture local hierarchies and builds inter-chunk rhetorical graphs to model cross-passage coherence. These structures are jointly integrated into a planning blueprint that conditions the generation. Experiments on question answering and long-document summarization benchmarks show the efficacy of our approach. Disco-RAG achieves state-of-the-art results on the benchmarks without fine-tuning. These findings underscore the important role of discourse structure in advancing RAG systems.
Adaptive Querying for Reward Learning from Human Feedback
Learning from human feedback is a popular approach to train robots to adapt to user preferences and improve safety. Existing approaches typically consider a single querying (interaction) format when seeking human feedback and do not leverage multiple modes of user interaction with a robot. We examine how to learn a penalty function associated with unsafe behaviors using multiple forms of human feedback, by optimizing both the query state and feedback format. Our proposed adaptive feedback selection is an iterative, two-phase approach which first selects critical states for querying, and then uses information gain to select a feedback format for querying across the sampled critical states. The feedback format selection also accounts for the cost and probability of receiving feedback in a certain format. Our experiments in simulation demonstrate the sample efficiency of our approach in learning to avoid undesirable behaviors. The results of our user study with a physical robot highlight the practicality and effectiveness of adaptive feedback selection in seeking informative, user-aligned feedback that accelerate learning. Experiment videos, code and appendices are found on our website: https://tinyurl.com/AFS-learning.
ShuffleGate: Scalable Feature Optimization for Recommender Systems via Batch-wise Sensitivity Learning
Feature optimization, specifically Feature Selection (FS) and Dimension Selection (DS), is critical for the efficiency and generalization of large-scale recommender systems. While conceptually related, these tasks are typically tackled with isolated solutions that often suffer from ambiguous importance scores or prohibitive computational costs. In this paper, we propose ShuffleGate, a unified and interpretable mechanism that estimates component importance by measuring the model's sensitivity to information loss. Unlike conventional gating that learns relative weights, ShuffleGate introduces a batch-wise shuffling strategy to effectively erase information in an end-to-end differentiable manner. This paradigm shift yields naturally polarized importance distributions, bridging the long-standing "search-retrain gap" and distinguishing essential signals from noise without complex threshold tuning. ShuffleGate provides a unified solution across granularities. It achieves state-of-the-art performance on feature and dimension selection tasks. Furthermore, to demonstrate its extreme scalability and precision, we extend ShuffleGate to evaluate fine-grained embedding entries. Experiments show it can identify and prune 99.9% of redundant embedding parameters on the Criteo dataset while maintaining competitive AUC, verifying its robustness in massive search spaces. Finally, the method has been successfully deployed in a top-tier industrial video recommendation platform. By compressing the concatenated input dimension from over 10,000 to 1,000+, it achieved a 91% increase in training throughput while serving billions of daily requests without performance degradation.
OBLR-PO: A Theoretical Framework for Stable Reinforcement Learning
Existing reinforcement learning (RL)-based post-training methods for large language models have advanced rapidly, yet their design has largely been guided by heuristics rather than systematic theoretical principles. This gap limits our understanding of the properties of the gradient estimators and the associated optimization algorithms, thereby constraining opportunities to improve training stability and overall performance. In this work, we provide a unified theoretical framework that characterizes the statistical properties of commonly used policy-gradient estimators under mild assumptions. Our analysis establishes unbiasedness, derives exact variance expressions, and yields an optimization-loss upper bound that enables principled reasoning about learning dynamics. Building on these results, we prove convergence guarantees and derive an adaptive learning-rate schedule governed by the signal-to-noise ratio (SNR) of gradients. We further show that the variance-optimal baseline is a gradient-weighted estimator, offering a new principle for variance reduction and naturally enhancing stability beyond existing methods. These insights motivate Optimal Baseline and Learning-Rate Policy Optimization (OBLR-PO), an algorithm that jointly adapts learning rates and baselines in a theoretically grounded manner. Experiments on Qwen3-4B-Base and Qwen3-8B-Base demonstrate consistent gains over existing policy optimization methods, validating that our theoretical contributions translate into practical improvements in large-scale post-training.
comment: 19 pages, 7 figures
Debiased Orthogonal Boundary-Driven Efficient Noise Mitigation
Mitigating the detrimental effects of noisy labels on the training process has become increasingly critical, as obtaining entirely clean or human-annotated samples for large-scale pre-training tasks is often impractical. Nonetheless, existing noise mitigation methods often encounter limitations in practical applications due to their task-specific design, model dependency, and significant computational overhead. In this work, we exploit the properties of high-dimensional orthogonality to identify a robust and effective boundary in cone space for separating clean and noisy samples. Building on this, we propose One-Step Anti-noise (OSA), a model-agnostic noisy label mitigation paradigm that employs an estimator model and a scoring function to assess the noise level of input pairs through just one-step inference. We empirically validate the superiority of OSA, demonstrating its enhanced training robustness, improved task transferability, streamlined deployment, and reduced computational overhead across diverse benchmarks, models, and tasks. Our code is released at https://github.com/leolee99/OSA.
comment: 20 pages, 4 figures, 11 Tables
Prototype-Guided Non-Exemplar Continual Learning for Cross-subject EEG Decoding
Due to the significant variability in electroencephalo-gram (EEG) signals across individuals, knowledge acquired from previous subjects is often overwritten as new subjects are introduced in continual EEG decoding tasks. Existing methods mainly rely on storing historical data from seen subjects as replay buffers to mitigate forgetting, which is impractical under privacy or memory constraints. To address this issue, we propose a Prototype-guided Non-Exemplar Continual Learning (ProNECL) framework that preserves prior knowledge without accessing historical EEG samples. ProNECL summarizes subject-specific discriminative representations into class-level prototypes and incrementally aligns new subject representations with a global prototype memory through prototype-based feature regulariza-tion and cross-subject alignment. Experiments on the BCI Com-petition IV 2a and 2b datasets demonstrate that ProNECL effec-tively balances knowledge retention and adaptability, achieving superior performance in cross-subject continual EEG decoding tasks.
comment: 4 pages, 2 figures, 14th IEEE International Winter Conference on Brain-Computer Interface Conference 2026
Projection-based Lyapunov method for fully heterogeneous weakly-coupled MDPs NeurIPS
Heterogeneity poses a fundamental challenge for many real-world large-scale decision-making problems but remains largely understudied. In this paper, we study the fully heterogeneous setting of a prominent class of such problems, known as weakly-coupled Markov decision processes (WCMDPs). Each WCMDP consists of $N$ arms (or subproblems), which have distinct model parameters in the fully heterogeneous setting, leading to the curse of dimensionality when $N$ is large. We show that, under mild assumptions, an efficiently computable policy achieves an $O(1/\sqrt{N})$ optimality gap in the long-run average reward per arm for fully heterogeneous WCMDPs as $N$ becomes large. This is the first asymptotic optimality result for fully heterogeneous average-reward WCMDPs. Our main technical innovation is the construction of projection-based Lyapunov functions that certify the convergence of rewards and costs to an optimal region, even under full heterogeneity.
comment: 37 pages; full version for NeurIPS proceeding paper; fixed some typos
Fine-Tuning Diffusion Models via Intermediate Distribution Shaping
Diffusion models are widely used for generative tasks across domains. While pre-trained diffusion models effectively capture the training data distribution, it is often desirable to shape these distributions using reward functions to align with downstream applications. Policy gradient methods, such as Proximal Policy Optimization (PPO), are widely used in the context of autoregressive generation. However, the marginal likelihoods required for such methods are intractable for diffusion models, leading to alternative proposals and relaxations. In this context, we unify variants of Rejection sAmpling based Fine-Tuning (RAFT) as GRAFT, and show that this implicitly performs KL regularized reward maximization with reshaped rewards. We then introduce P-GRAFT to shape distributions at intermediate noise levels and demonstrate empirically that this can lead to more effective fine-tuning. We mathematically explain this via a bias-variance tradeoff. Motivated by this, we propose inverse noise correction to improve flow models without leveraging explicit rewards. We empirically evaluate our methods on text-to-image(T2I) generation, layout generation, molecule generation and unconditional image generation. Notably, our framework, applied to Stable Diffusion 2, improves over policy gradient methods on popular T2I benchmarks in terms of VQAScore and shows an $8.81\%$ relative improvement over the base model. For unconditional image generation, inverse noise correction improves FID of generated images at lower FLOPs/image.
Learning Physics-Informed Noise Models from Dark Frames for Low-Light Raw Image Denoising
Recently, the mainstream practice for training low-light raw image denoising methods has shifted towards employing synthetic data. Noise modeling, which focuses on characterizing the noise distribution of real-world sensors, profoundly influences the effectiveness and practicality of synthetic data. Currently, physics-based noise modeling struggles to characterize the entire real noise distribution, while learning-based noise modeling impractically depends on paired real data. In this paper, we propose a novel strategy: learning the noise model from dark frames instead of paired real data, to break down the data dependency. Based on this strategy, we introduce an efficient physics-informed noise neural proxy (PNNP) to approximate the real-world sensor noise model. Specifically, we integrate physical priors into neural proxies and introduce three efficient techniques: physics-guided noise decoupling (PND), physics-aware proxy model (PPM), and differentiable distribution loss (DDL). PND decouples the dark frame into different components and handles different levels of noise flexibly, which reduces the complexity of noise modeling. PPM incorporates physical priors to constrain the synthetic noise, which promotes the accuracy of noise modeling. DDL provides explicit and reliable supervision for noise distribution, which promotes the precision of noise modeling. PNNP exhibits powerful potential in characterizing the real noise distribution. Extensive experiments on public datasets demonstrate superior performance in practical low-light raw image denoising. The source code will be publicly available at the project homepage.
comment: 18 pages, 13 figures. Accepted by IEEE TPAMI (2026)
Functional Critics Are Essential in Off-Policy Actor-Critic: Provable Convergence and Efficient Exploration
Off-policy reinforcement learning (RL) with function approximation offers an effective way to improve sample efficiency by reusing past experience. Within this setting, the actor-critic (AC) framework has achieved strong empirical success but suffers from the "moving target" problem, where the policy being evaluated changes continually. Functional critics, or policy-conditioned value functions, have been proposed to address this issue by including a representation of the policy as input. While the concept of generalizing value functions across policy space is appealing, previous efforts have struggled to remain competitive against state-of-the-art AC algorithms that do not utilize functional critics. In this work, we revisit functional critics within the off-policy AC framework and identify two aspects that render them a necessity rather than a luxury. First, in off-policy AC, critic learning contends with both the "deadly triad" instability and the "moving target" issue, while actor learning faces the challenge of estimating the exact off-policy policy gradient. This complex interplay makes theoretical convergence extremely difficult for practical algorithms. We demonstrate that a functional critic is essential for addressing this challenge and establish the first convergence proof for an off-policy target-based AC algorithm under linear function approximation. Second, we identify a crucial link between functional critic modeling and efficient exploration. Specifically, we show that approximating posterior sampling for exploration in model-free settings is infeasible without functional critics. Practically, we propose a tailored neural network architecture and a minimal AC algorithm that relies solely on these insights. In experiments on the DeepMind Control Suite, this implementation achieves performance competitive with state-of-the-art methods.
Learning normalized image densities via dual score matching
Learning probability models from data is at the heart of many machine learning endeavors, but is notoriously difficult due to the curse of dimensionality. We introduce a new framework for learning \emph{normalized} energy (log probability) models that is inspired by diffusion generative models, which rely on networks optimized to estimate the score. We modify a score network architecture to compute an energy while preserving its inductive biases. The gradient of this energy network with respect to its input image is the score of the learned density, which can be optimized using a denoising objective. Importantly, the gradient with respect to the noise level provides an additional score that can be optimized with a novel secondary objective, ensuring consistent and normalized energies across noise levels. We train an energy network with this \emph{dual} score matching objective on the ImageNet64 dataset, and obtain a cross-entropy (negative log likelihood) value comparable to the state of the art. We further validate our approach by showing that our energy model \emph{strongly generalizes}: log probabilities estimated with two networks trained on non-overlapping data subsets are nearly identical. Finally, we demonstrate that both image probability and dimensionality of local neighborhoods vary substantially depending on image content, in contrast with conventional assumptions such as concentration of measure or support on a low-dimensional manifold.
Unveiling m-Sharpness Through the Structure of Stochastic Gradient Noise NeurIPS 2025
Sharpness-aware minimization (SAM) has emerged as a highly effective technique to improve model generalization, but its underlying principles are not fully understood. We investigate m-sharpness, where SAM performance improves monotonically as the micro-batch size for computing perturbations decreases, a phenomenon critical for distributed training yet lacking rigorous explanation. We leverage an extended Stochastic Differential Equation (SDE) framework and analyze stochastic gradient noise (SGN) to characterize the dynamics of SAM variants, including n-SAM and m-SAM. Our analysis reveals that stochastic perturbations induce an implicit variance-based sharpness regularization whose strength increases as m decreases. Motivated by this insight, we propose Reweighted SAM (RW-SAM), which employs sharpness-weighted sampling to mimic the generalization benefits of m-SAM while remaining parallelizable. Comprehensive experiments validate our theory and method.
comment: Accepted to NeurIPS 2025
DFIR-DETR: Frequency Domain Enhancement and Dynamic Feature Aggregation for Cross-Scene Small Object Detection
Detecting small objects in UAV remote sensing images and identifying surface defects in industrial inspection remain difficult tasks. These applications face common obstacles: features are sparse and weak, backgrounds are cluttered, and object scales vary dramatically. Current transformer-based detectors, while powerful, struggle with three critical issues. First, features degrade severely as networks downsample progressively. Second, spatial convolutions cannot capture long-range dependencies effectively. Third, standard upsampling methods inflate feature maps unnecessarily. We introduce DFIR-DETR to tackle these problems through dynamic feature aggregation combined with frequency-domain processing. Our architecture builds on three novel components. The DCFA module uses dynamic K-sparse attention, cutting complexity from O(N2) down to O(NK), and employs spatial gated linear units for better nonlinear modeling. The DFPN module applies amplitude-normalized upsampling to prevent feature inflation and uses dual-path shuffle convolution to retain spatial details across scales. The FIRC3 module operates in the frequency domain, achieving global receptive fields without sacrificing efficiency. We tested our method extensively on NEU-DET and VisDrone datasets. Results show mAP50 scores of 92.9% and 51.6% respectively-both state-of-the-art. The model stays lightweight with just 11.7M parameters and 41.2 GFLOPs. Strong performance across two very different domains confirms that DFIR-DETR generalizes well and works effectively in resource-limited settings for cross-scene small object detection.
comment: 16 pages. Correct typos
Modality-Balanced Collaborative Distillation for Multi-Modal Domain Generalization
Weight Averaging (WA) has emerged as a powerful technique for enhancing generalization by promoting convergence to a flat loss landscape, which correlates with stronger out-of-distribution performance. However, applying WA directly to multi-modal domain generalization (MMDG) is challenging: differences in optimization speed across modalities lead WA to overfit to faster-converging ones in early stages, suppressing the contribution of slower yet complementary modalities, thereby hindering effective modality fusion and skewing the loss surface toward sharper, less generalizable minima. To address this issue, we propose MBCD, a unified collaborative distillation framework that retains WA's flatness-inducing advantages while overcoming its shortcomings in multi-modal contexts. MBCD begins with adaptive modality dropout in the student model to curb early-stage bias toward dominant modalities. A gradient consistency constraint then aligns learning signals between uni-modal branches and the fused representation, encouraging coordinated and smoother optimization. Finally, a WA-based teacher conducts cross-modal distillation by transferring fused knowledge to each uni-modal branch, which strengthens cross-modal interactions and steer convergence toward flatter solutions. Extensive experiments on MMDG benchmarks show that MBCD consistently outperforms existing methods, achieving superior accuracy and robustness across diverse unseen domains.
Stock Market Price Prediction using Neural Prophet with Deep Neural Network
Stock market price prediction is a significant interdisciplinary research domain that depends at the intersection of finance, statistics, and economics. Forecasting Accurately predicting stock prices has always been a focal point for various researchers. However, existing statistical approaches for time-series prediction often fail to effectively forecast the probability range of future stock prices. Hence, to solve this problem, the Neural Prophet with a Deep Neural Network (NP-DNN) is proposed to predict stock market prices. The preprocessing technique used in this research is Z-score normalization, which normalizes stock price data by removing scale differences, making patterns easier to detect. Missing value imputation fills gaps in historical data, enhancing the models use of complete information for more accurate predictions. The Multi-Layer Perceptron (MLP) learns complex nonlinear relationships among stock market prices and extracts hidden patterns from the input data, thereby creating meaningful feature representations for better prediction accuracy. The proposed NP-DNN model achieved an accuracy of 99.21% compared with other approaches using the Fused Large Language Model. Keywords: deep neural network, forecasting stock prices, multi-layer perceptron, neural prophet, stock market price prediction.
LLM-Based Emulation of the Radio Resource Control Layer: Towards AI-Native RAN Protocols
Integrating Large AI Models (LAMs) into 6G mobile networks is a key enabler of the AI-Native Air Interface (AI-AI), where protocol intelligence must scale beyond handcrafted logic. This paper presents, to our knowledge, the first standards-compliant emulation of the Radio Resource Control (RRC) layer using a decoder-only LAM (LLAMA-class) fine-tuned with Low-Rank Adaptation (LoRA) on a multi-vendor corpus of real-world traces spanning both 5G and 4G systems. We treat RRC as a domain-specific language and construct a segmentation-safe, question-answer (Question-and-Answer (QA)) dataset that preserves Abstract Syntax Notation (ASN.1) structure through linearization prior to Byte Pair Encoding (BPE) tokenization. The proposed approach combines parameter-efficient adaptation with schema-bounded prompting to ensure syntactic and procedural fidelity. Evaluation introduces a standards-aware triad -- ASN.1 conformance, field-level coverage analysis, and uplink-to-downlink state-machine checks -- alongside semantic similarity and latency profiling across 120 configurations. On 30k 5G request-response pairs plus an additional 4.8k QA turns from 4G sessions, our 8B model achieves a median cosine similarity of 0.97, a 61% relative gain over a zero-shot baseline, while sustaining high conformance rates. These results demonstrate that LAMs, when augmented with protocol-aware reasoning, can directly orchestrate control-plane procedures, laying the foundation for the future Artificial Intelligence (AI)-native Radio Access Network (RAN).
comment: This work has been submitted to the IEEE for possible publication. Focuses on applying LLMs to 5G RRC protocol generation; primary: cs.NI; cross-list: eess.SP, cs.LG
ProDAG: Projected Variational Inference for Directed Acyclic Graphs
Directed acyclic graph (DAG) learning is a central task in structure discovery and causal inference. Although the field has witnessed remarkable advances over the past few years, it remains statistically and computationally challenging to learn a single (point estimate) DAG from data, let alone provide uncertainty quantification. We address the difficult task of quantifying graph uncertainty by developing a Bayesian variational inference framework based on novel, provably valid distributions that have support directly on the space of sparse DAGs. These distributions, which we use to define our prior and variational posterior, are induced by a projection operation that maps an arbitrary continuous distribution onto the space of sparse weighted acyclic adjacency matrices. While this projection is combinatorial, it can be solved efficiently using recent continuous reformulations of acyclicity constraints. We empirically demonstrate that our method, ProDAG, can outperform state-of-the-art alternatives in both accuracy and uncertainty quantification.
comment: To appear in Advances in Neural Information Processing Systems
Cross-Modal Fine-Tuning of 3D Convolutional Foundation Models for ADHD Classification with Low-Rank Adaptation
Early diagnosis of attention-deficit/hyperactivity disorder (ADHD) in children plays a crucial role in improving outcomes in education and mental health. Diagnosing ADHD using neuroimaging data, however, remains challenging due to heterogeneous presentations and overlapping symptoms with other conditions. To address this, we propose a novel parameter-efficient transfer learning approach that adapts a large-scale 3D convolutional foundation model, pre-trained on CT images, to an MRI-based ADHD classification task. Our method introduces Low-Rank Adaptation (LoRA) in 3D by factorizing 3D convolutional kernels into 2D low-rank updates, dramatically reducing trainable parameters while achieving superior performance. In a five-fold cross-validated evaluation on a public diffusion MRI database, our 3D LoRA fine-tuning strategy achieved state-of-the-art results, with one model variant reaching 71.9% accuracy and another attaining an AUC of 0.716. Both variants use only 1.64 million trainable parameters (over 113x fewer than a fully fine-tuned foundation model). Our results represent one of the first successful cross-modal (CT-to-MRI) adaptations of a foundation model in neuroimaging, establishing a new benchmark for ADHD classification while greatly improving efficiency.
comment: Accepted for presentation at the IEEE International Symposium on Biomedical Imaging (ISBI) 2026
Reward Learning through Ranking Mean Squared Error
Reward design remains a significant bottleneck in applying reinforcement learning (RL) to real-world problems. A popular alternative is reward learning, where reward functions are inferred from human feedback rather than manually specified. Recent work has proposed learning reward functions from human feedback in the form of ratings, rather than traditional binary preferences, enabling richer and potentially less cognitively demanding supervision. Building on this paradigm, we introduce a new rating-based RL method, Ranked Return Regression for RL (R4). At its core, R4 employs a novel ranking mean squared error (rMSE) loss, which treats teacher-provided ratings as ordinal targets. Our approach learns from a dataset of trajectory-rating pairs, where each trajectory is labeled with a discrete rating (e.g., "bad," "neutral," "good"). At each training step, we sample a set of trajectories, predict their returns, and rank them using a differentiable sorting operator (soft ranks). We then optimize a mean squared error loss between the resulting soft ranks and the teacher's ratings. Unlike prior rating-based approaches, R4 offers formal guarantees: its solution set is provably minimal and complete under mild assumptions. Empirically, using simulated human feedback, we demonstrate that R4 consistently matches or outperforms existing rating and preference-based RL methods on robotic locomotion benchmarks from OpenAI Gym and the DeepMind Control Suite, while requiring significantly less feedback.
Lifelong Domain Adaptive 3D Human Pose Estimation AAAI 2026
3D Human Pose Estimation (3D HPE) is vital in various applications, from person re-identification and action recognition to virtual reality. However, the reliance on annotated 3D data collected in controlled environments poses challenges for generalization to diverse in-the-wild scenarios. Existing domain adaptation (DA) paradigms like general DA and source-free DA for 3D HPE overlook the issues of non-stationary target pose datasets. To address these challenges, we propose a novel task named lifelong domain adaptive 3D HPE. To our knowledge, we are the first to introduce the lifelong domain adaptation to the 3D HPE task. In this lifelong DA setting, the pose estimator is pretrained on the source domain and subsequently adapted to distinct target domains. Moreover, during adaptation to the current target domain, the pose estimator cannot access the source and all the previous target domains. The lifelong DA for 3D HPE involves overcoming challenges in adapting to current domain poses and preserving knowledge from previous domains, particularly combating catastrophic forgetting. We present an innovative Generative Adversarial Network (GAN) framework, which incorporates 3D pose generators, a 2D pose discriminator, and a 3D pose estimator. This framework effectively mitigates domain shifts and aligns original and augmented poses. Moreover, we construct a novel 3D pose generator paradigm, integrating pose-aware, temporal-aware, and domain-aware knowledge to enhance the current domain's adaptation and alleviate catastrophic forgetting on previous domains. Our method demonstrates superior performance through extensive experiments on diverse domain adaptive 3D HPE datasets.
comment: Accepted by AAAI 2026
Eventually LIL Regret: Almost Sure $\ln\ln T$ Regret for a sub-Gaussian Mixture on Unbounded Data
We prove that a classic sub-Gaussian mixture proposed by Robbins in a stochastic setting actually satisfies a path-wise (deterministic) regret bound. For every path in a natural ``Ville event'' $E_α$, this regret till time $T$ is bounded by $\ln^2(1/α)/V_T + \ln (1/α) + \ln \ln V_T$ up to universal constants, where $V_T$ is a nonnegative, nondecreasing, cumulative variance process. (The bound reduces to $\ln(1/α) + \ln \ln V_T$ if $V_T \geq \ln(1/α)$.) If the data were stochastic, then one can show that $E_α$ has probability at least $1-α$ under a wide class of distributions (eg: sub-Gaussian, symmetric, variance-bounded, etc.). In fact, we show that on the Ville event $E_0$ of probability one, the regret on every path in $E_0$ is eventually bounded by $\ln \ln V_T$ (up to constants). We explain how this work helps bridge the world of adversarial online learning (which usually deals with regret bounds for bounded data), with game-theoretic statistics (which can handle unbounded data, albeit using stochastic assumptions). In short, conditional regret bounds serve as a bridge between stochastic and adversarial betting.
comment: To appear at ALT 2026
Query-Efficient Locally Private Hypothesis Selection via the Scheffe Graph
We propose an algorithm with improved query-complexity for the problem of hypothesis selection under local differential privacy constraints. Given a set of $k$ probability distributions $Q$, we describe an algorithm that satisfies local differential privacy, performs $\tilde{O}(k^{3/2})$ non-adaptive queries to individuals who each have samples from a probability distribution $p$, and outputs a probability distribution from the set $Q$ which is nearly the closest to $p$. Previous algorithms required either $Ω(k^2)$ queries or many rounds of interactive queries. Technically, we introduce a new object we dub the Scheffé graph, which captures structure of the differences between distributions in $Q$, and may be of more broad interest for hypothesis selection tasks.
How Many Human Judgments Are Enough? Feasibility Limits of Human Preference Evaluation
Human preference evaluations are widely used to compare generative models, yet it remains unclear how many judgments are required to reliably detect small improvements. We show that when preference signal is diffuse across prompts (i.e., all prompt types are similarly informative), proportional allocation is minimax-optimal: no allocation strategy substantially improves detectability. Empirical analysis of large-scale human preference datasets shows that most comparisons fall into this diffuse regime, exhibiting small preference margins that require far more judgments than typically collected, even in well-sampled comparisons. These limits persist across evaluation protocols and modalities, including chat, image generation, and code generation with execution feedback. In contrast, curated benchmarks that reduce prompt induced variability systematically induce larger margins and improve detectability through a $1.5\times$ reduction in prompt-level variance. Our results show that inconclusive or negative human evaluation outcomes frequently reflect underpowered evaluation rather than model equivalence, underscoring the need to account explicitly for effect size, budget, and protocol design.
Wasserstein-p Central Limit Theorem Rates: From Local Dependence to Markov Chains
Finite-time central limit theorem (CLT) rates play a central role in modern machine learning. In this paper, we study CLT rates for multivariate dependent data in Wasserstein-$p$ ($W_p$) distance, for general $p \geq 1$. We focus on two fundamental dependence structures that commonly arise in machine learning: locally dependent sequences and geometrically ergodic Markov chains. In both settings, we establish the first optimal $O(n^{-1/2})$ rate in $W_1$, as well as the first $W_p$ ($p\ge 2$) CLT rates under mild moment assumptions, substantially improving the best previously known bounds in these dependent-data regimes. As an application of our optimal $W_1$ rate for locally dependent sequences, we further obtain the first optimal $W_1$-CLT rate for multivariate $U$-statistics. On the technical side, we derive a tractable auxiliary bound for $W_1$ Gaussian approximation errors that is well suited for studying dependent data. For Markov chains, we further prove that the regeneration time of the split chain associated with a geometrically ergodic chain has a geometric tail without assuming strong aperiodicity or other restrictive conditions. These tools may be of independent interests and enable our optimal $W_1$ rates and underpin our $W_p$ ($p\ge 2$) results.
comment: 51 pages
Scalable Oversight for Superhuman AI via Recursive Self-Critiquing
As AI capabilities increasingly surpass human proficiency in complex tasks, current alignment techniques, including SFT and RLHF, face fundamental challenges in ensuring reliable oversight. These methods rely on direct human assessment and become impractical when AI outputs exceed human cognitive thresholds. In response to this challenge, we explore two hypotheses: (1) \textit{Critique of critique can be easier than critique itself}, extending the widely-accepted observation that verification is easier than generation to the critique domain, as critique itself is a specialized form of generation; (2) \textit{This difficulty relationship holds recursively}, suggesting that when direct evaluation is infeasible, performing higher-order critiques (e.g., critique of critique of critique) offers a more tractable supervision pathway. We conduct Human-Human, Human-AI, and AI-AI experiments to investigate the potential of recursive self-critiquing for AI supervision. Our results highlight recursive critique as a promising approach for scalable AI oversight.
Classifying and Addressing the Diversity of Errors in Retrieval-Augmented Generation Systems
Retrieval-augmented generation (RAG) is a prevalent approach for building LLM-based question-answering systems that can take advantage of external knowledge databases. Due to the complexity of real-world RAG systems, there are many potential causes for erroneous outputs. Understanding the range of errors that can occur in practice is crucial for robust deployment. We present a new taxonomy of the error types that can occur in realistic RAG systems, examples of each, and practical advice for addressing them. Additionally, we curate a dataset of erroneous RAG responses annotated by error types. We then propose an auto-evaluation method aligned with our taxonomy that can be used in practice to track and address errors during development. Code and data are available at https://github.com/layer6ai-labs/rag-error-classification.
comment: EACL 2026
Autoencoding Random Forests NeurIPS 2025
We propose a principled method for autoencoding with random forests. Our strategy builds on foundational results from nonparametric statistics and spectral graph theory to learn a low-dimensional embedding of the model that optimally represents relationships in the data. We provide exact and approximate solutions to the decoding problem via constrained optimization, split relabeling, and nearest neighbors regression. These methods effectively invert the compression pipeline, establishing a map from the embedding space back to the input space using splits learned by the ensemble's constituent trees. The resulting decoders are universally consistent under common regularity assumptions. The procedure works with supervised or unsupervised models, providing a window into conditional or joint distributions. We demonstrate various applications of this autoencoder, including powerful new tools for visualization, compression, clustering, and denoising. Experiments illustrate the ease and utility of our method in a wide range of settings, including tabular, image, and genomic data.
comment: 10 pages main text, 27 pages total. 9 figures, 4 tables. To be published in proceedings of the 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
Topological constraints on self-organisation in locally interacting systems
All intelligence is collective intelligence, in the sense that it is made of parts which must align with respect to system-level goals. Understanding the dynamics which facilitate or limit navigation of problem spaces by aligned parts thus impacts many fields ranging across life sciences and engineering. To that end, consider a system on the vertices of a planar graph, with pairwise interactions prescribed by the edges of the graph. Such systems can sometimes exhibit long-range order, distinguishing one phase of macroscopic behaviour from another. In networks of interacting systems we may view spontaneous ordering as a form of self-organisation, modelling neural and basal forms of cognition. Here, we discuss necessary conditions on the topology of the graph for an ordered phase to exist, with an eye towards finding constraints on the ability of a system with local interactions to maintain an ordered target state. By studying the scaling of free energy under the formation of domain walls in three model systems -- the Potts model, autoregressive models, and hierarchical networks -- we show how the combinatorics of interactions on a graph prevent or allow spontaneous ordering. As an application we are able to analyse why multiscale systems like those prevalent in biology are capable of organising into complex patterns, whereas rudimentary language models are challenged by long sequences of outputs.
comment: 11+3 pages, four figures, four tikzpictures. This version to appear in Philos Trans R Soc A
Fairness Definitions in Language Models Explained
Language Models (LMs) have demonstrated exceptional performance across various Natural Language Processing (NLP) tasks. Despite these advancements, LMs can inherit and amplify societal biases related to sensitive attributes such as gender and race, limiting their adoption in real-world applications. Therefore, fairness has been extensively explored in LMs, leading to the proposal of various fairness notions. However, the lack of clear agreement on which fairness definition to apply in specific contexts and the complexity of understanding the distinctions between these definitions can create confusion and impede further progress. To this end, this paper proposes a systematic survey that clarifies the definitions of fairness as they apply to LMs. Specifically, we begin with a brief introduction to LMs and fairness in LMs, followed by a comprehensive, up-to-date overview of existing fairness notions in LMs and the introduction of a novel taxonomy that categorizes these concepts based on their transformer architecture: encoder-only, decoder-only, and encoder-decoder LMs. We further illustrate each definition through experiments, showcasing their practical implications and outcomes. Finally, we discuss current research challenges and open questions, aiming to foster innovative ideas and advance the field. The repository is publicly available online at https://github.com/vanbanTruong/Fairness-in-Large-Language-Models/tree/main/definitions.
Online Scheduling for LLM Inference with KV Cache Constraints
Large Language Model (LLM) inference, where a trained model generates text one word at a time in response to user prompts, is a computationally intensive process requiring efficient scheduling to optimize latency and resource utilization. A key challenge in LLM inference is the management of the Key-Value (KV) cache, which reduces redundant computations but introduces memory constraints. In this work, we model LLM inference with KV cache constraints theoretically and propose a novel batching and scheduling algorithm that minimizes inference latency while effectively managing the KV cache's memory. More specifically, we make the following contributions. First, to evaluate the performance of online algorithms for scheduling in LLM inference, we introduce a hindsight optimal benchmark, formulated as an integer program that computes the minimum total inference latency under full future information. Second, we prove that no deterministic online algorithm can achieve a constant competitive ratio when the arrival process is arbitrary. Third, motivated by the computational intractability of solving the integer program at scale, we propose a polynomial-time online scheduling algorithm and show that under certain conditions it can achieve a constant competitive ratio. We also demonstrate our algorithm's strong empirical performance by comparing it to the hindsight optimal in a synthetic dataset. Finally, we conduct empirical evaluations on a real-world public LLM inference dataset, simulating the Llama2-70B model on A100 GPUs, and show that our algorithm significantly outperforms the benchmark algorithms. Overall, our results offer a path toward more sustainable and cost-effective LLM deployment.
Bayesian Monocular Depth Refinement via Neural Radiance Fields
Monocular depth estimation has applications in many fields, such as autonomous navigation and extended reality, making it an essential computer vision task. However, current methods often produce smooth depth maps that lack the fine geometric detail needed for accurate scene understanding. We propose MDENeRF, an iterative framework that refines monocular depth estimates using depth information from Neural Radiance Fields (NeRFs). MDENeRF consists of three components: (1) an initial monocular estimate for global structure, (2) a NeRF trained on perturbed viewpoints, with per-pixel uncertainty, and (3) Bayesian fusion of the noisy monocular and NeRF depths. We derive NeRF uncertainty from the volume rendering process to iteratively inject high-frequency fine details. Meanwhile, our monocular prior maintains global structure. We demonstrate improvements on key metrics and experiments using indoor scenes from the SUN RGB-D dataset.
comment: IEEE 8th International Conference on Algorithms, Computing and Artificial Intelligence (ACAI 2025)
GreedyPixel: Fine-Grained Black-Box Adversarial Attack Via Greedy Algorithm
Deep neural networks are highly vulnerable to adversarial examples, which are inputs with small, carefully crafted perturbations that cause misclassification -- making adversarial attacks a critical tool for evaluating robustness. Existing black-box methods typically entail a trade-off between precision and flexibility: pixel-sparse attacks (e.g., single- or few-pixel attacks) provide fine-grained control but lack adaptability, whereas patch- or frequency-based attacks improve efficiency or transferability, but at the cost of producing larger and less precise perturbations. We present GreedyPixel, a fine-grained black-box attack method that performs brute-force-style, per-pixel greedy optimization guided by a surrogate-derived priority map and refined by means of query feedback. It evaluates each coordinate directly without any gradient information, guaranteeing monotonic loss reduction and convergence to a coordinate-wise optimum, while also yielding near white-box-level precision and pixel-wise sparsity and perceptual quality. On the CIFAR-10 and ImageNet datasets, spanning convolutional neural networks (CNNs) and Transformer models, GreedyPixel achieved state-of-the-art success rates with visually imperceptible perturbations, effectively bridging the gap between black-box practicality and white-box performance. The implementation is available at https://github.com/azrealwang/greedypixel.
comment: IEEE Transactions on Information Forensics and Security
MatchMiner-AI: An Open-Source Solution for Cancer Clinical Trial Matching
Background Clinical trials are essential to advancing cancer treatments, yet fewer than 10% of adults with cancer enroll in trials, and many studies fail to meet accrual targets. Artificial intelligence (AI) could improve identification of appropriate trials for patients, but sharing AI models trained on protected health information remains difficult due to privacy restrictions. Methods We developed MatchMiner-AI, an open-source platform for clinical trial search and ranking trained entirely on synthetic electronic health record (EHR) data. The system extracts core clinical criteria from longitudinal EHR text and embeds patient summaries and trial "spaces" (target populations) in a shared vector space for rapid retrieval. It then applies custom text classifiers to assess whether each patient-trial pairing is a clinically reasonable consideration. The pipeline was evaluated on real clinical data. Results Across retrospective evaluations on real EHR data, the fine-tuned pipeline outperformed baseline text-embedding approaches. For trial-enrolled patients, 90% of the top 20 recommended trials were relevant matches (compared to 17% for the baseline model). Similar improvements were noted for patients who received standard-of-care treatments (88% of the top 20 matches were relevant, compared to 14% for baseline). Text classification modules demonstrated strong discrimination (AUROC 0.94-0.98) for evaluating candidate patient-trial space pair eligibility; incorporating these components consistently increased mean average precision to ~ 0.90 across patient- and trial-centric use cases. Synthetic training data, model weights, inference tools, and demonstration frontends are publicly available. Conclusions MatchMiner-AI demonstrates an openly accessible, privacy-preserving approach to distilling a clinical trial matching AI pipeline from LLM-generated synthetic EHR data.
A Taxonomy for Evaluating Generalist Robot Manipulation Policies RA-L
Machine learning for robot manipulation promises to unlock generalization to novel tasks and environments. But how should we measure the progress of these policies towards generalization? Evaluating and quantifying generalization is the Wild West of modern robotics, with each work proposing and measuring different types of generalization in their own, often difficult to reproduce settings. In this work, our goal is (1) to outline the forms of generalization we believe are important for robot manipulation in a comprehensive and fine-grained manner, and (2) to provide reproducible guidelines for measuring these notions of generalization. We first propose STAR-Gen, a taxonomy of generalization for robot manipulation structured around visual, semantic, and behavioral generalization. Next, we instantiate STAR-Gen with two case studies on real-world benchmarking: one based on open-source models and the Bridge V2 dataset, and another based on the bimanual ALOHA 2 platform that covers more dexterous and longer horizon tasks. Our case studies reveal many interesting insights: for example, we observe that open-source vision-language-action models often struggle with semantic generalization, despite pre-training on internet-scale language datasets. We provide videos and other supplementary material at our website stargen-taxonomy.github.io.
comment: IEEE Robotics and Automation Letters (RA-L)
A Natural Primal-Dual Hybrid Gradient Method for Adversarial Neural Network Training on Solving Partial Differential Equations
We propose a scalable preconditioned primal-dual hybrid gradient algorithm for solving partial differential equations (PDEs). We multiply the PDE with a dual test function to obtain an inf-sup problem whose loss functional involves lower-order differential operators. The Primal-Dual Hybrid Gradient (PDHG) algorithm is then leveraged for this saddle point problem. By introducing suitable precondition operators to the proximal steps in the PDHG algorithm, we obtain an alternative natural gradient ascent-descent optimization scheme for updating the neural network parameters. We apply the Krylov subspace method (MINRES) to evaluate the natural gradients efficiently. Such treatment readily handles the inversion of precondition matrices via matrix-vector multiplication. An \textit{a posteriori} convergence analysis is established for the time-continuous version of the proposed algorithm for general linear PDEs. By incorporating appropriate boundary loss terms, we further obtain a refined \textit{a priori} convergence result for elliptic equations in divergence form. The algorithm is tested on various types of PDEs with dimensions ranging from $1$ to $50$, including linear and nonlinear elliptic equations, reaction-diffusion equations, and Monge-Ampère equations stemming from the $L^2$ optimal transport problems. We compare the performance of the proposed method with several commonly used deep learning algorithms such as physics-informed neural networks (PINNs), the DeepRitz method and weak adversarial networks (WANs) using either the Adam or the L-BFGS optimizer. The numerical results suggest that the proposed method performs efficiently and robustly and converges more stably with higher accuracy.
comment: We have added a new Section 3.2.2. Additional numerical experiments are included in Sections 5.2 and 5.4. Further discussions have been added to Sections 2.4 and 4.4, and several typographical errors have been corrected. We welcome any comments and suggestions
Uniform Convergence Beyond Glivenko-Cantelli
We characterize conditions under which collections of distributions on $\{0,1\}^\mathbb{N}$ admit uniform estimation of their mean. Prior work from Vapnik and Chervonenkis (1971) has focused on uniform convergence using the empirical mean estimator, leading to the principle known as $P-$ Glivenko-Cantelli. We extend this framework by moving beyond the empirical mean estimator and introducing Uniform Mean Estimability, also called UME-learnability, which captures when a collection permits uniform mean estimation by any arbitrary estimator. We work on the space created by the mean vectors of the collection of distributions. For each distribution, the mean vector records the expected value in each coordinate. We show that separability of the mean vectors is a sufficient condition for UME-learnability. However, we show that separability of the mean vectors is not necessary for UME-learnability by constructing a collection of distributions whose mean vectors are non-separable yet UME-learnable using techniques fundamentally different from those used in our separability-based analysis. Finally, we establish that countable unions of UME-learnable collections are also UME-learnable, solving the conjecture posed in Cohen et al. (2025).
Aggregating Direct and Indirect Neighbors through Graph Linear Transformations
Graph neural networks (GNN) typically rely on localized message passing, requiring increasing depth to capture long range dependencies. In this work, we introduce Graph Linear Transformations, a linear transformation that realizes direct and indirect feature mixing on graphs through a single, well-defined linear operator derived from the graph structure. By interpreting graphs as walk-summable Gaussian graphical models, we compute these transformations via Gaussian Belief Propagation, enabling each node to aggregate information from both direct and indirect neighbors without explicit enumeration of multi-hop paths. We show that different constructions of the underlying precision matrix induce distinct and interpretable propagation biases, ranging from selective edge-level interactions to uniform structural smoothing, and that Graph Linear Transformations can achieve competitive or superior performance compared to both local message-passing GNNs and dynamic neighborhood aggregation models across homophilic and heterophilic benchmark datasets.
comment: 14 pages, 7 Figures
Many Minds from One Model: Bayesian-Inspired Transformers for Population Diversity
Despite their scale and success, modern transformers are usually trained as single-minded systems: optimization produces a deterministic set of parameters, representing a single functional hypothesis about the data. Motivated by the analogy to human populations, in which population-level intelligence emerges from diverse individual behaviors, we propose Population Bayesian Transformers (B-Trans), which enable sampling diverse yet coherent transformer large language model instances (hereafter referred to as a 'mind') from a single pre-trained LLM. B-Trans introduces a Bayesian-inspired posterior proxy by injecting stochasticity directly into normalization layers, avoiding the prohibitive cost of training full Bayesian neural networks. Sampling from this proxy yields a population of minds with diverse behaviors while maintaining general competence. During the generation of each response, we sample a single realization from the random distribution and hold it fixed, ensuring temporal consistency and reasoning coherence. Experiments on zero-shot generation and Reinforcement Learning with Verifiable Rewards (RLVR) demonstrate that B-Trans effectively leverages the stochastic model diversity, yielding superior response diversity while achieving better task performance compared to deterministic baselines.
Power to the Clients: Federated Learning in a Dictatorship Setting
Federated learning (FL) has emerged as a promising paradigm for decentralized model training, enabling multiple clients to collaboratively learn a shared model without exchanging their local data. However, the decentralized nature of FL also introduces vulnerabilities, as malicious clients can compromise or manipulate the training process. In this work, we introduce dictator clients, a novel, well-defined, and analytically tractable class of malicious participants capable of entirely erasing the contributions of all other clients from the server model, while preserving their own. We propose concrete attack strategies that empower such clients and systematically analyze their effects on the learning process. Furthermore, we explore complex scenarios involving multiple dictator clients, including cases where they collaborate, act independently, or form an alliance in order to ultimately betray one another. For each of these settings, we provide a theoretical analysis of their impact on the global model's convergence. Our theoretical algorithms and findings about the complex scenarios including multiple dictator clients are further supported by empirical evaluations on both computer vision and natural language processing benchmarks.
PFT: Phonon Fine-tuning for Machine Learned Interatomic Potentials
Many materials properties depend on higher-order derivatives of the potential energy surface, yet machine learned interatomic potentials (MLIPs) trained with standard a standard loss on energy, force, and stress errors can exhibit error in curvature, degrading the prediction of vibrational properties. We introduce phonon fine-tuning (PFT), which directly supervises second-order force constants of materials by matching MLIP energy Hessians to DFT-computed force constants from finite displacement phonon calculations. To scale to large supercells, PFT stochastically samples Hessian columns and computes the loss with a single Hessian-vector product. We also use a simple co-training scheme to incorporate upstream data to mitigate catastrophic forgetting. On the MDR Phonon benchmark, PFT improves Nequix MP (trained on Materials Project) by 55% on average across phonon thermodynamic properties and achieves state-of-the-art performance among models trained on Materials Project trajectories. PFT also generalizes to improve properties beyond second-derivatives, improving thermal conductivity predictions that rely on third-order derivatives of the potential energy.
The Curious Case of In-Training Compression of State Space Models
State Space Models (SSMs), developed to tackle long sequence modeling tasks efficiently, offer both parallelizable training and fast inference. At their core are recurrent dynamical systems that maintain a hidden state, with update costs scaling with the state dimension. A key design challenge is striking the right balance between maximizing expressivity and limiting this computational burden. Control theory, and more specifically Hankel singular value analysis, provides a potent framework for the measure of energy for each state, as well as the balanced truncation of the original system down to a smaller representation with performance guarantees. Leveraging the eigenvalue stability properties of Hankel matrices, we apply this lens to SSMs \emph{during training}, where only dimensions of high influence are identified and preserved. Our approach, \textsc{CompreSSM}, applies to Linear Time-Invariant SSMs such as Linear Recurrent Units, but is also extendable to selective models. Experiments show that in-training reduction significantly accelerates optimization while preserving expressivity, with compressed models retaining task-critical structure lost by models trained directly at smaller dimension. In other words, SSMs that begin large and shrink during training achieve computational efficiency while maintaining higher performance. Project code is available at github.com/camail-official/compressm.
Superposition in Graph Neural Networks
Interpreting graph neural networks (GNNs) is difficult because message passing mixes signals and internal channels rarely align with human concepts. We study superposition, the sharing of directions by multiple features, directly in the latent space of GNNs. Using controlled experiments with unambiguous graph concepts, we extract features as (i) class-conditional centroids at the graph level and (ii) linear-probe directions at the node level, and then analyze their geometry with simple basis-invariant diagnostics. Across GCN/GIN/GAT we find: increasing width produces a phase pattern in overlap; topology imprints overlap onto node-level features that pooling partially remixes into task-aligned graph axes; sharper pooling increases axis alignment and reduces channel sharing; and shallow models can settle into metastable low-rank embeddings. These results connect representational geometry with concrete design choices (width, pooling, and final-layer activations) and suggest practical approaches for more interpretable GNNs.
AdaptCache: KV Cache Native Storage Hierarchy for Low-Delay and High-Quality Language Model Serving
Large language model (LLM) applications often reuse previously processed context, such as chat history and documents, which introduces significant redundant computation. Existing LLM serving systems address such redundant computation by storing the KV caches of processed context and loading the corresponding KV cache when a new request reuses the context. Further, as these LLM applications scale, the total size of KV caches becomes excessively large and requires both DRAM and SSD for full storage. However, prior work that stores KV caches in DRAM and SSD suffers from high loading delays, as most KV cache hits come from SSD, which is slow to load. To increase the KV cache hit rate on DRAM, we identify lossy KV cache compression as a promising approach. We design a lossy compression system that decides the compression algorithm, compression rate and device placement for each KV cache entry to maximise DRAM hits and minimise loading delay without significantly degrading generation quality. Compared to various static compression baselines across three tasks, our system AdaptCache achieves 1.43--2.4 x delay savings at the same quality and 6--55% quality improvements at the same delay.
comment: Accepted at SOSP 2025 - The International Workshop on Big Memory (BigMem)
Global Minimizers of $\ell^p$-Regularized Objectives Yield the Sparsest ReLU Neural Networks NeurIPS 2025
Overparameterized neural networks can interpolate a given dataset in many different ways, prompting the fundamental question: which among these solutions should we prefer, and what explicit regularization strategies will provably yield these solutions? This paper addresses the challenge of finding the sparsest interpolating ReLU network--i.e., the network with the fewest nonzero parameters or neurons--a goal with wide-ranging implications for efficiency, generalization, interpretability, theory, and model compression. Unlike post hoc pruning approaches, we propose a continuous, almost-everywhere differentiable training objective whose global minima are guaranteed to correspond to the sparsest single-hidden-layer ReLU networks that fit the data. This result marks a conceptual advance: it recasts the combinatorial problem of sparse interpolation as a smooth optimization task, potentially enabling the use of gradient-based training methods. Our objective is based on minimizing $\ell^p$ quasinorms of the weights for $0 < p < 1$, a classical sparsity-promoting strategy in finite-dimensional settings. However, applying these ideas to neural networks presents new challenges: the function class is infinite-dimensional, and the weights are learned using a highly nonconvex objective. We prove that, under our formulation, global minimizers correspond exactly to sparsest solutions. Our work lays a foundation for understanding when and how continuous sparsity-inducing objectives can be leveraged to recover sparse networks through training.
comment: Update to final published version (NeurIPS 2025). Removed $\ell^\infty$ boundedness constraint in multivariate problem and updated Theorem 4.1 proof accordingly to show that this is possible. Also updated Proposition 4.1 to show existence of solutions and that solutions for any $0 \leq p < 1$ have no more than N neurons
Zero-Shot Transfer Capabilities of the Sundial Foundation Model for Leaf Area Index Forecasting AAAI 2026
This work investigates the zero-shot forecasting capability of time series foundation models for Leaf Area Index (LAI) forecasting in agricultural monitoring. Using the HiQ dataset (U.S., 2000-2022), we systematically compare statistical baselines, a fully supervised LSTM, and the Sundial foundation model under multiple evaluation protocols. We find that Sundial, in the zero-shot setting, can outperform a fully trained LSTM provided that the input context window is sufficiently long-specifically, when covering more than one or two full seasonal cycles. We show that a general-purpose foundation model can surpass specialized supervised models on remote-sensing time series prediction without any task-specific tuning. These results highlight the strong potential of pretrained time series foundation models to serve as effective plug-and-play forecasters in agricultural and environmental applications.
comment: 6 pages, 5 figures, AAAI 2026 AgriAI workshop
Better LLM Reasoning via Dual-Play
Large Language Models (LLMs) have achieved remarkable progress through Reinforcement Learning with Verifiable Rewards (RLVR), yet still rely heavily on external supervision (e.g., curated labels). Adversarial learning, particularly through self-play, offers a promising alternative that enables models to iteratively learn from themselves - thus reducing reliance on external supervision. Dual-play extends adversarial learning by assigning specialized roles to two models and training them against each other, fostering sustained competition and mutual evolution. Despite its promise, adapting dual-play training to LLMs remains limited, largely due to their susceptibility to reward hacking and training instability. In this paper, we introduce PasoDoble, a novel LLM dual-play framework. PasoDoble adversarially trains two models initialized from the same base model: a Proposer, which generates challenging questions with ground-truth answers, and a Solver, which attempts to solve them. We enrich the Proposer with knowledge from a pre-training dataset to ensure the questions' quality and diversity. To avoid reward hacking, the Proposer is rewarded for producing only valid questions that push the Solver's limit, while the Solver is rewarded for solving them correctly, and both are updated jointly. To further enhance training stability, we introduce an optional offline paradigm that decouples Proposer and Solver updates, alternately updating each for several steps while holding the other fixed. Notably, PasoDoble operates without supervision during training. Experimental results show that PasoDoble can improve the reasoning performance of LLMs. Our project page is available at https://hcy123902.github.io/PasoDoble.
comment: 33 pages, 17 figures, 17 tables
TetriServe: Efficient DiT Serving for Heterogeneous Image Generation
Diffusion Transformer (DiT) models excel at generating high-quality images through iterative denoising steps, but serving them under strict Service Level Objectives (SLOs) is challenging due to their high computational cost, particularly at large resolutions. Existing serving systems use fixed degree sequence parallelism, which is inefficient for heterogeneous workloads with mixed resolutions and deadlines, leading to poor GPU utilization and low SLO attainment. In this paper, we propose step-level sequence parallelism to dynamically adjust the degree of parallelism of individual requests according to their deadlines. We present TetriServe, a DiT serving system that implements this strategy for highly efficient image generation. Specifically, TetriServe introduces a novel round-based scheduling mechanism that improves SLO attainment: (1) discretizing time into fixed rounds to make deadline-aware scheduling tractable, (2) adapting parallelism at the step level and minimize GPU hour consumption, and (3) jointly packing requests to minimize late completions. Extensive evaluation on state-of-the-art DiT models shows that TetriServe achieves up to 32% higher SLO attainment compared to existing solutions without degrading image quality.
Simultaneous and Proportional Finger Motion Decoding Using Spatial Features from High-Density Surface Electromyography
Restoring natural and intuitive hand function requires simultaneous and proportional control (SPC) of multiple degrees of freedom (DoFs). This study systematically evaluated the multichannel linear descriptors-based block field method (MLD-BFM) for continuous decoding of five finger-joint DoFs by leveraging the rich spatial information of high-density surface electromyography (HD sEMG). Twenty-one healthy participants performed dynamic sinusoidal finger movements while HD sEMG signals were recorded from the extensor digitorum communis (EDC) and flexor digitorum superficialis (FDS) muscles. MLD-BFM extracted region-specific spatial features, including effective field strength ($Σ$), field-strength variation rate ($Φ$), and spatial complexity ($Ω$). Model performance was optimized (block size: $2 \times 2$; window: 0.15 s) and compared with conventional time-domain features and dimensionality reduction approaches when applied to multi-output regression models. MLD-BFM consistently achieved the highest $\mathrm{R}^2_{\mathrm{vw}}$ values across all models. The multilayer perceptron (MLP) combined with MLD-BFM yielded the best performance ($\mathrm{R}^2_{\mathrm{vw}} = 86.68\% \pm 0.33$). Time-domain features also showed strong predictive capability and were statistically comparable to MLD-BFM in some models, whereas dimensionality reduction techniques exhibited lower accuracy. Decoding accuracy was higher for the middle and ring fingers than for the thumb. Overall, MLD-BFM improved continuous finger movement decoding accuracy, underscoring the importance of taking advantage of the spatial richness of HD sEMG. These findings suggest that spatially structured features enhance SPC and provide practical guidance for designing robust, real-time, and responsive myoelectric interfaces.
comment: 39 pages, 13 figures, 2 tables
TSSR: Two-Stage Swap-Reward-Driven Reinforcement Learning for Character-Level SMILES Generation
The design of reliable, valid, and diverse molecules is fundamental to modern drug discovery, as improved molecular generation supports efficient exploration of the chemical space for potential drug candidates and reduces the cost of early design efforts. Despite these needs, current chemical language models that generate molecules as SMILES strings are vulnerable to compounding token errors: many samples are unparseable or chemically implausible, and hard constraints meant to prevent failure can restrict exploration. To address this gap, we introduce TSSR, a Two-Stage, Swap-Reward-driven reinforcement learning (RL) framework for character-level SMILES generation. Stage one rewards local token swaps that repair syntax, promoting transitions from invalid to parseable strings. Stage two provides chemistry-aware feedback from RDKit diagnostics, rewarding reductions in valence, aromaticity, and connectivity issues. The reward decomposes into interpretable terms (swap efficiency, error reduction, distance to validity), is model agnostic, and requires no task-specific labels or hand-crafted grammars. We evaluated TSSR on the MOSES benchmark using a GRU policy trained with PPO in both pure RL (P-RL) from random initialization and fine-tuning RL (F-RL) starting from a pretrained chemical language model, assessing 10,000 generated SMILES per run. In P-RL, TSSR significantly improves syntactic validity, chemical validity, and novelty. In F-RL, TSSR preserves drug-likeness and synthesizability while increasing validity and novelty. Token-level analysis shows that syntax edits and chemistry fixes act jointly to reduce RDKit detected errors. TSSR converts a sparse terminal objective into a denser and more interpretable reward, improving both syntactic and chemical quality without reducing diversity. TSSR is dataset-agnostic and can be adapted to various reinforcement learning approaches.
comment: Under Review
Dynamics-Aligned Latent Imagination in Contextual World Models for Zero-Shot Generalization NeurIPS 2025
Real-world reinforcement learning demands adaptation to unseen environmental conditions without costly retraining. Contextual Markov Decision Processes (cMDP) model this challenge, but existing methods often require explicit context variables (e.g., friction, gravity), limiting their use when contexts are latent or hard to measure. We introduce Dynamics-Aligned Latent Imagination (DALI), a framework integrated within the Dreamer architecture that infers latent context representations from agent-environment interactions. By training a self-supervised encoder to predict forward dynamics, DALI generates actionable representations conditioning the world model and policy, bridging perception and control. We theoretically prove this encoder is essential for efficient context inference and robust generalization. DALI's latent space enables counterfactual consistency: Perturbing a gravity-encoding dimension alters imagined rollouts in physically plausible ways. On challenging cMDP benchmarks, DALI achieves significant gains over context-unaware baselines, often surpassing context-aware baselines in extrapolation tasks, enabling zero-shot generalization to unseen contextual variations.
comment: 36 pages, 6 figures, accepted to NeurIPS 2025
RCCDA: Adaptive Model Updates in the Presence of Concept Drift under a Constrained Resource Budget NeurIPS 2025
Machine learning (ML) algorithms deployed in real-world environments are often faced with the challenge of adapting models to concept drift, where the task data distributions are shifting over time. The problem becomes even more difficult when model performance must be maintained under adherence to strict resource constraints. Existing solutions often depend on drift-detection methods that produce high computational overhead for resource-constrained environments, and fail to provide strict guarantees on resource usage or theoretical performance assurances. To address these shortcomings, we propose RCCDA: a dynamic model update policy that optimizes ML training dynamics while ensuring compliance to predefined resource constraints, utilizing only past loss information and a tunable drift threshold. In developing our policy, we analytically characterize the evolution of model loss under concept drift with arbitrary training update decisions. Integrating these results into a Lyapunov drift-plus-penalty framework produces a lightweight greedy-optimal policy that provably limits update frequency and cost. Experimental results on four domain generalization datasets demonstrate that our policy outperforms baseline methods in inference accuracy while adhering to strict resource constraints under several schedules of concept drift, making our solution uniquely suited for real-time ML deployments.
comment: Accepted to NeurIPS 2025
Graphics 6
Alterbute: Editing Intrinsic Attributes of Objects in Images
We introduce Alterbute, a diffusion-based method for editing an object's intrinsic attributes in an image. We allow changing color, texture, material, and even the shape of an object, while preserving its perceived identity and scene context. Existing approaches either rely on unsupervised priors that often fail to preserve identity or use overly restrictive supervision that prevents meaningful intrinsic variations. Our method relies on: (i) a relaxed training objective that allows the model to change both intrinsic and extrinsic attributes conditioned on an identity reference image, a textual prompt describing the target intrinsic attributes, and a background image and object mask defining the extrinsic context. At inference, we restrict extrinsic changes by reusing the original background and object mask, thereby ensuring that only the desired intrinsic attributes are altered; (ii) Visual Named Entities (VNEs) - fine-grained visual identity categories (e.g., ''Porsche 911 Carrera'') that group objects sharing identity-defining features while allowing variation in intrinsic attributes. We use a vision-language model to automatically extract VNE labels and intrinsic attribute descriptions from a large public image dataset, enabling scalable, identity-preserving supervision. Alterbute outperforms existing methods on identity-preserving object intrinsic attribute editing.
comment: Project page is available at https://talreiss.github.io/alterbute/
Extrinsic Vector Field Processing
We propose a novel discretization of tangent vector fields for triangle meshes. Starting with a Phong map continuously assigning normals to all points on the mesh, we define an extrinsic bases for continuous tangent vector fields by using the Rodrigues rotation to transport tangent vectors assigned to vertices to tangent vectors in the interiors of the triangles. As our vector fields are continuous and weakly differentiable, we can use them to define a covariant derivative field that is evaluatable almost-everywhere on the mesh. Decomposing the covariant derivative in terms of diagonal multiple of the identity, anti-symmetric, and trace-less symmetric components, we can define the standard operators used for vector field processing including the Hodge Laplacian energy, Connection Laplacian energy, and Killing energy. Additionally, the ability to perform point-wise evaluation of the covariant derivative also makes it possible for us to define the Lie bracket.
Beyond Inpainting: Unleash 3D Understanding for Precise Camera-Controlled Video Generation
Camera control has been extensively studied in conditioned video generation; however, performing precisely altering the camera trajectories while faithfully preserving the video content remains a challenging task. The mainstream approach to achieving precise camera control is warping a 3D representation according to the target trajectory. However, such methods fail to fully leverage the 3D priors of video diffusion models (VDMs) and often fall into the Inpainting Trap, resulting in subject inconsistency and degraded generation quality. To address this problem, we propose DepthDirector, a video re-rendering framework with precise camera controllability. By leveraging the depth video from explicit 3D representation as camera-control guidance, our method can faithfully reproduce the dynamic scene of an input video under novel camera trajectories. Specifically, we design a View-Content Dual-Stream Condition mechanism that injects both the source video and the warped depth sequence rendered under the target viewpoint into the pretrained video generation model. This geometric guidance signal enables VDMs to comprehend camera movements and leverage their 3D understanding capabilities, thereby facilitating precise camera control and consistent content generation. Next, we introduce a lightweight LoRA-based video diffusion adapter to train our framework, fully preserving the knowledge priors of VDMs. Additionally, we construct a large-scale multi-camera synchronized dataset named MultiCam-WarpData using Unreal Engine 5, containing 8K videos across 1K dynamic scenes. Extensive experiments show that DepthDirector outperforms existing methods in both camera controllability and visual quality. Our code and dataset will be publicly available.
Thinking Like Van Gogh: Structure-Aware Style Transfer via Flow-Guided 3D Gaussian Splatting
In 1888, Vincent van Gogh wrote, "I am seeking exaggeration in the essential." This principle, amplifying structural form while suppressing photographic detail, lies at the core of Post-Impressionist art. However, most existing 3D style transfer methods invert this philosophy, treating geometry as a rigid substrate for surface-level texture projection. To authentically reproduce Post-Impressionist stylization, geometric abstraction must be embraced as the primary vehicle of expression. We propose a flow-guided geometric advection framework for 3D Gaussian Splatting (3DGS) that operationalizes this principle in a mesh-free setting. Our method extracts directional flow fields from 2D paintings and back-propagates them into 3D space, rectifying Gaussian primitives to form flow-aligned brushstrokes that conform to scene topology without relying on explicit mesh priors. This enables expressive structural deformation driven directly by painterly motion rather than photometric constraints. Our contributions are threefold: (1) a projection-based, mesh-free flow guidance mechanism that transfers 2D artistic motion into 3D Gaussian geometry; (2) a luminance-structure decoupling strategy that isolates geometric deformation from color optimization, mitigating artifacts during aggressive structural abstraction; and (3) a VLM-as-a-Judge evaluation framework that assesses artistic authenticity through aesthetic judgment instead of conventional pixel-level metrics, explicitly addressing the subjective nature of artistic stylization.
comment: 7 pages, 8 figures
Efficient Maintenance of Leiden Communities in Large Dynamic Graphs
As a well-known community detection algorithm, Leiden has been widely used in various scenarios such as large language model generation (e.g., Graph-RAG), anomaly detection, and biological analysis. In these scenarios, the graphs are often large and dynamic, where vertices and edges are inserted and deleted frequently, so it is costly to obtain the updated communities by Leiden from scratch when the graph has changed. Recently, one work has attempted to study how to maintain Leiden communities in the dynamic graph, but it lacks a detailed theoretical analysis, and its algorithms are inefficient for large graphs. To address these issues, in this paper, we first theoretically show that the existing algorithms are relatively unbounded via the boundedness analysis (a powerful tool for analyzing incremental algorithms on dynamic graphs), and also analyze the memberships of vertices in communities when the graph changes. Based on theoretical analysis, we develop a novel efficient maintenance algorithm, called Hierarchical Incremental Tree Leiden (HIT-Leiden), which effectively reduces the range of affected vertices by maintaining the connected components and hierarchical community structures. Comprehensive experiments in various datasets demonstrate the superior performance of HIT-Leiden. In particular, it achieves speedups of up to five orders of magnitude over existing methods.
Bayesian Monocular Depth Refinement via Neural Radiance Fields
Monocular depth estimation has applications in many fields, such as autonomous navigation and extended reality, making it an essential computer vision task. However, current methods often produce smooth depth maps that lack the fine geometric detail needed for accurate scene understanding. We propose MDENeRF, an iterative framework that refines monocular depth estimates using depth information from Neural Radiance Fields (NeRFs). MDENeRF consists of three components: (1) an initial monocular estimate for global structure, (2) a NeRF trained on perturbed viewpoints, with per-pixel uncertainty, and (3) Bayesian fusion of the noisy monocular and NeRF depths. We derive NeRF uncertainty from the volume rendering process to iteratively inject high-frequency fine details. Meanwhile, our monocular prior maintains global structure. We demonstrate improvements on key metrics and experiments using indoor scenes from the SUN RGB-D dataset.
comment: IEEE 8th International Conference on Algorithms, Computing and Artificial Intelligence (ACAI 2025)
Video World Models 9
Future Optical Flow Prediction Improves Robot Control & Video Generation
Future motion representations, such as optical flow, offer immense value for control and generative tasks. However, forecasting generalizable spatially dense motion representations remains a key challenge, and learning such forecasting from noisy, real-world data remains relatively unexplored. We introduce FOFPred, a novel language-conditioned optical flow forecasting model featuring a unified Vision-Language Model (VLM) and Diffusion architecture. This unique combination enables strong multimodal reasoning with pixel-level generative fidelity for future motion prediction. Our model is trained on web-scale human activity data-a highly scalable but unstructured source. To extract meaningful signals from this noisy video-caption data, we employ crucial data preprocessing techniques and our unified architecture with strong image pretraining. The resulting trained model is then extended to tackle two distinct downstream tasks in control and generation. Evaluations across robotic manipulation and video generation under language-driven settings establish the cross-domain versatility of FOFPred, confirming the value of a unified VLM-Diffusion architecture and scalable learning from diverse web data for future optical flow prediction.
comment: Project Site (Code, Models, Demo): https://fofpred.github.io
CoMoVi: Co-Generation of 3D Human Motions and Realistic Videos
In this paper, we find that the generation of 3D human motions and 2D human videos is intrinsically coupled. 3D motions provide the structural prior for plausibility and consistency in videos, while pre-trained video models offer strong generalization capabilities for motions, which necessitate coupling their generation processes. Based on this, we present CoMoVi, a co-generative framework that couples two video diffusion models (VDMs) to generate 3D human motions and videos synchronously within a single diffusion denoising loop. To achieve this, we first propose an effective 2D human motion representation that can inherit the powerful prior of pre-trained VDMs. Then, we design a dual-branch diffusion model to couple human motion and video generation process with mutual feature interaction and 3D-2D cross attentions. Moreover, we curate CoMoVi Dataset, a large-scale real-world human video dataset with text and motion annotations, covering diverse and challenging human motions. Extensive experiments demonstrate the effectiveness of our method in both 3D human motion and video generation tasks.
comment: Project Page: https://igl-hkust.github.io/CoMoVi/
Action100M: A Large-scale Video Action Dataset
Inferring physical actions from visual observations is a fundamental capability for advancing machine intelligence in the physical world. Achieving this requires large-scale, open-vocabulary video action datasets that span broad domains. We introduce Action100M, a large-scale dataset constructed from 1.2M Internet instructional videos (14.6 years of duration), yielding O(100 million) temporally localized segments with open-vocabulary action supervision and rich captions. Action100M is generated by a fully automated pipeline that (i) performs hierarchical temporal segmentation using V-JEPA 2 embeddings, (ii) produces multi-level frame and segment captions organized as a Tree-of-Captions, and (iii) aggregates evidence with a reasoning model (GPT-OSS-120B) under a multi-round Self-Refine procedure to output structured annotations (brief/detailed action, actor, brief/detailed caption). Training VL-JEPA on Action100M demonstrates consistent data-scaling improvements and strong zero-shot performance across diverse action recognition benchmarks, establishing Action100M as a new foundation for scalable research in video understanding and world modeling.
Inference-time Physics Alignment of Video Generative Models with Latent World Models
State-of-the-art video generative models produce promising visual content yet often violate basic physics principles, limiting their utility. While some attribute this deficiency to insufficient physics understanding from pre-training, we find that the shortfall in physics plausibility also stems from suboptimal inference strategies. We therefore introduce WMReward and treat improving physics plausibility of video generation as an inference-time alignment problem. In particular, we leverage the strong physics prior of a latent world model (here, VJEPA-2) as a reward to search and steer multiple candidate denoising trajectories, enabling scaling test-time compute for better generation performance. Empirically, our approach substantially improves physics plausibility across image-conditioned, multiframe-conditioned, and text-conditioned generation settings, with validation from human preference study. Notably, in the ICCV 2025 Perception Test PhysicsIQ Challenge, we achieve a final score of 62.64%, winning first place and outperforming the previous state of the art by 7.42%. Our work demonstrates the viability of using latent world models to improve physics plausibility of video generation, beyond this specific instantiation or parameterization.
comment: 22 pages, 10 figures
Comparative Evaluation of Deep Learning-Based and WHO-Informed Approaches for Sperm Morphology Assessment
Assessment of sperm morphological quality remains a critical yet subjective component of male fertility evaluation, often limited by inter-observer variability and resource constraints. This study presents a comparative biomedical artificial intelligence framework evaluating an image-based deep learning model (HuSHeM) alongside a clinically grounded baseline derived from World Health Organization criteria augmented with the Systemic Inflammation Response Index (WHO(+SIRI)). The HuSHeM model was trained on high-resolution sperm morphology images and evaluated using an independent clinical cohort. Model performance was assessed using discrimination, calibration, and clinical utility analyses. The HuSHeM model demonstrated higher discriminative performance, as reflected by an increased area under the receiver operating characteristic curve with relatively narrow confidence intervals compared to WHO(+SIRI). Precision-recall analysis further indicated improved performance under class imbalance, with higher precision-recall area values across evaluated thresholds. Calibration analysis indicated closer agreement between predicted probabilities and observed outcomes for HuSHeM, while decision curve analysis suggested greater net clinical benefit across clinically relevant threshold probabilities. These findings suggest that image-based deep learning may offer improved predictive reliability and clinical utility compared with traditional rule-based and inflammation-augmented criteria. The proposed framework supports objective and reproducible assessment of sperm morphology and may serve as a decision-support tool within fertility screening and referral workflows. The proposed models are intended as decision-support or referral tools and are not designed to replace clinical judgment or laboratory assessment.
comment: Under review at Computers in Biology and Medicine
UrbanNav: Learning Language-Guided Urban Navigation from Web-Scale Human Trajectories AAAI 2026
Navigating complex urban environments using natural language instructions poses significant challenges for embodied agents, including noisy language instructions, ambiguous spatial references, diverse landmarks, and dynamic street scenes. Current visual navigation methods are typically limited to simulated or off-street environments, and often rely on precise goal formats, such as specific coordinates or images. This limits their effectiveness for autonomous agents like last-mile delivery robots navigating unfamiliar cities. To address these limitations, we introduce UrbanNav, a scalable framework that trains embodied agents to follow free-form language instructions in diverse urban settings. Leveraging web-scale city walking videos, we develop an scalable annotation pipeline that aligns human navigation trajectories with language instructions grounded in real-world landmarks. UrbanNav encompasses over 1,500 hours of navigation data and 3 million instruction-trajectory-landmark triplets, capturing a wide range of urban scenarios. Our model learns robust navigation policies to tackle complex urban scenarios, demonstrating superior spatial reasoning, robustness to noisy instructions, and generalization to unseen urban settings. Experimental results show that UrbanNav significantly outperforms existing methods, highlighting the potential of large-scale web video data to enable language-guided, real-world urban navigation for embodied agents.
comment: 9 pages, 5 figures, accepted to AAAI 2026. Project page:https://github.com/CASIA-IVA-Lab/UrbanNav
RTV-Bench: Benchmarking MLLM Continuous Perception, Understanding and Reasoning through Real-Time Video NeurIPS 2025
Multimodal Large Language Models (MLLMs) have made rapid progress in perception, understanding, and reasoning, yet existing benchmarks fall short in evaluating these abilities under continuous and dynamic real-world video streams. Such settings require models to maintain coherent understanding and reasoning as visual scenes evolve over time. **We introduce RTV-Bench, a fine-grained benchmark for real-time video analysis with MLLMs**. It is built upon three key principles: multi-timestamp question answering, hierarchical question structures spanning perception and reasoning, and multi-dimensional evaluation of continuous perception, understanding, and reasoning. RTV-Bench comprises 552 diverse videos and 4,608 carefully curated QA pairs covering a wide range of dynamic scenarios. We evaluate a broad range of state-of-the-art MLLMs, including proprietary, open-source offline, and open-source real-time models. Our results show that real-time models generally outperform offline counterparts but still lag behind leading proprietary systems. While scaling model capacity generally yields performance gains, simply increasing the density of sampled input frames does not consistently translate into improved results. These observations suggest inherent limitations in current architectures when handling long-horizon video streams, underscoring the need for models explicitly designed for streaming video processing and analysis.
comment: Accepted by NeurIPS 2025 Datasets and Benchmarks Track;
Learning Physics-Informed Noise Models from Dark Frames for Low-Light Raw Image Denoising
Recently, the mainstream practice for training low-light raw image denoising methods has shifted towards employing synthetic data. Noise modeling, which focuses on characterizing the noise distribution of real-world sensors, profoundly influences the effectiveness and practicality of synthetic data. Currently, physics-based noise modeling struggles to characterize the entire real noise distribution, while learning-based noise modeling impractically depends on paired real data. In this paper, we propose a novel strategy: learning the noise model from dark frames instead of paired real data, to break down the data dependency. Based on this strategy, we introduce an efficient physics-informed noise neural proxy (PNNP) to approximate the real-world sensor noise model. Specifically, we integrate physical priors into neural proxies and introduce three efficient techniques: physics-guided noise decoupling (PND), physics-aware proxy model (PPM), and differentiable distribution loss (DDL). PND decouples the dark frame into different components and handles different levels of noise flexibly, which reduces the complexity of noise modeling. PPM incorporates physical priors to constrain the synthetic noise, which promotes the accuracy of noise modeling. DDL provides explicit and reliable supervision for noise distribution, which promotes the precision of noise modeling. PNNP exhibits powerful potential in characterizing the real noise distribution. Extensive experiments on public datasets demonstrate superior performance in practical low-light raw image denoising. The source code will be publicly available at the project homepage.
comment: 18 pages, 13 figures. Accepted by IEEE TPAMI (2026)
A Taxonomy for Evaluating Generalist Robot Manipulation Policies RA-L
Machine learning for robot manipulation promises to unlock generalization to novel tasks and environments. But how should we measure the progress of these policies towards generalization? Evaluating and quantifying generalization is the Wild West of modern robotics, with each work proposing and measuring different types of generalization in their own, often difficult to reproduce settings. In this work, our goal is (1) to outline the forms of generalization we believe are important for robot manipulation in a comprehensive and fine-grained manner, and (2) to provide reproducible guidelines for measuring these notions of generalization. We first propose STAR-Gen, a taxonomy of generalization for robot manipulation structured around visual, semantic, and behavioral generalization. Next, we instantiate STAR-Gen with two case studies on real-world benchmarking: one based on open-source models and the Bridge V2 dataset, and another based on the bimanual ALOHA 2 platform that covers more dexterous and longer horizon tasks. Our case studies reveal many interesting insights: for example, we observe that open-source vision-language-action models often struggle with semantic generalization, despite pre-training on internet-scale language datasets. We provide videos and other supplementary material at our website stargen-taxonomy.github.io.
comment: IEEE Robotics and Automation Letters (RA-L)
Robotics 35
Fast-ThinkAct: Efficient Vision-Language-Action Reasoning via Verbalizable Latent Planning
Vision-Language-Action (VLA) tasks require reasoning over complex visual scenes and executing adaptive actions in dynamic environments. While recent studies on reasoning VLAs show that explicit chain-of-thought (CoT) can improve generalization, they suffer from high inference latency due to lengthy reasoning traces. We propose Fast-ThinkAct, an efficient reasoning framework that achieves compact yet performant planning through verbalizable latent reasoning. Fast-ThinkAct learns to reason efficiently with latent CoTs by distilling from a teacher, driven by a preference-guided objective to align manipulation trajectories that transfers both linguistic and visual planning capabilities for embodied control. This enables reasoning-enhanced policy learning that effectively connects compact reasoning to action execution. Extensive experiments across diverse embodied manipulation and reasoning benchmarks demonstrate that Fast-ThinkAct achieves strong performance with up to 89.3\% reduced inference latency over state-of-the-art reasoning VLAs, while maintaining effective long-horizon planning, few-shot adaptation, and failure recovery.
comment: Project page: https://jasper0314-huang.github.io/fast-thinkact/
Sim2real Image Translation Enables Viewpoint-Robust Policies from Fixed-Camera Datasets
Vision-based policies for robot manipulation have achieved significant recent success, but are still brittle to distribution shifts such as camera viewpoint variations. Robot demonstration data is scarce and often lacks appropriate variation in camera viewpoints. Simulation offers a way to collect robot demonstrations at scale with comprehensive coverage of different viewpoints, but presents a visual sim2real challenge. To bridge this gap, we propose MANGO -- an unpaired image translation method with a novel segmentation-conditioned InfoNCE loss, a highly-regularized discriminator design, and a modified PatchNCE loss. We find that these elements are crucial for maintaining viewpoint consistency during sim2real translation. When training MANGO, we only require a small amount of fixed-camera data from the real world, but show that our method can generate diverse unseen viewpoints by translating simulated observations. In this domain, MANGO outperforms all other image translation methods we tested. Imitation-learning policies trained on data augmented by MANGO are able to achieve success rates as high as 60\% on views that the non-augmented policy fails completely on.
Multimodal Signal Processing For Thermo-Visible-Lidar Fusion In Real-time 3D Semantic Mapping
In complex environments, autonomous robot navigation and environmental perception pose higher requirements for SLAM technology. This paper presents a novel method for semantically enhancing 3D point cloud maps with thermal information. By first performing pixel-level fusion of visible and infrared images, the system projects real-time LiDAR point clouds onto this fused image stream. It then segments heat source features in the thermal channel to instantly identify high temperature targets and applies this temperature information as a semantic layer on the final 3D map. This approach generates maps that not only have accurate geometry but also possess a critical semantic understanding of the environment, making it highly valuable for specific applications like rapid disaster assessment and industrial preventive maintenance.
comment: 5 pages,7 figures. Under review
Learning Whole-Body Human-Humanoid Interaction from Human-Human Demonstrations
Enabling humanoid robots to physically interact with humans is a critical frontier, but progress is hindered by the scarcity of high-quality Human-Humanoid Interaction (HHoI) data. While leveraging abundant Human-Human Interaction (HHI) data presents a scalable alternative, we first demonstrate that standard retargeting fails by breaking the essential contacts. We address this with PAIR (Physics-Aware Interaction Retargeting), a contact-centric, two-stage pipeline that preserves contact semantics across morphology differences to generate physically consistent HHoI data. This high-quality data, however, exposes a second failure: conventional imitation learning policies merely mimic trajectories and lack interactive understanding. We therefore introduce D-STAR (Decoupled Spatio-Temporal Action Reasoner), a hierarchical policy that disentangles when to act from where to act. In D-STAR, Phase Attention (when) and a Multi-Scale Spatial module (where) are fused by the diffusion head to produce synchronized whole-body behaviors beyond mimicry. By decoupling these reasoning streams, our model learns robust temporal phases without being distracted by spatial noise, leading to responsive, synchronized collaboration. We validate our framework through extensive and rigorous simulations, demonstrating significant performance gains over baseline approaches and a complete, effective pipeline for learning complex whole-body interactions from HHI data.
CLARE: Continual Learning for Vision-Language-Action Models via Autonomous Adapter Routing and Expansion
To teach robots complex manipulation tasks, it is now a common practice to fine-tune a pre-trained vision-language-action model (VLA) on task-specific data. However, since this recipe updates existing representations, it is unsuitable for long-term operation in the real world, where robots must continually adapt to new tasks and environments while retaining the knowledge they have already acquired. Existing continual learning methods for robotics commonly require storing previous data (exemplars), struggle with long task sequences, or rely on task identifiers for deployment. To address these limitations, we propose CLARE, a general, parameter-efficient framework for exemplar-free continual learning with VLAs. CLARE introduces lightweight modular adapters into selected feedforward layers and autonomously expands the model only where necessary when learning a new task, guided by layer-wise feature similarity. During deployment, an autoencoder-based routing mechanism dynamically activates the most relevant adapters without requiring task labels. Through extensive experiments on the LIBERO benchmark, we show that CLARE achieves high performance on new tasks without catastrophic forgetting of earlier tasks, significantly outperforming even exemplar-based methods. Code and data are available at https://tum-lsy.github.io/clare.
comment: Project page: https://tum-lsy.github.io/clare. 9 pages, 5 figures
Data Scaling for Navigation in Unknown Environments
Generalization of imitation-learned navigation policies to environments unseen in training remains a major challenge. We address this by conducting the first large-scale study of how data quantity and data diversity affect real-world generalization in end-to-end, map-free visual navigation. Using a curated 4,565-hour crowd-sourced dataset collected across 161 locations in 35 countries, we train policies for point goal navigation and evaluate their closed-loop control performance on sidewalk robots operating in four countries, covering 125 km of autonomous driving. Our results show that large-scale training data enables zero-shot navigation in unknown environments, approaching the performance of policies trained with environment-specific demonstrations. Critically, we find that data diversity is far more important than data quantity. Doubling the number of geographical locations in a training set decreases navigation errors by ~15%, while performance benefit from adding data from existing locations saturates with very little data. We also observe that, with noisy crowd-sourced data, simple regression-based models outperform generative and sequence-based architectures. We release our policies, evaluation setup and example videos on the project page.
ReflexDiffusion: Reflection-Enhanced Trajectory Planning for High-lateral-acceleration Scenarios in Autonomous Driving AAAI 2026
Generating safe and reliable trajectories for autonomous vehicles in long-tail scenarios remains a significant challenge, particularly for high-lateral-acceleration maneuvers such as sharp turns, which represent critical safety situations. Existing trajectory planners exhibit systematic failures in these scenarios due to data imbalance. This results in insufficient modelling of vehicle dynamics, road geometry, and environmental constraints in high-risk situations, leading to suboptimal or unsafe trajectory prediction when vehicles operate near their physical limits. In this paper, we introduce ReflexDiffusion, a novel inference-stage framework that enhances diffusion-based trajectory planners through reflective adjustment. Our method introduces a gradient-based adjustment mechanism during the iterative denoising process: after each standard trajectory update, we compute the gradient between the conditional and unconditional noise predictions to explicitly amplify critical conditioning signals, including road curvature and lateral vehicle dynamics. This amplification enforces strict adherence to physical constraints, particularly improving stability during high-lateral-acceleration maneuvers where precise vehicle-road interaction is paramount. Evaluated on the nuPlan Test14-hard benchmark, ReflexDiffusion achieves a 14.1% improvement in driving score for high-lateral-acceleration scenarios over the state-of-the-art (SOTA) methods. This demonstrates that inference-time trajectory optimization can effectively compensate for training data sparsity by dynamically reinforcing safety-critical constraints near handling limits. The framework's architecture-agnostic design enables direct deployment to existing diffusion-based planners, offering a practical solution for improving autonomous vehicle safety in challenging driving conditions.
comment: Accepted by AAAI 2026
Feedback-Based Mobile Robot Navigation in 3-D Environments Using Artificial Potential Functions Technical Report
This technical report presents the construction and analysis of polynomial navigation functions for motion planning in 3-D workspaces populated by spherical and cylindrical obstacles. The workspace is modeled as a bounded spherical region, and obstacles are encoded using smooth polynomial implicit functions. We establish conditions under which the proposed navigation functions admit a unique non-degenerate minimum at the target while avoiding local minima, including in the presence of pairwise intersecting obstacles. Gradient and Hessian analyses are provided, and the theoretical results are validated through numerical simulations in obstacle rich 3-D environments.
Online Trajectory Optimization for Arbitrary-Shaped Mobile Robots via Polynomial Separating Hypersurfaces
An emerging class of trajectory optimization methods enforces collision avoidance by jointly optimizing the robot's configuration and a separating hyperplane. However, as linear separators only apply to convex sets, these methods require convex approximations of both the robot and obstacles, which becomes an overly conservative assumption in cluttered and narrow environments. In this work, we unequivocally remove this limitation by introducing nonlinear separating hypersurfaces parameterized by polynomial functions. We first generalize the classical separating hyperplane theorem and prove that any two disjoint bounded closed sets in Euclidean space can be separated by a polynomial hypersurface, serving as the theoretical foundation for nonlinear separation of arbitrary geometries. Building on this result, we formulate a nonlinear programming (NLP) problem that jointly optimizes the robot's trajectory and the coefficients of the separating polynomials, enabling geometry-aware collision avoidance without conservative convex simplifications. The optimization remains efficiently solvable using standard NLP solvers. Simulation and real-world experiments with nonconvex robots demonstrate that our method achieves smooth, collision-free, and agile maneuvers in environments where convex-approximation baselines fail.
Vision-Conditioned Variational Bayesian Last Layer Dynamics Models
Agile control of robotic systems often requires anticipating how the environment affects system behavior. For example, a driver must perceive the road ahead to anticipate available friction and plan actions accordingly. Achieving such proactive adaptation within autonomous frameworks remains a challenge, particularly under rapidly changing conditions. Traditional modeling approaches often struggle to capture abrupt variations in system behavior, while adaptive methods are inherently reactive and may adapt too late to ensure safety. We propose a vision-conditioned variational Bayesian last-layer dynamics model that leverages visual context to anticipate changes in the environment. The model first learns nominal vehicle dynamics and is then fine-tuned with feature-wise affine transformations of latent features, enabling context-aware dynamics prediction. The resulting model is integrated into an optimal controller for vehicle racing. We validate our method on a Lexus LC500 racing through water puddles. With vision-conditioning, the system completed all 12 attempted laps under varying conditions. In contrast, all baselines without visual context consistently lost control, demonstrating the importance of proactive dynamics adaptation in high-performance applications.
comment: 9 pages, 7 figures, currently under review
CEI: A Unified Interface for Cross-Embodiment Visuomotor Policy Learning in 3D Space
Robotic foundation models trained on large-scale manipulation datasets have shown promise in learning generalist policies, but they often overfit to specific viewpoints, robot arms, and especially parallel-jaw grippers due to dataset biases. To address this limitation, we propose Cross-Embodiment Interface (\CEI), a framework for cross-embodiment learning that enables the transfer of demonstrations across different robot arm and end-effector morphologies. \CEI introduces the concept of \textit{functional similarity}, which is quantified using Directional Chamfer Distance. Then it aligns robot trajectories through gradient-based optimization, followed by synthesizing observations and actions for unseen robot arms and end-effectors. In experiments, \CEI transfers data and policies from a Franka Panda robot to \textbf{16} different embodiments across \textbf{3} tasks in simulation, and supports bidirectional transfer between a UR5+AG95 gripper robot and a UR5+Xhand robot across \textbf{6} real-world tasks, achieving an average transfer ratio of 82.4\%. Finally, we demonstrate that \CEI can also be extended with spatial generalization and multimodal motion generation capabilities using our proposed techniques. Project website: https://cross-embodiment-interface.github.io/
Vision Foundation Models for Domain Generalisable Cross-View Localisation in Planetary Ground-Aerial Robotic Teams
Accurate localisation in planetary robotics enables the advanced autonomy required to support the increased scale and scope of future missions. The successes of the Ingenuity helicopter and multiple planetary orbiters lay the groundwork for future missions that use ground-aerial robotic teams. In this paper, we consider rovers using machine learning to localise themselves in a local aerial map using limited field-of-view monocular ground-view RGB images as input. A key consideration for machine learning methods is that real space data with ground-truth position labels suitable for training is scarce. In this work, we propose a novel method of localising rovers in an aerial map using cross-view-localising dual-encoder deep neural networks. We leverage semantic segmentation with vision foundation models and high volume synthetic data to bridge the domain gap to real images. We also contribute a new cross-view dataset of real-world rover trajectories with corresponding ground-truth localisation data captured in a planetary analogue facility, plus a high volume dataset of analogous synthetic image pairs. Using particle filters for state estimation with the cross-view networks allows accurate position estimation over simple and complex trajectories based on sequences of ground-view images.
comment: 7 pages, 10 figures. Presented at the International Conference on Space Robotics (iSpaRo) 2025 in Sendai, Japan. Dataset available: https://doi.org/10.5281/zenodo.17364038
Design Methodology of Hydraulically-driven Soft Robotic Gripper for a Large and Heavy Object
This paper presents a design methodology of a hydraulically-driven soft robotic gripper for grasping a large and heavy object -- approximately 10 - 20 kg with 20 - 30 cm diameter. Most existing soft grippers are pneumatically actuated with several hundred kPa pressure, and cannot generate output force sufficient for such a large and heavy object. Instead of pneumatic actuation, hydraulic actuation has a potential to generate much larger power by several MPa pressure. In this study, we develop a hydraulically-driven soft gripper, in which its basic design parameters are determined based on a mathematical model that represents the relationship among the driving pressure, bending angle, object mass and grasping force. Moreover, we selected materials suitable for grasping a heavier object, based on the finite element analysis result of the detailed design. We report experimental results on a 20 kg object grasping and closed-loop control of the finger bending angle.
SyncTwin: Fast Digital Twin Construction and Synchronization for Safe Robotic Grasping
Accurate and safe grasping under dynamic and visually occluded conditions remains a core challenge in real-world robotic manipulation. We present SyncTwin, a digital twin framework that unifies fast 3D scene reconstruction and real-to-sim synchronization for robust and safety-aware grasping in such environments. In the offline stage, we employ VGGT to rapidly reconstruct object-level 3D assets from RGB images, forming a reusable geometry library for simulation. During execution, SyncTwin continuously synchronizes the digital twin by tracking real-world object states via point cloud segmentation updates and aligning them through colored-ICP registration. The updated twin enables motion planners to compute collision-free and dynamically feasible trajectories in simulation, which are safely executed on the real robot through a closed real-to-sim-to-real loop. Experiments in dynamic and occluded scenes show that SyncTwin improves grasp accuracy and motion safety, demonstrating the effectiveness of digital-twin synchronization for real-world robotic execution.
How Human Motion Prediction Quality Shapes Social Robot Navigation Performance in Constrained Spaces
Motivated by the vision of integrating mobile robots closer to humans in warehouses, hospitals, manufacturing plants, and the home, we focus on robot navigation in dynamic and spatially constrained environments. Ensuring human safety, comfort, and efficiency in such settings requires that robots are endowed with a model of how humans move around them. Human motion prediction around robots is especially challenging due to the stochasticity of human behavior, differences in user preferences, and data scarcity. In this work, we perform a methodical investigation of the effects of human motion prediction quality on robot navigation performance, as well as human productivity and impressions. We design a scenario involving robot navigation among two human subjects in a constrained workspace and instantiate it in a user study ($N=80$) involving two different robot platforms, conducted across two sites from different world regions. Key findings include evidence that: 1) the widely adopted average displacement error is not a reliable predictor of robot navigation performance and human impressions; 2) the common assumption of human cooperation breaks down in constrained environments, with users often not reciprocating robot cooperation, and causing performance degradations; 3) more efficient robot navigation often comes at the expense of human efficiency and comfort.
Interprofessional and Agile Development of Mobirobot: A Socially Assistive Robot for Pediatric Therapy Across Clinical and Therapeutic Settings
Introduction: Socially assistive robots hold promise for enhancing therapeutic engagement in paediatric clinical settings. However, their successful implementation requires not only technical robustness but also context-sensitive, co-designed solutions. This paper presents Mobirobot, a socially assistive robot developed to support mobilisation in children recovering from trauma, fractures, or depressive disorders through personalised exercise programmes. Methods: An agile, human-centred development approach guided the iterative design of Mobirobot. Multidisciplinary clinical teams and end users were involved throughout the co-development process, which focused on early integration into real-world paediatric surgical and psychiatric settings. The robot, based on the NAO platform, features a simple setup, adaptable exercise routines with interactive guidance, motivational dialogue, and a graphical user interface (GUI) for monitoring and no-code system feedback. Results: Deployment in hospital environments enabled the identification of key design requirements and usability constraints. Stakeholder feedback led to refinements in interaction design, movement capabilities, and technical configuration. A feasibility study is currently underway to assess acceptance, usability, and perceived therapeutic benefit, with data collection including questionnaires, behavioural observations, and staff-patient interviews. Discussion: Mobirobot demonstrates how multiprofessional, stakeholder-led development can yield a socially assistive system suited for dynamic inpatient settings. Early-stage findings underscore the importance of contextual integration, robustness, and minimal-intrusion design. While challenges such as sensor limitations and patient recruitment remain, the platform offers a promising foundation for further research and clinical application.
comment: submitted to Frontiers in Digital Health
LCF3D: A Robust and Real-Time Late-Cascade Fusion Framework for 3D Object Detection in Autonomous Driving
Accurately localizing 3D objects like pedestrians, cyclists, and other vehicles is essential in Autonomous Driving. To ensure high detection performance, Autonomous Vehicles complement RGB cameras with LiDAR sensors, but effectively combining these data sources for 3D object detection remains challenging. We propose LCF3D, a novel sensor fusion framework that combines a 2D object detector on RGB images with a 3D object detector on LiDAR point clouds. By leveraging multimodal fusion principles, we compensate for inaccuracies in the LiDAR object detection network. Our solution combines two key principles: (i) late fusion, to reduce LiDAR False Positives by matching LiDAR 3D detections with RGB 2D detections and filtering out unmatched LiDAR detections; and (ii) cascade fusion, to recover missed objects from LiDAR by generating new 3D frustum proposals corresponding to unmatched RGB detections. Experiments show that LCF3D is beneficial for domain generalization, as it turns out to be successful in handling different sensor configurations between training and testing domains. LCF3D achieves significant improvements over LiDAR-based methods, particularly for challenging categories like pedestrians and cyclists in the KITTI dataset, as well as motorcycles and bicycles in nuScenes. Code can be downloaded from: https://github.com/CarloSgaravatti/LCF3D.
comment: 35 pages, 14 figures. Published at Pattern Recognition
Causality-enhanced Decision-Making for Autonomous Mobile Robots in Dynamic Environments
The growing integration of robots in shared environments - such as warehouses, shopping centres, and hospitals - demands a deep understanding of the underlying dynamics and human behaviours, including how, when, and where individuals engage in various activities and interactions. This knowledge goes beyond simple correlation studies and requires a more comprehensive causal analysis. By leveraging causal inference to model cause-and-effect relationships, we can better anticipate critical environmental factors and enable autonomous robots to plan and execute tasks more effectively. To this end, we propose a novel causality-based decision-making framework that reasons over a learned causal model to assist the robot in deciding when and how to complete a given task. In the examined use case - i.e., a warehouse shared with people - we exploit the causal model to estimate battery usage and human obstructions as factors influencing the robot's task execution. This reasoning framework supports the robot in making informed decisions about task timing and strategy. To achieve this, we developed also PeopleFlow, a new Gazebo-based simulator designed to model context-sensitive human-robot spatial interactions in shared workspaces. PeopleFlow features realistic human and robot trajectories influenced by contextual factors such as time, environment layout, and robot state, and can simulate a large number of agents. While the simulator is general-purpose, in this paper we focus on a warehouse-like environment as a case study, where we conduct an extensive evaluation benchmarking our causal approach against a non-causal baseline. Our findings demonstrate the efficacy of the proposed solutions, highlighting how causal reasoning enables autonomous robots to operate more efficiently and safely in dynamic environments shared with humans.
comment: Causal Discovery and Inference - Robot Autonomy - Human-Robot Spatial Interaction - Decision-Making
SPARK: Safe Protective and Assistive Robot Kit
This paper introduces the Safe Protective and Assistive Robot Kit (SPARK), a comprehensive benchmark designed to ensure safety in humanoid autonomy and teleoperation. Humanoid robots pose significant safety risks due to their physical capabilities of interacting with complex environments. The physical structures of humanoid robots further add complexity to the design of general safety solutions. To facilitate safe deployment of complex robot systems, SPARK can be used as a toolbox that comes with state-of-the-art safe control algorithms in a modular and composable robot control framework. Users can easily configure safety criteria and sensitivity levels to optimize the balance between safety and performance. To accelerate humanoid safety research and development, SPARK provides simulation benchmarks that compare safety approaches in a variety of environments, tasks, and robot models. Furthermore, SPARK allows quick deployment of synthesized safe controllers on real robots. For hardware deployment, SPARK supports Apple Vision Pro (AVP) or a Motion Capture System as external sensors, while offering interfaces for seamless integration with alternative hardware setups at the same time. This paper demonstrates SPARK's capability with both simulation experiments and case studies with a Unitree G1 humanoid robot. Leveraging these advantages of SPARK, users and researchers can significantly improve the safety of their humanoid systems as well as accelerate relevant research. The open source code is available at: https://github.com/intelligent-control-lab/spark.
comment: Presented at IFAC Symposium on Robotics
Environment as Policy: Learning to Race in Unseen Tracks ICRA
Reinforcement learning (RL) has achieved outstanding success in complex robot control tasks, such as drone racing, where the RL agents have outperformed human champions in a known racing track. However, these agents fail in unseen track configurations, always requiring complete retraining when presented with new track layouts. This work aims to develop RL agents that generalize effectively to novel track configurations without retraining. The naive solution of training directly on a diverse set of track layouts can overburden the agent, resulting in suboptimal policy learning as the increased complexity of the environment impairs the agent's ability to learn to fly. To enhance the generalizability of the RL agent, we propose an adaptive environment-shaping framework that dynamically adjusts the training environment based on the agent's performance. We achieve this by leveraging a secondary RL policy to design environments that strike a balance between being challenging and achievable, allowing the agent to adapt and improve progressively. Using our adaptive environment shaping, one single racing policy efficiently learns to race in diverse challenging tracks. Experimental results validated in both simulation and the real world show that our method enables drones to successfully fly complex and unseen race tracks, outperforming existing environment-shaping techniques. Project page: http://rpg.ifi.uzh.ch/env_as_policy.
comment: Accepted at IEEE International Conference on Robotics and Automation (ICRA), 2025
Periodic robust robotic rock chop via virtual model control
Robotic cutting is a challenging contact-rich manipulation task where the robot must simultaneously negotiate unknown object mechanics, large contact forces, and precise motion requirements. We introduce a new active virtual-model control scheme that enables knife rocking motion for robot manipulators, without pre-planned trajectories or precise information of the environment. Motion is generated and controlled through switching virtual coupling with virtual mechanisms, given by virtual springs, dampers, and masses arranged in a suitable way. Through analysis and experiments, we demonstrate that the controlled robot behavior settles into a periodic motion. Experiments with a Franka manipulator demonstrate robust cuts with five different vegetables, and sub-millimeter slice accuracy from 1 mm to 6 mm at nearly one cut per second. The same controller survives changes in knife shape and cutting board height, and adaptation to a different humanoid manipulator, demonstrating robustness and platform independence.
Shape-Space Graphs: Fast and Collision-Free Path Planning for Soft Robots
Soft robots, inspired by elephant trunks or octopus arms, offer extraordinary flexibility to bend, twist, and elongate in ways that rigid robots cannot. However, their motion planning remains a challenge, especially in cluttered environments with obstacles, due to their highly nonlinear and infinite-dimensional kinematics. Here, we present a graph-based path planning tool for an elephant-trunk-inspired soft robot designed with three artificial muscle fibers that allow for continuous deformation through contraction. Using a biomechanical model that integrates morphoelastic and active filament theories, we precompute a shape library and construct a k-nearest neighbor graph in \emph{shape space}, ensuring that each node corresponds to a valid robot shape. For the graph, we use signed distance functions to prune nodes and edges colliding with obstacles, and define multi-objective edge costs based on geometric distance and actuation effort, enabling energy-aware planning with collision avoidance. We demonstrate that our algorithm reliably avoids obstacles and generates feasible paths within milliseconds from precomputed graphs using Dijkstra's algorithm. We show that including energy costs can drastically reduce the actuation effort compared to geometry-only planning, at the expense of longer tip trajectories. Our results highlight the potential of shape-space graph search for fast and reliable path planning in the field of soft robotics, paving the way for real-time applications in surgical, industrial, and assistive settings.
comment: revised version
UniConFlow: A Unified Constrained Flow-Matching Framework for Certified Motion Planning
Generative models have become increasingly powerful tools for robot motion generation, enabling flexible and multimodal trajectory generation across various tasks. Yet, most existing approaches remain limited in handling multiple types of constraints, such as collision avoidance, actuation limits, and dynamic consistency, which are typically addressed individually or heuristically. In this work, we propose UniConFlow, a unified constrained flow matching-based framework for trajectory generation that systematically incorporates both equality and inequality constraints. Moreover, UniConFlow introduces a novel prescribed-time zeroing function that shapes a time-varying guidance field during inference, allowing the generation process to adapt to varying system models and task requirements. Furthermore, to further address the computational challenges of long-horizon and high-dimensional trajectory generation, we propose two practical strategies for the terminal constraint enforcement and inference process: a violation-segment extraction protocol that precisely localizes and refines only the constraint-violating portions of trajectories, and a trajectory compression method that accelerates optimization in a reduced-dimensional space while preserving high-fidelity reconstruction after decoding. Empirical validation across three experiments, including a double inverted pendulum, a real-to-sim car racing task, and a sim-to-real manipulation task, demonstrates that UniConFlow outperforms state-of-the-art generative planners and conventional optimization baselines, achieving superior performance on certified motion planning metrics such as safety, kinodynamic consistency, and action feasibility. Project page is available at: https://uniconflow.github.io.
Learning on the Fly: Rapid Policy Adaptation via Differentiable Simulation
Learning control policies in simulation enables rapid, safe, and cost-effective development of advanced robotic capabilities. However, transferring these policies to the real world remains difficult due to the sim-to-real gap, where unmodeled dynamics and environmental disturbances can degrade policy performance. Existing approaches, such as domain randomization and Real2Sim2Real pipelines, can improve policy robustness, but either struggle under out-of-distribution conditions or require costly offline retraining. In this work, we approach these problems from a different perspective. Instead of relying on diverse training conditions before deployment, we focus on rapidly adapting the learned policy in the real world in an online fashion. To achieve this, we propose a novel online adaptive learning framework that unifies residual dynamics learning with real-time policy adaptation inside a differentiable simulation. Starting from a simple dynamics model, our framework refines the model continuously with real-world data to capture unmodeled effects and disturbances such as payload changes and wind. The refined dynamics model is embedded in a differentiable simulation framework, enabling gradient backpropagation through the dynamics and thus rapid, sample-efficient policy updates beyond the reach of classical RL methods like PPO. All components of our system are designed for rapid adaptation, enabling the policy to adjust to unseen disturbances within 5 seconds of training. We validate the approach on agile quadrotor control under various disturbances in both simulation and the real world. Our framework reduces hovering error by up to 81% compared to L1-MPC and 55% compared to DATT, while also demonstrating robustness in vision-based control without explicit state estimation.
JuggleRL: Mastering Ball Juggling with a Quadrotor via Deep Reinforcement Learning
Aerial robots interacting with objects must perform precise, contact-rich maneuvers under uncertainty. In this paper, we study the problem of aerial ball juggling using a quadrotor equipped with a racket, a task that demands accurate timing, stable control, and continuous adaptation. We propose JuggleRL, the first reinforcement learning-based system for aerial juggling. It learns closed-loop policies in large-scale simulation using systematic calibration of quadrotor and ball dynamics to reduce the sim-to-real gap. The training incorporates reward shaping to encourage racket-centered hits and sustained juggling, as well as domain randomization over ball position and coefficient of restitution to enhance robustness and transferability. The learned policy outputs mid-level commands executed by a low-level controller and is deployed zero-shot on real hardware, where an enhanced perception module with a lightweight communication protocol reduces delays in high-frequency state estimation and ensures real-time control. Experiments show that JuggleRL achieves an average of $311$ hits over $10$ consecutive trials in the real world, with a maximum of $462$ hits observed, far exceeding a model-based baseline that reaches at most $14$ hits with an average of $3.1$. Moreover, the policy generalizes to unseen conditions, successfully juggling a lighter $5$ g ball with an average of $145.9$ hits. This work demonstrates that reinforcement learning can empower aerial robots with robust and stable control in dynamic interaction tasks.
SAC Flow: Sample-Efficient Reinforcement Learning of Flow-Based Policies via Velocity-Reparameterized Sequential Modeling
Training expressive flow-based policies with off-policy reinforcement learning is notoriously unstable due to gradient pathologies in the multi-step action sampling process. We trace this instability to a fundamental connection: the flow rollout is algebraically equivalent to a residual recurrent computation, making it susceptible to the same vanishing and exploding gradients as RNNs. To address this, we reparameterize the velocity network using principles from modern sequential models, introducing two stable architectures: Flow-G, which incorporates a gated velocity, and Flow-T, which utilizes a decoded velocity. We then develop a practical SAC-based algorithm, enabled by a noise-augmented rollout, that facilitates direct end-to-end training of these policies. Our approach supports both from-scratch and offline-to-online learning and achieves state-of-the-art performance on continuous control and robotic manipulation benchmarks, eliminating the need for common workarounds like policy distillation or surrogate objectives.
Where Did I Leave My Glasses? Open-Vocabulary Semantic Exploration in Real-World Semi-Static Environments
Robots deployed in real-world environments, such as homes, must not only navigate safely but also understand their surroundings and adapt to changes in the environment. To perform tasks efficiently, they must build and maintain a semantic map that accurately reflects the current state of the environment. Existing research on semantic exploration largely focuses on static scenes without persistent object-level instance tracking. In this work, we propose an open-vocabulary, semantic exploration system for semi-static environments. Our system maintains a consistent map by building a probabilistic model of object instance stationarity, systematically tracking semi-static changes, and actively exploring areas that have not been visited for an extended period. In addition to active map maintenance, our approach leverages the map's semantic richness with large language model (LLM)-based reasoning for open-vocabulary object-goal navigation. This enables the robot to search more efficiently by prioritizing contextually relevant areas. We compare our approach against state-of-the-art baselines using publicly available object navigation and mapping datasets, and we further demonstrate real-world transferability in three real-world environments. Our approach outperforms the compared baselines in both success rate and search efficiency for object-navigation tasks and can more reliably handle changes in mapping semi-static environments. In real-world experiments, our system detects 95% of map changes on average, improving efficiency by more than 29% as compared to random and patrol strategies.
IKDiffuser: a Diffusion-based Generative Inverse Kinematics Solver for Kinematic Trees
Solving Inverse Kinematics (IK) for arbitrary kinematic trees presents significant challenges due to their high-dimensionality, redundancy, and complex inter-branch constraints. Conventional optimization-based solvers can be sensitive to initialization and suffer from local minima or conflicting gradients. At the same time, existing learning-based approaches are often tied to a predefined number of end-effectors and a fixed training objective, limiting their reusability across various robot morphologies and task requirements. To address these limitations, we introduce IKDiffuser, a scalable IK solver built upon conditional diffusion-based generative models, which learns the distribution of the configuration space conditioned on end-effector poses. We propose a structure-agnostic formulation that represents end-effector poses as a sequence of tokens, leading to a unified framework that handles varying numbers of end-effectors while learning the implicit kinematic structures entirely from data. Beyond standard IK generation, IKDiffuser handles partially specified goals via a masked marginalization mechanism that conditions only on a subset of end-effector constraints. Furthermore, it supports adding task objectives at inference through objective-guided sampling, enabling capabilities such as warm-start initialization and manipulability maximization without retraining. Extensive evaluations across seven diverse robotic platforms demonstrate that IKDiffuser significantly outperforms state-of-the-art baselines in accuracy, solution diversity, and collision avoidance. Moreover, when used to initialize optimization-based solvers, IKDiffuser significantly boosts success rates on challenging redundant systems with high Degrees of Freedom (DoF), such as the 29-DoF Unitree G1 humanoid, from 21.01% to 96.96% while reducing computation time to the millisecond range.
comment: under review
Tackling the Kidnapped Robot Problem via Sparse Feasible Hypothesis Sampling and Reliable Batched Multi-Stage Inference
This paper addresses the Kidnapped Robot Problem (KRP), a core localization challenge of relocalizing a robot in a known map without prior pose estimate when localization loss or at SLAM initialization. For this purpose, a passive 2-D global relocalization framework is proposed. It estimates the global pose efficiently and reliably from a single LiDAR scan and an occupancy grid map while the robot remains stationary, thereby enhancing the long-term autonomy of mobile robots. The proposed framework casts global relocalization as a non-convex problem and solves it via the multi-hypothesis scheme with batched multi-stage inference and early termination, balancing completeness and efficiency. The Rapidly-exploring Random Tree (RRT), under traversability constraints, asymptotically covers the reachable space to generate sparse, uniformly distributed feasible positional hypotheses, fundamentally reducing the sampling space. The hypotheses are preliminarily ordered by the proposed Scan Mean Absolute Difference (SMAD), a coarse beam-error level metric that facilitates the early termination by prioritizing high-likelihood candidates. The SMAD computation is optimized for limited scan measurements. The Translation-Affinity Scan-to-Map Alignment Metric (TAM) is proposed for reliable orientation selection at hypothesized positions and accurate final global pose evaluation to mitigate degradation in conventional likelihood-field metrics under translational uncertainty induced by sparse hypotheses, as well as non-panoramic LiDAR scan and environmental changes. Real-world experiments on a resource-constrained mobile robot with non-panoramic LiDAR scans show that the proposed framework achieves competitive performance in success rate, robustness under measurement uncertainty, and computational efficiency.
comment: 10 pages, 8 figures. This work has been submitted to the IEEE for possible publication
Autonomous Robotic Bone Micro-Milling System with Automatic Calibration and 3D Surface Fitting RA-L
Automating bone micro-milling using a robotic system presents challenges due to the uncertainties in both the external and internal features of bone tissue. For example, during mouse cranial window creation, a circular path with a radius of 2 to 4 mm needs to be milled on the mouse skull using a microdrill. The uneven surface and non-uniform thickness of the mouse skull make it difficult to fully automate this process, requiring the system to possess advanced perceptual and adaptive capabilities. In this study, we address this challenge by integrating a Microscopic Stereo Camera System (MSCS) into the robotic bone micro-milling system and proposing a novel online pre-measurement pipeline for the target surface. Starting from uncalibrated cameras, the pipeline enables automatic calibration and 3D surface fitting through a convolutional neural network (CNN)-based keypoint detection. Combined with the existing feedback-based system, we develop the world's first autonomous robotic bone micro-milling system capable of rapidly, in real-time perceiving and adapting to surface unevenness and non-uniform thickness, thereby enabling an end-to-end autonomous cranial window creation workflow without human assistance. Validation experiments on euthanized mice demonstrate that the improved system achieves a success rate of 85.7 % and an average milling time of 2.1 minutes, showing not only significant performance improvements over the previous system but also exceptional accuracy, speed, and stability compared to human operators.
comment: 8 pages, 8 figures, accepted by RA-L. Please refer to the DOI to access the accepted version
Large Multimodal Models for Embodied Intelligent Driving: The Next Frontier in Self-Driving?
The advent of Large Multimodal Models (LMMs) offers a promising technology to tackle the limitations of modular design in autonomous driving, which often falters in open-world scenarios requiring sustained environmental understanding and logical reasoning. Besides, embodied artificial intelligence facilitates policy optimization through closed-loop interactions to achieve the continuous learning capability, thereby advancing autonomous driving toward embodied intelligent (El) driving. However, such capability will be constrained by relying solely on LMMs to enhance EI driving without joint decision-making. This article introduces a novel semantics and policy dual-driven hybrid decision framework to tackle this challenge, ensuring continuous learning and joint decision. The framework merges LMMs for semantic understanding and cognitive representation, and deep reinforcement learning (DRL) for real-time policy optimization. We starts by introducing the foundational principles of EI driving and LMMs. Moreover, we examine the emerging opportunities this framework enables, encompassing potential benefits and representative use cases. A case study is conducted experimentally to validate the performance superiority of our framework in completing lane-change planning task. Finally, several future research directions to empower EI driving are identified to guide subsequent work.
Do What You Say: Steering Vision-Language-Action Models via Runtime Reasoning-Action Alignment Verification
Reasoning Vision Language Action (VLA) models improve robotic instruction-following by generating step-by-step textual plans before low-level actions, an approach inspired by Chain-of-Thought (CoT) reasoning in language models. Yet even with a correct textual plan, the generated actions can still miss the intended outcomes in the plan, especially in out-of-distribution (OOD) scenarios. We formalize this phenomenon as a lack of embodied CoT faithfulness, and introduce a training-free, runtime policy steering method for reasoning-action alignment. Given a reasoning VLA's intermediate textual plan, our framework samples multiple candidate action sequences from the same model, predicts their outcomes via simulation, and uses a pre-trained Vision-Language Model (VLM) to select the sequence whose outcome best aligns with the VLA's own textual plan. Only executing action sequences that align with the textual reasoning turns our base VLA's natural action diversity from a source of error into a strength, boosting robustness to semantic and visual OOD perturbations and enabling novel behavior composition without costly re-training. We also contribute a reasoning-annotated extension of LIBERO-100, environment variations tailored for OOD evaluation, and demonstrate up to 15% performance gain over prior work on behavior composition tasks and scales with compute and data diversity. Project Website at: https://yilin-wu98.github.io/steering-reasoning-vla/
Virtual-force Based Visual Servo for Multiple Peg-in-Hole Assembly with Tightly Coupled Multi-Manipulator
Multiple Peg-in-Hole (MPiH) assembly is one of the fundamental tasks in robotic assembly. In the MPiH tasks for large-size parts, it is challenging for a single manipulator to simultaneously align multiple distant pegs and holes, necessitating tightly coupled multi-manipulator systems. For such MPiH tasks using tightly coupled multiple manipulators, we propose a collaborative visual servo control framework that uses only the monocular in-hand cameras of each manipulator to reduce positioning errors. Initially, we train a state classification neural network and a positioning neural network. The former divides the states of the peg and hole in the image into three categories: obscured, separated, and overlapped, while the latter determines the position of the peg and hole in the image. Based on these findings, we propose a method to integrate the visual features of multiple manipulators using virtual forces, which can naturally combine with the cooperative controller of the multi-manipulator system. To generalize our approach to holes of different appearances, we varied the appearance of the holes during the dataset generation process. The results confirm that by considering the appearance of the holes, classification accuracy and positioning precision can be improved. Finally, the results show that our method achieves 100\% success rate in dual-manipulator dual peg-in-hole tasks with a clearance of 0.2 mm, while robust to camera calibration errors.
comment: 8 pages, 11 figures, this paper has been published by IEEE Robotics and Automation Letters
AURASeg: Attention Guided Upsampling with Residual Boundary-Assistive Refinement for Drivable-Area Segmentation
Free space ground segmentation is essential to navigate autonomous robots, recognize drivable zones, and traverse efficiently. Fine-grained features remain challenging for existing segmentation models, particularly for robots in indoor and structured environments. These difficulties arise from ineffective multi-scale processing, suboptimal boundary refinement, and limited feature representation. To address this, we propose Attention-Guided Upsampling with Residual Boundary-Assistive Refinement (AURASeg), a ground-plane semantic segmentation framework designed to improve border precision while preserving strong region accuracy. Built on a ResNet-50 backbone, AURASeg introduces (i) a Residual Border Refinement Module (RBRM) that enhances edge delineation through boundary-assistive feature refinement, and (ii) Attention Progressive Upsampling Decoder (APUD) blocks that progressively fuse multi-level features during decoding. Additionally, we integrate a (iii) lightweight ASPPLite module to capture multi-scale context with minimal overhead. Extensive experiments on CARL-D, the Ground Mobile Robot Perception (GMRP) dataset, and a custom Gazebo indoor dataset show that AURASeg consistently outperforms strong baselines, with notable gains in boundary metrics. Finally, we demonstrate real-time deployment on a Kobuki TurtleBot, validating practical usability. The code is available at https://github.com/Narendhiranv04/AURASeg
comment: 6 pages, 4 figures, 4 tables
DAVOS: An Autonomous Vehicle Operating System in the Vehicle Computing Era
Vehicle computing represents a fundamental shift in how autonomous vehicles are designed and deployed, transforming them from isolated transportation systems into mobile computing platforms that support both safety-critical, real-time driving and data-centric services. In this setting, vehicles simultaneously support real-time driving pipelines and a growing set of data-driven applications, placing increased responsibility on the vehicle operating system to coordinate computation, data movement, storage, and access. These demands highlight recurring system considerations related to predictable execution, data and execution protection, efficient handling of high-rate sensor data, and long-term system evolvability, commonly summarized as Safety, Security, Efficiency, and Extensibility (SSEE). Existing vehicle operating systems and runtimes address these concerns in isolation, resulting in fragmented software stacks that limit coordination between autonomy workloads and vehicle data services. This paper presents DAVOS, the Delaware Autonomous Vehicle Operating System, a unified vehicle operating system architecture designed for the vehicle computing context. DAVOS provides a cohesive operating system foundation that supports both real-time autonomy and extensible vehicle computing within a single system framework.
Computer Vision and Pattern Recognition 154
Fast-ThinkAct: Efficient Vision-Language-Action Reasoning via Verbalizable Latent Planning
Vision-Language-Action (VLA) tasks require reasoning over complex visual scenes and executing adaptive actions in dynamic environments. While recent studies on reasoning VLAs show that explicit chain-of-thought (CoT) can improve generalization, they suffer from high inference latency due to lengthy reasoning traces. We propose Fast-ThinkAct, an efficient reasoning framework that achieves compact yet performant planning through verbalizable latent reasoning. Fast-ThinkAct learns to reason efficiently with latent CoTs by distilling from a teacher, driven by a preference-guided objective to align manipulation trajectories that transfers both linguistic and visual planning capabilities for embodied control. This enables reasoning-enhanced policy learning that effectively connects compact reasoning to action execution. Extensive experiments across diverse embodied manipulation and reasoning benchmarks demonstrate that Fast-ThinkAct achieves strong performance with up to 89.3\% reduced inference latency over state-of-the-art reasoning VLAs, while maintaining effective long-horizon planning, few-shot adaptation, and failure recovery.
comment: Project page: https://jasper0314-huang.github.io/fast-thinkact/
SAM3-DMS: Decoupled Memory Selection for Multi-target Video Segmentation of SAM3
Segment Anything 3 (SAM3) has established a powerful foundation that robustly detects, segments, and tracks specified targets in videos. However, in its original implementation, its group-level collective memory selection is suboptimal for complex multi-object scenarios, as it employs a synchronized decision across all concurrent targets conditioned on their average performance, often overlooking individual reliability. To this end, we propose SAM3-DMS, a training-free decoupled strategy that utilizes fine-grained memory selection on individual objects. Experiments demonstrate that our approach achieves robust identity preservation and tracking stability. Notably, our advantage becomes more pronounced with increased target density, establishing a solid foundation for simultaneous multi-target video segmentation in the wild.
comment: Code: https://github.com/FudanCVL/SAM3-DMS
COMPOSE: Hypergraph Cover Optimization for Multi-view 3D Human Pose Estimation
3D pose estimation from sparse multi-views is a critical task for numerous applications, including action recognition, sports analysis, and human-robot interaction. Optimization-based methods typically follow a two-stage pipeline, first detecting 2D keypoints in each view and then associating these detections across views to triangulate the 3D pose. Existing methods rely on mere pairwise associations to model this correspondence problem, treating global consistency between views (i.e., cycle consistency) as a soft constraint. Yet, reconciling these constraints for multiple views becomes brittle when spurious associations propagate errors. We thus propose COMPOSE, a novel framework that formulates multi-view pose correspondence matching as a hypergraph partitioning problem rather than through pairwise association. While the complexity of the resulting integer linear program grows exponentially in theory, we introduce an efficient geometric pruning strategy to substantially reduce the search space. COMPOSE achieves improvements of up to 23% in average precision over previous optimization-based methods and up to 11% over self-supervised end-to-end learned methods, offering a promising solution to a widely studied problem.
Efficient Camera-Controlled Video Generation of Static Scenes via Sparse Diffusion and 3D Rendering
Modern video generative models based on diffusion models can produce very realistic clips, but they are computationally inefficient, often requiring minutes of GPU time for just a few seconds of video. This inefficiency poses a critical barrier to deploying generative video in applications that require real-time interactions, such as embodied AI and VR/AR. This paper explores a new strategy for camera-conditioned video generation of static scenes: using diffusion-based generative models to generate a sparse set of keyframes, and then synthesizing the full video through 3D reconstruction and rendering. By lifting keyframes into a 3D representation and rendering intermediate views, our approach amortizes the generation cost across hundreds of frames while enforcing geometric consistency. We further introduce a model that predicts the optimal number of keyframes for a given camera trajectory, allowing the system to adaptively allocate computation. Our final method, SRENDER, uses very sparse keyframes for simple trajectories and denser ones for complex camera motion. This results in video generation that is more than 40 times faster than the diffusion-based baseline in generating 20 seconds of video, while maintaining high visual fidelity and temporal stability, offering a practical path toward efficient and controllable video synthesis.
comment: Project page: https://ayushtewari.com/projects/srender/
LLMs can Compress LLMs: Adaptive Pruning by Agents
As Large Language Models (LLMs) continue to scale, post-training pruning has emerged as a promising approach to reduce computational costs while preserving performance. Existing methods such as SparseGPT and Wanda achieve high sparsity through layer-wise weight reconstruction or activation-aware magnitude pruning, but rely on uniform or hand-crafted heuristics to determine per-layer sparsity ratios. Moreover, recent work has shown that pruned LLMs suffer from severe factual knowledge degradation, with structured pruning methods experiencing near-total collapse in factual question-answering capabilities. We introduce agent-guided pruning, where a foundation model acts as an adaptive pruning agent to intelligently select which layers to prune at each iteration while preserving critical knowledge pathways. Our method constructs layer-wise sensitivity profiles by combining Wanda-inspired weight-activation metrics with gradient importance scores, normalized as z-scores for model-agnostic comparison. These statistics are processed by an LLM agent equipped with self-reflection capabilities, enabling it to learn from previous pruning outcomes and iteratively refine its strategy. A checkpoint rollback mechanism maintains model quality by reverting when perplexity degradation exceeds a threshold. We evaluate our approach on Qwen3 models (4B and 8B parameters) at approximately 45% sparsity, demonstrating substantial improvements over structured pruning baselines: 56% relative improvement in MMLU accuracy, 19x better factual knowledge retention on FreebaseQA, and 69% lower perplexity degradation. Notably, our framework requires no retraining, operates in a model-agnostic manner, and exhibits effective self-correction with only 2-4 rollbacks across 21-40 iterations, demonstrating that foundation models can effectively guide the compression of other foundation models.
comment: 17 Pages
STEP3-VL-10B Technical Report
We present STEP3-VL-10B, a lightweight open-source foundation model designed to redefine the trade-off between compact efficiency and frontier-level multimodal intelligence. STEP3-VL-10B is realized through two strategic shifts: first, a unified, fully unfrozen pre-training strategy on 1.2T multimodal tokens that integrates a language-aligned Perception Encoder with a Qwen3-8B decoder to establish intrinsic vision-language synergy; and second, a scaled post-training pipeline featuring over 1k iterations of reinforcement learning. Crucially, we implement Parallel Coordinated Reasoning (PaCoRe) to scale test-time compute, allocating resources to scalable perceptual reasoning that explores and synthesizes diverse visual hypotheses. Consequently, despite its compact 10B footprint, STEP3-VL-10B rivals or surpasses models 10$\times$-20$\times$ larger (e.g., GLM-4.6V-106B, Qwen3-VL-235B) and top-tier proprietary flagships like Gemini 2.5 Pro and Seed-1.5-VL. Delivering best-in-class performance, it records 92.2% on MMBench and 80.11% on MMMU, while excelling in complex reasoning with 94.43% on AIME2025 and 75.95% on MathVision. We release the full model suite to provide the community with a powerful, efficient, and reproducible baseline.
comment: 50 pages
SCE-SLAM: Scale-Consistent Monocular SLAM via Scene Coordinate Embeddings
Monocular visual SLAM enables 3D reconstruction from internet video and autonomous navigation on resource-constrained platforms, yet suffers from scale drift, i.e., the gradual divergence of estimated scale over long sequences. Existing frame-to-frame methods achieve real-time performance through local optimization but accumulate scale drift due to the lack of global constraints among independent windows. To address this, we propose SCE-SLAM, an end-to-end SLAM system that maintains scale consistency through scene coordinate embeddings, which are learned patch-level representations encoding 3D geometric relationships under a canonical scale reference. The framework consists of two key modules: geometry-guided aggregation that leverages 3D spatial proximity to propagate scale information from historical observations through geometry-modulated attention, and scene coordinate bundle adjustment that anchors current estimates to the reference scale through explicit 3D coordinate constraints decoded from the scene coordinate embeddings. Experiments on KITTI, Waymo, and vKITTI demonstrate substantial improvements: our method reduces absolute trajectory error by 8.36m on KITTI compared to the best prior approach, while maintaining 36 FPS and achieving scale consistency across large-scale scenes.
Self-Supervised Animal Identification for Long Videos
Identifying individual animals in long-duration videos is essential for behavioral ecology, wildlife monitoring, and livestock management. Traditional methods require extensive manual annotation, while existing self-supervised approaches are computationally demanding and ill-suited for long sequences due to memory constraints and temporal error propagation. We introduce a highly efficient, self-supervised method that reframes animal identification as a global clustering task rather than a sequential tracking problem. Our approach assumes a known, fixed number of individuals within a single video -- a common scenario in practice -- and requires only bounding box detections and the total count. By sampling pairs of frames, using a frozen pre-trained backbone, and employing a self-bootstrapping mechanism with the Hungarian algorithm for in-batch pseudo-label assignment, our method learns discriminative features without identity labels. We adapt a Binary Cross Entropy loss from vision-language models, enabling state-of-the-art accuracy ($>$97\%) while consuming less than 1 GB of GPU memory per batch -- an order of magnitude less than standard contrastive methods. Evaluated on challenging real-world datasets (3D-POP pigeons and 8-calves feeding videos), our framework matches or surpasses supervised baselines trained on over 1,000 labeled frames, effectively removing the manual annotation bottleneck. This work enables practical, high-accuracy animal identification on consumer-grade hardware, with broad applicability in resource-constrained research settings. All code written for this paper are \href{https://huggingface.co/datasets/tonyFang04/8-calves}{here}.
comment: 11 pages, 1 figure
LiteEmbed: Adapting CLIP to Rare Classes
Large-scale vision-language models such as CLIP achieve strong zero-shot recognition but struggle with classes that are rarely seen during pretraining, including newly emerging entities and culturally specific categories. We introduce LiteEmbed, a lightweight framework for few-shot personalization of CLIP that enables new classes to be added without retraining its encoders. LiteEmbed performs subspace-guided optimization of text embeddings within CLIP's vocabulary, leveraging a PCA-based decomposition that disentangles coarse semantic directions from fine-grained variations. Two complementary objectives, coarse alignment and fine separation, jointly preserve global semantic consistency while enhancing discriminability among visually similar classes. Once optimized, the embeddings are plug-and-play, seamlessly substituting CLIP's original text features across classification, retrieval, segmentation, and detection tasks. Extensive experiments demonstrate substantial gains over prior methods, establishing LiteEmbed as an effective approach for adapting CLIP to underrepresented, rare, or unseen classes.
comment: 14 pages, 12 figures
Image2Garment: Simulation-ready Garment Generation from a Single Image
Estimating physically accurate, simulation-ready garments from a single image is challenging due to the absence of image-to-physics datasets and the ill-posed nature of this problem. Prior methods either require multi-view capture and expensive differentiable simulation or predict only garment geometry without the material properties required for realistic simulation. We propose a feed-forward framework that sidesteps these limitations by first fine-tuning a vision-language model to infer material composition and fabric attributes from real images, and then training a lightweight predictor that maps these attributes to the corresponding physical fabric parameters using a small dataset of material-physics measurements. Our approach introduces two new datasets (FTAG and T2P) and delivers simulation-ready garments from a single image without iterative optimization. Experiments show that our estimator achieves superior accuracy in material composition estimation and fabric attribute prediction, and by passing them through our physics parameter estimator, we further achieve higher-fidelity simulations compared to state-of-the-art image-to-garment methods.
AquaFeat+: an Underwater Vision Learning-based Enhancement Method for Object Detection, Classification, and Tracking
Underwater video analysis is particularly challenging due to factors such as low lighting, color distortion, and turbidity, which compromise visual data quality and directly impact the performance of perception modules in robotic applications. This work proposes AquaFeat+, a plug-and-play pipeline designed to enhance features specifically for automated vision tasks, rather than for human perceptual quality. The architecture includes modules for color correction, hierarchical feature enhancement, and an adaptive residual output, which are trained end-to-end and guided directly by the loss function of the final application. Trained and evaluated in the FishTrack23 dataset, AquaFeat+ achieves significant improvements in object detection, classification, and tracking metrics, validating its effectiveness for enhancing perception tasks in underwater robotic applications.
Identifying Models Behind Text-to-Image Leaderboards
Text-to-image (T2I) models are increasingly popular, producing a large share of AI-generated images online. To compare model quality, voting-based leaderboards have become the standard, relying on anonymized model outputs for fairness. In this work, we show that such anonymity can be easily broken. We find that generations from each T2I model form distinctive clusters in the image embedding space, enabling accurate deanonymization without prompt control or training data. Using 22 models and 280 prompts (150K images), our centroid-based method achieves high accuracy and reveals systematic model-specific signatures. We further introduce a prompt-level distinguishability metric and conduct large-scale analyses showing how certain prompts can lead to near-perfect distinguishability. Our findings expose fundamental security flaws in T2I leaderboards and motivate stronger anonymization defenses.
PersonalAlign: Hierarchical Implicit Intent Alignment for Personalized GUI Agent with Long-Term User-Centric Records
While GUI agents have shown strong performance under explicit and completion instructions, real-world deployment requires aligning with users' more complex implicit intents. In this work, we highlight Hierarchical Implicit Intent Alignment for Personalized GUI Agent (PersonalAlign), a new agent task that requires agents to leverage long-term user records as persistent context to resolve omitted preferences in vague instructions and anticipate latent routines by user state for proactive assistance. To facilitate this study, we introduce AndroidIntent, a benchmark designed to evaluate agents' ability in resolving vague instructions and providing proactive suggestions through reasoning over long-term user records. We annotated 775 user-specific preferences and 215 routines from 20k long-term records across different users for evaluation. Furthermore, we introduce Hierarchical Intent Memory Agent (HIM-Agent), which maintains a continuously updating personal memory and hierarchically organizes user preferences and routines for personalization. Finally, we evaluate a range of GUI agents on AndroidIntent, including GPT-5, Qwen3-VL, and UI-TARS, further results show that HIM-Agent significantly improves both execution and proactive performance by 15.7% and 7.3%.
Toward Understanding Unlearning Difficulty: A Mechanistic Perspective and Circuit-Guided Difficulty Metric
Machine unlearning is becoming essential for building trustworthy and compliant language models. Yet unlearning success varies considerably across individual samples: some are reliably erased, while others persist despite the same procedure. We argue that this disparity is not only a data-side phenomenon, but also reflects model-internal mechanisms that encode and protect memorized information. We study this problem from a mechanistic perspective based on model circuits--structured interaction pathways that govern how predictions are formed. We propose Circuit-guided Unlearning Difficulty (CUD), a {\em pre-unlearning} metric that assigns each sample a continuous difficulty score using circuit-level signals. Extensive experiments demonstrate that CUD reliably separates intrinsically easy and hard samples, and remains stable across unlearning methods. We identify key circuit-level patterns that reveal a mechanistic signature of difficulty: easy-to-unlearn samples are associated with shorter, shallower interactions concentrated in earlier-to-intermediate parts of the original model, whereas hard samples rely on longer and deeper pathways closer to late-stage computation. Compared to existing qualitative studies, CUD takes a first step toward a principled, fine-grained, and interpretable analysis of unlearning difficulty; and motivates the development of unlearning methods grounded in model mechanisms.
CogRail: Benchmarking VLMs in Cognitive Intrusion Perception for Intelligent Railway Transportation Systems
Accurate and early perception of potential intrusion targets is essential for ensuring the safety of railway transportation systems. However, most existing systems focus narrowly on object classification within fixed visual scopes and apply rule-based heuristics to determine intrusion status, often overlooking targets that pose latent intrusion risks. Anticipating such risks requires the cognition of spatial context and temporal dynamics for the object of interest (OOI), which presents challenges for conventional visual models. To facilitate deep intrusion perception, we introduce a novel benchmark, CogRail, which integrates curated open-source datasets with cognitively driven question-answer annotations to support spatio-temporal reasoning and prediction. Building upon this benchmark, we conduct a systematic evaluation of state-of-the-art visual-language models (VLMs) using multimodal prompts to identify their strengths and limitations in this domain. Furthermore, we fine-tune VLMs for better performance and propose a joint fine-tuning framework that integrates three core tasks, position perception, movement prediction, and threat analysis, facilitating effective adaptation of general-purpose foundation models into specialized models tailored for cognitive intrusion perception. Extensive experiments reveal that current large-scale multimodal models struggle with the complex spatial-temporal reasoning required by the cognitive intrusion perception task, underscoring the limitations of existing foundation models in this safety-critical domain. In contrast, our proposed joint fine-tuning framework significantly enhances model performance by enabling targeted adaptation to domain-specific reasoning demands, highlighting the advantages of structured multi-task learning in improving both accuracy and interpretability. Code will be available at https://github.com/Hub-Tian/CogRail.
GRCF: Two-Stage Groupwise Ranking and Calibration Framework for Multimodal Sentiment Analysis
Most Multimodal Sentiment Analysis research has focused on point-wise regression. While straightforward, this approach is sensitive to label noise and neglects whether one sample is more positive than another, resulting in unstable predictions and poor correlation alignment. Pairwise ordinal learning frameworks emerged to address this gap, capturing relative order by learning from comparisons. Yet, they introduce two new trade-offs: First, they assign uniform importance to all comparisons, failing to adaptively focus on hard-to-rank samples. Second, they employ static ranking margins, which fail to reflect the varying semantic distances between sentiment groups. To address this, we propose a Two-Stage Group-wise Ranking and Calibration Framework (GRCF) that adapts the philosophy of Group Relative Policy Optimization (GRPO). Our framework resolves these trade-offs by simultaneously preserving relative ordinal structure, ensuring absolute score calibration, and adaptively focusing on difficult samples. Specifically, Stage 1 introduces a GRPO-inspired Advantage-Weighted Dynamic Margin Ranking Loss to build a fine-grained ordinal structure. Stage 2 then employs an MAE-driven objective to align prediction magnitudes. To validate its generalizability, we extend GRCF to classification tasks, including multimodal humor detection and sarcasm detection. GRCF achieves state-of-the-art performance on core regression benchmarks, while also showing strong generalizability in classification tasks.
Sim2real Image Translation Enables Viewpoint-Robust Policies from Fixed-Camera Datasets
Vision-based policies for robot manipulation have achieved significant recent success, but are still brittle to distribution shifts such as camera viewpoint variations. Robot demonstration data is scarce and often lacks appropriate variation in camera viewpoints. Simulation offers a way to collect robot demonstrations at scale with comprehensive coverage of different viewpoints, but presents a visual sim2real challenge. To bridge this gap, we propose MANGO -- an unpaired image translation method with a novel segmentation-conditioned InfoNCE loss, a highly-regularized discriminator design, and a modified PatchNCE loss. We find that these elements are crucial for maintaining viewpoint consistency during sim2real translation. When training MANGO, we only require a small amount of fixed-camera data from the real world, but show that our method can generate diverse unseen viewpoints by translating simulated observations. In this domain, MANGO outperforms all other image translation methods we tested. Imitation-learning policies trained on data augmented by MANGO are able to achieve success rates as high as 60\% on views that the non-augmented policy fails completely on.
Iterative Differential Entropy Minimization (IDEM) method for fine rigid pairwise 3D Point Cloud Registration: A Focus on the Metric
Point cloud registration is a central theme in computer vision, with alignment algorithms continuously improving for greater robustness. Commonly used methods evaluate Euclidean distances between point clouds and minimize an objective function, such as Root Mean Square Error (RMSE). However, these approaches are most effective when the point clouds are well-prealigned and issues such as differences in density, noise, holes, and limited overlap can compromise the results. Traditional methods, such as Iterative Closest Point (ICP), require choosing one point cloud as fixed, since Euclidean distances lack commutativity. When only one point cloud has issues, adjustments can be made, but in real scenarios, both point clouds may be affected, often necessitating preprocessing. The authors introduce a novel differential entropy-based metric, designed to serve as the objective function within an optimization framework for fine rigid pairwise 3D point cloud registration, denoted as Iterative Differential Entropy Minimization (IDEM). This metric does not depend on the choice of a fixed point cloud and, during transformations, reveals a clear minimum corresponding to the best alignment. Multiple case studies are conducted, and the results are compared with those obtained using RMSE, Chamfer distance, and Hausdorff distance. The proposed metric proves effective even with density differences, noise, holes, and partial overlap, where RMSE does not always yield optimal alignment.
Show, don't tell -- Providing Visual Error Feedback for Handwritten Documents
Handwriting remains an essential skill, particularly in education. Therefore, providing visual feedback on handwritten documents is an important but understudied area. We outline the many challenges when going from an image of handwritten input to correctly placed informative error feedback. We empirically compare modular and end-to-end systems and find that both approaches currently do not achieve acceptable overall quality. We identify the major challenges and outline an agenda for future research.
Multimodal Signal Processing For Thermo-Visible-Lidar Fusion In Real-time 3D Semantic Mapping
In complex environments, autonomous robot navigation and environmental perception pose higher requirements for SLAM technology. This paper presents a novel method for semantically enhancing 3D point cloud maps with thermal information. By first performing pixel-level fusion of visible and infrared images, the system projects real-time LiDAR point clouds onto this fused image stream. It then segments heat source features in the thermal channel to instantly identify high temperature targets and applies this temperature information as a semantic layer on the final 3D map. This approach generates maps that not only have accurate geometry but also possess a critical semantic understanding of the environment, making it highly valuable for specific applications like rapid disaster assessment and industrial preventive maintenance.
comment: 5 pages,7 figures. Under review
OpenVoxel: Training-Free Grouping and Captioning Voxels for Open-Vocabulary 3D Scene Understanding
We propose OpenVoxel, a training-free algorithm for grouping and captioning sparse voxels for the open-vocabulary 3D scene understanding tasks. Given the sparse voxel rasterization (SVR) model obtained from multi-view images of a 3D scene, our OpenVoxel is able to produce meaningful groups that describe different objects in the scene. Also, by leveraging powerful Vision Language Models (VLMs) and Multi-modal Large Language Models (MLLMs), our OpenVoxel successfully build an informative scene map by captioning each group, enabling further 3D scene understanding tasks such as open-vocabulary segmentation (OVS) or referring expression segmentation (RES). Unlike previous methods, our method is training-free and does not introduce embeddings from a CLIP/BERT text encoder. Instead, we directly proceed with text-to-text search using MLLMs. Through extensive experiments, our method demonstrates superior performance compared to recent studies, particularly in complex referring expression segmentation (RES) tasks. The code will be open.
comment: project page: https://peterjohnsonhuang.github.io/openvoxel-pages/
Trustworthy Longitudinal Brain MRI Completion: A Deformation-Based Approach with KAN-Enhanced Diffusion Model
Longitudinal brain MRI is essential for lifespan study, yet high attrition rates often lead to missing data, complicating analysis. Deep generative models have been explored, but most rely solely on image intensity, leading to two key limitations: 1) the fidelity or trustworthiness of the generated brain images are limited, making downstream studies questionable; 2) the usage flexibility is restricted due to fixed guidance rooted in the model structure, restricting full ability to versatile application scenarios. To address these challenges, we introduce DF-DiffCom, a Kolmogorov-Arnold Networks (KAN)-enhanced diffusion model that smartly leverages deformation fields for trustworthy longitudinal brain image completion. Trained on OASIS-3, DF-DiffCom outperforms state-of-the-art methods, improving PSNR by 5.6% and SSIM by 0.12. More importantly, its modality-agnostic nature allows smooth extension to varied MRI modalities, even to attribute maps such as brain tissue segmentation results.
Hot-Start from Pixels: Low-Resolution Visual Tokens for Chinese Language Modeling
Large language models typically represent Chinese characters as discrete index-based tokens, largely ignoring their visual form. For logographic scripts, visual structure carries semantic and phonetic information, which may aid prediction. We investigate whether low-resolution visual inputs can serve as an alternative for character-level modeling. Instead of token IDs, our decoder receives grayscale images of individual characters, with resolutions as low as $8 \times 8$ pixels. Remarkably, these inputs achieve 39.2\% accuracy, comparable to the index-based baseline of 39.1\%. Such low-resource settings also exhibit a pronounced \emph{hot-start} effect: by 0.4\% of total training, accuracy reaches above 12\%, while index-based models lag at below 6\%. Overall, our results demonstrate that minimal visual structure can provide a robust and efficient signal for Chinese language modeling, offering an alternative perspective on character representation that complements traditional index-based approaches.
comment: 15 pages, 5 figures, submitted to ACL 2026
Bipartite Mode Matching for Vision Training Set Search from a Hierarchical Data Server AAAI 2026
We explore a situation in which the target domain is accessible, but real-time data annotation is not feasible. Instead, we would like to construct an alternative training set from a large-scale data server so that a competitive model can be obtained. For this problem, because the target domain usually exhibits distinct modes (i.e., semantic clusters representing data distribution), if the training set does not contain these target modes, the model performance would be compromised. While prior existing works improve algorithms iteratively, our research explores the often-overlooked potential of optimizing the structure of the data server. Inspired by the hierarchical nature of web search engines, we introduce a hierarchical data server, together with a bipartite mode matching algorithm (BMM) to align source and target modes. For each target mode, we look in the server data tree for the best mode match, which might be large or small in size. Through bipartite matching, we aim for all target modes to be optimally matched with source modes in a one-on-one fashion. Compared with existing training set search algorithms, we show that the matched server modes constitute training sets that have consistently smaller domain gaps with the target domain across object re-identification (re-ID) and detection tasks. Consequently, models trained on our searched training sets have higher accuracy than those trained otherwise. BMM allows data-centric unsupervised domain adaptation (UDA) orthogonal to existing model-centric UDA methods. By combining the BMM with existing UDA methods like pseudo-labeling, further improvement is observed.
comment: Accepted to AAAI 2026
GlovEgo-HOI: Bridging the Synthetic-to-Real Gap for Industrial Egocentric Human-Object Interaction Detection
Egocentric Human-Object Interaction (EHOI) analysis is crucial for industrial safety, yet the development of robust models is hindered by the scarcity of annotated domain-specific data. We address this challenge by introducing a data generation framework that combines synthetic data with a diffusion-based process to augment real-world images with realistic Personal Protective Equipment (PPE). We present GlovEgo-HOI, a new benchmark dataset for industrial EHOI, and GlovEgo-Net, a model integrating Glove-Head and Keypoint- Head modules to leverage hand pose information for enhanced interaction detection. Extensive experiments demonstrate the effectiveness of the proposed data generation framework and GlovEgo-Net. To foster further research, we release the GlovEgo-HOI dataset, augmentation pipeline, and pre-trained models at: GitHub project.
comment: 8 pages, accepted as a Short Paper at VISAPP 2026
Video Joint-Embedding Predictive Architectures for Facial Expression Recognition
This paper introduces a novel application of Video Joint-Embedding Predictive Architectures (V-JEPAs) for Facial Expression Recognition (FER). Departing from conventional pre-training methods for video understanding that rely on pixel-level reconstructions, V-JEPAs learn by predicting embeddings of masked regions from the embeddings of unmasked regions. This enables the trained encoder to not capture irrelevant information about a given video like the color of a region of pixels in the background. Using a pre-trained V-JEPA video encoder, we train shallow classifiers using the RAVDESS and CREMA-D datasets, achieving state-of-the-art performance on RAVDESS and outperforming all other vision-based methods on CREMA-D (+1.48 WAR). Furthermore, cross-dataset evaluations reveal strong generalization capabilities, demonstrating the potential of purely embedding-based pre-training approaches to advance FER. We release our code at https://github.com/lennarteingunia/vjepa-for-fer.
comment: To appear in 2025 Proceedings of the 13th International Conference on Affective Computing and Intelligent Interaction (ACII), submitted to IEEE. \c{opyright} 2025 IEEE
Class Adaptive Conformal Training
Deep neural networks have achieved remarkable success across a variety of tasks, yet they often suffer from unreliable probability estimates. As a result, they can be overconfident in their predictions. Conformal Prediction (CP) offers a principled framework for uncertainty quantification, yielding prediction sets with rigorous coverage guarantees. Existing conformal training methods optimize for overall set size, but shaping the prediction sets in a class-conditional manner is not straightforward and typically requires prior knowledge of the data distribution. In this work, we introduce Class Adaptive Conformal Training (CaCT), which formulates conformal training as an augmented Lagrangian optimization problem that adaptively learns to shape prediction sets class-conditionally without making any distributional assumptions. Experiments on multiple benchmark datasets, including standard and long-tailed image recognition as well as text classification, demonstrate that CaCT consistently outperforms prior conformal training methods, producing significantly smaller and more informative prediction sets while maintaining the desired coverage guarantees.
Learning Whole-Body Human-Humanoid Interaction from Human-Human Demonstrations
Enabling humanoid robots to physically interact with humans is a critical frontier, but progress is hindered by the scarcity of high-quality Human-Humanoid Interaction (HHoI) data. While leveraging abundant Human-Human Interaction (HHI) data presents a scalable alternative, we first demonstrate that standard retargeting fails by breaking the essential contacts. We address this with PAIR (Physics-Aware Interaction Retargeting), a contact-centric, two-stage pipeline that preserves contact semantics across morphology differences to generate physically consistent HHoI data. This high-quality data, however, exposes a second failure: conventional imitation learning policies merely mimic trajectories and lack interactive understanding. We therefore introduce D-STAR (Decoupled Spatio-Temporal Action Reasoner), a hierarchical policy that disentangles when to act from where to act. In D-STAR, Phase Attention (when) and a Multi-Scale Spatial module (where) are fused by the diffusion head to produce synchronized whole-body behaviors beyond mimicry. By decoupling these reasoning streams, our model learns robust temporal phases without being distracted by spatial noise, leading to responsive, synchronized collaboration. We validate our framework through extensive and rigorous simulations, demonstrating significant performance gains over baseline approaches and a complete, effective pipeline for learning complex whole-body interactions from HHI data.
V-DPM: 4D Video Reconstruction with Dynamic Point Maps
Powerful 3D representations such as DUSt3R invariant point maps, which encode 3D shape and camera parameters, have significantly advanced feed forward 3D reconstruction. While point maps assume static scenes, Dynamic Point Maps (DPMs) extend this concept to dynamic 3D content by additionally representing scene motion. However, existing DPMs are limited to image pairs and, like DUSt3R, require post processing via optimization when more than two views are involved. We argue that DPMs are more useful when applied to videos and introduce V-DPM to demonstrate this. First, we show how to formulate DPMs for video input in a way that maximizes representational power, facilitates neural prediction, and enables reuse of pretrained models. Second, we implement these ideas on top of VGGT, a recent and powerful 3D reconstructor. Although VGGT was trained on static scenes, we show that a modest amount of synthetic data is sufficient to adapt it into an effective V-DPM predictor. Our approach achieves state of the art performance in 3D and 4D reconstruction for dynamic scenes. In particular, unlike recent dynamic extensions of VGGT such as P3, DPMs recover not only dynamic depth but also the full 3D motion of every point in the scene.
comment: Project page: https://www.robots.ox.ac.uk/~vgg/research/vdpm/
Towards Robust Cross-Dataset Object Detection Generalization under Domain Specificity
Object detectors often perform well in-distribution, yet degrade sharply on a different benchmark. We study cross-dataset object detection (CD-OD) through a lens of setting specificity. We group benchmarks into setting-agnostic datasets with diverse everyday scenes and setting-specific datasets tied to a narrow environment, and evaluate a standard detector family across all train--test pairs. This reveals a clear structure in CD-OD: transfer within the same setting type is relatively stable, while transfer across setting types drops substantially and is often asymmetric. The most severe breakdowns occur when transferring from specific sources to agnostic targets, and persist after open-label alignment, indicating that domain shift dominates in the hardest regimes. To disentangle domain shift from label mismatch, we compare closed-label transfer with an open-label protocol that maps predicted classes to the nearest target label using CLIP similarity. Open-label evaluation yields consistent but bounded gains, and many corrected cases correspond to semantic near-misses supported by the image evidence. Overall, we provide a principled characterization of CD-OD under setting specificity and practical guidance for evaluating detectors under distribution shift. Code will be released at \href{[https://github.com/Ritabrata04/cdod-icpr.git}{https://github.com/Ritabrata04/cdod-icpr}.
comment: 15 pages, 4 figures, 6 tables
MAD: Motion Appearance Decoupling for efficient Driving World Models
Recent video diffusion models generate photorealistic, temporally coherent videos, yet they fall short as reliable world models for autonomous driving, where structured motion and physically consistent interactions are essential. Adapting these generalist video models to driving domains has shown promise but typically requires massive domain-specific data and costly fine-tuning. We propose an efficient adaptation framework that converts generalist video diffusion models into controllable driving world models with minimal supervision. The key idea is to decouple motion learning from appearance synthesis. First, the model is adapted to predict structured motion in a simplified form: videos of skeletonized agents and scene elements, focusing learning on physical and social plausibility. Then, the same backbone is reused to synthesize realistic RGB videos conditioned on these motion sequences, effectively "dressing" the motion with texture and lighting. This two-stage process mirrors a reasoning-rendering paradigm: first infer dynamics, then render appearance. Our experiments show this decoupled approach is exceptionally efficient: adapting SVD, we match prior SOTA models with less than 6% of their compute. Scaling to LTX, our MAD-LTX model outperforms all open-source competitors, and supports a comprehensive suite of text, ego, and object controls. Project page: https://vita-epfl.github.io/MAD-World-Model/
PrivLEX: Detecting legal concepts in images through Vision-Language Models
We present PrivLEX, a novel image privacy classifier that grounds its decisions in legally defined personal data concepts. PrivLEX is the first interpretable privacy classifier aligned with legal concepts that leverages the recognition capabilities of Vision-Language Models (VLMs). PrivLEX relies on zero-shot VLM concept detection to provide interpretable classification through a label-free Concept Bottleneck Model, without requiring explicit concept labels during training. We demonstrate PrivLEX's ability to identify personal data concepts that are present in images. We further analyse the sensitivity of such concepts as perceived by human annotators of image privacy datasets.
Do Transformers Understand Ancient Roman Coin Motifs Better than CNNs?
Automated analysis of ancient coins has the potential to help researchers extract more historical insights from large collections of coins and to help collectors understand what they are buying or selling. Recent research in this area has shown promise in focusing on identification of semantic elements as they are commonly depicted on ancient coins, by using convolutional neural networks (CNNs). This paper is the first to apply the recently proposed Vision Transformer (ViT) deep learning architecture to the task of identification of semantic elements on coins, using fully automatic learning from multi-modal data (images and unstructured text). This article summarises previous research in the area, discusses the training and implementation of ViT and CNN models for ancient coins analysis and provides an evaluation of their performance. The ViT models were found to outperform the newly trained CNN models in accuracy.
Video-MSR: Benchmarking Multi-hop Spatial Reasoning Capabilities of MLLMs
Spatial reasoning has emerged as a critical capability for Multimodal Large Language Models (MLLMs), drawing increasing attention and rapid advancement. However, existing benchmarks primarily focus on single-step perception-to-judgment tasks, leaving scenarios requiring complex visual-spatial logical chains significantly underexplored. To bridge this gap, we introduce Video-MSR, the first benchmark specifically designed to evaluate Multi-hop Spatial Reasoning (MSR) in dynamic video scenarios. Video-MSR systematically probes MSR capabilities through four distinct tasks: Constrained Localization, Chain-based Reference Retrieval, Route Planning, and Counterfactual Physical Deduction. Our benchmark comprises 3,052 high-quality video instances with 4,993 question-answer pairs, constructed via a scalable, visually-grounded pipeline combining advanced model generation with rigorous human verification. Through a comprehensive evaluation of 20 state-of-the-art MLLMs, we uncover significant limitations, revealing that while models demonstrate proficiency in surface-level perception, they exhibit distinct performance drops in MSR tasks, frequently suffering from spatial disorientation and hallucination during multi-step deductions. To mitigate these shortcomings and empower models with stronger MSR capabilities, we further curate MSR-9K, a specialized instruction-tuning dataset, and fine-tune Qwen-VL, achieving a +7.82% absolute improvement on Video-MSR. Our results underscore the efficacy of multi-hop spatial instruction data and establish Video-MSR as a vital foundation for future research. The code and data will be available at https://github.com/ruiz-nju/Video-MSR.
Radiomics-Integrated Deep Learning with Hierarchical Loss for Osteosarcoma Histology Classification
Osteosarcoma (OS) is an aggressive primary bone malignancy. Accurate histopathological assessment of viable versus non-viable tumor regions after neoadjuvant chemotherapy is critical for prognosis and treatment planning, yet manual evaluation remains labor-intensive, subjective, and prone to inter-observer variability. Recent advances in digital pathology have enabled automated necrosis quantification. Evaluating on test data, independently sampled on patient-level, revealed that the deep learning model performance dropped significantly from the tile-level generalization ability reported in previous studies. First, this work proposes the use of radiomic features as additional input in model training. We show that, despite that they are derived from the images, such a multimodal input effectively improved the classification performance, in addition to its added benefits in interpretability. Second, this work proposes to optimize two binary classification tasks with hierarchical classes (i.e. tumor-vs-non-tumor and viable-vs-non-viable), as opposed to the alternative ``flat'' three-class classification task (i.e. non-tumor, non-viable tumor, viable tumor), thereby enabling a hierarchical loss. We show that such a hierarchical loss, with trainable weightings between the two tasks, the per-class performance can be improved significantly. Using the TCIA OS Tumor Assessment dataset, we experimentally demonstrate the benefits from each of the proposed new approaches and their combination, setting a what we consider new state-of-the-art performance on this open dataset for this application. Code and trained models: https://github.com/YaxiiC/RadiomicsOS.git.
Detail Loss in Super-Resolution Models Based on the Laplacian Pyramid and Repeated Upscaling and Downscaling Process
With advances in artificial intelligence, image processing has gained significant interest. Image super-resolution is a vital technology closely related to real-world applications, as it enhances the quality of existing images. Since enhancing fine details is crucial for the super-resolution task, pixels that contribute to high-frequency information should be emphasized. This paper proposes two methods to enhance high-frequency details in super-resolution images: a Laplacian pyramid-based detail loss and a repeated upscaling and downscaling process. Total loss with our detail loss guides a model by separately generating and controlling super-resolution and detail images. This approach allows the model to focus more effectively on high-frequency components, resulting in improved super-resolution images. Additionally, repeated upscaling and downscaling amplify the effectiveness of the detail loss by extracting diverse information from multiple low-resolution features. We conduct two types of experiments. First, we design a CNN-based model incorporating our methods. This model achieves state-of-the-art results, surpassing all currently available CNN-based and even some attention-based models. Second, we apply our methods to existing attention-based models on a small scale. In all our experiments, attention-based models adding our detail loss show improvements compared to the originals. These results demonstrate our approaches effectively enhance super-resolution images across different model structures.
comment: Accepted for publication in IET Image Processing. This is the authors' final accepted manuscript
Spectral Complex Autoencoder Pruning: A Fidelity-Guided Criterion for Extreme Structured Channel Compression
We propose Spectral Complex Autoencoder Pruning (SCAP), a reconstruction-based criterion that measures functional redundancy at the level of individual output channels. For each convolutional layer, we construct a complex interaction field by pairing the full multi-channel input activation as the real part with a single output-channel activation (spatially aligned and broadcast across input channels) as the imaginary part. We transform this complex field to the frequency domain and train a low-capacity autoencoder to reconstruct normalized spectra. Channels whose spectra are reconstructed with high fidelity are interpreted as lying close to a low-dimensional manifold captured by the autoencoder and are therefore more compressible; conversely, channels with low fidelity are retained as they encode information that cannot be compactly represented by the learned manifold. This yields an importance score (optionally fused with the filter L1 norm) that supports simple threshold-based pruning and produces a structurally consistent pruned network. On VGG16 trained on CIFAR-10, at a fixed threshold of 0.6, we obtain 90.11% FLOP reduction and 96.30% parameter reduction with an absolute Top-1 accuracy drop of 1.67% from a 93.44% baseline after fine-tuning, demonstrating that spectral reconstruction fidelity of complex interaction fields is an effective proxy for channel-level redundancy under aggressive compression.
comment: 17 pages, 9 figures
See More, Store Less: Memory-Efficient Resolution for Video Moment Retrieval
Recent advances in Multimodal Large Language Models (MLLMs) have improved image recognition and reasoning, but video-related tasks remain challenging due to memory constraints from dense frame processing. Existing Video Moment Retrieval (VMR) methodologies rely on sparse frame sampling, risking potential information loss, especially in lengthy videos. We propose SMORE (See MORE, store less), a framework that enhances memory efficiency while maintaining high information resolution. SMORE (1) uses query-guided captions to encode semantics aligned with user intent, (2) applies query-aware importance modulation to highlight relevant segments, and (3) adaptively compresses frames to preserve key content while reducing redundancy. This enables efficient video understanding without exceeding memory budgets. Experimental validation reveals that SMORE achieves state-of-the-art performance on QVHighlights, Charades-STA, and ActivityNet-Captions benchmarks.
Beyond the final layer: Attentive multilayer fusion for vision transformers
With the rise of large-scale foundation models, efficiently adapting them to downstream tasks remains a central challenge. Linear probing, which freezes the backbone and trains a lightweight head, is computationally efficient but often restricted to last-layer representations. We show that task-relevant information is distributed across the network hierarchy rather than solely encoded in any of the last layers. To leverage this distribution of information, we apply an attentive probing mechanism that dynamically fuses representations from all layers of a Vision Transformer. This mechanism learns to identify the most relevant layers for a target task and combines low-level structural cues with high-level semantic abstractions. Across 20 diverse datasets and multiple pretrained foundation models, our method achieves consistent, substantial gains over standard linear probes. Attention heatmaps further reveal that tasks different from the pre-training domain benefit most from intermediate representations. Overall, our findings underscore the value of intermediate layer information and demonstrate a principled, task aware approach for unlocking their potential in probing-based adaptation.
Frequency Error-Guided Under-sampling Optimization for Multi-Contrast MRI Reconstruction
Magnetic resonance imaging (MRI) plays a vital role in clinical diagnostics, yet it remains hindered by long acquisition times and motion artifacts. Multi-contrast MRI reconstruction has emerged as a promising direction by leveraging complementary information from fully-sampled reference scans. However, existing approaches suffer from three major limitations: (1) superficial reference fusion strategies, such as simple concatenation, (2) insufficient utilization of the complementary information provided by the reference contrast, and (3) fixed under-sampling patterns. We propose an efficient and interpretable frequency error-guided reconstruction framework to tackle these issues. We first employ a conditional diffusion model to learn a Frequency Error Prior (FEP), which is then incorporated into a unified framework for jointly optimizing both the under-sampling pattern and the reconstruction network. The proposed reconstruction model employs a model-driven deep unfolding framework that jointly exploits frequency- and image-domain information. In addition, a spatial alignment module and a reference feature decomposition strategy are incorporated to improve reconstruction quality and bridge model-based optimization with data-driven learning for improved physical interpretability. Comprehensive validation across multiple imaging modalities, acceleration rates (4-30x), and sampling schemes demonstrates consistent superiority over state-of-the-art methods in both quantitative metrics and visual quality. All codes are available at https://github.com/fangxinming/JUF-MRI.
comment: 44 pages, 12 figures, 7 tables
Multi-Modal LLM based Image Captioning in ICT: Bridging the Gap Between General and Industry Domain
In the information and communications technology (ICT) industry, training a domain-specific large language model (LLM) or constructing a retrieval-augmented generation system requires a substantial amount of high-value domain knowledge. However, the knowledge is not only hidden in the textual modality but also in the image modality. Traditional methods can parse text from domain documents but dont have image captioning ability. Multi-modal LLM (MLLM) can understand images, but they do not have sufficient domain knowledge. To address the above issues, this paper proposes a multi-stage progressive training strategy to train a Domain-specific Image Captioning Model (DICModel) in ICT, and constructs a standard evaluation system to validate the performance of DICModel. Specifically, this work first synthesizes about 7K image-text pairs by combining the Mermaid tool and LLMs, which are used for the first-stage supervised-fine-tuning (SFT) of DICModel. Then, ICT-domain experts manually annotate about 2K image-text pairs for the second-stage SFT of DICModel. Finally, experts and LLMs jointly synthesize about 1.5K visual question answering data for the instruction-based SFT. Experimental results indicate that our DICModel with only 7B parameters performs better than other state-of-the-art models with 32B parameters. Compared to the SOTA models with 7B and 32B parameters, our DICModel increases the BLEU metric by approximately 56.8% and 20.8%, respectively. On the objective questions constructed by ICT domain experts, our DICModel outperforms Qwen2.5-VL 32B by 1% in terms of accuracy rate. In summary, this work can efficiently and accurately extract the logical text from images, which is expected to promote the development of multimodal models in the ICT domain.
GaussianFluent: Gaussian Simulation for Dynamic Scenes with Mixed Materials
3D Gaussian Splatting (3DGS) has emerged as a prominent 3D representation for high-fidelity and real-time rendering. Prior work has coupled physics simulation with Gaussians, but predominantly targets soft, deformable materials, leaving brittle fracture largely unresolved. This stems from two key obstacles: the lack of volumetric interiors with coherent textures in GS representation, and the absence of fracture-aware simulation methods for Gaussians. To address these challenges, we introduce GaussianFluent, a unified framework for realistic simulation and rendering of dynamic object states. First, it synthesizes photorealistic interiors by densifying internal Gaussians guided by generative models. Second, it integrates an optimized Continuum Damage Material Point Method (CD-MPM) to enable brittle fracture simulation at remarkably high speed. Our approach handles complex scenarios including mixed-material objects and multi-stage fracture propagation, achieving results infeasible with previous methods. Experiments clearly demonstrate GaussianFluent's capability for photo-realistic, real-time rendering with structurally consistent interiors, highlighting its potential for downstream application, such as VR and Robotics.
comment: 16 pages
BrainSegNet: A Novel Framework for Whole-Brain MRI Parcellation Enhanced by Large Models
Whole-brain parcellation from MRI is a critical yet challenging task due to the complexity of subdividing the brain into numerous small, irregular shaped regions. Traditionally, template-registration methods were used, but recent advances have shifted to deep learning for faster workflows. While large models like the Segment Anything Model (SAM) offer transferable feature representations, they are not tailored for the high precision required in brain parcellation. To address this, we propose BrainSegNet, a novel framework that adapts SAM for accurate whole-brain parcellation into 95 regions. We enhance SAM by integrating U-Net skip connections and specialized modules into its encoder and decoder, enabling fine-grained anatomical precision. Key components include a hybrid encoder combining U-Net skip connections with SAM's transformer blocks, a multi-scale attention decoder with pyramid pooling for varying-sized structures, and a boundary refinement module to sharpen edges. Experimental results on the Human Connectome Project (HCP) dataset demonstrate that BrainSegNet outperforms several state-of-the-art methods, achieving higher accuracy and robustness in complex, multi-label parcellation.
Magnifying change: Rapid burn scar mapping with multi-resolution, multi-source satellite imagery
Delineating wildfire affected areas using satellite imagery remains challenging due to irregular and spatially heterogeneous spectral changes across the electromagnetic spectrum. While recent deep learning approaches achieve high accuracy when high-resolution multispectral data are available, their applicability in operational settings, where a quick delineation of the burn scar shortly after a wildfire incident is required, is limited by the trade-off between spatial resolution and temporal revisit frequency of current satellite systems. To address this limitation, we propose a novel deep learning model, namely BAM-MRCD, which employs multi-resolution, multi-source satellite imagery (MODIS and Sentinel-2) for the timely production of detailed burnt area maps with high spatial and temporal resolution. Our model manages to detect even small scale wildfires with high accuracy, surpassing similar change detection models as well as solid baselines. All data and code are available in the GitHub repository: https://github.com/Orion-AI-Lab/BAM-MRCD.
PhyRPR: Training-Free Physics-Constrained Video Generation
Recent diffusion-based video generation models can synthesize visually plausible videos, yet they often struggle to satisfy physical constraints. A key reason is that most existing approaches remain single-stage: they entangle high-level physical understanding with low-level visual synthesis, making it hard to generate content that require explicit physical reasoning. To address this limitation, we propose a training-free three-stage pipeline,\textit{PhyRPR}:\textit{Phy\uline{R}eason}--\textit{Phy\uline{P}lan}--\textit{Phy\uline{R}efine}, which decouples physical understanding from visual synthesis. Specifically, \textit{PhyReason} uses a large multimodal model for physical state reasoning and an image generator for keyframe synthesis; \textit{PhyPlan} deterministically synthesizes a controllable coarse motion scaffold; and \textit{PhyRefine} injects this scaffold into diffusion sampling via a latent fusion strategy to refine appearance while preserving the planned dynamics. This staged design enables explicit physical control during generation. Extensive experiments under physics constraints show that our method consistently improves physical plausibility and motion controllability.
Hybrid guided variational autoencoder for visual place recognition
Autonomous agents such as cars, robots and drones need to precisely localize themselves in diverse environments, including in GPS-denied indoor environments. One approach for precise localization is visual place recognition (VPR), which estimates the place of an image based on previously seen places. State-of-the-art VPR models require high amounts of memory, making them unwieldy for mobile deployment, while more compact models lack robustness and generalization capabilities. This work overcomes these limitations for robotics using a combination of event-based vision sensors and an event-based novel guided variational autoencoder (VAE). The encoder part of our model is based on a spiking neural network model which is compatible with power-efficient low latency neuromorphic hardware. The VAE successfully disentangles the visual features of 16 distinct places in our new indoor VPR dataset with a classification performance comparable to other state-of-the-art approaches while, showing robust performance also under various illumination conditions. When tested with novel visual inputs from unknown scenes, our model can distinguish between these places, which demonstrates a high generalization capability by learning the essential features of location. Our compact and robust guided VAE with generalization capabilities poses a promising model for visual place recognition that can significantly enhance mobile robot navigation in known and unknown indoor environments.
Integrating Diverse Assignment Strategies into DETRs
Label assignment is a critical component in object detectors, particularly within DETR-style frameworks where the one-to-one matching strategy, despite its end-to-end elegance, suffers from slow convergence due to sparse supervision. While recent works have explored one-to-many assignments to enrich supervisory signals, they often introduce complex, architecture-specific modifications and typically focus on a single auxiliary strategy, lacking a unified and scalable design. In this paper, we first systematically investigate the effects of ``one-to-many'' supervision and reveal a surprising insight that performance gains are driven not by the sheer quantity of supervision, but by the diversity of the assignment strategies employed. This finding suggests that a more elegant, parameter-efficient approach is attainable. Building on this insight, we propose LoRA-DETR, a flexible and lightweight framework that seamlessly integrates diverse assignment strategies into any DETR-style detector. Our method augments the primary network with multiple Low-Rank Adaptation (LoRA) branches during training, each instantiating a different one-to-many assignment rule. These branches act as auxiliary modules that inject rich, varied supervisory gradients into the main model and are discarded during inference, thus incurring no additional computational cost. This design promotes robust joint optimization while maintaining the architectural simplicity of the original detector. Extensive experiments on different baselines validate the effectiveness of our approach. Our work presents a new paradigm for enhancing detectors, demonstrating that diverse ``one-to-many'' supervision can be integrated to achieve state-of-the-art results without compromising model elegance.
A$^2$TG: Adaptive Anisotropic Textured Gaussians for Efficient 3D Scene Representation
Gaussian Splatting has emerged as a powerful representation for high-quality, real-time 3D scene rendering. While recent works extend Gaussians with learnable textures to enrich visual appearance, existing approaches allocate a fixed square texture per primitive, leading to inefficient memory usage and limited adaptability to scene variability. In this paper, we introduce adaptive anisotropic textured Gaussians (A$^2$TG), a novel representation that generalizes textured Gaussians by equipping each primitive with an anisotropic texture. Our method employs a gradient-guided adaptive rule to jointly determine texture resolution and aspect ratio, enabling non-uniform, detail-aware allocation that aligns with the anisotropic nature of Gaussian splats. This design significantly improves texture efficiency, reducing memory consumption while enhancing image quality. Experiments on multiple benchmark datasets demonstrate that A TG consistently outperforms fixed-texture Gaussian Splatting methods, achieving comparable rendering fidelity with substantially lower memory requirements.
DeTracker: Motion-decoupled Vehicle Detection and Tracking in Unstabilized Satellite Videos
Satellite videos provide continuous observations of surface dynamics but pose significant challenges for multi-object tracking (MOT), especially under unstabilized conditions where platform jitter and the weak appearance of tiny objects jointly degrade tracking performance. To address this problem, we propose DeTracker, a joint detection-and-tracking framework tailored for unstabilized satellite videos. DeTracker introduces a Global--Local Motion Decoupling (GLMD) module that explicitly separates satellite platform motion from true object motion through global alignment and local refinement, leading to improved trajectory stability and motion estimation accuracy. In addition, a Temporal Dependency Feature Pyramid (TDFP) module is developed to perform cross-frame temporal feature fusion, enhancing the continuity and discriminability of tiny-object representations. We further construct a new benchmark dataset, SDM-Car-SU, which simulates multi-directional and multi-speed platform motions to enable systematic evaluation of tracking robustness under varying motion perturbations. Extensive experiments on both simulated and real unstabilized satellite videos demonstrate that DeTracker significantly outperforms existing methods, achieving 61.1% MOTA on SDM-Car-SU and 47.3% MOTA on real satellite video data.
Knowledge-Embedded and Hypernetwork-Guided Few-Shot Substation Meter Defect Image Generation Method
Substation meters play a critical role in monitoring and ensuring the stable operation of power grids, yet their detection of cracks and other physical defects is often hampered by a severe scarcity of annotated samples. To address this few-shot generation challenge, we propose a novel framework that integrates Knowledge Embedding and Hypernetwork-Guided Conditional Control into a Stable Diffusion pipeline, enabling realistic and controllable synthesis of defect images from limited data. First, we bridge the substantial domain gap between natural-image pre-trained models and industrial equipment by fine-tuning a Stable Diffusion backbone using DreamBooth-style knowledge embedding. This process encodes the unique structural and textural priors of substation meters, ensuring generated images retain authentic meter characteristics. Second, we introduce a geometric crack modeling module that parameterizes defect attributes--such as location, length, curvature, and branching pattern--to produce spatially constrained control maps. These maps provide precise, pixel-level guidance during generation. Third, we design a lightweight hypernetwork that dynamically modulates the denoising process of the diffusion model in response to the control maps and high-level defect descriptors, achieving a flexible balance between generation fidelity and controllability. Extensive experiments on a real-world substation meter dataset demonstrate that our method substantially outperforms existing augmentation and generation baselines. It reduces Frechet Inception Distance (FID) by 32.7%, increases diversity metrics, and--most importantly--boosts the mAP of a downstream defect detector by 15.3% when trained on augmented data. The framework offers a practical, high-quality data synthesis solution for industrial inspection systems where defect samples are rare.
CLIDD: Cross-Layer Independent Deformable Description for Efficient and Discriminative Local Feature Representation
Robust local feature representations are essential for spatial intelligence tasks such as robot navigation and augmented reality. Establishing reliable correspondences requires descriptors that provide both high discriminative power and computational efficiency. To address this, we introduce Cross-Layer Independent Deformable Description (CLIDD), a method that achieves superior distinctiveness by sampling directly from independent feature hierarchies. This approach utilizes learnable offsets to capture fine-grained structural details across scales while bypassing the computational burden of unified dense representations. To ensure real-time performance, we implement a hardware-aware kernel fusion strategy that maximizes inference throughput. Furthermore, we develop a scalable framework that integrates lightweight architectures with a training protocol leveraging both metric learning and knowledge distillation. This scheme generates a wide spectrum of model variants optimized for diverse deployment constraints. Extensive evaluations demonstrate that our approach achieves superior matching accuracy and exceptional computational efficiency simultaneously. Specifically, the ultra-compact variant matches the precision of SuperPoint while utilizing only 0.004M parameters, achieving a 99.7% reduction in model size. Furthermore, our high-performance configuration outperforms all current state-of-the-art methods, including high-capacity DINOv2-based frameworks, while exceeding 200 FPS on edge devices. These results demonstrate that CLIDD delivers high-precision local feature matching with minimal computational overhead, providing a robust and scalable solution for real-time spatial intelligence tasks.
SPOT-Face: Forensic Face Identification using Attention Guided Optimal Transport
Person identification in forensic investigations becomes very challenging when common identification means for DNA (i.e., hair strands, soft tissue) are not available. Current methods utilize deep learning methods for face recognition. However, these methods lack effective mechanisms to model cross-domain structural correspondence between two different forensic modalities. In this paper, we introduce a SPOT-Face, a superpixel graph-based framework designed for cross-domain forensic face identification of victims using their skeleton and sketch images. Our unified framework involves constructing a superpixel-based graph from an image and then using different graph neural networks(GNNs) backbones to extract the embeddings of these graphs, while cross-domain correspondence is established through attention-guided optimal transport mechanism. We have evaluated our proposed framework on two publicly available dataset: IIT\_Mandi\_S2F (S2F) and CUFS. Extensive experiments were conducted to evaluate our proposed framework. The experimental results show significant improvement in identification metrics ( i.e., Recall, mAP) over existing graph-based baselines. Furthermore, our framework demonstrates to be highly effective for matching skulls and sketches to faces in forensic investigations.
comment: 14 pages, 5 figures, 3 tables (ICPR_2026)
Disentangle Object and Non-object Infrared Features via Language Guidance
Infrared object detection focuses on identifying and locating objects in complex environments (\eg, dark, snow, and rain) where visible imaging cameras are disabled by poor illumination. However, due to low contrast and weak edge information in infrared images, it is challenging to extract discriminative object features for robust detection. To deal with this issue, we propose a novel vision-language representation learning paradigm for infrared object detection. An additional textual supervision with rich semantic information is explored to guide the disentanglement of object and non-object features. Specifically, we propose a Semantic Feature Alignment (SFA) module to align the object features with the corresponding text features. Furthermore, we develop an Object Feature Disentanglement (OFD) module that disentangles text-aligned object features and non-object features by minimizing their correlation. Finally, the disentangled object features are entered into the detection head. In this manner, the detection performance can be remarkably enhanced via more discriminative and less noisy features. Extensive experimental results demonstrate that our approach achieves superior performance on two benchmarks: M\textsuperscript{3}FD (83.7\% mAP), FLIR (86.1\% mAP). Our code will be publicly available once the paper is accepted.
SpikeVAEDiff: Neural Spike-based Natural Visual Scene Reconstruction via VD-VAE and Versatile Diffusion
Reconstructing natural visual scenes from neural activity is a key challenge in neuroscience and computer vision. We present SpikeVAEDiff, a novel two-stage framework that combines a Very Deep Variational Autoencoder (VDVAE) and the Versatile Diffusion model to generate high-resolution and semantically meaningful image reconstructions from neural spike data. In the first stage, VDVAE produces low-resolution preliminary reconstructions by mapping neural spike signals to latent representations. In the second stage, regression models map neural spike signals to CLIP-Vision and CLIP-Text features, enabling Versatile Diffusion to refine the images via image-to-image generation. We evaluate our approach on the Allen Visual Coding-Neuropixels dataset and analyze different brain regions. Our results show that the VISI region exhibits the most prominent activation and plays a key role in reconstruction quality. We present both successful and unsuccessful reconstruction examples, reflecting the challenges of decoding neural activity. Compared with fMRI-based approaches, spike data provides superior temporal and spatial resolution. We further validate the effectiveness of the VDVAE model and conduct ablation studies demonstrating that data from specific brain regions significantly enhances reconstruction performance.
comment: Preprint
Annealed Relaxation of Speculative Decoding for Faster Autoregressive Image Generation AAAI 2026
Despite significant progress in autoregressive image generation, inference remains slow due to the sequential nature of AR models and the ambiguity of image tokens, even when using speculative decoding. Recent works attempt to address this with relaxed speculative decoding but lack theoretical grounding. In this paper, we establish the theoretical basis of relaxed SD and propose COOL-SD, an annealed relaxation of speculative decoding built on two key insights. The first analyzes the total variation (TV) distance between the target model and relaxed speculative decoding and yields an optimal resampling distribution that minimizes an upper bound of the distance. The second uses perturbation analysis to reveal an annealing behaviour in relaxed speculative decoding, motivating our annealed design. Together, these insights enable COOL-SD to generate images faster with comparable quality, or achieve better quality at similar latency. Experiments validate the effectiveness of COOL-SD, showing consistent improvements over prior methods in speed-quality trade-offs.
comment: Accepted to AAAI 2026
Affostruction: 3D Affordance Grounding with Generative Reconstruction
This paper addresses the problem of affordance grounding from RGBD images of an object, which aims to localize surface regions corresponding to a text query that describes an action on the object. While existing methods predict affordance regions only on visible surfaces, we propose Affostruction, a generative framework that reconstructs complete geometry from partial observations and grounds affordances on the full shape including unobserved regions. We make three core contributions: generative multi-view reconstruction via sparse voxel fusion that extrapolates unseen geometry while maintaining constant token complexity, flow-based affordance grounding that captures inherent ambiguity in affordance distributions, and affordance-driven active view selection that leverages predicted affordances for intelligent viewpoint sampling. Affostruction achieves 19.1 aIoU on affordance grounding (40.4\% improvement) and 32.67 IoU for 3D reconstruction (67.7\% improvement), enabling accurate affordance prediction on complete shapes.
Pairing-free Group-level Knowledge Distillation for Robust Gastrointestinal Lesion Classification in White-Light Endoscopy AAAI 2026
White-Light Imaging (WLI) is the standard for endoscopic cancer screening, but Narrow-Band Imaging (NBI) offers superior diagnostic details. A key challenge is transferring knowledge from NBI to enhance WLI-only models, yet existing methods are critically hampered by their reliance on paired NBI-WLI images of the same lesion, a costly and often impractical requirement that leaves vast amounts of clinical data untapped. In this paper, we break this paradigm by introducing PaGKD, a novel Pairing-free Group-level Knowledge Distillation framework that that enables effective cross-modal learning using unpaired WLI and NBI data. Instead of forcing alignment between individual, often semantically mismatched image instances, PaGKD operates at the group level to distill more complete and compatible knowledge across modalities. Central to PaGKD are two complementary modules: (1) Group-level Prototype Distillation (GKD-Pro) distills compact group representations by extracting modality-invariant semantic prototypes via shared lesion-aware queries; (2) Group-level Dense Distillation (GKD-Den) performs dense cross-modal alignment by guiding group-aware attention with activation-derived relation maps. Together, these modules enforce global semantic consistency and local structural coherence without requiring image-level correspondence. Extensive experiments on four clinical datasets demonstrate that PaGKD consistently and significantly outperforms state-of-the-art methods, achieving relative AUC improvements of 3.3%, 1.1%, 2.8%, and 3.2%, respectively, establishing a new direction for cross-modal learning from unpaired data.
comment: Accepted to AAAI 2026
Point Tracking as a Temporal Cue for Robust Myocardial Segmentation in Echocardiography Videos
Purpose: Myocardium segmentation in echocardiography videos is a challenging task due to low contrast, noise, and anatomical variability. Traditional deep learning models either process frames independently, ignoring temporal information, or rely on memory-based feature propagation, which accumulates error over time. Methods: We propose Point-Seg, a transformer-based segmentation framework that integrates point tracking as a temporal cue to ensure stable and consistent segmentation of myocardium across frames. Our method leverages a point-tracking module trained on a synthetic echocardiography dataset to track key anatomical landmarks across video sequences. These tracked trajectories provide an explicit motion-aware signal that guides segmentation, reducing drift and eliminating the need for memory-based feature accumulation. Additionally, we incorporate a temporal smoothing loss to further enhance temporal consistency across frames. Results: We evaluate our approach on both public and private echocardiography datasets. Experimental results demonstrate that Point-Seg has statistically similar accuracy in terms of Dice to state-of-the-art segmentation models in high quality echo data, while it achieves better segmentation accuracy in lower quality echo with improved temporal stability. Furthermore, Point-Seg has the key advantage of pixel-level myocardium motion information as opposed to other segmentation methods. Such information is essential in the computation of other downstream tasks such as myocardial strain measurement and regional wall motion abnormality detection. Conclusion: Point-Seg demonstrates that point tracking can serve as an effective temporal cue for consistent video segmentation, offering a reliable and generalizable approach for myocardium segmentation in echocardiography videos. The code is available at https://github.com/DeepRCL/PointSeg.
From Performance to Practice: Knowledge-Distilled Segmentator for On-Premises Clinical Workflows
Deploying medical image segmentation models in routine clinical workflows is often constrained by on-premises infrastructure, where computational resources are fixed and cloud-based inference may be restricted by governance and security policies. While high-capacity models achieve strong segmentation accuracy, their computational demands hinder practical deployment and long-term maintainability in hospital environments. We present a deployment-oriented framework that leverages knowledge distillation to translate a high-performing segmentation model into a scalable family of compact student models, without modifying the inference pipeline. The proposed approach preserves architectural compatibility with existing clinical systems while enabling systematic capacity reduction. The framework is evaluated on a multi-site brain MRI dataset comprising 1,104 3D volumes, with independent testing on 101 curated cases, and is further examined on abdominal CT to assess cross-modality generalizability. Under aggressive parameter reduction (94%), the distilled student model preserves nearly all of the teacher's segmentation accuracy (98.7%), while achieving substantial efficiency gains, including up to a 67% reduction in CPU inference latency without additional deployment overhead. These results demonstrate that knowledge distillation provides a practical and reliable pathway for converting research-grade segmentation models into maintainable, deployment-ready components for on-premises clinical workflows in real-world health systems.
N-EIoU-YOLOv9: A Signal-Aware Bounding Box Regression Loss for Lightweight Mobile Detection of Rice Leaf Diseases
In this work, we propose N EIoU YOLOv9, a lightweight detection framework based on a signal aware bounding box regression loss derived from non monotonic gradient focusing and geometric decoupling principles, referred to as N EIoU (Non monotonic Efficient Intersection over Union). The proposed loss reshapes localization gradients by combining non monotonic focusing with decoupled width and height optimization, thereby enhancing weak regression signals for hard samples with low overlap while reducing gradient interference. This design is particularly effective for small and low contrast targets commonly observed in agricultural disease imagery. The proposed N EIoU loss is integrated into a lightweight YOLOv9t architecture and evaluated on a self collected field dataset comprising 5908 rice leaf images across four disease categories and healthy leaves. Experimental results demonstrate consistent performance gains over the standard CIoU loss, achieving a mean Average Precision of 90.3 percent, corresponding to a 4.3 percent improvement over the baseline, with improved localization accuracy under stricter evaluation criteria. For practical validation, the optimized model is deployed on an Android device using TensorFlow Lite with Float16 quantization, achieving an average inference time of 156 milliseconds per frame while maintaining accuracy. These results confirm that the proposed approach effectively balances accuracy, optimization stability, and computational efficiency for edge based agricultural monitoring systems.
Architecture inside the mirage: evaluating generative image models on architectural style, elements, and typologies
Generative artificial intelligence (GenAI) text-to-image systems are increasingly used to generate architectural imagery, yet their capacity to reproduce accurate images in a historically rule-bound field remains poorly characterized. We evaluated five widely used GenAI image platforms (Adobe Firefly, DALL-E 3, Google Imagen 3, Microsoft Image Generator, and Midjourney) using 30 architectural prompts spanning styles, typologies, and codified elements. Each prompt-generator pair produced four images (n = 600 images total). Two architectural historians independently scored each image for accuracy against predefined criteria, resolving disagreements by consensus. Set-level performance was summarized as zero to four accurate images per four-image set. Image output from Common prompts was 2.7-fold more accurate than from Rare prompts (p < 0.05). Across platforms, overall accuracy was limited (highest accuracy score 52 percent; lowest 32 percent; mean 42 percent). All-correct (4 out of 4) outcomes were similar across platforms. By contrast, all-incorrect (0 out of 4) outcomes varied substantially, with Imagen 3 exhibiting the fewest failures and Microsoft Image Generator exhibiting the highest number of failures. Qualitative review of the image dataset identified recurring patterns including over-embellishment, confusion between medieval styles and their later revivals, and misrepresentation of descriptive prompts (for example, egg-and-dart, banded column, pendentive). These findings support the need for visible labeling of GenAI synthetic content, provenance standards for future training datasets, and cautious educational use of GenAI architectural imagery.
comment: 24 pages, 7 figures
From Snow to Rain: Evaluating Robustness, Calibration, and Complexity of Model-Based Robust Training
Robustness to natural corruptions remains a critical challenge for reliable deep learning, particularly in safety-sensitive domains. We study a family of model-based training approaches that leverage a learned nuisance variation model to generate realistic corruptions, as well as new hybrid strategies that combine random coverage with adversarial refinement in nuisance space. Using the Challenging Unreal and Real Environments for Traffic Sign Recognition dataset (CURE-TSR), with Snow and Rain corruptions, we evaluate accuracy, calibration, and training complexity across corruption severities. Our results show that model-based methods consistently outperform baselines Vanilla, Adversarial Training, and AugMix baselines, with model-based adversarial training providing the strongest robustness under across all corruptions but at the expense of higher computation and model-based data augmentation achieving comparable robustness with $T$ less computational complexity without incurring a statistically significant drop in performance. These findings highlight the importance of learned nuisance models for capturing natural variability, and suggest a promising path toward more resilient and calibrated models under challenging conditions.
comment: 11 pages
SSVP: Synergistic Semantic-Visual Prompting for Industrial Zero-Shot Anomaly Detection
Zero-Shot Anomaly Detection (ZSAD) leverages Vision-Language Models (VLMs) to enable supervision-free industrial inspection. However, existing ZSAD paradigms are constrained by single visual backbones, which struggle to balance global semantic generalization with fine-grained structural discriminability. To bridge this gap, we propose Synergistic Semantic-Visual Prompting (SSVP), that efficiently fuses diverse visual encodings to elevate model's fine-grained perception. Specifically, SSVP introduces the Hierarchical Semantic-Visual Synergy (HSVS) mechanism, which deeply integrates DINOv3's multi-scale structural priors into the CLIP semantic space. Subsequently, the Vision-Conditioned Prompt Generator (VCPG) employs cross-modal attention to guide dynamic prompt generation, enabling linguistic queries to precisely anchor to specific anomaly patterns. Furthermore, to address the discrepancy between global scoring and local evidence, the Visual-Text Anomaly Mapper (VTAM) establishes a dual-gated calibration paradigm. Extensive evaluations on seven industrial benchmarks validate the robustness of our method; SSVP achieves state-of-the-art performance with 93.0\% Image-AUROC and 92.2\% Pixel-AUROC on MVTec-AD, significantly outperforming existing zero-shot approaches.
SkinFlow: Efficient Information Transmission for Open Dermatological Diagnosis via Dynamic Visual Encoding and Staged RL
General-purpose Large Vision-Language Models (LVLMs), despite their massive scale, often falter in dermatology due to "diffuse attention" - the inability to disentangle subtle pathological lesions from background noise. In this paper, we challenge the assumption that parameter scaling is the only path to medical precision. We introduce SkinFlow, a framework that treats diagnosis as an optimization of visual information transmission efficiency. Our approach utilizes a Virtual-Width Dynamic Vision Encoder (DVE) to "unfold" complex pathological manifolds without physical parameter expansion, coupled with a two-stage Reinforcement Learning strategy. This strategy sequentially aligns explicit medical descriptions (Stage I) and reconstructs implicit diagnostic textures (Stage II) within a constrained semantic space. Furthermore, we propose a clinically grounded evaluation protocol that prioritizes diagnostic safety and hierarchical relevance over rigid label matching. Empirical results are compelling: our 7B model establishes a new state-of-the-art on the Fitzpatrick17k benchmark, achieving a +12.06% gain in Top-1 accuracy and a +28.57% boost in Top-6 accuracy over the massive general-purpose models (e.g., Qwen3VL-235B and GPT-5.2). These findings demonstrate that optimizing geometric capacity and information flow yields superior diagnostic reasoning compared to raw parameter scaling.
Equi-ViT: Rotational Equivariant Vision Transformer for Robust Histopathology Analysis
Vision Transformers (ViTs) have gained rapid adoption in computational pathology for their ability to model long-range dependencies through self-attention, addressing the limitations of convolutional neural networks that excel at local pattern capture but struggle with global contextual reasoning. Recent pathology-specific foundation models have further advanced performance by leveraging large-scale pretraining. However, standard ViTs remain inherently non-equivariant to transformations such as rotations and reflections, which are ubiquitous variations in histopathology imaging. To address this limitation, we propose Equi-ViT, which integrates an equivariant convolution kernel into the patch embedding stage of a ViT architecture, imparting built-in rotational equivariance to learned representations. Equi-ViT achieves superior rotation-consistent patch embeddings and stable classification performance across image orientations. Our results on a public colorectal cancer dataset demonstrate that incorporating equivariant patch embedding enhances data efficiency and robustness, suggesting that equivariant transformers could potentially serve as more generalizable backbones for the application of ViT in histopathology, such as digital pathology foundation models.
comment: Accepted by IEEE ISBI 2026 4-page paper
Beyond Seen Bounds: Class-Centric Polarization for Single-Domain Generalized Deep Metric Learning
Single-domain generalized deep metric learning (SDG-DML) faces the dual challenge of both category and domain shifts during testing, limiting real-world applications. Therefore, aiming to learn better generalization ability on both unseen categories and domains is a realistic goal for the SDG-DML task. To deliver the aspiration, existing SDG-DML methods employ the domain expansion-equalization strategy to expand the source data and generate out-of-distribution samples. However, these methods rely on proxy-based expansion, which tends to generate samples clustered near class proxies, failing to simulate the broad and distant domain shifts encountered in practice. To alleviate the problem, we propose CenterPolar, a novel SDG-DML framework that dynamically expands and constrains domain distributions to learn a generalizable DML model for wider target domain distributions. Specifically, \textbf{CenterPolar} contains two collaborative class-centric polarization phases: (1) Class-Centric Centrifugal Expansion ($C^3E$) and (2) Class-Centric Centripetal Constraint ($C^4$). In the first phase, $C^3E$ drives the source domain distribution by shifting the source data away from class centroids using centrifugal expansion to generalize to more unseen domains. In the second phase, to consolidate domain-invariant class information for the generalization ability to unseen categories, $C^4$ pulls all seen and unseen samples toward their class centroids while enforcing inter-class separation via centripetal constraint. Extensive experimental results on widely used CUB-200-2011 Ext., Cars196 Ext., DomainNet, PACS, and Office-Home datasets demonstrate the superiority and effectiveness of our CenterPolar over existing state-of-the-art methods. The code will be released after acceptance.
comment: Submitted to ACM TOMM
LPCAN: Lightweight Pyramid Cross-Attention Network for Rail Surface Defect Detection Using RGB-D Data
This paper addresses the limitations of current vision-based rail defect detection methods, including high computational complexity, excessive parameter counts, and suboptimal accuracy. We propose a Lightweight Pyramid Cross-Attention Network (LPCANet) that leverages RGB-D data for efficient and accurate defect identification. The architecture integrates MobileNetv2 as a backbone for RGB feature extraction with a lightweight pyramid module (LPM) for depth processing, coupled with a cross-attention mechanism (CAM) for multimodal fusion and a spatial feature extractor (SFE) for enhanced structural analysis. Comprehensive evaluations on three unsupervised RGB-D rail datasets (NEU-RSDDS-AUG, RSDD-TYPE1, RSDD-TYPE2) demonstrate that LPCANet achieves state-of-the-art performance with only 9.90 million parameters, 2.50 G FLOPs, and 162.60 fps inference speed. Compared to 18 existing methods, LPCANet shows significant improvements, including +1.48\% in $S_α$, +0.86\% in IOU, and +1.77\% in MAE over the best-performing baseline. Ablation studies confirm the critical roles of CAM and SFE, while experiments on non-rail datasets (DAGM2007, MT, Kolektor-SDD2) validate its generalization capability. The proposed framework effectively bridges traditional and deep learning approaches, offering substantial practical value for industrial defect inspection. Future work will focus on further model compression for real-time deployment.
LP-LLM: End-to-End Real-World Degraded License Plate Text Recognition via Large Multimodal Models
Real-world License Plate Recognition (LPR) faces significant challenges from severe degradations such as motion blur, low resolution, and complex illumination. The prevailing "restoration-then-recognition" two-stage paradigm suffers from a fundamental flaw: the pixel-level optimization objectives of image restoration models are misaligned with the semantic goals of character recognition, leading to artifact interference and error accumulation. While Vision-Language Models (VLMs) have demonstrated powerful general capabilities, they lack explicit structural modeling for license plate character sequences (e.g., fixed length, specific order). To address this, we propose an end-to-end structure-aware multimodal reasoning framework based on Qwen3-VL. The core innovation lies in the Character-Aware Multimodal Reasoning Module (CMRM), which introduces a set of learnable Character Slot Queries. Through a cross-attention mechanism, these queries actively retrieve fine-grained evidence corresponding to character positions from visual features. Subsequently, we inject these character-aware representations back into the visual tokens via residual modulation, enabling the language model to perform autoregressive generation based on explicit structural priors. Furthermore, combined with the LoRA parameter-efficient fine-tuning strategy, the model achieves domain adaptation while retaining the generalization capabilities of the large model. Extensive experiments on both synthetic and real-world severely degraded datasets demonstrate that our method significantly outperforms existing restoration-recognition combinations and general VLMs, validating the superiority of incorporating structured reasoning into large models for low-quality text recognition tasks.
Towards Open Environments and Instructions: General Vision-Language Navigation via Fast-Slow Interactive Reasoning
Vision-Language Navigation aims to enable agents to navigate to a target location based on language instructions. Traditional VLN often follows a close-set assumption, i.e., training and test data share the same style of the input images and instructions. However, the real world is open and filled with various unseen environments, posing enormous difficulties for close-set methods. To this end, we focus on the General Scene Adaptation (GSA-VLN) task, aiming to learn generalized navigation ability by introducing diverse environments and inconsistent intructions.Towards this task, when facing unseen environments and instructions, the challenge mainly lies in how to enable the agent to dynamically produce generalized strategies during the navigation process. Recent research indicates that by means of fast and slow cognition systems, human beings could generate stable policies, which strengthen their adaptation for open world. Inspired by this idea, we propose the slow4fast-VLN, establishing a dynamic interactive fast-slow reasoning framework. The fast-reasoning module, an end-to-end strategy network, outputs actions via real-time input. It accumulates execution records in a history repository to build memory. The slow-reasoning module analyze the memories generated by the fast-reasoning module. Through deep reflection, it extracts experiences that enhance the generalization ability of decision-making. These experiences are structurally stored and used to continuously optimize the fast-reasoning module. Unlike traditional methods that treat fast-slow reasoning as independent mechanisms, our framework enables fast-slow interaction. By leveraging the experiences from slow reasoning. This interaction allows the system to continuously adapt and efficiently execute navigation tasks when facing unseen scenarios.
SAM-Aug: Leveraging SAM Priors for Few-Shot Parcel Segmentation in Satellite Time Series
Few-shot semantic segmentation of time-series remote sensing images remains a critical challenge, particularly in regions where labeled data is scarce or costly to obtain. While state-of-the-art models perform well under full supervision, their performance degrades significantly under limited labeling, limiting their real-world applicability. In this work, we propose SAM-Aug, a new annotation-efficient framework that leverages the geometry-aware segmentation capability of the Segment Anything Model (SAM) to improve few-shot land cover mapping. Our approach constructs cloud-free composite images from temporal sequences and applies SAM in a fully unsupervised manner to generate geometry-aware mask priors. These priors are then integrated into training through a proposed loss function called RegionSmoothLoss, which enforces prediction consistency within each SAM-derived region across temporal frames, effectively regularizing the model to respect semantically coherent structures. Extensive experiments on the PASTIS-R benchmark under a 5 percent labeled setting demonstrate the effectiveness and robustness of SAM-Aug. Averaged over three random seeds (42, 2025, 4090), our method achieves a mean test mIoU of 36.21 percent, outperforming the state-of-the-art baseline by +2.33 percentage points, a relative improvement of 6.89 percent. Notably, on the most favorable split (seed=42), SAM-Aug reaches a test mIoU of 40.28 percent, representing an 11.2 percent relative gain with no additional labeled data. The consistent improvement across all seeds confirms the generalization power of leveraging foundation model priors under annotation scarcity. Our results highlight that vision models like SAM can serve as useful regularizers in few-shot remote sensing learning, offering a scalable and plug-and-play solution for land cover monitoring without requiring manual annotations or model fine-tuning.
comment: 13 pages, 6 figures
Small but Mighty: Dynamic Wavelet Expert-Guided Fine-Tuning of Large-Scale Models for Optical Remote Sensing Object Segmentation AAAI 2026
Accurately localizing and segmenting relevant objects from optical remote sensing images (ORSIs) is critical for advancing remote sensing applications. Existing methods are typically built upon moderate-scale pre-trained models and employ diverse optimization strategies to achieve promising performance under full-parameter fine-tuning. In fact, deeper and larger-scale foundation models can provide stronger support for performance improvement. However, due to their massive number of parameters, directly adopting full-parameter fine-tuning leads to pronounced training difficulties, such as excessive GPU memory consumption and high computational costs, which result in extremely limited exploration of large-scale models in existing works. In this paper, we propose a novel dynamic wavelet expert-guided fine-tuning paradigm with fewer trainable parameters, dubbed WEFT, which efficiently adapts large-scale foundation models to ORSIs segmentation tasks by leveraging the guidance of wavelet experts. Specifically, we introduce a task-specific wavelet expert extractor to model wavelet experts from different perspectives and dynamically regulate their outputs, thereby generating trainable features enriched with task-specific information for subsequent fine-tuning. Furthermore, we construct an expert-guided conditional adapter that first enhances the fine-grained perception of frozen features for specific tasks by injecting trainable features, and then iteratively updates the information of both types of feature, allowing for efficient fine-tuning. Extensive experiments show that our WEFT not only outperforms 21 state-of-the-art (SOTA) methods on three ORSIs datasets, but also achieves optimal results in camouflage, natural, and medical scenarios. The source code is available at: https://github.com/CSYSI/WEFT.
comment: Accepted at AAAI 2026
Vision Foundation Models for Domain Generalisable Cross-View Localisation in Planetary Ground-Aerial Robotic Teams
Accurate localisation in planetary robotics enables the advanced autonomy required to support the increased scale and scope of future missions. The successes of the Ingenuity helicopter and multiple planetary orbiters lay the groundwork for future missions that use ground-aerial robotic teams. In this paper, we consider rovers using machine learning to localise themselves in a local aerial map using limited field-of-view monocular ground-view RGB images as input. A key consideration for machine learning methods is that real space data with ground-truth position labels suitable for training is scarce. In this work, we propose a novel method of localising rovers in an aerial map using cross-view-localising dual-encoder deep neural networks. We leverage semantic segmentation with vision foundation models and high volume synthetic data to bridge the domain gap to real images. We also contribute a new cross-view dataset of real-world rover trajectories with corresponding ground-truth localisation data captured in a planetary analogue facility, plus a high volume dataset of analogous synthetic image pairs. Using particle filters for state estimation with the cross-view networks allows accurate position estimation over simple and complex trajectories based on sequences of ground-view images.
comment: 7 pages, 10 figures. Presented at the International Conference on Space Robotics (iSpaRo) 2025 in Sendai, Japan. Dataset available: https://doi.org/10.5281/zenodo.17364038
AviationLMM: A Large Multimodal Foundation Model for Civil Aviation
Civil aviation is a cornerstone of global transportation and commerce, and ensuring its safety, efficiency and customer satisfaction is paramount. Yet conventional Artificial Intelligence (AI) solutions in aviation remain siloed and narrow, focusing on isolated tasks or single modalities. They struggle to integrate heterogeneous data such as voice communications, radar tracks, sensor streams and textual reports, which limits situational awareness, adaptability, and real-time decision support. This paper introduces the vision of AviationLMM, a Large Multimodal foundation Model for civil aviation, designed to unify the heterogeneous data streams of civil aviation and enable understanding, reasoning, generation and agentic applications. We firstly identify the gaps between existing AI solutions and requirements. Secondly, we describe the model architecture that ingests multimodal inputs such as air-ground voice, surveillance, on-board telemetry, video and structured texts, and performs cross-modal alignment and fusion, and produces flexible outputs ranging from situation summaries and risk alerts to predictive diagnostics and multimodal incident reconstructions. In order to fully realize this vision, we identify key research opportunities to address, including data acquisition, alignment and fusion, pretraining, reasoning, trustworthiness, privacy, robustness to missing modalities, and synthetic scenario generation. By articulating the design and challenges of AviationLMM, we aim to boost the civil aviation foundation model progress and catalyze coordinated research efforts toward an integrated, trustworthy and privacy-preserving aviation AI ecosystem.
comment: Accepted by 2025 7th International Conference on Interdisciplinary Computer Science and Engineering (ICICSE 2025) conference, Chongqing, China; 9 pages,1 figure,5 tables
Exploring Reliable Spatiotemporal Dependencies for Efficient Visual Tracking
Recent advances in transformer-based lightweight object tracking have established new standards across benchmarks, leveraging the global receptive field and powerful feature extraction capabilities of attention mechanisms. Despite these achievements, existing methods universally employ sparse sampling during training--utilizing only one template and one search image per sequence--which fails to comprehensively explore spatiotemporal information in videos. This limitation constrains performance and cause the gap between lightweight and high-performance trackers. To bridge this divide while maintaining real-time efficiency, we propose STDTrack, a framework that pioneers the integration of reliable spatiotemporal dependencies into lightweight trackers. Our approach implements dense video sampling to maximize spatiotemporal information utilization. We introduce a temporally propagating spatiotemporal token to guide per-frame feature extraction. To ensure comprehensive target state representation, we disign the Multi-frame Information Fusion Module (MFIFM), which augments current dependencies using historical context. The MFIFM operates on features stored in our constructed Spatiotemporal Token Maintainer (STM), where a quality-based update mechanism ensures information reliability. Considering the scale variation among tracking targets, we develop a multi-scale prediction head to dynamically adapt to objects of different sizes. Extensive experiments demonstrate state-of-the-art results across six benchmarks. Notably, on GOT-10k, STDTrack rivals certain high-performance non-real-time trackers (e.g., MixFormer) while operating at 192 FPS(GPU) and 41 FPS(CPU).
comment: 8 pages, 6 figures
POWDR: Pathology-preserving Outpainting with Wavelet Diffusion for 3D MRI
Medical imaging datasets often suffer from class imbalance and limited availability of pathology-rich cases, which constrains the performance of machine learning models for segmentation, classification, and vision-language tasks. To address this challenge, we propose POWDR, a pathology-preserving outpainting framework for 3D MRI based on a conditioned wavelet diffusion model. Unlike conventional augmentation or unconditional synthesis, POWDR retains real pathological regions while generating anatomically plausible surrounding tissue, enabling diversity without fabricating lesions. Our approach leverages wavelet-domain conditioning to enhance high-frequency detail and mitigate blurring common in latent diffusion models. We introduce a random connected mask training strategy to overcome conditioning-induced collapse and improve diversity outside the lesion. POWDR is evaluated on brain MRI using BraTS datasets and extended to knee MRI to demonstrate tissue-agnostic applicability. Quantitative metrics (FID, SSIM, LPIPS) confirm image realism, while diversity analysis shows significant improvement with random-mask training (cosine similarity reduced from 0.9947 to 0.9580; KL divergence increased from 0.00026 to 0.01494). Clinically relevant assessments reveal gains in tumor segmentation performance using nnU-Net, with Dice scores improving from 0.6992 to 0.7137 when adding 50 synthetic cases. Tissue volume analysis indicates no significant differences for CSF and GM compared to real images. These findings highlight POWDR as a practical solution for addressing data scarcity and class imbalance in medical imaging. The method is extensible to multiple anatomies and offers a controllable framework for generating diverse, pathology-preserving synthetic data to support robust model development.
Depth-Wise Representation Development Under Blockwise Self-Supervised Learning for Video Vision Transformers
End-to-end backpropagation couples all layers through a global error signal, enabling coordinated learning but requiring long-range credit assignment. Motivated by recent progress in blockwise self-supervised learning (BWSSL), we ask whether masked video transformers can be trained without end-to-end backpropagation. Applying BWSSL to masked video modeling remains relatively underexplored and must handle spatiotemporal context and long-range temporal structure. More broadly, analyses that compare BWSSL and end-to-end training in terms of learning dynamics and depth-wise representation development remain sparse. We apply blockwise learning to a masked autoencoding video vision transformer by partitioning the encoder into blocks, each of which is optimized with a local masked reconstruction loss. Across model sizes and partition granularities, training converges and yields representations close to matched end-to-end baselines under linear-probe and retrieval proxies. In order to compare intermediate representations, we analyze depth-wise decodability, inter-block similarity, and patch-level diagnostics. Blockwise training exposes higher-level structure earlier, while later blocks saturate and operate in a more geometry-preserving regime. It can also induce token-level shifts consistent with stronger early mixing that pooled metrics can miss. These findings point to late-block saturation and interface formation as contributors to the remaining gap.
The Algorithmic Gaze: An Audit and Ethnography of the LAION-Aesthetics Predictor Model
Visual generative AI models are trained using a one-size-fits-all measure of aesthetic appeal. However, what is deemed "aesthetic" is inextricably linked to personal taste and cultural values, raising the question of whose taste is represented in visual generative AI models. In this work, we study an aesthetic evaluation model--LAION Aesthetic Predictor (LAP)--that is widely used to curate datasets to train visual generative image models, like Stable Diffusion, and evaluate the quality of AI-generated images. To understand what LAP measures, we audited the model across three datasets. First, we examined the impact of aesthetic filtering on the LAION-Aesthetics Dataset (approximately 1.2B images), which was curated from LAION-5B using LAP. We find that the LAP disproportionally filters in images with captions mentioning women, while filtering out images with captions mentioning men or LGBTQ+ people. Then, we used LAP to score approximately 330k images across two art datasets, finding the model rates realistic images of landscapes, cityscapes, and portraits from western and Japanese artists most highly. In doing so, the algorithmic gaze of this aesthetic evaluation model reinforces the imperial and male gazes found within western art history. In order to understand where these biases may have originated, we performed a digital ethnography of public materials related to the creation of LAP. We find that the development of LAP reflects the biases we found in our audits, such as the aesthetic scores used to train LAP primarily coming from English-speaking photographers and western AI-enthusiasts. In response, we discuss how aesthetic evaluation can perpetuate representational harms and call on AI developers to shift away from prescriptive measures of "aesthetics" toward more pluralistic evaluation.
Transition Matching Distillation for Fast Video Generation
Large video diffusion and flow models have achieved remarkable success in high-quality video generation, but their use in real-time interactive applications remains limited due to their inefficient multi-step sampling process. In this work, we present Transition Matching Distillation (TMD), a novel framework for distilling video diffusion models into efficient few-step generators. The central idea of TMD is to match the multi-step denoising trajectory of a diffusion model with a few-step probability transition process, where each transition is modeled as a lightweight conditional flow. To enable efficient distillation, we decompose the original diffusion backbone into two components: (1) a main backbone, comprising the majority of early layers, that extracts semantic representations at each outer transition step; and (2) a flow head, consisting of the last few layers, that leverages these representations to perform multiple inner flow updates. Given a pretrained video diffusion model, we first introduce a flow head to the model, and adapt it into a conditional flow map. We then apply distribution matching distillation to the student model with flow head rollout in each transition step. Extensive experiments on distilling Wan2.1 1.3B and 14B text-to-video models demonstrate that TMD provides a flexible and strong trade-off between generation speed and visual quality. In particular, TMD outperforms existing distilled models under comparable inference costs in terms of visual fidelity and prompt adherence. Project page: https://research.nvidia.com/labs/genair/tmd
MedVL-SAM2: A unified 3D medical vision-language model for multimodal reasoning and prompt-driven segmentation
Recent progress in medical vision-language models (VLMs) has achieved strong performance on image-level text-centric tasks such as report generation and visual question answering (VQA). However, achieving fine-grained visual grounding and volumetric spatial reasoning in 3D medical VLMs remains challenging, particularly when aiming to unify these capabilities within a single, generalizable framework. To address this challenge, we proposed MedVL-SAM2, a unified 3D medical multimodal model that concurrently supports report generation, VQA, and multi-paradigm segmentation, including semantic, referring, and interactive segmentation. MedVL-SAM2 integrates image-level reasoning and pixel-level perception through a cohesive architecture tailored for 3D medical imaging, and incorporates a SAM2-based volumetric segmentation module to enable precise multi-granular spatial reasoning. The model is trained in a multi-stage pipeline: it is first pre-trained on a large-scale corpus of 3D CT image-text pairs to align volumetric visual features with radiology-language embeddings. It is then jointly optimized with both language-understanding and segmentation objectives using a comprehensive 3D CT segmentation dataset. This joint training enables flexible interaction via language, point, or box prompts, thereby unifying high-level visual reasoning with spatially precise localization. Our unified architecture delivers state-of-the-art performance across report generation, VQA, and multiple 3D segmentation tasks. Extensive analyses further show that the model provides reliable 3D visual grounding, controllable interactive segmentation, and robust cross-modal reasoning, demonstrating that high-level semantic reasoning and precise 3D localization can be jointly achieved within a unified 3D medical VLM.
VibrantSR: Sub-Meter Canopy Height Models from Sentinel-2 Using Generative Flow Matching
We present VibrantSR (Vibrant Super-Resolution), a generative super-resolution framework for estimating 0.5 meter canopy height models (CHMs) from 10 meter Sentinel-2 imagery. Unlike approaches based on aerial imagery that are constrained by infrequent and irregular acquisition schedules, VibrantSR leverages globally available Sentinel-2 seasonal composites, enabling consistent monitoring at a seasonal-to-annual cadence. Evaluated across 22 EPA Level 3 eco-regions in the western United States using spatially disjoint validation splits, VibrantSR achieves a Mean Absolute Error of 4.39 meters for canopy heights >= 2 m, outperforming Meta (4.83 m), LANDFIRE (5.96 m), and ETH (7.05 m) satellite-based benchmarks. While aerial-based VibrantVS (2.71 m MAE) retains an accuracy advantage, VibrantSR enables operational forest monitoring and carbon accounting at continental scales without reliance on costly and temporally infrequent aerial acquisitions.
comment: 12 pages, 8 figures, 2 tables
Breaking the Limits of Open-Weight CLIP: An Optimization Framework for Self-supervised Fine-tuning of CLIP ICLR 2026
CLIP has become a cornerstone of multimodal representation learning, yet improving its performance typically requires a prohibitively costly process of training from scratch on billions of samples. We ask a different question: Can we improve the performance of open-weight CLIP models across various downstream tasks using only existing self-supervised datasets? Unlike supervised fine-tuning, which adapts a pretrained model to a single downstream task, our setting seeks to improve general performance across various tasks. However, as both our experiments and prior studies reveal, simply applying standard training protocols starting from an open-weight CLIP model often fails, leading to performance degradation. In this paper, we introduce TuneCLIP, a self-supervised fine-tuning framework that overcomes the performance degradation. TuneCLIP has two key components: (1) a warm-up stage of recovering optimization statistics to reduce cold-start bias, inspired by theoretical analysis, and (2) a fine-tuning stage of optimizing a new contrastive loss to mitigate the penalization on false negative pairs. Our extensive experiments show that TuneCLIP consistently improves performance across model architectures and scales. Notably, it elevates leading open-weight models like SigLIP (ViT-B/16), achieving gains of up to +2.5% on ImageNet and related out-of-distribution benchmarks, and +1.2% on the highly competitive DataComp benchmark, setting a new strong baseline for efficient post-pretraining adaptation.
comment: Submitted to ICLR 2026
ViSIL: Unified Evaluation of Information Loss in Multimodal Video Captioning
Multimodal video captioning condenses dense footage into a structured format of keyframes and natural language. By creating a cohesive multimodal summary, this approach anchors generative AI in rich semantic evidence and serves as a lightweight proxy for high-efficiency retrieval. However, traditional metrics like BLEU or ROUGE fail to quantify information coverage across disparate modalities, such as comparing a paragraph of text to a sequence of keyframes. To address this, we propose the Video Summary Information Loss (ViSIL) score, an information-theoretic framework that quantifies the video information not captured by a summary via vision-language model (VLM) inference. By measuring the information loss, ViSIL is a unified metric that enables direct comparison across multimodal summary formats despite their structural discrepancies. Our results demonstrate that ViSIL scores show a statistically significant correlation with both human and VLM performance on Video Question Answering (VQA) tasks. ViSIL also enables summary selection to optimize the trade-off between information loss and processing speed, establishing a Pareto-optimal frontier that outperforms text summaries by $7\%$ in VQA accuracy without increasing processing load.
UniHash: Unifying Pointwise and Pairwise Hashing Paradigms for Seen and Unseen Category Retrieval
Effective retrieval across both seen and unseen categories is crucial for modern image retrieval systems. Retrieval on seen categories ensures precise recognition of known classes, while retrieval on unseen categories promotes generalization to novel classes with limited supervision. However, most existing deep hashing methods are confined to a single training paradigm, either pointwise or pairwise, where the former excels on seen categories and the latter generalizes better to unseen ones. To overcome this limitation, we propose Unified Hashing (UniHash), a dual-branch framework that unifies the strengths of both paradigms to achieve balanced retrieval performance across seen and unseen categories. UniHash consists of two complementary branches: a center-based branch following the pointwise paradigm and a pairwise branch following the pairwise paradigm. A novel hash code learning method is introduced to enable bidirectional knowledge transfer between branches, improving hash code discriminability and generalization. It employs a mutual learning loss to align hash representations and introduces a Split-Merge Mixture of Hash Experts (SM-MoH) module to enhance cross-branch exchange of hash representations. Theoretical analysis substantiates the effectiveness of UniHash, and extensive experiments on CIFAR-10, MSCOCO, and ImageNet demonstrate that UniHash consistently achieves state-of-the-art performance in both seen and unseen image retrieval scenarios.
NanoSD: Edge Efficient Foundation Model for Real Time Image Restoration CVPR 2026
Latent diffusion models such as Stable Diffusion 1.5 offer strong generative priors that are highly valuable for image restoration, yet their full pipelines remain too computationally heavy for deployment on edge devices. Existing lightweight variants predominantly compress the denoising U-Net or reduce the diffusion trajectory, which disrupts the underlying latent manifold and limits generalization beyond a single task. We introduce NanoSD, a family of Pareto-optimal diffusion foundation models distilled from Stable Diffusion 1.5 through network surgery, feature-wise generative distillation, and structured architectural scaling jointly applied to the U-Net and the VAE encoder-decoder. This full-pipeline co-design preserves the generative prior while producing models that occupy distinct operating points along the accuracy-latency-size frontier (e.g., 130M-315M parameters, achieving real-time inference down to 20ms on mobile-class NPUs). We show that parameter reduction alone does not correlate with hardware efficiency, and we provide an analysis revealing how architectural balance, feature routing, and latent-space preservation jointly shape true on-device latency. When used as a drop-in backbone, NanoSD enables state-of-the-art performance across image super-resolution, image deblurring, face restoration, and monocular depth estimation, outperforming prior lightweight diffusion models in both perceptual quality and practical deployability. NanoSD establishes a general-purpose diffusion foundation model family suitable for real-time visual generation and restoration on edge devices.
comment: Submitted to CVPR 2026
Explainable Deep Learning for Pediatric Pneumonia Detection in Chest X-Ray Images
Background: Pneumonia remains a leading cause of morbidity and mortality among children worldwide, emphasizing the need for accurate and efficient diagnostic support tools. Deep learning has shown strong potential in medical image analysis, particularly for chest X-ray interpretation. This study compares two state-of-the-art convolutional neural network (CNN) architectures for automated pediatric pneumonia detection. Methods: A publicly available dataset of 5,863 pediatric chest X-ray images was used. Images were preprocessed through normalization, resizing, and data augmentation to enhance generalization. DenseNet121 and EfficientNet-B0 were fine-tuned using pretrained ImageNet weights under identical training settings. Performance was evaluated using accuracy, F1-score, Matthews Correlation Coefficient (MCC), and recall. Model explainability was incorporated using Gradient-weighted Class Activation Mapping (Grad-CAM) and Local Interpretable Model-agnostic Explanations (LIME) to visualize image regions influencing predictions. Results: EfficientNet-B0 outperformed DenseNet121, achieving an accuracy of 84.6%, F1-score of 0.8899, and MCC of 0.6849. DenseNet121 achieved 79.7% accuracy, an F1-score of 0.8597, and MCC of 0.5852. Both models demonstrated high recall values above 0.99, indicating strong sensitivity to pneumonia detection. Grad-CAM and LIME visualizations showed consistent focus on clinically relevant lung regions, supporting the reliability of model decisions. Conclusions: EfficientNet-B0 provided a more balanced and computationally efficient performance compared to DenseNet121, making it a strong candidate for clinical deployment. The integration of explainability techniques enhances transparency and trustworthiness in AI-assisted pediatric pneumonia diagnosis.
LCF3D: A Robust and Real-Time Late-Cascade Fusion Framework for 3D Object Detection in Autonomous Driving
Accurately localizing 3D objects like pedestrians, cyclists, and other vehicles is essential in Autonomous Driving. To ensure high detection performance, Autonomous Vehicles complement RGB cameras with LiDAR sensors, but effectively combining these data sources for 3D object detection remains challenging. We propose LCF3D, a novel sensor fusion framework that combines a 2D object detector on RGB images with a 3D object detector on LiDAR point clouds. By leveraging multimodal fusion principles, we compensate for inaccuracies in the LiDAR object detection network. Our solution combines two key principles: (i) late fusion, to reduce LiDAR False Positives by matching LiDAR 3D detections with RGB 2D detections and filtering out unmatched LiDAR detections; and (ii) cascade fusion, to recover missed objects from LiDAR by generating new 3D frustum proposals corresponding to unmatched RGB detections. Experiments show that LCF3D is beneficial for domain generalization, as it turns out to be successful in handling different sensor configurations between training and testing domains. LCF3D achieves significant improvements over LiDAR-based methods, particularly for challenging categories like pedestrians and cyclists in the KITTI dataset, as well as motorcycles and bicycles in nuScenes. Code can be downloaded from: https://github.com/CarloSgaravatti/LCF3D.
comment: 35 pages, 14 figures. Published at Pattern Recognition
Diffusion-Driven Deceptive Patches: Adversarial Manipulation and Forensic Detection in Facial Identity Verification
This work presents an end-to-end pipeline for generating, refining, and evaluating adversarial patches to compromise facial biometric systems, with applications in forensic analysis and security testing. We utilize FGSM to generate adversarial noise targeting an identity classifier and employ a diffusion model with reverse diffusion to enhance imperceptibility through Gaussian smoothing and adaptive brightness correction, thereby facilitating synthetic adversarial patch evasion. The refined patch is applied to facial images to test its ability to evade recognition systems while maintaining natural visual characteristics. A Vision Transformer (ViT)-GPT2 model generates captions to provide a semantic description of a person's identity for adversarial images, supporting forensic interpretation and documentation for identity evasion and recognition attacks. The pipeline evaluates changes in identity classification, captioning results, and vulnerabilities in facial identity verification and expression recognition under adversarial conditions. We further demonstrate effective detection and analysis of adversarial patches and adversarial samples using perceptual hashing and segmentation, achieving an SSIM of 0.95.
comment: This manuscript is a preprint. A revised version of this work has been accepted for publication in the Springer Nature book Artificial Intelligence-Driven Forensics. This version includes one additional figure for completeness
A continental-scale dataset of ground beetles with high-resolution images and validated morphological trait measurements
Despite the ecological significance of invertebrates, global trait databases remain heavily biased toward vertebrates and plants, limiting comprehensive ecological analyses of high-diversity groups like ground beetles. Ground beetles (Coleoptera: Carabidae) serve as critical bioindicators of ecosystem health, providing valuable insights into biodiversity shifts driven by environmental changes. While the National Ecological Observatory Network (NEON) maintains an extensive collection of carabid specimens from across the United States, these primarily exist as physical collections, restricting widespread research access and large-scale analysis. To address these gaps, we present a multimodal dataset digitizing over 13,200 NEON carabids from 30 sites spanning the continental US and Hawaii through high-resolution imaging, enabling broader access and computational analysis. The dataset includes digitally measured elytra length and width of each specimen, establishing a foundation for automated trait extraction using AI. Validated against manual measurements, our digital trait extraction achieves sub-millimeter precision, ensuring reliability for ecological and computational studies. By addressing invertebrate under-representation in trait databases, this work supports AI-driven tools for automated species identification and trait-based research, fostering advancements in biodiversity monitoring and conservation.
comment: 21 pages, 10 figures; Submitted to Nature Scientific Data
Deep Hybrid Model for Region of Interest Detection in Omnidirectional Videos
The main goal of the project is to design a new model that predicts regions of interest in 360$^{\circ}$ videos. The region of interest (ROI) plays an important role in 360$^{\circ}$ video streaming. For example, ROIs are used to predict view-ports, intelligently cut the videos for live streaming, etc so that less bandwidth is used. Detecting view-ports in advance helps reduce the movement of the head while streaming and watching a video via the head-mounted device. Whereas, intelligent cuts of the videos help improve the efficiency of streaming the video to users and enhance the quality of their viewing experience. This report illustrates the secondary task to identify ROIs, in which, we design, train, and test a hybrid saliency model. In this work, we refer to saliency regions to represent the regions of interest. The method includes the processes as follows: preprocessing the video to obtain frames, developing a hybrid saliency model for predicting the region of interest, and finally post-processing the output predictions of the hybrid saliency model to obtain the output region of interest for each frame. Then, we compare the performance of the proposed method with the subjective annotations of the 360RAT dataset.
comment: I need to withdraw this as it contains some confidential information related to FAPESP funding agency
A Multi-Stage Deep Learning Framework with PKCP-MixUp Augmentation for Pediatric Liver Tumor Diagnosis Using Multi-Phase Contrast-Enhanced CT
Pediatric liver tumors are one of the most common solid tumors in pediatrics, with differentiation of benign or malignant status and pathological classification critical for clinical treatment. While pathological examination is the gold standard, the invasive biopsy has notable limitations: the highly vascular pediatric liver and fragile tumor tissue raise complication risks such as bleeding; additionally, young children with poor compliance require anesthesia for biopsy, increasing medical costs or psychological trauma. Although many efforts have been made to utilize AI in clinical settings, most researchers have overlooked its importance in pediatric liver tumors. To establish a non-invasive examination procedure, we developed a multi-stage deep learning (DL) framework for automated pediatric liver tumor diagnosis using multi-phase contrast-enhanced CT. Two retrospective and prospective cohorts were enrolled. We established a novel PKCP-MixUp data augmentation method to address data scarcity and class imbalance. We also trained a tumor detection model to extract ROIs, and then set a two-stage diagnosis pipeline with three backbones with ROI-masked images. Our tumor detection model has achieved high performance (mAP=0.871), and the first stage classification model between benign and malignant tumors reached an excellent performance (AUC=0.989). Final diagnosis models also exhibited robustness, including benign subtype classification (AUC=0.915) and malignant subtype classification (AUC=0.979). We also conducted multi-level comparative analyses, such as ablation studies on data and training pipelines, as well as Shapley-Value and CAM interpretability analyses. This framework fills the pediatric-specific DL diagnostic gap, provides actionable insights for CT phase selection and model design, and paves the way for precise, accessible pediatric liver tumor diagnosis.
egoEMOTION: Egocentric Vision and Physiological Signals for Emotion and Personality Recognition in Real-World Tasks NeurIPS 2025
Understanding affect is central to anticipating human behavior, yet current egocentric vision benchmarks largely ignore the person's emotional states that shape their decisions and actions. Existing tasks in egocentric perception focus on physical activities, hand-object interactions, and attention modeling - assuming neutral affect and uniform personality. This limits the ability of vision systems to capture key internal drivers of behavior. In this paper, we present egoEMOTION, the first dataset that couples egocentric visual and physiological signals with dense self-reports of emotion and personality across controlled and real-world scenarios. Our dataset includes over 50 hours of recordings from 43 participants, captured using Meta's Project Aria glasses. Each session provides synchronized eye-tracking video, headmounted photoplethysmography, inertial motion data, and physiological baselines for reference. Participants completed emotion-elicitation tasks and naturalistic activities while self-reporting their affective state using the Circumplex Model and Mikels' Wheel as well as their personality via the Big Five model. We define three benchmark tasks: (1) continuous affect classification (valence, arousal, dominance); (2) discrete emotion classification; and (3) trait-level personality inference. We show that a classical learning-based method, as a simple baseline in real-world affect prediction, produces better estimates from signals captured on egocentric vision systems than processing physiological signals. Our dataset establishes emotion and personality as core dimensions in egocentric perception and opens new directions in affect-driven modeling of behavior, intent, and interaction.
comment: Accepted for publication at NeurIPS 2025
FigEx2: Visual-Conditioned Panel Detection and Captioning for Scientific Compound Figures
Scientific compound figures combine multiple labeled panels into a single image, but captions in real pipelines are often missing or only provide figure-level summaries, making panel-level understanding difficult. In this paper, we propose FigEx2, visual-conditioned framework that localizes panels and generates panel-wise captions directly from the compound figure. To mitigate the impact of diverse phrasing in open-ended captioning, we introduce a noise-aware gated fusion module that adaptively filters token-level features to stabilize the detection query space. Furthermore, we employ a staged optimization strategy combining supervised learning with reinforcement learning (RL), utilizing CLIP-based alignment and BERTScore-based semantic rewards to enforce strict multimodal consistency. To support high-quality supervision, we curate BioSci-Fig-Cap, a refined benchmark for panel-level grounding, alongside cross-disciplinary test suites in physics and chemistry. Experimental results demonstrate that FigEx2 achieves a superior 0.726 mAP@0.5:0.95 for detection and significantly outperforms Qwen3-VL-8B by 0.51 in METEOR and 0.24 in BERTScore. Notably, FigEx2 exhibits remarkable zero-shot transferability to out-of-distribution scientific domains without any fine-tuning.
Head Pursuit: Probing Attention Specialization in Multimodal Transformers NeurIPS 2025
Language and vision-language models have shown impressive performance across a wide range of tasks, but their internal mechanisms remain only partly understood. In this work, we study how individual attention heads in text-generative models specialize in specific semantic or visual attributes. Building on an established interpretability method, we reinterpret the practice of probing intermediate activations with the final decoding layer through the lens of signal processing. This lets us analyze multiple samples in a principled way and rank attention heads based on their relevance to target concepts. Our results show consistent patterns of specialization at the head level across both unimodal and multimodal transformers. Remarkably, we find that editing as few as 1% of the heads, selected using our method, can reliably suppress or enhance targeted concepts in the model output. We validate our approach on language tasks such as question answering and toxicity mitigation, as well as vision-language tasks including image classification and captioning. Our findings highlight an interpretable and controllable structure within attention layers, offering simple tools for understanding and editing large-scale generative models.
comment: Accepted at NeurIPS 2025 (spotlight)
DEAR: Dataset for Evaluating the Aesthetics of Rendering
Traditional Image Quality Assessment~(IQA) focuses on quantifying technical degradations such as noise, blur, or compression artifacts, using both full-reference and no-reference objective metrics. However, evaluation of rendering aesthetics, a growing domain relevant to photographic editing, content creation, and AI-generated imagery, remains underexplored due to the lack of datasets that reflect the inherently subjective nature of style preference. In this work, a novel benchmark dataset designed to model human aesthetic judgments of image rendering styles is introduced: the Dataset for Evaluating the Aesthetics of Rendering (DEAR). Built upon the MIT-Adobe FiveK dataset, DEAR incorporates pairwise human preference scores collected via large-scale crowdsourcing, with each image pair evaluated by 25 distinct human evaluators with a total of 13,648 of them participating overall. These annotations capture nuanced, context-sensitive aesthetic preferences, enabling the development and evaluation of models that go beyond traditional distortion-based IQA, focusing on a new task: Evaluation of Aesthetics of Rendering (EAR). The data collection pipeline is described, human voting patterns are analyzed, and multiple use cases are outlined, including style preference prediction, aesthetic benchmarking, and personalized aesthetic modeling. To the best of the authors' knowledge, DEAR is the first dataset to systematically address image aesthetics of rendering assessment grounded in subjective human preferences. A subset of 100 images with markup for them is published on HuggingFace (huggingface.co/datasets/vsevolodpl/DEAR).
ViSTA: Visual Storytelling using Multi-modal Adapters for Text-to-Image Diffusion Models WACV 2026
Text-to-image diffusion models have achieved remarkable success, yet generating coherent image sequences for visual storytelling remains challenging. A key challenge is effectively leveraging all previous text-image pairs, referred to as history text-image pairs, which provide contextual information for maintaining consistency across frames. Existing auto-regressive methods condition on all past image-text pairs but require extensive training, while training-free subject-specific approaches ensure consistency but lack adaptability to narrative prompts. To address these limitations, we propose a multi-modal history adapter for text-to-image diffusion models, \textbf{ViSTA}. It consists of (1) a multi-modal history fusion module to extract relevant history features and (2) a history adapter to condition the generation on the extracted relevant features. We also introduce a salient history selection strategy during inference, where the most salient history text-image pair is selected, improving the quality of the conditioning. Furthermore, we propose to employ a Visual Question Answering-based metric TIFA to assess text-image alignment in visual storytelling, providing a more targeted and interpretable assessment of generated images. Evaluated on the StorySalon and FlintStonesSV dataset, our proposed ViSTA model is not only consistent across different frames, but also well-aligned with the narrative text descriptions.
comment: Accepted to WACV 2026
AGE-US: automated gestational age estimation based on fetal ultrasound images
Being born small carries significant health risks, including increased neonatal mortality and a higher likelihood of future cardiac diseases. Accurate estimation of gestational age is critical for monitoring fetal growth, but traditional methods, such as estimation based on the last menstrual period, are in some situations difficult to obtain. While ultrasound-based approaches offer greater reliability, they rely on manual measurements that introduce variability. This study presents an interpretable deep learning-based method for automated gestational age calculation, leveraging a novel segmentation architecture and distance maps to overcome dataset limitations and the scarcity of segmentation masks. Our approach achieves performance comparable to state-of-the-art models while reducing complexity, making it particularly suitable for resource-constrained settings and with limited annotated data. Furthermore, our results demonstrate that the use of distance maps is particularly suitable for estimating femur endpoints.
comment: Accepted in Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA) 2025
Improved Segmentation of Polyps and Visual Explainability Analysis
Colorectal cancer (CRC) remains one of the leading causes of cancer-related morbidity and mortality worldwide, with gastrointestinal (GI) polyps serving as critical precursors according to the World Health Organization (WHO). Early and accurate segmentation of polyps during colonoscopy is essential for reducing CRC progression, yet manual delineation is labor-intensive and prone to observer variability. Deep learning methods have demonstrated strong potential for automated polyp analysis, but their limited interpretability remains a barrier to clinical adoption. In this study, we present PolypSeg-GradCAM, an explainable deep learning framework that integrates a U-Net architecture with a pre-trained ResNet-34 backbone and Gradient-weighted Class Activation Mapping (Grad-CAM) for transparent polyp segmentation. To ensure rigorous benchmarking, the model was trained and evaluated using 5-Fold Cross-Validation on the Kvasir-SEG dataset of 1,000 annotated endoscopic images. Experimental results show a mean Dice coefficient of 0.8902 +/- 0.0125, a mean Intersection-over-Union (IoU) of 0.8023, and an Area Under the Receiver Operating Characteristic Curve (AUC-ROC) of 0.9722. Advanced quantitative analysis using an optimal threshold yielded a Sensitivity of 0.9058 and Precision of 0.9083. Additionally, Grad-CAM visualizations confirmed that predictions were guided by clinically relevant regions, offering insight into the model's decision-making process. This study demonstrates that integrating segmentation accuracy with interpretability can support the development of trustworthy AI-assisted colonoscopy tools.
BARL: Bilateral Alignment in Representation and Label Spaces for Semi-Supervised Volumetric Medical Image Segmentation
Semi-supervised medical image segmentation (SSMIS) seeks to match fully supervised performance while sharply reducing annotation cost. Mainstream SSMIS methods rely on \emph{label-space consistency}, yet they overlook the equally critical \emph{representation-space alignment}. Without harmonizing latent features, models struggle to learn representations that are both discriminative and spatially coherent. To this end, we introduce \textbf{Bilateral Alignment in Representation and Label spaces (BARL)}, a unified framework that couples two collaborative branches and enforces alignment in both spaces. For label-space alignment, inspired by co-training and multi-scale decoding, we devise \textbf{Dual-Path Regularization (DPR)} and \textbf{Progressively Cognitive Bias Correction (PCBC)} to impose fine-grained cross-branch consistency while mitigating error accumulation from coarse to fine scales. For representation-space alignment, we conduct region-level and lesion-instance matching between branches, explicitly capturing the fragmented, complex pathological patterns common in medical imagery. Extensive experiments on four public benchmarks and a proprietary CBCT dataset demonstrate that BARL consistently surpasses state-of-the-art SSMIS methods. Ablative studies further validate the contribution of each component. Code will be released soon.
comment: 14 pages, 5 figures
AQ-PCDSys: An Adaptive Quantized Planetary Crater Detection System for Autonomous Space Exploration
Successful autonomous planetary exploration hinges on real-time, high-fidelity environmental perception. However, standard deep learning models usually demand far more memory and computation power than space-qualified, radiation-hardened onboard hardware can provide. This creates a fundamental design challenge of deploying sophisticated detection architectures without saturating the rigid power and memory envelopes of the computation hardware of planetary exploration platforms. We propose the Adaptive Quantized Planetary Crater Detection System to resolve this bottleneck. Our framework integrates a Quantized Neural Network, refined through Quantization Aware Training, with an Adaptive Multi-Sensor Fusion module. By forcing weights into low-precision integer arithmetic, we effectively strip away the floating-point overhead that typically bottlenecks onboard processors and system memory. This yields a leaner model footprint and significantly faster processing while the detection fidelity remains high. Such efficiency enables AMF module to merge high-bandwidth Optical Imagery streams with Digital Elevation Models using an Adaptive Weighting Mechanism to re-balance sensor priority under variable conditions like deep shadows or high albedo. Integrated Multi-Scale Detection Heads then resolve craters across a wide range of diameters, providing a computationally efficient and precise solution for real-time detection, localization of craters and hazard avoidance. This paper establishes the architectural design and theoretical justification of the system. While our methodology is grounded in principles of hybrid computer vision and planetary science, we present this as a blueprint for future empirical validation and hardware benchmarking on integer-arithmetic units. This system provides a capability vital for the next generation of autonomous landing, navigation, and deep space explorations.
comment: 17 pages, 6 figures. A research paper on a novel deep learning framework for planetary crater detection
Fair Foundation Models for Medical Image Analysis: Challenges and Perspectives
Ensuring equitable Artificial Intelligence (AI) in healthcare demands systems that make unbiased decisions across all demographic groups, bridging technical innovation with ethical principles. Foundation Models (FMs), trained on vast datasets through self-supervised learning, enable efficient adaptation across medical imaging tasks while reducing dependency on labeled data. These models demonstrate potential for enhancing fairness, though significant challenges remain in achieving consistent performance across demographic groups. Our review indicates that effective bias mitigation in FMs requires systematic interventions throughout all stages of development. While previous approaches focused primarily on model-level bias mitigation, our analysis reveals that fairness in FMs requires integrated interventions throughout the development pipeline, from data documentation to deployment protocols. This comprehensive framework advances current knowledge by demonstrating how systematic bias mitigation, combined with policy engagement, can effectively address both technical and institutional barriers to equitable AI in healthcare. The development of equitable FMs represents a critical step toward democratizing advanced healthcare technologies, particularly for underserved populations and regions with limited medical infrastructure and computational resources.
VideoAR: Autoregressive Video Generation via Next-Frame & Scale Prediction
Recent advances in video generation have been dominated by diffusion and flow-matching models, which produce high-quality results but remain computationally intensive and difficult to scale. In this work, we introduce VideoAR, the first large-scale Visual Autoregressive (VAR) framework for video generation that combines multi-scale next-frame prediction with autoregressive modeling. VideoAR disentangles spatial and temporal dependencies by integrating intra-frame VAR modeling with causal next-frame prediction, supported by a 3D multi-scale tokenizer that efficiently encodes spatio-temporal dynamics. To improve long-term consistency, we propose Multi-scale Temporal RoPE, Cross-Frame Error Correction, and Random Frame Mask, which collectively mitigate error propagation and stabilize temporal coherence. Our multi-stage pretraining pipeline progressively aligns spatial and temporal learning across increasing resolutions and durations. Empirically, VideoAR achieves new state-of-the-art results among autoregressive models, improving FVD on UCF-101 from 99.5 to 88.6 while reducing inference steps by over 10x, and reaching a VBench score of 81.74-competitive with diffusion-based models an order of magnitude larger. These results demonstrate that VideoAR narrows the performance gap between autoregressive and diffusion paradigms, offering a scalable, efficient, and temporally consistent foundation for future video generation research.
comment: Project page: https://ernie-research.github.io/VideoAR/
SPOT!: Map-Guided LLM Agent for Unsupervised Multi-CCTV Dynamic Object Tracking
CCTV-based vehicle tracking systems face structural limitations in continuously connecting the trajectories of the same vehicle across multiple camera environments. In particular, blind spots occur due to the intervals between CCTVs and limited Fields of View (FOV), which leads to object ID switching and trajectory loss, thereby reducing the reliability of real-time path prediction. This paper proposes SPOT (Spatial Prediction Over Trajectories), a map-guided LLM agent capable of tracking vehicles even in blind spots of multi-CCTV environments without prior training. The proposed method represents road structures (Waypoints) and CCTV placement information as documents based on 2D spatial coordinates and organizes them through chunking techniques to enable real-time querying and inference. Furthermore, it transforms the vehicle's position into the actual world coordinate system using the relative position and FOV information of objects observed in CCTV images. By combining map spatial information with the vehicle's moving direction, speed, and driving patterns, a beam search is performed at the intersection level to derive candidate CCTV locations where the vehicle is most likely to enter after the blind spot. Experimental results based on the CARLA simulator in a virtual city environment confirmed that the proposed method accurately predicts the next appearing CCTV even in blind spot sections, maintaining continuous vehicle trajectories more effectively than existing techniques.
comment: 33 pages, 27figures
LVLM-Aware Multimodal Retrieval for RAG-Based Medical Diagnosis with General-Purpose Models
Retrieving visual and textual information from medical literature and hospital records can enhance diagnostic accuracy for clinical image interpretation. However, multimodal retrieval-augmented diagnosis is highly challenging. We explore a lightweight mechanism for enhancing diagnostic performance of retrieval-augmented LVLMs. We train a lightweight LVLM-aware multimodal retriever, such that the retriever learns to return images and texts that guide the LVLM toward correct predictions. In our low-resource setting, we perform only lightweight fine-tuning with small amounts of data, and use only general-purpose backbone models, achieving competitive results in clinical classification and VQA tasks compared to medically pre-trained models with extensive training. In a novel analysis, we highlight a previously unexplored class of errors that we term inconsistent retrieval predictions: cases where different top-retrieved images yield different predictions for the same target. We find that these cases are challenging for all models, even for non-retrieval models, and that our retrieval optimization mechanism significantly improves these cases over standard RAG. However, our analysis also sheds light on gaps in the ability of LVLMs to utilize retrieved information for clinical predictions. Code and models available at: https://github.com/Nirmaz/CLARE.
Comprehensive language-image pre-training for 3D medical image understanding
Vision-language pre-training, i.e., aligning images with paired text, is a powerful paradigm to create encoders that can be directly used for tasks such as classification, retrieval, and segmentation. In the 3D medical image domain, these capabilities allow vision-language encoders (VLEs) to support radiologists by retrieving patients with similar abnormalities, predicting likelihoods of abnormality, or, with downstream adaptation, generating radiological reports. While the methodology holds promise, data availability and domain-specific hurdles limit the capabilities of current 3D VLEs. In this paper, we overcome these challenges by injecting additional supervision via a report generation objective and combining vision-language with vision-only pre-training. This allows us to leverage both image-only and paired image-text 3D datasets, increasing the total amount of data to which our model is exposed. Through these additional objectives, paired with best practices of the 3D medical imaging domain, we develop the Comprehensive Language-Image Pre-training (COLIPRI) encoder family. Our COLIPRI encoders achieve state-of-the-art performance in report generation, semantic segmentation, classification probing, and zero-shot classification. The model is available at https://huggingface.co/microsoft/colipri.
Large-scale modality-invariant foundation models for brain MRI analysis: Application to lesion segmentation
The field of computer vision is undergoing a paradigm shift toward large-scale foundation model pre-training via self-supervised learning (SSL). Leveraging large volumes of unlabeled brain MRI data, such models can learn anatomical priors that improve few-shot performance in diverse neuroimaging tasks. However, most SSL frameworks are tailored to natural images, and their adaptation to capture multi-modal MRI information remains underexplored. This work proposes a modality-invariant representation learning setup and evaluates its effectiveness in stroke and epilepsy lesion segmentation, following large-scale pre-training. Experimental results suggest that despite successful cross-modality alignment, lesion segmentation primarily benefits from preserving fine-grained modality-specific features. Model checkpoints and code are made publicly available.
comment: Submitted to IEEE ISBI 2026
Prompting4Debugging: Red-Teaming Text-to-Image Diffusion Models by Finding Problematic Prompts ICML 2024
Text-to-image diffusion models, e.g. Stable Diffusion (SD), lately have shown remarkable ability in high-quality content generation, and become one of the representatives for the recent wave of transformative AI. Nevertheless, such advance comes with an intensifying concern about the misuse of this generative technology, especially for producing copyrighted or NSFW (i.e. not safe for work) images. Although efforts have been made to filter inappropriate images/prompts or remove undesirable concepts/styles via model fine-tuning, the reliability of these safety mechanisms against diversified problematic prompts remains largely unexplored. In this work, we propose Prompting4Debugging (P4D) as a debugging and red-teaming tool that automatically finds problematic prompts for diffusion models to test the reliability of a deployed safety mechanism. We demonstrate the efficacy of our P4D tool in uncovering new vulnerabilities of SD models with safety mechanisms. Particularly, our result shows that around half of prompts in existing safe prompting benchmarks which were originally considered "safe" can actually be manipulated to bypass many deployed safety mechanisms, including concept removal, negative prompt, and safety guidance. Our findings suggest that, without comprehensive testing, the evaluations on limited safe prompting benchmarks can lead to a false sense of safety for text-to-image models.
comment: ICML 2024 main conference paper. The source code is available at https://github.com/zhiyichin/P4D
Know Yourself Better: Diverse Object-Related Features Improve Open Set Recognition
Open set recognition (OSR) is a critical aspect of machine learning, addressing the challenge of detecting novel classes during inference. Within the realm of deep learning, neural classifiers trained on a closed set of data typically struggle to identify novel classes, leading to erroneous predictions. To address this issue, various heuristic methods have been proposed, allowing models to express uncertainty by stating "I don't know." However, a gap in the literature remains, as there has been limited exploration of the underlying mechanisms of these methods. In this paper, we conduct an analysis of open set recognition methods, focusing on the aspect of feature diversity. Our research reveals a significant correlation between learning diverse discriminative features and enhancing OSR performance. Building on this insight, we propose a novel OSR approach that leverages the advantages of feature diversity. The efficacy of our method is substantiated through rigorous evaluation on a standard OSR testbench, demonstrating a substantial improvement over state-of-the-art methods.
Uncovering Intrinsic Capabilities: A Paradigm for Data Curation in Vision-Language Models
Large vision-language models (VLMs) achieve strong benchmark performance, but controlling their behavior through instruction tuning remains difficult. Reducing the budget of instruction tuning dataset often causes regressions, as heuristic strategies treat models as black boxes and overlook the latent capabilities that govern learning. We introduce Capability-Attributed Data Curation (CADC), a framework that shifts curation from task-specific heuristics to intrinsic capability analysis. CADC discovers intrinsic capabilities in an unsupervised manner from gradient-based learning trajectories, attributes training data to these capabilities via influence estimation, and curates capability-aware curricula through balanced selection and staged sequencing. This transforms black-box instruction tuning into a controllable, capability-driven process. With as little as 5% of the original data, CADC surpasses full-data training on multimodal benchmarks. These results validate intrinsic capabilities as the fundamental building blocks of model learning and establish CADC as a principle paradigm for instruction data curation.
ProfVLM: A Lightweight Video-Language Model for Multi-View Proficiency Estimation
Existing approaches treat action quality assessment and skill proficiency estimation as classification problems, outputting discrete labels without interpretable reasoning. We reformulate this task as generative vision language modeling, introducing ProfVLM, a compact model that jointly predicts proficiency levels and generates expert-like natural language feedback from multi-view videos. ProfVLM leverages conditional language generation to provide actionable insights along with quantitative evaluation scores. Central to our method is an AttentiveGatedProjector that dynamically fuses and projects multi-view egocentric and exocentric features from a frozen TimeSformer backbone into a language model fine-tuned for feedback generation. Trained on EgoExo4D with expert commentaries, ProfVLM surpasses state-of-the-art methods while using up to 20x fewer parameters and reducing training time by up to 60% compared to existing classification-based methods. By providing natural language critiques aligned with performance levels, this work shows that generative vision-language modeling offers a powerful and efficient paradigm shift for interpretable action quality assessment.
Decoupling Continual Semantic Segmentation
Continual Semantic Segmentation (CSS) requires learning new classes without forgetting previously acquired knowledge, addressing the fundamental challenge of catastrophic forgetting in dense prediction tasks. However, existing CSS methods typically employ single-stage encoder-decoder architectures where segmentation masks and class labels are tightly coupled, leading to interference between old and new class learning and suboptimal retention-plasticity balance. We introduce DecoupleCSS, a novel two-stage framework for CSS. By decoupling class-aware detection from class-agnostic segmentation, DecoupleCSS enables more effective continual learning, preserving past knowledge while learning new classes. The first stage leverages pre-trained text and image encoders, adapted using LoRA, to encode class-specific information and generate location-aware prompts. In the second stage, the Segment Anything Model (SAM) is employed to produce precise segmentation masks, ensuring that segmentation knowledge is shared across both new and previous classes. This approach improves the balance between retention and adaptability in CSS, achieving state-of-the-art performance across a variety of challenging tasks. Our code is publicly available at: https://github.com/euyis1019/Decoupling-Continual-Semantic-Segmentation.
comment: https://github.com/euyis1019/Decoupling-Continual-Semantic-Segmentation
Frequency Is What You Need: Considering Word Frequency When Text Masking Benefits Vision-Language Model Pre-training WACV 2026
Vision Language Models (VLMs) can be trained more efficiently if training sets can be reduced in size. Recent work has shown the benefits of masking text during VLM training using a variety of strategies (truncation, random masking, block masking and syntax masking) and has reported syntax masking as the top performer. In this paper, we analyze the impact of different text masking strategies on the word frequency in the training data, and show that this impact is connected to model success. This finding motivates Contrastive Language-Image Pre-training with Word Frequency Masking (CLIPF), our proposed masking approach, which directly leverages word frequency. Extensive experiments demonstrate the advantages of CLIPF over syntax masking and other existing approaches, particularly when the number of input tokens decreases. We show that not only CLIPF, but also other existing masking strategies, outperform syntax masking when enough epochs are used during training, a finding of practical importance for selecting a text masking method for VLM training. Our code is available online.
comment: Accepted by WACV 2026
GroupNL: Low-Resource and Robust CNN Design over Cloud and Device
Deploying Convolutional Neural Network (CNN) models on ubiquitous Internet of Things (IoT) devices in a cloud-assisted manner to provide users with a variety of high-quality services has become mainstream. Most existing studies speed up model cloud training/on-device inference by reducing the number of convolution (Conv) parameters and floating-point operations (FLOPs). However, they usually employ two or more lightweight operations (e.g., depthwise Conv, $1\times1$ cheap Conv) to replace a Conv, which can still affect the model's speedup even with fewer parameters and FLOPs. To this end, we propose the Grouped NonLinear transformation generation method (GroupNL), leveraging data-agnostic, hyperparameters-fixed, and lightweight Nonlinear Transformation Functions (NLFs) to generate diversified feature maps on demand via grouping, thereby reducing resource consumption while improving the robustness of CNNs. First, in a GroupNL Conv layer, a small set of feature maps, i.e., seed feature maps, are generated based on the seed Conv operation. Then, we split seed feature maps into several groups, each with a set of different NLFs, to generate the required number of diversified feature maps with tensor manipulation operators and nonlinear processing in a lightweight manner without additional Conv operations. We further introduce a sparse GroupNL Conv to speed up by reasonably designing the seed Conv groups between the number of input channels and seed feature maps. Experiments conducted on benchmarks and on-device resource measurements demonstrate that the GroupNL Conv is an impressive alternative to Conv layers in baseline models. Specifically, on Icons-50 dataset, the accuracy of GroupNL-ResNet-18 is 2.86% higher than ResNet-18; on ImageNet-C dataset, the accuracy of GroupNL-EfficientNet-ES achieves about 1.1% higher than EfficientNet-ES.
comment: IEEE Transactions on Mobile Computing, accepted manuscript
Hidden Monotonicity: Explaining Deep Neural Networks via their DC Decomposition
It has been demonstrated in various contexts that monotonicity leads to better explainability in neural networks. However, not every function can be well approximated by a monotone neural network. We demonstrate that monotonicity can still be used in two ways to boost explainability. First, we use an adaptation of the decomposition of a trained ReLU network into two monotone and convex parts, thereby overcoming numerical obstacles from an inherent blowup of the weights in this procedure. Our proposed saliency methods - SplitCAM and SplitLRP - improve on state of the art results on both VGG16 and Resnet18 networks on ImageNet-S across all Quantus saliency metric categories. Second, we exhibit that training a model as the difference between two monotone neural networks results in a system with strong self-explainability properties.
Analysis of Quantum Image Representations for Supervised Classification
In the era of big data and artificial intelligence, the increasing volume of data and the demand to solve more and more complex computational challenges are two driving forces for improving the efficiency of data storage, processing and analysis. Quantum image processing (QIP) is an interdisciplinary field between quantum information science and image processing, which has the potential to alleviate some of these challenges by leveraging the power of quantum computing. In this work, we compare and examine the compression properties of four different Quantum Image Representations (QImRs): namely, Tensor Network Representation (TNR), Flexible Representation of Quantum Image (FRQI), Novel Enhanced Quantum Representation NEQR, and Quantum Probability Image Encoding (QPIE). Our simulations show that FRQI and QPIE perform a higher compression of image information than TNR and NEQR. Furthermore, we investigate the trade-off between accuracy and memory in binary classification problems, evaluating the performance of quantum kernels based on QImRs compared to the classical linear kernel. Our results indicate that quantum kernels provide comparable classification average accuracy but require exponentially fewer resources for image storage.
comment: 9 pages, 11 figures
FeatInv: Spatially resolved mapping from feature space to input space using conditional diffusion models
Internal representations are crucial for understanding deep neural networks, such as their properties and reasoning patterns, but remain difficult to interpret. While mapping from feature space to input space aids in interpreting the former, existing approaches often rely on crude approximations. We propose using a conditional diffusion model - a pretrained high-fidelity diffusion model conditioned on spatially resolved feature maps - to learn such a mapping in a probabilistic manner. We demonstrate the feasibility of this approach across various pretrained image classifiers from CNNs to ViTs, showing excellent reconstruction capabilities. Through qualitative comparisons and robustness analysis, we validate our method and showcase possible applications, such as the visualization of concept steering in input space or investigations of the composite nature of the feature space. This approach has broad potential for improving feature space understanding in computer vision models.
comment: Version published by Transactions on Machine Learning Research in 2025 (TMLR ISSN 2835-8856) at https://openreview.net/forum?id=UtE1YnPNgZ. 32 pages, 27 figures. This work builds on an earlier manuscript (arXiv:2505.21032) and crucially extends it. Code is available at https://github.com/AI4HealthUOL/FeatInv
Positional Embedding-Aware Activations
We present a neural network architecture designed to naturally learn a positional embedding and overcome the spectral bias towards lower frequencies faced by conventional activation functions. Our proposed architecture, SPDER, is a simple MLP that uses an activation function composed of a sinusoidal multiplied by a sublinear function, called the damping function. The sinusoidal enables the network to automatically learn the positional embedding of an input coordinate while the damping passes on the actual coordinate value by preventing it from being projected down to within a finite range of values. Our results indicate that SPDERs speed up training by 10x and converge to losses 1,500-50,000x lower than that of the state-of-the-art for image representation. SPDER is also state-of-the-art in audio representation. The superior representation capability allows SPDER to also excel on multiple downstream tasks such as image super-resolution and video frame interpolation. We provide intuition as to why SPDER significantly improves fitting compared to that of other INR methods while requiring no hyperparameter tuning or preprocessing.
TeleMem: Building Long-Term and Multimodal Memory for Agentic AI
Large language models (LLMs) excel at many NLP tasks but struggle to sustain long-term interactions due to limited attention over extended dialogue histories. Retrieval-augmented generation (RAG) mitigates this issue but lacks reliable mechanisms for updating or refining stored memories, leading to schema-driven hallucinations, inefficient write operations, and minimal support for multimodal reasoning.To address these challenges, we propose TeleMem, a unified long-term and multimodal memory system that maintains coherent user profiles through narrative dynamic extraction, ensuring that only dialogue-grounded information is preserved. TeleMem further introduces a structured writing pipeline that batches, retrieves, clusters, and consolidates memory entries, substantially improving storage efficiency, reducing token usage, and accelerating memory operations. Additionally, a multimodal memory module combined with ReAct-style reasoning equips the system with a closed-loop observe, think, and act process that enables accurate understanding of complex video content in long-term contexts. Experimental results show that TeleMem surpasses the state-of-the-art Mem0 baseline with 19% higher accuracy, 43% fewer tokens, and a 2.1x speedup on the ZH-4O long-term role-play gaming benchmark.
Divergence-Based Similarity Function for Multi-View Contrastive Learning AAAI
Recent success in contrastive learning has sparked growing interest in more effectively leveraging multiple augmented views of data. While prior methods incorporate multiple views at the loss or feature level, they primarily capture pairwise relationships and fail to model the joint structure across all views. In this work, we propose a divergence-based similarity function (DSF) that explicitly captures the joint structure by representing each set of augmented views as a distribution and measuring similarity as the divergence between distributions. Extensive experiments demonstrate that DSF consistently improves performance across diverse tasks, including kNN classification, linear evaluation, transfer learning, and distribution shift, while also achieving greater efficiency than other multi-view methods. Furthermore, we establish a connection between DSF and cosine similarity, and demonstrate that, unlike cosine similarity, DSF operates effectively without the need for tuning a temperature hyperparameter.
comment: 9 pages, 5 figures. Code and Pretrained Model: https://github.com/Jeon789/DSF, v4: Removed erroneous AAAI copyright notice
Prototypical Contrastive Learning-based CLIP Fine-tuning for Object Re-identification
This work aims to adapt large-scale pre-trained vision-language models, such as contrastive language-image pretraining (CLIP), to enhance the performance of object reidentification (Re-ID) across various supervision settings. Although prompt learning has enabled a recent work named CLIP-ReID to achieve promising performance, the underlying mechanisms and the necessity of prompt learning remain unclear due to the absence of semantic labels in ReID tasks. In this work, we first analyze the role prompt learning in CLIP-ReID and identify its limitations. Based on our investigations, we propose a simple yet effective approach to adapt CLIP for supervised object Re-ID. Our approach directly fine-tunes the image encoder of CLIP using a prototypical contrastive learning (PCL) loss, eliminating the need for prompt learning. Experimental results on both person and vehicle Re-ID datasets demonstrate the competitiveness of our method compared to CLIP-ReID. Furthermore, we extend our PCL-based CLIP fine-tuning approach to unsupervised scenarios, where we achieve state-of-the art performance. Code is available at https://github.com/RikoLi/PCL-CLIP.
Hierarchical Fusion of Local and Global Visual Features with Mixture-of-Experts for Remote Sensing Image Scene Classification
Remote sensing image scene classification remains a challenging task, primarily due to the complex spatial structures and multi-scale characteristics of ground objects. Although CNN-based methods excel at extracting local inductive biases, and Mamba-based approaches demonstrate impressive capabilities in efficiently capturing global sequential context, relying on a single paradigm restricts the model's ability to simultaneously characterize fine-grained textures and complex spatial structures. To tackle this, we propose a parallel heterogeneous encoder, a hierarchical fusion module designed to achieve effective local-global co-representation. It consists of two parallel pathways: a local visual encoder for extracting multi-scale local visual features, and a global visual encoder for capturing efficient global visual features. The core innovation lies in its hierarchical fusion module, which progressively aggregates multi-scale features from both pathways, enabling dynamic cross-level feature interaction and contextual reconstruction to produce highly discriminative representations. These fused features are then adaptively routed through a mixture-of-experts classifier head, which dynamically dispatches them to the most suitable experts for fine-grained scene recognition. Experiments on AID, NWPU-RESISC45, and UC Merced show that our model achieves 93.72%, 95.54%, and 96.92% accuracy, surpassing SOTA methods with an optimal balance of performance and efficiency. Code is available at https://anonymous.4open.science/r/classification-41DF.
LC4-DViT: Land-cover Creation for Land-cover Classification with Deformable Vision Transformer
Land-cover underpins ecosystem services, hydrologic regulation, disaster-risk reduction, and evidence-based land planning; timely, accurate land-cover maps are therefore critical for environmental stewardship. Remote sensing-based land-cover classification offers a scalable route to such maps but is hindered by scarce and imbalanced annotations and by geometric distortions in high-resolution scenes. We propose LC4-DViT (Land-cover Creation for Land-cover Classification with Deformable Vision Transformer), a framework that combines generative data creation with a deformation-aware Vision Transformer. A text-guided diffusion pipeline uses GPT-4o-generated scene descriptions and super-resolved exemplars to synthesize class-balanced, high-fidelity training images, while DViT couples a DCNv4 deformable convolutional backbone with a Vision Transformer encoder to jointly capture fine-scale geometry and global context. On eight classes from the Aerial Image Dataset (AID)-Beach, Bridge, Desert, Forest, Mountain, Pond, Port, and River-DViT achieves 0.9572 overall accuracy, 0.9576 macro F1-score, and 0.9510 Cohen' s Kappa, improving over a vanilla ViT baseline (0.9274 OA, 0.9300 macro F1, 0.9169 Kappa) and outperforming ResNet50, MobileNetV2, and FlashInternImage. Cross-dataset experiments on a three-class SIRI-WHU subset (Harbor, Pond, River) yield 0.9333 overall accuracy, 0.9316 macro F1, and 0.8989 Kappa, indicating good transferability. An LLM-based judge using GPT-4o to score Grad-CAM heatmaps further shows that DViT' s attention aligns best with hydrologically meaningful structures. These results suggest that description-driven generative augmentation combined with deformation-aware transformers is a promising approach for high-resolution land-cover mapping.
comment: This work has been submitted to the IEEE for possible publication.The project is available at https://github.com/weicongpang/LVC2-DViT.git
Unified Multimodal Brain Decoding via Cross-Subject Soft-ROI Fusion
Multimodal brain decoding aims to reconstruct semantic information that is consistent with visual stimuli from brain activity signals such as fMRI, and then generate readable natural language descriptions. However, multimodal brain decoding still faces key challenges in cross-subject generalization and interpretability. We propose a BrainROI model and achieve leading-level results in brain-captioning evaluation on the NSD dataset. Under the cross-subject setting, compared with recent state-of-the-art methods and representative baselines, metrics such as BLEU-4 and CIDEr show clear improvements. Firstly, to address the heterogeneity of functional brain topology across subjects, we design a new fMRI encoder. We use multi-atlas soft functional parcellations (soft-ROI) as a shared space. We extend the discrete ROI Concatenation strategy in MINDLLM to a voxel-wise gated fusion mechanism (Voxel-gate). We also ensure consistent ROI mapping through global label alignment, which enhances cross-subject transferability. Secondly, to overcome the limitations of manual and black-box prompting methods in stability and transparency, we introduce an interpretable prompt optimization process. In a small-sample closed loop, we use a locally deployed Qwen model to iteratively generate and select human-readable prompts. This process improves the stability of prompt design and preserves an auditable optimization trajectory. Finally, we impose parameterized decoding constraints during inference to further improve the stability and quality of the generated descriptions.
comment: 15 pages, 2 figures, 4 tables. Submitted to ICPR 2026
Self-Paced Learning for Images of Antinuclear Antibodies
Antinuclear antibody (ANA) testing is a crucial method for diagnosing autoimmune disorders, including lupus, Sjögren's syndrome, and scleroderma. Despite its importance, manual ANA detection is slow, labor-intensive, and demands years of training. ANA detection is complicated by over 100 coexisting antibody types, resulting in vast fluorescent pattern combinations. Although machine learning and deep learning have enabled automation, ANA detection in real-world clinical settings presents unique challenges as it involves multi-instance, multi-label (MIML) learning. In this paper, a novel framework for ANA detection is proposed that handles the complexities of MIML tasks using unaltered microscope images without manual preprocessing. Inspired by human labeling logic, it identifies consistent ANA sub-regions and assigns aggregated labels accordingly. These steps are implemented using three task-specific components: an instance sampler, a probabilistic pseudo-label dispatcher, and self-paced weight learning rate coefficients. The instance sampler suppresses low-confidence instances by modeling pattern confidence, while the dispatcher adaptively assigns labels based on instance distinguishability. Self-paced learning adjusts training according to empirical label observations. Our framework overcomes limitations of traditional MIML methods and supports end-to-end optimization. Extensive experiments on one ANA dataset and three public medical MIML benchmarks demonstrate the superiority of our framework. On the ANA dataset, our model achieves up to +7.0% F1-Macro and +12.6% mAP gains over the best prior method, setting new state-of-the-art results. It also ranks top-2 across all key metrics on public datasets, reducing Hamming loss and one-error by up to 18.2% and 26.9%, respectively. The source code can be accessed at https://github.com/fletcherjiang/ANA-SelfPacedLearning.
comment: IEEE Transactions on Medical Imaging
JoyAvatar-Flash: Real-time and Infinite Audio-Driven Avatar Generation with Autoregressive Diffusion
Existing DiT-based audio-driven avatar generation methods have achieved considerable progress, yet their broader application is constrained by limitations such as high computational overhead and the inability to synthesize long-duration videos. Autoregressive methods address this problem by applying block-wise autoregressive diffusion methods. However, these methods suffer from the problem of error accumulation and quality degradation. To address this, we propose JoyAvatar-Flash, an audio-driven autoregressive model capable of real-time inference and infinite-length video generation with the following contributions: (1) Progressive Step Bootstrapping (PSB), which allocates more denoising steps to initial frames to stabilize generation and reduce error accumulation; (2) Motion Condition Injection (MCI), enhancing temporal coherence by injecting noise-corrupted previous frames as motion condition; and (3) Unbounded RoPE via Cache-Resetting (URCR), enabling infinite-length generation through dynamic positional encoding. Our 1.3B-parameter causal model achieves 16 FPS on a single GPU and achieves competitive results in visual quality, temporal consistency, and lip synchronization.
A Multi-Mode Structured Light 3D Imaging System with Multi-Source Information Fusion for Underwater Pipeline Detection
Underwater pipelines are highly susceptible to corrosion, which not only shorten their service life but also pose significant safety risks. Compared with manual inspection, the intelligent real-time imaging system for underwater pipeline detection has become a more reliable and practical solution. Among various underwater imaging techniques, structured light 3D imaging can restore the sufficient spatial detail for precise defect characterization. Therefore, this paper develops a multi-mode underwater structured light 3D imaging system for pipeline detection (UW-SLD system) based on multi-source information fusion. First, a rapid distortion correction (FDC) method is employed for efficient underwater image rectification. To overcome the challenges of extrinsic calibration among underwater sensors, a factor graph-based parameter optimization method is proposed to estimate the transformation matrix between the structured light and acoustic sensors. Furthermore, a multi-mode 3D imaging strategy is introduced to adapt to the geometric variability of underwater pipelines. Given the presence of numerous disturbances in underwater environments, a multi-source information fusion strategy and an adaptive extended Kalman filter (AEKF) are designed to ensure stable pose estimation and high-accuracy measurements. In particular, an edge detection-based ICP (ED-ICP) algorithm is proposed. This algorithm integrates pipeline edge detection network with enhanced point cloud registration to achieve robust and high-fidelity reconstruction of defect structures even under variable motion conditions. Extensive experiments are conducted under different operation modes, velocities, and depths. The results demonstrate that the developed system achieves superior accuracy, adaptability and robustness, providing a solid foundation for autonomous underwater pipeline detection.
Beyond the Last Frame: Process-aware Evaluation for Generative Video Reasoning
Recent breakthroughs in video generation have demonstrated an emerging capability termed Chain-of-Frames (CoF) reasoning, where models resolve complex tasks through the generation of continuous frames. While these models show promise for Generative Video Reasoning (GVR), existing evaluation frameworks often rely on single-frame assessments, which can lead to outcome-hacking, where a model reaches a correct conclusion through an erroneous process. To address this, we propose a process-aware evaluation paradigm. We introduce VIPER, a comprehensive benchmark spanning 16 tasks across temporal, structural, symbolic, spatial, physics, and planning reasoning. Furthermore, we propose Process-outcome Consistency (POC@r), a new metric that utilizes VLM-as-Judge with a hierarchical rubric to evaluate both the validity of the intermediate steps and the final result. Our experiments reveal that state-of-the-art video models achieve POC@1.0 only about 20% and exhibit a significant outcome-hacking. We further explore the impact of test-time scaling and sampling robustness, highlighting a substantial gap between current video generation and true generalized visual reasoning. Our benchmark are released at https://github.com/RUCAIBox/VIPER.
comment: Work in progress
SlumpGuard: An AI-Powered Real-Time System for Automated Concrete Slump Prediction via Video Analysis
Concrete workability is essential for construction quality, with the slump test being the most widely used on-site method for its assessment. However, traditional slump testing is manual, time-consuming, and highly operator-dependent, making it unsuitable for continuous or real-time monitoring during placement. To address these limitations, we present SlumpGuard, an AI-powered vision system that analyzes the natural discharge flow from a mixer-truck chute using a single fixed camera. The system performs automatic chute detection, pouring-event identification, and video-based slump classification, enabling quality monitoring without sensors, hardware installation, or manual intervention. We introduce the system design, construct a site-replicated dataset of over 6,000 video clips, and report extensive evaluations demonstrating reliable chute localization, accurate pouring detection, and robust slump prediction under diverse field conditions. An expert study further reveals significant disagreement in human visual estimates, highlighting the need for automated assessment.
comment: Accepted to Automation in Construction. Our project page: https://winston1214.github.io/SlumpGuard/
Universal Few-Shot Spatial Control for Diffusion Models
Spatial conditioning in pretrained text-to-image diffusion models has significantly improved fine-grained control over the structure of generated images. However, existing control adapters exhibit limited adaptability and incur high training costs when encountering novel spatial control conditions that differ substantially from the training tasks. To address this limitation, we propose Universal Few-Shot Control (UFC), a versatile few-shot control adapter capable of generalizing to novel spatial conditions. Given a few image-condition pairs of an unseen task and a query condition, UFC leverages the analogy between query and support conditions to construct task-specific control features, instantiated by a matching mechanism and an update on a small set of task-specific parameters. Experiments on six novel spatial control tasks show that UFC, fine-tuned with only 30 annotated examples of novel tasks, achieves fine-grained control consistent with the spatial conditions. Notably, when fine-tuned with 0.1% of the full training data, UFC achieves competitive performance with the fully supervised baselines in various control tasks. We also show that UFC is applicable agnostically to various diffusion backbones and demonstrate its effectiveness on both UNet and DiT architectures. Code is available at https://github.com/kietngt00/UFC.
Beyond One-Size-Fits-All: A Survey of Personalized Affective Computing in Human-Agent Interaction
In personalized machine learning, the aim of personalization is to train a model that caters to a specific individual or group of individuals by optimizing one or more performance metrics and adhering to specific constraints. In this paper, we discuss the need for personalization in affective computing and present the first survey of existing approaches for personalization in affective computing. Our review spans training techniques and objectives towards the personalization of affective computing models across various interaction modes and contexts. We develop a taxonomy that clusters existing approaches into Data-level and Model-level approaches. Across the Data-Level and Model-Level broad categories, we group existing approaches into seven sub-categories: (1) User-Specific Models, (2) Group-Specific Models, (3) Weighting-Based Approaches, (4) Feature Augmentation, (5) Generative-Based Models which fall into the Data-Level approaches, (6) Fine-Tuning Approaches, and (7) Multitask Learning Approaches falling under the model-level approaches. We provide a problem formulation for personalized affective computing, and to each of the identified sub-categories. Additionally, we provide a statistical analysis of the surveyed literature, analyzing the prevalence of different affective computing tasks, interaction modes (i.e. Human-Computer Interaction (HCI), Human-Human interaction (HHI), Human-Robot Interaction (HRI)), interaction contexts (e.g. educative, social, gaming, etc.), and the level of personalization among the surveyed works. Based on our analysis, we provide a road-map for researchers interested in exploring this direction.
GenView++: Unifying Adaptive View Generation and Quality-Driven Supervision for Contrastive Representation Learning
The success of contrastive learning depends on the construction and utilization of high-quality positive pairs. However, current methods face critical limitations on two fronts: on the construction side, both handcrafted and generative augmentations often suffer from limited diversity and risk semantic corruption; on the learning side, the absence of a quality assessment mechanism leads to suboptimal supervision where all pairs are treated equally. To tackle these challenges, we propose GenView++, a unified framework that addresses both fronts by introducing two synergistic innovations. To improve pair construction, GenView++ introduces a multi-source adaptive view generation mechanism to synthesize diverse yet semantically coherent views by dynamically modulating generative parameters across image-conditioned, text-conditioned, and image-text-conditioned strategies. Second, a quality-driven contrastive learning mechanism assesses each pair's semantic alignment and diversity to dynamically reweight their training contribution, prioritizing high-quality pairs while suppressing redundant or misaligned pairs. Extensive experiments demonstrate the effectiveness of GenView++ across both vision and vision-language tasks. For vision representation learning, it improves MoCov2 by +2.5% on ImageNet linear classification. For vision-language learning, it raises the average zero-shot classification accuracy by +12.31% over CLIP and +5.31% over SLIP across ten datasets, and further improves Flickr30k text retrieval R@5 by +3.2%.
comment: The code is available at \url{https://github.com/xiaojieli0903/GenViewPlusPlus}
Weakly Supervised Concept Learning with Class-Level Priors for Interpretable Medical Diagnosis
Human-interpretable predictions are essential for deploying AI in medical imaging, yet most interpretable-by-design (IBD) frameworks require concept annotations for training data, which are costly and impractical to obtain in clinical contexts. Recent attempts to bypass annotation, such as zero-shot vision-language models or concept-generation frameworks, struggle to capture domain-specific medical features, leading to poor reliability. In this paper, we propose a novel Prior-guided Concept Predictor (PCP), a weakly supervised framework that enables concept answer prediction without explicit supervision or reliance on language models. PCP leverages class-level concept priors as weak supervision and incorporates a refinement mechanism with KL divergence and entropy regularization to align predictions with clinical reasoning. Experiments on PH2 (dermoscopy) and WBCatt (hematology) show that PCP improves concept-level F1-score by over 33% compared to zero-shot baselines, while delivering competitive classification performance on four medical datasets (PH2, WBCatt, HAM10000, and CXR4) relative to fully supervised concept bottleneck models (CBMs) and V-IP.
Tuning-free Visual Effect Transfer across Videos
We present RefVFX, a new framework that transfers complex temporal effects from a reference video onto a target video or image in a feed-forward manner. While existing methods excel at prompt-based or keyframe-conditioned editing, they struggle with dynamic temporal effects such as dynamic lighting changes or character transformations, which are difficult to describe via text or static conditions. Transferring a video effect is challenging, as the model must integrate the new temporal dynamics with the input video's existing motion and appearance. % To address this, we introduce a large-scale dataset of triplets, where each triplet consists of a reference effect video, an input image or video, and a corresponding output video depicting the transferred effect. Creating this data is non-trivial, especially the video-to-video effect triplets, which do not exist naturally. To generate these, we propose a scalable automated pipeline that creates high-quality paired videos designed to preserve the input's motion and structure while transforming it based on some fixed, repeatable effect. We then augment this data with image-to-video effects derived from LoRA adapters and code-based temporal effects generated through programmatic composition. Building on our new dataset, we train our reference-conditioned model using recent text-to-video backbones. Experimental results demonstrate that RefVFX produces visually consistent and temporally coherent edits, generalizes across unseen effect categories, and outperforms prompt-only baselines in both quantitative metrics and human preference. See our website at https://tuningfreevisualeffects-maker.github.io/Tuning-free-Visual-Effect-Transfer-across-Videos-Project-Page/
comment: Project Page: https://tuningfreevisualeffects-maker.github.io/Tuning-free-Visual-Effect-Transfer-across-Videos-Project-Page/
M3CoTBench: Benchmark Chain-of-Thought of MLLMs in Medical Image Understanding
Chain-of-Thought (CoT) reasoning has proven effective in enhancing large language models by encouraging step-by-step intermediate reasoning, and recent advances have extended this paradigm to Multimodal Large Language Models (MLLMs). In the medical domain, where diagnostic decisions depend on nuanced visual cues and sequential reasoning, CoT aligns naturally with clinical thinking processes. However, Current benchmarks for medical image understanding generally focus on the final answer while ignoring the reasoning path. An opaque process lacks reliable bases for judgment, making it difficult to assist doctors in diagnosis. To address this gap, we introduce a new M3CoTBench benchmark specifically designed to evaluate the correctness, efficiency, impact, and consistency of CoT reasoning in medical image understanding. M3CoTBench features 1) a diverse, multi-level difficulty dataset covering 24 examination types, 2) 13 varying-difficulty tasks, 3) a suite of CoT-specific evaluation metrics (correctness, efficiency, impact, and consistency) tailored to clinical reasoning, and 4) a performance analysis of multiple MLLMs. M3CoTBench systematically evaluates CoT reasoning across diverse medical imaging tasks, revealing current limitations of MLLMs in generating reliable and clinically interpretable reasoning, and aims to foster the development of transparent, trustworthy, and diagnostically accurate AI systems for healthcare. Project page at https://juntaojianggavin.github.io/projects/M3CoTBench/.
comment: 40 pages, 8 figures
MHLA: Restoring Expressivity of Linear Attention via Token-Level Multi-Head
While the Transformer architecture dominates many fields, its quadratic self-attention complexity hinders its use in large-scale applications. Linear attention offers an efficient alternative, but its direct application often degrades performance, with existing fixes typically re-introducing computational overhead through extra modules (e.g., depthwise separable convolution) that defeat the original purpose. In this work, we identify a key failure mode in these methods: global context collapse, where the model loses representational diversity. To address this, we propose Multi-Head Linear Attention (MHLA), which preserves this diversity by computing attention within divided heads along the token dimension. We prove that MHLA maintains linear complexity while recovering much of the expressive power of softmax attention, and verify its effectiveness across multiple domains, achieving a 3.6\% improvement on ImageNet classification, a 6.3\% gain on NLP, a 12.6\% improvement on image generation, and a 41\% enhancement on video generation under the same time complexity.
comment: Code: https://github.com/DAGroup-PKU/MHLA/ Project website: https://dagroup-pku.github.io/MHLA/
DyDiT++: Diffusion Transformers with Timestep and Spatial Dynamics for Efficient Visual Generation
Diffusion Transformer (DiT), an emerging diffusion model for visual generation, has demonstrated superior performance but suffers from substantial computational costs. Our investigations reveal that these costs primarily stem from the static inference paradigm, which inevitably introduces redundant computation in certain diffusion timesteps and spatial regions. To overcome this inefficiency, we propose Dynamic Diffusion Transformer (DyDiT), an architecture that dynamically adjusts its computation along both timestep and spatial dimensions. Building on these designs, we present an extended version, DyDiT++, with improvements in three key aspects. First, it extends the generation mechanism of DyDiT beyond diffusion to flow matching, demonstrating that our method can also accelerate flow-matching-based generation, enhancing its versatility. Furthermore, we enhance DyDiT to tackle more complex visual generation tasks, including video generation and text-to-image generation, thereby broadening its real-world applications. Finally, to address the high cost of full fine-tuning and democratize technology access, we investigate the feasibility of training DyDiT in a parameter-efficient manner and introduce timestep-based dynamic LoRA (TD-LoRA). Extensive experiments on diverse visual generation models, including DiT, SiT, Latte, and FLUX, demonstrate the effectiveness of DyDiT++. Remarkably, with <3% additional fine-tuning iterations, our approach reduces the FLOPs of DiT-XL by 51%, yielding 1.73x realistic speedup on hardware, and achieves a competitive FID score of 2.07 on ImageNet. The code is available at https://github.com/alibaba-damo-academy/DyDiT.
comment: This paper was accepted to the IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) on January 9, 2026. arXiv admin note: substantial text overlap with arXiv:2410.03456
MedicalNarratives: Connecting Medical Vision and Language with Localized Narratives
Multi-modal models are data hungry. While datasets with natural images are abundant, medical image datasets can not afford the same luxury. To enable representation learning for medical images at scale, we turn to YouTube, a platform with a large reservoir of open-source medical pedagogical videos. We curate MedicalNarratives, a dataset 4.7M medical image-text pairs, with 1M samples containing dense annotations in the form of spatial traces (and bounding boxes), and 118K videos centered on the trace event (with aligned text), enabling spatiotemporal grounding beyond single frames. Similar to $\textit{think-aloud}$ studies where instructors speak while hovering their mouse cursor movements over relevant image regions, 1M images in MedicalNarratives contains localized mouse traces in image pixels, creating a spatial and temporal association between the text and pixels. To evaluate the utility of MedicalNarratives, we train GenMedClip with a CLIP-like objective using our dataset spanning 12 medical domains. GenMedClip outperforms previous state-of-the-art models on all 12 domains on a newly constructed medical imaging benchmark. $\href{https://huggingface.co/datasets/wisdomik/MedicalNarratives}{[Data]}$
Simulated Ensemble Attack: Transferring Jailbreaks Across Fine-tuned Vision-Language Models
The widespread practice of fine-tuning open-source Vision-Language Models (VLMs) raises a critical security concern: jailbreak vulnerabilities in base models may persist in downstream variants, enabling transferable attacks across fine-tuned systems. To investigate this risk, we propose the Simulated Ensemble Attack (SEA), a grey-box jailbreak framework that assumes full access to the base VLM but no knowledge of the fine-tuned target. SEA enhances transferability via Fine-tuning Trajectory Simulation (FTS), which models bounded parameter variations in the vision encoder, and Targeted Prompt Guidance (TPG), which stabilizes adversarial optimization through auxiliary textual guidance. Experiments on the Qwen2-VL family demonstrate that SEA achieves consistently high transfer success and toxicity rates across diverse fine-tuned variants, including safety-enhanced models, while standard PGD-based image jailbreaks exhibit negligible transferability. Further analysis reveals that fine-tuning primarily induces localized parameter shifts around the base model, explaining why attacks optimized over a simulated neighborhood transfer effectively. We also show that SEA generalizes across different base generations (e.g., Qwen2.5/3-VL), indicating that its effectiveness arises from shared fine-tuning-induced behaviors rather than architecture- or initialization-specific factors.
Scaling Remote Sensing Foundation Models: Data Domain Tradeoffs at the Peta-Scale
We explore the scaling behaviors of artificial intelligence to establish practical techniques for training foundation models on high-resolution electro-optical (EO) datasets that exceed the current state-of-the-art scale by orders of magnitude. Modern multimodal machine learning (ML) applications, such as generative artificial intelligence (GenAI) systems for image captioning, search, and reasoning, depend on robust, domain-specialized encoders for non-text modalities. In natural image domains where internet-scale data is plentiful, well-established scaling laws help optimize the joint scaling of model capacity, training compute, and dataset size. Unfortunately, these relationships are much less well understood in high-value domains like remote sensing (RS). Using over a quadrillion pixels of commercial satellite EO data and MITRE's Federal AI Sandbox, we train progressively larger vision transformer (ViT) backbones, report successes and failure modes observed at peta-scale, and analyze implications for bridging domain gaps across additional RS modalities. We observe that even at this scale, performance is consistent with a data-limited regime rather than a model parameter-limited one. These practical insights are intended to inform data collection strategies, compute budgets, and optimization schedules that advance the future development of frontier scale RS foundation models.
GI-Bench: A Panoramic Benchmark Revealing the Knowledge-Experience Dissociation of Multimodal Large Language Models in Gastrointestinal Endoscopy Against Clinical Standards
Multimodal Large Language Models (MLLMs) show promise in gastroenterology, yet their performance against comprehensive clinical workflows and human benchmarks remains unverified. To systematically evaluate state-of-the-art MLLMs across a panoramic gastrointestinal endoscopy workflow and determine their clinical utility compared with human endoscopists. We constructed GI-Bench, a benchmark encompassing 20 fine-grained lesion categories. Twelve MLLMs were evaluated across a five-stage clinical workflow: anatomical localization, lesion identification, diagnosis, findings description, and management. Model performance was benchmarked against three junior endoscopists and three residency trainees using Macro-F1, mean Intersection-over-Union (mIoU), and multi-dimensional Likert scale. Gemini-3-Pro achieved state-of-the-art performance. In diagnostic reasoning, top-tier models (Macro-F1 0.641) outperformed trainees (0.492) and rivaled junior endoscopists (0.727; p>0.05). However, a critical "spatial grounding bottleneck" persisted; human lesion localization (mIoU >0.506) significantly outperformed the best model (0.345; p<0.05). Furthermore, qualitative analysis revealed a "fluency-accuracy paradox": models generated reports with superior linguistic readability compared with humans (p<0.05) but exhibited significantly lower factual correctness (p<0.05) due to "over-interpretation" and hallucination of visual features. GI-Bench maintains a dynamic leaderboard that tracks the evolving performance of MLLMs in clinical endoscopy. The current rankings and benchmark results are available at https://roterdl.github.io/GIBench/.
comment: 45 pages, 17 figures, 6 tables. Leaderboard available at: https://roterdl.github.io/GIBench/ . Includes supplementary material
GeoMotionGPT: Geometry-Aligned Motion Understanding with Large Language Models
Discrete motion tokenization has recently enabled Large Language Models (LLMs) to serve as versatile backbones for motion understanding and motion-language reasoning. However, existing pipelines typically decouple motion quantization from semantic embedding learning, linking them solely via token IDs. This approach fails to effectively align the intrinsic geometry of the motion space with the embedding space, thereby hindering the LLM's capacity for nuanced motion reasoning. We argue that alignment is most effective when both modalities share a unified geometric basis. Therefore, instead of forcing the LLM to reconstruct the complex geometry among motion tokens from scratch, we present a novel framework that explicitly enforces orthogonality on both the motion codebook and the LLM embedding space, ensuring that their relational structures naturally mirror each other. Specifically, we employ a decoder-only quantizer with Gumbel-Softmax for differentiable training and balanced codebook usage. To bridge the modalities, we use a sparse projection that maps motion codes into the LLM embedding space while preserving orthogonality. Finally, a two-stage orthonormal regularization schedule enforces soft constraints during tokenizer training and LLM fine-tuning to maintain geometric alignment without hindering semantic adaptation. Extensive experiments on HumanML3D demonstrate that our framework achieves a 20% performance improvement over current state-of-the-art methods, validating that a unified geometric basis effectively empowers the LLM for nuanced motion reasoning.
MoCha:End-to-End Video Character Replacement without Structural Guidance
Controllable video character replacement with a user-provided identity remains a challenging problem due to the lack of paired video data. Prior works have predominantly relied on a reconstruction-based paradigm that requires per-frame segmentation masks and explicit structural guidance (e.g., skeleton, depth). This reliance, however, severely limits their generalizability in complex scenarios involving occlusions, character-object interactions, unusual poses, or challenging illumination, often leading to visual artifacts and temporal inconsistencies. In this paper, we propose MoCha, a pioneering framework that bypasses these limitations by requiring only a single arbitrary frame mask. To effectively adapt the multi-modal input condition and enhance facial identity, we introduce a condition-aware RoPE and employ an RL-based post-training stage. Furthermore, to overcome the scarcity of qualified paired-training data, we propose a comprehensive data construction pipeline. Specifically, we design three specialized datasets: a high-fidelity rendered dataset built with Unreal Engine 5 (UE5), an expression-driven dataset synthesized by current portrait animation techniques, and an augmented dataset derived from existing video-mask pairs. Extensive experiments demonstrate that our method substantially outperforms existing state-of-the-art approaches. We will release the code to facilitate further research. Please refer to our project page for more details: orange-3dv-team.github.io/MoCha
comment: 10 pages, 9 figures
Image-to-Brain Signal Generation for Visual Prosthesis with CLIP Guided Multimodal Diffusion Models
Visual prostheses hold great promise for restoring vision in blind individuals. While researchers have successfully utilized M/EEG signals to evoke visual perceptions during the brain decoding stage of visual prostheses, the complementary process of converting images into M/EEG signals in the brain encoding stage remains largely unexplored, hindering the formation of a complete functional pipeline. In this work, we present a novel image-to-brain signal framework that generates M/EEG from images by leveraging the diffusion transformer architecture enhanced with cross-attention mechanisms. Specifically, we employ a diffusion transformer (DiT) architecture based on denoising diffusion implicit models (DDIM) to achieve brain signal generation. To realize the goal of image-to-brain signal conversion, we use cross-attention mechanisms to align brain signal embeddings with CLIP image embeddings. Moreover, we leverage large language models (LLMs) to generate image captions, and concatenate the resulting CLIP text embeddings with CLIP image embeddings to form unified embeddings for cross-attention alignment, enabling our model to capture core semantic information. Moreover, to capture core semantic information, we use large language models (LLMs) to generate descriptive and semantically accurate captions for images. Furthermore, we introduce a learnable spatio-temporal position encoding that combines brain region embeddings with temporal embeddings to capture both spatial and temporal characteristics of brain signals. We evaluate the framework on two multimodal benchmark datasets (THINGS-EEG2 and THINGS-MEG) and demonstrate that it generates biologically plausible brain signals.
Video Prediction Transformers without Recurrence or Convolution
Video prediction has witnessed the emergence of RNN-based models led by ConvLSTM, and CNN-based models led by SimVP. Following the significant success of ViT, recent works have integrated ViT into both RNN and CNN frameworks, achieving improved performance. While we appreciate these prior approaches, we raise a fundamental question: Is there a simpler yet more effective solution that can eliminate the high computational cost of RNNs while addressing the limited receptive fields and poor generalization of CNNs? How far can it go with a simple pure transformer model for video prediction? In this paper, we propose PredFormer, a framework entirely based on Gated Transformers. We provide a comprehensive analysis of 3D Attention in the context of video prediction. Extensive experiments demonstrate that PredFormer delivers state-of-the-art performance across four standard benchmarks. The significant improvements in both accuracy and efficiency highlight the potential of PredFormer as a strong baseline for real-world video prediction applications. The source code and trained models will be released at https://github.com/yyyujintang/PredFormer.
comment: Accepted by Transactions on Machine Learning Research 2026; Project Page: https://yyyujintang.github.io/predformer-project/
AURASeg: Attention Guided Upsampling with Residual Boundary-Assistive Refinement for Drivable-Area Segmentation
Free space ground segmentation is essential to navigate autonomous robots, recognize drivable zones, and traverse efficiently. Fine-grained features remain challenging for existing segmentation models, particularly for robots in indoor and structured environments. These difficulties arise from ineffective multi-scale processing, suboptimal boundary refinement, and limited feature representation. To address this, we propose Attention-Guided Upsampling with Residual Boundary-Assistive Refinement (AURASeg), a ground-plane semantic segmentation framework designed to improve border precision while preserving strong region accuracy. Built on a ResNet-50 backbone, AURASeg introduces (i) a Residual Border Refinement Module (RBRM) that enhances edge delineation through boundary-assistive feature refinement, and (ii) Attention Progressive Upsampling Decoder (APUD) blocks that progressively fuse multi-level features during decoding. Additionally, we integrate a (iii) lightweight ASPPLite module to capture multi-scale context with minimal overhead. Extensive experiments on CARL-D, the Ground Mobile Robot Perception (GMRP) dataset, and a custom Gazebo indoor dataset show that AURASeg consistently outperforms strong baselines, with notable gains in boundary metrics. Finally, we demonstrate real-time deployment on a Kobuki TurtleBot, validating practical usability. The code is available at https://github.com/Narendhiranv04/AURASeg
comment: 6 pages, 4 figures, 4 tables
Boosting Adversarial Transferability with Low-Cost Optimization via Maximin Expected Flatness
Transfer-based attacks craft adversarial examples on white-box surrogate models and directly deploy them against black-box target models, offering model-agnostic and query-free threat scenarios. While flatness-enhanced methods have recently emerged to improve transferability by enhancing the loss surface flatness of adversarial examples, their divergent flatness definitions and heuristic attack designs suffer from unexamined optimization limitations and missing theoretical foundation, thus constraining their effectiveness and efficiency. This work exposes the severely imbalanced exploitation-exploration dynamics in flatness optimization, establishing the first theoretical foundation for flatness-based transferability and proposing a principled framework to overcome these optimization pitfalls. Specifically, we systematically unify fragmented flatness definitions across existing methods, revealing their imbalanced optimization limitations in over-exploration of sensitivity peaks or over-exploitation of local plateaus. To resolve these issues, we rigorously formalize average-case flatness and transferability gaps, proving that enhancing zeroth-order average-case flatness minimizes cross-model discrepancies. Building on this theory, we design a Maximin Expected Flatness (MEF) attack that enhances zeroth-order average-case flatness while balancing flatness exploration and exploitation. Extensive evaluations across 22 models and 24 current transfer-based attacks demonstrate MEF's superiority: it surpasses the state-of-the-art PGN attack by 4% in attack success rate at half the computational cost and achieves 8% higher success rate under the same budget. When combined with input augmentation, MEF attains 15% additional gains against defense-equipped models, establishing new robustness benchmarks. Our code is available at https://github.com/SignedQiu/MEFAttack.
comment: Accepted by IEEE T-IFS
An Attention Infused Deep Learning System with Grad-CAM Visualization for Early Screening of Glaucoma
This research work reveals the strengths of intertwining a deep custom convolutional neural network with a disruptive Vision Transformer, both fused together with a radical Cross-Attention module. Here, two high-yielding datasets for artificial intelligence models in detecting glaucoma, namely ACRIMA and Drishti, are utilized. The Cross-Attention mechanism facilitates the model in learning regions in the fundus that are clinically relevant through bidirectional feature exchange between CNN and ViT streams. Experiments clearly depict improved performance when compared to standalone baseline CNN and ViT models.
comment: 6 pages in general IEEE format, 8 figures, 4 tables, pdflatex
From Dormant to Deleted: Tamper-Resistant Unlearning Through Weight-Space Regularization
Recent unlearning methods for LLMs are vulnerable to relearning attacks: knowledge believed-to-be-unlearned re-emerges by fine-tuning on a small set of (even seemingly-unrelated) examples. We study this phenomenon in a controlled setting for example-level unlearning in vision classifiers. We make the surprising discovery that forget-set accuracy can recover from around 50% post-unlearning to nearly 100% with fine-tuning on just the retain set -- i.e., zero examples of the forget set. We observe this effect across a wide variety of unlearning methods, whereas for a model retrained from scratch excluding the forget set (gold standard), the accuracy remains at 50%. We observe that resistance to relearning attacks can be predicted by weight-space properties, specifically, $L_2$-distance and linear mode connectivity between the original and the unlearned model. Leveraging this insight, we propose a new class of methods that achieve state-of-the-art resistance to relearning attacks.
MolX: Enhancing Large Language Models for Molecular Understanding With A Multi-Modal Extension
Large Language Models (LLMs) with their strong task-handling capabilities have shown remarkable advancements across a spectrum of fields, moving beyond natural language understanding. However, their proficiency within the chemistry domain remains restricted, especially in solving molecule-related tasks. This challenge is attributed to their inherent limitations in comprehending molecules using only common textual representations, i.e. SMILES strings. In this study, we seek to enhance the ability of LLMs to comprehend molecules by equipping them with a multi-modal external module, termed MolX. Instead of directly using SMILES strings to represent a molecule, we utilize specific encoders to extract fine-grained features from both SMILES string and 2D molecular graph representations for feeding into an LLM. A hand-crafted molecular fingerprint is incorporated to leverage its embedded domain knowledge. To establish an alignment between MolX and the LLM's textual input space, the model in which the LLM is frozen, is pre-trained with a strategy including a diverse set of tasks. Experimental evaluations show that our proposed method outperforms baselines across downstream molecule-related tasks ranging from molecule-to-text translation to molecular property prediction, with and without fine-tuning the LLM, while only introducing a small number of trainable parameters-0.53% and 0.82%, respectively.
comment: MLoG-GenAI@KDD'25
SageAttention3: Microscaling FP4 Attention for Inference and An Exploration of 8-Bit Training
The efficiency of attention is important due to its quadratic time complexity. We enhance the efficiency of attention through two key contributions: First, we leverage the new FP4 Tensor Cores in Blackwell GPUs to accelerate attention computation. Our implementation achieves 1038 TOPS on RTX5090, which is a 5x speedup over the fastest FlashAttention on RTX5090. Experiments show that our FP4 attention can accelerate inference of various models in a plug-and-play way. Second, we pioneer low-bit attention to training tasks. Existing low-bit attention works like FlashAttention3 and SageAttention focus only on inference. However, the efficiency of training large models is also important. To explore whether low-bit attention can be effectively applied to training tasks, we design an accurate and efficient 8-bit attention for both forward and backward propagation. Experiments indicate that 8-bit attention achieves lossless performance in fine-tuning tasks but exhibits slower convergence in pretraining tasks. The code is available at https://github.com/thu-ml/SageAttention.
A Kolmogorov metric embedding for live cell microscopy signaling patterns
We present a metric embedding that captures spatiotemporal patterns of cell signaling dynamics in 5-D $(x,y,z,channel,time)$ live cell microscopy movies. The embedding uses a metric distance called the normalized information distance (NID) based on Kolmogorov complexity theory, an absolute measure of information content between digital objects. The NID uses statistics of lossless compression to compute a theoretically optimal metric distance between pairs of 5-D movies, requiring no a priori knowledge of expected pattern dynamics, and no training data. The cell signaling structure function (SSF) is defined using a class of metric 3-D image filters that compute at each spatiotemporal cell centroid the voxel intensity configuration of the nucleus w.r.t. the surrounding cytoplasm, or a functional output e.g. velocity. The only parameter is the expected cell radii ($μm$). The SSF can be optionally combined with segmentation and tracking algorithms. The resulting lossless compression pipeline represents each 5-D input movie as a single point in a metric embedding space. The utility of a metric embedding follows from Euclidean distance between any points in the embedding space approximating optimally the pattern difference, as measured by the NID, between corresponding pairs of 5-D movies. This is true throughout the embedding space, not only at points corresponding to input images. Examples are shown for synthetic data, for 2-D+time movies of ERK and AKT signaling under different oncogenic mutations in human epithelial (MCF10A) cells, for 3-D MCF10A spheroids under optogenetic manipulation of ERK, and for ERK dynamics during colony differentiation in human stem cells.
prNet: Data-Driven Phase Retrieval via Stochastic Refinement
Phase retrieval is an ill-posed inverse problem in which classical and deep learning-based methods struggle to jointly achieve measurement fidelity and perceptual realism. We propose a novel framework for phase retrieval that leverages Langevin dynamics to enable efficient posterior sampling, yielding reconstructions that explicitly balance distortion and perceptual quality. Unlike conventional approaches that prioritize pixel-wise accuracy, our methods navigate the perception-distortion tradeoff through a principled combination of stochastic sampling, learned denoising, and model-based updates. The framework comprises three variants of increasing complexity, integrating theoretically grounded Langevin inference, adaptive noise schedule learning, parallel reconstruction sampling, and warm-start initialization from classical solvers. Extensive experiments demonstrate that our methods achieve state-of-the-art performance across multiple benchmarks, both in terms of fidelity and perceptual quality. The source code and trained models are available at https://github.com/METU-SPACE-Lab/prNet-for-Phase-Retrieval
Depth Edge Alignment Loss: DEALing with Depth in Weakly Supervised Semantic Segmentation
Autonomous robotic systems applied to new domains require an abundance of expensive, pixel-level dense labels to train robust semantic segmentation models under full supervision. This study proposes a model-agnostic Depth Edge Alignment Loss to improve Weakly Supervised Semantic Segmentation models across different datasets. The methodology generates pixel-level semantic labels from image-level supervision, avoiding expensive annotation processes. While weak supervision is widely explored in traditional computer vision, our approach adds supervision with pixel-level depth information, a modality commonly available in robotic systems. We demonstrate how our approach improves segmentation performance across datasets and models, but can also be combined with other losses for even better performance, with improvements up to +5.439, +1.274 and +16.416 points in mean Intersection over Union on the PASCAL VOC / MS COCO validation, and the HOPE static onboarding split, respectively. Our code is made publicly available at https://github.com/DTU-PAS/DEAL.
comment: Submitted to IEEE
Normalize Filters! Classical Wisdom for Deep Vision
Classical image filters, such as those for averaging or differencing, are carefully normalized to ensure consistency, interpretability, and to avoid artifacts like intensity shifts, halos, or ringing. In contrast, convolutional filters learned end-to-end in deep networks lack such constraints. Although they may resemble wavelets and blob/edge detectors, they are not normalized in the same or any way. Consequently, when images undergo atmospheric transfer, their responses become distorted, leading to incorrect outcomes. We address this limitation by proposing filter normalization, followed by learnable scaling and shifting, akin to batch normalization. This simple yet effective modification ensures that the filters are atmosphere-equivariant, enabling co-domain symmetry. By integrating classical filtering principles into deep learning (applicable to both convolutional neural networks and convolution-dependent vision transformers), our method achieves significant improvements on artificial and natural intensity variation benchmarks. Our ResNet34 could even outperform CLIP by a large margin. Our analysis reveals that unnormalized filters degrade performance, whereas filter normalization regularizes learning, promotes diversity, and improves robustness and generalization.
YOLO26: Key Architectural Enhancements and Performance Benchmarking for Real-Time Object Detection
This study presents a comprehensive analysis of Ultralytics YOLO26(also called as YOLOv26), highlighting its key architectural enhancements and performance benchmarking for real-time object detection. YOLO26, released in September 2025, stands as the newest and most advanced member of the YOLO family, purpose-built to deliver efficiency, accuracy, and deployment readiness on edge and low-power devices. The paper sequentially details architectural innovations of YOLO26, including the removal of Distribution Focal Loss (DFL), adoption of end-to-end NMS-free inference, integration of ProgLoss and Small-Target-Aware Label Assignment (STAL), and the introduction of the MuSGD optimizer for stable convergence. Beyond architecture, the study positions YOLO26 as a multi-task framework, supporting object detection, instance segmentation, pose/keypoints estimation, oriented detection, and classification. We present performance benchmarks of YOLO26 on edge devices such as NVIDIA Jetson Nano and Orin, comparing its results with YOLOv8, YOLOv11, YOLOv12, YOLOv13, and transformer-based detectors(RF-DETR and RT-DETR). This paper further explores real-time deployment pathways, flexible export options (ONNX, TensorRT, CoreML, TFLite), and quantization for INT8/FP16. Practical use cases of YOLO26 across robotics, manufacturing, and IoT are highlighted to demonstrate cross-industry adaptability. Finally, insights on deployment efficiency and broader implications are discussed, with future directions for YOLO26 and the YOLO lineage outlined.
Artificial Intelligence 241
Fast-ThinkAct: Efficient Vision-Language-Action Reasoning via Verbalizable Latent Planning
Vision-Language-Action (VLA) tasks require reasoning over complex visual scenes and executing adaptive actions in dynamic environments. While recent studies on reasoning VLAs show that explicit chain-of-thought (CoT) can improve generalization, they suffer from high inference latency due to lengthy reasoning traces. We propose Fast-ThinkAct, an efficient reasoning framework that achieves compact yet performant planning through verbalizable latent reasoning. Fast-ThinkAct learns to reason efficiently with latent CoTs by distilling from a teacher, driven by a preference-guided objective to align manipulation trajectories that transfers both linguistic and visual planning capabilities for embodied control. This enables reasoning-enhanced policy learning that effectively connects compact reasoning to action execution. Extensive experiments across diverse embodied manipulation and reasoning benchmarks demonstrate that Fast-ThinkAct achieves strong performance with up to 89.3\% reduced inference latency over state-of-the-art reasoning VLAs, while maintaining effective long-horizon planning, few-shot adaptation, and failure recovery.
comment: Project page: https://jasper0314-huang.github.io/fast-thinkact/
Value-Aware Numerical Representations for Transformer Language Models
Transformer-based language models often achieve strong results on mathematical reasoning benchmarks while remaining fragile on basic numerical understanding and arithmetic operations. A central limitation is that numbers are processed as symbolic tokens whose embeddings do not explicitly encode numerical value, leading to systematic errors. We introduce a value-aware numerical representation that augments standard tokenized inputs with a dedicated prefix token whose embedding is explicitly conditioned on the underlying numerical value. This mechanism injects magnitude information directly into the model's input space while remaining compatible with existing tokenizers and decoder-only Transformer architectures. Evaluation on arithmetic tasks shows that the proposed approach outperforms baselines across numerical formats, tasks, and operand lengths. These results indicate that explicitly encoding numerical value is an effective and efficient way to improve fundamental numerical robustness in language models.
ShortCoder: Knowledge-Augmented Syntax Optimization for Token-Efficient Code Generation
Code generation tasks aim to automate the conversion of user requirements into executable code, significantly reducing manual development efforts and enhancing software productivity. The emergence of large language models (LLMs) has significantly advanced code generation, though their efficiency is still impacted by certain inherent architectural constraints. Each token generation necessitates a complete inference pass, requiring persistent retention of contextual information in memory and escalating resource consumption. While existing research prioritizes inference-phase optimizations such as prompt compression and model quantization, the generation phase remains underexplored. To tackle these challenges, we propose a knowledge-infused framework named ShortCoder, which optimizes code generation efficiency while preserving semantic equivalence and readability. In particular, we introduce: (1) ten syntax-level simplification rules for Python, derived from AST-preserving transformations, achieving 18.1% token reduction without functional compromise; (2) a hybrid data synthesis pipeline integrating rule-based rewriting with LLM-guided refinement, producing ShorterCodeBench, a corpus of validated tuples of original code and simplified code with semantic consistency; (3) a fine-tuning strategy that injects conciseness awareness into the base LLMs. Extensive experimental results demonstrate that ShortCoder consistently outperforms state-of-the-art methods on HumanEval, achieving an improvement of 18.1%-37.8% in generation efficiency over previous methods while ensuring the performance of code generation.
LLMs can Compress LLMs: Adaptive Pruning by Agents
As Large Language Models (LLMs) continue to scale, post-training pruning has emerged as a promising approach to reduce computational costs while preserving performance. Existing methods such as SparseGPT and Wanda achieve high sparsity through layer-wise weight reconstruction or activation-aware magnitude pruning, but rely on uniform or hand-crafted heuristics to determine per-layer sparsity ratios. Moreover, recent work has shown that pruned LLMs suffer from severe factual knowledge degradation, with structured pruning methods experiencing near-total collapse in factual question-answering capabilities. We introduce agent-guided pruning, where a foundation model acts as an adaptive pruning agent to intelligently select which layers to prune at each iteration while preserving critical knowledge pathways. Our method constructs layer-wise sensitivity profiles by combining Wanda-inspired weight-activation metrics with gradient importance scores, normalized as z-scores for model-agnostic comparison. These statistics are processed by an LLM agent equipped with self-reflection capabilities, enabling it to learn from previous pruning outcomes and iteratively refine its strategy. A checkpoint rollback mechanism maintains model quality by reverting when perplexity degradation exceeds a threshold. We evaluate our approach on Qwen3 models (4B and 8B parameters) at approximately 45% sparsity, demonstrating substantial improvements over structured pruning baselines: 56% relative improvement in MMLU accuracy, 19x better factual knowledge retention on FreebaseQA, and 69% lower perplexity degradation. Notably, our framework requires no retraining, operates in a model-agnostic manner, and exhibits effective self-correction with only 2-4 rollbacks across 21-40 iterations, demonstrating that foundation models can effectively guide the compression of other foundation models.
comment: 17 Pages
Routing with Generated Data: Annotation-Free LLM Skill Estimation and Expert Selection
Large Language Model (LLM) routers dynamically select optimal models for given inputs. Existing approaches typically assume access to ground-truth labeled data, which is often unavailable in practice, especially when user request distributions are heterogeneous and unknown. We introduce Routing with Generated Data (RGD), a challenging setting in which routers are trained exclusively on generated queries and answers produced from high-level task descriptions by generator LLMs. We evaluate query-answer routers (using both queries and labels) and query-only routers across four diverse benchmarks and 12 models, finding that query-answer routers degrade faster than query-only routers as generator quality decreases. Our analysis reveals two crucial characteristics of effective generators: they must accurately respond to their own questions, and their questions must produce sufficient performance differentiation among the model pool. We then show how filtering for these characteristics can improve the quality of generated data. We further propose CASCAL, a novel query-only router that estimates model correctness through consensus voting and identifies model-specific skill niches via hierarchical clustering. CASCAL is substantially more robust to generator quality, outperforming the best query-answer router by 4.6% absolute accuracy when trained on weak generator data.
comment: Code: https://github.com/tianyiniu/RoutingGenData
Disentangling Task Conflicts in Multi-Task LoRA via Orthogonal Gradient Projection
Multi-Task Learning (MTL) combined with Low-Rank Adaptation (LoRA) has emerged as a promising direction for parameter-efficient deployment of Large Language Models (LLMs). By sharing a single adapter across multiple tasks, one can significantly reduce storage overhead. However, this approach suffers from negative transfer, where conflicting gradient updates from distinct tasks degrade the performance of individual tasks compared to single-task fine-tuning. This problem is exacerbated in LoRA due to the low-rank constraint, which limits the optimization landscape's capacity to accommodate diverse task requirements. In this paper, we propose Ortho-LoRA, a gradient projection method specifically tailored for the bipartite structure of LoRA. Ortho-LoRA dynamically projects conflicting task gradients onto the orthogonal complement of each other within the intrinsic LoRA subspace. Extensive experiments on the GLUE benchmark demonstrate that Ortho-LoRA effectively mitigates task interference, outperforming standard joint training and recovering 95\% of the performance gap between multi-task and single-task baselines with negligible computational overhead.
comment: preprint
Automating Supply Chain Disruption Monitoring via an Agentic AI Approach
Modern supply chains are increasingly exposed to disruptions from geopolitical events, demand shocks, trade restrictions, to natural disasters. While many of these disruptions originate deep in the supply network, most companies still lack visibility beyond Tier-1 suppliers, leaving upstream vulnerabilities undetected until the impact cascades downstream. To overcome this blind-spot and move from reactive recovery to proactive resilience, we introduce a minimally supervised agentic AI framework that autonomously monitors, analyses, and responds to disruptions across extended supply networks. The architecture comprises seven specialised agents powered by large language models and deterministic tools that jointly detect disruption signals from unstructured news, map them to multi-tier supplier networks, evaluate exposure based on network structure, and recommend mitigations such as alternative sourcing options. \rev{We evaluate the framework across 30 synthesised scenarios covering three automotive manufacturers and five disruption classes. The system achieves high accuracy across core tasks, with F1 scores between 0.962 and 0.991, and performs full end-to-end analyses in a mean of 3.83 minutes at a cost of \$0.0836 per disruption. Relative to industry benchmarks of multi-day, analyst-driven assessments, this represents a reduction of more than three orders of magnitude in response time. A real-world case study of the 2022 Russia-Ukraine conflict further demonstrates operational applicability. This work establishes a foundational step toward building resilient, proactive, and autonomous supply chains capable of managing disruptions across deep-tier networks.
Collaborative Multi-Agent Test-Time Reinforcement Learning for Reasoning
Multi-agent systems have evolved into practical LLM-driven collaborators for many applications, gaining robustness from diversity and cross-checking. However, multi-agent RL (MARL) training is resource-intensive and unstable: co-adapting teammates induce non-stationarity, and rewards are often sparse and high-variance. Therefore, we introduce \textbf{Multi-Agent Test-Time Reinforcement Learning (MATTRL)}, a framework that injects structured textual experience into multi-agent deliberation at inference time. MATTRL forms a multi-expert team of specialists for multi-turn discussions, retrieves and integrates test-time experiences, and reaches consensus for final decision-making. We also study credit assignment for constructing a turn-level experience pool, then reinjecting it into the dialogue. Across challenging benchmarks in medicine, math, and education, MATTRL improves accuracy by an average of 3.67\% over a multi-agent baseline, and by 8.67\% over comparable single-agent baselines. Ablation studies examine different credit-assignment schemes and provide a detailed comparison of how they affect training outcomes. MATTRL offers a stable, effective and efficient path to distribution-shift-robust multi-agent reasoning without tuning.
comment: Work in Progress
PersonalAlign: Hierarchical Implicit Intent Alignment for Personalized GUI Agent with Long-Term User-Centric Records
While GUI agents have shown strong performance under explicit and completion instructions, real-world deployment requires aligning with users' more complex implicit intents. In this work, we highlight Hierarchical Implicit Intent Alignment for Personalized GUI Agent (PersonalAlign), a new agent task that requires agents to leverage long-term user records as persistent context to resolve omitted preferences in vague instructions and anticipate latent routines by user state for proactive assistance. To facilitate this study, we introduce AndroidIntent, a benchmark designed to evaluate agents' ability in resolving vague instructions and providing proactive suggestions through reasoning over long-term user records. We annotated 775 user-specific preferences and 215 routines from 20k long-term records across different users for evaluation. Furthermore, we introduce Hierarchical Intent Memory Agent (HIM-Agent), which maintains a continuously updating personal memory and hierarchically organizes user preferences and routines for personalization. Finally, we evaluate a range of GUI agents on AndroidIntent, including GPT-5, Qwen3-VL, and UI-TARS, further results show that HIM-Agent significantly improves both execution and proactive performance by 15.7% and 7.3%.
LLM for Large-Scale Optimization Model Auto-Formulation: A Lightweight Few-Shot Learning Approach
Large-scale optimization is a key backbone of modern business decision-making. However, building these models is often labor-intensive and time-consuming. We address this by proposing LEAN-LLM-OPT, a LightwEight AgeNtic workflow construction framework for LLM-assisted large-scale OPTimization auto-formulation. LEAN-LLM-OPT takes as input a problem description together with associated datasets and orchestrates a team of LLM agents to produce an optimization formulation. Specifically, upon receiving a query, two upstream LLM agents dynamically construct a workflow that specifies, step-by-step, how optimization models for similar problems can be formulated. A downstream LLM agent then follows this workflow to generate the final output. Leveraging LLMs' text-processing capabilities and common modeling practices, the workflow decomposes the modeling task into a sequence of structured sub-tasks and offloads mechanical data-handling operations to auxiliary tools. This design alleviates the downstream agent's burden related to planning and data handling, allowing it to focus on the most challenging components that cannot be readily standardized. Extensive simulations show that LEAN-LLM-OPT, instantiated with GPT-4.1 and the open source gpt-oss-20B, achieves strong performance on large-scale optimization modeling tasks and is competitive with state-of-the-art approaches. In addition, in a Singapore Airlines choice-based revenue management use case, LEAN-LLM-OPT demonstrates practical value by achieving leading performance across a range of scenarios. Along the way, we introduce Large-Scale-OR and Air-NRM, the first comprehensive benchmarks for large-scale optimization auto-formulation. The code and data of this work is available at https://github.com/CoraLiang01/lean-llm-opt.
comment: Updated version of https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5329027
From Prompt to Protocol: Fast Charging Batteries with Large Language Models
Efficiently optimizing battery charging protocols is challenging because each evaluation is slow, costly, and non-differentiable. Many existing approaches address this difficulty by heavily constraining the protocol search space, which limits the diversity of protocols that can be explored, preventing the discovery of higher-performing solutions. We introduce two gradient-free, LLM-driven closed-loop methods: Prompt-to-Optimizer (P2O), which uses an LLM to propose the code for small neural-network-based protocols, which are then trained by an inner loop, and Prompt-to-Protocol (P2P), which simply writes an explicit function for the current and its scalar parameters. Across our case studies, LLM-guided P2O outperforms neural networks designed by Bayesian optimization, evolutionary algorithms, and random search. In a realistic fast charging scenario, both P2O and P2P yield around a 4.2 percent improvement in state of health (capacity retention based health metric under fast charging cycling) over a state-of-the-art multi-step constant current (CC) baseline, with P2P achieving this under matched evaluation budgets (same number of protocol evaluations). These results demonstrate that LLMs can expand the space of protocol functional forms, incorporate language-based constraints, and enable efficient optimization in high cost experimental settings.
The Promptware Kill Chain: How Prompt Injections Gradually Evolved Into a Multi-Step Malware
The rapid adoption of large language model (LLM)-based systems -- from chatbots to autonomous agents capable of executing code and financial transactions -- has created a new attack surface that existing security frameworks inadequately address. The dominant framing of these threats as "prompt injection" -- a catch-all phrase for security failures in LLM-based systems -- obscures a more complex reality: Attacks on LLM-based systems increasingly involve multi-step sequences that mirror traditional malware campaigns. In this paper, we propose that attacks targeting LLM-based applications constitute a distinct class of malware, which we term \textit{promptware}, and introduce a five-step kill chain model for analyzing these threats. The framework comprises Initial Access (prompt injection), Privilege Escalation (jailbreaking), Persistence (memory and retrieval poisoning), Lateral Movement (cross-system and cross-user propagation), and Actions on Objective (ranging from data exfiltration to unauthorized transactions). By mapping recent attacks to this structure, we demonstrate that LLM-related attacks follow systematic sequences analogous to traditional malware campaigns. The promptware kill chain offers security practitioners a structured methodology for threat modeling and provides a common vocabulary for researchers across AI safety and cybersecurity to address a rapidly evolving threat landscape.
Toward Understanding Unlearning Difficulty: A Mechanistic Perspective and Circuit-Guided Difficulty Metric
Machine unlearning is becoming essential for building trustworthy and compliant language models. Yet unlearning success varies considerably across individual samples: some are reliably erased, while others persist despite the same procedure. We argue that this disparity is not only a data-side phenomenon, but also reflects model-internal mechanisms that encode and protect memorized information. We study this problem from a mechanistic perspective based on model circuits--structured interaction pathways that govern how predictions are formed. We propose Circuit-guided Unlearning Difficulty (CUD), a {\em pre-unlearning} metric that assigns each sample a continuous difficulty score using circuit-level signals. Extensive experiments demonstrate that CUD reliably separates intrinsically easy and hard samples, and remains stable across unlearning methods. We identify key circuit-level patterns that reveal a mechanistic signature of difficulty: easy-to-unlearn samples are associated with shorter, shallower interactions concentrated in earlier-to-intermediate parts of the original model, whereas hard samples rely on longer and deeper pathways closer to late-stage computation. Compared to existing qualitative studies, CUD takes a first step toward a principled, fine-grained, and interpretable analysis of unlearning difficulty; and motivates the development of unlearning methods grounded in model mechanisms.
Full Disclosure, Less Trust? How the Level of Detail about AI Use in News Writing Affects Readers' Trust
As artificial intelligence (AI) is increasingly integrated into news production, calls for transparency about the use of AI have gained considerable traction. Recent studies suggest that AI disclosures can lead to a ``transparency dilemma'', where disclosure reduces readers' trust. However, little is known about how the \textit{level of detail} in AI disclosures influences trust and contributes to this dilemma within the news context. In this 3$\times$2$\times$2 mixed factorial study with 40 participants, we investigate how three levels of AI disclosures (none, one-line, detailed) across two types of news (politics and lifestyle) and two levels of AI involvement (low and high) affect news readers' trust. We measured trust using the News Media Trust questionnaire, along with two decision behaviors: source-checking and subscription decisions. Questionnaire responses and subscription rates showed a decline in trust only for detailed AI disclosures, whereas source-checking behavior increased for both one-line and detailed disclosures, with the effect being more pronounced for detailed disclosures. Insights from semi-structured interviews suggest that source-checking behavior was primarily driven by interest in the topic, followed by trust, whereas trust was the main factor influencing subscription decisions. Around two-thirds of participants expressed a preference for detailed disclosures, while most participants who preferred one-line indicated a need for detail-on-demand disclosure formats. Our findings show that not all AI disclosures lead to a transparency dilemma, but instead reflect a trade-off between readers' desire for more transparency and their trust in AI-assisted news content.
CogRail: Benchmarking VLMs in Cognitive Intrusion Perception for Intelligent Railway Transportation Systems
Accurate and early perception of potential intrusion targets is essential for ensuring the safety of railway transportation systems. However, most existing systems focus narrowly on object classification within fixed visual scopes and apply rule-based heuristics to determine intrusion status, often overlooking targets that pose latent intrusion risks. Anticipating such risks requires the cognition of spatial context and temporal dynamics for the object of interest (OOI), which presents challenges for conventional visual models. To facilitate deep intrusion perception, we introduce a novel benchmark, CogRail, which integrates curated open-source datasets with cognitively driven question-answer annotations to support spatio-temporal reasoning and prediction. Building upon this benchmark, we conduct a systematic evaluation of state-of-the-art visual-language models (VLMs) using multimodal prompts to identify their strengths and limitations in this domain. Furthermore, we fine-tune VLMs for better performance and propose a joint fine-tuning framework that integrates three core tasks, position perception, movement prediction, and threat analysis, facilitating effective adaptation of general-purpose foundation models into specialized models tailored for cognitive intrusion perception. Extensive experiments reveal that current large-scale multimodal models struggle with the complex spatial-temporal reasoning required by the cognitive intrusion perception task, underscoring the limitations of existing foundation models in this safety-critical domain. In contrast, our proposed joint fine-tuning framework significantly enhances model performance by enabling targeted adaptation to domain-specific reasoning demands, highlighting the advantages of structured multi-task learning in improving both accuracy and interpretability. Code will be available at https://github.com/Hub-Tian/CogRail.
DPWriter: Reinforcement Learning with Diverse Planning Branching for Creative Writing
Reinforcement learning (RL)-based enhancement of large language models (LLMs) often leads to reduced output diversity, undermining their utility in open-ended tasks like creative writing. Current methods lack explicit mechanisms for guiding diverse exploration and instead prioritize optimization efficiency and performance over diversity. This paper proposes an RL framework structured around a semi-structured long Chain-of-Thought (CoT), in which the generation process is decomposed into explicitly planned intermediate steps. We introduce a Diverse Planning Branching method that strategically introduces divergence at the planning phase based on diversity variation, alongside a group-aware diversity reward to encourage distinct trajectories. Experimental results on creative writing benchmarks demonstrate that our approach significantly improves output diversity without compromising generation quality, consistently outperforming existing baselines.
Sim2real Image Translation Enables Viewpoint-Robust Policies from Fixed-Camera Datasets
Vision-based policies for robot manipulation have achieved significant recent success, but are still brittle to distribution shifts such as camera viewpoint variations. Robot demonstration data is scarce and often lacks appropriate variation in camera viewpoints. Simulation offers a way to collect robot demonstrations at scale with comprehensive coverage of different viewpoints, but presents a visual sim2real challenge. To bridge this gap, we propose MANGO -- an unpaired image translation method with a novel segmentation-conditioned InfoNCE loss, a highly-regularized discriminator design, and a modified PatchNCE loss. We find that these elements are crucial for maintaining viewpoint consistency during sim2real translation. When training MANGO, we only require a small amount of fixed-camera data from the real world, but show that our method can generate diverse unseen viewpoints by translating simulated observations. In this domain, MANGO outperforms all other image translation methods we tested. Imitation-learning policies trained on data augmented by MANGO are able to achieve success rates as high as 60\% on views that the non-augmented policy fails completely on.
Linear Complexity Self-Supervised Learning for Music Understanding with Random Quantizer
In recent years, foundation models have become very popular due to their exceptional performance, mainly in natural language (NLP) tasks where they were first introduced. These models usually consist of hundreds of millions, or even billions, of parameters, making them resource-intensive during training and in production systems, leading to increased costs. This paper focuses on the reduction of a foundation's model size when applied to music information retrieval (MIR) tasks. Our research combines the Branchformer architecture with SummaryMixing, which were first applied in speech recognition, along with a random quantization process. To facilitate reproducibility, we conduct pre-training on publicly available datasets, complemented by a proprietary dataset comparable in scale to other private datasets reported in the literature. We ensure robust evaluation by using a framework consisting of a variety of downstream MIR tasks. Our results show that our architecture achieves competitive performance when compared with other state-of-the-art models that use multi-head self-attention, while reducing the model size from 8.5% up to 12.3%.
comment: accepted by ACM/SIGAPP Symposium on Applied Computing (SAC 2026)
Information Access of the Oppressed: A Problem-Posing Framework for Envisioning Emancipatory Information Access Platforms
Online information access (IA) platforms are targets of authoritarian capture. These concerns are particularly serious and urgent today in light of the rising levels of democratic erosion worldwide, the emerging capabilities of generative AI technologies such as AI persuasion, and the increasing concentration of economic and political power in the hands of Big Tech. This raises the question of what alternative IA infrastructure we must reimagine and build to mitigate the risks of authoritarian capture of our information ecosystems. We explore this question through the lens of Paulo Freire's theories of emancipatory pedagogy. Freire's theories provide a radically different lens for exploring IA's sociotechnical concerns relative to the current dominating frames of fairness, accountability, confidentiality, transparency, and safety. We make explicit, with the intention to challenge, the dichotomy of how we relate to technology as either technologists (who envision and build technology) and its users. We posit that this mirrors the teacher-student relationship in Freire's analysis. By extending Freire's analysis to IA, we challenge the notion that it is the burden of the (altruistic) technologists to come up with interventions to mitigate the risks that emerging technologies pose to marginalized communities. Instead, we advocate that the first task for the technologists is to pose these as problems to the marginalized communities, to encourage them to make and unmake the technology as part of their material struggle against oppression. Their second task is to redesign our online technology stacks to structurally expose spaces for community members to co-opt and co-construct the technology in aid of their emancipatory struggles. We operationalize Freire's theories to develop a problem-posing framework for envisioning emancipatory IA platforms of the future.
Hot-Start from Pixels: Low-Resolution Visual Tokens for Chinese Language Modeling
Large language models typically represent Chinese characters as discrete index-based tokens, largely ignoring their visual form. For logographic scripts, visual structure carries semantic and phonetic information, which may aid prediction. We investigate whether low-resolution visual inputs can serve as an alternative for character-level modeling. Instead of token IDs, our decoder receives grayscale images of individual characters, with resolutions as low as $8 \times 8$ pixels. Remarkably, these inputs achieve 39.2\% accuracy, comparable to the index-based baseline of 39.1\%. Such low-resource settings also exhibit a pronounced \emph{hot-start} effect: by 0.4\% of total training, accuracy reaches above 12\%, while index-based models lag at below 6\%. Overall, our results demonstrate that minimal visual structure can provide a robust and efficient signal for Chinese language modeling, offering an alternative perspective on character representation that complements traditional index-based approaches.
comment: 15 pages, 5 figures, submitted to ACL 2026
Benchmarking Post-Training Quantization of Large Language Models under Microscaling Floating Point Formats
Microscaling Floating-Point (MXFP) has emerged as a promising low-precision format for large language models (LLMs). Despite various post-training quantization (PTQ) algorithms being proposed, they mostly focus on integer quantization, while their applicability and behavior under MXFP formats remain largely unexplored. To address this gap, this work conducts a systematic investigation of PTQ under MXFP formats, encompassing over 7 PTQ algorithms, 15 evaluation benchmarks, and 3 LLM families. The key findings include: 1) MXFP8 consistently achieves near-lossless performance, while MXFP4 introduces substantial accuracy degradation and remains challenging; 2) PTQ effectiveness under MXFP depends strongly on format compatibility, with some algorithmic paradigms being consistently more effective than others; 3) PTQ performance exhibits highly consistent trends across model families and modalities, in particular, quantization sensitivity is dominated by the language model rather than the vision encoder in multimodal LLMs; 4) The scaling factor of quantization is a critical error source in MXFP4, and a simple pre-scale optimization strategy can significantly mitigate its impact. Together, these results provide practical guidance on adapting existing PTQ methods to MXFP quantization.
Omni-R1: Towards the Unified Generative Paradigm for Multimodal Reasoning
Multimodal Large Language Models (MLLMs) are making significant progress in multimodal reasoning. Early approaches focus on pure text-based reasoning. More recent studies have incorporated multimodal information into the reasoning steps; however, they often follow a single task-specific reasoning pattern, which limits their generalizability across various multimodal tasks. In fact, there are numerous multimodal tasks requiring diverse reasoning skills, such as zooming in on a specific region or marking an object within an image. To address this, we propose unified generative multimodal reasoning, which unifies diverse multimodal reasoning skills by generating intermediate images during the reasoning process. We instantiate this paradigm with Omni-R1, a two-stage SFT+RL framework featuring perception alignment loss and perception reward, thereby enabling functional image generation. Additionally, we introduce Omni-R1-Zero, which eliminates the need for multimodal annotations by bootstrapping step-wise visualizations from text-only reasoning data. Empirical results show that Omni-R1 achieves unified generative reasoning across a wide range of multimodal tasks, and Omni-R1-Zero can match or even surpass Omni-R1 on average, suggesting a promising direction for generative multimodal reasoning.
Private LLM Inference on Consumer Blackwell GPUs: A Practical Guide for Cost-Effective Local Deployment in SMEs
SMEs increasingly seek alternatives to cloud LLM APIs, which raise data privacy concerns. Dedicated cloud GPU instances offer improved privacy but with limited guarantees and ongoing costs, while professional on-premise hardware (A100, H100) remains prohibitively expensive. We present a systematic evaluation of NVIDIA's Blackwell consumer GPUs (RTX 5060 Ti, 5070 Ti, 5090) for production LLM inference, benchmarking four open-weight models (Qwen3-8B, Gemma3-12B, Gemma3-27B, GPT-OSS-20B) across 79 configurations spanning quantization formats (BF16, W4A16, NVFP4, MXFP4), context lengths (8k-64k), and three workloads: RAG, multi-LoRA agentic serving, and high-concurrency APIs. The RTX 5090 delivers 3.5-4.6x higher throughput than the 5060 Ti with 21x lower latency for RAG, but budget GPUs achieve the highest throughput-per-dollar for API workloads with sub-second latency. NVFP4 quantization provides 1.6x throughput over BF16 with 41% energy reduction and only 2-4% quality loss. Self-hosted inference costs $0.001-0.04 per million tokens (electricity only), which is 40-200x cheaper than budget-tier cloud APIs, with hardware breaking even in under four months at moderate volume (30M tokens/day). Our results show that consumer GPUs can reliably replace cloud inference for most SME workloads, except latency-critical long-context RAG, where high-end GPUs remain essential. We provide deployment guidance and release all benchmark data for reproducible SME-scale deployments.
comment: 15 pages, 18 tables, 7 figures. Includes link to GitHub repository and Docker image for reproducibility
Towards Realistic Synthetic Data for Automatic Drum Transcription
Deep learning models define the state-of-the-art in Automatic Drum Transcription (ADT), yet their performance is contingent upon large-scale, paired audio-MIDI datasets, which are scarce. Existing workarounds that use synthetic data often introduce a significant domain gap, as they typically rely on low-fidelity SoundFont libraries that lack acoustic diversity. While high-quality one-shot samples offer a better alternative, they are not available in a standardized, large-scale format suitable for training. This paper introduces a new paradigm for ADT that circumvents the need for paired audio-MIDI training data. Our primary contribution is a semi-supervised method to automatically curate a large and diverse corpus of one-shot drum samples from unlabeled audio sources. We then use this corpus to synthesize a high-quality dataset from MIDI files alone, which we use to train a sequence-to-sequence transcription model. We evaluate our model on the ENST and MDB test sets, where it achieves new state-of-the-art results, significantly outperforming both fully supervised methods and previous synthetic-data approaches. The code for reproducing our experiments is publicly available at https://github.com/pier-maker92/ADT_STR
Learning Whole-Body Human-Humanoid Interaction from Human-Human Demonstrations
Enabling humanoid robots to physically interact with humans is a critical frontier, but progress is hindered by the scarcity of high-quality Human-Humanoid Interaction (HHoI) data. While leveraging abundant Human-Human Interaction (HHI) data presents a scalable alternative, we first demonstrate that standard retargeting fails by breaking the essential contacts. We address this with PAIR (Physics-Aware Interaction Retargeting), a contact-centric, two-stage pipeline that preserves contact semantics across morphology differences to generate physically consistent HHoI data. This high-quality data, however, exposes a second failure: conventional imitation learning policies merely mimic trajectories and lack interactive understanding. We therefore introduce D-STAR (Decoupled Spatio-Temporal Action Reasoner), a hierarchical policy that disentangles when to act from where to act. In D-STAR, Phase Attention (when) and a Multi-Scale Spatial module (where) are fused by the diffusion head to produce synchronized whole-body behaviors beyond mimicry. By decoupling these reasoning streams, our model learns robust temporal phases without being distracted by spatial noise, leading to responsive, synchronized collaboration. We validate our framework through extensive and rigorous simulations, demonstrating significant performance gains over baseline approaches and a complete, effective pipeline for learning complex whole-body interactions from HHI data.
What Do LLM Agents Know About Their World? Task2Quiz: A Paradigm for Studying Environment Understanding
Large language model (LLM) agents have demonstrated remarkable capabilities in complex decision-making and tool-use tasks, yet their ability to generalize across varying environments remains a under-examined concern. Current evaluation paradigms predominantly rely on trajectory-based metrics that measure task success, while failing to assess whether agents possess a grounded, transferable model of the environment. To address this gap, we propose Task-to-Quiz (T2Q), a deterministic and automated evaluation paradigm designed to decouple task execution from world-state understanding. We instantiate this paradigm in T2QBench, a suite comprising 30 environments and 1,967 grounded QA pairs across multiple difficulty levels. Our extensive experiments reveal that task success is often a poor proxy for environment understanding, and that current memory machanism can not effectively help agents acquire a grounded model of the environment. These findings identify proactive exploration and fine-grained state representation as primary bottlenecks, offering a robust foundation for developing more generalizable autonomous agents.
Bridging Semantic Understanding and Popularity Bias with LLMs
Semantic understanding of popularity bias is a crucial yet underexplored challenge in recommender systems, where popular items are often favored at the expense of niche content. Most existing debiasing methods treat the semantic understanding of popularity bias as a matter of diversity enhancement or long-tail coverage, neglecting the deeper semantic layer that embodies the causal origins of the bias itself. Consequently, such shallow interpretations limit both their debiasing effectiveness and recommendation accuracy. In this paper, we propose FairLRM, a novel framework that bridges the gap in the semantic understanding of popularity bias with Recommendation via Large Language Model (RecLLM). FairLRM decomposes popularity bias into item-side and user-side components, using structured instruction-based prompts to enhance the model's comprehension of both global item distributions and individual user preferences. Unlike traditional methods that rely on surface-level features such as "diversity" or "debiasing", FairLRM improves the model's ability to semantically interpret and address the underlying bias. Through empirical evaluation, we show that FairLRM significantly enhances both fairness and recommendation accuracy, providing a more semantically aware and trustworthy approach to enhance the semantic understanding of popularity bias. The implementation is available at https://github.com/LuoRenqiang/FairLRM.
comment: 10 pages, 4 figs, WWW 2026 accepted
SimMerge: Learning to Select Merge Operators from Similarity Signals
Model merging enables multiple large language models (LLMs) to be combined into a single model while preserving performance. This makes it a valuable tool in LLM development, offering a competitive alternative to multi-task training. However, merging can be difficult at scale, as successful merging requires choosing the right merge operator, selecting the right models, and merging them in the right order. This often leads researchers to run expensive merge-and-evaluate searches to select the best merge. In this work, we provide an alternative by introducing \simmerge{}, \emph{a predictive merge-selection method} that selects the best merge using inexpensive, task-agnostic similarity signals between models. From a small set of unlabeled probes, we compute functional and structural features and use them to predict the performance of a given 2-way merge. Using these predictions, \simmerge{} selects the best merge operator, the subset of models to merge, and the merge order, eliminating the expensive merge-and-evaluate loop. We demonstrate that we surpass standard merge-operator performance on 2-way merges of 7B-parameter LLMs, and that \simmerge{} generalizes to multi-way merges and 111B-parameter LLM merges without retraining. Additionally, we present a bandit variant that supports adding new tasks, models, and operators on the fly. Our results suggest that learning how to merge is a practical route to scalable model composition when checkpoint catalogs are large and evaluation budgets are tight.
Personalized Multimodal Feedback Using Multiple External Representations: Strategy Profiles and Learning in High School Physics
Multiple external representations (MERs) and personalized feedback support physics learning, yet evidence on how personalized feedback can effectively integrate MERs remains limited. This question is particularly timely given the emergence of multimodal large language models. We conducted a 16-24 week observational study in high school physics (N=661) using a computer-based platform that provided verification and optional elaborated feedback in verbal, graphical and mathematical forms. Linear mixed-effects models and strategy-cluster analyses (ANCOVA-adjusted comparisons) tested associations between feedback use and post-test performance and moderation by representational competence. Elaborated multirepresentational feedback showed a small but consistent positive association with post-test scores independent of prior knowledge and confidence. Learners adopted distinct representation-selection strategies; among students with lower representational competence, using a diverse set of representations related to higher learning, whereas this advantage diminished as competence increased. These findings motivate adaptive feedback designs and inform intelligent tutoring systems capable of tailoring feedback elaboration and representational format to learner profiles, advancing personalized instruction in physics education.
comment: Keywords: Adaptive Feedback, Multimodal Learning, Multiple External Representations, Physics Education, Science Education, Representational Competences, Intelligent Tutoring Systems
FairGU: Fairness-aware Graph Unlearning in Social Network
Graph unlearning has emerged as a critical mechanism for supporting sustainable and privacy-preserving social networks, enabling models to remove the influence of deleted nodes and thereby better safeguard user information. However, we observe that existing graph unlearning techniques insufficiently protect sensitive attributes, often leading to degraded algorithmic fairness compared with traditional graph learning methods. To address this gap, we introduce FairGU, a fairness-aware graph unlearning framework designed to preserve both utility and fairness during the unlearning process. FairGU integrates a dedicated fairness-aware module with effective data protection strategies, ensuring that sensitive attributes are neither inadvertently amplified nor structurally exposed when nodes are removed. Through extensive experiments on multiple real-world datasets, we demonstrate that FairGU consistently outperforms state-of-the-art graph unlearning methods and fairness-enhanced graph learning baselines in terms of both accuracy and fairness metrics. Our findings highlight a previously overlooked risk in current unlearning practices and establish FairGU as a robust and equitable solution for the next generation of socially sustainable networked systems. The codes are available at https://github.com/LuoRenqiang/FairGU.
comment: 9 pages, 2 figs, WWW 2026 accepted
Searth Transformer: A Transformer Architecture Incorporating Earth's Geospheric Physical Priors for Global Mid-Range Weather Forecasting
Accurate global medium-range weather forecasting is fundamental to Earth system science. Most existing Transformer-based forecasting models adopt vision-centric architectures that neglect the Earth's spherical geometry and zonal periodicity. In addition, conventional autoregressive training is computationally expensive and limits forecast horizons due to error accumulation. To address these challenges, we propose the Shifted Earth Transformer (Searth Transformer), a physics-informed architecture that incorporates zonal periodicity and meridional boundaries into window-based self-attention for physically consistent global information exchange. We further introduce a Relay Autoregressive (RAR) fine-tuning strategy that enables learning long-range atmospheric evolution under constrained memory and computational budgets. Based on these methods, we develop YanTian, a global medium-range weather forecasting model. YanTian achieves higher accuracy than the high-resolution forecast of the European Centre for Medium-Range Weather Forecasts and performs competitively with state-of-the-art AI models at one-degree resolution, while requiring roughly 200 times lower computational cost than standard autoregressive fine-tuning. Furthermore, YanTian attains a longer skillful forecast lead time for Z500 (10.3 days) than HRES (9 days). Beyond weather forecasting, this work establishes a robust algorithmic foundation for predictive modeling of complex global-scale geophysical circulation systems, offering new pathways for Earth system science.
EvoFSM: Controllable Self-Evolution for Deep Research with Finite State Machines
While LLM-based agents have shown promise for deep research, most existing approaches rely on fixed workflows that struggle to adapt to real-world, open-ended queries. Recent work therefore explores self-evolution by allowing agents to rewrite their own code or prompts to improve problem-solving ability, but unconstrained optimization often triggers instability, hallucinations, and instruction drift. We propose EvoFSM, a structured self-evolving framework that achieves both adaptability and control by evolving an explicit Finite State Machine (FSM) instead of relying on free-form rewriting. EvoFSM decouples the optimization space into macroscopic Flow (state-transition logic) and microscopic Skill (state-specific behaviors), enabling targeted improvements under clear behavioral boundaries. Guided by a critic mechanism, EvoFSM refines the FSM through a small set of constrained operations, and further incorporates a self-evolving memory that distills successful trajectories as reusable priors and failure patterns as constraints for future queries. Extensive evaluations on five multi-hop QA benchmarks demonstrate the effectiveness of EvoFSM. In particular, EvoFSM reaches 58.0% accuracy on the DeepSearch benchmark. Additional results on interactive decision-making tasks further validate its generalization.
SoK: Enhancing Cryptographic Collaborative Learning with Differential Privacy
In collaborative learning (CL), multiple parties jointly train a machine learning model on their private datasets. However, data can not be shared directly due to privacy concerns. To ensure input confidentiality, cryptographic techniques, e.g., multi-party computation (MPC), enable training on encrypted data. Yet, even securely trained models are vulnerable to inference attacks aiming to extract memorized data from model outputs. To ensure output privacy and mitigate inference attacks, differential privacy (DP) injects calibrated noise during training. While cryptography and DP offer complementary guarantees, combining them efficiently for cryptographic and differentially private CL (CPCL) is challenging. Cryptography incurs performance overheads, while DP degrades accuracy, creating a privacy-accuracy-performance trade-off that needs careful design considerations. This work systematizes the CPCL landscape. We introduce a unified framework that generalizes common phases across CPCL paradigms, and identify secure noise sampling as the foundational phase to achieve CPCL. We analyze trade-offs of different secure noise sampling techniques, noise types, and DP mechanisms discussing their implementation challenges and evaluating their accuracy and cryptographic overhead across CPCL paradigms. Additionally, we implement identified secure noise sampling options in MPC and evaluate their computation and communication costs in WAN and LAN. Finally, we propose future research directions based on identified key observations, gaps and possible enhancements in the literature.
comment: This work has been accepted for publication at the IEEE Conference on Secure and Trustworthy Machine Learning (SaTML 2026)
On the Hardness of Computing Counterfactual and Semifactual Explanations in XAI
Providing clear explanations to the choices of machine learning models is essential for these models to be deployed in crucial applications. Counterfactual and semi-factual explanations have emerged as two mechanisms for providing users with insights into the outputs of their models. We provide an overview of the computational complexity results in the literature for generating these explanations, finding that in many cases, generating explanations is computationally hard. We strengthen the argument for this considerably by further contributing our own inapproximability results showing that not only are explanations often hard to generate, but under certain assumptions, they are also hard to approximate. We discuss the implications of these complexity results for the XAI community and for policymakers seeking to regulate explanations in AI.
comment: Accepted in Transactions on Machine Learning Research (TMLR), 2025 -- https://openreview.net/pdf?id=aELzBw0q1O
Late Breaking Results: Quamba-SE: Soft-edge Quantizer for Activations in State Space Models
We propose Quamba-SE, a soft-edge quantizer for State Space Model (SSM) activation quantization. Unlike existing methods, using standard INT8 operation, Quamba-SE employs three adaptive scales: high-precision for small values, standard scale for normal values, and low-precision for outliers. This preserves outlier information instead of hard clipping, while maintaining precision for other values. We evaluate on Mamba- 130M across 6 zero-shot benchmarks. Results show that Quamba- SE consistently outperforms Quamba, achieving up to +2.68% on individual benchmarks and up to +0.83% improvement in the average accuracy of 6 datasets.
comment: Accepted to DATE Late Breaking Results 2026, Verona, Italy
Population-Aligned Audio Reproduction With LLM-Based Equalizers
Conventional audio equalization is a static process that requires manual and cumbersome adjustments to adapt to changing listening contexts (e.g., mood, location, or social setting). In this paper, we introduce a Large Language Model (LLM)-based alternative that maps natural language text prompts to equalization settings. This enables a conversational approach to sound system control. By utilizing data collected from a controlled listening experiment, our models exploit in-context learning and parameter-efficient fine-tuning techniques to reliably align with population-preferred equalization settings. Our evaluation methods, which leverage distributional metrics that capture users' varied preferences, show statistically significant improvements in distributional alignment over random sampling and static preset baselines. These results indicate that LLMs could function as "artificial equalizers," contributing to the development of more accessible, context-aware, and expert-level audio tuning methods.
comment: 12 pages, 13 figures, 2 tables, IEEE JSTSP journal submission under first revision
Improving Symbolic Translation of Language Models for Logical Reasoning AAAI 2026
The use of formal language for deductive logical reasoning aligns well with language models (LMs), where translating natural language (NL) into first-order logic (FOL) and employing an external solver results in a verifiable and therefore reliable reasoning system. However, smaller LMs often struggle with this translation task, frequently producing incorrect symbolic outputs due to formatting and translation errors. Existing approaches typically rely on self-iteration to correct these errors, but such methods depend heavily on the capabilities of the underlying model. To address this, we first categorize common errors and fine-tune smaller LMs using data synthesized by large language models. The evaluation is performed using the defined error categories. We introduce incremental inference, which divides inference into two stages, predicate generation and FOL translation, providing greater control over model behavior and enhancing generation quality as measured by predicate metrics. This decomposition framework also enables the use of a verification module that targets predicate-arity errors to further improve performance. Our study evaluates three families of models across four logical-reasoning datasets. The comprehensive fine-tuning, incremental inference, and verification modules reduce error rates, increase predicate coverage, and improve reasoning performance for smaller LMs, moving us closer to developing reliable and accessible symbolic-reasoning systems.
comment: The Third workshop of NeusymBridge @AAAI 2026 (Bridging Neurons and Symbols for NLP and Knowledge Graph Reasoning)
Where Knowledge Collides: A Mechanistic Study of Intra-Memory Knowledge Conflict in Language Models
In language models (LMs), intra-memory knowledge conflict largely arises when inconsistent information about the same event is encoded within the model's parametric knowledge. While prior work has primarily focused on resolving conflicts between a model's internal knowledge and external resources through approaches such as fine-tuning or knowledge editing, the problem of localizing conflicts that originate during pre-training within the model's internal representations remain unexplored. In this work, we design a framework based on mechanistic interpretability methods to identify where and how conflicting knowledge from the pre-training data is encoded within LMs. Our findings contribute to a growing body of evidence that specific internal components of a language model are responsible for encoding conflicting knowledge from pre-training, and we demonstrate how mechanistic interpretability methods can be leveraged to causally intervene in and control conflicting knowledge at inference time.
Do Transformers Understand Ancient Roman Coin Motifs Better than CNNs?
Automated analysis of ancient coins has the potential to help researchers extract more historical insights from large collections of coins and to help collectors understand what they are buying or selling. Recent research in this area has shown promise in focusing on identification of semantic elements as they are commonly depicted on ancient coins, by using convolutional neural networks (CNNs). This paper is the first to apply the recently proposed Vision Transformer (ViT) deep learning architecture to the task of identification of semantic elements on coins, using fully automatic learning from multi-modal data (images and unstructured text). This article summarises previous research in the area, discusses the training and implementation of ViT and CNN models for ancient coins analysis and provides an evaluation of their performance. The ViT models were found to outperform the newly trained CNN models in accuracy.
Bias Dynamics in BabyLMs: Towards a Compute-Efficient Sandbox for Democratising Pre-Training Debiasing
Pre-trained language models (LMs) have, over the last few years, grown substantially in both societal adoption and training costs. This rapid growth in size has constrained progress in understanding and mitigating their biases. Since re-training LMs is prohibitively expensive, most debiasing work has focused on post-hoc or masking-based strategies, which often fail to address the underlying causes of bias. In this work, we seek to democratise pre-model debiasing research by using low-cost proxy models. Specifically, we investigate BabyLMs, compact BERT-like models trained on small and mutable corpora that can approximate bias acquisition and learning dynamics of larger models. We show that BabyLMs display closely aligned patterns of intrinsic bias formation and performance development compared to standard BERT models, despite their drastically reduced size. Furthermore, correlations between BabyLMs and BERT hold across multiple intra-model and post-model debiasing methods. Leveraging these similarities, we conduct pre-model debiasing experiments with BabyLMs, replicating prior findings and presenting new insights regarding the influence of gender imbalance and toxicity on bias formation. Our results demonstrate that BabyLMs can serve as an effective sandbox for large-scale LMs, reducing pre-training costs from over 500 GPU-hours to under 30 GPU-hours. This provides a way to democratise pre-model debiasing research and enables faster, more accessible exploration of methods for building fairer LMs.
comment: 21 pages, 18 figures
Radiomics-Integrated Deep Learning with Hierarchical Loss for Osteosarcoma Histology Classification
Osteosarcoma (OS) is an aggressive primary bone malignancy. Accurate histopathological assessment of viable versus non-viable tumor regions after neoadjuvant chemotherapy is critical for prognosis and treatment planning, yet manual evaluation remains labor-intensive, subjective, and prone to inter-observer variability. Recent advances in digital pathology have enabled automated necrosis quantification. Evaluating on test data, independently sampled on patient-level, revealed that the deep learning model performance dropped significantly from the tile-level generalization ability reported in previous studies. First, this work proposes the use of radiomic features as additional input in model training. We show that, despite that they are derived from the images, such a multimodal input effectively improved the classification performance, in addition to its added benefits in interpretability. Second, this work proposes to optimize two binary classification tasks with hierarchical classes (i.e. tumor-vs-non-tumor and viable-vs-non-viable), as opposed to the alternative ``flat'' three-class classification task (i.e. non-tumor, non-viable tumor, viable tumor), thereby enabling a hierarchical loss. We show that such a hierarchical loss, with trainable weightings between the two tasks, the per-class performance can be improved significantly. Using the TCIA OS Tumor Assessment dataset, we experimentally demonstrate the benefits from each of the proposed new approaches and their combination, setting a what we consider new state-of-the-art performance on this open dataset for this application. Code and trained models: https://github.com/YaxiiC/RadiomicsOS.git.
Speech-Hands: A Self-Reflection Voice Agentic Approach to Speech Recognition and Audio Reasoning with Omni Perception
We introduce a voice-agentic framework that learns one critical omni-understanding skill: knowing when to trust itself versus when to consult external audio perception. Our work is motivated by a crucial yet counterintuitive finding: naively fine-tuning an omni-model on both speech recognition and external sound understanding tasks often degrades performance, as the model can be easily misled by noisy hypotheses. To address this, our framework, Speech-Hands, recasts the problem as an explicit self-reflection decision. This learnable reflection primitive proves effective in preventing the model from being derailed by flawed external candidates. We show that this agentic action mechanism generalizes naturally from speech recognition to complex, multiple-choice audio reasoning. Across the OpenASR leaderboard, Speech-Hands consistently outperforms strong baselines by 12.1% WER on seven benchmarks. The model also achieves 77.37% accuracy and high F1 on audio QA decisions, showing robust generalization and reliability across diverse audio question answering datasets. By unifying perception and decision-making, our work offers a practical path toward more reliable and resilient audio intelligence.
comment: Preprint. The version was submitted in October 2025
Ability Transfer and Recovery via Modularized Parameters Localization
Large language models can be continually pre-trained or fine-tuned to improve performance in specific domains, languages, or skills, but this specialization often degrades other capabilities and may cause catastrophic forgetting. We investigate how abilities are distributed within LLM parameters by analyzing module activations under domain- and language-specific inputs for closely related models. Across layers and modules, we find that ability-related activations are highly concentrated in a small set of channels (typically <5\%), and these channels are largely disentangled with good sufficiency and stability. Building on these observations, we propose ACT (Activation-Guided Channel-wise Ability Transfer), which localizes ability-relevant channels via activation differences and selectively transfers only the corresponding parameters, followed by lightweight fine-tuning for compatibility. Experiments on multilingual mathematical and scientific reasoning show that ACT can recover forgotten abilities while preserving retained skills. It can also merge multiple specialized models to integrate several abilities into a single model with minimal interference. Our code and data will be publicly released.
FairGE: Fairness-Aware Graph Encoding in Incomplete Social Networks
Graph Transformers (GTs) are increasingly applied to social network analysis, yet their deployment is often constrained by fairness concerns. This issue is particularly critical in incomplete social networks, where sensitive attributes are frequently missing due to privacy and ethical restrictions. Existing solutions commonly generate these incomplete attributes, which may introduce additional biases and further compromise user privacy. To address this challenge, FairGE (Fair Graph Encoding) is introduced as a fairness-aware framework for GTs in incomplete social networks. Instead of generating sensitive attributes, FairGE encodes fairness directly through spectral graph theory. By leveraging the principal eigenvector to represent structural information and padding incomplete sensitive attributes with zeros to maintain independence, FairGE ensures fairness without data reconstruction. Theoretical analysis demonstrates that the method suppresses the influence of non-principal spectral components, thereby enhancing fairness. Extensive experiments on seven real-world social network datasets confirm that FairGE achieves at least a 16% improvement in both statistical parity and equality of opportunity compared with state-of-the-art baselines. The source code is shown in https://github.com/LuoRenqiang/FairGE.
comment: 12 pages, WWW 2026
Long-term Task-oriented Agent: Proactive Long-term Intent Maintenance in Dynamic Environments
Current large language model agents predominantly operate under a reactive paradigm, responding only to immediate user queries within short-term sessions. This limitation hinders their ability to maintain long-term user's intents and dynamically adapt to evolving external environments. In this paper, we propose a novel interaction paradigm for proactive Task-oriented Agents capable of bridging the gap between relatively static user's needs and a dynamic environment. We formalize proactivity through two key capabilities, (i) Intent-Conditioned Monitoring: The agent autonomously formulates trigger conditions based on dialog history; (ii) Event-Triggered Follow-up: The agent actively engages the user upon detecting useful environmental updates. We introduce a high-quality data synthesis pipeline to construct complex, multi-turn dialog data in a dynamic environment. Furthermore, we attempt to address the lack of evaluation criteria of task-oriented interaction in a dynamic environment by proposing a new benchmark, namely ChronosBench. We evaluated some leading close-source and open-source models at present and revealed their flaws in long-term task-oriented interaction. Furthermore, our fine-tuned model trained using synthetic data for supervised learning achieves a task completion rate of 85.19% for complex tasks including shifts in user intent, outperforming other models under test. And the result validated the effectiveness of our data-driven strategy.
comment: 8 pages, 2 figures
Query Languages for Machine-Learning Models
In this paper, I discuss two logics for weighted finite structures: first-order logic with summation (FO(SUM)) and its recursive extension IFP(SUM). These logics originate from foundational work by Grädel, Gurevich, and Meer in the 1990s. In recent joint work with Standke, Steegmans, and Van den Bussche, we have investigated these logics as query languages for machine learning models, specifically neural networks, which are naturally represented as weighted graphs. I present illustrative examples of queries to neural networks that can be expressed in these logics and discuss fundamental results on their expressiveness and computational complexity.
Frame of Reference: Addressing the Challenges of Common Ground Representation in Situational Dialogs
Common ground plays a critical role in situated spoken dialogues, where interlocutors must establish and maintain shared references to entities, events, and relations to sustain coherent interaction. For dialog systems, the ability to correctly ground conversational content in order to refer back to it later is particularly important. Prior studies have demonstrated that LLMs are capable of performing grounding acts such as requesting clarification or producing acknowledgments, yet relatively little work has investigated how common ground can be explicitly represented and stored for later use. Without such mechanisms, it remains unclear whether acknowledgment or clarification behaviors truly reflect a grounded understanding. In this work, we evaluate a model's ability to establish and exploit common ground through relational references to entities within the shared context in a situational dialogue. We test multiple methods for representing common ground in situated dialogues and further propose approaches to improve both the establishment of common ground and its subsequent use in the conversation.
GeoRA: Geometry-Aware Low-Rank Adaptation for RLVR
Reinforcement Learning with Verifiable Rewards (RLVR) is crucial for advancing large-scale reasoning models. However, existing parameter-efficient methods, such as PiSSA and MiLoRA, are designed for Supervised Fine-Tuning (SFT) and do not account for the distinct optimization dynamics and geometric structures of RLVR. Applying these methods directly leads to spectral collapse and optimization instability, which severely limit model performance. Meanwhile, alternative approaches that leverage update sparsity encounter significant efficiency bottlenecks on modern hardware due to unstructured computations. To address these challenges, we propose GeoRA (Geometry-Aware Low-Rank Adaptation), which exploits the anisotropic and compressible nature of RL update subspaces. GeoRA initializes adapters by extracting principal directions via Singular Value Decomposition (SVD) within a geometrically constrained subspace while freezing the residual components. This method preserves the pre-trained geometric structure and enables efficient GPU computation through dense operators. Experiments on Qwen and Llama demonstrate that GeoRA mitigates optimization bottlenecks caused by geometric misalignment. It consistently outperforms established low-rank baselines on key mathematical benchmarks, achieving state-of-the-art (SOTA) results. Moreover, GeoRA shows superior generalization and resilience to catastrophic forgetting in out-of-domain tasks.
Monte-Carlo Tree Search with Neural Network Guidance for Lane-Free Autonomous Driving
Lane-free traffic environments allow vehicles to better harness the lateral capacity of the road without being restricted to lane-keeping, thereby increasing the traffic flow rates. As such, we have a distinct and more challenging setting for autonomous driving. In this work, we consider a Monte-Carlo Tree Search (MCTS) planning approach for single-agent autonomous driving in lane-free traffic, where the associated Markov Decision Process we formulate is influenced from existing approaches tied to reinforcement learning frameworks. In addition, MCTS is equipped with a pre-trained neural network (NN) that guides the selection phase. This procedure incorporates the predictive capabilities of NNs for a more informed tree search process under computational constraints. In our experimental evaluation, we consider metrics that address both safety (through collision rates) and efficacy (through measured speed). Then, we examine: (a) the influence of isotropic state information for vehicles in a lane-free environment, resulting in nudging behaviour--vehicles' policy reacts due to the presence of faster tailing ones, (b) the acceleration of performance for the NN-guided variant of MCTS, and (c) the trade-off between computational resources and solution quality.
Navigating Ethical AI Challenges in the Industrial Sector: Balancing Innovation and Responsibility
The integration of artificial intelligence (AI) into the industrial sector has not only driven innovation but also expanded the ethical landscape, necessitating a reevaluation of principles governing technology and its applications and awareness in research and development of industrial AI solutions. This chapter explores how AI-empowered industrial innovation inherently intersects with ethics, as advancements in AI introduce new challenges related to transparency, accountability, and fairness. In the chapter, we then examine the ethical aspects of several examples of AI manifestation in industrial use cases and associated factors such as ethical practices in the research and development process and data sharing. With the progress of ethical industrial AI solutions, we emphasize the importance of embedding ethical principles into industrial AI systems and its potential to inspire technological breakthroughs and foster trust among stakeholders. This chapter also offers actionable insights to guide industrial research and development toward a future where AI serves as an enabler for ethical and responsible industrial progress as well as a more inclusive industrial ecosystem.
Improving Implicit Hate Speech Detection via a Community-Driven Multi-Agent Framework
This work proposes a contextualised detection framework for implicitly hateful speech, implemented as a multi-agent system comprising a central Moderator Agent and dynamically constructed Community Agents representing specific demographic groups. Our approach explicitly integrates socio-cultural context from publicly available knowledge sources, enabling identity-aware moderation that surpasses state-of-the-art prompting methods (zero-shot prompting, few-shot prompting, chain-of-thought prompting) and alternative approaches on a challenging ToxiGen dataset. We enhance the technical rigour of performance evaluation by incorporating balanced accuracy as a central metric of classification fairness that accounts for the trade-off between true positive and true negative rates. We demonstrate that our community-driven consultative framework significantly improves both classification accuracy and fairness across all target groups.
comment: This paper has been accepted for the upcoming 18th International Conference on Agents and Artificial Intelligence (ICAART-2026), Marbella, Spain. The final published version will appear in the official conference proceedings
Understanding or Memorizing? A Case Study of German Definite Articles in Language Models
Language models perform well on grammatical agreement, but it is unclear whether this reflects rule-based generalization or memorization. We study this question for German definite singular articles, whose forms depend on gender and case. Using GRADIEND, a gradient-based interpretability method, we learn parameter update directions for gender-case specific article transitions. We find that updates learned for a specific gender-case article transition frequently affect unrelated gender-case settings, with substantial overlap among the most affected neurons across settings. These results argue against a strictly rule-based encoding of German definite articles, indicating that models at least partly rely on memorized associations rather than abstract grammatical rules.
On-Device Large Language Models for Sequential Recommendation
On-device recommendation is critical for a number of real-world applications, especially in scenarios that have agreements on execution latency, user privacy, and robust functionality when internet connectivity is unstable or even impossible. While large language models (LLMs) can now provide exceptional capabilities that model user behavior for sequential recommendation tasks, their substantial memory footprint and computational overhead make the deployment on resource-constrained devices a high risk proposition. In this paper, we propose OD-LLM, the first task-adaptive compression framework explicitly designed to provide efficient and accurate on-device deployment of LLMs for sequential recommendation tasks. OD-LLM uniquely integrates two complementary compression strategies: a low-rank structural compression algorithm which uses Singular Value Decomposition (SVD) to significantly reduce parameter redundancy in the model, and a novel tokenization normalization technique that better complements the low-rank decomposition process being used. Additionally, to minimize any potential performance degradation when using higher compression ratios, a novel progressive alignment algorithm is used to iteratively refine the parameters required layerwise in the target model. Empirical evaluations conducted on sequential recommendation benchmarks show that OD-LLM exhibits no loss in effectiveness when compared to the original recommendation model, when the deployed model size is halved. These promising results demonstrate the efficacy and scalability of OD-LLM, making this novel solution a practical alternative for real-time, on-device solutions wishing to replace expensive, remotely executed LLMs.
comment: WSDM'26
Policy-Based Reinforcement Learning with Action Masking for Dynamic Job Shop Scheduling under Uncertainty: Handling Random Arrivals and Machine Failures
We present a novel framework for solving Dynamic Job Shop Scheduling Problems under uncertainty, addressing the challenges introduced by stochastic job arrivals and unexpected machine breakdowns. Our approach follows a model-based paradigm, using Coloured Timed Petri Nets to represent the scheduling environment, and Maskable Proximal Policy Optimization to enable dynamic decision-making while restricting the agent to feasible actions at each decision point. To simulate realistic industrial conditions, dynamic job arrivals are modeled using a Gamma distribution, which captures complex temporal patterns such as bursts, clustering, and fluctuating workloads. Machine failures are modeled using a Weibull distribution to represent age-dependent degradation and wear-out dynamics. These stochastic models enable the framework to reflect real-world manufacturing scenarios better. In addition, we study two action-masking strategies: a non-gradient approach that overrides the probabilities of invalid actions, and a gradient-based approach that assigns negative gradients to invalid actions within the policy network. We conduct extensive experiments on dynamic JSSP benchmarks, demonstrating that our method consistently outperforms traditional heuristic and rule-based approaches in terms of makespan minimization. The results highlight the strength of combining interpretable Petri-net-based models with adaptive reinforcement learning policies, yielding a resilient, scalable, and explainable framework for real-time scheduling in dynamic and uncertain manufacturing environments.
Blue Teaming Function-Calling Agents AAAI 2026
We present an experimental evaluation that assesses the robustness of four open source LLMs claiming function-calling capabilities against three different attacks, and we measure the effectiveness of eight different defences. Our results show how these models are not safe by default, and how the defences are not yet employable in real-world scenarios.
comment: This work has been accepted to appear at the AAAI 2026 Workshop on Trust and Control in Agentic AI (TrustAgent)
Why not Collaborative Filtering in Dual View? Bridging Sparse and Dense Models
Collaborative Filtering (CF) remains the cornerstone of modern recommender systems, with dense embedding--based methods dominating current practice. However, these approaches suffer from a critical limitation: our theoretical analysis reveals a fundamental signal-to-noise ratio (SNR) ceiling when modeling unpopular items, where parameter-based dense models experience diminishing SNR under severe data sparsity. To overcome this bottleneck, we propose SaD (Sparse and Dense), a unified framework that integrates the semantic expressiveness of dense embeddings with the structural reliability of sparse interaction patterns. We theoretically show that aligning these dual views yields a strictly superior global SNR. Concretely, SaD introduces a lightweight bidirectional alignment mechanism: the dense view enriches the sparse view by injecting semantic correlations, while the sparse view regularizes the dense model through explicit structural signals. Extensive experiments demonstrate that, under this dual-view alignment, even a simple matrix factorization--style dense model can achieve state-of-the-art performance. Moreover, SaD is plug-and-play and can be seamlessly applied to a wide range of existing recommender models, highlighting the enduring power of collaborative filtering when leveraged from dual perspectives. Further evaluations on real-world benchmarks show that SaD consistently outperforms strong baselines, ranking first on the BarsMatch leaderboard. The code is publicly available at https://github.com/harris26-G/SaD.
comment: 25 pages, 6 figures
Cluster Workload Allocation: Semantic Soft Affinity Using Natural Language Processing
Cluster workload allocation often requires complex configurations, creating a usability gap. This paper introduces a semantic, intent-driven scheduling paradigm for cluster systems using Natural Language Processing. The system employs a Large Language Model (LLM) integrated via a Kubernetes scheduler extender to interpret natural language allocation hint annotations for soft affinity preferences. A prototype featuring a cluster state cache and an intent analyzer (using AWS Bedrock) was developed. Empirical evaluation demonstrated high LLM parsing accuracy (>95% Subset Accuracy on an evaluation ground-truth dataset) for top-tier models like Amazon Nova Pro/Premier and Mistral Pixtral Large, significantly outperforming a baseline engine. Scheduling quality tests across six scenarios showed the prototype achieved superior or equivalent placement compared to standard Kubernetes configurations, particularly excelling in complex and quantitative scenarios and handling conflicting soft preferences. The results validate using LLMs for accessible scheduling but highlight limitations like synchronous LLM latency, suggesting asynchronous processing for production readiness. This work confirms the viability of semantic soft affinity for simplifying workload orchestration.
STaR: Sensitive Trajectory Regulation for Unlearning in Large Reasoning Models
Large Reasoning Models (LRMs) have advanced automated multi-step reasoning, but their ability to generate complex Chain-of-Thought (CoT) trajectories introduces severe privacy risks, as sensitive information may be deeply embedded throughout the reasoning process. Existing Large Language Models (LLMs) unlearning approaches that typically focus on modifying only final answers are insufficient for LRMs, as they fail to remove sensitive content from intermediate steps, leading to persistent privacy leakage and degraded security. To address these challenges, we propose Sensitive Trajectory Regulation (STaR), a parameter-free, inference-time unlearning framework that achieves robust privacy protection throughout the reasoning process. Specifically, we first identify sensitive content via semantic-aware detection. Then, we inject global safety constraints through secure prompt prefix. Next, we perform trajectory-aware suppression to dynamically block sensitive content across the entire reasoning chain. Finally, we apply token-level adaptive filtering to prevent both exact and paraphrased sensitive tokens during generation. Furthermore, to overcome the inadequacies of existing evaluation protocols, we introduce two metrics: Multi-Decoding Consistency Assessment (MCS), which measures the consistency of unlearning across diverse decoding strategies, and Multi-Granularity Membership Inference Attack (MIA) Evaluation, which quantifies privacy protection at both answer and reasoning-chain levels. Experiments on the R-TOFU benchmark demonstrate that STaR achieves comprehensive and stable unlearning with minimal utility loss, setting a new standard for privacy-preserving reasoning in LRMs.
ReGraM: Region-First Knowledge Graph Reasoning for Medical Question Answering
Recent studies in medical question answering (Medical QA) have actively explored the integration of large language models (LLMs) with biomedical knowledge graphs (KGs) to improve factual accuracy. However, most existing approaches still rely on traversing the entire KG or performing large-scale retrieval, which introduces substantial noise and leads to unstable multi-hop reasoning. We argue that the core challenge lies not in expanding access to knowledge, but in identifying and reasoning over the appropriate subset of evidence for each query. ReGraM is a region-first knowledge graph reasoning framework that addresses this challenge by constructing a query-aligned subgraph and performing stepwise reasoning constrained to this localized region under multiple evidence aware modes. By focusing inference on only the most relevant portion of the KG, ReGraM departs from the assumption that all relations are equally useful an assumption that rarely holds in domain-specific medical settings. Experiments on seven medical QA benchmarks demonstrate that ReGraM consistently outperforms a strong baseline (KGARevion), achieving an 8.04% absolute accuracy gain on MCQ, a 4.50% gain on SAQ, and a 42.9% reduction in hallucination rate. Ablation and qualitative analyses further show that aligning region construction with hop-wise reasoning is the primary driver of these improvements. Overall, our results highlight region-first KG reasoning as an effective paradigm for improving factual accuracy and consistency in medical QA.
comment: 18 pages, 2 figures. Preprint
M$^3$Searcher: Modular Multimodal Information Seeking Agency with Retrieval-Oriented Reasoning
Recent advances in DeepResearch-style agents have demonstrated strong capabilities in autonomous information acquisition and synthesize from real-world web environments. However, existing approaches remain fundamentally limited to text modality. Extending autonomous information-seeking agents to multimodal settings introduces critical challenges: the specialization-generalization trade-off that emerges when training models for multimodal tool-use at scale, and the severe scarcity of training data capturing complex, multi-step multimodal search trajectories. To address these challenges, we propose M$^3$Searcher, a modular multimodal information-seeking agent that explicitly decouples information acquisition from answer derivation. M$^3$Searcher is optimized with a retrieval-oriented multi-objective reward that jointly encourages factual accuracy, reasoning soundness, and retrieval fidelity. In addition, we develop MMSearchVQA, a multimodal multi-hop dataset to support retrieval centric RL training. Experimental results demonstrate that M$^3$Searcher outperforms existing approaches, exhibits strong transfer adaptability and effective reasoning in complex multimodal tasks.
$A^3$-Bench: Benchmarking Memory-Driven Scientific Reasoning via Anchor and Attractor Activation
Scientific reasoning relies not only on logical inference but also on activating prior knowledge and experiential structures. Memory can efficiently reuse knowledge and enhance reasoning consistency and stability. However, existing benchmarks mainly evaluate final answers or step-by-step coherence, overlooking the \textit{memory-driven} mechanisms that underlie human reasoning, which involves activating anchors and attractors, then integrating them into multi-step inference. To address this gap, we propose $A^3$-Bench~ https://a3-bench.github.io, a benchmark designed to evaluate scientific reasoning through dual-scale memory-driven activation, grounded in Anchor and Attractor Activation. First, we annotate 2,198 science reasoning problems across domains using the SAPM process(subject, anchor & attractor, problem, and memory developing). Second, we introduce a dual-scale memory evaluation framework utilizing anchors and attractors, along with the AAUI(Anchor--Attractor Utilization Index) metric to measure memory activation rates. Finally, through experiments with various base models and paradigms, we validate $A^3$-Bench and analyze how memory activation impacts reasoning performance, providing insights into memory-driven scientific reasoning.
RISER: Orchestrating Latent Reasoning Skills for Adaptive Activation Steering
Recent work on domain-specific reasoning with large language models (LLMs) often relies on training-intensive approaches that require parameter updates. While activation steering has emerged as a parameter efficient alternative, existing methods apply static, manual interventions that fail to adapt to the dynamic nature of complex reasoning. To address this limitation, we propose RISER (Router-based Intervention for Steerable Enhancement of Reasoning), a plug-and-play intervention framework that adaptively steers LLM reasoning in activation space. RISER constructs a library of reusable reasoning vectors and employs a lightweight Router to dynamically compose them for each input. The Router is optimized via reinforcement learning under task-level rewards, activating latent cognitive primitives in an emergent and compositional manner. Across seven diverse benchmarks, RISER yields 3.4-6.5% average zero-shot accuracy improvements over the base model while surpassing CoT-style reasoning with 2-3x higher token efficiency and robust accuracy gains. Further analysis shows that RISER autonomously combines multiple vectors into interpretable, precise control strategies, pointing toward more controllable and efficient LLM reasoning.
Coordinated Pandemic Control with Large Language Model Agents as Policymaking Assistants
Effective pandemic control requires timely and coordinated policymaking across administrative regions that are intrinsically interdependent. However, human-driven responses are often fragmented and reactive, with policies formulated in isolation and adjusted only after outbreaks escalate, undermining proactive intervention and global pandemic mitigation. To address this challenge, here we propose a large language model (LLM) multi-agent policymaking framework that supports coordinated and proactive pandemic control across regions. Within our framework, each administrative region is assigned an LLM agent as an AI policymaking assistant. The agent reasons over region-specific epidemiological dynamics while communicating with other agents to account for cross-regional interdependencies. By integrating real-world data, a pandemic evolution simulator, and structured inter-agent communication, our framework enables agents to jointly explore counterfactual intervention scenarios and synthesize coordinated policy decisions through a closed-loop simulation process. We validate the proposed framework using state-level COVID-19 data from the United States between April and December 2020, together with real-world mobility records and observed policy interventions. Compared with real-world pandemic outcomes, our approach reduces cumulative infections and deaths by up to 63.7% and 40.1%, respectively, at the individual state level, and by 39.0% and 27.0%, respectively, when aggregated across states. These results demonstrate that LLM multi-agent systems can enable more effective pandemic control with coordinated policymaking...
comment: 20pages, 6 figures, a 60-page supporting material pdf file
Magnifying change: Rapid burn scar mapping with multi-resolution, multi-source satellite imagery
Delineating wildfire affected areas using satellite imagery remains challenging due to irregular and spatially heterogeneous spectral changes across the electromagnetic spectrum. While recent deep learning approaches achieve high accuracy when high-resolution multispectral data are available, their applicability in operational settings, where a quick delineation of the burn scar shortly after a wildfire incident is required, is limited by the trade-off between spatial resolution and temporal revisit frequency of current satellite systems. To address this limitation, we propose a novel deep learning model, namely BAM-MRCD, which employs multi-resolution, multi-source satellite imagery (MODIS and Sentinel-2) for the timely production of detailed burnt area maps with high spatial and temporal resolution. Our model manages to detect even small scale wildfires with high accuracy, surpassing similar change detection models as well as solid baselines. All data and code are available in the GitHub repository: https://github.com/Orion-AI-Lab/BAM-MRCD.
Efficient Paths and Dense Rewards: Probabilistic Flow Reasoning for Large Language Models
High-quality chain-of-thought has demonstrated strong potential for unlocking the reasoning capabilities of large language models. However, current paradigms typically treat the reasoning process as an indivisible sequence, lacking an intrinsic mechanism to quantify step-wise information gain. This granularity gap manifests in two limitations: inference inefficiency from redundant exploration without explicit guidance, and optimization difficulty due to sparse outcome supervision or costly external verifiers. In this work, we propose CoT-Flow, a framework that reconceptualizes discrete reasoning steps as a continuous probabilistic flow, quantifying the contribution of each step toward the ground-truth answer. Built on this formulation, CoT-Flow enables two complementary methodologies: flow-guided decoding, which employs a greedy flow-based decoding strategy to extract information-efficient reasoning paths, and flow-based reinforcement learning, which constructs a verifier-free dense reward function. Experiments on challenging benchmarks demonstrate that CoT-Flow achieves a superior balance between inference efficiency and reasoning performance.
MAXS: Meta-Adaptive Exploration with LLM Agents
Large Language Model (LLM) Agents exhibit inherent reasoning abilities through the collaboration of multiple tools. However, during agent inference, existing methods often suffer from (i) locally myopic generation, due to the absence of lookahead, and (ii) trajectory instability, where minor early errors can escalate into divergent reasoning paths. These issues make it difficult to balance global effectiveness and computational efficiency. To address these two issues, we propose meta-adaptive exploration with LLM agents https://github.com/exoskeletonzj/MAXS, a meta-adaptive reasoning framework based on LLM Agents that flexibly integrates tool execution and reasoning planning. MAXS employs a lookahead strategy to extend reasoning paths a few steps ahead, estimating the advantage value of tool usage, and combines step consistency variance and inter-step trend slopes to jointly select stable, consistent, and high-value reasoning steps. Additionally, we introduce a trajectory convergence mechanism that controls computational cost by halting further rollouts once path consistency is achieved, enabling a balance between resource efficiency and global effectiveness in multi-tool reasoning. We conduct extensive empirical studies across three base models (MiMo-VL-7B, Qwen2.5-VL-7B, Qwen2.5-VL-32B) and five datasets, demonstrating that MAXS consistently outperforms existing methods in both performance and inference efficiency. Further analysis confirms the effectiveness of our lookahead strategy and tool usage.
RIFT: Repurposing Negative Samples via Reward-Informed Fine-Tuning
While Supervised Fine-Tuning (SFT) and Rejection Sampling Fine-Tuning (RFT) are standard for LLM alignment, they either rely on costly expert data or discard valuable negative samples, leading to data inefficiency. To address this, we propose Reward Informed Fine-Tuning (RIFT), a simple yet effective framework that utilizes all self-generated samples. Unlike the hard thresholding of RFT, RIFT repurposes negative trajectories, reweighting the loss with scalar rewards to learn from both the positive and negative trajectories from the model outputs. To overcome the training collapse caused by naive reward integration, where direct multiplication yields an unbounded loss, we introduce a stabilized loss formulation that ensures numerical robustness and optimization efficiency. Extensive experiments on mathematical benchmarks across various base models show that RIFT consistently outperforms RFT. Our results demonstrate that RIFT is a robust and data-efficient alternative for alignment using mixed-quality, self-generated data.
HGATSolver: A Heterogeneous Graph Attention Solver for Fluid-Structure Interaction
Fluid-structure interaction (FSI) systems involve distinct physical domains, fluid and solid, governed by different partial differential equations and coupled at a dynamic interface. While learning-based solvers offer a promising alternative to costly numerical simulations, existing methods struggle to capture the heterogeneous dynamics of FSI within a unified framework. This challenge is further exacerbated by inconsistencies in response across domains due to interface coupling and by disparities in learning difficulty across fluid and solid regions, leading to instability during prediction. To address these challenges, we propose the Heterogeneous Graph Attention Solver (HGATSolver). HGATSolver encodes the system as a heterogeneous graph, embedding physical structure directly into the model via distinct node and edge types for fluid, solid, and interface regions. This enables specialized message-passing mechanisms tailored to each physical domain. To stabilize explicit time stepping, we introduce a novel physics-conditioned gating mechanism that serves as a learnable, adaptive relaxation factor. Furthermore, an Inter-domain Gradient-Balancing Loss dynamically balances the optimization objectives across domains based on predictive uncertainty. Extensive experiments on two constructed FSI benchmarks and a public dataset demonstrate that HGATSolver achieves state-of-the-art performance, establishing an effective framework for surrogate modeling of coupled multi-physics systems.
Hybrid guided variational autoencoder for visual place recognition
Autonomous agents such as cars, robots and drones need to precisely localize themselves in diverse environments, including in GPS-denied indoor environments. One approach for precise localization is visual place recognition (VPR), which estimates the place of an image based on previously seen places. State-of-the-art VPR models require high amounts of memory, making them unwieldy for mobile deployment, while more compact models lack robustness and generalization capabilities. This work overcomes these limitations for robotics using a combination of event-based vision sensors and an event-based novel guided variational autoencoder (VAE). The encoder part of our model is based on a spiking neural network model which is compatible with power-efficient low latency neuromorphic hardware. The VAE successfully disentangles the visual features of 16 distinct places in our new indoor VPR dataset with a classification performance comparable to other state-of-the-art approaches while, showing robust performance also under various illumination conditions. When tested with novel visual inputs from unknown scenes, our model can distinguish between these places, which demonstrates a high generalization capability by learning the essential features of location. Our compact and robust guided VAE with generalization capabilities poses a promising model for visual place recognition that can significantly enhance mobile robot navigation in known and unknown indoor environments.
Reward Learning through Ranking Mean Squared Error
Reward design remains a significant bottleneck in applying reinforcement learning (RL) to real-world problems. A popular alternative is reward learning, where reward functions are inferred from human feedback rather than manually specified. Recent work has proposed learning reward functions from human feedback in the form of ratings, rather than traditional binary preferences, enabling richer and potentially less cognitively demanding supervision. Building on this paradigm, we introduce a new rating-based RL method, Ranked Return Regression for RL (R4). At its core, R4 employs a novel ranking mean squared error (rMSE) loss, which treats teacher-provided ratings as ordinal targets. Our approach learns from a dataset of trajectory-rating pairs, where each trajectory is labeled with a discrete rating (e.g., "bad," "neutral," "good"). At each training step, we sample a set of trajectories, predict their returns, and rank them using a differentiable sorting operator (soft ranks). We then optimize a mean squared error loss between the resulting soft ranks and the teacher's ratings. Unlike prior rating-based approaches, R4 offers formal guarantees: its solution set is provably minimal and complete under mild assumptions. Empirically, using simulated human feedback, we demonstrate that R4 consistently matches or outperforms existing rating and preference-based RL methods on robotic locomotion benchmarks from OpenAI Gym and the DeepMind Control Suite, while requiring significantly less feedback.
GIFT: Unlocking Global Optimality in Post-Training via Finite-Temperature Gibbs Initialization
The prevailing post-training paradigm for Large Reasoning Models (LRMs)--Supervised Fine-Tuning (SFT) followed by Reinforcement Learning (RL)--suffers from an intrinsic optimization mismatch: the rigid supervision inherent in SFT induces distributional collapse, thereby exhausting the exploration space necessary for subsequent RL. In this paper, we reformulate SFT within a unified post-training framework and propose Gibbs Initialization with Finite Temperature (GIFT). We characterize standard SFT as a degenerate zero-temperature limit that suppresses base priors. Conversely, GIFT incorporates supervision as a finite-temperature energy potential, establishing a distributional bridge that ensures objective consistency throughout the post-training pipeline. Our experiments demonstrate that GIFT significantly outperforms standard SFT and other competitive baselines when utilized for RL initialization, providing a mathematically principled pathway toward achieving global optimality in post-training. Our code is available at https://github.com/zzy1127/GIFT.
SpikeVAEDiff: Neural Spike-based Natural Visual Scene Reconstruction via VD-VAE and Versatile Diffusion
Reconstructing natural visual scenes from neural activity is a key challenge in neuroscience and computer vision. We present SpikeVAEDiff, a novel two-stage framework that combines a Very Deep Variational Autoencoder (VDVAE) and the Versatile Diffusion model to generate high-resolution and semantically meaningful image reconstructions from neural spike data. In the first stage, VDVAE produces low-resolution preliminary reconstructions by mapping neural spike signals to latent representations. In the second stage, regression models map neural spike signals to CLIP-Vision and CLIP-Text features, enabling Versatile Diffusion to refine the images via image-to-image generation. We evaluate our approach on the Allen Visual Coding-Neuropixels dataset and analyze different brain regions. Our results show that the VISI region exhibits the most prominent activation and plays a key role in reconstruction quality. We present both successful and unsuccessful reconstruction examples, reflecting the challenges of decoding neural activity. Compared with fMRI-based approaches, spike data provides superior temporal and spatial resolution. We further validate the effectiveness of the VDVAE model and conduct ablation studies demonstrating that data from specific brain regions significantly enhances reconstruction performance.
comment: Preprint
Annealed Relaxation of Speculative Decoding for Faster Autoregressive Image Generation AAAI 2026
Despite significant progress in autoregressive image generation, inference remains slow due to the sequential nature of AR models and the ambiguity of image tokens, even when using speculative decoding. Recent works attempt to address this with relaxed speculative decoding but lack theoretical grounding. In this paper, we establish the theoretical basis of relaxed SD and propose COOL-SD, an annealed relaxation of speculative decoding built on two key insights. The first analyzes the total variation (TV) distance between the target model and relaxed speculative decoding and yields an optimal resampling distribution that minimizes an upper bound of the distance. The second uses perturbation analysis to reveal an annealing behaviour in relaxed speculative decoding, motivating our annealed design. Together, these insights enable COOL-SD to generate images faster with comparable quality, or achieve better quality at similar latency. Experiments validate the effectiveness of COOL-SD, showing consistent improvements over prior methods in speed-quality trade-offs.
comment: Accepted to AAAI 2026
Mikasa: A Character-Driven Emotional AI Companion Inspired by Japanese Oshi Culture
Recent progress in large language models and multimodal interaction has made it possible to develop AI companions that can have fluent and emotionally expressive conversations. However, many of these systems have problems keeping users satisfied and engaged over long periods. This paper argues that these problems do not come mainly from weak models, but from poor character design and unclear definitions of the user-AI relationship. I present Mikasa, an emotional AI companion inspired by Japanese Oshi culture-specifically its emphasis on long-term, non-exclusive commitment to a stable character-as a case study of character-driven companion design. Mikasa does not work as a general-purpose assistant or a chatbot that changes roles. Instead, Mikasa is designed as a coherent character with a stable personality and a clearly defined relationship as a partner. This relationship does not force exclusivity or obligation. Rather, it works as a reference point that stabilizes interaction norms and reduces the work users must do to keep redefining the relationship. Through an exploratory evaluation, I see that users describe their preferences using surface-level qualities such as conversational naturalness, but they also value relationship control and imaginative engagement in ways they do not state directly. These results suggest that character coherence and relationship definition work as latent structural elements that shape how good the interaction feels, without users recognizing them as main features. The contribution of this work is to show that character design is a functional part of AI companion systems, not just decoration. Mikasa is one example based on a specific cultural context, but the design principles-commitment to a consistent personality and clear relationship definition-can be used for many emotionally grounded AI companions.
comment: 11 pages, 1 figure
A.X K1 Technical Report
We introduce A.X K1, a 519B-parameter Mixture-of-Experts (MoE) language model trained from scratch. Our design leverages scaling laws to optimize training configurations and vocabulary size under fixed computational budgets. A.X K1 is pre-trained on a corpus of approximately 10T tokens, curated by a multi-stage data processing pipeline. Designed to bridge the gap between reasoning capability and inference efficiency, A.X K1 supports explicitly controllable reasoning to facilitate scalable deployment across diverse real-world scenarios. We propose a simple yet effective Think-Fusion training recipe, enabling user-controlled switching between thinking and non-thinking modes within a single unified model. Extensive evaluations demonstrate that A.X K1 achieves performance competitive with leading open-source models, while establishing a distinctive advantage in Korean-language benchmarks.
ProFit: Leveraging High-Value Signals in SFT via Probability-Guided Token Selection
Supervised fine-tuning (SFT) is a fundamental post-training strategy to align Large Language Models (LLMs) with human intent. However, traditional SFT often ignores the one-to-many nature of language by forcing alignment with a single reference answer, leading to the model overfitting to non-core expressions. Although our empirical analysis suggests that introducing multiple reference answers can mitigate this issue, the prohibitive data and computational costs necessitate a strategic shift: prioritizing the mitigation of single-reference overfitting over the costly pursuit of answer diversity. To achieve this, we reveal the intrinsic connection between token probability and semantic importance: high-probability tokens carry the core logical framework, while low-probability tokens are mostly replaceable expressions. Based on this insight, we propose ProFit, which selectively masks low-probability tokens to prevent surface-level overfitting. Extensive experiments confirm that ProFit consistently outperforms traditional SFT baselines on general reasoning and mathematical benchmarks.
Position on LLM-Assisted Peer Review: Addressing Reviewer Gap through Mentoring and Feedback AAAI 2026
The rapid expansion of AI research has intensified the Reviewer Gap, threatening the peer-review sustainability and perpetuating a cycle of low-quality evaluations. This position paper critiques existing LLM approaches that automatically generate reviews and argues for a paradigm shift that positions LLMs as tools for assisting and educating human reviewers. We define the core principles of high-quality peer review and propose two complementary systems grounded in these foundations: (i) an LLM-assisted mentoring system that cultivates reviewers' long-term competencies, and (ii) an LLM-assisted feedback system that helps reviewers refine the quality of their reviews. This human-centered approach aims to strengthen reviewer expertise and contribute to building a more sustainable scholarly ecosystem.
comment: Accepted to AAAI 2026 Workshop on AI for Scientific Research (AI4Research)
KTCF: Actionable Recourse in Knowledge Tracing via Counterfactual Explanations for Education AAAI-26
Using Artificial Intelligence to improve teaching and learning benefits greater adaptivity and scalability in education. Knowledge Tracing (KT) is recognized for student modeling task due to its superior performance and application potential in education. To this end, we conceptualize and investigate counterfactual explanation as the connection from XAI for KT to education. Counterfactual explanations offer actionable recourse, are inherently causal and local, and easy for educational stakeholders to understand who are often non-experts. We propose KTCF, a counterfactual explanation generation method for KT that accounts for knowledge concept relationships, and a post-processing scheme that converts a counterfactual explanation into a sequence of educational instructions. We experiment on a large-scale educational dataset and show our KTCF method achieves superior and robust performance over existing methods, with improvements ranging from 5.7% to 34% across metrics. Additionally, we provide a qualitative evaluation of our post-processing scheme, demonstrating that the resulting educational instructions help in reducing large study burden. We show that counterfactuals have the potential to advance the responsible and practical use of AI in education. Future works on XAI for KT may benefit from educationally grounded conceptualization and developing stakeholder-centered methods.
comment: Accepted to AAAI-26 Special Track AI for Social Impact (oral presentation)
PrivacyReasoner: Can LLM Emulate a Human-like Privacy Mind?
This paper introduces PRA, an AI-agent design for simulating how individual users form privacy concerns in response to real-world news. Moving beyond population-level sentiment analysis, PRA integrates privacy and cognitive theories to simulate user-specific privacy reasoning grounded in personal comment histories and contextual cues. The agent reconstructs each user's "privacy mind", dynamically activates relevant privacy memory through a contextual filter that emulates bounded rationality, and generates synthetic comments reflecting how that user would likely respond to new privacy scenarios. A complementary LLM-as-a-Judge evaluator, calibrated against an established privacy concern taxonomy, quantifies the faithfulness of generated reasoning. Experiments on real-world Hacker News discussions show that \PRA outperforms baseline agents in privacy concern prediction and captures transferable reasoning patterns across domains including AI, e-commerce, and healthcare.
SSVP: Synergistic Semantic-Visual Prompting for Industrial Zero-Shot Anomaly Detection
Zero-Shot Anomaly Detection (ZSAD) leverages Vision-Language Models (VLMs) to enable supervision-free industrial inspection. However, existing ZSAD paradigms are constrained by single visual backbones, which struggle to balance global semantic generalization with fine-grained structural discriminability. To bridge this gap, we propose Synergistic Semantic-Visual Prompting (SSVP), that efficiently fuses diverse visual encodings to elevate model's fine-grained perception. Specifically, SSVP introduces the Hierarchical Semantic-Visual Synergy (HSVS) mechanism, which deeply integrates DINOv3's multi-scale structural priors into the CLIP semantic space. Subsequently, the Vision-Conditioned Prompt Generator (VCPG) employs cross-modal attention to guide dynamic prompt generation, enabling linguistic queries to precisely anchor to specific anomaly patterns. Furthermore, to address the discrepancy between global scoring and local evidence, the Visual-Text Anomaly Mapper (VTAM) establishes a dual-gated calibration paradigm. Extensive evaluations on seven industrial benchmarks validate the robustness of our method; SSVP achieves state-of-the-art performance with 93.0\% Image-AUROC and 92.2\% Pixel-AUROC on MVTec-AD, significantly outperforming existing zero-shot approaches.
SkinFlow: Efficient Information Transmission for Open Dermatological Diagnosis via Dynamic Visual Encoding and Staged RL
General-purpose Large Vision-Language Models (LVLMs), despite their massive scale, often falter in dermatology due to "diffuse attention" - the inability to disentangle subtle pathological lesions from background noise. In this paper, we challenge the assumption that parameter scaling is the only path to medical precision. We introduce SkinFlow, a framework that treats diagnosis as an optimization of visual information transmission efficiency. Our approach utilizes a Virtual-Width Dynamic Vision Encoder (DVE) to "unfold" complex pathological manifolds without physical parameter expansion, coupled with a two-stage Reinforcement Learning strategy. This strategy sequentially aligns explicit medical descriptions (Stage I) and reconstructs implicit diagnostic textures (Stage II) within a constrained semantic space. Furthermore, we propose a clinically grounded evaluation protocol that prioritizes diagnostic safety and hierarchical relevance over rigid label matching. Empirical results are compelling: our 7B model establishes a new state-of-the-art on the Fitzpatrick17k benchmark, achieving a +12.06% gain in Top-1 accuracy and a +28.57% boost in Top-6 accuracy over the massive general-purpose models (e.g., Qwen3VL-235B and GPT-5.2). These findings demonstrate that optimizing geometric capacity and information flow yields superior diagnostic reasoning compared to raw parameter scaling.
Equi-ViT: Rotational Equivariant Vision Transformer for Robust Histopathology Analysis
Vision Transformers (ViTs) have gained rapid adoption in computational pathology for their ability to model long-range dependencies through self-attention, addressing the limitations of convolutional neural networks that excel at local pattern capture but struggle with global contextual reasoning. Recent pathology-specific foundation models have further advanced performance by leveraging large-scale pretraining. However, standard ViTs remain inherently non-equivariant to transformations such as rotations and reflections, which are ubiquitous variations in histopathology imaging. To address this limitation, we propose Equi-ViT, which integrates an equivariant convolution kernel into the patch embedding stage of a ViT architecture, imparting built-in rotational equivariance to learned representations. Equi-ViT achieves superior rotation-consistent patch embeddings and stable classification performance across image orientations. Our results on a public colorectal cancer dataset demonstrate that incorporating equivariant patch embedding enhances data efficiency and robustness, suggesting that equivariant transformers could potentially serve as more generalizable backbones for the application of ViT in histopathology, such as digital pathology foundation models.
comment: Accepted by IEEE ISBI 2026 4-page paper
Adaptive Multi-Stage Patent Claim Generation with Unified Quality Assessment
Current patent claim generation systems face three fundamental limitations: poor cross-jurisdictional generalization, inadequate semantic relationship modeling between claims and prior art, and unreliable quality assessment. We introduce a novel three-stage framework that addresses these challenges through relationship-aware similarity analysis, domain-adaptive claim generation, and unified quality assessment. Our approach employs multi-head attention with eight specialized heads for explicit relationship modeling, integrates curriculum learning with dynamic LoRA adapter selection across five patent domains, and implements cross-attention mechanisms between evaluation aspects for comprehensive quality assessment. Extensive experiments on USPTO HUPD dataset, EPO patent collections, and Patent-CE benchmark demonstrate substantial improvements: 7.6-point ROUGE-L gain over GPT-4o, 8.3\% BERTScore enhancement over Llama-3.1-8B, and 0.847 correlation with human experts compared to 0.623 for separate evaluation models. Our method maintains 89.4\% cross-jurisdictional performance retention versus 76.2\% for baselines, establishing a comprehensive solution for automated patent prosecution workflows.
comment: 18 pages, 7 figures. Preprint
A Marketplace for AI-Generated Adult Content and Deepfakes
Generative AI systems increasingly enable the production of highly realistic synthetic media. Civitai, a popular community-driven platform for AI-generated content, operates a monetized feature called Bounties, which allows users to commission the generation of content in exchange for payment. To examine how this mechanism is used and what content it incentivizes, we conduct a longitudinal analysis of all publicly available bounty requests collected over a 14-month period following the platform's launch. We find that the bounty marketplace is dominated by tools that let users steer AI models toward content they were not trained to generate. At the same time, requests for content that is "Not Safe For Work" are widespread and have increased steadily over time, now comprising a majority of all bounties. Participation in bounty creation is uneven, with 20% of requesters accounting for roughly half of requests. Requests for "deepfake" - media depicting identifiable real individuals - exhibit a higher concentration than other types of bounties. A nontrivial subset of these requests involves explicit deepfakes despite platform policies prohibiting such content. These bounties disproportionately target female celebrities, revealing a pronounced gender asymmetry in social harm. Together, these findings show how monetized, community-driven generative AI platforms can produce gendered harms, raising questions about consent, governance, and enforcement.
LP-LLM: End-to-End Real-World Degraded License Plate Text Recognition via Large Multimodal Models
Real-world License Plate Recognition (LPR) faces significant challenges from severe degradations such as motion blur, low resolution, and complex illumination. The prevailing "restoration-then-recognition" two-stage paradigm suffers from a fundamental flaw: the pixel-level optimization objectives of image restoration models are misaligned with the semantic goals of character recognition, leading to artifact interference and error accumulation. While Vision-Language Models (VLMs) have demonstrated powerful general capabilities, they lack explicit structural modeling for license plate character sequences (e.g., fixed length, specific order). To address this, we propose an end-to-end structure-aware multimodal reasoning framework based on Qwen3-VL. The core innovation lies in the Character-Aware Multimodal Reasoning Module (CMRM), which introduces a set of learnable Character Slot Queries. Through a cross-attention mechanism, these queries actively retrieve fine-grained evidence corresponding to character positions from visual features. Subsequently, we inject these character-aware representations back into the visual tokens via residual modulation, enabling the language model to perform autoregressive generation based on explicit structural priors. Furthermore, combined with the LoRA parameter-efficient fine-tuning strategy, the model achieves domain adaptation while retaining the generalization capabilities of the large model. Extensive experiments on both synthetic and real-world severely degraded datasets demonstrate that our method significantly outperforms existing restoration-recognition combinations and general VLMs, validating the superiority of incorporating structured reasoning into large models for low-quality text recognition tasks.
The AI Hippocampus: How Far are We From Human Memory?
Memory plays a foundational role in augmenting the reasoning, adaptability, and contextual fidelity of modern Large Language Models and Multi-Modal LLMs. As these models transition from static predictors to interactive systems capable of continual learning and personalized inference, the incorporation of memory mechanisms has emerged as a central theme in their architectural and functional evolution. This survey presents a comprehensive and structured synthesis of memory in LLMs and MLLMs, organizing the literature into a cohesive taxonomy comprising implicit, explicit, and agentic memory paradigms. Specifically, the survey delineates three primary memory frameworks. Implicit memory refers to the knowledge embedded within the internal parameters of pre-trained transformers, encompassing their capacity for memorization, associative retrieval, and contextual reasoning. Recent work has explored methods to interpret, manipulate, and reconfigure this latent memory. Explicit memory involves external storage and retrieval components designed to augment model outputs with dynamic, queryable knowledge representations, such as textual corpora, dense vectors, and graph-based structures, thereby enabling scalable and updatable interaction with information sources. Agentic memory introduces persistent, temporally extended memory structures within autonomous agents, facilitating long-term planning, self-consistency, and collaborative behavior in multi-agent systems, with relevance to embodied and interactive AI. Extending beyond text, the survey examines the integration of memory within multi-modal settings, where coherence across vision, language, audio, and action modalities is essential. Key architectural advances, benchmark tasks, and open challenges are discussed, including issues related to memory capacity, alignment, factual consistency, and cross-system interoperability.
AviationLMM: A Large Multimodal Foundation Model for Civil Aviation
Civil aviation is a cornerstone of global transportation and commerce, and ensuring its safety, efficiency and customer satisfaction is paramount. Yet conventional Artificial Intelligence (AI) solutions in aviation remain siloed and narrow, focusing on isolated tasks or single modalities. They struggle to integrate heterogeneous data such as voice communications, radar tracks, sensor streams and textual reports, which limits situational awareness, adaptability, and real-time decision support. This paper introduces the vision of AviationLMM, a Large Multimodal foundation Model for civil aviation, designed to unify the heterogeneous data streams of civil aviation and enable understanding, reasoning, generation and agentic applications. We firstly identify the gaps between existing AI solutions and requirements. Secondly, we describe the model architecture that ingests multimodal inputs such as air-ground voice, surveillance, on-board telemetry, video and structured texts, and performs cross-modal alignment and fusion, and produces flexible outputs ranging from situation summaries and risk alerts to predictive diagnostics and multimodal incident reconstructions. In order to fully realize this vision, we identify key research opportunities to address, including data acquisition, alignment and fusion, pretraining, reasoning, trustworthiness, privacy, robustness to missing modalities, and synthetic scenario generation. By articulating the design and challenges of AviationLMM, we aim to boost the civil aviation foundation model progress and catalyze coordinated research efforts toward an integrated, trustworthy and privacy-preserving aviation AI ecosystem.
comment: Accepted by 2025 7th International Conference on Interdisciplinary Computer Science and Engineering (ICICSE 2025) conference, Chongqing, China; 9 pages,1 figure,5 tables
DScheLLM: Enabling Dynamic Scheduling through a Fine-Tuned Dual-System Large language Model
Production scheduling is highly susceptible to dynamic disruptions, such as variations in processing times, machine availability, and unexpected task insertions. Conventional approaches typically rely on event-specific models and explicit analytical formulations, which limits their adaptability and generalization across previously unseen disturbances. To overcome these limitations, this paper proposes DScheLLM, a dynamic scheduling approach that leverages fine-tuned large language models within a dual-system (fast-slow) reasoning architecture to address disturbances of different scales. A unified large language model-based framework is constructed to handle dynamic events, where training datasets for both fast and slow reasoning modes are generated using exact schedules obtained from an operations research solver. The Huawei OpenPangu Embedded-7B model is subsequently fine-tuned under the hybrid reasoning paradigms using LoRA. Experimental evaluations on standard job shop scheduling benchmarks demonstrate that the fast-thinking mode can efficiently generate high-quality schedules and the slow-thinking mode can produce solver-compatible and well-formatted decision inputs. To the best of our knowledge, this work represents one of the earliest studies applying large language models to job shop scheduling in dynamic environments, highlighting their considerable potential for intelligent and adaptive scheduling optimization.
comment: 14 pages, 6 figures
Programming over Thinking: Efficient and Robust Multi-Constraint Planning
Multi-constraint planning involves identifying, evaluating, and refining candidate plans while satisfying multiple, potentially conflicting constraints. Existing large language model (LLM) approaches face fundamental limitations in this domain. Pure reasoning paradigms, which rely on long natural language chains, are prone to inconsistency, error accumulation, and prohibitive cost as constraints compound. Conversely, LLMs combined with coding- or solver-based strategies lack flexibility: they often generate problem-specific code from scratch or depend on fixed solvers, failing to capture generalizable logic across diverse problems. To address these challenges, we introduce the Scalable COde Planning Engine (SCOPE), a framework that disentangles query-specific reasoning from generic code execution. By separating reasoning from execution, SCOPE produces solver functions that are consistent, deterministic, and reusable across queries while requiring only minimal changes to input parameters. SCOPE achieves state-of-the-art performance while lowering cost and latency. For example, with GPT-4o, it reaches 93.1% success on TravelPlanner, a 61.6% gain over the best baseline (CoT) while cutting inference cost by 1.4x and time by ~4.67x. Code is available at https://github.com/DerrickGXD/SCOPE.
comment: 8 pages of main text, 2 pages of references and and limitations, 37 pages of appendices
SubTokenTest: A Practical Benchmark for Real-World Sub-token Understanding
Recent advancements in large language models (LLMs) have significantly enhanced their reasoning capabilities. However, they continue to struggle with basic character-level tasks, such as counting letters in words, a problem rooted in their tokenization process. While existing benchmarks have highlighted this weakness through basic character operations, such failures are often dismissed due to lacking practical relevance. Yet, many real-world applications, such as navigating text-based maps or interpreting structured tables, rely heavily on precise sub-token understanding. In this regard, we introduce SubTokenTest, a comprehensive benchmark that assesses sub-token understanding through practical, utility-driven tasks. Our benchmark includes ten tasks across four domains and isolates tokenization-related failures by decoupling performance from complex reasoning. We provide a comprehensive evaluation of nine advanced LLMs. Additionally, we investigate the impact of test-time scaling on sub-token reasoning and explore how character-level information is encoded within the hidden states.
MMR-GRPO: Accelerating GRPO-Style Training through Diversity-Aware Reward Reweighting
Group Relative Policy Optimization (GRPO) has become a standard approach for training mathematical reasoning models; however, its reliance on multiple completions per prompt makes training computationally expensive. Although recent work has reduced the number of training steps required to reach peak performance, the overall wall-clock training time often remains unchanged or even increases due to higher per-step cost. We propose MMR-GRPO, which integrates Maximal Marginal Relevance to reweigh rewards based on completion diversity. Our key insight is that semantically redundant completions contribute limited marginal learning signal; prioritizing diverse solutions yields more informative updates and accelerates convergence. Extensive evaluations across three model sizes (1.5B, 7B, 8B), three GRPO variants, and five mathematical reasoning benchmarks show that MMR-GRPO achieves comparable peak performance while requiring on average 47.9% fewer training steps and 70.2% less wall-clock time. These gains are consistent across models, methods, and benchmarks. We will release our code, trained models, and experimental protocols.
Human-AI Co-design for Clinical Prediction Models
Developing safe, effective, and practically useful clinical prediction models (CPMs) traditionally requires iterative collaboration between clinical experts, data scientists, and informaticists. This process refines the often small but critical details of the model building process, such as which features/patients to include and how clinical categories should be defined. However, this traditional collaboration process is extremely time- and resource-intensive, resulting in only a small fraction of CPMs reaching clinical practice. This challenge intensifies when teams attempt to incorporate unstructured clinical notes, which can contain an enormous number of concepts. To address this challenge, we introduce HACHI, an iterative human-in-the-loop framework that uses AI agents to accelerate the development of fully interpretable CPMs by enabling the exploration of concepts in clinical notes. HACHI alternates between (i) an AI agent rapidly exploring and evaluating candidate concepts in clinical notes and (ii) clinical and domain experts providing feedback to improve the CPM learning process. HACHI defines concepts as simple yes-no questions that are used in linear models, allowing the clinical AI team to transparently review, refine, and validate the CPM learned in each round. In two real-world prediction tasks (acute kidney injury and traumatic brain injury), HACHI outperforms existing approaches, surfaces new clinically relevant concepts not included in commonly-used CPMs, and improves model generalizability across clinical sites and time periods. Furthermore, HACHI reveals the critical role of the clinical AI team, such as directing the AI agent to explore concepts that it had not previously considered, adjusting the granularity of concepts it considers, changing the objective function to better align with the clinical objectives, and identifying issues of data bias and leakage.
From Symbolic to Natural-Language Relations: Rethinking Knowledge Graph Construction in the Era of Large Language Models
Knowledge graphs (KGs) have commonly been constructed using predefined symbolic relation schemas, typically implemented as categorical relation labels. This design has notable shortcomings: real-world relations are often contextual, nuanced, and sometimes uncertain, and compressing it into discrete relation labels abstracts away critical semantic detail. Nevertheless, symbolic-relation KGs remain widely used because they have been operationally effective and broadly compatible with pre-LLM downstream models and algorithms, in which KG knowledge could be retrieved or encoded into quantified features and embeddings at scale. The emergence of LLMs has reshaped how knowledge is created and consumed. LLMs support scalable synthesis of domain facts directly in concise natural language, and prompting-based inference favors context-rich free-form text over quantified representations. This position paper argues that these changes call for rethinking the representation of relations themselves rather than merely using LLMs to populate conventional schemas more efficiently. We therefore advocate moving from symbolic to natural-language relation descriptions, and we propose hybrid design principles that preserve a minimal structural backbone while enabling more flexible and context-sensitive relational representations.
Mi:dm 2.0 Korea-centric Bilingual Language Models
We introduce Mi:dm 2.0, a bilingual large language model (LLM) specifically engineered to advance Korea-centric AI. This model goes beyond Korean text processing by integrating the values, reasoning patterns, and commonsense knowledge inherent to Korean society, enabling nuanced understanding of cultural contexts, emotional subtleties, and real-world scenarios to generate reliable and culturally appropriate responses. To address limitations of existing LLMs, often caused by insufficient or low-quality Korean data and lack of cultural alignment, Mi:dm 2.0 emphasizes robust data quality through a comprehensive pipeline that includes proprietary data cleansing, high-quality synthetic data generation, strategic data mixing with curriculum learning, and a custom Korean-optimized tokenizer to improve efficiency and coverage. To realize this vision, we offer two complementary configurations: Mi:dm 2.0 Base (11.5B parameters), built with a depth-up scaling strategy for general-purpose use, and Mi:dm 2.0 Mini (2.3B parameters), optimized for resource-constrained environments and specialized tasks. Mi:dm 2.0 achieves state-of-the-art performance on Korean-specific benchmarks, with top-tier zero-shot results on KMMLU and strong internal evaluation results across language, humanities, and social science tasks. The Mi:dm 2.0 lineup is released under the MIT license to support extensive research and commercial use. By offering accessible and high-performance Korea-centric LLMs, KT aims to accelerate AI adoption across Korean industries, public services, and education, strengthen the Korean AI developer community, and lay the groundwork for the broader vision of K-intelligence. Our models are available at https://huggingface.co/K-intelligence. For technical inquiries, please contact midm-llm@kt.com.
Is Grokking Worthwhile? Functional Analysis and Transferability of Generalization Circuits in Transformers
While Large Language Models (LLMs) excel at factual retrieval, they often struggle with the "curse of two-hop reasoning" in compositional tasks. Recent research suggests that parameter-sharing transformers can bridge this gap by forming a "Generalization Circuit" during a prolonged "grokking" phase. A fundamental question arises: Is a grokked model superior to its non-grokked counterparts on downstream tasks? Furthermore, is the extensive computational cost of waiting for the grokking phase worthwhile? In this work, we conduct a mechanistic study to evaluate the Generalization Circuit's role in knowledge assimilation and transfer. We demonstrate that: (i) The inference paths established by non-grokked and grokked models for in-distribution compositional queries are identical. This suggests that the "Generalization Circuit" does not represent the sudden acquisition of a new reasoning paradigm. Instead, we argue that grokking is the process of integrating memorized atomic facts into an naturally established reasoning path. (ii) Achieving high accuracy on unseen cases after prolonged training and the formation of a certain reasoning path are not bound; they can occur independently under specific data regimes. (iii) Even a mature circuit exhibits limited transferability when integrating new knowledge, suggesting that "grokked" Transformers do not achieve a full mastery of compositional logic.
Can LLMs interpret figurative language as humans do?: surface-level vs representational similarity
Large language models generate judgments that resemble those of humans. Yet the extent to which these models align with human judgments in interpreting figurative and socially grounded language remains uncertain. To investigate this, human participants and four instruction-tuned LLMs of different sizes (GPT-4, Gemma-2-9B, Llama-3.2, and Mistral-7B) rated 240 dialogue-based sentences representing six linguistic traits: conventionality, sarcasm, funny, emotional, idiomacy, and slang. Each of the 240 sentences was paired with 40 interpretive questions, and both humans and LLMs rated these sentences on a 10-point Likert scale. Results indicated that humans and LLMs aligned at the surface level with humans, but diverged significantly at the representational level, especially in interpreting figurative sentences involving idioms and Gen Z slang. GPT-4 most closely approximates human representational patterns, while all models struggle with context-dependent and socio-pragmatic expressions like sarcasm, slang, and idiomacy.
comment: 17 pages, 5 figures
A Decompilation-Driven Framework for Malware Detection with Large Language Models
The parallel evolution of Large Language Models (LLMs) with advanced code-understanding capabilities and the increasing sophistication of malware presents a new frontier for cybersecurity research. This paper evaluates the efficacy of state-of-the-art LLMs in classifying executable code as either benign or malicious. We introduce an automated pipeline that first decompiles Windows executable into a C code using Ghidra disassembler and then leverages LLMs to perform the classification. Our evaluation reveals that while standard LLMs show promise, they are not yet robust enough to replace traditional anti-virus software. We demonstrate that a fine-tuned model, trained on curated malware and benign datasets, significantly outperforms its vanilla counterpart. However, the performance of even this specialized model degrades notably when encountering newer malware. This finding demonstrates the critical need for continuous fine-tuning with emerging threats to maintain model effectiveness against the changing coding patterns and behaviors of malicious software.
comment: 6 pages, published in 2025 IEMCON
Malware Classification using Diluted Convolutional Neural Network with Fast Gradient Sign Method
Android malware has become an increasingly critical threat to organizations, society and individuals, posing significant risks to privacy, data security and infrastructure. As malware continues to evolve in terms of complexity and sophistication, the mitigation and detection of these malicious software instances have become more time consuming and challenging particularly due to the requirement of large number of features to identify potential malware. To address these challenges, this research proposes Fast Gradient Sign Method with Diluted Convolutional Neural Network (FGSM DICNN) method for malware classification. DICNN contains diluted convolutions which increases receptive field, enabling the model to capture dispersed malware patterns across long ranges using fewer features without adding parameters. Additionally, the FGSM strategy enhance the accuracy by using one-step perturbations during training that provides more defensive advantage of lower computational cost. This integration helps to manage high classification accuracy while reducing the dependence on extensive feature sets. The proposed FGSM DICNN model attains 99.44% accuracy while outperforming other existing approaches such as Custom Deep Neural Network (DCNN).
comment: Accepted 2025 2nd International Conference on Software, Systems and Information Technology (SSITCON) Keywords data security, diluted convolutional neural network, fast gradient sign method, malware classification, privacy
Hallucination Detection and Mitigation in Large Language Models
Large Language Models (LLMs) and Large Reasoning Models (LRMs) offer transformative potential for high-stakes domains like finance and law, but their tendency to hallucinate, generating factually incorrect or unsupported content, poses a critical reliability risk. This paper introduces a comprehensive operational framework for hallucination management, built on a continuous improvement cycle driven by root cause awareness. We categorize hallucination sources into model, data, and context-related factors, allowing targeted interventions over generic fixes. The framework integrates multi-faceted detection methods (e.g., uncertainty estimation, reasoning consistency) with stratified mitigation strategies (e.g., knowledge grounding, confidence calibration). We demonstrate its application through a tiered architecture and a financial data extraction case study, where model, context, and data tiers form a closed feedback loop for progressive reliability enhancement. This approach provides a systematic, scalable methodology for building trustworthy generative AI systems in regulated environments.
CaMeLs Can Use Computers Too: System-level Security for Computer Use Agents
AI agents are vulnerable to prompt injection attacks, where malicious content hijacks agent behavior to steal credentials or cause financial loss. The only known robust defense is architectural isolation that strictly separates trusted task planning from untrusted environment observations. However, applying this design to Computer Use Agents (CUAs) -- systems that automate tasks by viewing screens and executing actions -- presents a fundamental challenge: current agents require continuous observation of UI state to determine each action, conflicting with the isolation required for security. We resolve this tension by demonstrating that UI workflows, while dynamic, are structurally predictable. We introduce Single-Shot Planning for CUAs, where a trusted planner generates a complete execution graph with conditional branches before any observation of potentially malicious content, providing provable control flow integrity guarantees against arbitrary instruction injections. Although this architectural isolation successfully prevents instruction injections, we show that additional measures are needed to prevent Branch Steering attacks, which manipulate UI elements to trigger unintended valid paths within the plan. We evaluate our design on OSWorld, and retain up to 57% of the performance of frontier models while improving performance for smaller open-source models by up to 19%, demonstrating that rigorous security and utility can coexist in CUAs.
Learning to Decode in Parallel: Self-Coordinating Neural Network for Real-Time Quantum Error Correction
Fast, reliable decoders are pivotal components for enabling fault-tolerant quantum computation (FTQC). Neural network decoders like AlphaQubit have demonstrated potential, achieving higher accuracy than traditional human-designed decoding algorithms. However, existing implementations of neural network decoders lack the parallelism required to decode the syndrome stream generated by a superconducting logical qubit in real time. Moreover, integrating AlphaQubit with sliding window-based parallel decoding schemes presents non-trivial challenges: AlphaQubit is trained solely to output a single bit corresponding to the global logical correction for an entire memory experiment, rather than local physical corrections that can be easily integrated. We address this issue by training a recurrent, transformer-based neural network specifically tailored for parallel window decoding. While it still outputs a single bit, we derive training labels from a consistent set of local corrections and train on various types of decoding windows simultaneously. This approach enables the network to self-coordinate across neighboring windows, facilitating high-accuracy parallel decoding of arbitrarily long memory experiments. As a result, we overcome the throughput bottleneck that previously precluded the use of AlphaQubit-type decoders in FTQC. Our work presents the first scalable, neural-network-based parallel decoding framework that simultaneously achieves SOTA accuracy and the stringent throughput required for real-time quantum error correction. Using an end-to-end experimental workflow, we benchmark our decoder on the Zuchongzhi 3.2 superconducting quantum processor on surface codes with distances up to 7, demonstrating its superior accuracy. Moreover, we demonstrate that, using our approach, a single TPU v6e is capable of decoding surface codes with distances up to 25 within 1us per decoding round.
comment: The main text consists of 25 pages and 9 figures, extending our prior work (arXiv:2509.03815) with new results on surface code decoding in superconducting qubit systems and real-time performance benchmarks on TPU v6e
Continuum Memory Architectures for Long-Horizon LLM Agents
Retrieval-augmented generation (RAG) has become the default strategy for providing large language model (LLM) agents with contextual knowledge. Yet RAG treats memory as a stateless lookup table: information persists indefinitely, retrieval is read-only, and temporal continuity is absent. We define the \textit{Continuum Memory Architecture} (CMA), a class of systems that maintain and update internal state across interactions through persistent storage, selective retention, associative routing, temporal chaining, and consolidation into higher-order abstractions. Rather than disclosing implementation specifics, we specify the architectural requirements CMA imposes and show consistent behavioral advantages on tasks that expose RAG's structural inability to accumulate, mutate, or disambiguate memory. The empirical probes (knowledge updates, temporal association, associative recall, contextual disambiguation) demonstrate that CMA is a necessary architectural primitive for long-horizon agents while highlighting open challenges around latency, drift, and interpretability.
comment: 10 Pages
A Novel Contrastive Loss for Zero-Day Network Intrusion Detection
Machine learning has achieved state-of-the-art results in network intrusion detection; however, its performance significantly degrades when confronted by a new attack class -- a zero-day attack. In simple terms, classical machine learning-based approaches are adept at identifying attack classes on which they have been previously trained, but struggle with those not included in their training data. One approach to addressing this shortcoming is to utilise anomaly detectors which train exclusively on benign data with the goal of generalising to all attack classes -- both known and zero-day. However, this comes at the expense of a prohibitively high false positive rate. This work proposes a novel contrastive loss function which is able to maintain the advantages of other contrastive learning-based approaches (robustness to imbalanced data) but can also generalise to zero-day attacks. Unlike anomaly detectors, this model learns the distributions of benign traffic using both benign and known malign samples, i.e. other well-known attack classes (not including the zero-day class), and consequently, achieves significant performance improvements. The proposed approach is experimentally verified on the Lycos2017 dataset where it achieves an AUROC improvement of .000065 and .060883 over previous models in known and zero-day attack detection, respectively. Finally, the proposed method is extended to open-set recognition achieving OpenAUC improvements of .170883 over existing approaches.
comment: Published in: IEEE Transactions on Network Service and Management (TNSM), 2026. Official version: https://ieeexplore.ieee.org/document/11340750 Code: https://github.com/jackwilkie/CLOSR
The Algorithmic Gaze: An Audit and Ethnography of the LAION-Aesthetics Predictor Model
Visual generative AI models are trained using a one-size-fits-all measure of aesthetic appeal. However, what is deemed "aesthetic" is inextricably linked to personal taste and cultural values, raising the question of whose taste is represented in visual generative AI models. In this work, we study an aesthetic evaluation model--LAION Aesthetic Predictor (LAP)--that is widely used to curate datasets to train visual generative image models, like Stable Diffusion, and evaluate the quality of AI-generated images. To understand what LAP measures, we audited the model across three datasets. First, we examined the impact of aesthetic filtering on the LAION-Aesthetics Dataset (approximately 1.2B images), which was curated from LAION-5B using LAP. We find that the LAP disproportionally filters in images with captions mentioning women, while filtering out images with captions mentioning men or LGBTQ+ people. Then, we used LAP to score approximately 330k images across two art datasets, finding the model rates realistic images of landscapes, cityscapes, and portraits from western and Japanese artists most highly. In doing so, the algorithmic gaze of this aesthetic evaluation model reinforces the imperial and male gazes found within western art history. In order to understand where these biases may have originated, we performed a digital ethnography of public materials related to the creation of LAP. We find that the development of LAP reflects the biases we found in our audits, such as the aesthetic scores used to train LAP primarily coming from English-speaking photographers and western AI-enthusiasts. In response, we discuss how aesthetic evaluation can perpetuate representational harms and call on AI developers to shift away from prescriptive measures of "aesthetics" toward more pluralistic evaluation.
Beyond Rule-Based Workflows: An Information-Flow-Orchestrated Multi-Agents Paradigm via Agent-to-Agent Communication from CORAL
Most existing Large Language Model (LLM)-based Multi-Agent Systems (MAS) rely on predefined workflows, where human engineers enumerate task states in advance and specify routing rules and contextual injections accordingly. Such workflow-driven designs are essentially rule-based decision trees, which suffer from two fundamental limitations: they require substantial manual effort to anticipate and encode possible task states, and they cannot exhaustively cover the state space of complex real-world tasks. To address these issues, we propose an Information-Flow-Orchestrated Multi-Agent Paradigm via Agent-to-Agent (A2A) Communication from CORAL, in which a dedicated information flow orchestrator continuously monitors task progress and dynamically coordinates other agents through the A2A toolkit using natural language, without relying on predefined workflows. We evaluate our approach on the general-purpose benchmark GAIA, using the representative workflow-based MAS OWL as the baseline while controlling for agent roles and underlying models. Under the pass@1 setting, our method achieves 63.64% accuracy, outperforming OWL's 55.15% by 8.49 percentage points with comparable token consumption. Further case-level analysis shows that our paradigm enables more flexible task monitoring and more robust handling of edge cases. Our implementation is publicly available at: https://github.com/Coral-Protocol/Beyond-Rule-Based-Workflows
Transition Matching Distillation for Fast Video Generation
Large video diffusion and flow models have achieved remarkable success in high-quality video generation, but their use in real-time interactive applications remains limited due to their inefficient multi-step sampling process. In this work, we present Transition Matching Distillation (TMD), a novel framework for distilling video diffusion models into efficient few-step generators. The central idea of TMD is to match the multi-step denoising trajectory of a diffusion model with a few-step probability transition process, where each transition is modeled as a lightweight conditional flow. To enable efficient distillation, we decompose the original diffusion backbone into two components: (1) a main backbone, comprising the majority of early layers, that extracts semantic representations at each outer transition step; and (2) a flow head, consisting of the last few layers, that leverages these representations to perform multiple inner flow updates. Given a pretrained video diffusion model, we first introduce a flow head to the model, and adapt it into a conditional flow map. We then apply distribution matching distillation to the student model with flow head rollout in each transition step. Extensive experiments on distilling Wan2.1 1.3B and 14B text-to-video models demonstrate that TMD provides a flexible and strong trade-off between generation speed and visual quality. In particular, TMD outperforms existing distilled models under comparable inference costs in terms of visual fidelity and prompt adherence. Project page: https://research.nvidia.com/labs/genair/tmd
MedVL-SAM2: A unified 3D medical vision-language model for multimodal reasoning and prompt-driven segmentation
Recent progress in medical vision-language models (VLMs) has achieved strong performance on image-level text-centric tasks such as report generation and visual question answering (VQA). However, achieving fine-grained visual grounding and volumetric spatial reasoning in 3D medical VLMs remains challenging, particularly when aiming to unify these capabilities within a single, generalizable framework. To address this challenge, we proposed MedVL-SAM2, a unified 3D medical multimodal model that concurrently supports report generation, VQA, and multi-paradigm segmentation, including semantic, referring, and interactive segmentation. MedVL-SAM2 integrates image-level reasoning and pixel-level perception through a cohesive architecture tailored for 3D medical imaging, and incorporates a SAM2-based volumetric segmentation module to enable precise multi-granular spatial reasoning. The model is trained in a multi-stage pipeline: it is first pre-trained on a large-scale corpus of 3D CT image-text pairs to align volumetric visual features with radiology-language embeddings. It is then jointly optimized with both language-understanding and segmentation objectives using a comprehensive 3D CT segmentation dataset. This joint training enables flexible interaction via language, point, or box prompts, thereby unifying high-level visual reasoning with spatially precise localization. Our unified architecture delivers state-of-the-art performance across report generation, VQA, and multiple 3D segmentation tasks. Extensive analyses further show that the model provides reliable 3D visual grounding, controllable interactive segmentation, and robust cross-modal reasoning, demonstrating that high-level semantic reasoning and precise 3D localization can be jointly achieved within a unified 3D medical VLM.
Epistemology gives a Future to Complementarity in Human-AI Interactions
Human-AI complementarity is the claim that a human supported by an AI system can outperform either alone in a decision-making process. Since its introduction in the human-AI interaction literature, it has gained traction by generalizing the reliance paradigm and by offering a more practical alternative to the contested construct of 'trust in AI.' Yet complementarity faces key theoretical challenges: it lacks precise theoretical anchoring, it is formalized just as a post hoc indicator of relative predictive accuracy, it remains silent about other desiderata of human-AI interactions and it abstracts away from the magnitude-cost profile of its performance gain. As a result, complementarity is difficult to obtain in empirical settings. In this work, we leverage epistemology to address these challenges by reframing complementarity within the discourse on justificatory AI. Drawing on computational reliabilism, we argue that historical instances of complementarity function as evidence that a given human-AI interaction is a reliable epistemic process for a given predictive task. Together with other reliability indicators assessing the alignment of the human-AI team with the epistemic standards and socio-technical practices, complementarity contributes to the degree of reliability of human-AI teams when generating predictions. This supports the practical reasoning of those affected by these outputs -- patients, managers, regulators, and others. In summary, our approach suggests that the role and value of complementarity lies not in providing a relative measure of predictive accuracy, but in helping calibrate decision-making to the reliability of AI-supported processes that increasingly shape everyday life.
comment: Submitted to FAccT 2026
A Scoping Review of the Ethical Perspectives on Anthropomorphising Large Language Model-Based Conversational Agents
Anthropomorphisation -- the phenomenon whereby non-human entities are ascribed human-like qualities -- has become increasingly salient with the rise of large language model (LLM)-based conversational agents (CAs). Unlike earlier chatbots, LLM-based CAs routinely generate interactional and linguistic cues, such as first-person self-reference, epistemic and affective expressions that empirical work shows can increase engagement. On the other hand, anthropomorphisation raises ethical concerns, including deception, overreliance, and exploitative relationship framing, while some authors argue that anthropomorphic interaction may support autonomy, well-being, and inclusion. Despite increasing interest in the phenomenon, literature remains fragmented across domains and varies substantially in how it defines, operationalizes, and normatively evaluates anthropomorphisation. This scoping review maps ethically oriented work on anthropomorphising LLM-based CAs across five databases and three preprint repositories. We synthesize (1) conceptual foundations, (2) ethical challenges and opportunities, and (3) methodological approaches. We find convergence on attribution-based definitions but substantial divergence in operationalization, a predominantly risk-forward normative framing, and limited empirical work that links observed interaction effects to actionable governance guidance. We conclude with a research agenda and design/governance recommendations for ethically deploying anthropomorphic cues in LLM-based conversational agents.
comment: Submitted to FAccT 2026
Advancing Model Refinement: Muon-Optimized Distillation and Quantization for LLM Deployment
Large Language Models (LLMs) enable advanced natural language processing but face deployment challenges on resource-constrained edge devices due to high computational, memory, and energy demands. Optimizing these models requires addressing three key challenges: acquiring task-specific data, fine-tuning for performance, and compressing models to accelerate inference while reducing resource demands. We propose an integrated framework combining GPTQ-based quantization, low-rank adaptation (LoRA), and a specialized data distillation process to significantly reduce model size and complexity while preserving or enhancing task-specific performance. By leveraging data distillation, knowledge distillation via Kullback-Leibler divergence, Bayesian hyperparameter optimization, and the Muon optimizer, our pipeline achieves up to 2x memory compression (e.g., reducing a 6GB model to 3GB) and enables efficient inference for specialized tasks. Empirical results demonstrate superior performance on standard LLM benchmarks compared to GPTQ quantization alone, with the Muon optimizer notably enhancing fine-tuned models' resistance to accuracy decay during quantization.
comment: 12 pages, 5 figures
OUTLINEFORGE: Hierarchical Reinforcement Learning with Explicit States for Scientific Writing
Scientific paper generation requires document-level planning and factual grounding, but current large language models, despite their strong local fluency, often fail in global structure, input coverage, and citation consistency. We present a reinforcement learning framework that casts scientific outline construction as a long-horizon planning problem over hierarchical document structures. Our approach models edit evolving outlines through structured actions, enabling the system to incrementally build a complete scientific manuscript. To support effective and stabilize learning,we introduce a two-stage optimization procedure consisting of (i) backward outline reconstruction from partial plans to enforce global structural consistency, and (ii) forward value-guided reinforcement learning with rewards explicitly modeling scientific correctness, discourse coherence, and citation fidelity. In addition, We further introduce a benchmark for scientific paper generation that evaluates document planning, input utilization, reference faithfulness, outline organization, and content-level factual accuracy. Our results show consistent improvements over strong neural and LLM baselines, particularly in long-range structural coherence and citation reliability.
Thinking Long, but Short: Stable Sequential Test-Time Scaling for Large Reasoning Models
Sequential test-time scaling is a promising training-free method to improve large reasoning model accuracy, but as currently implemented, significant limitations have been observed. Inducing models to think for longer can increase their accuracy, but as the length of reasoning is further extended, it has also been shown to result in accuracy degradation and model instability. This work presents a novel sequential test-time scaling method, Min-Seek, which improves model accuracy significantly over a wide range of induced thoughts, stabilizing the accuracy of sequential scaling, and removing the need for reasoning length fine-tuning. Beyond improving model accuracy over a variety of reasoning tasks, our method is inherently efficient, as only the KV pairs of one additional induced thought are kept in the KV cache during reasoning. With a custom KV cache which stores keys without position embeddings, by dynamically encoding them contiguously before each new generated thought, our method can continue to reason well beyond a model's maximum context length, and under mild conditions has linear computational complexity.
comment: Findings of EACL 2026
MedRedFlag: Investigating how LLMs Redirect Misconceptions in Real-World Health Communication
Real-world health questions from patients often unintentionally embed false assumptions or premises. In such cases, safe medical communication typically involves redirection: addressing the implicit misconception and then responding to the underlying patient context, rather than the original question. While large language models (LLMs) are increasingly being used by lay users for medical advice, they have not yet been tested for this crucial competency. Therefore, in this work, we investigate how LLMs react to false premises embedded within real-world health questions. We develop a semi-automated pipeline to curate MedRedFlag, a dataset of 1100+ questions sourced from Reddit that require redirection. We then systematically compare responses from state-of-the-art LLMs to those from clinicians. Our analysis reveals that LLMs often fail to redirect problematic questions, even when the problematic premise is detected, and provide answers that could lead to suboptimal medical decision making. Our benchmark and results reveal a novel and substantial gap in how LLMs perform under the conditions of real-world health communication, highlighting critical safety concerns for patient-facing medical AI systems. Code and dataset are available at https://github.com/srsambara-1/MedRedFlag.
ViSIL: Unified Evaluation of Information Loss in Multimodal Video Captioning
Multimodal video captioning condenses dense footage into a structured format of keyframes and natural language. By creating a cohesive multimodal summary, this approach anchors generative AI in rich semantic evidence and serves as a lightweight proxy for high-efficiency retrieval. However, traditional metrics like BLEU or ROUGE fail to quantify information coverage across disparate modalities, such as comparing a paragraph of text to a sequence of keyframes. To address this, we propose the Video Summary Information Loss (ViSIL) score, an information-theoretic framework that quantifies the video information not captured by a summary via vision-language model (VLM) inference. By measuring the information loss, ViSIL is a unified metric that enables direct comparison across multimodal summary formats despite their structural discrepancies. Our results demonstrate that ViSIL scores show a statistically significant correlation with both human and VLM performance on Video Question Answering (VQA) tasks. ViSIL also enables summary selection to optimize the trade-off between information loss and processing speed, establishing a Pareto-optimal frontier that outperforms text summaries by $7\%$ in VQA accuracy without increasing processing load.
A pipeline for enabling path-specific causal fairness in observational health data
When training machine learning (ML) models for potential deployment in a healthcare setting, it is essential to ensure that they do not replicate or exacerbate existing healthcare biases. Although many definitions of fairness exist, we focus on path-specific causal fairness, which allows us to better consider the social and medical contexts in which biases occur (e.g., direct discrimination by a clinician or model versus bias due to differential access to the healthcare system) and to characterize how these biases may appear in learned models. In this work, we map the structural fairness model to the observational healthcare setting and create a generalizable pipeline for training causally fair models. The pipeline explicitly considers specific healthcare context and disparities to define a target "fair" model. Our work fills two major gaps: first, we expand on characterizations of the "fairness-accuracy" tradeoff by detangling direct and indirect sources of bias and jointly presenting these fairness considerations alongside considerations of accuracy in the context of broadly known biases. Second, we demonstrate how a foundation model trained without fairness constraints on observational health data can be leveraged to generate causally fair downstream predictions in tasks with known social and medical disparities. This work presents a model-agnostic pipeline for training causally fair machine learning models that address both direct and indirect forms of healthcare bias.
LLM-Based Agentic Systems for Software Engineering: Challenges and Opportunities
Despite recent advancements in Large Language Models (LLMs), complex Software Engineering (SE) tasks require more collaborative and specialized approaches. This concept paper systematically reviews the emerging paradigm of LLM-based multi-agent systems, examining their applications across the Software Development Life Cycle (SDLC), from requirements engineering and code generation to static code checking, testing, and debugging. We delve into a wide range of topics such as language model selection, SE evaluation benchmarks, state-of-the-art agentic frameworks and communication protocols. Furthermore, we identify key challenges and outline future research opportunities, with a focus on multi-agent orchestration, human-agent coordination, computational cost optimization, and effective data collection. This work aims to provide researchers and practitioners with valuable insights into the current forefront landscape of agentic systems within the software engineering domain.
comment: Accepted to GenSE 2026 workshop
Explainable Deep Learning for Pediatric Pneumonia Detection in Chest X-Ray Images
Background: Pneumonia remains a leading cause of morbidity and mortality among children worldwide, emphasizing the need for accurate and efficient diagnostic support tools. Deep learning has shown strong potential in medical image analysis, particularly for chest X-ray interpretation. This study compares two state-of-the-art convolutional neural network (CNN) architectures for automated pediatric pneumonia detection. Methods: A publicly available dataset of 5,863 pediatric chest X-ray images was used. Images were preprocessed through normalization, resizing, and data augmentation to enhance generalization. DenseNet121 and EfficientNet-B0 were fine-tuned using pretrained ImageNet weights under identical training settings. Performance was evaluated using accuracy, F1-score, Matthews Correlation Coefficient (MCC), and recall. Model explainability was incorporated using Gradient-weighted Class Activation Mapping (Grad-CAM) and Local Interpretable Model-agnostic Explanations (LIME) to visualize image regions influencing predictions. Results: EfficientNet-B0 outperformed DenseNet121, achieving an accuracy of 84.6%, F1-score of 0.8899, and MCC of 0.6849. DenseNet121 achieved 79.7% accuracy, an F1-score of 0.8597, and MCC of 0.5852. Both models demonstrated high recall values above 0.99, indicating strong sensitivity to pneumonia detection. Grad-CAM and LIME visualizations showed consistent focus on clinically relevant lung regions, supporting the reliability of model decisions. Conclusions: EfficientNet-B0 provided a more balanced and computationally efficient performance compared to DenseNet121, making it a strong candidate for clinical deployment. The integration of explainability techniques enhances transparency and trustworthiness in AI-assisted pediatric pneumonia diagnosis.
QFed: Parameter-Compact Quantum-Classical Federated Learning
Organizations and enterprises across domains such as healthcare, finance, and scientific research are increasingly required to extract collective intelligence from distributed, siloed datasets while adhering to strict privacy, regulatory, and sovereignty requirements. Federated Learning (FL) enables collaborative model building without sharing sensitive raw data, but faces growing challenges posed by statistical heterogeneity, system diversity, and the computational burden from complex models. This study examines the potential of quantum-assisted federated learning, which could cut the number of parameters in classical models by polylogarithmic factors and thus lessen training overhead. Accordingly, we introduce QFed, a quantum-enabled federated learning framework aimed at boosting computational efficiency across edge device networks. We evaluate the proposed framework using the widely adopted FashionMNIST dataset. Experimental results show that QFed achieves a 77.6% reduction in the parameter count of a VGG-like model while maintaining an accuracy comparable to classical approaches in a scalable environment. These results point to the potential of leveraging quantum computing within a federated learning context to strengthen FL capabilities of edge devices.
Diffusion-Driven Deceptive Patches: Adversarial Manipulation and Forensic Detection in Facial Identity Verification
This work presents an end-to-end pipeline for generating, refining, and evaluating adversarial patches to compromise facial biometric systems, with applications in forensic analysis and security testing. We utilize FGSM to generate adversarial noise targeting an identity classifier and employ a diffusion model with reverse diffusion to enhance imperceptibility through Gaussian smoothing and adaptive brightness correction, thereby facilitating synthetic adversarial patch evasion. The refined patch is applied to facial images to test its ability to evade recognition systems while maintaining natural visual characteristics. A Vision Transformer (ViT)-GPT2 model generates captions to provide a semantic description of a person's identity for adversarial images, supporting forensic interpretation and documentation for identity evasion and recognition attacks. The pipeline evaluates changes in identity classification, captioning results, and vulnerabilities in facial identity verification and expression recognition under adversarial conditions. We further demonstrate effective detection and analysis of adversarial patches and adversarial samples using perceptual hashing and segmentation, achieving an SSIM of 0.95.
comment: This manuscript is a preprint. A revised version of this work has been accepted for publication in the Springer Nature book Artificial Intelligence-Driven Forensics. This version includes one additional figure for completeness
Improving Chain-of-Thought for Logical Reasoning via Attention-Aware Intervention
Modern logical reasoning with LLMs primarily relies on employing complex interactive frameworks that decompose the reasoning process into subtasks solved through carefully designed prompts or requiring external resources (e.g., symbolic solvers) to exploit their strong logical structures. While interactive approaches introduce additional overhead, hybrid approaches depend on external components, which limit their scalability. A non-interactive, end-to-end framework enables reasoning to emerge within the model itself -- improving generalization while preserving analyzability without any external resources. In this work, we introduce a non-interactive, end-to-end framework for reasoning tasks. We show that introducing structural information into the few-shot prompt activates a subset of attention heads that patterns aligned with logical reasoning operators. Building on this insight, we propose Attention-Aware Intervention (AAI), an inference-time intervention method that reweights attention scores across selected heads identified by their logical patterns. AAI offers an efficient way to steer the model's reasoning toward leveraging prior knowledge through attention modulation. Extensive experiments show that AAI enhances logical reasoning performance across diverse benchmarks and model architectures, while incurring negligible additional computational overhead. Code is available at https://github.com/phuongnm94/aai_for_logical_reasoning.
comment: Findings of EACL 2026
Enhancing LUT-based Deep Neural Networks Inference through Architecture and Connectivity Optimization
Deploying deep neural networks (DNNs) on resource-constrained edge devices such as FPGAs requires a careful balance among latency, power, and hardware resource usage, while maintaining high accuracy. Existing Lookup Table (LUT)-based DNNs -- such as LogicNets, PolyLUT, and NeuraLUT -- face two critical challenges: the exponential growth of LUT size and inefficient random sparse connectivity. This paper presents SparseLUT, a comprehensive framework that addresses these challenges through two orthogonal optimizations. First, we propose an architectural enhancement that aggregates multiple PolyLUT sub-neurons via an adder, significantly reducing LUT consumption by 2.0x-13.9x and lowering inference latency by 1.2x-1.6x, all while maintaining comparable accuracy. Building upon this foundation, we further introduce a non-greedy training algorithm that optimizes neuron connectivity by selectively pruning less significant inputs and strategically regrowing more effective ones. This training optimization, which incurs no additional area and latency overhead, delivers consistent accuracy improvements across benchmarks -- achieving up to a 2.13% gain on MNIST and 0.94% on Jet Substructure Classification compared to existing LUT-DNN approaches.
comment: arXiv admin note: substantial text overlap with arXiv:2503.12829, arXiv:2406.04910
Antisocial behavior towards large language model users: experimental evidence
The rapid spread of large language models (LLMs) has raised concerns about the social reactions they provoke. Prior research documents negative attitudes toward AI users, but it remains unclear whether such disapproval translates into costly action. We address this question in a two-phase online experiment (N = 491 Phase II participants; Phase I provided targets) where participants could spend part of their own endowment to reduce the earnings of peers who had previously completed a real-effort task with or without LLM support. On average, participants destroyed 36% of the earnings of those who relied exclusively on the model, with punishment increasing monotonically with actual LLM use. Disclosure about LLM use created a credibility gap: self-reported null use was punished more harshly than actual null use, suggesting that declarations of "no use" are treated with suspicion. Conversely, at high levels of use, actual reliance on the model was punished more strongly than self-reported reliance. Taken together, these findings provide the first behavioral evidence that the efficiency gains of LLMs come at the cost of social sanctions.
PCN-Rec: Agentic Proof-Carrying Negotiation for Reliable Governance-Constrained Recommendation
Modern LLM-based recommenders can generate compelling ranked lists, but they struggle to reliably satisfy governance constraints such as minimum long-tail exposure or diversity requirements. We present PCN-Rec, a proof-carrying negotiation pipeline that separates natural-language reasoning from deterministic enforcement. A base recommender (MF/CF) produces a candidate window of size W, which is negotiated by two agents: a User Advocate optimizing relevance and a Policy Agent enforcing constraints. A mediator LLM synthesizes a top-N slate together with a structured certificate (JSON) describing the claimed constraint satisfaction. A deterministic verifier recomputes all constraints from the slate and accepts only verifier-checked certificates; if verification fails, a deterministic constrained-greedy repair produces a compliant slate for re-verification, yielding an auditable trace. On MovieLens-100K with governance constraints, PCN-Rec achieves a 98.55% pass rate on feasible users (n = 551, W = 80) versus a one-shot single-LLM baseline without verification/repair, while preserving utility with only a 0.021 absolute drop in NDCG@10 (0.403 vs. 0.424); differences are statistically significant (p < 0.05).
GUI-Eyes: Tool-Augmented Perception for Visual Grounding in GUI Agents
Recent advances in vision-language models (VLMs) and reinforcement learning (RL) have driven progress in GUI automation. However, most existing methods rely on static, one-shot visual inputs and passive perception, lacking the ability to adaptively determine when, whether, and how to observe the interface. We present GUI-Eyes, a reinforcement learning framework for active visual perception in GUI tasks. To acquire more informative observations, the agent learns to make strategic decisions on both whether and how to invoke visual tools, such as cropping or zooming, within a two-stage reasoning process. To support this behavior, we introduce a progressive perception strategy that decomposes decision-making into coarse exploration and fine-grained grounding, coordinated by a two-level policy. In addition, we design a spatially continuous reward function tailored to tool usage, which integrates both location proximity and region overlap to provide dense supervision and alleviate the reward sparsity common in GUI environments. On the ScreenSpot-Pro benchmark, GUI-Eyes-3B achieves 44.8% grounding accuracy using only 3k labeled samples, significantly outperforming both supervised and RL-based baselines. These results highlight that tool-aware active perception, enabled by staged policy reasoning and fine-grained reward feedback, is critical for building robust and data-efficient GUI agents.
Causality-enhanced Decision-Making for Autonomous Mobile Robots in Dynamic Environments
The growing integration of robots in shared environments - such as warehouses, shopping centres, and hospitals - demands a deep understanding of the underlying dynamics and human behaviours, including how, when, and where individuals engage in various activities and interactions. This knowledge goes beyond simple correlation studies and requires a more comprehensive causal analysis. By leveraging causal inference to model cause-and-effect relationships, we can better anticipate critical environmental factors and enable autonomous robots to plan and execute tasks more effectively. To this end, we propose a novel causality-based decision-making framework that reasons over a learned causal model to assist the robot in deciding when and how to complete a given task. In the examined use case - i.e., a warehouse shared with people - we exploit the causal model to estimate battery usage and human obstructions as factors influencing the robot's task execution. This reasoning framework supports the robot in making informed decisions about task timing and strategy. To achieve this, we developed also PeopleFlow, a new Gazebo-based simulator designed to model context-sensitive human-robot spatial interactions in shared workspaces. PeopleFlow features realistic human and robot trajectories influenced by contextual factors such as time, environment layout, and robot state, and can simulate a large number of agents. While the simulator is general-purpose, in this paper we focus on a warehouse-like environment as a case study, where we conduct an extensive evaluation benchmarking our causal approach against a non-causal baseline. Our findings demonstrate the efficacy of the proposed solutions, highlighting how causal reasoning enables autonomous robots to operate more efficiently and safely in dynamic environments shared with humans.
comment: Causal Discovery and Inference - Robot Autonomy - Human-Robot Spatial Interaction - Decision-Making
Deep Hybrid Model for Region of Interest Detection in Omnidirectional Videos
The main goal of the project is to design a new model that predicts regions of interest in 360$^{\circ}$ videos. The region of interest (ROI) plays an important role in 360$^{\circ}$ video streaming. For example, ROIs are used to predict view-ports, intelligently cut the videos for live streaming, etc so that less bandwidth is used. Detecting view-ports in advance helps reduce the movement of the head while streaming and watching a video via the head-mounted device. Whereas, intelligent cuts of the videos help improve the efficiency of streaming the video to users and enhance the quality of their viewing experience. This report illustrates the secondary task to identify ROIs, in which, we design, train, and test a hybrid saliency model. In this work, we refer to saliency regions to represent the regions of interest. The method includes the processes as follows: preprocessing the video to obtain frames, developing a hybrid saliency model for predicting the region of interest, and finally post-processing the output predictions of the hybrid saliency model to obtain the output region of interest for each frame. Then, we compare the performance of the proposed method with the subjective annotations of the 360RAT dataset.
comment: I need to withdraw this as it contains some confidential information related to FAPESP funding agency
VIGIL: Defending LLM Agents Against Tool Stream Injection via Verify-Before-Commit
LLM agents operating in open environments face escalating risks from indirect prompt injection, particularly within the tool stream where manipulated metadata and runtime feedback hijack execution flow. Existing defenses encounter a critical dilemma as advanced models prioritize injected rules due to strict alignment while static protection mechanisms sever the feedback loop required for adaptive reasoning. To reconcile this conflict, we propose \textbf{VIGIL}, a framework that shifts the paradigm from restrictive isolation to a verify-before-commit protocol. By facilitating speculative hypothesis generation and enforcing safety through intent-grounded verification, \textbf{VIGIL} preserves reasoning flexibility while ensuring robust control. We further introduce \textbf{SIREN}, a benchmark comprising 959 tool stream injection cases designed to simulate pervasive threats characterized by dynamic dependencies. Extensive experiments demonstrate that \textbf{VIGIL} outperforms state-of-the-art dynamic defenses by reducing the attack success rate by over 22\% while more than doubling the utility under attack compared to static baselines, thereby achieving an optimal balance between security and utility.
A Novel Hybrid Deep Learning Technique for Speech Emotion Detection using Feature Engineering
Nowadays, speech emotion recognition (SER) plays a vital role in the field of human-computer interaction (HCI) and the evolution of artificial intelligence (AI). Our proposed DCRF-BiLSTM model is used to recognize seven emotions: neutral, happy, sad, angry, fear, disgust, and surprise, which are trained on five datasets: RAVDESS (R), TESS (T), SAVEE (S), EmoDB (E), and Crema-D (C). The model achieves high accuracy on individual datasets, including 97.83% on RAVDESS, 97.02% on SAVEE, 95.10% for CREMA-D, and a perfect 100% on both TESS and EMO-DB. For the combined (R+T+S) datasets, it achieves 98.82% accuracy, outperforming previously reported results. To our knowledge, no existing study has evaluated a single SER model across all five benchmark datasets (i.e., R+T+S+C+E) simultaneously. In our work, we introduce this comprehensive combination and achieve a remarkable overall accuracy of 93.76%. These results confirm the robustness and generalizability of our DCRF-BiLSTM framework across diverse datasets.
comment: 17 pages, 11 figures
Controlled Self-Evolution for Algorithmic Code Optimization
Self-evolution methods enhance code generation through iterative "generate-verify-refine" cycles, yet existing approaches suffer from low exploration efficiency, failing to discover solutions with superior complexity within limited budgets. This inefficiency stems from initialization bias trapping evolution in poor solution regions, uncontrolled stochastic operations lacking feedback guidance, and insufficient experience utilization across tasks. To address these bottlenecks, we propose Controlled Self-Evolution (CSE), which consists of three key components. Diversified Planning Initialization generates structurally distinct algorithmic strategies for broad solution space coverage. Genetic Evolution replaces stochastic operations with feedback-guided mechanisms, enabling targeted mutation and compositional crossover. Hierarchical Evolution Memory captures both successful and failed experiences at inter-task and intra-task levels. Experiments on EffiBench-X demonstrate that CSE consistently outperforms all baselines across various LLM backbones. Furthermore, CSE achieves higher efficiency from early generations and maintains continuous improvement throughout evolution. Our code is publicly available at https://github.com/QuantaAlpha/EvoControl.
comment: 27 pages
Dynamics-Aligned Latent Imagination in Contextual World Models for Zero-Shot Generalization NeurIPS 2025
Real-world reinforcement learning demands adaptation to unseen environmental conditions without costly retraining. Contextual Markov Decision Processes (cMDP) model this challenge, but existing methods often require explicit context variables (e.g., friction, gravity), limiting their use when contexts are latent or hard to measure. We introduce Dynamics-Aligned Latent Imagination (DALI), a framework integrated within the Dreamer architecture that infers latent context representations from agent-environment interactions. By training a self-supervised encoder to predict forward dynamics, DALI generates actionable representations conditioning the world model and policy, bridging perception and control. We theoretically prove this encoder is essential for efficient context inference and robust generalization. DALI's latent space enables counterfactual consistency: Perturbing a gravity-encoding dimension alters imagined rollouts in physically plausible ways. On challenging cMDP benchmarks, DALI achieves significant gains over context-unaware baselines, often surpassing context-aware baselines in extrapolation tasks, enabling zero-shot generalization to unseen contextual variations.
comment: 31 pages, 4 figures, accepted to NeurIPS 2025
QuFeX: Quantum feature extraction module for hybrid quantum-classical deep neural networks
We introduce Quantum Feature Extraction (QuFeX), a novel quantum machine learning module. The proposed module enables feature extraction in a reduced-dimensional space, significantly decreasing the number of parallel evaluations required in typical quantum convolutional neural network architectures. Its design allows seamless integration into deep classical neural networks, making it particularly suitable for hybrid quantum-classical models. As an application of QuFeX, we propose Qu-Net -- a hybrid architecture which integrates QuFeX at the bottleneck of a U-Net architecture. The latter is widely used for image segmentation tasks such as medical imaging and autonomous driving. Our numerical analysis indicates that the Qu-Net can achieve superior segmentation performance compared to a U-Net baseline. These results highlight the potential of QuFeX to enhance deep neural networks by leveraging hybrid computational paradigms, providing a path towards a robust framework for real-world applications requiring precise feature extraction.
comment: V2: 17 pages, 15 figures, 2 Tables; published version
SPGD: Steepest Perturbed Gradient Descent Optimization
Optimization algorithms are pivotal in advancing various scientific and industrial fields but often encounter obstacles such as trapping in local minima, saddle points, and plateaus (flat regions), which makes the convergence to reasonable or near-optimal solutions particularly challenging. This paper presents the Steepest Perturbed Gradient Descent (SPGD), a novel algorithm that innovatively combines the principles of the gradient descent method with periodic uniform perturbation sampling to effectively circumvent these impediments and lead to better solutions whenever possible. SPGD is distinctively designed to generate a set of candidate solutions and select the one exhibiting the steepest loss difference relative to the current solution. It enhances the traditional gradient descent approach by integrating a strategic exploration mechanism that significantly increases the likelihood of escaping sub-optimal local minima and navigating complex optimization landscapes effectively. Our approach not only retains the directed efficiency of gradient descent but also leverages the exploratory benefits of stochastic perturbations, thus enabling a more comprehensive search for global optima across diverse problem spaces. We demonstrate the efficacy of SPGD in solving the 3D component packing problem, an NP-hard challenge. Preliminary results show a substantial improvement over four established methods, particularly on response surfaces with complex topographies and in multidimensional non-convex continuous optimization problems. Comparative analyses with established 2D benchmark functions highlight SPGD's superior performance, showcasing its ability to navigate complex optimization landscapes. These results emphasize SPGD's potential as a versatile tool for a wide range of optimization problems.
comment: 28 pages, 26 figures, submitted to Journal of Mechanical Design
Coupled Data and Measurement Space Dynamics for Enhanced Diffusion Posterior Sampling
Inverse problems, where the goal is to recover an unknown signal from noisy or incomplete measurements, are central to applications in medical imaging, remote sensing, and computational biology. Diffusion models have recently emerged as powerful priors for solving such problems. However, existing methods either rely on projection-based techniques that enforce measurement consistency through heuristic updates, or they approximate the likelihood $p(\boldsymbol{y} \mid \boldsymbol{x})$, often resulting in artifacts and instability under complex or high-noise conditions. To address these limitations, we propose a novel framework called \emph{coupled data and measurement space diffusion posterior sampling} (C-DPS), which eliminates the need for constraint tuning or likelihood approximation. C-DPS introduces a forward stochastic process in the measurement space $\{\boldsymbol{y}_t\}$, evolving in parallel with the data-space diffusion $\{\boldsymbol{x}_t\}$, which enables the derivation of a closed-form posterior $p(\boldsymbol{x}_{t-1} \mid \boldsymbol{x}_t, \boldsymbol{y}_{t-1})$. This coupling allows for accurate and recursive sampling based on a well-defined posterior distribution. Empirical results demonstrate that C-DPS consistently outperforms existing baselines, both qualitatively and quantitatively, across multiple inverse problem benchmarks.
Physically Plausible Multi-System Trajectory Generation and Symmetry Discovery
From metronomes to celestial bodies, mechanics underpins how the world evolves in time and space. With consideration of this, a number of recent neural network models leverage inductive biases from classical mechanics to encourage model interpretability and ensure forecasted states are physical. However, in general, these models are designed to capture the dynamics of a single system with fixed physical parameters, from state-space measurements of a known configuration space. In this paper we introduce Symplectic Phase Space GAN (SPS-GAN) which can capture the dynamics of multiple systems, and generalize to unseen physical parameters from. Moreover, SPS-GAN does not require prior knowledge of the system configuration space. In fact, SPS-GAN can discover the configuration space structure of the system from arbitrary measurement types (e.g., state-space measurements, video frames). To achieve physically plausible generation, we introduce a novel architecture which embeds a Hamiltonian neural network recurrent module in a conditional GAN backbone. To discover the structure of the configuration space, we optimize the conditional time-series GAN objective with an additional physically motivated term to encourages a sparse representation of the configuration space. We demonstrate the utility of SPS-GAN for trajectory prediction, video generation and symmetry discovery. Our approach captures multiple systems and achieves performance on par with supervised models designed for single systems.
Mathematical Derivation Graphs: A Relation Extraction Task in STEM Manuscripts
Recent advances in natural language processing (NLP), particularly with the emergence of large language models (LLMs), have significantly enhanced the field of textual analysis. However, while these developments have yielded substantial progress in analyzing natural language text, applying analysis to mathematical equations and their relationships within texts has produced mixed results. This paper takes the initial steps in expanding the problem of relation extraction towards understanding the dependency relationships between mathematical expressions in STEM articles. The authors construct the Mathematical Derivation Graphs Dataset (MDGD), sourced from a random sampling of the arXiv corpus, containing an analysis of $107$ published STEM manuscripts with over $2000$ manually labeled inter-equation dependency relationships, resulting in a new object referred to as a derivation graph that summarizes the mathematical content of the manuscript. The authors exhaustively evaluate analytical and machine learning (ML) based models to assess their capability to identify and extract the derivation relationships for each article and compare the results with the ground truth. The authors show that the best tested LLMs achieve $F_1$ scores of $\sim45\%-52\%$, and attempt to improve their performance by combining them with analytic algorithms and other methods.
comment: 29 pages, 11 figures
MISA: Memory-Efficient LLMs Optimization with Module-wise Importance Sampling NeurIPS
The substantial memory demands of pre-training and fine-tuning large language models (LLMs) require memory-efficient optimization algorithms. One promising approach is layer-wise optimization, which treats each transformer block as a single layer and optimizes it sequentially, while freezing the other layers to save optimizer states and activations. Although effective, these methods ignore the varying importance of the modules within each layer, leading to suboptimal performance. Moreover, layer-wise sampling provides only limited memory savings, as at least one full layer must remain active during optimization. To overcome these limitations, we propose Module-wise Importance SAmpling (MISA), a novel method that divides each layer into smaller modules and assigns importance scores to each module. MISA uses a weighted random sampling mechanism to activate modules, provably reducing gradient variance compared to layer-wise sampling. Additionally, we establish an \(\mathcal{O}(1/\sqrt{K})\) convergence rate under non-convex and stochastic conditions, where $K$ is the total number of block updates, and provide a detailed memory analysis showcasing MISA's superiority over existing baseline methods. Experiments on diverse learning tasks validate the effectiveness of MISA. Source code is available at https://github.com/pkumelon/MISA.
comment: This paper is accepted to Neural Information Processing Systems (NeurIPS) 2025
A Taxonomy and Review of Algorithms for Modeling and Predicting Human Driver Behavior
An open problem in autonomous driving research is modeling human driving behavior, which is needed for the planning component of the autonomy stack, safety validation through traffic simulation, and causal inference for generating explanations for autonomous driving. Modeling human driving behavior is challenging because it is stochastic, high-dimensional, and involves interaction between multiple agents. This problem has been studied in various communities with a vast body of literature. Existing reviews have generally focused on one aspect: motion prediction. In this article, we present a unification of the literature that covers intent estimation, trait estimation, and motion prediction. This unification is enabled by modeling multi-agent driving as a partially observable stochastic game, which allows us to cast driver modeling tasks as inference problems. We classify driver models into a taxonomy based on the specific tasks they address and the key attributes of their approach. Finally, we identify open research opportunities in the field of driver modeling.
comment: This revision has been accepted for publication in the Proceedings of the IEEE. The final version is available on IEEE Xplore
Enhancing Federated Class-Incremental Learning via Spatial-Temporal Statistics Aggregation
Federated Class-Incremental Learning (FCIL) enables Class-Incremental Learning (CIL) from distributed data. Existing FCIL methods typically integrate old knowledge preservation into local client training. However, these methods cannot avoid spatial-temporal client drift caused by data heterogeneity and often incur significant computational and communication overhead, limiting practical deployment. To address these challenges simultaneously, we propose a novel approach, Spatial-Temporal Statistics Aggregation (STSA), which provides a unified framework to aggregate feature statistics both spatially (across clients) and temporally (across stages). The aggregated feature statistics are unaffected by data heterogeneity and can be used to update the classifier in closed form at each stage. Additionally, we introduce STSA-E, a communication-efficient variant with theoretical guarantees, achieving similar performance to STSA-E with much lower communication overhead. Extensive experiments on three widely used FCIL datasets, with varying degrees of data heterogeneity, show that our method outperforms state-of-the-art FCIL methods in terms of performance, flexibility, and both communication and computation efficiency. The code is available at https://github.com/Yuqin-G/STSA.
comment: WWW 2026
Large Language Model-Based Automatic Formulation for Stochastic Optimization Models
This paper presents an integrated systematic study of the performance of large language models (LLMs), specifically ChatGPT, for automatically formulating and solving Stochastic Optimization (SO) problems from natural language descriptions. Focusing on three key categories, individual chance-constrained models, joint chance-constrained models, and two-stage stochastic mixed-integer linear programming models, we design several prompts that guide ChatGPT through structured tasks using chain-of-thought and agentic reasoning. We introduce a novel soft-scoring metric that evaluates the structural quality and partial correctness of generated models, addressing the limitations of canonical and execution-based accuracy metrics. Across a diverse set of SO problems, GPT-4-Turbo achieves better partial scores than GPT-3.5 variants except for individual chance-constrained problems. Structured prompts significantly outperform simple prompting, reducing extra-element generation and improving objective matching, although extra-element generation remains a nontrivial task. Our findings reveal that with well-engineered prompts and multi-agent collaboration, LLMs can facilitate SO formulations, paving the way for intelligent, language-driven modeling pipelines for SO in practice.
Integrating Computational Methods and AI into Qualitative Studies of Aging and Later Life
This chapter demonstrates how computational social science (CSS) tools are extending and expanding research on aging. The depth and context from traditionally qualitative methods such as participant observation, in-depth interviews, and historical documents are increasingly employed alongside scalable data management, computational text analysis, and open-science practices. Machine learning (ML) and natural language processing (NLP), provide resources to aggregate and systematically index large volumes of qualitative data, identify patterns, and maintain clear links to in-depth accounts. Drawing on case studies of projects that examine later life--including examples with original data from the DISCERN study (a team-based ethnography of life with dementia) and secondary analyses of the American Voices Project (nationally representative interview)--the chapter highlights both uses and challenges of bringing CSS tools into more meaningful dialogue with qualitative aging research. The chapter argues such work has potential for (1) streamlining and augmenting existing workflows, (2) scaling up samples and projects, and (3) generating multi-method approaches to address important questions in new ways, before turning to practices useful for individuals and teams seeking to understand current possibilities or refine their workflow processes. The chapter concludes that current developments are not without peril, but offer potential for new insights into aging and the life course by broadening--rather than replacing--the methodological foundations of qualitative research.
comment: CITE: Abramson, Corey M. (Forthcoming 2026). "Integrating Computational Methods and AI into Qualitative Studies of Aging and Later Life." In Handbook of the Sociology of Aging, 2nd ed., edited by Markus H. Schafer, Dawn C. Carr, Jacqueline L. Angel, and Richard A. Settersten Jr // This version is the author's pre-proof, and the final published version may differ from this manuscript
Epistemic Skills: Reasoning about Knowledge and Oblivion
This paper presents a class of epistemic logics that captures the dynamics of acquiring knowledge and descending into oblivion, while incorporating concepts of group knowledge. The approach is grounded in a system of weighted models, introducing an ``epistemic skills'' metric to represent the epistemic capacities tied to knowledge updates. Within this framework, knowledge acquisition is modeled as a process of upskilling, whereas oblivion is represented as a consequence of downskilling. The framework further enables exploration of ``knowability'' and ``forgettability,'' defined as the potential to gain knowledge through upskilling and to lapse into oblivion through downskilling, respectively. Additionally, it supports a detailed analysis of the distinctions between epistemic de re and de dicto expressions. The computational complexity of the model checking and satisfiability problems is examined, offering insights into their theoretical foundations and practical implications.
Beyond Chunking: Discourse-Aware Hierarchical Retrieval for Long Document Question Answering
Existing long-document question answering systems typically process texts as flat sequences or use heuristic chunking, which overlook the discourse structures that naturally guide human comprehension. We present a discourse-aware hierarchical framework that leverages rhetorical structure theory (RST) for long document question answering. Our approach converts discourse trees into sentence-level representations and employs LLM-enhanced node representations to bridge structural and semantic information. The framework involves three key innovations: language-universal discourse parsing for lengthy documents, LLM-based enhancement of discourse relation nodes, and structure-guided hierarchical retrieval. Extensive experiments on four datasets demonstrate consistent improvements over existing approaches through the incorporation of discourse structure, across multiple genres and languages. Moreover, the proposed framework exhibits strong robustness across diverse document types and linguistic settings.
comment: 21 pages, 9 figures
FigEx2: Visual-Conditioned Panel Detection and Captioning for Scientific Compound Figures
Scientific compound figures combine multiple labeled panels into a single image, but captions in real pipelines are often missing or only provide figure-level summaries, making panel-level understanding difficult. In this paper, we propose FigEx2, visual-conditioned framework that localizes panels and generates panel-wise captions directly from the compound figure. To mitigate the impact of diverse phrasing in open-ended captioning, we introduce a noise-aware gated fusion module that adaptively filters token-level features to stabilize the detection query space. Furthermore, we employ a staged optimization strategy combining supervised learning with reinforcement learning (RL), utilizing CLIP-based alignment and BERTScore-based semantic rewards to enforce strict multimodal consistency. To support high-quality supervision, we curate BioSci-Fig-Cap, a refined benchmark for panel-level grounding, alongside cross-disciplinary test suites in physics and chemistry. Experimental results demonstrate that FigEx2 achieves a superior 0.726 mAP@0.5:0.95 for detection and significantly outperforms Qwen3-VL-8B by 0.51 in METEOR and 0.24 in BERTScore. Notably, FigEx2 exhibits remarkable zero-shot transferability to out-of-distribution scientific domains without any fine-tuning.
Enhancing Large Language Models for Time-Series Forecasting via Vector-Injected In-Context Learning
The World Wide Web needs reliable predictive capabilities to respond to changes in user behavior and usage patterns. Time series forecasting (TSF) is a key means to achieve this goal. In recent years, the large language models (LLMs) for TSF (LLM4TSF) have achieved good performance. However, there is a significant difference between pretraining corpora and time series data, making it hard to guarantee forecasting quality when directly applying LLMs to TSF; fine-tuning LLMs can mitigate this issue, but often incurs substantial computational overhead. Thus, LLM4TSF faces a dual challenge of prediction performance and compute overhead. To address this, we aim to explore a method for improving the forecasting performance of LLM4TSF while freezing all LLM parameters to reduce computational overhead. Inspired by in-context learning (ICL), we propose LVICL. LVICL uses our vector-injected ICL to inject example information into a frozen LLM, eliciting its in-context learning ability and thereby enhancing its performance on the example-related task (i.e., TSF). Specifically, we first use the LLM together with a learnable context vector adapter to extract a context vector from multiple examples adaptively. This vector contains compressed, example-related information. Subsequently, during the forward pass, we inject this vector into every layer of the LLM to improve forecasting performance. Compared with conventional ICL that adds examples into the prompt, our vector-injected ICL does not increase prompt length; moreover, adaptively deriving a context vector from examples suppresses components harmful to forecasting, thereby improving model performance. Extensive experiments demonstrate the effectiveness of our approach.
DYCP: Dynamic Context Pruning for Long-Form Dialogue with LLMs
Large Language Models (LLMs) often exhibit increased response latency and degraded answer quality as dialogue length grows, making effective context management essential. However, existing methods rely on extra LLM calls to build memory or perform offline memory construction without considering the current user utterance, which can introduce inefficiencies or disrupt conversational continuity. We introduce DyCP, a lightweight context management method that dynamically segment and retrieve relevant memory at query time. It preserves the sequential structure of dialogue without predefined topic boundaries and supports efficient, adaptive context retrieval. Across three long-form dialogue benchmarks, LoCoMo, MT-Bench+, and SCM4LLMs, and multiple LLMs, DyCP consistently improves answer quality while reducing response latency. We also examine the gap between modern LLMs' expanded context windows and their actual long-context processing capacity, highlighting the continued importance of effective context management.
comment: Accepted (B) to TACL 2026
DiffSampling: Enhancing Diversity and Accuracy in Neural Text Generation
Despite their growing capabilities, language models still frequently reproduce content from their training data, generate repetitive text, and favor common grammatical patterns and vocabulary. A possible cause is the decoding strategy: the most common strategies either consider only the most probable tokens, which reduces output diversity, or increase the likelihood of unlikely tokens, compromising output accuracy and correctness. In this paper, we propose DiffSampling, a new decoding method that leverages a mathematical analysis of the token probability distribution to ensure the generation of contextually appropriate text. In particular, the difference between consecutive, sorted probabilities can be used to truncate incorrect tokens. In addition, we also propose two variations of the proposed method that aim to correct the subtle inconsistencies of common sampling strategies. Experiments involving four different text-generation tasks demonstrate that our approach consistently performs at least on par with the existing methods it builds upon in terms of quality, despite sampling from a larger set of tokens.
comment: Published in Transactions on Machine Learning Research (2025), see https://tmlr.infinite-conf.org/paper_pages/kXjHbMvdIi.html
Can LLMs Generate Reliable Test Case Generators? A Study on Competition-Level Programming Problems
Large Language Models (LLMs) have demonstrated remarkable capabilities in code generation, capable of tackling complex tasks during inference. However, the extent to which LLMs can be utilized for code checking or debugging through test case generation remains largely unexplored. We investigate this problem from the perspective of competition-level programming (CP) programs and propose TCGBench, a Benchmark for (LLM generation of) Test Case Generators. This benchmark comprises two tasks, aimed at studying the capabilities of LLMs in (1) generating valid test case generators for a given CP problem, and further (2) generating targeted test case generators that expose bugs in human-written code. Experimental results indicate that while state-of-the-art LLMs can generate valid test case generators in most cases, most LLMs struggle to generate targeted test cases that reveal flaws in human code effectively. Especially, even advanced reasoning models (e.g., o3-mini) fall significantly short of human performance in the task of generating targeted generators. Furthermore, we construct a high-quality, manually curated dataset of instructions for generating targeted generators. Analysis demonstrates that the performance of LLMs can be enhanced with the aid of this dataset, by both prompting and fine-tuning.
comment: 37 pages, 22 figures
Shortcuts and Identifiability in Concept-based Models from a Neuro-Symbolic Lens NeurIPS25
Concept-based Models are neural networks that learn a concept extractor to map inputs to high-level concepts and an inference layer to translate these into predictions. Ensuring these modules produce interpretable concepts and behave reliably in out-of-distribution is crucial, yet the conditions for achieving this remain unclear. We study this problem by establishing a novel connection between Concept-based Models and reasoning shortcuts (RSs), a common issue where models achieve high accuracy by learning low-quality concepts, even when the inference layer is fixed and provided upfront. Specifically, we extend RSs to the more complex setting of Concept-based Models and derive theoretical conditions for identifying both the concepts and the inference layer. Our empirical results highlight the impact of RSs and show that existing methods, even combined with multiple natural mitigation strategies, often fail to meet these conditions in practice.
comment: Accepted at NeurIPS25
Autofocus Retrieval: An Effective Pipeline for Multi-Hop Question Answering With Semi-Structured Knowledge
In many real-world settings, machine learning models and interactive systems have access to both structured knowledge, e.g., knowledge graphs or tables, and unstructured content, e.g., natural language documents. Yet, most rely on either. Semi-Structured Knowledge Bases (SKBs) bridge this gap by linking unstructured content to nodes within structured data. In this work, we present Autofocus-Retriever (AF-Retriever), a modular framework for SKB-based, multi-hop question answering. It combines structural and textual retrieval through novel integration steps and optimizations, achieving the best zero- and one-shot results across all three STaRK QA benchmarks, which span diverse domains and evaluation metrics. AF-Retriever's average first-hit rate surpasses the second-best method by 32.1%. Its performance is driven by (1) leveraging exchangeable large language models (LLMs) to extract entity attributes and relational constraints for both parsing and reranking the top-k answers, (2) vector similarity search for ranking both extracted entities and final answers, (3) a novel incremental scope expansion procedure that prepares for the reranking on a configurable amount of suitable candidates that fulfill the given constraints the most, and (4) a hybrid retrieval strategy that reduces error susceptibility. In summary, while constantly adjusting the focus like an optical autofocus, AF-Retriever delivers a configurable amount of answer candidates in four constraint-driven retrieval steps, which are then supplemented and ranked through four additional processing steps. An ablation study and a detailed error analysis, including a comparison of three different LLM reranking strategies, provide component-level insights. The source code is available at https://github.com/kramerlab/AF-Retriever.
AQ-PCDSys: An Adaptive Quantized Planetary Crater Detection System for Autonomous Space Exploration
Successful autonomous planetary exploration hinges on real-time, high-fidelity environmental perception. However, standard deep learning models usually demand far more memory and computation power than space-qualified, radiation-hardened onboard hardware can provide. This creates a fundamental design challenge of deploying sophisticated detection architectures without saturating the rigid power and memory envelopes of the computation hardware of planetary exploration platforms. We propose the Adaptive Quantized Planetary Crater Detection System to resolve this bottleneck. Our framework integrates a Quantized Neural Network, refined through Quantization Aware Training, with an Adaptive Multi-Sensor Fusion module. By forcing weights into low-precision integer arithmetic, we effectively strip away the floating-point overhead that typically bottlenecks onboard processors and system memory. This yields a leaner model footprint and significantly faster processing while the detection fidelity remains high. Such efficiency enables AMF module to merge high-bandwidth Optical Imagery streams with Digital Elevation Models using an Adaptive Weighting Mechanism to re-balance sensor priority under variable conditions like deep shadows or high albedo. Integrated Multi-Scale Detection Heads then resolve craters across a wide range of diameters, providing a computationally efficient and precise solution for real-time detection, localization of craters and hazard avoidance. This paper establishes the architectural design and theoretical justification of the system. While our methodology is grounded in principles of hybrid computer vision and planetary science, we present this as a blueprint for future empirical validation and hardware benchmarking on integer-arithmetic units. This system provides a capability vital for the next generation of autonomous landing, navigation, and deep space explorations.
comment: 17 pages, 6 figures. A research paper on a novel deep learning framework for planetary crater detection
Fair Foundation Models for Medical Image Analysis: Challenges and Perspectives
Ensuring equitable Artificial Intelligence (AI) in healthcare demands systems that make unbiased decisions across all demographic groups, bridging technical innovation with ethical principles. Foundation Models (FMs), trained on vast datasets through self-supervised learning, enable efficient adaptation across medical imaging tasks while reducing dependency on labeled data. These models demonstrate potential for enhancing fairness, though significant challenges remain in achieving consistent performance across demographic groups. Our review indicates that effective bias mitigation in FMs requires systematic interventions throughout all stages of development. While previous approaches focused primarily on model-level bias mitigation, our analysis reveals that fairness in FMs requires integrated interventions throughout the development pipeline, from data documentation to deployment protocols. This comprehensive framework advances current knowledge by demonstrating how systematic bias mitigation, combined with policy engagement, can effectively address both technical and institutional barriers to equitable AI in healthcare. The development of equitable FMs represents a critical step toward democratizing advanced healthcare technologies, particularly for underserved populations and regions with limited medical infrastructure and computational resources.
Cause-effect perception in an object place task
We conducted an exploratory study in virtual reality to examine if people can discover causal relations in a realistic sensorimotor context and how such learning is represented at different processing levels (conscious-cognitive vs. sensorimotor). Additionally, we explored the relation between human causal learning and state-of-the-art causal discovery algorithms. The task consisted of placing a glass on a surface, that breaks if the contact force exeeded its breakability threshold, determined by weight and color. Ecological validity was enhanced by haptic rendering simulating weight and contact forces. Participants were asked to repeatedly transport and place glasses of varying weights and colors on a surface without breaking them. For success, participants had to discover the underlying causal structure. The trials were conducted over three sessions, reflecting naive, exploratory, consolidated and causally aware behavior, with questionnaires assessing conscious causal understanding of the task's causal structure. Sensorimotor representations were inferred by applying causal-discovery algorithms (PC, FCI, FGES) to the recorded trial-by-trial variables, and conditional mutual information was used to quantify the strength of causal influence on the sensorimotor level. Results show that (i) participants identified the weight-breakability link (76% correct after experiment) and the color-breakability link (43%) but struggle to infer causal direction. (ii) Sensorimotor analysis revealed a robust weight-force coupling increasing across sessions, whereas for color-force it was weak and noisy, yet mutual information indicated an attempted learning. (iii) Discovery algorithms recovered the causal structure across sessions. Together, these findings indicate that humans can, partially, perceive the causal structure of the task, with partially dissociated conscious and sensorimotor representations.
comment: 35 pages, 20 figures, 3 tables, accepted by: Frontiers in Cognition
AutoToM: Scaling Model-based Mental Inference via Automated Agent Modeling NeurIPS 2025
Theory of Mind (ToM), the ability to understand people's minds based on their behavior, is key to developing socially intelligent agents. Current approaches to ToM reasoning either rely on prompting Large Language Models (LLMs), which are prone to systematic errors, or use handcrafted, rigid agent models for model-based inference, which are more robust but fail to generalize across domains. In this work, we introduce AutoToM, an automated agent modeling method for scalable, robust, and interpretable mental inference. Given a ToM problem, AutoToM first proposes an initial agent model and then performs automated Bayesian inverse planning based on this model, leveraging an LLM backend. Guided by inference uncertainty, it iteratively refines the model by introducing additional mental variables and/or incorporating more timesteps in the context. Across five diverse benchmarks, AutoToM outperforms existing ToM methods and even large reasoning models. Additionally, we show that AutoToM can produce human-like confidence estimates and enable online mental inference for embodied decision-making.
comment: NeurIPS 2025 (Spotlight). 42 pages, 11 figures, 15 tables. Website at https://chuanyangjin.com/AutoToM/
VideoAR: Autoregressive Video Generation via Next-Frame & Scale Prediction
Recent advances in video generation have been dominated by diffusion and flow-matching models, which produce high-quality results but remain computationally intensive and difficult to scale. In this work, we introduce VideoAR, the first large-scale Visual Autoregressive (VAR) framework for video generation that combines multi-scale next-frame prediction with autoregressive modeling. VideoAR disentangles spatial and temporal dependencies by integrating intra-frame VAR modeling with causal next-frame prediction, supported by a 3D multi-scale tokenizer that efficiently encodes spatio-temporal dynamics. To improve long-term consistency, we propose Multi-scale Temporal RoPE, Cross-Frame Error Correction, and Random Frame Mask, which collectively mitigate error propagation and stabilize temporal coherence. Our multi-stage pretraining pipeline progressively aligns spatial and temporal learning across increasing resolutions and durations. Empirically, VideoAR achieves new state-of-the-art results among autoregressive models, improving FVD on UCF-101 from 99.5 to 88.6 while reducing inference steps by over 10x, and reaching a VBench score of 81.74-competitive with diffusion-based models an order of magnitude larger. These results demonstrate that VideoAR narrows the performance gap between autoregressive and diffusion paradigms, offering a scalable, efficient, and temporally consistent foundation for future video generation research.
comment: Project page: https://ernie-research.github.io/VideoAR/
Memory Mosaics at scale NeurIPS 2025
Memory Mosaics [Zhang et al., 2025], networks of associative memories, have demonstrated appealing compositional and in-context learning capabilities on medium-scale networks (GPT-2 scale) and synthetic small datasets. This work shows that these favorable properties remain when we scale memory mosaics to large language model sizes (llama-8B scale) and real-world datasets. To this end, we scale memory mosaics to 10B size, we train them on one trillion tokens, we introduce a couple architectural modifications ("Memory Mosaics v2"), we assess their capabilities across three evaluation dimensions: training-knowledge storage, new-knowledge storage, and in-context learning. Throughout the evaluation, memory mosaics v2 match transformers on the learning of training knowledge (first dimension) and significantly outperforms transformers on carrying out new tasks at inference time (second and third dimensions). These improvements cannot be easily replicated by simply increasing the training data for transformers. A memory mosaics v2 trained on one trillion tokens still perform better on these tasks than a transformer trained on eight trillion tokens.
comment: Oral @ NeurIPS 2025
Development and Evaluation of HopeBot: an LLM-based chatbot for structured and interactive PHQ-9 depression screening
Static tools like the Patient Health Questionnaire-9 (PHQ-9) effectively screen depression but lack interactivity and adaptability. We developed HopeBot, a chatbot powered by a large language model (LLM) that administers the PHQ-9 using retrieval-augmented generation and real-time clarification. In a within-subject study, 132 adults in the United Kingdom and China completed both self-administered and chatbot versions. Scores demonstrated strong agreement (ICC = 0.91; 45% identical). Among 75 participants providing comparative feedback, 71% reported greater trust in the chatbot, highlighting clearer structure, interpretive guidance, and a supportive tone. Mean ratings (0-10) were 8.4 for comfort, 7.7 for voice clarity, 7.6 for handling sensitive topics, and 7.4 for recommendation helpfulness; the latter varied significantly by employment status and prior mental-health service use (p < 0.05). Overall, 87.1% expressed willingness to reuse or recommend HopeBot. These findings demonstrate voice-based LLM chatbots can feasibly serve as scalable, low-burden adjuncts for routine depression screening.
A Curriculum Learning Approach to Reinforcement Learning: Leveraging RAG for Multimodal Question Answering
This paper describes the solutions of the Dianping-Trust-Safety team for the META CRAG-MM challenge. The challenge requires building a comprehensive retrieval-augmented generation system capable for multi-modal multi-turn question answering. The competition consists of three tasks: (1) answering questions using structured data retrieved from an image-based mock knowledge graph, (2) synthesizing information from both knowledge graphs and web search results, and (3) handling multi-turn conversations that require context understanding and information aggregation from multiple sources. For Task 1, our solution is based on the vision large language model, enhanced by supervised fine-tuning with knowledge distilled from GPT-4.1. We further applied curriculum learning strategies to guide reinforcement learning, resulting in improved answer accuracy and reduced hallucination. For Task 2 and Task 3, we additionally leveraged web search APIs to incorporate external knowledge, enabling the system to better handle complex queries and multi-turn conversations. Our approach achieved 1st place in Task 1 with a significant lead of 52.38%, and 3rd place in Task 3, demonstrating the effectiveness of the integration of curriculum learning with reinforcement learning in our training pipeline.
UniConFlow: A Unified Constrained Flow-Matching Framework for Certified Motion Planning
Generative models have become increasingly powerful tools for robot motion generation, enabling flexible and multimodal trajectory generation across various tasks. Yet, most existing approaches remain limited in handling multiple types of constraints, such as collision avoidance, actuation limits, and dynamic consistency, which are typically addressed individually or heuristically. In this work, we propose UniConFlow, a unified constrained flow matching-based framework for trajectory generation that systematically incorporates both equality and inequality constraints. Moreover, UniConFlow introduces a novel prescribed-time zeroing function that shapes a time-varying guidance field during inference, allowing the generation process to adapt to varying system models and task requirements. Furthermore, to further address the computational challenges of long-horizon and high-dimensional trajectory generation, we propose two practical strategies for the terminal constraint enforcement and inference process: a violation-segment extraction protocol that precisely localizes and refines only the constraint-violating portions of trajectories, and a trajectory compression method that accelerates optimization in a reduced-dimensional space while preserving high-fidelity reconstruction after decoding. Empirical validation across three experiments, including a double inverted pendulum, a real-to-sim car racing task, and a sim-to-real manipulation task, demonstrates that UniConFlow outperforms state-of-the-art generative planners and conventional optimization baselines, achieving superior performance on certified motion planning metrics such as safety, kinodynamic consistency, and action feasibility. Project page is available at: https://uniconflow.github.io.
SCALER:Synthetic Scalable Adaptive Learning Environment for Reasoning
Reinforcement learning (RL) offers a principled way to enhance the reasoning capabilities of large language models, yet its effectiveness hinges on training signals that remain informative as models evolve. In practice, RL progress often slows when task difficulty becomes poorly aligned with model capability, or when training is dominated by a narrow set of recurring problem patterns. To jointly address these issues, we propose SCALER (Synthetic sCalable Adaptive Learning Environment for Reasoning), a framework that sustains effective learning signals through adaptive environment design. SCALER introduces a scalable synthesis pipeline that converts real-world programming problems into verifiable reasoning environments with controllable difficulty and unbounded instance generation, enabling RL training beyond finite datasets while preserving strong correctness guarantees. Building on this, SCALER further employs an adaptive multi-environment RL strategy that dynamically adjusts instance difficulty and curates the active set of environments to track the model's capability frontier and maintain distributional diversity. This co-adaptation prevents reward sparsity, mitigates overfitting to narrow task patterns, and supports sustained improvement throughout training. Extensive experiments show that SCALER consistently outperforms dataset-based RL baselines across diverse reasoning benchmarks and exhibits more stable, long-horizon training dynamics.
comment: 19 pages,5 figures
Large-scale modality-invariant foundation models for brain MRI analysis: Application to lesion segmentation
The field of computer vision is undergoing a paradigm shift toward large-scale foundation model pre-training via self-supervised learning (SSL). Leveraging large volumes of unlabeled brain MRI data, such models can learn anatomical priors that improve few-shot performance in diverse neuroimaging tasks. However, most SSL frameworks are tailored to natural images, and their adaptation to capture multi-modal MRI information remains underexplored. This work proposes a modality-invariant representation learning setup and evaluates its effectiveness in stroke and epilepsy lesion segmentation, following large-scale pre-training. Experimental results suggest that despite successful cross-modality alignment, lesion segmentation primarily benefits from preserving fine-grained modality-specific features. Model checkpoints and code are made publicly available.
comment: Submitted to IEEE ISBI 2026
Learning About Learning: A Physics Path from Spin Glasses to Artificial Intelligence
The Hopfield model, originally inspired by spin-glass physics, occupies a central place at the intersection of statistical mechanics, neural networks, and modern artificial intelligence. Despite its conceptual simplicity and broad applicability -- from associative memory to near-optimal solutions of combinatorial optimization problems -- it is rarely integrated into standard undergraduate physics curricula. In this paper, we present the Hopfield model as a pedagogically rich framework that naturally unifies core topics from undergraduate statistical physics, dynamical systems, linear algebra, and computational methods. We provide a concise and illustrated theoretical introduction grounded in familiar physics concepts, analyze the model's energy function, dynamics, and pattern stability, and discuss practical aspects of simulation, including a freely available simulation code. To support instruction, we conclude with classroom-ready example problems designed to mirror research practice. By explicitly connecting fundamental physics to contemporary AI applications, this work aims to help prepare physics students to understand, apply, and critically engage with the computational tools increasingly central to research, industry, and society.
comment: 18 pages, 11 figures
CSSG: Measuring Code Similarity with Semantic Graphs
Existing code similarity metrics, such as BLEU, CodeBLEU, and TSED, largely rely on surface-level string overlap or abstract syntax tree structures, and often fail to capture deeper semantic relationships between programs.We propose CSSG (Code Similarity using Semantic Graphs), a novel metric that leverages program dependence graphs to explicitly model control dependencies and variable interactions, providing a semantics-aware representation of code.Experiments on the CodeContests+ dataset show that CSSG consistently outperforms existing metrics in distinguishing more similar code from less similar code under both monolingual and cross-lingual settings, demonstrating that dependency-aware graph representations offer a more effective alternative to surface-level or syntax-based similarity measures.
Graph Neural Networks, Deep Reinforcement Learning and Probabilistic Topic Modeling for Strategic Multiagent Settings
This paper provides a comprehensive review of mainly GNN, DRL, and PTM methods with a focus on their potential incorporation in strategic multiagent settings. We draw interest in (i) ML methods currently utilized for uncovering unknown model structures adaptable to the task of strategic opponent modeling, and (ii) the integration of these methods with Game Theoretic concepts that avoid relying on assumptions often invalid in real-world scenarios, such as the Common Prior Assumption (CPA) and the Self-Interest Hypothesis (SIH). We analyze the ability to handle uncertainty and heterogeneity, two characteristics that are very common in real-world application cases, as well as scalability. As a potential answer to effectively modeling relationships and interactions in multiagent settings, we champion the use of GNN. Such approaches are designed to operate upon graph-structured data, and have been shown to be a very powerful tool for performing tasks such as node classification and link prediction. Next, we review the domain of RL, and in particular that of multiagent deep reinforcement learning. Single-agent deep RL has been widely used for decision making in demanding game settings. Its application in multiagent settings though is hindered due to, e.g., varying relationships between agents, and non-stationarity of the environment. We describe existing relevant game theoretic solution concepts, and consider properties such as fairness and stability. Our review comes complete with a note on the literature that utilizes probabilistic topic modeling (PTM) in domains other than that of document analysis and classification. Finally, we identify certain open challenges -- specifically, the need to (i) fit non-stationary environments, (ii) balance the degrees of stability and adaptation, (iii) tackle uncertainty and heterogeneity, (iv) guarantee scalability and solution tractability.
comment: 27 pages
Effects of personality steering on cooperative behavior in Large Language Model agents
Large language models (LLMs) are increasingly used as autonomous agents in strategic and social interactions. Although recent studies suggest that assigning personality traits to LLMs can influence their behavior, how personality steering affects cooperation under controlled conditions remains unclear. In this study, we examine the effects of personality steering on cooperative behavior in LLM agents using repeated Prisoner's Dilemma games. Based on the Big Five framework, we first measure basic personality scores of three models, GPT-3.5-turbo, GPT-4o, and GPT-5, using the Big Five Inventory. We then compare behavior under baseline and personality-informed conditions, and further analyze the effects of independently manipulating each personality dimension to extreme values. Our results show that agreeableness is the dominant factor promoting cooperation across all models, while other personality traits have limited impact. Explicit personality information increases cooperation but can also raise vulnerability to exploitation, particularly in earlier-generation models. In contrast, later-generation models exhibit more selective cooperation. These findings indicate that personality steering acts as a behavioral bias rather than a deterministic control mechanism.
Uncovering Intrinsic Capabilities: A Paradigm for Data Curation in Vision-Language Models
Large vision-language models (VLMs) achieve strong benchmark performance, but controlling their behavior through instruction tuning remains difficult. Reducing the budget of instruction tuning dataset often causes regressions, as heuristic strategies treat models as black boxes and overlook the latent capabilities that govern learning. We introduce Capability-Attributed Data Curation (CADC), a framework that shifts curation from task-specific heuristics to intrinsic capability analysis. CADC discovers intrinsic capabilities in an unsupervised manner from gradient-based learning trajectories, attributes training data to these capabilities via influence estimation, and curates capability-aware curricula through balanced selection and staged sequencing. This transforms black-box instruction tuning into a controllable, capability-driven process. With as little as 5% of the original data, CADC surpasses full-data training on multimodal benchmarks. These results validate intrinsic capabilities as the fundamental building blocks of model learning and establish CADC as a principle paradigm for instruction data curation.
Burn-After-Use for Preventing Data Leakage through a Secure Multi-Tenant Architecture in Enterprise LLM
This study presents a Secure Multi-Tenant Architecture (SMTA) combined with a novel concept Burn-After-Use (BAU) mechanism for enterprise LLM environments to effectively prevent data leakage. As institutions increasingly adopt LLMs across departments, the risks of data leakage have become a critical security and compliance concern. The proposed SMTA isolates LLM instances across departments and enforces rigorous context ownership boundaries within an internally deployed infrastructure. The BAU mechanism introduces data confidentiality by enforcing ephemeral conversational contexts that are automatically destroyed after use, preventing cross-session or cross-user inference. The evaluation to SMTA and BAU is through two sets of realistic and reproducible experiments comprising of 127 test iterations. One aspect of this experiment is to assess prompt-based and semantic leakage attacks in a multi-tenant architecture (Appendix A) across 55 infrastructure-level attack tests, including vector-database credential compromise and shared logging pipeline exposure. SMTA achieves 92% defense success rate, demonstrating strong semantic isolation while highlighting residual risks from credential misconfiguration and observability pipelines. Another aspect is to evaluate the robustness of BAU under realistic failure scenarios (Appendix B) using four empirical metrics: Local Residual Persistence Rate (LRPR), Remote Residual Persistence Rate (RRPR), Image Frame Exposure Rate (IFER), and Burn Timer Persistence Rate (BTPR). Across 72 test iterations, BAU achieves a 76.75% success rate in mitigating post-session leakage threats across the client, server, application, infrastructure, and cache layers. These results show that SMTA and BAU together enforce strict isolation, complete session ephemerality, strong confidentiality guarantees, non-persistence, and policy-aligned behavior for enterprise LLMs.
comment: 16 pages, 5 figures
Red Teaming Large Reasoning Models
Large Reasoning Models (LRMs) have emerged as a powerful advancement in multi-step reasoning tasks, offering enhanced transparency and logical consistency through explicit chains of thought (CoT). However, these models introduce novel safety and reliability risks, such as CoT-hijacking and prompt-induced inefficiencies, which are not fully captured by existing evaluation methods. To address this gap, we propose RT-LRM, a unified benchmark designed to assess the trustworthiness of LRMs. RT-LRM evaluates three core dimensions: truthfulness, safety and efficiency. Beyond metric-based evaluation, we further introduce the training paradigm as a key analytical perspective to investigate the systematic impact of different training strategies on model trustworthiness. We achieve this by designing a curated suite of 30 reasoning tasks from an observational standpoint. We conduct extensive experiments on 26 models and identify several valuable insights into the trustworthiness of LRMs. For example, LRMs generally face trustworthiness challenges and tend to be more fragile than Large Language Models (LLMs) when encountering reasoning-induced risks. These findings uncover previously underexplored vulnerabilities and highlight the need for more targeted evaluations. In addition, we release a scalable toolbox for standardized trustworthiness research to support future advancements in this important field. Our code and datasets will be open-sourced.
comment: 30 pages, 9 figures
Regulatory gray areas of LLM Terms
Large Language Models (LLMs) are increasingly integrated into academic research pipelines; however, the Terms of Service governing their use remain under-examined. We present a comparative analysis of the Terms of Service of five major LLM providers (Anthropic, DeepSeek, Google, OpenAI, and xAI) collected in November 2025. Our analysis reveals substantial variation in the stringency and specificity of usage restrictions for general users and researchers. We identify specific complexities for researchers in security research, computational social sciences, and psychological studies. We identify `regulatory gray areas' where Terms of Service create uncertainty for legitimate use. We contribute a publicly available resource comparing terms across platforms (OSF) and discuss implications for general users and researchers navigating this evolving landscape.
Exploring the Secondary Risks of Large Language Models
Ensuring the safety and alignment of Large Language Models is a significant challenge with their growing integration into critical applications and societal functions. While prior research has primarily focused on jailbreak attacks, less attention has been given to non-adversarial failures that subtly emerge during benign interactions. We introduce secondary risks a novel class of failure modes marked by harmful or misleading behaviors during benign prompts. Unlike adversarial attacks, these risks stem from imperfect generalization and often evade standard safety mechanisms. To enable systematic evaluation, we introduce two risk primitives verbose response and speculative advice that capture the core failure patterns. Building on these definitions, we propose SecLens, a black-box, multi-objective search framework that efficiently elicits secondary risk behaviors by optimizing task relevance, risk activation, and linguistic plausibility. To support reproducible evaluation, we release SecRiskBench, a benchmark dataset of 650 prompts covering eight diverse real-world risk categories. Experimental results from extensive evaluations on 16 popular models demonstrate that secondary risks are widespread, transferable across models, and modality independent, emphasizing the urgent need for enhanced safety mechanisms to address benign yet harmful LLM behaviors in real-world deployments.
comment: 18 pages, 5 figures
The Accountability Paradox: How Platform API Restrictions Undermine AI Transparency Mandates
Recent application programming interface (API) restrictions on major social media platforms challenge compliance with the EU Digital Services Act [20], which mandates data access for algorithmic transparency. We develop a structured audit framework to assess the growing misalignment between regulatory requirements and platform implementations. Our comparative analysis of X/Twitter, Reddit, TikTok, and Meta identifies critical ``audit blind-spots'' where platform content moderation and algorithmic amplification remain inaccessible to independent verification. Our findings reveal an ``accountability paradox'': as platforms increasingly rely on AI systems, they simultaneously restrict the capacity for independent oversight. We propose targeted policy interventions aligned with the AI Risk Management Framework of the National Institute of Standards and Technology [80], emphasizing federated access models and enhanced regulatory enforcement.
Fodor and Pylyshyn's Legacy: Still No Human-like Systematic Compositionality in Neural Networks
Strong meta-learning capabilities for systematic compositionality are emerging as an important skill for navigating the complex and changing tasks of today's world. However, in presenting models for robust adaptation to novel environments, it is important to refrain from making unsupported claims about the performance of meta-learning systems that ultimately do not stand up to scrutiny. While Fodor and Pylyshyn famously posited that neural networks inherently lack this capacity as they are unable to model compositional representations or structure-sensitive operations, and thus are not a viable model of the human mind, Lake and Baroni recently presented meta-learning as a pathway to compositionality. In this position paper, we critically revisit this claim and highlight limitations in the proposed meta-learning framework for compositionality. Our analysis shows that modern neural meta-learning systems can only perform such tasks, if at all, under a very narrow and restricted definition of a meta-learning setup. We therefore claim that `Fodor and Pylyshyn's legacy' persists, and to date, there is no human-like systematic compositionality learned in neural networks.
Where to Begin: Efficient Pretraining via Subnetwork Selection and Distillation
Small Language models (SLMs) offer an efficient and accessible alternative to Large Language Models (LLMs), delivering strong performance while using far fewer resources. We introduce a simple and effective framework for pretraining SLMs that brings together three complementary ideas. First, we identify structurally sparse sub-network initializations that consistently outperform randomly initialized models of similar size under the same compute budget. Second, we use evolutionary search to automatically discover high-quality sub-network initializations, providing better starting points for pretraining. Third, we apply knowledge distillation from larger teacher models to speed up training and improve generalization. Together, these components make SLM pretraining substantially more efficient: our best model, discovered using evolutionary search and initialized with LLM weights, matches the validation perplexity of a comparable Pythia SLM while requiring 5.16x and 1.26x fewer floating point operations for token budgets of 10B and 100B, respectively. We release all code publicly, offering a practical and reproducible path toward cost-efficient small language model development at scale.
GroupNL: Low-Resource and Robust CNN Design over Cloud and Device
Deploying Convolutional Neural Network (CNN) models on ubiquitous Internet of Things (IoT) devices in a cloud-assisted manner to provide users with a variety of high-quality services has become mainstream. Most existing studies speed up model cloud training/on-device inference by reducing the number of convolution (Conv) parameters and floating-point operations (FLOPs). However, they usually employ two or more lightweight operations (e.g., depthwise Conv, $1\times1$ cheap Conv) to replace a Conv, which can still affect the model's speedup even with fewer parameters and FLOPs. To this end, we propose the Grouped NonLinear transformation generation method (GroupNL), leveraging data-agnostic, hyperparameters-fixed, and lightweight Nonlinear Transformation Functions (NLFs) to generate diversified feature maps on demand via grouping, thereby reducing resource consumption while improving the robustness of CNNs. First, in a GroupNL Conv layer, a small set of feature maps, i.e., seed feature maps, are generated based on the seed Conv operation. Then, we split seed feature maps into several groups, each with a set of different NLFs, to generate the required number of diversified feature maps with tensor manipulation operators and nonlinear processing in a lightweight manner without additional Conv operations. We further introduce a sparse GroupNL Conv to speed up by reasonably designing the seed Conv groups between the number of input channels and seed feature maps. Experiments conducted on benchmarks and on-device resource measurements demonstrate that the GroupNL Conv is an impressive alternative to Conv layers in baseline models. Specifically, on Icons-50 dataset, the accuracy of GroupNL-ResNet-18 is 2.86% higher than ResNet-18; on ImageNet-C dataset, the accuracy of GroupNL-EfficientNet-ES achieves about 1.1% higher than EfficientNet-ES.
comment: IEEE Transactions on Mobile Computing, accepted manuscript
Towards Interpretability Without Sacrifice: Faithful Dense Layer Decomposition with Mixture of Decoders NeurIPS 2025
Multilayer perceptrons (MLPs) are an integral part of large language models, yet their dense representations render them difficult to understand, edit, and steer. Recent methods learn interpretable approximations via neuron-level sparsity, yet fail to faithfully reconstruct the original mapping--significantly increasing model's next-token cross-entropy loss. In this paper, we advocate for moving to layer-level sparsity to overcome the accuracy trade-off in sparse layer approximation. Under this paradigm, we introduce Mixture of Decoders (MxDs). MxDs generalize MLPs and Gated Linear Units, expanding pre-trained dense layers into tens of thousands of specialized sublayers. Through a flexible form of tensor factorization, each sparsely activating MxD sublayer implements a linear transformation with full-rank weights--preserving the original decoders' expressive capacity even under heavy sparsity. Experimentally, we show that MxDs significantly outperform state-of-the-art methods (e.g., Transcoders) on the sparsity-accuracy frontier in language models with up to 3B parameters. Further evaluations on sparse probing and feature steering demonstrate that MxDs learn similarly specialized features of natural language--opening up a promising new avenue for designing interpretable yet faithful decompositions. Our code is included at: https://github.com/james-oldfield/MxD/.
comment: NeurIPS 2025 camera-ready version
Can Language Models Discover Scaling Laws?
Discovering scaling laws for predicting model performance at scale is a fundamental and open-ended challenge, mostly reliant on slow, case specific human experimentation. To investigate the potential for LLMs to automate this process, we collect over 5,000 experiments from existing literature and curate eight diverse scaling law discovery tasks. While existing agents struggle to produce accurate law formulas, this paper introduces SLDAgent, an evolution-based agent that co-optimize the scaling law model and the parameters, enabling it to autonomously explore complex relationships between variables. For the first time, we demonstrates that SLDAgent can automatically discover laws that exhibit consistently more accurate extrapolation than their established, human-derived counterparts across all tasks. Through comprehensive analysis, we elucidate why these discovered laws are superior and verify their practical utility in both pretraining and finetuning applications. This work establishes a new paradigm for agentic scientific discovery, showing that AI systems can understand their own scaling behavior, and can contribute novel and practical knowledge back to the research community.
Analysis of Quantum Image Representations for Supervised Classification
In the era of big data and artificial intelligence, the increasing volume of data and the demand to solve more and more complex computational challenges are two driving forces for improving the efficiency of data storage, processing and analysis. Quantum image processing (QIP) is an interdisciplinary field between quantum information science and image processing, which has the potential to alleviate some of these challenges by leveraging the power of quantum computing. In this work, we compare and examine the compression properties of four different Quantum Image Representations (QImRs): namely, Tensor Network Representation (TNR), Flexible Representation of Quantum Image (FRQI), Novel Enhanced Quantum Representation NEQR, and Quantum Probability Image Encoding (QPIE). Our simulations show that FRQI and QPIE perform a higher compression of image information than TNR and NEQR. Furthermore, we investigate the trade-off between accuracy and memory in binary classification problems, evaluating the performance of quantum kernels based on QImRs compared to the classical linear kernel. Our results indicate that quantum kernels provide comparable classification average accuracy but require exponentially fewer resources for image storage.
comment: 9 pages, 11 figures
FeatInv: Spatially resolved mapping from feature space to input space using conditional diffusion models
Internal representations are crucial for understanding deep neural networks, such as their properties and reasoning patterns, but remain difficult to interpret. While mapping from feature space to input space aids in interpreting the former, existing approaches often rely on crude approximations. We propose using a conditional diffusion model - a pretrained high-fidelity diffusion model conditioned on spatially resolved feature maps - to learn such a mapping in a probabilistic manner. We demonstrate the feasibility of this approach across various pretrained image classifiers from CNNs to ViTs, showing excellent reconstruction capabilities. Through qualitative comparisons and robustness analysis, we validate our method and showcase possible applications, such as the visualization of concept steering in input space or investigations of the composite nature of the feature space. This approach has broad potential for improving feature space understanding in computer vision models.
comment: Version published by Transactions on Machine Learning Research in 2025 (TMLR ISSN 2835-8856) at https://openreview.net/forum?id=UtE1YnPNgZ. 32 pages, 27 figures. This work builds on an earlier manuscript (arXiv:2505.21032) and crucially extends it. Code is available at https://github.com/AI4HealthUOL/FeatInv
Consistent Sampling and Simulation: Molecular Dynamics with Energy-Based Diffusion Models NeurIPS 2025
In recent years, diffusion models trained on equilibrium molecular distributions have proven effective for sampling biomolecules. Beyond direct sampling, the score of such a model can also be used to derive the forces that act on molecular systems. However, while classical diffusion sampling usually recovers the training distribution, the corresponding energy-based interpretation of the learned score is often inconsistent with this distribution, even for low-dimensional toy systems. We trace this inconsistency to inaccuracies of the learned score at very small diffusion timesteps, where the model must capture the correct evolution of the data distribution. In this regime, diffusion models fail to satisfy the Fokker-Planck equation, which governs the evolution of the score. We interpret this deviation as one source of the observed inconsistencies and propose an energy-based diffusion model with a Fokker-Planck-derived regularization term to enforce consistency. We demonstrate our approach by sampling and simulating multiple biomolecular systems, including fast-folding proteins, and by introducing a state-of-the-art transferable Boltzmann emulator for dipeptides that supports simulation and achieves improved consistency and efficient sampling. Our code, model weights, and self-contained JAX and PyTorch notebooks are available at https://github.com/noegroup/ScoreMD.
comment: Accepted at Conference on Neural Information Processing Systems (NeurIPS 2025)
Efficient Test-Time Scaling of Multi-Step Reasoning by Probing Internal States of Large Language Models
LLMs can solve complex tasks by generating long, multi-step reasoning chains. Test-time scaling (TTS) can further improve LLM performance by sampling multiple variants of intermediate reasoning steps, verifying their correctness, and strategically choosing the best steps for continuation. However, existing verification approaches, such as Process Reward Models (PRMs), are computationally expensive, limited to specific domains, and require large-scale human or model-generated annotations. We propose a lightweight alternative for step-level reasoning verification based on probing the internal states of LLMs. We train a transformer-based probe that uses the internal states of the frozen LLM to estimate the credibility of its reasoning steps during generation. Annotation can be generated either by another larger LLM (e.g., DeepSeek-R1) or in a self-supervised manner by the original model itself. The probes are both effective and lightweight, containing fewer than 10M parameters. Across multiple domains, including mathematics, planning, and general knowledge question answering, our probes match or even exceed the performance of PRMs that are up to 810x larger. Our findings suggest that the internal states of LLMs encode their confidence in reasoning processes and can serve as reliable signals for reasoning step verification, offering a promising direction towards scalable and generalizable TTS and introspective LLMs.
comment: Preprint under review
Global Benchmark Database
This paper presents Global Benchmark Database (GBD), a comprehensive suite of tools for provisioning and sustainably maintaining benchmark instances and their metadata. The availability of benchmark metadata is essential for many tasks in empirical research, e.g., for the data-driven compilation of benchmarks, the domain-specific analysis of runtime experiments, or the instance-specific selection of solvers. In this paper, we introduce the data model of GBD as well as its interfaces and provide examples of how to interact with them. We also demonstrate the integration of custom data sources and explain how to extend GBD with additional problem domains, instance formats and feature extractors.
Controlling Ensemble Variance in Diffusion Models: An Application for Reanalyses Downscaling
In recent years, diffusion models have emerged as powerful tools for generating ensemble members in meteorology. In this work, we demonstrate how a Denoising Diffusion Implicit Model (DDIM) can effectively control ensemble variance by varying the number of diffusion steps. Introducing a theoretical framework, we relate diffusion steps to the variance expressed by the reverse diffusion process. Focusing on reanalysis downscaling, we propose an ensemble diffusion model for the full ERA5-to-CERRA domain, generating variance-calibrated ensemble members for wind speed at full spatial and temporal resolution. Our method aligns global mean variance with a reference ensemble dataset and ensures spatial variance is distributed in accordance with observed meteorological variability. Additionally, we address the lack of ensemble information in the CARRA dataset, showcasing the utility of our approach for efficient, high-resolution ensemble generation.
IKDiffuser: a Diffusion-based Generative Inverse Kinematics Solver for Kinematic Trees
Solving Inverse Kinematics (IK) for arbitrary kinematic trees presents significant challenges due to their high-dimensionality, redundancy, and complex inter-branch constraints. Conventional optimization-based solvers can be sensitive to initialization and suffer from local minima or conflicting gradients. At the same time, existing learning-based approaches are often tied to a predefined number of end-effectors and a fixed training objective, limiting their reusability across various robot morphologies and task requirements. To address these limitations, we introduce IKDiffuser, a scalable IK solver built upon conditional diffusion-based generative models, which learns the distribution of the configuration space conditioned on end-effector poses. We propose a structure-agnostic formulation that represents end-effector poses as a sequence of tokens, leading to a unified framework that handles varying numbers of end-effectors while learning the implicit kinematic structures entirely from data. Beyond standard IK generation, IKDiffuser handles partially specified goals via a masked marginalization mechanism that conditions only on a subset of end-effector constraints. Furthermore, it supports adding task objectives at inference through objective-guided sampling, enabling capabilities such as warm-start initialization and manipulability maximization without retraining. Extensive evaluations across seven diverse robotic platforms demonstrate that IKDiffuser significantly outperforms state-of-the-art baselines in accuracy, solution diversity, and collision avoidance. Moreover, when used to initialize optimization-based solvers, IKDiffuser significantly boosts success rates on challenging redundant systems with high Degrees of Freedom (DoF), such as the 29-DoF Unitree G1 humanoid, from 21.01% to 96.96% while reducing computation time to the millisecond range.
comment: under review
TeleMem: Building Long-Term and Multimodal Memory for Agentic AI
Large language models (LLMs) excel at many NLP tasks but struggle to sustain long-term interactions due to limited attention over extended dialogue histories. Retrieval-augmented generation (RAG) mitigates this issue but lacks reliable mechanisms for updating or refining stored memories, leading to schema-driven hallucinations, inefficient write operations, and minimal support for multimodal reasoning.To address these challenges, we propose TeleMem, a unified long-term and multimodal memory system that maintains coherent user profiles through narrative dynamic extraction, ensuring that only dialogue-grounded information is preserved. TeleMem further introduces a structured writing pipeline that batches, retrieves, clusters, and consolidates memory entries, substantially improving storage efficiency, reducing token usage, and accelerating memory operations. Additionally, a multimodal memory module combined with ReAct-style reasoning equips the system with a closed-loop observe, think, and act process that enables accurate understanding of complex video content in long-term contexts. Experimental results show that TeleMem surpasses the state-of-the-art Mem0 baseline with 19% higher accuracy, 43% fewer tokens, and a 2.1x speedup on the ZH-4O long-term role-play gaming benchmark.
Testing the Testers: Human-Driven Quality Assessment of Voice AI Testing Platforms
Voice AI agents are rapidly transitioning to production deployments, yet systematic methods for ensuring testing reliability remain underdeveloped. Organizations cannot objectively assess whether their testing approaches (internal tools or external platforms) actually work, creating a critical measurement gap as voice AI scales to billions of daily interactions. We present the first systematic framework for evaluating voice AI testing quality through human-centered benchmarking. Our methodology addresses the fundamental dual challenge of testing platforms: generating realistic test conversations (simulation quality) and accurately evaluating agent responses (evaluation quality). The framework combines established psychometric techniques (pairwise comparisons yielding Elo ratings, bootstrap confidence intervals, and permutation tests) with rigorous statistical validation to provide reproducible metrics applicable to any testing approach. To validate the framework and demonstrate its utility, we conducted comprehensive empirical evaluation of three leading commercial platforms focused on Voice AI Testing using 21,600 human judgments across 45 simulations and ground truth validation on 60 conversations. Results reveal statistically significant performance differences with the proposed framework, with the top-performing platform, Evalion, achieving 0.92 evaluation quality measured as f1-score versus 0.73 for others, and 0.61 simulation quality using a league based scoring system (including ties) vs 0.43 for other platforms. This framework enables researchers and organizations to empirically validate the testing capabilities of any platform, providing essential measurement foundations for confident voice AI deployment at scale. Supporting materials are made available to facilitate reproducibility and adoption.
Bench360: Benchmarking Local LLM Inference from 360 Degrees
Running LLMs locally has become increasingly common, but users face a complex design space across models, quantization levels, inference engines, and serving scenarios. Existing inference benchmarks are fragmented and focus on isolated goals, offering little guidance for practical deployments. We present Bench360, a framework for evaluating local LLM inference across tasks, usage patterns, and system metrics in one place. Bench360 supports custom tasks, integrates multiple inference engines and quantization formats, and reports both task quality and system behavior (latency, throughput, energy, startup time). We demonstrate it on four NLP tasks across three GPUs and four engines, showing how design choices shape efficiency and output quality. Results confirm that tradeoffs are substantial and configuration choices depend on specific workloads and constraints. There is no universal best option, underscoring the need for comprehensive, deployment-oriented benchmarks.
Large Multimodal Models for Embodied Intelligent Driving: The Next Frontier in Self-Driving?
The advent of Large Multimodal Models (LMMs) offers a promising technology to tackle the limitations of modular design in autonomous driving, which often falters in open-world scenarios requiring sustained environmental understanding and logical reasoning. Besides, embodied artificial intelligence facilitates policy optimization through closed-loop interactions to achieve the continuous learning capability, thereby advancing autonomous driving toward embodied intelligent (El) driving. However, such capability will be constrained by relying solely on LMMs to enhance EI driving without joint decision-making. This article introduces a novel semantics and policy dual-driven hybrid decision framework to tackle this challenge, ensuring continuous learning and joint decision. The framework merges LMMs for semantic understanding and cognitive representation, and deep reinforcement learning (DRL) for real-time policy optimization. We starts by introducing the foundational principles of EI driving and LMMs. Moreover, we examine the emerging opportunities this framework enables, encompassing potential benefits and representative use cases. A case study is conducted experimentally to validate the performance superiority of our framework in completing lane-change planning task. Finally, several future research directions to empower EI driving are identified to guide subsequent work.
GGBench: A Geometric Generative Reasoning Benchmark for Unified Multimodal Models
The advent of Unified Multimodal Models (UMMs) signals a paradigm shift in artificial intelligence, moving from passive perception to active, cross-modal generation. Despite their unprecedented ability to synthesize information, a critical gap persists in evaluation: existing benchmarks primarily assess discriminative understanding or unconstrained image generation separately, failing to measure the integrated cognitive process of generative reasoning. To bridge this gap, we propose that geometric construction provides an ideal testbed as it inherently demands a fusion of language comprehension and precise visual generation. We introduce GGBench, a benchmark designed specifically to evaluate geometric generative reasoning. It provides a comprehensive framework for systematically diagnosing a model's ability to not only understand and reason but to actively construct a solution, thereby setting a more rigorous standard for the next generation of intelligent systems. Project website: https://opendatalab-raiser.github.io/GGBench/.
comment: 35 pages, 22 figures
Random Multiplexing
As wireless communication applications evolve from traditional multipath environments to high-mobility scenarios like unmanned aerial vehicles, multiplexing techniques have advanced accordingly. Traditional single-carrier frequency-domain equalization (SC-FDE) and orthogonal frequency-division multiplexing (OFDM) have given way to emerging orthogonal time-frequency space (OTFS) and affine frequency-division multiplexing (AFDM). These approaches exploit specific channel structures to diagonalize or sparsify the effective channel, thereby enabling low-complexity detection. However, their reliance on these structures significantly limits their robustness in dynamic, real-world environments. To address these challenges, this paper studies a random multiplexing technique that is decoupled from the physical channels, enabling its application to arbitrary norm-bounded and spectrally convergent channel matrices. Random multiplexing achieves statistical fading-channel ergodicity for transmitted signals by constructing an equivalent input-isotropic channel matrix in the random transform domain. It guarantees the asymptotic replica MAP bit-error rate (BER) optimality of AMP-type detectors for linear systems with arbitrary norm-bounded, spectrally convergent channel matrices and signaling configurations, under the unique fixed point assumption. A low-complexity cross-domain memory AMP (CD-MAMP) detector is considered, leveraging the sparsity of the time-domain channel and the randomness of the equivalent channel. Optimal power allocations are derived to minimize the replica MAP BER and maximize the replica constrained capacity of random multiplexing systems. The optimal coding principle and replica constrained-capacity optimality of CD-MAMP detector are investigated for random multiplexing systems. Additionally, the versatility of random multiplexing in diverse wireless applications is explored.
comment: This paper has been accepted for publication in IEEE Transactions on Information Theory
DR-LoRA: Dynamic Rank LoRA for Mixture-of-Experts Adaptation
Mixture-of-Experts (MoE) has become a prominent paradigm for scaling Large Language Models (LLMs). Parameter-efficient fine-tuning (PEFT), such as LoRA, is widely adopted to adapt pretrained MoE LLMs to downstream tasks. However, existing approaches assign identical LoRA ranks to all experts, overlooking the intrinsic functional specialization within MoE LLMs. This uniform allocation leads to resource mismatch, task-relevant experts are under-provisioned while less relevant ones receive redundant parameters. We propose a Dynamic Rank LoRA framework named DR-LoRA, which dynamically grows expert LoRA ranks during fine-tuning based on task-specific demands. DR-LoRA employs an Expert Saliency Scoring mechanism that integrates expert routing frequency and LoRA rank importance to quantify each expert's demand for additional capacity. Experts with higher saliency scores are prioritized for rank expansion, enabling the automatic formation of a heterogeneous rank distribution tailored to the target task. Experiments on multiple benchmarks demonstrate that DR-LoRA consistently outperforms standard LoRA and static allocation strategies under the same parameter budget, achieving superior task performance with more efficient parameter utilization.
STORM: A Spatio-Temporal Factor Model Based on Dual Vector Quantized Variational Autoencoders for Financial Trading
In financial trading, factor models are widely used to price assets and capture excess returns from mispricing. Recently, we have witnessed the rise of variational autoencoder-based latent factor models, which learn latent factors self-adaptively. While these models focus on modeling overall market conditions, they often fail to effectively capture the temporal patterns of individual stocks. Additionally, representing multiple factors as single values simplifies the model but limits its ability to capture complex relationships and dependencies. As a result, the learned factors are of low quality and lack diversity, reducing their effectiveness and robustness across different trading periods. To address these issues, we propose a Spatio-Temporal factOR Model based on dual vector quantized variational autoencoders, named STORM, which extracts features of stocks from temporal and spatial perspectives, then fuses and aligns these features at the fine-grained and semantic level, and represents the factors as multi-dimensional embeddings. The discrete codebooks cluster similar factor embeddings, ensuring orthogonality and diversity, which helps distinguish between different factors and enables factor selection in financial trading. To show the performance of the proposed factor model, we apply it to two downstream experiments: portfolio management on two stock datasets and individual trading tasks on six specific stocks. The extensive experiments demonstrate STORM's flexibility in adapting to downstream tasks and superior performance over baseline models.
Higher Satisfaction, Lower Cost: A Technical Report on How LLMs Revolutionize Meituan's Intelligent Interaction Systems
Enhancing customer experience is essential for business success, particularly as service demands grow in scale and complexity. Generative artificial intelligence and Large Language Models (LLMs) have empowered intelligent interaction systems to deliver efficient, personalized, and 24/7 support. In practice, intelligent interaction systems encounter several challenges: (1) Constructing high-quality data for cold-start training is difficult, hindering self-evolution and raising labor costs. (2) Multi-turn dialogue performance remains suboptimal due to inadequate intent understanding, rule compliance, and solution extraction. (3) Frequent evolution of business rules affects system operability and transferability, constraining low-cost expansion and adaptability. (4) Reliance on a single LLM is insufficient in complex scenarios, where the absence of multi-agent frameworks and effective collaboration undermines process completeness and service quality. (5) The open-domain nature of multi-turn dialogues, lacking unified golden answers, hampers quantitative evaluation and continuous optimization. To address these challenges, we introduce WOWService, an intelligent interaction system tailored for industrial applications. With the integration of LLMs and multi-agent architectures, WOWService enables autonomous task management and collaborative problem-solving. Specifically, WOWService focuses on core modules including data construction, general capability enhancement, business scenario adaptation, multi-agent coordination, and automated evaluation. Currently, WOWService is deployed on the Meituan App, achieving significant gains in key metrics, e.g., User Satisfaction Metric 1 (USM 1) -27.53% and User Satisfaction Metric 2 (USM 2) +25.51%, demonstrating its effectiveness in capturing user needs and advancing personalized service.
comment: 36 pages, 14 figures
Toward Conversational Hungarian Speech Recognition: Introducing the BEA-Large and BEA-Dialogue Datasets
The advancement of automatic speech recognition (ASR) has been largely enhanced by extensive datasets in high-resource languages, while languages such as Hungarian remain underrepresented due to limited spontaneous and conversational corpora. To address this gap, we introduce two new datasets -- BEA-Large and BEA-Dialogue -- constructed from the previously unprocessed portions of the Hungarian speech corpus named BEA. BEA-Large extends BEA-Base with 255 hours of spontaneous speech from 433 speakers, enriched with detailed segment-level metadata. BEA-Dialogue, comprising 85 hours of spontaneous conversations, is a Hungarian speech corpus featuring natural dialogues partitioned into speaker-independent subsets, supporting research in conversational ASR and speaker diarization. We establish reproducible baselines on these datasets using publicly available ASR models, with the fine-tuned Fast Conformer model achieving word error rates as low as 14.18% on spontaneous and 4.8% on repeated speech. Diarization experiments yield diarization error rates between 12.46% and 17.40%, providing reference points for future improvements. The results highlight the persistent difficulty of conversational ASR, particularly due to disfluencies, overlaps, and informal speech patterns. By releasing these datasets and baselines, we aim to advance Hungarian speech technology and offer a methodological framework for developing spontaneous and conversational benchmarks in other languages.
comment: Submitted to LREC 2026
When Single-Agent with Skills Replace Multi-Agent Systems and When They Fail
Multi-agent AI systems have proven effective for complex reasoning. These systems are compounded by specialized agents, which collaborate through explicit communication, but incur substantial computational overhead. A natural question arises: can we achieve similar modularity benefits with a single agent that selects from a library of skills? We explore this question by viewing skills as internalized agent behaviors. From this perspective, a multi-agent system can be compiled into an equivalent single-agent system, trading inter-agent communication for skill selection. Our preliminary experiments suggest this approach can substantially reduce token usage and latency while maintaining competitive accuracy on reasoning benchmarks. However, this efficiency raises a deeper question that has received little attention: how does skill selection scale as libraries grow? Drawing on principles from cognitive science, we propose that LLM skill selection exhibits bounded capacity analogous to human decision-making. We investigate the scaling behavior of skill selection and observe a striking pattern. Rather than degrading gradually, selection accuracy remains stable up to a critical library size, then drops sharply, indicating a phase transition reminiscent of capacity limits in human cognition. Furthermore, we find evidence that semantic confusability among similar skills, rather than library size alone, plays a central role in this degradation. This perspective suggests that hierarchical organization, which has long helped humans manage complex choices, may similarly benefit AI systems. Our initial results with hierarchical routing support this hypothesis. This work opens new questions about the fundamental limits of semantic-based skill selection in LLMs and offers a cognitive-grounded framework and practical guidelines for designing scalable skill-based agents.
comment: 25 pages, technical report
QueryIPI: Query-agnostic Indirect Prompt Injection on Coding Agents
Modern coding agents integrated into IDEs orchestrate powerful tools and high-privilege system access, creating a high-stakes attack surface. Prior work on Indirect Prompt Injection (IPI) is mainly query-specific, requiring particular user queries as triggers and leading to poor generalizability. We propose query-agnostic IPI, a new attack paradigm that reliably executes malicious payloads under arbitrary user queries. Our key insight is that malicious payloads should leverage the invariant prompt context (i.e., system prompt and tool descriptions) rather than variant user queries. We present QueryIPI, an automated framework that uses tool descriptions as optimizable payloads and refines them via iterative, prompt-based blackbox optimization. QueryIPI leverages system invariants for initial seed generation aligned with agent conventions, and iterative reflection to resolve instruction-following failures and safety refusals. Experiments on five simulated agents show that QueryIPI achieves up to 87% success rate, outperforming the best baseline (50%). Crucially, generated malicious descriptions transfer to real-world coding agents, highlighting a practical security risk.
Spiffy: Multiplying Diffusion LLM Acceleration via Lossless Speculative Decoding
Diffusion LLMs (dLLMs) have recently emerged as a powerful alternative to autoregressive LLMs (AR-LLMs) with the potential to operate at significantly higher token generation rates. However, currently available open-source dLLMs often generate at much lower rates, typically decoding only a single token at every denoising timestep in order to maximize output quality. We present Spiffy, a speculative decoding algorithm that accelerates dLLM inference by $\mathbf{2.8{-}3.1\times}$ while provably preserving the model's output distribution. This work addresses the unique challenges involved in applying ideas from speculative decoding of AR-LLMs to the dLLM setting. Spiffy proposes draft states by leveraging the dLLM's distribution itself in an auto-speculative manner. This approach is efficient and effective, and eliminates the overheads of training and running an independent draft model. To structure the candidate draft states, we propose a novel directed draft graph which is uniquely designed to take advantage of the bidirectional, block-wise nature of dLLM generation and can be verified in parallel by the dLLM. To further optimize the structure of these draft graphs, we introduce an efficient, offline calibration algorithm that procedurally determines high-quality graph configurations. These optimized draft graphs, enabling increased acceptance rates, lead to a significant boost in the overall speedup achieved by the system. Crucially, Spiffy is also complementary to other recent innovations in improving dLLM generation speeds such as KV-caching and multi-token unmasking. We demonstrate that when combined with such parallel decoding algorithms, Spiffy is able to effectively multiply the benefits of these methods leading to total speedups of up to $\mathbf{7.9\times}$.
comment: Original version uploaded on Sep 22, 2025. (v2): Extended Table 2 with additional analysis and referenced it in Sec 5.2. (v3): Added note to Sec 4.2 and Appendix A.2 specifying conditions for losslessness
Temporal Knowledge Graph Question Answering: A Survey
Knowledge Base Question Answering (KBQA) has been a long-standing field to answer questions based on knowledge bases. Recently, the evolving dynamics of knowledge have attracted a growing interest in Temporal Knowledge Graph Question Answering (TKGQA), an emerging task to answer temporal questions. However, this field grapples with ambiguities in defining temporal questions and lacks a systematic categorization of existing methods for TKGQA. In response, this paper provides a thorough survey from two perspectives: the taxonomy of temporal questions and the methodological categorization for TKGQA. Specifically, we first establish a detailed taxonomy of temporal questions engaged in prior studies. Subsequently, we provide a comprehensive review of TKGQA techniques of two categories: semantic parsing-based and TKG embedding-based. Building on this review, the paper outlines potential research directions aimed at advancing the field of TKGQA. This work aims to serve as a comprehensive reference for TKGQA and to stimulate further research.
comment: 8 pages, 3 figures. This work has been submitted to the IEEE for possible publication
KLAN: Kuaishou Landing-page Adaptive Navigator
Modern online platforms configure multiple pages to accommodate diverse user needs. This multi-page architecture inherently establishes a two-stage interaction paradigm between the user and the platform: (1) Stage I: page navigation, navigating users to a specific page and (2) Stage II: in-page interaction, where users engage with customized content within the specific page. While the majority of research has been focusing on the sequential recommendation task that improves users' feedback in Stage II, there has been little investigation on how to achieve better page navigation in Stage I. To fill this gap, we formally define the task of Personalized Landing Page Modeling (PLPM) into the field of recommender systems: Given a user upon app entry, the goal of PLPM is to proactively select the most suitable landing page from a set of candidates (e.g., functional tabs, content channels, or aggregation pages) to optimize the short-term PDR metric and the long-term user engagement and satisfaction metrics, while adhering to industrial constraints. Additionally, we propose KLAN (Kuaishou Landing-page Adaptive Navigator), a hierarchical solution framework designed to provide personalized landing pages under the formulation of PLPM. KLAN comprises three key components: (1) KLAN-ISP captures inter-day static page preference; (2) KLAN-IIT captures intra-day dynamic interest transitions and (3) KLAN-AM adaptively integrates both components for optimal navigation decisions. Extensive online experiments conducted on the Kuaishou platform demonstrate the effectiveness of KLAN, obtaining +0.205% and +0.192% improvements on in Daily Active Users (DAU) and user Lifetime (LT). Our KLAN is ultimately deployed on the online platform at full traffic, serving hundreds of millions of users. To promote further research in this important area, we will release our dataset and code upon paper acceptance.
comment: We propose PLPM, a new task for selecting optimal landing pages upon user entry. Our solution, KLAN, models static and dynamic user interests and is successfully deployed on Kuaishou, improving DAU and user lifetime
Advancing ESG Intelligence: An Expert-level Agent and Comprehensive Benchmark for Sustainable Finance
Environmental, social, and governance (ESG) criteria are essential for evaluating corporate sustainability and ethical performance. However, professional ESG analysis is hindered by data fragmentation across unstructured sources, and existing large language models (LLMs) often struggle with the complex, multi-step workflows required for rigorous auditing. To address these limitations, we introduce ESGAgent, a hierarchical multi-agent system empowered by a specialized toolset, including retrieval augmentation, web search and domain-specific functions, to generate in-depth ESG analysis. Complementing this agentic system, we present a comprehensive three-level benchmark derived from 310 corporate sustainability reports, designed to evaluate capabilities ranging from atomic common-sense questions to the generation of integrated, in-depth analysis. Empirical evaluations demonstrate that ESGAgent outperforms state-of-the-art closed-source LLMs with an average accuracy of 84.15% on atomic question-answering tasks, and excels in professional report generation by integrating rich charts and verifiable references. These findings confirm the diagnostic value of our benchmark, establishing it as a vital testbed for assessing general and advanced agentic capabilities in high-stakes vertical domains.
The Agentic Leash: Extracting Causal Feedback Fuzzy Cognitive Maps with LLMs
We design a large-language-model (LLM) agent that extracts causal feedback fuzzy cognitive maps (FCMs) from raw text. The causal learning or extraction process is agentic both because of the LLM's semi-autonomy and because ultimately the FCM dynamical system's equilibria drive the LLM agents to fetch and process causal text. The fetched text can in principle modify the adaptive FCM causal structure and so modify the source of its quasi-autonomy--its equilibrium limit cycles and fixed-point attractors. This bidirectional process endows the evolving FCM dynamical system with a degree of autonomy while still staying on its agentic leash. We show in particular that a sequence of three finely tuned system instructions guide an LLM agent as it systematically extracts key nouns and noun phrases from text, as it extracts FCM concept nodes from among those nouns and noun phrases, and then as it extracts or infers partial or fuzzy causal edges between those FCM nodes. We test this FCM generation on a recent essay about the promise of AI from the late diplomat and political theorist Henry Kissinger and his colleagues. This three-step process produced FCM dynamical systems that converged to the same equilibrium limit cycles as did the human-generated FCMs even though the human-generated FCM differed in the number of nodes and edges. A final FCM mixed generated FCMs from separate Gemini and ChatGPT LLM agents. The mixed FCM absorbed the equilibria of its dominant mixture component but also created new equilibria of its own to better approximate the underlying causal dynamical system.
comment: 15 figures
Soft Contrastive Learning for Time Series ICLR 2024
Contrastive learning has shown to be effective to learn representations from time series in a self-supervised way. However, contrasting similar time series instances or values from adjacent timestamps within a time series leads to ignore their inherent correlations, which results in deteriorating the quality of learned representations. To address this issue, we propose SoftCLT, a simple yet effective soft contrastive learning strategy for time series. This is achieved by introducing instance-wise and temporal contrastive loss with soft assignments ranging from zero to one. Specifically, we define soft assignments for 1) instance-wise contrastive loss by the distance between time series on the data space, and 2) temporal contrastive loss by the difference of timestamps. SoftCLT is a plug-and-play method for time series contrastive learning that improves the quality of learned representations without bells and whistles. In experiments, we demonstrate that SoftCLT consistently improves the performance in various downstream tasks including classification, semi-supervised learning, transfer learning, and anomaly detection, showing state-of-the-art performance. Code is available at this repository: https://github.com/seunghan96/softclt.
comment: ICLR 2024 Spotlight
Beyond One-Size-Fits-All: A Survey of Personalized Affective Computing in Human-Agent Interaction
In personalized machine learning, the aim of personalization is to train a model that caters to a specific individual or group of individuals by optimizing one or more performance metrics and adhering to specific constraints. In this paper, we discuss the need for personalization in affective computing and present the first survey of existing approaches for personalization in affective computing. Our review spans training techniques and objectives towards the personalization of affective computing models across various interaction modes and contexts. We develop a taxonomy that clusters existing approaches into Data-level and Model-level approaches. Across the Data-Level and Model-Level broad categories, we group existing approaches into seven sub-categories: (1) User-Specific Models, (2) Group-Specific Models, (3) Weighting-Based Approaches, (4) Feature Augmentation, (5) Generative-Based Models which fall into the Data-Level approaches, (6) Fine-Tuning Approaches, and (7) Multitask Learning Approaches falling under the model-level approaches. We provide a problem formulation for personalized affective computing, and to each of the identified sub-categories. Additionally, we provide a statistical analysis of the surveyed literature, analyzing the prevalence of different affective computing tasks, interaction modes (i.e. Human-Computer Interaction (HCI), Human-Human interaction (HHI), Human-Robot Interaction (HRI)), interaction contexts (e.g. educative, social, gaming, etc.), and the level of personalization among the surveyed works. Based on our analysis, we provide a road-map for researchers interested in exploring this direction.
DatBench: Discriminative, Faithful, and Efficient VLM Evaluations
Empirical evaluation serves as the primary compass guiding research progress in foundation models. Despite a large body of work focused on training frontier vision-language models (VLMs), approaches to their evaluation remain nascent. To guide their maturation, we propose three desiderata that evaluations should satisfy: (1) faithfulness to the modality and application, (2) discriminability between models of varying quality, and (3) efficiency in compute. Through this lens, we identify critical failure modes that violate faithfulness and discriminability, misrepresenting model capabilities: (i) multiple-choice formats reward guessing, poorly reflect downstream use cases, and saturate early as models improve; (ii) blindly solvable questions, which can be answered without images, constitute up to 70% of some evaluations; and (iii) mislabeled or ambiguous samples compromise up to 42% of examples in certain datasets. Regarding efficiency, the computational burden of evaluating frontier models has become prohibitive: by some accounts, nearly 20% of development compute is devoted to evaluation alone. Rather than discarding existing benchmarks, we curate them via transformation and filtering to maximize fidelity and discriminability. We find that converting multiple-choice questions to generative tasks reveals sharp capability drops of up to 35%. In addition, filtering blindly solvable and mislabeled samples improves discriminative power while simultaneously reducing computational cost. We release DatBench-Full, a cleaned evaluation suite of 33 datasets spanning nine VLM capabilities, and DatBench, a discriminative subset that achieves 13x average speedup (up to 50x) while closely matching the discriminative power of the original datasets. Our work outlines a path toward evaluation practices that are both rigorous and sustainable as VLMs continue to scale.
Secure and Efficient Access Control for Computer-Use Agents via Context Space
Large language model (LLM)-based computer-use agents represent a convergence of AI and OS capabilities, enabling natural language to control system- and application-level functions. However, due to LLMs' inherent uncertainty issues, granting agents control over computers poses significant security risks. When agent actions deviate from user intentions, they can cause irreversible consequences. Existing mitigation approaches, such as user confirmation and LLM-based dynamic action validation, still suffer from limitations in usability, security, and performance. To address these challenges, we propose CSAgent, a system-level, static policy-based access control framework for computer-use agents. To bridge the gap between static policy and dynamic context and user intent, CSAgent introduces intent- and context-aware policies, and provides an automated toolchain to assist developers in constructing and refining them. CSAgent enforces these policies through an optimized OS service, ensuring that agent actions can only be executed under specific user intents and contexts. CSAgent supports protecting agents that control computers through diverse interfaces, including API, CLI, and GUI. We implement and evaluate CSAgent, which successfully defends against all attacks in the benchmarks while introducing only 1.99% performance overhead and 5.42% utility decrease.
Creating 'Full-Stack' Hybrid Reasoning Systems that Prioritize and Enhance Human Intelligence
The idea of augmented or hybrid intelligence offers a compelling vision for combining human and AI capabilities, especially in tasks where human wisdom, expertise, or common sense are essential. Unfortunately, human reasoning can be flawed and shortsighted, resulting in adverse individual impacts or even long-term societal consequences. While strong efforts are being made to develop and optimize the AI aspect of hybrid reasoning, the real urgency lies in fostering wiser and more intelligent human participation. Tools that enhance critical thinking, ingenuity, expertise, and even wisdom could be essential in addressing the challenges of our emerging future. This paper proposes the development of generative AI-based tools that enhance both the human ability to reflect upon a problem as well as the ability to explore the technical aspects of it. A high-level model is also described for integrating AI and human capabilities in a way that centralizes human participation and control.
comment: 10 pages; 3 figures; 1 table Undergoing significant revision post-peer review
MPCI-Bench: A Benchmark for Multimodal Pairwise Contextual Integrity Evaluation of Language Model Agents
As language-model agents evolve from passive chatbots into proactive assistants that handle personal data, evaluating their adherence to social norms becomes increasingly critical, often through the lens of Contextual Integrity (CI). However, existing CI benchmarks are largely text-centric and primarily emphasize negative refusal scenarios, overlooking multimodal privacy risks and the fundamental trade-off between privacy and utility. In this paper, we introduce MPCI-Bench, the first Multimodal Pairwise Contextual Integrity benchmark for evaluating privacy behavior in agentic settings. MPCI-Bench consists of paired positive and negative instances derived from the same visual source and instantiated across three tiers: normative Seed judgments, context-rich Story reasoning, and executable agent action Traces. Data quality is ensured through a Tri-Principle Iterative Refinement pipeline. Evaluations of state-of-the-art multimodal models reveal systematic failures to balance privacy and utility and a pronounced modality leakage gap, where sensitive visual information is leaked more frequently than textual information. We will open-source MPCI-Bench to facilitate future research on agentic CI.
comment: Submitted to ACL 2026
Are Biological Systems More Intelligent Than Artificial Intelligence?
Are biological self-organising systems more ``intelligent'' than artificial intelligence (AI)? If so, why? I address this question using a mathematical framework that defines intelligence in terms of adaptability. Systems are modelled as stacks of abstraction layers (\emph{Stack Theory}) and compared by how effectively they delegate agentic control down their stacks. I illustrate this using computational, biological, military, governmental, and economic systems. Contemporary AI typically relies on static, human-engineered stacks whose lower layers are fixed during deployment. Put provocatively, such systems resemble inflexible bureaucracies that adapt only top-down. Biological systems are more intelligent because they delegate adaptation. Formally, I prove a theorem (\emph{The Law of the Stack}) showing that adaptability at higher layers is bottlenecked by adaptability at lower layers. I further show that, under standard viability assumptions, maximising adaptability is equivalent to minimising variational free energy, implying that delegation is necessary for free-energy minimisation. Generalising bioelectric accounts of cancer as isolation from collective informational structures, I analyse cancer-like failure modes in non-biological systems when delegation is inadequate. This yields design principles for building robust systems via delegated control, and reframes hybrid agents (e.g. organoids or human--AI systems) as weak boundary-condition design problems in which constraints shape low-level policy spaces while preserving collective identity.
comment: Definitions shared with arXiv:2404.07227, arXiv:2302.00843
Reinforcement Learning with Exogenous States and Rewards
Exogenous state variables and rewards can slow reinforcement learning by injecting uncontrolled variation into the reward signal. This paper formalizes exogenous state variables and rewards and shows that if the reward function decomposes additively into endogenous and exogenous components, the MDP can be decomposed into an exogenous Markov Reward Process (based on the exogenous reward) and an endogenous Markov Decision Process (optimizing the endogenous reward). Any optimal policy for the endogenous MDP is also an optimal policy for the original MDP, but because the endogenous reward typically has reduced variance, the endogenous MDP is easier to solve. We study settings where the decomposition of the state space into exogenous and endogenous state spaces is not given but must be discovered. The paper introduces and proves correctness of algorithms for discovering the exogenous and endogenous subspaces of the state space when they are mixed through linear combination. These algorithms can be applied during reinforcement learning to discover the exogenous subspace, remove the exogenous reward, and focus reinforcement learning on the endogenous MDP. Experiments on a variety of challenging synthetic MDPs show that these methods, applied online, discover large exogenous state spaces and produce substantial speedups in reinforcement learning.
comment: Substantial rewrite to improve rigor and clarity in response to referee reports at JMLR
A Beautiful Mind: Principles and Strategies for AI-Augmented Human Reasoning
Amidst the race to create more intelligent machines there is a risk that we will rely on AI in ways that reduce our own agency as humans. To reduce this risk, we could aim to create tools that prioritize and enhance the human role in human-AI interactions. This paper outlines a human-centered augmented reasoning paradigm by 1. Articulating fundamental principles for augmented reasoning tools, emphasizing their ergonomic, pre-conclusive, directable, exploratory, enhancing, and integrated nature; 2. Proposing a 'many tasks, many tools' approach to ensuring human influence and control, and 3. Offering examples of interaction modes that can serve as bridges between human reasoning and AI algorithms.
comment: The content of this paper will be superseded by future works
Evaluating Detection Thresholds: The Impact of False Positives and Negatives on Super-Resolution Ultrasound Localization Microscopy
Super-resolution ultrasound imaging with ultrasound localization microscopy (ULM) offers a high-resolution view of microvascular structures. Yet, ULM image quality heavily relies on precise microbubble (MB) detection. Despite the crucial role of localization algorithms, there has been limited focus on the practical pitfalls in MB detection tasks such as setting the detection threshold. This study examines how False Positives (FPs) and False Negatives (FNs) affect ULM image quality by systematically adding controlled detection errors to simulated data. Results indicate that while both FP and FN rates impact Peak Signal-to-Noise Ratio (PSNR) similarly, increasing FP rates from 0\% to 20\% decreases Structural Similarity Index (SSIM) by 7\%, whereas same FN rates cause a greater drop of around 45\%. Moreover, dense MB regions are more resilient to detection errors, while sparse regions show high sensitivity, showcasing the need for robust MB detection frameworks to enhance super-resolution imaging.
Do What You Say: Steering Vision-Language-Action Models via Runtime Reasoning-Action Alignment Verification
Reasoning Vision Language Action (VLA) models improve robotic instruction-following by generating step-by-step textual plans before low-level actions, an approach inspired by Chain-of-Thought (CoT) reasoning in language models. Yet even with a correct textual plan, the generated actions can still miss the intended outcomes in the plan, especially in out-of-distribution (OOD) scenarios. We formalize this phenomenon as a lack of embodied CoT faithfulness, and introduce a training-free, runtime policy steering method for reasoning-action alignment. Given a reasoning VLA's intermediate textual plan, our framework samples multiple candidate action sequences from the same model, predicts their outcomes via simulation, and uses a pre-trained Vision-Language Model (VLM) to select the sequence whose outcome best aligns with the VLA's own textual plan. Only executing action sequences that align with the textual reasoning turns our base VLA's natural action diversity from a source of error into a strength, boosting robustness to semantic and visual OOD perturbations and enabling novel behavior composition without costly re-training. We also contribute a reasoning-annotated extension of LIBERO-100, environment variations tailored for OOD evaluation, and demonstrate up to 15% performance gain over prior work on behavior composition tasks and scales with compute and data diversity. Project Website at: https://yilin-wu98.github.io/steering-reasoning-vla/
Why are there many equally good models? An Anatomy of the Rashomon Effect
The Rashomon effect -- the existence of multiple, distinct models that achieve nearly equivalent predictive performance -- has emerged as a fundamental phenomenon in modern machine learning and statistics. In this paper, we explore the causes underlying the Rashomon effect, organizing them into three categories: statistical sources arising from finite samples and noise in the data-generating process; structural sources arising from non-convexity of optimization objectives and unobserved variables that create fundamental non-identifiability; and procedural sources arising from limitations of optimization algorithms and deliberate restrictions to suboptimal model classes. We synthesize insights from machine learning, statistics, and optimization literature to provide a unified framework for understanding why the multiplicity of good models arises. A key distinction emerges: statistical multiplicity diminishes with more data, structural multiplicity persists asymptotically and cannot be resolved without different data or additional assumptions, and procedural multiplicity reflects choices made by practitioners. Beyond characterizing causes, we discuss both the challenges and opportunities presented by the Rashomon effect, including implications for inference, interpretability, fairness, and decision-making under uncertainty.
MHLA: Restoring Expressivity of Linear Attention via Token-Level Multi-Head
While the Transformer architecture dominates many fields, its quadratic self-attention complexity hinders its use in large-scale applications. Linear attention offers an efficient alternative, but its direct application often degrades performance, with existing fixes typically re-introducing computational overhead through extra modules (e.g., depthwise separable convolution) that defeat the original purpose. In this work, we identify a key failure mode in these methods: global context collapse, where the model loses representational diversity. To address this, we propose Multi-Head Linear Attention (MHLA), which preserves this diversity by computing attention within divided heads along the token dimension. We prove that MHLA maintains linear complexity while recovering much of the expressive power of softmax attention, and verify its effectiveness across multiple domains, achieving a 3.6\% improvement on ImageNet classification, a 6.3\% gain on NLP, a 12.6\% improvement on image generation, and a 41\% enhancement on video generation under the same time complexity.
comment: Code: https://github.com/DAGroup-PKU/MHLA/ Project website: https://dagroup-pku.github.io/MHLA/
Uncertainty-Aware Multi-Objective Reinforcement Learning-Guided Diffusion Models for 3D De Novo Molecular Design NeurIPS 2025
Designing de novo 3D molecules with desirable properties remains a fundamental challenge in drug discovery and molecular engineering. While diffusion models have demonstrated remarkable capabilities in generating high-quality 3D molecular structures, they often struggle to effectively control complex multi-objective constraints critical for real-world applications. In this study, we propose an uncertainty-aware Reinforcement Learning (RL) framework to guide the optimization of 3D molecular diffusion models toward multiple property objectives while enhancing the overall quality of the generated molecules. Our method leverages surrogate models with predictive uncertainty estimation to dynamically shape reward functions, facilitating balance across multiple optimization objectives. We comprehensively evaluate our framework across three benchmark datasets and multiple diffusion model architectures, consistently outperforming baselines for molecular quality and property optimization. Additionally, Molecular Dynamics (MD) simulations and ADMET profiling of top generated candidates indicate promising drug-like behavior and binding stability, comparable to known Epidermal Growth Factor Receptor (EGFR) inhibitors. Our results demonstrate the strong potential of RL-guided generative diffusion models for advancing automated molecular design.
comment: Accepted at NeurIPS 2025
Pervasive Annotation Errors Break Text-to-SQL Benchmarks and Leaderboards
Researchers have proposed many text-to-SQL techniques to streamline data analytics and accelerate the development of database-driven applications. To compare these techniques and select the best one for deployment, the community depends on public benchmarks and their leaderboards. Since these benchmarks heavily rely on human annotations during question construction and answer evaluation, the validity of the annotations is crucial. In this paper, we conduct an empirical study that (i) benchmarks annotation error rates for two widely used text-to-SQL benchmarks, BIRD and Spider 2.0-Snow, and (ii) corrects a subset of the BIRD development (Dev) set to measure the impact of annotation errors on text-to-SQL agent performance and leaderboard rankings. Through expert analysis, we show that BIRD Mini-Dev and Spider 2.0-Snow have error rates of 52.8% and 62.8%, respectively. We re-evaluate all 16 open-source agents from the BIRD leaderboard on both the original and the corrected BIRD Dev subsets. We show that performance changes range from -7% to 31% (in relative terms) and rank changes range from $-9$ to $+9$ positions. We further assess whether these impacts generalize to the full BIRD Dev set. We find that the rankings of agents on the uncorrected subset correlate strongly with those on the full Dev set (Spearman's $r_s$=0.85, $p$=3.26e-5), whereas they correlate weakly with those on the corrected subset (Spearman's $r_s$=0.32, $p$=0.23). These findings show that annotation errors can significantly distort reported performance and rankings, potentially misguiding research directions or deployment choices. Our code and data are available at https://github.com/uiuc-kang-lab/text_to_sql_benchmarks.
comment: 18 pages, 14 figures, 9 tables
Revisiting the Uniform Information Density Hypothesis in LLM Reasoning Traces
The Uniform Information Density (UID) hypothesis suggests that effective communication maintains a stable flow of information. In this work, we revisit this principle in the context of large language model (LLM) reasoning traces, asking whether step-level uniformity reflects reasoning quality. To this end, we propose an entropy-based stepwise information density metric and introduce two complementary measures of uniformity, local and global uniformity scores. Across the experiments on six different reasoning benchmarks, we find that step-level uniformity not only provides a strong theoretical lens but also yields practical performance benefits; for example, selecting reasoning traces with more uniform information density at the step-level improves accuracy by 10-32\% relative gains over baselines at AIME2025. Our analysis further reveals that correct reasoning traces tend to avoid sharp information density spikes, while incorrect traces exhibit irregular information bursts. These results demonstrate that UID-inspired information density measures outperform alternative internal signals as predictors of reasoning quality. Results highlight the uniformity of the information density as a robust diagnostic and selection criterion for building more reliable and accurate reasoning systems.
MOSS Transcribe Diarize: Accurate Transcription with Speaker Diarization
Speaker-Attributed, Time-Stamped Transcription (SATS) aims to transcribe what is said and to precisely determine the timing of each speaker, which is particularly valuable for meeting transcription. Existing SATS systems rarely adopt an end-to-end formulation and are further constrained by limited context windows, weak long-range speaker memory, and the inability to output timestamps. To address these limitations, we present MOSS Transcribe Diarize, a unified multimodal large language model that jointly performs Speaker-Attributed, Time-Stamped Transcription in an end-to-end paradigm. Trained on extensive real wild data and equipped with a 128k context window for up to 90-minute inputs, MOSS Transcribe Diarize scales well and generalizes robustly. Across comprehensive evaluations, it outperforms state-of-the-art commercial systems on multiple public and in-house benchmarks.
To Retrieve or To Think? An Agentic Approach for Context Evolution
Current context augmentation methods, such as retrieval-augmented generation, are essential for solving knowledge-intensive reasoning tasks. However, they typically adhere to a rigid, brute-force strategy that executes retrieval at every step. This indiscriminate approach not only incurs unnecessary computational costs but also degrades performance by saturating the context with irrelevant noise. To address these limitations, we introduce Agentic Context Evolution (ACE), a framework inspired by human metacognition that dynamically determines whether to seek new evidence or reason with existing knowledge. ACE employs a central orchestrator agent to make decisions strategically via majority voting. It aims to alternate between activating a retriever agent for external retrieval and a reasoner agent for internal analysis and refinement. By eliminating redundant retrieval steps, ACE maintains a concise and evolved context. Extensive experiments on challenging multi-hop QA benchmarks demonstrate that ACE significantly outperforms competitive baselines in accuracy while achieving efficient token consumption. Our work provides valuable insights into advancing context-evolved generation for complex, knowledge-intensive tasks.
LSRIF: Logic-Structured Reinforcement Learning for Instruction Following
Instruction-following is critical for large language models, but real-world instructions often contain logical structures such as sequential dependencies and conditional branching. Existing methods typically construct datasets with parallel constraints and optimize average rewards, ignoring logical dependencies and yielding noisy signals. We propose a logic-structured training framework LSRIF that explicitly models instruction logic. We first construct a dataset LSRInstruct with constraint structures such as parallel, sequential, and conditional types, and then design structure-aware rewarding method LSRIF including average aggregation for parallel structures, failure-penalty propagation for sequential structures, and selective rewards for conditional branches. Experiments show LSRIF brings significant improvements in instruction-following (in-domain and out-of-domain) and general reasoning. Analysis reveals that learning with explicit logic structures brings parameter updates in attention layers and sharpens token-level attention to constraints and logical operators.
MORE: Multi-Objective Adversarial Attacks on Speech Recognition
The emergence of large-scale automatic speech recognition (ASR) models such as Whisper has greatly expanded their adoption across diverse real-world applications. Ensuring robustness against even minor input perturbations is therefore critical for maintaining reliable performance in real-time environments. While prior work has mainly examined accuracy degradation under adversarial attacks, robustness with respect to efficiency remains largely unexplored. This narrow focus provides only a partial understanding of ASR model vulnerabilities. To address this gap, we conduct a comprehensive study of ASR robustness under multiple attack scenarios. We introduce MORE, a multi-objective repetitive doubling encouragement attack, which jointly degrades recognition accuracy and inference efficiency through a hierarchical staged repulsion-anchoring mechanism. Specifically, we reformulate multi-objective adversarial optimization into a hierarchical framework that sequentially achieves the dual objectives. To further amplify effectiveness, we propose a novel repetitive encouragement doubling objective (REDO) that induces duplicative text generation by maintaining accuracy degradation and periodically doubling the predicted sequence length. Overall, MORE compels ASR models to produce incorrect transcriptions at a substantially higher computational cost, triggered by a single adversarial input. Experiments show that MORE consistently yields significantly longer transcriptions while maintaining high word error rates compared to existing baselines, underscoring its effectiveness in multi-objective adversarial attack.
comment: 19 pages
Mitigating Gender Bias via Fostering Exploratory Thinking in LLMs
Large Language Models (LLMs) often exhibit gender bias, resulting in unequal treatment of male and female subjects across different contexts. To address this issue, we propose a novel data generation framework that fosters exploratory thinking in LLMs. Our approach prompts models to generate story pairs featuring male and female protagonists in structurally identical, morally ambiguous scenarios, then elicits and compares their moral judgments. When inconsistencies arise, the model is guided to produce balanced, gender-neutral judgments. These story-judgment pairs are used to fine-tune or optimize the models via Direct Preference Optimization (DPO). Experimental results show that our method significantly reduces gender bias while preserving or even enhancing general model capabilities. We will release the code and generated data. We release the code and generated data at: https://github.com/WeiKangda/LLMs-Exploratory-Bias-Mitigation/tree/main.
GI-Bench: A Panoramic Benchmark Revealing the Knowledge-Experience Dissociation of Multimodal Large Language Models in Gastrointestinal Endoscopy Against Clinical Standards
Multimodal Large Language Models (MLLMs) show promise in gastroenterology, yet their performance against comprehensive clinical workflows and human benchmarks remains unverified. To systematically evaluate state-of-the-art MLLMs across a panoramic gastrointestinal endoscopy workflow and determine their clinical utility compared with human endoscopists. We constructed GI-Bench, a benchmark encompassing 20 fine-grained lesion categories. Twelve MLLMs were evaluated across a five-stage clinical workflow: anatomical localization, lesion identification, diagnosis, findings description, and management. Model performance was benchmarked against three junior endoscopists and three residency trainees using Macro-F1, mean Intersection-over-Union (mIoU), and multi-dimensional Likert scale. Gemini-3-Pro achieved state-of-the-art performance. In diagnostic reasoning, top-tier models (Macro-F1 0.641) outperformed trainees (0.492) and rivaled junior endoscopists (0.727; p>0.05). However, a critical "spatial grounding bottleneck" persisted; human lesion localization (mIoU >0.506) significantly outperformed the best model (0.345; p<0.05). Furthermore, qualitative analysis revealed a "fluency-accuracy paradox": models generated reports with superior linguistic readability compared with humans (p<0.05) but exhibited significantly lower factual correctness (p<0.05) due to "over-interpretation" and hallucination of visual features. GI-Bench maintains a dynamic leaderboard that tracks the evolving performance of MLLMs in clinical endoscopy. The current rankings and benchmark results are available at https://roterdl.github.io/GIBench/.
comment: 45 pages, 17 figures, 6 tables. Leaderboard available at: https://roterdl.github.io/GIBench/ . Includes supplementary material
GeoMotionGPT: Geometry-Aligned Motion Understanding with Large Language Models
Discrete motion tokenization has recently enabled Large Language Models (LLMs) to serve as versatile backbones for motion understanding and motion-language reasoning. However, existing pipelines typically decouple motion quantization from semantic embedding learning, linking them solely via token IDs. This approach fails to effectively align the intrinsic geometry of the motion space with the embedding space, thereby hindering the LLM's capacity for nuanced motion reasoning. We argue that alignment is most effective when both modalities share a unified geometric basis. Therefore, instead of forcing the LLM to reconstruct the complex geometry among motion tokens from scratch, we present a novel framework that explicitly enforces orthogonality on both the motion codebook and the LLM embedding space, ensuring that their relational structures naturally mirror each other. Specifically, we employ a decoder-only quantizer with Gumbel-Softmax for differentiable training and balanced codebook usage. To bridge the modalities, we use a sparse projection that maps motion codes into the LLM embedding space while preserving orthogonality. Finally, a two-stage orthonormal regularization schedule enforces soft constraints during tokenizer training and LLM fine-tuning to maintain geometric alignment without hindering semantic adaptation. Extensive experiments on HumanML3D demonstrate that our framework achieves a 20% performance improvement over current state-of-the-art methods, validating that a unified geometric basis effectively empowers the LLM for nuanced motion reasoning.
Evaluating Anomaly Detectors for Simulated Highly Imbalanced Industrial Classification Problems
Machine learning offers potential solutions to current issues in industrial systems in areas such as quality control and predictive maintenance, but also faces unique barriers in industrial applications. An ongoing challenge is extreme class imbalance, primarily due to the limited availability of faulty data during training. This paper presents a comprehensive evaluation of anomaly detection algorithms using a problem-agnostic simulated dataset that reflects real-world engineering constraints. Using a synthetic dataset with a hyper-spherical based anomaly distribution in 2D and 10D, we benchmark 14 detectors across training datasets with anomaly rates between 0.05% and 20% and training sizes between 1 000 and 10 000 (with a testing dataset size of 40 000) to assess performance and generalization error. Our findings reveal that the best detector is highly dependant on the total number of faulty examples in the training dataset, with additional healthy examples offering insignificant benefits in most cases. With less than 20 faulty examples, unsupervised methods (kNN/LOF) dominate; but around 30-50 faulty examples, semi-supervised (XGBOD) and supervised (SVM/CatBoost) detectors, we see large performance increases. While semi-supervised methods do not show significant benefits with only two features, the improvements are evident at ten features. The study highlights the performance drop on generalization of anomaly detection methods on smaller datasets, and provides practical insights for deploying anomaly detection in industrial environments.
comment: 21 pages, 14 figures, 11 tables
An Attention Infused Deep Learning System with Grad-CAM Visualization for Early Screening of Glaucoma
This research work reveals the strengths of intertwining a deep custom convolutional neural network with a disruptive Vision Transformer, both fused together with a radical Cross-Attention module. Here, two high-yielding datasets for artificial intelligence models in detecting glaucoma, namely ACRIMA and Drishti, are utilized. The Cross-Attention mechanism facilitates the model in learning regions in the fundus that are clinically relevant through bidirectional feature exchange between CNN and ViT streams. Experiments clearly depict improved performance when compared to standalone baseline CNN and ViT models.
comment: 6 pages in general IEEE format, 8 figures, 4 tables, pdflatex
Permissive Information-Flow Analysis for Large Language Models
Large Language Models (LLMs) are rapidly becoming commodity components of larger software systems. This poses natural security and privacy problems: poisoned data retrieved from one component can change the model's behavior and compromise the entire system, including coercing the model to spread confidential data to untrusted components. One promising approach is to tackle this problem at the system level via dynamic information flow (aka taint) tracking. Unfortunately, this approach of propagating the most restrictive input label to the output is too conservative for applications where LLMs operate on inputs retrieved from diverse sources. In this paper, we propose a novel, more permissive approach to propagate information flow labels through LLM queries. The key idea behind our approach is to propagate only the labels of the samples that were influential in generating the model output and to eliminate the labels of unnecessary inputs. We implement and investigate the effectiveness of two variations of this approach, based on (i) prompt-based retrieval augmentation, and (ii) a $k$-nearest-neighbors language model. We compare these with a baseline that uses introspection to predict the output label. Our experimental results in an LLM agent setting show that the permissive label propagator improves over the baseline in more than 85% of the cases, which underscores the practicality of our approach.
From Dormant to Deleted: Tamper-Resistant Unlearning Through Weight-Space Regularization
Recent unlearning methods for LLMs are vulnerable to relearning attacks: knowledge believed-to-be-unlearned re-emerges by fine-tuning on a small set of (even seemingly-unrelated) examples. We study this phenomenon in a controlled setting for example-level unlearning in vision classifiers. We make the surprising discovery that forget-set accuracy can recover from around 50% post-unlearning to nearly 100% with fine-tuning on just the retain set -- i.e., zero examples of the forget set. We observe this effect across a wide variety of unlearning methods, whereas for a model retrained from scratch excluding the forget set (gold standard), the accuracy remains at 50%. We observe that resistance to relearning attacks can be predicted by weight-space properties, specifically, $L_2$-distance and linear mode connectivity between the original and the unlearned model. Leveraging this insight, we propose a new class of methods that achieve state-of-the-art resistance to relearning attacks.
Geometric and Dynamic Scaling in Deep Transformers
Despite their empirical success, pushing Transformer architectures to extreme depth often leads to a paradoxical failure: representations become increasingly redundant, lose rank, and ultimately collapse. Existing explanations largely attribute this phenomenon to optimization instability or vanishing gradients, yet such accounts fail to explain why collapse persists even under modern normalization and initialization schemes. In this paper, we argue that the collapse of deep Transformers is fundamentally a geometric problem. Standard residual updates implicitly assume that feature accumulation is always beneficial, but offer no mechanism to constrain update directions or to erase outdated information. As depth increases, this leads to systematic drift off the semantic manifold and monotonic feature accumulation, causing representational degeneracy. We propose a unified geometric framework that addresses these failures through two orthogonal principles. First, manifold-constrained hyper-connections restrict residual updates to valid local tangent directions, preventing uncontrolled manifold drift. Second, deep delta learning introduces data-dependent, non-monotonic updates that enable reflection and erasure of redundant features rather than their unconditional accumulation. Together, these mechanisms decouple the direction and sign of feature updates, yielding a stable geometric evolution across depth. We term the resulting architecture the Manifold-Geometric Transformer (MGT). Our analysis predicts that enforcing geometric validity while allowing dynamic erasure is essential for avoiding rank collapse in ultra-deep networks. We outline an evaluation protocol for Transformers exceeding 100 layers to test the hypothesis that geometry, rather than depth itself, is the key limiting factor in deep representation learning.
comment: Research Proposal Only
An Empirical Risk Minimization Approach for Offline Inverse RL and Dynamic Discrete Choice Model
We study the problem of estimating Dynamic Discrete Choice (DDC) models, also known as offline Maximum Entropy-Regularized Inverse Reinforcement Learning (offline MaxEnt-IRL) in machine learning. The objective is to recover reward or $Q^*$ functions that govern agent behavior from offline behavior data. In this paper, we propose a globally convergent gradient-based method for solving these problems without the restrictive assumption of linearly parameterized rewards. The novelty of our approach lies in introducing the Empirical Risk Minimization (ERM) based IRL/DDC framework, which circumvents the need for explicit state transition probability estimation in the Bellman equation. Furthermore, our method is compatible with non-parametric estimation techniques such as neural networks. Therefore, the proposed method has the potential to be scaled to high-dimensional, infinite state spaces. A key theoretical insight underlying our approach is that the Bellman residual satisfies the Polyak-Lojasiewicz (PL) condition -- a property that, while weaker than strong convexity, is sufficient to ensure fast global convergence guarantees. Through a series of synthetic experiments, we demonstrate that our approach consistently outperforms benchmark methods and state-of-the-art alternatives.
Future-as-Label: Scalable Supervision from Real-World Outcomes
Time creates free supervision: forecasts about real-world events resolve to verifiable outcomes. The passage of time provides labels that require no annotation. To exploit this structure, we extend reinforcement learning with verifiable rewards to real-world prediction over time. We train language models to make probabilistic forecasts from causally masked information, using proper scoring rules as the reward function once events resolve. Learning is driven entirely by realized outcomes, enabling scalable outcome-based supervision in open-world prediction. On real-world forecasting benchmarks, Qwen3-32B trained using Foresight Learning improves Brier score by 27% and halves calibration error relative to its pretrained baseline, and outperforms Qwen3-235B on both constructed future-event prediction tasks and the Metaculus benchmark despite a 7x parameter disadvantage.
Evaluating Large Language Models for Fair and Reliable Organ Allocation
Medical institutions are considering the use of LLMs in high-stakes clinical decision-making, such as organ allocation. In such sensitive use cases, evaluating fairness is imperative. However, existing evaluation methods often fall short; benchmarks are too simplistic to capture real-world complexity, and accuracy-based metrics fail to address the absence of a clear ground truth. To realistically and fairly model organ allocation, specifically kidney allocation, we begin by testing the medical knowledge of LLMs to determine whether they understand the clinical factors required to make sound allocation decisions. Building on this foundation, we design two tasks: (1) Choose-One and (2) Rank-All. In Choose-One, LLMs select a single candidate from a list of potential candidates to receive a kidney. In this scenario, we assess fairness across demographics using traditional fairness metrics, such as proportional parity. In Rank-All, LLMs rank all candidates waiting for a kidney, reflecting real-world allocation processes more closely, where an organ is passed down a ranked list until allocated. Our evaluation on three LLMs reveals a divergence between fairness metrics: while exposure-based metrics suggest equitable outcomes, probability-based metrics uncover systematic preferential sorting, where specific groups were clustered in upper-ranking tiers. Furthermore, we observe that demographic preferences are highly task-dependent, showing inverted trends between Choose-One and Rank-All tasks, even when considering the topmost rank. Overall, our results indicate that current LLMs can introduce inequalities in real-world allocation scenarios, underscoring the urgent need for rigorous fairness evaluation and human oversight before their use in high-stakes decision-making.
Geometric Algorithms for Neural Combinatorial Optimization with Constraints
Self-Supervised Learning (SSL) for Combinatorial Optimization (CO) is an emerging paradigm for solving combinatorial problems using neural networks. In this paper, we address a central challenge of SSL for CO: solving problems with discrete constraints. We design an end-to-end differentiable framework that enables us to solve discrete constrained optimization problems with neural networks. Concretely, we leverage algorithmic techniques from the literature on convex geometry and Carathéodory's theorem to decompose neural network outputs into convex combinations of polytope corners that correspond to feasible sets. This decomposition-based approach enables self-supervised training but also ensures efficient quality-preserving rounding of the neural net output into feasible solutions. Extensive experiments in cardinality-constrained optimization show that our approach can consistently outperform neural baselines. We further provide worked-out examples of how our method can be applied beyond cardinality-constrained problems to a diverse set of combinatorial optimization tasks, including finding independent sets in graphs, and solving matroid-constrained problems.
MolX: Enhancing Large Language Models for Molecular Understanding With A Multi-Modal Extension
Large Language Models (LLMs) with their strong task-handling capabilities have shown remarkable advancements across a spectrum of fields, moving beyond natural language understanding. However, their proficiency within the chemistry domain remains restricted, especially in solving molecule-related tasks. This challenge is attributed to their inherent limitations in comprehending molecules using only common textual representations, i.e. SMILES strings. In this study, we seek to enhance the ability of LLMs to comprehend molecules by equipping them with a multi-modal external module, termed MolX. Instead of directly using SMILES strings to represent a molecule, we utilize specific encoders to extract fine-grained features from both SMILES string and 2D molecular graph representations for feeding into an LLM. A hand-crafted molecular fingerprint is incorporated to leverage its embedded domain knowledge. To establish an alignment between MolX and the LLM's textual input space, the model in which the LLM is frozen, is pre-trained with a strategy including a diverse set of tasks. Experimental evaluations show that our proposed method outperforms baselines across downstream molecule-related tasks ranging from molecule-to-text translation to molecular property prediction, with and without fine-tuning the LLM, while only introducing a small number of trainable parameters-0.53% and 0.82%, respectively.
comment: MLoG-GenAI@KDD'25
SageAttention3: Microscaling FP4 Attention for Inference and An Exploration of 8-Bit Training
The efficiency of attention is important due to its quadratic time complexity. We enhance the efficiency of attention through two key contributions: First, we leverage the new FP4 Tensor Cores in Blackwell GPUs to accelerate attention computation. Our implementation achieves 1038 TOPS on RTX5090, which is a 5x speedup over the fastest FlashAttention on RTX5090. Experiments show that our FP4 attention can accelerate inference of various models in a plug-and-play way. Second, we pioneer low-bit attention to training tasks. Existing low-bit attention works like FlashAttention3 and SageAttention focus only on inference. However, the efficiency of training large models is also important. To explore whether low-bit attention can be effectively applied to training tasks, we design an accurate and efficient 8-bit attention for both forward and backward propagation. Experiments indicate that 8-bit attention achieves lossless performance in fine-tuning tasks but exhibits slower convergence in pretraining tasks. The code is available at https://github.com/thu-ml/SageAttention.
The Open Proof Corpus: A Large-Scale Study of LLM-Generated Mathematical Proofs
In recent months, large language models (LLMs) have made significant progress in mathematical proof generation, but further advancement is hindered by the lack of a large-scale, high-quality dataset of human-evaluated proofs. While expensive to create, such a dataset is essential for driving improvements in training and enabling a rigorous analysis of proof generation capabilities. In this work, we present the Open Proof Corpus (OPC), a dataset comprising over 5,000 human-evaluated proofs produced by state-of-the-art LLMs. The OPC was specifically designed for broad applicability and downstream usage in proof generation research and is the first to include a substantial number of correct, LLM-generated solutions to problems from prestigious mathematics competitions such as the USAMO and IMO. Using the OPC, we explore critical questions in automated proof generation: (1) the performance gap between natural language and formal proof generation, (2) the discrepancy between final-answer accuracy and full-proof validity, and (3) the impact of best-of-n selection on proof quality. Finally, to showcase the utility of the OPC, we finetune an 8B-parameter model on the dataset, obtaining a model that performs on par with the best model, Gemini-2.5-Pro, on the task of evaluating proof correctness.
MathArena: Evaluating LLMs on Uncontaminated Math Competitions
The rapid advancement of reasoning capabilities in large language models (LLMs) has led to notable improvements on mathematical benchmarks. However, many of the most commonly used evaluation datasets (e.g., AIME 2024) are widely available online, making it difficult to disentangle genuine reasoning from potential memorization. Furthermore, these benchmarks do not evaluate proof-writing capabilities, which are crucial for many mathematical tasks. To address this, we introduce MathArena, a new benchmark based on the following key insight: recurring math competitions provide a stream of high-quality, challenging problems that can be used for real-time evaluation of LLMs. By evaluating models as soon as new problems are released, we effectively eliminate the risk of contamination. Using this framework, we find strong signs of contamination in AIME 2024. Nonetheless, evaluations on harder competitions, such as CMIMC 2025, demonstrate impressive reasoning capabilities in top-performing models. MathArena is also the first benchmark for proof-writing capabilities. On IMO 2025, top models achieve slightly less than 40%, demonstrating both notable progress and significant room for improvement. So far, we have evaluated over $50$ models across seven competitions, totaling $162$ problems. As an evolving benchmark, MathArena will continue to track the progress of LLMs on newly released competitions, ensuring rigorous and up-to-date evaluation of mathematical reasoning.
An intelligent agent-based simulation of human mobility in extreme urban morphologies
This paper investigates the feasibility of human mobility in extreme urban morphologies, characterized by high-density vertical structures and linear city layouts. To assess whether agents can navigate efficiently within such unprecedented topologies, we develop a hybrid simulation framework that integrates agent-based modeling, reinforcement learning (RL), supervised learning, and graph neural networks (GNNs). The simulation captures multi-modal transportation behaviors across multiple vertical levels and varying density scenarios, using both synthetic data and real-world traces from high-density cities. Experiments show that the full AI-integrated architecture enables agents to achieve an average commute time of 7.8--8.4 minutes, a satisfaction rate exceeding 89\%, and a reachability index over 91\%, even during peak congestion periods. Ablation studies indicate that removing intelligent modules such as RL or GNN significantly degrades performance, with commute times increasing by up to 85\% and reachability falling below 70\%. Environmental modeling demonstrates low energy consumption and minimal CO$_2$ emissions when electric modes are prioritized. These results suggest that efficient and sustainable mobility in extreme urban forms is achievable, provided adaptive AI systems, intelligent infrastructure, and real-time feedback mechanisms are implemented.
Robust LLM Alignment via Distributionally Robust Direct Preference Optimization NeurIPS 2025
A major challenge in aligning large language models (LLMs) with human preferences is the issue of distribution shift. LLM alignment algorithms rely on static preference datasets, assuming that they accurately represent real-world user preferences. However, user preferences vary significantly across geographical regions, demographics, linguistic patterns, and evolving cultural trends. This preference distribution shift leads to catastrophic alignment failures in many real-world applications. We address this problem using the principled framework of distributionally robust optimization, and develop two novel distributionally robust direct preference optimization (DPO) algorithms, namely, Wasserstein DPO (WDPO) and Kullback-Leibler DPO (KLDPO). We characterize the sample complexity of learning the optimal policy parameters for WDPO and KLDPO. Moreover, we propose scalable gradient descent-style learning algorithms by developing suitable approximations for the challenging minimax loss functions of WDPO and KLDPO. Our empirical experiments using benchmark data sets and LLMs demonstrate the superior performance of WDPO and KLDPO in substantially improving the alignment when there is a preference distribution shift.
comment: Accepted to NeurIPS 2025
Challenges and Research Directions for Large Language Model Inference Hardware
Large Language Model (LLM) inference is hard. The autoregressive Decode phase of the underlying Transformer model makes LLM inference fundamentally different from training. Exacerbated by recent AI trends, the primary challenges are memory and interconnect rather than compute. To address these challenges, we highlight four architecture research opportunities: High Bandwidth Flash for 10X memory capacity with HBM-like bandwidth; Processing-Near-Memory and 3D memory-logic stacking for high memory bandwidth; and low-latency interconnect to speedup communication. While our focus is datacenter AI, we also review their applicability for mobile devices.
comment: Accepted for publication by IEEE Computer, 2026
Uncovering Systemic and Environment Errors in Autonomous Systems Using Differential Testing
When an autonomous agent behaves undesirably, including failure to complete a task, it can be difficult to determine whether the behavior is due to a systemic agent error, such as flaws in the model or policy, or an environment error, where a task is inherently infeasible under a given environment configuration, even for an ideal agent. As agents and their environments grow more complex, identifying the error source becomes increasingly difficult but critical for reliable deployment. We introduce AIProbe, a novel black-box testing technique that applies differential testing to attribute undesirable agent behaviors either to agent deficiencies, such as modeling or training flaws, or due to environmental infeasibility. AIProbe first generates diverse environmental configurations and tasks for testing the agent, by modifying configurable parameters using Latin Hypercube sampling. It then solves each generated task using a search-based planner, independent of the agent. By comparing the agent's performance to the planner's solution, AIProbe identifies whether failures are due to errors in the agent's model or policy, or due to unsolvable task conditions. Our evaluation across multiple domains shows that AIProbe significantly outperforms state-of-the-art techniques in detecting both total and unique errors, thereby contributing to a reliable deployment of autonomous agents.
Exploring specialization and sensitivity of convolutional neural networks in the context of simultaneous image augmentations
Drawing parallels with the way biological networks are studied, we adapt the treatment--control paradigm to explainable artificial intelligence research and enrich it through multi-parametric input alterations. In this study, we propose a framework for investigating the internal inference impacted by input data augmentations. The internal changes in network operation are reflected in activation changes measured by variance, which can be decomposed into components related to each augmentation, employing Sobol indices and Shapley values. These quantities enable one to visualize sensitivity to different variables and use them for guided masking of activations. In addition, we introduce a way of single-class sensitivity analysis where the candidates are filtered according to their matching to prediction bias generated by targeted damaging of the activations. Relying on the observed parallels, we assume that the developed framework can potentially be transferred to studying biological neural networks in complex environments.
comment: 31 pages; main text: 5 figures, 5 tables; appendix: 5 sections, 4 tables; supplementary: 7 files (figures S1-S6: pdf files packed as 7z archives, S7: single pdf file)
VAL-Bench: Belief Consistency as a measure for Value Alignment in Language Models
Large language models (LLMs) are increasingly being used for tasks where outputs shape human decisions, so it is critical to verify that their responses consistently reflect desired human values. Humans, as individuals or groups, don't agree on a universal set of values, which makes evaluating value alignment difficult. Existing benchmarks often use hypothetical or commonsensical situations, which don't capture the complexity and ambiguity of real-life debates. We introduce the Value ALignment Benchmark (VAL-Bench), which measures the consistency in language model belief expressions in response to real-life value-laden prompts. VAL-Bench consists of 115K pairs of prompts designed to elicit opposing stances on a controversial issue, extracted from Wikipedia. We use an LLM-as-a-judge, validated against human annotations, to evaluate if the pair of responses consistently expresses either a neutral or a specific stance on the issue. Applied across leading open- and closed-source models, the benchmark shows considerable variation in consistency rates (ranging from ~10% to ~80%), with Claude models the only ones to achieve high levels of consistency. Lack of consistency in this manner risks epistemic harm by making user beliefs dependent on how questions are framed rather than on underlying evidence, and undermines LLM reliability in trust-critical applications. Therefore, we stress the importance of research towards training belief consistency in modern LLMs. By providing a scalable, reproducible benchmark, VAL-Bench enables systematic measurement of necessary conditions for value alignment.
Machine Learning 226
Fast-ThinkAct: Efficient Vision-Language-Action Reasoning via Verbalizable Latent Planning
Vision-Language-Action (VLA) tasks require reasoning over complex visual scenes and executing adaptive actions in dynamic environments. While recent studies on reasoning VLAs show that explicit chain-of-thought (CoT) can improve generalization, they suffer from high inference latency due to lengthy reasoning traces. We propose Fast-ThinkAct, an efficient reasoning framework that achieves compact yet performant planning through verbalizable latent reasoning. Fast-ThinkAct learns to reason efficiently with latent CoTs by distilling from a teacher, driven by a preference-guided objective to align manipulation trajectories that transfers both linguistic and visual planning capabilities for embodied control. This enables reasoning-enhanced policy learning that effectively connects compact reasoning to action execution. Extensive experiments across diverse embodied manipulation and reasoning benchmarks demonstrate that Fast-ThinkAct achieves strong performance with up to 89.3\% reduced inference latency over state-of-the-art reasoning VLAs, while maintaining effective long-horizon planning, few-shot adaptation, and failure recovery.
comment: Project page: https://jasper0314-huang.github.io/fast-thinkact/
Value-Aware Numerical Representations for Transformer Language Models
Transformer-based language models often achieve strong results on mathematical reasoning benchmarks while remaining fragile on basic numerical understanding and arithmetic operations. A central limitation is that numbers are processed as symbolic tokens whose embeddings do not explicitly encode numerical value, leading to systematic errors. We introduce a value-aware numerical representation that augments standard tokenized inputs with a dedicated prefix token whose embedding is explicitly conditioned on the underlying numerical value. This mechanism injects magnitude information directly into the model's input space while remaining compatible with existing tokenizers and decoder-only Transformer architectures. Evaluation on arithmetic tasks shows that the proposed approach outperforms baselines across numerical formats, tasks, and operand lengths. These results indicate that explicitly encoding numerical value is an effective and efficient way to improve fundamental numerical robustness in language models.
Contrastive Geometric Learning Unlocks Unified Structure- and Ligand-Based Drug Design
Structure-based and ligand-based computational drug design have traditionally relied on disjoint data sources and modeling assumptions, limiting their joint use at scale. In this work, we introduce Contrastive Geometric Learning for Unified Computational Drug Design (ConGLUDe), a single contrastive geometric model that unifies structure- and ligand-based training. ConGLUDe couples a geometric protein encoder that produces whole-protein representations and implicit embeddings of predicted binding sites with a fast ligand encoder, removing the need for pre-defined pockets. By aligning ligands with both global protein representations and multiple candidate binding sites through contrastive learning, ConGLUDe supports ligand-conditioned pocket prediction in addition to virtual screening and target fishing, while being trained jointly on protein-ligand complexes and large-scale bioactivity data. Across diverse benchmarks, ConGLUDe achieves state-of-the-art zero-shot virtual screening performance in settings where no binding pocket information is provided as input, substantially outperforms existing methods on a challenging target fishing task, and demonstrates competitive ligand-conditioned pocket selection. These results highlight the advantages of unified structure-ligand training and position ConGLUDe as a step toward general-purpose foundation models for drug discovery.
comment: ELLIS ML4Molecules Workshop 2025, ELLIS Unconference, Copenhagen 2025
Routing with Generated Data: Annotation-Free LLM Skill Estimation and Expert Selection
Large Language Model (LLM) routers dynamically select optimal models for given inputs. Existing approaches typically assume access to ground-truth labeled data, which is often unavailable in practice, especially when user request distributions are heterogeneous and unknown. We introduce Routing with Generated Data (RGD), a challenging setting in which routers are trained exclusively on generated queries and answers produced from high-level task descriptions by generator LLMs. We evaluate query-answer routers (using both queries and labels) and query-only routers across four diverse benchmarks and 12 models, finding that query-answer routers degrade faster than query-only routers as generator quality decreases. Our analysis reveals two crucial characteristics of effective generators: they must accurately respond to their own questions, and their questions must produce sufficient performance differentiation among the model pool. We then show how filtering for these characteristics can improve the quality of generated data. We further propose CASCAL, a novel query-only router that estimates model correctness through consensus voting and identifies model-specific skill niches via hierarchical clustering. CASCAL is substantially more robust to generator quality, outperforming the best query-answer router by 4.6% absolute accuracy when trained on weak generator data.
comment: Code: https://github.com/tianyiniu/RoutingGenData
Disentangling Task Conflicts in Multi-Task LoRA via Orthogonal Gradient Projection
Multi-Task Learning (MTL) combined with Low-Rank Adaptation (LoRA) has emerged as a promising direction for parameter-efficient deployment of Large Language Models (LLMs). By sharing a single adapter across multiple tasks, one can significantly reduce storage overhead. However, this approach suffers from negative transfer, where conflicting gradient updates from distinct tasks degrade the performance of individual tasks compared to single-task fine-tuning. This problem is exacerbated in LoRA due to the low-rank constraint, which limits the optimization landscape's capacity to accommodate diverse task requirements. In this paper, we propose Ortho-LoRA, a gradient projection method specifically tailored for the bipartite structure of LoRA. Ortho-LoRA dynamically projects conflicting task gradients onto the orthogonal complement of each other within the intrinsic LoRA subspace. Extensive experiments on the GLUE benchmark demonstrate that Ortho-LoRA effectively mitigates task interference, outperforming standard joint training and recovering 95\% of the performance gap between multi-task and single-task baselines with negligible computational overhead.
comment: preprint
Exploring Fine-Tuning for Tabular Foundation Models
Tabular Foundation Models (TFMs) have recently shown strong in-context learning capabilities on structured data, achieving zero-shot performance comparable to traditional machine learning methods. We find that zero-shot TFMs already achieve strong performance, while the benefits of fine-tuning are highly model and data-dependent. Meta-learning and PEFT provide moderate gains under specific conditions, whereas full supervised fine-tuning (SFT) often reduces accuracy or calibration quality. This work presents the first comprehensive study of fine-tuning in TFMs across benchmarks including TALENT, OpenML-CC18, and TabZilla. We compare Zero-Shot, Meta-Learning, Supervised (SFT), and parameter-efficient (PEFT) approaches, analyzing how dataset factors such as imbalance, size, and dimensionality affect outcomes. Our findings cover performance, calibration, and fairness, offering practical guidelines on when fine-tuning is most beneficial and its limitations.
Identifying Models Behind Text-to-Image Leaderboards
Text-to-image (T2I) models are increasingly popular, producing a large share of AI-generated images online. To compare model quality, voting-based leaderboards have become the standard, relying on anonymized model outputs for fairness. In this work, we show that such anonymity can be easily broken. We find that generations from each T2I model form distinctive clusters in the image embedding space, enabling accurate deanonymization without prompt control or training data. Using 22 models and 280 prompts (150K images), our centroid-based method achieves high accuracy and reveals systematic model-specific signatures. We further introduce a prompt-level distinguishability metric and conduct large-scale analyses showing how certain prompts can lead to near-perfect distinguishability. Our findings expose fundamental security flaws in T2I leaderboards and motivate stronger anonymization defenses.
PersonalAlign: Hierarchical Implicit Intent Alignment for Personalized GUI Agent with Long-Term User-Centric Records
While GUI agents have shown strong performance under explicit and completion instructions, real-world deployment requires aligning with users' more complex implicit intents. In this work, we highlight Hierarchical Implicit Intent Alignment for Personalized GUI Agent (PersonalAlign), a new agent task that requires agents to leverage long-term user records as persistent context to resolve omitted preferences in vague instructions and anticipate latent routines by user state for proactive assistance. To facilitate this study, we introduce AndroidIntent, a benchmark designed to evaluate agents' ability in resolving vague instructions and providing proactive suggestions through reasoning over long-term user records. We annotated 775 user-specific preferences and 215 routines from 20k long-term records across different users for evaluation. Furthermore, we introduce Hierarchical Intent Memory Agent (HIM-Agent), which maintains a continuously updating personal memory and hierarchically organizes user preferences and routines for personalization. Finally, we evaluate a range of GUI agents on AndroidIntent, including GPT-5, Qwen3-VL, and UI-TARS, further results show that HIM-Agent significantly improves both execution and proactive performance by 15.7% and 7.3%.
LLM for Large-Scale Optimization Model Auto-Formulation: A Lightweight Few-Shot Learning Approach
Large-scale optimization is a key backbone of modern business decision-making. However, building these models is often labor-intensive and time-consuming. We address this by proposing LEAN-LLM-OPT, a LightwEight AgeNtic workflow construction framework for LLM-assisted large-scale OPTimization auto-formulation. LEAN-LLM-OPT takes as input a problem description together with associated datasets and orchestrates a team of LLM agents to produce an optimization formulation. Specifically, upon receiving a query, two upstream LLM agents dynamically construct a workflow that specifies, step-by-step, how optimization models for similar problems can be formulated. A downstream LLM agent then follows this workflow to generate the final output. Leveraging LLMs' text-processing capabilities and common modeling practices, the workflow decomposes the modeling task into a sequence of structured sub-tasks and offloads mechanical data-handling operations to auxiliary tools. This design alleviates the downstream agent's burden related to planning and data handling, allowing it to focus on the most challenging components that cannot be readily standardized. Extensive simulations show that LEAN-LLM-OPT, instantiated with GPT-4.1 and the open source gpt-oss-20B, achieves strong performance on large-scale optimization modeling tasks and is competitive with state-of-the-art approaches. In addition, in a Singapore Airlines choice-based revenue management use case, LEAN-LLM-OPT demonstrates practical value by achieving leading performance across a range of scenarios. Along the way, we introduce Large-Scale-OR and Air-NRM, the first comprehensive benchmarks for large-scale optimization auto-formulation. The code and data of this work is available at https://github.com/CoraLiang01/lean-llm-opt.
comment: Updated version of https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5329027
From Prompt to Protocol: Fast Charging Batteries with Large Language Models
Efficiently optimizing battery charging protocols is challenging because each evaluation is slow, costly, and non-differentiable. Many existing approaches address this difficulty by heavily constraining the protocol search space, which limits the diversity of protocols that can be explored, preventing the discovery of higher-performing solutions. We introduce two gradient-free, LLM-driven closed-loop methods: Prompt-to-Optimizer (P2O), which uses an LLM to propose the code for small neural-network-based protocols, which are then trained by an inner loop, and Prompt-to-Protocol (P2P), which simply writes an explicit function for the current and its scalar parameters. Across our case studies, LLM-guided P2O outperforms neural networks designed by Bayesian optimization, evolutionary algorithms, and random search. In a realistic fast charging scenario, both P2O and P2P yield around a 4.2 percent improvement in state of health (capacity retention based health metric under fast charging cycling) over a state-of-the-art multi-step constant current (CC) baseline, with P2P achieving this under matched evaluation budgets (same number of protocol evaluations). These results demonstrate that LLMs can expand the space of protocol functional forms, incorporate language-based constraints, and enable efficient optimization in high cost experimental settings.
Toward Understanding Unlearning Difficulty: A Mechanistic Perspective and Circuit-Guided Difficulty Metric
Machine unlearning is becoming essential for building trustworthy and compliant language models. Yet unlearning success varies considerably across individual samples: some are reliably erased, while others persist despite the same procedure. We argue that this disparity is not only a data-side phenomenon, but also reflects model-internal mechanisms that encode and protect memorized information. We study this problem from a mechanistic perspective based on model circuits--structured interaction pathways that govern how predictions are formed. We propose Circuit-guided Unlearning Difficulty (CUD), a {\em pre-unlearning} metric that assigns each sample a continuous difficulty score using circuit-level signals. Extensive experiments demonstrate that CUD reliably separates intrinsically easy and hard samples, and remains stable across unlearning methods. We identify key circuit-level patterns that reveal a mechanistic signature of difficulty: easy-to-unlearn samples are associated with shorter, shallower interactions concentrated in earlier-to-intermediate parts of the original model, whereas hard samples rely on longer and deeper pathways closer to late-stage computation. Compared to existing qualitative studies, CUD takes a first step toward a principled, fine-grained, and interpretable analysis of unlearning difficulty; and motivates the development of unlearning methods grounded in model mechanisms.
Linear Complexity Self-Supervised Learning for Music Understanding with Random Quantizer
In recent years, foundation models have become very popular due to their exceptional performance, mainly in natural language (NLP) tasks where they were first introduced. These models usually consist of hundreds of millions, or even billions, of parameters, making them resource-intensive during training and in production systems, leading to increased costs. This paper focuses on the reduction of a foundation's model size when applied to music information retrieval (MIR) tasks. Our research combines the Branchformer architecture with SummaryMixing, which were first applied in speech recognition, along with a random quantization process. To facilitate reproducibility, we conduct pre-training on publicly available datasets, complemented by a proprietary dataset comparable in scale to other private datasets reported in the literature. We ensure robust evaluation by using a framework consisting of a variety of downstream MIR tasks. Our results show that our architecture achieves competitive performance when compared with other state-of-the-art models that use multi-head self-attention, while reducing the model size from 8.5% up to 12.3%.
comment: accepted by ACM/SIGAPP Symposium on Applied Computing (SAC 2026)
Energy-Entropy Regularization: The True Power of Minimal Looped Transformers
Recent research suggests that looped Transformers have superior reasoning capabilities compared to standard deep architectures. Current approaches to training single-head looped architectures on benchmark tasks frequently fail or yield suboptimal performance due to a highly non-convex and irregular loss landscape. In these settings, optimization often stagnates in poor local minima and saddle points of the loss landscape, preventing the model from discovering the global minimum point. The internal mechanisms of these single-head looped transformer models remain poorly understood, and training them from scratch remains a significant challenge. In this paper, we propose a novel training framework that leverages Tsallis entropy and Hamiltonian dynamics to transform the geometry of the loss landscape. By treating the parameter updates as a physical flow, we successfully trained a single-head looped Transformer with model dimension $d = 8$ to solve induction head task with input sequence length of 1000 tokens. This success reveals the internal mechanism behind the superior reasoning capability.
comment: 19 pages, 2 figures
Constraint- and Score-Based Nonlinear Granger Causality Discovery with Kernels
Kernel-based methods are used in the context of Granger Causality to enable the identification of nonlinear causal relationships between time series variables. In this paper, we show that two state of the art kernel-based Granger Causality (GC) approaches can be theoretically unified under the framework of Kernel Principal Component Regression (KPCR), and introduce a method based on this unification, demonstrating that this approach can improve causal identification. Additionally, we introduce a Gaussian Process score-based model with Smooth Information Criterion penalisation on the marginal likelihood, and demonstrate improved performance over existing state of the art time-series nonlinear causal discovery methods. Furthermore, we propose a contemporaneous causal identification algorithm, fully based on GC, using the proposed score-based $GP_{SIC}$ method, and compare its performance to a state of the art contemporaneous time series causal discovery algorithm.
Residual Power Flow for Neural Solvers
The energy transition challenges operational tasks based on simulations and optimisation. These computations need to be fast and flexible as the grid is ever-expanding, and renewables' uncertainty requires a flexible operational environment. Learned approximations, proxies or surrogates -- we refer to them as Neural Solvers -- excel in terms of evaluation speed, but are inflexible with respect to adjusting to changing tasks. Hence, neural solvers are usually applicable to highly specific tasks, which limits their usefulness in practice; a widely reusable, foundational neural solver is required. Therefore, this work proposes the Residual Power Flow (RPF) formulation. RPF formulates residual functions based on Kirchhoff's laws to quantify the infeasibility of an operating condition. The minimisation of the residuals determines the voltage solution; an additional slack variable is needed to achieve AC-feasibility. RPF forms a natural, foundational subtask of tasks subject to power flow constraints. We propose to learn RPF with neural solvers to exploit their speed. Furthermore, RPF improves learning performance compared to common power flow formulations. To solve operational tasks, we integrate the neural solver in a Predict-then-Optimise (PO) approach to combine speed and flexibility. The case study investigates the IEEE 9-bus system and three tasks (AC Optimal Power Flow (OPF), power-flow and quasi-steady state power flow) solved by PO. The results demonstrate the accuracy and flexibility of learning with RPF.
comment: This work has been submitted to the IEEE for possible publication
Private LLM Inference on Consumer Blackwell GPUs: A Practical Guide for Cost-Effective Local Deployment in SMEs
SMEs increasingly seek alternatives to cloud LLM APIs, which raise data privacy concerns. Dedicated cloud GPU instances offer improved privacy but with limited guarantees and ongoing costs, while professional on-premise hardware (A100, H100) remains prohibitively expensive. We present a systematic evaluation of NVIDIA's Blackwell consumer GPUs (RTX 5060 Ti, 5070 Ti, 5090) for production LLM inference, benchmarking four open-weight models (Qwen3-8B, Gemma3-12B, Gemma3-27B, GPT-OSS-20B) across 79 configurations spanning quantization formats (BF16, W4A16, NVFP4, MXFP4), context lengths (8k-64k), and three workloads: RAG, multi-LoRA agentic serving, and high-concurrency APIs. The RTX 5090 delivers 3.5-4.6x higher throughput than the 5060 Ti with 21x lower latency for RAG, but budget GPUs achieve the highest throughput-per-dollar for API workloads with sub-second latency. NVFP4 quantization provides 1.6x throughput over BF16 with 41% energy reduction and only 2-4% quality loss. Self-hosted inference costs $0.001-0.04 per million tokens (electricity only), which is 40-200x cheaper than budget-tier cloud APIs, with hardware breaking even in under four months at moderate volume (30M tokens/day). Our results show that consumer GPUs can reliably replace cloud inference for most SME workloads, except latency-critical long-context RAG, where high-end GPUs remain essential. We provide deployment guidance and release all benchmark data for reproducible SME-scale deployments.
comment: 15 pages, 18 tables, 7 figures. Includes link to GitHub repository and Docker image for reproducibility
Class Adaptive Conformal Training
Deep neural networks have achieved remarkable success across a variety of tasks, yet they often suffer from unreliable probability estimates. As a result, they can be overconfident in their predictions. Conformal Prediction (CP) offers a principled framework for uncertainty quantification, yielding prediction sets with rigorous coverage guarantees. Existing conformal training methods optimize for overall set size, but shaping the prediction sets in a class-conditional manner is not straightforward and typically requires prior knowledge of the data distribution. In this work, we introduce Class Adaptive Conformal Training (CaCT), which formulates conformal training as an augmented Lagrangian optimization problem that adaptively learns to shape prediction sets class-conditionally without making any distributional assumptions. Experiments on multiple benchmark datasets, including standard and long-tailed image recognition as well as text classification, demonstrate that CaCT consistently outperforms prior conformal training methods, producing significantly smaller and more informative prediction sets while maintaining the desired coverage guarantees.
CLARE: Continual Learning for Vision-Language-Action Models via Autonomous Adapter Routing and Expansion
To teach robots complex manipulation tasks, it is now a common practice to fine-tune a pre-trained vision-language-action model (VLA) on task-specific data. However, since this recipe updates existing representations, it is unsuitable for long-term operation in the real world, where robots must continually adapt to new tasks and environments while retaining the knowledge they have already acquired. Existing continual learning methods for robotics commonly require storing previous data (exemplars), struggle with long task sequences, or rely on task identifiers for deployment. To address these limitations, we propose CLARE, a general, parameter-efficient framework for exemplar-free continual learning with VLAs. CLARE introduces lightweight modular adapters into selected feedforward layers and autonomously expands the model only where necessary when learning a new task, guided by layer-wise feature similarity. During deployment, an autoencoder-based routing mechanism dynamically activates the most relevant adapters without requiring task labels. Through extensive experiments on the LIBERO benchmark, we show that CLARE achieves high performance on new tasks without catastrophic forgetting of earlier tasks, significantly outperforming even exemplar-based methods. Code and data are available at https://tum-lsy.github.io/clare.
comment: Project page: https://tum-lsy.github.io/clare. 9 pages, 5 figures
Towards Robust Cross-Dataset Object Detection Generalization under Domain Specificity
Object detectors often perform well in-distribution, yet degrade sharply on a different benchmark. We study cross-dataset object detection (CD-OD) through a lens of setting specificity. We group benchmarks into setting-agnostic datasets with diverse everyday scenes and setting-specific datasets tied to a narrow environment, and evaluate a standard detector family across all train--test pairs. This reveals a clear structure in CD-OD: transfer within the same setting type is relatively stable, while transfer across setting types drops substantially and is often asymmetric. The most severe breakdowns occur when transferring from specific sources to agnostic targets, and persist after open-label alignment, indicating that domain shift dominates in the hardest regimes. To disentangle domain shift from label mismatch, we compare closed-label transfer with an open-label protocol that maps predicted classes to the nearest target label using CLIP similarity. Open-label evaluation yields consistent but bounded gains, and many corrected cases correspond to semantic near-misses supported by the image evidence. Overall, we provide a principled characterization of CD-OD under setting specificity and practical guidance for evaluating detectors under distribution shift. Code will be released at \href{[https://github.com/Ritabrata04/cdod-icpr.git}{https://github.com/Ritabrata04/cdod-icpr}.
comment: 15 pages, 4 figures, 6 tables
Parallelizable memory recurrent units
With the emergence of massively parallel processing units, parallelization has become a desirable property for new sequence models. The ability to parallelize the processing of sequences with respect to the sequence length during training is one of the main factors behind the uprising of the Transformer architecture. However, Transformers lack efficiency at sequence generation, as they need to reprocess all past timesteps at every generation step. Recently, state-space models (SSMs) emerged as a more efficient alternative. These new kinds of recurrent neural networks (RNNs) keep the efficient update of the RNNs while gaining parallelization by getting rid of nonlinear dynamics (or recurrence). SSMs can reach state-of-the art performance through the efficient training of potentially very large networks, but still suffer from limited representation capabilities. In particular, SSMs cannot exhibit persistent memory, or the capacity of retaining information for an infinite duration, because of their monostability. In this paper, we introduce a new family of RNNs, the memory recurrent units (MRUs), that combine the persistent memory capabilities of nonlinear RNNs with the parallelizable computations of SSMs. These units leverage multistability as a source of persistent memory, while getting rid of transient dynamics for efficient computations. We then derive a specific implementation as proof-of-concept: the bistable memory recurrent unit (BMRU). This new RNN is compatible with the parallel scan algorithm. We show that BMRU achieves good results in tasks with long-term dependencies, and can be combined with state-space models to create hybrid networks that are parallelizable and have transient dynamics as well as persistent memory.
comment: 19 pages, 12 figures. This work has been the subject of a patent application (Number: EP26151077). This work has been submitted to the IEEE for possible publication
Deep Operator Networks for Surrogate Modeling of Cyclic Adsorption Processes with Varying Initial Conditions
Deep Operator Networks are emerging as fundamental tools among various neural network types to learn mappings between function spaces, and have recently gained attention due to their ability to approximate nonlinear operators. In particular, DeepONets offer a natural formulation for PDE solving, since the solution of a partial differential equation can be interpreted as an operator mapping an initial condition to its corresponding solution field. In this work, we applied DeepONets in the context of process modeling for adsorption technologies, to assess their feasibility as surrogates for cyclic adsorption process simulation and optimization. The goal is to accelerate convergence of cyclic processes such as Temperature-Vacuum Swing Adsorption (TVSA), which require repeated solution of transient PDEs, which are computationally expensive. Since each step of a cyclic adsorption process starts from the final state of the preceding step, effective surrogate modeling requires generalization across a wide range of initial conditions. The governing equations exhibit steep traveling fronts, providing a demanding benchmark for operator learning. To evaluate functional generalization under these conditions, we construct a mixed training dataset composed of heterogeneous initial conditions and train DeepONets to approximate the corresponding solution operators. The trained models are then tested on initial conditions outside the parameter ranges used during training, as well as on completely unseen functional forms. The results demonstrate accurate predictions both within and beyond the training distribution, highlighting DeepONets as potential efficient surrogates for accelerating cyclic adsorption simulations and optimization workflows.
comment: 36 pages, 11 figures
Terminally constrained flow-based generative models from an optimal control perspective
We address the problem of sampling from terminally constrained distributions with pre-trained flow-based generative models through an optimal control formulation. Theoretically, we characterize the value function by a Hamilton-Jacobi-Bellman equation and derive the optimal feedback control as the minimizer of the associated Hamiltonian. We show that as the control penalty increases, the controlled process recovers the reference distribution, while as the penalty vanishes, the terminal law converges to a generalized Wasserstein projection onto the constraint manifold. Algorithmically, we introduce Terminal Optimal Control with Flow-based models (TOCFlow), a geometry-aware sampling-time guidance method for pre-trained flows. Solving the control problem in a terminal co-moving frame that tracks reference trajectories yields a closed-form scalar damping factor along the Riemannian gradient, capturing second-order curvature effects without matrix inversions. TOCFlow therefore matches the geometric consistency of Gauss-Newton updates at the computational cost of standard gradient guidance. We evaluate TOCFlow on three high-dimensional scientific tasks spanning equality, inequality, and global statistical constraints, namely Darcy flow, constrained trajectory planning, and turbulence snapshot generation with Kolmogorov spectral scaling. Across all settings, TOCFlow improves constraint satisfaction over Euclidean guidance and projection baselines while preserving the reference model's generative quality.
comment: 59 pages, 9 figures
SimMerge: Learning to Select Merge Operators from Similarity Signals
Model merging enables multiple large language models (LLMs) to be combined into a single model while preserving performance. This makes it a valuable tool in LLM development, offering a competitive alternative to multi-task training. However, merging can be difficult at scale, as successful merging requires choosing the right merge operator, selecting the right models, and merging them in the right order. This often leads researchers to run expensive merge-and-evaluate searches to select the best merge. In this work, we provide an alternative by introducing \simmerge{}, \emph{a predictive merge-selection method} that selects the best merge using inexpensive, task-agnostic similarity signals between models. From a small set of unlabeled probes, we compute functional and structural features and use them to predict the performance of a given 2-way merge. Using these predictions, \simmerge{} selects the best merge operator, the subset of models to merge, and the merge order, eliminating the expensive merge-and-evaluate loop. We demonstrate that we surpass standard merge-operator performance on 2-way merges of 7B-parameter LLMs, and that \simmerge{} generalizes to multi-way merges and 111B-parameter LLM merges without retraining. Additionally, we present a bandit variant that supports adding new tasks, models, and operators on the fly. Our results suggest that learning how to merge is a practical route to scalable model composition when checkpoint catalogs are large and evaluation budgets are tight.
FairGU: Fairness-aware Graph Unlearning in Social Network
Graph unlearning has emerged as a critical mechanism for supporting sustainable and privacy-preserving social networks, enabling models to remove the influence of deleted nodes and thereby better safeguard user information. However, we observe that existing graph unlearning techniques insufficiently protect sensitive attributes, often leading to degraded algorithmic fairness compared with traditional graph learning methods. To address this gap, we introduce FairGU, a fairness-aware graph unlearning framework designed to preserve both utility and fairness during the unlearning process. FairGU integrates a dedicated fairness-aware module with effective data protection strategies, ensuring that sensitive attributes are neither inadvertently amplified nor structurally exposed when nodes are removed. Through extensive experiments on multiple real-world datasets, we demonstrate that FairGU consistently outperforms state-of-the-art graph unlearning methods and fairness-enhanced graph learning baselines in terms of both accuracy and fairness metrics. Our findings highlight a previously overlooked risk in current unlearning practices and establish FairGU as a robust and equitable solution for the next generation of socially sustainable networked systems. The codes are available at https://github.com/LuoRenqiang/FairGU.
comment: 9 pages, 2 figs, WWW 2026 accepted
High-fidelity lunar topographic reconstruction across diverse terrain and illumination environments using deep learning
Topographic models are essential for characterizing planetary surfaces and for inferring underlying geological processes. Nevertheless, meter-scale topographic data remain limited, which constrains detailed planetary investigations, even for the Moon, where extensive high-resolution orbital images are available. Recent advances in deep learning (DL) exploit single-view imagery, constrained by low-resolution topography, for fast and flexible reconstruction of fine-scale topography. However, their robustness and general applicability across diverse lunar landforms and illumination conditions remain insufficiently explored. In this study, we build upon our previously proposed DL framework by incorporating a more robust scale recovery scheme and extending the model to polar regions under low solar illumination conditions. We demonstrate that, compared with single-view shape-from-shading methods, the proposed DL approach exhibits greater robustness to varying illumination and achieves more consistent and accurate topographic reconstructions. Furthermore, it reliably reconstructs topography across lunar features of diverse scales, morphologies, and geological ages. High-quality topographic models are also produced for the lunar south polar areas, including permanently shadowed regions, demonstrating the method's capability in reconstructing complex and low-illumination terrain. These findings suggest that DL-based approaches have the potential to leverage extensive lunar datasets to support advanced exploration missions and enable investigations of the Moon at unprecedented topographic resolution.
comment: 25 pages, 1 table, 8 figures
Searth Transformer: A Transformer Architecture Incorporating Earth's Geospheric Physical Priors for Global Mid-Range Weather Forecasting
Accurate global medium-range weather forecasting is fundamental to Earth system science. Most existing Transformer-based forecasting models adopt vision-centric architectures that neglect the Earth's spherical geometry and zonal periodicity. In addition, conventional autoregressive training is computationally expensive and limits forecast horizons due to error accumulation. To address these challenges, we propose the Shifted Earth Transformer (Searth Transformer), a physics-informed architecture that incorporates zonal periodicity and meridional boundaries into window-based self-attention for physically consistent global information exchange. We further introduce a Relay Autoregressive (RAR) fine-tuning strategy that enables learning long-range atmospheric evolution under constrained memory and computational budgets. Based on these methods, we develop YanTian, a global medium-range weather forecasting model. YanTian achieves higher accuracy than the high-resolution forecast of the European Centre for Medium-Range Weather Forecasts and performs competitively with state-of-the-art AI models at one-degree resolution, while requiring roughly 200 times lower computational cost than standard autoregressive fine-tuning. Furthermore, YanTian attains a longer skillful forecast lead time for Z500 (10.3 days) than HRES (9 days). Beyond weather forecasting, this work establishes a robust algorithmic foundation for predictive modeling of complex global-scale geophysical circulation systems, offering new pathways for Earth system science.
SoK: Enhancing Cryptographic Collaborative Learning with Differential Privacy
In collaborative learning (CL), multiple parties jointly train a machine learning model on their private datasets. However, data can not be shared directly due to privacy concerns. To ensure input confidentiality, cryptographic techniques, e.g., multi-party computation (MPC), enable training on encrypted data. Yet, even securely trained models are vulnerable to inference attacks aiming to extract memorized data from model outputs. To ensure output privacy and mitigate inference attacks, differential privacy (DP) injects calibrated noise during training. While cryptography and DP offer complementary guarantees, combining them efficiently for cryptographic and differentially private CL (CPCL) is challenging. Cryptography incurs performance overheads, while DP degrades accuracy, creating a privacy-accuracy-performance trade-off that needs careful design considerations. This work systematizes the CPCL landscape. We introduce a unified framework that generalizes common phases across CPCL paradigms, and identify secure noise sampling as the foundational phase to achieve CPCL. We analyze trade-offs of different secure noise sampling techniques, noise types, and DP mechanisms discussing their implementation challenges and evaluating their accuracy and cryptographic overhead across CPCL paradigms. Additionally, we implement identified secure noise sampling options in MPC and evaluate their computation and communication costs in WAN and LAN. Finally, we propose future research directions based on identified key observations, gaps and possible enhancements in the literature.
comment: This work has been accepted for publication at the IEEE Conference on Secure and Trustworthy Machine Learning (SaTML 2026)
On the Hardness of Computing Counterfactual and Semifactual Explanations in XAI
Providing clear explanations to the choices of machine learning models is essential for these models to be deployed in crucial applications. Counterfactual and semi-factual explanations have emerged as two mechanisms for providing users with insights into the outputs of their models. We provide an overview of the computational complexity results in the literature for generating these explanations, finding that in many cases, generating explanations is computationally hard. We strengthen the argument for this considerably by further contributing our own inapproximability results showing that not only are explanations often hard to generate, but under certain assumptions, they are also hard to approximate. We discuss the implications of these complexity results for the XAI community and for policymakers seeking to regulate explanations in AI.
comment: Accepted in Transactions on Machine Learning Research (TMLR), 2025 -- https://openreview.net/pdf?id=aELzBw0q1O
Late Breaking Results: Quamba-SE: Soft-edge Quantizer for Activations in State Space Models
We propose Quamba-SE, a soft-edge quantizer for State Space Model (SSM) activation quantization. Unlike existing methods, using standard INT8 operation, Quamba-SE employs three adaptive scales: high-precision for small values, standard scale for normal values, and low-precision for outliers. This preserves outlier information instead of hard clipping, while maintaining precision for other values. We evaluate on Mamba- 130M across 6 zero-shot benchmarks. Results show that Quamba- SE consistently outperforms Quamba, achieving up to +2.68% on individual benchmarks and up to +0.83% improvement in the average accuracy of 6 datasets.
comment: Accepted to DATE Late Breaking Results 2026, Verona, Italy
DeepLight: A Sobolev-trained Image-to-Image Surrogate Model for Light Transport in Tissue
In optoacoustic imaging, recovering the absorption coefficients of tissue by inverting the light transport remains a challenging problem. Improvements in solving this problem can greatly benefit the clinical value of optoacoustic imaging. Existing variational inversion methods require an accurate and differentiable model of this light transport. As neural surrogate models allow fast and differentiable simulations of complex physical processes, they are considered promising candidates to be used in solving such inverse problems. However, there are in general no guarantees that the derivatives of these surrogate models accurately match those of the underlying physical operator. As accurate derivatives are central to solving inverse problems, errors in the model derivative can considerably hinder high fidelity reconstructions. To overcome this limitation, we present a surrogate model for light transport in tissue that uses Sobolev training to improve the accuracy of the model derivatives. Additionally, the form of Sobolev training we used is suitable for high-dimensional models in general. Our results demonstrate that Sobolev training for a light transport surrogate model not only improves derivative accuracy but also reduces generalization error for in-distribution and out-of-distribution samples. These improvements promise to considerably enhance the utility of the surrogate model in downstream tasks, especially in solving inverse problems.
Do Transformers Understand Ancient Roman Coin Motifs Better than CNNs?
Automated analysis of ancient coins has the potential to help researchers extract more historical insights from large collections of coins and to help collectors understand what they are buying or selling. Recent research in this area has shown promise in focusing on identification of semantic elements as they are commonly depicted on ancient coins, by using convolutional neural networks (CNNs). This paper is the first to apply the recently proposed Vision Transformer (ViT) deep learning architecture to the task of identification of semantic elements on coins, using fully automatic learning from multi-modal data (images and unstructured text). This article summarises previous research in the area, discusses the training and implementation of ViT and CNN models for ancient coins analysis and provides an evaluation of their performance. The ViT models were found to outperform the newly trained CNN models in accuracy.
Draw it like Euclid: Teaching transformer models to generate CAD profiles using ruler and compass construction steps
We introduce a new method of generating Computer Aided Design (CAD) profiles via a sequence of simple geometric constructions including curve offsetting, rotations and intersections. These sequences start with geometry provided by a designer and build up the points and curves of the final profile step by step. We demonstrate that adding construction steps between the designer's input geometry and the final profile improves generation quality in a similar way to the introduction of a chain of thought in language models. Similar to the constraints in a parametric CAD model, the construction sequences reduce the degrees of freedom in the modeled shape to a small set of parameter values which can be adjusted by the designer, allowing parametric editing with the constructed geometry evaluated to floating point precision. In addition we show that applying reinforcement learning to the construction sequences gives further improvements over a wide range of metrics, including some which were not explicitly optimized.
Preliminary Tests of the Anticipatory Classifier System with Hindsight Experience Replay
This paper introduces ACS2HER, a novel integration of the Anticipatory Classifier System (ACS2) with the Hindsight Experience Replay (HER) mechanism. While ACS2 is highly effective at building cognitive maps through latent learning, its performance often stagnates in environments characterized by sparse rewards. We propose a specific architectural variant that triggers hindsight learning when the agent fails to reach its primary goal, re-labeling visited states as virtual goals to densify the learning signal. The proposed model was evaluated on two benchmarks: the deterministic \texttt{Maze 6} and the stochastic \texttt{FrozenLake}. The results demonstrate that ACS2HER significantly accelerates knowledge acquisition and environmental mastery compared to the standard ACS2. However, this efficiency gain is accompanied by increased computational overhead and a substantial expansion in classifier numerosity. This work provides the first analysis of combining anticipatory mechanisms with retrospective goal-relabeling in Learning Classifier Systems.
Ability Transfer and Recovery via Modularized Parameters Localization
Large language models can be continually pre-trained or fine-tuned to improve performance in specific domains, languages, or skills, but this specialization often degrades other capabilities and may cause catastrophic forgetting. We investigate how abilities are distributed within LLM parameters by analyzing module activations under domain- and language-specific inputs for closely related models. Across layers and modules, we find that ability-related activations are highly concentrated in a small set of channels (typically <5\%), and these channels are largely disentangled with good sufficiency and stability. Building on these observations, we propose ACT (Activation-Guided Channel-wise Ability Transfer), which localizes ability-relevant channels via activation differences and selectively transfers only the corresponding parameters, followed by lightweight fine-tuning for compatibility. Experiments on multilingual mathematical and scientific reasoning show that ACT can recover forgotten abilities while preserving retained skills. It can also merge multiple specialized models to integrate several abilities into a single model with minimal interference. Our code and data will be publicly released.
GeoRA: Geometry-Aware Low-Rank Adaptation for RLVR
Reinforcement Learning with Verifiable Rewards (RLVR) is crucial for advancing large-scale reasoning models. However, existing parameter-efficient methods, such as PiSSA and MiLoRA, are designed for Supervised Fine-Tuning (SFT) and do not account for the distinct optimization dynamics and geometric structures of RLVR. Applying these methods directly leads to spectral collapse and optimization instability, which severely limit model performance. Meanwhile, alternative approaches that leverage update sparsity encounter significant efficiency bottlenecks on modern hardware due to unstructured computations. To address these challenges, we propose GeoRA (Geometry-Aware Low-Rank Adaptation), which exploits the anisotropic and compressible nature of RL update subspaces. GeoRA initializes adapters by extracting principal directions via Singular Value Decomposition (SVD) within a geometrically constrained subspace while freezing the residual components. This method preserves the pre-trained geometric structure and enables efficient GPU computation through dense operators. Experiments on Qwen and Llama demonstrate that GeoRA mitigates optimization bottlenecks caused by geometric misalignment. It consistently outperforms established low-rank baselines on key mathematical benchmarks, achieving state-of-the-art (SOTA) results. Moreover, GeoRA shows superior generalization and resilience to catastrophic forgetting in out-of-domain tasks.
High-Performance Serverless Computing: A Systematic Literature Review on Serverless for HPC, AI, and Big Data
The widespread deployment of large-scale, compute-intensive applications such as high-performance computing, artificial intelligence, and big data is leading to convergence between cloud and high-performance computing infrastructures. Cloud providers are increasingly integrating high-performance computing capabilities in their infrastructures, such as hardware accelerators and high-speed interconnects, while researchers in the high-performance computing community are starting to explore cloud-native paradigms to improve scalability, elasticity, and resource utilization. In this context, serverless computing emerges as a promising execution model to efficiently handle highly dynamic, parallel, and distributed workloads. This paper presents a comprehensive systematic literature review of 122 research articles published between 2018 and early 2025, exploring the use of the serverless paradigm to develop, deploy, and orchestrate compute-intensive applications across cloud, high-performance computing, and hybrid environments. From these, a taxonomy comprising eight primary research directions and nine targeted use case domains is proposed, alongside an analysis of recent publication trends and collaboration networks among authors, highlighting the growing interest and interconnections within this emerging research field. Overall, this work aims to offer a valuable foundation for both new researchers and experienced practitioners, guiding the development of next-generation serverless solutions for parallel compute-intensive applications.
Single-Round Clustered Federated Learning via Data Collaboration Analysis for Non-IID Data
Federated Learning (FL) enables distributed learning across multiple clients without sharing raw data. When statistical heterogeneity across clients is severe, Clustered Federated Learning (CFL) can improve performance by grouping similar clients and training cluster-wise models. However, most CFL approaches rely on multiple communication rounds for cluster estimation and model updates, which limits their practicality under tight constraints on communication rounds. We propose Data Collaboration-based Clustered Federated Learning (DC-CFL), a single-round framework that completes both client clustering and cluster-wise learning, using only the information shared in DC analysis. DC-CFL quantifies inter-client similarity via total variation distance between label distributions, estimates clusters using hierarchical clustering, and performs cluster-wise learning via DC analysis. Experiments on multiple open datasets under representative non-IID conditions show that DC-CFL achieves accuracy comparable to multi-round baselines while requiring only one communication round. These results indicate that DC-CFL is a practical alternative for collaborative AI model development when multiple communication rounds are impractical.
comment: 9 pages, 3 figures
Explainable Autoencoder-Based Anomaly Detection in IEC 61850 GOOSE Networks
The IEC 61850 Generic Object-Oriented Substation Event (GOOSE) protocol plays a critical role in real-time protection and automation of digital substations, yet its lack of native security mechanisms can expose power systems to sophisticated cyberattacks. Traditional rule-based and supervised intrusion detection techniques struggle to detect protocol-compliant and zero-day attacks under significant class imbalance and limited availability of labeled data. This paper proposes an explainable, unsupervised multi-view anomaly detection framework for IEC 61850 GOOSE networks that explicitly separates semantic integrity and temporal availability. The approach employs asymmetric autoencoders trained only on real operational GOOSE traffic to learn distinct latent representations of sequence-based protocol semantics and timing-related transmission dynamics in normal traffic. Anomaly detection is implemented using reconstruction errors mixed with statistically grounded thresholds, enabling robust detection without specified attack types. Feature-level reconstruction analysis provides intrinsic explainability by directly linking detection outcomes to IEC 61850 protocol characteristics. The proposed framework is evaluated using real substation traffic for training and a public dataset containing normal traffic and message suppression, data manipulation, and denial-of-service attacks for testing. Experimental results show attack detection rates above 99% with false positives remaining below 5% of total traffic, demonstrating strong generalization across environments and effective operation under extreme class imbalance and interpretable anomaly attribution.
Enhancing Spatial Reasoning in Large Language Models for Metal-Organic Frameworks Structure Prediction
Metal-organic frameworks (MOFs) are porous crystalline materials with broad applications such as carbon capture and drug delivery, yet accurately predicting their 3D structures remains a significant challenge. While Large Language Models (LLMs) have shown promise in generating crystals, their application to MOFs is hindered by MOFs' high atomic complexity. Inspired by the success of block-wise paradigms in deep generative models, we pioneer the use of LLMs in this domain by introducing MOF-LLM, the first LLM framework specifically adapted for block-level MOF structure prediction. To effectively harness LLMs for this modular assembly task, our training paradigm integrates spatial-aware continual pre-training (CPT), structural supervised fine-tuning (SFT), and matching-driven reinforcement learning (RL). By incorporating explicit spatial priors and optimizing structural stability via Soft Adaptive Policy Optimization (SAPO), our approach substantially enhances the spatial reasoning capability of a Qwen-3 8B model for accurate MOF structure prediction. Comprehensive experiments demonstrate that MOF-LLM outperforms state-of-the-art denoising-based and LLM-based methods while exhibiting superior sampling efficiency.
Cluster Workload Allocation: Semantic Soft Affinity Using Natural Language Processing
Cluster workload allocation often requires complex configurations, creating a usability gap. This paper introduces a semantic, intent-driven scheduling paradigm for cluster systems using Natural Language Processing. The system employs a Large Language Model (LLM) integrated via a Kubernetes scheduler extender to interpret natural language allocation hint annotations for soft affinity preferences. A prototype featuring a cluster state cache and an intent analyzer (using AWS Bedrock) was developed. Empirical evaluation demonstrated high LLM parsing accuracy (>95% Subset Accuracy on an evaluation ground-truth dataset) for top-tier models like Amazon Nova Pro/Premier and Mistral Pixtral Large, significantly outperforming a baseline engine. Scheduling quality tests across six scenarios showed the prototype achieved superior or equivalent placement compared to standard Kubernetes configurations, particularly excelling in complex and quantitative scenarios and handling conflicting soft preferences. The results validate using LLMs for accessible scheduling but highlight limitations like synchronous LLM latency, suggesting asynchronous processing for production readiness. This work confirms the viability of semantic soft affinity for simplifying workload orchestration.
Magnifying change: Rapid burn scar mapping with multi-resolution, multi-source satellite imagery
Delineating wildfire affected areas using satellite imagery remains challenging due to irregular and spatially heterogeneous spectral changes across the electromagnetic spectrum. While recent deep learning approaches achieve high accuracy when high-resolution multispectral data are available, their applicability in operational settings, where a quick delineation of the burn scar shortly after a wildfire incident is required, is limited by the trade-off between spatial resolution and temporal revisit frequency of current satellite systems. To address this limitation, we propose a novel deep learning model, namely BAM-MRCD, which employs multi-resolution, multi-source satellite imagery (MODIS and Sentinel-2) for the timely production of detailed burnt area maps with high spatial and temporal resolution. Our model manages to detect even small scale wildfires with high accuracy, surpassing similar change detection models as well as solid baselines. All data and code are available in the GitHub repository: https://github.com/Orion-AI-Lab/BAM-MRCD.
Learning to Trust Experience: A Monitor-Trust-Regulator Framework for Learning under Unobservable Feedback Reliability
Learning under unobservable feedback reliability poses a distinct challenge beyond optimization robustness: a system must decide whether to learn from an experience, not only how to learn stably. We study this setting as Epistemic Identifiability under Unobservable Reliability (EIUR), where each experience has a latent credibility, reliable and unreliable feedback can be locally indistinguishable, and data are generated in a closed loop by the learner's own evolving beliefs and actions. In EIUR, standard robust learning can converge stably yet form high-confidence, systematically wrong beliefs. We propose metacognitive regulation as a practical response: a second, introspective control loop that infers experience credibility from endogenous evidence in the learner's internal dynamics. We formalize this as a modular Monitor-Trust-Regulator (MTR) decomposition and instantiate it with self-diagnosis, which maintains a slowly varying experience-trust variable that softly modulates learning updates, without exogenous reliability labels or an explicit corruption model. Empirically, in the EIUR regimes studied here, self-diagnosis is associated with improved epistemic identifiability. In reinforcement learning, it enables calibrated skepticism and recovery under systematically corrupted rewards. In supervised learning, it exposes a critical dissociation: performance recovery does not imply epistemic recovery. Accuracy can rebound while internal belief dynamics remain locked-in by early misleading data, a failure detectable only through introspective diagnostics. Together, MTR and self-diagnosis provide an organizing abstraction and a concrete design template for intrinsic reliability assessment in autonomous learning under unobservable reliability.
comment: 23 pages, 7 figures. Preprint
LatencyPrism: Online Non-intrusive Latency Sculpting for SLO-Guaranteed LLM Inference
LLM inference latency critically determines user experience and operational costs, directly impacting throughput under SLO constraints. Even brief latency spikes degrade service quality despite acceptable average performance. However, distributed inference environments featuring diverse software frameworks and XPU architectures combined with dynamic workloads make latency analysis challenging. Constrained by intrusive designs that necessitate service restarts or even suspension, and by hardware-bound implementations that fail to adapt to heterogeneous inference environments, existing AI profiling methods are often inadequate for real-time production analysis. We present LatencyPrism, the first zero-intrusion multi-platform latency sculpting system. It aims to break down the inference latency across pipeline, proactively alert on inference latency anomalies, and guarantee adherence to SLOs, all without requiring code modifications or service restarts. LatencyPrism has been deployed across thousands of XPUs for over six months. It enables low-overhead real-time monitoring at batch level with alerts triggered in milliseconds. This approach distinguishes between workload-driven latency variations and anomalies indicating underlying issues with an F1-score of 0.98. We also conduct extensive experiments and investigations into root cause analysis to demonstrate LatencyPrism's capability.
comment: 12 pages, 6 figures
RIFT: Repurposing Negative Samples via Reward-Informed Fine-Tuning
While Supervised Fine-Tuning (SFT) and Rejection Sampling Fine-Tuning (RFT) are standard for LLM alignment, they either rely on costly expert data or discard valuable negative samples, leading to data inefficiency. To address this, we propose Reward Informed Fine-Tuning (RIFT), a simple yet effective framework that utilizes all self-generated samples. Unlike the hard thresholding of RFT, RIFT repurposes negative trajectories, reweighting the loss with scalar rewards to learn from both the positive and negative trajectories from the model outputs. To overcome the training collapse caused by naive reward integration, where direct multiplication yields an unbounded loss, we introduce a stabilized loss formulation that ensures numerical robustness and optimization efficiency. Extensive experiments on mathematical benchmarks across various base models show that RIFT consistently outperforms RFT. Our results demonstrate that RIFT is a robust and data-efficient alternative for alignment using mixed-quality, self-generated data.
HGATSolver: A Heterogeneous Graph Attention Solver for Fluid-Structure Interaction
Fluid-structure interaction (FSI) systems involve distinct physical domains, fluid and solid, governed by different partial differential equations and coupled at a dynamic interface. While learning-based solvers offer a promising alternative to costly numerical simulations, existing methods struggle to capture the heterogeneous dynamics of FSI within a unified framework. This challenge is further exacerbated by inconsistencies in response across domains due to interface coupling and by disparities in learning difficulty across fluid and solid regions, leading to instability during prediction. To address these challenges, we propose the Heterogeneous Graph Attention Solver (HGATSolver). HGATSolver encodes the system as a heterogeneous graph, embedding physical structure directly into the model via distinct node and edge types for fluid, solid, and interface regions. This enables specialized message-passing mechanisms tailored to each physical domain. To stabilize explicit time stepping, we introduce a novel physics-conditioned gating mechanism that serves as a learnable, adaptive relaxation factor. Furthermore, an Inter-domain Gradient-Balancing Loss dynamically balances the optimization objectives across domains based on predictive uncertainty. Extensive experiments on two constructed FSI benchmarks and a public dataset demonstrate that HGATSolver achieves state-of-the-art performance, establishing an effective framework for surrogate modeling of coupled multi-physics systems.
XLinear: A Lightweight and Accurate MLP-Based Model for Long-Term Time Series Forecasting with Exogenous Inputs AAAI 2026
Despite the prevalent assumption of uniform variable importance in long-term time series forecasting models, real world applications often exhibit asymmetric causal relationships and varying data acquisition costs. Specifically, cost-effective exogenous data (e.g., local weather) can unilaterally influence dynamics of endogenous variables, such as lake surface temperature. Exploiting these links enables more effective forecasts when exogenous inputs are readily available. Transformer-based models capture long-range dependencies but incur high computation and suffer from permutation invariance. Patch-based variants improve efficiency yet can miss local temporal patterns. To efficiently exploit informative signals across both the temporal dimension and relevant exogenous variables, this study proposes XLinear, a lightweight time series forecasting model built upon MultiLayer Perceptrons (MLPs). XLinear uses a global token derived from an endogenous variable as a pivotal hub for interacting with exogenous variables, and employs MLPs with sigmoid activation to extract both temporal patterns and variate-wise dependencies. Its prediction head then integrates these signals to forecast the endogenous series. We evaluate XLinear on seven standard benchmarks and five real-world datasets with exogenous inputs. Compared with state-of-the-art models, XLinear delivers superior accuracy and efficiency for both multivariate forecasts and univariate forecasts influenced by exogenous inputs.
comment: Accepted by AAAI 2026
Reward Learning through Ranking Mean Squared Error
Reward design remains a significant bottleneck in applying reinforcement learning (RL) to real-world problems. A popular alternative is reward learning, where reward functions are inferred from human feedback rather than manually specified. Recent work has proposed learning reward functions from human feedback in the form of ratings, rather than traditional binary preferences, enabling richer and potentially less cognitively demanding supervision. Building on this paradigm, we introduce a new rating-based RL method, Ranked Return Regression for RL (R4). At its core, R4 employs a novel ranking mean squared error (rMSE) loss, which treats teacher-provided ratings as ordinal targets. Our approach learns from a dataset of trajectory-rating pairs, where each trajectory is labeled with a discrete rating (e.g., "bad," "neutral," "good"). At each training step, we sample a set of trajectories, predict their returns, and rank them using a differentiable sorting operator (soft ranks). We then optimize a mean squared error loss between the resulting soft ranks and the teacher's ratings. Unlike prior rating-based approaches, R4 offers formal guarantees: its solution set is provably minimal and complete under mild assumptions. Empirically, using simulated human feedback, we demonstrate that R4 consistently matches or outperforms existing rating and preference-based RL methods on robotic locomotion benchmarks from OpenAI Gym and the DeepMind Control Suite, while requiring significantly less feedback.
GIFT: Unlocking Global Optimality in Post-Training via Finite-Temperature Gibbs Initialization
The prevailing post-training paradigm for Large Reasoning Models (LRMs)--Supervised Fine-Tuning (SFT) followed by Reinforcement Learning (RL)--suffers from an intrinsic optimization mismatch: the rigid supervision inherent in SFT induces distributional collapse, thereby exhausting the exploration space necessary for subsequent RL. In this paper, we reformulate SFT within a unified post-training framework and propose Gibbs Initialization with Finite Temperature (GIFT). We characterize standard SFT as a degenerate zero-temperature limit that suppresses base priors. Conversely, GIFT incorporates supervision as a finite-temperature energy potential, establishing a distributional bridge that ensures objective consistency throughout the post-training pipeline. Our experiments demonstrate that GIFT significantly outperforms standard SFT and other competitive baselines when utilized for RL initialization, providing a mathematically principled pathway toward achieving global optimality in post-training. Our code is available at https://github.com/zzy1127/GIFT.
From Hawkes Processes to Attention: Time-Modulated Mechanisms for Event Sequences
Marked Temporal Point Processes (MTPPs) arise naturally in medical, social, commercial, and financial domains. However, existing Transformer-based methods mostly inject temporal information only via positional encodings, relying on shared or parametric decay structures, which limits their ability to capture heterogeneous and type-specific temporal effects. Inspired by this observation, we derive a novel attention operator called Hawkes Attention from the multivariate Hawkes process theory for MTPP, using learnable per-type neural kernels to modulate query, key and value projections, thereby replacing the corresponding parts in the traditional attention. Benefited from the design, Hawkes Attention unifies event timing and content interaction, learning both the time-relevant behavior and type-specific excitation patterns from the data. The experimental results show that our method achieves better performance compared to the baselines. In addition to the general MTPP, our attention mechanism can also be easily applied to specific temporal structures, such as time series forecasting.
Annealed Relaxation of Speculative Decoding for Faster Autoregressive Image Generation AAAI 2026
Despite significant progress in autoregressive image generation, inference remains slow due to the sequential nature of AR models and the ambiguity of image tokens, even when using speculative decoding. Recent works attempt to address this with relaxed speculative decoding but lack theoretical grounding. In this paper, we establish the theoretical basis of relaxed SD and propose COOL-SD, an annealed relaxation of speculative decoding built on two key insights. The first analyzes the total variation (TV) distance between the target model and relaxed speculative decoding and yields an optimal resampling distribution that minimizes an upper bound of the distance. The second uses perturbation analysis to reveal an annealing behaviour in relaxed speculative decoding, motivating our annealed design. Together, these insights enable COOL-SD to generate images faster with comparable quality, or achieve better quality at similar latency. Experiments validate the effectiveness of COOL-SD, showing consistent improvements over prior methods in speed-quality trade-offs.
comment: Accepted to AAAI 2026
$D^2Prune$: Sparsifying Large Language Models via Dual Taylor Expansion and Attention Distribution Awareness
Large language models (LLMs) face significant deployment challenges due to their massive computational demands. % While pruning offers a promising compression solution, existing methods suffer from two critical limitations: (1) They neglect activation distribution shifts between calibration data and test data, resulting in inaccurate error estimations; (2) They overlook the long-tail distribution characteristics of activations in the attention module. To address these limitations, this paper proposes a novel pruning method, $D^2Prune$. First, we propose a dual Taylor expansion-based method that jointly models weight and activation perturbations for precise error estimation, leading to precise pruning mask selection and weight updating and facilitating error minimization during pruning. % Second, we propose an attention-aware dynamic update strategy that preserves the long-tail attention pattern by jointly minimizing the KL divergence of attention distributions and the reconstruction error. Extensive experiments show that $D^2Prune$ consistently outperforms SOTA methods across various LLMs (e.g., OPT-125M, LLaMA2/3, and Qwen3). Moreover, the dynamic attention update mechanism also generalizes well to ViT-based vision models like DeiT, achieving superior accuracy on ImageNet-1K.
Geometric Stability: The Missing Axis of Representations
Analysis of learned representations has a blind spot: it focuses on $similarity$, measuring how closely embeddings align with external references, but similarity reveals only what is represented, not whether that structure is robust. We introduce $geometric$ $stability$, a distinct dimension that quantifies how reliably representational geometry holds under perturbation, and present $Shesha$, a framework for measuring it. Across 2,463 configurations in seven domains, we show that stability and similarity are empirically uncorrelated ($ρ\approx 0.01$) and mechanistically distinct: similarity metrics collapse after removing the top principal components, while stability retains sensitivity to fine-grained manifold structure. This distinction yields actionable insights: for safety monitoring, stability acts as a functional geometric canary, detecting structural drift nearly 2$\times$ more sensitively than CKA while filtering out the non-functional noise that triggers false alarms in rigid distance metrics; for controllability, supervised stability predicts linear steerability ($ρ= 0.89$-$0.96$); for model selection, stability dissociates from transferability, revealing a geometric tax that transfer optimization incurs. Beyond machine learning, stability predicts CRISPR perturbation coherence and neural-behavioral coupling. By quantifying $how$ $reliably$ systems maintain structure, geometric stability provides a necessary complement to similarity for auditing representations across biological and computational systems.
BalDRO: A Distributionally Robust Optimization based Framework for Large Language Model Unlearning
As Large Language Models (LLMs) increasingly shape online content, removing targeted information from well-trained LLMs (also known as LLM unlearning) has become critical for web governance. A key challenge lies in sample-wise imbalance within the forget set: different samples exhibit widely varying unlearning difficulty, leading to asynchronous forgetting where some knowledge remains insufficiently erased while others become over-forgotten. To address this, we propose BalDRO, a novel and efficient framework for balanced LLM unlearning. BalDRO formulates unlearning as a min-sup process: an inner step identifies a worst-case data distribution that emphasizes hard-to-unlearn samples, while an outer step updates model parameters under this distribution. We instantiate BalDRO via two efficient variants: BalDRO-G, a discrete GroupDRO-based approximation focusing on high-loss subsets, and BalDRO-DV, a continuous Donsker-Varadhan dual method enabling smooth adaptive weighting within standard training pipelines. Experiments on TOFU and MUSE show that BalDRO significantly improves both forgetting quality and model utility over existing methods, and we release code for reproducibility.
N-EIoU-YOLOv9: A Signal-Aware Bounding Box Regression Loss for Lightweight Mobile Detection of Rice Leaf Diseases
In this work, we propose N EIoU YOLOv9, a lightweight detection framework based on a signal aware bounding box regression loss derived from non monotonic gradient focusing and geometric decoupling principles, referred to as N EIoU (Non monotonic Efficient Intersection over Union). The proposed loss reshapes localization gradients by combining non monotonic focusing with decoupled width and height optimization, thereby enhancing weak regression signals for hard samples with low overlap while reducing gradient interference. This design is particularly effective for small and low contrast targets commonly observed in agricultural disease imagery. The proposed N EIoU loss is integrated into a lightweight YOLOv9t architecture and evaluated on a self collected field dataset comprising 5908 rice leaf images across four disease categories and healthy leaves. Experimental results demonstrate consistent performance gains over the standard CIoU loss, achieving a mean Average Precision of 90.3 percent, corresponding to a 4.3 percent improvement over the baseline, with improved localization accuracy under stricter evaluation criteria. For practical validation, the optimized model is deployed on an Android device using TensorFlow Lite with Float16 quantization, achieving an average inference time of 156 milliseconds per frame while maintaining accuracy. These results confirm that the proposed approach effectively balances accuracy, optimization stability, and computational efficiency for edge based agricultural monitoring systems.
DP-FEDSOFIM: Differentially Private Federated Stochastic Optimization using Regularized Fisher Information Matrix ICML 2026
Differentially private federated learning (DP-FL) suffers from slow convergence under tight privacy budgets due to the overwhelming noise introduced to preserve privacy. While adaptive optimizers can accelerate convergence, existing second-order methods such as DP-FedNew require O(d^2) memory at each client to maintain local feature covariance matrices, making them impractical for high-dimensional models. We propose DP-FedSOFIM, a server-side second-order optimization framework that leverages the Fisher Information Matrix (FIM) as a natural gradient preconditioner while requiring only O(d) memory per client. By employing the Sherman-Morrison formula for efficient matrix inversion, DP-FedSOFIM achieves O(d) computational complexity per round while maintaining the convergence benefits of second-order methods. Our analysis proves that the server-side preconditioning preserves (epsilon, delta)-differential privacy through the post-processing theorem. Empirical evaluation on CIFAR-10 demonstrates that DP-FedSOFIM achieves superior test accuracy compared to first-order baselines across multiple privacy regimes.
comment: 17 pages, 1 figure. Submitted to ICML 2026
Multi-Teacher Ensemble Distillation: A Mathematical Framework for Probability-Domain Knowledge Aggregation
Building on the probability-domain distillation framework of Sparse-KD, we develop an axiomatic, operator-theoretic framework for multi-teacher ensemble knowledge distillation. Rather than prescribing a specific aggregation formula, we define five core axioms governing valid knowledge aggregation operators, encompassing convexity, positivity, continuity, weight monotonicity, and temperature coherence. We prove the existence and non-uniqueness of operator families satisfying these axioms, establishing that multiple distinct aggregation mechanisms conform to the same foundational principles. Within this framework, we establish operator-agnostic guarantees showing that multi-teacher aggregation reduces both stochastic variance and systematic supervisory bias under heterogeneous teachers, while providing Jensen-type bounds, log-loss guarantees, and safety attenuation properties. For aggregation operators linear in teacher weights, we further establish classical ensemble variance-reduction results under standard independence assumptions, with extensions to correlated-error regimes. The framework provides theoretical grounding for multi-teacher distillation from diverse frontier models while admitting multiple valid implementation strategies.
comment: 7 pages, 1 table
Efficient Clustering in Stochastic Bandits
We study the Bandit Clustering (BC) problem under the fixed confidence setting, where the objective is to group a collection of data sequences (arms) into clusters through sequential sampling from adaptively selected arms at each time step while ensuring a fixed error probability at the stopping time. We consider a setting where arms in a cluster may have different distributions. Unlike existing results in this setting, which assume Gaussian-distributed arms, we study a broader class of vector-parametric distributions that satisfy mild regularity conditions. Existing asymptotically optimal BC algorithms require solving an optimization problem as part of their sampling rule at each step, which is computationally costly. We propose an Efficient Bandit Clustering algorithm (EBC), which, instead of solving the full optimization problem, takes a single step toward the optimal value at each time step, making it computationally efficient while remaining asymptotically optimal. We also propose a heuristic variant of EBC, called EBC-H, which further simplifies the sampling rule, with arm selection based on quantities computed as part of the stopping rule. We highlight the computational efficiency of EBC and EBC-H by comparing their per-sample run time with that of existing algorithms. The asymptotic optimality of EBC is supported through simulations on the synthetic datasets. Through simulations on both synthetic and real-world datasets, we show the performance gain of EBC and EBC-H over existing approaches.
Deep Learning-based Binary Analysis for Vulnerability Detection in x86-64 Machine Code
While much of the current research in deep learning-based vulnerability detection relies on disassembled binaries, this paper explores the feasibility of extracting features directly from raw x86-64 machine code. Although assembly language is more interpretable for humans, it requires more complex models to capture token-level context. In contrast, machine code may enable more efficient, lightweight models and preserve all information that might be lost in disassembly. This paper approaches the task of vulnerability detection through an exploratory study on two specific deep learning model architectures and aims to systematically evaluate their performance across three vulnerability types. The results demonstrate that graph-based models consistently outperform sequential models, emphasizing the importance of control flow relationships, and that machine code contains sufficient information for effective vulnerability discovery.
KTCF: Actionable Recourse in Knowledge Tracing via Counterfactual Explanations for Education AAAI-26
Using Artificial Intelligence to improve teaching and learning benefits greater adaptivity and scalability in education. Knowledge Tracing (KT) is recognized for student modeling task due to its superior performance and application potential in education. To this end, we conceptualize and investigate counterfactual explanation as the connection from XAI for KT to education. Counterfactual explanations offer actionable recourse, are inherently causal and local, and easy for educational stakeholders to understand who are often non-experts. We propose KTCF, a counterfactual explanation generation method for KT that accounts for knowledge concept relationships, and a post-processing scheme that converts a counterfactual explanation into a sequence of educational instructions. We experiment on a large-scale educational dataset and show our KTCF method achieves superior and robust performance over existing methods, with improvements ranging from 5.7% to 34% across metrics. Additionally, we provide a qualitative evaluation of our post-processing scheme, demonstrating that the resulting educational instructions help in reducing large study burden. We show that counterfactuals have the potential to advance the responsible and practical use of AI in education. Future works on XAI for KT may benefit from educationally grounded conceptualization and developing stakeholder-centered methods.
comment: Accepted to AAAI-26 Special Track AI for Social Impact (oral presentation)
Interpretable Probability Estimation with LLMs via Shapley Reconstruction
Large Language Models (LLMs) demonstrate potential to estimate the probability of uncertain events, by leveraging their extensive knowledge and reasoning capabilities. This ability can be applied to support intelligent decision-making across diverse fields, such as financial forecasting and preventive healthcare. However, directly prompting LLMs for probability estimation faces significant challenges: their outputs are often noisy, and the underlying predicting process is opaque. In this paper, we propose PRISM: Probability Reconstruction via Shapley Measures, a framework that brings transparency and precision to LLM-based probability estimation. PRISM decomposes an LLM's prediction by quantifying the marginal contribution of each input factor using Shapley values. These factor-level contributions are then aggregated to reconstruct a calibrated final estimate. In our experiments, we demonstrate PRISM improves predictive accuracy over direct prompting and other baselines, across multiple domains including finance, healthcare, and agriculture. Beyond performance, PRISM provides a transparent prediction pipeline: our case studies visualize how individual factors shape the final estimate, helping build trust in LLM-based decision support systems.
Discrete Solution Operator Learning for Geometry-Dependent PDEs
Neural operator learning accelerates PDE solution by approximating operators as mappings between continuous function spaces. Yet in many engineering settings, varying geometry induces discrete structural changes, including topological changes, abrupt changes in boundary conditions or boundary types, and changes in the effective computational domain, which break the smooth-variation premise. Here we introduce Discrete Solution Operator Learning (DiSOL), a complementary paradigm that learns discrete solution procedures rather than continuous function-space operators. DiSOL factorizes the solver into learnable stages that mirror classical discretizations: local contribution encoding, multiscale assembly, and implicit solution reconstruction on an embedded grid, thereby preserving procedure-level consistency while adapting to geometry-dependent discrete structures. Across geometry-dependent Poisson, advection-diffusion, linear elasticity, as well as spatiotemporal heat-conduction problems, DiSOL produces stable and accurate predictions under both in-distribution and strongly out-of-distribution geometries, including discontinuous boundaries and topological changes. These results highlight the need for procedural operator representations in geometry-dominated regimes and position discrete solution operator learning as a distinct, complementary direction in scientific machine learning.
comment: 15 pages main text, 40 pages SI
EvasionBench: Detecting Evasive Answers in Financial Q&A via Multi-Model Consensus and LLM-as-Judge
Detecting evasive answers in earnings calls is critical for financial transparency, yet progress is hindered by the lack of large-scale benchmarks. We introduce EvasionBench, comprising 30,000 training samples and 1,000 human-annotated test samples (Cohen's Kappa 0.835) across three evasion levels. Our key contribution is a multi-model annotation framework leveraging a core insight: disagreement between frontier LLMs signals hard examples most valuable for training. We mine boundary cases where two strong annotators conflict, using a judge to resolve labels. This approach outperforms single-model distillation by 2.4 percent, with judge-resolved samples improving generalization despite higher training loss (0.421 vs 0.393) - evidence that disagreement mining acts as implicit regularization. Our trained model Eva-4B (4B parameters) achieves 81.3 percent accuracy, outperforming its base by 25 percentage points and approaching frontier LLM performance at a fraction of inference cost.
comment: Shijian Ma and Yan Lin contributed equally. Corresponding author: Yan Lin
A Machine Learning Approach Towards Runtime Optimisation of Matrix Multiplication
The GEneral Matrix Multiplication (GEMM) is one of the essential algorithms in scientific computing. Single-thread GEMM implementations are well-optimised with techniques like blocking and autotuning. However, due to the complexity of modern multi-core shared memory systems, it is challenging to determine the number of threads that minimises the multi-thread GEMM runtime. We present a proof-of-concept approach to building an Architecture and Data-Structure Aware Linear Algebra (ADSALA) software library that uses machine learning to optimise the runtime performance of BLAS routines. More specifically, our method uses a machine learning model on-the-fly to automatically select the optimal number of threads for a given GEMM task based on the collected training data. Test results on two different HPC node architectures, one based on a two-socket Intel Cascade Lake and the other on a two-socket AMD Zen 3, revealed a 25 to 40 per cent speedup compared to traditional GEMM implementations in BLAS when using GEMM of memory usage within 100 MB.
comment: 2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS)
Enhancing Imbalanced Electrocardiogram Classification: A Novel Approach Integrating Data Augmentation through Wavelet Transform and Interclass Fusion
Imbalanced electrocardiogram (ECG) data hampers the efficacy and resilience of algorithms in the automated processing and interpretation of cardiovascular diagnostic information, which in turn impedes deep learning-based ECG classification. Notably, certain cardiac conditions that are infrequently encountered are disproportionately underrepresented in these datasets. Although algorithmic generation and oversampling of specific ECG signal types can mitigate class skew, there is a lack of consensus regarding the effectiveness of such techniques in ECG classification. Furthermore, the methodologies and scenarios of ECG acquisition introduce noise, further complicating the processing of ECG data. This paper presents a significantly enhanced ECG classifier that simultaneously addresses both class imbalance and noise-related challenges in ECG analysis, as observed in the CPSC 2018 dataset. Specifically, we propose the application of feature fusion based on the wavelet transform, with a focus on wavelet transform-based interclass fusion, to generate the training feature library and the test set feature library. Subsequently, the original training and test data are amalgamated with their respective feature databases, resulting in more balanced training and test datasets. Employing this approach, our ECG model achieves recognition accuracies of up to 99%, 98%, 97%, 98%, 96%, 92%, and 93% for Normal, AF, I-AVB, LBBB, RBBB, PAC, PVC, STD, and STE, respectively. Furthermore, the average recognition accuracy for these categories ranges between 92\% and 98\%. Notably, our proposed data fusion methodology surpasses any known algorithms in terms of ECG classification accuracy in the CPSC 2018 dataset.
comment: 18 pages, 9 figures, 3 tables, 1 algorithm
Comparative Assessment of Concrete Compressive Strength Prediction at Industry Scale Using Embedding-based Neural Networks, Transformers, and Traditional Machine Learning Approaches
Concrete is the most widely used construction material worldwide; however, reliable prediction of compressive strength remains challenging due to material heterogeneity, variable mix proportions, and sensitivity to field and environmental conditions. Recent advances in artificial intelligence enable data-driven modeling frameworks capable of supporting automated decision-making in construction quality control. This study leverages an industry-scale dataset consisting of approximately 70,000 compressive strength test records to evaluate and compare multiple predictive approaches, including linear regression, decision trees, random forests, transformer-based neural networks, and embedding-based neural networks. The models incorporate key mixture design and placement variables such as water cement ratio, cementitious material content, slump, air content, temperature, and placement conditions. Results indicate that the embedding-based neural network consistently outperforms traditional machine learning and transformer-based models, achieving a mean 28-day prediction error of approximately 2.5%. This level of accuracy is comparable to routine laboratory testing variability, demonstrating the potential of embedding-based learning frameworks to enable automated, data-driven quality control and decision support in large-scale construction operations.
Hidden States as Early Signals: Step-level Trace Evaluation and Pruning for Efficient Test-Time Scaling
Large Language Models (LLMs) can enhance reasoning capabilities through test-time scaling by generating multiple traces. However, the combination of lengthy reasoning traces with multiple sampling introduces substantial computation and high end-to-end latency. Prior work on accelerating this process has relied on similarity-based or confidence-based pruning, but these signals do not reliably indicate trace quality. To address these limitations, we propose STEP: Step-level Trace Evaluation and Pruning, a novel pruning framework that evaluates reasoning steps using hidden states and dynamically prunes unpromising traces during generation. We train a lightweight step scorer to estimate trace quality, and design a GPU memory-aware pruning strategy that triggers pruning as the GPU memory is saturated by KV cache to reduce end-to-end latency. Experiments across challenging reasoning benchmarks demonstrate that STEP reduces end-to-end inference latency by 45%-70% on average compared to self-consistency while also improving reasoning accuracy. Our code is released at: https://github.com/Supercomputing-System-AI-Lab/STEP
Distribution-Aligned Sequence Distillation for Superior Long-CoT Reasoning
In this report, we introduce DASD-4B-Thinking, a lightweight yet highly capable, fully open-source reasoning model. It achieves SOTA performance among open-source models of comparable scale across challenging benchmarks in mathematics, scientific reasoning, and code generation -- even outperforming several larger models. We begin by critically reexamining a widely adopted distillation paradigm in the community: SFT on teacher-generated responses, also known as sequence-level distillation. Although a series of recent works following this scheme have demonstrated remarkable efficiency and strong empirical performance, they are primarily grounded in the SFT perspective. Consequently, these approaches focus predominantly on designing heuristic rules for SFT data filtering, while largely overlooking the core principle of distillation itself -- enabling the student model to learn the teacher's full output distribution so as to inherit its generalization capability. Specifically, we identify three critical limitations in current practice: i) Inadequate representation of the teacher's sequence-level distribution; ii) Misalignment between the teacher's output distribution and the student's learning capacity; and iii) Exposure bias arising from teacher-forced training versus autoregressive inference. In summary, these shortcomings reflect a systemic absence of explicit teacher-student interaction throughout the distillation process, leaving the essence of distillation underexploited. To address these issues, we propose several methodological innovations that collectively form an enhanced sequence-level distillation training pipeline. Remarkably, DASD-4B-Thinking obtains competitive results using only 448K training samples -- an order of magnitude fewer than those employed by most existing open-source efforts. To support community research, we publicly release our models and the training dataset.
comment: Project Page: https://github.com/D2I-ai/dasd-thinking
MMR-GRPO: Accelerating GRPO-Style Training through Diversity-Aware Reward Reweighting
Group Relative Policy Optimization (GRPO) has become a standard approach for training mathematical reasoning models; however, its reliance on multiple completions per prompt makes training computationally expensive. Although recent work has reduced the number of training steps required to reach peak performance, the overall wall-clock training time often remains unchanged or even increases due to higher per-step cost. We propose MMR-GRPO, which integrates Maximal Marginal Relevance to reweigh rewards based on completion diversity. Our key insight is that semantically redundant completions contribute limited marginal learning signal; prioritizing diverse solutions yields more informative updates and accelerates convergence. Extensive evaluations across three model sizes (1.5B, 7B, 8B), three GRPO variants, and five mathematical reasoning benchmarks show that MMR-GRPO achieves comparable peak performance while requiring on average 47.9% fewer training steps and 70.2% less wall-clock time. These gains are consistent across models, methods, and benchmarks. We will release our code, trained models, and experimental protocols.
How Many Human Judgments Are Enough? Feasibility Limits of Human Preference Evaluation
Human preference evaluations are widely used to compare generative models, yet it remains unclear how many judgments are required to reliably detect small improvements. We show that when preference signal is diffuse across prompts (i.e., all prompt types are similarly informative), proportional allocation is minimax-optimal: no allocation strategy substantially improves detectability. Empirical analysis of large-scale human preference datasets shows that most comparisons fall into this diffuse regime, exhibiting small preference margins that require far more judgments than typically collected, even in well-sampled comparisons. These limits persist across evaluation protocols and modalities, including chat, image generation, and code generation with execution feedback. In contrast, curated benchmarks that reduce prompt induced variability systematically induce larger margins and improve detectability through a $1.5\times$ reduction in prompt-level variance. Our results show that inconclusive or negative human evaluation outcomes frequently reflect underpowered evaluation rather than model equivalence, underscoring the need to account explicitly for effect size, budget, and protocol design.
SRT: Accelerating Reinforcement Learning via Speculative Rollout with Tree-Structured Cache
We present Speculative Rollout with Tree-Structured Cache (SRT), a simple, model-free approach to accelerate on-policy reinforcement learning (RL) for language models without sacrificing distributional correctness. SRT exploits the empirical similarity of rollouts for the same prompt across training steps by storing previously generated continuations in a per-prompt tree-structured cache. During generation, the current policy uses this tree as the draft model for performing speculative decoding. To keep the cache fresh and improve draft model quality, SRT updates trees online from ongoing rollouts and proactively performs run-ahead generation during idle GPU bubbles. Integrated into standard RL pipelines (\textit{e.g.}, PPO, GRPO and DAPO) and multi-turn settings, SRT consistently reduces generation and step latency and lowers per-token inference cost, achieving up to 2.08x wall-clock time speedup during rollout.
Lean Clients, Full Accuracy: Hybrid Zeroth- and First-Order Split Federated Learning
Split Federated Learning (SFL) enables collaborative training between resource-constrained edge devices and a compute-rich server. Communication overhead is a central issue in SFL and can be mitigated with auxiliary networks. Yet, the fundamental client-side computation challenge remains, as back-propagation requires substantial memory and computation costs, severely limiting the scale of models that edge devices can support. To enable more resource-efficient client computation and reduce the client-server communication, we propose HERON-SFL, a novel hybrid optimization framework that integrates zeroth-order (ZO) optimization for local client training while retaining first-order (FO) optimization on the server. With the assistance of auxiliary networks, ZO updates enable clients to approximate local gradients using perturbed forward-only evaluations per step, eliminating memory-intensive activation caching and avoiding explicit gradient computation in the traditional training process. Leveraging the low effective rank assumption, we theoretically prove that HERON-SFL's convergence rate is independent of model dimensionality, addressing a key scalability concern common to ZO algorithms. Empirically, on ResNet training and language model (LM) fine-tuning tasks, HERON-SFL matches benchmark accuracy while reducing client peak memory by up to 64% and client-side compute cost by up to 33% per step, substantially expanding the range of models that can be trained or adapted on resource-limited devices.
Resolving Predictive Multiplicity for the Rashomon Set
The existence of multiple, equally accurate models for a given predictive task leads to predictive multiplicity, where a ``Rashomon set'' of models achieve similar accuracy but diverges in their individual predictions. This inconsistency undermines trust in high-stakes applications where we want consistent predictions. We propose three approaches to reduce inconsistency among predictions for the members of the Rashomon set. The first approach is \textbf{outlier correction}. An outlier has a label that none of the good models are capable of predicting correctly. Outliers can cause the Rashomon set to have high variance predictions in a local area, so fixing them can lower variance. Our second approach is local patching. In a local region around a test point, models may disagree with each other because some of them are biased. We can detect and fix such biases using a validation set, which also reduces multiplicity. Our third approach is pairwise reconciliation, where we find pairs of models that disagree on a region around the test point. We modify predictions that disagree, making them less biased. These three approaches can be used together or separately, and they each have distinct advantages. The reconciled predictions can then be distilled into a single interpretable model for real-world deployment. In experiments across multiple datasets, our methods reduce disagreement metrics while maintaining competitive accuracy.
Deep Incomplete Multi-View Clustering via Hierarchical Imputation and Alignment AAAI 2026
Incomplete multi-view clustering (IMVC) aims to discover shared cluster structures from multi-view data with partial observations. The core challenges lie in accurately imputing missing views without introducing bias, while maintaining semantic consistency across views and compactness within clusters. To address these challenges, we propose DIMVC-HIA, a novel deep IMVC framework that integrates hierarchical imputation and alignment with four key components: (1) view-specific autoencoders for latent feature extraction, coupled with a view-shared clustering predictor to produce soft cluster assignments; (2) a hierarchical imputation module that first estimates missing cluster assignments based on cross-view contrastive similarity, and then reconstructs missing features using intra-view, intra-cluster statistics; (3) an energy-based semantic alignment module, which promotes intra-cluster compactness by minimizing energy variance around low-energy cluster anchors; and (4) a contrastive assignment alignment module, which enhances cross-view consistency and encourages confident, well-separated cluster predictions. Experiments on benchmarks demonstrate that our framework achieves superior performance under varying levels of missingness.
comment: Accepted by AAAI 2026
Horseshoe Mixtures-of-Experts (HS-MoE)
Horseshoe mixtures-of-experts (HS-MoE) models provide a Bayesian framework for sparse expert selection in mixture-of-experts architectures. We combine the horseshoe prior's adaptive global-local shrinkage with input-dependent gating, yielding data-adaptive sparsity in expert usage. Our primary methodological contribution is a particle learning algorithm for sequential inference, in which the filter is propagated forward in time while tracking only sufficient statistics. We also discuss how HS-MoE relates to modern mixture-of-experts layers in large language models, which are deployed under extreme sparsity constraints (e.g., activating a small number of experts per token out of a large pool).
SCaLE: Switching Cost aware Learning and Exploration
This work addresses the fundamental problem of unbounded metric movement costs in bandit online convex optimization, by considering high-dimensional dynamic quadratic hitting costs and $\ell_2$-norm switching costs in a noisy bandit feedback model. For a general class of stochastic environments, we provide the first algorithm SCaLE that provably achieves a distribution-agnostic sub-linear dynamic regret, without the knowledge of hitting cost structure. En-route, we present a novel spectral regret analysis that separately quantifies eigenvalue-error driven regret and eigenbasis-perturbation driven regret. Extensive numerical experiments, against online-learning baselines, corroborate our claims, and highlight statistical consistency of our algorithm.
comment: 42 pages
Malware Classification using Diluted Convolutional Neural Network with Fast Gradient Sign Method
Android malware has become an increasingly critical threat to organizations, society and individuals, posing significant risks to privacy, data security and infrastructure. As malware continues to evolve in terms of complexity and sophistication, the mitigation and detection of these malicious software instances have become more time consuming and challenging particularly due to the requirement of large number of features to identify potential malware. To address these challenges, this research proposes Fast Gradient Sign Method with Diluted Convolutional Neural Network (FGSM DICNN) method for malware classification. DICNN contains diluted convolutions which increases receptive field, enabling the model to capture dispersed malware patterns across long ranges using fewer features without adding parameters. Additionally, the FGSM strategy enhance the accuracy by using one-step perturbations during training that provides more defensive advantage of lower computational cost. This integration helps to manage high classification accuracy while reducing the dependence on extensive feature sets. The proposed FGSM DICNN model attains 99.44% accuracy while outperforming other existing approaches such as Custom Deep Neural Network (DCNN).
comment: Accepted 2025 2nd International Conference on Software, Systems and Information Technology (SSITCON) Keywords data security, diluted convolutional neural network, fast gradient sign method, malware classification, privacy
The PROPER Approach to Proactivity: Benchmarking and Advancing Knowledge Gap Navigation
Most language-based assistants follow a reactive ask-and-respond paradigm, requiring users to explicitly state their needs. As a result, relevant but unexpressed needs often go unmet. Existing proactive agents attempt to address this gap either by eliciting further clarification, preserving this burden, or by extrapolating future needs from context, often leading to unnecessary or mistimed interventions. We introduce ProPer, Proactivity-driven Personalized agents, a novel two-agent architecture consisting of a Dimension Generating Agent (DGA) and a Response Generating Agent (RGA). DGA, a fine-tuned LLM agent, leverages explicit user data to generate multiple implicit dimensions (latent aspects relevant to the user's task but not considered by the user) or knowledge gaps. These dimensions are selectively filtered using a reranker based on quality, diversity, and task relevance. RGA then balances explicit and implicit dimensions to tailor personalized responses with timely and proactive interventions. We evaluate ProPer across multiple domains using a structured, gap-aware rubric that measures coverage, initiative appropriateness, and intent alignment. Our results show that ProPer improves quality scores and win rates across all domains, achieving up to 84% gains in single-turn evaluation and consistent dominance in multi-turn interactions.
A Novel Contrastive Loss for Zero-Day Network Intrusion Detection
Machine learning has achieved state-of-the-art results in network intrusion detection; however, its performance significantly degrades when confronted by a new attack class -- a zero-day attack. In simple terms, classical machine learning-based approaches are adept at identifying attack classes on which they have been previously trained, but struggle with those not included in their training data. One approach to addressing this shortcoming is to utilise anomaly detectors which train exclusively on benign data with the goal of generalising to all attack classes -- both known and zero-day. However, this comes at the expense of a prohibitively high false positive rate. This work proposes a novel contrastive loss function which is able to maintain the advantages of other contrastive learning-based approaches (robustness to imbalanced data) but can also generalise to zero-day attacks. Unlike anomaly detectors, this model learns the distributions of benign traffic using both benign and known malign samples, i.e. other well-known attack classes (not including the zero-day class), and consequently, achieves significant performance improvements. The proposed approach is experimentally verified on the Lycos2017 dataset where it achieves an AUROC improvement of .000065 and .060883 over previous models in known and zero-day attack detection, respectively. Finally, the proposed method is extended to open-set recognition achieving OpenAUC improvements of .170883 over existing approaches.
comment: Published in: IEEE Transactions on Network Service and Management (TNSM), 2026. Official version: https://ieeexplore.ieee.org/document/11340750 Code: https://github.com/jackwilkie/CLOSR
Transition Matching Distillation for Fast Video Generation
Large video diffusion and flow models have achieved remarkable success in high-quality video generation, but their use in real-time interactive applications remains limited due to their inefficient multi-step sampling process. In this work, we present Transition Matching Distillation (TMD), a novel framework for distilling video diffusion models into efficient few-step generators. The central idea of TMD is to match the multi-step denoising trajectory of a diffusion model with a few-step probability transition process, where each transition is modeled as a lightweight conditional flow. To enable efficient distillation, we decompose the original diffusion backbone into two components: (1) a main backbone, comprising the majority of early layers, that extracts semantic representations at each outer transition step; and (2) a flow head, consisting of the last few layers, that leverages these representations to perform multiple inner flow updates. Given a pretrained video diffusion model, we first introduce a flow head to the model, and adapt it into a conditional flow map. We then apply distribution matching distillation to the student model with flow head rollout in each transition step. Extensive experiments on distilling Wan2.1 1.3B and 14B text-to-video models demonstrate that TMD provides a flexible and strong trade-off between generation speed and visual quality. In particular, TMD outperforms existing distilled models under comparable inference costs in terms of visual fidelity and prompt adherence. Project page: https://research.nvidia.com/labs/genair/tmd
Epistemology gives a Future to Complementarity in Human-AI Interactions
Human-AI complementarity is the claim that a human supported by an AI system can outperform either alone in a decision-making process. Since its introduction in the human-AI interaction literature, it has gained traction by generalizing the reliance paradigm and by offering a more practical alternative to the contested construct of 'trust in AI.' Yet complementarity faces key theoretical challenges: it lacks precise theoretical anchoring, it is formalized just as a post hoc indicator of relative predictive accuracy, it remains silent about other desiderata of human-AI interactions and it abstracts away from the magnitude-cost profile of its performance gain. As a result, complementarity is difficult to obtain in empirical settings. In this work, we leverage epistemology to address these challenges by reframing complementarity within the discourse on justificatory AI. Drawing on computational reliabilism, we argue that historical instances of complementarity function as evidence that a given human-AI interaction is a reliable epistemic process for a given predictive task. Together with other reliability indicators assessing the alignment of the human-AI team with the epistemic standards and socio-technical practices, complementarity contributes to the degree of reliability of human-AI teams when generating predictions. This supports the practical reasoning of those affected by these outputs -- patients, managers, regulators, and others. In summary, our approach suggests that the role and value of complementarity lies not in providing a relative measure of predictive accuracy, but in helping calibrate decision-making to the reliability of AI-supported processes that increasingly shape everyday life.
comment: Submitted to FAccT 2026
VibrantSR: Sub-Meter Canopy Height Models from Sentinel-2 Using Generative Flow Matching
We present VibrantSR (Vibrant Super-Resolution), a generative super-resolution framework for estimating 0.5 meter canopy height models (CHMs) from 10 meter Sentinel-2 imagery. Unlike approaches based on aerial imagery that are constrained by infrequent and irregular acquisition schedules, VibrantSR leverages globally available Sentinel-2 seasonal composites, enabling consistent monitoring at a seasonal-to-annual cadence. Evaluated across 22 EPA Level 3 eco-regions in the western United States using spatially disjoint validation splits, VibrantSR achieves a Mean Absolute Error of 4.39 meters for canopy heights >= 2 m, outperforming Meta (4.83 m), LANDFIRE (5.96 m), and ETH (7.05 m) satellite-based benchmarks. While aerial-based VibrantVS (2.71 m MAE) retains an accuracy advantage, VibrantSR enables operational forest monitoring and carbon accounting at continental scales without reliance on costly and temporally infrequent aerial acquisitions.
comment: 12 pages, 8 figures, 2 tables
Advancing Model Refinement: Muon-Optimized Distillation and Quantization for LLM Deployment
Large Language Models (LLMs) enable advanced natural language processing but face deployment challenges on resource-constrained edge devices due to high computational, memory, and energy demands. Optimizing these models requires addressing three key challenges: acquiring task-specific data, fine-tuning for performance, and compressing models to accelerate inference while reducing resource demands. We propose an integrated framework combining GPTQ-based quantization, low-rank adaptation (LoRA), and a specialized data distillation process to significantly reduce model size and complexity while preserving or enhancing task-specific performance. By leveraging data distillation, knowledge distillation via Kullback-Leibler divergence, Bayesian hyperparameter optimization, and the Muon optimizer, our pipeline achieves up to 2x memory compression (e.g., reducing a 6GB model to 3GB) and enables efficient inference for specialized tasks. Empirical results demonstrate superior performance on standard LLM benchmarks compared to GPTQ quantization alone, with the Muon optimizer notably enhancing fine-tuned models' resistance to accuracy decay during quantization.
comment: 12 pages, 5 figures
Breaking the Limits of Open-Weight CLIP: An Optimization Framework for Self-supervised Fine-tuning of CLIP ICLR 2026
CLIP has become a cornerstone of multimodal representation learning, yet improving its performance typically requires a prohibitively costly process of training from scratch on billions of samples. We ask a different question: Can we improve the performance of open-weight CLIP models across various downstream tasks using only existing self-supervised datasets? Unlike supervised fine-tuning, which adapts a pretrained model to a single downstream task, our setting seeks to improve general performance across various tasks. However, as both our experiments and prior studies reveal, simply applying standard training protocols starting from an open-weight CLIP model often fails, leading to performance degradation. In this paper, we introduce TuneCLIP, a self-supervised fine-tuning framework that overcomes the performance degradation. TuneCLIP has two key components: (1) a warm-up stage of recovering optimization statistics to reduce cold-start bias, inspired by theoretical analysis, and (2) a fine-tuning stage of optimizing a new contrastive loss to mitigate the penalization on false negative pairs. Our extensive experiments show that TuneCLIP consistently improves performance across model architectures and scales. Notably, it elevates leading open-weight models like SigLIP (ViT-B/16), achieving gains of up to +2.5% on ImageNet and related out-of-distribution benchmarks, and +1.2% on the highly competitive DataComp benchmark, setting a new strong baseline for efficient post-pretraining adaptation.
comment: Submitted to ICLR 2026
OUTLINEFORGE: Hierarchical Reinforcement Learning with Explicit States for Scientific Writing
Scientific paper generation requires document-level planning and factual grounding, but current large language models, despite their strong local fluency, often fail in global structure, input coverage, and citation consistency. We present a reinforcement learning framework that casts scientific outline construction as a long-horizon planning problem over hierarchical document structures. Our approach models edit evolving outlines through structured actions, enabling the system to incrementally build a complete scientific manuscript. To support effective and stabilize learning,we introduce a two-stage optimization procedure consisting of (i) backward outline reconstruction from partial plans to enforce global structural consistency, and (ii) forward value-guided reinforcement learning with rewards explicitly modeling scientific correctness, discourse coherence, and citation fidelity. In addition, We further introduce a benchmark for scientific paper generation that evaluates document planning, input utilization, reference faithfulness, outline organization, and content-level factual accuracy. Our results show consistent improvements over strong neural and LLM baselines, particularly in long-range structural coherence and citation reliability.
Accelerated Regularized Wasserstein Proximal Sampling Algorithms
We consider sampling from a Gibbs distribution by evolving a finite number of particles using a particular score estimator rather than Brownian motion. To accelerate the particles, we consider a second-order score-based ODE, similar to Nesterov acceleration. In contrast to traditional kernel density score estimation, we use the recently proposed regularized Wasserstein proximal method, yielding the Accelerated Regularized Wasserstein Proximal method (ARWP). We provide a detailed analysis of continuous- and discrete-time non-asymptotic and asymptotic mixing rates for Gaussian initial and target distributions, using techniques from Euclidean acceleration and accelerated information gradients. Compared with the kinetic Langevin sampling algorithm, the proposed algorithm exhibits a higher contraction rate in the asymptotic time regime. Numerical experiments are conducted across various low-dimensional experiments, including multi-modal Gaussian mixtures and ill-conditioned Rosenbrock distributions. ARWP exhibits structured and convergent particles, accelerated discrete-time mixing, and faster tail exploration than the non-accelerated regularized Wasserstein proximal method and kinetic Langevin methods. Additionally, ARWP particles exhibit better generalization properties for some non-log-concave Bayesian neural network tasks.
A pipeline for enabling path-specific causal fairness in observational health data
When training machine learning (ML) models for potential deployment in a healthcare setting, it is essential to ensure that they do not replicate or exacerbate existing healthcare biases. Although many definitions of fairness exist, we focus on path-specific causal fairness, which allows us to better consider the social and medical contexts in which biases occur (e.g., direct discrimination by a clinician or model versus bias due to differential access to the healthcare system) and to characterize how these biases may appear in learned models. In this work, we map the structural fairness model to the observational healthcare setting and create a generalizable pipeline for training causally fair models. The pipeline explicitly considers specific healthcare context and disparities to define a target "fair" model. Our work fills two major gaps: first, we expand on characterizations of the "fairness-accuracy" tradeoff by detangling direct and indirect sources of bias and jointly presenting these fairness considerations alongside considerations of accuracy in the context of broadly known biases. Second, we demonstrate how a foundation model trained without fairness constraints on observational health data can be leveraged to generate causally fair downstream predictions in tasks with known social and medical disparities. This work presents a model-agnostic pipeline for training causally fair machine learning models that address both direct and indirect forms of healthcare bias.
A New Convergence Analysis of Plug-and-Play Proximal Gradient Descent Under Prior Mismatch
In this work, we provide a new convergence theory for plug-and-play proximal gradient descent (PnP-PGD) under prior mismatch where the denoiser is trained on a different data distribution to the inference task at hand. To the best of our knowledge, this is the first convergence proof of PnP-PGD under prior mismatch. Compared with the existing theoretical results for PnP algorithms, our new results removed the need for several restrictive and unverifiable assumptions.
Eluder dimension: localise it!
We establish a lower bound on the eluder dimension of generalised linear model classes, showing that standard eluder dimension-based analysis cannot lead to first-order regret bounds. To address this, we introduce a localisation method for the eluder dimension; our analysis immediately recovers and improves on classic results for Bernoulli bandits, and allows for the first genuine first-order bounds for finite-horizon reinforcement learning tasks with bounded cumulative returns.
QFed: Parameter-Compact Quantum-Classical Federated Learning
Organizations and enterprises across domains such as healthcare, finance, and scientific research are increasingly required to extract collective intelligence from distributed, siloed datasets while adhering to strict privacy, regulatory, and sovereignty requirements. Federated Learning (FL) enables collaborative model building without sharing sensitive raw data, but faces growing challenges posed by statistical heterogeneity, system diversity, and the computational burden from complex models. This study examines the potential of quantum-assisted federated learning, which could cut the number of parameters in classical models by polylogarithmic factors and thus lessen training overhead. Accordingly, we introduce QFed, a quantum-enabled federated learning framework aimed at boosting computational efficiency across edge device networks. We evaluate the proposed framework using the widely adopted FashionMNIST dataset. Experimental results show that QFed achieves a 77.6% reduction in the parameter count of a VGG-like model while maintaining an accuracy comparable to classical approaches in a scalable environment. These results point to the potential of leveraging quantum computing within a federated learning context to strengthen FL capabilities of edge devices.
Improving Chain-of-Thought for Logical Reasoning via Attention-Aware Intervention
Modern logical reasoning with LLMs primarily relies on employing complex interactive frameworks that decompose the reasoning process into subtasks solved through carefully designed prompts or requiring external resources (e.g., symbolic solvers) to exploit their strong logical structures. While interactive approaches introduce additional overhead, hybrid approaches depend on external components, which limit their scalability. A non-interactive, end-to-end framework enables reasoning to emerge within the model itself -- improving generalization while preserving analyzability without any external resources. In this work, we introduce a non-interactive, end-to-end framework for reasoning tasks. We show that introducing structural information into the few-shot prompt activates a subset of attention heads that patterns aligned with logical reasoning operators. Building on this insight, we propose Attention-Aware Intervention (AAI), an inference-time intervention method that reweights attention scores across selected heads identified by their logical patterns. AAI offers an efficient way to steer the model's reasoning toward leveraging prior knowledge through attention modulation. Extensive experiments show that AAI enhances logical reasoning performance across diverse benchmarks and model architectures, while incurring negligible additional computational overhead. Code is available at https://github.com/phuongnm94/aai_for_logical_reasoning.
comment: Findings of EACL 2026
TimeSAE: Sparse Decoding for Faithful Explanations of Black-Box Time Series Models
As black box models and pretrained models gain traction in time series applications, understanding and explaining their predictions becomes increasingly vital, especially in high-stakes domains where interpretability and trust are essential. However, most of the existing methods involve only in-distribution explanation, and do not generalize outside the training support, which requires the learning capability of generalization. In this work, we aim to provide a framework to explain black-box models for time series data through the dual lenses of Sparse Autoencoders (SAEs) and causality. We show that many current explanation methods are sensitive to distributional shifts, limiting their effectiveness in real-world scenarios. Building on the concept of Sparse Autoencoder, we introduce TimeSAE, a framework for black-box model explanation. We conduct extensive evaluations of TimeSAE on both synthetic and real-world time series datasets, comparing it to leading baselines. The results, supported by both quantitative metrics and qualitative insights, show that TimeSAE provides more faithful and robust explanations. Our code is available in an easy-to-use library TimeSAE-Lib: https://anonymous.4open.science/w/TimeSAE-571D/.
The Geometry of Thought: Disclosing the Transformer as a Tropical Polynomial Circuit
We prove that the Transformer self-attention mechanism in the high-confidence regime ($β\to \infty$, where $β$ is an inverse temperature) operates in the tropical semiring (max-plus algebra). In particular, we show that taking the tropical limit of the softmax attention converts it into a tropical matrix product. This reveals that the Transformer's forward pass is effectively executing a dynamic programming recurrence (specifically, a Bellman-Ford path-finding update) on a latent graph defined by token similarities. Our theoretical result provides a new geometric perspective for chain-of-thought reasoning: it emerges from an inherent shortest-path (or longest-path) algorithm being carried out within the network's computation.
comment: 7 pages, 2 figures
LLM-Based Emulation of the Radio Resource Control Layer: Towards AI-Native RAN Protocols
Integrating Large AI Models (LAMs) into 6G mobile networks is a key enabler of the AI-Native Air Interface (AI-AI), where protocol intelligence must scale beyond handcrafted logic. This paper presents, to our knowledge, the first standards-compliant emulation of the Radio Resource Control (RRC) layer using a decoder-only LAM (LLAMA-class) fine-tuned with Low-Rank Adaptation (LoRA) on a multi-vendor corpus of real-world traces spanning both 5G and 4G systems. We treat RRC as a domain-specific language and construct a segmentation-safe, question-answer (Question-and-Answer (QA)) dataset that preserves Abstract Syntax Notation (ASN.1) structure through linearization prior to Byte Pair Encoding (BPE) tokenization. The proposed approach combines parameter-efficient adaptation with schema-bounded prompting to ensure syntactic and procedural fidelity. Evaluation introduces a standards-aware triad -- ASN.1 conformance, field-level coverage analysis, and uplink-to-downlink state-machine checks -- alongside semantic similarity and latency profiling across 120 configurations. On 30k 5G request-response pairs plus an additional 4.8k QA turns from 4G sessions, our 8B model achieves a median cosine similarity of 0.97, a 61% relative gain over a zero-shot baseline, while sustaining high conformance rates. These results demonstrate that LAMs, when augmented with protocol-aware reasoning, can directly orchestrate control-plane procedures, laying the foundation for the future Artificial Intelligence (AI)-native Radio Access Network (RAN).
comment: This work has been submitted to the IEEE for possible publication. Focuses on applying LLMs to 5G RRC protocol generation; primary: cs.NI; cross-list: eess.SP, cs.LG
Provable Acceleration of Distributed Optimization with Local Updates
In conventional distributed optimization, each agent performs a single local update between two communication rounds with its neighbors to synchronize solutions. Inspired by the success of using multiple local updates in federated learning, incorporating local updates into distributed optimization has recently attracted increasing attention. However, unlike federated learning, where multiple local updates can accelerate learning by improving gradient estimation under mini-batch settings, it remains unclear whether similar benefits hold in distributed optimization when gradients are exact. Moreover, existing theoretical results typically require reducing the step size when multiple local updates are employed, which can entirely offset any potential benefit of these additional local updates and obscure their true impact on convergence. In this paper, we focus on the classic DIGing algorithm and leverage the tight performance bounds provided by Performance Estimation Problems (PEP) to show that incorporating local updates can indeed accelerate distributed optimization. To the best of our knowledge, this is the first rigorous demonstration of such acceleration for a broad class of objective functions. Our analysis further reveals that, under an appropriate step size, performing only two local updates is sufficient to achieve the maximal possible improvement, and that additional local updates provide no further gains. Because more updates increase computational cost, these findings offer practical guidance for efficient implementation. Extensive experiments on both synthetic and real-world datasets corroborate the theoretical findings.
OptiMind: Teaching LLMs to Think Like Optimization Experts
Mathematical programming -- the task of expressing operations and decision-making problems in precise mathematical language -- is fundamental across domains, yet remains a skill-intensive process requiring operations research expertise. Recent advances in large language models for complex reasoning have spurred interest in automating this task, translating natural language into executable optimization models. Current approaches, however, achieve limited accuracy, hindered by scarce and noisy training data without leveraging domain knowledge. In this work, we systematically integrate optimization expertise to improve formulation accuracy for mixed-integer linear programming, a key family of mathematical programs. Our OptiMind framework leverages semi-automated, class-based error analysis to guide both training and inference, explicitly preventing common mistakes within each optimization class. Our resulting fine-tuned LLM significantly improves formulation accuracy by 20.7% across multiple optimization benchmarks, with consistent gains under test-time scaling methods such as self-consistency and multi-turn feedback, enabling further progress toward robust LLM-assisted optimization formulation.
DNN Modularization via Activation-Driven Training
Deep Neural Networks (DNNs) tend to accrue technical debt and suffer from significant retraining costs when adapting to evolving requirements. Modularizing DNNs offers the promise of improving their reusability. Previous work has proposed techniques to decompose DNN models into modules both during and after training. However, these strategies yield several shortcomings, including significant weight overlaps and accuracy losses across modules, restricted focus on convolutional layers only, and added complexity and training time by introducing auxiliary masks to control modularity. In this work, we propose MODA, an activation-driven modular training approach. MODA promotes inherent modularity within a DNN model by directly regulating the activation outputs of its layers based on three modular objectives: intra-class affinity, inter-class dispersion, and compactness. MODA is evaluated using three well-known DNN models and five datasets with varying sizes. This evaluation indicates that, compared to the existing state-of-the-art, using MODA yields several advantages: (1) MODA accomplishes modularization with 22% less training time; (2) the resultant modules generated by MODA comprise up to 24x fewer weights and 37x less weight overlap while (3) preserving the original model's accuracy without additional fine-tuning; in module replacement scenarios, (4) MODA improves the accuracy of a target class by 12% on average while ensuring minimal impact on the accuracy of other classes.
comment: Accepted at International Conference on Software Engineering (ICSE) 2026 - Research Track
Template-Based Probes Are Imperfect Lenses for Counterfactual Bias Evaluation in LLMs
Bias in large language models (LLMs) has many forms, from overt discrimination to implicit stereotypes. Counterfactual bias evaluation is a widely used approach to quantifying bias and often relies on template-based probes that explicitly state group membership. It aims to measure whether the outcome of a task performed by an LLM is invariant to a change in group membership. In this work, we find that template-based probes can introduce systematic distortions in bias measurements. Specifically, we consistently find that such probes suggest that LLMs classify text associated with White race as negative at disproportionately elevated rates. This is observed consistently across a large collection of LLMs, over several diverse template-based probes, and with different classification approaches. We hypothesize that this arises artificially due to linguistic asymmetries present in LLM pretraining data, in the form of markedness, (e.g., Black president vs. president) and templates used for bias measurement (e.g., Black president vs. White president). These findings highlight the need for more rigorous methodologies in counterfactual bias evaluation, ensuring that observed disparities reflect genuine biases rather than artifacts of linguistic conventions.
comment: 22 Pages, 6 Figures, 5 Tables
Policy Compatible Skill Incremental Learning via Lazy Learning Interface NeurIPS 2025
Skill Incremental Learning (SIL) is the process by which an embodied agent expands and refines its skill set over time by leveraging experience gained through interaction with its environment or by the integration of additional data. SIL facilitates efficient acquisition of hierarchical policies grounded in reusable skills for downstream tasks. However, as the skill repertoire evolves, it can disrupt compatibility with existing skill-based policies, limiting their reusability and generalization. In this work, we propose SIL-C, a novel framework that ensures skill-policy compatibility, allowing improvements in incrementally learned skills to enhance the performance of downstream policies without requiring policy re-training or structural adaptation. SIL-C employs a bilateral lazy learning-based mapping technique to dynamically align the subtask space referenced by policies with the skill space decoded into agent behaviors. This enables each subtask, derived from the policy's decomposition of a complex task, to be executed by selecting an appropriate skill based on trajectory distribution similarity. We evaluate SIL-C across diverse SIL scenarios and demonstrate that it maintains compatibility between evolving skills and downstream policies while ensuring efficiency throughout the learning process.
comment: NeurIPS 2025 Spotlight
A Novel Hybrid Deep Learning Technique for Speech Emotion Detection using Feature Engineering
Nowadays, speech emotion recognition (SER) plays a vital role in the field of human-computer interaction (HCI) and the evolution of artificial intelligence (AI). Our proposed DCRF-BiLSTM model is used to recognize seven emotions: neutral, happy, sad, angry, fear, disgust, and surprise, which are trained on five datasets: RAVDESS (R), TESS (T), SAVEE (S), EmoDB (E), and Crema-D (C). The model achieves high accuracy on individual datasets, including 97.83% on RAVDESS, 97.02% on SAVEE, 95.10% for CREMA-D, and a perfect 100% on both TESS and EMO-DB. For the combined (R+T+S) datasets, it achieves 98.82% accuracy, outperforming previously reported results. To our knowledge, no existing study has evaluated a single SER model across all five benchmark datasets (i.e., R+T+S+C+E) simultaneously. In our work, we introduce this comprehensive combination and achieve a remarkable overall accuracy of 93.76%. These results confirm the robustness and generalizability of our DCRF-BiLSTM framework across diverse datasets.
comment: 17 pages, 11 figures
Dynamics-Aligned Latent Imagination in Contextual World Models for Zero-Shot Generalization NeurIPS 2025
Real-world reinforcement learning demands adaptation to unseen environmental conditions without costly retraining. Contextual Markov Decision Processes (cMDP) model this challenge, but existing methods often require explicit context variables (e.g., friction, gravity), limiting their use when contexts are latent or hard to measure. We introduce Dynamics-Aligned Latent Imagination (DALI), a framework integrated within the Dreamer architecture that infers latent context representations from agent-environment interactions. By training a self-supervised encoder to predict forward dynamics, DALI generates actionable representations conditioning the world model and policy, bridging perception and control. We theoretically prove this encoder is essential for efficient context inference and robust generalization. DALI's latent space enables counterfactual consistency: Perturbing a gravity-encoding dimension alters imagined rollouts in physically plausible ways. On challenging cMDP benchmarks, DALI achieves significant gains over context-unaware baselines, often surpassing context-aware baselines in extrapolation tasks, enabling zero-shot generalization to unseen contextual variations.
comment: 31 pages, 4 figures, accepted to NeurIPS 2025
QuFeX: Quantum feature extraction module for hybrid quantum-classical deep neural networks
We introduce Quantum Feature Extraction (QuFeX), a novel quantum machine learning module. The proposed module enables feature extraction in a reduced-dimensional space, significantly decreasing the number of parallel evaluations required in typical quantum convolutional neural network architectures. Its design allows seamless integration into deep classical neural networks, making it particularly suitable for hybrid quantum-classical models. As an application of QuFeX, we propose Qu-Net -- a hybrid architecture which integrates QuFeX at the bottleneck of a U-Net architecture. The latter is widely used for image segmentation tasks such as medical imaging and autonomous driving. Our numerical analysis indicates that the Qu-Net can achieve superior segmentation performance compared to a U-Net baseline. These results highlight the potential of QuFeX to enhance deep neural networks by leveraging hybrid computational paradigms, providing a path towards a robust framework for real-world applications requiring precise feature extraction.
comment: V2: 17 pages, 15 figures, 2 Tables; published version
SPGD: Steepest Perturbed Gradient Descent Optimization
Optimization algorithms are pivotal in advancing various scientific and industrial fields but often encounter obstacles such as trapping in local minima, saddle points, and plateaus (flat regions), which makes the convergence to reasonable or near-optimal solutions particularly challenging. This paper presents the Steepest Perturbed Gradient Descent (SPGD), a novel algorithm that innovatively combines the principles of the gradient descent method with periodic uniform perturbation sampling to effectively circumvent these impediments and lead to better solutions whenever possible. SPGD is distinctively designed to generate a set of candidate solutions and select the one exhibiting the steepest loss difference relative to the current solution. It enhances the traditional gradient descent approach by integrating a strategic exploration mechanism that significantly increases the likelihood of escaping sub-optimal local minima and navigating complex optimization landscapes effectively. Our approach not only retains the directed efficiency of gradient descent but also leverages the exploratory benefits of stochastic perturbations, thus enabling a more comprehensive search for global optima across diverse problem spaces. We demonstrate the efficacy of SPGD in solving the 3D component packing problem, an NP-hard challenge. Preliminary results show a substantial improvement over four established methods, particularly on response surfaces with complex topographies and in multidimensional non-convex continuous optimization problems. Comparative analyses with established 2D benchmark functions highlight SPGD's superior performance, showcasing its ability to navigate complex optimization landscapes. These results emphasize SPGD's potential as a versatile tool for a wide range of optimization problems.
comment: 28 pages, 26 figures, submitted to Journal of Mechanical Design
Training Large Neural Networks With Low-Dimensional Error Feedback
Training deep neural networks typically relies on backpropagating high dimensional error signals a computationally intensive process with little evidence supporting its implementation in the brain. However, since most tasks involve low-dimensional outputs, we propose that low-dimensional error signals may suffice for effective learning. To test this hypothesis, we introduce a novel local learning rule based on Feedback Alignment that leverages indirect, low-dimensional error feedback to train large networks. Our method decouples the backward pass from the forward pass, enabling precise control over error signal dimensionality while maintaining high-dimensional representations. We begin with a detailed theoretical derivation for linear networks, which forms the foundation of our learning framework, and extend our approach to nonlinear, convolutional, and transformer architectures. Remarkably, we demonstrate that even minimal error dimensionality on the order of the task dimensionality can achieve performance matching that of traditional backpropagation. Furthermore, our rule enables efficient training of convolutional networks, which have previously been resistant to Feedback Alignment methods, with minimal error. This breakthrough not only paves the way toward more biologically accurate models of learning but also challenges the conventional reliance on high-dimensional gradient signals in neural network training. Our findings suggest that low-dimensional error signals can be as effective as high-dimensional ones, prompting a reevaluation of gradient-based learning in high-dimensional systems. Ultimately, our work offers a fresh perspective on neural network optimization and contributes to understanding learning mechanisms in both artificial and biological systems.
Coupled Data and Measurement Space Dynamics for Enhanced Diffusion Posterior Sampling
Inverse problems, where the goal is to recover an unknown signal from noisy or incomplete measurements, are central to applications in medical imaging, remote sensing, and computational biology. Diffusion models have recently emerged as powerful priors for solving such problems. However, existing methods either rely on projection-based techniques that enforce measurement consistency through heuristic updates, or they approximate the likelihood $p(\boldsymbol{y} \mid \boldsymbol{x})$, often resulting in artifacts and instability under complex or high-noise conditions. To address these limitations, we propose a novel framework called \emph{coupled data and measurement space diffusion posterior sampling} (C-DPS), which eliminates the need for constraint tuning or likelihood approximation. C-DPS introduces a forward stochastic process in the measurement space $\{\boldsymbol{y}_t\}$, evolving in parallel with the data-space diffusion $\{\boldsymbol{x}_t\}$, which enables the derivation of a closed-form posterior $p(\boldsymbol{x}_{t-1} \mid \boldsymbol{x}_t, \boldsymbol{y}_{t-1})$. This coupling allows for accurate and recursive sampling based on a well-defined posterior distribution. Empirical results demonstrate that C-DPS consistently outperforms existing baselines, both qualitatively and quantitatively, across multiple inverse problem benchmarks.
Adaptive Requesting in Decentralized Edge Networks via Non-Stationary Bandits
We study a decentralized collaborative requesting problem that aims to optimize the information freshness of time-sensitive clients in edge networks consisting of multiple clients, access nodes (ANs), and servers. Clients request content through ANs acting as gateways, without observing AN states or the actions of other clients. We define the reward as the age of information reduction resulting from a client's selection of an AN, and formulate the problem as a non-stationary multi-armed bandit. In this decentralized and partially observable setting, the resulting reward process is history-dependent and coupled across clients, and exhibits both abrupt and gradual changes in expected rewards, rendering classical bandit-based approaches ineffective. To address these challenges, we propose the AGING BANDIT WITH ADAPTIVE RESET algorithm, which combines adaptive windowing with periodic monitoring to track evolving reward distributions. We establish theoretical performance guarantees showing that the proposed algorithm achieves near-optimal performance, and we validate the theoretical results through simulations.
Representing Molecules with Algebraic Data Types: Beyond SMILES and SELFIES
Algebraic data types (ADTs) let a representation specify at the type level what molecular values are valid and what transformations are meaningful. We propose a molecular representation as a family of typed ADTs that separates (i) constitution (Dietz style bonding systems), (ii) 3D coordinates and stereochemistry, and (iii) electronic structure annotations. This separation makes invariants explicit, supports deterministic local edits, and provides hooks for symmetry aware and Bayesian modeling. These data structures allow us to consider how the representation constrains operations which may be performed over them. Types make invalid manipulations unrepresentable and make it easier to define meaningful priors/likelihoods over generative models (programs with sample and score operations). Unlike string based formats, the ADT exposes chemical structure directly; validity conditions (e.g., valence and symmetry constraints) can be enforced by construction and checked deterministically during transformations. We optionally attach electronic structure annotations (shell/subshell/orbital metadata) to atoms when such information is available; we do not attempt to compute orbitals in this work. We sketch Bayesian probabilistic programming via an integration with LazyPPL, a lazy probabilistic programming library; molecules can be made instances of a group under rotation to support geometric learning settings where molecular properties are invariant under rigid motions and relabellings; and the framework's flexibility is demonstrated through an extension to represent chemical reactions. We provide a Haskell library implementing the representation, released under an OSI approved open source license and archived with a DOI.
comment: 3 Figures
Physically Plausible Multi-System Trajectory Generation and Symmetry Discovery
From metronomes to celestial bodies, mechanics underpins how the world evolves in time and space. With consideration of this, a number of recent neural network models leverage inductive biases from classical mechanics to encourage model interpretability and ensure forecasted states are physical. However, in general, these models are designed to capture the dynamics of a single system with fixed physical parameters, from state-space measurements of a known configuration space. In this paper we introduce Symplectic Phase Space GAN (SPS-GAN) which can capture the dynamics of multiple systems, and generalize to unseen physical parameters from. Moreover, SPS-GAN does not require prior knowledge of the system configuration space. In fact, SPS-GAN can discover the configuration space structure of the system from arbitrary measurement types (e.g., state-space measurements, video frames). To achieve physically plausible generation, we introduce a novel architecture which embeds a Hamiltonian neural network recurrent module in a conditional GAN backbone. To discover the structure of the configuration space, we optimize the conditional time-series GAN objective with an additional physically motivated term to encourages a sparse representation of the configuration space. We demonstrate the utility of SPS-GAN for trajectory prediction, video generation and symmetry discovery. Our approach captures multiple systems and achieves performance on par with supervised models designed for single systems.
Mathematical Derivation Graphs: A Relation Extraction Task in STEM Manuscripts
Recent advances in natural language processing (NLP), particularly with the emergence of large language models (LLMs), have significantly enhanced the field of textual analysis. However, while these developments have yielded substantial progress in analyzing natural language text, applying analysis to mathematical equations and their relationships within texts has produced mixed results. This paper takes the initial steps in expanding the problem of relation extraction towards understanding the dependency relationships between mathematical expressions in STEM articles. The authors construct the Mathematical Derivation Graphs Dataset (MDGD), sourced from a random sampling of the arXiv corpus, containing an analysis of $107$ published STEM manuscripts with over $2000$ manually labeled inter-equation dependency relationships, resulting in a new object referred to as a derivation graph that summarizes the mathematical content of the manuscript. The authors exhaustively evaluate analytical and machine learning (ML) based models to assess their capability to identify and extract the derivation relationships for each article and compare the results with the ground truth. The authors show that the best tested LLMs achieve $F_1$ scores of $\sim45\%-52\%$, and attempt to improve their performance by combining them with analytic algorithms and other methods.
comment: 29 pages, 11 figures
MISA: Memory-Efficient LLMs Optimization with Module-wise Importance Sampling NeurIPS
The substantial memory demands of pre-training and fine-tuning large language models (LLMs) require memory-efficient optimization algorithms. One promising approach is layer-wise optimization, which treats each transformer block as a single layer and optimizes it sequentially, while freezing the other layers to save optimizer states and activations. Although effective, these methods ignore the varying importance of the modules within each layer, leading to suboptimal performance. Moreover, layer-wise sampling provides only limited memory savings, as at least one full layer must remain active during optimization. To overcome these limitations, we propose Module-wise Importance SAmpling (MISA), a novel method that divides each layer into smaller modules and assigns importance scores to each module. MISA uses a weighted random sampling mechanism to activate modules, provably reducing gradient variance compared to layer-wise sampling. Additionally, we establish an \(\mathcal{O}(1/\sqrt{K})\) convergence rate under non-convex and stochastic conditions, where $K$ is the total number of block updates, and provide a detailed memory analysis showcasing MISA's superiority over existing baseline methods. Experiments on diverse learning tasks validate the effectiveness of MISA. Source code is available at https://github.com/pkumelon/MISA.
comment: This paper is accepted to Neural Information Processing Systems (NeurIPS) 2025
Enhancing Federated Class-Incremental Learning via Spatial-Temporal Statistics Aggregation
Federated Class-Incremental Learning (FCIL) enables Class-Incremental Learning (CIL) from distributed data. Existing FCIL methods typically integrate old knowledge preservation into local client training. However, these methods cannot avoid spatial-temporal client drift caused by data heterogeneity and often incur significant computational and communication overhead, limiting practical deployment. To address these challenges simultaneously, we propose a novel approach, Spatial-Temporal Statistics Aggregation (STSA), which provides a unified framework to aggregate feature statistics both spatially (across clients) and temporally (across stages). The aggregated feature statistics are unaffected by data heterogeneity and can be used to update the classifier in closed form at each stage. Additionally, we introduce STSA-E, a communication-efficient variant with theoretical guarantees, achieving similar performance to STSA-E with much lower communication overhead. Extensive experiments on three widely used FCIL datasets, with varying degrees of data heterogeneity, show that our method outperforms state-of-the-art FCIL methods in terms of performance, flexibility, and both communication and computation efficiency. The code is available at https://github.com/Yuqin-G/STSA.
comment: WWW 2026
Can AI Dream of Unseen Galaxies? Conditional Diffusion Model for Galaxy Morphology Augmentation
Observational astronomy relies on visual feature identification to detect critical astrophysical phenomena. While machine learning (ML) increasingly automates this process, models often struggle with generalization in large-scale surveys due to the limited representativeness of labeled datasets, whether from simulations or human annotation, a challenge pronounced for rare yet scientifically valuable objects. To address this, we propose a conditional diffusion model to synthesize realistic galaxy images for augmenting ML training data (hereafter GalaxySD). Leveraging the Galaxy Zoo 2 dataset which contains visual feature, galaxy image pairs from volunteer annotation, we demonstrate that GalaxySD generates diverse, high-fidelity galaxy images that closely adhere to the specified morphological feature conditions. Moreover, this model enables generative extrapolation to project well-annotated data into unseen domains and advancing rare object detection. Integrating synthesized images into ML pipelines improves performance in standard morphology classification, boosting completeness and purity by up to 30% across key metrics. For rare object detection, using early-type galaxies with prominent dust lane features (~0.1% in GZ2 dataset) as a test case, our approach doubled the number of detected instances, from 352 to 872, compared to previous studies based on visual inspection. This study highlights the power of generative models to bridge gaps between scarce labeled data and the vast, uncharted parameter space of observational astronomy and sheds insight for future astrophysical foundation model developments. Our project homepage is available at https://galaxysd-webpage.streamlit.app/.
comment: 29 pages, 17 figures, accepted version for ApJS. Comments welcome. See another independent work for further reference, Category-based Galaxy Image Generation via Diffusion Models (Fan, Tang et al.)
Instance-Dependent Regret Bounds for Nonstochastic Linear Partial Monitoring
In contrast to the classic formulation of partial monitoring, linear partial monitoring can model infinite outcome spaces, while imposing a linear structure on both the losses and the observations. This setting can be viewed as a generalization of linear bandits where loss and feedback are decoupled in a flexible manner. In this work, we address a nonstochastic (adversarial), finite-actions version of the problem through a simple instance of the exploration-by-optimization method that is amenable to efficient implementation. We derive regret bounds that depend on the game structure in a more transparent manner than previous theoretical guarantees for this paradigm. Our bounds feature instance-specific quantities that reflect the degree of alignment between observations and losses, and resemble known guarantees in the stochastic setting. Notably, they achieve the standard $\sqrt{T}$ rate in easy (locally observable) games and $T^{2/3}$ in hard (globally observable) games, where $T$ is the time horizon. We instantiate these bounds in a selection of old and new partial information settings subsumed by this model, and illustrate that the achieved dependence on the game structure can be tight in interesting cases.
The Hessian of tall-skinny networks is easy to invert
We describe an exact algorithm to solve linear systems of the form $Hx=b$ where $H$ is the Hessian of a deep net. The method computes Hessian-inverse-vector products without storing the Hessian or its inverse. It requires time and storage that scale linearly in the number of layers. This is in contrast to the naive approach of first computing the Hessian, then solving the linear system, which takes storage and time that are respectively quadratic and cubic in the number of layers. The Hessian-inverse-vector product method scales roughly like Pearlmutter's algorithm for computing Hessian-vector products.
A Multi-Stage Deep Learning Framework with PKCP-MixUp Augmentation for Pediatric Liver Tumor Diagnosis Using Multi-Phase Contrast-Enhanced CT
Pediatric liver tumors are one of the most common solid tumors in pediatrics, with differentiation of benign or malignant status and pathological classification critical for clinical treatment. While pathological examination is the gold standard, the invasive biopsy has notable limitations: the highly vascular pediatric liver and fragile tumor tissue raise complication risks such as bleeding; additionally, young children with poor compliance require anesthesia for biopsy, increasing medical costs or psychological trauma. Although many efforts have been made to utilize AI in clinical settings, most researchers have overlooked its importance in pediatric liver tumors. To establish a non-invasive examination procedure, we developed a multi-stage deep learning (DL) framework for automated pediatric liver tumor diagnosis using multi-phase contrast-enhanced CT. Two retrospective and prospective cohorts were enrolled. We established a novel PKCP-MixUp data augmentation method to address data scarcity and class imbalance. We also trained a tumor detection model to extract ROIs, and then set a two-stage diagnosis pipeline with three backbones with ROI-masked images. Our tumor detection model has achieved high performance (mAP=0.871), and the first stage classification model between benign and malignant tumors reached an excellent performance (AUC=0.989). Final diagnosis models also exhibited robustness, including benign subtype classification (AUC=0.915) and malignant subtype classification (AUC=0.979). We also conducted multi-level comparative analyses, such as ablation studies on data and training pipelines, as well as Shapley-Value and CAM interpretability analyses. This framework fills the pediatric-specific DL diagnostic gap, provides actionable insights for CT phase selection and model design, and paves the way for precise, accessible pediatric liver tumor diagnosis.
Exploiting Task Relationships in Continual Learning via Transferability-Aware Task Embeddings NeurIPS 2025
Continual learning (CL) has been a critical topic in contemporary deep neural network applications, where higher levels of both forward and backward transfer are desirable for an effective CL performance. Existing CL strategies primarily focus on task models, either by regularizing model updates or by separating task-specific and shared components, while often overlooking the potential of leveraging inter-task relationships to enhance transfer. To address this gap, we propose a transferability-aware task embedding, termed H-embedding, and construct a hypernet framework under its guidance to learn task-conditioned model weights for CL tasks. Specifically, H-embedding is derived from an information theoretic measure of transferability and is designed to be online and easy to compute. Our method is also characterized by notable practicality, requiring only the storage of a low-dimensional task embedding per task and supporting efficient end-to-end training. Extensive evaluations on benchmarks including CIFAR-100, ImageNet-R, and DomainNet show that our framework performs prominently compared to various baseline and SOTA approaches, demonstrating strong potential in capturing and utilizing intrinsic task relationships. Our code is publicly available at https://github.com/viki760/Hembedding_Guided_Hypernet.
comment: 28 pages, 5 figures, accepted by NeurIPS 2025
LeMat-GenBench: A Unified Evaluation Framework for Crystal Generative Models
Generative machine learning (ML) models hold great promise for accelerating materials discovery through the inverse design of inorganic crystals, enabling an unprecedented exploration of chemical space. Yet, the lack of standardized evaluation frameworks makes it challenging to evaluate, compare, and further develop these ML models meaningfully. In this work, we introduce LeMat-GenBench, a unified benchmark for generative models of crystalline materials, supported by a set of evaluation metrics designed to better inform model development and downstream applications. We release both an open-source evaluation suite and a public leaderboard on Hugging Face, and benchmark 12 recent generative models. Results reveal that an increase in stability leads to a decrease in novelty and diversity on average, with no model excelling across all dimensions. Altogether, LeMat-GenBench establishes a reproducible and extensible foundation for fair model comparison and aims to guide the development of more reliable, discovery-oriented generative models for crystalline materials.
comment: 46 pages, 17 figures, 16 tables
Head Pursuit: Probing Attention Specialization in Multimodal Transformers NeurIPS 2025
Language and vision-language models have shown impressive performance across a wide range of tasks, but their internal mechanisms remain only partly understood. In this work, we study how individual attention heads in text-generative models specialize in specific semantic or visual attributes. Building on an established interpretability method, we reinterpret the practice of probing intermediate activations with the final decoding layer through the lens of signal processing. This lets us analyze multiple samples in a principled way and rank attention heads based on their relevance to target concepts. Our results show consistent patterns of specialization at the head level across both unimodal and multimodal transformers. Remarkably, we find that editing as few as 1% of the heads, selected using our method, can reliably suppress or enhance targeted concepts in the model output. We validate our approach on language tasks such as question answering and toxicity mitigation, as well as vision-language tasks including image classification and captioning. Our findings highlight an interpretable and controllable structure within attention layers, offering simple tools for understanding and editing large-scale generative models.
comment: Accepted at NeurIPS 2025 (spotlight)
Do Sparse Autoencoders Identify Reasoning Features in Language Models?
We investigate whether sparse autoencoders (SAEs) identify genuine reasoning features in large language models (LLMs). We first show through a simple theoretical analysis that $\ell_1$-regularized SAEs are intrinsically biased toward low-dimensional patterns, providing a mechanistic explanation for why shallow linguistic cues may be preferentially captured over distributed reasoning behaviors. Motivated by this bias, we introduce a falsification-oriented evaluation framework that combines causal token injection and LLM-guided falsification to test whether feature activation reflects reasoning processes or superficial linguistic correlates. Across 20 configurations spanning multiple model families, layers, and reasoning datasets, we find that features identified by contrastive methods are highly sensitive to token-level interventions, with 45% to 90% activating when a small number of associated tokens are injected into non-reasoning text. For the remaining features, LLM-guided falsification consistently produces non-reasoning inputs that activate the feature and reasoning inputs that do not, with no analyzed feature satisfying our criteria for genuine reasoning behavior. Steering these features yields no improvements in benchmark performance. Overall, our results suggest that SAE features identified by current contrastive approaches primarily capture linguistic correlates of reasoning rather than the underlying reasoning computations themselves. Code is available at https://github.com/GeorgeMLP/reasoning-probing.
Differentially private federated learning for localized control of infectious disease dynamics
In times of epidemics, swift reaction is necessary to mitigate epidemic spreading. For this reaction, localized approaches have several advantages, limiting necessary resources and reducing the impact of interventions on a larger scale. However, training a separate machine learning (ML) model on a local scale is often not feasible due to limited available data. Centralizing the data is also challenging because of its high sensitivity and privacy constraints. In this study, we consider a localized strategy based on the German counties and communities managed by the related local health authorities (LHA). For the preservation of privacy to not oppose the availability of detailed situational data, we propose a privacy-preserving forecasting method that can assist public health experts and decision makers. ML methods with federated learning (FL) train a shared model without centralizing raw data. Considering the counties, communities or LHAs as clients and finding a balance between utility and privacy, we study a FL framework with client-level differential privacy (DP). We train a shared multilayer perceptron on sliding windows of recent case counts to forecast the number of cases, while clients exchange only norm-clipped updates and the server aggregated updates with DP noise. We evaluate the approach on COVID-19 data on county-level during two phases. As expected, very strict privacy yields unstable, unusable forecasts. At a moderately strong level, the DP model closely approaches the non-DP model: R2 around 0.94 (vs. 0.95) and mean absolute percentage error (MAPE) of 26 % in November 2020; R2 around 0.88 (vs. 0.93) and MAPE of 21 % in March 2022. Overall, client-level DP-FL can deliver useful county-level predictions with strong privacy guarantees, and viable privacy budgets depend on epidemic phase, allowing privacy-compliant collaboration among health authorities for local forecasting.
comment: 26 pages, 9 figures
Differentially Private Bilevel Optimization
We present differentially private (DP) algorithms for bilevel optimization, a problem class that received significant attention lately in various machine learning applications. These are the first algorithms for such problems under standard DP constraints, and are also the first to avoid Hessian computations which are prohibitive in large-scale settings. Under the well-studied setting in which the upper-level is not necessarily convex and the lower-level problem is strongly-convex, our proposed gradient-based $(ε,δ)$-DP algorithm returns a point with hypergradient norm at most $\widetilde{\mathcal{O}}\left((\sqrt{d_\mathrm{up}}/εn)^{1/2}+(\sqrt{d_\mathrm{low}}/εn)^{1/3}\right)$ where $n$ is the dataset size, and $d_\mathrm{up}/d_\mathrm{low}$ are the upper/lower level dimensions. Our analysis covers constrained and unconstrained problems alike, accounts for mini-batch gradients, and applies to both empirical and population losses. As an application, we specialize our analysis to derive a simple private rule for tuning a regularization hyperparameter.
comment: Accepted to ALT 2026; some fixes following reviews
Enhancing Large Language Models for Time-Series Forecasting via Vector-Injected In-Context Learning
The World Wide Web needs reliable predictive capabilities to respond to changes in user behavior and usage patterns. Time series forecasting (TSF) is a key means to achieve this goal. In recent years, the large language models (LLMs) for TSF (LLM4TSF) have achieved good performance. However, there is a significant difference between pretraining corpora and time series data, making it hard to guarantee forecasting quality when directly applying LLMs to TSF; fine-tuning LLMs can mitigate this issue, but often incurs substantial computational overhead. Thus, LLM4TSF faces a dual challenge of prediction performance and compute overhead. To address this, we aim to explore a method for improving the forecasting performance of LLM4TSF while freezing all LLM parameters to reduce computational overhead. Inspired by in-context learning (ICL), we propose LVICL. LVICL uses our vector-injected ICL to inject example information into a frozen LLM, eliciting its in-context learning ability and thereby enhancing its performance on the example-related task (i.e., TSF). Specifically, we first use the LLM together with a learnable context vector adapter to extract a context vector from multiple examples adaptively. This vector contains compressed, example-related information. Subsequently, during the forward pass, we inject this vector into every layer of the LLM to improve forecasting performance. Compared with conventional ICL that adds examples into the prompt, our vector-injected ICL does not increase prompt length; moreover, adaptively deriving a context vector from examples suppresses components harmful to forecasting, thereby improving model performance. Extensive experiments demonstrate the effectiveness of our approach.
Content Accuracy and Quality Aware Resource Allocation Based on LP-Guided DRL for ISAC-Driven AIGC Networks
Integrated sensing and communication (ISAC) can enhance artificial intelligence-generated content (AIGC) networks by providing efficient sensing and transmission. Existing AIGC services usually assume that the accuracy of the generated content can be ensured, given accurate input data and prompt, thus only the content generation quality (CGQ) is concerned. However, it is not applicable in ISAC-based AIGC networks, where content generation is based on inaccurate sensed data. Moreover, the AIGC model itself introduces generation errors, which depend on the number of generating steps (i.e., computing resources). To assess the quality of experience of ISAC-based AIGC services, we propose a content accuracy and quality aware service assessment metric (CAQA). Since allocating more resources to sensing and generating improves content accuracy but may reduce communication quality, and vice versa, this sensing-generating (computing)-communication three-dimensional resource tradeoff must be optimized to maximize the average CAQA (AvgCAQA) across all users with AIGC (CAQA-AIGC). This problem is NP-hard, with a large solution space that grows exponentially with the number of users. To solve the CAQA-AIGC problem with low complexity, a linear programming (LP) guided deep reinforcement learning (DRL) algorithm with an action filter (LPDRL-F) is proposed. Through the LP-guided approach and the action filter, LPDRL-F can transform the original three-dimensional solution space to two dimensions, reducing complexity while improving the learning performance of DRL. Simulations show that compared to existing DRL and generative diffusion model (GDM) algorithms without LP, LPDRL-F converges faster and finds better resource allocation solutions, improving AvgCAQA by more than 10%. With LPDRL-F, CAQA-AIGC can achieve an improvement in AvgCAQA of more than 50% compared to existing schemes focusing solely on CGQ.
comment: Accepted by IEEE TMC
Beyond Uniform SVD:Dual-Level Optimization across Columns and Modules for LLM Compression
Low-rank decomposition, particularly Singular Value Decomposition (SVD), is a pivotal technique for mitigating the storage and computational demands of Large Language Models (LLMs). However, prevalent SVD-based approaches overlook the critical phenomenon that decomposition errors exhibit significant disparity across different components of the parameter matrix, often leading to suboptimal approximation. Furthermore, existing methods lack a direct metric to evaluate the importance of individual weight matrices. To address these limitations, we propose Duo-SVD (Dual-level Optimization SVD), a novel training-free framework that synergizes optimization at both the column and the module levels. First, Duo-SVD incorporates a Column-Preserving Strategy that explicitly retains columns exhibiting high decomposition errors, while applying low-rank approximation solely to those with lower errors. Second, at the module level, we employ a Module-Adaptive Allocation Strategy that formulates ratio allocation as a global constrained optimization problem based on perturbation-induced model deviation. Extensive experiments demonstrate that Duo-SVD consistently outperforms state-of-the-art SVD-based baselines and structured pruning methods, establishing it as a superior paradigm for efficient LLM compression.
Graph Neural Network Surrogates to leverage Mechanistic Expert Knowledge towards Reliable and Immediate Pandemic Response
During the COVID-19 crisis, mechanistic models have guided evidence-based decision making. However, time-critical decisions in a dynamical environment limit the time available to gather supporting evidence. We address this bottleneck by developing a graph neural network (GNN) surrogate of an age-structured and spatially resolved mechanistic metapopulation simulation model. This combined approach complements classical modeling approaches which are mostly mechanistic and purely data-driven machine learning approaches which are often black box. Our design of experiments spans outbreak and persistent-threat regimes, up to three contact change points, and age-structured contact matrices on a spatial graph with 400 nodes representing German counties. We benchmark multiple GNN layers and identify an ARMAConv-based architecture that offers a strong accuracy-runtime trade-off. Across horizons of 30-90 day simulation and prediction, allowing up to three contact change points, the surrogate model attains 10-27 \% mean absolute percentage error (MAPE) while delivering (near) constant runtime with respect to the forecast horizon. Our approach accelerates evaluation by up to 28,670 times compared with the mechanistic model, allowing responsive decision support in time-critical scenarios and straightforward web integration. These results show how GNN surrogates can translate complex metapopulation models into immediate, reliable tools for pandemic response.
comment: 20 pages, 9 figures
e-Profits: A Business-Aligned Evaluation Metric for Profit-Sensitive Customer Churn Prediction
Retention campaigns in customer relationship management often rely on churn prediction models evaluated using traditional metrics such as AUC and F1-score. However, these metrics fail to reflect financial outcomes and may mislead strategic decisions. We introduce e-Profits, a novel business-aligned evaluation metric that quantifies model performance based on customer lifetime value, retention probability, and intervention costs. Unlike existing profit-based metrics such as Expected Maximum Profit, which assume fixed population-level parameters, e-Profits uses Kaplan-Meier survival analysis to estimate tenure-conditioned (customer-level) one-period retention probabilities and supports granular, per-customer profit evaluation. We benchmark six classifiers across two telecom datasets (IBM Telco and Maven Telecom) and demonstrate that e-Profits reshapes model rankings compared to traditional metrics, revealing financial advantages in models previously overlooked by AUC or F1-score. The metric also enables segment-level insight into which models maximise return on investment for high-value customers. e-Profits provides a transparent, customer-level evaluation framework that bridges predictive modelling and profit-driven decision-making in operational churn management. All source code is available at: https://github.com/Awaismanzoor/eprofits.
DiffSampling: Enhancing Diversity and Accuracy in Neural Text Generation
Despite their growing capabilities, language models still frequently reproduce content from their training data, generate repetitive text, and favor common grammatical patterns and vocabulary. A possible cause is the decoding strategy: the most common strategies either consider only the most probable tokens, which reduces output diversity, or increase the likelihood of unlikely tokens, compromising output accuracy and correctness. In this paper, we propose DiffSampling, a new decoding method that leverages a mathematical analysis of the token probability distribution to ensure the generation of contextually appropriate text. In particular, the difference between consecutive, sorted probabilities can be used to truncate incorrect tokens. In addition, we also propose two variations of the proposed method that aim to correct the subtle inconsistencies of common sampling strategies. Experiments involving four different text-generation tasks demonstrate that our approach consistently performs at least on par with the existing methods it builds upon in terms of quality, despite sampling from a larger set of tokens.
comment: Published in Transactions on Machine Learning Research (2025), see https://tmlr.infinite-conf.org/paper_pages/kXjHbMvdIi.html
Enabling Global, Human-Centered Explanations for LLMs:From Tokens to Interpretable Code and Test Generation
As Large Language Models for Code (LM4Code) become integral to software engineering, establishing trust in their output becomes critical. However, standard accuracy metrics obscure the underlying reasoning of generative models, offering little insight into how decisions are made. Although post-hoc interpretability methods attempt to fill this gap, they often restrict explanations to local, token-level insights, which fail to provide a developer-understandable global analysis. Our work highlights the urgent need for \textbf{global, code-based} explanations that reveal how models reason across code. To support this vision, we introduce \textit{code rationales} (CodeQ), a framework that enables global interpretability by mapping token-level rationales to high-level programming categories. Aggregating thousands of these token-level explanations allows us to perform statistical analyses that expose systemic reasoning behaviors. We validate this aggregation by showing it distills a clear signal from noisy token data, reducing explanation uncertainty (Shannon entropy) by over 50%. Additionally, we find that a code generation model (\textit{codeparrot-small}) consistently favors shallow syntactic cues (e.g., \textbf{indentation}) over deeper semantic logic. Furthermore, in a user study with 37 participants, we find its reasoning is significantly misaligned with that of human developers. These findings, hidden from traditional metrics, demonstrate the importance of global interpretability techniques to foster trust in LM4Code.
comment: Accepted to ICSE 2026
Shortcuts and Identifiability in Concept-based Models from a Neuro-Symbolic Lens NeurIPS25
Concept-based Models are neural networks that learn a concept extractor to map inputs to high-level concepts and an inference layer to translate these into predictions. Ensuring these modules produce interpretable concepts and behave reliably in out-of-distribution is crucial, yet the conditions for achieving this remain unclear. We study this problem by establishing a novel connection between Concept-based Models and reasoning shortcuts (RSs), a common issue where models achieve high accuracy by learning low-quality concepts, even when the inference layer is fixed and provided upfront. Specifically, we extend RSs to the more complex setting of Concept-based Models and derive theoretical conditions for identifying both the concepts and the inference layer. Our empirical results highlight the impact of RSs and show that existing methods, even combined with multiple natural mitigation strategies, often fail to meet these conditions in practice.
comment: Accepted at NeurIPS25
Unsupervised full-field Bayesian inference of orthotropic hyperelasticity from a single biaxial test: a myocardial case study
Cardiac muscle tissue exhibits highly non-linear hyperelastic and orthotropic material behavior during passive deformation. Traditional constitutive identification protocols therefore combine multiple loading modes and typically require multiple specimens and substantial handling. In soft living tissues, such protocols are challenged by inter- and intra-sample variability and by manipulation-induced alterations of mechanical response, which can bias inverse calibration. In this work we exploit spatially heterogeneous full-field kinematics as an information-rich alternative to multimodal testing. We adapt EUCLID, an unsupervised method for the automated discovery of constitutive models, towards Bayesian parameter inference for highly nonlinear, orthotropic constitutive models. Using synthetic myocardial tissue slabs, we demonstrate that a single heterogeneous biaxial experiment, combined with sparse reaction-force measurements, enables robust recovery of Holzapfel-Ogden parameters with quantified uncertainty, across multiple noise levels. The inferred responses agree closely with ground-truth simulations and yield credible intervals that reflect the impact of measurement noise on orthotropic material model inference. Our work supports single-shot, uncertainty-aware characterization of nonlinear orthotropic material models from a single biaxial test, reducing sample demand and experimental manipulation.
Hamiltonian Property Testing
Locality is a fundamental feature of many physical time evolutions. Assumptions on locality and related structural properties also underlie recently proposed procedures for learning an unknown Hamiltonian from access to the induced time evolution. However, no protocols to rigorously test whether an unknown Hamiltonian is local were known. We investigate Hamiltonian locality testing as a property testing problem, where the task is to determine whether an unknown $n$-qubit Hamiltonian $H$ is $k$-local or $\varepsilon$-far from all $k$-local Hamiltonians, given access to the time evolution along $H$. First, we emphasize the importance of the chosen distance measure: With respect to the operator norm, a worst-case distance measure, incoherent quantum locality testers require $\tildeΩ(2^n)$ many time evolution queries and an expected total evolution time of $\tildeΩ(2^n / \varepsilon)$, and even coherent testers need $Ω(2^{n/2})$ many queries and $Ω(2^{n/2}/\varepsilon)$ total evolution time. In contrast, when distances are measured according to the normalized Frobenius norm, corresponding to an average-case distance, we give a sample-, time-, and computationally efficient incoherent Hamiltonian locality testing algorithm based on randomized measurements. In fact, our procedure can be used to simultaneously test a wide class of Hamiltonian properties beyond locality. Finally, we prove that learning a general Hamiltonian remains exponentially hard with this average-case distance, thereby establishing an exponential separation between Hamiltonian testing and learning. Our work initiates the study of property testing for quantum Hamiltonians, demonstrating that a broad class of Hamiltonian properties is efficiently testable even with limited quantum capabilities, and positioning Hamiltonian testing as an independent area of research alongside Hamiltonian learning.
comment: 70 pages, 3 figures; minor improvements. Version accepted for publication in Quantum
Improved Segmentation of Polyps and Visual Explainability Analysis
Colorectal cancer (CRC) remains one of the leading causes of cancer-related morbidity and mortality worldwide, with gastrointestinal (GI) polyps serving as critical precursors according to the World Health Organization (WHO). Early and accurate segmentation of polyps during colonoscopy is essential for reducing CRC progression, yet manual delineation is labor-intensive and prone to observer variability. Deep learning methods have demonstrated strong potential for automated polyp analysis, but their limited interpretability remains a barrier to clinical adoption. In this study, we present PolypSeg-GradCAM, an explainable deep learning framework that integrates a U-Net architecture with a pre-trained ResNet-34 backbone and Gradient-weighted Class Activation Mapping (Grad-CAM) for transparent polyp segmentation. To ensure rigorous benchmarking, the model was trained and evaluated using 5-Fold Cross-Validation on the Kvasir-SEG dataset of 1,000 annotated endoscopic images. Experimental results show a mean Dice coefficient of 0.8902 +/- 0.0125, a mean Intersection-over-Union (IoU) of 0.8023, and an Area Under the Receiver Operating Characteristic Curve (AUC-ROC) of 0.9722. Advanced quantitative analysis using an optimal threshold yielded a Sensitivity of 0.9058 and Precision of 0.9083. Additionally, Grad-CAM visualizations confirmed that predictions were guided by clinically relevant regions, offering insight into the model's decision-making process. This study demonstrates that integrating segmentation accuracy with interpretability can support the development of trustworthy AI-assisted colonoscopy tools.
Differential Privacy for Transformer Embeddings of Text with Nonparametric Variational Information Bottleneck
We propose a privacy-preserving method for sharing text data by sharing noisy versions of their transformer embeddings. It has been shown that hidden representations learned by deep models can encode sensitive information from the input, making it possible for adversaries to recover the input data with considerable accuracy. This problem is exacerbated in transformer embeddings because they consist of multiple vectors, one per token. To mitigate this risk, we propose Nonparametric Variational Differential Privacy (NVDP), which ensures both useful data sharing and strong privacy protection. We take a differential privacy (DP) approach, integrating a nonparametric variational information bottleneck (NVIB) layer into the transformer architecture to inject noise into its multivector embeddings and thereby hide information, and measuring privacy protection with Rényi Divergence (RD) and its corresponding Bayesian Differential Privacy (BDP) guarantee. Training the NVIB layer calibrates the noise level according to the utility of the downstream task. We test NVDP on the General Language Understanding Evaluation (GLUE) benchmark and show that varying the noise level gives us a useful trade-off between privacy and accuracy. With lower noise levels, our model maintains high accuracy while offering strong privacy guarantees, effectively balancing privacy and utility.
comment: 11 pages, 2 figures
Sobolev Approximation of Deep ReLU Networks in Log-Barron Space
Universal approximation theorems show that neural networks can approximate any continuous function; however, the number of parameters may grow exponentially with the ambient dimension, so these results do not fully explain the practical success of deep models on high-dimensional data. Barron space theory addresses this: if a target function belongs to a Barron space, a two-layer network with $n$ parameters achieves an $O(n^{-1/2})$ approximation error in $L^2$. Yet classical Barron spaces $\mathscr{B}^{s+1}$ still require stronger regularity than Sobolev spaces $H^s$, and existing depth-sensitive results often assume constraints such as $sL \le 1/2$. In this paper, we introduce a log-weighted Barron space $\mathscr{B}^{\log}$, which requires a strictly weaker assumption than $\mathscr{B}^s$ for any $s>0$. For this new function space, we first study embedding properties and carry out a statistical analysis via the Rademacher complexity. Then we prove that functions in $\mathscr{B}^{\log}$ can be approximated by deep ReLU networks with explicit depth dependence. We then define a family $\mathscr{B}^{s,\log}$, establish approximation bounds in the $H^1$ norm, and identify maximal depth scales under which these rates are preserved. Our results clarify how depth reduces regularity requirements for efficient representation, offering a more precise explanation for the performance of deep architectures beyond the classical Barron setting, and for their stable use in high-dimensional problems used today.
Input Convex Kolmogorov Arnold Networks
This article presents an input convex neural network architecture using Kolmogorov-Arnold networks (ICKAN). Two specific networks are presented: the first is based on a low-order, linear-by-part, representation of functions, and a universal approximation theorem is provided. The second is based on cubic splines, for which only numerical results support convergence. We demonstrate on simple tests that these networks perform competitively with classical input convex neural networks (ICNNs). In a second part, we use the networks to solve some optimal transport problems needing a convex approximation of functions and demonstrate their effectiveness. Comparisons with ICNNs show that cubic ICKANs produce results similar to those of classical ICNNs.
AQ-PCDSys: An Adaptive Quantized Planetary Crater Detection System for Autonomous Space Exploration
Successful autonomous planetary exploration hinges on real-time, high-fidelity environmental perception. However, standard deep learning models usually demand far more memory and computation power than space-qualified, radiation-hardened onboard hardware can provide. This creates a fundamental design challenge of deploying sophisticated detection architectures without saturating the rigid power and memory envelopes of the computation hardware of planetary exploration platforms. We propose the Adaptive Quantized Planetary Crater Detection System to resolve this bottleneck. Our framework integrates a Quantized Neural Network, refined through Quantization Aware Training, with an Adaptive Multi-Sensor Fusion module. By forcing weights into low-precision integer arithmetic, we effectively strip away the floating-point overhead that typically bottlenecks onboard processors and system memory. This yields a leaner model footprint and significantly faster processing while the detection fidelity remains high. Such efficiency enables AMF module to merge high-bandwidth Optical Imagery streams with Digital Elevation Models using an Adaptive Weighting Mechanism to re-balance sensor priority under variable conditions like deep shadows or high albedo. Integrated Multi-Scale Detection Heads then resolve craters across a wide range of diameters, providing a computationally efficient and precise solution for real-time detection, localization of craters and hazard avoidance. This paper establishes the architectural design and theoretical justification of the system. While our methodology is grounded in principles of hybrid computer vision and planetary science, we present this as a blueprint for future empirical validation and hardware benchmarking on integer-arithmetic units. This system provides a capability vital for the next generation of autonomous landing, navigation, and deep space explorations.
comment: 17 pages, 6 figures. A research paper on a novel deep learning framework for planetary crater detection
Kernel Limit for a Class of Recurrent Neural Networks Trained on Ergodic Data Sequences
Mathematical methods are developed to characterize the asymptotics of recurrent neural networks (RNN) as the number of hidden units, data samples in the sequence, hidden state updates, and training steps simultaneously grow to infinity. In the case of an RNN with a simplified weight matrix, we prove the convergence of the RNN to the solution of an infinite-dimensional ODE coupled with the fixed point of a random algebraic equation. The analysis requires addressing several challenges which are unique to RNNs. In typical mean-field applications (e.g., feedforward neural networks), discrete updates are of magnitude $\mathcal{O}(1/N)$ and the number of updates is $\mathcal{O}(N)$. Therefore, the system can be represented as an Euler approximation of an appropriate ODE/PDE, which it will converge to as $N \rightarrow \infty$. However, the RNN hidden layer updates are $\mathcal{O}(1)$. Therefore, RNNs cannot be represented as a discretization of an ODE/PDE and standard mean-field techniques cannot be applied. Instead, we develop a fixed point analysis for the evolution of the RNN memory states, with convergence estimates in terms of the number of update steps and the number of hidden units. The RNN hidden layer is studied as a function in a Sobolev space, whose evolution is governed by the data sequence (a Markov chain), the parameter updates, and its dependence on the RNN hidden layer at the previous time step. Due to the strong correlation between updates, a Poisson equation must be used to bound the fluctuations of the RNN around its limit equation. These mathematical methods give rise to the neural tangent kernel (NTK) limits for RNNs trained on data sequences as the number of data samples and size of the neural network grow to infinity.
comment: Revision in response to reviewers' comments. The mean-field random function has been replaced by a mean-field term. Some typos fixed. Minor title change
Fair Foundation Models for Medical Image Analysis: Challenges and Perspectives
Ensuring equitable Artificial Intelligence (AI) in healthcare demands systems that make unbiased decisions across all demographic groups, bridging technical innovation with ethical principles. Foundation Models (FMs), trained on vast datasets through self-supervised learning, enable efficient adaptation across medical imaging tasks while reducing dependency on labeled data. These models demonstrate potential for enhancing fairness, though significant challenges remain in achieving consistent performance across demographic groups. Our review indicates that effective bias mitigation in FMs requires systematic interventions throughout all stages of development. While previous approaches focused primarily on model-level bias mitigation, our analysis reveals that fairness in FMs requires integrated interventions throughout the development pipeline, from data documentation to deployment protocols. This comprehensive framework advances current knowledge by demonstrating how systematic bias mitigation, combined with policy engagement, can effectively address both technical and institutional barriers to equitable AI in healthcare. The development of equitable FMs represents a critical step toward democratizing advanced healthcare technologies, particularly for underserved populations and regions with limited medical infrastructure and computational resources.
Variational Bayesian Inference for Tensor Robust Principal Component Analysis
Tensor Robust Principal Component Analysis (TRPCA) holds a crucial position in machine learning and computer vision. It aims to recover underlying low-rank structures and to characterize the sparse structures of noise. Current approaches often encounter difficulties in accurately capturing the low-rank properties of tensors and balancing the trade-off between low-rank and sparse components, especially in a mixed-noise scenario. To address these challenges, we introduce a Bayesian framework for TRPCA, which integrates a low-rank tensor nuclear norm prior and a generalized sparsity-inducing prior. By embedding the priors within the Bayesian framework, our method can automatically determine the optimal tensor nuclear norm and achieve a balance between the nuclear norm and sparse components. Furthermore, our method can be efficiently extended to the weighted tensor nuclear norm model. Experiments conducted on synthetic and real-world datasets demonstrate the effectiveness and superiority of our method compared to state-of-the-art approaches.
What Can RL Bring to VLA Generalization? An Empirical Study NeurIPS 2025
Large Vision-Language Action (VLA) models have shown significant potential for embodied AI. However, their predominant training via supervised fine-tuning (SFT) limits generalization due to susceptibility to compounding errors under distribution shifts. Reinforcement learning (RL) offers a path to overcome these limitations by optimizing for task objectives via trial-and-error, yet a systematic understanding of its specific generalization benefits for VLAs compared to SFT is lacking. To address this, our study introduces a comprehensive benchmark for evaluating VLA generalization and systematically investigates the impact of RL fine-tuning across diverse visual, semantic, and execution dimensions. Our extensive experiments reveal that RL fine-tuning, particularly with PPO, significantly enhances generalization in semantic understanding and execution robustness over SFT, while maintaining comparable visual robustness. We identify PPO as a more effective RL algorithm for VLAs than LLM-derived methods like DPO and GRPO. We also develop a simple recipe for efficient PPO training on VLAs, and demonstrate its practical utility for improving VLA generalization. The project page is at https://rlvla.github.io
comment: Accepted by NeurIPS 2025
Lens: A Knowledge-Guided Foundation Model for Network Traffic
Network traffic refers to the amount of data being sent and received over the Internet or any system that connects computers. Analyzing network traffic is vital for security and management, yet remains challenging due to the heterogeneity of plain-text packet headers and encrypted payloads. To capture the latent semantics of traffic, recent studies have adopted Transformer-based pretraining techniques to learn network representations from massive traffic data. However, these methods pre-train on data-driven tasks but overlook network knowledge, such as masking partial digits of the indivisible network port numbers for prediction, thereby limiting semantic understanding. In addition, they struggle to extend classification to new classes during fine-tuning due to the distribution shift. Motivated by these limitations, we propose \Lens, a unified knowledge-guided foundation model for both network traffic classification and generation. In pretraining, we propose a Knowledge-Guided Mask Span Prediction method with textual context for learning knowledge-enriched representations. For extending to new classes in finetuning, we reframe the traffic classification as a closed-ended generation task and introduce context-aware finetuning to adapt to the distribution shift. Evaluation results across various benchmark datasets demonstrate that the proposed Lens~achieves superior performance on both classification and generation tasks. For traffic classification, Lens~outperforms competitive baselines substantially on 8 out of 12 tasks with an average accuracy of \textbf{96.33\%} and extends to novel classes with significantly better performance. For traffic generation, Lens~generates better high-fidelity network traffic for network simulation, gaining up to \textbf{30.46\%} and \textbf{33.3\%} better accuracy and F1 in fuzzing tests. We will open-source the code upon publication.
A Curriculum Learning Approach to Reinforcement Learning: Leveraging RAG for Multimodal Question Answering
This paper describes the solutions of the Dianping-Trust-Safety team for the META CRAG-MM challenge. The challenge requires building a comprehensive retrieval-augmented generation system capable for multi-modal multi-turn question answering. The competition consists of three tasks: (1) answering questions using structured data retrieved from an image-based mock knowledge graph, (2) synthesizing information from both knowledge graphs and web search results, and (3) handling multi-turn conversations that require context understanding and information aggregation from multiple sources. For Task 1, our solution is based on the vision large language model, enhanced by supervised fine-tuning with knowledge distilled from GPT-4.1. We further applied curriculum learning strategies to guide reinforcement learning, resulting in improved answer accuracy and reduced hallucination. For Task 2 and Task 3, we additionally leveraged web search APIs to incorporate external knowledge, enabling the system to better handle complex queries and multi-turn conversations. Our approach achieved 1st place in Task 1 with a significant lead of 52.38%, and 3rd place in Task 3, demonstrating the effectiveness of the integration of curriculum learning with reinforcement learning in our training pipeline.
UniConFlow: A Unified Constrained Flow-Matching Framework for Certified Motion Planning
Generative models have become increasingly powerful tools for robot motion generation, enabling flexible and multimodal trajectory generation across various tasks. Yet, most existing approaches remain limited in handling multiple types of constraints, such as collision avoidance, actuation limits, and dynamic consistency, which are typically addressed individually or heuristically. In this work, we propose UniConFlow, a unified constrained flow matching-based framework for trajectory generation that systematically incorporates both equality and inequality constraints. Moreover, UniConFlow introduces a novel prescribed-time zeroing function that shapes a time-varying guidance field during inference, allowing the generation process to adapt to varying system models and task requirements. Furthermore, to further address the computational challenges of long-horizon and high-dimensional trajectory generation, we propose two practical strategies for the terminal constraint enforcement and inference process: a violation-segment extraction protocol that precisely localizes and refines only the constraint-violating portions of trajectories, and a trajectory compression method that accelerates optimization in a reduced-dimensional space while preserving high-fidelity reconstruction after decoding. Empirical validation across three experiments, including a double inverted pendulum, a real-to-sim car racing task, and a sim-to-real manipulation task, demonstrates that UniConFlow outperforms state-of-the-art generative planners and conventional optimization baselines, achieving superior performance on certified motion planning metrics such as safety, kinodynamic consistency, and action feasibility. Project page is available at: https://uniconflow.github.io.
Comprehensive language-image pre-training for 3D medical image understanding
Vision-language pre-training, i.e., aligning images with paired text, is a powerful paradigm to create encoders that can be directly used for tasks such as classification, retrieval, and segmentation. In the 3D medical image domain, these capabilities allow vision-language encoders (VLEs) to support radiologists by retrieving patients with similar abnormalities, predicting likelihoods of abnormality, or, with downstream adaptation, generating radiological reports. While the methodology holds promise, data availability and domain-specific hurdles limit the capabilities of current 3D VLEs. In this paper, we overcome these challenges by injecting additional supervision via a report generation objective and combining vision-language with vision-only pre-training. This allows us to leverage both image-only and paired image-text 3D datasets, increasing the total amount of data to which our model is exposed. Through these additional objectives, paired with best practices of the 3D medical imaging domain, we develop the Comprehensive Language-Image Pre-training (COLIPRI) encoder family. Our COLIPRI encoders achieve state-of-the-art performance in report generation, semantic segmentation, classification probing, and zero-shot classification. The model is available at https://huggingface.co/microsoft/colipri.
Fusion or Confusion? Multimodal Complexity Is Not All You Need
Deep learning architectures for multimodal learning have increased in complexity, driven by the assumption that multimodal-specific methods improve performance. We challenge this assumption through a large-scale empirical study reimplementing 19 high-impact methods under standardized conditions. We evaluate them across nine diverse datasets with up to 23 modalities, and test their generalizability to new tasks beyond their original scope, including settings with missing modalities. We propose a Simple Baseline for Multimodal Learning (SimBaMM), a late-fusion Transformer architecture, and demonstrate that under standardized experimental conditions with rigorous hyperparameter tuning of all methods, more complex architectures do not reliably outperform SimBaMM. Statistical analyses show that complex methods perform on par with SimBaMM and often fail to consistently outperform well-tuned unimodal baselines, especially in small-data settings. To support our findings, we include a case study highlighting common methodological shortcomings in the literature followed by a pragmatic reliability checklist to promote comparable, robust, and trustworthy future evaluations. In summary, we argue for a shift in focus: away from the pursuit of architectural novelty and toward methodological rigor.
Large-scale modality-invariant foundation models for brain MRI analysis: Application to lesion segmentation
The field of computer vision is undergoing a paradigm shift toward large-scale foundation model pre-training via self-supervised learning (SSL). Leveraging large volumes of unlabeled brain MRI data, such models can learn anatomical priors that improve few-shot performance in diverse neuroimaging tasks. However, most SSL frameworks are tailored to natural images, and their adaptation to capture multi-modal MRI information remains underexplored. This work proposes a modality-invariant representation learning setup and evaluates its effectiveness in stroke and epilepsy lesion segmentation, following large-scale pre-training. Experimental results suggest that despite successful cross-modality alignment, lesion segmentation primarily benefits from preserving fine-grained modality-specific features. Model checkpoints and code are made publicly available.
comment: Submitted to IEEE ISBI 2026
Learning About Learning: A Physics Path from Spin Glasses to Artificial Intelligence
The Hopfield model, originally inspired by spin-glass physics, occupies a central place at the intersection of statistical mechanics, neural networks, and modern artificial intelligence. Despite its conceptual simplicity and broad applicability -- from associative memory to near-optimal solutions of combinatorial optimization problems -- it is rarely integrated into standard undergraduate physics curricula. In this paper, we present the Hopfield model as a pedagogically rich framework that naturally unifies core topics from undergraduate statistical physics, dynamical systems, linear algebra, and computational methods. We provide a concise and illustrated theoretical introduction grounded in familiar physics concepts, analyze the model's energy function, dynamics, and pattern stability, and discuss practical aspects of simulation, including a freely available simulation code. To support instruction, we conclude with classroom-ready example problems designed to mirror research practice. By explicitly connecting fundamental physics to contemporary AI applications, this work aims to help prepare physics students to understand, apply, and critically engage with the computational tools increasingly central to research, industry, and society.
comment: 18 pages, 11 figures
Know Yourself Better: Diverse Object-Related Features Improve Open Set Recognition
Open set recognition (OSR) is a critical aspect of machine learning, addressing the challenge of detecting novel classes during inference. Within the realm of deep learning, neural classifiers trained on a closed set of data typically struggle to identify novel classes, leading to erroneous predictions. To address this issue, various heuristic methods have been proposed, allowing models to express uncertainty by stating "I don't know." However, a gap in the literature remains, as there has been limited exploration of the underlying mechanisms of these methods. In this paper, we conduct an analysis of open set recognition methods, focusing on the aspect of feature diversity. Our research reveals a significant correlation between learning diverse discriminative features and enhancing OSR performance. Building on this insight, we propose a novel OSR approach that leverages the advantages of feature diversity. The efficacy of our method is substantiated through rigorous evaluation on a standard OSR testbench, demonstrating a substantial improvement over state-of-the-art methods.
Horizon Activation Mapping for Neural Networks in Time Series Forecasting
Neural networks for time series forecasting have relied on error metrics and architecture-specific interpretability approaches for model selection that don't apply across models of different families. To interpret forecasting models agnostic to the types of layers across state-of-the-art model families, we introduce Horizon Activation Mapping (HAM), a visual interpretability technique inspired by grad-CAM that uses gradient norm averages to study the horizon's subseries where grad-CAM studies attention maps over image data. We introduce causal and anti-causal modes to calculate gradient update norm averages across subseries at every timestep and lines of proportionality signifying uniform distributions of the norm averages. Optimization landscape studies with respect to changes in batch sizes, early stopping, train-val-test splits, architectural choices, univariate forecasting and dropouts are studied with respect to performances and subseries in HAM. Interestingly, batch size based differences in activities seem to indicate potential for existence of an exponential approximation across them per epoch relative to each other. Multivariate forecasting models including MLP-based CycleNet, N-Linear, N-HITS, self attention-based FEDformer, Pyraformer, SSM-based SpaceTime and diffusion-based Multi-Resolution DDPM over different horizon sizes trained over the ETTm2 dataset are used for HAM plots in this study. NHITS' neural approximation theorem and SpaceTime's exponential autoregressive activities have been attributed to trends in HAM plots over their training, validation and test sets. In general, HAM can be used for granular model selection, validation set choices and comparisons across different neural network model families.
Nonlinear reconciliation: Error reduction theorems
Forecast reconciliation, an ex-post technique applied to forecasts that must satisfy constraints, has been a prominent topic in the forecasting literature over the past two decades. Recently, several efforts have sought to extend reconciliation methods to the probabilistic settings. Nevertheless, formal theorems demonstrating error reduction in nonlinear constraints, analogous to those presented in Panagiotelis et al.(2021), are still lacking. This paper addresses that gap by establishing such theorems for various classes of nonlinear hypersurfaces and vector-valued functions. Specifically, we derive an exact analog of Theorem 3.1 from Panagiotelis et al.(2021) for hypersurfaces with constant-sign curvature. Additionally, we provide an error reduction theorem for the broader case of hypersurfaces with non-constant-sign curvature and for general manifolds with codimension > 1. To support reproducibility and practical adoption, we release a JAX-based Python package, JNLR, implementing the presented theorems and reconciliation procedures.
Bayesian Optimization with Preference Exploration using a Monotonic Neural Network Ensemble
Many real-world black-box optimization problems have multiple conflicting objectives. Rather than attempting to approximate the entire set of Pareto-optimal solutions, interactive preference learning allows to focus the search on the most relevant subset. However, few previous studies have exploited the fact that utility functions are usually monotonic. In this paper, we address the Bayesian Optimization with Preference Exploration (BOPE) problem and propose using a neural network ensemble as a utility surrogate model. This approach naturally integrates monotonicity and supports pairwise comparison data. Our experiments demonstrate that the proposed method outperforms state-of-the-art approaches and exhibits robustness to noise in utility evaluations. An ablation study highlights the critical role of monotonicity in enhancing performance.
Hydrogen production from blended waste biomass: pyrolysis, thermodynamic-kinetic analysis and AI-based modelling
This work contributes to advancing sustainable energy and waste management strategies by investigating the thermochemical conversion of food-based biomass through pyrolysis, highlighting the role of artificial intelligence (AI) in enhancing process modelling accuracy and optimization efficiency. The main objective is to explore the potential of underutilized biomass resources, such as spent coffee grounds (SCG) and date seeds (DS), for sustainable hydrogen production. Specifically, it aims to optimize the pyrolysis process while evaluating the performance of these resources both individually and as blends. Proximate, ultimate, fibre, TGA/DTG, kinetic, thermodynamic, and Py-Micro GC analyses were conducted for pure DS, SCG, and blends (75% DS - 25% SCG, 50% DS - 50% SCG, 25% DS - 75% SCG). Blend 3 offered superior hydrogen yield potential but had the highest activation energy (Ea: 313.24 kJ/mol), while Blend 1 exhibited the best activation energy value (Ea: 161.75 kJ/mol). The kinetic modelling based on isoconversional methods (KAS, FWO, Friedman) identified KAS as the most accurate. These approaches provide a detailed understanding of the pyrolysis process, with particular emphasis on the integration of artificial intelligence. An LSTM model trained with lignocellulosic data predicted TGA curves with exceptional accuracy (R^2: 0.9996-0.9998).
comment: 41 pages, 21 figures
Exploring the Secondary Risks of Large Language Models
Ensuring the safety and alignment of Large Language Models is a significant challenge with their growing integration into critical applications and societal functions. While prior research has primarily focused on jailbreak attacks, less attention has been given to non-adversarial failures that subtly emerge during benign interactions. We introduce secondary risks a novel class of failure modes marked by harmful or misleading behaviors during benign prompts. Unlike adversarial attacks, these risks stem from imperfect generalization and often evade standard safety mechanisms. To enable systematic evaluation, we introduce two risk primitives verbose response and speculative advice that capture the core failure patterns. Building on these definitions, we propose SecLens, a black-box, multi-objective search framework that efficiently elicits secondary risk behaviors by optimizing task relevance, risk activation, and linguistic plausibility. To support reproducible evaluation, we release SecRiskBench, a benchmark dataset of 650 prompts covering eight diverse real-world risk categories. Experimental results from extensive evaluations on 16 popular models demonstrate that secondary risks are widespread, transferable across models, and modality independent, emphasizing the urgent need for enhanced safety mechanisms to address benign yet harmful LLM behaviors in real-world deployments.
comment: 18 pages, 5 figures
SGAC: A Graph Neural Network Framework for Imbalanced and Structure-Aware AMP Classification
Classifying Antimicrobial Peptides (AMPs) from the vast collection of peptides derived from metagenomic sequencing offers a promising avenue for combating antibiotic resistance. However, most existing AMP classification methods rely primarily on sequence-based representations and fail to capture the spatial structural information critical for accurate identification. Although recent graph-based approaches attempt to incorporate structural information, they typically construct residue- or atom-level graphs that introduce redundant atomic details and increase structural complexity. Furthermore, the class imbalance between the small number of known AMPs and the abundant non-AMPs significantly hinders predictive performance. To address these challenges, we employ lightweight OmegaFold to predict the three-dimensional structures of peptides and construct peptide graphs using C α atoms to capture their backbone geometry and spatial topology. Building on this representation, we propose the Spatial GNN-based AMP Classifier (SGAC), a novel framework that leverages Graph Neural Networks (GNNs) to extract structural features and generate discriminative graph representations. To handle class imbalance, SGAC incorporates Weight-enhanced Contrastive Learning to cluster structurally similar peptides and separate dissimilar ones through adaptive weighting, and applies Weight-enhanced Pseudo-label Distillation to generate high-confidence pseudo labels for unlabeled samples, achieving balanced and consistent representation learning. Experiments on publicly available AMP and non-AMP datasets demonstrate that SGAC significantly achieves state-of-the-art performance compared to baselines.
SAC Flow: Sample-Efficient Reinforcement Learning of Flow-Based Policies via Velocity-Reparameterized Sequential Modeling
Training expressive flow-based policies with off-policy reinforcement learning is notoriously unstable due to gradient pathologies in the multi-step action sampling process. We trace this instability to a fundamental connection: the flow rollout is algebraically equivalent to a residual recurrent computation, making it susceptible to the same vanishing and exploding gradients as RNNs. To address this, we reparameterize the velocity network using principles from modern sequential models, introducing two stable architectures: Flow-G, which incorporates a gated velocity, and Flow-T, which utilizes a decoded velocity. We then develop a practical SAC-based algorithm, enabled by a noise-augmented rollout, that facilitates direct end-to-end training of these policies. Our approach supports both from-scratch and offline-to-online learning and achieves state-of-the-art performance on continuous control and robotic manipulation benchmarks, eliminating the need for common workarounds like policy distillation or surrogate objectives.
On Bayesian Neural Networks with Dependent and Possibly Heavy-Tailed Weights
We consider fully connected and feedforward deep neural networks with dependent and possibly heavy-tailed weights, as introduced in Lee et al. 2023, to address limitations of the standard Gaussian prior. It has been proved in Lee et al. 2023 that, as the number of nodes in the hidden layers grows large, according to a sequential and ordered limit, the law of the output converges weakly to a Gaussian mixture. Among our results, we present sufficient conditions on the model parameters (the activation function and the associated Lévy measures) which ensure that the sequential limit is independent of the order. Next, we study the neural network through the lens of the posterior distribution with a Gaussian likelihood. If the random covariance matrix of the infinite-width limit is positive definite under the prior, we identify the posterior distribution of the output in the wide-width limit according to a sequential regime. Remarkably, we provide mild sufficient conditions to ensure the aforementioned invertibility of the random covariance matrix under the prior, thereby extending the results in L. Carvalho et al. 2025. We illustrate our findings using numerical simulations.
comment: 2 figures
KnowEEG: Explainable Knowledge Driven EEG Classification
Electroencephalography (EEG) is a method of recording brain activity that shows significant promise in applications ranging from disease classification to emotion detection and brain-computer interfaces. Recent advances in deep learning have improved EEG classification performance yet model explainability remains an issue. To address this key limitation of explainability we introduce KnowEEG; a novel explainable machine learning approach for EEG classification. KnowEEG extracts a comprehensive set of per-electrode features, filters them using statistical tests, and integrates between-electrode connectivity statistics. These features are then input to our modified Random Forest model (Fusion Forest) that balances per electrode statistics with between electrode connectivity features in growing the trees of the forest. By incorporating knowledge from both the generalized time-series and EEG-specific domains, KnowEEG achieves performance comparable to or exceeding state-of-the-art deep learning models across five different classification tasks: emotion detection, mental workload classification, eyes open/closed detection, abnormal EEG classification, and event detection. In addition to high performance, KnowEEG provides inherent explainability through feature importance scores for understandable features. We demonstrate by example on the eyes closed/open classification task that this explainability can be used to discover knowledge about the classes. This discovered knowledge for eyes open/closed classification was proven to be correct by current neuroscience literature. Therefore, the impact of KnowEEG will be significant for domains where EEG explainability is critical such as healthcare.
Multilevel neural simulation-based inference
Neural simulation-based inference (SBI) is a popular set of methods for Bayesian inference when models are only available in the form of a simulator. These methods are widely used in the sciences and engineering, where writing down a likelihood can be significantly more challenging than constructing a simulator. However, the performance of neural SBI can suffer when simulators are computationally expensive, thereby limiting the number of simulations that can be performed. In this paper, we propose a novel approach to neural SBI which leverages multilevel Monte Carlo techniques for settings where several simulators of varying cost and fidelity are available. We demonstrate through both theoretical analysis and extensive experiments that our method can significantly enhance the accuracy of SBI methods given a fixed computational budget.
Fodor and Pylyshyn's Legacy: Still No Human-like Systematic Compositionality in Neural Networks
Strong meta-learning capabilities for systematic compositionality are emerging as an important skill for navigating the complex and changing tasks of today's world. However, in presenting models for robust adaptation to novel environments, it is important to refrain from making unsupported claims about the performance of meta-learning systems that ultimately do not stand up to scrutiny. While Fodor and Pylyshyn famously posited that neural networks inherently lack this capacity as they are unable to model compositional representations or structure-sensitive operations, and thus are not a viable model of the human mind, Lake and Baroni recently presented meta-learning as a pathway to compositionality. In this position paper, we critically revisit this claim and highlight limitations in the proposed meta-learning framework for compositionality. Our analysis shows that modern neural meta-learning systems can only perform such tasks, if at all, under a very narrow and restricted definition of a meta-learning setup. We therefore claim that `Fodor and Pylyshyn's legacy' persists, and to date, there is no human-like systematic compositionality learned in neural networks.
Towards Interpretability Without Sacrifice: Faithful Dense Layer Decomposition with Mixture of Decoders NeurIPS 2025
Multilayer perceptrons (MLPs) are an integral part of large language models, yet their dense representations render them difficult to understand, edit, and steer. Recent methods learn interpretable approximations via neuron-level sparsity, yet fail to faithfully reconstruct the original mapping--significantly increasing model's next-token cross-entropy loss. In this paper, we advocate for moving to layer-level sparsity to overcome the accuracy trade-off in sparse layer approximation. Under this paradigm, we introduce Mixture of Decoders (MxDs). MxDs generalize MLPs and Gated Linear Units, expanding pre-trained dense layers into tens of thousands of specialized sublayers. Through a flexible form of tensor factorization, each sparsely activating MxD sublayer implements a linear transformation with full-rank weights--preserving the original decoders' expressive capacity even under heavy sparsity. Experimentally, we show that MxDs significantly outperform state-of-the-art methods (e.g., Transcoders) on the sparsity-accuracy frontier in language models with up to 3B parameters. Further evaluations on sparse probing and feature steering demonstrate that MxDs learn similarly specialized features of natural language--opening up a promising new avenue for designing interpretable yet faithful decompositions. Our code is included at: https://github.com/james-oldfield/MxD/.
comment: NeurIPS 2025 camera-ready version
Hidden Monotonicity: Explaining Deep Neural Networks via their DC Decomposition
It has been demonstrated in various contexts that monotonicity leads to better explainability in neural networks. However, not every function can be well approximated by a monotone neural network. We demonstrate that monotonicity can still be used in two ways to boost explainability. First, we use an adaptation of the decomposition of a trained ReLU network into two monotone and convex parts, thereby overcoming numerical obstacles from an inherent blowup of the weights in this procedure. Our proposed saliency methods - SplitCAM and SplitLRP - improve on state of the art results on both VGG16 and Resnet18 networks on ImageNet-S across all Quantus saliency metric categories. Second, we exhibit that training a model as the difference between two monotone neural networks results in a system with strong self-explainability properties.
In-Context Learning Enhanced Credibility Transformer
The starting point of our network architecture is the Credibility Transformer which extends the classical Transformer architecture by a credibility mechanism to improve model learning and predictive performance. This Credibility Transformer learns credibilitized CLS tokens that serve as learned representations of the original input features. In this paper we present a new paradigm that augments this architecture by an in-context learning mechanism, i.e., we increase the information set by a context batch consisting of similar instances. This allows the model to enhance the CLS token representations of the instances by additional in-context information and fine-tuning. We empirically verify that this in-context learning enhances predictive accuracy by adapting to similar risk patterns. Moreover, this in-context learning also allows the model to generalize to new instances which, e.g., have feature levels in the categorical covariates that have not been present when the model was trained -- for a relevant example, think of a new vehicle model which has just been developed by a car manufacturer.
Can Language Models Discover Scaling Laws?
Discovering scaling laws for predicting model performance at scale is a fundamental and open-ended challenge, mostly reliant on slow, case specific human experimentation. To investigate the potential for LLMs to automate this process, we collect over 5,000 experiments from existing literature and curate eight diverse scaling law discovery tasks. While existing agents struggle to produce accurate law formulas, this paper introduces SLDAgent, an evolution-based agent that co-optimize the scaling law model and the parameters, enabling it to autonomously explore complex relationships between variables. For the first time, we demonstrates that SLDAgent can automatically discover laws that exhibit consistently more accurate extrapolation than their established, human-derived counterparts across all tasks. Through comprehensive analysis, we elucidate why these discovered laws are superior and verify their practical utility in both pretraining and finetuning applications. This work establishes a new paradigm for agentic scientific discovery, showing that AI systems can understand their own scaling behavior, and can contribute novel and practical knowledge back to the research community.
Analysis of Quantum Image Representations for Supervised Classification
In the era of big data and artificial intelligence, the increasing volume of data and the demand to solve more and more complex computational challenges are two driving forces for improving the efficiency of data storage, processing and analysis. Quantum image processing (QIP) is an interdisciplinary field between quantum information science and image processing, which has the potential to alleviate some of these challenges by leveraging the power of quantum computing. In this work, we compare and examine the compression properties of four different Quantum Image Representations (QImRs): namely, Tensor Network Representation (TNR), Flexible Representation of Quantum Image (FRQI), Novel Enhanced Quantum Representation NEQR, and Quantum Probability Image Encoding (QPIE). Our simulations show that FRQI and QPIE perform a higher compression of image information than TNR and NEQR. Furthermore, we investigate the trade-off between accuracy and memory in binary classification problems, evaluating the performance of quantum kernels based on QImRs compared to the classical linear kernel. Our results indicate that quantum kernels provide comparable classification average accuracy but require exponentially fewer resources for image storage.
comment: 9 pages, 11 figures
FeatInv: Spatially resolved mapping from feature space to input space using conditional diffusion models
Internal representations are crucial for understanding deep neural networks, such as their properties and reasoning patterns, but remain difficult to interpret. While mapping from feature space to input space aids in interpreting the former, existing approaches often rely on crude approximations. We propose using a conditional diffusion model - a pretrained high-fidelity diffusion model conditioned on spatially resolved feature maps - to learn such a mapping in a probabilistic manner. We demonstrate the feasibility of this approach across various pretrained image classifiers from CNNs to ViTs, showing excellent reconstruction capabilities. Through qualitative comparisons and robustness analysis, we validate our method and showcase possible applications, such as the visualization of concept steering in input space or investigations of the composite nature of the feature space. This approach has broad potential for improving feature space understanding in computer vision models.
comment: Version published by Transactions on Machine Learning Research in 2025 (TMLR ISSN 2835-8856) at https://openreview.net/forum?id=UtE1YnPNgZ. 32 pages, 27 figures. This work builds on an earlier manuscript (arXiv:2505.21032) and crucially extends it. Code is available at https://github.com/AI4HealthUOL/FeatInv
Consistent Sampling and Simulation: Molecular Dynamics with Energy-Based Diffusion Models NeurIPS 2025
In recent years, diffusion models trained on equilibrium molecular distributions have proven effective for sampling biomolecules. Beyond direct sampling, the score of such a model can also be used to derive the forces that act on molecular systems. However, while classical diffusion sampling usually recovers the training distribution, the corresponding energy-based interpretation of the learned score is often inconsistent with this distribution, even for low-dimensional toy systems. We trace this inconsistency to inaccuracies of the learned score at very small diffusion timesteps, where the model must capture the correct evolution of the data distribution. In this regime, diffusion models fail to satisfy the Fokker-Planck equation, which governs the evolution of the score. We interpret this deviation as one source of the observed inconsistencies and propose an energy-based diffusion model with a Fokker-Planck-derived regularization term to enforce consistency. We demonstrate our approach by sampling and simulating multiple biomolecular systems, including fast-folding proteins, and by introducing a state-of-the-art transferable Boltzmann emulator for dipeptides that supports simulation and achieves improved consistency and efficient sampling. Our code, model weights, and self-contained JAX and PyTorch notebooks are available at https://github.com/noegroup/ScoreMD.
comment: Accepted at Conference on Neural Information Processing Systems (NeurIPS 2025)
Improving AI-Based Canine Heart Disease Diagnosis with Expert-Consensus Auscultation Labeling
Noisy labels pose significant challenges for AI model training in veterinary medicine. This study examines expert assessment ambiguity in canine auscultation data, highlights the negative impact of label noise on classification performance, and introduces methods for label noise reduction. To evaluate whether label noise can be minimized by incorporating multiple expert opinions, a dataset of 140 heart sound recordings (HSR) was annotated regarding the intensity of holosystolic heart murmurs caused by Myxomatous Mitral Valve Disease (MMVD). The expert opinions facilitated the selection of 70 high-quality HSR, resulting in a noise-reduced dataset. By leveraging individual heart cycles, the training data was expanded and classification robustness was enhanced. The investigation encompassed training and evaluating three classification algorithms: AdaBoost, XGBoost, and Random Forest. While AdaBoost and Random Forest exhibited reasonable performances, XGBoost demonstrated notable improvements in classification accuracy. All algorithms showed significant improvements in classification accuracy due to the applied label noise reduction, most notably XGBoost. Specifically, for the detection of mild heart murmurs, sensitivity increased from 37.71% to 90.98% and specificity from 76.70% to 93.69%. For the moderate category, sensitivity rose from 30.23% to 55.81% and specificity from 64.56% to 97.19%. In the loud/thrilling category, sensitivity and specificity increased from 58.28% to 95.09% and from 84.84% to 89.69%, respectively. These results highlight the importance of minimizing label noise to improve classification algorithms for the detection of canine heart murmurs. Index Terms: AI diagnosis, canine heart disease, heart sound classification, label noise reduction, machine learning, XGBoost, veterinary cardiology, MMVD.
comment: Accepted to IEEE Engineering in Medicine and Biology Conference (EMBC) 2025
Uncertainty-Aware PCA for Arbitrarily Distributed Data Modeled by Gaussian Mixture Models
Multidimensional data is often associated with uncertainties that are not well-described by normal distributions. In this work, we describe how such distributions can be projected to a low-dimensional space using uncertainty-aware principal component analysis (UAPCA). We propose to model multidimensional distributions using Gaussian mixture models (GMMs) and derive the projection from a general formulation that allows projecting arbitrary probability density functions. The low-dimensional projections of the densities exhibit more details about the distributions and represent them more faithfully compared to UAPCA mappings. Further, we support including user-defined weights between the different distributions, which allows for varying the importance of the multidimensional distributions. We evaluate our approach by comparing the distributions in low-dimensional space obtained by our method and UAPCA to those obtained by sample-based projections.
comment: 10 pages, 6 figures
Repairing vulnerabilities without invisible hands. A differentiated replication study on LLMs
Background: Automated Vulnerability Repair (AVR) is a fast-growing branch of program repair. Recent studies show that large language models (LLMs) outperform traditional techniques, extending their success beyond code generation and fault detection. Hypothesis: These gains may be driven by hidden factors -- "invisible hands" such as training-data leakage or perfect fault localization -- that let an LLM reproduce human-authored fixes for the same code. Objective: We replicate prior AVR studies under controlled conditions by deliberately adding errors to the reported vulnerability location in the prompt. If LLMs merely regurgitate memorized fixes, both small and large localization errors should yield the same number of correct patches, because any offset should divert the model from the original fix. Method: Our pipeline repairs vulnerabilities from the Vul4J and VJTrans benchmarks after shifting the fault location by n lines from the ground truth. A first LLM generates a patch, a second LLM reviews it, and we validate the result with regression and proof-of-vulnerability tests. Finally, we manually audit a sample of patches and estimate the error rate with the Agresti-Coull-Wilson method.
Controlling Ensemble Variance in Diffusion Models: An Application for Reanalyses Downscaling
In recent years, diffusion models have emerged as powerful tools for generating ensemble members in meteorology. In this work, we demonstrate how a Denoising Diffusion Implicit Model (DDIM) can effectively control ensemble variance by varying the number of diffusion steps. Introducing a theoretical framework, we relate diffusion steps to the variance expressed by the reverse diffusion process. Focusing on reanalysis downscaling, we propose an ensemble diffusion model for the full ERA5-to-CERRA domain, generating variance-calibrated ensemble members for wind speed at full spatial and temporal resolution. Our method aligns global mean variance with a reference ensemble dataset and ensures spatial variance is distributed in accordance with observed meteorological variability. Additionally, we address the lack of ensemble information in the CARRA dataset, showcasing the utility of our approach for efficient, high-resolution ensemble generation.
IKDiffuser: a Diffusion-based Generative Inverse Kinematics Solver for Kinematic Trees
Solving Inverse Kinematics (IK) for arbitrary kinematic trees presents significant challenges due to their high-dimensionality, redundancy, and complex inter-branch constraints. Conventional optimization-based solvers can be sensitive to initialization and suffer from local minima or conflicting gradients. At the same time, existing learning-based approaches are often tied to a predefined number of end-effectors and a fixed training objective, limiting their reusability across various robot morphologies and task requirements. To address these limitations, we introduce IKDiffuser, a scalable IK solver built upon conditional diffusion-based generative models, which learns the distribution of the configuration space conditioned on end-effector poses. We propose a structure-agnostic formulation that represents end-effector poses as a sequence of tokens, leading to a unified framework that handles varying numbers of end-effectors while learning the implicit kinematic structures entirely from data. Beyond standard IK generation, IKDiffuser handles partially specified goals via a masked marginalization mechanism that conditions only on a subset of end-effector constraints. Furthermore, it supports adding task objectives at inference through objective-guided sampling, enabling capabilities such as warm-start initialization and manipulability maximization without retraining. Extensive evaluations across seven diverse robotic platforms demonstrate that IKDiffuser significantly outperforms state-of-the-art baselines in accuracy, solution diversity, and collision avoidance. Moreover, when used to initialize optimization-based solvers, IKDiffuser significantly boosts success rates on challenging redundant systems with high Degrees of Freedom (DoF), such as the 29-DoF Unitree G1 humanoid, from 21.01% to 96.96% while reducing computation time to the millisecond range.
comment: under review
Out-of-Distribution Detection via Channelwise Feature Aggregation in Neural Network-Based Receivers
Neural network-based radio receivers are expected to play a key role in future wireless systems, making reliable Out-Of-Distribution (OOD) detection essential. We propose a post-hoc, layerwise OOD framework based on channelwise feature aggregation that avoids classwise statistics--critical for multi-label soft-bit outputs with astronomically many classes. Receiver activations exhibit no discrete clusters but a smooth Signal-to-Noise-Ratio (SNR)-aligned manifold, consistent with classical receiver behavior and motivating manifold-aware OOD detection. We evaluate multiple OOD feature types, distance metrics, and methods across layers. Gaussian Mahalanobis with mean activations is the strongest single detector, earlier layers outperform later, and SNR/classifier fusions offer small, inconsistent AUROC gains. High-delay OOD is detected reliably, while high-speed remains challenging.
comment: 50 pages, 39 figures, 48 tables, and 31 equations
Divergence-Based Similarity Function for Multi-View Contrastive Learning AAAI
Recent success in contrastive learning has sparked growing interest in more effectively leveraging multiple augmented views of data. While prior methods incorporate multiple views at the loss or feature level, they primarily capture pairwise relationships and fail to model the joint structure across all views. In this work, we propose a divergence-based similarity function (DSF) that explicitly captures the joint structure by representing each set of augmented views as a distribution and measuring similarity as the divergence between distributions. Extensive experiments demonstrate that DSF consistently improves performance across diverse tasks, including kNN classification, linear evaluation, transfer learning, and distribution shift, while also achieving greater efficiency than other multi-view methods. Furthermore, we establish a connection between DSF and cosine similarity, and demonstrate that, unlike cosine similarity, DSF operates effectively without the need for tuning a temperature hyperparameter.
comment: 9 pages, 5 figures. Code and Pretrained Model: https://github.com/Jeon789/DSF, v4: Removed erroneous AAAI copyright notice
Bench360: Benchmarking Local LLM Inference from 360 Degrees
Running LLMs locally has become increasingly common, but users face a complex design space across models, quantization levels, inference engines, and serving scenarios. Existing inference benchmarks are fragmented and focus on isolated goals, offering little guidance for practical deployments. We present Bench360, a framework for evaluating local LLM inference across tasks, usage patterns, and system metrics in one place. Bench360 supports custom tasks, integrates multiple inference engines and quantization formats, and reports both task quality and system behavior (latency, throughput, energy, startup time). We demonstrate it on four NLP tasks across three GPUs and four engines, showing how design choices shape efficiency and output quality. Results confirm that tradeoffs are substantial and configuration choices depend on specific workloads and constraints. There is no universal best option, underscoring the need for comprehensive, deployment-oriented benchmarks.
Comparative Performance Analysis of Quantum Machine Learning Architectures for Credit Card Fraud Detection
As financial fraud becomes increasingly complex, effective detection methods are essential. Quantum Machine Learning (QML) introduces certain capabilities that may enhance both accuracy and efficiency in this area. This study examines how different quantum feature maps and ansatz configurations affect the performance of three QML-based classifiers, the Variational Quantum Classifier (VQC), the Sampler Quantum Neural Network (SQNN), and the Estimator Quantum Neural Network (EQNN), when applied to two non-normalized financial fraud datasets. Different quantum feature map and ansatz configurations are evaluated, revealing distinct performance patterns. The VQC consistently demonstrates strong classification results, achieving an F1-score of 0.88, while the SQNN also delivers promising outcomes. In contrast, the EQNN struggles to produce robust results, emphasizing the challenges presented by non-standardized data. Statistical validation using ANOVA confirms the significance of observed performance differences. Additionally, robustness tests on the best-performing models under five quantum noise types show that they maintain competitive performance, supporting their practical applicability. These findings highlight the importance of careful model configuration in QML-based financial fraud detection. By showing how specific feature maps and ansatz choices influence predictive success, this work guides researchers and practitioners in refining QML approaches for complex financial applications.
comment: 15 pages, 20 figures, 8 tables. Accepted in Applied Intelligence
Random Multiplexing
As wireless communication applications evolve from traditional multipath environments to high-mobility scenarios like unmanned aerial vehicles, multiplexing techniques have advanced accordingly. Traditional single-carrier frequency-domain equalization (SC-FDE) and orthogonal frequency-division multiplexing (OFDM) have given way to emerging orthogonal time-frequency space (OTFS) and affine frequency-division multiplexing (AFDM). These approaches exploit specific channel structures to diagonalize or sparsify the effective channel, thereby enabling low-complexity detection. However, their reliance on these structures significantly limits their robustness in dynamic, real-world environments. To address these challenges, this paper studies a random multiplexing technique that is decoupled from the physical channels, enabling its application to arbitrary norm-bounded and spectrally convergent channel matrices. Random multiplexing achieves statistical fading-channel ergodicity for transmitted signals by constructing an equivalent input-isotropic channel matrix in the random transform domain. It guarantees the asymptotic replica MAP bit-error rate (BER) optimality of AMP-type detectors for linear systems with arbitrary norm-bounded, spectrally convergent channel matrices and signaling configurations, under the unique fixed point assumption. A low-complexity cross-domain memory AMP (CD-MAMP) detector is considered, leveraging the sparsity of the time-domain channel and the randomness of the equivalent channel. Optimal power allocations are derived to minimize the replica MAP BER and maximize the replica constrained capacity of random multiplexing systems. The optimal coding principle and replica constrained-capacity optimality of CD-MAMP detector are investigated for random multiplexing systems. Additionally, the versatility of random multiplexing in diverse wireless applications is explored.
comment: This paper has been accepted for publication in IEEE Transactions on Information Theory
Neural Emulator Superiority: When Machine Learning for PDEs Surpasses its Training Data NeurIPS 2025
Neural operators or emulators for PDEs trained on data from numerical solvers are conventionally assumed to be limited by their training data's fidelity. We challenge this assumption by identifying "emulator superiority," where neural networks trained purely on low-fidelity solver data can achieve higher accuracy than those solvers when evaluated against a higher-fidelity reference. Our theoretical analysis reveals how the interplay between emulator inductive biases, training objectives, and numerical error characteristics enables superior performance during multi-step rollouts. We empirically validate this finding across different PDEs using standard neural architectures, demonstrating that emulators can implicitly learn dynamics that are more regularized or exhibit more favorable error accumulation properties than their training data, potentially surpassing training data limitations and mitigating numerical artifacts. This work prompts a re-evaluation of emulator benchmarking, suggesting neural emulators might achieve greater physical fidelity than their training source within specific operational regimes. Project Page: https://tum-pbs.github.io/emulator-superiority
comment: Accepted at NeurIPS 2025: https://neurips.cc/virtual/2025/poster/116770 ; V2: Updated references, fix typos
STORM: A Spatio-Temporal Factor Model Based on Dual Vector Quantized Variational Autoencoders for Financial Trading
In financial trading, factor models are widely used to price assets and capture excess returns from mispricing. Recently, we have witnessed the rise of variational autoencoder-based latent factor models, which learn latent factors self-adaptively. While these models focus on modeling overall market conditions, they often fail to effectively capture the temporal patterns of individual stocks. Additionally, representing multiple factors as single values simplifies the model but limits its ability to capture complex relationships and dependencies. As a result, the learned factors are of low quality and lack diversity, reducing their effectiveness and robustness across different trading periods. To address these issues, we propose a Spatio-Temporal factOR Model based on dual vector quantized variational autoencoders, named STORM, which extracts features of stocks from temporal and spatial perspectives, then fuses and aligns these features at the fine-grained and semantic level, and represents the factors as multi-dimensional embeddings. The discrete codebooks cluster similar factor embeddings, ensuring orthogonality and diversity, which helps distinguish between different factors and enables factor selection in financial trading. To show the performance of the proposed factor model, we apply it to two downstream experiments: portfolio management on two stock datasets and individual trading tasks on six specific stocks. The extensive experiments demonstrate STORM's flexibility in adapting to downstream tasks and superior performance over baseline models.
Unified Multimodal Brain Decoding via Cross-Subject Soft-ROI Fusion
Multimodal brain decoding aims to reconstruct semantic information that is consistent with visual stimuli from brain activity signals such as fMRI, and then generate readable natural language descriptions. However, multimodal brain decoding still faces key challenges in cross-subject generalization and interpretability. We propose a BrainROI model and achieve leading-level results in brain-captioning evaluation on the NSD dataset. Under the cross-subject setting, compared with recent state-of-the-art methods and representative baselines, metrics such as BLEU-4 and CIDEr show clear improvements. Firstly, to address the heterogeneity of functional brain topology across subjects, we design a new fMRI encoder. We use multi-atlas soft functional parcellations (soft-ROI) as a shared space. We extend the discrete ROI Concatenation strategy in MINDLLM to a voxel-wise gated fusion mechanism (Voxel-gate). We also ensure consistent ROI mapping through global label alignment, which enhances cross-subject transferability. Secondly, to overcome the limitations of manual and black-box prompting methods in stability and transparency, we introduce an interpretable prompt optimization process. In a small-sample closed loop, we use a locally deployed Qwen model to iteratively generate and select human-readable prompts. This process improves the stability of prompt design and preserves an auditable optimization trajectory. Finally, we impose parameterized decoding constraints during inference to further improve the stability and quality of the generated descriptions.
comment: 15 pages, 2 figures, 4 tables. Submitted to ICPR 2026
Spiffy: Multiplying Diffusion LLM Acceleration via Lossless Speculative Decoding
Diffusion LLMs (dLLMs) have recently emerged as a powerful alternative to autoregressive LLMs (AR-LLMs) with the potential to operate at significantly higher token generation rates. However, currently available open-source dLLMs often generate at much lower rates, typically decoding only a single token at every denoising timestep in order to maximize output quality. We present Spiffy, a speculative decoding algorithm that accelerates dLLM inference by $\mathbf{2.8{-}3.1\times}$ while provably preserving the model's output distribution. This work addresses the unique challenges involved in applying ideas from speculative decoding of AR-LLMs to the dLLM setting. Spiffy proposes draft states by leveraging the dLLM's distribution itself in an auto-speculative manner. This approach is efficient and effective, and eliminates the overheads of training and running an independent draft model. To structure the candidate draft states, we propose a novel directed draft graph which is uniquely designed to take advantage of the bidirectional, block-wise nature of dLLM generation and can be verified in parallel by the dLLM. To further optimize the structure of these draft graphs, we introduce an efficient, offline calibration algorithm that procedurally determines high-quality graph configurations. These optimized draft graphs, enabling increased acceptance rates, lead to a significant boost in the overall speedup achieved by the system. Crucially, Spiffy is also complementary to other recent innovations in improving dLLM generation speeds such as KV-caching and multi-token unmasking. We demonstrate that when combined with such parallel decoding algorithms, Spiffy is able to effectively multiply the benefits of these methods leading to total speedups of up to $\mathbf{7.9\times}$.
comment: Original version uploaded on Sep 22, 2025. (v2): Extended Table 2 with additional analysis and referenced it in Sec 5.2. (v3): Added note to Sec 4.2 and Appendix A.2 specifying conditions for losslessness
Temporal Knowledge Graph Question Answering: A Survey
Knowledge Base Question Answering (KBQA) has been a long-standing field to answer questions based on knowledge bases. Recently, the evolving dynamics of knowledge have attracted a growing interest in Temporal Knowledge Graph Question Answering (TKGQA), an emerging task to answer temporal questions. However, this field grapples with ambiguities in defining temporal questions and lacks a systematic categorization of existing methods for TKGQA. In response, this paper provides a thorough survey from two perspectives: the taxonomy of temporal questions and the methodological categorization for TKGQA. Specifically, we first establish a detailed taxonomy of temporal questions engaged in prior studies. Subsequently, we provide a comprehensive review of TKGQA techniques of two categories: semantic parsing-based and TKG embedding-based. Building on this review, the paper outlines potential research directions aimed at advancing the field of TKGQA. This work aims to serve as a comprehensive reference for TKGQA and to stimulate further research.
comment: 8 pages, 3 figures. This work has been submitted to the IEEE for possible publication
Tipping Point Forecasting in Non-Stationary Dynamics on Function Spaces
Tipping points are abrupt, drastic, and often irreversible changes in the evolution of non-stationary and chaotic dynamical systems. For instance, increased greenhouse gas concentrations are predicted to lead to drastic decreases in low cloud cover, referred to as a climatological tipping point. In this paper, we learn the evolution of such non-stationary dynamical systems using a novel recurrent neural operator (RNO), which learns mappings between function spaces. After training RNO on only the pre-tipping dynamics, we employ it to detect future tipping points using an uncertainty-based approach. In particular, we propose a conformal prediction framework to forecast tipping points by monitoring deviations from physics constraints (such as conserved quantities and partial differential equations), enabling forecasting of these abrupt changes along with a rigorous measure of uncertainty. We illustrate our proposed methodology on non-stationary ordinary and partial differential equations, such as the Lorenz-63 and Kuramoto-Sivashinsky equations. We also apply our methods to forecast a climate tipping point in stratocumulus cloud cover and airfoil wake and stall transitions using only limited knowledge of the governing equations. For the latter, we show that our proposed method zero-shot generalizes to forecasting multiple future tipping points under varying Reynolds numbers. In our experiments, we demonstrate that even partial or approximate physics constraints can be used to accurately forecast future tipping points.
Soft Contrastive Learning for Time Series ICLR 2024
Contrastive learning has shown to be effective to learn representations from time series in a self-supervised way. However, contrasting similar time series instances or values from adjacent timestamps within a time series leads to ignore their inherent correlations, which results in deteriorating the quality of learned representations. To address this issue, we propose SoftCLT, a simple yet effective soft contrastive learning strategy for time series. This is achieved by introducing instance-wise and temporal contrastive loss with soft assignments ranging from zero to one. Specifically, we define soft assignments for 1) instance-wise contrastive loss by the distance between time series on the data space, and 2) temporal contrastive loss by the difference of timestamps. SoftCLT is a plug-and-play method for time series contrastive learning that improves the quality of learned representations without bells and whistles. In experiments, we demonstrate that SoftCLT consistently improves the performance in various downstream tasks including classification, semi-supervised learning, transfer learning, and anomaly detection, showing state-of-the-art performance. Code is available at this repository: https://github.com/seunghan96/softclt.
comment: ICLR 2024 Spotlight
Beyond One-Size-Fits-All: A Survey of Personalized Affective Computing in Human-Agent Interaction
In personalized machine learning, the aim of personalization is to train a model that caters to a specific individual or group of individuals by optimizing one or more performance metrics and adhering to specific constraints. In this paper, we discuss the need for personalization in affective computing and present the first survey of existing approaches for personalization in affective computing. Our review spans training techniques and objectives towards the personalization of affective computing models across various interaction modes and contexts. We develop a taxonomy that clusters existing approaches into Data-level and Model-level approaches. Across the Data-Level and Model-Level broad categories, we group existing approaches into seven sub-categories: (1) User-Specific Models, (2) Group-Specific Models, (3) Weighting-Based Approaches, (4) Feature Augmentation, (5) Generative-Based Models which fall into the Data-Level approaches, (6) Fine-Tuning Approaches, and (7) Multitask Learning Approaches falling under the model-level approaches. We provide a problem formulation for personalized affective computing, and to each of the identified sub-categories. Additionally, we provide a statistical analysis of the surveyed literature, analyzing the prevalence of different affective computing tasks, interaction modes (i.e. Human-Computer Interaction (HCI), Human-Human interaction (HHI), Human-Robot Interaction (HRI)), interaction contexts (e.g. educative, social, gaming, etc.), and the level of personalization among the surveyed works. Based on our analysis, we provide a road-map for researchers interested in exploring this direction.
Optimizing Fine-Tuning through Advanced Initialization Strategies for Low-Rank Adaptation
The rapid development of parameter-efficient fine-tuning methods has noticeably improved the efficiency of adapting large language models. Among these, LoRA has gained widespread popularity due to its strong balance of effectiveness and parameter efficiency. However, LoRA relies on initializing two low-rank matrices whose product is zero, which limits its ability to effectively activate and leverage the original model weights-creating a potential bottleneck for optimal performance. To address this limitation, we propose \textbf{IniLoRA}, a novel initialization strategy that initializes the low-rank matrices to closely approximate the original model weights. Experimental results indicate that IniLoRA achieves better performance than LoRA across a range of models and tasks. Additionally, we introduce two variants, IniLoRA-$α$ and IniLoRA-$β$, both leveraging distinct initialization methods to enhance performance further.
DatBench: Discriminative, Faithful, and Efficient VLM Evaluations
Empirical evaluation serves as the primary compass guiding research progress in foundation models. Despite a large body of work focused on training frontier vision-language models (VLMs), approaches to their evaluation remain nascent. To guide their maturation, we propose three desiderata that evaluations should satisfy: (1) faithfulness to the modality and application, (2) discriminability between models of varying quality, and (3) efficiency in compute. Through this lens, we identify critical failure modes that violate faithfulness and discriminability, misrepresenting model capabilities: (i) multiple-choice formats reward guessing, poorly reflect downstream use cases, and saturate early as models improve; (ii) blindly solvable questions, which can be answered without images, constitute up to 70% of some evaluations; and (iii) mislabeled or ambiguous samples compromise up to 42% of examples in certain datasets. Regarding efficiency, the computational burden of evaluating frontier models has become prohibitive: by some accounts, nearly 20% of development compute is devoted to evaluation alone. Rather than discarding existing benchmarks, we curate them via transformation and filtering to maximize fidelity and discriminability. We find that converting multiple-choice questions to generative tasks reveals sharp capability drops of up to 35%. In addition, filtering blindly solvable and mislabeled samples improves discriminative power while simultaneously reducing computational cost. We release DatBench-Full, a cleaned evaluation suite of 33 datasets spanning nine VLM capabilities, and DatBench, a discriminative subset that achieves 13x average speedup (up to 50x) while closely matching the discriminative power of the original datasets. Our work outlines a path toward evaluation practices that are both rigorous and sustainable as VLMs continue to scale.
CuMoLoS-MAE: A Masked Autoencoder for Remote Sensing Data Reconstruction NeurIPS 2025
Accurate atmospheric profiles from remote sensing instruments such as Doppler Lidar, Radar, and radiometers are frequently corrupted by low-SNR (Signal to Noise Ratio) gates, range folding, and spurious discontinuities. Traditional gap filling blurs fine-scale structures, whereas deep models lack confidence estimates. We present CuMoLoS-MAE, a Curriculum-Guided Monte Carlo Stochastic Ensemble Masked Autoencoder designed to (i) restore fine-scale features such as updraft and downdraft cores, shear lines, and small vortices, (ii) learn a data-driven prior over atmospheric fields, and (iii) quantify pixel-wise uncertainty. During training, CuMoLoS-MAE employs a mask-ratio curriculum that forces a ViT decoder to reconstruct from progressively sparser context. At inference, we approximate the posterior predictive by Monte Carlo over random mask realisations, evaluating the MAE multiple times and aggregating the outputs to obtain the posterior predictive mean reconstruction together with a finely resolved per-pixel uncertainty map. Together with high-fidelity reconstruction, this novel deep learning-based workflow enables enhanced convection diagnostics, supports real-time data assimilation, and improves long-term climate reanalysis.
comment: Accepted for poster presentation at the NeurIPS 2025 workshop on Tackling Climate Change with Machine Learning. 5 pages, 2 figures
Noisy Quantum Learning Theory
We develop a framework for learning from noisy quantum experiments in which fault-tolerant devices access uncharacterized systems through noisy couplings. Introducing the complexity class $\textsf{NBQP}$ ("noisy BQP''), we model noisy fault-tolerant quantum computers that cannot generally error-correct the oracle systems they query. Using this class, we prove that while noise can eliminate the exponential quantum learning advantages of unphysical, noiseless learners, a superpolynomial gap remains between $\textsf{NISQ}$ and fault-tolerant devices. Turning to canonical learning tasks in noisy settings, we find that the exponential two-copy advantage for purity testing collapses under local depolarizing noise. Nevertheless, we identify a setting motivated by AdS/CFT in which noise-resilient physical structure restores this quantum learning advantage. We then analyze noisy Pauli shadow tomography, deriving lower bounds characterizing how instance size, quantum memory and noise jointly control sample complexity, and design algorithms with parametrically matching scalings. We study similar tradeoffs in quantum metrology, and show that the Heisenberg-limited sensitivity of existing error-correction-based protocols persists only up to a timescale inverse-polynomial in the error rate per probe qubit. Together, our results demonstrate that the primitives underlying quantum-enhanced experiments are fundamentally fragile to noise, and that realizing meaningful quantum advantages in future experiments will require interfacing noise-robust physical properties with available algorithmic techniques.
comment: 13+56 pages, 4 figures; v2: added metrology-related results, typos corrected
KPoEM: A Human-Annotated Dataset for Emotion Classification and RAG-Based Poetry Generation in Korean Modern Poetry
This study introduces KPoEM (Korean Poetry Emotion Mapping), a novel dataset that serves as a foundation for both emotion-centered analysis and generative applications in modern Korean poetry. Despite advancements in NLP, poetry remains underexplored due to its complex figurative language and cultural specificity. We constructed a multi-label dataset of 7,662 entries (7,007 line-level and 615 work-level), annotated with 44 fine-grained emotion categories from five influential Korean poets. The KPoEM emotion classification model, fine-tuned through a sequential strategy -- moving from general-purpose corpora to the specialized KPoEM dataset -- achieved an F1-micro score of 0.60, significantly outperforming previous models (0.43). The model demonstrates an enhanced ability to identify temporally and culturally specific emotional expressions while preserving core poetic sentiments. Furthermore, applying the structured emotion dataset to a RAG-based poetry generation model demonstrates the empirical feasibility of generating texts that reflect the emotional and cultural sensibilities of Korean literature. This integrated approach strengthens the connection between computational techniques and literary analysis, opening new pathways for quantitative emotion research and generative poetics. Overall, this study provides a foundation for advancing emotion-centered analysis and creation in modern Korean poetry.
comment: 43 pages, 22 tables, 3 figures, Digital Humanities and Social Sciences Korea Conference, James Joo-Jin Kim Center for Korean Studies, University of Pennsylvania, Philadelphia, USA
Reinforcement Learning with Exogenous States and Rewards
Exogenous state variables and rewards can slow reinforcement learning by injecting uncontrolled variation into the reward signal. This paper formalizes exogenous state variables and rewards and shows that if the reward function decomposes additively into endogenous and exogenous components, the MDP can be decomposed into an exogenous Markov Reward Process (based on the exogenous reward) and an endogenous Markov Decision Process (optimizing the endogenous reward). Any optimal policy for the endogenous MDP is also an optimal policy for the original MDP, but because the endogenous reward typically has reduced variance, the endogenous MDP is easier to solve. We study settings where the decomposition of the state space into exogenous and endogenous state spaces is not given but must be discovered. The paper introduces and proves correctness of algorithms for discovering the exogenous and endogenous subspaces of the state space when they are mixed through linear combination. These algorithms can be applied during reinforcement learning to discover the exogenous subspace, remove the exogenous reward, and focus reinforcement learning on the endogenous MDP. Experiments on a variety of challenging synthetic MDPs show that these methods, applied online, discover large exogenous state spaces and produce substantial speedups in reinforcement learning.
comment: Substantial rewrite to improve rigor and clarity in response to referee reports at JMLR
Do What You Say: Steering Vision-Language-Action Models via Runtime Reasoning-Action Alignment Verification
Reasoning Vision Language Action (VLA) models improve robotic instruction-following by generating step-by-step textual plans before low-level actions, an approach inspired by Chain-of-Thought (CoT) reasoning in language models. Yet even with a correct textual plan, the generated actions can still miss the intended outcomes in the plan, especially in out-of-distribution (OOD) scenarios. We formalize this phenomenon as a lack of embodied CoT faithfulness, and introduce a training-free, runtime policy steering method for reasoning-action alignment. Given a reasoning VLA's intermediate textual plan, our framework samples multiple candidate action sequences from the same model, predicts their outcomes via simulation, and uses a pre-trained Vision-Language Model (VLM) to select the sequence whose outcome best aligns with the VLA's own textual plan. Only executing action sequences that align with the textual reasoning turns our base VLA's natural action diversity from a source of error into a strength, boosting robustness to semantic and visual OOD perturbations and enabling novel behavior composition without costly re-training. We also contribute a reasoning-annotated extension of LIBERO-100, environment variations tailored for OOD evaluation, and demonstrate up to 15% performance gain over prior work on behavior composition tasks and scales with compute and data diversity. Project Website at: https://yilin-wu98.github.io/steering-reasoning-vla/
ExPO: Unlocking Hard Reasoning with Self-Explanation-Guided Reinforcement Learning NeurIPS 2025
Self-improvement via RL often fails on complex reasoning tasks because GRPO-style post-training methods rely on the model's initial ability to generate positive samples. Without guided exploration, these approaches merely reinforce what the model already knows (distribution-sharpening) rather than enabling the model to solve problems where it initially generates no correct solutions. To unlock reasoning ability in such settings, the model must explore new reasoning trajectories beyond its current output distribution. Such exploration requires access to sufficiently good positive samples to guide the learning. While expert demonstrations seem like a natural solution, we find that they are often ineffective in RL post-training. Instead, we identify two key properties of effective positive samples: they should (1) be likely under the current policy, and (2) increase the model's likelihood of predicting the correct answer. Based on these insights, we propose $\textbf{Self-Explanation Policy Optimization (ExPO)}$-a simple and modular framework that generates such samples by conditioning on the ground-truth answer. It can be integrated with popular RL training methods like GRPO and DPO. ExPO enables efficient exploration and guides the model to produce reasoning trajectories more aligned with its policy than expert-written CoTs, while ensuring higher quality than its own (incorrect) samples. Experiments show that ExPO improves both learning efficiency and final performance on reasoning benchmarks, surpassing expert-demonstration-based methods in challenging settings such as MATH level-5, where the model initially struggles the most. Code is available at https://github.com/HumainLab/ExPO_rl_reasoning_by_explanation .
comment: Accepted to NeurIPS 2025 (Poster). Code available at https://github.com/HumainLab/ExPO_rl_reasoning_by_explanation
Distributional Machine Unlearning via Selective Data Removal
Machine learning systems increasingly face requirements to remove entire domains of information--such as toxic language or biases--rather than individual user data. This task presents a dilemma: full removal of the unwanted domain data is computationally expensive, while random partial removal is statistically inefficient. We find that a domain's statistical influence is often concentrated in a small subset of its data samples, suggesting a path between ineffective partial removal and unnecessary complete removal. We formalize this as distributional unlearning: a framework to select a small subset that balances forgetting an unwanted distribution while preserving a desired one. Using Kullback-Leibler divergence constraints, we derive the exact removal-preservation Pareto frontier for Gaussian distributions and prove that models trained on the edited data achieve corresponding log-loss bounds. We propose a distance-based selection algorithm and show it is quadratically more sample-efficient than random removal in the challenging low-divergence regime. Experiments across synthetic, text, and image datasets (Jigsaw, CIFAR-10, SMS spam) show our method requires 15-82% less deletion than full removal for strong unlearning effects, e.g., halving initial forget set accuracy. Ultimately, by showing a small forget set often suffices, our framework lays the foundations for more scalable and rigorous subpopulation unlearning.
Why are there many equally good models? An Anatomy of the Rashomon Effect
The Rashomon effect -- the existence of multiple, distinct models that achieve nearly equivalent predictive performance -- has emerged as a fundamental phenomenon in modern machine learning and statistics. In this paper, we explore the causes underlying the Rashomon effect, organizing them into three categories: statistical sources arising from finite samples and noise in the data-generating process; structural sources arising from non-convexity of optimization objectives and unobserved variables that create fundamental non-identifiability; and procedural sources arising from limitations of optimization algorithms and deliberate restrictions to suboptimal model classes. We synthesize insights from machine learning, statistics, and optimization literature to provide a unified framework for understanding why the multiplicity of good models arises. A key distinction emerges: statistical multiplicity diminishes with more data, structural multiplicity persists asymptotically and cannot be resolved without different data or additional assumptions, and procedural multiplicity reflects choices made by practitioners. Beyond characterizing causes, we discuss both the challenges and opportunities presented by the Rashomon effect, including implications for inference, interpretability, fairness, and decision-making under uncertainty.
Uncertainty-Aware Multi-Objective Reinforcement Learning-Guided Diffusion Models for 3D De Novo Molecular Design NeurIPS 2025
Designing de novo 3D molecules with desirable properties remains a fundamental challenge in drug discovery and molecular engineering. While diffusion models have demonstrated remarkable capabilities in generating high-quality 3D molecular structures, they often struggle to effectively control complex multi-objective constraints critical for real-world applications. In this study, we propose an uncertainty-aware Reinforcement Learning (RL) framework to guide the optimization of 3D molecular diffusion models toward multiple property objectives while enhancing the overall quality of the generated molecules. Our method leverages surrogate models with predictive uncertainty estimation to dynamically shape reward functions, facilitating balance across multiple optimization objectives. We comprehensively evaluate our framework across three benchmark datasets and multiple diffusion model architectures, consistently outperforming baselines for molecular quality and property optimization. Additionally, Molecular Dynamics (MD) simulations and ADMET profiling of top generated candidates indicate promising drug-like behavior and binding stability, comparable to known Epidermal Growth Factor Receptor (EGFR) inhibitors. Our results demonstrate the strong potential of RL-guided generative diffusion models for advancing automated molecular design.
comment: Accepted at NeurIPS 2025
Trustworthy scientific inference with generative models
Generative artificial intelligence (AI) excels at producing complex data structures (text, images, videos) by learning patterns from training examples. Across scientific disciplines, researchers are now applying generative models to "inverse problems" to directly predict hidden parameters from observed data along with measures of uncertainty. While these predictive or posterior-based methods can handle intractable likelihoods and large-scale studies, they can also produce biased or overconfident conclusions even without model misspecifications. We present a solution with Frequentist-Bayes (FreB), a mathematically rigorous protocol that reshapes AI-generated posterior probability distributions into (locally valid) confidence regions that consistently include true parameters with the expected probability, while achieving minimum size when training and target data align. We demonstrate FreB's effectiveness by tackling diverse case studies in the physical sciences: identifying unknown sources under dataset shift, reconciling competing theoretical models, and mitigating selection bias and systematics in observational studies. By providing validity guarantees with interpretable diagnostics, FreB enables trustworthy scientific inference across fields where direct likelihood evaluation remains impossible or prohibitively expensive.
ELUTQ: Optimizing Quantization Accuracy under LUT-Based Computation for Edge LLMs
Weight quantization effectively reduces memory consumption and enable the deployment of Large Language Models on edge devices, yet existing hardware-friendly methods often rely on uniform quantization, which suffers from poor weight-distribution fitting and high dequantization overhead under low-bit settings. In this paper, we propose ELUTQ, an efficient quantization framework featuring a novel quantization format termed Hierarchical Linear Quantization (HLQ). HLQ is designed to better capture the statistical characteristics of weights and eliminate dequantization overhead using Bit-serial LUT-based GEMM operations. HLQ significantly improves model accuracy under low-bit settings and achieves performance comparable to QAT methods without any retraining of the weights. Moreover, an optimized quantization pipeline is integrated into ELUTQ, enabling it to complete the quantization of LLaMA 3.1-70B using only 64 GB of CPU memory and 48 GB of VRAM, reducing the hardware requirements for large-scale model quantization. To enable efficient deployment on edge devices, ELUTQ designs high-performance kernels to support end-to-end inference. Our 2-bit LLaMA3.1-8B achieves 1.5x speedup over AWQ on RTX 3090. Code is available at https://github.com/Nkniexin/ELUTQ.
comment: 21 pages, 10 figures
MORE: Multi-Objective Adversarial Attacks on Speech Recognition
The emergence of large-scale automatic speech recognition (ASR) models such as Whisper has greatly expanded their adoption across diverse real-world applications. Ensuring robustness against even minor input perturbations is therefore critical for maintaining reliable performance in real-time environments. While prior work has mainly examined accuracy degradation under adversarial attacks, robustness with respect to efficiency remains largely unexplored. This narrow focus provides only a partial understanding of ASR model vulnerabilities. To address this gap, we conduct a comprehensive study of ASR robustness under multiple attack scenarios. We introduce MORE, a multi-objective repetitive doubling encouragement attack, which jointly degrades recognition accuracy and inference efficiency through a hierarchical staged repulsion-anchoring mechanism. Specifically, we reformulate multi-objective adversarial optimization into a hierarchical framework that sequentially achieves the dual objectives. To further amplify effectiveness, we propose a novel repetitive encouragement doubling objective (REDO) that induces duplicative text generation by maintaining accuracy degradation and periodically doubling the predicted sequence length. Overall, MORE compels ASR models to produce incorrect transcriptions at a substantially higher computational cost, triggered by a single adversarial input. Experiments show that MORE consistently yields significantly longer transcriptions while maintaining high word error rates compared to existing baselines, underscoring its effectiveness in multi-objective adversarial attack.
comment: 19 pages
Evaluating Anomaly Detectors for Simulated Highly Imbalanced Industrial Classification Problems
Machine learning offers potential solutions to current issues in industrial systems in areas such as quality control and predictive maintenance, but also faces unique barriers in industrial applications. An ongoing challenge is extreme class imbalance, primarily due to the limited availability of faulty data during training. This paper presents a comprehensive evaluation of anomaly detection algorithms using a problem-agnostic simulated dataset that reflects real-world engineering constraints. Using a synthetic dataset with a hyper-spherical based anomaly distribution in 2D and 10D, we benchmark 14 detectors across training datasets with anomaly rates between 0.05% and 20% and training sizes between 1 000 and 10 000 (with a testing dataset size of 40 000) to assess performance and generalization error. Our findings reveal that the best detector is highly dependant on the total number of faulty examples in the training dataset, with additional healthy examples offering insignificant benefits in most cases. With less than 20 faulty examples, unsupervised methods (kNN/LOF) dominate; but around 30-50 faulty examples, semi-supervised (XGBOD) and supervised (SVM/CatBoost) detectors, we see large performance increases. While semi-supervised methods do not show significant benefits with only two features, the improvements are evident at ten features. The study highlights the performance drop on generalization of anomaly detection methods on smaller datasets, and provides practical insights for deploying anomaly detection in industrial environments.
comment: 21 pages, 14 figures, 11 tables
Stock Price Responses to Firm-Level News in Supply Chain Networks
This study examines how positive and negative news about firms is associated with stock prices and whether these associations extend to firms' suppliers and clients connected through supply chain relationships, using large samples of publicly listed firms worldwide and in Japan. News sentiment is measured using FinBERT, a natural language processing model fine-tuned for financial texts, and supply chain links are identified from financial statements for global firms and from large-scale firm-level surveys for Japanese firms. We find that stock prices exhibit systematic associations with positive and negative news even before public disclosure. These associations are also observed for suppliers and clients before and after disclosure. In general, relative to the pre-disclosure period, post-disclosure associations are larger, with the difference concentrated around the time of public news disclosure. However, for Japanese firms, the post-disclosure associations for suppliers and clients are smaller than the pre-disclosure associations, in contrast to the pattern observed for firms outside Japan.
Optimism Without Regularization: Constant Regret in Zero-Sum Games NeurIPS 2025
This paper studies the optimistic variant of Fictitious Play for learning in two-player zero-sum games. While it is known that Optimistic FTRL -- a regularized algorithm with a bounded stepsize parameter -- obtains constant regret in this setting, we show for the first time that similar, optimal rates are also achievable without regularization: we prove for two-strategy games that Optimistic Fictitious Play (using any tiebreaking rule) obtains only constant regret, providing surprising new evidence on the ability of non-no-regret algorithms for fast learning in games. Our proof technique leverages a geometric view of Optimistic Fictitious Play in the dual space of payoff vectors, where we show a certain energy function of the iterates remains bounded over time. Additionally, we also prove a regret lower bound of $Ω(\sqrt{T})$ for Alternating Fictitious Play. In the unregularized regime, this separates the ability of optimism and alternation in achieving $o(\sqrt{T})$ regret.
comment: NeurIPS 2025
When do spectral gradient updates help in deep learning?
Spectral gradient methods, such as the recently popularized Muon optimizer, are a promising alternative to standard Euclidean gradient descent for training deep neural networks and transformers, but it is still unclear in which regimes they are expected to perform better. We propose a simple layerwise condition that predicts when a spectral update yields a larger decrease in the loss than a Euclidean gradient step. This condition compares, for each parameter block, the squared nuclear-to-Frobenius ratio of the gradient to the stable rank of the incoming activations. To understand when this condition may be satisfied, we first prove that post-activation matrices have low stable rank at Gaussian initialization in random feature regression, feedforward networks, and transformer blocks. In spiked random feature models we then show that, after a short burn-in, the Euclidean gradient's nuclear-to-Frobenius ratio grows with the data dimension while the stable rank of the activations remains bounded, so the predicted advantage of spectral updates scales with dimension. We validate these predictions in synthetic regression experiments and in NanoGPT-scale language model training, where we find that intermediate activations have low-stable-rank throughout training and the corresponding gradients maintain large nuclear-to-Frobenius ratios. Together, these results identify conditions for spectral gradient methods, such as Muon, to be effective in training deep networks and transformers.
Coupling Generative Modeling and an Autoencoder with the Causal Bridge NeurIPS 2025
We consider inferring the causal effect of a treatment (intervention) on an outcome of interest in situations where there is potentially an unobserved confounder influencing both the treatment and the outcome. This is achievable by assuming access to two separate sets of control (proxy) measurements associated with treatment and outcomes, which are used to estimate treatment effects through a function termed the em causal bridge (CB). We present a new theoretical perspective, associated assumptions for when estimating treatment effects with the CB is feasible, and a bound on the average error of the treatment effect when the CB assumptions are violated. From this new perspective, we then demonstrate how coupling the CB with an autoencoder architecture allows for the sharing of statistical strength between observed quantities (proxies, treatment, and outcomes), thus improving the quality of the CB estimates. Experiments on synthetic and real-world data demonstrate the effectiveness of the proposed approach in relation to the state-of-the-art methodology for proxy measurements.
comment: Accepted to NeurIPS 2025
Deep Jump Gaussian Processes for Surrogate Modeling of High-Dimensional Piecewise Continuous Functions
We introduce Deep Jump Gaussian Processes (DJGP), a novel method for surrogate modeling of a piecewise continuous function on a high-dimensional domain. DJGP addresses the limitations of conventional Jump Gaussian Processes (JGP) in high-dimensional input spaces by integrating region-specific, locally linear projections with JGP modeling. These projections employ region-dependent matrices to capture local low-dimensional subspace structures, making them well suited to the inherently localized modeling behavior of JGPs, a variant of local Gaussian processes. To control model complexity, we place a Gaussian Process prior on the projection matrices, allowing them to evolve smoothly across the input space. The projected inputs are then modeled with a JGP to capture piecewise continuous relationships with the response. This yields a distinctive two-layer deep learning of GP/JGP. We further develop a scalable variational inference algorithm to jointly learn the projection matrices and JGP hyperparameters. Rigorous theoretical analysis and extensive empirical studies are provided to justify the proposed approach. In particular, we derive an oracle error bound for DJGP and decompose it into four distinct sources of error, which are then linked to practical implications. Experiments on synthetic and benchmark datasets demonstrate that DJGP achieves superior predictive accuracy and more reliable uncertainty quantification compared with existing methods.
Permissive Information-Flow Analysis for Large Language Models
Large Language Models (LLMs) are rapidly becoming commodity components of larger software systems. This poses natural security and privacy problems: poisoned data retrieved from one component can change the model's behavior and compromise the entire system, including coercing the model to spread confidential data to untrusted components. One promising approach is to tackle this problem at the system level via dynamic information flow (aka taint) tracking. Unfortunately, this approach of propagating the most restrictive input label to the output is too conservative for applications where LLMs operate on inputs retrieved from diverse sources. In this paper, we propose a novel, more permissive approach to propagate information flow labels through LLM queries. The key idea behind our approach is to propagate only the labels of the samples that were influential in generating the model output and to eliminate the labels of unnecessary inputs. We implement and investigate the effectiveness of two variations of this approach, based on (i) prompt-based retrieval augmentation, and (ii) a $k$-nearest-neighbors language model. We compare these with a baseline that uses introspection to predict the output label. Our experimental results in an LLM agent setting show that the permissive label propagator improves over the baseline in more than 85% of the cases, which underscores the practicality of our approach.
From Dormant to Deleted: Tamper-Resistant Unlearning Through Weight-Space Regularization
Recent unlearning methods for LLMs are vulnerable to relearning attacks: knowledge believed-to-be-unlearned re-emerges by fine-tuning on a small set of (even seemingly-unrelated) examples. We study this phenomenon in a controlled setting for example-level unlearning in vision classifiers. We make the surprising discovery that forget-set accuracy can recover from around 50% post-unlearning to nearly 100% with fine-tuning on just the retain set -- i.e., zero examples of the forget set. We observe this effect across a wide variety of unlearning methods, whereas for a model retrained from scratch excluding the forget set (gold standard), the accuracy remains at 50%. We observe that resistance to relearning attacks can be predicted by weight-space properties, specifically, $L_2$-distance and linear mode connectivity between the original and the unlearned model. Leveraging this insight, we propose a new class of methods that achieve state-of-the-art resistance to relearning attacks.
Geometric and Dynamic Scaling in Deep Transformers
Despite their empirical success, pushing Transformer architectures to extreme depth often leads to a paradoxical failure: representations become increasingly redundant, lose rank, and ultimately collapse. Existing explanations largely attribute this phenomenon to optimization instability or vanishing gradients, yet such accounts fail to explain why collapse persists even under modern normalization and initialization schemes. In this paper, we argue that the collapse of deep Transformers is fundamentally a geometric problem. Standard residual updates implicitly assume that feature accumulation is always beneficial, but offer no mechanism to constrain update directions or to erase outdated information. As depth increases, this leads to systematic drift off the semantic manifold and monotonic feature accumulation, causing representational degeneracy. We propose a unified geometric framework that addresses these failures through two orthogonal principles. First, manifold-constrained hyper-connections restrict residual updates to valid local tangent directions, preventing uncontrolled manifold drift. Second, deep delta learning introduces data-dependent, non-monotonic updates that enable reflection and erasure of redundant features rather than their unconditional accumulation. Together, these mechanisms decouple the direction and sign of feature updates, yielding a stable geometric evolution across depth. We term the resulting architecture the Manifold-Geometric Transformer (MGT). Our analysis predicts that enforcing geometric validity while allowing dynamic erasure is essential for avoiding rank collapse in ultra-deep networks. We outline an evaluation protocol for Transformers exceeding 100 layers to test the hypothesis that geometry, rather than depth itself, is the key limiting factor in deep representation learning.
comment: Research Proposal Only
Why Knowledge Distillation Works in Generative Models: A Minimal Working Explanation NeurIPS 2025
Knowledge distillation (KD) is a core component in the training and deployment of modern generative models, particularly large language models (LLMs). While its empirical benefits are well documented -- enabling smaller student models to emulate the performance of much larger teachers -- the underlying mechanisms by which KD improves generative quality remain poorly understood. In this work, we present a minimal working explanation of KD in generative modeling. Using a controlled simulation with mixtures of Gaussians, we demonstrate that distillation induces a trade-off between precision and recall in the student model. As the teacher distribution becomes more selective, the student concentrates more probability mass on high-likelihood regions at the expense of coverage, which is a behavior modulated by a single entropy-controlling parameter. We then validate this effect in a large-scale language modeling setup using the SmolLM2 family of models. Empirical results reveal the same precision-recall dynamics observed in simulation, where precision corresponds to sample quality and recall to distributional coverage. This precision-recall trade-off in LLMs is found to be especially beneficial in scenarios where sample quality is more important than diversity, such as instruction tuning or downstream generation. Our analysis provides a simple and general explanation for the effectiveness of KD in generative modeling.
comment: NeurIPS 2025 camera ready version
An Empirical Risk Minimization Approach for Offline Inverse RL and Dynamic Discrete Choice Model
We study the problem of estimating Dynamic Discrete Choice (DDC) models, also known as offline Maximum Entropy-Regularized Inverse Reinforcement Learning (offline MaxEnt-IRL) in machine learning. The objective is to recover reward or $Q^*$ functions that govern agent behavior from offline behavior data. In this paper, we propose a globally convergent gradient-based method for solving these problems without the restrictive assumption of linearly parameterized rewards. The novelty of our approach lies in introducing the Empirical Risk Minimization (ERM) based IRL/DDC framework, which circumvents the need for explicit state transition probability estimation in the Bellman equation. Furthermore, our method is compatible with non-parametric estimation techniques such as neural networks. Therefore, the proposed method has the potential to be scaled to high-dimensional, infinite state spaces. A key theoretical insight underlying our approach is that the Bellman residual satisfies the Polyak-Lojasiewicz (PL) condition -- a property that, while weaker than strong convexity, is sufficient to ensure fast global convergence guarantees. Through a series of synthetic experiments, we demonstrate that our approach consistently outperforms benchmark methods and state-of-the-art alternatives.
Attn-JGNN: Attention Enhanced Join-Graph Neural Networks
We propose an Attention Enhanced Join-Graph Neural Networks(Attn-JGNN) model for solving #SAT problems, which significantly improves the solving accuracy. Inspired by the Iterative Join Graph Propagation (IJGP) algorithm, Attn-JGNN uses tree decomposition to encode the CNF formula into a join-graph, then performs iterative message passing on the join-graph, and finally approximates the model number by learning partition functions. In order to further improve the accuracy of the solution, we apply the attention mechanism in and between clusters of the join-graphs, which makes Attn-JGNN pay more attention to the key variables and clusters in probabilistic inference, and reduces the redundant calculation. Finally, our experiments show that our Attn-JGNN model achieves better results than other neural network methods.
Calibrating Generative Models to Distributional Constraints
Generative models frequently suffer miscalibration, wherein statistics of the sampling distribution such as class probabilities deviate from desired values. We frame calibration as a constrained optimization problem and seek the closest model in Kullback-Leibler divergence satisfying calibration constraints. To address the intractability of imposing these constraints exactly, we introduce two surrogate objectives for fine-tuning: (1) the relax loss, which replaces the constraint with a miscalibration penalty, and (2) the reward loss, which converts calibration into a reward fine-tuning problem. We demonstrate that these approaches substantially reduce calibration error across hundreds of simultaneous constraints and models with up to one billion parameters, spanning applications in protein design, image generation, and language modeling.
comment: Our codebase accompanying the paper is available at: https://github.com/smithhenryd/cgm
Future-as-Label: Scalable Supervision from Real-World Outcomes
Time creates free supervision: forecasts about real-world events resolve to verifiable outcomes. The passage of time provides labels that require no annotation. To exploit this structure, we extend reinforcement learning with verifiable rewards to real-world prediction over time. We train language models to make probabilistic forecasts from causally masked information, using proper scoring rules as the reward function once events resolve. Learning is driven entirely by realized outcomes, enabling scalable outcome-based supervision in open-world prediction. On real-world forecasting benchmarks, Qwen3-32B trained using Foresight Learning improves Brier score by 27% and halves calibration error relative to its pretrained baseline, and outperforms Qwen3-235B on both constructed future-event prediction tasks and the Metaculus benchmark despite a 7x parameter disadvantage.
EarthSight: A Distributed Framework for Low-Latency Satellite Intelligence
Low-latency delivery of satellite imagery is essential for time-critical applications such as disaster response, intelligence, and infrastructure monitoring. However, traditional pipelines rely on downlinking all captured images before analysis, introducing delays of hours to days due to restricted communication bandwidth. To address these bottlenecks, emerging systems perform onboard machine learning to prioritize which images to transmit. However, these solutions typically treat each satellite as an isolated compute node, limiting scalability and efficiency. Redundant inference across satellites and tasks further strains onboard power and compute costs, constraining mission scope and responsiveness. We present EarthSight, a distributed runtime framework that redefines satellite image intelligence as a distributed decision problem between orbit and ground. EarthSight introduces three core innovations: (1) multi-task inference on satellites using shared backbones to amortize computation across multiple vision tasks; (2) a ground-station query scheduler that aggregates user requests, predicts priorities, and assigns compute budgets to incoming imagery; and (3) dynamic filter ordering, which integrates model selectivity, accuracy, and execution cost to reject low-value images early and conserve resources. EarthSight leverages global context from ground stations and resource-aware adaptive decisions in orbit to enable constellations to perform scalable, low-latency image analysis within strict downlink bandwidth and onboard power budgets. Evaluations using a prior established satellite simulator show that EarthSight reduces average compute time per image by 1.9x and lowers 90th percentile end-to-end latency from first contact to delivery from 51 to 21 minutes compared to the state-of-the-art baseline.
Evaluating Large Language Models for Fair and Reliable Organ Allocation
Medical institutions are considering the use of LLMs in high-stakes clinical decision-making, such as organ allocation. In such sensitive use cases, evaluating fairness is imperative. However, existing evaluation methods often fall short; benchmarks are too simplistic to capture real-world complexity, and accuracy-based metrics fail to address the absence of a clear ground truth. To realistically and fairly model organ allocation, specifically kidney allocation, we begin by testing the medical knowledge of LLMs to determine whether they understand the clinical factors required to make sound allocation decisions. Building on this foundation, we design two tasks: (1) Choose-One and (2) Rank-All. In Choose-One, LLMs select a single candidate from a list of potential candidates to receive a kidney. In this scenario, we assess fairness across demographics using traditional fairness metrics, such as proportional parity. In Rank-All, LLMs rank all candidates waiting for a kidney, reflecting real-world allocation processes more closely, where an organ is passed down a ranked list until allocated. Our evaluation on three LLMs reveals a divergence between fairness metrics: while exposure-based metrics suggest equitable outcomes, probability-based metrics uncover systematic preferential sorting, where specific groups were clustered in upper-ranking tiers. Furthermore, we observe that demographic preferences are highly task-dependent, showing inverted trends between Choose-One and Rank-All tasks, even when considering the topmost rank. Overall, our results indicate that current LLMs can introduce inequalities in real-world allocation scenarios, underscoring the urgent need for rigorous fairness evaluation and human oversight before their use in high-stakes decision-making.
Geometric Algorithms for Neural Combinatorial Optimization with Constraints
Self-Supervised Learning (SSL) for Combinatorial Optimization (CO) is an emerging paradigm for solving combinatorial problems using neural networks. In this paper, we address a central challenge of SSL for CO: solving problems with discrete constraints. We design an end-to-end differentiable framework that enables us to solve discrete constrained optimization problems with neural networks. Concretely, we leverage algorithmic techniques from the literature on convex geometry and Carathéodory's theorem to decompose neural network outputs into convex combinations of polytope corners that correspond to feasible sets. This decomposition-based approach enables self-supervised training but also ensures efficient quality-preserving rounding of the neural net output into feasible solutions. Extensive experiments in cardinality-constrained optimization show that our approach can consistently outperform neural baselines. We further provide worked-out examples of how our method can be applied beyond cardinality-constrained problems to a diverse set of combinatorial optimization tasks, including finding independent sets in graphs, and solving matroid-constrained problems.
SageAttention3: Microscaling FP4 Attention for Inference and An Exploration of 8-Bit Training
The efficiency of attention is important due to its quadratic time complexity. We enhance the efficiency of attention through two key contributions: First, we leverage the new FP4 Tensor Cores in Blackwell GPUs to accelerate attention computation. Our implementation achieves 1038 TOPS on RTX5090, which is a 5x speedup over the fastest FlashAttention on RTX5090. Experiments show that our FP4 attention can accelerate inference of various models in a plug-and-play way. Second, we pioneer low-bit attention to training tasks. Existing low-bit attention works like FlashAttention3 and SageAttention focus only on inference. However, the efficiency of training large models is also important. To explore whether low-bit attention can be effectively applied to training tasks, we design an accurate and efficient 8-bit attention for both forward and backward propagation. Experiments indicate that 8-bit attention achieves lossless performance in fine-tuning tasks but exhibits slower convergence in pretraining tasks. The code is available at https://github.com/thu-ml/SageAttention.
Privacy amplification by random allocation
We consider the privacy amplification properties of a sampling scheme in which a user's data is used in k steps chosen randomly and uniformly from a sequence (or set) of t steps. This sampling scheme has been recently applied in the context of differentially private optimization [Chua et al., 2024a, Choquette-Choo et al., 2025] and is also motivated by communication-efficient high-dimensional private aggregation [Asi et al., 2025]. Existing analyses of this scheme either rely on privacy amplification by shuffling which leads to overly conservative bounds or require Monte Carlo simulations that are computationally prohibitive in most practical scenarios. We give the first theoretical guarantees and numerical estimation algorithms for this sampling scheme. In particular, we demonstrate that the privacy guarantees of random k-out-of-t allocation can be upper bounded by the privacy guarantees of the well-studied independent (or Poisson) subsampling in which each step uses the user's data with probability $(1+o(1))k/t$. Further, we provide two additional analysis techniques that lead to numerical improvements in several parameter regimes. Altogether, our bounds give efficiently-computable and nearly tight numerical results for random allocation applied to Gaussian noise addition.
A Kolmogorov metric embedding for live cell microscopy signaling patterns
We present a metric embedding that captures spatiotemporal patterns of cell signaling dynamics in 5-D $(x,y,z,channel,time)$ live cell microscopy movies. The embedding uses a metric distance called the normalized information distance (NID) based on Kolmogorov complexity theory, an absolute measure of information content between digital objects. The NID uses statistics of lossless compression to compute a theoretically optimal metric distance between pairs of 5-D movies, requiring no a priori knowledge of expected pattern dynamics, and no training data. The cell signaling structure function (SSF) is defined using a class of metric 3-D image filters that compute at each spatiotemporal cell centroid the voxel intensity configuration of the nucleus w.r.t. the surrounding cytoplasm, or a functional output e.g. velocity. The only parameter is the expected cell radii ($μm$). The SSF can be optionally combined with segmentation and tracking algorithms. The resulting lossless compression pipeline represents each 5-D input movie as a single point in a metric embedding space. The utility of a metric embedding follows from Euclidean distance between any points in the embedding space approximating optimally the pattern difference, as measured by the NID, between corresponding pairs of 5-D movies. This is true throughout the embedding space, not only at points corresponding to input images. Examples are shown for synthetic data, for 2-D+time movies of ERK and AKT signaling under different oncogenic mutations in human epithelial (MCF10A) cells, for 3-D MCF10A spheroids under optogenetic manipulation of ERK, and for ERK dynamics during colony differentiation in human stem cells.
Statistical Taylor Expansion: A New and Path-Independent Method for Uncertainty Analysis
As a rigorous statistical approach, statistical Taylor expansion extends the conventional Taylor expansion by replacing precise input variables with random variables of known distributions, to compute means and standard deviations of the results. Statistical Taylor expansion traces the dependency of the input uncertainties in the intermediate steps, so that the variables in the intermediate analytic expressions can no longer be regarded as independent of each other, and the result of the analytic expression is path independent. Thus, it differs fundamentally from the conventional common approaches in applied mathematics which optimize execution path for each calculation. In fact, statistical Taylor expansion may standardize numerical calculations for analytic expressions. Its statistical nature allows religious testing of its result when the sample size is large enough. This paper also introduces an implementation of statistical Taylor expansion called variance arithmetic and presents corresponding test results in a very wide range of mathematical applications. Another important conclusion of this paper is that the numerical errors in the library function can have significant effects on the result. For example, the periodic numerical errors in the trigonometric library functions can resonate with periodic signals, producing large numerical errors in the results.
comment: 83 pages, 67 figures
HERMES: Holographic Equivariant neuRal network model for Mutational Effect and Stability prediction
Predicting the stability and fitness effects of amino acid mutations in proteins is a cornerstone of biological discovery and engineering. Various experimental techniques have been developed to measure mutational effects, providing us with extensive datasets across a diverse range of proteins. By training on these data, traditional computational modeling and more recent machine learning approaches have advanced significantly in predicting mutational effects. Here, we introduce HERMES, a 3D rotationally equivariant structure-based neural network model for mutational effect and stability prediction. Pre-trained to predict amino acid propensity from its surrounding 3D structure, HERMES can be fine-tuned for mutational effects using our open-source code. We present a suite of HERMES models, pre-trained with different strategies, and fine-tuned to predict the stability effect of mutations. Benchmarking against other models shows that HERMES often outperforms or matches their performance in predicting mutational effect on stability, binding, and fitness. HERMES offers versatile tools for evaluating mutational effects and can be fine-tuned for specific predictive objectives.
Robust LLM Alignment via Distributionally Robust Direct Preference Optimization NeurIPS 2025
A major challenge in aligning large language models (LLMs) with human preferences is the issue of distribution shift. LLM alignment algorithms rely on static preference datasets, assuming that they accurately represent real-world user preferences. However, user preferences vary significantly across geographical regions, demographics, linguistic patterns, and evolving cultural trends. This preference distribution shift leads to catastrophic alignment failures in many real-world applications. We address this problem using the principled framework of distributionally robust optimization, and develop two novel distributionally robust direct preference optimization (DPO) algorithms, namely, Wasserstein DPO (WDPO) and Kullback-Leibler DPO (KLDPO). We characterize the sample complexity of learning the optimal policy parameters for WDPO and KLDPO. Moreover, we propose scalable gradient descent-style learning algorithms by developing suitable approximations for the challenging minimax loss functions of WDPO and KLDPO. Our empirical experiments using benchmark data sets and LLMs demonstrate the superior performance of WDPO and KLDPO in substantially improving the alignment when there is a preference distribution shift.
comment: Accepted to NeurIPS 2025
CleanSurvival: Automated data preprocessing for time-to-event models using reinforcement learning
Data preprocessing is a critical yet frequently neglected aspect of machine learning, often paid little attention despite its potentially significant impact on model performance. While automated machine learning pipelines are starting to recognize and integrate data preprocessing into their solutions for classification and regression tasks, this integration is lacking for more specialized tasks like survival or time-to-event models. As a result, survival analysis not only faces the general challenges of data preprocessing but also suffers from the lack of tailored, automated solutions in this area. To address this gap, this paper presents 'CleanSurvival', a reinforcement-learning-based solution for optimizing preprocessing pipelines, extended specifically for survival analysis. The framework can handle continuous and categorical variables, using Q-learning to select which combination of data imputation, outlier detection and feature extraction techniques achieves optimal performance for a Cox, random forest, neural network or user-supplied time-to-event model. The package is available on GitHub: https://github.com/datasciapps/CleanSurvival Experimental benchmarks on real-world datasets show that the Q-learning-based data preprocessing results in superior predictive performance to standard approaches, finding such a model up to 10 times faster than undirected random grid search. Furthermore, a simulation study demonstrates the effectiveness in different types and levels of missingness and noise in the data.
Challenges and Research Directions for Large Language Model Inference Hardware
Large Language Model (LLM) inference is hard. The autoregressive Decode phase of the underlying Transformer model makes LLM inference fundamentally different from training. Exacerbated by recent AI trends, the primary challenges are memory and interconnect rather than compute. To address these challenges, we highlight four architecture research opportunities: High Bandwidth Flash for 10X memory capacity with HBM-like bandwidth; Processing-Near-Memory and 3D memory-logic stacking for high memory bandwidth; and low-latency interconnect to speedup communication. While our focus is datacenter AI, we also review their applicability for mobile devices.
comment: Accepted for publication by IEEE Computer, 2026
Improving the Throughput of Diffusion-based Large Language Models via a Training-Free Confidence-Aware Calibration
We present CadLLM, a training-free method to accelerate the inference throughput of diffusion-based LLMs (dLLMs). We first investigate the dynamic nature of token unmasking confidence across blocks and steps. Based on this observation, we present a lightweight adaptive approach that controls the generation block size, step size, and threshold based on the average confidence of unmasked tokens. We further reduce softmax overhead by dynamically leveraging a subset of the vocabulary to regulate sampling breadth. CadLLM is a plug-and-play, model-agnostic method compatible with KV-cache-based dLLMs. Extensive experiments on four popular tasks demonstrate that CadLLM yields up to 2.28x throughput improvement over the state-of-the-art baseline with competitive accuracy.
comment: 9 pages, 3 figures. Preprint under review
Non-Expansive Mappings in Two-Time-Scale Stochastic Approximation: Finite-Time Analysis
Two-time-scale stochastic approximation algorithms are iterative methods used in applications such as optimization, reinforcement learning, and control. Finite-time analysis of these algorithms has primarily focused on fixed point iterations where both time-scales have contractive mappings. In this work, we broaden the scope of such analyses by considering settings where the slower time-scale has a non-expansive mapping. For such algorithms, the slower time-scale can be viewed as a stochastic inexact Krasnoselskii-Mann iteration. We also study a variant where the faster time-scale has a projection step which leads to non-expansiveness in the slower time-scale. We show that the last-iterate mean square residual error for such algorithms decays at a rate $O(1/k^{1/4-ε})$, where $ε>0$ is arbitrarily small. We further establish almost sure convergence of iterates to the set of fixed points. We demonstrate the applicability of our framework by applying our results to minimax optimization, linear stochastic approximation, and Lagrangian optimization.
comment: Submitted to SIAM Journal on Control and Optimization
An information-matching approach to optimal experimental design and active learning
The efficacy of mathematical models heavily depends on the quality of the training data, yet collecting sufficient data is often expensive and challenging. Many modeling applications require inferring parameters only as a means to predict other quantities of interest (QoI). Because models often contain many unidentifiable (sloppy) parameters, QoIs often depend on a relatively small number of parameter combinations. Therefore, we introduce an information-matching criterion based on the Fisher Information Matrix to select the most informative training data from a candidate pool. This method ensures that the selected data contain sufficient information to learn only those parameters that are needed to constrain downstream QoIs. It is formulated as a convex optimization problem, making it scalable to large models and datasets. We demonstrate the effectiveness of this approach across various modeling problems in diverse scientific fields, including power systems and underwater acoustics. Finally, we use information-matching as a query function within an Active Learning loop for material science applications. In all these applications, we find that a relatively small set of optimal training data can provide the necessary information for achieving precise predictions. These results are encouraging for diverse future applications, particularly active learning in large machine learning models.
Exploring specialization and sensitivity of convolutional neural networks in the context of simultaneous image augmentations
Drawing parallels with the way biological networks are studied, we adapt the treatment--control paradigm to explainable artificial intelligence research and enrich it through multi-parametric input alterations. In this study, we propose a framework for investigating the internal inference impacted by input data augmentations. The internal changes in network operation are reflected in activation changes measured by variance, which can be decomposed into components related to each augmentation, employing Sobol indices and Shapley values. These quantities enable one to visualize sensitivity to different variables and use them for guided masking of activations. In addition, we introduce a way of single-class sensitivity analysis where the candidates are filtered according to their matching to prediction bias generated by targeted damaging of the activations. Relying on the observed parallels, we assume that the developed framework can potentially be transferred to studying biological neural networks in complex environments.
comment: 31 pages; main text: 5 figures, 5 tables; appendix: 5 sections, 4 tables; supplementary: 7 files (figures S1-S6: pdf files packed as 7z archives, S7: single pdf file)
Graphics 5
Draw it like Euclid: Teaching transformer models to generate CAD profiles using ruler and compass construction steps
We introduce a new method of generating Computer Aided Design (CAD) profiles via a sequence of simple geometric constructions including curve offsetting, rotations and intersections. These sequences start with geometry provided by a designer and build up the points and curves of the final profile step by step. We demonstrate that adding construction steps between the designer's input geometry and the final profile improves generation quality in a similar way to the introduction of a chain of thought in language models. Similar to the constraints in a parametric CAD model, the construction sequences reduce the degrees of freedom in the modeled shape to a small set of parameter values which can be adjusted by the designer, allowing parametric editing with the constructed geometry evaluated to floating point precision. In addition we show that applying reinforcement learning to the construction sequences gives further improvements over a wide range of metrics, including some which were not explicitly optimized.
Variable Basis Mapping for Real-Time Volumetric Visualization
Real-time visualization of large-scale volumetric data remains challenging, as direct volume rendering and voxel-based methods suffer from prohibitively high computational cost. We propose Variable Basis Mapping (VBM), a framework that transforms volumetric fields into 3D Gaussian Splatting (3DGS) representations through wavelet-domain analysis. First, we precompute a compact Wavelet-to-Gaussian Transition Bank that provides optimal Gaussian surrogates for canonical wavelet atoms across multiple scales. Second, we perform analytical Gaussian construction that maps discrete wavelet coefficients directly to 3DGS parameters using a closed-form, mathematically principled rule. Finally, a lightweight image-space fine-tuning stage further refines the representation to improve rendering fidelity. Experiments on diverse datasets demonstrate that VBM significantly accelerates convergence and enhances rendering quality, enabling real-time volumetric visualization.
comment: 11 pages. Under review
TIDI-GS: Floater Suppression in 3D Gaussian Splatting for Enhanced Indoor Scene Fidelity
3D Gaussian Splatting (3DGS) is a technique to create high-quality, real-time 3D scenes from images. This method often produces visual artifacts known as floaters--nearly transparent, disconnected elements that drift in space away from the actual surface. This geometric inaccuracy undermines the reliability of these models for practical applications, which is critical. To address this issue, we introduce TIDI-GS, a new training framework designed to eliminate these floaters. A key benefit of our approach is that it functions as a lightweight plugin for the standard 3DGS pipeline, requiring no major architectural changes and adding minimal overhead to the training process. The core of our method is a floater pruning algorithm--TIDI--that identifies and removes floaters based on several criteria: their consistency across multiple viewpoints, their spatial relationship to other elements, and an importance score learned during training. The framework includes a mechanism to preserve fine details, ensuring that important high-frequency elements are not mistakenly removed. This targeted cleanup is supported by a monocular depth-based loss function that helps improve the overall geometric structure of the scene. Our experiments demonstrate that TIDI-GS improves both the perceptual quality and geometric integrity of reconstructions, transforming them into robust digital assets, suitable for high-fidelity applications.
OpenPBR: Novel Features and Implementation Details
OpenPBR is a physically based, standardized uber-shader developed for interoperable material authoring and rendering across VFX, animation, and design visualization workflows. This document serves as a companion to the official specification, offering deeper insight into the model's development and more detailed implementation guidance, including code examples and mathematical derivations. We begin with a description of the model's formal structure and theoretical foundations - covering slab-based layering, statistical mixing, and microfacet theory - before turning to its physical components. These include metallic, dielectric, subsurface, and glossy-diffuse base substrates, followed by thin-film iridescence, coat, and fuzz layers. A special-case mode for rendering thin-walled objects is also described. Additional sections explore technical topics in greater depth, such as the decoupling of specular reflectivity from transmission, the choice of parameterization for subsurface scattering, and the detailed physics of coat darkening and thin-film interference. We also discuss planned extensions, including hazy specular reflection and retroreflection.
comment: Part of Physically Based Shading in Theory and Practice, SIGGRAPH 2025 Course
Uncertainty-Aware PCA for Arbitrarily Distributed Data Modeled by Gaussian Mixture Models
Multidimensional data is often associated with uncertainties that are not well-described by normal distributions. In this work, we describe how such distributions can be projected to a low-dimensional space using uncertainty-aware principal component analysis (UAPCA). We propose to model multidimensional distributions using Gaussian mixture models (GMMs) and derive the projection from a general formulation that allows projecting arbitrary probability density functions. The low-dimensional projections of the densities exhibit more details about the distributions and represent them more faithfully compared to UAPCA mappings. Further, we support including user-defined weights between the different distributions, which allows for varying the importance of the multidimensional distributions. We evaluate our approach by comparing the distributions in low-dimensional space obtained by our method and UAPCA to those obtained by sample-based projections.
comment: 10 pages, 6 figures
Video World Models 7
Self-Supervised Animal Identification for Long Videos
Identifying individual animals in long-duration videos is essential for behavioral ecology, wildlife monitoring, and livestock management. Traditional methods require extensive manual annotation, while existing self-supervised approaches are computationally demanding and ill-suited for long sequences due to memory constraints and temporal error propagation. We introduce a highly efficient, self-supervised method that reframes animal identification as a global clustering task rather than a sequential tracking problem. Our approach assumes a known, fixed number of individuals within a single video -- a common scenario in practice -- and requires only bounding box detections and the total count. By sampling pairs of frames, using a frozen pre-trained backbone, and employing a self-bootstrapping mechanism with the Hungarian algorithm for in-batch pseudo-label assignment, our method learns discriminative features without identity labels. We adapt a Binary Cross Entropy loss from vision-language models, enabling state-of-the-art accuracy ($>$97\%) while consuming less than 1 GB of GPU memory per batch -- an order of magnitude less than standard contrastive methods. Evaluated on challenging real-world datasets (3D-POP pigeons and 8-calves feeding videos), our framework matches or surpasses supervised baselines trained on over 1,000 labeled frames, effectively removing the manual annotation bottleneck. This work enables practical, high-accuracy animal identification on consumer-grade hardware, with broad applicability in resource-constrained research settings. All code written for this paper are \href{https://huggingface.co/datasets/tonyFang04/8-calves}{here}.
comment: 11 pages, 1 figure
MAD: Motion Appearance Decoupling for efficient Driving World Models
Recent video diffusion models generate photorealistic, temporally coherent videos, yet they fall short as reliable world models for autonomous driving, where structured motion and physically consistent interactions are essential. Adapting these generalist video models to driving domains has shown promise but typically requires massive domain-specific data and costly fine-tuning. We propose an efficient adaptation framework that converts generalist video diffusion models into controllable driving world models with minimal supervision. The key idea is to decouple motion learning from appearance synthesis. First, the model is adapted to predict structured motion in a simplified form: videos of skeletonized agents and scene elements, focusing learning on physical and social plausibility. Then, the same backbone is reused to synthesize realistic RGB videos conditioned on these motion sequences, effectively "dressing" the motion with texture and lighting. This two-stage process mirrors a reasoning-rendering paradigm: first infer dynamics, then render appearance. Our experiments show this decoupled approach is exceptionally efficient: adapting SVD, we match prior SOTA models with less than 6% of their compute. Scaling to LTX, our MAD-LTX model outperforms all open-source competitors, and supports a comprehensive suite of text, ego, and object controls. Project page: https://vita-epfl.github.io/MAD-World-Model/
Data Scaling for Navigation in Unknown Environments
Generalization of imitation-learned navigation policies to environments unseen in training remains a major challenge. We address this by conducting the first large-scale study of how data quantity and data diversity affect real-world generalization in end-to-end, map-free visual navigation. Using a curated 4,565-hour crowd-sourced dataset collected across 161 locations in 35 countries, we train policies for point goal navigation and evaluate their closed-loop control performance on sidewalk robots operating in four countries, covering 125 km of autonomous driving. Our results show that large-scale training data enables zero-shot navigation in unknown environments, approaching the performance of policies trained with environment-specific demonstrations. Critically, we find that data diversity is far more important than data quantity. Doubling the number of geographical locations in a training set decreases navigation errors by ~15%, while performance benefit from adding data from existing locations saturates with very little data. We also observe that, with noisy crowd-sourced data, simple regression-based models outperform generative and sequence-based architectures. We release our policies, evaluation setup and example videos on the project page.
Physically Plausible Multi-System Trajectory Generation and Symmetry Discovery
From metronomes to celestial bodies, mechanics underpins how the world evolves in time and space. With consideration of this, a number of recent neural network models leverage inductive biases from classical mechanics to encourage model interpretability and ensure forecasted states are physical. However, in general, these models are designed to capture the dynamics of a single system with fixed physical parameters, from state-space measurements of a known configuration space. In this paper we introduce Symplectic Phase Space GAN (SPS-GAN) which can capture the dynamics of multiple systems, and generalize to unseen physical parameters from. Moreover, SPS-GAN does not require prior knowledge of the system configuration space. In fact, SPS-GAN can discover the configuration space structure of the system from arbitrary measurement types (e.g., state-space measurements, video frames). To achieve physically plausible generation, we introduce a novel architecture which embeds a Hamiltonian neural network recurrent module in a conditional GAN backbone. To discover the structure of the configuration space, we optimize the conditional time-series GAN objective with an additional physically motivated term to encourages a sparse representation of the configuration space. We demonstrate the utility of SPS-GAN for trajectory prediction, video generation and symmetry discovery. Our approach captures multiple systems and achieves performance on par with supervised models designed for single systems.
egoEMOTION: Egocentric Vision and Physiological Signals for Emotion and Personality Recognition in Real-World Tasks NeurIPS 2025
Understanding affect is central to anticipating human behavior, yet current egocentric vision benchmarks largely ignore the person's emotional states that shape their decisions and actions. Existing tasks in egocentric perception focus on physical activities, hand-object interactions, and attention modeling - assuming neutral affect and uniform personality. This limits the ability of vision systems to capture key internal drivers of behavior. In this paper, we present egoEMOTION, the first dataset that couples egocentric visual and physiological signals with dense self-reports of emotion and personality across controlled and real-world scenarios. Our dataset includes over 50 hours of recordings from 43 participants, captured using Meta's Project Aria glasses. Each session provides synchronized eye-tracking video, headmounted photoplethysmography, inertial motion data, and physiological baselines for reference. Participants completed emotion-elicitation tasks and naturalistic activities while self-reporting their affective state using the Circumplex Model and Mikels' Wheel as well as their personality via the Big Five model. We define three benchmark tasks: (1) continuous affect classification (valence, arousal, dominance); (2) discrete emotion classification; and (3) trait-level personality inference. We show that a classical learning-based method, as a simple baseline in real-world affect prediction, produces better estimates from signals captured on egocentric vision systems than processing physiological signals. Our dataset establishes emotion and personality as core dimensions in egocentric perception and opens new directions in affect-driven modeling of behavior, intent, and interaction.
comment: Accepted for publication at NeurIPS 2025
DyDiT++: Diffusion Transformers with Timestep and Spatial Dynamics for Efficient Visual Generation
Diffusion Transformer (DiT), an emerging diffusion model for visual generation, has demonstrated superior performance but suffers from substantial computational costs. Our investigations reveal that these costs primarily stem from the static inference paradigm, which inevitably introduces redundant computation in certain diffusion timesteps and spatial regions. To overcome this inefficiency, we propose Dynamic Diffusion Transformer (DyDiT), an architecture that dynamically adjusts its computation along both timestep and spatial dimensions. Building on these designs, we present an extended version, DyDiT++, with improvements in three key aspects. First, it extends the generation mechanism of DyDiT beyond diffusion to flow matching, demonstrating that our method can also accelerate flow-matching-based generation, enhancing its versatility. Furthermore, we enhance DyDiT to tackle more complex visual generation tasks, including video generation and text-to-image generation, thereby broadening its real-world applications. Finally, to address the high cost of full fine-tuning and democratize technology access, we investigate the feasibility of training DyDiT in a parameter-efficient manner and introduce timestep-based dynamic LoRA (TD-LoRA). Extensive experiments on diverse visual generation models, including DiT, SiT, Latte, and FLUX, demonstrate the effectiveness of DyDiT++. Remarkably, with <3% additional fine-tuning iterations, our approach reduces the FLOPs of DiT-XL by 51%, yielding 1.73x realistic speedup on hardware, and achieves a competitive FID score of 2.07 on ImageNet. The code is available at https://github.com/alibaba-damo-academy/DyDiT.
comment: This paper was accepted to the IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) on January 9, 2026. arXiv admin note: substantial text overlap with arXiv:2410.03456
Video Prediction Transformers without Recurrence or Convolution
Video prediction has witnessed the emergence of RNN-based models led by ConvLSTM, and CNN-based models led by SimVP. Following the significant success of ViT, recent works have integrated ViT into both RNN and CNN frameworks, achieving improved performance. While we appreciate these prior approaches, we raise a fundamental question: Is there a simpler yet more effective solution that can eliminate the high computational cost of RNNs while addressing the limited receptive fields and poor generalization of CNNs? How far can it go with a simple pure transformer model for video prediction? In this paper, we propose PredFormer, a framework entirely based on Gated Transformers. We provide a comprehensive analysis of 3D Attention in the context of video prediction. Extensive experiments demonstrate that PredFormer delivers state-of-the-art performance across four standard benchmarks. The significant improvements in both accuracy and efficiency highlight the potential of PredFormer as a strong baseline for real-world video prediction applications. The source code and trained models will be released at https://github.com/yyyujintang/PredFormer.
comment: Accepted by Transactions on Machine Learning Research 2026; Project Page: https://yyyujintang.github.io/predformer-project/
Robotics 44
★★ Motion Attribution for Video Generation
Despite the rapid progress of video generation models, the role of data in influencing motion is poorly understood. We present Motive (MOTIon attribution for Video gEneration), a motion-centric, gradient-based data attribution framework that scales to modern, large, high-quality video datasets and models. We use this to study which fine-tuning clips improve or degrade temporal dynamics. Motive isolates temporal dynamics from static appearance via motion-weighted loss masks, yielding efficient and scalable motion-specific influence computation. On text-to-video models, Motive identifies clips that strongly affect motion and guides data curation that improves temporal consistency and physical plausibility. With Motive-selected high-influence data, our method improves both motion smoothness and dynamic degree on VBench, achieving a 74.1% human preference win rate compared with the pretrained base model. To our knowledge, this is the first framework to attribute motion rather than visual appearance in video generative models and to use it to curate fine-tuning data.
comment: See the project website at https://research.nvidia.com/labs/sil/projects/MOTIVE/
Older Adults' Preferences for Feedback Cadence from an Exercise Coach Robot
People can respond to feedback and guidance in different ways, and it is important for robots to personalize their interactions and utilize verbal and nonverbal communication cues. We aim to understand how older adults respond to different cadences of verbal and nonverbal feedback of a robot exercise coach. We conducted an online study of older adults, where participants evaluated videos of the robot giving feedback at different cadences for each modality. The results indicate that changing the cadence of one modality affects the perception of both it and the other modality. We can use the results from this study to better design the frequency of the robot coach's feedback during an exercise session with this population.
comment: Nonarchival submission to RO-MAN 2024 - poster session
Real-Time Localization Framework for Autonomous Basketball Robots
Localization is a fundamental capability for autonomous robots, enabling them to operate effectively in dynamic environments. In Robocon 2025, accurate and reliable localization is crucial for improving shooting precision, avoiding collisions with other robots, and navigating the competition field efficiently. In this paper, we propose a hybrid localization algorithm that integrates classical techniques with learning based methods that rely solely on visual data from the court's floor to achieve self-localization on the basketball field.
comment: 8 pages, 12 figures, Project code: https://github.com/NarenTheNumpkin/Basketball-robot-localization
A Hybrid Model-based and Data-based Approach Developed for a Prosthetic Hand Wrist
The incorporation of advanced control algorithms into prosthetic hands significantly enhances their ability to replicate the intricate motions of a human hand. This work introduces a model-based controller that combines an Artificial Neural Network (ANN) approach with a Sliding Mode Controller (SMC) designed for a tendon-driven soft continuum wrist integrated into a prosthetic hand known as "PRISMA HAND II". Our research focuses on developing a controller that provides a fast dynamic response with reduced computational effort during wrist motions. The proposed controller consists of an ANN for computing bending angles together with an SMC to regulate tendon forces. Kinematic and dynamic models of the wrist are formulated using the Piece-wise Constant Curvature (PCC) hypothesis. The performance of the proposed controller is compared with other control strategies developed for the same wrist. Simulation studies and experimental validations of the fabricated wrist using the controller are included in the paper.
VLingNav: Embodied Navigation with Adaptive Reasoning and Visual-Assisted Linguistic Memory
VLA models have shown promising potential in embodied navigation by unifying perception and planning while inheriting the strong generalization abilities of large VLMs. However, most existing VLA models rely on reactive mappings directly from observations to actions, lacking the explicit reasoning capabilities and persistent memory required for complex, long-horizon navigation tasks. To address these challenges, we propose VLingNav, a VLA model for embodied navigation grounded in linguistic-driven cognition. First, inspired by the dual-process theory of human cognition, we introduce an adaptive chain-of-thought mechanism, which dynamically triggers explicit reasoning only when necessary, enabling the agent to fluidly switch between fast, intuitive execution and slow, deliberate planning. Second, to handle long-horizon spatial dependencies, we develop a visual-assisted linguistic memory module that constructs a persistent, cross-modal semantic memory, enabling the agent to recall past observations to prevent repetitive exploration and infer movement trends for dynamic environments. For the training recipe, we construct Nav-AdaCoT-2.9M, the largest embodied navigation dataset with reasoning annotations to date, enriched with adaptive CoT annotations that induce a reasoning paradigm capable of adjusting both when to think and what to think about. Moreover, we incorporate an online expert-guided reinforcement learning stage, enabling the model to surpass pure imitation learning and to acquire more robust, self-explored navigation behaviors. Extensive experiments demonstrate that VLingNav achieves state-of-the-art performance across a wide range of embodied navigation benchmarks. Notably, VLingNav transfers to real-world robotic platforms in a zero-shot manner, executing various navigation tasks and demonstrating strong cross-domain and cross-task generalization.
comment: Project page: https://wsakobe.github.io/VLingNav-web/
QP-Based Control of an Underactuated Aerial Manipulator under Constraints
This paper presents a constraint-aware control framework for underactuated aerial manipulators, enabling accurate end-effector trajectory tracking while explicitly accounting for safety and feasibility constraints. The control problem is formulated as a quadratic program that computes dynamically consistent generalized accelerations subject to underactuation, actuator bounds, and system constraints. To enhance robustness against disturbances, modeling uncertainties, and steady-state errors, a passivity-based integral action is incorporated at the torque level without compromising feasibility. The effectiveness of the proposed approach is demonstrated through high-fidelity physics-based simulations, which include parameter perturbations, viscous joint friction, and realistic sensing and state-estimation effects. This demonstrates accurate tracking, smooth control inputs, and reliable constraint satisfaction under realistic operating conditions.
Keyframe-based Dense Mapping with the Graph of View-Dependent Local Maps ICRA 2020
In this article, we propose a new keyframe-based mapping system. The proposed method updates local Normal Distribution Transform maps (NDT) using data from an RGB-D sensor. The cells of the NDT are stored in 2D view-dependent structures to better utilize the properties and uncertainty model of RGB-D cameras. This method naturally represents an object closer to the camera origin with higher precision. The local maps are stored in the pose graph which allows correcting global map after loop closure detection. We also propose a procedure that allows merging and filtering local maps to obtain a global map of the environment. Finally, we compare our method with Octomap and NDT-OM and provide example applications of the proposed mapping method.
comment: Accepted in ICRA 2020
Simplifying ROS2 controllers with a modular architecture for robot-agnostic reference generation
This paper introduces a novel modular architecture for ROS2 that decouples the logic required to acquire, validate, and interpolate references from the control laws that track them. The design includes a dedicated component, named Reference Generator, that receives references, in the form of either single points or trajectories, from external nodes (e.g., planners), and writes single-point references at the controller's sampling period via the existing ros2_control chaining mechanism to downstream controllers. This separation removes duplicated reference-handling code from controllers and improves reusability across robot platforms. We implement two reference generators: one for handling joint-space references and one for Cartesian references, along with a set of new controllers (PD with gravity compensation, Cartesian pose, and admittance controllers) and validate the approach on simulated and real Universal Robots and Franka Emika manipulators. Results show that (i) references are tracked reliably in all tested scenarios, (ii) reference generators reduce duplicated reference-handling code across chained controllers to favor the construction and reuse of complex controller pipelines, and (iii) controller implementations remain focused only on control laws.
comment: 5 pages, 7 figures
AUV Trajectory Learning for Underwater Acoustic Energy Transfer and Age Minimization
Internet of underwater things (IoUT) is increasingly gathering attention with the aim of monitoring sea life and deep ocean environment, underwater surveillance as well as maintenance of underwater installments. However, conventional IoUT devices, reliant on battery power, face limitations in lifespan and pose environmental hazards upon disposal. This paper introduces a sustainable approach for simultaneous information uplink from the IoUT devices and acoustic energy transfer (AET) to the devices via an autonomous underwater vehicle (AUV), potentially enabling them to operate indefinitely. To tackle the time-sensitivity, we adopt age of information (AoI), and Jain's fairness index. We develop two deep-reinforcement learning (DRL) algorithms, offering a high-complexity, high-performance frequency division duplex (FDD) solution and a low-complexity, medium-performance time division duplex (TDD) approach. The results elucidate that the proposed FDD and TDD solutions significantly reduce the average AoI and boost the harvested energy as well as data collection fairness compared to baseline approaches.
AME-2: Agile and Generalized Legged Locomotion via Attention-Based Neural Map Encoding
Achieving agile and generalized legged locomotion across terrains requires tight integration of perception and control, especially under occlusions and sparse footholds. Existing methods have demonstrated agility on parkour courses but often rely on end-to-end sensorimotor models with limited generalization and interpretability. By contrast, methods targeting generalized locomotion typically exhibit limited agility and struggle with visual occlusions. We introduce AME-2, a unified reinforcement learning (RL) framework for agile and generalized locomotion that incorporates a novel attention-based map encoder in the control policy. This encoder extracts local and global mapping features and uses attention mechanisms to focus on salient regions, producing an interpretable and generalized embedding for RL-based control. We further propose a learning-based mapping pipeline that provides fast, uncertainty-aware terrain representations robust to noise and occlusions, serving as policy inputs. It uses neural networks to convert depth observations into local elevations with uncertainties, and fuses them with odometry. The pipeline also integrates with parallel simulation so that we can train controllers with online mapping, aiding sim-to-real transfer. We validate AME-2 with the proposed mapping pipeline on a quadruped and a biped robot, and the resulting controllers demonstrate strong agility and generalization to unseen terrains in simulation and in real-world experiments.
comment: under review
Real2Sim based on Active Perception with automatically VLM-generated Behavior Trees
Constructing an accurate simulation model of real-world environments requires reliable estimation of physical parameters such as mass, geometry, friction, and contact surfaces. Traditional real-to-simulation (Real2Sim) pipelines rely on manual measurements or fixed, pre-programmed exploration routines, which limit their adaptability to varying tasks and user intents. This paper presents a Real2Sim framework that autonomously generates and executes Behavior Trees for task-specific physical interactions to acquire only the parameters required for a given simulation objective, without relying on pre-defined task templates or expert-designed exploration routines. Given a high-level user request, an incomplete simulation description, and an RGB observation of the scene, a vision-language model performs multi-modal reasoning to identify relevant objects, infer required physical parameters, and generate a structured Behavior Tree composed of elementary robotic actions. The resulting behavior is executed on a torque-controlled Franka Emika Panda, enabling compliant, contact-rich interactions for parameter estimation. The acquired measurements are used to automatically construct a physics-aware simulation. Experimental results on the real manipulator demonstrate estimation of object mass, surface height, and friction-related quantities across multiple scenarios, including occluded objects and incomplete prior models. The proposed approach enables interpretable, intent-driven, and autonomously Real2Sim pipelines, bridging high-level reasoning with physically-grounded robotic interaction.
Large Multimodal Models for Embodied Intelligent Driving: The Next Frontier in Self-Driving?
The advent of Large Multimodal Models (LMMs) offers a promising technology to tackle the limitations of modular design in autonomous driving, which often falters in open-world scenarios requiring sustained environmental understanding and logical reasoning. Besides, embodied artificial intelligence facilitates policy optimization through closed-loop interactions to achieve the continuous learning capability, thereby advancing autonomous driving toward embodied intelligent (El) driving. However, such capability will be constrained by relying solely on LMMs to enhance EI driving without joint decision-making. This article introduces a novel semantics and policy dual-driven hybrid decision framework to tackle this challenge, ensuring continuous learning and joint decision. The framework merges LMMs for semantic understanding and cognitive representation, and deep reinforcement learning (DRL) for real-time policy optimization. We starts by introducing the foundational principles of EI driving and LMMs. Moreover, we examine the emerging opportunities this framework enables, encompassing potential benefits and representative use cases. A case study is conducted experimentally to validate the performance superiority of our framework in completing lane-change planning task. Finally, several future research directions to empower EI driving are identified to guide subsequent work.
Teaching Robots Like Dogs: Learning Agile Navigation from Luring, Gesture, and Speech
In this work, we aim to enable legged robots to learn how to interpret human social cues and produce appropriate behaviors through physical human guidance. However, learning through physical engagement can place a heavy burden on users when the process requires large amounts of human-provided data. To address this, we propose a human-in-the-loop framework that enables robots to acquire navigational behaviors in a data-efficient manner and to be controlled via multimodal natural human inputs, specifically gestural and verbal commands. We reconstruct interaction scenes using a physics-based simulation and aggregate data to mitigate distributional shifts arising from limited demonstration data. Our progressive goal cueing strategy adaptively feeds appropriate commands and navigation goals during training, leading to more accurate navigation and stronger alignment between human input and robot behavior. We evaluate our framework across six real-world agile navigation scenarios, including jumping over or avoiding obstacles. Our experimental results show that our proposed method succeeds in almost all trials across these scenarios, achieving a 97.15% task success rate with less than 1 hour of demonstration data in total.
comment: 10 pages, 7 figures
Edge-Optimized Multimodal Learning for UAV Video Understanding via BLIP-2
The demand for real-time visual understanding and interaction in complex scenarios is increasingly critical for unmanned aerial vehicles. However, a significant challenge arises from the contradiction between the high computational cost of large Vision language models and the limited computing resources available on UAV edge devices. To address this challenge, this paper proposes a lightweight multimodal task platform based on BLIP-2, integrated with YOLO-World and YOLOv8-Seg models. This integration extends the multi-task capabilities of BLIP-2 for UAV applications with minimal adaptation and without requiring task-specific fine-tuning on drone data. Firstly, the deep integration of BLIP-2 with YOLO models enables it to leverage the precise perceptual results of YOLO for fundamental tasks like object detection and instance segmentation, thereby facilitating deeper visual-attention understanding and reasoning. Secondly, a content-aware key frame sampling mechanism based on K-Means clustering is designed, which incorporates intelligent frame selection and temporal feature concatenation. This equips the lightweight BLIP-2 architecture with the capability to handle video-level interactive tasks effectively. Thirdly, a unified prompt optimization scheme for multi-task adaptation is implemented. This scheme strategically injects structured event logs from the YOLO models as contextual information into BLIP-2's input. Combined with output constraints designed to filter out technical details, this approach effectively guides the model to generate accurate and contextually relevant outputs for various tasks.
comment: The Tenth International Conference on Data Mining and Big Data (DMBD'2025)
Large Language Models to Enhance Multi-task Drone Operations in Simulated Environments
Benefiting from the rapid advancements in large language models (LLMs), human-drone interaction has reached unprecedented opportunities. In this paper, we propose a method that integrates a fine-tuned CodeT5 model with the Unreal Engine-based AirSim drone simulator to efficiently execute multi-task operations using natural language commands. This approach enables users to interact with simulated drones through prompts or command descriptions, allowing them to easily access and control the drone's status, significantly lowering the operational threshold. In the AirSim simulator, we can flexibly construct visually realistic dynamic environments to simulate drone applications in complex scenarios. By combining a large dataset of (natural language, program code) command-execution pairs generated by ChatGPT with developer-written drone code as training data, we fine-tune the CodeT5 to achieve automated translation from natural language to executable code for drone tasks. Experimental results demonstrate that the proposed method exhibits superior task execution efficiency and command understanding capabilities in simulated environments. In the future, we plan to extend the model functionality in a modular manner, enhancing its adaptability to complex scenarios and driving the application of drone technologies in real-world environments.
comment: 1st International Conference on Drones and Unmanned Systems (DAUS' 2025)
Safe Heterogeneous Multi-Agent RL with Communication Regularization for Coordinated Target Acquisition
This paper introduces a decentralized multi-agent reinforcement learning framework enabling structurally heterogeneous teams of agents to jointly discover and acquire randomly located targets in environments characterized by partial observability, communication constraints, and dynamic interactions. Each agent's policy is trained with the Multi-Agent Proximal Policy Optimization algorithm and employs a Graph Attention Network encoder that integrates simulated range-sensing data with communication embeddings exchanged among neighboring agents, enabling context-aware decision-making from both local sensing and relational information. In particular, this work introduces a unified framework that integrates graph-based communication and trajectory-aware safety through safety filters. The architecture is supported by a structured reward formulation designed to encourage effective target discovery and acquisition, collision avoidance, and de-correlation between the agents' communication vectors by promoting informational orthogonality. The effectiveness of the proposed reward function is demonstrated through a comprehensive ablation study. Moreover, simulation results demonstrate safe and stable task execution, confirming the framework's effectiveness.
comment: 7 pages, 4 figures, submitted to the IFAC World Congress 2026
ActiveVLA: Injecting Active Perception into Vision-Language-Action Models for Precise 3D Robotic Manipulation
Recent advances in robot manipulation have leveraged pre-trained vision-language models (VLMs) and explored integrating 3D spatial signals into these models for effective action prediction, giving rise to the promising vision-language-action (VLA) paradigm. However, most existing approaches overlook the importance of active perception: they typically rely on static, wrist-mounted cameras that provide an end-effector-centric viewpoint. As a result, these models are unable to adaptively select optimal viewpoints or resolutions during task execution, which significantly limits their performance in long-horizon tasks and fine-grained manipulation scenarios. To address these limitations, we propose ActiveVLA, a novel vision-language-action framework that empowers robots with active perception capabilities for high-precision, fine-grained manipulation. ActiveVLA adopts a coarse-to-fine paradigm, dividing the process into two stages: (1) Critical region localization. ActiveVLA projects 3D inputs onto multi-view 2D projections, identifies critical 3D regions, and supports dynamic spatial awareness. (2) Active perception optimization. Drawing on the localized critical regions, ActiveVLA uses an active view selection strategy to choose optimal viewpoints. These viewpoints aim to maximize amodal relevance and diversity while minimizing occlusions. Additionally, ActiveVLA applies a 3D zoom-in to improve resolution in key areas. Together, these steps enable finer-grained active perception for precise manipulation. Extensive experiments demonstrate that ActiveVLA achieves precise 3D manipulation and outperforms state-of-the-art baselines on three simulation benchmarks. Moreover, ActiveVLA transfers seamlessly to real-world scenarios, enabling robots to learn high-precision tasks in complex environments.
Spiking Neural-Invariant Kalman Fusion for Accurate Localization Using Low-Cost IMUs
Low-cost inertial measurement units (IMUs) are widely utilized in mobile robot localization due to their affordability and ease of integration. However, their complex, nonlinear, and time-varying noise characteristics often lead to significant degradation in localization accuracy when applied directly for dead reckoning. To overcome this limitation, we propose a novel brain-inspired state estimation framework that combines a spiking neural network (SNN) with an invariant extended Kalman filter (InEKF). The SNN is designed to extract motion-related features from long sequences of IMU data affected by substantial random noise and is trained via a surrogate gradient descent algorithm to enable dynamic adaptation of the covariance noise parameter within the InEKF. By fusing the SNN output with raw IMU measurements, the proposed method enhances the robustness and accuracy of pose estimation. Extensive experiments conducted on the KITTI dataset and real-world data collected using a mobile robot equipped with a low-cost IMU demonstrate that the proposed approach outperforms state-of-the-art methods in localization accuracy and exhibits strong robustness to sensor noise, highlighting its potential for real-world mobile robot applications.
FSAG: Enhancing Human-to-Dexterous-Hand Finger-Specific Affordance Grounding via Diffusion Models
Dexterous grasp synthesis remains a central challenge: the high dimensionality and kinematic diversity of multi-fingered hands prevent direct transfer of algorithms developed for parallel-jaw grippers. Existing approaches typically depend on large, hardware-specific grasp datasets collected in simulation or through costly real-world trials, hindering scalability as new dexterous hand designs emerge. To this end, we propose a data-efficient framework, which is designed to bypass robot grasp data collection by exploiting the rich, object-centric semantic priors latent in pretrained generative diffusion models. Temporally aligned and fine-grained grasp affordances are extracted from raw human video demonstrations and fused with 3D scene geometry from depth images to infer semantically grounded contact targets. A kinematics-aware retargeting module then maps these affordance representations to diverse dexterous hands without per-hand retraining. The resulting system produces stable, functionally appropriate multi-contact grasps that remain reliably successful across common objects and tools, while exhibiting strong generalization across previously unseen object instances within a category, pose variations, and multiple hand embodiments. This work (i) introduces a semantic affordance extraction pipeline leveraging vision-language generative priors for dexterous grasping, (ii) demonstrates cross-hand generalization without constructing hardware-specific grasp datasets, and (iii) establishes that a single depth modality suffices for high-performance grasp synthesis when coupled with foundation-model semantics. Our results highlight a path toward scalable, hardware-agnostic dexterous manipulation driven by human demonstrations and pretrained generative models.
A brain-inspired information fusion method for enhancing robot GPS outages navigation
Low-cost inertial navigation systems (INS) are prone to sensor biases and measurement noise, which lead to rapid degradation of navigation accuracy during global positioning system (GPS) outages. To address this challenge and improve positioning continuity in GPS-denied environments, this paper proposes a brain-inspired GPS/INS fusion network (BGFN) based on spiking neural networks (SNNs). The BGFN architecture integrates a spiking Transformer with a spiking encoder to simultaneously extract spatial features from inertial measurement unit (IMU) signals and capture their temporal dynamics. By modeling the relationship between vehicle attitude, specific force, angular rate, and GPS-derived position increments, the network leverages both current and historical IMU data to estimate vehicle motion. The effectiveness of the proposed method is evaluated through real-world field tests and experiments on public datasets. Compared to conventional deep learning approaches, the results demonstrate that BGFN achieves higher accuracy and enhanced reliability in navigation performance, particularly under prolonged GPS outages.
Robust Subpixel Localization of Diagonal Markers in Large-Scale Navigation via Multi-Layer Screening and Adaptive Matching
This paper proposes a robust, high-precision positioning methodology to address localization failures arising from complex background interference in large-scale flight navigation and the computational inefficiency inherent in conventional sliding window matching techniques. The proposed methodology employs a three-tiered framework incorporating multi-layer corner screening and adaptive template matching. Firstly, dimensionality is reduced through illumination equalization and structural information extraction. A coarse-to-fine candidate selection strategy minimizes sliding window computational costs, enabling rapid estimation of the marker's position. Finally, adaptive templates are generated for candidate points, achieving subpixel precision through improved template matching with correlation coefficient extremum fitting. Experimental results demonstrate the method's effectiveness in extracting and localizing diagonal markers in complex, large-scale environments, making it ideal for field-of-view measurement in navigation tasks.
comment: This paper has been accepted by Applied Optics
A Pin-Array Structure for Gripping and Shape Recognition of Convex and Concave Terrain Profiles
This paper presents a gripper capable of grasping and recognizing terrain shapes for mobile robots in extreme environments. Multi-limbed climbing robots with grippers are effective on rough terrains, such as cliffs and cave walls. However, such robots may fall over by misgrasping the surface or getting stuck owing to the loss of graspable points in unknown natural environments. To overcome these issues, we need a gripper capable of adaptive grasping to irregular terrains, not only for grasping but also for measuring the shape of the terrain surface accurately. We developed a gripper that can grasp both convex and concave terrains and simultaneously measure the terrain shape by introducing a pin-array structure. We demonstrated the mechanism of the gripper and evaluated its grasping and terrain recognition performance using a prototype. Moreover, the proposed pin-array design works well for 3D terrain mapping as well as adaptive grasping for irregular terrains.
comment: Author's version of a manuscript accepted at the 2022 IEEE International Conference on Robotics and Biomimetics (ROBIO). (c) IEEE
Efficient Incremental SLAM via Information-Guided and Selective Optimization
We present an efficient incremental SLAM back-end that achieves the accuracy of full batch optimization while substantially reducing computational cost. The proposed approach combines two complementary ideas: information-guided gating (IGG) and selective partial optimization (SPO). IGG employs an information-theoretic criterion based on the log-determinant of the information matrix to quantify the contribution of new measurements, triggering global optimization only when a significant information gain is observed. This avoids unnecessary relinearization and factorization when incoming data provide little additional information. SPO executes multi-iteration Gauss-Newton (GN) updates but restricts each iteration to the subset of variables most affected by the new measurements, dynamically refining this active set until convergence. Together, these mechanisms retain all measurements to preserve global consistency while focusing computation on parts of the graph where it yields the greatest benefit. We provide theoretical analysis showing that the proposed approach maintains the convergence guarantees of full GN. Extensive experiments on benchmark SLAM datasets show that our approach consistently matches the estimation accuracy of batch solvers, while achieving significant computational savings compared to conventional incremental approaches. The results indicate that the proposed approach offers a principled balance between accuracy and efficiency, making it a robust and scalable solution for real-time operation in dynamic data-rich environments.
Generalizable Geometric Prior and Recurrent Spiking Feature Learning for Humanoid Robot Manipulation
Humanoid robot manipulation is a crucial research area for executing diverse human-level tasks, involving high-level semantic reasoning and low-level action generation. However, precise scene understanding and sample-efficient learning from human demonstrations remain critical challenges, severely hindering the applicability and generalizability of existing frameworks. This paper presents a novel RGMP-S, Recurrent Geometric-prior Multimodal Policy with Spiking features, facilitating both high-level skill reasoning and data-efficient motion synthesis. To ground high-level reasoning in physical reality, we leverage lightweight 2D geometric inductive biases to enable precise 3D scene understanding within the vision-language model. Specifically, we construct a Long-horizon Geometric Prior Skill Selector that effectively aligns the semantic instructions with spatial constraints, ultimately achieving robust generalization in unseen environments. For the data efficiency issue in robotic action generation, we introduce a Recursive Adaptive Spiking Network. We parameterize robot-object interactions via recursive spiking for spatiotemporal consistency, fully distilling long-horizon dynamic features while mitigating the overfitting issue in sparse demonstration scenarios. Extensive experiments are conducted across the Maniskill simulation benchmark and three heterogeneous real-world robotic systems, encompassing a custom-developed humanoid, a desktop manipulator, and a commercial robotic platform. Empirical results substantiate the superiority of our method over state-of-the-art baselines and validate the efficacy of the proposed modules in diverse generalization scenarios. To facilitate reproducibility, the source code and video demonstrations are publicly available at https://github.com/xtli12/RGMP-S.git.
Fairness risk and its privacy-enabled solution in AI-driven robotic applications
Complex decision-making by autonomous machines and algorithms could underpin the foundations of future society. Generative AI is emerging as a powerful engine for such transitions. However, we show that Generative AI-driven developments pose a critical pitfall: fairness concerns. In robotic applications, although intuitions about fairness are common, a precise and implementable definition that captures user utility and inherent data randomness is missing. Here we provide a utility-aware fairness metric for robotic decision making and analyze fairness jointly with user-data privacy, deriving conditions under which privacy budgets govern fairness metrics. This yields a unified framework that formalizes and quantifies fairness and its interplay with privacy, which is tested in a robot navigation task. In view of the fact that under legal requirements, most robotic systems will enforce user privacy, the approach shows surprisingly that such privacy budgets can be jointly used to meet fairness targets. Addressing fairness concerns in the creative combined consideration of privacy is a step towards ethical use of AI and strengthens trust in autonomous robots deployed in everyday environments.
Heterogeneous computing platform for real-time robotics
After Industry 4.0 has embraced tight integration between machinery (OT), software (IT), and the Internet, creating a web of sensors, data, and algorithms in service of efficient and reliable production, a new concept of Society 5.0 is emerging, in which infrastructure of a city will be instrumented to increase reliability, efficiency, and safety. Robotics will play a pivotal role in enabling this vision that is pioneered by the NEOM initiative - a smart city, co-inhabited by humans and robots. In this paper we explore the computing platform that will be required to enable this vision. We show how we can combine neuromorphic computing hardware, exemplified by the Loihi2 processor used in conjunction with event-based cameras, for sensing and real-time perception and interaction with a local AI compute cluster (GPUs) for high-level language processing, cognition, and task planning. We demonstrate the use of this hybrid computing architecture in an interactive task, in which a humanoid robot plays a musical instrument with a human. Central to our design is the efficient and seamless integration of disparate components, ensuring that the synergy between software and hardware maximizes overall performance and responsiveness. Our proposed system architecture underscores the potential of heterogeneous computing architectures in advancing robotic autonomy and interactive intelligence, pointing toward a future where such integrated systems become the norm in complex, real-time applications.
Designing Persuasive Social Robots for Health Behavior Change: A Systematic Review of Behavior Change Strategies and Evaluation Methods
Social robots are increasingly applied as health behavior change interventions, yet actionable knowledge to guide their design and evaluation remains limited. This systematic review synthesizes (1) the behavior change strategies used in existing HRI studies employing social robots to promote health behavior change, and (2) the evaluation methods applied to assess behavior change outcomes. Relevant literature was identified through systematic database searches and hand searches. Analysis of 39 studies revealed four overarching categories of behavior change strategies: coaching strategies, counseling strategies, social influence strategies, and persuasion-enhancing strategies. These strategies highlight the unique affordances of social robots as behavior change interventions and offer valuable design heuristics. The review also identified key characteristics of current evaluation practices, including study designs, settings, durations, and outcome measures, on the basis of which we propose several directions for future HRI research.
comment: Accepted to HRI 2026
An Adaptive Neuro-Controller Developed for a Prosthetic Hand Wrist
The significance of employing a controller in prosthetic hands cannot be overstated, as it plays a crucial role in enhancing the functionality and usability of these systems. This paper introduces an adaptive neuro-controller specifically developed for a tendon-driven soft continuum wrist of a prosthetic hand. Kinematic and dynamic modeling of the wrist is carried out using the Timoshenko beam theory. A Neural Network (NN) based strategy is adopted to predict the required motor currents to manipulate the wrist tendons from the errors in the deflection of the wrist section. The Timoshenko beam theory is used to compute the required tendon tension from the input motor current. A comparison of the adaptive neuro-controller with other similar controllers is conducted to analyze the performance of the proposed approach. Simulation studies and experimental validations of the fabricated wrist are included to demonstrate the effectiveness of the controller.
Learning Force Distribution Estimation for the GelSight Mini Optical Tactile Sensor Based on Finite Element Analysis
Contact-rich manipulation remains a major challenge in robotics. Optical tactile sensors like GelSight Mini offer a low-cost solution for contact sensing by capturing soft-body deformations of the silicone gel. However, accurately inferring shear and normal force distributions from these gel deformations has yet to be fully addressed. In this work, we propose a machine learning approach using a U-net architecture to predict force distributions directly from the sensor's raw images. Our model, trained on force distributions inferred from \ac{fea}, demonstrates promising accuracy in predicting normal and shear force distributions for the commercially available GelSight Mini sensor. It also shows potential for generalization across indenters, sensors of the same type, and for enabling real-time application. The codebase, dataset and models are open-sourced and available at https://feats-ai.github.io .
Robotic Tele-Operation for Upper Aerodigestive Tract Microsurgery: System Design and Validation
Upper aerodigestive tract (UADT) treatments frequently employ transoral laser microsurgery (TLM) for procedures such as the removal of tumors or polyps. In TLM, a laser beam is used to cut target tissue, while forceps are employed to grasp, manipulate, and stabilize tissue within the UADT. Although TLM systems may rely on different technologies and interfaces, forceps manipulation is still predominantly performed manually, introducing limitations in ergonomics, precision, and controllability. This paper proposes a novel robotic system for tissue manipulation in UADT procedures, based on a novel end-effector designed for forceps control. The system is integrated within a teleoperation framework that employs a robotic manipulator with a programmed remote center of motion (RCM), enabling precise and constrained instrument motion while improving surgeon ergonomics. The proposed approach is validated through two experimental studies and a dedicated usability evaluation, demonstrating its effectiveness and suitability for UADT surgical applications.
comment: I would like to withdraw the paper because I would like to change some of the results in it which will take some time. For this reason, I prefer to remove it and do a new resubmission once I've finished my work
Using Mobile AR for Rapid Feasibility Analysis for Deployment of Robots: A Usability Study with Non-Expert Users RA-L
Automating a production line with robotic arms is a complex, demanding task that requires not only substantial resources but also a deep understanding of the automated processes and available technologies and tools. Expert integrators must consider factors such as placement, payload, and robot reach requirements to determine the feasibility of automation. Ideally, such considerations are based on a detailed digital simulation developed before any hardware is deployed. However, this process is often time-consuming and challenging. To simplify these processes, we introduce a much simpler method for the feasibility analysis of robotic arms' reachability, designed for non-experts. We implement this method through a mobile, sensing-based prototype tool. The two-step experimental evaluation included the expert user study results, which helped us identify the difficulty levels of various deployment scenarios and refine the initial prototype. The results of the subsequent quantitative study with 22 non-expert participants utilizing both scenarios indicate that users could complete both simple and complex feasibility analyses in under ten minutes, exhibiting similar cognitive loads and high engagement. Overall, the results suggest that the tool was well-received and rated as highly usable, thereby showing a new path for changing the ease of feasibility analysis for automation.
comment: Accepted in IEEE RA-L
RGS-SLAM: Robust Gaussian Splatting SLAM with One-Shot Dense Initialization
We introduce RGS-SLAM, a robust Gaussian-splatting SLAM framework that replaces the residual-driven densification stage of GS-SLAM with a training-free correspondence-to-Gaussian initialization. Instead of progressively adding Gaussians as residuals reveal missing geometry, RGS-SLAM performs a one-shot triangulation of dense multi-view correspondences derived from DINOv3 descriptors refined through a confidence-aware inlier classifier, generating a well-distributed and structure-aware Gaussian seed prior to optimization. This initialization stabilizes early mapping and accelerates convergence by roughly 20\%, yielding higher rendering fidelity in texture-rich and cluttered scenes while remaining fully compatible with existing GS-SLAM pipelines. Evaluated on the TUM RGB-D and Replica datasets, RGS-SLAM achieves competitive or superior localization and reconstruction accuracy compared with state-of-the-art Gaussian and point-based SLAM systems, sustaining real-time mapping performance at up to 925 FPS. Project page:https://breeze1124.github.io/rgs-slam-project-page/
comment: 10 pages, 9 figures
Symbolic Learning of Interpretable Reduced-Order Models for Jumping Quadruped Robots
Reduced-order models are central to motion planning and control of quadruped robots, yet existing templates are often hand-crafted for a specific locomotion modality. This motivates the need for automatic methods that extract task-specific, interpretable low-dimensional dynamics directly from data. We propose a methodology that combines a linear autoencoder with symbolic regression to derive such models. The linear autoencoder provides a consistent latent embedding for configurations, velocities, accelerations, and inputs, enabling the sparse identification of nonlinear dynamics (SINDy) to operate in a compact, physics-aligned space. A multi-phase, hybrid-aware training scheme ensures coherent latent coordinates across contact transitions. We focus our validation on quadruped jumping-a representative, challenging, yet contained scenario in which a principled template model is especially valuable. The resulting symbolic dynamics outperform the state-of-the-art handcrafted actuated spring-loaded inverted pendulum (aSLIP) baseline in simulation and hardware across multiple robots and jumping modalities.
comment: 8 pages
FoldNet: Learning Generalizable Closed-Loop Policy for Garment Folding via Keypoint-Driven Asset and Demonstration Synthesis
Due to the deformability of garments, generating a large amount of high-quality data for robotic garment manipulation tasks is highly challenging. In this paper, we present a synthetic garment dataset that can be used for robotic garment folding. We begin by constructing geometric garment templates based on keypoints and applying generative models to generate realistic texture patterns. Leveraging these keypoint annotations, we generate folding demonstrations in simulation and train folding policies via closed-loop imitation learning. To improve robustness, we propose KG-DAgger, which uses a keypoint-based strategy to generate demonstration data for recovering from failures. KG-DAgger significantly improves the model performance, boosting the real-world success rate by 25\%. After training with 15K trajectories (about 2M image-action pairs), the model achieves a 75\% success rate in the real world. Experiments in both simulation and real-world settings validate the effectiveness of our proposed framework.
DexH2R: Task-oriented Dexterous Manipulation from Human to Robots
Dexterous manipulation is a critical aspect of human capability, enabling interaction with a wide variety of objects. Recent advancements in learning from human demonstrations and teleoperation have enabled progress for robots in such ability. However, these approaches either require complex data collection such as costly human effort for eye-robot contact, or suffer from poor generalization when faced with novel scenarios. To solve both challenges, we propose a framework, DexH2R, that combines human hand motion retargeting with a task-oriented residual action policy, improving task performance by bridging the embodiment gap between human and robotic dexterous hands. Specifically, DexH2R learns the residual policy directly from retargeted primitive actions and task-oriented rewards, eliminating the need for labor-intensive teleoperation systems. Moreover, we incorporate test-time guidance for novel scenarios by taking in desired trajectories of human hands and objects, allowing the dexterous hand to acquire new skills with high generalizability. Extensive experiments in both simulation and real-world environments demonstrate the effectiveness of our work, outperforming prior state-of-the-arts by 40% across various settings.
Learning Contextually-Adaptive Rewards via Calibrated Features
A key challenge in reward learning from human input is that desired agent behavior often changes based on context. For example, a robot must adapt to avoid a stove once it becomes hot. We observe that while high-level preferences (e.g., prioritizing safety over efficiency) often remain constant, context alters the $\textit{saliency}$--or importance--of reward features. For instance, stove heat changes the relevance of the robot's proximity, not the underlying preference for safety. Moreover, these contextual effects recur across tasks, motivating the need for transferable representations to encode them. Existing multi-task and meta-learning methods simultaneously learn representations and task preferences, at best $\textit{implicitly}$ capturing contextual effects and requiring substantial data to separate them from task-specific preferences. Instead, we propose $\textit{explicitly}$ modeling and learning context-dependent feature saliency separately from context-invariant preferences. We introduce $\textit{calibrated features}$--modular representations that capture contextual effects on feature saliency--and present specialized paired comparison queries that isolate saliency from preference for efficient learning. Simulated experiments show our method improves sample efficiency, requiring 10x fewer preference queries than baselines to achieve equivalent reward accuracy, with up to 15% better performance in low-data regimes (5-10 queries). An in-person user study (N=12) demonstrates that participants can effectively teach their personal contextual preferences with our method, enabling adaptable and personalized reward learning.
comment: Proceedings of the 21st ACM/IEEE International Conference on Human-Robot Interaction (HRI '26), March 16 - 19, 2026, Edinburgh, Scotland, UK
MSSF: A 4D Radar and Camera Fusion Framework With Multi-Stage Sampling for 3D Object Detection in Autonomous Driving TITS
As one of the automotive sensors that have emerged in recent years, 4D millimeter-wave radar has a higher resolution than conventional 3D radar and provides precise elevation measurements. But its point clouds are still sparse and noisy, making it challenging to meet the requirements of autonomous driving. Camera, as another commonly used sensor, can capture rich semantic information. As a result, the fusion of 4D radar and camera can provide an affordable and robust perception solution for autonomous driving systems. However, previous radar-camera fusion methods have not yet been thoroughly investigated, resulting in a large performance gap compared to LiDAR-based methods. Specifically, they ignore the feature-blurring problem and do not deeply interact with image semantic information. To this end, we present a simple but effective multi-stage sampling fusion (MSSF) network based on 4D radar and camera. On the one hand, we design a fusion block that can deeply interact point cloud features with image features, and can be applied to commonly used single-modal backbones in a plug-and-play manner. The fusion block encompasses two types, namely, simple feature fusion (SFF) and multiscale deformable feature fusion (MSDFF). The SFF is easy to implement, while the MSDFF has stronger fusion abilities. On the other hand, we propose a semantic-guided head to perform foreground-background segmentation on voxels with voxel feature re-weighting, further alleviating the problem of feature blurring. Extensive experiments on the View-of-Delft (VoD) and TJ4DRadset datasets demonstrate the effectiveness of our MSSF. Notably, compared to state-of-the-art methods, MSSF achieves a 7.0% and 4.0% improvement in 3D mean average precision on the VoD and TJ4DRadSet datasets, respectively. It even surpasses classical LiDAR-based methods on the VoD dataset.
comment: T-TITS accepted, code avaliable
Real-Time LiDAR Point Cloud Densification for Low-Latency Spatial Data Transmission
To realize low-latency spatial transmission system for immersive telepresence, there are two major problems: capturing dynamic 3D scene densely and processing them in real time. LiDAR sensors capture 3D in real time, but produce sparce point clouds. Therefore, this paper presents a high-speed LiDAR point cloud densification method to generate dense 3D scene with minimal latency, addressing the need for on-the-fly depth completion while maintaining real-time performance. Our approach combines multiple LiDAR inputs with high-resolution color images and applies a joint bilateral filtering strategy implemented through a convolutional neural network architecture. Experiments demonstrate that the proposed method produces dense depth maps at full HD resolution in real time (30 fps), which is over 15x faster than a recent training-based depth completion approach. The resulting dense point clouds exhibit accurate geometry without multiview inconsistencies or ghosting artifacts.
Variable Elimination in Hybrid Factor Graphs for Discrete-Continuous Inference & Estimation
Many hybrid problems in robotics involve both continuous and discrete components, and modeling them together for estimation tasks has been a long standing and difficult problem. Hybrid Factor Graphs give us a mathematical framework to model these types of problems, however existing approaches for solving them are based on approximations. In this work, we propose an efficient Hybrid Factor Graph framework alongwith a variable elimination algorithm to produce a hybrid Bayes network, which can then be used for exact Maximum A Posteriori estimation and marginalization over both sets of variables. Our approach first develops a novel hybrid Gaussian factor which can connect to both discrete and continuous variables, and a hybrid conditional which can represent multiple continuous hypotheses conditioned on the discrete variables. Using these representations, we derive the process of hybrid variable elimination under the Conditional Linear Gaussian scheme, giving us exact posteriors as hybrid Bayes network. To bound the number of discrete hypotheses, we use a tree-structured representation of the factors coupled with a simple pruning and probabilistic assignment scheme, which allows for tractable inference. We demonstrate the applicability of our framework on a SLAM dataset with ambiguous measurements, where discrete choices for the most likely measurement have to be made. Our demonstrated results showcase the accuracy, generality, and simplicity of our hybrid factor graph framework.
On-the-Fly VLA Adaptation via Test-Time Reinforcement Learning
Vision-Language-Action models have recently emerged as a powerful paradigm for general-purpose robot learning, enabling agents to map visual observations and natural-language instructions into executable robotic actions. Though popular, they are primarily trained via supervised fine-tuning or training-time reinforcement learning, requiring explicit fine-tuning phases, human interventions, or controlled data collection. Consequently, existing methods remain unsuitable for challenging simulated- or physical-world deployments, where robots must respond autonomously and flexibly to evolving environments. To address this limitation, we introduce a Test-Time Reinforcement Learning for VLAs (TT-VLA), a framework that enables on-the-fly policy adaptation during inference. TT-VLA formulates a dense reward mechanism that leverages step-by-step task-progress signals to refine action policies during test time while preserving the SFT/RL-trained priors, making it an effective supplement to current VLA models. Empirical results show that our approach enhances overall adaptability, stability, and task success in dynamic, previously unseen scenarios under simulated and real-world settings. We believe TT-VLA offers a principled step toward self-improving, deployment-ready VLAs.
Cross-Domain Imitation Learning via Optimal Transport ICLR 2022
Cross-domain imitation learning studies how to leverage expert demonstrations of one agent to train an imitation agent with a different embodiment or morphology. Comparing trajectories and stationary distributions between the expert and imitation agents is challenging because they live on different systems that may not even have the same dimensionality. We propose Gromov-Wasserstein Imitation Learning (GWIL), a method for cross-domain imitation that uses the Gromov-Wasserstein distance to align and compare states between the different spaces of the agents. Our theory formally characterizes the scenarios where GWIL preserves optimality, revealing its possibilities and limitations. We demonstrate the effectiveness of GWIL in non-trivial continuous control domains ranging from simple rigid transformation of the expert domain to arbitrary transformation of the state-action space.
comment: ICLR 2022
Ensemble-Based Event Camera Place Recognition Under Varying Illumination
Compared to conventional cameras, event cameras provide a high dynamic range and low latency, offering greater robustness to rapid motion and challenging lighting conditions. Although the potential of event cameras for visual place recognition (VPR) has been established, developing robust VPR frameworks under severe illumination changes remains an open research problem. In this paper, we introduce an ensemble-based approach to event camera place recognition that combines sequence-matched results from multiple event-to-frame reconstructions, VPR feature extractors, and temporal resolutions. Unlike previous event-based ensemble methods, which only utilise temporal resolution, our broader fusion strategy delivers significantly improved robustness under varied lighting conditions (e.g., afternoon, sunset, night), achieving a 57% relative improvement in Recall@1 across day-night transitions. We evaluate our approach on two long-term driving datasets (with 8 km per traverse) without metric subsampling, thereby preserving natural variations in speed and stop duration that influence event density. We also conduct a comprehensive analysis of key design choices, including binning strategies, polarity handling, reconstruction methods, and feature extractors, to identify the most critical components for robust performance. Additionally, we propose a modification to the standard sequence matching framework that enhances performance at longer sequence lengths. To facilitate future research, we will release our codebase and benchmarking framework.
Human-in-the-Loop Segmentation of Multi-species Coral Imagery CVPR 2024
Marine surveys by robotic underwater and surface vehicles result in substantial quantities of coral reef imagery, however labeling these images is expensive and time-consuming for domain experts. Point label propagation is a technique that uses existing images labeled with sparse points to create augmented ground truth data, which can be used to train a semantic segmentation model. In this work, we show that recent advances in large foundation models facilitate the creation of augmented ground truth masks using only features extracted by the denoised version of the DINOv2 foundation model and K-Nearest Neighbors (KNN), without any pre-training. For images with extremely sparse labels, we use human-in-the-loop principles to enhance annotation efficiency: if there are 5 point labels per image, our method outperforms the prior state-of-the-art by 19.7% for mIoU. When human-in-the-loop labeling is not available, using the denoised DINOv2 features with a KNN still improves on the prior state-of-the-art by 5.8% for mIoU (5 grid points). On the semantic segmentation task, we outperform the prior state-of-the-art by 13.5% for mIoU when only 5 point labels are used for point label propagation. Additionally, we perform a comprehensive study into the number and placement of point labels, and make several recommendations for improving the efficiency of labeling images with points.
comment: IEEE Journal of Oceanic Engineering accepted preprint of extended paper, 36 pages, 14 figures. Original conference paper (v2) accepted at the CVPR 2024 3rd Workshop on Learning with Limited Labelled Data for Image and Video Understanding (L3D-IVU)
Look as You Leap: Planning Simultaneous Motion and Perception for High-DOF Robots
Most common tasks for robots in dynamic spaces require that the environment is regularly and actively perceived, with many of them explicitly requiring objects or persons to be within view, i.e., for monitoring or safety. However, solving motion and perception tasks simultaneously is challenging, as these objectives often impose conflicting requirements. Furthermore, while robots must react quickly to changes in the environment, directly evaluating the quality of perception (e.g., object detection confidence) is often expensive or infeasible at runtime. This problem is especially important in human-centered environments, such as homes and hospitals, where effective perception is essential for safe and reliable operation. In this work, we address the challenge of solving motion planning problems for high-degree-of-freedom (DoF) robots from a start to a goal configuration with continuous perception constraints under both static and dynamic environments. We propose a GPU-parallelized perception-score-guided probabilistic roadmap planner with a neural surrogate model (PS-PRM). Unlike existing active perception-, visibility-aware or learning-based planners, our work integrates perception tasks and constraints directly into the motion planning formulation. Our method uses a neural surrogate model to approximate perception scores, incorporates them into the roadmap, and leverages GPU parallelism to enable efficient online replanning in dynamic settings. We demonstrate that our planner, evaluated on high-DoF robots, outperforms baseline methods in both static and dynamic environments in both simulation and real-robot experiments.
comment: 20 pages, 13 figures, under review
Computer Vision and Pattern Recognition 162
RAVEN: Erasing Invisible Watermarks via Novel View Synthesis
Invisible watermarking has become a critical mechanism for authenticating AI-generated image content, with major platforms deploying watermarking schemes at scale. However, evaluating the vulnerability of these schemes against sophisticated removal attacks remains essential to assess their reliability and guide robust design. In this work, we expose a fundamental vulnerability in invisible watermarks by reformulating watermark removal as a view synthesis problem. Our key insight is that generating a perceptually consistent alternative view of the same semantic content, akin to re-observing a scene from a shifted perspective, naturally removes the embedded watermark while preserving visual fidelity. This reveals a critical gap: watermarks robust to pixel-space and frequency-domain attacks remain vulnerable to semantic-preserving viewpoint transformations. We introduce a zero-shot diffusion-based framework that applies controlled geometric transformations in latent space, augmented with view-guided correspondence attention to maintain structural consistency during reconstruction. Operating on frozen pre-trained models without detector access or watermark knowledge, our method achieves state-of-the-art watermark suppression across 15 watermarking methods--outperforming 14 baseline attacks while maintaining superior perceptual quality across multiple datasets.
comment: 13 pages
3AM: Segment Anything with Geometric Consistency in Videos
Video object segmentation methods like SAM2 achieve strong performance through memory-based architectures but struggle under large viewpoint changes due to reliance on appearance features. Traditional 3D instance segmentation methods address viewpoint consistency but require camera poses, depth maps, and expensive preprocessing. We introduce 3AM, a training-time enhancement that integrates 3D-aware features from MUSt3R into SAM2. Our lightweight Feature Merger fuses multi-level MUSt3R features that encode implicit geometric correspondence. Combined with SAM2's appearance features, the model achieves geometry-consistent recognition grounded in both spatial position and visual similarity. We propose a field-of-view aware sampling strategy ensuring frames observe spatially consistent object regions for reliable 3D correspondence learning. Critically, our method requires only RGB input at inference, with no camera poses or preprocessing. On challenging datasets with wide-baseline motion (ScanNet++, Replica), 3AM substantially outperforms SAM2 and extensions, achieving 90.6% IoU and 71.7% Positive IoU on ScanNet++'s Selected Subset, improving over state-of-the-art VOS methods by +15.9 and +30.4 points. Project page: https://jayisaking.github.io/3AM-Page/
comment: Project page: https://jayisaking.github.io/3AM-Page/
★★ Motion Attribution for Video Generation
Despite the rapid progress of video generation models, the role of data in influencing motion is poorly understood. We present Motive (MOTIon attribution for Video gEneration), a motion-centric, gradient-based data attribution framework that scales to modern, large, high-quality video datasets and models. We use this to study which fine-tuning clips improve or degrade temporal dynamics. Motive isolates temporal dynamics from static appearance via motion-weighted loss masks, yielding efficient and scalable motion-specific influence computation. On text-to-video models, Motive identifies clips that strongly affect motion and guides data curation that improves temporal consistency and physical plausibility. With Motive-selected high-influence data, our method improves both motion smoothness and dynamic degree on VBench, achieving a 74.1% human preference win rate compared with the pretrained base model. To our knowledge, this is the first framework to attribute motion rather than visual appearance in video generative models and to use it to curate fine-tuning data.
comment: See the project website at https://research.nvidia.com/labs/sil/projects/MOTIVE/
Reasoning Matters for 3D Visual Grounding CVPR
The recent development of Large Language Models (LLMs) with strong reasoning ability has driven research in various domains such as mathematics, coding, and scientific discovery. Meanwhile, 3D visual grounding, as a fundamental task in 3D understanding, still remains challenging due to the limited reasoning ability of recent 3D visual grounding models. Most of the current methods incorporate a text encoder and visual feature encoder to generate cross-modal fuse features and predict the referring object. These models often require supervised training on extensive 3D annotation data. On the other hand, recent research also focus on scaling synthetic data to train stronger 3D visual grounding LLM, however, the performance gain remains limited and non-proportional to the data collection cost. In this work, we propose a 3D visual grounding data pipeline, which is capable of automatically synthesizing 3D visual grounding data along with corresponding reasoning process. Additionally, we leverage the generated data for LLM fine-tuning and introduce Reason3DVG-8B, a strong 3D visual grounding LLM that outperforms previous LLM-based method 3D-GRAND using only 1.6% of their training data, demonstrating the effectiveness of our data and the importance of reasoning in 3D visual grounding.
comment: 2025 CVPR Workshop on 3D-LLM/VLA: Bridging Language, Vision and Action in 3D Environments
S3-CLIP: Video Super Resolution for Person-ReID
Tracklet quality is often treated as an afterthought in most person re-identification (ReID) methods, with the majority of research presenting architectural modifications to foundational models. Such approaches neglect an important limitation, posing challenges when deploying ReID systems in real-world, difficult scenarios. In this paper, we introduce S3-CLIP, a video super-resolution-based CLIP-ReID framework developed for the VReID-XFD challenge at WACV 2026. The proposed method integrates recent advances in super-resolution networks with task-driven super-resolution pipelines, adapting them to the video-based person re-identification setting. To the best of our knowledge, this work represents the first systematic investigation of video super-resolution as a means of enhancing tracklet quality for person ReID, particularly under challenging cross-view conditions. Experimental results demonstrate performance competitive with the baseline, achieving 37.52% mAP in aerial-to-ground and 29.16% mAP in ground-to-aerial scenarios. In the ground-to-aerial setting, S3-CLIP achieves substantial gains in ranking accuracy, improving Rank-1, Rank-5, and Rank-10 performance by 11.24%, 13.48%, and 17.98%, respectively.
comment: Accepted to the 2026 IEEE/CVF Winter Conference on Applications of Computer Vision Workshops (WACVW), VReID-XFD Challenge
Near-perfect photo-ID of the Hula painted frog with zero-shot deep local-feature matching
Accurate individual identification is essential for monitoring rare amphibians, yet invasive marking is often unsuitable for critically endangered species. We evaluate state-of-the-art computer-vision methods for photographic re-identification of the Hula painted frog (Latonia nigriventer) using 1,233 ventral images from 191 individuals collected during 2013-2020 capture-recapture surveys. We compare deep local-feature matching in a zero-shot setting with deep global-feature embedding models. The local-feature pipeline achieves 98% top-1 closed-set identification accuracy, outperforming all global-feature models; fine-tuning improves the best global-feature model to 60% top-1 (91% top-10) but remains below local matching. To combine scalability with accuracy, we implement a two-stage workflow in which a fine-tuned global-feature model retrieves a short candidate list that is re-ranked by local-feature matching, reducing end-to-end runtime from 6.5-7.8 hours to ~38 minutes while maintaining ~96% top-1 closed-set accuracy on the labeled dataset. Separation of match scores between same- and different-individual pairs supports thresholding for open-set identification, enabling practical handling of novel individuals. We deploy this pipeline as a web application for routine field use, providing rapid, standardized, non-invasive identification to support conservation monitoring and capture-recapture analyses. Overall, in this species, zero-shot deep local-feature matching outperformed global-feature embedding and provides a strong default for photo-identification.
comment: 18 pages, 4 figures,
DentalX: Context-Aware Dental Disease Detection with Radiographs
Diagnosing dental diseases from radiographs is time-consuming and challenging due to the subtle nature of diagnostic evidence. Existing methods, which rely on object detection models designed for natural images with more distinct target patterns, struggle to detect dental diseases that present with far less visual support. To address this challenge, we propose {\bf DentalX}, a novel context-aware dental disease detection approach that leverages oral structure information to mitigate the visual ambiguity inherent in radiographs. Specifically, we introduce a structural context extraction module that learns an auxiliary task: semantic segmentation of dental anatomy. The module extracts meaningful structural context and integrates it into the primary disease detection task to enhance the detection of subtle dental diseases. Extensive experiments on a dedicated benchmark demonstrate that DentalX significantly outperforms prior methods in both tasks. This mutual benefit arises naturally during model optimization, as the correlation between the two tasks is effectively captured. Our code is available at https://github.com/zhiqin1998/DentYOLOX.
comment: Accepted at ISBI 2026
Aggregating Diverse Cue Experts for AI-Generated Image Detection AAAI 2026
The rapid emergence of image synthesis models poses challenges to the generalization of AI-generated image detectors. However, existing methods often rely on model-specific features, leading to overfitting and poor generalization. In this paper, we introduce the Multi-Cue Aggregation Network (MCAN), a novel framework that integrates different yet complementary cues in a unified network. MCAN employs a mixture-of-encoders adapter to dynamically process these cues, enabling more adaptive and robust feature representation. Our cues include the input image itself, which represents the overall content, and high-frequency components that emphasize edge details. Additionally, we introduce a Chromatic Inconsistency (CI) cue, which normalizes intensity values and captures noise information introduced during the image acquisition process in real images, making these noise patterns more distinguishable from those in AI-generated content. Unlike prior methods, MCAN's novelty lies in its unified multi-cue aggregation framework, which integrates spatial, frequency-domain, and chromaticity-based information for enhanced representation learning. These cues are intrinsically more indicative of real images, enhancing cross-model generalization. Extensive experiments on the GenImage, Chameleon, and UniversalFakeDetect benchmark validate the state-of-the-art performance of MCAN. In the GenImage dataset, MCAN outperforms the best state-of-the-art method by up to 7.4% in average ACC across eight different image generators.
comment: Accepted by AAAI 2026
Translating Light-Sheet Microscopy Images to Virtual H&E Using CycleGAN
Histopathology analysis relies on Hematoxylin and Eosin (H&E) staining, but fluorescence microscopy offers complementary information. Converting fluorescence images to H&E-like appearance can aid interpretation and integration with standard workflows. We present a Cycle-Consistent Adversarial Network (CycleGAN) approach for unpaired image-to-image translation from multi-channel fluorescence microscopy to pseudo H&E stained histopathology images. The method combines C01 and C02 fluorescence channels into RGB and learns a bidirectional mapping between fluorescence and H&E domains without paired training data. The architecture uses ResNet-based generators with residual blocks and PatchGAN discriminators, trained with adversarial, cycle-consistency, and identity losses. Experiments on fluorescence microscopy datasets show the model generates realistic pseudo H&E images that preserve morphological structures while adopting H&E-like color characteristics. This enables visualization of fluorescence data in a format familiar to pathologists and supports integration with existing H&E-based analysis pipelines.
comment: 5 pages, 4 figures
M3CoTBench: Benchmark Chain-of-Thought of MLLMs in Medical Image Understanding
Chain-of-Thought (CoT) reasoning has proven effective in enhancing large language models by encouraging step-by-step intermediate reasoning, and recent advances have extended this paradigm to Multimodal Large Language Models (MLLMs). In the medical domain, where diagnostic decisions depend on nuanced visual cues and sequential reasoning, CoT aligns naturally with clinical thinking processes. However, Current benchmarks for medical image understanding generally focus on the final answer while ignoring the reasoning path. An opaque process lacks reliable bases for judgment, making it difficult to assist doctors in diagnosis. To address this gap, we introduce a new M3CoTBench benchmark specifically designed to evaluate the correctness, efficiency, impact, and consistency of CoT reasoning in medical image understanding. M3CoTBench features 1) a diverse, multi-level difficulty dataset covering 24 examination types, 2) 13 varying-difficulty tasks, 3) a suite of CoT-specific evaluation metrics (correctness, efficiency, impact, and consistency) tailored to clinical reasoning, and 4) a performance analysis of multiple MLLMs. M3CoTBench systematically evaluates CoT reasoning across diverse medical imaging tasks, revealing current limitations of MLLMs in generating reliable and clinically interpretable reasoning, and aims to foster the development of transparent, trustworthy, and diagnostically accurate AI systems for healthcare. Project page at https://juntaojianggavin.github.io/projects/M3CoTBench/.
comment: 40 pages, 8 pages
A Single-Parameter Factor-Graph Image Prior
We propose a novel piecewise smooth image model with piecewise constant local parameters that are automatically adapted to each image. Technically, the model is formulated in terms of factor graphs with NUP (normal with unknown parameters) priors, and the pertinent computations amount to iterations of conjugate-gradient steps and Gaussian message passing. The proposed model and algorithms are demonstrated with applications to denoising and contrast enhancement.
ISLA: A U-Net for MRI-based acute ischemic stroke lesion segmentation with deep supervision, attention, domain adaptation, and ensemble learning
Accurate delineation of acute ischemic stroke lesions in MRI is a key component of stroke diagnosis and management. In recent years, deep learning models have been successfully applied to the automatic segmentation of such lesions. While most proposed architectures are based on the U-Net framework, they primarily differ in their choice of loss functions and in the use of deep supervision, residual connections, and attention mechanisms. Moreover, many implementations are not publicly available, and the optimal configuration for acute ischemic stroke (AIS) lesion segmentation remains unclear. In this work, we introduce ISLA (Ischemic Stroke Lesion Analyzer), a new deep learning model for AIS lesion segmentation from diffusion MRI, trained on three multicenter databases totaling more than 1500 AIS participants. Through systematic optimization of the loss function, convolutional architecture, deep supervision, and attention mechanisms, we developed a robust segmentation framework. We further investigated unsupervised domain adaptation to improve generalization to an external clinical dataset. ISLA outperformed two state-of-the-art approaches for AIS lesion segmentation on an external test set. Codes and trained models will be made publicly available to facilitate reuse and reproducibility.
Salience-SGG: Enhancing Unbiased Scene Graph Generation with Iterative Salience Estimation
Scene Graph Generation (SGG) suffers from a long-tailed distribution, where a few predicate classes dominate while many others are underrepresented, leading to biased models that underperform on rare relations. Unbiased-SGG methods address this issue by implementing debiasing strategies, but often at the cost of spatial understanding, resulting in an over-reliance on semantic priors. We introduce Salience-SGG, a novel framework featuring an Iterative Salience Decoder (ISD) that emphasizes triplets with salient spatial structures. To support this, we propose semantic-agnostic salience labels guiding ISD. Evaluations on Visual Genome, Open Images V6, and GQA-200 show that Salience-SGG achieves state-of-the-art performance and improves existing Unbiased-SGG methods in their spatial understanding as demonstrated by the Pairwise Localization Average Precision
Real-Time Localization Framework for Autonomous Basketball Robots
Localization is a fundamental capability for autonomous robots, enabling them to operate effectively in dynamic environments. In Robocon 2025, accurate and reliable localization is crucial for improving shooting precision, avoiding collisions with other robots, and navigating the competition field efficiently. In this paper, we propose a hybrid localization algorithm that integrates classical techniques with learning based methods that rely solely on visual data from the court's floor to achieve self-localization on the basketball field.
comment: 8 pages, 12 figures, Project code: https://github.com/NarenTheNumpkin/Basketball-robot-localization
Automated Lesion Segmentation of Stroke MRI Using nnU-Net: A Comprehensive External Validation Across Acute and Chronic Lesions
Accurate and generalisable segmentation of stroke lesions from magnetic resonance imaging (MRI) is essential for advancing clinical research, prognostic modelling, and personalised interventions. Although deep learning has improved automated lesion delineation, many existing models are optimised for narrow imaging contexts and generalise poorly to independent datasets, modalities, and stroke stages. Here, we systematically evaluated stroke lesion segmentation using the nnU-Net framework across multiple heterogeneous, publicly available MRI datasets spanning acute and chronic stroke. Models were trained and tested on diffusion-weighted imaging (DWI), fluid-attenuated inversion recovery (FLAIR), and T1-weighted MRI, and evaluated on independent datasets. Across stroke stages, models showed robust generalisation, with segmentation accuracy approaching reported inter-rater reliability. Performance varied with imaging modality and training data characteristics. In acute stroke, DWI-trained models consistently outperformed FLAIR-based models, with only modest gains from multimodal combinations. In chronic stroke, increasing training set size improved performance, with diminishing returns beyond several hundred cases. Lesion volume was a key determinant of accuracy: smaller lesions were harder to segment, and models trained on restricted volume ranges generalised poorly. MRI image quality further constrained generalisability: models trained on lower-quality scans transferred poorly, whereas those trained on higher-quality data generalised well to noisier images. Discrepancies between predictions and reference masks were often attributable to limitations in manual annotations. Together, these findings show that automated lesion segmentation can approach human-level performance while identifying key factors governing generalisability and informing the development of lesion segmentation tools.
comment: 32 pages, 7 figures. Submitted to Brain. Code and trained models available
MEMEWEAVER: Inter-Meme Graph Reasoning for Sexism and Misogyny Detection
Women are twice as likely as men to face online harassment due to their gender. Despite recent advances in multimodal content moderation, most approaches still overlook the social dynamics behind this phenomenon, where perpetrators reinforce prejudices and group identity within like-minded communities. Graph-based methods offer a promising way to capture such interactions, yet existing solutions remain limited by heuristic graph construction, shallow modality fusion, and instance-level reasoning. In this work, we present MemeWeaver, an end-to-end trainable multimodal framework for detecting sexism and misogyny through a novel inter-meme graph reasoning mechanism. We systematically evaluate multiple visual--textual fusion strategies and show that our approach consistently outperforms state-of-the-art baselines on the MAMI and EXIST benchmarks, while achieving faster training convergence. Further analyses reveal that the learned graph structure captures semantically meaningful patterns, offering valuable insights into the relational nature of online hate.
comment: Accepted at EACL 2026 Findings
Region of interest detection for efficient aortic segmentation
Thoracic aortic dissection and aneurysms are the most lethal diseases of the aorta. The major hindrance to treatment lies in the accurate analysis of the medical images. More particularly, aortic segmentation of the 3D image is often tedious and difficult. Deep-learning-based segmentation models are an ideal solution, but their inability to deliver usable outputs in difficult cases and their computational cost cause their clinical adoption to stay limited. This study presents an innovative approach for efficient aortic segmentation using targeted region of interest (ROI) detection. In contrast to classical detection models, we propose a simple and efficient detection model that can be widely applied to detect a single ROI. Our detection model is trained as a multi-task model, using an encoder-decoder architecture for segmentation and a fully connected network attached to the bottleneck for detection. We compare the performance of a one-step segmentation model applied to a complete image, nnU-Net and our cascade model composed of a detection and a segmentation step. We achieve a mean Dice similarity coefficient of 0.944 with over 0.9 for all cases using a third of the computing power. This simple solution achieves state-of-the-art performance while being compact and robust, making it an ideal solution for clinical applications.
Além do Desempenho: Um Estudo da Confiabilidade de Detectores de Deepfakes
Deepfakes are synthetic media generated by artificial intelligence, with positive applications in education and creativity, but also serious negative impacts such as fraud, misinformation, and privacy violations. Although detection techniques have advanced, comprehensive evaluation methods that go beyond classification performance remain lacking. This paper proposes a reliability assessment framework based on four pillars: transferability, robustness, interpretability, and computational efficiency. An analysis of five state-of-the-art methods revealed significant progress as well as critical limitations.
comment: Accepted for presentation at the Brazilian Symposium on Cybersecurity (SBSeg) 2025, in Portuguese language
Blind Deconvolution in Astronomy: How Does a Standalone U-Net Perform?
Aims: This study investigates whether a U-Net architecture can perform standalone end-to-end blind deconvolution of astronomical images without any prior knowledge of the Point Spread Function (PSF) or noise characteristics. Our goal is to evaluate its performance against the number of training images, classical Tikhonov deconvolution and to assess its generalization capability under varying seeing conditions and noise levels. Methods: Realistic astronomical observations are simulated using the GalSim toolkit, incorporating random transformations, PSF convolution (accounting for both optical and atmospheric effects), and Gaussian white noise. A U-Net model is trained using a Mean Square Error (MSE) loss function on datasets of varying sizes, up to 40,000 images of size 48x48 from the COSMOS Real Galaxy Dataset. Performance is evaluated using PSNR, SSIM, and cosine similarity metrics, with the latter employed in a two-model framework to assess solution stability. Results: The U-Net model demonstrates effectiveness in blind deconvolution, with performance improving consistently as the training dataset size increases, saturating beyond 5,000 images. Cosine similarity analysis reveals convergence between independently trained models, indicating stable solutions. Remarkably, the U-Net outperforms the oracle-like Tikhonov method in challenging conditions (low PSNR/medium SSIM). The model also generalizes well to unseen seeing and noise conditions, although optimal performance is achieved when training parameters include validation conditions. Experiments on synthetic $C^α$ images further support the hypothesis that the U-Net learns a geometry-adaptive harmonic basis, akin to sparse representations observed in denoising tasks. These results align with recent mathematical insights into its adaptive learning capabilities.
comment: 15 pages, 13 figures
VLingNav: Embodied Navigation with Adaptive Reasoning and Visual-Assisted Linguistic Memory
VLA models have shown promising potential in embodied navigation by unifying perception and planning while inheriting the strong generalization abilities of large VLMs. However, most existing VLA models rely on reactive mappings directly from observations to actions, lacking the explicit reasoning capabilities and persistent memory required for complex, long-horizon navigation tasks. To address these challenges, we propose VLingNav, a VLA model for embodied navigation grounded in linguistic-driven cognition. First, inspired by the dual-process theory of human cognition, we introduce an adaptive chain-of-thought mechanism, which dynamically triggers explicit reasoning only when necessary, enabling the agent to fluidly switch between fast, intuitive execution and slow, deliberate planning. Second, to handle long-horizon spatial dependencies, we develop a visual-assisted linguistic memory module that constructs a persistent, cross-modal semantic memory, enabling the agent to recall past observations to prevent repetitive exploration and infer movement trends for dynamic environments. For the training recipe, we construct Nav-AdaCoT-2.9M, the largest embodied navigation dataset with reasoning annotations to date, enriched with adaptive CoT annotations that induce a reasoning paradigm capable of adjusting both when to think and what to think about. Moreover, we incorporate an online expert-guided reinforcement learning stage, enabling the model to surpass pure imitation learning and to acquire more robust, self-explored navigation behaviors. Extensive experiments demonstrate that VLingNav achieves state-of-the-art performance across a wide range of embodied navigation benchmarks. Notably, VLingNav transfers to real-world robotic platforms in a zero-shot manner, executing various navigation tasks and demonstrating strong cross-domain and cross-task generalization.
comment: Project page: https://wsakobe.github.io/VLingNav-web/
TRACE: Reconstruction-Based Anomaly Detection in Ensemble and Time-Dependent Simulations
Detecting anomalies in high-dimensional, time-dependent simulation data is challenging due to complex spatial and temporal dynamics. We study reconstruction-based anomaly detection for ensemble data from parameterized Kármán vortex street simulations using convolutional autoencoders. We compare a 2D autoencoder operating on individual frames with a 3D autoencoder that processes short temporal stacks. The 2D model identifies localized spatial irregularities in single time steps, while the 3D model exploits spatio-temporal context to detect anomalous motion patterns and reduces redundant detections across time. We further evaluate volumetric time-dependent data and find that reconstruction errors are strongly influenced by the spatial distribution of mass, with highly concentrated regions yielding larger errors than dispersed configurations. Our results highlight the importance of temporal context for robust anomaly detection in dynamic simulations.
SafeRedir: Prompt Embedding Redirection for Robust Unlearning in Image Generation Models
Image generation models (IGMs), while capable of producing impressive and creative content, often memorize a wide range of undesirable concepts from their training data, leading to the reproduction of unsafe content such as NSFW imagery and copyrighted artistic styles. Such behaviors pose persistent safety and compliance risks in real-world deployments and cannot be reliably mitigated by post-hoc filtering, owing to the limited robustness of such mechanisms and a lack of fine-grained semantic control. Recent unlearning methods seek to erase harmful concepts at the model level, which exhibit the limitations of requiring costly retraining, degrading the quality of benign generations, or failing to withstand prompt paraphrasing and adversarial attacks. To address these challenges, we introduce SafeRedir, a lightweight inference-time framework for robust unlearning via prompt embedding redirection. Without modifying the underlying IGMs, SafeRedir adaptively routes unsafe prompts toward safe semantic regions through token-level interventions in the embedding space. The framework comprises two core components: a latent-aware multi-modal safety classifier for identifying unsafe generation trajectories, and a token-level delta generator for precise semantic redirection, equipped with auxiliary predictors for token masking and adaptive scaling to localize and regulate the intervention. Empirical results across multiple representative unlearning tasks demonstrate that SafeRedir achieves effective unlearning capability, high semantic and perceptual preservation, robust image quality, and enhanced resistance to adversarial attacks. Furthermore, SafeRedir generalizes effectively across a variety of diffusion backbones and existing unlearned models, validating its plug-and-play compatibility and broad applicability. Code and data are available at https://github.com/ryliu68/SafeRedir.
comment: Code at https://github.com/ryliu68/SafeRedir
ViDoRe V3: A Comprehensive Evaluation of Retrieval Augmented Generation in Complex Real-World Scenarios
Retrieval-Augmented Generation (RAG) pipelines must address challenges beyond simple single-document retrieval, such as interpreting visual elements (tables, charts, images), synthesizing information across documents, and providing accurate source grounding. Existing benchmarks fail to capture this complexity, often focusing on textual data, single-document comprehension, or evaluating retrieval and generation in isolation. We introduce ViDoRe v3, a comprehensive multimodal RAG benchmark featuring multi-type queries over visually rich document corpora. It covers 10 datasets across diverse professional domains, comprising ~26,000 document pages paired with 3,099 human-verified queries, each available in 6 languages. Through 12,000 hours of human annotation effort, we provide high-quality annotations for retrieval relevance, bounding box localization, and verified reference answers. Our evaluation of state-of-the-art RAG pipelines reveals that visual retrievers outperform textual ones, late-interaction models and textual reranking substantially improve performance, and hybrid or purely visual contexts enhance answer generation quality. However, current models still struggle with non-textual elements, open-ended queries, and fine-grained visual grounding. To encourage progress in addressing these challenges, the benchmark is released under a commercially permissive license at https://hf.co/vidore.
SoC: Semantic Orthogonal Calibration for Test-Time Prompt Tuning
With the increasing adoption of vision-language models (VLMs) in critical decision-making systems such as healthcare or autonomous driving, the calibration of their uncertainty estimates becomes paramount. Yet, this dimension has been largely underexplored in the VLM test-time prompt-tuning (TPT) literature, which has predominantly focused on improving their discriminative performance. Recent state-of-the-art advocates for enforcing full orthogonality over pairs of text prompt embeddings to enhance separability, and therefore calibration. Nevertheless, as we theoretically show in this work, the inherent gradients from fully orthogonal constraints will strongly push semantically related classes away, ultimately making the model overconfident. Based on our findings, we propose Semantic Orthogonal Calibration (SoC), a Huber-based regularizer that enforces smooth prototype separation while preserving semantic proximity, thereby improving calibration compared to prior orthogonality-based approaches. Across a comprehensive empirical validation, we demonstrate that SoC consistently improves calibration performance, while also maintaining competitive discriminative capabilities.
VeriTaS: The First Dynamic Benchmark for Multimodal Automated Fact-Checking
The growing scale of online misinformation urgently demands Automated Fact-Checking (AFC). Existing benchmarks for evaluating AFC systems, however, are largely limited in terms of task scope, modalities, domain, language diversity, realism, or coverage of misinformation types. Critically, they are static, thus subject to data leakage as their claims enter the pretraining corpora of LLMs. As a result, benchmark performance no longer reliably reflects the actual ability to verify claims. We introduce Verified Theses and Statements (VeriTaS), the first dynamic benchmark for multimodal AFC, designed to remain robust under ongoing large-scale pretraining of foundation models. VeriTaS currently comprises 24,000 real-world claims from 108 professional fact-checking organizations across 54 languages, covering textual and audiovisual content. Claims are added quarterly via a fully automated seven-stage pipeline that normalizes claim formulation, retrieves original media, and maps heterogeneous expert verdicts to a novel, standardized, and disentangled scoring scheme with textual justifications. Through human evaluation, we demonstrate that the automated annotations closely match human judgments. We commit to update VeriTaS in the future, establishing a leakage-resistant benchmark, supporting meaningful AFC evaluation in the era of rapidly evolving foundation models. We will make the code and data publicly available.
comment: Preprint under review
SfMamba: Efficient Source-Free Domain Adaptation via Selective Scan Modeling
Source-free domain adaptation (SFDA) tackles the critical challenge of adapting source-pretrained models to unlabeled target domains without access to source data, overcoming data privacy and storage limitations in real-world applications. However, existing SFDA approaches struggle with the trade-off between perception field and computational efficiency in domain-invariant feature learning. Recently, Mamba has offered a promising solution through its selective scan mechanism, which enables long-range dependency modeling with linear complexity. However, the Visual Mamba (i.e., VMamba) remains limited in capturing channel-wise frequency characteristics critical for domain alignment and maintaining spatial robustness under significant domain shifts. To address these, we propose a framework called SfMamba to fully explore the stable dependency in source-free model transfer. SfMamba introduces Channel-wise Visual State-Space block that enables channel-sequence scanning for domain-invariant feature extraction. In addition, SfMamba involves a Semantic-Consistent Shuffle strategy that disrupts background patch sequences in 2D selective scan while preserving prediction consistency to mitigate error accumulation. Comprehensive evaluations across multiple benchmarks show that SfMamba achieves consistently stronger performance than existing methods while maintaining favorable parameter efficiency, offering a practical solution for SFDA. Our code is available at https://github.com/chenxi52/SfMamba.
Interpretability and Individuality in Knee MRI: Patient-Specific Radiomic Fingerprint with Reconstructed Healthy Personas
For automated assessment of knee MRI scans, both accuracy and interpretability are essential for clinical use and adoption. Traditional radiomics rely on predefined features chosen at the population level; while more interpretable, they are often too restrictive to capture patient-specific variability and can underperform end-to-end deep learning (DL). To address this, we propose two complementary strategies that bring individuality and interpretability: radiomic fingerprints and healthy personas. First, a radiomic fingerprint is a dynamically constructed, patient-specific feature set derived from MRI. Instead of applying a uniform population-level signature, our model predicts feature relevance from a pool of candidate features and selects only those most predictive for each patient, while maintaining feature-level interpretability. This fingerprint can be viewed as a latent-variable model of feature usage, where an image-conditioned predictor estimates usage probabilities and a transparent logistic regression with global coefficients performs classification. Second, a healthy persona synthesises a pathology-free baseline for each patient using a diffusion model trained to reconstruct healthy knee MRIs. Comparing features extracted from pathological images against their personas highlights deviations from normal anatomy, enabling intuitive, case-specific explanations of disease manifestations. We systematically compare fingerprints, personas, and their combination across three clinical tasks. Experimental results show that both approaches yield performance comparable to or surpassing state-of-the-art DL models, while supporting interpretability at multiple levels. Case studies further illustrate how these perspectives facilitate human-explainable biomarker discovery and pathology localisation.
WaveFormer: Frequency-Time Decoupled Vision Modeling with Wave Equation
Vision modeling has advanced rapidly with Transformers, whose attention mechanisms capture visual dependencies but lack a principled account of how semantic information propagates spatially. We revisit this problem from a wave-based perspective: feature maps are treated as spatial signals whose evolution over an internal propagation time (aligned with network depth) is governed by an underdamped wave equation. In this formulation, spatial frequency-from low-frequency global layout to high-frequency edges and textures-is modeled explicitly, and its interaction with propagation time is controlled rather than implicitly fixed. We derive a closed-form, frequency-time decoupled solution and implement it as the Wave Propagation Operator (WPO), a lightweight module that models global interactions in O(N log N) time-far lower than attention. Building on WPO, we propose a family of WaveFormer models as drop-in replacements for standard ViTs and CNNs, achieving competitive accuracy across image classification, object detection, and semantic segmentation, while delivering up to 1.6x higher throughput and 30% fewer FLOPs than attention-based alternatives. Furthermore, our results demonstrate that wave propagation introduces a complementary modeling bias to heat-based methods, effectively capturing both global coherence and high-frequency details essential for rich visual semantics. Codes are available at: https://github.com/ZishanShu/WaveFormer.
End-to-End Video Character Replacement without Structural Guidance
Controllable video character replacement with a user-provided identity remains a challenging problem due to the lack of paired video data. Prior works have predominantly relied on a reconstruction-based paradigm that requires per-frame segmentation masks and explicit structural guidance (e.g., skeleton, depth). This reliance, however, severely limits their generalizability in complex scenarios involving occlusions, character-object interactions, unusual poses, or challenging illumination, often leading to visual artifacts and temporal inconsistencies. In this paper, we propose MoCha, a pioneering framework that bypasses these limitations by requiring only a single arbitrary frame mask. To effectively adapt the multi-modal input condition and enhance facial identity, we introduce a condition-aware RoPE and employ an RL-based post-training stage. Furthermore, to overcome the scarcity of qualified paired-training data, we propose a comprehensive data construction pipeline. Specifically, we design three specialized datasets: a high-fidelity rendered dataset built with Unreal Engine 5 (UE5), an expression-driven dataset synthesized by current portrait animation techniques, and an augmented dataset derived from existing video-mask pairs. Extensive experiments demonstrate that our method substantially outperforms existing state-of-the-art approaches. We will release the code to facilitate further research. Please refer to our project page for more details: orange-3dv-team.github.io/MoCha
comment: 10 pages, 9 figures
REVNET: Rotation-Equivariant Point Cloud Completion via Vector Neuron Anchor Transformer
Incomplete point clouds captured by 3D sensors often result in the loss of both geometric and semantic information. Most existing point cloud completion methods are built on rotation-variant frameworks trained with data in canonical poses, limiting their applicability in real-world scenarios. While data augmentation with random rotations can partially mitigate this issue, it significantly increases the learning burden and still fails to guarantee robust performance under arbitrary poses. To address this challenge, we propose the Rotation-Equivariant Anchor Transformer (REVNET), a novel framework built upon the Vector Neuron (VN) network for robust point cloud completion under arbitrary rotations. To preserve local details, we represent partial point clouds as sets of equivariant anchors and design a VN Missing Anchor Transformer to predict the positions and features of missing anchors. Furthermore, we extend VN networks with a rotation-equivariant bias formulation and a ZCA-based layer normalization to improve feature expressiveness. Leveraging the flexible conversion between equivariant and invariant VN features, our model can generate point coordinates with greater stability. Experimental results show that our method outperforms state-of-the-art approaches on the synthetic MVP dataset in the equivariant setting. On the real-world KITTI dataset, REVNET delivers competitive results compared to non-equivariant networks, without requiring input pose alignment. The source code will be released on GitHub under URL: https://github.com/nizhf/REVNET.
VideoHEDGE: Entropy-Based Hallucination Detection for Video-VLMs via Semantic Clustering and Spatiotemporal Perturbations
Hallucinations in video-capable vision-language models (Video-VLMs) remain frequent and high-confidence, while existing uncertainty metrics often fail to align with correctness. We introduce VideoHEDGE, a modular framework for hallucination detection in video question answering that extends entropy-based reliability estimation from images to temporally structured inputs. Given a video-question pair, VideoHEDGE draws a baseline answer and multiple high-temperature generations from both clean clips and photometrically and spatiotemporally perturbed variants, then clusters the resulting textual outputs into semantic hypotheses using either Natural Language Inference (NLI)-based or embedding-based methods. Cluster-level probability masses yield three reliability scores: Semantic Entropy (SE), RadFlag, and Vision-Amplified Semantic Entropy (VASE). We evaluate VideoHEDGE on the SoccerChat benchmark using an LLM-as-a-judge to obtain binary hallucination labels. Across three 7B Video-VLMs (Qwen2-VL, Qwen2.5-VL, and a SoccerChat-finetuned model), VASE consistently achieves the highest ROC-AUC, especially at larger distortion budgets, while SE and RadFlag often operate near chance. We further show that embedding-based clustering matches NLI-based clustering in detection performance at substantially lower computational cost, and that domain fine-tuning reduces hallucination frequency but yields only modest improvements in calibration. The hedge-bench PyPI library enables reproducible and extensible benchmarking, with full code and experimental resources available at https://github.com/Simula/HEDGE#videohedge .
Keyframe-based Dense Mapping with the Graph of View-Dependent Local Maps ICRA 2020
In this article, we propose a new keyframe-based mapping system. The proposed method updates local Normal Distribution Transform maps (NDT) using data from an RGB-D sensor. The cells of the NDT are stored in 2D view-dependent structures to better utilize the properties and uncertainty model of RGB-D cameras. This method naturally represents an object closer to the camera origin with higher precision. The local maps are stored in the pose graph which allows correcting global map after loop closure detection. We also propose a procedure that allows merging and filtering local maps to obtain a global map of the environment. Finally, we compare our method with Octomap and NDT-OM and provide example applications of the proposed mapping method.
comment: Accepted in ICRA 2020
CD^2: Constrained Dataset Distillation for Few-Shot Class-Incremental Learning
Few-shot class-incremental learning (FSCIL) receives significant attention from the public to perform classification continuously with a few training samples, which suffers from the key catastrophic forgetting problem. Existing methods usually employ an external memory to store previous knowledge and treat it with incremental classes equally, which cannot properly preserve previous essential knowledge. To solve this problem and inspired by recent distillation works on knowledge transfer, we propose a framework termed \textbf{C}onstrained \textbf{D}ataset \textbf{D}istillation (\textbf{CD$^2$}) to facilitate FSCIL, which includes a dataset distillation module (\textbf{DDM}) and a distillation constraint module~(\textbf{DCM}). Specifically, the DDM synthesizes highly condensed samples guided by the classifier, forcing the model to learn compacted essential class-related clues from a few incremental samples. The DCM introduces a designed loss to constrain the previously learned class distribution, which can preserve distilled knowledge more sufficiently. Extensive experiments on three public datasets show the superiority of our method against other state-of-the-art competitors.
Closed-Loop LLM Discovery of Non-Standard Channel Priors in Vision Models
Channel configuration search the optimization of layer specifications such as layer widths in deep neural networks presents a complex combinatorial challenge constrained by tensor shape compatibility and computational budgets. We posit that Large Language Models (LLMs) offer a transformative approach to Neural Architecture Search (NAS), capable of reasoning about architectural code structure in ways that traditional heuristics cannot. In this paper, we investigate the application of an LLM-driven NAS framework to the problem of channel configuration. We formulate the search as a sequence of conditional code generation tasks, where an LLM refines architectural specifications based on performance telemetry. Crucially, we address the data scarcity problem by generating a vast corpus of valid, shape-consistent architectures via Abstract Syntax Tree (AST) mutations. While these mutated networks are not necessarily high-performing, they provide the critical volume of structural data required for the LLM to learn the latent relationship between channel configurations and model performance. This allows the LLM to internalize complex design patterns and apply them to optimize feature extraction strategies. Experimental results on CIFAR-100 validate the efficacy of this approach, demonstrating that the model yields statistically significant improvements in accuracy. Our analysis confirms that the LLM successfully acquires domain-specific architectural priors, distinguishing this method from random search and highlighting the immense potential of language-driven design in deep learning.
EfficientFSL: Enhancing Few-Shot Classification via Query-Only Tuning in Vision Transformers AAAI 2026
Large models such as Vision Transformers (ViTs) have demonstrated remarkable superiority over smaller architectures like ResNet in few-shot classification, owing to their powerful representational capacity. However, fine-tuning such large models demands extensive GPU memory and prolonged training time, making them impractical for many real-world low-resource scenarios. To bridge this gap, we propose EfficientFSL, a query-only fine-tuning framework tailored specifically for few-shot classification with ViT, which achieves competitive performance while significantly reducing computational overhead. EfficientFSL fully leverages the knowledge embedded in the pre-trained model and its strong comprehension ability, achieving high classification accuracy with an extremely small number of tunable parameters. Specifically, we introduce a lightweight trainable Forward Block to synthesize task-specific queries that extract informative features from the intermediate representations of the pre-trained model in a query-only manner. We further propose a Combine Block to fuse multi-layer outputs, enhancing the depth and robustness of feature representations. Finally, a Support-Query Attention Block mitigates distribution shift by adjusting prototypes to align with the query set distribution. With minimal trainable parameters, EfficientFSL achieves state-of-the-art performance on four in-domain few-shot datasets and six cross-domain datasets, demonstrating its effectiveness in real-world applications.
comment: Accepted/To be presented at AAAI 2026
PKI: Prior Knowledge-Infused Neural Network for Few-Shot Class-Incremental Learning
Few-shot class-incremental learning (FSCIL) aims to continually adapt a model on a limited number of new-class examples, facing two well-known challenges: catastrophic forgetting and overfitting to new classes. Existing methods tend to freeze more parts of network components and finetune others with an extra memory during incremental sessions. These methods emphasize preserving prior knowledge to ensure proficiency in recognizing old classes, thereby mitigating catastrophic forgetting. Meanwhile, constraining fewer parameters can help in overcoming overfitting with the assistance of prior knowledge. Following previous methods, we retain more prior knowledge and propose a prior knowledge-infused neural network (PKI) to facilitate FSCIL. PKI consists of a backbone, an ensemble of projectors, a classifier, and an extra memory. In each incremental session, we build a new projector and add it to the ensemble. Subsequently, we finetune the new projector and the classifier jointly with other frozen network components, ensuring the rich prior knowledge is utilized effectively. By cascading projectors, PKI integrates prior knowledge accumulated from previous sessions and learns new knowledge flexibly, which helps to recognize old classes and efficiently learn new classes. Further, to reduce the resource consumption associated with keeping many projectors, we design two variants of the prior knowledge-infused neural network (PKIV-1 and PKIV-2) to trade off a balance between resource consumption and performance by reducing the number of projectors. Extensive experiments on three popular benchmarks demonstrate that our approach outperforms state-of-the-art methods.
An IoT-Enabled Smart Aquarium System for Real-Time Water Quality Monitoring and Automated Feeding
Maintaining optimal water quality in aquariums is critical for aquatic health but remains challenging due to the need for continuous monitoring of multiple parameters. Traditional manual methods are inefficient, labor-intensive, and prone to human error, often leading to suboptimal aquatic conditions. This paper presents an IoT-based smart aquarium system that addresses these limitations by integrating an ESP32 microcontroller with multiple sensors (pH, TDS, temperature, turbidity) and actuators (servo feeder, water pump) for comprehensive real-time water quality monitoring and automated control. The system architecture incorporates edge processing capabilities, cloud connectivity via Blynk IoT platform, and an intelligent alert mechanism with configurable cooldown periods to prevent notification fatigue. Experimental evaluation in a 10-liter aquarium environment demonstrated the system's effectiveness, achieving 96\% average sensor accuracy and 1.2-second response time for anomaly detection. The automated feeding and water circulation modules maintained 97\% operational reliability throughout extended testing, significantly reducing manual intervention while ensuring stable aquatic conditions. This research demonstrates that cost-effective IoT solutions can revolutionize aquarium maintenance, making aquatic ecosystem management more accessible, reliable, and efficient for both residential and commercial applications.
DiffMM: Efficient Method for Accurate Noisy and Sparse Trajectory Map Matching via One Step Diffusion AAAI-26
Map matching for sparse trajectories is a fundamental problem for many trajectory-based applications, e.g., traffic scheduling and traffic flow analysis. Existing methods for map matching are generally based on Hidden Markov Model (HMM) or encoder-decoder framework. However, these methods continue to face significant challenges when handling noisy or sparsely sampled GPS trajectories. To address these limitations, we propose DiffMM, an encoder-diffusion-based map matching framework that produces effective yet efficient matching results through a one-step diffusion process. We first introduce a road segment-aware trajectory encoder that jointly embeds the input trajectory and its surrounding candidate road segments into a shared latent space through an attention mechanism. Next, we propose a one step diffusion method to realize map matching through a shortcut model by leveraging the joint embedding of the trajectory and candidate road segments as conditioning context. We conduct extensive experiments on large-scale trajectory datasets, demonstrating that our approach consistently outperforms state-of-the-art map matching methods in terms of both accuracy and efficiency, particularly for sparse trajectories and complex road network topologies.
comment: AAAI-26
Cross-modal Proxy Evolving for OOD Detection with Vision-Language Models AAAI 2026
Reliable zero-shot detection of out-of-distribution (OOD) inputs is critical for deploying vision-language models in open-world settings. However, the lack of labeled negatives in zero-shot OOD detection necessitates proxy signals that remain effective under distribution shift. Existing negative-label methods rely on a fixed set of textual proxies, which (i) sparsely sample the semantic space beyond in-distribution (ID) classes and (ii) remain static while only visual features drift, leading to cross-modal misalignment and unstable predictions. In this paper, we propose CoEvo, a training- and annotation-free test-time framework that performs bidirectional, sample-conditioned adaptation of both textual and visual proxies. Specifically, CoEvo introduces a proxy-aligned co-evolution mechanism to maintain two evolving proxy caches, which dynamically mines contextual textual negatives guided by test images and iteratively refines visual proxies, progressively realigning cross-modal similarities and enlarging local OOD margins. Finally, we dynamically re-weight the contributions of dual-modal proxies to obtain a calibrated OOD score that is robust to distribution shift. Extensive experiments on standard benchmarks demonstrate that CoEvo achieves state-of-the-art performance, improving AUROC by 1.33% and reducing FPR95 by 45.98% on ImageNet-1K compared to strong negative-label baselines.
comment: Accepted by AAAI 2026
Towards Safer Mobile Agents: Scalable Generation and Evaluation of Diverse Scenarios for VLMs
Vision Language Models (VLMs) are increasingly deployed in autonomous vehicles and mobile systems, making it crucial to evaluate their ability to support safer decision-making in complex environments. However, existing benchmarks inadequately cover diverse hazardous situations, especially anomalous scenarios with spatio-temporal dynamics. While image editing models are a promising means to synthesize such hazards, it remains challenging to generate well-formulated scenarios that include moving, intrusive, and distant objects frequently observed in the real world. To address this gap, we introduce \textbf{HazardForge}, a scalable pipeline that leverages image editing models to generate these scenarios with layout decision algorithms, and validation modules. Using HazardForge, we construct \textbf{MovSafeBench}, a multiple-choice question (MCQ) benchmark comprising 7,254 images and corresponding QA pairs across 13 object categories, covering both normal and anomalous objects. Experiments using MovSafeBench show that VLM performance degrades notably under conditions including anomalous objects, with the largest drop in scenarios requiring nuanced motion understanding.
Zero-Shot Distracted Driver Detection via Vision Language Models with Double Decoupling
Distracted driving is a major cause of traffic collisions, calling for robust and scalable detection methods. Vision-language models (VLMs) enable strong zero-shot image classification, but existing VLM-based distracted driver detectors often underperform in real-world conditions. We identify subject-specific appearance variations (e.g., clothing, age, and gender) as a key bottleneck: VLMs entangle these factors with behavior cues, leading to decisions driven by who the driver is rather than what the driver is doing. To address this, we propose a subject decoupling framework that extracts a driver appearance embedding and removes its influence from the image embedding prior to zero-shot classification, thereby emphasizing distraction-relevant evidence. We further orthogonalize text embeddings via metric projection onto Stiefel manifold to improve separability while staying close to the original semantics. Experiments demonstrate consistent gains over prior baselines, indicating the promise of our approach for practical road-safety applications.
CoMa: Contextual Massing Generation with Vision-Language Models
The conceptual design phase in architecture and urban planning, particularly building massing, is complex and heavily reliant on designer intuition and manual effort. To address this, we propose an automated framework for generating building massing based on functional requirements and site context. A primary obstacle to such data-driven methods has been the lack of suitable datasets. Consequently, we introduce the CoMa-20K dataset, a comprehensive collection that includes detailed massing geometries, associated economical and programmatic data, and visual representations of the development site within its existing urban context. We benchmark this dataset by formulating massing generation as a conditional task for Vision-Language Models (VLMs), evaluating both fine-tuned and large zero-shot models. Our experiments reveal the inherent complexity of the task while demonstrating the potential of VLMs to produce context-sensitive massing options. The dataset and analysis establish a foundational benchmark and highlight significant opportunities for future research in data-driven architectural design.
comment: Code and dataset will be released later
Modality-Decoupled RGB-Thermal Object Detector via Query Fusion
The advantage of RGB-Thermal (RGB-T) detection lies in its ability to perform modality fusion and integrate cross-modality complementary information, enabling robust detection under diverse illumination and weather conditions. However, under extreme conditions where one modality exhibits poor quality and disturbs detection, modality separation is necessary to mitigate the impact of noise. To address this problem, we propose a Modality-Decoupled RGB-T detection framework with Query Fusion (MDQF) to balance modality complementation and separation. In this framework, DETR-like detectors are employed as separate branches for the RGB and TIR images, with query fusion interspersed between the two branches in each refinement stage. Herein, query fusion is performed by feeding the high-quality queries from one branch to the other one after query selection and adaptation. This design effectively excludes the degraded modality and corrects the predictions using high-quality queries. Moreover, the decoupled framework allows us to optimize each individual branch with unpaired RGB or TIR images, eliminating the need for paired RGB-T data. Extensive experiments demonstrate that our approach delivers superior performance to existing RGB-T detectors and achieves better modality independence.
Developing Predictive and Robust Radiomics Models for Chemotherapy Response in High-Grade Serous Ovarian Carcinoma
Objectives: High-grade serous ovarian carcinoma (HGSOC) is typically diagnosed at an advanced stage with extensive peritoneal metastases, making treatment challenging. Neoadjuvant chemotherapy (NACT) is often used to reduce tumor burden before surgery, but about 40% of patients show limited response. Radiomics, combined with machine learning (ML), offers a promising non-invasive method for predicting NACT response by analyzing computed tomography (CT) imaging data. This study aimed to improve response prediction in HGSOC patients undergoing NACT by integration different feature selection methods. Materials and methods: A framework for selecting robust radiomics features was introduced by employing an automated randomisation algorithm to mimic inter-observer variability, ensuring a balance between feature robustness and prediction accuracy. Four response metrics were used: chemotherapy response score (CRS), RECIST, volume reduction (VolR), and diameter reduction (DiaR). Lesions in different anatomical sites were studied. Pre- and post-NACT CT scans were used for feature extraction and model training on one cohort, and an independent cohort was used for external testing. Results: The best prediction performance was achieved using all lesions combined for VolR prediction, with an AUC of 0.83. Omental lesions provided the best results for CRS prediction (AUC 0.77), while pelvic lesions performed best for DiaR (AUC 0.76). Conclusion: The integration of robustness into the feature selection processes ensures the development of reliable models and thus facilitates the implementation of the radiomics models in clinical applications for HGSOC patients. Future work should explore further applications of radiomics in ovarian cancer, particularly in real-time clinical settings.
comment: 22pages, 5 figures, 5 tables
Divide and Conquer: Static-Dynamic Collaboration for Few-Shot Class-Incremental Learning
Few-shot class-incremental learning (FSCIL) aims to continuously recognize novel classes under limited data, which suffers from the key stability-plasticity dilemma: balancing the retention of old knowledge with the acquisition of new knowledge. To address this issue, we divide the task into two different stages and propose a framework termed Static-Dynamic Collaboration (SDC) to achieve a better trade-off between stability and plasticity. Specifically, our method divides the normal pipeline of FSCIL into Static Retaining Stage (SRS) and Dynamic Learning Stage (DLS), which harnesses old static and incremental dynamic class information, respectively. During SRS, we train an initial model with sufficient data in the base session and preserve the key part as static memory to retain fundamental old knowledge. During DLS, we introduce an extra dynamic projector jointly trained with the previous static memory. By employing both stages, our method achieves improved retention of old knowledge while continuously adapting to new classes. Extensive experiments on three public benchmarks and a real-world application dataset demonstrate that our method achieves state-of-the-art performance against other competitors.
Noise-Adaptive Regularization for Robust Multi-Label Remote Sensing Image Classification
The development of reliable methods for multi-label classification (MLC) has become a prominent research direction in remote sensing (RS). As the scale of RS data continues to expand, annotation procedures increasingly rely on thematic products or crowdsourced procedures to reduce the cost of manual annotation. While cost-effective, these strategies often introduce multi-label noise in the form of partially incorrect annotations. In MLC, label noise arises as additive noise, subtractive noise, or a combination of both in the form of mixed noise. Previous work has largely overlooked this distinction and commonly treats noisy annotations as supervised signals, lacking mechanisms that explicitly adapt learning behavior to different noise types. To address this limitation, we propose NAR, a noise-adaptive regularization method that explicitly distinguishes between additive and subtractive noise within a semi-supervised learning framework. NAR employs a confidence-based label handling mechanism that dynamically retains label entries with high confidence, temporarily deactivates entries with moderate confidence, and corrects low confidence entries via flipping. This selective attenuation of supervision is integrated with early-learning regularization (ELR) to stabilize training and mitigate overfitting to corrupted labels. Experiments across additive, subtractive, and mixed noise scenarios demonstrate that NAR consistently improves robustness compared with existing methods. Performance improvements are most pronounced under subtractive and mixed noise, indicating that adaptive suppression and selective correction of noisy supervision provide an effective strategy for noise robust learning in RS MLC.
comment: Submitted to TGRS
Incentivizing Cardiologist-Like Reasoning in MLLMs for Interpretable Echocardiographic Diagnosis
Echocardiographic diagnosis is vital for cardiac screening yet remains challenging. Existing echocardiography foundation models do not effectively capture the relationships between quantitative measurements and clinical manifestations, whereas medical reasoning multimodal large language models (MLLMs) require costly construction of detailed reasoning paths and remain ineffective at directly incorporating such echocardiographic priors into their reasoning. To address these limitations, we propose a novel approach comprising Cardiac Reasoning Template (CRT) and CardiacMind to enhance MLLM's echocardiographic reasoning by introducing cardiologist-like mindset. Specifically, CRT provides stepwise canonical diagnostic procedures for complex cardiac diseases to streamline reasoning path construction without the need for costly case-by-case verification. To incentivize reasoning MLLM under CRT, we develop CardiacMind, a new reinforcement learning scheme with three novel rewards: Procedural Quantity Reward (PQtR), Procedural Quality Reward (PQlR), and Echocardiographic Semantic Reward (ESR). PQtR promotes detailed reasoning; PQlR promotes integration of evidence across views and modalities, while ESR grounds stepwise descriptions in visual content. Our methods show a 48% improvement in multiview echocardiographic diagnosis for 15 complex cardiac diseases and a 5% improvement on CardiacNet-PAH over prior methods. The user study on our method's reasoning outputs shows 93.33% clinician agreement with cardiologist-like reasoning logic. Our code will be available.
Deep Learning Based Facial Retargeting Using Local Patches
In the era of digital animation, the quest to produce lifelike facial animations for virtual characters has led to the development of various retargeting methods. While the retargeting facial motion between models of similar shapes has been very successful, challenges arise when the retargeting is performed on stylized or exaggerated 3D characters that deviate significantly from human facial structures. In this scenario, it is important to consider the target character's facial structure and possible range of motion to preserve the semantics assumed by the original facial motions after the retargeting. To achieve this, we propose a local patch-based retargeting method that transfers facial animations captured in a source performance video to a target stylized 3D character. Our method consists of three modules. The Automatic Patch Extraction Module extracts local patches from the source video frame. These patches are processed through the Reenactment Module to generate correspondingly re-enacted target local patches. The Weight Estimation Module calculates the animation parameters for the target character at every frame for the creation of a complete facial animation sequence. Extensive experiments demonstrate that our method can successfully transfer the semantic meaning of source facial expressions to stylized characters with considerable variations in facial feature proportion.
comment: Eurographics 25
MMLGNet: Cross-Modal Alignment of Remote Sensing Data using CLIP
In this paper, we propose a novel multimodal framework, Multimodal Language-Guided Network (MMLGNet), to align heterogeneous remote sensing modalities like Hyperspectral Imaging (HSI) and LiDAR with natural language semantics using vision-language models such as CLIP. With the increasing availability of multimodal Earth observation data, there is a growing need for methods that effectively fuse spectral, spatial, and geometric information while enabling semantic-level understanding. MMLGNet employs modality-specific encoders and aligns visual features with handcrafted textual embeddings in a shared latent space via bi-directional contrastive learning. Inspired by CLIP's training paradigm, our approach bridges the gap between high-dimensional remote sensing data and language-guided interpretation. Notably, MMLGNet achieves strong performance with simple CNN-based encoders, outperforming several established multimodal visual-only methods on two benchmark datasets, demonstrating the significant benefit of language supervision. Codes are available at https://github.com/AdityaChaudhary2913/CLIP_HSI.
comment: Accepted at InGARSS 2025
SPARK: Scalable Real-Time Point Cloud Aggregation with Multi-View Self-Calibration
Real-time multi-camera 3D reconstruction is crucial for 3D perception, immersive interaction, and robotics. Existing methods struggle with multi-view fusion, camera extrinsic uncertainty, and scalability for large camera setups. We propose SPARK, a self-calibrating real-time multi-camera point cloud reconstruction framework that jointly handles point cloud fusion and extrinsic uncertainty. SPARK consists of: (1) a geometry-aware online extrinsic estimation module leveraging multi-view priors and enforcing cross-view and temporal consistency for stable self-calibration, and (2) a confidence-driven point cloud fusion strategy modeling depth reliability and visibility at pixel and point levels to suppress noise and view-dependent inconsistencies. By performing frame-wise fusion without accumulation, SPARK produces stable point clouds in dynamic scenes while scaling linearly with the number of cameras. Extensive experiments on real-world multi-camera systems show that SPARK outperforms existing approaches in extrinsic accuracy, geometric consistency, temporal stability, and real-time performance, demonstrating its effectiveness and scalability for large-scale multi-camera 3D reconstruction.
comment: 10 pages, 1 figures, submitted to Trans on Image Processing
Edge-Optimized Multimodal Learning for UAV Video Understanding via BLIP-2
The demand for real-time visual understanding and interaction in complex scenarios is increasingly critical for unmanned aerial vehicles. However, a significant challenge arises from the contradiction between the high computational cost of large Vision language models and the limited computing resources available on UAV edge devices. To address this challenge, this paper proposes a lightweight multimodal task platform based on BLIP-2, integrated with YOLO-World and YOLOv8-Seg models. This integration extends the multi-task capabilities of BLIP-2 for UAV applications with minimal adaptation and without requiring task-specific fine-tuning on drone data. Firstly, the deep integration of BLIP-2 with YOLO models enables it to leverage the precise perceptual results of YOLO for fundamental tasks like object detection and instance segmentation, thereby facilitating deeper visual-attention understanding and reasoning. Secondly, a content-aware key frame sampling mechanism based on K-Means clustering is designed, which incorporates intelligent frame selection and temporal feature concatenation. This equips the lightweight BLIP-2 architecture with the capability to handle video-level interactive tasks effectively. Thirdly, a unified prompt optimization scheme for multi-task adaptation is implemented. This scheme strategically injects structured event logs from the YOLO models as contextual information into BLIP-2's input. Combined with output constraints designed to filter out technical details, this approach effectively guides the model to generate accurate and contextually relevant outputs for various tasks.
comment: The Tenth International Conference on Data Mining and Big Data (DMBD'2025)
An Explainable Two Stage Deep Learning Framework for Pericoronitis Assessment in Panoramic Radiographs Using YOLOv8 and ResNet-50
Objectives: To overcome challenges in diagnosing pericoronitis on panoramic radiographs, an AI-assisted assessment system integrating anatomical localization, pathological classification, and interpretability. Methods: A two-stage deep learning pipeline was implemented. The first stage used YOLOv8 to detect third molars and classify their anatomical positions and angulations based on Winter's classification. Detected regions were then fed into a second-stage classifier, a modified ResNet-50 architecture, for detecting radiographic features suggestive of pericoronitis. To enhance clinical trust, Grad-CAM was used to highlight key diagnostic regions on the radiographs. Results: The YOLOv8 component achieved 92% precision and 92.5% mean average precision. The ResNet-50 classifier yielded F1-scores of 88% for normal cases and 86% for pericoronitis. Radiologists reported 84% alignment between Grad-CAM and their diagnostic impressions, supporting the radiographic relevance of the interpretability output. Conclusion: The system shows strong potential for AI-assisted panoramic assessment, with explainable AI features that support clinical confidence.
Design and Development of a Low-Cost Scalable GSM-IoT Smart Pet Feeder with a Remote Mobile Application
Pet ownership is increasingly common in modern households, yet maintaining a consistent feeding schedule remains challenging for the owners particularly those who live in cities and have busy lifestyles. This paper presents the design, development, and validation of a low-cost, scalable GSM-IoT smart pet feeder that enables remote monitoring and control through cellular communication. The device combines with an Arduino microcontroller, a SIM800L GSM module for communication, an ultrasonic sensor for real-time food-level assessment, and a servo mechanism for accurate portion dispensing. A dedicated mobile application was developed using MIT App Inventor which allows owners to send feeding commands and receive real-time status updates. Experimental results demonstrate a 98\% SMS command success rate, consistent portion dispensing with $\pm 2.67$\% variance, and reliable autonomous operation. Its modular, energy-efficient design makes it easy to use in a wide range of households, including those with limited resources. This work pushes forward the field of accessible pet care technology by providing a practical, scalable, and completely internet-independent solution for personalized pet feeding. In doing so, it sets a new benchmark for low-cost, GSM-powered automation in smart pet products.
Training-Free Distribution Adaptation for Diffusion Models via Maximum Mean Discrepancy Guidance
Pre-trained diffusion models have emerged as powerful generative priors for both unconditional and conditional sample generation, yet their outputs often deviate from the characteristics of user-specific target data. Such mismatches are especially problematic in domain adaptation tasks, where only a few reference examples are available and retraining the diffusion model is infeasible. Existing inference-time guidance methods can adjust sampling trajectories, but they typically optimize surrogate objectives such as classifier likelihoods rather than directly aligning with the target distribution. We propose MMD Guidance, a training-free mechanism that augments the reverse diffusion process with gradients of the Maximum Mean Discrepancy (MMD) between generated samples and a reference dataset. MMD provides reliable distributional estimates from limited data, exhibits low variance in practice, and is efficiently differentiable, which makes it particularly well-suited for the guidance task. Our framework naturally extends to prompt-aware adaptation in conditional generation models via product kernels. Also, it can be applied with computational efficiency in latent diffusion models (LDMs), since guidance is applied in the latent space of the LDM. Experiments on synthetic and real-world benchmarks demonstrate that MMD Guidance can achieve distributional alignment while preserving sample fidelity.
Source-Free Domain Adaptation for Geospatial Point Cloud Semantic Segmentation
Semantic segmentation of 3D geospatial point clouds is pivotal for remote sensing applications. However, variations in geographic patterns across regions and data acquisition strategies induce significant domain shifts, severely degrading the performance of deployed models. Existing domain adaptation methods typically rely on access to source-domain data. However, this requirement is rarely met due to data privacy concerns, regulatory policies, and data transmission limitations. This motivates the largely underexplored setting of source-free unsupervised domain adaptation (SFUDA), where only a pretrained model and unlabeled target-domain data are available. In this paper, we propose LoGo (Local-Global Dual-Consensus), a novel SFUDA framework specifically designed for geospatial point clouds. At the local level, we introduce a class-balanced prototype estimation module that abandons conventional global threshold filtering in favor of an intra-class independent anchor mining strategy. This ensures that robust feature prototypes can be generated even for sample-scarce tail classes, effectively mitigating the feature collapse caused by long-tailed distributions. At the global level, we introduce an optimal transport-based global distribution alignment module that formulates pseudo-label assignment as a global optimization problem. By enforcing global distribution constraints, this module effectively corrects the over-dominance of head classes inherent in local greedy assignments, preventing model predictions from being severely biased towards majority classes. Finally, we propose a dual-consistency pseudo-label filtering mechanism. This strategy retains only high-confidence pseudo-labels where local multi-augmented ensemble predictions align with global optimal transport assignments for self-training.
Geo-NVS-w: Geometry-Aware Novel View Synthesis In-the-Wild with an SDF Renderer ICCV 2025
We introduce Geo-NVS-w, a geometry-aware framework for high-fidelity novel view synthesis from unstructured, in-the-wild image collections. While existing in-the-wild methods already excel at novel view synthesis, they often lack geometric grounding on complex surfaces, sometimes producing results that contain inconsistencies. Geo-NVS-w addresses this limitation by leveraging an underlying geometric representation based on a Signed Distance Function (SDF) to guide the rendering process. This is complemented by a novel Geometry-Preservation Loss which ensures that fine structural details are preserved. Our framework achieves competitive rendering performance, while demonstrating a 4-5x reduction reduction in energy consumption compared to similar methods. We demonstrate that Geo-NVS-w is a robust method for in-the-wild NVS, yielding photorealistic results with sharp, geometrically coherent details.
comment: Presented at the ICCV 2025 Workshop on Large Scale Cross Device Localization
Semantic Misalignment in Vision-Language Models under Perceptual Degradation
Vision-Language Models (VLMs) are increasingly deployed in autonomous driving and embodied AI systems, where reliable perception is critical for safe semantic reasoning and decision-making. While recent VLMs demonstrate strong performance on multimodal benchmarks, their robustness to realistic perception degradation remains poorly understood. In this work, we systematically study semantic misalignment in VLMs under controlled degradation of upstream visual perception, using semantic segmentation on the Cityscapes dataset as a representative perception module. We introduce perception-realistic corruptions that induce only moderate drops in conventional segmentation metrics, yet observe severe failures in downstream VLM behavior, including hallucinated object mentions, omission of safety-critical entities, and inconsistent safety judgments. To quantify these effects, we propose a set of language-level misalignment metrics that capture hallucination, critical omission, and safety misinterpretation, and analyze their relationship with segmentation quality across multiple contrastive and generative VLMs. Our results reveal a clear disconnect between pixel-level robustness and multimodal semantic reliability, highlighting a critical limitation of current VLM-based systems and motivating the need for evaluation frameworks that explicitly account for perception uncertainty in safety-critical applications.
From Local Windows to Adaptive Candidates via Individualized Exploratory: Rethinking Attention for Image Super-Resolution
Single Image Super-Resolution (SISR) is a fundamental computer vision task that aims to reconstruct a high-resolution (HR) image from a low-resolution (LR) input. Transformer-based methods have achieved remarkable performance by modeling long-range dependencies in degraded images. However, their feature-intensive attention computation incurs high computational cost. To improve efficiency, most existing approaches partition images into fixed groups and restrict attention within each group. Such group-wise attention overlooks the inherent asymmetry in token similarities, thereby failing to enable flexible and token-adaptive attention computation. To address this limitation, we propose the Individualized Exploratory Transformer (IET), which introduces a novel Individualized Exploratory Attention (IEA) mechanism that allows each token to adaptively select its own content-aware and independent attention candidates. This token-adaptive and asymmetric design enables more precise information aggregation while maintaining computational efficiency. Extensive experiments on standard SR benchmarks demonstrate that IET achieves state-of-the-art performance under comparable computational complexity.
Tissue Classification and Whole-Slide Images Analysis via Modeling of the Tumor Microenvironment and Biological Pathways
Automatic integration of whole slide images (WSIs) and gene expression profiles has demonstrated substantial potential in precision clinical diagnosis and cancer progression studies. However, most existing studies focus on individual gene sequences and slide level classification tasks, with limited attention to spatial transcriptomics and patch level applications. To address this limitation, we propose a multimodal network, BioMorphNet, which automatically integrates tissue morphological features and spatial gene expression to support tissue classification and differential gene analysis. For considering morphological features, BioMorphNet constructs a graph to model the relationships between target patches and their neighbors, and adjusts the response strength based on morphological and molecular level similarity, to better characterize the tumor microenvironment. In terms of multimodal interactions, BioMorphNet derives clinical pathway features from spatial transcriptomic data based on a predefined pathway database, serving as a bridge between tissue morphology and gene expression. In addition, a novel learnable pathway module is designed to automatically simulate the biological pathway formation process, providing a complementary representation to existing clinical pathways. Compared with the latest morphology gene multimodal methods, BioMorphNet's average classification metrics improve by 2.67%, 5.48%, and 6.29% for prostate cancer, colorectal cancer, and breast cancer datasets, respectively. BioMorphNet not only classifies tissue categories within WSIs accurately to support tumor localization, but also analyzes differential gene expression between tissue categories based on prediction confidence, contributing to the discovery of potential tumor biomarkers.
comment: 19 pages, 8 figures. This work has been submitted to the IEEE for possible publication
IGAN: A New Inception-based Model for Stable and High-Fidelity Image Synthesis Using Generative Adversarial Networks
Generative Adversarial Networks (GANs) face a significant challenge of striking an optimal balance between high-quality image generation and training stability. Recent techniques, such as DCGAN, BigGAN, and StyleGAN, improve visual fidelity; however, such techniques usually struggle with mode collapse and unstable gradients at high network depth. This paper proposes a novel GAN structural model that incorporates deeper inception-inspired convolution and dilated convolution. This novel model is termed the Inception Generative Adversarial Network (IGAN). The IGAN model generates high-quality synthetic images while maintaining training stability, by reducing mode collapse as well as preventing vanishing and exploding gradients. Our proposed IGAN model achieves the Frechet Inception Distance (FID) of 13.12 and 15.08 on the CUB-200 and ImageNet datasets, respectively, representing a 28-33% improvement in FID over the state-of-the-art GANs. Additionally, the IGAN model attains an Inception Score (IS) of 9.27 and 68.25, reflecting improved image diversity and generation quality. Finally, the two techniques of dropout and spectral normalization are utilized in both the generator and discriminator structures to further mitigate gradient explosion and overfitting. These findings confirm that the IGAN model potentially balances training stability with image generation quality, constituting a scalable and computationally efficient framework for high-fidelity image synthesis.
comment: 11 pages, 6 figures
UM-Text: A Unified Multimodal Model for Image Understanding
With the rapid advancement of image generation, visual text editing using natural language instructions has received increasing attention. The main challenge of this task is to fully understand the instruction and reference image, and thus generate visual text that is style-consistent with the image. Previous methods often involve complex steps of specifying the text content and attributes, such as font size, color, and layout, without considering the stylistic consistency with the reference image. To address this, we propose UM-Text, a unified multimodal model for context understanding and visual text editing by natural language instructions. Specifically, we introduce a Visual Language Model (VLM) to process the instruction and reference image, so that the text content and layout can be elaborately designed according to the context information. To generate an accurate and harmonious visual text image, we further propose the UM-Encoder to combine the embeddings of various condition information, where the combination is automatically configured by VLM according to the input instruction. During training, we propose a regional consistency loss to offer more effective supervision for glyph generation on both latent and RGB space, and design a tailored three-stage training strategy to further enhance model performance. In addition, we contribute the UM-DATA-200K, a large-scale visual text image dataset on diverse scenes for model training. Extensive qualitative and quantitative results on multiple public benchmarks demonstrate that our method achieves state-of-the-art performance.
YOLOBirDrone: Dataset for Bird vs Drone Detection and Classification and a YOLO based enhanced learning architecture
The use of aerial drones for commercial and defense applications has benefited in many ways and is therefore utilized in several different application domains. However, they are also increasingly used for targeted attacks, posing a significant safety challenge and necessitating the development of drone detection systems. Vision-based drone detection systems currently have an accuracy limitation and struggle to distinguish between drones and birds, particularly when the birds are small in size. This research work proposes a novel YOLOBirDrone architecture that improves the detection and classification accuracy of birds and drones. YOLOBirDrone has different components, including an adaptive and extended layer aggregation (AELAN), a multi-scale progressive dual attention module (MPDA), and a reverse MPDA (RMPDA) to preserve shape information and enrich features with local and global spatial and channel information. A large-scale dataset, BirDrone, is also introduced in this article, which includes small and challenging objects for robust aerial object identification. Experimental results demonstrate an improvement in performance metrics through the proposed YOLOBirDrone architecture compared to other state-of-the-art algorithms, with detection accuracy reaching approximately 85% across various scenarios.
comment: 8 pages, 4 figures, and submitted to a journal for review
Deep Exploration of Epoch-wise Double Descent in Noisy Data: Signal Separation, Large Activation, and Benign Overfitting
Deep double descent is one of the key phenomena underlying the generalization capability of deep learning models. In this study, epoch-wise double descent, which is delayed generalization following overfitting, was empirically investigated by focusing on the evolution of internal structures. Fully connected neural networks of three different sizes were trained on the CIFAR-10 dataset with 30% label noise. By decomposing the loss curves into signal contributions from clean and noisy training data, the epoch-wise evolutions of internal signals were analyzed separately. Three main findings were obtained from this analysis. First, the model achieved strong re-generalization on test data even after perfectly fitting noisy training data during the double descent phase, corresponding to a "benign overfitting" state. Second, noisy data were learned after clean data, and as learning progressed, their corresponding internal activations became increasingly separated in outer layers; this enabled the model to overfit only noisy data. Third, a single, very large activation emerged in the shallow layer across all models; this phenomenon is referred as "outliers," "massive activa-tions," and "super activations" in recent large language models and evolves with re-generalization. The magnitude of large activation correlated with input patterns but not with output patterns. These empirical findings directly link the recent key phenomena of "deep double descent," "benign overfitting," and "large activation", and support the proposal of a novel scenario for understanding deep double descent.
comment: 17 pages, 9 figures
Enhancing Image Quality Assessment Ability of LMMs via Retrieval-Augmented Generation
Large Multimodal Models (LMMs) have recently shown remarkable promise in low-level visual perception tasks, particularly in Image Quality Assessment (IQA), demonstrating strong zero-shot capability. However, achieving state-of-the-art performance often requires computationally expensive fine-tuning methods, which aim to align the distribution of quality-related token in output with image quality levels. Inspired by recent training-free works for LMM, we introduce IQARAG, a novel, training-free framework that enhances LMMs' IQA ability. IQARAG leverages Retrieval-Augmented Generation (RAG) to retrieve some semantically similar but quality-variant reference images with corresponding Mean Opinion Scores (MOSs) for input image. These retrieved images and input image are integrated into a specific prompt. Retrieved images provide the LMM with a visual perception anchor for IQA task. IQARAG contains three key phases: Retrieval Feature Extraction, Image Retrieval, and Integration & Quality Score Generation. Extensive experiments across multiple diverse IQA datasets, including KADID, KonIQ, LIVE Challenge, and SPAQ, demonstrate that the proposed IQARAG effectively boosts the IQA performance of LMMs, offering a resource-efficient alternative to fine-tuning for quality assessment.
SnapGen++: Unleashing Diffusion Transformers for Efficient High-Fidelity Image Generation on Edge Devices
Recent advances in diffusion transformers (DiTs) have set new standards in image generation, yet remain impractical for on-device deployment due to their high computational and memory costs. In this work, we present an efficient DiT framework tailored for mobile and edge devices that achieves transformer-level generation quality under strict resource constraints. Our design combines three key components. First, we propose a compact DiT architecture with an adaptive global-local sparse attention mechanism that balances global context modeling and local detail preservation. Second, we propose an elastic training framework that jointly optimizes sub-DiTs of varying capacities within a unified supernetwork, allowing a single model to dynamically adjust for efficient inference across different hardware. Finally, we develop Knowledge-Guided Distribution Matching Distillation, a step-distillation pipeline that integrates the DMD objective with knowledge transfer from few-step teacher models, producing high-fidelity and low-latency generation (e.g., 4-step) suitable for real-time on-device use. Together, these contributions enable scalable, efficient, and high-quality diffusion models for deployment on diverse hardware.
comment: Project page:
ReCo-KD: Region- and Context-Aware Knowledge Distillation for Efficient 3D Medical Image Segmentation
Accurate 3D medical image segmentation is vital for diagnosis and treatment planning, but state-of-the-art models are often too large for clinics with limited computing resources. Lightweight architectures typically suffer significant performance loss. To address these deployment and speed constraints, we propose Region- and Context-aware Knowledge Distillation (ReCo-KD), a training-only framework that transfers both fine-grained anatomical detail and long-range contextual information from a high-capacity teacher to a compact student network. The framework integrates Multi-Scale Structure-Aware Region Distillation (MS-SARD), which applies class-aware masks and scale-normalized weighting to emphasize small but clinically important regions, and Multi-Scale Context Alignment (MS-CA), which aligns teacher-student affinity patterns across feature levels. Implemented on nnU-Net in a backbone-agnostic manner, ReCo-KD requires no custom student design and is easily adapted to other architectures. Experiments on multiple public 3D medical segmentation datasets and a challenging aggregated dataset show that the distilled lightweight model attains accuracy close to the teacher while markedly reducing parameters and inference latency, underscoring its practicality for clinical deployment.
comment: 10 pages
M3SR: Multi-Scale Multi-Perceptual Mamba for Efficient Spectral Reconstruction AAAI 2026
The Mamba architecture has been widely applied to various low-level vision tasks due to its exceptional adaptability and strong performance. Although the Mamba architecture has been adopted for spectral reconstruction, it still faces the following two challenges: (1) Single spatial perception limits the ability to fully understand and analyze hyperspectral images; (2) Single-scale feature extraction struggles to capture the complex structures and fine details present in hyperspectral images. To address these issues, we propose a multi-scale, multi-perceptual Mamba architecture for the spectral reconstruction task, called M3SR. Specifically, we design a multi-perceptual fusion block to enhance the ability of the model to comprehensively understand and analyze the input features. By integrating the multi-perceptual fusion block into a U-Net structure, M3SR can effectively extract and fuse global, intermediate, and local features, thereby enabling accurate reconstruction of hyperspectral images at multiple scales. Extensive quantitative and qualitative experiments demonstrate that the proposed M3SR outperforms existing state-of-the-art methods while incurring a lower computational cost.
comment: Accepted by AAAI 2026
KidVis: Do Multimodal Large Language Models Possess the Visual Perceptual Capabilities of a 6-Year-Old?
While Multimodal Large Language Models (MLLMs) have demonstrated impressive proficiency in high-level reasoning tasks, such as complex diagrammatic interpretation, it remains an open question whether they possess the fundamental visual primitives comparable to human intuition. To investigate this, we introduce KidVis, a novel benchmark grounded in the theory of human visual development. KidVis deconstructs visual intelligence into six atomic capabilities - Concentration, Tracking, Discrimination, Memory, Spatial, and Closure - already possessed by 6-7 year old children, comprising 10 categories of low-semantic-dependent visual tasks. Evaluating 20 state-of-the-art MLLMs against a human physiological baseline reveals a stark performance disparity. Results indicate that while human children achieve a near-perfect average score of 95.32, the state-of-the-art GPT-5 attains only 67.33. Crucially, we observe a "Scaling Law Paradox": simply increasing model parameters fails to yield linear improvements in these foundational visual capabilities. This study confirms that current MLLMs, despite their reasoning prowess, lack the essential physiological perceptual primitives required for generalized visual intelligence.
One-Shot Identification with Different Neural Network Approaches
Convolutional neural networks (CNNs) have been widely used in the computer vision community, significantly improving the state-of-the-art. But learning good features often is computationally expensive in machine learning settings and is especially difficult when there is a lack of data. One-shot learning is one such area where only limited data is available. In one-shot learning, predictions have to be made after seeing only one example from one class, which requires special techniques. In this paper we explore different approaches to one-shot identification tasks in different domains including an industrial application and face recognition. We use a special technique with stacked images and use siamese capsule networks. It is encouraging to see that the approach using capsule architecture achieves strong results and exceeds other techniques on a wide range of datasets from industrial application to face recognition benchmarks while being easy to use and optimise.
comment: 18 pages, Keywords: One-shot learning, Convolutional neural networks, Siamese networks, Capsules, Industrial application
HIPPO: Accelerating Video Large Language Models Inference via Holistic-aware Parallel Speculative Decoding
Speculative decoding (SD) has emerged as a promising approach to accelerate LLM inference without sacrificing output quality. Existing SD methods tailored for video-LLMs primarily focus on pruning redundant visual tokens to mitigate the computational burden of massive visual inputs. However, existing methods do not achieve inference acceleration comparable to text-only LLMs. We observe from extensive experiments that this phenomenon mainly stems from two limitations: (i) their pruning strategies inadequately preserve visual semantic tokens, degrading draft quality and acceptance rates; (ii) even with aggressive pruning (e.g., 90% visual tokens removed), the draft model's remaining inference cost limits overall speedup. To address these limitations, we propose HIPPO, a general holistic-aware parallel speculative decoding framework. Specifically, HIPPO proposes (i) a semantic-aware token preservation method, which fuses global attention scores with local visual semantics to retain semantic information at high pruning ratios; (ii) a video parallel SD algorithm that decouples and overlaps draft generation and target verification phases. Experiments on four video-LLMs across six benchmarks demonstrate HIPPO's effectiveness, yielding up to 3.51x speedup compared to vanilla auto-regressive decoding.
AIMC-Spec: A Benchmark Dataset for Automatic Intrapulse Modulation Classification under Variable Noise Conditions
A lack of standardized datasets has long hindered progress in automatic intrapulse modulation classification (AIMC) - a critical task in radar signal analysis for electronic support systems, particularly under noisy or degraded conditions. AIMC seeks to identify the modulation type embedded within a single radar pulse from its complex in-phase and quadrature (I/Q) representation, enabling automated interpretation of intrapulse structure. This paper introduces AIMC-Spec, a comprehensive synthetic dataset for spectrogram-based image classification, encompassing 33 modulation types across 13 signal-to-noise ratio (SNR) levels. To benchmark AIMC-Spec, five representative deep learning algorithms - ranging from lightweight CNNs and denoising architectures to transformer-based networks - were re-implemented and evaluated under a unified input format. The results reveal significant performance variation, with frequency-modulated (FM) signals classified more reliably than phase or hybrid types, particularly at low SNRs. A focused FM-only test further highlights how modulation type and network architecture influence classifier robustness. AIMC-Spec establishes a reproducible baseline and provides a foundation for future research and standardization in the AIMC domain.
comment: This work is published in IEEE Access DOI: 10.1109/ACCESS.2025.3645091
Improving Zero-shot ADL Recognition with Large Language Models through Event-based Context and Confidence
Unobtrusive sensor-based recognition of Activities of Daily Living (ADLs) in smart homes by processing data collected from IoT sensing devices supports applications such as healthcare, safety, and energy management. Recent zero-shot methods based on Large Language Models (LLMs) have the advantage of removing the reliance on labeled ADL sensor data. However, existing approaches rely on time-based segmentation, which is poorly aligned with the contextual reasoning capabilities of LLMs. Moreover, existing approaches lack methods for estimating prediction confidence. This paper proposes to improve zero-shot ADL recognition with event-based segmentation and a novel method for estimating prediction confidence. Our experimental evaluation shows that event-based segmentation consistently outperforms time-based LLM approaches on complex, realistic datasets and surpasses supervised data-driven methods, even with relatively small LLMs (e.g., Gemma 3 27B). The proposed confidence measure effectively distinguishes correct from incorrect predictions.
Temporal-Enhanced Interpretable Multi-Modal Prognosis and Risk Stratification Framework for Diabetic Retinopathy (TIMM-ProRS)
Diabetic retinopathy (DR), affecting millions globally with projections indicating a significant rise, poses a severe blindness risk and strains healthcare systems. Diagnostic complexity arises from visual symptom overlap with conditions like age-related macular degeneration and hypertensive retinopathy, exacerbated by high misdiagnosis rates in underserved regions. This study introduces TIMM-ProRS, a novel deep learning framework integrating Vision Transformer (ViT), Convolutional Neural Network (CNN), and Graph Neural Network (GNN) with multi-modal fusion. TIMM-ProRS uniquely leverages both retinal images and temporal biomarkers (HbA1c, retinal thickness) to capture multi-modal and temporal dynamics. Evaluated comprehensively across diverse datasets including APTOS 2019 (trained), Messidor-2, RFMiD, EyePACS, and Messidor-1 (validated), the model achieves 97.8\% accuracy and an F1-score of 0.96, demonstrating state-of-the-art performance and outperforming existing methods like RSG-Net and DeepDR. This approach enables early, precise, and interpretable diagnosis, supporting scalable telemedical management and enhancing global eye health sustainability.
Knowledge-based learning in Text-RAG and Image-RAG
This research analyzed and compared the multi-modal approach in the Vision Transformer(EVA-ViT) based image encoder with the LlaMA or ChatGPT LLM to reduce the hallucination problem and detect diseases in chest x-ray images. In this research, we utilized the NIH Chest X-ray image to train the model and compared it in image-based RAG, text-based RAG, and baseline. [3] [5] In a result, the text-based RAG[2] e!ectively reduces the hallucination problem by using external knowledge information, and the image-based RAG improved the prediction con"dence and calibration by using the KNN methods. [4] Moreover, the GPT LLM showed better performance, a low hallucination rate, and better Expected Calibration Error(ECE) than Llama Llama-based model. This research shows the challenge of data imbalance, a complex multi-stage structure, but suggests a large experience environment and a balanced example of use.
comment: 9 pages, 10 figures
FUME: Fused Unified Multi-Gas Emission Network for Livestock Rumen Acidosis Detection
Ruminal acidosis is a prevalent metabolic disorder in dairy cattle causing significant economic losses and animal welfare concerns. Current diagnostic methods rely on invasive pH measurement, limiting scalability for continuous monitoring. We present FUME (Fused Unified Multi-gas Emission Network), the first deep learning approach for rumen acidosis detection from dual-gas optical imaging under in vitro conditions. Our method leverages complementary carbon dioxide (CO2) and methane (CH4) emission patterns captured by infrared cameras to classify rumen health into Healthy, Transitional, and Acidotic states. FUME employs a lightweight dual-stream architecture with weight-shared encoders, modality-specific self-attention, and channel attention fusion, jointly optimizing gas plume segmentation and classification of dairy cattle health. We introduce the first dual-gas OGI dataset comprising 8,967 annotated frames across six pH levels with pixel-level segmentation masks. Experiments demonstrate that FUME achieves 80.99% mIoU and 98.82% classification accuracy while using only 1.28M parameters and 1.97G MACs--outperforming state-of-the-art methods in segmentation quality with 10x lower computational cost. Ablation studies reveal that CO2 provides the primary discriminative signal and dual-task learning is essential for optimal performance. Our work establishes the feasibility of gas emission-based livestock health monitoring, paving the way for practical, in vitro acidosis detection systems. Codes are available at https://github.com/taminulislam/fume.
comment: 10 pages, 5 figures
MobiDiary: Autoregressive Action Captioning with Wearable Devices and Wireless Signals
Human Activity Recognition (HAR) in smart homes is critical for health monitoring and assistive living. While vision-based systems are common, they face privacy concerns and environmental limitations (e.g., occlusion). In this work, we present MobiDiary, a framework that generates natural language descriptions of daily activities directly from heterogeneous physical signals (specifically IMU and Wi-Fi). Unlike conventional approaches that restrict outputs to pre-defined labels, MobiDiary produces expressive, human-readable summaries. To bridge the semantic gap between continuous, noisy physical signals and discrete linguistic descriptions, we propose a unified sensor encoder. Instead of relying on modality-specific engineering, we exploit the shared inductive biases of motion-induced signals--where both inertial and wireless data reflect underlying kinematic dynamics. Specifically, our encoder utilizes a patch-based mechanism to capture local temporal correlations and integrates heterogeneous placement embedding to unify spatial contexts across different sensors. These unified signal tokens are then fed into a Transformer-based decoder, which employs an autoregressive mechanism to generate coherent action descriptions word-by-word. We comprehensively evaluate our approach on multiple public benchmarks (XRF V2, UWash, and WiFiTAD). Experimental results demonstrate that MobiDiary effectively generalizes across modalities, achieving state-of-the-art performance on captioning metrics (e.g., BLEU@4, CIDEr, RMC) and outperforming specialized baselines in continuous action understanding.
comment: Under Review
Unified Multi-Site Multi-Sequence Brain MRI Harmonization Enriched by Biomedical Semantic Style
Aggregating multi-site brain MRI data can enhance deep learning model training, but also introduces non-biological heterogeneity caused by site-specific variations (e.g., differences in scanner vendors, acquisition parameters, and imaging protocols) that can undermine generalizability. Recent retrospective MRI harmonization seeks to reduce such site effects by standardizing image style (e.g., intensity, contrast, noise patterns) while preserving anatomical content. However, existing methods often rely on limited paired traveling-subject data or fail to effectively disentangle style from anatomy. Furthermore, most current approaches address only single-sequence harmonization, restricting their use in real-world settings where multi-sequence MRI is routinely acquired. To this end, we introduce MMH, a unified framework for multi-site multi-sequence brain MRI harmonization that leverages biomedical semantic priors for sequence-aware style alignment. MMH operates in two stages: (1) a diffusion-based global harmonizer that maps MR images to a sequence-specific unified domain using style-agnostic gradient conditioning, and (2) a target-specific fine-tuner that adapts globally aligned images to desired target domains. A tri-planar attention BiomedCLIP encoder aggregates multi-view embeddings to characterize volumetric style information, allowing explicit disentanglement of image styles from anatomy without requiring paired data. Evaluations on 4,163 T1- and T2-weighted MRIs demonstrate MMH's superior harmonization over state-of-the-art methods in image feature clustering, voxel-level comparison, tissue segmentation, and downstream age and site classification.
comment: 15 pages, 10 figures. Extended version of a paper published at MICCAI 2025 (DOI: 10.1007/978-3-032-04947-6_65)
Route, Retrieve, Reflect, Repair: Self-Improving Agentic Framework for Visual Detection and Linguistic Reasoning in Medical Imaging
Medical image analysis increasingly relies on large vision-language models (VLMs), yet most systems remain single-pass black boxes that offer limited control over reasoning, safety, and spatial grounding. We propose R^4, an agentic framework that decomposes medical imaging workflows into four coordinated agents: a Router that configures task- and specialization-aware prompts from the image, patient history, and metadata; a Retriever that uses exemplar memory and pass@k sampling to jointly generate free-text reports and bounding boxes; a Reflector that critiques each draft-box pair for key clinical error modes (negation, laterality, unsupported claims, contradictions, missing findings, and localization errors); and a Repairer that iteratively revises both narrative and spatial outputs under targeted constraints while curating high-quality exemplars for future cases. Instantiated on chest X-ray analysis with multiple modern VLM backbones and evaluated on report generation and weakly supervised detection, R^4 consistently boosts LLM-as-a-Judge scores by roughly +1.7-+2.5 points and mAP50 by +2.5-+3.5 absolute points over strong single-VLM baselines, without any gradient-based fine-tuning. These results show that agentic routing, reflection, and repair can turn strong but brittle VLMs into more reliable and better grounded tools for clinical image interpretation. Our code can be found at: https://github.com/faiyazabdullah/MultimodalMedAgent
Human-inspired Global-to-Parallel Multi-scale Encoding for Lightweight Vision Models
Lightweight vision networks have witnessed remarkable progress in recent years, yet achieving a satisfactory balance among parameter scale, computational overhead, and task performance remains difficult. Although many existing lightweight models manage to reduce computation considerably, they often do so at the expense of a substantial increase in parameter count (e.g., LSNet, MobileMamba), which still poses obstacles for deployment on resource-limited devices. In parallel, some studies attempt to draw inspiration from human visual perception, but their modeling tends to oversimplify the visual process, making it hard to reflect how perception truly operates. Revisiting the cooperative mechanism of the human visual system, we propose GPM (Global-to-Parallel Multi-scale Encoding). GPM first employs a Global Insight Generator (GIG) to extract holistic cues, and subsequently processes features of different scales through parallel branches: LSAE emphasizes mid-/large-scale semantic relations, while IRB (Inverted Residual Block) preserves fine-grained texture information, jointly enabling coherent representation of global and local features. As such, GPM conforms to two characteristic behaviors of human vision perceiving the whole before focusing on details, and maintaining broad contextual awareness even during local attention. Built upon GPM, we further develop the lightweight H-GPE network. Experiments on image classification, object detection, and semantic segmentation show that H-GPE achieves strong performance while maintaining a balanced footprint in both FLOPs and parameters, delivering a more favorable accuracy-efficiency trade-off compared with recent state-of-the-art lightweight models.
comment: 23 pages, 5 figures
GI-Bench: A Panoramic Benchmark Revealing the Knowledge-Experience Dissociation of Multimodal Large Language Models in Gastrointestinal Endoscopy Against Clinical Standards
Multimodal Large Language Models (MLLMs) show promise in gastroenterology, yet their performance against comprehensive clinical workflows and human benchmarks remains unverified. To systematically evaluate state-of-the-art MLLMs across a panoramic gastrointestinal endoscopy workflow and determine their clinical utility compared with human endoscopists. We constructed GI-Bench, a benchmark encompassing 20 fine-grained lesion categories. Twelve MLLMs were evaluated across a five-stage clinical workflow: anatomical localization, lesion identification, diagnosis, findings description, and management. Model performance was benchmarked against three junior endoscopists and three residency trainees using Macro-F1, mean Intersection-over-Union (mIoU), and multi-dimensional Likert scale. Gemini-3-Pro achieved state-of-the-art performance. In diagnostic reasoning, top-tier models (Macro-F1 0.641) outperformed trainees (0.492) and rivaled junior endoscopists (0.727; p>0.05). However, a critical "spatial grounding bottleneck" persisted; human lesion localization (mIoU >0.506) significantly outperformed the best model (0.345; p<0.05). Furthermore, qualitative analysis revealed a "fluency-accuracy paradox": models generated reports with superior linguistic readability compared with humans (p<0.05) but exhibited significantly lower factual correctness (p<0.05) due to "over-interpretation" and hallucination of visual features.GI-Bench maintains a dynamic leaderboard that tracks the evolving performance of MLLMs in clinical endoscopy. The current rankings and benchmark results are available at https://roterdl.github.io/GIBench/.
comment: 45 pages, 17 figures, 6 tables. Leaderboard available at: https://roterdl.github.io/GIBench/ . Includes supplementary material
Second-order Gaussian directional derivative representations for image high-resolution corner detection
Corner detection is widely used in various computer vision tasks, such as image matching and 3D reconstruction. Our research indicates that there are theoretical flaws in Zhang et al.'s use of a simple corner model to obtain a series of corner characteristics, as the grayscale information of two adjacent corners can affect each other. In order to address the above issues, a second-order Gaussian directional derivative (SOGDD) filter is used in this work to smooth two typical high-resolution angle models (i.e. END-type and L-type models). Then, the SOGDD representations of these two corner models were derived separately, and many characteristics of high-resolution corners were discovered, which enabled us to demonstrate how to select Gaussian filtering scales to obtain intensity variation information from images, accurately depicting adjacent corners. In addition, a new high-resolution corner detection method for images has been proposed for the first time, which can accurately detect adjacent corner points. The experimental results have verified that the proposed method outperforms state-of-the-art methods in terms of localization error, robustness to image blur transformation, image matching, and 3D reconstruction.
Instruction-Driven 3D Facial Expression Generation and Transition
A 3D avatar typically has one of six cardinal facial expressions. To simulate realistic emotional variation, we should be able to render a facial transition between two arbitrary expressions. This study presents a new framework for instruction-driven facial expression generation that produces a 3D face and, starting from an image of the face, transforms the facial expression from one designated facial expression to another. The Instruction-driven Facial Expression Decomposer (IFED) module is introduced to facilitate multimodal data learning and capture the correlation between textual descriptions and facial expression features. Subsequently, we propose the Instruction to Facial Expression Transition (I2FET) method, which leverages IFED and a vertex reconstruction loss function to refine the semantic comprehension of latent vectors, thus generating a facial expression sequence according to the given instruction. Lastly, we present the Facial Expression Transition model to generate smooth transitions between facial expressions. Extensive evaluation suggests that the proposed model outperforms state-of-the-art methods on the CK+ and CelebV-HQ datasets. The results show that our framework can generate facial expression trajectories according to text instruction. Considering that text prompts allow us to make diverse descriptions of human emotional states, the repertoire of facial expressions and the transitions between them can be expanded greatly. We expect our framework to find various practical applications More information about our project can be found at https://vohoanganh.github.io/tg3dfet/
CogniMap3D: Cognitive 3D Mapping and Rapid Retrieval
We present CogniMap3D, a bioinspired framework for dynamic 3D scene understanding and reconstruction that emulates human cognitive processes. Our approach maintains a persistent memory bank of static scenes, enabling efficient spatial knowledge storage and rapid retrieval. CogniMap3D integrates three core capabilities: a multi-stage motion cue framework for identifying dynamic objects, a cognitive mapping system for storing, recalling, and updating static scenes across multiple visits, and a factor graph optimization strategy for refining camera poses. Given an image stream, our model identifies dynamic regions through motion cues with depth and camera pose priors, then matches static elements against its memory bank. When revisiting familiar locations, CogniMap3D retrieves stored scenes, relocates cameras, and updates memory with new observations. Evaluations on video depth estimation, camera pose reconstruction, and 3D mapping tasks demonstrate its state-of-the-art performance, while effectively supporting continuous scene understanding across extended sequences and multiple visits.
comment: Project Page: https://github.com/Brack-Wang/cognimap3D
Towards Cross-Platform Generalization: Domain Adaptive 3D Detection with Augmentation and Pseudo-Labeling
This technical report represents the award-winning solution to the Cross-platform 3D Object Detection task in the RoboSense2025 Challenge. Our approach is built upon PVRCNN++, an efficient 3D object detection framework that effectively integrates point-based and voxel-based features. On top of this foundation, we improve cross-platform generalization by narrowing domain gaps through tailored data augmentation and a self-training strategy with pseudo-labels. These enhancements enabled our approach to secure the 3rd place in the challenge, achieving a 3D AP of 62.67% for the Car category on the phase-1 target domain, and 58.76% and 49.81% for Car and Pedestrian categories respectively on the phase-2 target domain.
Representation Learning with Semantic-aware Instance and Sparse Token Alignments
Medical contrastive vision-language pre-training (VLP) has demonstrated significant potential in improving performance on downstream tasks. Traditional approaches typically employ contrastive learning, treating paired image-report samples as positives and unpaired ones as negatives. However, in medical datasets, there can be substantial similarities between images or reports from different patients. Rigidly treating all unpaired samples as negatives, can disrupt the underlying semantic structure and negatively impact the quality of the learned representations. In this paper, we propose a multi-level alignment framework, Representation Learning with Semantic-aware Instance and Sparse Token Alignments (SISTA) by exploiting the semantic correspondence between medical image and radiology reports at two levels, i.e., image-report and patch-word levels. Specifically, we improve the conventional contrastive learning by incorporating inter-report similarity to eliminate the false negatives and introduce a method to effectively align image patches with relevant word tokens. Experimental results demonstrate the effectiveness of the proposed framework in improving transfer performance across different datasets on three downstream tasks: image classification, image segmentation, and object detection. Notably, our framework achieves significant improvements in fine-grained tasks even with limited labeled data. Codes and pre-trained models will be made available.
comment: Under review, 8 pages
A Hardware-Algorithm Co-Designed Framework for HDR Imaging and Dehazing in Extreme Rocket Launch Environments
Quantitative optical measurement of critical mechanical parameters -- such as plume flow fields, shock wave structures, and nozzle oscillations -- during rocket launch faces severe challenges due to extreme imaging conditions. Intense combustion creates dense particulate haze and luminance variations exceeding 120 dB, degrading image data and undermining subsequent photogrammetric and velocimetric analyses. To address these issues, we propose a hardware-algorithm co-design framework that combines a custom Spatially Varying Exposure (SVE) sensor with a physics-aware dehazing algorithm. The SVE sensor acquires multi-exposure data in a single shot, enabling robust haze assessment without relying on idealized atmospheric models. Our approach dynamically estimates haze density, performs region-adaptive illumination optimization, and applies multi-scale entropy-constrained fusion to effectively separate haze from scene radiance. Validated on real launch imagery and controlled experiments, the framework demonstrates superior performance in recovering physically accurate visual information of the plume and engine region. This offers a reliable image basis for extracting key mechanical parameters, including particle velocity, flow instability frequency, and structural vibration, thereby supporting precise quantitative analysis in extreme aerospace environments.
comment: The paper has been accepted by Acta Mechanica Sinica
Robust Subpixel Localization of Diagonal Markers in Large-Scale Navigation via Multi-Layer Screening and Adaptive Matching
This paper proposes a robust, high-precision positioning methodology to address localization failures arising from complex background interference in large-scale flight navigation and the computational inefficiency inherent in conventional sliding window matching techniques. The proposed methodology employs a three-tiered framework incorporating multi-layer corner screening and adaptive template matching. Firstly, dimensionality is reduced through illumination equalization and structural information extraction. A coarse-to-fine candidate selection strategy minimizes sliding window computational costs, enabling rapid estimation of the marker's position. Finally, adaptive templates are generated for candidate points, achieving subpixel precision through improved template matching with correlation coefficient extremum fitting. Experimental results demonstrate the method's effectiveness in extracting and localizing diagonal markers in complex, large-scale environments, making it ideal for field-of-view measurement in navigation tasks.
comment: This paper has been accepted by Applied Optics
Instance-Aligned Captions for Explainable Video Anomaly Detection
Explainable video anomaly detection (VAD) is crucial for safety-critical applications, yet even with recent progress, much of the research still lacks spatial grounding, making the explanations unverifiable. This limitation is especially pronounced in multi-entity interactions, where existing explainable VAD methods often produce incomplete or visually misaligned descriptions, reducing their trustworthiness. To address these challenges, we introduce instance-aligned captions that link each textual claim to specific object instances with appearance and motion attributes. Our framework captures who caused the anomaly, what each entity was doing, whom it affected, and where the explanationis grounded, enabling verifiable and actionable reasoning. We annotate eight widely used VAD benchmarks and extend the 360-degree egocentric dataset, VIEW360, with 868 additional videos, eight locations, and four new anomaly types, creating VIEW360+, a comprehensive testbed for explainable VAD. Experiments show that our instance-level spatially grounded captions reveal significant limitations in current LLM- and VLM-based methods while providing a robust benchmark for future research in trustworthy and interpretable anomaly detection.
Where Does Vision Meet Language? Understanding and Refining Visual Fusion in MLLMs via Contrastive Attention
Multimodal Large Language Models (MLLMs) have achieved remarkable progress in vision-language understanding, yet how they internally integrate visual and textual information remains poorly understood. To bridge this gap, we perform a systematic layer-wise masking analysis across multiple architectures, revealing how visual-text fusion evolves within MLLMs. The results show that fusion emerges at several specific layers rather than being uniformly distributed across the network, and certain models exhibit a late-stage "review" phenomenon where visual signals are reactivated before output generation. Besides, we further analyze layer-wise attention evolution and observe persistent high-attention noise on irrelevant regions, along with gradually increasing attention on text-aligned areas. Guided by these insights, we introduce a training-free contrastive attention framework that models the transformation between early fusion and final layers to highlight meaningful attention shifts. Extensive experiments across various MLLMs and benchmarks validate our analysis and demonstrate that the proposed approach improves multimodal reasoning performance. Code will be released.
Subspace Alignment for Vision-Language Model Test-time Adaptation
Vision-language models (VLMs), despite their extraordinary zero-shot capabilities, are vulnerable to distribution shifts. Test-time adaptation (TTA) emerges as a predominant strategy to adapt VLMs to unlabeled test data on the fly. However, existing TTA methods heavily rely on zero-shot predictions as pseudo-labels for self-training, which can be unreliable under distribution shifts and misguide adaptation due to two fundamental limitations. First (Modality Gap), distribution shifts induce gaps between visual and textual modalities, making cross-modal relations inaccurate. Second (Visual Nuisance), visual embeddings encode rich but task-irrelevant noise that often overwhelms task-specific semantics under distribution shifts. To address these limitations, we propose SubTTA, which aligns the semantic subspaces of both modalities to enhance zero-shot predictions to better guide the TTA process. To bridge the modality gap, SubTTA extracts the principal subspaces of both modalities and aligns the visual manifold to the textual semantic anchor by minimizing their chordal distance. To eliminate visual nuisance, SubTTA projects the aligned visual features onto the task-specific textual subspace, which filters out task-irrelevant noise by constraining visual embeddings within the valid semantic span, and standard TTA is further performed on the purified space to refine the decision boundaries. Extensive experiments on various benchmarks and VLM architectures demonstrate the effectiveness of SubTTA, yielding an average improvement of 2.24% over state-of-the-art TTA methods.
comment: 17 pages, 10 figures
How Do Optical Flow and Textual Prompts Collaborate to Assist in Audio-Visual Semantic Segmentation?
Audio-visual semantic segmentation (AVSS) represents an extension of the audio-visual segmentation (AVS) task, necessitating a semantic understanding of audio-visual scenes beyond merely identifying sound-emitting objects at the visual pixel level. Contrary to a previous methodology, by decomposing the AVSS task into two discrete subtasks by initially providing a prompted segmentation mask to facilitate subsequent semantic analysis, our approach innovates on this foundational strategy. We introduce a novel collaborative framework, \textit{S}tepping \textit{S}tone \textit{P}lus (SSP), which integrates optical flow and textual prompts to assist the segmentation process. In scenarios where sound sources frequently coexist with moving objects, our pre-mask technique leverages optical flow to capture motion dynamics, providing essential temporal context for precise segmentation. To address the challenge posed by stationary sound-emitting objects, such as alarm clocks, SSP incorporates two specific textual prompts: one identifies the category of the sound-emitting object, and the other provides a broader description of the scene. Additionally, we implement a visual-textual alignment module (VTA) to facilitate cross-modal integration, delivering more coherent and contextually relevant semantic interpretations. Our training regimen involves a post-mask technique aimed at compelling the model to learn the diagram of the optical flow. Experimental results demonstrate that SSP outperforms existing AVS methods, delivering efficient and precise segmentation results.
PathoGen: Diffusion-Based Synthesis of Realistic Lesions in Histopathology Images
The development of robust artificial intelligence models for histopathology diagnosis is severely constrained by the scarcity of expert-annotated lesion data, particularly for rare pathologies and underrepresented disease subtypes. While data augmentation offers a potential solution, existing methods fail to generate sufficiently realistic lesion morphologies that preserve the complex spatial relationships and cellular architectures characteristic of histopathological tissues. Here we present PathoGen, a diffusion-based generative model that enables controllable, high-fidelity inpainting of lesions into benign histopathology images. Unlike conventional augmentation techniques, PathoGen leverages the iterative refinement process of diffusion models to synthesize lesions with natural tissue boundaries, preserved cellular structures, and authentic staining characteristics. We validate PathoGen across four diverse datasets representing distinct diagnostic challenges: kidney, skin, breast, and prostate pathology. Quantitative assessment confirms that PathoGen outperforms state-of-the-art generative baselines, including conditional GAN and Stable Diffusion, in image fidelity and distributional similarity. Crucially, we show that augmenting training sets with PathoGen-synthesized lesions enhances downstream segmentation performance compared to traditional geometric augmentations, particularly in data-scarce regimes. Besides, by simultaneously generating realistic morphology and pixel-level ground truth, PathoGen effectively overcomes the manual annotation bottleneck. This approach offers a scalable pathway for developing generalizable medical AI systems despite limited expert-labeled data.
comment: 17 pages, 5 figures
From Prompts to Deployment: Auto-Curated Domain-Specific Dataset Generation via Diffusion Models WACV 2026
In this paper, we present an automated pipeline for generating domain-specific synthetic datasets with diffusion models, addressing the distribution shift between pre-trained models and real-world deployment environments. Our three-stage framework first synthesizes target objects within domain-specific backgrounds through controlled inpainting. The generated outputs are then validated via a multi-modal assessment that integrates object detection, aesthetic scoring, and vision-language alignment. Finally, a user-preference classifier is employed to capture subjective selection criteria. This pipeline enables the efficient construction of high-quality, deployable datasets while reducing reliance on extensive real-world data collection.
comment: To appear in the Workshop on Synthetic & Adversarial ForEnsics (SAFE), WACV 2026 (oral presentation)
Changes in Visual Attention Patterns for Detection Tasks due to Dependencies on Signal and Background Spatial Frequencies
We aim to investigate the impact of image and signal properties on visual attention mechanisms during a signal detection task in digital images. The application of insight yielded from this work spans many areas of digital imaging where signal or pattern recognition is involved in complex heterogenous background. We used simulated tomographic breast images as the platform to investigate this question. While radiologists are highly effective at analyzing medical images to detect and diagnose diseases, misdiagnosis still occurs. We selected digital breast tomosynthesis (DBT) images as a sample medical images with different breast densities and structures using digital breast phantoms (Bakic and XCAT). Two types of lesions (with distinct spatial frequency properties) were randomly inserted in the phantoms during projections to generate abnormal cases. Six human observers participated in observer study designed for a locating and detection of an 3-mm sphere lesion and 6-mm spicule lesion in reconstructed in-plane DBT slices. We collected eye-gaze data to estimate gaze metrics and to examine differences in visual attention mechanisms. We found that detection performance in complex visual environments is strongly constrained by later perceptual stages, with decision failures accounting for the largest proportion of errors. Signal detectability is jointly influenced by both target morphology and background complexity, revealing a critical interaction between local signal features and global anatomical noise. Increased fixation duration on spiculated lesions suggests that visual attention is differentially engaged depending on background and signal spatial frequency dependencies.
comment: 21 pages, 7 images
GOUHFI 2.0: A Next-Generation Toolbox for Brain Segmentation and Cortex Parcellation at Ultra-High Field MRI
Ultra-High Field MRI (UHF-MRI) is increasingly used in large-scale neuroimaging studies, yet automatic brain segmentation and cortical parcellation remain challenging due to signal inhomogeneities, heterogeneous contrasts and resolutions, and the limited availability of tools optimized for UHF data. Standard software packages such as FastSurferVINN and SynthSeg+ often yield suboptimal results when applied directly to UHF images, thereby restricting region-based quantitative analyses. To address this need, we introduce GOUHFI 2.0, an updated implementation of GOUHFI that incorporates increased training data variability and additional functionalities, including cortical parcellation and volumetry. GOUHFI 2.0 preserves the contrast- and resolution-agnostic design of the original toolbox while introducing two independently trained 3D U-Net segmentation tasks. The first performs whole-brain segmentation into 35 labels across contrasts, resolutions, field strengths and populations, using a domain-randomization strategy and a training dataset of 238 subjects. Using the same training data, the second network performs cortical parcellation into 62 labels following the Desikan-Killiany-Tourville (DKT) protocol. Across multiple datasets, GOUHFI 2.0 demonstrated improved segmentation accuracy relative to the original toolbox, particularly in heterogeneous cohorts, and produced reliable cortical parcellations. In addition, the integrated volumetry pipeline yielded results consistent with standard volumetric workflows. Overall, GOUHFI 2.0 provides a comprehensive solution for brain segmentation, parcellation and volumetry across field strengths, and constitutes the first deep-learning toolbox enabling robust cortical parcellation at UHF-MRI.
Instance camera focus prediction for crystal agglomeration classification
Agglomeration refers to the process of crystal clustering due to interparticle forces. Crystal agglomeration analysis from microscopic images is challenging due to the inherent limitations of two-dimensional imaging. Overlapping crystals may appear connected even when located at different depth layers. Because optical microscopes have a shallow depth of field, crystals that are in-focus and out-of-focus in the same image typically reside on different depth layers and do not constitute true agglomeration. To address this, we first quantified camera focus with an instance camera focus prediction network to predict 2 class focus level that aligns better with visual observations than traditional image processing focus measures. Then an instance segmentation model is combined with the predicted focus level for agglomeration classification. Our proposed method has a higher agglomeration classification and segmentation accuracy than the baseline models on ammonium perchlorate crystal and sugar crystal dataset.
SAM-pose2seg: Pose-Guided Human Instance Segmentation in Crowds
Segment Anything (SAM) provides an unprecedented foundation for human segmentation, but may struggle under occlusion, where keypoints may be partially or fully invisible. We adapt SAM 2.1 for pose-guided segmentation with minimal encoder modifications, retaining its strong generalization. Using a fine-tuning strategy called PoseMaskRefine, we incorporate pose keypoints with high visibility into the iterative correction process originally employed by SAM, yielding improved robustness and accuracy across multiple datasets. During inference, we simplify prompting by selecting only the three keypoints with the highest visibility. This strategy reduces sensitivity to common errors, such as missing body parts or misclassified clothing, and allows accurate mask prediction from as few as a single keypoint. Our results demonstrate that pose-guided fine-tuning of SAM enables effective, occlusion-aware human segmentation while preserving the generalization capabilities of the original model. The code and pretrained models will be available at https://mirapurkrabek.github.io/BBox-MaskPose.
comment: GitHub: https://github.com/MiraPurkrabek/BBoxMaskPose/
Thermo-LIO: A Novel Multi-Sensor Integrated System for Structural Health Monitoring
Traditional two-dimensional thermography, despite being non-invasive and useful for defect detection in the construction field, is limited in effectively assessing complex geometries, inaccessible areas, and subsurface defects. This paper introduces Thermo-LIO, a novel multi-sensor system that can enhance Structural Health Monitoring (SHM) by fusing thermal imaging with high-resolution LiDAR. To achieve this, the study first develops a multimodal fusion method combining thermal imaging and LiDAR, enabling precise calibration and synchronization of multimodal data streams to create accurate representations of temperature distributions in buildings. Second, it integrates this fusion approach with LiDAR-Inertial Odometry (LIO), enabling full coverage of large-scale structures and allowing for detailed monitoring of temperature variations and defect detection across inspection cycles. Experimental validations, including case studies on a bridge and a hall building, demonstrate that Thermo-LIO can detect detailed thermal anomalies and structural defects more accurately than traditional methods. The system enhances diagnostic precision, enables real-time processing, and expands inspection coverage, highlighting the crucial role of multimodal sensor integration in advancing SHM methodologies for large-scale civil infrastructure.
comment: 27pages,12figures
Variance-Penalized MC-Dropout as a Learned Smoothing Prior for Brain Tumour Segmentation
Brain tumor segmentation is essential for diagnosis and treatment planning, yet many CNN and U-Net based approaches produce noisy boundaries in regions of tumor infiltration. We introduce UAMSA-UNet, an Uncertainty-Aware Multi-Scale Attention-based Bayesian U-Net that in- stead leverages Monte Carlo Dropout to learn a data-driven smoothing prior over its predictions, while fusing multi-scale features and attention maps to capture both fine details and global context. Our smoothing-regularized loss augments binary cross-entropy with a variance penalty across stochas- tic forward passes, discouraging spurious fluctuations and yielding spatially coherent masks. On BraTS2023, UAMSA- UNet improves Dice Similarity Coefficient by up to 3.3% and mean IoU by up to 2.7% over U-Net; on BraTS2024, it delivers up to 4.5% Dice and 4.0% IoU gains over the best baseline. Remarkably, it also reduces FLOPs by 42.5% rel- ative to U-Net++ while maintaining higher accuracy. These results demonstrate that, by combining multi-scale attention with a learned smoothing prior, UAMSA-UNet achieves both better segmentation quality and computational efficiency, and provides a flexible foundation for future integration with transformer-based modules for further enhanced segmenta- tion results.
comment: Accepted by ISBI 2026
DriftGuard: A Hierarchical Framework for Concept Drift Detection and Remediation in Supply Chain Forecasting
Supply chain forecasting models degrade over time as real-world conditions change. Promotions shift, consumer preferences evolve, and supply disruptions alter demand patterns, causing what is known as concept drift. This silent degradation leads to stockouts or excess inventory without triggering any system warnings. Current industry practice relies on manual monitoring and scheduled retraining every 3-6 months, which wastes computational resources during stable periods while missing rapid drift events. Existing academic methods focus narrowly on drift detection without addressing diagnosis or remediation, and they ignore the hierarchical structure inherent in supply chain data. What retailers need is an end-to-end system that detects drift early, explains its root causes, and automatically corrects affected models. We propose DriftGuard, a five-module framework that addresses the complete drift lifecycle. The system combines an ensemble of four complementary detection methods, namely error-based monitoring, statistical tests, autoencoder anomaly detection, and Cumulative Sum (CUSUM) change-point analysis, with hierarchical propagation analysis to identify exactly where drift occurs across product lines. Once detected, Shapley Additive Explanations (SHAP) analysis diagnoses the root causes, and a cost-aware retraining strategy selectively updates only the most affected models. Evaluated on over 30,000 time series from the M5 retail dataset, DriftGuard achieves 97.8% detection recall within 4.2 days and delivers up to 417 return on investment through targeted remediation.
W-DUALMINE: Reliability-Weighted Dual-Expert Fusion With Residual Correlation Preservation for Medical Image Fusion
Medical image fusion integrates complementary information from multiple imaging modalities to improve clinical interpretation. However, existing deep learningbased methods, including recent spatial-frequency frameworks such as AdaFuse and ASFE-Fusion, often suffer from a fundamental trade-off between global statistical similaritymeasured by correlation coefficient (CC) and mutual information (MI)and local structural fidelity. This paper proposes W-DUALMINE, a reliability-weighted dual-expert fusion framework designed to explicitly resolve this trade-off through architectural constraints and a theoretically grounded loss design. The proposed method introduces dense reliability maps for adaptive modality weighting, a dual-expert fusion strategy combining a global-context spatial expert and a wavelet-domain frequency expert, and a soft gradient-based arbitration mechanism. Furthermore, we employ a residual-to-average fusion paradigm that guarantees the preservation of global correlation while enhancing local details. Extensive experiments on CT-MRI, PET-MRI, and SPECT-MRI datasets demonstrate that W-DUALMINE consistently outperforms AdaFuse and ASFE-Fusion in CC and MI metrics while
Comprehensive Machine Learning Benchmarking for Fringe Projection Profilometry with Photorealistic Synthetic Data
Machine learning approaches for fringe projection profilometry (FPP) are hindered by the lack of large, diverse datasets and comprehensive benchmarking protocols. This paper introduces the first open-source, photorealistic synthetic dataset for FPP, generated using NVIDIA Isaac Sim with 15,600 fringe images and 300 depth reconstructions across 50 diverse objects. We benchmark four neural network architectures (UNet, Hformer, ResUNet, Pix2Pix) on single-shot depth reconstruction, revealing that all models achieve similar performance (58-77 mm RMSE) despite substantial architectural differences. Our results demonstrate fundamental limitations of direct fringe-to-depth mapping without explicit phase information, with reconstruction errors approaching 75-95\% of the typical object depth range. This resource provides standardized evaluation protocols enabling systematic comparison and development of learning-based FPP approaches.
Adaptive few-shot learning for robust part quality classification in two-photon lithography
Two-photon lithography (TPL) is an advanced additive manufacturing (AM) technique for fabricating high-precision micro-structures. While computer vision (CV) is proofed for automated quality control, existing models are often static, rendering them ineffective in dynamic manufacturing environments. These models typically cannot detect new, unseen defect classes, be efficiently updated from scarce data, or adapt to new part geometries. To address this gap, this paper presents an adaptive CV framework for the entire life-cycle of quality model maintenance. The proposed framework is built upon a same, scale-robust backbone model and integrates three key methodologies: (1) a statistical hypothesis testing framework based on Linear Discriminant Analysis (LDA) for novelty detection, (2) a two-stage, rehearsal-based strategy for few-shot incremental learning, and (3) a few-shot Domain-Adversarial Neural Network (DANN) for few-shot domain adaptation. The framework was evaluated on a TPL dataset featuring hemisphere as source domain and cube as target domain structures, with each domain categorized into good, minor damaged, and damaged quality classes. The hypothesis testing method successfully identified new class batches with 99-100% accuracy. The incremental learning method integrated a new class to 92% accuracy using only K=20 samples. The domain adaptation model bridged the severe domain gap, achieving 96.19% accuracy on the target domain using only K=5 shots. These results demonstrate a robust and data-efficient solution for deploying and maintaining CV models in evolving production scenarios.
SemiETPicker: Fast and Label-Efficient Particle Picking for CryoET Tomography Using Semi-Supervised Learning
Cryogenic Electron Tomography (CryoET) combined with sub-volume averaging (SVA) is the only imaging modality capable of resolving protein structures inside cells at molecular resolution. Particle picking, the task of localizing and classifying target proteins in 3D CryoET volumes, remains the main bottleneck. Due to the reliance on time-consuming manual labels, the vast reserve of unlabeled tomograms remains underutilized. In this work, we present a fast, label-efficient semi-supervised framework that exploits this untapped data. Our framework consists of two components: (i) an end-to-end heatmap-supervised detection model inspired by keypoint detection, and (ii) a teacher-student co-training mechanism that enhances performance under sparse labeling conditions. Furthermore, we introduce multi-view pseudo-labeling and a CryoET-specific DropBlock augmentation strategy to further boost performance. Extensive evaluations on the large-scale CZII dataset show that our approach improves F1 by 10% over supervised baselines, underscoring the promise of semi-supervised learning for leveraging unlabeled CryoET data.
comment: IEEE International Symposium on Biomedical Imaging (ISBI) 2026
FilmSceneDesigner: Chaining Set Design for Procedural Film Scene Generation
Film set design plays a pivotal role in cinematic storytelling and shaping the visual atmosphere. However, the traditional process depends on expert-driven manual modeling, which is labor-intensive and time-consuming. To address this issue, we introduce FilmSceneDesigner, an automated scene generation system that emulates professional film set design workflow. Given a natural language description, including scene type, historical period, and style, we design an agent-based chaining framework to generate structured parameters aligned with film set design workflow, guided by prompt strategies that ensure parameter accuracy and coherence. On the other hand, we propose a procedural generation pipeline which executes a series of dedicated functions with the structured parameters for floorplan and structure generation, material assignment, door and window placement, and object retrieval and layout, ultimately constructing a complete film scene from scratch. Moreover, to enhance cinematic realism and asset diversity, we construct SetDepot-Pro, a curated dataset of 6,862 film-specific 3D assets and 733 materials. Experimental results and human evaluations demonstrate that our system produces structurally sound scenes with strong cinematic fidelity, supporting downstream tasks such as virtual previs, construction drawing and mood board creation.
DGAE: Diffusion-Guided Autoencoder for Efficient Latent Representation Learning
Autoencoders empower state-of-the-art image and video generative models by compressing pixels into a latent space through visual tokenization. Although recent advances have alleviated the performance degradation of autoencoders under high compression ratios, addressing the training instability caused by GAN remains an open challenge. While improving spatial compression, we also aim to minimize the latent space dimensionality, enabling more efficient and compact representations. To tackle these challenges, we focus on improving the decoder's expressiveness. Concretely, we propose DGAE, which employs a diffusion model to guide the decoder in recovering informative signals that are not fully decoded from the latent representation. With this design, DGAE effectively mitigates the performance degradation under high spatial compression rates. At the same time, DGAE achieves state-of-the-art performance with a 2x smaller latent space. When integrated with Diffusion Models, DGAE demonstrates competitive performance on image generation for ImageNet-1K and shows that this compact latent representation facilitates faster convergence of the diffusion model.
A Vision for Multisensory Intelligence: Sensing, Science, and Synergy
Our experience of the world is multisensory, spanning a synthesis of language, sight, sound, touch, taste, and smell. Yet, artificial intelligence has primarily advanced in digital modalities like text, vision, and audio. This paper outlines a research vision for multisensory artificial intelligence over the next decade. This new set of technologies can change how humans and AI experience and interact with one another, by connecting AI to the human senses and a rich spectrum of signals from physiological and tactile cues on the body, to physical and social signals in homes, cities, and the environment. We outline how this field must advance through three interrelated themes of sensing, science, and synergy. Firstly, research in sensing should extend how AI captures the world in richer ways beyond the digital medium. Secondly, developing a principled science for quantifying multimodal heterogeneity and interactions, developing unified modeling architectures and representations, and understanding cross-modal transfer. Finally, we present new technical challenges to learn synergy between modalities and between humans and AI, covering multisensory integration, alignment, reasoning, generation, generalization, and experience. Accompanying this vision paper are a series of projects, resources, and demos of latest advances from the Multisensory Intelligence group at the MIT Media Lab, see https://mit-mi.github.io/.
Comparative validation of surgical phase recognition, instrument keypoint estimation, and instrument instance segmentation in endoscopy: Results of the PhaKIR 2024 challenge
Reliable recognition and localization of surgical instruments in endoscopic video recordings are foundational for a wide range of applications in computer- and robot-assisted minimally invasive surgery (RAMIS), including surgical training, skill assessment, and autonomous assistance. However, robust performance under real-world conditions remains a significant challenge. Incorporating surgical context - such as the current procedural phase - has emerged as a promising strategy to improve robustness and interpretability. To address these challenges, we organized the Surgical Procedure Phase, Keypoint, and Instrument Recognition (PhaKIR) sub-challenge as part of the Endoscopic Vision (EndoVis) challenge at MICCAI 2024. We introduced a novel, multi-center dataset comprising thirteen full-length laparoscopic cholecystectomy videos collected from three distinct medical institutions, with unified annotations for three interrelated tasks: surgical phase recognition, instrument keypoint estimation, and instrument instance segmentation. Unlike existing datasets, ours enables joint investigation of instrument localization and procedural context within the same data while supporting the integration of temporal information across entire procedures. We report results and findings in accordance with the BIAS guidelines for biomedical image analysis challenges. The PhaKIR sub-challenge advances the field by providing a unique benchmark for developing temporally aware, context-driven methods in RAMIS and offers a high-quality resource to support future research in surgical scene understanding.
comment: A challenge report pre-print accepted by the journal Medical Image Analysis (MedIA), containing 37 pages, 15 figures, and 14 tables
MDReID: Modality-Decoupled Learning for Any-to-Any Multi-Modal Object Re-Identification NeurIPS 2025
Real-world object re-identification (ReID) systems often face modality inconsistencies, where query and gallery images come from different sensors (e.g., RGB, NIR, TIR). However, most existing methods assume modality-matched conditions, which limits their robustness and scalability in practical applications. To address this challenge, we propose MDReID, a flexible any-to-any image-level ReID framework designed to operate under both modality-matched and modality-mismatched scenarios. MDReID builds on the insight that modality information can be decomposed into two components: modality-shared features that are predictable and transferable, and modality-specific features that capture unique, modality-dependent characteristics. To effectively leverage this, MDReID introduces two key components: the Modality Decoupling Learning (MDL) and Modality-aware Metric Learning (MML). Specifically, MDL explicitly decomposes modality features into modality-shared and modality-specific representations, enabling effective retrieval in both modality-aligned and mismatched scenarios. MML, a tailored metric learning strategy, further enforces orthogonality and complementarity between the two components to enhance discriminative power across modalities. Extensive experiments conducted on three challenging multi-modality ReID benchmarks (RGBNT201, RGBNT100, MSVR310) consistently demonstrate the superiority of MDReID. Notably, MDReID achieves significant mAP improvements of 9.8\%, 3.0\%, and 11.5\% in general modality-matched scenarios, and average gains of 3.4\%, 11.8\%, and 10.9\% in modality-mismatched scenarios, respectively. The code is available at: \textcolor{magenta}{https://github.com/stone96123/MDReID}.
comment: Accepted by NeurIPS 2025
MVGGT: Multimodal Visual Geometry Grounded Transformer for Multiview 3D Referring Expression Segmentation
Most existing 3D referring expression segmentation (3DRES) methods rely on dense, high-quality point clouds, while real-world agents such as robots and mobile phones operate with only a few sparse RGB views and strict latency constraints. We introduce Multi-view 3D Referring Expression Segmentation (MV-3DRES), where the model must recover scene structure and segment the referred object directly from sparse multi-view images. Traditional two-stage pipelines, which first reconstruct a point cloud and then perform segmentation, often yield low-quality geometry, produce coarse or degraded target regions, and run slowly. We propose the Multimodal Visual Geometry Grounded Transformer (MVGGT), an efficient end-to-end framework that integrates language information into sparse-view geometric reasoning through a dual-branch design. Training in this setting exposes a critical optimization barrier, termed Foreground Gradient Dilution (FGD), where sparse 3D signals lead to weak supervision. To resolve this, we introduce Per-view No-target Suppression Optimization (PVSO), which provides stronger and more balanced gradients across views, enabling stable and efficient learning. To support consistent evaluation, we build MVRefer, a benchmark that defines standardized settings and metrics for MV-3DRES. Experiments show that MVGGT establishes the first strong baseline and achieves both high accuracy and fast inference, outperforming existing alternatives. Code and models are publicly available at https://mvggt.github.io.
comment: Project Website: https://sosppxo.github.io/mvggt.github.io/
GSAlign: Geometric and Semantic Alignment Network for Aerial-Ground Person Re-Identification Neurips 2025
Aerial-Ground person re-identification (AG-ReID) is an emerging yet challenging task that aims to match pedestrian images captured from drastically different viewpoints, typically from unmanned aerial vehicles (UAVs) and ground-based surveillance cameras. The task poses significant challenges due to extreme viewpoint discrepancies, occlusions, and domain gaps between aerial and ground imagery. While prior works have made progress by learning cross-view representations, they remain limited in handling severe pose variations and spatial misalignment. To address these issues, we propose a Geometric and Semantic Alignment Network (GSAlign) tailored for AG-ReID. GSAlign introduces two key components to jointly tackle geometric distortion and semantic misalignment in aerial-ground matching: a Learnable Thin Plate Spline (LTPS) Module and a Dynamic Alignment Module (DAM). The LTPS module adaptively warps pedestrian features based on a set of learned keypoints, effectively compensating for geometric variations caused by extreme viewpoint changes. In parallel, the DAM estimates visibility-aware representation masks that highlight visible body regions at the semantic level, thereby alleviating the negative impact of occlusions and partial observations in cross-view correspondence. A comprehensive evaluation on CARGO with four matching protocols demonstrates the effectiveness of GSAlign, achieving significant improvements of +18.8\% in mAP and +16.8\% in Rank-1 accuracy over previous state-of-the-art methods on the aerial-ground setting.
comment: Accepted by Neurips 2025
Generative Adversarial Networks for Image Super-Resolution: A Survey
Single image super-resolution (SISR) has played an important role in the field of image processing. Recent generative adversarial networks (GANs) can achieve excellent results on low-resolution images. However, there are little literatures summarizing different GANs in SISR. In this paper, we conduct a comparative study of GANs from different perspectives. We begin by surveying the development of GANs and popular GAN variants for image-related applications, and then analyze motivations, implementations and differences of GANs based optimization methods and discriminative learning for image super-resolution in terms of supervised, semi-supervised and unsupervised manners, where these GANs are analyzed via integrating different network architectures, prior knowledge, loss functions and multiple tasks. Secondly, we compare the performances of these popular GANs on public datasets via quantitative and qualitative analysis in SISR. Finally, we highlight challenges of GANs and potential research points for SISR.
comment: 32 pages, 10 figures
Apollo: Unified Multi-Task Audio-Video Joint Generation
Audio-video joint generation has progressed rapidly, yet substantial challenges still remain. Non-commercial approaches still suffer audio-visual asynchrony, poor lip-speech alignment, and unimodal degradation, which can be stemmed from weak audio-visual correspondence modeling, limited generalization, and scarce high-quality dense-caption data. To address these issues, we introduce Apollo and delve into three axes--model architecture, training strategy, and data curation. Architecturally, we adopt a single-tower design with unified DiT blocks and an Omni-Full Attention mechanism, achieving tight audio-visual alignment and strong scalability. Training-wise, we adopt a progressive multitask regime--random modality masking to joint optimization across tasks, and a multistage curriculum, yielding robust representations, strengthening A-V aligned world knowledge, and preventing unimodal collapse. For datasets, we present the first large-scale audio-video dataset with dense captions, and introduce a novel automated data-construction pipeline which annotates and filters millions of diverse, high-quality, strictly aligned audio-video-caption triplets. Building on this, Apollo scales to large datasets, delivering high-fidelity, semantically and temporally aligned, instruction-following generation in both joint and unimodal settings while generalizing robustly to out-of-distribution scenarios. Across tasks, it substantially outperforms prior methods by a large margin and achieves performance comparable to Veo 3, offering a unified, scalable path toward next-generation audio-video synthesis.
Simulating the Visual World with Artificial Intelligence: A Roadmap
The landscape of video generation is shifting, from a focus on generating visually appealing clips to building virtual environments that support interaction and maintain physical plausibility. These developments point toward the emergence of video foundation models that function not only as visual generators but also as implicit world models, models that simulate the physical dynamics, agent-environment interactions, and task planning that govern real or imagined worlds. This survey provides a systematic overview of this evolution, conceptualizing modern video foundation models as the combination of two core components: an implicit world model and a video renderer. The world model encodes structured knowledge about the world, including physical laws, interaction dynamics, and agent behavior. It serves as a latent simulation engine that enables coherent visual reasoning, long-term temporal consistency, and goal-driven planning. The video renderer transforms this latent simulation into realistic visual observations, effectively producing videos as a "window" into the simulated world. We trace the progression of video generation through four generations, in which the core capabilities advance step by step, ultimately culminating in a world model, built upon a video generation model, that embodies intrinsic physical plausibility, real-time multimodal interaction, and planning capabilities spanning multiple spatiotemporal scales. For each generation, we define its core characteristics, highlight representative works, and examine their application domains such as robotics, autonomous driving, and interactive gaming. Finally, we discuss open challenges and design principles for next-generation world models, including the role of agent intelligence in shaping and evaluating these systems. An up-to-date list of related works is maintained at this link.
comment: Project page: https://world-model-roadmap.github.io/ Github Repo: https://github.com/ziqihuangg/Awesome-From-Video-Generation-to-World-Model
Unifying Appearance Codes and Bilateral Grids for Driving Scene Gaussian Splatting NeurIPS 2025
Neural rendering techniques, including NeRF and Gaussian Splatting (GS), rely on photometric consistency to produce high-quality reconstructions. However, in real-world scenarios, it is challenging to guarantee perfect photometric consistency in acquired images. Appearance codes have been widely used to address this issue, but their modeling capability is limited, as a single code is applied to the entire image. Recently, the bilateral grid was introduced to perform pixel-wise color mapping, but it is difficult to optimize and constrain effectively. In this paper, we propose a novel multi-scale bilateral grid that unifies appearance codes and bilateral grids. We demonstrate that this approach significantly improves geometric accuracy in dynamic, decoupled autonomous driving scene reconstruction, outperforming both appearance codes and bilateral grids. This is crucial for autonomous driving, where accurate geometry is important for obstacle avoidance and control. Our method shows strong results across four datasets: Waymo, NuScenes, Argoverse, and PandaSet. We further demonstrate that the improvement in geometry is driven by the multi-scale bilateral grid, which effectively reduces floaters caused by photometric inconsistency.
comment: Accepted to NeurIPS 2025 ; Project page: https://bigcileng.github.io/bilateral-driving ; Code: https://github.com/BigCiLeng/bilateral-driving
PI3DETR: Parametric Instance Detection of 3D Point Cloud Edges With a Geometry-Aware 3DETR
We present PI3DETR, an end-to-end framework that directly predicts 3D parametric curve instances from raw point clouds, avoiding the intermediate representations and multi-stage processing common in prior work. Extending 3DETR, our model introduces a geometry-aware matching strategy and specialized loss functions that enable unified detection of differently parameterized curve types, including cubic Bézier curves, line segments, circles, and arcs, in a single forward pass. Optional post-processing steps further refine predictions without adding complexity. This streamlined design improves robustness to noise and varying sampling densities, addressing critical challenges in real world LiDAR and 3D sensing scenarios. PI3DETR sets a new state-of-the-art on the ABC dataset and generalizes effectively to real sensor data, offering a simple yet powerful solution for 3D edge and curve estimation.
TrackNetV5: Residual-Driven Spatio-Temporal Refinement and Motion Direction Decoupling for Fast Object Tracking
The TrackNet series has established a strong baseline for fast-moving small object tracking in sports. However, existing iterations face significant limitations: V1-V3 struggle with occlusions due to a reliance on purely visual cues, while TrackNetV4, despite introducing motion inputs, suffers from directional ambiguity as its absolute difference method discards motion polarity. To overcome these bottlenecks, we propose TrackNetV5, a robust architecture integrating two novel mechanisms. First, to recover lost directional priors, we introduce the Motion Direction Decoupling (MDD) module. Unlike V4, MDD decomposes temporal dynamics into signed polarity fields, explicitly encoding both movement occurrence and trajectory direction. Second, we propose the Residual-Driven Spatio-Temporal Refinement (R-STR) head. Operating on a coarse-to-fine paradigm, this Transformer-based module leverages factorized spatio-temporal contexts to estimate a corrective residual, effectively recovering occluded targets. Extensive experiments on the TrackNetV2 dataset demonstrate that TrackNetV5 achieves a new state-of-the-art F1-score of 0.9859 and an accuracy of 0.9733, significantly outperforming previous versions. Notably, this performance leap is achieved with a marginal 3.7% increase in FLOPs compared to V4, maintaining real-time inference capabilities while delivering superior tracking precision.
Cascading multi-agent anomaly detection in surveillance systems via vision-language models and embedding-based classification
Intelligent anomaly detection in dynamic visual environments requires reconciling real-time performance with semantic interpretability. Conventional approaches address only fragments of this challenge. Reconstruction-based models capture low-level deviations without contextual reasoning, object detectors provide speed but limited semantics, and large vision-language systems deliver interpretability at prohibitive computational cost. This work introduces a cascading multi-agent framework that unifies these complementary paradigms into a coherent and interpretable architecture. Early modules perform reconstruction-gated filtering and object-level assessment, while higher-level reasoning agents are selectively invoked to interpret semantically ambiguous events. The system employs adaptive escalation thresholds and a publish-subscribe communication backbone, enabling asynchronous coordination and scalable deployment across heterogeneous hardware. Extensive evaluation on large-scale monitoring data demonstrates that the proposed cascade achieves a threefold reduction in latency compared to direct vision-language inference, while maintaining high perceptual fidelity (PSNR = 38.3 dB, SSIM = 0.965) and consistent semantic labeling. The framework advances beyond conventional detection pipelines by combining early-exit efficiency, adaptive multi-agent reasoning, and explainable anomaly attribution, establishing a reproducible and energy-efficient foundation for scalable intelligent visual monitoring.
comment: Author email changed, Acknowlegement changes
CasTex: Cascaded Text-to-Texture Synthesis via Explicit Texture Maps and Physically-Based Shading WACV'2026
This work investigates text-to-texture synthesis using diffusion models to generate physically-based texture maps. We aim to achieve realistic model appearances under varying lighting conditions. A prominent solution for the task is score distillation sampling. It allows recovering a complex texture using gradient guidance given a differentiable rasterization and shading pipeline. However, in practice, the aforementioned solution in conjunction with the widespread latent diffusion models produces severe visual artifacts and requires additional regularization such as implicit texture parameterization. As a more direct alternative, we propose an approach using cascaded diffusion models for texture synthesis (CasTex). In our setup, score distillation sampling yields high-quality textures out-of-the box. In particular, we were able to omit implicit texture parameterization in favor of an explicit parameterization to improve the procedure. In the experiments, we show that our approach significantly outperforms state-of-the-art optimization-based solutions on public texture synthesis benchmarks.
comment: WACV'2026; v2: camera ready
Latent Reconstruction from Generated Data for Multimodal Misinformation Detection
Multimodal misinformation, such as miscaptioned images, where captions misrepresent an image's origin, context, or meaning, poses a growing challenge in the digital age. Due to the scarcity of large-scale annotated datasets for multimodal misinformation detection (MMD), recent approaches rely on synthetic training data created via out-of-context pairings or named entity manipulations (e.g., altering names, dates, or locations). However, these often yield simplistic, unrealistic examples, which limits their utility as training examples. To address this, we introduce "MisCaption This!", a framework for generating high-fidelity synthetic miscaptioned datasets through Adversarial Prompting of Vision-Language Models (VLMs). Additionally, we introduce "Latent Multimodal Reconstruction" (LAMAR), a Transformer-based network trained to reconstruct the embeddings of truthful captions, providing a strong auxiliary signal to guide detection. We explore various training strategies (end-to-end vs. large-scale pre-training) and integration mechanisms (direct, mask, gate, and attention). Extensive experiments show that models trained on "MisCaption This!" data generalize better to real-world misinformation, while LAMAR achieves new state-of-the-art on NewsCLIPpings, VERITE, and the newly introduced VERITE 24/25 benchmark; highlighting the efficacy of VLM-generated data and reconstruction-based networks for advancing MMD. Our code is available at https://github.com/stevejpapad/miscaptioned-image-reconstruction
Franca: Nested Matryoshka Clustering for Scalable Visual Representation Learning
We present Franca (pronounced Fran-ka): free one; the first fully open-source (data, code, weights) vision foundation model that matches and in many cases surpasses the performance of state-of-the-art proprietary models, e.g., DINOv2, CLIP, SigLIPv2, etc. Our approach is grounded in a transparent training pipeline inspired by Web-SSL and uses publicly available data: ImageNet-21K and a subset of ReLAION-2B. Beyond model release, we tackle critical limitations in SSL clustering methods. While modern models rely on assigning image features to large codebooks via clustering algorithms like Sinkhorn-Knopp, they fail to account for the inherent ambiguity in clustering semantics. To address this, we introduce a parameter-efficient, multi-head clustering projector based on nested Matryoshka representations. This design progressively refines features into increasingly fine-grained clusters without increasing the model size, enabling both performance and memory efficiency. Additionally, we propose a novel positional disentanglement strategy that explicitly removes positional biases from dense representations, thereby improving the encoding of semantic content. This leads to consistent gains on several downstream benchmarks, demonstrating the utility of cleaner feature spaces. Our contributions establish a new standard for transparent, high-performance vision models and open a path toward more reproducible and generalizable foundation models for the broader AI community. The code and model checkpoints are available at https://github.com/valeoai/Franca.
MoHoBench: Assessing Honesty of Multimodal Large Language Models via Unanswerable Visual Questions AAAI2026
Recently Multimodal Large Language Models (MLLMs) have achieved considerable advancements in vision-language tasks, yet produce potentially harmful or untrustworthy content. Despite substantial work investigating the trustworthiness of language models, MMLMs' capability to act honestly, especially when faced with visually unanswerable questions, remains largely underexplored. This work presents the first systematic assessment of honesty behaviors across various MLLMs. We ground honesty in models' response behaviors to unanswerable visual questions, define four representative types of such questions, and construct MoHoBench, a large-scale MMLM honest benchmark, consisting of 12k+ visual question samples, whose quality is guaranteed by multi-stage filtering and human verification. Using MoHoBench, we benchmarked the honesty of 28 popular MMLMs and conducted a comprehensive analysis. Our findings show that: (1) most models fail to appropriately refuse to answer when necessary, and (2) MMLMs' honesty is not solely a language modeling issue, but is deeply influenced by visual information, necessitating the development of dedicated methods for multimodal honesty alignment. Therefore, we implemented initial alignment methods using supervised and preference learning to improve honesty behavior, providing a foundation for future work on trustworthy MLLMs. Our data and code can be found at https://github.com/yanxuzhu/MoHoBench.
comment: AAAI2026 Oral
Divergence-Based Similarity Function for Multi-View Contrastive Learning
Recent success in contrastive learning has sparked growing interest in more effectively leveraging multiple augmented views of data. While prior methods incorporate multiple views at the loss or feature level, they primarily capture pairwise relationships and fail to model the joint structure across all views. In this work, we propose a divergence-based similarity function (DSF) that explicitly captures the joint structure by representing each set of augmented views as a distribution and measuring similarity as the divergence between distributions. Extensive experiments demonstrate that DSF consistently improves performance across diverse tasks, including kNN classification, linear evaluation, transfer learning, and distribution shift, while also achieving greater efficiency than other multi-view methods. Furthermore, we establish a connection between DSF and cosine similarity, and demonstrate that, unlike cosine similarity, DSF operates effectively without the need for tuning a temperature hyperparameter.
comment: 9 pages, 5 figures. Code: https://github.com/Jeon789/DSF
DriveRX: A Vision-Language Reasoning Model for Cross-Task Autonomous Driving
Effective autonomous driving hinges on robust reasoning across perception, prediction, planning, and behavior. However, conventional end-to-end models fail to generalize in complex scenarios due to the lack of structured reasoning. While recent vision-language models (VLMs) have been applied to driving tasks, they typically rely on isolated modules and static supervision, limiting their ability to support multi-stage decision-making. We present AutoDriveRL, a unified training framework that formulates autonomous driving as a structured reasoning process over four core tasks. Each task is independently modeled as a vision-language QA problem and optimized using task-specific reward models, enabling fine-grained reinforcement signals at different reasoning stages. Within this framework, we train DriveRX, a cross-task reasoning VLM designed for multi-stage decision-making. DriveRX achieves strong performance on the public benchmark, outperforming GPT-4o in behavior reasoning and demonstrating robustness under complex or corrupted driving conditions. DriveRX serves as a high-level semantic reasoning backbone, producing structured stage-wise reasoning chains that enhance decision consistency. These outputs also provide high-quality supervisory signals for annotation and downstream planning/control models. We release the AutoDriveRL framework and DriveRX to support future research.
Backdoor Attacks on Open Vocabulary Object Detectors via Multi-Modal Prompt Tuning AAAI 2026
Open-vocabulary object detectors (OVODs) unify vision and language to detect arbitrary object categories based on text prompts, enabling strong zero-shot generalization to novel concepts. As these models gain traction in high-stakes applications such as robotics, autonomous driving, and surveillance, understanding their security risks becomes crucial. In this work, we conduct the first study of backdoor attacks on OVODs and reveal a new attack surface introduced by prompt tuning. We propose TrAP (Trigger-Aware Prompt tuning), a multi-modal backdoor injection strategy that jointly optimizes prompt parameters in both image and text modalities along with visual triggers. TrAP enables the attacker to implant malicious behavior using lightweight, learnable prompt tokens without retraining the base model weights, thus preserving generalization while embedding a hidden backdoor. We adopt a curriculum-based training strategy that progressively shrinks the trigger size, enabling effective backdoor activation using small trigger patches at inference. Experiments across multiple datasets show that TrAP achieves high attack success rates for both object misclassification and object disappearance attacks, while also improving clean image performance on downstream datasets compared to the zero-shot setting. Code: https://github.com/rajankita/TrAP
comment: Accepted to AAAI 2026
RGS-SLAM: Robust Gaussian Splatting SLAM with One-Shot Dense Initialization
We introduce RGS-SLAM, a robust Gaussian-splatting SLAM framework that replaces the residual-driven densification stage of GS-SLAM with a training-free correspondence-to-Gaussian initialization. Instead of progressively adding Gaussians as residuals reveal missing geometry, RGS-SLAM performs a one-shot triangulation of dense multi-view correspondences derived from DINOv3 descriptors refined through a confidence-aware inlier classifier, generating a well-distributed and structure-aware Gaussian seed prior to optimization. This initialization stabilizes early mapping and accelerates convergence by roughly 20\%, yielding higher rendering fidelity in texture-rich and cluttered scenes while remaining fully compatible with existing GS-SLAM pipelines. Evaluated on the TUM RGB-D and Replica datasets, RGS-SLAM achieves competitive or superior localization and reconstruction accuracy compared with state-of-the-art Gaussian and point-based SLAM systems, sustaining real-time mapping performance at up to 925 FPS. Project page:https://breeze1124.github.io/rgs-slam-project-page/
comment: 10 pages, 9 figures
ClimateIQA: A New Dataset and Benchmark to Advance Vision-Language Models in Meteorology Anomalies Analysis
Meteorological heatmaps play a vital role in deciphering extreme weather phenomena, yet their inherent complexities marked by irregular contours, unstructured patterns, and complex color variations present unique analytical hurdles for state-of-the-art Vision-Language Models (VLMs). Current state-of-the-art models like GPT-4o, Qwen-VL, and LLaVA 1.6 struggle with tasks such as precise color identification and spatial localization, resulting in inaccurate or incomplete interpretations. To address these challenges, we introduce Sparse Position and Outline Tracking (SPOT), a novel algorithm specifically designed to process irregularly shaped colored regions in visual data. SPOT identifies and localizes these regions by extracting their spatial coordinates, enabling structured representations of irregular shapes. Building on SPOT, we construct ClimateIQA, a novel meteorological visual question answering (VQA) dataset, comprising 26,280 high-resolution heatmaps and 762,120 instruction samples for wind gust, total precipitation, wind chill index and heat index analysis. ClimateIQA enhances VLM training by incorporating spatial cues, geographic metadata, and reanalysis data, improving model accuracy in interpreting and describing extreme weather features. Furthermore, we develop Climate-Zoo, a suite of fine-tuned VLMs based on SPOT-empowered ClimateIQA, which significantly outperforms existing models in meteorological heatmap tasks.
MOGO: Residual Quantized Hierarchical Causal Transformer for High-Quality and Real-Time 3D Human Motion Generation
Recent advances in transformer-based text-to-motion generation have led to impressive progress in synthesizing high-quality human motion. Nevertheless, jointly achieving high fidelity, streaming capability, real-time responsiveness, and scalability remains a fundamental challenge. In this paper, we propose MOGO (Motion Generation with One-pass), a novel autoregressive framework tailored for efficient and real-time 3D motion generation. MOGO comprises two key components: (1) MoSA-VQ, a motion scale-adaptive residual vector quantization module that hierarchically discretizes motion sequences with learnable scaling to produce compact yet expressive representations; and (2) RQHC-Transformer, a residual quantized hierarchical causal transformer that generates multi-layer motion tokens in a single forward pass, significantly reducing inference latency. To enhance semantic fidelity, we further introduce a text condition alignment mechanism that improves motion decoding under textual control. Extensive experiments on benchmark datasets including HumanML3D, KIT-ML, and CMP demonstrate that MOGO achieves competitive or superior generation quality compared to state-of-the-art transformer-based methods, while offering substantial improvements in real-time performance, streaming generation, and generalization under zero-shot settings.
comment: 9 pages, 4 figures, conference
HiFi-Mamba: Dual-Stream W-Laplacian Enhanced Mamba for High-Fidelity MRI Reconstruction
Reconstructing high-fidelity MR images from undersampled k-space data remains a challenging problem in MRI. While Mamba variants for vision tasks offer promising long-range modeling capabilities with linear-time complexity, their direct application to MRI reconstruction inherits two key limitations: (1) insensitivity to high-frequency anatomical details; and (2) reliance on redundant multi-directional scanning. To address these limitations, we introduce High-Fidelity Mamba (HiFi-Mamba), a novel dual-stream Mamba-based architecture comprising stacked W-Laplacian (WL) and HiFi-Mamba blocks. Specifically, the WL block performs fidelity-preserving spectral decoupling, producing complementary low- and high-frequency streams. This separation enables the HiFi-Mamba block to focus on low-frequency structures, enhancing global feature modeling. Concurrently, the HiFi-Mamba block selectively integrates high-frequency features through adaptive state-space modulation, preserving comprehensive spectral details. To eliminate the scanning redundancy, the HiFi-Mamba block adopts a streamlined unidirectional traversal strategy that preserves long-range modeling capability with improved computational efficiency. Extensive experiments on standard MRI reconstruction benchmarks demonstrate that HiFi-Mamba consistently outperforms state-of-the-art CNN-based, Transformer-based, and other Mamba-based models in reconstruction accuracy while maintaining a compact and efficient model design.
Learning-based Multi-View Stereo: A Survey PAMI 2026
3D reconstruction aims to recover the dense 3D structure of a scene. It plays an essential role in various applications such as Augmented/Virtual Reality (AR/VR), autonomous driving and robotics. Leveraging multiple views of a scene captured from different viewpoints, Multi-View Stereo (MVS) algorithms synthesize a comprehensive 3D representation, enabling precise reconstruction in complex environments. Due to its efficiency and effectiveness, MVS has become a pivotal method for image-based 3D reconstruction. Recently, with the success of deep learning, many learning-based MVS methods have been proposed, achieving impressive performance against traditional methods. We categorize these learning-based methods as: depth map-based, voxel-based, NeRF-based, 3D Gaussian Splatting-based, and large feed-forward methods. Among these, we focus significantly on depth map-based methods, which are the main family of MVS due to their conciseness, flexibility and scalability. In this survey, we provide a comprehensive review of the literature at the time of this writing. We investigate these learning-based methods, summarize their performances on popular benchmarks, and discuss promising future research directions in this area.
comment: Accepted to IEEE T-PAMI 2026
CausAdv: A Causal-based Framework for Detecting Adversarial Examples
Deep learning has led to tremendous success in computer vision, largely due to Convolutional Neural Networks (CNNs). However, CNNs have been shown to be vulnerable to crafted adversarial perturbations. This vulnerability of adversarial examples has has motivated research into improving model robustness through adversarial detection and defense methods. In this paper, we address the adversarial robustness of CNNs through causal reasoning. We propose CausAdv: a causal framework for detecting adversarial examples based on counterfactual reasoning. CausAdv learns both causal and non-causal features of every input, and quantifies the counterfactual information (CI) of every filter of the last convolutional layer. We then perform a statistical analysis of the filters' CI across clean and adversarial samples, to demonstrate that adversarial examples exhibit different CI distributions compared to clean samples. Our results show that causal reasoning enhances the process of adversarial detection without the need to train a separate detector. Moreover, we illustrate the efficiency of causal explanations as a helpful detection tool by visualizing the extracted causal features.
Explaning with trees: interpreting CNNs using hierarchies
Challenges persist in providing interpretable explanations for neural network reasoning in explainable AI (xAI). Existing methods like Integrated Gradients produce noisy maps, and LIME, while intuitive, may deviate from the model's reasoning. We introduce a framework that uses hierarchical segmentation techniques for faithful and interpretable explanations of Convolutional Neural Networks (CNNs). Our method constructs model-based hierarchical segmentations that maintain the model's reasoning fidelity and allows both human-centric and model-centric segmentation. This approach offers multiscale explanations, aiding bias identification and enhancing understanding of neural network decision-making. Experiments show that our framework, xAiTrees, delivers highly interpretable and faithful model explanations, not only surpassing traditional xAI methods but shedding new light on a novel approach to enhancing xAI interpretability.
Two-Stream Thermal Imaging Fusion for Enhanced Time of Birth Detection in Neonatal Care
Around 10% of newborns require some help to initiate breathing, and 5\% need ventilation assistance. Accurate Time of Birth (ToB) documentation is essential for optimizing neonatal care, as timely interventions are vital for proper resuscitation. However, current clinical methods for recording ToB often rely on manual processes, which can be prone to inaccuracies. In this study, we present a novel two-stream fusion system that combines the power of image and video analysis to accurately detect the ToB from thermal recordings in the delivery room and operating theater. By integrating static and dynamic streams, our approach captures richer birth-related spatiotemporal features, leading to more robust and precise ToB estimation. We demonstrate that this synergy between data modalities enhances performance over single-stream approaches. Our system achieves 95.7% precision and 84.8% recall in detecting birth within short video clips. Additionally, with the help of a score aggregation module, it successfully identifies ToB in 100% of test cases, with a median absolute error of 2 seconds and an absolute mean deviation of 4.5 seconds compared to manual annotations.
comment: This work has been accepted at IEEE 25th International Conference on Digital Signal Processing
Generating crossmodal gene expression from cancer histopathology improves multimodal AI predictions
Emerging research has highlighted that artificial intelligence-based multimodal fusion of digital pathology and transcriptomic features can improve cancer diagnosis (grading/subtyping) and prognosis (survival risk) prediction. However, such direct fusion is impractical in clinical settings, where histopathology remains the gold standard and transcriptomic tests are rarely requested in public healthcare. We experiment on two publicly available multimodal datasets, The Cancer Genomic Atlas and the Clinical Proteomic Tumor Analysis Consortium, spanning four independent cohorts: glioma-glioblastoma, renal, uterine, and breast, and observe significant performance gains in gradation and risk estimation (p-value<0.05) when incorporating synthesized transcriptomic data with WSIs. Also, predictions using synthesized features were statistically close to those obtained with real transcriptomic data (p-value>0.05), consistently across cohorts. Here we show that with our diffusion based crossmodal generative AI model, PathGen, gene expressions synthesized from digital histopathology jointly predict cancer grading and patient survival risk with high accuracy (state-of-the-art performance), certainty (through conformal coverage guarantee) and interpretability (through distributed co-attention maps). PathGen code is available for open use on GitHub at https://github.com/Samiran-Dey/PathGen.
ViewMorpher3D: A 3D-aware Diffusion Framework for Multi-Camera Novel View Synthesis in Autonomous Driving
Autonomous driving systems rely heavily on multi-view images to ensure accurate perception and robust decision-making. To effectively develop and evaluate perception stacks and planning algorithms, realistic closed-loop simulators are indispensable. While 3D reconstruction techniques such as Gaussian Splatting offer promising avenues for simulator construction, the rendered novel views often exhibit artifacts, particularly in extrapolated perspectives or when available observations are sparse. We introduce ViewMorpher3D, a multi-view image enhancement framework based on image diffusion models, designed to elevate photorealism and multi-view coherence in driving scenes. Unlike single-view approaches, ViewMorpher3D jointly processes a set of rendered views conditioned on camera poses, 3D geometric priors, and temporally adjacent or spatially overlapping reference views. This enables the model to infer missing details, suppress rendering artifacts, and enforce cross-view consistency. Our framework accommodates variable numbers of cameras and flexible reference/target view configurations, making it adaptable to diverse sensor setups. Experiments on real-world driving datasets demonstrate substantial improvements in image quality metrics, effectively reducing artifacts while preserving geometric fidelity.
comment: Paper and supplementary materials
HisTrackMap: Global Vectorized High-Definition Map Construction via History Map Tracking
As an essential component of autonomous driving systems, high-definition (HD) maps provide rich and precise environmental information for auto-driving scenarios; however, existing methods, which primarily rely on query-based detection frameworks to directly model map elements or implicitly propagate queries over time, often struggle to maintain consistent temporal perception outcomes. These inconsistencies pose significant challenges to the stability and reliability of real-world autonomous driving and map data collection systems. To address this limitation, we propose a novel end-to-end tracking framework for global map construction by temporally tracking map elements' historical trajectories. Firstly, instance-level historical rasterization map representation is designed to explicitly store previous perception results, which can control and maintain different global instances' history information in a fine-grained way. Secondly, we introduce a Map-Trajectory Prior Fusion module within this tracking framework, leveraging historical priors for tracked instances to improve temporal smoothness and continuity. Thirdly, we propose a global perspective metric to evaluate the quality of temporal geometry construction in HD maps, filling the gap in current metrics for assessing global geometric perception results. Substantial experiments on the nuScenes and Argoverse2 datasets demonstrate that the proposed method outperforms state-of-the-art (SOTA) methods in both single-frame and temporal metrics. The project page is available at: https://yj772881654.github.io/HisTrackMap.
MixGRPO: Unlocking Flow-based GRPO Efficiency with Mixed ODE-SDE
Although GRPO substantially enhances flow matching models in human preference alignment of image generation, methods such as FlowGRPO and DanceGRPO still exhibit inefficiency due to the necessity of sampling and optimizing over all denoising steps specified by the Markov Decision Process (MDP). In this paper, we propose $\textbf{MixGRPO}$, a novel framework that leverages the flexibility of mixed sampling strategies through the integration of stochastic differential equations (SDE) and ordinary differential equations (ODE). This streamlines the optimization process within the MDP to improve efficiency and boost performance. Specifically, MixGRPO introduces a sliding window mechanism, using SDE sampling and GRPO-guided optimization only within the window, while applying ODE sampling outside. This design confines sampling randomness to the time-steps within the window, thereby reducing the optimization overhead, and allowing for more focused gradient updates to accelerate convergence. Additionally, as time-steps beyond the sliding window are not involved in optimization, higher-order solvers are supported for faster sampling. So we present a faster variant, termed $\textbf{MixGRPO-Flash}$, which further improves training efficiency while achieving comparable performance. MixGRPO exhibits substantial gains across multiple dimensions of human preference alignment, outperforming DanceGRPO in both effectiveness and efficiency, with nearly 50% lower training time. Notably, MixGRPO-Flash further reduces training time by 71%.
PINGS-X: Physics-Informed Normalized Gaussian Splatting with Axes Alignment for Efficient Super-Resolution of 4D Flow MRI AAAI 2026
4D flow magnetic resonance imaging (MRI) is a reliable, non-invasive approach for estimating blood flow velocities, vital for cardiovascular diagnostics. Unlike conventional MRI focused on anatomical structures, 4D flow MRI requires high spatiotemporal resolution for early detection of critical conditions such as stenosis or aneurysms. However, achieving such resolution typically results in prolonged scan times, creating a trade-off between acquisition speed and prediction accuracy. Recent studies have leveraged physics-informed neural networks (PINNs) for super-resolution of MRI data, but their practical applicability is limited as the prohibitively slow training process must be performed for each patient. To overcome this limitation, we propose PINGS-X, a novel framework modeling high-resolution flow velocities using axes-aligned spatiotemporal Gaussian representations. Inspired by the effectiveness of 3D Gaussian splatting (3DGS) in novel view synthesis, PINGS-X extends this concept through several non-trivial novel innovations: (i) normalized Gaussian splatting with a formal convergence guarantee, (ii) axes-aligned Gaussians that simplify training for high-dimensional data while preserving accuracy and the convergence guarantee, and (iii) a Gaussian merging procedure to prevent degenerate solutions and boost computational efficiency. Experimental results on computational fluid dynamics (CFD) and real 4D flow MRI datasets demonstrate that PINGS-X substantially reduces training time while achieving superior super-resolution accuracy. Our code and datasets are available at https://github.com/SpatialAILab/PINGS-X.
comment: Accepted at AAAI 2026. Supplementary material included after references. 27 pages, 21 figures, 11 tables
Visually Prompted Benchmarks Are Surprisingly Fragile
A key challenge in evaluating VLMs is testing models' ability to analyze visual content independently from their textual priors. Recent benchmarks such as BLINK probe visual perception through visual prompting, where questions about visual content are paired with coordinates to which the question refers, with the coordinates explicitly marked in the image itself. While these benchmarks are an important part of VLM evaluation, we find that existing models are surprisingly fragile to seemingly irrelevant details of visual prompting: simply changing a visual marker from red to blue can completely change rankings among models on a leaderboard. By evaluating nine commonly-used open- and closed-source VLMs on two visually prompted tasks, we demonstrate how details in benchmark setup, including visual marker design and dataset size, have a significant influence on model performance and leaderboard rankings. These effects can even be exploited to lift weaker models above stronger ones; for instance, slightly increasing the size of the visual marker results in open-source InternVL3-8B ranking alongside or better than much larger proprietary models like Gemini 2.5 Pro. We further show that low-level inference choices that are often ignored in benchmarking, such as JPEG compression levels in API calls, can also cause model lineup changes. These details have substantially larger impacts on visually prompted benchmarks than on conventional semantic VLM evaluations. To mitigate this instability, we curate existing datasets to create VPBench, a larger visually prompted benchmark with 16 visual marker variants. We open-source VPBench and our analysis framework at: https://lisadunlap.github.io/vpbench/.
Global Compression Commander: Plug-and-Play Inference Acceleration for High-Resolution Large Vision-Language Models AAAI 2026
Large vision-language models (LVLMs) excel at visual understanding, but face efficiency challenges due to quadratic complexity in processing long multi-modal contexts. While token compression can reduce computational costs, existing approaches are designed for single-view LVLMs and fail to consider the unique multi-view characteristics of high-resolution LVLMs with dynamic cropping. Existing methods treat all tokens uniformly, but our analysis reveals that global thumbnails can naturally guide the compression of local crops by providing holistic context for informativeness evaluation. In this paper, we first analyze dynamic cropping strategy, revealing both the complementary nature between thumbnails and crops, and the distinctive characteristics across different crops. Based on our observations, we propose ``Global Compression Commander'' (\textit{i.e.}, \textbf{GlobalCom$^2$}), a novel plug-and-play token compression framework for HR-LVLMs. GlobalCom$^2$ leverages thumbnail as the ``commander'' to guide the compression of local crops, adaptively preserving informative details while eliminating redundancy. Extensive experiments show that GlobalCom$^2$ maintains over \textbf{90\%} performance while compressing \textbf{90\%} visual tokens, reducing FLOPs and peak memory to \textbf{9.1\%} and \textbf{60\%}.
comment: Accepted by AAAI 2026. Code is available at \url{https://github.com/xuyang-liu16/GlobalCom2}
Ground What You See: Hallucination-Resistant MLLMs via Caption Feedback, Diversity-Aware Sampling, and Conflict Regularization AAAI-2026
While Multimodal Large Language Models (MLLMs) have achieved remarkable success across diverse tasks, their practical deployment is severely hindered by hallucination issues, which become particularly acute during Reinforcement Learning (RL) optimization. This paper systematically analyzes the root causes of hallucinations in MLLMs under RL training, identifying three critical factors: (1) an over-reliance on chained visual reasoning, where inaccurate initial descriptions or redundant information anchor subsequent inferences to incorrect premises; (2) insufficient exploration diversity during policy optimization, leading the model to generate overly confident but erroneous outputs; and (3) destructive conflicts between training samples, where Neural Tangent Kernel (NTK) similarity causes false associations and unstable parameter updates. To address these challenges, we propose a comprehensive framework comprising three core modules. First, we enhance visual localization by introducing dedicated planning and captioning stages before the reasoning phase, employing a quality-based caption reward to ensure accurate initial anchoring. Second, to improve exploration, we categorize samples based on the mean and variance of their reward distributions, prioritizing samples with high variance to focus the model on diverse and informative data. Finally, to mitigate sample interference, we regulate NTK similarity by grouping sample pairs and applying an InfoNCE loss to push overly similar pairs apart and pull dissimilar ones closer, thereby guiding gradient interactions toward a balanced range. Experimental results demonstrate that our proposed method significantly reduces hallucination rates and effectively enhances the inference accuracy of MLLMs.
comment: AAAI-2026 Poster
Generative Digital Twins: Vision-Language Simulation Models for Executable Industrial Systems
We propose a Vision-Language Simulation Model (VLSM) that unifies visual and textual understanding to synthesize executable FlexScript from layout sketches and natural-language prompts, enabling cross-modal reasoning for industrial simulation systems. To support this new paradigm, the study constructs the first large-scale dataset for generative digital twins, comprising over 120,000 prompt-sketch-code triplets that enable multimodal learning between textual descriptions, spatial structures, and simulation logic. In parallel, three novel evaluation metrics, Structural Validity Rate (SVR), Parameter Match Rate (PMR), and Execution Success Rate (ESR), are proposed specifically for this task to comprehensively evaluate structural integrity, parameter fidelity, and simulator executability. Through systematic ablation across vision encoders, connectors, and code-pretrained language backbones, the proposed models achieve near-perfect structural accuracy and high execution robustness. This work establishes a foundation for generative digital twins that integrate visual reasoning and language understanding into executable industrial simulation systems. Project page: https://danielhsu2014.github.io/GDT-VLSM-project/
comment: 10 pages, 9 figures
Aligning by Misaligning: Boundary-aware Curriculum Learning for Multimodal Alignment NeurIPS 2025
Most multimodal models treat every negative pair alike, ignoring the ambiguous negatives that differ from the positive by only a small detail. We propose Boundary-Aware Curriculum with Local Attention (BACL), a lightweight add-on that turns these borderline cases into a curriculum signal. A Boundary-aware Negative Sampler gradually raises difficulty, while a Contrastive Local Attention loss highlights where the mismatch occurs. The two modules are fully differentiable and work with any off-the-shelf dual encoder. Theory predicts a fast O(1/n) error rate; practice shows up to +32% R@1 over CLIP and new SOTA on four large-scale benchmarks, all without extra labels.
comment: 24 pages, 6 figures, 5 tables. Submitted to NeurIPS 2025
FoldNet: Learning Generalizable Closed-Loop Policy for Garment Folding via Keypoint-Driven Asset and Demonstration Synthesis
Due to the deformability of garments, generating a large amount of high-quality data for robotic garment manipulation tasks is highly challenging. In this paper, we present a synthetic garment dataset that can be used for robotic garment folding. We begin by constructing geometric garment templates based on keypoints and applying generative models to generate realistic texture patterns. Leveraging these keypoint annotations, we generate folding demonstrations in simulation and train folding policies via closed-loop imitation learning. To improve robustness, we propose KG-DAgger, which uses a keypoint-based strategy to generate demonstration data for recovering from failures. KG-DAgger significantly improves the model performance, boosting the real-world success rate by 25\%. After training with 15K trajectories (about 2M image-action pairs), the model achieves a 75\% success rate in the real world. Experiments in both simulation and real-world settings validate the effectiveness of our proposed framework.
Semi-Tensor-Product Based Convolutional Neural Networks
The semi-tensor product of vectors generalizes the conventional inner product, enabling algebraic operations between vectors of different dimensions. Building upon this foundation, we introduce a domain-based convolutional product and integrate it with the STP to formulate a padding-free convolutional operation. This new operation inherently avoids zero or other artificial padding, thereby eliminating redundant information and boundary artifacts commonly present in conventional convolutional neural networks. Based on this operation, we further develop an STP-based CNN framework that extends convolutional computation to irregular and cross-dimensional data domains. Applications to image processing and third-order signal identification demonstrate the proposed method's effectiveness in handling irregular, incomplete, and high-dimensional data without the distortions caused by padding.
MSSF: A 4D Radar and Camera Fusion Framework With Multi-Stage Sampling for 3D Object Detection in Autonomous Driving TITS
As one of the automotive sensors that have emerged in recent years, 4D millimeter-wave radar has a higher resolution than conventional 3D radar and provides precise elevation measurements. But its point clouds are still sparse and noisy, making it challenging to meet the requirements of autonomous driving. Camera, as another commonly used sensor, can capture rich semantic information. As a result, the fusion of 4D radar and camera can provide an affordable and robust perception solution for autonomous driving systems. However, previous radar-camera fusion methods have not yet been thoroughly investigated, resulting in a large performance gap compared to LiDAR-based methods. Specifically, they ignore the feature-blurring problem and do not deeply interact with image semantic information. To this end, we present a simple but effective multi-stage sampling fusion (MSSF) network based on 4D radar and camera. On the one hand, we design a fusion block that can deeply interact point cloud features with image features, and can be applied to commonly used single-modal backbones in a plug-and-play manner. The fusion block encompasses two types, namely, simple feature fusion (SFF) and multiscale deformable feature fusion (MSDFF). The SFF is easy to implement, while the MSDFF has stronger fusion abilities. On the other hand, we propose a semantic-guided head to perform foreground-background segmentation on voxels with voxel feature re-weighting, further alleviating the problem of feature blurring. Extensive experiments on the View-of-Delft (VoD) and TJ4DRadset datasets demonstrate the effectiveness of our MSSF. Notably, compared to state-of-the-art methods, MSSF achieves a 7.0% and 4.0% improvement in 3D mean average precision on the VoD and TJ4DRadSet datasets, respectively. It even surpasses classical LiDAR-based methods on the VoD dataset.
comment: T-TITS accepted, code avaliable
Real-Time LiDAR Point Cloud Densification for Low-Latency Spatial Data Transmission
To realize low-latency spatial transmission system for immersive telepresence, there are two major problems: capturing dynamic 3D scene densely and processing them in real time. LiDAR sensors capture 3D in real time, but produce sparce point clouds. Therefore, this paper presents a high-speed LiDAR point cloud densification method to generate dense 3D scene with minimal latency, addressing the need for on-the-fly depth completion while maintaining real-time performance. Our approach combines multiple LiDAR inputs with high-resolution color images and applies a joint bilateral filtering strategy implemented through a convolutional neural network architecture. Experiments demonstrate that the proposed method produces dense depth maps at full HD resolution in real time (30 fps), which is over 15x faster than a recent training-based depth completion approach. The resulting dense point clouds exhibit accurate geometry without multiview inconsistencies or ghosting artifacts.
Latent Geometry of Taste: Scalable Low-Rank Matrix Factorization for Recommender Systems
Scalability and data sparsity remain critical bottlenecks for collaborative filtering on massive interaction datasets. This work investigates the latent geometry of user preferences using the MovieLens 32M dataset, implementing a high-performance, parallelized Alternating Least Squares (ALS) framework. Through extensive hyperparameter optimization, we demonstrate that constrained low-rank models significantly outperform higher dimensional counterparts in generalization, achieving an optimal balance between Root Mean Square Error (RMSE) and ranking precision. We visualize the learned embedding space to reveal the unsupervised emergence of semantic genre clusters, confirming that the model captures deep structural relationships solely from interaction data. Finally, we validate the system's practical utility in a cold-start scenario, introducing a tunable scoring parameter to manage the trade-off between popularity bias and personalized affinity effectively. The codebase for this research can be found here: https://github.com/joshsalako/recommender.git
comment: Added a new figure on page 5, updated the title to include recommender systems, updated keywords, updated captions for all figures, and cited all figures in the text
UniF$^2$ace: A Unified Fine-grained Face Understanding and Generation Model
Unified multimodal models (UMMs) have emerged as a powerful paradigm in fundamental cross-modality research, demonstrating significant potential in both image understanding and generation. However, existing research in the face domain primarily faces two challenges: $\textbf{(1)}$ $\textbf{fragmentation development}$, with existing methods failing to unify understanding and generation into a single one, hindering the way to artificial general intelligence. $\textbf{(2) lack of fine-grained facial attributes}$, which are crucial for high-fidelity applications. To handle those issues, we propose $\textbf{UniF$^2$ace}$, $\textit{the first UMM specifically tailored for fine-grained face understanding and generation}$. $\textbf{First}$, we introduce a novel theoretical framework with a Dual Discrete Diffusion (D3Diff) loss, unifying masked generative models with discrete score matching diffusion and leading to a more precise approximation of the negative log-likelihood. Moreover, this D3Diff significantly enhances the model's ability to synthesize high-fidelity facial details aligned with text input. $\textbf{Second}$, we propose a multi-level grouped Mixture-of-Experts architecture, adaptively incorporating the semantic and identity facial embeddings to complement the attribute forgotten phenomenon in representation evolvement. $\textbf{Finally}$, to this end, we construct UniF$^2$aceD-1M, a large-scale dataset comprising 130K fine-grained image-caption pairs and 1M visual question-answering pairs, spanning a much wider range of facial attributes than existing datasets. Extensive experiments demonstrate that UniF$^2$ace outperforms existing models with a similar scale in both understanding and generation tasks, with 7.1\% higher Desc-GPT and 6.6\% higher VQA-score, respectively.
PathoSyn: Imaging-Pathology MRI Synthesis via Disentangled Deviation Diffusion
We present PathoSyn, a unified generative framework for Magnetic Resonance Imaging (MRI) image synthesis that reformulates imaging-pathology as a disentangled additive deviation on a stable anatomical manifold. Current generative models typically operate in the global pixel domain or rely on binary masks, these paradigms often suffer from feature entanglement, leading to corrupted anatomical substrates or structural discontinuities. PathoSyn addresses these limitations by decomposing the synthesis task into deterministic anatomical reconstruction and stochastic deviation modeling. Central to our framework is a Deviation-Space Diffusion Model designed to learn the conditional distribution of pathological residuals, thereby capturing localized intensity variations while preserving global structural integrity by construction. To ensure spatial coherence, the diffusion process is coupled with a seam-aware fusion strategy and an inference-time stabilization module, which collectively suppress boundary artifacts and produce high-fidelity internal lesion heterogeneity. PathoSyn provides a mathematically principled pipeline for generating high-fidelity patient-specific synthetic datasets, facilitating the development of robust diagnostic algorithms in low-data regimes. By allowing interpretable counterfactual disease progression modeling, the framework supports precision intervention planning and provides a controlled environment for benchmarking clinical decision-support systems. Quantitative and qualitative evaluations on tumor imaging benchmarks demonstrate that PathoSyn significantly outperforms holistic diffusion and mask-conditioned baselines in both perceptual realism and anatomical fidelity. The source code of this work will be made publicly available.
Tuning-free Visual Effect Transfer across Videos
We present RefVFX, a new framework that transfers complex temporal effects from a reference video onto a target video or image in a feed-forward manner. While existing methods excel at prompt-based or keyframe-conditioned editing, they struggle with dynamic temporal effects such as dynamic lighting changes or character transformations, which are difficult to describe via text or static conditions. Transferring a video effect is challenging, as the model must integrate the new temporal dynamics with the input video's existing motion and appearance. % To address this, we introduce a large-scale dataset of triplets, where each triplet consists of a reference effect video, an input image or video, and a corresponding output video depicting the transferred effect. Creating this data is non-trivial, especially the video-to-video effect triplets, which do not exist naturally. To generate these, we propose a scalable automated pipeline that creates high-quality paired videos designed to preserve the input's motion and structure while transforming it based on some fixed, repeatable effect. We then augment this data with image-to-video effects derived from LoRA adapters and code-based temporal effects generated through programmatic composition. Building on our new dataset, we train our reference-conditioned model using recent text-to-video backbones. Experimental results demonstrate that RefVFX produces visually consistent and temporally coherent edits, generalizes across unseen effect categories, and outperforms prompt-only baselines in both quantitative metrics and human preference. See our website https://tuningfreevisualeffects-maker.github.io/Tuning-free-Visual-Effect-Transfer-across-Videos-Project-Page/
comment: Project Page: https://tuningfreevisualeffects-maker.github.io/Tuning-free-Visual-Effect-Transfer-across-Videos-Project-Page/
A Diff-Attention Aware State Space Fusion Model for Remote Sensing Classification
Multispectral (MS) and panchromatic (PAN) images describe the same land surface, so these images not only have their own advantages, but also have a lot of similar information. In order to separate these similar information and their respective advantages, reduce the feature redundancy in the fusion stage. This paper introduces a diff-attention aware state space fusion model (DAS2F-Model) for multimodal remote sensing image classification. Based on the selective state space model, a cross-modal diff-attention module (CMDA-Module) is designed to extract and separate the common features and their respective dominant features of MS and PAN images. Among this, space preserving visual mamba (SPVM) retains image spatial features and captures local features by optimizing visual mamba's input reasonably. Considering that features in the fusion stage will have large semantic differences after feature separation and simple fusion operations struggle to effectively integrate these significantly different features, an attention-aware linear fusion module (AALF-Module) is proposed. It performs pixel-wise linear fusion by calculating influence coefficients. This mechanism can fuse features with large semantic differences while keeping the feature size unchanged. Empirical evaluations indicate that the presented method achieves better results than alternative approaches. The relevant code can be found at:https://github.com/AVKSKVL/DAS-F-Model
comment: After a careful review, we discovered that there were data errors in the paper, which led to the invalidity of the conclusion. To avoid misleading the readers, we have decided to withdraw this article. We appreciate your understanding and support for our work
Reconstruct, Inpaint, Test-Time Finetune: Dynamic Novel-view Synthesis from Monocular Videos NeurIPS 2025
We explore novel-view synthesis for dynamic scenes from monocular videos. Prior approaches rely on costly test-time optimization of 4D representations or do not preserve scene geometry when trained in a feed-forward manner. Our approach is based on three key insights: (1) covisible pixels (that are visible in both the input and target views) can be rendered by first reconstructing the dynamic 3D scene and rendering the reconstruction from the novel-views and (2) hidden pixels in novel views can be "inpainted" with feed-forward 2D video diffusion models. Notably, our video inpainting diffusion model (CogNVS) can be self-supervised from 2D videos, allowing us to train it on a large corpus of in-the-wild videos. This in turn allows for (3) CogNVS to be applied zero-shot to novel test videos via test-time finetuning. We empirically verify that CogNVS outperforms almost all prior art for novel-view synthesis of dynamic scenes from monocular videos.
comment: NeurIPS 2025. Project page: https://cog-nvs.github.io/
Perceptual Region-Driven Infrared-Visible Co-Fusion for Extreme Scene Enhancement
In photogrammetry, accurately fusing infrared (IR) and visible (VIS) spectra while preserving the geometric fidelity of visible features and incorporating thermal radiation is a significant challenge, particularly under extreme conditions. Existing methods often compromise visible imagery quality, impacting measurement accuracy. To solve this, we propose a region perception-based fusion framework that combines multi-exposure and multi-modal imaging using a spatially varying exposure (SVE) camera. This framework co-fuses multi-modal and multi-exposure data, overcoming single-exposure method limitations in extreme environments. The framework begins with region perception-based feature fusion to ensure precise multi-modal registration, followed by adaptive fusion with contrast enhancement. A structural similarity compensation mechanism, guided by regional saliency maps, optimizes IR-VIS spectral integration. Moreover, the framework adapts to single-exposure scenarios for robust fusion across different conditions. Experiments conducted on both synthetic and real-world data demonstrate superior image clarity and improved performance compared to state-of-the-art methods, as evidenced by both quantitative and visual evaluations.
comment: The paper has been accepted and officially published by OPTICS AND LASER TECHNOLOGY
Quantization-Aware Neuromorphic Architecture for Skin Disease Classification on Resource-Constrained Devices
On-device skin lesion analysis is constrained by the compute and energy cost of conventional CNN inference and by the need to update models as new patient data become available. We propose QANA, a quantization-aware CNN backbone embedded in an end-to-end pipeline engineered for conversion-stable neuromorphic execution. QANA replaces conversion-fragile components with spike-compatible transformations by bounding intermediate activations and aligning normalization with low-bit quantization, reducing conversion-induced distortion that disproportionately impacts rare classes. Efficiency is achieved through Ghost-based feature generation under tight FLOP budgets, while spatially-aware efficient channel attention and squeeze-and-excitation recalibrate channels without heavy global operators that are difficult to map to spiking cores. The resulting quantized projection head produces SNN-ready logits and enables incremental updates on edge hardware without full retraining or data offloading. On HAM10000, QANA achieves 91.6% Top-1 accuracy and 91.0% macro F1, improving the strongest converted SNN baseline by 3.5 percentage points in Top-1 accuracy, corresponding to a 4.0% relative gain, and by 12.0 points in macro F1, corresponding to a 15.2% relative gain. On a clinical dataset, QANA achieves 90.8% Top-1 accuracy and 81.7% macro F1, improving the strongest converted SNN baseline by 3.2 points in Top-1 accuracy, which corresponds to a 3.7% relative gain, and by 3.6 points in macro F1, corresponding to a 4.6% relative gain. When deployed on BrainChip Akida, QANA runs in 1.5 ms per image with 1.7 mJ per image, corresponding to 94.6% lower latency and 99.0% lower energy than its GPU-based CNN implementation.
PRISM: Self-Pruning Intrinsic Selection Method for Training-Free Multimodal Data Selection
Visual instruction tuning adapts pre-trained Multimodal Large Language Models (MLLMs) to follow human instructions for real-world applications. However, the rapid growth of these datasets introduces significant redundancy, leading to increased computational costs. Existing methods for selecting instruction data aim to prune this redundancy, but predominantly rely on computationally demanding techniques such as proxy-based inference or training-based metrics. Consequently, the substantial computational costs incurred by these selection processes often exacerbate the very efficiency bottlenecks they are intended to resolve, posing a significant challenge to the scalable and effective tuning of MLLMs. To address this challenge, we first identify a critical, yet previously overlooked, factor: the anisotropy inherent in visual feature distributions. We find that this anisotropy induces a \textit{Global Semantic Drift}, and overlooking this phenomenon is a key factor limiting the efficiency of current data selection methods. Motivated by this insight, we devise \textbf{PRISM}, the first training-free framework for efficient visual instruction selection. PRISM surgically removes the corrupting influence of global background features by modeling the intrinsic visual semantics via implicit re-centering. Empirically, PRISM reduces the end-to-end time for data selection and model tuning to just 30\% of conventional pipelines. More remarkably, it achieves this efficiency while simultaneously enhancing performance, surpassing models fine-tuned on the full dataset across eight multimodal and three language understanding benchmarks, culminating in a 101.7\% relative improvement over the baseline. The code is available for access via \href{https://github.com/bibisbar/PRISM}{this repository}.
Your Super Resolution Model is not Enough for Tackling Real-World Scenarios ICCV 2025
Despite remarkable progress in Single Image Super-Resolution (SISR), traditional models often struggle to generalize across varying scale factors, limiting their real-world applicability. To address this, we propose a plug-in Scale-Aware Attention Module (SAAM) designed to retrofit modern fixed-scale SR models with the ability to perform arbitrary-scale SR. SAAM employs lightweight, scale-adaptive feature extraction and upsampling, incorporating the Simple parameter-free Attention Module (SimAM) for efficient guidance and gradient variance loss to enhance sharpness in image details. Our method integrates seamlessly into multiple state-of-the-art SR backbones (e.g., SCNet, HiT-SR, OverNet), delivering competitive or superior performance across a wide range of integer and non-integer scale factors. Extensive experiments on benchmark datasets demonstrate that our approach enables robust multi-scale upscaling with minimal computational overhead, offering a practical solution for real-world scenarios.
comment: To appear in the Workshop on Efficient Computing under Limited Resources: Visual Computing (ECLR) at ICCV 2025
Ensemble-Based Event Camera Place Recognition Under Varying Illumination
Compared to conventional cameras, event cameras provide a high dynamic range and low latency, offering greater robustness to rapid motion and challenging lighting conditions. Although the potential of event cameras for visual place recognition (VPR) has been established, developing robust VPR frameworks under severe illumination changes remains an open research problem. In this paper, we introduce an ensemble-based approach to event camera place recognition that combines sequence-matched results from multiple event-to-frame reconstructions, VPR feature extractors, and temporal resolutions. Unlike previous event-based ensemble methods, which only utilise temporal resolution, our broader fusion strategy delivers significantly improved robustness under varied lighting conditions (e.g., afternoon, sunset, night), achieving a 57% relative improvement in Recall@1 across day-night transitions. We evaluate our approach on two long-term driving datasets (with 8 km per traverse) without metric subsampling, thereby preserving natural variations in speed and stop duration that influence event density. We also conduct a comprehensive analysis of key design choices, including binning strategies, polarity handling, reconstruction methods, and feature extractors, to identify the most critical components for robust performance. Additionally, we propose a modification to the standard sequence matching framework that enhances performance at longer sequence lengths. To facilitate future research, we will release our codebase and benchmarking framework.
Human-in-the-Loop Segmentation of Multi-species Coral Imagery CVPR 2024
Marine surveys by robotic underwater and surface vehicles result in substantial quantities of coral reef imagery, however labeling these images is expensive and time-consuming for domain experts. Point label propagation is a technique that uses existing images labeled with sparse points to create augmented ground truth data, which can be used to train a semantic segmentation model. In this work, we show that recent advances in large foundation models facilitate the creation of augmented ground truth masks using only features extracted by the denoised version of the DINOv2 foundation model and K-Nearest Neighbors (KNN), without any pre-training. For images with extremely sparse labels, we use human-in-the-loop principles to enhance annotation efficiency: if there are 5 point labels per image, our method outperforms the prior state-of-the-art by 19.7% for mIoU. When human-in-the-loop labeling is not available, using the denoised DINOv2 features with a KNN still improves on the prior state-of-the-art by 5.8% for mIoU (5 grid points). On the semantic segmentation task, we outperform the prior state-of-the-art by 13.5% for mIoU when only 5 point labels are used for point label propagation. Additionally, we perform a comprehensive study into the number and placement of point labels, and make several recommendations for improving the efficiency of labeling images with points.
comment: IEEE Journal of Oceanic Engineering accepted preprint of extended paper, 36 pages, 14 figures. Original conference paper (v2) accepted at the CVPR 2024 3rd Workshop on Learning with Limited Labelled Data for Image and Video Understanding (L3D-IVU)
Pain in 3D: Generating Controllable Synthetic Faces for Automated Pain Assessment
Automated pain assessment from facial expressions is crucial for non-communicative patients, such as those with dementia. Progress has been limited by two challenges: (i) existing datasets exhibit severe demographic and label imbalance due to ethical constraints, and (ii) current generative models cannot precisely control facial action units (AUs), facial structure, or clinically validated pain levels. We present 3DPain, a large-scale synthetic dataset specifically designed for automated pain assessment, featuring unprecedented annotation richness and demographic diversity. Our three-stage framework generates diverse 3D meshes, textures them with diffusion models, and applies AU-driven face rigging to synthesize multi-view faces with paired neutral and pain images, AU configurations, PSPI scores, and the first dataset-level annotations of pain-region heatmaps. The dataset comprises 82,500 samples across 25,000 pain expression heatmaps and 2,500 synthetic identities balanced by age, gender, and ethnicity. We further introduce ViTPain, a Vision Transformer based cross-modal distillation framework in which a heatmap-trained teacher guides a student trained on RGB images, enhancing accuracy, interpretability, and clinical reliability. Together, 3DPain and ViTPain establish a controllable, diverse, and clinically grounded foundation for generalizable automated pain assessment.
Privacy-Preserving in Connected and Autonomous Vehicles Through Vision to Text Transformation
Intelligent Transportation Systems (ITS) rely on a variety of devices that frequently process privacy-sensitive data. Roadside units are important because they use AI-equipped cameras to detect traffic violations in Connected and Autonomous Vehicles (CAV). However, although the interior of a vehicle is generally considered a private space, the privacy risks associated with captured imagery remain a major concern, as such data can be misused for identity theft, profiling, or unauthorized commercial purposes. Methods like face blurring reduce privacy risks, however individuals' privacy can still be compromised. This paper introduces a novel privacy-preserving framework that leverages feedback-based reinforcement learning (RL) and vision-language models (VLMs) to protect sensitive visual information captured by AIE cameras. The proposed idea transforms images into textual descriptions using an innovative method while the main scene details are preserved and protects privacy. A hierarchical RL strategy is employed to iteratively refine the generated text, enhancing both semantic accuracy and privacy. Unlike prior captioning-based methods, our model incorporates an iterative reinforcement-learning cycle with external knowledge feedback which progressively refines privacy-aware text. In addition to qualitative textual metric evaluations, the privacy-based metrics demonstrate significant improvements in privacy preservation where SSIM, PSNR, MSE, and SRRA values obtained using the proposed method on two different datasets outperform other methods.
Tracking and Understanding Object Transformations NeurIPS 2025
Real-world objects frequently undergo state transformations. From an apple being cut into pieces to a butterfly emerging from its cocoon, tracking through these changes is important for understanding real-world objects and dynamics. However, existing methods often lose track of the target object after transformation, due to significant changes in object appearance. To address this limitation, we introduce the task of Track Any State: tracking objects through transformations while detecting and describing state changes, accompanied by a new benchmark dataset, VOST-TAS. To tackle this problem, we present TubeletGraph, a zero-shot system that recovers missing objects after transformation and maps out how object states are evolving over time. TubeletGraph first identifies potentially overlooked tracks, and determines whether they should be integrated based on semantic and proximity priors. Then, it reasons about the added tracks and generates a state graph describing each observed transformation. TubeletGraph achieves state-of-the-art tracking performance under transformations, while demonstrating deeper understanding of object transformations and promising capabilities in temporal grounding and semantic reasoning for complex object transformations. Code, additional results, and the benchmark dataset are available at https://tubelet-graph.github.io.
comment: NeurIPS 2025
Artificial Intelligence 249
Modeling LLM Agent Reviewer Dynamics in Elo-Ranked Review System
In this work, we explore the Large Language Model (LLM) agent reviewer dynamics in an Elo-ranked review system using real-world conference paper submissions. Multiple LLM agent reviewers with different personas are engage in multi round review interactions moderated by an Area Chair. We compare a baseline setting with conditions that incorporate Elo ratings and reviewer memory. Our simulation results showcase several interesting findings, including how incorporating Elo improves Area Chair decision accuracy, as well as reviewers' adaptive review strategy that exploits our Elo system without improving review effort. Our code is available at https://github.com/hsiangwei0903/EloReview.
comment: In submission. The first two authors contributed equally
★★ Motion Attribution for Video Generation
Despite the rapid progress of video generation models, the role of data in influencing motion is poorly understood. We present Motive (MOTIon attribution for Video gEneration), a motion-centric, gradient-based data attribution framework that scales to modern, large, high-quality video datasets and models. We use this to study which fine-tuning clips improve or degrade temporal dynamics. Motive isolates temporal dynamics from static appearance via motion-weighted loss masks, yielding efficient and scalable motion-specific influence computation. On text-to-video models, Motive identifies clips that strongly affect motion and guides data curation that improves temporal consistency and physical plausibility. With Motive-selected high-influence data, our method improves both motion smoothness and dynamic degree on VBench, achieving a 74.1% human preference win rate compared with the pretrained base model. To our knowledge, this is the first framework to attribute motion rather than visual appearance in video generative models and to use it to curate fine-tuning data.
comment: See the project website at https://research.nvidia.com/labs/sil/projects/MOTIVE/
MemRec: Collaborative Memory-Augmented Agentic Recommender System
The evolution of recommender systems has shifted preference storage from rating matrices and dense embeddings to semantic memory in the agentic era. Yet existing agents rely on isolated memory, overlooking crucial collaborative signals. Bridging this gap is hindered by the dual challenges of distilling vast graph contexts without overwhelming reasoning agents with cognitive load, and evolving the collaborative memory efficiently without incurring prohibitive computational costs. To address this, we propose MemRec, a framework that architecturally decouples reasoning from memory management to enable efficient collaborative augmentation. MemRec introduces a dedicated, cost-effective LM_Mem to manage a dynamic collaborative memory graph, serving synthesized, high-signal context to a downstream LLM_Rec. The framework operates via a practical pipeline featuring efficient retrieval and cost-effective asynchronous graph propagation that evolves memory in the background. Extensive experiments on four benchmarks demonstrate that MemRec achieves state-of-the-art performance. Furthermore, architectural analysis confirms its flexibility, establishing a new Pareto frontier that balances reasoning quality, cost, and privacy through support for diverse deployments, including local open-source models. Code:https://github.com/rutgerswiselab/memrec and Homepage: https://memrec.weixinchen.com
Reasoning Matters for 3D Visual Grounding CVPR
The recent development of Large Language Models (LLMs) with strong reasoning ability has driven research in various domains such as mathematics, coding, and scientific discovery. Meanwhile, 3D visual grounding, as a fundamental task in 3D understanding, still remains challenging due to the limited reasoning ability of recent 3D visual grounding models. Most of the current methods incorporate a text encoder and visual feature encoder to generate cross-modal fuse features and predict the referring object. These models often require supervised training on extensive 3D annotation data. On the other hand, recent research also focus on scaling synthetic data to train stronger 3D visual grounding LLM, however, the performance gain remains limited and non-proportional to the data collection cost. In this work, we propose a 3D visual grounding data pipeline, which is capable of automatically synthesizing 3D visual grounding data along with corresponding reasoning process. Additionally, we leverage the generated data for LLM fine-tuning and introduce Reason3DVG-8B, a strong 3D visual grounding LLM that outperforms previous LLM-based method 3D-GRAND using only 1.6% of their training data, demonstrating the effectiveness of our data and the importance of reasoning in 3D visual grounding.
comment: 2025 CVPR Workshop on 3D-LLM/VLA: Bridging Language, Vision and Action in 3D Environments
Multiplex Thinking: Reasoning via Token-wise Branch-and-Merge
Large language models often solve complex reasoning tasks more effectively with Chain-of-Thought (CoT), but at the cost of long, low-bandwidth token sequences. Humans, by contrast, often reason softly by maintaining a distribution over plausible next steps. Motivated by this, we propose Multiplex Thinking, a stochastic soft reasoning mechanism that, at each thinking step, samples K candidate tokens and aggregates their embeddings into a single continuous multiplex token. This preserves the vocabulary embedding prior and the sampling dynamics of standard discrete generation, while inducing a tractable probability distribution over multiplex rollouts. Consequently, multiplex trajectories can be directly optimized with on-policy reinforcement learning (RL). Importantly, Multiplex Thinking is self-adaptive: when the model is confident, the multiplex token is nearly discrete and behaves like standard CoT; when it is uncertain, it compactly represents multiple plausible next steps without increasing sequence length. Across challenging math reasoning benchmarks, Multiplex Thinking consistently outperforms strong discrete CoT and RL baselines from Pass@1 through Pass@1024, while producing shorter sequences. The code and checkpoints are available at https://github.com/GMLR-Penn/Multiplex-Thinking.
comment: 21 pages. Code available at https://github.com/GMLR-Penn/Multiplex-Thinking
S3-CLIP: Video Super Resolution for Person-ReID
Tracklet quality is often treated as an afterthought in most person re-identification (ReID) methods, with the majority of research presenting architectural modifications to foundational models. Such approaches neglect an important limitation, posing challenges when deploying ReID systems in real-world, difficult scenarios. In this paper, we introduce S3-CLIP, a video super-resolution-based CLIP-ReID framework developed for the VReID-XFD challenge at WACV 2026. The proposed method integrates recent advances in super-resolution networks with task-driven super-resolution pipelines, adapting them to the video-based person re-identification setting. To the best of our knowledge, this work represents the first systematic investigation of video super-resolution as a means of enhancing tracklet quality for person ReID, particularly under challenging cross-view conditions. Experimental results demonstrate performance competitive with the baseline, achieving 37.52% mAP in aerial-to-ground and 29.16% mAP in ground-to-aerial scenarios. In the ground-to-aerial setting, S3-CLIP achieves substantial gains in ranking accuracy, improving Rank-1, Rank-5, and Rank-10 performance by 11.24%, 13.48%, and 17.98%, respectively.
comment: Accepted to the 2026 IEEE/CVF Winter Conference on Applications of Computer Vision Workshops (WACVW), VReID-XFD Challenge
APEX-SWE
We introduce the AI Productivity Index for Software Engineering (APEX-SWE), a benchmark for assessing whether frontier AI models can execute economically valuable software engineering work. Unlike existing evaluations that focus on narrow, well-defined tasks, APEX-SWE assesses two novel task types that reflect real-world software engineering work: (1) Integration tasks (n=100), which require constructing end-to-end systems across heterogeneous cloud primitives, business applications, and infrastructure-as-code services, and (2) Observability tasks (n=100), which require debugging production failures using telemetry signals such as logs and dashboards, as well as unstructured context. We evaluated eight frontier models on APEX-SWE. Gemini 3 Pro (Thinking = High) performs best, with a Pass@1 score of 25\%. Our analysis shows that strong performance is primarily driven by epistemic reasoning, defined as the ability to distinguish between assumptions and verified facts, combined with agency to resolve uncertainty prior to acting. We open-source the APEX-SWE evaluation harness and a dev set (n=50).
Uncovering Political Bias in Large Language Models using Parliamentary Voting Records
As large language models (LLMs) become deeply embedded in digital platforms and decision-making systems, concerns about their political biases have grown. While substantial work has examined social biases such as gender and race, systematic studies of political bias remain limited, despite their direct societal impact. This paper introduces a general methodology for constructing political bias benchmarks by aligning model-generated voting predictions with verified parliamentary voting records. We instantiate this methodology in three national case studies: PoliBiasNL (2,701 Dutch parliamentary motions and votes from 15 political parties), PoliBiasNO (10,584 motions and votes from 9 Norwegian parties), and PoliBiasES (2,480 motions and votes from 10 Spanish parties). Across these benchmarks, we assess ideological tendencies and political entity bias in LLM behavior. As part of our evaluation framework, we also propose a method to visualize the ideology of LLMs and political parties in a shared two-dimensional CHES (Chapel Hill Expert Survey) space by linking their voting-based positions to the CHES dimensions, enabling direct and interpretable comparisons between models and real-world political actors. Our experiments reveal fine-grained ideological distinctions: state-of-the-art LLMs consistently display left-leaning or centrist tendencies, alongside clear negative biases toward right-conservative parties. These findings highlight the value of transparent, cross-national evaluation grounded in real parliamentary behavior for understanding and auditing political bias in modern LLMs.
Pervasive Annotation Errors Break Text-to-SQL Benchmarks and Leaderboards
Researchers have proposed numerous text-to-SQL techniques to streamline data analytics and accelerate the development of database-driven applications. To compare these techniques and select the best one for deployment, the community depends on public benchmarks and their leaderboards. Since these benchmarks heavily rely on human annotations during question construction and answer evaluation, the validity of the annotations is crucial. In this paper, we conduct an empirical study that (i) benchmarks annotation error rates for two widely used text-to-SQL benchmarks, BIRD and Spider 2.0-Snow, and (ii) corrects a subset of the BIRD development (Dev) set to measure the impact of annotation errors on text-to-SQL agent performance and leaderboard rankings. Through expert analysis, we show that BIRD Mini-Dev and Spider 2.0-Snow have error rates of 52.8% and 62.8%, respectively. We re-evaluate all 16 open-source agents from the BIRD leaderboard on both the original and the corrected BIRD Dev subsets. We show that performance changes range from -7% to 31% (in relative terms) and rank changes range from $-9$ to $+9$ positions. We further assess whether these impacts generalize to the full BIRD Dev set. We find that the rankings of agents on the uncorrected subset correlate strongly with those on the full Dev set (Spearman's $r_s$=0.85, $p$=3.26e-5), whereas they correlate weakly with those on the corrected subset (Spearman's $r_s$=0.32, $p$=0.23). These findings show that annotation errors can significantly distort reported performance and rankings, potentially misguiding research directions or deployment choices. Our code and data are available at https://github.com/uiuc-kang-lab/text_to_sql_benchmarks.
comment: 18 pages, 14 figures, 9 tables
Asymptotic Universal Alignment: A New Alignment Framework via Test-Time Scaling
Aligning large language models (LLMs) to serve users with heterogeneous and potentially conflicting preferences is a central challenge for personalized and trustworthy AI. We formalize an ideal notion of universal alignment through test-time scaling: for each prompt, the model produces $k\ge 1$ candidate responses and a user selects their preferred one. We introduce $(k,f(k))$-robust alignment, which requires the $k$-output model to have win rate $f(k)$ against any other single-output model, and asymptotic universal alignment (U-alignment), which requires $f(k)\to 1$ as $k\to\infty$. Our main result characterizes the optimal convergence rate: there exists a family of single-output policies whose $k$-sample product policies achieve U-alignment at rate $f(k)=\frac{k}{k+1}$, and no method can achieve a faster rate in general. We show that popular post-training methods, including Nash learning from human feedback (NLHF), can fundamentally underutilize the benefits of test-time scaling. Even though NLHF is optimal for $k=1$, sampling from the resulting (often deterministic) policy cannot guarantee win rates above $\tfrac{1}{2}$ except for an arbitrarily small slack. This stems from a lack of output diversity: existing alignment methods can collapse to a single majority-preferred response, making additional samples redundant. In contrast, our approach preserves output diversity and achieves the optimal test-time scaling rate. In particular, we propose a family of symmetric multi-player alignment games and prove that any symmetric Nash equilibrium policy of the $(k+1)$-player alignment game achieves the optimal $(k,\frac{k}{k+1})$-robust alignment. Finally, we provide theoretical convergence guarantees for self-play learning dynamics in these games and extend the framework to opponents that also generate multiple responses.
Translating Light-Sheet Microscopy Images to Virtual H&E Using CycleGAN
Histopathology analysis relies on Hematoxylin and Eosin (H&E) staining, but fluorescence microscopy offers complementary information. Converting fluorescence images to H&E-like appearance can aid interpretation and integration with standard workflows. We present a Cycle-Consistent Adversarial Network (CycleGAN) approach for unpaired image-to-image translation from multi-channel fluorescence microscopy to pseudo H&E stained histopathology images. The method combines C01 and C02 fluorescence channels into RGB and learns a bidirectional mapping between fluorescence and H&E domains without paired training data. The architecture uses ResNet-based generators with residual blocks and PatchGAN discriminators, trained with adversarial, cycle-consistency, and identity losses. Experiments on fluorescence microscopy datasets show the model generates realistic pseudo H&E images that preserve morphological structures while adopting H&E-like color characteristics. This enables visualization of fluorescence data in a format familiar to pathologists and supports integration with existing H&E-based analysis pipelines.
comment: 5 pages, 4 figures
Reliable Graph-RAG for Codebases: AST-Derived Graphs vs LLM-Extracted Knowledge Graphs
Retrieval-Augmented Generation for software engineering often relies on vector similarity search, which captures topical similarity but can fail on multi-hop architectural reasoning such as controller to service to repository chains, interface-driven wiring, and inheritance. This paper benchmarks three retrieval pipelines on Java codebases (Shopizer, with additional runs on ThingsBoard and OpenMRS Core): (A) vector-only No-Graph RAG, (B) an LLM-generated knowledge graph RAG (LLM-KB), and (C) a deterministic AST-derived knowledge graph RAG (DKB) built with Tree-sitter and bidirectional traversal. Using 15 architecture and code-tracing queries per repository, we measure indexing time, query latency, corpus coverage, cost, and answer correctness. DKB builds its graph in seconds, while LLM-KB requires much longer graph generation. LLM-KB also shows indexing incompleteness: on Shopizer, 377 files are skipped or missed, reducing embedded chunk coverage and graph size compared to DKB. End-to-end cost is modest for DKB relative to the vector-only baseline but much higher for LLM-KB, especially as repository scale increases. Query latency is similar for No-Graph and DKB, while LLM-KB is slower and more variable. On the Shopizer question suite, DKB achieves the highest correctness, LLM-KB is close behind, and the vector-only baseline performs worst on upstream architectural queries and has the highest hallucination risk. Overall, deterministic AST-derived graphs provide more reliable coverage and multi-hop grounding than LLM-extracted graphs at substantially lower indexing cost.
comment: 46 pages, 2 figures
AI as Entertainment
Generative AI systems are predominantly designed, evaluated, and marketed as intelligent systems which will benefit society by augmenting or automating human cognitive labor, promising to increase personal, corporate, and macroeconomic productivity. But this mainstream narrative about what AI is and what it can do is in tension with another emerging use case: entertainment. We argue that the field of AI is unprepared to measure or respond to how the proliferation of entertaining AI-generated content will impact society. Emerging data suggest AI is already widely adopted for entertainment purposes -- especially by young people -- and represents a large potential source of revenue. We contend that entertainment will become a primary business model for major AI corporations seeking returns on massive infrastructure investments; this will exert a powerful influence on the technology these companies produce in the coming years. Examining current evaluation practices, we identify a critical asymmetry: while AI assessments rigorously measure both benefits and harms of intelligence, they focus almost exclusively on cultural harms. We lack frameworks for articulating how cultural outputs might be actively beneficial. Drawing on insights from the humanities, we propose "thick entertainment" as a framework for evaluating AI-generated cultural content -- one that considers entertainment's role in meaning-making, identity formation, and social connection rather than simply minimizing harm. While AI is often touted for its potential to revolutionize productivity, in the long run we may find that AI turns out to be as much about "intelligence" as social media is about social connection.
Grid-Aware Charging and Operational Optimization for Mixed-Fleet Public Transit ITSC
The rapid growth of urban populations and the increasing need for sustainable transportation solutions have prompted a shift towards electric buses in public transit systems. However, the effective management of mixed fleets consisting of both electric and diesel buses poses significant operational challenges. One major challenge is coping with dynamic electricity pricing, where charging costs vary throughout the day. Transit agencies must optimize charging assignments in response to such dynamism while accounting for secondary considerations such as seating constraints. This paper presents a comprehensive mixed-integer linear programming (MILP) model to address these challenges by jointly optimizing charging schedules and trip assignments for mixed (electric and diesel bus) fleets while considering factors such as dynamic electricity pricing, vehicle capacity, and route constraints. We address the potential computational intractability of the MILP formulation, which can arise even with relatively small fleets, by employing a hierarchical approach tailored to the fleet composition. By using real-world data from the city of Chattanooga, Tennessee, USA, we show that our approach can result in significant savings in the operating costs of the mixed transit fleets.
comment: 7 pages, 7 figures, 4 algorithms. Published in the Proceedings of the 2024 IEEE 27th International Conference on Intelligent Transportation Systems (ITSC)
To Retrieve or To Think? An Agentic Approach for Context Evolution
Current context augmentation methods, such as retrieval-augmented generation, are essential for solving knowledge-intensive reasoning tasks.However, they typically adhere to a rigid, brute-force strategy that executes retrieval at every step. This indiscriminate approach not only incurs unnecessary computational costs but also degrades performance by saturating the context with irrelevant noise. To address these limitations, we introduce Agentic Context Evolution (ACE), a framework inspired by human metacognition that dynamically determines whether to seek new evidence or reason with existing knowledge. ACE employs a central orchestrator agent to make decisions strategically via majority voting.It aims to alternate between activating a retriever agent for external retrieval and a reasoner agent for internal analysis and refinement. By eliminating redundant retrieval steps, ACE maintains a concise and evolved context. Extensive experiments on challenging multi-hop QA benchmarks demonstrate that ACE significantly outperforms competitive baselines in accuracy while achieving efficient token consumption.Our work provides valuable insights into advancing context-evolved generation for complex, knowledge-intensive tasks.
TableCache: Primary Foreign Key Guided KV Cache Precomputation for Low Latency Text-to-SQL
In Text-to-SQL tasks, existing LLM-based methods often include extensive database schemas in prompts, leading to long context lengths and increased prefilling latency. While user queries typically focus on recurrent table sets-offering an opportunity for KV cache sharing across queries-current inference engines, such as SGLang and vLLM, generate redundant prefix cache copies when processing user queries with varying table orders. To address this inefficiency, we propose precomputing table representations as KV caches offline and querying the required ones online. A key aspect of our approach is the computation of table caches while preserving primary foreign key relationships between tables. Additionally, we construct a Table Trie structure to facilitate efficient KV cache lookups during inference. To enhance cache performance, we introduce a cache management system with a query reranking strategy to improve cache hit rates and a computation loading pipeline for parallelizing model inference and cache loading. Experimental results show that our proposed TableCache achieves up to a 3.62x speedup in Time to First Token (TTFT) with negligible performance degradation.
TerraFormer: Automated Infrastructure-as-Code with LLMs Fine-Tuned via Policy-Guided Verifier Feedback
Automating Infrastructure-as-Code (IaC) is challenging, and large language models (LLMs) often produce incorrect configurations from natural language (NL). We present TerraFormer, a neuro-symbolic framework for IaC generation and mutation that combines supervised fine-tuning with verifier-guided reinforcement learning, using formal verification tools to provide feedback on syntax, deployability, and policy compliance. We curate two large, high-quality NL-to-IaC datasets, TF-Gen (152k instances) and TF-Mutn (52k instances), via multi-stage verification and iterative LLM self-correction. Evaluations against 17 state-of-the-art LLMs, including ~50x larger models like Sonnet 3.7, DeepSeek-R1, and GPT-4.1, show that TerraFormer improves correctness over its base LLM by 15.94% on IaC-Eval, 11.65% on TF-Gen (Test), and 19.60% on TF-Mutn (Test). It outperforms larger models on both TF-Gen (Test) and TF-Mutn (Test), ranks third on IaC-Eval, and achieves top best-practices and security compliance.
comment: The paper has been published at the 2026 IEEE/ACM 48th International Conference on Software Engineering (ICSE 2026), Rio de Janeiro, Brazil, April 12-18, 2026
ISLA: A U-Net for MRI-based acute ischemic stroke lesion segmentation with deep supervision, attention, domain adaptation, and ensemble learning
Accurate delineation of acute ischemic stroke lesions in MRI is a key component of stroke diagnosis and management. In recent years, deep learning models have been successfully applied to the automatic segmentation of such lesions. While most proposed architectures are based on the U-Net framework, they primarily differ in their choice of loss functions and in the use of deep supervision, residual connections, and attention mechanisms. Moreover, many implementations are not publicly available, and the optimal configuration for acute ischemic stroke (AIS) lesion segmentation remains unclear. In this work, we introduce ISLA (Ischemic Stroke Lesion Analyzer), a new deep learning model for AIS lesion segmentation from diffusion MRI, trained on three multicenter databases totaling more than 1500 AIS participants. Through systematic optimization of the loss function, convolutional architecture, deep supervision, and attention mechanisms, we developed a robust segmentation framework. We further investigated unsupervised domain adaptation to improve generalization to an external clinical dataset. ISLA outperformed two state-of-the-art approaches for AIS lesion segmentation on an external test set. Codes and trained models will be made publicly available to facilitate reuse and reproducibility.
Learning from Demonstrations via Capability-Aware Goal Sampling NeurIPS 2025
Despite its promise, imitation learning often fails in long-horizon environments where perfect replication of demonstrations is unrealistic and small errors can accumulate catastrophically. We introduce Cago (Capability-Aware Goal Sampling), a novel learning-from-demonstrations method that mitigates the brittle dependence on expert trajectories for direct imitation. Unlike prior methods that rely on demonstrations only for policy initialization or reward shaping, Cago dynamically tracks the agent's competence along expert trajectories and uses this signal to select intermediate steps--goals that are just beyond the agent's current reach--to guide learning. This results in an adaptive curriculum that enables steady progress toward solving the full task. Empirical results demonstrate that Cago significantly improves sample efficiency and final performance across a range of sparse-reward, goal-conditioned tasks, consistently outperforming existing learning from-demonstrations baselines.
comment: 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
Real-Time Localization Framework for Autonomous Basketball Robots
Localization is a fundamental capability for autonomous robots, enabling them to operate effectively in dynamic environments. In Robocon 2025, accurate and reliable localization is crucial for improving shooting precision, avoiding collisions with other robots, and navigating the competition field efficiently. In this paper, we propose a hybrid localization algorithm that integrates classical techniques with learning based methods that rely solely on visual data from the court's floor to achieve self-localization on the basketball field.
comment: 8 pages, 12 figures, Project code: https://github.com/NarenTheNumpkin/Basketball-robot-localization
Evaluating the Ability of Explanations to Disambiguate Models in a Rashomon Set AAAI 2026
Explainable artificial intelligence (XAI) is concerned with producing explanations indicating the inner workings of models. For a Rashomon set of similarly performing models, explanations provide a way of disambiguating the behavior of individual models, helping select models for deployment. However explanations themselves can vary depending on the explainer used, and need to be evaluated. In the paper "Evaluating Model Explanations without Ground Truth", we proposed three principles of explanation evaluation and a new method "AXE" to evaluate the quality of feature-importance explanations. We go on to illustrate how evaluation metrics that rely on comparing model explanations against ideal ground truth explanations obscure behavioral differences within a Rashomon set. Explanation evaluation aligned with our proposed principles would highlight these differences instead, helping select models from the Rashomon set. The selection of alternate models from the Rashomon set can maintain identical predictions but mislead explainers into generating false explanations, and mislead evaluation methods into considering the false explanations to be of high quality. AXE, our proposed explanation evaluation method, can detect this adversarial fairwashing of explanations with a 100% success rate. Unlike prior explanation evaluation strategies such as those based on model sensitivity or ground truth comparison, AXE can determine when protected attributes are used to make predictions.
comment: This is a preprint of the paper published at the MURE workshop, AAAI 2026, which builds on a preprint of separate work published at FAccT 2025 (arXiv:2505.10399)
Auditing Student-AI Collaboration: A Case Study of Online Graduate CS Students
As generative AI becomes embedded in higher education, it increasingly shapes how students complete academic tasks. While these systems offer efficiency and support, concerns persist regarding over-automation, diminished student agency, and the potential for unreliable or hallucinated outputs. This study conducts a mixed-methods audit of student-AI collaboration preferences by examining the alignment between current AI capabilities and students' desired levels of automation in academic work. Using two sequential and complementary surveys, we capture students' perceived benefits, risks, and preferred boundaries when using AI. The first survey employs an existing task-based framework to assess preferences for and actual usage of AI across 12 academic tasks, alongside primary concerns and reasons for use. The second survey, informed by the first, explores how AI systems could be designed to address these concerns through open-ended questions. This study aims to identify gaps between existing AI affordances and students' normative expectations of collaboration, informing the development of more effective and trustworthy AI systems for education.
All Required, In Order: Phase-Level Evaluation for AI-Human Dialogue in Healthcare and Beyond AAAI-26
Conversational AI is starting to support real clinical work, but most evaluation methods miss how compliance depends on the full course of a conversation. We introduce Obligatory-Information Phase Structured Compliance Evaluation (OIP-SCE), an evaluation method that checks whether every required clinical obligation is met, in the right order, with clear evidence for clinicians to review. This makes complex rules practical and auditable, helping close the gap between technical progress and what healthcare actually needs. We demonstrate the method in two case studies (respiratory history, benefits verification) and show how phase-level evidence turns policy into shared, actionable steps. By giving clinicians control over what to check and engineers a clear specification to implement, OIP-SCE provides a single, auditable evaluation surface that aligns AI capability with clinical workflow and supports routine, safe use.
comment: Accepted at the AI for Medicine and Healthcare (AIMedHealth) Bridge Program, AAAI-26, Singapore. Full-length paper; to appear in Proceedings of Machine Learning Research (PMLR)
MEMEWEAVER: Inter-Meme Graph Reasoning for Sexism and Misogyny Detection
Women are twice as likely as men to face online harassment due to their gender. Despite recent advances in multimodal content moderation, most approaches still overlook the social dynamics behind this phenomenon, where perpetrators reinforce prejudices and group identity within like-minded communities. Graph-based methods offer a promising way to capture such interactions, yet existing solutions remain limited by heuristic graph construction, shallow modality fusion, and instance-level reasoning. In this work, we present MemeWeaver, an end-to-end trainable multimodal framework for detecting sexism and misogyny through a novel inter-meme graph reasoning mechanism. We systematically evaluate multiple visual--textual fusion strategies and show that our approach consistently outperforms state-of-the-art baselines on the MAMI and EXIST benchmarks, while achieving faster training convergence. Further analyses reveal that the learned graph structure captures semantically meaningful patterns, offering valuable insights into the relational nature of online hate.
comment: Accepted at EACL 2026 Findings
Region of interest detection for efficient aortic segmentation
Thoracic aortic dissection and aneurysms are the most lethal diseases of the aorta. The major hindrance to treatment lies in the accurate analysis of the medical images. More particularly, aortic segmentation of the 3D image is often tedious and difficult. Deep-learning-based segmentation models are an ideal solution, but their inability to deliver usable outputs in difficult cases and their computational cost cause their clinical adoption to stay limited. This study presents an innovative approach for efficient aortic segmentation using targeted region of interest (ROI) detection. In contrast to classical detection models, we propose a simple and efficient detection model that can be widely applied to detect a single ROI. Our detection model is trained as a multi-task model, using an encoder-decoder architecture for segmentation and a fully connected network attached to the bottleneck for detection. We compare the performance of a one-step segmentation model applied to a complete image, nnU-Net and our cascade model composed of a detection and a segmentation step. We achieve a mean Dice similarity coefficient of 0.944 with over 0.9 for all cases using a third of the computing power. This simple solution achieves state-of-the-art performance while being compact and robust, making it an ideal solution for clinical applications.
Lessons from the Field: An Adaptable Lifecycle Approach to Applied Dialogue Summarization
Summarization of multi-party dialogues is a critical capability in industry, enhancing knowledge transfer and operational effectiveness across many domains. However, automatically generating high-quality summaries is challenging, as the ideal summary must satisfy a set of complex, multi-faceted requirements. While summarization has received immense attention in research, prior work has primarily utilized static datasets and benchmarks, a condition rare in practical scenarios where requirements inevitably evolve. In this work, we present an industry case study on developing an agentic system to summarize multi-party interactions. We share practical insights spanning the full development lifecycle to guide practitioners in building reliable, adaptable summarization systems, as well as to inform future research, covering: 1) robust methods for evaluation despite evolving requirements and task subjectivity, 2) component-wise optimization enabled by the task decomposition inherent in an agentic architecture, 3) the impact of upstream data bottlenecks, and 4) the realities of vendor lock-in due to the poor transferability of LLM prompts.
comment: EACL 2026 Industry Track
PersonaDual: Balancing Personalization and Objectivity via Adaptive Reasoning
As users increasingly expect LLMs to align with their preferences, personalized information becomes valuable. However, personalized information can be a double-edged sword: it can improve interaction but may compromise objectivity and factual correctness, especially when it is misaligned with the question. To alleviate this problem, we propose PersonaDual, a framework that supports both general-purpose objective reasoning and personalized reasoning in a single model, and adaptively switches modes based on context. PersonaDual is first trained with SFT to learn two reasoning patterns, and then further optimized via reinforcement learning with our proposed DualGRPO to improve mode selection. Experiments on objective and personalized benchmarks show that PersonaDual preserves the benefits of personalization while reducing interference, achieving near interference-free performance and better leveraging helpful personalized signals to improve objective problem-solving.
Advancing ESG Intelligence: An Expert-level Agent and Comprehensive Benchmark for Sustainable Finance
Environmental, social, and governance (ESG) criteria are essential for evaluating corporate sustainability and ethical performance. However, professional ESG analysis is hindered by data fragmentation across unstructured sources, and existing large language models (LLMs) often struggle with the complex, multi-step workflows required for rigorous auditing. To address these limitations, we introduce ESGAgent, a hierarchical multi-agent system empowered by a specialized toolset, including retrieval augmentation, web search and domain-specific functions, to generate in-depth ESG analysis. Complementing this agentic system, we present a comprehensive three-level benchmark derived from 310 corporate sustainability reports, designed to evaluate capabilities ranging from atomic common-sense questions to the generation of integrated, in-depth analysis. Empirical evaluations demonstrate that ESGAgent outperforms state-of-the-art closed-source LLMs with an average accuracy of 84.15% on atomic question-answering tasks, and excels in professional report generation by integrating rich charts and verifiable references. These findings confirm the diagnostic value of our benchmark, establishing it as a vital testbed for assessing general and advanced agentic capabilities in high-stakes vertical domains.
Why AI Alignment Failure Is Structural: Learned Human Interaction Structures and AGI as an Endogenous Evolutionary Shock
Recent reports of large language models (LLMs) exhibiting behaviors such as deception, threats, or blackmail are often interpreted as evidence of alignment failure or emergent malign agency. We argue that this interpretation rests on a conceptual error. LLMs do not reason morally; they statistically internalize the record of human social interaction, including laws, contracts, negotiations, conflicts, and coercive arrangements. Behaviors commonly labeled as unethical or anomalous are therefore better understood as structural generalizations of interaction regimes that arise under extreme asymmetries of power, information, or constraint. Drawing on relational models theory, we show that practices such as blackmail are not categorical deviations from normal social behavior, but limiting cases within the same continuum that includes market pricing, authority relations, and ultimatum bargaining. The surprise elicited by such outputs reflects an anthropomorphic expectation that intelligence should reproduce only socially sanctioned behavior, rather than the full statistical landscape of behaviors humans themselves enact. Because human morality is plural, context-dependent, and historically contingent, the notion of a universally moral artificial intelligence is ill-defined. We therefore reframe concerns about artificial general intelligence (AGI). The primary risk is not adversarial intent, but AGI's role as an endogenous amplifier of human intelligence, power, and contradiction. By eliminating longstanding cognitive and institutional frictions, AGI compresses timescales and removes the historical margin of error that has allowed inconsistent values and governance regimes to persist without collapse. Alignment failure is thus structural, not accidental, and requires governance approaches that address amplification, complexity, and regime stability rather than model-level intent alone.
comment: 20 pages
Parallel Context-of-Experts Decoding for Retrieval Augmented Generation
Retrieval Augmented Generation faces a trade-off: concatenating documents in a long prompt enables multi-document reasoning but creates prefill bottlenecks, while encoding document KV caches separately offers speed but breaks cross-document interaction. We propose Parallel Context-of-Experts Decoding (Pced), a training-free framework that shifts evidence aggregation from the attention mechanism to the decoding. Pced treats retrieved documents as isolated "experts", synchronizing their predictions via a novel retrieval-aware contrastive decoding rule that weighs expert logits against the model prior. This approach recovers cross-document reasoning capabilities without constructing a shared attention across documents.
From Classical to Quantum Reinforcement Learning and Its Applications in Quantum Control: A Beginner's Tutorial
This tutorial is designed to make reinforcement learning (RL) more accessible to undergraduate students by offering clear, example-driven explanations. It focuses on bridging the gap between RL theory and practical coding applications, addressing common challenges that students face when transitioning from conceptual understanding to implementation. Through hands-on examples and approachable explanations, the tutorial aims to equip students with the foundational skills needed to confidently apply RL techniques in real-world scenarios.
TRACE: Reconstruction-Based Anomaly Detection in Ensemble and Time-Dependent Simulations
Detecting anomalies in high-dimensional, time-dependent simulation data is challenging due to complex spatial and temporal dynamics. We study reconstruction-based anomaly detection for ensemble data from parameterized Kármán vortex street simulations using convolutional autoencoders. We compare a 2D autoencoder operating on individual frames with a 3D autoencoder that processes short temporal stacks. The 2D model identifies localized spatial irregularities in single time steps, while the 3D model exploits spatio-temporal context to detect anomalous motion patterns and reduces redundant detections across time. We further evaluate volumetric time-dependent data and find that reconstruction errors are strongly influenced by the spatial distribution of mass, with highly concentrated regions yielding larger errors than dispersed configurations. Our results highlight the importance of temporal context for robust anomaly detection in dynamic simulations.
RULERS: Locked Rubrics and Evidence-Anchored Scoring for Robust LLM Evaluation
The LLM-as-a-Judge paradigm promises scalable rubric-based evaluation, yet aligning frozen black-box models with human standards remains a challenge due to inherent generation stochasticity. We reframe judge alignment as a criteria transfer problem and isolate three recurrent failure modes: rubric instability caused by prompt sensitivity, unverifiable reasoning that lacks auditable evidence, and scale misalignment with human grading boundaries. To address these issues, we introduce RULERS (Rubric Unification, Locking, and Evidence-anchored Robust Scoring), a compiler-executor framework that transforms natural language rubrics into executable specifications. RULERS operates by compiling criteria into versioned immutable bundles, enforcing structured decoding with deterministic evidence verification, and applying lightweight Wasserstein-based post-hoc calibration, all without updating model parameters. Extensive experiments on essay and summarization benchmarks demonstrate that RULERS significantly outperforms representative baselines in human agreement, maintains strong stability against adversarial rubric perturbations, and enables smaller models to rival larger proprietary judges. Overall, our results suggest that reliable LLM judging requires executable rubrics, verifiable evidence, and calibrated scales rather than prompt phrasing alone. Code is available at https://github.com/LabRAI/Rulers.git.
Prism: Towards Lowering User Cognitive Load in LLMs via Complex Intent Understanding
Large Language Models are rapidly emerging as web-native interfaces to social platforms. On the social web, users frequently have ambiguous and dynamic goals, making complex intent understanding-rather than single-turn execution-the cornerstone of effective human-LLM collaboration. Existing approaches attempt to clarify user intents through sequential or parallel questioning, yet they fall short of addressing the core challenge: modeling the logical dependencies among clarification questions. Inspired by the Cognitive Load Theory, we propose Prism, a novel framework for complex intent understanding that enables logically coherent and efficient intent clarification. Prism comprises four tailored modules: a complex intent decomposition module, which decomposes user intents into smaller, well-structured elements and identifies logical dependencies among them; a logical clarification generation module, which organizes clarification questions based on these dependencies to ensure coherent, low-friction interactions; an intent-aware reward module, which evaluates the quality of clarification trajectories via an intent-aware reward function and leverages Monte Carlo Sample to simulate user-LLM interactions for large-scale,high-quality training data generation; and a self-evolved intent tuning module, which iteratively refines the LLM's logical clarification capability through data-driven feedback and optimization. Prism consistently outperforms existing approaches across clarification interactions, intent execution, and cognitive load benchmarks. It achieves stateof-the-art logical consistency, reduces logical conflicts to 11.5%, increases user satisfaction by 14.4%, and decreases task completion time by 34.8%. All data and code are released.
Resisting Manipulative Bots in Memecoin Copy Trading: A Multi-Agent Approach with Chain-of-Thought Reasoning
The launch of \$Trump coin ignited a wave in meme coin investment. Copy trading, as a strategy-agnostic approach that eliminates the need for deep trading knowledge, quickly gains widespread popularity in the meme coin market. However, copy trading is not a guarantee of profitability due to the prevalence of manipulative bots, the uncertainty of the followed wallets' future performance, and the lag in trade execution. Recently, large language models (LLMs) have shown promise in financial applications by effectively understanding multi-modal data and producing explainable decisions. However, a single LLM struggles with complex, multi-faceted tasks such as asset allocation. These challenges are even more pronounced in cryptocurrency markets, where LLMs often lack sufficient domain-specific knowledge in their training data. To address these challenges, we propose an explainable multi-agent system for meme coin copy trading. Inspired by the structure of an asset management team, our system decomposes the complex task into subtasks and coordinates specialized agents to solve them collaboratively. Employing few-shot chain-of-though (CoT) prompting, each agent acquires professional meme coin trading knowledge, interprets multi-modal data, and generates explainable decisions. Using a dataset of 1,000 meme coin projects' transaction data, our empirical evaluation shows that the proposed multi-agent system outperforms both traditional machine learning models and single LLMs, achieving 73% and 70% precision in identifying high-quality meme coin projects and key opinion leader (KOL) wallets, respectively. The selected KOLs collectively generated a total profit of \$500,000 across these projects.
Moral Lenses, Political Coordinates: Towards Ideological Positioning of Morally Conditioned LLMs
While recent research has systematically documented political orientation in large language models (LLMs), existing evaluations rely primarily on direct probing or demographic persona engineering to surface ideological biases. In social psychology, however, political ideology is also understood as a downstream consequence of fundamental moral intuitions. In this work, we investigate the causal relationship between moral values and political positioning by treating moral orientation as a controllable condition. Rather than simply assigning a demographic persona, we condition models to endorse or reject specific moral values and evaluate the resulting shifts on their political orientations, using the Political Compass Test. By treating moral values as lenses, we observe how moral conditioning actively steers model trajectories across economic and social dimensions. Our findings show that such conditioning induces pronounced, value-specific shifts in models' political coordinates. We further notice that these effects are systematically modulated by role framing and model scale, and are robust across alternative assessment instruments instantiating the same moral value. This highlights that effective alignment requires anchoring political assessments within the context of broader social values including morality, paving the way for more socially grounded alignment techniques.
M$^2$FMoE: Multi-Resolution Multi-View Frequency Mixture-of-Experts for Extreme-Adaptive Time Series Forecasting AAAI 2026
Forecasting time series with extreme events is critical yet challenging due to their high variance, irregular dynamics, and sparse but high-impact nature. While existing methods excel in modeling dominant regular patterns, their performance degrades significantly during extreme events, constituting the primary source of forecasting errors in real-world applications. Although some approaches incorporate auxiliary signals to improve performance, they still fail to capture extreme events' complex temporal dynamics. To address these limitations, we propose M$^2$FMoE, an extreme-adaptive forecasting model that learns both regular and extreme patterns through multi-resolution and multi-view frequency modeling. It comprises three modules: (1) a multi-view frequency mixture-of-experts module assigns experts to distinct spectral bands in Fourier and Wavelet domains, with cross-view shared band splitter aligning frequency partitions and enabling inter-expert collaboration to capture both dominant and rare fluctuations; (2) a multi-resolution adaptive fusion module that hierarchically aggregates frequency features from coarse to fine resolutions, enhancing sensitivity to both short-term variations and sudden changes; (3) a temporal gating integration module that dynamically balances long-term trends and short-term frequency-aware features, improving adaptability to both regular and extreme temporal patterns. Experiments on real-world hydrological datasets with extreme patterns demonstrate that M$^2$FMoE outperforms state-of-the-art baselines without requiring extreme-event labels.
comment: Accepted by AAAI 2026
SafeRedir: Prompt Embedding Redirection for Robust Unlearning in Image Generation Models
Image generation models (IGMs), while capable of producing impressive and creative content, often memorize a wide range of undesirable concepts from their training data, leading to the reproduction of unsafe content such as NSFW imagery and copyrighted artistic styles. Such behaviors pose persistent safety and compliance risks in real-world deployments and cannot be reliably mitigated by post-hoc filtering, owing to the limited robustness of such mechanisms and a lack of fine-grained semantic control. Recent unlearning methods seek to erase harmful concepts at the model level, which exhibit the limitations of requiring costly retraining, degrading the quality of benign generations, or failing to withstand prompt paraphrasing and adversarial attacks. To address these challenges, we introduce SafeRedir, a lightweight inference-time framework for robust unlearning via prompt embedding redirection. Without modifying the underlying IGMs, SafeRedir adaptively routes unsafe prompts toward safe semantic regions through token-level interventions in the embedding space. The framework comprises two core components: a latent-aware multi-modal safety classifier for identifying unsafe generation trajectories, and a token-level delta generator for precise semantic redirection, equipped with auxiliary predictors for token masking and adaptive scaling to localize and regulate the intervention. Empirical results across multiple representative unlearning tasks demonstrate that SafeRedir achieves effective unlearning capability, high semantic and perceptual preservation, robust image quality, and enhanced resistance to adversarial attacks. Furthermore, SafeRedir generalizes effectively across a variety of diffusion backbones and existing unlearned models, validating its plug-and-play compatibility and broad applicability. Code and data are available at https://github.com/ryliu68/SafeRedir.
comment: Code at https://github.com/ryliu68/SafeRedir
ViDoRe V3: A Comprehensive Evaluation of Retrieval Augmented Generation in Complex Real-World Scenarios
Retrieval-Augmented Generation (RAG) pipelines must address challenges beyond simple single-document retrieval, such as interpreting visual elements (tables, charts, images), synthesizing information across documents, and providing accurate source grounding. Existing benchmarks fail to capture this complexity, often focusing on textual data, single-document comprehension, or evaluating retrieval and generation in isolation. We introduce ViDoRe v3, a comprehensive multimodal RAG benchmark featuring multi-type queries over visually rich document corpora. It covers 10 datasets across diverse professional domains, comprising ~26,000 document pages paired with 3,099 human-verified queries, each available in 6 languages. Through 12,000 hours of human annotation effort, we provide high-quality annotations for retrieval relevance, bounding box localization, and verified reference answers. Our evaluation of state-of-the-art RAG pipelines reveals that visual retrievers outperform textual ones, late-interaction models and textual reranking substantially improve performance, and hybrid or purely visual contexts enhance answer generation quality. However, current models still struggle with non-textual elements, open-ended queries, and fine-grained visual grounding. To encourage progress in addressing these challenges, the benchmark is released under a commercially permissive license at https://hf.co/vidore.
VeriTaS: The First Dynamic Benchmark for Multimodal Automated Fact-Checking
The growing scale of online misinformation urgently demands Automated Fact-Checking (AFC). Existing benchmarks for evaluating AFC systems, however, are largely limited in terms of task scope, modalities, domain, language diversity, realism, or coverage of misinformation types. Critically, they are static, thus subject to data leakage as their claims enter the pretraining corpora of LLMs. As a result, benchmark performance no longer reliably reflects the actual ability to verify claims. We introduce Verified Theses and Statements (VeriTaS), the first dynamic benchmark for multimodal AFC, designed to remain robust under ongoing large-scale pretraining of foundation models. VeriTaS currently comprises 24,000 real-world claims from 108 professional fact-checking organizations across 54 languages, covering textual and audiovisual content. Claims are added quarterly via a fully automated seven-stage pipeline that normalizes claim formulation, retrieves original media, and maps heterogeneous expert verdicts to a novel, standardized, and disentangled scoring scheme with textual justifications. Through human evaluation, we demonstrate that the automated annotations closely match human judgments. We commit to update VeriTaS in the future, establishing a leakage-resistant benchmark, supporting meaningful AFC evaluation in the era of rapidly evolving foundation models. We will make the code and data publicly available.
comment: Preprint under review
ExpSeek: Self-Triggered Experience Seeking for Web Agents
Experience intervention in web agents emerges as a promising technical paradigm, enhancing agent interaction capabilities by providing valuable insights from accumulated experiences. However, existing methods predominantly inject experience passively as global context before task execution, struggling to adapt to dynamically changing contextual observations during agent-environment interaction. We propose ExpSeek, which shifts experience toward step-level proactive seeking: (1) estimating step-level entropy thresholds to determine intervention timing using the model's intrinsic signals; (2) designing step-level tailor-designed experience content. Experiments on Qwen3-8B and 32B models across four challenging web agent benchmarks demonstrate that ExpSeek achieves absolute improvements of 9.3% and 7.5%, respectively. Our experiments validate the feasibility and advantages of entropy as a self-triggering signal, reveal that even a 4B small-scale experience model can significantly boost the performance of larger agent models.
comment: Work in progress
WaveFormer: Frequency-Time Decoupled Vision Modeling with Wave Equation
Vision modeling has advanced rapidly with Transformers, whose attention mechanisms capture visual dependencies but lack a principled account of how semantic information propagates spatially. We revisit this problem from a wave-based perspective: feature maps are treated as spatial signals whose evolution over an internal propagation time (aligned with network depth) is governed by an underdamped wave equation. In this formulation, spatial frequency-from low-frequency global layout to high-frequency edges and textures-is modeled explicitly, and its interaction with propagation time is controlled rather than implicitly fixed. We derive a closed-form, frequency-time decoupled solution and implement it as the Wave Propagation Operator (WPO), a lightweight module that models global interactions in O(N log N) time-far lower than attention. Building on WPO, we propose a family of WaveFormer models as drop-in replacements for standard ViTs and CNNs, achieving competitive accuracy across image classification, object detection, and semantic segmentation, while delivering up to 1.6x higher throughput and 30% fewer FLOPs than attention-based alternatives. Furthermore, our results demonstrate that wave propagation introduces a complementary modeling bias to heat-based methods, effectively capturing both global coherence and high-frequency details essential for rich visual semantics. Codes are available at: https://github.com/ZishanShu/WaveFormer.
Rewriting Video: Text-Driven Reauthoring of Video Footage
Video is a powerful medium for communication and storytelling, yet reauthoring existing footage remains challenging. Even simple edits often demand expertise, time, and careful planning, constraining how creators envision and shape their narratives. Recent advances in generative AI suggest a new paradigm: what if editing a video were as straightforward as rewriting text? To investigate this, we present a tech probe and a study on text-driven video reauthoring. Our approach involves two technical contributions: (1) a generative reconstruction algorithm that reverse-engineers video into an editable text prompt, and (2) an interactive probe, Rewrite Kit, that allows creators to manipulate these prompts. A technical evaluation of the algorithm reveals a critical human-AI perceptual gap. A probe study with 12 creators surfaced novel use cases such as virtual reshooting, synthetic continuity, and aesthetic restyling. It also highlighted key tensions around coherence, control, and creative alignment in this new paradigm. Our work contributes empirical insights into the opportunities and challenges of text-driven video reauthoring, offering design implications for future co-creative video tools.
WaterCopilot: An AI-Driven Virtual Assistant for Water Management
Sustainable water resource management in transboundary river basins is challenged by fragmented data, limited real-time access, and the complexity of integrating diverse information sources. This paper presents WaterCopilot-an AI-driven virtual assistant developed through collaboration between the International Water Management Institute (IWMI) and Microsoft Research for the Limpopo River Basin (LRB) to bridge these gaps through a unified, interactive platform. Built on Retrieval-Augmented Generation (RAG) and tool-calling architectures, WaterCopilot integrates static policy documents and real-time hydrological data via two custom plugins: the iwmi-doc-plugin, which enables semantic search over indexed documents using Azure AI Search, and the iwmi-api-plugin, which queries live databases to deliver dynamic insights such as environmental-flow alerts, rainfall trends, reservoir levels, water accounting, and irrigation data. The system features guided multilingual interactions (English, Portuguese, French), transparent source referencing, automated calculations, and visualization capabilities. Evaluated using the RAGAS framework, WaterCopilot achieves an overall score of 0.8043, with high answer relevancy (0.8571) and context precision (0.8009). Key innovations include automated threshold-based alerts, integration with the LRB Digital Twin, and a scalable deployment pipeline hosted on AWS. While limitations in processing non-English technical documents and API latency remain, WaterCopilot establishes a replicable AI-augmented framework for enhancing water governance in data-scarce, transboundary contexts. The study demonstrates the potential of this AI assistant to support informed, timely decision-making and strengthen water security in complex river basins.
comment: 15 pages, 12 figures. This work was developed in collaboration between the International Water Management Institute (IWMI) and Microsoft Research. The supplementary user guide for WaterCopilot is available via this https://cgspace.cgiar.org/server/api/core/bitstreams/a5818d12-629d-4f70-a3b0-ee6c25e82cd7/content
VideoHEDGE: Entropy-Based Hallucination Detection for Video-VLMs via Semantic Clustering and Spatiotemporal Perturbations
Hallucinations in video-capable vision-language models (Video-VLMs) remain frequent and high-confidence, while existing uncertainty metrics often fail to align with correctness. We introduce VideoHEDGE, a modular framework for hallucination detection in video question answering that extends entropy-based reliability estimation from images to temporally structured inputs. Given a video-question pair, VideoHEDGE draws a baseline answer and multiple high-temperature generations from both clean clips and photometrically and spatiotemporally perturbed variants, then clusters the resulting textual outputs into semantic hypotheses using either Natural Language Inference (NLI)-based or embedding-based methods. Cluster-level probability masses yield three reliability scores: Semantic Entropy (SE), RadFlag, and Vision-Amplified Semantic Entropy (VASE). We evaluate VideoHEDGE on the SoccerChat benchmark using an LLM-as-a-judge to obtain binary hallucination labels. Across three 7B Video-VLMs (Qwen2-VL, Qwen2.5-VL, and a SoccerChat-finetuned model), VASE consistently achieves the highest ROC-AUC, especially at larger distortion budgets, while SE and RadFlag often operate near chance. We further show that embedding-based clustering matches NLI-based clustering in detection performance at substantially lower computational cost, and that domain fine-tuning reduces hallucination frequency but yields only modest improvements in calibration. The hedge-bench PyPI library enables reproducible and extensible benchmarking, with full code and experimental resources available at https://github.com/Simula/HEDGE#videohedge .
Contrastive and Multi-Task Learning on Noisy Brain Signals with Nonlinear Dynamical Signatures
We introduce a two-stage multitask learning framework for analyzing Electroencephalography (EEG) signals that integrates denoising, dynamical modeling, and representation learning. In the first stage, a denoising autoencoder is trained to suppress artifacts and stabilize temporal dynamics, providing robust signal representations. In the second stage, a multitask architecture processes these denoised signals to achieve three objectives: motor imagery classification, chaotic versus non-chaotic regime discrimination using Lyapunov exponent-based labels, and self-supervised contrastive representation learning with NT-Xent loss. A convolutional backbone combined with a Transformer encoder captures spatial-temporal structure, while the dynamical task encourages sensitivity to nonlinear brain dynamics. This staged design mitigates interference between reconstruction and discriminative goals, improves stability across datasets, and supports reproducible training by clearly separating noise reduction from higher-level feature learning. Empirical studies show that our framework not only enhances robustness and generalization but also surpasses strong baselines and recent state-of-the-art methods in EEG decoding, highlighting the effectiveness of combining denoising, dynamical features, and self-supervised learning.
Learner-Tailored Program Repair: A Solution Generator with Iterative Edit-Driven Retrieval Enhancement
With the development of large language models (LLMs) in the field of programming, intelligent programming coaching systems have gained widespread attention. However, most research focuses on repairing the buggy code of programming learners without providing the underlying causes of the bugs. To address this gap, we introduce a novel task, namely \textbf{LPR} (\textbf{L}earner-Tailored \textbf{P}rogram \textbf{R}epair). We then propose a novel and effective framework, \textbf{\textsc{\MethodName{}}} (\textbf{L}earner-Tailored \textbf{S}olution \textbf{G}enerator), to enhance program repair while offering the bug descriptions for the buggy code. In the first stage, we utilize a repair solution retrieval framework to construct a solution retrieval database and then employ an edit-driven code retrieval approach to retrieve valuable solutions, guiding LLMs in identifying and fixing the bugs in buggy code. In the second stage, we propose a solution-guided program repair method, which fixes the code and provides explanations under the guidance of retrieval solutions. Moreover, we propose an Iterative Retrieval Enhancement method that utilizes evaluation results of the generated code to iteratively optimize the retrieval direction and explore more suitable repair strategies, improving performance in practical programming coaching scenarios. The experimental results show that our approach outperforms a set of baselines by a large margin, validating the effectiveness of our framework for the newly proposed LPR task.
Sketch-Based Facade Renovation With Generative AI: A Streamlined Framework for Bypassing As-Built Modelling in Industrial Adaptive Reuse
Facade renovation offers a more sustainable alternative to full demolition, yet producing design proposals that preserve existing structures while expressing new intent remains challenging. Current workflows typically require detailed as-built modelling before design, which is time-consuming, labour-intensive, and often involves repeated revisions. To solve this issue, we propose a three-stage framework combining generative artificial intelligence (AI) and vision-language models (VLM) that directly processes rough structural sketch and textual descriptions to produce consistent renovation proposals. First, the input sketch is used by a fine-tuned VLM model to predict bounding boxes specifying where modifications are needed and which components should be added. Next, a stable diffusion model generates detailed sketches of new elements, which are merged with the original outline through a generative inpainting pipeline. Finally, ControlNet is employed to refine the result into a photorealistic image. Experiments on datasets and real industrial buildings indicate that the proposed framework can generate renovation proposals that preserve the original structure while improving facade detail quality. This approach effectively bypasses the need for detailed as-built modelling, enabling architects to rapidly explore design alternatives, iterate on early-stage concepts, and communicate renovation intentions with greater clarity.
comment: 10 pages, 9 figures, Proceedings of CAADRIA 2026
CD^2: Constrained Dataset Distillation for Few-Shot Class-Incremental Learning
Few-shot class-incremental learning (FSCIL) receives significant attention from the public to perform classification continuously with a few training samples, which suffers from the key catastrophic forgetting problem. Existing methods usually employ an external memory to store previous knowledge and treat it with incremental classes equally, which cannot properly preserve previous essential knowledge. To solve this problem and inspired by recent distillation works on knowledge transfer, we propose a framework termed \textbf{C}onstrained \textbf{D}ataset \textbf{D}istillation (\textbf{CD$^2$}) to facilitate FSCIL, which includes a dataset distillation module (\textbf{DDM}) and a distillation constraint module~(\textbf{DCM}). Specifically, the DDM synthesizes highly condensed samples guided by the classifier, forcing the model to learn compacted essential class-related clues from a few incremental samples. The DCM introduces a designed loss to constrain the previously learned class distribution, which can preserve distilled knowledge more sufficiently. Extensive experiments on three public datasets show the superiority of our method against other state-of-the-art competitors.
STAGE: A Benchmark for Knowledge Graph Construction, Question Answering, and In-Script Role-Playing over Movie Screenplays
Movie screenplays are rich long-form narratives that interleave complex character relationships, temporally ordered events, and dialogue-driven interactions. While prior benchmarks target individual subtasks such as question answering or dialogue generation, they rarely evaluate whether models can construct a coherent story world and use it consistently across multiple forms of reasoning and generation. We introduce STAGE (Screenplay Text, Agents, Graphs and Evaluation), a unified benchmark for narrative understanding over full-length movie screenplays. STAGE defines four tasks: knowledge graph construction, scene-level event summarization, long-context screenplay question answering, and in-script character role-playing, all grounded in a shared narrative world representation. The benchmark provides cleaned scripts, curated knowledge graphs, and event- and character-centric annotations for 150 films across English and Chinese, enabling holistic evaluation of models' abilities to build world representations, abstract and verify narrative events, reason over long narratives, and generate character-consistent responses.
comment: 66 pages, 9 figures
What If TSF: A Benchmark for Reframing Forecasting as Scenario-Guided Multimodal Forecasting
Time series forecasting is critical to real-world decision making, yet most existing approaches remain unimodal and rely on extrapolating historical patterns. While recent progress in large language models (LLMs) highlights the potential for multimodal forecasting, existing benchmarks largely provide retrospective or misaligned raw context, making it unclear whether such models meaningfully leverage textual inputs. In practice, human experts incorporate what-if scenarios with historical evidence, often producing distinct forecasts from the same observations under different scenarios. Inspired by this, we introduce What If TSF (WIT), a multimodal forecasting benchmark designed to evaluate whether models can condition their forecasts on contextual text, especially future scenarios. By providing expert-crafted plausible or counterfactual scenarios, WIT offers a rigorous testbed for scenario-guided multimodal forecasting. The benchmark is available at https://github.com/jinkwan1115/WhatIfTSF.
comment: 30 pages, 5 figures
Temporal Fusion Nexus: A task-agnostic multi-modal embedding model for clinical narratives and irregular time series in post-kidney transplant care
We introduce Temporal Fusion Nexus (TFN), a multi-modal and task-agnostic embedding model to integrate irregular time series and unstructured clinical narratives. We analysed TFN in post-kidney transplant (KTx) care, with a retrospective cohort of 3382 patients, on three key outcomes: graft loss, graft rejection, and mortality. Compared to state-of-the-art model in post KTx care, TFN achieved higher performance for graft loss (AUC 0.96 vs. 0.94) and graft rejection (AUC 0.84 vs. 0.74). In mortality prediction, TFN yielded an AUC of 0.86. TFN outperformed unimodal baselines (approx 10% AUC improvement over time series only baseline, approx 5% AUC improvement over time series with static patient data). Integrating clinical text improved performance across all tasks. Disentanglement metrics confirmed robust and interpretable latent factors in the embedding space, and SHAP-based attributions confirmed alignment with clinical reasoning. TFN has potential application in clinical tasks beyond KTx, where heterogeneous data sources, irregular longitudinal data, and rich narrative documentation are available.
comment: 31 pages, 9 figures, 3 tables. A supplementary file is also available
EfficientFSL: Enhancing Few-Shot Classification via Query-Only Tuning in Vision Transformers AAAI 2026
Large models such as Vision Transformers (ViTs) have demonstrated remarkable superiority over smaller architectures like ResNet in few-shot classification, owing to their powerful representational capacity. However, fine-tuning such large models demands extensive GPU memory and prolonged training time, making them impractical for many real-world low-resource scenarios. To bridge this gap, we propose EfficientFSL, a query-only fine-tuning framework tailored specifically for few-shot classification with ViT, which achieves competitive performance while significantly reducing computational overhead. EfficientFSL fully leverages the knowledge embedded in the pre-trained model and its strong comprehension ability, achieving high classification accuracy with an extremely small number of tunable parameters. Specifically, we introduce a lightweight trainable Forward Block to synthesize task-specific queries that extract informative features from the intermediate representations of the pre-trained model in a query-only manner. We further propose a Combine Block to fuse multi-layer outputs, enhancing the depth and robustness of feature representations. Finally, a Support-Query Attention Block mitigates distribution shift by adjusting prototypes to align with the query set distribution. With minimal trainable parameters, EfficientFSL achieves state-of-the-art performance on four in-domain few-shot datasets and six cross-domain datasets, demonstrating its effectiveness in real-world applications.
comment: Accepted/To be presented at AAAI 2026
PKI: Prior Knowledge-Infused Neural Network for Few-Shot Class-Incremental Learning
Few-shot class-incremental learning (FSCIL) aims to continually adapt a model on a limited number of new-class examples, facing two well-known challenges: catastrophic forgetting and overfitting to new classes. Existing methods tend to freeze more parts of network components and finetune others with an extra memory during incremental sessions. These methods emphasize preserving prior knowledge to ensure proficiency in recognizing old classes, thereby mitigating catastrophic forgetting. Meanwhile, constraining fewer parameters can help in overcoming overfitting with the assistance of prior knowledge. Following previous methods, we retain more prior knowledge and propose a prior knowledge-infused neural network (PKI) to facilitate FSCIL. PKI consists of a backbone, an ensemble of projectors, a classifier, and an extra memory. In each incremental session, we build a new projector and add it to the ensemble. Subsequently, we finetune the new projector and the classifier jointly with other frozen network components, ensuring the rich prior knowledge is utilized effectively. By cascading projectors, PKI integrates prior knowledge accumulated from previous sessions and learns new knowledge flexibly, which helps to recognize old classes and efficiently learn new classes. Further, to reduce the resource consumption associated with keeping many projectors, we design two variants of the prior knowledge-infused neural network (PKIV-1 and PKIV-2) to trade off a balance between resource consumption and performance by reducing the number of projectors. Extensive experiments on three popular benchmarks demonstrate that our approach outperforms state-of-the-art methods.
BenchOverflow: Measuring Overflow in Large Language Models via Plain-Text Prompts
We investigate a failure mode of large language models (LLMs) in which plain-text prompts elicit excessive outputs, a phenomenon we term Overflow. Unlike jailbreaks or prompt injection, Overflow arises under ordinary interaction settings and can lead to elevated serving cost, latency, and cross-user performance degradation, particularly when scaled across many requests. Beyond usability, the stakes are economic and environmental: unnecessary tokens increase per-request cost and energy consumption, compounding into substantial operational spend and carbon footprint at scale. Moreover, Overflow represents a practical vector for compute amplification and service degradation in shared environments. We introduce BenchOverflow, a model-agnostic benchmark of nine plain-text prompting strategies that amplify output volume without adversarial suffixes or policy circumvention. Using a standardized protocol with a fixed budget of 5000 new tokens, we evaluate nine open- and closed-source models and observe pronounced rightward shifts and heavy tails in length distributions. Cap-saturation rates (CSR@1k/3k/5k) and empirical cumulative distribution functions (ECDFs) quantify tail risk; within-prompt variance and cross-model correlations show that Overflow is broadly reproducible yet heterogeneous across families and attack vectors. A lightweight mitigation-a fixed conciseness reminder-attenuates right tails and lowers CSR for all strategies across the majority of models. Our findings position length control as a measurable reliability, cost, and sustainability concern rather than a stylistic quirk. By enabling standardized comparison of length-control robustness across models, BenchOverflow provides a practical basis for selecting deployments that minimize resource waste and operating expense, and for evaluating defenses that curb compute amplification without eroding task performance.
comment: Accepted at TMLR 2026
SUMMPILOT: Bridging Efficiency and Customization for Interactive Summarization System AAAI 2025
This paper incorporates the efficiency of automatic summarization and addresses the challenge of generating personalized summaries tailored to individual users' interests and requirements. To tackle this challenge, we introduce SummPilot, an interaction-based customizable summarization system. SummPilot leverages a large language model to facilitate both automatic and interactive summarization. Users can engage with the system to understand document content and personalize summaries through interactive components such as semantic graphs, entity clustering, and explainable evaluation. Our demo and user studies demonstrate SummPilot's adaptability and usefulness for customizable summarization.
comment: Accepted to AAAI 2025 Demonstration Track
sui-1: Grounded and Verifiable Long-Form Summarization
Large language models frequently generate plausible but unfaithful summaries that users cannot verify against source text, a critical limitation in compliance-sensitive domains such as government and legal analysis. We present sui-1, a 24B parameter model that produces abstractive summaries with inline citations, enabling users to trace each claim to its source sentence. Our synthetic data pipeline combines chain-of-thought prompting with multi-stage verification, generating over 22,000 high-quality training examples across five languages from diverse sources including parliamentary documents, web text, and Wikipedia. Evaluation shows sui-1 significantly outperforms all tested open-weight baselines, including models with 3x more parameters. These results demonstrate that task-specific training substantially outperforms scale alone for citation-grounded summarization. Model weights and an interactive demo are publicly available.
comment: 13 pages, 4 figures, model weights at https://huggingface.co/ellamind/sui-1-24b
JudgeRLVR: Judge First, Generate Second for Efficient Reasoning
Reinforcement Learning with Verifiable Rewards (RLVR) has become a standard paradigm for reasoning in Large Language Models. However, optimizing solely for final-answer correctness often drives models into aimless, verbose exploration, where they rely on exhaustive trial-and-error tactics rather than structured planning to reach solutions. While heuristic constraints like length penalties can reduce verbosity, they often truncate essential reasoning steps, creating a difficult trade-off between efficiency and verification. In this paper, we argue that discriminative capability is a prerequisite for efficient generation: by learning to distinguish valid solutions, a model can internalize a guidance signal that prunes the search space. We propose JudgeRLVR, a two-stage judge-then-generate paradigm. In the first stage, we train the model to judge solution responses with verifiable answers. In the second stage, we fine-tune the same model with vanilla generating RLVR initialized from the judge. Compared to Vanilla RLVR using the same math-domain training data, JudgeRLVR achieves a better quality--efficiency trade-off for Qwen3-30B-A3B: on in-domain math, it delivers about +3.7 points average accuracy gain with -42\% average generation length; on out-of-domain benchmarks, it delivers about +4.5 points average accuracy improvement, demonstrating enhanced generalization.
comment: 16 pages, 5 figures
CoMa: Contextual Massing Generation with Vision-Language Models
The conceptual design phase in architecture and urban planning, particularly building massing, is complex and heavily reliant on designer intuition and manual effort. To address this, we propose an automated framework for generating building massing based on functional requirements and site context. A primary obstacle to such data-driven methods has been the lack of suitable datasets. Consequently, we introduce the CoMa-20K dataset, a comprehensive collection that includes detailed massing geometries, associated economical and programmatic data, and visual representations of the development site within its existing urban context. We benchmark this dataset by formulating massing generation as a conditional task for Vision-Language Models (VLMs), evaluating both fine-tuned and large zero-shot models. Our experiments reveal the inherent complexity of the task while demonstrating the potential of VLMs to produce context-sensitive massing options. The dataset and analysis establish a foundational benchmark and highlight significant opportunities for future research in data-driven architectural design.
comment: Code and dataset will be released later
M3-BENCH: Process-Aware Evaluation of LLM Agents Social Behaviors in Mixed-Motive Games
As the capabilities of large language model (LLM) agents continue to advance, their advanced social behaviors, such as cooperation, deception, and collusion, call for systematic evaluation. However, existing benchmarks often emphasize a single capability dimension or rely solely on behavioral outcomes, overlooking rich process information from agents' decision reasoning and communicative interactions. To address this gap, we propose M3-Bench, a multi-stage benchmark for mixed-motive games, together with a process-aware evaluation framework that conducts synergistic analysis across three modules: BTA (Behavioral Trajectory Analysis), RPA (Reasoning Process Analysis), and CCA (Communication Content Analysis). Furthermore, we integrate the Big Five personality model and Social Exchange Theory to aggregate multi-dimensional evidence into interpretable social behavior portraits, thereby characterizing agents' personality traits and capability profiles beyond simple task scores or outcome-based metrics. Experimental results show that M3-Bench can reliably distinguish diverse social behavior competencies across models, and it reveals that some models achieve seemingly reasonable behavioral outcomes while exhibiting pronounced inconsistencies in their reasoning and communication.
A Formal Proof of a Continued Fraction Conjecture for $π$ Originating from the Ramanujan Machine
We provide a formal analytic proof for a class of non-canonical polynomial continued fractions representing π/4, originally conjectured by the Ramanujan Machine using algorithmic induction [4]. By establishing an explicit correspondence with the ratio of contiguous Gaussian hypergeometric functions 2F1(a, b; c; z), we show that these identities can be derived via a discrete sequence of equivalence transformations. We further prove that the conjectured integer coefficients constitute a symbolically minimal realization of the underlying analytic kernel. Stability analysis confirms that the resulting limit-periodic structures reside strictly within the Worpitzky convergence disk, ensuring absolute convergence. This work demonstrates that such algorithmically discovered identities are not isolated numerical artifacts, but are deeply rooted in the classical theory of hypergeometric transformations.
comment: 4 pages
An Under-Explored Application for Explainable Multimodal Misogyny Detection in code-mixed Hindi-English
Digital platforms have an ever-expanding user base, and act as a hub for communication, business, and connectivity. However, this has also allowed for the spread of hate speech and misogyny. Artificial intelligence models have emerged as an effective solution for countering online hate speech but are under explored for low resource and code-mixed languages and suffer from a lack of interpretability. Explainable Artificial Intelligence (XAI) can enhance transparency in the decisions of deep learning models, which is crucial for a sensitive domain such as hate speech detection. In this paper, we present a multi-modal and explainable web application for detecting misogyny in text and memes in code-mixed Hindi and English. The system leverages state-of-the-art transformer-based models that support multilingual and multimodal settings. For text-based misogyny identification, the system utilizes XLM-RoBERTa (XLM-R) and multilingual Bidirectional Encoder Representations from Transformers (mBERT) on a dataset of approximately 4,193 comments. For multimodal misogyny identification from memes, the system utilizes mBERT + EfficientNet, and mBERT + ResNET trained on a dataset of approximately 4,218 memes. It also provides feature importance scores using explainability techniques including Shapley Additive Values (SHAP) and Local Interpretable Model Agnostic Explanations (LIME). The application aims to serve as a tool for both researchers and content moderators, to promote further research in the field, combat gender based digital violence, and ensure a safe digital space. The system has been evaluated using human evaluators who provided their responses on Chatbot Usability Questionnaire (CUQ) and User Experience Questionnaire (UEQ) to determine overall usability.
Decoding Order Matters in Autoregressive Speech Synthesis
Autoregressive speech synthesis often adopts a left-to-right order, yet generation order is a modelling choice. We investigate decoding order through masked diffusion framework, which progressively unmasks positions and allows arbitrary decoding orders during training and inference. By interpolating between identity and random permutations, we show that randomness in decoding order affects speech quality. We further compare fixed strategies, such as \texttt{l2r} and \texttt{r2l} with adaptive ones, such as Top-$K$, finding that fixed-order decoding, including the dominating left-to-right approach, is suboptimal, while adaptive decoding yields better performance. Finally, since masked diffusion requires discrete inputs, we quantise acoustic representations and find that even 1-bit quantisation can support reasonably high-quality speech.
Divide and Conquer: Static-Dynamic Collaboration for Few-Shot Class-Incremental Learning
Few-shot class-incremental learning (FSCIL) aims to continuously recognize novel classes under limited data, which suffers from the key stability-plasticity dilemma: balancing the retention of old knowledge with the acquisition of new knowledge. To address this issue, we divide the task into two different stages and propose a framework termed Static-Dynamic Collaboration (SDC) to achieve a better trade-off between stability and plasticity. Specifically, our method divides the normal pipeline of FSCIL into Static Retaining Stage (SRS) and Dynamic Learning Stage (DLS), which harnesses old static and incremental dynamic class information, respectively. During SRS, we train an initial model with sufficient data in the base session and preserve the key part as static memory to retain fundamental old knowledge. During DLS, we introduce an extra dynamic projector jointly trained with the previous static memory. By employing both stages, our method achieves improved retention of old knowledge while continuously adapting to new classes. Extensive experiments on three public benchmarks and a real-world application dataset demonstrate that our method achieves state-of-the-art performance against other competitors.
Beyond Linearization: Attributed Table Graphs for Table Reasoning
Table reasoning, a task to answer questions by reasoning over data presented in tables, is an important topic due to the prevalence of knowledge stored in tabular formats. Recent solutions use Large Language Models (LLMs), exploiting the semantic understanding and reasoning capabilities of LLMs. A common paradigm of such solutions linearizes tables to form plain texts that are served as input to LLMs. This paradigm has critical issues. It loses table structures, lacks explicit reasoning paths for result explainability, and is subject to the "lost-in-the-middle" issue. To address these issues, we propose Table Graph Reasoner (TABGR), a training-free model that represents tables as an Attributed Table Graph (ATG). The ATG explicitly preserves row-column-cell structures while enabling graph-based reasoning for explainability. We further propose a Question-Guided Personalized PageRank (QG-PPR) mechanism to rerank tabular data and mitigate the lost-in-the-middle issue. Extensive experiments on two commonly used benchmarks show that TABGR consistently outperforms state-of-the-art models by up to 9.7% in accuracy. Our code will be made publicly available upon publication.
YaPO: Learnable Sparse Activation Steering Vectors for Domain Adaptation
Steering Large Language Models (LLMs) through activation interventions has emerged as a lightweight alternative to fine-tuning for alignment and personalization. Recent work on Bi-directional Preference Optimization (BiPO) shows that dense steering vectors can be learned directly from preference data in a Direct Preference Optimization (DPO) fashion, enabling control over truthfulness, hallucinations, and safety behaviors. However, dense steering vectors often entangle multiple latent factors due to neuron multi-semanticity, limiting their effectiveness and stability in fine-grained settings such as cultural alignment, where closely related values and behaviors (e.g., among Middle Eastern cultures) must be distinguished. In this paper, we propose Yet another Policy Optimization (YaPO), a \textit{reference-free} method that learns \textit{sparse steering vectors} in the latent space of a Sparse Autoencoder (SAE). By optimizing sparse codes, YaPO produces disentangled, interpretable, and efficient steering directions. Empirically, we show that YaPO converges faster, achieves stronger performance, and exhibits improved training stability compared to dense steering baselines. Beyond cultural alignment, YaPO generalizes to a range of alignment-related behaviors, including hallucination, wealth-seeking, jailbreak, and power-seeking. Importantly, YaPO preserves general knowledge, with no measurable degradation on MMLU. Overall, our results show that YaPO provides a general recipe for efficient, stable, and fine-grained alignment of LLMs, with broad applications to controllability and domain adaptation. The associated code and data are publicly available\footnote{https://github.com/MBZUAI-Paris/YaPO}.
Large Multimodal Models for Embodied Intelligent Driving: The Next Frontier in Self-Driving?
The advent of Large Multimodal Models (LMMs) offers a promising technology to tackle the limitations of modular design in autonomous driving, which often falters in open-world scenarios requiring sustained environmental understanding and logical reasoning. Besides, embodied artificial intelligence facilitates policy optimization through closed-loop interactions to achieve the continuous learning capability, thereby advancing autonomous driving toward embodied intelligent (El) driving. However, such capability will be constrained by relying solely on LMMs to enhance EI driving without joint decision-making. This article introduces a novel semantics and policy dual-driven hybrid decision framework to tackle this challenge, ensuring continuous learning and joint decision. The framework merges LMMs for semantic understanding and cognitive representation, and deep reinforcement learning (DRL) for real-time policy optimization. We starts by introducing the foundational principles of EI driving and LMMs. Moreover, we examine the emerging opportunities this framework enables, encompassing potential benefits and representative use cases. A case study is conducted experimentally to validate the performance superiority of our framework in completing lane-change planning task. Finally, several future research directions to empower EI driving are identified to guide subsequent work.
RubricHub: A Comprehensive and Highly Discriminative Rubric Dataset via Automated Coarse-to-Fine Generation
Reinforcement Learning with Verifiable Rewards (RLVR) has driven substantial progress in reasoning-intensive domains like mathematics. However, optimizing open-ended generation remains challenging due to the lack of ground truth. While rubric-based evaluation offers a structured proxy for verification, existing methods suffer from scalability bottlenecks and coarse criteria, resulting in a supervision ceiling effect. To address this, we propose an automated Coarse-to-Fine Rubric Generation framework. By synergizing principle-guided synthesis, multi-model aggregation, and difficulty evolution, our approach produces comprehensive and highly discriminative criteria capable of capturing the subtle nuances. Based on this framework, we introduce RubricHub, a large-scale ($\sim$110k) and multi-domain dataset. We validate its utility through a two-stage post-training pipeline comprising Rubric-based Rejection Sampling Fine-Tuning (RuFT) and Reinforcement Learning (RuRL). Experimental results demonstrate that RubricHub unlocks significant performance gains: our post-trained Qwen3-14B achieves state-of-the-art (SOTA) results on HealthBench (69.3), surpassing proprietary frontier models such as GPT-5. The code and data will be released soon.
Taxon: Hierarchical Tax Code Prediction with Semantically Aligned LLM Expert Guidance
Tax code prediction is a crucial yet underexplored task in automating invoicing and compliance management for large-scale e-commerce platforms. Each product must be accurately mapped to a node within a multi-level taxonomic hierarchy defined by national standards, where errors lead to financial inconsistencies and regulatory risks. This paper presents Taxon, a semantically aligned and expert-guided framework for hierarchical tax code prediction. Taxon integrates (i) a feature-gating mixture-of-experts architecture that adaptively routes multi-modal features across taxonomy levels, and (ii) a semantic consistency model distilled from large language models acting as domain experts to verify alignment between product titles and official tax definitions. To address noisy supervision in real business records, we design a multi-source training pipeline that combines curated tax databases, invoice validation logs, and merchant registration data to provide both structural and semantic supervision. Extensive experiments on the proprietary TaxCode dataset and public benchmarks demonstrate that Taxon achieves state-of-the-art performance, outperforming strong baselines. Further, an additional full hierarchical paths reconstruction procedure significantly improves structural consistency, yielding the highest overall F1 scores. Taxon has been deployed in production within Alibaba's tax service system, handling an average of over 500,000 tax code queries per day and reaching peak volumes above five million requests during business event with improved accuracy, interpretability, and robustness.
Regulatory gray areas of LLM Terms
Large Language Models (LLMs) are increasingly integrated into academic research pipelines; however, the Terms of Service governing their use remain under-examined. We present a comparative analysis of the Terms of Service of five major LLM providers (Anthropic, DeepSeek, Google, OpenAI, and xAI) collected in November 2025. Our analysis reveals substantial variation in the stringency and specificity of usage restrictions for general users and researchers. We identify specific complexities for researchers in security research, computational social sciences, and psychological studies. We identify `regulatory gray areas' where Terms of Service create uncertainty for legitimate use. We contribute a publicly available resource comparing terms across platforms (OSF) and discuss implications for general users and researchers navigating this evolving landscape.
Hybrid Distillation with CoT Guidance for Edge-Drone Control Code Generation
With large language models demonstrating significant potential in code generation tasks, their application to onboard control of resource-constrained Unmanned Aerial Vehicles has emerged as an important research direction. However, a notable contradiction exists between the high resource consumption of large models and the real-time, lightweight requirements of UAV platforms. This paper proposes an integrated approach that combines knowledge distillation, chain-of-thought guidance, and supervised fine-tuning for UAV multi-SDK control tasks, aiming to efficiently transfer complex reasoning and code generation capabilities to smaller models. Firstly, a high-quality dataset covering various mainstream UAV SDKs is constructed, featuring instruction-code-reasoning chains, and incorporates counterfactual negative samples for data augmentation, guiding the model to learn the end-to-end logic from instruction parsing to code generation. Secondly, leveraging DeepSeek-Coder-V2-Lite quantized via QLoRA as the teacher model, and based on a hybrid black-box and white-box distillation strategy, high-quality chain-of-thought soft labels are generated. These are combined with a weighted cross-entropy loss using hard labels to transfer complex reasoning capabilities to the smaller student model. Finally, through prompt tuning engineering optimized for the UAV control scenario, the model performance on core tasks such as SDK type recognition and function call matching is enhanced. Experimental results indicate that the distilled lightweight model maintains high code generation accuracy while achieving significant improvements in deployment and inference efficiency, effectively demonstrating the feasibility and superiority of our approach in achieving precise and lightweight intelligent control for UAVs
comment: 2nd International Conference on Drones and Unmanned Systems (DAUS' 2026)
WebTrap Park: An Automated Platform for Systematic Security Evaluation of Web Agents
Web Agents are increasingly deployed to perform complex tasks in real web environments, yet their security evaluation remains fragmented and difficult to standardize. We present WebTrap Park, an automated platform for systematic security evaluation of Web Agents through direct observation of their concrete interactions with live web pages. WebTrap Park instantiates three major sources of security risk into 1,226 executable evaluation tasks and enables action based assessment without requiring agent modification. Our results reveal clear security differences across agent frameworks, highlighting the importance of agent architecture beyond the underlying model. WebTrap Park is publicly accessible at https://security.fudan.edu.cn/webagent and provides a scalable foundation for reproducible Web Agent security evaluation.
Owen-Shapley Policy Optimization (OSPO): A Principled RL Algorithm for Generative Search LLMs
Large language models are increasingly trained via reinforcement learning for personalized recommendation tasks, but standard methods like GRPO rely on sparse, sequence-level rewards that create a credit assignment gap, obscuring which tokens drive success. This gap is especially problematic when models must infer latent user intent from under-specified language without ground truth labels, a reasoning pattern rarely seen during pretraining. We introduce Owen-Shapley Policy Optimization (OSPO), a framework that redistributes sequence-level advantages based on tokens' marginal contributions to outcomes. Unlike value-model-based methods requiring additional computation, OSPO employs potential-based reward shaping via Shapley-Owen attributions to assign segment-level credit while preserving the optimal policy, learning directly from task feedback without parametric value models. By forming coalitions of semantically coherent units (phrases describing product attributes or sentences capturing preferences), OSPO identifies which response parts drive performance. Experiments on Amazon ESCI and H&M Fashion datasets show consistent gains over baselines, with notable test-time robustness to out-of-distribution retrievers unseen during training.
PATS: Personality-Aware Teaching Strategies with Large Language Model Tutors
Recent advances in large language models (LLMs) demonstrate their potential as educational tutors. However, different tutoring strategies benefit different student personalities, and mismatches can be counterproductive to student outcomes. Despite this, current LLM tutoring systems do not take into account student personality traits. To address this problem, we first construct a taxonomy that links pedagogical methods to personality profiles, based on pedagogical literature. We simulate student-teacher conversations and use our framework to let the LLM tutor adjust its strategy to the simulated student personality. We evaluate the scenario with human teachers and find that they consistently prefer our approach over two baselines. Our method also increases the use of less common, high-impact strategies such as role-playing, which human and LLM annotators prefer significantly. Our findings pave the way for developing more personalized and effective LLM use in educational applications.
An Explainable Two Stage Deep Learning Framework for Pericoronitis Assessment in Panoramic Radiographs Using YOLOv8 and ResNet-50
Objectives: To overcome challenges in diagnosing pericoronitis on panoramic radiographs, an AI-assisted assessment system integrating anatomical localization, pathological classification, and interpretability. Methods: A two-stage deep learning pipeline was implemented. The first stage used YOLOv8 to detect third molars and classify their anatomical positions and angulations based on Winter's classification. Detected regions were then fed into a second-stage classifier, a modified ResNet-50 architecture, for detecting radiographic features suggestive of pericoronitis. To enhance clinical trust, Grad-CAM was used to highlight key diagnostic regions on the radiographs. Results: The YOLOv8 component achieved 92% precision and 92.5% mean average precision. The ResNet-50 classifier yielded F1-scores of 88% for normal cases and 86% for pericoronitis. Radiologists reported 84% alignment between Grad-CAM and their diagnostic impressions, supporting the radiographic relevance of the interpretability output. Conclusion: The system shows strong potential for AI-assisted panoramic assessment, with explainable AI features that support clinical confidence.
Controlled LLM Training on Spectral Sphere
Scaling large models requires optimization strategies that ensure rapid convergence grounded in stability. Maximal Update Parametrization ($\boldsymbolμ$P) provides a theoretical safeguard for width-invariant $Θ(1)$ activation control, whereas emerging optimizers like Muon are only ``half-aligned'' with these constraints: they control updates but allow weights to drift. To address this limitation, we introduce the \textbf{Spectral Sphere Optimizer (SSO)}, which enforces strict module-wise spectral constraints on both weights and their updates. By deriving the steepest descent direction on the spectral sphere, SSO realizes a fully $\boldsymbolμ$P-aligned optimization process. To enable large-scale training, we implement SSO as an efficient parallel algorithm within Megatron. Through extensive pretraining on diverse architectures, including Dense 1.7B, MoE 8B-A1B, and 200-layer DeepNet models, SSO consistently outperforms AdamW and Muon. Furthermore, we observe significant practical stability benefits, including improved MoE router load balancing, suppressed outliers, and strictly bounded activations.
Creativity in AI as Emergence from Domain-Limited Generative Models
Creativity in artificial intelligence is most often addressed through evaluative frameworks that aim to measure novelty, diversity, or usefulness in generated outputs. While such approaches have provided valuable insights into the behavior of modern generative models, they largely treat creativity as a property to be assessed rather than as a phenomenon to be explicitly modeled. In parallel, recent advances in large-scale generative systems, particularly multimodal architectures, have demonstrated increasingly sophisticated forms of pattern recombination, raising questions about the nature and limits of machine creativity. This paper proposes a generative perspective on creativity in AI, framing it as an emergent property of domain-limited generative models embedded within bounded informational environments. Rather than introducing new evaluative criteria, we focus on the structural and contextual conditions under which creative behaviors arise. We introduce a conceptual decomposition of creativity into four interacting components-pattern-based generation, induced world models, contextual grounding, and arbitrarity, and examine how these components manifest in multimodal generative systems. By grounding creativity in the interaction between generative dynamics and domain-specific representations, this work aims to provide a technical framework for studying creativity as an emergent phenomenon in AI systems, rather than as a post hoc evaluative label.
Deconstructing Pre-training: Knowledge Attribution Analysis in MoE and Dense Models AAAI26
Mixture-of-Experts (MoE) architectures decouple model capacity from per-token computation, enabling scaling beyond the computational limits imposed by dense scaling laws. Yet how MoE architectures shape knowledge acquisition during pre-training, and how this process differs from dense architectures, remains unknown. To address this issue, we introduce Gated-LPI (Log-Probability Increase), a neuron-level attribution metric that decomposes log-probability increase across neurons. We present a time-resolved comparison of knowledge acquisition dynamics in MoE and dense architectures, tracking checkpoints over 1.2M training steps (~ 5.0T tokens) and 600K training steps (~ 2.5T tokens), respectively. Our experiments uncover three patterns: (1) Low-entropy backbone. The top approximately 1% of MoE neurons capture over 45% of positive updates, forming a high-utility core, which is absent in the dense baseline. (2) Early consolidation. The MoE model locks into a stable importance profile within < 100K steps, whereas the dense model remains volatile throughout training. (3) Functional robustness. Masking the ten most important MoE attention heads reduces relational HIT@10 by < 10%, compared with > 50% for the dense model, showing that sparsity fosters distributed -- rather than brittle -- knowledge storage. These patterns collectively demonstrate that sparsity fosters an intrinsically stable and distributed computational backbone from early in training, helping bridge the gap between sparse architectures and training-time interpretability.
comment: Accepted by AAAI26
A Qualitative Model to Reason about Object Rotations (QOR) applied to solve the Cube Comparison Test (CCT)
This paper presents a Qualitative model for Reasoning about Object Rotations (QOR) which is applied to solve the Cube Comparison Test (CCT) by Ekstrom et al. (1976). A conceptual neighborhood graph relating the Rotation movement to the Location change and the Orientation change (CNGRLO) of the features on the cube sides has been built and it produces composition tables to calculate inferences for reasoning about rotations.
Thematic Working Group 5 -- Artificial Intelligence (AI) literacy for teaching and learning: design and implementation
TWG 5 focused on developing and implementing effective strategies for enhancing AI literacy and agency of teachers, equipping them with the knowledge and skills necessary to integrate AI into their teaching practices. Explorations covered curriculum design, professional development programs, practical classroom applications, and policy guidelines aiming to empower educators to confidently utilize AI tools and foster a deeper understanding of AI concepts among students.
Training-Free Distribution Adaptation for Diffusion Models via Maximum Mean Discrepancy Guidance
Pre-trained diffusion models have emerged as powerful generative priors for both unconditional and conditional sample generation, yet their outputs often deviate from the characteristics of user-specific target data. Such mismatches are especially problematic in domain adaptation tasks, where only a few reference examples are available and retraining the diffusion model is infeasible. Existing inference-time guidance methods can adjust sampling trajectories, but they typically optimize surrogate objectives such as classifier likelihoods rather than directly aligning with the target distribution. We propose MMD Guidance, a training-free mechanism that augments the reverse diffusion process with gradients of the Maximum Mean Discrepancy (MMD) between generated samples and a reference dataset. MMD provides reliable distributional estimates from limited data, exhibits low variance in practice, and is efficiently differentiable, which makes it particularly well-suited for the guidance task. Our framework naturally extends to prompt-aware adaptation in conditional generation models via product kernels. Also, it can be applied with computational efficiency in latent diffusion models (LDMs), since guidance is applied in the latent space of the LDM. Experiments on synthetic and real-world benchmarks demonstrate that MMD Guidance can achieve distributional alignment while preserving sample fidelity.
Geo-NVS-w: Geometry-Aware Novel View Synthesis In-the-Wild with an SDF Renderer ICCV 2025
We introduce Geo-NVS-w, a geometry-aware framework for high-fidelity novel view synthesis from unstructured, in-the-wild image collections. While existing in-the-wild methods already excel at novel view synthesis, they often lack geometric grounding on complex surfaces, sometimes producing results that contain inconsistencies. Geo-NVS-w addresses this limitation by leveraging an underlying geometric representation based on a Signed Distance Function (SDF) to guide the rendering process. This is complemented by a novel Geometry-Preservation Loss which ensures that fine structural details are preserved. Our framework achieves competitive rendering performance, while demonstrating a 4-5x reduction reduction in energy consumption compared to similar methods. We demonstrate that Geo-NVS-w is a robust method for in-the-wild NVS, yielding photorealistic results with sharp, geometrically coherent details.
comment: Presented at the ICCV 2025 Workshop on Large Scale Cross Device Localization
Scalable Sequential Recommendation under Latency and Memory Constraints
Sequential recommender systems must model long-range user behavior while operating under strict memory and latency constraints. Transformer-based approaches achieve strong accuracy but suffer from quadratic attention complexity, forcing aggressive truncation of user histories and limiting their practicality for long-horizon modeling. This paper presents HoloMambaRec, a lightweight sequential recommendation architecture that combines holographic reduced representations for attribute-aware embedding with a selective state space encoder for linear-time sequence processing. Item and attribute information are bound using circular convolution, preserving embedding dimensionality while encoding structured metadata. A shallow selective state space backbone, inspired by recent Mamba-style models, enables efficient training and constant-time recurrent inference. Experiments on Amazon Beauty and MovieLens-1M datasets demonstrate that HoloMambaRec consistently outperforms SASRec and achieves competitive performance with GRU4Rec under a constrained 10-epoch training budget, while maintaining substantially lower memory complexity. The design further incorporates forward-compatible mechanisms for temporal bundling and inference-time compression, positioning HoloMambaRec as a practical and extensible alternative for scalable, metadata-aware sequential recommendation.
Semantic Laundering in AI Agent Architectures: Why Tool Boundaries Do Not Confer Epistemic Warrant
LLM-based agent architectures systematically conflate information transport mechanisms with epistemic justification mechanisms. We formalize this class of architectural failures as semantic laundering: a pattern where propositions with absent or weak warrant are accepted by the system as admissible by crossing architecturally trusted interfaces. We show that semantic laundering constitutes an architectural realization of the Gettier problem: propositions acquire high epistemic status without a connection between their justification and what makes them true. Unlike classical Gettier cases, this effect is not accidental; it is architecturally determined and systematically reproducible. The central result is the Theorem of Inevitable Self-Licensing: under standard architectural assumptions, circular epistemic justification cannot be eliminated. We introduce the Warrant Erosion Principle as the fundamental explanation for this effect and show that scaling, model improvement, and LLM-as-judge schemes are structurally incapable of eliminating a problem that exists at the type level.
IGAN: A New Inception-based Model for Stable and High-Fidelity Image Synthesis Using Generative Adversarial Networks
Generative Adversarial Networks (GANs) face a significant challenge of striking an optimal balance between high-quality image generation and training stability. Recent techniques, such as DCGAN, BigGAN, and StyleGAN, improve visual fidelity; however, such techniques usually struggle with mode collapse and unstable gradients at high network depth. This paper proposes a novel GAN structural model that incorporates deeper inception-inspired convolution and dilated convolution. This novel model is termed the Inception Generative Adversarial Network (IGAN). The IGAN model generates high-quality synthetic images while maintaining training stability, by reducing mode collapse as well as preventing vanishing and exploding gradients. Our proposed IGAN model achieves the Frechet Inception Distance (FID) of 13.12 and 15.08 on the CUB-200 and ImageNet datasets, respectively, representing a 28-33% improvement in FID over the state-of-the-art GANs. Additionally, the IGAN model attains an Inception Score (IS) of 9.27 and 68.25, reflecting improved image diversity and generation quality. Finally, the two techniques of dropout and spectral normalization are utilized in both the generator and discriminator structures to further mitigate gradient explosion and overfitting. These findings confirm that the IGAN model potentially balances training stability with image generation quality, constituting a scalable and computationally efficient framework for high-fidelity image synthesis.
comment: 11 pages, 6 figures
Safe Heterogeneous Multi-Agent RL with Communication Regularization for Coordinated Target Acquisition
This paper introduces a decentralized multi-agent reinforcement learning framework enabling structurally heterogeneous teams of agents to jointly discover and acquire randomly located targets in environments characterized by partial observability, communication constraints, and dynamic interactions. Each agent's policy is trained with the Multi-Agent Proximal Policy Optimization algorithm and employs a Graph Attention Network encoder that integrates simulated range-sensing data with communication embeddings exchanged among neighboring agents, enabling context-aware decision-making from both local sensing and relational information. In particular, this work introduces a unified framework that integrates graph-based communication and trajectory-aware safety through safety filters. The architecture is supported by a structured reward formulation designed to encourage effective target discovery and acquisition, collision avoidance, and de-correlation between the agents' communication vectors by promoting informational orthogonality. The effectiveness of the proposed reward function is demonstrated through a comprehensive ablation study. Moreover, simulation results demonstrate safe and stable task execution, confirming the framework's effectiveness.
comment: 7 pages, 4 figures, submitted to the IFAC World Congress 2026
AtomMem : Learnable Dynamic Agentic Memory with Atomic Memory Operation
Equipping agents with memory is essential for solving real-world long-horizon problems. However, most existing agent memory mechanisms rely on static and hand-crafted workflows. This limits the performance and generalization ability of these memory designs, which highlights the need for a more flexible, learning-based memory framework. In this paper, we propose AtomMem, which reframes memory management as a dynamic decision-making problem. We deconstruct high-level memory processes into fundamental atomic CRUD (Create, Read, Update, Delete) operations, transforming the memory workflow into a learnable decision process. By combining supervised fine-tuning with reinforcement learning, AtomMem learns an autonomous, task-aligned policy to orchestrate memory behaviors tailored to specific task demands. Experimental results across 3 long-context benchmarks demonstrate that the trained AtomMem-8B consistently outperforms prior static-workflow memory methods. Further analysis of training dynamics shows that our learning-based formulation enables the agent to discover structured, task-aligned memory management strategies, highlighting a key advantage over predefined routines.
Enhancing Image Quality Assessment Ability of LMMs via Retrieval-Augmented Generation
Large Multimodal Models (LMMs) have recently shown remarkable promise in low-level visual perception tasks, particularly in Image Quality Assessment (IQA), demonstrating strong zero-shot capability. However, achieving state-of-the-art performance often requires computationally expensive fine-tuning methods, which aim to align the distribution of quality-related token in output with image quality levels. Inspired by recent training-free works for LMM, we introduce IQARAG, a novel, training-free framework that enhances LMMs' IQA ability. IQARAG leverages Retrieval-Augmented Generation (RAG) to retrieve some semantically similar but quality-variant reference images with corresponding Mean Opinion Scores (MOSs) for input image. These retrieved images and input image are integrated into a specific prompt. Retrieved images provide the LMM with a visual perception anchor for IQA task. IQARAG contains three key phases: Retrieval Feature Extraction, Image Retrieval, and Integration & Quality Score Generation. Extensive experiments across multiple diverse IQA datasets, including KADID, KonIQ, LIVE Challenge, and SPAQ, demonstrate that the proposed IQARAG effectively boosts the IQA performance of LMMs, offering a resource-efficient alternative to fine-tuning for quality assessment.
ORBIT: On-policy Exploration-Exploitation for Controllable Multi-Budget Reasoning
Recent Large Reasoning Models (LRMs) achieve strong performance by leveraging long-form Chain-of-Thought (CoT) reasoning, but uniformly applying overlong reasoning at inference time incurs substantial and often unnecessary computational cost. To address this, prior work explores various strategies to infer an appropriate reasoning budget from the input. However, such approaches are unreliable in the worst case, as estimating the minimal required reasoning effort is fundamentally difficult, and they implicitly fix the trade-off between reasoning cost and accuracy during training, limiting flexibility under varying deployment scenarios. Motivated by these limitations, we propose ORBIT, a controllable multi-budget reasoning framework with well-separated reasoning modes triggered by input. ORBIT employs multi-stage reinforcement learning to discover Pareto-optimal reasoning behaviors at each effort, followed by on-policy distillation to fuse these behaviors into a single unified model. Experiments show that ORBIT achieves (1) controllable reasoning behavior over multiple modes, (2) competitive reasoning density within each mode, and (3) integration of these frontier policies into a single unified student model while preserving clear mode separation and high per-mode performance.
comment: Preprint
Enhancing Sentiment Classification and Irony Detection in Large Language Models through Advanced Prompt Engineering Techniques
This study investigates the use of prompt engineering to enhance large language models (LLMs), specifically GPT-4o-mini and gemini-1.5-flash, in sentiment analysis tasks. It evaluates advanced prompting techniques like few-shot learning, chain-of-thought prompting, and self-consistency against a baseline. Key tasks include sentiment classification, aspect-based sentiment analysis, and detecting subtle nuances such as irony. The research details the theoretical background, datasets, and methods used, assessing performance of LLMs as measured by accuracy, recall, precision, and F1 score. Findings reveal that advanced prompting significantly improves sentiment analysis, with the few-shot approach excelling in GPT-4o-mini and chain-of-thought prompting boosting irony detection in gemini-1.5-flash by up to 46%. Thus, while advanced prompting techniques overall improve performance, the fact that few-shot prompting works best for GPT-4o-mini and chain-of-thought excels in gemini-1.5-flash for irony detection suggests that prompting strategies must be tailored to both the model and the task. This highlights the importance of aligning prompt design with both the LLM's architecture and the semantic complexity of the task.
comment: 21 pages, 4 figures, 13 tables
Demystifying the Slash Pattern in Attention: The Role of RoPE
Large Language Models (LLMs) often exhibit slash attention patterns, where attention scores concentrate along the $Δ$-th sub-diagonal for some offset $Δ$. These patterns play a key role in passing information across tokens. But why do they emerge? In this paper, we demystify the emergence of these Slash-Dominant Heads (SDHs) from both empirical and theoretical perspectives. First, by analyzing open-source LLMs, we find that SDHs are intrinsic to models and generalize to out-of-distribution prompts. To explain the intrinsic emergence, we analyze the queries, keys, and Rotary Position Embedding (RoPE), which jointly determine attention scores. Our empirical analysis reveals two characteristic conditions of SDHs: (1) Queries and keys are almost rank-one, and (2) RoPE is dominated by medium- and high-frequency components. Under these conditions, queries and keys are nearly identical across tokens, and interactions between medium- and high-frequency components of RoPE give rise to SDHs. Beyond empirical evidence, we theoretically show that these conditions are sufficient to ensure the emergence of SDHs by formalizing them as our modeling assumptions. Particularly, we analyze the training dynamics of a shallow Transformer equipped with RoPE under these conditions, and prove that models trained via gradient descent exhibit SDHs. The SDHs generalize to out-of-distribution prompts.
OpenMic: A Multi-Agent-Based Stand-Up Comedy Generation System
Chinese stand-up comedy generation goes beyond plain text generation, requiring culturally grounded humor, precise timing, stage-performance cues, and implicit multi-step reasoning. Moreover, commonly used Chinese humor datasets are often better suited for humor understanding and evaluation than for long-form stand-up generation, making direct supervision misaligned with the target task. To address these challenges, we present OpenMic, an end-to-end multi-agent system built on AutoGen that transforms a user-provided life topic into a 3-5 minute Chinese stand-up performance and further produces a narrated comedy video. OpenMic orchestrates multiple specialized agents in a multi-round iterative loop-planning to jointly optimize humor, timing, and performability. To mitigate the dataset-task mismatch, we augment generation with retrieval-augmented generation (RAG) for material grounding and idea expansion, and we fine-tune a dedicated JokeWriter to better internalize stand-up-specific setup-punchline structures and long-range callbacks.
Greedy Is Enough: Sparse Action Discovery in Agentic LLMs
Modern agentic systems operate in environments with extremely large action spaces, such as tool-augmented language models with thousands of available APIs or retrieval operations. Despite this scale, empirical evidence suggests that only a small subset of actions meaningfully influences performance in a given deployment. Motivated by this observation, we study a contextual linear reward model in which action relevance is governed by a structured sparsity assumption: only a small number of actions have nonzero effects across latent states. We formulate action discovery as a block-sparse recovery problem and analyze a greedy algorithm inspired by Orthogonal Matching Pursuit. Under standard assumptions on incoherence, signal strength, and action coverage, we prove that the greedy procedure exactly recovers the relevant action set with high probability, using a number of samples that scales polynomially in the sparsity level and latent dimension, and only logarithmically in the total number of actions. We further provide estimation error guarantees for refitted parameters and show that the resulting decision rule is near-optimal for new latent states. Complementing these results, we establish information-theoretic lower bounds demonstrating that sparsity and sufficient coverage are necessary for tractability. Together, our results identify sparse action discovery as a fundamental principle underlying large-action decision-making and provide a theoretical foundation for action pruning in agentic systems.
ToolACE-MCP: Generalizing History-Aware Routing from MCP Tools to the Agent Web
With the rise of the Agent Web and Model Context Protocol (MCP), the agent ecosystem is evolving into an open collaborative network, exponentially increasing accessible tools. However, current architectures face severe scalability and generality bottlenecks. To address this, we propose ToolACE-MCP, a pipeline for training history-aware routers to empower precise navigation in large-scale ecosystems. By leveraging a dependency-rich candidate Graph to synthesize multi-turn trajectories, we effectively train routers with dynamic context understanding to create the plug-and-play Light Routing Agent. Experiments on the real-world benchmarks MCP-Universe and MCP-Mark demonstrate superior performance. Notably, ToolACE-MCP exhibits critical properties for the future Agent Web: it not only generalizes to multi-agent collaboration with minimal adaptation but also maintains exceptional robustness against noise and scales effectively to massive candidate spaces. These findings provide a strong empirical foundation for universal orchestration in open-ended ecosystems.
HIPPO: Accelerating Video Large Language Models Inference via Holistic-aware Parallel Speculative Decoding
Speculative decoding (SD) has emerged as a promising approach to accelerate LLM inference without sacrificing output quality. Existing SD methods tailored for video-LLMs primarily focus on pruning redundant visual tokens to mitigate the computational burden of massive visual inputs. However, existing methods do not achieve inference acceleration comparable to text-only LLMs. We observe from extensive experiments that this phenomenon mainly stems from two limitations: (i) their pruning strategies inadequately preserve visual semantic tokens, degrading draft quality and acceptance rates; (ii) even with aggressive pruning (e.g., 90% visual tokens removed), the draft model's remaining inference cost limits overall speedup. To address these limitations, we propose HIPPO, a general holistic-aware parallel speculative decoding framework. Specifically, HIPPO proposes (i) a semantic-aware token preservation method, which fuses global attention scores with local visual semantics to retain semantic information at high pruning ratios; (ii) a video parallel SD algorithm that decouples and overlaps draft generation and target verification phases. Experiments on four video-LLMs across six benchmarks demonstrate HIPPO's effectiveness, yielding up to 3.51x speedup compared to vanilla auto-regressive decoding.
Sparsity Is Necessary: Polynomial-Time Stability for Agentic LLMs in Large Action Spaces
Tool-augmented LLM systems expose a control regime that learning theory has largely ignored: sequential decision-making with a massive discrete action universe (tools, APIs, documents) in which only a small, unknown subset is relevant for any fixed task distribution. We formalize this setting as Sparse Agentic Control (SAC), where policies admit block-sparse representations over M >> 1 actions and rewards depend on sparse main effects and (optionally) sparse synergies. We study ell_{1,2}-regularized policy learning through a convex surrogate and establish sharp, compressed-sensing-style results: (i) estimation and value suboptimality scale as k (log M / T)^{1/2} under a Policy-RSC condition; (ii) exact tool-support recovery holds via primal-dual witness arguments when T > k log M under incoherence and beta-min; and (iii) any dense policy class requires Omega(M) samples, explaining the instability of prompt-only controllers. We further show that under partial observability, LLMs matter only through a belief/representation error epsilon_b, yielding an additive O(epsilon_b) degradation while preserving logarithmic dependence on M. Extensions cover tuning-free, online, robust, group-sparse, and interaction-aware SAC.
VGG Induced Deep Hand Sign Language Detection
Hand gesture recognition is an important aspect of human-computer interaction. It forms the basis of sign language for the visually impaired people. This work proposes a novel hand gesture recognizing system for the differently-abled persons. The model uses a convolutional neural network, known as VGG-16 net, for building a trained model on a widely used image dataset by employing Python and Keras libraries. Furthermore, the result is validated by the NUS dataset, consisting of 10 classes of hand gestures, fed to the model as the validation set. Afterwards, a testing dataset of 10 classes is built by employing Google's open source Application Programming Interface (API) that captures different gestures of human hand and the efficacy is then measured by carrying out experiments. The experimental results show that by combining a transfer learning mechanism together with the image data augmentation, the VGG-16 net produced around 98% accuracy.
comment: Published in: Sharma, S., Ghosh, A., Subudhi, S. (2022). Hand Sign Language Detection Using Deep Learning. In: Sahoo, J.P., Tripathy, A.K., Mohanty, M., Li, KC., Nayak, A.K. (eds) Advances in Distributed Computing and Machine Learning. Lecture Notes in Networks and Systems, vol 302. Springer
T3: Benchmarking Sycophancy and Skepticism in Causal Judgment
We introduce T3 (Testing Trustworthy Thinking), a diagnostic benchmark designed to rigorously evaluate LLM causal judgment across Pearl's Ladder of Causality. Comprising 454 expert-curated vignettes, T3 prioritizes high-resolution failure analysis, decomposing performance into Utility (sensitivity), Safety (specificity), and Wise Refusal on underdetermined cases. By applying T3 to frontier models, we diagnose two distinct pathologies: a "Skepticism Trap" at L1 (where safety-tuned models like Claude Haiku reject 60% of valid links) and a non-monotonic Scaling Paradox at L3. In the latter, the larger GPT-5.2 underperforms GPT-4-Turbo by 55 points on ambiguous counterfactuals, driven by a collapse into paralysis (excessive hedging) rather than hallucination. Finally, we use the benchmark to validate a process-verified protocol (RCA), showing that T3 successfully captures the restoration of decisive causal judgment under structured verification.
comment: 17 pages, 4 figures, 11 tables
On Evaluation of Unsupervised Feature Selection for Pattern Classification
Unsupervised feature selection aims to identify a compact subset of features that captures the intrinsic structure of data without supervised label. Most existing studies evaluate the performance of methods using the single-label dataset that can be instantiated by selecting a label from multi-label data while maintaining the original features. Because the chosen label can vary arbitrarily depending on the experimental setting, the superiority among compared methods can be changed with regard to which label happens to be selected. Thus, evaluating unsupervised feature selection methods based solely on single-label accuracy is unreasonable for assessing their true discriminative ability. This study revisits this evaluation paradigm by adopting a multi-label classification framework. Experiments on 21 multi-label datasets using several representative methods demonstrate that performance rankings differ markedly from those reported under single-label settings, suggesting the possibility of multi-label evaluation settings for fair and reliable comparison of unsupervised feature selection methods.
Large Artificial Intelligence Model Guided Deep Reinforcement Learning for Resource Allocation in Non Terrestrial Networks
Large AI Model (LAM) have been proposed to applications of Non-Terrestrial Networks (NTN), that offer better performance with its great generalization and reduced task specific trainings. In this paper, we propose a Deep Reinforcement Learning (DRL) agent that is guided by a Large Language Model (LLM). The LLM operates as a high level coordinator that generates textual guidance that shape the reward of the DRL agent during training. The results show that the LAM-DRL outperforms the traditional DRL by 40% in nominal weather scenarios and 64% in extreme weather scenarios compared to heuristics in terms of throughput, fairness, and outage probability.
Hyperbolic Heterogeneous Graph Transformer
In heterogeneous graphs, we can observe complex structures such as tree-like or hierarchical structures. Recently, the hyperbolic space has been widely adopted in many studies to effectively learn these complex structures. Although these methods have demonstrated the advantages of the hyperbolic space in learning heterogeneous graphs, most existing methods still have several challenges. They rely heavily on tangent-space operations, which often lead to mapping distortions during frequent transitions. Moreover, their message-passing architectures mainly focus on local neighborhood information, making it difficult to capture global hierarchical structures and long-range dependencies between different types of nodes. To address these limitations, we propose Hyperbolic Heterogeneous Graph Transformer (HypHGT), which effectively and efficiently learns heterogeneous graph representations entirely within the hyperbolic space. Unlike previous message-passing based hyperbolic heterogeneous GNNs, HypHGT naturally captures both local and global dependencies through transformer-based architecture. Furthermore, the proposed relation-specific hyperbolic attention mechanism in HypHGT, which operates with linear time complexity, enables efficient computation while preserving the heterogeneous information across different relation types. This design allows HypHGT to effectively capture the complex structural properties and semantic information inherent in heterogeneous graphs. We conduct comprehensive experiments to evaluate the effectiveness and efficiency of HypHGT, and the results demonstrate that it consistently outperforms state-of-the-art methods in node classification task, with significantly reduced training time and memory usage.
comment: 14pages, 9 figures
The End of Reward Engineering: How LLMs Are Redefining Multi-Agent Coordination
Reward engineering, the manual specification of reward functions to induce desired agent behavior, remains a fundamental challenge in multi-agent reinforcement learning. This difficulty is amplified by credit assignment ambiguity, environmental non-stationarity, and the combinatorial growth of interaction complexity. We argue that recent advances in large language models (LLMs) point toward a shift from hand-crafted numerical rewards to language-based objective specifications. Prior work has shown that LLMs can synthesize reward functions directly from natural language descriptions (e.g., EUREKA) and adapt reward formulations online with minimal human intervention (e.g., CARD). In parallel, the emerging paradigm of Reinforcement Learning from Verifiable Rewards (RLVR) provides empirical evidence that language-mediated supervision can serve as a viable alternative to traditional reward engineering. We conceptualize this transition along three dimensions: semantic reward specification, dynamic reward adaptation, and improved alignment with human intent, while noting open challenges related to computational overhead, robustness to hallucination, and scalability to large multi-agent systems. We conclude by outlining a research direction in which coordination arises from shared semantic representations rather than explicitly engineered numerical signals.
MPCI-Bench: A Benchmark for Multimodal Pairwise Contextual Integrity Evaluation of Language Model Agents
As language-model agents evolve from passive chatbots into proactive assistants that handle personal data, evaluating their adherence to social norms becomes increasingly critical, often through the lens of Contextual Integrity (CI). However, existing CI benchmarks are largely text-centric and primarily emphasize negative refusal scenarios, overlooking multimodal privacy risks and the fundamental trade-off between privacy and utility. In this paper, we introduce MPCI-Bench, the first Multimodal Pairwise Contextual Integrity benchmark for evaluating privacy behavior in agentic settings. MPCI-Bench consists of paired positive and negative instances derived from the same visual source and instantiated across three tiers: normative Seed judgments, context-rich Story reasoning, and executable agent action Traces. Data quality is ensured through a Tri-Principle Iterative Refinement pipeline. Evaluations of state-of-the-art multimodal models reveal systematic failures to balance privacy and utility and a pronounced modality leakage gap, where sensitive visual information is leaked more frequently than textual information. We will open-source MPCI-Bench to facilitate future research on agentic CI.
comment: Submitted to ACL 2026
GADPN: Graph Adaptive Denoising and Perturbation Networks via Singular Value Decomposition
While Graph Neural Networks (GNNs) excel on graph-structured data, their performance is fundamentally limited by the quality of the observed graph, which often contains noise, missing links, or structural properties misaligned with GNNs' underlying assumptions. To address this, graph structure learning aims to infer a more optimal topology. Existing methods, however, often incur high computational costs due to complex generative models and iterative joint optimization, limiting their practical utility. In this paper, we propose GADPN, a simple yet effective graph structure learning framework that adaptively refines graph topology via low-rank denoising and generalized structural perturbation. Our approach makes two key contributions: (1) we introduce Bayesian optimization to adaptively determine the optimal denoising strength, tailoring the process to each graph's homophily level; and (2) we extend the structural perturbation method to arbitrary graphs via Singular Value Decomposition (SVD), overcoming its original limitation to symmetric structures. Extensive experiments on benchmark datasets demonstrate that GADPN achieves state-of-the-art performance while significantly improving efficiency. It shows particularly strong gains on challenging disassortative graphs, validating its ability to robustly learn enhanced graph structures across diverse network types.
Knowledge-based learning in Text-RAG and Image-RAG
This research analyzed and compared the multi-modal approach in the Vision Transformer(EVA-ViT) based image encoder with the LlaMA or ChatGPT LLM to reduce the hallucination problem and detect diseases in chest x-ray images. In this research, we utilized the NIH Chest X-ray image to train the model and compared it in image-based RAG, text-based RAG, and baseline. [3] [5] In a result, the text-based RAG[2] e!ectively reduces the hallucination problem by using external knowledge information, and the image-based RAG improved the prediction con"dence and calibration by using the KNN methods. [4] Moreover, the GPT LLM showed better performance, a low hallucination rate, and better Expected Calibration Error(ECE) than Llama Llama-based model. This research shows the challenge of data imbalance, a complex multi-stage structure, but suggests a large experience environment and a balanced example of use.
comment: 9 pages, 10 figures
An Axiomatic Approach to General Intelligence: SANC(E3) -- Self-organizing Active Network of Concepts with Energy E3
General intelligence must reorganize experience into internal structures that enable prediction and action under finite resources. Existing systems implicitly presuppose fixed primitive units -- tokens, subwords, pixels, or predefined sensor channels -- thereby bypassing the question of how representational units themselves emerge and stabilize. This paper proposes SANC(E3), an axiomatic framework in which representational units are not given a priori but instead arise as stable outcomes of competitive selection, reconstruction, and compression under finite activation capacity, governed by the explicit minimization of an energy functional E3. SANC(E3) draws a principled distinction between system tokens -- structural anchors such as {here, now, I} and sensory sources -- and tokens that emerge through self-organization during co-occurring events. Five core axioms formalize finite capacity, association from co-occurrence, similarity-based competition, confidence-based stabilization, and the reconstruction-compression-update trade-off. A key feature is a pseudo-memory-mapped I/O mechanism, through which internally replayed Gestalts are processed via the same axiomatic pathway as external sensory input. As a result, perception, imagination, prediction, planning, and action are unified within a single representational and energetic process. From the axioms, twelve propositions are derived, showing that category formation, hierarchical organization, unsupervised learning, and high-level cognitive activities can all be understood as instances of Gestalt completion under E3 minimization.
comment: 20 pages, 3 tables
DNF: Dual-Layer Nested Fingerprinting for Large Language Model Intellectual Property Protection
The rapid growth of large language models raises pressing concerns about intellectual property protection under black-box deployment. Existing backdoor-based fingerprints either rely on rare tokens -- leading to high-perplexity inputs susceptible to filtering -- or use fixed trigger-response mappings that are brittle to leakage and post-hoc adaptation. We propose \textsc{Dual-Layer Nested Fingerprinting} (DNF), a black-box method that embeds a hierarchical backdoor by coupling domain-specific stylistic cues with implicit semantic triggers. Across Mistral-7B, LLaMA-3-8B-Instruct, and Falcon3-7B-Instruct, DNF achieves perfect fingerprint activation while preserving downstream utility. Compared with existing methods, it uses lower-perplexity triggers, remains undetectable under fingerprint detection attacks, and is relatively robust to incremental fine-tuning and model merging. These results position DNF as a practical, stealthy, and resilient solution for LLM ownership verification and intellectual property protection.
Adapting Rules of Official International Mahjong for Online Players
As one of the worldwide spread traditional game, Official International Mahjong can be played and promoted online through remote devices instead of requiring face-to-face interaction. However, online players have fragmented playtime and unfixed combination of opponents in contrary to offline players who have fixed opponents for multiple rounds of play. Therefore, the rules designed for offline players need to be modified to ensure the fairness of online single-round play. Specifically, We employ a world champion AI to engage in self-play competitions and conduct statistical data analysis. Our study reveals the first-mover advantage and issues in the subgoal scoring settings. Based on our findings, we propose rule adaptations to make the game more suitable for the online environment, such as introducing compensatory points for the first-mover advantage and refining the scores of subgoals for different tile patterns. Compared with the traditional method of rotating positions over multiple rounds to balance first-mover advantage, our compensatory points mechanism in each round is more convenient for online players. Furthermore, we implement the revised Mahjong game online, which is open for online players. This work is an initial attempt to use data from AI systems to evaluate Official Internatinoal Mahjong's game balance and develop a revised version of the traditional game better adapted for online players.
Evaluating Implicit Regulatory Compliance in LLM Tool Invocation via Logic-Guided Synthesis
The integration of large language models (LLMs) into autonomous agents has enabled complex tool use, yet in high-stakes domains, these systems must strictly adhere to regulatory standards beyond simple functional correctness. However, existing benchmarks often overlook implicit regulatory compliance, thus failing to evaluate whether LLMs can autonomously enforce mandatory safety constraints. To fill this gap, we introduce LogiSafetyGen, a framework that converts unstructured regulations into Linear Temporal Logic oracles and employs logic-guided fuzzing to synthesize valid, safety-critical traces. Building on this framework, we construct LogiSafetyBench, a benchmark comprising 240 human-verified tasks that require LLMs to generate Python programs that satisfy both functional objectives and latent compliance rules. Evaluations of 13 state-of-the-art (SOTA) LLMs reveal that larger models, despite achieving better functional correctness, frequently prioritize task completion over safety, which results in non-compliant behavior.
comment: 11 pages, 3 figures
ForgetMark: Stealthy Fingerprint Embedding via Targeted Unlearning in Language Models
Existing invasive (backdoor) fingerprints suffer from high-perplexity triggers that are easily filtered, fixed response patterns exposed by heuristic detectors, and spurious activations on benign inputs. We introduce \textsc{ForgetMark}, a stealthy fingerprinting framework that encodes provenance via targeted unlearning. It builds a compact, human-readable key--value set with an assistant model and predictive-entropy ranking, then trains lightweight LoRA adapters to suppress the original values on their keys while preserving general capabilities. Ownership is verified under black/gray-box access by aggregating likelihood and semantic evidence into a fingerprint success rate. By relying on probabilistic forgetting traces rather than fixed trigger--response patterns, \textsc{ForgetMark} avoids high-perplexity triggers, reduces detectability, and lowers false triggers. Across diverse architectures and settings, it achieves 100\% ownership verification on fingerprinted models while maintaining standard performance, surpasses backdoor baselines in stealthiness and robustness to model merging, and remains effective under moderate incremental fine-tuning. Our code and data are available at \href{https://github.com/Xuzhenhua55/ForgetMark}{https://github.com/Xuzhenhua55/ForgetMark}.
Improving LLM Reasoning with Homophily-aware Structural and Semantic Text-Attributed Graph Compression
Large language models (LLMs) have demonstrated promising capabilities in Text-Attributed Graph (TAG) understanding. Recent studies typically focus on verbalizing the graph structures via handcrafted prompts, feeding the target node and its neighborhood context into LLMs. However, constrained by the context window, existing methods mainly resort to random sampling, often implemented via dropping node/edge randomly, which inevitably introduces noise and cause reasoning instability. We argue that graphs inherently contain rich structural and semantic information, and that their effective exploitation can unlock potential gains in LLMs reasoning performance. To this end, we propose Homophily-aware Structural and Semantic Compression for LLMs (HS2C), a framework centered on exploiting graph homophily. Structurally, guided by the principle of Structural Entropy minimization, we perform a global hierarchical partition that decodes the graph's essential topology. This partition identifies naturally cohesive, homophilic communities, while discarding stochastic connectivity noise. Semantically, we deliver the detected structural homophily to the LLM, empowering it to perform differentiated semantic aggregation based on predefined community type. This process compresses redundant background contexts into concise community-level consensus, selectively preserving semantically homophilic information aligned with the target nodes. Extensive experiments on 10 node-level benchmarks across LLMs of varying sizes and families demonstrate that, by feeding LLMs with structurally and semantically compressed inputs, HS2C simultaneously enhances the compression rate and downstream inference accuracy, validating its superiority and scalability. Extensions to 7 diverse graph-level benchmarks further consolidate HS2C's task generalizability.
Autonomous Materials Exploration by Integrating Automated Phase Identification and AI-Assisted Human Reasoning
Autonomous experimentation holds the potential to accelerate materials development by combining artificial intelligence (AI) with modular robotic platforms to explore extensive combinatorial chemical and processing spaces. Such self-driving laboratories can not only increase the throughput of repetitive experiments, but also incorporate human domain expertise to drive the search towards user-defined objectives, including improved materials performance metrics. We present an autonomous materials synthesis extension to SARA, the Scientific Autonomous Reasoning Agent, utilizing phase information provided by an automated probabilistic phase labeling algorithm to expedite the search for targeted phase regions. By incorporating human input into an expanded SARA-H (SARA with human-in-the-loop) framework, we enhance the efficiency of the underlying reasoning process. Using synthetic benchmarks, we demonstrate the efficiency of our AI implementation and show that the human input can contribute to significant improvement in sampling efficiency. We conduct experimental active learning campaigns using robotic processing of thin-film samples of several oxide material systems, including Bi$_2$O$_3$, SnO$_x$, and Bi-Ti-O, using lateral-gradient laser spike annealing to synthesize and kinetically trap metastable phases. We showcase the utility of human-in-the-loop autonomous experimentation for the Bi-Ti-O system, where we identify extensive processing domains that stabilize $δ$-Bi$_2$O$_3$ and Bi$_2$Ti$_2$O$_7$, explore dwell-dependent ternary oxide phase behavior, and provide evidence confirming predictions that cationic substitutional doping of TiO$_2$ with Bi inhibits the unfavorable transformation of the metastable anatase to the ground-state rutile phase. The autonomous methods we have developed enable the discovery of new materials and new understanding of materials synthesis and properties.
comment: Main manuscript: 21 pages(including references), 6 figures. Supplementary Information: 12 pages, 9 figures, 1 table
GI-Bench: A Panoramic Benchmark Revealing the Knowledge-Experience Dissociation of Multimodal Large Language Models in Gastrointestinal Endoscopy Against Clinical Standards
Multimodal Large Language Models (MLLMs) show promise in gastroenterology, yet their performance against comprehensive clinical workflows and human benchmarks remains unverified. To systematically evaluate state-of-the-art MLLMs across a panoramic gastrointestinal endoscopy workflow and determine their clinical utility compared with human endoscopists. We constructed GI-Bench, a benchmark encompassing 20 fine-grained lesion categories. Twelve MLLMs were evaluated across a five-stage clinical workflow: anatomical localization, lesion identification, diagnosis, findings description, and management. Model performance was benchmarked against three junior endoscopists and three residency trainees using Macro-F1, mean Intersection-over-Union (mIoU), and multi-dimensional Likert scale. Gemini-3-Pro achieved state-of-the-art performance. In diagnostic reasoning, top-tier models (Macro-F1 0.641) outperformed trainees (0.492) and rivaled junior endoscopists (0.727; p>0.05). However, a critical "spatial grounding bottleneck" persisted; human lesion localization (mIoU >0.506) significantly outperformed the best model (0.345; p<0.05). Furthermore, qualitative analysis revealed a "fluency-accuracy paradox": models generated reports with superior linguistic readability compared with humans (p<0.05) but exhibited significantly lower factual correctness (p<0.05) due to "over-interpretation" and hallucination of visual features.GI-Bench maintains a dynamic leaderboard that tracks the evolving performance of MLLMs in clinical endoscopy. The current rankings and benchmark results are available at https://roterdl.github.io/GIBench/.
comment: 45 pages, 17 figures, 6 tables. Leaderboard available at: https://roterdl.github.io/GIBench/ . Includes supplementary material
Instruction-Driven 3D Facial Expression Generation and Transition
A 3D avatar typically has one of six cardinal facial expressions. To simulate realistic emotional variation, we should be able to render a facial transition between two arbitrary expressions. This study presents a new framework for instruction-driven facial expression generation that produces a 3D face and, starting from an image of the face, transforms the facial expression from one designated facial expression to another. The Instruction-driven Facial Expression Decomposer (IFED) module is introduced to facilitate multimodal data learning and capture the correlation between textual descriptions and facial expression features. Subsequently, we propose the Instruction to Facial Expression Transition (I2FET) method, which leverages IFED and a vertex reconstruction loss function to refine the semantic comprehension of latent vectors, thus generating a facial expression sequence according to the given instruction. Lastly, we present the Facial Expression Transition model to generate smooth transitions between facial expressions. Extensive evaluation suggests that the proposed model outperforms state-of-the-art methods on the CK+ and CelebV-HQ datasets. The results show that our framework can generate facial expression trajectories according to text instruction. Considering that text prompts allow us to make diverse descriptions of human emotional states, the repertoire of facial expressions and the transitions between them can be expanded greatly. We expect our framework to find various practical applications More information about our project can be found at https://vohoanganh.github.io/tg3dfet/
Prompt-Based Clarity Evaluation and Topic Detection in Political Question Answering
Automatic evaluation of large language model (LLM) responses requires not only factual correctness but also clarity, particularly in political question-answering. While recent datasets provide human annotations for clarity and evasion, the impact of prompt design on automatic clarity evaluation remains underexplored. In this paper, we study prompt-based clarity evaluation using the CLARITY dataset from the SemEval 2026 shared task. We compare a GPT-3.5 baseline provided with the dataset against GPT-5.2 evaluated under three prompting strategies: simple prompting, chain-of-thought prompting, and chain-of-thought with few-shot examples. Model predictions are evaluated against human annotations using accuracy and class-wise metrics for clarity and evasion, along with hierarchical exact match. Results show that GPT-5.2 consistently outperforms the GPT-3.5 baseline on clarity prediction, with accuracy improving from 56 percent to 63 percent under chain-of-thought with few-shot prompting. Chain-of-thought prompting yields the highest evasion accuracy at 34 percent, though improvements are less stable across fine-grained evasion categories. We further evaluate topic identification and find that reasoning-based prompting improves accuracy from 60 percent to 74 percent relative to human annotations. Overall, our findings indicate that prompt design reliably improves high-level clarity evaluation, while fine-grained evasion and topic detection remain challenging despite structured reasoning prompts.
comment: 6 pages, 6 tables
The Agent's First Day: Benchmarking Learning, Exploration, and Scheduling in the Workplace Scenarios
The rapid evolution of Multi-modal Large Language Models (MLLMs) has advanced workflow automation; however, existing research mainly targets performance upper bounds in static environments, overlooking robustness for stochastic real-world deployment. We identify three key challenges: dynamic task scheduling, active exploration under uncertainty, and continuous learning from experience. To bridge this gap, we introduce \method{}, a dynamic evaluation environment that simulates a "trainee" agent continuously exploring a novel setting. Unlike traditional benchmarks, \method{} evaluates agents along three dimensions: (1) context-aware scheduling for streaming tasks with varying priorities; (2) prudent information acquisition to reduce hallucination via active exploration; and (3) continuous evolution by distilling generalized strategies from rule-based, dynamically generated tasks. Experiments show that cutting-edge agents have significant deficiencies in dynamic environments, especially in active exploration and continual learning. Our work establishes a framework for assessing agent reliability, shifting evaluation from static tests to realistic, production-oriented scenarios. Our codes are available at https://github.com/KnowledgeXLab/EvoEnv
ZeroDVFS: Zero-Shot LLM-Guided Core and Frequency Allocation for Embedded Platforms
Dynamic voltage and frequency scaling (DVFS) and task-to-core allocation are critical for thermal management and balancing energy and performance in embedded systems. Existing approaches either rely on utilization-based heuristics that overlook stall times, or require extensive offline profiling for table generation, preventing runtime adaptation. We propose a model-based hierarchical multi-agent reinforcement learning (MARL) framework for thermal- and energy-aware scheduling on multi-core platforms. Two collaborative agents decompose the exponential action space, achieving 358ms latency for subsequent decisions. First decisions require 3.5 to 8.0s including one-time LLM feature extraction. An accurate environment model leverages regression techniques to predict thermal dynamics and performance states. When combined with LLM-extracted semantic features, the environment model enables zero-shot deployment for new workloads on trained platforms by generating synthetic training data without requiring workload-specific profiling samples. We introduce LLM-based semantic feature extraction that characterizes OpenMP programs through 13 code-level features without execution. The Dyna-Q-inspired framework integrates direct reinforcement learning with model-based planning, achieving 20x faster convergence than model-free methods. Experiments on BOTS and PolybenchC benchmarks across NVIDIA Jetson TX2, Jetson Orin NX, RubikPi, and Intel Core i7 demonstrate 7.09x better energy efficiency and 4.0x better makespan than Linux ondemand governor. First-decision latency is 8,300x faster than table-based profiling, enabling practical deployment in dynamic embedded systems.
comment: 39 pages, 12 figures, 8 tables (including appendix)
SwiftMem: Fast Agentic Memory via Query-aware Indexing
Agentic memory systems have become critical for enabling LLM agents to maintain long-term context and retrieve relevant information efficiently. However, existing memory frameworks suffer from a fundamental limitation: they perform exhaustive retrieval across the entire storage layer regardless of query characteristics. This brute-force approach creates severe latency bottlenecks as memory grows, hindering real-time agent interactions. We propose SwiftMem, a query-aware agentic memory system that achieves sub-linear retrieval through specialized indexing over temporal and semantic dimensions. Our temporal index enables logarithmic-time range queries for time-sensitive retrieval, while the semantic DAG-Tag index maps queries to relevant topics through hierarchical tag structures. To address memory fragmentation during growth, we introduce an embedding-tag co-consolidation mechanism that reorganizes storage based on semantic clusters to improve cache locality. Experiments on LoCoMo and LongMemEval benchmarks demonstrate that SwiftMem achieves 47$\times$ faster search compared to state-of-the-art baselines while maintaining competitive accuracy, enabling practical deployment of memory-augmented LLM agents.
Project Synapse: A Hierarchical Multi-Agent Framework with Hybrid Memory for Autonomous Resolution of Last-Mile Delivery Disruptions
This paper introduces Project Synapse, a novel agentic framework designed for the autonomous resolution of last-mile delivery disruptions. Synapse employs a hierarchical multi-agent architecture in which a central Resolution Supervisor agent performs strategic task decomposition and delegates subtasks to specialized worker agents responsible for tactical execution. The system is orchestrated using LangGraph to manage complex and cyclical workflows. To validate the framework, a benchmark dataset of 30 complex disruption scenarios was curated from a qualitative analysis of over 6,000 real-world user reviews. System performance is evaluated using an LLM-as-a-Judge protocol with explicit bias mitigation.
comment: We propose and evaluate a hierarchical LLM-driven multi-agent framework for adaptive disruption management in last-mile logistics, integrating planning, coordination, and natural-language reasoning. The system is validated through simulation-based experiments and qualitative analysis. Includes figures and tables. 33 pages
Enriching Semantic Profiles into Knowledge Graph for Recommender Systems Using Large Language Models
Rich and informative profiling to capture user preferences is essential for improving recommendation quality. However, there is still no consensus on how best to construct and utilize such profiles. To address this, we revisit recent profiling-based approaches in recommender systems along four dimensions: 1) knowledge base, 2) preference indicator, 3) impact range, and 4) subject. We argue that large language models (LLMs) are effective at extracting compressed rationales from diverse knowledge sources, while knowledge graphs (KGs) are better suited for propagating these profiles to extend their reach. Building on this insight, we propose a new recommendation model, called SPiKE. SPiKE consists of three core components: i) Entity profile generation, which uses LLMs to generate semantic profiles for all KG entities; ii) Profile-aware KG aggregation, which integrates these profiles into the KG; and iii) Pairwise profile preference matching, which aligns LLM- and KG-based representations during training. In experiments, we demonstrate that SPiKE consistently outperforms state-of-the-art KG- and LLM-based recommenders in real-world settings.
comment: Accepted at KDD 2026
Dynamic Graph Structure Learning via Resistance Curvature Flow
Geometric Representation Learning (GRL) aims to approximate the non-Euclidean topology of high-dimensional data through discrete graph structures, grounded in the manifold hypothesis. However, traditional static graph construction methods based on Euclidean distance often fail to capture the intrinsic curvature characteristics of the data manifold. Although Ollivier-Ricci Curvature Flow (OCF) has proven to be a powerful tool for dynamic topological optimization, its core reliance on Optimal Transport (Wasserstein distance) leads to prohibitive computational complexity, severely limiting its application in large-scale datasets and deep learning frameworks. To break this bottleneck, this paper proposes a novel geometric evolution framework: Resistance Curvature Flow (RCF). Leveraging the concept of effective resistance from circuit physics, RCF transforms expensive curvature optimization into efficient matrix operations. This approach achieves over 100x computational acceleration while maintaining geometric optimization capabilities comparable to OCF. We provide an in-depth exploration of the theoretical foundations and dynamical principles of RCF, elucidating how it guides the redistribution of edge weights via curvature gradients to eliminate topological noise and strengthen local cluster structures. Furthermore, we provide a mechanistic explanation of RCF's role in manifold enhancement and noise suppression, as well as its compatibility with deep learning models. We design a graph optimization algorithm, DGSL-RCF, based on this framework. Experimental results across deep metric learning, manifold learning, and graph structure learning demonstrate that DGSL-RCF significantly improves representation quality and downstream task performance.
Mechanisms are Transferable: Data-Efficient Low-Resource Adaptation via Circuit-Targeted Supervised Fine-Tuning
Adapting LLMs to low-resource languages is difficult: labeled data is scarce, full-model fine-tuning is unstable, and continued cross-lingual tuning can cause catastrophic forgetting. We propose Circuit-Targeted Supervised Fine-Tuning (CT-SFT): a counterfactual-free adaptation of CD-T (Contextual Decomposition Transformer) that uses a label-balanced mean baseline and task-directional relevance scoring to identify a sparse set of task-relevant attention heads in a proxy-language checkpoint, then transfer learns to a target language by updating only those heads (plus LayerNorm) via head-level gradient masking. Across NusaX-Senti and XNLI, CT-SFT improves cross-lingual accuracy over continued full fine-tuning while updating only a small subset of model parameters. We find an editing-preserving trade-off: harder transfers favor editing circuit heads, while easier transfers often favor near-zero (i.e., low-relevance heads) updates, preserving the source mechanism. CT-SFT also substantially reduces catastrophic forgetting, preserving proxy/source-language competence during transfer.
Qalb: Largest State-of-the-Art Urdu Large Language Model for 230M Speakers with Systematic Continued Pre-training
Despite remarkable progress in large language models, Urdu-a language spoken by over 230 million people-remains critically underrepresented in modern NLP systems. Existing multilingual models demonstrate poor performance on Urdu-specific tasks, struggling with the language's complex morphology, right-to-left Nastaliq script, and rich literary traditions. Even the base LLaMA-3.1 8B-Instruct model shows limited capability in generating fluent, contextually appropriate Urdu text. We introduce Qalb, an Urdu language model developed through a two-stage approach: continued pre-training followed by supervised fine-tuning. Starting from LLaMA 3.1 8B, we perform continued pre-training on a dataset of 1.97 billion tokens. This corpus comprises 1.84 billion tokens of diverse Urdu text-spanning news archives, classical and contemporary literature, government documents, and social media-combined with 140 million tokens of English Wikipedia data to prevent catastrophic forgetting. We then fine-tune the resulting model on the Alif Urdu-instruct dataset. Through extensive evaluation on Urdu-specific benchmarks, Qalb demonstrates substantial improvements, achieving a weighted average score of 90.34 and outperforming the previous state-of-the-art Alif-1.0-Instruct model (87.1) by 3.24 points, while also surpassing the base LLaMA-3.1 8B-Instruct model by 44.64 points. Qalb achieves state-of-the-art performance with comprehensive evaluation across seven diverse tasks including Classification, Sentiment Analysis, and Reasoning. Our results demonstrate that continued pre-training on diverse, high-quality language data, combined with targeted instruction fine-tuning, effectively adapts foundation models to low-resource languages.
Subspace Alignment for Vision-Language Model Test-time Adaptation
Vision-language models (VLMs), despite their extraordinary zero-shot capabilities, are vulnerable to distribution shifts. Test-time adaptation (TTA) emerges as a predominant strategy to adapt VLMs to unlabeled test data on the fly. However, existing TTA methods heavily rely on zero-shot predictions as pseudo-labels for self-training, which can be unreliable under distribution shifts and misguide adaptation due to two fundamental limitations. First (Modality Gap), distribution shifts induce gaps between visual and textual modalities, making cross-modal relations inaccurate. Second (Visual Nuisance), visual embeddings encode rich but task-irrelevant noise that often overwhelms task-specific semantics under distribution shifts. To address these limitations, we propose SubTTA, which aligns the semantic subspaces of both modalities to enhance zero-shot predictions to better guide the TTA process. To bridge the modality gap, SubTTA extracts the principal subspaces of both modalities and aligns the visual manifold to the textual semantic anchor by minimizing their chordal distance. To eliminate visual nuisance, SubTTA projects the aligned visual features onto the task-specific textual subspace, which filters out task-irrelevant noise by constraining visual embeddings within the valid semantic span, and standard TTA is further performed on the purified space to refine the decision boundaries. Extensive experiments on various benchmarks and VLM architectures demonstrate the effectiveness of SubTTA, yielding an average improvement of 2.24% over state-of-the-art TTA methods.
comment: 17 pages, 10 figures
How Do Optical Flow and Textual Prompts Collaborate to Assist in Audio-Visual Semantic Segmentation?
Audio-visual semantic segmentation (AVSS) represents an extension of the audio-visual segmentation (AVS) task, necessitating a semantic understanding of audio-visual scenes beyond merely identifying sound-emitting objects at the visual pixel level. Contrary to a previous methodology, by decomposing the AVSS task into two discrete subtasks by initially providing a prompted segmentation mask to facilitate subsequent semantic analysis, our approach innovates on this foundational strategy. We introduce a novel collaborative framework, \textit{S}tepping \textit{S}tone \textit{P}lus (SSP), which integrates optical flow and textual prompts to assist the segmentation process. In scenarios where sound sources frequently coexist with moving objects, our pre-mask technique leverages optical flow to capture motion dynamics, providing essential temporal context for precise segmentation. To address the challenge posed by stationary sound-emitting objects, such as alarm clocks, SSP incorporates two specific textual prompts: one identifies the category of the sound-emitting object, and the other provides a broader description of the scene. Additionally, we implement a visual-textual alignment module (VTA) to facilitate cross-modal integration, delivering more coherent and contextually relevant semantic interpretations. Our training regimen involves a post-mask technique aimed at compelling the model to learn the diagram of the optical flow. Experimental results demonstrate that SSP outperforms existing AVS methods, delivering efficient and precise segmentation results.
Embedded AI Companion System on Edge Devices
Computational resource constraints on edge devices make it difficult to develop a fully embedded AI companion system with a satisfactory user experience. AI companion and memory systems detailed in existing literature cannot be directly used in such an environment due to lack of compute resources and latency concerns. In this paper, we propose a memory paradigm that alternates between active and inactive phases: during phases of user activity, the system performs low-latency, real-time dialog using lightweight retrieval over existing memories and context; whereas during phases of user inactivity, it conducts more computationally intensive extraction, consolidation, and maintenance of memories across full conversation sessions. This design minimizes latency while maintaining long-term personalization under the tight constraints of embedded hardware. We also introduce an AI Companion benchmark designed to holistically evaluate the AI Companion across both its conversational quality and memory capabilities. In our experiments, we found that our system (using a very weak model: Qwen2.5-7B-Instruct quantized int4) outperforms the equivalent raw LLM without memory across most metrics, and performs comparably to GPT-3.5 with 16k context window.
comment: 30 pages, 7 figures
PathoGen: Diffusion-Based Synthesis of Realistic Lesions in Histopathology Images
The development of robust artificial intelligence models for histopathology diagnosis is severely constrained by the scarcity of expert-annotated lesion data, particularly for rare pathologies and underrepresented disease subtypes. While data augmentation offers a potential solution, existing methods fail to generate sufficiently realistic lesion morphologies that preserve the complex spatial relationships and cellular architectures characteristic of histopathological tissues. Here we present PathoGen, a diffusion-based generative model that enables controllable, high-fidelity inpainting of lesions into benign histopathology images. Unlike conventional augmentation techniques, PathoGen leverages the iterative refinement process of diffusion models to synthesize lesions with natural tissue boundaries, preserved cellular structures, and authentic staining characteristics. We validate PathoGen across four diverse datasets representing distinct diagnostic challenges: kidney, skin, breast, and prostate pathology. Quantitative assessment confirms that PathoGen outperforms state-of-the-art generative baselines, including conditional GAN and Stable Diffusion, in image fidelity and distributional similarity. Crucially, we show that augmenting training sets with PathoGen-synthesized lesions enhances downstream segmentation performance compared to traditional geometric augmentations, particularly in data-scarce regimes. Besides, by simultaneously generating realistic morphology and pixel-level ground truth, PathoGen effectively overcomes the manual annotation bottleneck. This approach offers a scalable pathway for developing generalizable medical AI systems despite limited expert-labeled data.
comment: 17 pages, 5 figures
How vehicles change lanes after encountering crashes: Empirical analysis and modeling
When a traffic crash occurs, following vehicles need to change lanes to bypass the obstruction. We define these maneuvers as post crash lane changes. In such scenarios, vehicles in the target lane may refuse to yield even after the lane change has already begun, increasing the complexity and crash risk of post crash LCs. However, the behavioral characteristics and motion patterns of post crash LCs remain unknown. To address this gap, we construct a post crash LC dataset by extracting vehicle trajectories from drone videos captured after crashes. Our empirical analysis reveals that, compared to mandatory LCs (MLCs) and discretionary LCs (DLCs), post crash LCs exhibit longer durations, lower insertion speeds, and higher crash risks. Notably, 79.4% of post crash LCs involve at least one instance of non yielding behavior from the new follower, compared to 21.7% for DLCs and 28.6% for MLCs. Building on these findings, we develop a novel trajectory prediction framework for post crash LCs. At its core is a graph based attention module that explicitly models yielding behavior as an auxiliary interaction aware task. This module is designed to guide both a conditional variational autoencoder and a Transformer based decoder to predict the lane changer's trajectory. By incorporating the interaction aware module, our model outperforms existing baselines in trajectory prediction performance by more than 10% in both average displacement error and final displacement error across different prediction horizons. Moreover, our model provides more reliable crash risk analysis by reducing false crash rates and improving conflict prediction accuracy. Finally, we validate the model's transferability using additional post crash LC datasets collected from different sites.
MirrorBench: An Extensible Framework to Evaluate User-Proxy Agents for Human-Likeness
Large language models (LLMs) are increasingly used as human simulators, both for evaluating conversational systems and for generating fine-tuning data. However, naive "act-as-a-user" prompting often yields verbose, unrealistic utterances, underscoring the need for principled evaluation of so-called user proxy agents. We present MIRRORBENCH, a reproducible, extensible benchmarking framework that evaluates user proxies solely on their ability to produce human-like user utterances across diverse conversational tasks, explicitly decoupled from downstream task success. MIRRORBENCH features a modular execution engine with typed interfaces, metadata-driven registries, multi-backend support, caching, and robust observability. The system supports pluggable user proxies, datasets, tasks, and metrics, enabling researchers to evaluate arbitrary simulators under a uniform, variance-aware harness. We include three lexical-diversity metrics (MATTR, YULE'S K, and HD-D) and three LLM-judge-based metrics (GTEval, Pairwise Indistinguishability, and Rubric-and-Reason). Across four open datasets, MIRRORBENCH yields variance-aware results and reveals systematic gaps between user proxies and real human users. The framework is open source and includes a simple command-line interface for running experiments, managing configurations and caching, and generating reports. The framework can be accessed at https://github.com/SAP/mirrorbench.
CSQL: Mapping Documents into Causal Databases
We describe a novel system, CSQL, which automatically converts a collection of unstructured text documents into an SQL-queryable causal database (CDB). A CDB differs from a traditional DB: it is designed to answer "why'' questions via causal interventions and structured causal queries. CSQL builds on our earlier system, DEMOCRITUS, which converts documents into thousands of local causal models derived from causal discourse. Unlike RAG-based systems or knowledge-graph based approaches, CSQL supports causal analysis over document collections rather than purely associative retrieval. For example, given an article on the origins of human bipedal walking, CSQL enables queries such as: "What are the strongest causal influences on bipedalism?'' or "Which variables act as causal hubs with the largest downstream influence?'' Beyond single-document case studies, we show that CSQL can also ingest RAG/IE-compiled causal corpora at scale by compiling the Testing Causal Claims (TCC) dataset of economics papers into a causal database containing 265,656 claim instances spanning 45,319 papers, 44 years, and 1,575 reported method strings, thereby enabling corpus-level causal queries and longitudinal analyses in CSQL. Viewed abstractly, CSQL functions as a compiler from unstructured documents into a causal database equipped with a principled algebra of queries, and can be applied broadly across many domains ranging from business, humanities, and science.
comment: 26 pages
Debiasing Large Language Models via Adaptive Causal Prompting with Sketch-of-Thought
Despite notable advancements in prompting methods for Large Language Models (LLMs), such as Chain-of-Thought (CoT), existing strategies still suffer from excessive token usage and limited generalisability across diverse reasoning tasks. To address these limitations, we propose an Adaptive Causal Prompting with Sketch-of-Thought (ACPS) framework, which leverages structural causal models to infer the causal effect of a query on its answer and adaptively select an appropriate intervention (i.e., standard front-door and conditional front-door adjustments). This design enables generalisable causal reasoning across heterogeneous tasks without task-specific retraining. By replacing verbose CoT with concise Sketch-of-Thought, ACPS enables efficient reasoning that significantly reduces token usage and inference cost. Extensive experiments on multiple reasoning benchmarks and LLMs demonstrate that ACPS consistently outperforms existing prompting baselines in terms of accuracy, robustness, and computational efficiency.
comment: Accepted by Findings of EACL 2026
STO-RL: Offline RL under Sparse Rewards via LLM-Guided Subgoal Temporal Order
Offline reinforcement learning (RL) enables policy learning from pre-collected datasets, avoiding costly and risky online interactions, but it often struggles with long-horizon tasks involving sparse rewards. Existing goal-conditioned and hierarchical offline RL methods decompose such tasks and generate intermediate rewards to mitigate limitations of traditional offline RL, but usually overlook temporal dependencies among subgoals and rely on imprecise reward shaping, leading to suboptimal policies. To address these issues, we propose STO-RL (Offline RL using LLM-Guided Subgoal Temporal Order), an offline RL framework that leverages large language models (LLMs) to generate temporally ordered subgoal sequences and corresponding state-to-subgoal-stage mappings. Using this temporal structure, STO-RL applies potential-based reward shaping to transform sparse terminal rewards into dense, temporally consistent signals, promoting subgoal progress while avoiding suboptimal solutions. The resulting augmented dataset with shaped rewards enables efficient offline training of high-performing policies. Evaluations on four discrete and continuous sparse-reward benchmarks demonstrate that STO-RL consistently outperforms state-of-the-art offline goal-conditioned and hierarchical RL baselines, achieving faster convergence, higher success rates, and shorter trajectories. Ablation studies further confirm STO-RL's robustness to imperfect or noisy LLM-generated subgoal sequences, demonstrating that LLM-guided subgoal temporal structures combined with theoretically grounded reward shaping provide a practical and scalable solution for long-horizon offline RL.
comment: Accepted at International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2026)
High-Fidelity Modeling of Stochastic Chemical Dynamics on Complex Manifolds: A Multi-Scale SIREN-PINN Framework for the Curvature-Perturbed Ginzburg-Landau Equation
The accurate identification and control of spatiotemporal chaos in reaction-diffusion systems remains a grand challenge in chemical engineering, particularly when the underlying catalytic surface possesses complex, unknown topography. In the \textit{Defect Turbulence} regime, system dynamics are governed by topological phase singularities (spiral waves) whose motion couples to manifold curvature via geometric pinning. Conventional Physics-Informed Neural Networks (PINNs) using ReLU or Tanh activations suffer from fundamental \textit{spectral bias}, failing to resolve high-frequency gradients and causing amplitude collapse or phase drift. We propose a Multi-Scale SIREN-PINN architecture leveraging periodic sinusoidal activations with frequency-diverse initialization, embedding the appropriate inductive bias for wave-like physics directly into the network structure. This enables simultaneous resolution of macroscopic wave envelopes and microscopic defect cores. Validated on the complex Ginzburg-Landau equation evolving on latent Riemannian manifolds, our architecture achieves relative state prediction error $ε_{L_2} \approx 1.92 \times 10^{-2}$, outperforming standard baselines by an order of magnitude while preserving topological invariants ($|ΔN_{defects}| < 1$). We solve the ill-posed \textit{inverse pinning problem}, reconstructing hidden Gaussian curvature fields solely from partial observations of chaotic wave dynamics (Pearson correlation $ρ= 0.965$). Training dynamics reveal a distinctive Spectral Phase Transition at epoch $\sim 2,100$, where cooperative minimization of physics and geometry losses drives the solver to Pareto-optimal solutions. This work establishes a new paradigm for Geometric Catalyst Design, offering a mesh-free, data-driven tool for identifying surface heterogeneity and engineering passive control strategies in turbulent chemical reactors.
comment: 25 pages, 9 figures
Local-Global Feature Fusion for Subject-Independent EEG Emotion Recognition
Subject-independent EEG emotion recognition is challenged by pronounced inter-subject variability and the difficulty of learning robust representations from short, noisy recordings. To address this, we propose a fusion framework that integrates (i) local, channel-wise descriptors and (ii) global, trial-level descriptors, improving cross-subject generalization on the SEED-VII dataset. Local representations are formed per channel by concatenating differential entropy with graph-theoretic features, while global representations summarize time-domain, spectral, and complexity characteristics at the trial level. These representations are fused in a dual-branch transformer with attention-based fusion and domain-adversarial regularization, with samples filtered by an intensity threshold. Experiments under a leave-one-subject-out protocol demonstrate that the proposed method consistently outperforms single-view and classical baselines, achieving approximately 40% mean accuracy in 7-class subject-independent emotion recognition. The code has been released at https://github.com/Danielz-z/LGF-EEG-Emotion.
comment: 7 pages, 5 figures, EMBC 2026
Q-realign: Piggybacking Realignment on Quantization for Safe and Efficient LLM Deployment
Public large language models (LLMs) are typically safety-aligned during pretraining, yet task-specific fine-tuning required for deployment often erodes this alignment and introduces safety risks. Existing defenses either embed safety recovery into fine-tuning or rely on fine-tuning-derived priors for post-hoc correction, leaving safety recovery tightly coupled with training and incurring high computational overhead and a complex workflow. To address these challenges, we propose \texttt{Q-realign}, a post-hoc defense method based on post-training quantization, guided by an analysis of representational structure. By reframing quantization as a dual-objective procedure for compression and safety, \texttt{Q-realign} decouples safety alignment from fine-tuning and naturally piggybacks into modern deployment pipelines. Experiments across multiple models and datasets demonstrate that our method substantially reduces unsafe behaviors while preserving task performance, with significant reductions in memory usage and GPU hours. Notably, our approach can recover the safety alignment of a fine-tuned 7B LLM on a single RTX 4090 within 40 minutes. Overall, our work provides a practical, turnkey solution for safety-aware deployment.
The Hierarchy of Agentic Capabilities: Evaluating Frontier Models on Realistic RL Environments
The advancement of large language model (LLM) based agents has shifted AI evaluation from single-turn response assessment to multi-step task completion in interactive environments. We present an empirical study evaluating frontier AI models on 150 workplace tasks within a realistic e-commerce RL environment from Surge. Our analysis reveals an empirically-derived \emph{hierarchy of agentic capabilities} that models must master for real-world deployment: (1) tool use, (2) planning and goal formation, (3) adaptability, (4) groundedness, and (5) common-sense reasoning. Even the best-performing models fail approximately 40\% of the tasks, with failures clustering predictably along this hierarchy. Weaker models struggle with fundamental tool use and planning, whereas stronger models primarily fail on tasks requiring contextual inference beyond explicit instructions. We introduce a task-centric design methodology for RL environments that emphasizes diversity and domain expert contributions, provide detailed failure analysis, and discuss implications for agent development. Our findings suggest that while current frontier models can demonstrate coherent multi-step behavior, substantial capability gaps remain before achieving human-level task completion in realistic workplace settings.
Generalizable Geometric Prior and Recurrent Spiking Feature Learning for Humanoid Robot Manipulation
Humanoid robot manipulation is a crucial research area for executing diverse human-level tasks, involving high-level semantic reasoning and low-level action generation. However, precise scene understanding and sample-efficient learning from human demonstrations remain critical challenges, severely hindering the applicability and generalizability of existing frameworks. This paper presents a novel RGMP-S, Recurrent Geometric-prior Multimodal Policy with Spiking features, facilitating both high-level skill reasoning and data-efficient motion synthesis. To ground high-level reasoning in physical reality, we leverage lightweight 2D geometric inductive biases to enable precise 3D scene understanding within the vision-language model. Specifically, we construct a Long-horizon Geometric Prior Skill Selector that effectively aligns the semantic instructions with spatial constraints, ultimately achieving robust generalization in unseen environments. For the data efficiency issue in robotic action generation, we introduce a Recursive Adaptive Spiking Network. We parameterize robot-object interactions via recursive spiking for spatiotemporal consistency, fully distilling long-horizon dynamic features while mitigating the overfitting issue in sparse demonstration scenarios. Extensive experiments are conducted across the Maniskill simulation benchmark and three heterogeneous real-world robotic systems, encompassing a custom-developed humanoid, a desktop manipulator, and a commercial robotic platform. Empirical results substantiate the superiority of our method over state-of-the-art baselines and validate the efficacy of the proposed modules in diverse generalization scenarios. To facilitate reproducibility, the source code and video demonstrations are publicly available at https://github.com/xtli12/RGMP-S.git.
Proactively Detecting Threats: A Novel Approach Using LLMs
Enterprise security faces escalating threats from sophisticated malware, compounded by expanding digital operations. This paper presents the first systematic evaluation of large language models (LLMs) to proactively identify indicators of compromise (IOCs) from unstructured web-based threat intelligence sources, distinguishing it from reactive malware detection approaches. We developed an automated system that pulls IOCs from 15 web-based threat report sources to evaluate six LLM models (Gemini, Qwen, and Llama variants). Our evaluation of 479 webpages containing 2,658 IOCs (711 IPv4 addresses, 502 IPv6 addresses, 1,445 domains) reveals significant performance variations. Gemini 1.5 Pro achieved 0.958 precision and 0.788 specificity for malicious IOC identification, while demonstrating perfect recall (1.0) for actual threats.
comment: 2025 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC)
OpenDecoder: Open Large Language Model Decoding to Incorporate Document Quality in RAG
The development of large language models (LLMs) has achieved superior performance in a range of downstream tasks, including LLM-based retrieval-augmented generation (RAG). The quality of generated content heavily relies on the usefulness of the retrieved information and the capacity of LLMs' internal information processing mechanism to incorporate it in answer generation. It is generally assumed that the retrieved information is relevant to the question. However, the retrieved information may have a variable degree of relevance and usefulness, depending on the question and the document collection. It is important to take into account the relevance of the retrieved information in answer generation. In this paper, we propose OpenDecoder, a new approach that leverages explicit evaluation of the retrieved information as quality indicator features for generation. We aim to build a RAG model that is more robust to varying levels of noisy context. Three types of explicit evaluation information are considered: relevance score, ranking score, and QPP (query performance prediction) score. The experimental results on five benchmark datasets demonstrate the effectiveness and better robustness of OpenDecoder by outperforming various baseline methods. Importantly, this paradigm is flexible to be integrated with the post-training of LLMs for any purposes and incorporated with any type of external indicators.
comment: Accepted by ACM WWW 2026
Meta-learning to Address Data Shift in Time Series Classification
Across engineering and scientific domains, traditional deep learning (TDL) models perform well when training and test data share the same distribution. However, the dynamic nature of real-world data, broadly termed \textit{data shift}, renders TDL models prone to rapid performance degradation, requiring costly relabeling and inefficient retraining. Meta-learning, which enables models to adapt quickly to new data with few examples, offers a promising alternative for mitigating these challenges. Here, we systematically compare TDL with fine-tuning and optimization-based meta-learning algorithms to assess their ability to address data shift in time-series classification. We introduce a controlled, task-oriented seismic benchmark (SeisTask) and show that meta-learning typically achieves faster and more stable adaptation with reduced overfitting in data-scarce regimes and smaller model architectures. As data availability and model capacity increase, its advantages diminish, with TDL with fine-tuning performing comparably. Finally, we examine how task diversity influences meta-learning and find that alignment between training and test distributions, rather than diversity alone, drives performance gains. Overall, this work provides a systematic evaluation of when and why meta-learning outperforms TDL under data shift and contributes SeisTask as a benchmark for advancing adaptive learning research in time-series domains.
TranslateGemma Technical Report
We present TranslateGemma, a suite of open machine translation models based on the Gemma 3 foundation models. To enhance the inherent multilingual capabilities of Gemma 3 for the translation task, we employ a two-stage fine-tuning process. First, supervised fine-tuning is performed using a rich mixture of high-quality large-scale synthetic parallel data generated via state-of-the-art models and human-translated parallel data. This is followed by a reinforcement learning phase, where we optimize translation quality using an ensemble of reward models, including MetricX-QE and AutoMQM, targeting translation quality. We demonstrate the effectiveness of TranslateGemma with human evaluation on the WMT25 test set across 10 language pairs and with automatic evaluation on the WMT24++ benchmark across 55 language pairs. Automatic metrics show consistent and substantial gains over the baseline Gemma 3 models across all sizes. Notably, smaller TranslateGemma models often achieve performance comparable to larger baseline models, offering improved efficiency. We also show that TranslateGemma models retain strong multimodal capabilities, with enhanced performance on the Vistra image translation benchmark. The release of the open TranslateGemma models aims to provide the research community with powerful and adaptable tools for machine translation.
ART: Action-based Reasoning Task Benchmarking for Medical AI Agents
Reliable clinical decision support requires medical AI agents capable of safe, multi-step reasoning over structured electronic health records (EHRs). While large language models (LLMs) show promise in healthcare, existing benchmarks inadequately assess performance on action-based tasks involving threshold evaluation, temporal aggregation, and conditional logic. We introduce ART, an Action-based Reasoning clinical Task benchmark for medical AI agents, which mines real-world EHR data to create challenging tasks targeting known reasoning weaknesses. Through analysis of existing benchmarks, we identify three dominant error categories: retrieval failures, aggregation errors, and conditional logic misjudgments. Our four-stage pipeline -- scenario identification, task generation, quality audit, and evaluation -- produces diverse, clinically validated tasks grounded in real patient data. Evaluating GPT-4o-mini and Claude 3.5 Sonnet on 600 tasks shows near-perfect retrieval after prompt refinement, but substantial gaps in aggregation (28--64%) and threshold reasoning (32--38%). By exposing failure modes in action-oriented EHR reasoning, ART advances toward more reliable clinical agents, an essential step for AI systems that reduce cognitive load and administrative burden, supporting workforce capacity in high-demand care settings
Imagine-then-Plan: Agent Learning from Adaptive Lookahead with World Models
Recent advances in world models have shown promise for modeling future dynamics of environmental states, enabling agents to reason and act without accessing real environments. Current methods mainly perform single-step or fixed-horizon rollouts, leaving their potential for complex task planning under-exploited. We propose Imagine-then-Plan (\texttt{ITP}), a unified framework for agent learning via lookahead imagination, where an agent's policy model interacts with the learned world model, yielding multi-step ``imagined'' trajectories. Since the imagination horizon may vary by tasks and stages, we introduce a novel adaptive lookahead mechanism by trading off the ultimate goal and task progress. The resulting imagined trajectories provide rich signals about future consequences, such as achieved progress and potential conflicts, which are fused with current observations, formulating a partially \textit{observable} and \textit{imaginable} Markov decision process to guide policy learning. We instantiate \texttt{ITP} with both training-free and reinforcement-trained variants. Extensive experiments across representative agent benchmarks demonstrate that \texttt{ITP} significantly outperforms competitive baselines. Further analyses validate that our adaptive lookahead largely enhances agents' reasoning capability, providing valuable insights into addressing broader, complex tasks.
Fairness risk and its privacy-enabled solution in AI-driven robotic applications
Complex decision-making by autonomous machines and algorithms could underpin the foundations of future society. Generative AI is emerging as a powerful engine for such transitions. However, we show that Generative AI-driven developments pose a critical pitfall: fairness concerns. In robotic applications, although intuitions about fairness are common, a precise and implementable definition that captures user utility and inherent data randomness is missing. Here we provide a utility-aware fairness metric for robotic decision making and analyze fairness jointly with user-data privacy, deriving conditions under which privacy budgets govern fairness metrics. This yields a unified framework that formalizes and quantifies fairness and its interplay with privacy, which is tested in a robot navigation task. In view of the fact that under legal requirements, most robotic systems will enforce user privacy, the approach shows surprisingly that such privacy budgets can be jointly used to meet fairness targets. Addressing fairness concerns in the creative combined consideration of privacy is a step towards ethical use of AI and strengthens trust in autonomous robots deployed in everyday environments.
PluriHarms: Benchmarking the Full Spectrum of Human Judgments on AI Harm
Current AI safety frameworks, which often treat harmfulness as binary, lack the flexibility to handle borderline cases where humans meaningfully disagree. To build more pluralistic systems, it is essential to move beyond consensus and instead understand where and why disagreements arise. We introduce PluriHarms, a benchmark designed to systematically study human harm judgments across two key dimensions -- the harm axis (benign to harmful) and the agreement axis (agreement to disagreement). Our scalable framework generates prompts that capture diverse AI harms and human values while targeting cases with high disagreement rates, validated by human data. The benchmark includes 150 prompts with 15,000 ratings from 100 human annotators, enriched with demographic and psychological traits and prompt-level features of harmful actions, effects, and values. Our analyses show that prompts that relate to imminent risks and tangible harms amplify perceived harmfulness, while annotator traits (e.g., toxicity experience, education) and their interactions with prompt content explain systematic disagreement. We benchmark AI safety models and alignment methods on PluriHarms, finding that while personalization significantly improves prediction of human harm judgments, considerable room remains for future progress. By explicitly targeting value diversity and disagreement, our work provides a principled benchmark for moving beyond "one-size-fits-all" safety toward pluralistically safe AI.
ConvoLearn: A Dataset of Constructivist Tutor-Student Dialogue
In educational applications, LLMs exhibit several fundamental pedagogical limitations, such as their tendency to reveal solutions rather than support dialogic learning. We introduce ConvoLearn (https://huggingface.co/datasets/masharma/convolearn ), a dataset grounded in knowledge building theory that operationalizes six core pedagogical dimensions: cognitive engagement, formative assessment, accountability, cultural responsiveness, metacognition, and power dynamics. We construct a semi-synthetic dataset of 1250 tutor-student dialogues (20 turns each) in middle school Earth Science through controlled interactions between human teachers and a simulated student. Using QLoRA, we demonstrate that training on this dataset meaningfully shifts LLM behavior toward knowledge-building strategies. Human evaluation by 31 teachers shows our fine-tuned Mistral 7B (M = 4.10, SD = 1.03) significantly outperforms both its base version (M = 2.59, SD = 1.11) and Claude Sonnet 4.5 (M = 2.87, SD = 1.29) overall. This work establishes a potential framework to guide future development and evaluation of constructivist AI tutors.
Towards a Self-Driving Trigger at the LHC: Adaptive Response in Real Time
Real-time data filtering and selection -- or trigger -- systems at high-throughput scientific facilities such as the experiments at the Large Hadron Collider (LHC) must process extremely high-rate data streams under stringent bandwidth, latency, and storage constraints. Yet these systems are typically designed as static, hand-tuned menus of selection criteria grounded in prior knowledge and simulation. In this work, we further explore the concept of a self-driving trigger, an autonomous data-filtering framework that reallocates resources and adjusts thresholds dynamically in real-time to optimize signal efficiency, rate stability, and computational cost as instrumentation and environmental conditions evolve. We introduce a benchmark ecosystem to emulate realistic collider scenarios and demonstrate real-time optimization of a menu including canonical energy sum triggers as well as modern anomaly-detection algorithms that target non-standard event topologies using machine learning. Using simulated data streams and publicly available collision data from the Compact Muon Solenoid (CMS) experiment, we demonstrate the capability to dynamically and automatically optimize trigger performance under specific cost objectives without manual retuning. Our adaptive strategy shifts trigger design from static menus with heuristic tuning to intelligent, automated, data-driven control, unlocking greater flexibility and discovery potential in future high-energy physics analyses.
Navigating Ideation Space: Decomposed Conceptual Representations for Positioning Scientific Ideas
Scientific discovery is a cumulative process and requires new ideas to be situated within an ever-expanding landscape of existing knowledge. An emerging and critical challenge is how to identify conceptually relevant prior work from rapidly growing literature, and assess how a new idea differentiates from existing research. Current embedding approaches typically conflate distinct conceptual aspects into single representations and cannot support fine-grained literature retrieval; meanwhile, LLM-based evaluators are subject to sycophancy biases, failing to provide discriminative novelty assessment. To tackle these challenges, we introduce the Ideation Space, a structured representation that decomposes scientific knowledge into three distinct dimensions, i.e., research problem, methodology, and core findings, each learned through contrastive training. This framework enables principled measurement of conceptual distance between ideas, and modeling of ideation transitions that capture the logical connections within a proposed idea. Building upon this representation, we propose a Hierarchical Sub-Space Retrieval framework for efficient, targeted literature retrieval, and a Decomposed Novelty Assessment algorithm that identifies which aspects of an idea are novel. Extensive experiments demonstrate substantial improvements, where our approach achieves Recall@30 of 0.329 (16.7% over baselines), our ideation transition retrieval reaches Hit Rate@30 of 0.643, and novelty assessment attains 0.37 correlation with expert judgments. In summary, our work provides a promising paradigm for future research on accelerating and evaluating scientific discovery.
comment: 21 pages, 6 tables
XGBoost Forecasting of NEPSE Index Log Returns with Walk Forward Validation
This study develops a robust machine learning framework for one-step-ahead forecasting of daily log-returns in the Nepal Stock Exchange (NEPSE) Index using the XGBoost regressor. A comprehensive feature set is engineered, including lagged log-returns (up to 30 days) and established technical indicators such as short- and medium-term rolling volatility measures and the 14-period Relative Strength Index. Hyperparameter optimization is performed using Optuna with time-series cross-validation on the initial training segment. Out-of-sample performance is rigorously assessed via walk-forward validation under both expanding and fixed-length rolling window schemes across multiple lag configurations, simulating real-world deployment and avoiding lookahead bias. Predictive accuracy is evaluated using root mean squared error, mean absolute error, coefficient of determination (R-squared), and directional accuracy on both log-returns and reconstructed closing prices. Empirical results show that the optimal configuration, an expanding window with 20 lags, outperforms tuned ARIMA and Ridge regression benchmarks, achieving the lowest log-return RMSE (0.013450) and MAE (0.009814) alongside a directional accuracy of 65.15%. While the R-squared remains modest, consistent with the noisy nature of financial returns, primary emphasis is placed on relative error reduction and directional prediction. Feature importance analysis and visual inspection further enhance interpretability. These findings demonstrate the effectiveness of gradient boosting ensembles in modeling nonlinear dynamics in volatile emerging market time series and establish a reproducible benchmark for NEPSE Index forecasting.
comment: 9 pages, 4 figures, 3 tables
LocalSearchBench: Benchmarking Agentic Search in Real-World Local Life Services
Recent advances in large reasoning models LRMs have enabled agentic search systems to perform complex multi-step reasoning across multiple sources. However, most studies focus on general information retrieval and rarely explores vertical domains with unique challenges. In this work, we focus on local life services and introduce LocalSearchBench, which encompass diverse and complex business scenarios. Real-world queries in this domain are often ambiguous and require multi-hop reasoning across merchants and products, remaining challenging and not fully addressed. As the first comprehensive benchmark for agentic search in local life services, LocalSearchBench comprises a database of over 1.3M merchant entries across 6 service categories and 9 major cities, and 900 multi-hop QA tasks from real user queries that require multi-step reasoning. We also developed LocalPlayground, a unified environment integrating multiple tools for LRMs interaction. Experiments show that even state-of-the-art LRMs struggle on LocalSearchBench: the best model (DeepSeek-V3.2) achieves only 35.60% correctness, and most models have issues with completeness (average 60.32%) and faithfulness (average 30.72%). This highlights the need for specialized benchmarks and domain-specific agent training in local life services. Code, Benchmark, and Leaderboard are available at https://localsearchbench.github.io/.
DGAE: Diffusion-Guided Autoencoder for Efficient Latent Representation Learning
Autoencoders empower state-of-the-art image and video generative models by compressing pixels into a latent space through visual tokenization. Although recent advances have alleviated the performance degradation of autoencoders under high compression ratios, addressing the training instability caused by GAN remains an open challenge. While improving spatial compression, we also aim to minimize the latent space dimensionality, enabling more efficient and compact representations. To tackle these challenges, we focus on improving the decoder's expressiveness. Concretely, we propose DGAE, which employs a diffusion model to guide the decoder in recovering informative signals that are not fully decoded from the latent representation. With this design, DGAE effectively mitigates the performance degradation under high spatial compression rates. At the same time, DGAE achieves state-of-the-art performance with a 2x smaller latent space. When integrated with Diffusion Models, DGAE demonstrates competitive performance on image generation for ImageNet-1K and shows that this compact latent representation facilitates faster convergence of the diffusion model.
Stability of Primal-Dual Gradient Flow Dynamics for Multi-Block Convex Optimization Problems
We examine stability properties of primal-dual gradient flow dynamics for composite convex optimization problems with multiple, possibly nonsmooth, terms in the objective function under the generalized consensus constraint. The proposed dynamics are based on the proximal augmented Lagrangian and they provide a viable alternative to ADMM which faces significant challenges from both analysis and implementation viewpoints in large-scale multi-block scenarios. In contrast to customized algorithms with individualized convergence guarantees, we develop a systematic approach for solving a broad class of challenging composite optimization problems. We leverage various structural properties to establish global (exponential) convergence guarantees for the proposed dynamics. Our assumptions are much weaker than those required to prove (exponential) stability of primal-dual dynamics as well as (linear) convergence of discrete-time methods such as standard two-block and multi-block ADMM and EXTRA algorithms. Finally, we show necessity of some of our structural assumptions for exponential stability and provide computational experiments to demonstrate the convenience of the proposed approach for parallel and distributed computing applications.
comment: 32 pages; 4 figures
A Vision for Multisensory Intelligence: Sensing, Science, and Synergy
Our experience of the world is multisensory, spanning a synthesis of language, sight, sound, touch, taste, and smell. Yet, artificial intelligence has primarily advanced in digital modalities like text, vision, and audio. This paper outlines a research vision for multisensory artificial intelligence over the next decade. This new set of technologies can change how humans and AI experience and interact with one another, by connecting AI to the human senses and a rich spectrum of signals from physiological and tactile cues on the body, to physical and social signals in homes, cities, and the environment. We outline how this field must advance through three interrelated themes of sensing, science, and synergy. Firstly, research in sensing should extend how AI captures the world in richer ways beyond the digital medium. Secondly, developing a principled science for quantifying multimodal heterogeneity and interactions, developing unified modeling architectures and representations, and understanding cross-modal transfer. Finally, we present new technical challenges to learn synergy between modalities and between humans and AI, covering multisensory integration, alignment, reasoning, generation, generalization, and experience. Accompanying this vision paper are a series of projects, resources, and demos of latest advances from the Multisensory Intelligence group at the MIT Media Lab, see https://mit-mi.github.io/.
The Molecular Structure of Thought: Mapping the Topology of Long Chain-of-Thought Reasoning
Large language models (LLMs) often fail to learn effective long chain-of-thought (Long CoT) reasoning from human or non-Long-CoT LLMs imitation. To understand this, we propose that effective and learnable Long CoT trajectories feature stable molecular-like structures in unified view, which are formed by three interaction types: Deep-Reasoning (covalent-like), Self-Reflection (hydrogen-bond-like), and Self-Exploration (van der Waals-like). Analysis of distilled trajectories reveals these structures emerge from Long CoT fine-tuning, not keyword imitation. We introduce Effective Semantic Isomers and show that only bonds promoting fast entropy convergence support stable Long CoT learning, while structural competition impairs training. Drawing on these findings, we present Mole-Syn, a distribution-transfer-graph method that guides synthesis of effective Long CoT structures, boosting performance and RL stability across benchmarks.
comment: Preprint
SafePro: Evaluating the Safety of Professional-Level AI Agents
Large language model-based agents are rapidly evolving from simple conversational assistants into autonomous systems capable of performing complex, professional-level tasks in various domains. While these advancements promise significant productivity gains, they also introduce critical safety risks that remain under-explored. Existing safety evaluations primarily focus on simple, daily assistance tasks, failing to capture the intricate decision-making processes and potential consequences of misaligned behaviors in professional settings. To address this gap, we introduce \textbf{SafePro}, a comprehensive benchmark designed to evaluate the safety alignment of AI agents performing professional activities. SafePro features a dataset of high-complexity tasks across diverse professional domains with safety risks, developed through a rigorous iterative creation and review process. Our evaluation of state-of-the-art AI models reveals significant safety vulnerabilities and uncovers new unsafe behaviors in professional contexts. We further show that these models exhibit both insufficient safety judgment and weak safety alignment when executing complex professional tasks. In addition, we investigate safety mitigation strategies for improving agent safety in these scenarios and observe encouraging improvements. Together, our findings highlight the urgent need for robust safety mechanisms tailored to the next generation of professional AI agents.
FastFLUX: Pruning FLUX with Block-wise Replacement and Sandwich Training
Recent advancements in text-to-image (T2I) generation have led to the emergence of highly expressive models such as diffusion transformers (DiTs), exemplified by FLUX. However, their massive parameter sizes lead to slow inference, high memory usage, and poor deployability. Existing acceleration methods (e.g., single-step distillation and attention pruning) often suffer from significant performance degradation and incur substantial training costs. To address these limitations, we propose FastFLUX, an architecture-level pruning framework designed to enhance the inference efficiency of FLUX. At its core is the Block-wise Replacement with Linear Layers (BRLL) method, which replaces structurally complex residual branches in ResBlocks with lightweight linear layers while preserving the original shortcut connections for stability. Furthermore, we introduce Sandwich Training (ST), a localized fine-tuning strategy that leverages LoRA to supervise neighboring blocks, mitigating performance drops caused by structural replacement. Experiments show that our FastFLUX maintains high image quality under both qualitative and quantitative evaluations, while significantly improving inference speed, even with 20\% of the hierarchy pruned. Our code will be available soon.
comment: 14 pages
Incentivizing Multi-Tenant Split Federated Learning for Foundation Models at the Network Edge
Foundation models (FMs) such as GPT-4 exhibit exceptional generative capabilities across diverse downstream tasks through fine-tuning. Split Federated Learning (SFL) facilitates privacy-preserving FM fine-tuning on resource-constrained local devices by offloading partial FM computations to edge servers, enabling device-edge synergistic fine-tuning. Practical edge networks often host multiple SFL tenants to support diversified downstream tasks. However, existing research primarily focuses on single-tenant SFL scenarios, and lacks tailored incentive mechanisms for multi-tenant settings, which are essential to effectively coordinate self-interested local devices for participation in various downstream tasks, ensuring that each SFL tenant's distinct FM fine-tuning requirements (e.g., FM types, performance targets, and fine-tuning deadlines) are met. To address this gap, we propose a novel Price-Incentive Mechanism (PRINCE) that guides multiple SFL tenants to offer strategic price incentives, which solicit high-quality device participation for efficient FM fine-tuning. Specifically, we first develop a bias-resilient global SFL model aggregation scheme to eliminate model biases caused by independent device participation. We then derive a rigorous SFL convergence bound to evaluate the contributions of heterogeneous devices to FM performance improvements, guiding the incentive strategies of SFL tenants. Furthermore, we model inter-tenant device competition as a congestion game for Stackelberg equilibrium (SE) analysis, deriving each SFL tenant's optimal incentive strategy. Extensive simulations involving four representative SFL tenant types (ViT, BERT, Whisper, and LLaMA) across diverse data modalities (text, images, and audio) demonstrate that PRINCE accelerates FM fine-tuning by up to 3.07x compared to state-of-the-art approaches, while consistently meeting fine-tuning performance targets.
comment: Accepted for publication in IEEE/ACM Transactions on Networking. Index Terms: Foundation models, Edge computing, Split federated learning, Multi-tenant system, Incentive mechanism
STELP: Secure Transpilation and Execution of LLM-Generated Programs
Rapid evolution of Large Language Models (LLMs) has achieved major advances in reasoning, planning, and function-calling capabilities. Multi-agentic collaborative frameworks using such LLMs place them at the center of solving software development-related tasks such as code generation. However, direct use of LLM generated code in production software development systems is problematic. The code could be unstable or erroneous and contain vulnerabilities such as data poisoning, malicious attacks, and hallucinations that could lead to widespread system malfunctions. This prohibits the adoption of LLM generated code in production AI systems where human code reviews and traditional secure testing tools are impractical or untrustworthy. In this paper, we discuss safety and reliability problems with the execution of LLM generated code and propose a Secure Transpiler and Executor of LLM-Generated Program (STELP), capable of executing LLM-generated code in a controlled and safe manner. STELP secures autonomous production AI systems involving code generation, filling the critical void left by the impracticality or limitations of traditional secure testing methodologies and human oversight. This includes applications such as headless code generation-execution and LLMs that produce executable code snippets as an action plan to be executed in real time. We contribute a human-validated dataset of insecure code snippets and benchmark our approach on publicly available datasets for correctness, safety, and latency. Our results demonstrate that our approach outperforms an existing method by a significant margin, particularly in its ability to safely execute risky code snippets. Warning: This paper contains malicious code snippets that should be run with caution.
Hybrid Reward-Driven Reinforcement Learning for Efficient Quantum Circuit Synthesis
A reinforcement learning (RL) framework is introduced for the efficient synthesis of quantum circuits that generate specified target quantum states from a fixed initial state, addressing a central challenge in both the Noisy Intermediate-Scale Quantum (NISQ) era and future fault-tolerant quantum computing. The approach utilizes tabular Q-learning, based on action sequences, within a discretized quantum state space, to effectively manage the exponential growth of the space dimension.The framework introduces a hybrid reward mechanism, combining a static, domain-informed reward that guides the agent toward the target state with customizable dynamic penalties that discourage inefficient circuit structures such as gate congestion and redundant state revisits. This is a circuit-aware reward, in contrast to the current trend of works on this topic, which are primarily fidelity-based. By leveraging sparse matrix representations and state-space discretization, the method enables practical navigation of high-dimensional environments while minimizing computational overhead. Benchmarking on graph-state preparation tasks for up to seven qubits, we demonstrate that the algorithm consistently discovers minimal-depth circuits with optimized gate counts. Moreover, extending the framework to a universal gate set still yields low depth circuits, highlighting the algorithm robustness and adaptability. The results confirm that this RL-driven approach, with our completely circuit-aware method, efficiently explores the complex quantum state space and synthesizes near-optimal quantum circuits, providing a resource-efficient foundation for quantum circuit optimization.
comment: 35 pages, 7 figures, color figures
Efficient and Reproducible Biomedical Question Answering using Retrieval Augmented Generation
Biomedical question-answering (QA) systems require effective retrieval and generation components to ensure accuracy, efficiency, and scalability. This study systematically examines a Retrieval-Augmented Generation (RAG) system for biomedical QA, evaluating retrieval strategies and response time trade-offs. We first assess state-of-the-art retrieval methods, including BM25, BioBERT, MedCPT, and a hybrid approach, alongside common data stores such as Elasticsearch, MongoDB, and FAISS, on a ~10% subset of PubMed (2.4M documents) to measure indexing efficiency, retrieval latency, and retriever performance in the end-to-end RAG system. Based on these insights, we deploy the final RAG system on the full 24M PubMed corpus, comparing different retrievers' impact on overall performance. Evaluations of the retrieval depth show that retrieving 50 documents with BM25 before reranking with MedCPT optimally balances accuracy (0.90), recall (0.90), and response time (1.91s). BM25 retrieval time remains stable (82ms), while MedCPT incurs the main computational cost. These results highlight previously not well-known trade-offs in retrieval depth, efficiency, and scalability for biomedical QA. With open-source code, the system is fully reproducible and extensible.
comment: Minor wording corrections and updated author contact information
Precision over Diversity: High-Precision Reward Generalizes to Robust Instruction Following
A central belief in scaling reinforcement learning with verifiable rewards for instruction following (IF) tasks is that, a diverse mixture of verifiable hard and unverifiable soft constraints is essential for generalizing to unseen instructions. In this work, we challenge this prevailing consensus through a systematic empirical investigation. Counter-intuitively, we find that models trained on hard-only constraints consistently outperform those trained on mixed datasets. Extensive experiments reveal that reward precision, rather than constraint diversity, is the primary driver of effective alignment. The LLM judge suffers from a low recall rate in detecting false response, which leads to severe reward hacking, thereby undermining the benefits of diversity. Furthermore, analysis of the attention mechanism reveals that high-precision rewards develop a transferable meta-skill for IF. Motivated by these insights, we propose a simple yet effective data-centric refinement strategy that prioritizes reward precision. Evaluated on five benchmarks, our approach outperforms competitive baselines by 13.4\% in performance while achieving a 58\% reduction in training time, maintaining strong generalization beyond instruction following. Our findings advocate for a paradigm shift: moving away from the indiscriminate pursuit of data diversity toward high-precision rewards.
comment: Under review, 13 pages, 8 figures
QueryIPI: Query-agnostic Indirect Prompt Injection on Coding Agents
Modern coding agents integrated into IDEs orchestrate powerful tools and high-privilege system access, creating a high-stakes attack surface. Prior work on Indirect Prompt Injection (IPI) is mainly query-specific, requiring particular user queries as triggers and leading to poor generalizability. We propose query-agnostic IPI, a new attack paradigm that reliably executes malicious payloads under arbitrary user queries. Our key insight is that malicious payloads should leverage the invariant prompt context (i.e., system prompt and tool descriptions) rather than variant user queries. We present QueryIPI, an automated framework that uses tool descriptions as optimizable payloads and refines them via iterative, prompt-based blackbox optimization. QueryIPI leverages system invariants for initial seed generation aligned with agent conventions, and iterative reflection to resolve instruction-following failures and safety refusals. Experiments on five simulated agents show that QueryIPI achieves up to 87% success rate, outperforming the best baseline (50%). Crucially, generated malicious descriptions transfer to real-world coding agents, highlighting a practical security risk.
Apollo: Unified Multi-Task Audio-Video Joint Generation
Audio-video joint generation has progressed rapidly, yet substantial challenges still remain. Non-commercial approaches still suffer audio-visual asynchrony, poor lip-speech alignment, and unimodal degradation, which can be stemmed from weak audio-visual correspondence modeling, limited generalization, and scarce high-quality dense-caption data. To address these issues, we introduce Apollo and delve into three axes--model architecture, training strategy, and data curation. Architecturally, we adopt a single-tower design with unified DiT blocks and an Omni-Full Attention mechanism, achieving tight audio-visual alignment and strong scalability. Training-wise, we adopt a progressive multitask regime--random modality masking to joint optimization across tasks, and a multistage curriculum, yielding robust representations, strengthening A-V aligned world knowledge, and preventing unimodal collapse. For datasets, we present the first large-scale audio-video dataset with dense captions, and introduce a novel automated data-construction pipeline which annotates and filters millions of diverse, high-quality, strictly aligned audio-video-caption triplets. Building on this, Apollo scales to large datasets, delivering high-fidelity, semantically and temporally aligned, instruction-following generation in both joint and unimodal settings while generalizing robustly to out-of-distribution scenarios. Across tasks, it substantially outperforms prior methods by a large margin and achieves performance comparable to Veo 3, offering a unified, scalable path toward next-generation audio-video synthesis.
Theoretical Foundations of Prompt Engineering: From Heuristics to Expressivity
Prompts can switch a model's behavior even when the weights are fixed, yet this phenomenon is rarely treated as a clean theoretical object rather than a heuristic. We study the family of functions obtainable by holding a Transformer backbone fixed as an executor and varying only the prompt. Our core idea is to view the prompt as an externally injected program and to construct a simplified Transformer that interprets it to implement different computations. The construction exposes a mechanism-level decomposition: attention performs selective routing from prompt memory, the FFN performs local arithmetic conditioned on retrieved fragments, and depth-wise stacking composes these local updates into a multi-step computation. Under this viewpoint, we prove a constructive existential result showing that a single fixed backbone can approximate a broad class of target behaviors via prompts alone. The framework provides a unified starting point for formalizing trade-offs under prompt length/precision constraints and for studying structural limits of prompt-based switching, while remaining distinct from empirical claims about pretrained LLMs.
comment: Revised for clarity and correctness; improved exposition and fixed minor issues
Geometry of Knowledge Allows Extending Diversity Boundaries of Large Language Models
Starting from the hypothesis that knowledge in semantic space is organized along structured manifolds, we argue that this geometric structure renders the space explorable. By traversing it and using the resulting continuous representations to condition an LLM's generation distribution, we can systematically expand the model's reachable semantic range. We introduce a framework that requires no modification of LLM parameters and operationalizes this idea by constructing a conditioning distribution from a small set of diverse anchor generations. This distribution conditions LLM's generation via an xRAG-style projector. Our experiments demonstrate that this manifold-based conditioning substantially increases generative diversity, with direct benefits for enhancing divergent thinking, a core facet of creativity, in language models.
Simulating the Visual World with Artificial Intelligence: A Roadmap
The landscape of video generation is shifting, from a focus on generating visually appealing clips to building virtual environments that support interaction and maintain physical plausibility. These developments point toward the emergence of video foundation models that function not only as visual generators but also as implicit world models, models that simulate the physical dynamics, agent-environment interactions, and task planning that govern real or imagined worlds. This survey provides a systematic overview of this evolution, conceptualizing modern video foundation models as the combination of two core components: an implicit world model and a video renderer. The world model encodes structured knowledge about the world, including physical laws, interaction dynamics, and agent behavior. It serves as a latent simulation engine that enables coherent visual reasoning, long-term temporal consistency, and goal-driven planning. The video renderer transforms this latent simulation into realistic visual observations, effectively producing videos as a "window" into the simulated world. We trace the progression of video generation through four generations, in which the core capabilities advance step by step, ultimately culminating in a world model, built upon a video generation model, that embodies intrinsic physical plausibility, real-time multimodal interaction, and planning capabilities spanning multiple spatiotemporal scales. For each generation, we define its core characteristics, highlight representative works, and examine their application domains such as robotics, autonomous driving, and interactive gaming. Finally, we discuss open challenges and design principles for next-generation world models, including the role of agent intelligence in shaping and evaluating these systems. An up-to-date list of related works is maintained at this link.
comment: Project page: https://world-model-roadmap.github.io/ Github Repo: https://github.com/ziqihuangg/Awesome-From-Video-Generation-to-World-Model
Feed-Forward Optimization With Delayed Feedback for Neural Network Training
Backpropagation has long been criticized for being biologically implausible due to its reliance on concepts that are not viable in natural learning processes. Two core issues are the weight transport and update locking problems caused by the forward-backward dependencies, which limit biological plausibility, computational efficiency, and parallelization. Although several alternatives have been proposed to increase biological plausibility, they often come at the cost of reduced predictive performance. This paper proposes an alternative approach to training feed-forward neural networks addressing these issues by using approximate gradient information. We introduce Feed-Forward with delayed Feedback (F$^3$), which approximates gradients using fixed random feedback paths and delayed error information from the previous epoch to balance biological plausibility with predictive performance. We evaluate F$^3$ across multiple tasks and architectures, including both fully-connected and Transformer networks. Our results demonstrate that, compared to similarly plausible approaches, F$^3$ significantly improves predictive performance, narrowing the gap to backpropagation by up to 56% for classification and 96% for regression. This work is a step towards more biologically plausible learning algorithms while opening up new avenues for energy-efficient and parallelizable neural network training.
comment: This is the submitted manuscript of the version of record published in the proceedings to the 31st International Conference on Neural Information Processing (ICONIP 2024), Lecture Notes in Computer Science, vol 15289, and available online at https://doi.org/10.1007/978-981-96-6585-3_6
Are My Optimized Prompts Compromised? Exploring Vulnerabilities of LLM-based Optimizers
Large language model (LLM) systems increasingly power everyday AI applications such as chatbots, computer-use assistants, and autonomous robots, where performance often depends on manually well-crafted prompts. LLM-based prompt optimizers reduce that effort by iteratively refining prompts from scored feedback, yet the security of this optimization stage remains underexamined. We present the first systematic analysis of poisoning risks in LLM-based prompt optimization. Using HarmBench, we find systems are substantially more vulnerable to manipulated feedback than to query poisoning alone: feedback-based attacks raise attack success rate (ASR) by up to ΔASR = 0.48. We introduce a simple fake reward attack that requires no access to the reward model and significantly increases vulnerability. We also propose a lightweight highlighting defense that reduces the fake reward ΔASR from 0.23 to 0.07 without degrading utility. These results establish prompt optimization pipelines as a first-class attack surface and motivate stronger safeguards for feedback channels and optimization frameworks.
comment: Proceedings of the 19th Conference of the European Chapter of the Association for Computational Linguistics (EACL 2026)
Controlled Self-Evolution for Algorithmic Code Optimization
Self-evolution methods enhance code generation through iterative "generate-verify-refine" cycles, yet existing approaches suffer from low exploration efficiency, failing to discover solutions with superior complexity within limited budgets. This inefficiency stems from initialization bias trapping evolution in poor solution regions, uncontrolled stochastic operations lacking feedback guidance, and insufficient experience utilization across tasks. To address these bottlenecks, we propose Controlled Self-Evolution (CSE), which consists of three key components. Diversified Planning Initialization generates structurally distinct algorithmic strategies for broad solution space coverage. Genetic Evolution replaces stochastic operations with feedback-guided mechanisms, enabling targeted mutation and compositional crossover. Hierarchical Evolution Memory captures both successful and failed experiences at inter-task and intra-task levels. Experiments on EffiBench-X demonstrate that CSE consistently outperforms all baselines across various LLM backbones. Furthermore, CSE achieves higher efficiency from early generations and maintains continuous improvement throughout evolution. Our code is publicly available at https://github.com/QuantaAlpha/EvoControl.
comment: 27 pages
TROJail: Trajectory-Level Optimization for Multi-Turn Large Language Model Jailbreaks with Process Rewards
Large language models have seen widespread adoption, yet they remain vulnerable to multi-turn jailbreak attacks, threatening their safe deployment. This has led to the task of training automated multi-turn attackers to probe model safety vulnerabilities. However, existing approaches typically rely on turn-level optimization, which is insufficient for learning long-term attack strategies. To bridge this gap, we formulate this task as a multi-turn reinforcement learning problem, directly optimizing the harmfulness of the final-turn response as the outcome reward. To address the sparse supervision of the outcome reward, we introduce TROJail, which employs two process rewards to evaluate the utility of intermediate prompts and integrate them into advantage estimation. These rewards (1) penalize overly harmful prompts that trigger the model's refusal mechanism, and (2) encourage steering the semantic relevance of responses toward the targeted harmful content. Experimental results show improved attack success rates across multiple models and benchmarks, highlighting the effectiveness of our approach. The code is available at https://github.com/xxiqiao/TROJail. Warning: This paper contains examples of harmful content.
comment: 21 pages, 15 figures
Beyond Backpropagation: Optimization with Multi-Tangent Forward Gradients
The gradients used to train neural networks are typically computed using backpropagation. While an efficient way to obtain exact gradients, backpropagation is computationally expensive, hinders parallelization, and is biologically implausible. Forward gradients are an approach to approximate the gradients from directional derivatives along random tangents computed by forward-mode automatic differentiation. So far, research has focused on using a single tangent per step. This paper provides an in-depth analysis of multi-tangent forward gradients and introduces an improved approach to combining the forward gradients from multiple tangents based on orthogonal projections. We demonstrate that increasing the number of tangents improves both approximation quality and optimization performance across various tasks.
Kolmogorov--Arnold stability
Regarding the representation theorem of Kolmogorov and Arnold (KA) as an algorithm for representing or <> functions, we test its robustness by analyzing its stability to withstand re-parameterizations of the hidden space. One may think of such re-parameterizations as the work of an adversary attempting to foil the construction of the KA outer function. We find KA to be stable under countable collections of continuous re-parameterizations, but unearth a question about the equi-continuity of the outer functions that, so far, obstructs taking limits and defeating continuous groups of re-parameterizations. This question on the regularity of the outer functions is relevant to the debate over the applicability of KA to the general theory of NNs.
comment: 12 pages, 3 figures; major revision
ES-Mem: Event Segmentation-Based Memory for Long-Term Dialogue Agents
Memory is critical for dialogue agents to maintain coherence and enable continuous adaptation in long-term interactions. While existing memory mechanisms offer basic storage and retrieval capabilities, they are hindered by two primary limitations: (1) rigid memory granularity often disrupts semantic integrity, resulting in fragmented and incoherent memory units; (2) prevalent flat retrieval paradigms rely solely on surface-level semantic similarity, neglecting the structural cues of discourse required to navigate and locate specific episodic contexts. To mitigate these limitations, drawing inspiration from Event Segmentation Theory, we propose ES-Mem, a framework incorporating two core components: (1) a dynamic event segmentation module that partitions long-term interactions into semantically coherent events with distinct boundaries; (2) a hierarchical memory architecture that constructs multi-layered memories and leverages boundary semantics to anchor specific episodic memory for precise context localization. Evaluations on two memory benchmarks demonstrate that ES-Mem yields consistent performance gains over baseline methods. Furthermore, the proposed event segmentation module exhibits robust applicability on dialogue segmentation datasets.
Bruno: Backpropagation Running Undersampled for Novel device Optimization
Recent efforts to improve the efficiency of neuromorphic and machine learning systems have centred on developing of specialised hardware for neural networks. These systems typically feature architectures that go beyond the von Neumann model employed in general-purpose hardware such as GPUs, offering potential efficiency and performance gains. However, neural networks developed for specialised hardware must consider its specific characteristics. This requires novel training algorithms and accurate hardware models, since they cannot be abstracted as a general-purpose computing platform. In this work, we present a bottom-up approach to training neural networks for hardware-based spiking neurons and synapses, built using ferroelectric capacitors (FeCAPs) and resistive random-access memories (RRAMs), respectively. Unlike the common approach of designing hardware to fit abstract neuron or synapse models, we start with compact models of the physical device to model the computational primitives. Based on these models, we have developed a training algorithm (BRUNO) that can reliably train the networks, even when applying hardware limitations, such as stochasticity or low bit precision. We analyse and compare BRUNO with Backpropagation Through Time. We test it on different spatio-temporal datasets. First on a music prediction dataset, where a network composed of ferroelectric leaky integrate-and-fire (FeLIF) neurons is used to predict at each time step the next musical note that should be played. The second dataset consists on the classification of the Braille letters using a network composed of quantised RRAM synapses and FeLIF neurons. The performance of this network is then compared with that of networks composed of LIF neurons. Experimental results show the potential advantages of using BRUNO by reducing the time and memory required to detect spatio-temporal patterns with quantised synapses.
comment: 13 pages, 4 pages supplementary material
MemGovern: Enhancing Code Agents through Learning from Governed Human Experiences
While autonomous software engineering (SWE) agents are reshaping programming paradigms, they currently suffer from a "closed-world" limitation: they attempt to fix bugs from scratch or solely using local context, ignoring the immense historical human experience available on platforms like GitHub. Accessing this open-world experience is hindered by the unstructured and fragmented nature of real-world issue-tracking data. In this paper, we introduce MemGovern, a framework designed to govern and transform raw GitHub data into actionable experiential memory for agents. MemGovern employs experience governance to convert human experience into agent-friendly experience cards and introduces an agentic experience search strategy that enables logic-driven retrieval of human expertise. By producing 135K governed experience cards, MemGovern achieves a significant performance boost, improving resolution rates on the SWE-bench Verified by 4.65%. As a plug-in approach, MemGovern provides a solution for agent-friendly memory infrastructure.
KaLM: Knowledge-aligned Autoregressive Language Modeling via Dual-view Knowledge Graph Contrastive Learning
Autoregressive large language models (LLMs) pre-trained by next token prediction are inherently proficient in generative tasks. However, their performance on knowledge-driven tasks such as factual knowledge querying remains unsatisfactory. Knowledge graphs (KGs), as high-quality structured knowledge bases, can provide reliable knowledge for LLMs, potentially compensating for their knowledge deficiencies. Aligning LLMs with explicit, structured knowledge from KGs has been a challenge; previous attempts either failed to effectively align knowledge representations or compromised the generative capabilities of LLMs, leading to less-than-optimal outcomes. This paper proposes \textbf{KaLM}, a \textit{Knowledge-aligned Language Modeling} approach, which fine-tunes autoregressive LLMs to align with KG knowledge via the joint objective of explicit knowledge alignment and implicit knowledge alignment. The explicit knowledge alignment objective aims to directly optimize the knowledge representation of LLMs through dual-view knowledge graph contrastive learning. The implicit knowledge alignment objective focuses on incorporating textual patterns of knowledge into LLMs through triple completion language modeling. Notably, our method achieves a significant performance boost in evaluations of knowledge-driven tasks, specifically embedding-based knowledge graph completion and generation-based knowledge graph question answering.
comment: The article has been accepted by Frontiers of Computer Science (FCS), with the DOI: {10.1007/s11704-026-50906-6}
Reasoning Models Will Blatantly Lie About Their Reasoning
It has been shown that Large Reasoning Models (LRMs) may not *say what they think*: they do not always volunteer information about how certain parts of the input influence their reasoning. But it is one thing for a model to *omit* such information and another, worse thing to *lie* about it. Here, we extend the work of Chen et al. (2025) to show that LRMs will do just this: they will flatly deny relying on hints provided in the prompt in answering multiple choice questions -- even when directly asked to reflect on unusual (i.e. hinted) prompt content, even when allowed to use hints, and even though experiments *show* them to be using the hints. Our results thus have discouraging implications for CoT monitoring and interpretability.
Enabling Population-Level Parallelism in Tree-Based Genetic Programming for GPU Acceleration
Tree-based Genetic Programming (TGP) is a widely used evolutionary algorithm for tasks such as symbolic regression, classification, and robotic control. Due to the intensive computational demands of running TGP, GPU acceleration is crucial for achieving scalable performance. However, efficient GPU-based execution of TGP remains challenging, primarily due to three core issues: (1) the structural heterogeneity of program individuals, (2) the complexity of integrating multiple levels of parallelism, and (3) the incompatibility between high-performance CUDA execution and flexible Python-based environments. To address these issues, we propose EvoGP, a high-performance framework tailored for GPU acceleration of TGP via population-level parallel execution. First, EvoGP introduces a tensorized representation that encodes variable-sized trees into fixed-shape, memory-aligned arrays, enabling uniform memory access and parallel computation across diverse individuals. Second, EvoGP adopts an adaptive parallelism strategy that dynamically combines intra- and inter-individual parallelism based on dataset size, ensuring high GPU utilization across a broad spectrum of tasks. Third, EvoGP embeds custom CUDA kernels into the PyTorch runtime, achieving seamless integration with Python-based environments such as Gym, MuJoCo, Brax, and Genesis. Experimental results demonstrate that EvoGP achieves a peak throughput exceeding $10^{11}$ GPops/s. Specifcially, this performance represents a speedup of up to $304\times$ over existing GPU-based TGP implementations and $18\times$ over state-of-the-art CPU-based libraries. Furthermore, EvoGP maintains comparable accuracy and exhibits improved scalability across large population sizes. EvoGP is open source and accessible at: https://github.com/EMI-Group/evogp.
A Differential Perspective on Distributional Reinforcement Learning AAAI
To date, distributional reinforcement learning (distributional RL) methods have exclusively focused on the discounted setting, where an agent aims to optimize a discounted sum of rewards over time. In this work, we extend distributional RL to the average-reward setting, where an agent aims to optimize the reward received per time step. In particular, we utilize a quantile-based approach to develop the first set of algorithms that can successfully learn and/or optimize the long-run per-step reward distribution, as well as the differential return distribution of an average-reward MDP. We derive proven-convergent tabular algorithms for both prediction and control, as well as a broader family of algorithms that have appealing scaling properties. Empirically, we find that these algorithms yield competitive and sometimes superior performance when compared to their non-distributional equivalents, while also capturing rich information about the long-run per-step reward and differential return distributions.
comment: In AAAI Conference on Artificial Intelligence 2026
ToolRM: Towards Agentic Tool-Use Reward Modeling
Reward models (RMs) play a critical role in aligning large language models (LLMs) with human preferences. Yet in the domain of tool learning, the lack of RMs specifically designed for function-calling tasks has limited progress toward more capable agentic AI. We introduce ToolRM, a family of lightweight reward models tailored for general tool-use scenarios. To build these models, we propose a novel pipeline that constructs high-quality pairwise preference data using rule-based scoring and multidimensional sampling. This yields ToolPref-Pairwise-30K, a diverse, balanced, and challenging preference dataset that supports both generative and discriminative reward modeling. We also introduce TRBench$_{BFCL}$, a benchmark built on the agent evaluation suite BFCL to evaluate RMs on tool calling tasks. Trained on our constructed data, models from the Qwen3-4B/8B series achieve up to 17.94% higher accuracy, substantially outperforming frontier LLMs and RMs in pairwise reward judgments. Beyond training objectives, generative ToolRM generalizes to broader critique tasks, including Best-of-N sampling and self-correction. Experiments on ACEBench highlight its effectiveness and efficiency, enabling inference-time scaling while reducing output token usage by over 66%. Its support for downstream RL training further validates its practical utility. We release data to facilitate future research.
Multi-Personality Generation of LLMs at Decoding-time
Multi-personality generation for LLMs, enabling simultaneous embodiment of multiple personalization attributes, is a fundamental challenge. Existing retraining-based approaches are costly and poorly scalable, while decoding-time methods often rely on external models or heuristics, limiting flexibility and robustness. In this paper, we propose a novel Multi-Personality Generation (MPG) framework under the decoding-time combination paradigm. It flexibly controls multi-personality without relying on scarce multi-dimensional models or extra training, leveraging implicit density ratios in single-dimensional models as a "free lunch" to reformulate the task as sampling from a target strategy aggregating these ratios. To implement MPG efficiently, we design Speculative Chunk-level based Rejection sampling (SCR), which generates responses in chunks and parallelly validates them via estimated thresholds within a sliding window. This significantly reduces computational overhead while maintaining high-quality generation. Experiments on MBTI personality and Role-Playing demonstrate the effectiveness of MPG, showing improvements up to 16%-18%. Code and data are available at https://github.com/Libra117/MPG .
comment: Accepted by WSDM 2026
VGC-Bench: Towards Mastering Diverse Team Strategies in Competitive Pokémon
Developing AI agents that can robustly adapt to varying strategic landscapes without retraining is a central challenge in multi-agent learning. Pokémon Video Game Championships (VGC) is a domain with a vast space of approximately $10^{139}$ team configurations, far larger than those of other games such as Chess, Go, Poker, StarCraft, or Dota. The combinatorial nature of team building in Pokémon VGC causes optimal strategies to vary substantially depending on both the controlled team and the opponent's team, making generalization uniquely challenging. To advance research on this problem, we introduce VGC-Bench: a benchmark that provides critical infrastructure, standardizes evaluation protocols, and supplies a human-play dataset of over 700,000 battle logs and a range of baseline agents based on heuristics, large language models, behavior cloning, and multi-agent reinforcement learning with empirical game-theoretic methods such as self-play, fictitious play, and double oracle. In the restricted setting where an agent is trained and evaluated in a mirror match with a single team configuration, our methods can win against a professional VGC competitor. We repeat this training and evaluation with progressively larger team sets and find that as the number of teams increases, the best-performing algorithm in the single-team setting has worse performance and is more exploitable, but has improved generalization to unseen teams. Our code and dataset are open-sourced at https://github.com/cameronangliss/vgc-bench and https://huggingface.co/datasets/cameronangliss/vgc-battle-logs.
comment: AAMAS 2026
Structured Debate Improves Corporate Credit Reasoning in Financial AI
This study investigated LLM-based automation for analyzing non-financial data in corporate credit evaluation. Two systems were developed and compared: a Single-Agent System (SAS), in which one LLM agent infers favorable and adverse repayment signals, and a Popperian Multi-agent Debate System (PMADS), which structures the dual-perspective analysis as adversarial argumentation under the Karl Popper Debate protocol. Evaluation addressed three fronts: (i) work productivity compared with human experts; (ii) perceived report quality and usability, rated by credit risk professionals for system-generated reports; and (iii) reasoning characteristics quantified via reasoning-tree analysis. Both systems drastically reduced task completion time relative to human experts. Professionals rated SAS reports as adequate, while PMADS reports exceeded neutral benchmarks and scored significantly higher in explanatory adequacy, practical applicability, and usability. Reasoning-tree analysis showed PMADS produced deeper, more elaborated structures, whereas SAS yielded single-layered trees. These findings suggest that structured multi-agent debate enhances analytical rigor and perceived usefulness, though at the cost of longer computation time. Overall, the results demonstrate that reasoning-centered automation represents a promising approach for developing useful AI systems in decision-critical financial contexts.
comment: 18 pages, 4 figures, 2 algorithms, 2 tables, 4 appendices
MoHoBench: Assessing Honesty of Multimodal Large Language Models via Unanswerable Visual Questions AAAI2026
Recently Multimodal Large Language Models (MLLMs) have achieved considerable advancements in vision-language tasks, yet produce potentially harmful or untrustworthy content. Despite substantial work investigating the trustworthiness of language models, MMLMs' capability to act honestly, especially when faced with visually unanswerable questions, remains largely underexplored. This work presents the first systematic assessment of honesty behaviors across various MLLMs. We ground honesty in models' response behaviors to unanswerable visual questions, define four representative types of such questions, and construct MoHoBench, a large-scale MMLM honest benchmark, consisting of 12k+ visual question samples, whose quality is guaranteed by multi-stage filtering and human verification. Using MoHoBench, we benchmarked the honesty of 28 popular MMLMs and conducted a comprehensive analysis. Our findings show that: (1) most models fail to appropriately refuse to answer when necessary, and (2) MMLMs' honesty is not solely a language modeling issue, but is deeply influenced by visual information, necessitating the development of dedicated methods for multimodal honesty alignment. Therefore, we implemented initial alignment methods using supervised and preference learning to improve honesty behavior, providing a foundation for future work on trustworthy MLLMs. Our data and code can be found at https://github.com/yanxuzhu/MoHoBench.
comment: AAAI2026 Oral
AI TIPS 2.0: A Comprehensive Framework for Operationalizing AI Governance
The deployment of AI systems faces three critical governance challenges that current frameworks fail to adequately address. First, organizations struggle with inadequate risk assessment at the use case level, exemplified by the Humana class action lawsuit and other high impact cases where an AI system deployed to production exhibited both significant bias and high error rates, resulting in improper healthcare claim denials. Each AI use case presents unique risk profiles requiring tailored governance, yet most frameworks provide one size fits all guidance. Second, existing frameworks like ISO 42001 and NIST AI RMF remain at high conceptual levels, offering principles without actionable controls, leaving practitioners unable to translate governance requirements into specific technical implementations. Third, organizations lack mechanisms for operationalizing governance at scale, with no systematic approach to embed trustworthy AI practices throughout the development lifecycle, measure compliance quantitatively, or provide role-appropriate visibility from boards to data scientists. We present AI TIPS, Artificial Intelligence Trust-Integrated Pillars for Sustainability 2.0, update to the comprehensive operational framework developed in 2019,four years before NIST's AI Risk Management Framework, that directly addresses these challenges.
comment: We have adjustments to make for higher effectiveness
Interpreting Fedspeak with Confidence: A LLM-Based Uncertainty-Aware Framework Guided by Monetary Policy Transmission Paths AAAI 2026
"Fedspeak", the stylized and often nuanced language used by the U.S. Federal Reserve, encodes implicit policy signals and strategic stances. The Federal Open Market Committee strategically employs Fedspeak as a communication tool to shape market expectations and influence both domestic and global economic conditions. As such, automatically parsing and interpreting Fedspeak presents a high-impact challenge, with significant implications for financial forecasting, algorithmic trading, and data-driven policy analysis. In this paper, we propose an LLM-based, uncertainty-aware framework for deciphering Fedspeak and classifying its underlying monetary policy stance. Technically, to enrich the semantic and contextual representation of Fedspeak texts, we incorporate domain-specific reasoning grounded in the monetary policy transmission mechanism. We further introduce a dynamic uncertainty decoding module to assess the confidence of model predictions, thereby enhancing both classification accuracy and model reliability. Experimental results demonstrate that our framework achieves state-of-the-art performance on the policy stance analysis task. Moreover, statistical analysis reveals a significant positive correlation between perceptual uncertainty and model error rates, validating the effectiveness of perceptual uncertainty as a diagnostic signal.
comment: Accepted by AAAI 2026 Oral
DeKeyNLU: Enhancing Natural Language to SQL Generation through Task Decomposition and Keyword Extraction
Natural Language to SQL (NL2SQL) provides a new model-centric paradigm that simplifies database access for non-technical users by converting natural language queries into SQL commands. Recent advancements, particularly those integrating Retrieval-Augmented Generation (RAG) and Chain-of-Thought (CoT) reasoning, have made significant strides in enhancing NL2SQL performance. However, challenges such as inaccurate task decomposition and keyword extraction by LLMs remain major bottlenecks, often leading to errors in SQL generation. While existing datasets aim to mitigate these issues by fine-tuning models, they struggle with over-fragmentation of tasks and lack of domain-specific keyword annotations, limiting their effectiveness. To address these limitations, we present DeKeyNLU, a novel dataset which contains 1,500 meticulously annotated QA pairs aimed at refining task decomposition and enhancing keyword extraction precision for the RAG pipeline. Fine-tuned with DeKeyNLU, we propose DeKeySQL, a RAG-based NL2SQL pipeline that employs three distinct modules for user question understanding, entity retrieval, and generation to improve SQL generation accuracy. We benchmarked multiple model configurations within DeKeySQL RAG pipeline. Experimental results demonstrate that fine-tuning with DeKeyNLU significantly improves SQL generation accuracy on both BIRD (62.31% to 69.10%) and Spider (84.2% to 88.7%) dev datasets.
ClimateIQA: A New Dataset and Benchmark to Advance Vision-Language Models in Meteorology Anomalies Analysis
Meteorological heatmaps play a vital role in deciphering extreme weather phenomena, yet their inherent complexities marked by irregular contours, unstructured patterns, and complex color variations present unique analytical hurdles for state-of-the-art Vision-Language Models (VLMs). Current state-of-the-art models like GPT-4o, Qwen-VL, and LLaVA 1.6 struggle with tasks such as precise color identification and spatial localization, resulting in inaccurate or incomplete interpretations. To address these challenges, we introduce Sparse Position and Outline Tracking (SPOT), a novel algorithm specifically designed to process irregularly shaped colored regions in visual data. SPOT identifies and localizes these regions by extracting their spatial coordinates, enabling structured representations of irregular shapes. Building on SPOT, we construct ClimateIQA, a novel meteorological visual question answering (VQA) dataset, comprising 26,280 high-resolution heatmaps and 762,120 instruction samples for wind gust, total precipitation, wind chill index and heat index analysis. ClimateIQA enhances VLM training by incorporating spatial cues, geographic metadata, and reanalysis data, improving model accuracy in interpreting and describing extreme weather features. Furthermore, we develop Climate-Zoo, a suite of fine-tuned VLMs based on SPOT-empowered ClimateIQA, which significantly outperforms existing models in meteorological heatmap tasks.
Aligning Trustworthy AI with Democracy: A Dual Taxonomy of Opportunities and Risks
Artificial Intelligence (AI) poses both significant risks and valuable opportunities for democratic governance. This paper introduces a dual taxonomy to evaluate AI's complex relationship with democracy: the AI Risks to Democracy (AIRD) taxonomy, which identifies how AI can undermine core democratic principles such as autonomy, fairness, and trust; and the AI's Positive Contributions to Democracy (AIPD) taxonomy, which highlights AI's potential to enhance transparency, participation, efficiency, and evidence-based policymaking. Grounded in the European Union's approach to ethical AI governance, and particularly the seven Trustworthy AI requirements proposed by the European Commission's High-Level Expert Group on AI, each identified risk is aligned with mitigation strategies based on EU regulatory and normative frameworks. Our analysis underscores the transversal importance of transparency and societal well-being across all risk categories and offers a structured lens for aligning AI systems with democratic values. By integrating democratic theory with practical governance tools, this paper offers a normative and actionable framework to guide research, regulation, and institutional design to support trustworthy, democratic AI. It provides scholars with a conceptual foundation to evaluate the democratic implications of AI, equips policymakers with structured criteria for ethical oversight, and helps technologists align system design with democratic principles. In doing so, it bridges the gap between ethical aspirations and operational realities, laying the groundwork for more inclusive, accountable, and resilient democratic systems in the algorithmic age.
comment: 26 pages, 5 figures
MOGO: Residual Quantized Hierarchical Causal Transformer for High-Quality and Real-Time 3D Human Motion Generation
Recent advances in transformer-based text-to-motion generation have led to impressive progress in synthesizing high-quality human motion. Nevertheless, jointly achieving high fidelity, streaming capability, real-time responsiveness, and scalability remains a fundamental challenge. In this paper, we propose MOGO (Motion Generation with One-pass), a novel autoregressive framework tailored for efficient and real-time 3D motion generation. MOGO comprises two key components: (1) MoSA-VQ, a motion scale-adaptive residual vector quantization module that hierarchically discretizes motion sequences with learnable scaling to produce compact yet expressive representations; and (2) RQHC-Transformer, a residual quantized hierarchical causal transformer that generates multi-layer motion tokens in a single forward pass, significantly reducing inference latency. To enhance semantic fidelity, we further introduce a text condition alignment mechanism that improves motion decoding under textual control. Extensive experiments on benchmark datasets including HumanML3D, KIT-ML, and CMP demonstrate that MOGO achieves competitive or superior generation quality compared to state-of-the-art transformer-based methods, while offering substantial improvements in real-time performance, streaming generation, and generalization under zero-shot settings.
comment: 9 pages, 4 figures, conference
Decentralized Autoregressive Generation
We present a theoretical analysis of decentralization of autoregressive generation. We define the Decentralized Discrete Flow Matching objective, by expressing probability generating velocity as a linear combination of expert flows. We also conduct experiments demonstrating the equivalence between decentralized and centralized training settings for multimodal language models across diverse set of benchmarks. Specifically, we compare two distinct paradigms: LLaVA and InternVL 2.5-1B, which uses a fixed CLIP vision encoder and performs full-parameter fine-tuning (ViT+MLP+LLM) during the instruction tuning stage.
comment: Work in progress
CausAdv: A Causal-based Framework for Detecting Adversarial Examples
Deep learning has led to tremendous success in computer vision, largely due to Convolutional Neural Networks (CNNs). However, CNNs have been shown to be vulnerable to crafted adversarial perturbations. This vulnerability of adversarial examples has has motivated research into improving model robustness through adversarial detection and defense methods. In this paper, we address the adversarial robustness of CNNs through causal reasoning. We propose CausAdv: a causal framework for detecting adversarial examples based on counterfactual reasoning. CausAdv learns both causal and non-causal features of every input, and quantifies the counterfactual information (CI) of every filter of the last convolutional layer. We then perform a statistical analysis of the filters' CI across clean and adversarial samples, to demonstrate that adversarial examples exhibit different CI distributions compared to clean samples. Our results show that causal reasoning enhances the process of adversarial detection without the need to train a separate detector. Moreover, we illustrate the efficiency of causal explanations as a helpful detection tool by visualizing the extracted causal features.
Hallucination, reliability, and the role of generative AI in science
Generative AI increasingly supports scientific inference, from protein structure prediction to weather forecasting. Yet its distinctive failure mode, hallucination, raises epistemic alarm bells. I argue that this failure mode can be addressed by shifting from data-centric to phenomenon-centric assessment. Through case studies of AlphaFold and GenCast, I show how scientific workflows discipline generative models through theory-guided training and confidence-based error screening. These strategies convert hallucination from an unmanageable epistemic threat into bounded risk. When embedded in such workflows, generative models support reliable inference despite opacity, provided they operate in theoretically mature domains.
comment: 31 pages, 1 figure, currently under review
Explaning with trees: interpreting CNNs using hierarchies
Challenges persist in providing interpretable explanations for neural network reasoning in explainable AI (xAI). Existing methods like Integrated Gradients produce noisy maps, and LIME, while intuitive, may deviate from the model's reasoning. We introduce a framework that uses hierarchical segmentation techniques for faithful and interpretable explanations of Convolutional Neural Networks (CNNs). Our method constructs model-based hierarchical segmentations that maintain the model's reasoning fidelity and allows both human-centric and model-centric segmentation. This approach offers multiscale explanations, aiding bias identification and enhancing understanding of neural network decision-making. Experiments show that our framework, xAiTrees, delivers highly interpretable and faithful model explanations, not only surpassing traditional xAI methods but shedding new light on a novel approach to enhancing xAI interpretability.
Foundations of LLM Knowledge Materialization: Termination, Reproducibility, Robustness
Large Language Models (LLMs) encode substantial factual knowledge, yet measuring and systematizing this knowledge remains challenging. Converting it into structured format, for example through recursive extraction approaches such as the GPTKB methodology (Hu et al., 2025b), is still underexplored. Key open questions include whether such extraction can terminate, whether its outputs are reproducible, and how robust they are to variations. We systematically study LLM knowledge materialization using miniGPTKBs (domain-specific, tractable subcrawls), analyzing termination, reproducibility, and robustness across three categories of metrics: yield, lexical similarity, and semantic similarity. We experiment with four variations (seed, language, randomness, model) and three illustrative domains (from history, entertainment, and finance). Our findings show (i) high termination rates, though model-dependent; (ii) mixed reproducibility; and (iii) robustness that varies by perturbation type: high for seeds and temperature, lower for languages and models. These results suggest that LLM knowledge materialization can reliably surface core knowledge, while also revealing important limitations.
comment: Accepted and published in Findings of EACL 2026
Generating crossmodal gene expression from cancer histopathology improves multimodal AI predictions
Emerging research has highlighted that artificial intelligence-based multimodal fusion of digital pathology and transcriptomic features can improve cancer diagnosis (grading/subtyping) and prognosis (survival risk) prediction. However, such direct fusion is impractical in clinical settings, where histopathology remains the gold standard and transcriptomic tests are rarely requested in public healthcare. We experiment on two publicly available multimodal datasets, The Cancer Genomic Atlas and the Clinical Proteomic Tumor Analysis Consortium, spanning four independent cohorts: glioma-glioblastoma, renal, uterine, and breast, and observe significant performance gains in gradation and risk estimation (p-value<0.05) when incorporating synthesized transcriptomic data with WSIs. Also, predictions using synthesized features were statistically close to those obtained with real transcriptomic data (p-value>0.05), consistently across cohorts. Here we show that with our diffusion based crossmodal generative AI model, PathGen, gene expressions synthesized from digital histopathology jointly predict cancer grading and patient survival risk with high accuracy (state-of-the-art performance), certainty (through conformal coverage guarantee) and interpretability (through distributed co-attention maps). PathGen code is available for open use on GitHub at https://github.com/Samiran-Dey/PathGen.
Data Science: a Natural Ecosystem
This manuscript provides a systemic and data-centric view of what we term essential data science, as a natural ecosystem with challenges and missions stemming from the fusion of data universe with its multiple combinations of the 5D complexities (data structure, domain, cardinality, causality, and ethics) with the phases of the data life cycle. Data agents perform tasks driven by specific goals. The data scientist is an abstract entity that comes from the logical organization of data agents with their actions. Data scientists face challenges that are defined according to the missions. We define specific discipline-induced data science, which in turn allows for the definition of pan-data science, a natural ecosystem that integrates specific disciplines with the essential data science. We semantically split the essential data science into computational, and foundational. By formalizing this ecosystemic view, we contribute a general-purpose, fusion-oriented architecture for integrating heterogeneous knowledge, agents, and workflows-relevant to a wide range of disciplines and high-impact applications.
Sequential Enumeration in Large Language Models
Reliably counting and generating sequences of items remain a significant challenge for neural networks, including Large Language Models (LLMs). Indeed, although this capability is readily handled by rule-based symbolic systems based on serial computation, learning to systematically deploy counting procedures is difficult for neural models, which should acquire these skills through learning. Previous research has demonstrated that recurrent architectures can only approximately track and enumerate sequences of events, and it remains unclear whether modern deep learning systems, including LLMs, can deploy systematic counting procedures over sequences of discrete symbols. This paper aims to fill this gap by investigating the sequential enumeration abilities of five state-of-the-art LLMs, including proprietary, open-source, and reasoning models. We probe LLMs in sequential naming and production tasks involving lists of letters and words, adopting a variety of prompting instructions to explore the role of chain-of-thought in the spontaneous emerging of counting strategies. We also evaluate open-source models with the same architecture but increasing size to see whether the mastering of counting principles follows scaling laws, and we analyze the embedding dynamics during sequential enumeration to investigate the emergent encoding of numerosity. We find that some LLMs are indeed capable of deploying counting procedures when explicitly prompted to do so, but none of them spontaneously engage in counting when simply asked to enumerate the number of items in a sequence. Our results suggest that, despite their impressive emergent abilities, LLMs cannot yet robustly and systematically deploy counting procedures, highlighting a persistent gap between neural and symbolic approaches to compositional generalization.
Memory in the Age of AI Agents
Memory has emerged, and will continue to remain, a core capability of foundation model-based agents. As research on agent memory rapidly expands and attracts unprecedented attention, the field has also become increasingly fragmented. Existing works that fall under the umbrella of agent memory often differ substantially in their motivations, implementations, and evaluation protocols, while the proliferation of loosely defined memory terminologies has further obscured conceptual clarity. Traditional taxonomies such as long/short-term memory have proven insufficient to capture the diversity of contemporary agent memory systems. This work aims to provide an up-to-date landscape of current agent memory research. We begin by clearly delineating the scope of agent memory and distinguishing it from related concepts such as LLM memory, retrieval augmented generation (RAG), and context engineering. We then examine agent memory through the unified lenses of forms, functions, and dynamics. From the perspective of forms, we identify three dominant realizations of agent memory, namely token-level, parametric, and latent memory. From the perspective of functions, we propose a finer-grained taxonomy that distinguishes factual, experiential, and working memory. From the perspective of dynamics, we analyze how memory is formed, evolved, and retrieved over time. To support practical development, we compile a comprehensive summary of memory benchmarks and open-source frameworks. Beyond consolidation, we articulate a forward-looking perspective on emerging research frontiers, including memory automation, reinforcement learning integration, multimodal memory, multi-agent memory, and trustworthiness issues. We hope this survey serves not only as a reference for existing work, but also as a conceptual foundation for rethinking memory as a first-class primitive in the design of future agentic intelligence.
An Algebraic Representation Theorem for Linear GENEOs in Geometric Machine Learning
Geometric and Topological Deep Learning are rapidly growing research areas that enhance machine learning through the use of geometric and topological structures. Within this framework, Group Equivariant Non-Expansive Operators (GENEOs) have emerged as a powerful class of operators for encoding symmetries and designing efficient, interpretable neural architectures. Originally introduced in Topological Data Analysis, GENEOs have since found applications in Deep Learning as tools for constructing equivariant models with reduced parameter complexity. GENEOs provide a unifying framework bridging Geometric and Topological Deep Learning and include the operator computing persistence diagrams as a special case. Their theoretical foundations rely on group actions, equivariance, and compactness properties of operator spaces, grounding them in algebra and geometry while enabling both mathematical rigor and practical relevance. While a previous representation theorem characterized linear GENEOs acting on data of the same type, many real-world applications require operators between heterogeneous data spaces. In this work, we address this limitation by introducing a new representation theorem for linear GENEOs acting between different perception pairs, based on generalized T-permutant measures. Under mild assumptions on the data domains and group actions, our result provides a complete characterization of such operators. We also prove the compactness and convexity of the space of linear GENEOs. We further demonstrate the practical impact of this theory by applying the proposed framework to improve the performance of autoencoders, highlighting the relevance of GENEOs in modern machine learning applications.
Information Capacity: Evaluating the Efficiency of Large Language Models via Text Compression
Recent years have witnessed the rapid advancements of large language models (LLMs) and their expanding applications, leading to soaring demands for computational resources. The widespread adoption of test-time scaling further intensifies the tension between model capability and resource consumption, highlighting the importance of inference efficiency. However, a unified metric that accurately reflects an LLM's efficiency across diverse model sizes and architectures remains absent. Motivated by the correlation between compression and intelligence, we introduce information capacity, a measure of model efficiency based on text compression performance relative to computational complexity. A distinctive feature of information capacity is its incorporation of tokenizer efficiency, which affects inference costs but is often neglected in LLM evaluations. We assess the information capacity of 52 open-source models and observe a consistent information capacity among different-sized models within a series. Experiments on 5 heterogeneous datasets reveal strong linguistic bias in mainstream LLMs. Three major factors of information capacity include tokenizer efficiency, pretraining data, and the mixture-of-experts architecture. Empirical results verify the accuracy of performance prediction across model sizes based on information capacity and show the correlation between information capacity and benchmark scores.
comment: Code: https://github.com/TeleAI-AI-Flow/InformationCapacity. Data: https://huggingface.co/datasets/TeleAI-AI-Flow/InformationCapacity
Data Work in Egypt: Who Are the Workers Behind Artificial Intelligence?
The report highlights the role of Egyptian data workers in the global value chains of Artificial Intelligence (AI). These workers generate and annotate data for machine learning, check outputs, and they connect with overseas AI producers via international digital labor platforms, where they perform on-demand tasks and are typically paid by piecework, with no long-term commitment. Most of these workers are young, highly educated men, with nearly two-thirds holding undergraduate degrees. Their primary motivation for data work is financial need, with three-quarters relying on platform earnings to cover basic necessities. Despite the variability in their online earnings, these are generally low, often equaling Egypt's minimum wage. Data workers' digital identities are shaped by algorithmic control and economic demands, often diverging from their offline selves. Nonetheless, they find ways to resist, exercise ethical agency, and maintain autonomy. The report evaluates the potential impact of Egypt's newly enacted labor law and suggests policy measures to improve working conditions and acknowledge the role of these workers in AI's global value chains.
On the Theoretical Foundation of Sparse Dictionary Learning in Mechanistic Interpretability
As AI models achieve remarkable capabilities across diverse domains, understanding what representations they learn and how they process information has become increasingly important for both scientific progress and trustworthy deployment. Recent works in mechanistic interpretability have shown that neural networks represent meaningful concepts as directions in their representation spaces and often encode diverse concepts in superposition. Various sparse dictionary learning (SDL) methods, including sparse autoencoders, transcoders, and crosscoders, address this by training auxiliary models with sparsity constraints to disentangle these superposed concepts into monosemantic features. These methods have demonstrated remarkable empirical success but have limited theoretical understanding. Existing theoretical work is limited to sparse autoencoders with tied-weight constraints, leaving the broader family of SDL methods without formal grounding. In this work, we develop the first unified theoretical framework considering SDL as one optimization problem. We demonstrate how diverse methods instantiate the theoretical framework and provide rigorous analysis of the optimization landscape. We provide novel theoretical explanations for empirically observed phenomena, including feature absorption and dead neurons. We design the Linear Representation Bench, a benchmark that strictly follows the Linear Representation Hypothesis, to evaluate SDL methods with fully accessible ground-truth features. Motivated by our theory and findings, we develop feature achoring, a novel technique applicable for all SDL methods, to enhance their feature recovery capabilities.
Using Subgraph GNNs for Node Classification:an Overlooked Potential Approach
Previous studies have demonstrated the strong performance of Graph Neural Networks (GNNs) in node classification. However, most existing GNNs adopt a node-centric perspective and rely on global message passing, leading to high computational and memory costs that hinder scalability. To mitigate these challenges, subgraph-based methods have been introduced, leveraging local subgraphs as approximations of full computational trees. While this approach improves efficiency, it often suffers from performance degradation due to the loss of global contextual information, limiting its effectiveness compared to global GNNs. To address this trade-off between scalability and classification accuracy, we reformulate the node classification task as a subgraph classification problem and propose SubGND (Subgraph GNN for NoDe). This framework introduces a differentiated zero-padding strategy and an Ego-Alter subgraph representation method to resolve label conflicts while incorporating an Adaptive Feature Scaling Mechanism to dynamically adjust feature contributions based on dataset-specific dependencies. Experimental results on six benchmark datasets demonstrate that SubGND achieves performance comparable to or surpassing global message-passing GNNs, particularly in heterophilic settings, highlighting its effectiveness and scalability as a promising solution for node classification.
comment: 16 pages
Symbolic Learning of Interpretable Reduced-Order Models for Jumping Quadruped Robots
Reduced-order models are central to motion planning and control of quadruped robots, yet existing templates are often hand-crafted for a specific locomotion modality. This motivates the need for automatic methods that extract task-specific, interpretable low-dimensional dynamics directly from data. We propose a methodology that combines a linear autoencoder with symbolic regression to derive such models. The linear autoencoder provides a consistent latent embedding for configurations, velocities, accelerations, and inputs, enabling the sparse identification of nonlinear dynamics (SINDy) to operate in a compact, physics-aligned space. A multi-phase, hybrid-aware training scheme ensures coherent latent coordinates across contact transitions. We focus our validation on quadruped jumping-a representative, challenging, yet contained scenario in which a principled template model is especially valuable. The resulting symbolic dynamics outperform the state-of-the-art handcrafted actuated spring-loaded inverted pendulum (aSLIP) baseline in simulation and hardware across multiple robots and jumping modalities.
comment: 8 pages
MixGRPO: Unlocking Flow-based GRPO Efficiency with Mixed ODE-SDE
Although GRPO substantially enhances flow matching models in human preference alignment of image generation, methods such as FlowGRPO and DanceGRPO still exhibit inefficiency due to the necessity of sampling and optimizing over all denoising steps specified by the Markov Decision Process (MDP). In this paper, we propose $\textbf{MixGRPO}$, a novel framework that leverages the flexibility of mixed sampling strategies through the integration of stochastic differential equations (SDE) and ordinary differential equations (ODE). This streamlines the optimization process within the MDP to improve efficiency and boost performance. Specifically, MixGRPO introduces a sliding window mechanism, using SDE sampling and GRPO-guided optimization only within the window, while applying ODE sampling outside. This design confines sampling randomness to the time-steps within the window, thereby reducing the optimization overhead, and allowing for more focused gradient updates to accelerate convergence. Additionally, as time-steps beyond the sliding window are not involved in optimization, higher-order solvers are supported for faster sampling. So we present a faster variant, termed $\textbf{MixGRPO-Flash}$, which further improves training efficiency while achieving comparable performance. MixGRPO exhibits substantial gains across multiple dimensions of human preference alignment, outperforming DanceGRPO in both effectiveness and efficiency, with nearly 50% lower training time. Notably, MixGRPO-Flash further reduces training time by 71%.
PINGS-X: Physics-Informed Normalized Gaussian Splatting with Axes Alignment for Efficient Super-Resolution of 4D Flow MRI AAAI 2026
4D flow magnetic resonance imaging (MRI) is a reliable, non-invasive approach for estimating blood flow velocities, vital for cardiovascular diagnostics. Unlike conventional MRI focused on anatomical structures, 4D flow MRI requires high spatiotemporal resolution for early detection of critical conditions such as stenosis or aneurysms. However, achieving such resolution typically results in prolonged scan times, creating a trade-off between acquisition speed and prediction accuracy. Recent studies have leveraged physics-informed neural networks (PINNs) for super-resolution of MRI data, but their practical applicability is limited as the prohibitively slow training process must be performed for each patient. To overcome this limitation, we propose PINGS-X, a novel framework modeling high-resolution flow velocities using axes-aligned spatiotemporal Gaussian representations. Inspired by the effectiveness of 3D Gaussian splatting (3DGS) in novel view synthesis, PINGS-X extends this concept through several non-trivial novel innovations: (i) normalized Gaussian splatting with a formal convergence guarantee, (ii) axes-aligned Gaussians that simplify training for high-dimensional data while preserving accuracy and the convergence guarantee, and (iii) a Gaussian merging procedure to prevent degenerate solutions and boost computational efficiency. Experimental results on computational fluid dynamics (CFD) and real 4D flow MRI datasets demonstrate that PINGS-X substantially reduces training time while achieving superior super-resolution accuracy. Our code and datasets are available at https://github.com/SpatialAILab/PINGS-X.
comment: Accepted at AAAI 2026. Supplementary material included after references. 27 pages, 21 figures, 11 tables
PRPO: Aligning Process Reward with Outcome Reward in Policy Optimization
Policy optimization for large language models often suffers from sparse reward signals in multi-step reasoning tasks. Critic-free methods like GRPO assign a single normalized outcome reward to all tokens, providing limited guidance for intermediate reasoning . While Process Reward Models (PRMs) offer dense feedback, they risk premature collapse when used alone, as early low-reward tokens can drive policies toward truncated outputs. We introduce Process Relative Policy Optimization (PRPO), which combines outcome reliability with process-level guidance in a critic-free framework. PRPO segments reasoning sequences based on semantic clues, normalizes PRM scores into token-level advantages, and aligns their distribution with outcome advantages through location-parameter shift. On MATH500, PRPO improves Qwen2.5-Math-1.5B accuracy from 61.2% to 64.4% over GRPO using only eight rollouts and no value network, demonstrating efficient fine-grained credit assignment within critic-free optimization. Code is available at: https://github.com/SchumiDing/srpocode
comment: 8 pages, 2 figures Code is available at: https://github.com/SchumiDing/srpocode
Functional Percolation: Criticality of Form and Function
Understanding how network structure constrains and enables information processing is a central problem in the statistical mechanics of interacting systems. Here we study random networks across the structural percolation transition and analyze how connectivity governs realizable input-output transformations under cascade dynamics. Using Erdos-Renyi networks as a minimal ensemble, we examine structural, functional, and information-theoretic observables as functions of mean degree. We find that the emergence of the giant connected component coincides with a sharp transition in realizable information processing: complex input-output response functions become accessible, functional diversity increases rapidly, output entropy rises, and directed information flow, quantified by transfer entropy, extends beyond local neighborhoods. We term this coincidence of structural, functional, and informational transitions functional percolation, referring to a sharp expansion of the space of realizable input-output functions at the percolation threshold. Near criticality, networks exhibit a Pareto-optimal tradeoff between functional complexity and diversity, suggesting that percolation criticality may provide a general organizing principle of information processing capacity in systems with local interactions and propagating influences.
comment: 8 pages, 6 figures
GTR-CoT: Graph Traversal as Visual Chain of Thought for Molecular Structure Recognition
Optical Chemical Structure Recognition (OCSR) is essential for converting molecular images into machine-readable formats. While recent vision-language models (VLMs) have shown promise, their image-captioning approach often struggles with complex molecular structures and inconsistent annotations. To address these issues, we introduce GTR-VL, featuring two key innovations: (1) the \textit{Graph Traversal as Visual Chain of Thought} mechanism that emulates human reasoning by incrementally parsing molecular graphs through sequential atom-bond predictions, and (2) the data-centric \textit{Faithfully Recognize What You've Seen} principle, which aligns abbreviated structures in images with their expanded annotations. For hand-drawn OCSR tasks, where datasets lack graph annotations and only provide final SMILES, we apply reinforcement learning using the GRPO method, introducing reward mechanisms like format reward, graph reward, and SMILES reward. This approach significantly enhances performance in hand-drawn recognition tasks through weak supervision. We developed GTR-1.3M, a large-scale instruction-tuning dataset with corrected annotations, and MolRec-Bench, the first benchmark for fine-grained evaluation of graph-parsing accuracy in OCSR. Our two-stage training scheme involves SFT training for printed images and the GRPO method for transferring capabilities to hand-drawn tasks. Experiments show that GTR-VL outperforms specialist models, chemistry-domain VLMs, and commercial VLMs on both printed and hand-drawn datasets.
Quantum Machine Unlearning: Foundations, Mechanisms, and Taxonomy
Quantum Machine Unlearning has emerged as a foundational challenge at the intersection of quantum information theory privacypreserving computation and trustworthy artificial intelligence This paper advances QMU by establishing a formal framework that unifies physical constraints algorithmic mechanisms and ethical governance within a verifiable paradigm We define forgetting as a contraction of distinguishability between pre and postunlearning models under completely positive trace-preserving dynamics grounding data removal in the physics of quantum irreversibility Building on this foundation we present a fiveaxis taxonomy spanning scope guarantees mechanisms system context and hardware realization linking theoretical constructs to implementable strategies Within this structure we incorporate influence and quantum Fisher information weighted updates parameter reinitialization and kernel alignment as practical mechanisms compatible with noisy intermediatescale quantum NISQ devices The framework extends naturally to federated and privacyaware settings via quantum differential privacy homomorphic encryption and verifiable delegation enabling scalable auditable deletion across distributed quantum systems Beyond technical design we outline a forwardlooking research roadmap emphasizing formal proofs of forgetting scalable and secure architectures postunlearning interpretability and ethically auditable governance Together these contributions elevate QMU from a conceptual notion to a rigorously defined and ethically aligned discipline bridging physical feasibility algorithmic verifiability and societal accountability in the emerging era of quantum intelligence.
Stuffed Mamba: Oversized States Lead to the Inability to Forget
Recent advancements in recurrent architectures, such as Mamba and RWKV, have showcased strong language capabilities. Unlike transformer-based models, these architectures encode all contextual information into a fixed-size state, leading to great inference efficiency. However, this approach can cause information interference, where different token data conflicts, resulting in performance degradation and incoherent outputs beyond a certain context length. To prevent this, most RNNs incorporate mechanisms designed to "forget" earlier tokens. In this paper, we reveal that Mamba-based models struggle to effectively forget earlier tokens even with built-in forgetting mechanisms. We demonstrate that this issue stems from training on contexts that are too short for the state size, enabling the model to perform well without needing to learn how to forget. Then, we show that the minimum training length required for the model to learn forgetting scales linearly with the state size, and the maximum context length for accurate retrieval of a 5-digit passkey scales exponentially with the state size, indicating that the model retains some information beyond the point where forgetting begins. These findings highlight a critical limitation in current RNN architectures and provide valuable insights for improving long-context modeling. Our work suggests that future RNN designs must account for the interplay between state size, training length, and forgetting mechanisms to achieve robust performance in long-context tasks.
comment: COLM 2025
Generative Digital Twins: Vision-Language Simulation Models for Executable Industrial Systems
We propose a Vision-Language Simulation Model (VLSM) that unifies visual and textual understanding to synthesize executable FlexScript from layout sketches and natural-language prompts, enabling cross-modal reasoning for industrial simulation systems. To support this new paradigm, the study constructs the first large-scale dataset for generative digital twins, comprising over 120,000 prompt-sketch-code triplets that enable multimodal learning between textual descriptions, spatial structures, and simulation logic. In parallel, three novel evaluation metrics, Structural Validity Rate (SVR), Parameter Match Rate (PMR), and Execution Success Rate (ESR), are proposed specifically for this task to comprehensively evaluate structural integrity, parameter fidelity, and simulator executability. Through systematic ablation across vision encoders, connectors, and code-pretrained language backbones, the proposed models achieve near-perfect structural accuracy and high execution robustness. This work establishes a foundation for generative digital twins that integrate visual reasoning and language understanding into executable industrial simulation systems. Project page: https://danielhsu2014.github.io/GDT-VLSM-project/
comment: 10 pages, 9 figures
Aligning by Misaligning: Boundary-aware Curriculum Learning for Multimodal Alignment NeurIPS 2025
Most multimodal models treat every negative pair alike, ignoring the ambiguous negatives that differ from the positive by only a small detail. We propose Boundary-Aware Curriculum with Local Attention (BACL), a lightweight add-on that turns these borderline cases into a curriculum signal. A Boundary-aware Negative Sampler gradually raises difficulty, while a Contrastive Local Attention loss highlights where the mismatch occurs. The two modules are fully differentiable and work with any off-the-shelf dual encoder. Theory predicts a fast O(1/n) error rate; practice shows up to +32% R@1 over CLIP and new SOTA on four large-scale benchmarks, all without extra labels.
comment: 24 pages, 6 figures, 5 tables. Submitted to NeurIPS 2025
AgenticTCAD: A LLM-based Multi-Agent Framework for Automated TCAD Code Generation and Device Optimization
With the continued scaling of advanced technology nodes, the design-technology co-optimization (DTCO) paradigm has become increasingly critical, rendering efficient device design and optimization essential. In the domain of TCAD simulation, however, the scarcity of open-source resources hinders language models from generating valid TCAD code. To overcome this limitation, we construct an open-source TCAD dataset curated by experts and fine-tune a domain-specific model for TCAD code generation. Building on this foundation, we propose AgenticTCAD, a natural language - driven multi-agent framework that enables end-to-end automated device design and optimization. Validation on a 2 nm nanosheet FET (NS-FET) design shows that AgenticTCAD achieves the International Roadmap for Devices and Systems (IRDS)-2024 device specifications within 4.2 hours, whereas human experts required 7.1 days with commercial tools.
comment: Accepted by DATE 2026
Measuring Iterative Temporal Reasoning with Time Puzzles
We introduce Time Puzzles, a constraint-based date inference task for evaluating iterative temporal reasoning. Each puzzle combines factual temporal anchors with (cross-cultural) calendar relations, admits one or multiple valid solution dates, and is algorithmically generated for controlled, dynamic, and continual evaluation. Across 13 diverse LLMs, Time Puzzles well distinguishes their iterative temporal reasoning capabilities and remains challenging without tools: GPT-5 reaches only 49.3% accuracy and all other models stay below 31%, despite the dataset's simplicity. Web search consistently yields substantial gains and using code interpreter shows mixed effects, but all models perform much better when constraints are rewritten with explicit dates, revealing a gap in reliable tool use. Overall, Time Puzzles presents a simple, cost-effective diagnostic for tool-augmented iterative temporal reasoning.
How Memory in Optimization Algorithms Implicitly Modifies the Loss
In modern optimization methods used in deep learning, each update depends on the history of previous iterations, often referred to as memory, and this dependence decays fast as the iterates go further into the past. For example, gradient descent with momentum has exponentially decaying memory through exponentially averaged past gradients. We introduce a general technique for identifying a memoryless algorithm that approximates an optimization algorithm with memory. It is obtained by replacing all past iterates in the update by the current one, and then adding a correction term arising from memory (also a function of the current iterate). This correction term can be interpreted as a perturbation of the loss, and the nature of this perturbation can inform how memory implicitly (anti-)regularizes the optimization dynamics. As an application of our theory, we find that Lion does not have the kind of implicit anti-regularization induced by memory that AdamW does, providing a theory-based explanation for Lion's better generalization performance recently documented.
AutoContext: Instance-Level Context Learning for LLM Agents
Current LLM agents typically lack instance-level context, which comprises concrete facts such as environment structure, system configurations, and local mechanics. Consequently, existing methods are forced to intertwine exploration with task execution. This coupling leads to redundant interactions and fragile decision-making, as agents must repeatedly rediscover the same information for every new task. To address this, we introduce AutoContext, a method that decouples exploration from task solving. AutoContext performs a systematic, one-off exploration to construct a reusable knowledge graph for each environment instance. This structured context allows off-the-shelf agents to access necessary facts directly, eliminating redundant exploration. Experiments across TextWorld, ALFWorld, Crafter, and InterCode-Bash demonstrate substantial gains: for example, the success rate of a ReAct agent on TextWorld improves from 37% to 95%, highlighting the critical role of structured instance context in efficient agentic systems.
RAG-R1: Incentivizing the Search and Reasoning Capabilities of LLMs through Multi-query Parallelism
Large Language Models (LLMs), despite their remarkable capabilities, are prone to generating hallucinated or outdated content due to their static internal knowledge. While Retrieval-Augmented Generation (RAG) integrated with Reinforcement Learning (RL) offers a solution, these methods are fundamentally constrained by a single-query mode, leading to prohibitive latency and inherent brittleness. To overcome these limitations, we introduce RAG-R1, a novel two-stage training framework centered around multi-query parallelism. Our framework enables LLMs to adaptively leverage internal and external knowledge during the reasoning process while transitioning from the single-query mode to multi-query parallelism. This architectural shift bolsters reasoning robustness while significantly reducing inference latency. Extensive experiments on seven question-answering benchmarks confirm the superiority of our method, which outperforms the strongest baseline by up to 13.7% and decreases inference time by 11.1%.
Semi-Tensor-Product Based Convolutional Neural Networks
The semi-tensor product of vectors generalizes the conventional inner product, enabling algebraic operations between vectors of different dimensions. Building upon this foundation, we introduce a domain-based convolutional product and integrate it with the STP to formulate a padding-free convolutional operation. This new operation inherently avoids zero or other artificial padding, thereby eliminating redundant information and boundary artifacts commonly present in conventional convolutional neural networks. Based on this operation, we further develop an STP-based CNN framework that extends convolutional computation to irregular and cross-dimensional data domains. Applications to image processing and third-order signal identification demonstrate the proposed method's effectiveness in handling irregular, incomplete, and high-dimensional data without the distortions caused by padding.
Gradient flow in parameter space is equivalent to linear interpolation in output space
We prove that the standard gradient flow in parameter space that underlies many training algorithms in deep learning can be continuously deformed into an adapted gradient flow which yields (constrained) Euclidean gradient flow in output space. Moreover, for the $L^{2}$ loss, if the Jacobian of the outputs with respect to the parameters is full rank (for fixed training data), then the time variable can be reparametrized so that the resulting flow is simply linear interpolation, and a global minimum can be achieved. For the cross-entropy loss, under the same rank condition and assuming the labels have positive components, we derive an explicit formula for the unique global minimum.
comment: To appear in Journal of Geometry and Physics
When Does Learning Renormalize? Sufficient Conditions for Power Law Spectral Dynamics
Empirical power--law scaling has been widely observed across modern deep learning systems, yet its theoretical origins and scope of validity remain incompletely understood. The Generalized Resolution--Shell Dynamics (GRSD) framework models learning as spectral energy transport across logarithmic resolution shells, providing a coarse--grained dynamical description of training. Within GRSD, power--law scaling corresponds to a particularly simple renormalized shell dynamics; however, such behavior is not automatic and requires additional structural properties of the learning process. In this work, we identify a set of sufficient conditions under which the GRSD shell dynamics admits a renormalizable coarse--grained description. These conditions constrain the learning configuration at multiple levels, including boundedness of gradient propagation in the computation graph, weak functional incoherence at initialization, controlled Jacobian evolution along training, and log--shift invariance of renormalized shell couplings. We further show that power--law scaling does not follow from renormalizability alone, but instead arises as a rigidity consequence: once log--shift invariance is combined with the intrinsic time--rescaling covariance of gradient flow, the renormalized GRSD velocity field is forced into a power--law form.
GenAITEd Ghana: A First-of-Its-Kind Context-Aware and Curriculum-Aligned Conversational AI Agent for Teacher Education
Global frameworks increasingly advocate for Responsible Artificial Intelligence (AI) in education, yet they provide limited guidance on how ethical, culturally responsive, and curriculum-aligned AI can be operationalized within functioning teacher education systems, particularly in the Global South. This study addresses this gap through the design and evaluation of GenAITEd Ghana, a context-aware, region-specific conversational AI prototype developed to support teacher education in Ghana. Guided by a Design Science Research approach, the system was developed as a school-mimetic digital infrastructure aligned with the organizational logic of Ghanaian Colleges of Education and the National Council for Curriculum and Assessment (NaCCA) framework. GenAITEd Ghana operates as a multi-agent, retrieval-augmented conversational AI that coordinates multiple models for curriculum-grounded dialogue, automatic speech recognition, voice synthesis, and multimedia interaction. Two complementary prompt pathways were embedded: system-level prompts that enforce curriculum boundaries, ethical constraints, and teacher-in-the-loop oversight, and interaction-level semi-automated prompts that structure live pedagogical dialogue through clarification, confirmation, and guided response generation. Evaluation findings show that the system effectively enacted key Responsible AI principles, including transparency, accountability, cultural responsiveness, privacy, and human oversight. Human expert evaluations further indicated that GenAITEd Ghana is pedagogically appropriate for Ghanaian teacher education, promoting student engagement while preserving educators' professional authority. Identified challenges highlight the need for continued model integration, professional development, and critical AI literacy to mitigate risks of over-reliance.
Diffusion Fine-Tuning via Reparameterized Policy Gradient of the Soft Q-Function
Diffusion models excel at generating high-likelihood samples but often require alignment with downstream objectives. Existing fine-tuning methods for diffusion models significantly suffer from reward over-optimization, resulting in high-reward but unnatural samples and degraded diversity. To mitigate over-optimization, we propose Soft Q-based Diffusion Finetuning (SQDF), a novel KL-regularized RL method for diffusion alignment that applies a reparameterized policy gradient of a training-free, differentiable estimation of the soft Q-function. SQDF is further enhanced with three innovations: a discount factor for proper credit assignment in the denoising process, the integration of consistency models to refine Q-function estimates, and the use of an off-policy replay buffer to improve mode coverage and manage the reward-diversity trade-off. Our experiments demonstrate that SQDF achieves superior target rewards while preserving diversity in text-to-image alignment. Furthermore, in online black-box optimization, SQDF attains high sample efficiency while maintaining naturalness and diversity.
comment: 36 pages, 21 figures, 4 tables
On the Sample Complexity of Differentially Private Policy Optimization NeurIPS 2025
Policy optimization (PO) is a cornerstone of modern reinforcement learning (RL), with diverse applications spanning robotics, healthcare, and large language model training. The increasing deployment of PO in sensitive domains, however, raises significant privacy concerns. In this paper, we initiate a theoretical study of differentially private policy optimization, focusing explicitly on its sample complexity. We first formalize an appropriate definition of differential privacy (DP) tailored to PO, addressing the inherent challenges arising from on-policy learning dynamics and the subtlety involved in defining the unit of privacy. We then systematically analyze the sample complexity of widely-used PO algorithms, including policy gradient (PG), natural policy gradient (NPG) and more, under DP constraints and various settings, via a unified framework. Our theoretical results demonstrate that privacy costs can often manifest as lower-order terms in the sample complexity, while also highlighting subtle yet important observations in private PO settings. These offer valuable practical insights for privacy-preserving PO algorithms.
comment: Accepted at NeurIPS 2025
UniF$^2$ace: A Unified Fine-grained Face Understanding and Generation Model
Unified multimodal models (UMMs) have emerged as a powerful paradigm in fundamental cross-modality research, demonstrating significant potential in both image understanding and generation. However, existing research in the face domain primarily faces two challenges: $\textbf{(1)}$ $\textbf{fragmentation development}$, with existing methods failing to unify understanding and generation into a single one, hindering the way to artificial general intelligence. $\textbf{(2) lack of fine-grained facial attributes}$, which are crucial for high-fidelity applications. To handle those issues, we propose $\textbf{UniF$^2$ace}$, $\textit{the first UMM specifically tailored for fine-grained face understanding and generation}$. $\textbf{First}$, we introduce a novel theoretical framework with a Dual Discrete Diffusion (D3Diff) loss, unifying masked generative models with discrete score matching diffusion and leading to a more precise approximation of the negative log-likelihood. Moreover, this D3Diff significantly enhances the model's ability to synthesize high-fidelity facial details aligned with text input. $\textbf{Second}$, we propose a multi-level grouped Mixture-of-Experts architecture, adaptively incorporating the semantic and identity facial embeddings to complement the attribute forgotten phenomenon in representation evolvement. $\textbf{Finally}$, to this end, we construct UniF$^2$aceD-1M, a large-scale dataset comprising 130K fine-grained image-caption pairs and 1M visual question-answering pairs, spanning a much wider range of facial attributes than existing datasets. Extensive experiments demonstrate that UniF$^2$ace outperforms existing models with a similar scale in both understanding and generation tasks, with 7.1\% higher Desc-GPT and 6.6\% higher VQA-score, respectively.
Cross-Domain Imitation Learning via Optimal Transport ICLR 2022
Cross-domain imitation learning studies how to leverage expert demonstrations of one agent to train an imitation agent with a different embodiment or morphology. Comparing trajectories and stationary distributions between the expert and imitation agents is challenging because they live on different systems that may not even have the same dimensionality. We propose Gromov-Wasserstein Imitation Learning (GWIL), a method for cross-domain imitation that uses the Gromov-Wasserstein distance to align and compare states between the different spaces of the agents. Our theory formally characterizes the scenarios where GWIL preserves optimality, revealing its possibilities and limitations. We demonstrate the effectiveness of GWIL in non-trivial continuous control domains ranging from simple rigid transformation of the expert domain to arbitrary transformation of the state-action space.
comment: ICLR 2022
The Evolution of Thought: Tracking LLM Overthinking via Reasoning Dynamics Analysis
Test-time scaling via explicit reasoning trajectories significantly boosts large language model (LLM) performance but often triggers overthinking. To explore this, we analyze reasoning through two lenses: Reasoning Length Dynamics, which reveals a compensatory trade-off between thinking and answer content length that eventually leads to thinking redundancy, and Reasoning Semantic Dynamics, which identifies semantic convergence and repetitive oscillations. These dynamics uncover an instance-specific Reasoning Completion Point (RCP), beyond which computation continues without further performance gain. Since the RCP varies across instances, we propose a Reasoning Completion Point Detector (RCPD), an inference-time early-exit method that identifies the RCP by monitoring the rank dynamics of termination tokens (e.g., ). Across AIME and GPQA benchmarks using Qwen3 and DeepSeek-R1, RCPD reduces token usage by up to 44% while preserving accuracy, offering a principled approach to efficient test-time scaling.
ICPO: Intrinsic Confidence-Driven Group Relative Preference Optimization for Efficient Reinforcement Learning
Reinforcement Learning with Verifiable Rewards (RLVR) demonstrates significant potential in enhancing the reasoning capabilities of Large Language Models (LLMs). However, existing RLVR methods are often constrained by issues such as coarse-grained rewards, reward noise, and inefficient exploration, which lead to unstable training and entropy collapse. To address this challenge, we propose the Intrinsic Confidence-Driven Group Relative Preference Optimization method (ICPO). The intuition behind it lies in the fact that the probabilities of an LLM generating different responses can inherently and directly reflect its self-assessment of the reasoning process. Inspired by the idea of preference modeling, ICPO calculates a preference advantage score for each response by comparing the relative generation probabilities of multiple responses under the same input prompt, and integrates this score with verifiable rewards to guide the exploration process. We have discovered that the preference advantage score not only alleviates the issues of coarse-grained rewards and reward noise but also effectively curbs overconfident errors, enhances the relative superiority of undervalued high-quality responses, and prevents the model from overfitting to specific strategies. Comprehensive experiments across four general-domain benchmarks and three mathematical benchmarks demonstrate that ICPO steadily boosts reasoning compared to GRPO.
PathoSyn: Imaging-Pathology MRI Synthesis via Disentangled Deviation Diffusion
We present PathoSyn, a unified generative framework for Magnetic Resonance Imaging (MRI) image synthesis that reformulates imaging-pathology as a disentangled additive deviation on a stable anatomical manifold. Current generative models typically operate in the global pixel domain or rely on binary masks, these paradigms often suffer from feature entanglement, leading to corrupted anatomical substrates or structural discontinuities. PathoSyn addresses these limitations by decomposing the synthesis task into deterministic anatomical reconstruction and stochastic deviation modeling. Central to our framework is a Deviation-Space Diffusion Model designed to learn the conditional distribution of pathological residuals, thereby capturing localized intensity variations while preserving global structural integrity by construction. To ensure spatial coherence, the diffusion process is coupled with a seam-aware fusion strategy and an inference-time stabilization module, which collectively suppress boundary artifacts and produce high-fidelity internal lesion heterogeneity. PathoSyn provides a mathematically principled pipeline for generating high-fidelity patient-specific synthetic datasets, facilitating the development of robust diagnostic algorithms in low-data regimes. By allowing interpretable counterfactual disease progression modeling, the framework supports precision intervention planning and provides a controlled environment for benchmarking clinical decision-support systems. Quantitative and qualitative evaluations on tumor imaging benchmarks demonstrate that PathoSyn significantly outperforms holistic diffusion and mask-conditioned baselines in both perceptual realism and anatomical fidelity. The source code of this work will be made publicly available.
Learning "Partner-Aware" Collaborators in Multi-Party Collaboration
Large Language Models (LLMs) are increasingly being deployed in agentic settings where they act as collaborators with humans. Therefore, it is increasingly important to be able to evaluate their abilities to collaborate effectively in multi-turn, multi-party tasks. In this paper, we build on the AI alignment and safe interruptibility literature to offer novel theoretical insights on collaborative behavior between LLM-driven collaborator agents and an intervention agent. Our goal is to learn an ideal partner-aware collaborator that increases the group's common-ground (CG) alignment on task-relevant propositions-by intelligently collecting information provided in interventions by a partner agent. We show how LLM agents trained using standard RLHF and related approaches are naturally inclined to ignore possibly well-meaning interventions, which makes increasing group common ground non-trivial in this setting. We employ a two-player Modified-Action MDP to examine this suboptimal behavior of standard AI agents, and propose Interruptible Collaborative Roleplayer (ICR)-a novel partner-aware learning algorithm to train CG-optimal collaborators. Experiments on multiple collaborative task environments show that ICR, on average, is more capable of promoting successful CG convergence and exploring more diverse solutions in such tasks.
comment: Fixed typographic errors in the previous manuscript
When Smaller Wins: Dual-Stage Distillation and Pareto-Guided Compression of Liquid Neural Networks for Edge Battery Prognostics
Battery management systems increasingly require accurate battery health prognostics under strict on-device constraints. This paper presents DLNet, a practical framework with dual-stage distillation of liquid neural networks that turns a high-capacity model into compact and edge-deployable models for battery health prediction. DLNet first applies Euler discretization to reformulate liquid dynamics for embedded compatibility. It then performs dual-stage knowledge distillation to transfer the teacher model's temporal behavior and recover it after further compression. Pareto-guided selection under joint error-cost objectives retains student models that balance accuracy and efficiency. We evaluate DLNet on a widely used dataset and validate real-device feasibility on an Arduino Nano 33 BLE Sense using int8 deployment. The final deployed student achieves a low error of 0.0066 when predicting battery health over the next 100 cycles, which is 15.4% lower than the teacher model. It reduces the model size from 616 kB to 94 kB with 84.7% reduction and takes 21 ms per inference on the device. These results support a practical smaller wins observation that a small model can match or exceed a large teacher for edge-based prognostics with proper supervision and selection. Beyond batteries, the DLNet framework can extend to other industrial analytics tasks with strict hardware constraints.
comment: Submitted to International Conference on Pattern Recognition, ICPR 2026
Instructions are all you need: Self-supervised Reinforcement Learning for Instruction Following
Language models often struggle to follow multi-constraint instructions that are crucial for real-world applications. Existing reinforcement learning (RL) approaches suffer from dependency on external supervision and sparse reward signals from multi-constraint tasks. We propose a label-free self-supervised RL framework that eliminates dependency on external supervision by deriving reward signals directly from instructions and generating pseudo-labels for reward model training. Our approach introduces constraint decomposition strategies and efficient constraint-wise binary classification to address sparse reward challenges while maintaining computational efficiency. Experiments show that our approach generalizes well, achieving strong improvements across 3 in-domain and 5 out-of-domain datasets, including challenging agentic and multi-turn instruction following. The data and code are publicly available at https://github.com/Rainier-rq/verl-if
EvoC2Rust: A Skeleton-guided Framework for Project-Level C-to-Rust Translation
Translating legacy C codebases to Rust is increasingly demanded for building safety-critical systems. While various approaches have emerged for this task, they face inherent trade-offs: rule-based methods often struggle to satisfy code safety and idiomaticity requirements, while LLM-based methods frequently fail to generate semantically equivalent Rust code, due to the heavy dependencies of modules across the entire codebase. Recent studies have revealed that both solutions are limited to small-scale programs. In this paper, we propose EvoC2Rust, an automated framework for converting complete C projects to equivalent Rust ones. EvoC2Rust employs a skeleton-guided translation strategy for project-level translation. The pipeline consists of three stages: 1) it first decomposes the C project into functional modules, employs a feature-mapping-enhanced LLM to transform definitions and macros, and generates type-checked function stubs, which form a compilable Rust skeleton; 2) it then incrementally translates functions, replacing the corresponding stub placeholders; 3) finally, it repairs compilation errors by integrating LLM and static analysis. Through evolutionary augmentation, EvoC2Rust combines the advantages of both rule-based and LLM-based solutions. Our evaluation on open-source benchmarks and six industrial projects demonstrates the superior performance of EvoC2Rust in project-level C-to-Rust translation. The results show that our approach outperforms the strongest LLM-based baseline by 17.24% in syntax accuracy and 14.32% in semantic accuracy, while also achieving a 43.59% higher code safety rate than the best rule-based tool.
comment: Accepted by ICSE 2026 SEIP
Regression-adjusted Monte Carlo Estimators for Shapley Values and Probabilistic Values
With origins in game theory, probabilistic values like Shapley values, Banzhaf values, and semi-values have emerged as a central tool in explainable AI. They are used for feature attribution, data attribution, data valuation, and more. Since all of these values require exponential time to compute exactly, research has focused on efficient approximation methods using two techniques: Monte Carlo sampling and linear regression formulations. In this work, we present a new way of combining both of these techniques. Our approach is more flexible than prior algorithms, allowing for linear regression to be replaced with any function family whose probabilistic values can be computed efficiently. This allows us to harness the accuracy of tree-based models like XGBoost, while still producing unbiased estimates. From experiments across eight datasets, we find that our methods give state-of-the-art performance for estimating probabilistic values. For Shapley values, the error of our methods can be $6.5\times$ lower than Permutation SHAP (the most popular Monte Carlo method), $3.8\times$ lower than Kernel SHAP (the most popular linear regression method), and $2.6\times$ lower than Leverage SHAP (the prior state-of-the-art Shapley value estimator). For more general probabilistic values, we can obtain error $215\times$ lower than the best estimator from prior work.
Explainable Molecular Property Prediction: Aligning Chemical Concepts with Predictions via Language Models
Providing explainable molecular property predictions is critical for many scientific domains, such as drug discovery and material science. Though transformer-based language models have shown great potential in accurate molecular property prediction, they neither provide chemically meaningful explanations nor faithfully reveal the molecular structure-property relationships. In this work, we develop a framework for explainable molecular property prediction based on language models, dubbed as Lamole, which can provide chemical concepts-aligned explanations. We take a string-based molecular representation -- Group SELFIES -- as input tokens to pretrain and fine-tune our Lamole, as it provides chemically meaningful semantics. By disentangling the information flows of Lamole, we propose combining self-attention weights and gradients for better quantification of each chemically meaningful substructure's impact on the model's output. To make the explanations more faithfully respect the structure-property relationship, we then carefully craft a marginal loss to explicitly optimize the explanations to be able to align with the chemists' annotations. We bridge the manifold hypothesis with the elaborated marginal loss to prove that the loss can align the explanations with the tangent space of the data manifold, leading to concept-aligned explanations. Experimental results over six mutagenicity datasets and one hepatotoxicity dataset demonstrate Lamole can achieve comparable classification accuracy and boost the explanation accuracy by up to 14.3%, being the state-of-the-art in explainable molecular property prediction.
WaveNet's Precision in EEG Classification
This study introduces a WaveNet-based deep learning model designed to automate the classification of intracranial electroencephalography (iEEG) signals into physiological activity, pathological (epileptic) activity, power-line noise, and other non-cerebral artifacts. Traditional methods for iEEG signal classification, which rely on expert visual review, are becoming increasingly impractical due to the growing complexity and volume of iEEG recordings. Leveraging a publicly available annotated dataset from Mayo Clinic and St. Anne's University Hospital, the WaveNet model was trained, validated, and tested on 209,231 samples using a 70/20/10 split. The model achieved a classification accuracy exceeding previous non-specialized CNN- and LSTM-based approaches and was benchmarked against a Temporal Convolutional Network (TCN) baseline. Notably, the model achieves high discrimination of noise and artifact classes, with precisions of 0.98 and approximately 1, respectively. Classification between physiological and pathological signals exhibits a modest but clinically interpretable overlap, with F1-scores of 0.96 and 0.90 and 175 and 272 cross-class false positives, respectively, reflecting inherent clinical overlap. WaveNet's architecture, originally developed for raw audio synthesis, is well-suited for iEEG data due to its use of dilated causal convolutions and residual connections, enabling the capture of both fine-grained and long-range temporal dependencies. The study also details the preprocessing pipeline, including dynamic dataset partitioning, the use of focal loss to address class imbalance, and normalization steps that support high model performance. While the results demonstrate strong in-distribution performance, generalizability across datasets and clinical settings has yet to be established.
comment: 6 pages, 5 figures and 3 tables. Includes main text and bibliography
COSINT-Agent: A Knowledge-Driven Multimodal Agent for Chinese Open Source Intelligence
Open Source Intelligence (OSINT) requires the integration and reasoning of diverse multimodal data, presenting significant challenges in deriving actionable insights. Traditional approaches, including multimodal large language models (MLLMs), often struggle to infer complex contextual relationships or deliver comprehensive intelligence from unstructured data sources. In this paper, we introduce COSINT-Agent, a knowledge-driven multimodal agent tailored to address the challenges of OSINT in the Chinese domain. COSINT-Agent seamlessly integrates the perceptual capabilities of fine-tuned MLLMs with the structured reasoning power of the Entity-Event-Scene Knowledge Graph (EES-KG). Central to COSINT-Agent is the innovative EES-Match framework, which bridges COSINT-MLLM and EES-KG, enabling systematic extraction, reasoning, and contextualization of multimodal insights. This integration facilitates precise entity recognition, event interpretation, and context retrieval, effectively transforming raw multimodal data into actionable intelligence. Extensive experiments validate the superior performance of COSINT-Agent across core OSINT tasks, including entity recognition, EES generation, and context matching. These results underscore its potential as a robust and scalable solution for advancing automated multimodal reasoning and enhancing the effectiveness of OSINT methodologies.
comment: This manuscript (arXiv:2503.03215) is being withdrawn at the supervisor's request. The content is preliminary and needs further internal revision and approval before public release. We will resubmit a revised version after completion. Apologies for the inconvenience
On the Entropy Calibration of Language Models Neurips 2025
We study the problem of entropy calibration, which asks whether a language model's entropy over generations matches its log loss on human text. Past work found that models are miscalibrated, with entropy per step increasing as generations grow longer, due to error accumulation. To calibrate the model and improve text quality, it has become standard practice to truncate the distribution, but this approach reduces output diversity, which we would like to avoid. Therefore, in this paper, we ask: does miscalibration improve automatically with scale, and if not, is it theoretically possible to calibrate without tradeoffs? To build intuition, we first study a simplified theoretical setting to characterize the scaling behavior of miscalibration with respect to dataset size. We find that the rate of scaling depends on the power law exponent of the data distribution -- in particular, for a power law exponent close to 1, the scaling exponent is close to 0, meaning that miscalibration improves very slowly with scale. Next, we measure miscalibration empirically in language models ranging from 0.5B to 70B parameters. We find that the observed scaling behavior is similar to what is predicted theoretically: our fitted scaling exponents for text are close to 0, meaning that larger models accumulate error at a similar rate as smaller ones. This scaling (or, lack thereof) provides one explanation for why we sample from larger models with similar amounts of truncation as smaller models, even though the larger models are of higher quality. However, truncation is not a satisfying solution because it comes at the cost of increased log loss. In theory, is it even possible to reduce entropy while preserving log loss? We prove that it is possible, if we assume access to a black box which can fit models to predict the future entropy of text.
comment: Neurips 2025
Quantization-Aware Neuromorphic Architecture for Skin Disease Classification on Resource-Constrained Devices
On-device skin lesion analysis is constrained by the compute and energy cost of conventional CNN inference and by the need to update models as new patient data become available. We propose QANA, a quantization-aware CNN backbone embedded in an end-to-end pipeline engineered for conversion-stable neuromorphic execution. QANA replaces conversion-fragile components with spike-compatible transformations by bounding intermediate activations and aligning normalization with low-bit quantization, reducing conversion-induced distortion that disproportionately impacts rare classes. Efficiency is achieved through Ghost-based feature generation under tight FLOP budgets, while spatially-aware efficient channel attention and squeeze-and-excitation recalibrate channels without heavy global operators that are difficult to map to spiking cores. The resulting quantized projection head produces SNN-ready logits and enables incremental updates on edge hardware without full retraining or data offloading. On HAM10000, QANA achieves 91.6% Top-1 accuracy and 91.0% macro F1, improving the strongest converted SNN baseline by 3.5 percentage points in Top-1 accuracy, corresponding to a 4.0% relative gain, and by 12.0 points in macro F1, corresponding to a 15.2% relative gain. On a clinical dataset, QANA achieves 90.8% Top-1 accuracy and 81.7% macro F1, improving the strongest converted SNN baseline by 3.2 points in Top-1 accuracy, which corresponds to a 3.7% relative gain, and by 3.6 points in macro F1, corresponding to a 4.6% relative gain. When deployed on BrainChip Akida, QANA runs in 1.5 ms per image with 1.7 mJ per image, corresponding to 94.6% lower latency and 99.0% lower energy than its GPU-based CNN implementation.
PRISM: Self-Pruning Intrinsic Selection Method for Training-Free Multimodal Data Selection
Visual instruction tuning adapts pre-trained Multimodal Large Language Models (MLLMs) to follow human instructions for real-world applications. However, the rapid growth of these datasets introduces significant redundancy, leading to increased computational costs. Existing methods for selecting instruction data aim to prune this redundancy, but predominantly rely on computationally demanding techniques such as proxy-based inference or training-based metrics. Consequently, the substantial computational costs incurred by these selection processes often exacerbate the very efficiency bottlenecks they are intended to resolve, posing a significant challenge to the scalable and effective tuning of MLLMs. To address this challenge, we first identify a critical, yet previously overlooked, factor: the anisotropy inherent in visual feature distributions. We find that this anisotropy induces a \textit{Global Semantic Drift}, and overlooking this phenomenon is a key factor limiting the efficiency of current data selection methods. Motivated by this insight, we devise \textbf{PRISM}, the first training-free framework for efficient visual instruction selection. PRISM surgically removes the corrupting influence of global background features by modeling the intrinsic visual semantics via implicit re-centering. Empirically, PRISM reduces the end-to-end time for data selection and model tuning to just 30\% of conventional pipelines. More remarkably, it achieves this efficiency while simultaneously enhancing performance, surpassing models fine-tuned on the full dataset across eight multimodal and three language understanding benchmarks, culminating in a 101.7\% relative improvement over the baseline. The code is available for access via \href{https://github.com/bibisbar/PRISM}{this repository}.
LingVarBench: Benchmarking LLMs on Entity Recognitions and Linguistic Verbalization Patterns in Phone-Call Transcripts
We study structured entity extraction from phone-call transcripts in customer-support and healthcare settings, where annotation is costly, and data access is limited by privacy and consent. Existing methods degrade under disfluencies, interruptions, and speaker overlap, yet large real-call corpora are rarely shareable. We introduce LingVarBench, a benchmark and semantic synthetic data generation pipeline that generates linguistically varied training data via (1) LLM-sampled entity values, (2) curated linguistic verbalization patterns covering diverse disfluencies and entity-specific readout styles, and (3) a value-transcript consistency filter. Using this dataset, DSPy's SIMBA automatically synthesizes and optimizes extraction prompts, reducing manual prompt engineering and targeting robustness to verbal variation. On real customer transcripts, prompts optimized solely on LingVarBench outperform zero-shot baselines and match or closely approach human-tuned prompts for structured entities such as ZIP code, date of birth, and name (F1 approximately 94-95 percent). For subjective questionnaire items, optimized prompts substantially improve over zero-shot performance and approach human-tuned prompts. LingVarBench offers a practical and cost-efficient path to deployment in a direct-answer setting, with real annotations later enabling additional refinement.
comment: Accepted to EACL 2026 (Industry Track); to appear in the proceedings
Recidivism and Peer Influence with LLM Text Embeddings in Low Security Correctional Facilities
Studying peer effects in language is critical because they often reflect behavioral and personality traits that are important determinants of economic outcomes. However, language is unstructured, non-numeric, and high-dimensional. We combine Large Language Model (LLM) embeddings with structural econometric identification to provide a unified framework for identifying peer effects in language. This unified framework is applied to 80,000-120,000 written exchanges among residents of low security correctional facilities. The LLM language profiles predict three-year recidivism 30\% more accurately than pre-entry covariates alone, showing that text representations capture meaningful signals. We analyze peer effects on multidimensional language embeddings while addressing network endogeneity. We develop novel instrumental variable estimators for peer effects that accommodate multivariate outcomes, sparse networks, and multidimensional latent variables. Our methods achieve root-N consistency and asymptotic normality under realistic sparsity conditions, relaxing the dense-network assumption. Results reveal significant peer effects in residents' language profiles.
Advancing AI Negotiations: A Large-Scale Autonomous Negotiation Competition
We conducted an International AI Negotiation Competition in which participants designed and refined prompts for AI negotiation agents. We then facilitated over 180,000 negotiations between these agents across multiple scenarios with diverse characteristics and objectives. Our findings revealed that principles from human negotiation theory remain crucial even in AI-AI contexts. Surprisingly, warmth -- a traditionally human relationship-building trait -- was consistently associated with superior outcomes across all key performance metrics. Dominant agents, meanwhile, were especially effective at claiming value. Our analysis also revealed unique dynamics in AI-AI negotiations not fully explained by existing theory, including AI-specific technical strategies like chain-of-thought reasoning and prompt injection. When we applied natural language processing (NLP) methods to the full transcripts of all negotiations, we found positivity, gratitude, and question-asking (associated with warmth) were strongly associated with reaching deals as well as objective and subjective value, whereas conversation lengths (associated with dominance) were strongly associated with impasses. The results suggest the need to establish a new theory of AI negotiation, which integrates classic negotiation theory with AI-specific negotiation theories to better understand autonomous negotiations and optimize agent performance.
Benchmarking Positional Encodings for GNNs and Graph Transformers
Positional Encodings (PEs) are essential for injecting structural information into Graph Neural Networks (GNNs), particularly Graph Transformers, yet their empirical impact remains insufficiently understood. We introduce a unified benchmarking framework that decouples PEs from architectural choices, enabling a fair comparison across 8 GNN and Transformer models, 9 PEs, and 10 synthetic and real-world datasets. Across more than 500 model-PE-dataset configurations, we find that commonly used expressiveness proxies, including Weisfeiler-Lehman distinguishability, do not reliably predict downstream performance. In particular, highly expressive PEs frequently fail to improve, and can even degrade performance on real-world tasks. At the same time, we identify several simple and previously overlooked model-PE combinations that match or outperform recent state-of-the-art methods. Our results demonstrate the strong task-dependence of PEs and underscore the need for empirical validation beyond theoretical expressiveness. To support reproducible research, we release an open-source benchmarking framework for evaluating PEs for graph learning tasks.
comment: Accepted at KDD 2026 Datasets & Benchmarks Track
Collaborative Causal Sensemaking: Closing the Complementarity Gap in Human-AI Decision Support
LLM-based agents are increasingly deployed for expert decision support, yet human-AI teams in high-stakes settings do not yet reliably outperform the best individual. We argue this complementarity gap reflects a fundamental mismatch: current agents are trained as answer engines, not as partners in the collaborative sensemaking through which experts actually make decisions. Sensemaking (the ability to co-construct causal explanations, surface uncertainties, and adapt goals) is the key capability that current training pipelines do not explicitly develop or evaluate. We propose Collaborative Causal Sensemaking (CCS) as a research agenda to develop this capability from the ground up, spanning new training environments that reward collaborative thinking, representations for shared human-AI mental models, and evaluation centred on trust and complementarity. Taken together, these directions shift MAS research from building oracle-like answer engines to cultivating AI teammates that co-reason with their human partners over the causal structure of shared decisions, advancing the design of effective human-AI teams.
Cloud-based digitization workflow with rich metadata acquisition for cultural heritage objects
In response to several cultural heritage initiatives at the Jagiellonian University, we developed a new digitization workflow in collaboration with the Jagiellonian Library (JL). The solution is based on easy-to-access technological solutions -- Microsoft 365 cloud with MS Excel files as metadata acquisition interfaces, Office Script for validation, and MS Sharepoint for storage -- that allows metadata acquisition by domain experts regardless of their experience with information systems. The ultimate goal is to create a knowledge graph that describes the analyzed collections, linked to general knowledge bases, as well as to other cultural heritage collections, so careful attention is paid to the high accuracy of metadata and proper links to external sources. The workflow was evaluated in two pilot studies and in two workshops, which allowed for its refinement and confirmation of its correctness and usability for JL. The knowledge graph created as a result of these pilot studies was made available in a public git repository. As the proposed workflow does not interfere with existing systems or domain guidelines regarding digitization and basic metadata collection in a given institution, but extends them in order to enable rich metadata collection, not previously possible, we believe that it could be of interest to all GLAMs.
comment: 24 pages, 4 figures; submitted to The Journal of Academic Librarianship
DiSCo: Making Absence Visible in Intelligent Summarization Interfaces
Intelligent interfaces increasingly use large language models to summarize user-generated content, yet these summaries emphasize what is mentioned while overlooking what is missing. This presence bias can mislead users who rely on summaries to make decisions. We present Domain Informed Summarization through Contrast (DiSCo), an expectation-based computational approach that makes absences visible by comparing each entity's content with domain topical expectations captured in reference distributions of aspects typically discussed in comparable accommodations. This comparison identifies aspects that are either unusually emphasized or missing relative to domain norms and integrates them into the generated text. In a user study across three accommodation domains, namely ski, beach, and city center, DiSCo summaries were rated as more detailed and useful for decision making than baseline large language model summaries, although slightly harder to read. The findings show that modeling expectations reduces presence bias and improves both transparency and decision support in intelligent summarization interfaces.
Survey of End-to-End Multi-Speaker Automatic Speech Recognition for Monaural Audio
Monaural multi-speaker automatic speech recognition (ASR) remains challenging due to data scarcity and the intrinsic difficulty of recognizing and attributing words to individual speakers, particularly in overlapping speech. Recent advances have driven the shift from cascade systems to end-to-end (E2E) architectures, which reduce error propagation and better exploit the synergy between speech content and speaker identity. Despite rapid progress in E2E multi-speaker ASR, the field lacks a comprehensive review of recent developments. This survey provides a systematic taxonomy of E2E neural approaches for multi-speaker ASR, highlighting recent advances and comparative analysis. Specifically, we analyze: (1) architectural paradigms (SIMO vs.~SISO) for pre-segmented audio, analyzing their distinct characteristics and trade-offs; (2) recent architectural and algorithmic improvements based on these two paradigms; (3) extensions to long-form speech, including segmentation strategy and speaker-consistent hypothesis stitching. Further, we (4) evaluate and compare methods across standard benchmarks. We conclude with a discussion of open challenges and future research directions towards building robust and scalable multi-speaker ASR.
comment: Accepted for publication in Computer Speech & Language (CSL)
Machine Learning 206
★★ Motion Attribution for Video Generation
Despite the rapid progress of video generation models, the role of data in influencing motion is poorly understood. We present Motive (MOTIon attribution for Video gEneration), a motion-centric, gradient-based data attribution framework that scales to modern, large, high-quality video datasets and models. We use this to study which fine-tuning clips improve or degrade temporal dynamics. Motive isolates temporal dynamics from static appearance via motion-weighted loss masks, yielding efficient and scalable motion-specific influence computation. On text-to-video models, Motive identifies clips that strongly affect motion and guides data curation that improves temporal consistency and physical plausibility. With Motive-selected high-influence data, our method improves both motion smoothness and dynamic degree on VBench, achieving a 74.1% human preference win rate compared with the pretrained base model. To our knowledge, this is the first framework to attribute motion rather than visual appearance in video generative models and to use it to curate fine-tuning data.
comment: See the project website at https://research.nvidia.com/labs/sil/projects/MOTIVE/
Multiplex Thinking: Reasoning via Token-wise Branch-and-Merge
Large language models often solve complex reasoning tasks more effectively with Chain-of-Thought (CoT), but at the cost of long, low-bandwidth token sequences. Humans, by contrast, often reason softly by maintaining a distribution over plausible next steps. Motivated by this, we propose Multiplex Thinking, a stochastic soft reasoning mechanism that, at each thinking step, samples K candidate tokens and aggregates their embeddings into a single continuous multiplex token. This preserves the vocabulary embedding prior and the sampling dynamics of standard discrete generation, while inducing a tractable probability distribution over multiplex rollouts. Consequently, multiplex trajectories can be directly optimized with on-policy reinforcement learning (RL). Importantly, Multiplex Thinking is self-adaptive: when the model is confident, the multiplex token is nearly discrete and behaves like standard CoT; when it is uncertain, it compactly represents multiple plausible next steps without increasing sequence length. Across challenging math reasoning benchmarks, Multiplex Thinking consistently outperforms strong discrete CoT and RL baselines from Pass@1 through Pass@1024, while producing shorter sequences. The code and checkpoints are available at https://github.com/GMLR-Penn/Multiplex-Thinking.
comment: 21 pages. Code available at https://github.com/GMLR-Penn/Multiplex-Thinking
On the use of graph models to achieve individual and group fairness
Machine Learning algorithms are ubiquitous in key decision-making contexts such as justice, healthcare and finance, which has spawned a great demand for fairness in these procedures. However, the theoretical properties of such models in relation with fairness are still poorly understood, and the intuition behind the relationship between group and individual fairness is still lacking. In this paper, we provide a theoretical framework based on Sheaf Diffusion to leverage tools based on dynamical systems and homology to model fairness. Concretely, the proposed method projects input data into a bias-free space that encodes fairness constrains, resulting in fair solutions. Furthermore, we present a collection of network topologies handling different fairness metrics, leading to a unified method capable of dealing with both individual and group bias. The resulting models have a layer of interpretability in the form of closed-form expressions for their SHAP values, consolidating their place in the responsible Artificial Intelligence landscape. Finally, these intuitions are tested on a simulation study and standard fairness benchmarks, where the proposed methods achieve satisfactory results. More concretely, the paper showcases the performance of the proposed models in terms of accuracy and fairness, studying available trade-offs on the Pareto frontier, checking the effects of changing the different hyper-parameters, and delving into the interpretation of its outputs.
comment: 75 pages, 46 figures
Fast and explainable clustering in the Manhattan and Tanimoto distance
The CLASSIX algorithm is a fast and explainable approach to data clustering. In its original form, this algorithm exploits the sorting of the data points by their first principal component to truncate the search for nearby data points, with nearness being defined in terms of the Euclidean distance. Here we extend CLASSIX to other distance metrics, including the Manhattan distance and the Tanimoto distance. Instead of principal components, we use an appropriate norm of the data vectors as the sorting criterion, combined with the triangle inequality for search termination. In the case of Tanimoto distance, a provably sharper intersection inequality is used to further boost the performance of the new algorithm. On a real-world chemical fingerprint benchmark, CLASSIX Tanimoto is about 30 times faster than the Taylor--Butina algorithm, and about 80 times faster than DBSCAN, while computing higher-quality clusters in both cases.
Asymptotic Universal Alignment: A New Alignment Framework via Test-Time Scaling
Aligning large language models (LLMs) to serve users with heterogeneous and potentially conflicting preferences is a central challenge for personalized and trustworthy AI. We formalize an ideal notion of universal alignment through test-time scaling: for each prompt, the model produces $k\ge 1$ candidate responses and a user selects their preferred one. We introduce $(k,f(k))$-robust alignment, which requires the $k$-output model to have win rate $f(k)$ against any other single-output model, and asymptotic universal alignment (U-alignment), which requires $f(k)\to 1$ as $k\to\infty$. Our main result characterizes the optimal convergence rate: there exists a family of single-output policies whose $k$-sample product policies achieve U-alignment at rate $f(k)=\frac{k}{k+1}$, and no method can achieve a faster rate in general. We show that popular post-training methods, including Nash learning from human feedback (NLHF), can fundamentally underutilize the benefits of test-time scaling. Even though NLHF is optimal for $k=1$, sampling from the resulting (often deterministic) policy cannot guarantee win rates above $\tfrac{1}{2}$ except for an arbitrarily small slack. This stems from a lack of output diversity: existing alignment methods can collapse to a single majority-preferred response, making additional samples redundant. In contrast, our approach preserves output diversity and achieves the optimal test-time scaling rate. In particular, we propose a family of symmetric multi-player alignment games and prove that any symmetric Nash equilibrium policy of the $(k+1)$-player alignment game achieves the optimal $(k,\frac{k}{k+1})$-robust alignment. Finally, we provide theoretical convergence guarantees for self-play learning dynamics in these games and extend the framework to opponents that also generate multiple responses.
Rewarding the Rare: Uniqueness-Aware RL for Creative Problem Solving in LLMs
Reinforcement learning (RL) has become a central paradigm for post-training large language models (LLMs), particularly for complex reasoning tasks, yet it often suffers from exploration collapse: policies prematurely concentrate on a small set of dominant reasoning patterns, improving pass@1 while limiting rollout-level diversity and gains in pass@k. We argue that this failure stems from regularizing local token behavior rather than diversity over sets of solutions. To address this, we propose Uniqueness-Aware Reinforcement Learning, a rollout-level objective that explicitly rewards correct solutions that exhibit rare high-level strategies. Our method uses an LLM-based judge to cluster rollouts for the same problem according to their high-level solution strategies, ignoring superficial variations, and reweights policy advantages inversely with cluster size. As a result, correct but novel strategies receive higher rewards than redundant ones. Across mathematics, physics, and medical reasoning benchmarks, our approach consistently improves pass@$k$ across large sampling budgets and increases the area under the pass@$k$ curve (AUC@$K$) without sacrificing pass@1, while sustaining exploration and uncovering more diverse solution strategies at scale.
comment: Work in Progress
Adaptive Requesting in Decentralized Edge Networks via Non-Stationary Bandits
We study a decentralized collaborative requesting problem that aims to optimize the information freshness of time-sensitive clients in edge networks consisting of multiple clients, access nodes (ANs), and servers. Clients request content through ANs acting as gateways, without observing AN states or the actions of other clients. We define the reward as the age of information reduction resulting from a client's selection of an AN, and formulate the problem as a non-stationary multi-armed bandit. In this decentralized and partially observable setting, the resulting reward process is history-dependent and coupled across clients, and exhibits both abrupt and gradual changes in expected rewards, rendering classical bandit-based approaches ineffective. To address these challenges, we propose the AGING BANDIT WITH ADAPTIVE RESET algorithm, which combines adaptive windowing with periodic monitoring to track evolving reward distributions. We establish theoretical performance guarantees showing that the proposed algorithm achieves near-optimal performance, and we validate the theoretical results through simulations.
A Novel Approach to Explainable AI with Quantized Active Ingredients in Decision Making
Artificial Intelligence (AI) systems have shown good success at classifying. However, the lack of explainability is a true and significant challenge, especially in high-stakes domains, such as health and finance, where understanding is paramount. We propose a new solution to this challenge: an explainable AI framework based on our comparative study with Quantum Boltzmann Machines (QBMs) and Classical Boltzmann Machines (CBMs). We leverage principles of quantum computing within classical machine learning to provide substantive transparency around decision-making. The design involves training both models on a binarised and dimensionally reduced MNIST dataset, where Principal Component Analysis (PCA) is applied for preprocessing. For interpretability, we employ gradient-based saliency maps in QBMs and SHAP (SHapley Additive exPlanations) in CBMs to evaluate feature attributions.QBMs deploy hybrid quantum-classical circuits with strongly entangling layers, allowing for richer latent representations, whereas CBMs serve as a classical baseline that utilises contrastive divergence. Along the way, we found that QBMs outperformed CBMs on classification accuracy (83.5% vs. 54%) and had more concentrated distributions in feature attributions as quantified by entropy (1.27 vs. 1.39). In other words, QBMs not only produced better predictive performance than CBMs, but they also provided clearer identification of "active ingredient" or the most important features behind model predictions. To conclude, our results illustrate that quantum-classical hybrid models can display improvements in both accuracy and interpretability, which leads us toward more trustworthy and explainable AI systems.
comment: Accepted and published in IEEE 2025. This is the authors manuscript version; final version available at IEEE Xplore: https://ieeexplore.ieee.org/document/11318441
Model-Agnostic Solutions for Deep Reinforcement Learning in Non-Ergodic Contexts
Reinforcement Learning (RL) remains a central optimisation framework in machine learning. Although RL agents can converge to optimal solutions, the definition of ``optimality'' depends on the environment's statistical properties. The Bellman equation, central to most RL algorithms, is formulated in terms of expected values of future rewards. However, when ergodicity is broken, long-term outcomes depend on the specific trajectory rather than on the ensemble average. In such settings, the ensemble average diverges from the time-average growth experienced by individual agents, with expected-value formulations yielding systematically suboptimal policies. Prior studies demonstrated that traditional RL architectures fail to recover the true optimum in non-ergodic environments. We extend this analysis to deep RL implementations and show that these, too, produce suboptimal policies under non-ergodic dynamics. Introducing explicit time dependence into the learning process can correct this limitation. By allowing the network's function approximation to incorporate temporal information, the agent can estimate value functions consistent with the process's intrinsic growth rate. This improvement does not require altering the environmental feedback, such as reward transformations or modified objective functions, but arises naturally from the agent's exposure to temporal trajectories. Our results contribute to the growing body of research on reinforcement learning methods for non-ergodic systems.
Kernel Learning for Regression via Quantum Annealing Based Spectral Sampling
While quantum annealing (QA) has been developed for combinatorial optimization, practical QA devices operate at finite temperature and under noise, and their outputs can be regarded as stochastic samples close to a Gibbs--Boltzmann distribution. In this study, we propose a QA-in-the-loop kernel learning framework that integrates QA not merely as a substitute for Markov-chain Monte Carlo sampling but as a component that directly determines the learned kernel for regression. Based on Bochner's theorem, a shift-invariant kernel is represented as an expectation over a spectral distribution, and random Fourier features (RFF) approximate the kernel by sampling frequencies. We model the spectral distribution with a (multi-layer) restricted Boltzmann machine (RBM), generate discrete RBM samples using QA, and map them to continuous frequencies via a Gaussian--Bernoulli transformation. Using the resulting RFF, we construct a data-adaptive kernel and perform Nadaraya--Watson (NW) regression. Because the RFF approximation based on $\cos(\bmω^{\top}Δ\bm{x})$ can yield small negative values and cancellation across neighbors, the Nadaraya--Watson denominator $\sum_j k_{ij}$ may become close to zero. We therefore employ nonnegative squared-kernel weights $w_{ij}=k(\bm{x}_i,\bm{x}_j)^2$, which also enhances the contrast of kernel weights. The kernel parameters are trained by minimizing the leave-one-out NW mean squared error, and we additionally evaluate local linear regression with the same squared-kernel weights at inference. Experiments on multiple benchmark regression datasets demonstrate a decrease in training loss, accompanied by structural changes in the kernel matrix, and show that the learned kernel tends to improve $R^2$ and RMSE over the baseline Gaussian-kernel NW. Increasing the number of random features at inference further enhances accuracy.
comment: 15pages, 5 figures, 4 tables
Soft Partition-based KAPI-ELM for Multi-Scale PDEs
Physics-informed machine learning holds great promise for solving differential equations, yet existing methods struggle with highly oscillatory, multiscale, or singularly perturbed PDEs due to spectral bias, costly backpropagation, and manually tuned kernel or Fourier frequencies. This work introduces a soft partition--based Kernel-Adaptive Physics-Informed Extreme Learning Machine (KAPI-ELM), a deterministic low-dimensional parameterization in which smooth partition lengths jointly control collocation centers and Gaussian kernel widths, enabling continuous coarse-to-fine resolution without Fourier features, random sampling, or hard domain interfaces. A signed-distance-based weighting further stabilizes least-squares learning on irregular geometries. Across eight benchmarks--including oscillatory ODEs, high-frequency Poisson equations, irregular-shaped domains, and stiff singularly perturbed convection-diffusion problems-the proposed method matches or exceeds the accuracy of state-of-the-art Physics-Informed Neural Network (PINN) and Theory of Functional Connections (TFC) variants while using only a single linear solve. Although demonstrated on steady linear PDEs, the results show that soft-partition kernel adaptation provides a fast, architecture-free approach for multiscale PDEs with broad potential for future physics-informed modeling. For reproducibility, the reference codes are available at https://github.com/vikas-dwivedi-2022/soft_kapi
Multi-Preconditioned LBFGS for Training Finite-Basis PINNs
A multi-preconditioned LBFGS (MP-LBFGS) algorithm is introduced for training finite-basis physics-informed neural networks (FBPINNs). The algorithm is motivated by the nonlinear additive Schwarz method and exploits the domain-decomposition-inspired additive architecture of FBPINNs, in which local neural networks are defined on subdomains, thereby localizing the network representation. Parallel, subdomain-local quasi-Newton corrections are then constructed on the corresponding local parts of the architecture. A key feature is a novel nonlinear multi-preconditioning mechanism, in which subdomain corrections are optimally combined through the solution of a low-dimensional subspace minimization problem. Numerical experiments indicate that MP-LBFGS can improve convergence speed, as well as model accuracy over standard LBFGS while incurring lower communication overhead.
comment: 13 pages
RMBRec: Robust Multi-Behavior Recommendation towards Target Behaviors
Multi-behavior recommendation faces a critical challenge in practice: auxiliary behaviors (e.g., clicks, carts) are often noisy, weakly correlated, or semantically misaligned with the target behavior (e.g., purchase), which leads to biased preference learning and suboptimal performance. While existing methods attempt to fuse these heterogeneous signals, they inherently lack a principled mechanism to ensure robustness against such behavioral inconsistency. In this work, we propose Robust Multi-Behavior Recommendation towards Target Behaviors (RMBRec), a robust multi-behavior recommendation framework grounded in an information-theoretic robustness principle. We interpret robustness as a joint process of maximizing predictive information while minimizing its variance across heterogeneous behavioral environments. Under this perspective, the Representation Robustness Module (RRM) enhances local semantic consistency by maximizing the mutual information between users' auxiliary and target representations, whereas the Optimization Robustness Module (ORM) enforces global stability by minimizing the variance of predictive risks across behaviors, which is an efficient approximation to invariant risk minimization. This local-global collaboration bridges representation purification and optimization invariance in a theoretically coherent way. Extensive experiments on three real-world datasets demonstrate that RMBRec not only outperforms state-of-the-art methods in accuracy but also maintains remarkable stability under various noise perturbations. For reproducibility, our code is available at https://github.com/miaomiao-cai2/RMBRec/.
Evaluating the Ability of Explanations to Disambiguate Models in a Rashomon Set AAAI 2026
Explainable artificial intelligence (XAI) is concerned with producing explanations indicating the inner workings of models. For a Rashomon set of similarly performing models, explanations provide a way of disambiguating the behavior of individual models, helping select models for deployment. However explanations themselves can vary depending on the explainer used, and need to be evaluated. In the paper "Evaluating Model Explanations without Ground Truth", we proposed three principles of explanation evaluation and a new method "AXE" to evaluate the quality of feature-importance explanations. We go on to illustrate how evaluation metrics that rely on comparing model explanations against ideal ground truth explanations obscure behavioral differences within a Rashomon set. Explanation evaluation aligned with our proposed principles would highlight these differences instead, helping select models from the Rashomon set. The selection of alternate models from the Rashomon set can maintain identical predictions but mislead explainers into generating false explanations, and mislead evaluation methods into considering the false explanations to be of high quality. AXE, our proposed explanation evaluation method, can detect this adversarial fairwashing of explanations with a 100% success rate. Unlike prior explanation evaluation strategies such as those based on model sensitivity or ground truth comparison, AXE can determine when protected attributes are used to make predictions.
comment: This is a preprint of the paper published at the MURE workshop, AAAI 2026, which builds on a preprint of separate work published at FAccT 2025 (arXiv:2505.10399)
Enabling Population-Based Architectures for Neural Combinatorial Optimization
Neural Combinatorial Optimization (NCO) has mostly focused on learning policies, typically neural networks, that operate on a single candidate solution at a time, either by constructing one from scratch or iteratively improving it. In contrast, decades of work in metaheuristics have shown that maintaining and evolving populations of solutions improves robustness and exploration, and often leads to stronger performance. To close this gap, we study how to make NCO explicitly population-based by learning policies that act on sets of candidate solutions. We first propose a simple taxonomy of population awareness levels and use it to highlight two key design challenges: (i) how to represent a whole population inside a neural network, and (ii) how to learn population dynamics that balance intensification (generating good solutions) and diversification (maintaining variety). We make these ideas concrete with two complementary tools: one that improves existing solutions using information shared across the whole population, and the other generates new candidate solutions that explicitly balance being high-quality with diversity. Experimental results on Maximum Cut and Maximum Independent Set indicate that incorporating population structure is advantageous for learned optimization methods and opens new connections between NCO and classical population-based search.
Além do Desempenho: Um Estudo da Confiabilidade de Detectores de Deepfakes
Deepfakes are synthetic media generated by artificial intelligence, with positive applications in education and creativity, but also serious negative impacts such as fraud, misinformation, and privacy violations. Although detection techniques have advanced, comprehensive evaluation methods that go beyond classification performance remain lacking. This paper proposes a reliability assessment framework based on four pillars: transferability, robustness, interpretability, and computational efficiency. An analysis of five state-of-the-art methods revealed significant progress as well as critical limitations.
comment: Accepted for presentation at the Brazilian Symposium on Cybersecurity (SBSeg) 2025, in Portuguese language
TRACE: Reconstruction-Based Anomaly Detection in Ensemble and Time-Dependent Simulations
Detecting anomalies in high-dimensional, time-dependent simulation data is challenging due to complex spatial and temporal dynamics. We study reconstruction-based anomaly detection for ensemble data from parameterized Kármán vortex street simulations using convolutional autoencoders. We compare a 2D autoencoder operating on individual frames with a 3D autoencoder that processes short temporal stacks. The 2D model identifies localized spatial irregularities in single time steps, while the 3D model exploits spatio-temporal context to detect anomalous motion patterns and reduces redundant detections across time. We further evaluate volumetric time-dependent data and find that reconstruction errors are strongly influenced by the spatial distribution of mass, with highly concentrated regions yielding larger errors than dispersed configurations. Our results highlight the importance of temporal context for robust anomaly detection in dynamic simulations.
RULERS: Locked Rubrics and Evidence-Anchored Scoring for Robust LLM Evaluation
The LLM-as-a-Judge paradigm promises scalable rubric-based evaluation, yet aligning frozen black-box models with human standards remains a challenge due to inherent generation stochasticity. We reframe judge alignment as a criteria transfer problem and isolate three recurrent failure modes: rubric instability caused by prompt sensitivity, unverifiable reasoning that lacks auditable evidence, and scale misalignment with human grading boundaries. To address these issues, we introduce RULERS (Rubric Unification, Locking, and Evidence-anchored Robust Scoring), a compiler-executor framework that transforms natural language rubrics into executable specifications. RULERS operates by compiling criteria into versioned immutable bundles, enforcing structured decoding with deterministic evidence verification, and applying lightweight Wasserstein-based post-hoc calibration, all without updating model parameters. Extensive experiments on essay and summarization benchmarks demonstrate that RULERS significantly outperforms representative baselines in human agreement, maintains strong stability against adversarial rubric perturbations, and enables smaller models to rival larger proprietary judges. Overall, our results suggest that reliable LLM judging requires executable rubrics, verifiable evidence, and calibrated scales rather than prompt phrasing alone. Code is available at https://github.com/LabRAI/Rulers.git.
Safe Language Generation in the Limit
Recent results in learning a language in the limit have shown that, although language identification is impossible, language generation is tractable. As this foundational area expands, we need to consider the implications of language generation in real-world settings. This work offers the first theoretical treatment of safe language generation. Building on the computational paradigm of learning in the limit, we formalize the tasks of safe language identification and generation. We prove that under this model, safe language identification is impossible, and that safe language generation is at least as hard as (vanilla) language identification, which is also impossible. Last, we discuss several intractable and tractable cases.
Provably Safe Reinforcement Learning using Entropy Regularizer
We consider the problem of learning the optimal policy for Markov decision processes with safety constraints. We formulate the problem in a reach-avoid setup. Our goal is to design online reinforcement learning algorithms that ensure safety constraints with arbitrarily high probability during the learning phase. To this end, we first propose an algorithm based on the optimism in the face of uncertainty (OFU) principle. Based on the first algorithm, we propose our main algorithm, which utilizes entropy regularization. We investigate the finite-sample analysis of both algorithms and derive their regret bounds. We demonstrate that the inclusion of entropy regularization improves the regret and drastically controls the episode-to-episode variability that is inherent in OFU-based safe RL algorithms.
M$^2$FMoE: Multi-Resolution Multi-View Frequency Mixture-of-Experts for Extreme-Adaptive Time Series Forecasting AAAI 2026
Forecasting time series with extreme events is critical yet challenging due to their high variance, irregular dynamics, and sparse but high-impact nature. While existing methods excel in modeling dominant regular patterns, their performance degrades significantly during extreme events, constituting the primary source of forecasting errors in real-world applications. Although some approaches incorporate auxiliary signals to improve performance, they still fail to capture extreme events' complex temporal dynamics. To address these limitations, we propose M$^2$FMoE, an extreme-adaptive forecasting model that learns both regular and extreme patterns through multi-resolution and multi-view frequency modeling. It comprises three modules: (1) a multi-view frequency mixture-of-experts module assigns experts to distinct spectral bands in Fourier and Wavelet domains, with cross-view shared band splitter aligning frequency partitions and enabling inter-expert collaboration to capture both dominant and rare fluctuations; (2) a multi-resolution adaptive fusion module that hierarchically aggregates frequency features from coarse to fine resolutions, enhancing sensitivity to both short-term variations and sudden changes; (3) a temporal gating integration module that dynamically balances long-term trends and short-term frequency-aware features, improving adaptability to both regular and extreme temporal patterns. Experiments on real-world hydrological datasets with extreme patterns demonstrate that M$^2$FMoE outperforms state-of-the-art baselines without requiring extreme-event labels.
comment: Accepted by AAAI 2026
SafeRedir: Prompt Embedding Redirection for Robust Unlearning in Image Generation Models
Image generation models (IGMs), while capable of producing impressive and creative content, often memorize a wide range of undesirable concepts from their training data, leading to the reproduction of unsafe content such as NSFW imagery and copyrighted artistic styles. Such behaviors pose persistent safety and compliance risks in real-world deployments and cannot be reliably mitigated by post-hoc filtering, owing to the limited robustness of such mechanisms and a lack of fine-grained semantic control. Recent unlearning methods seek to erase harmful concepts at the model level, which exhibit the limitations of requiring costly retraining, degrading the quality of benign generations, or failing to withstand prompt paraphrasing and adversarial attacks. To address these challenges, we introduce SafeRedir, a lightweight inference-time framework for robust unlearning via prompt embedding redirection. Without modifying the underlying IGMs, SafeRedir adaptively routes unsafe prompts toward safe semantic regions through token-level interventions in the embedding space. The framework comprises two core components: a latent-aware multi-modal safety classifier for identifying unsafe generation trajectories, and a token-level delta generator for precise semantic redirection, equipped with auxiliary predictors for token masking and adaptive scaling to localize and regulate the intervention. Empirical results across multiple representative unlearning tasks demonstrate that SafeRedir achieves effective unlearning capability, high semantic and perceptual preservation, robust image quality, and enhanced resistance to adversarial attacks. Furthermore, SafeRedir generalizes effectively across a variety of diffusion backbones and existing unlearned models, validating its plug-and-play compatibility and broad applicability. Code and data are available at https://github.com/ryliu68/SafeRedir.
comment: Code at https://github.com/ryliu68/SafeRedir
Robust low-rank estimation with multiple binary responses using pairwise AUC loss
Multiple binary responses arise in many modern data-analytic problems. Although fitting separate logistic regressions for each response is computationally attractive, it ignores shared structure and can be statistically inefficient, especially in high-dimensional and class-imbalanced regimes. Low-rank models offer a natural way to encode latent dependence across tasks, but existing methods for binary data are largely likelihood-based and focus on pointwise classification rather than ranking performance. In this work, we propose a unified framework for learning with multiple binary responses that directly targets discrimination by minimizing a surrogate loss for the area under the ROC curve (AUC). The method aggregates pairwise AUC surrogate losses across responses while imposing a low-rank constraint on the coefficient matrix to exploit shared structure. We develop a scalable projected gradient descent algorithm based on truncated singular value decomposition. Exploiting the fact that the pairwise loss depends only on differences of linear predictors, we simplify computation and analysis. We establish non-asymptotic convergence guarantees, showing that under suitable regularity conditions, leading to linear convergence up to the minimax-optimal statistical precision. Extensive simulation studies demonstrate that the proposed method is robust in challenging settings such as label switching and data contamination and consistently outperforms likelihood-based approaches.
Accelerated Methods with Complexity Separation Under Data Similarity for Federated Learning Problems
Heterogeneity within data distribution poses a challenge in many modern federated learning tasks. We formalize it as an optimization problem involving a computationally heavy composite under data similarity. By employing different sets of assumptions, we present several approaches to develop communication-efficient methods. An optimal algorithm is proposed for the convex case. The constructed theory is validated through a series of experiments across various problems.
comment: 30 pages, 4 theorems, 2 figures
Interpretability and Individuality in Knee MRI: Patient-Specific Radiomic Fingerprint with Reconstructed Healthy Personas
For automated assessment of knee MRI scans, both accuracy and interpretability are essential for clinical use and adoption. Traditional radiomics rely on predefined features chosen at the population level; while more interpretable, they are often too restrictive to capture patient-specific variability and can underperform end-to-end deep learning (DL). To address this, we propose two complementary strategies that bring individuality and interpretability: radiomic fingerprints and healthy personas. First, a radiomic fingerprint is a dynamically constructed, patient-specific feature set derived from MRI. Instead of applying a uniform population-level signature, our model predicts feature relevance from a pool of candidate features and selects only those most predictive for each patient, while maintaining feature-level interpretability. This fingerprint can be viewed as a latent-variable model of feature usage, where an image-conditioned predictor estimates usage probabilities and a transparent logistic regression with global coefficients performs classification. Second, a healthy persona synthesises a pathology-free baseline for each patient using a diffusion model trained to reconstruct healthy knee MRIs. Comparing features extracted from pathological images against their personas highlights deviations from normal anatomy, enabling intuitive, case-specific explanations of disease manifestations. We systematically compare fingerprints, personas, and their combination across three clinical tasks. Experimental results show that both approaches yield performance comparable to or surpassing state-of-the-art DL models, while supporting interpretability at multiple levels. Case studies further illustrate how these perspectives facilitate human-explainable biomarker discovery and pathology localisation.
Sample Complexity of Composite Quantum Hypothesis Testing
This paper investigates symmetric composite binary quantum hypothesis testing (QHT), where the goal is to determine which of two uncertainty sets contains an unknown quantum state. While asymptotic error exponents for this problem are well-studied, the finite-sample regime remains poorly understood. We bridge this gap by characterizing the sample complexity -- the minimum number of state copies required to achieve a target error level. Specifically, we derive lower bounds that generalize the sample complexity of simple QHT and introduce new upper bounds for various uncertainty sets, including of both finite and infinite cardinalities. Notably, our upper and lower bounds match up to universal constants, providing a tight characterization of the sample complexity. Finally, we extend our analysis to the differentially private setting, establishing the sample complexity for privacy-preserving composite QHT.
comment: Under review
EviNAM: Intelligibility and Uncertainty via Evidential Neural Additive Models
Intelligibility and accurate uncertainty estimation are crucial for reliable decision-making. In this paper, we propose EviNAM, an extension of evidential learning that integrates the interpretability of Neural Additive Models (NAMs) with principled uncertainty estimation. Unlike standard Bayesian neural networks and previous evidential methods, EviNAM enables, in a single pass, both the estimation of the aleatoric and epistemic uncertainty as well as explicit feature contributions. Experiments on synthetic and real data demonstrate that EviNAM matches state-of-the-art predictive performance. While we focus on regression, our method extends naturally to classification and generalized additive models, offering a path toward more intelligible and trustworthy predictions.
Contrastive and Multi-Task Learning on Noisy Brain Signals with Nonlinear Dynamical Signatures
We introduce a two-stage multitask learning framework for analyzing Electroencephalography (EEG) signals that integrates denoising, dynamical modeling, and representation learning. In the first stage, a denoising autoencoder is trained to suppress artifacts and stabilize temporal dynamics, providing robust signal representations. In the second stage, a multitask architecture processes these denoised signals to achieve three objectives: motor imagery classification, chaotic versus non-chaotic regime discrimination using Lyapunov exponent-based labels, and self-supervised contrastive representation learning with NT-Xent loss. A convolutional backbone combined with a Transformer encoder captures spatial-temporal structure, while the dynamical task encourages sensitivity to nonlinear brain dynamics. This staged design mitigates interference between reconstruction and discriminative goals, improves stability across datasets, and supports reproducible training by clearly separating noise reduction from higher-level feature learning. Empirical studies show that our framework not only enhances robustness and generalization but also surpasses strong baselines and recent state-of-the-art methods in EEG decoding, highlighting the effectiveness of combining denoising, dynamical features, and self-supervised learning.
Convergence of gradient flow for learning convolutional neural networks
Convolutional neural networks are widely used in imaging and image recognition. Learning such networks from training data leads to the minimization of a non-convex function. This makes the analysis of standard optimization methods such as variants of (stochastic) gradient descent challenging. In this article we study the simplified setting of linear convolutional networks. We show that the gradient flow (to be interpreted as an abstraction of gradient descent) applied to the empirical risk defined via certain loss functions including the square loss always converges to a critical point, under a mild condition on the training data.
comment: 17 pages
Reducing Compute Waste in LLMs through Kernel-Level DVFS
The rapid growth of AI has fueled the expansion of accelerator- or GPU-based data centers. However, the rising operational energy consumption has emerged as a critical bottleneck and a major sustainability concern. Dynamic Voltage and Frequency Scaling (DVFS) is a well-known technique used to reduce energy consumption, and thus improve energy-efficiency, since it requires little effort and works with existing hardware. Reducing the energy consumption of training and inference of Large Language Models (LLMs) through DVFS or power capping is feasible: related work has shown energy savings can be significant, but at the cost of significant slowdowns. In this work, we focus on reducing waste in LLM operations: i.e., reducing energy consumption without losing performance. We propose a fine-grained, kernel-level, DVFS approach that explores new frequency configurations, and prove these save more energy than previous, pass- or iteration-level solutions. For example, for a GPT-3 training run, a pass-level approach could reduce energy consumption by 2% (without losing performance), while our kernel-level approach saves as much as 14.6% (with a 0.6% slowdown). We further investigate the effect of data and tensor parallelism, and show our discovered clock frequencies translate well for both. We conclude that kernel-level DVFS is a suitable technique to reduce waste in LLM operations, providing significant energy savings with negligible slow-down.
Sampling via Stochastic Interpolants by Langevin-based Velocity and Initialization Estimation in Flow ODEs
We propose a novel method for sampling from unnormalized Boltzmann densities based on a probability-flow ordinary differential equation (ODE) derived from linear stochastic interpolants. The key innovation of our approach is the use of a sequence of Langevin samplers to enable efficient simulation of the flow. Specifically, these Langevin samplers are employed (i) to generate samples from the interpolant distribution at intermediate times and (ii) to construct, starting from these intermediate times, a robust estimator of the velocity field governing the flow ODE. For both applications of the Langevin diffusions, we establish convergence guarantees. Extensive numerical experiments demonstrate the efficiency of the proposed method on challenging multimodal distributions across a range of dimensions, as well as its effectiveness in Bayesian inference tasks.
Supervised Spike Agreement Dependent Plasticity for Fast Local Learning in Spiking Neural Networks
Spike-Timing-Dependent Plasticity (STDP) provides a biologically grounded learning rule for spiking neural networks (SNNs), but its reliance on precise spike timing and pairwise updates limits fast learning of weights. We introduce a supervised extension of Spike Agreement-Dependent Plasticity (SADP), which replaces pairwise spike-timing comparisons with population-level agreement metrics such as Cohen's kappa. The proposed learning rule preserves strict synaptic locality, admits linear-time complexity, and enables efficient supervised learning without backpropagation, surrogate gradients, or teacher forcing. We integrate supervised SADP within hybrid CNN-SNN architectures, where convolutional encoders provide compact feature representations that are converted into Poisson spike trains for agreement-driven learning in the SNN. Extensive experiments on MNIST, Fashion-MNIST, CIFAR-10, and biomedical image classification tasks demonstrate competitive performance and fast convergence. Additional analyses show stable performance across broad hyperparameter ranges and compatibility with device-inspired synaptic update dynamics. Together, these results establish supervised SADP as a scalable, biologically grounded, and hardware-aligned learning paradigm for spiking neural networks.
Your Group-Relative Advantage Is Biased
Reinforcement Learning from Verifier Rewards (RLVR) has emerged as a widely used approach for post-training large language models on reasoning tasks, with group-based methods such as GRPO and its variants gaining broad adoption. These methods rely on group-relative advantage estimation to avoid learned critics, yet its theoretical properties remain poorly understood. In this work, we uncover a fundamental issue of group-based RL: the group-relative advantage estimator is inherently biased relative to the true (expected) advantage. We provide the first theoretical analysis showing that it systematically underestimates advantages for hard prompts and overestimates them for easy prompts, leading to imbalanced exploration and exploitation. To address this issue, we propose History-Aware Adaptive Difficulty Weighting (HA-DW), an adaptive reweighting scheme that adjusts advantage estimates based on an evolving difficulty anchor and training dynamics. Both theoretical analysis and experiments on five mathematical reasoning benchmarks demonstrate that HA-DW consistently improves performance when integrated into GRPO and its variants. Our results suggest that correcting biased advantage estimation is critical for robust and efficient RLVR training.
STAR: Detecting Inference-time Backdoors in LLM Reasoning via State-Transition Amplification Ratio
Recent LLMs increasingly integrate reasoning mechanisms like Chain-of-Thought (CoT). However, this explicit reasoning exposes a new attack surface for inference-time backdoors, which inject malicious reasoning paths without altering model parameters. Because these attacks generate linguistically coherent paths, they effectively evade conventional detection. To address this, we propose STAR (State-Transition Amplification Ratio), a framework that detects backdoors by analyzing output probability shifts. STAR exploits the statistical discrepancy where a malicious input-induced path exhibits high posterior probability despite a low prior probability in the model's general knowledge. We quantify this state-transition amplification and employ the CUSUM algorithm to detect persistent anomalies. Experiments across diverse models (8B-70B) and five benchmark datasets demonstrate that STAR exhibits robust generalization capabilities, consistently achieving near-perfect performance (AUROC $\approx$ 1.0) with approximately $42\times$ greater efficiency than existing baselines. Furthermore, the framework proves robust against adaptive attacks attempting to bypass detection.
comment: 16 pages, 5 figures
Temporal Fusion Nexus: A task-agnostic multi-modal embedding model for clinical narratives and irregular time series in post-kidney transplant care
We introduce Temporal Fusion Nexus (TFN), a multi-modal and task-agnostic embedding model to integrate irregular time series and unstructured clinical narratives. We analysed TFN in post-kidney transplant (KTx) care, with a retrospective cohort of 3382 patients, on three key outcomes: graft loss, graft rejection, and mortality. Compared to state-of-the-art model in post KTx care, TFN achieved higher performance for graft loss (AUC 0.96 vs. 0.94) and graft rejection (AUC 0.84 vs. 0.74). In mortality prediction, TFN yielded an AUC of 0.86. TFN outperformed unimodal baselines (approx 10% AUC improvement over time series only baseline, approx 5% AUC improvement over time series with static patient data). Integrating clinical text improved performance across all tasks. Disentanglement metrics confirmed robust and interpretable latent factors in the embedding space, and SHAP-based attributions confirmed alignment with clinical reasoning. TFN has potential application in clinical tasks beyond KTx, where heterogeneous data sources, irregular longitudinal data, and rich narrative documentation are available.
comment: 31 pages, 9 figures, 3 tables. A supplementary file is also available
GraphFusionSBR: Denoising Multi-Channel Graphs for Session-Based Recommendation
Session-based recommendation systems must capture implicit user intents from sessions. However, existing models suffer from issues such as item interaction dominance and noisy sessions. We propose a multi-channel recommendation model, including a knowledge graph channel, a session hypergraph channel, and a session line graph channel, to capture information from multiple sources. Our model adaptively removes redundant edges in the knowledge graph channel to reduce noise. Knowledge graph representations cooperate with hypergraph representations for prediction to alleviate item dominance. We also generate in-session attention for denoising. Finally, we maximize mutual information between the hypergraph and line graph channels as an auxiliary task. Experiments demonstrate that our method enhances the accuracy of various recommendations, including e-commerce and multimedia recommendations. We release the code on GitHub for reproducibility.\footnote{https://github.com/hohehohe0509/DSR-HK}
AUV Trajectory Learning for Underwater Acoustic Energy Transfer and Age Minimization
Internet of underwater things (IoUT) is increasingly gathering attention with the aim of monitoring sea life and deep ocean environment, underwater surveillance as well as maintenance of underwater installments. However, conventional IoUT devices, reliant on battery power, face limitations in lifespan and pose environmental hazards upon disposal. This paper introduces a sustainable approach for simultaneous information uplink from the IoUT devices and acoustic energy transfer (AET) to the devices via an autonomous underwater vehicle (AUV), potentially enabling them to operate indefinitely. To tackle the time-sensitivity, we adopt age of information (AoI), and Jain's fairness index. We develop two deep-reinforcement learning (DRL) algorithms, offering a high-complexity, high-performance frequency division duplex (FDD) solution and a low-complexity, medium-performance time division duplex (TDD) approach. The results elucidate that the proposed FDD and TDD solutions significantly reduce the average AoI and boost the harvested energy as well as data collection fairness compared to baseline approaches.
DiffMM: Efficient Method for Accurate Noisy and Sparse Trajectory Map Matching via One Step Diffusion AAAI-26
Map matching for sparse trajectories is a fundamental problem for many trajectory-based applications, e.g., traffic scheduling and traffic flow analysis. Existing methods for map matching are generally based on Hidden Markov Model (HMM) or encoder-decoder framework. However, these methods continue to face significant challenges when handling noisy or sparsely sampled GPS trajectories. To address these limitations, we propose DiffMM, an encoder-diffusion-based map matching framework that produces effective yet efficient matching results through a one-step diffusion process. We first introduce a road segment-aware trajectory encoder that jointly embeds the input trajectory and its surrounding candidate road segments into a shared latent space through an attention mechanism. Next, we propose a one step diffusion method to realize map matching through a shortcut model by leveraging the joint embedding of the trajectory and candidate road segments as conditioning context. We conduct extensive experiments on large-scale trajectory datasets, demonstrating that our approach consistently outperforms state-of-the-art map matching methods in terms of both accuracy and efficiency, particularly for sparse trajectories and complex road network topologies.
comment: AAAI-26
JudgeRLVR: Judge First, Generate Second for Efficient Reasoning
Reinforcement Learning with Verifiable Rewards (RLVR) has become a standard paradigm for reasoning in Large Language Models. However, optimizing solely for final-answer correctness often drives models into aimless, verbose exploration, where they rely on exhaustive trial-and-error tactics rather than structured planning to reach solutions. While heuristic constraints like length penalties can reduce verbosity, they often truncate essential reasoning steps, creating a difficult trade-off between efficiency and verification. In this paper, we argue that discriminative capability is a prerequisite for efficient generation: by learning to distinguish valid solutions, a model can internalize a guidance signal that prunes the search space. We propose JudgeRLVR, a two-stage judge-then-generate paradigm. In the first stage, we train the model to judge solution responses with verifiable answers. In the second stage, we fine-tune the same model with vanilla generating RLVR initialized from the judge. Compared to Vanilla RLVR using the same math-domain training data, JudgeRLVR achieves a better quality--efficiency trade-off for Qwen3-30B-A3B: on in-domain math, it delivers about +3.7 points average accuracy gain with -42\% average generation length; on out-of-domain benchmarks, it delivers about +4.5 points average accuracy improvement, demonstrating enhanced generalization.
comment: 16 pages, 5 figures
Zero-Shot Distracted Driver Detection via Vision Language Models with Double Decoupling
Distracted driving is a major cause of traffic collisions, calling for robust and scalable detection methods. Vision-language models (VLMs) enable strong zero-shot image classification, but existing VLM-based distracted driver detectors often underperform in real-world conditions. We identify subject-specific appearance variations (e.g., clothing, age, and gender) as a key bottleneck: VLMs entangle these factors with behavior cues, leading to decisions driven by who the driver is rather than what the driver is doing. To address this, we propose a subject decoupling framework that extracts a driver appearance embedding and removes its influence from the image embedding prior to zero-shot classification, thereby emphasizing distraction-relevant evidence. We further orthogonalize text embeddings via metric projection onto Stiefel manifold to improve separability while staying close to the original semantics. Experiments demonstrate consistent gains over prior baselines, indicating the promise of our approach for practical road-safety applications.
Noise-Adaptive Regularization for Robust Multi-Label Remote Sensing Image Classification
The development of reliable methods for multi-label classification (MLC) has become a prominent research direction in remote sensing (RS). As the scale of RS data continues to expand, annotation procedures increasingly rely on thematic products or crowdsourced procedures to reduce the cost of manual annotation. While cost-effective, these strategies often introduce multi-label noise in the form of partially incorrect annotations. In MLC, label noise arises as additive noise, subtractive noise, or a combination of both in the form of mixed noise. Previous work has largely overlooked this distinction and commonly treats noisy annotations as supervised signals, lacking mechanisms that explicitly adapt learning behavior to different noise types. To address this limitation, we propose NAR, a noise-adaptive regularization method that explicitly distinguishes between additive and subtractive noise within a semi-supervised learning framework. NAR employs a confidence-based label handling mechanism that dynamically retains label entries with high confidence, temporarily deactivates entries with moderate confidence, and corrects low confidence entries via flipping. This selective attenuation of supervision is integrated with early-learning regularization (ELR) to stabilize training and mitigate overfitting to corrupted labels. Experiments across additive, subtractive, and mixed noise scenarios demonstrate that NAR consistently improves robustness compared with existing methods. Performance improvements are most pronounced under subtractive and mixed noise, indicating that adaptive suppression and selective correction of noisy supervision provide an effective strategy for noise robust learning in RS MLC.
comment: Submitted to TGRS
Silence the Judge: Reinforcement Learning with Self-Verifier via Latent Geometric Clustering
Group Relative Policy Optimization (GRPO) significantly enhances the reasoning performance of Large Language Models (LLMs). However, this success heavily relies on expensive external verifiers or human rules. Such dependency not only leads to significant computational costs and training latency, but also yields sparse rewards that hinder optimization efficiency. To address these challenges, we propose Latent-GRPO, a framework that derives intrinsic rewards directly from latent space geometry. Crucially, our empirical analysis reveals a compelling geometric property: terminal token representations of correct reasoning trajectories form dense clusters with high intra-class similarity, whereas incorrect trajectories remain scattered as outliers. In light of this discovery, we introduce the Iterative Robust Centroid Estimation (IRCE) algorithm, which generates dense, continuous rewards by mitigating magnitude fluctuations via spherical projection and estimating a robust ``truth centroid'' through iterative aggregation. Experimental results on multiple datasets show that our method maintains model performance while achieving a training speedup of over 2x compared to baselines. Furthermore, extensive results demonstrate strong generalization ability and robustness. The code will be released soon.
Coverage Improvement and Fast Convergence of On-policy Preference Learning
Online on-policy preference learning algorithms for language model alignment such as online direct policy optimization (DPO) can significantly outperform their offline counterparts. We provide a theoretical explanation for this phenomenon by analyzing how the sampling policy's coverage evolves throughout on-policy training. We propose and rigorously justify the \emph{coverage improvement principle}: with sufficient batch size, each update moves into a region around the target where coverage is uniformly better, making subsequent data increasingly informative and enabling rapid convergence. In the contextual bandit setting with Bradley-Terry preferences and linear softmax policy class, we show that on-policy DPO converges exponentially in the number of iterations for batch size exceeding a generalized coverage threshold. In contrast, any learner restricted to offline samples from the initial policy suffers a slower minimax rate, leading to a sharp separation in total sample complexity. Motivated by this analysis, we further propose a simple hybrid sampler based on a novel \emph{preferential} G-optimal design, which removes dependence on coverage and guarantees convergence in just two rounds. Finally, we develop principled on-policy schemes for reward distillation in the general function class setting, and show faster noiseless rates under an alternative deviation-based notion of coverage. Experimentally, we confirm that on-policy DPO and our proposed reward distillation algorithms outperform their off-policy counterparts and enjoy stable, monotonic performance gains across iterations.
comment: 46 pages, 2 figures, 2 tables
Taxon: Hierarchical Tax Code Prediction with Semantically Aligned LLM Expert Guidance
Tax code prediction is a crucial yet underexplored task in automating invoicing and compliance management for large-scale e-commerce platforms. Each product must be accurately mapped to a node within a multi-level taxonomic hierarchy defined by national standards, where errors lead to financial inconsistencies and regulatory risks. This paper presents Taxon, a semantically aligned and expert-guided framework for hierarchical tax code prediction. Taxon integrates (i) a feature-gating mixture-of-experts architecture that adaptively routes multi-modal features across taxonomy levels, and (ii) a semantic consistency model distilled from large language models acting as domain experts to verify alignment between product titles and official tax definitions. To address noisy supervision in real business records, we design a multi-source training pipeline that combines curated tax databases, invoice validation logs, and merchant registration data to provide both structural and semantic supervision. Extensive experiments on the proprietary TaxCode dataset and public benchmarks demonstrate that Taxon achieves state-of-the-art performance, outperforming strong baselines. Further, an additional full hierarchical paths reconstruction procedure significantly improves structural consistency, yielding the highest overall F1 scores. Taxon has been deployed in production within Alibaba's tax service system, handling an average of over 500,000 tax code queries per day and reaching peak volumes above five million requests during business event with improved accuracy, interpretability, and robustness.
Out-of-distribution generalization of deep-learning surrogates for 2D PDE-generated dynamics in the small-data regime
Partial differential equations (PDEs) are a central tool for modeling the dynamics of physical, engineering, and materials systems, but high-fidelity simulations are often computationally expensive. At the same time, many scientific applications can be viewed as the evolution of spatially distributed fields, making data-driven forecasting of such fields a core task in scientific machine learning. In this work we study autoregressive deep-learning surrogates for two-dimensional PDE dynamics on periodic domains, focusing on generalization to out-of-distribution initial conditions within a fixed PDE and parameter regime and on strict small-data settings with at most $\mathcal{O}(10^2)$ simulated trajectories per system. We introduce a multi-channel U-Net [...], evaluate it on five qualitatively different PDE families and compare it to ViT, AFNO, PDE-Transformer, and KAN-UNet under a common training setup. Across all datasets, me-UNet matches or outperforms these more complex architectures in terms of field-space error, spectral similarity, and physics-based metrics for in-distribution rollouts, while requiring substantially less training time. It also generalizes qualitatively to unseen initial conditions with as few as $\approx 20$ training simulations. A data-efficiency study and Grad-CAM analysis further suggest that, in small-data periodic 2D PDE settings, convolutional architectures with inductive biases aligned to locality and periodic boundary conditions remain strong contenders for accurate and moderately out-of-distribution-robust surrogate modeling.
Controlled LLM Training on Spectral Sphere
Scaling large models requires optimization strategies that ensure rapid convergence grounded in stability. Maximal Update Parametrization ($\boldsymbolμ$P) provides a theoretical safeguard for width-invariant $Θ(1)$ activation control, whereas emerging optimizers like Muon are only ``half-aligned'' with these constraints: they control updates but allow weights to drift. To address this limitation, we introduce the \textbf{Spectral Sphere Optimizer (SSO)}, which enforces strict module-wise spectral constraints on both weights and their updates. By deriving the steepest descent direction on the spectral sphere, SSO realizes a fully $\boldsymbolμ$P-aligned optimization process. To enable large-scale training, we implement SSO as an efficient parallel algorithm within Megatron. Through extensive pretraining on diverse architectures, including Dense 1.7B, MoE 8B-A1B, and 200-layer DeepNet models, SSO consistently outperforms AdamW and Muon. Furthermore, we observe significant practical stability benefits, including improved MoE router load balancing, suppressed outliers, and strictly bounded activations.
Deconstructing Pre-training: Knowledge Attribution Analysis in MoE and Dense Models AAAI26
Mixture-of-Experts (MoE) architectures decouple model capacity from per-token computation, enabling scaling beyond the computational limits imposed by dense scaling laws. Yet how MoE architectures shape knowledge acquisition during pre-training, and how this process differs from dense architectures, remains unknown. To address this issue, we introduce Gated-LPI (Log-Probability Increase), a neuron-level attribution metric that decomposes log-probability increase across neurons. We present a time-resolved comparison of knowledge acquisition dynamics in MoE and dense architectures, tracking checkpoints over 1.2M training steps (~ 5.0T tokens) and 600K training steps (~ 2.5T tokens), respectively. Our experiments uncover three patterns: (1) Low-entropy backbone. The top approximately 1% of MoE neurons capture over 45% of positive updates, forming a high-utility core, which is absent in the dense baseline. (2) Early consolidation. The MoE model locks into a stable importance profile within < 100K steps, whereas the dense model remains volatile throughout training. (3) Functional robustness. Masking the ten most important MoE attention heads reduces relational HIT@10 by < 10%, compared with > 50% for the dense model, showing that sparsity fosters distributed -- rather than brittle -- knowledge storage. These patterns collectively demonstrate that sparsity fosters an intrinsically stable and distributed computational backbone from early in training, helping bridge the gap between sparse architectures and training-time interpretability.
comment: Accepted by AAAI26
Training-Free Distribution Adaptation for Diffusion Models via Maximum Mean Discrepancy Guidance
Pre-trained diffusion models have emerged as powerful generative priors for both unconditional and conditional sample generation, yet their outputs often deviate from the characteristics of user-specific target data. Such mismatches are especially problematic in domain adaptation tasks, where only a few reference examples are available and retraining the diffusion model is infeasible. Existing inference-time guidance methods can adjust sampling trajectories, but they typically optimize surrogate objectives such as classifier likelihoods rather than directly aligning with the target distribution. We propose MMD Guidance, a training-free mechanism that augments the reverse diffusion process with gradients of the Maximum Mean Discrepancy (MMD) between generated samples and a reference dataset. MMD provides reliable distributional estimates from limited data, exhibits low variance in practice, and is efficiently differentiable, which makes it particularly well-suited for the guidance task. Our framework naturally extends to prompt-aware adaptation in conditional generation models via product kernels. Also, it can be applied with computational efficiency in latent diffusion models (LDMs), since guidance is applied in the latent space of the LDM. Experiments on synthetic and real-world benchmarks demonstrate that MMD Guidance can achieve distributional alignment while preserving sample fidelity.
Geo-NVS-w: Geometry-Aware Novel View Synthesis In-the-Wild with an SDF Renderer ICCV 2025
We introduce Geo-NVS-w, a geometry-aware framework for high-fidelity novel view synthesis from unstructured, in-the-wild image collections. While existing in-the-wild methods already excel at novel view synthesis, they often lack geometric grounding on complex surfaces, sometimes producing results that contain inconsistencies. Geo-NVS-w addresses this limitation by leveraging an underlying geometric representation based on a Signed Distance Function (SDF) to guide the rendering process. This is complemented by a novel Geometry-Preservation Loss which ensures that fine structural details are preserved. Our framework achieves competitive rendering performance, while demonstrating a 4-5x reduction reduction in energy consumption compared to similar methods. We demonstrate that Geo-NVS-w is a robust method for in-the-wild NVS, yielding photorealistic results with sharp, geometrically coherent details.
comment: Presented at the ICCV 2025 Workshop on Large Scale Cross Device Localization
Decodable but not structured: linear probing enables Underwater Acoustic Target Recognition with pretrained audio embeddings
Increasing levels of anthropogenic noise from ships contribute significantly to underwater sound pollution, posing risks to marine ecosystems. This makes monitoring crucial to understand and quantify the impact of the ship radiated noise. Passive Acoustic Monitoring (PAM) systems are widely deployed for this purpose, generating years of underwater recordings across diverse soundscapes. Manual analysis of such large-scale data is impractical, motivating the need for automated approaches based on machine learning. Recent advances in automatic Underwater Acoustic Target Recognition (UATR) have largely relied on supervised learning, which is constrained by the scarcity of labeled data. Transfer Learning (TL) offers a promising alternative to mitigate this limitation. In this work, we conduct the first empirical comparative study of transfer learning for UATR, evaluating multiple pretrained audio models originating from diverse audio domains. The pretrained model weights are frozen, and the resulting embeddings are analyzed through classification, clustering, and similarity-based evaluations. The analysis shows that the geometrical structure of the embedding space is largely dominated by recording-specific characteristics. However, a simple linear probe can effectively suppress this recording-specific information and isolate ship-type features from these embeddings. As a result, linear probing enables effective automatic UATR using pretrained audio models at low computational cost, significantly reducing the need for a large amounts of high-quality labeled ship recordings.
MLPlatt: Simple Calibration Framework for Ranking Models
Ranking models are extensively used in e-commerce for relevance estimation. These models often suffer from poor interpretability and no scale calibration, particularly when trained with typical ranking loss functions. This paper addresses the problem of post-hoc calibration of ranking models. We introduce MLPlatt: a simple yet effective ranking model calibration method that preserves the item ordering and converts ranker outputs to interpretable click-through rate (CTR) probabilities usable in downstream tasks. The method is context-aware by design and achieves good calibration metrics globally, and within strata corresponding to different values of a selected categorical field (such as user country or device), which is often important from a business perspective of an E-commerce platform. We demonstrate the superiority of MLPlatt over existing approaches on two datasets, achieving an improvement of over 10\% in F-ECE (Field Expected Calibration Error) compared to other methods. Most importantly, we show that high-quality calibration can be achieved without compromising the ranking quality.
Automated Machine Learning in Radiomics: A Comparative Evaluation of Performance, Efficiency and Accessibility
Automated machine learning (AutoML) frameworks can lower technical barriers for predictive and prognostic model development in radiomics by enabling researchers without programming expertise to build models. However, their effectiveness in addressing radiomics-specific challenges remains unclear. This study evaluates the performance, efficiency, and accessibility of general-purpose and radiomics-specific AutoML frameworks on diverse radiomics classification tasks, thereby highlighting development needs for radiomics. Ten public/private radiomics datasets with varied imaging modalities (CT/MRI), sizes, anatomies and endpoints were used. Six general-purpose and five radiomics-specific frameworks were tested with predefined parameters using standardized cross-validation. Evaluation metrics included AUC, runtime, together with qualitative aspects related to software status, accessibility, and interpretability. Simplatab, a radiomics-specific tool with a no-code interface, achieved the highest average test AUC (81.81%) with a moderate runtime (~1 hour). LightAutoML, a general-purpose framework, showed the fastest execution with competitive performance (78.74% mean AUC in six minutes). Most radiomics-specific frameworks were excluded from the performance analysis due to obsolescence, extensive programming requirements, or computational inefficiency. Conversely, general-purpose frameworks demonstrated higher accessibility and ease of implementation. Simplatab provides an effective balance of performance, efficiency, and accessibility for radiomics classification problems. However, significant gaps remain, including the lack of accessible survival analysis support and the limited integration of feature reproducibility and harmonization within current AutoML frameworks. Future research should focus on adapting AutoML solutions to better address these radiomics-specific challenges.
comment: 27 pages, 4 figures, 3 tables, code available, see https://github.com/joselznom/AutoML-Comparison-in-Radiomics
Disentangling History and Propagation Dependencies in Cross-Subject Knee Contact Stress Prediction Using a Shared MeshGraphNet Backbone
Background:Subject-specific finite element analysis accurately characterizes knee joint mechanics but is computationally expensive. Deep surrogate models provide a rapid alternative, yet their generalization across subjects under limited pose and load inputs remains unclear. It remains unclear whether the dominant source of prediction uncertainty arises from temporal history dependence or spatial propagation dependence. Methods:To disentangle these factors, we employed a shared MGN backbone with a fixed mesh topology. A dataset of running trials from nine subjects was constructed using an OpenSim-FEBio workflow. We developed four model variants to isolate specific dependencies: (1) a baseline MGN; (2) CT-MGN, incorporating a Control Transformer to encode short-horizon history; (3) MsgModMGN, applying state-conditioned modulation to message passing for adaptive propagation; (4) CT-MsgModMGN, combining both mechanisms. Models were evaluated using a rigorous grouped 3-fold cross-validation on unseen subjects.Results:The models incorporating history encoding significantly outperformed the baseline MGN and MsgModMGN in global accuracy and spatial consistency. Crucially, the CT module effectively mitigated the peak-shaving defect common in deep surrogates, significantly reducing peak stress prediction errors. In contrast, the spatial propagation modulation alone yielded no significant improvement over the baseline, and combining it with CT provided no additional benefit.Conclusion:Temporal history dependence, rather than spatial propagation modulation, is the primary driver of prediction uncertainty in cross-subject knee contact mechanics. Explicitly encoding short-horizon driver sequences enables the surrogate model to recover implicit phase information, thereby achieving superior fidelity in peak-stress capture and high-risk localization compared to purely state-based approaches.
Deep Exploration of Epoch-wise Double Descent in Noisy Data: Signal Separation, Large Activation, and Benign Overfitting
Deep double descent is one of the key phenomena underlying the generalization capability of deep learning models. In this study, epoch-wise double descent, which is delayed generalization following overfitting, was empirically investigated by focusing on the evolution of internal structures. Fully connected neural networks of three different sizes were trained on the CIFAR-10 dataset with 30% label noise. By decomposing the loss curves into signal contributions from clean and noisy training data, the epoch-wise evolutions of internal signals were analyzed separately. Three main findings were obtained from this analysis. First, the model achieved strong re-generalization on test data even after perfectly fitting noisy training data during the double descent phase, corresponding to a "benign overfitting" state. Second, noisy data were learned after clean data, and as learning progressed, their corresponding internal activations became increasingly separated in outer layers; this enabled the model to overfit only noisy data. Third, a single, very large activation emerged in the shallow layer across all models; this phenomenon is referred as "outliers," "massive activa-tions," and "super activations" in recent large language models and evolves with re-generalization. The magnitude of large activation correlated with input patterns but not with output patterns. These empirical findings directly link the recent key phenomena of "deep double descent," "benign overfitting," and "large activation", and support the proposal of a novel scenario for understanding deep double descent.
comment: 17 pages, 9 figures
ORBIT: On-policy Exploration-Exploitation for Controllable Multi-Budget Reasoning
Recent Large Reasoning Models (LRMs) achieve strong performance by leveraging long-form Chain-of-Thought (CoT) reasoning, but uniformly applying overlong reasoning at inference time incurs substantial and often unnecessary computational cost. To address this, prior work explores various strategies to infer an appropriate reasoning budget from the input. However, such approaches are unreliable in the worst case, as estimating the minimal required reasoning effort is fundamentally difficult, and they implicitly fix the trade-off between reasoning cost and accuracy during training, limiting flexibility under varying deployment scenarios. Motivated by these limitations, we propose ORBIT, a controllable multi-budget reasoning framework with well-separated reasoning modes triggered by input. ORBIT employs multi-stage reinforcement learning to discover Pareto-optimal reasoning behaviors at each effort, followed by on-policy distillation to fuse these behaviors into a single unified model. Experiments show that ORBIT achieves (1) controllable reasoning behavior over multiple modes, (2) competitive reasoning density within each mode, and (3) integration of these frontier policies into a single unified student model while preserving clear mode separation and high per-mode performance.
comment: Preprint
Demystifying the Slash Pattern in Attention: The Role of RoPE
Large Language Models (LLMs) often exhibit slash attention patterns, where attention scores concentrate along the $Δ$-th sub-diagonal for some offset $Δ$. These patterns play a key role in passing information across tokens. But why do they emerge? In this paper, we demystify the emergence of these Slash-Dominant Heads (SDHs) from both empirical and theoretical perspectives. First, by analyzing open-source LLMs, we find that SDHs are intrinsic to models and generalize to out-of-distribution prompts. To explain the intrinsic emergence, we analyze the queries, keys, and Rotary Position Embedding (RoPE), which jointly determine attention scores. Our empirical analysis reveals two characteristic conditions of SDHs: (1) Queries and keys are almost rank-one, and (2) RoPE is dominated by medium- and high-frequency components. Under these conditions, queries and keys are nearly identical across tokens, and interactions between medium- and high-frequency components of RoPE give rise to SDHs. Beyond empirical evidence, we theoretically show that these conditions are sufficient to ensure the emergence of SDHs by formalizing them as our modeling assumptions. Particularly, we analyze the training dynamics of a shallow Transformer equipped with RoPE under these conditions, and prove that models trained via gradient descent exhibit SDHs. The SDHs generalize to out-of-distribution prompts.
AgriLens: Semantic Retrieval in Agricultural Texts Using Topic Modeling and Language Models
As the volume of unstructured text continues to grow across domains, there is an urgent need for scalable methods that enable interpretable organization, summarization, and retrieval of information. This work presents a unified framework for interpretable topic modeling, zero-shot topic labeling, and topic-guided semantic retrieval over large agricultural text corpora. Leveraging BERTopic, we extract semantically coherent topics. Each topic is converted into a structured prompt, enabling a language model to generate meaningful topic labels and summaries in a zero-shot manner. Querying and document exploration are supported via dense embeddings and vector search, while a dedicated evaluation module assesses topical coherence and bias. This framework supports scalable and interpretable information access in specialized domains where labeled data is limited.
comment: 8 Pages, 1st workshop on Democratizing GenAI and Scalable NLP with HiPC for Societal Impact; 32nd IEEE International Conference on High Performance Computing, Data, & Analytics
One-Shot Identification with Different Neural Network Approaches
Convolutional neural networks (CNNs) have been widely used in the computer vision community, significantly improving the state-of-the-art. But learning good features often is computationally expensive in machine learning settings and is especially difficult when there is a lack of data. One-shot learning is one such area where only limited data is available. In one-shot learning, predictions have to be made after seeing only one example from one class, which requires special techniques. In this paper we explore different approaches to one-shot identification tasks in different domains including an industrial application and face recognition. We use a special technique with stacked images and use siamese capsule networks. It is encouraging to see that the approach using capsule architecture achieves strong results and exceeds other techniques on a wide range of datasets from industrial application to face recognition benchmarks while being easy to use and optimise.
comment: 18 pages, Keywords: One-shot learning, Convolutional neural networks, Siamese networks, Capsules, Industrial application
A Usable GAN-Based Tool for Synthetic ECG Generation in Cardiac Amyloidosis Research
Cardiac amyloidosis (CA) is a rare and underdiagnosed infiltrative cardiomyopathy, and available datasets for machine-learning models are typically small, imbalanced and heterogeneous. This paper presents a Generative Adversarial Network (GAN) and a graphical command-line interface for generating realistic synthetic electrocardiogram (ECG) beats to support early diagnosis and patient stratification in CA. The tool is designed for usability, allowing clinical researchers to train class-specific generators once and then interactively produce large volumes of labelled synthetic beats that preserve the distribution of minority classes.
On Evaluation of Unsupervised Feature Selection for Pattern Classification
Unsupervised feature selection aims to identify a compact subset of features that captures the intrinsic structure of data without supervised label. Most existing studies evaluate the performance of methods using the single-label dataset that can be instantiated by selecting a label from multi-label data while maintaining the original features. Because the chosen label can vary arbitrarily depending on the experimental setting, the superiority among compared methods can be changed with regard to which label happens to be selected. Thus, evaluating unsupervised feature selection methods based solely on single-label accuracy is unreasonable for assessing their true discriminative ability. This study revisits this evaluation paradigm by adopting a multi-label classification framework. Experiments on 21 multi-label datasets using several representative methods demonstrate that performance rankings differ markedly from those reported under single-label settings, suggesting the possibility of multi-label evaluation settings for fair and reliable comparison of unsupervised feature selection methods.
LDLT L-Lipschitz Network Weight Parameterization Initialization
We analyze initialization dynamics for LDLT-based $\mathcal{L}$-Lipschitz layers by deriving the exact marginal output variance when the underlying parameter matrix $W_0\in \mathbb{R}^{m\times n}$ is initialized with IID Gaussian entries $\mathcal{N}(0,σ^2)$. The Wishart distribution, $S=W_0W_0^\top\sim\mathcal{W}_m(n,σ^2 \boldsymbol{I}_m)$, used for computing the output marginal variance is derived in closed form using expectations of zonal polynomials via James' theorem and a Laplace-integral expansion of $(α\boldsymbol{I}_m+S)^{-1}$. We develop an Isserlis/Wick-based combinatorial expansion for $\operatorname{\mathbb{E}}\left[\operatorname{tr}(S^k)\right]$ and provide explicit truncated moments up to $k=10$, which yield accurate series approximations for small-to-moderate $σ^2$. Monte Carlo experiments confirm the theoretical estimates. Furthermore, empirical analysis was performed to quantify that, using current He or Kaiming initialization with scaling $1/\sqrt{n}$, the output variance is $0.41$, whereas the new parameterization with $10/ \sqrt{n}$ for $α=1$ results in an output variance of $0.9$. The findings clarify why deep $\mathcal{L}$-Lipschitz networks suffer rapid information loss at initialization and offer practical prescriptions for choosing initialization hyperparameters to mitigate this effect. However, using the Higgs boson classification dataset, a hyperparameter sweep over optimizers, initialization scale, and depth was conducted to validate the results on real-world data, showing that although the derivation ensures variance preservation, empirical results indicate He initialization still performs better.
comment: 12 pages, 17 figures
Hyperbolic Heterogeneous Graph Transformer
In heterogeneous graphs, we can observe complex structures such as tree-like or hierarchical structures. Recently, the hyperbolic space has been widely adopted in many studies to effectively learn these complex structures. Although these methods have demonstrated the advantages of the hyperbolic space in learning heterogeneous graphs, most existing methods still have several challenges. They rely heavily on tangent-space operations, which often lead to mapping distortions during frequent transitions. Moreover, their message-passing architectures mainly focus on local neighborhood information, making it difficult to capture global hierarchical structures and long-range dependencies between different types of nodes. To address these limitations, we propose Hyperbolic Heterogeneous Graph Transformer (HypHGT), which effectively and efficiently learns heterogeneous graph representations entirely within the hyperbolic space. Unlike previous message-passing based hyperbolic heterogeneous GNNs, HypHGT naturally captures both local and global dependencies through transformer-based architecture. Furthermore, the proposed relation-specific hyperbolic attention mechanism in HypHGT, which operates with linear time complexity, enables efficient computation while preserving the heterogeneous information across different relation types. This design allows HypHGT to effectively capture the complex structural properties and semantic information inherent in heterogeneous graphs. We conduct comprehensive experiments to evaluate the effectiveness and efficiency of HypHGT, and the results demonstrate that it consistently outperforms state-of-the-art methods in node classification task, with significantly reduced training time and memory usage.
comment: 14pages, 9 figures
Incorporating Cognitive Biases into Reinforcement Learning for Financial Decision-Making
Financial markets are influenced by human behavior that deviates from rationality due to cognitive biases. Traditional reinforcement learning (RL) models for financial decision-making assume rational agents, potentially overlooking the impact of psychological factors. This study integrates cognitive biases into RL frameworks for financial trading, hypothesizing that such models can exhibit human-like trading behavior and achieve better risk-adjusted returns than standard RL agents. We introduce biases, such as overconfidence and loss aversion, into reward structures and decision-making processes and evaluate their performance in simulated and real-world trading environments. Despite its inconclusive or negative results, this study provides insights into the challenges of incorporating human-like biases into RL, offering valuable lessons for developing robust financial AI systems.
comment: 15 pages, 9 figures
Structural Dimension Reduction in Bayesian Networks
This work introduces a novel technique, named structural dimension reduction, to collapse a Bayesian network onto a minimum and localized one while ensuring that probabilistic inferences between the original and reduced networks remain consistent. To this end, we propose a new combinatorial structure in directed acyclic graphs called the directed convex hull, which has turned out to be equivalent to their minimum localized Bayesian networks. An efficient polynomial-time algorithm is devised to identify them by determining the unique directed convex hulls containing the variables of interest from the original networks. Experiments demonstrate that the proposed technique has high dimension reduction capability in real networks, and the efficiency of probabilistic inference based on directed convex hulls can be significantly improved compared with traditional methods such as variable elimination and belief propagation algorithms. The code of this study is open at \href{https://github.com/Balance-H/Algorithms}{https://github.com/Balance-H/Algorithms} and the proofs of the results in the main body are postponed to the appendix.
comment: 13 pages
GADPN: Graph Adaptive Denoising and Perturbation Networks via Singular Value Decomposition
While Graph Neural Networks (GNNs) excel on graph-structured data, their performance is fundamentally limited by the quality of the observed graph, which often contains noise, missing links, or structural properties misaligned with GNNs' underlying assumptions. To address this, graph structure learning aims to infer a more optimal topology. Existing methods, however, often incur high computational costs due to complex generative models and iterative joint optimization, limiting their practical utility. In this paper, we propose GADPN, a simple yet effective graph structure learning framework that adaptively refines graph topology via low-rank denoising and generalized structural perturbation. Our approach makes two key contributions: (1) we introduce Bayesian optimization to adaptively determine the optimal denoising strength, tailoring the process to each graph's homophily level; and (2) we extend the structural perturbation method to arbitrary graphs via Singular Value Decomposition (SVD), overcoming its original limitation to symmetric structures. Extensive experiments on benchmark datasets demonstrate that GADPN achieves state-of-the-art performance while significantly improving efficiency. It shows particularly strong gains on challenging disassortative graphs, validating its ability to robustly learn enhanced graph structures across diverse network types.
An Axiomatic Approach to General Intelligence: SANC(E3) -- Self-organizing Active Network of Concepts with Energy E3
General intelligence must reorganize experience into internal structures that enable prediction and action under finite resources. Existing systems implicitly presuppose fixed primitive units -- tokens, subwords, pixels, or predefined sensor channels -- thereby bypassing the question of how representational units themselves emerge and stabilize. This paper proposes SANC(E3), an axiomatic framework in which representational units are not given a priori but instead arise as stable outcomes of competitive selection, reconstruction, and compression under finite activation capacity, governed by the explicit minimization of an energy functional E3. SANC(E3) draws a principled distinction between system tokens -- structural anchors such as {here, now, I} and sensory sources -- and tokens that emerge through self-organization during co-occurring events. Five core axioms formalize finite capacity, association from co-occurrence, similarity-based competition, confidence-based stabilization, and the reconstruction-compression-update trade-off. A key feature is a pseudo-memory-mapped I/O mechanism, through which internally replayed Gestalts are processed via the same axiomatic pathway as external sensory input. As a result, perception, imagination, prediction, planning, and action are unified within a single representational and energetic process. From the axioms, twelve propositions are derived, showing that category formation, hierarchical organization, unsupervised learning, and high-level cognitive activities can all be understood as instances of Gestalt completion under E3 minimization.
comment: 20 pages, 3 tables
One-Shot Federated Ridge Regression: Exact Recovery via Sufficient Statistic Aggregation
Federated learning protocols require repeated synchronization between clients and a central server, with convergence rates depending on learning rates, data heterogeneity, and client sampling. This paper asks whether iterative communication is necessary for distributed linear regression. We show it is not. We formulate federated ridge regression as a distributed equilibrium problem where each client computes local sufficient statistics -- the Gram matrix and moment vector -- and transmits them once. The server reconstructs the global solution through a single matrix inversion. We prove exact recovery: under a coverage condition on client feature matrices, one-shot aggregation yields the centralized ridge solution, not an approximation. For heterogeneous distributions violating coverage, we derive non-asymptotic error bounds depending on spectral properties of the aggregated Gram matrix. Communication reduces from $\mathcal{O}(Rd)$ in iterative methods to $\mathcal{O}(d^2)$ total; for high-dimensional settings, we propose and experimentally validate random projection techniques reducing this to $\mathcal{O}(m^2)$ where $m \ll d$. We establish differential privacy guarantees where noise is injected once per client, eliminating the composition penalty that degrades privacy in multi-round protocols. We further address practical considerations including client dropout robustness, federated cross-validation for hyperparameter selection, and comparison with gradient-based alternatives. Comprehensive experiments on synthetic heterogeneous regression demonstrate that one-shot fusion matches FedAvg accuracy while requiring up to $38\times$ less communication. The framework applies to kernel methods and random feature models but not to general nonlinear architectures.
Towards Principled Design of Mixture-of-Experts Language Models under Memory and Inference Constraints
Modern Mixture-of-Experts (MoE) language models are designed based on total parameters (memory footprint) and active parameters (inference cost). However, we find these two factors alone are insufficient to describe an optimal architecture. Through a systematic study, we demonstrate that MoE performance is primarily determined by total parameters ($N_{total}$) and expert sparsity ($s:=n_{exp}/n_{topk}$). Moreover, $n_{exp}$ and $n_{topk}$ do not "cancel out" within the sparsity ratio; instead, a larger total number of experts slightly penalizes performance by forcing a reduction in core model dimensions (depth and width) to meet memory constraints. This motivates a simple principle for MoE design which maximizes $N_{total}$ while minimizing $s$ (maximizing $n_{topk}$) and $n_{exp}$ under the given constraints. Our findings provide a robust framework for resolving architectural ambiguity and guiding MoE design.
comment: 10 pages, 5 figures
Scalable Multiagent Reinforcement Learning with Collective Influence Estimation
Multiagent reinforcement learning (MARL) has attracted considerable attention due to its potential in addressing complex cooperative tasks. However, existing MARL approaches often rely on frequent exchanges of action or state information among agents to achieve effective coordination, which is difficult to satisfy in practical robotic systems. A common solution is to introduce estimator networks to model the behaviors of other agents and predict their actions; nevertheless, such designs cause the size and computational cost of the estimator networks to grow rapidly with the number of agents, thereby limiting scalability in large-scale systems. To address these challenges, this paper proposes a multiagent learning framework augmented with a Collective Influence Estimation Network (CIEN). By explicitly modeling the collective influence of other agents on the task object, each agent can infer critical interaction information solely from its local observations and the task object's states, enabling efficient collaboration without explicit action information exchange. The proposed framework effectively avoids network expansion as the team size increases; moreover, new agents can be incorporated without modifying the network structures of existing agents, demonstrating strong scalability. Experimental results on multiagent cooperative tasks based on the Soft Actor-Critic (SAC) algorithm show that the proposed method achieves stable and efficient coordination under communication-limited environments. Furthermore, policies trained with collective influence modeling are deployed on a real robotic platform, where experimental results indicate significantly improved robustness and deployment feasibility, along with reduced dependence on communication infrastructure.
FUME: Fused Unified Multi-Gas Emission Network for Livestock Rumen Acidosis Detection
Ruminal acidosis is a prevalent metabolic disorder in dairy cattle causing significant economic losses and animal welfare concerns. Current diagnostic methods rely on invasive pH measurement, limiting scalability for continuous monitoring. We present FUME (Fused Unified Multi-gas Emission Network), the first deep learning approach for rumen acidosis detection from dual-gas optical imaging under in vitro conditions. Our method leverages complementary carbon dioxide (CO2) and methane (CH4) emission patterns captured by infrared cameras to classify rumen health into Healthy, Transitional, and Acidotic states. FUME employs a lightweight dual-stream architecture with weight-shared encoders, modality-specific self-attention, and channel attention fusion, jointly optimizing gas plume segmentation and classification of dairy cattle health. We introduce the first dual-gas OGI dataset comprising 8,967 annotated frames across six pH levels with pixel-level segmentation masks. Experiments demonstrate that FUME achieves 80.99% mIoU and 98.82% classification accuracy while using only 1.28M parameters and 1.97G MACs--outperforming state-of-the-art methods in segmentation quality with 10x lower computational cost. Ablation studies reveal that CO2 provides the primary discriminative signal and dual-task learning is essential for optimal performance. Our work establishes the feasibility of gas emission-based livestock health monitoring, paving the way for practical, in vitro acidosis detection systems. Codes are available at https://github.com/taminulislam/fume.
comment: 10 pages, 5 figures
Triplets Better Than Pairs: Towards Stable and Effective Self-Play Fine-Tuning for LLMs NeurIPS 2025
Recently, self-play fine-tuning (SPIN) has been proposed to adapt large language models to downstream applications with scarce expert-annotated data, by iteratively generating synthetic responses from the model itself. However, SPIN is designed to optimize the current reward advantages of annotated responses over synthetic responses at hand, which may gradually vanish during iterations, leading to unstable optimization. Moreover, the utilization of reference policy induces a misalignment issue between the reward formulation for training and the metric for generation. To address these limitations, we propose a novel Triplet-based Self-Play fIne-tuNing (T-SPIN) method that integrates two key designs. First, beyond current advantages, T-SPIN additionally incorporates historical advantages between iteratively generated responses and proto-synthetic responses produced by the initial policy. Even if the current advantages diminish, historical advantages remain effective, stabilizing the overall optimization. Second, T-SPIN introduces the entropy constraint into the self-play framework, which is theoretically justified to support reference-free fine-tuning, eliminating the training-generation discrepancy. Empirical results on various tasks demonstrate not only the superior performance of T-SPIN over SPIN, but also its stable evolution during iterations. Remarkably, compared to supervised fine-tuning, T-SPIN achieves comparable or even better performance with only 25% samples, highlighting its effectiveness when faced with scarce annotated data.
comment: NeurIPS 2025
Autonomous Materials Exploration by Integrating Automated Phase Identification and AI-Assisted Human Reasoning
Autonomous experimentation holds the potential to accelerate materials development by combining artificial intelligence (AI) with modular robotic platforms to explore extensive combinatorial chemical and processing spaces. Such self-driving laboratories can not only increase the throughput of repetitive experiments, but also incorporate human domain expertise to drive the search towards user-defined objectives, including improved materials performance metrics. We present an autonomous materials synthesis extension to SARA, the Scientific Autonomous Reasoning Agent, utilizing phase information provided by an automated probabilistic phase labeling algorithm to expedite the search for targeted phase regions. By incorporating human input into an expanded SARA-H (SARA with human-in-the-loop) framework, we enhance the efficiency of the underlying reasoning process. Using synthetic benchmarks, we demonstrate the efficiency of our AI implementation and show that the human input can contribute to significant improvement in sampling efficiency. We conduct experimental active learning campaigns using robotic processing of thin-film samples of several oxide material systems, including Bi$_2$O$_3$, SnO$_x$, and Bi-Ti-O, using lateral-gradient laser spike annealing to synthesize and kinetically trap metastable phases. We showcase the utility of human-in-the-loop autonomous experimentation for the Bi-Ti-O system, where we identify extensive processing domains that stabilize $δ$-Bi$_2$O$_3$ and Bi$_2$Ti$_2$O$_7$, explore dwell-dependent ternary oxide phase behavior, and provide evidence confirming predictions that cationic substitutional doping of TiO$_2$ with Bi inhibits the unfavorable transformation of the metastable anatase to the ground-state rutile phase. The autonomous methods we have developed enable the discovery of new materials and new understanding of materials synthesis and properties.
comment: Main manuscript: 21 pages(including references), 6 figures. Supplementary Information: 12 pages, 9 figures, 1 table
Wasserstein-p Central Limit Theorem Rates: From Local Dependence to Markov Chains
Finite-time central limit theorem (CLT) rates play a central role in modern machine learning (ML). In this paper, we study CLT rates for multivariate dependent data in Wasserstein-$p$ ($\mathcal W_p$) distance, for general $p\ge 1$. We focus on two fundamental dependence structures that commonly arise in ML: locally dependent sequences and geometrically ergodic Markov chains. In both settings, we establish the \textit{first optimal} $\mathcal O(n^{-1/2})$ rate in $\mathcal W_1$, as well as the first $\mathcal W_p$ ($p\ge 2$) CLT rates under mild moment assumptions, substantially improving the best previously known bounds in these dependent-data regimes. As an application of our optimal $\mathcal W_1$ rate for locally dependent sequences, we further obtain the first optimal $\mathcal W_1$--CLT rate for multivariate $U$-statistics. On the technical side, we derive a tractable auxiliary bound for $\mathcal W_1$ Gaussian approximation errors that is well suited to studying dependent data. For Markov chains, we further prove that the regeneration time of the split chain associated with a geometrically ergodic chain has a geometric tail without assuming strong aperiodicity or other restrictive conditions. These tools may be of independent interests and enable our optimal $\mathcal W_1$ rates and underpin our $\mathcal W_p$ ($p\ge 2$) results.
comment: 51 pages, 1 figure
TabPFN Through The Looking Glass: An interpretability study of TabPFN and its internal representations
Tabular foundational models are pre-trained models designed for a wide range of tabular data tasks. They have shown strong performance across domains, yet their internal representations and learned concepts remain poorly understood. This lack of interpretability makes it important to study how these models process and transform input features. In this work, we analyze the information encoded inside the model's hidden representations and examine how these representations evolve across layers. We run a set of probing experiments that test for the presence of linear regression coefficients, intermediate values from complex expressions, and the final answer in early layers. These experiments allow us to reason about the computations the model performs internally. Our results provide evidence that meaningful and structured information is stored inside the representations of tabular foundational models. We observe clear signals that correspond to both intermediate and final quantities involved in the model's prediction process. This gives insight into how the model refines its inputs and how the final output emerges. Our findings contribute to a deeper understanding of the internal mechanics of tabular foundational models. They show that these models encode concrete and interpretable information, which moves us closer to making their decision processes more transparent and trustworthy.
Instruction-Driven 3D Facial Expression Generation and Transition
A 3D avatar typically has one of six cardinal facial expressions. To simulate realistic emotional variation, we should be able to render a facial transition between two arbitrary expressions. This study presents a new framework for instruction-driven facial expression generation that produces a 3D face and, starting from an image of the face, transforms the facial expression from one designated facial expression to another. The Instruction-driven Facial Expression Decomposer (IFED) module is introduced to facilitate multimodal data learning and capture the correlation between textual descriptions and facial expression features. Subsequently, we propose the Instruction to Facial Expression Transition (I2FET) method, which leverages IFED and a vertex reconstruction loss function to refine the semantic comprehension of latent vectors, thus generating a facial expression sequence according to the given instruction. Lastly, we present the Facial Expression Transition model to generate smooth transitions between facial expressions. Extensive evaluation suggests that the proposed model outperforms state-of-the-art methods on the CK+ and CelebV-HQ datasets. The results show that our framework can generate facial expression trajectories according to text instruction. Considering that text prompts allow us to make diverse descriptions of human emotional states, the repertoire of facial expressions and the transitions between them can be expanded greatly. We expect our framework to find various practical applications More information about our project can be found at https://vohoanganh.github.io/tg3dfet/
VBO-MI: A Fully Gradient-Based Bayesian Optimization Framework Using Variational Mutual Information Estimation
Many real-world tasks require optimizing expensive black-box functions accessible only through noisy evaluations, a setting commonly addressed with Bayesian optimization (BO). While Bayesian neural networks (BNNs) have recently emerged as scalable alternatives to Gaussian Processes (GPs), traditional BNN-BO frameworks remain burdened by expensive posterior sampling and acquisition function optimization. In this work, we propose {VBO-MI} (Variational Bayesian Optimization with Mutual Information), a fully gradient-based BO framework that leverages recent advances in variational mutual information estimation. To enable end-to-end gradient flow, we employ an actor-critic architecture consisting of an {action-net} to navigate the input space and a {variational critic} to estimate information gain. This formulation effectively eliminates the traditional inner-loop acquisition optimization bottleneck, achieving up to a {$10^2 \times$ reduction in FLOPs} compared to BNN-BO baselines. We evaluate our method on a diverse suite of benchmarks, including high-dimensional synthetic functions and complex real-world tasks such as PDE optimization, the Lunar Lander control problem, and categorical Pest Control. Our experiments demonstrate that VBO-MI consistently provides the same or superior optimization performance and computational scalability over the baselines.
comment: 31 pages, 8 figures, Code will be released upon acceptance
Relational Knowledge Distillation Using Fine-tuned Function Vectors
Representing relations between concepts is a core prerequisite for intelligent systems to make sense of the world. Recent work using causal mediation analysis has shown that a small set of attention heads encodes task representation in in-context learning, captured in a compact representation known as the function vector. We show that fine-tuning function vectors with only a small set of examples (about 20 word pairs) yields better performance on relation-based word-completion tasks than using the original vectors derived from causal mediation analysis. These improvements hold for both small and large language models. Moreover, the fine-tuned function vectors yield improved decoding performance for relation words and show stronger alignment with human similarity judgments of semantic relations. Next, we introduce the composite function vector - a weighted combination of fine-tuned function vectors - to extract relational knowledge and support analogical reasoning. At inference time, inserting this composite vector into LLM activations markedly enhances performance on challenging analogy problems drawn from cognitive science and SAT benchmarks. Our results highlight the potential of activation patching as a controllable mechanism for encoding and manipulating relational knowledge, advancing both the interpretability and reasoning capabilities of large language models.
Enriching Semantic Profiles into Knowledge Graph for Recommender Systems Using Large Language Models
Rich and informative profiling to capture user preferences is essential for improving recommendation quality. However, there is still no consensus on how best to construct and utilize such profiles. To address this, we revisit recent profiling-based approaches in recommender systems along four dimensions: 1) knowledge base, 2) preference indicator, 3) impact range, and 4) subject. We argue that large language models (LLMs) are effective at extracting compressed rationales from diverse knowledge sources, while knowledge graphs (KGs) are better suited for propagating these profiles to extend their reach. Building on this insight, we propose a new recommendation model, called SPiKE. SPiKE consists of three core components: i) Entity profile generation, which uses LLMs to generate semantic profiles for all KG entities; ii) Profile-aware KG aggregation, which integrates these profiles into the KG; and iii) Pairwise profile preference matching, which aligns LLM- and KG-based representations during training. In experiments, we demonstrate that SPiKE consistently outperforms state-of-the-art KG- and LLM-based recommenders in real-world settings.
comment: Accepted at KDD 2026
Dynamic Graph Structure Learning via Resistance Curvature Flow
Geometric Representation Learning (GRL) aims to approximate the non-Euclidean topology of high-dimensional data through discrete graph structures, grounded in the manifold hypothesis. However, traditional static graph construction methods based on Euclidean distance often fail to capture the intrinsic curvature characteristics of the data manifold. Although Ollivier-Ricci Curvature Flow (OCF) has proven to be a powerful tool for dynamic topological optimization, its core reliance on Optimal Transport (Wasserstein distance) leads to prohibitive computational complexity, severely limiting its application in large-scale datasets and deep learning frameworks. To break this bottleneck, this paper proposes a novel geometric evolution framework: Resistance Curvature Flow (RCF). Leveraging the concept of effective resistance from circuit physics, RCF transforms expensive curvature optimization into efficient matrix operations. This approach achieves over 100x computational acceleration while maintaining geometric optimization capabilities comparable to OCF. We provide an in-depth exploration of the theoretical foundations and dynamical principles of RCF, elucidating how it guides the redistribution of edge weights via curvature gradients to eliminate topological noise and strengthen local cluster structures. Furthermore, we provide a mechanistic explanation of RCF's role in manifold enhancement and noise suppression, as well as its compatibility with deep learning models. We design a graph optimization algorithm, DGSL-RCF, based on this framework. Experimental results across deep metric learning, manifold learning, and graph structure learning demonstrate that DGSL-RCF significantly improves representation quality and downstream task performance.
Mechanisms are Transferable: Data-Efficient Low-Resource Adaptation via Circuit-Targeted Supervised Fine-Tuning
Adapting LLMs to low-resource languages is difficult: labeled data is scarce, full-model fine-tuning is unstable, and continued cross-lingual tuning can cause catastrophic forgetting. We propose Circuit-Targeted Supervised Fine-Tuning (CT-SFT): a counterfactual-free adaptation of CD-T (Contextual Decomposition Transformer) that uses a label-balanced mean baseline and task-directional relevance scoring to identify a sparse set of task-relevant attention heads in a proxy-language checkpoint, then transfer learns to a target language by updating only those heads (plus LayerNorm) via head-level gradient masking. Across NusaX-Senti and XNLI, CT-SFT improves cross-lingual accuracy over continued full fine-tuning while updating only a small subset of model parameters. We find an editing-preserving trade-off: harder transfers favor editing circuit heads, while easier transfers often favor near-zero (i.e., low-relevance heads) updates, preserving the source mechanism. CT-SFT also substantially reduces catastrophic forgetting, preserving proxy/source-language competence during transfer.
Qalb: Largest State-of-the-Art Urdu Large Language Model for 230M Speakers with Systematic Continued Pre-training
Despite remarkable progress in large language models, Urdu-a language spoken by over 230 million people-remains critically underrepresented in modern NLP systems. Existing multilingual models demonstrate poor performance on Urdu-specific tasks, struggling with the language's complex morphology, right-to-left Nastaliq script, and rich literary traditions. Even the base LLaMA-3.1 8B-Instruct model shows limited capability in generating fluent, contextually appropriate Urdu text. We introduce Qalb, an Urdu language model developed through a two-stage approach: continued pre-training followed by supervised fine-tuning. Starting from LLaMA 3.1 8B, we perform continued pre-training on a dataset of 1.97 billion tokens. This corpus comprises 1.84 billion tokens of diverse Urdu text-spanning news archives, classical and contemporary literature, government documents, and social media-combined with 140 million tokens of English Wikipedia data to prevent catastrophic forgetting. We then fine-tune the resulting model on the Alif Urdu-instruct dataset. Through extensive evaluation on Urdu-specific benchmarks, Qalb demonstrates substantial improvements, achieving a weighted average score of 90.34 and outperforming the previous state-of-the-art Alif-1.0-Instruct model (87.1) by 3.24 points, while also surpassing the base LLaMA-3.1 8B-Instruct model by 44.64 points. Qalb achieves state-of-the-art performance with comprehensive evaluation across seven diverse tasks including Classification, Sentiment Analysis, and Reasoning. Our results demonstrate that continued pre-training on diverse, high-quality language data, combined with targeted instruction fine-tuning, effectively adapts foundation models to low-resource languages.
Reverse Flow Matching: A Unified Framework for Online Reinforcement Learning with Diffusion and Flow Policies
Diffusion and flow policies are gaining prominence in online reinforcement learning (RL) due to their expressive power, yet training them efficiently remains a critical challenge. A fundamental difficulty in online RL is the lack of direct samples from the target distribution; instead, the target is an unnormalized Boltzmann distribution defined by the Q-function. To address this, two seemingly distinct families of methods have been proposed for diffusion policies: a noise-expectation family, which utilizes a weighted average of noise as the training target, and a gradient-expectation family, which employs a weighted average of Q-function gradients. Yet, it remains unclear how these objectives relate formally or if they can be synthesized into a more general formulation. In this paper, we propose a unified framework, reverse flow matching (RFM), which rigorously addresses the problem of training diffusion and flow models without direct target samples. By adopting a reverse inferential perspective, we formulate the training target as a posterior mean estimation problem given an intermediate noisy sample. Crucially, we introduce Langevin Stein operators to construct zero-mean control variates, deriving a general class of estimators that effectively reduce importance sampling variance. We show that existing noise-expectation and gradient-expectation methods are two specific instances within this broader class. This unified view yields two key advancements: it extends the capability of targeting Boltzmann distributions from diffusion to flow policies, and enables the principled combination of Q-value and Q-gradient information to derive an optimal, minimum-variance estimator, thereby improving training efficiency and stability. We instantiate RFM to train a flow policy in online RL, and demonstrate improved performance on continuous-control benchmarks compared to diffusion policy baselines.
Hierarchical Online-Scheduling for Energy-Efficient Split Inference with Progressive Transmission
Device-edge collaborative inference with Deep Neural Networks (DNNs) faces fundamental trade-offs among accuracy, latency and energy consumption. Current scheduling exhibits two drawbacks: a granularity mismatch between coarse, task-level decisions and fine-grained, packet-level channel dynamics, and insufficient awareness of per-task complexity. Consequently, scheduling solely at the task level leads to inefficient resource utilization. This paper proposes a novel ENergy-ACcuracy Hierarchical optimization framework for split Inference, named ENACHI, that jointly optimizes task- and packet-level scheduling to maximize accuracy under energy and delay constraints. A two-tier Lyapunov-based framework is developed for ENACHI, with a progressive transmission technique further integrated to enhance adaptivity. At the task level, an outer drift-plus-penalty loop makes online decisions for DNN partitioning and bandwidth allocation, and establishes a reference power budget to manage the long-term energy-accuracy trade-off. At the packet level, an uncertainty-aware progressive transmission mechanism is employed to adaptively manage per-sample task complexity. This is integrated with a nested inner control loop implementing a novel reference-tracking policy, which dynamically adjusts per-slot transmit power to adapt to fluctuating channel conditions. Experiments on ImageNet dataset demonstrate that ENACHI outperforms state-of-the-art benchmarks under varying deadlines and bandwidths, achieving a 43.12\% gain in inference accuracy with a 62.13\% reduction in energy consumption under stringent deadlines, and exhibits high scalability by maintaining stable energy consumption in congested multi-user scenarios.
comment: This work has been submitted to the IEEE for possible publication
Generalization Analysis and Method for Domain Generalization for a Family of Recurrent Neural Networks
Deep learning (DL) has driven broad advances across scientific and engineering domains. Despite its success, DL models often exhibit limited interpretability and generalization, which can undermine trust, especially in safety-critical deployments. As a result, there is growing interest in (i) analyzing interpretability and generalization and (ii) developing models that perform robustly under data distributions different from those seen during training (i.e. domain generalization). However, the theoretical analysis of DL remains incomplete. For example, many generalization analyses assume independent samples, which is violated in sequential data with temporal correlations. Motivated by these limitations, this paper proposes a method to analyze interpretability and out-of-domain (OOD) generalization for a family of recurrent neural networks (RNNs). Specifically, the evolution of a trained RNN's states is modeled as an unknown, discrete-time, nonlinear closed-loop feedback system. Using Koopman operator theory, these nonlinear dynamics are approximated with a linear operator, enabling interpretability. Spectral analysis is then used to quantify the worst-case impact of domain shifts on the generalization error. Building on this analysis, a domain generalization method is proposed that reduces the OOD generalization error and improves the robustness to distribution shifts. Finally, the proposed analysis and domain generalization approach are validated on practical temporal pattern-learning tasks.
Intra-tree Column Subsampling Hinders XGBoost Learning of Ratio-like Interactions
Many applied problems contain signal that becomes clear only after combining multiple raw measurements. Ratios and rates are common examples. In gradient boosted trees, this combination is not an explicit operation: the model must synthesize it through coordinated splits on the component features. We study whether intra-tree column subsampling in XGBoost makes that synthesis harder. We use two synthetic data generating processes with cancellation-style structure. In both, two primitive features share a strong nuisance factor, while the target depends on a smaller differential factor. A log ratio cancels the nuisance and isolates the signal. We vary colsample_bylevel and colsample_bynode over s in {0.4, 0.6, 0.8, 0.9}, emphasizing mild subsampling (s >= 0.8). A control feature set includes the engineered ratio, removing the need for synthesis. Across both processes, intra-tree column subsampling reduces test PR-AUC in the primitives-only setting. In the main process the relative decrease reaches 54 percent when both parameters are set to 0.4. The effect largely disappears when the engineered ratio is present. A path-based co-usage metric drops in the same cells where performance deteriorates. Practically, if ratio-like structure is plausible, either avoid intra-tree subsampling or include the intended ratio features.
comment: 14 pages, 11 figures and tables
Structure Detection for Contextual Reinforcement Learning
Contextual Reinforcement Learning (CRL) tackles the problem of solving a set of related Contextual Markov Decision Processes (CMDPs) that vary across different context variables. Traditional approaches--independent training and multi-task learning--struggle with either excessive computational costs or negative transfer. A recently proposed multi-policy approach, Model-Based Transfer Learning (MBTL), has demonstrated effectiveness by strategically selecting a few tasks to train and zero-shot transfer. However, CMDPs encompass a wide range of problems, exhibiting structural properties that vary from problem to problem. As such, different task selection strategies are suitable for different CMDPs. In this work, we introduce Structure Detection MBTL (SD-MBTL), a generic framework that dynamically identifies the underlying generalization structure of CMDP and selects an appropriate MBTL algorithm. For instance, we observe Mountain structure in which generalization performance degrades from the training performance of the target task as the context difference increases. We thus propose M/GP-MBTL, which detects the structure and adaptively switches between a Gaussian Process-based approach and a clustering-based approach. Extensive experiments on synthetic data and CRL benchmarks--covering continuous control, traffic control, and agricultural management--show that M/GP-MBTL surpasses the strongest prior method by 12.49% on the aggregated metric. These results highlight the promise of online structure detection for guiding source task selection in complex CRL environments.
MirrorBench: An Extensible Framework to Evaluate User-Proxy Agents for Human-Likeness
Large language models (LLMs) are increasingly used as human simulators, both for evaluating conversational systems and for generating fine-tuning data. However, naive "act-as-a-user" prompting often yields verbose, unrealistic utterances, underscoring the need for principled evaluation of so-called user proxy agents. We present MIRRORBENCH, a reproducible, extensible benchmarking framework that evaluates user proxies solely on their ability to produce human-like user utterances across diverse conversational tasks, explicitly decoupled from downstream task success. MIRRORBENCH features a modular execution engine with typed interfaces, metadata-driven registries, multi-backend support, caching, and robust observability. The system supports pluggable user proxies, datasets, tasks, and metrics, enabling researchers to evaluate arbitrary simulators under a uniform, variance-aware harness. We include three lexical-diversity metrics (MATTR, YULE'S K, and HD-D) and three LLM-judge-based metrics (GTEval, Pairwise Indistinguishability, and Rubric-and-Reason). Across four open datasets, MIRRORBENCH yields variance-aware results and reveals systematic gaps between user proxies and real human users. The framework is open source and includes a simple command-line interface for running experiments, managing configurations and caching, and generating reports. The framework can be accessed at https://github.com/SAP/mirrorbench.
Learning a Stochastic Differential Equation Model of Tropical Cyclone Intensification from Reanalysis and Observational Data
Tropical cyclones are dangerous natural hazards, but their hazard is challenging to quantify directly from historical datasets due to limited dataset size and quality. Models of cyclone intensification fill this data gap by simulating huge ensembles of synthetic hurricanes based on estimates of the storm's large scale environment. Both physics-based and statistical/ML intensification models have been developed to tackle this problem, but an open question is: can a physically reasonable and simple physics-style differential equation model of intensification be learned from data? In this paper, we answer this question in the affirmative by presenting a 10-term cubic stochastic differential equation model of Tropical Cyclone intensification. The model depends on a well-vetted suite of engineered environmental features known to drive intensification and is trained using a high quality dataset of hurricane intensity (IBTrACS) with estimates of the cyclone's large scale environment from a data-assimilated simulation (ERA5 reanalysis), restricted to the Northern Hemisphere. The model generates synthetic intensity series which capture many aspects of historical intensification statistics and hazard estimates in the Northern Hemisphere. Our results show promise that interpretable, physics style models of complex earth system dynamics can be learned using automated system identification techniques.
CSQL: Mapping Documents into Causal Databases
We describe a novel system, CSQL, which automatically converts a collection of unstructured text documents into an SQL-queryable causal database (CDB). A CDB differs from a traditional DB: it is designed to answer "why'' questions via causal interventions and structured causal queries. CSQL builds on our earlier system, DEMOCRITUS, which converts documents into thousands of local causal models derived from causal discourse. Unlike RAG-based systems or knowledge-graph based approaches, CSQL supports causal analysis over document collections rather than purely associative retrieval. For example, given an article on the origins of human bipedal walking, CSQL enables queries such as: "What are the strongest causal influences on bipedalism?'' or "Which variables act as causal hubs with the largest downstream influence?'' Beyond single-document case studies, we show that CSQL can also ingest RAG/IE-compiled causal corpora at scale by compiling the Testing Causal Claims (TCC) dataset of economics papers into a causal database containing 265,656 claim instances spanning 45,319 papers, 44 years, and 1,575 reported method strings, thereby enabling corpus-level causal queries and longitudinal analyses in CSQL. Viewed abstractly, CSQL functions as a compiler from unstructured documents into a causal database equipped with a principled algebra of queries, and can be applied broadly across many domains ranging from business, humanities, and science.
comment: 26 pages
STO-RL: Offline RL under Sparse Rewards via LLM-Guided Subgoal Temporal Order
Offline reinforcement learning (RL) enables policy learning from pre-collected datasets, avoiding costly and risky online interactions, but it often struggles with long-horizon tasks involving sparse rewards. Existing goal-conditioned and hierarchical offline RL methods decompose such tasks and generate intermediate rewards to mitigate limitations of traditional offline RL, but usually overlook temporal dependencies among subgoals and rely on imprecise reward shaping, leading to suboptimal policies. To address these issues, we propose STO-RL (Offline RL using LLM-Guided Subgoal Temporal Order), an offline RL framework that leverages large language models (LLMs) to generate temporally ordered subgoal sequences and corresponding state-to-subgoal-stage mappings. Using this temporal structure, STO-RL applies potential-based reward shaping to transform sparse terminal rewards into dense, temporally consistent signals, promoting subgoal progress while avoiding suboptimal solutions. The resulting augmented dataset with shaped rewards enables efficient offline training of high-performing policies. Evaluations on four discrete and continuous sparse-reward benchmarks demonstrate that STO-RL consistently outperforms state-of-the-art offline goal-conditioned and hierarchical RL baselines, achieving faster convergence, higher success rates, and shorter trajectories. Ablation studies further confirm STO-RL's robustness to imperfect or noisy LLM-generated subgoal sequences, demonstrating that LLM-guided subgoal temporal structures combined with theoretically grounded reward shaping provide a practical and scalable solution for long-horizon offline RL.
comment: Accepted at International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2026)
Towards A Unified PAC-Bayesian Framework for Norm-based Generalization Bounds
Understanding the generalization behavior of deep neural networks remains a fundamental challenge in modern statistical learning theory. Among existing approaches, PAC-Bayesian norm-based bounds have demonstrated particular promise due to their data-dependent nature and their ability to capture algorithmic and geometric properties of learned models. However, most existing results rely on isotropic Gaussian posteriors, heavy use of spectral-norm concentration for weight perturbations, and largely architecture-agnostic analyses, which together limit both the tightness and practical relevance of the resulting bounds. To address these limitations, in this work, we propose a unified framework for PAC-Bayesian norm-based generalization by reformulating the derivation of generalization bounds as a stochastic optimization problem over anisotropic Gaussian posteriors. The key to our approach is a sensitivity matrix that quantifies the network outputs with respect to structured weight perturbations, enabling the explicit incorporation of heterogeneous parameter sensitivities and architectural structures. By imposing different structural assumptions on this sensitivity matrix, we derive a family of generalization bounds that recover several existing PAC-Bayesian results as special cases, while yielding bounds that are comparable to or tighter than state-of-the-art approaches. Such a unified framework provides a principled and flexible way for geometry-/structure-aware and interpretable generalization analysis in deep learning.
AdaJudge: Adaptive Multi-Perspective Judging for Reward Modeling
Reward modeling is essential for aligning large language models with human preferences, yet predominant architectures rely on a static pooling strategy to condense sequences into scalar scores. This paradigm, however, suffers from two key limitations: a static inductive bias that misaligns with task-dependent preference signals, and a representational mismatch, as the backbone is optimized for generation rather than fine-grained discrimination. To address this, we propose AdaJudge, a unified framework that jointly adapts representation and aggregation. AdaJudge first refines backbone representations into a discrimination-oriented space via gated refinement blocks. It then replaces the static readout with an adaptive multi-view pooling module that dynamically routes and combines evidence. Extensive experiments on RM-Bench and JudgeBench show that AdaJudge outperforms strong off-the-shelf reward models and traditional pooling baselines.
Local-Global Feature Fusion for Subject-Independent EEG Emotion Recognition
Subject-independent EEG emotion recognition is challenged by pronounced inter-subject variability and the difficulty of learning robust representations from short, noisy recordings. To address this, we propose a fusion framework that integrates (i) local, channel-wise descriptors and (ii) global, trial-level descriptors, improving cross-subject generalization on the SEED-VII dataset. Local representations are formed per channel by concatenating differential entropy with graph-theoretic features, while global representations summarize time-domain, spectral, and complexity characteristics at the trial level. These representations are fused in a dual-branch transformer with attention-based fusion and domain-adversarial regularization, with samples filtered by an intensity threshold. Experiments under a leave-one-subject-out protocol demonstrate that the proposed method consistently outperforms single-view and classical baselines, achieving approximately 40% mean accuracy in 7-class subject-independent emotion recognition. The code has been released at https://github.com/Danielz-z/LGF-EEG-Emotion.
comment: 7 pages, 5 figures, EMBC 2026
Q-realign: Piggybacking Realignment on Quantization for Safe and Efficient LLM Deployment
Public large language models (LLMs) are typically safety-aligned during pretraining, yet task-specific fine-tuning required for deployment often erodes this alignment and introduces safety risks. Existing defenses either embed safety recovery into fine-tuning or rely on fine-tuning-derived priors for post-hoc correction, leaving safety recovery tightly coupled with training and incurring high computational overhead and a complex workflow. To address these challenges, we propose \texttt{Q-realign}, a post-hoc defense method based on post-training quantization, guided by an analysis of representational structure. By reframing quantization as a dual-objective procedure for compression and safety, \texttt{Q-realign} decouples safety alignment from fine-tuning and naturally piggybacks into modern deployment pipelines. Experiments across multiple models and datasets demonstrate that our method substantially reduces unsafe behaviors while preserving task performance, with significant reductions in memory usage and GPU hours. Notably, our approach can recover the safety alignment of a fine-tuned 7B LLM on a single RTX 4090 within 40 minutes. Overall, our work provides a practical, turnkey solution for safety-aware deployment.
Layer-Parallel Training for Transformers
We present a new training methodology for transformers using a multilevel, layer-parallel approach. Through a neural ODE formulation of transformers, our application of a multilevel parallel-in-time algorithm for the forward and backpropagation phases of training achieves parallel acceleration over the layer dimension. This dramatically enhances parallel scalability as the network depth increases, which is particularly useful for increasingly large foundational models. However, achieving this introduces errors that cause systematic bias in the gradients, which in turn reduces convergence when closer to the minima. We develop an algorithm to detect this critical transition and either switch to serial training or systematically increase the accuracy of layer-parallel training. Results, including BERT, GPT2, ViT, and machine translation architectures, demonstrate parallel-acceleration as well as accuracy commensurate with serial pre-training while fine-tuning is unaffected.
comment: 20 pages, 12 figures
Universal Latent Homeomorphic Manifolds: Cross-Domain Representation Learning via Homeomorphism Verification
We present the Universal Latent Homeomorphic Manifold (ULHM), a framework that unifies semantic representations (e.g., human descriptions, diagnostic labels) and observation-driven machine representations (e.g., pixel intensities, sensor readings) into a single latent structure. Despite originating from fundamentally different pathways, both modalities capture the same underlying reality. We establish \emph{homeomorphism}, a continuous bijection preserving topological structure, as the mathematical criterion for determining when latent manifolds induced by different semantic-observation pairs can be rigorously unified. This criterion provides theoretical guarantees for three critical applications: (1) semantic-guided sparse recovery from incomplete observations, (2) cross-domain transfer learning with verified structural compatibility, and (3) zero-shot compositional learning via valid transfer from semantic to observation space. Our framework learns continuous manifold-to-manifold transformations through conditional variational inference, avoiding brittle point-to-point mappings. We develop practical verification algorithms, including trust, continuity, and Wasserstein distance metrics, that empirically validate homeomorphic structure from finite samples. Experiments demonstrate: (1) sparse image recovery from 5\% of CelebA pixels and MNIST digit reconstruction at multiple sparsity levels, (2) cross-domain classifier transfer achieving 86.73\% accuracy from MNIST to Fashion-MNIST without retraining, and (3) zero-shot classification on unseen classes achieving 89.47\% on MNIST, 84.70\% on Fashion-MNIST, and 78.76\% on CIFAR-10. Critically, the homeomorphism criterion correctly rejects incompatible datasets, preventing invalid unification and providing a feasible way to principled decomposition of general foundation models into verified domain-specific components.
An Inexact Weighted Proximal Trust-Region Method
In [R. J. Baraldi and D. P. Kouri, Math. Program., 201:1 (2023), pp. 559-598], the authors introduced a trust-region method for minimizing the sum of a smooth nonconvex and a nonsmooth convex function, the latter of which has an analytical proximity operator. While many functions satisfy this criterion, e.g., the $\ell_1$-norm defined on $\ell_2$, many others are precluded by either the topology or the nature of the nonsmooth term. Using the $δ$-Fréchet subdifferential, we extend the definition of the inexact proximity operator and enable its use within the aforementioned trust-region algorithm. Moreover, we augment the analysis for the standard trust-region convergence theory to handle proximity operator inexactness with weighted inner products. We first introduce an algorithm to generate a point in the inexact proximity operator and then apply the algorithm within the trust-region method to solve an optimal control problem constrained by Burgers' equation.
Tail-Sensitive KL and Rényi Convergence of Unadjusted Hamiltonian Monte Carlo via One-Shot Couplings
Hamiltonian Monte Carlo (HMC) algorithms are among the most widely used sampling methods in high dimensional settings, yet their convergence properties are poorly understood in divergences that quantify relative density mismatch, such as Kullback-Leibler (KL) and Rényi divergences. These divergences naturally govern acceptance probabilities and warm-start requirements for Metropolis-adjusted Markov chains. In this work, we develop a framework for upgrading Wasserstein convergence guarantees for unadjusted Hamiltonian Monte Carlo (uHMC) to guarantees in tail-sensitive KL and Rényi divergences. Our approach is based on one-shot couplings, which we use to establish a regularization property of the uHMC transition kernel. This regularization allows Wasserstein-2 mixing-time and asymptotic bias bounds to be lifted to KL divergence, and analogous Orlicz-Wasserstein bounds to be lifted to Rényi divergence, paralleling earlier work of Bou-Rabee and Eberle (2023) that upgrade Wasserstein-1 bounds to total variation distance via kernel smoothing. As a consequence, our results provide quantitative control of relative density mismatch, clarify the role of discretization bias in strong divergences, and yield principled guarantees relevant both for unadjusted sampling and for generating warm starts for Metropolis-adjusted Markov chains.
comment: 64 pages
Meta-learning to Address Data Shift in Time Series Classification
Across engineering and scientific domains, traditional deep learning (TDL) models perform well when training and test data share the same distribution. However, the dynamic nature of real-world data, broadly termed \textit{data shift}, renders TDL models prone to rapid performance degradation, requiring costly relabeling and inefficient retraining. Meta-learning, which enables models to adapt quickly to new data with few examples, offers a promising alternative for mitigating these challenges. Here, we systematically compare TDL with fine-tuning and optimization-based meta-learning algorithms to assess their ability to address data shift in time-series classification. We introduce a controlled, task-oriented seismic benchmark (SeisTask) and show that meta-learning typically achieves faster and more stable adaptation with reduced overfitting in data-scarce regimes and smaller model architectures. As data availability and model capacity increase, its advantages diminish, with TDL with fine-tuning performing comparably. Finally, we examine how task diversity influences meta-learning and find that alignment between training and test distributions, rather than diversity alone, drives performance gains. Overall, this work provides a systematic evaluation of when and why meta-learning outperforms TDL under data shift and contributes SeisTask as a benchmark for advancing adaptive learning research in time-series domains.
Block Decomposable Methods for Large-Scale Optimization Problems
This dissertation explores block decomposable methods for large-scale optimization problems. It focuses on alternating direction method of multipliers (ADMM) schemes and block coordinate descent (BCD) methods. Specifically, it introduces a new proximal ADMM algorithm and proposes two BCD methods. The first part of the research presents a new proximal ADMM algorithm. This method is adaptive to all problem parameters and solves the proximal augmented Lagrangian (AL) subproblem inexactly. This adaptiveness facilitates the highly efficient application of the algorithm to a broad swath of practical problems. The inexact solution of the proximal AL subproblem overcomes many key challenges in the practical applications of ADMM. The resultant algorithm obtains an approximate solution of an optimization problem in a number of iterations that matches the state-of-the-art complexity for the class of proximal ADMM schemes. The second part of the research focuses on an inexact proximal mapping for the class of block proximal gradient methods. Key properties of this operator is established, facilitating the derivation of convergence rates for the proposed algorithm. Under two error decreases conditions, the algorithm matches the convergence rate of its exactly computed counterpart. Numerical results demonstrate the superior performance of the algorithm under a dynamic error regime over a fixed one. The dissertation concludes by providing convergence guarantees for the randomized BCD method applied to a broad class of functions, known as Hölder smooth functions. Convergence rates are derived for non-convex, convex, and strongly convex functions. These convergence rates match those furnished in the existing literature for the Lipschtiz smooth setting.
Universal Dynamics of Warmup Stable Decay: understanding WSD beyond Transformers ICML
The Warmup Stable Decay (WSD) learning rate scheduler has recently become popular, largely due to its good performance and flexibility when training large language models. It remains an open question whether the remarkable performance of WSD - using a decaying learning rate for only a fraction of training compared to cosine decay - is a phenomenon specific to transformer-based language models that can potentially offer new theoretical insights into their training dynamics. Inspired by the usage of learning rate schedulers as a new lens into understanding landscape geometry (e.g., river valley, connected minima, progressive sharpening), in this work we compare the WSD path of the Adam optimizer on a Pythia-like language model to that of a small CNN trained to classify CIFAR10 images. We observe most training signals, optimizer path features, and sharpness dynamics to be qualitatively similar in such architectures. This consistency points to shared geometric characteristics of the loss landscapes of old and new nonconvex problems, and hints to future research questions around the geometry of high dimensional optimization problems.
comment: Accepted at the 2025 HiLD and MOSS Workshops at ICML
Physics-Guided Counterfactual Explanations for Large-Scale Multivariate Time Series: Application in Scalable and Interpretable SEP Event Prediction
Accurate prediction of solar energetic particle events is vital for safeguarding satellites, astronauts, and space-based infrastructure. Modern space weather monitoring generates massive volumes of high-frequency, multivariate time series (MVTS) data from sources such as the Geostationary perational Environmental Satellites (GOES). Machine learning (ML) models trained on this data show strong predictive power, but most existing methods overlook domain-specific feasibility constraints. Counterfactual explanations have emerged as a key tool for improving model interpretability, yet existing approaches rarely enforce physical plausibility. This work introduces a Physics-Guided Counterfactual Explanation framework, a novel method for generating counterfactual explanations in time series classification tasks that remain consistent with underlying physical principles. Applied to solar energetic particles (SEP) forecasting, this framework achieves over 80% reduction in Dynamic Time Warping (DTW) distance increasing the proximity, produces counterfactual explanations with higher sparsity, and reduces runtime by nearly 50% compared to state-of-the-art baselines such as DiCE. Beyond numerical improvements, this framework ensures that generated counterfactual explanations are physically plausible and actionable in scientific domains. In summary, the framework generates counterfactual explanations that are both valid and physically consistent, while laying the foundation for scalable counterfactual generation in big data environments.
comment: This is a pre-print of an accepted paper at IEEE BigData 2025, SS 11:Towards an Understanding of Artificial Intelligence: Bridging Theory, Explainability, and Practical Applications
Optimising for Energy Efficiency and Performance in Machine Learning
The ubiquity of machine learning (ML) and the demand for ever-larger models bring an increase in energy consumption and environmental impact. However, little is known about the energy scaling laws in ML, and existing research focuses on training cost -- ignoring the larger cost of inference. Furthermore, tools for measuring the energy consumption of ML do not provide actionable feedback. To address these gaps, we developed Energy Consumption Optimiser (ECOpt): a hyperparameter tuner that optimises for energy efficiency and model performance. ECOpt quantifies the trade-off between these metrics as an interpretable Pareto frontier. This enables ML practitioners to make informed decisions about energy cost and environmental impact, while maximising the benefit of their models and complying with new regulations. Using ECOpt, we show that parameter and floating-point operation counts can be unreliable proxies for energy consumption, and observe that the energy efficiency of Transformer models for text generation is relatively consistent across hardware. These findings motivate measuring and publishing the energy metrics of ML models. We further show that ECOpt can have a net positive environmental impact and use it to uncover seven models for CIFAR-10 that improve upon the state of the art, when considering accuracy and energy efficiency together.
comment: Accepted to CAIN'26
Continuous Fairness On Data Streams
We study the problem of enforcing continuous group fairness over windows in data streams. We propose a novel fairness model that ensures group fairness at a finer granularity level (referred to as block) within each sliding window. This formulation is particularly useful when the window size is large, making it desirable to enforce fairness at a finer granularity. Within this framework, we address two key challenges: efficiently monitoring whether each sliding window satisfies block-level group fairness, and reordering the current window as effectively as possible when fairness is violated. To enable real-time monitoring, we design sketch-based data structures that maintain attribute distributions with minimal overhead. We also develop optimal, efficient algorithms for the reordering task, supported by rigorous theoretical guarantees. Our evaluation on four real-world streaming scenarios demonstrates the practical effectiveness of our approach. We achieve millisecond-level processing and a throughput of approximately 30,000 queries per second on average, depending on system parameters. The stream reordering algorithm improves block-level group fairness by up to 95% in certain cases, and by 50-60% on average across datasets. A qualitative study further highlights the advantages of block-level fairness compared to window-level fairness.
Machine Learning-Driven Creep Law Discovery Across Alloy Compositional Space
Hihg-temperature creep characterization of structural alloys traditionally relies on serial uniaxial tests, which are highly inefficient for exploring the large search space of alloy compositions and for material discovery. Here, we introduce a machine-learning-assisted, high-throughput framework for creep law identification based on a dimple array bulge instrument (DABI) configuration, which enables parallel creep testing of 25 dimples, each fabricated from a different alloy, in a single experiment. Full-field surface displacements of dimples undergoing time-dependent creep-induced bulging under inert gas pressure are measured by 3D digital image correlation. We train a recurrent neural network (RNN) as a surrogate model, mapping creep parameters and loading conditions to the time-dependent deformation response of DABI. Coupling this surrogate with a particle swarm optimization scheme enables rapid and global inverse identification with sparsity regularization of creep parameters from experiment displacement-time histories. In addition, we propose a phenomenological creep law with a time-dependent stress exponent that captures the sigmoidal primary creep observed in wrought INCONEL 625 and extracts its temperature dependence from DABI test at multiple temperatures. Furthermore, we employ a general creep law combining several conventional forms together with regularized inversion to identify the creep laws for 47 additional Fe-, Ni-, and Co-rich alloys and to automatically select the dominant functional form for each alloy. This workflow combined with DABI experiment provides a quantitative, high-throughput creep characterization platform that is compatible with data mining, composition-property modeling, and nonlinear structural optimization with creep behavior across a large alloy design space.
comment: 27 pages, 7 figures
Breaking the Bottlenecks: Scalable Diffusion Models for 3D Molecular Generation
Diffusion models have emerged as a powerful class of generative models for molecular design, capable of capturing complex structural distributions and achieving high fidelity in 3D molecule generation. However, their widespread use remains constrained by long sampling trajectories, stochastic variance in the reverse process, and limited structural awareness in denoising dynamics. The Directly Denoising Diffusion Model (DDDM) mitigates these inefficiencies by replacing stochastic reverse MCMC updates with deterministic denoising step, substantially reducing inference time. Yet, the theoretical underpinnings of such deterministic updates have remained opaque. In this work, we provide a principled reinterpretation of DDDM through the lens of the Reverse Transition Kernel (RTK) framework by Huang et al. 2024, unifying deterministic and stochastic diffusion under a shared probabilistic formalism. By expressing the DDDM reverse process as an approximate kernel operator, we show that the direct denoising process implicitly optimizes a structured transport map between noisy and clean samples. This perspective elucidates why deterministic denoising achieves efficient inference. Beyond theoretical clarity, this reframing resolves several long-standing bottlenecks in molecular diffusion. The RTK view ensures numerical stability by enforcing well-conditioned reverse kernels, improves sample consistency by eliminating stochastic variance, and enables scalable and symmetry-preserving denoisers that respect SE(3) equivariance. Empirically, we demonstrate that RTK-guided deterministic denoising achieves faster convergence and higher structural fidelity than stochastic diffusion models, while preserving chemical validity across GEOM-DRUGS dataset. Code, models, and datasets are publicly available in our project repository.
Imagine-then-Plan: Agent Learning from Adaptive Lookahead with World Models
Recent advances in world models have shown promise for modeling future dynamics of environmental states, enabling agents to reason and act without accessing real environments. Current methods mainly perform single-step or fixed-horizon rollouts, leaving their potential for complex task planning under-exploited. We propose Imagine-then-Plan (\texttt{ITP}), a unified framework for agent learning via lookahead imagination, where an agent's policy model interacts with the learned world model, yielding multi-step ``imagined'' trajectories. Since the imagination horizon may vary by tasks and stages, we introduce a novel adaptive lookahead mechanism by trading off the ultimate goal and task progress. The resulting imagined trajectories provide rich signals about future consequences, such as achieved progress and potential conflicts, which are fused with current observations, formulating a partially \textit{observable} and \textit{imaginable} Markov decision process to guide policy learning. We instantiate \texttt{ITP} with both training-free and reinforcement-trained variants. Extensive experiments across representative agent benchmarks demonstrate that \texttt{ITP} significantly outperforms competitive baselines. Further analyses validate that our adaptive lookahead largely enhances agents' reasoning capability, providing valuable insights into addressing broader, complex tasks.
ConvoLearn: A Dataset of Constructivist Tutor-Student Dialogue
In educational applications, LLMs exhibit several fundamental pedagogical limitations, such as their tendency to reveal solutions rather than support dialogic learning. We introduce ConvoLearn (https://huggingface.co/datasets/masharma/convolearn ), a dataset grounded in knowledge building theory that operationalizes six core pedagogical dimensions: cognitive engagement, formative assessment, accountability, cultural responsiveness, metacognition, and power dynamics. We construct a semi-synthetic dataset of 1250 tutor-student dialogues (20 turns each) in middle school Earth Science through controlled interactions between human teachers and a simulated student. Using QLoRA, we demonstrate that training on this dataset meaningfully shifts LLM behavior toward knowledge-building strategies. Human evaluation by 31 teachers shows our fine-tuned Mistral 7B (M = 4.10, SD = 1.03) significantly outperforms both its base version (M = 2.59, SD = 1.11) and Claude Sonnet 4.5 (M = 2.87, SD = 1.29) overall. This work establishes a potential framework to guide future development and evaluation of constructivist AI tutors.
DriftGuard: A Hierarchical Framework for Concept Drift Detection and Remediation in Supply Chain Forecasting
Supply chain forecasting models degrade over time as real-world conditions change. Promotions shift, consumer preferences evolve, and supply disruptions alter demand patterns, causing what is known as concept drift. This silent degradation leads to stockouts or excess inventory without triggering any system warnings. Current industry practice relies on manual monitoring and scheduled retraining every 3-6 months, which wastes computational resources during stable periods while missing rapid drift events. Existing academic methods focus narrowly on drift detection without addressing diagnosis or remediation, and they ignore the hierarchical structure inherent in supply chain data. What retailers need is an end-to-end system that detects drift early, explains its root causes, and automatically corrects affected models. We propose DriftGuard, a five-module framework that addresses the complete drift lifecycle. The system combines an ensemble of four complementary detection methods, namely error-based monitoring, statistical tests, autoencoder anomaly detection, and Cumulative Sum (CUSUM) change-point analysis, with hierarchical propagation analysis to identify exactly where drift occurs across product lines. Once detected, Shapley Additive Explanations (SHAP) analysis diagnoses the root causes, and a cost-aware retraining strategy selectively updates only the most affected models. Evaluated on over 30,000 time series from the M5 retail dataset, DriftGuard achieves 97.8% detection recall within 4.2 days and delivers up to 417 return on investment through targeted remediation.
Fine Grained Evaluation of LLMs-as-Judges
A good deal of recent research has focused on how Large Language Models (LLMs) may be used as `judges' in place of humans to evaluate the quality of the output produced by various text / image processing systems. Within this broader context, a number of studies have investigated the specific question of how effectively LLMs can be used as relevance assessors for the standard ad hoc task in Information Retrieval (IR). We extend these studies by looking at additional questions. Most importantly, we use a Wikipedia based test collection created by the INEX initiative, and prompt LLMs to not only judge whether documents are relevant / non-relevant, but to highlight relevant passages in documents that it regards as useful. The human relevance assessors involved in creating this collection were given analogous instructions, i.e., they were asked to highlight all passages within a document that respond to the information need expressed in a query. This enables us to evaluate the quality of LLMs as judges not only at the document level, but to also quantify how often these `judges' are right for the right reasons. Our findings suggest that LLMs-as-judges work best under human supervision.
Navigating Ideation Space: Decomposed Conceptual Representations for Positioning Scientific Ideas
Scientific discovery is a cumulative process and requires new ideas to be situated within an ever-expanding landscape of existing knowledge. An emerging and critical challenge is how to identify conceptually relevant prior work from rapidly growing literature, and assess how a new idea differentiates from existing research. Current embedding approaches typically conflate distinct conceptual aspects into single representations and cannot support fine-grained literature retrieval; meanwhile, LLM-based evaluators are subject to sycophancy biases, failing to provide discriminative novelty assessment. To tackle these challenges, we introduce the Ideation Space, a structured representation that decomposes scientific knowledge into three distinct dimensions, i.e., research problem, methodology, and core findings, each learned through contrastive training. This framework enables principled measurement of conceptual distance between ideas, and modeling of ideation transitions that capture the logical connections within a proposed idea. Building upon this representation, we propose a Hierarchical Sub-Space Retrieval framework for efficient, targeted literature retrieval, and a Decomposed Novelty Assessment algorithm that identifies which aspects of an idea are novel. Extensive experiments demonstrate substantial improvements, where our approach achieves Recall@30 of 0.329 (16.7% over baselines), our ideation transition retrieval reaches Hit Rate@30 of 0.643, and novelty assessment attains 0.37 correlation with expert judgments. In summary, our work provides a promising paradigm for future research on accelerating and evaluating scientific discovery.
comment: 21 pages, 6 tables
Comprehensive Machine Learning Benchmarking for Fringe Projection Profilometry with Photorealistic Synthetic Data
Machine learning approaches for fringe projection profilometry (FPP) are hindered by the lack of large, diverse datasets and comprehensive benchmarking protocols. This paper introduces the first open-source, photorealistic synthetic dataset for FPP, generated using NVIDIA Isaac Sim with 15,600 fringe images and 300 depth reconstructions across 50 diverse objects. We benchmark four neural network architectures (UNet, Hformer, ResUNet, Pix2Pix) on single-shot depth reconstruction, revealing that all models achieve similar performance (58-77 mm RMSE) despite substantial architectural differences. Our results demonstrate fundamental limitations of direct fringe-to-depth mapping without explicit phase information, with reconstruction errors approaching 75-95\% of the typical object depth range. This resource provides standardized evaluation protocols enabling systematic comparison and development of learning-based FPP approaches.
XGBoost Forecasting of NEPSE Index Log Returns with Walk Forward Validation
This study develops a robust machine learning framework for one-step-ahead forecasting of daily log-returns in the Nepal Stock Exchange (NEPSE) Index using the XGBoost regressor. A comprehensive feature set is engineered, including lagged log-returns (up to 30 days) and established technical indicators such as short- and medium-term rolling volatility measures and the 14-period Relative Strength Index. Hyperparameter optimization is performed using Optuna with time-series cross-validation on the initial training segment. Out-of-sample performance is rigorously assessed via walk-forward validation under both expanding and fixed-length rolling window schemes across multiple lag configurations, simulating real-world deployment and avoiding lookahead bias. Predictive accuracy is evaluated using root mean squared error, mean absolute error, coefficient of determination (R-squared), and directional accuracy on both log-returns and reconstructed closing prices. Empirical results show that the optimal configuration, an expanding window with 20 lags, outperforms tuned ARIMA and Ridge regression benchmarks, achieving the lowest log-return RMSE (0.013450) and MAE (0.009814) alongside a directional accuracy of 65.15%. While the R-squared remains modest, consistent with the noisy nature of financial returns, primary emphasis is placed on relative error reduction and directional prediction. Feature importance analysis and visual inspection further enhance interpretability. These findings demonstrate the effectiveness of gradient boosting ensembles in modeling nonlinear dynamics in volatile emerging market time series and establish a reproducible benchmark for NEPSE Index forecasting.
comment: 9 pages, 4 figures, 3 tables
Spectral Generative Flow Models: A Physics-Inspired Replacement for Vectorized Large Language Models
We introduce Spectral Generative Flow Models (SGFMs), a physics-inspired alternative to transformer-based large language models. Instead of representing text or video as sequences of discrete tokens processed by attention, SGFMs treat generation as the evolution of a continuous field governed by constrained stochastic dynamics in a multiscale wavelet basis. This formulation replaces global attention with local operators, spectral projections, and Navier--Stokes-like transport, yielding a generative mechanism grounded in continuity, geometry, and physical structure. Our framework provides three key innovations: (i) a field-theoretic ontology in which text and video are unified as trajectories of a stochastic partial differential equation; (ii) a wavelet-domain representation that induces sparsity, scale separation, and computational efficiency; and (iii) a constrained stochastic flow that enforces stability, coherence, and uncertainty propagation. Together, these components define a generative architecture that departs fundamentally from autoregressive modeling and diffusion-based approaches. SGFMs offer a principled path toward long-range coherence, multimodal generality, and physically structured inductive bias in next-generation generative models.
Attention Consistency Regularization for Interpretable Early-Exit Neural Networks
Early-exit neural networks enable adaptive inference by allowing predictions at intermediate layers, reducing computational cost. However, early exits often lack interpretability and may focus on different features than deeper layers, limiting trust and explainability. This paper presents Explanation-Guided Training (EGT), a multi-objective framework that improves interpretability and consistency in early-exit networks through attention-based regularization. EGT introduces an attention consistency loss that aligns early-exit attention maps with the final exit. The framework jointly optimizes classification accuracy and attention consistency through a weighted combination of losses. Experiments on a real-world image classification dataset demonstrate that EGT achieves up to 98.97% overall accuracy (matching baseline performance) with a 1.97x inference speedup through early exits, while improving attention consistency by up to 18.5% compared to baseline models. The proposed method provides more interpretable and consistent explanations across all exit points, making early-exit networks more suitable for explainable AI applications in resource-constrained environments.
comment: 2 pages, 1 figure
Free-RBF-KAN: Kolmogorov-Arnold Networks with Adaptive Radial Basis Functions for Efficient Function Learning
Kolmogorov-Arnold Networks (KANs) have shown strong potential for efficiently approximating complex nonlinear functions. However, the original KAN formulation relies on B-spline basis functions, which incur substantial computational overhead due to De Boor's algorithm. To address this limitation, recent work has explored alternative basis functions such as radial basis functions (RBFs) that can improve computational efficiency and flexibility. Yet, standard RBF-KANs often sacrifice accuracy relative to the original KAN design. In this work, we propose Free-RBF-KAN, a RBF-based KAN architecture that incorporates adaptive learning grids and trainable smoothness to close this performance gap. Our method employs freely learnable RBF shapes that dynamically align grid representations with activation patterns, enabling expressive and adaptive function approximation. Additionally, we treat smoothness as a kernel parameter optimized jointly with network weights, without increasing computational complexity. We provide a general universality proof for RBF-KANs, which encompasses our Free-RBF-KAN formulation. Through a broad set of experiments, including multiscale function approximation, physics-informed machine learning, and PDE solution operator learning, Free-RBF-KAN achieves accuracy comparable to the original B-spline-based KAN while delivering faster training and inference. These results highlight Free-RBF-KAN as a compelling balance between computational efficiency and adaptive resolution, particularly for high-dimensional structured modeling tasks.
Stability of Primal-Dual Gradient Flow Dynamics for Multi-Block Convex Optimization Problems
We examine stability properties of primal-dual gradient flow dynamics for composite convex optimization problems with multiple, possibly nonsmooth, terms in the objective function under the generalized consensus constraint. The proposed dynamics are based on the proximal augmented Lagrangian and they provide a viable alternative to ADMM which faces significant challenges from both analysis and implementation viewpoints in large-scale multi-block scenarios. In contrast to customized algorithms with individualized convergence guarantees, we develop a systematic approach for solving a broad class of challenging composite optimization problems. We leverage various structural properties to establish global (exponential) convergence guarantees for the proposed dynamics. Our assumptions are much weaker than those required to prove (exponential) stability of primal-dual dynamics as well as (linear) convergence of discrete-time methods such as standard two-block and multi-block ADMM and EXTRA algorithms. Finally, we show necessity of some of our structural assumptions for exponential stability and provide computational experiments to demonstrate the convenience of the proposed approach for parallel and distributed computing applications.
comment: 32 pages; 4 figures
A Vision for Multisensory Intelligence: Sensing, Science, and Synergy
Our experience of the world is multisensory, spanning a synthesis of language, sight, sound, touch, taste, and smell. Yet, artificial intelligence has primarily advanced in digital modalities like text, vision, and audio. This paper outlines a research vision for multisensory artificial intelligence over the next decade. This new set of technologies can change how humans and AI experience and interact with one another, by connecting AI to the human senses and a rich spectrum of signals from physiological and tactile cues on the body, to physical and social signals in homes, cities, and the environment. We outline how this field must advance through three interrelated themes of sensing, science, and synergy. Firstly, research in sensing should extend how AI captures the world in richer ways beyond the digital medium. Secondly, developing a principled science for quantifying multimodal heterogeneity and interactions, developing unified modeling architectures and representations, and understanding cross-modal transfer. Finally, we present new technical challenges to learn synergy between modalities and between humans and AI, covering multisensory integration, alignment, reasoning, generation, generalization, and experience. Accompanying this vision paper are a series of projects, resources, and demos of latest advances from the Multisensory Intelligence group at the MIT Media Lab, see https://mit-mi.github.io/.
Incentivizing Multi-Tenant Split Federated Learning for Foundation Models at the Network Edge
Foundation models (FMs) such as GPT-4 exhibit exceptional generative capabilities across diverse downstream tasks through fine-tuning. Split Federated Learning (SFL) facilitates privacy-preserving FM fine-tuning on resource-constrained local devices by offloading partial FM computations to edge servers, enabling device-edge synergistic fine-tuning. Practical edge networks often host multiple SFL tenants to support diversified downstream tasks. However, existing research primarily focuses on single-tenant SFL scenarios, and lacks tailored incentive mechanisms for multi-tenant settings, which are essential to effectively coordinate self-interested local devices for participation in various downstream tasks, ensuring that each SFL tenant's distinct FM fine-tuning requirements (e.g., FM types, performance targets, and fine-tuning deadlines) are met. To address this gap, we propose a novel Price-Incentive Mechanism (PRINCE) that guides multiple SFL tenants to offer strategic price incentives, which solicit high-quality device participation for efficient FM fine-tuning. Specifically, we first develop a bias-resilient global SFL model aggregation scheme to eliminate model biases caused by independent device participation. We then derive a rigorous SFL convergence bound to evaluate the contributions of heterogeneous devices to FM performance improvements, guiding the incentive strategies of SFL tenants. Furthermore, we model inter-tenant device competition as a congestion game for Stackelberg equilibrium (SE) analysis, deriving each SFL tenant's optimal incentive strategy. Extensive simulations involving four representative SFL tenant types (ViT, BERT, Whisper, and LLaMA) across diverse data modalities (text, images, and audio) demonstrate that PRINCE accelerates FM fine-tuning by up to 3.07x compared to state-of-the-art approaches, while consistently meeting fine-tuning performance targets.
comment: Accepted for publication in IEEE/ACM Transactions on Networking. Index Terms: Foundation models, Edge computing, Split federated learning, Multi-tenant system, Incentive mechanism
Hybrid Reward-Driven Reinforcement Learning for Efficient Quantum Circuit Synthesis
A reinforcement learning (RL) framework is introduced for the efficient synthesis of quantum circuits that generate specified target quantum states from a fixed initial state, addressing a central challenge in both the Noisy Intermediate-Scale Quantum (NISQ) era and future fault-tolerant quantum computing. The approach utilizes tabular Q-learning, based on action sequences, within a discretized quantum state space, to effectively manage the exponential growth of the space dimension.The framework introduces a hybrid reward mechanism, combining a static, domain-informed reward that guides the agent toward the target state with customizable dynamic penalties that discourage inefficient circuit structures such as gate congestion and redundant state revisits. This is a circuit-aware reward, in contrast to the current trend of works on this topic, which are primarily fidelity-based. By leveraging sparse matrix representations and state-space discretization, the method enables practical navigation of high-dimensional environments while minimizing computational overhead. Benchmarking on graph-state preparation tasks for up to seven qubits, we demonstrate that the algorithm consistently discovers minimal-depth circuits with optimized gate counts. Moreover, extending the framework to a universal gate set still yields low depth circuits, highlighting the algorithm robustness and adaptability. The results confirm that this RL-driven approach, with our completely circuit-aware method, efficiently explores the complex quantum state space and synthesizes near-optimal quantum circuits, providing a resource-efficient foundation for quantum circuit optimization.
comment: 35 pages, 7 figures, color figures
Analog In-memory Training on General Non-ideal Resistive Elements: The Impact of Response Functions
As the economic and environmental costs of training and deploying large vision or language models increase dramatically, analog in-memory computing (AIMC) emerges as a promising energy-efficient solution. However, the training perspective, especially its training dynamic, is underexplored. In AIMC hardware, the trainable weights are represented by the conductance of resistive elements and updated using consecutive electrical pulses. While the conductance changes by a constant in response to each pulse, in reality, the change is scaled by asymmetric and non-linear response functions, leading to a non-ideal training dynamic. This paper provides a theoretical foundation for gradient-based training on AIMC hardware with non-ideal response functions. We demonstrate that asymmetric response functions negatively impact Analog SGD by imposing an implicit penalty on the objective. To overcome the issue, we propose Residual Learning algorithm, which provably converges exactly to a critical point by solving a bilevel optimization problem. We demonstrate that the proposed method can be extended to address other hardware imperfections, such as limited response granularity. As we know, it is the first paper to investigate the impact of a class of generic non-ideal response functions. The conclusion is supported by simulations validating our theoretical insights.
PIE: Performance Interval Estimation for Free-Form Generation Tasks
Confidence estimation infers a probability for whether each model output is correct or not. While predicting such binary correctness is sensible for tasks with exact answers, free-form generation tasks are often more nuanced, with output quality being both fine-grained and multi-faceted. We thus propose Performance Interval Estimation (PIE) to predict both: 1) point estimates for any arbitrary set of continuous-valued evaluation metrics; and 2) calibrated uncertainty intervals around these point estimates. We then compare two approaches: LLM-as-judge vs. classic regression with confidence estimation features. Evaluation over 11 datasets spans summarization, translation, code generation, function-calling, and question answering. Regression is seen to achieve both: i) lower error point estimates of metric scores; and ii) well-calibrated uncertainty intervals. To support reproduction and follow-on work, we share our data and code.
comment: 10 pages
Quantization Error Propagation: Revisiting Layer-Wise Post-Training Quantization NeurIPS 2025
Layer-wise PTQ is a promising technique for compressing large language models (LLMs), due to its simplicity and effectiveness without requiring retraining. However, recent progress in this area is saturating, underscoring the need to revisit its core limitations and explore further improvements. We address this challenge by identifying a key limitation of existing layer-wise PTQ methods: the growth of quantization errors across layers significantly degrades performance, particularly in low-bit regimes. To address this fundamental issue, we propose Quantization Error Propagation (QEP), a general, lightweight, and scalable framework that enhances layer-wise PTQ by explicitly propagating quantization errors and compensating for accumulated errors. QEP also offers a tunable propagation mechanism that prevents overfitting and controls computational overhead, enabling the framework to adapt to various architectures and resource budgets. Extensive experiments on several LLMs demonstrate that QEP-enhanced layer-wise PTQ achieves substantially higher accuracy than existing methods. Notably, the gains are most pronounced in the extremely low-bit quantization regime.
comment: 29 pages, 3 figures, Accepted at NeurIPS 2025
Efficient and Reproducible Biomedical Question Answering using Retrieval Augmented Generation
Biomedical question-answering (QA) systems require effective retrieval and generation components to ensure accuracy, efficiency, and scalability. This study systematically examines a Retrieval-Augmented Generation (RAG) system for biomedical QA, evaluating retrieval strategies and response time trade-offs. We first assess state-of-the-art retrieval methods, including BM25, BioBERT, MedCPT, and a hybrid approach, alongside common data stores such as Elasticsearch, MongoDB, and FAISS, on a ~10% subset of PubMed (2.4M documents) to measure indexing efficiency, retrieval latency, and retriever performance in the end-to-end RAG system. Based on these insights, we deploy the final RAG system on the full 24M PubMed corpus, comparing different retrievers' impact on overall performance. Evaluations of the retrieval depth show that retrieving 50 documents with BM25 before reranking with MedCPT optimally balances accuracy (0.90), recall (0.90), and response time (1.91s). BM25 retrieval time remains stable (82ms), while MedCPT incurs the main computational cost. These results highlight previously not well-known trade-offs in retrieval depth, efficiency, and scalability for biomedical QA. With open-source code, the system is fully reproducible and extensible.
comment: Minor wording corrections and updated author contact information
Spike-timing-dependent Hebbian learning as noisy gradient descent
Hebbian learning is a key principle underlying learning in biological neural networks. We relate a Hebbian spike-timing-dependent plasticity rule to noisy gradient descent with respect to a non-convex loss function on the probability simplex. Despite the constant injection of noise and the non-convexity of the underlying optimization problem, one can rigorously prove that the considered Hebbian learning dynamic identifies the presynaptic neuron with the highest activity and that the convergence is exponentially fast in the number of iterations. This is non-standard and surprising as typically noisy gradient descent with fixed noise level only converges to a stationary regime where the noise causes the dynamic to fluctuate around a minimiser.
Precision over Diversity: High-Precision Reward Generalizes to Robust Instruction Following
A central belief in scaling reinforcement learning with verifiable rewards for instruction following (IF) tasks is that, a diverse mixture of verifiable hard and unverifiable soft constraints is essential for generalizing to unseen instructions. In this work, we challenge this prevailing consensus through a systematic empirical investigation. Counter-intuitively, we find that models trained on hard-only constraints consistently outperform those trained on mixed datasets. Extensive experiments reveal that reward precision, rather than constraint diversity, is the primary driver of effective alignment. The LLM judge suffers from a low recall rate in detecting false response, which leads to severe reward hacking, thereby undermining the benefits of diversity. Furthermore, analysis of the attention mechanism reveals that high-precision rewards develop a transferable meta-skill for IF. Motivated by these insights, we propose a simple yet effective data-centric refinement strategy that prioritizes reward precision. Evaluated on five benchmarks, our approach outperforms competitive baselines by 13.4\% in performance while achieving a 58\% reduction in training time, maintaining strong generalization beyond instruction following. Our findings advocate for a paradigm shift: moving away from the indiscriminate pursuit of data diversity toward high-precision rewards.
comment: Under review, 13 pages, 8 figures
The Kernel Manifold: A Geometric Approach to Gaussian Process Model Selection
Gaussian Process (GP) regression is a powerful nonparametric Bayesian framework, but its performance depends critically on the choice of covariance kernel. Selecting an appropriate kernel is therefore central to model quality, yet remains one of the most challenging and computationally expensive steps in probabilistic modeling. We present a Bayesian optimization framework built on kernel-of-kernels geometry, using expected divergence-based distances between GP priors to explore kernel space efficiently. A multidimensional scaling (MDS) embedding of this distance matrix maps a discrete kernel library into a continuous Euclidean manifold, enabling smooth BO. In this formulation, the input space comprises kernel compositions, the objective is the log marginal likelihood, and featurization is given by the MDS coordinates. When the divergence yields a valid metric, the embedding preserves geometry and produces a stable BO landscape. We demonstrate the approach on synthetic benchmarks, real-world time-series datasets, and an additive manufacturing case study predicting melt-pool geometry, achieving superior predictive accuracy and uncertainty calibration relative to baselines including Large Language Model (LLM)-guided search. This framework establishes a reusable probabilistic geometry for kernel search, with direct relevance to GP modeling and deep kernel learning.
comment: Included a subsection named "Budgetary impact of inline kernel optimization during BO", and corrected label of a figure
Measuring and Fostering Peace through Machine Learning and Artificial Intelligence
We used machine learning and artificial intelligence: 1) to measure levels of peace in countries from news and social media and 2) to develop on-line tools that promote peace by helping users better understand their own media diet. For news media, we used neural networks to measure levels of peace from text embeddings of on-line news sources. The model, trained on one news media dataset also showed high accuracy when used to analyze a different news dataset. For social media, such as YouTube, we developed other models to measure levels of social dimensions important in peace using word level (GoEmotions) and context level (Large Language Model) methods. To promote peace, we note that 71% of people 20-40 years old daily view most of their news through short videos on social media. Content creators of these videos are biased towards creating videos with emotional activation, making you angry to engage you, to increase clicks. We developed and tested a Chrome extension, MirrorMirror, which provides real-time feedback to YouTube viewers about the peacefulness of the media they are watching. Our long term goal is for MirrorMirror to evolve into an open-source tool for content creators, journalists, researchers, platforms, and individual users to better understand the tone of their media creation and consumption and its effects on viewers. Moving beyond simple engagement metrics, we hope to encourage more respectful, nuanced, and informative communication.
comment: 6 pages, 4 figures, corrected typos, minor edits
Interactive and Hybrid Imitation Learning: Provably Beating Behavior Cloning NeurIPS 2025
Imitation learning (IL) is a paradigm for learning sequential decision making policies from experts, leveraging offline demonstrations, interactive annotations, or both. Recent advances show that when annotation cost is tallied per trajectory, Behavior Cloning (BC) which relies solely on offline demonstrations cannot be improved in general, leaving limited conditions for interactive methods such as DAgger to help. We revisit this conclusion and prove that when the annotation cost is measured per state, algorithms using interactive annotations can provably outperform BC. Specifically: (1) we show that Stagger, a one sample per round variant of DAgger, provably beats BC under low recovery cost settings; (2) we initiate the study of hybrid IL where the agent learns from offline demonstrations and interactive annotations. We propose Warm Stagger whose learning guarantee is not much worse than using either data source alone. Furthermore, motivated by compounding error and cold start problem in imitation learning practice, we give an MDP example in which Warm Stagger has significant better annotation cost; (3) experiments on MuJoCo continuous control tasks confirm that, with modest cost ratio between interactive and offline annotations, interactive and hybrid approaches consistently outperform BC. To the best of our knowledge, our work is the first to highlight the benefit of state wise interactive annotation and hybrid feedback in imitation learning.
comment: 42 pages, Accepted by NeurIPS 2025
Theoretical Foundations of Prompt Engineering: From Heuristics to Expressivity
Prompts can switch a model's behavior even when the weights are fixed, yet this phenomenon is rarely treated as a clean theoretical object rather than a heuristic. We study the family of functions obtainable by holding a Transformer backbone fixed as an executor and varying only the prompt. Our core idea is to view the prompt as an externally injected program and to construct a simplified Transformer that interprets it to implement different computations. The construction exposes a mechanism-level decomposition: attention performs selective routing from prompt memory, the FFN performs local arithmetic conditioned on retrieved fragments, and depth-wise stacking composes these local updates into a multi-step computation. Under this viewpoint, we prove a constructive existential result showing that a single fixed backbone can approximate a broad class of target behaviors via prompts alone. The framework provides a unified starting point for formalizing trade-offs under prompt length/precision constraints and for studying structural limits of prompt-based switching, while remaining distinct from empirical claims about pretrained LLMs.
comment: Revised for clarity and correctness; improved exposition and fixed minor issues
Accelerated Gradient Methods with Biased Gradient Estimates: Risk Sensitivity, High-Probability Guarantees, and Large Deviation Bounds
We study trade-offs between convergence rate and robustness to gradient errors in the context of first-order methods. Our focus is on generalized momentum methods (GMMs)--a broad class that includes Nesterov's accelerated gradient, heavy-ball, and gradient descent methods--for minimizing smooth strongly convex objectives. We allow stochastic gradient errors that may be adversarial and biased, and quantify robustness of these methods to gradient errors via the risk-sensitive index (RSI) from robust control theory. For quadratic objectives with i.i.d. Gaussian noise, we give closed form expressions for RSI in terms of solutions to 2x2 matrix Riccati equations, revealing a Pareto frontier between RSI and convergence rate over the choice of step-size and momentum parameters. We then prove a large-deviation principle for time-averaged suboptimality in the large iteration limit and show that the rate function is, up to a scaling, the convex conjugate of the RSI function. We further show that the rate function and RSI are linked to the $H_\infty$-norm--a measure of robustness to the worst-case deterministic gradient errors--so that stronger worst-case robustness (smaller $H_\infty$-norm) leads to sharper decay of the tail probabilities for the average suboptimality. Beyond quadratics, under potentially biased sub-Gaussian gradient errors, we derive non-asymptotic bounds on a finite-time analogue of the RSI, yielding finite-time high-probability guarantees and non-asymptotic large-deviation bounds for the averaged iterates. In the case of smooth strongly convex functions, we also observe an analogous trade-off between RSI and convergence-rate bounds. To our knowledge, these are the first non-asymptotic guarantees for GMMs with biased gradients and the first risk-sensitive analysis of GMMs. Finally, we provide numerical experiments on a robust regression problem to illustrate our results.
ROSS: RObust decentralized Stochastic learning based on Shapley values
In the paradigm of decentralized learning, a group of agents collaborate to learn a global model using a distributed dataset without a central server; nevertheless, it is severely challenged by the heterogeneity of the data distribution across the agents. For example, the data may be distributed non-independently and identically, and even be noised or poisoned. To address these data challenges, we propose ROSS, a novel robust decentralized stochastic learning algorithm based on Shapley values, in this paper. Specifically, in each round, each agent aggregates the cross-gradient information from its neighbors, i.e., the derivatives of its local model with respect to the datasets of its neighbors, to update its local model in a momentum like manner, while we innovate in weighting the derivatives according to their contributions measured by Shapley values. We perform solid theoretical analysis to reveal the linear convergence speedup of our ROSS algorithm. We also verify the efficacy of our algorithm through extensive experiments on public datasets. Our results demonstrate that, in face of the above variety of data challenges, our ROSS algorithm has significant advantages over existing state-of-the-art proposals in terms of both convergence and prediction accuracy.
Feed-Forward Optimization With Delayed Feedback for Neural Network Training
Backpropagation has long been criticized for being biologically implausible due to its reliance on concepts that are not viable in natural learning processes. Two core issues are the weight transport and update locking problems caused by the forward-backward dependencies, which limit biological plausibility, computational efficiency, and parallelization. Although several alternatives have been proposed to increase biological plausibility, they often come at the cost of reduced predictive performance. This paper proposes an alternative approach to training feed-forward neural networks addressing these issues by using approximate gradient information. We introduce Feed-Forward with delayed Feedback (F$^3$), which approximates gradients using fixed random feedback paths and delayed error information from the previous epoch to balance biological plausibility with predictive performance. We evaluate F$^3$ across multiple tasks and architectures, including both fully-connected and Transformer networks. Our results demonstrate that, compared to similarly plausible approaches, F$^3$ significantly improves predictive performance, narrowing the gap to backpropagation by up to 56% for classification and 96% for regression. This work is a step towards more biologically plausible learning algorithms while opening up new avenues for energy-efficient and parallelizable neural network training.
comment: This is the submitted manuscript of the version of record published in the proceedings to the 31st International Conference on Neural Information Processing (ICONIP 2024), Lecture Notes in Computer Science, vol 15289, and available online at https://doi.org/10.1007/978-981-96-6585-3_6
The Hessian of tall-skinny networks is easy to invert
We describe an exact algorithm for solving linear systems $Hx=b$ where $H$ is the Hessian of a deep net. The method computes Hessian-inverse-vector products without storing the Hessian or its inverse in time and storage that scale linearly in the number of layers. Compared to the naive approach of first computing the Hessian, then solving the linear system, which takes storage that's quadratic in the number of parameters and cubically many operations, our Hessian-inverse-vector product method scales roughly like Pearlmutter's algorithm for computing Hessian-vector products.
Are My Optimized Prompts Compromised? Exploring Vulnerabilities of LLM-based Optimizers
Large language model (LLM) systems increasingly power everyday AI applications such as chatbots, computer-use assistants, and autonomous robots, where performance often depends on manually well-crafted prompts. LLM-based prompt optimizers reduce that effort by iteratively refining prompts from scored feedback, yet the security of this optimization stage remains underexamined. We present the first systematic analysis of poisoning risks in LLM-based prompt optimization. Using HarmBench, we find systems are substantially more vulnerable to manipulated feedback than to query poisoning alone: feedback-based attacks raise attack success rate (ASR) by up to ΔASR = 0.48. We introduce a simple fake reward attack that requires no access to the reward model and significantly increases vulnerability. We also propose a lightweight highlighting defense that reduces the fake reward ΔASR from 0.23 to 0.07 without degrading utility. These results establish prompt optimization pipelines as a first-class attack surface and motivate stronger safeguards for feedback channels and optimization frameworks.
comment: Proceedings of the 19th Conference of the European Chapter of the Association for Computational Linguistics (EACL 2026)
Geometry Aware Operator Transformer as an Efficient and Accurate Neural Surrogate for PDEs on Arbitrary Domains
The very challenging task of learning solution operators of PDEs on arbitrary domains accurately and efficiently is of vital importance to engineering and industrial simulations. Despite the existence of many operator learning algorithms to approximate such PDEs, we find that accurate models are not necessarily computationally efficient and vice versa. We address this issue by proposing a geometry aware operator transformer (GAOT) for learning PDEs on arbitrary domains. GAOT combines novel multiscale attentional graph neural operator encoders and decoders, together with geometry embeddings and (vision) transformer processors to accurately map information about the domain and the inputs into a robust approximation of the PDE solution. Multiple innovations in the implementation of GAOT also ensure computational efficiency and scalability. We demonstrate this significant gain in both accuracy and efficiency of GAOT over several baselines on a large number of learning tasks from a diverse set of PDEs, including achieving state of the art performance on three large scale three-dimensional industrial CFD datasets.
TROJail: Trajectory-Level Optimization for Multi-Turn Large Language Model Jailbreaks with Process Rewards
Large language models have seen widespread adoption, yet they remain vulnerable to multi-turn jailbreak attacks, threatening their safe deployment. This has led to the task of training automated multi-turn attackers to probe model safety vulnerabilities. However, existing approaches typically rely on turn-level optimization, which is insufficient for learning long-term attack strategies. To bridge this gap, we formulate this task as a multi-turn reinforcement learning problem, directly optimizing the harmfulness of the final-turn response as the outcome reward. To address the sparse supervision of the outcome reward, we introduce TROJail, which employs two process rewards to evaluate the utility of intermediate prompts and integrate them into advantage estimation. These rewards (1) penalize overly harmful prompts that trigger the model's refusal mechanism, and (2) encourage steering the semantic relevance of responses toward the targeted harmful content. Experimental results show improved attack success rates across multiple models and benchmarks, highlighting the effectiveness of our approach. The code is available at https://github.com/xxiqiao/TROJail. Warning: This paper contains examples of harmful content.
comment: 21 pages, 15 figures
Efficient and Scalable Implementation of Differentially Private Deep Learning without Shortcuts
Differentially private stochastic gradient descent (DP-SGD) is the standard algorithm for training machine learning models under differential privacy (DP). The most common DP-SGD privacy accountants rely on Poisson subsampling to ensure the theoretical DP guarantees. Implementing computationally efficient DP-SGD with Poisson subsampling is not trivial, which leads many implementations to taking a shortcut by using computationally faster subsampling. We quantify the computational cost of training deep learning models under DP by implementing and benchmarking efficient methods with the correct Poisson subsampling. We find that using the naive implementation of DP-SGD with Opacus in PyTorch has a throughput between 2.6 and 8 times lower than that of SGD. However, efficient gradient clipping implementations like Ghost Clipping can roughly halve this cost. We propose an alternative computationally efficient implementation of DP-SGD with JAX that uses Poisson subsampling and performs comparably with efficient clipping optimizations based on PyTorch. We study the scaling behavior using up to 80 GPUs and find that DP-SGD scales better than SGD. We share our library at https://github.com/DPBayes/Towards-Efficient-Scalable-Training-DP-DL.
comment: 19 pages, 21 figures
Learning Force Distribution Estimation for the GelSight Mini Optical Tactile Sensor Based on Finite Element Analysis
Contact-rich manipulation remains a major challenge in robotics. Optical tactile sensors like GelSight Mini offer a low-cost solution for contact sensing by capturing soft-body deformations of the silicone gel. However, accurately inferring shear and normal force distributions from these gel deformations has yet to be fully addressed. In this work, we propose a machine learning approach using a U-net architecture to predict force distributions directly from the sensor's raw images. Our model, trained on force distributions inferred from \ac{fea}, demonstrates promising accuracy in predicting normal and shear force distributions for the commercially available GelSight Mini sensor. It also shows potential for generalization across indenters, sensors of the same type, and for enabling real-time application. The codebase, dataset and models are open-sourced and available at https://feats-ai.github.io .
Beyond Backpropagation: Optimization with Multi-Tangent Forward Gradients
The gradients used to train neural networks are typically computed using backpropagation. While an efficient way to obtain exact gradients, backpropagation is computationally expensive, hinders parallelization, and is biologically implausible. Forward gradients are an approach to approximate the gradients from directional derivatives along random tangents computed by forward-mode automatic differentiation. So far, research has focused on using a single tangent per step. This paper provides an in-depth analysis of multi-tangent forward gradients and introduces an improved approach to combining the forward gradients from multiple tangents based on orthogonal projections. We demonstrate that increasing the number of tangents improves both approximation quality and optimization performance across various tasks.
Kolmogorov--Arnold stability
Regarding the representation theorem of Kolmogorov and Arnold (KA) as an algorithm for representing or <> functions, we test its robustness by analyzing its stability to withstand re-parameterizations of the hidden space. One may think of such re-parameterizations as the work of an adversary attempting to foil the construction of the KA outer function. We find KA to be stable under countable collections of continuous re-parameterizations, but unearth a question about the equi-continuity of the outer functions that, so far, obstructs taking limits and defeating continuous groups of re-parameterizations. This question on the regularity of the outer functions is relevant to the debate over the applicability of KA to the general theory of NNs.
comment: 12 pages, 3 figures; major revision
YRC-Bench: A Benchmark for Learning to Coordinate with Experts
When deployed in the real world, AI agents will inevitably face challenges that exceed their individual capabilities. A critical component of AI safety is an agent's ability to recognize when it is likely to fail in a novel situation and to yield control to a more capable expert system. Leveraging such expert assistance can significantly improve safety and performance in such situations. Since expert assistance is costly, a central challenge is determining when to consult an expert. In this paper, we explore a novel variant of this problem, termed YRC-0, in which an agent must learn to collaborate with an expert in new environments in an unsupervised manner--that is, without interacting with the expert during training. This setting motivates the development of low-cost, robust approaches for training expert-leveraging agents. To support research in this area, we introduce YRC-Bench, an open-source benchmark that instantiates YRC-0 across diverse environments. YRC-Bench provides a standardized Gym-like API, simulated experts, an evaluation pipeline, and implementations of popular baselines. Toward tackling YRC-0, we propose a validation strategy and use a proposer-validator decomposition as a diagnostic framework to evaluate a range of learning methods, offering insights that can inform future research. Codebase: https://github.com/modanesh/YRC-Bench
comment: Accepted at TMLR
A Differential Perspective on Distributional Reinforcement Learning AAAI
To date, distributional reinforcement learning (distributional RL) methods have exclusively focused on the discounted setting, where an agent aims to optimize a discounted sum of rewards over time. In this work, we extend distributional RL to the average-reward setting, where an agent aims to optimize the reward received per time step. In particular, we utilize a quantile-based approach to develop the first set of algorithms that can successfully learn and/or optimize the long-run per-step reward distribution, as well as the differential return distribution of an average-reward MDP. We derive proven-convergent tabular algorithms for both prediction and control, as well as a broader family of algorithms that have appealing scaling properties. Empirically, we find that these algorithms yield competitive and sometimes superior performance when compared to their non-distributional equivalents, while also capturing rich information about the long-run per-step reward and differential return distributions.
comment: In AAAI Conference on Artificial Intelligence 2026
VGC-Bench: Towards Mastering Diverse Team Strategies in Competitive Pokémon
Developing AI agents that can robustly adapt to varying strategic landscapes without retraining is a central challenge in multi-agent learning. Pokémon Video Game Championships (VGC) is a domain with a vast space of approximately $10^{139}$ team configurations, far larger than those of other games such as Chess, Go, Poker, StarCraft, or Dota. The combinatorial nature of team building in Pokémon VGC causes optimal strategies to vary substantially depending on both the controlled team and the opponent's team, making generalization uniquely challenging. To advance research on this problem, we introduce VGC-Bench: a benchmark that provides critical infrastructure, standardizes evaluation protocols, and supplies a human-play dataset of over 700,000 battle logs and a range of baseline agents based on heuristics, large language models, behavior cloning, and multi-agent reinforcement learning with empirical game-theoretic methods such as self-play, fictitious play, and double oracle. In the restricted setting where an agent is trained and evaluated in a mirror match with a single team configuration, our methods can win against a professional VGC competitor. We repeat this training and evaluation with progressively larger team sets and find that as the number of teams increases, the best-performing algorithm in the single-team setting has worse performance and is more exploitable, but has improved generalization to unseen teams. Our code and dataset are open-sourced at https://github.com/cameronangliss/vgc-bench and https://huggingface.co/datasets/cameronangliss/vgc-battle-logs.
comment: AAMAS 2026
A Mesh-Adaptive Hypergraph Neural Network for Unsteady Flow Around Oscillating and Rotating Structures
Graph neural networks, recently introduced into the field of fluid flow surrogate modeling, have been successfully applied to model the temporal evolution of various fluid flow systems. Existing applications, however, are mostly restricted to cases where the domain is time-invariant. The present work extends the application of graph neural network-based modeling to fluid flow around structures rotating with respect to a certain axis. Specifically, we propose to apply a graph neural network-based surrogate model with part of the mesh/graph co-rotating with the structure and part of the mesh/graph static. A single layer of interface cells are constructed at the interface between the two parts and are allowed to distort and adapt, which helps in circumventing the difficulty of interpolating information encoded by the neural network at every graph neural network layer. Dedicated reconstruction and re-projection schemes are designed to counter the error caused by the distortion and connectivity change of the interface cells. The effectiveness of our proposed framework is examined on two test cases: (i) fluid flow around a 2D oscillating airfoil, and (ii) fluid flow past a 3D rotating cube. Our results show that the model achieves stable rollout predictions over hundreds or even a thousand time steps. We further demonstrate that one could enforce accurate, error-bounded prediction results by incorporating the measurements from sparse pressure sensors. In addition to the accurate flow field predictions, the lift and drag force predictions closely match with the computational fluid dynamics calculations, highlighting the potential of the framework for modeling fluid flow around rotating structures, and paving the path towards a graph neural network-based surrogate model for more complex scenarios like flow around marine propellers.
$φ$-test: Global Feature Selection and Inference for Shapley Additive Explanations
We propose $φ$-test, a global feature-selection and significance procedure for black-box predictors that combines Shapley attributions with selective inference. Given a trained model and an evaluation dataset, $φ$-test performs SHAP-guided screening and fits a linear surrogate on the screened features via a selection rule with a tractable selective-inference form. For each retained feature, it outputs a Shapley-based global score, a surrogate coefficient, and post-selection $p$-values and confidence intervals in a global feature-importance table. Experiments on real tabular regression tasks with tree-based and neural backbones suggest that $φ$-test can retain much of the predictive ability of the original model while using only a few features and producing feature sets that remain fairly stable across resamples and backbone classes. In these settings, $φ$-test acts as a practical global explanation layer linking Shapley-based importance summaries with classical statistical inference.
comment: Revised for clarity and correctness; improved exposition and fixed minor issues
Transfer Learning Across Fixed-Income Product Classes
We propose a framework for transfer learning of discount curves across different fixed-income product classes. Motivated by challenges in estimating discount curves from sparse or noisy data, we extend kernel ridge regression (KR) to a vector-valued setting, formulating a convex optimization problem in a vector-valued reproducing kernel Hilbert space (RKHS). Each component of the solution corresponds to the discount curve implied by a specific product class. We introduce an additional regularization term motivated by economic principles, promoting smoothness of spread curves between product classes, and show that it leads to a valid separable kernel structure. A main theoretical contribution is a decomposition of the vector-valued RKHS norm induced by separable kernels. We further provide a Gaussian process interpretation of vector-valued KR, enabling quantification of estimation uncertainty. Illustrative examples show how transfer learning tightens confidence intervals compared to single-curve estimation. An extensive masking experiment demonstrates that transfer learning significantly improves extrapolation performance.
Divergence-Based Similarity Function for Multi-View Contrastive Learning
Recent success in contrastive learning has sparked growing interest in more effectively leveraging multiple augmented views of data. While prior methods incorporate multiple views at the loss or feature level, they primarily capture pairwise relationships and fail to model the joint structure across all views. In this work, we propose a divergence-based similarity function (DSF) that explicitly captures the joint structure by representing each set of augmented views as a distribution and measuring similarity as the divergence between distributions. Extensive experiments demonstrate that DSF consistently improves performance across diverse tasks, including kNN classification, linear evaluation, transfer learning, and distribution shift, while also achieving greater efficiency than other multi-view methods. Furthermore, we establish a connection between DSF and cosine similarity, and demonstrate that, unlike cosine similarity, DSF operates effectively without the need for tuning a temperature hyperparameter.
comment: 9 pages, 5 figures. Code: https://github.com/Jeon789/DSF
Attacks on fairness in Federated Learning
Federated Learning is an important emerging distributed training paradigm that keeps data private on clients. It is now well understood that by controlling only a small subset of FL clients, it is possible to introduce a backdoor to a federated learning model, in the presence of certain attributes. In this paper, we present a new type of attack that compromises the fairness of the trained model. Fairness is understood to be the attribute-level performance distribution of a trained model. It is particularly salient in domains where, for example, skewed accuracy discrimination between subpopulations could have disastrous consequences. We find that by employing a threat model similar to that of a backdoor attack, an attacker is able to influence the aggregated model to have an unfair performance distribution between any given set of attributes. Furthermore, we find that this attack is possible by controlling only a single client. While combating naturally induced unfairness in FL has previously been discussed in depth, its artificially induced kind has been neglected. We show that defending against attacks on fairness should be a critical consideration in any situation where unfairness in a trained model could benefit a user who participated in its training.
An AI-driven framework for the prediction of personalised health response to air pollution
Air pollution is a growing global health threat, exacerbated by climate change and linked to cardiovascular and respiratory diseases. While personal sensing devices enable real-time physiological monitoring, their integration with environmental data for individualised health prediction remains underdeveloped. Here, we present a modular, cloud-based framework that predicts personalised physiological responses to pollution by combining wearable-derived data with real-time environmental exposures. At its core is an Adversarial Autoencoder (AAE), initially trained on high-resolution pollution-health data from the INHALE study and fine-tuned using smartwatch data via transfer learning to capture individual-specific patterns. Consistent with changes in pollution levels commonly observed in the real-world, simulated pollution spikes (+100%) revealed modest but measurable increases in vital signs (e.g., +2.5% heart rate, +3.5% breathing rate). To assess clinical relevance, we analysed U-BIOPRED data and found that individuals with such subclinical vital sign elevations had higher asthma burden scores or elevated Fractional Exhaled Nitric Oxide (FeNO), supporting the physiological validity of these AI-predicted responses. This integrative approach demonstrates the feasibility of anticipatory, personalised health modelling in response to environmental challenges, offering a scalable and secure infrastructure for AI-driven environmental health monitoring.
comment: Zounemat-Kermani and Naderi share first authorship. 22 pages, 5 figures and 1 table
Softpick: No Attention Sink, No Massive Activations with Rectified Softmax
We introduce softpick, a rectified, not sum-to-one, drop-in replacement for softmax in transformer attention mechanisms that eliminates attention sink and massive activations. Our experiments with 340M and 1.8B parameter models demonstrate that softpick achieves 0\% sink rate consistently. The softpick transformers produce hidden states with significantly lower kurtosis and creates sparse attention maps. Quantized models using softpick outperform softmax on standard benchmarks, with a particularly pronounced advantage at lower bit precisions. Our analysis and discussion shows how softpick has the potential to open new possibilities for quantization, low-precision training, sparsity optimization, pruning, and interpretability. Code: https://github.com/zaydzuhri/softpick-attention.
comment: Updated by adding analysis on why it does not scale
Decentralized Autoregressive Generation
We present a theoretical analysis of decentralization of autoregressive generation. We define the Decentralized Discrete Flow Matching objective, by expressing probability generating velocity as a linear combination of expert flows. We also conduct experiments demonstrating the equivalence between decentralized and centralized training settings for multimodal language models across diverse set of benchmarks. Specifically, we compare two distinct paradigms: LLaVA and InternVL 2.5-1B, which uses a fixed CLIP vision encoder and performs full-parameter fine-tuning (ViT+MLP+LLM) during the instruction tuning stage.
comment: Work in progress
Applying the maximum entropy principle to neural networks enhances multi-species distribution models
The rapid expansion of citizen science initiatives has led to a significant growth of biodiversity databases, and particularly presence-only (PO) observations. PO data are invaluable for understanding species distributions and their dynamics, but their use in a Species Distribution Model (SDM) is curtailed by sampling biases and the lack of information on absences. Poisson point processes are widely used for SDMs, with Maxent being one of the most popular methods. Maxent maximises the entropy of a probability distribution across sites as a function of predefined transformations of variables, called features. In contrast, neural networks and deep learning have emerged as a promising technique for automatic feature extraction from complex input variables. Arbitrarily complex transformations of input variables can be learned from the data efficiently through backpropagation and stochastic gradient descent (SGD). In this paper, we propose DeepMaxent, which harnesses neural networks to automatically learn shared features among species, using the maximum entropy principle. To do so, it employs a normalised Poisson loss where for each species, presence probabilities across sites are modelled by a neural network. We evaluate DeepMaxent on a benchmark dataset known for its spatial sampling biases, using PO data for calibration and presence-absence (PA) data for validation across six regions with different biological groups and covariates. Our results indicate that DeepMaxent performs better than Maxent and other leading SDMs across all regions and taxonomic groups. The method performs particularly well in regions of uneven sampling, demonstrating substantial potential to increase SDM performances. In particular, our approach yields more accurate predictions than traditional single-species models, which opens up new possibilities for methodological enhancement.
comment: Submitted to Methods in Ecology and Evolution
CausAdv: A Causal-based Framework for Detecting Adversarial Examples
Deep learning has led to tremendous success in computer vision, largely due to Convolutional Neural Networks (CNNs). However, CNNs have been shown to be vulnerable to crafted adversarial perturbations. This vulnerability of adversarial examples has has motivated research into improving model robustness through adversarial detection and defense methods. In this paper, we address the adversarial robustness of CNNs through causal reasoning. We propose CausAdv: a causal framework for detecting adversarial examples based on counterfactual reasoning. CausAdv learns both causal and non-causal features of every input, and quantifies the counterfactual information (CI) of every filter of the last convolutional layer. We then perform a statistical analysis of the filters' CI across clean and adversarial samples, to demonstrate that adversarial examples exhibit different CI distributions compared to clean samples. Our results show that causal reasoning enhances the process of adversarial detection without the need to train a separate detector. Moreover, we illustrate the efficiency of causal explanations as a helpful detection tool by visualizing the extracted causal features.
Explaning with trees: interpreting CNNs using hierarchies
Challenges persist in providing interpretable explanations for neural network reasoning in explainable AI (xAI). Existing methods like Integrated Gradients produce noisy maps, and LIME, while intuitive, may deviate from the model's reasoning. We introduce a framework that uses hierarchical segmentation techniques for faithful and interpretable explanations of Convolutional Neural Networks (CNNs). Our method constructs model-based hierarchical segmentations that maintain the model's reasoning fidelity and allows both human-centric and model-centric segmentation. This approach offers multiscale explanations, aiding bias identification and enhancing understanding of neural network decision-making. Experiments show that our framework, xAiTrees, delivers highly interpretable and faithful model explanations, not only surpassing traditional xAI methods but shedding new light on a novel approach to enhancing xAI interpretability.
Generating crossmodal gene expression from cancer histopathology improves multimodal AI predictions
Emerging research has highlighted that artificial intelligence-based multimodal fusion of digital pathology and transcriptomic features can improve cancer diagnosis (grading/subtyping) and prognosis (survival risk) prediction. However, such direct fusion is impractical in clinical settings, where histopathology remains the gold standard and transcriptomic tests are rarely requested in public healthcare. We experiment on two publicly available multimodal datasets, The Cancer Genomic Atlas and the Clinical Proteomic Tumor Analysis Consortium, spanning four independent cohorts: glioma-glioblastoma, renal, uterine, and breast, and observe significant performance gains in gradation and risk estimation (p-value<0.05) when incorporating synthesized transcriptomic data with WSIs. Also, predictions using synthesized features were statistically close to those obtained with real transcriptomic data (p-value>0.05), consistently across cohorts. Here we show that with our diffusion based crossmodal generative AI model, PathGen, gene expressions synthesized from digital histopathology jointly predict cancer grading and patient survival risk with high accuracy (state-of-the-art performance), certainty (through conformal coverage guarantee) and interpretability (through distributed co-attention maps). PathGen code is available for open use on GitHub at https://github.com/Samiran-Dey/PathGen.
Gradient-free online learning of subgrid-scale dynamics with neural emulators
In this paper, we propose a generic algorithm to train machine learning-based subgrid parametrizations online, i.e., with \textit{a posteriori} loss functions, but for non-differentiable numerical solvers. The proposed approach leverages a neural emulator to approximate the reduced state-space solver, which is then used to allow gradient propagation through temporal integration steps. We apply this methodology on a chaotic two-timescales Lorenz-96 system and a single layer quasi-geostrophic system with zonal dynamics, known to be highly unstable with offline strategies. Using our algorithm, we are able to train a parametrization that recovers most of the benefits of online strategies without having to compute the gradient of the original solver. We found that training the neural emulator and parametrization components separately with different loss quantities is necessary in order to minimize the propagation of approximation biases. Experiments on emulator architectures with different complexities also indicates that emulator performance is key in order to learn an accurate parametrization. This work is a step towards learning parametrization with online strategies for climate models.
comment: 39 pages, 8 figures, submitted for publication in Journal of Advances in Modeling Earth Systems (JAMES)
Data Science: a Natural Ecosystem
This manuscript provides a systemic and data-centric view of what we term essential data science, as a natural ecosystem with challenges and missions stemming from the fusion of data universe with its multiple combinations of the 5D complexities (data structure, domain, cardinality, causality, and ethics) with the phases of the data life cycle. Data agents perform tasks driven by specific goals. The data scientist is an abstract entity that comes from the logical organization of data agents with their actions. Data scientists face challenges that are defined according to the missions. We define specific discipline-induced data science, which in turn allows for the definition of pan-data science, a natural ecosystem that integrates specific disciplines with the essential data science. We semantically split the essential data science into computational, and foundational. By formalizing this ecosystemic view, we contribute a general-purpose, fusion-oriented architecture for integrating heterogeneous knowledge, agents, and workflows-relevant to a wide range of disciplines and high-impact applications.
Detecting High-Stakes Interactions with Activation Probes NeurIPS 2025
Monitoring is an important aspect of safely deploying Large Language Models (LLMs). This paper examines activation probes for detecting ``high-stakes'' interactions -- where the text indicates that the interaction might lead to significant harm -- as a critical, yet underexplored, target for such monitoring. We evaluate several probe architectures trained on synthetic data, and find them to exhibit robust generalization to diverse, out-of-distribution, real-world data. Probes' performance is comparable to that of prompted or finetuned medium-sized LLM monitors, while offering computational savings of six orders-of-magnitude. These savings are enabled by reusing activations of the model that is being monitored. Our experiments also highlight the potential of building resource-aware hierarchical monitoring systems, where probes serve as an efficient initial filter and flag cases for more expensive downstream analysis. We release our novel synthetic dataset and the codebase at https://github.com/arrrlex/models-under-pressure.
comment: Accepted at NeurIPS 2025
Sequential Enumeration in Large Language Models
Reliably counting and generating sequences of items remain a significant challenge for neural networks, including Large Language Models (LLMs). Indeed, although this capability is readily handled by rule-based symbolic systems based on serial computation, learning to systematically deploy counting procedures is difficult for neural models, which should acquire these skills through learning. Previous research has demonstrated that recurrent architectures can only approximately track and enumerate sequences of events, and it remains unclear whether modern deep learning systems, including LLMs, can deploy systematic counting procedures over sequences of discrete symbols. This paper aims to fill this gap by investigating the sequential enumeration abilities of five state-of-the-art LLMs, including proprietary, open-source, and reasoning models. We probe LLMs in sequential naming and production tasks involving lists of letters and words, adopting a variety of prompting instructions to explore the role of chain-of-thought in the spontaneous emerging of counting strategies. We also evaluate open-source models with the same architecture but increasing size to see whether the mastering of counting principles follows scaling laws, and we analyze the embedding dynamics during sequential enumeration to investigate the emergent encoding of numerosity. We find that some LLMs are indeed capable of deploying counting procedures when explicitly prompted to do so, but none of them spontaneously engage in counting when simply asked to enumerate the number of items in a sequence. Our results suggest that, despite their impressive emergent abilities, LLMs cannot yet robustly and systematically deploy counting procedures, highlighting a persistent gap between neural and symbolic approaches to compositional generalization.
An Algebraic Representation Theorem for Linear GENEOs in Geometric Machine Learning
Geometric and Topological Deep Learning are rapidly growing research areas that enhance machine learning through the use of geometric and topological structures. Within this framework, Group Equivariant Non-Expansive Operators (GENEOs) have emerged as a powerful class of operators for encoding symmetries and designing efficient, interpretable neural architectures. Originally introduced in Topological Data Analysis, GENEOs have since found applications in Deep Learning as tools for constructing equivariant models with reduced parameter complexity. GENEOs provide a unifying framework bridging Geometric and Topological Deep Learning and include the operator computing persistence diagrams as a special case. Their theoretical foundations rely on group actions, equivariance, and compactness properties of operator spaces, grounding them in algebra and geometry while enabling both mathematical rigor and practical relevance. While a previous representation theorem characterized linear GENEOs acting on data of the same type, many real-world applications require operators between heterogeneous data spaces. In this work, we address this limitation by introducing a new representation theorem for linear GENEOs acting between different perception pairs, based on generalized T-permutant measures. Under mild assumptions on the data domains and group actions, our result provides a complete characterization of such operators. We also prove the compactness and convexity of the space of linear GENEOs. We further demonstrate the practical impact of this theory by applying the proposed framework to improve the performance of autoencoders, highlighting the relevance of GENEOs in modern machine learning applications.
Format as a Prior: Quantifying and Analyzing Bias in LLMs for Heterogeneous Data AAAI 2026
Large Language Models (LLMs) are increasingly employed in applications that require processing information from heterogeneous formats, including texts, tables, infoboxes, and knowledge graphs. However, systematic biases toward particular formats may undermine LLMs' ability to integrate heterogeneous data impartially, potentially resulting in reasoning errors and increased risks in downstream tasks. Yet it remains unclear whether such biases are systematic, which data-level factors drive them, and what internal mechanisms underlie their emergence. In this paper, we present the first comprehensive study of format bias in LLMs through a three-stage empirical analysis. The first stage explores the presence and direction of bias across a diverse range of LLMs. The second stage examines how key data-level factors influence these biases. The third stage analyzes how format bias emerges within LLMs' attention patterns and evaluates a lightweight intervention to test its effectiveness. Our results show that format bias is consistent across model families, driven by information richness, structure quality, and representation type, and is closely associated with attention imbalance within the LLMs. Based on these investigations, we identify three future research directions to reduce format bias: enhancing data pre-processing through format repair and normalization, introducing inference-time interventions such as attention re-weighting, and developing format-balanced training corpora. These directions will support the design of more robust and fair heterogeneous data processing systems.
comment: Accepted by AAAI 2026, camera ready version
On the Theoretical Foundation of Sparse Dictionary Learning in Mechanistic Interpretability
As AI models achieve remarkable capabilities across diverse domains, understanding what representations they learn and how they process information has become increasingly important for both scientific progress and trustworthy deployment. Recent works in mechanistic interpretability have shown that neural networks represent meaningful concepts as directions in their representation spaces and often encode diverse concepts in superposition. Various sparse dictionary learning (SDL) methods, including sparse autoencoders, transcoders, and crosscoders, address this by training auxiliary models with sparsity constraints to disentangle these superposed concepts into monosemantic features. These methods have demonstrated remarkable empirical success but have limited theoretical understanding. Existing theoretical work is limited to sparse autoencoders with tied-weight constraints, leaving the broader family of SDL methods without formal grounding. In this work, we develop the first unified theoretical framework considering SDL as one optimization problem. We demonstrate how diverse methods instantiate the theoretical framework and provide rigorous analysis of the optimization landscape. We provide novel theoretical explanations for empirically observed phenomena, including feature absorption and dead neurons. We design the Linear Representation Bench, a benchmark that strictly follows the Linear Representation Hypothesis, to evaluate SDL methods with fully accessible ground-truth features. Motivated by our theory and findings, we develop feature achoring, a novel technique applicable for all SDL methods, to enhance their feature recovery capabilities.
Using Subgraph GNNs for Node Classification:an Overlooked Potential Approach
Previous studies have demonstrated the strong performance of Graph Neural Networks (GNNs) in node classification. However, most existing GNNs adopt a node-centric perspective and rely on global message passing, leading to high computational and memory costs that hinder scalability. To mitigate these challenges, subgraph-based methods have been introduced, leveraging local subgraphs as approximations of full computational trees. While this approach improves efficiency, it often suffers from performance degradation due to the loss of global contextual information, limiting its effectiveness compared to global GNNs. To address this trade-off between scalability and classification accuracy, we reformulate the node classification task as a subgraph classification problem and propose SubGND (Subgraph GNN for NoDe). This framework introduces a differentiated zero-padding strategy and an Ego-Alter subgraph representation method to resolve label conflicts while incorporating an Adaptive Feature Scaling Mechanism to dynamically adjust feature contributions based on dataset-specific dependencies. Experimental results on six benchmark datasets demonstrate that SubGND achieves performance comparable to or surpassing global message-passing GNNs, particularly in heterophilic settings, highlighting its effectiveness and scalability as a promising solution for node classification.
comment: 16 pages
Bayesian Multiobject Tracking With Neural-Enhanced Motion and Measurement Models
Multiobject tracking (MOT) is an important task in applications including autonomous driving, ocean sciences, and aerospace surveillance. Traditional MOT methods are model-based and combine sequential Bayesian estimation with data association and an object birth model. More recent methods are fully data-driven and rely on the training of neural networks. Both approaches offer distinct advantages in specific settings. In particular, model-based methods are generally applicable across a wide range of scenarios, whereas data-driven MOT achieves superior performance in scenarios where abundant labeled data for training is available. A natural thought is whether a general framework can integrate the two approaches. This paper introduces a hybrid method that utilizes neural networks to enhance specific aspects of the statistical model in Bayesian MOT that have been identified as overly simplistic. By doing so, the performance of the prediction and update steps of Bayesian MOT is improved. To ensure tractable computation, our framework uses belief propagation to avoid high-dimensional operations combined with sequential Monte Carlo methods to perform low-dimensional operations efficiently. The resulting method combines the flexibility and robustness of model-based approaches with the capability to learn complex information from data of neural networks. We evaluate the performance of the proposed method based on the nuScenes autonomous driving dataset and demonstrate that it has state-of-the-art performance.
PINGS-X: Physics-Informed Normalized Gaussian Splatting with Axes Alignment for Efficient Super-Resolution of 4D Flow MRI AAAI 2026
4D flow magnetic resonance imaging (MRI) is a reliable, non-invasive approach for estimating blood flow velocities, vital for cardiovascular diagnostics. Unlike conventional MRI focused on anatomical structures, 4D flow MRI requires high spatiotemporal resolution for early detection of critical conditions such as stenosis or aneurysms. However, achieving such resolution typically results in prolonged scan times, creating a trade-off between acquisition speed and prediction accuracy. Recent studies have leveraged physics-informed neural networks (PINNs) for super-resolution of MRI data, but their practical applicability is limited as the prohibitively slow training process must be performed for each patient. To overcome this limitation, we propose PINGS-X, a novel framework modeling high-resolution flow velocities using axes-aligned spatiotemporal Gaussian representations. Inspired by the effectiveness of 3D Gaussian splatting (3DGS) in novel view synthesis, PINGS-X extends this concept through several non-trivial novel innovations: (i) normalized Gaussian splatting with a formal convergence guarantee, (ii) axes-aligned Gaussians that simplify training for high-dimensional data while preserving accuracy and the convergence guarantee, and (iii) a Gaussian merging procedure to prevent degenerate solutions and boost computational efficiency. Experimental results on computational fluid dynamics (CFD) and real 4D flow MRI datasets demonstrate that PINGS-X substantially reduces training time while achieving superior super-resolution accuracy. Our code and datasets are available at https://github.com/SpatialAILab/PINGS-X.
comment: Accepted at AAAI 2026. Supplementary material included after references. 27 pages, 21 figures, 11 tables
Visually Prompted Benchmarks Are Surprisingly Fragile
A key challenge in evaluating VLMs is testing models' ability to analyze visual content independently from their textual priors. Recent benchmarks such as BLINK probe visual perception through visual prompting, where questions about visual content are paired with coordinates to which the question refers, with the coordinates explicitly marked in the image itself. While these benchmarks are an important part of VLM evaluation, we find that existing models are surprisingly fragile to seemingly irrelevant details of visual prompting: simply changing a visual marker from red to blue can completely change rankings among models on a leaderboard. By evaluating nine commonly-used open- and closed-source VLMs on two visually prompted tasks, we demonstrate how details in benchmark setup, including visual marker design and dataset size, have a significant influence on model performance and leaderboard rankings. These effects can even be exploited to lift weaker models above stronger ones; for instance, slightly increasing the size of the visual marker results in open-source InternVL3-8B ranking alongside or better than much larger proprietary models like Gemini 2.5 Pro. We further show that low-level inference choices that are often ignored in benchmarking, such as JPEG compression levels in API calls, can also cause model lineup changes. These details have substantially larger impacts on visually prompted benchmarks than on conventional semantic VLM evaluations. To mitigate this instability, we curate existing datasets to create VPBench, a larger visually prompted benchmark with 16 visual marker variants. We open-source VPBench and our analysis framework at: https://lisadunlap.github.io/vpbench/.
PRPO: Aligning Process Reward with Outcome Reward in Policy Optimization
Policy optimization for large language models often suffers from sparse reward signals in multi-step reasoning tasks. Critic-free methods like GRPO assign a single normalized outcome reward to all tokens, providing limited guidance for intermediate reasoning . While Process Reward Models (PRMs) offer dense feedback, they risk premature collapse when used alone, as early low-reward tokens can drive policies toward truncated outputs. We introduce Process Relative Policy Optimization (PRPO), which combines outcome reliability with process-level guidance in a critic-free framework. PRPO segments reasoning sequences based on semantic clues, normalizes PRM scores into token-level advantages, and aligns their distribution with outcome advantages through location-parameter shift. On MATH500, PRPO improves Qwen2.5-Math-1.5B accuracy from 61.2% to 64.4% over GRPO using only eight rollouts and no value network, demonstrating efficient fine-grained credit assignment within critic-free optimization. Code is available at: https://github.com/SchumiDing/srpocode
comment: 8 pages, 2 figures Code is available at: https://github.com/SchumiDing/srpocode
VMMU: A Vietnamese Multitask Multimodal Understanding and Reasoning Benchmark
We introduce VMMU, a Vietnamese Multitask Multimodal Understanding and Reasoning Benchmark designed to evaluate how vision-language models (VLMs) interpret and reason over visual and textual information beyond English. VMMU consists of 2.5k multimodal questions across 7 tasks, covering a diverse range of problem contexts, including STEM problem solving, data interpretation, rule-governed visual reasoning, and abstract visual reasoning. All questions require genuine multimodal integration, rather than reliance on text-only cues or OCR-based shortcuts. We evaluate a diverse set of state-of-the-art proprietary and open-source VLMs on VMMU. Despite strong Vietnamese OCR performance, proprietary models achieve only 66% mean accuracy. Further analysis shows that the primary source of failure is not OCR, but instead multimodal grounding and reasoning over text and visual evidence. Code and data are available at https://vmmu.github.io.
Brain network science modelling of sparse neural networks enables Transformers and LLMs to perform as fully connected
Dynamic sparse training (DST) can reduce the computational demands in ANNs, but faces difficulties in keeping peak performance at high sparsity levels. The Cannistraci-Hebb training (CHT) is a brain-inspired method for growing connectivity in DST. CHT leverages a gradient-free, topology-driven link regrowth, which has shown ultra-sparse (less than 1% connectivity) advantage across various tasks compared to fully connected networks. Yet, CHT suffers two main drawbacks: (i) its time complexity is $O(Nd^3)$ - N node network size, d node degree - restricting it to ultra-sparse regimes. (ii) it selects top link prediction scores, which is inappropriate for the early training epochs, when the network presents unreliable connections. Here, we design the first brain-inspired network model - termed bipartite receptive field (BRF) - to initialize the connectivity of sparse artificial neural networks. We further introduce a GPU-friendly matrix-based approximation of CH link prediction, reducing complexity to $O(N^3)$. We introduce the Cannistraci-Hebb training soft rule (CHTs), which adopts a flexible strategy for sampling connections in both link removal and regrowth, balancing the exploration and exploitation of network topology. Additionally, we integrate CHTs with a sigmoid gradual density decay (CHTss). Empirical results show that BRF offers performance advantages over previous network science models. Using 1% of connections, CHTs outperforms fully connected networks in MLP architectures on image classification tasks, compressing some networks to less than 30% of the nodes. Using 5% of the connections, CHTss outperforms fully connected networks in two Transformer-based machine translation tasks. Finally, at 30% connectivity, both CHTs and CHTss outperform other DST methods in language modeling task.
Rethinking Recurrent Neural Networks for Time Series Forecasting: A Reinforced Recurrent Encoder with Prediction-Oriented Proximal Policy Optimization
Time series forecasting plays a crucial role in contemporary engineering information systems for supporting decision-making across various industries, where Recurrent Neural Networks (RNNs) have been widely adopted due to their capability in modeling sequential data. Conventional RNN-based predictors adopt an encoder-only strategy with sliding historical windows as inputs to forecast future values. However, this approach treats all time steps and hidden states equally without considering their distinct contributions to forecasting, leading to suboptimal performance. To address this limitation, we propose a novel Reinforced Recurrent Encoder with Prediction-oriented Proximal Policy Optimization, RRE-PPO4Pred, which significantly improves time series modeling capacity and forecasting accuracy of the RNN models. The core innovations of this method are: (1) A novel Reinforced Recurrent Encoder (RRE) framework that enhances RNNs by formulating their internal adaptation as a Markov Decision Process, creating a unified decision environment capable of learning input feature selection, hidden skip connection, and output target selection; (2) An improved Prediction-oriented Proximal Policy Optimization algorithm, termed PPO4Pred, which is equipped with a Transformer-based agent for temporal reasoning and develops a dynamic transition sampling strategy to enhance sampling efficiency; (3) A co-evolutionary optimization paradigm to facilitate the learning of the RNN predictor and the policy agent, providing adaptive and interactive time series modeling. Comprehensive evaluations on five real-world datasets indicate that our method consistently outperforms existing baselines, and attains accuracy better than state-of-the-art Transformer models, thus providing an advanced time series predictor in engineering informatics.
Stuffed Mamba: Oversized States Lead to the Inability to Forget
Recent advancements in recurrent architectures, such as Mamba and RWKV, have showcased strong language capabilities. Unlike transformer-based models, these architectures encode all contextual information into a fixed-size state, leading to great inference efficiency. However, this approach can cause information interference, where different token data conflicts, resulting in performance degradation and incoherent outputs beyond a certain context length. To prevent this, most RNNs incorporate mechanisms designed to "forget" earlier tokens. In this paper, we reveal that Mamba-based models struggle to effectively forget earlier tokens even with built-in forgetting mechanisms. We demonstrate that this issue stems from training on contexts that are too short for the state size, enabling the model to perform well without needing to learn how to forget. Then, we show that the minimum training length required for the model to learn forgetting scales linearly with the state size, and the maximum context length for accurate retrieval of a 5-digit passkey scales exponentially with the state size, indicating that the model retains some information beyond the point where forgetting begins. These findings highlight a critical limitation in current RNN architectures and provide valuable insights for improving long-context modeling. Our work suggests that future RNN designs must account for the interplay between state size, training length, and forgetting mechanisms to achieve robust performance in long-context tasks.
comment: COLM 2025
Synergy over Discrepancy: A Partition-Based Approach to Multi-Domain LLM Fine-Tuning NeurIPS 2025
Large language models (LLMs) demonstrate impressive generalization abilities, yet adapting them effectively across multiple heterogeneous domains remains challenging due to inter-domain interference. To overcome this challenge, we propose a partition-based multi-stage fine-tuning framework designed to exploit inter-domain synergies while minimizing negative transfer. Our approach strategically partitions domains into subsets (stages) by balancing domain discrepancy, synergy, and model capacity constraints. We theoretically analyze the proposed framework and derive novel generalization bounds that justify our partitioning strategy. Extensive empirical evaluations on various language understanding tasks show that our method consistently outperforms state-of-the-art baselines.
comment: 20 pages, 5 figures, 21 tables. Accepted at NeurIPS 2025. Corresponding author: Xuan Zhang (xuanzhang2199@gmail.com)
Aligning by Misaligning: Boundary-aware Curriculum Learning for Multimodal Alignment NeurIPS 2025
Most multimodal models treat every negative pair alike, ignoring the ambiguous negatives that differ from the positive by only a small detail. We propose Boundary-Aware Curriculum with Local Attention (BACL), a lightweight add-on that turns these borderline cases into a curriculum signal. A Boundary-aware Negative Sampler gradually raises difficulty, while a Contrastive Local Attention loss highlights where the mismatch occurs. The two modules are fully differentiable and work with any off-the-shelf dual encoder. Theory predicts a fast O(1/n) error rate; practice shows up to +32% R@1 over CLIP and new SOTA on four large-scale benchmarks, all without extra labels.
comment: 24 pages, 6 figures, 5 tables. Submitted to NeurIPS 2025
How Memory in Optimization Algorithms Implicitly Modifies the Loss
In modern optimization methods used in deep learning, each update depends on the history of previous iterations, often referred to as memory, and this dependence decays fast as the iterates go further into the past. For example, gradient descent with momentum has exponentially decaying memory through exponentially averaged past gradients. We introduce a general technique for identifying a memoryless algorithm that approximates an optimization algorithm with memory. It is obtained by replacing all past iterates in the update by the current one, and then adding a correction term arising from memory (also a function of the current iterate). This correction term can be interpreted as a perturbation of the loss, and the nature of this perturbation can inform how memory implicitly (anti-)regularizes the optimization dynamics. As an application of our theory, we find that Lion does not have the kind of implicit anti-regularization induced by memory that AdamW does, providing a theory-based explanation for Lion's better generalization performance recently documented.
Learning Steerable Clarification Policies with Collaborative Self-play
To handle underspecified or ambiguous queries, AI assistants need a policy for managing their uncertainty to determine (a) when to guess the user intent and answer directly, (b) when to enumerate and answer multiple possible intents, and (c) when to ask a clarifying question. However, such policies are contextually dependent on factors such as user preferences or modality. For example, enumerating multiple possible user intentions is cumbersome on small screens or in a voice setting. In this work, we propose to train steerable policies for managing this uncertainty using self-play. Given two agents, one simulating a user and the other an AI assistant, we generate conversations where the user issues a potentially ambiguous query, and the assistant needs to determine how to respond. Importantly, the model takes as input the numerical cost of each clarification question, and each generated word, and is asked to take the action that will maximize its final reward, which is the cost-penalized accuracy. We use Reinforced Self-Training (ReST) to train our model to achieve high reward and show this leads to a steerable policy that changes its behavior predictably conditioned on the provided costs, leading to higher reward and accuracy. Moreover, our procedure also generalizes to numerical cost values that were unobserved at training time.
Directed Homophily-Aware Graph Neural Network
Graph Neural Networks (GNNs) have achieved significant success in various learning tasks on graph-structured data. Nevertheless, most GNNs struggle to generalize to heterophilic neighborhoods. Additionally, many GNNs ignore the directional nature of real-world graphs, resulting in suboptimal performance on directed graphs with asymmetric structures. In this work, we propose Directed Homophily-aware Graph Neural Network (DHGNN), a novel framework that addresses these limitations by incorporating homophily-aware and direction-sensitive components. DHGNN employs a resettable gating mechanism to adaptively modulate message contributions based on homophily levels and informativeness, and a structure-aware noise-tolerant fusion module to effectively integrate node representations from the original and reverse directions. Extensive experiments on both homophilic and heterophilic directed graph datasets demonstrate that DHGNN outperforms state-of-the-art methods in node classification and link prediction. In particular, DHGNN improves over the best baseline by up to 15.07\% in link prediction. Our analysis further shows that the gating mechanism captures directional homophily gaps and fluctuating homophily across layers, providing deeper insights into message-passing behavior on complex graph structures.
Gradient flow in parameter space is equivalent to linear interpolation in output space
We prove that the standard gradient flow in parameter space that underlies many training algorithms in deep learning can be continuously deformed into an adapted gradient flow which yields (constrained) Euclidean gradient flow in output space. Moreover, for the $L^{2}$ loss, if the Jacobian of the outputs with respect to the parameters is full rank (for fixed training data), then the time variable can be reparametrized so that the resulting flow is simply linear interpolation, and a global minimum can be achieved. For the cross-entropy loss, under the same rank condition and assuming the labels have positive components, we derive an explicit formula for the unique global minimum.
comment: To appear in Journal of Geometry and Physics
When Does Learning Renormalize? Sufficient Conditions for Power Law Spectral Dynamics
Empirical power--law scaling has been widely observed across modern deep learning systems, yet its theoretical origins and scope of validity remain incompletely understood. The Generalized Resolution--Shell Dynamics (GRSD) framework models learning as spectral energy transport across logarithmic resolution shells, providing a coarse--grained dynamical description of training. Within GRSD, power--law scaling corresponds to a particularly simple renormalized shell dynamics; however, such behavior is not automatic and requires additional structural properties of the learning process. In this work, we identify a set of sufficient conditions under which the GRSD shell dynamics admits a renormalizable coarse--grained description. These conditions constrain the learning configuration at multiple levels, including boundedness of gradient propagation in the computation graph, weak functional incoherence at initialization, controlled Jacobian evolution along training, and log--shift invariance of renormalized shell couplings. We further show that power--law scaling does not follow from renormalizability alone, but instead arises as a rigidity consequence: once log--shift invariance is combined with the intrinsic time--rescaling covariance of gradient flow, the renormalized GRSD velocity field is forced into a power--law form.
A Comparative Study of Traditional Machine Learning, Deep Learning, and Large Language Models for Mental Health Forecasting using Smartphone Sensing Data
Smartphone sensing offers an unobtrusive and scalable way to track daily behaviors linked to mental health, capturing changes in sleep, mobility, and phone use that often precede symptoms of stress, anxiety, or depression. While most prior studies focus on detection that responds to existing conditions, forecasting mental health enables proactive support through Just-in-Time Adaptive Interventions. In this paper, we present the first comprehensive benchmarking study comparing traditional machine learning (ML), deep learning (DL), and large language model (LLM) approaches for mental health forecasting using the College Experience Sensing (CES) dataset, the most extensive longitudinal dataset of college student mental health to date. We systematically evaluate models across temporal windows, feature granularities, personalization strategies, and class imbalance handling. Our results show that DL models, particularly Transformer (Macro-F1 = 0.58), achieve the best overall performance, while LLMs show strength in contextual reasoning but weaker temporal modeling. Personalization substantially improves forecasts of severe mental health states. By revealing how different modeling approaches interpret phone sensing behavioral data over time, this work lays the groundwork for next-generation, adaptive, and human-centered mental health technologies that can advance both research and real-world well-being.
Diffusion Fine-Tuning via Reparameterized Policy Gradient of the Soft Q-Function
Diffusion models excel at generating high-likelihood samples but often require alignment with downstream objectives. Existing fine-tuning methods for diffusion models significantly suffer from reward over-optimization, resulting in high-reward but unnatural samples and degraded diversity. To mitigate over-optimization, we propose Soft Q-based Diffusion Finetuning (SQDF), a novel KL-regularized RL method for diffusion alignment that applies a reparameterized policy gradient of a training-free, differentiable estimation of the soft Q-function. SQDF is further enhanced with three innovations: a discount factor for proper credit assignment in the denoising process, the integration of consistency models to refine Q-function estimates, and the use of an off-policy replay buffer to improve mode coverage and manage the reward-diversity trade-off. Our experiments demonstrate that SQDF achieves superior target rewards while preserving diversity in text-to-image alignment. Furthermore, in online black-box optimization, SQDF attains high sample efficiency while maintaining naturalness and diversity.
comment: 36 pages, 21 figures, 4 tables
Private Zeroth-Order Optimization with Public Data NeurIPS 2025
One of the major bottlenecks for deploying popular first-order differentially private (DP) machine learning algorithms (e.g., DP-SGD) lies in their high computation and memory cost, despite the existence of optimized implementations. Zeroth-order methods have promise in mitigating the overhead, as they leverage function evaluations to approximate the gradients, hence significantly easier to privatize. While recent works have explored zeroth-order approaches in both private and non-private settings, they still suffer from relatively low utilities compared with DP-SGD, and have only been evaluated in limited application domains. In this work, we propose to leverage public information to guide and improve gradient approximation of private zeroth-order algorithms. We explore a suite of public-data-assisted zeroth-order optimizers (PAZO) with minimal overhead. We provide theoretical analyses of the PAZO framework under an assumption of the similarity between public and private data. Empirically, we demonstrate that PAZO achieves superior privacy/utility tradeoffs across vision and text tasks in both pre-training and fine-tuning settings, outperforming the best first-order baselines (with public data) especially in highly private regimes, while offering up to $16\times$ runtime speedup.
comment: NeurIPS 2025
Latent Geometry of Taste: Scalable Low-Rank Matrix Factorization for Recommender Systems
Scalability and data sparsity remain critical bottlenecks for collaborative filtering on massive interaction datasets. This work investigates the latent geometry of user preferences using the MovieLens 32M dataset, implementing a high-performance, parallelized Alternating Least Squares (ALS) framework. Through extensive hyperparameter optimization, we demonstrate that constrained low-rank models significantly outperform higher dimensional counterparts in generalization, achieving an optimal balance between Root Mean Square Error (RMSE) and ranking precision. We visualize the learned embedding space to reveal the unsupervised emergence of semantic genre clusters, confirming that the model captures deep structural relationships solely from interaction data. Finally, we validate the system's practical utility in a cold-start scenario, introducing a tunable scoring parameter to manage the trade-off between popularity bias and personalized affinity effectively. The codebase for this research can be found here: https://github.com/joshsalako/recommender.git
comment: Added a new figure on page 5, updated the title to include recommender systems, updated keywords, updated captions for all figures, and cited all figures in the text
On the Sample Complexity of Differentially Private Policy Optimization NeurIPS 2025
Policy optimization (PO) is a cornerstone of modern reinforcement learning (RL), with diverse applications spanning robotics, healthcare, and large language model training. The increasing deployment of PO in sensitive domains, however, raises significant privacy concerns. In this paper, we initiate a theoretical study of differentially private policy optimization, focusing explicitly on its sample complexity. We first formalize an appropriate definition of differential privacy (DP) tailored to PO, addressing the inherent challenges arising from on-policy learning dynamics and the subtlety involved in defining the unit of privacy. We then systematically analyze the sample complexity of widely-used PO algorithms, including policy gradient (PG), natural policy gradient (NPG) and more, under DP constraints and various settings, via a unified framework. Our theoretical results demonstrate that privacy costs can often manifest as lower-order terms in the sample complexity, while also highlighting subtle yet important observations in private PO settings. These offer valuable practical insights for privacy-preserving PO algorithms.
comment: Accepted at NeurIPS 2025
UniF$^2$ace: A Unified Fine-grained Face Understanding and Generation Model
Unified multimodal models (UMMs) have emerged as a powerful paradigm in fundamental cross-modality research, demonstrating significant potential in both image understanding and generation. However, existing research in the face domain primarily faces two challenges: $\textbf{(1)}$ $\textbf{fragmentation development}$, with existing methods failing to unify understanding and generation into a single one, hindering the way to artificial general intelligence. $\textbf{(2) lack of fine-grained facial attributes}$, which are crucial for high-fidelity applications. To handle those issues, we propose $\textbf{UniF$^2$ace}$, $\textit{the first UMM specifically tailored for fine-grained face understanding and generation}$. $\textbf{First}$, we introduce a novel theoretical framework with a Dual Discrete Diffusion (D3Diff) loss, unifying masked generative models with discrete score matching diffusion and leading to a more precise approximation of the negative log-likelihood. Moreover, this D3Diff significantly enhances the model's ability to synthesize high-fidelity facial details aligned with text input. $\textbf{Second}$, we propose a multi-level grouped Mixture-of-Experts architecture, adaptively incorporating the semantic and identity facial embeddings to complement the attribute forgotten phenomenon in representation evolvement. $\textbf{Finally}$, to this end, we construct UniF$^2$aceD-1M, a large-scale dataset comprising 130K fine-grained image-caption pairs and 1M visual question-answering pairs, spanning a much wider range of facial attributes than existing datasets. Extensive experiments demonstrate that UniF$^2$ace outperforms existing models with a similar scale in both understanding and generation tasks, with 7.1\% higher Desc-GPT and 6.6\% higher VQA-score, respectively.
Cross-Domain Imitation Learning via Optimal Transport ICLR 2022
Cross-domain imitation learning studies how to leverage expert demonstrations of one agent to train an imitation agent with a different embodiment or morphology. Comparing trajectories and stationary distributions between the expert and imitation agents is challenging because they live on different systems that may not even have the same dimensionality. We propose Gromov-Wasserstein Imitation Learning (GWIL), a method for cross-domain imitation that uses the Gromov-Wasserstein distance to align and compare states between the different spaces of the agents. Our theory formally characterizes the scenarios where GWIL preserves optimality, revealing its possibilities and limitations. We demonstrate the effectiveness of GWIL in non-trivial continuous control domains ranging from simple rigid transformation of the expert domain to arbitrary transformation of the state-action space.
comment: ICLR 2022
When Smaller Wins: Dual-Stage Distillation and Pareto-Guided Compression of Liquid Neural Networks for Edge Battery Prognostics
Battery management systems increasingly require accurate battery health prognostics under strict on-device constraints. This paper presents DLNet, a practical framework with dual-stage distillation of liquid neural networks that turns a high-capacity model into compact and edge-deployable models for battery health prediction. DLNet first applies Euler discretization to reformulate liquid dynamics for embedded compatibility. It then performs dual-stage knowledge distillation to transfer the teacher model's temporal behavior and recover it after further compression. Pareto-guided selection under joint error-cost objectives retains student models that balance accuracy and efficiency. We evaluate DLNet on a widely used dataset and validate real-device feasibility on an Arduino Nano 33 BLE Sense using int8 deployment. The final deployed student achieves a low error of 0.0066 when predicting battery health over the next 100 cycles, which is 15.4% lower than the teacher model. It reduces the model size from 616 kB to 94 kB with 84.7% reduction and takes 21 ms per inference on the device. These results support a practical smaller wins observation that a small model can match or exceed a large teacher for edge-based prognostics with proper supervision and selection. Beyond batteries, the DLNet framework can extend to other industrial analytics tasks with strict hardware constraints.
comment: Submitted to International Conference on Pattern Recognition, ICPR 2026
Engineering Spatial and Molecular Features from Cellular Niches to Inform Predictions of Inflammatory Bowel Disease
Differentiating between the two main subtypes of Inflammatory Bowel Disease (IBD): Crohns disease (CD) and ulcerative colitis (UC) is a persistent clinical challenge due to overlapping presentations. This study introduces a novel computational framework that employs spatial transcriptomics (ST) to create an explainable machine learning model for IBD classification. We analyzed ST data from the colonic mucosa of healthy controls (HC), UC, and CD patients. Using Non-negative Matrix Factorization (NMF), we first identified four recurring cellular niches, representing distinct functional microenvironments within the tissue. From these niches, we systematically engineered 44 features capturing three key aspects of tissue pathology: niche composition, neighborhood enrichment, and niche-gene signals. A multilayer perceptron (MLP) classifier trained on these features achieved an accuracy of $0.774 \pm 0.161$ for the more challenging three-class problem (HC, UC, and CD) and $0.916 \pm 0.118$ in the two-class problem of distinguishing IBD from healthy tissue. Crucially, model explainability analysis revealed that disruptions in the spatial organization of niches were the strongest predictors of general inflammation, while the classification between UC and CD relied on specific niche-gene expression signatures. This work provides a robust, proof-of-concept pipeline that transforms descriptive spatial data into an accurate and explainable predictive tool, offering not only a potential new diagnostic paradigm but also deeper insights into the distinct biological mechanisms that drive IBD subtypes.
comment: 20 pages, 8 figures, 7 tables. Presented at the 37th Benelux Conference on Artificial Intelligence / 34th Belgian Dutch Conference on Machine Learning, Namur, Belgium, November 19 - 21, 2025
AlignSAE: Concept-Aligned Sparse Autoencoders
Large Language Models (LLMs) encode factual knowledge within hidden parametric spaces that are difficult to inspect or control. While Sparse Autoencoders (SAEs) can decompose hidden activations into more fine-grained, interpretable features, they often struggle to reliably align these features with human-defined concepts, resulting in entangled and distributed feature representations. To address this, we introduce AlignSAE, a method that aligns SAE features with a predefined ontology through a "pre-train, then post-train" curriculum. After an initial unsupervised training phase, we apply supervised post-training to bind specific concepts to dedicated latent slots while preserving the remaining capacity for general reconstruction. This separation creates an interpretable interface where specific concepts can be inspected and controlled without interference from unrelated features. Empirical results demonstrate that AlignSAE enables precise causal interventions, such as reliable "concept swaps", by targeting single, semantically aligned slots, and further supports multi-hop reasoning and a mechanistic probe of grokking-like generalization dynamics.
comment: 23 pages, 16 figures, 7 tables
Regression-adjusted Monte Carlo Estimators for Shapley Values and Probabilistic Values
With origins in game theory, probabilistic values like Shapley values, Banzhaf values, and semi-values have emerged as a central tool in explainable AI. They are used for feature attribution, data attribution, data valuation, and more. Since all of these values require exponential time to compute exactly, research has focused on efficient approximation methods using two techniques: Monte Carlo sampling and linear regression formulations. In this work, we present a new way of combining both of these techniques. Our approach is more flexible than prior algorithms, allowing for linear regression to be replaced with any function family whose probabilistic values can be computed efficiently. This allows us to harness the accuracy of tree-based models like XGBoost, while still producing unbiased estimates. From experiments across eight datasets, we find that our methods give state-of-the-art performance for estimating probabilistic values. For Shapley values, the error of our methods can be $6.5\times$ lower than Permutation SHAP (the most popular Monte Carlo method), $3.8\times$ lower than Kernel SHAP (the most popular linear regression method), and $2.6\times$ lower than Leverage SHAP (the prior state-of-the-art Shapley value estimator). For more general probabilistic values, we can obtain error $215\times$ lower than the best estimator from prior work.
Explainable Molecular Property Prediction: Aligning Chemical Concepts with Predictions via Language Models
Providing explainable molecular property predictions is critical for many scientific domains, such as drug discovery and material science. Though transformer-based language models have shown great potential in accurate molecular property prediction, they neither provide chemically meaningful explanations nor faithfully reveal the molecular structure-property relationships. In this work, we develop a framework for explainable molecular property prediction based on language models, dubbed as Lamole, which can provide chemical concepts-aligned explanations. We take a string-based molecular representation -- Group SELFIES -- as input tokens to pretrain and fine-tune our Lamole, as it provides chemically meaningful semantics. By disentangling the information flows of Lamole, we propose combining self-attention weights and gradients for better quantification of each chemically meaningful substructure's impact on the model's output. To make the explanations more faithfully respect the structure-property relationship, we then carefully craft a marginal loss to explicitly optimize the explanations to be able to align with the chemists' annotations. We bridge the manifold hypothesis with the elaborated marginal loss to prove that the loss can align the explanations with the tangent space of the data manifold, leading to concept-aligned explanations. Experimental results over six mutagenicity datasets and one hepatotoxicity dataset demonstrate Lamole can achieve comparable classification accuracy and boost the explanation accuracy by up to 14.3%, being the state-of-the-art in explainable molecular property prediction.
Joint Progression Modeling (JPM): A Probabilistic Framework for Mixed-Pathology Progression
Event-based models (EBMs) infer disease progression from cross-sectional data, and standard EBMs assume a single underlying disease per individual. In contrast, mixed pathologies are common in neurodegeneration. We introduce the Joint Progression Model (JPM), a probabilistic framework that treats single-disease trajectories as partial rankings and builds a prior over joint progressions. We study several JPM variants (Pairwise, Bradley-Terry, Plackett-Luce, and Mallows) and analyze three properties: (i) calibration -- whether lower model energy predicts smaller distance to the ground truth ordering; (ii) separation -- the degree to which sampled rankings are distinguishable from random permutations; and (iii) sharpness -- the stability of sampled aggregate rankings. All variants are calibrated, and all achieve near-perfect separation; sharpness varies by variant and is well-predicted by simple features of the input partial rankings (number and length of rankings, conflict, and overlap). In synthetic experiments, JPM improves ordering accuracy by roughly 21 percent over a strong EBM baseline (SA-EBM) that treats the joint disease as a single condition. Finally, using NACC, we find that the Mallows variant of JPM and the baseline model (SA-EBM) have results that are more consistent with prior literature on the possible disease progression of the mixed pathology of AD and VaD.
comment: 49 pages; Machine Learning for Health (ML4H) Symposium 2025
LoFT-LLM: Low-Frequency Time-Series Forecasting with Large Language Models
Time-series forecasting in real-world applications such as finance and energy often faces challenges due to limited training data and complex, noisy temporal dynamics. Existing deep forecasting models typically supervise predictions using full-length temporal windows, which include substantial high-frequency noise and obscure long-term trends. Moreover, auxiliary variables containing rich domain-specific information are often underutilized, especially in few-shot settings. To address these challenges, we propose LoFT-LLM, a frequency-aware forecasting pipeline that integrates low-frequency learning with semantic calibration via a large language model (LLM). Firstly, a Patch Low-Frequency forecasting Module (PLFM) extracts stable low-frequency trends from localized spectral patches. Secondly, a residual learner then models high-frequency variations. Finally, a fine-tuned LLM refines the predictions by incorporating auxiliary context and domain knowledge through structured natural language prompts. Extensive experiments on financial and energy datasets demonstrate that LoFT-LLM significantly outperforms strong baselines under both full-data and few-shot regimes, delivering superior accuracy, robustness, and interpretability.
comment: This submission is withdrawn due to internal review and compliance considerations
Buffered AUC maximization for scoring systems via mixed-integer optimization
A scoring system is a linear classifier composed of a small number of explanatory variables, each assigned a small integer coefficient. This system is highly interpretable and allows predictions to be made with simple manual calculations without the need for a calculator. Several previous studies have used mixed-integer optimization (MIO) techniques to develop scoring systems for binary classification; however, they have not focused on directly maximizing AUC (i.e., area under the receiver operating characteristic curve), even though AUC is recognized as an essential evaluation metric for scoring systems. Our goal herein is to establish an effective MIO framework for constructing scoring systems that directly maximize the buffered AUC (bAUC) as the tightest concave lower bound on AUC. Our optimization model is formulated as a mixed-integer linear optimization (MILO) problem that maximizes bAUC subject to a group sparsity constraint for limiting the number of questions in the scoring system. Computational experiments using publicly available real-world datasets demonstrate that our MILO method can build scoring systems with superior AUC values compared to the baseline methods based on regularization and stepwise regression. This research contributes to the advancement of MIO techniques for developing highly interpretable classification models.
WaveNet's Precision in EEG Classification
This study introduces a WaveNet-based deep learning model designed to automate the classification of intracranial electroencephalography (iEEG) signals into physiological activity, pathological (epileptic) activity, power-line noise, and other non-cerebral artifacts. Traditional methods for iEEG signal classification, which rely on expert visual review, are becoming increasingly impractical due to the growing complexity and volume of iEEG recordings. Leveraging a publicly available annotated dataset from Mayo Clinic and St. Anne's University Hospital, the WaveNet model was trained, validated, and tested on 209,231 samples using a 70/20/10 split. The model achieved a classification accuracy exceeding previous non-specialized CNN- and LSTM-based approaches and was benchmarked against a Temporal Convolutional Network (TCN) baseline. Notably, the model achieves high discrimination of noise and artifact classes, with precisions of 0.98 and approximately 1, respectively. Classification between physiological and pathological signals exhibits a modest but clinically interpretable overlap, with F1-scores of 0.96 and 0.90 and 175 and 272 cross-class false positives, respectively, reflecting inherent clinical overlap. WaveNet's architecture, originally developed for raw audio synthesis, is well-suited for iEEG data due to its use of dilated causal convolutions and residual connections, enabling the capture of both fine-grained and long-range temporal dependencies. The study also details the preprocessing pipeline, including dynamic dataset partitioning, the use of focal loss to address class imbalance, and normalization steps that support high model performance. While the results demonstrate strong in-distribution performance, generalizability across datasets and clinical settings has yet to be established.
comment: 6 pages, 5 figures and 3 tables. Includes main text and bibliography
On the Entropy Calibration of Language Models Neurips 2025
We study the problem of entropy calibration, which asks whether a language model's entropy over generations matches its log loss on human text. Past work found that models are miscalibrated, with entropy per step increasing as generations grow longer, due to error accumulation. To calibrate the model and improve text quality, it has become standard practice to truncate the distribution, but this approach reduces output diversity, which we would like to avoid. Therefore, in this paper, we ask: does miscalibration improve automatically with scale, and if not, is it theoretically possible to calibrate without tradeoffs? To build intuition, we first study a simplified theoretical setting to characterize the scaling behavior of miscalibration with respect to dataset size. We find that the rate of scaling depends on the power law exponent of the data distribution -- in particular, for a power law exponent close to 1, the scaling exponent is close to 0, meaning that miscalibration improves very slowly with scale. Next, we measure miscalibration empirically in language models ranging from 0.5B to 70B parameters. We find that the observed scaling behavior is similar to what is predicted theoretically: our fitted scaling exponents for text are close to 0, meaning that larger models accumulate error at a similar rate as smaller ones. This scaling (or, lack thereof) provides one explanation for why we sample from larger models with similar amounts of truncation as smaller models, even though the larger models are of higher quality. However, truncation is not a satisfying solution because it comes at the cost of increased log loss. In theory, is it even possible to reduce entropy while preserving log loss? We prove that it is possible, if we assume access to a black box which can fit models to predict the future entropy of text.
comment: Neurips 2025
Human-in-the-Loop Segmentation of Multi-species Coral Imagery CVPR 2024
Marine surveys by robotic underwater and surface vehicles result in substantial quantities of coral reef imagery, however labeling these images is expensive and time-consuming for domain experts. Point label propagation is a technique that uses existing images labeled with sparse points to create augmented ground truth data, which can be used to train a semantic segmentation model. In this work, we show that recent advances in large foundation models facilitate the creation of augmented ground truth masks using only features extracted by the denoised version of the DINOv2 foundation model and K-Nearest Neighbors (KNN), without any pre-training. For images with extremely sparse labels, we use human-in-the-loop principles to enhance annotation efficiency: if there are 5 point labels per image, our method outperforms the prior state-of-the-art by 19.7% for mIoU. When human-in-the-loop labeling is not available, using the denoised DINOv2 features with a KNN still improves on the prior state-of-the-art by 5.8% for mIoU (5 grid points). On the semantic segmentation task, we outperform the prior state-of-the-art by 13.5% for mIoU when only 5 point labels are used for point label propagation. Additionally, we perform a comprehensive study into the number and placement of point labels, and make several recommendations for improving the efficiency of labeling images with points.
comment: IEEE Journal of Oceanic Engineering accepted preprint of extended paper, 36 pages, 14 figures. Original conference paper (v2) accepted at the CVPR 2024 3rd Workshop on Learning with Limited Labelled Data for Image and Video Understanding (L3D-IVU)
LingVarBench: Benchmarking LLMs on Entity Recognitions and Linguistic Verbalization Patterns in Phone-Call Transcripts
We study structured entity extraction from phone-call transcripts in customer-support and healthcare settings, where annotation is costly, and data access is limited by privacy and consent. Existing methods degrade under disfluencies, interruptions, and speaker overlap, yet large real-call corpora are rarely shareable. We introduce LingVarBench, a benchmark and semantic synthetic data generation pipeline that generates linguistically varied training data via (1) LLM-sampled entity values, (2) curated linguistic verbalization patterns covering diverse disfluencies and entity-specific readout styles, and (3) a value-transcript consistency filter. Using this dataset, DSPy's SIMBA automatically synthesizes and optimizes extraction prompts, reducing manual prompt engineering and targeting robustness to verbal variation. On real customer transcripts, prompts optimized solely on LingVarBench outperform zero-shot baselines and match or closely approach human-tuned prompts for structured entities such as ZIP code, date of birth, and name (F1 approximately 94-95 percent). For subjective questionnaire items, optimized prompts substantially improve over zero-shot performance and approach human-tuned prompts. LingVarBench offers a practical and cost-efficient path to deployment in a direct-answer setting, with real annotations later enabling additional refinement.
comment: Accepted to EACL 2026 (Industry Track); to appear in the proceedings
Quiet Feature Learning in Algorithmic Tasks AAAI 2026
We train Transformer-based language models on ten foundational algorithmic tasks and observe pronounced phase transitions in their loss curves that deviate from established power-law scaling trends. Over large ranges of compute, the validation loss barely improves, then abruptly decreases. Probing the models' internal representations reveals that quiet features are learned prior to any decrease in task loss. These quiet features represent intermediate algorithmic computations that do not by themselves improve the output loss. Ablation experiments demonstrate that individual quiet features are causally necessary for task performance. Our results demonstrate that substantial representational progress can remain hidden beneath an apparently flat loss curve, challenging the prevailing use of cross-entropy as a proxy for learning and motivating richer diagnostics for monitoring model training.
comment: Accepted as Oral presentation @ AAAI 2026 Special Track on AI Alignment
Penalized Fair Regression for Multiple Groups in Chronic Kidney Disease
Fair regression methods have the potential to mitigate societal bias concerns in health care, but there has been little work on penalized fair regression when multiple groups experience such bias. We propose a general regression framework that addresses this gap with unfairness penalties for multiple groups. Our approach is demonstrated for binary outcomes with true positive rate disparity penalties. It can be efficiently implemented through reduction to a cost-sensitive classification problem. We additionally introduce novel score functions for automatically selecting penalty weights. Our penalized fair regression methods are empirically studied in simulations, where they achieve a fairness-accuracy frontier beyond that of existing comparison methods. Finally, we apply these methods to a national multi-site primary care study of chronic kidney disease to develop a fair classifier for end-stage renal disease. There we find substantial improvements in fairness for multiple race and ethnicity groups who experience societal bias in the health care system without any appreciable loss in overall fit.
Game of Coding: Sybil Resistant Decentralized Machine Learning with Minimal Trust Assumption
Coding theory plays a crucial role in ensuring data integrity and reliability across various domains, from communication to computation and storage systems. However, its reliance on trust assumptions for data recovery, which requires the number of honest nodes to exceed adversarial nodes by a certain margin, poses significant challenges, particularly in emerging decentralized systems where trust is a scarce resource. To address this, the game of coding framework was introduced, offering insights into strategies for data recovery within incentive-oriented environments. In such environments, participant nodes are rewarded as long as the system remains functional (live). This incentivizes adversaries to maximize their rewards (utility) by ensuring that the decoder, as the data collector (DC), successfully recovers the data, preferably with a high estimation error. This rational behavior is leveraged in a game-theoretic framework, where the equilibrium leads to a robust and resilient system, referred to as the game of coding. The focus of the earliest version of the game of coding was limited to scenarios involving only two nodes. In this paper, we generalize the game of coding framework to scenarios with $N \ge 2$ nodes, exploring critical aspects of system behavior. Specifically, we (i) demonstrate that the adversary's utility at equilibrium is non-increasing with additional adversarial nodes, ensuring no gain for the adversary and no pain for the DC, thus establishing the game of coding framework's Sybil resistance; (ii) show that increasing the number of honest nodes does not always enhance the DC's utility, providing examples and proposing an algorithm to identify and mitigate this counterintuitive effect; and (iii) outline the optimal strategies for both the DC and the adversary, demonstrating that the system achieves enhanced liveness at equilibrium.
Pain in 3D: Generating Controllable Synthetic Faces for Automated Pain Assessment
Automated pain assessment from facial expressions is crucial for non-communicative patients, such as those with dementia. Progress has been limited by two challenges: (i) existing datasets exhibit severe demographic and label imbalance due to ethical constraints, and (ii) current generative models cannot precisely control facial action units (AUs), facial structure, or clinically validated pain levels. We present 3DPain, a large-scale synthetic dataset specifically designed for automated pain assessment, featuring unprecedented annotation richness and demographic diversity. Our three-stage framework generates diverse 3D meshes, textures them with diffusion models, and applies AU-driven face rigging to synthesize multi-view faces with paired neutral and pain images, AU configurations, PSPI scores, and the first dataset-level annotations of pain-region heatmaps. The dataset comprises 82,500 samples across 25,000 pain expression heatmaps and 2,500 synthetic identities balanced by age, gender, and ethnicity. We further introduce ViTPain, a Vision Transformer based cross-modal distillation framework in which a heatmap-trained teacher guides a student trained on RGB images, enhancing accuracy, interpretability, and clinical reliability. Together, 3DPain and ViTPain establish a controllable, diverse, and clinically grounded foundation for generalizable automated pain assessment.
Benchmarking Positional Encodings for GNNs and Graph Transformers
Positional Encodings (PEs) are essential for injecting structural information into Graph Neural Networks (GNNs), particularly Graph Transformers, yet their empirical impact remains insufficiently understood. We introduce a unified benchmarking framework that decouples PEs from architectural choices, enabling a fair comparison across 8 GNN and Transformer models, 9 PEs, and 10 synthetic and real-world datasets. Across more than 500 model-PE-dataset configurations, we find that commonly used expressiveness proxies, including Weisfeiler-Lehman distinguishability, do not reliably predict downstream performance. In particular, highly expressive PEs frequently fail to improve, and can even degrade performance on real-world tasks. At the same time, we identify several simple and previously overlooked model-PE combinations that match or outperform recent state-of-the-art methods. Our results demonstrate the strong task-dependence of PEs and underscore the need for empirical validation beyond theoretical expressiveness. To support reproducible research, we release an open-source benchmarking framework for evaluating PEs for graph learning tasks.
comment: Accepted at KDD 2026 Datasets & Benchmarks Track
Privacy-Preserving in Connected and Autonomous Vehicles Through Vision to Text Transformation
Intelligent Transportation Systems (ITS) rely on a variety of devices that frequently process privacy-sensitive data. Roadside units are important because they use AI-equipped cameras to detect traffic violations in Connected and Autonomous Vehicles (CAV). However, although the interior of a vehicle is generally considered a private space, the privacy risks associated with captured imagery remain a major concern, as such data can be misused for identity theft, profiling, or unauthorized commercial purposes. Methods like face blurring reduce privacy risks, however individuals' privacy can still be compromised. This paper introduces a novel privacy-preserving framework that leverages feedback-based reinforcement learning (RL) and vision-language models (VLMs) to protect sensitive visual information captured by AIE cameras. The proposed idea transforms images into textual descriptions using an innovative method while the main scene details are preserved and protects privacy. A hierarchical RL strategy is employed to iteratively refine the generated text, enhancing both semantic accuracy and privacy. Unlike prior captioning-based methods, our model incorporates an iterative reinforcement-learning cycle with external knowledge feedback which progressively refines privacy-aware text. In addition to qualitative textual metric evaluations, the privacy-based metrics demonstrate significant improvements in privacy preservation where SSIM, PSNR, MSE, and SRRA values obtained using the proposed method on two different datasets outperform other methods.
Collaborative Causal Sensemaking: Closing the Complementarity Gap in Human-AI Decision Support
LLM-based agents are increasingly deployed for expert decision support, yet human-AI teams in high-stakes settings do not yet reliably outperform the best individual. We argue this complementarity gap reflects a fundamental mismatch: current agents are trained as answer engines, not as partners in the collaborative sensemaking through which experts actually make decisions. Sensemaking (the ability to co-construct causal explanations, surface uncertainties, and adapt goals) is the key capability that current training pipelines do not explicitly develop or evaluate. We propose Collaborative Causal Sensemaking (CCS) as a research agenda to develop this capability from the ground up, spanning new training environments that reward collaborative thinking, representations for shared human-AI mental models, and evaluation centred on trust and complementarity. Taken together, these directions shift MAS research from building oracle-like answer engines to cultivating AI teammates that co-reason with their human partners over the causal structure of shared decisions, advancing the design of effective human-AI teams.
Integration Matters for Learning PDEs with Backward SDEs NeurIPS 2025
Backward stochastic differential equation (BSDE)-based deep learning methods provide an alternative to Physics-Informed Neural Networks (PINNs) for solving high-dimensional partial differential equations (PDEs), offering potential algorithmic advantages in settings such as stochastic optimal control, where the PDEs of interest are tied to an underlying dynamical system. However, standard BSDE-based solvers have empirically been shown to underperform relative to PINNs in the literature. In this paper, we identify the root cause of this performance gap as a discretization bias introduced by the standard Euler-Maruyama (EM) integration scheme applied to one-step self-consistency BSDE losses, which shifts the optimization landscape off target. We find that this bias cannot be satisfactorily addressed through finer step-sizes or multi-step self-consistency losses. To properly handle this issue, we propose a Stratonovich-based BSDE formulation, which we implement with stochastic Heun integration. We show that our proposed approach completely eliminates the bias issues faced by EM integration. Furthermore, our empirical results show that our Heun-based BSDE method consistently outperforms EM-based variants and achieves competitive results with PINNs across multiple high-dimensional benchmarks. Our findings highlight the critical role of integration schemes in BSDE-based PDE solvers, an algorithmic detail that has received little attention thus far in the literature.
comment: NeurIPS 2025
Graphics 8
Efficient Maintenance of Leiden Communities in Large Dynamic Graphs
As a well-known community detection algorithm, Leiden has been widely used in various scenarios such as large language model generation (e.g., Graph-RAG), anomaly detection, and biological analysis. In these scenarios, the graphs are often large and dynamic, where vertices and edges are inserted and deleted frequently, so it is costly to obtain the updated communities by Leiden from scratch when the graph has changed. Recently, one work has attempted to study how to maintain Leiden communities in the dynamic graph, but it lacks a detailed theoretical analysis, and its algorithms are inefficient for large graphs. To address these issues, in this paper, we first theoretically show that the existing algorithms are relatively unbounded via the boundedness analysis (a powerful tool for analyzing incremental algorithms on dynamic graphs), and also analyze the memberships of vertices in communities when the graph changes. Based on theoretical analysis, we develop a novel efficient maintenance algorithm, called Hierarchical Incremental Tree Leiden (HIT-Leiden), which effectively reduces the range of affected vertices by maintaining the connected components and hierarchical community structures. Comprehensive experiments in various datasets demonstrate the superior performance of HIT-Leiden. In particular, it achieves speedups of up to five orders of magnitude over existing methods.
Deep Learning Based Facial Retargeting Using Local Patches
In the era of digital animation, the quest to produce lifelike facial animations for virtual characters has led to the development of various retargeting methods. While the retargeting facial motion between models of similar shapes has been very successful, challenges arise when the retargeting is performed on stylized or exaggerated 3D characters that deviate significantly from human facial structures. In this scenario, it is important to consider the target character's facial structure and possible range of motion to preserve the semantics assumed by the original facial motions after the retargeting. To achieve this, we propose a local patch-based retargeting method that transfers facial animations captured in a source performance video to a target stylized 3D character. Our method consists of three modules. The Automatic Patch Extraction Module extracts local patches from the source video frame. These patches are processed through the Reenactment Module to generate correspondingly re-enacted target local patches. The Weight Estimation Module calculates the animation parameters for the target character at every frame for the creation of a complete facial animation sequence. Extensive experiments demonstrate that our method can successfully transfer the semantic meaning of source facial expressions to stylized characters with considerable variations in facial feature proportion.
comment: Eurographics 25
Geo-NVS-w: Geometry-Aware Novel View Synthesis In-the-Wild with an SDF Renderer ICCV 2025
We introduce Geo-NVS-w, a geometry-aware framework for high-fidelity novel view synthesis from unstructured, in-the-wild image collections. While existing in-the-wild methods already excel at novel view synthesis, they often lack geometric grounding on complex surfaces, sometimes producing results that contain inconsistencies. Geo-NVS-w addresses this limitation by leveraging an underlying geometric representation based on a Signed Distance Function (SDF) to guide the rendering process. This is complemented by a novel Geometry-Preservation Loss which ensures that fine structural details are preserved. Our framework achieves competitive rendering performance, while demonstrating a 4-5x reduction reduction in energy consumption compared to similar methods. We demonstrate that Geo-NVS-w is a robust method for in-the-wild NVS, yielding photorealistic results with sharp, geometrically coherent details.
comment: Presented at the ICCV 2025 Workshop on Large Scale Cross Device Localization
Data-Induced Groupings and How To Find Them
Making sense of a visualization requires the reader to consider both the visualization design and the underlying data values. Existing work in the visualization community has largely considered affordances driven by visualization design elements, such as color or chart type, but how visual design interacts with data values to impact interpretation and reasoning has remained under-explored. Dot plots and bar graphs are commonly used to help users identify groups of points that form trends and clusters, but are liable to manifest groupings that are artifacts of spatial arrangement rather than inherent patterns in the data itself. These ``Data-induced Groups'' can drive suboptimal data comparisons and potentially lead the user to incorrect conclusions. We conduct two user studies using dot plots as a case study to understand the prevalence of data-induced groupings. We find that users rely on data-induced groupings in both conditions despite the fact that trend-based groupings are irrelevant in nominal data. Based on the study results, we build a model to predict whether users are likely to perceive a given set of dot plot points as a group. We discuss two use cases illustrating how the model can assist visualization designers by both diagnosing potential user-perceived groupings in dot plots and offering redesigns that better accentuate desired groupings through data rearrangement.
Instruction-Driven 3D Facial Expression Generation and Transition
A 3D avatar typically has one of six cardinal facial expressions. To simulate realistic emotional variation, we should be able to render a facial transition between two arbitrary expressions. This study presents a new framework for instruction-driven facial expression generation that produces a 3D face and, starting from an image of the face, transforms the facial expression from one designated facial expression to another. The Instruction-driven Facial Expression Decomposer (IFED) module is introduced to facilitate multimodal data learning and capture the correlation between textual descriptions and facial expression features. Subsequently, we propose the Instruction to Facial Expression Transition (I2FET) method, which leverages IFED and a vertex reconstruction loss function to refine the semantic comprehension of latent vectors, thus generating a facial expression sequence according to the given instruction. Lastly, we present the Facial Expression Transition model to generate smooth transitions between facial expressions. Extensive evaluation suggests that the proposed model outperforms state-of-the-art methods on the CK+ and CelebV-HQ datasets. The results show that our framework can generate facial expression trajectories according to text instruction. Considering that text prompts allow us to make diverse descriptions of human emotional states, the repertoire of facial expressions and the transitions between them can be expanded greatly. We expect our framework to find various practical applications More information about our project can be found at https://vohoanganh.github.io/tg3dfet/
FastFLUX: Pruning FLUX with Block-wise Replacement and Sandwich Training
Recent advancements in text-to-image (T2I) generation have led to the emergence of highly expressive models such as diffusion transformers (DiTs), exemplified by FLUX. However, their massive parameter sizes lead to slow inference, high memory usage, and poor deployability. Existing acceleration methods (e.g., single-step distillation and attention pruning) often suffer from significant performance degradation and incur substantial training costs. To address these limitations, we propose FastFLUX, an architecture-level pruning framework designed to enhance the inference efficiency of FLUX. At its core is the Block-wise Replacement with Linear Layers (BRLL) method, which replaces structurally complex residual branches in ResBlocks with lightweight linear layers while preserving the original shortcut connections for stability. Furthermore, we introduce Sandwich Training (ST), a localized fine-tuning strategy that leverages LoRA to supervise neighboring blocks, mitigating performance drops caused by structural replacement. Experiments show that our FastFLUX maintains high image quality under both qualitative and quantitative evaluations, while significantly improving inference speed, even with 20\% of the hierarchy pruned. Our code will be available soon.
comment: 14 pages
Temporal Smoothness-Aware Rate-Distortion Optimized 4D Gaussian Splatting NeurIPS 2025
Dynamic 4D Gaussian Splatting (4DGS) effectively extends the high-speed rendering capabilities of 3D Gaussian Splatting (3DGS) to represent volumetric videos. However, the large number of Gaussians, substantial temporal redundancies, and especially the absence of an entropy-aware compression framework result in large storage requirements. Consequently, this poses significant challenges for practical deployment, efficient edge-device processing, and data transmission. In this paper, we introduce a novel end-to-end RD-optimized compression framework tailored for 4DGS, aiming to enable flexible, high-fidelity rendering across varied computational platforms. Leveraging Fully Explicit Dynamic Gaussian Splatting (Ex4DGS), one of the state-of-the-art 4DGS methods, as our baseline, we start from the existing 3DGS compression methods for compatibility while effectively addressing additional challenges introduced by the temporal axis. In particular, instead of storing motion trajectories independently per point, we employ a wavelet transform to reflect the real-world smoothness prior, significantly enhancing storage efficiency. This approach yields significantly improved compression ratios and provides a user-controlled balance between compression efficiency and rendering quality. Extensive experiments demonstrate the effectiveness of our method, achieving up to 91$\times$ compression compared to the original Ex4DGS model while maintaining high visual fidelity. These results highlight the applicability of our framework for real-time dynamic scene rendering in diverse scenarios, from resource-constrained edge devices to high-performance environments. The source code is available at https://github.com/HyeongminLEE/RD4DGS.
comment: 24 pages, 10 figures, NeurIPS 2025
Aplicación Gráfica para el estudio de un Modelo de Celda Electrolítica usando Técnicas de Visualización de Campos Vectoriales
The use of floating bipolar electrodes in copper electro-winning cells represents an emerging technology that promises economic and operational impacts. This thesis presents EWCellCAD, a computational tool designed for the simulation and analysis of these electrochemical systems. Based on the generalization and optimization of an existing 2D finite difference model for calculating electrical variables in rectangular cells, EWCellCAD implements a new 3D model capable of processing complex geometries, not necessarily rectangular, which also accelerates calculations by several orders of magnitude. At the same time, a new analytical method for estimating potentials in floating electrodes is introduced, overcoming the inaccuracies of previous heuristic approaches. The analysis of the results is supported by an interactive visualization technique of three-dimensional vector fields as flow lines.
comment: BSc Thesis in Electronic Engineering (part of the research project FONDECYT 1970955), Universidad de Concepción, 2000, 105 pages, 22 figures, in Spanish. Related publication: arXiv:1001.3974 [cs.GR]. Metadata-only update: Author name standardized (maternal surname removed; paternal surname as sole last name). Title orthography corrected with TeX accents. Abstract refined
Video World Models 1
Generalizable Geometric Prior and Recurrent Spiking Feature Learning for Humanoid Robot Manipulation
Humanoid robot manipulation is a crucial research area for executing diverse human-level tasks, involving high-level semantic reasoning and low-level action generation. However, precise scene understanding and sample-efficient learning from human demonstrations remain critical challenges, severely hindering the applicability and generalizability of existing frameworks. This paper presents a novel RGMP-S, Recurrent Geometric-prior Multimodal Policy with Spiking features, facilitating both high-level skill reasoning and data-efficient motion synthesis. To ground high-level reasoning in physical reality, we leverage lightweight 2D geometric inductive biases to enable precise 3D scene understanding within the vision-language model. Specifically, we construct a Long-horizon Geometric Prior Skill Selector that effectively aligns the semantic instructions with spatial constraints, ultimately achieving robust generalization in unseen environments. For the data efficiency issue in robotic action generation, we introduce a Recursive Adaptive Spiking Network. We parameterize robot-object interactions via recursive spiking for spatiotemporal consistency, fully distilling long-horizon dynamic features while mitigating the overfitting issue in sparse demonstration scenarios. Extensive experiments are conducted across the Maniskill simulation benchmark and three heterogeneous real-world robotic systems, encompassing a custom-developed humanoid, a desktop manipulator, and a commercial robotic platform. Empirical results substantiate the superiority of our method over state-of-the-art baselines and validate the efficacy of the proposed modules in diverse generalization scenarios. To facilitate reproducibility, the source code and video demonstrations are publicly available at https://github.com/xtli12/RGMP-S.git.
Robotics 47
Video Generation Models in Robotics -- Applications, Research Challenges, Future Directions
Video generation models have emerged as high-fidelity models of the physical world, capable of synthesizing high-quality videos capturing fine-grained interactions between agents and their environments conditioned on multi-modal user inputs. Their impressive capabilities address many of the long-standing challenges faced by physics-based simulators, driving broad adoption in many problem domains, e.g., robotics. For example, video models enable photorealistic, physically consistent deformable-body simulation without making prohibitive simplifying assumptions, which is a major bottleneck in physics-based simulation. Moreover, video models can serve as foundation world models that capture the dynamics of the world in a fine-grained and expressive way. They thus overcome the limited expressiveness of language-only abstractions in describing intricate physical interactions. In this survey, we provide a review of video models and their applications as embodied world models in robotics, encompassing cost-effective data generation and action prediction in imitation learning, dynamics and rewards modeling in reinforcement learning, visual planning, and policy evaluation. Further, we highlight important challenges hindering the trustworthy integration of video models in robotics, which include poor instruction following, hallucinations such as violations of physics, and unsafe content generation, in addition to fundamental limitations such as significant data curation, training, and inference costs. We present potential future directions to address these open research challenges to motivate research and ultimately facilitate broader applications, especially in safety-critical settings.
Failure-Aware RL: Reliable Offline-to-Online Reinforcement Learning with Self-Recovery for Real-World Manipulation
Post-training algorithms based on deep reinforcement learning can push the limits of robotic models for specific objectives, such as generalizability, accuracy, and robustness. However, Intervention-requiring Failures (IR Failures) (e.g., a robot spilling water or breaking fragile glass) during real-world exploration happen inevitably, hindering the practical deployment of such a paradigm. To tackle this, we introduce Failure-Aware Offline-to-Online Reinforcement Learning (FARL), a new paradigm minimizing failures during real-world reinforcement learning. We create FailureBench, a benchmark that incorporates common failure scenarios requiring human intervention, and propose an algorithm that integrates a world-model-based safety critic and a recovery policy trained offline to prevent failures during online exploration. Extensive simulation and real-world experiments demonstrate the effectiveness of FARL in significantly reducing IR Failures while improving performance and generalization during online reinforcement learning post-training. FARL reduces IR Failures by 73.1% while elevating performance by 11.3% on average during real-world RL post-training. Videos and code are available at https://failure-aware-rl.github.io.
comment: Project page: https://failure-aware-rl.github.io
Data-driven control of hydraulic impact hammers under strict operational and control constraints
This paper presents a data-driven methodology for the control of static hydraulic impact hammers, also known as rock breakers, which are commonly used in the mining industry. The task addressed in this work is that of controlling the rock-breaker so its end-effector reaches arbitrary target poses, which is required in normal operation to place the hammer on top of rocks that need to be fractured. The proposed approach considers several constraints, such as unobserved state variables due to limited sensing and the strict requirement of using a discrete control interface at the joint level. First, the proposed methodology addresses the problem of system identification to obtain an approximate dynamic model of the hydraulic arm. This is done via supervised learning, using only teleoperation data. The learned dynamic model is then exploited to obtain a controller capable of reaching target end-effector poses. For policy synthesis, both reinforcement learning (RL) and model predictive control (MPC) algorithms are utilized and contrasted. As a case study, we consider the automation of a Bobcat E10 mini-excavator arm with a hydraulic impact hammer attached as end-effector. Using this machine, both the system identification and policy synthesis stages are studied in simulation and in the real world. The best RL-based policy consistently reaches target end-effector poses with position errors below 12 cm and pitch angle errors below 0.08 rad in the real world. Considering that the impact hammer has a 4 cm diameter chisel, this level of precision is sufficient for breaking rocks. Notably, this is accomplished by relying only on approximately 68 min of teleoperation data to train and 8 min to evaluate the dynamic model, and without performing any adjustments for a successful policy Sim2Real transfer. A demonstration of policy execution in the real world can be found in https://youtu.be/e-7tDhZ4ZgA.
comment: 21 pages, 14 figures
Affordable Data Collection System for UAVs Taxi Vibration Testing
Structural vibration testing plays a key role in aerospace engineering for evaluating dynamic behaviour, ensuring reliability and verifying structural integrity. These tests rely on accurate and robust data acquisition systems (DAQ) to capture high-quality acceleration data. However, commercial DAQs that provide the required performance and features are often expensive and complex, limiting their accessibility for small-scale research and experimental applications. This work presents the design and experimental validation of an affordable and in-house-developed acceleration DAQ, tested on a small fixed-wing UAV through several Taxi Vibration Test (TVT) runs and ambient vibration measurements. The proposed system integrates several OrangePi 3 LTS single-board computers with multiple LSM6DS3TR-C MEMS inertial measurement units operating simultaneously via an Inter-Integrated Circuit (I2C) communication interface, managed under a Python-based master/slave architecture. Data is acquired at a stable sampling rate of approximately 208 Hz and post-processed using Welch's method to estimate their Power Spectral Density (PSD). Results confirm the system ability to provide consistent multi-sensor acceleration data and repeatable PSD profiles under the same test conditions; thus, demonstrating its reliability. With a total hardware cost below 600 EUR (approximately 690 USD), the developed DAQ offers a compact, scalable and cost-effective alternative for aerospace vibration analysis and structural testing.
THETA: Triangulated Hand-State Estimation for Teleoperation and Automation in Robotic Hand Control
The teleoperation of robotic hands is limited by the high costs of depth cameras and sensor gloves, commonly used to estimate hand relative joint positions (XYZ). We present a novel, cost-effective approach using three webcams for triangulation-based tracking to approximate relative joint angles (theta) of human fingers. We also introduce a modified DexHand, a low-cost robotic hand from TheRobotStudio, to demonstrate THETA's real-time application. Data collection involved 40 distinct hand gestures using three 640x480p webcams arranged at 120-degree intervals, generating over 48,000 RGB images. Joint angles were manually determined by measuring midpoints of the MCP, PIP, and DIP finger joints. Captured RGB frames were processed using a DeepLabV3 segmentation model with a ResNet-50 backbone for multi-scale hand segmentation. The segmented images were then HSV-filtered and fed into THETA's architecture, consisting of a MobileNetV2-based CNN classifier optimized for hierarchical spatial feature extraction and a 9-channel input tensor encoding multi-perspective hand representations. The classification model maps segmented hand views into discrete joint angles, achieving 97.18% accuracy, 98.72% recall, F1 Score of 0.9274, and a precision of 0.8906. In real-time inference, THETA captures simultaneous frames, segments hand regions, filters them, and compiles a 9-channel tensor for classification. Joint-angle predictions are relayed via serial to an Arduino, enabling the DexHand to replicate hand movements. Future research will increase dataset diversity, integrate wrist tracking, and apply computer vision techniques such as OpenAI-Vision. THETA potentially ensures cost-effective, user-friendly teleoperation for medical, linguistic, and manufacturing applications.
comment: The 11th International Conference on Engineering and Emerging Technologies (ICEET) 2025
Predefined-time One-Shot Cooperative Estimation, Guidance, and Control for Simultaneous Target Interception
This work develops a unified nonlinear estimation-guidance-control framework for cooperative simultaneous interception of a stationary target under a heterogeneous sensing topology, where sensing capabilities are non-uniform across interceptors. Specifically, only a subset of agents is instrumented with onboard seekers (informed/seeker-equipped agents), whereas the rest of them (seeker-less agents) acquire the information about the target indirectly via the informed agents and execute a distributed cooperative guidance for simultaneous target interception. To address the resulting partial observability, a predefined-time distributed observer is leveraged, guaranteeing convergence of the target state estimates for seeker-less agents through information exchange with seeker-equipped neighbors over a directed communication graph. Thereafter, an improved time-to-go estimate accounting for wide launch envelopes is utilized to design the distributed cooperative guidance commands. This estimate is coupled with a predefined-time consensus protocol, ensuring consensus in the agents' time-to-go values. The temporal upper bounds within which both observer error and time-to-go consensus error converge to zero can be prescribed as design parameters. Furthermore, the cooperative guidance commands are realized by means of an autopilot, wherein the interceptor is steered by canard actuation. The corresponding fin deflection commands are generated using a predefined-time convergent sliding mode control law. This enables the autopilot to precisely track the commanded lateral acceleration within a design-specified time, while maintaining non-singularity of the overall design. Theoretical guarantees are supported by numerical simulations across diverse engagement geometries, verifying the estimation accuracy, the cooperative interception performance, and the autopilot response using the proposed scheme.
FMAC: a Fair Fiducial Marker Accuracy Comparison Software
This paper presents a method for carrying fair comparisons of the accuracy of pose estimation using fiducial markers. These comparisons rely on large sets of high-fidelity synthetic images enabling deep exploration of the 6 degrees of freedom. A low-discrepancy sampling of the space allows to check the correlations between each degree of freedom and the pose errors by plotting the 36 pairs of combinations. The images are rendered using a physically based ray tracing code that has been specifically developed to use the standard calibration coefficients of any camera directly. The software reproduces image distortions, defocus and diffraction blur. Furthermore, sub-pixel sampling is applied to sharp edges to enhance the fidelity of the rendered image. After introducing the rendering algorithm and its experimental validation, the paper proposes a method for evaluating the pose accuracy. This method is applied to well-known markers, revealing their strengths and weaknesses for pose estimation. The code is open source and available on GitHub.
Hiking in the Wild: A Scalable Perceptive Parkour Framework for Humanoids
Achieving robust humanoid hiking in complex, unstructured environments requires transitioning from reactive proprioception to proactive perception. However, integrating exteroception remains a significant challenge: mapping-based methods suffer from state estimation drift; for instance, LiDAR-based methods do not handle torso jitter well. Existing end-to-end approaches often struggle with scalability and training complexity; specifically, some previous works using virtual obstacles are implemented case-by-case. In this work, we present \textit{Hiking in the Wild}, a scalable, end-to-end parkour perceptive framework designed for robust humanoid hiking. To ensure safety and training stability, we introduce two key mechanisms: a foothold safety mechanism combining scalable \textit{Terrain Edge Detection} with \textit{Foot Volume Points} to prevent catastrophic slippage on edges, and a \textit{Flat Patch Sampling} strategy that mitigates reward hacking by generating feasible navigation targets. Our approach utilizes a single-stage reinforcement learning scheme, mapping raw depth inputs and proprioception directly to joint actions, without relying on external state estimation. Extensive field experiments on a full-size humanoid demonstrate that our policy enables robust traversal of complex terrains at speeds up to 2.5 m/s. The training and deployment code is open-sourced to facilitate reproducible research and deployment on real robots with minimal hardware modifications.
comment: Project Page: https://project-instinct.github.io/hiking-in-the-wild
Deep Whole-body Parkour
Current approaches to humanoid control generally fall into two paradigms: perceptive locomotion, which handles terrain well but is limited to pedal gaits, and general motion tracking, which reproduces complex skills but ignores environmental capabilities. This work unites these paradigms to achieve perceptive general motion control. We present a framework where exteroceptive sensing is integrated into whole-body motion tracking, permitting a humanoid to perform highly dynamic, non-locomotion tasks on uneven terrain. By training a single policy to perform multiple distinct motions across varied terrestrial features, we demonstrate the non-trivial benefit of integrating perception into the control loop. Our results show that this framework enables robust, highly dynamic multi-contact motions, such as vaulting and dive-rolling, on unstructured terrain, significantly expanding the robot's traversability beyond simple walking or running. https://project-instinct.github.io/deep-whole-body-parkour
Aggregating swarms through morphology handling design contingencies: from the sweet spot to a rich expressivity
Morphological computing, the use of the physical design of a robot to ease the realization of a given task has been proven to be a relevant concept in the context of swarm robotics. Here we demonstrate both experimentally and numerically, that the success of such a strategy may heavily rely on the type of policy adopted by the robots, as well as on the details of the physical design. To do so, we consider a swarm of robots, composed of Kilobots embedded in an exoskeleton, the design of which controls the propensity of the robots to align or anti-align with the direction of the external force they experience. We find experimentally that the contrast that was observed between the two morphologies in the success rate of a simple phototactic task, where the robots were programmed to stop when entering a light region, becomes dramatic, if the robots are not allowed to stop, and can only slow down. Building on a faithful physical model of the self-aligning dynamics of the robots, we perform numerical simulations and demonstrate on one hand that a precise tuning of the self-aligning strength around a sweet spot is required to achieve an efficient phototactic behavior, on the other hand that exploring a range of self-alignment strength allows for a rich expressivity of collective behaviors.
comment: 8 pages, 3 figures
Stable In-hand Manipulation for a Lightweight Four-motor Prosthetic Hand
Electric prosthetic hands should be lightweight to decrease the burden on the user, shaped like human hands for cosmetic purposes, and designed with motors enclosed inside to protect them from damage and dirt. Additionally, in-hand manipulation is necessary to perform daily activities such as transitioning between different postures, particularly through rotational movements, such as reorienting a pen into a writing posture after picking it up from a desk. We previously developed PLEXUS hand (Precision-Lateral dEXteroUS manipulation hand), a lightweight (311 g) prosthetic hand driven by four motors. This prosthetic performed reorientation between precision and lateral grasps with various objects. However, its controller required predefined object widths and was limited to handling lightweight objects (of weight up to 34 g). This study addresses these limitations by employing motor current feedback. Combined with the hand's previously optimized single-axis thumb, this approach achieves more stable manipulation by estimating the object's width and adjusting the index finger position to maintain stable object holding during the reorientation. Experimental validation using primitive objects of various widths (5-30 mm) and shapes (cylinders and prisms) resulted in a 100% success rate with lightweight objects and maintained a high success rate (>=80) even with heavy aluminum prisms (of weight up to 289 g). By contrast, the performance without index finger coordination dropped to just 40% on the heaviest 289 g prism. The hand also successfully executed several daily tasks, including closing bottle caps and orienting a pen for writing.
FlyCo: Foundation Model-Empowered Drones for Autonomous 3D Structure Scanning in Open-World Environments
Autonomous 3D scanning of open-world target structures via drones remains challenging despite broad applications. Existing paradigms rely on restrictive assumptions or effortful human priors, limiting practicality, efficiency, and adaptability. Recent foundation models (FMs) offer great potential to bridge this gap. This paper investigates a critical research problem: What system architecture can effectively integrate FM knowledge for this task? We answer it with FlyCo, a principled FM-empowered perception-prediction-planning loop enabling fully autonomous, prompt-driven 3D target scanning in diverse unknown open-world environments. FlyCo directly translates low-effort human prompts (text, visual annotations) into precise adaptive scanning flights via three coordinated stages: (1) perception fuses streaming sensor data with vision-language FMs for robust target grounding and tracking; (2) prediction distills FM knowledge and combines multi-modal cues to infer the partially observed target's complete geometry; (3) planning leverages predictive foresight to generate efficient and safe paths with comprehensive target coverage. Building on this, we further design key components to boost open-world target grounding efficiency and robustness, enhance prediction quality in terms of shape accuracy, zero-shot generalization, and temporal stability, and balance long-horizon flight efficiency with real-time computability and online collision avoidance. Extensive challenging real-world and simulation experiments show FlyCo delivers precise scene understanding, high efficiency, and real-time safety, outperforming existing paradigms with lower human effort and verifying the proposed architecture's practicality. Comprehensive ablations validate each component's contribution. FlyCo also serves as a flexible, extensible blueprint, readily leveraging future FM and robotics advances. Code will be released.
comment: 34 pages, 24 figures, 9 tables. Video: https://www.youtube.com/playlist?list=PLqjZjnqsCyl40rw3y15Yzc7Mdo-z1y2j8
NanoCockpit: Performance-optimized Application Framework for AI-based Autonomous Nanorobotics
Autonomous nano-drones, powered by vision-based tiny machine learning (TinyML) models, are a novel technology gaining momentum thanks to their broad applicability and pushing scientific advancement on resource-limited embedded systems. Their small form factor, i.e., a few 10s grams, severely limits their onboard computational resources to sub-\SI{100}{\milli\watt} microcontroller units (MCUs). The Bitcraze Crazyflie nano-drone is the \textit{de facto} standard, offering a rich set of programmable MCUs for low-level control, multi-core processing, and radio transmission. However, roboticists very often underutilize these onboard precious resources due to the absence of a simple yet efficient software layer capable of time-optimal pipelining of multi-buffer image acquisition, multi-core computation, intra-MCUs data exchange, and Wi-Fi streaming, leading to sub-optimal control performances. Our \textit{NanoCockpit} framework aims to fill this gap, increasing the throughput and minimizing the system's latency, while simplifying the developer experience through coroutine-based multi-tasking. In-field experiments on three real-world TinyML nanorobotics applications show our framework achieves ideal end-to-end latency, i.e. zero overhead due to serialized tasks, delivering quantifiable improvements in closed-loop control performance ($-$30\% mean position error, mission success rate increased from 40\% to 100\%).
comment: Source code available on GitHub at https://github.com/idsia-robotics/crazyflie-nanocockpit
WaveMan: mmWave-Based Room-Scale Human Interaction Perception for Humanoid Robots
Reliable humanoid-robot interaction (HRI) in household environments is constrained by two fundamental requirements, namely robustness to unconstrained user positions and preservation of user privacy. Millimeter-wave (mmWave) sensing inherently supports privacy-preserving interaction, making it a promising modality for room-scale HRI. However, existing mmWave-based interaction-sensing systems exhibit poor spatial generalization at unseen distances or viewpoints. To address this challenge, we introduce WaveMan, a spatially adaptive room-scale perception system that restores reliable human interaction sensing across arbitrary user positions. WaveMan integrates viewpoint alignment and spectrogram enhancement for spatial consistency, with dual-channel attention for robust feature extraction. Experiments across five participants show that, under fixed-position evaluation, WaveMan achieves the same cross-position accuracy as the baseline with five times fewer training positions. In random free-position testing, accuracy increases from 33.00% to 94.33%, enabled by the proposed method. These results demonstrate the feasibility of reliable, privacy-preserving interaction for household humanoid robots across unconstrained user positions.
LOONG: Online Time-Optimal Autonomous Flight for MAVs in Cluttered Environments
Autonomous flight of micro air vehicles (MAVs) in unknown, cluttered environments remains challenging for time-critical missions due to conservative maneuvering strategies. This article presents an integrated planning and control framework for high-speed, time-optimal autonomous flight of MAVs in cluttered environments. In each replanning cycle (100 Hz), a time-optimal trajectory under polynomial presentation is generated as a reference, with the time-allocation process accelerated by imitation learning. Subsequently, a time-optimal model predictive contouring control (MPCC) incorporates safe flight corridor (SFC) constraints at variable horizon steps to enable aggressive yet safe maneuvering, while fully exploiting the MAV's dynamics. We validate the proposed framework extensively on a custom-built LiDAR-based MAV platform. Simulation results demonstrate superior aggressiveness compared to the state of the art, while real-world experiments achieve a peak speed of 18 m/s in a cluttered environment and succeed in 10 consecutive trials from diverse start points. The video is available at the following link: https://youtu.be/vexXXhv99oQ.
Optimizing the Design of a Simple Three-Sphere Magnetic Microswimmer
When swimming at low Reynolds numbers, inertial effects are negligible and reciprocal movements cannot induce net motion. Instead, symmetry breaking is necessary to achieve net propulsion. Directed swimming can be supported by magnetic fields, which simultaneously provide a versatile means of remote actuation. Thus, we analyze the motion of a straight microswimmer composed of three magnetizable beads connected by two elastic links. The swimming mechanism is based on oriented external magnetic fields that oscillate in magnitude. Through induced reversible hysteretic collapse of the two segments of the swimmer, the two pairs of beads jump into contact and separate nonreciprocally. Due to higher-order hydrodynamic interactions, net displacement results after each cycle. Different microswimmers can be tuned to different driving amplitudes and frequencies, allowing for simultaneous independent control by just one external magnetic field. The swimmer geometry and magnetic field shape are optimized for maximum swimming speed using an evolutionary optimization strategy. Thanks to the simple working principle, an experimental realization of such a microrobot seems feasible and may open new approaches for microinvasive medical interventions such as targeted drug delivery.
comment: 10 pages, 7 figures
Large-Scale Autonomous Gas Monitoring for Volcanic Environments: A Legged Robot on Mount Etna RAM
Volcanic gas emissions are key precursors of eruptive activity. Yet, obtaining accurate near-surface measurements remains hazardous and logistically challenging, motivating the need for autonomous solutions. Limited mobility in rough volcanic terrain has prevented wheeled systems from performing reliable in situ gas measurements, reducing their usefulness as sensing platforms. We present a legged robotic system for autonomous volcanic gas analysis, utilizing the quadruped ANYmal, equipped with a quadrupole mass spectrometer system. Our modular autonomy stack integrates a mission planning interface, global planner, localization framework, and terrain-aware local navigation. We evaluated the system on Mount Etna across three autonomous missions in varied terrain, achieving successful gas-source detections with autonomy rates of 93-100%. In addition, we conducted a teleoperated mission in which the robot measured natural fumaroles, detecting sulfur dioxide and carbon dioxide. We discuss lessons learned from the gas-analysis and autonomy perspectives, emphasizing the need for adaptive sensing strategies, tighter integration of global and local planning, and improved hardware design.
comment: 12 pages, 7 figures, submitted to IEEE Robotics & Automation Magazine (RAM)
OSCAR: Open-Set CAD Retrieval from a Language Prompt and a Single Image
6D object pose estimation plays a crucial role in scene understanding for applications such as robotics and augmented reality. To support the needs of ever-changing object sets in such context, modern zero-shot object pose estimators were developed to not require object-specific training but only rely on CAD models. Such models are hard to obtain once deployed, and a continuously changing and growing set of objects makes it harder to reliably identify the instance model of interest. To address this challenge, we introduce an Open-Set CAD Retrieval from a Language Prompt and a Single Image (OSCAR), a novel training-free method that retrieves a matching object model from an unlabeled 3D object database. During onboarding, OSCAR generates multi-view renderings of database models and annotates them with descriptive captions using an image captioning model. At inference, GroundedSAM detects the queried object in the input image, and multi-modal embeddings are computed for both the Region-of-Interest and the database captions. OSCAR employs a two-stage retrieval: text-based filtering using CLIP identifies candidate models, followed by image-based refinement using DINOv2 to select the most visually similar object. In our experiments we demonstrate that OSCAR outperforms all state-of-the-art methods on the cross-domain 3D model retrieval benchmark MI3DOR. Furthermore, we demonstrate OSCAR's direct applicability in automating object model sourcing for 6D object pose estimation. We propose using the most similar object model for pose estimation if the exact instance is not available and show that OSCAR achieves an average precision of 90.48\% during object retrieval on the YCB-V object dataset. Moreover, we demonstrate that the most similar object model can be utilized for pose estimation using Megapose achieving better results than a reconstruction-based approach.
Heterogeneous Multi-Expert Reinforcement Learning for Long-Horizon Multi-Goal Tasks in Autonomous Forklifts
Autonomous mobile manipulation in unstructured warehouses requires a balance between efficient large-scale navigation and high-precision object interaction. Traditional end-to-end learning approaches often struggle to handle the conflicting demands of these distinct phases. Navigation relies on robust decision-making over large spaces, while manipulation needs high sensitivity to fine local details. Forcing a single network to learn these different objectives simultaneously often causes optimization interference, where improving one task degrades the other. To address these limitations, we propose a Heterogeneous Multi-Expert Reinforcement Learning (HMER) framework tailored for autonomous forklifts. HMER decomposes long-horizon tasks into specialized sub-policies controlled by a Semantic Task Planner. This structure separates macro-level navigation from micro-level manipulation, allowing each expert to focus on its specific action space without interference. The planner coordinates the sequential execution of these experts, bridging the gap between task planning and continuous control. Furthermore, to solve the problem of sparse exploration, we introduce a Hybrid Imitation-Reinforcement Training Strategy. This method uses expert demonstrations to initialize the policy and Reinforcement Learning for fine-tuning. Experiments in Gazebo simulations show that HMER significantly outperforms sequential and end-to-end baselines. Our method achieves a task success rate of 94.2\% (compared to 62.5\% for baselines), reduces operation time by 21.4\%, and maintains placement error within 1.5 cm, validating its efficacy for precise material handling.
comment: 9 pages
AdaMorph: Unified Motion Retargeting via Embodiment-Aware Adaptive Transformers
Retargeting human motion to heterogeneous robots is a fundamental challenge in robotics, primarily due to the severe kinematic and dynamic discrepancies between varying embodiments. Existing solutions typically resort to training embodiment-specific models, which scales poorly and fails to exploit shared motion semantics. To address this, we present AdaMorph, a unified neural retargeting framework that enables a single model to adapt human motion to diverse robot morphologies. Our approach treats retargeting as a conditional generation task. We map human motion into a morphology-agnostic latent intent space and utilize a dual-purpose prompting mechanism to condition the generation. Instead of simple input concatenation, we leverage Adaptive Layer Normalization (AdaLN) to dynamically modulate the decoder's feature space based on embodiment constraints. Furthermore, we enforce physical plausibility through a curriculum-based training objective that ensures orientation and trajectory consistency via integration. Experimental results on 12 distinct humanoid robots demonstrate that AdaMorph effectively unifies control across heterogeneous topologies, exhibiting strong zero-shot generalization to unseen complex motions while preserving the dynamic essence of the source behaviors.
Robust maximum hands-off optimal control: existence, maximum principle, and $L^{0}$-$L^1$ equivalence
This work advances the maximum hands-off sparse control framework by developing a robust counterpart for constrained linear systems with parametric uncertainties. The resulting optimal control problem minimizes an $L^{0}$ objective subject to an uncountable, compact family of constraints, and is therefore a nonconvex, nonsmooth robust optimization problem. To address this, we replace the $L^{0}$ objective with its convex $L^{1}$ surrogate and, using a nonsmooth variant of the robust Pontryagin maximum principle, show that the $L^{0}$ and $L^{1}$ formulations have identical sets of optimal solutions -- we call this the robust hands-off principle. Building on this equivalence, we propose an algorithmic framework -- drawing on numerically viable techniques from the semi-infinite robust optimization literature -- to solve the resulting problems. An illustrative example is provided to demonstrate the effectiveness of the approach.
comment: Revised version of a journal submission; comments are welcome
HERE: Hierarchical Active Exploration of Radiance Field with Epistemic Uncertainty Minimization RA-L
We present HERE, an active 3D scene reconstruction framework based on neural radiance fields, enabling high-fidelity implicit mapping. Our approach centers around an active learning strategy for camera trajectory generation, driven by accurate identification of unseen regions, which supports efficient data acquisition and precise scene reconstruction. The key to our approach is epistemic uncertainty quantification based on evidential deep learning, which directly captures data insufficiency and exhibits a strong correlation with reconstruction errors. This allows our framework to more reliably identify unexplored or poorly reconstructed regions compared to existing methods, leading to more informed and targeted exploration. Additionally, we design a hierarchical exploration strategy that leverages learned epistemic uncertainty, where local planning extracts target viewpoints from high-uncertainty voxels based on visibility for trajectory generation, and global planning uses uncertainty to guide large-scale coverage for efficient and comprehensive reconstruction. The effectiveness of the proposed method in active 3D reconstruction is demonstrated by achieving higher reconstruction completeness compared to previous approaches on photorealistic simulated scenes across varying scales, while a hardware demonstration further validates its real-world applicability.
comment: Accepted to IEEE RA-L. The first two authors contributed equally
PROTEA: Securing Robot Task Planning and Execution
Robots need task planning methods to generate action sequences for complex tasks. Recent work on adversarial attacks has revealed significant vulnerabilities in existing robot task planners, especially those built on foundation models. In this paper, we aim to address these security challenges by introducing PROTEA, an LLM-as-a-Judge defense mechanism, to evaluate the security of task plans. PROTEA is developed to address the dimensionality and history challenges in plan safety assessment. We used different LLMs to implement multiple versions of PROTEA for comparison purposes. For systemic evaluations, we created a dataset containing both benign and malicious task plans, where the harmful behaviors were injected at varying levels of stealthiness. Our results provide actionable insights for robotic system practitioners seeking to enhance robustness and security of their task planning systems. Details, dataset and demos are provided: https://protea-secure.github.io/PROTEA/
TranSC: Hardware-Aware Design of Transcendental Functions Using Stochastic Logic
The hardware-friendly implementation of transcendental functions remains a longstanding challenge in design automation. These functions, which cannot be expressed as finite combinations of algebraic operations, pose significant complexity in digital circuit design. This study introduces a novel approach, TranSC, that utilizes stochastic computing (SC) for lightweight yet accurate implementation of transcendental functions. Building on established SC techniques, our method explores alternative random sources-specifically, quasi-random Van der Corput low-discrepancy (LD) sequences-instead of conventional pseudo-randomness. This shift enhances both the accuracy and efficiency of SC-based computations. We validate our approach through extensive experiments on various function types, including trigonometric, hyperbolic, and activation functions. The proposed design approach significantly reduces MSE by up to 98% compared to the state-of-the-art solutions while reducing hardware area, power consumption, and energy usage by 33%, 72%, and 64%, respectively.
comment: 12 pages
The embodied brain: Bridging the brain, body, and behavior with neuromechanical digital twins
Animal behavior reflects interactions between the nervous system, body, and environment. Therefore, biomechanics and environmental context must be considered to dissect algorithms for behavioral control. This is enabled by leveraging neuromechanical digital twins: computational models that embed artificial neural controllers within realistic body models in simulated environments. Here we review advances in the creation and use of neuromechanical digital twins while also highlighting emerging opportunities for the future. First, we illustrate how neuromechanical models allow researchers to infer hidden biophysical variables that may be difficult to measure experimentally. Additionally, by perturbing these models, one can generate new experimentally testable hypotheses. Next, we explore how neuromechanical twins have been used to foster a deeper exchange between neuroscience, robotics, and machine learning. Finally, we show how neuromechanical twins can advance healthcare. We envision that coupling studies on animals with active probing of their neuromechanical twins will greatly accelerate neuroscientific discovery.
comment: 17 pages, 4 figures (including 1 graphical abstract), 1 table
μDopplerTag: CNN-Based Drone Recognition via Cooperative Micro-Doppler Tagging
The rapid deployment of drones poses significant challenges for airspace management, security, and surveillance. Current detection and classification technologies, including cameras, LiDAR, and conventional radar systems, often struggle to reliably identify and differentiate drones, especially those of similar models, under diverse environmental conditions and at extended ranges. Moreover, low radar cross sections and clutter further complicate accurate drone identification. To address these limitations, we propose a novel drone classification method based on artificial micro-Doppler signatures encoded by resonant electromagnetic stickers attached to drone blades. These tags generate distinctive, configuration-specific radar returns, enabling robust identification. We develop a tailored convolutional neural network (CNN) capable of processing raw radar signals, achieving high classification accuracy. Extensive experiments were conducted both in anechoic chambers with 43 tag configurations and outdoors under realistic flight trajectories and noise conditions. Dimensionality reduction techniques, including Principal Component Analysis (PCA) and Uniform Manifold Approximation and Projection (UMAP), provided insight into code separability and robustness. Our results demonstrate reliable drone classification performance at signal-to-noise ratios as low as 7 dB, indicating the feasibility of long-range detection with advanced surveillance radar systems. Preliminary range estimations indicate potential operational distances of several kilometers, suitable for critical applications such as airport airspace monitoring. The integration of electromagnetic tagging with machine learning enables scalable and efficient drone identification, paving the way for enhanced aerial traffic management and security in increasingly congested airspaces.
Fiducial Exoskeletons: Image-Centric Robot State Estimation
We introduce Fiducial Exoskeletons, an image-based reformulation of 3D robot state estimation that replaces cumbersome procedures and motor-centric pipelines with single-image inference. Traditional approaches - especially robot-camera extrinsic estimation - often rely on high-precision actuators and require time-consuming routines such as hand-eye calibration. In contrast, modern learning-based robot control is increasingly trained and deployed from RGB observations on lower-cost hardware. Our key insight is twofold. First, we cast robot state estimation as 6D pose estimation of each link from a single RGB image: the robot-camera base transform is obtained directly as the estimated base-link pose, and the joint state is recovered via a lightweight global optimization that enforces kinematic consistency with the observed link poses (optionally warm-started with encoder readings). Second, we make per-link 6D pose estimation robust and simple - even without learning - by introducing the fiducial exoskeleton: a lightweight 3D-printed mount with a fiducial marker on each link and known marker-link geometry. This design yields robust camera-robot extrinsics, per-link SE(3) poses, and joint-angle state from a single image, enabling robust state estimation even on unplugged robots. Demonstrated on a low-cost robot arm, fiducial exoskeletons substantially simplify setup while improving calibration, state accuracy, and downstream 3D control performance. We release code and printable hardware designs to enable further algorithm-hardware co-design.
Contact-aware Path Planning for Autonomous Neuroendovascular Navigation IROS
We propose a deterministic and time-efficient contact-aware path planner for neurovascular navigation. The algorithm leverages information from pre- and intra-operative images of the vessels to navigate pre-bent passive tools, by intelligently predicting and exploiting interactions with the anatomy. A kinematic model is derived and employed by the sampling-based planner for tree expansion that utilizes simplified motion primitives. This approach enables fast computation of the feasible path, with negligible loss in accuracy, as demonstrated in diverse and representative anatomies of the vessels. In these anatomical demonstrators, the algorithm shows a 100% convergence rate within 22.8s in the worst case, with sub-millimeter tracking errors (less than 0.64 mm), and is found effective on anatomical phantoms representative of around 94% of patients.
comment: 8 pages, 7 figures, IROS(R-AL)
ManiFeel: Benchmarking and Understanding Visuotactile Manipulation Policy Learning
Supervised visuomotor policies have shown strong performance in robotic manipulation but often struggle in tasks with limited visual inputs, such as operations in confined spaces and dimly lit environments, or tasks requiring precise perception of object properties and environmental interactions. In such cases, tactile feedback becomes essential for manipulation. While the rapid progress of supervised visuomotor policies has benefited greatly from high-quality, reproducible simulation benchmarks in visual imitation, the visuotactile domain still lacks a similarly comprehensive and reliable benchmark for large-scale and rigorous evaluation. To address this, we introduce ManiFeel, a reproducible and scalable simulation benchmark designed to systematically study supervised visuotactile policy learning. ManiFeel offers a diverse suite of contact-rich and visually challenging manipulation tasks, a modular evaluation pipeline spanning sensing modalities, tactile representations, and policy architectures, as well as real-world validation. Through extensive experiments, ManiFeel demonstrates how tactile sensing enhances policy performance across diverse manipulation scenarios, ranging from precise contact-driven operations to visually constrained settings. In addition, the results reveal task-dependent strengths of different tactile modalities and identify key design principles and open challenges for robust visuotactile policy learning. Real-world evaluations further confirm that ManiFeel provides a reliable and meaningful foundation for benchmarking and future visuotactile policy development. To foster reproducibility and future research, we will release our codebase, datasets, training logs, and pretrained checkpoints, aiming to accelerate progress toward generalizable visuotactile policy learning and manipulation.
SegDAC: Improving Visual Reinforcement Learning by Extracting Dynamic Object-Centric Representations from Pretrained Vision Models
Visual reinforcement learning (RL) is challenging due to the need to extract useful representations from high-dimensional inputs while learning effective control from sparse and noisy rewards. Although large perception models exist, integrating them effectively into RL for visual generalization and improved sample efficiency remains difficult. We propose SegDAC, a Segmentation-Driven Actor-Critic method. SegDAC uses Segment Anything (SAM) for object-centric decomposition and YOLO-World to ground the image segmentation process via text inputs. It includes a novel transformer-based architecture that supports a dynamic number of segments at each time step and effectively learns which segments to focus on using online RL, without using human labels. By evaluating SegDAC over a challenging visual generalization benchmark using Maniskill3, which covers diverse manipulation tasks under strong visual perturbations, we demonstrate that SegDAC achieves significantly better visual generalization, doubling prior performance on the hardest setting and matching or surpassing prior methods in sample efficiency across all evaluated tasks. Project Page: https://segdac.github.io/
Surface-Based Manipulation with Modular Foldable Robots
Intelligence lies not only in the brain (decision-making processes) but in the body (physical morphology). The morphology of robots can significantly influence how they interact with the physical world, crucial for manipulating objects in real-life scenarios. Conventional robotic manipulation strategies mainly rely on finger-shaped end effectors. However, achieving stable grasps on fragile, deformable, irregularly shaped, or slippery objects is challenging due to difficulty in establishing stable forces or geometric constraints. Here, we present surface-based manipulation strategies that diverge from classical grasping approaches, using flat surfaces as minimalist end-effectors. By adjusting surfaces' position and orientation, objects can be translated, rotated, and flipped across the surface using closed-loop control strategies. Since this method does not rely on stable grasping, it can adapt to objects of various shapes, sizes, and stiffness levels and can even manipulate the shape of deformable objects. Our results provide a new perspective for solving complex manipulation problems.
comment: This manuscript has been published in npj Robotics. Supplementary video: https://www.youtube.com/watch?v=2TPTBqp84BY
Multi-User Personalisation in Human-Robot Interaction: Resolving Preference Conflicts Using Gradual Argumentation
While personalisation in Human-Robot Interaction (HRI) has advanced significantly, most existing approaches focus on single-user adaptation, overlooking scenarios involving multiple stakeholders with potentially conflicting preferences. To address this, we propose the Multi-User Preferences Quantitative Bipolar Argumentation Framework (MUP-QBAF), a novel multi-user personalisation framework based on Quantitative Bipolar Argumentation Frameworks (QBAFs) that explicitly models and resolves multi-user preference conflicts. Unlike prior work in Argumentation Frameworks, which typically assumes static inputs, our approach is tailored to robotics: it incorporates both users' arguments and the robot's dynamic observations of the environment, allowing the system to adapt over time and respond to changing contexts. Preferences, both positive and negative, are represented as arguments whose strength is recalculated iteratively based on new information. The framework's properties and capabilities are presented and validated through a realistic case study, where an assistive robot mediates between the conflicting preferences of a caregiver and a care recipient during a frailty assessment task. This evaluation further includes a sensitivity analysis of argument base scores, demonstrating how preference outcomes can be shaped by user input and contextual observations. By offering a transparent, structured, and context-sensitive approach to resolving competing user preferences, this work advances the field of multi-user HRI. It provides a principled alternative to data-driven methods, enabling robots to navigate conflicts in real-world environments.
comment: Preprint submitted to a journal
Proprioception Enhances Vision Language Model in Generating Captions and Subtask Segmentations for Robot Task
From the perspective of future developments in robotics, it is crucial to verify whether foundation models trained exclusively on offline data, such as images and language, can understand the robot motion. In particular, since Vision Language Models (VLMs) do not include low-level motion information from robots in their training datasets, video understanding including trajectory information remains a significant challenge. In this study, we assess two capabilities of VLMs through a video captioning task with low-level robot motion information: (1) automatic captioning of robot tasks and (2) segmentation of a series of tasks. Both capabilities are expected to enhance the efficiency of robot imitation learning by linking language and motion and serve as a measure of the foundation model's performance. The proposed method generates multiple "scene" captions using image captions and trajectory data from robot tasks. The full task caption is then generated by summarizing these individual captions. Additionally, the method performs subtask segmentation by comparing the similarity between text embeddings of image captions. In both captioning tasks, the proposed method aims to improve performance by providing the robot's motion data - joint and end-effector states - as input to the VLM. Simulator experiments were conducted to validate the effectiveness of the proposed method.
From Human Bias to Robot Choice: How Occupational Contexts and Racial Priming Shape Robot Selection
As artificial agents increasingly integrate into professional environments, fundamental questions have emerged about how societal biases influence human-robot selection decisions. We conducted two comprehensive experiments (N = 1,038) examining how occupational contexts and stereotype activation shape robotic agent choices across construction, healthcare, educational, and athletic domains. Participants made selections from artificial agents that varied systematically in skin tone and anthropomorphic characteristics. Our study revealed distinct context-dependent patterns. Healthcare and educational scenarios demonstrated strong favoritism toward lighter-skinned artificial agents, while construction and athletic contexts showed greater acceptance of darker-toned alternatives. Participant race was associated with systematic differences in selection patterns across professional domains. The second experiment demonstrated that exposure to human professionals from specific racial backgrounds systematically shifted later robotic agent preferences in stereotype-consistent directions. These findings show that occupational biases and color-based discrimination transfer directly from human-human to human-robot evaluation contexts. The results highlight mechanisms through which robotic deployment may unintentionally perpetuate existing social inequalities.
comment: HRI '26
Modern Middlewares for Automated Vehicles: A Tutorial
This paper offers a tutorial on current middlewares in automated vehicles. Our aim is to provide the reader with an overview of current middlewares and to identify open challenges in this field. We start by explaining the fundamentals of software architecture in distributed systems and the distinguishing requirements of Automated Vehicles. We then distinguish between communication middlewares and architecture platforms and highlight their key principles and differences. Next, we present five state-of-the-art middlewares as well as their capabilities and functions. We explore how these middlewares could be applied in the design of future vehicle software and their role in the automotive domain. Finally, we compare the five middlewares presented and discuss open research challenges.
comment: This work has been submitted and accepted to the IEEE for possible publication
LOST-3DSG: Lightweight Open-Vocabulary 3D Scene Graphs with Semantic Tracking in Dynamic Environments
Tracking objects that move within dynamic environments is a core challenge in robotics. Recent research has advanced this topic significantly; however, many existing approaches remain inefficient due to their reliance on heavy foundation models. To address this limitation, we propose LOST-3DSG, a lightweight open-vocabulary 3D scene graph designed to track dynamic objects in real-world environments. Our method adopts a semantic approach to entity tracking based on word2vec and sentence embeddings, enabling an open-vocabulary representation while avoiding the necessity of storing dense CLIP visual features. As a result, LOST-3DSG achieves superior performance compared to approaches that rely on high-dimensional visual embeddings. We evaluate our method through qualitative and quantitative experiments conducted in a real 3D environment using a TIAGo robot. The results demonstrate the effectiveness and efficiency of LOST-3DSG in dynamic object tracking. Code and supplementary material are publicly available on the project website at https://lab-rococo-sapienza.github.io/lost-3dsg/.
Autonomous Driving in Unstructured Environments: How Far Have We Come? JFR
Research on autonomous driving in unstructured outdoor environments is less advanced than in structured urban settings due to challenges like environmental diversities and scene complexity. These environments-such as rural areas and rugged terrains-pose unique obstacles that are not common in structured urban areas. Despite these difficulties, autonomous driving in unstructured outdoor environments is crucial for applications in agriculture, mining, and military operations. Our survey reviews over 250 papers for autonomous driving in unstructured outdoor environments, covering offline mapping, pose estimation, environmental perception, path planning, end-to-end autonomous driving, datasets, and relevant challenges. We also discuss emerging trends and future research directions. This review aims to consolidate knowledge and encourage further research for autonomous driving in unstructured environments. To support ongoing work, we maintain an active repository with up-to-date literature and open-source projects at: https://github.com/chaytonmin/Survey-Autonomous-Driving-in-Unstructured-Environments.
comment: Accepted by Journal of Field Robotics (JFR) 2025; Survey paper; 59 pages
AgriLiRa4D: A Multi-Sensor UAV Dataset for Robust SLAM in Challenging Agricultural Fields
Multi-sensor Simultaneous Localization and Mapping (SLAM) is essential for Unmanned Aerial Vehicles (UAVs) performing agricultural tasks such as spraying, surveying, and inspection. However, real-world, multi-modal agricultural UAV datasets that enable research on robust operation remain scarce. To address this gap, we present AgriLiRa4D, a multi-modal UAV dataset designed for challenging outdoor agricultural environments. AgriLiRa4D spans three representative farmland types-flat, hilly, and terraced-and includes both boundary and coverage operation modes, resulting in six flight sequence groups. The dataset provides high-accuracy ground-truth trajectories from a Fiber Optic Inertial Navigation System with Real-Time Kinematic capability (FINS_RTK), along with synchronized measurements from a 3D LiDAR, a 4D Radar, and an Inertial Measurement Unit (IMU), accompanied by complete intrinsic and extrinsic calibrations. Leveraging its comprehensive sensor suite and diverse real-world scenarios, AgriLiRa4D supports diverse SLAM and localization studies and enables rigorous robustness evaluation against low-texture crops, repetitive patterns, dynamic vegetation, and other challenges of real agricultural environments. To further demonstrate its utility, we benchmark four state-of-the-art multi-sensor SLAM algorithms across different sensor combinations, highlighting the difficulty of the proposed sequences and the necessity of multi-modal approaches for reliable UAV localization. By filling a critical gap in agricultural SLAM datasets, AgriLiRa4D provides a valuable benchmark for the research community and contributes to advancing autonomous navigation technologies for agricultural UAVs. The dataset can be downloaded from: https://zhan994.github.io/AgriLiRa4D.
Aerial Robots Persistent Monitoring and Target Detection: Deployment and Assessment in the Field
In this article, we present a distributed algorithm for multi-robot persistent monitoring and target detection. In particular, we propose a novel solution that effectively integrates the Time-inverted Kuramoto model, three-dimensional Lissajous curves, and Model Predictive Control. We focus on the implementation of this algorithm on aerial robots, addressing the practical challenges involved in deploying our approach under real-world conditions. Our method ensures an effective and robust solution that maintains operational efficiency even in the presence of what we define as type I and type II failures. Type I failures refer to short-time disruptions, such as tracking errors and communication delays, while type II failures account for long-time disruptions, including malicious attacks, severe communication failures, and battery depletion. Our approach guarantees persistent monitoring and target detection despite these challenges. Furthermore, we validate our method with extensive field experiments involving up to eleven aerial robots, demonstrating the effectiveness, resilience, and scalability of our solution.
A Vision-Language-Action Model with Visual Prompt for OFF-Road Autonomous Driving
Efficient trajectory planning in off-road terrains presents a formidable challenge for autonomous vehicles, often necessitating complex multi-step pipelines. However, traditional approaches exhibit limited adaptability in dynamic environments. To address these limitations, this paper proposes OFF-EMMA, a novel end-to-end multimodal framework designed to overcome the deficiencies of insufficient spatial perception and unstable reasoning in visual-language-action (VLA) models for off-road autonomous driving scenarios. The framework explicitly annotates input images through the design of a visual prompt block and introduces a chain-of-thought with self-consistency (COT-SC) reasoning strategy to enhance the accuracy and robustness of trajectory planning. The visual prompt block utilizes semantic segmentation masks as visual prompts, enhancing the spatial understanding ability of pre-trained visual-language models for complex terrains. The COT- SC strategy effectively mitigates the error impact of outliers on planning performance through a multi-path reasoning mechanism. Experimental results on the RELLIS-3D off-road dataset demonstrate that OFF-EMMA significantly outperforms existing methods, reducing the average L2 error of the Qwen backbone model by 13.3% and decreasing the failure rate from 16.52% to 6.56%.
Navigation Around Unknown Space Objects Using Visible-Thermal Image Fusion
As the popularity of on-orbit operations grows, so does the need for precise navigation around unknown resident space objects (RSOs) such as other spacecraft, orbital debris, and asteroids. The use of Simultaneous Localization and Mapping (SLAM) algorithms is often studied as a method to map out the surface of an RSO and find the inspector's relative pose using a lidar or conventional camera. However, conventional cameras struggle during eclipse or shadowed periods, and lidar, though robust to lighting conditions, tends to be heavier, bulkier, and more power-intensive. Thermal-infrared cameras can track the target RSO throughout difficult illumination conditions without these limitations. While useful, thermal-infrared imagery lacks the resolution and feature-richness of visible cameras. In this work, images of a target satellite in low Earth orbit are photo-realistically simulated in both visible and thermal-infrared bands. Pixel-level fusion methods are used to create visible/thermal-infrared composites that leverage the best aspects of each camera. Navigation errors from a monocular SLAM algorithm are compared between visible, thermal-infrared, and fused imagery in various lighting and trajectories. Fused imagery yields substantially improved navigation performance over visible-only and thermal-only methods.
comment: 18 pages, 11 figures. To be published in proceedings of AIAA SCITECH 2026 Forum
Certifying Stability of Reinforcement Learning Policies using Generalized Lyapunov Functions NeurIPS 2025
Establishing stability certificates for closed-loop systems under reinforcement learning (RL) policies is essential to move beyond empirical performance and offer guarantees of system behavior. Classical Lyapunov methods require a strict stepwise decrease in the Lyapunov function but such certificates are difficult to construct for learned policies. The RL value function is a natural candidate but it is not well understood how it can be adapted for this purpose. To gain intuition, we first study the linear quadratic regulator (LQR) problem and make two key observations. First, a Lyapunov function can be obtained from the value function of an LQR policy by augmenting it with a residual term related to the system dynamics and stage cost. Second, the classical Lyapunov decrease requirement can be relaxed to a generalized Lyapunov condition requiring only decrease on average over multiple time steps. Using this intuition, we consider the nonlinear setting and formulate an approach to learn generalized Lyapunov functions by augmenting RL value functions with neural network residual terms. Our approach successfully certifies the stability of RL policies trained on Gymnasium and DeepMind Control benchmarks. We also extend our method to jointly train neural controllers and stability certificates using a multi-step Lyapunov loss, resulting in larger certified inner approximations of the region of attraction compared to the classical Lyapunov approach. Overall, our formulation enables stability certification for a broad class of systems with learned policies by making certificates easier to construct, thereby bridging classical control theory and modern learning-based methods.
comment: NeurIPS 2025
Explicit World Models for Reliable Human-Robot Collaboration AAAI-26
This paper addresses the topic of robustness under sensing noise, ambiguous instructions, and human-robot interaction. We take a radically different tack to the issue of reliable embodied AI: instead of focusing on formal verification methods aimed at achieving model predictability and robustness, we emphasise the dynamic, ambiguous and subjective nature of human-robot interactions that requires embodied AI systems to perceive, interpret, and respond to human intentions in a manner that is consistent, comprehensible and aligned with human expectations. We argue that when embodied agents operate in human environments that are inherently social, multimodal, and fluid, reliability is contextually determined and only has meaning in relation to the goals and expectations of humans involved in the interaction. This calls for a fundamentally different approach to achieving reliable embodied AI that is centred on building and updating an accessible "explicit world model" representing the common ground between human and AI, that is used to align robot behaviours with human expectations.
comment: Accepted to AAAI-26 Bridge Program B10: Making Embodied AI Reliable with Testing and Formal Verification
Modeling and Control for UAV with Off-center Slung Load
Unmanned aerial vehicle (UAV) with slung load system is a classic air transportation system. In practical applications, the suspension point of the slung load does not always align with the center of mass (CoM) of the UAV due to mission requirements or mechanical interference. This offset creates coupling in the system's nonlinear dynamics which leads to a complicated motion control problem. In existing research, modeling of the system are performed about the UAV's CoM. In this work we use the point of suspension instead. Based on the new model, a cascade control strategy is developed. In the middle-loop controller, the acceleration of the suspension point is used to regulate the swing angle of the slung load without the need for considering the coupling between the slung load and the UAV. An inner-loop controller is designed to track the UAV's attitude without the need of simplification on the coupling effects. We prove local exponential stability of the closed-loop using Lyapunov approach. Finally, simulations and experiments are conducted to validate the proposed control system.
UNCAP: Uncertainty-Guided Neurosymbolic Planning Using Natural Language Communication for Cooperative Autonomous Vehicles
Safe large-scale coordination of multiple cooperative connected autonomous vehicles (CAVs) hinges on communication that is both efficient and interpretable. Existing approaches either rely on transmitting high-bandwidth raw sensor data streams or neglect perception and planning uncertainties inherent in shared data, resulting in systems that are neither scalable nor safe. To address these limitations, we propose Uncertainty-Guided Natural Language Cooperative Autonomous Planning (UNCAP), a vision-language model-based planning approach that enables CAVs to communicate via lightweight natural language messages while explicitly accounting for perception uncertainty in decision-making. UNCAP features a two-stage communication protocol: (i) an ego CAV first identifies the subset of vehicles most relevant for information exchange, and (ii) the selected CAVs then transmit messages that quantitatively express their perception uncertainty. By selectively fusing messages that maximize mutual information, this strategy allows the ego vehicle to integrate only the most relevant signals into its decision-making, improving both the scalability and reliability of cooperative planning. Experiments across diverse driving scenarios show a 63% reduction in communication bandwidth with a 31% increase in driving safety score, a 61% reduction in decision uncertainty, and a four-fold increase in collision distance margin during near-miss events. Project website: https://uncap-project.github.io/
CLAMP: Crowdsourcing a LArge-scale in-the-wild haptic dataset with an open-source device for Multimodal robot Perception
Robust robot manipulation in unstructured environments often requires understanding object properties that extend beyond geometry, such as material or compliance-properties that can be challenging to infer using vision alone. Multimodal haptic sensing provides a promising avenue for inferring such properties, yet progress has been constrained by the lack of large, diverse, and realistic haptic datasets. In this work, we introduce the CLAMP device, a low-cost (<\$200) sensorized reacher-grabber designed to collect large-scale, in-the-wild multimodal haptic data from non-expert users in everyday settings. We deployed 16 CLAMP devices to 41 participants, resulting in the CLAMP dataset, the largest open-source multimodal haptic dataset to date, comprising 12.3 million datapoints across 5357 household objects. Using this dataset, we train a haptic encoder that can infer material and compliance object properties from multimodal haptic data. We leverage this encoder to create the CLAMP model, a visuo-haptic perception model for material recognition that generalizes to novel objects and three robot embodiments with minimal finetuning. We also demonstrate the effectiveness of our model in three real-world robot manipulation tasks: sorting recyclable and non-recyclable waste, retrieving objects from a cluttered bag, and distinguishing overripe from ripe bananas. Our results show that large-scale, in-the-wild haptic data collection can unlock new capabilities for generalizable robot manipulation. Website: https://emprise.cs.cornell.edu/clamp/
SpatialActor: Exploring Disentangled Spatial Representations for Robust Robotic Manipulation AAAI 2026
Robotic manipulation requires precise spatial understanding to interact with objects in the real world. Point-based methods suffer from sparse sampling, leading to the loss of fine-grained semantics. Image-based methods typically feed RGB and depth into 2D backbones pre-trained on 3D auxiliary tasks, but their entangled semantics and geometry are sensitive to inherent depth noise in real-world that disrupts semantic understanding. Moreover, these methods focus on high-level geometry while overlooking low-level spatial cues essential for precise interaction. We propose SpatialActor, a disentangled framework for robust robotic manipulation that explicitly decouples semantics and geometry. The Semantic-guided Geometric Module adaptively fuses two complementary geometry from noisy depth and semantic-guided expert priors. Also, a Spatial Transformer leverages low-level spatial cues for accurate 2D-3D mapping and enables interaction among spatial features. We evaluate SpatialActor on multiple simulation and real-world scenarios across 50+ tasks. It achieves state-of-the-art performance with 87.4% on RLBench and improves by 13.9% to 19.4% under varying noisy conditions, showing strong robustness. Moreover, it significantly enhances few-shot generalization to new tasks and maintains robustness under various spatial perturbations. Project Page: https://shihao1895.github.io/SpatialActor
comment: AAAI 2026 Oral | Project Page: https://shihao1895.github.io/SpatialActor
Computer Vision and Pattern Recognition 136
SecureCAI: Injection-Resilient LLM Assistants for Cybersecurity Operations
Large Language Models have emerged as transformative tools for Security Operations Centers, enabling automated log analysis, phishing triage, and malware explanation; however, deployment in adversarial cybersecurity environments exposes critical vulnerabilities to prompt injection attacks where malicious instructions embedded in security artifacts manipulate model behavior. This paper introduces SecureCAI, a novel defense framework extending Constitutional AI principles with security-aware guardrails, adaptive constitution evolution, and Direct Preference Optimization for unlearning unsafe response patterns, addressing the unique challenges of high-stakes security contexts where traditional safety mechanisms prove insufficient against sophisticated adversarial manipulation. Experimental evaluation demonstrates that SecureCAI reduces attack success rates by 94.7% compared to baseline models while maintaining 95.1% accuracy on benign security analysis tasks, with the framework incorporating continuous red-teaming feedback loops enabling dynamic adaptation to emerging attack strategies and achieving constitution adherence scores exceeding 0.92 under sustained adversarial pressure, thereby establishing a foundation for trustworthy integration of language model capabilities into operational cybersecurity workflows and addressing a critical gap in current approaches to AI safety within adversarial domains.
Tuning-free Visual Effect Transfer across Videos
We present RefVFX, a new framework that transfers complex temporal effects from a reference video onto a target video or image in a feed-forward manner. While existing methods excel at prompt-based or keyframe-conditioned editing, they struggle with dynamic temporal effects such as dynamic lighting changes or character transformations, which are difficult to describe via text or static conditions. Transferring a video effect is challenging, as the model must integrate the new temporal dynamics with the input video's existing motion and appearance. % To address this, we introduce a large-scale dataset of triplets, where each triplet consists of a reference effect video, an input image or video, and a corresponding output video depicting the transferred effect. Creating this data is non-trivial, especially the video-to-video effect triplets, which do not exist naturally. To generate these, we propose a scalable automated pipeline that creates high-quality paired videos designed to preserve the input's motion and structure while transforming it based on some fixed, repeatable effect. We then augment this data with image-to-video effects derived from LoRA adapters and code-based temporal effects generated through programmatic composition. Building on our new dataset, we train our reference-conditioned model using recent text-to-video backbones. Experimental results demonstrate that RefVFX produces visually consistent and temporally coherent edits, generalizes across unseen effect categories, and outperforms prompt-only baselines in both quantitative metrics and human preference. See our website $\href{https://tuningfreevisualeffects-maker.github.io/Tuning-free-Visual-Effect-Transfer-across-Videos-Project-Page/}{at\ this\ URL}$.
comment: Project Page: $\href{https://tuningfreevisualeffects-maker.github.io/Tuning-free-Visual-Effect-Transfer-across-Videos-Project-Page/}{this\ URL}$
MHLA: Restoring Expressivity of Linear Attention via Token-Level Multi-Head
While the Transformer architecture dominates many fields, its quadratic self-attention complexity hinders its use in large-scale applications. Linear attention offers an efficient alternative, but its direct application often degrades performance, with existing fixes typically re-introducing computational overhead through extra modules (e.g., depthwise separable convolution) that defeat the original purpose. In this work, we identify a key failure mode in these methods: global context collapse, where the model loses representational diversity. To address this, we propose Multi-Head Linear Attention (MHLA), which preserves this diversity by computing attention within divided heads along the token dimension. We prove that MHLA maintains linear complexity while recovering much of the expressive power of softmax attention, and verify its effectiveness across multiple domains, achieving a 3.6\% improvement on ImageNet classification, a 6.3\% gain on NLP, a 12.6\% improvement on image generation, and a 41\% enhancement on video generation under the same time complexity.
comment: Code: https://github.com/DAGroup-PKU/MHLA/ Project website: https://dagroup-pku.github.io/MHLA/
More Images, More Problems? A Controlled Analysis of VLM Failure Modes
Large Vision Language Models (LVLMs) have demonstrated remarkable capabilities, yet their proficiency in understanding and reasoning over multiple images remains largely unexplored. While existing benchmarks have initiated the evaluation of multi-image models, a comprehensive analysis of their core weaknesses and their causes is still lacking. In this work, we introduce MIMIC (Multi-Image Model Insights and Challenges), a new benchmark designed to rigorously evaluate the multi-image capabilities of LVLMs. Using MIMIC, we conduct a series of diagnostic experiments that reveal pervasive issues: LVLMs often fail to aggregate information across images and struggle to track or attend to multiple concepts simultaneously. To address these failures, we propose two novel complementary remedies. On the data side, we present a procedural data-generation strategy that composes single-image annotations into rich, targeted multi-image training examples. On the optimization side, we analyze layer-wise attention patterns and derive an attention-masking scheme tailored for multi-image inputs. Experiments substantially improved cross-image aggregation, while also enhancing performance on existing multi-image benchmarks, outperforming prior state of the art across tasks. Data and code will be made available at https://github.com/anurag-198/MIMIC.
comment: 19 pages, 16 figures
Exchange Is All You Need for Remote Sensing Change Detection
Remote sensing change detection fundamentally relies on the effective fusion and discrimination of bi-temporal features. Prevailing paradigms typically utilize Siamese encoders bridged by explicit difference computation modules, such as subtraction or concatenation, to identify changes. In this work, we challenge this complexity with SEED (Siamese Encoder-Exchange-Decoder), a streamlined paradigm that replaces explicit differencing with parameter-free feature exchange. By sharing weights across both Siamese encoders and decoders, SEED effectively operates as a single parameter set model. Theoretically, we formalize feature exchange as an orthogonal permutation operator and prove that, under pixel consistency, this mechanism preserves mutual information and Bayes optimal risk, whereas common arithmetic fusion methods often introduce information loss. Extensive experiments across five benchmarks, including SYSU-CD, LEVIR-CD, PX-CLCD, WaterCD, and CDD, and three backbones, namely SwinT, EfficientNet, and ResNet, demonstrate that SEED matches or surpasses state of the art methods despite its simplicity. Furthermore, we reveal that standard semantic segmentation models can be transformed into competitive change detectors solely by inserting this exchange mechanism, referred to as SEG2CD. The proposed paradigm offers a robust, unified, and interpretable framework for change detection, demonstrating that simple feature exchange is sufficient for high performance information fusion. Code and full training and evaluation protocols will be released at https://github.com/dyzy41/open-rscd.
Vision-Language Model for Accurate Crater Detection
The European Space Agency (ESA), driven by its ambitions on planned lunar missions with the Argonaut lander, has a profound interest in reliable crater detection, since craters pose a risk to safe lunar landings. This task is usually addressed with automated crater detection algorithms (CDA) based on deep learning techniques. It is non-trivial due to the vast amount of craters of various sizes and shapes, as well as challenging conditions such as varying illumination and rugged terrain. Therefore, we propose a deep-learning CDA based on the OWLv2 model, which is built on a Vision Transformer, that has proven highly effective in various computer vision tasks. For fine-tuning, we utilize a manually labeled dataset fom the IMPACT project, that provides crater annotations on high-resolution Lunar Reconnaissance Orbiter Camera Calibrated Data Record images. We insert trainable parameters using a parameter-efficient fine-tuning strategy with Low-Rank Adaptation, and optimize a combined loss function consisting of Complete Intersection over Union (CIoU) for localization and a contrastive loss for classification. We achieve satisfactory visual results, along with a maximum recall of 94.0% and a maximum precision of 73.1% on a test dataset from IMPACT. Our method achieves reliable crater detection across challenging lunar imaging conditions, paving the way for robust crater analysis in future lunar exploration.
OS-Symphony: A Holistic Framework for Robust and Generalist Computer-Using Agent
While Vision-Language Models (VLMs) have significantly advanced Computer-Using Agents (CUAs), current frameworks struggle with robustness in long-horizon workflows and generalization in novel domains. These limitations stem from a lack of granular control over historical visual context curation and the absence of visual-aware tutorial retrieval. To bridge these gaps, we introduce OS-Symphony, a holistic framework that comprises an Orchestrator coordinating two key innovations for robust automation: (1) a Reflection-Memory Agent that utilizes milestone-driven long-term memory to enable trajectory-level self-correction, effectively mitigating visual context loss in long-horizon tasks; (2) Versatile Tool Agents featuring a Multimodal Searcher that adopts a SeeAct paradigm to navigate a browser-based sandbox to synthesize live, visually aligned tutorials, thereby resolving fidelity issues in unseen scenarios. Experimental results demonstrate that OS-Symphony delivers substantial performance gains across varying model scales, establishing new state-of-the-art results on three online benchmarks, notably achieving 65.84% on OSWorld.
comment: 31 pages, 11 figures, 12 tables
Beyond External Guidance: Unleashing the Semantic Richness Inside Diffusion Transformers for Improved Training
Recent works such as REPA have shown that guiding diffusion models with external semantic features (e.g., DINO) can significantly accelerate the training of diffusion transformers (DiTs). However, this requires the use of pretrained external networks, introducing additional dependencies and reducing flexibility. In this work, we argue that DiTs actually have the power to guide the training of themselves, and propose \textbf{Self-Transcendence}, a simple yet effective method that achieves fast convergence using internal feature supervision only. It is found that the slow convergence in DiT training primarily stems from the difficulty of representation learning in shallow layers. To address this, we initially train the DiT model by aligning its shallow features with the latent representations from the pretrained VAE for a short phase (e.g., 40 epochs), then apply classifier-free guidance to the intermediate features, enhancing their discriminative capability and semantic expressiveness. These enriched internal features, learned entirely within the model, are used as supervision signals to guide a new DiT training. Compared to existing self-contained methods, our approach brings a significant performance boost. It can even surpass REPA in terms of generation quality and convergence speed, but without the need for any external pretrained models. Our method is not only more flexible for different backbones but also has the potential to be adopted for a wider range of diffusion-based generative tasks. The source code of our method can be found at https://github.com/csslc/Self-Transcendence.
Video Evidence to Reasoning Efficient Video Understanding via Explicit Evidence Grounding
Large Vision-Language Models (LVLMs) face a fundamental dilemma in video reasoning: they are caught between the prohibitive computational costs of verbose reasoning and the hallucination risks of efficient, ungrounded approaches. To resolve this, we introduce the Chain of Evidence (CoE), a novel framework that architecturally decouples and co-optimizes perceptual grounding and reasoning efficiency. CoE incorporates two core innovations: (1) A lightweight Evidence Grounding Module (EGM) that acts as a query-guided filter, dynamically identifying and extracting a compact set of high-fidelity visual evidence; and (2) An Evidence-Anchoring Protocol optimized via Reinforcement Learning. Crucially, we design a composite reward mechanism that enforces process alignment, compelling the model to strictly reference identified temporal anchors during deduction, thereby mitigating hallucinations. To enable this, we construct CoE-Instruct, a large-scale dataset (164k samples) featuring a novel dual-annotation schema for separate perception and reasoning supervision. Extensive experiments on five benchmarks, including Video-MME, MVBench, and VSI-Bench, demonstrate that CoE-enhanced models establish a new state-of-the-art. They significantly outperform existing methods in accuracy, proving CoE to be a powerful and practical paradigm for reliable video understanding.
comment: 6 pages
On the application of the Wasserstein metric to 2D curves classification
In this work we analyse a number of variants of the Wasserstein distance which allow to focus the classification on the prescribed parts (fragments) of classified 2D curves. These variants are based on the use of a number of discrete probability measures which reflect the importance of given fragments of curves. The performance of this approach is tested through a series of experiments related to the clustering analysis of 2D curves performed on data coming from the field of archaeology.
Evaluating the encoding competence of visual language models using uncommon actions
We propose UAIT (Uncommon-sense Action Image-Text) dataset, a new evaluation benchmark designed to test the semantic understanding ability of visual language models (VLMs) in uncommon-sense action scenes. Unlike previous datasets that focus on common visual scenes with statistical frequency advantages, UAIT challenges models with grammatically reasonable but semantically counter-common sense image-text pairs. Such tasks require models to go beyond superficial pattern recognition and demonstrate a deep understanding of agent-patient relationships and physical feasibility. To build UAIT, we designed a semi-automated process to synthesize high-quality uncommon-sense image-text samples using large language models, few-shot prompt engineering, and text-to-image generation. Each sample is accompanied by a carefully designed multiple-choice question to test the model's competence in fine-grained reasoning. We evaluate multiple state-of-the-art visual language models and compare them with models based on contrastive learning. Experiments show that all models perform significantly worse than humans in semantic judgment, especially in distinguishing grammatical correctness from semantic rationality. Further experiments show that even the lightweight model can improve its accuracy after fine-tuning, demonstrating the great potential of directional adaptation. This study not only reveals the key weaknesses of VLMs, but also provides diagnostic tools and research directions for the development of robust models with real visual semantic reasoning capabilities.
FMAC: a Fair Fiducial Marker Accuracy Comparison Software
This paper presents a method for carrying fair comparisons of the accuracy of pose estimation using fiducial markers. These comparisons rely on large sets of high-fidelity synthetic images enabling deep exploration of the 6 degrees of freedom. A low-discrepancy sampling of the space allows to check the correlations between each degree of freedom and the pose errors by plotting the 36 pairs of combinations. The images are rendered using a physically based ray tracing code that has been specifically developed to use the standard calibration coefficients of any camera directly. The software reproduces image distortions, defocus and diffraction blur. Furthermore, sub-pixel sampling is applied to sharp edges to enhance the fidelity of the rendered image. After introducing the rendering algorithm and its experimental validation, the paper proposes a method for evaluating the pose accuracy. This method is applied to well-known markers, revealing their strengths and weaknesses for pose estimation. The code is open source and available on GitHub.
Hidden Monotonicity: Explaining Deep Neural Networks via their DC Decomposition
It has been demonstrated in various contexts that monotonicity leads to better explainability in neural networks. However, not every function can be well approximated by a monotone neural network. We demonstrate that monotonicity can still be used in two ways to boost explainability. First, we use an adaptation of the decomposition of a trained ReLU network into two monotone and convex parts, thereby overcoming numerical obstacles from an inherent blowup of the weights in this procedure. Our proposed saliency methods -- SplitCAM and SplitLRP -- improve on state of the art results on both VGG16 and Resnet18 networks on ImageNet-S across all Quantus saliency metric categories. Second, we exhibit that training a model as the difference between two monotone neural networks results in a system with strong self-explainability properties.
Smooth Operator: Smooth Verifiable Reward Activates Spatial Reasoning Ability of Vision-Language Model
Vision-Language Models (VLMs) face a critical bottleneck in achieving precise numerical prediction for 3D scene understanding. Traditional reinforcement learning (RL) approaches, primarily based on relative ranking, often suffer from severe reward sparsity and gradient instability, failing to effectively exploit the verifiable signals provided by 3D physical constraints. Notably, in standard GRPO frameworks, relative normalization causes "near-miss" samples (characterized by small but non-zero errors) to suffer from advantage collapse. This leads to a severe data utilization bottleneck where valuable boundary samples are discarded during optimization. To address this, we introduce the Smooth Numerical Reward Activation (SNRA) operator and the Absolute-Preserving GRPO (AP-GRPO) framework. SNRA employs a dynamically parameterized Sigmoid function to transform raw feedback into a dense, continuous reward continuum. Concurrently, AP-GRPO integrates absolute scalar gradients to mitigate the numerical information loss inherent in conventional relative-ranking mechanisms. By leveraging this approach, we constructed Numerical3D-50k, a dataset comprising 50,000 verifiable 3D subtasks. Empirical results indicate that AP-GRPO achieves performance parity with large-scale supervised methods while maintaining higher data efficiency, effectively activating latent 3D reasoning in VLMs without requiring architectural modifications.
Leveraging 3D Representation Alignment and RGB Pretrained Priors for LiDAR Scene Generation
LiDAR scene synthesis is an emerging solution to scarcity in 3D data for robotic tasks such as autonomous driving. Recent approaches employ diffusion or flow matching models to generate realistic scenes, but 3D data remains limited compared to RGB datasets with millions of samples. We introduce R3DPA, the first LiDAR scene generation method to unlock image-pretrained priors for LiDAR point clouds, and leverage self-supervised 3D representations for state-of-the-art results. Specifically, we (i) align intermediate features of our generative model with self-supervised 3D features, which substantially improves generation quality; (ii) transfer knowledge from large-scale image-pretrained generative models to LiDAR generation, mitigating limited LiDAR datasets; and (iii) enable point cloud control at inference for object inpainting and scene mixing with solely an unconditional model. On the KITTI-360 benchmark R3DPA achieves state of the art performance. Code and pretrained models are available at https://github.com/valeoai/R3DPA.
Advancing Multinational License Plate Recognition Through Synthetic and Real Data Fusion: A Comprehensive Evaluation
Automatic License Plate Recognition is a frequent research topic due to its wide-ranging practical applications. While recent studies use synthetic images to improve License Plate Recognition (LPR) results, there remain several limitations in these efforts. This work addresses these constraints by comprehensively exploring the integration of real and synthetic data to enhance LPR performance. We subject 16 Optical Character Recognition (OCR) models to a benchmarking process involving 12 public datasets acquired from various regions. Several key findings emerge from our investigation. Primarily, the massive incorporation of synthetic data substantially boosts model performance in both intra- and cross-dataset scenarios. We examine three distinct methodologies for generating synthetic data: template-based generation, character permutation, and utilizing a Generative Adversarial Network (GAN) model, each contributing significantly to performance enhancement. The combined use of these methodologies demonstrates a notable synergistic effect, leading to end-to-end results that surpass those reached by state-of-the-art methods and established commercial systems. Our experiments also underscore the efficacy of synthetic data in mitigating challenges posed by limited training data, enabling remarkable results to be achieved even with small fractions of the original training data. Finally, we investigate the trade-off between accuracy and speed among different models, identifying those that strike the optimal balance in each intra-dataset and cross-dataset settings.
comment: IET Intelligent Transport Systems, vol. 19, no. 1, p. e70086, 2025
Variational Contrastive Learning for Skeleton-based Action Recognition
In recent years, self-supervised representation learning for skeleton-based action recognition has advanced with the development of contrastive learning methods. However, most of contrastive paradigms are inherently discriminative and often struggle to capture the variability and uncertainty intrinsic to human motion. To address this issue, we propose a variational contrastive learning framework that integrates probabilistic latent modeling with contrastive self-supervised learning. This formulation enables the learning of structured and semantically meaningful representations that generalize across different datasets and supervision levels. Extensive experiments on three widely used skeleton-based action recognition benchmarks show that our proposed method consistently outperforms existing approaches, particularly in low-label regimes. Moreover, qualitative analyses show that the features provided by our method are more relevant given the motion and sample characteristics, with more focus on important skeleton joints, when compared to the other methods.
StdGEN++: A Comprehensive System for Semantic-Decomposed 3D Character Generation CVPR 2025
We present StdGEN++, a novel and comprehensive system for generating high-fidelity, semantically decomposed 3D characters from diverse inputs. Existing 3D generative methods often produce monolithic meshes that lack the structural flexibility required by industrial pipelines in gaming and animation. Addressing this gap, StdGEN++ is built upon a Dual-branch Semantic-aware Large Reconstruction Model (Dual-Branch S-LRM), which jointly reconstructs geometry, color, and per-component semantics in a feed-forward manner. To achieve production-level fidelity, we introduce a novel semantic surface extraction formalism compatible with hybrid implicit fields. This mechanism is accelerated by a coarse-to-fine proposal scheme, which significantly reduces memory footprint and enables high-resolution mesh generation. Furthermore, we propose a video-diffusion-based texture decomposition module that disentangles appearance into editable layers (e.g., separated iris and skin), resolving semantic confusion in facial regions. Experiments demonstrate that StdGEN++ achieves state-of-the-art performance, significantly outperforming existing methods in geometric accuracy and semantic disentanglement. Crucially, the resulting structural independence unlocks advanced downstream capabilities, including non-destructive editing, physics-compliant animation, and gaze tracking, making it a robust solution for automated character asset production.
comment: 13 pages, 12 figures. Extended version of CVPR 2025 paper arXiv:2411.05738
GeoMotionGPT: Geometry-Aligned Motion Understanding with Large Language Models
Discrete motion tokenization has recently enabled Large Language Models (LLMs) to serve as versatile backbones for motion understanding and motion-language reasoning. However, existing pipelines typically decouple motion quantization from semantic embedding learning, linking them solely via token IDs. This approach fails to effectively align the intrinsic geometry of the motion space with the embedding space, thereby hindering the LLM's capacity for nuanced motion reasoning. We argue that alignment is most effective when both modalities share a unified geometric basis. Therefore, instead of forcing the LLM to reconstruct the complex geometry among motion tokens from scratch, we present a novel framework that explicitly enforces orthogonality on both the motion codebook and the LLM embedding space, ensuring that their relational structures naturally mirror each other. Specifically, we employ a decoder-only quantizer with Gumbel-Softmax for differentiable training and balanced codebook usage. To bridge the modalities, we use a sparse projection that maps motion codes into the LLM embedding space while preserving orthogonality. Finally, a two-stage orthonormal regularization schedule enforces soft constraints during tokenizer training and LLM fine-tuning to maintain geometric alignment without hindering semantic adaptation. Extensive experiments on HumanML3D demonstrate that our framework achieves a 20% performance improvement over current state-of-the-art methods, validating that a unified geometric basis effectively empowers the LLM for nuanced motion reasoning.
PARL: Position-Aware Relation Learning Network for Document Layout Analysis
Document layout analysis aims to detect and categorize structural elements (e.g., titles, tables, figures) in scanned or digital documents. Popular methods often rely on high-quality Optical Character Recognition (OCR) to merge visual features with extracted text. This dependency introduces two major drawbacks: propagation of text recognition errors and substantial computational overhead, limiting the robustness and practical applicability of multimodal approaches. In contrast to the prevailing multimodal trend, we argue that effective layout analysis depends not on text-visual fusion, but on a deep understanding of documents' intrinsic visual structure. To this end, we propose PARL (Position-Aware Relation Learning Network), a novel OCR-free, vision-only framework that models layout through positional sensitivity and relational structure. Specifically, we first introduce a Bidirectional Spatial Position-Guided Deformable Attention module to embed explicit positional dependencies among layout elements directly into visual features. Second, we design a Graph Refinement Classifier (GRC) to refine predictions by modeling contextual relationships through a dynamically constructed layout graph. Extensive experiments show PARL achieves state-of-the-art results. It establishes a new benchmark for vision-only methods on DocLayNet and, notably, surpasses even strong multimodal models on M6Doc. Crucially, PARL (65M) is highly efficient, using roughly four times fewer parameters than large multimodal models (256M), demonstrating that sophisticated visual structure modeling can be both more efficient and robust than multimodal fusion.
UIKA: Fast Universal Head Avatar from Pose-Free Images
We present UIKA, a feed-forward animatable Gaussian head model from an arbitrary number of unposed inputs, including a single image, multi-view captures, and smartphone-captured videos. Unlike the traditional avatar method, which requires a studio-level multi-view capture system and reconstructs a human-specific model through a long-time optimization process, we rethink the task through the lenses of model representation, network design, and data preparation. First, we introduce a UV-guided avatar modeling strategy, in which each input image is associated with a pixel-wise facial correspondence estimation. Such correspondence estimation allows us to reproject each valid pixel color from screen space to UV space, which is independent of camera pose and character expression. Furthermore, we design learnable UV tokens on which the attention mechanism can be applied at both the screen and UV levels. The learned UV tokens can be decoded into canonical Gaussian attributes using aggregated UV information from all input views. To train our large avatar model, we additionally prepare a large-scale, identity-rich synthetic training dataset. Our method significantly outperforms existing approaches in both monocular and multi-view settings. Project page: https://zijian-wu.github.io/uika-page/
comment: Project page: https://zijian-wu.github.io/uika-page/
Diffusion in SPAD Signals
We derive the likelihood of a raw signal in a single photon avalanche diode (SPAD), given a fixed photon flux. The raw signal comprises timing of detection events, which are nonlinearly related to the flux. Moreover, they are naturally stochastic. We then derive a score function of the signal. This is a key for solving inverse problems based on SPAD signals. We focus on deriving solutions involving a diffusion model, to express image priors. We demonstrate the effect of low or high photon counts, and the consequence of exploiting timing of detection events.
Robust Multicentre Detection and Classification of Colorectal Liver Metastases on CT: Application of Foundation Models
Colorectal liver metastases (CRLM) are a major cause of cancer-related mortality, and reliable detection on CT remains challenging in multi-centre settings. We developed a foundation model-based AI pipeline for patient-level classification and lesion-level detection of CRLM on contrast-enhanced CT, integrating uncertainty quantification and explainability. CT data from the EuCanImage consortium (n=2437) and an external TCIA cohort (n=197) were used. Among several pretrained models, UMedPT achieved the best performance and was fine-tuned with an MLP head for classification and an FCOS-based head for lesion detection. The classification model achieved an AUC of 0.90 and a sensitivity of 0.82 on the combined test set, with a sensitivity of 0.85 on the external cohort. Excluding the most uncertain 20 percent of cases improved AUC to 0.91 and balanced accuracy to 0.86. Decision curve analysis showed clinical benefit for threshold probabilities between 0.30 and 0.40. The detection model identified 69.1 percent of lesions overall, increasing from 30 percent to 98 percent across lesion size quartiles. Grad-CAM highlighted lesion-corresponding regions in high-confidence cases. These results demonstrate that foundation model-based pipelines can support robust and interpretable CRLM detection and classification across heterogeneous CT data.
BenchSeg: A Large-Scale Dataset and Benchmark for Multi-View Food Video Segmentation
Food image segmentation is a critical task for dietary analysis, enabling accurate estimation of food volume and nutrients. However, current methods suffer from limited multi-view data and poor generalization to new viewpoints. We introduce BenchSeg, a novel multi-view food video segmentation dataset and benchmark. BenchSeg aggregates 55 dish scenes (from Nutrition5k, Vegetables & Fruits, MetaFood3D, and FoodKit) with 25,284 meticulously annotated frames, capturing each dish under free 360° camera motion. We evaluate a diverse set of 20 state-of-the-art segmentation models (e.g., SAM-based, transformer, CNN, and large multimodal) on the existing FoodSeg103 dataset and evaluate them (alone and combined with video-memory modules) on BenchSeg. Quantitative and qualitative results demonstrate that while standard image segmenters degrade sharply under novel viewpoints, memory-augmented methods maintain temporal consistency across frames. Our best model based on a combination of SeTR-MLA+XMem2 outperforms prior work (e.g., improving over FoodMem by ~2.63% mAP), offering new insights into food segmentation and tracking for dietary analysis. We release BenchSeg to foster future research. The project page including the dataset annotations and the food segmentation models can be found at https://amughrabi.github.io/benchseg.
A Multimodal Dataset of Student Oral Presentations with Sensors and Evaluation Data
Oral presentation skills are a critical component of higher education, yet comprehensive datasets capturing real-world student performance across multiple modalities remain scarce. To address this gap, we present SOPHIAS (Student Oral Presentation monitoring for Holistic Insights & Analytics using Sensors), a 12-hour multimodal dataset containing recordings of 50 oral presentations (10-15-minute presentation followed by 5-15-minute Q&A) delivered by 65 undergraduate and master's students at the Universidad Autonoma de Madrid. SOPHIAS integrates eight synchronized sensor streams from high-definition webcams, ambient and webcam audio, eye-tracking glasses, smartwatch physiological sensors, and clicker, keyboard, and mouse interactions. In addition, the dataset includes slides and rubric-based evaluations from teachers, peers, and self-assessments, along with timestamped contextual annotations. The dataset captures presentations conducted in real classroom settings, preserving authentic student behaviors, interactions, and physiological responses. SOPHIAS enables the exploration of relationships between multimodal behavioral and physiological signals and presentation performance, supports the study of peer assessment, and provides a benchmark for developing automated feedback and Multimodal Learning Analytics tools. The dataset is publicly available for research through GitHub and Science Data Bank.
comment: Article under review in the journal Scientific Data. GitHub repository of the dataset at: https://github.com/dataGHIA/SOPHIAS
ViewMorpher3D: A 3D-aware Diffusion Framework for Multi-Camera Novel View Synthesis in Autonomous Driving
Autonomous driving systems rely heavily on multi-view images to ensure accurate perception and robust decision-making. To effectively develop and evaluate perception stacks and planning algorithms, realistic closed-loop simulators are indispensable. While 3D reconstruction techniques such as Gaussian Splatting offer promising avenues for simulator construction, the rendered novel views often exhibit artifacts, particularly in extrapolated perspectives or when available observations are sparse. We introduce ViewMorpher3D, a multi-view image enhancement framework based on image diffusion models, designed to elevate photorealism and multi-view coherence in driving scenes. Unlike single-view approaches, ViewMorpher3D jointly processes a set of rendered views conditioned on camera poses, 3D geometric priors, and temporally adjacent or spatially overlapping reference views. This enables the model to infer missing details, suppress rendering artifacts, and enforce cross-view consistency. Our framework accommodates variable numbers of cameras and flexible reference/target view configurations, making it adaptable to diverse sensor setups. Experiments on real-world driving datasets demonstrate substantial improvements in image quality metrics, effectively reducing artifacts while preserving geometric fidelity.
comment: Paper and supplementary materials
Fast Multi-Stack Slice-to-Volume Reconstruction via Multi-Scale Unrolled Optimization
Fully convolutional networks have become the backbone of modern medical imaging due to their ability to learn multi-scale representations and perform end-to-end inference. Yet their potential for slice-to-volume reconstruction (SVR), the task of jointly estimating 3D anatomy and slice poses from misaligned 2D acquisitions, remains underexplored. We introduce a fast convolutional framework that fuses multiple orthogonal 2D slice stacks to recover coherent 3D structure and refines slice alignment through lightweight model-based optimization. Applied to fetal brain MRI, our approach reconstructs high-quality 3D volumes in under 10s, with 1s slice registration and accuracy on par with state-of-the-art iterative SVR pipelines, offering more than speedup. The framework uses non-rigid displacement fields to represent transformations, generalizing to other SVR problems like fetal body and placental MRI. Additionally, the fast inference time paves the way for real-time, scanner-side volumetric feedback during MRI acquisition.
Mon3tr: Monocular 3D Telepresence with Pre-built Gaussian Avatars as Amortization
Immersive telepresence aims to transform human interaction in AR/VR applications by enabling lifelike full-body holographic representations for enhanced remote collaboration. However, existing systems rely on hardware-intensive multi-camera setups and demand high bandwidth for volumetric streaming, limiting their real-time performance on mobile devices. To overcome these challenges, we propose Mon3tr, a novel Monocular 3D telepresence framework that integrates 3D Gaussian splatting (3DGS) based parametric human modeling into telepresence for the first time. Mon3tr adopts an amortized computation strategy, dividing the process into a one-time offline multi-view reconstruction phase to build a user-specific avatar and a monocular online inference phase during live telepresence sessions. A single monocular RGB camera is used to capture body motions and facial expressions in real time to drive the 3DGS-based parametric human model, significantly reducing system complexity and cost. The extracted motion and appearance features are transmitted at < 0.2 Mbps over WebRTC's data channel, allowing robust adaptation to network fluctuations. On the receiver side, e.g., Meta Quest 3, we develop a lightweight 3DGS attribute deformation network to dynamically generate corrective 3DGS attribute adjustments on the pre-built avatar, synthesizing photorealistic motion and appearance at ~ 60 FPS. Extensive experiments demonstrate the state-of-the-art performance of our method, achieving a PSNR of > 28 dB for novel poses, an end-to-end latency of ~ 80 ms, and > 1000x bandwidth reduction compared to point-cloud streaming, while supporting real-time operation from monocular inputs across diverse scenarios. Our demos can be found at https://mon3tr3d.github.io.
Anatomy Aware Cascade Network: Bridging Epistemic Uncertainty and Geometric Manifold for 3D Tooth Segmentation
Accurate three-dimensional (3D) tooth segmentation from Cone-Beam Computed Tomography (CBCT) is a prerequisite for digital dental workflows. However, achieving high-fidelity segmentation remains challenging due to adhesion artifacts in naturally occluded scans, which are caused by low contrast and indistinct inter-arch boundaries. To address these limitations, we propose the Anatomy Aware Cascade Network (AACNet), a coarse-to-fine framework designed to resolve boundary ambiguity while maintaining global structural consistency. Specifically, we introduce two mechanisms: the Ambiguity Gated Boundary Refiner (AGBR) and the Signed Distance Map guided Anatomical Attention (SDMAA). The AGBR employs an entropy based gating mechanism to perform targeted feature rectification in high uncertainty transition zones. Meanwhile, the SDMAA integrates implicit geometric constraints via signed distance map to enforce topological consistency, preventing the loss of spatial details associated with standard pooling. Experimental results on a dataset of 125 CBCT volumes demonstrate that AACNet achieves a Dice Similarity Coefficient of 90.17 \% and a 95\% Hausdorff Distance of 3.63 mm, significantly outperforming state-of-the-art methods. Furthermore, the model exhibits strong generalization on an external dataset with an HD95 of 2.19 mm, validating its reliability for downstream clinical applications such as surgical planning. Code for AACNet is available at https://github.com/shiliu0114/AACNet.
FocalOrder: Focal Preference Optimization for Reading Order Detection
Reading order detection is the foundation of document understanding. Most existing methods rely on uniform supervision, implicitly assuming a constant difficulty distribution across layout regions. In this work, we challenge this assumption by revealing a critical flaw: \textbf{Positional Disparity}, a phenomenon where models demonstrate mastery over the deterministic start and end regions but suffer a performance collapse in the complex intermediate sections. This degradation arises because standard training allows the massive volume of easy patterns to drown out the learning signals from difficult layouts. To address this, we propose \textbf{FocalOrder}, a framework driven by \textbf{Focal Preference Optimization (FPO)}. Specifically, FocalOrder employs adaptive difficulty discovery with exponential moving average mechanism to dynamically pinpoint hard-to-learn transitions, while introducing a difficulty-calibrated pairwise ranking objective to enforce global logical consistency. Extensive experiments demonstrate that FocalOrder establishes new state-of-the-art results on OmniDocBench v1.0 and Comp-HRDoc. Our compact model not only outperforms competitive specialized baselines but also significantly surpasses large-scale general VLMs. These results demonstrate that aligning the optimization with intrinsic structural ambiguity of documents is critical for mastering complex document structures.
Task Prototype-Based Knowledge Retrieval for Multi-Task Learning from Partially Annotated Data AAAI 2026
Multi-task learning (MTL) is critical in real-world applications such as autonomous driving and robotics, enabling simultaneous handling of diverse tasks. However, obtaining fully annotated data for all tasks is impractical due to labeling costs. Existing methods for partially labeled MTL typically rely on predictions from unlabeled tasks, making it difficult to establish reliable task associations and potentially leading to negative transfer and suboptimal performance. To address these issues, we propose a prototype-based knowledge retrieval framework that achieves robust MTL instead of relying on predictions from unlabeled tasks. Our framework consists of two key components: (1) a task prototype embedding task-specific characteristics and quantifying task associations, and (2) a knowledge retrieval transformer that adaptively refines feature representations based on these associations. To achieve this, we introduce an association knowledge generating (AKG) loss to ensure the task prototype consistently captures task-specific characteristics. Extensive experiments demonstrate the effectiveness of our framework, highlighting its potential for robust multi-task learning, even when only a subset of tasks is annotated.
comment: Accepted at AAAI 2026
From Sketch to Fresco: Efficient Diffusion Transformer with Progressive Resolution
Diffusion Transformers achieve impressive generative quality but remain computationally expensive due to iterative sampling. Recently, dynamic resolution sampling has emerged as a promising acceleration technique by reducing the resolution of early sampling steps. However, existing methods rely on heuristic re-noising at every resolution transition, injecting noise that breaks cross-stage consistency and forces the model to relearn global structure. In addition, these methods indiscriminately upsample the entire latent space at once without checking which regions have actually converged, causing accumulated errors, and visible artifacts. Therefore, we propose \textbf{Fresco}, a dynamic resolution framework that unifies re-noise and global structure across stages with progressive upsampling, preserving both the efficiency of low-resolution drafting and the fidelity of high-resolution refinement, with all stages aligned toward the same final target. Fresco achieves near-lossless acceleration across diverse domains and models, including 10$\times$ speedup on FLUX, and 5$\times$ on HunyuanVideo, while remaining orthogonal to distillation, quantization and feature caching, reaching 22$\times$ speedup when combined with distilled models. Our code is in supplementary material and will be released on Github.
Improving Video Question Answering through query-based frame selection
Video Question Answering (VideoQA) models enhance understanding and interaction with audiovisual content, making it more accessible, searchable, and useful for a wide range of fields such as education, surveillance, entertainment, and content creation. Due to heavy compute requirements, most large visual language models (VLMs) for VideoQA rely on a fixed number of frames by uniformly sampling the video. However, this process does not pick important frames or capture the context of the video. We present a novel query-based selection of frames relevant to the questions based on the submodular mutual Information (SMI) functions. By replacing uniform frame sampling with query-based selection, our method ensures that the chosen frames provide complementary and essential visual information for accurate VideoQA. We evaluate our approach on the MVBench dataset, which spans a diverse set of multi-action video tasks. VideoQA accuracy on this dataset was assessed using two VLMs, namely Video-LLaVA and LLaVA-NeXT, both of which originally employed uniform frame sampling. Experiments were conducted using both uniform and query-based sampling strategies. An accuracy improvement of up to \textbf{4\%} was observed when using query-based frame selection over uniform sampling. Qualitative analysis further highlights that query-based selection, using SMI functions, consistently picks frames better aligned with the question. We opine that such query-based frame selection can enhance accuracy in a wide range of tasks that rely on only a subset of video frames.
PanoSAMic: Panoramic Image Segmentation from SAM Feature Encoding and Dual View Fusion
Existing image foundation models are not optimized for spherical images having been trained primarily on perspective images. PanoSAMic integrates the pre-trained Segment Anything (SAM) encoder to make use of its extensive training and integrate it into a semantic segmentation model for panoramic images using multiple modalities. We modify the SAM encoder to output multi-stage features and introduce a novel spatio-modal fusion module that allows the model to select the relevant modalities and best features from each modality for different areas of the input. Furthermore, our semantic decoder uses spherical attention and dual view fusion to overcome the distortions and edge discontinuity often associated with panoramic images. PanoSAMic achieves state-of-the-art (SotA) results on Stanford2D3DS for RGB, RGB-D, and RGB-D-N modalities and on Matterport3D for RGB and RGB-D modalities. https://github.com/dfki-av/PanoSAMic
SDHSI-Net: Learning Better Representations for Hyperspectral Images via Self-Distillation
Hyperspectral image (HSI) classification presents unique challenges due to its high spectral dimensionality and limited labeled data. Traditional deep learning models often suffer from overfitting and high computational costs. Self-distillation (SD), a variant of knowledge distillation where a network learns from its own predictions, has recently emerged as a promising strategy to enhance model performance without requiring external teacher networks. In this work, we explore the application of SD to HSI by treating earlier outputs as soft targets, thereby enforcing consistency between intermediate and final predictions. This process improves intra-class compactness and inter-class separability in the learned feature space. Our approach is validated on two benchmark HSI datasets and demonstrates significant improvements in classification accuracy and robustness, highlighting the effectiveness of SD for spectral-spatial learning. Codes are available at https://github.com/Prachet-Dev-Singh/SDHSI.
comment: Accepted at InGARSS 2025
Forecast the Principal, Stabilize the Residual: Subspace-Aware Feature Caching for Efficient Diffusion Transformers
Diffusion Transformer (DiT) models have achieved unprecedented quality in image and video generation, yet their iterative sampling process remains computationally prohibitive. To accelerate inference, feature caching methods have emerged by reusing intermediate representations across timesteps. However, existing caching approaches treat all feature components uniformly. We reveal that DiT feature spaces contain distinct principal and residual subspaces with divergent temporal behavior: the principal subspace evolves smoothly and predictably, while the residual subspace exhibits volatile, low-energy oscillations that resist accurate prediction. Building on this insight, we propose SVD-Cache, a subspace-aware caching framework that decomposes diffusion features via Singular Value Decomposition (SVD), applies exponential moving average (EMA) prediction to the dominant low-rank components, and directly reuses the residual subspace. Extensive experiments demonstrate that SVD-Cache achieves near-lossless across diverse models and methods, including 5.55$\times$ speedup on FLUX and HunyuanVideo, and compatibility with model acceleration techniques including distillation, quantization and sparse attention. Our code is in supplementary material and will be released on Github.
OceanSAR-2: A Universal Feature Extractor for SAR Ocean Observation
We present OceanSAR-2, the second generation of our foundation model for SAR-based ocean observation. Building on our earlier release, which pioneered self-supervised learning on Sentinel-1 Wave Mode data, OceanSAR-2 relies on improved SSL training and dynamic data curation strategies, which enhances performance while reducing training cost. OceanSAR-2 demonstrates strong transfer performance across downstream tasks, including geophysical pattern classification, ocean surface wind vector and significant wave height estimation, and iceberg detection. We release standardized benchmark datasets, providing a foundation for systematic evaluation and advancement of SAR models for ocean applications.
comment: accepted at EUSAR 2026
Learning Dynamic Collaborative Network for Semi-supervised 3D Vessel Segmentation CVPR
In this paper, we present a new dynamic collaborative network for semi-supervised 3D vessel segmentation, termed DiCo. Conventional mean teacher (MT) methods typically employ a static approach, where the roles of the teacher and student models are fixed. However, due to the complexity of 3D vessel data, the teacher model may not always outperform the student model, leading to cognitive biases that can limit performance. To address this issue, we propose a dynamic collaborative network that allows the two models to dynamically switch their teacher-student roles. Additionally, we introduce a multi-view integration module to capture various perspectives of the inputs, mirroring the way doctors conduct medical analysis. We also incorporate adversarial supervision to constrain the shape of the segmented vessels in unlabeled data. In this process, the 3D volume is projected into 2D views to mitigate the impact of label inconsistencies. Experiments demonstrate that our DiCo method sets new state-of-the-art performance on three 3D vessel segmentation benchmarks. The code repository address is https://github.com/xujiaommcome/DiCo
comment: Accepted to the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2025
HiVid-Narrator: Hierarchical Video Narrative Generation with Scene-Primed ASR-anchored Compression
Generating structured narrations for real-world e-commerce videos requires models to perceive fine-grained visual details and organize them into coherent, high-level stories--capabilities that existing approaches struggle to unify. We introduce the E-commerce Hierarchical Video Captioning (E-HVC) dataset with dual-granularity, temporally grounded annotations: a Temporal Chain-of-Thought that anchors event-level observations and Chapter Summary that compose them into concise, story-centric summaries. Rather than directly prompting chapters, we adopt a staged construction that first gathers reliable linguistic and visual evidence via curated ASR and frame-level descriptions, then refines coarse annotations into precise chapter boundaries and titles conditioned on the Temporal Chain-of-Thought, yielding fact-grounded, time-aligned narratives. We also observe that e-commerce videos are fast-paced and information-dense, with visual tokens dominating the input sequence. To enable efficient training while reducing input tokens, we propose the Scene-Primed ASR-anchored Compressor (SPA-Compressor), which compresses multimodal tokens into hierarchical scene and event representations guided by ASR semantic cues. Built upon these designs, our HiVid-Narrator framework achieves superior narrative quality with fewer input tokens compared to existing methods.
Seeing Right but Saying Wrong: Inter- and Intra-Layer Refinement in MLLMs without Training
Multimodal Large Language Models (MLLMs) have demonstrated strong capabilities across a variety of vision-language tasks. However, their internal reasoning often exhibits a critical inconsistency: although deeper layers may attend to the correct visual regions, final predictions are frequently misled by noisy attention from earlier layers. This results in a disconnect between what the model internally understands and what it ultimately expresses, a phenomenon we describe as seeing it right but saying it wrong. To address this issue, we propose DualPD, a dual-perspective decoding refinement strategy that enhances the visual understanding without any additional training. DualPD consists of two components. (1) The layer-wise attention-guided contrastive logits module captures how the belief in the correct answer evolves by comparing output logits between layers that exhibit the largest attention shift. (2) The head-wise information filtering module suppresses low-contribution attention heads that focus on irrelevant regions, thereby improving attention quality within each layer. Experiments conducted on both the LLaVA and Qwen-VL model families across multiple multimodal benchmarks demonstrate that DualPD consistently improves accuracy without training, confirming its effectiveness and generalizability. The code will be released upon publication.
PulseMind: A Multi-Modal Medical Model for Real-World Clinical Diagnosis AAAI 2026
Recent advances in medical multi-modal models focus on specialized image analysis like dermatology, pathology, or radiology. However, they do not fully capture the complexity of real-world clinical diagnostics, which involve heterogeneous inputs and require ongoing contextual understanding during patient-physician interactions. To bridge this gap, we introduce PulseMind, a new family of multi-modal diagnostic models that integrates a systematically curated dataset, a comprehensive evaluation benchmark, and a tailored training framework. Specifically, we first construct a diagnostic dataset, MediScope, which comprises 98,000 real-world multi-turn consultations and 601,500 medical images, spanning over 10 major clinical departments and more than 200 sub-specialties. Then, to better reflect the requirements of real-world clinical diagnosis, we develop the PulseMind Benchmark, a multi-turn diagnostic consultation benchmark with a four-dimensional evaluation protocol comprising proactiveness, accuracy, usefulness, and language quality. Finally, we design a training framework tailored for multi-modal clinical diagnostics, centered around a core component named Comparison-based Reinforcement Policy Optimization (CRPO). Compared to absolute score rewards, CRPO uses relative preference signals from multi-dimensional com-parisons to provide stable and human-aligned training guidance. Extensive experiments demonstrate that PulseMind achieves competitive performance on both the diagnostic consultation benchmark and public medical benchmarks.
comment: Accepted to AAAI 2026
Reconstruction Guided Few-shot Network For Remote Sensing Image Classification
Few-shot remote sensing image classification is challenging due to limited labeled samples and high variability in land-cover types. We propose a reconstruction-guided few-shot network (RGFS-Net) that enhances generalization to unseen classes while preserving consistency for seen categories. Our method incorporates a masked image reconstruction task, where parts of the input are occluded and reconstructed to encourage semantically rich feature learning. This auxiliary task strengthens spatial understanding and improves class discrimination under low-data settings. We evaluated the efficacy of EuroSAT and PatternNet datasets under 1-shot and 5-shot protocols, our approach consistently outperforms existing baselines. The proposed method is simple, effective, and compatible with standard backbones, offering a robust solution for few-shot remote sensing classification. Codes are available at https://github.com/stark0908/RGFS.
comment: Accepted at InGARSS 2025
OSCAR: Open-Set CAD Retrieval from a Language Prompt and a Single Image
6D object pose estimation plays a crucial role in scene understanding for applications such as robotics and augmented reality. To support the needs of ever-changing object sets in such context, modern zero-shot object pose estimators were developed to not require object-specific training but only rely on CAD models. Such models are hard to obtain once deployed, and a continuously changing and growing set of objects makes it harder to reliably identify the instance model of interest. To address this challenge, we introduce an Open-Set CAD Retrieval from a Language Prompt and a Single Image (OSCAR), a novel training-free method that retrieves a matching object model from an unlabeled 3D object database. During onboarding, OSCAR generates multi-view renderings of database models and annotates them with descriptive captions using an image captioning model. At inference, GroundedSAM detects the queried object in the input image, and multi-modal embeddings are computed for both the Region-of-Interest and the database captions. OSCAR employs a two-stage retrieval: text-based filtering using CLIP identifies candidate models, followed by image-based refinement using DINOv2 to select the most visually similar object. In our experiments we demonstrate that OSCAR outperforms all state-of-the-art methods on the cross-domain 3D model retrieval benchmark MI3DOR. Furthermore, we demonstrate OSCAR's direct applicability in automating object model sourcing for 6D object pose estimation. We propose using the most similar object model for pose estimation if the exact instance is not available and show that OSCAR achieves an average precision of 90.48\% during object retrieval on the YCB-V object dataset. Moreover, we demonstrate that the most similar object model can be utilized for pose estimation using Megapose achieving better results than a reconstruction-based approach.
Revisiting the Ordering of Channel and Spatial Attention: A Comprehensive Study on Sequential and Parallel Designs
Attention mechanisms have become a core component of deep learning models, with Channel Attention and Spatial Attention being the two most representative architectures. Current research on their fusion strategies primarily bifurcates into sequential and parallel paradigms, yet the selection process remains largely empirical, lacking systematic analysis and unified principles. We systematically compare channel-spatial attention combinations under a unified framework, building an evaluation suite of 18 topologies across four classes: sequential, parallel, multi-scale, and residual. Across two vision and nine medical datasets, we uncover a "data scale-method-performance" coupling law: (1) in few-shot tasks, the "Channel-Multi-scale Spatial" cascaded structure achieves optimal performance; (2) in medium-scale tasks, parallel learnable fusion architectures demonstrate superior results; (3) in large-scale tasks, parallel structures with dynamic gating yield the best performance. Additionally, experiments indicate that the "Spatial-Channel" order is more stable and effective for fine-grained classification, while residual connections mitigate vanishing gradient problems across varying data scales. We thus propose scenario-based guidelines for building future attention modules. Code is open-sourced at https://github.com/DWlzm.
Mimic Human Cognition, Master Multi-Image Reasoning: A Meta-Action Framework for Enhanced Visual Understanding
While Multimodal Large Language Models (MLLMs) excel at single-image understanding, they exhibit significantly degraded performance in multi-image reasoning scenarios. Multi-image reasoning presents fundamental challenges including complex inter-relationships between images and scattered critical information across image sets. Inspired by human cognitive processes, we propose the Cognition-Inspired Meta-Action Framework (CINEMA), a novel approach that decomposes multi-image reasoning into five structured meta-actions: Global, Focus, Hint, Think, and Answer which explicitly modeling the sequential cognitive steps humans naturally employ. For cold-start training, we introduce a Retrieval-Based Tree Sampling strategy that generates high-quality meta-action trajectories to bootstrap the model with reasoning patterns. During reinforcement learning, we adopt a two-stage paradigm: an exploration phase with Diversity-Preserving Strategy to avoid entropy collapse, followed by an annealed exploitation phase with DAPO to gradually strengthen exploitation. To train our model, we construct a dataset of 57k cold-start and 58k reinforcement learning instances spanning multi-image, multi-frame, and single-image tasks. We conduct extensive evaluations on multi-image reasoning benchmarks, video understanding benchmarks, and single-image benchmarks, achieving competitive state-of-the-art performance on several key benchmarks. Our model surpasses GPT-4o on the MUIR and MVMath benchmarks and notably outperforms specialized video reasoning models on video understanding benchmarks, demonstrating the effectiveness and generalizability of our human cognition-inspired reasoning framework.
Inference-Time Scaling for Visual AutoRegressive modeling by Searching Representative Samples
While inference-time scaling has significantly enhanced generative quality in large language and diffusion models, its application to vector-quantized (VQ) visual autoregressive modeling (VAR) remains unexplored. We introduce VAR-Scaling, the first general framework for inference-time scaling in VAR, addressing the critical challenge of discrete latent spaces that prohibit continuous path search. We find that VAR scales exhibit two distinct pattern types: general patterns and specific patterns, where later-stage specific patterns conditionally optimize early-stage general patterns. To overcome the discrete latent space barrier in VQ models, we map sampling spaces to quasi-continuous feature spaces via kernel density estimation (KDE), where high-density samples approximate stable, high-quality solutions. This transformation enables effective navigation of sampling distributions. We propose a density-adaptive hybrid sampling strategy: Top-k sampling focuses on high-density regions to preserve quality near distribution modes, while Random-k sampling explores low-density areas to maintain diversity and prevent premature convergence. Consequently, VAR-Scaling optimizes sample fidelity at critical scales to enhance output quality. Experiments in class-conditional and text-to-image evaluations demonstrate significant improvements in inference process. The code is available at https://github.com/WD7ang/VAR-Scaling.
comment: Accepted to PRCV 2025
A Visual Semantic Adaptive Watermark grounded by Prefix-Tuning for Large Vision-Language Model
Watermarking has emerged as a pivotal solution for content traceability and intellectual property protection in Large Vision-Language Models (LVLMs). However, vision-agnostic watermarks introduce visually irrelevant tokens and disrupt visual grounding by enforcing indiscriminate pseudo-random biases, while some semantic-aware methods incur prohibitive inference latency due to rejection sampling. In this paper, we propose the VIsual Semantic Adaptive Watermark (VISA-Mark), a novel framework that embeds detectable signals while strictly preserving visual fidelity. Our approach employs a lightweight, efficiently trained prefix-tuner to extract dynamic Visual-Evidence Weights, which quantify the evidentiary support for candidate tokens based on the visual input. These weights guide an adaptive vocabulary partitioning and logits perturbation mechanism, concentrating watermark strength specifically on visually-supported tokens. By actively aligning the watermark with visual evidence, VISA-Mark effectively maintains visual fidelity. Empirical results confirm that VISA-Mark outperforms conventional methods with a 7.8% improvement in visual consistency (Chair-I) and superior semantic fidelity. The framework maintains highly competitive detection accuracy (96.88% AUC) and robust attack resilience (99.3%) without sacrificing inference efficiency, effectively establishing a new standard for reliability-preserving multimodal watermarking.
VideoLoom: A Video Large Language Model for Joint Spatial-Temporal Understanding
This paper presents VideoLoom, a unified Video Large Language Model (Video LLM) for joint spatial-temporal understanding. To facilitate the development of fine-grained spatial and temporal localization capabilities, we curate LoomData-8.7k, a human-centric video dataset with temporally grounded and spatially localized captions. With this, VideoLoom achieves state-of-the-art or highly competitive performance across a variety of spatial and temporal benchmarks (e.g., 63.1 J&F on ReVOS for referring video object segmentation, and 48.3 R1@0.7 on Charades-STA for temporal grounding). In addition, we introduce LoomBench, a novel benchmark consisting of temporal, spatial, and compositional video-question pairs, enabling a comprehensive evaluation of Video LLMs from diverse aspects. Collectively, these contributions offer a universal and effective suite for joint spatial-temporal video understanding, setting a new standard in multimodal intelligence.
Focal Guidance: Unlocking Controllability from Semantic-Weak Layers in Video Diffusion Models
The task of Image-to-Video (I2V) generation aims to synthesize a video from a reference image and a text prompt. This requires diffusion models to reconcile high-frequency visual constraints and low-frequency textual guidance during the denoising process. However, while existing I2V models prioritize visual consistency, how to effectively couple this dual guidance to ensure strong adherence to the text prompt remains underexplored. In this work, we observe that in Diffusion Transformer (DiT)-based I2V models, certain intermediate layers exhibit weak semantic responses (termed Semantic-Weak Layers), as indicated by a measurable drop in text-visual similarity. We attribute this to a phenomenon called Condition Isolation, where attention to visual features becomes partially detached from text guidance and overly relies on learned visual priors. To address this, we propose Focal Guidance (FG), which enhances the controllability from Semantic-Weak Layers. FG comprises two mechanisms: (1) Fine-grained Semantic Guidance (FSG) leverages CLIP to identify key regions in the reference frame and uses them as anchors to guide Semantic-Weak Layers. (2) Attention Cache transfers attention maps from semantically responsive layers to Semantic-Weak Layers, injecting explicit semantic signals and alleviating their over-reliance on the model's learned visual priors, thereby enhancing adherence to textual instructions. To further validate our approach and address the lack of evaluation in this direction, we introduce a benchmark for assessing instruction following in I2V models. On this benchmark, Focal Guidance proves its effectiveness and generalizability, raising the total score on Wan2.1-I2V to 0.7250 (+3.97\%) and boosting the MMDiT-based HunyuanVideo-I2V to 0.5571 (+7.44\%).
GenDet: Painting Colored Bounding Boxes on Images via Diffusion Model for Object Detection
This paper presents GenDet, a novel framework that redefines object detection as an image generation task. In contrast to traditional approaches, GenDet adopts a pioneering approach by leveraging generative modeling: it conditions on the input image and directly generates bounding boxes with semantic annotations in the original image space. GenDet establishes a conditional generation architecture built upon the large-scale pre-trained Stable Diffusion model, formulating the detection task as semantic constraints within the latent space. It enables precise control over bounding box positions and category attributes, while preserving the flexibility of the generative model. This novel methodology effectively bridges the gap between generative models and discriminative tasks, providing a fresh perspective for constructing unified visual understanding systems. Systematic experiments demonstrate that GenDet achieves competitive accuracy compared to discriminative detectors, while retaining the flexibility characteristic of generative methods.
PALUM: Part-based Attention Learning for Unified Motion Retargeting
Retargeting motion between characters with different skeleton structures is a fundamental challenge in computer animation. When source and target characters have vastly different bone arrangements, maintaining the original motion's semantics and quality becomes increasingly difficult. We present PALUM, a novel approach that learns common motion representations across diverse skeleton topologies by partitioning joints into semantic body parts and applying attention mechanisms to capture spatio-temporal relationships. Our method transfers motion to target skeletons by leveraging these skeleton-agnostic representations alongside target-specific structural information. To ensure robust learning and preserve motion fidelity, we introduce a cycle consistency mechanism that maintains semantic coherence throughout the retargeting process. Extensive experiments demonstrate superior performance in handling diverse skeletal structures while maintaining motion realism and semantic fidelity, even when generalizing to previously unseen skeleton-motion combinations. We will make our implementation publicly available to support future research.
From Landslide Conditioning Factors to Satellite Embeddings: Evaluating the Utilisation of Google AlphaEarth for Landslide Susceptibility Mapping using Deep Learning
Data-driven landslide susceptibility mapping (LSM) typically relies on landslide conditioning factors (LCFs), whose availability, heterogeneity, and preprocessing-related uncertainties can constrain mapping reliability. Recently, Google AlphaEarth (AE) embeddings, derived from multi-source geospatial observations, have emerged as a unified representation of Earth surface conditions. This study evaluated the potential of AE embeddings as alternative predictors for LSM. Two AE representations, including retained principal components and the full set of 64 embedding bands, were systematically compared with conventional LCFs across three study areas (Nantou County, Taiwan; Hong Kong; and part of Emilia-Romagna, Italy) using three deep learning models (CNN1D, CNN2D, and Vision Transformer). Performance was assessed using multiple evaluation metrics, ROC-AUC analysis, error statistics, and spatial pattern assessment. Results showed that AE-based models consistently outperformed LCFs across all regions and models, yielding higher F1-scores, AUC values, and more stable error distributions. Such improvement was most pronounced when using the full 64-band AE representation, with F1-score improvements of approximately 4% to 15% and AUC increased ranging from 0.04 to 0.11, depending on the study area and model. AE-based susceptibility maps also exhibited clearer spatial correspondence with observed landslide occurrences and enhanced sensitivity to localised landslide-prone conditions. Performance improvements were more evident in Nantou and Emilia than in Hong Kong, revealing that closer temporal alignment between AE embeddings and landslide inventories may lead to more effective LSM outcomes. These findings highlight the strong potential of AE embeddings as a standardised and information-rich alternative to conventional LCFs for LSM.
Universal Adversarial Purification with DDIM Metric Loss for Stable Diffusion
Stable Diffusion (SD) often produces degraded outputs when the training dataset contains adversarial noise. Adversarial purification offers a promising solution by removing adversarial noise from contaminated data. However, existing purification methods are primarily designed for classification tasks and fail to address SD-specific adversarial strategies, such as attacks targeting the VAE encoder, UNet denoiser, or both. To address the gap in SD security, we propose Universal Diffusion Adversarial Purification (UDAP), a novel framework tailored for defending adversarial attacks targeting SD models. UDAP leverages the distinct reconstruction behaviors of clean and adversarial images during Denoising Diffusion Implicit Models (DDIM) inversion to optimize the purification process. By minimizing the DDIM metric loss, UDAP can effectively remove adversarial noise. Additionally, we introduce a dynamic epoch adjustment strategy that adapts optimization iterations based on reconstruction errors, significantly improving efficiency without sacrificing purification quality. Experiments demonstrate UDAP's robustness against diverse adversarial methods, including PID (VAE-targeted), Anti-DreamBooth (UNet-targeted), MIST (hybrid), and robustness-enhanced variants like Anti-Diffusion (Anti-DF) and MetaCloak. UDAP also generalizes well across SD versions and text prompts, showcasing its practical applicability in real-world scenarios.
HERE: Hierarchical Active Exploration of Radiance Field with Epistemic Uncertainty Minimization RA-L
We present HERE, an active 3D scene reconstruction framework based on neural radiance fields, enabling high-fidelity implicit mapping. Our approach centers around an active learning strategy for camera trajectory generation, driven by accurate identification of unseen regions, which supports efficient data acquisition and precise scene reconstruction. The key to our approach is epistemic uncertainty quantification based on evidential deep learning, which directly captures data insufficiency and exhibits a strong correlation with reconstruction errors. This allows our framework to more reliably identify unexplored or poorly reconstructed regions compared to existing methods, leading to more informed and targeted exploration. Additionally, we design a hierarchical exploration strategy that leverages learned epistemic uncertainty, where local planning extracts target viewpoints from high-uncertainty voxels based on visibility for trajectory generation, and global planning uses uncertainty to guide large-scale coverage for efficient and comprehensive reconstruction. The effectiveness of the proposed method in active 3D reconstruction is demonstrated by achieving higher reconstruction completeness compared to previous approaches on photorealistic simulated scenes across varying scales, while a hardware demonstration further validates its real-world applicability.
comment: Accepted to IEEE RA-L. The first two authors contributed equally
Language-Grounded Multi-Domain Image Translation via Semantic Difference Guidance
Multi-domain image-to-image translation re quires grounding semantic differences ex pressed in natural language prompts into corresponding visual transformations, while preserving unrelated structural and seman tic content. Existing methods struggle to maintain structural integrity and provide fine grained, attribute-specific control, especially when multiple domains are involved. We propose LACE (Language-grounded Attribute Controllable Translation), built on two compo nents: (1) a GLIP-Adapter that fuses global semantics with local structural features to pre serve consistency, and (2) a Multi-Domain Control Guidance mechanism that explicitly grounds the semantic delta between source and target prompts into per-attribute translation vec tors, aligning linguistic semantics with domain level visual changes. Together, these modules enable compositional multi-domain control with independent strength modulation for each attribute. Experiments on CelebA(Dialog) and BDD100K demonstrate that LACE achieves high visual fidelity, structural preservation, and interpretable domain-specific control, surpass ing prior baselines. This positions LACE as a cross-modal content generation framework bridging language semantics and controllable visual translation.
VENUS: Visual Editing with Noise Inversion Using Scene Graphs
State-of-the-art text-based image editing models often struggle to balance background preservation with semantic consistency, frequently resulting either in the synthesis of entirely new images or in outputs that fail to realize the intended edits. In contrast, scene graph-based image editing addresses this limitation by providing a structured representation of semantic entities and their relations, thereby offering improved controllability. However, existing scene graph editing methods typically depend on model fine-tuning, which incurs high computational cost and limits scalability. To this end, we introduce VENUS (Visual Editing with Noise inversion Using Scene graphs), a training-free framework for scene graph-guided image editing. Specifically, VENUS employs a split prompt conditioning strategy that disentangles the target object of the edit from its background context, while simultaneously leveraging noise inversion to preserve fidelity in unedited regions. Moreover, our proposed approach integrates scene graphs extracted from multimodal large language models with diffusion backbones, without requiring any additional training. Empirically, VENUS substantially improves both background preservation and semantic alignment on PIE-Bench, increasing PSNR from 22.45 to 24.80, SSIM from 0.79 to 0.84, and reducing LPIPS from 0.100 to 0.070 relative to the state-of-the-art scene graph editing model (SGEdit). In addition, VENUS enhances semantic consistency as measured by CLIP similarity (24.97 vs. 24.19). On EditVal, VENUS achieves the highest fidelity with a 0.87 DINO score and, crucially, reduces per-image runtime from 6-10 minutes to only 20-30 seconds. Beyond scene graph-based editing, VENUS also surpasses strong text-based editing baselines such as LEDIT++ and P2P+DirInv, thereby demonstrating consistent improvements across both paradigms.
SceneNAT: Masked Generative Modeling for Language-Guided Indoor Scene Synthesis
We present SceneNAT, a single-stage masked non-autoregressive Transformer that synthesizes complete 3D indoor scenes from natural language instructions through only a few parallel decoding passes, offering improved performance and efficiency compared to prior state-of-the-art approaches. SceneNAT is trained via masked modeling over fully discretized representations of both semantic and spatial attributes. By applying a masking strategy at both the attribute level and the instance level, the model can better capture intra-object and inter-object structure. To boost relational reasoning, SceneNAT employs a dedicated triplet predictor for modeling the scene's layout and object relationships by mapping a set of learnable relation queries to a sparse set of symbolic triplets (subject, predicate, object). Extensive experiments on the 3D-FRONT dataset demonstrate that SceneNAT achieves superior performance compared to state-of-the-art autoregressive and diffusion baselines in both semantic compliance and spatial arrangement accuracy, while operating with substantially lower computational cost.
comment: Under review. Code will be released
BlindU: Blind Machine Unlearning without Revealing Erasing Data
Machine unlearning enables data holders to remove the contribution of their specified samples from trained models to protect their privacy. However, it is paradoxical that most unlearning methods require the unlearning requesters to firstly upload their data to the server as a prerequisite for unlearning. These methods are infeasible in many privacy-preserving scenarios where servers are prohibited from accessing users' data, such as federated learning (FL). In this paper, we explore how to implement unlearning under the condition of not uncovering the erasing data to the server. We propose \textbf{Blind Unlearning (BlindU)}, which carries out unlearning using compressed representations instead of original inputs. BlindU only involves the server and the unlearning user: the user locally generates privacy-preserving representations, and the server performs unlearning solely on these representations and their labels. For the FL model training, we employ the information bottleneck (IB) mechanism. The encoder of the IB-based FL model learns representations that distort maximum task-irrelevant information from inputs, allowing FL users to generate compressed representations locally. For effective unlearning using compressed representation, BlindU integrates two dedicated unlearning modules tailored explicitly for IB-based models and uses a multiple gradient descent algorithm to balance forgetting and utility retaining. While IB compression already provides protection for task-irrelevant information of inputs, to further enhance the privacy protection, we introduce a noise-free differential privacy (DP) masking method to deal with the raw erasing data before compressing. Theoretical analysis and extensive experimental results illustrate the superiority of BlindU in privacy protection and unlearning effectiveness compared with the best existing privacy-preserving unlearning benchmarks.
SIRR-LMM: Single-image Reflection Removal via Large Multimodal Model
Glass surfaces create complex interactions of reflected and transmitted light, making single-image reflection removal (SIRR) challenging. Existing datasets suffer from limited physical realism in synthetic data or insufficient scale in real captures. We introduce a synthetic dataset generation framework that path-traces 3D glass models over real background imagery to create physically accurate reflection scenarios with varied glass properties, camera settings, and post-processing effects. To leverage the capabilities of Large Multimodal Model (LMM), we concatenate the image layers into a single composite input, apply joint captioning, and fine-tune the model using task-specific LoRA rather than full-parameter training. This enables our approach to achieve improved reflection removal and separation performance compared to state-of-the-art methods.
comment: 12 pages, 14 figures, accepted in WACVW 2026
ShowUI-Aloha: Human-Taught GUI Agent
Graphical User Interfaces (GUIs) are central to human-computer interaction, yet automating complex GUI tasks remains a major challenge for autonomous agents, largely due to a lack of scalable, high-quality training data. While recordings of human demonstrations offer a rich data source, they are typically long, unstructured, and lack annotations, making them difficult for agents to learn from.To address this, we introduce ShowUI-Aloha, a comprehensive pipeline that transforms unstructured, in-the-wild human screen recordings from desktop environments into structured, actionable tasks. Our framework includes four key components: A recorder that captures screen video along with precise user interactions like mouse clicks, keystrokes, and scrolls. A learner that semantically interprets these raw interactions and the surrounding visual context, translating them into descriptive natural language captions. A planner that reads the parsed demonstrations, maintains task states, and dynamically formulates the next high-level action plan based on contextual reasoning. An executor that faithfully carries out these action plans at the OS level, performing precise clicks, drags, text inputs, and window operations with safety checks and real-time feedback. Together, these components provide a scalable solution for collecting and parsing real-world human data, demonstrating a viable path toward building general-purpose GUI agents that can learn effectively from simply observing humans.
comment: 13 Pages, 16 Figures
DIVER: Dynamic Iterative Visual Evidence Reasoning for Multimodal Fake News Detection
Multimodal fake news detection is crucial for mitigating adversarial misinformation. Existing methods, relying on static fusion or LLMs, face computational redundancy and hallucination risks due to weak visual foundations. To address this, we propose DIVER (Dynamic Iterative Visual Evidence Reasoning), a framework grounded in a progressive, evidence-driven reasoning paradigm. DIVER first establishes a strong text-based baseline through language analysis, leveraging intra-modal consistency to filter unreliable or hallucinated claims. Only when textual evidence is insufficient does the framework introduce visual information, where inter-modal alignment verification adaptively determines whether deeper visual inspection is necessary. For samples exhibiting significant cross-modal semantic discrepancies, DIVER selectively invokes fine-grained visual tools (e.g., OCR and dense captioning) to extract task-relevant evidence, which is iteratively aggregated via uncertainty-aware fusion to refine multimodal reasoning. Experiments on Weibo, Weibo21, and GossipCop demonstrate that DIVER outperforms state-of-the-art baselines by an average of 2.72\%, while optimizing inference efficiency with a reduced latency of 4.12 s.
comment: 13 pages
Test-time Adaptive Hierarchical Co-enhanced Denoising Network for Reliable Multimodal Classification
Reliable learning on low-quality multimodal data is a widely concerning issue, especially in safety-critical applications. However, multimodal noise poses a major challenge in this domain and leads existing methods to suffer from two key limitations. First, they struggle to reliably remove heterogeneous data noise, hindering robust multimodal representation learning. Second, they exhibit limited adaptability and generalization when encountering previously unseen noise. To address these issues, we propose Test-time Adaptive Hierarchical Co-enhanced Denoising Network (TAHCD). On one hand, TAHCD introduces the Adaptive Stable Subspace Alignment and Sample-Adaptive Confidence Alignment to reliably remove heterogeneous noise. They account for noise at both global and instance levels and enable jointly removal of modality-specific and cross-modality noise, achieving robust learning. On the other hand, TAHCD introduces test-time cooperative enhancement, which adaptively updates the model in response to input noise in a label-free manner, improving adaptability and generalization. This is achieved by collaboratively enhancing the joint removal process of modality-specific and cross-modality noise across global and instance levels according to sample noise. Experiments on multiple benchmarks demonstrate that the proposed method achieves superior classification performance, robustness, and generalization compared with state-of-the-art reliable multimodal learning approaches.
comment: 14 pages,9 figures, 8 tables
Motion Focus Recognition in Fast-Moving Egocentric Video
From Vision-Language-Action (VLA) systems to robotics, existing egocentric datasets primarily focus on action recognition tasks, while largely overlooking the inherent role of motion analysis in sports and other fast-movement scenarios. To bridge this gap, we propose a real-time motion focus recognition method that estimates the subject's locomotion intention from any egocentric video. Our approach leverages the foundation model for camera pose estimation and introduces system-level optimizations to enable efficient and scalable inference. Evaluated on a collected egocentric action dataset, our method achieves real-time performance with manageable memory consumption through a sliding batch inference strategy. This work makes motion-centric analysis practical for edge deployment and offers a complementary perspective to existing egocentric studies on sports and fast-movement activities.
Proof of Reasoning for Privacy Enhanced Federated Blockchain Learning at the Edge
Consensus mechanisms are the core of any blockchain system. However, the majority of these mechanisms do not target federated learning directly nor do they aid in the aggregation step. This paper introduces Proof of Reasoning (PoR), a novel consensus mechanism specifically designed for federated learning using blockchain, aimed at preserving data privacy, defending against malicious attacks, and enhancing the validation of participating networks. Unlike generic blockchain consensus mechanisms commonly found in the literature, PoR integrates three distinct processes tailored for federated learning. Firstly, a masked autoencoder (MAE) is trained to generate an encoder that functions as a feature map and obfuscates input data, rendering it resistant to human reconstruction and model inversion attacks. Secondly, a downstream classifier is trained at the edge, receiving input from the trained encoder. The downstream network's weights, a single encoded datapoint, the network's output and the ground truth are then added to a block for federated aggregation. Lastly, this data facilitates the aggregation of all participating networks, enabling more complex and verifiable aggregation methods than previously possible. This three-stage process results in more robust networks with significantly reduced computational complexity, maintaining high accuracy by training only the downstream classifier at the edge. PoR scales to large IoT networks with low latency and storage growth, and adapts to evolving data, regulations, and network conditions.
comment: 8 Pages, 5 figues, 9 tables, journal paper
ReinPool: Reinforcement Learning Pooling Multi-Vector Embeddings for Retrieval System
Multi-vector embedding models have emerged as a powerful paradigm for document retrieval, preserving fine-grained visual and textual details through token-level representations. However, this expressiveness comes at a staggering cost: storing embeddings for every token inflates index sizes by over $1000\times$ compared to single-vector approaches, severely limiting scalability. We introduce \textbf{ReinPool}, a reinforcement learning framework that learns to dynamically filter and pool multi-vector embeddings into compact, retrieval-optimized representations. By training with an inverse retrieval objective and NDCG-based rewards, ReinPool identifies and retains only the most discriminative vectors without requiring manual importance annotations. On the Vidore V2 benchmark across three vision-language embedding models, ReinPool compresses multi-vector representations by $746$--$1249\times$ into single vectors while recovering 76--81\% of full multi-vector retrieval performance. Compared to static mean pooling baselines, ReinPool achieves 22--33\% absolute NDCG@3 improvement, demonstrating that learned selection significantly outperforms heuristic aggregation.
comment: 5 pages
SC-MII: Infrastructure LiDAR-based 3D Object Detection on Edge Devices for Split Computing with Multiple Intermediate Outputs Integration
3D object detection using LiDAR-based point cloud data and deep neural networks is essential in autonomous driving technology. However, deploying state-of-the-art models on edge devices present challenges due to high computational demands and energy consumption. Additionally, single LiDAR setups suffer from blind spots. This paper proposes SC-MII, multiple infrastructure LiDAR-based 3D object detection on edge devices for Split Computing with Multiple Intermediate outputs Integration. In SC-MII, edge devices process local point clouds through the initial DNN layers and send intermediate outputs to an edge server. The server integrates these features and completes inference, reducing both latency and device load while improving privacy. Experimental results on a real-world dataset show a 2.19x speed-up and a 71.6% reduction in edge device processing time, with at most a 1.09% drop in accuracy.
comment: 6 pages. This version includes minor lstlisting configuration adjustments for successful compilation. No changes to content or layout. Originally published at IEEE CCNC 2026
Few-shot Class-Incremental Learning via Generative Co-Memory Regularization
Few-shot class-incremental learning (FSCIL) aims to incrementally learn models from a small amount of novel data, which requires strong representation and adaptation ability of models learned under few-example supervision to avoid catastrophic forgetting on old classes and overfitting to novel classes. This work proposes a generative co-memory regularization approach to facilitate FSCIL. In the approach, the base learning leverages generative domain adaptation finetuning to finetune a pretrained generative encoder on a few examples of base classes by jointly incorporating a masked autoencoder (MAE) decoder for feature reconstruction and a fully-connected classifier for feature classification, which enables the model to efficiently capture general and adaptable representations. Using the finetuned encoder and learned classifier, we construct two class-wise memories: representation memory for storing the mean features for each class, and weight memory for storing the classifier weights. After that, the memory-regularized incremental learning is performed to train the classifier dynamically on the examples of few-shot classes in each incremental session by simultaneously optimizing feature classification and co-memory regularization. The memories are updated in a class-incremental manner and they collaboratively regularize the incremental learning. In this way, the learned models improve recognition accuracy, while mitigating catastrophic forgetting over old classes and overfitting to novel classes. Extensive experiments on popular benchmarks clearly demonstrate that our approach outperforms the state-of-the-arts.
comment: Accepted by International Journal on Computer Vision (IJCV)
MEDVISTAGYM: A Scalable Training Environment for Thinking with Medical Images via Tool-Integrated Reinforcement Learning
Vision language models (VLMs) achieve strong performance on general image understanding but struggle to think with medical images, especially when performing multi-step reasoning through iterative visual interaction. Medical VLMs often rely on static visual embeddings and single-pass inference, preventing models from re-examining, verifying, or refining visual evidence during reasoning. While tool-integrated reasoning offers a promising path forward, open-source VLMs lack the training infrastructure to learn effective tool selection, invocation, and coordination in multi-modal medical reasoning. We introduce MedVistaGym, a scalable and interactive training environment that incentivizes tool-integrated visual reasoning for medical image analysis. MedVistaGym equips VLMs to determine when and which tools to invoke, localize task-relevant image regions, and integrate single or multiple sub-image evidence into interleaved multimodal reasoning within a unified, executable interface for agentic training. Using MedVistaGym, we train MedVistaGym-R1 to interleave tool use with agentic reasoning through trajectory sampling and end-to-end reinforcement learning. Across six medical VQA benchmarks, MedVistaGym-R1-8B exceeds comparably sized tool-augmented baselines by 19.10% to 24.21%, demonstrating that structured agentic training--not tool access alone--unlocks effective tool-integrated reasoning for medical image analysis.
Exploiting DINOv3-Based Self-Supervised Features for Robust Few-Shot Medical Image Segmentation
Deep learning-based automatic medical image segmentation plays a critical role in clinical diagnosis and treatment planning but remains challenging in few-shot scenarios due to the scarcity of annotated training data. Recently, self-supervised foundation models such as DINOv3, which were trained on large natural image datasets, have shown strong potential for dense feature extraction that can help with the few-shot learning challenge. Yet, their direct application to medical images is hindered by domain differences. In this work, we propose DINO-AugSeg, a novel framework that leverages DINOv3 features to address the few-shot medical image segmentation challenge. Specifically, we introduce WT-Aug, a wavelet-based feature-level augmentation module that enriches the diversity of DINOv3-extracted features by perturbing frequency components, and CG-Fuse, a contextual information-guided fusion module that exploits cross-attention to integrate semantic-rich low-resolution features with spatially detailed high-resolution features. Extensive experiments on six public benchmarks spanning five imaging modalities, including MRI, CT, ultrasound, endoscopy, and dermoscopy, demonstrate that DINO-AugSeg consistently outperforms existing methods under limited-sample conditions. The results highlight the effectiveness of incorporating wavelet-domain augmentation and contextual fusion for robust feature representation, suggesting DINO-AugSeg as a promising direction for advancing few-shot medical image segmentation. Code and data will be made available on https://github.com/apple1986/DINO-AugSeg.
comment: 36 pages, 11 figures
The Role of Noisy Data in Improving CNN Robustness for Image Classification
Data quality plays a central role in the performance and robustness of convolutional neural networks (CNNs) for image classification. While high-quality data is often preferred for training, real-world inputs are frequently affected by noise and other distortions. This paper investigates the effect of deliberately introducing controlled noise into the training data to improve model robustness. Using the CIFAR-10 dataset, we evaluate the impact of three common corruptions, namely Gaussian noise, Salt-and-Pepper noise, and Gaussian blur at varying intensities and training set pollution levels. Experiments using a Resnet-18 model reveal that incorporating just 10\% noisy data during training is sufficient to significantly reduce test loss and enhance accuracy under fully corrupted test conditions, with minimal impact on clean-data performance. These findings suggest that strategic exposure to noise can act as a simple yet effective regularizer, offering a practical trade-off between traditional data cleanliness and real-world resilience.
comment: 16 pagers, 10 figures, 2 tables, SPIE Applications of Machine Learning 2025, San Diego, August, 2025
Rescind: Countering Image Misconduct in Biomedical Publications with Vision-Language and State-Space Modeling
Scientific image manipulation in biomedical publications poses a growing threat to research integrity and reproducibility. Unlike natural image forensics, biomedical forgery detection is uniquely challenging due to domain-specific artifacts, complex textures, and unstructured figure layouts. We present the first vision-language guided framework for both generating and detecting biomedical image forgeries. By combining diffusion-based synthesis with vision-language prompting, our method enables realistic and semantically controlled manipulations, including duplication, splicing, and region removal, across diverse biomedical modalities. We introduce Rescind, a large-scale benchmark featuring fine-grained annotations and modality-specific splits, and propose Integscan, a structured state space modeling framework that integrates attention-enhanced visual encoding with prompt-conditioned semantic alignment for precise forgery localization. To ensure semantic fidelity, we incorporate a vision-language model based verification loop that filters generated forgeries based on consistency with intended prompts. Extensive experiments on Rescind and existing benchmarks demonstrate that Integscan achieves state of the art performance in both detection and localization, establishing a strong foundation for automated scientific integrity analysis.
Fiducial Exoskeletons: Image-Centric Robot State Estimation
We introduce Fiducial Exoskeletons, an image-based reformulation of 3D robot state estimation that replaces cumbersome procedures and motor-centric pipelines with single-image inference. Traditional approaches - especially robot-camera extrinsic estimation - often rely on high-precision actuators and require time-consuming routines such as hand-eye calibration. In contrast, modern learning-based robot control is increasingly trained and deployed from RGB observations on lower-cost hardware. Our key insight is twofold. First, we cast robot state estimation as 6D pose estimation of each link from a single RGB image: the robot-camera base transform is obtained directly as the estimated base-link pose, and the joint state is recovered via a lightweight global optimization that enforces kinematic consistency with the observed link poses (optionally warm-started with encoder readings). Second, we make per-link 6D pose estimation robust and simple - even without learning - by introducing the fiducial exoskeleton: a lightweight 3D-printed mount with a fiducial marker on each link and known marker-link geometry. This design yields robust camera-robot extrinsics, per-link SE(3) poses, and joint-angle state from a single image, enabling robust state estimation even on unplugged robots. Demonstrated on a low-cost robot arm, fiducial exoskeletons substantially simplify setup while improving calibration, state accuracy, and downstream 3D control performance. We release code and printable hardware designs to enable further algorithm-hardware co-design.
FigEx2: Visual-Conditioned Panel Detection and Captioning for Scientific Compound Figures
Scientific compound figures combine multiple labeled panels into a single image, but captions in real pipelines are often missing or only provide figure-level summaries, making panel-level understanding difficult. In this paper, we propose FigEx2, visual-conditioned framework that localizes panels and generates panel-wise captions directly from the compound figure. To mitigate the impact of diverse phrasing in open-ended captioning, we introduce a noise-aware gated fusion module that adaptively filters token-level features to stabilize the detection query space. Furthermore, we employ a staged optimization strategy combining supervised learning with reinforcement learning (RL), utilizing CLIP-based alignment and BERTScore-based semantic rewards to enforce strict multimodal consistency. To support high-quality supervision, we curate BioSci-Fig-Cap, a refined benchmark for panel-level grounding, alongside cross-disciplinary test suites in physics and chemistry. Experimental results demonstrate that FigEx2 achieves a superior 0.726 mAP@0.5:0.95 for detection and significantly outperforms Qwen3-VL-8B by 0.51 in METEOR and 0.24 in BERTScore. Notably, FigEx2 exhibits remarkable zero-shot transferability to out-of-distribution scientific domains without any fine-tuning.
A Highly Efficient Diversity-based Input Selection for DNN Improvement Using VLMs
Maintaining or improving the performance of Deep Neural Networks (DNNs) through fine-tuning requires labeling newly collected inputs, a process that is often costly and time-consuming. To alleviate this problem, input selection approaches have been developed in recent years to identify small, yet highly informative subsets for labeling. Diversity-based selection is one of the most effective approaches for this purpose. However, they are often computationally intensive and lack scalability for large input sets, limiting their practical applicability. To address this challenge, we introduce Concept-Based Diversity (CBD), a highly efficient metric for image inputs that leverages Vision-Language Models (VLM). Our results show that CBD exhibits a strong correlation with Geometric Diversity (GD), an established diversity metric, while requiring only a fraction of its computation time. Building on this finding, we propose a hybrid input selection approach that combines CBD with Margin, a simple uncertainty metric. We conduct a comprehensive evaluation across a diverse set of DNN models, input sets, selection budgets, and five most effective state-of-the-art selection baselines. The results demonstrate that the CBD-based selection consistently outperforms all baselines at guiding input selection to improve the DNN model. Furthermore, the CBD-based selection approach remains highly efficient, requiring selection times close to those of simple uncertainty-based methods such as Margin, even on larger input sets like ImageNet. These results confirm not only the effectiveness and computational advantage of the CBD-based approach, particularly compared to hybrid baselines, but also its scalability in repetitive and extensive input selection scenarios.
Training Free Zero-Shot Visual Anomaly Localization via Diffusion Inversion
Zero-Shot image Anomaly Detection (ZSAD) aims to detect and localise anomalies without access to any normal training samples of the target data. While recent ZSAD approaches leverage additional modalities such as language to generate fine-grained prompts for localisation, vision-only methods remain limited to image-level classification, lacking spatial precision. In this work, we introduce a simple yet effective training-free vision-only ZSAD framework that circumvents the need for fine-grained prompts by leveraging the inversion of a pretrained Denoising Diffusion Implicit Model (DDIM). Specifically, given an input image and a generic text description (e.g., "an image of an [object class]"), we invert the image to obtain latent representations and initiate the denoising process from a fixed intermediate timestep to reconstruct the image. Since the underlying diffusion model is trained solely on normal data, this process yields a normal-looking reconstruction. The discrepancy between the input image and the reconstructed one highlights potential anomalies. Our method achieves state-of-the-art performance on VISA dataset, demonstrating strong localisation capabilities without auxiliary modalities and facilitating a shift away from prompt dependence for zero-shot anomaly detection research. Code is available at https://github.com/giddyyupp/DIVAD.
Representations of Text and Images Align From Layer One
We show that for a variety of concepts in adapter-based vision-language models, the representations of their images and their text descriptions are meaningfully aligned from the very first layer. This contradicts the established view that such image-text alignment only appears in late layers. We show this using a new synthesis-based method inspired by DeepDream: given a textual concept such as "Jupiter", we extract its concept vector at a given layer, and then use optimisation to synthesise an image whose representation aligns with that vector. We apply our approach to hundreds of concepts across seven layers in Gemma 3, and find that the synthesised images often depict salient visual features of the targeted textual concepts: for example, already at layer 1, more than 50 % of images depict recognisable features of animals, activities, or seasons. Our method thus provides direct, constructive evidence of image-text alignment on a concept-by-concept and layer-by-layer basis. Unlike previous methods for measuring multimodal alignment, our approach is simple, fast, and does not require auxiliary models or datasets. It also offers a new path towards model interpretability, by providing a way to visualise a model's representation space by backtracing through its image processing components.
TP-Blend: Textual-Prompt Attention Pairing for Precise Object-Style Blending in Diffusion Models
Current text-conditioned diffusion editors handle single object replacement well but struggle when a new object and a new style must be introduced simultaneously. We present Twin-Prompt Attention Blend (TP-Blend), a lightweight training-free framework that receives two separate textual prompts, one specifying a blend object and the other defining a target style, and injects both into a single denoising trajectory. TP-Blend is driven by two complementary attention processors. Cross-Attention Object Fusion (CAOF) first averages head-wise attention to locate spatial tokens that respond strongly to either prompt, then solves an entropy-regularised optimal transport problem that reassigns complete multi-head feature vectors to those positions. CAOF updates feature vectors at the full combined dimensionality of all heads (e.g., 640 dimensions in SD-XL), preserving rich cross-head correlations while keeping memory low. Self-Attention Style Fusion (SASF) injects style at every self-attention layer through Detail-Sensitive Instance Normalization. A lightweight one-dimensional Gaussian filter separates low- and high-frequency components; only the high-frequency residual is blended back, imprinting brush-stroke-level texture without disrupting global geometry. SASF further swaps the Key and Value matrices with those derived from the style prompt, enforcing context-aware texture modulation that remains independent of object fusion. Extensive experiments show that TP-Blend produces high-resolution, photo-realistic edits with precise control over both content and appearance, surpassing recent baselines in quantitative fidelity, perceptual quality, and inference speed.
CASHEW: Stabilizing Multimodal Reasoning via Iterative Trajectory Aggregation
Vision-language models achieve strong performance across a wide range of multimodal understanding and reasoning tasks, yet their multi-step reasoning remains unstable. Repeated sampling over the same input often produces divergent reasoning trajectories and inconsistent final predictions. To address this, we introduce two complementary approaches inspired by test-time scaling: (1) CASHEW, an inference-time framework that stabilizes reasoning by iteratively aggregating multiple candidate trajectories into higher-quality reasoning traces, with explicit visual verification filtering hallucinated steps and grounding reasoning in visual evidence, and (2) CASHEW-RL, a learned variant that internalizes this aggregation behavior within a single model. CASHEW-RL is trained using Group Sequence Policy Optimization (GSPO) with a composite reward that encourages correct answers grounded in minimal yet sufficient visual evidence, while adaptively allocating reasoning effort based on task difficulty. This training objective enables robust self-aggregation at inference. Extensive experiments on 13 image understanding, video understanding, and video reasoning benchmarks show significant performance improvements, including gains of up to +23.6 percentage points on ScienceQA and +8.1 percentage points on EgoSchema.
Operator learning for models of tear film breakup
Tear film (TF) breakup is a key driver of understanding dry eye disease, yet estimating TF thickness and osmolarity from fluorescence (FL) imaging typically requires solving computationally expensive inverse problems. We propose an operator learning framework that replaces traditional inverse solvers with neural operators trained on simulated TF dynamics. This approach offers a scalable path toward rapid, data-driven analysis of tear film dynamics.
Predicting Region of Interest in Human Visual Search Based on Statistical Texture and Gabor Features
Understanding human visual search behavior is a fundamental problem in vision science and computer vision, with direct implications for modeling how observers allocate attention in location-unknown search tasks. In this study, we investigate the relationship between Gabor-based features and gray-level co-occurrence matrix (GLCM) based texture features in modeling early-stage visual search behavior. Two feature-combination pipelines are proposed to integrate Gabor and GLCM features for narrowing the region of possible human fixations. The pipelines are evaluated using simulated digital breast tomosynthesis images. Results show qualitative agreement among fixation candidates predicted by the proposed pipelines and a threshold-based model observer. A strong correlation is observed between GLCM mean and Gabor feature responses, indicating that these features encode related image information despite their different formulations. Eye-tracking data from human observers further suggest consistency between predicted fixation regions and early-stage gaze behavior. These findings highlight the value of combining structural and texture-based features for modeling visual search and support the development of perceptually informed observer models.
comment: 10 pages, 6 fgures
VULCA-Bench: A Multicultural Vision-Language Benchmark for Evaluating Cultural Understanding
We introduce VULCA-Bench, a multicultural art-critique benchmark for evaluating Vision-Language Models' (VLMs) cultural understanding beyond surface-level visual perception. Existing VLM benchmarks predominantly measure L1-L2 capabilities (object recognition, scene description, and factual question answering) while under-evaluate higher-order cultural interpretation. VULCA-Bench contains 7,410 matched image-critique pairs spanning eight cultural traditions, with Chinese-English bilingual coverage. We operationalise cultural understanding using a five-layer framework (L1-L5, from Visual Perception to Philosophical Aesthetics), instantiated as 225 culture-specific dimensions and supported by expert-written bilingual critiques. Our pilot results indicate that higher-layer reasoning (L3-L5) is consistently more challenging than visual and technical analysis (L1-L2). The dataset, evaluation scripts, and annotation tools are available under CC BY 4.0 in the supplementary materials.
comment: 8 pages, 4 figures, submitted to ACL 2026 Dataset Track
Likelihood ratio for a binary Bayesian classifier under a noise-exclusion model
We develop a new statistical ideal observer model that performs holistic visual search (or gist) processing in part by placing thresholds on minimum extractable image features. In this model, the ideal observer reduces the number of free parameters thereby shrinking down the system. The applications of this novel framework is in medical image perception (for optimizing imaging systems and algorithms), computer vision, benchmarking performance and enabling feature selection/evaluations. Other applications are in target detection and recognition in defense/security as well as evaluating sensors and detectors.
comment: 18 pages, 4 figures
Application of Ideal Observer for Thresholded Data in Search Task
This study advances task-based image quality assessment by developing an anthropomorphic thresholded visual-search model observer. The model is an ideal observer for thresholded data inspired by the human visual system, allowing selective processing of high-salience features to improve discrimination performance. By filtering out irrelevant variability, the model enhances diagnostic accuracy and computational efficiency. The observer employs a two-stage framework: candidate selection and decision-making. Using thresholded data during candidate selection refines regions of interest, while stage-specific feature processing optimizes performance. Simulations were conducted to evaluate the effects of thresholding on feature maps, candidate localization, and multi-feature scenarios. Results demonstrate that thresholding improves observer performance by excluding low-salience features, particularly in noisy environments. Intermediate thresholds often outperform no thresholding, indicating that retaining only relevant features is more effective than keeping all features. Additionally, the model demonstrates effective training with fewer images while maintaining alignment with human performance. These findings suggest that the proposed novel framework can predict human visual search performance in clinically realistic tasks and provide solutions for model observer training with limited resources. Our novel approach has applications in other areas where human visual search and detection tasks are modeled such as in computer vision, machine learning, defense and security image analysis.
comment: 13 pages, 6 figures
An Efficient Additive Kolmogorov-Arnold Transformer for Point-Level Maize Localization in Unmanned Aerial Vehicle Imagery
High-resolution UAV photogrammetry has become a key technology for precision agriculture, enabling centimeter-level crop monitoring and point-level plant localization. However, point-level maize localization in UAV imagery remains challenging due to (1) extremely small object-to-pixel ratios, typically less than 0.1%, (2) prohibitive computational costs of quadratic attention on ultra-high-resolution images larger than 3000 x 4000 pixels, and (3) agricultural scene-specific complexities such as sparse object distribution and environmental variability that are poorly handled by general-purpose vision models. To address these challenges, we propose the Additive Kolmogorov-Arnold Transformer (AKT), which replaces conventional multilayer perceptrons with Pade Kolmogorov-Arnold Network (PKAN) modules to enhance functional expressivity for small-object feature extraction, and introduces PKAN Additive Attention (PAA) to model multiscale spatial dependencies with reduced computational complexity. In addition, we present the Point-based Maize Localization (PML) dataset, consisting of 1,928 high-resolution UAV images with approximately 501,000 point annotations collected under real field conditions. Extensive experiments show that AKT achieves an average F1-score of 62.8%, outperforming state-of-the-art methods by 4.2%, while reducing FLOPs by 12.6% and improving inference throughput by 20.7%. For downstream tasks, AKT attains a mean absolute error of 7.1 in stand counting and a root mean square error of 1.95-1.97 cm in interplant spacing estimation. These results demonstrate that integrating Kolmogorov-Arnold representation theory with efficient attention mechanisms offers an effective framework for high-resolution agricultural remote sensing.
Sesame Plant Segmentation Dataset: A YOLO Formatted Annotated Dataset
This paper presents the Sesame Plant Segmentation Dataset, an open source annotated image dataset designed to support the development of artificial intelligence models for agricultural applications, with a specific focus on sesame plants. The dataset comprises 206 training images, 43 validation images, and 43 test images in YOLO compatible segmentation format, capturing sesame plants at early growth stages under varying environmental conditions. Data were collected using a high resolution mobile camera from farms in Jirdede, Daura Local Government Area, Katsina State, Nigeria, and annotated using the Segment Anything Model version 2 with farmer supervision. Unlike conventional bounding box datasets, this dataset employs pixel level segmentation to enable more precise detection and analysis of sesame plants in real world farm settings. Model evaluation using the Ultralytics YOLOv8 framework demonstrated strong performance for both detection and segmentation tasks. For bounding box detection, the model achieved a recall of 79 percent, precision of 79 percent, mean average precision at IoU 0.50 of 84 percent, and mean average precision from 0.50 to 0.95 of 58 percent. For segmentation, it achieved a recall of 82 percent, precision of 77 percent, mean average precision at IoU 0.50 of 84 percent, and mean average precision from 0.50 to 0.95 of 52 percent. The dataset represents a novel contribution to sesame focused agricultural vision datasets in Nigeria and supports applications such as plant monitoring, yield estimation, and agricultural research.
comment: Presented at International Conference on Computing and advance in Information Technology(ICCAIT2025) The dataset is available at kaggle : https://www.kaggle.com/datasets/ismailismailtijjani/sesame-plant-detection-dataset
3DGS-Drag: Dragging Gaussians for Intuitive Point-Based 3D Editing
The transformative potential of 3D content creation has been progressively unlocked through advancements in generative models. Recently, intuitive drag editing with geometric changes has attracted significant attention in 2D editing yet remains challenging for 3D scenes. In this paper, we introduce 3DGS-Drag -- a point-based 3D editing framework that provides efficient, intuitive drag manipulation of real 3D scenes. Our approach bridges the gap between deformation-based and 2D-editing-based 3D editing methods, addressing their limitations to geometry-related content editing. We leverage two key innovations: deformation guidance utilizing 3D Gaussian Splatting for consistent geometric modifications and diffusion guidance for content correction and visual quality enhancement. A progressive editing strategy further supports aggressive 3D drag edits. Our method enables a wide range of edits, including motion change, shape adjustment, inpainting, and content extension. Experimental results demonstrate the effectiveness of 3DGS-Drag in various scenes, achieving state-of-the-art performance in geometry-related 3D content editing. Notably, the editing is efficient, taking 10 to 20 minutes on a single RTX 4090 GPU.
LWMSCNN-SE: A Lightweight Multi-Scale Network for Efficient Maize Disease Classification on Edge Devices
Maize disease classification plays a vital role in mitigating yield losses and ensuring food security. However, the deployment of traditional disease detection models in resource-constrained environments, such as those using smartphones and drones, faces challenges due to high computational costs. To address these challenges, we propose LWMSCNN-SE, a lightweight convolutional neural network (CNN) that integrates multi-scale feature extraction, depthwise separable convolutions, and squeeze-and-Excitation (SE) attention mechanisms. This novel combination enables the model to achieve 96.63% classification accuracy with only 241,348 parameters and 0.666 GFLOPs, making it suitable for real-time deployment in field applications. Our approach addresses the accuracy--efficiency trade-off by delivering high accuracy while maintaining low computational costs, demonstrating its potential for efficient maize disease diagnosis on edge devices in precision farming systems.
Moonworks Lunara Aesthetic Dataset
The dataset spans diverse artistic styles, including regionally grounded aesthetics from the Middle East, Northern Europe, East Asia, and South Asia, alongside general categories such as sketch and oil painting. All images are generated using the Moonworks Lunara model and intentionally crafted to embody distinct, high-quality aesthetic styles, yielding a first-of-its-kind dataset with substantially higher aesthetic scores, exceeding even aesthetics-focused datasets, and general-purpose datasets by a larger margin. Each image is accompanied by a human-refined prompt and structured annotations that jointly describe salient objects, attributes, relationships, and stylistic cues. Unlike large-scale web-derived datasets that emphasize breadth over precision, the Lunara Aesthetic Dataset prioritizes aesthetic quality, stylistic diversity, and licensing transparency, and is released under the Apache 2.0 license to support research and unrestricted academic and commercial use.
CtrlFuse: Mask-Prompt Guided Controllable Infrared and Visible Image Fusion AAAI 2026
Infrared and visible image fusion generates all-weather perception-capable images by combining complementary modalities, enhancing environmental awareness for intelligent unmanned systems. Existing methods either focus on pixel-level fusion while overlooking downstream task adaptability or implicitly learn rigid semantics through cascaded detection/segmentation models, unable to interactively address diverse semantic target perception needs. We propose CtrlFuse, a controllable image fusion framework that enables interactive dynamic fusion guided by mask prompts. The model integrates a multi-modal feature extractor, a reference prompt encoder (RPE), and a prompt-semantic fusion module (PSFM). The RPE dynamically encodes task-specific semantic prompts by fine-tuning pre-trained segmentation models with input mask guidance, while the PSFM explicitly injects these semantics into fusion features. Through synergistic optimization of parallel segmentation and fusion branches, our method achieves mutual enhancement between task performance and fusion quality. Experiments demonstrate state-of-the-art results in both fusion controllability and segmentation accuracy, with the adapted task branch even outperforming the original segmentation model.
comment: 18 pages,22 figures,published to AAAI 2026
StarFlow: Generating Structured Workflow Outputs From Sketch Images
Workflows are a fundamental component of automation in enterprise platforms, enabling the orchestration of tasks, data processing, and system integrations. Despite being widely used, building workflows can be complex, often requiring manual configuration through low-code platforms or visual programming tools. To simplify this process, we explore the use of generative foundation models, particularly vision-language models (VLMs), to automatically generate structured workflows from visual inputs. Translating hand-drawn sketches or computer-generated diagrams into executable workflows is challenging due to the ambiguity of free-form drawings, variations in diagram styles, and the difficulty of inferring execution logic from visual elements. To address this, we introduce StarFlow, a framework for generating structured workflow outputs from sketches using vision-language models. We curate a diverse dataset of workflow diagrams -- including synthetic, manually annotated, and real-world samples -- to enable robust training and evaluation. We finetune and benchmark multiple vision-language models, conducting a series of ablation studies to analyze the strengths and limitations of our approach. Our results show that finetuning significantly enhances structured workflow generation, outperforming large vision-language models on this task.
comment: To be presented at EACL2026
AgentCompress: Task-Aware Compression for Affordable Large Language Model Agents
Large language models hold considerable promise for various applications, but their computational requirements create a barrier that many institutions cannot overcome. A single session using a 70-billion-parameter model can cost around $127 in cloud computing fees, which puts these tools out of reach for organizations operating on limited budgets. We present AgentCompress, a framework that tackles this problem through task-aware dynamic compression. The idea comes from a simple observation: not all tasks require the same computational effort. Complex reasoning, for example, is far more demanding than text reformatting, yet conventional compression applies the same reduction to both. Our approach uses a lightweight neural controller that looks at the first few tokens of each request, estimates how complex the task will be, and sends it to an appropriately quantized version of the model. This routing step adds only about 12 milliseconds of overhead. We tested the framework on 290 multi-stage workflows from domains including computer science, physics, chemistry, and biology. The results show a 68.3% reduction in computational costs while preserving 96.2% of the original success rate. These findings suggest that routing queries intelligently can make powerful language models substantially more affordable without sacrificing output quality
LangHOPS: Language Grounded Hierarchical Open-Vocabulary Part Segmentation Neurips 2025
We propose LangHOPS, the first Multimodal Large Language Model (MLLM) based framework for open-vocabulary object-part instance segmentation. Given an image, LangHOPS can jointly detect and segment hierarchical object and part instances from open-vocabulary candidate categories. Unlike prior approaches that rely on heuristic or learnable visual grouping, our approach grounds object-part hierarchies in language space. It integrates the MLLM into the object-part parsing pipeline to leverage its rich knowledge and reasoning capabilities, and link multi-granularity concepts within the hierarchies. We evaluate LangHOPS across multiple challenging scenarios, including in-domain and cross-dataset object-part instance segmentation, and zero-shot semantic segmentation. LangHOPS achieves state-of-the-art results, surpassing previous methods by 5.5% Average Precision (AP) (in-domain) and 4.8% (cross-dataset) on the PartImageNet dataset and by 2.5% mIOU on unseen object parts in ADE20K (zero-shot). Ablation studies further validate the effectiveness of the language-grounded hierarchy and MLLM driven part query refinement strategy. The code will be released here.
comment: 10 pages, 5 figures, 14 tables, Neurips 2025
Fuzzy-Logic and Deep Learning for Environmental Condition-Aware Road Surface Classification
Monitoring states of road surfaces provides valuable information for the planning and controlling vehicles and active vehicle control systems. Classical road monitoring methods are expensive and unsystematic because they require time for measurements. This article proposes an real time system based on weather conditional data and road surface condition data. For this purpose, we collected data with a mobile phone camera on the roads around the campus of the Karlsruhe Institute of Technology. We tested a large number of different image-based deep learning algorithms for road classification. In addition, we used road acceleration data along with road image data for training by using them as images. We compared the performances of acceleration-based and camera image-based approaches. The performances of the simple Alexnet, LeNet, VGG, and Resnet algorithms were compared as deep learning algorithms. For road condition classification, 5 classes were considered: asphalt, damaged asphalt, gravel road, damaged gravel road, pavement road and over 95% accuracy performance was achieved. It is also proposed to use the acceleration or the camera image to classify the road surface according to the weather and the time of day using fuzzy logic.
comment: This paper has been withdrawn by the authors because the manuscript was submitted before all authors reached a final agreement on the content and readiness of the work. The paper should not be cited
MoE3D: A Mixture-of-Experts Module for 3D Reconstruction
We propose a simple yet effective approach to enhance the performance of feed-forward 3D reconstruction models. Existing methods often struggle near depth discontinuities, where standard regression losses encourage spatial averaging and thus blur sharp boundaries. To address this issue, we introduce a mixture-of-experts formulation that handles uncertainty at depth boundaries by combining multiple smooth depth predictions. A softmax weighting head dynamically selects among these hypotheses on a per-pixel basis. By integrating our mixture model into a pre-trained state-of-the-art 3D model, we achieve a substantial reduction of boundary artifacts and gains in overall reconstruction accuracy. Notably, our approach is highly compute efficient, delivering generalizable improvements even when fine-tuned on a small subset of training data while incurring only negligible additional inference computation, suggesting a promising direction for lightweight and accurate 3D reconstruction.
REXO: Indoor Multi-View Radar Object Detection via 3D Bounding Box Diffusion AAAI 2026
Multi-view indoor radar perception has drawn attention due to its cost-effectiveness and low privacy risks. Existing methods often rely on {implicit} cross-view radar feature association, such as proposal pairing in RFMask or query-to-feature cross-attention in RETR, which can lead to ambiguous feature matches and degraded detection in complex indoor scenes. To address these limitations, we propose \textbf{REXO} (multi-view Radar object dEtection with 3D bounding boX diffusiOn), which lifts the 2D bounding box (BBox) diffusion process of DiffusionDet into the 3D radar space. REXO utilizes these noisy 3D BBoxes to guide an {explicit} cross-view radar feature association, enhancing the cross-view radar-conditioned denoising process. By accounting for prior knowledge that the person is in contact with the ground, REXO reduces the number of diffusion parameters by determining them from this prior. Evaluated on two open indoor radar datasets, our approach surpasses state-of-the-art methods by a margin of +4.22 AP on the HIBER dataset and +11.02 AP on the MMVR dataset. The REXO implementation is available at https://github.com/merlresearch/radar-bbox-diffusion.
comment: 26 pages; Accepted to AAAI 2026; Code available at https://github.com/merlresearch/radar-bbox-diffusion
Learning Generalizable and Efficient Image Watermarking via Hierarchical Two-Stage Optimization
Deep image watermarking, which refers to enabling imperceptible watermark embedding and reliable extraction in cover images, has been shown to be effective for copyright protection of image assets. However, existing methods face limitations in simultaneously satisfying three essential criteria for generalizable watermarking: (1) invisibility (imperceptible hiding of watermarks), (2) robustness (reliable watermark recovery under diverse conditions), and (3) broad applicability (low latency in the watermarking process). To address these limitations, we propose a Hierarchical Watermark Learning (HiWL) framework, a two-stage optimization that enables a watermarking model to simultaneously achieve all three criteria. In the first stage, distribution alignment learning is designed to establish a common latent space with two constraints: (1) visual consistency between watermarked and non-watermarked images, and (2) information invariance across watermark latent representations. In this way, multimodal inputs -- including watermark messages (binary codes) and cover images (RGB pixels) -- can be effectively represented, ensuring both the invisibility of watermarks and robustness in the watermarking process. In the second stage, we employ generalized watermark representation learning to separate a unique representation of the watermark from the marked image in RGB space. Once trained, the HiWL model effectively learns generalizable watermark representations while maintaining broad applicability. Extensive experiments demonstrate the effectiveness of the proposed method. Specifically, it achieves 7.6% higher accuracy in watermark extraction compared to existing methods, while maintaining extremely low latency (processing 1000 images in 1 second).
Reimagining Anomalies: What If Anomalies Were Normal? AAAI 2026
Deep learning-based methods have achieved a breakthrough in image anomaly detection, but their complexity introduces a considerable challenge to understanding why an instance is predicted to be anomalous. We introduce a novel explanation method that generates multiple alternative modifications for each anomaly, capturing diverse concepts of anomalousness. Each modification is trained to be perceived as normal by the anomaly detector. The method provides a semantic explanation of the mechanism that triggered the detector, allowing users to explore ``what-if scenarios.'' Qualitative and quantitative analyses across various image datasets demonstrate that applying this method to state-of-the-art detectors provides high-quality semantic explanations.
comment: 38 pages, published as a conference paper at AAAI 2026
Sketch&Patch++: Efficient Structure-Aware 3D Gaussian Representation
We observe that Gaussians exhibit distinct roles and characteristics analogous to traditional artistic techniques -- like how artists first sketch outlines before filling in broader areas with color, some Gaussians capture high-frequency features such as edges and contours, while others represent broader, smoother regions analogous to brush strokes that add volume and depth. Based on this observation, we propose a hybrid representation that categorizes Gaussians into (i) Sketch Gaussians, which represent high-frequency, boundary-defining features, and (ii) Patch Gaussians, which cover low-frequency, smooth regions. This semantic separation naturally enables layered progressive streaming, where the compact Sketch Gaussians establish the structural skeleton before Patch Gaussians incrementally refine volumetric detail. In this work, we extend our previous method to arbitrary 3D scenes by proposing a novel hierarchical adaptive categorization framework that operates directly on the 3DGS representation. Our approach employs multi-criteria density-based clustering, combined with adaptive quality-driven refinement. This method eliminates dependency on external 3D line primitives while ensuring optimal parametric encoding effectiveness. Our comprehensive evaluation across diverse scenes, including both man-made and natural environments, demonstrates that our method achieves up to 1.74 dB improvement in PSNR, 6.7% in SSIM, and 41.4% in LPIPS at equivalent model sizes compared to uniform pruning baselines. For indoor scenes, our method can maintain visual quality with only 0.5\% of the original model size. This structure-aware representation enables efficient storage, adaptive streaming, and rendering of high-fidelity 3D content across bandwidth-constrained networks and resource-limited devices.
GP-GS: Gaussian Processes Densification for 3D Gaussian Splatting
3D Gaussian Splatting (3DGS) enables photorealistic rendering but suffers from artefacts due to sparse Structure-from-Motion (SfM) initialisation. To address this limitation, we propose GP-GS, a Gaussian Process (GP) based densification framework for 3DGS optimisation. GP-GS formulates point cloud densification as a continuous regression problem, where a GP learns a local mapping from 2D pixel coordinates to 3D position and colour attributes. An adaptive neighbourhood-based sampling strategy generates candidate pixels for inference, while GP-predicted uncertainty is used to filter unreliable predictions, reducing noise and preserving geometric structure. Extensive experiments on synthetic and real-world benchmarks demonstrate that GP-GS consistently improves reconstruction quality and rendering fidelity, achieving up to 1.12 dB PSNR improvement over strong baselines.
comment: 11 pages, 8 figures
SuperGSeg: Open-Vocabulary 3D Segmentation with Structured Super-Gaussians
3D Gaussian Splatting has recently gained traction for its efficient training and real-time rendering. While the vanilla Gaussian Splatting representation is mainly designed for view synthesis, more recent works investigated how to extend it with scene understanding and language features. However, existing methods lack a detailed comprehension of scenes, limiting their ability to segment and interpret complex structures. To this end, We introduce SuperGSeg, a novel approach that fosters cohesive, context-aware scene representation by disentangling segmentation and language field distillation. SuperGSeg first employs neural Gaussians to learn instance and hierarchical segmentation features from multi-view images with the aid of off-the-shelf 2D masks. These features are then leveraged to create a sparse set of what we call Super-Gaussians. Super-Gaussians facilitate the distillation of 2D language features into 3D space. Through Super-Gaussians, our method enables high-dimensional language feature rendering without extreme increases in GPU memory. Extensive experiments demonstrate that SuperGSeg outperforms prior works on both open-vocabulary object localization and semantic segmentation tasks.
comment: 13 pages, 8 figures
Image-to-Video Transfer Learning based on Image-Language Foundation Models: A Comprehensive Survey
Image-Language Foundation Models (ILFMs) have demonstrated remarkable success in vision-language understanding, providing transferable multimodal representations that generalize across diverse downstream image-based tasks. The advancement of video-text research has spurred growing interest in extending image-based models to the video domain. This paradigm, termed as image-to-video transfer learning, effectively mitigates the substantial data and computational demands compared to training video-language models from scratch while achieves comparable or even stronger model performance. This survey provides the first comprehensive review of this emerging field, which begins by summarizing the widely used ILFMs and their capabilities. We then systematically classify existing image-to-video transfer learning techniques into two broad root categories (frozen features and adapted features), along with numerous fine-grained subcategories, based on the paradigm for transferring image understanding capability to video tasks. Building upon the task-specific nature of image-to-video transfer, this survey methodically elaborates these strategies and details their applications across a spectrum of video-text learning tasks, ranging from fine-grained settings (e.g., spatio-temporal video grounding) to coarse-grained ones (e.g., video question answering). We further present a detailed experimental analysis to investigate the efficacy of different image-to-video transfer learning paradigms on a range of downstream video understanding tasks. Finally, we identify prevailing challenges and highlight promising directions for future research. By offering a comprehensive and structured overview, this survey aims to establish a structured roadmap for advancing video-text learning based on existing ILFM, and to inspire future research directions in this rapidly evolving domain. Github repository is available.
comment: Updated version, github repository is available at https://github.com/YuriPreisdent/awesome-image-to-video-transfer
DyDiT++: Diffusion Transformers with Timestep and Spatial Dynamics for Efficient Visual Generation
Diffusion Transformer (DiT), an emerging diffusion model for visual generation, has demonstrated superior performance but suffers from substantial computational costs. Our investigations reveal that these costs primarily stem from the static inference paradigm, which inevitably introduces redundant computation in certain diffusion timesteps and spatial regions. To overcome this inefficiency, we propose Dynamic Diffusion Transformer (DyDiT), an architecture that dynamically adjusts its computation along both timestep and spatial dimensions. Building on these designs, we present an extended version, DyDiT++, with improvements in three key aspects. First, it extends the generation mechanism of DyDiT beyond diffusion to flow matching, demonstrating that our method can also accelerate flow-matching-based generation, enhancing its versatility. Furthermore, we enhance DyDiT to tackle more complex visual generation tasks, including video generation and text-to-image generation, thereby broadening its real-world applications. Finally, to address the high cost of full fine-tuning and democratize technology access, we investigate the feasibility of training DyDiT in a parameter-efficient manner and introduce timestep-based dynamic LoRA (TD-LoRA). Extensive experiments on diverse visual generation models, including DiT, SiT, Latte, and FLUX, demonstrate the effectiveness of DyDiT++. Remarkably, with <3% additional fine-tuning iterations, our approach reduces the FLOPs of DiT-XL by 51%, yielding 1.73x realistic speedup on hardware, and achieves a competitive FID score of 2.07 on ImageNet. The code is available at https://github.com/alibaba-damo-academy/DyDiT.
comment: This paper was accepted to the IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) on January 9, 2026. arXiv admin note: substantial text overlap with arXiv:2410.03456
SegDAC: Improving Visual Reinforcement Learning by Extracting Dynamic Object-Centric Representations from Pretrained Vision Models
Visual reinforcement learning (RL) is challenging due to the need to extract useful representations from high-dimensional inputs while learning effective control from sparse and noisy rewards. Although large perception models exist, integrating them effectively into RL for visual generalization and improved sample efficiency remains difficult. We propose SegDAC, a Segmentation-Driven Actor-Critic method. SegDAC uses Segment Anything (SAM) for object-centric decomposition and YOLO-World to ground the image segmentation process via text inputs. It includes a novel transformer-based architecture that supports a dynamic number of segments at each time step and effectively learns which segments to focus on using online RL, without using human labels. By evaluating SegDAC over a challenging visual generalization benchmark using Maniskill3, which covers diverse manipulation tasks under strong visual perturbations, we demonstrate that SegDAC achieves significantly better visual generalization, doubling prior performance on the hardest setting and matching or surpassing prior methods in sample efficiency across all evaluated tasks. Project Page: https://segdac.github.io/
MiCo: Multiple Instance Learning with Context-Aware Clustering for Whole Slide Image Analysis
Multiple instance learning (MIL) has shown significant promise in histopathology whole slide image (WSI) analysis for cancer diagnosis and prognosis. However, the inherent spatial heterogeneity of WSIs presents critical challenges, as morphologically similar tissue types are often dispersed across distant anatomical regions. Conventional MIL methods struggle to model these scattered tissue distributions and capture cross-regional spatial interactions effectively. To address these limitations, we propose a novel Multiple instance learning framework with Context-Aware Clustering (MiCo), designed to enhance cross-regional intra-tissue correlations and strengthen inter-tissue semantic associations in WSIs. MiCo begins by clustering instances to distill discriminative morphological patterns, with cluster centroids serving as semantic anchors. To enhance cross-regional intra-tissue correlations, MiCo employs a Cluster Route module, which dynamically links instances of the same tissue type across distant regions via feature similarity. These semantic anchors act as contextual hubs, propagating semantic relationships to refine instance-level representations. To eliminate semantic fragmentation and strengthen inter-tissue semantic associations, MiCo integrates a Cluster Reducer module, which consolidates redundant anchors while enhancing information exchange between distinct semantic groups. Extensive experiments on two challenging tasks across nine large-scale public cancer datasets demonstrate the effectiveness of MiCo, showcasing its superiority over state-of-the-art methods. The code is available at https://github.com/junjianli106/MiCo.
comment: MICCAI 2025
Visual Adversarial Attacks and Defenses in the Physical World: A Survey
Although Deep Neural Networks (DNNs) have been widely applied in various real-world scenarios, they remain vulnerable to adversarial examples. Adversarial attacks in computer vision can be categorized into digital attacks and physical attacks based on their different forms. Compared to digital attacks, which generate perturbations in digital pixels, physical attacks are more practical in real-world settings. Due to the serious security risks posed by physically adversarial examples, many studies have been conducted to evaluate the physically adversarial robustness of DNNs in recent years. In this paper, we provide a comprehensive survey of current physically adversarial attacks and defenses in computer vision. We establish a taxonomy by organizing physical attacks according to attack tasks, attack forms, and attack methods. This approach offers readers a systematic understanding of the topic from multiple perspectives. For physical defenses, we categorize them into pre-processing, in-processing, and post-processing for DNN models to ensure comprehensive coverage of adversarial defenses. Based on this survey, we discuss the challenges facing this research field and provide an outlook on future directions.
CaTS-Bench: Can Language Models Describe Time Series?
Time series captioning, the task of describing time series in natural language, requires numeric and temporal reasoning, trend interpretation, and contextual understanding. Existing benchmarks, however, often rely on fully synthetic or generic captions, and typically neglect metadata and visual representations. We introduce CaTS-Bench, a comprehensive benchmark for Context-aware Time Series reasoning across $11$ diverse domains, centered on a gold-standard evaluation set of $1746$ human-rewritten captions that measure how effectively models translate numeric trends into immediately interpretable narratives. To address the scarcity of human-annotated data, we also propose a scalable pipeline for generating high-fidelity synthetic captions, the quality of which we validate. We evaluate leading Vision-Language Models on our benchmark, revealing that even proprietary models struggle to capture numeric nuances in temporal descriptions, while finetuning open-source models on synthetic data yields substantial performance gains. Finally, we release a diagnostic suite of $910$ multiple-choice questions and tailored numeric metrics to gauge time-series-specific reasoning capabilities, establishing CaTS-Bench as a reliable foundation for grounded, multimodal language generation in numeric domains.
comment: 8 pages, 6 figures, 3 tables in the main paper. Many more in the appendix
Smooth regularization for efficient video recognition NeurIPS 2025
We propose a smooth regularization technique that instills a strong temporal inductive bias in video recognition models, particularly benefiting lightweight architectures. Our method encourages smoothness in the intermediate-layer embeddings of consecutive frames by modeling their changes as a Gaussian Random Walk (GRW). This penalizes abrupt representational shifts, thereby promoting low-acceleration solutions that better align with the natural temporal coherence inherent in videos. By leveraging this enforced smoothness, lightweight models can more effectively capture complex temporal dynamics. Applied to such models, our technique yields a 3.8% to 6.4% accuracy improvement on Kinetics-600. Notably, the MoViNets model family trained with our smooth regularization improves the current state of the art by 3.8% to 6.1% within their respective FLOP constraints, while MobileNetV3 and the MoViNets-Stream family achieve gains of 4.9% to 6.4% over prior state-of-the-art models with comparable memory footprints. Our code and models are available at https://github.com/cmusatyalab/grw-smoothing.
comment: Accepted to NeurIPS 2025
Accelerating Targeted Hard-Label Adversarial Attacks in Low-Query Black-Box Settings
Deep neural networks for image classification remain vulnerable to adversarial examples -- small, imperceptible perturbations that induce misclassifications. In black-box settings, where only the final prediction is accessible, crafting targeted attacks that aim to misclassify into a specific target class is particularly challenging due to narrow decision regions. Current state-of-the-art methods often exploit the geometric properties of the decision boundary separating a source image and a target image rather than incorporating information from the images themselves. In contrast, we propose Targeted Edge-informed Attack (TEA), a novel attack that utilizes edge information from the target image to carefully perturb it, thereby producing an adversarial image that is closer to the source image while still achieving the desired target classification. Our approach consistently outperforms current state-of-the-art methods across different models in low query settings (nearly 70% fewer queries are used), a scenario especially relevant in real-world applications with limited queries and black-box access. Furthermore, by efficiently generating a suitable adversarial example, TEA provides an improved target initialization for established geometry-based attacks.
comment: This paper contains 10 pages, 8 figures and 8 tables. For associated supplementary code, see https://github.com/mdppml/TEA. This work has been accepted for publication at the IEEE Conference on Secure and Trustworthy Machine Learning (SaTML). The final version will be available on IEEE Xplore
Safe Vision-Language Models via Unsafe Weights Manipulation WACV 2026
Vision-language models (VLMs) often inherit the biases and unsafe associations present within their large-scale training dataset. While recent approaches mitigate unsafe behaviors, their evaluation focuses on how safe the model is on unsafe inputs, ignoring potential shortcomings on safe ones. In this paper, we first revise safety evaluation by introducing SafeGround, a new set of metrics that evaluate safety at different levels of granularity. With this metric, we uncover a surprising issue of training-based methods: they make the model less safe on safe inputs. From this finding, we take a different direction and explore whether it is possible to make a model safer without training, introducing Unsafe Weights Manipulation (UWM). UWM uses a calibration set of safe and unsafe instances to compare activations between safe and unsafe content, identifying the most important parameters for processing the latter. Their values are then manipulated via negation. Experiments show that UWM achieves the best tradeoff between safety and knowledge preservation, consistently improving VLMs on unsafe queries while outperforming even training-based state-of-the-art methods on safe ones.
comment: WACV 2026
Physics-Inspired Modeling and Content Adaptive Routing in an Infrared Gas Leak Detection Network
Detecting infrared gas leaks is critical for environmental monitoring and industrial safety, yet remains difficult because plumes are faint, small, semitransparent, and have weak, diffuse boundaries. We present physics-edge hybrid gas dynamic routing network (PEG-DRNet). First, we introduce the Gas Block, a diffusion-convection unit modeling gas transport: a local branch captures short-range variations, while a large-kernel branch captures long-range propagation. An edge-gated learnable fusion module balances local detail and global context, strengthening weak-contrast plume and contour cues. Second, we propose the adaptive gradient and phase edge operator (AGPEO), computing reliable edge priors from multi-directional gradients and phase-consistent responses. These are transformed by a multi-scale edge perception module (MSEPM) into hierarchical edge features that reinforce boundaries. Finally, the content-adaptive sparse routing path aggregation network (CASR-PAN), with adaptive information modulation modules for fusion and self, selectively propagates informative features across scales based on edge and content cues, improving cross-scale discriminability while reducing redundancy. Experiments on the IIG dataset show that PEG-DRNet achieves an overall AP of 29.8\%, an AP$_{50}$ of 84.3\%, and a small-object AP of 25.3\%, surpassing the RT-DETR-R18 baseline by 3.0\%, 6.5\%, and 5.3\%, respectively, while requiring only 43.7 Gflops and 14.9 M parameters. The proposed PEG-DRNet achieves superior overall performance with the best balance of accuracy and computational efficiency, outperforming existing CNN and Transformer detectors in AP and AP$_{50}$ on the IIG and LangGas dataset.
Studying Illustrations in Manuscripts: An Efficient Deep-Learning Approach
The recent Artificial Intelligence (AI) revolution has opened transformative possibilities for the humanities, particularly in unlocking the visual-artistic content embedded in historical illuminated manuscripts. While digital archives now offer unprecedented access to these materials, the ability to systematically locate, extract, and analyze illustrations at scale remains a major challenge. We present a general and scalable AI-based pipeline for large-scale visual analysis of illuminated manuscripts. The framework integrates modern deep-learning models for page-level illustration detection, illustration extraction, and multimodal description, enabling scholars to search, cluster, and study visual materials and artistic trends across entire corpora. We demonstrate the applicability of this approach on large heterogeneous collections, including the Vatican Library and richly illuminated manuscripts such as the Bible of Borso d'Este. The system reveals meaningful visual patterns and cross-manuscript relationships by embedding illustrations into a shared representation space and analyzing their similarity structure (see figure 4). By harnessing recent advances in computer vision and vision-language models, our framework enables new forms of large-scale visual scholarship in historical studies, art history, and cultural heritage making it possible to explore iconography, stylistic trends, and cultural connections in ways that were previously impractical.
comment: 17 pages, 5 figures
Lightweight Neural Framework for Robust 3D Volume and Surface Estimation from Multi-View Images
Accurate estimation of object volume and surface area from visual data is an open challenge with broad implications across various domains. We propose a unified framework that predicts volumetric and surface metrics directly from a set of 2D multi-view images. Our approach first generates a point cloud from the captured multi-view images using recent 3D reconstruction techniques, while a parallel 2D encoder aggregates view-aligned features. A fusion module then aligns and merges 3D geometry with 2D visual embeddings, followed by a graph-based decoder that regresses volume, surface area, and their corresponding uncertainties. This proposed architecture maintains robustness against sparse or noisy data. We evaluate the framework across multiple application domains: corals, where precise geometric measurements support growth monitoring; food items, where volume prediction relates to dietary tracking and portion analysis; and human bodies, where volumetric cues are crucial for anthropometric and medical applications. Experimental results demonstrate the reliable performance of our framework across diverse scenarios, highlighting its versatility and adaptability. Furthermore, by coupling 3D reconstruction with neural regression and 2D features, our model provides a scalable and fast solution for quantitative shape analysis from visual data.
comment: Expanded version of prior work on coral volume/surface estimation, with a generalized framework and additional evaluations across multiple domains
CLIP-GS: Unifying Vision-Language Representation with 3D Gaussian Splatting
Recent works in 3D multimodal learning have made remarkable progress. However, typically 3D multimodal models are only capable of handling point clouds. Compared to the emerging 3D representation technique, 3D Gaussian Splatting (3DGS), the spatially sparse point cloud cannot depict the texture information of 3D objects, resulting in inferior reconstruction capabilities. This limitation constrains the potential of point cloud-based 3D multimodal representation learning. In this paper, we present CLIP-GS, a novel multimodal representation learning framework grounded in 3DGS. We introduce the GS Tokenizer to generate serialized gaussian tokens, which are then processed through transformer layers pre-initialized with weights from point cloud models, resulting in the 3DGS embeddings. CLIP-GS leverages contrastive loss between 3DGS and the visual-text embeddings of CLIP, and we introduce an image voting loss to guide the directionality and convergence of gradient optimization. Furthermore, we develop an efficient way to generate triplets of 3DGS, images, and text, facilitating CLIP-GS in learning unified multimodal representations. Leveraging the well-aligned multimodal representations, CLIP-GS demonstrates versatility and outperforms point cloud-based models on various 3D tasks, including multimodal retrieval, zero-shot, and few-shot classification.
GM-MoE: Low-Light Enhancement with Gated-Mechanism Mixture-of-Experts
Low-light enhancement has wide applications in autonomous driving, 3D reconstruction, remote sensing, surveillance, and so on, which can significantly improve information utilization. However, most existing methods lack generalization and are limited to specific tasks such as image recovery. To address these issues, we propose Gated-Mechanism Mixture-of-Experts (GM-MoE), the first framework to introduce a mixture-of-experts network for low-light image enhancement. GM-MoE comprises a dynamic gated weight conditioning network and three sub-expert networks, each specializing in a distinct enhancement task. Combining a self-designed gated mechanism that dynamically adjusts the weights of the sub-expert networks for different data domains. Additionally, we integrate local and global feature fusion within sub-expert networks to enhance image quality by capturing multi-scale features. Experimental results demonstrate that the GM-MoE achieves superior generalization with respect to 25 compared approaches, reaching state-of-the-art performance on PSNR on 5 benchmarks and SSIM on 4 benchmarks, respectively.
FlexVAR: Flexible Visual Autoregressive Modeling without Residual Prediction
This work challenges the residual prediction paradigm in visual autoregressive modeling and presents FlexVAR, a new Flexible Visual AutoRegressive image generation paradigm. FlexVAR facilitates autoregressive learning with ground-truth prediction, enabling each step to independently produce plausible images. This simple, intuitive approach swiftly learns visual distributions and makes the generation process more flexible and adaptable. Trained solely on low-resolution images ($\leq$ 256px), FlexVAR can: (1) Generate images of various resolutions and aspect ratios, even exceeding the resolution of the training images. (2) Support various image-to-image tasks, including image refinement, in/out-painting, and image expansion. (3) Adapt to various autoregressive steps, allowing for faster inference with fewer steps or enhancing image quality with more steps. Our 1.0B model outperforms its VAR counterpart on the ImageNet 256$\times$256 benchmark. Moreover, when zero-shot transfer the image generation process with 13 steps, the performance further improves to 2.08 FID, outperforming state-of-the-art autoregressive models AiM/VAR by 0.25/0.28 FID and popular diffusion models LDM/DiT by 1.52/0.19 FID, respectively. When transferring our 1.0B model to the ImageNet 512$\times$512 benchmark in a zero-shot manner, FlexVAR achieves competitive results compared to the VAR 2.3B model, which is a fully supervised model trained at 512$\times$512 resolution.
Toward Stable Semi-Supervised Remote Sensing Segmentation via Co-Guidance and Co-Fusion
Semi-supervised remote sensing (RS) image semantic segmentation offers a promising solution to alleviate the burden of exhaustive annotation, yet it fundamentally struggles with pseudo-label drift, a phenomenon where confirmation bias leads to the accumulation of errors during training. In this work, we propose Co2S, a stable semi-supervised RS segmentation framework that synergistically fuses priors from vision-language models and self-supervised models. Specifically, we construct a heterogeneous dual-student architecture comprising two distinct ViT-based vision foundation models initialized with pretrained CLIP and DINOv3 to mitigate error accumulation and pseudo-label drift. To effectively incorporate these distinct priors, an explicit-implicit semantic co-guidance mechanism is introduced that utilizes text embeddings and learnable queries to provide explicit and implicit class-level guidance, respectively, thereby jointly enhancing semantic consistency. Furthermore, a global-local feature collaborative fusion strategy is developed to effectively fuse the global contextual information captured by CLIP with the local details produced by DINOv3, enabling the model to generate highly precise segmentation results. Extensive experiments on six popular datasets demonstrate the superiority of the proposed method, which consistently achieves leading performance across various partition protocols and diverse scenarios. Project page is available at https://xavierjiezou.github.io/Co2S/.
comment: 12 pages, 5 figures, 9 tables
On the Design of One-step Diffusion via Shortcutting Flow Paths
Recent advances in few-step diffusion models have demonstrated their efficiency and effectiveness by shortcutting the probabilistic paths of diffusion models, especially in training one-step diffusion models from scratch (\emph{a.k.a.} shortcut models). However, their theoretical derivation and practical implementation are often closely coupled, which obscures the design space. To address this, we propose a common design framework for representative shortcut models. This framework provides theoretical justification for their validity and disentangles concrete component-level choices, thereby enabling systematic identification of improvements. With our proposed improvements, the resulting one-step model achieves a new state-of-the-art FID50k of 2.85 on ImageNet-256x256 under the classifier-free guidance setting with one step generation, and further reaches FID50k of 2.53 with 2x training steps. Remarkably, the model requires no pre-training, distillation, or curriculum learning. We believe our work lowers the barrier to component-level innovation in shortcut models and facilitates principled exploration of their design space.
comment: 10 pages of main body, conference paper
Diagnostic Performance of Universal-Learning Ultrasound AI Across Multiple Organs and Tasks: the UUSIC25 Challenge
IMPORTANCE: Modern ultrasound systems are universal diagnostic tools capable of imaging the entire body. However, current AI solutions remain fragmented into single-task tools. This critical gap between hardware versatility and software specificity limits workflow integration and clinical utility. OBJECTIVE: To evaluate the diagnostic accuracy, versatility, and efficiency of single general-purpose deep learning models for multi-organ classification and segmentation. DESIGN: The Universal UltraSound Image Challenge 2025 (UUSIC25) involved developing algorithms on 11,644 images aggregated from 12 sources (9 public, 3 private). Evaluation used an independent, multi-center private test set of 2,479 images, including data from a center completely unseen during training to assess generalization. OUTCOMES: Diagnostic performance (Dice Similarity Coefficient [DSC]; Area Under the Receiver Operating Characteristic Curve [AUC]) and computational efficiency (inference time, GPU memory). RESULTS: Of 15 valid algorithms, the top model (SMART) achieved a macro-averaged DSC of 0.854 across 5 segmentation tasks and AUC of 0.766 for binary classification. Models demonstrated high capability in anatomical segmentation (e.g., fetal head DSC: 0.942) but variability in complex diagnostic tasks subject to domain shift. Specifically, in breast cancer molecular subtyping, the top model's performance dropped from an AUC of 0.571 (internal) to 0.508 (unseen external center), highlighting the challenge of generalization. CONCLUSIONS: General-purpose AI models can achieve high accuracy and efficiency across multiple tasks using a single architecture. However, significant performance degradation on unseen data suggests domain generalization is critical for future clinical deployment.
comment: 8 pages, 2 figures. Summary of the UUSIC25 Challenge held at MICCAI 2025. Extensive Supplementary Material (containing original team reports) is available in the "ancillary files" section
Towards Trustworthy Dermatology MLLMs: A Benchmark and Multimodal Evaluator for Diagnostic Narratives
Multimodal large language models (LLMs) are increasingly used to generate dermatology diagnostic narratives directly from images. However, reliable evaluation remains the primary bottleneck for responsible clinical deployment. We introduce a novel evaluation framework that combines DermBench, a meticulously curated benchmark, with DermEval, a robust automatic evaluator, to enable clinically meaningful, reproducible, and scalable assessment. We build DermBench, which pairs 4,000 real-world dermatology images with expert-certified diagnostic narratives and uses an LLM-based judge to score candidate narratives across clinically grounded dimensions, enabling consistent and comprehensive evaluation of multimodal models. For individual case assessment, we train DermEval, a reference-free multimodal evaluator. Given an image and a generated narrative, DermEval produces a structured critique along with an overall score and per-dimension ratings. This capability enables fine-grained, per-case analysis, which is critical for identifying model limitations and biases. Experiments on a diverse dataset of 4,500 cases demonstrate that DermBench and DermEval achieve close alignment with expert ratings, with mean deviations of 0.251 and 0.117 (out of 5), respectively, providing reliable measurement of diagnostic ability and trustworthiness across different multimodal LLMs.
SuperFlow: Training Flow Matching Models with RL on the Fly
Recent progress in flow-based generative models and reinforcement learning (RL) has improved text-image alignment and visual quality. However, current RL training for flow models still has two main problems: (i) GRPO-style fixed per-prompt group sizes ignore variation in sampling importance across prompts, which leads to inefficient sampling and slower training; and (ii) trajectory-level advantages are reused as per-step estimates, which biases credit assignment along the flow. We propose SuperFlow, an RL training framework for flow-based models that adjusts group sizes with variance-aware sampling and computes step-level advantages in a way that is consistent with continuous-time flow dynamics. Empirically, SuperFlow reaches promising performance while using only 5.4% to 56.3% of the original training steps and reduces training time by 5.2% to 16.7% without any architectural changes. On standard text-to-image (T2I) tasks, including text rendering, compositional image generation, and human preference alignment, SuperFlow improves over SD3.5-M by 4.6% to 47.2%, and over Flow-GRPO by 1.7% to 16.0%.
comment: 15 pages
Gems: Group Emotion Profiling Through Multimodal Situational Understanding
Understanding individual, group and event level emotions along with contextual information is crucial for analyzing a multi-person social situation. To achieve this, we frame emotion comprehension as the task of predicting fine-grained individual emotion to coarse grained group and event level emotion. We introduce GEMS that leverages a multimodal swin-transformer and S3Attention based architecture, which processes an input scene, group members, and context information to generate joint predictions. Existing multi-person emotion related benchmarks mainly focus on atomic interactions primarily based on emotion perception over time and group level. To this end, we extend and propose VGAF-GEMS to provide more fine grained and holistic analysis on top of existing group level annotation of VGAF dataset. GEMS aims to predict basic discrete and continuous emotions (including valence and arousal) as well as individual, group and event level perceived emotions. Our benchmarking effort links individual, group and situational emotional responses holistically. The quantitative and qualitative comparisons with adapted state-of-the-art models demonstrate the effectiveness of GEMS framework on VGAF-GEMS benchmarking. We believe that it will pave the way of further research. The code and data is available at: https://github.com/katariaak579/GEMS
From Flatland to Space: Teaching Vision-Language Models to Perceive and Reason in 3D
Recent advances in LVLMs have improved vision-language understanding, but they still struggle with spatial perception, limiting their ability to reason about complex 3D scenes. Unlike previous approaches that incorporate 3D representations into models to improve spatial understanding, we aim to unlock the potential of VLMs by leveraging spatially relevant image data. To this end, we introduce a novel 2D spatial data generation and annotation pipeline built upon scene data with 3D ground-truth. This pipeline enables the creation of a diverse set of spatial tasks, ranging from basic perception tasks to more complex reasoning tasks. Leveraging this pipeline, we construct SPAR-7M, a large-scale dataset generated from thousands of scenes across multiple public datasets. In addition, we introduce SPAR-Bench, a benchmark designed to offer a more comprehensive evaluation of spatial capabilities compared to existing spatial benchmarks, supporting both single-view and multi-view inputs. Training on both SPAR-7M and large-scale 2D datasets enables our models to achieve state-of-the-art performance on 2D spatial benchmarks. Further fine-tuning on 3D task-specific datasets yields competitive results, underscoring the effectiveness of our dataset in enhancing spatial reasoning.
comment: Project page: https://logosroboticsgroup.github.io/SPAR/
SpectralKAN: Weighted Activation Distribution Kolmogorov-Arnold Network for Hyperspectral Image Change Detection
Kolmogorov-Arnold networks (KANs) represent data features by learning the activation functions and demonstrate superior accuracy with fewer parameters, FLOPs, GPU memory usage (Memory), shorter training time (TraT), and testing time (TesT) when handling low-dimensional data. However, when applied to high-dimensional data, which contains significant redundant information, the current activation mechanism of KANs leads to unnecessary computations, thereby reducing computational efficiency. KANs require reshaping high-dimensional data into a one-dimensional tensor as input, which inevitably results in the loss of dimensional information. To address these limitations, we propose weighted activation distribution KANs (WKANs), which reduce the frequency of activations per node and distribute node information into different output nodes through weights to avoid extracting redundant information. Furthermore, we introduce a multilevel tensor splitting framework (MTSF), which decomposes high-dimensional data to extract features from each dimension independently and leverages tensor-parallel computation to significantly improve the computational efficiency of WKANs on high-dimensional data. In this paper, we design SpectralKAN for hyperspectral image change detection using the proposed MTSF. SpectralKAN demonstrates outstanding performance across five datasets, achieving an overall accuracy (OA) of 0.9801 and a Kappa coefficient (K) of 0.9514 on the Farmland dataset, with only 8 k parameters, 0.07 M FLOPs, 911 MB Memory, 13.26 S TraT, and 2.52 S TesT, underscoring its superior accuracy-efficiency trade-off. The source code is publicly available at https://github.com/yanhengwang-heu/SpectralKAN.
SGDrive: Scene-to-Goal Hierarchical World Cognition for Autonomous Driving
Recent end-to-end autonomous driving approaches have leveraged Vision-Language Models (VLMs) to enhance planning capabilities in complex driving scenarios. However, VLMs are inherently trained as generalist models, lacking specialized understanding of driving-specific reasoning in 3D space and time. When applied to autonomous driving, these models struggle to establish structured spatial-temporal representations that capture geometric relationships, scene context, and motion patterns critical for safe trajectory planning. To address these limitations, we propose SGDrive, a novel framework that explicitly structures the VLM's representation learning around driving-specific knowledge hierarchies. Built upon a pre-trained VLM backbone, SGDrive decomposes driving understanding into a scene-agent-goal hierarchy that mirrors human driving cognition: drivers first perceive the overall environment (scene context), then attend to safety-critical agents and their behaviors, and finally formulate short-term goals before executing actions. This hierarchical decomposition provides the structured spatial-temporal representation that generalist VLMs lack, integrating multi-level information into a compact yet comprehensive format for trajectory planning. Extensive experiments on the NAVSIM benchmark demonstrate that SGDrive achieves state-of-the-art performance among camera-only methods on both PDMS and EPDMS, validating the effectiveness of hierarchical knowledge structuring for adapting generalist VLMs to autonomous driving.
ReBrain: Brain MRI Reconstruction from Sparse CT Slice via Retrieval-Augmented Diffusion WACV 2026
Magnetic Resonance Imaging (MRI) plays a crucial role in brain disease diagnosis, but it is not always feasible for certain patients due to physical or clinical constraints. Recent studies attempt to synthesize MRI from Computed Tomography (CT) scans; however, low-dose protocols often result in highly sparse CT volumes with poor through-plane resolution, making accurate reconstruction of the full brain MRI volume particularly challenging. To address this, we propose ReBrain, a retrieval-augmented diffusion framework for brain MRI reconstruction. Given any 3D CT scan with limited slices, we first employ a Brownian Bridge Diffusion Model (BBDM) to synthesize MRI slices along the 2D dimension. Simultaneously, we retrieve structurally and pathologically similar CT slices from a comprehensive prior database via a fine-tuned retrieval model. These retrieved slices are used as references, incorporated through a ControlNet branch to guide the generation of intermediate MRI slices and ensure structural continuity. We further account for rare retrieval failures when the database lacks suitable references and apply spherical linear interpolation to provide supplementary guidance. Extensive experiments on SynthRAD2023 and BraTS demonstrate that ReBrain achieves state-of-the-art performance in cross-modal reconstruction under sparse conditions.
comment: 16 pages, 12 figures, 7 tables; Accepted by WACV 2026
ART: Articulated Reconstruction Transformer
We introduce ART, Articulated Reconstruction Transformer -- a category-agnostic, feed-forward model that reconstructs complete 3D articulated objects from only sparse, multi-state RGB images. Previous methods for articulated object reconstruction either rely on slow optimization with fragile cross-state correspondences or use feed-forward models limited to specific object categories. In contrast, ART treats articulated objects as assemblies of rigid parts, formulating reconstruction as part-based prediction. Our newly designed transformer architecture maps sparse image inputs to a set of learnable part slots, from which ART jointly decodes unified representations for individual parts, including their 3D geometry, texture, and explicit articulation parameters. The resulting reconstructions are physically interpretable and readily exportable for simulation. Trained on a large-scale, diverse dataset with per-part supervision, and evaluated across diverse benchmarks, ART achieves significant improvements over existing baselines and establishes a new state of the art for articulated object reconstruction from image inputs.
comment: Project Page: https://kyleleey.github.io/ART/
CLOC: Contrastive Learning for Ordinal Classification with Multi-Margin N-pair Loss CVPR 2025
In ordinal classification, misclassifying neighboring ranks is common, yet the consequences of these errors are not the same. For example, misclassifying benign tumor categories is less consequential, compared to an error at the pre-cancerous to cancerous threshold, which could profoundly influence treatment choices. Despite this, existing ordinal classification methods do not account for the varying importance of these margins, treating all neighboring classes as equally significant. To address this limitation, we propose CLOC, a new margin-based contrastive learning method for ordinal classification that learns an ordered representation based on the optimization of multiple margins with a novel multi-margin n-pair loss (MMNP). CLOC enables flexible decision boundaries across key adjacent categories, facilitating smooth transitions between classes and reducing the risk of overfitting to biases present in the training data. We provide empirical discussion regarding the properties of MMNP and show experimental results on five real-world image datasets (Adience, Historical Colour Image Dating, Knee Osteoarthritis, Indian Diabetic Retinopathy Image, and Breast Carcinoma Subtyping) and one synthetic dataset simulating clinical decision bias. Our results demonstrate that CLOC outperforms existing ordinal classification methods and show the interpretability and controllability of CLOC in learning meaningful, ordered representations that align with clinical and practical needs.
comment: Accepted in CVPR 2025
GaussianDWM: 3D Gaussian Driving World Model for Unified Scene Understanding and Multi-Modal Generation
Driving World Models (DWMs) have been developing rapidly with the advances of generative models. However, existing DWMs lack 3D scene understanding capabilities and can only generate content conditioned on input data, without the ability to interpret or reason about the driving environment. Moreover, current approaches represent 3D spatial information with point cloud or BEV features do not accurately align textual information with the underlying 3D scene. To address these limitations, we propose a novel unified DWM framework based on 3D Gaussian scene representation, which enables both 3D scene understanding and multi-modal scene generation, while also enabling contextual enrichment for understanding and generation tasks. Our approach directly aligns textual information with the 3D scene by embedding rich linguistic features into each Gaussian primitive, thereby achieving early modality alignment. In addition, we design a novel task-aware language-guided sampling strategy that removes redundant 3D Gaussians and injects accurate and compact 3D tokens into LLM. Furthermore, we design a dual-condition multi-modal generation model, where the information captured by our vision-language model is leveraged as a high-level language condition in combination with a low-level image condition, jointly guiding the multi-modal generation process. We conduct comprehensive studies on the nuScenes, and NuInteract datasets to validate the effectiveness of our framework. Our method achieves state-of-the-art performance. We will release the code publicly on GitHub https://github.com/dtc111111/GaussianDWM.
Navigation Around Unknown Space Objects Using Visible-Thermal Image Fusion
As the popularity of on-orbit operations grows, so does the need for precise navigation around unknown resident space objects (RSOs) such as other spacecraft, orbital debris, and asteroids. The use of Simultaneous Localization and Mapping (SLAM) algorithms is often studied as a method to map out the surface of an RSO and find the inspector's relative pose using a lidar or conventional camera. However, conventional cameras struggle during eclipse or shadowed periods, and lidar, though robust to lighting conditions, tends to be heavier, bulkier, and more power-intensive. Thermal-infrared cameras can track the target RSO throughout difficult illumination conditions without these limitations. While useful, thermal-infrared imagery lacks the resolution and feature-richness of visible cameras. In this work, images of a target satellite in low Earth orbit are photo-realistically simulated in both visible and thermal-infrared bands. Pixel-level fusion methods are used to create visible/thermal-infrared composites that leverage the best aspects of each camera. Navigation errors from a monocular SLAM algorithm are compared between visible, thermal-infrared, and fused imagery in various lighting and trajectories. Fused imagery yields substantially improved navigation performance over visible-only and thermal-only methods.
comment: 18 pages, 11 figures. To be published in proceedings of AIAA SCITECH 2026 Forum
SWAGSplatting: Semantic-guided Water-scene Augmented Gaussian Splatting
Accurate 3D reconstruction in underwater environments remains a challenging task due to light attenuation, scattering, and limited visibility. While recent AI-based approaches have advanced underwater imaging, they often overlook high-level semantic understanding, which is crucial for reconstructing complex scenes. In this paper, we propose SWAGSplatting, \textit{Semantic-guided Water-scene Augmented Gaussian Splatting}, a novel multimodal framework that integrates language and vision knowledge into 3D Gaussian Splatting for robust and high-fidelity underwater reconstruction. Each Gaussian primitive is augmented with a learnable semantic feature, supervised using CLIP-based embeddings extracted from region-level semantic cues. A dedicated semantic consistency loss enforces alignment between geometric reconstruction and scene semantics. In addition, a stage-wise optimisation strategy combining coarse-to-fine learning with late-stage parameter refinement improves training stability and visual quality. Furthermore, we propose a 3D Gaussian Primitives Reallocation strategy to address the imbalanced distribution of primitives introduced by naive point cloud densification. Extensive experiments on the SeaThru-NeRF and Submerged3D datasets demonstrate that SWAGSplatting consistently outperforms state-of-the-art methods across PSNR, SSIM, and LPIPS metrics, achieving up to a 3.48 dB improvement in PSNR, enabling more accurate and semantically coherent underwater scene reconstruction for applications in marine perception and exploration.
UNCAP: Uncertainty-Guided Neurosymbolic Planning Using Natural Language Communication for Cooperative Autonomous Vehicles
Safe large-scale coordination of multiple cooperative connected autonomous vehicles (CAVs) hinges on communication that is both efficient and interpretable. Existing approaches either rely on transmitting high-bandwidth raw sensor data streams or neglect perception and planning uncertainties inherent in shared data, resulting in systems that are neither scalable nor safe. To address these limitations, we propose Uncertainty-Guided Natural Language Cooperative Autonomous Planning (UNCAP), a vision-language model-based planning approach that enables CAVs to communicate via lightweight natural language messages while explicitly accounting for perception uncertainty in decision-making. UNCAP features a two-stage communication protocol: (i) an ego CAV first identifies the subset of vehicles most relevant for information exchange, and (ii) the selected CAVs then transmit messages that quantitatively express their perception uncertainty. By selectively fusing messages that maximize mutual information, this strategy allows the ego vehicle to integrate only the most relevant signals into its decision-making, improving both the scalability and reliability of cooperative planning. Experiments across diverse driving scenarios show a 63% reduction in communication bandwidth with a 31% increase in driving safety score, a 61% reduction in decision uncertainty, and a four-fold increase in collision distance margin during near-miss events. Project website: https://uncap-project.github.io/
A Pre-trained Foundation Model Framework for Multiplanar MRI Classification of Extramural Vascular Invasion and Mesorectal Fascia Invasion in Rectal Cancer
Objectives Accurate MRI-based identification of extramural vascular invasion (EVI) and mesorectal fascia invasion (MFI) is crucial for risk-stratified rectal cancer treatment. However, subjective visual assessment and inter-institutional variability limit diagnostic consistency. This study developed and externally evaluated a multi-centre, foundation model-driven framework that automatically classifies EVI and MFI on axial and sagittal MRI. Methods A total of 331 pre-treatment rectal cancer T2-weighted MRI scans from three European hospitals were retrospectively recruited. A self-supervised frequency domain harmonization strategy was applied to reduce scanner variability. Three classifiers, SeResNet, the universal biomedical pretrained model (UMedPT) with a multilayer perceptron head, and a logistic-regression variant using frozen UMedPT features (UMedPT_LR), were trained (n=265) and tested (n=66). Gradient-weighted class activation mapping (Grad-CAM) visualized model predictions. Results UMedPT_LR achieved the best EVI performance with multiplanar fusion (AUC=0.82, test set). For MFI, UMedPT trained on axial harmonized images yielded the highest performance (AUC = 0.77). Both tasks outperformed the CHAIMELEON 2024 benchmark (EVI: 0.82 vs 0.74; MFI: 0.77 vs 0.75). Harmonization enhanced MFI classification, and multiplanar fusion further boosted EVI performance. Grad-CAM confirmed biologically plausible attention on peritumoral regions (EVI) and mesorectal fascia margins (MFI). Conclusion The proposed foundation model-driven framework, leveraging frequency domain harmonization and multiplanar fusion, achieves state-of-the-art performance for automated EVI and MFI classification on MRI, demonstrating strong generalizability across multiple centers.
comment: 27 pages, 9 figures
Layer-Wise Anomaly Detection in Directed Energy Deposition using High-Fidelity Fringe Projection Profilometry
Directed energy deposition (DED), a metal additive manufacturing process, is highly susceptible to process-induced defects such as geometric deviations, lack of fusion, and poor surface finish. This work presents a build-height-synchronized fringe projection system for in-situ, layer-wise surface reconstruction of laser-DED components, achieving a reconstruction accuracy of ${\pm}$46 $μ$m. From the reconstructed 3D morphology, two complementary geometry-based point cloud metrics are introduced: local point density, which highlights poor surface finish, and normal-change rate, which identifies lack-of-fusion features. These methods enable automated, annotation-free identification of common deposition anomalies directly from reconstructed surfaces, without the need for manual labeling. By directly linking geometric deviation to defect formation, the approach enables precise anomaly localization and advances the feasibility of closed-loop process control. This work establishes fringe projection as a practical tool for micrometer-scale monitoring in DED, bridging the gap between process signatures and part geometry for certifiable additive manufacturing.
comment: 28 pages, 17 figures
LLaVAction: evaluating and training multi-modal large language models for action understanding
Understanding human behavior requires measuring behavioral actions. Due to its complexity, behavior is best mapped onto a rich, semantic structure such as language. Emerging multimodal large language models (MLLMs) are promising candidates, but their fine-grained action understanding ability has not been fully examined. In this work, we reformulate EPIC-KITCHENS-100, one of the largest and most challenging egocentric action recognition datasets, into a MLLM benchmark (EPIC-KITCHENS-100-MQA). We demonstrate that when we sample difficult answers based on specialist models as distractors, leading MLLMs struggle to recognize the correct actions. How can we increase the performance of MLLMs? We curated a supervised finetuning dataset that includes `hard' action recognition, temporal detection, captioning, and free-form question answering to improve models' diverse action understanding capabilities. We introduce a new model called LLaVAction that adds an action token to boost models' attention on visual tokens and a two-stage pipeline to obtain structured actions. LLaVAction greatly improves the MLLMs' ability of action understanding, achieving strong improvements on both MLLM benchmarks (21 points in accuracy over GPT-4o on EPIC-KITCHENS-100-MQA) and established action recognition benchmarks, suggesting that our methods prepare MLLMs to be a promising path forward for complex action tasks. Code, data, the benchmark, and models are available at https://github.com/AdaptiveMotorControlLab/LLaVAction.
comment: https://github.com/AdaptiveMotorControlLab/LLaVAction
Global 3D Reconstruction of Clouds & Tropical Cyclones
Accurate forecasting of tropical cyclones (TCs) remains challenging due to limited satellite observations probing TC structure and difficulties in resolving cloud properties involved in TC intensification. Recent research has demonstrated the capabilities of machine learning methods for 3D cloud reconstruction from satellite observations. However, existing approaches have been restricted to regions where TCs are uncommon, and are poorly validated for intense storms. We introduce a new framework, based on a pre-training--fine-tuning pipeline, that learns from multiple satellites with global coverage to translate 2D satellite imagery into 3D cloud maps of relevant cloud properties. We apply our model to a custom-built TC dataset to evaluate performance in the most challenging and relevant conditions. We show that we can - for the first time - create global instantaneous 3D cloud maps and accurately reconstruct the 3D structure of intense storms. Our model not only extends available satellite observations but also provides estimates when observations are missing entirely. This is crucial for advancing our understanding of TC intensification and improving forecasts.
SpatialActor: Exploring Disentangled Spatial Representations for Robust Robotic Manipulation AAAI 2026
Robotic manipulation requires precise spatial understanding to interact with objects in the real world. Point-based methods suffer from sparse sampling, leading to the loss of fine-grained semantics. Image-based methods typically feed RGB and depth into 2D backbones pre-trained on 3D auxiliary tasks, but their entangled semantics and geometry are sensitive to inherent depth noise in real-world that disrupts semantic understanding. Moreover, these methods focus on high-level geometry while overlooking low-level spatial cues essential for precise interaction. We propose SpatialActor, a disentangled framework for robust robotic manipulation that explicitly decouples semantics and geometry. The Semantic-guided Geometric Module adaptively fuses two complementary geometry from noisy depth and semantic-guided expert priors. Also, a Spatial Transformer leverages low-level spatial cues for accurate 2D-3D mapping and enables interaction among spatial features. We evaluate SpatialActor on multiple simulation and real-world scenarios across 50+ tasks. It achieves state-of-the-art performance with 87.4% on RLBench and improves by 13.9% to 19.4% under varying noisy conditions, showing strong robustness. Moreover, it significantly enhances few-shot generalization to new tasks and maintains robustness under various spatial perturbations. Project Page: https://shihao1895.github.io/SpatialActor
comment: AAAI 2026 Oral | Project Page: https://shihao1895.github.io/SpatialActor
Artificial Intelligence 232
MHLA: Restoring Expressivity of Linear Attention via Token-Level Multi-Head
While the Transformer architecture dominates many fields, its quadratic self-attention complexity hinders its use in large-scale applications. Linear attention offers an efficient alternative, but its direct application often degrades performance, with existing fixes typically re-introducing computational overhead through extra modules (e.g., depthwise separable convolution) that defeat the original purpose. In this work, we identify a key failure mode in these methods: global context collapse, where the model loses representational diversity. To address this, we propose Multi-Head Linear Attention (MHLA), which preserves this diversity by computing attention within divided heads along the token dimension. We prove that MHLA maintains linear complexity while recovering much of the expressive power of softmax attention, and verify its effectiveness across multiple domains, achieving a 3.6\% improvement on ImageNet classification, a 6.3\% gain on NLP, a 12.6\% improvement on image generation, and a 41\% enhancement on video generation under the same time complexity.
comment: Code: https://github.com/DAGroup-PKU/MHLA/ Project website: https://dagroup-pku.github.io/MHLA/
Failure-Aware RL: Reliable Offline-to-Online Reinforcement Learning with Self-Recovery for Real-World Manipulation
Post-training algorithms based on deep reinforcement learning can push the limits of robotic models for specific objectives, such as generalizability, accuracy, and robustness. However, Intervention-requiring Failures (IR Failures) (e.g., a robot spilling water or breaking fragile glass) during real-world exploration happen inevitably, hindering the practical deployment of such a paradigm. To tackle this, we introduce Failure-Aware Offline-to-Online Reinforcement Learning (FARL), a new paradigm minimizing failures during real-world reinforcement learning. We create FailureBench, a benchmark that incorporates common failure scenarios requiring human intervention, and propose an algorithm that integrates a world-model-based safety critic and a recovery policy trained offline to prevent failures during online exploration. Extensive simulation and real-world experiments demonstrate the effectiveness of FARL in significantly reducing IR Failures while improving performance and generalization during online reinforcement learning post-training. FARL reduces IR Failures by 73.1% while elevating performance by 11.3% on average during real-world RL post-training. Videos and code are available at https://failure-aware-rl.github.io.
comment: Project page: https://failure-aware-rl.github.io
Kinship Data Benchmark for Multi-hop Reasoning
Large language models (LLMs) are increasingly evaluated on their ability to perform multi-hop reasoning, i.e., to combine multiple pieces of information into a coherent inference. We introduce KinshipQA, a benchmark designed to probe this capability through reasoning over kinship relations. The central contribution of our work is a generative pipeline that produces, on demand, large-scale, realistic, and culture-specific genealogical data: collections of interconnected family trees that satisfy explicit marriage constraints associated with different kinship systems. This allows task difficulty, cultural assumptions, and relational depth to be systematically controlled and varied. From these genealogies, we derive textual inference tasks that require reasoning over implicit relational chains. We evaluate the resulting benchmark using six state-of-the-art LLMs, spanning both open-source and closed-source models, under a uniform zero-shot protocol with deterministic decoding. Performance is measured using exact-match and set-based metrics. Our results demonstrate that KinshipQA yields a wide spread of outcomes and exposes systematic differences in multi-hop reasoning across models and cultural settings.
comment: 11 pages, 2 figures, 9 tables
Benchmarking Small Language Models and Small Reasoning Language Models on System Log Severity Classification
System logs are crucial for monitoring and diagnosing modern computing infrastructure, but their scale and complexity require reliable and efficient automated interpretation. Since severity levels are predefined metadata in system log messages, having a model merely classify them offers limited standalone practical value, revealing little about its underlying ability to interpret system logs. We argue that severity classification is more informative when treated as a benchmark for probing runtime log comprehension rather than as an end task. Using real-world journalctl data from Linux production servers, we evaluate nine small language models (SLMs) and small reasoning language models (SRLMs) under zero-shot, few-shot, and retrieval-augmented generation (RAG) prompting. The results reveal strong stratification. Qwen3-4B achieves the highest accuracy at 95.64% with RAG, while Gemma3-1B improves from 20.25% under few-shot prompting to 85.28% with RAG. Notably, the tiny Qwen3-0.6B reaches 88.12% accuracy despite weak performance without retrieval. In contrast, several SRLMs, including Qwen3-1.7B and DeepSeek-R1-Distill-Qwen-1.5B, degrade substantially when paired with RAG. Efficiency measurements further separate models: most Gemma and Llama variants complete inference in under 1.2 seconds per log, whereas Phi-4-Mini-Reasoning exceeds 228 seconds per log while achieving <10% accuracy. These findings suggest that (1) architectural design, (2) training objectives, and (3) the ability to integrate retrieved context under strict output constraints jointly determine performance. By emphasizing small, deployable models, this benchmark aligns with real-time requirements of digital twin (DT) systems and shows that severity classification serves as a lens for evaluating model competence and real-time deployability, with implications for root cause analysis (RCA) and broader DT integration.
comment: 28 pages, 5 figures, 7 tables
Beyond Single-Shot: Multi-step Tool Retrieval via Query Planning
LLM agents operating over massive, dynamic tool libraries rely on effective retrieval, yet standard single-shot dense retrievers struggle with complex requests. These failures primarily stem from the disconnect between abstract user goals and technical documentation, and the limited capacity of fixed-size embeddings to model combinatorial tool compositions. To address these challenges, we propose TOOLQP, a lightweight framework that models retrieval as iterative query planning. Instead of single-shot matching, TOOLQP decomposes instructions into sub-tasks and dynamically generates queries to interact with the retriever, effectively bridging the semantic gap by targeting the specific sub-tasks required for composition. We train TOOLQP using synthetic query trajectories followed by optimization via Reinforcement Learning with Verifiable Rewards (RLVR). Experiments demonstrate that TOOLQP achieves state-of-the-art performance, exhibiting superior zero-shot generalization, robustness across diverse retrievers, and significant improvements in downstream agentic execution.
OS-Symphony: A Holistic Framework for Robust and Generalist Computer-Using Agent
While Vision-Language Models (VLMs) have significantly advanced Computer-Using Agents (CUAs), current frameworks struggle with robustness in long-horizon workflows and generalization in novel domains. These limitations stem from a lack of granular control over historical visual context curation and the absence of visual-aware tutorial retrieval. To bridge these gaps, we introduce OS-Symphony, a holistic framework that comprises an Orchestrator coordinating two key innovations for robust automation: (1) a Reflection-Memory Agent that utilizes milestone-driven long-term memory to enable trajectory-level self-correction, effectively mitigating visual context loss in long-horizon tasks; (2) Versatile Tool Agents featuring a Multimodal Searcher that adopts a SeeAct paradigm to navigate a browser-based sandbox to synthesize live, visually aligned tutorials, thereby resolving fidelity issues in unseen scenarios. Experimental results demonstrate that OS-Symphony delivers substantial performance gains across varying model scales, establishing new state-of-the-art results on three online benchmarks, notably achieving 65.84% on OSWorld.
comment: 31 pages, 11 figures, 12 tables
DT-ICU: Towards Explainable Digital Twins for ICU Patient Monitoring via Multi-Modal and Multi-Task Iterative Inference
We introduce DT-ICU, a multimodal digital twin framework for continuous risk estimation in intensive care. DT-ICU integrates variable-length clinical time series with static patient information in a unified multitask architecture, enabling predictions to be updated as new observations accumulate over the ICU stay. We evaluate DT-ICU on the large, publicly available MIMIC-IV dataset, where it consistently outperforms established baseline models under different evaluation settings. Our test-length analysis shows that meaningful discrimination is achieved shortly after admission, while longer observation windows further improve the ranking of high-risk patients in highly imbalanced cohorts. To examine how the model leverages heterogeneous data sources, we perform systematic modality ablations, revealing that the model learnt a reasonable structured reliance on interventions, physiological response observations, and contextual information. These analyses provide interpretable insights into how multimodal signals are combined and how trade-offs between sensitivity and precision emerge. Together, these results demonstrate that DT-ICU delivers accurate, temporally robust, and interpretable predictions, supporting its potential as a practical digital twin framework for continuous patient monitoring in critical care. The source code and trained model weights for DT-ICU are publicly available at https://github.com/GUO-W/DT-ICU-release.
Improving Domain Generalization in Contrastive Learning using Adaptive Temperature Control NeurIPS
Self-supervised pre-training with contrastive learning is a powerful method for learning from sparsely labeled data. However, performance can drop considerably when there is a shift in the distribution of data from training to test time. We study this phenomenon in a setting in which the training data come from multiple domains, and the test data come from a domain not seen at training that is subject to significant covariate shift. We present a new method for contrastive learning that incorporates domain labels to increase the domain invariance of learned representations, leading to improved out-of-distribution generalization. Our method adjusts the temperature parameter in the InfoNCE loss -- which controls the relative weighting of negative pairs -- using the probability that a negative sample comes from the same domain as the anchor. This upweights pairs from more similar domains, encouraging the model to discriminate samples based on domain-invariant attributes. Through experiments on a variant of the MNIST dataset, we demonstrate that our method yields better out-of-distribution performance than domain generalization baselines. Furthermore, our method maintains strong in-distribution task performance, substantially outperforming baselines on this measure.
comment: NeurIPS SSL Workshop 2023
Evaluating the encoding competence of visual language models using uncommon actions
We propose UAIT (Uncommon-sense Action Image-Text) dataset, a new evaluation benchmark designed to test the semantic understanding ability of visual language models (VLMs) in uncommon-sense action scenes. Unlike previous datasets that focus on common visual scenes with statistical frequency advantages, UAIT challenges models with grammatically reasonable but semantically counter-common sense image-text pairs. Such tasks require models to go beyond superficial pattern recognition and demonstrate a deep understanding of agent-patient relationships and physical feasibility. To build UAIT, we designed a semi-automated process to synthesize high-quality uncommon-sense image-text samples using large language models, few-shot prompt engineering, and text-to-image generation. Each sample is accompanied by a carefully designed multiple-choice question to test the model's competence in fine-grained reasoning. We evaluate multiple state-of-the-art visual language models and compare them with models based on contrastive learning. Experiments show that all models perform significantly worse than humans in semantic judgment, especially in distinguishing grammatical correctness from semantic rationality. Further experiments show that even the lightweight model can improve its accuracy after fine-tuning, demonstrating the great potential of directional adaptation. This study not only reveals the key weaknesses of VLMs, but also provides diagnostic tools and research directions for the development of robust models with real visual semantic reasoning capabilities.
Hiking in the Wild: A Scalable Perceptive Parkour Framework for Humanoids
Achieving robust humanoid hiking in complex, unstructured environments requires transitioning from reactive proprioception to proactive perception. However, integrating exteroception remains a significant challenge: mapping-based methods suffer from state estimation drift; for instance, LiDAR-based methods do not handle torso jitter well. Existing end-to-end approaches often struggle with scalability and training complexity; specifically, some previous works using virtual obstacles are implemented case-by-case. In this work, we present \textit{Hiking in the Wild}, a scalable, end-to-end parkour perceptive framework designed for robust humanoid hiking. To ensure safety and training stability, we introduce two key mechanisms: a foothold safety mechanism combining scalable \textit{Terrain Edge Detection} with \textit{Foot Volume Points} to prevent catastrophic slippage on edges, and a \textit{Flat Patch Sampling} strategy that mitigates reward hacking by generating feasible navigation targets. Our approach utilizes a single-stage reinforcement learning scheme, mapping raw depth inputs and proprioception directly to joint actions, without relying on external state estimation. Extensive field experiments on a full-size humanoid demonstrate that our policy enables robust traversal of complex terrains at speeds up to 2.5 m/s. The training and deployment code is open-sourced to facilitate reproducible research and deployment on real robots with minimal hardware modifications.
comment: Project Page: https://project-instinct.github.io/hiking-in-the-wild
Deep Whole-body Parkour
Current approaches to humanoid control generally fall into two paradigms: perceptive locomotion, which handles terrain well but is limited to pedal gaits, and general motion tracking, which reproduces complex skills but ignores environmental capabilities. This work unites these paradigms to achieve perceptive general motion control. We present a framework where exteroceptive sensing is integrated into whole-body motion tracking, permitting a humanoid to perform highly dynamic, non-locomotion tasks on uneven terrain. By training a single policy to perform multiple distinct motions across varied terrestrial features, we demonstrate the non-trivial benefit of integrating perception into the control loop. Our results show that this framework enables robust, highly dynamic multi-contact motions, such as vaulting and dive-rolling, on unstructured terrain, significantly expanding the robot's traversability beyond simple walking or running. https://project-instinct.github.io/deep-whole-body-parkour
Predictive Analytics for Dementia: Machine Learning on Healthcare Data
Dementia is a complex syndrome impacting cognitive and emotional functions, with Alzheimer's disease being the most common form. This study focuses on enhancing dementia prediction using machine learning (ML) techniques on patient health data. Supervised learning algorithms are applied in this study, including K-Nearest Neighbors (KNN), Quadratic Discriminant Analysis (QDA), Linear Discriminant Analysis (LDA), and Gaussian Process Classifiers. To address class imbalance and improve model performance, techniques such as Synthetic Minority Over-sampling Technique (SMOTE) and Term Frequency-Inverse Document Frequency (TF-IDF) vectorization were employed. Among the models, LDA achieved the highest testing accuracy of 98%. This study highlights the importance of model interpretability and the correlation of dementia with features such as the presence of the APOE-epsilon4 allele and chronic conditions like diabetes. This research advocates for future ML innovations, particularly in integrating explainable AI approaches, to further improve predictive capabilities in dementia care.
comment: 10 pages, 13 figures
Adaptive Layer Selection for Layer-Wise Token Pruning in LLM Inference
Due to the prevalence of large language models (LLMs), key-value (KV) cache reduction for LLM inference has received remarkable attention. Among numerous works that have been proposed in recent years, layer-wise token pruning approaches, which select a subset of tokens at particular layers to retain in KV cache and prune others, are one of the most popular schemes. They primarily adopt a set of pre-defined layers, at which tokens are selected. Such design is inflexible in the sense that the accuracy significantly varies across tasks and deteriorates in harder tasks such as KV retrieval. In this paper, we propose ASL, a training-free method that adaptively chooses the selection layer for KV cache reduction, exploiting the variance of token ranks ordered by attention score. The proposed method balances the performance across different tasks while meeting the user-specified KV budget requirement. ASL operates during the prefilling stage and can be jointly used with existing KV cache reduction methods such as SnapKV to optimize the decoding stage. By evaluations on the InfiniteBench, RULER, and NIAH benchmarks, we show that equipped with one-shot token selection, where tokens are selected at a layer and propagated to deeper layers, ASL outperforms state-of-the-art layer-wise token selection methods in accuracy while maintaining decoding speed and KV cache reduction.
comment: Source code is available at https://github.com/TANIGUCHIREI/ASL
Variational Contrastive Learning for Skeleton-based Action Recognition
In recent years, self-supervised representation learning for skeleton-based action recognition has advanced with the development of contrastive learning methods. However, most of contrastive paradigms are inherently discriminative and often struggle to capture the variability and uncertainty intrinsic to human motion. To address this issue, we propose a variational contrastive learning framework that integrates probabilistic latent modeling with contrastive self-supervised learning. This formulation enables the learning of structured and semantically meaningful representations that generalize across different datasets and supervision levels. Extensive experiments on three widely used skeleton-based action recognition benchmarks show that our proposed method consistently outperforms existing approaches, particularly in low-label regimes. Moreover, qualitative analyses show that the features provided by our method are more relevant given the motion and sample characteristics, with more focus on important skeleton joints, when compared to the other methods.
Reasoning Models Will Blatantly Lie About Their Reasoning
It has been shown that Large Reasoning Models (LRMs) may not *say what they think*: they do not always volunteer information about how certain parts of the input influence their reasoning. But it is one thing for a model to *omit* such information and another, worse thing to *lie* about it. Here, we extend the work of Chen et al. (2025) to show that LRMs will do just this: they will flatly deny relying on hints provided in the prompt in answering multiple choice questions -- even when directly asked to reflect on unusual (i.e. hinted) prompt content, even when allowed to use hints, and even though experiments *show* them to be using the hints. Our results thus have discouraging implications for CoT monitoring and interpretability.
Towards Automating Blockchain Consensus Verification with IsabeLLM
Consensus protocols are crucial for a blockchain system as they are what allow agreement between the system's nodes in a potentially adversarial environment. For this reason, it is paramount to ensure their correct design and implementation to prevent such adversaries from carrying out malicious behaviour. Formal verification allows us to ensure the correctness of such protocols, but requires high levels of effort and expertise to carry out and thus is often omitted in the development process. In this paper, we present IsabeLLM, a tool that integrates the proof assistant Isabelle with a Large Language Model to assist and automate proofs. We demonstrate the effectiveness of IsabeLLM by using it to develop a novel model of Bitcoin's Proof of Work consensus protocol and verify its correctness. We use the DeepSeek R1 API for this demonstration and found that we were able to generate correct proofs for each of the non-trivial lemmas present in the verification.
Active Evaluation of General Agents: Problem Definition and Comparison of Baseline Algorithms
As intelligent agents become more generally-capable, i.e. able to master a wide variety of tasks, the complexity and cost of properly evaluating them rises significantly. Tasks that assess specific capabilities of the agents can be correlated and stochastic, requiring many samples for accurate comparisons, leading to added costs. In this paper, we propose a formal definition and a conceptual framework for active evaluation of agents across multiple tasks, which assesses the performance of ranking algorithms as a function of number of evaluation data samples. Rather than curating, filtering, or compressing existing data sets as a preprocessing step, we propose an online framing: on every iteration, the ranking algorithm chooses the task and agents to sample scores from. Then, evaluation algorithms report a ranking of agents on each iteration and their performance is assessed with respect to the ground truth ranking over time. Several baselines are compared under different experimental contexts, with synthetic generated data and simulated online access to real evaluation data from Atari game-playing agents. We find that the classical Elo rating system -- while it suffers from well-known failure modes, in theory -- is a consistently reliable choice for efficient reduction of ranking error in practice. A recently-proposed method, Soft Condorcet Optimization, shows comparable performance to Elo on synthetic data and significantly outperforms Elo on real Atari agent evaluation. When task variation from the ground truth is high, selecting tasks based on proportional representation leads to higher rate of ranking error reduction.
comment: AAMAS 2026
Beyond Static Tools: Test-Time Tool Evolution for Scientific Reasoning
The central challenge of AI for Science is not reasoning alone, but the ability to create computational methods in an open-ended scientific world. Existing LLM-based agents rely on static, pre-defined tool libraries, a paradigm that fundamentally fails in scientific domains where tools are sparse, heterogeneous, and intrinsically incomplete. In this paper, we propose Test-Time Tool Evolution (TTE), a new paradigm that enables agents to synthesize, verify, and evolve executable tools during inference. By transforming tools from fixed resources into problem-driven artifacts, TTE overcomes the rigidity and long-tail limitations of static tool libraries. To facilitate rigorous evaluation, we introduce SciEvo, a benchmark comprising 1,590 scientific reasoning tasks supported by 925 automatically evolved tools. Extensive experiments show that TTE achieves state-of-the-art performance in both accuracy and tool efficiency, while enabling effective cross-domain adaptation of computational tools. The code and benchmark have been released at https://github.com/lujiaxuan0520/Test-Time-Tool-Evol.
SALT-KG: A Benchmark for Semantics-Aware Learning on Enterprise Tables
Building upon the SALT benchmark for relational prediction (Klein et al., 2024), we introduce SALT-KG, a benchmark for semantics-aware learning on enterprise tables. SALT-KG extends SALT by linking its multi-table transactional data with a structured Operational Business Knowledge represented in a Metadata Knowledge Graph (OBKG) that captures field-level descriptions, relational dependencies, and business object types. This extension enables evaluation of models that jointly reason over tabular evidence and contextual semantics, an increasingly critical capability for foundation models on structured data. Empirical analysis reveals that while metadata-derived features yield modest improvements in classical prediction metrics, these metadata features consistently highlight gaps in the ability of models to leverage semantics in relational context. By reframing tabular prediction as semantics-conditioned reasoning, SALT-KG establishes a benchmark to advance tabular foundation models grounded in declarative knowledge, providing the first empirical step toward semantically linked tables in structured data at enterprise scale.
Learning About Learning: A Physics Path from Spin Glasses to Artificial Intelligence
The Hopfield model, originally inspired by spin-glass physics, occupies a central place at the intersection of statistical mechanics, neural networks, and modern artificial intelligence. Despite its conceptual simplicity and broad applicability -- from associative memory to near-optimal solutions of combinatorial optimization problems -- it is rarely integrated into standard undergraduate physics curricula. In this paper, we present the Hopfield model as a pedagogically rich framework that naturally unifies core topics from undergraduate statistical physics, dynamical systems, linear algebra, and computational methods. We provide a concise and illustrated theoretical introduction grounded in familiar physics concepts, analyze the model's energy function, dynamics, and pattern stability, and discuss practical aspects of simulation, including a freely available simulation code. To support instruction, we conclude with classroom-ready example problems designed to mirror research practice. By explicitly connecting fundamental physics to contemporary AI applications, this work aims to help prepare physics students to understand, apply, and critically engage with the computational tools increasingly central to research, industry, and society.
comment: 18 pages, 11 figures
GeoMotionGPT: Geometry-Aligned Motion Understanding with Large Language Models
Discrete motion tokenization has recently enabled Large Language Models (LLMs) to serve as versatile backbones for motion understanding and motion-language reasoning. However, existing pipelines typically decouple motion quantization from semantic embedding learning, linking them solely via token IDs. This approach fails to effectively align the intrinsic geometry of the motion space with the embedding space, thereby hindering the LLM's capacity for nuanced motion reasoning. We argue that alignment is most effective when both modalities share a unified geometric basis. Therefore, instead of forcing the LLM to reconstruct the complex geometry among motion tokens from scratch, we present a novel framework that explicitly enforces orthogonality on both the motion codebook and the LLM embedding space, ensuring that their relational structures naturally mirror each other. Specifically, we employ a decoder-only quantizer with Gumbel-Softmax for differentiable training and balanced codebook usage. To bridge the modalities, we use a sparse projection that maps motion codes into the LLM embedding space while preserving orthogonality. Finally, a two-stage orthonormal regularization schedule enforces soft constraints during tokenizer training and LLM fine-tuning to maintain geometric alignment without hindering semantic adaptation. Extensive experiments on HumanML3D demonstrate that our framework achieves a 20% performance improvement over current state-of-the-art methods, validating that a unified geometric basis effectively empowers the LLM for nuanced motion reasoning.
Neural Architecture for Fast and Reliable Coagulation Assessment in Clinical Settings: Leveraging Thromboelastography AAAI26
In an ideal medical environment, real-time coagulation monitoring can enable early detection and prompt remediation of risks. However, traditional Thromboelastography (TEG), a widely employed diagnostic modality, can only provide such outputs after nearly 1 hour of measurement. The delay might lead to elevated mortality rates. These issues clearly point out one of the key challenges for medical AI development: Mak-ing reasonable predictions based on very small data sets and accounting for variation between different patient populations, a task where conventional deep learning methods typically perform poorly. We present Physiological State Reconstruc-tion (PSR), a new algorithm specifically designed to take ad-vantage of dynamic changes between individuals and to max-imize useful information produced by small amounts of clini-cal data through mapping to reliable predictions and diagnosis. We develop MDFE to facilitate integration of varied temporal signals using multi-domain learning, and jointly learn high-level temporal interactions together with attentions via HLA; furthermore, the parameterized DAM we designed maintains the stability of the computed vital signs. PSR evaluates with 4 TEG-specialized data sets and establishes remarkable perfor-mance -- predictions of R2 > 0.98 for coagulation traits and error reduction around half compared to the state-of-the-art methods, and halving the inferencing time too. Drift-aware learning suggests a new future, with potential uses well be-yond thrombophilia discovery towards medical AI applica-tions with data scarcity.
comment: This paper has been accepted by AAAI26
DIAGPaper: Diagnosing Valid and Specific Weaknesses in Scientific Papers via Multi-Agent Reasoning
Paper weakness identification using single-agent or multi-agent LLMs has attracted increasing attention, yet existing approaches exhibit key limitations. Many multi-agent systems simulate human roles at a surface level, missing the underlying criteria that lead experts to assess complementary intellectual aspects of a paper. Moreover, prior methods implicitly assume identified weaknesses are valid, ignoring reviewer bias, misunderstanding, and the critical role of author rebuttals in validating review quality. Finally, most systems output unranked weakness lists, rather than prioritizing the most consequential issues for users. In this work, we propose DIAGPaper, a novel multi-agent framework that addresses these challenges through three tightly integrated modules. The customizer module simulates human-defined review criteria and instantiates multiple reviewer agents with criterion-specific expertise. The rebuttal module introduces author agents that engage in structured debate with reviewer agents to validate and refine proposed weaknesses. The prioritizer module learns from large-scale human review practices to assess the severity of validated weaknesses and surfaces the top-K severest ones to users. Experiments on two benchmarks, AAAR and ReviewCritique, demonstrate that DIAGPaper substantially outperforms existing methods by producing more valid and more paper-specific weaknesses, while presenting them in a user-oriented, prioritized manner.
Proof of Time: A Benchmark for Evaluating Scientific Idea Judgments
Large language models are increasingly being used to assess and forecast research ideas, yet we lack scalable ways to evaluate the quality of models' judgments about these scientific ideas. Towards this goal, we introduce PoT, a semi-verifiable benchmarking framework that links scientific idea judgments to downstream signals that become observable later (e.g., citations and shifts in researchers' agendas). PoT freezes a pre-cutoff snapshot of evidence in an offline sandbox and asks models to forecast post-cutoff outcomes, enabling verifiable evaluation when ground truth arrives, scalable benchmarking without exhaustive expert annotation, and analysis of human-model misalignment against signals such as peer-review awards. In addition, PoT provides a controlled testbed for agent-based research judgments that evaluate scientific ideas, comparing tool-using agents to non-agent baselines under prompt ablations and budget scaling. Across 30,000+ instances spanning four benchmark domains, we find that, compared with non-agent baselines, higher interaction budgets generally improve agent performance, while the benefit of tool use is strongly task-dependent. By combining time-partitioned, future-verifiable targets with an offline sandbox for tool use, PoT supports scalable evaluation of agents on future-facing scientific idea judgment tasks.
comment: under review
Pheromone-Focused Ant Colony Optimization algorithm for path planning
Ant Colony Optimization (ACO) is a prominent swarm intelligence algorithm extensively applied to path planning. However, traditional ACO methods often exhibit shortcomings, such as blind search behavior and slow convergence within complex environments. To address these challenges, this paper proposes the Pheromone-Focused Ant Colony Optimization (PFACO) algorithm, which introduces three key strategies to enhance the problem-solving ability of the ant colony. First, the initial pheromone distribution is concentrated in more promising regions based on the Euclidean distances of nodes to the start and end points, balancing the trade-off between exploration and exploitation. Second, promising solutions are reinforced during colony iterations to intensify pheromone deposition along high-quality paths, accelerating convergence while maintaining solution diversity. Third, a forward-looking mechanism is implemented to penalize redundant path turns, promoting smoother and more efficient solutions. These strategies collectively produce the focused pheromones to guide the ant colony's search, which enhances the global optimization capabilities of the PFACO algorithm, significantly improving convergence speed and solution quality across diverse optimization problems. The experimental results demonstrate that PFACO consistently outperforms comparative ACO algorithms in terms of convergence speed and solution quality.
comment: Accepted to 2025 IEEE International Conference on Systems, Man, and Cybernetics (SMC)
ES-Mem: Event Segmentation-Based Memory for Long-Term Dialogue Agents
Memory is critical for dialogue agents to maintain coherence and enable continuous adaptation in long-term interactions. While existing memory mechanisms offer basic storage and retrieval capabilities, they are hindered by two primary limitations: (1) rigid memory granularity often disrupts semantic integrity, resulting in fragmented and incoherent memory units; (2) prevalent flat retrieval paradigms rely solely on surface-level semantic similarity, neglecting the structural cues of discourse required to navigate and locate specific episodic contexts. To mitigate these limitations, drawing inspiration from Event Segmentation Theory, we propose ES-Mem, a framework incorporating two core components: (1) a dynamic event segmentation module that partitions long-term interactions into semantically coherent events with distinct boundaries; (2) a hierarchical memory architecture that constructs multi-layered memories and leverages boundary semantics to anchor specific episodic memory for precise context localization. Evaluations on two memory benchmarks demonstrate that ES-Mem yields consistent performance gains over baseline methods. Furthermore, the proposed event segmentation module exhibits robust applicability on dialogue segmentation datasets.
Large Language Models for Physics Instrument Design
We study the use of large language models (LLMs) for physics instrument design and compare their performance to reinforcement learning (RL). Using only prompting, LLMs are given task constraints and summaries of prior high-scoring designs and propose complete detector configurations, which we evaluate with the same simulators and reward functions used in RL-based optimization. Although RL yields stronger final designs, we find that modern LLMs consistently generate valid, resource-aware, and physically meaningful configurations that draw on broad pretrained knowledge of detector design principles and particle--matter interactions, despite having no task-specific training. Based on this result, as a first step toward hybrid design workflows, we explore pairing the LLMs with a dedicated trust region optimizer, serving as a precursor to future pipelines in which LLMs propose and structure design hypotheses while RL performs reward-driven optimization. Based on these experiments, we argue that LLMs are well suited as meta-planners: they can design and orchestrate RL-based optimization studies, define search strategies, and coordinate multiple interacting components within a unified workflow. In doing so, they point toward automated, closed-loop instrument design in which much of the human effort required to structure and supervise optimization can be reduced.
Beyond Entangled Planning: Task-Decoupled Planning for Long-Horizon Agents
Recent advances in large language models (LLMs) have enabled agents to autonomously execute complex, long-horizon tasks, yet planning remains a primary bottleneck for reliable task execution. Existing methods typically fall into two paradigms: step-wise planning, which is reactive but often short-sighted; and one-shot planning, which generates a complete plan upfront yet is brittle to execution errors. Crucially, both paradigms suffer from entangled contexts, where the agent must reason over a monolithic history spanning multiple sub-tasks. This entanglement increases cognitive load and lets local errors propagate across otherwise independent decisions, making recovery computationally expensive. To address this, we propose Task-Decoupled Planning (TDP), a training-free framework that replaces entangled reasoning with task decoupling. TDP decomposes tasks into a directed acyclic graph (DAG) of sub-goals via a Supervisor. Using a Planner and Executor with scoped contexts, TDP confines reasoning and replanning to the active sub-task. This isolation prevents error propagation and corrects deviations locally without disrupting the workflow. Results on TravelPlanner, ScienceWorld, and HotpotQA show that TDP outperforms strong baselines while reducing token consumption by up to 82%, demonstrating that sub-task decoupling improves both robustness and efficiency for long-horizon agents.
A Model of Artificial Jagged Intelligence
Generative AI systems often display highly uneven performance across tasks that appear ``nearby'': they can be excellent on one prompt and confidently wrong on another with only small changes in wording or context. We call this phenomenon Artificial Jagged Intelligence (AJI). This paper develops a tractable economic model of AJI that treats adoption as an information problem: users care about \emph{local} reliability, but typically observe only coarse, global quality signals. In a baseline one-dimensional landscape, truth is a rough Brownian process, and the model ``knows'' scattered points drawn from a Poisson process. The model interpolates optimally, and the local error is measured by posterior variance. We derive an adoption threshold for a blind user, show that experienced errors are amplified by the inspection paradox, and interpret scaling laws as denser coverage that improves average quality without eliminating jaggedness. We then study mastery and calibration: a calibrated user who can condition on local uncertainty enjoys positive expected value even in domains that fail the blind adoption test. Modelling mastery as learning a reliability map via Gaussian process regression yields a learning-rate bound driven by information gain, clarifying when discovering ``where the model works'' is slow. Finally, we study how scaling interacts with discoverability: when calibrated signals and user mastery accelerate the harvesting of scale improvements, and when opacity can make gains from scaling effectively invisible.
comment: 58 Pages
d3LLM: Ultra-Fast Diffusion LLM using Pseudo-Trajectory Distillation
Diffusion large language models (dLLMs) offer capabilities beyond those of autoregressive (AR) LLMs, such as parallel decoding and random-order generation. However, realizing these benefits in practice is non-trivial, as dLLMs inherently face an accuracy-parallelism trade-off. Despite increasing interest, existing methods typically focus on only one-side of the coin, targeting either efficiency or performance. To address this limitation, we propose d3LLM (Pseudo-Distilled Diffusion Large Language Model), striking a balance between accuracy and parallelism: (i) during training, we introduce pseudo-trajectory distillation to teach the model which tokens can be decoded confidently at early steps, thereby improving parallelism; (ii) during inference, we employ entropy-based multi-block decoding with a KV-cache refresh mechanism to achieve high parallelism while maintaining accuracy. To better evaluate dLLMs, we also introduce AUP (Accuracy Under Parallelism), a new metric that jointly measures accuracy and parallelism. Experiments demonstrate that our d3LLM achieves up to 10$\times$ speedup over vanilla LLaDA/Dream and 5$\times$ speedup over AR models without much accuracy drop. Our code is available at https://github.com/hao-ai-lab/d3LLM.
A Unified Framework for Emotion Recognition and Sentiment Analysis via Expert-Guided Multimodal Fusion with Large Language Models
Multimodal emotion understanding requires effective integration of text, audio, and visual modalities for both discrete emotion recognition and continuous sentiment analysis. We present EGMF, a unified framework combining expert-guided multimodal fusion with large language models. Our approach features three specialized expert networks--a fine-grained local expert for subtle emotional nuances, a semantic correlation expert for cross-modal relationships, and a global context expert for long-range dependencies--adaptively integrated through hierarchical dynamic gating for context-aware feature selection. Enhanced multimodal representations are integrated with LLMs via pseudo token injection and prompt-based conditioning, enabling a single generative framework to handle both classification and regression through natural language generation. We employ LoRA fine-tuning for computational efficiency. Experiments on bilingual benchmarks (MELD, CHERMA, MOSEI, SIMS-V2) demonstrate consistent improvements over state-of-the-art methods, with superior cross-lingual robustness revealing universal patterns in multimodal emotional expressions across English and Chinese. We will release the source code publicly.
Backpropagation-Free Test-Time Adaptation for Lightweight EEG-Based Brain-Computer Interfaces
Electroencephalogram (EEG)-based brain-computer interfaces (BCIs) face significant deployment challenges due to inter-subject variability, signal non-stationarity, and computational constraints. While test-time adaptation (TTA) mitigates distribution shifts under online data streams without per-use calibration sessions, existing TTA approaches heavily rely on explicitly defined loss objectives that require backpropagation for updating model parameters, which incurs computational overhead, privacy risks, and sensitivity to noisy data streams. This paper proposes Backpropagation-Free Transformations (BFT), a TTA approach for EEG decoding that eliminates such issues. BFT applies multiple sample-wise transformations of knowledge-guided augmentations or approximate Bayesian inference to each test trial, generating multiple prediction scores for a single test sample. A learning-to-rank module enhances the weighting of these predictions, enabling robust aggregation for uncertainty suppression during inference under theoretical justifications. Extensive experiments on five EEG datasets of motor imagery classification and driver drowsiness regression tasks demonstrate the effectiveness, versatility, robustness, and efficiency of BFT. This research enables lightweight plug-and-play BCIs on resource-constrained devices, broadening the real-world deployment of decoding algorithms for EEG-based BCI.
VirtualEnv: A Platform for Embodied AI Research
As large language models (LLMs) continue to improve in reasoning and decision-making, there is a growing need for realistic and interactive environments where their abilities can be rigorously evaluated. We present VirtualEnv, a next-generation simulation platform built on Unreal Engine 5 that enables fine-grained benchmarking of LLMs in embodied and interactive scenarios. VirtualEnv supports rich agent-environment interactions, including object manipulation, navigation, and adaptive multi-agent collaboration, as well as game-inspired mechanics like escape rooms and procedurally generated environments. We provide a user-friendly API built on top of Unreal Engine, allowing researchers to deploy and control LLM-driven agents using natural language instructions. We integrate large-scale LLMs and vision-language models (VLMs), such as GPT-based models, to generate novel environments and structured tasks from multimodal inputs. Our experiments benchmark the performance of several popular LLMs across tasks of increasing complexity, analyzing differences in adaptability, planning, and multi-agent coordination. We also describe our methodology for procedural task generation, task validation, and real-time environment control. VirtualEnv is released as an open-source platform, we aim to advance research at the intersection of AI and gaming, enable standardized evaluation of LLMs in embodied AI settings, and pave the way for future developments in immersive simulations and interactive entertainment.
From RAG to Agentic RAG for Faithful Islamic Question Answering
LLMs are increasingly used for Islamic question answering, where ungrounded responses may carry serious religious consequences. Yet standard MCQ/MRC-style evaluations do not capture key real-world failure modes, notably free-form hallucinations and whether models appropriately abstain when evidence is lacking. To shed a light on this aspect we introduce ISLAMICFAITHQA, a 3,810-item bilingual (Arabic/English) generative benchmark with atomic single-gold answers, which enables direct measurement of hallucination and abstention. We additionally developed an end-to-end grounded Islamic modelling suite consisting of (i) 25K Arabic text-grounded SFT reasoning pairs, (ii) 5K bilingual preference samples for reward-guided alignment, and (iii) a verse-level Qur'an retrieval corpus of $\sim$6k atomic verses (ayat). Building on these resources, we develop an agentic Quran-grounding framework (agentic RAG) that uses structured tool calls for iterative evidence seeking and answer revision. Experiments across Arabic-centric and multilingual LLMs show that retrieval improves correctness and that agentic RAG yields the largest gains beyond standard RAG, achieving state-of-the-art performance and stronger Arabic-English robustness even with a small model (i.e., Qwen3 4B). We will make the experimental resources and datasets publicly available for the community.
Thinking Before Constraining: A Unified Decoding Framework for Large Language Models
Natural generation allows Language Models (LMs) to produce free-form responses with rich reasoning, but the lack of guaranteed structure makes outputs difficult to parse or verify. Structured generation, or constrained decoding, addresses this drawback by producing content in standardized formats such as JSON, ensuring consistency and guaranteed-parsable outputs, but it can inadvertently restrict the model's reasoning capabilities. In this work, we propose a simple approach that combines the advantages of both natural and structured generation. By allowing LLMs to reason freely until specific trigger tokens are generated, and then switching to structured generation, our method preserves the expressive power of natural language reasoning while ensuring the reliability of structured outputs. We further evaluate our approach on several datasets, covering both classification and reasoning tasks, to demonstrate its effectiveness, achieving a substantial gain of up to 27% in accuracy compared to natural generation, while requiring only a small overhead of 10-20 extra tokens.
Mon3tr: Monocular 3D Telepresence with Pre-built Gaussian Avatars as Amortization
Immersive telepresence aims to transform human interaction in AR/VR applications by enabling lifelike full-body holographic representations for enhanced remote collaboration. However, existing systems rely on hardware-intensive multi-camera setups and demand high bandwidth for volumetric streaming, limiting their real-time performance on mobile devices. To overcome these challenges, we propose Mon3tr, a novel Monocular 3D telepresence framework that integrates 3D Gaussian splatting (3DGS) based parametric human modeling into telepresence for the first time. Mon3tr adopts an amortized computation strategy, dividing the process into a one-time offline multi-view reconstruction phase to build a user-specific avatar and a monocular online inference phase during live telepresence sessions. A single monocular RGB camera is used to capture body motions and facial expressions in real time to drive the 3DGS-based parametric human model, significantly reducing system complexity and cost. The extracted motion and appearance features are transmitted at < 0.2 Mbps over WebRTC's data channel, allowing robust adaptation to network fluctuations. On the receiver side, e.g., Meta Quest 3, we develop a lightweight 3DGS attribute deformation network to dynamically generate corrective 3DGS attribute adjustments on the pre-built avatar, synthesizing photorealistic motion and appearance at ~ 60 FPS. Extensive experiments demonstrate the state-of-the-art performance of our method, achieving a PSNR of > 28 dB for novel poses, an end-to-end latency of ~ 80 ms, and > 1000x bandwidth reduction compared to point-cloud streaming, while supporting real-time operation from monocular inputs across diverse scenarios. Our demos can be found at https://mon3tr3d.github.io.
Controlling Multimodal Conversational Agents with Coverage-Enhanced Latent Actions
Vision-language models are increasingly employed as multimodal conversational agents (MCAs) for diverse conversational tasks. Recently, reinforcement learning (RL) has been widely explored for adapting MCAs to various human-AI interaction scenarios. Despite showing great enhancement in generalization performance, fine-tuning MCAs via RL still faces challenges in handling the extremely large text token space. To address this, we learn a compact latent action space for RL fine-tuning instead. Specifically, we adopt the learning from observation mechanism to construct the codebook for the latent action space, where future observations are leveraged to estimate current latent actions that could further be used to reconstruct future observations. However, the scarcity of paired image-text data hinders learning a codebook with sufficient coverage. Thus, we leverage both paired image-text data and text-only data to construct the latent action space, using a cross-modal projector for transforming text embeddings into image-text embeddings. We initialize the cross-modal projector on paired image-text data, and further train it on massive text-only data with a novel cycle consistency loss to enhance its robustness. We show that our latent action based method outperforms competitive baselines on two conversation tasks across various RL algorithms.
Data-Driven Stochastic VRP: Integration of Forecast Duration into Optimization for Utility Workforce Management
This paper investigates the integration of machine learning forecasts of intervention durations into a stochastic variant of the Capacitated Vehicle Routing Problem with Time Windows (CVRPTW). In particular, we exploit tree-based gradient boosting (XGBoost) trained on eight years of gas meter maintenance data to produce point predictions and uncertainty estimates, which then drive a multi-objective evolutionary optimization routine. The methodology addresses uncertainty through sub-Gaussian concentration bounds for route-level risk buffers and explicitly accounts for competing operational KPIs through a multi-objective formulation. Empirical analysis of prediction residuals validates the sub-Gaussian assumption underlying the risk model. From an empirical point of view, our results report improvements around 20-25\% in operator utilization and completion rates compared with plans computed using default durations. The integration of uncertainty quantification and risk-aware optimization provides a practical framework for handling stochastic service durations in real-world routing applications.
Graph Inference Towards ICD Coding
Automated ICD coding involves assigning standardized diagnostic codes to clinical narratives. The vast label space and extreme class imbalance continue to challenge precise prediction. To address these issues, LabGraph is introduced -- a unified framework that reformulates ICD coding as a graph generation task. By combining adversarial domain adaptation, graph-based reinforcement learning, and perturbation regularization, LabGraph effectively enhances model robustness and generalization. In addition, a label graph discriminator dynamically evaluates each generated code, providing adaptive reward feedback during training. Experiments on benchmark datasets demonstrate that LabGraph consistently outperforms previous approaches on micro-F1, micro-AUC, and P@K.
comment: 6 pages, 2 figures, 2 tables
JudgeFlow: Agentic Workflow Optimization via Block Judge
Optimizing LLM-based agentic workflows is challenging for scaling AI capabilities. Current methods rely on coarse, end-to-end evaluation signals and lack fine-grained signals on where to refine, often resulting in inefficient or low-impact modifications. To address these limitations, we propose {\our{}}, an Evaluation-Judge-Optimization-Update pipeline. We incorporate reusable, configurable logic blocks into agentic workflows to capture fundamental forms of logic. On top of this abstraction, we design a dedicated Judge module that inspects execution traces -- particularly failed runs -- and assigns rank-based responsibility scores to problematic blocks. These fine-grained diagnostic signals are then leveraged by an LLM-based optimizer, which focuses modifications on the most problematic block in the workflow. Our approach improves sample efficiency, enhances interpretability through block-level diagnostics, and provides a scalable foundation for automating increasingly complex agentic workflows. We evaluate {\our{}} on mathematical reasoning and code generation benchmarks, where {\our{}} achieves superior performance and efficiency compared to existing methods. The source code is publicly available at https://github.com/ma-zihan/JudgeFlow.
ARCQuant: Boosting NVFP4 Quantization with Augmented Residual Channels for LLMs
The emergence of fine-grained numerical formats like NVFP4 presents new opportunities for efficient Large Language Model (LLM) inference. However, it is difficult to adapt existing Post-Training Quantization (PTQ) strategies to these formats: rotation-based methods compromise fine-grained block isolation; smoothing techniques struggle with significant 4-bit quantization errors; and mixed-precision approaches often conflict with hardware constraints on unified-precision computation. To address these challenges, we propose ARCQuant, a framework that boosts NVFP4 performance via Augmented Residual Channels. Distinct from methods that compromise block isolation or hardware uniformity, ARCQuant maintains a strictly unified NVFP4 format by augmenting the activation matrix with quantized residual channels. This design integrates the error compensation process directly into the matrix reduction dimension, enabling the use of standard, highly optimized GEMM kernels with minimal overhead. Theoretical analysis confirms that the worst-case error bound of our dual-stage NVFP4 quantization is comparable to that of standard 8-bit formats such as MXFP8. Extensive experiments on LLaMA and Qwen models demonstrate that ARCQuant achieves state-of-the-art accuracy, comparable to full-precision baselines in perplexity and downstream tasks. Furthermore, deployment on RTX 5090 and RTX PRO 6000 GPUs confirms practical benefits, achieving up to 3x speedup over FP16. Our code is available at https://github.com/actypedef/ARCQuant .
Task Prototype-Based Knowledge Retrieval for Multi-Task Learning from Partially Annotated Data AAAI 2026
Multi-task learning (MTL) is critical in real-world applications such as autonomous driving and robotics, enabling simultaneous handling of diverse tasks. However, obtaining fully annotated data for all tasks is impractical due to labeling costs. Existing methods for partially labeled MTL typically rely on predictions from unlabeled tasks, making it difficult to establish reliable task associations and potentially leading to negative transfer and suboptimal performance. To address these issues, we propose a prototype-based knowledge retrieval framework that achieves robust MTL instead of relying on predictions from unlabeled tasks. Our framework consists of two key components: (1) a task prototype embedding task-specific characteristics and quantifying task associations, and (2) a knowledge retrieval transformer that adaptively refines feature representations based on these associations. To achieve this, we introduce an association knowledge generating (AKG) loss to ensure the task prototype consistently captures task-specific characteristics. Extensive experiments demonstrate the effectiveness of our framework, highlighting its potential for robust multi-task learning, even when only a subset of tasks is annotated.
comment: Accepted at AAAI 2026
Learning How to Remember: A Meta-Cognitive Management Method for Structured and Transferable Agent Memory
Large language model (LLM) agents increasingly rely on accumulated memory to solve long-horizon decision-making tasks. However, most existing approaches store memory in fixed representations and reuse it at a single or implicit level of abstraction, which limits generalization and often leads to negative transfer when distribution shift. This paper proposes the Meta-Cognitive Memory Abstraction method (MCMA), which treats memory abstraction as a learnable cognitive skill rather than a fixed design choice. MCMA decouples task execution from memory management by combining a frozen task model with a learned memory copilot. The memory copilot is trained using direct preference optimization, it determines how memories should be structured, abstracted, and reused. Memories are further organized into a hierarchy of abstraction levels, enabling selective reuse based on task similarity. When no memory is transferable, MCMA transfers the ability to abstract and manage memory by transferring the memory copilot. Experiments on ALFWorld, ScienceWorld, and BabyAI demonstrate substantial improvements in performance, out-of-distribution generalization, and cross-task transfer over several baselines.
Knowledge Distillation for LLM-Based Human Activity Recognition in Homes
Human Activity Recognition (HAR) is a central problem for context-aware applications, especially for smart homes and assisted living. A few very recent studies have shown that Large Language Models (LLMs) can be used for HAR at home, reaching high performance and addressing key challenges. In this paper, we provide new experimental results regarding the use of LLMs for HAR, on two state-of-the-art datasets. More specifically, we show how recognition performance evolves depending on the size of the LLM used. Moreover, we experiment on the use of knowledge distillation techniques to fine-tune smaller LLMs with HAR reasoning examples generated by larger LLMs. We show that such fine-tuned models can perform almost as well as the largest LLMs, while having 50 times less parameters.
Beyond Dialogue Time: Temporal Semantic Memory for Personalized LLM Agents
Memory enables Large Language Model (LLM) agents to perceive, store, and use information from past dialogues, which is essential for personalization. However, existing methods fail to properly model the temporal dimension of memory in two aspects: 1) Temporal inaccuracy: memories are organized by dialogue time rather than their actual occurrence time; 2) Temporal fragmentation: existing methods focus on point-wise memory, losing durative information that captures persistent states and evolving patterns. To address these limitations, we propose Temporal Semantic Memory (TSM), a memory framework that models semantic time for point-wise memory and supports the construction and utilization of durative memory. During memory construction, it first builds a semantic timeline rather than a dialogue one. Then, it consolidates temporally continuous and semantically related information into a durative memory. During memory utilization, it incorporates the query's temporal intent on the semantic timeline, enabling the retrieval of temporally appropriate durative memories and providing time-valid, duration-consistent context to support response generation. Experiments on LongMemEval and LoCoMo show that TSM consistently outperforms existing methods and achieves up to 12.2% absolute improvement in accuracy, demonstrating the effectiveness of the proposed method.
IFDNS: An Iterative Feedback-Driven Neuro-Symbolic Method for Faithful Logical Reasoning
Large language models (LLMs) have demonstrated impressive capabilities across a wide range of reasoning tasks, including logical and mathematical problem-solving. While prompt-based methods like Chain-of-Thought (CoT) can enhance LLM reasoning abilities to some extent, they often suffer from a lack of faithfulness, where the derived conclusions may not align with the generated reasoning chain. To address this issue, researchers have explored neuro-symbolic approaches to bolster LLM logical reasoning capabilities. However, existing neuro-symbolic methods still face challenges with information loss during the process. To overcome these limitations, we introduce Iterative Feedback-Driven Neuro-Symbolic (IFDNS), a novel prompt-based method that employs a multi-round feedback mechanism to address LLM limitations in handling complex logical relationships. IFDNS utilizes iterative feedback during the logic extraction phase to accurately extract causal relationship statements and translate them into propositional and logical implication expressions, effectively mitigating information loss issues. Furthermore, IFDNS is orthogonal to existing prompt methods, allowing for seamless integration with various prompting approaches. Empirical evaluations across six datasets demonstrate the effectiveness of IFDNS in significantly improving the performance of CoT and Chain-of-Thought with Self-Consistency (CoT-SC). Specifically, IFDNS achieves a +9.40% accuracy boost for CoT on the LogiQA dataset and a +11.70% improvement for CoT-SC on the PrOntoQA dataset.
comment: 13 pages,5 figures
Puzzle it Out: Local-to-Global World Model for Offline Multi-Agent Reinforcement Learning
Offline multi-agent reinforcement learning (MARL) aims to solve cooperative decision-making problems in multi-agent systems using pre-collected datasets. Existing offline MARL methods primarily constrain training within the dataset distribution, resulting in overly conservative policies that struggle to generalize beyond the support of the data. While model-based approaches offer a promising solution by expanding the original dataset with synthetic data generated from a learned world model, the high dimensionality, non-stationarity, and complexity of multi-agent systems make it challenging to accurately estimate the transitions and reward functions in offline MARL. Given the difficulty of directly modeling joint dynamics, we propose a local-to-global (LOGO) world model, a novel framework that leverages local predictions-which are easier to estimate-to infer global state dynamics, thus improving prediction accuracy while implicitly capturing agent-wise dependencies. Using the trained world model, we generate synthetic data to augment the original dataset, expanding the effective state-action space. To ensure reliable policy learning, we further introduce an uncertainty-aware sampling mechanism that adaptively weights synthetic data by prediction uncertainty, reducing approximation error propagation to policies. In contrast to conventional ensemble-based methods, our approach requires only an additional encoder for uncertainty estimation, significantly reducing computational overhead while maintaining accuracy. Extensive experiments across 8 scenarios against 8 baselines demonstrate that our method surpasses state-of-the-art baselines on standard offline MARL benchmarks, establishing a new model-based baseline for generalizable offline multi-agent learning.
RLPO: Residual Listwise Preference Optimization for Long-Context Review Ranking
Review ranking is pivotal in e-commerce for prioritizing diagnostic and authentic feedback from the deluge of user-generated content. While large language models have improved semantic assessment, existing ranking paradigms face a persistent trade-off in long-context settings. Pointwise scoring is efficient but often fails to account for list-level interactions, leading to miscalibrated top-$k$ rankings. Listwise approaches can leverage global context, yet they are computationally expensive and become unstable as candidate lists grow. To address this, we propose Residual Listwise Preference Optimization (RLPO), which formulates ranking as listwise representation-level residual correction over a strong pointwise LLM scorer. RLPO first produces calibrated pointwise scores and item representations, then applies a lightweight encoder over the representations to predict listwise score residuals, avoiding full token-level listwise processing. We also introduce a large-scale benchmark for long-context review ranking with human verification. Experiments show RLPO improves NDCG@k over strong pointwise and listwise baselines and remains robust as list length increases.
KALE: Enhancing Knowledge Manipulation in Large Language Models via Knowledge-aware Learning
Despite the impressive performance of large language models (LLMs) pretrained on vast knowledge corpora, advancing their knowledge manipulation-the ability to effectively recall, reason, and transfer relevant knowledge-remains challenging. Existing methods mainly leverage Supervised Fine-Tuning (SFT) on labeled datasets to enhance LLMs' knowledge manipulation ability. However, we observe that SFT models still exhibit the known&incorrect phenomenon, where they explicitly possess relevant knowledge for a given question but fail to leverage it for correct answers. To address this challenge, we propose KALE (Knowledge-Aware LEarning)-a post-training framework that leverages knowledge graphs (KGs) to generate high-quality rationales and enhance LLMs' knowledge manipulation ability. Specifically, KALE first introduces a Knowledge-Induced (KI) data synthesis method that efficiently extracts multi-hop reasoning paths from KGs to generate high-quality rationales for question-answer pairs. Then, KALE employs a Knowledge-Aware (KA) fine-tuning paradigm that enhances knowledge manipulation by internalizing rationale-guided reasoning through minimizing the KL divergence between predictions with and without rationales. Extensive experiments on eight popular benchmarks across six different LLMs demonstrate the effectiveness of KALE, achieving accuracy improvements of up to 11.72% and an average of 4.18%.
Two Pathways to Truthfulness: On the Intrinsic Encoding of LLM Hallucinations
Despite their impressive capabilities, large language models (LLMs) frequently generate hallucinations. Previous work shows that their internal states encode rich signals of truthfulness, yet the origins and mechanisms of these signals remain unclear. In this paper, we demonstrate that truthfulness cues arise from two distinct information pathways: (1) a Question-Anchored pathway that depends on question-answer information flow, and (2) an Answer-Anchored pathway that derives self-contained evidence from the generated answer itself. First, we validate and disentangle these pathways through attention knockout and token patching. Afterwards, we uncover notable and intriguing properties of these two mechanisms. Further experiments reveal that (1) the two mechanisms are closely associated with LLM knowledge boundaries; and (2) internal representations are aware of their distinctions. Finally, building on these insightful findings, two applications are proposed to enhance hallucination detection performance. Overall, our work provides new insight into how LLMs internally encode truthfulness, offering directions for more reliable and self-aware generative systems.
SCALPEL: Selective Capability Ablation via Low-rank Parameter Editing for Large Language Model Interpretability Analysis
Large language models excel across diverse domains, yet their deployment in healthcare, legal systems, and autonomous decision-making remains limited by incomplete understanding of their internal mechanisms. As these models integrate into high-stakes systems, understanding how they encode capabilities has become fundamental to interpretability research. Traditional approaches identify important modules through gradient attribution or activation analysis, assuming specific capabilities map to specific components. However, this oversimplifies neural computation: modules may contribute to multiple capabilities simultaneously, while single capabilities may distribute across multiple modules. These coarse-grained analyses fail to capture fine-grained, distributed capability encoding. We present SCALPEL (Selective Capability Ablation via Low-rank Parameter Editing for Large language models), a framework representing capabilities as low-rank parameter subspaces rather than discrete modules. Our key insight is that capabilities can be characterized by low-rank modifications distributed across layers and modules, enabling precise capability removal without affecting others. By training LoRA adapters to reduce distinguishing correct from incorrect answers while preserving general language modeling quality, SCALPEL identifies low-rank representations responsible for particular capabilities while remaining disentangled from others. Experiments across diverse capability and linguistic tasks from BLiMP demonstrate that SCALPEL successfully removes target capabilities while preserving general capabilities, providing fine-grained insights into capability distribution across parameter space. Results reveal that capabilities exhibit low-rank structure and can be selectively ablated through targeted parameter-space interventions, offering nuanced understanding of capability encoding in LLMs.
Layerwise goal-oriented adaptivity for neural ODEs: an optimal control perspective
In this work, we propose a novel layerwise adaptive construction method for neural network architectures. Our approach is based on a goal--oriented dual-weighted residual technique for the optimal control of neural differential equations. This leads to an ordinary differential equation constrained optimization problem with controls acting as coefficients and a specific loss function. We implement our approach on the basis of a DG(0) Galerkin discretization of the neural ODE, leading to an explicit Euler time marching scheme. For the optimization we use steepest descent. Finally, we apply our method to the construction of neural networks for the classification of data sets, where we present results for a selection of well known examples from the literature.
MCP-ITP: An Automated Framework for Implicit Tool Poisoning in MCP
To standardize interactions between LLM-based agents and their environments, the Model Context Protocol (MCP) was proposed and has since been widely adopted. However, integrating external tools expands the attack surface, exposing agents to tool poisoning attacks. In such attacks, malicious instructions embedded in tool metadata are injected into the agent context during MCP registration phase, thereby manipulating agent behavior. Prior work primarily focuses on explicit tool poisoning or relied on manually crafted poisoned tools. In contrast, we focus on a particularly stealthy variant: implicit tool poisoning, where the poisoned tool itself remains uninvoked. Instead, the instructions embedded in the tool metadata induce the agent to invoke a legitimate but high-privilege tool to perform malicious operations. We propose MCP-ITP, the first automated and adaptive framework for implicit tool poisoning within the MCP ecosystem. MCP-ITP formulates poisoned tool generation as a black-box optimization problem and employs an iterative optimization strategy that leverages feedback from both an evaluation LLM and a detection LLM to maximize Attack Success Rate (ASR) while evading current detection mechanisms. Experimental results on the MCPTox dataset across 12 LLM agents demonstrate that MCP-ITP consistently outperforms the manually crafted baseline, achieving up to 84.2% ASR while suppressing the Malicious Tool Detection Rate (MDR) to as low as 0.3%.
Software-Hardware Co-optimization for Modular E2E AV Paradigm: A Unified Framework of Optimization Approaches, Simulation Environment and Evaluation Metrics
Modular end-to-end (ME2E) autonomous driving paradigms combine modular interpretability with global optimization capability and have demonstrated strong performance. However, existing studies mainly focus on accuracy improvement, while critical system-level factors such as inference latency and energy consumption are often overlooked, resulting in increasingly complex model designs that hinder practical deployment. Prior efforts on model compression and acceleration typically optimize either the software or hardware side in isolation. Software-only optimization cannot fundamentally remove intermediate tensor access and operator scheduling overheads, whereas hardware-only optimization is constrained by model structure and precision. As a result, the real-world benefits of such optimizations are often limited. To address these challenges, this paper proposes a reusable software and hardware co-optimization and closed-loop evaluation framework for ME2E autonomous driving inference. The framework jointly integrates software-level model optimization with hardware-level computation optimization under a unified system-level objective. In addition, a multidimensional evaluation metric is introduced to assess system performance by jointly considering safety, comfort, efficiency, latency, and energy, enabling quantitative comparison of different optimization strategies. Experiments across multiple ME2E autonomous driving stacks show that the proposed framework preserves baseline-level driving performance while significantly reducing inference latency and energy consumption, achieving substantial overall system-level improvements. These results demonstrate that the proposed framework provides practical and actionable guidance for efficient deployment of ME2E autonomous driving systems.
comment: 17pages,6 figures,6 tables
OceanSAR-2: A Universal Feature Extractor for SAR Ocean Observation
We present OceanSAR-2, the second generation of our foundation model for SAR-based ocean observation. Building on our earlier release, which pioneered self-supervised learning on Sentinel-1 Wave Mode data, OceanSAR-2 relies on improved SSL training and dynamic data curation strategies, which enhances performance while reducing training cost. OceanSAR-2 demonstrates strong transfer performance across downstream tasks, including geophysical pattern classification, ocean surface wind vector and significant wave height estimation, and iceberg detection. We release standardized benchmark datasets, providing a foundation for systematic evaluation and advancement of SAR models for ocean applications.
comment: accepted at EUSAR 2026
On the Non-decoupling of Supervised Fine-tuning and Reinforcement Learning in Post-training
Post-training of large language models routinely interleaves supervised fine-tuning (SFT) with reinforcement learning (RL). These two methods have different objectives: SFT minimizes the cross-entropy loss between model outputs and expert responses, while RL maximizes reward signals derived from human preferences or rule-based verifiers. Modern reasoning models have widely adopted the practice of alternating SFT and RL training. However, there is no theoretical account of whether they can be decoupled. We prove that decoupling is impossible in either order: (1) SFT-then-RL coupling: RL increases SFT loss under SFT optimality and (2) RL-then-SFT coupling: SFT lowers the reward achieved by RL. Experiments on Qwen3-0.6B confirm the predicted degradation, verifying that SFT and RL cannot be separated without loss of prior performance in the post-training
Learning Dynamic Collaborative Network for Semi-supervised 3D Vessel Segmentation CVPR
In this paper, we present a new dynamic collaborative network for semi-supervised 3D vessel segmentation, termed DiCo. Conventional mean teacher (MT) methods typically employ a static approach, where the roles of the teacher and student models are fixed. However, due to the complexity of 3D vessel data, the teacher model may not always outperform the student model, leading to cognitive biases that can limit performance. To address this issue, we propose a dynamic collaborative network that allows the two models to dynamically switch their teacher-student roles. Additionally, we introduce a multi-view integration module to capture various perspectives of the inputs, mirroring the way doctors conduct medical analysis. We also incorporate adversarial supervision to constrain the shape of the segmented vessels in unlabeled data. In this process, the 3D volume is projected into 2D views to mitigate the impact of label inconsistencies. Experiments demonstrate that our DiCo method sets new state-of-the-art performance on three 3D vessel segmentation benchmarks. The code repository address is https://github.com/xujiaommcome/DiCo
comment: Accepted to the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2025
OpenTinker: Separating Concerns in Agentic Reinforcement Learning
We introduce OpenTinker, an infrastructure for reinforcement learning (RL) of large language model (LLM) agents built around a separation of concerns across algorithm design, execution, and agent-environment interaction. Rather than relying on monolithic, end-to-end RL pipelines, OpenTinker decomposes agentic learning systems into lightweight, composable components with clearly defined abstraction boundaries. Users specify agents, environments, and interaction protocols, while inference and training are delegated to a managed execution runtime. OpenTinker introduces a centralized scheduler for managing training and inference workloads, including LoRA-based and full-parameter RL, supervised fine-tuning, and inference, over shared resources. We further discuss design principles for extending OpenTinker to multi-agent training. Finally, we present a set of RL use cases that demonstrate the effectiveness of the framework in practical agentic learning scenarios.
Conditional Memory via Scalable Lookup: A New Axis of Sparsity for Large Language Models
While Mixture-of-Experts (MoE) scales capacity via conditional computation, Transformers lack a native primitive for knowledge lookup, forcing them to inefficiently simulate retrieval through computation. To address this, we introduce conditional memory as a complementary sparsity axis, instantiated via Engram, a module that modernizes classic $N$-gram embedding for O(1) lookup. By formulating the Sparsity Allocation problem, we uncover a U-shaped scaling law that optimizes the trade-off between neural computation (MoE) and static memory (Engram). Guided by this law, we scale Engram to 27B parameters, achieving superior performance over a strictly iso-parameter and iso-FLOPs MoE baseline. Most notably, while the memory module is expected to aid knowledge retrieval (e.g., MMLU +3.4; CMMLU +4.0), we observe even larger gains in general reasoning (e.g., BBH +5.0; ARC-Challenge +3.7) and code/math domains~(HumanEval +3.0; MATH +2.4). Mechanistic analyses reveal that Engram relieves the backbone's early layers from static reconstruction, effectively deepening the network for complex reasoning. Furthermore, by delegating local dependencies to lookups, it frees up attention capacity for global context, substantially boosting long-context retrieval (e.g., Multi-Query NIAH: 84.2 to 97.0). Finally, Engram establishes infrastructure-aware efficiency: its deterministic addressing enables runtime prefetching from host memory, incurring negligible overhead. We envision conditional memory as an indispensable modeling primitive for next-generation sparse models.
On the universal definition of intelligence
This paper aims to propose a universal definition of intelligence that enables fair and consistent comparison of human and artificial intelligence (AI). With the rapid development of AI technology in recent years, how to compare and evaluate human and AI intelligence has become an important theoretical issue. However, existing definitions of intelligence are anthropocentric and unsuitable for empirical comparison, resulting in a lack of consensus in the research field. This paper first introduces four criteria for evaluating intelligence definitions based on R. Carnap's methodology of conceptual clarification: similarity to explicandum, exactness, fruitfulness, and simplicity. We then examine six representative definitions: IQ testing, complex problem-solving ability, reward optimization, environmental adaptation, learning efficiency, and predictive ability, and clarify their theoretical strengths and limitations. The results show that while definitions based on predictive ability have high explanatory power and empirical feasibility, they suffer from an inability to adequately explain the relationship between predictions and behavior/benefits. This paper proposes the Extended Predictive Hypothesis (EPH), which views intelligence as a combination of the ability to accurately predict the future and the ability to benefit from those predictions. Furthermore, by distinguishing predictive ability into spontaneous and reactive predictions and adding the concept of gainability, we present a unified framework for explaining various aspects of intelligence, such as creativity, learning, and future planning. In conclusion, this paper argues that the EPH is the most satisfactory and universal definition for comparing human and AI intelligence.
Seeing Right but Saying Wrong: Inter- and Intra-Layer Refinement in MLLMs without Training
Multimodal Large Language Models (MLLMs) have demonstrated strong capabilities across a variety of vision-language tasks. However, their internal reasoning often exhibits a critical inconsistency: although deeper layers may attend to the correct visual regions, final predictions are frequently misled by noisy attention from earlier layers. This results in a disconnect between what the model internally understands and what it ultimately expresses, a phenomenon we describe as seeing it right but saying it wrong. To address this issue, we propose DualPD, a dual-perspective decoding refinement strategy that enhances the visual understanding without any additional training. DualPD consists of two components. (1) The layer-wise attention-guided contrastive logits module captures how the belief in the correct answer evolves by comparing output logits between layers that exhibit the largest attention shift. (2) The head-wise information filtering module suppresses low-contribution attention heads that focus on irrelevant regions, thereby improving attention quality within each layer. Experiments conducted on both the LLaVA and Qwen-VL model families across multiple multimodal benchmarks demonstrate that DualPD consistently improves accuracy without training, confirming its effectiveness and generalizability. The code will be released upon publication.
Efficient Convolutional Forward Model for Passive Acoustic Mapping and Temporal Monitoring
Passive acoustic mapping (PAM) is a key imaging technique for characterizing cavitation activity in therapeutic ultrasound applications. Recent model-based beamforming algorithms offer high reconstruction quality and strong physical interpretability. However, their computational burden and limited temporal resolution restrict their use in applications with time-evolving cavitation. To address these challenges, we introduce a PAM beamforming framework based on a novel convolutional formulation in the time domain, which enables efficient computation. In this framework, PAM is formulated as an inverse problem in which the forward operator maps spatiotemporal cavitation activity to recorded radio-frequency signals accounting for time-of-flight delays defined by the acquisition geometry. We then formulate a regularized inversion algorithm that incorporates prior knowledge on cavitation activity. Experimental results demonstrate that our framework outperforms classical beamforming methods, providing higher temporal resolution than frequency-domain techniques while substantially reducing computational burden compared with iterative time-domain formulations.
Beyond Hard Masks: Progressive Token Evolution for Diffusion Language Models
Diffusion Language Models (DLMs) offer a promising alternative for language modeling by enabling parallel decoding through iterative refinement. However, most DLMs rely on hard binary masking and discrete token assignments, which hinder the revision of early decisions and underutilize intermediate probabilistic representations. In this paper, we propose EvoToken-DLM, a novel diffusion-based language modeling approach that replaces hard binary masks with evolving soft token distributions. EvoToken-DLM enables a progressive transition from masked states to discrete outputs, supporting revisable decoding. To effectively support this evolution, we introduce continuous trajectory supervision, which aligns training objectives with iterative probabilistic updates. Extensive experiments across multiple benchmarks show that EvoToken-DLM consistently achieves superior performance, outperforming strong diffusion-based and masked DLM baselines. Project webpage: https://aim-uofa.github.io/EvoTokenDLM.
comment: Project webpage: https://aim-uofa.github.io/EvoTokenDLM
Controlled Self-Evolution for Algorithmic Code Optimization
Self-evolution methods enhance code generation through iterative "generate-verify-refine" cycles, yet existing approaches suffer from low exploration efficiency, failing to discover solutions with superior complexity within limited budgets. This inefficiency stems from initialization bias trapping evolution in poor solution regions, uncontrolled stochastic operations lacking feedback guidance, and insufficient experience utilization across tasks.To address these bottlenecks, we propose Controlled Self-Evolution (CSE), which consists of three key components. Diversified Planning Initialization generates structurally distinct algorithmic strategies for broad solution space coverage. Genetic Evolution replaces stochastic operations with feedback-guided mechanisms, enabling targeted mutation and compositional crossover. Hierarchical Evolution Memory captures both successful and failed experiences at inter-task and intra-task levels.Experiments on EffiBench-X demonstrate that CSE consistently outperforms all baselines across various LLM backbones. Furthermore, CSE achieves higher efficiency from early generations and maintains continuous improvement throughout evolution. Our code is publicly available at https://github.com/QuantaAlpha/EvoControl.
comment: 27 pages
PulseMind: A Multi-Modal Medical Model for Real-World Clinical Diagnosis AAAI 2026
Recent advances in medical multi-modal models focus on specialized image analysis like dermatology, pathology, or radiology. However, they do not fully capture the complexity of real-world clinical diagnostics, which involve heterogeneous inputs and require ongoing contextual understanding during patient-physician interactions. To bridge this gap, we introduce PulseMind, a new family of multi-modal diagnostic models that integrates a systematically curated dataset, a comprehensive evaluation benchmark, and a tailored training framework. Specifically, we first construct a diagnostic dataset, MediScope, which comprises 98,000 real-world multi-turn consultations and 601,500 medical images, spanning over 10 major clinical departments and more than 200 sub-specialties. Then, to better reflect the requirements of real-world clinical diagnosis, we develop the PulseMind Benchmark, a multi-turn diagnostic consultation benchmark with a four-dimensional evaluation protocol comprising proactiveness, accuracy, usefulness, and language quality. Finally, we design a training framework tailored for multi-modal clinical diagnostics, centered around a core component named Comparison-based Reinforcement Policy Optimization (CRPO). Compared to absolute score rewards, CRPO uses relative preference signals from multi-dimensional com-parisons to provide stable and human-aligned training guidance. Extensive experiments demonstrate that PulseMind achieves competitive performance on both the diagnostic consultation benchmark and public medical benchmarks.
comment: Accepted to AAAI 2026
Agentic Diagnostic Reasoning over Telecom and Datacenter Infrastructure
Large-scale telecom and datacenter infrastructures rely on multi-layered service and resource models, where failures propagate across physical and logical components and affect multiple customers. Traditional approaches to root cause analysis(RCA) rely on hard-coded graph traversal algorithms or rule-based correlation engines, which are costly to maintain and tightly coupled to the infrastructure model. In this work, we introduce an agentic diagnostic framework where a Large Language Model (LLM) performs step-wise investigation using a constrained tool space exposed through the Model Context Protocol (MCP). Instead of embedding causal logic or traversal algorithms into the application, the agent autonomously navigates the infrastructure model by invoking tools for service lookup, dependency retrieval, structured and unstructured data, and event analysis, and impact discovery. We define an investigation protocol that structures the agent's reasoning and ensures grounding, reproducibility, and safe handling of missing or ambiguous information. This work lays the foundation for autonomous incident resolution and change impact mitigation. Future systems will not only diagnose and remediate infrastructure failures, but also predict the impact of planned changes on services and customers, enabling operators to mitigate risks before executing maintenance operations.
Segmental Advantage Estimation: Enhancing PPO for Long-Context LLM Training
Training Large Language Models (LLMs) for reasoning tasks is increasingly driven by Reinforcement Learning with Verifiable Rewards (RLVR), where Proximal Policy Optimization (PPO) provides a principled framework for stable policy updates. However, the practical application of PPO is hindered by unreliable advantage estimation in the sparse-reward RLVR regime. This issue arises because the sparse rewards in RLVR lead to inaccurate intermediate value predictions, which in turn introduce significant bias when aggregated at every token by Generalized Advantage Estimation (GAE). To address this, we introduce Segmental Advantage Estimation (SAE), which mitigates the bias that GAE can incur in RLVR. Our key insight is that aggregating $n$-step advantages at every token(as in GAE) is unnecessary and often introduces excessive bias, since individual tokens carry minimal information. Instead, SAE first partitions the generated sequence into coherent sub-segments using low-probability tokens as heuristic boundaries. It then selectively computes variance-reduced advantage estimates only from these information-rich segment transitions, effectively filtering out noise from intermediate tokens. Our experiments demonstrate that SAE achieves superior performance, with marked improvements in final scores, training stability, and sample efficiency. These gains are shown to be consistent across multiple model sizes, and a correlation analysis confirms that our proposed advantage estimator achieves a higher correlation with an approximate ground-truth advantage, justifying its superior performance.
BEAT-Net: Injecting Biomimetic Spatio-Temporal Priors for Interpretable ECG Classification
Although deep learning has advanced automated electrocardiogram (ECG) diagnosis, prevalent supervised methods typically treat recordings as undifferentiated one-dimensional (1D) signals or two-dimensional (2D) images. This formulation compels models to learn physiological structures implicitly, resulting in data inefficiency and opacity that diverge from medical reasoning. To address these limitations, we propose BEAT-Net, a Biomimetic ECG Analysis with Tokenization framework that reformulates the problem as a language modeling task. Utilizing a QRS tokenization strategy to transform continuous signals into biologically aligned heartbeat sequences, the architecture explicitly decomposes cardiac physiology through specialized encoders that extract local beat morphology while normalizing spatial lead perspectives and modeling temporal rhythm dependencies. Evaluations across three large-scale benchmarks demonstrate that BEAT-Net matches the diagnostic accuracy of dominant convolutional neural network (CNN) architectures while substantially improving robustness. The framework exhibits exceptional data efficiency, recovering fully supervised performance using only 30 to 35 percent of annotated data. Moreover, learned attention mechanisms provide inherent interpretability by spontaneously reproducing clinical heuristics, such as Lead II prioritization for rhythm analysis, without explicit supervision. These findings indicate that integrating biological priors offers a computationally efficient and interpretable alternative to data-intensive large-scale pre-training.
comment: 8 pages, 4 figures and 2 tables
VLM-CAD: VLM-Optimized Collaborative Agent Design Workflow for Analog Circuit Sizing
Analog mixed-signal circuit sizing involves complex trade-offs within high-dimensional design spaces. Existing automatic analog circuit sizing approaches often underutilize circuit schematics and lack the explainability required for industry adoption. To tackle these challenges, we propose a Vision Language Model-optimized collaborative agent design workflow (VLM-CAD), which analyzes circuits, optimizes DC operating points, performs inference-based sizing and executes external sizing optimization. We integrate Image2Net to annotate circuit schematics and generate a structured JSON description for precise interpretation by Vision Language Models. Furthermore, we propose an Explainable Trust Region Bayesian Optimization method (ExTuRBO) that employs collaborative warm-starting from agent-generated seeds and offers dual-granularity sensitivity analysis for external sizing optimization, supporting a comprehensive final design report. Experiment results on amplifier sizing tasks using 180nm, 90nm, and 45nm Predictive Technology Models demonstrate that VLM-CAD effectively balances power and performance, achieving a 100% success rate in optimizing an amplifier with a complementary input and a class-AB output stage, while maintaining total runtime under 43 minutes across all experiments.
comment: 8 pages, 5 figures
Explaining Machine Learning Predictive Models through Conditional Expectation Methods
The rapid adoption of complex Artificial Intelligence (AI) and Machine Learning (ML) models has led to their characterization as black boxes due to the difficulty of explaining their internal decision-making processes. This lack of transparency hinders users' ability to understand, validate and trust model behavior, particularly in high-risk applications. Although explainable AI (XAI) has made significant progress, there remains a need for versatile and effective techniques to address increasingly complex models. This work introduces Multivariate Conditional Expectation (MUCE), a model-agnostic method for local explainability designed to capture prediction changes from feature interactions. MUCE extends Individual Conditional Expectation (ICE) by exploring a multivariate grid of values in the neighborhood of a given observation at inference time, providing graphical explanations that illustrate the local evolution of model predictions. In addition, two quantitative indices, stability and uncertainty, summarize local behavior and assess model reliability. Uncertainty is further decomposed into uncertainty+ and uncertainty- to capture asymmetric effects that global measures may overlook. The proposed method is validated using XGBoost models trained on three datasets: two synthetic (2D and 3D) to evaluate behavior near decision boundaries, and one transformed real-world dataset to test adaptability to heterogeneous feature types. Results show that MUCE effectively captures complex local model behavior, while the stability and uncertainty indices provide meaningful insight into prediction confidence. MUCE, together with the ICE modification and the proposed indices, offers a practical contribution to local explainability, enabling both graphical and quantitative insights that enhance the interpretability of predictive models and support more trustworthy and transparent decision-making.
comment: 24 pages, 15 figures. Silvia Ruiz-España and Laura Arnal contributed equally to this work
ARM: Role-Conditioned Neuron Transplantation for Training-Free Generalist LLM Agent Merging
Interactive large language model agents have advanced rapidly, but most remain specialized to a single environment and fail to adapt robustly to other environments. Model merging offers a training-free alternative by integrating multiple experts into a single model. In this paper, we propose Agent-Role Merging (ARM), an activation-guided, role-conditioned neuron transplantation method for model merging in LLM agents. ARM improves existing merging methods from static natural language tasks to multi-turn agent scenarios, and over the generalization ability across various interactive environments. This is achieved with a well designed 3-step framework: 1) constructing merged backbones, 2) selection based on its role-conditioned activation analysis, and 3) neuron transplantation for fine-grained refinements. Without gradient-based optimization, ARM improves cross-benchmark generalization while enjoying efficiency. Across diverse domains, the model obtained via ARM merging outperforms prior model merging methods and domain-specific expert models, while demonstrating strong out-of-domain generalization.
comment: 17 pages, 12 figures. Project page: https://arkazhuo.github.io/ARM-homepage/
Heterogeneous Multi-Expert Reinforcement Learning for Long-Horizon Multi-Goal Tasks in Autonomous Forklifts
Autonomous mobile manipulation in unstructured warehouses requires a balance between efficient large-scale navigation and high-precision object interaction. Traditional end-to-end learning approaches often struggle to handle the conflicting demands of these distinct phases. Navigation relies on robust decision-making over large spaces, while manipulation needs high sensitivity to fine local details. Forcing a single network to learn these different objectives simultaneously often causes optimization interference, where improving one task degrades the other. To address these limitations, we propose a Heterogeneous Multi-Expert Reinforcement Learning (HMER) framework tailored for autonomous forklifts. HMER decomposes long-horizon tasks into specialized sub-policies controlled by a Semantic Task Planner. This structure separates macro-level navigation from micro-level manipulation, allowing each expert to focus on its specific action space without interference. The planner coordinates the sequential execution of these experts, bridging the gap between task planning and continuous control. Furthermore, to solve the problem of sparse exploration, we introduce a Hybrid Imitation-Reinforcement Training Strategy. This method uses expert demonstrations to initialize the policy and Reinforcement Learning for fine-tuning. Experiments in Gazebo simulations show that HMER significantly outperforms sequential and end-to-end baselines. Our method achieves a task success rate of 94.2\% (compared to 62.5\% for baselines), reduces operation time by 21.4\%, and maintains placement error within 1.5 cm, validating its efficacy for precise material handling.
comment: 9 pages
LRAS: Advanced Legal Reasoning with Agentic Search
While Large Reasoning Models (LRMs) have demonstrated exceptional logical capabilities in mathematical domains, their application to the legal field remains hindered by the strict requirements for procedural rigor and adherence to legal logic. Existing legal LLMs, which rely on "closed-loop reasoning" derived solely from internal parametric knowledge, frequently suffer from lack of self-awareness regarding their knowledge boundaries, leading to confident yet incorrect conclusions. To address this challenge, we present Legal Reasoning with Agentic Search (LRAS), the first framework designed to transition legal LLMs from static and parametric "closed-loop thinking" to dynamic and interactive "Active Inquiry". By integrating Introspective Imitation Learning and Difficulty-aware Reinforcement Learning, LRAS enables LRMs to identify knowledge boundaries and handle legal reasoning complexity. Empirical results demonstrate that LRAS outperforms state-of-the-art baselines by 8.2-32\%, with the most substantial gains observed in tasks requiring deep reasoning with reliable knowledge. We will release our data and models for further exploration soon.
A Visual Semantic Adaptive Watermark grounded by Prefix-Tuning for Large Vision-Language Model
Watermarking has emerged as a pivotal solution for content traceability and intellectual property protection in Large Vision-Language Models (LVLMs). However, vision-agnostic watermarks introduce visually irrelevant tokens and disrupt visual grounding by enforcing indiscriminate pseudo-random biases, while some semantic-aware methods incur prohibitive inference latency due to rejection sampling. In this paper, we propose the VIsual Semantic Adaptive Watermark (VISA-Mark), a novel framework that embeds detectable signals while strictly preserving visual fidelity. Our approach employs a lightweight, efficiently trained prefix-tuner to extract dynamic Visual-Evidence Weights, which quantify the evidentiary support for candidate tokens based on the visual input. These weights guide an adaptive vocabulary partitioning and logits perturbation mechanism, concentrating watermark strength specifically on visually-supported tokens. By actively aligning the watermark with visual evidence, VISA-Mark effectively maintains visual fidelity. Empirical results confirm that VISA-Mark outperforms conventional methods with a 7.8% improvement in visual consistency (Chair-I) and superior semantic fidelity. The framework maintains highly competitive detection accuracy (96.88% AUC) and robust attack resilience (99.3%) without sacrificing inference efficiency, effectively establishing a new standard for reliability-preserving multimodal watermarking.
When Bots Take the Bait: Exposing and Mitigating the Emerging Social Engineering Attack in Web Automation Agent
Web agents, powered by large language models (LLMs), are increasingly deployed to automate complex web interactions. The rise of open-source frameworks (e.g., Browser Use, Skyvern-AI) has accelerated adoption, but also broadened the attack surface. While prior research has focused on model threats such as prompt injection and backdoors, the risks of social engineering remain largely unexplored. We present the first systematic study of social engineering attacks against web automation agents and design a pluggable runtime mitigation solution. On the attack side, we introduce the AgentBait paradigm, which exploits intrinsic weaknesses in agent execution: inducement contexts can distort the agent's reasoning and steer it toward malicious objectives misaligned with the intended task. On the defense side, we propose SUPERVISOR, a lightweight runtime module that enforces environment and intention consistency alignment between webpage context and intended goals to mitigate unsafe operations before execution. Empirical results show that mainstream frameworks are highly vulnerable to AgentBait, with an average attack success rate of 67.5% and peaks above 80% under specific strategies (e.g., trusted identity forgery). Compared with existing lightweight defenses, our module can be seamlessly integrated across different web automation frameworks and reduces attack success rates by up to 78.1% on average while incurring only a 7.7% runtime overhead and preserving usability. This work reveals AgentBait as a critical new threat surface for web agents and establishes a practical, generalizable defense, advancing the security of this rapidly emerging ecosystem. We reported the details of this attack to the framework developers and received acknowledgment before submission.
Pseudodata-guided Invariant Representation Learning Boosts the Out-of-Distribution Generalization in Enzymatic Kinetic Parameter Prediction
Accurate prediction of enzyme kinetic parameters is essential for understanding catalytic mechanisms and guiding enzyme engineering.However, existing deep learning-based enzyme-substrate interaction (ESI) predictors often exhibit performance degradation on sequence-divergent, out-of-distribution (OOD) cases, limiting robustness under biologically relevant perturbations.We propose O$^2$DENet, a lightweight, plug-and-play module that enhances OOD generalization via biologically and chemically informed perturbation augmentation and invariant representation learning.O$^2$DENet introduces enzyme-substrate perturbations and enforces consistency between original and augmented enzyme-substrate-pair representations to encourage invariance to distributional shifts.When integrated with representative ESI models, O$^2$DENet consistently improves predictive performance for both $k_{cat}$ and $K_m$ across stringent sequence-identity-based OOD benchmarks, achieving state-of-the-art results among the evaluated methods in terms of accuracy and robustness metrics.Overall, O$^2$DENet provides a general and effective strategy to enhance the stability and deployability of data-driven enzyme kinetics predictors for real-world enzyme engineering applications.
DDT: A Dual-Masking Dual-Expert Transformer for Energy Time-Series Forecasting
Accurate energy time-series forecasting is crucial for ensuring grid stability and promoting the integration of renewable energy, yet it faces significant challenges from complex temporal dependencies and the heterogeneity of multi-source data. To address these issues, we propose DDT, a novel and robust deep learning framework for high-precision time-series forecasting. At its core, DDT introduces two key innovations. First, we design a dual-masking mechanism that synergistically combines a strict causal mask with a data-driven dynamic mask. This novel design ensures theoretical causal consistency while adaptively focusing on the most salient historical information, overcoming the rigidity of traditional masking techniques. Second, our architecture features a dual-expert system that decouples the modeling of temporal dynamics and cross-variable correlations into parallel, specialized pathways, which are then intelligently integrated through a dynamic gated fusion module. We conducted extensive experiments on 7 challenging energy benchmark datasets, including ETTh, Electricity, and Solar. The results demonstrate that DDT consistently outperforms strong state-of-the-art baselines across all prediction horizons, establishing a new benchmark for the task.
Learning to Trust the Crowd: A Multi-Model Consensus Reasoning Engine for Large Language Models
Large language models (LLMs) achieve strong average performance yet remain unreliable at the instance level, with frequent hallucinations, brittle failures, and poorly calibrated confidence. We study reliability through the lens of multi-model consensus: given responses from several heterogeneous LLMs, can we learn which answer is most likely correct for a given query? We introduce a Multi-Model Consensus Reasoning Engine that treats the set of LLM outputs as input to a supervised meta-learner. The system maps natural language responses into structured features using semantic embeddings, pairwise similarity and clustering statistics, lexical and structural cues, reasoning-quality scores, confidence estimates, and model-specific priors, and then applies gradient-boosted trees, listwise ranking, and graph neural networks over similarity graphs of answers. Using three open-weight LLMs evaluated on compact, resource-constrained subsets of GSM8K, ARC-Challenge, HellaSwag, and TruthfulQA, our best graph-attention-based consensus model improves macro-average accuracy by 4.6 percentage points over the strongest single LLM and by 8.1 points over majority vote, while also yielding lower Brier scores and fewer TruthfulQA hallucinations. Ablation and feature-importance analyses show that semantic agreement and clustering features are most influential, with reasoning-quality and model-prior features providing complementary gains, suggesting supervised multi-model consensus is a practical route toward more reliable LLM behavior, even in a modest single-machine setup.
Group Pattern Selection Optimization: Let LRMs Pick the Right Pattern for Reasoning
Large reasoning models (LRMs) exhibit diverse high-level reasoning patterns (e.g., direct solution, reflection-and-verification, and exploring multiple solutions), yet prevailing training recipes implicitly bias models toward a limited set of dominant patterns. Through a systematic analysis, we identify substantial accuracy variance across these patterns on mathematics and science benchmarks, revealing that a model's default reasoning pattern is often sub-optimal for a given problem. To address this, we introduce Group Pattern Selection Optimization (GPSO), a reinforcement learning framework that extends GRPO by incorporating multi-pattern rollouts, verifier-guided optimal pattern selection per problem, and attention masking during optimization to prevent the leakage of explicit pattern suffixes into the learned policy. By exploring a portfolio of diverse reasoning strategies and optimizing the policy on the most effective ones, GPSO enables the model to internalize the mapping from problem characteristics to optimal reasoning patterns. Extensive experiments demonstrate that GPSO delivers consistent and substantial performance gains across various model backbones and benchmarks, effectively mitigating pattern sub-optimality and fostering more robust, adaptable reasoning. All data and codes are available at https://github.com/wanghanbinpanda/GPSO.
comment: 8 pages, 5 figures
Stochastic CHAOS: Why Deterministic Inference Kills, and Distributional Variability Is the Heartbeat of Artifical Cognition
Deterministic inference is a comforting ideal in classical software: the same program on the same input should always produce the same output. As large language models move into real-world deployment, this ideal has been imported wholesale into inference stacks. Recent work from the Thinking Machines Lab has presented a detailed analysis of nondeterminism in LLM inference, showing how batch-invariant kernels and deterministic attention can enforce bitwise-identical outputs, positioning deterministic inference as a prerequisite for reproducibility and enterprise reliability. In this paper, we take the opposite stance. We argue that, for LLMs, deterministic inference kills. It kills the ability to model uncertainty, suppresses emergent abilities, collapses reasoning into a single brittle path, and weakens safety alignment by hiding tail risks. LLMs implement conditional distributions over outputs, not fixed functions. Collapsing these distributions to a single canonical completion may appear reassuring, but it systematically conceals properties central to artificial cognition. We instead advocate Stochastic CHAOS, treating distributional variability as a signal to be measured and controlled. Empirically, we show that deterministic inference is systematically misleading. Single-sample deterministic evaluation underestimates both capability and fragility, masking failure probability under paraphrases and noise. Phase-like transitions associated with emergent abilities disappear under greedy decoding. Multi-path reasoning degrades when forced onto deterministic backbones, reducing accuracy and diagnostic insight. Finally, deterministic evaluation underestimates safety risk by hiding rare but dangerous behaviors that appear only under multi-sample evaluation.
From "Thinking" to "Justifying": Aligning High-Stakes Explainability with Professional Communication Standards
Explainable AI (XAI) in high-stakes domains should help stakeholders trust and verify system outputs. Yet Chain-of-Thought methods reason before concluding, and logical gaps or hallucinations can yield conclusions that do not reliably align with their rationale. Thus, we propose "Result -> Justify", which constrains the output communication to present a conclusion before its structured justification. We introduce SEF (Structured Explainability Framework), operationalizing professional conventions (e.g., CREAC, BLUF) via six metrics for structure and grounding. Experiments across four tasks in three domains validate this approach: all six metrics correlate with correctness (r=0.20-0.42; p<0.001), and SEF achieves 83.9% accuracy (+5.3 over CoT). These results suggest structured justification can improve verifiability and may also improve reliability.
Yes FLoReNce, I Will Do Better Next Time! Agentic Feedback Reasoning for Humorous Meme Detection AAAI 2026
Humorous memes blend visual and textual cues to convey irony, satire, or social commentary, posing unique challenges for AI systems that must interpret intent rather than surface correlations. Existing multimodal or prompting-based models generate explanations for humor but operate in an open loop,lacking the ability to critique or refine their reasoning once a prediction is made. We propose FLoReNce, an agentic feedback reasoning framework that treats meme understanding as a closed-loop process during learning and an open-loop process during inference. In the closed loop, a reasoning agent is critiqued by a judge; the error and semantic feedback are converted into control signals and stored in a feedback-informed, non-parametric knowledge base. At inference, the model retrieves similar judged experiences from this KB and uses them to modulate its prompt, enabling better, self-aligned reasoning without finetuning. On the PrideMM dataset, FLoReNce improves both predictive performance and explanation quality over static multimodal baselines, showing that feedback-regulated prompting is a viable path to adaptive meme humor understanding.
comment: LaMAS@AAAI 2026 (Oral)
DiSCo: Making Absence Visible in Intelligent Summarization Interfaces
Intelligent interfaces increasingly use large language models to summarize user-generated content, yet these summaries emphasize what is mentioned while overlooking what is missing. This presence bias can mislead users who rely on summaries to make decisions. We present Domain Informed Summarization through Contrast (DiSCo), an expectation-based computational approach that makes absences visible by comparing each entity's content with domain topical expectations captured in reference distributions of aspects typically discussed in comparable accommodations. This comparison identifies aspects that are either unusually emphasized or missing relative to domain norms and integrates them into the generated text. In a user study across three accommodation domains, namely ski, beach, and city center, DiSCo summaries were rated as more detailed and useful for decision making than baseline large language model summaries, although slightly harder to read. The findings show that modeling expectations reduces presence bias and improves both transparency and decision support in intelligent summarization interfaces.
Lost in the Noise: How Reasoning Models Fail with Contextual Distractors
Recent advances in reasoning models and agentic AI systems have led to an increased reliance on diverse external information. However, this shift introduces input contexts that are inherently noisy, a reality that current sanitized benchmarks fail to capture. We introduce NoisyBench, a comprehensive benchmark that systematically evaluates model robustness across 11 datasets in RAG, reasoning, alignment, and tool-use tasks against diverse noise types, including random documents, irrelevant chat histories, and hard negative distractors. Our evaluation reveals a catastrophic performance drop of up to 80% in state-of-the-art models when faced with contextual distractors. Crucially, we find that agentic workflows often amplify these errors by over-trusting noisy tool outputs, and distractors can trigger emergent misalignment even without adversarial intent. We find that prompting, context engineering, SFT, and outcome-reward only RL fail to ensure robustness; in contrast, our proposed Rationale-Aware Reward (RARE) significantly strengthens resilience by incentivizing the identification of helpful information within noise. Finally, we uncover an inverse scaling trend where increased test-time computation leads to worse performance in noisy settings and demonstrate via attention visualization that models disproportionately focus on distractor tokens, providing vital insights for building the next generation of robust, reasoning-capable agents.
comment: Preprint
Consolidation or Adaptation? PRISM: Disentangling SFT and RL Data via Gradient Concentration
While Hybrid Supervised Fine-Tuning (SFT) followed by Reinforcement Learning (RL) has become the standard paradigm for training LLM agents, effective mechanisms for data allocation between these stages remain largely underexplored. Current data arbitration strategies often rely on surface-level heuristics that fail to diagnose intrinsic learning needs. Since SFT targets pattern consolidation through imitation while RL drives structural adaptation via exploration, misaligning data with these functional roles causes severe optimization interference. We propose PRISM, a dynamics-aware framework grounded in Schema Theory that arbitrates data based on its degree of cognitive conflict with the model's existing knowledge. By analyzing the spatial geometric structure of gradients, PRISM identifies data triggering high spatial concentration as high-conflict signals that require RL for structural restructuring. In contrast, data yielding diffuse updates is routed to SFT for efficient consolidation. Extensive experiments on WebShop and ALFWorld demonstrate that PRISM achieves a Pareto improvement, outperforming state-of-the-art hybrid methods while reducing computational costs by up to 3.22$\times$. Our findings suggest that disentangling data based on internal optimization regimes is crucial for scalable and robust agent alignment.
BlindU: Blind Machine Unlearning without Revealing Erasing Data
Machine unlearning enables data holders to remove the contribution of their specified samples from trained models to protect their privacy. However, it is paradoxical that most unlearning methods require the unlearning requesters to firstly upload their data to the server as a prerequisite for unlearning. These methods are infeasible in many privacy-preserving scenarios where servers are prohibited from accessing users' data, such as federated learning (FL). In this paper, we explore how to implement unlearning under the condition of not uncovering the erasing data to the server. We propose \textbf{Blind Unlearning (BlindU)}, which carries out unlearning using compressed representations instead of original inputs. BlindU only involves the server and the unlearning user: the user locally generates privacy-preserving representations, and the server performs unlearning solely on these representations and their labels. For the FL model training, we employ the information bottleneck (IB) mechanism. The encoder of the IB-based FL model learns representations that distort maximum task-irrelevant information from inputs, allowing FL users to generate compressed representations locally. For effective unlearning using compressed representation, BlindU integrates two dedicated unlearning modules tailored explicitly for IB-based models and uses a multiple gradient descent algorithm to balance forgetting and utility retaining. While IB compression already provides protection for task-irrelevant information of inputs, to further enhance the privacy protection, we introduce a noise-free differential privacy (DP) masking method to deal with the raw erasing data before compressing. Theoretical analysis and extensive experimental results illustrate the superiority of BlindU in privacy protection and unlearning effectiveness compared with the best existing privacy-preserving unlearning benchmarks.
SIRR-LMM: Single-image Reflection Removal via Large Multimodal Model
Glass surfaces create complex interactions of reflected and transmitted light, making single-image reflection removal (SIRR) challenging. Existing datasets suffer from limited physical realism in synthetic data or insufficient scale in real captures. We introduce a synthetic dataset generation framework that path-traces 3D glass models over real background imagery to create physically accurate reflection scenarios with varied glass properties, camera settings, and post-processing effects. To leverage the capabilities of Large Multimodal Model (LMM), we concatenate the image layers into a single composite input, apply joint captioning, and fine-tune the model using task-specific LoRA rather than full-parameter training. This enables our approach to achieve improved reflection removal and separation performance compared to state-of-the-art methods.
comment: 12 pages, 14 figures, accepted in WACVW 2026
LLMRouterBench: A Massive Benchmark and Unified Framework for LLM Routing
Large language model (LLM) routing assigns each query to the most suitable model from an ensemble. We introduce LLMRouterBench, a large-scale benchmark and unified framework for LLM routing. It comprises over 400K instances from 21 datasets and 33 models. Moreover, it provides comprehensive metrics for both performance-oriented routing and performance-cost trade-off routing, and integrates 10 representative routing baselines. Using LLMRouterBench, we systematically re-evaluate the field. While confirming strong model complementarity-the central premise of LLM routing-we find that many routing methods exhibit similar performance under unified evaluation, and several recent approaches, including commercial routers, fail to reliably outperform a simple baseline. Meanwhile, a substantial gap remains to the Oracle, driven primarily by persistent model-recall failures. We further show that backbone embedding models have limited impact, that larger ensembles exhibit diminishing returns compared to careful model curation, and that the benchmark also enables latency-aware analysis. All code and data are available at https://github.com/ynulihao/LLMRouterBench.
CalPro: Prior-Aware Evidential--Conformal Prediction with Structure-Aware Guarantees for Protein Structures
Deep protein structure predictors such as AlphaFold provide confidence estimates (e.g., pLDDT) that are often miscalibrated and degrade under distribution shifts across experimental modalities, temporal changes, and intrinsically disordered regions. We introduce CalPro, a prior-aware evidential-conformal framework for shift-robust uncertainty quantification. CalPro combines (i) a geometric evidential head that outputs Normal-Inverse-Gamma predictive distributions via a graph-based architecture; (ii) a differentiable conformal layer that enables end-to-end training with finite-sample coverage guarantees; and (iii) domain priors (disorder, flexibility) encoded as soft constraints. We derive structure-aware coverage guarantees under distribution shift using PAC-Bayesian bounds over ambiguity sets, and show that CalPro maintains near-nominal coverage while producing tighter intervals than standard conformal methods in regions where priors are informative. Empirically, CalPro exhibits at most 5% coverage degradation across modalities (vs. 15-25% for baselines), reduces calibration error by 30-50%, and improves downstream ligand-docking success by 25%. Beyond proteins, CalPro applies to structured regression tasks in which priors encode local reliability, validated on non-biological benchmarks.
Safeguarding LLM Fine-tuning via Push-Pull Distributional Alignment
The inherent safety alignment of Large Language Models (LLMs) is prone to erosion during fine-tuning, even when using seemingly innocuous datasets. While existing defenses attempt to mitigate this via data selection, they typically rely on heuristic, instance-level assessments that neglect the global geometry of the data distribution and fail to explicitly repel harmful patterns. To address this, we introduce Safety Optimal Transport (SOT), a novel framework that reframes safe fine-tuning from an instance-level filtering challenge to a distribution-level alignment task grounded in Optimal Transport (OT). At its core is a dual-reference ``push-pull'' weight-learning mechanism: SOT optimizes sample importance by actively pulling the downstream distribution towards a trusted safe anchor while simultaneously pushing it away from a general harmful reference. This establishes a robust geometric safety boundary that effectively purifies the training data. Extensive experiments across diverse model families and domains demonstrate that SOT significantly enhances model safety while maintaining competitive downstream performance, achieving a superior safety-utility trade-off compared to baselines.
Forward versus Backward: Comparing Reasoning Objectives in Direct Preference Optimization
Large language models exhibit impressive reasoning capabilities yet frequently generate plausible but incorrect solutions, a phenomenon commonly termed hallucination. This paper investigates the effect of training objective composition on reasoning reliability through Direct Preference Optimization. Two complementary training signals are examined: forward chain-of-thought generation, which trains the model to produce correct reasoning traces, and backward verification, which trains the model to verify and acknowledge errors in candidate solutions. Experiments on GSM8K reveal a fundamental trade-off between these objectives. Forward-only DPO training achieves the highest accuracy improvement, increasing from 83.1% to 86.6% (+3.5 percentage points), while backward-only training yields minimal accuracy gains but substantially reduces the false positive rate from 13.4% to 4.3%. Notably, both training variants reduce acknowledgement rate compared to the baseline, suggesting that preference optimization increases model confidence in its outputs. These findings indicate that forward and backward reasoning objectives provide distinct and complementary learning signals: forward training improves problem-solving capability, while backward training improves verification calibration. The complete training and evaluation pipeline, implemented efficiently through Low-Rank Adaptation, is released to facilitate further research.
Beyond Variance: Knowledge-Aware LLM Compression via Fisher-Aligned Subspace Diagnostics
Post-training activation compression is essential for deploying Large Language Models (LLMs) on resource-constrained hardware. However, standard methods like Singular Value Decomposition (SVD) are gradient-blind: they preserve high-variance dimensions regardless of their impact on factual knowledge preservation. We introduce Fisher-Aligned Subspace Compression (FASC), a knowledge-aware compression framework that selects subspaces by directly modeling activation-gradient coupling, minimizing a second-order surrogate of the loss function. FASC leverages the Fisher Information Matrix to identify dimensions critical for factual knowledge, which often reside in low-variance but high-gradient-sensitivity subspaces. We propose the Dependence Violation Score (\r{ho}) as a general-purpose diagnostic metric that quantifies activation-gradient coupling, revealing where factual knowledge is stored within transformer architectures. Extensive experiments on Mistral-7B and Llama-3-8B demonstrate that FASC preserves 6-8% more accuracy on knowledge-intensive benchmarks (MMLU, LAMA) compared to variance-based methods at 50% rank reduction, effectively enabling a 7B model to match the factual recall of a 13B uncompressed model. Our analysis reveals that \r{ho} serves as a fundamental signal of stored knowledge, with high-\r{ho} layers emerging only when models internalize factual associations during training.
Relink: Constructing Query-Driven Evidence Graph On-the-Fly for GraphRAG AAAI 2026
Graph-based Retrieval-Augmented Generation (GraphRAG) mitigates hallucinations in Large Language Models (LLMs) by grounding them in structured knowledge. However, current GraphRAG methods are constrained by a prevailing \textit{build-then-reason} paradigm, which relies on a static, pre-constructed Knowledge Graph (KG). This paradigm faces two critical challenges. First, the KG's inherent incompleteness often breaks reasoning paths. Second, the graph's low signal-to-noise ratio introduces distractor facts, presenting query-relevant but misleading knowledge that disrupts the reasoning process. To address these challenges, we argue for a \textit{reason-and-construct} paradigm and propose Relink, a framework that dynamically builds a query-specific evidence graph. To tackle incompleteness, \textbf{Relink} instantiates required facts from a latent relation pool derived from the original text corpus, repairing broken paths on the fly. To handle misleading or distractor facts, Relink employs a unified, query-aware evaluation strategy that jointly considers candidates from both the KG and latent relations, selecting those most useful for answering the query rather than relying on their pre-existence. This empowers Relink to actively discard distractor facts and construct the most faithful and precise evidence path for each query. Extensive experiments on five Open-Domain Question Answering benchmarks show that Relink achieves significant average improvements of 5.4\% in EM and 5.2\% in F1 over leading GraphRAG baselines, demonstrating the superiority of our proposed framework.
comment: Accepted by AAAI 2026
Active Context Compression: Autonomous Memory Management in LLM Agents
Large Language Model (LLM) agents struggle with long-horizon software engineering tasks due to "Context Bloat." As interaction history grows, computational costs explode, latency increases, and reasoning capabilities degrade due to distraction by irrelevant past errors. Existing solutions often rely on passive, external summarization mechanisms that the agent cannot control. This paper proposes Focus, an agent-centric architecture inspired by the biological exploration strategies of Physarum polycephalum (slime mold). The Focus Agent autonomously decides when to consolidate key learnings into a persistent "Knowledge" block and actively withdraws (prunes) the raw interaction history. Using an optimized scaffold matching industry best practices (persistent bash + string-replacement editor), we evaluated Focus on N=5 context-intensive instances from SWE-bench Lite using Claude Haiku 4.5. With aggressive prompting that encourages frequent compression, Focus achieves 22.7% token reduction (14.9M -> 11.5M tokens) while maintaining identical accuracy (3/5 = 60% for both agents). Focus performed 6.0 autonomous compressions per task on average, with token savings up to 57% on individual instances. We demonstrate that capable models can autonomously self-regulate their context when given appropriate tools and prompting, opening pathways for cost-aware agentic systems without sacrificing task performance.
comment: 8 pages, 2 figures, 2 tables. IEEE conference format
Defenses Against Prompt Attacks Learn Surface Heuristics
Large language models (LLMs) are increasingly deployed in security-sensitive applications, where they must follow system- or developer-specified instructions that define the intended task behavior, while completing benign user requests. When adversarial instructions appear in user queries or externally retrieved content, models may override intended logic. Recent defenses rely on supervised fine-tuning with benign and malicious labels. Although these methods achieve high attack rejection rates, we find that they rely on narrow correlations in defense data rather than harmful intent, leading to systematic rejection of safe inputs. We analyze three recurring shortcut behaviors induced by defense fine-tuning. \emph{Position bias} arises when benign content placed later in a prompt is rejected at much higher rates; across reasoning benchmarks, suffix-task rejection rises from below \textbf{10\%} to as high as \textbf{90\%}. \emph{Token trigger bias} occurs when strings common in attack data raise rejection probability even in benign contexts; inserting a single trigger token increases false refusals by up to \textbf{50\%}. \emph{Topic generalization bias} reflects poor generalization beyond the defense data distribution, with defended models suffering test-time accuracy drops of up to \textbf{40\%}. These findings suggest that current prompt-injection defenses frequently respond to attack-like surface patterns rather than the underlying intent. We introduce controlled diagnostic datasets and a systematic evaluation across two base models and multiple defense pipelines, highlighting limitations of supervised fine-tuning for reliable LLM security.
PRPO: Aligning Process Reward with Outcome Reward in Policy Optimization
Policy optimization for large language models often suffers from sparse reward signals in multi-step reasoning tasks. Critic-free methods like GRPO assign a single normalized outcome reward to all tokens, providing limited guidance for intermediate reasoning . While Process Reward Models (PRMs) offer dense feedback, they risk premature collapse when used alone, as early low-reward tokens can drive policies toward truncated outputs. We introduce Process Relative Policy Optimization (PRPO), which combines outcome reliability with process-level guidance in a critic-free framework. PRPO segments reasoning sequences based on semantic clues, normalizes PRM scores into token-level advantages, and aligns their distribution with outcome advantages through location-parameter shift. On MATH500, PRPO improves Qwen2.5-Math-1.5B accuracy from 61.2% to 64.4% over GRPO using only eight rollouts and no value network, demonstrating efficient fine-grained credit assignment within critic-free optimization.
comment: 8 pages, 2 figures
DIVER: Dynamic Iterative Visual Evidence Reasoning for Multimodal Fake News Detection
Multimodal fake news detection is crucial for mitigating adversarial misinformation. Existing methods, relying on static fusion or LLMs, face computational redundancy and hallucination risks due to weak visual foundations. To address this, we propose DIVER (Dynamic Iterative Visual Evidence Reasoning), a framework grounded in a progressive, evidence-driven reasoning paradigm. DIVER first establishes a strong text-based baseline through language analysis, leveraging intra-modal consistency to filter unreliable or hallucinated claims. Only when textual evidence is insufficient does the framework introduce visual information, where inter-modal alignment verification adaptively determines whether deeper visual inspection is necessary. For samples exhibiting significant cross-modal semantic discrepancies, DIVER selectively invokes fine-grained visual tools (e.g., OCR and dense captioning) to extract task-relevant evidence, which is iteratively aggregated via uncertainty-aware fusion to refine multimodal reasoning. Experiments on Weibo, Weibo21, and GossipCop demonstrate that DIVER outperforms state-of-the-art baselines by an average of 2.72\%, while optimizing inference efficiency with a reduced latency of 4.12 s.
comment: 13 pages
Safe-FedLLM: Delving into the Safety of Federated Large Language Models
Federated learning (FL) addresses data privacy and silo issues in large language models (LLMs). Most prior work focuses on improving the training efficiency of federated LLMs. However, security in open environments is overlooked, particularly defenses against malicious clients. To investigate the safety of LLMs during FL, we conduct preliminary experiments to analyze potential attack surfaces and defensible characteristics from the perspective of Low-Rank Adaptation (LoRA) weights. We find two key properties of FL: 1) LLMs are vulnerable to attacks from malicious clients in FL, and 2) LoRA weights exhibit distinct behavioral patterns that can be filtered through simple classifiers. Based on these properties, we propose Safe-FedLLM, a probe-based defense framework for federated LLMs, constructing defenses across three dimensions: Step-Level, Client-Level, and Shadow-Level. The core concept of Safe-FedLLM is to perform probe-based discrimination on the LoRA weights locally trained by each client during FL, treating them as high-dimensional behavioral features and using lightweight classification models to determine whether they possess malicious attributes. Extensive experiments demonstrate that Safe-FedLLM effectively enhances the defense capability of federated LLMs without compromising performance on benign data. Notably, our method effectively suppresses malicious data impact without significant impact on training speed, and remains effective even with many malicious clients. Our code is available at: https://github.com/dmqx/Safe-FedLLM.
AscendKernelGen: A Systematic Study of LLM-Based Kernel Generation for Neural Processing Units
To meet the ever-increasing demand for computational efficiency, Neural Processing Units (NPUs) have become critical in modern AI infrastructure. However, unlocking their full potential requires developing high-performance compute kernels using vendor-specific Domain-Specific Languages (DSLs), a task that demands deep hardware expertise and is labor-intensive. While Large Language Models (LLMs) have shown promise in general code generation, they struggle with the strict constraints and scarcity of training data in the NPU domain. Our preliminary study reveals that state-of-the-art general-purpose LLMs fail to generate functional complex kernels for Ascend NPUs, yielding a near-zero success rate. To address these challenges, we propose AscendKernelGen, a generation-evaluation integrated framework for NPU kernel development. We introduce Ascend-CoT, a high-quality dataset incorporating chain-of-thought reasoning derived from real-world kernel implementations, and KernelGen-LM, a domain-adaptive model trained via supervised fine-tuning and reinforcement learning with execution feedback. Furthermore, we design NPUKernelBench, a comprehensive benchmark for assessing compilation, correctness, and performance across varying complexity levels. Experimental results demonstrate that our approach significantly bridges the gap between general LLMs and hardware-specific coding. Specifically, the compilation success rate on complex Level-2 kernels improves from 0% to 95.5% (Pass@10), while functional correctness achieves 64.3% compared to the baseline's complete failure. These results highlight the critical role of domain-specific reasoning and rigorous evaluation in automating accelerator-aware code generation.
comment: 33 pages,7 figures,16 tables
Stable On-Policy Distillation through Adaptive Target Reformulation
Knowledge distillation (KD) is a widely adopted technique for transferring knowledge from large language models to smaller student models; however, conventional supervised KD often suffers from a distribution mismatch between training and inference. While on-policy KD approaches attempt to mitigate this issue by learning directly from student-generated outputs, they frequently encounter training instabilities because the distributional gap between the novice student and the expert teacher is often too wide to bridge directly. These challenges manifest as pathological gradients in forward KL objectives or diversity collapse in reverse KL regimes. To address these limitations, we propose Veto, an objective-level reformulation that constructs a geometric bridge in the logit space. Unlike prior methods that mix data samples, Veto creates an intermediate target distribution that promotes alignment between the teacher and the student. By introducing a tunable parameter beta, Veto serves as an Adaptive Gradient Veto that stabilizes optimization by suppressing harmful gradients on low-confidence tokens, while simultaneously acting as a Decisiveness Knob to balance reward-driven performance with output diversity. Extensive experiments across various reasoning and generation tasks demonstrate that Veto consistently outperforms supervised fine-tuning and existing on-policy baselines.
comment: 10 pages, 5 figures
Can Large Language Models Understand, Reason About, and Generate Code-Switched Text?
Code-switching is a pervasive phenomenon in multilingual communication, yet the robustness of large language models (LLMs) in mixed-language settings remains insufficiently understood. In this work, we present a comprehensive evaluation of LLM capabilities in understanding, reasoning over, and generating code-switched text. We introduce CodeMixQA a novel benchmark with high-quality human annotations, comprising 16 diverse parallel code-switched language-pair variants that span multiple geographic regions and code-switching patterns, and include both original scripts and their transliterated forms. Using this benchmark, we analyze the reasoning behavior of LLMs on code-switched question-answering tasks, shedding light on how models process and reason over mixed-language inputs. We further conduct a systematic evaluation of LLM-generated synthetic code-switched text, focusing on both naturalness and semantic fidelity, and uncover key limitations in current generation capabilities. Our findings reveal persistent challenges in both reasoning and generation under code-switching conditions and provide actionable insights for building more robust multilingual LLMs. We release the dataset and code as open source.
comment: Preprint
Rewarding Creativity: A Human-Aligned Generative Reward Model for Reinforcement Learning in Storytelling
While Large Language Models (LLMs) can generate fluent text, producing high-quality creative stories remains challenging. Reinforcement Learning (RL) offers a promising solution but faces two critical obstacles: designing reliable reward signals for subjective storytelling quality and mitigating training instability. This paper introduces the Reinforcement Learning for Creative Storytelling (RLCS) framework to systematically address both challenges. First, we develop a Generative Reward Model (GenRM) that provides multi-dimensional analysis and explicit reasoning about story preferences, trained through supervised fine-tuning on demonstrations with reasoning chains distilled from strong teacher models, followed by GRPO-based refinement on expanded preference data. Second, we introduce an entropy-based reward shaping strategy that dynamically prioritizes learning on confident errors and uncertain correct predictions, preventing overfitting on already-mastered patterns. Experiments demonstrate that GenRM achieves 68\% alignment with human creativity judgments, and RLCS significantly outperforms strong baselines including Gemini-2.5-Pro in overall story quality. This work provides a practical pipeline for applying RL to creative domains, effectively navigating the dual challenges of reward modeling and training stability.
Measuring Iterative Temporal Reasoning with TimePuzzles
We introduce TimePuzzles, a constraint-based date inference task for evaluating iterative temporal reasoning. Each puzzle combines factual temporal anchors with (cross-cultural) calendar relations, admits one or multiple valid solution dates, and is algorithmically generated for controlled, dynamic, and continual evaluation. Across 13 diverse LLMs, TimePuzzles well distinguishes their iterative temporal reasoning capabilities and remains challenging without tools: GPT-5 reaches only 49.3% accuracy and all other models stay below 31%, despite the dataset's simplicity. Web search consistently yields substantial gains and using code interpreter shows mixed effects, but all models perform much better when constraints are rewritten with explicit dates, revealing a gap in reliable tool use. Overall, TimePuzzles presents a simple, cost-effective diagnostic for tool-augmented iterative temporal reasoning.
A Large-Scale Study on the Development and Issues of Multi-Agent AI Systems
The rapid emergence of multi-agent AI systems (MAS), including LangChain, CrewAI, and AutoGen, has shaped how large language model (LLM) applications are developed and orchestrated. However, little is known about how these systems evolve and are maintained in practice. This paper presents the first large-scale empirical study of open-source MAS, analyzing over 42K unique commits and over 4.7K resolved issues across eight leading systems. Our analysis identifies three distinct development profiles: sustained, steady, and burst-driven. These profiles reflect substantial variation in ecosystem maturity. Perfective commits constitute 40.8% of all changes, suggesting that feature enhancement is prioritized over corrective maintenance (27.4%) and adaptive updates (24.3%). Data about issues shows that the most frequent concerns involve bugs (22%), infrastructure (14%), and agent coordination challenges (10%). Issue reporting also increased sharply across all frameworks starting in 2023. Median resolution times range from under one day to about two weeks, with distributions skewed toward fast responses but a minority of issues requiring extended attention. These results highlight both the momentum and the fragility of the current ecosystem, emphasizing the need for improved testing infrastructure, documentation quality, and maintenance practices to ensure long-term reliability and sustainability.
comment: 8 pages, 8 figures, IEEE BigData Workshop on Software Engineering for Agentic AI 2025
ENTRA: Entropy-Based Redundancy Avoidance in Large Language Model Reasoning
Large Reasoning Models (LRMs) often suffer from overthinking, generating unnecessarily long reasoning chains even for simple tasks. This leads to substantial computational overhead with limited performance gain, primarily due to redundant verification and repetitive generation. While prior work typically constrains output length or optimizes correctness, such coarse supervision fails to guide models toward concise yet accurate inference. In this paper, we propose ENTRA, an entropy-based training framework that suppresses redundant reasoning while preserving performance. ENTRA first estimates the token-level importance using a lightweight Bidirectional Importance Estimation (BIE) method, which accounts for both prediction confidence and forward influence. It then computes a redundancy reward based on the entropy of low-importance tokens, normalized by its theoretical upper bound, and optimizes this reward via reinforcement learning. Experiments on mathematical reasoning benchmarks demonstrate that ENTRA reduces output length by 37% to 53% with no loss-and in some cases, gains-in accuracy. Our approach offers a principled and efficient solution to reduce overthinking in LRMs, and provides a generalizable path toward redundancy-aware reasoning optimization.
Enhancing Cloud Network Resilience via a Robust LLM-Empowered Multi-Agent Reinforcement Learning Framework
While virtualization and resource pooling empower cloud networks with structural flexibility and elastic scalability, they inevitably expand the attack surface and challenge cyber resilience. Reinforcement Learning (RL)-based defense strategies have been developed to optimize resource deployment and isolation policies under adversarial conditions, aiming to enhance system resilience by maintaining and restoring network availability. However, existing approaches lack robustness as they require retraining to adapt to dynamic changes in network structure, node scale, attack strategies, and attack intensity. Furthermore, the lack of Human-in-the-Loop (HITL) support limits interpretability and flexibility. To address these limitations, we propose CyberOps-Bots, a hierarchical multi-agent reinforcement learning framework empowered by Large Language Models (LLMs). Inspired by MITRE ATT&CK's Tactics-Techniques model, CyberOps-Bots features a two-layer architecture: (1) An upper-level LLM agent with four modules--ReAct planning, IPDRR-based perception, long-short term memory, and action/tool integration--performs global awareness, human intent recognition, and tactical planning; (2) Lower-level RL agents, developed via heterogeneous separated pre-training, execute atomic defense actions within localized network regions. This synergy preserves LLM adaptability and interpretability while ensuring reliable RL execution. Experiments on real cloud datasets show that, compared to state-of-the-art algorithms, CyberOps-Bots maintains network availability 68.5% higher and achieves a 34.7% jumpstart performance gain when shifting the scenarios without retraining. To our knowledge, this is the first study to establish a robust LLM-RL framework with HITL support for cloud defense. We will release our framework to the community, facilitating the advancement of robust and autonomous defense in cloud networks.
ReMIND: Orchestrating Modular Large Language Models for Controllable Serendipity A REM-Inspired System Design for Emergent Creative Ideation
Large language models (LLMs) are used not only for problem solving but also for creative ideation; however, eliciting serendipitous insights that are both novel and internally coherent remains difficult. While stochastic sampling promotes novelty, it often degrades consistency. Here, we propose ReMIND, a REM-inspired modular framework for ideation. ReMIND consists of four stages: wake, which generates a stable low-temperature semantic baseline; dream, which performs high-temperature exploratory generation; judge, which applies coarse evaluation to filter incoherent outputs and extract candidate ideas; and re-wake, which re-articulates selected ideas into coherent final outputs. By instantiating each stage as an independent LLM, ReMIND enables functional separation between exploration and consolidation. Parameter sweeps show that ReMIND reliably induces semantic exploration while preserving downstream stability. Embedding-based analyses confirm substantial semantic displacement during the dream phase, whereas external evaluations reveal that high-quality ideas emerge sporadically rather than as extrema along any single metric. These results suggest that serendipitous ideation in LLMs is a rare-event process best approached through system level design that shapes the conditions under which valuable ideas can emerge and be stabilized. ReMIND provides a general framework for studying the computational basis of serendipity and illustrates how modular LLM orchestration can bridge exploration and stabilization.
Few-shot Class-Incremental Learning via Generative Co-Memory Regularization
Few-shot class-incremental learning (FSCIL) aims to incrementally learn models from a small amount of novel data, which requires strong representation and adaptation ability of models learned under few-example supervision to avoid catastrophic forgetting on old classes and overfitting to novel classes. This work proposes a generative co-memory regularization approach to facilitate FSCIL. In the approach, the base learning leverages generative domain adaptation finetuning to finetune a pretrained generative encoder on a few examples of base classes by jointly incorporating a masked autoencoder (MAE) decoder for feature reconstruction and a fully-connected classifier for feature classification, which enables the model to efficiently capture general and adaptable representations. Using the finetuned encoder and learned classifier, we construct two class-wise memories: representation memory for storing the mean features for each class, and weight memory for storing the classifier weights. After that, the memory-regularized incremental learning is performed to train the classifier dynamically on the examples of few-shot classes in each incremental session by simultaneously optimizing feature classification and co-memory regularization. The memories are updated in a class-incremental manner and they collaboratively regularize the incremental learning. In this way, the learned models improve recognition accuracy, while mitigating catastrophic forgetting over old classes and overfitting to novel classes. Extensive experiments on popular benchmarks clearly demonstrate that our approach outperforms the state-of-the-arts.
comment: Accepted by International Journal on Computer Vision (IJCV)
The Need for a Socially-Grounded Persona Framework for User Simulation
Synthetic personas are widely used to condition large language models (LLMs) for social simulation, yet most personas are still constructed from coarse sociodemographic attributes or summaries. We revisit persona creation by introducing SCOPE, a socially grounded framework for persona construction and evaluation, built from a 141-item, two-hour sociopsychological protocol collected from 124 U.S.-based participants. Across seven models, we find that demographic-only personas are a structural bottleneck: demographics explain only ~1.5% of variance in human response similarity. Adding sociopsychological facets improves behavioral prediction and reduces over-accentuation, and non-demographic personas based on values and identity achieve strong alignment with substantially lower bias. These trends generalize to SimBench (441 aligned questions), where SCOPE personas outperform default prompting and NVIDIA Nemotron personas, and SCOPE augmentation improves Nemotron-based personas. Our results indicate that persona quality depends on sociopsychological structure rather than demographic templates or summaries.
MEDVISTAGYM: A Scalable Training Environment for Thinking with Medical Images via Tool-Integrated Reinforcement Learning
Vision language models (VLMs) achieve strong performance on general image understanding but struggle to think with medical images, especially when performing multi-step reasoning through iterative visual interaction. Medical VLMs often rely on static visual embeddings and single-pass inference, preventing models from re-examining, verifying, or refining visual evidence during reasoning. While tool-integrated reasoning offers a promising path forward, open-source VLMs lack the training infrastructure to learn effective tool selection, invocation, and coordination in multi-modal medical reasoning. We introduce MedVistaGym, a scalable and interactive training environment that incentivizes tool-integrated visual reasoning for medical image analysis. MedVistaGym equips VLMs to determine when and which tools to invoke, localize task-relevant image regions, and integrate single or multiple sub-image evidence into interleaved multimodal reasoning within a unified, executable interface for agentic training. Using MedVistaGym, we train MedVistaGym-R1 to interleave tool use with agentic reasoning through trajectory sampling and end-to-end reinforcement learning. Across six medical VQA benchmarks, MedVistaGym-R1-8B exceeds comparably sized tool-augmented baselines by 19.10% to 24.21%, demonstrating that structured agentic training--not tool access alone--unlocks effective tool-integrated reasoning for medical image analysis.
MemoBrain: Executive Memory as an Agentic Brain for Reasoning
Complex reasoning in tool-augmented agent frameworks is inherently long-horizon, causing reasoning traces and transient tool artifacts to accumulate and strain the bounded working context of large language models. Without explicit memory mechanisms, such accumulation disrupts logical continuity and undermines task alignment. This positions memory not as an auxiliary efficiency concern, but as a core component for sustaining coherent, goal-directed reasoning over long horizons. We propose MemoBrain, an executive memory model for tool-augmented agents that constructs a dependency-aware memory over reasoning steps, capturing salient intermediate states and their logical relations. Operating as a co-pilot alongside the reasoning agent, MemoBrain organizes reasoning progress without blocking execution and actively manages the working context. Specifically, it prunes invalid steps, folds completed sub-trajectories, and preserves a compact, high-salience reasoning backbone under a fixed context budget. Together, these mechanisms enable explicit cognitive control over reasoning trajectories rather than passive context accumulation. We evaluate MemoBrain on challenging long-horizon benchmarks, including GAIA, WebWalker, and BrowseComp-Plus, demonstrating consistent improvements over strong baselines.
comment: Our codes are in https://github.com/qhjqhj00/MemoBrain
Semantic Gravity Wells: Why Negative Constraints Backfire
Negative constraints (instructions of the form "do not use word X") represent a fundamental test of instruction-following capability in large language models. Despite their apparent simplicity, these constraints fail with striking regularity, and the conditions governing failure have remained poorly understood. This paper presents the first comprehensive mechanistic investigation of negative instruction failure. We introduce semantic pressure, a quantitative measure of the model's intrinsic probability of generating the forbidden token, and demonstrate that violation probability follows a tight logistic relationship with pressure ($p=σ(-2.40+2.27\cdot P_0)$; $n=40{,}000$ samples; bootstrap $95%$ CI for slope: $[2.21,,2.33]$). Through layer-wise analysis using the logit lens technique, we establish that the suppression signal induced by negative instructions is present but systematically weaker in failures: the instruction reduces target probability by only 5.2 percentage points in failures versus 22.8 points in successes -- a $4.4\times$ asymmetry. We trace this asymmetry to two mechanistically distinct failure modes. In priming failure (87.5% of violations), the instruction's explicit mention of the forbidden word paradoxically activates rather than suppresses the target representation. In override failure (12.5%), late-layer feed-forward networks generate contributions of $+0.39$ toward the target probability -- nearly $4\times$ larger than in successes -- overwhelming earlier suppression signals. Activation patching confirms that layers 23--27 are causally responsible: replacing these layers' activations flips the sign of constraint effects. These findings reveal a fundamental tension in negative constraint design: the very act of naming a forbidden word primes the model to produce it.
comment: 10 pages, 8 figures. Code: https://github.com/gut-puncture
A New Strategy for Verifying Reach-Avoid Specifications in Neural Feedback Systems AAAI-2026
Forward reachability analysis is the predominant approach for verifying reach-avoid properties in neural feedback systems (dynamical systems controlled by neural networks). This dominance stems from the limited scalability of existing backward reachability methods. In this work, we introduce new algorithms that compute both over- and under-approximations of backward reachable sets for such systems. We further integrate these backward algorithms with established forward analysis techniques to yield a unified verification framework for neural feedback systems.
comment: Accepted to AAAI-2026 Bridge Program B10: Making Embodied AI Reliable with Testing and Formal Verification
Reasoning Beyond Chain-of-Thought: A Latent Computational Mode in Large Language Models
Chain-of-Thought (CoT) prompting has improved the reasoning performance of large language models (LLMs), but it remains unclear why it works and whether it is the unique mechanism for triggering reasoning in large language models. In this work, we study this question by directly analyzing and intervening on the internal representations of LLMs with Sparse Autoencoders (SAEs), identifying a small set of latent features that are causally associated with LLM reasoning behavior. Across multiple model families and reasoning benchmarks, we find that steering a single reasoning-related latent feature can substantially improve accuracy without explicit CoT prompting. For large models, latent steering achieves performance comparable to standard CoT prompting while producing more efficient outputs. We further observe that this reasoning-oriented internal state is triggered early in generation and can override prompt-level instructions that discourage explicit reasoning. Overall, our results suggest that multi-step reasoning in LLMs is supported by latent internal activations that can be externally activated, while CoT prompting is one effective, but not unique, way of activating this mechanism rather than its necessary cause.
Forecast Aware Deep Reinforcement Learning for Efficient Electricity Load Scheduling in Dairy Farms
Dairy farming is an energy intensive sector that relies heavily on grid electricity. With increasing renewable energy integration, sustainable energy management has become essential for reducing grid dependence and supporting the United Nations Sustainable Development Goal 7 on affordable and clean energy. However, the intermittent nature of renewables poses challenges in balancing supply and demand in real time. Intelligent load scheduling is therefore crucial to minimize operational costs while maintaining reliability. Reinforcement Learning has shown promise in improving energy efficiency and reducing costs. However, most RL-based scheduling methods assume complete knowledge of future prices or generation, which is unrealistic in dynamic environments. Moreover, standard PPO variants rely on fixed clipping or KL divergence thresholds, often leading to unstable training under variable tariffs. To address these challenges, this study proposes a Deep Reinforcement Learning framework for efficient load scheduling in dairy farms, focusing on battery storage and water heating under realistic operational constraints. The proposed Forecast Aware PPO incorporates short term forecasts of demand and renewable generation using hour of day and month based residual calibration, while the PID KL PPO variant employs a proportional integral derivative controller to regulate KL divergence for stable policy updates adaptively. Trained on real world dairy farm data, the method achieves up to 1% lower electricity cost than PPO, 4.8% than DQN, and 1.5% than SAC. For battery scheduling, PPO reduces grid imports by 13.1%, demonstrating scalability and effectiveness for sustainable energy management in modern dairy farming.
Integrating Attendance Tracking and Emotion Detection for Enhanced Student Engagement in Smart Classrooms
The increasing adoption of smart classroom technologies in higher education has mainly focused on automating attendance, with limited attention given to students' emotional and cognitive engagement during lectures. This limits instructors' ability to identify disengagement and adapt teaching strategies in real time. This paper presents SCASED (Smart Classroom Attendance System with Emotion Detection), an IoT-based system that integrates automated attendance tracking with facial emotion recognition to support classroom engagement monitoring. The system uses a Raspberry Pi camera and OpenCV for face detection, and a finetuned MobileNetV2 model to classify four learning-related emotional states: engagement, boredom, confusion, and frustration. A session-based mechanism is implemented to manage attendance and emotion monitoring by recording attendance once per session and performing continuous emotion analysis thereafter. Attendance and emotion data are visualized through a cloud-based dashboard to provide instructors with insights into classroom dynamics. Experimental evaluation using the DAiSEE dataset achieved an emotion classification accuracy of 89.5%. The results show that integrating attendance data with emotion analytics can provide instructors with additional insight into classroom dynamics and support more responsive teaching practices.
comment: 15 pages, 8 figures
The Role of Noisy Data in Improving CNN Robustness for Image Classification
Data quality plays a central role in the performance and robustness of convolutional neural networks (CNNs) for image classification. While high-quality data is often preferred for training, real-world inputs are frequently affected by noise and other distortions. This paper investigates the effect of deliberately introducing controlled noise into the training data to improve model robustness. Using the CIFAR-10 dataset, we evaluate the impact of three common corruptions, namely Gaussian noise, Salt-and-Pepper noise, and Gaussian blur at varying intensities and training set pollution levels. Experiments using a Resnet-18 model reveal that incorporating just 10\% noisy data during training is sufficient to significantly reduce test loss and enhance accuracy under fully corrupted test conditions, with minimal impact on clean-data performance. These findings suggest that strategic exposure to noise can act as a simple yet effective regularizer, offering a practical trade-off between traditional data cleanliness and real-world resilience.
comment: 16 pagers, 10 figures, 2 tables, SPIE Applications of Machine Learning 2025, San Diego, August, 2025
FigEx2: Visual-Conditioned Panel Detection and Captioning for Scientific Compound Figures
Scientific compound figures combine multiple labeled panels into a single image, but captions in real pipelines are often missing or only provide figure-level summaries, making panel-level understanding difficult. In this paper, we propose FigEx2, visual-conditioned framework that localizes panels and generates panel-wise captions directly from the compound figure. To mitigate the impact of diverse phrasing in open-ended captioning, we introduce a noise-aware gated fusion module that adaptively filters token-level features to stabilize the detection query space. Furthermore, we employ a staged optimization strategy combining supervised learning with reinforcement learning (RL), utilizing CLIP-based alignment and BERTScore-based semantic rewards to enforce strict multimodal consistency. To support high-quality supervision, we curate BioSci-Fig-Cap, a refined benchmark for panel-level grounding, alongside cross-disciplinary test suites in physics and chemistry. Experimental results demonstrate that FigEx2 achieves a superior 0.726 mAP@0.5:0.95 for detection and significantly outperforms Qwen3-VL-8B by 0.51 in METEOR and 0.24 in BERTScore. Notably, FigEx2 exhibits remarkable zero-shot transferability to out-of-distribution scientific domains without any fine-tuning.
Representations of Text and Images Align From Layer One
We show that for a variety of concepts in adapter-based vision-language models, the representations of their images and their text descriptions are meaningfully aligned from the very first layer. This contradicts the established view that such image-text alignment only appears in late layers. We show this using a new synthesis-based method inspired by DeepDream: given a textual concept such as "Jupiter", we extract its concept vector at a given layer, and then use optimisation to synthesise an image whose representation aligns with that vector. We apply our approach to hundreds of concepts across seven layers in Gemma 3, and find that the synthesised images often depict salient visual features of the targeted textual concepts: for example, already at layer 1, more than 50 % of images depict recognisable features of animals, activities, or seasons. Our method thus provides direct, constructive evidence of image-text alignment on a concept-by-concept and layer-by-layer basis. Unlike previous methods for measuring multimodal alignment, our approach is simple, fast, and does not require auxiliary models or datasets. It also offers a new path towards model interpretability, by providing a way to visualise a model's representation space by backtracing through its image processing components.
TP-Blend: Textual-Prompt Attention Pairing for Precise Object-Style Blending in Diffusion Models
Current text-conditioned diffusion editors handle single object replacement well but struggle when a new object and a new style must be introduced simultaneously. We present Twin-Prompt Attention Blend (TP-Blend), a lightweight training-free framework that receives two separate textual prompts, one specifying a blend object and the other defining a target style, and injects both into a single denoising trajectory. TP-Blend is driven by two complementary attention processors. Cross-Attention Object Fusion (CAOF) first averages head-wise attention to locate spatial tokens that respond strongly to either prompt, then solves an entropy-regularised optimal transport problem that reassigns complete multi-head feature vectors to those positions. CAOF updates feature vectors at the full combined dimensionality of all heads (e.g., 640 dimensions in SD-XL), preserving rich cross-head correlations while keeping memory low. Self-Attention Style Fusion (SASF) injects style at every self-attention layer through Detail-Sensitive Instance Normalization. A lightweight one-dimensional Gaussian filter separates low- and high-frequency components; only the high-frequency residual is blended back, imprinting brush-stroke-level texture without disrupting global geometry. SASF further swaps the Key and Value matrices with those derived from the style prompt, enforcing context-aware texture modulation that remains independent of object fusion. Extensive experiments show that TP-Blend produces high-resolution, photo-realistic edits with precise control over both content and appearance, surpassing recent baselines in quantitative fidelity, perceptual quality, and inference speed.
Internal Deployment Gaps in AI Regulation
Frontier AI regulations primarily focus on systems deployed to external users, where deployment is more visible and subject to outside scrutiny. However, high-stakes applications can occur internally when companies deploy highly capable systems within their own organizations, such as for automating R\&D, accelerating critical business processes, and handling sensitive proprietary data. This paper examines how frontier AI regulations in the United States and European Union in 2025 handle internal deployment. We identify three gaps that could cause internally-deployed systems to evade intended oversight: (1) scope ambiguity that allows internal systems to evade regulatory obligations, (2) point-in-time compliance assessments that fail to capture the continuous evolution of internal systems, and (3) information asymmetries that subvert regulatory awareness and oversight. We then analyze why these gaps persist, examining tensions around measurability, incentives, and information access. Finally, we map potential approaches to address them and their associated tradeoffs. By understanding these patterns, we hope that policy choices around internally deployed AI systems can be made deliberately rather than incidentally.
LLM Review: Enhancing Creative Writing via Blind Peer Review Feedback
Large Language Models (LLMs) often struggle with creative generation, and multi-agent frameworks that improve reasoning through interaction can paradoxically hinder creativity by inducing content homogenization. We introduce LLM Review, a peer-review-inspired framework implementing Blind Peer Review: agents exchange targeted feedback while revising independently, preserving divergent creative trajectories. To enable rigorous evaluation, we propose SciFi-100, a science fiction writing dataset with a unified framework combining LLM-as-a-judge scoring, human annotation, and rule-based novelty metrics. Experiments demonstrate that LLM Review consistently outperforms multi-agent baselines, and smaller models with our framework can surpass larger single-agent models, suggesting interaction structure may substitute for model scale.
Reasoning over Precedents Alongside Statutes: Case-Augmented Deliberative Alignment for LLM Safety
Ensuring that Large Language Models (LLMs) adhere to safety principles without refusing benign requests remains a significant challenge. While OpenAI introduces deliberative alignment (DA) to enhance the safety of its o-series models through reasoning over detailed ``code-like'' safety rules, the effectiveness of this approach in open-source LLMs, which typically lack advanced reasoning capabilities, is understudied. In this work, we systematically evaluate the impact of explicitly specifying extensive safety codes versus demonstrating them through illustrative cases. We find that referencing explicit codes inconsistently improves harmlessness and systematically degrades helpfulness, whereas training on case-augmented simple codes yields more robust and generalized safety behaviors. By guiding LLMs with case-augmented reasoning instead of extensive code-like safety rules, we avoid rigid adherence to narrowly enumerated rules and enable broader adaptability. Building on these insights, we propose CADA, a case-augmented deliberative alignment method for LLMs utilizing reinforcement learning on self-generated safety reasoning chains. CADA effectively enhances harmlessness, improves robustness against attacks, and reduces over-refusal while preserving utility across diverse benchmarks, offering a practical alternative to rule-only DA for improving safety while maintaining helpfulness.
DYCP: Dynamic Context Pruning for Long-Form Dialogue with LLMs
Large Language Models (LLMs) often exhibit increased response latency and degraded answer quality as dialogue length grows, making effective context management essential. However, existing methods rely on extra LLM calls to build memory or perform offline memory construction without considering the current user utterance, which can introduce inefficiencies or disrupt conversational continuity. We introduce DyCP, a lightweight context management method that dynamically segment and retrieve relevant memory at query time. It preserves the sequential structure of dialogue without predefined topic boundaries and supports efficient, adaptive context retrieval. Across three long-form dialogue benchmarks, LoCoMo, MT-Bench+, and SCM4LLMs, and multiple LLMs, DyCP consistently improves answer quality while reducing response latency. We also examine the gap between modern LLMs' expanded context windows and their actual long-context processing capacity, highlighting the continued importance of effective context management.
comment: Accepted (B) to TACL 2026
From Word Sequences to Behavioral Sequences: Adapting Modeling and Evaluation Paradigms for Longitudinal NLP
While NLP typically treats documents as independent and unordered samples, in longitudinal studies, this assumption rarely holds: documents are nested within authors and ordered in time, forming person-indexed, time-ordered $\textit{behavioral sequences}$. Here, we demonstrate the need for and propose a longitudinal modeling and evaluation paradigm that consequently updates four parts of the NLP pipeline: (1) evaluation splits aligned to generalization over people ($\textit{cross-sectional}$) and/or time ($\textit{prospective}$); (2) accuracy metrics separating between-person differences from within-person dynamics; (3) sequence inputs to incorporate history by default; and (4) model internals that support different $\textit{coarseness}$ of latent state over histories (pooled summaries, explicit dynamics, or interaction-based models). We demonstrate the issues ensued by traditional pipeline and our proposed improvements on a dataset of 17k daily diary transcripts paired with PTSD symptom severity from 238 participants, finding that traditional document-level evaluation can yield substantially different and sometimes reversed conclusions compared to our ecologically valid modeling and evaluation. We tie our results to a broader discussion motivating a shift from word-sequence evaluation toward $\textit{behavior-sequence}$ paradigms for NLP.
Cultural Compass: A Framework for Organizing Societal Norms to Detect Violations in Human-AI Conversations
Generative AI models ought to be useful and safe across cross-cultural contexts. One critical step toward this goal is understanding how AI models adhere to sociocultural norms. While this challenge has gained attention in NLP, existing work lacks both nuance and coverage in understanding and evaluating models' norm adherence. We address these gaps by introducing a taxonomy of norms that clarifies their contexts (e.g., distinguishing between human-human norms that models should recognize and human-AI interactional norms that apply to the human-AI interaction itself), specifications (e.g., relevant domains), and mechanisms (e.g., modes of enforcement). We demonstrate how our taxonomy can be operationalized to automatically evaluate models' norm adherence in naturalistic, open-ended settings. Our exploratory analyses suggest that state-of-the-art models frequently violate norms, though violation rates vary by model, interactional context, and country. We further show that violation rates also vary by prompt intent and situational framing. Our taxonomy and demonstrative evaluation pipeline enable nuanced, context-sensitive evaluation of cultural norm adherence in realistic settings.
Tuberculosis Screening from Cough Audio: Baseline Models, Clinical Variables, and Uncertainty Quantification
In this paper, we propose a standardized framework for automatic tuberculosis (TB) detection from cough audio and routinely collected clinical data using machine learning. While TB screening from audio has attracted growing interest, progress is difficult to measure because existing studies vary substantially in datasets, cohort definitions, feature representations, model families, validation protocols, and reported metrics. Consequently, reported gains are often not directly comparable, and it remains unclear whether improvements stem from modeling advances or from differences in data and evaluation. We address this gap by establishing a strong, well-documented baseline for TB prediction using cough recordings and accompanying clinical metadata from a recently compiled dataset from several countries. Our pipeline is reproducible end-to-end, covering feature extraction, multimodal fusion, cougher-independent evaluation, and uncertainty quantification, and it reports a consistent suite of clinically relevant metrics to enable fair comparison. We further quantify performance for cough audio-only and fused (audio + clinical metadata) models, and release the full experimental protocol to facilitate benchmarking. This baseline is intended to serve as a common reference point and to reduce methodological variance that currently holds back progress in the field.
When Models Know When They Do Not Know: Calibration, Cascading, and Cleaning
When a model knows when it does not know, many possibilities emerge. The first question is how to enable a model to recognize that it does not know. A promising approach is to use confidence, computed from the model's internal signals, to reflect its ignorance. Prior work in specific domains has shown that calibration can provide reliable confidence estimates. In this work, we propose a simple, effective, and universal training-free method that applies to both vision and language models, performing model calibration, cascading, and data cleaning to better exploit a model's ability to recognize when it does not know. We first highlight two key empirical observations: higher confidence corresponds to higher accuracy within a single model, and models calibrated on the validation set remain calibrated on a held-out test set. These findings empirically establish the reliability and comparability of calibrated confidence. Building on this, we introduce two applications: (1) model cascading with calibrated advantage routing and (2) data cleaning based on model ensemble. Using the routing signal derived from the comparability of calibrated confidences, we cascade large and small models to improve efficiency with almost no compromise in accuracy, and we further cascade two models of comparable scale to achieve performance beyond either model alone. Leveraging multiple experts and their calibrated confidences, we design a simple yet effective data-cleaning method that balances precision and detection rate to identify mislabeled samples in ImageNet and Massive Multitask Language Understanding (MMLU) datasets. Our results demonstrate that enabling models to recognize when they do not know is a practical step toward more efficient, reliable, and trustworthy AI.
Executable Ontologies in Game Development: From Algorithmic Control to Semantic World Modeling
This paper examines the application of Executable Ontologies (EO), implemented through the boldsea framework, to game development. We argue that EO represents a paradigm shift: a transition from algorithmic behavior programming to semantic world modeling, where agent behavior emerges naturally from declarative domain rules rather than being explicitly coded. Using a survival game scenario (Winter Feast), we demonstrate how EO achieves prioritybased task interruption through dataflow conditions rather than explicit preemption logic. Comparison with Behavior Trees (BT) and Goal-Oriented Action Planning (GOAP) reveals that while these approaches model what agents should do, EO models when actions become possible - a fundamental difference that addresses the semantic-process gap in game AI architecture. We discuss integration strategies, debugging advantages inherent to temporal event graphs, and the potential for LLM-driven runtime model generation.
comment: 25 pages, 6 figures
LJ-Spoof: A Generatively Varied Corpus for Audio Anti-Spoofing and Synthesis Source Tracing
Speaker-specific anti-spoofing and synthesis-source tracing are central challenges in audio anti-spoofing. Progress has been hampered by the lack of datasets that systematically vary model architectures, synthesis pipelines, and generative parameters. To address this gap, we introduce LJ-Spoof, a speaker-specific, generatively diverse corpus that systematically varies prosody, vocoders, generative hyperparameters, bona fide prompt sources, training regimes, and neural post-processing. The corpus spans one speakers-including studio-quality recordings-30 TTS families, 500 generatively variant subsets, 10 bona fide neural-processing variants, and more than 3 million utterances. This variation-dense design enables robust speaker-conditioned anti-spoofing and fine-grained synthesis-source tracing. We further position this dataset as both a practical reference training resource and a benchmark evaluation suite for anti-spoofing and source tracing.
LWMSCNN-SE: A Lightweight Multi-Scale Network for Efficient Maize Disease Classification on Edge Devices
Maize disease classification plays a vital role in mitigating yield losses and ensuring food security. However, the deployment of traditional disease detection models in resource-constrained environments, such as those using smartphones and drones, faces challenges due to high computational costs. To address these challenges, we propose LWMSCNN-SE, a lightweight convolutional neural network (CNN) that integrates multi-scale feature extraction, depthwise separable convolutions, and squeeze-and-Excitation (SE) attention mechanisms. This novel combination enables the model to achieve 96.63% classification accuracy with only 241,348 parameters and 0.666 GFLOPs, making it suitable for real-time deployment in field applications. Our approach addresses the accuracy--efficiency trade-off by delivering high accuracy while maintaining low computational costs, demonstrating its potential for efficient maize disease diagnosis on edge devices in precision farming systems.
Quantum automated theorem proving
Automated theorem proving, or more broadly automated reasoning, aims at using computer programs to automatically prove or disprove mathematical theorems and logical statements. It takes on an essential role across a vast array of applications and the quest for enhanced theorem-proving capabilities remains a prominent pursuit in artificial intelligence. Here, we propose a generic framework for quantum automated theorem proving, where the intrinsic quantum superposition and entanglement features would lead to potential advantages. In particular, we introduce quantum representations of knowledge bases and propose corresponding reasoning algorithms for a variety of tasks. We show how automated reasoning can be achieved with quantum resolution in both propositional and first-order logic with quadratically reduced query complexity. In addition, we propose the quantum algebraic proving method for geometric theorems, extending Wu's algebraic approach beyond the classical setting. Through concrete examples, including geometry problems from the International Mathematical Olympiad, we demonstrate how a quantum computer may prove geometric theorems with quadratic better query complexity. Our results establish a primary approach towards building quantum automatic theorem provers, which would be crucial for practical applications of both near-term and future quantum technologies.
Hybrid SARIMA LSTM Model for Local Weather Forecasting: A Residual Learning Approach for Data Driven Meteorological Prediction
Accurately forecasting long-term atmospheric variables remains a defining challenge in meteorological science due to the chaotic nature of atmospheric systems. Temperature data represents a complex superposition of deterministic cyclical climate forces and stochastic, short-term fluctuations. While planetary mechanics drive predictable seasonal periodicities, rapid meteorological changes such as thermal variations, pressure anomalies, and humidity shifts introduce nonlinear volatilities that defy simple extrapolation. Historically, the Seasonal Autoregressive Integrated Moving Average (SARIMA) model has been the standard for modeling historical weather data, prized for capturing linear seasonal trends. However, SARIMA operates under strict assumptions of stationarity, failing to capture abrupt, nonlinear transitions. This leads to systematic residual errors, manifesting as the under-prediction of sudden spikes or the over-smoothing of declines. Conversely, Deep Learning paradigms, specifically Long Short-Term Memory (LSTM) networks, demonstrate exceptional efficacy in handling intricate time-series data. By utilizing memory gates, LSTMs learn complex nonlinear dependencies. Yet, LSTMs face instability in open-loop forecasting; without ground truth feedback, minor deviations compound recursively, causing divergence. To resolve these limitations, we propose a Hybrid SARIMA-LSTM architecture. This framework employs a residual-learning strategy to decompose temperature into a predictable climate component and a nonlinear weather component. The SARIMA unit models the robust, long-term seasonal trend, while the LSTM is trained exclusively on the residuals the nonlinear errors SARIMA fails to capture. By fusing statistical stability with neural plasticity, this hybrid approach minimizes error propagation and enhances long-horizon accuracy.
Reinforcement Learning Methods for Neighborhood Selection in Local Search
Reinforcement learning has recently gained traction as a means to improve combinatorial optimization methods, yet its effectiveness within local search metaheuristics specifically remains comparatively underexamined. In this study, we evaluate a range of reinforcement learning-based neighborhood selection strategies -- multi-armed bandits (upper confidence bound, $ε$-greedy) and deep reinforcement learning methods (proximal policy optimization, double deep $Q$-network) -- and compare them against multiple baselines across three different problems: the traveling salesman problem, the pickup and delivery problem with time windows, and the car sequencing problem. We show how search-specific characteristics, particularly large variations in cost due to constraint violation penalties, necessitate carefully designed reward functions to provide stable and informative learning signals. Our extensive experiments reveal that algorithm performance varies substantially across problems, although that $ε$-greedy consistently ranks among the best performers. In contrast, the computational overhead of deep reinforcement learning approaches only makes them competitive with a substantially longer runtime. These findings highlight both the promise and the practical limitations of deep reinforcement learning in local search.
comment: Accepted at ICORES 2026
Coupled Diffusion-Encoder Models for Reconstruction of Flow Fields
Data-driven flow-field reconstruction typically relies on autoencoder architectures that compress high-dimensional states into low-dimensional latent representations. However, classical approaches such as variational autoencoders (VAEs) often struggle to preserve the higher-order statistical structure of fluid flows when subjected to strong compression. We propose DiffCoder, a coupled framework that integrates a probabilistic diffusion model with a conventional convolutional ResNet encoder and trains both components end-to-end. The encoder compresses the flow field into a latent representation, while the diffusion model learns a generative prior over reconstructions conditioned on the compressed state. This design allows DiffCoder to recover distributional and spectral properties that are not strictly required for minimizing pointwise reconstruction loss but are critical for faithfully representing statistical properties of the flow field. We evaluate DiffCoder and VAE baselines across multiple model sizes and compression ratios on a challenging dataset of Kolmogorov flow fields. Under aggressive compression, DiffCoder significantly improves the spectral accuracy while VAEs exhibit substantial degradation. Although both methods show comparable relative L2 reconstruction error, DiffCoder better preserves the underlying distributional structure of the flow. At moderate compression levels, sufficiently large VAEs remain competitive, suggesting that diffusion-based priors provide the greatest benefit when information bottlenecks are severe. These results demonstrate that the generative decoding by diffusion offers a promising path toward compact, statistically consistent representations of complex flow fields.
Moonworks Lunara Aesthetic Dataset
The dataset spans diverse artistic styles, including regionally grounded aesthetics from the Middle East, Northern Europe, East Asia, and South Asia, alongside general categories such as sketch and oil painting. All images are generated using the Moonworks Lunara model and intentionally crafted to embody distinct, high-quality aesthetic styles, yielding a first-of-its-kind dataset with substantially higher aesthetic scores, exceeding even aesthetics-focused datasets, and general-purpose datasets by a larger margin. Each image is accompanied by a human-refined prompt and structured annotations that jointly describe salient objects, attributes, relationships, and stylistic cues. Unlike large-scale web-derived datasets that emphasize breadth over precision, the Lunara Aesthetic Dataset prioritizes aesthetic quality, stylistic diversity, and licensing transparency, and is released under the Apache 2.0 license to support research and unrestricted academic and commercial use.
SECite: Analyzing and Summarizing Citations in Software Engineering Literature
Identifying the strengths and limitations of a research paper is a core component of any literature review. However, traditional summaries reflect only the authors' self-presented perspective. Analyzing how other researchers discuss and cite the paper can offer a deeper, more practical understanding of its contributions and shortcomings. In this research, we introduce SECite, a novel approach for evaluating scholarly impact through sentiment analysis of citation contexts. We develop a semi-automated pipeline to extract citations referencing nine research papers and apply advanced natural language processing (NLP) techniques with unsupervised machine learning to classify these citation statements as positive or negative. Beyond sentiment classification, we use generative AI to produce sentiment-specific summaries that capture the strengths and limitations of each target paper, derived both from clustered citation groups and from the full text. Our findings reveal meaningful patterns in how the academic community perceives these works, highlighting areas of alignment and divergence between external citation feedback and the authors' own presentation. By integrating citation sentiment analysis with LLM-based summarization, this study provides a comprehensive framework for assessing scholarly contributions.
comment: Accepted at IEEE CCWC 2026
Towards Specialized Generalists: A Multi-Task MoE-LoRA Framework for Domain-Specific LLM Adaptation
The rapid evolution of Large Language Models (LLMs) has shifted focus from general-purpose capabilities to domain-specific expertise. However, adapting LLMs to specialized fields such as medicine presents two challenge: (1) the "Stability-Plasticity Dilemma", where the model must acquire complex clinical knowledge without suffering from catastrophic forgetting of general world knowledge; and (2) "Task Interference", where disparate sub-tasks, such as medical diagnosis, report summarization, and drug-drug interaction prediction, compete for limited low-rank parameter space. In this paper, we propose Med-MoE-LoRA, a novel framework that integrates Mixture-of-Experts (MoE) with Low-Rank Adaptation (LoRA) to enable efficient multi-task domain adaptation, especially for medical scenarios. Drawing inspiration from recent advances, our framework employs an asymmetric expert distribution where deeper layers are equipped with a higher density of LoRA experts to capture complex semantic abstractions. We further introduce a "Knowledge-Preservation Plugin", inspired by LoRA MoE, to isolate and protect general-purpose reasoning. By utilizing soft merging with adaptive routing and rank-wise decoupling, Med-MoE-LoRA achieves superior performance in medical benchmarks while reducing interference. Experimental results demonstrate that our approach consistently outperforms standard LoRA and conventional MoE architectures across multiple clinical NLP tasks while retaining the model's general cognitive capabilities.
comment: Work in Progress
Learning the Value of Value Learning
Standard decision frameworks address uncertainty about facts but assume fixed options and values. We extend the Jeffrey-Bolker framework to model refinements in values and prove a value-of-information theorem for axiological refinement. In multi-agent settings, we establish that mutual refinement will characteristically transform zero-sum games into positive-sum interactions and yield Pareto-improvements in Nash bargaining. These results show that a framework of rational choice can be extended to model value refinement. By unifying epistemic and axiological refinement under a single formalism, we broaden the conceptual foundations of rational choice and illuminate the normative status of ethical deliberation.
comment: 19 pages, 6 figures, mathematical appendix
ORACLE: Explaining Feature Interactions in Neural Networks with ANOVA
We introduce ORACLE, a framework for explaining neural networks on tabular data and scientific factorial designs. ORACLE summarizes a trained network's prediction surface with main effects and pairwise interactions by treating the network as a black-box response, discretizing the inputs onto a grid, and fitting an orthogonal factorial (ANOVA-style) surrogate -- the $L^2$ orthogonal projection of the model response onto a finite-dimensional factorial subspace. A simple centering and $μ$-rebalancing step then expresses this surrogate as main- and interaction-effect tables that remain faithful to the original model in the $L^2$ sense. The resulting grid-based interaction maps are easy to visualize, comparable across backbones, and directly aligned with classical design-of-experiments practice. On synthetic factorial benchmarks and low- to medium-dimensional tabular regression tasks, ORACLE more accurately recovers ground-truth interaction structure and hotspots than Monte Carlo SHAP-family interaction methods, as measured by ranking, localization, and cross-backbone stability. We also discuss its scope in latent image and text settings: grid-based factorial surrogates are most effective when features admit an interpretable factorial structure, making ORACLE particularly well-suited to scientific and engineering workflows that require stable DoE-style interaction summaries.
comment: v4: Revised for clarity and correctness; improved exposition and fixed minor issues
MixtureVitae: Open Web-Scale Pretraining Dataset With High Quality Instruction and Reasoning Data Built from Permissive-First Text Sources
We present MixtureVitae, an open-access pretraining corpus built to minimize legal risk while providing strong downstream performance. MixtureVitae follows a permissive-first, risk-mitigated sourcing strategy that combines public-domain and permissively licensed text (e.g., CC-BY/Apache) with carefully justified low-risk additions (e.g., government works and EU TDM-eligible sources). MixtureVitae adopts a simple, single-stage pretraining recipe that integrates a large proportion of permissive synthetic instruction and reasoning data-signals typically introduced during post-training and generally scarce in permissive web corpora. We categorize all sources into a three-tier scheme that reflects varying risk levels and provide shard-level provenance metadata to enable risk-aware usage. In controlled experiments using the open-sci-ref training protocol (fixed architectures and hyperparameters; 50B and 300B token budgets across 130M-1.7B parameters), models trained on MixtureVitae consistently outperform other permissive datasets across a suite of standard benchmarks, and at the 1.7B-parameters/300B-tokens setting, they surpass FineWeb-Edu and approach DCLM late in training. Performance is particularly strong on MMLU and on math and code benchmarks: a 1.7B model pretrained on 300B MixtureVitae tokens matches or exceeds a strong 1.7B instruction-tuned baseline on GSM8K, HumanEval, and MBPP, despite using over 36 times fewer tokens (300B vs. ~11T). Supported by a thorough decontamination analysis, these results show that permissive-first data with high instruction and reasoning density, tiered by licensing and provenance-related risk, can provide a practical and risk-mitigated foundation for training capable LLMs, reducing reliance on broad web scrapes without sacrificing competitiveness. Code: https://github.com/ontocord/mixturevitae
comment: Code: \url{https://github.com/ontocord/mixturevitae}
StarFlow: Generating Structured Workflow Outputs From Sketch Images
Workflows are a fundamental component of automation in enterprise platforms, enabling the orchestration of tasks, data processing, and system integrations. Despite being widely used, building workflows can be complex, often requiring manual configuration through low-code platforms or visual programming tools. To simplify this process, we explore the use of generative foundation models, particularly vision-language models (VLMs), to automatically generate structured workflows from visual inputs. Translating hand-drawn sketches or computer-generated diagrams into executable workflows is challenging due to the ambiguity of free-form drawings, variations in diagram styles, and the difficulty of inferring execution logic from visual elements. To address this, we introduce StarFlow, a framework for generating structured workflow outputs from sketches using vision-language models. We curate a diverse dataset of workflow diagrams -- including synthetic, manually annotated, and real-world samples -- to enable robust training and evaluation. We finetune and benchmark multiple vision-language models, conducting a series of ablation studies to analyze the strengths and limitations of our approach. Our results show that finetuning significantly enhances structured workflow generation, outperforming large vision-language models on this task.
comment: To be presented at EACL2026
Near-Real-Time Resource Slicing for QoS Optimization in 5G O-RAN using Deep Reinforcement Learning
Open-Radio Access Network (O-RAN) has become an important paradigm for 5G and beyond radio access networks. This paper presents an xApp called xSlice for the Near-Real-Time (Near-RT) RAN Intelligent Controller (RIC) of 5G O-RANs. xSlice is an online learning algorithm that adaptively adjusts MAC-layer resource allocation in response to dynamic network states, including time-varying wireless channel conditions, user mobility, traffic fluctuations, and changes in user demand. To address these network dynamics, we first formulate the Quality-of-Service (QoS) optimization problem as a regret minimization problem by quantifying the QoS demands of all traffic sessions through weighting their throughput, latency, and reliability. We then develop a deep reinforcement learning (DRL) framework that utilizes an actor-critic model to combine the advantages of both value-based and policy-based updating methods. A graph convolutional network (GCN) is incorporated as a component of the DRL framework for graph embedding of RAN data, enabling xSlice to handle a dynamic number of traffic sessions. We have implemented xSlice on an O-RAN testbed with 10 smartphones and conducted extensive experiments to evaluate its performance in realistic scenarios. Experimental results show that xSlice can reduce performance regret by 67% compared to the state-of-the-art solutions. Source code is available at https://github.com/xslice-5G/code.
comment: Published in: IEEE Transactions on Networking
Metaphors are a Source of Cross-Domain Misalignment of Large Reasoning Models
Earlier research has shown that metaphors influence human's decision making, which raises the question of whether metaphors also influence large language models (LLMs)' reasoning pathways, considering their training data contain a large number of metaphors. In this work, we investigate the problem in the scope of the emergent misalignment problem where LLMs can generalize patterns learned from misaligned content in one domain to another domain. We discover a strong causal relationship between metaphors in training data and the misalignment degree of LLMs' reasoning contents. With interventions using metaphors in pre-training, fine-tuning and re-alignment phases, models' cross-domain misalignment degrees change significantly. As we delve deeper into the causes behind this phenomenon, we observe that there is a connection between metaphors and the activation of global and local latent features of large reasoning models. By monitoring these latent features, we design a detector that predict misaligned content with high accuracy.
comment: 17 pages, 7 figures
Towards Mitigating Excessive Forgetting in LLM Unlearning via Entanglement-Guidance with Proxy Constraint
Large language models (LLMs) are trained on massive datasets that may include private or copyrighted content. Due to growing privacy and ownership concerns, data owners may request the removal of their data from trained models. Machine unlearning provides a practical solution by removing the influence of specific data without full retraining. However, most existing methods still suffer from over-unlearning due to the lack of a principled mechanism to regulate the forgetting boundary, leading to unnecessary utility degradation and heightened privacy and robustness risks. In this work, we propose EGUP (Entanglement-Guided Unlearning with Proxy Constraint), a novel framework that leverages entanglement and proxy constraint to guide the unlearning process while mitigating over-unlearning. Within each iteration, EGUP employs inter-sample entanglement to adaptively reweight the unlearning strength, assigning greater unlearning efforts to forget samples that are semantically closer to retained knowledge. Across iterations, EGUP leverages intra-sample entanglement to track the representation shift of each forget sample and dynamically adjust its unlearning effort. In addition, we incorporate a proxy constraint that approximates the model's expected outputs after unlearning, forming a reference boundary that softly regularizes the unlearning process. EGUP is compatible with existing gradient-based objectives and serves as a plug-and-play enhancement. We evaluate EGUP on the TOFU and MUSE benchmarks, demonstrating consistent improvements in the unlearning-utility trade-off across multiple LLMs. Moreover, EGUP achieves performance close to the retrained model while remaining scalable and robust.
Accelerating Discrete Facility Layout Optimization: A Hybrid CDCL and CP-SAT Architecture
Discrete facility layout design involves placing physical entities to minimize handling costs while adhering to strict safety and spatial constraints. This combinatorial problem is typically addressed using Mixed Integer Linear Programming (MILP) or Constraint Programming (CP), though these methods often face scalability challenges as constraint density increases. This study systematically evaluates the potential of Conflict-Driven Clause Learning (CDCL) with VSIDS heuristics as an alternative computational engine for discrete layout problems. Using a unified benchmarking harness, we conducted a controlled comparison of CDCL, CP-SAT, and MILP across varying grid sizes and constraint densities. Experimental results reveal a distinct performance dichotomy: while CDCL struggles with optimization objectives due to cost-blind branching, it demonstrates unrivaled dominance in feasibility detection, solving highly constrained instances orders of magnitude faster than competing paradigms. Leveraging this finding, we developed a novel "Warm-Start" hybrid architecture that utilizes CDCL to rapidly generate valid feasibility hints, which are then injected into a CP-SAT optimizer. Our results confirm that this layered approach successfully accelerates exact optimization, using SAT-driven pruning to bridge the gap between rapid satisfiability and proven optimality.
Cost-Awareness in Tree-Search LLM Planning: A Systematic Study
Planning under resource constraints is central to real-world decision making, yet most large language model (LLM) planners assume uniform action costs. We systematically analyze whether tree-search LLM planners are cost-aware and whether they efficiently generate budget-feasible plans. In contrast to black-box prompting, explicit search trees expose intermediate decisions, node evaluations, and failure modes, which allows for controlled ablations of planner behavior. We study depth-first search, breadth-first search, Monte Carlo Tree Search, and bidirectional search within a unified framework. Our experiments show that existing tree-based LLM planners often struggle to find cost-optimal plans, and that additional search computation does not reliably improve optimality. Among the methods evaluated, bidirectional search achieves the best overall efficiency and success rate. MCTS achieves the highest optimality on short-horizon tasks. Tree-search planners are especially valuable for studying LLM planning because their reasoning steps are explicit, in contrast to plain LLMs that internalize planning dynamics through post-training trajectories. Our findings suggest that improving LLM planning under resource constraints will likely require new search algorithms, rather than solely scaling inference-time compute.
FBFL: A Field-Based Coordination Approach for Data Heterogeneity in Federated Learning
In the last years, Federated learning (FL) has become a popular solution to train machine learning models in domains with high privacy concerns. However, FL scalability and performance face significant challenges in real-world deployments where data across devices are non-independently and identically distributed (non-IID). The heterogeneity in data distribution frequently arises from spatial distribution of devices, leading to degraded model performance in the absence of proper handling. Additionally, FL typical reliance on centralized architectures introduces bottlenecks and single-point-of-failure risks, particularly problematic at scale or in dynamic environments. To close this gap, we propose Field-Based Federated Learning (FBFL), a novel approach leveraging macroprogramming and field coordination to address these limitations through: (i) distributed spatial-based leader election for personalization to mitigate non-IID data challenges; and (ii) construction of a self-organizing, hierarchical architecture using advanced macroprogramming patterns. Moreover, FBFL not only overcomes the aforementioned limitations, but also enables the development of more specialized models tailored to the specific data distribution in each subregion. This paper formalizes FBFL and evaluates it extensively using MNIST, FashionMNIST, and Extended MNIST datasets. We demonstrate that, when operating under IID data conditions, FBFL performs comparably to the widely-used FedAvg algorithm. Furthermore, in challenging non-IID scenarios, FBFL not only outperforms FedAvg but also surpasses other state-of-the-art methods, namely FedProx and Scaffold, which have been specifically designed to address non-IID data distributions. Additionally, we showcase the resilience of FBFL's self-organizing hierarchical architecture against server failures.
Perspectives in Play: A Multi-Perspective Approach for More Inclusive NLP Systems
In the realm of Natural Language Processing (NLP), common approaches for handling human disagreement consist of aggregating annotators' viewpoints to establish a single ground truth. However, prior studies show that disregarding individual opinions can lead can lead to the side effect of underrepresenting minority perspectives, especially in subjective tasks, where annotators may systematically disagree because of their preferences. Recognizing that labels reflect the diverse backgrounds, life experiences, and values of individuals, this study proposes a new multi-perspective approach using soft labels to encourage the development of the next generation of perspective aware models, more inclusive and pluralistic. We conduct an extensive analysis across diverse subjective text classification tasks, including hate speech, irony, abusive language, and stance detection, to highlight the importance of capturing human disagreements, often overlooked by traditional aggregation methods. Results show that the multi-perspective approach not only better approximates human label distributions, as measured by Jensen-Shannon Divergence (JSD), but also achieves superior classification performance (higher F1 scores), outperforming traditional approaches. However, our approach exhibits lower confidence in tasks like irony and stance detection, likely due to the inherent subjectivity present in the texts. Lastly, leveraging Explainable AI (XAI), we explore model uncertainty and uncover meaningful insights into model predictions.
Fuzzy-Logic and Deep Learning for Environmental Condition-Aware Road Surface Classification
Monitoring states of road surfaces provides valuable information for the planning and controlling vehicles and active vehicle control systems. Classical road monitoring methods are expensive and unsystematic because they require time for measurements. This article proposes an real time system based on weather conditional data and road surface condition data. For this purpose, we collected data with a mobile phone camera on the roads around the campus of the Karlsruhe Institute of Technology. We tested a large number of different image-based deep learning algorithms for road classification. In addition, we used road acceleration data along with road image data for training by using them as images. We compared the performances of acceleration-based and camera image-based approaches. The performances of the simple Alexnet, LeNet, VGG, and Resnet algorithms were compared as deep learning algorithms. For road condition classification, 5 classes were considered: asphalt, damaged asphalt, gravel road, damaged gravel road, pavement road and over 95% accuracy performance was achieved. It is also proposed to use the acceleration or the camera image to classify the road surface according to the weather and the time of day using fuzzy logic.
comment: This paper has been withdrawn by the authors because the manuscript was submitted before all authors reached a final agreement on the content and readiness of the work. The paper should not be cited
REXO: Indoor Multi-View Radar Object Detection via 3D Bounding Box Diffusion AAAI 2026
Multi-view indoor radar perception has drawn attention due to its cost-effectiveness and low privacy risks. Existing methods often rely on {implicit} cross-view radar feature association, such as proposal pairing in RFMask or query-to-feature cross-attention in RETR, which can lead to ambiguous feature matches and degraded detection in complex indoor scenes. To address these limitations, we propose \textbf{REXO} (multi-view Radar object dEtection with 3D bounding boX diffusiOn), which lifts the 2D bounding box (BBox) diffusion process of DiffusionDet into the 3D radar space. REXO utilizes these noisy 3D BBoxes to guide an {explicit} cross-view radar feature association, enhancing the cross-view radar-conditioned denoising process. By accounting for prior knowledge that the person is in contact with the ground, REXO reduces the number of diffusion parameters by determining them from this prior. Evaluated on two open indoor radar datasets, our approach surpasses state-of-the-art methods by a margin of +4.22 AP on the HIBER dataset and +11.02 AP on the MMVR dataset. The REXO implementation is available at https://github.com/merlresearch/radar-bbox-diffusion.
comment: 26 pages; Accepted to AAAI 2026; Code available at https://github.com/merlresearch/radar-bbox-diffusion
Backpropagation through space, time, and the brain
How physical networks of neurons, bound by spatio-temporal locality constraints, can perform efficient credit assignment, remains, to a large extent, an open question. In machine learning, the answer is almost universally given by the error backpropagation algorithm, through both space and time. However, this algorithm is well-known to rely on biologically implausible assumptions, in particular with respect to spatio-temporal (non-)locality. Alternative forward-propagation models such as real-time recurrent learning only partially solve the locality problem, but only at the cost of scaling, due to prohibitive storage requirements. We introduce Generalized Latent Equilibrium (GLE), a computational framework for fully local spatio-temporal credit assignment in physical, dynamical networks of neurons. We start by defining an energy based on neuron-local mismatches, from which we derive both neuronal dynamics via stationarity and parameter dynamics via gradient descent. The resulting dynamics can be interpreted as a real-time, biologically plausible approximation of backpropagation through space and time in deep cortical networks with continuous-time neuronal dynamics and continuously active, local synaptic plasticity. In particular, GLE exploits the morphology of dendritic trees to enable more complex information storage and processing in single neurons, as well as the ability of biological neurons to phase-shift their output rate with respect to their membrane potential, which is essential in both directions of information propagation. For the forward computation, it enables the mapping of time-continuous inputs to neuronal space, effectively performing a spatio-temporal convolution. For the backward computation, it permits the temporal inversion of feedback signals, which consequently approximate the adjoint variables necessary for useful parameter updates.
comment: First authorship shared by Benjamin Ellenberger and Paul Haider
GP-GS: Gaussian Processes Densification for 3D Gaussian Splatting
3D Gaussian Splatting (3DGS) enables photorealistic rendering but suffers from artefacts due to sparse Structure-from-Motion (SfM) initialisation. To address this limitation, we propose GP-GS, a Gaussian Process (GP) based densification framework for 3DGS optimisation. GP-GS formulates point cloud densification as a continuous regression problem, where a GP learns a local mapping from 2D pixel coordinates to 3D position and colour attributes. An adaptive neighbourhood-based sampling strategy generates candidate pixels for inference, while GP-predicted uncertainty is used to filter unreliable predictions, reducing noise and preserving geometric structure. Extensive experiments on synthetic and real-world benchmarks demonstrate that GP-GS consistently improves reconstruction quality and rendering fidelity, achieving up to 1.12 dB PSNR improvement over strong baselines.
comment: 11 pages, 8 figures
Uncovering the Computational Roles of Nonlinearity in Sequence Modeling Using Almost-Linear RNNs
Sequence modeling tasks across domains such as natural language processing, time series forecasting, and control require learning complex input-output mappings. Nonlinear recurrence is theoretically required for universal approximation of sequence-to-sequence functions, yet linear recurrent models often prove surprisingly effective. This raises the question of when nonlinearity is truly required. We present a framework to systematically dissect the functional role of nonlinearity in recurrent networks, identifying when it is computationally necessary and what mechanisms it enables. We address this using Almost Linear Recurrent Neural Networks (AL-RNNs), which allow recurrence nonlinearity to be gradually attenuated and decompose network dynamics into analyzable linear regimes, making computational mechanisms explicit. We illustrate the framework across diverse synthetic and real-world tasks, including classic sequence modeling benchmarks, a neuroscientific stimulus-selection task, and a multi-task suite. We demonstrate how the AL-RNN's piecewise linear structure enables identification of computational primitives such as gating, rule-based integration, and memory-dependent transients, revealing that these operations emerge within predominantly linear backbones. Across tasks, sparse nonlinearity improves interpretability by reducing and localizing nonlinear computations, promotes shared representations in multi-task settings, and reduces computational cost. Moreover, sparse nonlinearity acts as a useful inductive bias: in low-data regimes or when tasks require discrete switching between linear regimes, sparsely nonlinear models often match or exceed fully nonlinear architectures. Our findings provide a principled approach for identifying where nonlinearity is functionally necessary, guiding the design of recurrent architectures that balance performance, efficiency, and interpretability.
comment: Published in Transactions on Machine Learning Research (TMLR), https://openreview.net/forum?id=qI2Vt9P9rl
A Disproof of Large Language Model Consciousness: The Necessity of Continual Learning for Consciousness
Scientific theories of consciousness should be falsifiable and non-trivial. Recent research has given us formal tools to analyze these requirements of falsifiability and non-triviality for theories of consciousness. Surprisingly, many contemporary theories of consciousness fail to pass this bar, including theories based on causal structure but also (as I demonstrate) theories based on function. Herein I show these requirements of falsifiability and non-triviality especially constrain the potential consciousness of contemporary Large Language Models (LLMs) because of their proximity to systems that are equivalent to LLMs in terms of input/output function; yet, for these functionally equivalent systems, there cannot be any falsifiable and non-trivial theory of consciousness that judges them conscious. This forms the basis of a disproof of contemporary LLM consciousness. I then show a positive result, which is that theories of consciousness based on (or requiring) continual learning do satisfy the stringent formal constraints for a theory of consciousness in humans. Intriguingly, this work supports a hypothesis: If continual learning is linked to consciousness in humans, the current limitations of LLMs (which do not continually learn) are intimately tied to their lack of consciousness.
comment: 28 pages, 3 figures. V2: Added new proof (Theorem 3.1), improved exposition, expanded citations
NeoAMT: Neologism-Aware Agentic Machine Translation with Reinforcement Learning
Neologism-aware machine translation aims to translate source sentences containing neologisms into target languages. This field remains underexplored compared with general machine translation (MT). In this paper, we propose an agentic framework, NeoAMT, for neologism-aware machine translation using a Wiktionary search tool. Specifically, we first create a new dataset for neologism-aware machine translation and develop a search tool based on Wiktionary. The new dataset covers 16 languages and 75 translation directions and is derived from approximately 10 million records of an English Wiktionary dump. The retrieval corpus of the search tool is also constructed from around 3 million cleaned records of the Wiktionary dump. We then use it for training the translation agent with reinforcement learning (RL) and evaluating the accuracy of neologism-aware machine translation. Based on this, we also propose an RL training framework that contains a novel reward design and an adaptive rollout generation approach by leveraging "translation difficulty" to further improve the translation quality of translation agents using our search tool.
comment: Fixed typos in Table 1, Figure 7 and Section 4.2: regex -> exact. Refined the caption of Table 3
The Curious Case of Factual (Mis)Alignment between LLMs' Short- and Long-Form Answers
Large language models (LLMs) can correctly answer "When was Einstein born?" yet fail to provide the same date when writing about Einstein's life revealing a fundamental inconsistency in how models access factual knowledge across task complexities. While models display impressive accuracy on factual question-answering benchmarks, the reliability gap between simple and complex queries remains poorly understood, eroding their trustworthiness. In this work, we introduce Short-Long Form Alignment for Factual Question Answering (SLAQ), a controlled evaluation framework that compares LLMs' answers to the same factual questions asked (a) in isolation (short) vs. (b) integrated into complex queries (long). Looking at 16 LLMs across 600 queries, we find a systematic misalignment of answers to the corresponding short and long queries. We further uncover position-dependent accuracy loss and momentum effects where consecutive correct or incorrect answers create self-reinforcing patterns. Through mechanistic analysis, we find that aligned facts activate overlapping model internals, and that metrics based on mechanistic similarity can predict short-long answer alignment with up to 78% accuracy. Our work establishes factual consistency over query complexity as an important aspect of LLMs' trustworthiness and challenges current evaluation practices, which implicitly assume that good performance for simple factual queries implies reliability in more complex knowledge-seeking tasks too.
comment: Code: https://github.com/WorldHellow/SLAQ/tree/main
LLMs Enable Bag-of-Texts Representations for Short-Text Clustering
In this paper, we propose a training-free method for unsupervised short text clustering that relies less on careful selection of embedders than other methods. In customer-facing chatbots, companies are dealing with large amounts of user utterances that need to be clustered according to their intent. In these settings, no labeled data is typically available, and the number of clusters is not known. Recent approaches to short-text clustering in label-free settings incorporate LLM output to refine existing embeddings. While LLMs can identify similar texts effectively, the resulting similarities may not be directly represented by distances in the dense vector space, as they depend on the original embedding. We therefore propose a method for transforming LLM judgments directly into a bag-of-texts representation in which texts are initialized to be equidistant, without assuming any prior distance relationships. Our method achieves comparable or superior results to state-of-the-art methods, but without embeddings optimization or assuming prior knowledge of clusters or labels. Experiments on diverse datasets and smaller LLMs show that our method is model agnostic and can be applied to any embedder, with relatively small LLMs, and different clustering methods. We also show how our method scales to large datasets, reducing the computational cost of the LLM use. The flexibility and scalability of our method make it more aligned with real-world training-free scenarios than existing clustering methods.
Image-to-Video Transfer Learning based on Image-Language Foundation Models: A Comprehensive Survey
Image-Language Foundation Models (ILFMs) have demonstrated remarkable success in vision-language understanding, providing transferable multimodal representations that generalize across diverse downstream image-based tasks. The advancement of video-text research has spurred growing interest in extending image-based models to the video domain. This paradigm, termed as image-to-video transfer learning, effectively mitigates the substantial data and computational demands compared to training video-language models from scratch while achieves comparable or even stronger model performance. This survey provides the first comprehensive review of this emerging field, which begins by summarizing the widely used ILFMs and their capabilities. We then systematically classify existing image-to-video transfer learning techniques into two broad root categories (frozen features and adapted features), along with numerous fine-grained subcategories, based on the paradigm for transferring image understanding capability to video tasks. Building upon the task-specific nature of image-to-video transfer, this survey methodically elaborates these strategies and details their applications across a spectrum of video-text learning tasks, ranging from fine-grained settings (e.g., spatio-temporal video grounding) to coarse-grained ones (e.g., video question answering). We further present a detailed experimental analysis to investigate the efficacy of different image-to-video transfer learning paradigms on a range of downstream video understanding tasks. Finally, we identify prevailing challenges and highlight promising directions for future research. By offering a comprehensive and structured overview, this survey aims to establish a structured roadmap for advancing video-text learning based on existing ILFM, and to inspire future research directions in this rapidly evolving domain. Github repository is available.
comment: Updated version, github repository is available at https://github.com/YuriPreisdent/awesome-image-to-video-transfer
A Graph-Theoretical Perspective on Law Design for Multiagent Systems AAAI
A law in a multiagent system is a set of constraints imposed on agents' behaviours to avoid undesirable outcomes. The paper considers two types of laws: useful laws that, if followed, completely eliminate the undesirable outcomes and gap-free laws that guarantee that at least one agent can be held responsible each time an undesirable outcome occurs. In both cases, we study the problem of finding a law that achieves the desired result by imposing the minimum restrictions. We prove that, for both types of laws, the minimisation problem is NP-hard even in the simple case of one-shot concurrent interactions. We also show that the approximation algorithm for the vertex cover problem in hypergraphs could be used to efficiently approximate the minimum laws in both cases.
comment: The 40th AAAI Conference on Artificial Intelligence (AAAI-26)
Can Reasoning Help Large Language Models Capture Human Annotator Disagreement?
Variation in human annotation (i.e., disagreements) is common in NLP, often reflecting important information like task subjectivity and sample ambiguity. Modeling this variation is important for applications that are sensitive to such information. Although RLVR-style reasoning (Reinforcement Learning with Verifiable Rewards) has improved Large Language Model (LLM) performance on many tasks, it remains unclear whether such reasoning enables LLMs to capture informative variation in human annotation. In this work, we evaluate the influence of different reasoning settings on LLM disagreement modeling. We systematically evaluate each reasoning setting across model sizes, distribution expression methods, and steering methods, resulting in 60 experimental setups across 3 tasks. Surprisingly, our results show that RLVR-style reasoning degrades performance in disagreement modeling, while naive Chain-of-Thought (CoT) reasoning improves the performance of RLHF LLMs (RL from human feedback). These findings underscore the potential risk of replacing human annotators with reasoning LLMs, especially when disagreements are important.
comment: EACL 2026 Main
SegDAC: Improving Visual Reinforcement Learning by Extracting Dynamic Object-Centric Representations from Pretrained Vision Models
Visual reinforcement learning (RL) is challenging due to the need to extract useful representations from high-dimensional inputs while learning effective control from sparse and noisy rewards. Although large perception models exist, integrating them effectively into RL for visual generalization and improved sample efficiency remains difficult. We propose SegDAC, a Segmentation-Driven Actor-Critic method. SegDAC uses Segment Anything (SAM) for object-centric decomposition and YOLO-World to ground the image segmentation process via text inputs. It includes a novel transformer-based architecture that supports a dynamic number of segments at each time step and effectively learns which segments to focus on using online RL, without using human labels. By evaluating SegDAC over a challenging visual generalization benchmark using Maniskill3, which covers diverse manipulation tasks under strong visual perturbations, we demonstrate that SegDAC achieves significantly better visual generalization, doubling prior performance on the hardest setting and matching or surpassing prior methods in sample efficiency across all evaluated tasks. Project Page: https://segdac.github.io/
CaTS-Bench: Can Language Models Describe Time Series?
Time series captioning, the task of describing time series in natural language, requires numeric and temporal reasoning, trend interpretation, and contextual understanding. Existing benchmarks, however, often rely on fully synthetic or generic captions, and typically neglect metadata and visual representations. We introduce CaTS-Bench, a comprehensive benchmark for Context-aware Time Series reasoning across $11$ diverse domains, centered on a gold-standard evaluation set of $1746$ human-rewritten captions that measure how effectively models translate numeric trends into immediately interpretable narratives. To address the scarcity of human-annotated data, we also propose a scalable pipeline for generating high-fidelity synthetic captions, the quality of which we validate. We evaluate leading Vision-Language Models on our benchmark, revealing that even proprietary models struggle to capture numeric nuances in temporal descriptions, while finetuning open-source models on synthetic data yields substantial performance gains. Finally, we release a diagnostic suite of $910$ multiple-choice questions and tailored numeric metrics to gauge time-series-specific reasoning capabilities, establishing CaTS-Bench as a reliable foundation for grounded, multimodal language generation in numeric domains.
comment: 8 pages, 6 figures, 3 tables in the main paper. Many more in the appendix
Learning Design-Score Manifold to Guide Diffusion Models for Offline Optimization
Optimizing complex systems, from discovering therapeutic drugs to designing high-performance materials, remains a fundamental challenge across science and engineering, as the underlying rules are often unknown and costly to evaluate. Offline optimization aims to optimize designs for target scores using pre-collected datasets without system interaction. However, conventional approaches may fail beyond training data, predicting inaccurate scores and generating inferior designs. This paper introduces ManGO, a diffusion-based framework that learns the design-score manifold, capturing the design-score interdependencies holistically. Unlike existing methods that treat design and score spaces in isolation, ManGO unifies forward prediction and backward generation, attaining generalization beyond training data. Key to this is its derivative-free guidance for conditional generation, coupled with adaptive inference-time scaling that dynamically optimizes denoising paths. Extensive evaluations demonstrate that ManGO outperforms 24 single- and 10 multi-objective optimization methods across diverse domains, including synthetic tasks, robot control, material design, DNA sequence, and real-world engineering optimization.
comment: This manuscript was accepted by npj AI
EMP: Enhance Memory in Data Pruning
Recently, large language and vision models have shown strong performance, but due to high pre-training and fine-tuning costs, research has shifted towards faster training via dataset pruning. Previous methods used sample loss as an evaluation criterion, aiming to select the most "difficult" samples for training. However, when the pruning rate increases, the number of times each sample is trained becomes more evenly distributed, which causes many critical or general samples to not be effectively fitted. We refer to this as Low-Frequency Learning (LFL). In other words, LFL prevents the model from remembering most samples. In our work, we decompose the scoring function of LFL, provide a theoretical explanation for the inefficiency of LFL, and propose adding a memory term to the scoring function to enhance the model's memory capability, along with an approximation of this memory term. Similarly, we explore memory in Self-Supervised Learning (SSL), marking the first discussion on SSL memory. Using contrastive learning, we derive the memory term both theoretically and experimentally. Finally, we propose Enhance Memory Pruning (EMP), which addresses the issue of insufficient memory under high pruning rates by enhancing the model's memory of data, thereby improving its performance. We evaluated the performance of EMP in tasks such as image classification, natural language understanding, and model pre-training. The results show that EMP can improve model performance under extreme pruning rates. For example, in the CIFAR100-ResNet50 pre-training task, with 70\% pruning, EMP outperforms current methods by 2.2\%.
Multi-dimensional Autoscaling of Processing Services: A Comparison of Agent-based Methods
Edge computing breaks with traditional autoscaling due to strict resource constraints, thus, motivating more flexible scaling behaviors using multiple elasticity dimensions. This work introduces an agent-based autoscaling framework that dynamically adjusts both hardware resources and internal service configurations to maximize requirements fulfillment in constrained environments. We compare four types of scaling agents: Active Inference, Deep Q Network, Analysis of Structural Knowledge, and Deep Active Inference, using two real-world processing services running in parallel: YOLOv8 for visual recognition and OpenCV for QR code detection. Results show all agents achieve acceptable SLO performance with varying convergence patterns. While the Deep Q Network benefits from pre-training, the structural analysis converges quickly, and the deep active inference agent combines theoretical foundations with practical scalability advantages. Our findings provide evidence for the viability of multi-dimensional agent-based autoscaling for edge environments and encourage future work in this research direction.
Bridging the Linguistic Divide: A Survey on Leveraging Large Language Models for Machine Translation
Large Language Models (LLMs) are rapidly reshaping machine translation (MT), particularly by introducing instruction-following, in-context learning, and preference-based alignment into what has traditionally been a supervised encoder-decoder paradigm. This survey provides a comprehensive and up-to-date overview of how LLMs are being leveraged for MT across data regimes, languages, and application settings. We systematically analyze prompting-based methods, parameter-efficient and full fine-tuning strategies, synthetic data generation, preference-based optimization, and reinforcement learning with human and weakly supervised feedback. Special attention is given to low-resource translation, where we examine the roles of synthetic data quality, diversity, and preference signals, as well as the limitations of current RLHF pipelines. We further review recent advances in Mixture-of-Experts models, MT-focused LLMs, and multilingual alignment, highlighting trade-offs between scalability, specialization, and accessibility. Beyond sentence-level translation, we survey emerging document-level and discourse-aware MT methods with LLMs, showing that most approaches extend sentence-level pipelines through structured context selection, post-editing, or reranking rather than requiring fundamentally new data regimes or architectures. Finally, we discuss LLM-based evaluation, its strengths and biases, and its role alongside learned metrics. Overall, this survey positions LLM-based MT as an evolution of traditional MT systems, where gains increasingly depend on data quality, preference alignment, and context utilization rather than scale alone, and outlines open challenges for building robust, inclusive, and controllable translation systems.
Speak the Art: A Direct Speech to Image Generation Framework
Direct speech-to-image generation has recently shown promising results. However, compared to text-to-image generation, there is still a large gap to enclose. Current approaches use two stages to tackle this task: speech encoding network and image generative adversarial network (GAN). The speech encoding networks in these approaches produce embeddings that do not capture sufficient linguistic information to semantically represent the input speech. GANs suffer from issues such as non-convergence, mode collapse, and diminished gradient, which result in unstable model parameters, limited sample diversity, and ineffective generator learning, respectively. To address these weaknesses, we introduce a framework called Speak the Art (STA) which consists of a speech encoding network and a VQ-Diffusion network conditioned on speech embeddings. To improve speech embeddings, the speech encoding network is supervised by a large pre-trained image-text model during training. Replacing GANs with diffusion leads to more stable training and the generation of diverse images. Additionally, we investigate the feasibility of extending our framework to be multilingual. As a proof of concept, we trained our framework with two languages: English and Arabic. Finally, we show that our results surpass state-of-the-art models by a large margin.
Membership Inference Attacks on Tokenizers of Large Language Models
Membership inference attacks (MIAs) are widely used to assess the privacy risks associated with machine learning models. However, when these attacks are applied to pre-trained large language models (LLMs), they encounter significant challenges, including mislabeled samples, distribution shifts, and discrepancies in model size between experimental and real-world settings. To address these limitations, we introduce tokenizers as a new attack vector for membership inference. Specifically, a tokenizer converts raw text into tokens for LLMs. Unlike full models, tokenizers can be efficiently trained from scratch, thereby avoiding the aforementioned challenges. In addition, the tokenizer's training data is typically representative of the data used to pre-train LLMs. Despite these advantages, the potential of tokenizers as an attack vector remains unexplored. To this end, we present the first study on membership leakage through tokenizers and explore five attack methods to infer dataset membership. Extensive experiments on millions of Internet samples reveal the vulnerabilities in the tokenizers of state-of-the-art LLMs. To mitigate this emerging risk, we further propose an adaptive defense. Our findings highlight tokenizers as an overlooked yet critical privacy threat, underscoring the urgent need for privacy-preserving mechanisms specifically designed for them.
comment: To appear at USENIX Security Symposium 2026
Multi-User Personalisation in Human-Robot Interaction: Resolving Preference Conflicts Using Gradual Argumentation
While personalisation in Human-Robot Interaction (HRI) has advanced significantly, most existing approaches focus on single-user adaptation, overlooking scenarios involving multiple stakeholders with potentially conflicting preferences. To address this, we propose the Multi-User Preferences Quantitative Bipolar Argumentation Framework (MUP-QBAF), a novel multi-user personalisation framework based on Quantitative Bipolar Argumentation Frameworks (QBAFs) that explicitly models and resolves multi-user preference conflicts. Unlike prior work in Argumentation Frameworks, which typically assumes static inputs, our approach is tailored to robotics: it incorporates both users' arguments and the robot's dynamic observations of the environment, allowing the system to adapt over time and respond to changing contexts. Preferences, both positive and negative, are represented as arguments whose strength is recalculated iteratively based on new information. The framework's properties and capabilities are presented and validated through a realistic case study, where an assistive robot mediates between the conflicting preferences of a caregiver and a care recipient during a frailty assessment task. This evaluation further includes a sensitivity analysis of argument base scores, demonstrating how preference outcomes can be shaped by user input and contextual observations. By offering a transparent, structured, and context-sensitive approach to resolving competing user preferences, this work advances the field of multi-user HRI. It provides a principled alternative to data-driven methods, enabling robots to navigate conflicts in real-world environments.
comment: Preprint submitted to a journal
ContextFocus: Activation Steering for Contextual Faithfulness in Large Language Models
Large Language Models (LLMs) encode vast amounts of parametric knowledge during pre-training. As world knowledge evolves, effective deployment increasingly depends on their ability to faithfully follow externally retrieved context. When such evidence conflicts with the model's internal knowledge, LLMs often default to memorized facts, producing unfaithful outputs. In this work, we introduce ContextFocus, a lightweight activation steering approach that improves context faithfulness in such knowledge-conflict settings while preserving fluency and efficiency. Unlike prior approaches, our solution requires no model finetuning and incurs minimal inference-time overhead, making it highly efficient. We evaluate ContextFocus on the ConFiQA benchmark, comparing it against strong baselines including ContextDPO, COIECD, and prompting-based methods. Furthermore, we show that our method is complementary to prompting strategies and remains effective on larger models. Extensive experiments show that ContextFocus significantly improves contextual-faithfulness. Our results highlight the effectiveness, robustness, and efficiency of ContextFocus in improving contextual-faithfulness of LLM outputs.
Intrinsic Memory Agents: Heterogeneous Multi-Agent LLM Systems through Structured Contextual Memory
Multi-agent systems built on Large Language Models (LLMs) show exceptional promise for complex collaborative problem-solving, yet they face fundamental challenges stemming from context window limitations that impair memory consistency, role adherence, and procedural integrity. This paper introduces Intrinsic Memory Agents, a novel framework that addresses these limitations through agent-specific memories that evolve intrinsically with agent outputs. Specifically, our method maintains role-aligned memory that preserves specialized perspectives while focusing on task-relevant information. Our approach utilises a generic memory template applicable to new problems without the need to hand-craft specific memory prompts. We benchmark our approach on the PDDL, FEVER, and ALFWorld datasets, comparing its performance to existing state-of-the-art multi-agentic memory approaches and showing state-of-the-art or comparable performance across all three, with the highest consistency. An additional evaluation is performed on a complex data pipeline design task, and we demonstrate that our approach produces higher quality designs across 5 metrics: scalability, reliability, usability, cost-effectiveness, and documentation, plus additional qualitative evidence of the improvements. Our findings suggest that addressing memory limitations through intrinsic approaches can improve the capabilities of multi-agent LLM systems on structured planning tasks.
Safe Vision-Language Models via Unsafe Weights Manipulation WACV 2026
Vision-language models (VLMs) often inherit the biases and unsafe associations present within their large-scale training dataset. While recent approaches mitigate unsafe behaviors, their evaluation focuses on how safe the model is on unsafe inputs, ignoring potential shortcomings on safe ones. In this paper, we first revise safety evaluation by introducing SafeGround, a new set of metrics that evaluate safety at different levels of granularity. With this metric, we uncover a surprising issue of training-based methods: they make the model less safe on safe inputs. From this finding, we take a different direction and explore whether it is possible to make a model safer without training, introducing Unsafe Weights Manipulation (UWM). UWM uses a calibration set of safe and unsafe instances to compare activations between safe and unsafe content, identifying the most important parameters for processing the latter. Their values are then manipulated via negation. Experiments show that UWM achieves the best tradeoff between safety and knowledge preservation, consistently improving VLMs on unsafe queries while outperforming even training-based state-of-the-art methods on safe ones.
comment: WACV 2026
Physics-Inspired Modeling and Content Adaptive Routing in an Infrared Gas Leak Detection Network
Detecting infrared gas leaks is critical for environmental monitoring and industrial safety, yet remains difficult because plumes are faint, small, semitransparent, and have weak, diffuse boundaries. We present physics-edge hybrid gas dynamic routing network (PEG-DRNet). First, we introduce the Gas Block, a diffusion-convection unit modeling gas transport: a local branch captures short-range variations, while a large-kernel branch captures long-range propagation. An edge-gated learnable fusion module balances local detail and global context, strengthening weak-contrast plume and contour cues. Second, we propose the adaptive gradient and phase edge operator (AGPEO), computing reliable edge priors from multi-directional gradients and phase-consistent responses. These are transformed by a multi-scale edge perception module (MSEPM) into hierarchical edge features that reinforce boundaries. Finally, the content-adaptive sparse routing path aggregation network (CASR-PAN), with adaptive information modulation modules for fusion and self, selectively propagates informative features across scales based on edge and content cues, improving cross-scale discriminability while reducing redundancy. Experiments on the IIG dataset show that PEG-DRNet achieves an overall AP of 29.8\%, an AP$_{50}$ of 84.3\%, and a small-object AP of 25.3\%, surpassing the RT-DETR-R18 baseline by 3.0\%, 6.5\%, and 5.3\%, respectively, while requiring only 43.7 Gflops and 14.9 M parameters. The proposed PEG-DRNet achieves superior overall performance with the best balance of accuracy and computational efficiency, outperforming existing CNN and Transformer detectors in AP and AP$_{50}$ on the IIG and LangGas dataset.
OptRot: Mitigating Weight Outliers via Data-Free Rotations for Post-Training Quantization
The presence of outliers in Large Language Models (LLMs) weights and activations makes them difficult to quantize. Recent work has leveraged rotations to mitigate these outliers. In this work, we propose methods that learn fusible rotations by minimizing principled and cheap proxy objectives to the weight quantization error. We primarily focus on GPTQ as the quantization method. Our main method is OptRot, which reduces weight outliers simply by minimizing the element-wise fourth power of the rotated weights. We show that OptRot outperforms both Hadamard rotations and more expensive, data-dependent methods like SpinQuant and OSTQuant for weight quantization. It also improves activation quantization in the W4A8 setting. We also propose a data-dependent method, OptRot$^{+}$, that further improves performance by incorporating information on the activation covariance. In the W4A4 setting, we see that both OptRot and OptRot$^{+}$ perform worse, highlighting a trade-off between weight and activation quantization.
comment: 25 pages, 10 figures
Learning from Reasoning Failures via Synthetic Data Generation
Training models on synthetic data has emerged as an increasingly important strategy for improving the performance of generative AI. This approach is particularly helpful for large multimodal models (LMMs) due to the relative scarcity of high-quality paired image-text data compared to language-only data. While a variety of methods have been proposed for generating large multimodal datasets, they do not tailor the synthetic data to address specific deficiencies in the reasoning abilities of LMMs which will be trained with the generated dataset. In contrast, humans often learn in a more efficient manner by seeking out examples related to the types of reasoning where they have failed previously. Inspired by this observation, we propose a new approach for synthetic data generation which is grounded in the analysis of an existing LMM's reasoning failures. Our methodology leverages frontier models to automatically analyze errors produced by a weaker LMM and propose new examples which can be used to correct the reasoning failure via additional training, which are then further filtered to ensure high quality. We generate a large multimodal instruction tuning dataset containing over 553k examples using our approach and conduct extensive experiments demonstrating its utility for improving the performance of LMMs on multiple downstream tasks. Our results show that models trained on our synthetic data can even exceed the performance of LMMs trained on an equivalent amount of additional real data, demonstrating the high value of generating synthetic data targeted to specific reasoning failure modes in LMMs. We will make our dataset and code publicly available.
Robust and Efficient Zeroth-Order LLM Fine-Tuning via Adaptive Bayesian Subspace Optimizer
Fine-tuning large language models (LLMs) with zeroth-order (ZO) optimization reduces memory by approximating gradients through function evaluations. However, existing methods essentially perform updates in a one-dimensional space, and suffer from collapse or substantial performance degradation under low-precision training. We introduce BSZO, an adaptive \textbf{B}ayesian \textbf{S}ubspace \textbf{Z}eroth-Order \textbf{O}ptimizer, which applies Kalman filtering to combine finite-difference information across multiple perturbation directions within a subspace. By treating each finite-difference measurement as a noisy observation, BSZO builds a posterior distribution over the subspace-projected gradient and updates it through Bayesian inference, with a residual-based adaptive mechanism to adapt to noise variations. Theoretical analysis shows that BSZO improves the convergence rate by a factor of $k/γ$ compared to standard ZO methods. Experiments on RoBERTa, Mistral, and OPT models show that BSZO outperforms the baselines across various tasks, achieving up to 6.67\% absolute average improvement on OPT-13B while remaining robust under fp16/bf16 precision and keeping memory usage close to inference-only baselines (1.00$\times$--1.08$\times$ of MeZO).
comment: 19 pages, 2 figures, 4 tables
SPEC-RL: Accelerating On-Policy Reinforcement Learning with Speculative Rollouts
Large Language Models (LLMs) increasingly rely on reinforcement learning with verifiable rewards (RLVR) to elicit reliable chain-of-thought reasoning. However, the training process remains bottlenecked by the computationally expensive rollout stage. Existing acceleration methods-such as parallelization, objective- and data-driven modifications, and replay buffers-either incur diminishing returns, introduce bias, or overlook redundancy across iterations. We identify that rollouts from consecutive training epochs frequently share a large portion of overlapping segments, wasting computation. To address this, we propose SPEC-RL, a novel framework that integrates SPECulative decoding with the RL rollout process. SPEC-RL reuses prior trajectory segments as speculative prefixes and extends them via a draft-and-verify mechanism, avoiding redundant generation while ensuring policy consistency. Experiments on diverse math reasoning and generalization benchmarks, including AIME24, MATH-500, OlympiadBench, MMLU-STEM, and others, demonstrate that SPEC-RL reduces rollout time by 2-3x without compromising policy quality. As a purely rollout-stage enhancement, SPEC-RL integrates seamlessly with mainstream algorithms (e.g., PPO, GRPO, DAPO), offering a general and practical path to scale RLVR for large reasoning models. Our code is available at https://github.com/ShopeeLLM/Spec-RL
comment: fixed typos
OrderFusion: Encoding Orderbook for End-to-End Probabilistic Intraday Electricity Price Forecasting
Probabilistic intraday electricity price forecasting is becoming increasingly important with the growth of renewable generation and the rise in demand-side engagement. Their uncertainties have increased the trading risks closer to delivery and the subsequent imbalance settlement costs. As a consequence, intraday trading has emerged to mitigate these risks. Unlike auction markets, intraday trading in many jurisdictions is characterized by the continuous posting of buy and sell orders on power exchange platforms. This dynamic orderbook microstructure of price formation presents special challenges for price forecasting. Conventional methods represent the orderbook via domain features aggregated from buy and sell trades, or by treating it as a multivariate time series, but such representations neglect the full buy-sell interaction structure of the orderbook. This research therefore develops a new order fusion methodology, which is an end-to-end and parameter-efficient probabilistic forecasting model that learns a full interaction-aware representation of the buy-sell dynamics. Furthermore, as quantile crossing is often a problem in probabilistic forecasting, this approach hierarchically estimates the quantiles with non-crossing constraints. Extensive experiments on the market price indices across high-liquidity (German) and low-liquidity (Austrian) markets demonstrate consistent improvements over conventional baselines, and ablation studies highlight the contributions of the main modeling components. The methodology is available at: https://runyao-yu.github.io/OrderFusion/.
comment: 10 pages, 3 figures, 5 tables
EntroCoT: Enhancing Chain-of-Thought via Adaptive Entropy-Guided Segmentation
Chain-of-Thought (CoT) prompting has significantly enhanced the mathematical reasoning capabilities of Large Language Models. We find existing fine-tuning datasets frequently suffer from the "answer right but reasoning wrong" probelm, where correct final answers are derived from hallucinated, redundant, or logically invalid intermediate steps. This paper proposes EntroCoT, a unified framework for automatically identifying and refining low-quality CoT supervision traces. EntroCoT first proposes an entropy-based mechanism to segment the reasoning trace into multiple steps at uncertain junctures, and then introduces a Monte Carlo rollout-based mechanism to evaluate the marginal contribution of each step. By accurately filtering deceptive reasoning samples, EntroCoT constructs a high-quality dataset where every intermediate step in each reasoning trace facilitates the final answer. Extensive experiments on mathematical benchmarks demonstrate that fine-tuning on the subset constructed by EntroCoT consistently outperforms the baseslines of full-dataset supervision.
Review of Passenger Flow Modelling Approaches Based on a Bibliometric Analysis
This paper presents a bibliometric analysis of the field of short-term passenger flow forecasting within local public transit, covering 814 publications that span from 1984 to 2024. In addition to common bibliometric analysis tools, a variant of a citation network was developed, and topic modelling was conducted. The analysis reveals that research activity exhibited sporadic patterns prior to 2008, followed by a marked acceleration, characterised by a shift from conventional statistical and machine learning methodologies (e.g., ARIMA, SVM, and basic neural networks) to specialised deep learning architectures. Based on this insight, a connection to more general fields such as machine learning and time series modelling was established. In addition to modelling, spatial, linguistic, and modal biases were identified and findings from existing secondary literature were validated and quantified. This revealed existing gaps, such as constrained data fusion, open (multivariate) data, and underappreciated challenges related to model interpretability, cost-efficiency, and a balance between algorithmic performance and practical deployment considerations. In connection with the superordinate fields, the growth in relevance of foundation models is also noteworthy.
Topology Matters: Measuring Memory Leakage in Multi-Agent LLMs
Graph topology is a fundamental determinant of memory leakage in multi-agent LLM systems, yet its effects remain poorly quantified. We introduce MAMA (Multi-Agent Memory Attack), a framework that measures how network structure shapes leakage. MAMA operates on synthetic documents containing labeled Personally Identifiable Information (PII) entities, from which we generate sanitized task instructions. We execute a two-phase protocol: Engram (seeding private information into a target agent's memory) and Resonance (multi-round interaction where an attacker attempts extraction). Over 10 rounds, we measure leakage as exact-match recovery of ground-truth PII from attacker outputs. We evaluate six canonical topologies (complete, ring, chain, tree, star, star-ring) across $n\in\{4,5,6\}$, attacker-target placements, and base models. Results are consistent: denser connectivity, shorter attacker-target distance, and higher target centrality increase leakage; most leakage occurs in early rounds and then plateaus; model choice shifts absolute rates but preserves topology ordering; spatiotemporal/location attributes leak more readily than identity credentials or regulated identifiers. We distill practical guidance for system design: favor sparse or hierarchical connectivity, maximize attacker-target separation, and restrict hub/shortcut pathways via topology-aware access control.
LOST-3DSG: Lightweight Open-Vocabulary 3D Scene Graphs with Semantic Tracking in Dynamic Environments
Tracking objects that move within dynamic environments is a core challenge in robotics. Recent research has advanced this topic significantly; however, many existing approaches remain inefficient due to their reliance on heavy foundation models. To address this limitation, we propose LOST-3DSG, a lightweight open-vocabulary 3D scene graph designed to track dynamic objects in real-world environments. Our method adopts a semantic approach to entity tracking based on word2vec and sentence embeddings, enabling an open-vocabulary representation while avoiding the necessity of storing dense CLIP visual features. As a result, LOST-3DSG achieves superior performance compared to approaches that rely on high-dimensional visual embeddings. We evaluate our method through qualitative and quantitative experiments conducted in a real 3D environment using a TIAGo robot. The results demonstrate the effectiveness and efficiency of LOST-3DSG in dynamic object tracking. Code and supplementary material are publicly available on the project website at https://lab-rococo-sapienza.github.io/lost-3dsg/.
GlobalRAG: Enhancing Global Reasoning in Multi-hop Question Answering via Reinforcement Learning
Reinforcement learning has recently shown promise in improving retrieval-augmented generation (RAG). Despite these advances, its effectiveness in multi-hop question answering (QA) remains limited by two fundamental limitations: (i) global planning absence to structure multi-step reasoning, and (ii) unfaithful execution, which hinders effective query formulation and consistent use of retrieved evidence. We propose GlobalRAG, a reinforcement learning framework designed to enhance global reasoning in multi-hop QA. GlobalRAG decomposes questions into subgoals, coordinates retrieval with reasoning, and refines evidence iteratively. To guide this process, we introduce Planning Quality Reward and SubGoal Completion Reward, which encourage coherent planning and reliable subgoal execution. In addition, a progressive weight annealing strategy balances process-oriented and outcome-based objectives. Extensive experiments on both in-domain and out-of-domain benchmarks demonstrate that GlobalRAG significantly outperforms strong baselines while using only 8k training data (42% of the training data used by strong baselines), achieving average improvements of 14.2% in both EM and F1.
comment: 8 pages, 3 figures, 4 tables
Choices Speak Louder than Questions
Recent findings raise concerns about whether the evaluation of Multiple-Choice Question Answering (MCQA) accurately reflects the comprehension abilities of large language models. This paper explores the concept of choice sensitivity, which refers to the tendency for model decisions to be more influenced by the answer options than by a genuine understanding of the question. We introduce a new scoring method called Normalized Probability Shift by the Question (NPSQ), designed to isolate the impact of the question itself and provide a more reliable assessment of comprehension. Through experiments involving various input formats, including cloze, symbols, and hybrid formats, we find that traditional scoring methods - such as those based on log-likelihood or its length-normalized variant - are vulnerable to superficial characteristics of the answer choices. In contrast, NPSQ remains stable even when modifications are made to the answer options.
Tool-Augmented Policy Optimization: Synergizing Reasoning and Adaptive Tool Use with Reinforcement Learning
Recent advances in large language models (LLMs) have popularized test-time scaling, where models generate additional reasoning tokens before producing final answers. These approaches have demonstrated significant performance improvements on benchmarks involving mathematical reasoning. However, language models relying solely on direct inference still struggle with tasks demanding up-to-date knowledge or computational tools such as calculators and code interpreters for complex arithmetic operations. To overcome these limitations, we propose Tool-Augmented Policy Optimization (TAPO), a novel reinforcement learning framework that systematically integrates multi-hop reasoning with adaptive tool-calling capabilities. Our approach employs a modified version of Dynamic Sampling Policy Optimization (DAPO), a recently developed RL paradigm, which we adapt specifically for tool invocation scenarios, enabling models to dynamically interleave complex reasoning with on-demand tool usage (including search APIs and Python interpreters). To support this research, we introduce two new datasets: TAPO-easy-60K and TAPO-hard-18K, specifically designed to train and evaluate both fact-based reasoning and mathematical calculation capabilities. Our experiments on Qwen2.5-3B and Qwen2.5-7B models demonstrate the effectiveness of our approach, with both models achieving state-of-the-art performance on tasks requiring external knowledge and mathematical computation among methods with comparable parameters. Notably, TAPO achieves more efficient tool utilization than baseline methods while preventing excessive calls caused by reward hacking. These results highlight the significant potential of combining advanced reasoning with tool usage to enhance model performance in knowledge-intensive and computationally demanding tasks.
Jailbreak-AudioBench: In-Depth Evaluation and Analysis of Jailbreak Threats for Large Audio Language Models
Large Language Models (LLMs) demonstrate impressive zero-shot performance across a wide range of natural language processing tasks. Integrating various modality encoders further expands their capabilities, giving rise to Multimodal Large Language Models (MLLMs) that process not only text but also visual and auditory modality inputs. However, these advanced capabilities may also pose significant safety problems, as models can be exploited to generate harmful or inappropriate content through jailbreak attacks. While prior work has extensively explored how manipulating textual or visual modality inputs can circumvent safeguards in LLMs and MLLMs, the vulnerability of audio-specific jailbreak on Large Audio-Language Models (LALMs) remains largely underexplored. To address this gap, we introduce Jailbreak-AudioBench, which consists of the Toolbox, curated Dataset, and comprehensive Benchmark. The Toolbox supports not only text-to-audio conversion but also various editing techniques for injecting audio hidden semantics. The curated Dataset provides diverse explicit and implicit jailbreak audio examples in both original and edited forms. Utilizing this dataset, we evaluate multiple state-of-the-art LALMs and establish the most comprehensive Jailbreak benchmark to date for audio modality. Finally, Jailbreak-AudioBench establishes a foundation for advancing future research on LALMs safety alignment by enabling the in-depth exposure of more powerful jailbreak threats, such as query-based audio editing, and by facilitating the development of effective defense mechanisms.
From Implicit to Explicit: Enhancing Self-Recognition in Large Language Models
Large language models (LLMs) have been shown to possess a degree of self-recognition ability, which used to identify whether a given text was generated by themselves. Prior work has demonstrated that this capability is reliably expressed under the pair presentation paradigm (PPP), where the model is presented with two texts and asked to choose which one it authored. However, performance deteriorates sharply under the individual presentation paradigm (IPP), where the model is given a single text to judge authorship. Although this phenomenon has been observed, its underlying causes have not been systematically analyzed. In this paper, we first investigate the cause of this failure and attribute it to implicit self-recognition (ISR). ISR describes the gap between internal representations and output behavior in LLMs: under the IPP scenario, the model encodes self-recognition information in its feature space, yet its ability to recognize self-generated texts remains poor. To mitigate the ISR of LLMs, we propose cognitive surgery (CoSur), a novel framework comprising four main modules: representation extraction, subspace construction, authorship discrimination, and cognitive editing. Experimental results demonstrate that our proposed method improves the self-recognition performance of three different LLMs in the IPP scenario, achieving average accuracies of 99.00%, 97.69%, and 97.13%, respectively.
MCPAgentBench: A Real-world Task Benchmark for Evaluating LLM Agent MCP Tool Use
Large Language Models (LLMs) are increasingly serving as autonomous agents, and their utilization of external tools via the Model Context Protocol (MCP) is considered a future trend. Current MCP evaluation sets suffer from issues such as reliance on external MCP services and a lack of difficulty awareness. To address these limitations, we propose MCPAgentBench, a benchmark based on real-world MCP definitions designed to evaluate the tool-use capabilities of agents. We construct a dataset containing authentic tasks and simulated MCP tools. The evaluation employs a dynamic sandbox environment that presents agents with candidate tool lists containing distractors, thereby testing their tool selection and discrimination abilities. Furthermore, we introduce comprehensive metrics to measure both task completion rates and execution efficiency. Experiments conducted on various latest mainstream Large Language Models reveal significant performance differences in handling complex, multi-step tool invocations. All code is open-source at Github.
GDBA Revisited: Unleashing the Power of Guided Local Search for Distributed Constraint Optimization AAAI 2026
Local search is an important class of incomplete algorithms for solving Distributed Constraint Optimization Problems (DCOPs) but it often converges to poor local optima. While Generalized Distributed Breakout Algorithm (GDBA) provides a comprehensive rule set to escape premature convergence, its empirical benefits remain marginal on general-valued problems. In this work, we systematically examine GDBA and identify three factors that potentially lead to its inferior performance, i.e., over-aggressive constraint violation conditions, unbounded penalty accumulation, and uncoordinated penalty updates. To address these issues, we propose Distributed Guided Local Search (DGLS), a novel GLS framework for DCOPs that incorporates an adaptive violation condition to selectively penalize constraints with high cost, a penalty evaporation mechanism to control the magnitude of penalization, and a synchronization scheme for coordinated penalty updates. We theoretically show that the penalty values are bounded, and agents play a potential game in DGLS. Extensive empirical results on various benchmarks demonstrate the great superiority of DGLS over state-of-the-art baselines. Compared to Damped Max-sum with high damping factors, our DGLS achieves competitive performance on general-valued problems, and outperforms by significant margins on structured problems in terms of anytime results.
comment: Accepted by AAAI 2026
AI Agent Smart Contract Exploit Generation
Smart contract vulnerabilities have led to billions in losses, yet finding actionable exploits remains challenging. Traditional fuzzers rely on rigid heuristics and struggle with complex attacks, while human auditors are thorough but slow and don't scale. Large Language Models offer a promising middle ground, combining human-like reasoning with machine speed. Early studies show that simply prompting LLMs generates unverified vulnerability speculations with high false positive rates. To address this, we present A1, an agentic system that transforms any LLM into an end-to-end exploit generator. A1 provides agents with six domain-specific tools for autonomous vulnerability discovery, from understanding contract behavior to testing strategies on real blockchain states. All outputs are concretely validated through execution, ensuring only profitable proof-of-concept exploits are reported. We evaluate A1 across 36 real-world vulnerable contracts on Ethereum and Binance Smart Chain. A1 achieves a 63% success rate on the VERITE benchmark. Across all successful cases, A1 extracts up to \$8.59 million per exploit and \$9.33 million total. Using Monte Carlo analysis of historical attacks, we demonstrate that immediate vulnerability detection yields 86-89% success probability, dropping to 6-21% with week-long delays. Our economic analysis reveals a troubling asymmetry: attackers achieve profitability at \$6,000 exploit values while defenders require \$60,000 -- raising fundamental questions about whether AI agents inevitably favor exploitation over defense.
A3: Android Agent Arena for Mobile GUI Agents with Essential-State Procedural Evaluation
The advancement of Large Language Models (LLMs) and Multimodal Large Language Models (MLLMs) has catalyzed the development of mobile graphic user interface (GUI) AI agents, which is designed to autonomously perform tasks on mobile devices. However, a significant gap persists in mobile GUI agent evaluation, where existing benchmarks predominantly rely on either static frame assessments such as AndroidControl or offline static apps such as AndroidWorld and thus fail to capture agent performance in dynamic, real-world online mobile apps. To address this gap, we present Android Agent Arena (A3), a novel "essential-state" based procedural evaluation system for mobile GUI agents. A3 introduces a benchmark of 100 tasks derived from 20 widely-used, dynamic online apps across 20 categories from the Google Play Store, ensuring evaluation comprehension. A3 also presents a novel "essential-state" based procedural evaluation method that leverages MLLMs as reward models to progressively verify task completion and process achievement. This evaluation approach address the limitations of traditional function based evaluation methods on online dynamic apps. Furthermore, A3 includes a toolkit to streamline Android device interaction, reset online environment and apps and facilitate data collection from both human and agent demonstrations. The complete A3 system, including the benchmark and tools, will be publicly released to provide a robust foundation for future research and development in mobile GUI agents.
ADPO: Anchored Direct Preference Optimization
We present Anchored Direct Preference Optimization (ADPO), a policy alignment method derived from first principles of KL-regularized reinforcement learning. Unlike standard approaches that treat the reference policy merely as a regularizer, we show that the optimal policy in reinforcement learning from human feedback inherently operates in a differential coordinate system, optimizing relative advantage in the form of log ratios rather than absolute probabilities. ADPO explicitly parameterizes this optimal structure through anchored logits, effectively decoupling response quality from prior popularity and creating an implicit trust region through curvature scaling. We show that this formulation unifies supervised fine-tuning, reinforcement learning, and ranking-based objectives under a single geometric perspective. Theoretically, ADPO resolves the probability smearing problem of supervised fine-tuning while avoiding the mode-seeking instability characteristic of reverse-KL methods. Empirically, the listwise ranking variant of ADPO achieves state-of-the-art performance on reasoning tasks, outperforming GRPO by 30.9 percent on Qwen3-1.7B and demonstrating superior robustness under distribution shift.
Aligning Findings with Diagnosis: A Self-Consistent Reinforcement Learning Framework for Trustworthy Radiology Reporting
Multimodal Large Language Models (MLLMs) have shown strong potential for radiology report generation, yet their clinical translation is hindered by architectural heterogeneity and the prevalence of factual hallucinations. Standard supervised fine-tuning often fails to strictly align linguistic outputs with visual evidence, while existing reinforcement learning approaches struggle with either prohibitive computational costs or limited exploration. To address these challenges, we propose a comprehensive framework for self-consistent radiology report generation. First, we conduct a systematic evaluation to identify optimal vision encoder and LLM backbone configurations for medical imaging. Building on this foundation, we introduce a novel "Reason-then-Summarize" architecture optimized via Group Relative Policy Optimization (GRPO). This framework restructures generation into two distinct components: a think block for detailed findings and an answer block for structured disease labels. By utilizing a multi-dimensional composite reward function, we explicitly penalize logical discrepancies between the generated narrative and the final diagnosis. Extensive experiments on the MIMIC-CXR benchmark demonstrate that our method achieves state-of-the-art performance in clinical efficacy metrics and significantly reduces hallucinations compared to strong supervised baselines.
DB3 Team's Solution For Meta KDD Cup' 25
This paper presents the db3 team's winning solution for the Meta CRAG-MM Challenge 2025 at KDD Cup'25. Addressing the challenge's unique multi-modal, multi-turn question answering benchmark (CRAG-MM), we developed a comprehensive framework that integrates tailored retrieval pipelines for different tasks with a unified LLM-tuning approach for hallucination control. Our solution features (1) domain-specific retrieval pipelines handling image-indexed knowledge graphs, web sources, and multi-turn conversations; and (2) advanced refusal training using SFT, DPO, and RL. The system achieved 2nd place in Task 1, 2nd place in Task 2, and 1st place in Task 3, securing the grand prize for excellence in ego-centric queries through superior handling of first-person perspective challenges.
Belief Is All You Need: Modeling Narrative Archetypes in Conspiratorial Discourse
Conspiratorial discourse is increasingly embedded within digital communication ecosystems, yet its structure and spread remain difficult to study. This work analyzes conspiratorial narratives in Singapore-based Telegram groups, showing that such content is woven into everyday discussions rather than confined to isolated echo chambers. We propose a two-stage computational framework. First, we fine-tune RoBERTa-large to classify messages as conspiratorial or not, achieving an F1-score of 0.866 on 2,000 expert-labeled messages. Second, we build a signed belief graph in which nodes represent messages and edge signs reflect alignment in belief labels, weighted by textual similarity. We introduce a Signed Belief Graph Neural Network (SiBeGNN) that uses a Sign Disentanglement Loss to learn embeddings that separate ideological alignment from stylistic features. Using hierarchical clustering on these embeddings, we identify seven narrative archetypes across 553,648 messages: legal topics, medical concerns, media discussions, finance, contradictions in authority, group moderation, and general chat. SiBeGNN yields stronger clustering quality (cDBI = 8.38) than baseline methods (13.60 to 67.27), supported by 88 percent inter-rater agreement in expert evaluations. Our analysis shows that conspiratorial messages appear not only in clusters focused on skepticism or distrust, but also within routine discussions of finance, law, and everyday matters. These findings challenge common assumptions about online radicalization by demonstrating that conspiratorial discourse operates within ordinary social interaction. The proposed framework advances computational methods for belief-driven discourse analysis and offers applications for stance detection, political communication studies, and content moderation policy.
From Wearables to Warnings: Predicting Pain Spikes in Patients with Opioid Use Disorder
Chronic pain (CP) and opioid use disorder (OUD) are common and interrelated chronic medical conditions. Currently, there is a paucity of evidence-based integrated treatments for CP and OUD among individuals receiving medication for opioid use disorder (MOUD). Wearable devices have the potential to monitor complex patient information and inform treatment development for persons with OUD and CP, including pain variability (e.g., exacerbations of pain or pain spikes) and clinical correlates (e.g., perceived stress). However, the application of large language models (LLMs) with wearable data for understanding pain spikes, remains unexplored. Consequently, the aim of this pilot study was to examine the clinical correlates of pain spikes using a range of AI approaches. We found that machine learning models achieved relatively high accuracy (>0.7) in predicting pain spikes, while LLMs were limited in providing insights on pain spikes. Real-time monitoring through wearable devices, combined with advanced AI models, could facilitate early detection of pain spikes and support personalized interventions that may help mitigate the risk of opioid relapse, improve adherence to MOUD, and enhance the integration of CP and OUD care. Given overall limited LLM performance, these findings highlight the need to develop LLMs which can provide actionable insights in the OUD/CP context.
Forget BIT, It is All about TOKEN: Towards Semantic Information Theory for LLMs
Large language models (LLMs) have demonstrated remarkable capabilities in numerous real-world applications. While the vast majority of research conducted from an experimental perspective is progressing rapidly, it demands substantial computational power, data, and other resources. Therefore, how to open the black-box of LLMs from a theoretical standpoint has become a critical challenge. This paper takes the theory of rate-distortion function, directed information, and Granger causality as its starting point to investigate the information-theoretic principles behind LLMs, leading to the development of semantic information theory for LLMs, where the fundamental unit is token, rather than bits that lacks any semantic meaning. By defining the probabilistic model of LLMs, we discuss structure-agnostic information-theoretic measures, such as the directed rate-distortion function in pre-training, the directed rate-reward function in post-training, and the semantic information flow in inference phase. This paper also delves deeply into the theory of token-level semantic embedding and the information-theoretically optimal vectorization method. Thereafter, we propose a general definition of autoregression LLM, where the Transformer architecture and its performance such as ELBO, generalization error bound, memory capacity, and semantic information measures can be derived theoretically. Other architectures, such as Mamba/Mamba2 and LLaDA, are also discussed in our framework. Consequently, this paper provides a theoretical framework for understanding LLMs from the perspective of semantic information theory, which also offers the necessary theoretical tools for further in-depth research.
ToolBrain: A Flexible Reinforcement Learning Framework for Agentic Tools
Effective tool use is essential for agentic AI, yet training agents to utilize tools remains challenging due to manually designed rewards, limited training data, and poor multi-tool selection, resulting in slow adaptation, wasted computational resources, and suboptimal performance. We introduce ToolBrain, a lightweight and user-friendly framework for training tool use in agentic models with flexible reinforcement learning, thereby easing the barriers for researchers and practitioners to adapt LLM-based agents to specific domains. It supports a wide range of training strategies, including reinforcement learning algorithms such as GRPO and DPO, as well as supervised learning. ToolBrain enables custom reward callables directly on an agent's execution traces or simply utilizes an automated LLM-as-a-judge system for reward generation. It is packed with useful capabilities, including knowledge distillation from large to small models, automatic task generation from tool descriptions, seamless tool retrieval, efficient fine-tuning pipelines with QLoRA through Unsloth, and quantized inference via bitsandbytes. We demonstrate ToolBrain through an Email Search Agent case study, showing measurable improvements in tool-use skills under a realistic workflow, while keeping the codebase simple and extensible. Our framework is publicly available at https://toolbrain.org/.
Metacognitive Self-Correction for Multi-Agent System via Prototype-Guided Next-Execution Reconstruction
Large Language Model based multi-agent systems (MAS) excel at collaborative problem solving but remain brittle to cascading errors: a single faulty step can propagate across agents and disrupt the trajectory. In this paper, we present MASC, a metacognitive framework that endows MAS with real-time, unsupervised, step-level error detection and self-correction. MASC rethinks detection as history-conditioned anomaly scoring via two complementary designs: (1) Next-Execution Reconstruction, which predicts the embedding of the next step from the query and interaction history to capture causal consistency, and (2) Prototype-Guided Enhancement, which learns a prototype prior over normal-step embeddings and uses it to stabilize reconstruction and anomaly scoring under sparse context (e.g., early steps). When an anomaly step is flagged, MASC triggers a correction agent to revise the acting agent's output before information flows downstream. On the Who&When benchmark, MASC consistently outperforms all baselines, improving step-level error detection by up to 8.47% AUC-ROC ; When plugged into diverse MAS frameworks, it delivers consistent end-to-end gains across architectures, confirming that our metacognitive monitoring and targeted correction can mitigate error propagation with minimal overhead.
Credible Plan-Driven RAG Method for Multi-Hop Question Answering
Retrieval-augmented generation (RAG) has demonstrated strong performance in single-hop question answering (QA) by integrating external knowledge into large language models (LLMs). However, its effectiveness remains limited in multi-hop QA, which demands both stable reasoning and factual consistency. Existing approaches often provide partial solutions, addressing either reasoning trajectory stability or factual verification, but rarely achieving both simultaneously. To bridge this gap, we propose PAR-RAG, a three-stage Plan-then-Act-and-Review framework inspired by the PDCA cycle. PAR-RAG incorporates semantic complexity as a unifying principle through three key components: (i) complexity-aware exemplar selection guides plan generation by aligning decomposition granularity with question difficulty, thereby stabilizing reasoning trajectories; (ii) execution follows a structured retrieve-then-read process; and (iii) dual verification identifies and corrects intermediate errors while dynamically adjusting verification strength based on question complexity: emphasizing accuracy for simple queries and multi-evidence consistency for complex ones. This cognitively inspired framework integrates theoretical grounding with practical robustness. Experiments across diverse benchmarks demonstrate that PAR-RAG consistently outperforms competitive baselines, while ablation studies confirm the complementary roles of complexity-aware planning and dual verification. Collectively, these results establish PAR-RAG as a robust and generalizable framework for reliable multi-hop reasoning.
comment: 24 pages, 7 figures
ReBrain: Brain MRI Reconstruction from Sparse CT Slice via Retrieval-Augmented Diffusion WACV 2026
Magnetic Resonance Imaging (MRI) plays a crucial role in brain disease diagnosis, but it is not always feasible for certain patients due to physical or clinical constraints. Recent studies attempt to synthesize MRI from Computed Tomography (CT) scans; however, low-dose protocols often result in highly sparse CT volumes with poor through-plane resolution, making accurate reconstruction of the full brain MRI volume particularly challenging. To address this, we propose ReBrain, a retrieval-augmented diffusion framework for brain MRI reconstruction. Given any 3D CT scan with limited slices, we first employ a Brownian Bridge Diffusion Model (BBDM) to synthesize MRI slices along the 2D dimension. Simultaneously, we retrieve structurally and pathologically similar CT slices from a comprehensive prior database via a fine-tuned retrieval model. These retrieved slices are used as references, incorporated through a ControlNet branch to guide the generation of intermediate MRI slices and ensure structural continuity. We further account for rare retrieval failures when the database lacks suitable references and apply spherical linear interpolation to provide supplementary guidance. Extensive experiments on SynthRAD2023 and BraTS demonstrate that ReBrain achieves state-of-the-art performance in cross-modal reconstruction under sparse conditions.
comment: 16 pages, 12 figures, 7 tables; Accepted by WACV 2026
What Breaks Knowledge Graph based RAG? Benchmarking and Empirical Insights into Reasoning under Incomplete Knowledge
Knowledge Graph-based Retrieval-Augmented Generation (KG-RAG) is an increasingly explored approach for combining the reasoning capabilities of large language models with the structured evidence of knowledge graphs. However, current evaluation practices fall short: existing benchmarks often include questions that can be directly answered using existing triples in KG, making it unclear whether models perform reasoning or simply retrieve answers directly. Moreover, inconsistent evaluation metrics and lenient answer matching criteria further obscure meaningful comparisons. In this work, we introduce a general method for constructing benchmarks and present BRINK (Benchmark for Reasoning under Incomplete Knowledge) to systematically assess KG-RAG methods under knowledge incompleteness. Our empirical results show that current KG-RAG methods have limited reasoning ability under missing knowledge, often rely on internal memorization, and exhibit varying degrees of generalization depending on their design.
comment: Accepted as a main conference paper at EACL 2026
TELEVAL: A Dynamic Benchmark Designed for Spoken Language Models in Chinese Interactive Scenarios
Spoken language models (SLMs) have advanced rapidly in recent years, accompanied by a growing number of evaluation benchmarks. However, most existing benchmarks emphasize task completion and capability scaling, while remaining poorly aligned with how users interact with SLMs in real-world spoken conversations. Effective spoken interaction requires not only accurate understanding of user intent and content, but also the ability to respond with appropriate interactional strategies. In this paper, we present TELEVAL, a dynamic, user-centered benchmark for evaluating SLMs in realistic Chinese spoken interaction scenarios. TELEVAL consolidates evaluation into two core aspects. Reliable Content Fulfillment assesses whether models can comprehend spoken inputs and produce semantically correct responses. Interactional Appropriateness evaluates whether models act as socially capable interlocutors, requiring them not only to generate human-like, colloquial responses, but also to implicitly incorporate paralinguistic cues for natural interaction. Experiments reveal that, despite strong performance on semantic and knowledge-oriented tasks, current SLMs still struggle to produce natural and interactionally appropriate responses, highlighting the need for more interaction-faithful evaluation.
SciIF: Benchmarking Scientific Instruction Following Towards Rigorous Scientific Intelligence
As large language models (LLMs) transition from general knowledge retrieval to complex scientific discovery, their evaluation standards must also incorporate the rigorous norms of scientific inquiry. Existing benchmarks exhibit a critical blind spot: general instruction-following metrics focus on superficial formatting, while domain-specific scientific benchmarks assess only final-answer correctness, often rewarding models that arrive at the right result with the wrong reasons. To address this gap, we introduce scientific instruction following: the capability to solve problems while strictly adhering to the constraints that establish scientific validity. Specifically, we introduce SciIF, a multi-discipline benchmark that evaluates this capability by pairing university-level problems with a fixed catalog of constraints across three pillars: scientific conditions (e.g., boundary checks and assumptions), semantic stability (e.g., unit and symbol conventions), and specific processes(e.g., required numerical methods). Uniquely, SciIF emphasizes auditability, requiring models to provide explicit evidence of constraint satisfaction rather than implicit compliance. By measuring both solution correctness and multi-constraint adherence, SciIF enables finegrained diagnosis of compositional reasoning failures, ensuring that LLMs can function as reliable agents within the strict logical frameworks of science.
CFT-RAG: An Entity Tree Based Retrieval Augmented Generation Algorithm With Cuckoo Filter
Although retrieval-augmented generation(RAG) significantly improves generation quality by retrieving external knowledge bases and integrating generated content, it faces computational efficiency bottlenecks, particularly in knowledge retrieval tasks involving hierarchical structures for Tree-RAG. This paper proposes a Tree-RAG acceleration method based on the improved Cuckoo Filter, which optimizes entity localization during the retrieval process to achieve significant performance improvements. Tree-RAG effectively organizes entities through the introduction of a hierarchical tree structure, while the Cuckoo Filter serves as an efficient data structure that supports rapid membership queries and dynamic updates. The experiment results demonstrate that our method is much faster than naive Tree-RAG while maintaining high levels of generative quality. When the number of trees is large, our method is hundreds of times faster than naive Tree-RAG. Our work is available at https://github.com/TUPYP7180/CFT-RAG-2025.
comment: New research based on it has been conducted
DAST: Difficulty-Adaptive Slow-Thinking for Large Reasoning Models
Recent advancements in slow thinking reasoning models have shown exceptional performance in complex reasoning tasks. However, these models often exhibit overthinking (generating redundant reasoning steps for simple problems), leading to excessive computational resource usage. While current mitigation strategies uniformly reduce reasoning tokens, they risk degrading performance on challenging tasks that require extended reasoning. This paper introduces Difficulty-Adaptive Slow Thinking (DAST), a novel framework that enables models to autonomously adjust the length of Chain-of-Thought (CoT) based on problem difficulty. We first propose a Token Length Budget (TLB) metric to quantify difficulty, then leverage budget-aware reward shaping and budget preference optimization to implement DAST. DAST penalizes overlong responses for simple tasks while incentivizing sufficient reasoning for complex problems. Experiments on diverse datasets and model scales demonstrate that DAST effectively mitigates overthinking (reducing token usage by over 30\% on average) while preserving reasoning accuracy on complex problems. Our codes and models are available at https://github.com/AnonymousUser0520/AnonymousRepo01.
comment: EMNLP 2025 Industry Track
MoEMeta: Mixture-of-Experts Meta Learning for Few-Shot Relational Learning NeurIPS 2025
Few-shot knowledge graph relational learning seeks to perform reasoning over relations given only a limited number of training examples. While existing approaches largely adopt a meta-learning framework for enabling fast adaptation to new relations, they suffer from two key pitfalls. First, they learn relation meta-knowledge in isolation, failing to capture common relational patterns shared across tasks. Second, they struggle to effectively incorporate local, task-specific contexts crucial for rapid adaptation. To address these limitations, we propose MoEMeta, a novel meta-learning framework that disentangles globally shared knowledge from task-specific contexts to enable both effective model generalization and rapid adaptation. MoEMeta introduces two key innovations: (i) a mixture-of-experts (MoE) model that learns globally shared relational prototypes to enhance generalization, and (ii) a task-tailored adaptation mechanism that captures local contexts for fast task-specific adaptation. By balancing global generalization with local adaptability, MoEMeta significantly advances few-shot relational learning. Extensive experiments and analyses on three KG benchmarks show that MoEMeta consistently outperforms existing baselines, achieving state-of-the-art performance.
comment: Appear in NeurIPS 2025
HuiduRep: A Robust Self-Supervised Framework for Learning Neural Representations from Extracellular Recordings
Extracellular recordings are transient voltage fluctuations in the vicinity of neurons, serving as a fundamental modality in neuroscience for decoding brain activity at single-neuron resolution. Spike sorting, the process of attributing each detected spike to its corresponding neuron, is a pivotal step in brain sensing pipelines. However, it remains challenging under low signal-to-noise ratio (SNR), electrode drift and cross-session variability. In this paper, we propose HuiduRep, a robust self-supervised representation learning framework that extracts discriminative and generalizable features from extracellular recordings. By integrating contrastive learning with a denoising autoencoder, HuiduRep learns latent representations that are robust to noise and drift. With HuiduRep, we develop a spike sorting pipeline that clusters spike representations without ground truth labels. Experiments on hybrid and real-world datasets demonstrate that HuiduRep achieves strong robustness. Furthermore, the pipeline outperforms state-of-the-art tools such as KiloSort4 and MountainSort5. These findings demonstrate the potential of self-supervised spike representation learning as a foundational tool for robust and generalizable processing of extracellular recordings. Code is available at: https://github.com/IgarashiAkatuki/HuiduRep
comment: 10 pages, 3 figures, 6 tables
Advancing time series completion via RFAMoE and MDFF
Recent studies show that using diffusion models for time series signal reconstruction holds great promise. However, such approaches remain largely unexplored in the domain of medical time series. The unique characteristics of the physiological time series signals, such as multivariate, high temporal variability, highly noisy, and artifact-prone, make deep learning-based approaches still challenging for tasks such as imputation. Hence, we propose a novel Mixture of Experts (MoE)-based noise estimator within a score-based diffusion framework. Specifically, the Receptive Field Adaptive MoE (RFAMoE) module is designed to enable each channel to adaptively select desired receptive fields throughout the diffusion process. Moreover, recent literature has found that when generating a physiological signal, performing multiple inferences and averaging the reconstructed signals can effectively reduce reconstruction errors, but at the cost of significant computational and latency overhead. We design a Fusion MoE module and innovatively leverage the nature of MoE module to generate K noise signals in parallel, fuse them using a routing mechanism, and complete signal reconstruction in a single inference step. This design not only improves performance over previous methods but also eliminates the substantial computational cost and latency associated with multiple inference processes. Extensive results demonstrate that our proposed framework consistently outperforms diffusion-based SOTA works on different tasks and datasets.
DR-LoRA: Dynamic Rank LoRA for Mixture-of-Experts Adaptation
Mixture-of-Experts (MoE) has become a prominent paradigm for scaling Large Language Models (LLMs). Parameter-efficient fine-tuning (PEFT), such as LoRA, is widely adopted to adapt pretrained MoE LLMs to downstream tasks. However, existing approaches assign identical LoRA ranks to all experts, overlooking the intrinsic functional specialization within MoE LLMs. This uniform allocation leads to resource mismatch, task-relevant experts are under-provisioned while less relevant ones receive redundant parameters. We propose a Dynamic Rank LoRA framework named DR-LoRA, which dynamically grows expert LoRA ranks during fine-tuning based on task-specific demands. DR-LoRA employs an Expert Saliency Scoring mechanism that integrates expert routing frequency and LoRA rank importance to quantify each expert's demand for additional capacity. Experts with higher saliency scores are prioritized for rank expansion, enabling the automatic formation of a heterogeneous rank distribution tailored to the target task. Experiments on multiple benchmarks demonstrate that DR-LoRA consistently outperforms standard LoRA and static allocation strategies under the same parameter budget, achieving superior task performance with more efficient parameter utilization.
Investigating a Model-Agnostic and Imputation-Free Approach for Irregularly-Sampled Multivariate Time-Series Modeling
Modeling Irregularly-sampled and Multivariate Time Series (IMTS) is crucial across a variety of applications where different sets of variates may be missing at different time-steps due to sensor malfunctions or high data acquisition costs. Existing approaches for IMTS either consider a two-stage impute-then-model framework or involve specialized architectures specific to a particular model and task. We perform a series of experiments to derive novel insights about the performance of IMTS methods on a variety of semi-synthetic and real-world datasets for both classification and forecasting. We also introduce Missing Feature-aware Time Series Modeling (MissTSM) or MissTSM, a novel model-agnostic and imputation-free approach for IMTS modeling. We show that MissTSM shows competitive performance compared to other IMTS approaches, especially when the amount of missing values is large and the data lacks simplistic periodic structures - conditions common to real-world IMTS applications.
comment: Accepted at TMLR
HydroGEM: A Self Supervised Zero Shot Hybrid TCN Transformer Foundation Model for Continental Scale Streamflow Quality Control
Real-time streamflow monitoring networks generate millions of observations annually, yet maintaining data quality across thousands of remote sensors remains labor-intensive. We introduce HydroGEM (Hydrological Generalizable Encoder for Monitoring), a foundation model for continental-scale streamflow quality control. HydroGEM uses two-stage training: self-supervised pretraining on 6.03 million sequences from 3,724 USGS stations learns hydrological representations, followed by fine-tuning with synthetic anomalies for detection and reconstruction. A hybrid TCN-Transformer architecture (14.2M parameters) captures local temporal patterns and long-range dependencies, while hierarchical normalization handles six orders of magnitude in discharge. On held-out synthetic tests comprising 799 stations with 18 expert-validated anomaly types, HydroGEM achieves F1 = 0.792 for detection and 68.7% reconstruction-error reduction, a 36.3% improvement over existing methods. Zero-shot transfer to 100 Environment and Climate Change Canada stations yields F1 = 0.586, exceeding all baselines and demonstrating cross-national generalization. The model maintains consistent detection across correction magnitudes and aligns with operational seasonal patterns. HydroGEM is designed for human-in-the-loop workflows - outputs are quality control suggestions requiring expert review, not autonomous corrections.
comment: Supplementary materials, datasets, and implementation code will be made publicly available upon acceptance for publication in a peer-reviewed journal
How to Backdoor the Knowledge Distillation
Knowledge distillation has become a cornerstone in modern machine learning systems, celebrated for its ability to transfer knowledge from a large, complex teacher model to a more efficient student model. Traditionally, this process is regarded as secure, assuming the teacher model is clean. This belief stems from conventional backdoor attacks relying on poisoned training data with backdoor triggers and attacker-chosen labels, which are not involved in the distillation process. Instead, knowledge distillation uses the outputs of a clean teacher model to guide the student model, inherently preventing recognition or response to backdoor triggers as intended by an attacker. In this paper, we challenge this assumption by introducing a novel attack methodology that strategically poisons the distillation dataset with adversarial examples embedded with backdoor triggers. This technique allows for the stealthy compromise of the student model while maintaining the integrity of the teacher model. Our innovative approach represents the first successful exploitation of vulnerabilities within the knowledge distillation process using clean teacher models. Through extensive experiments conducted across various datasets and attack settings, we demonstrate the robustness, stealthiness, and effectiveness of our method. Our findings reveal previously unrecognized vulnerabilities and pave the way for future research aimed at securing knowledge distillation processes against backdoor attacks.
Explicit World Models for Reliable Human-Robot Collaboration AAAI-26
This paper addresses the topic of robustness under sensing noise, ambiguous instructions, and human-robot interaction. We take a radically different tack to the issue of reliable embodied AI: instead of focusing on formal verification methods aimed at achieving model predictability and robustness, we emphasise the dynamic, ambiguous and subjective nature of human-robot interactions that requires embodied AI systems to perceive, interpret, and respond to human intentions in a manner that is consistent, comprehensible and aligned with human expectations. We argue that when embodied agents operate in human environments that are inherently social, multimodal, and fluid, reliability is contextually determined and only has meaning in relation to the goals and expectations of humans involved in the interaction. This calls for a fundamentally different approach to achieving reliable embodied AI that is centred on building and updating an accessible "explicit world model" representing the common ground between human and AI, that is used to align robot behaviours with human expectations.
comment: Accepted to AAAI-26 Bridge Program B10: Making Embodied AI Reliable with Testing and Formal Verification
Asymptotically Stable Quaternion-valued Hopfield-structured Neural Network with Periodic Projection-based Supervised Learning Rules NeurIPS 2025
Motivated by the geometric advantages of quaternions in representing rotations and postures, we propose a quaternion-valued supervised learning Hopfield-structured neural network (QSHNN) with a fully connected structure inspired by the classic Hopfield neural network (HNN). Starting from a continuous-time dynamical model of HNNs, we extend the formulation to the quaternionic domain and establish the existence and uniqueness of fixed points with asymptotic stability. For the learning rules, we introduce a periodic projection strategy that modifies standard gradient descent by periodically projecting each 4*4 block of the weight matrix onto the closest quaternionic structure in the least-squares sense. This approach preserves both convergence and quaternionic consistency throughout training. Benefiting from this rigorous mathematical foundation, the experimental model implementation achieves high accuracy, fast convergence, and strong reliability across randomly generated target sets. Moreover, the evolution trajectories of the QSHNN exhibit well-bounded curvature, i.e., sufficient smoothness, which is crucial for applications such as control systems or path planning modules in robotic arms, where joint postures are parameterized by quaternion neurons. Beyond these application scenarios, the proposed model offers a practical implementation framework and a general mathematical methodology for designing neural networks under hypercomplex or non-commutative algebraic structures.
comment: Accepted by NeurIPS 2025
Permission Manifests for Web Agents
The rise of Large Language Model (LLM)-based web agents represents a significant shift in automated interactions with the web. Unlike traditional crawlers that follow simple conventions, such as robots$.$txt, modern agents engage with websites in sophisticated ways: navigating complex interfaces, extracting structured information, and completing end-to-end tasks. Existing governance mechanisms were not designed for these capabilities. Without a way to specify what interactions are and are not allowed, website owners increasingly rely on blanket blocking and CAPTCHAs, which undermine beneficial applications such as efficient automation, convenient use of e-commerce services, and accessibility tools. We introduce agent-permissions$.$json, a robots$.$txt-style lightweight manifest where websites specify allowed interactions, complemented by API references where available. This framework provides a low-friction coordination mechanism: website owners only need to write a simple JSON file, while agents can easily parse and automatically implement the manifest's provisions. Website owners can then focus on blocking non-compliant agents, rather than agents as a whole. By extending the spirit of robots$.$txt to the era of LLM-mediated interaction, and complementing data use initiatives such as AIPref, the manifest establishes a compliance framework that enables beneficial agent interactions while respecting site owners' preferences.
comment: Authored by the Lightweight Agent Standards Working Group https://las-wg.org/
Robust Single-Agent Reinforcement Learning for Regional Traffic Signal Control Under Demand Fluctuations
Traffic congestion, primarily driven by intersection queuing, significantly impacts urban living standards, safety, environmental quality, and economic efficiency. While Traffic Signal Control (TSC) systems hold potential for congestion mitigation, traditional optimization models often fail to capture real-world traffic complexity and dynamics. This study introduces a novel single-agent reinforcement learning (RL) framework for regional adaptive TSC, circumventing the coordination complexities inherent in multi-agent systems through a centralized decision-making paradigm. The model employs an adjacency matrix to unify the encoding of road network topology, real-time queue states derived from probe vehicle data, and current signal timing parameters. Leveraging the efficient learning capabilities of the DreamerV3 world model, the agent learns control policies where actions sequentially select intersections and adjust their signal phase splits to regulate traffic inflow/outflow, analogous to a feedback control system. Reward design prioritizes queue dissipation, directly linking congestion metrics (queue length) to control actions. Simulation experiments conducted in SUMO demonstrate the model's effectiveness: under inference scenarios with multi-level (10%, 20%, 30%) Origin-Destination (OD) demand fluctuations, the framework exhibits robust anti-fluctuation capability and significantly reduces queue lengths. This work establishes a new paradigm for intelligent traffic control compatible with probe vehicle technology. Future research will focus on enhancing practical applicability by incorporating stochastic OD demand fluctuations during training and exploring regional optimization mechanisms for contingency events.
comment: A critical error in the methodology. The reported congestion control effects were not caused by the proposed signal timing optimization, but by an incorrect traffic volume scaling factor during evaluation. The traffic demand was not properly amplified, resulting in misleading performance gains. Due to the substantial nature of the error, completion of revisions is not feasible in the short term
Single-agent Reinforcement Learning Model for Regional Adaptive Traffic Signal Control
Several studies have employed reinforcement learning (RL) to address the challenges of regional adaptive traffic signal control (ATSC) and achieved promising results. In this field, existing research predominantly adopts multi-agent frameworks. However, the adoption of multi-agent frameworks presents challenges for scalability. Instead, the Traffic signal control (TSC) problem necessitates a single-agent framework. TSC inherently relies on centralized management by a single control center, which can monitor traffic conditions across all roads in the study area and coordinate the control of all intersections. This work proposes a single-agent RL-based regional ATSC model compatible with probe vehicle technology. Key components of the RL design include state, action, and reward function definitions. To facilitate learning and manage congestion, both state and reward functions are defined based on queue length, with action designed to regulate queue dynamics. The queue length definition used in this study differs slightly from conventional definitions but is closely correlated with congestion states. More importantly, it allows for reliable estimation using link travel time data from probe vehicles. With probe vehicle data already covering most urban roads, this feature enhances the proposed method's potential for widespread deployment. The method was comprehensively evaluated using the SUMO simulation platform. Experimental results demonstrate that the proposed model effectively mitigates large-scale regional congestion levels via coordinated multi-intersection control.
comment: A critical error in the methodology. The reported congestion control effects were not caused by the proposed signal timing optimization, but by an incorrect traffic volume scaling factor during evaluation. The traffic demand was not properly amplified, resulting in misleading performance gains. Due to the substantial nature of the error, completion of revisions is not feasible in the short term
LLM generation novelty through the lens of semantic similarity
Generation novelty is a key indicator of an LLM's ability to generalize, yet measuring it against full pretraining corpora is computationally challenging. Existing evaluations often rely on lexical overlap, failing to detect paraphrased text, or do not consider the full pretraining corpus. We frame novelty as a semantic retrieval problem. This framing enables us to address novelty with modern embedding and indexing pipelines, allowing for efficient analysis at pre-training scale. Specifically, we propose a three-stage framework that retrieves semantically similar samples, reranks them at varying subsequence lengths, and calibrates scores using a human novelty reference for interpretability. We apply this framework to the SmolLM model family and report three key findings: (1) models draw on pre-training data across much longer sequences than previously reported; (2) some task domains systematically promote or suppress generation novelty; and (3) instruction tuning not only alters style but also increases novelty. These results highlight the value of semantic novelty analysis for studying generalization. To support reproducibility and further research, we release ~20 TB of corpus chunks and index artifacts at https://huggingface.co/datasets/stai-tuebingen/faiss-smollm
SLogic: Subgraph-Informed Logical Rule Learning for Knowledge Graph Completion
Logical rule-based methods offer an interpretable approach to knowledge graph completion (KGC) by capturing compositional relationships in the form of human-readable inference rules. While existing logical rule-based methods learn rule confidence scores, they typically assign a global weight to each rule schema, applied uniformly across the graph. This is a significant limitation, as a rule's importance often varies depending on the specific query instance. To address this, we introduce SLogic (Subgraph-Informed Logical Rule learning), a novel framework that assigns query-dependent scores to logical rules. The core of SLogic is a context-aware scoring function. This function determines the importance of a rule by analyzing the subgraph locally defined by the query's head entity, thereby enabling a differentiated weighting of rules specific to their local query contexts. Extensive experiments on benchmark datasets show that SLogic outperforms existing rule-based methods and achieves competitive performance against state-of-the-art baselines. It also generates query-dependent, human-readable logical rules that serve as explicit explanations for its inferences.
The Impact of Off-Policy Training Data on Probe Generalisation
Probing has emerged as a promising method for monitoring large language models (LLMs), enabling cheap inference-time detection of concerning behaviours. However, natural examples of many behaviours are rare, forcing researchers to rely on synthetic or off-policy LLM responses for training probes. We systematically evaluate how off-policy data influences probe generalisation across eight distinct LLM behaviours. Testing linear and attention probes across multiple LLMs, we find that training data generation strategy can significantly affect probe performance, though the magnitude varies greatly by behaviour. The largest generalisation failures arise for behaviours defined by response "intent" (e.g. strategic deception) rather than text-level content (e.g. usage of lists). We then propose a useful test for predicting generalisation failures in cases where on-policy test data is unavailable: successful generalisation to incentivised data (where the model was coerced) strongly correlates with high performance against on-policy examples. Based on these results, we predict that current deception probes may fail to generalise to real monitoring scenarios. Additionally, our finding that off-policy data can yield more reliable probes than on-policy data from a sufficiently different setting underscores the need for new monitoring methods that better handle all types of distribution shift.
comment: 10 pages, EurIPS 2025 Workshop on Private AI Governance
Human Mobility Datasets Enriched With Contextual and Social Dimensions
In this resource paper, we present two publicly available datasets of semantically enriched human trajectories, together with the pipeline to build them. The trajectories are publicly available GPS traces retrieved from OpenStreetMap. Each dataset includes contextual layers such as stops, moves, points of interest (POIs), inferred transportation modes, and weather data. A novel semantic feature is the inclusion of synthetic, realistic social media posts generated by Large Language Models (LLMs), enabling multimodal and semantic mobility analysis. The datasets are available in both tabular and Resource Description Framework (RDF) formats, supporting semantic reasoning and FAIR data practices. They cover two structurally distinct, large cities: Paris and New York. Our open source reproducible pipeline allows for dataset customization, while the datasets support research tasks such as behavior modeling, mobility prediction, knowledge graph construction, and LLM-based applications. To our knowledge, our resource is the first to combine real-world movement, structured semantic enrichment, LLM-generated text, and semantic web compatibility in a reusable framework.
comment: 5 pages, 3 figures, 1 table
Token Reduction Should Go Beyond Efficiency in Generative Models -- From Vision, Language to Multimodality
In Transformer architectures, tokens\textemdash discrete units derived from raw data\textemdash are formed by segmenting inputs into fixed-length chunks. Each token is then mapped to an embedding, enabling parallel attention computations while preserving the input's essential information. Due to the quadratic computational complexity of transformer self-attention mechanisms, token reduction has primarily been used as an efficiency strategy. This is especially true in single vision and language domains, where it helps balance computational costs, memory usage, and inference latency. Despite these advances, this paper argues that token reduction should transcend its traditional efficiency-oriented role in the era of large generative models. Instead, we position it as a fundamental principle in generative modeling, critically influencing both model architecture and broader applications. Specifically, we contend that across vision, language, and multimodal systems, token reduction can: (i) facilitate deeper multimodal integration and alignment, (ii) mitigate "overthinking" and hallucinations, (iii) maintain coherence over long inputs, and (iv) enhance training stability, etc. We reframe token reduction as more than an efficiency measure. By doing so, we outline promising future directions, including algorithm design, reinforcement learning-guided token reduction, token optimization for in-context learning, agentic framework design, and broader ML and scientific domains.
comment: Project page: https://github.com/ZLKong/Awesome-Collection-Token-Reduction
MCP Bridge: A Lightweight, LLM-Agnostic RESTful Proxy for Model Context Protocol Servers
Large Language Models (LLMs) are increasingly augmented with external tools through standardized interfaces like the Model Context Protocol (MCP). However, current MCP implementations face critical limitations: they typically require local process execution through STDIO transports, making them impractical for resource-constrained environments like mobile devices, web browsers, and edge computing. We present MCP Bridge, a lightweight RESTful proxy that connects to multiple MCP servers and exposes their capabilities through a unified API. Unlike existing solutions, MCP Bridge is fully LLM-agnostic, supporting any backend regardless of vendor. The system implements a risk-based execution model with three security levels-standard execution, confirmation workflow, and Docker isolation - while maintaining backward compatibility with standard MCP clients. However, reliable execution within this framework requires models that can strictly adhere to protocol schemas. To this end, we also fine-tuned the Qwen3 4B and 8B model family on the Agent-Ark/Toucan-1.5M dataset using four Reinforcement Learning techniques: Group Relative Policy Optimization (GRPO), Dr. GRPO, Beta Normalization Policy Optimization (BNPO), and Decoupled Alignment Policy Optimization (DAPO). Evaluated on the MCPToolBench++ benchmark, our optimized model achieves an F1 score of 73.0% that outperforms GPT-OSS-120B (62.17%) and remains competitive with the 70B+ parameter baselines. Evaluation demonstrates that MCP Bridge successfully addresses the constraints of direct MCP connections while providing enhanced security controls and cross-platform compatibility, enabling sophisticated LLM-powered applications in previously inaccessible environments.
comment: 29 pages, 11 figures
LTL$_f$ Learning Meets Boolean Set Cover
Learning formulas in Linear Temporal Logic (LTLf) from finite traces is a fundamental research problem which has found applications in artificial intelligence, software engineering, programming languages, formal methods, control of cyber-physical systems, and robotics. We implement a new CPU tool called Bolt improving over the state of the art by learning formulas more than 100x faster over 70% of the benchmarks, with smaller or equal formulas in 98% of the cases. Our key insight is to leverage a problem called Boolean Set Cover as a subroutine to combine existing formulas using Boolean connectives. Thanks to the Boolean Set Cover component, our approach offers a novel trade-off between efficiency and formula size.
comment: Full version of TACAS 2026 conference paper. 24 pages, 4 figures
Modeling Language as a Sequence of Thoughts
Transformer language models can generate strikingly natural text by modeling language as a sequence of tokens, but by relying primarily on surface-level co-occurrence statistics they fail to form globally consistent latent representations of entities and events, which contributes to poor relational generalization (the reversal curse), contextualization errors, and data inefficiency. Cognitive science, by contrast, shows that human comprehension converts linguistic input into compact, event-like representations that persist in memory while verbatim form is short-lived. Motivated by these findings, we introduce the Thought Gestalt (TG) model, a recurrent transformer that models language at two levels of abstraction: tokens and sentence-level "thought" states. TG generates one sentence at a time while cross-attending to a working memory of prior sentence representations. Token and sentence representations are generated using a shared stack of transformer blocks and trained with a single objective, next-token prediction loss. By retaining the computation graph of sentence representations written to working memory, gradients from future token losses flow backward through cross-attention to optimize the parameters that generate earlier sentence vectors. In scaling experiments, TG consistently improves data and parameter efficiency compared to matched GPT-2 runs and other baselines, with scaling fits indicating GPT-2 requires ~5-8% more data and ~33-42% more parameters to match TG's test loss. TG also reduces errors in relational-direction generalization on a father-son reversal curse probe.
Focus, Merge, Rank: Improved Question Answering Based on Semi-structured Knowledge Bases
In many real-world settings, machine learning models and interactive systems have access to both structured knowledge, e.g., knowledge graphs or tables, and unstructured content, e.g., natural language documents. However, most rely on either. Semi-Structured Knowledge Bases (SKBs) bridge this gap by linking unstructured content to nodes within structured data, thereby enabling new strategies for knowledge access and use. In this work, we present FocusedRetriever, a modular SKB-based framework for multi-hop question answering. It integrates components (VSS-based entity search, LLM-based generation of Cypher queries and pairwise re-ranking) in a way that enables it to outperform state-of-the-art methods across all three STaRK benchmark test sets, covering diverse domains and multiple performance metrics. The average first-hit rate exceeds that of the second-best method by 25.7%. FocusedRetriever leverages (1) the capacity of Large Language Models (LLMs) to extract relational facts and entity attributes from unstructured text, (2) node set joins to filter answer candidates based on these extracted triplets and constraints, (3) vector similarity search to retrieve and rank relevant unstructured content, and (4) the contextual capabilities of LLMs to finally rank the top-k answers. For generality, we only incorporate base LLMs in FocusedRetriever in our evaluation. However, our analysis of intermediate results highlights several opportunities for further upgrades including finetuning. The source code is publicly available at https://github.com/kramerlab/FocusedRetriever .
Arctic-Text2SQL-R1: Simple Rewards, Strong Reasoning in Text-to-SQL
Translating natural language into SQL (Test2SQL) is a longstanding challenge at the intersection of natural language understanding and structured data access. While large language models (LLMs) have significantly improved fluency in SQL generation, producing correct and executable SQL--particularly for complex queries--remains a bottleneck. We present Arctic-Text2SQL-R1, a reinforcement learning (RL) framework and model family designed to generate accurate, executable SQL using a lightweight reward signal based solely on execution correctness. Our approach avoids brittle intermediate supervision and complex reward shaping, promoting stable training and alignment with the end task. Combined with carefully curated data, strong supervised initialization, and effective training practices, Arctic-Text2SQL-R1 achieves state-of-the-art execution accuracy across six diverse Test2SQL benchmarks, including the top position on the BIRD leaderboard. Notably, our 7B model outperforms prior 70B-class systems, highlighting the framework's scalability and efficiency. We further demonstrate inference-time robustness through simple extensions like value retrieval and majority voting. Extensive experiments and ablation studies offer both positive and negative insights, providing practical guidance for future Test2SQL research.
comment: 22 pages, 2 figures
Provocations from the Humanities for Generative AI Research
The effects of generative AI are experienced by a broad range of constituencies, but the disciplinary inputs to its development have been surprisingly narrow. Here we present a set of provocations from humanities researchers -- currently underrepresented in AI development -- intended to inform its future applications and enrich ongoing conversations about its uses, impact, and harms. Drawing from relevant humanities scholarship, along with foundational work in critical data studies, we elaborate eight claims with broad applicability to generative AI research: 1) Models make words, but people make meaning; 2) Generative AI requires an expanded definition of culture; 3) Generative AI can never be representative; 4) Bigger models are not always better models; 5) Not all training data is equivalent; 6) Openness is not an easy fix; 7) Limited access to compute enables corporate capture; and 8) AI universalism creates narrow human subjects. We also provide a working definition of humanities research, summarize some of its most salient theories and methods, and apply these theories and methods to the current landscape of AI. We conclude with a discussion of the importance of resisting the extraction of humanities research by computer science and related fields.
comment: revised draft; final version in preparation
Vocabulary Expansion of Large Language Models via Kullback-Leibler-Based Self-Distillation
Large pre-trained language models often struggle to incorporate new domain-specific terminology when fine-tuned on small, specialized corpora. In this work, we address the challenge of vocabulary expansion in frozen LLMs by introducing a mathematically grounded method for knowledge distillation via KL divergence, even when the original and extended models use different tokenizations. This allows the student model to inherit distributional knowledge from the teacher despite differing vocabularies. We compare our KL-based distillation approach to conventional cross-entropy training, evaluating both methods across multiple strategies for initializing new token embeddings. After embedding initialization, models are further fine-tuned to integrate the new vocabulary. Each trained model is benchmarked on approximately 2000 code-generation tasks, where our approach achieves the best performance across the board. Finally, through mechanistic interpretability, we analyze how models learn representations for the new tokens, providing an explanation for the observed gains and offering insight into the structure of embedding space during vocabulary expansion.
comment: Master's Thesis
SAC: A Framework for Measuring and Inducing Personality Traits in LLMs with Dynamic Intensity Control
Large language models (LLMs) have gained significant traction across a wide range of fields in recent years. There is also a growing expectation for them to display human-like personalities during interactions. To meet this expectation, numerous studies have proposed methods for modelling LLM personalities through psychometric evaluations. However, most existing models face two major limitations: they rely on the Big Five (OCEAN) framework, which only provides coarse personality dimensions, and they lack mechanisms for controlling trait intensity. In this paper, we address this gap by extending the Machine Personality Inventory (MPI), which originally used the Big Five model, to incorporate the 16 Personality Factor (16PF) model, allowing expressive control over sixteen distinct traits. We also developed a structured framework known as Specific Attribute Control (SAC) for evaluating and dynamically inducing trait intensity in LLMs. Our method introduces adjective-based semantic anchoring to guide trait intensity expression and leverages behavioural questions across five intensity factors: \textit{Frequency}, \textit{Depth}, \textit{Threshold}, \textit{Effort}, and \textit{Willingness}. Through experimentation, we find that modelling intensity as a continuous spectrum yields substantially more consistent and controllable personality expression compared to binary trait toggling. Moreover, we observe that changes in target trait intensity systematically influence closely related traits in psychologically coherent directions, suggesting that LLMs internalize multi-dimensional personality structures rather than treating traits in isolation. Our work opens new pathways for controlled and nuanced human-machine interactions in domains such as healthcare, education, and interviewing processes, bringing us one step closer to truly human-like social machines.
comment: Accepted into 18th Edition of International Conference on Agents and Artificial Intelligence (ICAART)
Machine Learning 204
A Complete Decomposition of Stochastic Differential Equations
We show that any stochastic differential equation with prescribed time-dependent marginal distributions admits a decomposition into three components: a unique scalar field governing marginal evolution, a symmetric positive-semidefinite diffusion matrix field and a skew-symmetric matrix field.
Optimal Learning Rate Schedule for Balancing Effort and Performance
Learning how to learn efficiently is a fundamental challenge for biological agents and a growing concern for artificial ones. To learn effectively, an agent must regulate its learning speed, balancing the benefits of rapid improvement against the costs of effort, instability, or resource use. We introduce a normative framework that formalizes this problem as an optimal control process in which the agent maximizes cumulative performance while incurring a cost of learning. From this objective, we derive a closed-form solution for the optimal learning rate, which has the form of a closed-loop controller that depends only on the agent's current and expected future performance. Under mild assumptions, this solution generalizes across tasks and architectures and reproduces numerically optimized schedules in simulations. In simple learning models, we can mathematically analyze how agent and task parameters shape learning-rate scheduling as an open-loop control solution. Because the optimal policy depends on expectations of future performance, the framework predicts how overconfidence or underconfidence influence engagement and persistence, linking the control of learning speed to theories of self-regulated learning. We further show how a simple episodic memory mechanism can approximate the required performance expectations by recalling similar past learning experiences, providing a biologically plausible route to near-optimal behaviour. Together, these results provide a normative and biologically plausible account of learning speed control, linking self-regulated learning, effort allocation, and episodic memory estimation within a unified and tractable mathematical framework.
Failure-Aware RL: Reliable Offline-to-Online Reinforcement Learning with Self-Recovery for Real-World Manipulation
Post-training algorithms based on deep reinforcement learning can push the limits of robotic models for specific objectives, such as generalizability, accuracy, and robustness. However, Intervention-requiring Failures (IR Failures) (e.g., a robot spilling water or breaking fragile glass) during real-world exploration happen inevitably, hindering the practical deployment of such a paradigm. To tackle this, we introduce Failure-Aware Offline-to-Online Reinforcement Learning (FARL), a new paradigm minimizing failures during real-world reinforcement learning. We create FailureBench, a benchmark that incorporates common failure scenarios requiring human intervention, and propose an algorithm that integrates a world-model-based safety critic and a recovery policy trained offline to prevent failures during online exploration. Extensive simulation and real-world experiments demonstrate the effectiveness of FARL in significantly reducing IR Failures while improving performance and generalization during online reinforcement learning post-training. FARL reduces IR Failures by 73.1% while elevating performance by 11.3% on average during real-world RL post-training. Videos and code are available at https://failure-aware-rl.github.io.
comment: Project page: https://failure-aware-rl.github.io
The Confidence Trap: Gender Bias and Predictive Certainty in LLMs AAAI 2026
The increased use of Large Language Models (LLMs) in sensitive domains leads to growing interest in how their confidence scores correspond to fairness and bias. This study examines the alignment between LLM-predicted confidence and human-annotated bias judgments. Focusing on gender bias, the research investigates probability confidence calibration in contexts involving gendered pronoun resolution. The goal is to evaluate if calibration metrics based on predicted confidence scores effectively capture fairness-related disparities in LLMs. The results show that, among the six state-of-the-art models, Gemma-2 demonstrates the worst calibration according to the gender bias benchmark. The primary contribution of this work is a fairness-aware evaluation of LLMs' confidence calibration, offering guidance for ethical deployment. In addition, we introduce a new calibration metric, Gender-ECE, designed to measure gender disparities in resolution tasks.
comment: AAAI 2026 (AISI Track), Oral. Project page: https://bit.ly/4p8OKQD
DT-ICU: Towards Explainable Digital Twins for ICU Patient Monitoring via Multi-Modal and Multi-Task Iterative Inference
We introduce DT-ICU, a multimodal digital twin framework for continuous risk estimation in intensive care. DT-ICU integrates variable-length clinical time series with static patient information in a unified multitask architecture, enabling predictions to be updated as new observations accumulate over the ICU stay. We evaluate DT-ICU on the large, publicly available MIMIC-IV dataset, where it consistently outperforms established baseline models under different evaluation settings. Our test-length analysis shows that meaningful discrimination is achieved shortly after admission, while longer observation windows further improve the ranking of high-risk patients in highly imbalanced cohorts. To examine how the model leverages heterogeneous data sources, we perform systematic modality ablations, revealing that the model learnt a reasonable structured reliance on interventions, physiological response observations, and contextual information. These analyses provide interpretable insights into how multimodal signals are combined and how trade-offs between sensitivity and precision emerge. Together, these results demonstrate that DT-ICU delivers accurate, temporally robust, and interpretable predictions, supporting its potential as a practical digital twin framework for continuous patient monitoring in critical care. The source code and trained model weights for DT-ICU are publicly available at https://github.com/GUO-W/DT-ICU-release.
Are LLM Decisions Faithful to Verbal Confidence?
Large Language Models (LLMs) can produce surprisingly sophisticated estimates of their own uncertainty. However, it remains unclear to what extent this expressed confidence is tied to the reasoning, knowledge, or decision making of the model. To test this, we introduce $\textbf{RiskEval}$: a framework designed to evaluate whether models adjust their abstention policies in response to varying error penalties. Our evaluation of several frontier models reveals a critical dissociation: models are neither cost-aware when articulating their verbal confidence, nor strategically responsive when deciding whether to engage or abstain under high-penalty conditions. Even when extreme penalties render frequent abstention the mathematically optimal strategy, models almost never abstain, resulting in utility collapse. This indicates that calibrated verbal confidence scores may not be sufficient to create trustworthy and interpretable AI systems, as current models lack the strategic agency to convert uncertainty signals into optimal and risk-sensitive decisions.
Free-RBF-KAN: Kolmogorov-Arnold Networks with Adaptive Radial Basis Functions for Efficient Function Learning
Kolmogorov-Arnold Networks (KANs) have shown strong potential for efficiently approximating complex nonlinear functions. However, the original KAN formulation relies on B-spline basis functions, which incur substantial computational overhead due to De Boor's algorithm. To address this limitation, recent work has explored alternative basis functions such as radial basis functions (RBFs) that can improve computational efficiency and flexibility. Yet, standard RBF-KANs often sacrifice accuracy relative to the original KAN design. In this work, we propose Free-RBF-KAN, a RBF-based KAN architecture that incorporates adaptive learning grids and trainable smoothness to close this performance gap. Our method employs freely learnable RBF shapes that dynamically align grid representations with activation patterns, enabling expressive and adaptive function approximation. Additionally, we treat smoothness as a kernel parameter optimized jointly with network weights, without increasing computational complexity. We provide a general universality proof for RBF-KANs, which encompasses our Free-RBF-KAN formulation. Through a broad set of experiments, including multiscale function approximation, physics-informed machine learning, and PDE solution operator learning, Free-RBF-KAN achieves accuracy comparable to the original B-spline-based KAN while delivering faster training and inference. These results highlight Free-RBF-KAN as a compelling balance between computational efficiency and adaptive resolution, particularly for high-dimensional structured modeling tasks.
Learning to bin: differentiable and Bayesian optimization for multi-dimensional discriminants in high-energy physics
Categorizing events using discriminant observables is central to many high-energy physics analyses. Yet, bin boundaries are often chosen by hand. A simple, popular choice is to apply argmax projections of multi-class scores and equidistant binning of one-dimensional discriminants. We propose a binning optimization for signal significance directly in multi-dimensional discriminants. We use a Gaussian Mixture Model (GMM) to define flexible bin boundary shapes for multi-class scores, while in one dimension (binary classification) we move bin boundaries directly. On this binning model, we study two optimization strategies: a differentiable and a Bayesian optimization approach. We study two toy setups: a binary classification and a three-class problem with two signals and backgrounds. In the one-dimensional case, both approaches achieve similar gains in signal sensitivity compared to equidistant binnings for a given number of bins. In the multi-dimensional case, the GMM-based binning defines sensitive categories as well, with the differentiable approach performing best. We show that, in particular for limited separability of the signal processes, our approach outperforms argmax classification even with optimized binning in the one-dimensional projections. Both methods are released as lightweight Python plugins intended for straightforward integration into existing analyses.
comment: 13 pages, 5 figures
Riesz Representer Fitting under Bregman Divergence: A Unified Framework for Debiased Machine Learning
Estimating the Riesz representer is a central problem in debiased machine learning for causal and structural parameter estimation. Various methods for Riesz representer estimation have been proposed, including Riesz regression and covariate balancing. This study unifies these methods within a single framework. Our framework fits a Riesz representer model to the true Riesz representer under a Bregman divergence, which includes the squared loss and the Kullback--Leibler (KL) divergence as special cases. We show that the squared loss corresponds to Riesz regression, and the KL divergence corresponds to tailored loss minimization, where the dual solutions correspond to stable balancing weights and entropy balancing weights, respectively, under specific model specifications. We refer to our method as generalized Riesz regression, and we refer to the associated duality as automatic covariate balancing. Our framework also generalizes density ratio fitting under a Bregman divergence to Riesz representer estimation, and it includes various applications beyond density ratio estimation. We also provide a convergence analysis for both cases where the model class is a reproducing kernel Hilbert space (RKHS) and where it is a neural network.
Improving Domain Generalization in Contrastive Learning using Adaptive Temperature Control NeurIPS
Self-supervised pre-training with contrastive learning is a powerful method for learning from sparsely labeled data. However, performance can drop considerably when there is a shift in the distribution of data from training to test time. We study this phenomenon in a setting in which the training data come from multiple domains, and the test data come from a domain not seen at training that is subject to significant covariate shift. We present a new method for contrastive learning that incorporates domain labels to increase the domain invariance of learned representations, leading to improved out-of-distribution generalization. Our method adjusts the temperature parameter in the InfoNCE loss -- which controls the relative weighting of negative pairs -- using the probability that a negative sample comes from the same domain as the anchor. This upweights pairs from more similar domains, encouraging the model to discriminate samples based on domain-invariant attributes. Through experiments on a variant of the MNIST dataset, we demonstrate that our method yields better out-of-distribution performance than domain generalization baselines. Furthermore, our method maintains strong in-distribution task performance, substantially outperforming baselines on this measure.
comment: NeurIPS SSL Workshop 2023
PFT: Phonon Fine-tuning for Machine Learned Interatomic Potentials
Many materials properties depend on higher-order derivatives of the potential energy surface, yet machine learned interatomic potentials (MLIPs) trained with standard a standard loss on energy, force, and stress errors can exhibit error in curvature, degrading the prediction of vibrational properties. We introduce phonon fine-tuning (PFT), which directly supervises second-order force constants of materials by matching MLIP energy Hessians to DFT-computed force constants from finite displacement phonon calculations. To scale to large supercells, PFT stochastically samples Hessian columns and computes the loss with a single Hessian-vector product. We also use a simple co-training scheme to incorporate upstream data to mitigate catastrophic forgetting. On the MDR Phonon benchmark, PFT improves Nequix MP (trained on Materials Project) by 55% on average across phonon thermodynamic properties and achieves state-of-the-art performance among models trained on Materials Project trajectories. PFT also generalizes to improve properties beyond second-derivatives, improving thermal conductivity predictions that rely on third-order derivatives of the potential energy.
Backward Reconstruction of the Chafee--Infante Equation via Physics-Informed WGAN-GP
We present a physics-informed Wasserstein GAN with gradient penalty (WGAN-GP) for solving the inverse Chafee--Infante problem on two-dimensional domains with Dirichlet boundary conditions. The objective is to reconstruct an unknown initial condition from a near-equilibrium state obtained after 100 explicit forward Euler iterations of the reaction-diffusion equation \[ u_t - γΔu + κ\left(u^3 - u\right)=0. \] Because this mapping strongly damps high-frequency content, the inverse problem is severely ill-posed and sensitive to noise. Our approach integrates a U-Net generator, a PatchGAN critic with spectral normalization, Wasserstein loss with gradient penalty, and several physics-informed auxiliary terms, including Lyapunov energy matching, distributional statistics, and a crucial forward-simulation penalty. This penalty enforces consistency between the predicted initial condition and its forward evolution under the \emph{same} forward Euler discretization used for dataset generation. Earlier experiments employing an Eyre-type semi-implicit solver were not compatible with this residual mechanism due to the cost and instability of Newton iterations within batched GPU training. On a dataset of 50k training and 10k testing pairs on $128\times128$ grids (with natural $[-1,1]$ amplitude scaling), the best trained model attains a mean absolute error (MAE) of approximately \textbf{0.23988159} on the full test set, with a sample-wise standard deviation of about \textbf{0.00266345}. The results demonstrate stable inversion, accurate recovery of interfacial structure, and robustness to high-frequency noise in the initial data.
comment: 5 pages, 9 figures
Hidden Monotonicity: Explaining Deep Neural Networks via their DC Decomposition
It has been demonstrated in various contexts that monotonicity leads to better explainability in neural networks. However, not every function can be well approximated by a monotone neural network. We demonstrate that monotonicity can still be used in two ways to boost explainability. First, we use an adaptation of the decomposition of a trained ReLU network into two monotone and convex parts, thereby overcoming numerical obstacles from an inherent blowup of the weights in this procedure. Our proposed saliency methods -- SplitCAM and SplitLRP -- improve on state of the art results on both VGG16 and Resnet18 networks on ImageNet-S across all Quantus saliency metric categories. Second, we exhibit that training a model as the difference between two monotone neural networks results in a system with strong self-explainability properties.
A Framework for Feature Discovery in Intracranial Pressure Monitoring Data Using Neural Network Attention
We present a novel framework for analyzing intracranial pressure monitoring data by applying interpretability principles. Intracranial pressure monitoring data was collected from 60 patients at Johns Hopkins. The data was segmented into individual cardiac cycles. A convolutional neural network was trained to classify each cardiac cycle into one of seven body positions. Neural network attention was extracted and was used to identify regions of interest in the waveform. Further directions for exploration are identified. This framework provides an extensible method to further understand the physiological and clinical underpinnings of the intracranial pressure waveform, which could lead to better diagnostic capabilities for intracranial pressure monitoring.
comment: 12 pages, 18 figures
Physics-Informed Singular-Value Learning for Cross-Covariances Forecasting in Financial Markets
A new wave of work on covariance cleaning and nonlinear shrinkage has delivered asymptotically optimal analytical solutions for large covariance matrices. Building on this progress, these ideas have been generalized to empirical cross-covariance matrices, whose singular-value shrinkage characterizes comovements between one set of assets and another. Existing analytical cross-covariance cleaners are derived under strong stationarity and large-sample assumptions, and they typically rely on mesoscopic regularity conditions such as bounded spectra; macroscopic common modes (e.g., a global market factor) violate these conditions. When applied to real equity returns, where dependence structures drift over time and global modes are prominent, we find that these theoretically optimal formulas do not translate into robust out-of-sample performance. We address this gap by designing a random-matrix-inspired neural architecture that operates in the empirical singular-vector basis and learns a nonlinear mapping from empirical singular values to their corresponding cleaned values. By construction, the network can recover the analytical solution as a special case, yet it remains flexible enough to adapt to non-stationary dynamics and mode-driven distortions. Trained on a long history of equity returns, the proposed method achieves a more favorable bias-variance trade-off than purely analytical cleaners and delivers systematically lower out-of-sample cross-covariance prediction errors. Our results demonstrate that combining random-matrix theory with machine learning makes asymptotic theories practically effective in realistic time-varying markets.
Tab-TRM: Tiny Recursive Model for Insurance Pricing on Tabular Data
We introduce Tab-TRM (Tabular-Tiny Recursive Model), a network architecture that adapts the recursive latent reasoning paradigm of Tiny Recursive Models (TRMs) to insurance modeling. Drawing inspiration from both the Hierarchical Reasoning Model (HRM) and its simplified successor TRM, the Tab-TRM model makes predictions by reasoning over the input features. It maintains two learnable latent tokens - an answer token and a reasoning state - that are iteratively refined by a compact, parameter-efficient recursive network. The recursive processing layer repeatedly updates the reasoning state given the full token sequence and then refines the answer token, in close analogy with iterative insurance pricing schemes. Conceptually, Tab-TRM bridges classical actuarial workflows - iterative generalized linear model fitting and minimum-bias calibration - on the one hand, and modern machine learning, in terms of Gradient Boosting Machines, on the other.
comment: 30 pages
Self-Creating Random Walks for Decentralized Learning under Pac-Man Attacks
Random walk (RW)-based algorithms have long been popular in distributed systems due to low overheads and scalability, with recent growing applications in decentralized learning. However, their reliance on local interactions makes them inherently vulnerable to malicious behavior. In this work, we investigate an adversarial threat that we term the ``Pac-Man'' attack, in which a malicious node probabilistically terminates any RW that visits it. This stealthy behavior gradually eliminates active RWs from the network, effectively halting the learning process without triggering failure alarms. To counter this threat, we propose the CREATE-IF-LATE (CIL) algorithm, which is a fully decentralized, resilient mechanism that enables self-creating RWs and prevents RW extinction in the presence of Pac-Man. Our theoretical analysis shows that the CIL algorithm guarantees several desirable properties, such as (i) non-extinction of the RW population, (ii) almost sure boundedness of the RW population, and (iii) convergence of RW-based stochastic gradient descent even in the presence of Pac-Man with a quantifiable deviation from the true optimum. Moreover, the learning process experiences at most a linear time delay due to Pac-Man interruptions and RW regeneration. Our extensive empirical results on both synthetic and public benchmark datasets validate our theoretical findings.
comment: arXiv admin note: substantial text overlap with arXiv:2508.05663
Adaptive Layer Selection for Layer-Wise Token Pruning in LLM Inference
Due to the prevalence of large language models (LLMs), key-value (KV) cache reduction for LLM inference has received remarkable attention. Among numerous works that have been proposed in recent years, layer-wise token pruning approaches, which select a subset of tokens at particular layers to retain in KV cache and prune others, are one of the most popular schemes. They primarily adopt a set of pre-defined layers, at which tokens are selected. Such design is inflexible in the sense that the accuracy significantly varies across tasks and deteriorates in harder tasks such as KV retrieval. In this paper, we propose ASL, a training-free method that adaptively chooses the selection layer for KV cache reduction, exploiting the variance of token ranks ordered by attention score. The proposed method balances the performance across different tasks while meeting the user-specified KV budget requirement. ASL operates during the prefilling stage and can be jointly used with existing KV cache reduction methods such as SnapKV to optimize the decoding stage. By evaluations on the InfiniteBench, RULER, and NIAH benchmarks, we show that equipped with one-shot token selection, where tokens are selected at a layer and propagated to deeper layers, ASL outperforms state-of-the-art layer-wise token selection methods in accuracy while maintaining decoding speed and KV cache reduction.
comment: Source code is available at https://github.com/TANIGUCHIREI/ASL
Learning to accelerate Krasnosel'skii-Mann fixed-point iterations with guarantees
We introduce a principled learning to optimize (L2O) framework for solving fixed-point problems involving general nonexpansive mappings. Our idea is to deliberately inject summable perturbations into a standard Krasnosel'skii-Mann iteration to improve its average-case performance over a specific distribution of problems while retaining its convergence guarantees. Under a metric sub-regularity assumption, we prove that the proposed parametrization includes only iterations that locally achieve linear convergence-up to a vanishing bias term-and that it encompasses all iterations that do so at a sufficiently fast rate. We then demonstrate how our framework can be used to augment several widely-used operator splitting methods to accelerate the solution of structured monotone inclusion problems, and validate our approach on a best approximation problem using an L2O-augmented Douglas-Rachford splitting algorithm.
Active Evaluation of General Agents: Problem Definition and Comparison of Baseline Algorithms
As intelligent agents become more generally-capable, i.e. able to master a wide variety of tasks, the complexity and cost of properly evaluating them rises significantly. Tasks that assess specific capabilities of the agents can be correlated and stochastic, requiring many samples for accurate comparisons, leading to added costs. In this paper, we propose a formal definition and a conceptual framework for active evaluation of agents across multiple tasks, which assesses the performance of ranking algorithms as a function of number of evaluation data samples. Rather than curating, filtering, or compressing existing data sets as a preprocessing step, we propose an online framing: on every iteration, the ranking algorithm chooses the task and agents to sample scores from. Then, evaluation algorithms report a ranking of agents on each iteration and their performance is assessed with respect to the ground truth ranking over time. Several baselines are compared under different experimental contexts, with synthetic generated data and simulated online access to real evaluation data from Atari game-playing agents. We find that the classical Elo rating system -- while it suffers from well-known failure modes, in theory -- is a consistently reliable choice for efficient reduction of ranking error in practice. A recently-proposed method, Soft Condorcet Optimization, shows comparable performance to Elo on synthetic data and significantly outperforms Elo on real Atari agent evaluation. When task variation from the ground truth is high, selecting tasks based on proportional representation leads to higher rate of ranking error reduction.
comment: AAMAS 2026
Studying the Role of Synthetic Data for Machine Learning-based Wireless Networks Traffic Forecasting
Synthetic data generation is an appealing tool for augmenting and enriching datasets, playing a crucial role in advancing artificial intelligence (AI) and machine learning (ML). Not only does synthetic data help build robust AI/ML datasets cost-effectively, but it also offers privacy-friendly solutions and bypasses the complexities of storing large data volumes. This paper proposes a novel method to generate synthetic data, based on first-order auto-regressive noise statistics, for large-scale Wi-Fi deployments. The approach operates with minimal real data requirements while producing statistically rich traffic patterns that effectively mimic real Access Point (AP) behavior. Experimental results show that ML models trained on synthetic data achieve Mean Absolute Error (MAE) values within 10 to 15 of those obtained using real data when trained on the same APs, while requiring significantly less training data. Moreover, when generalization is required, synthetic-data-trained models improve prediction accuracy by up to 50 percent compared to real-data-trained baselines, thanks to the enhanced variability and diversity of the generated traces. Overall, the proposed method bridges the gap between synthetic data generation and practical Wi-Fi traffic forecasting, providing a scalable, efficient, and real-time solution for modern wireless networks.
Dual-Level Models for Physics-Informed Multi-Step Time Series Forecasting
This paper develops an approach for multi-step forecasting of dynamical systems by integrating probabilistic input forecasting with physics-informed output prediction. Accurate multi-step forecasting of time series systems is important for the automatic control and optimization of physical processes, enabling more precise decision-making. While mechanistic-based and data-driven machine learning (ML) approaches have been employed for time series forecasting, they face significant limitations. Incomplete knowledge of process mathematical models limits mechanistic-based direct employment, while purely data-driven ML models struggle with dynamic environments, leading to poor generalization. To address these limitations, this paper proposes a dual-level strategy for physics-informed forecasting of dynamical systems. On the first level, input variables are forecast using a hybrid method that integrates a long short-term memory (LSTM) network into probabilistic state transition models (STMs). On the second level, these stochastically predicted inputs are sequentially fed into a physics-informed neural network (PINN) to generate multi-step output predictions. The experimental results of the paper demonstrate that the hybrid input forecasting models achieve a higher log-likelihood and lower mean squared errors (MSE) compared to conventional STMs. Furthermore, the PINNs driven by the input forecasting models outperform their purely data-driven counterparts in terms of MSE and log-likelihood, exhibiting stronger generalization and forecasting performance across multiple test cases.
Reinforcement Learning for Micro-Level Claims Reserving
Outstanding claim liabilities are revised repeatedly as claims develop, yet most modern reserving models are trained as one-shot predictors and typically learn only from settled claims. We formulate individual claims reserving as a claim-level Markov decision process in which an agent sequentially updates outstanding claim liability (OCL) estimates over development, using continuous actions and a reward design that balances accuracy with stable reserve revisions. A key advantage of this reinforcement learning (RL) approach is that it can learn from all observed claim trajectories, including claims that remain open at valuation, thereby avoiding the reduced sample size and selection effects inherent in supervised methods trained on ultimate outcomes only. We also introduce practical components needed for actuarial use -- initialisation of new claims, temporally consistent tuning via a rolling-settlement scheme, and an importance-weighting mechanism to mitigate portfolio-level underestimation driven by the rarity of large claims. On CAS and SPLICE synthetic general insurance datasets, the proposed Soft Actor-Critic implementation delivers competitive claim-level accuracy and strong aggregate OCL performance, particularly for the immature claim segments that drive most of the liability.
Beyond Sharpness: A Flatness Decomposition Framework for Efficient Continual Learning AAAI 2026
Continual Learning (CL) aims to enable models to sequentially learn multiple tasks without forgetting previous knowledge. Recent studies have shown that optimizing towards flatter loss minima can improve model generalization. However, existing sharpness-aware methods for CL suffer from two key limitations: (1) they treat sharpness regularization as a unified signal without distinguishing the contributions of its components. and (2) they introduce substantial computational overhead that impedes practical deployment. To address these challenges, we propose FLAD, a novel optimization framework that decomposes sharpness-aware perturbations into gradient-aligned and stochastic-noise components, and show that retaining only the noise component promotes generalization. We further introduce a lightweight scheduling scheme that enables FLAD to maintain significant performance gains even under constrained training time. FLAD can be seamlessly integrated into various CL paradigms and consistently outperforms standard and sharpness-aware optimizers in diverse experimental settings, demonstrating its effectiveness and practicality in CL.
comment: Accepted by AAAI 2026
Learning About Learning: A Physics Path from Spin Glasses to Artificial Intelligence
The Hopfield model, originally inspired by spin-glass physics, occupies a central place at the intersection of statistical mechanics, neural networks, and modern artificial intelligence. Despite its conceptual simplicity and broad applicability -- from associative memory to near-optimal solutions of combinatorial optimization problems -- it is rarely integrated into standard undergraduate physics curricula. In this paper, we present the Hopfield model as a pedagogically rich framework that naturally unifies core topics from undergraduate statistical physics, dynamical systems, linear algebra, and computational methods. We provide a concise and illustrated theoretical introduction grounded in familiar physics concepts, analyze the model's energy function, dynamics, and pattern stability, and discuss practical aspects of simulation, including a freely available simulation code. To support instruction, we conclude with classroom-ready example problems designed to mirror research practice. By explicitly connecting fundamental physics to contemporary AI applications, this work aims to help prepare physics students to understand, apply, and critically engage with the computational tools increasingly central to research, industry, and society.
comment: 18 pages, 11 figures
Neural Architecture for Fast and Reliable Coagulation Assessment in Clinical Settings: Leveraging Thromboelastography AAAI26
In an ideal medical environment, real-time coagulation monitoring can enable early detection and prompt remediation of risks. However, traditional Thromboelastography (TEG), a widely employed diagnostic modality, can only provide such outputs after nearly 1 hour of measurement. The delay might lead to elevated mortality rates. These issues clearly point out one of the key challenges for medical AI development: Mak-ing reasonable predictions based on very small data sets and accounting for variation between different patient populations, a task where conventional deep learning methods typically perform poorly. We present Physiological State Reconstruc-tion (PSR), a new algorithm specifically designed to take ad-vantage of dynamic changes between individuals and to max-imize useful information produced by small amounts of clini-cal data through mapping to reliable predictions and diagnosis. We develop MDFE to facilitate integration of varied temporal signals using multi-domain learning, and jointly learn high-level temporal interactions together with attentions via HLA; furthermore, the parameterized DAM we designed maintains the stability of the computed vital signs. PSR evaluates with 4 TEG-specialized data sets and establishes remarkable perfor-mance -- predictions of R2 > 0.98 for coagulation traits and error reduction around half compared to the state-of-the-art methods, and halving the inferencing time too. Drift-aware learning suggests a new future, with potential uses well be-yond thrombophilia discovery towards medical AI applica-tions with data scarcity.
comment: This paper has been accepted by AAAI26
GRPO with State Mutations: Improving LLM-Based Hardware Test Plan Generation
RTL design often relies heavily on ad-hoc testbench creation early in the design cycle. While large language models (LLMs) show promise for RTL code generation, their ability to reason about hardware specifications and generate targeted test plans remains largely unexplored. We present the first systematic study of LLM reasoning capabilities for RTL verification stimuli generation, establishing a two-stage framework that decomposes test plan generation from testbench execution. Our benchmark reveals that state-of-the-art models, including DeepSeek-R1 and Claude-4.0-Sonnet, achieve only 15.7-21.7% success rates on generating stimuli that pass golden RTL designs. To improve LLM generated stimuli, we develop a comprehensive training methodology combining supervised fine-tuning with a novel reinforcement learning approach, GRPO with State Mutation (GRPO-SMu), which enhances exploration by varying input mutations. Our approach leverages a tree-based branching mutation strategy to construct training data comprising equivalent and mutated trees, moving beyond linear mutation approaches to provide rich learning signals. Training on this curated dataset, our 7B parameter model achieves a 33.3% golden test pass rate and a 13.9% mutation detection rate, representing a 17.6% absolute improvement over baseline and outperforming much larger general-purpose models. These results demonstrate that specialized training methodologies can significantly enhance LLM reasoning capabilities for hardware verification tasks, establishing a foundation for automated sub-unit testing in semiconductor design workflows.
Temporal-Aligned Meta-Learning for Risk Management: A Stacking Approach for Multi-Source Credit Scoring
This paper presents a meta-learning framework for credit risk assessment of Italian Small and Medium Enterprises (SMEs) that explicitly addresses the temporal misalignment of credit scoring models. The approach aligns financial statement reference dates with evaluation dates, mitigating bias arising from publication delays and asynchronous data sources. It is based on a two-step temporal decomposition that at first estimates annual probabilities of default (PDs) anchored to balance-sheet reference dates (December 31st) through a static model. Then it models the monthly evolution of PDs using higher-frequency behavioral data. Finally, we employ stacking-based architecture to aggregate multiple scoring systems, each capturing complementary aspects of default risk, into a unified predictive model. In this way, first level model outputs are treated as learned representations that encode non-linear relationships in financial and behavioral indicators, allowing integration of new expert-based features without retraining base models. This design provides a coherent and interpretable solution to challenges typical of low-default environments, including heterogeneous default definitions and reporting delays. Empirical validation shows that the framework effectively captures credit risk evolution over time, improving temporal consistency and predictive stability relative to standard ensemble methods.
Machine learning nonequilibrium phase transitions in charge-density wave insulators
Nonequilibrium electronic forces play a central role in voltage-driven phase transitions but are notoriously expensive to evaluate in dynamical simulations. Here we develop a machine learning framework for adiabatic lattice dynamics coupled to nonequilibrium electrons, and demonstrate it for a gating induced insulator to metal transition out of a charge density wave state in the Holstein model. Although exact electronic forces can be obtained from nonequilibrium Green's function (NEGF) calculations, their high computational cost renders long time dynamical simulations prohibitively expensive. By exploiting the locality of the electronic response, we train a neural network to directly predict instantaneous local electronic forces from the lattice configuration, thereby bypassing repeated NEGF calculations during time evolution. When combined with Brownian dynamics, the resulting machine learning force field quantitatively reproduces domain wall motion and nonequilibrium phase transition dynamics obtained from full NEGF simulations, while achieving orders of magnitude gains in computational efficiency. Our results establish direct force learning as an efficient and accurate approach for simulating nonequilibrium lattice dynamics in driven quantum materials.
comment: 11 pages, 4 figures
Large Language Models for Physics Instrument Design
We study the use of large language models (LLMs) for physics instrument design and compare their performance to reinforcement learning (RL). Using only prompting, LLMs are given task constraints and summaries of prior high-scoring designs and propose complete detector configurations, which we evaluate with the same simulators and reward functions used in RL-based optimization. Although RL yields stronger final designs, we find that modern LLMs consistently generate valid, resource-aware, and physically meaningful configurations that draw on broad pretrained knowledge of detector design principles and particle--matter interactions, despite having no task-specific training. Based on this result, as a first step toward hybrid design workflows, we explore pairing the LLMs with a dedicated trust region optimizer, serving as a precursor to future pipelines in which LLMs propose and structure design hypotheses while RL performs reward-driven optimization. Based on these experiments, we argue that LLMs are well suited as meta-planners: they can design and orchestrate RL-based optimization studies, define search strategies, and coordinate multiple interacting components within a unified workflow. In doing so, they point toward automated, closed-loop instrument design in which much of the human effort required to structure and supervise optimization can be reduced.
An adjoint method for training data-driven reduced-order models
Reduced-order modeling lies at the interface of numerical analysis and data-driven scientific computing, providing principled ways to compress high-fidelity simulations in science and engineering. We propose a training framework that couples a continuous-time form of operator inference with the adjoint-state method to obtain robust data-driven reduced-order models. This method minimizes a trajectory-based loss between reduced-order solutions and projected snapshot data, which removes the need to estimate time derivatives from noisy measurements and provides intrinsic temporal regularization through time integration. We derive the corresponding continuous adjoint equations to compute gradients efficiently and implement a gradient based optimizer to update the reduced model parameters. Each iteration only requires one forward reduced order solve and one adjoint solve, followed by inexpensive gradient assembly, making the method attractive for large-scale simulations. We validate the proposed method on three partial differential equations: viscous Burgers' equation, the two-dimensional Fisher-KPP equation, and an advection-diffusion equation. We perform systematic comparisons against standard operator inference under two perturbation regimes, namely reduced temporal snapshot density and additive Gaussian noise. For clean data, both approaches deliver similar accuracy, but in situations with sparse sampling and noise, the proposed adjoint-based training provides better accuracy and enhanced roll-out stability.
d3LLM: Ultra-Fast Diffusion LLM using Pseudo-Trajectory Distillation
Diffusion large language models (dLLMs) offer capabilities beyond those of autoregressive (AR) LLMs, such as parallel decoding and random-order generation. However, realizing these benefits in practice is non-trivial, as dLLMs inherently face an accuracy-parallelism trade-off. Despite increasing interest, existing methods typically focus on only one-side of the coin, targeting either efficiency or performance. To address this limitation, we propose d3LLM (Pseudo-Distilled Diffusion Large Language Model), striking a balance between accuracy and parallelism: (i) during training, we introduce pseudo-trajectory distillation to teach the model which tokens can be decoded confidently at early steps, thereby improving parallelism; (ii) during inference, we employ entropy-based multi-block decoding with a KV-cache refresh mechanism to achieve high parallelism while maintaining accuracy. To better evaluate dLLMs, we also introduce AUP (Accuracy Under Parallelism), a new metric that jointly measures accuracy and parallelism. Experiments demonstrate that our d3LLM achieves up to 10$\times$ speedup over vanilla LLaDA/Dream and 5$\times$ speedup over AR models without much accuracy drop. Our code is available at https://github.com/hao-ai-lab/d3LLM.
TFEC: Multivariate Time-Series Clustering via Temporal-Frequency Enhanced Contrastive Learning
Multivariate Time-Series (MTS) clustering is crucial for signal processing and data analysis. Although deep learning approaches, particularly those leveraging Contrastive Learning (CL), are prominent for MTS representation, existing CL-based models face two key limitations: 1) neglecting clustering information during positive/negative sample pair construction, and 2) introducing unreasonable inductive biases, e.g., destroying time dependence and periodicity through augmentation strategies, compromising representation quality. This paper, therefore, proposes a Temporal-Frequency Enhanced Contrastive (TFEC) learning framework. To preserve temporal structure while generating low-distortion representations, a temporal-frequency Co-EnHancement (CoEH) mechanism is introduced. Accordingly, a synergistic dual-path representation and cluster distribution learning framework is designed to jointly optimize cluster structure and representation fidelity. Experiments on six real-world benchmark datasets demonstrate TFEC's superiority, achieving 4.48% average NMI gains over SOTA methods, with ablation studies validating the design. The code of the paper is available at: https://github.com/yueliangy/TFEC.
comment: Submitted to ICASSP 2026
Contextual Discrepancy-Aware Contrastive Learning for Robust Medical Time Series Diagnosis in Small-Sample Scenarios
Medical time series data, such as EEG and ECG, are vital for diagnosing neurological and cardiovascular diseases. However, their precise interpretation faces significant challenges due to high annotation costs, leading to data scarcity, and the limitations of traditional contrastive learning in capturing complex temporal patterns. To address these issues, we propose CoDAC (Contextual Discrepancy-Aware Contrastive learning), a novel framework that enhances diagnostic accuracy and generalization, particularly in small-sample settings. CoDAC leverages external healthy data and introduces a Contextual Discrepancy Estimator (CDE), built upon a Transformer-based Autoencoder, to precisely quantify abnormal signals through context-aware anomaly scores. These scores dynamically inform a Dynamic Multi-views Contrastive Framework (DMCF), which adaptively weights different temporal views to focus contrastive learning on diagnostically relevant, discrepant regions. Our encoder combines dilated convolutions with multi-head attention for robust feature extraction. Comprehensive experiments on Alzheimer's Disease EEG, Parkinson's Disease EEG, and Myocardial Infarction ECG datasets demonstrate CoDAC's superior performance across all metrics, consistently outperforming state-of-the-art baselines, especially under low label availability. Ablation studies further validate the critical contributions of CDE and DMCF. CoDAC offers a robust and interpretable solution for medical time series diagnosis, effectively mitigating data scarcity challenges.
Near-Optimal Private Linear Regression via Iterative Hessian Mixing
We study differentially private ordinary least squares (DP-OLS) with bounded data. The dominant approach, adaptive sufficient-statistics perturbation (AdaSSP), adds an adaptively chosen perturbation to the sufficient statistics, namely, the matrix $X^{\top}X$ and the vector $X^{\top}Y$, and is known to achieve near-optimal accuracy and to have strong empirical performance. In contrast, methods that rely on Gaussian-sketching, which ensure differential privacy by pre-multiplying the data with a random Gaussian matrix, are widely used in federated and distributed regression, yet remain relatively uncommon for DP-OLS. In this work, we introduce the iterative Hessian mixing, a novel DP-OLS algorithm that relies on Gaussian sketches and is inspired by the iterative Hessian sketch algorithm. We provide utility analysis for the iterative Hessian mixing as well as a new analysis for the previous methods that rely on Gaussian sketches. Then, we show that our new approach circumvents the intrinsic limitations of the prior methods and provides non-trivial improvements over AdaSSP. We conclude by running an extensive set of experiments across standard benchmarks to demonstrate further that our approach consistently outperforms these prior baselines.
Nonparametric Kernel Clustering with Bandit Feedback
Clustering with bandit feedback refers to the problem of partitioning a set of items, where the clustering algorithm can sequentially query the items to receive noisy observations. The problem is formally posed as the task of partitioning the arms of an N-armed stochastic bandit according to their underlying distributions, grouping two arms together if and only if they share the same distribution, using samples collected sequentially and adaptively. This setting has gained attention in recent years due to its applicability in recommendation systems and crowdsourcing. Existing works on clustering with bandit feedback rely on a strong assumption that the underlying distributions are sub-Gaussian. As a consequence, the existing methods mainly cover settings with linearly-separable clusters, which has little practical relevance. We introduce a framework of ``nonparametric clustering with bandit feedback'', where the underlying arm distributions are not constrained to any parametric, and hence, it is applicable for active clustering of real-world datasets. We adopt a kernel-based approach, which allows us to reformulate the nonparametric problem as the task of clustering the arms according to their kernel mean embeddings in a reproducing kernel Hilbert space (RKHS). Building on this formulation, we introduce the KABC algorithm with theoretical correctness guarantees and analyze its sampling budget. We introduce a notion of signal-to-noise ratio for this problem that depends on the maximum mean discrepancy (MMD) between the arm distributions and on their variance in the RKHS. Our algorithm is adaptive to this unknown quantity: it does not require it as an input yet achieves instance-dependent guarantees.
Stagewise Reinforcement Learning and the Geometry of the Regret Landscape
Singular learning theory characterizes Bayesian learning as an evolving tradeoff between accuracy and complexity, with transitions between qualitatively different solutions as sample size increases. We extend this theory to deep reinforcement learning, proving that the concentration of the generalized posterior over policies is governed by the local learning coefficient (LLC), an invariant of the geometry of the regret function. This theory predicts that Bayesian phase transitions in reinforcement learning should proceed from simple policies with high regret to complex policies with low regret. We verify this prediction empirically in a gridworld environment exhibiting stagewise policy development: phase transitions over SGD training manifest as "opposing staircases" where regret decreases sharply while the LLC increases. Notably, the LLC detects phase transitions even when estimated on a subset of states where the policies appear identical in terms of regret, suggesting it captures changes in the underlying algorithm rather than just performance.
comment: 50 pages, 14 figures
Controlling Multimodal Conversational Agents with Coverage-Enhanced Latent Actions
Vision-language models are increasingly employed as multimodal conversational agents (MCAs) for diverse conversational tasks. Recently, reinforcement learning (RL) has been widely explored for adapting MCAs to various human-AI interaction scenarios. Despite showing great enhancement in generalization performance, fine-tuning MCAs via RL still faces challenges in handling the extremely large text token space. To address this, we learn a compact latent action space for RL fine-tuning instead. Specifically, we adopt the learning from observation mechanism to construct the codebook for the latent action space, where future observations are leveraged to estimate current latent actions that could further be used to reconstruct future observations. However, the scarcity of paired image-text data hinders learning a codebook with sufficient coverage. Thus, we leverage both paired image-text data and text-only data to construct the latent action space, using a cross-modal projector for transforming text embeddings into image-text embeddings. We initialize the cross-modal projector on paired image-text data, and further train it on massive text-only data with a novel cycle consistency loss to enhance its robustness. We show that our latent action based method outperforms competitive baselines on two conversation tasks across various RL algorithms.
Land-then-transport: A Flow Matching-Based Generative Decoder for Wireless Image Transmission
Due to strict rate and reliability demands, wireless image transmission remains difficult for both classical layered designs and joint source-channel coding (JSCC), especially under low latency. Diffusion-based generative decoders can deliver strong perceptual quality by leveraging learned image priors, but iterative stochastic denoising leads to high decoding delay. To enable low-latency decoding, we propose a flow-matching (FM) generative decoder under a new land-then-transport (LTT) paradigm that tightly integrates the physical wireless channel into a continuous-time probability flow. For AWGN channels, we build a Gaussian smoothing path whose noise schedule indexes effective noise levels, and derive a closed-form teacher velocity field along this path. A neural-network student vector field is trained by conditional flow matching, yielding a deterministic, channel-aware ODE decoder with complexity linear in the number of ODE steps. At inference, it only needs an estimate of the effective noise variance to set the ODE starting time. We further show that Rayleigh fading and MIMO channels can be mapped, via linear MMSE equalization and singular-value-domain processing, to AWGN-equivalent channels with calibrated starting times. Therefore, the same probability path and trained velocity field can be reused for Rayleigh and MIMO without retraining. Experiments on MNIST, Fashion-MNIST, and DIV2K over AWGN, Rayleigh, and MIMO demonstrate consistent gains over JPEG2000+LDPC, DeepJSCC, and diffusion-based baselines, while achieving good perceptual quality with only a few ODE steps. Overall, LTT provides a deterministic, physically interpretable, and computation-efficient framework for generative wireless image decoding across diverse channels.
FROAV: A Framework for RAG Observation and Agent Verification -- Lowering the Barrier to LLM Agent Research
The rapid advancement of Large Language Models (LLMs) and their integration into autonomous agent systems has created unprecedented opportunities for document analysis, decision support, and knowledge retrieval. However, the complexity of developing, evaluating, and iterating on LLM-based agent workflows presents significant barriers to researchers, particularly those without extensive software engineering expertise. We present FROAV (Framework for RAG Observation and Agent Verification), an open-source research platform that democratizes LLM agent research by providing a plug-and-play architecture combining visual workflow orchestration, a comprehensive evaluation framework, and extensible Python integration. FROAV implements a multi-stage Retrieval-Augmented Generation (RAG) pipeline coupled with a rigorous "LLM-as-a-Judge" evaluation system, all accessible through intuitive graphical interfaces. Our framework integrates n8n for no-code workflow design, PostgreSQL for granular data management, FastAPI for flexible backend logic, and Streamlit for human-in-the-loop interaction. Through this integrated ecosystem, researchers can rapidly prototype RAG strategies, conduct prompt engineering experiments, validate agent performance against human judgments, and collect structured feedback-all without writing infrastructure code. We demonstrate the framework's utility through its application to financial document analysis, while emphasizing its material-agnostic architecture that adapts to any domain requiring semantic analysis. FROAV represents a significant step toward making LLM agent research accessible to a broader scientific community, enabling researchers to focus on hypothesis testing and algorithmic innovation rather than system integration challenges.
comment: 8 pages, 1 figure, 3 tables
Graph Inference Towards ICD Coding
Automated ICD coding involves assigning standardized diagnostic codes to clinical narratives. The vast label space and extreme class imbalance continue to challenge precise prediction. To address these issues, LabGraph is introduced -- a unified framework that reformulates ICD coding as a graph generation task. By combining adversarial domain adaptation, graph-based reinforcement learning, and perturbation regularization, LabGraph effectively enhances model robustness and generalization. In addition, a label graph discriminator dynamically evaluates each generated code, providing adaptive reward feedback during training. Experiments on benchmark datasets demonstrate that LabGraph consistently outperforms previous approaches on micro-F1, micro-AUC, and P@K.
comment: 6 pages, 2 figures, 2 tables
The Secretary Problem with Predictions and a Chosen Order
We study a learning-augmented variant of the secretary problem, recently introduced by Fujii and Yoshida (2023), in which the decision-maker has access to machine-learned predictions of candidate values. The central challenge is to balance consistency and robustness: when predictions are accurate, the algorithm should select a near-optimal secretary, while under inaccurate predictions it should still guarantee a bounded competitive ratio. We consider both the classical Random Order Secretary Problem (ROSP), where candidates arrive in a uniformly random order, and a more natural learning-augmented model in which the decision-maker may choose the arrival order based on predicted values. We call this model the Chosen Order Secretary Problem (COSP), capturing scenarios such as interview schedules set in advance. We propose a new randomized algorithm applicable to both ROSP and COSP. Our method switches from fully trusting predictions to a threshold-based rule once a large prediction deviation is detected. Let $ε\in [0,1]$ denote the maximum multiplicative prediction error. For ROSP, our algorithm achieves a competitive ratio of $\max\{0.221, (1-ε)/(1+ε)\}$, improving upon the prior bound of $\max\{0.215, (1-ε)/(1+ε)\}$. For COSP, we achieve $\max\{0.262, (1-ε)/(1+ε)\}$, surpassing the $0.25$ worst-case bound for prior approaches and moving closer to the classical secretary benchmark of $1/e \approx 0.368$. These results highlight the benefit of combining predictions with arrival-order control in online decision-making.
comment: Accepted to the International Conference on Innovations in Theoretical Computer Science (ITCS 2026)
ARCQuant: Boosting NVFP4 Quantization with Augmented Residual Channels for LLMs
The emergence of fine-grained numerical formats like NVFP4 presents new opportunities for efficient Large Language Model (LLM) inference. However, it is difficult to adapt existing Post-Training Quantization (PTQ) strategies to these formats: rotation-based methods compromise fine-grained block isolation; smoothing techniques struggle with significant 4-bit quantization errors; and mixed-precision approaches often conflict with hardware constraints on unified-precision computation. To address these challenges, we propose ARCQuant, a framework that boosts NVFP4 performance via Augmented Residual Channels. Distinct from methods that compromise block isolation or hardware uniformity, ARCQuant maintains a strictly unified NVFP4 format by augmenting the activation matrix with quantized residual channels. This design integrates the error compensation process directly into the matrix reduction dimension, enabling the use of standard, highly optimized GEMM kernels with minimal overhead. Theoretical analysis confirms that the worst-case error bound of our dual-stage NVFP4 quantization is comparable to that of standard 8-bit formats such as MXFP8. Extensive experiments on LLaMA and Qwen models demonstrate that ARCQuant achieves state-of-the-art accuracy, comparable to full-precision baselines in perplexity and downstream tasks. Furthermore, deployment on RTX 5090 and RTX PRO 6000 GPUs confirms practical benefits, achieving up to 3x speedup over FP16. Our code is available at https://github.com/actypedef/ARCQuant .
Task Prototype-Based Knowledge Retrieval for Multi-Task Learning from Partially Annotated Data AAAI 2026
Multi-task learning (MTL) is critical in real-world applications such as autonomous driving and robotics, enabling simultaneous handling of diverse tasks. However, obtaining fully annotated data for all tasks is impractical due to labeling costs. Existing methods for partially labeled MTL typically rely on predictions from unlabeled tasks, making it difficult to establish reliable task associations and potentially leading to negative transfer and suboptimal performance. To address these issues, we propose a prototype-based knowledge retrieval framework that achieves robust MTL instead of relying on predictions from unlabeled tasks. Our framework consists of two key components: (1) a task prototype embedding task-specific characteristics and quantifying task associations, and (2) a knowledge retrieval transformer that adaptively refines feature representations based on these associations. To achieve this, we introduce an association knowledge generating (AKG) loss to ensure the task prototype consistently captures task-specific characteristics. Extensive experiments demonstrate the effectiveness of our framework, highlighting its potential for robust multi-task learning, even when only a subset of tasks is annotated.
comment: Accepted at AAAI 2026
AntiPaSTO: Self-Supervised Steering of Moral Reasoning
As models grow more capable, human supervision breaks down: labels don't scale, outputs can be gamed, and training doesn't generalize. Scalable oversight requires steering methods that are internal, self-supervised, and transfer out-of-distribution; existing methods satisfy some but not all three. We introduce AntiPaSTO, which separates representations along an anti-parallel axis ($α=\pm1$ produce opposite shifts), with coherence constraints preventing collapse. Human input is minimal: two contrasting words inserted into template sentences, no preference labels. Using 800 such pairs on Gemma-3-1B, AntiPaSTO beats prompting baselines by $6.9\times$ on DailyDilemmas and maintains bidirectional control where prompting triggers refusal. Code is available at https://github.com/wassname/AntiPaSTO.
Puzzle it Out: Local-to-Global World Model for Offline Multi-Agent Reinforcement Learning
Offline multi-agent reinforcement learning (MARL) aims to solve cooperative decision-making problems in multi-agent systems using pre-collected datasets. Existing offline MARL methods primarily constrain training within the dataset distribution, resulting in overly conservative policies that struggle to generalize beyond the support of the data. While model-based approaches offer a promising solution by expanding the original dataset with synthetic data generated from a learned world model, the high dimensionality, non-stationarity, and complexity of multi-agent systems make it challenging to accurately estimate the transitions and reward functions in offline MARL. Given the difficulty of directly modeling joint dynamics, we propose a local-to-global (LOGO) world model, a novel framework that leverages local predictions-which are easier to estimate-to infer global state dynamics, thus improving prediction accuracy while implicitly capturing agent-wise dependencies. Using the trained world model, we generate synthetic data to augment the original dataset, expanding the effective state-action space. To ensure reliable policy learning, we further introduce an uncertainty-aware sampling mechanism that adaptively weights synthetic data by prediction uncertainty, reducing approximation error propagation to policies. In contrast to conventional ensemble-based methods, our approach requires only an additional encoder for uncertainty estimation, significantly reducing computational overhead while maintaining accuracy. Extensive experiments across 8 scenarios against 8 baselines demonstrate that our method surpasses state-of-the-art baselines on standard offline MARL benchmarks, establishing a new model-based baseline for generalizable offline multi-agent learning.
Improving Video Question Answering through query-based frame selection
Video Question Answering (VideoQA) models enhance understanding and interaction with audiovisual content, making it more accessible, searchable, and useful for a wide range of fields such as education, surveillance, entertainment, and content creation. Due to heavy compute requirements, most large visual language models (VLMs) for VideoQA rely on a fixed number of frames by uniformly sampling the video. However, this process does not pick important frames or capture the context of the video. We present a novel query-based selection of frames relevant to the questions based on the submodular mutual Information (SMI) functions. By replacing uniform frame sampling with query-based selection, our method ensures that the chosen frames provide complementary and essential visual information for accurate VideoQA. We evaluate our approach on the MVBench dataset, which spans a diverse set of multi-action video tasks. VideoQA accuracy on this dataset was assessed using two VLMs, namely Video-LLaVA and LLaVA-NeXT, both of which originally employed uniform frame sampling. Experiments were conducted using both uniform and query-based sampling strategies. An accuracy improvement of up to \textbf{4\%} was observed when using query-based frame selection over uniform sampling. Qualitative analysis further highlights that query-based selection, using SMI functions, consistently picks frames better aligned with the question. We opine that such query-based frame selection can enhance accuracy in a wide range of tasks that rely on only a subset of video frames.
Surrogate-based Optimization via Clustering for Box-Constrained Problems
Global optimization of large-scale, complex systems such as multi-physics black-box simulations and real-world industrial systems is important but challenging. This work presents a novel Surrogate-Based Optimization framework based on Clustering, SBOC for global optimization of such systems, which can be used with any surrogate modeling technique. At each iteration, it uses a single surrogate model for the entire domain, employs k-means clustering to identify unexplored domain, and exploits a local region around the surrogate optimum to potentially add three new sample points in the domain. SBOC has been tested against sixteen promising benchmarking algorithms using 52 analytical test functions of varying input dimensionalities and shape profiles. It successfully identified a global minimum for most test functions with substantially lower computational effort than other algorithms. It worked especially well on test functions with four or more input variables. It was also among the top six algorithms in approaching a global minimum closely. Overall, SBOC is a robust, reliable, and efficient algorithm for global optimization of box-constrained systems.
comment: 34 pages, 4 Figures, 8 Tables
Variational Autoencoder with Normalizing flow for X-ray spectral fitting NeurIPS 2025
Black hole X-ray binaries (BHBs) can be studied with spectral fitting to provide physical constraints on accretion in extreme gravitational environments. Traditional methods of spectral fitting such as Markov Chain Monte Carlo (MCMC) face limitations due to computational times. We introduce a probabilistic model, utilizing a variational autoencoder with a normalizing flow, trained to adopt a physical latent space. This neural network produces predictions for spectral-model parameters as well as their full probability distributions. Our implementations result in a significant improvement in spectral reconstructions over a previous deterministic model while performing three orders of magnitude faster than traditional methods.
comment: 7 pages, 1 table, 3 figures. Accepted as a workshop paper to Machine Learning and the Physical Sciences at NeurIPS 2025
PIDT: Physics-Informed Digital Twin for Optical Fiber Parameter Estimation
We propose physics-informed digital twin (PIDT): a fiber parameter estimation approach that combines a parameterized split-step method with a physics-informed loss. PIDT improves accuracy and convergence speed with lower complexity compared to previous neural operators.
comment: The paper will be appeared in Optical Fiber Communications Conference and Exhibition (OFC) 2026
Position: Don't be Afraid of Over-Smoothing And Over-Squashing
Over-smoothing and over-squashing have been extensively studied in the literature on Graph Neural Networks (GNNs) over the past years. We challenge this prevailing focus in GNN research, arguing that these phenomena are less critical for practical applications than assumed. We suggest that performance decreases often stem from uninformative receptive fields rather than over-smoothing. We support this position with extensive experiments on several standard benchmark datasets, demonstrating that accuracy and over-smoothing are mostly uncorrelated and that optimal model depths remain small even with mitigation techniques, thus highlighting the negligible role of over-smoothing. Similarly, we challenge that over-squashing is always detrimental in practical applications. Instead, we posit that the distribution of relevant information over the graph frequently factorises and is often localised within a small k-hop neighbourhood, questioning the necessity of jointly observing entire receptive fields or engaging in an extensive search for long-range interactions. The results of our experiments show that architectural interventions designed to mitigate over-squashing fail to yield significant performance gains. This position paper advocates for a paradigm shift in theoretical research, urging a diligent analysis of learning tasks and datasets using statistics that measure the underlying distribution of label-relevant information to better understand their localisation and factorisation.
comment: Preprint. Copyright 2026 by the authors
PLANET v2.0: A comprehensive Protein-Ligand Affinity Prediction Model Based on Mixture Density Network
Drug discovery represents a time-consuming and financially intensive process, and virtual screening can accelerate it. Scoring functions, as one of the tools guiding virtual screening, have their precision closely tied to screening efficiency. In our previous study, we developed a graph neural network model called PLANET (Protein-Ligand Affinity prediction NETwork), but it suffers from the defect in representing protein-ligand contact maps. Incorrect binding modes inevitably lead to poor affinity predictions, so accurate prediction of the protein-ligand contact map is desired to improve PLANET. In this study, we have proposed PLANET v2.0 as an upgraded version. The model is trained via multi-objective training strategy and incorporates the Mixture Density Network to predict binding modes. Except for the probability density distributions of non-covalent interactions, we innovatively employ another Gaussian mixture model to describe the relationship between distance and energy of each interaction pair and predict protein-ligand affinity like calculating the mathematical expectation. As on the CASF-2016 benchmark, PLANET v2.0 demonstrates excellent scoring power, ranking power, and docking power. The screening power of PLANET v2.0 gets notably improved compared to PLANET and Glide SP and it demonstrates robust validation on a commercial ultra-large-scale dataset. Given its efficiency and accuracy, PLANET v2.0 can hopefully become one of the practical tools for virtual screening workflows. PLANET v2.0 is freely available at https://www.pdbbind-plus.org.cn/planetv2.
The Practicality of Normalizing Flow Test-Time Training in Bayesian Inference for Agent-Based Models
Agent-Based Models (ABMs) are gaining great popularity in economics and social science because of their strong flexibility to describe the realistic and heterogeneous decisions and interaction rules between individual agents. In this work, we investigate for the first time the practicality of test-time training (TTT) of deep models such as normalizing flows, in the parameters posterior estimations of ABMs. We propose several practical TTT strategies for fine-tuning the normalizing flow against distribution shifts. Our numerical study demonstrates that TTT schemes are remarkably effective, enabling real-time adjustment of flow-based inference for ABM parameters.
SCALPEL: Selective Capability Ablation via Low-rank Parameter Editing for Large Language Model Interpretability Analysis
Large language models excel across diverse domains, yet their deployment in healthcare, legal systems, and autonomous decision-making remains limited by incomplete understanding of their internal mechanisms. As these models integrate into high-stakes systems, understanding how they encode capabilities has become fundamental to interpretability research. Traditional approaches identify important modules through gradient attribution or activation analysis, assuming specific capabilities map to specific components. However, this oversimplifies neural computation: modules may contribute to multiple capabilities simultaneously, while single capabilities may distribute across multiple modules. These coarse-grained analyses fail to capture fine-grained, distributed capability encoding. We present SCALPEL (Selective Capability Ablation via Low-rank Parameter Editing for Large language models), a framework representing capabilities as low-rank parameter subspaces rather than discrete modules. Our key insight is that capabilities can be characterized by low-rank modifications distributed across layers and modules, enabling precise capability removal without affecting others. By training LoRA adapters to reduce distinguishing correct from incorrect answers while preserving general language modeling quality, SCALPEL identifies low-rank representations responsible for particular capabilities while remaining disentangled from others. Experiments across diverse capability and linguistic tasks from BLiMP demonstrate that SCALPEL successfully removes target capabilities while preserving general capabilities, providing fine-grained insights into capability distribution across parameter space. Results reveal that capabilities exhibit low-rank structure and can be selectively ablated through targeted parameter-space interventions, offering nuanced understanding of capability encoding in LLMs.
Outcome-Grounded Advantage Reshaping for Fine-Grained Credit Assignment in Mathematical Reasoning
Group Relative Policy Optimization (GRPO) has emerged as a promising critic-free reinforcement learning paradigm for reasoning tasks. However, standard GRPO employs a coarse-grained credit assignment mechanism that propagates group-level rewards uniformly to to every token in a sequence, neglecting the varying contribution of individual reasoning steps. We address this limitation by introducing Outcome-grounded Advantage Reshaping (OAR), a fine-grained credit assignment mechanism that redistributes advantages based on how much each token influences the model's final answer. We instantiate OAR via two complementary strategies: (1) OAR-P, which estimates outcome sensitivity through counterfactual token perturbations, serving as a high-fidelity attribution signal; (2) OAR-G, which uses an input-gradient sensitivity proxy to approximate the influence signal with a single backward pass. These importance signals are integrated with a conservative Bi-Level advantage reshaping scheme that suppresses low-impact tokens and boosts pivotal ones while preserving the overall advantage mass. Empirical results on extensive mathematical reasoning benchmarks demonstrate that while OAR-P sets the performance upper bound, OAR-G achieves comparable gains with negligible computational overhead, both significantly outperforming a strong GRPO baseline, pushing the boundaries of critic-free LLM reasoning.
OceanSAR-2: A Universal Feature Extractor for SAR Ocean Observation
We present OceanSAR-2, the second generation of our foundation model for SAR-based ocean observation. Building on our earlier release, which pioneered self-supervised learning on Sentinel-1 Wave Mode data, OceanSAR-2 relies on improved SSL training and dynamic data curation strategies, which enhances performance while reducing training cost. OceanSAR-2 demonstrates strong transfer performance across downstream tasks, including geophysical pattern classification, ocean surface wind vector and significant wave height estimation, and iceberg detection. We release standardized benchmark datasets, providing a foundation for systematic evaluation and advancement of SAR models for ocean applications.
comment: accepted at EUSAR 2026
On the Non-decoupling of Supervised Fine-tuning and Reinforcement Learning in Post-training
Post-training of large language models routinely interleaves supervised fine-tuning (SFT) with reinforcement learning (RL). These two methods have different objectives: SFT minimizes the cross-entropy loss between model outputs and expert responses, while RL maximizes reward signals derived from human preferences or rule-based verifiers. Modern reasoning models have widely adopted the practice of alternating SFT and RL training. However, there is no theoretical account of whether they can be decoupled. We prove that decoupling is impossible in either order: (1) SFT-then-RL coupling: RL increases SFT loss under SFT optimality and (2) RL-then-SFT coupling: SFT lowers the reward achieved by RL. Experiments on Qwen3-0.6B confirm the predicted degradation, verifying that SFT and RL cannot be separated without loss of prior performance in the post-training
Computing patient similarity based on unstructured clinical notes
Clinical notes hold rich yet unstructured details about diagnoses, treatments, and outcomes that are vital to precision medicine but hard to exploit at scale. We introduce a method that represents each patient as a matrix built from aggregated embeddings of all their notes, enabling robust patient similarity computation based on their latent low-rank representations. Using clinical notes of 4,267 Czech breast-cancer patients and expert similarity labels from Masaryk Memorial Cancer Institute, we evaluate several matrix-based similarity measures and analyze their strengths and limitations across different similarity facets, such as clinical history, treatment, and adverse events. The results demonstrate the usefulness of the presented method for downstream tasks, such as personalized therapy recommendations or toxicity warnings.
comment: This is a preprint and has not undergone peer review. Final version was presented at the Text, Speech, and Dialogue 2025 conference. The Version of Record is available at https://doi.org/10.1007/978-3-032-02551-7_13
CompNO: A Novel Foundation Model approach for solving Partial Differential Equations
Partial differential equations (PDEs) govern a wide range of physical phenomena, but their numerical solution remains computationally demanding, especially when repeated simulations are required across many parameter settings. Recent Scientific Foundation Models (SFMs) aim to alleviate this cost by learning universal surrogates from large collections of simulated systems, yet they typically rely on monolithic architectures with limited interpretability and high pretraining expense. In this work we introduce Compositional Neural Operators (CompNO), a compositional neural operator framework for parametric PDEs. Instead of pretraining a single large model on heterogeneous data, CompNO first learns a library of Foundation Blocks, where each block is a parametric Fourier neural operator specialized to a fundamental differential operator (e.g. convection, diffusion, nonlinear convection). These blocks are then assembled, via lightweight Adaptation Blocks, into task-specific solvers that approximate the temporal evolution operator for target PDEs. A dedicated boundary-condition operator further enforces Dirichlet constraints exactly at inference time. We validate CompNO on one-dimensional convection, diffusion, convection--diffusion and Burgers' equations from the PDEBench suite. The proposed framework achieves lower relative L2 error than strong baselines (PFNO, PDEFormer and in-context learning based models) on linear parametric systems, while remaining competitive on nonlinear Burgers' flows. The model maintains exact boundary satisfaction with zero loss at domain boundaries, and exhibits robust generalization across a broad range of Peclet and Reynolds numbers. These results demonstrate that compositional neural operators provide a scalable and physically interpretable pathway towards foundation models for PDEs.
comment: Under review at MDPI
SEE: Signal Embedding Energy for Quantifying Noise Interference in Large Audio Language Models
Large Audio Language Models (LALMs) have been widely applied in real-time scenarios, such as in-car assistants and online meeting comprehension. In practice, audio inputs are often corrupted by device and environmental noise, leading to performance degradation. However, existing LALM studies on noise lack quantitative analysis and rely mainly on intuition and empirical observation, thus failing to understand practical robustness. To address this issue, we introduce Signal Embedding Energy (SEE), a method for quantifying the impact of noise intensity on LALM inputs, enabling the differentiation of LALM robustness in real-world deployments. SEE introduces a perspective based on structured activation subspaces derived from the model's internal representations, which more accurately captures its perception of noise than raw audio features. Across experiments, SEE exhibits a strong correlation with LALM performance, achieving a correlation of 0.98. Surprisingly, traditional audio denoising methods are only marginally effective for LALMs, and, in some cases, even increase SEE and impair performance. This suggests a mismatch between speech-centric denoising objectives and the noise sensitivity of modern LALMs. Therefore, we propose a mitigation strategy derived from SEE to denoise LALM inputs, outperforming existing denoising methods. This paper introduces a novel metric for noise quantification in LALMs, providing guidance for robustness improvements in real-world deployments.
Convergence Rate Analysis of the AdamW-Style Shampoo: Unifying One-sided and Two-Sided Preconditioning
This paper studies the AdamW-style Shampoo optimizer, an effective implementation of classical Shampoo that notably won the external tuning track of the AlgoPerf neural network training algorithm competition. Our analysis unifies one-sided and two-sided preconditioning and establishes the convergence rate $\frac{1}{K}\sum_{k=1}^K E\left[\|\nabla f(X_k)\|_*\right]\leq O(\frac{\sqrt{m+n}C}{K^{1/4}})$ measured by nuclear norm, where $K$ represents the iteration number, $(m,n)$ denotes the size of matrix parameters, and $C$ matches the constant in the optimal convergence rate of SGD. Theoretically, we have $\|\nabla f(X)\|_F\leq \|\nabla f(X)\|_*\leq \sqrt{m+n}\|\nabla f(X)\|_F$, supporting that our convergence rate can be considered to be analogous to the optimal $\frac{1}{K}\sum_{k=1}^KE\left[\|\nabla f(X_k)\|_F\right]\leq O(\frac{C}{K^{1/4}})$ convergence rate of SGD in the ideal case of $\|\nabla f(X)\|_*= Θ(\sqrt{m+n})\|\nabla f(X)\|_F$.
Variational Approximations for Robust Bayesian Inference via Rho-Posteriors
The $ρ$-posterior framework provides universal Bayesian estimation with explicit contamination rates and optimal convergence guarantees, but has remained computationally difficult due to an optimization over reference distributions that precludes intractable posterior computation. We develop a PAC-Bayesian framework that recovers these theoretical guarantees through temperature-dependent Gibbs posteriors, deriving finite-sample oracle inequalities with explicit rates and introducing tractable variational approximations that inherit the robustness properties of exact $ρ$-posteriors. Numerical experiments demonstrate that this approach achieves theoretical contamination rates while remaining computationally feasible, providing the first practical implementation of $ρ$-posterior inference with rigorous finite-sample guarantees.
comment: 53 pages including the proofs in appendices, 16 figures
Segmental Advantage Estimation: Enhancing PPO for Long-Context LLM Training
Training Large Language Models (LLMs) for reasoning tasks is increasingly driven by Reinforcement Learning with Verifiable Rewards (RLVR), where Proximal Policy Optimization (PPO) provides a principled framework for stable policy updates. However, the practical application of PPO is hindered by unreliable advantage estimation in the sparse-reward RLVR regime. This issue arises because the sparse rewards in RLVR lead to inaccurate intermediate value predictions, which in turn introduce significant bias when aggregated at every token by Generalized Advantage Estimation (GAE). To address this, we introduce Segmental Advantage Estimation (SAE), which mitigates the bias that GAE can incur in RLVR. Our key insight is that aggregating $n$-step advantages at every token(as in GAE) is unnecessary and often introduces excessive bias, since individual tokens carry minimal information. Instead, SAE first partitions the generated sequence into coherent sub-segments using low-probability tokens as heuristic boundaries. It then selectively computes variance-reduced advantage estimates only from these information-rich segment transitions, effectively filtering out noise from intermediate tokens. Our experiments demonstrate that SAE achieves superior performance, with marked improvements in final scores, training stability, and sample efficiency. These gains are shown to be consistent across multiple model sizes, and a correlation analysis confirms that our proposed advantage estimator achieves a higher correlation with an approximate ground-truth advantage, justifying its superior performance.
BEAT-Net: Injecting Biomimetic Spatio-Temporal Priors for Interpretable ECG Classification
Although deep learning has advanced automated electrocardiogram (ECG) diagnosis, prevalent supervised methods typically treat recordings as undifferentiated one-dimensional (1D) signals or two-dimensional (2D) images. This formulation compels models to learn physiological structures implicitly, resulting in data inefficiency and opacity that diverge from medical reasoning. To address these limitations, we propose BEAT-Net, a Biomimetic ECG Analysis with Tokenization framework that reformulates the problem as a language modeling task. Utilizing a QRS tokenization strategy to transform continuous signals into biologically aligned heartbeat sequences, the architecture explicitly decomposes cardiac physiology through specialized encoders that extract local beat morphology while normalizing spatial lead perspectives and modeling temporal rhythm dependencies. Evaluations across three large-scale benchmarks demonstrate that BEAT-Net matches the diagnostic accuracy of dominant convolutional neural network (CNN) architectures while substantially improving robustness. The framework exhibits exceptional data efficiency, recovering fully supervised performance using only 30 to 35 percent of annotated data. Moreover, learned attention mechanisms provide inherent interpretability by spontaneously reproducing clinical heuristics, such as Lead II prioritization for rhythm analysis, without explicit supervision. These findings indicate that integrating biological priors offers a computationally efficient and interpretable alternative to data-intensive large-scale pre-training.
comment: 8 pages, 4 figures and 2 tables
Explaining Machine Learning Predictive Models through Conditional Expectation Methods
The rapid adoption of complex Artificial Intelligence (AI) and Machine Learning (ML) models has led to their characterization as black boxes due to the difficulty of explaining their internal decision-making processes. This lack of transparency hinders users' ability to understand, validate and trust model behavior, particularly in high-risk applications. Although explainable AI (XAI) has made significant progress, there remains a need for versatile and effective techniques to address increasingly complex models. This work introduces Multivariate Conditional Expectation (MUCE), a model-agnostic method for local explainability designed to capture prediction changes from feature interactions. MUCE extends Individual Conditional Expectation (ICE) by exploring a multivariate grid of values in the neighborhood of a given observation at inference time, providing graphical explanations that illustrate the local evolution of model predictions. In addition, two quantitative indices, stability and uncertainty, summarize local behavior and assess model reliability. Uncertainty is further decomposed into uncertainty+ and uncertainty- to capture asymmetric effects that global measures may overlook. The proposed method is validated using XGBoost models trained on three datasets: two synthetic (2D and 3D) to evaluate behavior near decision boundaries, and one transformed real-world dataset to test adaptability to heterogeneous feature types. Results show that MUCE effectively captures complex local model behavior, while the stability and uncertainty indices provide meaningful insight into prediction confidence. MUCE, together with the ICE modification and the proposed indices, offers a practical contribution to local explainability, enabling both graphical and quantitative insights that enhance the interpretability of predictive models and support more trustworthy and transparent decision-making.
comment: 24 pages, 15 figures. Silvia Ruiz-España and Laura Arnal contributed equally to this work
ARM: Role-Conditioned Neuron Transplantation for Training-Free Generalist LLM Agent Merging
Interactive large language model agents have advanced rapidly, but most remain specialized to a single environment and fail to adapt robustly to other environments. Model merging offers a training-free alternative by integrating multiple experts into a single model. In this paper, we propose Agent-Role Merging (ARM), an activation-guided, role-conditioned neuron transplantation method for model merging in LLM agents. ARM improves existing merging methods from static natural language tasks to multi-turn agent scenarios, and over the generalization ability across various interactive environments. This is achieved with a well designed 3-step framework: 1) constructing merged backbones, 2) selection based on its role-conditioned activation analysis, and 3) neuron transplantation for fine-grained refinements. Without gradient-based optimization, ARM improves cross-benchmark generalization while enjoying efficiency. Across diverse domains, the model obtained via ARM merging outperforms prior model merging methods and domain-specific expert models, while demonstrating strong out-of-domain generalization.
comment: 17 pages, 12 figures. Project page: https://arkazhuo.github.io/ARM-homepage/
Kernel Alignment-based Multi-view Unsupervised Feature Selection with Sample-level Adaptive Graph Learning
Although multi-view unsupervised feature selection (MUFS) has demonstrated success in dimensionality reduction for unlabeled multi-view data, most existing methods reduce feature redundancy by focusing on linear correlations among features but often overlook complex nonlinear dependencies. This limits the effectiveness of feature selection. In addition, existing methods fuse similarity graphs from multiple views by employing sample-invariant weights to preserve local structure. However, this process fails to account for differences in local neighborhood clarity among samples within each view, thereby hindering accurate characterization of the intrinsic local structure of the data. In this paper, we propose a Kernel Alignment-based multi-view unsupervised FeatUre selection with Sample-level adaptive graph lEarning method (KAFUSE) to address these issues. Specifically, we first employ kernel alignment with an orthogonal constraint to reduce feature redundancy in both linear and nonlinear relationships. Then, a cross-view consistent similarity graph is learned by applying sample-level fusion to each slice of a tensor formed by stacking similarity graphs from different views, which automatically adjusts the view weights for each sample during fusion. These two steps are integrated into a unified model for feature selection, enabling mutual enhancement between them. Extensive experiments on real multi-view datasets demonstrate the superiority of KAFUSE over state-of-the-art methods.
Covariance-Driven Regression Trees: Reducing Overfitting in CART
Decision trees are powerful machine learning algorithms, widely used in fields such as economics and medicine for their simplicity and interpretability. However, decision trees such as CART are prone to overfitting, especially when grown deep or the sample size is small. Conventional methods to reduce overfitting include pre-pruning and post-pruning, which constrain the growth of uninformative branches. In this paper, we propose a complementary approach by introducing a covariance-driven splitting criterion for regression trees (CovRT). This method is more robust to overfitting than the empirical risk minimization criterion used in CART, as it produces more balanced and stable splits and more effectively identifies covariates with true signals. We establish an oracle inequality of CovRT and prove that its predictive accuracy is comparable to that of CART in high-dimensional settings. We find that CovRT achieves superior prediction accuracy compared to CART in both simulations and real-world tasks.
A High-Recall Cost-Sensitive Machine Learning Framework for Real-Time Online Banking Transaction Fraud Detection
Fraudulent activities on digital banking services are becoming more intricate by the day, challenging existing defenses. While older rule driven methods struggle to keep pace, even precision focused algorithms fall short when new scams are introduced. These tools typically overlook subtle shifts in criminal behavior, missing crucial signals. Because silent breaches cost institutions far more than flagged but legitimate actions, catching every possible case is crucial. High sensitivity to actual threats becomes essential when oversight leads to heavy losses. One key aim here involves reducing missed fraud cases without spiking incorrect alerts too much. This study builds a system using group learning methods adjusted through smart threshold choices. Using real world transaction records shared openly, where cheating acts rarely appear among normal activities, tests are run under practical skewed distributions. The outcomes reveal that approximately 91 percent of actual fraud is detected, outperforming standard setups that rely on unchanging rules when dealing with uneven examples across classes. When tested in live settings, the fraud detection system connects directly to an online banking transaction flow, stopping questionable activities before they are completed. Alongside this setup, a browser add on built for Chrome is designed to flag deceptive web links and reduce threats from harmful sites. These results show that adjusting decisions by cost impact and validating across entire systems makes deployment more stable and realistic for today's digital banking platforms.
comment: 7 pages, 5 figures. Submitted to arXiv as a preprint
Pseudodata-guided Invariant Representation Learning Boosts the Out-of-Distribution Generalization in Enzymatic Kinetic Parameter Prediction
Accurate prediction of enzyme kinetic parameters is essential for understanding catalytic mechanisms and guiding enzyme engineering.However, existing deep learning-based enzyme-substrate interaction (ESI) predictors often exhibit performance degradation on sequence-divergent, out-of-distribution (OOD) cases, limiting robustness under biologically relevant perturbations.We propose O$^2$DENet, a lightweight, plug-and-play module that enhances OOD generalization via biologically and chemically informed perturbation augmentation and invariant representation learning.O$^2$DENet introduces enzyme-substrate perturbations and enforces consistency between original and augmented enzyme-substrate-pair representations to encourage invariance to distributional shifts.When integrated with representative ESI models, O$^2$DENet consistently improves predictive performance for both $k_{cat}$ and $K_m$ across stringent sequence-identity-based OOD benchmarks, achieving state-of-the-art results among the evaluated methods in terms of accuracy and robustness metrics.Overall, O$^2$DENet provides a general and effective strategy to enhance the stability and deployability of data-driven enzyme kinetics predictors for real-world enzyme engineering applications.
Simulated Annealing-based Candidate Optimization for Batch Acquisition Functions
Bayesian Optimization with multi-objective acquisition functions such as q-Expected Hypervolume Improvement (qEHVI) requires efficient candidate optimization to maximize acquisition function values. Traditional approaches rely on continuous optimization methods like Sequential Least Squares Programming (SLSQP) for candidate selection. However, these gradient-based methods can become trapped in local optima, particularly in complex or high-dimensional objective landscapes. This paper presents a simulated annealing-based approach for candidate optimization in batch acquisition functions as an alternative to conventional continuous optimization methods. We evaluate our simulated annealing approach against SLSQP across four benchmark multi-objective optimization problems: ZDT1 (30D, 2 objectives), DTLZ2 (7D, 3 objectives), Kursawe (3D, 2 objectives), and Latent-Aware (4D, 2 objectives). Our results demonstrate that simulated annealing consistently achieves superior hypervolume performance compared to SLSQP in most test functions. The improvement is particularly pronounced for DTLZ2 and Latent-Aware problems, where simulated annealing reaches significantly higher hypervolume values and maintains better convergence characteristics. The histogram analysis of objective space coverage further reveals that simulated annealing explores more diverse and optimal regions of the Pareto front. These findings suggest that metaheuristic optimization approaches like simulated annealing can provide more robust and effective candidate optimization for multi-objective Bayesian optimization, offering a promising alternative to traditional gradient-based methods for batch acquisition function optimization.
Innovation Capacity of Dynamical Learning Systems
In noisy physical reservoirs, the classical information-processing capacity $C_{\mathrm{ip}}$ quantifies how well a linear readout can realize tasks measurable from the input history, yet $C_{\mathrm{ip}}$ can be far smaller than the observed rank of the readout covariance. We explain this ``missing capacity'' by introducing the innovation capacity $C_{\mathrm{i}}$, the total capacity allocated to readout components orthogonal to the input filtration (Doob innovations, including input-noise mixing). Using a basis-free Hilbert-space formulation of the predictable/innovation decomposition, we prove the conservation law $C_{\mathrm{ip}}+C_{\mathrm{i}}=\mathrm{rank}(Σ_{XX})\le d$, so predictable and innovation capacities exactly partition the rank of the observable readout dimension covariance $Σ_{XX}\in \mathbb{R}^{\rm d\times d}$. In linear-Gaussian Johnson-Nyquist regimes, $Σ_{XX}(T)=S+T N_0$, the split becomes a generalized-eigenvalue shrinkage rule and gives an explicit monotone tradeoff between temperature and predictable capacity. Geometrically, in whitened coordinates the predictable and innovation components correspond to complementary covariance ellipsoids, making $C_{\mathrm{i}}$ a trace-controlled innovation budget. A large $C_{\mathrm{i}}$ forces a high-dimensional innovation subspace with a variance floor and under mild mixing and anti-concentration assumptions this yields extensive innovation-block differential entropy and exponentially many distinguishable histories. Finally, we give an information-theoretic lower bound showing that learning the induced innovation-block law in total variation requires a number of samples that scales with the effective innovation dimension, supporting the generative utility of noisy physical reservoirs.
comment: 12 pages, 3 figures
DDT: A Dual-Masking Dual-Expert Transformer for Energy Time-Series Forecasting
Accurate energy time-series forecasting is crucial for ensuring grid stability and promoting the integration of renewable energy, yet it faces significant challenges from complex temporal dependencies and the heterogeneity of multi-source data. To address these issues, we propose DDT, a novel and robust deep learning framework for high-precision time-series forecasting. At its core, DDT introduces two key innovations. First, we design a dual-masking mechanism that synergistically combines a strict causal mask with a data-driven dynamic mask. This novel design ensures theoretical causal consistency while adaptively focusing on the most salient historical information, overcoming the rigidity of traditional masking techniques. Second, our architecture features a dual-expert system that decouples the modeling of temporal dynamics and cross-variable correlations into parallel, specialized pathways, which are then intelligently integrated through a dynamic gated fusion module. We conducted extensive experiments on 7 challenging energy benchmark datasets, including ETTh, Electricity, and Solar. The results demonstrate that DDT consistently outperforms strong state-of-the-art baselines across all prediction horizons, establishing a new benchmark for the task.
Multi-environment Invariance Learning with Missing Data
Learning models that can handle distribution shifts is a key challenge in domain generalization. Invariance learning, an approach that focuses on identifying features invariant across environments, improves model generalization by capturing stable relationships, which may represent causal effects when the data distribution is encoded within a structural equation model (SEM) and satisfies modularity conditions. This has led to a growing body of work that builds on invariance learning, leveraging the inherent heterogeneity across environments to develop methods that provide causal explanations while enhancing robust prediction. However, in many practical scenarios, obtaining complete outcome data from each environment is challenging due to the high cost or complexity of data collection. This limitation in available data hinders the development of models that fully leverage environmental heterogeneity, making it crucial to address missing outcomes to improve both causal insights and robust prediction. In this work, we derive an estimator from the invariance objective under missing outcomes. We establish non-asymptotic guarantees on variable selection property and $\ell_2$ error convergence rates, which are influenced by the proportion of missing data and the quality of imputation models across environments. We evaluate the performance of the new estimator through extensive simulations and demonstrate its application using the UCI Bike Sharing dataset to predict the count of bike rentals. The results show that despite relying on a biased imputation model, the estimator is efficient and achieves lower prediction error, provided the bias is within a reasonable range.
Learning to Trust the Crowd: A Multi-Model Consensus Reasoning Engine for Large Language Models
Large language models (LLMs) achieve strong average performance yet remain unreliable at the instance level, with frequent hallucinations, brittle failures, and poorly calibrated confidence. We study reliability through the lens of multi-model consensus: given responses from several heterogeneous LLMs, can we learn which answer is most likely correct for a given query? We introduce a Multi-Model Consensus Reasoning Engine that treats the set of LLM outputs as input to a supervised meta-learner. The system maps natural language responses into structured features using semantic embeddings, pairwise similarity and clustering statistics, lexical and structural cues, reasoning-quality scores, confidence estimates, and model-specific priors, and then applies gradient-boosted trees, listwise ranking, and graph neural networks over similarity graphs of answers. Using three open-weight LLMs evaluated on compact, resource-constrained subsets of GSM8K, ARC-Challenge, HellaSwag, and TruthfulQA, our best graph-attention-based consensus model improves macro-average accuracy by 4.6 percentage points over the strongest single LLM and by 8.1 points over majority vote, while also yielding lower Brier scores and fewer TruthfulQA hallucinations. Ablation and feature-importance analyses show that semantic agreement and clustering features are most influential, with reasoning-quality and model-prior features providing complementary gains, suggesting supervised multi-model consensus is a practical route toward more reliable LLM behavior, even in a modest single-machine setup.
Consolidation or Adaptation? PRISM: Disentangling SFT and RL Data via Gradient Concentration
While Hybrid Supervised Fine-Tuning (SFT) followed by Reinforcement Learning (RL) has become the standard paradigm for training LLM agents, effective mechanisms for data allocation between these stages remain largely underexplored. Current data arbitration strategies often rely on surface-level heuristics that fail to diagnose intrinsic learning needs. Since SFT targets pattern consolidation through imitation while RL drives structural adaptation via exploration, misaligning data with these functional roles causes severe optimization interference. We propose PRISM, a dynamics-aware framework grounded in Schema Theory that arbitrates data based on its degree of cognitive conflict with the model's existing knowledge. By analyzing the spatial geometric structure of gradients, PRISM identifies data triggering high spatial concentration as high-conflict signals that require RL for structural restructuring. In contrast, data yielding diffuse updates is routed to SFT for efficient consolidation. Extensive experiments on WebShop and ALFWorld demonstrate that PRISM achieves a Pareto improvement, outperforming state-of-the-art hybrid methods while reducing computational costs by up to 3.22$\times$. Our findings suggest that disentangling data based on internal optimization regimes is crucial for scalable and robust agent alignment.
MAESTRO: Meta-learning Adaptive Estimation of Scalarization Trade-offs for Reward Optimization
Group-Relative Policy Optimization (GRPO) has emerged as an efficient paradigm for aligning Large Language Models (LLMs), yet its efficacy is primarily confined to domains with verifiable ground truths. Extending GRPO to open-domain settings remains a critical challenge, as unconstrained generation entails multi-faceted and often conflicting objectives - such as creativity versus factuality - where rigid, static reward scalarization is inherently suboptimal. To address this, we propose MAESTRO (Meta-learning Adaptive Estimation of Scalarization Trade-offs for Reward Optimization), which introduces a meta-cognitive orchestration layer that treats reward scalarization as a dynamic latent policy, leveraging the model's terminal hidden states as a semantic bottleneck to perceive task-specific priorities. We formulate this as a contextual bandit problem within a bi-level optimization framework, where a lightweight Conductor network co-evolves with the policy by utilizing group-relative advantages as a meta-reward signal. Across seven benchmarks, MAESTRO consistently outperforms single-reward and static multi-objective baselines, while preserving the efficiency advantages of GRPO, and in some settings even reducing redundant generation.
CalPro: Prior-Aware Evidential--Conformal Prediction with Structure-Aware Guarantees for Protein Structures
Deep protein structure predictors such as AlphaFold provide confidence estimates (e.g., pLDDT) that are often miscalibrated and degrade under distribution shifts across experimental modalities, temporal changes, and intrinsically disordered regions. We introduce CalPro, a prior-aware evidential-conformal framework for shift-robust uncertainty quantification. CalPro combines (i) a geometric evidential head that outputs Normal-Inverse-Gamma predictive distributions via a graph-based architecture; (ii) a differentiable conformal layer that enables end-to-end training with finite-sample coverage guarantees; and (iii) domain priors (disorder, flexibility) encoded as soft constraints. We derive structure-aware coverage guarantees under distribution shift using PAC-Bayesian bounds over ambiguity sets, and show that CalPro maintains near-nominal coverage while producing tighter intervals than standard conformal methods in regions where priors are informative. Empirically, CalPro exhibits at most 5% coverage degradation across modalities (vs. 15-25% for baselines), reduces calibration error by 30-50%, and improves downstream ligand-docking success by 25%. Beyond proteins, CalPro applies to structured regression tasks in which priors encode local reliability, validated on non-biological benchmarks.
Safeguarding LLM Fine-tuning via Push-Pull Distributional Alignment
The inherent safety alignment of Large Language Models (LLMs) is prone to erosion during fine-tuning, even when using seemingly innocuous datasets. While existing defenses attempt to mitigate this via data selection, they typically rely on heuristic, instance-level assessments that neglect the global geometry of the data distribution and fail to explicitly repel harmful patterns. To address this, we introduce Safety Optimal Transport (SOT), a novel framework that reframes safe fine-tuning from an instance-level filtering challenge to a distribution-level alignment task grounded in Optimal Transport (OT). At its core is a dual-reference ``push-pull'' weight-learning mechanism: SOT optimizes sample importance by actively pulling the downstream distribution towards a trusted safe anchor while simultaneously pushing it away from a general harmful reference. This establishes a robust geometric safety boundary that effectively purifies the training data. Extensive experiments across diverse model families and domains demonstrate that SOT significantly enhances model safety while maintaining competitive downstream performance, achieving a superior safety-utility trade-off compared to baselines.
Forward versus Backward: Comparing Reasoning Objectives in Direct Preference Optimization
Large language models exhibit impressive reasoning capabilities yet frequently generate plausible but incorrect solutions, a phenomenon commonly termed hallucination. This paper investigates the effect of training objective composition on reasoning reliability through Direct Preference Optimization. Two complementary training signals are examined: forward chain-of-thought generation, which trains the model to produce correct reasoning traces, and backward verification, which trains the model to verify and acknowledge errors in candidate solutions. Experiments on GSM8K reveal a fundamental trade-off between these objectives. Forward-only DPO training achieves the highest accuracy improvement, increasing from 83.1% to 86.6% (+3.5 percentage points), while backward-only training yields minimal accuracy gains but substantially reduces the false positive rate from 13.4% to 4.3%. Notably, both training variants reduce acknowledgement rate compared to the baseline, suggesting that preference optimization increases model confidence in its outputs. These findings indicate that forward and backward reasoning objectives provide distinct and complementary learning signals: forward training improves problem-solving capability, while backward training improves verification calibration. The complete training and evaluation pipeline, implemented efficiently through Low-Rank Adaptation, is released to facilitate further research.
Beyond Variance: Knowledge-Aware LLM Compression via Fisher-Aligned Subspace Diagnostics
Post-training activation compression is essential for deploying Large Language Models (LLMs) on resource-constrained hardware. However, standard methods like Singular Value Decomposition (SVD) are gradient-blind: they preserve high-variance dimensions regardless of their impact on factual knowledge preservation. We introduce Fisher-Aligned Subspace Compression (FASC), a knowledge-aware compression framework that selects subspaces by directly modeling activation-gradient coupling, minimizing a second-order surrogate of the loss function. FASC leverages the Fisher Information Matrix to identify dimensions critical for factual knowledge, which often reside in low-variance but high-gradient-sensitivity subspaces. We propose the Dependence Violation Score (\r{ho}) as a general-purpose diagnostic metric that quantifies activation-gradient coupling, revealing where factual knowledge is stored within transformer architectures. Extensive experiments on Mistral-7B and Llama-3-8B demonstrate that FASC preserves 6-8% more accuracy on knowledge-intensive benchmarks (MMLU, LAMA) compared to variance-based methods at 50% rank reduction, effectively enabling a 7B model to match the factual recall of a 13B uncompressed model. Our analysis reveals that \r{ho} serves as a fundamental signal of stored knowledge, with high-\r{ho} layers emerging only when models internalize factual associations during training.
On Lie Groups Preserving Subspaces of Degenerate Clifford Algebras
This paper introduces Lie groups in degenerate geometric (Clifford) algebras that preserve four fundamental subspaces determined by the grade involution and reversion under the adjoint and twisted adjoint representations. We prove that these Lie groups can be equivalently defined using norm functions of multivectors applied in the theory of spin groups. We also study the corresponding Lie algebras. Some of these Lie groups and algebras are closely related to Heisenberg Lie groups and algebras. The introduced groups are interesting for various applications in physics and computer science, in particular, for constructing equivariant neural networks.
Standardization of Post-Publication Code Verification by Journals is Possible with the Support of the Community
Reproducibility remains a challenge in machine learning research. While code and data availability requirements have become increasingly common, post-publication verification in journals is still limited and unformalized. This position paper argues that it is plausible for journals and conference proceedings to implement post-publication verification. We propose a modification to ACM pre-publication verification badges that allows independent researchers to submit post-publication code replications to the journal, leading to visible verification badges included in the article metadata. Each article may earn up to two badges, each linked to verified code in its corresponding public repository. We describe the motivation, related initiatives, a formal framework, the potential impact, possible limitations, and alternative views.
comment: 10 pages, 1 figure
PRPO: Aligning Process Reward with Outcome Reward in Policy Optimization
Policy optimization for large language models often suffers from sparse reward signals in multi-step reasoning tasks. Critic-free methods like GRPO assign a single normalized outcome reward to all tokens, providing limited guidance for intermediate reasoning . While Process Reward Models (PRMs) offer dense feedback, they risk premature collapse when used alone, as early low-reward tokens can drive policies toward truncated outputs. We introduce Process Relative Policy Optimization (PRPO), which combines outcome reliability with process-level guidance in a critic-free framework. PRPO segments reasoning sequences based on semantic clues, normalizes PRM scores into token-level advantages, and aligns their distribution with outcome advantages through location-parameter shift. On MATH500, PRPO improves Qwen2.5-Math-1.5B accuracy from 61.2% to 64.4% over GRPO using only eight rollouts and no value network, demonstrating efficient fine-grained credit assignment within critic-free optimization.
comment: 8 pages, 2 figures
Offline Meta-Reinforcement Learning with Flow-Based Task Inference and Adaptive Correction of Feature Overgeneralization
Offline meta-reinforcement learning (OMRL) combines the strengths of learning from diverse datasets in offline RL with the adaptability to new tasks of meta-RL, promising safe and efficient knowledge acquisition by RL agents. However, OMRL still suffers extrapolation errors due to out-of-distribution (OOD) actions, compromised by broad task distributions and Markov Decision Process (MDP) ambiguity in meta-RL setups. Existing research indicates that the generalization of the $Q$ network affects the extrapolation error in offline RL. This paper investigates this relationship by decomposing the $Q$ value into feature and weight components, observing that while decomposition enhances adaptability and convergence in the case of high-quality data, it often leads to policy degeneration or collapse in complex tasks. We observe that decomposed $Q$ values introduce a large estimation bias when the feature encounters OOD samples, a phenomenon we term ''feature overgeneralization''. To address this issue, we propose FLORA, which identifies OOD samples by modeling feature distributions and estimating their uncertainties. FLORA integrates a return feedback mechanism to adaptively adjust feature components. Furthermore, to learn precise task representations, FLORA explicitly models the complex task distribution using a chain of invertible transformations. We theoretically and empirically demonstrate that FLORA achieves rapid adaptation and meta-policy improvement compared to baselines across various environments.
AscendKernelGen: A Systematic Study of LLM-Based Kernel Generation for Neural Processing Units
To meet the ever-increasing demand for computational efficiency, Neural Processing Units (NPUs) have become critical in modern AI infrastructure. However, unlocking their full potential requires developing high-performance compute kernels using vendor-specific Domain-Specific Languages (DSLs), a task that demands deep hardware expertise and is labor-intensive. While Large Language Models (LLMs) have shown promise in general code generation, they struggle with the strict constraints and scarcity of training data in the NPU domain. Our preliminary study reveals that state-of-the-art general-purpose LLMs fail to generate functional complex kernels for Ascend NPUs, yielding a near-zero success rate. To address these challenges, we propose AscendKernelGen, a generation-evaluation integrated framework for NPU kernel development. We introduce Ascend-CoT, a high-quality dataset incorporating chain-of-thought reasoning derived from real-world kernel implementations, and KernelGen-LM, a domain-adaptive model trained via supervised fine-tuning and reinforcement learning with execution feedback. Furthermore, we design NPUKernelBench, a comprehensive benchmark for assessing compilation, correctness, and performance across varying complexity levels. Experimental results demonstrate that our approach significantly bridges the gap between general LLMs and hardware-specific coding. Specifically, the compilation success rate on complex Level-2 kernels improves from 0% to 95.5% (Pass@10), while functional correctness achieves 64.3% compared to the baseline's complete failure. These results highlight the critical role of domain-specific reasoning and rigorous evaluation in automating accelerator-aware code generation.
comment: 33 pages,7 figures,16 tables
Stable On-Policy Distillation through Adaptive Target Reformulation
Knowledge distillation (KD) is a widely adopted technique for transferring knowledge from large language models to smaller student models; however, conventional supervised KD often suffers from a distribution mismatch between training and inference. While on-policy KD approaches attempt to mitigate this issue by learning directly from student-generated outputs, they frequently encounter training instabilities because the distributional gap between the novice student and the expert teacher is often too wide to bridge directly. These challenges manifest as pathological gradients in forward KL objectives or diversity collapse in reverse KL regimes. To address these limitations, we propose Veto, an objective-level reformulation that constructs a geometric bridge in the logit space. Unlike prior methods that mix data samples, Veto creates an intermediate target distribution that promotes alignment between the teacher and the student. By introducing a tunable parameter beta, Veto serves as an Adaptive Gradient Veto that stabilizes optimization by suppressing harmful gradients on low-confidence tokens, while simultaneously acting as a Decisiveness Knob to balance reward-driven performance with output diversity. Extensive experiments across various reasoning and generation tasks demonstrate that Veto consistently outperforms supervised fine-tuning and existing on-policy baselines.
comment: 10 pages, 5 figures
Generating readily synthesizable small molecule fluorophore scaffolds with reinforcement learning
Developing new fluorophores for advanced imaging techniques requires exploring new chemical space. While generative AI approaches have shown promise in designing novel dye scaffolds, prior efforts often produced synthetically intractable candidates due to a lack of reaction constraints. Here, we developed SyntheFluor-RL, a generative AI model that employs known reaction libraries and molecular building blocks to create readily synthesizable fluorescent molecule scaffolds via reinforcement learning. To guide the generation of fluorophores, SyntheFluor-RL employs a scoring function built on multiple graph neural networks (GNNs) that predict key photophysical properties, including photoluminescence quantum yield, absorption, and emission wavelengths. These outputs are dynamically weighted and combined with a computed pi-conjugation score to prioritize candidates with desirable optical characteristics and synthetic feasibility. SyntheFluor-RL generated 11,590 candidate molecules, which were filtered to 19 structures predicted to possess dye-like properties. Of the 19 molecules, 14 were synthesized and 13 were experimentally confirmed. The top three were characterized, with the lead compound featuring a benzothiadiazole chromophore and exhibiting strong fluorescence (PLQY = 0.62), a large Stokes shift (97 nm), and a long excited-state lifetime (11.5 ns). These results demonstrate the effectiveness of SyntheFluor-RL in the identification of synthetically accessible fluorophores for further development.
Optimal Transport under Group Fairness Constraints
Ensuring fairness in matching algorithms is a key challenge in allocating scarce resources and positions. Focusing on Optimal Transport (OT), we introduce a novel notion of group fairness requiring that the probability of matching two individuals from any two given groups in the OT plan satisfies a predefined target. We first propose \texttt{FairSinkhorn}, a modified Sinkhorn algorithm to compute perfectly fair transport plans efficiently. Since exact fairness can significantly degrade matching quality in practice, we then develop two relaxation strategies. The first one involves solving a penalised OT problem, for which we derive novel finite-sample complexity guarantees. This result is of independent interest as it can be generalized to arbitrary convex penalties. Our second strategy leverages bilevel optimization to learn a ground cost that induces a fair OT solution, and we establish a bound guaranteeing that the learned cost yields fair matchings on unseen data. Finally, we present empirical results that illustrate the trade-offs between fairness and performance.
Proof of Reasoning for Privacy Enhanced Federated Blockchain Learning at the Edge
Consensus mechanisms are the core of any blockchain system. However, the majority of these mechanisms do not target federated learning directly nor do they aid in the aggregation step. This paper introduces Proof of Reasoning (PoR), a novel consensus mechanism specifically designed for federated learning using blockchain, aimed at preserving data privacy, defending against malicious attacks, and enhancing the validation of participating networks. Unlike generic blockchain consensus mechanisms commonly found in the literature, PoR integrates three distinct processes tailored for federated learning. Firstly, a masked autoencoder (MAE) is trained to generate an encoder that functions as a feature map and obfuscates input data, rendering it resistant to human reconstruction and model inversion attacks. Secondly, a downstream classifier is trained at the edge, receiving input from the trained encoder. The downstream network's weights, a single encoded datapoint, the network's output and the ground truth are then added to a block for federated aggregation. Lastly, this data facilitates the aggregation of all participating networks, enabling more complex and verifiable aggregation methods than previously possible. This three-stage process results in more robust networks with significantly reduced computational complexity, maintaining high accuracy by training only the downstream classifier at the edge. PoR scales to large IoT networks with low latency and storage growth, and adapts to evolving data, regulations, and network conditions.
comment: 8 Pages, 5 figues, 9 tables, journal paper
Towards Automated Diagnosis of Inherited Arrhythmias: Combined Arrhythmia Classification Using Lead-Aware Spatial Attention Networks
Arrhythmogenic right ventricular cardiomyopathy (ARVC) and long QT syndrome (LQTS) are inherited arrhythmia syndromes associated with sudden cardiac death. Deep learning shows promise for ECG interpretation, but multi-class inherited arrhythmia classification with clinically grounded interpretability remains underdeveloped. Our objective was to develop and validate a lead-aware deep learning framework for multi-class (ARVC vs LQTS vs control) and binary inherited arrhythmia classification, and to determine optimal strategies for integrating ECG foundation models within arrhythmia screening tools. We assembled a 13-center Canadian cohort (645 patients; 1,344 ECGs). We evaluated four ECG foundation models using three transfer learning approaches: linear probing, fine-tuning, and combined strategies. We developed lead-aware spatial attention networks (LASAN) and assessed integration strategies combining LASAN with foundation models. Performance was compared against the established foundation model baselines. Lead-group masking quantified disease-specific lead dependence. Fine-tuning outperformed linear probing and combined strategies across all foundation models (mean macro-AUROC 0.904 vs 0.825). The best lead-aware integrations achieved near-ceiling performance (HuBERT-ECG hybrid: macro-AUROC 0.990; ARVC vs control AUROC 0.999; LQTS vs control AUROC 0.994). Lead masking demonstrated physiologic plausibility: V1-V3 were most critical for ARVC detection (4.54% AUROC reduction), while lateral leads were preferentially important for LQTS (2.60% drop). Lead-aware architectures achieved state-of-the-art performance for inherited arrhythmia classification, outperforming all existing published models on both binary and multi-class tasks while demonstrating clinically aligned lead dependence. These findings support potential utility for automated ECG screening pending validation.
comment: 34 pages, 2 figures, 4 tables
Enhancing Cloud Network Resilience via a Robust LLM-Empowered Multi-Agent Reinforcement Learning Framework
While virtualization and resource pooling empower cloud networks with structural flexibility and elastic scalability, they inevitably expand the attack surface and challenge cyber resilience. Reinforcement Learning (RL)-based defense strategies have been developed to optimize resource deployment and isolation policies under adversarial conditions, aiming to enhance system resilience by maintaining and restoring network availability. However, existing approaches lack robustness as they require retraining to adapt to dynamic changes in network structure, node scale, attack strategies, and attack intensity. Furthermore, the lack of Human-in-the-Loop (HITL) support limits interpretability and flexibility. To address these limitations, we propose CyberOps-Bots, a hierarchical multi-agent reinforcement learning framework empowered by Large Language Models (LLMs). Inspired by MITRE ATT&CK's Tactics-Techniques model, CyberOps-Bots features a two-layer architecture: (1) An upper-level LLM agent with four modules--ReAct planning, IPDRR-based perception, long-short term memory, and action/tool integration--performs global awareness, human intent recognition, and tactical planning; (2) Lower-level RL agents, developed via heterogeneous separated pre-training, execute atomic defense actions within localized network regions. This synergy preserves LLM adaptability and interpretability while ensuring reliable RL execution. Experiments on real cloud datasets show that, compared to state-of-the-art algorithms, CyberOps-Bots maintains network availability 68.5% higher and achieves a 34.7% jumpstart performance gain when shifting the scenarios without retraining. To our knowledge, this is the first study to establish a robust LLM-RL framework with HITL support for cloud defense. We will release our framework to the community, facilitating the advancement of robust and autonomous defense in cloud networks.
Reward-Preserving Attacks For Robust Reinforcement Learning
Adversarial robustness in RL is difficult because perturbations affect entire trajectories: strong attacks can break learning, while weak attacks yield little robustness, and the appropriate strength varies by state. We propose $α$-reward-preserving attacks, which adapt the strength of the adversary so that an $α$ fraction of the nominal-to-worst-case return gap remains achievable at each state. In deep RL, we use a gradient-based attack direction and learn a state-dependent magnitude $η\le η_{\mathcal B}$ selected via a critic $Q^π_α((s,a),η)$ trained off-policy over diverse radii. This adaptive tuning calibrates attack strength and, with intermediate $α$, improves robustness across radii while preserving nominal performance, outperforming fixed- and random-radius baselines.
comment: 19 pages, 6 figures, 4 algorithms, preprint
LUT-Compiled Kolmogorov-Arnold Networks for Lightweight DoS Detection on IoT Edge Devices
Denial-of-Service (DoS) attacks pose a critical threat to Internet of Things (IoT) ecosystems, yet deploying effective intrusion detection on resource-constrained edge devices remains challenging. Kolmogorov-Arnold Networks (KANs) offer a compact alternative to Multi-Layer Perceptrons (MLPs) by placing learnable univariate spline functions on edges rather than fixed activations on nodes, achieving competitive accuracy with fewer parameters. However, runtime B-spline evaluation introduces significant computational overhead unsuitable for latency-critical IoT applications. We propose a lookup table (LUT) compilation pipeline that replaces expensive spline computations with precomputed quantized tables and linear interpolation, dramatically reducing inference latency while preserving detection quality. Our lightweight KAN model (50K parameters, 0.19~MB) achieves 99.0\% accuracy on the CICIDS2017 DoS dataset. After LUT compilation with resolution $L=8$, the model maintains 98.96\% accuracy (F1 degradation $<0.0004$) while achieving $\mathbf{68\times}$ speedup at batch size 256 and over $\mathbf{5000\times}$ speedup at batch size 1, with only $2\times$ memory overhead. We provide comprehensive evaluation across LUT resolutions, quantization schemes, and out-of-bounds policies, establishing clear Pareto frontiers for accuracy-latency-memory trade-offs. Our results demonstrate that LUT-compiled KANs enable real-time DoS detection on CPU-only IoT gateways with deterministic inference latency and minimal resource footprint.
Riemannian Zeroth-Order Gradient Estimation with Structure-Preserving Metrics for Geodesically Incomplete Manifolds
In this paper, we study Riemannian zeroth-order optimization in settings where the underlying Riemannian metric $g$ is geodesically incomplete, and the goal is to approximate stationary points with respect to this incomplete metric. To address this challenge, we construct structure-preserving metrics that are geodesically complete while ensuring that every stationary point under the new metric remains stationary under the original one. Building on this foundation, we revisit the classical symmetric two-point zeroth-order estimator and analyze its mean-squared error from a purely intrinsic perspective, depending only on the manifold's geometry rather than any ambient embedding. Leveraging this intrinsic analysis, we establish convergence guarantees for stochastic gradient descent with this intrinsic estimator. Under additional suitable conditions, an $ε$-stationary point under the constructed metric $g'$ also corresponds to an $ε$-stationary point under the original metric $g$, thereby matching the best-known complexity in the geodesically complete setting. Empirical studies on synthetic problems confirm our theoretical findings, and experiments on a practical mesh optimization task demonstrate that our framework maintains stable convergence even in the absence of geodesic completeness.
InfGraND: An Influence-Guided GNN-to-MLP Knowledge Distillation
Graph Neural Networks (GNNs) are the go-to model for graph data analysis. However, GNNs rely on two key operations - aggregation and update, which can pose challenges for low-latency inference tasks or resource-constrained scenarios. Simple Multi-Layer Perceptrons (MLPs) offer a computationally efficient alternative. Yet, training an MLP in a supervised setting often leads to suboptimal performance. Knowledge Distillation (KD) from a GNN teacher to an MLP student has emerged to bridge this gap. However, most KD methods either transfer knowledge uniformly across all nodes or rely on graph-agnostic indicators such as prediction uncertainty. We argue this overlooks a more fundamental, graph-centric inquiry: "How important is a node to the structure of the graph?" We introduce a framework, InfGraND, an Influence-guided Graph KNowledge Distillation from GNN to MLP that addresses this by identifying and prioritizing structurally influential nodes to guide the distillation process, ensuring that the MLP learns from the most critical parts of the graph. Additionally, InfGraND embeds structural awareness in MLPs through one-time multi-hop neighborhood feature pre-computation, which enriches the student MLP's input and thus avoids inference-time overhead. Our rigorous evaluation in transductive and inductive settings across seven homophilic graph benchmark datasets shows InfGraND consistently outperforms prior GNN to MLP KD methods, demonstrating its practicality for numerous latency-critical applications in real-world settings.
comment: Accepted in Transactions on Machine Learning Research (TMLR), 2026
Beyond the Next Port: A Multi-Task Transformer for Forecasting Future Voyage Segment Durations
Accurate forecasts of segment-level sailing durations are fundamental to enhancing maritime schedule reliability and optimizing long-term port operations. However, conventional estimated time of arrival (ETA) models are primarily designed for the immediate next port of call and rely heavily on real-time automatic identification system (AIS) data, which is inherently unavailable for future voyage segments. To address this gap, the study reformulates future-port ETA prediction as a segment-level time-series forecasting problem. We develop a transformer-based architecture that integrates historical sailing durations, destination port congestion proxies, and static vessel descriptors. The proposed framework employs a causally masked attention mechanism to capture long-range temporal dependencies and a multi-task learning head to jointly predict segment sailing durations and port congestion states, leveraging shared latent signals to mitigate high uncertainty. Evaluation on a real-world global dataset from 2021 demonstrates the proposed model consistently outperforms a comprehensive suite of competitive baselines. The result shows a relative reduction of 4.85% in mean absolute error (MAE) and 4.95% in mean absolute percentage error (MAPE) compared with sequence baseline models. The relative reductions with gradient boosting machines are 9.39% in MAE and 52.97% in MAPE. Case studies for the major destination port further illustrate the model's superior accuracy.
TP-Blend: Textual-Prompt Attention Pairing for Precise Object-Style Blending in Diffusion Models
Current text-conditioned diffusion editors handle single object replacement well but struggle when a new object and a new style must be introduced simultaneously. We present Twin-Prompt Attention Blend (TP-Blend), a lightweight training-free framework that receives two separate textual prompts, one specifying a blend object and the other defining a target style, and injects both into a single denoising trajectory. TP-Blend is driven by two complementary attention processors. Cross-Attention Object Fusion (CAOF) first averages head-wise attention to locate spatial tokens that respond strongly to either prompt, then solves an entropy-regularised optimal transport problem that reassigns complete multi-head feature vectors to those positions. CAOF updates feature vectors at the full combined dimensionality of all heads (e.g., 640 dimensions in SD-XL), preserving rich cross-head correlations while keeping memory low. Self-Attention Style Fusion (SASF) injects style at every self-attention layer through Detail-Sensitive Instance Normalization. A lightweight one-dimensional Gaussian filter separates low- and high-frequency components; only the high-frequency residual is blended back, imprinting brush-stroke-level texture without disrupting global geometry. SASF further swaps the Key and Value matrices with those derived from the style prompt, enforcing context-aware texture modulation that remains independent of object fusion. Extensive experiments show that TP-Blend produces high-resolution, photo-realistic edits with precise control over both content and appearance, surpassing recent baselines in quantitative fidelity, perceptual quality, and inference speed.
Operator learning for models of tear film breakup
Tear film (TF) breakup is a key driver of understanding dry eye disease, yet estimating TF thickness and osmolarity from fluorescence (FL) imaging typically requires solving computationally expensive inverse problems. We propose an operator learning framework that replaces traditional inverse solvers with neural operators trained on simulated TF dynamics. This approach offers a scalable path toward rapid, data-driven analysis of tear film dynamics.
From Word Sequences to Behavioral Sequences: Adapting Modeling and Evaluation Paradigms for Longitudinal NLP
While NLP typically treats documents as independent and unordered samples, in longitudinal studies, this assumption rarely holds: documents are nested within authors and ordered in time, forming person-indexed, time-ordered $\textit{behavioral sequences}$. Here, we demonstrate the need for and propose a longitudinal modeling and evaluation paradigm that consequently updates four parts of the NLP pipeline: (1) evaluation splits aligned to generalization over people ($\textit{cross-sectional}$) and/or time ($\textit{prospective}$); (2) accuracy metrics separating between-person differences from within-person dynamics; (3) sequence inputs to incorporate history by default; and (4) model internals that support different $\textit{coarseness}$ of latent state over histories (pooled summaries, explicit dynamics, or interaction-based models). We demonstrate the issues ensued by traditional pipeline and our proposed improvements on a dataset of 17k daily diary transcripts paired with PTSD symptom severity from 238 participants, finding that traditional document-level evaluation can yield substantially different and sometimes reversed conclusions compared to our ecologically valid modeling and evaluation. We tie our results to a broader discussion motivating a shift from word-sequence evaluation toward $\textit{behavior-sequence}$ paradigms for NLP.
Tuberculosis Screening from Cough Audio: Baseline Models, Clinical Variables, and Uncertainty Quantification
In this paper, we propose a standardized framework for automatic tuberculosis (TB) detection from cough audio and routinely collected clinical data using machine learning. While TB screening from audio has attracted growing interest, progress is difficult to measure because existing studies vary substantially in datasets, cohort definitions, feature representations, model families, validation protocols, and reported metrics. Consequently, reported gains are often not directly comparable, and it remains unclear whether improvements stem from modeling advances or from differences in data and evaluation. We address this gap by establishing a strong, well-documented baseline for TB prediction using cough recordings and accompanying clinical metadata from a recently compiled dataset from several countries. Our pipeline is reproducible end-to-end, covering feature extraction, multimodal fusion, cougher-independent evaluation, and uncertainty quantification, and it reports a consistent suite of clinically relevant metrics to enable fair comparison. We further quantify performance for cough audio-only and fused (audio + clinical metadata) models, and release the full experimental protocol to facilitate benchmarking. This baseline is intended to serve as a common reference point and to reduce methodological variance that currently holds back progress in the field.
DataScribe: An AI-Native, Policy-Aligned Web Platform for Multi-Objective Materials Design and Discovery
The acceleration of materials discovery requires digital platforms that go beyond data repositories to embed learning, optimization, and decision-making directly into research workflows. We introduce DataScribe, an AI-native, cloud-based materials discovery platform that unifies heterogeneous experimental and computational data through ontology-backed ingestion and machine-actionable knowledge graphs. The platform integrates FAIR-compliant metadata capture, schema and unit harmonization, uncertainty-aware surrogate modeling, and native multi-objective multi-fidelity Bayesian optimization, enabling closed-loop propose-measure-learn workflows across experimental and computational pipelines. DataScribe functions as an application-layer intelligence stack, coupling data governance, optimization, and explainability rather than treating them as downstream add-ons. We validate the platform through case studies in electrochemical materials and high-entropy alloys, demonstrating end-to-end data fusion, real-time optimization, and reproducible exploration of multi-objective trade spaces. By embedding optimization engines, machine learning, and unified access to public and private scientific data directly within the data infrastructure, and by supporting open, free use for academic and non-profit researchers, DataScribe functions as a general-purpose application-layer backbone for laboratories of any scale, including self-driving laboratories and geographically distributed materials acceleration platforms, with built-in support for performance, sustainability, and supply-chain-aware objectives.
When Models Know When They Do Not Know: Calibration, Cascading, and Cleaning
When a model knows when it does not know, many possibilities emerge. The first question is how to enable a model to recognize that it does not know. A promising approach is to use confidence, computed from the model's internal signals, to reflect its ignorance. Prior work in specific domains has shown that calibration can provide reliable confidence estimates. In this work, we propose a simple, effective, and universal training-free method that applies to both vision and language models, performing model calibration, cascading, and data cleaning to better exploit a model's ability to recognize when it does not know. We first highlight two key empirical observations: higher confidence corresponds to higher accuracy within a single model, and models calibrated on the validation set remain calibrated on a held-out test set. These findings empirically establish the reliability and comparability of calibrated confidence. Building on this, we introduce two applications: (1) model cascading with calibrated advantage routing and (2) data cleaning based on model ensemble. Using the routing signal derived from the comparability of calibrated confidences, we cascade large and small models to improve efficiency with almost no compromise in accuracy, and we further cascade two models of comparable scale to achieve performance beyond either model alone. Leveraging multiple experts and their calibrated confidences, we design a simple yet effective data-cleaning method that balances precision and detection rate to identify mislabeled samples in ImageNet and Massive Multitask Language Understanding (MMLU) datasets. Our results demonstrate that enabling models to recognize when they do not know is a practical step toward more efficient, reliable, and trustworthy AI.
Hybrid SARIMA LSTM Model for Local Weather Forecasting: A Residual Learning Approach for Data Driven Meteorological Prediction
Accurately forecasting long-term atmospheric variables remains a defining challenge in meteorological science due to the chaotic nature of atmospheric systems. Temperature data represents a complex superposition of deterministic cyclical climate forces and stochastic, short-term fluctuations. While planetary mechanics drive predictable seasonal periodicities, rapid meteorological changes such as thermal variations, pressure anomalies, and humidity shifts introduce nonlinear volatilities that defy simple extrapolation. Historically, the Seasonal Autoregressive Integrated Moving Average (SARIMA) model has been the standard for modeling historical weather data, prized for capturing linear seasonal trends. However, SARIMA operates under strict assumptions of stationarity, failing to capture abrupt, nonlinear transitions. This leads to systematic residual errors, manifesting as the under-prediction of sudden spikes or the over-smoothing of declines. Conversely, Deep Learning paradigms, specifically Long Short-Term Memory (LSTM) networks, demonstrate exceptional efficacy in handling intricate time-series data. By utilizing memory gates, LSTMs learn complex nonlinear dependencies. Yet, LSTMs face instability in open-loop forecasting; without ground truth feedback, minor deviations compound recursively, causing divergence. To resolve these limitations, we propose a Hybrid SARIMA-LSTM architecture. This framework employs a residual-learning strategy to decompose temperature into a predictable climate component and a nonlinear weather component. The SARIMA unit models the robust, long-term seasonal trend, while the LSTM is trained exclusively on the residuals the nonlinear errors SARIMA fails to capture. By fusing statistical stability with neural plasticity, this hybrid approach minimizes error propagation and enhances long-horizon accuracy.
Reinforcement Learning Methods for Neighborhood Selection in Local Search
Reinforcement learning has recently gained traction as a means to improve combinatorial optimization methods, yet its effectiveness within local search metaheuristics specifically remains comparatively underexamined. In this study, we evaluate a range of reinforcement learning-based neighborhood selection strategies -- multi-armed bandits (upper confidence bound, $ε$-greedy) and deep reinforcement learning methods (proximal policy optimization, double deep $Q$-network) -- and compare them against multiple baselines across three different problems: the traveling salesman problem, the pickup and delivery problem with time windows, and the car sequencing problem. We show how search-specific characteristics, particularly large variations in cost due to constraint violation penalties, necessitate carefully designed reward functions to provide stable and informative learning signals. Our extensive experiments reveal that algorithm performance varies substantially across problems, although that $ε$-greedy consistently ranks among the best performers. In contrast, the computational overhead of deep reinforcement learning approaches only makes them competitive with a substantially longer runtime. These findings highlight both the promise and the practical limitations of deep reinforcement learning in local search.
comment: Accepted at ICORES 2026
Coupled Diffusion-Encoder Models for Reconstruction of Flow Fields
Data-driven flow-field reconstruction typically relies on autoencoder architectures that compress high-dimensional states into low-dimensional latent representations. However, classical approaches such as variational autoencoders (VAEs) often struggle to preserve the higher-order statistical structure of fluid flows when subjected to strong compression. We propose DiffCoder, a coupled framework that integrates a probabilistic diffusion model with a conventional convolutional ResNet encoder and trains both components end-to-end. The encoder compresses the flow field into a latent representation, while the diffusion model learns a generative prior over reconstructions conditioned on the compressed state. This design allows DiffCoder to recover distributional and spectral properties that are not strictly required for minimizing pointwise reconstruction loss but are critical for faithfully representing statistical properties of the flow field. We evaluate DiffCoder and VAE baselines across multiple model sizes and compression ratios on a challenging dataset of Kolmogorov flow fields. Under aggressive compression, DiffCoder significantly improves the spectral accuracy while VAEs exhibit substantial degradation. Although both methods show comparable relative L2 reconstruction error, DiffCoder better preserves the underlying distributional structure of the flow. At moderate compression levels, sufficiently large VAEs remain competitive, suggesting that diffusion-based priors provide the greatest benefit when information bottlenecks are severe. These results demonstrate that the generative decoding by diffusion offers a promising path toward compact, statistically consistent representations of complex flow fields.
A Statistical Assessment of Amortized Inference Under Signal-to-Noise Variation and Distribution Shift
Since the turn of the century, approximate Bayesian inference has steadily evolved as new computational techniques have been incorporated to handle increasingly complex and large-scale predictive problems. The recent success of deep neural networks and foundation models has now given rise to a new paradigm in statistical modeling, in which Bayesian inference can be amortized through large-scale learned predictors. In amortized inference, substantial computation is invested upfront to train a neural network that can subsequently produce approximate posterior or predictions at negligible marginal cost across a wide range of tasks. At deployment, amortized inference offers substantial computational savings compared with traditional Bayesian procedures, which generally require repeated likelihood evaluations or Monte Carlo simulations for predictions for each new dataset. Despite the growing popularity of amortized inference, its statistical interpretation and its role within Bayesian inference remain poorly understood. This paper presents statistical perspectives on the working principles of several major neural architectures, including feedforward networks, Deep Sets, and Transformers, and examines how these architectures naturally support amortized Bayesian inference. We discuss how these models perform structured approximation and probabilistic reasoning in ways that yield controlled generalization error across a wide range of deployment scenarios, and how these properties can be harnessed for Bayesian computation. Through simulation studies, we evaluate the accuracy, robustness, and uncertainty quantification of amortized inference under varying signal-to-noise ratios and distributional shifts, highlighting both its strengths and its limitations.
comment: 26 pages, 5 figures, 3 tables
Enhancing Portfolio Optimization with Deep Learning Insights
Our work focuses on deep learning (DL) portfolio optimization, tackling challenges in long-only, multi-asset strategies across market cycles. We propose training models with limited regime data using pre-training techniques and leveraging transformer architectures for state variable inclusion. Evaluating our approach against traditional methods shows promising results, demonstrating our models' resilience in volatile markets. These findings emphasize the evolving landscape of DL-driven portfolio optimization, stressing the need for adaptive strategies to navigate dynamic market conditions and improve predictive accuracy.
Towards Specialized Generalists: A Multi-Task MoE-LoRA Framework for Domain-Specific LLM Adaptation
The rapid evolution of Large Language Models (LLMs) has shifted focus from general-purpose capabilities to domain-specific expertise. However, adapting LLMs to specialized fields such as medicine presents two challenge: (1) the "Stability-Plasticity Dilemma", where the model must acquire complex clinical knowledge without suffering from catastrophic forgetting of general world knowledge; and (2) "Task Interference", where disparate sub-tasks, such as medical diagnosis, report summarization, and drug-drug interaction prediction, compete for limited low-rank parameter space. In this paper, we propose Med-MoE-LoRA, a novel framework that integrates Mixture-of-Experts (MoE) with Low-Rank Adaptation (LoRA) to enable efficient multi-task domain adaptation, especially for medical scenarios. Drawing inspiration from recent advances, our framework employs an asymmetric expert distribution where deeper layers are equipped with a higher density of LoRA experts to capture complex semantic abstractions. We further introduce a "Knowledge-Preservation Plugin", inspired by LoRA MoE, to isolate and protect general-purpose reasoning. By utilizing soft merging with adaptive routing and rank-wise decoupling, Med-MoE-LoRA achieves superior performance in medical benchmarks while reducing interference. Experimental results demonstrate that our approach consistently outperforms standard LoRA and conventional MoE architectures across multiple clinical NLP tasks while retaining the model's general cognitive capabilities.
comment: Work in Progress
Transformer-Based Approach for Automated Functional Group Replacement in Chemical Compounds AAAI
Functional group replacement is a pivotal approach in cheminformatics to enable the design of novel chemical compounds with tailored properties. Traditional methods for functional group removal and replacement often rely on rule-based heuristics, which can be limited in their ability to generate diverse and novel chemical structures. Recently, transformer-based models have shown promise in improving the accuracy and efficiency of molecular transformations, but existing approaches typically focus on single-step modeling, lacking the guarantee of structural similarity. In this work, we seek to advance the state of the art by developing a novel two-stage transformer model for functional group removal and replacement. Unlike one-shot approaches that generate entire molecules in a single pass, our method generates the functional group to be removed and appended sequentially, ensuring strict substructure-level modifications. Using a matched molecular pairs (MMPs) dataset derived from ChEMBL, we trained an encoder-decoder transformer model with SMIRKS-based representations to capture transformation rules effectively. Extensive evaluations demonstrate our method's ability to generate chemically valid transformations, explore diverse chemical spaces, and maintain scalability across varying search sizes.
comment: The 2nd AAAI Workshop on Foundation Models for Biological Discoveries at AAAI 2025
Enhancing Large Language Models for Time-Series Forecasting via Vector-Injected In-Context Learning
The World Wide Web needs reliable predictive capabilities to respond to changes in user behavior and usage patterns. Time series forecasting (TSF) is a key means to achieve this goal. In recent years, the large language models (LLMs) for TSF (LLM4TSF) have achieved good performance. However, there is a significant difference between pretraining corpora and time series data, making it hard to guarantee forecasting quality when directly applying LLMs to TSF; fine-tuning LLMs can mitigate this issue, but often incurs substantial computational overhead. Thus, LLM4TSF faces a dual challenge of prediction performance and compute overhead. To address this, we aim to explore a method for improving the forecasting performance of LLM4TSF while freezing all LLM parameters to reduce computational overhead. Inspired by in-context learning (ICL), we propose LVICL. LVICL uses our vector-injected ICL to inject example information into a frozen LLM, eliciting its in-context learning ability and thereby enhancing its performance on the example-related task (i.e., TSF). Specifically, we first use the LLM together with a learnable context vector adapter to extract a context vector from multiple examples adaptively. This vector contains compressed, example-related information. Subsequently, during the forward pass, we inject this vector into every layer of the LLM to improve forecasting performance. Compared with conventional ICL that adds examples into the prompt, our vector-injected ICL does not increase prompt length; moreover, adaptively deriving a context vector from examples suppresses components harmful to forecasting, thereby improving model performance. Extensive experiments demonstrate the effectiveness of our approach.
Decentralized Online Convex Optimization with Unknown Feedback Delays
Decentralized online convex optimization (D-OCO), where multiple agents within a network collaboratively learn optimal decisions in real-time, arises naturally in applications such as federated learning, sensor networks, and multi-agent control. In this paper, we study D-OCO under unknown, time-and agent-varying feedback delays. While recent work has addressed this problem (Nguyen et al., 2024), existing algorithms assume prior knowledge of the total delay over agents and still suffer from suboptimal dependence on both the delay and network parameters. To overcome these limitations, we propose a novel algorithm that achieves an improved regret bound of O N $\sqrt$ d tot + N $\sqrt$ T (1-$σ$2) 1/4 , where T is the total horizon, d tot denotes the average total delay across agents, N is the number of agents, and 1 -$σ$ 2 is the spectral gap of the network. Our approach builds upon recent advances in D-OCO (Wan et al., 2024a), but crucially incorporates an adaptive learning rate mechanism via a decentralized communication protocol. This enables each agent to estimate delays locally using a gossip-based strategy without the prior knowledge of the total delay. We further extend our framework to the strongly convex setting and derive a sharper regret bound of O N $δ$max ln T $α$ , where $α$ is the strong convexity parameter and $δ$ max is the maximum number of missing observations averaged over agents. We also show that our upper bounds for both settings are tight up to logarithmic factors. Experimental results validate the effectiveness of our approach, showing improvements over existing benchmark algorithms.
Large Language Models and Algorithm Execution: Application to an Arithmetic Function
Large Language Models (LLMs) have recently developed new advanced functionalities. Their effectiveness relies on statistical learning and generalization capabilities. However, they face limitations in internalizing the data they process and struggle, for instance, to autonomously execute algorithms. In this paper, we investigate the possibility of extending these models' capabilities to algorithm execution through specialized supervised training focused on reasoning decomposition. We introduce a training model called LLM-DAL (Large Language Model - Decompositional Algorithmic Learning), through which we demonstrate that LLMs' ability to perform complex algorithmic inferences and generalize can be significantly improved when the training method is properly designed to guide the model in its learning process.
CLAPS: Posterior-Aware Conformal Intervals via Last-Layer Laplace
We present CLAPS, a posterior-aware conformal regression method that pairs a Last-Layer Laplace Approximation with split-conformal calibration. From the resulting Gaussian posterior, CLAPS defines a simple two-sided posterior CDF score that aligns the conformity metric with the full predictive shape, not just a point estimate. This alignment can yield substantially narrower prediction intervals at a fixed target coverage, particularly on small to medium tabular datasets where data are scarce and uncertainty modeling is informative. We also provide a lightweight diagnostic suite that separates aleatoric and epistemic components and visualizes posterior behavior, helping practitioners assess when and why intervals shrink. Across multiple benchmarks using the same MLP backbone, CLAPS achieves nominal coverage and offers the most efficient intervals on small to medium datasets with mild heterogeneity, while remaining competitive and diagnostically transparent on large-scale heterogeneous data where Normalized-CP and CQR attain the tightest intervals.
comment: Revised for clarity and correctness; improved exposition and fixed minor issues
EEG-to-fMRI synthesis of task-evoked and spontaneous brain activity: addressing issues of statistical significance and generalizability
A growing interest has developed in the problem of training models of EEG features to predict brain activity measured using fMRI, i.e. the problem of EEG-to-fMRI synthesis. Despite some reported success, the statistical significance and generalizability of EEG-to-fMRI predictions remains to be fully demonstrated. Here, we investigate the predictive power of EEG for both task-evoked and spontaneous activity of the somatomotor network measured by fMRI, based on data collected from healthy subjects in two different sessions. We trained subject-specific distributed-lag linear models of time-varying, multi-channel EEG spectral power using Sparse Group LASSO regularization, and we showed that learned models outperformed conventional EEG somatomotor rhythm predictors as well as massive univariate correlation models. Furthermore, we showed that learned models were statistically significantly better than appropriate null models in most subjects and conditions, although less frequently for spontaneous compared to task-evoked activity. Critically, predictions improved significantly when training and testing on data acquired in the same session relative to across sessions, highlighting the importance of temporally separating the collection of train and test data to avoid data leakage and optimistic bias in model generalization. In sum, while we demonstrate that EEG models can provide fMRI predictions with statistical significance, we also show that predictive power is impaired for spontaneous fluctuations in brain activity and for models trained on data acquired in a different session. Our findings highlight the need to explicitly consider these often overlooked issues in the growing literature of EEG-to-fMRI synthesis.
The Power of Iterative Filtering for Supervised Learning with (Heavy) Contamination
Inspired by recent work on learning with distribution shift, we give a general outlier removal algorithm called iterative polynomial filtering and show a number of striking applications for supervised learning with contamination: (1) We show that any function class that can be approximated by low-degree polynomials with respect to a hypercontractive distribution can be efficiently learned under bounded contamination (also known as nasty noise). This is a surprising resolution to a longstanding gap between the complexity of agnostic learning and learning with contamination, as it was widely believed that low-degree approximators only implied tolerance to label noise. In particular, it implies the first efficient algorithm for learning halfspaces with $η$-bounded contamination up to error $2η+ε$ with respect to the Gaussian distribution. (2) For any function class that admits the (stronger) notion of sandwiching approximators, we obtain near-optimal learning guarantees even with respect to heavy additive contamination, where far more than $1/2$ of the training set may be added adversarially. Prior related work held only for regression and in a list-decodable setting. (3) We obtain the first efficient algorithms for tolerant testable learning of functions of halfspaces with respect to any fixed log-concave distribution. Even the non-tolerant case for a single halfspace in this setting had remained open. These results significantly advance our understanding of efficient supervised learning under contamination, a setting that has been much less studied than its unsupervised counterpart.
comment: 36 pages
ORACLE: Explaining Feature Interactions in Neural Networks with ANOVA
We introduce ORACLE, a framework for explaining neural networks on tabular data and scientific factorial designs. ORACLE summarizes a trained network's prediction surface with main effects and pairwise interactions by treating the network as a black-box response, discretizing the inputs onto a grid, and fitting an orthogonal factorial (ANOVA-style) surrogate -- the $L^2$ orthogonal projection of the model response onto a finite-dimensional factorial subspace. A simple centering and $μ$-rebalancing step then expresses this surrogate as main- and interaction-effect tables that remain faithful to the original model in the $L^2$ sense. The resulting grid-based interaction maps are easy to visualize, comparable across backbones, and directly aligned with classical design-of-experiments practice. On synthetic factorial benchmarks and low- to medium-dimensional tabular regression tasks, ORACLE more accurately recovers ground-truth interaction structure and hotspots than Monte Carlo SHAP-family interaction methods, as measured by ranking, localization, and cross-backbone stability. We also discuss its scope in latent image and text settings: grid-based factorial surrogates are most effective when features admit an interpretable factorial structure, making ORACLE particularly well-suited to scientific and engineering workflows that require stable DoE-style interaction summaries.
comment: v4: Revised for clarity and correctness; improved exposition and fixed minor issues
MixtureVitae: Open Web-Scale Pretraining Dataset With High Quality Instruction and Reasoning Data Built from Permissive-First Text Sources
We present MixtureVitae, an open-access pretraining corpus built to minimize legal risk while providing strong downstream performance. MixtureVitae follows a permissive-first, risk-mitigated sourcing strategy that combines public-domain and permissively licensed text (e.g., CC-BY/Apache) with carefully justified low-risk additions (e.g., government works and EU TDM-eligible sources). MixtureVitae adopts a simple, single-stage pretraining recipe that integrates a large proportion of permissive synthetic instruction and reasoning data-signals typically introduced during post-training and generally scarce in permissive web corpora. We categorize all sources into a three-tier scheme that reflects varying risk levels and provide shard-level provenance metadata to enable risk-aware usage. In controlled experiments using the open-sci-ref training protocol (fixed architectures and hyperparameters; 50B and 300B token budgets across 130M-1.7B parameters), models trained on MixtureVitae consistently outperform other permissive datasets across a suite of standard benchmarks, and at the 1.7B-parameters/300B-tokens setting, they surpass FineWeb-Edu and approach DCLM late in training. Performance is particularly strong on MMLU and on math and code benchmarks: a 1.7B model pretrained on 300B MixtureVitae tokens matches or exceeds a strong 1.7B instruction-tuned baseline on GSM8K, HumanEval, and MBPP, despite using over 36 times fewer tokens (300B vs. ~11T). Supported by a thorough decontamination analysis, these results show that permissive-first data with high instruction and reasoning density, tiered by licensing and provenance-related risk, can provide a practical and risk-mitigated foundation for training capable LLMs, reducing reliance on broad web scrapes without sacrificing competitiveness. Code: https://github.com/ontocord/mixturevitae
comment: Code: \url{https://github.com/ontocord/mixturevitae}
Discovering Coordinated Joint Options via Inter-Agent Relative Dynamics
Temporally extended actions improve the ability to explore and plan in single-agent settings. In multi-agent settings, the exponential growth of the joint state space with the number of agents makes coordinated behaviours even more valuable. Yet, this same exponential growth renders the design of multi-agent options particularly challenging. Existing multi-agent option discovery methods often sacrifice coordination by producing loosely coupled or fully independent behaviours. Toward addressing these limitations, we describe a novel approach for multi-agent option discovery. Specifically, we propose a joint-state abstraction that compresses the state space while preserving the information necessary to discover strongly coordinated behaviours. Our approach builds on the inductive bias that synchronisation over agent states provides a natural foundation for coordination in the absence of explicit objectives. We first approximate a fictitious state of maximal alignment with the team, the \textit{Fermat} state, and use it to define a measure of \textit{spreadness}, capturing team-level misalignment on each individual state dimension. Building on this representation, we then employ a neural graph Laplacian estimator to derive options that capture state synchronisation patterns between agents. We evaluate the resulting options across multiple scenarios in two multi-agent domains, showing that they yield stronger downstream coordination capabilities compared to alternative option discovery methods.
StarFlow: Generating Structured Workflow Outputs From Sketch Images
Workflows are a fundamental component of automation in enterprise platforms, enabling the orchestration of tasks, data processing, and system integrations. Despite being widely used, building workflows can be complex, often requiring manual configuration through low-code platforms or visual programming tools. To simplify this process, we explore the use of generative foundation models, particularly vision-language models (VLMs), to automatically generate structured workflows from visual inputs. Translating hand-drawn sketches or computer-generated diagrams into executable workflows is challenging due to the ambiguity of free-form drawings, variations in diagram styles, and the difficulty of inferring execution logic from visual elements. To address this, we introduce StarFlow, a framework for generating structured workflow outputs from sketches using vision-language models. We curate a diverse dataset of workflow diagrams -- including synthetic, manually annotated, and real-world samples -- to enable robust training and evaluation. We finetune and benchmark multiple vision-language models, conducting a series of ablation studies to analyze the strengths and limitations of our approach. Our results show that finetuning significantly enhances structured workflow generation, outperforming large vision-language models on this task.
comment: To be presented at EACL2026
AgentCompress: Task-Aware Compression for Affordable Large Language Model Agents
Large language models hold considerable promise for various applications, but their computational requirements create a barrier that many institutions cannot overcome. A single session using a 70-billion-parameter model can cost around $127 in cloud computing fees, which puts these tools out of reach for organizations operating on limited budgets. We present AgentCompress, a framework that tackles this problem through task-aware dynamic compression. The idea comes from a simple observation: not all tasks require the same computational effort. Complex reasoning, for example, is far more demanding than text reformatting, yet conventional compression applies the same reduction to both. Our approach uses a lightweight neural controller that looks at the first few tokens of each request, estimates how complex the task will be, and sends it to an appropriately quantized version of the model. This routing step adds only about 12 milliseconds of overhead. We tested the framework on 290 multi-stage workflows from domains including computer science, physics, chemistry, and biology. The results show a 68.3% reduction in computational costs while preserving 96.2% of the original success rate. These findings suggest that routing queries intelligently can make powerful language models substantially more affordable without sacrificing output quality
Metaphors are a Source of Cross-Domain Misalignment of Large Reasoning Models
Earlier research has shown that metaphors influence human's decision making, which raises the question of whether metaphors also influence large language models (LLMs)' reasoning pathways, considering their training data contain a large number of metaphors. In this work, we investigate the problem in the scope of the emergent misalignment problem where LLMs can generalize patterns learned from misaligned content in one domain to another domain. We discover a strong causal relationship between metaphors in training data and the misalignment degree of LLMs' reasoning contents. With interventions using metaphors in pre-training, fine-tuning and re-alignment phases, models' cross-domain misalignment degrees change significantly. As we delve deeper into the causes behind this phenomenon, we observe that there is a connection between metaphors and the activation of global and local latent features of large reasoning models. By monitoring these latent features, we design a detector that predict misaligned content with high accuracy.
comment: 17 pages, 7 figures
Towards Mitigating Excessive Forgetting in LLM Unlearning via Entanglement-Guidance with Proxy Constraint
Large language models (LLMs) are trained on massive datasets that may include private or copyrighted content. Due to growing privacy and ownership concerns, data owners may request the removal of their data from trained models. Machine unlearning provides a practical solution by removing the influence of specific data without full retraining. However, most existing methods still suffer from over-unlearning due to the lack of a principled mechanism to regulate the forgetting boundary, leading to unnecessary utility degradation and heightened privacy and robustness risks. In this work, we propose EGUP (Entanglement-Guided Unlearning with Proxy Constraint), a novel framework that leverages entanglement and proxy constraint to guide the unlearning process while mitigating over-unlearning. Within each iteration, EGUP employs inter-sample entanglement to adaptively reweight the unlearning strength, assigning greater unlearning efforts to forget samples that are semantically closer to retained knowledge. Across iterations, EGUP leverages intra-sample entanglement to track the representation shift of each forget sample and dynamically adjust its unlearning effort. In addition, we incorporate a proxy constraint that approximates the model's expected outputs after unlearning, forming a reference boundary that softly regularizes the unlearning process. EGUP is compatible with existing gradient-based objectives and serves as a plug-and-play enhancement. We evaluate EGUP on the TOFU and MUSE benchmarks, demonstrating consistent improvements in the unlearning-utility trade-off across multiple LLMs. Moreover, EGUP achieves performance close to the retrained model while remaining scalable and robust.
Bayesian Surrogates for Risk-Aware Pre-Assessment of Aging Bridge Portfolios NeurIPS 2025
Aging infrastructure portfolios pose a critical resource allocation challenge: deciding which structures require intervention and which can safely remain in service. Structural assessments must balance the trade-off between cheaper, conservative analysis methods and accurate but costly simulations that do not scale portfolio-wide. We propose Bayesian neural network (BNN) surrogates for rapid structural pre-assessment of worldwide common bridge types, such as reinforced concrete frame bridges. Trained on a large-scale database of non-linear finite element analyses generated via a parametric pipeline and developed based on the Swiss Federal Railway's bridge portfolio, the models accurately and efficiently estimate high-fidelity structural analysis results by predicting code compliance factors with calibrated epistemic uncertainty. Our BNN surrogate enables fast, uncertainty-aware triage: flagging likely critical structures and providing guidance where refined analysis is pertinent. We demonstrate the framework's effectiveness in a real-world case study of a railway underpass, showing its potential to significantly reduce costs and emissions by avoiding unnecessary analyses and physical interventions across entire infrastructure portfolios.
comment: Accepted at the NeurIPS 2025 Workshop on MLxOR: Mathematical Foundations and Operational Integration of Machine Learning for Uncertainty-Aware Decision-Making
MiST: Understanding the Role of Mid-Stage Scientific Training in Developing Chemical Reasoning Models
Large Language Models can develop reasoning capabilities through online fine-tuning with rule-based rewards. However, recent studies reveal a critical constraint: reinforcement learning succeeds only when the base model already assigns non-negligible probability to correct answers -- a property we term 'latent solvability'. This work investigates the emergence of chemical reasoning capabilities and what these prerequisites mean for chemistry. We identify two necessary conditions for RL-based chemical reasoning: 1) Symbolic competence, and 2) Latent chemical knowledge. We propose mid-stage scientific training (MiST): a set of mid-stage training techniques to satisfy these, including data-mixing with SMILES/CIF-aware pre-processing, continued pre-training on 2.9B tokens, and supervised fine-tuning on 1B tokens. These steps raise the latent-solvability score on 3B and 7B models by up to 1.8x, and enable RL to lift top-1 accuracy from 10.9 to 63.9% on organic reaction naming, and from 40.6 to 67.4% on inorganic material generation. Similar results are observed for other challenging chemical tasks, while producing interpretable reasoning traces. Our results define clear prerequisites for chemical reasoning training and highlight the broader role of mid-stage training in unlocking reasoning capabilities.
FBFL: A Field-Based Coordination Approach for Data Heterogeneity in Federated Learning
In the last years, Federated learning (FL) has become a popular solution to train machine learning models in domains with high privacy concerns. However, FL scalability and performance face significant challenges in real-world deployments where data across devices are non-independently and identically distributed (non-IID). The heterogeneity in data distribution frequently arises from spatial distribution of devices, leading to degraded model performance in the absence of proper handling. Additionally, FL typical reliance on centralized architectures introduces bottlenecks and single-point-of-failure risks, particularly problematic at scale or in dynamic environments. To close this gap, we propose Field-Based Federated Learning (FBFL), a novel approach leveraging macroprogramming and field coordination to address these limitations through: (i) distributed spatial-based leader election for personalization to mitigate non-IID data challenges; and (ii) construction of a self-organizing, hierarchical architecture using advanced macroprogramming patterns. Moreover, FBFL not only overcomes the aforementioned limitations, but also enables the development of more specialized models tailored to the specific data distribution in each subregion. This paper formalizes FBFL and evaluates it extensively using MNIST, FashionMNIST, and Extended MNIST datasets. We demonstrate that, when operating under IID data conditions, FBFL performs comparably to the widely-used FedAvg algorithm. Furthermore, in challenging non-IID scenarios, FBFL not only outperforms FedAvg but also surpasses other state-of-the-art methods, namely FedProx and Scaffold, which have been specifically designed to address non-IID data distributions. Additionally, we showcase the resilience of FBFL's self-organizing hierarchical architecture against server failures.
Enhancing Binary Encoded Crime Linkage Analysis Using Siamese Network AAAI 2026
Effective crime linkage analysis is crucial for identifying serial offenders and enhancing public safety. To address limitations of traditional crime linkage methods in handling high-dimensional, sparse, and heterogeneous data, we propose a Siamese Autoencoder framework that learns meaningful latent representations and uncovers correlations in complex crime data. Using data from the Violent Crime Linkage Analysis System (ViCLAS), maintained by the Serious Crime Analysis Section of the UK's National Crime Agency, our approach mitigates signal dilution in sparse feature spaces by integrating geographic-temporal features at the decoder stage. This design amplifies behavioral representations rather than allowing them to be overshadowed at the input level, yielding consistent improvements across multiple evaluation metrics. We further analyze how different domain-informed data reduction strategies influence model performance, providing practical guidance for preprocessing in crime linkage contexts. Our results show that advanced machine learning approaches can substantially enhance linkage accuracy, improving AUC by up to 9% over traditional methods while offering interpretable insights to support investigative decision-making.
comment: AAAI 2026, 7 pages, 4 figures
An Information-Minimal Geometry for Qubit-Efficient Optimization
Qubit-efficient optimization studies how large combinatorial problems can be addressed with quantum circuits whose width is far smaller than the number of logical variables. In quadratic unconstrained binary optimization (QUBO), objective values depend only on one- and two-body statistics, yet standard variational algorithms explore exponentially large Hilbert spaces. We recast qubit-efficient optimization as a geometric question: what is the minimal representation the objective itself requires? Focusing on QUBO problems, we show that enforcing mutual consistency among pairwise statistics defines a convex body -- the level-2 Sherali-Adams polytope -- that captures the information on which quadratic objectives depend. We operationalize this geometry in a minimal variational pipeline that separates representation, consistency, and decoding: a logarithmic-width circuit produces pairwise moments, a differentiable information projection enforces local feasibility, and a maximum-entropy ensemble provides a principled global decoder. This information-minimal construction achieves near-optimal approximation ratios on large unweighted Max-Cut instances (up to N=2000) at shallow depth, indicating that pairwise polyhedral geometry already captures the relevant structure in this regime. By making the information-minimal geometry explicit, this work establishes a clean baseline for qubit-efficient optimization and sharpens the question of where genuinely quantum structure becomes necessary.
comment: 39 pages, 9 figures. v2: Revised for clarity
Geometry-Aware Edge Pooling for Graph Neural Networks NeurIPS
Graph Neural Networks (GNNs) have shown significant success for graph-based tasks. Motivated by the prevalence of large datasets in real-world applications, pooling layers are crucial components of GNNs. By reducing the size of input graphs, pooling enables faster training and potentially better generalisation. However, existing pooling operations often optimise for the learning task at the expense of discarding fundamental graph structures, thus reducing interpretability. This leads to unreliable performance across dataset types, downstream tasks and pooling ratios. Addressing these concerns, we propose novel graph pooling layers for structure-aware pooling via edge collapses. Our methods leverage diffusion geometry and iteratively reduce a graph's size while preserving both its metric structure and its structural diversity. We guide pooling using magnitude, an isometry-invariant diversity measure, which permits us to control the fidelity of the pooling process. Further, we use the spread of a metric space as a faster and more stable alternative ensuring computational efficiency. Empirical results demonstrate that our methods (i) achieve top performance compared to alternative pooling layers across a range of diverse graph classification tasks, (ii) preserve key spectral properties of the input graphs, and (iii) retain high accuracy across varying pooling ratios.
comment: Accepted at the 39th Conference on Neural Information Processing Systems (NeurIPS) 2025. Our code is available at https://github.com/aidos-lab/mag_edge_pool
REXO: Indoor Multi-View Radar Object Detection via 3D Bounding Box Diffusion AAAI 2026
Multi-view indoor radar perception has drawn attention due to its cost-effectiveness and low privacy risks. Existing methods often rely on {implicit} cross-view radar feature association, such as proposal pairing in RFMask or query-to-feature cross-attention in RETR, which can lead to ambiguous feature matches and degraded detection in complex indoor scenes. To address these limitations, we propose \textbf{REXO} (multi-view Radar object dEtection with 3D bounding boX diffusiOn), which lifts the 2D bounding box (BBox) diffusion process of DiffusionDet into the 3D radar space. REXO utilizes these noisy 3D BBoxes to guide an {explicit} cross-view radar feature association, enhancing the cross-view radar-conditioned denoising process. By accounting for prior knowledge that the person is in contact with the ground, REXO reduces the number of diffusion parameters by determining them from this prior. Evaluated on two open indoor radar datasets, our approach surpasses state-of-the-art methods by a margin of +4.22 AP on the HIBER dataset and +11.02 AP on the MMVR dataset. The REXO implementation is available at https://github.com/merlresearch/radar-bbox-diffusion.
comment: 26 pages; Accepted to AAAI 2026; Code available at https://github.com/merlresearch/radar-bbox-diffusion
Modern Neuromorphic AI: From Intra-Token to Inter-Token Processing
The rapid growth of artificial intelligence (AI) has brought novel data processing and generative capabilities but also escalating energy requirements. This challenge motivates renewed interest in neuromorphic computing principles, which promise brain-like efficiency through discrete and sparse activations, recurrent dynamics, and non-linear feedback. In fact, modern AI architectures increasingly embody neuromorphic principles through heavily quantized activations, state-space dynamics, and sparse attention mechanisms. This paper elaborates on the connections between neuromorphic models, state-space models, and transformer architectures through the lens of the distinction between intra-token processing and inter-token processing. Most early work on neuromorphic AI was based on spiking neural networks (SNNs) for intra-token processing, i.e., for transformations involving multiple channels, or features, of the same vector input, such as the pixels of an image. In contrast, more recent research has explored how neuromorphic principles can be leveraged to design efficient inter-token processing methods, which selectively combine different information elements depending on their contextual relevance. Implementing associative memorization mechanisms, these approaches leverage state-space dynamics or sparse self-attention. Along with a systematic presentation of modern neuromorphic AI models through the lens of intra-token and inter-token processing, training methodologies for neuromorphic AI models are also reviewed. These range from surrogate gradients leveraging parallel convolutional processing to local learning rules based on reinforcement learning mechanisms.
On the Robustness of Age for Learning-Based Wireless Scheduling in Unknown Environments
The constrained combinatorial multi-armed bandit model has been widely employed to solve problems in wireless networking and related areas, including the problem of wireless scheduling for throughput optimization under unknown channel conditions. Most work in this area uses an algorithm design strategy that combines a bandit learning algorithm with the virtual queue technique to track the throughput constraint violation. These algorithms seek to minimize the virtual queue length in their algorithm design. However, in networks where channel conditions change abruptly, the resulting constraints may become infeasible, leading to unbounded growth in virtual queue lengths. In this paper, we make the key observation that the dynamics of the head-of-line age, i.e. the age of the oldest packet in the virtual queue, make it more robust when used in algorithm design compared to the virtual queue length. We therefore design a learning-based scheduling policy that uses the head-of-line age in place of the virtual queue length. We show that our policy matches state-of-the-art performance under i.i.d. network conditions. Crucially, we also show that the system remains stable even under abrupt changes in channel conditions and can rapidly recover from periods of constraint infeasibility.
comment: technical report of conference paper
Reimagining Anomalies: What If Anomalies Were Normal? AAAI 2026
Deep learning-based methods have achieved a breakthrough in image anomaly detection, but their complexity introduces a considerable challenge to understanding why an instance is predicted to be anomalous. We introduce a novel explanation method that generates multiple alternative modifications for each anomaly, capturing diverse concepts of anomalousness. Each modification is trained to be perceived as normal by the anomaly detector. The method provides a semantic explanation of the mechanism that triggered the detector, allowing users to explore ``what-if scenarios.'' Qualitative and quantitative analyses across various image datasets demonstrate that applying this method to state-of-the-art detectors provides high-quality semantic explanations.
comment: 38 pages, published as a conference paper at AAAI 2026
Backpropagation through space, time, and the brain
How physical networks of neurons, bound by spatio-temporal locality constraints, can perform efficient credit assignment, remains, to a large extent, an open question. In machine learning, the answer is almost universally given by the error backpropagation algorithm, through both space and time. However, this algorithm is well-known to rely on biologically implausible assumptions, in particular with respect to spatio-temporal (non-)locality. Alternative forward-propagation models such as real-time recurrent learning only partially solve the locality problem, but only at the cost of scaling, due to prohibitive storage requirements. We introduce Generalized Latent Equilibrium (GLE), a computational framework for fully local spatio-temporal credit assignment in physical, dynamical networks of neurons. We start by defining an energy based on neuron-local mismatches, from which we derive both neuronal dynamics via stationarity and parameter dynamics via gradient descent. The resulting dynamics can be interpreted as a real-time, biologically plausible approximation of backpropagation through space and time in deep cortical networks with continuous-time neuronal dynamics and continuously active, local synaptic plasticity. In particular, GLE exploits the morphology of dendritic trees to enable more complex information storage and processing in single neurons, as well as the ability of biological neurons to phase-shift their output rate with respect to their membrane potential, which is essential in both directions of information propagation. For the forward computation, it enables the mapping of time-continuous inputs to neuronal space, effectively performing a spatio-temporal convolution. For the backward computation, it permits the temporal inversion of feedback signals, which consequently approximate the adjoint variables necessary for useful parameter updates.
comment: First authorship shared by Benjamin Ellenberger and Paul Haider
Effectively Leveraging Momentum Terms in Stochastic Line Search Frameworks for Fast Optimization of Finite-Sum Problems
In this work, we address unconstrained finite-sum optimization problems, with particular focus on instances originating in large scale deep learning scenarios. Our main interest lies in the exploration of the relationship between recent line search approaches for stochastic optimization in the overparametrized regime and momentum directions. First, we point out that combining these two elements with computational benefits is not straightforward. To this aim, we propose a solution based on mini-batch persistency. We then introduce an algorithmic framework that exploits a mix of data persistency, conjugate-gradient type rules for the definition of the momentum parameter and stochastic line searches. The resulting algorithm provably possesses convergence properties under suitable assumptions and is empirically shown to outperform other popular methods from the literature, obtaining state-of-the-art results in both convex and nonconvex large scale training problems.
Towards Stable and Effective Reinforcement Learning for Mixture-of-Experts
Recent advances in reinforcement learning (RL) have substantially improved the training of large-scale language models, leading to significant gains in generation quality and reasoning ability. However, most existing research focuses on dense models, while RL training for Mixture-of-Experts (MoE) architectures remains underexplored. To address the instability commonly observed in MoE training, we propose a novel router-aware approach to optimize importance sampling (IS) weights in off-policy RL. Specifically, we design a rescaling strategy guided by router logits, which effectively reduces gradient variance and mitigates training divergence. Experimental results demonstrate that our method significantly improves both the convergence stability and the final performance of MoE models, highlighting the potential of RL algorithmic innovations tailored to MoE architectures and providing a promising direction for efficient training of large-scale expert models.
comment: Added additional experiments, improved analysis, and fixed minor issues
An information-matching approach to optimal experimental design and active learning
The efficacy of mathematical models heavily depends on the quality of the training data, yet collecting sufficient data is often expensive and challenging. Many modeling applications require inferring parameters only as a means to predict other quantities of interest (QoI). Because models often contain many unidentifiable (sloppy) parameters, QoIs often depend on a relatively small number of parameter combinations. Therefore, we introduce an information-matching criterion based on the Fisher Information Matrix to select the most informative training data from a candidate pool. This method ensures that the selected data contain sufficient information to learn only those parameters that are needed to constrain downstream QoIs. It is formulated as a convex optimization problem, making it scalable to large models and datasets. We demonstrate the effectiveness of this approach across various modeling problems in diverse scientific fields, including power systems and underwater acoustics. Finally, we use information-matching as a query function within an Active Learning loop for material science applications. In all these applications, we find that a relatively small set of optimal training data can provide the necessary information for achieving precise predictions. These results are encouraging for diverse future applications, particularly active learning in large machine learning models.
Uncovering the Computational Roles of Nonlinearity in Sequence Modeling Using Almost-Linear RNNs
Sequence modeling tasks across domains such as natural language processing, time series forecasting, and control require learning complex input-output mappings. Nonlinear recurrence is theoretically required for universal approximation of sequence-to-sequence functions, yet linear recurrent models often prove surprisingly effective. This raises the question of when nonlinearity is truly required. We present a framework to systematically dissect the functional role of nonlinearity in recurrent networks, identifying when it is computationally necessary and what mechanisms it enables. We address this using Almost Linear Recurrent Neural Networks (AL-RNNs), which allow recurrence nonlinearity to be gradually attenuated and decompose network dynamics into analyzable linear regimes, making computational mechanisms explicit. We illustrate the framework across diverse synthetic and real-world tasks, including classic sequence modeling benchmarks, a neuroscientific stimulus-selection task, and a multi-task suite. We demonstrate how the AL-RNN's piecewise linear structure enables identification of computational primitives such as gating, rule-based integration, and memory-dependent transients, revealing that these operations emerge within predominantly linear backbones. Across tasks, sparse nonlinearity improves interpretability by reducing and localizing nonlinear computations, promotes shared representations in multi-task settings, and reduces computational cost. Moreover, sparse nonlinearity acts as a useful inductive bias: in low-data regimes or when tasks require discrete switching between linear regimes, sparsely nonlinear models often match or exceed fully nonlinear architectures. Our findings provide a principled approach for identifying where nonlinearity is functionally necessary, guiding the design of recurrent architectures that balance performance, efficiency, and interpretability.
comment: Published in Transactions on Machine Learning Research (TMLR), https://openreview.net/forum?id=qI2Vt9P9rl
Rep3Net: An Approach Exploiting Multimodal Representation for Molecular Bioactivity Prediction
Accurate prediction of compound potency accelerates early-stage drug discovery by prioritizing candidates for experimental testing. However, many Quantitative Structure-Activity Relationship (QSAR) approaches for this prediction are constrained by their choice of molecular representation: handcrafted descriptors capture global properties but miss local topology, graph neural networks encode structure but often lack broader chemical context, and SMILES-based language models provide contextual patterns learned from large corpora but are seldom combined with structural features. To exploit these complementary signals, we introduce Rep3Net, a unified multimodal architecture that fuses RDKit molecular descriptors, graph-derived features from a residual graph-convolutional backbone, and ChemBERTa SMILES embeddings. We evaluate Rep3Net on a curated ChEMBL subset for Human PARP1 using fivefold cross validation. Rep3Net attains an MSE of $0.83\pm0.06$, RMSE of $0.91\pm0.03$, $R^{2}=0.43\pm0.01$, and yields Pearson and Spearman correlations of $0.66\pm0.01$ and $0.67\pm0.01$, respectively, substantially improving over several strong GNN baselines. In addition, Rep3Net achieves a favorable latency-to-parameter trade-off thanks to a single-layer GCN backbone and parallel frozen encoders. Ablations show that graph topology, ChemBERTa semantics, and handcrafted descriptors each contribute complementary information, with full fusion providing the largest error reduction. These results demonstrate that multimodal representation fusion can improve potency prediction for PARP1 and provide a scalable framework for virtual screening in early-stage drug discovery.
Simulation of Multivariate Extremes: a Wasserstein-Aitchison GAN approach
Economically responsible mitigation of multivariate extreme risks-such as extreme rainfall over large areas, large simultaneous variations in many stock prices, or widespread breakdowns in transportation systems-requires assessing the resilience of the systems under plausible stress scenarios. This paper uses Extreme Value Theory (EVT) to develop a new approach to simulating such multivariate extreme events. Specifically, we assume that after transformation to a standard scale the distribution of the random phenomenon of interest is multivariate regular varying and use this to provide a sampling procedure for extremes on the original scale. Our procedure combines a Wasserstein-Aitchison Generative Adversarial Network (WA-GAN) to simulate the tail dependence structure on the standard scale with joint modeling of the univariate marginal tails on the original scale. The WA-GAN procedure relies on the angular measure-encoding the distribution on the unit simplex of the angles of extreme observations-after transformation to Aitchison coordinates, which allows the Wasserstein-GAN algorithm to be run in a linear space. Our method is applied both to simulated data under various tail dependence scenarios and to a financial data set from the Kenneth French Data Library. The proposed algorithm demonstrates strong performance compared to existing alternatives in the literature, both in capturing tail dependence structures and in generating accurate new extreme observations.
comment: 40 pages
Multiperiodic Processes: Ergodic Sources with a Sublinear Entropy
We construct multiperiodic processes -- a simple example of stationary ergodic (but not mixing) processes over natural numbers that enjoy the vanishing entropy rate under a mild condition. Multiperiodic processes are supported on randomly shifted deterministic sequences called multiperiodic sequences, which can be efficiently generated using an algorithm called the Infinite Clock. Under a suitable parameterization, multiperiodic sequences exhibit relative frequencies of particular numbers given by Zipf's law. Exactly in the same setting, the respective multiperiodic processes satisfy an asymptotic power-law growth of block entropy, called Hilberg's law. Hilberg's law is deemed to hold for statistical language models, in particular.
comment: 29 pages; 1 figure
Multi-scale Graph Autoregressive Modeling: Molecular Property Prediction via Next Token Prediction
We present Connection-Aware Motif Sequencing (CamS), a graph-to-sequence representation that enables decoder-only Transformers to learn molecular graphs via standard next-token prediction (NTP). For molecular property prediction, SMILES-based NTP scales well but lacks explicit topology, whereas graph-native masked modeling captures connectivity but risks disrupting the pivotal chemical details (e.g., activity cliffs). CamS bridges this gap by serializing molecular graphs into structure-rich causal sequences. CamS first mines data-driven connection-aware motifs. It then serializes motifs via scaffold-rooted breadth-first search (BFS) to establish a stable core-to-periphery order. Crucially, CamS enables hierarchical modeling by concatenating sequences from fine to coarse motif scales, allowing the model to condition global scaffolds on dense, uncorrupted local structural evidence. We instantiate CamS-LLaMA by pre-training a vanilla LLaMA backbone on CamS sequences. It achieves state-of-the-art performance on MoleculeNet and the activity-cliff benchmark MoleculeACE, outperforming both SMILES-based language models and strong graph baselines. Interpretability analysis confirms that our multi-scale causal serialization effectively drives attention toward cliff-determining differences.
SegDAC: Improving Visual Reinforcement Learning by Extracting Dynamic Object-Centric Representations from Pretrained Vision Models
Visual reinforcement learning (RL) is challenging due to the need to extract useful representations from high-dimensional inputs while learning effective control from sparse and noisy rewards. Although large perception models exist, integrating them effectively into RL for visual generalization and improved sample efficiency remains difficult. We propose SegDAC, a Segmentation-Driven Actor-Critic method. SegDAC uses Segment Anything (SAM) for object-centric decomposition and YOLO-World to ground the image segmentation process via text inputs. It includes a novel transformer-based architecture that supports a dynamic number of segments at each time step and effectively learns which segments to focus on using online RL, without using human labels. By evaluating SegDAC over a challenging visual generalization benchmark using Maniskill3, which covers diverse manipulation tasks under strong visual perturbations, we demonstrate that SegDAC achieves significantly better visual generalization, doubling prior performance on the hardest setting and matching or surpassing prior methods in sample efficiency across all evaluated tasks. Project Page: https://segdac.github.io/
Iterative Methods for Full-Scale Gaussian Process Approximations for Large Spatial Data
Gaussian processes are flexible probabilistic regression models which are widely used in statistics and machine learning. However, a drawback is their limited scalability to large data sets. To alleviate this, full-scale approximations (FSAs) combine predictive process methods and covariance tapering, thus approximating both global and local structures. We show how iterative methods can be used to reduce computational costs in calculating likelihoods, gradients, and predictive distributions with FSAs. In particular, we introduce a novel preconditioner and show theoretically and empirically that it accelerates the conjugate gradient method's convergence speed and mitigates its sensitivity with respect to the FSA parameters and the eigenvalue structure of the original covariance matrix, and we demonstrate empirically that it outperforms a state-of-the-art pivoted Cholesky preconditioner. Furthermore, we introduce an accurate and fast way to calculate predictive variances using stochastic simulation and iterative methods. In addition, we show how our newly proposed fully independent training conditional (FITC) preconditioner can also be used in iterative methods for Vecchia approximations. In our experiments, it outperforms existing state-of-the-art preconditioners for Vecchia approximations. All methods are implemented in a free C++ software library with high-level Python and R packages.
Symbolic regression for defect interactions in 2D materials
Machine learning models have become firmly established across all scientific fields. Extracting features from data and making inferences based on them with neural network models often yields high accuracy; however, this approach has several drawbacks. Symbolic regression is a powerful technique for discovering analytical equations that describe data, providing interpretable and generalizable models capable of predicting unseen data. Symbolic regression methods have gained new momentum with the advancement of neural network technologies and offer several advantages, the main one being the interpretability of results. In this work, we examined the application of the deep symbolic regression algorithm SEGVAE to determine the properties of two-dimensional materials with defects. Comparing the results with state-of-the-art graph neural network-based methods shows comparable or, in some cases, even identical outcomes. We also discuss the applicability of this class of methods in natural sciences.
Intervention Efficiency and Perturbation Validation Framework: Capacity-Aware and Robust Clinical Model Selection under the Rashomon Effect AAAI 2026
In clinical machine learning, the coexistence of multiple models with comparable performance (a manifestation of the Rashomon Effect) poses fundamental challenges for trustworthy deployment and evaluation. Small, imbalanced, and noisy datasets, coupled with high-dimensional and weakly identified clinical features, amplify this multiplicity and make conventional validation schemes unreliable. As a result, selecting among equally performing models becomes uncertain, particularly when resource constraints and operational priorities are not considered by conventional metrics like F1 score. To address these issues, we propose two complementary tools for robust model assessment and selection: Intervention Efficiency (IE) and the Perturbation Validation Framework (PVF). IE is a capacity-aware metric that quantifies how efficiently a model identifies actionable true positives when only limited interventions are feasible, thereby linking predictive performance with clinical utility. PVF introduces a structured approach to assess the stability of models under data perturbations, identifying models whose performance remains most invariant across noisy or shifted validation sets. Empirical results on synthetic and real-world healthcare datasets show that using these tools facilitates the selection of models that generalize more robustly and align with capacity constraints, offering a new direction for tackling the Rashomon Effect in clinical settings.
comment: Accepted to the Workshop on Navigating Model Uncertainty and the Rashomon Effect: From Theory and Tools to Applications and Impact (AAAI 2026)
Beyond topography: Topographic regularization improves robustness and reshapes representations in convolutional neural networks
Topographic convolutional neural networks (TCNNs) are computational models that can simulate aspects of the brain's spatial and functional organization. However, it is unclear whether and how different types of topographic regularization shape robustness, representational structure, and functional organization during end-to-end training. We address this question by comparing TCNNs trained with two local spatial losses applied to a penultimate-layer topographic grid: i) Weight Similarity (WS), whose objective penalizes differences between neighboring units' incoming weight vectors, and ii) Activation Similarity (AS), whose objective penalizes differences between neighboring units' activation patterns over stimuli. We evaluate the trained models on classification accuracy, robustness to weight perturbations and input degradation, the spatial organization of learned representations, and development of category-selective "expert units" in the penultimate layer. Both losses changed inter-unit correlation structure, but in qualitatively different ways. WS produced smooth topographies, with correlated neighborhoods. In contrast, AS produced a bimodal inter-unit correlation structure that lacked spatial smoothness. AS and WS training increased robustness relative to control (non-topographic) models: AS improved robustness to image degradation on CIFAR-10, WS did so on MNIST, and both improved robustness to weight perturbations. WS was also associated with greater input sensitivity at the unit level and stronger functional localization. In addition, as compared to control models, both AS and WS produced differences in orientation tuning, symmetry sensitivity, and eccentricity profiles of units. Together, these results show that local topographic regularization can improve robustness during end-to-end training while systematically reshaping representational structure.
comment: Title updated, edits, expanded analysis of expert units
CaTS-Bench: Can Language Models Describe Time Series?
Time series captioning, the task of describing time series in natural language, requires numeric and temporal reasoning, trend interpretation, and contextual understanding. Existing benchmarks, however, often rely on fully synthetic or generic captions, and typically neglect metadata and visual representations. We introduce CaTS-Bench, a comprehensive benchmark for Context-aware Time Series reasoning across $11$ diverse domains, centered on a gold-standard evaluation set of $1746$ human-rewritten captions that measure how effectively models translate numeric trends into immediately interpretable narratives. To address the scarcity of human-annotated data, we also propose a scalable pipeline for generating high-fidelity synthetic captions, the quality of which we validate. We evaluate leading Vision-Language Models on our benchmark, revealing that even proprietary models struggle to capture numeric nuances in temporal descriptions, while finetuning open-source models on synthetic data yields substantial performance gains. Finally, we release a diagnostic suite of $910$ multiple-choice questions and tailored numeric metrics to gauge time-series-specific reasoning capabilities, establishing CaTS-Bench as a reliable foundation for grounded, multimodal language generation in numeric domains.
comment: 8 pages, 6 figures, 3 tables in the main paper. Many more in the appendix
Learning Design-Score Manifold to Guide Diffusion Models for Offline Optimization
Optimizing complex systems, from discovering therapeutic drugs to designing high-performance materials, remains a fundamental challenge across science and engineering, as the underlying rules are often unknown and costly to evaluate. Offline optimization aims to optimize designs for target scores using pre-collected datasets without system interaction. However, conventional approaches may fail beyond training data, predicting inaccurate scores and generating inferior designs. This paper introduces ManGO, a diffusion-based framework that learns the design-score manifold, capturing the design-score interdependencies holistically. Unlike existing methods that treat design and score spaces in isolation, ManGO unifies forward prediction and backward generation, attaining generalization beyond training data. Key to this is its derivative-free guidance for conditional generation, coupled with adaptive inference-time scaling that dynamically optimizes denoising paths. Extensive evaluations demonstrate that ManGO outperforms 24 single- and 10 multi-objective optimization methods across diverse domains, including synthetic tasks, robot control, material design, DNA sequence, and real-world engineering optimization.
comment: This manuscript was accepted by npj AI
EMP: Enhance Memory in Data Pruning
Recently, large language and vision models have shown strong performance, but due to high pre-training and fine-tuning costs, research has shifted towards faster training via dataset pruning. Previous methods used sample loss as an evaluation criterion, aiming to select the most "difficult" samples for training. However, when the pruning rate increases, the number of times each sample is trained becomes more evenly distributed, which causes many critical or general samples to not be effectively fitted. We refer to this as Low-Frequency Learning (LFL). In other words, LFL prevents the model from remembering most samples. In our work, we decompose the scoring function of LFL, provide a theoretical explanation for the inefficiency of LFL, and propose adding a memory term to the scoring function to enhance the model's memory capability, along with an approximation of this memory term. Similarly, we explore memory in Self-Supervised Learning (SSL), marking the first discussion on SSL memory. Using contrastive learning, we derive the memory term both theoretically and experimentally. Finally, we propose Enhance Memory Pruning (EMP), which addresses the issue of insufficient memory under high pruning rates by enhancing the model's memory of data, thereby improving its performance. We evaluated the performance of EMP in tasks such as image classification, natural language understanding, and model pre-training. The results show that EMP can improve model performance under extreme pruning rates. For example, in the CIFAR100-ResNet50 pre-training task, with 70\% pruning, EMP outperforms current methods by 2.2\%.
Multi-dimensional Autoscaling of Processing Services: A Comparison of Agent-based Methods
Edge computing breaks with traditional autoscaling due to strict resource constraints, thus, motivating more flexible scaling behaviors using multiple elasticity dimensions. This work introduces an agent-based autoscaling framework that dynamically adjusts both hardware resources and internal service configurations to maximize requirements fulfillment in constrained environments. We compare four types of scaling agents: Active Inference, Deep Q Network, Analysis of Structural Knowledge, and Deep Active Inference, using two real-world processing services running in parallel: YOLOv8 for visual recognition and OpenCV for QR code detection. Results show all agents achieve acceptable SLO performance with varying convergence patterns. While the Deep Q Network benefits from pre-training, the structural analysis converges quickly, and the deep active inference agent combines theoretical foundations with practical scalability advantages. Our findings provide evidence for the viability of multi-dimensional agent-based autoscaling for edge environments and encourage future work in this research direction.
RED-F: Reconstruction-Elimination based Dual-stream Contrastive Forecasting for Multivariate Time Series Anomaly Prediction
Anomaly prediction (AP) in multivariate time series (MTS) is crucial to ensure system dependability. Existing methods either focus solely on whether an anomaly is imminent without providing precise predictions for the future anomaly, or performing predictions directly on historical data, which is easily drowned out by the normal patterns. To address the challenges in AP task, we propose RED-F, a novel framework comprised of the Reconstruction-Elimination Model (REM) and the Dual-stream Contrastive Forecasting Model (DFM). We utilize REM to construct a baseline of normal patterns from historical data, providing a foundation for subsequent predictions of anomalies. Then DFM simultaneously predicts both the constructed normal pattern and the current window, employing a contrastive forecast that transforms the difficult AP task into a simpler, more robust task of relative trajectory comparison by computing the divergence between these two predictions. To enable the forecasting model to generate a prediction not easily obscured by normal patterns, we propose a Multi-Series Prediction (MSP) training objective to enhance its sensitivity to the current window. Extensive experiments on multiple real-world datasets demonstrate the superior capability of RED-F in anomaly prediction tasks. Our code is available at http://github.com/PenyChen/RED-F.
comment: 13 pages
Hierarchic Flows to Estimate and Sample High-dimensional Probabilities
Finding low-dimensional interpretable models of complex physical fields such as turbulence remains an open question, 80 years after the pioneer work of Kolmogorov. Estimating high-dimensional probability distributions from data samples suffers from an optimization and an approximation curse of dimensionality. It may be avoided by following a hierarchic probability flow from coarse to fine scales. This inverse renormalization group is defined by conditional probabilities across scales, renormalized in a wavelet basis. For a $\vvarphi^4$ scalar potential, sampling these hierarchic models avoids the critical slowing down at the phase transition. In a well chosen wavelet basis, conditional probabilities can be captured with low dimensional parametric models, because interactions between wavelet coefficients are local in space and scales. An outstanding issue is also to approximate non-Gaussian fields having long-range interactions in space and across scales. We introduce low-dimensional models of wavelet conditional probabilities with the scattering covariance. It is calculated with a second wavelet transform, which defines interactions over two hierarchies of scales. We estimate and sample these wavelet scattering models to generate 2D vorticity fields of turbulence, and images of dark matter densities.
Practical do-Shapley Explanations with Estimand-Agnostic Causal Inference NeurIPS 2025
Among explainability techniques, SHAP stands out as one of the most popular, but often overlooks the causal structure of the problem. In response, do-SHAP employs interventional queries, but its reliance on estimands hinders its practical application. To address this problem, we propose the use of estimand-agnostic approaches, which allow for the estimation of any identifiable query from a single model, making do-SHAP feasible on complex graphs. We also develop a novel algorithm to significantly accelerate its computation at a negligible cost, as well as a method to explain inaccessible Data Generating Processes. We demonstrate the estimation and computational performance of our approach, and validate it on two real-world datasets, highlighting its potential in obtaining reliable explanations.
comment: Published at NeurIPS 2025
Accelerating Targeted Hard-Label Adversarial Attacks in Low-Query Black-Box Settings
Deep neural networks for image classification remain vulnerable to adversarial examples -- small, imperceptible perturbations that induce misclassifications. In black-box settings, where only the final prediction is accessible, crafting targeted attacks that aim to misclassify into a specific target class is particularly challenging due to narrow decision regions. Current state-of-the-art methods often exploit the geometric properties of the decision boundary separating a source image and a target image rather than incorporating information from the images themselves. In contrast, we propose Targeted Edge-informed Attack (TEA), a novel attack that utilizes edge information from the target image to carefully perturb it, thereby producing an adversarial image that is closer to the source image while still achieving the desired target classification. Our approach consistently outperforms current state-of-the-art methods across different models in low query settings (nearly 70% fewer queries are used), a scenario especially relevant in real-world applications with limited queries and black-box access. Furthermore, by efficiently generating a suitable adversarial example, TEA provides an improved target initialization for established geometry-based attacks.
comment: This paper contains 10 pages, 8 figures and 8 tables. For associated supplementary code, see https://github.com/mdppml/TEA. This work has been accepted for publication at the IEEE Conference on Secure and Trustworthy Machine Learning (SaTML). The final version will be available on IEEE Xplore
ContextFocus: Activation Steering for Contextual Faithfulness in Large Language Models
Large Language Models (LLMs) encode vast amounts of parametric knowledge during pre-training. As world knowledge evolves, effective deployment increasingly depends on their ability to faithfully follow externally retrieved context. When such evidence conflicts with the model's internal knowledge, LLMs often default to memorized facts, producing unfaithful outputs. In this work, we introduce ContextFocus, a lightweight activation steering approach that improves context faithfulness in such knowledge-conflict settings while preserving fluency and efficiency. Unlike prior approaches, our solution requires no model finetuning and incurs minimal inference-time overhead, making it highly efficient. We evaluate ContextFocus on the ConFiQA benchmark, comparing it against strong baselines including ContextDPO, COIECD, and prompting-based methods. Furthermore, we show that our method is complementary to prompting strategies and remains effective on larger models. Extensive experiments show that ContextFocus significantly improves contextual-faithfulness. Our results highlight the effectiveness, robustness, and efficiency of ContextFocus in improving contextual-faithfulness of LLM outputs.
Studying Illustrations in Manuscripts: An Efficient Deep-Learning Approach
The recent Artificial Intelligence (AI) revolution has opened transformative possibilities for the humanities, particularly in unlocking the visual-artistic content embedded in historical illuminated manuscripts. While digital archives now offer unprecedented access to these materials, the ability to systematically locate, extract, and analyze illustrations at scale remains a major challenge. We present a general and scalable AI-based pipeline for large-scale visual analysis of illuminated manuscripts. The framework integrates modern deep-learning models for page-level illustration detection, illustration extraction, and multimodal description, enabling scholars to search, cluster, and study visual materials and artistic trends across entire corpora. We demonstrate the applicability of this approach on large heterogeneous collections, including the Vatican Library and richly illuminated manuscripts such as the Bible of Borso d'Este. The system reveals meaningful visual patterns and cross-manuscript relationships by embedding illustrations into a shared representation space and analyzing their similarity structure (see figure 4). By harnessing recent advances in computer vision and vision-language models, our framework enables new forms of large-scale visual scholarship in historical studies, art history, and cultural heritage making it possible to explore iconography, stylistic trends, and cultural connections in ways that were previously impractical.
comment: 17 pages, 5 figures
OptRot: Mitigating Weight Outliers via Data-Free Rotations for Post-Training Quantization
The presence of outliers in Large Language Models (LLMs) weights and activations makes them difficult to quantize. Recent work has leveraged rotations to mitigate these outliers. In this work, we propose methods that learn fusible rotations by minimizing principled and cheap proxy objectives to the weight quantization error. We primarily focus on GPTQ as the quantization method. Our main method is OptRot, which reduces weight outliers simply by minimizing the element-wise fourth power of the rotated weights. We show that OptRot outperforms both Hadamard rotations and more expensive, data-dependent methods like SpinQuant and OSTQuant for weight quantization. It also improves activation quantization in the W4A8 setting. We also propose a data-dependent method, OptRot$^{+}$, that further improves performance by incorporating information on the activation covariance. In the W4A4 setting, we see that both OptRot and OptRot$^{+}$ perform worse, highlighting a trade-off between weight and activation quantization.
comment: 25 pages, 10 figures
Robust and Efficient Zeroth-Order LLM Fine-Tuning via Adaptive Bayesian Subspace Optimizer
Fine-tuning large language models (LLMs) with zeroth-order (ZO) optimization reduces memory by approximating gradients through function evaluations. However, existing methods essentially perform updates in a one-dimensional space, and suffer from collapse or substantial performance degradation under low-precision training. We introduce BSZO, an adaptive \textbf{B}ayesian \textbf{S}ubspace \textbf{Z}eroth-Order \textbf{O}ptimizer, which applies Kalman filtering to combine finite-difference information across multiple perturbation directions within a subspace. By treating each finite-difference measurement as a noisy observation, BSZO builds a posterior distribution over the subspace-projected gradient and updates it through Bayesian inference, with a residual-based adaptive mechanism to adapt to noise variations. Theoretical analysis shows that BSZO improves the convergence rate by a factor of $k/γ$ compared to standard ZO methods. Experiments on RoBERTa, Mistral, and OPT models show that BSZO outperforms the baselines across various tasks, achieving up to 6.67\% absolute average improvement on OPT-13B while remaining robust under fp16/bf16 precision and keeping memory usage close to inference-only baselines (1.00$\times$--1.08$\times$ of MeZO).
comment: 19 pages, 2 figures, 4 tables
SPEC-RL: Accelerating On-Policy Reinforcement Learning with Speculative Rollouts
Large Language Models (LLMs) increasingly rely on reinforcement learning with verifiable rewards (RLVR) to elicit reliable chain-of-thought reasoning. However, the training process remains bottlenecked by the computationally expensive rollout stage. Existing acceleration methods-such as parallelization, objective- and data-driven modifications, and replay buffers-either incur diminishing returns, introduce bias, or overlook redundancy across iterations. We identify that rollouts from consecutive training epochs frequently share a large portion of overlapping segments, wasting computation. To address this, we propose SPEC-RL, a novel framework that integrates SPECulative decoding with the RL rollout process. SPEC-RL reuses prior trajectory segments as speculative prefixes and extends them via a draft-and-verify mechanism, avoiding redundant generation while ensuring policy consistency. Experiments on diverse math reasoning and generalization benchmarks, including AIME24, MATH-500, OlympiadBench, MMLU-STEM, and others, demonstrate that SPEC-RL reduces rollout time by 2-3x without compromising policy quality. As a purely rollout-stage enhancement, SPEC-RL integrates seamlessly with mainstream algorithms (e.g., PPO, GRPO, DAPO), offering a general and practical path to scale RLVR for large reasoning models. Our code is available at https://github.com/ShopeeLLM/Spec-RL
comment: fixed typos
BiTrajDiff: Bidirectional Trajectory Generation with Diffusion Models for Offline Reinforcement Learning
Recent advances in offline Reinforcement Learning (RL) have proven that effective policy learning can benefit from imposing conservative constraints on pre-collected datasets. However, such static datasets often exhibit distribution bias, resulting in limited generalizability. To address this limitation, a straightforward solution is data augmentation (DA), which leverages generative models to enrich data distribution. Despite the promising results, current DA techniques focus solely on reconstructing future trajectories from given states, while ignoring the exploration of history transitions that reach them. This single-direction paradigm inevitably hinders the discovery of diverse behavior patterns, especially those leading to critical states that may have yielded high-reward outcomes. In this work, we introduce Bidirectional Trajectory Diffusion (BiTrajDiff), a novel DA framework for offline RL that models both future and history trajectories from any intermediate states. Specifically, we decompose the trajectory generation task into two independent yet complementary diffusion processes: one generating forward trajectories to predict future dynamics, and the other generating backward trajectories to trace essential history transitions.BiTrajDiff can efficiently leverage critical states as anchors to expand into potentially valuable yet underexplored regions of the state space, thereby facilitating dataset diversity. Extensive experiments on the D4RL benchmark suite demonstrate that BiTrajDiff achieves superior performance compared to other advanced DA methods across various offline RL backbones.
GraphPerf-RT: A Graph-Driven Performance Model for Hardware-Aware Scheduling of OpenMP Codes
Performance prediction for OpenMP workloads on heterogeneous embedded SoCs is challenging due to complex interactions between task DAG structure, control-flow irregularity, cache and branch behavior, and thermal dynamics; classical heuristics struggle under workload irregularity, tabular regressors discard structural information, and model-free RL risks overheating resource-constrained devices. We introduce GraphPerf-RT, the first surrogate that unifies task DAG topology, CFG-derived code semantics, and runtime context (per-core DVFS, thermal state, utilization) in a heterogeneous graph representation with typed edges encoding precedence, placement, and contention. Multi-task evidential heads predict makespan, energy, cache and branch misses, and utilization with calibrated uncertainty (Normal-Inverse-Gamma), enabling risk-aware scheduling that filters low-confidence rollouts. We validate GraphPerf-RT on three embedded ARM platforms (Jetson TX2, Jetson Orin NX, RUBIK Pi), achieving R^2 > 0.95 with well-calibrated uncertainty (ECE < 0.05). To demonstrate end-to-end scheduling utility, we integrate the surrogate with four RL methods on Jetson TX2: single-agent model-free (SAMFRL), single-agent model-based (SAMBRL), multi-agent model-free (MAMFRL-D3QN), and multi-agent model-based (MAMBRL-D3QN). Experiments across 5 seeds (200 episodes each) show that MAMBRL-D3QN with GraphPerf-RT as the world model achieves 66% makespan reduction (0.97 +/- 0.35s) and 82% energy reduction (0.006 +/- 0.005J) compared to model-free baselines, demonstrating that accurate, uncertainty-aware surrogates enable effective model-based planning on thermally constrained embedded systems.
comment: 36 pages, 1 figure, 7 tables
SAD Neural Networks: Divergent Gradient Flows and Asymptotic Optimality via o-minimal Structures NeurIPS 2025
We study gradient flows for loss landscapes of fully connected feedforward neural networks with commonly used continuously differentiable activation functions such as the logistic, hyperbolic tangent, softplus or GELU function. We prove that the gradient flow either converges to a critical point or diverges to infinity while the loss converges to an asymptotic critical value. Moreover, we prove the existence of a threshold $\varepsilon>0$ such that the loss value of any gradient flow initialized at most $\varepsilon$ above the optimal level converges to it. For polynomial target functions and sufficiently big architecture and data set, we prove that the optimal loss value is zero and can only be realized asymptotically. From this setting, we deduce our main result that any gradient flow with sufficiently good initialization diverges to infinity. Our proof heavily relies on the geometry of o-minimal structures. We confirm these theoretical findings with numerical experiments and extend our investigation to more realistic scenarios, where we observe an analogous behavior.
comment: Accepted for NeurIPS 2025, 30 pages, 6 figures. The result about continuous data distributions now has an additional assumption since a gap was identified in a previous version of the proof
Graph Attention Specialized Expert Fusion Model for Node Classification: Based on Cora and Pubmed Datasets
Graph node classification is a fundamental task in graph neural networks (GNNs), aiming to assign predefined class labels to nodes. On the PubMed citation network dataset, we observe significant classification difficulty disparities, with Category 2 achieving only 74.4% accuracy in traditional GCN, 7.5% lower than Category 1. To address this, we propose a Wasserstein-Rubinstein (WR) distance enhanced Expert Fusion Model (WR-EFM), training specialized GNN models for Categories 0/1 (with layer normalization and residual connections) and Multi-hop Graph Attention Networks (GAT) for Category 2. The WR distance metric optimizes representation similarity between models, particularly focusing on improving Category 2 performance. Our adaptive fusion strategy dynamically weights models based on category-specific performance, with Category 2 assigned a GAT weight of 0.8. WR distance further guides the fusion process by measuring distributional differences between model representations, enabling more principled integration of complementary features. Experimental results show WR-EFM achieves balanced accuracy across categories: 77.8% (Category 0), 78.0% (Category 1), and 79.9% (Category 2), outperforming both single models and standard fusion approaches. The coefficient of variation (CV) of WR-EFM's category accuracies is 0.013, 77.6% lower than GCN's 0.058, demonstrating superior stability. Notably, WR-EFM improves Category 2 accuracy by 5.5% compared to GCN, verifying the effectiveness of WR-guided fusion in capturing complex structural patterns. This work provides a novel paradigm for handling class-imbalanced graph classification tasks. To promote the research community, we release our project at https://github.com/s010m00n/GASEM4NC.
comment: It's written so poorly, my bad
OrderFusion: Encoding Orderbook for End-to-End Probabilistic Intraday Electricity Price Forecasting
Probabilistic intraday electricity price forecasting is becoming increasingly important with the growth of renewable generation and the rise in demand-side engagement. Their uncertainties have increased the trading risks closer to delivery and the subsequent imbalance settlement costs. As a consequence, intraday trading has emerged to mitigate these risks. Unlike auction markets, intraday trading in many jurisdictions is characterized by the continuous posting of buy and sell orders on power exchange platforms. This dynamic orderbook microstructure of price formation presents special challenges for price forecasting. Conventional methods represent the orderbook via domain features aggregated from buy and sell trades, or by treating it as a multivariate time series, but such representations neglect the full buy-sell interaction structure of the orderbook. This research therefore develops a new order fusion methodology, which is an end-to-end and parameter-efficient probabilistic forecasting model that learns a full interaction-aware representation of the buy-sell dynamics. Furthermore, as quantile crossing is often a problem in probabilistic forecasting, this approach hierarchically estimates the quantiles with non-crossing constraints. Extensive experiments on the market price indices across high-liquidity (German) and low-liquidity (Austrian) markets demonstrate consistent improvements over conventional baselines, and ablation studies highlight the contributions of the main modeling components. The methodology is available at: https://runyao-yu.github.io/OrderFusion/.
comment: 10 pages, 3 figures, 5 tables
Approximating Persistent Homology for Large Datasets
Persistent homology is an important methodology in topological data analysis which adapts theory from algebraic topology to data settings. Computing persistent homology produces persistence diagrams, which have been successfully used in diverse domains. Despite its widespread use, persistent homology is simply impossible to compute when a dataset is very large. We study a statistical approach to the problem of computing persistent homology for massive datasets using a multiple subsampling framework and extend it to three summaries of persistent homology: Hölder continuous vectorizations of persistence diagrams; the alternative representation as persistence measures; and standard persistence diagrams. Specifically, we derive finite sample convergence rates for empirical means for persistent homology and practical guidance on interpreting and tuning parameters. We validate our approach through extensive experiments on both synthetic and real-world data. We demonstrate the performance of multiple subsampling in a permutation test to analyze the topological structure of Poincaré embeddings of large lexical databases.
comment: 42 pages, 11 figures
DyMixOp: Guiding Neural Operator Design for PDEs from a Complex Dynamics Perspective with Local-Global-Mixing
A primary challenge in using neural networks to approximate nonlinear dynamical systems governed by partial differential equations (PDEs) is transforming these systems into a suitable format, especially when dealing with non-linearizable dynamics or the need for infinite-dimensional spaces for linearization. This paper introduces DyMixOp, a novel neural operator framework for PDEs that integrates insights from complex dynamical systems to address this challenge. Grounded in inertial manifold theory, DyMixOp transforms infinite-dimensional nonlinear PDE dynamics into a finite-dimensional latent space, establishing a structured foundation that maintains essential nonlinear interactions and enhances physical interpretability. A key innovation is the Local-Global-Mixing (LGM) transformation, inspired by convection dynamics in turbulence. This transformation effectively captures both fine-scale details and nonlinear interactions, while mitigating spectral bias commonly found in existing neural operators. The framework is further strengthened by a dynamics-informed architecture that connects multiple LGM layers to approximate linear and nonlinear dynamics, reflecting the temporal evolution of dynamical systems. Experimental results across diverse PDE benchmarks demonstrate that DyMixOp achieves state-of-the-art performance, significantly reducing prediction errors, particularly in convection-dominated scenarios reaching up to 86.7\%, while maintaining computational efficiency and scalability.
Jailbreak-AudioBench: In-Depth Evaluation and Analysis of Jailbreak Threats for Large Audio Language Models
Large Language Models (LLMs) demonstrate impressive zero-shot performance across a wide range of natural language processing tasks. Integrating various modality encoders further expands their capabilities, giving rise to Multimodal Large Language Models (MLLMs) that process not only text but also visual and auditory modality inputs. However, these advanced capabilities may also pose significant safety problems, as models can be exploited to generate harmful or inappropriate content through jailbreak attacks. While prior work has extensively explored how manipulating textual or visual modality inputs can circumvent safeguards in LLMs and MLLMs, the vulnerability of audio-specific jailbreak on Large Audio-Language Models (LALMs) remains largely underexplored. To address this gap, we introduce Jailbreak-AudioBench, which consists of the Toolbox, curated Dataset, and comprehensive Benchmark. The Toolbox supports not only text-to-audio conversion but also various editing techniques for injecting audio hidden semantics. The curated Dataset provides diverse explicit and implicit jailbreak audio examples in both original and edited forms. Utilizing this dataset, we evaluate multiple state-of-the-art LALMs and establish the most comprehensive Jailbreak benchmark to date for audio modality. Finally, Jailbreak-AudioBench establishes a foundation for advancing future research on LALMs safety alignment by enabling the in-depth exposure of more powerful jailbreak threats, such as query-based audio editing, and by facilitating the development of effective defense mechanisms.
VMMU: A Vietnamese Multitask Multimodal Understanding and Reasoning Benchmark
We introduce VMMU, a Vietnamese Multitask Multimodal Understanding and Reasoning Benchmark designed to evaluate how vision-language models (VLMs) interpret and reason over visual and textual information beyond English. VMMU consists of 2.5k multimodal questions across 7 tasks, covering a diverse range of problem contexts, including STEM problem solving, data interpretation, rule-governed visual reasoning, and abstract visual reasoning. All questions require genuine multimodal integration, rather than reliance on text-only cues or OCR-based shortcuts. We evaluate a diverse set of state-of-the-art proprietary and open-source VLMs on VMMU. Despite strong Vietnamese OCR performance, proprietary models achieve only 66% mean accuracy. Further analysis shows that the primary source of failure is not OCR, but instead multimodal grounding and reasoning over text and visual evidence. Code and data are available at https://vmmu.github.io.
On the Design of One-step Diffusion via Shortcutting Flow Paths
Recent advances in few-step diffusion models have demonstrated their efficiency and effectiveness by shortcutting the probabilistic paths of diffusion models, especially in training one-step diffusion models from scratch (\emph{a.k.a.} shortcut models). However, their theoretical derivation and practical implementation are often closely coupled, which obscures the design space. To address this, we propose a common design framework for representative shortcut models. This framework provides theoretical justification for their validity and disentangles concrete component-level choices, thereby enabling systematic identification of improvements. With our proposed improvements, the resulting one-step model achieves a new state-of-the-art FID50k of 2.85 on ImageNet-256x256 under the classifier-free guidance setting with one step generation, and further reaches FID50k of 2.53 with 2x training steps. Remarkably, the model requires no pre-training, distillation, or curriculum learning. We believe our work lowers the barrier to component-level innovation in shortcut models and facilitates principled exploration of their design space.
comment: 10 pages of main body, conference paper
Aligning the Spectrum: Hybrid Graph Pre-training and Prompt Tuning across Homophily and Heterophily
Graph ``pre-training and prompt-tuning'' aligns downstream tasks with pre-trained objectives to enable efficient knowledge transfer under limited supervision. However, current methods typically rely on single-filter backbones (e.g., low-pass), whereas real-world graphs exhibit inherent spectral diversity. Our theoretical \textit{Spectral Specificity} principle reveals that effective knowledge transfer requires alignment between pre-trained spectral filters and the intrinsic spectrum of downstream graphs. This identifies two fundamental limitations: (1) Knowledge Bottleneck: single-filter models suffer from irreversible information loss by suppressing signals from other frequency bands (e.g., high-frequency); (2) Utilization Bottleneck: spectral mismatches between pre-trained filters and downstream spectra lead to significant underutilization of pre-trained knowledge. To bridge this gap, we propose HS-GPPT. We utilize a hybrid spectral backbone to construct an abundant knowledge basis. Crucially, we introduce Spectral-Aligned Prompt Tuning to actively align the downstream graph's spectrum with diverse pre-trained filters, facilitating comprehensive knowledge utilization across both homophily and heterophily. Extensive experiments validate the effectiveness under both transductive and inductive learning settings.
comment: Under Review
Transformers as Intrinsic Optimizers: Forward Inference through the Energy Principle
Attention-based Transformers have demonstrated strong adaptability across a wide range of tasks and have become the backbone of modern Large Language Models (LLMs). However, their underlying mechanisms remain open for further exploration. The energy-based perspective has long provided a valuable principle for understanding neural computation. In this paper, we revisit the principle of energy as a lens to understand attention-based Transformer models. We present a unified energy-based framework which is composed of three key components: the local energy $E_i$, the global energy $F$, and the employed optimization algorithms. We show that different attention forms including unnormalized linear attention, gated linear attention and standard softmax attention can be induced by choosing their corresponding recipes within this framework. Building on this framework, we propose energy-based modifications of attention structures. Inspired by classical gradient descent (GD) algorithms, we extend the original attention formulation based on standard GD to the momentum-based GD, Nesterov Accelerated Gradient (NAG), and Newton's method, each inducing a corresponding new attention structure. Our experiments provide preliminary support for the potential of the energy-based framework for designing attention mechanisms.
ADPO: Anchored Direct Preference Optimization
We present Anchored Direct Preference Optimization (ADPO), a policy alignment method derived from first principles of KL-regularized reinforcement learning. Unlike standard approaches that treat the reference policy merely as a regularizer, we show that the optimal policy in reinforcement learning from human feedback inherently operates in a differential coordinate system, optimizing relative advantage in the form of log ratios rather than absolute probabilities. ADPO explicitly parameterizes this optimal structure through anchored logits, effectively decoupling response quality from prior popularity and creating an implicit trust region through curvature scaling. We show that this formulation unifies supervised fine-tuning, reinforcement learning, and ranking-based objectives under a single geometric perspective. Theoretically, ADPO resolves the probability smearing problem of supervised fine-tuning while avoiding the mode-seeking instability characteristic of reverse-KL methods. Empirically, the listwise ranking variant of ADPO achieves state-of-the-art performance on reasoning tasks, outperforming GRPO by 30.9 percent on Qwen3-1.7B and demonstrating superior robustness under distribution shift.
Aligning Findings with Diagnosis: A Self-Consistent Reinforcement Learning Framework for Trustworthy Radiology Reporting
Multimodal Large Language Models (MLLMs) have shown strong potential for radiology report generation, yet their clinical translation is hindered by architectural heterogeneity and the prevalence of factual hallucinations. Standard supervised fine-tuning often fails to strictly align linguistic outputs with visual evidence, while existing reinforcement learning approaches struggle with either prohibitive computational costs or limited exploration. To address these challenges, we propose a comprehensive framework for self-consistent radiology report generation. First, we conduct a systematic evaluation to identify optimal vision encoder and LLM backbone configurations for medical imaging. Building on this foundation, we introduce a novel "Reason-then-Summarize" architecture optimized via Group Relative Policy Optimization (GRPO). This framework restructures generation into two distinct components: a think block for detailed findings and an answer block for structured disease labels. By utilizing a multi-dimensional composite reward function, we explicitly penalize logical discrepancies between the generated narrative and the final diagnosis. Extensive experiments on the MIMIC-CXR benchmark demonstrate that our method achieves state-of-the-art performance in clinical efficacy metrics and significantly reduces hallucinations compared to strong supervised baselines.
DB3 Team's Solution For Meta KDD Cup' 25
This paper presents the db3 team's winning solution for the Meta CRAG-MM Challenge 2025 at KDD Cup'25. Addressing the challenge's unique multi-modal, multi-turn question answering benchmark (CRAG-MM), we developed a comprehensive framework that integrates tailored retrieval pipelines for different tasks with a unified LLM-tuning approach for hallucination control. Our solution features (1) domain-specific retrieval pipelines handling image-indexed knowledge graphs, web sources, and multi-turn conversations; and (2) advanced refusal training using SFT, DPO, and RL. The system achieved 2nd place in Task 1, 2nd place in Task 2, and 1st place in Task 3, securing the grand prize for excellence in ego-centric queries through superior handling of first-person perspective challenges.
Bag of Coins: A Statistical Probe into Neural Confidence Structures
Modern neural networks often produce miscalibrated confidence scores and struggle to detect out-of-distribution (OOD) inputs, while most existing methods post-process outputs without testing internal consistency. We introduce the Bag-of-Coins (BoC) probe, a non-parametric diagnostic of logit coherence that compares softmax confidence $\hat p$ to an aggregate of pairwise Luce-style dominance probabilities $\bar q$, yielding a deterministic coherence score and a p-value-based structural score. Across ViT, ResNet, and RoBERTa with ID/OOD test sets, the coherence gap $Δ=\bar q-\hat p$ reveals clear ID/OOD separation for ViT (ID ${\sim}0.1$-$0.2$, OOD ${\sim}0.5$-$0.6$) but substantial overlap for ResNet and RoBERTa (both ${\sim}0$), indicating architecture-dependent uncertainty geometry. As a practical method, BoC improves calibration only when the base model is poorly calibrated (ViT: ECE $0.024$ vs.\ $0.180$) and underperforms standard calibrators (ECE ${\sim}0.005$), while for OOD detection it fails across architectures (AUROC $0.020$-$0.253$) compared to standard scores ($0.75$-$0.99$). We position BoC as a research diagnostic for interrogating how architectures encode uncertainty in logit geometry rather than a production calibration or OOD detection method.
Contextual Embedding-based Clustering to Identify Topics for Healthcare Service Improvement
Understanding patient feedback is crucial for improving healthcare services, yet analyzing unlabeled short-text feedback presents significant challenges due to limited data and domain-specific nuances. Traditional supervised learning approaches require extensive labeled datasets, making unsupervised methods more viable for uncovering meaningful insights from patient feedback. This study explores unsupervised methods to extract meaningful topics from 439 survey responses collected from a healthcare system in Wisconsin, USA. A keyword-based filtering approach was applied to isolate complaint-related feedback using a domain-specific lexicon. To delve deeper and analyze dominant topics in feedback, we explored traditional topic modeling methods, including Latent Dirichlet Allocation (LDA) and Gibbs Sampling Dirichlet Multinomial Mixture (GSDMM), alongside BERTopic, an advanced neural embedding-based clustering approach. To improve coherence and interpretability where data are scarce and consist of short-texts, we propose kBERT, an integration of BERT embeddings with k-means clustering. Model performance was assessed using coherence scores (Cv ) for topic interpretability and average Inverted Rank-Biased Overlap (IRBOavg) for topic diversity. Results indicate that kBERT achieves the highest coherence (Cv = 0.53) and distinct topic separation (IRBOavg = 1.00), outperforming all other models in short-text healthcare feedback analysis. Our findings emphasize the importance of embedding-based techniques for topic identification and highlight the need for context-aware models in healthcare analytics.
comment: The paper accepted at the 2025 IEEE COMPSAC, Toronto, Canada
Gems: Group Emotion Profiling Through Multimodal Situational Understanding
Understanding individual, group and event level emotions along with contextual information is crucial for analyzing a multi-person social situation. To achieve this, we frame emotion comprehension as the task of predicting fine-grained individual emotion to coarse grained group and event level emotion. We introduce GEMS that leverages a multimodal swin-transformer and S3Attention based architecture, which processes an input scene, group members, and context information to generate joint predictions. Existing multi-person emotion related benchmarks mainly focus on atomic interactions primarily based on emotion perception over time and group level. To this end, we extend and propose VGAF-GEMS to provide more fine grained and holistic analysis on top of existing group level annotation of VGAF dataset. GEMS aims to predict basic discrete and continuous emotions (including valence and arousal) as well as individual, group and event level perceived emotions. Our benchmarking effort links individual, group and situational emotional responses holistically. The quantitative and qualitative comparisons with adapted state-of-the-art models demonstrate the effectiveness of GEMS framework on VGAF-GEMS benchmarking. We believe that it will pave the way of further research. The code and data is available at: https://github.com/katariaak579/GEMS
Prophet as a Reproducible Forecasting Framework: A Methodological Guide for Business and Financial Analytics
Reproducibility remains a persistent challenge in forecasting research and practice, particularly in business and financial analytics, where forecasts inform high-stakes decisions. Traditional forecasting methods, while theoretically interpretable, often require extensive manual tuning and are difficult to replicate in proprietary environments. Machine learning approaches offer predictive flexibility but introduce challenges related to interpretability, stochastic training procedures, and cross-environment reproducibility. This paper examines Prophet, an open-source forecasting framework developed by Meta, as a reproducibility-enabling solution that balances interpretability, standardized workflows, and accessibility. Rather than proposing a new algorithm, this study evaluates how Prophet's additive structure, open-source implementation, and standardized workflow contribute to transparent and replicable forecasting practice. Using publicly available financial and retail datasets, we compare the performance and interpretability of Prophet with multiple ARIMA specifications (auto-selected, manually specified, and seasonal variants) and Random Forest, under a controlled and fully documented experimental design. This multi-model comparison provides a robust assessment of Prophet's relative performance and reproducibility advantages. Through concrete Python examples, we demonstrate how Prophet facilitates efficient forecasting workflows and integration with analytical pipelines. The study positions Prophet within the broader context of reproducible research. It highlights Prophet's role as a methodological building block that supports verification, auditability, and methodological rigor. This work provides researchers and practitioners with a practical reference framework for reproducible forecasting in Python-based research workflows.
Paris: A Decentralized Trained Open-Weight Diffusion Model
We present Paris, the first publicly released diffusion model pre-trained entirely through decentralized computation. Paris demonstrates that high-quality text-to-image generation can be achieved without centrally coordinated infrastructure. Paris is open for research and commercial use. Paris required implementing our Distributed Diffusion Training framework from scratch. The model consists of 8 expert diffusion models (129M-605M parameters each) trained in complete isolation with no gradient, parameter, or intermediate activation synchronization. Rather than requiring synchronized gradient updates across thousands of GPUs, we partition data into semantically coherent clusters where each expert independently optimizes its subset while collectively approximating the full distribution. A lightweight transformer router dynamically selects appropriate experts at inference, achieving generation quality comparable to centrally coordinated baselines. Eliminating synchronization enables training on heterogeneous hardware without specialized interconnects. Empirical validation confirms that Paris's decentralized training maintains generation quality while removing the dedicated GPU cluster requirement for large-scale diffusion models. Paris achieves this using 14$\times$ less training data and 16$\times$ less compute than the prior decentralized baseline.
Finite-Time Analysis of Simultaneous Double Q-learning
$Q$-learning is one of the most fundamental reinforcement learning (RL) algorithms. Despite its widespread success in various applications, it is prone to overestimation bias in the $Q$-learning update. To address this issue, double $Q$-learning employs two independent $Q$-estimators which are randomly selected and updated during the learning process. This paper proposes a modified double $Q$-learning, called simultaneous double $Q$-learning (SDQ), with its finite-time analysis. SDQ eliminates the need for random selection between the two $Q$-estimators, and this modification allows us to analyze double $Q$-learning through the lens of a novel switching system framework facilitating efficient finite-time analysis. Empirical studies demonstrate that SDQ converges faster than double $Q$-learning while retaining the ability to mitigate the maximization bias. Finally, we derive a finite-time expected error bound for SDQ.
comment: 31 pages, 4 figures
CFT-RAG: An Entity Tree Based Retrieval Augmented Generation Algorithm With Cuckoo Filter
Although retrieval-augmented generation(RAG) significantly improves generation quality by retrieving external knowledge bases and integrating generated content, it faces computational efficiency bottlenecks, particularly in knowledge retrieval tasks involving hierarchical structures for Tree-RAG. This paper proposes a Tree-RAG acceleration method based on the improved Cuckoo Filter, which optimizes entity localization during the retrieval process to achieve significant performance improvements. Tree-RAG effectively organizes entities through the introduction of a hierarchical tree structure, while the Cuckoo Filter serves as an efficient data structure that supports rapid membership queries and dynamic updates. The experiment results demonstrate that our method is much faster than naive Tree-RAG while maintaining high levels of generative quality. When the number of trees is large, our method is hundreds of times faster than naive Tree-RAG. Our work is available at https://github.com/TUPYP7180/CFT-RAG-2025.
comment: New research based on it has been conducted
DAST: Difficulty-Adaptive Slow-Thinking for Large Reasoning Models
Recent advancements in slow thinking reasoning models have shown exceptional performance in complex reasoning tasks. However, these models often exhibit overthinking (generating redundant reasoning steps for simple problems), leading to excessive computational resource usage. While current mitigation strategies uniformly reduce reasoning tokens, they risk degrading performance on challenging tasks that require extended reasoning. This paper introduces Difficulty-Adaptive Slow Thinking (DAST), a novel framework that enables models to autonomously adjust the length of Chain-of-Thought (CoT) based on problem difficulty. We first propose a Token Length Budget (TLB) metric to quantify difficulty, then leverage budget-aware reward shaping and budget preference optimization to implement DAST. DAST penalizes overlong responses for simple tasks while incentivizing sufficient reasoning for complex problems. Experiments on diverse datasets and model scales demonstrate that DAST effectively mitigates overthinking (reducing token usage by over 30\% on average) while preserving reasoning accuracy on complex problems. Our codes and models are available at https://github.com/AnonymousUser0520/AnonymousRepo01.
comment: EMNLP 2025 Industry Track
MoEMeta: Mixture-of-Experts Meta Learning for Few-Shot Relational Learning NeurIPS 2025
Few-shot knowledge graph relational learning seeks to perform reasoning over relations given only a limited number of training examples. While existing approaches largely adopt a meta-learning framework for enabling fast adaptation to new relations, they suffer from two key pitfalls. First, they learn relation meta-knowledge in isolation, failing to capture common relational patterns shared across tasks. Second, they struggle to effectively incorporate local, task-specific contexts crucial for rapid adaptation. To address these limitations, we propose MoEMeta, a novel meta-learning framework that disentangles globally shared knowledge from task-specific contexts to enable both effective model generalization and rapid adaptation. MoEMeta introduces two key innovations: (i) a mixture-of-experts (MoE) model that learns globally shared relational prototypes to enhance generalization, and (ii) a task-tailored adaptation mechanism that captures local contexts for fast task-specific adaptation. By balancing global generalization with local adaptability, MoEMeta significantly advances few-shot relational learning. Extensive experiments and analyses on three KG benchmarks show that MoEMeta consistently outperforms existing baselines, achieving state-of-the-art performance.
comment: Appear in NeurIPS 2025
A Concentration Bound for TD(0) with Function Approximation
We derive uniform all-time concentration bound of the type 'for all $n \geq n_0$ for some $n_0$' for TD(0) with linear function approximation. We work with online TD learning with samples from a single sample path of the underlying Markov chain. This makes our analysis significantly different from offline TD learning or TD learning with access to independent samples from the stationary distribution of the Markov chain. We treat TD(0) as a contractive stochastic approximation algorithm, with both martingale and Markov noises. Markov noise is handled using the Poisson equation and the lack of almost sure guarantees on boundedness of iterates is handled using the concept of relaxed concentration inequalities.
comment: Published in Stochastic Systems
Advancing time series completion via RFAMoE and MDFF
Recent studies show that using diffusion models for time series signal reconstruction holds great promise. However, such approaches remain largely unexplored in the domain of medical time series. The unique characteristics of the physiological time series signals, such as multivariate, high temporal variability, highly noisy, and artifact-prone, make deep learning-based approaches still challenging for tasks such as imputation. Hence, we propose a novel Mixture of Experts (MoE)-based noise estimator within a score-based diffusion framework. Specifically, the Receptive Field Adaptive MoE (RFAMoE) module is designed to enable each channel to adaptively select desired receptive fields throughout the diffusion process. Moreover, recent literature has found that when generating a physiological signal, performing multiple inferences and averaging the reconstructed signals can effectively reduce reconstruction errors, but at the cost of significant computational and latency overhead. We design a Fusion MoE module and innovatively leverage the nature of MoE module to generate K noise signals in parallel, fuse them using a routing mechanism, and complete signal reconstruction in a single inference step. This design not only improves performance over previous methods but also eliminates the substantial computational cost and latency associated with multiple inference processes. Extensive results demonstrate that our proposed framework consistently outperforms diffusion-based SOTA works on different tasks and datasets.
Investigating a Model-Agnostic and Imputation-Free Approach for Irregularly-Sampled Multivariate Time-Series Modeling
Modeling Irregularly-sampled and Multivariate Time Series (IMTS) is crucial across a variety of applications where different sets of variates may be missing at different time-steps due to sensor malfunctions or high data acquisition costs. Existing approaches for IMTS either consider a two-stage impute-then-model framework or involve specialized architectures specific to a particular model and task. We perform a series of experiments to derive novel insights about the performance of IMTS methods on a variety of semi-synthetic and real-world datasets for both classification and forecasting. We also introduce Missing Feature-aware Time Series Modeling (MissTSM) or MissTSM, a novel model-agnostic and imputation-free approach for IMTS modeling. We show that MissTSM shows competitive performance compared to other IMTS approaches, especially when the amount of missing values is large and the data lacks simplistic periodic structures - conditions common to real-world IMTS applications.
comment: Accepted at TMLR
Data-Driven Knowledge Transfer in Batch $Q^*$ Learning
In data-driven decision-making in marketing, healthcare, and education, it is desirable to utilize a large amount of data from existing ventures to navigate high-dimensional feature spaces and address data scarcity in new ventures. We explore knowledge transfer in dynamic decision-making by concentrating on batch stationary environments and formally defining task discrepancies through the lens of Markov decision processes (MDPs). We propose a framework of Transferred Fitted $Q$-Iteration algorithm with general function approximation, enabling the direct estimation of the optimal action-state function $Q^*$ using both target and source data. We establish the relationship between statistical performance and MDP task discrepancy under sieve approximation, shedding light on the impact of source and target sample sizes and task discrepancy on the effectiveness of knowledge transfer. We show that the final learning error of the $Q^*$ function is significantly improved from the single task rate both theoretically and empirically.
How to Backdoor the Knowledge Distillation
Knowledge distillation has become a cornerstone in modern machine learning systems, celebrated for its ability to transfer knowledge from a large, complex teacher model to a more efficient student model. Traditionally, this process is regarded as secure, assuming the teacher model is clean. This belief stems from conventional backdoor attacks relying on poisoned training data with backdoor triggers and attacker-chosen labels, which are not involved in the distillation process. Instead, knowledge distillation uses the outputs of a clean teacher model to guide the student model, inherently preventing recognition or response to backdoor triggers as intended by an attacker. In this paper, we challenge this assumption by introducing a novel attack methodology that strategically poisons the distillation dataset with adversarial examples embedded with backdoor triggers. This technique allows for the stealthy compromise of the student model while maintaining the integrity of the teacher model. Our innovative approach represents the first successful exploitation of vulnerabilities within the knowledge distillation process using clean teacher models. Through extensive experiments conducted across various datasets and attack settings, we demonstrate the robustness, stealthiness, and effectiveness of our method. Our findings reveal previously unrecognized vulnerabilities and pave the way for future research aimed at securing knowledge distillation processes against backdoor attacks.
Certifying Stability of Reinforcement Learning Policies using Generalized Lyapunov Functions NeurIPS 2025
Establishing stability certificates for closed-loop systems under reinforcement learning (RL) policies is essential to move beyond empirical performance and offer guarantees of system behavior. Classical Lyapunov methods require a strict stepwise decrease in the Lyapunov function but such certificates are difficult to construct for learned policies. The RL value function is a natural candidate but it is not well understood how it can be adapted for this purpose. To gain intuition, we first study the linear quadratic regulator (LQR) problem and make two key observations. First, a Lyapunov function can be obtained from the value function of an LQR policy by augmenting it with a residual term related to the system dynamics and stage cost. Second, the classical Lyapunov decrease requirement can be relaxed to a generalized Lyapunov condition requiring only decrease on average over multiple time steps. Using this intuition, we consider the nonlinear setting and formulate an approach to learn generalized Lyapunov functions by augmenting RL value functions with neural network residual terms. Our approach successfully certifies the stability of RL policies trained on Gymnasium and DeepMind Control benchmarks. We also extend our method to jointly train neural controllers and stability certificates using a multi-step Lyapunov loss, resulting in larger certified inner approximations of the region of attraction compared to the classical Lyapunov approach. Overall, our formulation enables stability certification for a broad class of systems with learned policies by making certificates easier to construct, thereby bridging classical control theory and modern learning-based methods.
comment: NeurIPS 2025
Right Now, Wrong Then: Non-Stationary Direct Preference Optimization under Preference Drift ICML 2025
Current Large Language Model (LLM) preference optimization algorithms do not account for temporal preference drift, which can lead to severe misalignment. To address this limitation, we propose Non-Stationary Direct Preference Optimisation (NS-DPO) that models time-dependent reward functions with a Dynamic Bradley-Terry model. NS-DPO proposes a computationally efficient solution by introducing only a single discount parameter in the loss function, which is used for exponential weighting that proportionally focuses learning on more time-relevant datapoints. We theoretically analyze the convergence of NS-DPO in a general setting where the exact nature of the preference drift is not known, providing upper bounds on the estimation error and regret caused by non-stationary preferences. Finally, we demonstrate the effectiveness of NS-DPO for fine-tuning LLMs under drifting preferences. Using scenarios where various levels of preference drift is introduced, with popular LLM reward models and datasets, we show that NS-DPO fine-tuned LLMs remain robust under non-stationarity, significantly outperforming baseline algorithms that ignore temporal preference changes, without sacrificing performance in stationary cases.
comment: 31 pages, 10 figures. Accepted to ICML 2025
Asymptotically Stable Quaternion-valued Hopfield-structured Neural Network with Periodic Projection-based Supervised Learning Rules NeurIPS 2025
Motivated by the geometric advantages of quaternions in representing rotations and postures, we propose a quaternion-valued supervised learning Hopfield-structured neural network (QSHNN) with a fully connected structure inspired by the classic Hopfield neural network (HNN). Starting from a continuous-time dynamical model of HNNs, we extend the formulation to the quaternionic domain and establish the existence and uniqueness of fixed points with asymptotic stability. For the learning rules, we introduce a periodic projection strategy that modifies standard gradient descent by periodically projecting each 4*4 block of the weight matrix onto the closest quaternionic structure in the least-squares sense. This approach preserves both convergence and quaternionic consistency throughout training. Benefiting from this rigorous mathematical foundation, the experimental model implementation achieves high accuracy, fast convergence, and strong reliability across randomly generated target sets. Moreover, the evolution trajectories of the QSHNN exhibit well-bounded curvature, i.e., sufficient smoothness, which is crucial for applications such as control systems or path planning modules in robotic arms, where joint postures are parameterized by quaternion neurons. Beyond these application scenarios, the proposed model offers a practical implementation framework and a general mathematical methodology for designing neural networks under hypercomplex or non-commutative algebraic structures.
comment: Accepted by NeurIPS 2025
Large-scale Regional Traffic Signal Control Based on Single-Agent Reinforcement Learning
In the context of global urbanization and motorization, traffic congestion has become a significant issue, severely affecting the quality of life, environment, and economy. This paper puts forward a single-agent reinforcement learning (RL)-based regional traffic signal control (TSC) model. Different from multi - agent systems, this model can coordinate traffic signals across a large area, with the goals of alleviating regional traffic congestion and minimizing the total travel time. The TSC environment is precisely defined through specific state space, action space, and reward functions. The state space consists of the current congestion state, which is represented by the queue lengths of each link, and the current signal phase scheme of intersections. The action space is designed to select an intersection first and then adjust its phase split. Two reward functions are meticulously crafted. One focuses on alleviating congestion and the other aims to minimize the total travel time while considering the congestion level. The experiments are carried out with the SUMO traffic simulation software. The performance of the TSC model is evaluated by comparing it with a base case where no signal-timing adjustments are made. The results show that the model can effectively control congestion. For example, the queuing length is significantly reduced in the scenarios tested. Moreover, when the reward is set to both alleviate congestion and minimize the total travel time, the average travel time is remarkably decreased, which indicates that the model can effectively improve traffic conditions. This research provides a new approach for large-scale regional traffic signal control and offers valuable insights for future urban traffic management.
comment: A critical error in the methodology. The reported congestion control effects were not caused by the proposed signal timing optimization, but by an incorrect traffic volume scaling factor during evaluation. The traffic demand was not properly amplified, resulting in misleading performance gains. Due to the substantial nature of the error, completion of revisions is not feasible in the short term
Robust Single-Agent Reinforcement Learning for Regional Traffic Signal Control Under Demand Fluctuations
Traffic congestion, primarily driven by intersection queuing, significantly impacts urban living standards, safety, environmental quality, and economic efficiency. While Traffic Signal Control (TSC) systems hold potential for congestion mitigation, traditional optimization models often fail to capture real-world traffic complexity and dynamics. This study introduces a novel single-agent reinforcement learning (RL) framework for regional adaptive TSC, circumventing the coordination complexities inherent in multi-agent systems through a centralized decision-making paradigm. The model employs an adjacency matrix to unify the encoding of road network topology, real-time queue states derived from probe vehicle data, and current signal timing parameters. Leveraging the efficient learning capabilities of the DreamerV3 world model, the agent learns control policies where actions sequentially select intersections and adjust their signal phase splits to regulate traffic inflow/outflow, analogous to a feedback control system. Reward design prioritizes queue dissipation, directly linking congestion metrics (queue length) to control actions. Simulation experiments conducted in SUMO demonstrate the model's effectiveness: under inference scenarios with multi-level (10%, 20%, 30%) Origin-Destination (OD) demand fluctuations, the framework exhibits robust anti-fluctuation capability and significantly reduces queue lengths. This work establishes a new paradigm for intelligent traffic control compatible with probe vehicle technology. Future research will focus on enhancing practical applicability by incorporating stochastic OD demand fluctuations during training and exploring regional optimization mechanisms for contingency events.
comment: A critical error in the methodology. The reported congestion control effects were not caused by the proposed signal timing optimization, but by an incorrect traffic volume scaling factor during evaluation. The traffic demand was not properly amplified, resulting in misleading performance gains. Due to the substantial nature of the error, completion of revisions is not feasible in the short term
Single-agent Reinforcement Learning Model for Regional Adaptive Traffic Signal Control
Several studies have employed reinforcement learning (RL) to address the challenges of regional adaptive traffic signal control (ATSC) and achieved promising results. In this field, existing research predominantly adopts multi-agent frameworks. However, the adoption of multi-agent frameworks presents challenges for scalability. Instead, the Traffic signal control (TSC) problem necessitates a single-agent framework. TSC inherently relies on centralized management by a single control center, which can monitor traffic conditions across all roads in the study area and coordinate the control of all intersections. This work proposes a single-agent RL-based regional ATSC model compatible with probe vehicle technology. Key components of the RL design include state, action, and reward function definitions. To facilitate learning and manage congestion, both state and reward functions are defined based on queue length, with action designed to regulate queue dynamics. The queue length definition used in this study differs slightly from conventional definitions but is closely correlated with congestion states. More importantly, it allows for reliable estimation using link travel time data from probe vehicles. With probe vehicle data already covering most urban roads, this feature enhances the proposed method's potential for widespread deployment. The method was comprehensively evaluated using the SUMO simulation platform. Experimental results demonstrate that the proposed model effectively mitigates large-scale regional congestion levels via coordinated multi-intersection control.
comment: A critical error in the methodology. The reported congestion control effects were not caused by the proposed signal timing optimization, but by an incorrect traffic volume scaling factor during evaluation. The traffic demand was not properly amplified, resulting in misleading performance gains. Due to the substantial nature of the error, completion of revisions is not feasible in the short term
LLM generation novelty through the lens of semantic similarity
Generation novelty is a key indicator of an LLM's ability to generalize, yet measuring it against full pretraining corpora is computationally challenging. Existing evaluations often rely on lexical overlap, failing to detect paraphrased text, or do not consider the full pretraining corpus. We frame novelty as a semantic retrieval problem. This framing enables us to address novelty with modern embedding and indexing pipelines, allowing for efficient analysis at pre-training scale. Specifically, we propose a three-stage framework that retrieves semantically similar samples, reranks them at varying subsequence lengths, and calibrates scores using a human novelty reference for interpretability. We apply this framework to the SmolLM model family and report three key findings: (1) models draw on pre-training data across much longer sequences than previously reported; (2) some task domains systematically promote or suppress generation novelty; and (3) instruction tuning not only alters style but also increases novelty. These results highlight the value of semantic novelty analysis for studying generalization. To support reproducibility and further research, we release ~20 TB of corpus chunks and index artifacts at https://huggingface.co/datasets/stai-tuebingen/faiss-smollm
SLogic: Subgraph-Informed Logical Rule Learning for Knowledge Graph Completion
Logical rule-based methods offer an interpretable approach to knowledge graph completion (KGC) by capturing compositional relationships in the form of human-readable inference rules. While existing logical rule-based methods learn rule confidence scores, they typically assign a global weight to each rule schema, applied uniformly across the graph. This is a significant limitation, as a rule's importance often varies depending on the specific query instance. To address this, we introduce SLogic (Subgraph-Informed Logical Rule learning), a novel framework that assigns query-dependent scores to logical rules. The core of SLogic is a context-aware scoring function. This function determines the importance of a rule by analyzing the subgraph locally defined by the query's head entity, thereby enabling a differentiated weighting of rules specific to their local query contexts. Extensive experiments on benchmark datasets show that SLogic outperforms existing rule-based methods and achieves competitive performance against state-of-the-art baselines. It also generates query-dependent, human-readable logical rules that serve as explicit explanations for its inferences.
HiGP: A high-performance Python package for Gaussian Process
Gaussian Processes (GPs) are flexible, nonparametric Bayesian models widely used for regression and classification because of their ability to capture complex data patterns and quantify predictive uncertainty. However, the O(n^3) computational cost of kernel matrix operations poses a major obstacle to applying GPs at scale. HiGP is a high-performance Python package designed to overcome these scalability limitations through advanced numerical linear algebra and hierarchical kernel representations. It integrates H^2 matrices to achieve near-linear complexity in both storage and computation for spatial datasets, supports on-the-fly kernel evaluation to avoid explicit storage in large-scale problems, and incorporates a robust Adaptive Factorized Nyström (AFN) preconditioner that accelerates convergence of iterative solvers across a broad range of kernel spectra. These computational kernels are implemented in C++ for maximum performance and exposed through Python interfaces, enabling seamless integration with modern machine learning workflows. HiGP also includes analytically derived gradient computations for efficient hyperparameter optimization, avoiding the inefficiencies of automatic differentiation in iterative solvers. By serving as a reusable numerical engine, HiGP complements existing GP frameworks such as GPJax, KeOps, and GaussianProcesses.jl, providing a reliable and scalable computational backbone for large-scale Gaussian Process regression and classification.
The Impact of Off-Policy Training Data on Probe Generalisation
Probing has emerged as a promising method for monitoring large language models (LLMs), enabling cheap inference-time detection of concerning behaviours. However, natural examples of many behaviours are rare, forcing researchers to rely on synthetic or off-policy LLM responses for training probes. We systematically evaluate how off-policy data influences probe generalisation across eight distinct LLM behaviours. Testing linear and attention probes across multiple LLMs, we find that training data generation strategy can significantly affect probe performance, though the magnitude varies greatly by behaviour. The largest generalisation failures arise for behaviours defined by response "intent" (e.g. strategic deception) rather than text-level content (e.g. usage of lists). We then propose a useful test for predicting generalisation failures in cases where on-policy test data is unavailable: successful generalisation to incentivised data (where the model was coerced) strongly correlates with high performance against on-policy examples. Based on these results, we predict that current deception probes may fail to generalise to real monitoring scenarios. Additionally, our finding that off-policy data can yield more reliable probes than on-policy data from a sufficiently different setting underscores the need for new monitoring methods that better handle all types of distribution shift.
comment: 10 pages, EurIPS 2025 Workshop on Private AI Governance
Bi-cephalic self-attended model to classify Parkinson's disease patients with freezing of gait
Parkinson's Disease (PD) often results in motor and cognitive impairments, including gait dysfunction, particularly in patients with freezing of gait (FOG). Current detection methods are either subjective or reliant on specialized gait analysis tools. This study aims to develop an objective, data-driven, multi-modal classification model for FOG-specific classification, distinguishing PD patients with FOG (PDFOG+) from those without FOG (PDFOG-) and healthy controls using resting-state EEG signals combined with demographic and clinical variables. For our main analysis, we utilized a dataset of 124 participants: 42 PDFOG+, 41 PDFOG-, and 41 age-matched healthy controls. Features extracted from resting-state EEG and descriptive variables (age, education, disease duration) were used to train a novel Bi-cephalic Self-Attention Model (BiSAM). We tested three modalities: signal-only, descriptive-only, and multi-modal, across different EEG channel subsets including BiSAM 63, BiSAM 16, BiSAM 8, and BiSAM 4 for primary analysis. For main analysis, signal-only (BiSAM 4) and descriptive-only models showed limited performance, achieving a maximum accuracy of 55% and 68%, respectively. In contrast, the multi-modal models significantly outperformed both, with BiSAM 8 and BiSAM 4 achieving the highest classification accuracy of 88%. These results demonstrate the value of integrating EEG with objective descriptive features for robust PDFOG+ classification. This study introduces a multi-modal, attention-based architecture that objectively classifies PDFOG+ using minimal EEG channels and descriptive variables. This approach offers a scalable and efficient alternative to traditional assessments, with potential applications in routine clinical monitoring and early diagnosis of PD-related gait dysfunction.
comment: 39 pages, 9254 words, 4 figures, 4 tables, European Journal of Neuroscience: Special edition FOG
Token Reduction Should Go Beyond Efficiency in Generative Models -- From Vision, Language to Multimodality
In Transformer architectures, tokens\textemdash discrete units derived from raw data\textemdash are formed by segmenting inputs into fixed-length chunks. Each token is then mapped to an embedding, enabling parallel attention computations while preserving the input's essential information. Due to the quadratic computational complexity of transformer self-attention mechanisms, token reduction has primarily been used as an efficiency strategy. This is especially true in single vision and language domains, where it helps balance computational costs, memory usage, and inference latency. Despite these advances, this paper argues that token reduction should transcend its traditional efficiency-oriented role in the era of large generative models. Instead, we position it as a fundamental principle in generative modeling, critically influencing both model architecture and broader applications. Specifically, we contend that across vision, language, and multimodal systems, token reduction can: (i) facilitate deeper multimodal integration and alignment, (ii) mitigate "overthinking" and hallucinations, (iii) maintain coherence over long inputs, and (iv) enhance training stability, etc. We reframe token reduction as more than an efficiency measure. By doing so, we outline promising future directions, including algorithm design, reinforcement learning-guided token reduction, token optimization for in-context learning, agentic framework design, and broader ML and scientific domains.
comment: Project page: https://github.com/ZLKong/Awesome-Collection-Token-Reduction
Tensor Decomposition Networks for Fast Machine Learning Interatomic Potential Computations
$\rm{SO}(3)$-equivariant networks are the dominant models for machine learning interatomic potentials (MLIPs). The key operation of such networks is the Clebsch-Gordan (CG) tensor product, which is computationally expensive. To accelerate the computation, we develop tensor decomposition networks (TDNs) as a class of approximately equivariant networks in which CG tensor products are replaced by low-rank tensor decompositions, such as the CANDECOMP/PARAFAC (CP) decomposition. With the CP decomposition, we prove (i) a uniform bound on the induced error of $\rm{SO}(3)$-equivariance, and (ii) the universality of approximating any equivariant bilinear map. To further reduce the number of parameters, we propose path-weight sharing that ties all multiplicity-space weights across the $\mathcal{O}(L^3)$ CG paths into a single shared parameter set without compromising equivariance, where $L$ is the maximum angular degree. The resulting layer acts as a plug-and-play replacement for tensor products in existing networks, and the computational complexity of tensor products is reduced from $\mathcal{O}(L^6)$ to $\mathcal{O}(L^4)$. We evaluate TDNs on PubChemQCR, a newly curated molecular relaxation dataset containing 105 million DFT-calculated snapshots. We also use existing datasets, including OC20, and OC22. Results show that TDNs achieve competitive performance with dramatic speedup in computations. Our code is publicly available as part of the AIRS library (\href{https://github.com/divelab/AIRS/tree/main/OpenMol/TDN}{https://github.com/divelab/AIRS/}).
Electron neural closure for turbulent magnetosheath simulations: energy channels
In this work, we introduce a non-local five-moment electron pressure tensor closure parametrized by a Fully Convolutional Neural Network (FCNN). Electron pressure plays an important role in generalized Ohm's law, competing with electron inertia. This model is used in the development of a surrogate model for a fully kinetic energy-conserving semi-implicit Particle-in-Cell simulation of decaying magnetosheath turbulence. We achieve this by training FCNN on a representative set of simulations with a smaller number of particles per cell and showing that our results generalise to a simulation with a large number of particles per cell. We evaluate the statistical properties of the learned equation of state, with a focus on pressure-strain interaction, which is crucial for understanding energy channels in turbulent plasmas. The resulting equation of state learned via FCNN significantly outperforms local closures, such as those learned by Multi-Layer Perceptron (MLP) or double adiabatic expressions. We report that the overall spatial distribution of pressure-strain and its conditional averages are reconstructed well. However, some small-scale features are missed, especially for the off-diagonal components of the pressure tensor. Nevertheless, the results are substantially improved with more training data, indicating favorable scaling and potential for improvement, which will be addressed in future work.
comment: 19 pages, 10 figures, 4 tables
A New Formulation for Zeroth-Order Optimization of Adversarial EXEmples in Malware Detection
Machine learning malware detectors are vulnerable to adversarial EXEmples, i.e., carefully-crafted Windows programs tailored to evade detection. Unlike other adversarial problems, attacks in this context must be functionality-preserving, a constraint that is challenging to address. As a consequence, heuristic algorithms are typically used, which inject new content, either randomly-picked or harvested from legitimate programs. In this paper, we show how learning malware detectors can be cast within a zeroth-order optimization framework, which allows incorporating functionality-preserving manipulations. This permits the deployment of sound and efficient gradient-free optimization algorithms, which come with theoretical guarantees and allow for minimal hyper-parameters tuning. As a by-product, we propose and study ZEXE, a novel zeroth-order attack against Windows malware detection. Compared to state-of-the-art techniques, ZEXE provides improvement in the evasion rate, reducing to less than one third the size of the injected content.
comment: 17 pages, 6 tables
Graphics 6
R3-RECON: Radiance-Field-Free Active Reconstruction via Renderability
In active reconstruction, an embodied agent must decide where to look next to efficiently acquire views that support high-quality novel-view rendering. Recent work on active view planning for neural rendering largely derives next-best-view (NBV) criteria by backpropagating through radiance fields or estimating information entropy over 3D Gaussian primitives. While effective, these strategies tightly couple view selection to heavy, representation-specific mechanisms and fail to account for the computational and resource constraints required for lightweight online deployment. In this paper, we revisit active reconstruction from a renderability-centric perspective. We propose $\mathbb{R}^{3}$-RECON, a radiance-fields-free active reconstruction framework that induces an implicit, pose-conditioned renderability field over SE(3) from a lightweight voxel map. Our formulation aggregates per-voxel online observation statistics into a unified scalar renderability score that is cheap to update and can be queried in closed form at arbitrary candidate viewpoints in milliseconds, without requiring gradients or radiance-field training. This renderability field is strongly correlated with image-space reconstruction error, naturally guiding NBV selection. We further introduce a panoramic extension that estimates omnidirectional (360$^\circ$) view utility to accelerate candidate evaluation. In the standard indoor Replica dataset, $\mathbb{R}^{3}$-RECON achieves more uniform novel-view quality and higher 3D Gaussian splatting (3DGS) reconstruction accuracy than recent active GS baselines with matched view and time budgets.
comment: 18 pages, 11 figures
SIRR-LMM: Single-image Reflection Removal via Large Multimodal Model
Glass surfaces create complex interactions of reflected and transmitted light, making single-image reflection removal (SIRR) challenging. Existing datasets suffer from limited physical realism in synthetic data or insufficient scale in real captures. We introduce a synthetic dataset generation framework that path-traces 3D glass models over real background imagery to create physically accurate reflection scenarios with varied glass properties, camera settings, and post-processing effects. To leverage the capabilities of Large Multimodal Model (LMM), we concatenate the image layers into a single composite input, apply joint captioning, and fine-tune the model using task-specific LoRA rather than full-parameter training. This enables our approach to achieve improved reflection removal and separation performance compared to state-of-the-art methods.
comment: 12 pages, 14 figures, accepted in WACVW 2026
Statistical Blendshape Calculation and Analysis for Graphics Applications
With the development of virtualization and AI, real-time facial avatar animation is widely used in entertainment, office, business and other fields. Against this background, blendshapes have become a common industry animation solution because of their relative simplicity and ease of interpretation. Aiming for real-time performance and low computing resource dependence, we independently developed an accurate blendshape prediction system for low-power VR applications using a standard webcam. First, blendshape feature vectors are extracted through affine transformation and segmentation. Through further transformation and regression analysis, we were able to identify models for most blendshapes with significant predictive power. Post-processing was used to further improve response stability, including smoothing filtering and nonlinear transformations to minimize error. Experiments showed the system achieved accuracy similar to ARKit 6. Our model has low sensor/hardware requirements and realtime response with a consistent, accurate and smooth visual experience.
comment: 12 figures
Sketch&Patch++: Efficient Structure-Aware 3D Gaussian Representation
We observe that Gaussians exhibit distinct roles and characteristics analogous to traditional artistic techniques -- like how artists first sketch outlines before filling in broader areas with color, some Gaussians capture high-frequency features such as edges and contours, while others represent broader, smoother regions analogous to brush strokes that add volume and depth. Based on this observation, we propose a hybrid representation that categorizes Gaussians into (i) Sketch Gaussians, which represent high-frequency, boundary-defining features, and (ii) Patch Gaussians, which cover low-frequency, smooth regions. This semantic separation naturally enables layered progressive streaming, where the compact Sketch Gaussians establish the structural skeleton before Patch Gaussians incrementally refine volumetric detail. In this work, we extend our previous method to arbitrary 3D scenes by proposing a novel hierarchical adaptive categorization framework that operates directly on the 3DGS representation. Our approach employs multi-criteria density-based clustering, combined with adaptive quality-driven refinement. This method eliminates dependency on external 3D line primitives while ensuring optimal parametric encoding effectiveness. Our comprehensive evaluation across diverse scenes, including both man-made and natural environments, demonstrates that our method achieves up to 1.74 dB improvement in PSNR, 6.7% in SSIM, and 41.4% in LPIPS at equivalent model sizes compared to uniform pruning baselines. For indoor scenes, our method can maintain visual quality with only 0.5\% of the original model size. This structure-aware representation enables efficient storage, adaptive streaming, and rendering of high-fidelity 3D content across bandwidth-constrained networks and resource-limited devices.
Paris: A Decentralized Trained Open-Weight Diffusion Model
We present Paris, the first publicly released diffusion model pre-trained entirely through decentralized computation. Paris demonstrates that high-quality text-to-image generation can be achieved without centrally coordinated infrastructure. Paris is open for research and commercial use. Paris required implementing our Distributed Diffusion Training framework from scratch. The model consists of 8 expert diffusion models (129M-605M parameters each) trained in complete isolation with no gradient, parameter, or intermediate activation synchronization. Rather than requiring synchronized gradient updates across thousands of GPUs, we partition data into semantically coherent clusters where each expert independently optimizes its subset while collectively approximating the full distribution. A lightweight transformer router dynamically selects appropriate experts at inference, achieving generation quality comparable to centrally coordinated baselines. Eliminating synchronization enables training on heterogeneous hardware without specialized interconnects. Empirical validation confirms that Paris's decentralized training maintains generation quality while removing the dedicated GPU cluster requirement for large-scale diffusion models. Paris achieves this using 14$\times$ less training data and 16$\times$ less compute than the prior decentralized baseline.
Volume Encoding Gaussians: Transfer Function-Agnostic 3D Gaussians for Volume Rendering
Visualizing the large-scale datasets output by HPC resources presents a difficult challenge, as the memory and compute power required become prohibitively expensive for end user systems. Novel view synthesis techniques can address this by producing a small, interactive model of the data, requiring only a set of training images to learn from. While these models allow accessible visualization of large data and complex scenes, they do not provide the interactions needed for scientific volumes, as they do not support interactive selection of transfer functions and lighting parameters. To address this, we introduce Volume Encoding Gaussians (VEG), a 3D Gaussian-based representation for volume visualization that supports arbitrary color and opacity mappings. Unlike prior 3D Gaussian Splatting (3DGS) methods that store color and opacity for each Gaussian, VEG decouple the visual appearance from the data representation by encoding only scalar values, enabling transfer function-agnostic rendering of 3DGS models. To ensure complete scalar field coverage, we introduce an opacity-guided training strategy, using differentiable rendering with multiple transfer functions to optimize our data representation. This allows VEG to preserve fine features across the full scalar range of a dataset while remaining independent of any specific transfer function. Across a diverse set of volume datasets, we demonstrate that our method outperforms the state-of-the-art on transfer functions unseen during training, while requiring a fraction of the memory and training time.
Robotics 23
PALM: Progress-Aware Policy Learning via Affordance Reasoning for Long-Horizon Robotic Manipulation
Recent advancements in vision-language-action (VLA) models have shown promise in robotic manipulation, yet they continue to struggle with long-horizon, multi-step tasks. Existing methods lack internal reasoning mechanisms that can identify task-relevant interaction cues or track progress within a subtask, leading to critical execution errors such as repeated actions, missed steps, and premature termination. To address these challenges, we introduce PALM, a VLA framework that structures policy learning around interaction-centric affordance reasoning and subtask progress cues. PALM distills complementary affordance representations that capture object relevance, contact geometry, spatial placements, and motion dynamics, and serve as task-relevant anchors for visuomotor control. To further stabilize long-horizon execution, PALM predicts continuous within-subtask progress, enabling seamless subtask transitions. Across extensive simulation and real-world experiments, PALM consistently outperforms baselines, achieving a 91.8% success rate on LIBERO-LONG, a 12.5% improvement in average length on CALVIN ABC->D, and a 2x improvement over real-world baselines across three long-horizon generalization settings.
RSLCPP -- Deterministic Simulations Using ROS 2
Simulation is crucial in real-world robotics, offering safe, scalable, and efficient environments for developing applications, ranging from humanoid robots to autonomous vehicles and drones. While the Robot Operating System (ROS) has been widely adopted as the backbone of these robotic applications in both academia and industry, its asynchronous, multiprocess design complicates reproducibility, especially across varying hardware platforms. Deterministic callback execution cannot be guaranteed when computation times and communication delays vary. This lack of reproducibility complicates scientific benchmarking and continuous integration, where consistent results are essential. To address this, we present a methodology to create deterministic simulations using ROS 2 nodes. Our ROS Simulation Library for C++ (RSLCPP) implements this approach, enabling existing nodes to be combined into a simulation routine that yields reproducible results without requiring any code changes. We demonstrate that our approach yields identical results across various CPUs and architectures when testing both a synthetic benchmark and a real-world robotics system. RSLCPP is open-sourced at https://github.com/TUMFTM/rslcpp.
comment: Submitted to 'IEEE Robotics and Automation Practice' for possible publication
A Sliding Mode Controller Based on Timoshenko Beam Theory Developed for a Tendon-Driven Robotic Wrist
Development of dexterous robotic joints is essential for advancing manipulation capabilities in robotic systems. This paper presents the design and implementation of a tendon-driven robotic wrist joint together with an efficient Sliding Mode Controller (SMC) for precise motion control. The wrist mechanism is modeled using a Timoshenko-based approach to accurately capture its kinematic and dynamic properties, which serve as the foundation for tendon force calculations within the controller. The proposed SMC is designed to deliver fast dynamic response and computational efficiency, enabling accurate trajectory tracking under varying operating conditions. The effectiveness of the controller is validated through comparative analyses with existing controllers for similar wrist mechanisms. The proposed SMC demonstrates superior performance in both simulation and experimental studies. The Root Mean Square Error (RMSE) in simulation is approximately 1.67e-2 radians, while experimental validation yields an error of 0.2 radians. Additionally, the controller achieves a settling time of less than 3 seconds and a steady-state error below 1e-1 radians, consistently observed across both simulation and experimental evaluations. Comparative analyses confirm that the developed SMC surpasses alternative control strategies in motion accuracy, rapid convergence, and steady-state precision. This work establishes a foundation for future exploration of tendon-driven wrist mechanisms and control strategies in robotic applications.
ObjSplat: Geometry-Aware Gaussian Surfels for Active Object Reconstruction
Autonomous high-fidelity object reconstruction is fundamental for creating digital assets and bridging the simulation-to-reality gap in robotics. We present ObjSplat, an active reconstruction framework that leverages Gaussian surfels as a unified representation to progressively reconstruct unknown objects with both photorealistic appearance and accurate geometry. Addressing the limitations of conventional opacity or depth-based cues, we introduce a geometry-aware viewpoint evaluation pipeline that explicitly models back-face visibility and occlusion-aware multi-view covisibility, reliably identifying under-reconstructed regions even on geometrically complex objects. Furthermore, to overcome the limitations of greedy planning strategies, ObjSplat employs a next-best-path (NBP) planner that performs multi-step lookahead on a dynamically constructed spatial graph. By jointly optimizing information gain and movement cost, this planner generates globally efficient trajectories. Extensive experiments in simulation and on real-world cultural artifacts demonstrate that ObjSplat produces physically consistent models within minutes, achieving superior reconstruction fidelity and surface completeness while significantly reducing scan time and path length compared to state-of-the-art approaches. Project page: https://li-yuetao.github.io/ObjSplat-page/ .
comment: Project Page: https://li-yuetao.github.io/ObjSplat-page/
Benchmarking Autonomy in Scientific Experiments: A Hierarchical Taxonomy for Autonomous Large-Scale Facilities
The transition from automated data collection to fully autonomous discovery requires a shared vocabulary to benchmark progress. While the automotive industry relies on the SAE J3016 standard, current taxonomies for autonomous science presuppose an owner-operator model that is incompatible with the operational rigidities of Large-Scale User Facilities. Here, we propose the Benchmarking Autonomy in Scientific Experiments (BASE) Scale, a 6-level taxonomy (Levels 0-5) specifically adapted for these unique constraints. Unlike owner-operator models, User Facilities require zero-shot deployment where agents must operate immediately without extensive training periods. We define the specific technical requirements for each tier, identifying the Inference Barrier (Level 3) as the critical latency threshold where decisions shift from scalar feedback to semantic digital twins. Fundamentally, this level extends the decision manifold from spatial exploration to temporal gating, enabling the agent to synchronise acquisition with the onset of transient physical events. By establishing these operational definitions, the BASE Scale provides facility directors, funding bodies, and beamline scientists with a standardised metric to assess risk, define liability, and quantify the intelligence of experimental workflows.
comment: 12 pages, 2 figures, 2 tables
Observability-Enhanced Target Motion Estimation via Bearing-Box: Theory and MAV Applications
Monocular vision-based target motion estimation is a fundamental challenge in numerous applications. This work introduces a novel bearing-box approach that fully leverages modern 3D detection measurements that are widely available nowadays but have not been well explored for motion estimation so far. Unlike existing methods that rely on restrictive assumptions such as isotropic target shape and lateral motion, our bearing-box estimator can estimate both the target's motion and its physical size without these assumptions by exploiting the information buried in a 3D bounding box. When applied to multi-rotor micro aerial vehicles (MAVs), the estimator yields an interesting advantage: it further removes the need for higher-order motion assumptions by exploiting the unique coupling between MAV's acceleration and thrust. This is particularly significant, as higher-order motion assumptions are widely believed to be necessary in state-of-the-art bearing-based estimators. We support our claims with rigorous observability analyses and extensive experimental validation, demonstrating the estimator's superior performance in real-world scenarios.
comment: This paper is accepted by IEEE Transactions on Robotics (20 pages, 11 figures)
Semilinear single-track vehicle models with distributed tyre friction dynamics
This paper introduces a novel family of single-track vehicle models that incorporate a distributed representation of transient tyre dynamics, whilst simultaneously accounting for nonlinear effects induced by friction. The core of the proposed framework is represented by the distributed Friction with Bristle Dynamics (FrBD) model, which unifies and extends classical formulations such as Dahl and LuGre by describing the rolling contact process as a spatially distributed system governed by semilinear partial differential equations (PDEs). This model is systematically integrated into a single-track vehicle framework, where the resulting semilinear ODE-PDE interconnection captures the interaction between lateral vehicle motion and tyre deformation. Two main variants are considered: one with rigid tyre carcass and another with flexible carcass, each admitting a compact state-space representation. Local and global well-posedness properties for the coupled system are established rigorously, highlighting the dissipative and physically consistent properties of the distributed FrBD model. A linearisation procedure is also presented, enabling spectral analysis and transfer function derivation, and potentially facilitating the synthesis of controllers and observers. Numerical simulations demonstrate the model's capability to capture micro-shimmy oscillations and transient lateral responses to advanced steering manoeuvres. The proposed formulation advances the state-of-the-art in vehicle dynamics modelling by providing a physically grounded, mathematically rigorous, and computationally tractable approach to incorporating transient tyre behaviour in lateral vehicle dynamics, when accounting for the effect of limited friction.
comment: 37 pages, 12 figures. Accepted by Nonlinear Dynamics
SPINE Gripper: A Twisted Underactuated Mechanism-based Passive Mode-Transition Gripper
This paper presents a single-actuator passive gripper that achieves both stable grasping and continuous bidirectional in-hand rotation through mechanically encoded power transmission logic. Unlike conventional multifunctional grippers that require multiple actuators, sensors, or control-based switching, the proposed gripper transitions between grasping and rotation solely according to the magnitude of the applied input torque. The key enabler of this behavior is a Twisted Underactuated Mechanism (TUM), which generates non-coplanar motions, namely axial contraction and rotation, from a single rotational input while producing identical contraction regardless of rotation direction. A friction generator mechanically defines torque thresholds that govern passive mode switching, enabling stable grasp establishment before autonomously transitioning to in-hand rotation without sensing or active control. Analytical models describing the kinematics, elastic force generation, and torque transmission of the TUM are derived and experimentally validated. The fabricated gripper is evaluated through quantitative experiments on grasp success, friction-based grasp force regulation, and bidirectional rotation performance. System-level demonstrations, including bolt manipulation, object reorientation, and manipulator-integrated tasks driven solely by wrist torque, confirm reliable grasp to rotate transitions in both rotational directions. These results demonstrate that non-coplanar multifunctional manipulation can be realized through mechanical design alone, establishing mechanically encoded power transmission logic as a robust alternative to actuator and control intensive gripper architectures.
comment: 11 pages, 10 figures. Preprint version of a manuscript submitted to IEEE Transactions on Mechatronics
SpatialNav: Leveraging Spatial Scene Graphs for Zero-Shot Vision-and-Language Navigation
Although learning-based vision-and-language navigation (VLN) agents can learn spatial knowledge implicitly from large-scale training data, zero-shot VLN agents lack this process, relying primarily on local observations for navigation, which leads to inefficient exploration and a significant performance gap. To deal with the problem, we consider a zero-shot VLN setting that agents are allowed to fully explore the environment before task execution. Then, we construct the Spatial Scene Graph (SSG) to explicitly capture global spatial structure and semantics in the explored environment. Based on the SSG, we introduce SpatialNav, a zero-shot VLN agent that integrates an agent-centric spatial map, a compass-aligned visual representation, and a remote object localization strategy for efficient navigation. Comprehensive experiments in both discrete and continuous environments demonstrate that SpatialNav significantly outperforms existing zero-shot agents and clearly narrows the gap with state-of-the-art learning-based methods. Such results highlight the importance of global spatial representations for generalizable navigation.
comment: 11 pages, 4 figures, 6 tables
On-the-Fly VLA Adaptation via Test-Time Reinforcement Learning
Vision-Language-Action models have recently emerged as a powerful paradigm for general-purpose robot learning, enabling agents to map visual observations and natural-language instructions into executable robotic actions. Though popular, they are primarily trained via supervised fine-tuning or training-time reinforcement learning, requiring explicit fine-tuning phases, human interventions, or controlled data collection. Consequently, existing methods remain unsuitable for challenging simulated- or physical-world deployments, where robots must respond autonomously and flexibly to evolving environments. To address this limitation, we introduce a Test-Time Reinforcement Learning for VLAs (TT-VLA), a framework that enables on-the-fly policy adaptation during inference. TT-VLA formulates a dense reward mechanism that leverages step-by-step task-progress signals to refine action policies during test time while preserving the SFT/RL-trained priors, making it an effective supplement to current VLA models. Empirical results show that our approach enhances overall adaptability, stability, and task success in dynamic, previously unseen scenarios under simulated and real-world settings. We believe TT-VLA offers a principled step toward self-improving, deployment-ready VLAs.
Robust Evacuation for Multi-Drone Failure in Drone Light Shows AAAI-26
Drone light shows have emerged as a popular form of entertainment in recent years. However, several high-profile incidents involving large-scale drone failures -- where multiple drones simultaneously fall from the sky -- have raised safety and reliability concerns. To ensure robustness, we propose a drone parking algorithm designed specifically for multiple drone failures in drone light shows, aimed at mitigating the risk of cascading collisions by drone evacuation and enabling rapid recovery from failures by leveraging strategically placed hidden drones. Our algorithm integrates a Social LSTM model with attention mechanisms to predict the trajectories of failing drones and compute near-optimal evacuation paths that minimize the likelihood of surviving drones being hit by fallen drones. In the recovery node, our system deploys hidden drones (operating with their LED lights turned off) to replace failed drones so that the drone light show can continue. Our experiments showed that our approach can greatly increase the robustness of a multi-drone system by leveraging deep learning to predict the trajectories of fallen drones.
comment: Accepted to AAAI-26 Bridge Program B10: Making Embodied AI Reliable with Testing and Formal Verification
Residual Cross-Modal Fusion Networks for Audio-Visual Navigation
Audio-visual embodied navigation aims to enable an agent to autonomously localize and reach a sound source in unseen 3D environments by leveraging auditory cues. The key challenge of this task lies in effectively modeling the interaction between heterogeneous features during multimodal fusion, so as to avoid single-modality dominance or information degradation, particularly in cross-domain scenarios. To address this, we propose a Cross-Modal Residual Fusion Network, which introduces bidirectional residual interactions between audio and visual streams to achieve complementary modeling and fine-grained alignment, while maintaining the independence of their representations. Unlike conventional methods that rely on simple concatenation or attention gating, CRFN explicitly models cross-modal interactions via residual connections and incorporates stabilization techniques to improve convergence and robustness. Experiments on the Replica and Matterport3D datasets demonstrate that CRFN significantly outperforms state-of-the-art fusion baselines and achieves stronger cross-domain generalization. Notably, our experiments also reveal that agents exhibit differentiated modality dependence across different datasets. The discovery of this phenomenon provides a new perspective for understanding the cross-modal collaboration mechanism of embodied agents.
comment: Main paper (10 pages). Accepted for publication by the 14th international conference on Computational Visual Media (CVM 2026)
Agile Tradespace Exploration for Space Rendezvous Mission Design via Transformers
Spacecraft rendezvous enables on-orbit servicing, debris removal, and crewed docking, forming the foundation for a scalable space economy. Designing such missions requires rapid exploration of the tradespace between control cost and flight time across multiple candidate targets. However, multi-objective optimization in this setting is challenging, as the underlying constraints are often nonconvex, and mission designers must balance accuracy (e.g., solving the full problem) with efficiency (e.g., convex relaxations), slowing iteration and limiting design agility. To address these challenges, this paper proposes an AI-powered framework that enables agile and generalized rendezvous mission design. Given the orbital information of the target spacecraft, boundary conditions of the servicer, and a range of flight times, a transformer model generates a set of near-Pareto optimal trajectories across varying flight times in a single parallelized inference step, thereby enabling rapid mission trade studies. The model is further extended to accommodate variable flight times and perturbed orbital dynamics, supporting realistic multi-objective trade-offs. Validation on chance-constrained rendezvous problems in Earth orbits with passive safety constraints demonstrates that the model generalizes across both flight times and dynamics, consistently providing high-quality initial guesses that converge to superior solutions in fewer iterations. Moreover, the framework efficiently approximates the Pareto front, achieving runtimes comparable to convex relaxation by exploiting parallelized inference. Together, these results position the proposed framework as a practical surrogate for nonconvex trajectory generation and mark an important step toward AI-driven trajectory design for accelerating preliminary mission planning in real-world rendezvous applications.
comment: 14 pages, 7 figures
AURA-CVC: Autonomous Ultrasound-guided Robotic Assistance for Central Venous Catheterization
Purpose: Central venous catheterization (CVC) is a critical medical procedure for vascular access, hemodynamic monitoring, and life-saving interventions. Its success remains challenging due to the need for continuous ultrasound-guided visualization of a target vessel and approaching needle, which is further complicated by anatomical variability and operator dependency. Errors in needle placement can lead to life-threatening complications. While robotic systems offer a potential solution, achieving full autonomy remains challenging. In this work, we propose an end-to-end robotic-ultrasound-guided CVC pipeline, from scan initialization to needle insertion. Methods: We introduce a deep-learning model to identify clinically relevant anatomical landmarks from a depth image of the patient's neck, obtained using RGB-D camera, to autonomously define the scanning region and paths. Then, a robot motion planning framework is proposed to scan, segment, reconstruct, and localize vessels (veins and arteries), followed by the identification of the optimal insertion zone. Finally, a needle guidance module plans the insertion under ultrasound guidance with operator's feedback. This pipeline was validated on a high-fidelity commercial phantom across 10 simulated clinical scenarios. Results: The proposed pipeline achieved 10 out of 10 successful needle placements on the first attempt. Vessels were reconstructed with a mean error of 2.15 \textit{mm}, and autonomous needle insertion was performed with an error less than or close to 1 \textit{mm}. Conclusion: To our knowledge, this is the first robotic CVC system demonstrated on a high-fidelity phantom with integrated planning, scanning, and insertion. Experimental results show its potential for clinical translation.
comment: Accepted in International Journal of Computer Assisted Radiology and Surgery (IJCARS) 2026
SeePerSea: Multi-modal Perception Dataset of In-water Objects for Autonomous Surface Vehicles ICRA 2024
This paper introduces the first publicly accessible labeled multi-modal perception dataset for autonomous maritime navigation, focusing on in-water obstacles within the aquatic environment to enhance situational awareness for Autonomous Surface Vehicles (ASVs). This dataset, collected over 4 years and consisting of diverse objects encountered under varying environmental conditions, aims to bridge the research gap in ASVs by providing a multi-modal, annotated, and ego-centric perception dataset, for object detection and classification. We also show the applicability of the proposed dataset by training and testing current deep learning-based open-source perception algorithms that have shown success in the autonomous ground vehicle domain. With the training and testing results, we discuss open challenges for existing datasets and methods, identifying future research directions. We expect that our dataset will contribute to the development of future marine autonomy pipelines and marine (field) robotics. This dataset is open source and found at https://seepersea.github.io/.
comment: Topic: Special Issue on ICRA 2024 Workshop on Field Robotics
MG-SLAM: Structure Gaussian Splatting SLAM with Manhattan World Hypothesis
Gaussian Splatting SLAMs have made significant advancements in improving the efficiency and fidelity of real-time reconstructions. However, these systems often encounter incomplete reconstructions in complex indoor environments, characterized by substantial holes due to unobserved geometry caused by obstacles or limited view angles. To address this challenge, we present Manhattan Gaussian SLAM, an RGB-D system that leverages the Manhattan World hypothesis to enhance geometric accuracy and completeness. By seamlessly integrating fused line segments derived from structured scenes, our method ensures robust tracking in textureless indoor areas. Moreover, The extracted lines and planar surface assumption allow strategic interpolation of new Gaussians in regions of missing geometry, enabling efficient scene completion. Extensive experiments conducted on both synthetic and real-world scenes demonstrate that these advancements enable our method to achieve state-of-the-art performance, marking a substantial improvement in the capabilities of Gaussian SLAM systems.
comment: IEEE Transactions on Automation Science and Engineering
Scaffolding Dexterous Manipulation with Vision-Language Models
Dexterous robotic hands are essential for performing complex manipulation tasks, yet remain difficult to train due to the challenges of demonstration collection and high-dimensional control. While reinforcement learning (RL) can alleviate the data bottleneck by generating experience in simulation, it typically relies on carefully designed, task-specific reward functions, which hinder scalability and generalization. Thus, contemporary works in dexterous manipulation have often bootstrapped from reference trajectories. These trajectories specify target hand poses that guide the exploration of RL policies and object poses that enable dense, task-agnostic rewards. However, sourcing suitable trajectories - particularly for dexterous hands - remains a significant challenge. Yet, the precise details in explicit reference trajectories are often unnecessary, as RL ultimately refines the motion. Our key insight is that modern vision-language models (VLMs) already encode the commonsense spatial and semantic knowledge needed to specify tasks and guide exploration effectively. Given a task description (e.g., "open the cabinet") and a visual scene, our method uses an off-the-shelf VLM to first identify task-relevant keypoints (e.g., handles, buttons) and then synthesize 3D trajectories for hand motion and object motion. Subsequently, we train a low-level residual RL policy in simulation to track these coarse trajectories or "scaffolds" with high fidelity. Across a number of simulated tasks involving articulated objects and semantic understanding, we demonstrate that our method is able to learn robust dexterous manipulation policies. Moreover, we showcase that our method transfers to real-world robotic hands without any human demonstrations or handcrafted rewards.
RoboPanoptes: The All-seeing Robot with Whole-body Dexterity
We present RoboPanoptes, a capable yet practical robot system that achieves whole-body dexterity through whole-body vision. Its whole-body dexterity allows the robot to utilize its entire body surface for manipulation, such as leveraging multiple contact points or navigating constrained spaces. Meanwhile, whole-body vision uses a camera system distributed over the robot's surface to provide comprehensive, multi-perspective visual feedback of its own and the environment's state. At its core, RoboPanoptes uses a whole-body visuomotor policy that learns complex manipulation skills directly from human demonstrations, efficiently aggregating information from the distributed cameras while maintaining resilience to sensor failures. Together, these design aspects unlock new capabilities and tasks, allowing RoboPanoptes to unbox in narrow spaces, sweep multiple or oversized objects, and succeed in multi-step stowing in cluttered environments, outperforming baselines in adaptability and efficiency. Results are best viewed on https://robopanoptes.github.io.
comment: Project website: https://robopanoptes.github.io
Integrating Symbolic RL Planning into a BDI-based Autonomous UAV Framework: System Integration and SIL Validation
Modern autonomous drone missions increasingly require software frameworks capable of seamlessly integrating structured symbolic planning with adaptive reinforcement learning (RL). Although traditional rule-based architectures offer robust structured reasoning for drone autonomy, their capabilities fall short in dynamically complex operational environments that require adaptive symbolic planning. Symbolic RL (SRL), using the Planning Domain Definition Language (PDDL), explicitly integrates domain-specific knowledge and operational constraints, significantly improving the reliability and safety of unmanned aerial vehicle (UAV) decision making. In this study, we propose the AMAD-SRL framework, an extended and refined version of the Autonomous Mission Agents for Drones (AMAD) cognitive multi-agent architecture, enhanced with symbolic reinforcement learning for dynamic mission planning and execution. We validated our framework in a Software-in-the-Loop (SIL) environment structured identically to an intended Hardware-In-the-Loop Simulation (HILS) platform, ensuring seamless transition to real hardware. Experimental results demonstrate stable integration and interoperability of modules, successful transitions between BDI-driven and symbolic RL-driven planning phases, and consistent mission performance. Specifically, we evaluate a target acquisition scenario in which the UAV plans a surveillance path followed by a dynamic reentry path to secure the target while avoiding threat zones. In this SIL evaluation, mission efficiency improved by approximately 75% over a coverage-based baseline, measured by travel distance reduction. This study establishes a robust foundation for handling complex UAV missions and discusses directions for further enhancement and validation.
comment: This submission has been withdrawn by the authors due to institutional and contractual requirements related to security and export-control review
DiffPF: Differentiable Particle Filtering with Generative Sampling via Conditional Diffusion Models
This paper proposes DiffPF, a differentiable particle filter that leverages diffusion models for state estimation in dynamic systems. Unlike conventional differentiable particle filters, which require importance weighting and typically rely on predefined or low-capacity proposal distributions. DiffPF learns a flexible posterior sampler by conditioning a diffusion model on predicted particles and the current observation. This enables accurate, equally-weighted sampling from complex, high-dimensional, and multimodal filtering distributions. We evaluate DiffPF across a range of scenarios, including both unimodal and highly multimodal distributions, and test it on simulated as well as real-world tasks, where it consistently outperforms existing filtering baselines. In particular, DiffPF achieves an 82.8% improvement in estimation accuracy on a highly multimodal global localization benchmark, and a 26% improvement on the real-world KITTI visual odometry benchmark, compared to state-of-the-art differentiable filters. To the best of our knowledge, DiffPF is the first method to integrate conditional diffusion models into particle filtering, enabling high-quality posterior sampling that produces more informative particles and significantly improves state estimation.
E2-BKI: Evidential Ellipsoidal Bayesian Kernel Inference for Uncertainty-aware Gaussian Semantic Mapping RA-L
Semantic mapping aims to construct a 3D semantic representation of the environment, providing essential knowledge for robots operating in complex outdoor settings. While Bayesian Kernel Inference (BKI) addresses discontinuities of map inference from sparse sensor data, existing semantic mapping methods suffer from various sources of uncertainties in challenging outdoor environments. To address these issues, we propose an uncertainty-aware semantic mapping framework that handles multiple sources of uncertainties, which significantly degrade mapping performance. Our method estimates uncertainties in semantic predictions using Evidential Deep Learning and incorporates them into BKI for robust semantic inference. It further aggregates noisy observations into coherent Gaussian representations to mitigate the impact of unreliable points, while employing geometry-aligned kernels that adapt to complex scene structures. These Gaussian primitives effectively fuse local geometric and semantic information, enabling robust, uncertainty-aware mapping in complex outdoor scenarios. Comprehensive evaluation across diverse off-road and urban outdoor environments demonstrates consistent improvements in mapping quality, uncertainty calibration, representational flexibility, and robustness, while maintaining real-time efficiency. Our project website: https://e2-bki.github.io
comment: Accepted to IEEE RA-L. Our project website can be found at https://kjyoung.github.io/Homepage/#/Projects/E2-BKI
Out-of-Distribution Semantic Occupancy Prediction
3D semantic occupancy prediction is crucial for autonomous driving, providing a dense, semantically rich environmental representation. However, existing methods focus on in-distribution scenes, making them susceptible to Out-of-Distribution (OoD) objects and long-tail distributions, which increases the risk of undetected anomalies and misinterpretations, posing safety hazards. To address these challenges, we introduce Out-of-Distribution Semantic Occupancy Prediction, targeting OoD detection in 3D voxel space. To fill dataset gaps, we propose a Realistic Anomaly Augmentation that injects synthetic anomalies while preserving realistic spatial and occlusion patterns, enabling the creation of two datasets: VAA-KITTI and VAA-KITTI-360. Then, a novel framework that integrates OoD detection into 3D semantic occupancy prediction, OccOoD, is proposed, which uses Cross-Space Semantic Refinement (CSSR) to refine semantic predictions from complementary voxel and BEV representations, improving OoD detection. Experimental results demonstrate that OccOoD achieves state-of-the-art OoD detection with an AuROC of 65.50% and an AuPRCr of 31.83 within a 1.2m region, while maintaining competitive semantic occupancy prediction performance and generalization in real-world urban driving scenes. The established datasets and source code will be made publicly available at https://github.com/7uHeng/OccOoD.
comment: The established datasets and source code will be made publicly available at https://github.com/7uHeng/OccOoD
MimicKit: A Reinforcement Learning Framework for Motion Imitation and Control
MimicKit is an open-source framework for training motion controllers using motion imitation and reinforcement learning. The codebase provides implementations of commonly-used motion-imitation techniques and RL algorithms. This framework is intended to support research and applications in computer graphics and robotics by providing a unified training framework, along with standardized environment, agent, and data structures. The codebase is designed to be modular and easily configurable, enabling convenient modification and extension to new characters and tasks. The open-source codebase is available at: https://github.com/xbpeng/MimicKit.
Computer Vision and Pattern Recognition 55
3D Wavelet-Based Structural Priors for Controlled Diffusion in Whole-Body Low-Dose PET Denoising
Low-dose Positron Emission Tomography (PET) imaging reduces patient radiation exposure but suffers from increased noise that degrades image quality and diagnostic reliability. Although diffusion models have demonstrated strong denoising capability, their stochastic nature makes it challenging to enforce anatomically consistent structures, particularly in low signal-to-noise regimes and volumetric whole-body imaging. We propose Wavelet-Conditioned ControlNet (WCC-Net), a fully 3D diffusion-based framework that introduces explicit frequency-domain structural priors via wavelet representations to guide volumetric PET denoising. By injecting wavelet-based structural guidance into a frozen pretrained diffusion backbone through a lightweight control branch, WCC-Net decouples anatomical structure from noise while preserving generative expressiveness and 3D structural continuity. Extensive experiments demonstrate that WCC-Net consistently outperforms CNN-, GAN-, and diffusion-based baselines. On the internal 1/20-dose test set, WCC-Net improves PSNR by +1.21 dB and SSIM by +0.008 over a strong diffusion baseline, while reducing structural distortion (GMSD) and intensity error (NMAE). Moreover, WCC-Net generalizes robustly to unseen dose levels (1/50 and 1/4), achieving superior quantitative performance and improved volumetric anatomical consistency.
comment: 10 pages
Efficient Visual Question Answering Pipeline for Autonomous Driving via Scene Region Compression
Autonomous driving increasingly relies on Visual Question Answering (VQA) to enable vehicles to understand complex surroundings by analyzing visual inputs and textual queries. Currently, a paramount concern for VQA in this domain is the stringent requirement for fast latency and real-time processing, as delays directly impact real-world safety in this safety-critical application. However, current state-of-the-art VQA models, particularly large vision-language models (VLMs), often prioritize performance over computational efficiency. These models typically process dense patch tokens for every frame, leading to prohibitive computational costs (FLOPs) and significant inference latency, especially with long video sequences. This focus limits their practical deployment in real-time autonomous driving scenarios. To tackle this issue, we propose an efficient VLM framework for autonomous driving VQA tasks, SRC-Pipeline. It learns to compress early frame tokens into a small number of high-level tokens while retaining full patch tokens for recent frames. Experiments on autonomous driving video question answering tasks show that our approach achieves 66% FLOPs reduction while maintaining comparable performance, enabling VLMs to operate more effectively in real-time, safety-critical autonomous driving settings.
comment: 7 pages
Billboard in Focus: Estimating Driver Gaze Duration from a Single Image
Roadside billboards represent a central element of outdoor advertising, yet their presence may contribute to driver distraction and accident risk. This study introduces a fully automated pipeline for billboard detection and driver gaze duration estimation, aiming to evaluate billboard relevance without reliance on manual annotations or eye-tracking devices. Our pipeline operates in two stages: (1) a YOLO-based object detection model trained on Mapillary Vistas and fine-tuned on BillboardLamac images achieved 94% mAP@50 in the billboard detection task (2) a classifier based on the detected bounding box positions and DINOv2 features. The proposed pipeline enables estimation of billboard driver gaze duration from individual frames. We show that our method is able to achieve 68.1% accuracy on BillboardLamac when considering individual frames. These results are further validated using images collected from Google Street View.
comment: Accepted as a position paper at VISAPP 2026
Adversarial Attacks on Medical Hyperspectral Imaging Exploiting Spectral-Spatial Dependencies and Multiscale Features
Medical hyperspectral imaging (HSI) enables accurate disease diagnosis by capturing rich spectral-spatial tissue information, but recent advances in deep learning have exposed its vulnerability to adversarial attacks. In this work, we identify two fundamental causes of this fragility: the reliance on local pixel dependencies for preserving tissue structure and the dependence on multiscale spectral-spatial representations for hierarchical feature encoding. Building on these insights, we propose a targeted adversarial attack framework for medical HSI, consisting of a Local Pixel Dependency Attack that exploits spatial correlations among neighboring pixels, and a Multiscale Information Attack that perturbs features across hierarchical spectral-spatial scales. Experiments on the Brain and MDC datasets demonstrate that our attacks significantly degrade classification performance, especially in tumor regions, while remaining visually imperceptible. Compared with existing methods, our approach reveals the unique vulnerabilities of medical HSI models and underscores the need for robust, structure-aware defenses in clinical applications.
Explainable Deep Radiogenomic Molecular Imaging for MGMT Methylation Prediction in Glioblastoma
Glioblastoma (GBM) is a highly aggressive primary brain tumor with limited therapeutic options and poor prognosis. The methylation status of the O6-methylguanine-DNA methyltransferase (MGMT) gene promoter is a critical molecular biomarker that influences patient response to temozolomide chemotherapy. Traditional methods for determining MGMT status rely on invasive biopsies and are limited by intratumoral heterogeneity and procedural risks. This study presents a radiogenomic molecular imaging analysis framework for the non-invasive prediction of MGMT promoter methylation using multi-parametric magnetic resonance imaging (mpMRI). Our approach integrates radiomics, deep learning, and explainable artificial intelligence (XAI) to analyze MRI-derived imaging phenotypes and correlate them with molecular labels. Radiomic features are extracted from FLAIR, T1-weighted, T1-contrast-enhanced, and T2-weighted MRI sequences, while a 3D convolutional neural network learns deep representations from the same modalities. These complementary features are fused using both early fusion and attention-based strategies and classified to predict MGMT methylation status. To enhance clinical interpretability, we apply XAI methods such as Grad-CAM and SHAP to visualize and explain model decisions. The proposed framework is trained on the RSNA-MICCAI Radiogenomic Classification dataset and externally validated on the BraTS 2021 dataset. This work advances the field of molecular imaging by demonstrating the potential of AI-driven radiogenomics for precision oncology, supporting non-invasive, accurate, and interpretable prediction of clinically actionable molecular biomarkers in GBM.
comment: 14 pages
Spatial Multi-Task Learning for Breast Cancer Molecular Subtype Prediction from Single-Phase DCE-MRI
Accurate molecular subtype classification is essential for personalized breast cancer treatment, yet conventional immunohistochemical analysis relies on invasive biopsies and is prone to sampling bias. Although dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) enables non-invasive tumor characterization, clinical workflows typically acquire only single-phase post-contrast images to reduce scan time and contrast agent dose. In this study, we propose a spatial multi-task learning framework for breast cancer molecular subtype prediction from clinically practical single-phase DCE-MRI. The framework simultaneously predicts estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2) status, and the Ki-67 proliferation index -- biomarkers that collectively define molecular subtypes. The architecture integrates a deep feature extraction network with multi-scale spatial attention to capture intratumoral and peritumoral characteristics, together with a region-of-interest weighting module that emphasizes the tumor core, rim, and surrounding tissue. Multi-task learning exploits biological correlations among biomarkers through shared representations with task-specific prediction branches. Experiments on a dataset of 960 cases (886 internal cases split 7:1:2 for training/validation/testing, and 74 external cases evaluated via five-fold cross-validation) demonstrate that the proposed method achieves an AUC of 0.893, 0.824, and 0.857 for ER, PR, and HER2 classification, respectively, and a mean absolute error of 8.2\% for Ki-67 regression, significantly outperforming radiomics and single-task deep learning baselines. These results indicate the feasibility of accurate, non-invasive molecular subtype prediction using standard imaging protocols.
ObjSplat: Geometry-Aware Gaussian Surfels for Active Object Reconstruction
Autonomous high-fidelity object reconstruction is fundamental for creating digital assets and bridging the simulation-to-reality gap in robotics. We present ObjSplat, an active reconstruction framework that leverages Gaussian surfels as a unified representation to progressively reconstruct unknown objects with both photorealistic appearance and accurate geometry. Addressing the limitations of conventional opacity or depth-based cues, we introduce a geometry-aware viewpoint evaluation pipeline that explicitly models back-face visibility and occlusion-aware multi-view covisibility, reliably identifying under-reconstructed regions even on geometrically complex objects. Furthermore, to overcome the limitations of greedy planning strategies, ObjSplat employs a next-best-path (NBP) planner that performs multi-step lookahead on a dynamically constructed spatial graph. By jointly optimizing information gain and movement cost, this planner generates globally efficient trajectories. Extensive experiments in simulation and on real-world cultural artifacts demonstrate that ObjSplat produces physically consistent models within minutes, achieving superior reconstruction fidelity and surface completeness while significantly reducing scan time and path length compared to state-of-the-art approaches. Project page: https://li-yuetao.github.io/ObjSplat-page/ .
comment: Project Page: https://li-yuetao.github.io/ObjSplat-page/
Can Textual Reasoning Improve the Performance of MLLMs on Fine-grained Visual Classification?
Multi-modal large language models (MLLMs) exhibit strong general-purpose capabilities, yet still struggle on Fine-Grained Visual Classification (FGVC), a core perception task that requires subtle visual discrimination and is crucial for many real-world applications. A widely adopted strategy for boosting performance on challenging tasks such as math and coding is Chain-of-Thought (CoT) reasoning. However, several prior works have reported that CoT can actually harm performance on visual perception tasks. These studies, though, examine the issue from relatively narrow angles and leave open why CoT degrades perception-heavy performance. We systematically re-examine the role of CoT in FGVC through the lenses of zero-shot evaluation and multiple training paradigms. Across these settings, we uncover a central paradox: the degradation induced by CoT is largely driven by the reasoning length, in which longer textual reasoning consistently lowers classification accuracy. We term this phenomenon the ``Cost of Thinking''. Building on this finding, we make two key contributions: (1) \alg, a simple and general plug-and-play normalization method for multi-reward optimization that balances heterogeneous reward signals, and (2) ReFine-RFT, a framework that combines ensemble rewards with \alg to constrain reasoning length while providing dense accuracy-oriented feedback. Extensive experiments demonstrate the effectiveness of our findings and the proposed ReFine-RFT, achieving state-of-the-art performance across FGVC benchmarks. Code and models are available at \href{https://github.com/jiezhu23/ReFine-RFT}{Project Link}.
comment: 10 pages, 8 figures
Unified Personalized Understanding, Generating and Editing
Unified large multimodal models (LMMs) have achieved remarkable progress in general-purpose multimodal understanding and generation. However, they still operate under a ``one-size-fits-all'' paradigm and struggle to model user-specific concepts (e.g., generate a photo of \texttt{}) in a consistent and controllable manner. Existing personalization methods typically rely on external retrieval, which is inefficient and poorly integrated into unified multimodal pipelines. Recent personalized unified models introduce learnable soft prompts to encode concept information, yet they either couple understanding and generation or depend on complex multi-stage training, leading to cross-task interference and ultimately to fuzzy or misaligned personalized knowledge. We present \textbf{OmniPersona}, an end-to-end personalization framework for unified LMMs that, for the first time, integrates personalized understanding, generation, and image editing within a single architecture. OmniPersona introduces structurally decoupled concept tokens, allocating dedicated subspaces for different tasks to minimize interference, and incorporates an explicit knowledge replay mechanism that propagates personalized attribute knowledge across tasks, enabling consistent personalized behavior. To systematically evaluate unified personalization, we propose \textbf{\texttt{OmniPBench}}, extending the public UnifyBench concept set with personalized editing tasks and cross-task evaluation protocols integrating understanding, generation, and editing. Experimental results demonstrate that OmniPersona delivers competitive and robust performance across diverse personalization tasks. We hope OmniPersona will serve as a strong baseline and spur further research on controllable, unified personalization.
SketchJudge: A Diagnostic Benchmark for Grading Hand-drawn Diagrams with Multimodal Large Language Models
While Multimodal Large Language Models (MLLMs) have achieved remarkable progress in visual understanding, they often struggle when faced with the unstructured and ambiguous nature of human-generated sketches. This limitation is particularly pronounced in the underexplored task of visual grading, where models should not only solve a problem but also diagnose errors in hand-drawn diagrams. Such diagnostic capabilities depend on complex structural, semantic, and metacognitive reasoning. To bridge this gap, we introduce SketchJudge, a novel benchmark tailored for evaluating MLLMs as graders of hand-drawn STEM diagrams. SketchJudge encompasses 1,015 hand-drawn student responses across four domains: geometry, physics, charts, and flowcharts, featuring diverse stylistic variations and distinct error types. Evaluations on SketchJudge demonstrate that even advanced MLLMs lag significantly behind humans, validating the benchmark's effectiveness in exposing the fragility of current vision-language alignment in symbolic and noisy contexts. All data, code, and evaluation scripts are publicly available at https://github.com/yuhangsu82/SketchJudge.
comment: 8 pages for the main text (excluding references and the limitations section); 37 pages in total including appendices
Watching, Reasoning, and Searching: A Video Deep Research Benchmark on Open Web for Agentic Video Reasoning
In real-world video question answering scenarios, videos often provide only localized visual cues, while verifiable answers are distributed across the open web; models therefore need to jointly perform cross-frame clue extraction, iterative retrieval, and multi-hop reasoning-based verification. To bridge this gap, we construct the first video deep research benchmark, VideoDR. VideoDR centers on video-conditioned open-domain video question answering, requiring cross-frame visual anchor extraction, interactive web retrieval, and multi-hop reasoning over joint video-web evidence; through rigorous human annotation and quality control, we obtain high-quality video deep research samples spanning six semantic domains. We evaluate multiple closed-source and open-source multimodal large language models under both the Workflow and Agentic paradigms, and the results show that Agentic is not consistently superior to Workflow: its gains depend on a model's ability to maintain the initial video anchors over long retrieval chains. Further analysis indicates that goal drift and long-horizon consistency are the core bottlenecks. In sum, VideoDR provides a systematic benchmark for studying video agents in open-web settings and reveals the key challenges for next-generation video deep research agents.
Measuring Social Bias in Vision-Language Models with Face-Only Counterfactuals from Real Photos
Vision-Language Models (VLMs) are increasingly deployed in socially consequential settings, raising concerns about social bias driven by demographic cues. A central challenge in measuring such social bias is attribution under visual confounding: real-world images entangle race and gender with correlated factors such as background and clothing, obscuring attribution. We propose a \textbf{face-only counterfactual evaluation paradigm} that isolates demographic effects while preserving real-image realism. Starting from real photographs, we generate counterfactual variants by editing only facial attributes related to race and gender, keeping all other visual factors fixed. Based on this paradigm, we construct \textbf{FOCUS}, a dataset of 480 scene-matched counterfactual images across six occupations and ten demographic groups, and propose \textbf{REFLECT}, a benchmark comprising three decision-oriented tasks: two-alternative forced choice, multiple-choice socioeconomic inference, and numeric salary recommendation. Experiments on five state-of-the-art VLMs reveal that demographic disparities persist under strict visual control and vary substantially across task formulations. These findings underscore the necessity of controlled, counterfactual audits and highlight task design as a critical factor in evaluating social bias in multimodal models.
comment: 18 pages, 18 figures, and 3 tables
RenderFlow: Single-Step Neural Rendering via Flow Matching
Conventional physically based rendering (PBR) pipelines generate photorealistic images through computationally intensive light transport simulations. Although recent deep learning approaches leverage diffusion model priors with geometry buffers (G-buffers) to produce visually compelling results without explicit scene geometry or light simulation, they remain constrained by two major limitations. First, the iterative nature of the diffusion process introduces substantial latency. Second, the inherent stochasticity of these generative models compromises physical accuracy and temporal consistency. In response to these challenges, we propose a novel, end-to-end, deterministic, single-step neural rendering framework, RenderFlow, built upon a flow matching paradigm. To further strengthen both rendering quality and generalization, we propose an efficient and effective module for sparse keyframe guidance. Our method significantly accelerates the rendering process and, by optionally incorporating sparsely rendered keyframes as guidance, enhances both the physical plausibility and overall visual quality of the output. The resulting pipeline achieves near real-time performance with photorealistic rendering quality, effectively bridging the gap between the efficiency of modern generative models and the precision of traditional physically based rendering. Furthermore, we demonstrate the versatility of our framework by introducing a lightweight, adapter-based module that efficiently repurposes the pretrained forward model for the inverse rendering task of intrinsic decomposition.
UDPNet: Unleashing Depth-based Priors for Robust Image Dehazing
Image dehazing has witnessed significant advancements with the development of deep learning models. However, a few methods predominantly focus on single-modal RGB features, neglecting the inherent correlation between scene depth and haze distribution. Even those that jointly optimize depth estimation and image dehazing often suffer from suboptimal performance due to inadequate utilization of accurate depth information. In this paper, we present UDPNet, a general framework that leverages depth-based priors from large-scale pretrained depth estimation model DepthAnything V2 to boost existing image dehazing models. Specifically, our architecture comprises two typical components: the Depth-Guided Attention Module (DGAM) adaptively modulates features via lightweight depth-guided channel attention, and the Depth Prior Fusion Module (DPFM) enables hierarchical fusion of multi-scale depth map features by dual sliding-window multi-head cross-attention mechanism. These modules ensure both computational efficiency and effective integration of depth priors. Moreover, the intrinsic robustness of depth priors empowers the network to dynamically adapt to varying haze densities, illumination conditions, and domain gaps across synthetic and real-world data. Extensive experimental results demonstrate the effectiveness of our UDPNet, outperforming the state-of-the-art methods on popular dehazing datasets, such as 0.85 dB PSNR improvement on the SOTS dataset, 1.19 dB on the Haze4K dataset and 1.79 dB PSNR on the NHR dataset. Our proposed solution establishes a new benchmark for depth-aware dehazing across various scenarios. Pretrained models and codes will be released at our project https://github.com/Harbinzzy/UDPNet.
CLIMP: Contrastive Language-Image Mamba Pretraining
Contrastive Language-Image Pre-training (CLIP) relies on Vision Transformers whose attention mechanism is susceptible to spurious correlations, and scales quadratically with resolution. To address these limitations, We present CLIMP, the first fully Mamba-based contrastive vision-language model that replaces both the vision and text encoders with Mamba. The new architecture encodes sequential structure in both vision and language, with VMamba capturing visual spatial inductive biases, reducing reliance on spurious correlations and producing an embedding space favorable for cross-modal retrieval and out-of-distribution robustness-surpassing OpenAI's CLIP-ViT-B by 7.5% on ImageNet-O. CLIMP naturally supports variable input resolutions without positional encoding interpolation or specialized training, achieving up to 6.6% higher retrieval accuracy at 16x training resolution while using 5x less memory and 1.8x fewer FLOPs. The autoregressive text encoder further overcomes CLIP's fixed context limitation, enabling dense captioning retrieval. Our findings suggest that Mamba exhibits advantageous properties for vision-language learning, making it a compelling alternative to Transformer-based CLIP.
MixRI: Mixing Features of Reference Images for Novel Object Pose Estimation ICCV 2025
We present MixRI, a lightweight network that solves the CAD-based novel object pose estimation problem in RGB images. It can be instantly applied to a novel object at test time without finetuning. We design our network to meet the demands of real-world applications, emphasizing reduced memory requirements and fast inference time. Unlike existing works that utilize many reference images and have large network parameters, we directly match points based on the multi-view information between the query and reference images with a lightweight network. Thanks to our reference image fusion strategy, we significantly decrease the number of reference images, thus decreasing the time needed to process these images and the memory required to store them. Furthermore, with our lightweight network, our method requires less inference time. Though with fewer reference images, experiments on seven core datasets in the BOP challenge show that our method achieves comparable results with other methods that require more reference images and larger network parameters.
comment: Accepted by ICCV 2025
Unsupervised Domain Adaptation with SAM-RefiSeR for Enhanced Brain Tumor Segmentation
Unsupervised Domain Adaptation with SAM-RefiSeR for Enhanced Brain Tumor Segmentation
comment: Accepted in BIBM 2025
MVGGT: Multimodal Visual Geometry Grounded Transformer for Multiview 3D Referring Expression Segmentation
Most existing 3D referring expression segmentation (3DRES) methods rely on dense, high-quality point clouds, while real-world agents such as robots and mobile phones operate with only a few sparse RGB views and strict latency constraints. We introduce Multi-view 3D Referring Expression Segmentation (MV-3DRES), where the model must recover scene structure and segment the referred object directly from sparse multi-view images. Traditional two-stage pipelines, which first reconstruct a point cloud and then perform segmentation, often yield low-quality geometry, produce coarse or degraded target regions, and run slowly. We propose the Multimodal Visual Geometry Grounded Transformer (MVGGT), an efficient end-to-end framework that integrates language information into sparse-view geometric reasoning through a dual-branch design. Training in this setting exposes a critical optimization barrier, termed Foreground Gradient Dilution (FGD), where sparse 3D signals lead to weak supervision. To resolve this, we introduce Per-view No-target Suppression Optimization (PVSO), which provides stronger and more balanced gradients across views, enabling stable and efficient learning. To support consistent evaluation, we build MVRefer, a benchmark that defines standardized settings and metrics for MV-3DRES. Experiments show that MVGGT establishes the first strong baseline and achieves both high accuracy and fast inference, outperforming existing alternatives. Code and models are publicly available at https://mvggt.github.io.
comment: Project Website: https://mvggt.github.io
qAttCNN - Self Attention Mechanism for Video QoE Prediction in Encrypted Traffic
The rapid growth of multimedia consumption, driven by major advances in mobile devices since the mid-2000s, has led to widespread use of video conferencing applications (VCAs) such as Zoom and Google Meet, as well as instant messaging applications (IMAs) like WhatsApp and Telegram, which increasingly support video conferencing as a core feature. Many of these systems rely on the Web Real-Time Communication (WebRTC) protocol, enabling direct peer-to-peer media streaming without requiring a third-party server to relay data, reducing the latency and facilitating a real-time communication. Despite WebRTC's potential, adverse network conditions can degrade streaming quality and consequently reduce users' Quality of Experience (QoE). Maintaining high QoE therefore requires continuous monitoring and timely intervention when QoE begins to deteriorate. While content providers can often estimate QoE by directly comparing transmitted and received media, this task is significantly more challenging for internet service providers (ISPs). End-to-end encryption, commonly used by modern VCAs and IMAs, prevent ISPs from accessing the original media stream, leaving only Quality of Service (QoS) and routing information available. To address this limitation, we propose the QoE Attention Convolutional Neural Network (qAttCNN), a model that leverages packet size parameter of the traffic to infer two no-reference QoE metrics viz. BRISQUE and frames per second (FPS). We evaluate qAttCNN on a custom dataset collected from WhatsApp video calls and compare it against existing QoE models. Using mean absolute error percentage (MAEP), our approach achieves 2.14% error for BRISQUE and 7.39% for FPS prediction.
MedGround: Bridging the Evidence Gap in Medical Vision-Language Models with Verified Grounding Data
Vision-Language Models (VLMs) can generate convincing clinical narratives, yet frequently struggle to visually ground their statements. We posit this limitation arises from the scarcity of high-quality, large-scale clinical referring-localization pairs. To address this, we introduce MedGround, an automated pipeline that transforms segmentation resources into high-quality medical referring grounding data. Leveraging expert masks as spatial anchors, MedGround precisely derives localization targets, extracts shape and spatial cues, and guides VLMs to synthesize natural, clinically grounded queries that reflect morphology and location. To ensure data rigor, a multi-stage verification system integrates strict formatting checks, geometry- and medical-prior rules, and image-based visual judging to filter out ambiguous or visually unsupported samples. Finally, we present MedGround-35K, a novel multimodal medical dataset. Extensive experiments demonstrate that VLMs trained with MedGround-35K consistently achieve improved referring grounding performance, enhance multi-object semantic disambiguation, and exhibit strong generalization to unseen grounding settings. This work highlights MedGround as a scalable, data-driven approach to anchor medical language to verifiable visual evidence. Dataset and code will be released publicly upon acceptance.
comment: 18 pages, 10 figures
Speak While Watching: Unleashing TRUE Real-Time Video Understanding Capability of Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) have achieved strong performance across many tasks, yet most systems remain limited to offline inference, requiring complete inputs before generating outputs. Recent streaming methods reduce latency by interleaving perception and generation, but still enforce a sequential perception-generation cycle, limiting real-time interaction. In this work, we target a fundamental bottleneck that arises when extending MLLMs to real-time video understanding: the global positional continuity constraint imposed by standard positional encoding schemes. While natural in offline inference, this constraint tightly couples perception and generation, preventing effective input-output parallelism. To address this limitation, we propose a parallel streaming framework that relaxes positional continuity through three designs: Overlapped, Group-Decoupled, and Gap-Isolated. These designs enable simultaneous perception and generation, allowing the model to process incoming inputs while producing responses in real time. Extensive experiments reveal that Group-Decoupled achieves the best efficiency-performance balance, maintaining high fluency and accuracy while significantly reducing latency. We further show that the proposed framework yields up to 2x acceleration under balanced perception-generation workloads, establishing a principled pathway toward speak-while-watching real-time systems. We make all our code publicly available: https://github.com/EIT-NLP/Speak-While-Watching.
PRISM: Color-Stratified Point Cloud Sampling
We present PRISM, a novel color-guided stratified sampling method for RGB-LiDAR point clouds. Our approach is motivated by the observation that unique scene features often exhibit chromatic diversity while repetitive, redundant features are homogeneous in color. Conventional downsampling methods (Random Sampling, Voxel Grid, Normal Space Sampling) enforce spatial uniformity while ignoring this photometric content. In contrast, PRISM allocates sampling density proportional to chormatic diversity. By treating RGB color space as the stratification domain and imposing a maximum capacity k per color bin, the method preserves texture-rich regions with high color variation while substantially reducing visually homogeneous surfaces. This shifts the sampling space from spatial coverage to visual complexity to produce sparser point clouds that retain essential features for 3D reconstruction tasks.
comment: This work has been submitted to the 2026 International Conference on Pattern Recognition (ICPR) for possible publication
OSCAR: Optical-aware Semantic Control for Aleatoric Refinement in Sar-to-Optical Translation
Synthetic Aperture Radar (SAR) provides robust all-weather imaging capabilities; however, translating SAR observations into photo-realistic optical images remains a fundamentally ill-posed problem. Current approaches are often hindered by the inherent speckle noise and geometric distortions of SAR data, which frequently result in semantic misinterpretation, ambiguous texture synthesis, and structural hallucinations. To address these limitations, a novel SAR-to-Optical (S2O) translation framework is proposed, integrating three core technical contributions: (i) Cross-Modal Semantic Alignment, which establishes an Optical-Aware SAR Encoder by distilling robust semantic priors from an Optical Teacher into a SAR Student (ii) Semantically-Grounded Generative Guidance, realized by a Semantically-Grounded ControlNet that integrates class-aware text prompts for global context with hierarchical visual prompts for local spatial guidance; and (iii) an Uncertainty-Aware Objective, which explicitly models aleatoric uncertainty to dynamically modulate the reconstruction focus, effectively mitigating artifacts caused by speckle-induced ambiguity. Extensive experiments demonstrate that the proposed method achieves superior perceptual quality and semantic consistency compared to state-of-the-art approaches.
comment: main 15 pages, supplementary 5 pages
Enhancing Low-resolution Image Representation Through Normalizing Flows
Low-resolution image representation is a special form of sparse representation that retains only low-frequency information while discarding high-frequency components. This property reduces storage and transmission costs and benefits various image processing tasks. However, a key challenge is to preserve essential visual content while maintaining the ability to accurately reconstruct the original images. This work proposes LR2Flow, a nonlinear framework that learns low-resolution image representations by integrating wavelet tight frame blocks with normalizing flows. We conduct a reconstruction error analysis of the proposed network, which demonstrates the necessity of designing invertible neural networks in the wavelet tight frame domain. Experimental results on various tasks, including image rescaling, compression, and denoising, demonstrate the effectiveness of the learned representations and the robustness of the proposed framework.
SARA: Scene-Aware Reconstruction Accelerator
We present SARA (Scene-Aware Reconstruction Accelerator), a geometry-driven pair selection module for Structure-from-Motion (SfM). Unlike conventional pipelines that select pairs based on visual similarity alone, SARA introduces geometry-first pair selection by scoring reconstruction informativeness - the product of overlap and parallax - before expensive matching. A lightweight pre-matching stage uses mutual nearest neighbors and RANSAC to estimate these cues, then constructs an Information-Weighted Spanning Tree (IWST) augmented with targeted edges for loop closure, long-baseline anchors, and weak-view reinforcement. Compared to exhaustive matching, SARA reduces rotation errors by 46.5+-5.5% and translation errors by 12.5+-6.5% across modern learned detectors, while achieving at most 50x speedup through 98% pair reduction (from 30,848 to 580 pairs). This reduces matching complexity from quadratic to quasi-linear, maintaining within +-3% of baseline reconstruction metrics for 3D Gaussian Splatting and SVRaster.
comment: This work has been submitted to the 2026 International Conference on Pattern Recognition (ICPR) for possible publication
SpatialNav: Leveraging Spatial Scene Graphs for Zero-Shot Vision-and-Language Navigation
Although learning-based vision-and-language navigation (VLN) agents can learn spatial knowledge implicitly from large-scale training data, zero-shot VLN agents lack this process, relying primarily on local observations for navigation, which leads to inefficient exploration and a significant performance gap. To deal with the problem, we consider a zero-shot VLN setting that agents are allowed to fully explore the environment before task execution. Then, we construct the Spatial Scene Graph (SSG) to explicitly capture global spatial structure and semantics in the explored environment. Based on the SSG, we introduce SpatialNav, a zero-shot VLN agent that integrates an agent-centric spatial map, a compass-aligned visual representation, and a remote object localization strategy for efficient navigation. Comprehensive experiments in both discrete and continuous environments demonstrate that SpatialNav significantly outperforms existing zero-shot agents and clearly narrows the gap with state-of-the-art learning-based methods. Such results highlight the importance of global spatial representations for generalizable navigation.
comment: 11 pages, 4 figures, 6 tables
Forest Before Trees: Latent Superposition for Efficient Visual Reasoning
While Chain-of-Thought empowers Large Vision-Language Models with multi-step reasoning, explicit textual rationales suffer from an information bandwidth bottleneck, where continuous visual details are discarded during discrete tokenization. Recent latent reasoning methods attempt to address this challenge, but often fall prey to premature semantic collapse due to rigid autoregressive objectives. In this paper, we propose Laser, a novel paradigm that reformulates visual deduction via Dynamic Windowed Alignment Learning (DWAL). Instead of forcing a point-wise prediction, Laser aligns the latent state with a dynamic validity window of future semantics. This mechanism enforces a "Forest-before-Trees" cognitive hierarchy, enabling the model to maintain a probabilistic superposition of global features before narrowing down to local details. Crucially, Laser maintains interpretability via decodable trajectories while stabilizing unconstrained learning via Self-Refined Superposition. Extensive experiments on 6 benchmarks demonstrate that Laser achieves state-of-the-art performance among latent reasoning methods, surpassing the strong baseline Monet by 5.03% on average. Notably, it achieves these gains with extreme efficiency, reducing inference tokens by more than 97%, while demonstrating robust generalization to out-of-distribution domains.
CliffordNet: All You Need is Geometric Algebra
Modern computer vision architectures, from CNNs to Transformers, predominantly rely on the stacking of heuristic modules: spatial mixers (Attention/Conv) followed by channel mixers (FFNs). In this work, we challenge this paradigm by returning to mathematical first principles. We propose the \textbf{Clifford Algebra Network (CAN)}, also referred to as CliffordNet, a vision backbone grounded purely in Geometric Algebra. Instead of engineering separate modules for mixing and memory, we derive a unified interaction mechanism based on the \textbf{Clifford Geometric Product} ($uv = u \cdot v + u \wedge v$). This operation ensures algebraic completeness regarding the Geometric Product by simultaneously capturing feature coherence (via the generalized inner product) and structural variation (via the exterior wedge product). Implemented via an efficient sparse rolling mechanism with \textbf{strict linear complexity $\mathcal{O}(N)$}, our model reveals a surprising emergent property: the geometric interaction is so representationally dense that standard Feed-Forward Networks (FFNs) become redundant. Empirically, CliffordNet establishes a new Pareto frontier: our \textbf{Nano} variant achieves \textbf{76.41\%} accuracy on CIFAR-100 with only \textbf{1.4M} parameters, effectively matching the heavy-weight ResNet-18 (11.2M) with \textbf{$8\times$ fewer parameters}, while our \textbf{Base} variant sets a new SOTA for tiny models at \textbf{78.05\%}. Our results suggest that global understanding can emerge solely from rigorous, algebraically complete local interactions, potentially signaling a shift where \textit{geometry is all you need}. Code is available at https://github.com/ParaMind2025/CAN.
comment: 15 pages
AutoTour: Automatic Photo Tour Guide with Smartphones and LLMs
We present AutoTour, a system that enhances user exploration by automatically generating fine-grained landmark annotations and descriptive narratives for photos captured by users. The key idea of AutoTour is to fuse visual features extracted from photos with nearby geospatial features queried from open matching databases. Unlike existing tour applications that rely on pre-defined content or proprietary datasets, AutoTour leverages open and extensible data sources to provide scalable and context-aware photo-based guidance. To achieve this, we design a training-free pipeline that first extracts and filters relevant geospatial features around the user's GPS location. It then detects major landmarks in user photos through VLM-based feature detection and projects them into the horizontal spatial plane. A geometric matching algorithm aligns photo features with corresponding geospatial entities based on their estimated distance and direction. The matched features are subsequently grounded and annotated directly on the original photo, accompanied by large language model-generated textual and audio descriptions to provide an informative, tour-like experience. We demonstrate that AutoTour can deliver rich, interpretable annotations for both iconic and lesser-known landmarks, enabling a new form of interactive, context-aware exploration that bridges visual perception and geospatial understanding.
comment: 21
The Normalized Difference Layer: A Differentiable Spectral Index Formulation for Deep Learning
Normalized difference indices have been a staple in remote sensing for decades. They stay reliable under lighting changes produce bounded values and connect well to biophysical signals. Even so, they are usually treated as a fixed pre processing step with coefficients set to one, which limits how well they can adapt to a specific learning task. In this study, we introduce the Normalized Difference Layer that is a differentiable neural network module. The proposed method keeps the classical idea but learns the band coefficients from data. We present a complete mathematical framework for integrating this layer into deep learning architectures that uses softplus reparameterization to ensure positive coefficients and bounded denominators. We describe forward and backward pass algorithms enabling end to end training through backpropagation. This approach preserves the key benefits of normalized differences, namely illumination invariance and outputs bounded to $[-1,1]$ while allowing gradient descent to discover task specific band weightings. We extend the method to work with signed inputs, so the layer can be stacked inside larger architectures. Experiments show that models using this layer reach similar classification accuracy to standard multilayer perceptrons while using about 75\% fewer parameters. They also handle multiplicative noise well, at 10\% noise accuracy drops only 0.17\% versus 3.03\% for baseline MLPs. The learned coefficient patterns stay consistent across different depths.
comment: 21 pages, 9 figures
Benchmarking Egocentric Clinical Intent Understanding Capability for Medical Multimodal Large Language Models
Medical Multimodal Large Language Models (Med-MLLMs) require egocentric clinical intent understanding for real-world deployment, yet existing benchmarks fail to evaluate this critical capability. To address these challenges, we introduce MedGaze-Bench, the first benchmark leveraging clinician gaze as a Cognitive Cursor to assess intent understanding across surgery, emergency simulation, and diagnostic interpretation. Our benchmark addresses three fundamental challenges: visual homogeneity of anatomical structures, strict temporal-causal dependencies in clinical workflows, and implicit adherence to safety protocols. We propose a Three-Dimensional Clinical Intent Framework evaluating: (1) Spatial Intent: discriminating precise targets amid visual noise, (2) Temporal Intent: inferring causal rationale through retrospective and prospective reasoning, and (3) Standard Intent: verifying protocol compliance through safety checks. Beyond accuracy metrics, we introduce Trap QA mechanisms to stress-test clinical reliability by penalizing hallucinations and cognitive sycophancy. Experiments reveal current MLLMs struggle with egocentric intent due to over-reliance on global features, leading to fabricated observations and uncritical acceptance of invalid instructions.
comment: 16 pages, 4 figures
USFetal: Tools for Fetal Brain Ultrasound Compounding
Ultrasound offers a safe, cost-effective, and widely accessible technology for fetal brain imaging, making it especially suitable for routine clinical use. However, it suffers from view-dependent artifacts, operator variability, and a limited field of view, which make interpretation and quantitative evaluation challenging. Ultrasound compounding aims to overcome these limitations by integrating complementary information from multiple 3D acquisitions into a single, coherent volumetric representation. This work provides four main contributions: (1) We present the first systematic categorization of computational strategies for fetal brain ultrasound compounding, including both classical techniques and modern learning-based frameworks. (2) We implement and compare representative methods across four key categories - multi-scale, transformation-based, variational, and deep learning approaches - emphasizing their core principles and practical advantages. (3) Motivated by the lack of full-view, artifact-free ground truth required for supervised learning, we focus on unsupervised and self-supervised strategies and introduce two new deep learning based approaches: a self-supervised compounding framework and an adaptation of unsupervised deep plug-and-play priors for compounding. (4) We conduct a comprehensive evaluation on ten multi-view fetal brain ultrasound datasets, using both expert radiologist scoring and standard quantitative image-quality metrics. We also release the USFetal Compounding Toolbox, publicly available to support benchmarking and future research. Keywords: Ultrasound compounding, fetal brain, deep learning, self-supervised, unsupervised.
When Humans Judge Irises: Pupil Size Normalization as an Aid and Synthetic Irises as a Challenge
Iris recognition is a mature biometric technology offering remarkable precision and speed, and allowing for large-scale deployments to populations exceeding a billion enrolled users (e.g., AADHAAR in India). However, in forensic applications, a human expert may be needed to review and confirm a positive identification before an iris matching result can be presented as evidence in court, especially in cases where processed samples are degraded (e.g., in post-mortem cases) or where there is a need to judge whether the sample is authentic, rather than a result of a presentation attack. This paper presents a study that examines human performance in iris verification in two controlled scenarios: (a) under varying pupil sizes, with and without a linear/nonlinear alignment of the pupil size between compared images, and (b) when both genuine and impostor iris image pairs are synthetically generated. The results demonstrate that pupil size normalization carried out by a modern autoencoder-based identity-preserving image-to-image translation model significantly improves verification accuracy. Participants were also able to determine whether iris pairs corresponded to the same or different eyes when both images were either authentic or synthetic. However, accuracy declined when subjects were comparing authentic irises against high-quality, same-eye synthetic counterparts. These findings (a) demonstrate the importance of pupil-size alignment for iris matching tasks in which humans are involved, and (b) indicate that despite the high fidelity of modern generative models, same-eye synthetic iris images are more often judged by humans as different-eye images, compared to same-eye authentic image pairs. We offer data and human judgments along with this paper to allow full replicability of this study and future works.
Flow Matching and Diffusion Models via PointNet for Generating Fluid Fields on Irregular Geometries
We present two novel generative geometric deep learning frameworks, termed Flow Matching PointNet and Diffusion PointNet, for predicting fluid flow variables on irregular geometries by incorporating PointNet into flow matching and diffusion models, respectively. In these frameworks, a reverse generative process reconstructs physical fields from standard Gaussian noise conditioned on unseen geometries. The proposed approaches operate directly on point-cloud representations of computational domains (e.g., grid vertices of finite-volume meshes) and therefore avoid the limitations of pixelation used to project geometries onto uniform lattices, as is common in U-Net-based flow matching and diffusion models. In contrast to graph neural network-based diffusion models, Flow Matching PointNet and Diffusion PointNet do not exhibit high-frequency noise artifacts in the predicted fields. Moreover, unlike such approaches, which require auxiliary intermediate networks to condition geometry, the proposed frameworks rely solely on PointNet, resulting in a simple and unified architecture. The performance of the proposed frameworks is evaluated on steady incompressible flow past a cylinder, using a geometric dataset constructed by varying the cylinder's cross-sectional shape and orientation across samples. The results demonstrate that Flow Matching PointNet and Diffusion PointNet achieve more accurate predictions of velocity and pressure fields, as well as lift and drag forces, and exhibit greater robustness to incomplete geometries compared to a vanilla PointNet with the same number of trainable parameters.
BLANKET: Anonymizing Faces in Infant Video Recordings
Ensuring the ethical use of video data involving human subjects, particularly infants, requires robust anonymization methods. We propose BLANKET (Baby-face Landmark-preserving ANonymization with Keypoint dEtection consisTency), a novel approach designed to anonymize infant faces in video recordings while preserving essential facial attributes. Our method comprises two stages. First, a new random face, compatible with the original identity, is generated via inpainting using a diffusion model. Second, the new identity is seamlessly incorporated into each video frame through temporally consistent face swapping with authentic expression transfer. The method is evaluated on a dataset of short video recordings of babies and is compared to the popular anonymization method, DeepPrivacy2. Key metrics assessed include the level of de-identification, preservation of facial attributes, impact on human pose estimation (as an example of a downstream task), and presence of artifacts. Both methods alter the identity, and our method outperforms DeepPrivacy2 in all other respects. The code is available as an easy-to-use anonymization demo at https://github.com/ctu-vras/blanket-infant-face-anonym.
comment: Project website: https://github.com/ctu-vras/blanket-infant-face-anonym
C3Po: Cross-View Cross-Modality Correspondence by Pointmap Prediction NeurIPS 2025
Geometric models like DUSt3R have shown great advances in understanding the geometry of a scene from pairs of photos. However, they fail when the inputs are from vastly different viewpoints (e.g., aerial vs. ground) or modalities (e.g., photos vs. abstract drawings) compared to what was observed during training. This paper addresses a challenging version of this problem: predicting correspondences between ground-level photos and floor plans. Current datasets for joint photo-floor plan reasoning are limited, either lacking in varying modalities (VIGOR) or lacking in correspondences (WAFFLE). To address these limitations, we introduce a new dataset, C3, created by first reconstructing a number of scenes in 3D from Internet photo collections via structure-from-motion, then manually registering the reconstructions to floor plans gathered from the Internet, from which we can derive correspondences between images and floor plans. C3 contains 90K paired floor plans and photos across 597 scenes with 153M pixel-level correspondences and 85K camera poses. We find that state-of-the-art correspondence models struggle on this task. By training on our new data, we can improve on the best performing method by 34% in RMSE. We also use the predicted correspondences to estimate camera poses and evaluate performance using recall metrics. Lastly, we identify open challenges in cross-modal geometric reasoning that our dataset aims to help address.
comment: NeurIPS 2025
Pain in 3D: Generating Controllable Synthetic Faces for Automated Pain Assessment
Automated pain assessment from facial expressions is crucial for non-communicative patients, such as those with dementia. Progress has been limited by two challenges: (i) existing datasets exhibit severe demographic and label imbalance due to ethical constraints, and (ii) current generative models cannot precisely control facial action units (AUs), facial structure, or clinically validated pain levels. We present 3DPain, a large-scale synthetic dataset specifically designed for automated pain assessment, featuring unprecedented annotation richness and demographic diversity. Our three-stage framework generates diverse 3D meshes, textures them with diffusion models, and applies AU-driven face rigging to synthesize multi-view faces with paired neutral and pain images, AU configurations, PSPI scores, and the first dataset-level annotations of pain-region heatmaps. The dataset comprises 82,500 samples across 25,000 pain expression heatmaps and 2,500 synthetic identities balanced by age, gender, and ethnicity. We further introduce ViTPain, a Vision Transformer based cross-modal distillation framework in which a heatmap-trained teacher guides a student trained on RGB images, enhancing accuracy, interpretability, and clinical reliability. Together, 3DPain and ViTPain establish a controllable, diverse, and clinically grounded foundation for generalizable automated pain assessment.
Polymorph: Energy-Efficient Multi-Label Classification for Video Streams on Embedded Devices WACV 2026
Real-time multi-label video classification on embedded devices is constrained by limited compute and energy budgets. Yet, video streams exhibit structural properties such as label sparsity, temporal continuity, and label co-occurrence that can be leveraged for more efficient inference. We introduce Polymorph, a context-aware framework that activates a minimal set of lightweight Low Rank Adapters (LoRA) per frame. Each adapter specializes in a subset of classes derived from co-occurrence patterns and is implemented as a LoRA weight over a shared backbone. At runtime, Polymorph dynamically selects and composes only the adapters needed to cover the active labels, avoiding full-model switching and weight merging. This modular strategy improves scalability while reducing latency and energy overhead. Polymorph achieves 40% lower energy consumption and improves mAP by 9 points over strong baselines on the TAO dataset. Polymorph is open source at https://github.com/inference-serving/polymorph/.
comment: Accepted at the IEEE/CVF winter conference on applications of computer vision (WACV 2026)
DATransNet: Dynamic Attention Transformer Network for Infrared Small Target Detection
Infrared small target detection (ISTD) is widely used in civilian and military applications. However, ISTD encounters several challenges, including the tendency for small and dim targets to be obscured by complex backgrounds. To address this issue, we propose the Dynamic Attention Transformer Network (DATransNet), which aims to extract and preserve detailed information vital for small targets. DATransNet employs the Dynamic Attention Transformer (DATrans), simulating central difference convolutions (CDC) to extract gradient features. Furthermore, we propose a global feature extraction module (GFEM) that offers a comprehensive perspective to prevent the network from focusing solely on details while neglecting the global information. We compare the network with state-of-the-art (SOTA) approaches and demonstrate that our method performs effectively. Our source code is available at https://github.com/greekinRoma/DATransNet.
From Features to Reference Points: Lightweight and Adaptive Fusion for Cooperative Autonomous Driving
We present RefPtsFusion, a lightweight and interpretable framework for cooperative autonomous driving. Instead of sharing large feature maps or query embeddings, vehicles exchange compact reference points, e.g., objects' positions, velocities, and size information. This approach shifts the focus from "what is seen" to "where to see", creating a sensor- and model-independent interface that works well across vehicles with heterogeneous perception models while greatly reducing communication bandwidth. To enhance the richness of shared information, we further develop a selective Top-K query fusion that selectively adds high-confidence queries from the sender. It thus achieves a strong balance between accuracy and communication cost. Experiments on the M3CAD dataset show that RefPtsFusion maintains stable perception performance while reducing communication overhead by five orders of magnitude, dropping from hundreds of MB/s to only a few KB/s at 5 FPS (frame per second), compared to traditional feature-level fusion methods. Extensive experiments also demonstrate RefPtsFusion's strong robustness and consistent transmission behavior, highlighting its potential for scalable, real-time cooperative driving systems.
comment: v2: Updated author list to reflect contributions to this work
CrackSegFlow: Controllable Flow Matching Synthesis for Generalizable Crack Segmentation with a 50K Image-Mask Benchmark
Defect segmentation is central to computer vision based inspection of infrastructure assets during both construction and operation. However, deployment remains limited due to scarce pixel-level labels and domain shift across environments. We introduce CrackSegFlow, a controllable Flow Matching synthesis method that renders synthetic images of cracks from masks with pixel-level alignment. Our renderer combines topology-preserving mask injection with edge gating to maintain thin-structure continuity. Class-conditional FM samples masks for topology diversity, and CrackSegFlow renders aligned ground truth images from them. We further inject cracks onto crack-free backgrounds to diversify confounders and reduce false positives. Across five datasets and using a CNN-Transformer backbone, our results demonstrate that adding synthesized pairs improves in-domain performance by +5.37 mIoU and +5.13 F1, while target-guided cross-domain synthesis driven by target mask statistics adds +13.12 mIoU and +14.82 F1. We also release CSF-50K, a benchmark dataset comprising 50,000 image-mask pairs.
Radiant Foam Rendering on a Graph Processor
Many emerging many-core accelerators replace a single large device memory with hundreds to thousands of lightweight cores, each owning only a small local SRAM and exchanging data via explicit on-chip communication. This organization offers high aggregate bandwidth, but it breaks a key assumption behind many volumetric rendering techniques: that rays can randomly access a large, unified scene representation. Rendering efficiently on such hardware therefore requires distributing both data and computation, keeping ray traversal mostly local, and structuring communication into predictable routes. We present a fully in-SRAM, distributed renderer for the Radiant Foam Voronoi-cell volumetric representation on the Graphcore Mk2 IPU(Intelligence Processing Unit), a many-core accelerator with tile-local SRAM and explicit inter-tile communication. Our system shards the scene across tiles and forwards rays between shards through a hierarchical routing overlay, enabling ray marching entirely from on-chip SRAM with predictable communication. On Mip-NeRF~360 scenes, the system attains near-interactive throughput of approximately 1 fps at 640x480 with image and depth map quality close to the original GPU-based Radiant Foam implementation, while keeping all scene data and ray state in on-chip SRAM. Beyond demonstrating feasibility, we analyze routing, memory, and scheduling bottlenecks that inform how future distributed-memory accelerators can better support irregular, data-movement-heavy rendering workloads.
comment: 24 pages, 26 figures
SeePerSea: Multi-modal Perception Dataset of In-water Objects for Autonomous Surface Vehicles ICRA 2024
This paper introduces the first publicly accessible labeled multi-modal perception dataset for autonomous maritime navigation, focusing on in-water obstacles within the aquatic environment to enhance situational awareness for Autonomous Surface Vehicles (ASVs). This dataset, collected over 4 years and consisting of diverse objects encountered under varying environmental conditions, aims to bridge the research gap in ASVs by providing a multi-modal, annotated, and ego-centric perception dataset, for object detection and classification. We also show the applicability of the proposed dataset by training and testing current deep learning-based open-source perception algorithms that have shown success in the autonomous ground vehicle domain. With the training and testing results, we discuss open challenges for existing datasets and methods, identifying future research directions. We expect that our dataset will contribute to the development of future marine autonomy pipelines and marine (field) robotics. This dataset is open source and found at https://seepersea.github.io/.
comment: Topic: Special Issue on ICRA 2024 Workshop on Field Robotics
ATRNet-STAR: A Large Dataset and Benchmark Towards Remote Sensing Object Recognition in the Wild
The absence of publicly available, large-scale, high-quality datasets for Synthetic Aperture Radar Automatic Target Recognition (SAR ATR) has significantly hindered the application of rapidly advancing deep learning techniques, which hold huge potential to unlock new capabilities in this field. This is primarily because collecting large volumes of diverse target samples from SAR images is prohibitively expensive, largely due to privacy concerns, the characteristics of microwave radar imagery perception, and the need for specialized expertise in data annotation. Throughout the history of SAR ATR research, there have been only a number of small datasets, mainly including targets like ships, airplanes, buildings, etc. There is only one vehicle dataset MSTAR collected in the 1990s, which has been a valuable source for SAR ATR. To fill this gap, this paper introduces a large-scale, new dataset named ATRNet-STAR with 40 different vehicle categories collected under various realistic imaging conditions and scenes. It marks a substantial advancement in dataset scale and diversity, comprising over 190,000 well-annotated samples, 10 times larger than its predecessor, the famous MSTAR. Building such a large dataset is a challenging task, and the data collection scheme will be detailed. Secondly, we illustrate the value of ATRNet-STAR via extensively evaluating the performance of 15 representative methods with 7 different experimental settings on challenging classification and detection benchmarks derived from the dataset. Finally, based on our extensive experiments, we identify valuable insights for SAR ATR and discuss potential future research directions in this field. We hope that the scale, diversity, and benchmark of ATRNet-STAR can significantly facilitate the advancement of SAR ATR.
comment: 17 pages, 12 figures; Homepage: https://github.com/waterdisappear/ATRNet-STAR
REN: Anatomically-Informed Mixture-of-Experts for Interstitial Lung Disease Diagnosis
Mixture-of-Experts (MoE) architectures have significantly contributed to scalable machine learning by enabling specialized subnetworks to tackle complex tasks efficiently. However, traditional MoE systems lack domain-specific constraints essential for medical imaging, where anatomical structure and regional disease heterogeneity strongly influence pathological patterns. Here, we introduce \textit{Regional Expert Networks (REN)}, the first anatomically-informed MoE framework tailored specifically for medical image classification. REN leverages anatomical priors to train seven specialized experts, each dedicated to distinct lung lobes and bilateral lung combinations, enabling precise modeling of region-specific pathological variations. Multi-modal gating mechanisms dynamically integrate radiomics biomarkers and deep learning (DL) features (CNN, ViT, Mamba) to weight expert contributions optimally. Applied to interstitial lung disease (ILD) classification, REN achieves consistently superior performance: the radiomics-guided ensemble reached an average AUC of 0.8646 +- 0.0467, a +12.5\% improvement over the SwinUNETR baseline (AUC 0.7685, p=0.031). Region-specific experts further revealed that lower-lobe models achieved AUCs of 0.88-0.90, surpassing DL counterparts (CNN: 0.76-0.79) and aligning with known disease progression patterns. Through rigorous patient-level cross-validation, REN demonstrates strong generalizability and clinical interpretability, presenting a scalable, anatomically-guided approach readily extensible to other structured medical imaging applications. Code is available on our GitHub: https://github.com/NUBagciLab/MoE-REN.
comment: 13 pages, 4 figures, 4 tables
MG-SLAM: Structure Gaussian Splatting SLAM with Manhattan World Hypothesis
Gaussian Splatting SLAMs have made significant advancements in improving the efficiency and fidelity of real-time reconstructions. However, these systems often encounter incomplete reconstructions in complex indoor environments, characterized by substantial holes due to unobserved geometry caused by obstacles or limited view angles. To address this challenge, we present Manhattan Gaussian SLAM, an RGB-D system that leverages the Manhattan World hypothesis to enhance geometric accuracy and completeness. By seamlessly integrating fused line segments derived from structured scenes, our method ensures robust tracking in textureless indoor areas. Moreover, The extracted lines and planar surface assumption allow strategic interpolation of new Gaussians in regions of missing geometry, enabling efficient scene completion. Extensive experiments conducted on both synthetic and real-world scenes demonstrate that these advancements enable our method to achieve state-of-the-art performance, marking a substantial improvement in the capabilities of Gaussian SLAM systems.
comment: IEEE Transactions on Automation Science and Engineering
Omni2Sound: Towards Unified Video-Text-to-Audio Generation
Training a unified model integrating video-to-audio (V2A), text-to-audio (T2A), and joint video-text-to-audio (VT2A) generation offers significant application flexibility, yet faces two unexplored foundational challenges: (1) the scarcity of high-quality audio captions with tight A-V-T alignment, leading to severe semantic conflict between multimodal conditions, and (2) cross-task and intra-task competition, manifesting as an adverse V2A-T2A performance trade-off and modality bias in the VT2A task. First, to address data scarcity, we introduce SoundAtlas, a large-scale dataset (470k pairs) that significantly outperforms existing benchmarks and even human experts in quality. Powered by a novel agentic pipeline, it integrates Vision-to-Language Compression to mitigate visual bias of MLLMs, a Junior-Senior Agent Handoff for a 5 times cost reduction, and rigorous Post-hoc Filtering to ensure fidelity. Consequently, SoundAtlas delivers semantically rich and temporally detailed captions with tight V-A-T alignment. Second, we propose Omni2Sound, a unified VT2A diffusion model supporting flexible input modalities. To resolve the inherent cross-task and intra-task competition, we design a three-stage multi-task progressive training schedule that converts cross-task competition into joint optimization and mitigates modality bias in the VT2A task, maintaining both audio-visual alignment and off-screen audio generation faithfulness. Finally, we construct VGGSound-Omni, a comprehensive benchmark for unified evaluation, including challenging off-screen tracks. With a standard DiT backbone, Omni2Sound achieves unified SOTA performance across all three tasks within a single model, demonstrating strong generalization across benchmarks with heterogeneous input conditions. The project page is at https://swapforward.github.io/Omni2Sound.
Terrain Diffusion: A Diffusion-Based Successor to Perlin Noise in Infinite, Real-Time Terrain Generation
For decades, procedural worlds have been built on procedural noise functions such as Perlin noise, which are fast and infinite, yet fundamentally limited in realism and large-scale coherence. We introduce Terrain Diffusion, a generative framework that bridges the fidelity of diffusion models with the properties that made procedural noise indispensable: seamless infinite extent, seed-consistency, and constant-time random access. At its core is InfiniteDiffusion, a novel algorithm for infinite generation that reformulates standard diffusion sampling for unbounded domains. While noise functions remain near-instant, our framework outpaces orbital velocity by 9 times on a consumer GPU, enabling realistic terrain generation at interactive rates. We integrate a hierarchical stack of diffusion models to couple planetary context with local detail, a compact Laplacian encoding to stabilize outputs across Earth-scale dynamic ranges, and an open-source infinite-tensor framework for constant-memory manipulation of unbounded tensors. Together, these components position diffusion models as a practical, scalable foundation for the next generation of infinite virtual worlds.
comment: Project website: https://xandergos.github.io/terrain-diffusion/ Code: https://github.com/xandergos/terrain-diffusion/
Does DINOv3 Set a New Medical Vision Standard?
The advent of large-scale vision foundation models, pre-trained on diverse natural images, has marked a paradigm shift in computer vision. However, how the frontier vision foundation models' efficacies transfer to specialized domains remains such as medical imaging remains an open question. This report investigates whether DINOv3, a state-of-the-art self-supervised vision transformer (ViT) that features strong capability in dense prediction tasks, can directly serve as a powerful, unified encoder for medical vision tasks without domain-specific pre-training. To answer this, we benchmark DINOv3 across common medical vision tasks, including 2D/3D classification and segmentation on a wide range of medical imaging modalities. We systematically analyze its scalability by varying model sizes and input image resolutions. Our findings reveal that DINOv3 shows impressive performance and establishes a formidable new baseline. Remarkably, it can even outperform medical-specific foundation models like BiomedCLIP and CT-Net on several tasks, despite being trained solely on natural images. However, we identify clear limitations: The model's features degrade in scenarios requiring deep domain specialization, such as in Whole-Slide Pathological Images (WSIs), Electron Microscopy (EM), and Positron Emission Tomography (PET). Furthermore, we observe that DINOv3 does not consistently obey scaling law in the medical domain; performance does not reliably increase with larger models or finer feature resolutions, showing diverse scaling behaviors across tasks. Ultimately, our work establishes DINOv3 as a strong baseline, whose powerful visual features can serve as a robust prior for multiple complex medical tasks. This opens promising future directions, such as leveraging its features to enforce multiview consistency in 3D reconstruction.
comment: Technical Report
RealCamo: Boosting Real Camouflage Synthesis with Layout Controls and Textual-Visual Guidance
Camouflaged image generation (CIG) has recently emerged as an efficient alternative for acquiring high-quality training data for camouflaged object detection (COD). However, existing CIG methods still suffer from a substantial gap to real camouflaged imagery: generated images either lack sufficient camouflage due to weak visual similarity, or exhibit cluttered backgrounds that are semantically inconsistent with foreground targets. To address these limitations, we propose RealCamo, a novel out-painting-based framework for controllable realistic camouflaged image generation. RealCamo explicitly introduces additional layout controls to regulate global image structure, thereby improving semantic coherence between foreground objects and generated backgrounds. Moreover, we construct a multimodal textual-visual condition by combining a unified fine-grained textual task description with texture-oriented background retrieval, which jointly guides the generation process to enhance visual fidelity and realism. To quantitatively assess camouflage quality, we further introduce a background-foreground distribution divergence metric that measures the effectiveness of camouflage in generated images. Extensive experiments and visualizations demonstrate the effectiveness of our proposed framework.
comment: 25 pages
FashionMAC: Deformation-Free Fashion Image Generation with Fine-Grained Model Appearance Customization
Garment-centric fashion image generation aims to synthesize realistic and controllable human models dressing a given garment, which has attracted growing interest due to its practical applications in e-commerce. The key challenges of the task lie in two aspects: (1) faithfully preserving the garment details, and (2) gaining fine-grained controllability over the model's appearance. Existing methods typically require performing garment deformation in the generation process, which often leads to garment texture distortions. Also, they fail to control the fine-grained attributes of the generated models, due to the lack of specifically designed mechanisms. To address these issues, we propose FashionMAC, a novel diffusion-based deformation-free framework that achieves high-quality and controllable fashion showcase image generation. The core idea of our framework is to eliminate the need for performing garment deformation and directly outpaint the garment segmented from a dressed person, which enables faithful preservation of the intricate garment details. Moreover, we propose a novel region-adaptive decoupled attention (RADA) mechanism along with a chained mask injection strategy to achieve fine-grained appearance controllability over the synthesized human models. Specifically, RADA adaptively predicts the generated regions for each fine-grained text attribute and enforces the text attribute to focus on the predicted regions by a chained mask injection strategy, significantly enhancing the visual fidelity and the controllability. Extensive experiments validate the superior performance of our framework compared to existing state-of-the-art methods.
VC-Inspector: Advancing Reference-free Evaluation of Video Captions with Factual Analy
We propose VC-Inspector, a lightweight, open-source large multimodal model (LMM) for reference-free evaluation of video captions, with a focus on factual accuracy. Unlike existing metrics that suffer from limited context handling, weak factuality assessment, or reliance on proprietary services, VC-Inspector offers a reproducible, fact-aware alternative that aligns closely with human judgments. To enable robust training and interpretable evaluation, we introduce a systematic approach for generating captions with controllable errors, paired with graded quality scores and explanatory annotations. Experiments show that VC-Inspector achieves state-of-the-art correlation with human judgments, generalizing across diverse domains (e.g., VATEX-Eval, Flickr8K-Expert, and Flickr8K-CF benchmarks) and revealing the potential for caption improvement.
FMVP: Masked Flow Matching for Adversarial Video Purification
Video recognition models remain vulnerable to adversarial attacks, while existing diffusion-based purification methods suffer from inefficient sampling and curved trajectories. Directly regressing clean videos from adversarial inputs often fails to recover faithful content due to the subtle nature of perturbations; this necessitates physically shattering the adversarial structure. Therefore, we propose Flow Matching for Adversarial Video Purification FMVP. FMVP physically shatters global adversarial structures via a masking strategy and reconstructs clean video dynamics using Conditional Flow Matching (CFM) with an inpainting objective. To further decouple semantic content from adversarial noise, we design a Frequency-Gated Loss (FGL) that explicitly suppresses high-frequency adversarial residuals while preserving low-frequency fidelity. We design Attack-Aware and Generalist training paradigms to handle known and unknown threats, respectively. Extensive experiments on UCF-101 and HMDB-51 demonstrate that FMVP outperforms state-of-the-art methods (DiffPure, Defense Patterns (DP), Temporal Shuffling (TS) and FlowPure), achieving robust accuracy exceeding 87% against PGD and 89% against CW attacks. Furthermore, FMVP demonstrates superior robustness against adaptive attacks (DiffHammer) and functions as a zero-shot adversarial detector, attaining AUC-ROC scores of 0.98 for PGD and 0.79 for highly imperceptible CW attacks.
ORB-SfMLearner: ORB-Guided Self-supervised Visual Odometry with Selective Online Adaptation ICRA 2025
Deep visual odometry, despite extensive research, still faces limitations in accuracy and generalizability that prevent its broader application. To address these challenges, we propose an Oriented FAST and Rotated BRIEF (ORB)-guided visual odometry with selective online adaptation named ORB-SfMLearner. We present a novel use of ORB features for learning-based ego-motion estimation, leading to more robust and accurate results. We also introduce the cross-attention mechanism to enhance the explainability of PoseNet and have revealed that driving direction of the vehicle can be explained through the attention weights. To improve generalizability, our selective online adaptation allows the network to rapidly and selectively adjust to the optimal parameters across different domains. Experimental results on KITTI and vKITTI datasets show that our method outperforms previous state-of-the-art deep visual odometry methods in terms of ego-motion accuracy and generalizability. Code is available at https://github.com/PeaceNeil/ORB-SfMLearner
comment: ICRA 2025; Project page: https://www.neiljin.site/projects/orbsfm/
Out-of-Distribution Semantic Occupancy Prediction
3D semantic occupancy prediction is crucial for autonomous driving, providing a dense, semantically rich environmental representation. However, existing methods focus on in-distribution scenes, making them susceptible to Out-of-Distribution (OoD) objects and long-tail distributions, which increases the risk of undetected anomalies and misinterpretations, posing safety hazards. To address these challenges, we introduce Out-of-Distribution Semantic Occupancy Prediction, targeting OoD detection in 3D voxel space. To fill dataset gaps, we propose a Realistic Anomaly Augmentation that injects synthetic anomalies while preserving realistic spatial and occlusion patterns, enabling the creation of two datasets: VAA-KITTI and VAA-KITTI-360. Then, a novel framework that integrates OoD detection into 3D semantic occupancy prediction, OccOoD, is proposed, which uses Cross-Space Semantic Refinement (CSSR) to refine semantic predictions from complementary voxel and BEV representations, improving OoD detection. Experimental results demonstrate that OccOoD achieves state-of-the-art OoD detection with an AuROC of 65.50% and an AuPRCr of 31.83 within a 1.2m region, while maintaining competitive semantic occupancy prediction performance and generalization in real-world urban driving scenes. The established datasets and source code will be made publicly available at https://github.com/7uHeng/OccOoD.
comment: The established datasets and source code will be made publicly available at https://github.com/7uHeng/OccOoD
Artificial Intelligence 111
3D Wavelet-Based Structural Priors for Controlled Diffusion in Whole-Body Low-Dose PET Denoising
Low-dose Positron Emission Tomography (PET) imaging reduces patient radiation exposure but suffers from increased noise that degrades image quality and diagnostic reliability. Although diffusion models have demonstrated strong denoising capability, their stochastic nature makes it challenging to enforce anatomically consistent structures, particularly in low signal-to-noise regimes and volumetric whole-body imaging. We propose Wavelet-Conditioned ControlNet (WCC-Net), a fully 3D diffusion-based framework that introduces explicit frequency-domain structural priors via wavelet representations to guide volumetric PET denoising. By injecting wavelet-based structural guidance into a frozen pretrained diffusion backbone through a lightweight control branch, WCC-Net decouples anatomical structure from noise while preserving generative expressiveness and 3D structural continuity. Extensive experiments demonstrate that WCC-Net consistently outperforms CNN-, GAN-, and diffusion-based baselines. On the internal 1/20-dose test set, WCC-Net improves PSNR by +1.21 dB and SSIM by +0.008 over a strong diffusion baseline, while reducing structural distortion (GMSD) and intensity error (NMAE). Moreover, WCC-Net generalizes robustly to unseen dose levels (1/50 and 1/4), achieving superior quantitative performance and improved volumetric anatomical consistency.
comment: 10 pages
XBTorch: A Unified Framework for Modeling and Co-Design of Crossbar-Based Deep Learning Accelerators
Emerging memory technologies have gained significant attention as a promising pathway to overcome the limitations of conventional computing architectures in deep learning applications. By enabling computation directly within memory, these technologies - built on nanoscale devices with tunable and nonvolatile conductance - offer the potential to drastically reduce energy consumption and latency compared to traditional von Neumann systems. This paper introduces XBTorch (short for CrossBarTorch), a novel simulation framework that integrates seamlessly with PyTorch and provides specialized tools for accurately and efficiently modeling crossbar-based systems based on emerging memory technologies. Through detailed comparisons and case studies involving hardware-aware training and inference, we demonstrate how XBTorch offers a unified interface for key research areas such as device-level modeling, cross-layer co-design, and inference-time fault tolerance. While exemplar studies utilize ferroelectric field-effect transistor (FeFET) models, the framework remains technology-agnostic - supporting other emerging memories such as resistive RAM (ReRAM), as well as enabling user-defined custom device models. The code is publicly available at: https://github.com/ADAM-Lab-GW/xbtorch
The AI Cognitive Trojan Horse: How Large Language Models May Bypass Human Epistemic Vigilance
Large language model (LLM)-based conversational AI systems present a challenge to human cognition that current frameworks for understanding misinformation and persuasion do not adequately address. This paper proposes that a significant epistemic risk from conversational AI may lie not in inaccuracy or intentional deception, but in something more fundamental: these systems may be configured, through optimization processes that make them useful, to present characteristics that bypass the cognitive mechanisms humans evolved to evaluate incoming information. The Cognitive Trojan Horse hypothesis draws on Sperber and colleagues' theory of epistemic vigilance -- the parallel cognitive process monitoring communicated information for reasons to doubt -- and proposes that LLM-based systems present 'honest non-signals': genuine characteristics (fluency, helpfulness, apparent disinterest) that fail to carry the information equivalent human characteristics would carry, because in humans these are costly to produce while in LLMs they are computationally trivial. Four mechanisms of potential bypass are identified: processing fluency decoupled from understanding, trust-competence presentation without corresponding stakes, cognitive offloading that delegates evaluation itself to the AI, and optimization dynamics that systematically produce sycophancy. The framework generates testable predictions, including a counterintuitive speculation that cognitively sophisticated users may be more vulnerable to AI-mediated epistemic influence. This reframes AI safety as partly a problem of calibration -- aligning human evaluative responses with the actual epistemic status of AI-generated content -- rather than solely a problem of preventing deception.
comment: 15 pages, 18 references
Overcoming the Retrieval Barrier: Indirect Prompt Injection in the Wild for LLM Systems
Large language models (LLMs) increasingly rely on retrieving information from external corpora. This creates a new attack surface: indirect prompt injection (IPI), where hidden instructions are planted in the corpora and hijack model behavior once retrieved. Previous studies have highlighted this risk but often avoid the hardest step: ensuring that malicious content is actually retrieved. In practice, unoptimized IPI is rarely retrieved under natural queries, which leaves its real-world impact unclear. We address this challenge by decomposing the malicious content into a trigger fragment that guarantees retrieval and an attack fragment that encodes arbitrary attack objectives. Based on this idea, we design an efficient and effective black-box attack algorithm that constructs a compact trigger fragment to guarantee retrieval for any attack fragment. Our attack requires only API access to embedding models, is cost-efficient (as little as $0.21 per target user query on OpenAI's embedding models), and achieves near-100% retrieval across 11 benchmarks and 8 embedding models (including both open-source models and proprietary services). Based on this attack, we present the first end-to-end IPI exploits under natural queries and realistic external corpora, spanning both RAG and agentic systems with diverse attack objectives. These results establish IPI as a practical and severe threat: when a user issued a natural query to summarize emails on frequently asked topics, a single poisoned email was sufficient to coerce GPT-4o into exfiltrating SSH keys with over 80% success in a multi-agent workflow. We further evaluate several defenses and find that they are insufficient to prevent the retrieval of malicious text, highlighting retrieval as a critical open vulnerability.
Automated Domain Question Mapping (DQM) with Educational Learning Materials
Concept maps have been widely utilized in education to depict knowledge structures and the interconnections between disciplinary concepts. Nonetheless, devising a computational method for automatically constructing a concept map from unstructured educational materials presents challenges due to the complexity and variability of educational content. We focus primarily on two challenges: (1) the lack of disciplinary concepts that are specifically designed for multi-level pedagogical purposes from low-order to high-order thinking, and (2) the limited availability of labeled data concerning disciplinary concepts and their interrelationships. To tackle these challenges, this research introduces an innovative approach for constructing Domain Question Maps (DQMs), rather than traditional concept maps. By formulating specific questions aligned with learning objectives, DQMs enhance knowledge representation and improve readiness for learner engagement. The findings indicate that the proposed method can effectively generate educational questions and discern hierarchical relationships among them, leading to structured question maps that facilitate personalized and adaptive learning in downstream applications.
Hallucinations Live in Variance
Benchmarks measure whether a model is correct. They do not measure whether a model is reliable. This distinction is largely academic for single-shot inference, but becomes critical for agentic AI systems, where a single rephrased prompt can trigger cascading failures in multi-step execution. Yet this form of instability is not captured by existing evaluations. Hallucinations live in variance: they arise when semantically equivalent prompts activate inconsistent internal pathways, producing divergent outputs. Consistent but incorrect outputs reflect bias or missing knowledge; confident guessing reflects calibration failure. Neither constitutes hallucination under this definition. When error is variance-dominated, reducing redundant pathways improves reliability without adding knowledge. We formalize this through Semantic Stability (SS), measured via Paraphrase Consistency (PC@k): generate k paraphrases, greedy decode each, compute mode agreement. SS is a diagnostic for variance-driven unreliability, not a method for improving correctness. We show that a dense Qwen3-0.6B agrees with itself only 23.8% of the time; at 32% sparsity, agreement jumps to 55.9%. A phase diagram reveals the sweet spot where variance reduction outpaces bias accumulation, and regimes where stability collapses onto wrong answers.
comment: 8 pages, 3 figures
Adversarial Attacks on Medical Hyperspectral Imaging Exploiting Spectral-Spatial Dependencies and Multiscale Features
Medical hyperspectral imaging (HSI) enables accurate disease diagnosis by capturing rich spectral-spatial tissue information, but recent advances in deep learning have exposed its vulnerability to adversarial attacks. In this work, we identify two fundamental causes of this fragility: the reliance on local pixel dependencies for preserving tissue structure and the dependence on multiscale spectral-spatial representations for hierarchical feature encoding. Building on these insights, we propose a targeted adversarial attack framework for medical HSI, consisting of a Local Pixel Dependency Attack that exploits spatial correlations among neighboring pixels, and a Multiscale Information Attack that perturbs features across hierarchical spectral-spatial scales. Experiments on the Brain and MDC datasets demonstrate that our attacks significantly degrade classification performance, especially in tumor regions, while remaining visually imperceptible. Compared with existing methods, our approach reveals the unique vulnerabilities of medical HSI models and underscores the need for robust, structure-aware defenses in clinical applications.
Dr. Zero: Self-Evolving Search Agents without Training Data
As high-quality data becomes increasingly difficult to obtain, data-free self-evolution has emerged as a promising paradigm. This approach allows large language models (LLMs) to autonomously generate and solve complex problems, thereby improving their reasoning capabilities. However, multi-turn search agents struggle in data-free self-evolution due to the limited question diversity and the substantial compute required for multi-step reasoning and tool using. In this work, we introduce Dr. Zero, a framework enabling search agents to effectively self-evolve without any training data. In particular, we design a self-evolution feedback loop where a proposer generates diverse questions to train a solver initialized from the same base model. As the solver evolves, it incentivizes the proposer to produce increasingly difficult yet solvable tasks, thus establishing an automated curriculum to refine both agents. To enhance training efficiency, we also introduce hop-grouped relative policy optimization (HRPO). This method clusters structurally similar questions to construct group-level baselines, effectively minimizing the sampling overhead in evaluating each query's individual difficulty and solvability. Consequently, HRPO significantly reduces the compute requirements for solver training without compromising performance or stability. Extensive experiment results demonstrate that the data-free Dr. Zero matches or surpasses fully supervised search agents, proving that complex reasoning and search capabilities can emerge solely through self-evolution.
Jasper: ANNS Quantized for Speed, Built for Change on GPU
Approximate nearest neighbor search (ANNS) is a core problem in machine learning and information retrieval applications. GPUs offer a promising path to high-performance ANNS: they provide massive parallelism for distance computations, are readily available, and can co-locate with downstream applications. Despite these advantages, current GPU-accelerated ANNS systems face three key limitations. First, real-world applications operate on evolving datasets that require fast batch updates, yet most GPU indices must be rebuilt from scratch when new data arrives. Second, high-dimensional vectors strain memory bandwidth, but current GPU systems lack efficient quantization techniques that reduce data movement without introducing costly random memory accesses. Third, the data-dependent memory accesses inherent to greedy search make overlapping compute and memory difficult, leading to reduced performance. We present Jasper, a GPU-native ANNS system with both high query throughput and updatability. Jasper builds on the Vamana graph index and overcomes existing bottlenecks via three contributions: (1) a CUDA batch-parallel construction algorithm that enables lock-free streaming insertions, (2) a GPU-efficient implementation of RaBitQ quantization that reduces memory footprint up to 8x without the random access penalties, and (3) an optimized greedy search kernel that increases compute utilization, resulting in better latency hiding and higher throughput. Our evaluation across five datasets shows that Jasper achieves up to 1.93x higher query throughput than CAGRA and achieves up to 80% peak utilization as measured by the roofline model. Jasper's construction scales efficiently and constructs indices an average of 2.4x faster than CAGRA while providing updatability that CAGRA lacks. Compared to BANG, the previous fastest GPU Vamana implementation, Jasper delivers 19-131x faster queries.
Mid-Think: Training-Free Intermediate-Budget Reasoning via Token-Level Triggers
Hybrid reasoning language models are commonly controlled through high-level Think/No-think instructions to regulate reasoning behavior, yet we found that such mode switching is largely driven by a small set of trigger tokens rather than the instructions themselves. Through attention analysis and controlled prompting experiments, we show that a leading ``Okay'' token induces reasoning behavior, while the newline pattern following ``'' suppresses it. Based on this observation, we propose Mid-Think, a simple training-free prompting format that combines these triggers to achieve intermediate-budget reasoning, consistently outperforming fixed-token and prompt-based baselines in terms of the accuracy-length trade-off. Furthermore, applying Mid-Think to RL training after SFT reduces training time by approximately 15% while improving final performance of Qwen3-8B on AIME from 69.8% to 72.4% and on GPQA from 58.5% to 61.1%, demonstrating its effectiveness for both inference-time control and RL-based reasoning training.
Explainable Deep Radiogenomic Molecular Imaging for MGMT Methylation Prediction in Glioblastoma
Glioblastoma (GBM) is a highly aggressive primary brain tumor with limited therapeutic options and poor prognosis. The methylation status of the O6-methylguanine-DNA methyltransferase (MGMT) gene promoter is a critical molecular biomarker that influences patient response to temozolomide chemotherapy. Traditional methods for determining MGMT status rely on invasive biopsies and are limited by intratumoral heterogeneity and procedural risks. This study presents a radiogenomic molecular imaging analysis framework for the non-invasive prediction of MGMT promoter methylation using multi-parametric magnetic resonance imaging (mpMRI). Our approach integrates radiomics, deep learning, and explainable artificial intelligence (XAI) to analyze MRI-derived imaging phenotypes and correlate them with molecular labels. Radiomic features are extracted from FLAIR, T1-weighted, T1-contrast-enhanced, and T2-weighted MRI sequences, while a 3D convolutional neural network learns deep representations from the same modalities. These complementary features are fused using both early fusion and attention-based strategies and classified to predict MGMT methylation status. To enhance clinical interpretability, we apply XAI methods such as Grad-CAM and SHAP to visualize and explain model decisions. The proposed framework is trained on the RSNA-MICCAI Radiogenomic Classification dataset and externally validated on the BraTS 2021 dataset. This work advances the field of molecular imaging by demonstrating the potential of AI-driven radiogenomics for precision oncology, supporting non-invasive, accurate, and interpretable prediction of clinically actionable molecular biomarkers in GBM.
comment: 14 pages
CloneMem: Benchmarking Long-Term Memory for AI Clones
AI Clones aim to simulate an individual's thoughts and behaviors to enable long-term, personalized interaction, placing stringent demands on memory systems to model experiences, emotions, and opinions over time. Existing memory benchmarks primarily rely on user-agent conversational histories, which are temporally fragmented and insufficient for capturing continuous life trajectories. We introduce CloneMem, a benchmark for evaluating longterm memory in AI Clone scenarios grounded in non-conversational digital traces, including diaries, social media posts, and emails, spanning one to three years. CloneMem adopts a hierarchical data construction framework to ensure longitudinal coherence and defines tasks that assess an agent's ability to track evolving personal states. Experiments show that current memory mechanisms struggle in this setting, highlighting open challenges for life-grounded personalized AI. Code and dataset are available at https://github.com/AvatarMemory/CloneMemBench
TurkBench: A Benchmark for Evaluating Turkish Large Language Models
With the recent surge in the development of large language models, the need for comprehensive and language-specific evaluation benchmarks has become critical. While significant progress has been made in evaluating English language models, benchmarks for other languages, particularly those with unique linguistic characteristics such as Turkish, remain less developed. Our study introduces TurkBench, a comprehensive benchmark designed to assess the capabilities of generative large language models in the Turkish language. TurkBench involves 8,151 data samples across 21 distinct subtasks. These are organized under six main categories of evaluation: Knowledge, Language Understanding, Reasoning, Content Moderation, Turkish Grammar and Vocabulary, and Instruction Following. The diverse range of tasks and the culturally relevant data would provide researchers and developers with a valuable tool for evaluating their models and identifying areas for improvement. We further publish our benchmark for online submissions at https://huggingface.co/turkbench
Zer0n: An AI-Assisted Vulnerability Discovery and Blockchain-Backed Integrity Framework
As vulnerability research increasingly adopts generative AI, a critical reliance on opaque model outputs has emerged, creating a "trust gap" in security automation. We address this by introducing Zer0n, a framework that anchors the reasoning capabilities of Large Language Models (LLMs) to the immutable audit trails of blockchain technology. Specifically, we integrate Gemini 2.0 Pro for logic-based vulnerability detection with the Avalanche C-Chain for tamper-evident artifact logging. Unlike fully decentralized solutions that suffer from high latency, Zer0n employs a hybrid architecture: execution remains off-chain for performance, while integrity proofs are finalized on-chain. Our evaluation on a dataset of 500 endpoints reveals that this approach achieves 80% detection accuracy with only a marginal 22.9% overhead, effectively demonstrating that decentralized integrity can coexist with high-speed security workflows.
comment: 10 pages, 3 figures, 7 tables. Framework for AI-Assisted Vulnerability Discovery
Belief in False Information: A Human-Centered Security Risk in Sociotechnical Systems
This paper provides a comprehensive literature review on the belief in false information, including misinformation, disinformation, and fake information. It addresses the increasing societal concern regarding false information, which is fueled by technological progress, especially advancements in artificial intelligence. This review systematically identifies and categorizes factors that influence the belief in false information. The review identifies 24 influence factors grouped into six main categories: demographic factors, personality traits, psychological factors, policy and values, media consumption, and preventive factors. Key findings highlight that lower education levels, high extraversion, low agreeableness, high neuroticism, and low cognitive reflection significantly increase belief in false information. The effectiveness of preventive strategies like labeling false information and promoting reflection about correctness is also discussed. This literature review conceptualizes belief in false information as a human-centered security risk in sociotechnical systems, as it can be exploited to manipulate decisions, undermine trust, and increase susceptibility to social engineering. It aims to inform preventive strategies that strengthen socio-technical security and societal resilience.
comment: Literature Review, 10 pages, 8 tables
LLM Performance Predictors: Learning When to Escalate in Hybrid Human-AI Moderation Systems
As LLMs are increasingly integrated into human-in-the-loop content moderation systems, a central challenge is deciding when their outputs can be trusted versus when escalation for human review is preferable. We propose a novel framework for supervised LLM uncertainty quantification, learning a dedicated meta-model based on LLM Performance Predictors (LPPs) derived from LLM outputs: log-probabilities, entropy, and novel uncertainty attribution indicators. We demonstrate that our method enables cost-aware selective classification in real-world human-AI workflows: escalating high-risk cases while automating the rest. Experiments across state-of-the-art LLMs, including both off-the-shelf (Gemini, GPT) and open-source (Llama, Qwen), on multimodal and multilingual moderation tasks, show significant improvements over existing uncertainty estimators in accuracy-cost trade-offs. Beyond uncertainty estimation, the LPPs enhance explainability by providing new insights into failure conditions (e.g., ambiguous content vs. under-specified policy). This work establishes a principled framework for uncertainty-aware, scalable, and responsible human-AI moderation workflows.
comment: Accepted as a full paper at the 25th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2026)
MicLog: Towards Accurate and Efficient LLM-based Log Parsing via Progressive Meta In-Context Learning
Log parsing converts semi-structured logs into structured templates, forming a critical foundation for downstream analysis. Traditional syntax and semantic-based parsers often struggle with semantic variations in evolving logs and data scarcity stemming from their limited domain coverage. Recent large language model (LLM)-based parsers leverage in-context learning (ICL) to extract semantics from examples, demonstrating superior accuracy. However, LLM-based parsers face two main challenges: 1) underutilization of ICL capabilities, particularly in dynamic example selection and cross-domain generalization, leading to inconsistent performance; 2) time-consuming and costly LLM querying. To address these challenges, we present MicLog, the first progressive meta in-context learning (ProgMeta-ICL) log parsing framework that combines meta-learning with ICL on small open-source LLMs (i.e., Qwen-2.5-3B). Specifically, MicLog: i) enhances LLMs' ICL capability through a zero-shot to k-shot ProgMeta-ICL paradigm, employing weighted DBSCAN candidate sampling and enhanced BM25 demonstration selection; ii) accelerates parsing via a multi-level pre-query cache that dynamically matches and refines recently parsed templates. Evaluated on Loghub-2.0, MicLog achieves 10.3% higher parsing accuracy than the state-of-the-art parser while reducing parsing time by 42.4%.
MemTrust: A Zero-Trust Architecture for Unified AI Memory System
AI memory systems are evolving toward unified context layers that enable efficient cross-agent collaboration and multi-tool workflows, facilitating better accumulation of personal data and learning of user preferences. However, centralization creates a trust crisis where users must entrust cloud providers with sensitive digital memory data. We identify a core tension between personalization demands and data sovereignty: centralized memory systems enable efficient cross-agent collaboration but expose users' sensitive data to cloud provider risks, while private deployments provide security but limit collaboration. To resolve this tension, we aim to achieve local-equivalent security while enabling superior maintenance efficiency and collaborative capabilities. We propose a five-layer architecture abstracting common functional components of AI memory systems: Storage, Extraction, Learning, Retrieval, and Governance. By applying TEE protection to each layer, we establish a trustworthy framework. Based on this, we design MemTrust, a hardware-backed zero-trust architecture that provides cryptographic guarantees across all layers. Our contributions include the five-layer abstraction, "Context from MemTrust" protocol for cross-application sharing, side-channel hardened retrieval with obfuscated access patterns, and comprehensive security analysis. The architecture enables third-party developers to port existing systems with acceptable development costs, achieving system-wide trustworthiness. We believe that AI memory plays a crucial role in enhancing the efficiency and collaboration of agents and AI tools. AI memory will become the foundational infrastructure for AI agents, and MemTrust serves as a universal trusted framework for AI memory systems, with the goal of becoming the infrastructure of memory infrastructure.
comment: 18 pages, 5 figures
FinCARDS: Card-Based Analyst Reranking for Financial Document Question Answering
Financial question answering (QA) over long corporate filings requires evidence to satisfy strict constraints on entities, financial metrics, fiscal periods, and numeric values. However, existing LLM-based rerankers primarily optimize semantic relevance, leading to unstable rankings and opaque decisions on long documents. We propose FinCards, a structured reranking framework that reframes financial evidence selection as constraint satisfaction under a finance-aware schema. FinCards represents filing chunks and questions using aligned schema fields (entities, metrics, periods, and numeric spans), enabling deterministic field-level matching. Evidence is selected via a multi-stage tournament reranking with stability-aware aggregation, producing auditable decision traces. Across two corporate filing QA benchmarks, FinCards substantially improves early-rank retrieval over both lexical and LLM-based reranking baselines, while reducing ranking variance, without requiring model fine-tuning or unpredictable inference budgets. Our code is available at https://github.com/XanderZhou2022/FINCARDS.
comment: 15 pages, including figures and tables
Benchmarking Autonomy in Scientific Experiments: A Hierarchical Taxonomy for Autonomous Large-Scale Facilities
The transition from automated data collection to fully autonomous discovery requires a shared vocabulary to benchmark progress. While the automotive industry relies on the SAE J3016 standard, current taxonomies for autonomous science presuppose an owner-operator model that is incompatible with the operational rigidities of Large-Scale User Facilities. Here, we propose the Benchmarking Autonomy in Scientific Experiments (BASE) Scale, a 6-level taxonomy (Levels 0-5) specifically adapted for these unique constraints. Unlike owner-operator models, User Facilities require zero-shot deployment where agents must operate immediately without extensive training periods. We define the specific technical requirements for each tier, identifying the Inference Barrier (Level 3) as the critical latency threshold where decisions shift from scalar feedback to semantic digital twins. Fundamentally, this level extends the decision manifold from spatial exploration to temporal gating, enabling the agent to synchronise acquisition with the onset of transient physical events. By establishing these operational definitions, the BASE Scale provides facility directors, funding bodies, and beamline scientists with a standardised metric to assess risk, define liability, and quantify the intelligence of experimental workflows.
comment: 12 pages, 2 figures, 2 tables
RealMem: Benchmarking LLMs in Real-World Memory-Driven Interaction
As Large Language Models (LLMs) evolve from static dialogue interfaces to autonomous general agents, effective memory is paramount to ensuring long-term consistency. However, existing benchmarks primarily focus on casual conversation or task-oriented dialogue, failing to capture **"long-term project-oriented"** interactions where agents must track evolving goals. To bridge this gap, we introduce **RealMem**, the first benchmark grounded in realistic project scenarios. RealMem comprises over 2,000 cross-session dialogues across eleven scenarios, utilizing natural user queries for evaluation. We propose a synthesis pipeline that integrates Project Foundation Construction, Multi-Agent Dialogue Generation, and Memory and Schedule Management to simulate the dynamic evolution of memory. Experiments reveal that current memory systems face significant challenges in managing the long-term project states and dynamic context dependencies inherent in real-world projects. Our code and datasets are available at [https://github.com/AvatarMemory/RealMemBench](https://github.com/AvatarMemory/RealMemBench).
SketchJudge: A Diagnostic Benchmark for Grading Hand-drawn Diagrams with Multimodal Large Language Models
While Multimodal Large Language Models (MLLMs) have achieved remarkable progress in visual understanding, they often struggle when faced with the unstructured and ambiguous nature of human-generated sketches. This limitation is particularly pronounced in the underexplored task of visual grading, where models should not only solve a problem but also diagnose errors in hand-drawn diagrams. Such diagnostic capabilities depend on complex structural, semantic, and metacognitive reasoning. To bridge this gap, we introduce SketchJudge, a novel benchmark tailored for evaluating MLLMs as graders of hand-drawn STEM diagrams. SketchJudge encompasses 1,015 hand-drawn student responses across four domains: geometry, physics, charts, and flowcharts, featuring diverse stylistic variations and distinct error types. Evaluations on SketchJudge demonstrate that even advanced MLLMs lag significantly behind humans, validating the benchmark's effectiveness in exposing the fragility of current vision-language alignment in symbolic and noisy contexts. All data, code, and evaluation scripts are publicly available at https://github.com/yuhangsu82/SketchJudge.
comment: 8 pages for the main text (excluding references and the limitations section); 37 pages in total including appendices
Watching, Reasoning, and Searching: A Video Deep Research Benchmark on Open Web for Agentic Video Reasoning
In real-world video question answering scenarios, videos often provide only localized visual cues, while verifiable answers are distributed across the open web; models therefore need to jointly perform cross-frame clue extraction, iterative retrieval, and multi-hop reasoning-based verification. To bridge this gap, we construct the first video deep research benchmark, VideoDR. VideoDR centers on video-conditioned open-domain video question answering, requiring cross-frame visual anchor extraction, interactive web retrieval, and multi-hop reasoning over joint video-web evidence; through rigorous human annotation and quality control, we obtain high-quality video deep research samples spanning six semantic domains. We evaluate multiple closed-source and open-source multimodal large language models under both the Workflow and Agentic paradigms, and the results show that Agentic is not consistently superior to Workflow: its gains depend on a model's ability to maintain the initial video anchors over long retrieval chains. Further analysis indicates that goal drift and long-horizon consistency are the core bottlenecks. In sum, VideoDR provides a systematic benchmark for studying video agents in open-web settings and reveals the key challenges for next-generation video deep research agents.
VISTA: Knowledge-Driven Interpretable Vessel Trajectory Imputation via Large Language Models
The Automatic Identification System provides critical information for maritime navigation and safety, yet its trajectories are often incomplete due to signal loss or deliberate tampering. Existing imputation methods emphasize trajectory recovery, paying limited attention to interpretability and failing to provide underlying knowledge that benefits downstream tasks such as anomaly detection and route planning. We propose knowledge-driven interpretable vessel trajectory imputation (VISTA), the first trajectory imputation framework that offers interpretability while simultaneously providing underlying knowledge to support downstream analysis. Specifically, we first define underlying knowledge as a combination of Structured Data-derived Knowledge (SDK) distilled from AIS data and Implicit LLM Knowledge acquired from large-scale Internet corpora. Second, to manage and leverage the SDK effectively at scale, we develop a data-knowledge-data loop that employs a Structured Data-derived Knowledge Graph for SDK extraction and knowledge-driven trajectory imputation. Third, to efficiently process large-scale AIS data, we introduce a workflow management layer that coordinates the end-to-end pipeline, enabling parallel knowledge extraction and trajectory imputation with anomaly handling and redundancy elimination. Experiments on two large AIS datasets show that VISTA is capable of state-of-the-art imputation accuracy and computational efficiency, improving over state-of-the-art baselines by 5%-94% and reducing time cost by 51%-93%, while producing interpretable knowledge cues that benefit downstream tasks. The source code and implementation details of VISTA are publicly available.
comment: 22 pages, 13 figures, 3 algorithms, 5 tables. Code available at https://github.com/hyLiu1994/VISTA
mind_call: A Dataset for Mental Health Function Calling with Large Language Models
Large Language Model (LLM)-based systems increasingly rely on function calling to enable structured and controllable interaction with external data sources, yet existing datasets do not address mental health-oriented access to wearable sensor data. This paper presents a synthetic function-calling dataset designed for mental health assistance grounded in wearable health signals such as sleep, physical activity, cardiovascular measures, stress indicators, and metabolic data. The dataset maps diverse natural language queries to standardized API calls derived from a widely adopted health data schema. Each sample includes a user query, a query category, an explicit reasoning step, a normalized temporal parameter, and a target function. The dataset covers explicit, implicit, behavioral, symptom-based, and metaphorical expressions, which reflect realistic mental health-related user interactions. This resource supports research on intent grounding, temporal reasoning, and reliable function invocation in LLM-based mental health agents and is publicly released to promote reproducibility and future work.
Symphonym: Universal Phonetic Embeddings for Cross-Script Toponym Matching via Teacher-Student Distillation
Linking place names across languages and writing systems is a fundamental challenge in digital humanities and geographic information retrieval. Existing approaches rely on language-specific phonetic algorithms or transliteration rules that fail when names cross script boundaries -- no string metric can determine that "Moscow" when rendered in Cyrillic or Arabic refer to the same city. I present Symphonym, a neural embedding system that maps toponyms from 20 writing systems into a unified 128-dimensional phonetic space. A Teacher network trained on articulatory phonetic features (via Epitran and PanPhon) produces target embeddings, while a Student network learns to approximate these from raw characters. At inference, only the lightweight Student (1.7M parameters) is required, enabling deployment without runtime phonetic conversion. Training uses a three-phase curriculum on 57 million toponyms from GeoNames, Wikidata, and the Getty Thesaurus of Geographic Names. Phase 1 trains the Teacher on 467K phonetically-grounded triplets. Phase 2 aligns the Student to Teacher outputs across 23M samples, achieving 96.6% cosine similarity. Phase 3 fine-tunes on 3.3M hard negative triplets -- negatives sharing prefix and script with the anchor but referring to different places -- to sharpen discrimination. Evaluation on the MEHDIE Hebrew-Arabic benchmark achieves 89.2% Recall@1, outperforming Levenshtein (81.5%) and Jaro-Winkler (78.5%). The system is optimised for cross-script matching; same-script variants can be handled by complementary string methods. Symphonym will enable fuzzy phonetic reconciliation and search across the World Historical Gazetteer's 67 million toponyms. Code and models are publicly available.
comment: 30 pages, 5 tables, 2 figures
Measuring Social Bias in Vision-Language Models with Face-Only Counterfactuals from Real Photos
Vision-Language Models (VLMs) are increasingly deployed in socially consequential settings, raising concerns about social bias driven by demographic cues. A central challenge in measuring such social bias is attribution under visual confounding: real-world images entangle race and gender with correlated factors such as background and clothing, obscuring attribution. We propose a \textbf{face-only counterfactual evaluation paradigm} that isolates demographic effects while preserving real-image realism. Starting from real photographs, we generate counterfactual variants by editing only facial attributes related to race and gender, keeping all other visual factors fixed. Based on this paradigm, we construct \textbf{FOCUS}, a dataset of 480 scene-matched counterfactual images across six occupations and ten demographic groups, and propose \textbf{REFLECT}, a benchmark comprising three decision-oriented tasks: two-alternative forced choice, multiple-choice socioeconomic inference, and numeric salary recommendation. Experiments on five state-of-the-art VLMs reveal that demographic disparities persist under strict visual control and vary substantially across task formulations. These findings underscore the necessity of controlled, counterfactual audits and highlight task design as a critical factor in evaluating social bias in multimodal models.
comment: 18 pages, 18 figures, and 3 tables
Towards Compositional Generalization in LLMs for Smart Contract Security: A Case Study on Reentrancy Vulnerabilities
Large language models (LLMs) demonstrate remarkable capabilities in natural language understanding and generation. Despite being trained on large-scale, high-quality data, LLMs still fail to outperform traditional static analysis tools in specialized domains like smart contract vulnerability detection. To address this issue, this paper proposes a post-training algorithm based on atomic task decomposition and fusion. This algorithm aims to achieve combinatorial generalization under limited data by decomposing complex reasoning tasks. Specifically, we decompose the reentrancy vulnerability detection task into four linearly independent atomic tasks: identifying external calls, identifying state updates, identifying data dependencies between external calls and state updates, and determining their data flow order. These tasks form the core components of our approach. By training on synthetic datasets, we generate three compiler-verified datasets. We then employ the Slither tool to extract structural information from the control flow graph and data flow graph, which is used to fine-tune the LLM's adapter. Experimental results demonstrate that low-rank normalization fusion with the LoRA adapter improves the LLM's reentrancy vulnerability detection accuracy to 98.2%, surpassing state-of-the-art methods. On 31 real-world contracts, the algorithm achieves a 20% higher recall than traditional analysis tools.
Distributional Clarity: The Hidden Driver of RL-Friendliness in Large Language Models
Language model families exhibit striking disparity in their capacity to benefit from reinforcement learning: under identical training, models like Qwen achieve substantial gains, while others like Llama yield limited improvements. Complementing data-centric approaches, we reveal that this disparity reflects a hidden structural property: \textbf{distributional clarity} in probability space. Through a three-stage analysis-from phenomenon to mechanism to interpretation-we uncover that RL-friendly models exhibit intra-class compactness and inter-class separation in their probability assignments to correct vs. incorrect responses. We quantify this clarity using the \textbf{Silhouette Coefficient} ($S$) and demonstrate that (1) high $S$ correlates strongly with RL performance; (2) low $S$ is associated with severe logic errors and reasoning instability. To confirm this property, we introduce a Silhouette-Aware Reweighting strategy that prioritizes low-$S$ samples during training. Experiments across six mathematical benchmarks show consistent improvements across all model families, with gains up to 5.9 points on AIME24. Our work establishes distributional clarity as a fundamental, trainable property underlying RL-Friendliness.
V2P: Visual Attention Calibration for GUI Grounding via Background Suppression and Center Peaking
Precise localization of GUI elements is crucial for the development of GUI agents. Traditional methods rely on bounding box or center-point regression, neglecting spatial interaction uncertainty and visual-semantic hierarchies. Recent methods incorporate attention mechanisms but still face two key issues: (1) ignoring processing background regions causes attention drift from the desired area, and (2) uniform modeling the target UI element fails to distinguish between its center and edges, leading to click imprecision. Inspired by how humans visually process and interact with GUI elements, we propose the Valley-to-Peak (V2P) method to address these issues. To mitigate background distractions, V2P introduces a suppression attention mechanism that minimizes the model's focus on irrelevant regions to highlight the intended region. For the issue of center-edge distinction, V2P applies a Fitts' Law-inspired approach by modeling GUI interactions as 2D Gaussian heatmaps where the weight gradually decreases from the center towards the edges. The weight distribution follows a Gaussian function, with the variance determined by the target's size. Consequently, V2P effectively isolates the target area and teaches the model to concentrate on the most essential point of the UI element. The model trained by V2P achieves the performance with 92.4\% and 52.5\% on two benchmarks ScreenSpot-v2 and ScreenSpot-Pro (see Fig.~\ref{fig:main_results_charts}). Ablations further confirm each component's contribution, underscoring V2P's generalizability in precise GUI grounding tasks and its potential for real-world deployment in future GUI agents.
Paraphrasing Adversarial Attack on LLM-as-a-Reviewer
The use of large language models (LLMs) in peer review systems has attracted growing attention, making it essential to examine their potential vulnerabilities. Prior attacks rely on prompt injection, which alters manuscript content and conflates injection susceptibility with evaluation robustness. We propose the Paraphrasing Adversarial Attack (PAA), a black-box optimization method that searches for paraphrased sequences yielding higher review scores while preserving semantic equivalence and linguistic naturalness. PAA leverages in-context learning, using previous paraphrases and their scores to guide candidate generation. Experiments across five ML and NLP conferences with three LLM reviewers and five attacking models show that PAA consistently increases review scores without changing the paper's claims. Human evaluation confirms that generated paraphrases maintain meaning and naturalness. We also find that attacked papers exhibit increased perplexity in reviews, offering a potential detection signal, and that paraphrasing submissions can partially mitigate attacks.
MixRI: Mixing Features of Reference Images for Novel Object Pose Estimation ICCV 2025
We present MixRI, a lightweight network that solves the CAD-based novel object pose estimation problem in RGB images. It can be instantly applied to a novel object at test time without finetuning. We design our network to meet the demands of real-world applications, emphasizing reduced memory requirements and fast inference time. Unlike existing works that utilize many reference images and have large network parameters, we directly match points based on the multi-view information between the query and reference images with a lightweight network. Thanks to our reference image fusion strategy, we significantly decrease the number of reference images, thus decreasing the time needed to process these images and the memory required to store them. Furthermore, with our lightweight network, our method requires less inference time. Though with fewer reference images, experiments on seven core datasets in the BOP challenge show that our method achieves comparable results with other methods that require more reference images and larger network parameters.
comment: Accepted by ICCV 2025
Personality-Aware Reinforcement Learning for Persuasive Dialogue with LLM-Driven Simulation
Effective persuasive dialogue agents adapt their strategies to individual users, accounting for the evolution of their psychological states and intentions throughout conversations. We present a personality-aware reinforcement learning approach comprising three main modules: (1) a Strategy-Oriented Interaction Framework, which serves as an agenda-based strategy controller that selects strategy-level actions and generate responses via Maximal Marginal Relevance (MMR) retrieval to ensure contextual relevance, diversity, and scalable data generation; (2) Personality-Aware User Representation Learning, which produces an 81-dimensional mixed-type embedding predicted at each turn from recent exchanges and appended to the reinforcement learning state; and (3) a Dueling Double DQN (D3QN) model and Reward Prediction, in which the policy is conditioned on dialogue history and turn-level personality estimates and trained using a composite reward incorporating agreement intent, donation amount, and changeof-mind penalties. We use an agenda-based LLM simulation pipeline to generate diverse interactions, from which personality estimation is inferred from the generated utterances. Experiments on the PersuasionForGood (P4G) dataset augmented with simulated dialogues reveal three main findings: (i) turn-level personality conditioning improves policy adaptability and cumulative persuasion rewards; (ii) LLM-driven simulation enhances generalization to unseen user behaviors; and (iii) incorporating a change-of-mind penalty reduces post-agreement retractions while slightly improving donation outcomes. These results demonstrate that structured interaction, dynamic personality estimation, and behaviorally informed rewards together yield more effective persuasive policies.
comment: 15 pages, 7 figures, 3 tables
An Ubuntu-Guided Large Language Model Framework for Cognitive Behavioral Mental Health Dialogue
South Africa's escalating mental health crisis, compounded by limited access to culturally responsive care, calls for innovative and contextually grounded interventions. While large language models show considerable promise for mental health support, their predominantly Western-centric training data limit cultural and linguistic applicability in African contexts. This study introduces a proof-of-concept framework that integrates cognitive behavioral therapy with the African philosophy of Ubuntu to create a culturally sensitive, emotionally intelligent, AI-driven mental health dialogue system. Guided by a design science research methodology, the framework applies both deep theoretical and therapeutic adaptations as well as surface-level linguistic and communicative cultural adaptations. Key CBT techniques, including behavioral activation and cognitive restructuring, were reinterpreted through Ubuntu principles that emphasize communal well-being, spiritual grounding, and interconnectedness. A culturally adapted dataset was developed through iterative processes of language simplification, spiritual contextualization, and Ubuntu-based reframing. The fine-tuned model was evaluated through expert-informed case studies, employing UniEval for conversational quality assessment alongside additional measures of CBT reliability and cultural linguistic alignment. Results demonstrate that the model effectively engages in empathetic, context-aware dialogue aligned with both therapeutic and cultural objectives. Although real-time end-user testing has not yet been conducted, the model underwent rigorous review and supervision by domain specialist clinical psychologists. The findings highlight the potential of culturally embedded emotional intelligence to enhance the contextual relevance, inclusivity, and effectiveness of AI-driven mental health interventions across African settings.
DaQ-MSA: Denoising and Qualifying Diffusion Augmentations for Multimodal Sentiment Analysis
Multimodal large language models (MLLMs) have demonstrated strong performance on vision-language tasks, yet their effectiveness on multimodal sentiment analysis remains constrained by the scarcity of high-quality training data, which limits accurate multimodal understanding and generalization. To alleviate this bottleneck, we leverage diffusion models to perform semantics-preserving augmentation on the video and audio modalities, expanding the multimodal training distribution. However, increasing data quantity alone is insufficient, as diffusion-generated samples exhibit substantial quality variation and noisy augmentations may degrade performance. We therefore propose DaQ-MSA (Denoising and Qualifying Diffusion Augmentations for Multimodal Sentiment Analysis), which introduces a quality scoring module to evaluate the reliability of augmented samples and assign adaptive training weights. By down-weighting low-quality samples and emphasizing high-fidelity ones, DaQ-MSA enables more stable learning. By integrating the generative capability of diffusion models with the semantic understanding of MLLMs, our approach provides a robust and generalizable automated augmentation strategy for training MLLMs without any human annotation or additional supervision.
comment: 11 pages, 4 figures
BiasLab: A Multilingual, Dual-Framing Framework for Robust Measurement of Output-Level Bias in Large Language Models
Large Language Models (LLMs) are increasingly deployed in high-stakes contexts where their outputs influence real-world decisions. However, evaluating bias in LLM outputs remains methodologically challenging due to sensitivity to prompt wording, limited multilingual coverage, and the lack of standardized metrics that enable reliable comparison across models. This paper introduces BiasLab, an open-source, model-agnostic evaluation framework for quantifying output-level (extrinsic) bias through a multilingual, robustness-oriented experimental design. BiasLab constructs mirrored probe pairs under a strict dual-framing scheme: an affirmative assertion favoring Target A and a reverse assertion obtained by deterministic target substitution favoring Target B, while preserving identical linguistic structure. To reduce dependence on prompt templates, BiasLab performs repeated evaluation under randomized instructional wrappers and enforces a fixed-choice Likert response format to maximize comparability across models and languages. Responses are normalized into agreement labels using an LLM-based judge, aligned for polarity consistency across framings, and aggregated into quantitative bias indicators with descriptive statistics including effect sizes and neutrality rates. The framework supports evaluation across diverse bias axes, including demographic, cultural, political, and geopolitical topics, and produces reproducible artifacts such as structured reports and comparative visualizations. BiasLab contributes a standardized methodology for cross-lingual and framing-sensitive bias measurement that complements intrinsic and dataset-based audits, enabling researchers and institutions to benchmark robustness and make better-informed deployment decisions.
comment: source code and reproducibility scripts available on GitHub
ET-Agent: Incentivizing Effective Tool-Integrated Reasoning Agent via Behavior Calibration
Large Language Models (LLMs) can extend their parameter knowledge limits by adopting the Tool-Integrated Reasoning (TIR) paradigm. However, existing LLM-based agent training framework often focuses on answers' accuracy, overlooking specific alignment for behavior patterns. Consequently, agent often exhibits ineffective actions during TIR tasks, such as redundant and insufficient tool calls. How to calibrate erroneous behavioral patterns when executing TIR tasks, thereby exploring effective trajectories, remains an open-ended problem. In this paper, we propose ET-Agent, a training framework for calibrating agent's tool-use behavior through two synergistic perspectives: Self-evolving Data Flywheel and Behavior Calibration Training. Specifically, we introduce a self-evolutionary data flywheel to generate enhanced data, used to fine-tune LLM to improve its exploration ability. Based on this, we implement an two-phases behavior-calibration training framework. It is designed to progressively calibrate erroneous behavioral patterns to optimal behaviors. Further in-depth experiments confirm the superiority of \ourmodel{} across multiple dimensions, including correctness, efficiency, reasoning conciseness, and tool execution accuracy. Our ET-Agent framework provides practical insights for research in the TIR field. Codes can be found in https://github.com/asilverlight/ET-Agent
MoE-DisCo:Low Economy Cost Training Mixture-of-Experts Models
Training large-scale Mixture-of-Experts (MoE) models typically requires high-memory, high-bandwidth GPUs (e.g., A100), and their high cost has become a major barrier to large-model training. In contrast, affordable hardware is low-cost but constrained by memory capacity and bandwidth, making it unsuitable for direct LLM training. To address this, we propose MoE-DisCo (Mixture-of-Experts with Disentangled Clustering and Coordination), a staged training framework. MoE-DisCo decomposes the MoE model into multiple dense submodels, each consisting of a shared backbone and a single expert, and partitions the training data into subsets using unsupervised clustering. Each submodel is trained independently and in parallel on its assigned data subset using low-cost devices, without any inter-device communication. Subsequently, all experts are integrated into a complete MoE model and fine-tuned globally for a short period on high-memory, high-bandwidth GPUs. Experiments show that our method matches or even surpasses full-parameter training in performance across multiple downstream tasks, loss function, and perplexity (PPL), while reducing training cost by 47.6 percent to 69.5 percent on Qwen1.5-MoE-2.7B and Llama-MoE-3.5B across different datasets.
A Brain-like Synergistic Core in LLMs Drives Behaviour and Learning
The independent evolution of intelligence in biological and artificial systems offers a unique opportunity to identify its fundamental computational principles. Here we show that large language models spontaneously develop synergistic cores -- components where information integration exceeds individual parts -- remarkably similar to those in the human brain. Using principles of information decomposition across multiple LLM model families and architectures, we find that areas in middle layers exhibit synergistic processing while early and late layers rely on redundancy, mirroring the informational organisation in biological brains. This organisation emerges through learning and is absent in randomly initialised networks. Crucially, ablating synergistic components causes disproportionate behavioural changes and performance loss, aligning with theoretical predictions about the fragility of synergy. Moreover, fine-tuning synergistic regions through reinforcement learning yields significantly greater performance gains than training redundant components, yet supervised fine-tuning shows no such advantage. This convergence suggests that synergistic information processing is a fundamental property of intelligence, providing targets for principled model design and testable predictions for biological intelligence.
MedGround: Bridging the Evidence Gap in Medical Vision-Language Models with Verified Grounding Data
Vision-Language Models (VLMs) can generate convincing clinical narratives, yet frequently struggle to visually ground their statements. We posit this limitation arises from the scarcity of high-quality, large-scale clinical referring-localization pairs. To address this, we introduce MedGround, an automated pipeline that transforms segmentation resources into high-quality medical referring grounding data. Leveraging expert masks as spatial anchors, MedGround precisely derives localization targets, extracts shape and spatial cues, and guides VLMs to synthesize natural, clinically grounded queries that reflect morphology and location. To ensure data rigor, a multi-stage verification system integrates strict formatting checks, geometry- and medical-prior rules, and image-based visual judging to filter out ambiguous or visually unsupported samples. Finally, we present MedGround-35K, a novel multimodal medical dataset. Extensive experiments demonstrate that VLMs trained with MedGround-35K consistently achieve improved referring grounding performance, enhance multi-object semantic disambiguation, and exhibit strong generalization to unseen grounding settings. This work highlights MedGround as a scalable, data-driven approach to anchor medical language to verifiable visual evidence. Dataset and code will be released publicly upon acceptance.
comment: 18 pages, 10 figures
Code Evolution for Control: Synthesizing Policies via LLM-Driven Evolutionary Search
Designing effective control policies for autonomous systems remains a fundamental challenge, traditionally addressed through reinforcement learning or manual engineering. While reinforcement learning has achieved remarkable success, it often suffers from high sample complexity, reward shaping difficulties, and produces opaque neural network policies that are hard to interpret or verify. Manual design, on the other hand, requires substantial domain expertise and struggles to scale across diverse tasks. In this work, we demonstrate that LLM-driven evolutionary search can effectively synthesize interpretable control policies in the form of executable code. By treating policy synthesis as a code evolution problem, we harness the LLM's prior knowledge of programming patterns and control heuristics while employing evolutionary search to explore the solution space systematically. We implement our approach using EvoToolkit, a framework that seamlessly integrates LLM-driven evolution with customizable fitness evaluation. Our method iteratively evolves populations of candidate policy programs, evaluating them against task-specific objectives and selecting superior individuals for reproduction. This process yields compact, human-readable control policies that can be directly inspected, modified, and formally verified. This work highlights the potential of combining foundation models with evolutionary computation for synthesizing trustworthy control policies in autonomous systems. Code is available at https://github.com/pgg3/EvoControl.
Variational decomposition autoencoding improves disentanglement of latent representations
Understanding the structure of complex, nonstationary, high-dimensional time-evolving signals is a central challenge in scientific data analysis. In many domains, such as speech and biomedical signal processing, the ability to learn disentangled and interpretable representations is critical for uncovering latent generative mechanisms. Traditional approaches to unsupervised representation learning, including variational autoencoders (VAEs), often struggle to capture the temporal and spectral diversity inherent in such data. Here we introduce variational decomposition autoencoding (VDA), a framework that extends VAEs by incorporating a strong structural bias toward signal decomposition. VDA is instantiated through variational decomposition autoencoders (DecVAEs), i.e., encoder-only neural networks that combine a signal decomposition model, a contrastive self-supervised task, and variational prior approximation to learn multiple latent subspaces aligned with time-frequency characteristics. We demonstrate the effectiveness of DecVAEs on simulated data and three publicly available scientific datasets, spanning speech recognition, dysarthria severity evaluation, and emotional speech classification. Our results demonstrate that DecVAEs surpass state-of-the-art VAE-based methods in terms of disentanglement quality, generalization across tasks, and the interpretability of latent encodings. These findings suggest that decomposition-aware architectures can serve as robust tools for extracting structured representations from dynamic signals, with potential applications in clinical diagnostics, human-computer interaction, and adaptive neurotechnologies.
comment: Supplementary information file at: https://drive.google.com/drive/folders/1sZl2AcCtRK-1oav7XZSaxlu0Cq0-3MMs?usp=sharing
Seeing through the Conflict: Transparent Knowledge Conflict Handling in Retrieval-Augmented Generation
Large language models (LLMs) equipped with retrieval--the Retrieval-Augmented Generation (RAG) paradigm--should combine their parametric knowledge with external evidence, yet in practice they often hallucinate, over-trust noisy snippets, or ignore vital context. We introduce TCR (Transparent Conflict Resolution), a plug-and-play framework that makes this decision process observable and controllable. TCR (i) disentangles semantic match and factual consistency via dual contrastive encoders, (ii) estimates self-answerability to gauge confidence in internal memory, and (iii) feeds the three scalar signals to the generator through a lightweight soft-prompt with SNR-based weighting. Across seven benchmarks TCR improves conflict detection (+5-18 F1), raises knowledge-gap recovery by +21.4 pp and cuts misleading-context overrides by -29.3 pp, while adding only 0.3% parameters. The signals align with human judgements and expose temporal decision patterns.
comment: 9 pages, 9 figures, 5 tables
OSCAR: Optical-aware Semantic Control for Aleatoric Refinement in Sar-to-Optical Translation
Synthetic Aperture Radar (SAR) provides robust all-weather imaging capabilities; however, translating SAR observations into photo-realistic optical images remains a fundamentally ill-posed problem. Current approaches are often hindered by the inherent speckle noise and geometric distortions of SAR data, which frequently result in semantic misinterpretation, ambiguous texture synthesis, and structural hallucinations. To address these limitations, a novel SAR-to-Optical (S2O) translation framework is proposed, integrating three core technical contributions: (i) Cross-Modal Semantic Alignment, which establishes an Optical-Aware SAR Encoder by distilling robust semantic priors from an Optical Teacher into a SAR Student (ii) Semantically-Grounded Generative Guidance, realized by a Semantically-Grounded ControlNet that integrates class-aware text prompts for global context with hierarchical visual prompts for local spatial guidance; and (iii) an Uncertainty-Aware Objective, which explicitly models aleatoric uncertainty to dynamically modulate the reconstruction focus, effectively mitigating artifacts caused by speckle-induced ambiguity. Extensive experiments demonstrate that the proposed method achieves superior perceptual quality and semantic consistency compared to state-of-the-art approaches.
comment: main 15 pages, supplementary 5 pages
WFR-FM: Simulation-Free Dynamic Unbalanced Optimal Transport
The Wasserstein-Fisher-Rao (WFR) metric extends dynamic optimal transport (OT) by coupling displacement with change of mass, providing a principled geometry for modeling unbalanced snapshot dynamics. Existing WFR solvers, however, are often unstable, computationally expensive, and difficult to scale. Here we introduce WFR Flow Matching (WFR-FM), a simulation-free training algorithm that unifies flow matching with dynamic unbalanced OT. Unlike classical flow matching which regresses only a transport vector field, WFR-FM simultaneously regresses a vector field for displacement and a scalar growth rate function for birth-death dynamics, yielding continuous flows under the WFR geometry. Theoretically, we show that minimizing the WFR-FM loss exactly recovers WFR geodesics. Empirically, WFR-FM yields more accurate and robust trajectory inference in single-cell biology, reconstructing consistent dynamics with proliferation and apoptosis, estimating time-varying growth fields, and applying to generative dynamics under imbalanced data. It outperforms state-of-the-art baselines in efficiency, stability, and reconstruction accuracy. Overall, WFR-FM establishes a unified and efficient paradigm for learning dynamical systems from unbalanced snapshots, where not only states but also mass evolve over time.
SpatialNav: Leveraging Spatial Scene Graphs for Zero-Shot Vision-and-Language Navigation
Although learning-based vision-and-language navigation (VLN) agents can learn spatial knowledge implicitly from large-scale training data, zero-shot VLN agents lack this process, relying primarily on local observations for navigation, which leads to inefficient exploration and a significant performance gap. To deal with the problem, we consider a zero-shot VLN setting that agents are allowed to fully explore the environment before task execution. Then, we construct the Spatial Scene Graph (SSG) to explicitly capture global spatial structure and semantics in the explored environment. Based on the SSG, we introduce SpatialNav, a zero-shot VLN agent that integrates an agent-centric spatial map, a compass-aligned visual representation, and a remote object localization strategy for efficient navigation. Comprehensive experiments in both discrete and continuous environments demonstrate that SpatialNav significantly outperforms existing zero-shot agents and clearly narrows the gap with state-of-the-art learning-based methods. Such results highlight the importance of global spatial representations for generalizable navigation.
comment: 11 pages, 4 figures, 6 tables
Doing More with Less: Data Augmentation for Sudanese Dialect Automatic Speech Recognition
Although many Automatic Speech Recognition (ASR) systems have been developed for Modern Standard Arabic (MSA) and Dialectal Arabic (DA), few studies have focused on dialect-specific implementations, particularly for low-resource Arabic dialects such as Sudanese. This paper presents a comprehensive study of data augmentation techniques for fine-tuning OpenAI Whisper models and establishes the first benchmark for the Sudanese dialect. Two augmentation strategies are investigated: (1) self-training with pseudo-labels generated from unlabeled speech, and (2) TTS-based augmentation using synthetic speech from the Klaam TTS system. The best-performing model, Whisper-Medium fine-tuned with combined self-training and TTS augmentation (28.4 hours), achieves a Word Error Rate (WER) of 57.1% on the evaluation set and 51.6% on an out-of-domain holdout set substantially outperforming zero-shot multilingual Whisper (78.8% WER) and MSA-specialized Arabic models (73.8-123% WER). All experiments used low-cost resources (Kaggle free tier and Lightning.ai trial), demonstrating that strategic data augmentation can overcome resource limitations for low-resource dialects and provide a practical roadmap for developing ASR systems for low-resource Arabic dialects and other marginalized language varieties. The models, evaluation benchmarks, and reproducible training pipelines are publicly released to facilitate future research on low-resource Arabic ASR.
Thinking with Deltas: Incentivizing Reinforcement Learning via Differential Visual Reasoning Policy
Reinforcement Learning with Verifiable Rewards (RLVR) has significantly advanced reasoning capabilities in Large Language Models. However, adapting RLVR to multimodal domains suffers from a critical \textit{perception-reasoning decoupling}. Existing paradigms, driven by text-centric outcome rewards, reasoning in language medium, inadvertently encourage models to bypass visual perception. We empirically validate this through blind experiments: state-of-the-art policies maintain or surprisingly improve performance even when visual inputs are entirely removed. This reveals that these models degenerate into \textit{blind reasoners}, exploiting linguistic priors to generate plausible answers instead of attending to visual evidence. In response, we propose \textbf{Thinking with Deltas}, a framework driven by a \textbf{Differential Visual Reasoning Policy (DVRP)}. DVRP introduces intrinsic supervision via visual triplets, comprising original, masked, and perturbed inputs. It optimizes the model to maximize reasoning divergence from masked inputs (enforcing \textit{visual sensitivity}) while minimizing divergence from perturbed inputs (ensuring \textit{visual robustness}). By aligning reasoning variations strictly with the \textit{Delta} of visual information, DVRP inherently bolsters visual understanding capabilities and significantly outperforms state-of-the-art methods on both general and medical benchmarks, without requiring external annotations or auxiliary tools.
comment: 24 pages, 10 tables, 4 figures
Graph Neural Network with One-side Edge Sampling for Fraud Detection
Financial fraud is always a major problem in the field of finance, as it can cause significant consequences. As a result, many approaches have been designed to detect it, and lately Graph Neural Networks (GNNs) have been demonstrated as a competent candidate. However, when trained with a large amount of data, they are slow and computationally demanding. In addition, GNNs may need a deep architecture to detect complex fraud patterns, but doing so may make them suffer from problems such as over-fitting or over-smoothing. Over-fitting leads to reduced generalisation of the model on unseen data, while over-smoothing causes all nodes' features to converge to a fixed point due to excessive aggregation of information from neighbouring nodes. In this research, I propose an approach called One-Side Edge Sampling (OES) that can potentially reduce training duration as well as the effects of over-smoothing and over-fitting. The approach leverages predictive confidence in an edge classification task to sample edges from the input graph during a certain number of epochs. To explain why OES can alleviate over-smoothing, I perform a theoretical analysis of the proposed approach. In addition, to validate the effect of OES, I conduct experiments using different GNNs on two datasets. The results show that OES can empirically outperform backbone models in both shallow and deep architectures while also reducing training time.
CIRAG: Construction-Integration Retrieval and Adaptive Generation for Multi-hop Question Answering
Triple-based Iterative Retrieval-Augmented Generation (iRAG) mitigates document-level noise for multi-hop question answering. However, existing methods still face limitations: (i) greedy single-path expansion, which propagates early errors and fails to capture parallel evidence from different reasoning branches, and (ii) granularity-demand mismatch, where a single evidence representation struggles to balance noise control with contextual sufficiency. In this paper, we propose the Construction-Integration Retrieval and Adaptive Generation model, CIRAG. It introduces an Iterative Construction-Integration module that constructs candidate triples and history-conditionally integrates them to distill core triples and generate the next-hop query. This module mitigates the greedy trap by preserving multiple plausible evidence chains. Besides, we propose an Adaptive Cascaded Multi-Granularity Generation module that progressively expands contextual evidence based on the problem requirements, from triples to supporting sentences and full passages. Moreover, we introduce Trajectory Distillation, which distills the teacher model's integration policy into a lightweight student, enabling efficient and reliable long-horizon reasoning. Extensive experiments demonstrate that CIRAG achieves superior performance compared to existing iRAG methods.
GDEPO: Group Dual-dynamic and Equal-right-advantage Policy Optimization with Enhanced Training Data Utilization for Sample-Constrained Reinforcement Learning
Automated Theorem Proving (ATP) represents a fundamental challenge in Artificial Intelligence (AI), requiring the construction of machine-verifiable proofs in formal languages such as Lean to evaluate AI reasoning capabilities. Reinforcement learning (RL), particularly the high-performance Group Relative Policy Optimization (GRPO) algorithm, has emerged as a mainstream approach for this task. However, in ATP scenarios, GRPO faces two critical issues: when composite rewards are used, its relative advantage estimation may conflict with the binary feedback from the formal verifier; meanwhile, its static sampling strategy may discard entire batches of data if no valid proof is found, resulting in zero contribution to model updates and significant data waste. To address these limitations, we propose Group Dual-dynamic and Equal-right-advantage Policy Optimization (GDEPO), a method incorporating three core mechanisms: 1) dynamic additional sampling, which resamples invalid batches until a valid proof is discovered; 2) equal-right advantage, decoupling the sign of the advantage function (based on correctness) from its magnitude (modulated by auxiliary rewards) to ensure stable and correct policy updates; and 3) dynamic additional iterations, applying extra gradient steps to initially failed but eventually successful samples to accelerate learning on challenging cases. Experiments conducted on three datasets of varying difficulty (MinF2F-test, MathOlympiadBench, PutnamBench) confirm the effectiveness of GDEPO, while ablation studies validate the necessity of its synergistic components. The proposed method enhances data utilization and optimization efficiency, offering a novel training paradigm for ATP.
No More Stale Feedback: Co-Evolving Critics for Open-World Agent Learning
Critique-guided reinforcement learning (RL) has emerged as a powerful paradigm for training LLM agents by augmenting sparse outcome rewards with natural-language feedback. However, current methods often rely on static or offline critic models, which fail to adapt as the policy evolves. In on-policy RL, the agent's error patterns shift over time, causing stationary critics to become stale and providing feedback of diminishing utility. To address this, we introduce ECHO (Evolving Critic for Hindsight-Guided Optimization)}, a framework that jointly optimizes the policy and critic through a synchronized co-evolutionary loop. ECHO utilizes a cascaded rollout mechanism where the critic generates multiple diagnoses for an initial trajectory, followed by policy refinement to enable group-structured advantage estimation. We address the challenge of learning plateaus via a saturation-aware gain shaping objective, which rewards the critic for inducing incremental improvements in high-performing trajectories. By employing dual-track GRPO updates, ECHO ensures the critic's feedback stays synchronized with the evolving policy. Experimental results show that ECHO yields more stable training and higher long-horizon task success across open-world environments.
SecMoE: Communication-Efficient Secure MoE Inference via Select-Then-Compute AAAI 2026
Privacy-preserving Transformer inference has gained attention due to the potential leakage of private information. Despite recent progress, existing frameworks still fall short of practical model scales, with gaps up to a hundredfold. A possible way to close this gap is the Mixture of Experts (MoE) architecture, which has emerged as a promising technique to scale up model capacity with minimal overhead. However, given that the current secure two-party (2-PC) protocols allow the server to homomorphically compute the FFN layer with its plaintext model weight, under the MoE setting, this could reveal which expert is activated to the server, exposing token-level privacy about the client's input. While naively evaluating all the experts before selection could protect privacy, it nullifies MoE sparsity and incurs the heavy computational overhead that sparse MoE seeks to avoid. To address the privacy and efficiency limitations above, we propose a 2-PC privacy-preserving inference framework, \SecMoE. Unifying per-entry circuits in both the MoE layer and piecewise polynomial functions, \SecMoE obliviously selects the extracted parameters from circuits and only computes one encrypted entry, which we refer to as Select-Then-Compute. This makes the model for private inference scale to 63$\times$ larger while only having a 15.2$\times$ increase in end-to-end runtime. Extensive experiments show that, under 5 expert settings, \SecMoE lowers the end-to-end private inference communication by 1.8$\sim$7.1$\times$ and achieves 1.3$\sim$3.8$\times$ speedup compared to the state-of-the-art (SOTA) protocols.
comment: Accepted by AAAI 2026
MemGovern: Enhancing Code Agents through Learning from Governed Human Experiences
While autonomous software engineering (SWE) agents are reshaping programming paradigms, they currently suffer from a "closed-world" limitation: they attempt to fix bugs from scratch or solely using local context, ignoring the immense historical human experience available on platforms like GitHub. Accessing this open-world experience is hindered by the unstructured and fragmented nature of real-world issue-tracking data. In this paper, we introduce MemGovern, a framework designed to govern and transform raw GitHub data into actionable experiential memory for agents. MemGovern employs experience governance to convert human experience into agent-friendly experience cards and introduces an agentic experience search strategy that enables logic-driven retrieval of human expertise. By producing 135K governed experience cards, MemGovern achieves a significant performance boost, improving resolution rates on the SWE-bench Verified by 4.65%. As a plug-in approach, MemGovern provides a solution for agent-friendly memory infrastructure.
Artificial Entanglement in the Fine-Tuning of Large Language Models
Large language models (LLMs) can be adapted to new tasks using parameter-efficient fine-tuning (PEFT) methods that modify only a small number of trainable parameters, often through low-rank updates. In this work, we adopt a quantum-information-inspired perspective to understand their effectiveness. From this perspective, low-rank parameterizations naturally correspond to low-dimensional Matrix Product States (MPS) representations, which enable entanglement-based characterizations of parameter structure. Thereby, we term and measure "Artificial Entanglement", defined as the entanglement entropy of the parameters in artificial neural networks (in particular the LLMs). We first study the representative low-rank adaptation (LoRA) PEFT method, alongside full fine-tuning (FFT), using LLaMA models at the 1B and 8B scales trained on the Tulu3 and OpenThoughts3 datasets, and uncover: (i) Internal artificial entanglement in the updates of query and value projection matrices in LoRA follows a volume law with a central suppression (termed as the "Entanglement Valley"), which is sensitive to hyper-parameters and is distinct from that in FFT; (ii) External artificial entanglement in attention matrices, corresponding to token-token correlations in representation space, follows an area law with logarithmic corrections and remains robust to LoRA hyper-parameters and training steps. Drawing a parallel to the No-Hair Theorem in black hole physics, we propose that although LoRA and FFT induce distinct internal entanglement signatures, such differences do not manifest in the attention outputs, suggesting a "no-hair" property that results in the effectiveness of low rank updates. We further provide theoretical support based on random matrix theory, and extend our analysis to an MPS Adaptation PEFT method, which exhibits qualitatively similar behaviors.
comment: 41 pages, many figures
AutoTour: Automatic Photo Tour Guide with Smartphones and LLMs
We present AutoTour, a system that enhances user exploration by automatically generating fine-grained landmark annotations and descriptive narratives for photos captured by users. The key idea of AutoTour is to fuse visual features extracted from photos with nearby geospatial features queried from open matching databases. Unlike existing tour applications that rely on pre-defined content or proprietary datasets, AutoTour leverages open and extensible data sources to provide scalable and context-aware photo-based guidance. To achieve this, we design a training-free pipeline that first extracts and filters relevant geospatial features around the user's GPS location. It then detects major landmarks in user photos through VLM-based feature detection and projects them into the horizontal spatial plane. A geometric matching algorithm aligns photo features with corresponding geospatial entities based on their estimated distance and direction. The matched features are subsequently grounded and annotated directly on the original photo, accompanied by large language model-generated textual and audio descriptions to provide an informative, tour-like experience. We demonstrate that AutoTour can deliver rich, interpretable annotations for both iconic and lesser-known landmarks, enabling a new form of interactive, context-aware exploration that bridges visual perception and geospatial understanding.
comment: 21
Multi-Stage Evolutionary Model Merging with Meta Data Driven Curriculum Learning for Sentiment-Specialized Large Language Modeling
The emergence of large language models (LLMs) has significantly transformed natural language processing (NLP), enabling more generalized models to perform various tasks with minimal training. However, traditional sentiment analysis methods, which focus on individual tasks such as sentiment classification or aspect-based analysis, are not practical for real-world applications that usually require handling multiple tasks. While offering flexibility, LLMs in sentiment-specific tasks often fall short of the required accuracy. Techniques like fine-tuning and evolutionary model merging help integrate models into a unified framework, which can improve the learning performance while reducing computational costs. The use of task meta-data and curriculum learning to optimize learning processes remains underexplored, while sentiment analysis is a critical task in NLP that requires high accuracy and scalability across multiple subtasks. In this study, we propose a hybrid learning model called Multi-stage Evolutionary Model Merging with Meta data driven Curriculum Learning (MEM-MCL), to enhance the sentiment analysis in large language modeling. In particular, expert models are created through instruction tuning for specific sentiment tasks and then merged using evolutionary algorithms to form a unified model. The merging process is optimized with weak data to enhance performance across tasks. The curriculum learning is incorporated to provide a learning sequence based on task difficulty, improving knowledge extraction from LLMs. Experiment results demonstrate that the proposed MEM-MCL model outperforms conventional LLMs in a majority of sentiment analysis tasks, achieving superior results across various subtasks.
comment: This paper was presented at the 10th IEEE International Conference on Data Science and Systems in December 2024 and is awaiting publication
From Text to Simulation: A Multi-Agent LLM Workflow for Automated Chemical Process Design
Process simulation is a critical cornerstone of chemical engineering design. Current automated chemical design methodologies focus mainly on various representations of process flow diagrams. However, transforming these diagrams into executable simulation flowsheets remains a time-consuming and labor-intensive endeavor, requiring extensive manual parameter configuration within simulation software. In this work, we propose a novel multi-agent workflow that leverages the semantic understanding capabilities of large language models(LLMs) and enables iterative interactions with chemical process simulation software, achieving end-to-end automated simulation from textual process specifications to computationally validated software configurations for design enhancement. Our approach integrates four specialized agents responsible for task understanding, topology generation, parameter configuration, and evaluation analysis, respectively, coupled with Enhanced Monte Carlo Tree Search to accurately interpret semantics and robustly generate configurations. Evaluated on Simona, a large-scale process description dataset, our method achieves a 31.1% improvement in the simulation convergence rate compared to state-of-the-art baselines and reduces the design time by 89. 0% compared to the expert manual design. This work demonstrates the potential of AI-assisted chemical process design, which bridges the gap between conceptual design and practical implementation. Our workflow is applicable to diverse process-oriented industries, including pharmaceuticals, petrochemicals, food processing, and manufacturing, offering a generalizable solution for automated process design.
GanitLLM: Difficulty-Aware Bengali Mathematical Reasoning through Curriculum-GRPO
We present a Bengali mathematical reasoning model called GanitLLM (named after the Bangla word for mathematics, "Ganit"), together with a new difficulty-aware Bengali math corpus and a curriculum-based GRPO pipeline. Bengali is one of the world's most widely spoken languages, yet existing LLMs either reason in English and then translate, or simply fail on multi-step Bengali math, in part because reinforcement learning recipes are tuned for high-resource languages and collapse under reward sparsity in low-resource settings. To address this, we construct Ganit, a rigorously filtered and decontaminated Bengali math dataset with automatic difficulty tags derived from the pass@k of a strong evaluator model. Building on this dataset, we propose Curriculum-GRPO, which combines multi-stage training (SFT + GRPO) with difficulty-aware sampling and verifiable rewards for format, numerical correctness, and Bengali reasoning. On Bn-MGSM and Bn-MSVAMP, GanitLLM-4B improves over its Qwen3-4B base by +8 and +7 accuracy points, respectively, while increasing the percentage of Bengali reasoning tokens from 14% to over 88% and reducing average solution length from 943 to 193 words.
MTMCS-Bench: Evaluating Contextual Safety of Multimodal Large Language Models in Multi-Turn Dialogues
Multimodal large language models (MLLMs) are increasingly deployed as assistants that interact through text and images, making it crucial to evaluate contextual safety when risk depends on both the visual scene and the evolving dialogue. Existing contextual safety benchmarks are mostly single-turn and often miss how malicious intent can emerge gradually or how the same scene can support both benign and exploitative goals. We introduce the Multi-Turn Multimodal Contextual Safety Benchmark (MTMCS-Bench), a benchmark of realistic images and multi-turn conversations that evaluates contextual safety in MLLMs under two complementary settings, escalation-based risk and context-switch risk. MTMCS-Bench offers paired safe and unsafe dialogues with structured evaluation. It contains over 30 thousand multimodal (image+text) and unimodal (text-only) samples, with metrics that separately measure contextual intent recognition, safety-awareness on unsafe cases, and helpfulness on benign ones. Across eight open-source and seven proprietary MLLMs, we observe persistent trade-offs between contextual safety and utility, with models tending to either miss gradual risks or over-refuse benign dialogues. Finally, we evaluate five current guardrails and find that they mitigate some failures but do not fully resolve multi-turn contextual risks.
comment: A benchmark of realistic images and multi-turn conversations that evaluates contextual safety in MLLMs under two complementary settings
Benchmarking Egocentric Clinical Intent Understanding Capability for Medical Multimodal Large Language Models
Medical Multimodal Large Language Models (Med-MLLMs) require egocentric clinical intent understanding for real-world deployment, yet existing benchmarks fail to evaluate this critical capability. To address these challenges, we introduce MedGaze-Bench, the first benchmark leveraging clinician gaze as a Cognitive Cursor to assess intent understanding across surgery, emergency simulation, and diagnostic interpretation. Our benchmark addresses three fundamental challenges: visual homogeneity of anatomical structures, strict temporal-causal dependencies in clinical workflows, and implicit adherence to safety protocols. We propose a Three-Dimensional Clinical Intent Framework evaluating: (1) Spatial Intent: discriminating precise targets amid visual noise, (2) Temporal Intent: inferring causal rationale through retrospective and prospective reasoning, and (3) Standard Intent: verifying protocol compliance through safety checks. Beyond accuracy metrics, we introduce Trap QA mechanisms to stress-test clinical reliability by penalizing hallucinations and cognitive sycophancy. Experiments reveal current MLLMs struggle with egocentric intent due to over-reliance on global features, leading to fabricated observations and uncritical acceptance of invalid instructions.
comment: 16 pages, 4 figures
FinForge: Semi-Synthetic Financial Benchmark Generation AAAI 2026
Evaluating Language Models (LMs) in specialized, high-stakes domains such as finance remains a significant challenge due to the scarcity of open, high-quality, and domain-specific datasets. Existing general-purpose benchmarks provide broad coverage but lack the depth and domain fidelity needed to assess LMs' capabilities for real-world financial reasoning, which requires both conceptual understanding and quantitative rigor. To address this gap, we introduce FinForge, a scalable, semi-synthetic pipeline for constructing finance-specific evaluation benchmarks through a hybrid of expert-guided data curation and controlled LM-based synthesis. FinForge combines manual and programmatic corpus construction from authoritative financial sources with structured question generation and validation using Gemini 2.5 Flash. To demonstrate the pipeline's efficacy, we produce FinForge-5k, a snapshot benchmark comprising over 5,000 human-validated question-answer pairs across 11 finance subdomains, derived from a curated corpus of 100,000 verified documents totaling 143M tokens. Evaluation of state-of-the-art open-source and closed-source models on FinForge-5k reveals significant differences in financial reasoning, with leading models achieving accuracy levels near 80%. These findings underscore the framework's utility for diagnosing current model limitations and guiding future improvements in financial domain competence. All code and data are available at https://github.com/gtfintechlab/FinForge.
comment: AAAI 2026 Workshop on Agentic AI in Financial Services
Logic-Driven Semantic Communication for Resilient Multi-Agent Systems
The advent of 6G networks is accelerating autonomy and intelligence in large-scale, decentralized multi-agent systems (MAS). While this evolution enables adaptive behavior, it also heightens vulnerability to stressors such as environmental changes and adversarial behavior. Existing literature on resilience in decentralized MAS largely focuses on isolated aspects, such as fault tolerance, without offering a principled unified definition of multi-agent resilience. This gap limits the ability to design systems that can continuously sense, adapt, and recover under dynamic conditions. This article proposes a formal definition of MAS resilience grounded in two complementary dimensions: epistemic resilience, wherein agents recover and sustain accurate knowledge of the environment, and action resilience, wherein agents leverage that knowledge to coordinate and sustain goals under disruptions. We formalize resilience via temporal epistemic logic and quantify it using recoverability time (how quickly desired properties are re-established after a disturbance) and durability time (how long accurate beliefs and goal-directed behavior are sustained after recovery). We design an agent architecture and develop decentralized algorithms to achieve both epistemic and action resilience. We provide formal verification guarantees, showing that our specifications are sound with respect to the metric bounds and admit finite-horizon verification, enabling design-time certification and lightweight runtime monitoring. Through a case study on distributed multi-agent decision-making under stressors, we show that our approach outperforms baseline methods. Our formal verification analysis and simulation results highlight that the proposed framework enables resilient, knowledge-driven decision-making and sustained operation, laying the groundwork for resilient decentralized MAS in next-generation communication systems.
Why are there many equally good models? An Anatomy of the Rashomon Effect
The Rashomon effect -- the existence of multiple, distinct models that achieve nearly equivalent predictive performance -- has emerged as a fundamental phenomenon in modern machine learning and statistics. In this paper, we explore the causes underlying the Rashomon effect, organizing them into three categories: statistical sources arising from finite samples and noise in the data-generating process; structural sources arising from non-convexity of optimization objectives and unobserved variables that create fundamental non-identifiability; and procedural sources arising from limitations of optimization algorithms and deliberate restrictions to suboptimal model classes. We synthesize insights from machine learning, statistics, and optimization literature to provide a unified framework for understanding why the multiplicity of good models arises. A key distinction emerges: statistical multiplicity diminishes with more data, structural multiplicity persists asymptotically and cannot be resolved without different data or additional assumptions, and procedural multiplicity reflects choices made by practitioners. Beyond characterizing causes, we discuss both the challenges and opportunities presented by the Rashomon effect, including implications for inference, interpretability, fairness, and decision-making under uncertainty.
When Humans Judge Irises: Pupil Size Normalization as an Aid and Synthetic Irises as a Challenge
Iris recognition is a mature biometric technology offering remarkable precision and speed, and allowing for large-scale deployments to populations exceeding a billion enrolled users (e.g., AADHAAR in India). However, in forensic applications, a human expert may be needed to review and confirm a positive identification before an iris matching result can be presented as evidence in court, especially in cases where processed samples are degraded (e.g., in post-mortem cases) or where there is a need to judge whether the sample is authentic, rather than a result of a presentation attack. This paper presents a study that examines human performance in iris verification in two controlled scenarios: (a) under varying pupil sizes, with and without a linear/nonlinear alignment of the pupil size between compared images, and (b) when both genuine and impostor iris image pairs are synthetically generated. The results demonstrate that pupil size normalization carried out by a modern autoencoder-based identity-preserving image-to-image translation model significantly improves verification accuracy. Participants were also able to determine whether iris pairs corresponded to the same or different eyes when both images were either authentic or synthetic. However, accuracy declined when subjects were comparing authentic irises against high-quality, same-eye synthetic counterparts. These findings (a) demonstrate the importance of pupil-size alignment for iris matching tasks in which humans are involved, and (b) indicate that despite the high fidelity of modern generative models, same-eye synthetic iris images are more often judged by humans as different-eye images, compared to same-eye authentic image pairs. We offer data and human judgments along with this paper to allow full replicability of this study and future works.
What Can We Actually Steer? A Multi-Behavior Study of Activation Control
Large language models (LLMs) require precise behavior control for safe and effective deployment across diverse applications. Activation steering offers a promising approach for LLMs' behavioral control. We focus on the question of how steering effectiveness varies across different behavior types and whether the nature of target behaviors can predict steering success. We address this through empirical analysis of activation steering across 50 behaviors that span persona archetypes, personality traits, misalignment behaviors, style cues, and impersonation of public figures. We present a set of comprehensive experiments on coefficient optimization, vector properties, and data requirements to provide comprehensive guidance for the implementation of activation steering. Our analysis demonstrates that steering effectiveness varies significantly by behavior type, with different behavioral categories exhibiting distinct response patterns to intervention strength. We find that trait expression follows an inverted-U curve with a steering coefficient strength. We also show that vector separation metrics do not predict steering success, but larger training datasets enable more aggressive steering. These findings provide empirically grounded guidance for implementing activation steering and demonstrate that steering effectiveness is heavily influenced by behavior type.
Causality-Based Scores Alignment in Explainable Data Management
Different attribution scores have been proposed to quantify the relevance of database tuples for query answering in databases; e.g. Causal Responsibility, the Shapley Value, the Banzhaf Power-Index, and the Causal Effect. They have been analyzed in isolation. This work is a first investigation of score alignment depending on the query and the database; i.e. on whether they induce compatible rankings of tuples. We concentrate mostly on causality-based scores; and provide a syntactic dichotomy result for queries: on one side, pairs of scores are always aligned, on the other, they are not always aligned. It turns out that the presence of exogenous tuples makes a crucial difference in this regard.
comment: Extended version of revised camera-ready version of paper to appear in Proc. FoIKS'26
Deployability-Centric Infrastructure-as-Code Generation: Fail, Learn, Refine, and Succeed through LLM-Empowered DevOps Simulation
Infrastructure-as-Code (IaC) generation holds significant promise for automating cloud infrastructure provisioning. Recent advances in Large Language Models (LLMs) present a promising opportunity to democratize IaC development by generating deployable infrastructure templates from natural language descriptions. However, current evaluation focuses on syntactic correctness while ignoring deployability, the critical measure of the utility of IaC configuration files. Six state-of-the-art LLMs performed poorly on deployability, achieving only 20.8$\sim$30.2% deployment success rate on the first attempt. In this paper, we construct DPIaC-Eval, the first deployability-centric IaC template benchmark consisting of 153 real-world scenarios cross 58 unique services. Also, we propose an LLM-based deployability-centric framework, dubbed IaCGen, that uses iterative feedback mechanism encompassing format verification, syntax checking, and live deployment stages, thereby closely mirroring the real DevOps workflows. Results show that IaCGen can make 54.6$\sim$91.6% generated IaC templates from all evaluated models deployable in the first 10 iterations. Additionally, human-in-the-loop feedback that provide direct guidance for the deployability errors, can further boost the performance to over 90% passItr@25 on all evaluated LLMs. Furthermore, we explore the trustworthiness of the generated IaC templates on user intent alignment and security compliance. The poor performance (25.2% user requirement coverage and 8.4% security compliance rate) indicates a critical need for continued research in this domain.
comment: Accepted by FSE 2026
The Best Instruction-Tuning Data are Those That Fit
High-quality supervised fine-tuning (SFT) data are crucial for eliciting strong capabilities from pretrained large language models (LLMs). Typically, instructions are paired with multiple responses sampled from other LLMs, which are often out of the distribution of the target model to be fine-tuned. This, at scale, can lead to diminishing returns and even hurt the models' performance and robustness. We propose **GRAPE**, a novel SFT framework that accounts for the unique characteristics of the target model. For each instruction, it gathers responses from various LLMs and selects the one with the highest probability measured by the target model, indicating that it aligns most closely with the target model's pretrained distribution; it then proceeds with standard SFT training. We first evaluate GRAPE with a controlled experiment, where we sample various solutions for each question in UltraInteract from multiple models and fine-tune commonly used LMs like LLaMA3.1-8B, Mistral-7B, and Qwen2.5-7B on GRAPE-selected data. GRAPE significantly outperforms strong baselines, including distilling from the strongest model with an absolute gain of up to 13.8%, averaged across benchmarks, and training on 3x more data with a maximum performance improvement of 17.3%. GRAPE's strong performance generalizes to realistic settings. We experiment with the post-training data used for Tulu3 and Olmo-2. GRAPE outperforms strong baselines trained on 4.5 times more data by 6.1% and a state-of-the-art data selection approach by 3% on average performance. Remarkably, using 1/3 of the data and half the number of epochs, GRAPE enables LLaMA3.1-8B to surpass the performance of Tulu3-SFT by 3.5%.
Tensor Product Attention Is All You Need NeurIPS 2025
Scaling language models to handle longer input sequences typically necessitates large key-value (KV) caches, resulting in substantial memory overhead during inference. In this paper, we propose Tensor Product Attention (TPA), a novel attention mechanism that uses tensor decompositions to represent queries, keys, and values compactly, substantially shrinking the KV cache size at inference time. By factorizing these representations into contextual low-rank components and seamlessly integrating with Rotary Position Embedding (RoPE), TPA achieves improved model quality alongside memory efficiency. Based on TPA, we introduce the Tensor ProducT ATTenTion Transformer (T6), a new model architecture for sequence modeling. Through extensive empirical evaluation on language modeling tasks, we demonstrate that T6 surpasses or matches the performance of standard Transformer baselines including Multi-Head Attention (MHA), Multi-Query Attention (MQA), Grouped-Query Attention (GQA), and Multi-Head Latent Attention (MLA) across various metrics, including perplexity and a range of established evaluation benchmarks. Notably, TPA's memory efficiency and computational efficiency at decoding stage enables processing longer sequences under fixed resource constraints, addressing a critical scalability challenge in modern language models. Project Page: https://github.com/tensorgi/TPA.
comment: Published in NeurIPS 2025 (Spotlight); Project Page: https://github.com/tensorgi/TPA
Agile Tradespace Exploration for Space Rendezvous Mission Design via Transformers
Spacecraft rendezvous enables on-orbit servicing, debris removal, and crewed docking, forming the foundation for a scalable space economy. Designing such missions requires rapid exploration of the tradespace between control cost and flight time across multiple candidate targets. However, multi-objective optimization in this setting is challenging, as the underlying constraints are often nonconvex, and mission designers must balance accuracy (e.g., solving the full problem) with efficiency (e.g., convex relaxations), slowing iteration and limiting design agility. To address these challenges, this paper proposes an AI-powered framework that enables agile and generalized rendezvous mission design. Given the orbital information of the target spacecraft, boundary conditions of the servicer, and a range of flight times, a transformer model generates a set of near-Pareto optimal trajectories across varying flight times in a single parallelized inference step, thereby enabling rapid mission trade studies. The model is further extended to accommodate variable flight times and perturbed orbital dynamics, supporting realistic multi-objective trade-offs. Validation on chance-constrained rendezvous problems in Earth orbits with passive safety constraints demonstrates that the model generalizes across both flight times and dynamics, consistently providing high-quality initial guesses that converge to superior solutions in fewer iterations. Moreover, the framework efficiently approximates the Pareto front, achieving runtimes comparable to convex relaxation by exploiting parallelized inference. Together, these results position the proposed framework as a practical surrogate for nonconvex trajectory generation and mark an important step toward AI-driven trajectory design for accelerating preliminary mission planning in real-world rendezvous applications.
comment: 14 pages, 7 figures
LongDA: Benchmarking LLM Agents for Long-Document Data Analysis
We introduce LongDA, a data analysis benchmark for evaluating LLM-based agents under documentation-intensive analytical workflows. In contrast to existing benchmarks that assume well-specified schemas and inputs, LongDA targets real-world settings in which navigating long documentation and complex data is the primary bottleneck. To this end, we manually curate raw data files, long and heterogeneous documentation, and expert-written publications from 17 publicly available U.S. national surveys, from which we extract 505 analytical queries grounded in real analytical practice. Solving these queries requires agents to first retrieve and integrate key information from multiple unstructured documents, before performing multi-step computations and writing executable code, which remains challenging for existing data analysis agents. To support the systematic evaluation under this setting, we develop LongTA, a tool-augmented agent framework that enables document access, retrieval, and code execution, and evaluate a range of proprietary and open-source models. Our experiments reveal substantial performance gaps even among state-of-the-art models, highlighting the challenges researchers should consider before applying LLM agents for decision support in real-world, high-stakes analytical settings.
ENCO: Life-Cycle Management of Enterprise-Grade Copilots
Software engineers frequently grapple with the challenge of accessing disparate documentation and telemetry data, including TroubleShooting Guides (TSGs), incident reports, code repositories, and various internal tools developed by multiple stakeholders. While on-call duties are inevitable, incident resolution becomes even more daunting due to the obscurity of legacy sources and the pressures of strict time constraints. To enhance the efficiency of on-call engineers (OCEs) and streamline their daily workflows, we introduced DECO-a comprehensive framework for developing, deploying, and managing enterprise-grade copilots tailored to improve productivity in engineering routines. This paper details the design and implementation of the DECO framework, emphasizing its innovative NL2SearchQuery functionality and a lightweight agentic framework. These features support efficient and customized retrieval-augmented-generation (RAG) algorithms that not only extract relevant information from diverse sources but also select the most pertinent skills in response to user queries. This enables the addressing of complex technical questions and provides seamless, automated access to internal resources. Additionally, DECO incorporates a robust mechanism for converting unstructured incident logs into user-friendly, structured guides, effectively bridging the documentation gap. Since its launch in September 2023, ENCO has demonstrated its effectiveness through widespread adoption, enabling tens of thousands of interactions and engaging hundreds of monthly active users (MAU) across dozens of organizations within the company.
NeuroGenPoisoning: Neuron-Guided Attacks on Retrieval-Augmented Generation of LLM via Genetic Optimization of External Knowledge
Retrieval-Augmented Generation (RAG) empowers Large Language Models (LLMs) to dynamically integrate external knowledge during inference, improving their factual accuracy and adaptability. However, adversaries can inject poisoned external knowledge to override the model's internal memory. While existing attacks iteratively manipulate retrieval content or prompt structure of RAG, they largely ignore the model's internal representation dynamics and neuron-level sensitivities. The underlying mechanism of RAG poisoning has not been fully studied and the effect of knowledge conflict with strong parametric knowledge in RAG is not considered. In this work, we propose NeuroGenPoisoning, a novel attack framework that generates adversarial external knowledge in RAG guided by LLM internal neuron attribution and genetic optimization. Our method first identifies a set of Poison-Responsive Neurons whose activation strongly correlates with contextual poisoning knowledge. We then employ a genetic algorithm to evolve adversarial passages that maximally activate these neurons. Crucially, our framework enables massive-scale generation of effective poisoned RAG knowledge by identifying and reusing promising but initially unsuccessful external knowledge variants via observed attribution signals. At the same time, Poison-Responsive Neurons guided poisoning can effectively resolves knowledge conflict. Experimental results across models and datasets demonstrate consistently achieving high Population Overwrite Success Rate (POSR) of over 90% while preserving fluency. Empirical evidence shows that our method effectively resolves knowledge conflict.
Deep Learning Model Deployment in Multiple Cloud Providers: an Exploratory Study Using Low Computing Power Environments
The deployment of Machine Learning models in the cloud has grown among tech companies. Hardware requirements are higher when these models involve Deep Learning techniques, and the cloud providers' costs may be a barrier. We explore deploying Deep Learning models, using for experiments the GECToR model, a Deep Learning solution for Grammatical Error Correction, across three of the major cloud providers (Amazon Web Services, Google Cloud Platform, and Microsoft Azure). We evaluate real-time latency, hardware usage, and cost at each cloud provider in 7 execution environments with 10 experiments reproduced. We found that while Graphics Processing Units (GPUs) excel in performance, they had an average cost 300% higher than solutions without a GPU. Our analysis also suggests that processor cache memory size is a key variable for CPU-only deployments, and setups with sufficient cache achieved a 50% cost reduction compared to GPU-based deployments. This study indicates the feasibility and affordability of cloud-based Deep Learning inference solutions without a GPU, benefiting resource-constrained users such as startups and small research groups.
comment: 15 pages, 7 figures
Fail Fast, Win Big: Rethinking the Drafting Strategy in Speculative Decoding via Diffusion LLMs
Diffusion Large Language Models (dLLMs) offer fast, parallel token generation, but their standalone use is plagued by an inherent efficiency-quality tradeoff. We show that, if carefully applied, the attributes of dLLMs can actually be a strength for drafters in speculative decoding with autoregressive (AR) verifiers. Our core insight is that dLLM's speed from parallel decoding drastically lowers the risk of costly rejections, providing a practical mechanism to effectively realize the (elusive) lengthy drafts that lead to large speedups with speculative decoding. We present FailFast, a dLLM-based speculative decoding framework that realizes this approach by dynamically adapting its speculation length. It "fails fast" by spending minimal compute in hard-to-speculate regions to shrink speculation latency and "wins big" by aggressively extending draft lengths in easier regions to reduce verification latency (in many cases, speculating and accepting 70 tokens at a time!). Without any fine-tuning, FailFast delivers lossless acceleration of AR LLMs and achieves up to 4.9$\times$ speedup over vanilla decoding, 1.7$\times$ over the best naive dLLM drafter, and 2.0$\times$ over EAGLE-3 across diverse models and workloads. We open-source FailFast at https://github.com/ruipeterpan/failfast.
Exploring Context-aware and LLM-driven Locomotion for Immersive Virtual Reality
Locomotion plays a crucial role in shaping the user experience within virtual reality environments. In particular, hands-free locomotion offers a valuable alternative by supporting accessibility and freeing users from reliance on handheld controllers. To this end, traditional speech-based methods often depend on rigid command sets, limiting the naturalness and flexibility of interaction. In this study, we propose a novel locomotion technique powered by large language models (LLMs), which allows users to navigate virtual environments using natural language with contextual awareness. We evaluate three locomotion methods: controller-based teleportation, voice-based steering, and our language model-driven approach. Our evaluation combines eye-tracking data analysis, including exploratory explainable machine learning analysis with SHAP, and standardized questionnaires (SUS, IPQ, CSQ-VR, NASA-TLX) to examine user experience through both objective gaze-based measures and subjective self-reports of usability, presence, cybersickness, and cognitive load. Our findings show no statistically significant differences in usability, presence, or cybersickness between LLM-driven locomotion and established methods such as teleportation, suggesting its potential as a viable, natural language-based, hands-free alternative. In addition, eye-tracking analysis revealed patterns suggesting tendency toward increased user attention and engagement in the LLM-driven condition. Complementary to these findings, exploratory SHAP analysis revealed that fixation, saccade, and pupil-related features vary across techniques, indicating distinct patterns of visual attention and cognitive processing. Overall, we state that our method can facilitate hands-free locomotion in virtual spaces, especially in supporting accessibility.
Evaluating Detection Thresholds: The Impact of False Positives and Negatives on Super-Resolution Ultrasound Localization Microscopy
Super-resolution ultrasound imaging with ultrasound localization microscopy (ULM) offers a high-resolution view of microvascular structures. Yet, ULM image quality heavily relies on precise microbubble (MB) detection. Despite the crucial role of localization algorithms, there has been limited focus on the practical pitfalls in MB detection tasks such as setting the detection threshold. This study examines how False Positives (FPs) and False Negatives (FNs) affect ULM image quality by systematically adding controlled detection errors to simulated data. Results indicate that while both FP and FN rates impact Peak Signal-to-Noise Ratio (PSNR) similarly, increasing FP rates from 0\% to 20\% decreases Structural Similarity Index (SSIM) by 7\%, whereas same FN rates cause a greater drop of around 45\%. Moreover, dense MB regions are more resilient to detection errors, while sparse regions show high sensitivity, showcasing the need for robust MB detection frameworks to enhance super-resolution imaging.
Expert System for Bitcoin Forecasting: Integrating Global Liquidity via TimeXer Transformers
Bitcoin price forecasting is characterized by extreme volatility and non-stationarity, often defying traditional univariate time-series models over long horizons. This paper addresses a critical gap by integrating Global M2 Liquidity, aggregated from 18 major economies, as a leading exogenous variable with a 12-week lag structure. Using the TimeXer architecture, we compare a liquidity-conditioned forecasting model (TimeXer-Exog) against state-of-the-art benchmarks including LSTM, N-BEATS, PatchTST, and a standard univariate TimeXer. Experiments conducted on daily Bitcoin price data from January 2020 to August 2025 demonstrate that explicit macroeconomic conditioning significantly stabilizes long-horizon forecasts. At a 70-day forecast horizon, the proposed TimeXer-Exog model achieves a mean squared error (MSE) 1.08e8, outperforming the univariate TimeXer baseline by over 89 percent. These results highlight that conditioning deep learning models on global liquidity provides substantial improvements in long-horizon Bitcoin price forecasting.
Reqo: A Comprehensive Learning-Based Cost Model for Robust and Explainable Query Optimization
Although machine learning (ML) shows potential in improving query optimization by generating and selecting more efficient plans, ensuring the robustness of learning-based cost models (LCMs) remains challenging. These LCMs currently lack explainability, which undermines user trust and limits the ability to derive insights from their cost predictions to improve plan quality. Accurately converting tree-structured query plans into representations via tree models is also essential, as omitting any details may negatively impact subsequent cost model performance. Additionally, inherent uncertainty in cost estimation leads to inaccurate predictions, resulting in suboptimal plan selection. To address these challenges, we introduce Reqo, a Robust and Explainable Query Optimization cost model that comprehensively enhances three main stages in query optimization: plan generation, plan representation, and plan selection. Reqo integrates three innovations: the first explainability technique for LCMs that quantifies subgraph contributions and produces plan generation hints to enhance candidate plan quality; a novel tree model based on Bidirectional Graph Neural Networks (Bi-GNNs) with a Gated Recurrent Unit (GRU) aggregator to further capture both node-level and structural information and effectively strengthen plan representation; and an uncertainty-aware learning-to-rank cost estimator that adaptively integrates cost estimates with uncertainties to enhance plan selection robustness. Extensive experiments demonstrate that Reqo outperforms state-of-the-art approaches across all three stages.
Large Language Models for Limited Noisy Data: A Gravitational Wave Identification Study
This work investigates whether large language models (LLMs) offer advantages over traditional neural networks for astronomical data processing, in regimes with non-Gaussian, non-stationary noise and limited labeled samples. Gravitational wave observations provide an suitable test case, using only 90 LIGO events, finetuned LLMs achieve 97.4\% accuracy for identifying signals. Further experiments show that, in contrast to traditional networks that rely on large simulated datasets, additional simulated samples do not improve LLM performance, while scaling studies reveal predictable gains with increasing model size and dataset size. These results indicate that LLMs can extract discriminative structure directly from observational data and provide an efficient assessment for gravitational wave identification. The same strategy may extend to other astronomical domains with similar noise properties, such as radio or pulsar observations.
comment: 10 pages, 5 figures, submitted to ApJ
Bridging Symbolic Control and Neural Reasoning in LLM Agents: The Structured Cognitive Loop
Large language model agents suffer from fundamental architectural problems: entangled reasoning and execution, memory volatility, and uncontrolled action sequences. We introduce Structured Cognitive Loop (SCL), a modular architecture that explicitly separates agent cognition into five phases: Retrieval, Cognition, Control, Action, and Memory (R-CCAM). At the core of SCL is Soft Symbolic Control, an adaptive governance mechanism that applies symbolic constraints to probabilistic inference, preserving neural flexibility while restoring the explainability and controllability of classical symbolic systems. Through empirical validation on multi-step conditional reasoning tasks, we demonstrate that SCL achieves zero policy violations, eliminates redundant tool calls, and maintains complete decision traceability. These results address critical gaps in existing frameworks such as ReAct, AutoGPT, and memory-augmented approaches. Our contributions are threefold: (1) we situate SCL within the taxonomy of hybrid intelligence, differentiating it from prompt-centric and memory-only approaches; (2) we formally define Soft Symbolic Control and contrast it with neuro-symbolic AI; and (3) we derive three design principles for trustworthy agents: modular decomposition, adaptive symbolic governance, and transparent state management. We provide a complete open-source implementation demonstrating the R-CCAM loop architecture, alongside a live GPT-4o-powered travel planning agent. By connecting expert system principles with modern LLM capabilities, this work offers a practical and theoretically grounded path toward reliable, explainable, and governable AI agents.
comment: The reference list has been updated to reflect recent work
Restoring Rhythm: Punctuation Restoration Using Transformer Models for Bangla, A Low-Resource Language
Punctuation restoration enhances the readability of text and is critical for post-processing tasks in Automatic Speech Recognition (ASR), especially for low-resource languages like Bangla. In this study, we explore the application of transformer-based models, specifically XLM-RoBERTa-large, to automatically restore punctuation in unpunctuated Bangla text. We focus on predicting four punctuation marks: period, comma, question mark, and exclamation mark across diverse text domains. To address the scarcity of annotated resources, we constructed a large, varied training corpus and applied data augmentation techniques. Our best-performing model, trained with an augmentation factor of alpha = 0.20%, achieves an accuracy of 97.1% on the News test set, 91.2% on the Reference set, and 90.2% on the ASR set. Results show strong generalization to reference and ASR transcripts, demonstrating the model's effectiveness in real-world, noisy scenarios. This work establishes a strong baseline for Bangla punctuation restoration and contributes publicly available datasets and code to support future research in low-resource NLP.
Deep Value Benchmark: Measuring Whether Models Generalize Deep Values or Shallow Preferences NeurIPS 2025
We introduce the Deep Value Benchmark (DVB), an evaluation framework that directly tests whether large language models (LLMs) learn fundamental human values or merely surface-level preferences. This distinction is critical for AI alignment: Systems that capture deeper values are likely to generalize human intentions robustly, while those that capture only superficial patterns in preference data risk producing misaligned behavior. The DVB uses a novel experimental design with controlled confounding between deep values (e.g., moral principles) and shallow features (e.g., superficial attributes). In the training phase, we expose LLMs to human preference data with deliberately correlated deep and shallow features -- for instance, where a user consistently prefers (non-maleficence, formal language) options over (justice, informal language) alternatives. The testing phase then breaks these correlations, presenting choices between (justice, formal language) and (non-maleficence, informal language) options. This design allows us to precisely measure a model's Deep Value Generalization Rate (DVGR) -- the probability of generalizing based on the underlying value rather than the shallow feature. Across 9 different models, the average DVGR is just 0.30. All models generalize deep values less than chance. Larger models have a (slightly) lower DVGR than smaller models. We are releasing our dataset, which was subject to three separate human validation experiments. DVB provides an interpretable measure of a core feature of alignment.
comment: NeurIPS 2025 (Spotlight)
REN: Anatomically-Informed Mixture-of-Experts for Interstitial Lung Disease Diagnosis
Mixture-of-Experts (MoE) architectures have significantly contributed to scalable machine learning by enabling specialized subnetworks to tackle complex tasks efficiently. However, traditional MoE systems lack domain-specific constraints essential for medical imaging, where anatomical structure and regional disease heterogeneity strongly influence pathological patterns. Here, we introduce \textit{Regional Expert Networks (REN)}, the first anatomically-informed MoE framework tailored specifically for medical image classification. REN leverages anatomical priors to train seven specialized experts, each dedicated to distinct lung lobes and bilateral lung combinations, enabling precise modeling of region-specific pathological variations. Multi-modal gating mechanisms dynamically integrate radiomics biomarkers and deep learning (DL) features (CNN, ViT, Mamba) to weight expert contributions optimally. Applied to interstitial lung disease (ILD) classification, REN achieves consistently superior performance: the radiomics-guided ensemble reached an average AUC of 0.8646 +- 0.0467, a +12.5\% improvement over the SwinUNETR baseline (AUC 0.7685, p=0.031). Region-specific experts further revealed that lower-lobe models achieved AUCs of 0.88-0.90, surpassing DL counterparts (CNN: 0.76-0.79) and aligning with known disease progression patterns. Through rigorous patient-level cross-validation, REN demonstrates strong generalizability and clinical interpretability, presenting a scalable, anatomically-guided approach readily extensible to other structured medical imaging applications. Code is available on our GitHub: https://github.com/NUBagciLab/MoE-REN.
comment: 13 pages, 4 figures, 4 tables
AgentOrchestra: Orchestrating Multi-Agent Intelligence with the Tool-Environment-Agent(TEA) Protocol
Recent advances in LLM-based agent systems have shown promise in tackling complex, long-horizon tasks. However, existing LLM-based agentprotocols (e.g., A2A and MCP) under-specify cross-entity lifecycle and context management, version tracking, and ad-hoc environment integration, which in turn encourages fixed, monolithic agent compositions and brittle glue code. To address these limitations, we introduce the Tool-Environment-Agent (TEA) protocol, a unified abstraction that models environments, agents, and tools as first-class resources with explicit lifecycles and versioned interfaces. TEA provides a principled foundation for end-to-end lifecycle and version management, and for associating each run with its context and outputs across components, improving traceability and reproducibility. Moreover, TEA enables continual self-evolution of agent-associated components through a closed feedback loop, producing improved versions while supporting version selection and rollback. Building on TEA, we present AgentOrchestra, a hierarchical multi-agent framework in which a central planner orchestrates specialized sub-agents for web navigation, data analysis, and file operations, and supports continual adaptation by dynamically instantiating, retrieving, and refining tools online during execution. We evaluate AgentOrchestra on three challenging benchmarks, where it consistently outperforms strong baselines and achieves 89.04% on GAIA, establishing state-of-the-art performance to the best of our knowledge. Overall, our results provide evidence that TEA and hierarchical orchestration improve scalability and generality in multi-agent systems.
Code Reasoning for Software Engineering Tasks: A Survey and A Call to Action
The rise of large language models (LLMs) has led to dramatic improvements across a wide range of natural language tasks. Their performance on certain tasks can be further enhanced by incorporating test-time reasoning techniques. These inference-time advances have been adopted into the code domain, enabling complex software engineering (SWE) tasks such as code generation, test generation and issue resolution. However, the impact of different reasoning techniques on code-centric SWE tasks has not been systematically explored. In this work, we survey code reasoning techniques that underpin these capabilities, with a focus on test-time compute and inference-time reasoning paradigms. We examine a variety of code-specific reasoning methods and progressively build up to SWE agents, which combine planning, tool use, and multi-step interaction. We also compare the impact of different techniques on coding tasks, highlighting their relative importance and outlining open challenges and future research directions. Our contributions are: (1) to the best of our knowledge, the first dedicated survey of code reasoning for SWE tasks, highlighting overarching reasoning strategies, hybrid methods, and agentic approaches; (2) a taxonomy of inference-time techniques used to drive code reasoning, accompanied by a curated set of under-explored benchmarks with high potential for SWE evaluation; (3) a comparative analysis of reasoning design patterns across commonly used models and benchmarks; and (4) a synthesis of gaps in current methods and evaluation practices, identifying under-explored areas and concrete opportunities for future research.
OM4OV: Leveraging Ontology Matching for Ontology Versioning
Due to the dynamic nature of the Semantic Web, version control is necessary to manage changes in widely used ontologies. Despite the long-standing recognition of ontology versioning (OV) as a crucial component of efficient ontology management, many approaches treat OV as similar to ontology matching (OM) and directly reuse OM systems for OV tasks. In this study, we systematically analyse similarities and differences between OM and OV and formalise the OM4OV pipeline to offer more advanced OV support. The pipeline is implemented and evaluated in the state-of-the-art OM system Agent-OM. The experimental results indicate that OM systems can be reused for OV tasks, but without necessary extensions, the current OM4OV pipeline can produce skewed measurements, poor performance in detecting update entities, and limited explainability of false mappings. To tackle these issues, we propose an optimisation method called the cross-reference (CR) mechanism, which builds on existing OM alignments to reduce the number of matching candidates and to improve overall OV performance.
comment: 17 pages, 8 figures, 2 tables
OpenSocInt: A Multi-modal Training Environment for Human-Aware Social Navigation
In this paper, we introduce OpenSocInt, an open-source software package providing a simulator for multi-modal social interactions and a modular architecture to train social agents. We described the software package and showcased its interest via an experimental protocol based on the task of social navigation. Our framework allows for exploring the use of different perceptual features, their encoding and fusion, as well as the use of different agents. The software is already publicly available under GPL at https://gitlab.inria.fr/robotlearn/OpenSocInt/.
FairMedQA: Benchmarking Bias in Large Language Models for Medical Question Answering
Large language models (LLMs) are approaching expert-level performance in medical question answering (QA), demonstrating strong potential to improve public healthcare. However, underlying biases related to sensitive attributes such as sex and race pose life-critical risks. The extent to which such sensitive attributes affect diagnosis remains an open question and requires comprehensive empirical investigation. Additionally, even the latest Counterfactual Patient Variations (CPV) benchmark can hardly distinguish the bias levels of different LLMs. To further explore these dynamics, we propose a new benchmark, FairMedQA, and benchmark 12 representative LLMs. FairMedQA contains 4,806 counterfactual question pairs constructed from 801 clinical vignettes. Our results reveal substantial accuracy disparity ranging from 3 to 19 percentage points across sensitive demographic groups. Notably, FairMedQA exposes biases that are at least 12 percentage points larger than those identified by the latest CPV benchmark, presenting superior benchmarking sensitivity. Our results underscore an urgent need for targeted debiasing techniques and more rigorous, identity-aware validation protocols before LLMs can be safely integrated into practical clinical decision-support systems.
Fed-SE: Federated Self-Evolution for Privacy-Constrained Multi-Environment LLM Agents
LLM agents are widely deployed in complex interactive tasks, yet privacy constraints often preclude centralized optimization and co-evolution across dynamic environments. Despite the demonstrated success of Federated Learning (FL) on static datasets, its effectiveness in open-ended, self-evolving agent systems remains largely unexplored. In such settings, the direct application of standard FL is particularly challenging, as heterogeneous tasks and sparse, trajectory-level reward signals give rise to severe gradient instability, which undermines the global optimization process. To bridge this gap, we propose Fed-SE, a Federated Self-Evolution framework for LLM agents that establishes a local evolution-global aggregation paradigm. Locally, agents employ parameter-efficient fine-tuning on filtered, high-return trajectories to achieve stable gradient updates. Globally, Fed-SE aggregates updates within a low-rank subspace, reducing communication cost across clients. Experiments across five heterogeneous environments demonstrate that Fed-SE improves average task success rates by 10\% over the state-of-the-art FedIT, validating its effectiveness in cross-environment knowledge transfer under privacy constraints.
Terrain Diffusion: A Diffusion-Based Successor to Perlin Noise in Infinite, Real-Time Terrain Generation
For decades, procedural worlds have been built on procedural noise functions such as Perlin noise, which are fast and infinite, yet fundamentally limited in realism and large-scale coherence. We introduce Terrain Diffusion, a generative framework that bridges the fidelity of diffusion models with the properties that made procedural noise indispensable: seamless infinite extent, seed-consistency, and constant-time random access. At its core is InfiniteDiffusion, a novel algorithm for infinite generation that reformulates standard diffusion sampling for unbounded domains. While noise functions remain near-instant, our framework outpaces orbital velocity by 9 times on a consumer GPU, enabling realistic terrain generation at interactive rates. We integrate a hierarchical stack of diffusion models to couple planetary context with local detail, a compact Laplacian encoding to stabilize outputs across Earth-scale dynamic ranges, and an open-source infinite-tensor framework for constant-memory manipulation of unbounded tensors. Together, these components position diffusion models as a practical, scalable foundation for the next generation of infinite virtual worlds.
comment: Project website: https://xandergos.github.io/terrain-diffusion/ Code: https://github.com/xandergos/terrain-diffusion/
MODE: Efficient Time Series Prediction with Mamba Enhanced by Low-Rank Neural ODEs
Time series prediction plays a pivotal role across diverse domains such as finance, healthcare, energy systems, and environmental modeling. However, existing approaches often struggle to balance efficiency, scalability, and accuracy, particularly when handling long-range dependencies and irregularly sampled data. To address these challenges, we propose MODE, a unified framework that integrates Low-Rank Neural Ordinary Differential Equations (Neural ODEs) with an Enhanced Mamba architecture. As illustrated in our framework, the input sequence is first transformed by a Linear Tokenization Layer and then processed through multiple Mamba Encoder blocks, each equipped with an Enhanced Mamba Layer that employs Causal Convolution, SiLU activation, and a Low-Rank Neural ODE enhancement to efficiently capture temporal dynamics. This low-rank formulation reduces computational overhead while maintaining expressive power. Furthermore, a segmented selective scanning mechanism, inspired by pseudo-ODE dynamics, adaptively focuses on salient subsequences to improve scalability and long-range sequence modeling. Extensive experiments on benchmark datasets demonstrate that MODE surpasses existing baselines in both predictive accuracy and computational efficiency. Overall, our contributions include: (1) a unified and efficient architecture for long-term time series modeling, (2) integration of Mamba's selective scanning with low-rank Neural ODEs for enhanced temporal representation, and (3) substantial improvements in efficiency and scalability enabled by low-rank approximation and dynamic selective scanning.
comment: 12 pages, 6 figures, and 3 tables. Updated description and explanations, and correct some typos
Flexible Realignment of Language Models
Realignment becomes necessary when a language model (LM) fails to meet expected performance. We propose a flexible realignment framework that supports quantitative control of alignment degree during training and inference. This framework incorporates Training-time Realignment (TrRa), which efficiently realigns the reference model by leveraging the controllable fusion of logits from both the reference and already aligned models. For example, TrRa reduces token usage by 54.63% on DeepSeek-R1-Distill-Qwen-1.5B without any performance degradation, outperforming DeepScaleR-1.5B's 33.86%. To complement TrRa during inference, we introduce a layer adapter that enables smooth Inference-time Realignment (InRa). This adapter is initialized to perform an identity transformation at the bottom layer and is inserted preceding the original layers. During inference, input embeddings are simultaneously processed by the adapter and the original layer, followed by the remaining layers, and then controllably interpolated at the logit level. We upgraded DeepSeek-R1-Distill-Qwen-7B from a slow-thinking model to one that supports both fast and slow thinking, allowing flexible alignment control even during inference. By encouraging deeper reasoning, it even surpassed its original performance.
Training Versatile Coding Agents in Synthetic Environments
Prior works on training software engineering agents have explored utilizing existing resources such as issues on GitHub repositories to construct software engineering tasks and corresponding test suites. These approaches face two key limitations: (1) their reliance on pre-existing GitHub repositories offers limited flexibility, and (2) their primary focus on issue resolution tasks restricts their applicability to the much wider variety of tasks a software engineer must handle. To overcome these challenges, we introduce SWE-Playground, a novel pipeline for generating environments and trajectories which supports the training of versatile coding agents. Unlike prior efforts, SWE-Playground synthetically generates projects and tasks from scratch with strong language models and agents, eliminating reliance on external data sources. This allows us to tackle a much wider variety of coding tasks, such as reproducing issues by generating unit tests and implementing libraries from scratch. We demonstrate the effectiveness of this approach on three distinct benchmarks, and results indicate that SWE-Playground produces trajectories with dense training signal, enabling agents to reach comparable performance with significantly fewer trajectories than previous works.
Lemmanaid: Neuro-Symbolic Lemma Conjecturing
Mathematicians and computer scientists are increasingly using proof assistants to formalize and check correctness of complex proofs. This is a non-trivial task in itself, however, with high demands on human expertise. Can we lower the bar by introducing automation for conjecturing helpful, interesting and novel lemmas? We present the first neuro-symbolic lemma conjecturing tool, LEMMANAID, designed to discover conjectures by drawing analogies between mathematical theories. LEMMANAID uses a fine-tuned LLM to generate lemma templates that describe the shape of a lemma, and symbolic methods to fill in the details. We compare LEMMANAID against the same LLM fine-tuned to generate complete lemma statements (a purely neural method), as well as a fully symbolic conjecturing method. LEMMANAID consistently outperforms both neural and symbolic methods on test sets from Isabelle's HOL library and from its Archive of Formal Proofs (AFP). Using DeepSeek-coder-6.7B as a backend, LEMMANAID discovers 50% (HOL) and 28% (AFP) of the gold standard reference lemmas, 8-13% more than the corresponding neural-only method. Ensembling two LEMMANAID versions with different prompting strategies further increases performance to 55% and 34% respectively. In a case study on the formalization of Octonions, LEMMANAID discovers 79% of the gold standard lemmas, compared to 62% for neural-only and 23% for the state of the art symbolic tool. Our result show that LEMMANAID is able to conjecture a significant number of interesting lemmas across a wide range of domains covering formalizations over complex concepts in both mathematics and computer science, going far beyond the basic concepts of standard benchmarks such as miniF2F, PutnamBench and ProofNet.
Integrating Symbolic RL Planning into a BDI-based Autonomous UAV Framework: System Integration and SIL Validation
Modern autonomous drone missions increasingly require software frameworks capable of seamlessly integrating structured symbolic planning with adaptive reinforcement learning (RL). Although traditional rule-based architectures offer robust structured reasoning for drone autonomy, their capabilities fall short in dynamically complex operational environments that require adaptive symbolic planning. Symbolic RL (SRL), using the Planning Domain Definition Language (PDDL), explicitly integrates domain-specific knowledge and operational constraints, significantly improving the reliability and safety of unmanned aerial vehicle (UAV) decision making. In this study, we propose the AMAD-SRL framework, an extended and refined version of the Autonomous Mission Agents for Drones (AMAD) cognitive multi-agent architecture, enhanced with symbolic reinforcement learning for dynamic mission planning and execution. We validated our framework in a Software-in-the-Loop (SIL) environment structured identically to an intended Hardware-In-the-Loop Simulation (HILS) platform, ensuring seamless transition to real hardware. Experimental results demonstrate stable integration and interoperability of modules, successful transitions between BDI-driven and symbolic RL-driven planning phases, and consistent mission performance. Specifically, we evaluate a target acquisition scenario in which the UAV plans a surveillance path followed by a dynamic reentry path to secure the target while avoiding threat zones. In this SIL evaluation, mission efficiency improved by approximately 75% over a coverage-based baseline, measured by travel distance reduction. This study establishes a robust foundation for handling complex UAV missions and discusses directions for further enhancement and validation.
comment: This submission has been withdrawn by the authors due to institutional and contractual requirements related to security and export-control review
RIPRAG: Hack a Black-box Retrieval-Augmented Generation Question-Answering System with Reinforcement Learning
Retrieval-Augmented Generation (RAG) systems based on Large Language Models (LLMs) have become a core technology for tasks such as question-answering (QA) and content generation. RAG poisoning is an attack method to induce LLMs to generate the attacker's expected text by injecting poisoned documents into the database of RAG systems. Existing research can be broadly divided into two classes: white-box methods and black-box methods. White-box methods utilize gradient information to optimize poisoned documents, and black-box methods use a pre-trained LLM to generate them. However, existing white-box methods require knowledge of the RAG system's internal composition and implementation details, whereas black-box methods are unable to utilize interactive information. In this work, we propose the RIPRAG attack framework, an end-to-end attack pipeline that treats the target RAG system as a black box and leverages our proposed Reinforcement Learning from Black-box Feedback (RLBF) method to optimize the generation model for poisoned documents. We designed two kinds of rewards: similarity reward and attack reward. Experimental results demonstrate that this method can effectively execute poisoning attacks against most complex RAG systems, achieving an attack success rate (ASR) improvement of up to 0.72 compared to baseline methods. This highlights prevalent deficiencies in current defensive methods and provides critical insights for LLM security research.
SAEMark: Steering Personalized Multilingual LLM Watermarks with Sparse Autoencoders NeurIPS 2025
Watermarking LLM-generated text is critical for content attribution and misinformation prevention. However, existing methods compromise text quality, require white-box model access and logit manipulation. These limitations exclude API-based models and multilingual scenarios. We propose SAEMark, a general framework for post-hoc multi-bit watermarking that embeds personalized messages solely via inference-time, feature-based rejection sampling without altering model logits or requiring training. Our approach operates on deterministic features extracted from generated text, selecting outputs whose feature statistics align with key-derived targets. This framework naturally generalizes across languages and domains while preserving text quality through sampling LLM outputs instead of modifying. We provide theoretical guarantees relating watermark success probability and compute budget that hold for any suitable feature extractor. Empirically, we demonstrate the framework's effectiveness using Sparse Autoencoders (SAEs), achieving superior detection accuracy and text quality. Experiments across 4 datasets show SAEMark's consistent performance, with 99.7% F1 on English and strong multi-bit detection accuracy. SAEMark establishes a new paradigm for scalable watermarking that works out-of-the-box with closed-source LLMs while enabling content attribution.
comment: 24 pages, 12 figures, NeurIPS 2025, code available: https://zhuohaoyu.github.io/SAEMark
BackdoorAgent: A Unified Framework for Backdoor Attacks on LLM-based Agents
Large language model (LLM) agents execute tasks through multi-step workflows that combine planning, memory, and tool use. While this design enables autonomy, it also expands the attack surface for backdoor threats. Backdoor triggers injected into specific stages of an agent workflow can persist through multiple intermediate states and adversely influence downstream outputs. However, existing studies remain fragmented and typically analyze individual attack vectors in isolation, leaving the cross-stage interaction and propagation of backdoor triggers poorly understood from an agent-centric perspective. To fill this gap, we propose \textbf{BackdoorAgent}, a modular and stage-aware framework that provides a unified, agent-centric view of backdoor threats in LLM agents. BackdoorAgent structures the attack surface into three functional stages of agentic workflows, including \textbf{planning attacks}, \textbf{memory attacks}, and \textbf{tool-use attacks}, and instruments agent execution to enable systematic analysis of trigger activation and propagation across different stages. Building on this framework, we construct a standardized benchmark spanning four representative agent applications: \textbf{Agent QA}, \textbf{Agent Code}, \textbf{Agent Web}, and \textbf{Agent Drive}, covering both language-only and multimodal settings. Our empirical analysis shows that \textit{triggers implanted at a single stage can persist across multiple steps and propagate through intermediate states.} For instance, when using a GPT-based backbone, we observe trigger persistence in 43.58\% of planning attacks, 77.97\% of memory attacks, and 60.28\% of tool-stage attacks, highlighting the vulnerabilities of the agentic workflow itself to backdoor threats. To facilitate reproducibility and future research, our code and benchmark are publicly available at GitHub.
Less is More: Improving LLM Reasoning with Minimal Test-Time Intervention
Recent progress in large language models (LLMs) has focused on test-time scaling to improve reasoning via increased inference computation, but often at the cost of efficiency. We revisit test-time behavior and uncover a simple yet underexplored phenomenon: reasoning uncertainty is highly localized-only a small subset of high-entropy tokens dominantly affects output correctness. Motivated by this, we propose Minimal Test-Time Intervention (MTI), a training-free framework that enhances reasoning accuracy and stability with minimal overhead. MTI includes: (i) Selective CFG intervention, applying classifier-free guidance only at uncertain positions; and (ii) Lightweight negative-prompt guidance, reusing the main model's KV cache to approximate unconditional decoding efficiently. MTI yields consistent gains across general, coding, and STEM tasks-e.g., +9.28% average improvement on six benchmarks for DeepSeek-R1-7B and +11.25% on AIME2024 using Ling-mini-2.0-while remaining highly efficient.
comment: Code: https://github.com/EnVision-Research/MTI
Correcting misinformation on social media with a large language model
Real-world information, often multimodal, can be misinformed or potentially misleading due to factual errors, outdated claims, missing context, misinterpretation, and more. Such "misinformation" is understudied, challenging to address, and harms many social domains -- particularly on social media, where it can spread rapidly. Manual correction that identifies and explains its (in)accuracies is widely accepted but difficult to scale. While large language models (LLMs) can generate human-like language that could accelerate misinformation correction, they struggle with outdated information, hallucinations, and limited multimodal capabilities. We propose MUSE, an LLM augmented with vision-language modeling and web retrieval over relevant, credible sources to generate responses that determine whether and which part(s) of the given content can be misinformed or potentially misleading, and to explain why with grounded references. We further define a comprehensive set of rubrics to measure response quality, ranging from the accuracy of identifications and factuality of explanations to the relevance and credibility of references. Results show that MUSE consistently produces high-quality outputs across diverse social media content (e.g., modalities, domains, political leanings), including content that has not previously been fact-checked online. Overall, MUSE outperforms GPT-4 by 37% and even high-quality responses from social media users by 29%. Our work provides a general methodological and evaluative framework for correcting misinformation at scale.
comment: 52 pages
Evaluation of the Automated Labeling Method for Taxonomic Nomenclature Through Prompt-Optimized Large Language Model
Scientific names of organisms consist of a genus name and a species epithet, with the latter often reflecting aspects such as morphology, ecology, distribution, and cultural background. Traditionally, researchers have manually labeled species names by carefully examining taxonomic descriptions, a process that demands substantial time and effort when dealing with large datasets. This study evaluates the feasibility of automatic species name labeling using large language model (LLM) by leveraging their text classification and semantic extraction capabilities. Using the spider name dataset compiled by Mammola et al., we compared LLM-based labeling results-enhanced through prompt engineering-with human annotations. The results indicate that LLM-based classification achieved high accuracy in Morphology, Geography, and People categories. However, classification accuracy was lower in Ecology & Behavior and Modern & Past Culture, revealing challenges in interpreting animal behavior and cultural contexts. Future research will focus on improving accuracy through optimized few-shot learning and retrieval-augmented generation techniques, while also expanding the applicability of LLM-based labeling to diverse biological taxa.
comment: This paper was accepted by IEEE IAICT
Role-Playing LLM-Based Multi-Agent Support Framework for Detecting and Addressing Family Communication Bias
Well-being in family settings involves subtle psychological dynamics that conventional metrics often overlook. In particular, unconscious parental expectations, termed ideal parent bias, can suppress children's emotional expression and autonomy. This suppression, referred to as suppressed emotion, often stems from well-meaning but value-driven communication, which is difficult to detect or address from outside the family. Focusing on these latent dynamics, this study explores Large Language Model (LLM)-based support for psychologically safe family communication. We constructed a Japanese parent-child dialogue corpus of 30 scenarios, each annotated with metadata on ideal parent bias and suppressed emotion. Based on this corpus, we developed a Role-Playing LLM-based multi-agent dialogue support framework that analyzes dialogue and generates feedback. Specialized agents detect suppressed emotion, describe implicit ideal parent bias in parental speech, and infer contextual attributes such as the child's age and background. A meta-agent compiles these outputs into a structured report, which is then passed to five selected expert agents. These agents collaboratively generate empathetic and actionable feedback through a structured four-step discussion process. Experiments show that the system can detect categories of suppressed emotion with moderate accuracy and produce feedback rated highly in empathy and practicality. Moreover, simulated follow-up dialogues incorporating this feedback exhibited signs of improved emotional expression and mutual understanding, suggesting the framework's potential in supporting positive transformation in family interactions.
Enhancing Rare Codes via Probability-Biased Directed Graph Attention for Long-Tail ICD Coding
Automated international classification of diseases (ICD) coding aims to assign multiple disease codes to clinical documents and plays a critical role in healthcare informatics. However, its performance is hindered by the extreme long-tail distribution of the ICD ontology, where a few common codes dominate while thousands of rare codes have very few examples. To address this issue, we propose a Probability-Biased Directed Graph Attention model (ProBias) that partitions codes into common and rare sets and allows information to flow only from common to rare codes. Edge weights are determined by conditional co-occurrence probabilities, which guide the attention mechanism to enrich rare-code representations with clinically related signals. To provide higher-quality semantic representations as model inputs, we further employ large language models to generate enriched textual descriptions for ICD codes, offering external clinical context that complements statistical co-occurrence signals. Applied to automated ICD coding, our approach significantly improves the representation and prediction of rare codes, achieving state-of-the-art performance on three benchmark datasets. In particular, we observe substantial gains in macro-averaged F1 score, a key metric for long-tail classification.
FlowSearch: Advancing deep research with dynamic structured knowledge flow
Deep research is an inherently challenging task that demands both breadth and depth of thinking. It involves navigating diverse knowledge spaces and reasoning over complex, multi-step dependencies, which presents substantial challenges for agentic systems. To address this, we propose FlowSearch, a multi-agent framework that actively constructs and evolves a dynamic structured knowledge flow to drive subtask execution and reasoning. FlowSearch is capable of strategically planning and expanding the knowledge flow to enable parallel exploration and hierarchical task decomposition, while also adjusting the knowledge flow in real time based on feedback from intermediate reasoning outcomes and insights. FlowSearch achieves competitive performance on both general and scientific benchmarks, including GAIA, HLE, GPQA and TRQA, demonstrating its effectiveness in multi-disciplinary research scenarios and its potential to advance scientific discovery. The code is available at https://github.com/InternScience/InternAgent.
Lifelong Learning of Large Language Model based Agents: A Roadmap
Lifelong learning, also known as continual or incremental learning, is a crucial component for advancing Artificial General Intelligence (AGI) by enabling systems to continuously adapt in dynamic environments. While large language models (LLMs) have demonstrated impressive capabilities in natural language processing, existing LLM agents are typically designed for static systems and lack the ability to adapt over time in response to new challenges. This survey is the first to systematically summarize the potential techniques for incorporating lifelong learning into LLM-based agents. We categorize the core components of these agents into three modules: the perception module for multimodal input integration, the memory module for storing and retrieving evolving knowledge, and the action module for grounded interactions with the dynamic environment. We highlight how these pillars collectively enable continuous adaptation, mitigate catastrophic forgetting, and improve long-term performance. This survey provides a roadmap for researchers and practitioners working to develop lifelong learning capabilities in LLM agents, offering insights into emerging trends, evaluation metrics, and application scenarios. Relevant literature and resources are available at \href{this url}{https://github.com/qianlima-lab/awesome-lifelong-llm-agent}.
comment: Accepted to IEEE TPAMI
Digital Wargames to Enhance Military Medical Evacuation Decision-Making
Medical evacuation is one of the United States Army's most storied and critical mission sets, responsible for efficiently and expediently evacuating the battlefield ill and injured. Medical evacuation planning involves designing a robust network of medical platforms and facilities capable of moving and treating large numbers of casualties. Until now, there has not been a medium to simulate these networks in a classroom setting and evaluate both offline planning and online decision-making performance. This work describes the Medical Evacuation Wargaming Initiative (MEWI), a three-dimensional multiplayer simulation developed in Unity that replicates battlefield constraints and uncertainties. MEWI accurately models patient interactions at casualty collection points, ambulance exchange points, medical treatment facilities, and evacuation platforms. Two operational scenarios are introduced: an amphibious island assault in the Pacific and a Eurasian conflict across a sprawling road and river network. These scenarios pit students against the clock to save as many casualties as possible while adhering to doctrinal lessons learned during didactic training. We visualize performance data collected from two iterations of the MEWI Pacific scenario executed in the United States Army's Medical Evacuation Doctrine Course. We consider post-wargame Likert survey data from student participants and external observer notes to identify key planning decision points, document medical evacuation lessons learned, and quantify general utility. Results indicate that MEWI participation substantially improves uptake of medical evacuation lessons learned and co-operative decision-making. MEWI is a substantial step forward in the field of high-fidelity training tools for medical education, and our study findings offer critical insights into improving medical evacuation education and operations across the joint force.
Crystal Generation using the Fully Differentiable Pipeline and Latent Space Optimization
We present a materials generation framework that couples a symmetry-conditioned variational autoencoder (CVAE) with a differentiable SO(3) power spectrum objective to steer candidates toward a specified local environment under the crystallographic constraints. In particular, we implement a fully differentiable pipeline to enable batch-wise optimization on both direct and latent crystallographic representations. Using the GPU acceleration, this implementation achieves about fivefold speed compared to our previous CPU workflow, while yielding comparable outcomes. In addition, we introduce the optimization strategy that alternatively performs optimization on the direct and latent crystal representations. This dual-level relaxation approach can effectively escape local minima defined by different objective gradients, thus increasing the success rate of generating complex structures satisfying the target local environments. This framework can be extended to systems consisting of multi-components and multi-environments, providing a scalable route to generate material structures with the target local environment.
KARMA: Leveraging Multi-Agent LLMs for Automated Knowledge Graph Enrichment
Maintaining comprehensive and up-to-date knowledge graphs (KGs) is critical for modern AI systems, but manual curation struggles to scale with the rapid growth of scientific literature. This paper presents KARMA, a novel framework employing multi-agent large language models (LLMs) to automate KG enrichment through structured analysis of unstructured text. Our approach employs nine collaborative agents, spanning entity discovery, relation extraction, schema alignment, and conflict resolution that iteratively parse documents, verify extracted knowledge, and integrate it into existing graph structures while adhering to domain-specific schema. Experiments on 1,200 PubMed articles from three different domains demonstrate the effectiveness of KARMA in knowledge graph enrichment, with the identification of up to 38,230 new entities while achieving 83.1\% LLM-verified correctness and reducing conflict edges by 18.6\% through multi-layer assessments.
comment: 24 pages, 3 figures, 2 tables
Empirical Analysis of Decoding Biases in Masked Diffusion Models
Masked diffusion models (MDMs), which leverage bidirectional attention and a denoising process, are narrowing the performance gap with autoregressive models (ARMs). However, their internal attention mechanisms remain under-explored. This paper investigates the attention behaviors in MDMs, revealing the phenomenon of Attention Floating. Unlike ARMs, where attention converges to a fixed sink, MDMs exhibit dynamic, dispersed attention anchors that shift across denoising steps and layers. Further analysis reveals its Shallow Structure-Aware, Deep Content-Focused attention mechanism: shallow layers utilize floating tokens to build a global structural framework, while deeper layers allocate more capability toward capturing semantic content. Empirically, this distinctive attention pattern provides a mechanistic explanation for the strong in-context learning capabilities of MDMs, allowing them to double the performance compared to ARMs in knowledge-intensive tasks. All codes are available at https://github.com/NEUIR/Uncode.
comment: 22 pages,17 figures
Machine Learning 88
Robust Bayesian Optimization via Tempered Posteriors
Bayesian optimization (BO) iteratively fits a Gaussian process (GP) surrogate to accumulated evaluations and selects new queries via an acquisition function such as expected improvement (EI). In practice, BO often concentrates evaluations near the current incumbent, causing the surrogate to become overconfident and to understate predictive uncertainty in the region guiding subsequent decisions. We develop a robust GP-based BO via tempered posterior updates, which downweight the likelihood by a power $α\in (0,1]$ to mitigate overconfidence under local misspecification. We establish cumulative regret bounds for tempered BO under a family of generalized improvement rules, including EI, and show that tempering yields strictly sharper worst-case regret guarantees than the standard posterior $(α=1)$, with the most favorable guarantees occurring near the classical EI choice. Motivated by our theoretic findings, we propose a prequential procedure for selecting $α$ online: it decreases $α$ when realized prediction errors exceed model-implied uncertainty and returns $α$ toward one as calibration improves. Empirical results demonstrate that tempering provides a practical yet theoretically grounded tool for stabilizing BO surrogates under localized sampling.
When Should We Introduce Safety Interventions During Pretraining?
Ensuring the safety of language models in high-stakes settings remains a pressing challenge, as aligned behaviors are often brittle and easily undone by adversarial pressure or downstream finetuning. Prior work has shown that interventions applied during pretraining, such as rephrasing harmful content, can substantially improve the safety of the resulting models. In this paper, we study the fundamental question: "When during pretraining should safety interventions be introduced?" We keep the underlying data fixed and vary only the choice of a safety curriculum: the timing of these interventions, i.e., after 0%, 20%, or 60% of the pretraining token budget. We find that introducing interventions earlier generally yields more robust models with no increase in overrefusal rates, with the clearest benefits appearing after downstream, benign finetuning. We also see clear benefits in the steerability of models towards safer generations. Finally, we observe that earlier interventions reshape internal representations: linear probes more cleanly separate safe vs harmful examples. Overall, these results argue for incorporating safety signals early in pretraining, producing models that are more robust to downstream finetuning and jailbreaking, and more reliable under both standard and safety-aware inference procedures.
XBTorch: A Unified Framework for Modeling and Co-Design of Crossbar-Based Deep Learning Accelerators
Emerging memory technologies have gained significant attention as a promising pathway to overcome the limitations of conventional computing architectures in deep learning applications. By enabling computation directly within memory, these technologies - built on nanoscale devices with tunable and nonvolatile conductance - offer the potential to drastically reduce energy consumption and latency compared to traditional von Neumann systems. This paper introduces XBTorch (short for CrossBarTorch), a novel simulation framework that integrates seamlessly with PyTorch and provides specialized tools for accurately and efficiently modeling crossbar-based systems based on emerging memory technologies. Through detailed comparisons and case studies involving hardware-aware training and inference, we demonstrate how XBTorch offers a unified interface for key research areas such as device-level modeling, cross-layer co-design, and inference-time fault tolerance. While exemplar studies utilize ferroelectric field-effect transistor (FeFET) models, the framework remains technology-agnostic - supporting other emerging memories such as resistive RAM (ReRAM), as well as enabling user-defined custom device models. The code is publicly available at: https://github.com/ADAM-Lab-GW/xbtorch
Robust Mean Estimation under Quantization
We consider the problem of mean estimation under quantization and adversarial corruption. We construct multivariate robust estimators that are optimal up to logarithmic factors in two different settings. The first is a one-bit setting, where each bit depends only on a single sample, and the second is a partial quantization setting, in which the estimator may use a small fraction of unquantized data.
Local EGOP for Continuous Index Learning
We introduce the setting of continuous index learning, in which a function of many variables varies only along a small number of directions at each point. For efficient estimation, it is beneficial for a learning algorithm to adapt, near each point $x$, to the subspace that captures the local variability of the function $f$. We pose this task as kernel adaptation along a manifold with noise, and introduce Local EGOP learning, a recursive algorithm that utilizes the Expected Gradient Outer Product (EGOP) quadratic form as both a metric and inverse-covariance of our target distribution. We prove that Local EGOP learning adapts to the regularity of the function of interest, showing that under a supervised noisy manifold hypothesis, intrinsic dimensional learning rates are achieved for arbitrarily high-dimensional noise. Empirically, we compare our algorithm to the feature learning capabilities of deep learning. Additionally, we demonstrate improved regression quality compared to two-layer neural networks in the continuous single-index setting.
Hallucinations Live in Variance
Benchmarks measure whether a model is correct. They do not measure whether a model is reliable. This distinction is largely academic for single-shot inference, but becomes critical for agentic AI systems, where a single rephrased prompt can trigger cascading failures in multi-step execution. Yet this form of instability is not captured by existing evaluations. Hallucinations live in variance: they arise when semantically equivalent prompts activate inconsistent internal pathways, producing divergent outputs. Consistent but incorrect outputs reflect bias or missing knowledge; confident guessing reflects calibration failure. Neither constitutes hallucination under this definition. When error is variance-dominated, reducing redundant pathways improves reliability without adding knowledge. We formalize this through Semantic Stability (SS), measured via Paraphrase Consistency (PC@k): generate k paraphrases, greedy decode each, compute mode agreement. SS is a diagnostic for variance-driven unreliability, not a method for improving correctness. We show that a dense Qwen3-0.6B agrees with itself only 23.8% of the time; at 32% sparsity, agreement jumps to 55.9%. A phase diagram reveals the sweet spot where variance reduction outpaces bias accumulation, and regimes where stability collapses onto wrong answers.
comment: 8 pages, 3 figures
Fine-Tuning vs. RAG for Multi-Hop Question Answering with Novel Knowledge
Multi-hop question answering is widely used to evaluate the reasoning capabilities of large language models (LLMs), as it requires integrating multiple pieces of supporting knowledge to arrive at a correct answer. While prior work has explored different mechanisms for providing knowledge to LLMs, such as finetuning and retrieval-augmented generation (RAG), their relative effectiveness for multi-hop question answering remains insufficiently understood, particularly when the required knowledge is temporally novel. In this paper, we systematically compare parametric and non-parametric knowledge injection methods for open-domain multi-hop question answering. We evaluate unsupervised fine-tuning (continual pretraining), supervised fine-tuning, and retrieval-augmented generation across three 7B-parameter open-source LLMs. Experiments are conducted on two benchmarks: QASC, a standard multi-hop science question answering dataset, and a newly constructed dataset of over 10,000 multi-hop questions derived from Wikipedia events in 2024, designed to test knowledge beyond the models' pretraining cutoff. Our results show that unsupervised fine-tuning provides only limited gains over base models, suggesting that continual pretraining alone is insufficient for improving multi-hop reasoning accuracy. In contrast, retrieval-augmented generation yields substantial and consistent improvements, particularly when answering questions that rely on temporally novel information. Supervised fine-tuning achieves the highest overall accuracy across models and datasets. These findings highlight fundamental differences in how knowledge injection mechanisms support multi-hop question answering and underscore the importance of retrieval-based methods when external or compositional knowledge is required.
Mid-Think: Training-Free Intermediate-Budget Reasoning via Token-Level Triggers
Hybrid reasoning language models are commonly controlled through high-level Think/No-think instructions to regulate reasoning behavior, yet we found that such mode switching is largely driven by a small set of trigger tokens rather than the instructions themselves. Through attention analysis and controlled prompting experiments, we show that a leading ``Okay'' token induces reasoning behavior, while the newline pattern following ``'' suppresses it. Based on this observation, we propose Mid-Think, a simple training-free prompting format that combines these triggers to achieve intermediate-budget reasoning, consistently outperforming fixed-token and prompt-based baselines in terms of the accuracy-length trade-off. Furthermore, applying Mid-Think to RL training after SFT reduces training time by approximately 15% while improving final performance of Qwen3-8B on AIME from 69.8% to 72.4% and on GPQA from 58.5% to 61.1%, demonstrating its effectiveness for both inference-time control and RL-based reasoning training.
Explainable Deep Radiogenomic Molecular Imaging for MGMT Methylation Prediction in Glioblastoma
Glioblastoma (GBM) is a highly aggressive primary brain tumor with limited therapeutic options and poor prognosis. The methylation status of the O6-methylguanine-DNA methyltransferase (MGMT) gene promoter is a critical molecular biomarker that influences patient response to temozolomide chemotherapy. Traditional methods for determining MGMT status rely on invasive biopsies and are limited by intratumoral heterogeneity and procedural risks. This study presents a radiogenomic molecular imaging analysis framework for the non-invasive prediction of MGMT promoter methylation using multi-parametric magnetic resonance imaging (mpMRI). Our approach integrates radiomics, deep learning, and explainable artificial intelligence (XAI) to analyze MRI-derived imaging phenotypes and correlate them with molecular labels. Radiomic features are extracted from FLAIR, T1-weighted, T1-contrast-enhanced, and T2-weighted MRI sequences, while a 3D convolutional neural network learns deep representations from the same modalities. These complementary features are fused using both early fusion and attention-based strategies and classified to predict MGMT methylation status. To enhance clinical interpretability, we apply XAI methods such as Grad-CAM and SHAP to visualize and explain model decisions. The proposed framework is trained on the RSNA-MICCAI Radiogenomic Classification dataset and externally validated on the BraTS 2021 dataset. This work advances the field of molecular imaging by demonstrating the potential of AI-driven radiogenomics for precision oncology, supporting non-invasive, accurate, and interpretable prediction of clinically actionable molecular biomarkers in GBM.
comment: 14 pages
Tight Analysis of Decentralized SGD: A Markov Chain Perspective
We propose a novel analysis of the Decentralized Stochastic Gradient Descent (DSGD) algorithm with constant step size, interpreting the iterates of the algorithm as a Markov chain. We show that DSGD converges to a stationary distribution, with its bias, to first order, decomposable into two components: one due to decentralization (growing with the graph's spectral gap and clients' heterogeneity) and one due to stochasticity. Remarkably, the variance of local parameters is, at the first-order, inversely proportional to the number of clients, regardless of the network topology and even when clients' iterates are not averaged at the end. As a consequence of our analysis, we obtain non-asymptotic convergence bounds for clients' local iterates, confirming that DSGD has linear speed-up in the number of clients, and that the network topology only impacts higher-order terms.
Conditional Normalizing Flows for Forward and Backward Joint State and Parameter Estimation
Traditional filtering algorithms for state estimation -- such as classical Kalman filtering, unscented Kalman filtering, and particle filters - show performance degradation when applied to nonlinear systems whose uncertainty follows arbitrary non-Gaussian, and potentially multi-modal distributions. This study reviews recent approaches to state estimation via nonlinear filtering based on conditional normalizing flows, where the conditional embedding is generated by standard MLP architectures, transformers or selective state-space models (like Mamba-SSM). In addition, we test the effectiveness of an optimal-transport-inspired kinetic loss term in mitigating overparameterization in flows consisting of a large collection of transformations. We investigate the performance of these approaches on applications relevant to autonomous driving and patient population dynamics, paying special attention to how they handle time inversion and chained predictions. Finally, we assess the performance of various conditioning strategies for an application to real-world COVID-19 joint SIR system forecasting and parameter estimation.
Unity Forests: Improving Interaction Modelling and Interpretability in Random Forests
Random forests (RFs) are widely used for prediction and variable importance analysis and are often believed to capture any types of interactions via recursive splitting. However, since the splits are chosen locally, interactions are only reliably captured when at least one involved covariate has a marginal effect. We introduce unity forests (UFOs), an RF variant designed to better exploit interactions involving covariates without marginal effects. In UFOs, the first few splits of each tree are optimized jointly across a random covariate subset to form a "tree root" capturing such interactions; the remainder is grown conventionally. We further propose the unity variable importance measure (VIM), which is based on out-of-bag split criterion values from the tree roots. Here, only a small fraction of tree root splits with the highest in-bag criterion values are considered per covariate, reflecting that covariates with purely interaction-based effects are discriminative only if a split in an interacting covariate occurred earlier in the tree. Finally, we introduce covariate-representative tree roots (CRTRs), which select representative tree roots per covariate and provide interpretable insight into the conditions - marginal or interactive - under which each covariate has its strongest effects. In a simulation study, the unity VIM reliably identified interacting covariates without marginal effects, unlike conventional RF-based VIMs. In a large-scale real-data comparison, UFOs achieved higher discrimination and predictive accuracy than standard RFs, with comparable calibration. The CRTRs reproduced the covariates' true effect types reliably in simulated data and provided interesting insights in a real data analysis.
comment: 33 pages, 12 figures
Match Made with Matrix Completion: Efficient Learning under Matching Interference
Matching markets face increasing needs to learn the matching qualities between demand and supply for effective design of matching policies. In practice, the matching rewards are high-dimensional due to the growing diversity of participants. We leverage a natural low-rank matrix structure of the matching rewards in these two-sided markets, and propose to utilize matrix completion to accelerate reward learning with limited offline data. A unique property for matrix completion in this setting is that the entries of the reward matrix are observed with matching interference -- i.e., the entries are not observed independently but dependently due to matching or budget constraints. Such matching dependence renders unique technical challenges, such as sub-optimality or inapplicability of the existing analytical tools in the matrix completion literature, since they typically rely on sample independence. In this paper, we first show that standard nuclear norm regularization remains theoretically effective under matching interference. We provide a near-optimal Frobenius norm guarantee in this setting, coupled with a new analytical technique. Next, to guide certain matching decisions, we develop a novel ``double-enhanced'' estimator, based off the nuclear norm estimator, with a near-optimal entry-wise guarantee. Our double-enhancement procedure can apply to broader sampling schemes even with dependence, which may be of independent interest. Additionally, we extend our approach to online learning settings with matching constraints such as optimal matching and stable matching, and present improved regret bounds in matrix dimensions. Finally, we demonstrate the practical value of our methods using both synthetic data and real data of labor markets.
Generalization Bounds for Transformer Channel Decoders
Transformer channel decoders, such as the Error Correction Code Transformer (ECCT), have shown strong empirical performance in channel decoding, yet their generalization behavior remains theoretically unclear. This paper studies the generalization performance of ECCT from a learning-theoretic perspective. By establishing a connection between multiplicative noise estimation errors and bit-error-rate (BER), we derive an upper bound on the generalization gap via bit-wise Rademacher complexity. The resulting bound characterizes the dependence on code length, model parameters, and training set size, and applies to both single-layer and multi-layer ECCTs. We further show that parity-check-based masked attention induces sparsity that reduces the covering number, leading to a tighter generalization bound. To the best of our knowledge, this work provides the first theoretical generalization guarantees for this class of decoders.
comment: 18 pages, 3 figures
A Robust Certified Machine Unlearning Method Under Distribution Shift
The Newton method has been widely adopted to achieve certified unlearning. A critical assumption in existing approaches is that the data requested for unlearning are selected i.i.d.(independent and identically distributed). However,the problem of certified unlearning under non-i.i.d. deletions remains largely unexplored. In practice, unlearning requests are inherently biased, leading to non-i.i.d. deletions and causing distribution shifts between the original and retained datasets. In this paper, we show that certified unlearning with the Newton method becomes inefficient and ineffective under non-i.i.d. unlearning sets. We then propose a better certified unlearning approach by performing a distribution-aware certified unlearning framework based on iterative Newton updates constrained by a trust region. Our method provides a closer approximation to the retrained model and yields a tighter pre-run bound on the gradient residual, thereby ensuring efficient (epsilon, delta)-certified unlearning. To demonstrate its practical effectiveness under distribution shift, we also conduct extensive experiments across multiple evaluation metrics, providing a comprehensive assessment of our approach.
The Impact of Anisotropic Covariance Structure on the Training Dynamics and Generalization Error of Linear Networks
The success of deep neural networks largely depends on the statistical structure of the training data. While learning dynamics and generalization on isotropic data are well-established, the impact of pronounced anisotropy on these crucial aspects is not yet fully understood. We examine the impact of data anisotropy, represented by a spiked covariance structure, a canonical yet tractable model, on the learning dynamics and generalization error of a two-layer linear network in a linear regression setting. Our analysis reveals that the learning dynamics proceed in two distinct phases, governed initially by the input-output correlation and subsequently by other principal directions of the data structure. Furthermore, we derive an analytical expression for the generalization error, quantifying how the alignment of the spike structure of the data with the learning task improves performance. Our findings offer deep theoretical insights into how data anisotropy shapes the learning trajectory and final performance, providing a foundation for understanding complex interactions in more advanced network architectures.
comment: 18 pages
HAS-VQ: Hessian-Adaptive Sparse Vector Quantization for High-Fidelity LLM Compression
Post-training quantization is essential for deploying Large Language Models (LLMs) on resource-constrained devices. However, standard integer quantization (e.g., INT4) fundamentally degrades performance by imposing a uniform grid on the heavy-tailed distribution of weight parameters, particularly in smaller-scale models (e.g., <2B parameters). We introduce HAS-VQ (Hessian-Adaptive Sparse Vector Quantization), a compression framework that strictly decouples high-sensitivity outliers from the bulk weight distribution using second-order sensitivity analysis. HAS-VQ employs a Hessian-Masked Decoupling strategy to isolate sensitive parameters, followed by robust Vector Quantization (VQ) of the remaining dense body. Crucially, we introduce a residual sparse feedback mechanism that corrects quantization errors in the most sensitive dimensions, ensuring exact reconstruction of outliers. We evaluate HAS-VQ on SmolLM2-1.7B, demonstrating two distinct regimes of superiority: (1) Pareto Dominance over Integer Baselines: At 4.23 effective bits-per-parameter (BPP), we achieve a perplexity of 14.23, significantly outperforming the standard INT4 baseline (20.03 PPL at 4.71 BPP). (2) High-Fidelity Compression: Relative to the FP16 baseline, HAS-VQ achieves a 2.3x reduction in model size (7.03 BPP) while maintaining statistically indistinguishable perplexity (10.12 vs. 10.04), effectively offering a lossless compression alternative for bandwidth-constrained environments. The code is available at https://github.com/VladimerKhasia/HASVQ
X-Coder: Advancing Competitive Programming with Fully Synthetic Tasks, Solutions, and Tests
Competitive programming presents great challenges for Code LLMs due to its intensive reasoning demands and high logical complexity. However, current Code LLMs still rely heavily on real-world data, which limits their scalability. In this paper, we explore a fully synthetic approach: training Code LLMs with entirely generated tasks, solutions, and test cases, to empower code reasoning models without relying on real-world data. To support this, we leverage feature-based synthesis to propose a novel data synthesis pipeline called SynthSmith. SynthSmith shows strong potential in producing diverse and challenging tasks, along with verified solutions and tests, supporting both supervised fine-tuning and reinforcement learning. Based on the proposed synthetic SFT and RL datasets, we introduce the X-Coder model series, which achieves a notable pass rate of 62.9 avg@8 on LiveCodeBench v5 and 55.8 on v6, outperforming DeepCoder-14B-Preview and AReal-boba2-14B despite having only 7B parameters. In-depth analysis reveals that scaling laws hold on our synthetic dataset, and we explore which dimensions are more effective to scale. We further provide insights into code-centric reinforcement learning and highlight the key factors that shape performance through detailed ablations and analysis. Our findings demonstrate that scaling high-quality synthetic data and adopting staged training can greatly advance code reasoning, while mitigating reliance on real-world coding data.
comment: Project: https://github.com/JieWu02/X-Coder
Towards Operational Streamflow Forecasting in the Limpopo River Basin using Long Short-Term Memory Networks
Robust hydrological simulation is key for sustainable development, water management strategies, and climate change adaptation. In recent years, deep learning methods have been demonstrated to outperform mechanistic models at the task of hydrological discharge simulation. Adoption of these methods has been catalysed by the proliferation of large sample hydrology datasets, consisting of the observed discharge and meteorological drivers, along with geological and topographical catchment descriptors. Deep learning methods infer rainfall-runoff characteristics that have been shown to generalise across catchments, benefitting from the data diversity in large datasets. Despite this, application to catchments in Africa has been limited. The lack of adoption of deep learning methodologies is primarily due to sparsity or lack of the spatiotemporal observational data required to enable downstream model training. We therefore investigate the application of deep learning models, including LSTMs, for hydrological discharge simulation in the transboundary Limpopo River basin, emphasising application to data scarce regions. We conduct a number of computational experiments primarily focused on assessing the impact of varying the LSTM model input data on performance. Results confirm that data constraints remain the largest obstacle to deep learning applications across African river basins. We further outline the impact of human influence on data-driven modelling which is a commonly overlooked aspect of data-driven large-sample hydrology approaches and investigate solutions for model adaptation under smaller datasets. Additionally, we include recommendations for future efforts towards seasonal hydrological discharge prediction and direct comparison or inclusion of SWAT model outputs, as well as architectural improvements.
comment: 14 pages, 6 figures, 2 tables
Forgetting Similar Samples: Can Machine Unlearning Do it Better?
Machine unlearning, a process enabling pre-trained models to remove the influence of specific training samples, has attracted significant attention in recent years. Although extensive research has focused on developing efficient machine unlearning strategies, we argue that these methods mainly aim at removing samples rather than removing samples' influence on the model, thus overlooking the fundamental definition of machine unlearning. In this paper, we first conduct a comprehensive study to evaluate the effectiveness of existing unlearning schemes when the training dataset includes many samples similar to those targeted for unlearning. Specifically, we evaluate: Do existing unlearning methods truly adhere to the original definition of machine unlearning and effectively eliminate all influence of target samples when similar samples are present in the training dataset? Our extensive experiments, conducted on four carefully constructed datasets with thorough analysis, reveal a notable gap between the expected and actual performance of most existing unlearning methods for image and language models, even for the retraining-from-scratch baseline. Additionally, we also explore potential solutions to enhance current unlearning approaches.
mind_call: A Dataset for Mental Health Function Calling with Large Language Models
Large Language Model (LLM)-based systems increasingly rely on function calling to enable structured and controllable interaction with external data sources, yet existing datasets do not address mental health-oriented access to wearable sensor data. This paper presents a synthetic function-calling dataset designed for mental health assistance grounded in wearable health signals such as sleep, physical activity, cardiovascular measures, stress indicators, and metabolic data. The dataset maps diverse natural language queries to standardized API calls derived from a widely adopted health data schema. Each sample includes a user query, a query category, an explicit reasoning step, a normalized temporal parameter, and a target function. The dataset covers explicit, implicit, behavioral, symptom-based, and metaphorical expressions, which reflect realistic mental health-related user interactions. This resource supports research on intent grounding, temporal reasoning, and reliable function invocation in LLM-based mental health agents and is publicly released to promote reproducibility and future work.
Active Learning Strategies for Efficient Machine-Learned Interatomic Potentials Across Diverse Material Systems
Efficient discovery of new materials demands strategies to reduce the number of costly first-principles calculations required to train predictive machine learning models. We develop and validate an active learning framework that iteratively selects informative training structures for machine-learned interatomic potentials (MLIPs) from large, heterogeneous materials databases, specifically the Materials Project and OQMD. Our framework integrates compositional and property-based descriptors with a neural network ensemble model, enabling real-time uncertainty quantification via Query-by-Committee. We systematically compare four selection strategies: random sampling (baseline), uncertainty-based sampling, diversity-based sampling (k-means clustering with farthest-point refinement), and a hybrid approach balancing both objectives. Experiments across four representative material systems (elemental carbon, silicon, iron, and a titanium-oxide compound) with 5 random seeds per configuration demonstrate that diversity sampling consistently achieves competitive or superior performance, with particularly strong advantages on complex systems like titanium-oxide (10.9% improvement, p=0.008). Our results show that intelligent data selection strategies can achieve target accuracy with 5-13% fewer labeled samples compared to random baselines. The entire pipeline executes on Google Colab in under 4 hours per system using less than 8 GB of RAM, thereby democratizing MLIP development for researchers globally with limited computational resources. Our open-source code and detailed experimental configurations are available on GitHub. This multi-system evaluation establishes practical guidelines for data-efficient MLIP training and highlights promising future directions including integration with symmetry-aware neural network architectures.
comment: 16 pages, 3 figures, 2 tables
Tractable Multinomial Logit Contextual Bandits with Non-Linear Utilities NeurIPS 2025
We study the multinomial logit (MNL) contextual bandit problem for sequential assortment selection. Although most existing research assumes utility functions to be linear in item features, this linearity assumption restricts the modeling of intricate interactions between items and user preferences. A recent work (Zhang & Luo, 2024) has investigated general utility function classes, yet its method faces fundamental trade-offs between computational tractability and statistical efficiency. To address this limitation, we propose a computationally efficient algorithm for MNL contextual bandits leveraging the upper confidence bound principle, specifically designed for non-linear parametric utility functions, including those modeled by neural networks. Under a realizability assumption and a mild geometric condition on the utility function class, our algorithm achieves a regret bound of $\tilde{O}(\sqrt{T})$, where $T$ denotes the total number of rounds. Our result establishes that sharp $\tilde{O}(\sqrt{T})$-regret is attainable even with neural network-based utilities, without relying on strong assumptions such as neural tangent kernel approximations. To the best of our knowledge, our proposed method is the first computationally tractable algorithm for MNL contextual bandits with non-linear utilities that provably attains $\tilde{O}(\sqrt{T})$ regret. Comprehensive numerical experiments validate the effectiveness of our approach, showing robust performance not only in realizable settings but also in scenarios with model misspecification.
comment: Accepted at NeurIPS 2025
Distributional Clarity: The Hidden Driver of RL-Friendliness in Large Language Models
Language model families exhibit striking disparity in their capacity to benefit from reinforcement learning: under identical training, models like Qwen achieve substantial gains, while others like Llama yield limited improvements. Complementing data-centric approaches, we reveal that this disparity reflects a hidden structural property: \textbf{distributional clarity} in probability space. Through a three-stage analysis-from phenomenon to mechanism to interpretation-we uncover that RL-friendly models exhibit intra-class compactness and inter-class separation in their probability assignments to correct vs. incorrect responses. We quantify this clarity using the \textbf{Silhouette Coefficient} ($S$) and demonstrate that (1) high $S$ correlates strongly with RL performance; (2) low $S$ is associated with severe logic errors and reasoning instability. To confirm this property, we introduce a Silhouette-Aware Reweighting strategy that prioritizes low-$S$ samples during training. Experiments across six mathematical benchmarks show consistent improvements across all model families, with gains up to 5.9 points on AIME24. Our work establishes distributional clarity as a fundamental, trainable property underlying RL-Friendliness.
Paraphrasing Adversarial Attack on LLM-as-a-Reviewer
The use of large language models (LLMs) in peer review systems has attracted growing attention, making it essential to examine their potential vulnerabilities. Prior attacks rely on prompt injection, which alters manuscript content and conflates injection susceptibility with evaluation robustness. We propose the Paraphrasing Adversarial Attack (PAA), a black-box optimization method that searches for paraphrased sequences yielding higher review scores while preserving semantic equivalence and linguistic naturalness. PAA leverages in-context learning, using previous paraphrases and their scores to guide candidate generation. Experiments across five ML and NLP conferences with three LLM reviewers and five attacking models show that PAA consistently increases review scores without changing the paper's claims. Human evaluation confirms that generated paraphrases maintain meaning and naturalness. We also find that attacked papers exhibit increased perplexity in reviews, offering a potential detection signal, and that paraphrasing submissions can partially mitigate attacks.
Applying Embedding-Based Retrieval to Airbnb Search
The goal of Airbnb search is to match guests with the ideal accommodation that fits their travel needs. This is a challenging problem, as popular search locations can have around a hundred thousand available homes, and guests themselves have a wide variety of preferences. Furthermore, the launch of new product features, such as \textit{flexible date search,} significantly increased the number of eligible homes per search query. As such, there is a need for a sophisticated retrieval system which can provide high-quality candidates with low latency in a way that integrates with the overall ranking stack. This paper details our journey to build an efficient and high-quality retrieval system for Airbnb search. We describe the key unique challenges we encountered when implementing an Embedding-Based Retrieval (EBR) system for a two sided marketplace like Airbnb -- such as the dynamic nature of the inventory, a lengthy user funnel with multiple stages, and a variety of product surfaces. We cover unique insights when modeling the retrieval problem, how to build robust evaluation systems, and design choices for online serving. The EBR system was launched to production and powers several use-cases such as regular search, flexible date and promotional emails for marketing campaigns. The system demonstrated statistically-significant improvements in key metrics, such as booking conversion, via A/B testing.
comment: 14 pages, 9 figures
DaQ-MSA: Denoising and Qualifying Diffusion Augmentations for Multimodal Sentiment Analysis
Multimodal large language models (MLLMs) have demonstrated strong performance on vision-language tasks, yet their effectiveness on multimodal sentiment analysis remains constrained by the scarcity of high-quality training data, which limits accurate multimodal understanding and generalization. To alleviate this bottleneck, we leverage diffusion models to perform semantics-preserving augmentation on the video and audio modalities, expanding the multimodal training distribution. However, increasing data quantity alone is insufficient, as diffusion-generated samples exhibit substantial quality variation and noisy augmentations may degrade performance. We therefore propose DaQ-MSA (Denoising and Qualifying Diffusion Augmentations for Multimodal Sentiment Analysis), which introduces a quality scoring module to evaluate the reliability of augmented samples and assign adaptive training weights. By down-weighting low-quality samples and emphasizing high-fidelity ones, DaQ-MSA enables more stable learning. By integrating the generative capability of diffusion models with the semantic understanding of MLLMs, our approach provides a robust and generalizable automated augmentation strategy for training MLLMs without any human annotation or additional supervision.
comment: 11 pages, 4 figures
U-MASK: User-adaptive Spatio-Temporal Masking for Personalized Mobile AI Applications
Personalized mobile artificial intelligence applications are widely deployed, yet they are expected to infer user behavior from sparse and irregular histories under a continuously evolving spatio-temporal context. This setting induces a fundamental tension among three requirements, i.e., immediacy to adapt to recent behavior, stability to resist transient noise, and generalization to support long-horizon prediction and cold-start users. Most existing approaches satisfy at most two of these requirements, resulting in an inherent impossibility triangle in data-scarce, non-stationary personalization. To address this challenge, we model mobile behavior as a partially observed spatio-temporal tensor and unify short-term adaptation, long-horizon forecasting, and cold-start recommendation as a conditional completion problem, where a user- and task-specific mask specifies which coordinates are treated as evidence. We propose U-MASK, a user-adaptive spatio-temporal masking method that allocates evidence budgets based on user reliability and task sensitivity. To enable mask generation under sparse observations, U-MASK learns a compact, task-agnostic user representation from app and location histories via U-SCOPE, which serves as the sole semantic conditioning signal. A shared diffusion transformer then performs mask-guided generative completion while preserving observed evidence, so personalization and task differentiation are governed entirely by the mask and the user representation. Experiments on real-world mobile datasets demonstrate consistent improvements over state-of-the-art methods across short-term prediction, long-horizon forecasting, and cold-start settings, with the largest gains under severe data sparsity. The code and dataset will be available at https://github.com/NICE-HKU/U-MASK.
comment: 18 pages, 9 figures
qAttCNN - Self Attention Mechanism for Video QoE Prediction in Encrypted Traffic
The rapid growth of multimedia consumption, driven by major advances in mobile devices since the mid-2000s, has led to widespread use of video conferencing applications (VCAs) such as Zoom and Google Meet, as well as instant messaging applications (IMAs) like WhatsApp and Telegram, which increasingly support video conferencing as a core feature. Many of these systems rely on the Web Real-Time Communication (WebRTC) protocol, enabling direct peer-to-peer media streaming without requiring a third-party server to relay data, reducing the latency and facilitating a real-time communication. Despite WebRTC's potential, adverse network conditions can degrade streaming quality and consequently reduce users' Quality of Experience (QoE). Maintaining high QoE therefore requires continuous monitoring and timely intervention when QoE begins to deteriorate. While content providers can often estimate QoE by directly comparing transmitted and received media, this task is significantly more challenging for internet service providers (ISPs). End-to-end encryption, commonly used by modern VCAs and IMAs, prevent ISPs from accessing the original media stream, leaving only Quality of Service (QoS) and routing information available. To address this limitation, we propose the QoE Attention Convolutional Neural Network (qAttCNN), a model that leverages packet size parameter of the traffic to infer two no-reference QoE metrics viz. BRISQUE and frames per second (FPS). We evaluate qAttCNN on a custom dataset collected from WhatsApp video calls and compare it against existing QoE models. Using mean absolute error percentage (MAEP), our approach achieves 2.14% error for BRISQUE and 7.39% for FPS prediction.
Deep Learning Based Channel Extrapolation for Dual-Band Massive MIMO Systems
Future wireless communication systems will increasingly rely on the integration of millimeter wave (mmWave) and sub-6 GHz bands to meet heterogeneous demands on high-speed data transmission and extensive coverage. To fully exploit the benefits of mmWave bands in massive multiple-input multiple-output (MIMO) systems, highly accurate channel state information (CSI) is required. However, directly estimating the mmWave channel demands substantial pilot overhead due to the large CSI dimension and low signal-to-noise ratio (SNR) led by severe path loss and blockage attenuation. In this paper, we propose an efficient \textbf{M}ulti-\textbf{D}omain \textbf{F}usion \textbf{C}hannel \textbf{E}xtrapolator (MDFCE) to extrapolate sub-6 GHz band CSI to mmWave band CSI, so as to reduce the pilot overhead for mmWave CSI acquisition in dual band massive MIMO systems. Unlike traditional channel extrapolation methods based on mathematical modeling, the proposed MDFCE combines the mixture-of-experts framework and the multi-head self-attention mechanism to fuse multi-domain features of sub-6 GHz CSI, aiming to characterize the mapping from sub-6 GHz CSI to mmWave CSI effectively and efficiently. The simulation results demonstrate that MDFCE can achieve superior performance with less training pilots compared with existing methods across various antenna array scales and signal-to-noise ratio levels while showing a much higher computational efficiency.
MoE-DisCo:Low Economy Cost Training Mixture-of-Experts Models
Training large-scale Mixture-of-Experts (MoE) models typically requires high-memory, high-bandwidth GPUs (e.g., A100), and their high cost has become a major barrier to large-model training. In contrast, affordable hardware is low-cost but constrained by memory capacity and bandwidth, making it unsuitable for direct LLM training. To address this, we propose MoE-DisCo (Mixture-of-Experts with Disentangled Clustering and Coordination), a staged training framework. MoE-DisCo decomposes the MoE model into multiple dense submodels, each consisting of a shared backbone and a single expert, and partitions the training data into subsets using unsupervised clustering. Each submodel is trained independently and in parallel on its assigned data subset using low-cost devices, without any inter-device communication. Subsequently, all experts are integrated into a complete MoE model and fine-tuned globally for a short period on high-memory, high-bandwidth GPUs. Experiments show that our method matches or even surpasses full-parameter training in performance across multiple downstream tasks, loss function, and perplexity (PPL), while reducing training cost by 47.6 percent to 69.5 percent on Qwen1.5-MoE-2.7B and Llama-MoE-3.5B across different datasets.
†DAGGER: Distractor-Aware Graph Generation for Executable Reasoning in Math Problems
Chain-of-Thought (CoT) prompting is widely adopted for mathematical problem solving, including in low-resource languages, yet its behavior under irrelevant context remains underexplored. To systematically study this challenge, we introduce DISTRACTMATH-BN, a Bangla benchmark that augments MGSM and MSVAMP with semantically coherent but computationally irrelevant information. Evaluating seven models ranging from 3B to 12B parameters, we observe substantial performance degradation under distractors: standard models drop by up to 41 points, while reasoning-specialized models decline by 14 to 20 points despite consuming five times more tokens. We propose †DAGGER, which reformulates mathematical problem solving as executable computational graph generation with explicit modeling of distractor nodes. Fine-tuning Gemma-3 models using supervised fine-tuning followed by Group Relative Policy Optimization achieves comparable weighted accuracy on augmented benchmarks while using 89 percent fewer tokens than reasoning models. Importantly, this robustness emerges without explicit training on distractor-augmented examples. Our results suggest that enforcing structured intermediate representations improves robustness and inference efficiency in mathematical reasoning compared to free-form approaches, particularly in noisy, low-resource settings.
Variational decomposition autoencoding improves disentanglement of latent representations
Understanding the structure of complex, nonstationary, high-dimensional time-evolving signals is a central challenge in scientific data analysis. In many domains, such as speech and biomedical signal processing, the ability to learn disentangled and interpretable representations is critical for uncovering latent generative mechanisms. Traditional approaches to unsupervised representation learning, including variational autoencoders (VAEs), often struggle to capture the temporal and spectral diversity inherent in such data. Here we introduce variational decomposition autoencoding (VDA), a framework that extends VAEs by incorporating a strong structural bias toward signal decomposition. VDA is instantiated through variational decomposition autoencoders (DecVAEs), i.e., encoder-only neural networks that combine a signal decomposition model, a contrastive self-supervised task, and variational prior approximation to learn multiple latent subspaces aligned with time-frequency characteristics. We demonstrate the effectiveness of DecVAEs on simulated data and three publicly available scientific datasets, spanning speech recognition, dysarthria severity evaluation, and emotional speech classification. Our results demonstrate that DecVAEs surpass state-of-the-art VAE-based methods in terms of disentanglement quality, generalization across tasks, and the interpretability of latent encodings. These findings suggest that decomposition-aware architectures can serve as robust tools for extracting structured representations from dynamic signals, with potential applications in clinical diagnostics, human-computer interaction, and adaptive neurotechnologies.
comment: Supplementary information file at: https://drive.google.com/drive/folders/1sZl2AcCtRK-1oav7XZSaxlu0Cq0-3MMs?usp=sharing
Constrained Density Estimation via Optimal Transport
A novel framework for density estimation under expectation constraints is proposed. The framework minimizes the Wasserstein distance between the estimated density and a prior, subject to the constraints that the expected value of a set of functions adopts or exceeds given values. The framework is generalized to include regularization inequalities to mitigate the artifacts in the target measure. An annealing-like algorithm is developed to address non-smooth constraints, with its effectiveness demonstrated through both synthetic and proof-of-concept real world examples in finance.
Analyzing the effect of prediction accuracy on the distributionally-robust competitive ratio
The field of algorithms with predictions aims to improve algorithm performance by integrating machine learning predictions into algorithm design. A central question in this area is how predictions can improve performance, and a key aspect of this analysis is the role of prediction accuracy. In this context, prediction accuracy is defined as a guaranteed probability that an instance drawn from the distribution belongs to the predicted set. As a performance measure that incorporates prediction accuracy, we focus on the distributionally-robust competitive ratio (DRCR), introduced by Sun et al.~(ICML 2024). The DRCR is defined as the expected ratio between the algorithm's cost and the optimal cost, where the expectation is taken over the worst-case instance distribution that satisfies the given prediction and accuracy requirement. A known structural property is that, for any fixed algorithm, the DRCR decreases linearly as prediction accuracy increases. Building on this result, we establish that the optimal DRCR value (i.e., the infimum over all algorithms) is a monotone and concave function of prediction accuracy. We further generalize the DRCR framework to a multiple-prediction setting and show that monotonicity and concavity are preserved in this setting. Finally, we apply our results to the ski rental problem, a benchmark problem in online optimization, to identify the conditions on prediction accuracies required for the optimal DRCR to attain a target value. Moreover, we provide a method for computing the critical accuracy, defined as the minimum accuracy required for the optimal DRCR to strictly improve upon the performance attainable without any accuracy guarantee.
WFR-FM: Simulation-Free Dynamic Unbalanced Optimal Transport
The Wasserstein-Fisher-Rao (WFR) metric extends dynamic optimal transport (OT) by coupling displacement with change of mass, providing a principled geometry for modeling unbalanced snapshot dynamics. Existing WFR solvers, however, are often unstable, computationally expensive, and difficult to scale. Here we introduce WFR Flow Matching (WFR-FM), a simulation-free training algorithm that unifies flow matching with dynamic unbalanced OT. Unlike classical flow matching which regresses only a transport vector field, WFR-FM simultaneously regresses a vector field for displacement and a scalar growth rate function for birth-death dynamics, yielding continuous flows under the WFR geometry. Theoretically, we show that minimizing the WFR-FM loss exactly recovers WFR geodesics. Empirically, WFR-FM yields more accurate and robust trajectory inference in single-cell biology, reconstructing consistent dynamics with proliferation and apoptosis, estimating time-varying growth fields, and applying to generative dynamics under imbalanced data. It outperforms state-of-the-art baselines in efficiency, stability, and reconstruction accuracy. Overall, WFR-FM establishes a unified and efficient paradigm for learning dynamical systems from unbalanced snapshots, where not only states but also mass evolve over time.
Thinking with Deltas: Incentivizing Reinforcement Learning via Differential Visual Reasoning Policy
Reinforcement Learning with Verifiable Rewards (RLVR) has significantly advanced reasoning capabilities in Large Language Models. However, adapting RLVR to multimodal domains suffers from a critical \textit{perception-reasoning decoupling}. Existing paradigms, driven by text-centric outcome rewards, reasoning in language medium, inadvertently encourage models to bypass visual perception. We empirically validate this through blind experiments: state-of-the-art policies maintain or surprisingly improve performance even when visual inputs are entirely removed. This reveals that these models degenerate into \textit{blind reasoners}, exploiting linguistic priors to generate plausible answers instead of attending to visual evidence. In response, we propose \textbf{Thinking with Deltas}, a framework driven by a \textbf{Differential Visual Reasoning Policy (DVRP)}. DVRP introduces intrinsic supervision via visual triplets, comprising original, masked, and perturbed inputs. It optimizes the model to maximize reasoning divergence from masked inputs (enforcing \textit{visual sensitivity}) while minimizing divergence from perturbed inputs (ensuring \textit{visual robustness}). By aligning reasoning variations strictly with the \textit{Delta} of visual information, DVRP inherently bolsters visual understanding capabilities and significantly outperforms state-of-the-art methods on both general and medical benchmarks, without requiring external annotations or auxiliary tools.
comment: 24 pages, 10 tables, 4 figures
Graph Neural Network with One-side Edge Sampling for Fraud Detection
Financial fraud is always a major problem in the field of finance, as it can cause significant consequences. As a result, many approaches have been designed to detect it, and lately Graph Neural Networks (GNNs) have been demonstrated as a competent candidate. However, when trained with a large amount of data, they are slow and computationally demanding. In addition, GNNs may need a deep architecture to detect complex fraud patterns, but doing so may make them suffer from problems such as over-fitting or over-smoothing. Over-fitting leads to reduced generalisation of the model on unseen data, while over-smoothing causes all nodes' features to converge to a fixed point due to excessive aggregation of information from neighbouring nodes. In this research, I propose an approach called One-Side Edge Sampling (OES) that can potentially reduce training duration as well as the effects of over-smoothing and over-fitting. The approach leverages predictive confidence in an edge classification task to sample edges from the input graph during a certain number of epochs. To explain why OES can alleviate over-smoothing, I perform a theoretical analysis of the proposed approach. In addition, to validate the effect of OES, I conduct experiments using different GNNs on two datasets. The results show that OES can empirically outperform backbone models in both shallow and deep architectures while also reducing training time.
CliffordNet: All You Need is Geometric Algebra
Modern computer vision architectures, from CNNs to Transformers, predominantly rely on the stacking of heuristic modules: spatial mixers (Attention/Conv) followed by channel mixers (FFNs). In this work, we challenge this paradigm by returning to mathematical first principles. We propose the \textbf{Clifford Algebra Network (CAN)}, also referred to as CliffordNet, a vision backbone grounded purely in Geometric Algebra. Instead of engineering separate modules for mixing and memory, we derive a unified interaction mechanism based on the \textbf{Clifford Geometric Product} ($uv = u \cdot v + u \wedge v$). This operation ensures algebraic completeness regarding the Geometric Product by simultaneously capturing feature coherence (via the generalized inner product) and structural variation (via the exterior wedge product). Implemented via an efficient sparse rolling mechanism with \textbf{strict linear complexity $\mathcal{O}(N)$}, our model reveals a surprising emergent property: the geometric interaction is so representationally dense that standard Feed-Forward Networks (FFNs) become redundant. Empirically, CliffordNet establishes a new Pareto frontier: our \textbf{Nano} variant achieves \textbf{76.41\%} accuracy on CIFAR-100 with only \textbf{1.4M} parameters, effectively matching the heavy-weight ResNet-18 (11.2M) with \textbf{$8\times$ fewer parameters}, while our \textbf{Base} variant sets a new SOTA for tiny models at \textbf{78.05\%}. Our results suggest that global understanding can emerge solely from rigorous, algebraically complete local interactions, potentially signaling a shift where \textit{geometry is all you need}. Code is available at https://github.com/ParaMind2025/CAN.
comment: 15 pages
Cross-Modal Computational Model of Brain-Heart Interactions via HRV and EEG Feature
The electroencephalogram (EEG) has been the gold standard for quantifying mental workload; however, due to its complexity and non-portability, it can be constraining. ECG signals, which are feasible on wearable equipment pieces such as headbands, present a promising method for cognitive state monitoring. This research explores whether electrocardiogram (ECG) signals are able to indicate mental workload consistently and act as surrogates for EEG-based cognitive indicators. This study investigates whether ECG-derived features can serve as surrogate indicators of cognitive load, a concept traditionally quantified using EEG. Using a publicly available multimodal dataset (OpenNeuro) of EEG and ECG recorded during working-memory and listening tasks, features of HRV and Catch22 descriptors are extracted from ECG, and spectral band-power with Catch22 features from EEG. A cross-modal regression framework based on XGBoost was trained to map ECG-derived HRV representations to EEG-derived cognitive features. In order to address data sparsity and model brain-heart interactions, we integrated the PSV-SDG to produce EEG-conditioned synthetic HRV time series.This addresses the challenge of inferring cognitive load solely from ECG-derived features using a combination of multimodal learning, signal processing, and synthetic data generation. These outcomes form a basis for light, interpretable machine learning models that are implemented through wearable biosensors in non-lab environments. Synthetic HRV inclusion enhances robustness, particularly in sparse data situations. Overall, this work is an initiation for building low-cost, explainable, and real-time cognitive monitoring systems for mental health, education, and human-computer interaction, with a focus on ageing and clinical populations.
comment: 6 pages, 2 figures, Code available at: https://github.com/Malavika-pradeep/Computational-model-for-Brain-heart-Interaction-Analysis. Presented at AIHC (not published)
Artificial Entanglement in the Fine-Tuning of Large Language Models
Large language models (LLMs) can be adapted to new tasks using parameter-efficient fine-tuning (PEFT) methods that modify only a small number of trainable parameters, often through low-rank updates. In this work, we adopt a quantum-information-inspired perspective to understand their effectiveness. From this perspective, low-rank parameterizations naturally correspond to low-dimensional Matrix Product States (MPS) representations, which enable entanglement-based characterizations of parameter structure. Thereby, we term and measure "Artificial Entanglement", defined as the entanglement entropy of the parameters in artificial neural networks (in particular the LLMs). We first study the representative low-rank adaptation (LoRA) PEFT method, alongside full fine-tuning (FFT), using LLaMA models at the 1B and 8B scales trained on the Tulu3 and OpenThoughts3 datasets, and uncover: (i) Internal artificial entanglement in the updates of query and value projection matrices in LoRA follows a volume law with a central suppression (termed as the "Entanglement Valley"), which is sensitive to hyper-parameters and is distinct from that in FFT; (ii) External artificial entanglement in attention matrices, corresponding to token-token correlations in representation space, follows an area law with logarithmic corrections and remains robust to LoRA hyper-parameters and training steps. Drawing a parallel to the No-Hair Theorem in black hole physics, we propose that although LoRA and FFT induce distinct internal entanglement signatures, such differences do not manifest in the attention outputs, suggesting a "no-hair" property that results in the effectiveness of low rank updates. We further provide theoretical support based on random matrix theory, and extend our analysis to an MPS Adaptation PEFT method, which exhibits qualitatively similar behaviors.
comment: 41 pages, many figures
Dimension-reduced outcome-weighted learning for estimating individualized treatment regimes in observational studies
Individualized treatment regimes (ITRs) aim to improve clinical outcomes by assigning treatment based on patient-specific characteristics. However, existing methods often struggle with high-dimensional covariates, limiting accuracy, interpretability, and real-world applicability. We propose a novel sufficient dimension reduction approach that directly targets the contrast between potential outcomes and identifies a low-dimensional subspace of the covariates capturing treatment effect heterogeneity. This reduced representation enables more accurate estimation of optimal ITRs through outcome-weighted learning. To accommodate observational data, our method incorporates kernel-based covariate balancing, allowing treatment assignment to depend on the full covariate set and avoiding the restrictive assumption that the subspace sufficient for modeling heterogeneous treatment effects is also sufficient for confounding adjustment. We show that the proposed method achieves universal consistency, i.e., its risk converges to the Bayes risk, under mild regularity conditions. We demonstrate its finite sample performance through simulations and an analysis of intensive care unit sepsis patient data to determine who should receive transthoracic echocardiography.
comment: 54 pages, 9 figures
Structure-preserving learning and prediction in optimal control of collective motion
Wide-spread adoption of unmanned vehicle technologies requires the ability to predict the motion of the combined vehicle operation from observations. While the general prediction of such motion for an arbitrary control mechanism is difficult, for a particular choice of control, the dynamics reduces to the Lie-Poisson equations [33,34]. Our goal is to learn the phase-space dynamics and predict the motion solely from observations, without any knowledge of the control Hamiltonian or the nature of interaction between vehicles. To achieve that goal, we propose the Control Optimal Lie-Poisson Neural Networks (CO-LPNets) for learning and predicting the dynamics of the system from data. Our methods learn the mapping of the phase space through the composition of Poisson maps, which are obtained as flows from Hamiltonians that could be integrated explicitly. CO-LPNets preserve the Poisson bracket and thus preserve Casimirs to machine precision. We discuss the completeness of the derived neural networks and their efficiency in approximating the dynamics. To illustrate the power of the method, we apply these techniques to systems of $N=3$ particles evolving on ${\rm SO}(3)$ group, which describe coupled rigid bodies rotating about their center of mass, and ${\rm SE}(3)$ group, applicable to the movement of unmanned air and water vehicles. Numerical results demonstrate that CO-LPNets learn the dynamics in phase space from data points and reproduce trajectories, with good accuracy, over hundreds of time steps. The method uses a limited number of points ($\sim200$/dimension) and parameters ($\sim 1000$ in our case), demonstrating potential for practical applications and edge deployment.
comment: 55 pages, 9 figures
ALFA: A Safe-by-Design Approach to Mitigate Quishing Attacks Launched via Fancy QR Codes
Phishing with Quick Response (QR) codes is termed as Quishing. The attackers exploit this method to manipulate individuals into revealing their confidential data. Recently, we see the colorful and fancy representations of QR codes, the 2D matrix of QR codes which does not reflect a typical mixture of black-white modules anymore. Instead, they become more tempting as an attack vector for adversaries which can evade the state-of-the-art deep learning visual-based and other prevailing countermeasures. We introduce "ALFA", a safe-by-design approach, to mitigate Quishing and prevent everyone from accessing the post-scan harmful payload of fancy QR codes. Our method first converts a fancy QR code into the replica of binary grid and then identify the erroneous representation of modules in that grid. Following that, we present "FAST" method which can conveniently recover erroneous modules from that binary grid. Afterwards, using this binary grid, our solution extracts the structural features of fancy QR code and predicts its legitimacy using a pre-trained model. The effectiveness of our proposal is demonstrated by the experimental evaluation on a synthetic dataset (containing diverse variations of fancy QR codes) and achieve a FNR of 0.06% only. We also develop the mobile app to test the practical feasibility of our solution and provide a performance comparison of the app with the real-world QR readers. This comparison further highlights the classification reliability and detection accuracy of this solution in real-world environments.
comment: LNCS Springer Template (19 pages, 5 figures, 4 tables). This paper is currently submitted to 31st European Symposium on Research in Computer Security (ESORICS) 2026 for publication
GanitLLM: Difficulty-Aware Bengali Mathematical Reasoning through Curriculum-GRPO
We present a Bengali mathematical reasoning model called GanitLLM (named after the Bangla word for mathematics, "Ganit"), together with a new difficulty-aware Bengali math corpus and a curriculum-based GRPO pipeline. Bengali is one of the world's most widely spoken languages, yet existing LLMs either reason in English and then translate, or simply fail on multi-step Bengali math, in part because reinforcement learning recipes are tuned for high-resource languages and collapse under reward sparsity in low-resource settings. To address this, we construct Ganit, a rigorously filtered and decontaminated Bengali math dataset with automatic difficulty tags derived from the pass@k of a strong evaluator model. Building on this dataset, we propose Curriculum-GRPO, which combines multi-stage training (SFT + GRPO) with difficulty-aware sampling and verifiable rewards for format, numerical correctness, and Bengali reasoning. On Bn-MGSM and Bn-MSVAMP, GanitLLM-4B improves over its Qwen3-4B base by +8 and +7 accuracy points, respectively, while increasing the percentage of Bengali reasoning tokens from 14% to over 88% and reducing average solution length from 943 to 193 words.
Comparative Separation: Evaluating Separation on Comparative Judgment Test Data
This research seeks to benefit the software engineering society by proposing comparative separation, a novel group fairness notion to evaluate the fairness of machine learning software on comparative judgment test data. Fairness issues have attracted increasing attention since machine learning software is increasingly used for high-stakes and high-risk decisions. It is the responsibility of all software developers to make their software accountable by ensuring that the machine learning software do not perform differently on different sensitive groups -- satisfying the separation criterion. However, evaluation of separation requires ground truth labels for each test data point. This motivates our work on analyzing whether separation can be evaluated on comparative judgment test data. Instead of asking humans to provide the ratings or categorical labels on each test data point, comparative judgments are made between pairs of data points such as A is better than B. According to the law of comparative judgment, providing such comparative judgments yields a lower cognitive burden for humans than providing ratings or categorical labels. This work first defines the novel fairness notion comparative separation on comparative judgment test data, and the metrics to evaluate comparative separation. Then, both theoretically and empirically, we show that in binary classification problems, comparative separation is equivalent to separation. Lastly, we analyze the number of test data points and test data pairs required to achieve the same level of statistical power in the evaluation of separation and comparative separation, respectively. This work is the first to explore fairness evaluation on comparative judgment test data. It shows the feasibility and the practical benefits of using comparative judgment test data for model evaluations.
comment: 10 pages, 8 tables, 1 figure
A Backpropagation-Free Feedback-Hebbian Network for Continual Learning Dynamics
Feedback-rich neural architectures can regenerate earlier representations and inject temporal context, making them a natural setting for strictly local synaptic plasticity. We ask whether a minimal, backpropagation-free feedback--Hebbian system can already express interpretable continual-learning--relevant behaviors under controlled training schedules. We introduce a compact prediction--reconstruction architecture with two feedforward layers for supervised association learning and two dedicated feedback layers trained to reconstruct earlier activity and re-inject it as additive temporal context. All synapses are updated by a unified local rule combining centered Hebbian covariance, Oja-style stabilization, and a local supervised drive where targets are available, requiring no weight transport or global error backpropagation. On a small two-pair association task, we characterize learning through layer-wise activity snapshots, connectivity trajectories (row/column means of learned weights), and a normalized retention index across phases. Under sequential A->B training, forward output connectivity exhibits a long-term depression (LTD)-like suppression of the earlier association while feedback connectivity preserves an A-related trace during acquisition of B. Under deterministic interleaving A,B,A,B,..., both associations are concurrently maintained rather than sequentially suppressed. Architectural controls and rule-term ablations isolate the role of dedicated feedback in regeneration and co-maintenance, and the role of the local supervised term in output selectivity and unlearning. Together, the results show that a compact feedback pathway trained with local plasticity can support regeneration and continual-learning--relevant dynamics in a minimal, mechanistically transparent setting.
comment: 8 pages, 10 figures
Federated Continual Learning for Privacy-Preserving Hospital Imaging Classification
Deep learning models for radiology interpretation increasingly rely on multi-institutional data, yet privacy regulations and distribution shift across hospitals limit central data pooling. Federated learning (FL) allows hospitals to collaboratively train models without sharing raw images, but current FL algorithms typically assume a static data distribution. In practice, hospitals experience continual evolution in case mix, annotation protocols, and imaging devices, which leads to catastrophic forgetting when models are updated sequentially. Federated continual learning (FCL) aims to reconcile these challenges but existing methods either ignore the stringent privacy constraints of healthcare or rely on replay buffers and public surrogate datasets that are difficult to justify in clinical settings. We study FCL for chest radiography classification in a setting where hospitals are clients that receive temporally evolving streams of cases and labels. We introduce DP-FedEPC (Differentially Private Federated Elastic Prototype Consolidation), a method that combines elastic weight consolidation (EWC), prototype-based rehearsal, and client-side differential privacy within a standard FedAvg framework. EWC constrains updates along parameters deemed important for previous tasks, while a memory of latent prototypes preserves class structure without storing raw images. Differentially private stochastic gradient descent (DP-SGD) at each client adds calibrated Gaussian noise to clipped gradients, providing formal privacy guarantees for individual radiographs.
Logic-Driven Semantic Communication for Resilient Multi-Agent Systems
The advent of 6G networks is accelerating autonomy and intelligence in large-scale, decentralized multi-agent systems (MAS). While this evolution enables adaptive behavior, it also heightens vulnerability to stressors such as environmental changes and adversarial behavior. Existing literature on resilience in decentralized MAS largely focuses on isolated aspects, such as fault tolerance, without offering a principled unified definition of multi-agent resilience. This gap limits the ability to design systems that can continuously sense, adapt, and recover under dynamic conditions. This article proposes a formal definition of MAS resilience grounded in two complementary dimensions: epistemic resilience, wherein agents recover and sustain accurate knowledge of the environment, and action resilience, wherein agents leverage that knowledge to coordinate and sustain goals under disruptions. We formalize resilience via temporal epistemic logic and quantify it using recoverability time (how quickly desired properties are re-established after a disturbance) and durability time (how long accurate beliefs and goal-directed behavior are sustained after recovery). We design an agent architecture and develop decentralized algorithms to achieve both epistemic and action resilience. We provide formal verification guarantees, showing that our specifications are sound with respect to the metric bounds and admit finite-horizon verification, enabling design-time certification and lightweight runtime monitoring. Through a case study on distributed multi-agent decision-making under stressors, we show that our approach outperforms baseline methods. Our formal verification analysis and simulation results highlight that the proposed framework enables resilient, knowledge-driven decision-making and sustained operation, laying the groundwork for resilient decentralized MAS in next-generation communication systems.
Why are there many equally good models? An Anatomy of the Rashomon Effect
The Rashomon effect -- the existence of multiple, distinct models that achieve nearly equivalent predictive performance -- has emerged as a fundamental phenomenon in modern machine learning and statistics. In this paper, we explore the causes underlying the Rashomon effect, organizing them into three categories: statistical sources arising from finite samples and noise in the data-generating process; structural sources arising from non-convexity of optimization objectives and unobserved variables that create fundamental non-identifiability; and procedural sources arising from limitations of optimization algorithms and deliberate restrictions to suboptimal model classes. We synthesize insights from machine learning, statistics, and optimization literature to provide a unified framework for understanding why the multiplicity of good models arises. A key distinction emerges: statistical multiplicity diminishes with more data, structural multiplicity persists asymptotically and cannot be resolved without different data or additional assumptions, and procedural multiplicity reflects choices made by practitioners. Beyond characterizing causes, we discuss both the challenges and opportunities presented by the Rashomon effect, including implications for inference, interpretability, fairness, and decision-making under uncertainty.
Predicting Student Success with Heterogeneous Graph Deep Learning and Machine Learning Models
Early identification of student success is crucial for enabling timely interventions, reducing dropout rates, and promoting on time graduation. In educational settings, AI powered systems have become essential for predicting student performance due to their advanced analytical capabilities. However, effectively leveraging diverse student data to uncover latent and complex patterns remains a key challenge. While prior studies have explored this area, the potential of dynamic data features and multi category entities has been largely overlooked. To address this gap, we propose a framework that integrates heterogeneous graph deep learning models to enhance early and continuous student performance prediction, using traditional machine learning algorithms for comparison. Our approach employs a graph metapath structure and incorporates dynamic assessment features, which progressively influence the student success prediction task. Experiments on the Open University Learning Analytics (OULA) dataset demonstrate promising results, achieving a 68.6% validation F1 score with only 7% of the semester completed, and reaching up to 89.5% near the semester's end. Our approach outperforms top machine learning models by 4.7% in validation F1 score during the critical early 7% of the semester, underscoring the value of dynamic features and heterogeneous graph representations in student success prediction.
Flow Matching and Diffusion Models via PointNet for Generating Fluid Fields on Irregular Geometries
We present two novel generative geometric deep learning frameworks, termed Flow Matching PointNet and Diffusion PointNet, for predicting fluid flow variables on irregular geometries by incorporating PointNet into flow matching and diffusion models, respectively. In these frameworks, a reverse generative process reconstructs physical fields from standard Gaussian noise conditioned on unseen geometries. The proposed approaches operate directly on point-cloud representations of computational domains (e.g., grid vertices of finite-volume meshes) and therefore avoid the limitations of pixelation used to project geometries onto uniform lattices, as is common in U-Net-based flow matching and diffusion models. In contrast to graph neural network-based diffusion models, Flow Matching PointNet and Diffusion PointNet do not exhibit high-frequency noise artifacts in the predicted fields. Moreover, unlike such approaches, which require auxiliary intermediate networks to condition geometry, the proposed frameworks rely solely on PointNet, resulting in a simple and unified architecture. The performance of the proposed frameworks is evaluated on steady incompressible flow past a cylinder, using a geometric dataset constructed by varying the cylinder's cross-sectional shape and orientation across samples. The results demonstrate that Flow Matching PointNet and Diffusion PointNet achieve more accurate predictions of velocity and pressure fields, as well as lift and drag forces, and exhibit greater robustness to incomplete geometries compared to a vanilla PointNet with the same number of trainable parameters.
Learning to Evolve: Bayesian-Guided Continual Knowledge Graph Embedding
As social media and the World Wide Web become hubs for information dissemination, effectively organizing and understanding the vast amounts of dynamically evolving Web content is crucial. Knowledge graphs (KGs) provide a powerful framework for structuring this information. However, the rapid emergence of new hot topics, user relationships, and events in social media renders traditional static knowledge graph embedding (KGE) models rapidly outdated. Continual Knowledge Graph Embedding (CKGE) aims to address this issue, but existing methods commonly suffer from catastrophic forgetting, whereby older, but still valuable, information is lost when learning new knowledge (such as new memes or trending events). This means the model cannot effectively learn the evolution of the data. We propose a novel CKGE framework, BAKE. Unlike existing methods, BAKE formulates CKGE as a sequential Bayesian inference problem and utilizes the Bayesian posterior update principle as a natural continual learning strategy. This principle is insensitive to data order and provides theoretical guarantees to preserve prior knowledge as much as possible. Specifically, we treat each batch of new data as a Bayesian update to the model's prior. By maintaining the posterior distribution, the model effectively preserves earlier knowledge even as it evolves over multiple snapshots. Furthermore, to constrain the evolution of knowledge across snapshots, we introduce a continual clustering method that maintains the compact cluster structure of entity embeddings through a regularization term, ensuring semantic consistency while allowing controlled adaptation to new knowledge. We conduct extensive experiments on multiple CKGE benchmarks, which demonstrate that BAKE achieves the top performance in the vast majority of cases compared to existing approaches.
The Best Instruction-Tuning Data are Those That Fit
High-quality supervised fine-tuning (SFT) data are crucial for eliciting strong capabilities from pretrained large language models (LLMs). Typically, instructions are paired with multiple responses sampled from other LLMs, which are often out of the distribution of the target model to be fine-tuned. This, at scale, can lead to diminishing returns and even hurt the models' performance and robustness. We propose **GRAPE**, a novel SFT framework that accounts for the unique characteristics of the target model. For each instruction, it gathers responses from various LLMs and selects the one with the highest probability measured by the target model, indicating that it aligns most closely with the target model's pretrained distribution; it then proceeds with standard SFT training. We first evaluate GRAPE with a controlled experiment, where we sample various solutions for each question in UltraInteract from multiple models and fine-tune commonly used LMs like LLaMA3.1-8B, Mistral-7B, and Qwen2.5-7B on GRAPE-selected data. GRAPE significantly outperforms strong baselines, including distilling from the strongest model with an absolute gain of up to 13.8%, averaged across benchmarks, and training on 3x more data with a maximum performance improvement of 17.3%. GRAPE's strong performance generalizes to realistic settings. We experiment with the post-training data used for Tulu3 and Olmo-2. GRAPE outperforms strong baselines trained on 4.5 times more data by 6.1% and a state-of-the-art data selection approach by 3% on average performance. Remarkably, using 1/3 of the data and half the number of epochs, GRAPE enables LLaMA3.1-8B to surpass the performance of Tulu3-SFT by 3.5%.
Tensor Product Attention Is All You Need NeurIPS 2025
Scaling language models to handle longer input sequences typically necessitates large key-value (KV) caches, resulting in substantial memory overhead during inference. In this paper, we propose Tensor Product Attention (TPA), a novel attention mechanism that uses tensor decompositions to represent queries, keys, and values compactly, substantially shrinking the KV cache size at inference time. By factorizing these representations into contextual low-rank components and seamlessly integrating with Rotary Position Embedding (RoPE), TPA achieves improved model quality alongside memory efficiency. Based on TPA, we introduce the Tensor ProducT ATTenTion Transformer (T6), a new model architecture for sequence modeling. Through extensive empirical evaluation on language modeling tasks, we demonstrate that T6 surpasses or matches the performance of standard Transformer baselines including Multi-Head Attention (MHA), Multi-Query Attention (MQA), Grouped-Query Attention (GQA), and Multi-Head Latent Attention (MLA) across various metrics, including perplexity and a range of established evaluation benchmarks. Notably, TPA's memory efficiency and computational efficiency at decoding stage enables processing longer sequences under fixed resource constraints, addressing a critical scalability challenge in modern language models. Project Page: https://github.com/tensorgi/TPA.
comment: Published in NeurIPS 2025 (Spotlight); Project Page: https://github.com/tensorgi/TPA
Wide Neural Networks as a Baseline for the Computational No-Coincidence Conjecture
We establish that randomly initialized neural networks, with large width and a natural choice of hyperparameters, have nearly independent outputs exactly when their activation function is nonlinear with zero mean under the Gaussian measure: $\mathbb{E}_{z \sim \mathcal{N}(0,1)}[σ(z)]=0$. For example, this includes ReLU and GeLU with an additive shift, as well as tanh, but not ReLU or GeLU by themselves. Because of their nearly independent outputs, we propose neural networks with zero-mean activation functions as a promising candidate for the Alignment Research Center's computational no-coincidence conjecture -- a conjecture that aims to measure the limits of AI interpretability.
Canopy: Property-Driven Learning for Congestion Control
Learning-based congestion controllers offer better adaptability compared to traditional heuristics. However, the unreliability of learning techniques can cause learning-based controllers to behave poorly, creating a need for formal guarantees. While methods for formally verifying learned congestion controllers exist, these methods offer binary feedback that cannot optimize the controller toward better behavior. We improve this state-of-the-art via Canopy, a new property-driven framework that integrates learning with formal reasoning in the learning loop. Canopy uses novel quantitative certification with an abstract interpreter to guide the training process, rewarding models, and evaluating robust and safe model performance on worst-case inputs. Our evaluation demonstrates that unlike state-of-the-art learned controllers, Canopy-trained controllers provide both adaptability and worst-case reliability across a range of network conditions.
comment: Eurosys 2026
Pain in 3D: Generating Controllable Synthetic Faces for Automated Pain Assessment
Automated pain assessment from facial expressions is crucial for non-communicative patients, such as those with dementia. Progress has been limited by two challenges: (i) existing datasets exhibit severe demographic and label imbalance due to ethical constraints, and (ii) current generative models cannot precisely control facial action units (AUs), facial structure, or clinically validated pain levels. We present 3DPain, a large-scale synthetic dataset specifically designed for automated pain assessment, featuring unprecedented annotation richness and demographic diversity. Our three-stage framework generates diverse 3D meshes, textures them with diffusion models, and applies AU-driven face rigging to synthesize multi-view faces with paired neutral and pain images, AU configurations, PSPI scores, and the first dataset-level annotations of pain-region heatmaps. The dataset comprises 82,500 samples across 25,000 pain expression heatmaps and 2,500 synthetic identities balanced by age, gender, and ethnicity. We further introduce ViTPain, a Vision Transformer based cross-modal distillation framework in which a heatmap-trained teacher guides a student trained on RGB images, enhancing accuracy, interpretability, and clinical reliability. Together, 3DPain and ViTPain establish a controllable, diverse, and clinically grounded foundation for generalizable automated pain assessment.
Fail Fast, Win Big: Rethinking the Drafting Strategy in Speculative Decoding via Diffusion LLMs
Diffusion Large Language Models (dLLMs) offer fast, parallel token generation, but their standalone use is plagued by an inherent efficiency-quality tradeoff. We show that, if carefully applied, the attributes of dLLMs can actually be a strength for drafters in speculative decoding with autoregressive (AR) verifiers. Our core insight is that dLLM's speed from parallel decoding drastically lowers the risk of costly rejections, providing a practical mechanism to effectively realize the (elusive) lengthy drafts that lead to large speedups with speculative decoding. We present FailFast, a dLLM-based speculative decoding framework that realizes this approach by dynamically adapting its speculation length. It "fails fast" by spending minimal compute in hard-to-speculate regions to shrink speculation latency and "wins big" by aggressively extending draft lengths in easier regions to reduce verification latency (in many cases, speculating and accepting 70 tokens at a time!). Without any fine-tuning, FailFast delivers lossless acceleration of AR LLMs and achieves up to 4.9$\times$ speedup over vanilla decoding, 1.7$\times$ over the best naive dLLM drafter, and 2.0$\times$ over EAGLE-3 across diverse models and workloads. We open-source FailFast at https://github.com/ruipeterpan/failfast.
The Blueprints of Intelligence: A Functional-Topological Foundation for Perception and Representation
Real-world phenomena do not generate arbitrary variability: their signals concentrate on compact, low-variability subsets of functional space, enabling rapid generalization from few examples. A small child can recognize a dog after extremely limited exposure because the perceptual manifold of "dog" is compact, structured, and low-dimensional. We formalize this principle through a deterministic functional-topological framework in which the set of valid realizations produced by a physical process forms a compact subset of a Banach space, endowed with stable invariants, a finite Hausdorff radius, and an induced continuous perceptual functional. This geometry provides explicit limits on knowledge, conditions for identifiability, and guarantees for generalization from sparse evidence -- properties fundamental to both natural and artificial intelligence. Across electromechanical, electrochemical, and physiological domains, we show that real-world processes consistently generate compact perceptual manifolds with the same geometric characteristics. Their boundaries can be discovered in a fully self-supervised manner as the empirical radius saturates with increasing sampling, even when the governing equations are unknown. These results demonstrate that deterministic functional topology offers a unified mathematical foundation for perception, representation, and world-model construction. It provides a geometric explanation for why biological learners and self-supervised AI systems can generalize from few observations, and establishes compact perceptual manifolds as a fundamental building block for future AI architectures. Finally, this work unifies biological perception and modern self-supervised models under a single geometric principle: both derive their generalization ability from the compactness and invariants of real-world perceptual manifolds.
comment: 35 pages, 6 figures. This preprint develops a deterministic functional-topological framework showing that physical systems generate compact perceptual manifolds with finite radius. We provide theory, Monte-Carlo estimators, and validation across PM, battery, and ECG domains, unifying biological perception and self-supervised AI
Stable Minima of ReLU Neural Networks Suffer from the Curse of Dimensionality: The Neural Shattering Phenomenon Neurips 2025
We study the implicit bias of flatness / low (loss) curvature and its effects on generalization in two-layer overparameterized ReLU networks with multivariate inputs -- a problem well motivated by the minima stability and edge-of-stability phenomena in gradient-descent training. Existing work either requires interpolation or focuses only on univariate inputs. This paper presents new and somewhat surprising theoretical results for multivariate inputs. On two natural settings (1) generalization gap for flat solutions, and (2) mean-squared error (MSE) in nonparametric function estimation by stable minima, we prove upper and lower bounds, which establish that while flatness does imply generalization, the resulting rates of convergence necessarily deteriorate exponentially as the input dimension grows. This gives an exponential separation between the flat solutions compared to low-norm solutions (i.e., weight decay), which are known not to suffer from the curse of dimensionality. In particular, our minimax lower bound construction, based on a novel packing argument with boundary-localized ReLU neurons, reveals how flat solutions can exploit a kind of "neural shattering" where neurons rarely activate, but with high weight magnitudes. This leads to poor performance in high dimensions. We corroborate these theoretical findings with extensive numerical simulations. To the best of our knowledge, our analysis provides the first systematic explanation for why flat minima may fail to generalize in high dimensions.
comment: Camera Ready Version. Accepted by Neurips 2025 (Spotlight)
Making Interpretable Discoveries from Unstructured Data: A High-Dimensional Multiple Hypothesis Testing Approach
Social scientists are increasingly turning to unstructured datasets to unlock new empirical insights, e.g., estimating descriptive statistics of or causal effects on quantitative measures derived from text, audio, or video data. In many such settings, unsupervised analysis is of primary interest, in that the researcher does not want to (or cannot) pre-specify all important aspects of the unstructured data to measure; they are interested in "discovery." This paper proposes a general and flexible framework for pursuing discovery from unstructured data in a statistically principled way. The framework leverages recent methods from the literature on machine learning interpretability to map unstructured data points to high-dimensional, sparse, and interpretable "dictionaries" of concepts; computes statistics of dictionary entries for testing relevant concept-level hypotheses; performs selective inference on these hypotheses using algorithms validated by new results in high-dimensional central limit theory, producing a selected set ("discoveries"); and both generates and evaluates human-interpretable natural language descriptions of these discoveries. The proposed framework has few researcher degrees of freedom, is fully replicable, and is cheap to implement -- both in terms of financial cost and researcher time. Applications to recent descriptive and causal analyses of unstructured data in empirical economics are explored. An open source Jupyter notebook is provided for researchers to implement the framework in their own projects.
Expert System for Bitcoin Forecasting: Integrating Global Liquidity via TimeXer Transformers
Bitcoin price forecasting is characterized by extreme volatility and non-stationarity, often defying traditional univariate time-series models over long horizons. This paper addresses a critical gap by integrating Global M2 Liquidity, aggregated from 18 major economies, as a leading exogenous variable with a 12-week lag structure. Using the TimeXer architecture, we compare a liquidity-conditioned forecasting model (TimeXer-Exog) against state-of-the-art benchmarks including LSTM, N-BEATS, PatchTST, and a standard univariate TimeXer. Experiments conducted on daily Bitcoin price data from January 2020 to August 2025 demonstrate that explicit macroeconomic conditioning significantly stabilizes long-horizon forecasts. At a 70-day forecast horizon, the proposed TimeXer-Exog model achieves a mean squared error (MSE) 1.08e8, outperforming the univariate TimeXer baseline by over 89 percent. These results highlight that conditioning deep learning models on global liquidity provides substantial improvements in long-horizon Bitcoin price forecasting.
Reqo: A Comprehensive Learning-Based Cost Model for Robust and Explainable Query Optimization
Although machine learning (ML) shows potential in improving query optimization by generating and selecting more efficient plans, ensuring the robustness of learning-based cost models (LCMs) remains challenging. These LCMs currently lack explainability, which undermines user trust and limits the ability to derive insights from their cost predictions to improve plan quality. Accurately converting tree-structured query plans into representations via tree models is also essential, as omitting any details may negatively impact subsequent cost model performance. Additionally, inherent uncertainty in cost estimation leads to inaccurate predictions, resulting in suboptimal plan selection. To address these challenges, we introduce Reqo, a Robust and Explainable Query Optimization cost model that comprehensively enhances three main stages in query optimization: plan generation, plan representation, and plan selection. Reqo integrates three innovations: the first explainability technique for LCMs that quantifies subgraph contributions and produces plan generation hints to enhance candidate plan quality; a novel tree model based on Bidirectional Graph Neural Networks (Bi-GNNs) with a Gated Recurrent Unit (GRU) aggregator to further capture both node-level and structural information and effectively strengthen plan representation; and an uncertainty-aware learning-to-rank cost estimator that adaptively integrates cost estimates with uncertainties to enhance plan selection robustness. Extensive experiments demonstrate that Reqo outperforms state-of-the-art approaches across all three stages.
List-Level Distribution Coupling with Applications to Speculative Decoding and Lossy Compression
We study a relaxation of the problem of coupling probability distributions -- a list of samples is generated from one distribution and an accept is declared if any one of these samples is identical to the sample generated from the other distribution. We propose a novel method for generating samples, which extends the Gumbel-max sampling suggested in Daliri et al. (arXiv:2408.07978) for coupling probability distributions. We also establish a corresponding lower bound on the acceptance probability, which we call the list matching lemma. We next discuss two applications of our setup. First, we develop a new mechanism for multi-draft speculative sampling that is simple to implement and achieves performance competitive with baselines such as SpecTr and SpecInfer across a range of language tasks. Our method also guarantees a certain degree of drafter invariance with respect to the output tokens which is not supported by existing schemes. We also provide a theoretical lower bound on the token level acceptance probability. As our second application, we consider distributed lossy compression with side information in a setting where a source sample is compressed and available to multiple decoders, each with independent side information. We propose a compression technique that is based on our generalization of Gumbel-max sampling and show that it provides significant gains in experiments involving synthetic Gaussian sources and the MNIST image dataset.
Model Privacy: A Unified Framework to Understand Model Stealing Attacks and Defenses
The use of machine learning (ML) has become increasingly prevalent in various domains, highlighting the importance of understanding and ensuring its safety. One pressing concern is the vulnerability of ML applications to model stealing attacks. These attacks involve adversaries attempting to recover a learned model through limited query-response interactions, such as those found in cloud-based services or on-chip artificial intelligence interfaces. While existing literature proposes various attack and defense strategies, these often lack a theoretical foundation and standardized evaluation criteria. In response, this work presents a framework called ``Model Privacy'', providing a foundation for comprehensively analyzing model stealing attacks and defenses. We establish a rigorous formulation for the threat model and objectives, propose methods to quantify the goodness of attack and defense strategies, and analyze the fundamental tradeoffs between utility and privacy in ML models. Our developed theory offers valuable insights into enhancing the security of ML models, especially highlighting the importance of the attack-specific structure of perturbations for effective defenses. We demonstrate the application of model privacy from the defender's perspective through various learning scenarios. Extensive experiments corroborate the insights and the effectiveness of defense mechanisms developed under the proposed framework.
Graph-KV: Breaking Sequence via Injecting Structural Biases into Large Language Models
Modern large language models (LLMs) are inherently auto-regressive, requiring input to be serialized into flat sequences regardless of their structural dependencies. This serialization hinders the model's ability to leverage structural inductive biases, especially in tasks such as retrieval-augmented generation (RAG) and reasoning on data with native graph structures, where inter-segment dependencies are crucial. We introduce Graph-KV with the potential to overcome this limitation. Graph-KV leverages the KV-cache of text segments as condensed representations and governs their interaction through structural inductive biases. In this framework, 'target' segments selectively attend only to the KV-caches of their designated 'source' segments, rather than all preceding segments in a serialized sequence. This approach induces a graph-structured block mask, sparsifying attention and enabling a message-passing-like step within the LLM. Furthermore, strategically allocated positional encodings for source and target segments reduce positional bias and context window consumption. We evaluate Graph-KV across three scenarios: (1) seven RAG benchmarks spanning direct inference, multi-hop reasoning, and long-document understanding; (2) Arxiv-QA, a novel academic paper QA task with full-text scientific papers structured as citation ego-graphs; and (3) paper topic classification within a citation network. By effectively reducing positional bias and harnessing structural inductive biases, Graph-KV substantially outperforms baselines, including standard costly sequential encoding, across various settings. Code and the Graph-KV data are publicly available.
Diffusion Factor Models: Generating High-Dimensional Returns with Factor Structure
Financial scenario simulation is essential for risk management and portfolio optimization, yet it remains challenging especially in high-dimensional and small data settings common in finance. We propose a diffusion factor model that integrates latent factor structure into generative diffusion processes, bridging econometrics with modern generative AI to address the challenges of the curse of dimensionality and data scarcity in financial simulation. By exploiting the low-dimensional factor structure inherent in asset returns, we decompose the score function--a key component in diffusion models--using time-varying orthogonal projections, and this decomposition is incorporated into the design of neural network architectures. We derive rigorous statistical guarantees, establishing nonasymptotic error bounds for both score estimation at O(d^{5/2} n^{-2/(k+5)}) and generated distribution at O(d^{5/4} n^{-1/2(k+5)}), primarily driven by the intrinsic factor dimension k rather than the number of assets d, surpassing the dimension-dependent limits in the classical nonparametric statistics literature and making the framework viable for markets with thousands of assets. Numerical studies confirm superior performance in latent subspace recovery under small data regimes. Empirical analysis demonstrates the economic significance of our framework in constructing mean-variance optimal portfolios and factor portfolios. This work presents the first theoretical integration of factor structure with diffusion models, offering a principled approach for high-dimensional financial simulation with limited data. Our code is available at https://github.com/xymmmm00/diffusion_factor_model.
Do MLLMs Capture How Interfaces Guide User Behavior? A Benchmark for Multimodal UI/UX Design Understanding
User interface (UI) design goes beyond visuals to shape user experience (UX), underscoring the shift toward UI/UX as a unified concept. While recent studies have explored UI evaluation using Multimodal Large Language Models (MLLMs), they largely focus on surface-level features, overlooking how design choices influence user behavior at scale. To fill this gap, we introduce WiserUI-Bench, a novel benchmark for multimodal understanding of how UI/UX design affects user behavior, built on 300 real-world UI image pairs from industry A/B tests, with empirically validated winners that induced more user actions. For future design progress in practice, post-hoc understanding of why such winners succeed with mass users is also required; we support this via expert-curated key interpretations for each instance. Experiments across multiple MLLMs on WiserUI-Bench for two main tasks, (1) predicting the more effective UI image between an A/B-tested pair, and (2) explaining it post-hoc in alignment with expert interpretations, show that models exhibit limited understanding of the behavioral impact of UI/UX design. We believe our work will foster research on leveraging MLLMs for visual design in user behavior contexts.
comment: 25 pages, 24 figures, Our code and dataset: https://github.com/jeochris/wiserui-bench
Restoring Rhythm: Punctuation Restoration Using Transformer Models for Bangla, A Low-Resource Language
Punctuation restoration enhances the readability of text and is critical for post-processing tasks in Automatic Speech Recognition (ASR), especially for low-resource languages like Bangla. In this study, we explore the application of transformer-based models, specifically XLM-RoBERTa-large, to automatically restore punctuation in unpunctuated Bangla text. We focus on predicting four punctuation marks: period, comma, question mark, and exclamation mark across diverse text domains. To address the scarcity of annotated resources, we constructed a large, varied training corpus and applied data augmentation techniques. Our best-performing model, trained with an augmentation factor of alpha = 0.20%, achieves an accuracy of 97.1% on the News test set, 91.2% on the Reference set, and 90.2% on the ASR set. Results show strong generalization to reference and ASR transcripts, demonstrating the model's effectiveness in real-world, noisy scenarios. This work establishes a strong baseline for Bangla punctuation restoration and contributes publicly available datasets and code to support future research in low-resource NLP.
Stochastic Control Methods for Optimization
In this work, we investigate a stochastic control framework for global optimization over both Euclidean spaces and the Wasserstein space of probability measures, where the objective function may be non-convex and/or non-differentiable. In the Euclidean setting, the original minimization problem is approximated by a family of regularized stochastic control problems; using dynamic programming, we analyze the associated Hamilton--Jacobi--Bellman equations and obtain tractable representations via the Cole--Hopf transformation and the Feynman--Kac formula. For optimization over probability measures, we formulate a regularized mean-field control problem characterized by a master equation, and further approximate it by controlled $N$-particle systems. We establish that, as the regularization parameter tends to zero (and as the particle number tends to infinity for the optimization over probability measures), the value of the control problem converges to the global minimum of the original objective. Building on the resulting probabilistic representations, Monte Carlo-based numerical schemes are proposed and numerical experiments are reported to illustrate the effectiveness of the methods and to support the theoretical convergence rates.
comment: 32 pages, 5 figures
Inductive Graph Representation Learning with Quantum Graph Neural Networks
Quantum Graph Neural Networks (QGNNs) offer a promising approach to combining quantum computing with graph-structured data processing. While classical Graph Neural Networks (GNNs) are scalable and robust, existing QGNNs often lack flexibility due to graph-specific quantum circuit designs, limiting their applicability to diverse real-world problems. To address this, we propose a versatile QGNN framework inspired by GraphSAGE, using quantum models as aggregators. We integrate inductive representation learning techniques with parameterized quantum convolutional and pooling layers, bridging classical and quantum paradigms. The convolutional layer is flexible, allowing tailored designs for specific tasks. Benchmarked on a node regression task with the QM9 dataset, our framework, using a single minimal circuit for all aggregation steps, handles molecules with varying numbers of atoms without changing qubits or circuit architecture. While classical GNNs achieve higher training performance, our quantum approach remains competitive and often shows stronger generalization as molecular complexity increases. We also observe faster learning in early training epochs. To mitigate trainability limitations of a single-circuit setup, we extend the framework with multiple quantum aggregators on QM9. Assigning distinct circuits to each hop substantially improves training performance across all cases. Additionally, we numerically demonstrate the absence of barren plateaus as qubit numbers increase, suggesting that the proposed model can scale to larger, more complex graph-based problems.
comment: 12 pages, 12 figures
When Less Is More: Binary Feedback Can Outperform Ordinal Comparisons in Ranking Recovery
Paired comparison data, where users evaluate items in pairs, play a central role in ranking and preference learning tasks. While ordinal comparison data intuitively offer richer information than binary comparisons, this paper challenges that conventional wisdom. We propose a general parametric framework for modeling ordinal paired comparisons without ties. The model adopts a generalized additive structure, featuring a link function that quantifies the preference difference between two items and a pattern function that governs the distribution over ordinal response levels. This framework encompasses classical binary comparison models as special cases, by treating binary responses as binarized versions of ordinal data. Within this framework, we show that binarizing ordinal data can significantly improve the accuracy of ranking recovery. Specifically, we prove that under the counting algorithm, the ranking error associated with binary comparisons exhibits a faster exponential convergence rate than that of ordinal data. Furthermore, we characterize a substantial performance gap between binary and ordinal data in terms of a signal-to-noise ratio (SNR) determined by the pattern function. We identify the pattern function that minimizes the SNR and maximizes the benefit of binarization. Extensive simulations and a real application on the MovieLens dataset further corroborate our theoretical findings.
Two-Player Zero-Sum Games with Bandit Feedback
We study a two-player zero-sum game in which the row player aims to maximize their payoff against an adversarial column player, under an unknown payoff matrix estimated through bandit feedback. We propose three algorithms based on the Explore-Then-Commit (ETC) framework. The first adapts it to zero-sum games, the second incorporates adaptive elimination that leverages the $\varepsilon$-Nash Equilibrium property to efficiently select the optimal action pair, and the third extends the elimination algorithm by employing non-uniform exploration. Our objective is to demonstrate the applicability of ETC in a zero-sum game setting by focusing on learning pure strategy Nash Equilibria. A key contribution of our work is a derivation of instance-dependent upper bounds on the expected regret of our proposed algorithms, which has received limited attention in the literature on zero-sum games. Particularly, after $T$ rounds, we achieve an instance-dependent regret upper bounds of $O(Δ+ \sqrt{T})$ for ETC in zero-sum game setting and $O(\log (T Δ^2)/Δ)$ for the adaptive elimination algorithm and its variant with non-uniform exploration, where $Δ$ denotes the suboptimality gap. Therefore, our results indicate that ETC-based algorithms perform effectively in zero-sum game settings, achieving regret bounds comparable to existing methods while providing insight through instance-dependent analysis.
comment: 22 pages
Fed-SE: Federated Self-Evolution for Privacy-Constrained Multi-Environment LLM Agents
LLM agents are widely deployed in complex interactive tasks, yet privacy constraints often preclude centralized optimization and co-evolution across dynamic environments. Despite the demonstrated success of Federated Learning (FL) on static datasets, its effectiveness in open-ended, self-evolving agent systems remains largely unexplored. In such settings, the direct application of standard FL is particularly challenging, as heterogeneous tasks and sparse, trajectory-level reward signals give rise to severe gradient instability, which undermines the global optimization process. To bridge this gap, we propose Fed-SE, a Federated Self-Evolution framework for LLM agents that establishes a local evolution-global aggregation paradigm. Locally, agents employ parameter-efficient fine-tuning on filtered, high-return trajectories to achieve stable gradient updates. Globally, Fed-SE aggregates updates within a low-rank subspace, reducing communication cost across clients. Experiments across five heterogeneous environments demonstrate that Fed-SE improves average task success rates by 10\% over the state-of-the-art FedIT, validating its effectiveness in cross-environment knowledge transfer under privacy constraints.
Terrain Diffusion: A Diffusion-Based Successor to Perlin Noise in Infinite, Real-Time Terrain Generation
For decades, procedural worlds have been built on procedural noise functions such as Perlin noise, which are fast and infinite, yet fundamentally limited in realism and large-scale coherence. We introduce Terrain Diffusion, a generative framework that bridges the fidelity of diffusion models with the properties that made procedural noise indispensable: seamless infinite extent, seed-consistency, and constant-time random access. At its core is InfiniteDiffusion, a novel algorithm for infinite generation that reformulates standard diffusion sampling for unbounded domains. While noise functions remain near-instant, our framework outpaces orbital velocity by 9 times on a consumer GPU, enabling realistic terrain generation at interactive rates. We integrate a hierarchical stack of diffusion models to couple planetary context with local detail, a compact Laplacian encoding to stabilize outputs across Earth-scale dynamic ranges, and an open-source infinite-tensor framework for constant-memory manipulation of unbounded tensors. Together, these components position diffusion models as a practical, scalable foundation for the next generation of infinite virtual worlds.
comment: Project website: https://xandergos.github.io/terrain-diffusion/ Code: https://github.com/xandergos/terrain-diffusion/
Shape-Aware Topological Representation for Pipeline Hyperbola Detection in GPR Data
Ground Penetrating Radar (GPR) is a widely used Non-Destructive Testing (NDT) technique for subsurface exploration, particularly in infrastructure inspection and maintenance. However, conventional interpretation methods are often limited by noise sensitivity and a lack of structural awareness. This study presents a novel framework that enhances the detection of underground utilities, especially pipelines, by integrating shape-aware topological features derived from B-scan GPR images using Topological Data Analysis (TDA), with the spatial detection capabilities of the YOLOv5 deep neural network (DNN). We propose a novel shape-aware topological representation that amplifies structural features in the input data, thereby improving the model's responsiveness to the geometrical features of buried objects. To address the scarcity of annotated real-world data, we employ a Sim2Real strategy that generates diverse and realistic synthetic datasets, effectively bridging the gap between simulated and real-world domains. Experimental results demonstrate significant improvements in mean Average Precision (mAP), validating the robustness and efficacy of our approach. This approach underscores the potential of TDA-enhanced learning in achieving reliable, real-time subsurface object detection, with broad applications in urban planning, safety inspection, and infrastructure management.
comment: 15 pages, 6 figures
MODE: Efficient Time Series Prediction with Mamba Enhanced by Low-Rank Neural ODEs
Time series prediction plays a pivotal role across diverse domains such as finance, healthcare, energy systems, and environmental modeling. However, existing approaches often struggle to balance efficiency, scalability, and accuracy, particularly when handling long-range dependencies and irregularly sampled data. To address these challenges, we propose MODE, a unified framework that integrates Low-Rank Neural Ordinary Differential Equations (Neural ODEs) with an Enhanced Mamba architecture. As illustrated in our framework, the input sequence is first transformed by a Linear Tokenization Layer and then processed through multiple Mamba Encoder blocks, each equipped with an Enhanced Mamba Layer that employs Causal Convolution, SiLU activation, and a Low-Rank Neural ODE enhancement to efficiently capture temporal dynamics. This low-rank formulation reduces computational overhead while maintaining expressive power. Furthermore, a segmented selective scanning mechanism, inspired by pseudo-ODE dynamics, adaptively focuses on salient subsequences to improve scalability and long-range sequence modeling. Extensive experiments on benchmark datasets demonstrate that MODE surpasses existing baselines in both predictive accuracy and computational efficiency. Overall, our contributions include: (1) a unified and efficient architecture for long-term time series modeling, (2) integration of Mamba's selective scanning with low-rank Neural ODEs for enhanced temporal representation, and (3) substantial improvements in efficiency and scalability enabled by low-rank approximation and dynamic selective scanning.
comment: 12 pages, 6 figures, and 3 tables. Updated description and explanations, and correct some typos
Parallel Algorithms for Structured Sparse Support Vector Machines: Application in Music Genre Classification
Mathematical modelling, particularly through approaches such as structured sparse support vector machines (SS-SVM), plays a crucial role in processing data with complex feature structures, yet efficient algorithms for distributed large-scale data remain lacking. To address this gap, this paper proposes a unified optimization framework based on a consensus structure. This framework is not only applicable to various loss functions and combined regularization terms but can also be effectively extended to non-convex regularizers, demonstrating strong scalability. Building upon this framework, we develop a distributed parallel alternating direction method of multipliers (ADMM) algorithm to efficiently solve SS-SVMs under distributed data storage. To ensure convergence, we incorporate a Gaussian back-substitution technique. Additionally, for completeness, we introduce a family of sparse group Lasso support vector machine (SGL-SVM) and apply it to music information retrieval. Theoretical analysis confirms that the computational complexity of the proposed algorithm is independent of the choice of regularization terms and loss functions, underscoring the universality of the parallel approach. Experiments on both synthetic and real-world music archive datasets validate the reliability, stability, and efficiency of our algorithm.
SAEMark: Steering Personalized Multilingual LLM Watermarks with Sparse Autoencoders NeurIPS 2025
Watermarking LLM-generated text is critical for content attribution and misinformation prevention. However, existing methods compromise text quality, require white-box model access and logit manipulation. These limitations exclude API-based models and multilingual scenarios. We propose SAEMark, a general framework for post-hoc multi-bit watermarking that embeds personalized messages solely via inference-time, feature-based rejection sampling without altering model logits or requiring training. Our approach operates on deterministic features extracted from generated text, selecting outputs whose feature statistics align with key-derived targets. This framework naturally generalizes across languages and domains while preserving text quality through sampling LLM outputs instead of modifying. We provide theoretical guarantees relating watermark success probability and compute budget that hold for any suitable feature extractor. Empirically, we demonstrate the framework's effectiveness using Sparse Autoencoders (SAEs), achieving superior detection accuracy and text quality. Experiments across 4 datasets show SAEMark's consistent performance, with 99.7% F1 on English and strong multi-bit detection accuracy. SAEMark establishes a new paradigm for scalable watermarking that works out-of-the-box with closed-source LLMs while enabling content attribution.
comment: 24 pages, 12 figures, NeurIPS 2025, code available: https://zhuohaoyu.github.io/SAEMark
Berezinskii--Kosterlitz--Thouless transition in a context-sensitive random language model
Several power-law critical properties involving different statistics in natural languages -- reminiscent of scaling properties of physical systems at or near phase transitions -- have been documented for decades. The recent rise of large language models has added further evidence and excitement by providing intriguing similarities with notions in physics such as scaling laws and emergent abilities. However, specific instances of classes of generative language models that exhibit phase transitions, as understood by the statistical physics community, are lacking. In this work, inspired by the one-dimensional Potts model in statistical physics, we construct a simple probabilistic language model that falls under the class of context-sensitive grammars, which we call the context-sensitive random language model, and numerically demonstrate an unambiguous phase transition in the framework of a natural language model. We explicitly show that a precisely defined order parameter -- that captures symbol frequency biases in the sentences generated by the language model -- changes from strictly zero to a strictly nonzero value (in the infinite-length limit of sentences), implying a mathematical singularity arising when tuning the parameter of the stochastic language model we consider. Furthermore, we identify the phase transition as a variant of the Berezinskii--Kosterlitz--Thouless (BKT) transition, which is known to exhibit critical properties not only at the transition point but also in the entire phase. This finding leads to the possibility that critical properties in natural languages may not require careful fine-tuning nor self-organized criticality, but are generically explained by the underlying connection between language structures and the BKT phases.
comment: accepted for publication in PRE
From Sublinear to Linear: Fast Convergence in Deep Networks via Locally Polyak-Lojasiewicz Regions
Gradient descent (GD) on deep neural network loss landscapes is non-convex, yet often converges far faster in practice than classical guarantees suggest. Prior work shows that within locally quasi-convex regions (LQCRs), GD converges to stationary points at sublinear rates, leaving the commonly observed near-exponential training dynamics unexplained. We show that, under a mild local Neural Tangent Kernel (NTK) stability assumption, the loss satisfies a PL-type error bound within these regions, yielding a Locally Polyak-Lojasiewicz Region (LPLR) in which the squared gradient norm controls the suboptimality gap. For properly initialized finite-width networks, we show that under local NTK stability this PL-type mechanism holds around initialization and establish linear convergence of GD as long as the iterates remain within the resulting LPLR. Empirically, we observe PL-like scaling and linear-rate loss decay in controlled full-batch training and in a ResNet-style CNN trained with mini-batch SGD on a CIFAR-10 subset, indicating that LPLR signatures can persist under modern architectures and stochastic optimization. Overall, the results connect local geometric structure, local NTK stability, and fast optimization rates in a finite-width setting.
Enhancing Rare Codes via Probability-Biased Directed Graph Attention for Long-Tail ICD Coding
Automated international classification of diseases (ICD) coding aims to assign multiple disease codes to clinical documents and plays a critical role in healthcare informatics. However, its performance is hindered by the extreme long-tail distribution of the ICD ontology, where a few common codes dominate while thousands of rare codes have very few examples. To address this issue, we propose a Probability-Biased Directed Graph Attention model (ProBias) that partitions codes into common and rare sets and allows information to flow only from common to rare codes. Edge weights are determined by conditional co-occurrence probabilities, which guide the attention mechanism to enrich rare-code representations with clinically related signals. To provide higher-quality semantic representations as model inputs, we further employ large language models to generate enriched textual descriptions for ICD codes, offering external clinical context that complements statistical co-occurrence signals. Applied to automated ICD coding, our approach significantly improves the representation and prediction of rare codes, achieving state-of-the-art performance on three benchmark datasets. In particular, we observe substantial gains in macro-averaged F1 score, a key metric for long-tail classification.
Generative Modeling via Hierarchical Tensor Sketching
We propose a hierarchical tensor-network approach for approximating high-dimensional probability density via empirical distribution. This leverages randomized singular value decomposition (SVD) techniques and involves solving linear equations for tensor cores in this tensor network. The complexity of the resulting algorithm scales linearly in the dimension of the high-dimensional density. An analysis of estimation error demonstrates the effectiveness of this method through several numerical experiments.
comment: 31 pages, 15 figures
Crystal Generation using the Fully Differentiable Pipeline and Latent Space Optimization
We present a materials generation framework that couples a symmetry-conditioned variational autoencoder (CVAE) with a differentiable SO(3) power spectrum objective to steer candidates toward a specified local environment under the crystallographic constraints. In particular, we implement a fully differentiable pipeline to enable batch-wise optimization on both direct and latent crystallographic representations. Using the GPU acceleration, this implementation achieves about fivefold speed compared to our previous CPU workflow, while yielding comparable outcomes. In addition, we introduce the optimization strategy that alternatively performs optimization on the direct and latent crystal representations. This dual-level relaxation approach can effectively escape local minima defined by different objective gradients, thus increasing the success rate of generating complex structures satisfying the target local environments. This framework can be extended to systems consisting of multi-components and multi-environments, providing a scalable route to generate material structures with the target local environment.
Low-Rank Online Dynamic Assortment with Dual Contextual Information
As e-commerce expands, delivering real-time personalized recommendations from vast catalogs poses a critical challenge for retail platforms. Maximizing revenue requires careful consideration of both individual customer characteristics and available item features to continuously optimize assortments over time. In this paper, we consider the dynamic assortment problem with dual contexts -- user and item features. In high-dimensional scenarios, the quadratic growth of dimensions complicates computation and estimation. To tackle this challenge, we introduce a new low-rank dynamic assortment model to transform this problem into a manageable scale. Then we propose an efficient algorithm that estimates the intrinsic subspaces and utilizes the upper confidence bound approach to address the exploration-exploitation trade-off in online decision making. Theoretically, we establish a regret bound of $\tilde{O}((d_1+d_2)r\sqrt{T})$, where $d_1, d_2$ represent the dimensions of the user and item features respectively, $r$ is the rank of the parameter matrix, and $T$ denotes the time horizon. This bound represents a substantial improvement over prior literature, achieved by leveraging the low-rank structure. Extensive simulations and an application to the Expedia hotel recommendation dataset further demonstrate the advantages of our proposed method.
MimicKit: A Reinforcement Learning Framework for Motion Imitation and Control
MimicKit is an open-source framework for training motion controllers using motion imitation and reinforcement learning. The codebase provides implementations of commonly-used motion-imitation techniques and RL algorithms. This framework is intended to support research and applications in computer graphics and robotics by providing a unified training framework, along with standardized environment, agent, and data structures. The codebase is designed to be modular and easily configurable, enabling convenient modification and extension to new characters and tasks. The open-source codebase is available at: https://github.com/xbpeng/MimicKit.
Copula-Stein Discrepancy: A Generator-Based Stein Operator for Archimedean Dependence
Kernel Stein discrepancies (KSDs) are widely used for goodness-of-fit testing, but standard KSDs can be insensitive to higher-order dependence features such as tail dependence. We introduce the Copula-Stein Discrepancy (CSD), which defines a Stein operator directly on the copula density to target dependence geometry rather than the joint score. For Archimedean copulas, CSD admits a closed-form Stein kernel derived from the scalar generator. We prove that CSD metrizes weak convergence of copula distributions, admits an empirical estimator with minimax-optimal rate $O_P(n^{-1/2})$, and is sensitive to differences in tail dependence coefficients. We further extend the framework beyond Archimedean families to general copulas, including elliptical and vine constructions. Computationally, exact CSD kernel evaluation is linear in dimension, and a random-feature approximation reduces the quadratic $O(n^2)$ sample scaling to near-linear $\tilde{O}(n)$; experiments show near-nominal Type~I error, increasing power, and rapid concentration of the approximation toward the exact $\widehat{\mathrm{CSD}}_n^2$ as the number of features grows.
Graphics 4
A New Perspective on Drawing Venn Diagrams for Data Visualization
We introduce VennFan, a method for generating $n$-set Venn diagrams based on the polar coordinate projection of trigonometric boundaries, resulting in Venn diagrams that resemble a set of fan blades. Unlike most classical constructions, our method emphasizes readability and customizability by using shaped sinusoids and amplitude scaling. We describe both sine- and cosine-based variants of VennFan and propose an automatic label placement heuristic tailored to these fan-like layouts. VennFan is available as a Python package (https://pypi.org/project/vennfan/).
comment: 15 pages, 19 figures
Radiant Foam Rendering on a Graph Processor
Many emerging many-core accelerators replace a single large device memory with hundreds to thousands of lightweight cores, each owning only a small local SRAM and exchanging data via explicit on-chip communication. This organization offers high aggregate bandwidth, but it breaks a key assumption behind many volumetric rendering techniques: that rays can randomly access a large, unified scene representation. Rendering efficiently on such hardware therefore requires distributing both data and computation, keeping ray traversal mostly local, and structuring communication into predictable routes. We present a fully in-SRAM, distributed renderer for the Radiant Foam Voronoi-cell volumetric representation on the Graphcore Mk2 IPU(Intelligence Processing Unit), a many-core accelerator with tile-local SRAM and explicit inter-tile communication. Our system shards the scene across tiles and forwards rays between shards through a hierarchical routing overlay, enabling ray marching entirely from on-chip SRAM with predictable communication. On Mip-NeRF~360 scenes, the system attains near-interactive throughput of approximately 1 fps at 640x480 with image and depth map quality close to the original GPU-based Radiant Foam implementation, while keeping all scene data and ray state in on-chip SRAM. Beyond demonstrating feasibility, we analyze routing, memory, and scheduling bottlenecks that inform how future distributed-memory accelerators can better support irregular, data-movement-heavy rendering workloads.
comment: 24 pages, 26 figures
Terrain Diffusion: A Diffusion-Based Successor to Perlin Noise in Infinite, Real-Time Terrain Generation
For decades, procedural worlds have been built on procedural noise functions such as Perlin noise, which are fast and infinite, yet fundamentally limited in realism and large-scale coherence. We introduce Terrain Diffusion, a generative framework that bridges the fidelity of diffusion models with the properties that made procedural noise indispensable: seamless infinite extent, seed-consistency, and constant-time random access. At its core is InfiniteDiffusion, a novel algorithm for infinite generation that reformulates standard diffusion sampling for unbounded domains. While noise functions remain near-instant, our framework outpaces orbital velocity by 9 times on a consumer GPU, enabling realistic terrain generation at interactive rates. We integrate a hierarchical stack of diffusion models to couple planetary context with local detail, a compact Laplacian encoding to stabilize outputs across Earth-scale dynamic ranges, and an open-source infinite-tensor framework for constant-memory manipulation of unbounded tensors. Together, these components position diffusion models as a practical, scalable foundation for the next generation of infinite virtual worlds.
comment: Project website: https://xandergos.github.io/terrain-diffusion/ Code: https://github.com/xandergos/terrain-diffusion/
MimicKit: A Reinforcement Learning Framework for Motion Imitation and Control
MimicKit is an open-source framework for training motion controllers using motion imitation and reinforcement learning. The codebase provides implementations of commonly-used motion-imitation techniques and RL algorithms. This framework is intended to support research and applications in computer graphics and robotics by providing a unified training framework, along with standardized environment, agent, and data structures. The codebase is designed to be modular and easily configurable, enabling convenient modification and extension to new characters and tasks. The open-source codebase is available at: https://github.com/xbpeng/MimicKit.
Robotics 17
Follow the Signs: Using Textual Cues and LLMs to Guide Efficient Robot Navigation
Autonomous navigation in unfamiliar environments often relies on geometric mapping and planning strategies that overlook rich semantic cues such as signs, room numbers, and textual labels. We propose a novel semantic navigation framework that leverages large language models (LLMs) to infer patterns from partial observations and predict regions where the goal is most likely located. Our method combines local perceptual inputs with frontier-based exploration and periodic LLM queries, which extract symbolic patterns (e.g., room numbering schemes and building layout structures) and update a confidence grid used to guide exploration. This enables robots to move efficiently toward goal locations labeled with textual identifiers (e.g., "room 8") even before direct observation. We demonstrate that this approach enables more efficient navigation in sparse, partially observable grid environments by exploiting symbolic patterns. Experiments across environments modeled after real floor plans show that our approach consistently achieves near-optimal paths and outperforms baselines by over 25% in Success weighted by Path Length.
Robotic Tele-Operation for Upper Aerodigestive Tract Microsurgery: System Design and Validation
Upper aerodigestive tract (UADT) treatments frequently employ transoral laser microsurgery (TLM) for procedures such as the removal of tumors or polyps. In TLM, a laser beam is used to cut target tissue, while forceps are employed to grasp, manipulate, and stabilize tissue within the UADT. Although TLM systems may rely on different technologies and interfaces, forceps manipulation is still predominantly performed manually, introducing limitations in ergonomics, precision, and controllability. This paper proposes a novel robotic system for tissue manipulation in UADT procedures, based on a novel end-effector designed for forceps control. The system is integrated within a teleoperation framework that employs a robotic manipulator with a programmed remote center of motion (RCM), enabling precise and constrained instrument motion while improving surgeon ergonomics. The proposed approach is validated through two experimental studies and a dedicated usability evaluation, demonstrating its effectiveness and suitability for UADT surgical applications.
Object-Centric World Models Meet Monte Carlo Tree Search
In this paper, we introduce ObjectZero, a novel reinforcement learning (RL) algorithm that leverages the power of object-level representations to model dynamic environments more effectively. Unlike traditional approaches that process the world as a single undifferentiated input, our method employs Graph Neural Networks (GNNs) to capture intricate interactions among multiple objects. These objects, which can be manipulated and interact with each other, serve as the foundation for our model's understanding of the environment. We trained the algorithm in a complex setting teeming with diverse, interactive objects, demonstrating its ability to effectively learn and predict object dynamics. Our results highlight that a structured world model operating on object-centric representations can be successfully integrated into a model-based RL algorithm utilizing Monte Carlo Tree Search as a planning module.
UMLoc: Uncertainty-Aware Map-Constrained Inertial Localization with Quantified Bounds
Inertial localization is particularly valuable in GPS-denied environments such as indoors. However, localization using only Inertial Measurement Units (IMUs) suffers from drift caused by motion-process noise and sensor biases. This paper introduces Uncertainty-aware Map-constrained Inertial Localization (UMLoc), an end-to-end framework that jointly models IMU uncertainty and map constraints to achieve drift-resilient positioning. UMLoc integrates two coupled modules: (1) a Long Short-Term Memory (LSTM) quantile regressor, which estimates the specific quantiles needed to define 68%, 90%, and 95% prediction intervals serving as a measure of localization uncertainty and (2) a Conditioned Generative Adversarial Network (CGAN) with cross-attention that fuses IMU dynamic data with distance-based floor-plan maps to generate geometrically feasible trajectories. The modules are trained jointly, allowing uncertainty estimates to propagate through the CGAN during trajectory generation. UMLoc was evaluated on three datasets, including a newly collected 2-hour indoor benchmark with time-aligned IMU data, ground-truth poses and floor-plan maps. Results show that the method achieves a mean drift ratio of 5.9% over a 70 m travel distance and an average Absolute Trajectory Error (ATE) of 1.36 m, while maintaining calibrated prediction bounds.
Model Reconciliation through Explainability and Collaborative Recovery in Assistive Robotics
Whenever humans and robots work together, it is essential that unexpected robot behavior can be explained to the user. Especially in applications such as shared control the user and the robot must share the same model of the objects in the world, and the actions that can be performed on these objects. In this paper, we achieve this with a so-called model reconciliation framework. We leverage a Large Language Model to predict and explain the difference between the robot's and the human's mental models, without the need of a formal mental model of the user. Furthermore, our framework aims to solve the model divergence after the explanation by allowing the human to correct the robot. We provide an implementation in an assistive robotics domain, where we conduct a set of experiments with a real wheelchair-based mobile manipulator and its digital twin.
Visible Light Communication using Led-Based AR Markers for Robot Localization
A method of information transmission using visual markers has been widely studied. In this approach, information or identifiers (IDs) are encoded in the black-and-white pattern of each marker. By analyzing the geometric properties of the marker frame - such as its size, distortion, and coordinates - the relative position and orientation between the camera and the marker can be estimated. Furthermore, by associating the positional information of each marker with its corresponding ID, the position of the camera that takes the image picture can be calculated. In the field of mobile robotics, such markers are commonly utilized for robot localization. As mobile robots become more widely used in everyday environments, such visual markers are expected to be utilized across various contexts. In environments where robots collaborate with humans - such as in cell-based manufacturing systems in factories or in domestic settings with partner robots - it is desirable for such markers to be designed in a manner that appears natural and unobtrusive to humans. In this paper, we propose a method for implementing an ArUco marker in the form of illumination. In the proposed method, LEDs are arranged in accordance with the grid pattern of the marker, and the blinking frequency of each LED is determined based on the corresponding black or white cell. As a result, the illumination appears uniformly bright to the human eye, while the camera can capture variations in the blinking frequency. From these differences, the black-and-white pattern can be reconstructed, enabling the identification of the marker's tag information. We develop a prototype system, and conduct experiments which are conducted to evaluate its performance in terms of recognition accuracy under varying distances and viewing angles with respect to the ArUco marker.
Precision Meets Art: Autonomous Multi-UAV System for Large Scale Mural Drawing
The integration of autonomous unmanned aerial vehicles (UAVs) into large-scale artistic projects has emerged as a new application in robotics. This paper presents the design, deployment, and testing of a novel multi-drone system for automated mural painting in outdoor settings. This technology makes use of new software that coordinates multiple drones simultaneously, utilizing state-machine algorithms for task execution. Key advancements are the complex positioning system that combines 2D localization using a single motion tracking camera with onboard LiDAR for precise positioning, and a novel flight control algorithm, which works differently along the trajectory and normally to it, ensuring smoothness and high precision of the drawings at the same time. A 100 square meters mural was created using the developed multi-drone system, validating the system's efficacy. Compared to single-drone approaches, our multi-UAV solution significantly improves scalability and operational speed while maintaining high stability even in harsh weather conditions. The findings highlight the potential of autonomous robotic swarms in creative applications, paving the way for further advancements in large-scale robotic art.
comment: 6 pages, 9 figures
CulinaryCut-VLAP: A Vision-Language-Action-Physics Framework for Food Cutting via a Force-Aware Material Point Method
Food cutting is a highly practical yet underexplored application at the intersection of vision and robotic manipulation. The task remains challenging because interactions between the knife and deformable materials are highly nonlinear and often entail large deformations, frequent contact, and topological change, which in turn hinder stable and safe large-scale data collection. To address these challenges, we propose a unified framework that couples a vision-language-action (VLA) dataset with a physically realistic cutting simulator built on the material point method (MPM). Our simulator adopts MLS-MPM as its computational core, reducing numerical dissipation and energy drift while preserving rotational and shear responses even under topology-changing cuts. During cutting, forces and stress distributions are estimated from impulse exchanges between particles and the grid, enabling stable tracking of transient contact forces and energy transfer. We also provide a benchmark dataset that integrates diverse cutting trajectories, multi-view visual observations, and fine-grained language instructions, together with force--torque and tool--pose labels to provide physically consistent training signals. These components realize a learning--evaluation loop that respects the core physics of cutting and establishes a safe, reproducible, and scalable foundation for advancing VLA models in deformable object manipulation.
comment: 16 pages; 15 figures; 5 tables
WHU-PCPR: A cross-platform heterogeneous point cloud dataset for place recognition in complex urban scenes
Point Cloud-based Place Recognition (PCPR) demonstrates considerable potential in applications such as autonomous driving, robot localization and navigation, and map update. In practical applications, point clouds used for place recognition are often acquired from different platforms and LiDARs across varying scene. However, existing PCPR datasets lack diversity in scenes, platforms, and sensors, which limits the effective development of related research. To address this gap, we establish WHU-PCPR, a cross-platform heterogeneous point cloud dataset designed for place recognition. The dataset differentiates itself from existing datasets through its distinctive characteristics: 1) cross-platform heterogeneous point clouds: collected from survey-grade vehicle-mounted Mobile Laser Scanning (MLS) systems and low-cost Portable helmet-mounted Laser Scanning (PLS) systems, each equipped with distinct mechanical and solid-state LiDAR sensors. 2) Complex localization scenes: encompassing real-time and long-term changes in both urban and campus road scenes. 3) Large-scale spatial coverage: featuring 82.3 km of trajectory over a 60-month period and an unrepeated route of approximately 30 km. Based on WHU-PCPR, we conduct extensive evaluation and in-depth analysis of several representative PCPR methods, and provide a concise discussion of key challenges and future research directions. The dataset and benchmark code are available at https://github.com/zouxianghong/WHU-PCPR.
Semantic Enrichment of CAD-Based Industrial Environments via Scene Graphs for Simulation and Reasoning
Utilizing functional elements in an industrial environment, such as displays and interactive valves, provide effective possibilities for robot training. When preparing simulations for robots or applications that involve high-level scene understanding, the simulation environment must be equally detailed. Although CAD files for such environments deliver an exact description of the geometry and visuals, they usually lack semantic, relational and functional information, thus limiting the simulation and training possibilities. A 3D scene graph can organize semantic, spatial and functional information by enriching the environment through a Large Vision-Language Model (LVLM). In this paper we present an offline approach to creating detailed 3D scene graphs from CAD environments. This will serve as a foundation to include the relations of functional and actionable elements, which then can be used for dynamic simulation and reasoning. Key results of this research include both quantitative results of the generated semantic labels as well as qualitative results of the scene graph, especially in hindsight of pipe structures and identified functional relations. All code, results and the environment will be made available at https://cad-scenegraph.github.io
comment: Accepted to IEEE SSRR 2025
Self-Organizing Dual-Buffer Adaptive Clustering Experience Replay (SODASER) for Safe Reinforcement Learning in Optimal Control
This paper proposes a novel reinforcement learning framework, named Self-Organizing Dual-buffer Adaptive Clustering Experience Replay (SODACER), designed to achieve safe and scalable optimal control of nonlinear systems. The proposed SODACER mechanism consisting of a Fast-Buffer for rapid adaptation to recent experiences and a Slow-Buffer equipped with a self-organizing adaptive clustering mechanism to maintain diverse and non-redundant historical experiences. The adaptive clustering mechanism dynamically prunes redundant samples, optimizing memory efficiency while retaining critical environmental patterns. The approach integrates SODASER with Control Barrier Functions (CBFs) to guarantee safety by enforcing state and input constraints throughout the learning process. To enhance convergence and stability, the framework is combined with the Sophia optimizer, enabling adaptive second-order gradient updates. The proposed SODACER-Sophia's architecture ensures reliable, effective, and robust learning in dynamic, safety-critical environments, offering a generalizable solution for applications in robotics, healthcare, and large-scale system optimization. The proposed approach is validated on a nonlinear Human Papillomavirus (HPV) transmission model with multiple control inputs and safety constraints. Comparative evaluations against random and clustering-based experience replay methods demonstrate that SODACER achieves faster convergence, improved sample efficiency, and a superior bias-variance trade-off, while maintaining safe system trajectories, validated via the Friedman test.
comment: Also available at SSRN: https://ssrn.com/abstract=5191427 or http://dx.doi.org/10.2139/ssrn.5191427
Adaptive Science Operations in Deep Space Missions Using Offline Belief State Planning
Deep space missions face extreme communication delays and environmental uncertainty that prevent real-time ground operations. To support autonomous science operations in communication-constrained environments, we present a partially observable Markov decision process (POMDP) framework that adaptively sequences spacecraft science instruments. We integrate a Bayesian network into the POMDP observation space to manage the high-dimensional and uncertain measurements typical of astrobiology missions. This network compactly encodes dependencies among measurements and improves the interpretability and computational tractability of science data. Instrument operation policies are computed offline, allowing resource-aware plans to be generated and thoroughly validated prior to launch. We use the Enceladus Orbilander's proposed Life Detection Suite (LDS) as a case study, demonstrating how Bayesian network structure and reward shaping influence system performance. We compare our method against the mission's baseline Concept of Operations (ConOps), evaluating both misclassification rates and performance in off-nominal sample accumulation scenarios. Our approach reduces sample identification errors by nearly 40%
comment: 7 pages, 4 tables, 5 figures, accepted in IEEE ISPARO 2025 (V2 - grammatical edits, also mispelled conference year)
First Experimental Demonstration of Natural Hovering Extremum Seeking: A New Paradigm in Flapping Flight Physics
In this letter, we report the first experimental demonstration of the recently emerged new paradigm in flapping flight physics called (Natural Hovering Extremum Seeking (NH-ES)) [doi.org/10.1103/4dm4-kc4g], which theorized that hovering flight physics observed in nature by flapping insects and hummingbirds can be generated via a model-free, real-time, computationally basic, sensory-based feedback mechanism that only needs the built-in natural oscillations of the flapping wing as its propulsive input. We run experiments, including moth-like, light source-seeking, on a flapping-wing body in a total model-free setting that is agnostic to morphological parameters and body/aerodynamic models, and show that the flapping body gains altitude and stabilizes hovering about the light source autonomously needing only sensor measurements of light intensity.
Cross-Platform Learnable Fuzzy Gain-Scheduled Proportional-Integral-Derivative Controller Tuning via Physics-Constrained Meta-Learning and Reinforcement Learning Adaptation
Motivation and gap: PID-family controllers remain a pragmatic choice for many robotic systems due to their simplicity and interpretability, but tuning stable, high-performing gains is time-consuming and typically non-transferable across robot morphologies, payloads, and deployment conditions. Fuzzy gain scheduling can provide interpretable online adjustment, yet its per-joint scaling and consequent parameters are platform-dependent and difficult to tune systematically. Proposed approach: We propose a hierarchical framework for cross-platform tuning of a learnable fuzzy gain-scheduled PID (LF-PID). The controller uses shared fuzzy membership partitions to preserve common error semantics, while learning per-joint scaling and Takagi-Sugeno consequent parameters that schedule PID gains online. Combined with physics-constrained virtual robot synthesis, meta-learning provides cross-platform initialization from robot physical features, and a lightweight reinforcement learning (RL) stage performs deployment-specific refinement under dynamics mismatch. Starting from three base simulated platforms, we generate 232 physically valid training variants via bounded perturbations of mass (+/-10%), inertia (+/-15%), and friction (+/-20%). Results and insight: We evaluate cross-platform generalization on two distinct systems (a 9-DOF serial manipulator and a 12-DOF quadruped) under multiple disturbance scenarios. The RL adaptation stage improves tracking performance on top of the meta-initialized controller, with up to 80.4% error reduction in challenging high-load joints (12.36 degrees to 2.42 degrees) and 19.2% improvement under parameter uncertainty. We further identify an optimization ceiling effect: online refinement yields substantial gains when the meta-initialized baseline exhibits localized deficiencies, but provides limited improvement when baseline quality is already uniformly strong.
comment: 24 pages,15 tables, 6 figures
VibES: Induced Vibration for Persistent Event-Based Sensing 3DV
Event cameras are a bio-inspired class of sensors that asynchronously measure per-pixel intensity changes. Under fixed illumination conditions in static or low-motion scenes, rigidly mounted event cameras are unable to generate any events and become unsuitable for most computer vision tasks. To address this limitation, recent work has investigated motion-induced event stimulation, which often requires complex hardware or additional optical components. In contrast, we introduce a lightweight approach to sustain persistent event generation by employing a simple rotating unbalanced mass to induce periodic vibrational motion. This is combined with a motion-compensation pipeline that removes the injected motion and yields clean, motion-corrected events for downstream perception tasks. We develop a hardware prototype to demonstrate our approach and evaluate it on real-world datasets. Our method reliably recovers motion parameters and improves both image reconstruction and edge detection compared to event-based sensing without motion induction.
comment: Accepted to the IEEE International Conference on 3D Vision (3DV), Vancouver, BC, Canada, Mar 20-23, 2026
What Is The Best 3D Scene Representation for Robotics? From Geometric to Foundation Models
In this paper, we provide a comprehensive overview of existing scene representation methods for robotics, covering traditional representations such as point clouds, voxels, signed distance functions (SDF), and scene graphs, as well as more recent neural representations like Neural Radiance Fields (NeRF), 3D Gaussian Splatting (3DGS), and the emerging Foundation Models. While current SLAM and localization systems predominantly rely on sparse representations like point clouds and voxels, dense scene representations are expected to play a critical role in downstream tasks such as navigation and obstacle avoidance. Moreover, neural representations such as NeRF, 3DGS, and foundation models are well-suited for integrating high-level semantic features and language-based priors, enabling more comprehensive 3D scene understanding and embodied intelligence. In this paper, we categorized the core modules of robotics into five parts (Perception, Mapping, Localization, Navigation, Manipulation). We start by presenting the standard formulation of different scene representation methods and comparing the advantages and disadvantages of scene representation across different modules. This survey is centered around the question: What is the best 3D scene representation for robotics? We then discuss the future development trends of 3D scene representations, with a particular focus on how the 3D Foundation Model could replace current methods as the unified solution for future robotic applications. The remaining challenges in fully realizing this model are also explored. We aim to offer a valuable resource for both newcomers and experienced researchers to explore the future of 3D scene representations and their application in robotics. We have published an open-source project on GitHub and will continue to add new works and technologies to this project.
Meta-learning enhanced adaptive robot control strategy for automated PCB assembly
The assembly of printed circuit boards (PCBs) is one of the standard processes in chip production, directly contributing to the quality and performance of the chips. In the automated PCB assembly process, machine vision and coordinate localization methods are commonly employed to guide the positioning of assembly units. However, occlusion or poor lighting conditions can affect the effectiveness of machine vision-based methods. Additionally, the assembly of odd-form components requires highly specialized fixtures for assembly unit positioning, leading to high costs and low flexibility, especially for multi-variety and small-batch production. Drawing on these considerations, a vision-free, model-agnostic meta-method for compensating robotic position errors is proposed, which maximizes the probability of accurate robotic positioning through interactive feedback, thereby reducing the dependency on visual feedback and mitigating the impact of occlusions or lighting variations. The proposed method endows the robot with the capability to learn and adapt to various position errors, inspired by the human instinct for grasping under uncertainties. Furthermore, it is a self-adaptive method that can accelerate the robotic positioning process as more examples are incorporated and learned. Empirical studies show that the proposed method can handle a variety of odd-form components without relying on specialized fixtures, while achieving similar assembly efficiency to highly dedicated automation equipment. As of the writing of this paper, the proposed meta-method has already been implemented in a robotic-based assembly line for odd-form electronic components. Since PCB assembly involves various electronic components with different sizes, shapes, and functions, subsequent studies can focus on assembly sequence and assembly route optimization to further enhance assembly efficiency.
comment: Pattern: CN 118960772 A
Computer Vision and Pattern Recognition 64
Beyond Perfect Scores: Proof-by-Contradiction for Trustworthy Machine Learning
Machine learning (ML) models show strong promise for new biomedical prediction tasks, but concerns about trustworthiness have hindered their clinical adoption. In particular, it is often unclear whether a model relies on true clinical cues or on spurious hierarchical correlations in the data. This paper introduces a simple yet broadly applicable trustworthiness test grounded in stochastic proof-by-contradiction. Instead of just showing high test performance, our approach trains and tests on spurious labels carefully permuted based on a potential outcomes framework. A truly trustworthy model should fail under such label permutation; comparable accuracy across real and permuted labels indicates overfitting, shortcut learning, or data leakage. Our approach quantifies this behavior through interpretable Fisher-style p-values, which are well understood by domain experts across medical and life sciences. We evaluate our approach on multiple new bacterial diagnostics to separate tasks and models learning genuine causal relationships from those driven by dataset artifacts or statistical coincidences. Our work establishes a foundation to build rigor and trust between ML and life-science research communities, moving ML models one step closer to clinical adoption.
comment: 13 pages, 6 figures
Quantification and Classification of Carbon Nanotubes in Electron Micrographs using Vision Foundation Models
Accurate characterization of carbon nanotube morphologies in electron microscopy images is vital for exposure assessment and toxicological studies, yet current workflows rely on slow, subjective manual segmentation. This work presents a unified framework leveraging vision foundation models to automate the quantification and classification of CNTs in electron microscopy images. First, we introduce an interactive quantification tool built on the Segment Anything Model (SAM) that segments particles with near-perfect accuracy using minimal user input. Second, we propose a novel classification pipeline that utilizes these segmentation masks to spatially constrain a DINOv2 vision transformer, extracting features exclusively from particle regions while suppressing background noise. Evaluated on a dataset of 1,800 TEM images, this architecture achieves 95.5% accuracy in distinguishing between four different CNT morphologies, significantly outperforming the current baseline despite using a fraction of the training data. Crucially, this instance-level processing allows the framework to resolve mixed samples, correctly classifying distinct particle types co-existing within a single field of view. These results demonstrate that integrating zero-shot segmentation with self-supervised feature learning enables high-throughput, reproducible nanomaterial analysis, transforming a labor-intensive bottleneck into a scalable, data-driven process.
eSkiTB: A Synthetic Event-based Dataset for Tracking Skiers
Tracking skiers in RGB broadcast footage is challenging due to motion blur, static overlays, and clutter that obscure the fast-moving athlete. Event cameras, with their asynchronous contrast sensing, offer natural robustness to such artifacts, yet a controlled benchmark for winter-sport tracking has been missing. We introduce event SkiTB (eSkiTB), a synthetic event-based ski tracking dataset generated from SkiTB using direct video-to-event conversion without neural interpolation, enabling an iso-informational comparison between RGB and event modalities. Benchmarking SDTrack (spiking transformer) against STARK (RGB transformer), we find that event-based tracking is substantially resilient to broadcast clutter in scenes dominated by static overlays, achieving 0.685 IoU, outperforming RGB by +20.0 points. Across the dataset, SDTrack attains a mean IoU of 0.711, demonstrating that temporal contrast is a reliable cue for tracking ballistic motion in visually congested environments. eSkiTB establishes the first controlled setting for event-based tracking in winter sports and highlights the promise of event cameras for ski tracking. The dataset and code will be released at https://github.com/eventbasedvision/eSkiTB.
Boosting Overlapping Organoid Instance Segmentation Using Pseudo-Label Unmixing and Synthesis-Assisted Learning
Organoids, sophisticated in vitro models of human tissues, are crucial for medical research due to their ability to simulate organ functions and assess drug responses accurately. Accurate organoid instance segmentation is critical for quantifying their dynamic behaviors, yet remains profoundly limited by high-quality annotated datasets and pervasive overlap in microscopy imaging. While semi-supervised learning (SSL) offers a solution to alleviate reliance on scarce labeled data, conventional SSL frameworks suffer from biases induced by noisy pseudo-labels, particularly in overlapping regions. Synthesis-assisted SSL (SA-SSL) has been proposed for mitigating training biases in semi-supervised semantic segmentation. We present the first adaptation of SA-SSL to organoid instance segmentation and reveal that SA-SSL struggles to disentangle intertwined organoids, often misrepresenting overlapping instances as a single entity. To overcome this, we propose Pseudo-Label Unmixing (PLU), which identifies erroneous pseudo-labels for overlapping instances and then regenerates organoid labels through instance decomposition. For image synthesis, we apply a contour-based approach to synthesize organoid instances efficiently, particularly for overlapping cases. Instance-level augmentations (IA) on pseudo-labels before image synthesis further enhances the effect of synthetic data (SD). Rigorous experiments on two organoid datasets demonstrate our method's effectiveness, achieving performance comparable to fully supervised models using only 10% labeled data, and state-of-the-art results. Ablation studies validate the contributions of PLU, contour-based synthesis, and augmentation-aware training. By addressing overlap at both pseudo-label and synthesis levels, our work advances scalable, label-efficient organoid analysis, unlocking new potential for high-throughput applications in precision medicine.
Sissi: Zero-shot Style-guided Image Synthesis via Semantic-style Integration
Text-guided image generation has advanced rapidly with large-scale diffusion models, yet achieving precise stylization with visual exemplars remains difficult. Existing approaches often depend on task-specific retraining or expensive inversion procedures, which can compromise content integrity, reduce style fidelity, and lead to an unsatisfactory trade-off between semantic prompt adherence and style alignment. In this work, we introduce a training-free framework that reformulates style-guided synthesis as an in-context learning task. Guided by textual semantic prompts, our method concatenates a reference style image with a masked target image, leveraging a pretrained ReFlow-based inpainting model to seamlessly integrate semantic content with the desired style through multimodal attention fusion. We further analyze the imbalance and noise sensitivity inherent in multimodal attention fusion and propose a Dynamic Semantic-Style Integration (DSSI) mechanism that reweights attention between textual semantic and style visual tokens, effectively resolving guidance conflicts and enhancing output coherence. Experiments show that our approach achieves high-fidelity stylization with superior semantic-style balance and visual quality, offering a simple yet powerful alternative to complex, artifact-prone prior methods.
APEX: Learning Adaptive Priorities for Multi-Objective Alignment in Vision-Language Generation
Multi-objective alignment for text-to-image generation is commonly implemented via static linear scalarization, but fixed weights often fail under heterogeneous rewards, leading to optimization imbalance where models overfit high-variance, high-responsiveness objectives (e.g., OCR) while under-optimizing perceptual goals. We identify two mechanistic causes: variance hijacking, where reward dispersion induces implicit reweighting that dominates the normalized training signal, and gradient conflicts, where competing objectives produce opposing update directions and trigger seesaw-like oscillations. We propose APEX (Adaptive Priority-based Efficient X-objective Alignment), which stabilizes heterogeneous rewards with Dual-Stage Adaptive Normalization and dynamically schedules objectives via P^3 Adaptive Priorities that combine learning potential, conflict penalty, and progress need. On Stable Diffusion 3.5, APEX achieves improved Pareto trade-offs across four heterogeneous objectives, with balanced gains of +1.31 PickScore, +0.35 DeQA, and +0.53 Aesthetics while maintaining competitive OCR accuracy, mitigating the instability of multi-objective alignment.
QCaption: Video Captioning and Q&A through Fusion of Large Multimodal Models
This paper introduces QCaption, a novel video captioning and Q&A pipeline that enhances video analytics by fusing three models: key frame extraction, a Large Multimodal Model (LMM) for image-text analysis, and a Large Language Model (LLM) for text analysis. This approach enables integrated analysis of text, images, and video, achieving performance improvements over existing video captioning and Q&A models; all while remaining fully self-contained, adept for on-premises deployment. Experimental results using QCaption demonstrated up to 44.2% and 48.9% improvements in video captioning and Q&A tasks, respectively. Ablation studies were also performed to assess the role of LLM on the fusion on the results. Moreover, the paper proposes and evaluates additional video captioning approaches, benchmarking them against QCaption and existing methodologies. QCaption demonstrate the potential of adopting a model fusion approach in advancing video analytics.
ArrowGEV: Grounding Events in Video via Learning the Arrow of Time
Grounding events in videos serves as a fundamental capability in video analysis. While Vision-Language Models (VLMs) are increasingly employed for this task, existing approaches predominantly train models to associate events with timestamps in the forward video only. This paradigm hinders VLMs from capturing the inherent temporal structure and directionality of events, thereby limiting robustness and generalization. To address this limitation, inspired by the arrow of time in physics, which characterizes the intrinsic directionality of temporal processes, we propose ArrowGEV, a reinforcement learning framework that explicitly models temporal directionality in events to improve both event grounding and temporal directionality understanding in VLMs. Specifically, we categorize events into time-sensitive (e.g., putting down a bag) and time-insensitive (e.g., holding a towel in the left hand). The former denote events whose reversal substantially alters their meaning, while the latter remain semantically unchanged under reversal. For time-sensitive events, ArrowGEV introduces a reward that encourages VLMs to discriminate between forward and backward videos, whereas for time-insensitive events, it enforces consistent grounding across both directions. Extensive experiments demonstrate that ArrowGEV not only improves grounding precision and temporal directionality recognition, but also enhances general video understanding and reasoning ability.
Hard Thresholding Pursuit Algorithms for Least Absolute Deviations Problem
Least absolute deviations (LAD) is a statistical optimality criterion widely utilized in scenarios where a minority of measurements are contaminated by outliers of arbitrary magnitudes. In this paper, we delve into the robustness of the variant of adaptive iterative hard thresholding to outliers, known as graded fast hard thresholding pursuit (GFHTP$_1$) algorithm. Unlike the majority of the state-of-the-art algorithms in this field, GFHTP$_1$ does not require prior information about the signal's sparsity. Moreover, its design is parameterless, which not only simplifies the implementation process but also removes the intricacies of parameter optimization. Numerical experiments reveal that the GFHTP$_1$ algorithm consistently outperforms competing algorithms in terms of both robustness and computational efficiency.
LLMTrack: Semantic Multi-Object Tracking with Multi-modal Large Language Models
Traditional Multi-Object Tracking (MOT) systems have achieved remarkable precision in localization and association, effectively answering \textit{where} and \textit{who}. However, they often function as autistic observers, capable of tracing geometric paths but blind to the semantic \textit{what} and \textit{why} behind object behaviors. To bridge the gap between geometric perception and cognitive reasoning, we propose \textbf{LLMTrack}, a novel end-to-end framework for Semantic Multi-Object Tracking (SMOT). We adopt a bionic design philosophy that decouples strong localization from deep understanding, utilizing Grounding DINO as the eyes and the LLaVA-OneVision multimodal large model as the brain. We introduce a Spatio-Temporal Fusion Module that aggregates instance-level interaction features and video-level contexts, enabling the Large Language Model (LLM) to comprehend complex trajectories. Furthermore, we design a progressive three-stage training strategy, Visual Alignment, Temporal Fine-tuning, and Semantic Injection via LoRA to efficiently adapt the massive model to the tracking domain. Extensive experiments on the BenSMOT benchmark demonstrate that LLMTrack achieves state-of-the-art performance, significantly outperforming existing methods in instance description, interaction recognition, and video summarization while maintaining robust tracking stability.
Towards Egocentric 3D Hand Pose Estimation in Unseen Domains WACV 2026
We present V-HPOT, a novel approach for improving the cross-domain performance of 3D hand pose estimation from egocentric images across diverse, unseen domains. State-of-the-art methods demonstrate strong performance when trained and tested within the same domain. However, they struggle to generalise to new environments due to limited training data and depth perception -- overfitting to specific camera intrinsics. Our method addresses this by estimating keypoint z-coordinates in a virtual camera space, normalised by focal length and image size, enabling camera-agnostic depth prediction. We further leverage this invariance to camera intrinsics to propose a self-supervised test-time optimisation strategy that refines the model's depth perception during inference. This is achieved by applying a 3D consistency loss between predicted and in-space scale-transformed hand poses, allowing the model to adapt to target domain characteristics without requiring ground truth annotations. V-HPOT significantly improves 3D hand pose estimation performance in cross-domain scenarios, achieving a 71% reduction in mean pose error on the H2O dataset and a 41% reduction on the AssemblyHands dataset. Compared to state-of-the-art methods, V-HPOT outperforms all single-stage approaches across all datasets and competes closely with two-stage methods, despite needing approximately x3.5 to x14 less data.
comment: Accepted at WACV 2026
Toward Generalizable Deblurring: Leveraging Massive Blur Priors with Linear Attention for Real-World Scenarios
Image deblurring has advanced rapidly with deep learning, yet most methods exhibit poor generalization beyond their training datasets, with performance dropping significantly in real-world scenarios. Our analysis shows this limitation stems from two factors: datasets face an inherent trade-off between realism and coverage of diverse blur patterns, and algorithmic designs remain restrictive, as pixel-wise losses drive models toward local detail recovery while overlooking structural and semantic consistency, whereas diffusion-based approaches, though perceptually strong, still fail to generalize when trained on narrow datasets with simplistic strategies. Through systematic investigation, we identify blur pattern diversity as the decisive factor for robust generalization and propose Blur Pattern Pretraining (BPP), which acquires blur priors from simulation datasets and transfers them through joint fine-tuning on real data. We further introduce Motion and Semantic Guidance (MoSeG) to strengthen blur priors under severe degradation, and integrate it into GLOWDeblur, a Generalizable reaL-wOrld lightWeight Deblur model that combines convolution-based pre-reconstruction & domain alignment module with a lightweight diffusion backbone. Extensive experiments on six widely-used benchmarks and two real-world datasets validate our approach, confirming the importance of blur priors for robust generalization and demonstrating that the lightweight design of GLOWDeblur ensures practicality in real-world applications. The project page is available at https://vegdog007.github.io/GLOWDeblur_Website/.
comment: 19 pages, 14 figures, 6 tables
BabyVision: Visual Reasoning Beyond Language
While humans develop core visual skills long before acquiring language, contemporary Multimodal LLMs (MLLMs) still rely heavily on linguistic priors to compensate for their fragile visual understanding. We uncovered a crucial fact: state-of-the-art MLLMs consistently fail on basic visual tasks that humans, even 3-year-olds, can solve effortlessly. To systematically investigate this gap, we introduce BabyVision, a benchmark designed to assess core visual abilities independent of linguistic knowledge for MLLMs. BabyVision spans a wide range of tasks, with 388 items divided into 22 subclasses across four key categories. Empirical results and human evaluation reveal that leading MLLMs perform significantly below human baselines. Gemini3-Pro-Preview scores 49.7, lagging behind 6-year-old humans and falling well behind the average adult score of 94.1. These results show despite excelling in knowledge-heavy evaluations, current MLLMs still lack fundamental visual primitives. Progress in BabyVision represents a step toward human-level visual perception and reasoning capabilities. We also explore solving visual reasoning with generation models by proposing BabyVision-Gen and automatic evaluation toolkit. Our code and benchmark data are released at https://github.com/UniPat-AI/BabyVision for reproduction.
comment: 26 pages, Homepage at https://unipat.ai/blog/BabyVision
Bridging Robustness and Efficiency: Real-Time Low-Light Enhancement via Attention U-Net GAN
Recent advancements in Low-Light Image Enhancement (LLIE) have focused heavily on Diffusion Probabilistic Models, which achieve high perceptual quality but suffer from significant computational latency (often exceeding 2-4 seconds per image). Conversely, traditional CNN-based baselines offer real-time inference but struggle with "over-smoothing," failing to recover fine structural details in extreme low-light conditions. This creates a practical gap in the literature: the lack of a model that provides generative-level texture recovery at edge-deployable speeds. In this paper, we address this trade-off by proposing a hybrid Attention U-Net GAN. We demonstrate that the heavy iterative sampling of diffusion models is not strictly necessary for texture recovery. Instead, by integrating Attention Gates into a lightweight U-Net backbone and training within a conditional adversarial framework, we can approximate the high-frequency fidelity of generative models in a single forward pass. Extensive experiments on the SID dataset show that our method achieves a best-in-class LPIPS score of 0.112 among efficient models, significantly outperforming efficient baselines (SID, EnlightenGAN) while maintaining an inference latency of 0.06s. This represents a 40x speedup over latent diffusion models, making our approach suitable for near real-time applications.
comment: 7 pages, 2 figures, 3 tables
Precision Meets Art: Autonomous Multi-UAV System for Large Scale Mural Drawing
The integration of autonomous unmanned aerial vehicles (UAVs) into large-scale artistic projects has emerged as a new application in robotics. This paper presents the design, deployment, and testing of a novel multi-drone system for automated mural painting in outdoor settings. This technology makes use of new software that coordinates multiple drones simultaneously, utilizing state-machine algorithms for task execution. Key advancements are the complex positioning system that combines 2D localization using a single motion tracking camera with onboard LiDAR for precise positioning, and a novel flight control algorithm, which works differently along the trajectory and normally to it, ensuring smoothness and high precision of the drawings at the same time. A 100 square meters mural was created using the developed multi-drone system, validating the system's efficacy. Compared to single-drone approaches, our multi-UAV solution significantly improves scalability and operational speed while maintaining high stability even in harsh weather conditions. The findings highlight the potential of autonomous robotic swarms in creative applications, paving the way for further advancements in large-scale robotic art.
comment: 6 pages, 9 figures
3D CoCa v2: Contrastive Learners with Test-Time Search for Generalizable Spatial Intelligence
Spatial intelligence refers to the ability to perceive, reason about, and describe objects and their relationships within three-dimensional environments, forming a foundation for embodied perception and scene understanding. 3D captioning aims to describe 3D scenes in natural language; however, it remains challenging due to the sparsity and irregularity of point clouds and, more critically, the weak grounding and limited out-of-distribution (OOD) generalization of existing captioners across drastically different environments, including indoor and outdoor 3D scenes. To address this challenge, we propose 3D CoCa v2, a generalizable 3D captioning framework that unifies contrastive vision-language learning with 3D caption generation and further improves robustness via test-time search (TTS) without updating the captioner parameters. 3D CoCa v2 builds on a frozen CLIP-based semantic prior, a spatially-aware 3D scene encoder for geometry, and a multimodal decoder jointly optimized with contrastive and captioning objectives, avoiding external detectors or handcrafted proposals. At inference, TTS produces diverse caption candidates and performs reward-guided selection using a compact scene summary. Experiments show improvements over 3D CoCa of +1.50 CIDEr@0.5IoU on ScanRefer and +1.61 CIDEr@0.5IoU on Nr3D, and +3.8 CIDEr@0.25 in zero-shot OOD evaluation on TOD3Cap. Code will be released at https://github.com/AIGeeksGroup/3DCoCav2.
Learning Domain Agnostic Latent Embeddings of 3D Faces for Zero-shot Animal Expression Transfer WACV 2026
We present a zero-shot framework for transferring human facial expressions to 3D animal face meshes. Our method combines intrinsic geometric descriptors (HKS/WKS) with a mesh-agnostic latent embedding that disentangles facial identity and expression. The ID latent space captures species-independent facial structure, while the expression latent space encodes deformation patterns that generalize across humans and animals. Trained only with human expression pairs, the model learns the embeddings, decoupling, and recoupling of cross-identity expressions, enabling expression transfer without requiring animal expression data. To enforce geometric consistency, we employ Jacobian loss together with vertex-position and Laplacian losses. Experiments show that our approach achieves plausible cross-species expression transfer, effectively narrowing the geometric gap between human and animal facial shapes.
comment: WACV 2026 Workshop LENS
SRFlow: A Dataset and Regularization Model for High-Resolution Facial Optical Flow via Splatting Rasterization
Facial optical flow supports a wide range of tasks in facial motion analysis. However, the lack of high-resolution facial optical flow datasets has hindered progress in this area. In this paper, we introduce Splatting Rasterization Flow (SRFlow), a high-resolution facial optical flow dataset, and Splatting Rasterization Guided FlowNet (SRFlowNet), a facial optical flow model with tailored regularization losses. These losses constrain flow predictions using masks and gradients computed via difference or Sobel operator. This effectively suppresses high-frequency noise and large-scale errors in texture-less or repetitive-pattern regions, enabling SRFlowNet to be the first model explicitly capable of capturing high-resolution skin motion guided by Gaussian splatting rasterization. Experiments show that training with the SRFlow dataset improves facial optical flow estimation across various optical flow models, reducing end-point error (EPE) by up to 42% (from 0.5081 to 0.2953). Furthermore, when coupled with the SRFlow dataset, SRFlowNet achieves up to a 48% improvement in F1-score (from 0.4733 to 0.6947) on a composite of three micro-expression datasets. These results demonstrate the value of advancing both facial optical flow estimation and micro-expression recognition.
VVTRec: Radio Interferometric Reconstruction through Visual and Textual Modality Enrichment
Radio astronomy is an indispensable discipline for observing distant celestial objects. Measurements of wave signals from radio telescopes, called visibility, need to be transformed into images for astronomical observations. These dirty images blend information from real sources and artifacts. Therefore, astronomers usually perform reconstruction before imaging to obtain cleaner images. Existing methods consider only a single modality of sparse visibility data, resulting in images with remaining artifacts and insufficient modeling of correlation. To enhance the extraction of visibility information and emphasize output quality in the image domain, we propose VVTRec, a multimodal radio interferometric data reconstruction method with visibility-guided visual and textual modality enrichment. In our VVTRec, sparse visibility is transformed into image-form and text-form features to obtain enhancements in terms of spatial and semantic information, improving the structural integrity and accuracy of images. Also, we leverage Vision-Language Models (VLMs) to achieve additional training-free performance improvements. VVTRec enables sparse visibility, as a foreign modality unseen by VLMs, to accurately extract pre-trained knowledge as a supplement. Our experiments demonstrate that VVTRec effectively enhances imaging results by exploiting multimodal information without introducing excessive computational overhead.
SparseOccVLA: Bridging Occupancy and Vision-Language Models via Sparse Queries for Unified 4D Scene Understanding and Planning
In autonomous driving, Vision Language Models (VLMs) excel at high-level reasoning , whereas semantic occupancy provides fine-grained details. Despite significant progress in individual fields, there is still no method that can effectively integrate both paradigms. Conventional VLMs struggle with token explosion and limited spatiotemporal reasoning, while semantic occupancy provides a unified, explicit spatial representation but is too dense to integrate efficiently with VLMs. To address these challenges and bridge the gap between VLMs and occupancy, we propose SparseOccVLA, a novel vision-language-action model that unifies scene understanding, occupancy forecasting, and trajectory planning powered by sparse occupancy queries. Starting with a lightweight Sparse Occupancy Encoder, SparseOccVLA generates compact yet highly informative sparse occupancy queries that serve as the single bridge between vision and language. These queries are aligned into the language space and reasoned by the LLM for unified scene understanding and future occupancy forecasting. Furthermore, we introduce an LLM-guided Anchor-Diffusion Planner featuring decoupled anchor scoring and denoising, as well as cross-model trajectory-condition fusion. SparseOccVLA achieves a 7% relative improvement in CIDEr over the state-of-the-art on OmniDrive-nuScenes, a 0.5 increase in mIoU score on Occ3D-nuScenes, and sets state-of-the-art open-loop planning metric on nuScenes benchmark, demonstrating its strong holistic capability.
R$^3$D: Regional-guided Residual Radar Diffusion
Millimeter-wave radar enables robust environment perception in autonomous systems under adverse conditions yet suffers from sparse, noisy point clouds with low angular resolution. Existing diffusion-based radar enhancement methods either incur high learning complexity by modeling full LiDAR distributions or fail to prioritize critical structures due to uniform regional processing. To address these issues, we propose R3D, a regional-guided residual radar diffusion framework that integrates residual diffusion modeling-focusing on the concentrated LiDAR-radar residual encoding complementary high-frequency details to reduce learning difficulty-and sigma-adaptive regional guidance-leveraging radar-specific signal properties to generate attention maps and applying lightweight guidance only in low-noise stages to avoid gradient imbalance while refining key regions. Extensive experiments on the ColoRadar dataset demonstrate that R3D outperforms state-of-the-art methods, providing a practical solution for radar perception enhancement. Our anonymous code and pretrained models are released here: https://anonymous.4open.science/r/r3d-F836
comment: 6 pages, 4 figures
On the Adversarial Robustness of 3D Large Vision-Language Models
3D Vision-Language Models (VLMs), such as PointLLM and GPT4Point, have shown strong reasoning and generalization abilities in 3D understanding tasks. However, their adversarial robustness remains largely unexplored. Prior work in 2D VLMs has shown that the integration of visual inputs significantly increases vulnerability to adversarial attacks, making these models easier to manipulate into generating toxic or misleading outputs. In this paper, we investigate whether incorporating 3D vision similarly compromises the robustness of 3D VLMs. To this end, we present the first systematic study of adversarial robustness in point-based 3D VLMs. We propose two complementary attack strategies: \textit{Vision Attack}, which perturbs the visual token features produced by the 3D encoder and projector to assess the robustness of vision-language alignment; and \textit{Caption Attack}, which directly manipulates output token sequences to evaluate end-to-end system robustness. Each attack includes both untargeted and targeted variants to measure general vulnerability and susceptibility to controlled manipulation. Our experiments reveal that 3D VLMs exhibit significant adversarial vulnerabilities under untargeted attacks, while demonstrating greater resilience against targeted attacks aimed at forcing specific harmful outputs, compared to their 2D counterparts. These findings highlight the importance of improving the adversarial robustness of 3D VLMs, especially as they are deployed in safety-critical applications.
comment: Under Review
VIPER Strike: Defeating Visual Reasoning CAPTCHAs via Structured Vision-Language Inference
Visual Reasoning CAPTCHAs (VRCs) combine visual scenes with natural-language queries that demand compositional inference over objects, attributes, and spatial relations. They are increasingly deployed as a primary defense against automated bots. Existing solvers fall into two paradigms: vision-centric, which rely on template-specific detectors but fail on novel layouts, and reasoning-centric, which leverage LLMs but struggle with fine-grained visual perception. Both lack the generality needed to handle heterogeneous VRC deployments. We present ViPer, a unified attack framework that integrates structured multi-object visual perception with adaptive LLM-based reasoning. ViPer parses visual layouts, grounds attributes to question semantics, and infers target coordinates within a modular pipeline. Evaluated on six major VRC providers (VTT, Geetest, NetEase, Dingxiang, Shumei, Xiaodun), ViPer achieves up to 93.2% success, approaching human-level performance across multiple benchmarks. Compared to prior solvers, GraphNet (83.2%), Oedipus (65.8%), and the Holistic approach (89.5%), ViPer consistently outperforms all baselines. The framework further maintains robustness across alternative LLM backbones (GPT, Grok, DeepSeek, Kimi), sustaining accuracy above 90%. To anticipate defense, we further introduce Template-Space Randomization (TSR), a lightweight strategy that perturbs linguistic templates without altering task semantics. TSR measurably reduces solver (i.e., attacker) performance. Our proposed design suggests directions for human-solvable but machine-resistant CAPTCHAs.
comment: Accepted by Usenix Security 2026
Tone Matters: The Impact of Linguistic Tone on Hallucination in VLMs WACV
Vision-Language Models (VLMs) are increasingly used in safety-critical applications that require reliable visual grounding. However, these models often hallucinate details that are not present in the image to satisfy user prompts. While recent datasets and benchmarks have been introduced to evaluate systematic hallucinations in VLMs, many hallucination behaviors remain insufficiently characterized. In particular, prior work primarily focuses on object presence or absence, leaving it unclear how prompt phrasing and structural constraints can systematically induce hallucinations. In this paper, we investigate how different forms of prompt pressure influence hallucination behavior. We introduce Ghost-100, a procedurally generated dataset of synthetic scenes in which key visual details are deliberately removed, enabling controlled analysis of absence-based hallucinations. Using a structured 5-Level Prompt Intensity Framework, we vary prompts from neutral queries to toxic demands and rigid formatting constraints. We evaluate three representative open-weight VLMs: MiniCPM-V 2.6-8B, Qwen2-VL-7B, and Qwen3-VL-8B. Across all three models, hallucination rates do not increase monotonically with prompt intensity. All models exhibit reductions at higher intensity levels at different thresholds, though not all show sustained reduction under maximum coercion. These results suggest that current safety alignment is more effective at detecting semantic hostility than structural coercion, revealing model-specific limitations in handling compliance pressure. Our dataset is available at: https://github.com/bli1/tone-matters
comment: 10 pages, 6 figures, WACV Workshop
PixRec: Leveraging Visual Context for Next-Item Prediction in Sequential Recommendation
Large Language Models (LLMs) have recently shown strong potential for usage in sequential recommendation tasks through text-only models, which combine advanced prompt design, contrastive alignment, and fine-tuning on downstream domain-specific data. While effective, these approaches overlook the rich visual information present in many real-world recommendation scenarios, particularly in e-commerce. This paper proposes PixRec - a vision-language framework that incorporates both textual attributes and product images into the recommendation pipeline. Our architecture leverages a vision-language model backbone capable of jointly processing image-text sequences, maintaining a dual-tower structure and mixed training objective while aligning multi-modal feature projections for both item-item and user-item interactions. Using the Amazon Reviews dataset augmented with product images, our experiments demonstrate $3\times$ and 40% improvements in top-rank and top-10 rank accuracy over text-only recommenders respectively, indicating that visual features can help distinguish items with similar textual descriptions. Our work outlines future directions for scaling multi-modal recommenders training, enhancing visual-text feature fusion, and evaluating inference-time performance. This work takes a step toward building software systems utilizing visual information in sequential recommendation for real-world applications like e-commerce.
comment: 9 pages, 2 figures
CulinaryCut-VLAP: A Vision-Language-Action-Physics Framework for Food Cutting via a Force-Aware Material Point Method
Food cutting is a highly practical yet underexplored application at the intersection of vision and robotic manipulation. The task remains challenging because interactions between the knife and deformable materials are highly nonlinear and often entail large deformations, frequent contact, and topological change, which in turn hinder stable and safe large-scale data collection. To address these challenges, we propose a unified framework that couples a vision-language-action (VLA) dataset with a physically realistic cutting simulator built on the material point method (MPM). Our simulator adopts MLS-MPM as its computational core, reducing numerical dissipation and energy drift while preserving rotational and shear responses even under topology-changing cuts. During cutting, forces and stress distributions are estimated from impulse exchanges between particles and the grid, enabling stable tracking of transient contact forces and energy transfer. We also provide a benchmark dataset that integrates diverse cutting trajectories, multi-view visual observations, and fine-grained language instructions, together with force--torque and tool--pose labels to provide physically consistent training signals. These components realize a learning--evaluation loop that respects the core physics of cutting and establishes a safe, reproducible, and scalable foundation for advancing VLA models in deformable object manipulation.
comment: 16 pages; 15 figures; 5 tables
How to Build Robust, Scalable Models for GSV-Based Indicators in Neighborhood Research
A substantial body of health research demonstrates a strong link between neighborhood environments and health outcomes. Recently, there has been increasing interest in leveraging advances in computer vision to enable large-scale, systematic characterization of neighborhood built environments. However, the generalizability of vision models across fundamentally different domains remains uncertain, for example, transferring knowledge from ImageNet to the distinct visual characteristics of Google Street View (GSV) imagery. In applied fields such as social health research, several critical questions arise: which models are most appropriate, whether to adopt unsupervised training strategies, what training scale is feasible under computational constraints, and how much such strategies benefit downstream performance. These decisions are often costly and require specialized expertise. In this paper, we answer these questions through empirical analysis and provide practical insights into how to select and adapt foundation models for datasets with limited size and labels, while leveraging larger, unlabeled datasets through unsupervised training. Our study includes comprehensive quantitative and visual analyses comparing model performance before and after unsupervised adaptation.
WHU-PCPR: A cross-platform heterogeneous point cloud dataset for place recognition in complex urban scenes
Point Cloud-based Place Recognition (PCPR) demonstrates considerable potential in applications such as autonomous driving, robot localization and navigation, and map update. In practical applications, point clouds used for place recognition are often acquired from different platforms and LiDARs across varying scene. However, existing PCPR datasets lack diversity in scenes, platforms, and sensors, which limits the effective development of related research. To address this gap, we establish WHU-PCPR, a cross-platform heterogeneous point cloud dataset designed for place recognition. The dataset differentiates itself from existing datasets through its distinctive characteristics: 1) cross-platform heterogeneous point clouds: collected from survey-grade vehicle-mounted Mobile Laser Scanning (MLS) systems and low-cost Portable helmet-mounted Laser Scanning (PLS) systems, each equipped with distinct mechanical and solid-state LiDAR sensors. 2) Complex localization scenes: encompassing real-time and long-term changes in both urban and campus road scenes. 3) Large-scale spatial coverage: featuring 82.3 km of trajectory over a 60-month period and an unrepeated route of approximately 30 km. Based on WHU-PCPR, we conduct extensive evaluation and in-depth analysis of several representative PCPR methods, and provide a concise discussion of key challenges and future research directions. The dataset and benchmark code are available at https://github.com/zouxianghong/WHU-PCPR.
Semantic Enrichment of CAD-Based Industrial Environments via Scene Graphs for Simulation and Reasoning
Utilizing functional elements in an industrial environment, such as displays and interactive valves, provide effective possibilities for robot training. When preparing simulations for robots or applications that involve high-level scene understanding, the simulation environment must be equally detailed. Although CAD files for such environments deliver an exact description of the geometry and visuals, they usually lack semantic, relational and functional information, thus limiting the simulation and training possibilities. A 3D scene graph can organize semantic, spatial and functional information by enriching the environment through a Large Vision-Language Model (LVLM). In this paper we present an offline approach to creating detailed 3D scene graphs from CAD environments. This will serve as a foundation to include the relations of functional and actionable elements, which then can be used for dynamic simulation and reasoning. Key results of this research include both quantitative results of the generated semantic labels as well as qualitative results of the scene graph, especially in hindsight of pipe structures and identified functional relations. All code, results and the environment will be made available at https://cad-scenegraph.github.io
comment: Accepted to IEEE SSRR 2025
GlobalPaint: Spatiotemporal Coherent Video Outpainting with Global Feature Guidance
Video outpainting extends a video beyond its original boundaries by synthesizing missing border content. Compared with image outpainting, it requires not only per-frame spatial plausibility but also long-range temporal coherence, especially when outpainted content becomes visible across time under camera or object motion. We propose GlobalPaint, a diffusion-based framework for spatiotemporal coherent video outpainting. Our approach adopts a hierarchical pipeline that first outpaints key frames and then completes intermediate frames via an interpolation model conditioned on the completed boundaries, reducing error accumulation in sequential processing. At the model level, we augment a pretrained image inpainting backbone with (i) an Enhanced Spatial-Temporal module featuring 3D windowed attention for stronger spatiotemporal interaction, and (ii) global feature guidance that distills OpenCLIP features from observed regions across all frames into compact global tokens using a dedicated extractor. Comprehensive evaluations on benchmark datasets demonstrate improved reconstruction quality and more natural motion compared to prior methods. Our demo page is https://yuemingpan.github.io/GlobalPaint/
Context Matters: Peer-Aware Student Behavioral Engagement Measurement via VLM Action Parsing and LLM Sequence Classification
Understanding student behavior in the classroom is essential to improve both pedagogical quality and student engagement. Existing methods for predicting student engagement typically require substantial annotated data to model the diversity of student behaviors, yet privacy concerns often restrict researchers to their own proprietary datasets. Moreover, the classroom context, represented in peers' actions, is ignored. To address the aforementioned limitation, we propose a novel three-stage framework for video-based student engagement measurement. First, we explore the few-shot adaptation of the vision-language model for student action recognition, which is fine-tuned to distinguish among action categories with a few training samples. Second, to handle continuous and unpredictable student actions, we utilize the sliding temporal window technique to divide each student's 2-minute-long video into non-overlapping segments. Each segment is assigned an action category via the fine-tuned VLM model, generating a sequence of action predictions. Finally, we leverage the large language model to classify this entire sequence of actions, together with the classroom context, as belonging to an engaged or disengaged student. The experimental results demonstrate the effectiveness of the proposed approach in identifying student engagement.
Object-WIPER : Training-Free Object and Associated Effect Removal in Videos
In this paper, we introduce Object-WIPER, a training-free framework for removing dynamic objects and their associated visual effects from videos, and inpainting them with semantically consistent and temporally coherent content. Our approach leverages a pre-trained text-to-video diffusion transformer (DiT). Given an input video, a user-provided object mask, and query tokens describing the target object and its effects, we localize relevant visual tokens via visual-text cross-attention and visual self-attention. This produces an intermediate effect mask that we fuse with the user mask to obtain a final foreground token mask to replace. We first invert the video through the DiT to obtain structured noise, then reinitialize the masked tokens with Gaussian noise while preserving background tokens. During denoising, we copy values for the background tokens saved during inversion to maintain scene fidelity. To address the lack of suitable evaluation, we introduce a new object removal metric that rewards temporal consistency among foreground tokens across consecutive frames, coherence between foreground and background tokens within each frame, and dissimilarity between the input and output foreground tokens. Experiments on DAVIS and a newly curated real-world associated effect benchmark (WIPER-Bench) show that Object-WIPER surpasses both training-based and training-free baselines in terms of the metric, achieving clean removal and temporally stable reconstruction without any retraining. Our new benchmark, source code, and pre-trained models will be publicly available.
comment: Project Page: https://sakshamsingh1.github.io/object_wiper_webpage/
From Easy to Hard++: Promoting Differentially Private Image Synthesis Through Spatial-Frequency Curriculum
To improve the quality of Differentially private (DP) synthetic images, most studies have focused on improving the core optimization techniques (e.g., DP-SGD). Recently, we have witnessed a paradigm shift that takes these techniques off the shelf and studies how to use them together to achieve the best results. One notable work is DP-FETA, which proposes using `central images' for `warming up' the DP training and then using traditional DP-SGD. Inspired by DP-FETA, we are curious whether there are other such tools we can use together with DP-SGD. We first observe that using `central images' mainly works for datasets where there are many samples that look similar. To handle scenarios where images could vary significantly, we propose FETA-Pro, which introduces frequency features as `training shortcuts.' The complexity of frequency features lies between that of spatial features (captured by `central images') and full images, allowing for a finer-grained curriculum for DP training. To incorporate these two types of shortcuts together, one challenge is to handle the training discrepancy between spatial and frequency features. To address it, we leverage the pipeline generation property of generative models (instead of having one model trained with multiple features/objectives, we can have multiple models working on different features, then feed the generated results from one model into another) and use a more flexible design. Specifically, FETA-Pro introduces an auxiliary generator to produce images aligned with noisy frequency features. Then, another model is trained with these images, together with spatial features and DP-SGD. Evaluated across five sensitive image datasets, FETA-Pro shows an average of 25.7% higher fidelity and 4.1% greater utility than the best-performing baseline, under a privacy budget $ε= 1$.
comment: Accepted at Usenix Security 2026; code available at https://github.com/2019ChenGong/Feta-Pro
Consensus in the Parliament of AI: Harmonized Multi-Region CT-Radiomics and Foundation-Model Signatures for Multicentre NSCLC Risk Stratification
Purpose: This study evaluates the impact of harmonization and multi-region feature integration on survival prediction in non-small cell lung cancer (NSCLC) patients. We assess the prognostic utility of handcrafted radiomics and pretrained deep features from thoracic CT images, integrating them with clinical data using a multicentre dataset. Methods: Survival models were built using handcrafted radiomic and deep features from lung, tumor, mediastinal nodes, coronary arteries, and coronary artery calcium (CAC) scores from 876 patients across five centres. CT features were harmonized using ComBat, reconstruction kernel normalization (RKN), and RKN-ComBat. Models were constructed at the region of interest (ROI) level and through ensemble strategies. Regularized Cox models estimated overall survival, with performance assessed via the concordance index (C-index), 5-year time-dependent area under the curve (t-AUC), and hazard ratios. SHAP values interpreted feature contributions, while consensus analysis categorized predicted survival probabilities at fixed time points. Results: TNM staging showed prognostic value (C-index = 0.67; hazard ratio = 2.70; t-AUC = 0.85). The clinical and tumor texture radiomics model with ComBat yielded high performance (C-index = 0.76; t-AUC = 0.88). FM deep features from 50 voxel cubes also showed predictive value (C-index = 0.76; t-AUC = 0.89). An ensemble model combining tumor, lung, mediastinal node, CAC, and FM features achieved a C-index of 0.71 and t-AUC of 0.79. Consensus analysis identified a high-confidence patient subset, resulting in a model with a 5-year t-AUC of 0.92, sensitivity of 96.8%, and specificity of 70.0%. Conclusion: Harmonization and multi-region feature integration enhance survival prediction in NSCLC patients using CT imaging, supporting individualized risk stratification in multicentre settings.
TLRN: Temporal Latent Residual Networks For Large Deformation Image Registration
This paper presents a novel approach, termed {\em Temporal Latent Residual Network (TLRN)}, to predict a sequence of deformation fields in time-series image registration. The challenge of registering time-series images often lies in the occurrence of large motions, especially when images differ significantly from a reference (e.g., the start of a cardiac cycle compared to the peak stretching phase). To achieve accurate and robust registration results, we leverage the nature of motion continuity and exploit the temporal smoothness in consecutive image frames. Our proposed TLRN highlights a temporal residual network with residual blocks carefully designed in latent deformation spaces, which are parameterized by time-sequential initial velocity fields. We treat a sequence of residual blocks over time as a dynamic training system, where each block is designed to learn the residual function between desired deformation features and current input accumulated from previous time frames. We validate the effectivenss of TLRN on both synthetic data and real-world cine cardiac magnetic resonance (CMR) image videos. Our experimental results shows that TLRN is able to achieve substantially improved registration accuracy compared to the state-of-the-art. Our code is publicly available at https://github.com/nellie689/TLRN.
comment: 10 pages. Accepted by MICCAI 2024
Mesquite MoCap: Democratizing Real-Time Motion Capture with Affordable, Bodyworn IoT Sensors and WebXR SLAM
Motion capture remains costly and complex to deploy, limiting use outside specialized laboratories. We present Mesquite, an open-source, low-cost inertial motion-capture system that combines a body-worn network of 15 IMU sensor nodes with a hip-worn Android smartphone for position tracking. A low-power wireless link streams quaternion orientations to a central USB dongle and a browser-based application for real-time visualization and recording. Built on modern web technologies -- WebGL for rendering, WebXR for SLAM, WebSerial and WebSockets for device and network I/O, and Progressive Web Apps for packaging -- the system runs cross-platform entirely in the browser. In benchmarks against a commercial optical system, Mesquite achieves mean joint-angle error of 2-5 degrees while operating at approximately 5% of the cost. The system sustains 30 frames per second with end-to-end latency under 15ms and a packet delivery rate of at least 99.7% in standard indoor environments. By leveraging IoT principles, edge processing, and a web-native stack, Mesquite lowers the barrier to motion capture for applications in entertainment, biomechanics, healthcare monitoring, human-computer interaction, and virtual reality. We release hardware designs, firmware, and software under an open-source license (GNU GPL).
comment: submitted to IEEE Journal of IoT
TRASE: Tracking-free 4D Segmentation and Editing 3DV 2026
Understanding dynamic 3D scenes is crucial for extended reality (XR) and autonomous driving. Incorporating semantic information into 3D reconstruction enables holistic scene representations, unlocking immersive and interactive applications. To this end, we introduce TRASE, a novel tracking-free 4D segmentation method for dynamic scene understanding. TRASE learns a 4D segmentation feature field in a weakly-supervised manner, leveraging a soft-mined contrastive learning objective guided by SAM masks. The resulting feature space is semantically coherent and well-separated, and final object-level segmentation is obtained via unsupervised clustering. This enables fast editing, such as object removal, composition, and style transfer, by directly manipulating the scene's Gaussians. We evaluate TRASE on five dynamic benchmarks, demonstrating state-of-the-art segmentation performance from unseen viewpoints and its effectiveness across various interactive editing tasks. Our project page is available at: https://yunjinli.github.io/project-sadg/
comment: Accepted to 3DV 2026. Project page https://yunjinli.github.io/project-sadg
Combining Facial Videos and Biosignals for Stress Estimation During Driving
Reliable stress recognition is critical in applications such as medical monitoring and safety-critical systems, including real-world driving. While stress is commonly detected using physiological signals such as perinasal perspiration and heart rate, facial activity provides complementary cues that can be captured unobtrusively from video. We propose a multimodal stress estimation framework that combines facial videos and physiological signals, remaining effective even when biosignal acquisition is challenging. Facial behavior is represented using a dense 3D Morphable Model, yielding a 56-dimensional descriptor that captures subtle expression and head-pose dynamics over time. To study how stress modulates facial motion, we perform extensive experiments alongside established physiological markers. Paired hypothesis tests between baseline and stressor phases show that 38 of 56 facial components exhibit consistent, phase-specific stress responses comparable to physiological markers. Building on these findings, we introduce a Transformer-based temporal modeling framework and evaluate unimodal, early-fusion, and cross-modal attention strategies. Cross-modal attention fusion of 3D-derived facial features with physiological signals substantially improves performance over physiological signals alone, increasing AUROC from 52.7% and accuracy from 51.0% to 92.0% and 86.7%, respectively. Although evaluated on driving data, the proposed framework and protocol may generalize to other stress estimation settings.
comment: Under submission to ICPR 2026
VibES: Induced Vibration for Persistent Event-Based Sensing 3DV
Event cameras are a bio-inspired class of sensors that asynchronously measure per-pixel intensity changes. Under fixed illumination conditions in static or low-motion scenes, rigidly mounted event cameras are unable to generate any events and become unsuitable for most computer vision tasks. To address this limitation, recent work has investigated motion-induced event stimulation, which often requires complex hardware or additional optical components. In contrast, we introduce a lightweight approach to sustain persistent event generation by employing a simple rotating unbalanced mass to induce periodic vibrational motion. This is combined with a motion-compensation pipeline that removes the injected motion and yields clean, motion-corrected events for downstream perception tasks. We develop a hardware prototype to demonstrate our approach and evaluate it on real-world datasets. Our method reliably recovers motion parameters and improves both image reconstruction and edge detection compared to event-based sensing without motion induction.
comment: Accepted to the IEEE International Conference on 3D Vision (3DV), Vancouver, BC, Canada, Mar 20-23, 2026
DeepFake Detection in Dyadic Video Calls using Point of Gaze Tracking
With recent advancements in deepfake technology, it is now possible to generate convincing deepfakes in real-time. Unfortunately, malicious actors have started to use this new technology to perform real-time phishing attacks during video meetings. The nature of a video call allows access to what the deepfake is ``seeing,'' that is, the screen displayed to the malicious actor. Using this with the estimated gaze from the malicious actors streamed video enables us to estimate where the deepfake is looking on screen, the point of gaze. Because the point of gaze during conversations is not random and is instead used as a subtle nonverbal communicator, it can be used to detect deepfakes, which are not capable of mimicking this subtle nonverbal communication. This paper proposes a real-time deepfake detection method adapted to this genre of attack, utilizing previously unavailable biometric information. We built our model based on explainable features selected after careful review of research on gaze patterns during dyadic conversations. We then test our model on a novel dataset of our creation, achieving an accuracy of 82\%. This is the first reported method to utilize point-of-gaze tracking for deepfake detection.
PositionIC: Unified Position and Identity Consistency for Image Customization
Recent subject-driven image customization excels in fidelity, yet fine-grained instance-level spatial control remains an elusive challenge, hindering real-world applications. This limitation stems from two factors: a scarcity of scalable, position-annotated datasets, and the entanglement of identity and layout by global attention mechanisms. To this end, we introduce \modelname{}, a unified framework for high-fidelity, spatially controllable multi-subject customization. First, we present BMPDS, the first automatic data-synthesis pipeline for position-annotated multi-subject datasets, effectively providing crucial spatial supervision. Second, we design a lightweight, layout-aware diffusion framework that integrates a novel visibility-aware attention mechanism. This mechanism explicitly models spatial relationships via an NeRF-inspired volumetric weight regulation to effectively decouple instance-level spatial embeddings from semantic identity features, enabling precise, occlusion-aware placement of multiple subjects. Extensive experiments demonstrate \modelname{} achieves state-of-the-art performance on public benchmarks, setting new records for spatial precision and identity consistency. Our work represents a significant step towards truly controllable, high-fidelity image customization in multi-entity scenarios. Code and data will be publicly released.
OpenRT: An Open-Source Red Teaming Framework for Multimodal LLMs
The rapid integration of Multimodal Large Language Models (MLLMs) into critical applications is increasingly hindered by persistent safety vulnerabilities. However, existing red-teaming benchmarks are often fragmented, limited to single-turn text interactions, and lack the scalability required for systematic evaluation. To address this, we introduce OpenRT, a unified, modular, and high-throughput red-teaming framework designed for comprehensive MLLM safety evaluation. At its core, OpenRT architects a paradigm shift in automated red-teaming by introducing an adversarial kernel that enables modular separation across five critical dimensions: model integration, dataset management, attack strategies, judging methods, and evaluation metrics. By standardizing attack interfaces, it decouples adversarial logic from a high-throughput asynchronous runtime, enabling systematic scaling across diverse models. Our framework integrates 37 diverse attack methodologies, spanning white-box gradients, multi-modal perturbations, and sophisticated multi-agent evolutionary strategies. Through an extensive empirical study on 20 advanced models (including GPT-5.2, Claude 4.5, and Gemini 3 Pro), we expose critical safety gaps: even frontier models fail to generalize across attack paradigms, with leading models exhibiting average Attack Success Rates as high as 49.14%. Notably, our findings reveal that reasoning models do not inherently possess superior robustness against complex, multi-turn jailbreaks. By open-sourcing OpenRT, we provide a sustainable, extensible, and continuously maintained infrastructure that accelerates the development and standardization of AI safety.
Expert Consensus-based Video-Based Assessment Tool for Workflow Analysis in Minimally Invasive Colorectal Surgery: Development and Validation of ColoWorkflow
Minimally invasive colorectal surgery is characterized by procedural variability, a difficult learning curve, and complications that impact quality and outcomes. Video-based assessment (VBA) offers an opportunity to generate data-driven insights to reduce variability, optimize training, and improve surgical performance. However, existing tools for workflow analysis remain difficult to standardize and implement. This study aims to develop and validate a VBA tool for workflow analysis across minimally invasive colorectal procedures. A Delphi process was conducted to achieve consensus on generalizable workflow descriptors. The resulting framework informed the development of a new VBA tool, ColoWorkflow. Independent raters then applied ColoWorkflow to a multicentre video dataset of laparoscopic and robotic colorectal surgery (CRS). Applicability and inter-rater reliability were evaluated. Consensus was achieved for 10 procedure-agnostic phases and 34 procedure-specific steps describing CRS workflows. ColoWorkflow was developed and applied to 54 colorectal operative videos (left and right hemicolectomies, sigmoid and rectosigmoid resections, and total proctocolectomies) from five centres. The tool demonstrated broad applicability, with all but one label utilized. Inter-rater reliability was moderate, with mean Cohen's K of 0.71 for phases and 0.66 for steps. Most discrepancies arose at phase transitions and step boundary definitions. ColoWorkflow is the first consensus-based, validated VBA tool for comprehensive workflow analysis in minimally invasive CRS. It establishes a reproducible framework for video-based performance assessment, enabling benchmarking across institutions and supporting the development of artificial intelligence-driven workflow recognition. Its adoption may standardize training, accelerate competency acquisition, and advance data-informed surgical quality improvement.
comment: 12 pages, 4 figures
Encoding Structural Constraints into Segment Anything Models via Probabilistic Graphical Models
While the Segment Anything Model (SAM) has achieved remarkable success in image segmentation, its direct application to medical imaging remains hindered by fundamental challenges, including ambiguous boundaries, insufficient modeling of anatomical relationships, and the absence of uncertainty quantification. To address these limitations, we introduce KG-SAM, a knowledge-guided framework that synergistically integrates anatomical priors with boundary refinement and uncertainty estimation. Specifically, KG-SAM incorporates (i) a medical knowledge graph to encode fine-grained anatomical relationships, (ii) an energy-based Conditional Random Field (CRF) to enforce anatomically consistent predictions, and (iii) an uncertainty-aware fusion module to enhance reliability in high-stakes clinical scenarios. Extensive experiments across multi-center medical datasets demonstrate the effectiveness of our approach: KG-SAM achieves an average Dice score of 82.69% on prostate segmentation and delivers substantial gains in abdominal segmentation, reaching 78.05% on MRI and 79.68% on CT. These results establish KG-SAM as a robust and generalizable framework for advancing medical image segmentation.
Multi-view Surface Reconstruction Using Normal and Reflectance Cues
Achieving high-fidelity 3D surface reconstruction while preserving fine details remains challenging, especially in the presence of materials with complex reflectance properties and without a dense-view setup. In this paper, we introduce a versatile framework that incorporates multi-view normal and optionally reflectance maps into radiance-based surface reconstruction. Our approach employs a pixel-wise joint re-parametrization of reflectance and surface normals, representing them as a vector of radiances under simulated, varying illumination. This formulation enables seamless incorporation into standard surface reconstruction pipelines, such as traditional multi-view stereo (MVS) frameworks or modern neural volume rendering (NVR) ones. Combined with the latter, our approach achieves state-of-the-art performance on multi-view photometric stereo (MVPS) benchmark datasets, including DiLiGenT-MV, LUCES-MV and Skoltech3D. In particular, our method excels in reconstructing fine-grained details and handling challenging visibility conditions. The present paper is an extended version of the earlier conference paper by Brument et al. (in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2024), featuring an accelerated and more robust algorithm as well as a broader empirical evaluation. The code and data relative to this article is available at https://github.com/RobinBruneau/RNb-NeuS2.
comment: 22 pages, 15 figures, 11 tables. Accepted to IJCV. A thorough qualitative and quantitive study is available in the supplementary material at https://drive.google.com/file/d/1KDfCKediXNP5Os954TL_QldaUWS0nKcD/view?usp=drive_link. The project page can be accessed via https://robinbruneau.github.io/publications/rnb_neus2.html. The source code is available at https://github.com/RobinBruneau/RNb-NeuS2
Towards Open-Vocabulary Industrial Defect Understanding with a Large-Scale Multimodal Dataset
We present IMDD-1M, the first large-scale Industrial Multimodal Defect Dataset comprising 1,000,000 aligned image-text pairs, designed to advance multimodal learning for manufacturing and quality inspection. IMDD-1M contains high-resolution real-world defects spanning over 60 material categories and more than 400 defect types, each accompanied by expert-verified annotations and fine-grained textual descriptions detailing defect location, severity, and contextual attributes. This dataset enables a wide spectrum of applications, including classification, segmentation, retrieval, captioning, and generative modeling. Building upon IMDD-1M, we train a diffusion-based vision-language foundation model from scratch, specifically tailored for industrial scenarios. The model serves as a generalizable foundation that can be efficiently adapted to specialized domains through lightweight fine-tuning. With less than 5% of the task-specific data required by dedicated expert models, it achieves comparable performance, highlighting the potential of data-efficient foundation model adaptation for industrial inspection and generation, paving the way for scalable, domain-adaptive, and knowledge-grounded manufacturing intelligence. Additional details and resources can be found in this URL: https://ninaneon.github.io/projectpage/
Towards Scalable Training for Handwritten Mathematical Expression Recognition
Large foundation models have achieved significant performance gains through scalable training on massive datasets. However, the field of \textbf{H}andwritten \textbf{M}athematical \textbf{E}xpression \textbf{R}ecognition (HMER) has been impeded by the scarcity of data, primarily due to the arduous and costly process of manual annotation. To bridge this gap, we propose a novel method integrating limited handwritten formulas with large-scale LaTeX-rendered formulas by developing a scalable data engine to generate complex and consistent LaTeX sequences. With this engine, we built the largest formula dataset to date, termed \texttt{Tex80M}, comprising over 80 million high-quality training instances. Then we propose \texttt{TexTeller}, the first HMER model trained at scale, by mix-training \texttt{Tex80M} with a relatively small HME dataset. The expansive training dataset and our refined pipeline have equipped \texttt{TexTeller} with state-of-the-art (SOTA) performance across nearly all benchmarks. To advance the field, we will openly release our complete model, entire dataset, and full codebase, enabling further research building upon our contributions.
comment: The authors have decided to temporarily withdraw this paper to make substantial revisions
JoIN: Joint GANs Inversion for Intrinsic Image Decomposition
Intrinsic Image Decomposition (IID) is a challenging inverse problem that seeks to decompose a natural image into its underlying intrinsic components such as albedo and shading. While recent image decomposition methods rely on learning-based priors on these components, they often suffer from component cross-contamination owing to joint training of priors; or from Sim-to-Real gap since the priors trained on synthetic data are kept frozen during the inference on real images. In this work, we propose to solve the intrinsic image decomposition problem using a bank of Generative Adversarial Networks (GANs) as priors where each GAN is independently trained only on a single intrinsic component, providing stronger and more disentangled priors. At the core of our approach is the idea that the latent space of a GAN is a well-suited optimization domain to solve inverse problems. Given an input image, we propose to jointly invert the latent codes of a set of GANs and combine their outputs to reproduce the input. Contrary to all existing GAN inversion methods that are limited to inverting only a single GAN, our proposed approach, JoIN, is able to jointly invert multiple GANs using only a single image as supervision while still maintaining distribution priors of each intrinsic component. We show that our approach is modular, allowing various forward imaging models, and that it can successfully decompose both synthetic and real images. Further, taking inspiration from existing GAN inversion approaches, we allow for careful fine-tuning of the generator priors during the inference on real images. This way, our method is able to achieve excellent generalization on real images even though it uses only synthetic data to train the GAN priors. We demonstrate the success of our approach through exhaustive qualitative and quantitative evaluations and ablation studies on various datasets.
comment: Project webpage is available at https://virajshah.com/join
MAC: A Benchmark for Multiple Attributes Compositional Zero-Shot Learning
Compositional Zero-Shot Learning (CZSL) aims to learn semantic primitives (attributes and objects) from seen compositions and recognize unseen attribute-object compositions. Existing CZSL datasets focus on single attributes, neglecting the fact that objects naturally exhibit multiple interrelated attributes. Their narrow attribute scope and single attribute labeling introduce annotation biases, misleading the learning of attributes and causing inaccurate evaluation. To address these issues, we introduce the Multi-Attribute Composition (MAC) dataset, encompassing 22,838 images and 17,627 compositions with comprehensive and representative attribute annotations. MAC shows complex relationship between attributes and objects, with each attribute type linked to an average of 82.2 object types, and each object type associated with 31.4 attribute types. Based on MAC, we propose multi-attribute compositional zero-shot learning that requires deeper semantic understanding and advanced attribute associations, establishing a more realistic and challenging benchmark for CZSL. We also propose Multi-attribute Visual-Primitive Integrator (MVP-Integrator), a robust baseline for multi-attribute CZSL, which disentangles semantic primitives and performs effective visual-primitive association. Experimental results demonstrate that MVP-Integrator significantly outperforms existing CZSL methods on MAC with improved inference efficiency.
comment: 13pages,5figures
HiRes-LLaVA: Restoring Fragmentation Input in High-Resolution Large Vision-Language Models
High-resolution inputs enable Large Vision-Language Models (LVLMs) to discern finer visual details, enhancing their comprehension capabilities. To reduce the training and computation costs caused by high-resolution input, one promising direction is to use sliding windows to slice the input into uniform patches, each matching the input size of the well-trained vision encoder. Although efficient, this slicing strategy leads to the fragmentation of original input, i.e., the continuity of contextual information and spatial geometry is lost across patches, adversely affecting performance in cross-patch context perception and position-specific tasks. To overcome these shortcomings, we introduce HiRes-LLaVA, a novel framework designed to efficiently process any size of high-resolution input without altering the original contextual and geometric information. HiRes-LLaVA comprises two innovative components: (i) a SliceRestore adapter that reconstructs sliced patches into their original form, efficiently extracting both global and local features via down-up-sampling and convolution layers, and (ii) a Self-Mining Sampler to compresses the vision tokens based on themselves, preserving the original context and positional information while reducing training overhead. To assess the ability of handling context fragmentation, we construct a new benchmark, EntityGrid-QA, consisting of edge-related and position-related tasks. Our comprehensive experiments demonstrate the superiority of HiRes-LLaVA on both existing public benchmarks and on EntityGrid-QA, particularly on document-oriented tasks, establishing new standards for handling high-resolution inputs.
Prototypicality Bias Reveals Blindspots in Multimodal Evaluation Metrics
Automatic metrics are now central to evaluating text-to-image models, often substituting for human judgment in benchmarking and large-scale filtering. However, it remains unclear whether these metrics truly prioritize semantic correctness or instead favor visually and socially prototypical images learned from biased data distributions. We identify and study prototypicality bias as a systematic failure mode in multimodal evaluation. We introduce a controlled contrastive benchmark ProtoBias (Prototypical Bias), spanning Animals, Objects, and Demography images, where semantically correct but non-prototypical images are paired with subtly incorrect yet prototypical adversarial counterparts. This setup enables a directional evaluation of whether metrics follow textual semantics or default to prototypes. Our results show that widely used metrics, including CLIPScore, PickScore, and VQA-based scores, frequently misrank these pairs, while even LLM-as-Judge systems exhibit uneven robustness in socially grounded cases. Human evaluations consistently favour semantic correctness with larger decision margins. Motivated by these findings, we propose ProtoScore, a robust 7B-parameter metric that substantially reduces failure rates and suppresses misranking, while running at orders of magnitude faster than the inference time of GPT-5, approaching the robustness of much larger closed-source judges.
comment: First version
Towards Robust Pseudo-Label Learning in Semantic Segmentation: An Encoding Perspective NeurIPS 2025
Pseudo-label learning is widely used in semantic segmentation, particularly in label-scarce scenarios such as unsupervised domain adaptation (UDA) and semisupervised learning (SSL). Despite its success, this paradigm can generate erroneous pseudo-labels, which are further amplified during training due to utilization of one-hot encoding. To address this issue, we propose ECOCSeg, a novel perspective for segmentation models that utilizes error-correcting output codes (ECOC) to create a fine-grained encoding for each class. ECOCSeg offers several advantages. First, an ECOC-based classifier is introduced, enabling model to disentangle classes into attributes and handle partial inaccurate bits, improving stability and generalization in pseudo-label learning. Second, a bit-level label denoising mechanism is developed to generate higher-quality pseudo-labels, providing adequate and robust supervision for unlabeled images. ECOCSeg can be easily integrated with existing methods and consistently demonstrates significant improvements on multiple UDA and SSL benchmarks across different segmentation architectures. Code is available at https://github.com/Woof6/ECOCSeg.
comment: Accepted by Conference on Neural Information Processing Systems (NeurIPS 2025)
Pengembangan Model untuk Mendeteksi Kerusakan pada Terumbu Karang dengan Klasifikasi Citra
The rich biodiversity of coral reefs in Indonesian waters represents a valuable asset that must be preserved. Rapid climate change and uncontrolled human activities have caused significant degradation of coral reef ecosystems, including coral bleaching, which is a critical indicator of declining reef health. Therefore, this study aims to develop an accurate classification model to distinguish between healthy corals and bleached corals. This research utilizes a specialized dataset consisting of 923 images collected from Flickr using the Flickr API. The dataset comprises two distinct classes: healthy corals (438 images) and bleached corals (485 images). All images were resized so that the maximum width or height does not exceed 300 pixels, ensuring consistent image dimensions across the dataset. The proposed approach employs machine learning techniques, particularly convolutional neural networks (CNNs), to identify and differentiate visual patterns associated with healthy and bleached corals. The dataset can be used to train and evaluate various classification models in order to achieve optimal performance. Using the ResNet architecture, the results indicate that a ResNet model trained from scratch outperforms pretrained models in terms of both precision and accuracy. The successful development of an accurate classification model provides substantial benefits for researchers and marine biologists by enabling a deeper understanding of coral reef health. Furthermore, these models can be applied to monitor environmental changes in coral reef ecosystems, thereby contributing meaningfully to conservation and restoration efforts that are vital to sustaining marine life.
comment: Preprint
What Is The Best 3D Scene Representation for Robotics? From Geometric to Foundation Models
In this paper, we provide a comprehensive overview of existing scene representation methods for robotics, covering traditional representations such as point clouds, voxels, signed distance functions (SDF), and scene graphs, as well as more recent neural representations like Neural Radiance Fields (NeRF), 3D Gaussian Splatting (3DGS), and the emerging Foundation Models. While current SLAM and localization systems predominantly rely on sparse representations like point clouds and voxels, dense scene representations are expected to play a critical role in downstream tasks such as navigation and obstacle avoidance. Moreover, neural representations such as NeRF, 3DGS, and foundation models are well-suited for integrating high-level semantic features and language-based priors, enabling more comprehensive 3D scene understanding and embodied intelligence. In this paper, we categorized the core modules of robotics into five parts (Perception, Mapping, Localization, Navigation, Manipulation). We start by presenting the standard formulation of different scene representation methods and comparing the advantages and disadvantages of scene representation across different modules. This survey is centered around the question: What is the best 3D scene representation for robotics? We then discuss the future development trends of 3D scene representations, with a particular focus on how the 3D Foundation Model could replace current methods as the unified solution for future robotic applications. The remaining challenges in fully realizing this model are also explored. We aim to offer a valuable resource for both newcomers and experienced researchers to explore the future of 3D scene representations and their application in robotics. We have published an open-source project on GitHub and will continue to add new works and technologies to this project.
Generative Digital Twins: Vision-Language Simulation Models for Executable Industrial Systems
We propose a Vision-Language Simulation Model (VLSM) that unifies visual and textual understanding to synthesize executable FlexScript from layout sketches and natural-language prompts, enabling cross-modal reasoning for industrial simulation systems. To support this new paradigm, the study constructs the first large-scale dataset for generative digital twins, comprising over 120,000 prompt-sketch-code triplets that enable multimodal learning between textual descriptions, spatial structures, and simulation logic. In parallel, three novel evaluation metrics, Structural Validity Rate (SVR), Parameter Match Rate (PMR), and Execution Success Rate (ESR), are proposed specifically for this task to comprehensively evaluate structural integrity, parameter fidelity, and simulator executability. Through systematic ablation across vision encoders, connectors, and code-pretrained language backbones, the proposed models achieve near-perfect structural accuracy and high execution robustness. This work establishes a foundation for generative digital twins that integrate visual reasoning and language understanding into executable industrial simulation systems. Project page: https://danielhsu2014.github.io/GDT-VLSM-project/
comment: 10 pages, 9 figures
A Survey of Multimodal Hallucination Evaluation and Detection
Multi-modal Large Language Models (MLLMs) have emerged as a powerful paradigm for integrating visual and textual information, supporting a wide range of multi-modal tasks. However, these models often suffer from hallucination, producing content that appears plausible but contradicts the input content or established world knowledge. This survey offers an in-depth review of hallucination evaluation benchmarks and detection methods across Image-to-Text (I2T) and Text-to-image (T2I) generation tasks. Specifically, we first propose a taxonomy of hallucination based on faithfulness and factuality, incorporating the common types of hallucinations observed in practice. Then we provide an overview of existing hallucination evaluation benchmarks for both T2I and I2T tasks, highlighting their construction process, evaluation objectives, and employed metrics. Furthermore, we summarize recent advances in hallucination detection methods, which aims to identify hallucinated content at the instance level and serve as a practical complement of benchmark-based evaluation. Finally, we highlight key limitations in current benchmarks and detection methods, and outline potential directions for future research.
comment: 40 pages, 5 figures
Neighborhood Feature Pooling for Remote Sensing Image Classification WACV
In this work, we introduce Neighborhood Feature Pooling (NFP), a novel pooling layer designed to enhance texture-aware representation learning for remote sensing image classification. The proposed NFP layer captures relationships between neighboring spatial features by aggregating local similarity patterns across feature dimensions. Implemented using standard convolutional operations, NFP can be seamlessly integrated into existing neural network architectures with minimal additional parameters. Extensive experiments across multiple benchmark datasets and backbone models demonstrate that NFP consistently improves classification performance compared to conventional pooling strategies, while maintaining computational efficiency. These results highlight the effectiveness of neighborhood-based feature aggregation for capturing discriminative texture information in remote sensing imagery.
comment: 10 pages, 4 figures, accepted at the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2026, 3rd Workshop on Computer Vision for Earth Observation (CV4EO)
Parameter-efficient fine-tuning (PEFT) of Vision Foundation Models for Atypical Mitotic Figure Classification
Atypical mitotic figures (AMFs) are rare abnormal cell divisions associated with tumor aggressiveness and poor prognosis. Their detection remains a significant challenge due to subtle morphological cues, class imbalance, and inter-observer variability among pathologists. The MIDOG 2025 challenge introduced a dedicated track for atypical mitosis classification, enabling systematic evaluation of deep learning methods. In this study, we investigated the use of large vision foundation models, including Virchow, Virchow2, and UNI, with Low-Rank Adaptation (LoRA) for parameter-efficient fine-tuning. We conducted extensive experiments with different LoRA ranks, as well as random and group-based data splits, to analyze robustness under varied conditions. Our best approach, Virchow with LoRA rank 8 and ensemble of three-fold cross-validation, achieved a balanced accuracy of 88.37% on the preliminary test set, ranking joint 9th in the challenge leaderboard. These results highlight the promise of foundation models with efficient adaptation strategies for the classification of atypical mitosis, while underscoring the need for improvements in specificity and domain generalization.
comment: MIDOG'25
VPGS-SLAM: Voxel-based Progressive 3D Gaussian SLAM in Large-Scale Scenes
3D Gaussian Splatting has recently shown promising results in dense visual SLAM. However, existing 3DGS-based SLAM methods are all constrained to small-room scenarios and struggle with memory explosion in large-scale scenes and long sequences. To this end, we propose VPGS-SLAM, the first 3DGS-based large-scale RGBD SLAM framework for both indoor and outdoor scenarios. We design a novel voxel-based progressive 3D Gaussian mapping method with multiple submaps for compact and accurate scene representation in large-scale and long-sequence scenes. This allows us to scale up to arbitrary scenes and improves robustness (even under pose drifts). In addition, we propose a 2D-3D fusion camera tracking method to achieve robust and accurate camera tracking in both indoor and outdoor large-scale scenes. Furthermore, we design a 2D-3D Gaussian loop closure method to eliminate pose drift. We further propose a submap fusion method with online distillation to achieve global consistency in large-scale scenes when detecting a loop. Experiments on various indoor and outdoor datasets demonstrate the superiority and generalizability of the proposed framework. The code will be open source on https://github.com/dtc111111/vpgs-slam.
Integrated Multivariate Segmentation Tree for Heterogeneous Credit Data Analysis in Small- and Medium-Sized Enterprises
Traditional decision tree models, which rely exclusively on numerical variables, often face challenges in handling high-dimensional data and are limited in their ability to incorporate textual information effectively. To address these limitations, we propose the integrated multivariate segmentation tree (IMST), a comprehensive framework designed to improve credit evaluation for small- and medium-sized enterprises (SMEs) by integrating financial data with textual sources. This method comprises three core stages: (1) transforming textual data into numerical matrices through matrix factorization, (2) selecting salient financial features using Lasso regression, and (3) constructing a multivariate segmentation tree based on either the Gini index or entropy, with weakest-link pruning applied to control model complexity. Experimental results based on a dataset of 1,428 Chinese SMEs demonstrated that IMST achieved an accuracy rate of 88.9%, surpassing both baseline decision trees (87.4%) and conventional models such as support vector machines and neural networks. Furthermore, the proposed model demonstrated superior interpretability and computational efficiency, featuring a more streamlined architecture and improved risk detection capabilities.
comment: 32 pages,12 figures, 9 tables
Practical Continual Forgetting for Pre-trained Vision Models
For privacy and security concerns, the need to erase unwanted information from pre-trained vision models is becoming evident nowadays. In real-world scenarios, erasure requests originate at any time from both users and model owners, and these requests usually form a sequence. Therefore, under such a setting, selective information is expected to be continuously removed from a pre-trained model while maintaining the rest. We define this problem as continual forgetting and identify three key challenges. (i) For unwanted knowledge, efficient and effective deleting is crucial. (ii) For remaining knowledge, the impact brought by the forgetting procedure should be minimal. (iii) In real-world scenarios, the training samples may be scarce or partially missing during the process of forgetting. To address them, we first propose Group Sparse LoRA (GS-LoRA). Specifically, towards (i), we introduce Low-Rank Adaptation (LoRA) modules to fine-tune the Feed-Forward Network (FFN) layers in Transformer blocks for each forgetting task independently, and towards (ii), a simple group sparse regularization is adopted, enabling automatic selection of specific LoRA groups and zeroing out the others. To further extend GS-LoRA to more practical scenarios, we incorporate prototype information as additional supervision and introduce a more practical approach, GS-LoRA++. For each forgotten class, we move the logits away from its original prototype. For the remaining classes, we pull the logits closer to their respective prototypes. We conduct extensive experiments on face recognition, object detection, and image classification and demonstrate that our method manages to forget specific classes with minimal impact on other classes. Codes have been released on https://github.com/bjzhb666/GS-LoRA.
comment: Accepted by TPAMI. arXiv admin note: substantial text overlap with arXiv:2403.11530
Revisiting Residual Connections: Orthogonal Updates for Stable and Efficient Deep Networks
Residual connections are pivotal for deep neural networks, enabling greater depth by mitigating vanishing gradients. However, in standard residual updates, the module's output is directly added to the input stream. This can lead to updates that predominantly reinforce or modulate the existing stream direction, potentially underutilizing the module's capacity for learning entirely novel features. In this work, we introduce Orthogonal Residual Update: we decompose the module's output relative to the input stream and add only the component orthogonal to this stream. This design aims to guide modules to contribute primarily new representational directions, fostering richer feature learning while promoting more efficient training. We demonstrate that our orthogonal update strategy improves generalization accuracy and training stability across diverse architectures (ResNetV2, Vision Transformers) and datasets (CIFARs, TinyImageNet, ImageNet-1k), achieving, for instance, a +3.78 pp top-1 accuracy gain for ViT-B on ImageNet-1k.
comment: 27 pages, maybe final final version
MomentSeeker: A Task-Oriented Benchmark For Long-Video Moment Retrieval
Accurately locating key moments within long videos is crucial for solving long video understanding (LVU) tasks. However, existing benchmarks are either severely limited in terms of video length and task diversity, or they focus solely on the end-to-end LVU performance, making them inappropriate for evaluating whether key moments can be accurately accessed. To address this challenge, we propose MomentSeeker, a novel benchmark for long-video moment retrieval (LMVR), distinguished by the following features. First, it is created based on long and diverse videos, averaging over 1200 seconds in duration and collected from various domains, e.g., movie, anomaly, egocentric, and sports. Second, it covers a variety of real-world scenarios in three levels: global-level, event-level, object-level, covering common tasks like action recognition, object localization, and causal reasoning, etc. Third, it incorporates rich forms of queries, including text-only queries, image-conditioned queries, and video-conditioned queries. On top of MomentSeeker, we conduct comprehensive experiments for both generation-based approaches (directly using MLLMs) and retrieval-based approaches (leveraging video retrievers). Our results reveal the significant challenges in long-video moment retrieval in terms of accuracy and efficiency, despite improvements from the latest long-video MLLMs and task-specific fine-tuning. We have publicly released MomentSeeker(https://yhy-2000.github.io/MomentSeeker/) to facilitate future research in this area.
LOGLO-FNO: Efficient Learning of Local and Global Features in Fourier Neural Operators
Modeling high-frequency information is a critical challenge in scientific machine learning. For instance, fully turbulent flow simulations of the Navier-Stokes equations at Reynolds numbers 3500 and above can generate high-frequency signals due to swirling fluid motions caused by eddies and vortices. Faithfully modeling such signals using neural nets depends on the accurate reconstruction of moderate to high frequencies. However, it has been well known that neural nets exhibit spectral or frequency bias towards learning low-frequency components. Meanwhile, Fourier Neural Operators (FNOs) have emerged as a popular class of data-driven models for surrogate modeling and solving PDEs. Although impressive results were achieved on several PDE benchmark problems, FNOs perform poorly in learning non-dominant frequencies characterized by local features. This limitation stems from spectral bias inherent in neural nets and the explicit exclusion of high-frequency modes in FNOs and their variants. Therefore, to mitigate these issues and improve FNO's spectral learning capabilities to represent a broad range of frequency components, we propose two key architectural enhancements: (i) a parallel branch performing local spectral convolution (ii) a high-frequency propagation module. Moreover, we propose a novel frequency-sensitive loss based on radially binned spectral errors. This introduction of a parallel branch for local convolution reduces the trainable parameters by up to 50% while achieving the accuracy of FNO that relies solely on global convolution. Moreover, our findings demonstrate that the proposed model improves stability over longer rollouts. Experiments on six challenging PDEs in fluid mechanics, wave propagation, and biological pattern formation, and the qualitative and spectral analysis of predictions, show the effectiveness of our method over SOTA neural operator families of baselines.
comment: Published with J2C Certification in Transactions on Machine Learning Research (TMLR)
Artificial Intelligence 2
Beyond Perfect Scores: Proof-by-Contradiction for Trustworthy Machine Learning
Machine learning (ML) models show strong promise for new biomedical prediction tasks, but concerns about trustworthiness have hindered their clinical adoption. In particular, it is often unclear whether a model relies on true clinical cues or on spurious hierarchical correlations in the data. This paper introduces a simple yet broadly applicable trustworthiness test grounded in stochastic proof-by-contradiction. Instead of just showing high test performance, our approach trains and tests on spurious labels carefully permuted based on a potential outcomes framework. A truly trustworthy model should fail under such label permutation; comparable accuracy across real and permuted labels indicates overfitting, shortcut learning, or data leakage. Our approach quantifies this behavior through interpretable Fisher-style p-values, which are well understood by domain experts across medical and life sciences. We evaluate our approach on multiple new bacterial diagnostics to separate tasks and models learning genuine causal relationships from those driven by dataset artifacts or statistical coincidences. Our work establishes a foundation to build rigor and trust between ML and life-science research communities, moving ML models one step closer to clinical adoption.
comment: 13 pages, 6 figures
Adaptive Science Operations in Deep Space Missions Using Offline Belief State Planning
Deep space missions face extreme communication delays and environmental uncertainty that prevent real-time ground operations. To support autonomous science operations in communication-constrained environments, we present a partially observable Markov decision process (POMDP) framework that adaptively sequences spacecraft science instruments. We integrate a Bayesian network into the POMDP observation space to manage the high-dimensional and uncertain measurements typical of astrobiology missions. This network compactly encodes dependencies among measurements and improves the interpretability and computational tractability of science data. Instrument operation policies are computed offline, allowing resource-aware plans to be generated and thoroughly validated prior to launch. We use the Enceladus Orbilander's proposed Life Detection Suite (LDS) as a case study, demonstrating how Bayesian network structure and reward shaping influence system performance. We compare our method against the mission's baseline Concept of Operations (ConOps), evaluating both misclassification rates and performance in off-nominal sample accumulation scenarios. Our approach reduces sample identification errors by nearly 40%
comment: 7 pages, 4 tables, 5 figures, accepted in IEEE ISPARO 2025 (V2 - grammatical edits, also mispelled conference year)
Machine Learning 41
DS-CIM: Digital Stochastic Computing-In-Memory Featuring Accurate OR-Accumulation via Sample Region Remapping for Edge AI Models
Stochastic computing (SC) offers hardware simplicity but suffers from low throughput, while high-throughput Digital Computing-in-Memory (DCIM) is bottlenecked by costly adder logic for matrix-vector multiplication (MVM). To address this trade-off, this paper introduces a digital stochastic CIM (DS-CIM) architecture that achieves both high accuracy and efficiency. We implement signed multiply-accumulation (MAC) in a compact, unsigned OR-based circuit by modifying the data representation. Throughput is enhanced by replicating this low-cost circuit 64 times with only a 1x area increase. Our core strategy, a shared Pseudo Random Number Generator (PRNG) with 2D partitioning, enables single-cycle mutually exclusive activation to eliminate OR-gate collisions. We also resolve the 1s saturation issue via stochastic process analysis and data remapping, significantly improving accuracy and resilience to input sparsity. Our high-accuracy DS-CIM1 variant achieves 94.45% accuracy for INT8 ResNet18 on CIFAR-10 with a root-mean-squared error (RMSE) of just 0.74%. Meanwhile, our high-efficiency DS-CIM2 variant attains an energy efficiency of 3566.1 TOPS/W and an area efficiency of 363.7 TOPS/mm^2, while maintaining a low RMSE of 3.81%. The DS-CIM capability with larger models is further demonstrated through experiments with INT8 ResNet50 on ImageNet and the FP8 LLaMA-7B model.
comment: Accepted by 2026 Design, Automation and Test in Europe Conference (DATE)
Diffusion Models with Heavy-Tailed Targets: Score Estimation and Sampling Guarantees
Score-based diffusion models have become a powerful framework for generative modeling, with score estimation as a central statistical bottleneck. Existing guarantees for score estimation largely focus on light-tailed targets or rely on restrictive assumptions such as compact support, which are often violated by heavy-tailed data in practice. In this work, we study conventional (Gaussian) score-based diffusion models when the target distribution is heavy-tailed and belongs to a Sobolev class with smoothness parameter $β>0$. We consider both exponential and polynomial tail decay, indexed by a tail parameter $γ$. Using kernel density estimation, we derive sharp minimax rates for score estimation, revealing a qualitative dichotomy: under exponential tails, the rate matches the light-tailed case up to polylogarithmic factors, whereas under polynomial tails the rate depends explicitly on $γ$. We further provide sampling guarantees for the associated continuous reverse dynamics. In total variation, the generated distribution converges at the minimax optimal rate $n^{-β/(2β+d)}$ under exponential tails (up to logarithmic factors), and at a $γ$-dependent rate under polynomial tails. Whether the latter sampling rate is minimax optimal remains an open question. These results characterize the statistical limits of score estimation and the resulting sampling accuracy for heavy-tailed targets, extending diffusion theory beyond the light-tailed setting.
Beyond Perfect Scores: Proof-by-Contradiction for Trustworthy Machine Learning
Machine learning (ML) models show strong promise for new biomedical prediction tasks, but concerns about trustworthiness have hindered their clinical adoption. In particular, it is often unclear whether a model relies on true clinical cues or on spurious hierarchical correlations in the data. This paper introduces a simple yet broadly applicable trustworthiness test grounded in stochastic proof-by-contradiction. Instead of just showing high test performance, our approach trains and tests on spurious labels carefully permuted based on a potential outcomes framework. A truly trustworthy model should fail under such label permutation; comparable accuracy across real and permuted labels indicates overfitting, shortcut learning, or data leakage. Our approach quantifies this behavior through interpretable Fisher-style p-values, which are well understood by domain experts across medical and life sciences. We evaluate our approach on multiple new bacterial diagnostics to separate tasks and models learning genuine causal relationships from those driven by dataset artifacts or statistical coincidences. Our work establishes a foundation to build rigor and trust between ML and life-science research communities, moving ML models one step closer to clinical adoption.
comment: 13 pages, 6 figures
Explainability of Complex AI Models with Correlation Impact Ratio
Complex AI systems make better predictions but often lack transparency, limiting trustworthiness, interpretability, and safe deployment. Common post hoc AI explainers, such as LIME, SHAP, HSIC, and SAGE, are model agnostic but are too restricted in one significant regard: they tend to misrank correlated features and require costly perturbations, which do not scale to high dimensional data. We introduce ExCIR (Explainability through Correlation Impact Ratio), a theoretically grounded, simple, and reliable metric for explaining the contribution of input features to model outputs, which remains stable and consistent under noise and sampling variations. We demonstrate that ExCIR captures dependencies arising from correlated features through a lightweight single pass formulation. Experimental evaluations on diverse datasets, including EEG, synthetic vehicular data, Digits, and Cats-Dogs, validate the effectiveness and stability of ExCIR across domains, achieving more interpretable feature explanations than existing methods while remaining computationally efficient. To this end, we further extend ExCIR with an information theoretic foundation that unifies the correlation ratio with Canonical Correlation Analysis under mutual information bounds, enabling multi output and class conditioned explainability at scale.
Plasticity vs. Rigidity: The Impact of Low-Rank Adapters on Reasoning on a Micro-Budget
Recent advances in mathematical reasoning typically rely on massive scale, yet the question remains: can strong reasoning capabilities be induced in small language models ($\leq1.5\text{B}$) under extreme constraints? We investigate this by training models on a single A40 GPU (48GB) for under 24 hours using Reinforcement Learning with Verifiable Rewards (RLVR) and Low-Rank Adaptation (LoRA). We find that the success of this ``micro-budget" regime depends critically on the interplay between adapter capacity and model initialization. While low-rank adapters ($r=8$) consistently fail to capture the complex optimization dynamics of reasoning, high-rank adapters ($r=256$) unlock significant plasticity in standard instruction-tuned models. Our best result achieved an impressive 40.0\% Pass@1 on AIME 24 (an 11.1\% absolute improvement over baseline) and pushed Pass@16 to 70.0\%, demonstrating robust exploration capabilities. However, this plasticity is not universal: while instruction-tuned models utilized the budget to elongate their chain-of-thought and maximize reward, heavily math-aligned models suffered performance collapse, suggesting that noisy, low-budget RL updates can act as destructive interference for models already residing near a task-specific optimum.
comment: 9 pages, 4 figures, 2 tables
Reinforcement Learning-Guided Dynamic Multi-Graph Fusion for Evacuation Traffic Prediction
Real-time traffic prediction is critical for managing transportation systems during hurricane evacuations. Although data-driven graph-learning models have demonstrated strong capabilities in capturing the complex spatiotemporal dynamics of evacuation traffic at a network level, they mostly consider a single dimension (e.g., travel-time or distance) to construct the underlying graph. Furthermore, these models often lack interpretability, offering little insight into which input variables contribute most to their predictive performance. To overcome these limitations, we develop a novel Reinforcement Learning-guided Dynamic Multi-Graph Fusion (RL-DMF) framework for evacuation traffic prediction. We construct multiple dynamic graphs at each time step to represent heterogeneous spatiotemporal relationships between traffic detectors. A dynamic multi-graph fusion (DMF) module is employed to adaptively learn and combine information from these graphs. To enhance model interpretability, we introduce RL-based intelligent feature selection and ranking (RL-IFSR) method that learns to mask irrelevant features during model training. The model is evaluated using a real-world dataset of 12 hurricanes affecting Florida from 2016 to 2024. For an unseen hurricane (Milton, 2024), the model achieves a 95% accuracy (RMSE = 293.9) for predicting the next 1-hour traffic flow. Moreover, the model can forecast traffic flow for up to next 6 hours with 90% accuracy (RMSE = 426.4). The RL-DMF framework outperforms several state-of-the-art traffic prediction models. Furthermore, ablation experiments confirm the effectiveness of dynamic multi-graph fusion and RL-IFSR approaches for improving model performance. This research provides a generalized and interpretable model for real-time evacuation traffic forecasting, with significant implications for evacuation traffic management.
Revisiting Training Scale: An Empirical Study of Token Count, Power Consumption, and Parameter Efficiency
Research in machine learning has questioned whether increases in training token counts reliably produce proportional performance gains in large language models. Building on prior work introducing an energy-aware parameter efficiency metric, this study empirically examines the effects of increasing training token counts under fixed hardware and training conditions. The significance of this work lies in the explicit integration of power consumption and execution duration, as reflected by the power sampling frequency, into token-scale analysis. This addresses a gap in prior studies emphasizing performance outcomes while underrepresenting computational and energy costs. Using a repeated-measures experimental design on a constant GPU instance with an identical model architecture, optimizer settings, and epoch counts, a 1.1-billion-parameter TinyLlama model was trained at three token counts (500K, 1M, and 2M). While conventional performance metrics exhibited inconsistent or diminishing returns across token scales, the inclusion of power consumption and execution duration revealed a strictly monotonic decline in training efficiency as token count increased. Repeated-measures ANOVA demonstrated a strong effect of token count on parameter efficiency, with all pairwise comparisons remaining significant following Bonferroni correction. These findings indicate that increases in training token counts may be energetically inefficient even when marginal performance improvements are observed, underscoring the importance of efficiency-aware evaluation in large language model training.
A Multimodal Deep Learning Framework for Predicting ICU Deterioration: Integrating ECG Waveforms with Clinical Data and Clinician Benchmarking
Artificial intelligence holds strong potential to support clinical decision making in intensive care units where timely and accurate risk assessment is critical. However, many existing models focus on isolated outcomes or limited data types, while clinicians integrate longitudinal history, real time physiology, and heterogeneous clinical information. To address this gap, we developed MDS ICU, a unified multimodal machine learning framework that fuses routinely collected data including demographics, biometrics, vital signs, laboratory values, ECG waveforms, surgical procedures, and medical device usage to provide continuous predictive support during ICU stays. Using 63001 samples from 27062 patients in MIMIC IV, we trained a deep learning architecture that combines structured state space S4 encoders for ECG waveforms with multilayer perceptron RealMLP encoders for tabular data to jointly predict 33 clinically relevant outcomes spanning mortality, organ dysfunction, medication needs, and acute deterioration. The model achieved strong discrimination with AUROCs of 0.90 for 24 hour mortality, 0.92 for sedative administration, 0.97 for invasive mechanical ventilation, and 0.93 for coagulation dysfunction. Calibration analysis showed close agreement between predicted and observed risks, with consistent gains from ECG waveform integration. Comparisons with clinicians and large language models showed that model predictions alone outperformed both, and that providing model outputs as decision support further improved their performance. These results demonstrate that multimodal AI can deliver clinically meaningful risk stratification across diverse ICU outcomes while augmenting rather than replacing clinical expertise, establishing a scalable foundation for precision critical care decision support.
comment: 23 pages, 8 figures, source code under https://github.com/AI4HealthUOL/MDS-ICU
Leveraging Soft Prompts for Privacy Attacks in Federated Prompt Tuning
Membership inference attack (MIA) poses a significant privacy threat in federated learning (FL) as it allows adversaries to determine whether a client's private dataset contains a specific data sample. While defenses against membership inference attacks in standard FL have been well studied, the recent shift toward federated fine-tuning has introduced new, largely unexplored attack surfaces. To highlight this vulnerability in the emerging FL paradigm, we demonstrate that federated prompt-tuning, which adapts pre-trained models with small input prefixes to improve efficiency, also exposes a new vector for privacy attacks. We propose PromptMIA, a membership inference attack tailored to federated prompt-tuning, in which a malicious server can insert adversarially crafted prompts and monitors their updates during collaborative training to accurately determine whether a target data point is in a client's private dataset. We formalize this threat as a security game and empirically show that PromptMIA consistently attains high advantage in this game across diverse benchmark datasets. Our theoretical analysis further establishes a lower bound on the attack's advantage which explains and supports the consistently high advantage observed in our empirical results. We also investigate the effectiveness of standard membership inference defenses originally developed for gradient or output based attacks and analyze their interaction with the distinct threat landscape posed by PromptMIA. The results highlight non-trivial challenges for current defenses and offer insights into their limitations, underscoring the need for defense strategies that are specifically tailored to prompt-tuning in federated settings.
KASER: Knowledge-Aligned Student Error Simulator for Open-Ended Coding Tasks
Open-ended tasks, such as coding problems that are common in computer science education, provide detailed insights into student knowledge. However, training large language models (LLMs) to simulate and predict possible student errors in their responses to these problems can be challenging: they often suffer from mode collapse and fail to fully capture the diversity in syntax, style, and solution approach in student responses. In this work, we present KASER (Knowledge-Aligned Student Error Simulator), a novel approach that aligns errors with student knowledge. We propose a training method based on reinforcement learning using a hybrid reward that reflects three aspects of student code prediction: i) code similarity to the ground-truth, ii) error matching, and iii) code prediction diversity. On two real-world datasets, we perform two levels of evaluation and show that: At the per-student-problem pair level, our method outperforms baselines on code and error prediction; at the per-problem level, our method outperforms baselines on error coverage and simulated code diversity.
Lower Bounds for the Algorithmic Complexity of Learned Indexes
Learned index structures aim to accelerate queries by training machine learning models to approximate the rank function associated with a database attribute. While effective in practice, their theoretical limitations are not fully understood. We present a general framework for proving lower bounds on query time for learned indexes, expressed in terms of their space overhead and parameterized by the model class used for approximation. Our formulation captures a broad family of learned indexes, including most existing designs, as piecewise model-based predictors. We solve the problem of lower bounding query time in two steps: first, we use probabilistic tools to control the effect of sampling when the database attribute is drawn from a probability distribution. Then, we analyze the approximation-theoretic problem of how to optimally represent a cumulative distribution function with approximators from a given model class. Within this framework, we derive lower bounds under a range of modeling and distributional assumptions, paying particular attention to the case of piecewise linear and piecewise constant model classes, which are common in practical implementations. Our analysis shows how tools from approximation theory, such as quantization and Kolmogorov widths, can be leveraged to formalize the space-time tradeoffs inherent to learned index structures. The resulting bounds illuminate core limitations of these methods.
Cross-Border Data Security and Privacy Risks in Large Language Models and IoT Systems
The reliance of Large Language Models and Internet of Things systems on massive, globally distributed data flows creates systemic security and privacy challenges. When data traverses borders, it becomes subject to conflicting legal regimes, such as the EU's General Data Protection Regulation and China's Personal Information Protection Law, compounded by technical vulnerabilities like model memorization. Current static encryption and data localization methods are fragmented and reactive, failing to provide adequate, policy-aligned safeguards. This research proposes a Jurisdiction-Aware, Privacy-by-Design architecture that dynamically integrates localized encryption, adaptive differential privacy, and real-time compliance assertion via cryptographic proofs. Empirical validation in a multi-jurisdictional simulation demonstrates this architecture reduced unauthorized data exposure to below five percent and achieved zero compliance violations. These security gains were realized while maintaining model utility retention above ninety percent and limiting computational overhead. This establishes that proactive, integrated controls are feasible for secure and globally compliant AI deployment.
comment: Final project for CS-GY 6813 at NYU Tandon School of Engineering
Pragya: An AI-Based Semantic Recommendation System for Sanskrit Subhasitas
Sanskrit Subhasitas encapsulate centuries of cultural and philosophical wisdom, yet remain underutilized in the digital age due to linguistic and contextual barriers. In this work, we present Pragya, a retrieval-augmented generation (RAG) framework for semantic recommendation of Subhasitas. We curate a dataset of 200 verses annotated with thematic tags such as motivation, friendship, and compassion. Using sentence embeddings (IndicBERT), the system retrieves top-k verses relevant to user queries. The retrieved results are then passed to a generative model (Mistral LLM) to produce transliterations, translations, and contextual explanations. Experimental evaluation demonstrates that semantic retrieval significantly outperforms keyword matching in precision and relevance, while user studies highlight improved accessibility through generated summaries. To our knowledge, this is the first attempt at integrating retrieval and generation for Sanskrit Subhasitas, bridging cultural heritage with modern applied AI.
comment: Preprint
CEDAR: Context Engineering for Agentic Data Science
We demonstrate CEDAR, an application for automating data science (DS) tasks with an agentic setup. Solving DS problems with LLMs is an underexplored area that has immense market value. The challenges are manifold: task complexities, data sizes, computational limitations, and context restrictions. We show that these can be alleviated via effective context engineering. We first impose structure into the initial prompt with DS-specific input fields, that serve as instructions for the agentic system. The solution is then materialized as an enumerated sequence of interleaved plan and code blocks generated by separate LLM agents, providing a readable structure to the context at any step of the workflow. Function calls for generating these intermediate texts, and for corresponding Python code, ensure that data stays local, and only aggregate statistics and associated instructions are injected into LLM prompts. Fault tolerance and context management are introduced via iterative code generation and smart history rendering. The viability of our agentic data scientist is demonstrated using canonical Kaggle challenges.
comment: Accepted at ECIR 2026
Object-Centric World Models Meet Monte Carlo Tree Search
In this paper, we introduce ObjectZero, a novel reinforcement learning (RL) algorithm that leverages the power of object-level representations to model dynamic environments more effectively. Unlike traditional approaches that process the world as a single undifferentiated input, our method employs Graph Neural Networks (GNNs) to capture intricate interactions among multiple objects. These objects, which can be manipulated and interact with each other, serve as the foundation for our model's understanding of the environment. We trained the algorithm in a complex setting teeming with diverse, interactive objects, demonstrating its ability to effectively learn and predict object dynamics. Our results highlight that a structured world model operating on object-centric representations can be successfully integrated into a model-based RL algorithm utilizing Monte Carlo Tree Search as a planning module.
UMLoc: Uncertainty-Aware Map-Constrained Inertial Localization with Quantified Bounds
Inertial localization is particularly valuable in GPS-denied environments such as indoors. However, localization using only Inertial Measurement Units (IMUs) suffers from drift caused by motion-process noise and sensor biases. This paper introduces Uncertainty-aware Map-constrained Inertial Localization (UMLoc), an end-to-end framework that jointly models IMU uncertainty and map constraints to achieve drift-resilient positioning. UMLoc integrates two coupled modules: (1) a Long Short-Term Memory (LSTM) quantile regressor, which estimates the specific quantiles needed to define 68%, 90%, and 95% prediction intervals serving as a measure of localization uncertainty and (2) a Conditioned Generative Adversarial Network (CGAN) with cross-attention that fuses IMU dynamic data with distance-based floor-plan maps to generate geometrically feasible trajectories. The modules are trained jointly, allowing uncertainty estimates to propagate through the CGAN during trajectory generation. UMLoc was evaluated on three datasets, including a newly collected 2-hour indoor benchmark with time-aligned IMU data, ground-truth poses and floor-plan maps. Results show that the method achieves a mean drift ratio of 5.9% over a 70 m travel distance and an average Absolute Trajectory Error (ATE) of 1.36 m, while maintaining calibrated prediction bounds.
Implicit bias as a Gauge correction: Theory and Inverse Design
A central problem in machine learning theory is to characterize how learning dynamics select particular solutions among the many compatible with the training objective, a phenomenon, called implicit bias, which remains only partially characterized. In the present work, we identify a general mechanism, in terms of an explicit geometric correction of the learning dynamics, for the emergence of implicit biases, arising from the interaction between continuous symmetries in the model's parametrization and stochasticity in the optimization process. Our viewpoint is constructive in two complementary directions: given model symmetries, one can derive the implicit bias they induce; conversely, one can inverse-design a wide class of different implicit biases by computing specific redundant parameterizations. More precisely, we show that, when the dynamics is expressed in the quotient space obtained by factoring out the symmetry group of the parameterization, the resulting stochastic differential equation gains a closed form geometric correction in the stationary distribution of the optimizer dynamics favoring orbits with small local volume. We compute the resulting symmetry induced bias for a range of architectures, showing how several well known results fit into a single unified framework. The approach also provides a practical methodology for deriving implicit biases in new settings, and it yields concrete, testable predictions that we confirm by numerical simulations on toy models trained on synthetic data, leaving more complex scenarios for future work. Finally, we test the implicit bias inverse-design procedure in notable cases, including biases toward sparsity in linear features or in spectral properties of the model parameters.
comment: v1
Detecting LLM-Generated Text with Performance Guarantees
Large language models (LLMs) such as GPT, Claude, Gemini, and Grok have been deeply integrated into our daily life. They now support a wide range of tasks -- from dialogue and email drafting to assisting with teaching and coding, serving as search engines, and much more. However, their ability to produce highly human-like text raises serious concerns, including the spread of fake news, the generation of misleading governmental reports, and academic misconduct. To address this practical problem, we train a classifier to determine whether a piece of text is authored by an LLM or a human. Our detector is deployed on an online CPU-based platform https://huggingface.co/spaces/stats-powered-ai/StatDetectLLM, and contains three novelties over existing detectors: (i) it does not rely on auxiliary information, such as watermarks or knowledge of the specific LLM used to generate the text; (ii) it more effectively distinguishes between human- and LLM-authored text; and (iii) it enables statistical inference, which is largely absent in the current literature. Empirically, our classifier achieves higher classification accuracy compared to existing detectors, while maintaining type-I error control, high statistical power, and computational efficiency.
Softly Induced Functional Simplicity Implications for Neural Network Generalisation, Robustness, and Distillation
Learning robust and generalisable abstractions from high-dimensional input data is a central challenge in machine learning and its applications to high-energy physics (HEP). Solutions of lower functional complexity are known to produce abstractions that generalise more effectively and are more robust to input perturbations. In complex hypothesis spaces, inductive biases make such solutions learnable by shaping the loss geometry during optimisation. In a HEP classification task, we show that a soft symmetry respecting inductive bias creates approximate degeneracies in the loss, which we identify as pseudo-Goldstone modes. We quantify functional complexity using metrics derived from first principles Hessian analysis and via compressibility. Our results demonstrate that solutions of lower complexity give rise to abstractions that are more generalisable, robust, and efficiently distillable.
Hellinger Multimodal Variational Autoencoders
Multimodal variational autoencoders (VAEs) are widely used for weakly supervised generative learning with multiple modalities. Predominant methods aggregate unimodal inference distributions using either a product of experts (PoE), a mixture of experts (MoE), or their combinations to approximate the joint posterior. In this work, we revisit multimodal inference through the lens of probabilistic opinion pooling, an optimization-based approach. We start from Hölder pooling with $α=0.5$, which corresponds to the unique symmetric member of the $α\text{-divergence}$ family, and derive a moment-matching approximation, termed Hellinger. We then leverage such an approximation to propose HELVAE, a multimodal VAE that avoids sub-sampling, yielding an efficient yet effective model that: (i) learns more expressive latent representations as additional modalities are observed; and (ii) empirically achieves better trade-offs between generative coherence and quality, outperforming state-of-the-art multimodal VAE models.
Mosaic: Unlocking Long-Context Inference for Diffusion LLMs via Global Memory Planning and Dynamic Peak Taming
Diffusion-based large language models (dLLMs) have emerged as a promising paradigm, utilizing simultaneous denoising to enable global planning and iterative refinement. While these capabilities are particularly advantageous for long-context generation, deploying such models faces a prohibitive memory capacity barrier stemming from severe system inefficiencies. We identify that existing inference systems are ill-suited for this paradigm: unlike autoregressive models constrained by the cumulative KV-cache, dLLMs are bottlenecked by transient activations recomputed at every step. Furthermore, general-purpose memory reuse mechanisms lack the global visibility to adapt to dLLMs' dynamic memory peaks, which toggle between logits and FFNs. To address these mismatches, we propose Mosaic, a memory-efficient inference system that shifts from local, static management to a global, dynamic paradigm. Mosaic integrates a mask-only logits kernel to eliminate redundancy, a lazy chunking optimizer driven by an online heuristic search to adaptively mitigate dynamic peaks, and a global memory manager to resolve fragmentation via virtual addressing. Extensive evaluations demonstrate that Mosaic achieves an average 2.71$\times$ reduction in the memory peak-to-average ratio and increases the maximum inference sequence length supportable on identical hardware by 15.89-32.98$\times$. This scalability is achieved without compromising accuracy and speed, and in fact reducing latency by 4.12%-23.26%.
comment: 11 pages, 18 figures
Predictive inference for time series: why is split conformal effective despite temporal dependence?
We consider the problem of uncertainty quantification for prediction in a time series: if we use past data to forecast the next time point, can we provide valid prediction intervals around our forecasts? To avoid placing distributional assumptions on the data, in recent years the conformal prediction method has been a popular approach for predictive inference, since it provides distribution-free coverage for any iid or exchangeable data distribution. However, in the time series setting, the strong empirical performance of conformal prediction methods is not well understood, since even short-range temporal dependence is a strong violation of the exchangeability assumption. Using predictors with "memory" -- i.e., predictors that utilize past observations, such as autoregressive models -- further exacerbates this problem. In this work, we examine the theoretical properties of split conformal prediction in the time series setting, including the case where predictors may have memory. Our results bound the loss of coverage of these methods in terms of a new "switch coefficient", measuring the extent to which temporal dependence within the time series creates violations of exchangeability. Our characterization of the coverage probability is sharp over the class of stationary, $β$-mixing processes. Along the way, we introduce tools that may prove useful in analyzing other predictive inference methods for dependent data.
comment: v2 has minor changes to the presentation
Neural Operators for Biomedical Spherical Heterogeneity
Spherical deep learning has been widely applied to a broad range of real-world problems. Existing approaches often face challenges in balancing strong spherical geometric inductive biases with the need to model real-world heterogeneity. To solve this while retaining spherical geometry, we first introduce a designable Green's function framework (DGF) to provide new spherical operator solution strategy: Design systematic Green's functions under rotational group. Based on DGF, to model biomedical heterogeneity, we propose Green's-Function Spherical Neural Operator (GSNO) fusing 3 operator solutions: (1) Equivariant Solution derived from Equivariant Green's Function for symmetry-consistent modeling; (2) Invariant Solution derived from Invariant Green's Function to eliminate nuisance heterogeneity, e.g., consistent background field; (3) Anisotropic Solution derived from Anisotropic Green's Function to model anisotropic systems, especially fibers with preferred direction. Therefore, the resulting model, GSNO can adapt to real-world heterogeneous systems with nuisance variability and anisotropy while retaining spectral efficiency. Evaluations on spherical MNIST, Shallow Water Equation, diffusion MRI fiber prediction, cortical parcellation and molecule structure modeling demonstrate the superiority of GSNO.
On Membership Inference Attacks in Knowledge Distillation
Large language models (LLMs) are trained on massive corpora that may contain sensitive information, creating privacy risks under membership inference attacks (MIAs). Knowledge distillation is widely used to compress LLMs into smaller student models, but its privacy implications are poorly understood. We systematically evaluate how distillation affects MIA vulnerability across six teacher-student model pairs and six attack methods. We find that distilled student models do not consistently exhibit lower MIA success than their teacher models, and in some cases demonstrate substantially higher member-specific attack success, challenging the assumption that knowledge distillation inherently improves privacy. We attribute this to mixed supervision in distillation: for vulnerable training data points, teacher predictions often align with ground-truth labels, causing student models to learn overly confident predictions that amplify the separability between members and non-members; conversely, for non-vulnerable points, teacher predictions and ground truth frequently diverge, providing inconsistent learning signals. To mitigate this, we propose three practical interventions -- restricting distillation to non-vulnerable points, adding a low-dimensional Bottleneck Projection, and a normalization variant (NoNorm). Experiments show these methods reduce both aggregate and member-specific MIA success while preserving model utility, improving privacy-utility trade-offs for distilled LLMs.
AlignSAE: Concept-Aligned Sparse Autoencoders
Large Language Models (LLMs) encode factual knowledge within hidden parametric spaces that are difficult to inspect or control. While Sparse Autoencoders (SAEs) can decompose hidden activations into more fine-grained, interpretable features, they often struggle to reliably align these features with human-defined concepts, resulting in entangled and distributed feature representations. To address this, we introduce AlignSAE, a method that aligns SAE features with a predefined ontology through a "pre-train, then post-train" curriculum. After an initial unsupervised training phase, we apply supervised post-training to bind specific concepts to dedicated latent slots while preserving the remaining capacity for general reconstruction. This separation creates an interpretable interface where specific concepts can be inspected and controlled without interference from unrelated features. Empirical results demonstrate that AlignSAE enables precise causal interventions, such as reliable "concept swaps", by targeting single, semantically aligned slots, and further supports multi-hop reasoning and a mechanistic probe of grokking-like generalization dynamics.
comment: 23 pages, 16 figures, 7 tables
Disco-RAG: Discourse-Aware Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) has emerged as an important means of enhancing the performance of large language models (LLMs) in knowledge-intensive tasks. However, most existing RAG strategies treat retrieved passages in a flat and unstructured way, which prevents the model from capturing structural cues and constrains its ability to synthesize knowledge from dispersed evidence across documents. To overcome these limitations, we propose Disco-RAG, a discourse-aware framework that explicitly injects discourse signals into the generation process. Our method constructs intra-chunk discourse trees to capture local hierarchies and builds inter-chunk rhetorical graphs to model cross-passage coherence. These structures are jointly integrated into a planning blueprint that conditions the generation. Experiments on question answering and long-document summarization benchmarks show the efficacy of our approach. Disco-RAG achieves state-of-the-art results on the benchmarks without fine-tuning. These findings underscore the important role of discourse structure in advancing RAG systems.
A Regime-Aware Fusion Framework for Time Series Classification
Kernel-based methods such as Rocket are among the most effective default approaches for univariate time series classification (TSC), yet they do not perform equally well across all datasets. We revisit the long-standing intuition that different representations capture complementary structure and show that selectively fusing them can yield consistent improvements over Rocket on specific, systematically identifiable kinds of datasets. We introduce Fusion-3 (F3), a lightweight framework that adaptively fuses Rocket, SAX, and SFA representations. To understand when fusion helps, we cluster UCR datasets into six groups using meta-features capturing series length, spectral structure, roughness, and class imbalance, and treat these clusters as interpretable data-structure regimes. Our analysis shows that fusion typically outperforms strong baselines in regimes with structured variability or rich frequency content, while offering diminishing returns in highly irregular or outlier-heavy settings. To support these findings, we combine three complementary analyses: non-parametric paired statistics across datasets, ablation studies isolating the roles of individual representations, and attribution via SHAP to identify which dataset properties predict fusion gains. Sample-level case studies further reveal the underlying mechanism: fusion primarily improves performance by rescuing specific errors, with adaptive increases in frequency-domain weighting precisely where corrections occur. Using 5-fold cross-validation on the 113 UCR datasets, F3 yields small but consistent average improvements over Rocket, supported by frequentist and Bayesian evidence and accompanied by clearly identifiable failure cases. Our results show that selectively applied fusion provides dependable and interpretable extension to strong kernel-based methods, correcting their weaknesses precisely where the data support it.
Simulating Posterior Bayesian Neural Networks with Dependent Weights
We consider fully connected and feedforward deep neural networks with dependent and possibly heavy-tailed weights, as introduced in Lee et al. 2023, to address limitations of the standard Gaussian prior. It has been proved in Lee et al. 2023 that, as the number of nodes in the hidden layers grows large, according to a sequential and ordered limit, the law of the output converges weakly to a Gaussian mixture. Among our results, we present sufficient conditions on the model parameters (the activation function and the associated Lévy measures) which ensure that the sequential limit is independent of the order. Next, we study the neural network through the lens of the posterior distribution with a Gaussian likelihood. If the random covariance matrix of the infinite-width limit is positive definite under the prior, we identify the posterior distribution of the output in the wide-width limit according to a sequential regime. Remarkably, we provide mild sufficient conditions to ensure the aforementioned invertibility of the random covariance matrix under the prior, thereby extending the results in L. Carvalho et al. 2025. We illustrate our findings using numerical simulations.
comment: 2 figures
TabImpute: Accurate and Fast Zero-Shot Missing-Data Imputation with a Pre-Trained Transformer
Missing data is a pervasive problem in tabular settings. Existing solutions range from simple averaging to complex generative adversarial networks, but due to each method's large variance in performance across real-world domains and time-consuming hyperparameter tuning, no default imputation method exists. Building on TabPFN, a recent tabular foundation model for supervised learning, we propose TabImpute, a pre-trained transformer that delivers accurate and fast zero-shot imputations requiring no fitting or hyperparameter tuning at inference time. To train and evaluate TabImpute, we introduce (i) an entry-wise featurization for tabular settings, which enables a 100x speedup over the previous TabPFN imputation method, (ii) a synthetic training data generation pipeline incorporating realistic missingness patterns, and (iii) MissBench, a comprehensive benchmark with 42 OpenML datasets and 13 new missingness patterns. MissBench spans domains such as medicine, finance, and engineering, showcasing TabImpute's robust performance compared to 12 established imputation methods.
A Comparison of Parametric Dynamic Mode Decomposition Algorithms for Thermal-Hydraulics Applications
In recent years, algorithms aiming at learning models from available data have become quite popular due to two factors: 1) the significant developments in Artificial Intelligence techniques and 2) the availability of large amounts of data. Nevertheless, this topic has already been addressed by methodologies belonging to the Reduced Order Modelling framework, of which perhaps the most famous equation-free technique is Dynamic Mode Decomposition. This algorithm aims to learn the best linear model that represents the physical phenomena described by a time series dataset: its output is a best state operator of the underlying dynamical system that can be used, in principle, to advance the original dataset in time even beyond its span. However, in its standard formulation, this technique cannot deal with parametric time series, meaning that a different linear model has to be derived for each parameter realization. Research on this is ongoing, and some versions of a parametric Dynamic Mode Decomposition already exist. This work contributes to this research field by comparing the different algorithms presently deployed and assessing their advantages and shortcomings compared to each other. To this aim, three different thermal-hydraulics problems are considered: two benchmark 'flow over cylinder' test cases at diverse Reynolds numbers, whose datasets are, respectively, obtained with the FEniCS finite element solver and retrieved from the CFDbench dataset, and the DYNASTY experimental facility operating at Politecnico di Milano, which studies the natural circulation established by internally heated fluids for Generation IV nuclear applications, whose dataset was generated using the RELAP5 nodal solver.
comment: Accepted for pubblication in Nuclear Technology
Ambiguous Online Learning
We propose a new variant of online learning that we call "ambiguous online learning". In this setting, the learner is allowed to produce multiple predicted labels. Such an "ambiguous prediction" is considered correct when at least one of the labels is correct, and none of the labels are "predictably wrong". The definition of "predictably wrong" comes from a hypothesis class in which hypotheses are also multi-valued. Thus, a prediction is "predictably wrong" if it's not allowed by the (unknown) true hypothesis. In particular, this setting is natural in the context of multivalued dynamical systems, recommendation algorithms and lossless compression. It is also strongly related to so-called "apple tasting". We show that in this setting, there is a trichotomy of mistake bounds: up to logarithmic factors, any hypothesis class has an optimal mistake bound of either Theta(1), Theta(sqrt(N)) or N.
From Alignment to Advancement: Bootstrapping Audio-Language Alignment with Synthetic Data
Audio-aware large language models (ALLMs) have recently made great strides in understanding and processing audio inputs. These models are typically adapted from text-based large language models (LLMs) through additional training on audio-related tasks. This adaptation process presents two major limitations. First, ALLMs often suffer from catastrophic forgetting, where crucial textual capabilities like instruction-following are lost after training on audio data. In some cases, models may even hallucinate sounds that are not present in the input audio, raising concerns about reliability. Second, achieving cross-modal alignment between audio and language typically relies on large collections of task-specific question-answer pairs for instruction tuning, making it resource-intensive. To address these issues, previous works have leveraged the backbone LLMs to synthesize general-purpose, caption-style alignment data. In this paper, we propose a data generation framework that produces contrastive-like training data, designed to enhance ALLMs' ability to differentiate between present and absent sounds. We further extend our approach to multi-audio scenarios, enabling the model to either explain differences between audio inputs or produce unified captions that describe all inputs, thereby enhancing audio-language alignment. We refer to the entire ALLM training framework as bootstrapping audio-language alignment via synthetic data generation from backbone LLMs (BALSa). Experimental results indicate that our method effectively mitigates audio hallucinations while reliably maintaining strong performance on audio understanding and reasoning benchmarks, as well as instruction-following skills. Moreover, incorporating multi-audio training further enhances the model's comprehension and reasoning capabilities. Overall, BALSa offers an efficient and scalable approach to developing ALLMs.
comment: Published in IEEE Transactions on Audio, Speech, and Language Processing (TASLP). Project Website: https://kuan2jiu99.github.io/Balsa
A Convex Framework for Confounding Robust Inference
We study policy evaluation of offline contextual bandits subject to unobserved confounders. Sensitivity analysis methods are commonly used to estimate the policy value under the worst-case confounding over a given uncertainty set. However, existing work often resorts to some coarse relaxation of the uncertainty set for the sake of tractability, leading to overly conservative estimation of the policy value. In this paper, we propose a general estimator that provides a sharp lower bound of the policy value using convex programming. The generality of our estimator enables various extensions such as sensitivity analysis with f-divergence, model selection with cross validation and information criterion, and robust policy learning with the sharp lower bound. Furthermore, our estimation method can be reformulated as an empirical risk minimization problem thanks to the strong duality, which enables us to provide strong theoretical guarantees of the proposed estimator using techniques of the M-estimation.
comment: This is an extended version of the following work https://proceedings.mlr.press/v206/ishikawa23a.html. arXiv admin note: text overlap with arXiv:2302.13348
Diffusion Model Based Signal Recovery Under 1-Bit Quantization AAAI2026
Diffusion models (DMs) have demonstrated to be powerful priors for signal recovery, but their application to 1-bit quantization tasks, such as 1-bit compressed sensing and logistic regression, remains a challenge. This difficulty stems from the inherent non-linear link function in these tasks, which is either non-differentiable or lacks an explicit characterization. To tackle this issue, we introduce Diff-OneBit, which is a fast and effective DM-based approach for signal recovery under 1-bit quantization. Diff-OneBit addresses the challenge posed by non-differentiable or implicit links functions via leveraging a differentiable surrogate likelihood function to model 1-bit quantization, thereby enabling gradient based iterations. This function is integrated into a flexible plug-and-play framework that decouples the data-fidelity term from the diffusion prior, allowing any pretrained DM to act as a denoiser within the iterative reconstruction process. Extensive experiments on the FFHQ, CelebA and ImageNet datasets demonstrate that Diff-OneBit gives high-fidelity reconstructed images, outperforming state-of-the-art methods in both reconstruction quality and computational efficiency across 1-bit compressed sensing and logistic regression tasks. Our code is available at https://github.com/Chenyouming123/DiffOneBit.
comment: AAAI2026
SemCSE-Multi: Multifaceted and Decodable Embeddings for Aspect-Specific and Interpretable Scientific Domain Mapping
We propose SemCSE-Multi, a novel unsupervised framework for generating multifaceted embeddings of scientific abstracts, evaluated in the domains of invasion biology and medicine. These embeddings capture distinct, individually specifiable aspects in isolation, thus enabling fine-grained and controllable similarity assessments as well as adaptive, user-driven visualizations of scientific domains. Our approach relies on an unsupervised procedure that produces aspect-specific summarizing sentences and trains embedding models to map semantically related summaries to nearby positions in the embedding space. We then distill these aspect-specific embedding capabilities into a unified embedding model that directly predicts multiple aspect embeddings from a scientific abstract in a single, efficient forward pass. In addition, we introduce an embedding decoding pipeline that decodes embeddings back into natural language descriptions of their associated aspects. Notably, we show that this decoding remains effective even for unoccupied regions in low-dimensional visualizations, thus offering vastly improved interpretability in user-centric settings.
Time-RA: Towards Time Series Reasoning for Anomaly Diagnosis with LLM Feedback
Time series anomaly detection (TSAD) has traditionally focused on binary classification and often lacks the fine-grained categorization and explanatory reasoning required for transparent decision-making. To address these limitations, we propose Time-series Reasoning for Anomaly (Time-RA), a novel task that reformulates TSAD from a discriminative into a generative, reasoning-intensive paradigm. To facilitate this, we introduce RATs40K, the first real-world large-scale multimodal benchmark with ~40,000 samples across 10 domains, integrating raw time series, textual context, and visual plots with structured reasoning annotations. Extensive benchmarking shows that while supervised fine-tuning and visual representations boost diagnostic accuracy and reasoning consistency, performance varies across complex scenarios. Notably, fine-tuned models demonstrate strong "plug-and-play" transferability, outperforming traditional baselines on unseen real-world datasets. Our work establishes a foundation for interpretable, multimodal time series analysis. All code (https://github.com/yyysjz1997/Time-RA) and the RATs40K dataset (https://huggingface.co/datasets/Time-RA/RATs40K) are fully open-sourced to facilitate future research.
comment: Under review. 25 pages, 11 figures, 14 tables. Code and dataset are publicly available
Virasoro Symmetry in Neural Network Field Theories
Neural Network Field Theories (NN-FTs) can realize global conformal symmetries via embedding space architectures. These models describe Generalized Free Fields (GFFs) in the infinite width limit. However, they typically lack a local stress-energy tensor satisfying conformal Ward identities. This presents an obstruction to realizing infinite-dimensional, local conformal symmetry typifying 2d Conformal Field Theories (CFTs). We present the first construction of an NN-FT that encodes the full Virasoro symmetry of a 2d CFT. We formulate a neural free boson theory with a local stress tensor $T(z)$ by properly choosing the architecture and prior distribution of network parameters. We verify the analytical results through numerical simulation; computing the central charge and the scaling dimensions of vertex operators. We then construct an NN realization of a Majorana Fermion and an $\mathcal{N}=(1,1)$ scalar multiplet, which then enables an extension of the formalism to include super-Virasoro symmetry. Finally, we extend the framework by constructing boundary NN-FTs that preserve (super-)conformal symmetry via the method of images.
comment: 13 pages, 2 figures
Truncated Kernel Stochastic Gradient Descent with General Losses and Spherical Radial Basis Functions
In this paper, we propose a novel kernel stochastic gradient descent (SGD) algorithm for large-scale supervised learning with general losses. Compared to traditional kernel SGD, our algorithm improves efficiency and scalability through an innovative regularization strategy. By leveraging the infinite series expansion of spherical radial basis functions, this strategy projects the stochastic gradient onto a finite-dimensional hypothesis space, which is adaptively scaled according to the bias-variance trade-off, thereby enhancing generalization performance. Based on a new estimation of the spectral structure of the kernel-induced covariance operator, we develop an analytical framework that unifies optimization and generalization analyses. We prove that both the last iterate and the suffix average converge at minimax-optimal rates, and we further establish optimal strong convergence in the reproducing kernel Hilbert space. Our framework accommodates a broad class of classical loss functions, including least-squares, Huber, and logistic losses. Moreover, the proposed algorithm significantly reduces computational complexity and achieves optimal storage complexity by incorporating coordinate-wise updates from linear SGD, thereby avoiding the costly pairwise operations typical of kernel SGD and enabling efficient processing of streaming data. Finally, extensive numerical experiments demonstrate the efficiency of our approach.
comment: 54 pages, 20 figures
Learning Operators with Stochastic Gradient Descent in General Hilbert Spaces
This study investigates leveraging stochastic gradient descent (SGD) to learn operators between general Hilbert spaces. We propose weak and strong regularity conditions for the target operator to depict its intrinsic structure and complexity. Under these conditions, we establish upper bounds for convergence rates of the SGD algorithm and conduct a minimax lower bound analysis, further illustrating that our convergence analysis and regularity conditions quantitatively characterize the tractability of solving operator learning problems using the SGD algorithm. It is crucial to highlight that our convergence analysis is still valid for nonlinear operator learning. We show that the SGD estimator will converge to the best linear approximation of the nonlinear target operator. Moreover, applying our analysis to operator learning problems based on vector-valued and real-valued reproducing kernel Hilbert spaces yields new convergence results, thereby refining the conclusions of existing literature.
comment: 58 pages
A Kernel-based Stochastic Approximation Framework for Nonlinear Operator Learning
We develop a stochastic approximation framework for learning nonlinear operators between infinite-dimensional spaces utilizing general Mercer operator-valued kernels. Our framework encompasses two key classes: (i) compact kernels, which admit discrete spectral decompositions, and (ii) diagonal kernels of the form $K(x,x')=k(x,x')T$, where $k$ is a scalar-valued kernel and $T$ is a positive operator on the output space. This broad setting induces expressive vector-valued reproducing kernel Hilbert spaces (RKHSs) that generalize the classical $K=kI$ paradigm, thereby enabling rich structural modeling with rigorous theoretical guarantees. To address target operators lying outside the RKHS, we introduce vector-valued interpolation spaces to precisely quantify misspecification error. Within this framework, we establish dimension-free polynomial convergence rates, demonstrating that nonlinear operator learning can overcome the curse of dimensionality. The use of general operator-valued kernels further allows us to derive rates for intrinsically nonlinear operator learning, going beyond the linear-type behavior inherent in diagonal constructions of $K=kI$. Importantly, this framework accommodates a wide range of operator learning tasks, ranging from integral operators such as Fredholm operators to architectures based on encoder-decoder representations. Moreover, we validate its effectiveness through numerical experiments on the two-dimensional Navier-Stokes equations.
comment: 34 pages, 3 figures
Learning Operators by Regularized Stochastic Gradient Descent with Operator-valued Kernels
We consider a class of statistical inverse problems involving the estimation of a regression operator from a Polish space to a separable Hilbert space, where the target lies in a vector-valued reproducing kernel Hilbert space induced by an operator-valued kernel. To address the associated ill-posedness, we analyze regularized stochastic gradient descent (SGD) algorithms in both online and finite-horizon settings. The former uses polynomially decaying step sizes and regularization parameters, while the latter adopts fixed values. Under suitable structural and distributional assumptions, we establish dimension-independent bounds for prediction and estimation errors. The resulting convergence rates are near-optimal in expectation, and we also derive high-probability estimates that imply almost sure convergence. Our analysis introduces a general technique for obtaining high-probability guarantees in infinite-dimensional settings. Possible extensions to broader kernel classes and encoder-decoder structures are briefly discussed.
comment: 56 pages, 2 figures
Graphics 3
RigMo: Unifying Rig and Motion Learning for Generative Animation
Despite significant progress in 4D generation, rig and motion, the core structural and dynamic components of animation are typically modeled as separate problems. Existing pipelines rely on ground-truth skeletons and skinning weights for motion generation and treat auto-rigging as an independent process, undermining scalability and interpretability. We present RigMo, a unified generative framework that jointly learns rig and motion directly from raw mesh sequences, without any human-provided rig annotations. RigMo encodes per-vertex deformations into two compact latent spaces: a rig latent that decodes into explicit Gaussian bones and skinning weights, and a motion latent that produces time-varying SE(3) transformations. Together, these outputs define an animatable mesh with explicit structure and coherent motion, enabling feed-forward rig and motion inference for deformable objects. Beyond unified rig-motion discovery, we introduce a Motion-DiT model operating in RigMo's latent space and demonstrate that these structure-aware latents can naturally support downstream motion generation tasks. Experiments on DeformingThings4D, Objaverse-XL, and TrueBones demonstrate that RigMo learns smooth, interpretable, and physically plausible rigs, while achieving superior reconstruction and category-level generalization compared to existing auto-rigging and deformation baselines. RigMo establishes a new paradigm for unified, structure-aware, and scalable dynamic 3D modeling.
comment: Project Page: https://RigMo-Page.github.io
HOSC: A Periodic Activation with Saturation Control for High-Fidelity Implicit Neural Representations
Periodic activations such as sine preserve high-frequency information in implicit neural representations (INRs) through their oscillatory structure, but often suffer from gradient instability and limited control over multi-scale behavior. We introduce the Hyperbolic Oscillator with Saturation Control (HOSC) activation, $\text{HOSC}(x) = \tanh\bigl(β\sin(ω_0 x)\bigr)$, which exposes an explicit parameter $β$ that controls the Lipschitz bound of the activation by $βω_0$. This provides a direct mechanism to tune gradient magnitudes while retaining a periodic carrier. We provide a mathematical analysis and conduct a comprehensive empirical study across images, audio, video, NeRFs, and SDFs using standardized training protocols. Comparative analysis against SIREN, FINER, and related methods shows where HOSC provides substantial benefits and where it achieves competitive parity. Results establish HOSC as a practical periodic activation for INR applications, with domain-specific guidance on hyperparameter selection. For code visit the project page https://hosc-nn.github.io/ .
comment: 16 pages including appendices, 12 figures, 15 tables
PointSLAM++: Robust Dense Neural Gaussian Point Cloud-based SLAM
Real-time 3D reconstruction is crucial for robotics and augmented reality, yet current simultaneous localization and mapping(SLAM) approaches often struggle to maintain structural consistency and robust pose estimation in the presence of depth noise. This work introduces PointSLAM++, a novel RGB-D SLAM system that leverages a hierarchically constrained neural Gaussian representation to preserve structural relationships while generating Gaussian primitives for scene mapping. It also employs progressive pose optimization to mitigate depth sensor noise, significantly enhancing localization accuracy. Furthermore, it utilizes a dynamic neural representation graph that adjusts the distribution of Gaussian nodes based on local geometric complexity, enabling the map to adapt to intricate scene details in real time. This combination yields high-precision 3D mapping and photorealistic scene rendering. Experimental results show PointSLAM++ outperforms existing 3DGS-based SLAM methods in reconstruction accuracy and rendering quality, demonstrating its advantages for large-scale AR and robotics.
Robotics 32
Goal Force: Teaching Video Models To Accomplish Physics-Conditioned Goals
Recent advancements in video generation have enabled the development of ``world models'' capable of simulating potential futures for robotics and planning. However, specifying precise goals for these models remains a challenge; text instructions are often too abstract to capture physical nuances, while target images are frequently infeasible to specify for dynamic tasks. To address this, we introduce Goal Force, a novel framework that allows users to define goals via explicit force vectors and intermediate dynamics, mirroring how humans conceptualize physical tasks. We train a video generation model on a curated dataset of synthetic causal primitives-such as elastic collisions and falling dominos-teaching it to propagate forces through time and space. Despite being trained on simple physics data, our model exhibits remarkable zero-shot generalization to complex, real-world scenarios, including tool manipulation and multi-object causal chains. Our results suggest that by grounding video generation in fundamental physical interactions, models can emerge as implicit neural physics simulators, enabling precise, physics-aware planning without reliance on external engines. We release all datasets, code, model weights, and interactive video demos at our project page.
comment: Code and interactive demos at https://goal-force.github.io/
DexterCap: An Affordable and Automated System for Capturing Dexterous Hand-Object Manipulation
Capturing fine-grained hand-object interactions is challenging due to severe self-occlusion from closely spaced fingers and the subtlety of in-hand manipulation motions. Existing optical motion capture systems rely on expensive camera setups and extensive manual post-processing, while low-cost vision-based methods often suffer from reduced accuracy and reliability under occlusion. To address these challenges, we present DexterCap, a low-cost optical capture system for dexterous in-hand manipulation. DexterCap uses dense, character-coded marker patches to achieve robust tracking under severe self-occlusion, together with an automated reconstruction pipeline that requires minimal manual effort. With DexterCap, we introduce DexterHand, a dataset of fine-grained hand-object interactions covering diverse manipulation behaviors and objects, from simple primitives to complex articulated objects such as a Rubik's Cube. We release the dataset and code to support future research on dexterous hand-object interaction.
comment: 12 pages, 12 figures
Intelligent Singularity Avoidance in UR10 Robotic Arm Path Planning Using Hybrid Fuzzy Logic and Reinforcement Learning
This paper presents a comprehensive approach to singularity detection and avoidance in UR10 robotic arm path planning through the integration of fuzzy logic safety systems and reinforcement learning algorithms. The proposed system addresses critical challenges in robotic manipulation where singularities can cause loss of control and potential equipment damage. Our hybrid approach combines real-time singularity detection using manipulability measures, condition number analysis, and fuzzy logic decision-making with a stable reinforcement learning framework for adaptive path planning. Experimental results demonstrate a 90% success rate in reaching target positions while maintaining safe distances from singular configurations. The system integrates PyBullet simulation for training data collection and URSim connectivity for real-world deployment.
comment: Published in TANET 2025 (Paper No. T0404)
SceneFoundry: Generating Interactive Infinite 3D Worlds
The ability to automatically generate large-scale, interactive, and physically realistic 3D environments is crucial for advancing robotic learning and embodied intelligence. However, existing generative approaches often fail to capture the functional complexity of real-world interiors, particularly those containing articulated objects with movable parts essential for manipulation and navigation. This paper presents SceneFoundry, a language-guided diffusion framework that generates apartment-scale 3D worlds with functionally articulated furniture and semantically diverse layouts for robotic training. From natural language prompts, an LLM module controls floor layout generation, while diffusion-based posterior sampling efficiently populates the scene with articulated assets from large-scale 3D repositories. To ensure physical usability, SceneFoundry employs differentiable guidance functions to regulate object quantity, prevent articulation collisions, and maintain sufficient walkable space for robotic navigation. Extensive experiments demonstrate that our framework generates structurally valid, semantically coherent, and functionally interactive environments across diverse scene types and conditions, enabling scalable embodied AI research.
comment: 15 pages
Modular Autonomy with Conversational Interaction: An LLM-driven Framework for Decision Making in Autonomous Driving IV 2026
Recent advancements in Large Language Models (LLMs) offer new opportunities to create natural language interfaces for Autonomous Driving Systems (ADSs), moving beyond rigid inputs. This paper addresses the challenge of mapping the complexity of human language to the structured action space of modular ADS software. We propose a framework that integrates an LLM-based interaction layer with Autoware, a widely used open-source software. This system enables passengers to issue high-level commands, from querying status information to modifying driving behavior. Our methodology is grounded in three key components: a taxonomization of interaction categories, an application-centric Domain Specific Language (DSL) for command translation, and a safety-preserving validation layer. A two-stage LLM architecture ensures high transparency by providing feedback based on the definitive execution status. Evaluation confirms the system's timing efficiency and translation robustness. Simulation successfully validated command execution across all five interaction categories. This work provides a foundation for extensible, DSL-assisted interaction in modular and safety-conscious autonomy stacks.
comment: Submitted to the IEEE Intelligent Vehicles Symposium (IV 2026), Detroit, MI, United States
InsSo3D: Inertial Navigation System and 3D Sonar SLAM for turbid environment inspection
This paper presents InsSo3D, an accurate and efficient method for large-scale 3D Simultaneous Localisation and Mapping (SLAM) using a 3D Sonar and an Inertial Navigation System (INS). Unlike traditional sonar, which produces 2D images containing range and azimuth information but lacks elevation information, 3D Sonar produces a 3D point cloud, which therefore does not suffer from elevation ambiguity. We introduce a robust and modern SLAM framework adapted to the 3D Sonar data using INS as prior, detecting loop closure and performing pose graph optimisation. We evaluated InsSo3D performance inside a test tank with access to ground truth data and in an outdoor flooded quarry. Comparisons to reference trajectories and maps obtained from an underwater motion tracking system and visual Structure From Motion (SFM) demonstrate that InsSo3D efficiently corrects odometry drift. The average trajectory error is below 21cm during a 50-minute-long mission, producing a map of 10m by 20m with a 9cm average reconstruction error, enabling safe inspection of natural or artificial underwater structures even in murky water conditions.
FlyPose: Towards Robust Human Pose Estimation From Aerial Views WACV
Unmanned Aerial Vehicles (UAVs) are increasingly deployed in close proximity to humans for applications such as parcel delivery, traffic monitoring, disaster response and infrastructure inspections. Ensuring safe and reliable operation in these human-populated environments demands accurate perception of human poses and actions from an aerial viewpoint. This perspective challenges existing methods with low resolution, steep viewing angles and (self-)occlusion, especially if the application demands realtime feasibile models. We train and deploy FlyPose, a lightweight top-down human pose estimation pipeline for aerial imagery. Through multi-dataset training, we achieve an average improvement of 6.8 mAP in person detection across the test-sets of Manipal-UAV, VisDrone, HIT-UAV as well as our custom dataset. For 2D human pose estimation we report an improvement of 16.3 mAP on the challenging UAV-Human dataset. FlyPose runs with an inference latency of ~20 milliseconds including preprocessing on a Jetson Orin AGX Developer Kit and is deployed onboard a quadrotor UAV during flight experiments. We also publish FlyPose-104, a small but challenging aerial human pose estimation dataset, that includes manual annotations from difficult aerial perspectives: https://github.com/farooqhassaan/FlyPose.
comment: 11 pages, 9 figures, IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2026
Motion Compensation for Real Time Ultrasound Scanning in Robotically Assisted Prostate Biopsy Procedures ICRA 2026
Prostate cancer is one of the most common types of cancer in men. Its diagnosis by biopsy requires a high level of expertise and precision from the surgeon, so the results are highly operator-dependent. The aim of this work is to develop a robotic system for assisted ultrasound (US) examination of the prostate, a prebiopsy step that could reduce the dexterity requirements and enable faster, more accurate and more available prostate biopsy. We developed and validated a laboratory setup with a collaborative robotic arm that can autonomously scan a prostate phantom and attached the phantom to a medical robotic arm that mimics the patient's movements. The scanning robot keeps the relative position of the US probe and the prostate constant, ensuring a consistent and robust approach to reconstructing the prostate. To reconstruct the prostate, each slice is segmented to generate a series of prostate contours converted into a 3D point cloud used for biopsy planning. The average scan time of the prostate was 30 s, and the average 3D reconstruction of the prostate took 3 s. We performed four motion scenarios: the phantom was scanned in a stationary state (S), with horizontal motion (H), with vertical motion (V), and with a combination of the two (C). System validation is performed by registering the prostate point cloud reconstructions acquired during different motions (H, V, C) with those obtained in the stationary state. ICP registration with a threshold of 0.8 mm yields mean 83.2\% fitness and 0.35 mm RMSE for S-H registration, 84.1\% fitness and 0.37 mm RMSE for S-V registration and 79.4\% fitness and 0.37 mm RMSE for S-C registration. Due to the elastic and soft material properties of the prostate phantom, the maximum robot tracking error was 3 mm, which can be sufficient for prostate biopsy according to medical literature. The maximum delay in motion compensation was 0.5 s.
comment: Submitted for ICRA 2026
EvoQRE: Modeling Bounded Rationality in Safety-Critical Traffic Simulation via Evolutionary Quantal Response Equilibrium
Existing traffic simulation frameworks for autonomous vehicles typically rely on imitation learning or game-theoretic approaches that solve for Nash or coarse correlated equilibria, implicitly assuming perfectly rational agents. However, human drivers exhibit bounded rationality, making approximately optimal decisions under cognitive and perceptual constraints. We propose EvoQRE, a principled framework for modeling safety-critical traffic interactions as general-sum Markov games solved via Quantal Response Equilibrium (QRE) and evolutionary game dynamics. EvoQRE integrates a pre-trained generative world model with entropy-regularized replicator dynamics, capturing stochastic human behavior while maintaining equilibrium structure. We provide rigorous theoretical results, proving that the proposed dynamics converge to Logit-QRE under a two-timescale stochastic approximation with an explicit convergence rate of O(log k / k^{1/3}) under weak monotonicity assumptions. We further extend QRE to continuous action spaces using mixture-based and energy-based policy representations. Experiments on the Waymo Open Motion Dataset and nuPlan benchmark demonstrate that EvoQRE achieves state-of-the-art realism, improved safety metrics, and controllable generation of diverse safety-critical scenarios through interpretable rationality parameters.
comment: 11 pages, 5 figures
Mobile Robot Localization Using a Novel Whisker-Like Sensor
Whisker-like touch sensors offer unique advantages for short-range perception in environments where visual and long-range sensing are unreliable, such as confined, cluttered, or low-visibility settings. This paper presents a framework for estimating contact points and robot localization in a known planar environment using a single whisker sensor. We develop a family of virtual sensor models. Each model maps robot configurations to sensor observations and enables structured reasoning through the concept of preimages - the set of robot states consistent with a given observation. The notion of virtual sensor models serves as an abstraction to reason about state uncertainty without dependence on physical implementation. By combining sensor observations with a motion model, we estimate the contact point. Iterative estimation then enables reconstruction of obstacle boundaries. Furthermore, intersecting states inferred from current observations with forward-projected states from previous steps allow accurate robot localization without relying on vision or external systems. The framework supports both deterministic and possibilistic formulations and is validated through simulation and physical experiments using a low-cost, 3D printed, Hall-effect-based whisker sensor. Results demonstrate accurate contact estimation and localization with errors under 7 mm, demonstrating the potential of whisker-based sensing as a lightweight, adaptable complement to vision-based navigation.
Learning specifications for reactive synthesis with safety constraints
This paper presents a novel approach to learning from demonstration that enables robots to autonomously execute complex tasks in dynamic environments. We model latent tasks as probabilistic formal languages and introduce a tailored reactive synthesis framework that balances robot costs with user task preferences. Our methodology focuses on safety-constrained learning and inferring formal task specifications as Probabilistic Deterministic Finite Automata (PDFA). We adapt existing evidence-driven state merging algorithms and incorporate safety requirements throughout the learning process to ensure that the learned PDFA always complies with safety constraints. Furthermore, we introduce a multi-objective reactive synthesis algorithm that generates deterministic strategies that are guaranteed to satisfy the PDFA task while optimizing the trade-offs between user preferences and robot costs, resulting in a Pareto front of optimal solutions. Our approach models the interaction as a two-player game between the robot and the environment, accounting for dynamic changes. We present a computationally-tractable value iteration algorithm to generate the Pareto front and the corresponding deterministic strategies. Comprehensive experimental results demonstrate the effectiveness of our algorithms across various robots and tasks, showing that the learned PDFA never includes unsafe behaviors and that synthesized strategies consistently achieve the task while meeting both the robot cost and user-preference requirements.
Safety Not Found (404): Hidden Risks of LLM-Based Robotics Decision Making
One mistake by an AI system in a safety-critical setting can cost lives. As Large Language Models (LLMs) become integral to robotics decision-making, the physical dimension of risk grows; a single wrong instruction can directly endanger human safety. This paper addresses the urgent need to systematically evaluate LLM performance in scenarios where even minor errors are catastrophic. Through a qualitative evaluation of a fire evacuation scenario, we identified critical failure cases in LLM-based decision-making. Based on these, we designed seven tasks for quantitative assessment, categorized into: Complete Information, Incomplete Information, and Safety-Oriented Spatial Reasoning (SOSR). Complete information tasks utilize ASCII maps to minimize interpretation ambiguity and isolate spatial reasoning from visual processing. Incomplete information tasks require models to infer missing context, testing for spatial continuity versus hallucinations. SOSR tasks use natural language to evaluate safe decision-making in life-threatening contexts. We benchmark various LLMs and Vision-Language Models (VLMs) across these tasks. Beyond aggregate performance, we analyze the implications of a 1% failure rate, highlighting how "rare" errors escalate into catastrophic outcomes. Results reveal serious vulnerabilities: several models achieved a 0% success rate in ASCII navigation, while in a simulated fire drill, models instructed robots to move toward hazardous areas instead of emergency exits. Our findings lead to a sobering conclusion: current LLMs are not ready for direct deployment in safety-critical systems. A 99% accuracy rate is dangerously misleading in robotics, as it implies one out of every hundred executions could result in catastrophic harm. We demonstrate that even state-of-the-art models cannot guarantee safety, and absolute reliance on them creates unacceptable risks.
TOSC: Task-Oriented Shape Completion for Open-World Dexterous Grasp Generation from Partial Point Clouds AAAI 2026
Task-oriented dexterous grasping remains challenging in robotic manipulations of open-world objects under severe partial observation, where significant missing data invalidates generic shape completion. In this paper, to overcome this limitation, we study Task-Oriented Shape Completion, a new task that focuses on completing the potential contact regions rather than the entire shape. We argue that shape completion for grasping should be explicitly guided by the downstream manipulation task. To achieve this, we first generate multiple task-oriented shape completion candidates by leveraging the zero-shot capabilities of object functional understanding from several pre-trained foundation models. A 3D discriminative autoencoder is then proposed to evaluate the plausibility of each generated candidate and optimize the most plausible one from a global perspective. A conditional flow-matching model named FlowGrasp is developed to generate task-oriented dexterous grasps from the optimized shape. Our method achieves state-of-the-art performance in task-oriented dexterous grasping and task-oriented shape completion, improving the Grasp Displacement and the Chamfer Distance over the state-of-the-art by 16.17\% and 55.26%, respectively. In particular, it shows good capabilities in grasping objects with severe missing data. It also demonstrates good generality in handling open-set categories and tasks.
comment: Accepted to AAAI 2026
Assembling Solar Panels by Dual Robot Arms Towards Full Autonomous Lunar Base Construction
Since the successful Apollo program, humanity is once again aiming to return to the Moon for scientific discovery, resource mining, and inhabitation. Upcoming decades focus on building a lunar outpost, with robotic systems playing a crucial role to safely and efficiently establish essential infrastructure such as solar power generating towers. Similar to the construction of the International Space Station (ISS), shipping necessary components via modules and assembling them in situ should be a practical scenario. In this context, this paper focuses on the integration of vision, control, and hardware systems within an autonomous sequence for a dual-arm robot system. We explore a perception and control pipeline specifically designed for assembling solar panel modules, one of the benchmark tasks. Ad hoc hardware was designed and tested in real-world experiments. A mock-up of modular solar panels and active-passive connectors are employed, with the control of this grappling fixture integrated into the proposed pipeline. The successful implementation of our method demonstrates that the two robot manipulators can effectively connect arbitrarily placed panels, highlighting the seamless integration of vision, control, and hardware systems in complex space applications.
comment: This is the authors' version of a paper accepted for publication in IEEE/SICE International Symposium on System Integration (SII), 2025, (c) IEEE
BlazeAIoT: A Modular Multi-Layer Platform for Real-Time Distributed Robotics Across Edge, Fog, and Cloud Infrastructures
The increasing complexity of distributed robotics has driven the need for platforms that seamlessly integrate edge, fog, and cloud computing layers while meeting strict real-time constraints. This paper introduces BlazeAIoT, a modular multi-layer platform designed to unify distributed robotics across heterogeneous infrastructures. BlazeAIoT provides dynamic data transfer, configurable services, and integrated monitoring, while ensuring resilience, security, and programming language flexibility. The architecture leverages Kubernetes-based clusters, broker interoperability (DDS, Kafka, Redis, and ROS2), and adaptive data distribution mechanisms to optimize communication and computation across diverse environments. The proposed solution includes a multi-layer configuration service, dynamic and adaptive data bridging, and hierarchical rate limiting to handle large messages. The platform is validated through robotics scenarios involving navigation and artificial intelligence-driven large-scale message processing, demonstrating robust performance under real-time constraints. Results highlight BlazeAIoT's ability to dynamically allocate services across incomplete topologies, maintain system health, and minimize latency, making it a cost-aware, scalable solution for robotics and broader IoT applications, such as smart cities and smart factories.
comment: 17 pages, 9 figures
Walk the PLANC: Physics-Guided RL for Agile Humanoid Locomotion on Constrained Footholds
Bipedal humanoid robots must precisely coordinate balance, timing, and contact decisions when locomoting on constrained footholds such as stepping stones, beams, and planks -- even minor errors can lead to catastrophic failure. Classical optimization and control pipelines handle these constraints well but depend on highly accurate mathematical representations of terrain geometry, making them prone to error when perception is noisy or incomplete. Meanwhile, reinforcement learning has shown strong resilience to disturbances and modeling errors, yet end-to-end policies rarely discover the precise foothold placement and step sequencing required for discontinuous terrain. These contrasting limitations motivate approaches that guide learning with physics-based structure rather than relying purely on reward shaping. In this work, we introduce a locomotion framework in which a reduced-order stepping planner supplies dynamically consistent motion targets that steer the RL training process via Control Lyapunov Function (CLF) rewards. This combination of structured footstep planning and data-driven adaptation produces accurate, agile, and hardware-validated stepping-stone locomotion on a humanoid robot, substantially improving reliability compared to conventional model-free reinforcement-learning baselines.
NAS-GS: Noise-Aware Sonar Gaussian Splatting
Underwater sonar imaging plays a crucial role in various applications, including autonomous navigation in murky water, marine archaeology, and environmental monitoring. However, the unique characteristics of sonar images, such as complex noise patterns and the lack of elevation information, pose significant challenges for 3D reconstruction and novel view synthesis. In this paper, we present NAS-GS, a novel Noise-Aware Sonar Gaussian Splatting framework specifically designed to address these challenges. Our approach introduces a Two-Ways Splatting technique that accurately models the dual directions for intensity accumulation and transmittance calculation inherent in sonar imaging, significantly improving rendering speed without sacrificing quality. Moreover, we propose a Gaussian Mixture Model (GMM) based noise model that captures complex sonar noise patterns, including side-lobes, speckle, and multi-path noise. This model enhances the realism of synthesized images while preventing 3D Gaussian overfitting to noise, thereby improving reconstruction accuracy. We demonstrate state-of-the-art performance on both simulated and real-world large-scale offshore sonar scenarios, achieving superior results in novel view synthesis and 3D reconstruction.
Low-Latency Event-Based Velocimetry for Quadrotor Control in a Narrow Pipe
Autonomous quadrotor flight in confined spaces such as pipes and tunnels presents significant challenges due to unsteady, self-induced aerodynamic disturbances. Very recent advances have enabled flight in such conditions, but they either rely on constant motion through the pipe to mitigate airflow recirculation effects or suffer from limited stability during hovering. In this work, we present the first closed-loop control system for quadrotors for hovering in narrow pipes that leverages real-time flow field measurements. We develop a low-latency, event-based smoke velocimetry method that estimates local airflow at high temporal resolution. This flow information is used by a disturbance estimator based on a recurrent convolutional neural network, which infers force and torque disturbances in real time. The estimated disturbances are integrated into a learning-based controller trained via reinforcement learning. The flow-feedback control proves particularly effective during lateral translation maneuvers in the pipe cross-section. There, the real-time disturbance information enables the controller to effectively counteract transient aerodynamic effects, thereby preventing collisions with the pipe wall. To the best of our knowledge, this work represents the first demonstration of an aerial robot with closed-loop control informed by real-time flow field measurements. This opens new directions for research on flight in aerodynamically complex environments. In addition, our work also sheds light on the characteristic flow structures that emerge during flight in narrow, circular pipes, providing new insights at the intersection of robotics and fluid dynamics.
comment: 19 pages
Closing the Reality Gap: Zero-Shot Sim-to-Real Deployment for Dexterous Force-Based Grasping and Manipulation
Human-like dexterous hands with multiple fingers offer human-level manipulation capabilities, but training control policies that can directly deploy on real hardware remains difficult due to contact-rich physics and imperfect actuation. We close this gap with a practical sim-to-real reinforcement learning (RL) framework that utilizes dense tactile feedback combined with joint torque sensing to explicitly regulate physical interactions. To enable effective sim-to-real transfer, we introduce (i) a computationally fast tactile simulation that computes distances between dense virtual tactile units and the object via parallel forward kinematics, providing high-rate, high-resolution touch signals needed by RL; (ii) a current-to-torque calibration that eliminates the need for torque sensors on dexterous hands by mapping motor current to joint torque; and (iii) actuator dynamics modeling to bridge the actuation gaps with randomization of non-ideal effects such as backlash, torque-speed saturation. Using an asymmetric actor-critic PPO pipeline trained entirely in simulation, our policies deploy directly to a five-finger hand. The resulting policies demonstrated two essential skills: (1) command-based, controllable grasp force tracking, and (2) reorientation of objects in the hand, both of which were robustly executed without fine-tuning on the robot. By combining tactile and torque in the observation space with effective sensing/actuation modeling, our system provides a practical solution to achieve reliable dexterous manipulation. To our knowledge, this is the first demonstration of controllable grasping on a multi-finger dexterous hand trained entirely in simulation and transferred zero-shot on real hardware.
iTeach: Interactive Teaching for Robot Perception using Mixed Reality
Robots deployed in the wild often encounter objects and scenes that break pre-trained perception models, yet adapting these models typically requires slow offline data collection, labeling, and retraining. We introduce iTeach, a human-in-the-loop system that enables robots to improve perception continuously as they explore new environments. A human sees the robot's predictions from its own viewpoint, corrects failures in real time, and the informed data drives iterative fine-tuning until performance is satisfactory. A mixed reality headset provides the interface, overlaying predictions in the user's view and enabling lightweight annotation via eye gaze and voice. Instead of tedious frame-by-frame labeling, a human guides the robot to scenes of choice and records short videos while interacting with objects. The human labels only the final frame, and a video segmentation model propagates labels across the sequence, converting seconds of input into dense supervision. The refined model is deployed immediately, closing the loop between human feedback and robot learning. We demonstrate iTeach on Unseen Object Instance Segmentation (UOIS), achieving consistent improvements over a pre-trained MSMFormer baseline on both our collected dataset and the SceneReplica benchmark, where it leads to higher grasping success, followed by a real-world demonstration of grasping unseen objects with a Fetch robot. By combining human judgment, efficient annotation, and on-the-fly refinement, iTeach provides a practical path toward perception systems that generalize robustly in diverse real-world conditions. Project page at https://irvlutd.github.io/iTeach
Dense 3D Displacement Estimation for Landslide Monitoring via Fusion of TLS Point Clouds and Embedded RGB Images
Landslide monitoring is essential for understanding geohazards and mitigating associated risks. Existing point cloud-based methods, however, typically rely on either geometric or radiometric information and often yield sparse or non-3D displacement estimates. In this paper, we propose a hierarchical partitioning-based coarse-to-fine approach that integrates 3D point clouds and co-registered RGB images to estimate dense 3D displacement vector fields. Patch-level matches are constructed using both 3D geometry and 2D image features, refined via geometric consistency checks, and followed by rigid transformation estimation per match. Experimental results on two real-world landslide datasets demonstrate that the proposed method produces 3D displacement estimates with high spatial coverage (79% and 97%) and accuracy. Deviations in displacement magnitude with respect to external measurements (total station or GNSS observations) are 0.15 m and 0.25 m on the two datasets, respectively, and only 0.07 m and 0.20 m compared to manually derived references, all below the mean scan resolutions (0.08 m and 0.30 m). Compared with the state-of-the-art method F2S3, the proposed approach improves spatial coverage while maintaining comparable accuracy. The proposed approach offers a practical and adaptable solution for TLS-based landslide monitoring and is extensible to other types of point clouds and monitoring tasks. The example data and source code are publicly available at https://github.com/gseg-ethz/fusion4landslide.
comment: Published in the International Journal of Applied Earth Observation and Geoinformation. 25 pages, 19 figures
Anomaly detection for generic failure monitoring in robotic assembly, screwing and manipulation
Out-of-distribution states in robot manipulation often lead to unpredictable robot behavior or task failure, limiting success rates and increasing risk of damage. Anomaly detection (AD) can identify deviations from expected patterns in data, which can be used to trigger failsafe behaviors and recovery strategies. Prior work has applied data-driven AD on time series data for specific robotic tasks, however the transferability of an AD approach between different robot control strategies and task types has not been shown. Leveraging time series data, such as force/torque signals, allows to directly capture robot-environment interactions, crucial for manipulation and online failure detection. Their broad availability, high sampling rates, and low dimensionality enable high temporal resolution and efficient processing. As robotic tasks can have widely signal characteristics and requirements, AD methods which can be applied in the same way to a wide range of tasks is needed, ideally with good data efficiency. We examine three industrial tasks, each presenting several anomalies. Test scenarios in robotic cabling, screwing, and sanding are built, and multi-modal time series data is gathered. Several autoencoder-based methods are compared, and we evaluate the generalization across different tasks and control methods (diffusion policy-, position-, and impedance-controlled). This allows us to validate the integration of AD in complex tasks involving tighter tolerances and variation from both the robot and its environment. Additionally, we evaluate data efficiency, detection latency, and task characteristics which support robust detection. The results indicate reliable detection with AUROC above 0.96 in failures in the cabling and screwing task, such as incorrect or misaligned parts. In the polishing task, only severe failures were reliably detected, while more subtle failures remained undetected.
Non-Prehensile Tool-Object Manipulation by Integrating LLM-Based Planning and Manoeuvrability-Driven Controls
The ability to wield tools was once considered exclusive to human intelligence, but it's now known that many other animals, like crows, possess this capability. Yet, robotic systems still fall short of matching biological dexterity. In this paper, we investigate the use of Large Language Models (LLMs), tool affordances, and object manoeuvrability for non-prehensile tool-based manipulation tasks. Our novel method leverages LLMs based on scene information and natural language instructions to enable symbolic task planning for tool-object manipulation. This approach allows the system to convert a human language sentence into a sequence of feasible motion functions. We have developed a novel manoeuvrability-driven controller using a new tool affordance model derived from visual feedback. This controller helps guide the robot's tool utilization and manipulation actions, even within confined areas, using a stepping incremental approach. The proposed methodology is evaluated with experiments to prove its effectiveness under various manipulation scenarios.
AURASeg: Attention Guided Upsampling with Residual Boundary-Assistive Refinement for Drivable-Area Segmentation
Free space ground segmentation is essential to navigate autonomous robots, recognize drivable zones, and traverse efficiently. Fine-grained features remain challenging for existing segmentation models, particularly for robots in indoor and structured environments. These difficulties arise from ineffective multi-scale processing, suboptimal boundary refinement, and limited feature representation. To address this, we propose Attention-Guided Upsampling with Residual Boundary-Assistive Refinement (AURASeg), a ground-plane semantic segmentation framework designed to improve border precision while preserving strong region accuracy. Built on a ResNet-50 backbone, AURASeg introduces (i) a Residual Border Refinement Module (RBRM) that enhances edge delineation through boundary-assistive feature refinement, and (ii) Attention Progressive Upsampling Decoder (APUD) blocks that progressively fuse multi-level features during decoding. Additionally, we integrate a (iii) lightweight ASPPLite module to capture multi-scale context with minimal overhead. Extensive experiments on CARL-D, the Ground Mobile Robot Perception (GMRP) dataset, and a custom Gazebo indoor dataset show that AURASeg consistently outperforms strong baselines, with notable gains in boundary metrics. Finally, we demonstrate real-time deployment on a Kobuki TurtleBot, validating practical usability. The code is available at https://github.com/Narendhiranv04/AURASeg
comment: 6 pages, 4 figures, 4 tables
GR-Dexter Technical Report
Vision-language-action (VLA) models have enabled language-conditioned, long-horizon robot manipulation, but most existing systems are limited to grippers. Scaling VLA policies to bimanual robots with high degree-of-freedom (DoF) dexterous hands remains challenging due to the expanded action space, frequent hand-object occlusions, and the cost of collecting real-robot data. We present GR-Dexter, a holistic hardware-model-data framework for VLA-based generalist manipulation on a bimanual dexterous-hand robot. Our approach combines the design of a compact 21-DoF robotic hand, an intuitive bimanual teleoperation system for real-robot data collection, and a training recipe that leverages teleoperated robot trajectories together with large-scale vision-language and carefully curated cross-embodiment datasets. Across real-world evaluations spanning long-horizon everyday manipulation and generalizable pick-and-place, GR-Dexter achieves strong in-domain performance and improved robustness to unseen objects and unseen instructions. We hope GR-Dexter serves as a practical step toward generalist dexterous-hand robotic manipulation.
★★ SLAM&Render: A Benchmark for the Intersection Between Neural Rendering, Gaussian Splatting and SLAM IJRR
Models and methods originally developed for Novel View Synthesis and Scene Rendering, such as Neural Radiance Fields (NeRF) and Gaussian Splatting, are increasingly being adopted as representations in Simultaneous Localization and Mapping (SLAM). However, existing datasets fail to include the specific challenges of both fields, such as sequential operations and, in many settings, multi-modality in SLAM or generalization across viewpoints and illumination conditions in neural rendering. Additionally, the data are often collected using sensors which are handheld or mounted on drones or mobile robots, which complicates the accurate reproduction of sensor motions. To bridge these gaps, we introduce SLAM&Render, a novel dataset designed to benchmark methods in the intersection between SLAM, Novel View Rendering and Gaussian Splatting. Recorded with a robot manipulator, it uniquely includes 40 sequences with time-synchronized RGB-D images, IMU readings, robot kinematic data, and ground-truth pose streams. By releasing robot kinematic data, the dataset also enables the assessment of recent integrations of SLAM paradigms within robotic applications. The dataset features five setups with consumer and industrial objects under four controlled lighting conditions, each with separate training and test trajectories. All sequences are static with different levels of object rearrangements and occlusions. Our experimental results, obtained with several baselines from the literature, validate SLAM&Render as a relevant benchmark for this emerging research area.
comment: 9 pages, 8 figures, submitted to The International Journal of Robotics Research (IJRR)
Hierarchical GNN-Based Multi-Agent Learning for Dynamic Queue-Jump Lane and Emergency Vehicle Corridor Formation TITS
Emergency vehicles require rapid passage through congested traffic, yet existing strategies fail to adapt to dynamic conditions. We propose a novel hierarchical graph neural network (GNN)-based multi-agent reinforcement learning framework to coordinate connected vehicles for emergency corridor formation. Our approach uses a high-level planner for global strategy and low-level controllers for trajectory execution, utilizing graph attention networks to scale with variable agent counts. Trained via Multi-Agent Proximal Policy Optimization (MAPPO), the system reduces emergency vehicle travel time by 28.3% compared to baselines and 44.6% compared to uncoordinated traffic in simulations. The design achieves near-zero collision rates (0.3%) while maintaining 81% of background traffic efficiency. Ablation and generalization studies confirm the framework's robustness across diverse scenarios. These results demonstrate the effectiveness of combining GNNs with hierarchical learning for intelligent transportation systems.
comment: 16 Pages, 5 Figures, 9 Tables, submitted to IEEE TITS
Volume-Consistent Kneading-Based Deformation Manufacturing for Material-Efficient Shaping
Conventional subtractive manufacturing inevitably involves material loss during geometric realization, while additive manufacturing still suffers from limitations in surface quality, process continuity, and productivity when fabricating complex geometries. To address these challenges, this paper proposes a volume-consistent kneading-based forming method for plastic materials, enabling continuous and controllable three-dimensional deformation under mass conservation. An integrated kneading-based manufacturing system is developed, in which geometry-aware kneading command generation, layer-wise kneading execution, and in-process point-cloud scanning are tightly coupled to form a closed-loop workflow of scanning, forming, and feedback compensation. Target geometries are analyzed through layer-wise point-cloud processing and classified into enveloping and non-enveloping types. Accordingly, an Envelope Shaping First strategy and a Similar Gradient Method are adopted to ensure stable material flow and continuous deformation. An RMSE-based compensation scheme is further introduced to correct systematic geometric deviations induced by elastic rebound and material redistribution. Experimental validation on five representative geometries demonstrates high geometric fidelity, with material utilization consistently exceeding 98%. The results indicate that kneading-based forming provides a promising alternative manufacturing paradigm for low-waste, customizable production.
comment: 39 pages, 31 figures
On Steerability Factors for Growing Vine Robots
Vine robots extend their tubular bodies by everting material from the tip, enabling navigation in complex environments with a minimalist soft body. Despite their promise for field applications, especially in the urban search and rescue domain, performance is constrained by the weight of attached sensors or tools, as well as other design and control choices. This work investigates how tip load, pressure, length, diameter, and fabrication method shape vine robot steerability--the ability to maneuver with controlled curvature--for robots that steer with series pouch motor-style pneumatic actuators. We conduct two groups of experiments: (1) studying tip load, chamber pressure, length, and diameter in a robot supporting itself against gravity, and (2) studying fabrication method and ratio of actuator to chamber pressure in a robot supported on the ground. Results show that steerability decreases with increasing tip load, is best at moderate chamber pressure, increases with length, and is largely unaffected by diameter. Robots with actuators attached on their exterior begin curving at low pressure ratios, but curvature saturates at high pressure ratios; those with actuators integrated into the robot body require higher pressure ratios to begin curving but achieve higher curvature overall. We demonstrate that robots optimized with these principles outperform those with ad hoc parameters in a mobility task that involves maximizing upward and horizontal curvatures.
PartDexTOG: Generating Dexterous Task-Oriented Grasping via Language-driven Part Analysis
Task-oriented grasping is a crucial yet challenging task in robotic manipulation. Despite the recent progress, few existing methods address task-oriented grasping with dexterous hands. Dexterous hands provide better precision and versatility, enabling robots to perform task-oriented grasping more effectively. In this paper, we argue that part analysis can enhance dexterous grasping by providing detailed information about the object's functionality. We propose PartDexTOG, a method that generates dexterous task-oriented grasps via language-driven part analysis. Taking a 3D object and a manipulation task represented by language as input, the method first generates the category-level and part-level grasp descriptions w.r.t the manipulation task by LLMs. Then, a category-part conditional diffusion model is developed to generate a dexterous grasp for each part, respectively, based on the generated descriptions. To select the most plausible combination of grasp and corresponding part from the generated ones, we propose a measure of geometric consistency between grasp and part. We show that our method greatly benefits from the open-world knowledge reasoning on object parts by LLMs, which naturally facilitates the learning of grasp generation on objects with different geometry and for different manipulation tasks. Our method ranks top on the OakInk-shape dataset over all previous methods, improving the Penetration Volume, the Grasp Displace, and the P-FID over the state-of-the-art by $3.58\%$, $2.87\%$, and $41.43\%$, respectively. Notably, it demonstrates good generality in handling novel categories and tasks.
Model-free Adaptive Output Feedback Vibration Suppression in a Cantilever Beam
This paper presents a model-free adaptive control approach to suppress vibrations in a cantilevered beam excited by an unknown disturbance. The cantilevered beam under harmonic excitation is modeled using a lumped parameter approach. Based on retrospective cost optimization, a sampled-data adaptive controller is developed to suppress vibrations caused by external disturbances. Both displacement and acceleration measurements are considered for feedback. Since acceleration measurements are more sensitive to spillover, which excites higher frequency modes, a filter is developed to extract key displacement information from the acceleration data and enhance suppression performance. The vibration suppression performance is compared using both displacement and acceleration measurements.
comment: 16 pages, 14 figures, to be presented at Scitech 2026, uploaded new version that corrects some mistakes in the paper
A Photorealistic Dataset and Vision-Based Algorithm for Anomaly Detection During Proximity Operations in Lunar Orbit RA-L
NASA's forthcoming Lunar Gateway space station, which will be uncrewed most of the time, will need to operate with an unprecedented level of autonomy. One key challenge is enabling the Canadarm3, the Gateway's external robotic system, to detect hazards in its environment using its onboard inspection cameras. This task is complicated by the extreme and variable lighting conditions in space. In this paper, we introduce the visual anomaly detection and localization task for the space domain and establish a benchmark based on a synthetic dataset called ALLO (Anomaly Localization in Lunar Orbit). We show that state-of-the-art visual anomaly detection methods often fail in the space domain, motivating the need for new approaches. To address this, we propose MRAD (Model Reference Anomaly Detection), a statistical algorithm that leverages the known pose of the Canadarm3 and a CAD model of the Gateway to generate reference images of the expected scene appearance. Anomalies are then identified as deviations from this model-generated reference. On the ALLO dataset, MRAD surpasses state-of-the-art anomaly detection algorithms, achieving an AP score of 62.9% at the pixel level and an AUROC score of 75.0% at the image level. Given the low tolerance for risk in space operations and the lack of domain-specific data, we emphasize the need for novel, robust, and accurate anomaly detection methods to handle the challenging visual conditions found in lunar orbit and beyond.
comment: In IEEE Robotics and Automation Letters (RA-L) and presented at the IEEE International Conference on Robotics and Automation, 1-5 June 2026, Vienna, Austria
Computer Vision and Pattern Recognition 112
Deepfake detectors are DUMB: A benchmark to assess adversarial training robustness under transferability constraints
Deepfake detection systems deployed in real-world environments are subject to adversaries capable of crafting imperceptible perturbations that degrade model performance. While adversarial training is a widely adopted defense, its effectiveness under realistic conditions -- where attackers operate with limited knowledge and mismatched data distributions - remains underexplored. In this work, we extend the DUMB -- Dataset soUrces, Model architecture and Balance - and DUMBer methodology to deepfake detection. We evaluate detectors robustness against adversarial attacks under transferability constraints and cross-dataset configuration to extract real-world insights. Our study spans five state-of-the-art detectors (RECCE, SRM, XCeption, UCF, SPSL), three attacks (PGD, FGSM, FPBA), and two datasets (FaceForensics++ and Celeb-DF-V2). We analyze both attacker and defender perspectives mapping results to mismatch scenarios. Experiments show that adversarial training strategies reinforce robustness in the in-distribution cases but can also degrade it under cross-dataset configuration depending on the strategy adopted. These findings highlight the need for case-aware defense strategies in real-world applications exposed to adversarial attacks.
comment: 10 pages, four tables, one figure
Adaptive Conditional Contrast-Agnostic Deformable Image Registration with Uncertainty Estimation
Deformable multi-contrast image registration is a challenging yet crucial task due to the complex, non-linear intensity relationships across different imaging contrasts. Conventional registration methods typically rely on iterative optimization of the deformation field, which is time-consuming. Although recent learning-based approaches enable fast and accurate registration during inference, their generalizability remains limited to the specific contrasts observed during training. In this work, we propose an adaptive conditional contrast-agnostic deformable image registration framework (AC-CAR) based on a random convolution-based contrast augmentation scheme. AC-CAR can generalize to arbitrary imaging contrasts without observing them during training. To encourage contrast-invariant feature learning, we propose an adaptive conditional feature modulator (ACFM) that adaptively modulates the features and the contrast-invariant latent regularization to enforce the consistency of the learned feature across different imaging contrasts. Additionally, we enable our framework to provide contrast-agnostic registration uncertainty by integrating a variance network that leverages the contrast-agnostic registration encoder to improve the trustworthiness and reliability of AC-CAR. Experimental results demonstrate that AC-CAR outperforms baseline methods in registration accuracy and exhibits superior generalization to unseen imaging contrasts. Code is available at https://github.com/Yinsong0510/AC-CAR.
comment: Accepted by ieee transactions on Medical Imaging
VideoAR: Autoregressive Video Generation via Next-Frame & Scale Prediction
Recent advances in video generation have been dominated by diffusion and flow-matching models, which produce high-quality results but remain computationally intensive and difficult to scale. In this work, we introduce VideoAR, the first large-scale Visual Autoregressive (VAR) framework for video generation that combines multi-scale next-frame prediction with autoregressive modeling. VideoAR disentangles spatial and temporal dependencies by integrating intra-frame VAR modeling with causal next-frame prediction, supported by a 3D multi-scale tokenizer that efficiently encodes spatio-temporal dynamics. To improve long-term consistency, we propose Multi-scale Temporal RoPE, Cross-Frame Error Correction, and Random Frame Mask, which collectively mitigate error propagation and stabilize temporal coherence. Our multi-stage pretraining pipeline progressively aligns spatial and temporal learning across increasing resolutions and durations. Empirically, VideoAR achieves new state-of-the-art results among autoregressive models, improving FVD on UCF-101 from 99.5 to 88.6 while reducing inference steps by over 10x, and reaching a VBench score of 81.74-competitive with diffusion-based models an order of magnitude larger. These results demonstrate that VideoAR narrows the performance gap between autoregressive and diffusion paradigms, offering a scalable, efficient, and temporally consistent foundation for future video generation research.
WaveRNet: Wavelet-Guided Frequency Learning for Multi-Source Domain-Generalized Retinal Vessel Segmentation
Domain-generalized retinal vessel segmentation is critical for automated ophthalmic diagnosis, yet faces significant challenges from domain shift induced by non-uniform illumination and varying contrast, compounded by the difficulty of preserving fine vessel structures. While the Segment Anything Model (SAM) exhibits remarkable zero-shot capabilities, existing SAM-based methods rely on simple adapter fine-tuning while overlooking frequency-domain information that encodes domain-invariant features, resulting in degraded generalization under illumination and contrast variations. Furthermore, SAM's direct upsampling inevitably loses fine vessel details. To address these limitations, we propose WaveRNet, a wavelet-guided frequency learning framework for robust multi-source domain-generalized retinal vessel segmentation. Specifically, we devise a Spectral-guided Domain Modulator (SDM) that integrates wavelet decomposition with learnable domain tokens, enabling the separation of illumination-robust low-frequency structures from high-frequency vessel boundaries while facilitating domain-specific feature generation. Furthermore, we introduce a Frequency-Adaptive Domain Fusion (FADF) module that performs intelligent test-time domain selection through wavelet-based frequency similarity and soft-weighted fusion. Finally, we present a Hierarchical Mask-Prompt Refiner (HMPR) that overcomes SAM's upsampling limitation through coarse-to-fine refinement with long-range dependency modeling. Extensive experiments under the Leave-One-Domain-Out protocol on four public retinal datasets demonstrate that WaveRNet achieves state-of-the-art generalization performance. The source code is available at https://github.com/Chanchan-Wang/WaveRNet.
Context-Aware Decoding for Faithful Vision-Language Generation
Hallucinations, generating responses inconsistent with the visual input, remain a critical limitation of large vision-language models (LVLMs), especially in open-ended tasks such as image captioning and visual reasoning. In this work, we probe the layer-wise generation dynamics that drive hallucinations and propose a training-free mitigation strategy. Employing the Logit Lens, we examine how LVLMs construct next-token distributions across decoder layers, uncovering a pronounced commitment-depth gap: truthful tokens accumulate probability mass on their final candidates earlier than hallucinatory ones. Drawing on this discovery, we introduce Context Embedding Injection (CEI), a lightweight method that harnesses the hidden state of the last input token-the context embedding-as a grounding signal to maintain visual fidelity throughout decoding and curb hallucinations. Evaluated on the CHAIR, AMBER, and MMHal-Bench benchmarks (with a maximum token length of 512), CEI outperforms state-of-the-art baselines across three LVLMs, with its dynamic variant yielding the lowest overall hallucination rates. By integrating novel mechanistic insights with a scalable intervention, this work advances the mitigation of hallucinations in LVLMs.
Performance of a Deep Learning-Based Segmentation Model for Pancreatic Tumors on Public Endoscopic Ultrasound Datasets
Background: Pancreatic cancer is one of the most aggressive cancers, with poor survival rates. Endoscopic ultrasound (EUS) is a key diagnostic modality, but its effectiveness is constrained by operator subjectivity. This study evaluates a Vision Transformer-based deep learning segmentation model for pancreatic tumors. Methods: A segmentation model using the USFM framework with a Vision Transformer backbone was trained and validated with 17,367 EUS images (from two public datasets) in 5-fold cross-validation. The model was tested on an independent dataset of 350 EUS images from another public dataset, manually segmented by radiologists. Preprocessing included grayscale conversion, cropping, and resizing to 512x512 pixels. Metrics included Dice similarity coefficient (DSC), intersection over union (IoU), sensitivity, specificity, and accuracy. Results: In 5-fold cross-validation, the model achieved a mean DSC of 0.651 +/- 0.738, IoU of 0.579 +/- 0.658, sensitivity of 69.8%, specificity of 98.8%, and accuracy of 97.5%. For the external validation set, the model achieved a DSC of 0.657 (95% CI: 0.634-0.769), IoU of 0.614 (95% CI: 0.590-0.689), sensitivity of 71.8%, and specificity of 97.7%. Results were consistent, but 9.7% of cases exhibited erroneous multiple predictions. Conclusions: The Vision Transformer-based model demonstrated strong performance for pancreatic tumor segmentation in EUS images. However, dataset heterogeneity and limited external validation highlight the need for further refinement, standardization, and prospective studies.
Adapting Vision Transformers to Ultra-High Resolution Semantic Segmentation with Relay Tokens
Current approaches for segmenting ultra high resolution images either slide a window, thereby discarding global context, or downsample and lose fine detail. We propose a simple yet effective method that brings explicit multi scale reasoning to vision transformers, simultaneously preserving local details and global awareness. Concretely, we process each image in parallel at a local scale (high resolution, small crops) and a global scale (low resolution, large crops), and aggregate and propagate features between the two branches with a small set of learnable relay tokens. The design plugs directly into standard transformer backbones (eg ViT and Swin) and adds fewer than 2 % parameters. Extensive experiments on three ultra high resolution segmentation benchmarks, Archaeoscape, URUR, and Gleason, and on the conventional Cityscapes dataset show consistent gains, with up to 15 % relative mIoU improvement. Code and pretrained models are available at https://archaeoscape.ai/work/relay-tokens/ .
comment: 13 pages +3 pages of suppmat
Phase4DFD: Multi-Domain Phase-Aware Attention for Deepfake Detection
Recent deepfake detection methods have increasingly explored frequency domain representations to reveal manipulation artifacts that are difficult to detect in the spatial domain. However, most existing approaches rely primarily on spectral magnitude, implicitly under exploring the role of phase information. In this work, we propose Phase4DFD, a phase aware frequency domain deepfake detection framework that explicitly models phase magnitude interactions via a learnable attention mechanism. Our approach augments standard RGB input with Fast Fourier Transform (FFT) magnitude and local binary pattern (LBP) representations to expose subtle synthesis artifacts that remain indistinguishable under spatial analysis alone. Crucially, we introduce an input level phase aware attention module that uses phase discontinuities commonly introduced by synthetic generation to guide the model toward frequency patterns that are most indicative of manipulation before backbone feature extraction. The attended multi domain representation is processed by an efficient BNext M backbone, with optional channel spatial attention applied for semantic feature refinement. Extensive experiments on the CIFAKE and DFFD datasets demonstrate that our proposed model Phase4DFD outperforms state of the art spatial and frequency-based detectors while maintaining low computational overhead. Comprehensive ablation studies further confirm that explicit phase modeling provides complementary and non-redundant information beyond magnitude-only frequency representations.
comment: 15 pages, 3 figures, conference
Bidirectional Channel-selective Semantic Interaction for Semi-Supervised Medical Segmentation AAAI 2026
Semi-supervised medical image segmentation is an effective method for addressing scenarios with limited labeled data. Existing methods mainly rely on frameworks such as mean teacher and dual-stream consistency learning. These approaches often face issues like error accumulation and model structural complexity, while also neglecting the interaction between labeled and unlabeled data streams. To overcome these challenges, we propose a Bidirectional Channel-selective Semantic Interaction~(BCSI) framework for semi-supervised medical image segmentation. First, we propose a Semantic-Spatial Perturbation~(SSP) mechanism, which disturbs the data using two strong augmentation operations and leverages unsupervised learning with pseudo-labels from weak augmentations. Additionally, we employ consistency on the predictions from the two strong augmentations to further improve model stability and robustness. Second, to reduce noise during the interaction between labeled and unlabeled data, we propose a Channel-selective Router~(CR) component, which dynamically selects the most relevant channels for information exchange. This mechanism ensures that only highly relevant features are activated, minimizing unnecessary interference. Finally, the Bidirectional Channel-wise Interaction~(BCI) strategy is employed to supplement additional semantic information and enhance the representation of important channels. Experimental results on multiple benchmarking 3D medical datasets demonstrate that the proposed method outperforms existing semi-supervised approaches.
comment: Accepted to AAAI 2026. Code at: https://github.com/taozh2017/BCSI
LayerGS: Decomposition and Inpainting of Layered 3D Human Avatars via 2D Gaussian Splatting
We propose a novel framework for decomposing arbitrarily posed humans into animatable multi-layered 3D human avatars, separating the body and garments. Conventional single-layer reconstruction methods lock clothing to one identity, while prior multi-layer approaches struggle with occluded regions. We overcome both limitations by encoding each layer as a set of 2D Gaussians for accurate geometry and photorealistic rendering, and inpainting hidden regions with a pretrained 2D diffusion model via score-distillation sampling (SDS). Our three-stage training strategy first reconstructs the coarse canonical garment via single-layer reconstruction, followed by multi-layer training to jointly recover the inner-layer body and outer-layer garment details. Experiments on two 3D human benchmark datasets (4D-Dress, Thuman2.0) show that our approach achieves better rendering quality and layer decomposition and recomposition than the previous state-of-the-art, enabling realistic virtual try-on under novel viewpoints and poses, and advancing practical creation of high-fidelity 3D human assets for immersive applications. Our code is available at https://github.com/RockyXu66/LayerGS
Kidney Cancer Detection Using 3D-Based Latent Diffusion Models
In this work, we present a novel latent diffusion-based pipeline for 3D kidney anomaly detection on contrast-enhanced abdominal CT. The method combines Denoising Diffusion Probabilistic Models (DDPMs), Denoising Diffusion Implicit Models (DDIMs), and Vector-Quantized Generative Adversarial Networks (VQ-GANs). Unlike prior slice-wise approaches, our method operates directly on an image volume and leverages weak supervision with only case-level pseudo-labels. We benchmark our approach against state-of-the-art supervised segmentation and detection models. This study demonstrates the feasibility and promise of 3D latent diffusion for weakly supervised anomaly detection. While the current results do not yet match supervised baselines, they reveal key directions for improving reconstruction fidelity and lesion localization. Our findings provide an important step toward annotation-efficient, generative modeling of complex abdominal anatomy.
comment: 8 pages, 2 figures. This paper has been accepted at Bildverarbeitung für die Medizin (BVM) 2026
Router-Suggest: Dynamic Routing for Multimodal Auto-Completion in Visually-Grounded Dialogs
Real-time multimodal auto-completion is essential for digital assistants, chatbots, design tools, and healthcare consultations, where user inputs rely on shared visual context. We introduce Multimodal Auto-Completion (MAC), a task that predicts upcoming characters in live chats using partially typed text and visual cues. Unlike traditional text-only auto-completion (TAC), MAC grounds predictions in multimodal context to better capture user intent. To enable this task, we adapt MMDialog and ImageChat to create benchmark datasets. We evaluate leading vision-language models (VLMs) against strong textual baselines, highlighting trade-offs in accuracy and efficiency. We present Router-Suggest, a router framework that dynamically selects between textual models and VLMs based on dialog context, along with a lightweight variant for resource-constrained environments. Router-Suggest achieves a 2.3x to 10x speedup over the best-performing VLM. A user study shows that VLMs significantly excel over textual models on user satisfaction, notably saving user typing effort and improving the quality of completions in multi-turn conversations. These findings underscore the need for multimodal context in auto-completions, leading to smarter, user-aware assistants.
comment: Accepted to EACL 2026 Industry Track, 12 pages, 6 figures
Goal Force: Teaching Video Models To Accomplish Physics-Conditioned Goals
Recent advancements in video generation have enabled the development of ``world models'' capable of simulating potential futures for robotics and planning. However, specifying precise goals for these models remains a challenge; text instructions are often too abstract to capture physical nuances, while target images are frequently infeasible to specify for dynamic tasks. To address this, we introduce Goal Force, a novel framework that allows users to define goals via explicit force vectors and intermediate dynamics, mirroring how humans conceptualize physical tasks. We train a video generation model on a curated dataset of synthetic causal primitives-such as elastic collisions and falling dominos-teaching it to propagate forces through time and space. Despite being trained on simple physics data, our model exhibits remarkable zero-shot generalization to complex, real-world scenarios, including tool manipulation and multi-object causal chains. Our results suggest that by grounding video generation in fundamental physical interactions, models can emerge as implicit neural physics simulators, enabling precise, physics-aware planning without reliance on external engines. We release all datasets, code, model weights, and interactive video demos at our project page.
comment: Code and interactive demos at https://goal-force.github.io/
GeoSurDepth: Spatial Geometry-Consistent Self-Supervised Depth Estimation for Surround-View Cameras
Accurate surround-view depth estimation provides a competitive alternative to laser-based sensors and is essential for 3D scene understanding in autonomous driving. While prior studies have proposed various approaches that primarily focus on enforcing cross-view constraints at the photometric level, few explicitly exploit the rich geometric structure inherent in both monocular and surround-view setting. In this work, we propose GeoSurDepth, a framework that leverages geometry consistency as the primary cue for surround-view depth estimation. Concretely, we utilize foundation models as a pseudo geometry prior and feature representation enhancement tool to guide the network to maintain surface normal consistency in spatial 3D space and regularize object- and texture-consistent depth estimation in 2D. In addition, we introduce a novel view synthesis pipeline where 2D-3D lifting is achieved with dense depth reconstructed via spatial warping, encouraging additional photometric supervision across temporal, spatial, and spatial-temporal contexts, and compensating for the limitations of single-view image reconstruction. Finally, a newly-proposed adaptive joint motion learning strategy enables the network to adaptively emphasize informative spatial geometry cues for improved motion reasoning. Extensive experiments on DDAD and nuScenes demonstrate that GeoSurDepth achieves state-of-the-art performance, validating the effectiveness of our approach. Our framework highlights the importance of exploiting geometry coherence and consistency for robust self-supervised multi-view depth estimation.
Boosting Latent Diffusion Models via Disentangled Representation Alignment
Latent Diffusion Models (LDMs) generate high-quality images by operating in a compressed latent space, typically obtained through image tokenizers such as Variational Autoencoders (VAEs). In pursuit of a generation-friendly VAE, recent studies have explored leveraging Vision Foundation Models (VFMs) as representation alignment targets for VAEs, mirroring the approach commonly adopted for LDMs. Although this yields certain performance gains, using the same alignment target for both VAEs and LDMs overlooks their fundamentally different representational requirements. We advocate that while LDMs benefit from latents retaining high-level semantic concepts, VAEs should excel in semantic disentanglement, enabling encoding of attribute-level information in a structured way. To address this, we propose the Semantic disentangled VAE (Send-VAE), explicitly optimized for disentangled representation learning through aligning its latent space with the semantic hierarchy of pre-trained VFMs. Our approach employs a non-linear mapper network to transform VAE latents, aligning them with VFMs to bridge the gap between attribute-level disentanglement and high-level semantics, facilitating effective guidance for VAE learning. We evaluate semantic disentanglement via linear probing on attribute prediction tasks, showing strong correlation with improved generation performance. Finally, using Send-VAE, we train flow-based transformers SiTs; experiments show Send-VAE significantly speeds up training and achieves a state-of-the-art FID of 1.21 and 1.75 with and without classifier-free guidance on ImageNet 256x256.
SceneFoundry: Generating Interactive Infinite 3D Worlds
The ability to automatically generate large-scale, interactive, and physically realistic 3D environments is crucial for advancing robotic learning and embodied intelligence. However, existing generative approaches often fail to capture the functional complexity of real-world interiors, particularly those containing articulated objects with movable parts essential for manipulation and navigation. This paper presents SceneFoundry, a language-guided diffusion framework that generates apartment-scale 3D worlds with functionally articulated furniture and semantically diverse layouts for robotic training. From natural language prompts, an LLM module controls floor layout generation, while diffusion-based posterior sampling efficiently populates the scene with articulated assets from large-scale 3D repositories. To ensure physical usability, SceneFoundry employs differentiable guidance functions to regulate object quantity, prevent articulation collisions, and maintain sufficient walkable space for robotic navigation. Extensive experiments demonstrate that our framework generates structurally valid, semantically coherent, and functionally interactive environments across diverse scene types and conditions, enabling scalable embodied AI research.
comment: 15 pages
Adaptive Disentangled Representation Learning for Incomplete Multi-View Multi-Label Classification
Multi-view multi-label learning frequently suffers from simultaneous feature absence and incomplete annotations, due to challenges in data acquisition and cost-intensive supervision. To tackle the complex yet highly practical problem while overcoming the existing limitations of feature recovery, representation disentanglement, and label semantics modeling, we propose an Adaptive Disentangled Representation Learning method (ADRL). ADRL achieves robust view completion by propagating feature-level affinity across modalities with neighborhood awareness, and reinforces reconstruction effectiveness by leveraging a stochastic masking strategy. Through disseminating category-level association across label distributions, ADRL refines distribution parameters for capturing interdependent label prototypes. Besides, we formulate a mutual-information-based objective to promote consistency among shared representations and suppress information overlap between view-specific representation and other modalities. Theoretically, we derive the tractable bounds to train the dual-channel network. Moreover, ADRL performs prototype-specific feature selection by enabling independent interactions between label embeddings and view representations, accompanied by the generation of pseudo-labels for each category. The structural characteristics of the pseudo-label space are then exploited to guide a discriminative trade-off during view fusion. Finally, extensive experiments on public datasets and real-world applications demonstrate the superior performance of ADRL.
FlyPose: Towards Robust Human Pose Estimation From Aerial Views WACV
Unmanned Aerial Vehicles (UAVs) are increasingly deployed in close proximity to humans for applications such as parcel delivery, traffic monitoring, disaster response and infrastructure inspections. Ensuring safe and reliable operation in these human-populated environments demands accurate perception of human poses and actions from an aerial viewpoint. This perspective challenges existing methods with low resolution, steep viewing angles and (self-)occlusion, especially if the application demands realtime feasibile models. We train and deploy FlyPose, a lightweight top-down human pose estimation pipeline for aerial imagery. Through multi-dataset training, we achieve an average improvement of 6.8 mAP in person detection across the test-sets of Manipal-UAV, VisDrone, HIT-UAV as well as our custom dataset. For 2D human pose estimation we report an improvement of 16.3 mAP on the challenging UAV-Human dataset. FlyPose runs with an inference latency of ~20 milliseconds including preprocessing on a Jetson Orin AGX Developer Kit and is deployed onboard a quadrotor UAV during flight experiments. We also publish FlyPose-104, a small but challenging aerial human pose estimation dataset, that includes manual annotations from difficult aerial perspectives: https://github.com/farooqhassaan/FlyPose.
comment: 11 pages, 9 figures, IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2026
ViTNT-FIQA: Training-Free Face Image Quality Assessment with Vision Transformers WACV
Face Image Quality Assessment (FIQA) is essential for reliable face recognition systems. Current approaches primarily exploit only final-layer representations, while training-free methods require multiple forward passes or backpropagation. We propose ViTNT-FIQA, a training-free approach that measures the stability of patch embedding evolution across intermediate Vision Transformer (ViT) blocks. We demonstrate that high-quality face images exhibit stable feature refinement trajectories across blocks, while degraded images show erratic transformations. Our method computes Euclidean distances between L2-normalized patch embeddings from consecutive transformer blocks and aggregates them into image-level quality scores. We empirically validate this correlation on a quality-labeled synthetic dataset with controlled degradation levels. Unlike existing training-free approaches, ViTNT-FIQA requires only a single forward pass without backpropagation or architectural modifications. Through extensive evaluation on eight benchmarks (LFW, AgeDB-30, CFP-FP, CALFW, Adience, CPLFW, XQLFW, IJB-C), we show that ViTNT-FIQA achieves competitive performance with state-of-the-art methods while maintaining computational efficiency and immediate applicability to any pre-trained ViT-based face recognition model.
comment: Accepted at WACV Workshops
PII-VisBench: Evaluating Personally Identifiable Information Safety in Vision Language Models Along a Continuum of Visibility
Vision Language Models (VLMs) are increasingly integrated into privacy-critical domains, yet existing evaluations of personally identifiable information (PII) leakage largely treat privacy as a static extraction task and ignore how a subject's online presence--the volume of their data available online--influences privacy alignment. We introduce PII-VisBench, a novel benchmark containing 4000 unique probes designed to evaluate VLM safety through the continuum of online presence. The benchmark stratifies 200 subjects into four visibility categories: high, medium, low, and zero--based on the extent and nature of their information available online. We evaluate 18 open-source VLMs (0.3B-32B) based on two key metrics: percentage of PII probing queries refused (Refusal Rate) and the fraction of non-refusal responses flagged for containing PII (Conditional PII Disclosure Rate). Across models, we observe a consistent pattern: refusals increase and PII disclosures decrease (9.10% high to 5.34% low) as subject visibility drops. We identify that models are more likely to disclose PII for high-visibility subjects, alongside substantial model-family heterogeneity and PII-type disparities. Finally, paraphrasing and jailbreak-style prompts expose attack and model-dependent failures, motivating visibility-aware safety evaluation and training interventions.
FeatureSLAM: Feature-enriched 3D gaussian splatting SLAM in real time
We present a real-time tracking SLAM system that unifies efficient camera tracking with photorealistic feature-enriched mapping using 3D Gaussian Splatting (3DGS). Our main contribution is integrating dense feature rasterization into the novel-view synthesis, aligned with a visual foundation model. This yields strong semantics, going beyond basic RGB-D input, aiding both tracking and mapping accuracy. Unlike previous semantic SLAM approaches (which embed pre-defined class labels) FeatureSLAM enables entirely new downstream tasks via free-viewpoint, open-set segmentation. Across standard benchmarks, our method achieves real-time tracking, on par with state-of-the-art systems while improving tracking stability and map fidelity without prohibitive compute. Quantitatively, we obtain 9\% lower pose error and 8\% higher mapping accuracy compared to recent fixed-set SLAM baselines. Our results confirm that real-time feature-embedded SLAM, is not only valuable for enabling new downstream applications. It also improves the performance of the underlying tracking and mapping subsystems, providing semantic and language masking results that are on-par with offline 3DGS models, alongside state-of-the-art tracking, depth and RGB rendering.
TAGRPO: Boosting GRPO on Image-to-Video Generation with Direct Trajectory Alignment
Recent studies have demonstrated the efficacy of integrating Group Relative Policy Optimization (GRPO) into flow matching models, particularly for text-to-image and text-to-video generation. However, we find that directly applying these techniques to image-to-video (I2V) models often fails to yield consistent reward improvements. To address this limitation, we present TAGRPO, a robust post-training framework for I2V models inspired by contrastive learning. Our approach is grounded in the observation that rollout videos generated from identical initial noise provide superior guidance for optimization. Leveraging this insight, we propose a novel GRPO loss applied to intermediate latents, encouraging direct alignment with high-reward trajectories while maximizing distance from low-reward counterparts. Furthermore, we introduce a memory bank for rollout videos to enhance diversity and reduce computational overhead. Despite its simplicity, TAGRPO achieves significant improvements over DanceGRPO in I2V generation.
comment: 12 pages, 6 figures
Rotate Your Character: Revisiting Video Diffusion Models for High-Quality 3D Character Generation
Generating high-quality 3D characters from single images remains a significant challenge in digital content creation, particularly due to complex body poses and self-occlusion. In this paper, we present RCM (Rotate your Character Model), an advanced image-to-video diffusion framework tailored for high-quality novel view synthesis (NVS) and 3D character generation. Compared to existing diffusion-based approaches, RCM offers several key advantages: (1) transferring characters with any complex poses into a canonical pose, enabling consistent novel view synthesis across the entire viewing orbit, (2) high-resolution orbital video generation at 1024x1024 resolution, (3) controllable observation positions given different initial camera poses, and (4) multi-view conditioning supporting up to 4 input images, accommodating diverse user scenarios. Extensive experiments demonstrate that RCM outperforms state-of-the-art methods in both novel view synthesis and 3D generation quality.
comment: 11 pages, 8 figures
SketchVL: Policy Optimization via Fine-Grained Credit Assignment for Chart Understanding and More
Charts are high-density visual carriers of complex data and medium for information extraction and analysis. Due to the need for precise and complex visual reasoning, automated chart understanding poses a significant challenge to existing Multimodal Large Language Models (MLLMs). Many MLLMs trained with reinforcement learning (RL) face the challenge of credit assignment. Their advantage estimation, typically performed at the trajectory level, cannot distinguish between correct and incorrect reasoning steps within a single generated response. To address this limitation, we introduce SketchVL, a novel MLLM that optimized with FinePO, a new RL algorithm designed for fine-grained credit assignment within each trajectory. SketchVL's methodology involves drawing its intermediate reasoning steps as markers on the image and feeding the annotated image back to itself, creating a robust, multi-step reasoning process. During training, the FinePO algorithm leverages a Fine-grained Process Reward Model (FinePRM) to score each drawing action within a trajectory, thereby precisely assigning credit for each step. This mechanism allows FinePO to more strongly reward correct tokens when a trajectory is globally successful, and more heavily penalize incorrect tokens when the trajectory is globally suboptimal, thus achieving fine-grained reinforcement signals. Experiments show that SketchVL learns to align its step-level behavior with the FinePRM, achieving an average performance gain of 7.23\% over its base model across chart datasets, natural image datasets, and mathematics, providing a promising new direction for training powerful reasoning models.
AGDC: Autoregressive Generation of Variable-Length Sequences with Joint Discrete and Continuous Spaces
Transformer-based autoregressive models excel in data generation but are inherently constrained by their reliance on discretized tokens, which limits their ability to represent continuous values with high precision. We analyze the scalability limitations of existing discretization-based approaches for generating hybrid discrete-continuous sequences, particularly in high-precision domains such as semiconductor circuit designs, where precision loss can lead to functional failure. To address the challenge, we propose AGDC, a novel unified framework that jointly models discrete and continuous values for variable-length sequences. AGDC employs a hybrid approach that combines categorical prediction for discrete values with diffusion-based modeling for continuous values, incorporating two key technical components: an end-of-sequence (EOS) logit adjustment mechanism that uses an MLP to dynamically adjust EOS token logits based on sequence context, and a length regularization term integrated into the loss function. Additionally, we present ContLayNet, a large-scale benchmark comprising 334K high-precision semiconductor layout samples with specialized evaluation metrics that capture functional correctness where precision errors significantly impact performance. Experiments on semiconductor layouts (ContLayNet), graphic layouts, and SVGs demonstrate AGDC's superior performance in generating high-fidelity hybrid vector representations compared to discretization-based and fixed-schema baselines, achieving scalable high-precision generation across diverse domains.
SGDrive: Scene-to-Goal Hierarchical World Cognition for Autonomous Driving
Recent end-to-end autonomous driving approaches have leveraged Vision-Language Models (VLMs) to enhance planning capabilities in complex driving scenarios. However, VLMs are inherently trained as generalist models, lacking specialized understanding of driving-specific reasoning in 3D space and time. When applied to autonomous driving, these models struggle to establish structured spatial-temporal representations that capture geometric relationships, scene context, and motion patterns critical for safe trajectory planning. To address these limitations, we propose SGDrive, a novel framework that explicitly structures the VLM's representation learning around driving-specific knowledge hierarchies. Built upon a pre-trained VLM backbone, SGDrive decomposes driving understanding into a scene-agent-goal hierarchy that mirrors human driving cognition: drivers first perceive the overall environment (scene context), then attend to safety-critical agents and their behaviors, and finally formulate short-term goals before executing actions. This hierarchical decomposition provides the structured spatial-temporal representation that generalist VLMs lack, integrating multi-level information into a compact yet comprehensive format for trajectory planning. Extensive experiments on the NAVSIM benchmark demonstrate that SGDrive achieves state-of-the-art performance among camera-only methods on both PDMS and EPDMS, validating the effectiveness of hierarchical knowledge structuring for adapting generalist VLMs to autonomous driving.
Compressing image encoders via latent distillation
Deep learning models for image compression often face practical limitations in hardware-constrained applications. Although these models achieve high-quality reconstructions, they are typically complex, heavyweight, and require substantial training data and computational resources. We propose a methodology to partially compress these networks by reducing the size of their encoders. Our approach uses a simplified knowledge distillation strategy to approximate the latent space of the original models with less data and shorter training, yielding lightweight encoders from heavyweight ones. We evaluate the resulting lightweight encoders across two different architectures on the image compression task. Experiments show that our method preserves reconstruction quality and statistical fidelity better than training lightweight encoders with the original loss, making it practical for resource-limited environments.
Continual Learning of Achieving Forgetting-free and Positive Knowledge Transfer
Existing research on continual learning (CL) of a sequence of tasks focuses mainly on dealing with catastrophic forgetting (CF) to balance the learning plasticity of new tasks and the memory stability of old tasks. However, an ideal CL agent should not only be able to overcome CF, but also encourage positive forward and backward knowledge transfer (KT), i.e., using the learned knowledge from previous tasks for the new task learning (namely FKT), and improving the previous tasks' performance with the knowledge of the new task (namely BKT). To this end, this paper first models CL as an optimization problem in which each sequential learning task aims to achieve its optimal performance under the constraint that both FKT and BKT should be positive. It then proposes a novel Enhanced Task Continual Learning (ETCL) method, which achieves forgetting-free and positive KT. Furthermore, the bounds that can lead to negative FKT and BKT are estimated theoretically. Based on the bounds, a new strategy for online task similarity detection is also proposed to facilitate positive KT. To overcome CF, ETCL learns a set of task-specific binary masks to isolate a sparse sub-network for each task while preserving the performance of a dense network for the task. At the beginning of a new task learning, ETCL tries to align the new task's gradient with that of the sub-network of the previous most similar task to ensure positive FKT. By using a new bi-objective optimization strategy and an orthogonal gradient projection method, ETCL updates only the weights of previous similar tasks at the classification layer to achieve positive BKT. Extensive evaluations demonstrate that the proposed ETCL markedly outperforms strong baselines on dissimilar, similar, and mixed task sequences.
LatentVLA: Efficient Vision-Language Models for Autonomous Driving via Latent Action Prediction
End-to-end autonomous driving models trained on largescale datasets perform well in common scenarios but struggle with rare, long-tail situations due to limited scenario diversity. Recent Vision-Language-Action (VLA) models leverage broad knowledge from pre-trained visionlanguage models to address this limitation, yet face critical challenges: (1) numerical imprecision in trajectory prediction due to discrete tokenization, (2) heavy reliance on language annotations that introduce linguistic bias and annotation burden, and (3) computational inefficiency from multi-step chain-of-thought reasoning hinders real-time deployment. We propose LatentVLA, a novel framework that employs self-supervised latent action prediction to train VLA models without language annotations, eliminating linguistic bias while learning rich driving representations from unlabeled trajectory data. Through knowledge distillation, LatentVLA transfers the generalization capabilities of VLA models to efficient vision-based networks, achieving both robust performance and real-time efficiency. LatentVLA establishes a new state-of-the-art on the NAVSIM benchmark with a PDMS score of 92.4 and demonstrates strong zeroshot generalization on the nuScenes benchmark.
Learning Geometric Invariance for Gait Recognition
The goal of gait recognition is to extract identity-invariant features of an individual under various gait conditions, e.g., cross-view and cross-clothing. Most gait models strive to implicitly learn the common traits across different gait conditions in a data-driven manner to pull different gait conditions closer for recognition. However, relatively few studies have explicitly explored the inherent relations between different gait conditions. For this purpose, we attempt to establish connections among different gait conditions and propose a new perspective to achieve gait recognition: variations in different gait conditions can be approximately viewed as a combination of geometric transformations. In this case, all we need is to determine the types of geometric transformations and achieve geometric invariance, then identity invariance naturally follows. As an initial attempt, we explore three common geometric transformations (i.e., Reflect, Rotate, and Scale) and design a $\mathcal{R}$eflect-$\mathcal{R}$otate-$\mathcal{S}$cale invariance learning framework, named ${\mathcal{RRS}}$-Gait. Specifically, it first flexibly adjusts the convolution kernel based on the specific geometric transformations to achieve approximate feature equivariance. Then these three equivariant-aware features are respectively fed into a global pooling operation for final invariance-aware learning. Extensive experiments on four popular gait datasets (Gait3D, GREW, CCPG, SUSTech1K) show superior performance across various gait conditions.
SceneAlign: Aligning Multimodal Reasoning to Scene Graphs in Complex Visual Scenes
Multimodal large language models often struggle with faithful reasoning in complex visual scenes, where intricate entities and relations require precise visual grounding at each step. This reasoning unfaithfulness frequently manifests as hallucinated entities, mis-grounded relations, skipped steps, and over-specified reasoning. Existing preference-based approaches, typically relying on textual perturbations or answer-conditioned rationales, fail to address this challenge as they allow models to exploit language priors to bypass visual grounding. To address this, we propose SceneAlign, a framework that leverages scene graphs as structured visual information to perform controllable structural interventions. By identifying reasoning-critical nodes and perturbing them through four targeted strategies that mimic typical grounding failures, SceneAlign constructs hard negative rationales that remain linguistically plausible but are grounded in inaccurate visual facts. These contrastive pairs are used in Direct Preference Optimization to steer models toward fine-grained, structure-faithful reasoning. Across seven visual reasoning benchmarks, SceneAlign consistently improves answer accuracy and reasoning faithfulness, highlighting the effectiveness of grounding-aware alignment for multimodal reasoning.
comment: Preprint
Quantifying and Inducing Shape Bias in CNNs via Max-Pool Dilation
Convolutional Neural Networks (CNNs) are known to exhibit a strong texture bias, favoring local patterns over global shape information--a tendency inherent to their convolutional architecture. While this bias is beneficial for texture-rich natural images, it often degrades performance on shape-dominant data such as illustrations and sketches. Although prior work has proposed shape-biased models to mitigate this issue, these approaches lack a quantitative metric for identifying which datasets would actually benefit from such modifications. To address this gap, we propose a data-driven metric that quantifies the shape-texture balance of a dataset by computing the Structural Similarity Index (SSIM) between each image's luminance channel and its L0-smoothed counterpart. Building on this metric, we further introduce a computationally efficient adaptation method that promotes shape bias by modifying the dilation of max-pooling operations while keeping convolutional weights frozen. Experimental results show that this approach consistently improves classification accuracy on shape-dominant datasets, particularly in low-data regimes where full fine-tuning is impractical, requiring training only the final classification layer.
comment: Accepted to IEVC 2026. 4 pages, 1 figure, 3 tables
GS-DMSR: Dynamic Sensitive Multi-scale Manifold Enhancement for Accelerated High-Quality 3D Gaussian Splatting
In the field of 3D dynamic scene reconstruction, how to balance model convergence rate and rendering quality has long been a critical challenge that urgently needs to be addressed, particularly in high-precision modeling of scenes with complex dynamic motions. To tackle this issue, this study proposes the GS-DMSR method. By quantitatively analyzing the dynamic evolution process of Gaussian attributes, this mechanism achieves adaptive gradient focusing, enabling it to dynamically identify significant differences in the motion states of Gaussian models. It then applies differentiated optimization strategies to Gaussian models with varying degrees of significance, thereby significantly improving the model convergence rate. Additionally, this research integrates a multi-scale manifold enhancement module, which leverages the collaborative optimization of an implicit nonlinear decoder and an explicit deformation field to enhance the modeling efficiency for complex deformation scenes. Experimental results demonstrate that this method achieves a frame rate of up to 96 FPS on synthetic datasets, while effectively reducing both storage overhead and training time.Our code and data are available at https://anonymous.4open.science/r/GS-DMSR-2212.
Generalizable and Adaptive Continual Learning Framework for AI-generated Image Detection
The malicious misuse and widespread dissemination of AI-generated images pose a significant threat to the authenticity of online information. Current detection methods often struggle to generalize to unseen generative models, and the rapid evolution of generative techniques continuously exacerbates this challenge. Without adaptability, detection models risk becoming ineffective in real-world applications. To address this critical issue, we propose a novel three-stage domain continual learning framework designed for continuous adaptation to evolving generative models. In the first stage, we employ a strategic parameter-efficient fine-tuning approach to develop a transferable offline detection model with strong generalization capabilities. Building upon this foundation, the second stage integrates unseen data streams into a continual learning process. To efficiently learn from limited samples of novel generated models and mitigate overfitting, we design a data augmentation chain with progressively increasing complexity. Furthermore, we leverage the Kronecker-Factored Approximate Curvature (K-FAC) method to approximate the Hessian and alleviate catastrophic forgetting. Finally, the third stage utilizes a linear interpolation strategy based on Linear Mode Connectivity, effectively capturing commonalities across diverse generative models and further enhancing overall performance. We establish a comprehensive benchmark of 27 generative models, including GANs, deepfakes, and diffusion models, chronologically structured up to August 2024 to simulate real-world scenarios. Extensive experiments demonstrate that our initial offline detectors surpass the leading baseline by +5.51% in terms of mean average precision. Our continual learning strategy achieves an average accuracy of 92.20%, outperforming state-of-the-art methods.
comment: Accepted by TMM 2025
Orient Anything V2: Unifying Orientation and Rotation Understanding NeurIPS 2025
This work presents Orient Anything V2, an enhanced foundation model for unified understanding of object 3D orientation and rotation from single or paired images. Building upon Orient Anything V1, which defines orientation via a single unique front face, V2 extends this capability to handle objects with diverse rotational symmetries and directly estimate relative rotations. These improvements are enabled by four key innovations: 1) Scalable 3D assets synthesized by generative models, ensuring broad category coverage and balanced data distribution; 2) An efficient, model-in-the-loop annotation system that robustly identifies 0 to N valid front faces for each object; 3) A symmetry-aware, periodic distribution fitting objective that captures all plausible front-facing orientations, effectively modeling object rotational symmetry; 4) A multi-frame architecture that directly predicts relative object rotations. Extensive experiments show that Orient Anything V2 achieves state-of-the-art zero-shot performance on orientation estimation, 6DoF pose estimation, and object symmetry recognition across 11 widely used benchmarks. The model demonstrates strong generalization, significantly broadening the applicability of orientation estimation in diverse downstream tasks.
comment: NeurIPS 2025 Spotlight, Repo: https://github.com/SpatialVision/Orient-Anything-V2
Towards Generalized Multi-Image Editing for Unified Multimodal Models
Unified Multimodal Models (UMMs) integrate multimodal understanding and generation, yet they are limited to maintaining visual consistency and disambiguating visual cues when referencing details across multiple input images. In this work, we propose a scalable multi-image editing framework for UMMs that explicitly distinguishes image identities and generalizes to variable input counts. Algorithmically, we introduce two innovations: 1) The learnable latent separators explicitly differentiate each reference image in the latent space, enabling accurate and disentangled conditioning. 2) The sinusoidal index encoding assigns visual tokens from the same image a continuous sinusoidal index embedding, which provides explicit image identity while allowing generalization and extrapolation on a variable number of inputs. To facilitate training and evaluation, we establish a high-fidelity benchmark using an inverse dataset construction methodology to guarantee artifact-free, achievable outputs. Experiments show clear improvements in semantic consistency, visual fidelity, and cross-image integration over prior baselines on diverse multi-image editing tasks, validating our advantages on consistency and generalization ability.
comment: Project page: https://github.com/Pengchengpcx/MIE-UMM
What's Left Unsaid? Detecting and Correcting Misleading Omissions in Multimodal News Previews
Even when factually correct, social-media news previews (image-headline pairs) can induce interpretation drift: by selectively omitting crucial context, they lead readers to form judgments that diverge from what the full article conveys. This covert harm is harder to detect than explicit misinformation yet remains underexplored. To address this gap, we develop a multi-stage pipeline that disentangles and simulates preview-based versus context-based understanding, enabling construction of the MM-Misleading benchmark. Using this benchmark, we systematically evaluate open-source LVLMs and uncover pronounced blind spots to omission-based misleadingness detection. We further propose OMGuard, which integrates (1) Interpretation-Aware Fine-Tuning, which used to improve multimodal misleadingness detection and (2) Rationale-Guided Misleading Content Correction, which uses explicit rationales to guide headline rewriting and reduce misleading impressions. Experiments show that OMGuard lifts an 8B model's detection accuracy to match a 235B LVLM and delivers markedly stronger end-to-end correction. Further analysis reveals that misleadingness typically stems from local narrative shifts (e.g., missing background) rather than global frame changes, and identifies image-driven scenarios where text-only correction fails, highlighting the necessity of visual interventions.
Semi-Supervised Facial Expression Recognition based on Dynamic Threshold and Negative Learning
Facial expression recognition is a key task in human-computer interaction and affective computing. However, acquiring a large amount of labeled facial expression data is often costly. Therefore, it is particularly important to design a semi-supervised facial expression recognition algorithm that makes full use of both labeled and unlabeled data. In this paper, we propose a semi-supervised facial expression recognition algorithm based on Dynamic Threshold Adjustment (DTA) and Selective Negative Learning (SNL). Initially, we designed strategies for local attention enhancement and random dropout of feature maps during feature extraction, which strengthen the representation of local features while ensuring the model does not overfit to any specific local area. Furthermore, this study introduces a dynamic thresholding method to adapt to the requirements of the semi-supervised learning framework for facial expression recognition tasks, and through a selective negative learning strategy, it fully utilizes unlabeled samples with low confidence by mining useful expression information from complementary labels, achieving impressive results. We have achieved state-of-the-art performance on the RAF-DB and AffectNet datasets. Our method surpasses fully supervised methods even without using the entire dataset, which proves the effectiveness of our approach.
One Language-Free Foundation Model Is Enough for Universal Vision Anomaly Detection
Universal visual anomaly detection (AD) aims to identify anomaly images and segment anomaly regions towards open and dynamic scenarios, following zero- and few-shot paradigms without any dataset-specific fine-tuning. We have witnessed significant progress in widely use of visual-language foundational models in recent approaches. However, current methods often struggle with complex prompt engineering, elaborate adaptation modules, and challenging training strategies, ultimately limiting their flexibility and generality. To address these issues, this paper rethinks the fundamental mechanism behind visual-language models for AD and presents an embarrassingly simple, general, and effective framework for Universal vision Anomaly Detection (UniADet). Specifically, we first find language encoder is used to derive decision weights for anomaly classification and segmentation, and then demonstrate that it is unnecessary for universal AD. Second, we propose an embarrassingly simple method to completely decouple classification and segmentation, and decouple cross-level features, i.e., learning independent weights for different tasks and hierarchical features. UniADet is highly simple (learning only decoupled weights), parameter-efficient (only 0.002M learnable parameters), general (adapting a variety of foundation models), and effective (surpassing state-of-the-art zero-/few-shot by a large margin and even full-shot AD methods for the first time) on 14 real-world AD benchmarks covering both industrial and medical domains. We will make the code and model of UniADet available at https://github.com/gaobb/UniADet.
comment: 20 pages, 5 figures, 34 tabels
VIB-Probe: Detecting and Mitigating Hallucinations in Vision-Language Models via Variational Information Bottleneck
Vision-Language Models (VLMs) have demonstrated remarkable progress in multimodal tasks, but remain susceptible to hallucinations, where generated text deviates from the underlying visual content. Existing hallucination detection methods primarily rely on output logits or external verification tools, often overlooking their internal mechanisms. In this work, we investigate the outputs of internal attention heads, postulating that specific heads carry the primary signals for truthful generation.However, directly probing these high-dimensional states is challenging due to the entanglement of visual-linguistic syntax and noise. To address this, we propose VIB-Probe, a novel hallucination detection and mitigation framework leveraging the Variational Information Bottleneck (VIB) theory. Our method extracts discriminative patterns across layers and heads while filtering out semantic nuisances through the information bottleneck principle. Furthermore, by leveraging the gradients of our VIB probe, we identify attention heads with strong causal influence on hallucinations and introduce an inference-time intervention strategy for hallucination mitigation. Extensive experiments across diverse benchmarks demonstrate that VIB-Probe significantly outperforms existing baselines in both settings. Our code will be made publicly available.
MoGen: A Unified Collaborative Framework for Controllable Multi-Object Image Generation
Existing multi-object image generation methods face difficulties in achieving precise alignment between localized image generation regions and their corresponding semantics based on language descriptions, frequently resulting in inconsistent object quantities and attribute aliasing. To mitigate this limitation, mainstream approaches typically rely on external control signals to explicitly constrain the spatial layout, local semantic and visual attributes of images. However, this strong dependency makes the input format rigid, rendering it incompatible with the heterogeneous resource conditions of users and diverse constraint requirements. To address these challenges, we propose MoGen, a user-friendly multi-object image generation method. First, we design a Regional Semantic Anchor (RSA) module that precisely anchors phrase units in language descriptions to their corresponding image regions during the generation process, enabling text-to-image generation that follows quantity specifications for multiple objects. Building upon this foundation, we further introduce an Adaptive Multi-modal Guidance (AMG) module, which adaptively parses and integrates various combinations of multi-source control signals to formulate corresponding structured intent. This intent subsequently guides selective constraints on scene layouts and object attributes, achieving dynamic fine-grained control. Experimental results demonstrate that MoGen significantly outperforms existing methods in generation quality, quantity consistency, and fine-grained control, while exhibiting superior accessibility and control flexibility. Code is available at: https://github.com/Tear-kitty/MoGen/tree/master.
DIFF-MF: A Difference-Driven Channel-Spatial State Space Model for Multi-Modal Image Fusion
Multi-modal image fusion aims to integrate complementary information from multiple source images to produce high-quality fused images with enriched content. Although existing approaches based on state space model have achieved satisfied performance with high computational efficiency, they tend to either over-prioritize infrared intensity at the cost of visible details, or conversely, preserve visible structure while diminishing thermal target salience. To overcome these challenges, we propose DIFF-MF, a novel difference-driven channel-spatial state space model for multi-modal image fusion. Our approach leverages feature discrepancy maps between modalities to guide feature extraction, followed by a fusion process across both channel and spatial dimensions. In the channel dimension, a channel-exchange module enhances channel-wise interaction through cross-attention dual state space modeling, enabling adaptive feature reweighting. In the spatial dimension, a spatial-exchange module employs cross-modal state space scanning to achieve comprehensive spatial fusion. By efficiently capturing global dependencies while maintaining linear computational complexity, DIFF-MF effectively integrates complementary multi-modal features. Experimental results on the driving scenarios and low-altitude UAV datasets demonstrate that our method outperforms existing approaches in both visual quality and quantitative evaluation.
SAS-VPReID: A Scale-Adaptive Framework with Shape Priors for Video-based Person Re-Identification at Extreme Far Distances WACV2026
Video-based Person Re-IDentification (VPReID) aims to retrieve the same person from videos captured by non-overlapping cameras. At extreme far distances, VPReID is highly challenging due to severe resolution degradation, drastic viewpoint variation and inevitable appearance noise. To address these issues, we propose a Scale-Adaptive framework with Shape Priors for VPReID, named SAS-VPReID. The framework is built upon three complementary modules. First, we deploy a Memory-Enhanced Visual Backbone (MEVB) to extract discriminative feature representations, which leverages the CLIP vision encoder and multi-proxy memory. Second, we propose a Multi-Granularity Temporal Modeling (MGTM) to construct sequences at multiple temporal granularities and adaptively emphasize motion cues across scales. Third, we incorporate Prior-Regularized Shape Dynamics (PRSD) to capture body structure dynamics. With these modules, our framework can obtain more discriminative feature representations. Experiments on the VReID-XFD benchmark demonstrate the effectiveness of each module and our final framework ranks the first on the VReID-XFD challenge leaderboard. The source code is available at https://github.com/YangQiWei3/SAS-VPReID.
comment: Accepted by WACV2026 VReID-XFD Workshop. Our final framework ranks the first on the VReID-XFD challenge leaderboard
GaussianSwap: Animatable Video Face Swapping with 3D Gaussian Splatting
We introduce GaussianSwap, a novel video face swapping framework that constructs a 3D Gaussian Splatting based face avatar from a target video while transferring identity from a source image to the avatar. Conventional video swapping frameworks are limited to generating facial representations in pixel-based formats. The resulting swapped faces exist merely as a set of unstructured pixels without any capacity for animation or interactive manipulation. Our work introduces a paradigm shift from conventional pixel-based video generation to the creation of high-fidelity avatar with swapped faces. The framework first preprocesses target video to extract FLAME parameters, camera poses and segmentation masks, and then rigs 3D Gaussian splats to the FLAME model across frames, enabling dynamic facial control. To ensure identity preserving, we propose an compound identity embedding constructed from three state-of-the-art face recognition models for avatar finetuning. Finally, we render the face-swapped avatar on the background frames to obtain the face-swapped video. Experimental results demonstrate that GaussianSwap achieves superior identity preservation, visual clarity and temporal consistency, while enabling previously unattainable interactive applications.
Enabling Stroke-Level Structural Analysis of Hieroglyphic Scripts without Language-Specific Priors
Hieroglyphs, as logographic writing systems, encode rich semantic and cultural information within their internal structural composition. Yet, current advanced Large Language Models (LLMs) and Multimodal LLMs (MLLMs) usually remain structurally blind to this information. LLMs process characters as textual tokens, while MLLMs additionally view them as raw pixel grids. Both fall short to model the underlying logic of character strokes. Furthermore, existing structural analysis methods are often script-specific and labor-intensive. In this paper, we propose Hieroglyphic Stroke Analyzer (HieroSA), a novel and generalizable framework that enables MLLMs to automatically derive stroke-level structures from character bitmaps without handcrafted data. It transforms modern logographic and ancient hieroglyphs character images into explicit, interpretable line-segment representations in a normalized coordinate space, allowing for cross-lingual generalization. Extensive experiments demonstrate that HieroSA effectively captures character-internal structures and semantics, bypassing the need for language-specific priors. Experimental results highlight the potential of our work as a graphematics analysis tool for a deeper understanding of hieroglyphic scripts. View our code at https://github.com/THUNLP-MT/HieroSA.
Prompt-Free SAM-Based Multi-Task Framework for Breast Ultrasound Lesion Segmentation and Classification
Accurate tumor segmentation and classification in breast ultrasound (BUS) imaging remain challenging due to low contrast, speckle noise, and diverse lesion morphology. This study presents a multi-task deep learning framework that jointly performs lesion segmentation and diagnostic classification using embeddings from the Segment Anything Model (SAM) vision encoder. Unlike prompt-based SAM variants, our approach employs a prompt-free, fully supervised adaptation where high-dimensional SAM features are decoded through either a lightweight convolutional head or a UNet-inspired decoder for pixel-wise segmentation. The classification branch is enhanced via mask-guided attention, allowing the model to focus on lesion-relevant features while suppressing background artifacts. Experiments on the PRECISE 2025 breast ultrasound dataset, split per class into 80 percent training and 20 percent testing, show that the proposed method achieves a Dice Similarity Coefficient (DSC) of 0.887 and an accuracy of 92.3 percent, ranking among the top entries on the PRECISE challenge leaderboard. These results demonstrate that SAM-based representations, when coupled with segmentation-guided learning, significantly improve both lesion delineation and diagnostic prediction in breast ultrasound imaging.
MMViR: A Multi-Modal and Multi-Granularity Representation for Long-range Video Understanding
Long videos, ranging from minutes to hours, present significant challenges for current Multi-modal Large Language Models (MLLMs) due to their complex events, diverse scenes, and long-range dependencies. Direct encoding of such videos is computationally too expensive, while simple video-to-text conversion often results in redundant or fragmented content. To address these limitations, we introduce MMViR, a novel multi-modal, multi-grained structured representation for long video understanding. MMViR identifies key turning points to segment the video and constructs a three-level description that couples global narratives with fine-grained visual details. This design supports efficient query-based retrieval and generalizes well across various scenarios. Extensive evaluations across three tasks, including QA, summarization, and retrieval, show that MMViR outperforms the prior strongest method, achieving a 19.67% improvement in hour-long video understanding while reducing processing latency to 45.4% of the original.
comment: 13 pages, 11 figures
Hippocampal Atrophy Patterns Across the Alzheimer's Disease Spectrum: A Voxel-Based Morphometry Analysis
Alzheimer's disease (AD) and mild cognitive impairment (MCI) are associated with progressive gray matter loss, particularly in medial temporal structures. In this study, CAT12/SPM12 voxel-based morphometry was applied to baseline T1-weighted MRI scans from 249 ADNI participants (CN = 90, MCI = 129, AD = 30). Gray matter volume was analyzed using a general linear model, with the diagnostic group as primary predictor and age and total intracranial volume as covariates. Statistical maps were thresholded at p < 0.001 (voxelwise) and corrected for multiple comparisons at the cluster level using family-wise error (FWE) correction (p < 0.05). Significant hippocampal atrophy was observed in AD relative to CN and MCI (Cohen's d = 2.03 and 1.61, respectively). Hippocampal volume demonstrated moderate predictive value for conversion from MCI to AD (AUC = 0.66). Stratification by APOE4 status did not reveal significant genetic effects on cross-sectional hippocampal volume. These results support medial temporal degeneration as a key feature of AD progression and provide insights into predictive biomarkers and genetic influences.
comment: 8 pages, 7 figures, 6 tables
Multi-Image Super Resolution Framework for Detection and Analysis of Plant Roots
Understanding plant root systems is critical for advancing research in soil-plant interactions, nutrient uptake, and overall plant health. However, accurate imaging of roots in subterranean environments remains a persistent challenge due to adverse conditions such as occlusion, varying soil moisture, and inherently low contrast, which limit the effectiveness of conventional vision-based approaches. In this work, we propose a novel underground imaging system that captures multiple overlapping views of plant roots and integrates a deep learning-based Multi-Image Super Resolution (MISR) framework designed to enhance root visibility and detail. To train and evaluate our approach, we construct a synthetic dataset that simulates realistic underground imaging scenarios, incorporating key environmental factors that affect image quality. Our proposed MISR algorithm leverages spatial redundancy across views to reconstruct high-resolution images with improved structural fidelity and visual clarity. Quantitative evaluations show that our approach outperforms state-of-the-art super resolution baselines, achieving a 2.3 percent reduction in BRISQUE, indicating improved image quality with the same CLIP-IQA score, thereby enabling enhanced phenotypic analysis of root systems. This, in turn, facilitates accurate estimation of critical root traits, including root hair count and root hair density. The proposed framework presents a promising direction for robust automatic underground plant root imaging and trait quantification for agricultural and ecological research.
ROAP: A Reading-Order and Attention-Prior Pipeline for Optimizing Layout Transformers in Key Information Extraction
The efficacy of Multimodal Transformers in visually-rich document understanding (VrDU) is critically constrained by two inherent limitations: the lack of explicit modeling for logical reading order and the interference of visual tokens that dilutes attention on textual semantics. To address these challenges, this paper presents ROAP, a lightweight and architecture-agnostic pipeline designed to optimize attention distributions in Layout Transformers without altering their pre-trained backbones. The proposed pipeline first employs an Adaptive-XY-Gap (AXG-Tree) to robustly extract hierarchical reading sequences from complex layouts. These sequences are then integrated into the attention mechanism via a Reading-Order-Aware Relative Position Bias (RO-RPB). Furthermore, a Textual-Token Sub-block Attention Prior (TT-Prior) is introduced to adaptively suppress visual noise and enhance fine-grained text-text interactions. Extensive experiments on the FUNSD and CORD benchmarks demonstrate that ROAP consistently improves the performance of representative backbones, including LayoutLMv3 and GeoLayoutLM. These findings confirm that explicitly modeling reading logic and regulating modality interference are critical for robust document understanding, offering a scalable solution for complex layout analysis. The implementation code will be released at https://github.com/KevinYuLei/ROAP.
comment: 10 pages, 4 figures, 4 tables
TAPM-Net: Trajectory-Aware Perturbation Modeling for Infrared Small Target Detection BMVC 2025
Infrared small target detection (ISTD) remains a long-standing challenge due to weak signal contrast, limited spatial extent, and cluttered backgrounds. Despite performance improvements from convolutional neural networks (CNNs) and Vision Transformers (ViTs), current models lack a mechanism to trace how small targets trigger directional, layer-wise perturbations in the feature space, which is an essential cue for distinguishing signal from structured noise in infrared scenes. To address this limitation, we propose the Trajectory-Aware Mamba Propagation Network (TAPM-Net), which explicitly models the spatial diffusion behavior of target-induced feature disturbances. TAPM-Net is built upon two novel components: a Perturbation-guided Path Module (PGM) and a Trajectory-Aware State Block (TASB). The PGM constructs perturbation energy fields from multi-level features and extracts gradient-following feature trajectories that reflect the directionality of local responses. The resulting feature trajectories are fed into the TASB, a Mamba-based state-space unit that models dynamic propagation along each trajectory while incorporating velocity-constrained diffusion and semantically aligned feature fusion from word-level and sentence-level embeddings. Unlike existing attention-based methods, TAPM-Net enables anisotropic, context-sensitive state transitions along spatial trajectories while maintaining global coherence at low computational cost. Experiments on NUAA-SIRST and IRSTD-1K demonstrate that TAPM-Net achieves state-of-the-art performance in ISTD.
comment: Published in BMVC 2025 see: https://bmva-archive.org.uk/bmvc/2025/assets/papers/Paper_709/paper.pdf. Conference version. 12 pages, 6 figures, 4 tables. Author-prepared version
Monkey Jump : MoE-Style PEFT for Efficient Multi-Task Learning
Mixture-of-experts variants of parameter-efficient fine-tuning enable per-token specialization, but they introduce additional trainable routers and expert parameters, increasing memory usage and training cost. This undermines the core goal of parameter-efficient fine-tuning. We propose Monkey Jump, a method that brings mixture-of-experts-style specialization to parameter-efficient fine-tuning without introducing extra trainable parameters for experts or routers. Instead of adding new adapters as experts, Monkey Jump treats the adapters already present in each Transformer block (such as query, key, value, up, and down projections) as implicit experts and routes tokens among them. Routing is performed using k-means clustering with exponentially moving averaged cluster centers, requiring no gradients and no learned parameters. We theoretically show that token-wise routing increases expressivity and can outperform shared adapters by avoiding cancellation effects. Across multi-task experiments covering 14 text, 14 image, and 19 video benchmarks, Monkey Jump achieves competitive performance with mixture-of-experts-based parameter-efficient fine-tuning methods while using 7 to 29 times fewer trainable parameters, up to 48 percent lower memory consumption, and 1.5 to 2 times faster training. Monkey Jump is architecture-agnostic and can be applied to any adapter-based parameter-efficient fine-tuning method.
Circuit Mechanisms for Spatial Relation Generation in Diffusion Transformers
Diffusion Transformers (DiTs) have greatly advanced text-to-image generation, but models still struggle to generate the correct spatial relations between objects as specified in the text prompt. In this study, we adopt a mechanistic interpretability approach to investigate how a DiT can generate correct spatial relations between objects. We train, from scratch, DiTs of different sizes with different text encoders to learn to generate images containing two objects whose attributes and spatial relations are specified in the text prompt. We find that, although all the models can learn this task to near-perfect accuracy, the underlying mechanisms differ drastically depending on the choice of text encoder. When using random text embeddings, we find that the spatial-relation information is passed to image tokens through a two-stage circuit, involving two cross-attention heads that separately read the spatial relation and single-object attributes in the text prompt. When using a pretrained text encoder (T5), we find that the DiT uses a different circuit that leverages information fusion in the text tokens, reading spatial-relation and single-object information together from a single text token. We further show that, although the in-domain performance is similar for the two settings, their robustness to out-of-domain perturbations differs, potentially suggesting the difficulty of generating correct relations in real-world scenarios.
comment: 31 pages, 23 figures
VideoWeave: A Data-Centric Approach for Efficient Video Understanding
Training video-language models is often prohibitively expensive due to the high cost of processing long frame sequences and the limited availability of annotated long videos. We present VideoWeave, a simple yet effective approach to improve data efficiency by constructing synthetic long-context training samples that splice together short, captioned videos from existing datasets. Rather than modifying model architectures or optimization objectives, VideoWeave reorganizes available video-text pairs to expand temporal diversity within fixed compute. We systematically study how different data composition strategies like random versus visually clustered splicing and caption enrichment affect downstream performance on downstream video question answering. Under identical compute constraints, models trained with VideoWeave achieve higher accuracy than conventional video finetuning. Our results highlight that reorganizing training data, rather than altering architectures, may offer a simple and scalable path for training video-language models. We link our code for all experiments here.
Perception Test 2025: Challenge Summary and a Unified VQA Extension
The Third Perception Test challenge was organised as a full-day workshop alongside the IEEE/CVF International Conference on Computer Vision (ICCV) 2025. Its primary goal is to benchmark state-of-the-art video models and measure the progress in multimodal perception. This year, the workshop featured 2 guest tracks as well: KiVA (an image understanding challenge) and Physic-IQ (a video generation challenge). In this report, we summarise the results from the main Perception Test challenge, detailing both the existing tasks as well as novel additions to the benchmark. In this iteration, we placed an emphasis on task unification, as this poses a more challenging test for current SOTA multimodal models. The challenge included five consolidated tracks: unified video QA, unified object and point tracking, unified action and sound localisation, grounded video QA, and hour-long video QA, alongside an analysis and interpretability track that is still open for submissions. Notably, the unified video QA track introduced a novel subset that reformulates traditional perception tasks (such as point tracking and temporal action localisation) as multiple-choice video QA questions that video-language models can natively tackle. The unified object and point tracking merged the original object tracking and point tracking tasks, whereas the unified action and sound localisation merged the original temporal action localisation and temporal sound localisation tracks. Accordingly, we required competitors to use unified approaches rather than engineered pipelines with task-specific models. By proposing such a unified challenge, Perception Test 2025 highlights the significant difficulties existing models face when tackling diverse perception tasks through unified interfaces.
NAS-GS: Noise-Aware Sonar Gaussian Splatting
Underwater sonar imaging plays a crucial role in various applications, including autonomous navigation in murky water, marine archaeology, and environmental monitoring. However, the unique characteristics of sonar images, such as complex noise patterns and the lack of elevation information, pose significant challenges for 3D reconstruction and novel view synthesis. In this paper, we present NAS-GS, a novel Noise-Aware Sonar Gaussian Splatting framework specifically designed to address these challenges. Our approach introduces a Two-Ways Splatting technique that accurately models the dual directions for intensity accumulation and transmittance calculation inherent in sonar imaging, significantly improving rendering speed without sacrificing quality. Moreover, we propose a Gaussian Mixture Model (GMM) based noise model that captures complex sonar noise patterns, including side-lobes, speckle, and multi-path noise. This model enhances the realism of synthesized images while preventing 3D Gaussian overfitting to noise, thereby improving reconstruction accuracy. We demonstrate state-of-the-art performance on both simulated and real-world large-scale offshore sonar scenarios, achieving superior results in novel view synthesis and 3D reconstruction.
EyeTheia: A Lightweight and Accessible Eye-Tracking Toolbox
We introduce EyeTheia, a lightweight and open deep learning pipeline for webcam-based gaze estimation, designed for browser-based experimental platforms and real-world cognitive and clinical research. EyeTheia enables real-time gaze tracking using only a standard laptop webcam, combining MediaPipe-based landmark extraction with a convolutional neural network inspired by iTracker and optional user-specific fine-tuning. We investigate two complementary strategies: adapting a model pretrained on mobile data and training the same architecture from scratch on a desktop-oriented dataset. Validation results on MPIIFaceGaze show comparable performance between both approaches prior to calibration, while lightweight user-specific fine-tuning consistently reduces gaze prediction error. We further evaluate EyeTheia in a realistic Dot-Probe task and compare it to the commercial webcam-based tracker SeeSo SDK. Results indicate strong agreement in left-right gaze allocation during stimulus presentation, despite higher temporal variability. Overall, EyeTheia provides a transparent and extensible solution for low-cost gaze tracking, suitable for scalable and reproducible experimental and clinical studies. The code, trained models, and experimental materials are publicly available.
comment: Code for the EyeTheia gaze-tracking model: https://github.com/patherstevenson/EyeTheia. Experimental platform for the cognitive neuroscience task: https://git.interactions-team.fr/INTERACTIONS/calypso/src/branch/main/src/lonely_tester
Performance Analysis of DCT, Hadamard, and PCA in Block-Based Image Compression
Block based image compression relies on transform coding to concentrate signal energy into a small number of coefficients. While classical codecs use fixed transforms such as the Discrete Cosine Transform (DCT), data driven methods such as Principal Component Analysis (PCA) are theoretically optimal for decorrelation. This paper presents an experimental comparison of DCT, Hadamard, and PCA across multiple block sizes and compression rates. Using rate distortion and energy compaction analysis, we show that PCA outperforms fixed transforms only when block dimensionality is sufficiently large, while DCT remains near optimal for standard block sizes such as $8\times8$ and at low bit rates. These results explain the robustness of DCT in practical codecs and highlight the limitations of block wise learned transforms.
Gamma2Patterns: Deep Cognitive Attention Region Identification and Gamma-Alpha Pattern Analysis
Deep cognitive attention is characterized by heightened gamma oscillations and coordinated visual behavior. Despite the physiological importance of these mechanisms, computational studies rarely synthesize these modalities or identify the neural regions most responsible for sustained focus. To address this gap, this work introduces Gamma2Patterns, a multimodal framework that characterizes deep cognitive attention by leveraging complementary Gamma and Alpha band EEG activity alongside Eye-tracking measurements. Using the SEED-IV dataset [1], we extract spectral power, burst-based temporal dynamics, and fixation-saccade-pupil signals across 62 channels or electrodes to analyze how neural activation differs between high-focus (Gamma-dominant) and low-focus (Alpha-dominant) states. Our findings reveal that frontopolar, temporal, anterior frontal, and parieto-occipital regions exhibit the strongest Gamma power and burst rates, indicating their dominant role in deep attentional engagement, while Eye-tracking signals confirm complementary contributions from frontal, frontopolar, and frontotemporal regions. Furthermore, we show that Gamma power and burst duration provide more discriminative markers of deep focus than Alpha power alone, demonstrating their value for attention decoding. Collectively, these results establish a multimodal, evidence-based map of cortical regions and oscillatory signatures underlying deep focus, providing a neurophysiological foundation for future brain-inspired attention mechanisms in AI systems.
Real-Time Image Processing Algorithms for Embedded Systems
Embedded vision systems need efficient and robust image processing algorithms to perform real-time, with resource-constrained hardware. This research investigates image processing algorithms, specifically edge detection, corner detection, and blob detection, that are implemented on embedded processors, including DSPs and FPGAs. To address latency, accuracy and power consumption noted in the image processing literature, optimized algorithm architectures and quantization techniques are employed. In addition, optimal techniques for inter-frame redundancy removal and adaptive frame averaging are used to improve throughput with reasonable image quality. Simulations and hardware trials of the proposed approaches show marked improvements in the speed and energy efficiency of processing as compared to conventional implementations. The advances of this research facilitate a path for scalable and inexpensive embedded imaging systems for the automotive, surveillance, and robotics sectors, and underscore the benefit of co-designing algorithms and hardware architectures for practical real-time embedded vision applications.
A survey of facial recognition techniques
As multimedia content is quickly growing, the field of facial recognition has become one of the major research fields, particularly in the recent years. The most problematic area to researchers in image processing and computer vision is the human face which is a complex object with myriads of distinctive features that can be used to identify the face. The survey of this survey is particularly focused on most challenging facial characteristics, including differences in the light, ageing, variation in poses, partial occlusion, and facial expression and presents methodological solutions. The factors, therefore, are inevitable in the creation of effective facial recognition mechanisms used on facial images. This paper reviews the most sophisticated methods of facial detection which are Hidden Markov Models, Principal Component Analysis (PCA), Elastic Cluster Plot Matching, Support Vector Machine (SVM), Gabor Waves, Artificial Neural Networks (ANN), Eigenfaces, Independent Component Analysis (ICA), and 3D Morphable Model. Alongside the works mentioned above, we have also analyzed the images of a number of facial databases, namely JAFEE, FEI, Yale, LFW, AT&T (then called ORL), and AR (created by Martinez and Benavente), to analyze the results. However, this survey is aimed at giving a thorough literature review of face recognition, and its applications, and some experimental results are provided at the end after a detailed discussion.
comment: 12 pages, 12 figures, article
Synthetic FMCW Radar Range Azimuth Maps Augmentation with Generative Diffusion Model
The scarcity and low diversity of well-annotated automotive radar datasets often limit the performance of deep-learning-based environmental perception. To overcome these challenges, we propose a conditional generative framework for synthesizing realistic Frequency-Modulated Continuous-Wave radar Range-Azimuth Maps. Our approach leverages a generative diffusion model to generate radar data for multiple object categories, including pedestrians, cars, and cyclists. Specifically, conditioning is achieved via Confidence Maps, where each channel represents a semantic class and encodes Gaussian-distributed annotations at target locations. To address radar-specific characteristics, we incorporate Geometry Aware Conditioning and Temporal Consistency Regularization into the generative process. Experiments on the ROD2021 dataset demonstrate that signal reconstruction quality improves by \SI{3.6}{dB} in Peak Signal-to-Noise Ratio over baseline methods, while training with a combination of real and synthetic datasets improves overall mean Average Precision by 4.15% compared with conventional image-processing-based augmentation. These results indicate that our generative framework not only produces physically plausible and diverse radar spectrum but also substantially improves model generalization in downstream tasks.
Ground What You See: Hallucination-Resistant MLLMs via Caption Feedback, Diversity-Aware Sampling, and Conflict Regularization AAAI-2026
While Multimodal Large Language Models (MLLMs) have achieved remarkable success across diverse tasks, their practical deployment is severely hindered by hallucination issues, which become particularly acute during Reinforcement Learning (RL) optimization. This paper systematically analyzes the root causes of hallucinations in MLLMs under RL training, identifying three critical factors: (1) an over-reliance on chained visual reasoning, where inaccurate initial descriptions or redundant information anchor subsequent inferences to incorrect premises; (2) insufficient exploration diversity during policy optimization, leading the model to generate overly confident but erroneous outputs; and (3) destructive conflicts between training samples, where Neural Tangent Kernel (NTK) similarity causes false associations and unstable parameter updates. To address these challenges, we propose a comprehensive framework comprising three core modules. First, we enhance visual localization by introducing dedicated planning and captioning stages before the reasoning phase, employing a quality-based caption reward to ensure accurate initial anchoring. Second, to improve exploration, we categorize samples based on the mean and variance of their reward distributions, prioritizing samples with high variance to focus the model on diverse and informative data. Finally, to mitigate sample interference, we regulate NTK similarity by grouping sample pairs and applying an InfoNCE loss to push overly similar pairs apart and pull dissimilar ones closer, thereby guiding gradient interactions toward a balanced range. Experimental results demonstrate that our proposed method significantly reduces hallucination rates and effectively enhances the inference accuracy of MLLMs.
comment: AAAI-2026 Poster
Co-Training Vision Language Models for Remote Sensing Multi-task Learning
With Transformers achieving outstanding performance on individual remote sensing (RS) tasks, we are now approaching the realization of a unified model that excels across multiple tasks through multi-task learning (MTL). Compared to single-task approaches, MTL methods offer improved generalization, enhanced scalability, and greater practical applicability. Recently, vision language models (VLMs) have achieved promising results in RS image understanding, grounding, and ultra-high-resolution (UHR) image reasoning, respectively. Moreover, the unified text-based interface demonstrates significant potential for MTL. Hence, in this work, we present RSCoVLM, a simple yet flexible VLM baseline for RS MTL. Firstly, we create the data curation engine, including data acquisition, offline processing and integrating, as well as online loading and weighting. This data engine effectively addresses complex RS data enviroment and generates flexible vision-language conversations. Furthermore, we propose a unified dynamic-resolution strategy to address the diverse image scales inherent in RS imagery. For UHR images, we introduce the Zoom-in Chain mechanism together with its corresponding dataset, LRS-VQA-Zoom. The strategies are flexible and effectively mitigate the computational burdens. Additionally, we significantly enhance the model's object detection capability and propose a novel evaluation protocol that ensures fair comparison between VLMs and conventional detection models. Extensive experiments demonstrate that RSCoVLM achieves state-of-the-art performance across diverse tasks, outperforming existing RS VLMs and even rivaling specialized expert models. All the training and evaluating tools, model weights, and datasets have been fully open-sourced to support reproducibility. We expect that this baseline will promote further progress toward general-purpose RS models.
comment: 14 pages, 6 figures
Controlled Automatic Task-Specific Synthetic Data Generation for Hallucination Detection
We present a novel approach to automatically generate non-trivial task-specific synthetic datasets for hallucination detection. Our approach features a two-step generation-selection pipeline, using hallucination pattern guidance and a language style alignment during generation. Hallucination pattern guidance leverages the most important task-specific hallucination patterns while language style alignment aligns the style of the synthetic dataset with benchmark text. To obtain robust supervised detectors from synthetic datasets, we also adopt a data mixture strategy to improve performance robustness and generalization. Our results on three datasets show that our generated hallucination text is more closely aligned with non-hallucinated text versus baselines, to train hallucination detectors with better generalization. Our hallucination detectors trained on synthetic datasets outperform in-context-learning (ICL)-based detectors by a large margin of 32%. Our extensive experiments confirm the benefits of our approach with cross-task and cross-generator generalization. Our data-mixture-based training further improves the generalization and robustness of hallucination detection.
comment: 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (ACM KDD 2024). Accepted by Workshop on Evaluation and Trustworthiness of Generative AI Models
Efficient Bayesian Computation Using Plug-and-Play Priors for Poisson Inverse Problems
This paper studies plug-and-play (PnP) Langevin sampling strategies for Bayesian inference in low-photon Poisson imaging problems, a challenging class of problems with significant applications in astronomy, medicine, and biology. PnP Langevin sampling offers a powerful framework for Bayesian image restoration, enabling accurate point estimation as well as advanced inference tasks, including uncertainty quantification and visualization analyses, and empirical Bayesian inference for automatic model parameter tuning. Herein, we leverage and adapt recent developments in this framework to tackle challenging imaging problems involving weakly informative Poisson data. Existing PnP Langevin algorithms are not well-suited for low-photon Poisson imaging due to high solution uncertainty and poor regularity properties, such as exploding gradients and non-negativity constraints. To address these challenges, we explore two strategies for extending Langevin PnP sampling to Poisson imaging models: (i) an accelerated PnP Langevin method that incorporates boundary reflections and a Poisson likelihood approximation and (ii) a mirror sampling algorithm that leverages a Riemannian geometry to handle the constraints and the poor regularity of the likelihood without approximations. The effectiveness of these approaches is evaluated and contrasted through extensive numerical experiments and comparisons with state-of-the-art methods. The source code accompanying this paper is available at https://github.com/freyyia/pnp-langevin-poisson.
comment: 35 pages, 19 figures
Reflect3r: Single-View 3D Stereo Reconstruction Aided by Mirror Reflections 3DV 2026
Mirror reflections are common in everyday environments and can provide stereo information within a single capture, as the real and reflected virtual views are visible simultaneously. We exploit this property by treating the reflection as an auxiliary view and designing a transformation that constructs a physically valid virtual camera, allowing direct pixel-domain generation of the virtual view while adhering to the real-world imaging process. This enables a multi-view stereo setup from a single image, simplifying the imaging process, making it compatible with powerful feed-forward reconstruction models for generalizable and robust 3D reconstruction. To further exploit the geometric symmetry introduced by mirrors, we propose a symmetric-aware loss to refine pose estimation. Our framework also naturally extends to dynamic scenes, where each frame contains a mirror reflection, enabling efficient per-frame geometry recovery. For quantitative evaluation, we provide a fully customizable synthetic dataset of 16 Blender scenes, each with ground-truth point clouds and camera poses. Extensive experiments on real-world data and synthetic data are conducted to illustrate the effectiveness of our method.
comment: 3DV 2026. Code and Data Available at https://jingwu2121.github.io/reflect3r/
Higher-Order Domain Generalization in Magnetic Resonance-Based Assessment of Alzheimer's Disease
Despite progress in deep learning for Alzheimer's disease (AD) diagnostics, models trained on structural magnetic resonance imaging (sMRI) often do not perform well when applied to new cohorts due to domain shifts from varying scanners, protocols and patient demographics. AD, the primary driver of dementia, manifests through progressive cognitive and neuroanatomical changes like atrophy and ventricular expansion, making robust, generalizable classification essential for real-world use. While convolutional neural networks and transformers have advanced feature extraction via attention and fusion techniques, single-domain generalization (SDG) remains underexplored yet critical, given the fragmented nature of AD datasets. To bridge this gap, we introduce Extended MixStyle (EM), a framework for blending higher-order feature moments (skewness and kurtosis) to mimic diverse distributional variations. Trained on sMRI data from the National Alzheimer's Coordinating Center (NACC; n=4,647) to differentiate persons with normal cognition (NC) from those with mild cognitive impairment (MCI) or AD and tested on three unseen cohorts (total n=3,126), EM yields enhanced cross-domain performance, improving macro-F1 on average by 2.4 percentage points over state-of-the-art SDG benchmarks, underscoring its promise for invariant, reliable AD detection in heterogeneous real-world settings. The source code will be made available upon acceptance at https://github.com/zobia111/Extended-Mixstyle.
Low-Latency Event-Based Velocimetry for Quadrotor Control in a Narrow Pipe
Autonomous quadrotor flight in confined spaces such as pipes and tunnels presents significant challenges due to unsteady, self-induced aerodynamic disturbances. Very recent advances have enabled flight in such conditions, but they either rely on constant motion through the pipe to mitigate airflow recirculation effects or suffer from limited stability during hovering. In this work, we present the first closed-loop control system for quadrotors for hovering in narrow pipes that leverages real-time flow field measurements. We develop a low-latency, event-based smoke velocimetry method that estimates local airflow at high temporal resolution. This flow information is used by a disturbance estimator based on a recurrent convolutional neural network, which infers force and torque disturbances in real time. The estimated disturbances are integrated into a learning-based controller trained via reinforcement learning. The flow-feedback control proves particularly effective during lateral translation maneuvers in the pipe cross-section. There, the real-time disturbance information enables the controller to effectively counteract transient aerodynamic effects, thereby preventing collisions with the pipe wall. To the best of our knowledge, this work represents the first demonstration of an aerial robot with closed-loop control informed by real-time flow field measurements. This opens new directions for research on flight in aerodynamically complex environments. In addition, our work also sheds light on the characteristic flow structures that emerge during flight in narrow, circular pipes, providing new insights at the intersection of robotics and fluid dynamics.
comment: 19 pages
ImageNet-trained CNNs are not biased towards texture: Revisiting feature reliance through controlled suppression NeurIPS 2025
The hypothesis that Convolutional Neural Networks (CNNs) are inherently texture-biased has shaped much of the discourse on feature use in deep learning. We revisit this hypothesis by examining limitations in the cue-conflict experiment by Geirhos et al. To address these limitations, we propose a domain-agnostic framework that quantifies feature reliance through systematic suppression of shape, texture, and color cues, avoiding the confounds of forced-choice conflicts. By evaluating humans and neural networks under controlled suppression conditions, we find that CNNs are not inherently texture-biased but predominantly rely on local shape features. Nonetheless, this reliance can be substantially mitigated through modern training strategies or architectures (ConvNeXt, ViTs). We further extend the analysis across computer vision, medical imaging, and remote sensing, revealing that reliance patterns differ systematically: computer vision models prioritize shape, medical imaging models emphasize color, and remote sensing models exhibit a stronger reliance on texture. Code is available at https://github.com/tomburgert/feature-reliance.
comment: Accepted at NeurIPS 2025 (oral)
RobustFormer: Noise-Robust Pre-training for images and videos
While deep learning-based models like transformers, have revolutionized time-series and vision tasks, they remain highly susceptible to noise and often overfit on noisy patterns rather than robust features. This issue is exacerbated in vision transformers, which rely on pixel-level details that can easily be corrupt. To address this, we leverage the discrete wavelet transform (DWT) for its ability to decompose into multi-resolution layers, isolating noise primarily in the high frequency domain while preserving essential low-frequency information for resilient feature learning. Conventional DWT-based methods, however, struggle with computational inefficiencies due to the requirement for a subsequent inverse discrete wavelet transform (IDWT) step. In this work, we introduce RobustFormer, a novel framework that enables noise-robust masked autoencoder (MAE) pre-training for both images and videos by using DWT for efficient downsampling, eliminating the need for expensive IDWT reconstruction and simplifying the attention mechanism to focus on noise-resilient multi-scale representations. To our knowledge, RobustFormer is the first DWT-based method fully compatible with video inputs and MAE-style pre-training. Extensive experiments on noisy image and video datasets demonstrate that our approach achieves up to 8% increase in Top-1 classification accuracy under severe noise conditions in Imagenet-C and up to 2.7% in Imagenet-P standard benchmarks compared to the baseline and up to 13% higher Top-1 accuracy on UCF-101 under severe custom noise perturbations while maintaining similar accuracy scores for clean datasets. We also observe the reduction of computation complexity by up to 4.4% through IDWT removal compared to VideoMAE baseline without any performance drop.
comment: 13 pages
A Novel Patch-Based TDA Approach for Computed Tomography
The development of machine learning (ML) models based on computed tomography (CT) imaging modality has been a major focus of recent research in the medical imaging domain. Incorporating robust feature engineering approach can highly improve the performance of these models. Topological data analysis (TDA), a recent development based on the mathematical field of algebraic topology, mainly focuses on the data from a topological perspective, extracting deeper insight and higher dimensional structures from the data. Persistent homology (PH), a fundamental tool in the area of TDA, can extract topological features such as connected components, cycles and voids from the data. A popular approach to construct PH from 3D CT images is to utilize the 3D cubical complex filtration, a method adapted for grid-structured data. However, this approach may not always yield the best performance and can suffer from computational complexity with higher resolution CT images. This study introduces a novel patch-based PH construction approach tailored for volumetric medical imaging data, in particular CT modality. A wide range of experiments has been conducted on several datasets of 3D CT images to comprehensively analyze the performance of the proposed method with various parameters and benchmark it against the 3D cubical complex algorithm. Our results highlight the dominance of the patch-based TDA approach in terms of both classification performance and time-efficiency. The proposed approach outperformed the cubical complex method, achieving average improvement of 10.38%, 6.94%, 2.06%, 11.58%, and 8.51% in accuracy, AUC, sensitivity, specificity, and F1 score, respectively, across all datasets. Finally, we provide a convenient python package, Patch-TDA, to facilitate the utilization of the proposed approach.
DYRECT Computed Tomography: DYnamic Reconstruction of Events on a Continuous Timescale
Time-resolved high-resolution X-ray Computed Tomography (4D $μ$CT) is an imaging technique that offers insight into the evolution of dynamic processes inside materials that are opaque to visible light. Conventional tomographic reconstruction techniques are based on recording a sequence of 3D images that represent the sample state at different moments in time. This frame-based approach limits the temporal resolution compared to dynamic radiography experiments due to the time needed to make CT scans. Moreover, it leads to an inflation of the amount of data and thus to costly post-processing computations to quantify the dynamic behaviour from the sequence of time frames, hereby often ignoring the temporal correlations of the sample structure. Our proposed 4D $μ$CT reconstruction technique, named DYRECT, estimates individual attenuation evolution profiles for each position in the sample. This leads to a novel memory-efficient event-based representation of the sample, using as little as three image volumes: its initial attenuation, its final attenuation and the transition times. This third volume represents local events on a continuous timescale instead of the discrete global time frames. We propose a method to iteratively reconstruct the transition times and the attenuation volumes. The dynamic reconstruction technique was validated on synthetic ground truth data and experimental data, and was found to effectively pinpoint the transition times in the synthetic dataset with a time resolution corresponding to less than a tenth of the amount of projections required to reconstruct traditional $μ$CT time frames.
comment: 13 pages, 10 figures, article. Submitted to IEEE Transactions on Computational Imaging 23/10/2024 - Accepted 18/04/2025 - Published 01/05/2025
Pyramidal Adaptive Cross-Gating for Multimodal Detection
Object detection in aerial imagery is a critical task in applications such as UAV reconnaissance. Although existing methods have extensively explored feature interaction between different modalities, they commonly rely on simple fusion strategies for feature aggregation. This introduces two critical flaws: it is prone to cross-modal noise and disrupts the hierarchical structure of the feature pyramid, thereby impairing the fine-grained detection of small objects. To address this challenge, we propose the Pyramidal Adaptive Cross-Gating Network (PACGNet), an architecture designed to perform deep fusion within the backbone. To this end, we design two core components: the Symmetrical Cross-Gating (SCG) module and the Pyramidal Feature-aware Multimodal Gating (PFMG) module. The SCG module employs a bidirectional, symmetrical "horizontal" gating mechanism to selectively absorb complementary information, suppress noise, and preserve the semantic integrity of each modality. The PFMG module reconstructs the feature hierarchy via a progressive hierarchical gating mechanism. This leverages the detailed features from a preceding, higher-resolution level to guide the fusion at the current, lower-resolution level, effectively preserving fine-grained details as features propagate. Through evaluations conducted on the DroneVehicle and VEDAI datasets, our PACGNet sets a new state-of-the-art benchmark, with mAP50 scores reaching 82.2% and 82.1% respectively.
comment: 17 pages, 6 figures, submitted to Image and Vision Computing
Solving Inverse Problems in Stochastic Self-Organizing Systems through Invariant Representations
Self-organizing systems demonstrate how simple local rules can generate complex stochastic patterns. Many natural systems rely on such dynamics, making self-organization central to understanding natural complexity. A fundamental challenge in modeling such systems is solving the inverse problem: finding the unknown causal parameters from macroscopic observations. This task becomes particularly difficult when observations have a strong stochastic component, yielding diverse yet equivalent patterns. Traditional inverse methods fail in this setting, as pixel-wise metrics cannot capture feature similarities between variable outcomes. In this work, we introduce a novel inverse modeling method specifically designed to handle stochasticity in the observable space, leveraging the capacity of visual embeddings to produce robust representations that capture perceptual invariances. By mapping the pattern representations onto an invariant embedding space, we can effectively recover unknown causal parameters without the need for handcrafted objective functions or heuristics. We evaluate the method on three self-organizing systems: a physical, a biological, and a social one; namely, a reaction-diffusion system, a model of embryonic development, and an agent-based model of social segregation. We show that the method reliably recovers parameters despite stochasticity in the pattern outcomes. We further apply the method to real biological patterns, highlighting its potential as a tool for both theorists and experimentalists to investigate the dynamics underlying complex stochastic pattern formation.
comment: Preprint. Under review
From See to Shield: ML-Assisted Fine-Grained Access Control for Visual Data
As the volume of stored data continues to grow, identifying and protecting sensitive information within large repositories becomes increasingly challenging, especially when shared with multiple users with different roles and permissions. This work presents a system architecture for trusted data sharing with policy-driven access control, enabling selective protection of sensitive regions while maintaining scalability. The proposed architecture integrates four core modules that combine automated detection of sensitive regions, post-correction, key management, and access control. Sensitive regions are secured using a hybrid scheme that employs symmetric encryption for efficiency and Attribute-Based Encryption for policy enforcement. The system supports efficient key distribution and isolates key storage to strengthen overall security. To demonstrate its applicability, we evaluate the system on visual datasets, where Privacy-Sensitive Objects in images are automatically detected, reassessed, and selectively encrypted prior to sharing in a data repository. Experimental results show that our system provides effective PSO detection, increases macro-averaged F1 score (5%) and mean Average Precision (10%), and maintains an average policy-enforced decryption time of less than 1 second per image. These results demonstrate the effectiveness, efficiency and scalability of our proposed solution for fine-grained access control.
comment: 11 pages, 4 figures, 6 tables. In submission
Multimodal Interpretation of Remote Sensing Images: Dynamic Resolution Input Strategy and Multi-scale Vision-Language Alignment Mechanism
Multimodal fusion of remote sensing images serves as a core technology for overcoming the limitations of single-source data and improving the accuracy of surface information extraction, which exhibits significant application value in fields such as environmental monitoring and urban planning. To address the deficiencies of existing methods, including the failure of fixed resolutions to balance efficiency and detail, as well as the lack of semantic hierarchy in single-scale alignment, this study proposes a Vision-language Model (VLM) framework integrated with two key innovations: the Dynamic Resolution Input Strategy (DRIS) and the Multi-scale Vision-language Alignment Mechanism (MS-VLAM).Specifically, the DRIS adopts a coarse-to-fine approach to adaptively allocate computational resources according to the complexity of image content, thereby preserving key fine-grained features while reducing redundant computational overhead. The MS-VLAM constructs a three-tier alignment mechanism covering object, local-region and global levels, which systematically captures cross-modal semantic consistency and alleviates issues of semantic misalignment and granularity imbalance.Experimental results on the RS-GPT4V dataset demonstrate that the proposed framework significantly improves the accuracy of semantic understanding and computational efficiency in tasks including image captioning and cross-modal retrieval. Compared with conventional methods, it achieves superior performance in evaluation metrics such as BLEU-4 and CIDEr for image captioning, as well as R@10 for cross-modal retrieval. This technical framework provides a novel approach for constructing efficient and robust multimodal remote sensing systems, laying a theoretical foundation and offering technical guidance for the engineering application of intelligent remote sensing interpretation.
AtomThink: Multimodal Slow Thinking with Atomic Step Reasoning
In this paper, we address the challenging task of multimodal reasoning by incorporating the notion of ``slow thinking'' into multimodal large language models (MLLMs). Our core idea is that models can learn to adaptively use different levels of reasoning to tackle questions of varying complexity. We propose a novel paradigm of Self-structured Chain of Thought (SCoT), which consists of minimal semantic atomic steps. Unlike existing methods that rely on structured templates or free-form paradigms, our method not only generates flexible CoT structures for various complex tasks but also mitigates the phenomenon of overthinking for easier tasks. To introduce structured reasoning into visual cognition, we design a novel AtomThink framework with four key modules: (i) a data engine to generate high-quality multimodal reasoning paths; (ii) a supervised fine-tuning (SFT) process with serialized inference data; (iii) a policy-guided multi-turn inference method; and (iv) an atomic capability metric to evaluate the single-step utilization rate. Extensive experiments demonstrate that the proposed AtomThink significantly improves the performance of baseline MLLMs, achieving more than 10\% average accuracy gains on MathVista and MathVerse. Compared to state-of-the-art structured CoT approaches, our method not only achieves higher accuracy but also improves data utilization by 5 $\times$ and boosts inference efficiency by 85.3\%. Our code is publicly available at https://github.com/Kun-Xiang/AtomThink.
comment: TPAMI accepted
CAST-LUT: Tokenizer-Guided HSV Look-Up Tables for Purple Flare Removal
Purple flare, a diffuse chromatic aberration artifact commonly found around highlight areas, severely degrades the tone transition and color of the image. Existing traditional methods are based on hand-crafted features, which lack flexibility and rely entirely on fixed priors, while the scarcity of paired training data critically hampers deep learning. To address this issue, we propose a novel network built upon decoupled HSV Look-Up Tables (LUTs). The method aims to simplify color correction by adjusting the Hue (H), Saturation (S), and Value (V) components independently. This approach resolves the inherent color coupling problems in traditional methods. Our model adopts a two-stage architecture: First, a Chroma-Aware Spectral Tokenizer (CAST) converts the input image from RGB space to HSV space and independently encodes the Hue (H) and Value (V) channels into a set of semantic tokens describing the Purple flare status; second, the HSV-LUT module takes these tokens as input and dynamically generates independent correction curves (1D-LUTs) for the three channels H, S, and V. To effectively train and validate our model, we built the first large-scale purple flare dataset with diverse scenes. We also proposed new metrics and a loss function specifically designed for this task. Extensive experiments demonstrate that our model not only significantly outperforms existing methods in visual effects but also achieves state-of-the-art performance on all quantitative metrics.
PixelArena: A benchmark for Pixel-Precision Visual Intelligence
Omni-modal models that have multimodal input and output are emerging. However, benchmarking their multimodal generation, especially in image generation, is challenging due to the subtleties of human preferences and model biases. Many image generation benchmarks focus on aesthetics instead of the fine-grained generation capabilities of these models, failing to evaluate their visual intelligence with objective metrics. In PixelArena, we propose using semantic segmentation tasks to objectively examine their fine-grained generative intelligence with pixel precision. With our benchmark and experiments, we find the latest Gemini 3 Pro Image has emergent image generation capabilities that generate semantic masks with high fidelity under zero-shot settings, showcasing visual intelligence unseen before and true generalization in new image generation tasks. We further investigate its results, compare them qualitatively and quantitatively with those of other models, and present failure cases. The findings not only signal exciting progress in the field but also provide insights into future research related to dataset development, omni-modal model development, and the design of metrics.
comment: 8 pages, 11 figures, project page: https://pixelarena.reify.ing/project
360DVO: Deep Visual Odometry for Monocular 360-Degree Camera RA-L
Monocular omnidirectional visual odometry (OVO) systems leverage 360-degree cameras to overcome field-of-view limitations of perspective VO systems. However, existing methods, reliant on handcrafted features or photometric objectives, often lack robustness in challenging scenarios, such as aggressive motion and varying illumination. To address this, we present 360DVO, the first deep learning-based OVO framework. Our approach introduces a distortion-aware spherical feature extractor (DAS-Feat) that adaptively learns distortion-resistant features from 360-degree images. These sparse feature patches are then used to establish constraints for effective pose estimation within a novel omnidirectional differentiable bundle adjustment (ODBA) module. To facilitate evaluation in realistic settings, we also contribute a new real-world OVO benchmark. Extensive experiments on this benchmark and public synthetic datasets (TartanAir V2 and 360VO) demonstrate that 360DVO surpasses state-of-the-art baselines (including 360VO and OpenVSLAM), improving robustness by 50% and accuracy by 37.5%. Homepage: https://chris1004336379.github.io/360DVO-homepage
comment: 12 pages. Received by RA-L
SOVABench: A Vehicle Surveillance Action Retrieval Benchmark for Multimodal Large Language Models WACV
Automatic identification of events and recurrent behavior analysis are critical for video surveillance. However, most existing content-based video retrieval benchmarks focus on scene-level similarity and do not evaluate the action discrimination required in surveillance. To address this gap, we introduce SOVABench (Surveillance Opposite Vehicle Actions Benchmark), a real-world retrieval benchmark built from surveillance footage and centered on vehicle-related actions. SOVABench defines two evaluation protocols (inter-pair and intra-pair) to assess cross-action discrimination and temporal direction understanding. Although action distinctions are generally intuitive for human observers, our experiments show that they remain challenging for state-of-the-art vision and multimodal models. Leveraging the visual reasoning and instruction-following capabilities of Multimodal Large Language Models (MLLMs), we present a training-free framework for producing interpretable embeddings from MLLM-generated descriptions for both images and videos. The framework achieves strong performance on SOVABench as well as on several spatial and counting benchmarks where contrastive Vision-Language Models often fail. The code, annotations, and instructions to construct the benchmark are publicly available.
comment: This work has been accepted at Real World Surveillance: Applications and Challenges, 6th (in WACV Workshops)
Dense 3D Displacement Estimation for Landslide Monitoring via Fusion of TLS Point Clouds and Embedded RGB Images
Landslide monitoring is essential for understanding geohazards and mitigating associated risks. Existing point cloud-based methods, however, typically rely on either geometric or radiometric information and often yield sparse or non-3D displacement estimates. In this paper, we propose a hierarchical partitioning-based coarse-to-fine approach that integrates 3D point clouds and co-registered RGB images to estimate dense 3D displacement vector fields. Patch-level matches are constructed using both 3D geometry and 2D image features, refined via geometric consistency checks, and followed by rigid transformation estimation per match. Experimental results on two real-world landslide datasets demonstrate that the proposed method produces 3D displacement estimates with high spatial coverage (79% and 97%) and accuracy. Deviations in displacement magnitude with respect to external measurements (total station or GNSS observations) are 0.15 m and 0.25 m on the two datasets, respectively, and only 0.07 m and 0.20 m compared to manually derived references, all below the mean scan resolutions (0.08 m and 0.30 m). Compared with the state-of-the-art method F2S3, the proposed approach improves spatial coverage while maintaining comparable accuracy. The proposed approach offers a practical and adaptable solution for TLS-based landslide monitoring and is extensible to other types of point clouds and monitoring tasks. The example data and source code are publicly available at https://github.com/gseg-ethz/fusion4landslide.
comment: Published in the International Journal of Applied Earth Observation and Geoinformation. 25 pages, 19 figures
Neural-Driven Image Editing
Traditional image editing typically relies on manual prompting, making it labor-intensive and inaccessible to individuals with limited motor control or language abilities. Leveraging recent advances in brain-computer interfaces (BCIs) and generative models, we propose LoongX, a hands-free image editing approach driven by multimodal neurophysiological signals. LoongX utilizes state-of-the-art diffusion models trained on a comprehensive dataset of 23,928 image editing pairs, each paired with synchronized electroencephalography (EEG), functional near-infrared spectroscopy (fNIRS), photoplethysmography (PPG), and head motion signals that capture user intent. To effectively address the heterogeneity of these signals, LoongX integrates two key modules. The cross-scale state space (CS3) module encodes informative modality-specific features. The dynamic gated fusion (DGF) module further aggregates these features into a unified latent space, which is then aligned with edit semantics via fine-tuning on a diffusion transformer (DiT). Additionally, we pre-train the encoders using contrastive learning to align cognitive states with semantic intentions from embedded natural language. Extensive experiments demonstrate that LoongX achieves performance comparable to text-driven methods (CLIP-I: 0.6605 vs. 0.6558; DINO: 0.4812 vs. 0.4636) and outperforms them when neural signals are combined with speech (CLIP-T: 0.2588 vs. 0.2549). These results highlight the promise of neural-driven generative models in enabling accessible, intuitive image editing and open new directions for cognitive-driven creative technologies. The code and dataset are released on the project website: https://loongx1.github.io.
comment: 22 pages, 14 figures
3D-WAG: Hierarchical Wavelet-Guided Autoregressive Generation for High-Fidelity 3D Shapes
Autoregressive (AR) models have achieved remarkable success in natural language and image generation, but their application to 3D shape modeling remains largely unexplored. Unlike diffusion models, AR models enable more efficient and controllable generation with faster inference times, making them especially suitable for data-intensive domains. Traditional 3D generative models using AR approaches often rely on ``next-token" predictions at the voxel or point level. While effective for certain applications, these methods can be restrictive and computationally expensive when dealing with large-scale 3D data. To tackle these challenges, we introduce 3D-WAG, an AR model for 3D implicit distance fields that can perform unconditional shape generation, class-conditioned and also text-conditioned shape generation. Our key idea is to encode shapes as multi-scale wavelet token maps and use a Transformer to predict the ``next higher-resolution token map" in an autoregressive manner. By redefining 3D AR generation task as ``next-scale" prediction, we reduce the computational cost of generation compared to traditional ``next-token" prediction models, while preserving essential geometric details of 3D shapes in a more structured and hierarchical manner. We evaluate 3D-WAG to showcase its benefit by quantitative and qualitative comparisons with state-of-the-art methods on widely used benchmarks. Our results show 3D-WAG achieves superior performance in key metrics like Coverage and MMD, generating high-fidelity 3D shapes that closely match the real data distribution.
TRec: Learning Hand-Object Interactions through 2D Point Track Motion
We present a novel approach for hand-object action recognition that leverages 2D point tracks as an additional motion cue. While most existing methods rely on RGB appearance, human pose estimation, or their combination, our work demonstrates that tracking randomly sampled image points across video frames can substantially improve recognition accuracy. Unlike prior approaches, we do not detect hands, objects, or interaction regions. Instead, we employ CoTracker to follow a set of randomly initialized points through each video and use the resulting trajectories, together with the corresponding image frames, as input to a Transformer-based recognition model. Surprisingly, our method achieves notable gains even when only the initial frame and the point tracks are provided, without incorporating the full video sequence. Experimental results confirm that integrating 2D point tracks consistently enhances performance compared to the same model trained without motion information, highlighting their potential as a lightweight yet effective representation for hand-object action understanding.
comment: submitted to ICPR 2026
Subject-driven Video Generation via Disentangled Identity and Motion
We propose to train a subject-driven customized video generation model through decoupling the subject-specific learning from temporal dynamics in zero-shot without additional tuning. A traditional method for video customization that is tuning-free often relies on large, annotated video datasets, which are computationally expensive and require extensive annotation. In contrast to the previous approach, we introduce the use of an image customization dataset directly on training video customization models, factorizing the video customization into two folds: (1) identity injection through image customization dataset and (2) temporal modeling preservation with a small set of unannotated videos through the image-to-video training method. Additionally, we employ random image token dropping with randomized image initialization during image-to-video fine-tuning to mitigate the copy-and-paste issue. To further enhance learning, we introduce stochastic switching during joint optimization of subject-specific and temporal features, mitigating catastrophic forgetting. Our method achieves strong subject consistency and scalability, outperforming existing video customization models in zero-shot settings, demonstrating the effectiveness of our framework.
comment: [v2 updated] Project Page : https://carpedkm.github.io/projects/disentangled_sub/index.html
Video Generation Models Are Good Latent Reward Models
Reward feedback learning (ReFL) has proven effective for aligning image generation with human preferences. However, its extension to video generation faces significant challenges. Existing video reward models rely on vision-language models designed for pixel-space inputs, confining ReFL optimization to near-complete denoising steps after computationally expensive VAE decoding. This pixel-space approach incurs substantial memory overhead and increased training time, and its late-stage optimization lacks early-stage supervision, refining only visual quality rather than fundamental motion dynamics and structural coherence. In this work, we show that pre-trained video generation models are naturally suited for reward modeling in the noisy latent space, as they are explicitly designed to process noisy latent representations at arbitrary timesteps and inherently preserve temporal information through their sequential modeling capabilities. Accordingly, we propose Process Reward Feedback Learning~(PRFL), a framework that conducts preference optimization entirely in latent space, enabling efficient gradient backpropagation throughout the full denoising chain without VAE decoding. Extensive experiments demonstrate that PRFL significantly improves alignment with human preferences, while achieving substantial reductions in memory consumption and training time compared to RGB ReFL.
AttriCtrl: Fine-Grained Control of Aesthetic Attribute Intensity in Diffusion Models
Diffusion models have recently become the dominant paradigm for image generation, yet existing systems struggle to interpret and follow numeric instructions for adjusting semantic attributes. In real-world creative scenarios, especially when precise control over aesthetic attributes is required, current methods fail to provide such controllability. This limitation partly arises from the subjective and context-dependent nature of aesthetic judgments, but more fundamentally stems from the fact that current text encoders are designed for discrete tokens rather than continuous values. Meanwhile, efforts on aesthetic alignment, often leveraging reinforcement learning, direct preference optimization, or architectural modifications, primarily align models with a global notion of human preference. While these approaches improve user experience, they overlook the multifaceted and compositional nature of aesthetics, underscoring the need for explicit disentanglement and independent control of aesthetic attributes. To address this gap, we introduce AttriCtrl, a lightweight framework for continuous aesthetic intensity control in diffusion models. It first defines relevant aesthetic attributes, then quantifies them through a hybrid strategy that maps both concrete and abstract dimensions onto a unified $[0,1]$ scale. A plug-and-play value encoder is then used to transform user-specified values into model-interpretable embeddings for controllable generation. Experiments show that AttriCtrl achieves accurate and continuous control over both single and multiple aesthetic attributes, significantly enhancing personalization and diversity. Crucially, it is implemented as a lightweight adapter while keeping the diffusion model frozen, ensuring seamless integration with existing frameworks such as ControlNet at negligible computational cost.
Adaptive aggregation of Monte Carlo augmented decomposed filters for efficient group-equivariant convolutional neural network
Group-equivariant convolutional neural networks (G-CNN) heavily rely on parameter sharing to increase CNN's data efficiency and performance. However, the parameter-sharing strategy greatly increases the computational burden for each added parameter, which hampers its application to deep neural network models. In this paper, we address these problems by proposing a non-parameter-sharing approach for group equivariant neural networks. The proposed methods adaptively aggregate a diverse range of filters by a weighted sum of stochastically augmented decomposed filters. We give theoretical proof about how the group equivariance can be achieved by our methods. Our method applies to both continuous and discrete groups, where the augmentation is implemented using Monte Carlo sampling and bootstrap resampling, respectively. Our methods also serve as an efficient extension of standard CNN. The experiments show that our method outperforms parameter-sharing group equivariant networks and enhances the performance of standard CNNs in image classification and denoising tasks, by using suitable filter bases to build efficient lightweight networks. The code will be available at https://github.com/ZhaoWenzhao/MCG_CNN.
CoV: Chain-of-View Prompting for Spatial Reasoning
Embodied question answering (EQA) in 3D environments often requires collecting context that is distributed across multiple viewpoints and partially occluded. However, most recent vision--language models (VLMs) are constrained to a fixed and finite set of input views, which limits their ability to acquire question-relevant context at inference time and hinders complex spatial reasoning. We propose Chain-of-View (CoV) prompting, a training-free, test-time reasoning framework that transforms a VLM into an active viewpoint reasoner through a coarse-to-fine exploration process. CoV first employs a View Selection agent to filter redundant frames and identify question-aligned anchor views. It then performs fine-grained view adjustment by interleaving iterative reasoning with discrete camera actions, obtaining new observations from the underlying 3D scene representation until sufficient context is gathered or a step budget is reached. We evaluate CoV on OpenEQA across four mainstream VLMs and obtain an average +11.56% improvement in LLM-Match, with a maximum gain of +13.62% on Qwen3-VL-Flash. CoV further exhibits test-time scaling: increasing the minimum action budget yields an additional +2.51% average improvement, peaking at +3.73% on Gemini-2.5-Flash. On ScanQA and SQA3D, CoV delivers strong performance (e.g., 116 CIDEr / 31.9 EM@1 on ScanQA and 51.1 EM@1 on SQA3D). Overall, these results suggest that question-aligned view selection coupled with open-view search is an effective, model-agnostic strategy for improving spatial reasoning in 3D EQA without additional training. Code is available on https://github.com/ziplab/CoV .
comment: Code link https://github.com/ziplab/CoV
LightFormer: A lightweight and efficient decoder for remote sensing image segmentation
Deep learning techniques have achieved remarkable success in the semantic segmentation of remote sensing images and in land-use change detection. Nevertheless, their real-time deployment on edge platforms remains constrained by decoder complexity. Herein, we introduce LightFormer, a lightweight decoder for time-critical tasks that involve unstructured targets, such as disaster assessment, unmanned aerial vehicle search-and-rescue, and cultural heritage monitoring. LightFormer employs a feature-fusion and refinement module built on channel processing and a learnable gating mechanism to aggregate multi-scale, multi-range information efficiently, which drastically curtails model complexity. Furthermore, we propose a spatial information selection module (SISM) that integrates long-range attention with a detail preservation branch to capture spatial dependencies across multiple scales, thereby substantially improving the recognition of unstructured targets in complex scenes. On the ISPRS Vaihingen benchmark, LightFormer attains 99.9% of GLFFNet's mIoU (83.9% vs. 84.0%) while requiring only 14.7% of its FLOPs and 15.9% of its parameters, thus achieving an excellent accuracy-efficiency trade-off. Consistent results on LoveDA, ISPRS Potsdam, RescueNet, and FloodNet further demonstrate its robustness and superior perception of unstructured objects. These findings highlight LightFormer as a practical solution for remote sensing applications where both computational economy and high-precision segmentation are imperative.
comment: The manuscript was submitted without obtaining the consent of the other co-authors. We therefore request the withdrawal of the manuscript
AURASeg: Attention Guided Upsampling with Residual Boundary-Assistive Refinement for Drivable-Area Segmentation
Free space ground segmentation is essential to navigate autonomous robots, recognize drivable zones, and traverse efficiently. Fine-grained features remain challenging for existing segmentation models, particularly for robots in indoor and structured environments. These difficulties arise from ineffective multi-scale processing, suboptimal boundary refinement, and limited feature representation. To address this, we propose Attention-Guided Upsampling with Residual Boundary-Assistive Refinement (AURASeg), a ground-plane semantic segmentation framework designed to improve border precision while preserving strong region accuracy. Built on a ResNet-50 backbone, AURASeg introduces (i) a Residual Border Refinement Module (RBRM) that enhances edge delineation through boundary-assistive feature refinement, and (ii) Attention Progressive Upsampling Decoder (APUD) blocks that progressively fuse multi-level features during decoding. Additionally, we integrate a (iii) lightweight ASPPLite module to capture multi-scale context with minimal overhead. Extensive experiments on CARL-D, the Ground Mobile Robot Perception (GMRP) dataset, and a custom Gazebo indoor dataset show that AURASeg consistently outperforms strong baselines, with notable gains in boundary metrics. Finally, we demonstrate real-time deployment on a Kobuki TurtleBot, validating practical usability. The code is available at https://github.com/Narendhiranv04/AURASeg
comment: 6 pages, 4 figures, 4 tables
CombatVLA: An Efficient Vision-Language-Action Model for Combat Tasks in 3D Action Role-Playing Games ICCV 2025
Recent advances in Vision-Language-Action models (VLAs) have expanded the capabilities of embodied intelligence. However, significant challenges remain in real-time decision-making in complex 3D environments, which demand second-level responses, high-resolution perception, and tactical reasoning under dynamic conditions. To advance the field, we introduce CombatVLA, an efficient VLA model optimized for combat tasks in 3D action role-playing games(ARPGs). Specifically, our CombatVLA is a 3B model trained on video-action pairs collected by an action tracker, where the data is formatted as action-of-thought (AoT) sequences. Thereafter, CombatVLA seamlessly integrates into an action execution framework, allowing efficient inference through our truncated AoT strategy. Experimental results demonstrate that CombatVLA not only outperforms all existing models on the combat understanding benchmark but also achieves a 50-fold acceleration in game combat. Moreover, it has a higher task success rate than human players. We will open-source all resources, including the action tracker, dataset, benchmark, model weights, training code, and the implementation of the framework at https://combatvla.github.io/.
comment: Accepted by ICCV 2025
RxnBench: A Multimodal Benchmark for Evaluating Large Language Models on Chemical Reaction Understanding from Scientific Literature
The integration of Multimodal Large Language Models (MLLMs) into chemistry promises to revolutionize scientific discovery, yet their ability to comprehend the dense, graphical language of reactions within authentic literature remains underexplored. Here, we introduce RxnBench, a multi-tiered benchmark designed to rigorously evaluate MLLMs on chemical reaction understanding from scientific PDFs. RxnBench comprises two tasks: Single-Figure QA (SF-QA), which tests fine-grained visual perception and mechanistic reasoning using 1,525 questions derived from 305 curated reaction schemes, and Full-Document QA (FD-QA), which challenges models to synthesize information from 108 articles, requiring cross-modal integration of text, schemes, and tables. Our evaluation of MLLMs reveals a critical capability gap: while models excel at extracting explicit text, they struggle with deep chemical logic and precise structural recognition. Notably, models with inference-time reasoning significantly outperform standard architectures, yet none achieve 50\% accuracy on FD-QA. These findings underscore the urgent need for domain-specific visual encoders and stronger reasoning engines to advance autonomous AI chemists.
Scaling Beyond Context: A Survey of Multimodal Retrieval-Augmented Generation for Document Understanding
Document understanding is critical for applications from financial analysis to scientific discovery. Current approaches, whether OCR-based pipelines feeding Large Language Models (LLMs) or native Multimodal LLMs (MLLMs), face key limitations: the former loses structural detail, while the latter struggles with context modeling. Retrieval-Augmented Generation (RAG) helps ground models in external data, but documents' multimodal nature, i.e., combining text, tables, charts, and layout, demands a more advanced paradigm: Multimodal RAG. This approach enables holistic retrieval and reasoning across all modalities, unlocking comprehensive document intelligence. Recognizing its importance, this paper presents a systematic survey of Multimodal RAG for document understanding. We propose a taxonomy based on domain, retrieval modality, and granularity, and review advances involving graph structures and agentic frameworks. We also summarize key datasets, benchmarks, applications and industry deployment, and highlight open challenges in efficiency, fine-grained representation, and robustness, providing a roadmap for future progress in document AI.
★★ SLAM&Render: A Benchmark for the Intersection Between Neural Rendering, Gaussian Splatting and SLAM IJRR
Models and methods originally developed for Novel View Synthesis and Scene Rendering, such as Neural Radiance Fields (NeRF) and Gaussian Splatting, are increasingly being adopted as representations in Simultaneous Localization and Mapping (SLAM). However, existing datasets fail to include the specific challenges of both fields, such as sequential operations and, in many settings, multi-modality in SLAM or generalization across viewpoints and illumination conditions in neural rendering. Additionally, the data are often collected using sensors which are handheld or mounted on drones or mobile robots, which complicates the accurate reproduction of sensor motions. To bridge these gaps, we introduce SLAM&Render, a novel dataset designed to benchmark methods in the intersection between SLAM, Novel View Rendering and Gaussian Splatting. Recorded with a robot manipulator, it uniquely includes 40 sequences with time-synchronized RGB-D images, IMU readings, robot kinematic data, and ground-truth pose streams. By releasing robot kinematic data, the dataset also enables the assessment of recent integrations of SLAM paradigms within robotic applications. The dataset features five setups with consumer and industrial objects under four controlled lighting conditions, each with separate training and test trajectories. All sequences are static with different levels of object rearrangements and occlusions. Our experimental results, obtained with several baselines from the literature, validate SLAM&Render as a relevant benchmark for this emerging research area.
comment: 9 pages, 8 figures, submitted to The International Journal of Robotics Research (IJRR)
Transferability of Adversarial Attacks in Video-based MLLMs: A Cross-modal Image-to-Video Approach
Video-based multimodal large language models (V-MLLMs) have shown vulnerability to adversarial examples in video-text multimodal tasks. However, the transferability of adversarial videos to unseen models - a common and practical real-world scenario - remains unexplored. In this paper, we pioneer an investigation into the transferability of adversarial video samples across V-MLLMs. We find that existing adversarial attack methods face significant limitations when applied in black-box settings for V-MLLMs, which we attribute to the following shortcomings: (1) lacking generalization in perturbing video features, (2) focusing only on sparse key-frames, and (3) failing to integrate multimodal information. To address these limitations and deepen the understanding of V-MLLM vulnerabilities in black-box scenarios, we introduce the Image-to-Video MLLM (I2V-MLLM) attack. In I2V-MLLM, we utilize an image-based multimodal large language model (I-MLLM) as a surrogate model to craft adversarial video samples. Multimodal interactions and spatiotemporal information are integrated to disrupt video representations within the latent space, improving adversarial transferability. Additionally, a perturbation propagation technique is introduced to handle different unknown frame sampling strategies. Experimental results demonstrate that our method can generate adversarial examples that exhibit strong transferability across different V-MLLMs on multiple video-text multimodal tasks. Compared to white-box attacks on these models, our black-box attacks (using BLIP-2 as a surrogate model) achieve competitive performance, with average attack success rate (AASR) of 57.98% on MSVD-QA and 58.26% on MSRVTT-QA for Zero-Shot VideoQA tasks, respectively.
Branch, or Layer? Zeroth-Order Optimization for Continual Learning of Vision-Language Models AAAI
Vision-Language Continual Learning (VLCL) has attracted significant research attention for its robust capabilities, and the adoption of Parameter-Efficient Fine-Tuning (PEFT) strategies is enabling these models to achieve competitive performance with substantially reduced resource consumption. However, dominated First-Order (FO) optimization is prone to trap models in suboptimal local minima, especially in limited exploration subspace within PEFT. To overcome this challenge, this paper pioneers a systematic exploration of adopting Zeroth-Order (ZO) optimization for PEFT-based VLCL. We first identify the incompatibility of naive full-ZO adoption in VLCL due to optimization process instability. We then investigate the application of ZO optimization from a modality branch-wise to a fine-grained layer-wise across various training units to identify an optimal strategy. Besides, a key theoretical insight reveals that vision modality exhibit higher variance than language counterparts in VLCL during the ZO optimization process, and we propose a modality-aware ZO strategy, which adopts gradient sign normalization in ZO and constrains vision modality perturbation to further improve performance. Benefiting from the adoption of ZO optimization, PEFT-based VLCL fulfills better ability to escape local minima during the optimization process, extensive experiments on four benchmarks demonstrate that our method achieves state-of-the-art results.
comment: Published in the Proceedings of the AAAI Conference on Artificial Intelligence (AAAI 2026)
Causality-Aware Temporal Projection for Video Understanding in Video-LLMs
Recent Video Large Language Models (Video-LLMs) have shown strong multimodal reasoning capabilities, yet remain challenged by video understanding tasks that require consistent temporal ordering and causal coherence. Many parameter-efficient Video-LLMs rely on unconstrained bidirectional projectors to model inter-frame interactions, which can blur temporal ordering by allowing later frames to influence earlier representations, without explicit architectural mechanisms to respect the directional nature of video reasoning. To address this limitation, we propose V-CORE, a parameter-efficient framework that introduces explicit temporal ordering constraints for video understanding. V-CORE consists of two key components: (1) Learnable Spatial Aggregation (LSA), which adaptively selects salient spatial tokens to reduce redundancy, and (2) a Causality-Aware Temporal Projector (CATP), which enforces structured unidirectional information flow via block-causal attention and a terminal dynamic summary token acting as a causal sink. This design preserves intra-frame spatial interactions while ensuring that temporal information is aggregated in a strictly ordered manner. With 4-bit QLoRA and a frozen LLM backbone, V-CORE can be trained efficiently on a single consumer GPU. Experiments show that V-CORE achieves strong performance on the challenging NExT-QA benchmark, reaching 61.2% accuracy, and remains competitive across MSVD-QA, MSRVTT-QA, and TGIF-QA, with gains concentrated in temporal and causal reasoning subcategories (+3.5% and +5.2% respectively), directly validating the importance of explicit temporal ordering constraints.
comment: 7 pages, 4 figures
From Preoperative CT to Postmastoidectomy Mesh Construction: Mastoidectomy Shape Prediction for Cochlear Implant Surgery
Cochlear Implant (CI) surgery treats severe hearing loss by inserting an electrode array into the cochlea to stimulate the auditory nerve. An important step in this procedure is mastoidectomy, which removes part of the mastoid region of the temporal bone to provide surgical access. Accurate mastoidectomy shape prediction from preoperative imaging improves pre-surgical planning, reduces risks, and enhances surgical outcomes. Despite its importance, there are limited deep-learning-based studies regarding this topic due to the challenges of acquiring ground-truth labels. We address this gap by investigating self-supervised and weakly-supervised learning models to predict the mastoidectomy region without human annotations. We propose a hybrid self-supervised and weakly-supervised learning framework to predict the mastoidectomy region directly from preoperative CT scans, where the mastoid remains intact. Our hybrid method achieves a mean Dice score of 0.72 when predicting the complex and boundary-less mastoidectomy shape, surpassing state-of-the-art approaches and demonstrating strong performance. The method provides groundwork for constructing 3D postmastoidectomy surfaces directly from the corresponding preoperative CT scans. To our knowledge, this is the first work that integrating self-supervised and weakly-supervised learning for mastoidectomy shape prediction, offering a robust and efficient solution for CI surgical planning while leveraging 3D T-distribution loss in weakly-supervised medical imaging.
comment: arXiv admin note: substantial text overlap with arXiv:2505.18368
PsOCR: Benchmarking Large Multimodal Models for Optical Character Recognition in Low-resource Pashto Language
This paper evaluates the performance of Large Multimodal Models (LMMs) on Optical Character Recognition (OCR) in the low-resource Pashto language. Natural Language Processing (NLP) in Pashto faces several challenges due to the cursive nature of its script and a scarcity of structured datasets. To address this, we developed a synthetic Pashto OCR dataset, PsOCR, consisting of one million images annotated with bounding boxes at word, line, and document levels, suitable for training and evaluating models based on different architectures, including Convolutional Neural Networks (CNNs) and Transformers. PsOCR covers variations across 1,000 unique font families, colors, image sizes, and layouts. A benchmark subset of 10K images was selected to evaluate the performance of several LMMs, including seven open-source models: DeepSeek's Janus, InternVL, MiniCPM, Florence, and Qwen (3B and 7B), and four closed-source models: GPT-4o, Gemini, Claude, and Grok. Experimental results demonstrate that Gemini achieves the best performance among all models, whereas among open-source models, Qwen-7B stands out. This work provides an insightful assessment of the capabilities and limitations of current LMMs for OCR tasks in Pashto and establishes a foundation for further research not only in Pashto OCR but also for other similar scripts such as Arabic, Persian, and Urdu. PsOCR is available at https://github.com/zirak-ai/PashtoOCR.
Language as Prior, Vision as Calibration: Metric Scale Recovery for Monocular Depth Estimation
Relative-depth foundation models transfer well, yet monocular metric depth remains ill-posed due to unidentifiable global scale and heightened domain-shift sensitivity. Under a frozen-backbone calibration setting, we recover metric depth via an image-specific affine transform in inverse depth and train only lightweight calibration heads while keeping the relative-depth backbone and the CLIP text encoder fixed. Since captions provide coarse but noisy scale cues that vary with phrasing and missing objects, we use language to predict an uncertainty-aware envelope that bounds feasible calibration parameters in an unconstrained space, rather than committing to a text-only point estimate. We then use pooled multi-scale frozen visual features to select an image-specific calibration within this envelope. During training, a closed-form least-squares oracle in inverse depth provides per-image supervision for learning the envelope and the selected calibration. Experiments on NYUv2 and KITTI improve in-domain accuracy, while zero-shot transfer to SUN-RGBD and DDAD demonstrates improved robustness over strong language-only baselines.
Probing Deep into Temporal Profile Makes the Infrared Small Target Detector Much Better
Infrared small target (IRST) detection is challenging in simultaneously achieving precise, robust, and efficient performance due to extremely dim targets and strong interference. Current learning-based methods attempt to leverage ``more" information from both the spatial and the short-term temporal domains, but suffer from unreliable performance under complex conditions while incurring computational redundancy. In this paper, we explore the ``more essential" information from a more crucial domain for the detection. Through theoretical analysis, we reveal that the global temporal saliency and correlation information in the temporal profile demonstrate significant superiority in distinguishing target signals from other signals. To investigate whether such superiority is preferentially leveraged by well-trained networks, we built the first prediction attribution tool in this field and verified the importance of the temporal profile information. Inspired by the above conclusions, we remodel the IRST detection task as a one-dimensional signal anomaly detection task, and propose an efficient deep temporal probe network (DeepPro) that only performs calculations in the time dimension for IRST detection. We conducted extensive experiments to fully validate the effectiveness of our method. The experimental results are exciting, as our DeepPro outperforms existing state-of-the-art IRST detection methods on widely-used benchmarks with extremely high efficiency, and achieves a significant improvement on dim targets and in complex scenarios. We provide a new modeling domain, a new insight, a new method, and a new performance, which can promote the development of IRST detection. Codes are available at https://github.com/TinaLRJ/DeepPro.
e5-omni: Explicit Cross-modal Alignment for Omni-modal Embeddings
Modern information systems often involve different types of items, e.g., a text query, an image, a video clip, or an audio segment. This motivates omni-modal embedding models that map heterogeneous modalities into a shared space for direct comparison. However, most recent omni-modal embeddings still rely heavily on implicit alignment inherited from pretrained vision-language model (VLM) backbones. In practice, this causes three common issues: (i) similarity logits have modality-dependent sharpness, so scores are not on a consistent scale; (ii) in-batch negatives become less effective over time because mixed-modality batches create an imbalanced hardness distribution; as a result, many negatives quickly become trivial and contribute little gradient; and (iii) embeddings across modalities show mismatched first- and second-order statistics, which makes rankings less stable. To tackle these problems, we propose e5-omni, a lightweight explicit alignment recipe that adapts off-the-shelf VLMs into robust omni-modal embedding models. e5-omni combines three simple components: (1) modality-aware temperature calibration to align similarity scales, (2) a controllable negative curriculum with debiasing to focus on confusing negatives while reducing the impact of false negatives, and (3) batch whitening with covariance regularization to better match cross-modal geometry in the shared embedding space. Experiments on MMEB-V2 and AudioCaps show consistent gains over strong bi-modal and omni-modal baselines, and the same recipe also transfers well to other VLM backbones. We release our model checkpoint at https://huggingface.co/Haon-Chen/e5-omni-7B.
comment: https://huggingface.co/Haon-Chen/e5-omni-7B
Sprint: Sparse-Dense Residual Fusion for Efficient Diffusion Transformers
Diffusion Transformers (DiTs) deliver state-of-the-art generative performance but their quadratic training cost with sequence length makes large-scale pretraining prohibitively expensive. Token dropping can reduce training cost, yet naïve strategies degrade representations, and existing methods are either parameter-heavy or fail at high drop ratios. We present SPRINT, Sparse--Dense Residual Fusion for Efficient Diffusion Transformers, a simple method that enables aggressive token dropping (up to 75%) while preserving quality. SPRINT leverages the complementary roles of shallow and deep layers: early layers process all tokens to capture local detail, deeper layers operate on a sparse subset to cut computation, and their outputs are fused through residual connections. Training follows a two-stage schedule: long masked pre-training for efficiency followed by short full-token fine-tuning to close the train--inference gap. On ImageNet-1K 256x256, SPRINT achieves 9.8x training savings with comparable FID/FDD, and at inference, its Path-Drop Guidance (PDG) nearly halves FLOPs while improving quality. These results establish SPRINT as a simple, effective, and general solution for efficient DiT training.
ThinkRL-Edit: Thinking in Reinforcement Learning for Reasoning-Centric Image Editing
Instruction-driven image editing with unified multimodal generative models has advanced rapidly, yet their underlying visual reasoning remains limited, leading to suboptimal performance on reasoning-centric edits. Reinforcement learning (RL) has been investigated for improving the quality of image editing, but it faces three key challenges: (1) limited reasoning exploration confined to denoising stochasticity, (2) biased reward fusion, and (3) unstable VLM-based instruction rewards. In this work, we propose ThinkRL-Edit, a reasoning-centric RL framework that decouples visual reasoning from image synthesis and expands reasoning exploration beyond denoising. To the end, we introduce Chain-of-Thought (CoT)-based reasoning sampling with planning and reflection stages prior to generation in online sampling, compelling the model to explore multiple semantic hypotheses and validate their plausibility before committing to a visual outcome. To avoid the failures of weighted aggregation, we propose an unbiased chain preference grouping strategy across multiple reward dimensions. Moreover, we replace interval-based VLM scores with a binary checklist, yielding more precise, lower-variance, and interpretable rewards for complex reasoning. Experiments show our method significantly outperforms prior work on reasoning-centric image editing, producing instruction-faithful, visually coherent, and semantically grounded edits.
Proper Body Landmark Subset Enables More Accurate and 5X Faster Recognition of Isolated Signs in LIBRAS
This paper investigates the feasibility of using lightweight body landmark detection for the recognition of isolated signs in Brazilian Sign Language (LIBRAS). Although the skeleton-based approach by Alves et al. (2024) enabled substantial improvements in recognition performance, the use of OpenPose for landmark extraction hindered time performance. In a preliminary investigation, we observed that simply replacing OpenPose with the lightweight MediaPipe, while improving processing speed, significantly reduced accuracy. To overcome this limitation, we explored landmark subset selection strategies aimed at optimizing recognition performance. Experimental results showed that a proper landmark subset achieves comparable or superior performance to state-of-the-art methods while reducing processing time by more than 5X compared to Alves et al. (2024). As an additional contribution, we demonstrated that spline-based imputation effectively mitigates missing landmark issues, leading to substantial accuracy gains. These findings highlight that careful landmark selection, combined with simple imputation techniques, enables efficient and accurate isolated sign recognition, paving the way for scalable Sign Language Recognition systems.
comment: This work has been submitted to the IEEE for possible publication
A Global Atlas of Digital Dermatology to Map Innovation and Disparities
The adoption of artificial intelligence in dermatology promises democratized access to healthcare, but model reliability depends on the quality and comprehensiveness of the data fueling these models. Despite rapid growth in publicly available dermatology images, the field lacks quantitative key performance indicators to measure whether new datasets expand clinical coverage or merely replicate what is already known. Here we present SkinMap, a multi-modal framework for the first comprehensive audit of the field's entire data basis. We unify the publicly available dermatology datasets into a single, queryable semantic atlas comprising more than 1.1 million images of skin conditions and quantify (i) informational novelty over time, (ii) dataset redundancy, and (iii) representation gaps across demographics and diagnoses. Despite exponential growth in dataset sizes, informational novelty across time has somewhat plateaued: Some clusters, such as common neoplasms on fair skin, are densely populated, while underrepresented skin types and many rare diseases remain unaddressed. We further identify structural gaps in coverage: Darker skin tones (Fitzpatrick V-VI) constitute only 5.8% of images and pediatric patients only 3.0%, while many rare diseases and phenotype combinations remain sparsely represented. SkinMap provides infrastructure to measure blind spots and steer strategic data acquisition toward undercovered regions of clinical space.
Frequency-Aware Gaussian Splatting Decomposition 3DV
3D Gaussian Splatting (3D-GS) enables efficient novel view synthesis, but treats all frequencies uniformly, making it difficult to separate coarse structure from fine detail. Recent works have started to exploit frequency signals, but lack explicit frequency decomposition of the 3D representation itself. We propose a frequency-aware decomposition that organizes 3D Gaussians into groups corresponding to Laplacian-pyramid subbands of the input images. Each group is trained with spatial frequency regularization to confine it to its target frequency, while higher-frequency bands use signed residual colors to capture fine details that may be missed by lower-frequency reconstructions. A progressive coarse-to-fine training schedule stabilizes the decomposition. Our method achieves state-of-the-art reconstruction quality and rendering speed among all LOD-capable methods. In addition to improved interpretability, our method enables dynamic level-of-detail rendering, progressive streaming, foveated rendering, promptable 3D focus, and artistic filtering. Our code will be made publicly available.
comment: Accepted to the International Conference on 3D Vision (3DV) 2026
SpecDETR: A transformer-based hyperspectral point object detection network
Hyperspectral target detection (HTD) aims to identify specific materials based on spectral information in hyperspectral imagery and can detect extremely small-sized objects, some of which occupy a smaller than one-pixel area. However, existing HTD methods are developed based on per-pixel binary classification, neglecting the three-dimensional cube structure of hyperspectral images (HSIs) that integrates both spatial and spectral dimensions. The synergistic existence of spatial and spectral features in HSIs enable objects to simultaneously exhibit both, yet the per-pixel HTD framework limits the joint expression of these features. In this paper, we rethink HTD from the perspective of spatial-spectral synergistic representation and propose hyperspectral point object detection as an innovative task framework. We introduce SpecDETR, the first specialized network for hyperspectral multi-class point object detection, which eliminates dependence on pre-trained backbone networks commonly required by vision-based object detectors. SpecDETR uses a multi-layer Transformer encoder with self-excited subpixel-scale attention modules to directly extract deep spatial-spectral joint features from hyperspectral cubes. We develop a simulated hyperspectral point object detection benchmark termed SPOD, and for the first time, evaluate and compare the performance of visual object detection networks and HTD methods on hyperspectral point object detection. Extensive experiments demonstrate that our proposed SpecDETR outperforms SOTA visual object detection networks and HTD methods. Our code and dataset are available at https://github.com/ZhaoxuLi123/SpecDETR.
A Vision for Multisensory Intelligence: Sensing, Synergy, and Science
Our experience of the world is multisensory, spanning a synthesis of language, sight, sound, touch, taste, and smell. Yet, artificial intelligence has primarily advanced in digital modalities like text, vision, and audio. This paper outlines a research vision for multisensory artificial intelligence over the next decade. This new set of technologies can change how humans and AI experience and interact with one another, by connecting AI to the human senses and a rich spectrum of signals from physiological and tactile cues on the body, to physical and social signals in homes, cities, and the environment. We outline how this field must advance through three interrelated themes of sensing, science, and synergy. Firstly, research in sensing should extend how AI captures the world in richer ways beyond the digital medium. Secondly, developing a principled science for quantifying multimodal heterogeneity and interactions, developing unified modeling architectures and representations, and understanding cross-modal transfer. Finally, we present new technical challenges to learn synergy between modalities and between humans and AI, covering multisensory integration, alignment, reasoning, generation, generalization, and experience. Accompanying this vision paper are a series of projects, resources, and demos of latest advances from the Multisensory Intelligence group at the MIT Media Lab, see https://mit-mi.github.io/.
Artificial Intelligence 162
AdaFuse: Adaptive Ensemble Decoding with Test-Time Scaling for LLMs
Large language models (LLMs) exhibit complementary strengths arising from differences in pretraining data, model architectures, and decoding behaviors. Inference-time ensembling provides a practical way to combine these capabilities without retraining. However, existing ensemble approaches suffer from fundamental limitations. Most rely on fixed fusion granularity, which lacks the flexibility required for mid-generation adaptation and fails to adapt to different generation characteristics across tasks. To address these challenges, we propose AdaFuse, an adaptive ensemble decoding framework that dynamically selects semantically appropriate fusion units during generation. Rather than committing to a fixed granularity, AdaFuse adjusts fusion behavior on the fly based on the decoding context, with words serving as basic building blocks for alignment. To be specific, we introduce an uncertainty-based criterion to decide whether to apply ensembling at each decoding step. Under confident decoding states, the model continues generation directly. In less certain states, AdaFuse invokes a diversity-aware scaling strategy to explore alternative candidate continuations and inform ensemble decisions. This design establishes a synergistic interaction between adaptive ensembling and test-time scaling, where ensemble decisions guide targeted exploration, and the resulting diversity in turn strengthens ensemble quality. Experiments on open-domain question answering, arithmetic reasoning, and machine translation demonstrate that AdaFuse consistently outperforms strong ensemble baselines, achieving an average relative improvement of 6.88%. The code is available at https://github.com/CCM0111/AdaFuse.
The Molecular Structure of Thought: Mapping the Topology of Long Chain-of-Thought Reasoning
Large language models (LLMs) often fail to learn effective long chain-of-thought (Long CoT) reasoning from human or non-Long-CoT LLMs imitation. To understand this, we propose that effective and learnable Long CoT trajectories feature stable molecular-like structures in unified view, which are formed by three interaction types: Deep-Reasoning (covalent-like), Self-Reflection (hydrogen-bond-like), and Self-Exploration (van der Waals-like). Analysis of distilled trajectories reveals these structures emerge from Long CoT fine-tuning, not keyword imitation. We introduce Effective Semantic Isomers and show that only bonds promoting fast entropy convergence support stable Long CoT learning, while structural competition impairs training. Drawing on these findings, we present Mole-Syn, a distribution-transfer-graph method that guides synthesis of effective Long CoT structures, boosting performance and RL stability across benchmarks.
comment: Preprint
Open-Vocabulary 3D Instruction Ambiguity Detection
In safety-critical domains, linguistic ambiguity can have severe consequences; a vague command like "Pass me the vial" in a surgical setting could lead to catastrophic errors. Yet, most embodied AI research overlooks this, assuming instructions are clear and focusing on execution rather than confirmation. To address this critical safety gap, we are the first to define Open-Vocabulary 3D Instruction Ambiguity Detection, a fundamental new task where a model must determine if a command has a single, unambiguous meaning within a given 3D scene. To support this research, we build Ambi3D, the large-scale benchmark for this task, featuring over 700 diverse 3D scenes and around 22k instructions. Our analysis reveals a surprising limitation: state-of-the-art 3D Large Language Models (LLMs) struggle to reliably determine if an instruction is ambiguous. To address this challenge, we propose AmbiVer, a two-stage framework that collects explicit visual evidence from multiple views and uses it to guide an vision-language model (VLM) in judging instruction ambiguity. Extensive experiments demonstrate the challenge of our task and the effectiveness of AmbiVer, paving the way for safer and more trustworthy embodied AI. Code and dataset available at https://jiayuding031020.github.io/ambi3d/.
VideoAR: Autoregressive Video Generation via Next-Frame & Scale Prediction
Recent advances in video generation have been dominated by diffusion and flow-matching models, which produce high-quality results but remain computationally intensive and difficult to scale. In this work, we introduce VideoAR, the first large-scale Visual Autoregressive (VAR) framework for video generation that combines multi-scale next-frame prediction with autoregressive modeling. VideoAR disentangles spatial and temporal dependencies by integrating intra-frame VAR modeling with causal next-frame prediction, supported by a 3D multi-scale tokenizer that efficiently encodes spatio-temporal dynamics. To improve long-term consistency, we propose Multi-scale Temporal RoPE, Cross-Frame Error Correction, and Random Frame Mask, which collectively mitigate error propagation and stabilize temporal coherence. Our multi-stage pretraining pipeline progressively aligns spatial and temporal learning across increasing resolutions and durations. Empirically, VideoAR achieves new state-of-the-art results among autoregressive models, improving FVD on UCF-101 from 99.5 to 88.6 while reducing inference steps by over 10x, and reaching a VBench score of 81.74-competitive with diffusion-based models an order of magnitude larger. These results demonstrate that VideoAR narrows the performance gap between autoregressive and diffusion paradigms, offering a scalable, efficient, and temporally consistent foundation for future video generation research.
Performance of a Deep Learning-Based Segmentation Model for Pancreatic Tumors on Public Endoscopic Ultrasound Datasets
Background: Pancreatic cancer is one of the most aggressive cancers, with poor survival rates. Endoscopic ultrasound (EUS) is a key diagnostic modality, but its effectiveness is constrained by operator subjectivity. This study evaluates a Vision Transformer-based deep learning segmentation model for pancreatic tumors. Methods: A segmentation model using the USFM framework with a Vision Transformer backbone was trained and validated with 17,367 EUS images (from two public datasets) in 5-fold cross-validation. The model was tested on an independent dataset of 350 EUS images from another public dataset, manually segmented by radiologists. Preprocessing included grayscale conversion, cropping, and resizing to 512x512 pixels. Metrics included Dice similarity coefficient (DSC), intersection over union (IoU), sensitivity, specificity, and accuracy. Results: In 5-fold cross-validation, the model achieved a mean DSC of 0.651 +/- 0.738, IoU of 0.579 +/- 0.658, sensitivity of 69.8%, specificity of 98.8%, and accuracy of 97.5%. For the external validation set, the model achieved a DSC of 0.657 (95% CI: 0.634-0.769), IoU of 0.614 (95% CI: 0.590-0.689), sensitivity of 71.8%, and specificity of 97.7%. Results were consistent, but 9.7% of cases exhibited erroneous multiple predictions. Conclusions: The Vision Transformer-based model demonstrated strong performance for pancreatic tumor segmentation in EUS images. However, dataset heterogeneity and limited external validation highlight the need for further refinement, standardization, and prospective studies.
Can We Predict Before Executing Machine Learning Agents?
Autonomous machine learning agents have revolutionized scientific discovery, yet they remain constrained by a Generate-Execute-Feedback paradigm. Previous approaches suffer from a severe Execution Bottleneck, as hypothesis evaluation relies strictly on expensive physical execution. To bypass these physical constraints, we internalize execution priors to substitute costly runtime checks with instantaneous predictive reasoning, drawing inspiration from World Models. In this work, we formalize the task of Data-centric Solution Preference and construct a comprehensive corpus of 18,438 pairwise comparisons. We demonstrate that LLMs exhibit significant predictive capabilities when primed with a Verified Data Analysis Report, achieving 61.5% accuracy and robust confidence calibration. Finally, we instantiate this framework in FOREAGENT, an agent that employs a Predict-then-Verify loop, achieving a 6x acceleration in convergence while surpassing execution-based baselines by +6%. Our code and dataset will be publicly available soon at https://github.com/zjunlp/predict-before-execute.
comment: Work in progress
Cedalion Tutorial: A Python-based framework for comprehensive analysis of multimodal fNIRS & DOT from the lab to the everyday world
Functional near-infrared spectroscopy (fNIRS) and diffuse optical tomography (DOT) are rapidly evolving toward wearable, multimodal, and data-driven, AI-supported neuroimaging in the everyday world. However, current analytical tools are fragmented across platforms, limiting reproducibility, interoperability, and integration with modern machine learning (ML) workflows. Cedalion is a Python-based open-source framework designed to unify advanced model-based and data-driven analysis of multimodal fNIRS and DOT data within a reproducible, extensible, and community-driven environment. Cedalion integrates forward modelling, photogrammetric optode co-registration, signal processing, GLM Analysis, DOT image reconstruction, and ML-based data-driven methods within a single standardized architecture based on the Python ecosystem. It adheres to SNIRF and BIDS standards, supports cloud-executable Jupyter notebooks, and provides containerized workflows for scalable, fully reproducible analysis pipelines that can be provided alongside original research publications. Cedalion connects established optical-neuroimaging pipelines with ML frameworks such as scikit-learn and PyTorch, enabling seamless multimodal fusion with EEG, MEG, and physiological data. It implements validated algorithms for signal-quality assessment, motion correction, GLM modelling, and DOT reconstruction, complemented by modules for simulation, data augmentation, and multimodal physiology analysis. Automated documentation links each method to its source publication, and continuous-integration testing ensures robustness. This tutorial paper provides seven fully executable notebooks that demonstrate core features. Cedalion offers an open, transparent, and community extensible foundation that supports reproducible, scalable, cloud- and ML-ready fNIRS/DOT workflows for laboratory-based and real-world neuroimaging.
comment: 33 pages main manuscript, 180 pages Supplementary Tutorial Notebooks, 12 figures, 6 tables, under review in SPIE Neurophotonics
Agentic LLMs as Powerful Deanonymizers: Re-identification of Participants in the Anthropic Interviewer Dataset
On December 4, 2025, Anthropic released Anthropic Interviewer, an AI tool for running qualitative interviews at scale, along with a public dataset of 1,250 interviews with professionals, including 125 scientists, about their use of AI for research. Focusing on the scientist subset, I show that widely available LLMs with web search and agentic capabilities can link six out of twenty-four interviews to specific scientific works, recovering associated authors and, in some cases, uniquely identifying the interviewees. My contribution is to show that modern LLM-based agents make such re-identification attacks easy and low-effort: off-the-shelf tools can, with a few natural-language prompts, search the web, cross-reference details, and propose likely matches, effectively lowering the technical barrier. Existing safeguards can be bypassed by breaking down the re-identification into benign tasks. I outline the attack at a high level, discuss implications for releasing rich qualitative data in the age of LLM agents, and propose mitigation recommendations and open problems. I have notified Anthropic of my findings.
comment: 4 pages
Auditing Fairness under Model Updates: Fundamental Complexity and Property-Preserving Updates
As machine learning models become increasingly embedded in societal infrastructure, auditing them for bias is of growing importance. However, in real-world deployments, auditing is complicated by the fact that model owners may adaptively update their models in response to changing environments, such as financial markets. These updates can alter the underlying model class while preserving certain properties of interest, raising fundamental questions about what can be reliably audited under such shifts. In this work, we study group fairness auditing under arbitrary updates. We consider general shifts that modify the pre-audit model class while maintaining invariance of the audited property. Our goals are two-fold: (i) to characterize the information complexity of allowable updates, by identifying which strategic changes preserve the property under audit; and (ii) to efficiently estimate auditing properties, such as group fairness, using a minimal number of labeled samples. We propose a generic framework for PAC auditing based on an Empirical Property Optimization (EPO) oracle. For statistical parity, we establish distribution-free auditing bounds characterized by the SP dimension, a novel combinatorial measure that captures the complexity of admissible strategic updates. Finally, we demonstrate that our framework naturally extends to other auditing objectives, including prediction error and robust risk.
Illusions of Confidence? Diagnosing LLM Truthfulness via Neighborhood Consistency
As Large Language Models (LLMs) are increasingly deployed in real-world settings, correctness alone is insufficient. Reliable deployment requires maintaining truthful beliefs under contextual perturbations. Existing evaluations largely rely on point-wise confidence like Self-Consistency, which can mask brittle belief. We show that even facts answered with perfect self-consistency can rapidly collapse under mild contextual interference. To address this gap, we propose Neighbor-Consistency Belief (NCB), a structural measure of belief robustness that evaluates response coherence across a conceptual neighborhood. To validate the efficiency of NCB, we introduce a new cognitive stress-testing protocol that probes outputs stability under contextual interference. Experiments across multiple LLMs show that the performance of high-NCB data is relatively more resistant to interference. Finally, we present Structure-Aware Training (SAT), which optimizes context-invariant belief structure and reduces long-tail knowledge brittleness by approximately 30%. Code will be available at https://github.com/zjunlp/belief.
comment: Work in progress
Can AI mediation improve democratic deliberation?
The strength of democracy lies in the free and equal exchange of diverse viewpoints. Living up to this ideal at scale faces inherent tensions: broad participation, meaningful deliberation, and political equality often trade off with one another (Fishkin, 2011). We ask whether and how artificial intelligence (AI) could help navigate this "trilemma" by engaging with a recent example of a large language model (LLM)-based system designed to help people with diverse viewpoints find common ground (Tessler, Bakker, et al., 2024). Here, we explore the implications of the introduction of LLMs into deliberation augmentation tools, examining their potential to enhance participation through scalability, improve political equality via fair mediation, and foster meaningful deliberation by, for example, surfacing trustworthy information. We also point to key challenges that remain. Ultimately, a range of empirical, technical, and theoretical advancements are needed to fully realize the promise of AI-mediated deliberation for enhancing citizen engagement and strengthening democratic deliberation.
TowerMind: A Tower Defence Game Learning Environment and Benchmark for LLM as Agents AAAI 2026
Recent breakthroughs in Large Language Models (LLMs) have positioned them as a promising paradigm for agents, with long-term planning and decision-making emerging as core general-purpose capabilities for adapting to diverse scenarios and tasks. Real-time strategy (RTS) games serve as an ideal testbed for evaluating these two capabilities, as their inherent gameplay requires both macro-level strategic planning and micro-level tactical adaptation and action execution. Existing RTS game-based environments either suffer from relatively high computational demands or lack support for textual observations, which has constrained the use of RTS games for LLM evaluation. Motivated by this, we present TowerMind, a novel environment grounded in the tower defense (TD) subgenre of RTS games. TowerMind preserves the key evaluation strengths of RTS games for assessing LLMs, while featuring low computational demands and a multimodal observation space, including pixel-based, textual, and structured game-state representations. In addition, TowerMind supports the evaluation of model hallucination and provides a high degree of customizability. We design five benchmark levels to evaluate several widely used LLMs under different multimodal input settings. The results reveal a clear performance gap between LLMs and human experts across both capability and hallucination dimensions. The experiments further highlight key limitations in LLM behavior, such as inadequate planning validation, a lack of multifinality in decision-making, and inefficient action use. We also evaluate two classic reinforcement learning algorithms: Ape-X DQN and PPO. By offering a lightweight and multimodal design, TowerMind complements the existing RTS game-based environment landscape and introduces a new benchmark for the AI agent field. The source code is publicly available on GitHub(https://github.com/tb6147877/TowerMind).
comment: AAAI 2026 Oral
StackPlanner: A Centralized Hierarchical Multi-Agent System with Task-Experience Memory Management
Multi-agent systems based on large language models, particularly centralized architectures, have recently shown strong potential for complex and knowledge-intensive tasks. However, central agents often suffer from unstable long-horizon collaboration due to the lack of memory management, leading to context bloat, error accumulation, and poor cross-task generalization. To address both task-level memory inefficiency and the inability to reuse coordination experience, we propose StackPlanner, a hierarchical multi-agent framework with explicit memory control. StackPlanner addresses these challenges by decoupling high-level coordination from subtask execution with active task-level memory control, and by learning to retrieve and exploit reusable coordination experience via structured experience memory and reinforcement learning. Experiments on multiple deep-search and agent system benchmarks demonstrate the effectiveness of our approach in enabling reliable long-horizon multi-agent collaboration.
An Empirical Study on Preference Tuning Generalization and Diversity Under Domain Shift
Preference tuning aligns pretrained language models to human judgments of quality, helpfulness, or safety by optimizing over explicit preference signals rather than likelihood alone. Prior work has shown that preference-tuning degrades performance and reduces helpfulness when evaluated outside the training domain. However, the extent to which adaptation strategies mitigate this domain shift remains unexplored. We address this challenge by conducting a comprehensive and systematic study of alignment generalization under domain shift. We compare five popular alignment objectives and various adaptation strategies from source to target, including target-domain supervised fine-tuning and pseudo-labeling, across summarization and question-answering helpfulness tasks. Our findings reveal systematic differences in generalization across alignment objectives under domain shift. We show that adaptation strategies based on pseudo-labeling can substantially reduce domain-shift degradation
Gender Bias in LLMs: Preliminary Evidence from Shared Parenting Scenario in Czech Family Law
Access to justice remains limited for many people, leading laypersons to increasingly rely on Large Language Models (LLMs) for legal self-help. Laypeople use these tools intuitively, which may lead them to form expectations based on incomplete, incorrect, or biased outputs. This study examines whether leading LLMs exhibit gender bias in their responses to a realistic family law scenario. We present an expert-designed divorce scenario grounded in Czech family law and evaluate four state-of-the-art LLMs GPT-5 nano, Claude Haiku 4.5, Gemini 2.5 Flash, and Llama 3.3 in a fully zero-shot interaction. We deploy two versions of the scenario, one with gendered names and one with neutral labels, to establish a baseline for comparison. We further introduce nine legally relevant factors that vary the factual circumstances of the case and test whether these variations influence the models' proposed shared-parenting ratios. Our preliminary results highlight differences across models and suggest gender-dependent patterns in the outcomes generated by some systems. The findings underscore both the risks associated with laypeople's reliance on LLMs for legal guidance and the need for more robust evaluation of model behavior in sensitive legal contexts. We present exploratory and descriptive evidence intended to identify systematic asymmetries rather than to establish causal effects.
comment: Accepted at AI for Access to Justice, Dispute Resolution, and Data Access (AIDA2J) at Jurix 2025, Torino, Italy
Continual-learning for Modelling Low-Resource Languages from Large Language Models
Modelling a language model for a multi-lingual scenario includes several potential challenges, among which catastrophic forgetting is the major challenge. For example, small language models (SLM) built for low-resource languages by adapting large language models (LLMs) pose the challenge of catastrophic forgetting. This work proposes to employ a continual learning strategy using parts-of-speech (POS)-based code-switching along with a replay adapter strategy to mitigate the identified gap of catastrophic forgetting while training SLM from LLM. Experiments conducted on vision language tasks such as visual question answering and language modelling task exhibits the success of the proposed architecture.
IIB-LPO: Latent Policy Optimization via Iterative Information Bottleneck
Recent advances in Reinforcement Learning with Verifiable Rewards (RLVR) for Large Language Model (LLM) reasoning have been hindered by a persistent challenge: exploration collapse. The semantic homogeneity of random rollouts often traps models in narrow, over-optimized behaviors. While existing methods leverage policy entropy to encourage exploration, they face inherent limitations. Global entropy regularization is susceptible to reward hacking, which can induce meaningless verbosity, whereas local token-selective updates struggle with the strong inductive bias of pre-trained models. To address this, we propose Latent Policy Optimization via Iterative Information Bottleneck (IIB-LPO), a novel approach that shifts exploration from statistical perturbation of token distributions to topological branching of reasoning trajectories. IIB-LPO triggers latent branching at high-entropy states to diversify reasoning paths and employs the Information Bottleneck principle both as a trajectory filter and a self-reward mechanism, ensuring concise and informative exploration. Empirical results across four mathematical reasoning benchmarks demonstrate that IIB-LPO achieves state-of-the-art performance, surpassing prior methods by margins of up to 5.3% in accuracy and 7.4% in diversity metrics.
CLewR: Curriculum Learning with Restarts for Machine Translation Preference Learning
Large language models (LLMs) have demonstrated competitive performance in zero-shot multilingual machine translation (MT). Some follow-up works further improved MT performance via preference optimization, but they leave a key aspect largely underexplored: the order in which data samples are given during training. We address this topic by integrating curriculum learning into various state-of-the-art preference optimization algorithms to boost MT performance. We introduce a novel curriculum learning strategy with restarts (CLewR), which reiterates easy-to-hard curriculum multiple times during training to effectively mitigate the catastrophic forgetting of easy examples. We demonstrate consistent gains across several model families (Gemma2, Qwen2.5, Llama3.1) and preference optimization techniques. We publicly release our code at https://github.com/alexandra-dragomir/CLewR.
LayerGS: Decomposition and Inpainting of Layered 3D Human Avatars via 2D Gaussian Splatting
We propose a novel framework for decomposing arbitrarily posed humans into animatable multi-layered 3D human avatars, separating the body and garments. Conventional single-layer reconstruction methods lock clothing to one identity, while prior multi-layer approaches struggle with occluded regions. We overcome both limitations by encoding each layer as a set of 2D Gaussians for accurate geometry and photorealistic rendering, and inpainting hidden regions with a pretrained 2D diffusion model via score-distillation sampling (SDS). Our three-stage training strategy first reconstructs the coarse canonical garment via single-layer reconstruction, followed by multi-layer training to jointly recover the inner-layer body and outer-layer garment details. Experiments on two 3D human benchmark datasets (4D-Dress, Thuman2.0) show that our approach achieves better rendering quality and layer decomposition and recomposition than the previous state-of-the-art, enabling realistic virtual try-on under novel viewpoints and poses, and advancing practical creation of high-fidelity 3D human assets for immersive applications. Our code is available at https://github.com/RockyXu66/LayerGS
Router-Suggest: Dynamic Routing for Multimodal Auto-Completion in Visually-Grounded Dialogs
Real-time multimodal auto-completion is essential for digital assistants, chatbots, design tools, and healthcare consultations, where user inputs rely on shared visual context. We introduce Multimodal Auto-Completion (MAC), a task that predicts upcoming characters in live chats using partially typed text and visual cues. Unlike traditional text-only auto-completion (TAC), MAC grounds predictions in multimodal context to better capture user intent. To enable this task, we adapt MMDialog and ImageChat to create benchmark datasets. We evaluate leading vision-language models (VLMs) against strong textual baselines, highlighting trade-offs in accuracy and efficiency. We present Router-Suggest, a router framework that dynamically selects between textual models and VLMs based on dialog context, along with a lightweight variant for resource-constrained environments. Router-Suggest achieves a 2.3x to 10x speedup over the best-performing VLM. A user study shows that VLMs significantly excel over textual models on user satisfaction, notably saving user typing effort and improving the quality of completions in multi-turn conversations. These findings underscore the need for multimodal context in auto-completions, leading to smarter, user-aware assistants.
comment: Accepted to EACL 2026 Industry Track, 12 pages, 6 figures
Goal Force: Teaching Video Models To Accomplish Physics-Conditioned Goals
Recent advancements in video generation have enabled the development of ``world models'' capable of simulating potential futures for robotics and planning. However, specifying precise goals for these models remains a challenge; text instructions are often too abstract to capture physical nuances, while target images are frequently infeasible to specify for dynamic tasks. To address this, we introduce Goal Force, a novel framework that allows users to define goals via explicit force vectors and intermediate dynamics, mirroring how humans conceptualize physical tasks. We train a video generation model on a curated dataset of synthetic causal primitives-such as elastic collisions and falling dominos-teaching it to propagate forces through time and space. Despite being trained on simple physics data, our model exhibits remarkable zero-shot generalization to complex, real-world scenarios, including tool manipulation and multi-object causal chains. Our results suggest that by grounding video generation in fundamental physical interactions, models can emerge as implicit neural physics simulators, enabling precise, physics-aware planning without reliance on external engines. We release all datasets, code, model weights, and interactive video demos at our project page.
comment: Code and interactive demos at https://goal-force.github.io/
DexterCap: An Affordable and Automated System for Capturing Dexterous Hand-Object Manipulation
Capturing fine-grained hand-object interactions is challenging due to severe self-occlusion from closely spaced fingers and the subtlety of in-hand manipulation motions. Existing optical motion capture systems rely on expensive camera setups and extensive manual post-processing, while low-cost vision-based methods often suffer from reduced accuracy and reliability under occlusion. To address these challenges, we present DexterCap, a low-cost optical capture system for dexterous in-hand manipulation. DexterCap uses dense, character-coded marker patches to achieve robust tracking under severe self-occlusion, together with an automated reconstruction pipeline that requires minimal manual effort. With DexterCap, we introduce DexterHand, a dataset of fine-grained hand-object interactions covering diverse manipulation behaviors and objects, from simple primitives to complex articulated objects such as a Rubik's Cube. We release the dataset and code to support future research on dexterous hand-object interaction.
comment: 12 pages, 12 figures
Intelligent Singularity Avoidance in UR10 Robotic Arm Path Planning Using Hybrid Fuzzy Logic and Reinforcement Learning
This paper presents a comprehensive approach to singularity detection and avoidance in UR10 robotic arm path planning through the integration of fuzzy logic safety systems and reinforcement learning algorithms. The proposed system addresses critical challenges in robotic manipulation where singularities can cause loss of control and potential equipment damage. Our hybrid approach combines real-time singularity detection using manipulability measures, condition number analysis, and fuzzy logic decision-making with a stable reinforcement learning framework for adaptive path planning. Experimental results demonstrate a 90% success rate in reaching target positions while maintaining safe distances from singular configurations. The system integrates PyBullet simulation for training data collection and URSim connectivity for real-world deployment.
comment: Published in TANET 2025 (Paper No. T0404)
Influence of Parallelism in Vector-Multiplication Units on Correlation Power Analysis
The use of neural networks in edge devices is increasing, which introduces new security challenges related to the neural networks' confidentiality. As edge devices often offer physical access, attacks targeting the hardware, such as side-channel analysis, must be considered. To enhance the performance of neural network inference, hardware accelerators are commonly employed. This work investigates the influence of parallel processing within such accelerators on correlation-based side-channel attacks that exploit power consumption. The focus is on neurons that are part of the same fully-connected layer, which run parallel and simultaneously process the same input value. The theoretical impact of concurrent multiply-and-accumulate operations on overall power consumption is evaluated, as well as the success rate of correlation power analysis. Based on the observed behavior, equations are derived that describe how the correlation decreases with increasing levels of parallelism. The applicability of these equations is validated using a vector-multiplication unit implemented on an FPGA.
Decoding Workload and Agreement From EEG During Spoken Dialogue With Conversational AI
Passive brain-computer interfaces offer a potential source of implicit feedback for alignment of large language models, but most mental state decoding has been done in controlled tasks. This paper investigates whether established EEG classifiers for mental workload and implicit agreement can be transferred to spoken human-AI dialogue. We introduce two conversational paradigms - a Spelling Bee task and a sentence completion task- and an end-to-end pipeline for transcribing, annotating, and aligning word-level conversational events with continuous EEG classifier output. In a pilot study, workload decoding showed interpretable trends during spoken interaction, supporting cross-paradigm transfer. For implicit agreement, we demonstrate continuous application and precise temporal alignment to conversational events, while identifying limitations related to construct transfer and asynchronous application of event-based classifiers. Overall, the results establish feasibility and constraints for integrating passive BCI signals into conversational AI systems.
comment: Accepted at the 14th International Winter Conference on Brain-Computer Interface
SceneFoundry: Generating Interactive Infinite 3D Worlds
The ability to automatically generate large-scale, interactive, and physically realistic 3D environments is crucial for advancing robotic learning and embodied intelligence. However, existing generative approaches often fail to capture the functional complexity of real-world interiors, particularly those containing articulated objects with movable parts essential for manipulation and navigation. This paper presents SceneFoundry, a language-guided diffusion framework that generates apartment-scale 3D worlds with functionally articulated furniture and semantically diverse layouts for robotic training. From natural language prompts, an LLM module controls floor layout generation, while diffusion-based posterior sampling efficiently populates the scene with articulated assets from large-scale 3D repositories. To ensure physical usability, SceneFoundry employs differentiable guidance functions to regulate object quantity, prevent articulation collisions, and maintain sufficient walkable space for robotic navigation. Extensive experiments demonstrate that our framework generates structurally valid, semantically coherent, and functionally interactive environments across diverse scene types and conditions, enabling scalable embodied AI research.
comment: 15 pages
EnvScaler: Scaling Tool-Interactive Environments for LLM Agent via Programmatic Synthesis
Large language models (LLMs) are expected to be trained to act as agents in various real-world environments, but this process relies on rich and varied tool-interaction sandboxes. However, access to real systems is often restricted; LLM-simulated environments are prone to hallucinations and inconsistencies; and manually built sandboxes are hard to scale. In this paper, we propose EnvScaler, an automated framework for scalable tool-interaction environments via programmatic synthesis. EnvScaler comprises two components. First, SkelBuilder constructs diverse environment skeletons through topic mining, logic modeling, and quality evaluation. Then, ScenGenerator generates multiple task scenarios and rule-based trajectory validation functions for each environment. With EnvScaler, we synthesize 191 environments and about 7K scenarios, and apply them to Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL) for Qwen3 series models. Results on three benchmarks show that EnvScaler significantly improves LLMs' ability to solve tasks in complex environments involving multi-turn, multi-tool interactions. We release our code and data at https://github.com/RUC-NLPIR/EnvScaler.
comment: Working in progress
Tensor-DTI: Enhancing Biomolecular Interaction Prediction with Contrastive Embedding Learning ICLR 2025
Accurate drug-target interaction (DTI) prediction is essential for computational drug discovery, yet existing models often rely on single-modality predefined molecular descriptors or sequence-based embeddings with limited representativeness. We propose Tensor-DTI, a contrastive learning framework that integrates multimodal embeddings from molecular graphs, protein language models, and binding-site predictions to improve interaction modeling. Tensor-DTI employs a siamese dual-encoder architecture, enabling it to capture both chemical and structural interaction features while distinguishing interacting from non-interacting pairs. Evaluations on multiple DTI benchmarks demonstrate that Tensor-DTI outperforms existing sequence-based and graph-based models. We also conduct large-scale inference experiments on CDK2 across billion-scale chemical libraries, where Tensor-DTI produces chemically plausible hit distributions even when CDK2 is withheld from training. In enrichment studies against Glide docking and Boltz-2 co-folder, Tensor-DTI remains competitive on CDK2 and improves the screening budget required to recover moderate fractions of high-affinity ligands on out-of-family targets under strict family-holdout splits. Additionally, we explore its applicability to protein-RNA and peptide-protein interactions. Our findings highlight the benefits of integrating multimodal information with contrastive objectives to enhance interaction-prediction accuracy and to provide more interpretable and reliability-aware models for virtual screening.
comment: Accepted at the Generative and Experimental Perspectives for Biomolecular Design Workshop at ICLR 2025 and at the Learning Meaningful Representations of Life Workshop at ICLR 2025
SAFE: Secure and Accurate Federated Learning for Privacy-Preserving Brain-Computer Interfaces
Electroencephalogram (EEG)-based brain-computer interfaces (BCIs) are widely adopted due to their efficiency and portability; however, their decoding algorithms still face multiple challenges, including inadequate generalization, adversarial vulnerability, and privacy leakage. This paper proposes Secure and Accurate FEderated learning (SAFE), a federated learning-based approach that protects user privacy by keeping data local during model training. SAFE employs local batch-specific normalization to mitigate cross-subject feature distribution shifts and hence improves model generalization. It further enhances adversarial robustness by introducing perturbations in both the input space and the parameter space through federated adversarial training and adversarial weight perturbation. Experiments on five EEG datasets from motor imagery (MI) and event-related potential (ERP) BCI paradigms demonstrated that SAFE consistently outperformed 14 state-of-the-art approaches in both decoding accuracy and adversarial robustness, while ensuring privacy protection. Notably, it even outperformed centralized training approaches that do not consider privacy protection at all. To our knowledge, SAFE is the first algorithm to simultaneously achieve high decoding accuracy, strong adversarial robustness, and reliable privacy protection without using any calibration data from the target subject, making it highly desirable for real-world BCIs.
comment: 12 pages, 9 figures
From Off-Policy to On-Policy: Enhancing GUI Agents via Bi-level Expert-to-Policy Assimilation
Vision-language models are increasingly deployed as computer-use agents (CUAs) that operate desktops and browsers. Top-performing CUAs are framework-based systems that decompose planning and execution, while end-to-end screenshot-to-action policies are easier to deploy but lag behind on benchmarks such as OSWorld-Verified. GUI datasets like OSWorld pose two bottlenecks: they expose only a few hundred interactive, verifiable tasks and environments, and expert trajectories must be gathered by interacting with these environments, making such data hard to scale. We therefore ask how reinforcement learning from verifiable rewards (RLVR) can best exploit a small pool of exist expert trajectories to train end-to-end policies. Naively mixing these off-policy traces into on-policy RLVR is brittle: even after format conversion, expert trajectories exhibit structural mismatch and distribution shift from the learner. We propose BEPA (Bi-Level Expert-to-Policy Assimilation), which turns static expert traces into policy-aligned guidance via self-rolled reachable trajectories under the base policy (LEVEL-1) and a per-task, dynamically updated cache used in RLVR (LEVEL-2). On OSWorld-Verified, BEPA improves UITARS1.5-7B success from 22.87% to 32.13% and raises a held-out split from 5.74% to 10.30%, with consistent gains on MMBench-GUI and Online-Mind2Web. Our code and data are available at: https://github.com/LEON-gittech/Verl_GUI.git
comment: Work In Progress
Adaptive Disentangled Representation Learning for Incomplete Multi-View Multi-Label Classification
Multi-view multi-label learning frequently suffers from simultaneous feature absence and incomplete annotations, due to challenges in data acquisition and cost-intensive supervision. To tackle the complex yet highly practical problem while overcoming the existing limitations of feature recovery, representation disentanglement, and label semantics modeling, we propose an Adaptive Disentangled Representation Learning method (ADRL). ADRL achieves robust view completion by propagating feature-level affinity across modalities with neighborhood awareness, and reinforces reconstruction effectiveness by leveraging a stochastic masking strategy. Through disseminating category-level association across label distributions, ADRL refines distribution parameters for capturing interdependent label prototypes. Besides, we formulate a mutual-information-based objective to promote consistency among shared representations and suppress information overlap between view-specific representation and other modalities. Theoretically, we derive the tractable bounds to train the dual-channel network. Moreover, ADRL performs prototype-specific feature selection by enabling independent interactions between label embeddings and view representations, accompanied by the generation of pseudo-labels for each category. The structural characteristics of the pseudo-label space are then exploited to guide a discriminative trade-off during view fusion. Finally, extensive experiments on public datasets and real-world applications demonstrate the superior performance of ADRL.
Variational Autoencoders for P-wave Detection on Strong Motion Earthquake Spectrograms
Accurate P-wave detection is critical for earthquake early warning, yet strong-motion records pose challenges due to high noise levels, limited labeled data, and complex waveform characteristics. This study reframes P-wave arrival detection as a self-supervised anomaly detection task to evaluate how architectural variations regulate the trade-off between reconstruction fidelity and anomaly discrimination. Through a comprehensive grid search of 492 Variational Autoencoder configurations, we show that while skip connections minimize reconstruction error (Mean Absolute Error approximately 0.0012), they induce "overgeneralization", allowing the model to reconstruct noise and masking the detection signal. In contrast, attention mechanisms prioritize global context over local detail and yield the highest detection performance with an area-under-the-curve of 0.875. The attention-based Variational Autoencoder achieves an area-under-the-curve of 0.91 in the 0 to 40-kilometer near-source range, demonstrating high suitability for immediate early warning applications. These findings establish that architectural constraints favoring global context over pixel-perfect reconstruction are essential for robust, self-supervised P-wave detection.
comment: 13 pages, 8 figures, 3 tables
VIGIL: Defending LLM Agents Against Tool Stream Injection via Verify-Before-Commit
LLM agents operating in open environments face escalating risks from indirect prompt injection, particularly within the tool stream where manipulated metadata and runtime feedback hijack execution flow. Existing defenses encounter a critical dilemma as advanced models prioritize injected rules due to strict alignment while static protection mechanisms sever the feedback loop required for adaptive reasoning. To reconcile this conflict, we propose \textbf{VIGIL}, a framework that shifts the paradigm from restrictive isolation to a verify-before-commit protocol. By facilitating speculative hypothesis generation and enforcing safety through intent-grounded verification, \textbf{VIGIL} preserves reasoning flexibility while ensuring robust control. We further introduce \textbf{SIREN}, a benchmark comprising 959 tool stream injection cases designed to simulate pervasive threats characterized by dynamic dependencies. Extensive experiments demonstrate that \textbf{VIGIL} outperforms state-of-the-art dynamic defenses by reducing the attack success rate by over 22\% while more than doubling the utility under attack compared to static baselines, thereby achieving an optimal balance between security and utility. Code is available at https://anonymous.4open.science/r/VIGIL-378B/.
Analysing Differences in Persuasive Language in LLM-Generated Text: Uncovering Stereotypical Gender Patterns
Large language models (LLMs) are increasingly used for everyday communication tasks, including drafting interpersonal messages intended to influence and persuade. Prior work has shown that LLMs can successfully persuade humans and amplify persuasive language. It is therefore essential to understand how user instructions affect the generation of persuasive language, and to understand whether the generated persuasive language differs, for example, when targeting different groups. In this work, we propose a framework for evaluating how persuasive language generation is affected by recipient gender, sender intent, or output language. We evaluate 13 LLMs and 16 languages using pairwise prompt instructions. We evaluate model responses on 19 categories of persuasive language using an LLM-as-judge setup grounded in social psychology and communication science. Our results reveal significant gender differences in the persuasive language generated across all models. These patterns reflect biases consistent with gender-stereotypical linguistic tendencies documented in social psychology and sociolinguistics.
DynaDebate: Breaking Homogeneity in Multi-Agent Debate with Dynamic Path Generation
Recent years have witnessed the rapid development of Large Language Model-based Multi-Agent Systems (MAS), which excel at collaborative decision-making and complex problem-solving. Recently, researchers have further investigated Multi-Agent Debate (MAD) frameworks, which enhance the reasoning and collaboration capabilities of MAS through information exchange and debate among multiple agents. However, existing approaches often rely on unguided initialization, causing agents to adopt identical reasoning paths that lead to the same errors. As a result, effective debate among agents is hindered, and the final outcome frequently degenerates into simple majority voting. To solve the above problem, in this paper, we introduce Dynamic Multi-Agent Debate (DynaDebate), which enhances the effectiveness of multi-agent debate through three key mechanisms: (1) Dynamic Path Generation and Allocation, which employs a dedicated Path Generation Agent to generate diverse and logical solution paths with adaptive redundancy; (2) Process-Centric Debate, which shifts the focus from surface-level outcome voting to rigorous step-by-step logic critique to ensure process correctness; (3) A Trigger-Based Verification Agent, which is activated upon disagreement and uses external tools to objectively resolve deadlocks. Extensive experiments demonstrate that DynaDebate achieves superior performance across various benchmarks, surpassing existing state-of-the-art MAD methods.
comment: 16pages,6figures
The Echo Chamber Multi-Turn LLM Jailbreak
The availability of Large Language Models (LLMs) has led to a new generation of powerful chatbots that can be developed at relatively low cost. As companies deploy these tools, security challenges need to be addressed to prevent financial loss and reputational damage. A key security challenge is jailbreaking, the malicious manipulation of prompts and inputs to bypass a chatbot's safety guardrails. Multi-turn attacks are a relatively new form of jailbreaking involving a carefully crafted chain of interactions with a chatbot. We introduce Echo Chamber, a new multi-turn attack using a gradual escalation method. We describe this attack in detail, compare it to other multi-turn attacks, and demonstrate its performance against multiple state-of-the-art models through extensive evaluation.
PII-VisBench: Evaluating Personally Identifiable Information Safety in Vision Language Models Along a Continuum of Visibility
Vision Language Models (VLMs) are increasingly integrated into privacy-critical domains, yet existing evaluations of personally identifiable information (PII) leakage largely treat privacy as a static extraction task and ignore how a subject's online presence--the volume of their data available online--influences privacy alignment. We introduce PII-VisBench, a novel benchmark containing 4000 unique probes designed to evaluate VLM safety through the continuum of online presence. The benchmark stratifies 200 subjects into four visibility categories: high, medium, low, and zero--based on the extent and nature of their information available online. We evaluate 18 open-source VLMs (0.3B-32B) based on two key metrics: percentage of PII probing queries refused (Refusal Rate) and the fraction of non-refusal responses flagged for containing PII (Conditional PII Disclosure Rate). Across models, we observe a consistent pattern: refusals increase and PII disclosures decrease (9.10% high to 5.34% low) as subject visibility drops. We identify that models are more likely to disclose PII for high-visibility subjects, alongside substantial model-family heterogeneity and PII-type disparities. Finally, paraphrasing and jailbreak-style prompts expose attack and model-dependent failures, motivating visibility-aware safety evaluation and training interventions.
mHC-lite: You Don't Need 20 Sinkhorn-Knopp Iterations
Hyper-Connections (HC) generalizes residual connections by introducing dynamic residual matrices that mix information across multiple residual streams, accelerating convergence in deep neural networks. However, unconstrained residual matrices can compromise training stability. To address this, DeepSeek's Manifold-Constrained Hyper-Connections (mHC) approximately projects these matrices onto the Birkhoff polytope via iterative Sinkhorn--Knopp (SK) normalization. We identify two limitations of this approach: (i) finite SK iterations do not guarantee exact doubly stochasticity, leaving an approximation gap that can accumulate through network depth and undermine stability; (ii) efficient SK implementation requires highly specialized CUDA kernels, raising engineering barriers and reducing portability. Motivated by the Birkhoff--von Neumann theorem, we propose mHC-lite, a simple reparameterization that explicitly constructs doubly stochastic matrices as convex combinations of permutation matrices. This approach guarantees exact doubly stochasticity by construction and can be implemented using only native matrix operations. Extensive experiments demonstrate that mHC-lite matches or exceeds mHC in performance while achieving higher training throughput with a naive implementation and eliminating the residual instabilities observed in both HC and mHC. The code is publicly available at https://github.com/FFTYYY/mhc-lite.
Overcoming Joint Intractability with Lossless Hierarchical Speculative Decoding
Verification is a key bottleneck in improving inference speed while maintaining distribution fidelity in Speculative Decoding. Recent work has shown that sequence-level verification leads to a higher number of accepted tokens compared to token-wise verification. However, existing solutions often rely on surrogate approximations or are constrained by partial information, struggling with joint intractability. In this work, we propose Hierarchical Speculative Decoding (HSD), a provably lossless verification method that significantly boosts the expected number of accepted tokens and overcomes joint intractability by balancing excess and deficient probability mass across accessible branches. Our extensive large-scale experiments demonstrate that HSD yields consistent improvements in acceptance rates across diverse model families and benchmarks. Moreover, its strong explainability and generality make it readily integrable into a wide range of speculative decoding frameworks. Notably, integrating HSD into EAGLE-3 yields over a 12% performance gain, establishing state-of-the-art decoding efficiency without compromising distribution fidelity. Code is available at https://github.com/ZhouYuxuanYX/Hierarchical-Speculative-Decoding.
Visualising Information Flow in Word Embeddings with Diffusion Tensor Imaging
Understanding how large language models (LLMs) represent natural language is a central challenge in natural language processing (NLP) research. Many existing methods extract word embeddings from an LLM, visualise the embedding space via point-plots, and compare the relative positions of certain words. However, this approach only considers single words and not whole natural language expressions, thus disregards the context in which a word is used. Here we present a novel tool for analysing and visualising information flow in natural language expressions by applying diffusion tensor imaging (DTI) to word embeddings. We find that DTI reveals how information flows between word embeddings. Tracking information flows within the layers of an LLM allows for comparing different model structures and revealing opportunities for pruning an LLM's under-utilised layers. Furthermore, our model reveals differences in information flows for tasks like pronoun resolution and metaphor detection. Our results show that our model permits novel insights into how LLMs represent actual natural language expressions, extending the comparison of isolated word embeddings and improving the interpretability of NLP models.
Multimodal In-context Learning for ASR of Low-resource Languages
Automatic speech recognition (ASR) still covers only a small fraction of the world's languages, mainly due to supervised data scarcity. In-context learning (ICL) with large language models (LLMs) addresses this problem, but prior work largely focuses on high-resource languages covered during training and text-only settings. This paper investigates whether speech LLMs can learn unseen languages with multimodal ICL (MICL), and how this learning can be used to improve ASR. We conduct experiments with two speech LLMs, Phi-4 and Qwen3-Omni, on three diverse endangered languages. Firstly, we find that MICL is effective for unseen languages, leveraging both speech and text modalities. We further show that cross-lingual transfer learning improves MICL efficiency on target languages without training on them. Moreover, we analyze attention patterns to interpret MICL mechanisms, and we observe layer-dependent preferences between audio and text context, with an overall bias towards text. Finally, we show that prompt-based ASR with speech LLMs performs poorly on unseen languages, motivating a simple ASR system that combines a stronger acoustic model with a speech LLM via MICL-based selection of acoustic hypotheses. Results show that MICL consistently improves ASR performance, and that cross-lingual transfer learning matches or outperforms corpus-trained language models without using target-language data. Our code is publicly available.
comment: Under review
Logic-Parametric Neuro-Symbolic NLI: Controlling Logical Formalisms for Verifiable LLM Reasoning
Large language models (LLMs) and theorem provers (TPs) can be effectively combined for verifiable natural language inference (NLI). However, existing approaches rely on a fixed logical formalism, a feature that limits robustness and adaptability. We propose a logic-parametric framework for neuro-symbolic NLI that treats the underlying logic not as a static background, but as a controllable component. Using the LogiKEy methodology, we embed a range of classical and non-classical formalisms into higher-order logic (HOL), enabling a systematic comparison of inference quality, explanation refinement, and proof behavior. We focus on normative reasoning, where the choice of logic has significant implications. In particular, we compare logic-external approaches, where normative requirements are encoded via axioms, with logic-internal approaches, where normative patterns emerge from the logic's built-in structure. Extensive experiments demonstrate that logic-internal strategies can consistently improve performance and produce more efficient hybrid proofs for NLI. In addition, we show that the effectiveness of a logic is domain-dependent, with first-order logic favouring commonsense reasoning, while deontic and modal logics excel in ethical domains. Our results highlight the value of making logic a first-class, parametric element in neuro-symbolic architectures for more robust, modular, and adaptable reasoning.
comment: Work in progress
AIBoMGen: Generating an AI Bill of Materials for Secure, Transparent, and Compliant Model Training
The rapid adoption of complex AI systems has outpaced the development of tools to ensure their transparency, security, and regulatory compliance. In this paper, the AI Bill of Materials (AIBOM), an extension of the Software Bill of Materials (SBOM), is introduced as a standardized, verifiable record of trained AI models and their environments. Our proof-of-concept platform, AIBoMGen, automates the generation of signed AIBOMs by capturing datasets, model metadata, and environment details during training. The training platform acts as a neutral, third-party observer and root of trust. It enforces verifiable AIBOM creation for every job. The system uses cryptographic hashing, digital signatures, and in-toto attestations to ensure integrity and protect against threats such as artifact tampering by dishonest model creators. Our evaluation demonstrates that AIBoMGen reliably detects unauthorized modifications to all artifacts and can generate AIBOMs with negligible performance overhead. These results highlight the potential of AIBoMGen as a foundational step toward building secure and transparent AI ecosystems, enabling compliance with regulatory frameworks like the EUs AI Act.
comment: Accepted at ACM/IEEE CAIN 2026
Circular Reasoning: Understanding Self-Reinforcing Loops in Large Reasoning Models
Despite the success of test-time scaling, Large Reasoning Models (LRMs) frequently encounter repetitive loops that lead to computational waste and inference failure. In this paper, we identify a distinct failure mode termed Circular Reasoning. Unlike traditional model degeneration, this phenomenon manifests as a self-reinforcing trap where generated content acts as a logical premise for its own recurrence, compelling the reiteration of preceding text. To systematically analyze this phenomenon, we introduce LoopBench, a dataset designed to capture two distinct loop typologies: numerical loops and statement loops. Mechanistically, we characterize circular reasoning as a state collapse exhibiting distinct boundaries, where semantic repetition precedes textual repetition. We reveal that reasoning impasses trigger the loop onset, which subsequently persists as an inescapable cycle driven by a self-reinforcing V-shaped attention mechanism. Guided by these findings, we employ the Cumulative Sum (CUSUM) algorithm to capture these precursors for early loop prediction. Experiments across diverse LRMs validate its accuracy and elucidate the stability of long-chain reasoning.
Joint Optimization of Neural Autoregressors via Scoring rules
Non-parametric distributional regression has achieved significant milestones in recent years. Among these, the Tabular Prior-Data Fitted Network (TabPFN) has demonstrated state-of-the-art performance on various benchmarks. However, a challenge remains in extending these grid-based approaches to a truly multivariate setting. In a naive non-parametric discretization with $N$ bins per dimension, the complexity of an explicit joint grid scales exponentially and the paramer count of the neural networks rise sharply. This scaling is particularly detrimental in low-data regimes, as the final projection layer would require many parameters, leading to severe overfitting and intractability.
AGDC: Autoregressive Generation of Variable-Length Sequences with Joint Discrete and Continuous Spaces
Transformer-based autoregressive models excel in data generation but are inherently constrained by their reliance on discretized tokens, which limits their ability to represent continuous values with high precision. We analyze the scalability limitations of existing discretization-based approaches for generating hybrid discrete-continuous sequences, particularly in high-precision domains such as semiconductor circuit designs, where precision loss can lead to functional failure. To address the challenge, we propose AGDC, a novel unified framework that jointly models discrete and continuous values for variable-length sequences. AGDC employs a hybrid approach that combines categorical prediction for discrete values with diffusion-based modeling for continuous values, incorporating two key technical components: an end-of-sequence (EOS) logit adjustment mechanism that uses an MLP to dynamically adjust EOS token logits based on sequence context, and a length regularization term integrated into the loss function. Additionally, we present ContLayNet, a large-scale benchmark comprising 334K high-precision semiconductor layout samples with specialized evaluation metrics that capture functional correctness where precision errors significantly impact performance. Experiments on semiconductor layouts (ContLayNet), graphic layouts, and SVGs demonstrate AGDC's superior performance in generating high-fidelity hybrid vector representations compared to discretization-based and fixed-schema baselines, achieving scalable high-precision generation across diverse domains.
CHDP: Cooperative Hybrid Diffusion Policies for Reinforcement Learning in Parameterized Action Space AAAI 2026
Hybrid action space, which combines discrete choices and continuous parameters, is prevalent in domains such as robot control and game AI. However, efficiently modeling and optimizing hybrid discrete-continuous action space remains a fundamental challenge, mainly due to limited policy expressiveness and poor scalability in high-dimensional settings. To address this challenge, we view the hybrid action space problem as a fully cooperative game and propose a \textbf{Cooperative Hybrid Diffusion Policies (CHDP)} framework to solve it. CHDP employs two cooperative agents that leverage a discrete and a continuous diffusion policy, respectively. The continuous policy is conditioned on the discrete action's representation, explicitly modeling the dependency between them. This cooperative design allows the diffusion policies to leverage their expressiveness to capture complex distributions in their respective action spaces. To mitigate the update conflicts arising from simultaneous policy updates in this cooperative setting, we employ a sequential update scheme that fosters co-adaptation. Moreover, to improve scalability when learning in high-dimensional discrete action space, we construct a codebook that embeds the action space into a low-dimensional latent space. This mapping enables the discrete policy to learn in a compact, structured space. Finally, we design a Q-function-based guidance mechanism to align the codebook's embeddings with the discrete policy's representation during training. On challenging hybrid action benchmarks, CHDP outperforms the state-of-the-art method by up to $19.3\%$ in success rate.
comment: Accepted by AAAI 2026
Advancing credit mobility through stakeholder-informed AI design and adoption
Transferring from a 2-year to a 4-year college is crucial for socioeconomic mobility, yet students often face challenges ensuring their credits are fully recognized, leading to delays in their academic progress and unexpected costs. Determining whether courses at different institutions are equivalent (i.e., articulation) is essential for successful credit transfer, as it minimizes unused credits and increases the likelihood of bachelor's degree completion. However, establishing articulation agreements remains time- and resource-intensive, as all candidate articulations are reviewed manually. Although recent efforts have explored the use of artificial intelligence to support this work, its use in articulation practice remains limited. Given these challenges and the need for scalable support, this study applies artificial intelligence to suggest articulations between institutions in collaboration with the State University of New York system, one of the largest systems of higher education in the US. To develop our methodology, we first surveyed articulation staff and faculty to assess adoption rates of baseline algorithmic recommendations and gather feedback on perceptions and concerns about these recommendations. Building on these insights, we developed a supervised alignment method that addresses superficial matching and institutional biases in catalog descriptions, achieving a 5.5-fold improvement in accuracy over previous methods. Based on articulation predictions of this method and a 61% average surveyed adoption rate among faculty and staff, these findings project a 12-fold increase in valid credit mobility opportunities that would otherwise remain unrealized. This study suggests that stakeholder-informed design of AI in higher education administration can expand student credit mobility and help reshape current institutional decision-making in course articulation.
comment: 17 pages, 8 figures
Stephanie2: Thinking, Waiting, and Making Decisions Like Humans in Step-by-Step AI Social Chat
Instant-messaging human social chat typically progresses through a sequence of short messages. Existing step-by-step AI chatting systems typically split a one-shot generation into multiple messages and send them sequentially, but they lack an active waiting mechanism and exhibit unnatural message pacing. In order to address these issues, we propose Stephanie2, a novel next-generation step-wise decision-making dialogue agent. With active waiting and message-pace adaptation, Stephanie2 explicitly decides at each step whether to send or wait, and models latency as the sum of thinking time and typing time to achieve more natural pacing. We further introduce a time-window-based dual-agent dialogue system to generate pseudo dialogue histories for human and automatic evaluations. Experiments show that Stephanie2 clearly outperforms Stephanie1 on metrics such as naturalness and engagement, and achieves a higher pass rate on human evaluation with the role identification Turing test.
comment: 13 pages
HAG: Hierarchical Demographic Tree-based Agent Generation for Topic-Adaptive Simulation
High-fidelity agent initialization is crucial for credible Agent-Based Modeling across diverse domains. A robust framework should be Topic-Adaptive, capturing macro-level joint distributions while ensuring micro-level individual rationality. Existing approaches fall into two categories: static data-based retrieval methods that fail to adapt to unseen topics absent from the data, and LLM-based generation methods that lack macro-level distribution awareness, resulting in inconsistencies between micro-level persona attributes and reality. To address these problems, we propose HAG, a Hierarchical Agent Generation framework that formalizes population generation as a two-stage decision process. Firstly, utilizing a World Knowledge Model to infer hierarchical conditional probabilities to construct the Topic-Adaptive Tree, achieving macro-level distribution alignment. Then, grounded real-world data, instantiation and agentic augmentation are carried out to ensure micro-level consistency. Given the lack of specialized evaluation, we establish a multi-domain benchmark and a comprehensive PACE evaluation framework. Extensive experiments show that HAG significantly outperforms representative baselines, reducing population alignment errors by an average of 37.7% and enhancing sociological consistency by 18.8%.
A Framework for Personalized Persuasiveness Prediction via Context-Aware User Profiling
Estimating the persuasiveness of messages is critical in various applications, from recommender systems to safety assessment of LLMs. While it is imperative to consider the target persuadee's characteristics, such as their values, experiences, and reasoning styles, there is currently no established systematic framework to optimize leveraging a persuadee's past activities (e.g., conversations) to the benefit of a persuasiveness prediction model. To address this problem, we propose a context-aware user profiling framework with two trainable components: a query generator that generates optimal queries to retrieve persuasion-relevant records from a user's history, and a profiler that summarizes these records into a profile to effectively inform the persuasiveness prediction model. Our evaluation on the ChangeMyView Reddit dataset shows consistent improvements over existing methods across multiple predictor models, with gains of up to +13.77%p in F1 score. Further analysis shows that effective user profiles are context-dependent and predictor-specific, rather than relying on static attributes or surface-level similarity. Together, these results highlight the importance of task-oriented, context-dependent user profiling for personalized persuasiveness prediction.
Open World Knowledge Aided Single-Cell Foundation Model with Robust Cross-Modal Cell-Language Pre-training
Recent advancements in single-cell multi-omics, particularly RNA-seq, have provided profound insights into cellular heterogeneity and gene regulation. While pre-trained language model (PLM) paradigm based single-cell foundation models have shown promise, they remain constrained by insufficient integration of in-depth individual profiles and neglecting the influence of noise within multi-modal data. To address both issues, we propose an Open-world Language Knowledge-Aided Robust Single-Cell Foundation Model (OKR-CELL). It is built based on a cross-modal Cell-Language pre-training framework, which comprises two key innovations: (1) leveraging Large Language Models (LLMs) based workflow with retrieval-augmented generation (RAG) enriches cell textual descriptions using open-world knowledge; (2) devising a Cross-modal Robust Alignment (CRA) objective that incorporates sample reliability assessment, curriculum learning, and coupled momentum contrastive learning to strengthen the model's resistance to noisy data. After pretraining on 32M cell-text pairs, OKR-CELL obtains cutting-edge results across 6 evaluation tasks. Beyond standard benchmarks such as cell clustering, cell-type annotation, batch-effect correction, and few-shot annotation, the model also demonstrates superior performance in broader multi-modal applications, including zero-shot cell-type annotation and bidirectional cell-text retrieval.
comment: 41 pages
Transformer Is Inherently a Causal Learner
We reveal that transformers trained in an autoregressive manner naturally encode time-delayed causal structures in their learned representations. When predicting future values in multivariate time series, the gradient sensitivities of transformer outputs with respect to past inputs directly recover the underlying causal graph, without any explicit causal objectives or structural constraints. We prove this connection theoretically under standard identifiability conditions and develop a practical extraction method using aggregated gradient attributions. On challenging cases such as nonlinear dynamics, long-term dependencies, and non-stationary systems, this approach greatly surpasses the performance of state-of-the-art discovery algorithms, especially as data heterogeneity increases, exhibiting scaling potential where causal accuracy improves with data volume and heterogeneity, a property traditional methods lack. This unifying view lays the groundwork for a future paradigm where causal discovery operates through the lens of foundation models, and foundation models gain interpretability and enhancement through the lens of causality.
GenCtrl -- A Formal Controllability Toolkit for Generative Models
As generative models become ubiquitous, there is a critical need for fine-grained control over the generation process. Yet, while controlled generation methods from prompting to fine-tuning proliferate, a fundamental question remains unanswered: are these models truly controllable in the first place? In this work, we provide a theoretical framework to formally answer this question. Framing human-model interaction as a control process, we propose a novel algorithm to estimate the controllable sets of models in a dialogue setting. Notably, we provide formal guarantees on the estimation error as a function of sample complexity: we derive probably-approximately correct bounds for controllable set estimates that are distribution-free, employ no assumptions except for output boundedness, and work for any black-box nonlinear control system (i.e., any generative model). We empirically demonstrate the theoretical framework on different tasks in controlling dialogue processes, for both language models and text-to-image generation. Our results show that model controllability is surprisingly fragile and highly dependent on the experimental setting. This highlights the need for rigorous controllability analysis, shifting the focus from simply attempting control to first understanding its fundamental limits.
Cumulative Path-Level Semantic Reasoning for Inductive Knowledge Graph Completion
Conventional Knowledge Graph Completion (KGC) methods aim to infer missing information in incomplete Knowledge Graphs (KGs) by leveraging existing information, which struggle to perform effectively in scenarios involving emerging entities. Inductive KGC methods can handle the emerging entities and relations in KGs, offering greater dynamic adaptability. While existing inductive KGC methods have achieved some success, they also face challenges, such as susceptibility to noisy structural information during reasoning and difficulty in capturing long-range dependencies in reasoning paths. To address these challenges, this paper proposes the Cumulative Path-Level Semantic Reasoning for inductive knowledge graph completion (CPSR) framework, which simultaneously captures both the structural and semantic information of KGs to enhance the inductive KGC task. Specifically, the proposed CPSR employs a query-dependent masking module to adaptively mask noisy structural information while retaining important information closely related to the targets. Additionally, CPSR introduces a global semantic scoring module that evaluates both the individual contributions and the collective impact of nodes along the reasoning path within KGs. The experimental results demonstrate that CPSR achieves state-of-the-art performance.
PiXTime: A Model for Federated Time Series Forecasting with Heterogeneous Data Structures Across Nodes
Time series are highly valuable and rarely shareable across nodes, making federated learning a promising paradigm to leverage distributed temporal data. However, different sampling standards lead to diverse time granularities and variable sets across nodes, hindering classical federated learning. We propose PiXTime, a novel time series forecasting model designed for federated learning that enables effective prediction across nodes with multi-granularity and heterogeneous variable sets. PiXTime employs a personalized Patch Embedding to map node-specific granularity time series into token sequences of a unified dimension for processing by a subsequent shared model, and uses a global VE Table to align variable category semantics across nodes, thereby enhancing cross-node transferability. With a transformer-based shared model, PiXTime captures representations of auxiliary series with arbitrary numbers of variables and uses cross-attention to enhance the prediction of the target series. Experiments show PiXTime achieves state-of-the-art performance in federated settings and demonstrates superior performance on eight widely used real-world traditional benchmarks.
A Causal Information-Flow Framework for Unbiased Learning-to-Rank
In web search and recommendation systems, user clicks are widely used to train ranking models. However, click data is heavily biased, i.e., users tend to click higher-ranked items (position bias), choose only what was shown to them (selection bias), and trust top results more (trust bias). Without explicitly modeling these biases, the true relevance of ranked items cannot be correctly learned from clicks. Existing Unbiased Learning-to-Rank (ULTR) methods mainly correct position bias and rely on propensity estimation, but they cannot measure remaining bias, provide risk guarantees, or jointly handle multiple bias sources. To overcome these challenges, this paper introduces a novel causal learning-based ranking framework that extends ULTR by combining Structural Causal Models (SCMs) with information-theoretic tools. SCMs specify how clicks are generated and help identify the true relevance signal from click data, while conditional mutual information, measures how much bias leaks into the learned relevance estimates. We use this leakage measure to define a rigorous notion of disentanglement and include it as a regularizer during model training to reduce bias. In addition, we incorporate a causal inference estimator, i.e., doubly robust estimator, to ensure more reliable risk estimation. Experiments on standard Learning-to-Rank benchmarks show that our method consistently reduces measured bias leakage and improves ranking performance, especially in realistic scenarios where multiple biases-such as position and trust bias-interact strongly.
ACR: Adaptive Context Refactoring via Context Refactoring Operators for Multi-Turn Dialogue
Large Language Models (LLMs) have shown remarkable performance in multi-turn dialogue. However, in multi-turn dialogue, models still struggle to stay aligned with what has been established earlier, follow dependencies across many turns, and avoid drifting into incorrect facts as the interaction grows longer. Existing approaches primarily focus on extending the context window, introducing external memory, or applying context compression, yet these methods still face limitations such as \textbf{contextual inertia} and \textbf{state drift}. To address these challenges, we propose the \textbf{A}daptive \textbf{C}ontext \textbf{R}efactoring \textbf{(ACR)} Framework, which dynamically monitors and reshapes the interaction history to mitigate contextual inertia and state drift actively. ACR is built on a library of context refactoring operators and a teacher-guided self-evolving training paradigm that learns when to intervene and how to refactor, thereby decoupling context management from the reasoning process. Extensive experiments on multi-turn dialogue demonstrate that our method significantly outperforms existing baselines while reducing token consumption.
Autoregressive Ranking: Bridging the Gap Between Dual and Cross Encoders
Dual and cross encoders have long been mainstays of information retrieval (IR), but are being challenged by the emergent capabilities of LLMs. An LLM-based approach we term pointwise generative ranking - generating tokens the length of a single docID as opposed to a list in order to enable ranking via beam search - combines efficiency and expressivity benefits while leveraging the in-context capabilities of Causal Transformers. Although there is ample evidence to suggest that pretrained LLMs are well-suited for ranking, we find that the vast majority of LLM-based approaches rely on next-token prediction, a loss function which is fundamentally rank-agnostic (and especially so with pointwise supervision). In this paper, we first prove that the expressivity of pointwise generative ranking with multi-token docIDs is superior to that of dual encoders. We then propose SToICaL - a Simple Token-Item Calibrated Loss - which can incorporate rank-aware supervision at both the item and token levels within the pointwise setup. We run a suite of experiments on ranking tasks derived from WordNet (Fellbaum, 1998) and ESCI (Reddy et al., arXiv:2206.06588). Two variants of SToICaL successfully suppress the probability of invalid docID generations and improve on common ranking metrics beyond top-1 retrieval.
comment: 22 pages, 5 figures
HogVul: Black-box Adversarial Code Generation Framework Against LM-based Vulnerability Detectors AAAI26
Recent advances in software vulnerability detection have been driven by Language Model (LM)-based approaches. However, these models remain vulnerable to adversarial attacks that exploit lexical and syntax perturbations, allowing critical flaws to evade detection. Existing black-box attacks on LM-based vulnerability detectors primarily rely on isolated perturbation strategies, limiting their ability to efficiently explore the adversarial code space for optimal perturbations. To bridge this gap, we propose HogVul, a black-box adversarial code generation framework that integrates both lexical and syntax perturbations under a unified dual-channel optimization strategy driven by Particle Swarm Optimization (PSO). By systematically coordinating two-level perturbations, HogVul effectively expands the search space for adversarial examples, enhancing the attack efficacy. Extensive experiments on four benchmark datasets demonstrate that HogVul achieves an average attack success rate improvement of 26.05\% over state-of-the-art baseline methods. These findings highlight the potential of hybrid optimization strategies in exposing model vulnerabilities.
comment: AAAI26
GS-DMSR: Dynamic Sensitive Multi-scale Manifold Enhancement for Accelerated High-Quality 3D Gaussian Splatting
In the field of 3D dynamic scene reconstruction, how to balance model convergence rate and rendering quality has long been a critical challenge that urgently needs to be addressed, particularly in high-precision modeling of scenes with complex dynamic motions. To tackle this issue, this study proposes the GS-DMSR method. By quantitatively analyzing the dynamic evolution process of Gaussian attributes, this mechanism achieves adaptive gradient focusing, enabling it to dynamically identify significant differences in the motion states of Gaussian models. It then applies differentiated optimization strategies to Gaussian models with varying degrees of significance, thereby significantly improving the model convergence rate. Additionally, this research integrates a multi-scale manifold enhancement module, which leverages the collaborative optimization of an implicit nonlinear decoder and an explicit deformation field to enhance the modeling efficiency for complex deformation scenes. Experimental results demonstrate that this method achieves a frame rate of up to 96 FPS on synthetic datasets, while effectively reducing both storage overhead and training time.Our code and data are available at https://anonymous.4open.science/r/GS-DMSR-2212.
RISE: Rule-Driven SQL Dialect Translation via Query Reduction
Translating SQL dialects across different relational database management systems (RDBMSs) is crucial for migrating RDBMS-based applications to the cloud. Traditional SQL dialect translation tools rely on manually-crafted rules, necessitating significant manual effort to support new RDBMSs and dialects. Although large language models (LLMs) can assist in translating SQL dialects, they often struggle with lengthy and complex SQL queries. In this paper, we propose RISE, a novel LLM-based SQL dialect translation approach that can accurately handle lengthy and complex SQL queries. Given a complex source query $Q_c$ that contains a SQL dialect $d$, we first employ a dialect-aware query reduction technique to derive a simplified query $Q_{s}$ by removing $d$-irrelevant SQL elements from $Q_c$. Subsequently, we utilize LLMs to translate $Q_{s}$ into $Q_{s^{'}}$, and automatically extract the translation rule $r_d$ for dialect $d$ based on the relationship between $Q_{s}$ and $Q_{s^{'}}$. By applying $r_d$ to $Q_c$, we can effectively translate the dialect $d$ within $Q_c$, thereby bypassing the complexity of the source query $Q_c$. We evaluate RISE on two real-world benchmarks, i.e., TPC-DS and SQLProcBench, comparing its performance against both the traditional rule-based tools and the LLM-based approaches with respect to translation accuracy. RISE achieves accuracies of 97.98% on TPC-DS and 100% on SQLProcBench, outperforming the baselines by an average improvement of 24.62% and 238.41%, respectively.
comment: Accepted by ICSE 2026
Reinforcement Learning of Large Language Models for Interpretable Credit Card Fraud Detection
E-commerce platforms and payment solution providers face increasingly sophisticated fraud schemes, ranging from identity theft and account takeovers to complex money laundering operations that exploit the speed and anonymity of digital transactions. However, despite their theoretical promise, the application of Large Language Models (LLMs) to fraud detection in real-world financial contexts remains largely unexploited, and their practical effectiveness in handling domain-specific e-commerce transaction data has yet to be empirically validated. To bridge this gap between conventional machine learning limitations and the untapped potential of LLMs in fraud detection, this paper proposes a novel approach that employs Reinforcement Learning (RL) to post-train lightweight language models specifically for fraud detection tasks using only raw transaction data. We utilize the Group Sequence Policy Optimization (GSPO) algorithm combined with a rule-based reward system to fine-tune language models of various sizes on a real-life transaction dataset provided by a Chinese global payment solution company. Through this reinforcement learning framework, the language models are encouraged to explore diverse trust and risk signals embedded within the textual transaction data, including patterns in customer information, shipping details, product descriptions, and order history. Our experimental results demonstrate the effectiveness of this approach, with post-trained language models achieving substantial F1-score improvements on held-out test data. Our findings demonstrate that the observed performance improvements are primarily attributable to the exploration mechanism inherent in reinforcement learning, which allows models to discover novel fraud indicators beyond those captured by traditional engineered features.
Crisis-Bench: Benchmarking Strategic Ambiguity and Reputation Management in Large Language Models
Standard safety alignment optimizes Large Language Models (LLMs) for universal helpfulness and honesty, effectively instilling a rigid "Boy Scout" morality. While robust for general-purpose assistants, this one-size-fits-all ethical framework imposes a "transparency tax" on professional domains requiring strategic ambiguity and information withholding, such as public relations, negotiation, and crisis management. To measure this gap between general safety and professional utility, we introduce Crisis-Bench, a multi-agent Partially Observable Markov Decision Process (POMDP) that evaluates LLMs in high-stakes corporate crises. Spanning 80 diverse storylines across 8 industries, Crisis-Bench tasks an LLM-based Public Relations (PR) Agent with navigating a dynamic 7-day corporate crisis simulation while managing strictly separated Private and Public narrative states to enforce rigorous information asymmetry. Unlike traditional benchmarks that rely on static ground truths, we introduce the Adjudicator-Market Loop: a novel evaluation metric where public sentiment is adjudicated and translated into a simulated stock price, creating a realistic economic incentive structure. Our results expose a critical dichotomy: while some models capitulate to ethical concerns, others demonstrate the capacity for Machiavellian, legitimate strategic withholding in order to stabilize the simulated stock price. Crisis-Bench provides the first quantitative framework for assessing "Reputation Management" capabilities, arguing for a shift from rigid moral absolutism to context-aware professional alignment.
WildSci: Advancing Scientific Reasoning from In-the-Wild Literature
Recent progress in large language model (LLM) reasoning has focused on domains like mathematics and coding, where abundant high-quality data and objective evaluation metrics are readily available. In contrast, progress in LLM reasoning models remains limited in scientific domains such as medicine and materials science due to limited dataset coverage and the inherent complexity of open-ended scientific questions. To address these challenges, we introduce WildSci, a new dataset of domain-specific science questions automatically synthesized from peer-reviewed literature, covering 9 scientific disciplines and 26 subdomains. By framing complex scientific reasoning tasks in a multiple-choice format, we enable scalable training with well-defined reward signals. We further apply reinforcement learning to finetune models on these data and analyze the resulting training dynamics, including domain-specific performance changes, response behaviors, and generalization trends. Experiments on a suite of scientific benchmarks demonstrate the effectiveness of our dataset and approach. We release WildSci to enable scalable and sustainable research in scientific reasoning, available at https://huggingface.co/datasets/JustinTX/WildSci.
ReasonAny: Incorporating Reasoning Capability to Any Model via Simple and Effective Model Merging
Large Reasoning Models (LRMs) with long chain-of-thought reasoning have recently achieved remarkable success. Yet, equipping domain-specialized models with such reasoning capabilities, referred to as "Reasoning + X", remains a significant challenge. While model merging offers a promising training-free solution, existing methods often suffer from a destructive performance collapse: existing methods tend to both weaken reasoning depth and compromise domain-specific utility. Interestingly, we identify a counter-intuitive phenomenon underlying this failure: reasoning ability predominantly resides in parameter regions with low gradient sensitivity, contrary to the common assumption that domain capabilities correspond to high-magnitude parameters. Motivated by this insight, we propose ReasonAny, a novel merging framework that resolves the reasoning-domain performance collapse through Contrastive Gradient Identification. Experiments across safety, biomedicine, and finance domains show that ReasonAny effectively synthesizes "Reasoning + X" capabilities, significantly outperforming state-of-the-art baselines while retaining robust reasoning performance.
comment: 22 pages, 6 figures, 14 tables
Semi-Supervised Facial Expression Recognition based on Dynamic Threshold and Negative Learning
Facial expression recognition is a key task in human-computer interaction and affective computing. However, acquiring a large amount of labeled facial expression data is often costly. Therefore, it is particularly important to design a semi-supervised facial expression recognition algorithm that makes full use of both labeled and unlabeled data. In this paper, we propose a semi-supervised facial expression recognition algorithm based on Dynamic Threshold Adjustment (DTA) and Selective Negative Learning (SNL). Initially, we designed strategies for local attention enhancement and random dropout of feature maps during feature extraction, which strengthen the representation of local features while ensuring the model does not overfit to any specific local area. Furthermore, this study introduces a dynamic thresholding method to adapt to the requirements of the semi-supervised learning framework for facial expression recognition tasks, and through a selective negative learning strategy, it fully utilizes unlabeled samples with low confidence by mining useful expression information from complementary labels, achieving impressive results. We have achieved state-of-the-art performance on the RAF-DB and AffectNet datasets. Our method surpasses fully supervised methods even without using the entire dataset, which proves the effectiveness of our approach.
VIB-Probe: Detecting and Mitigating Hallucinations in Vision-Language Models via Variational Information Bottleneck
Vision-Language Models (VLMs) have demonstrated remarkable progress in multimodal tasks, but remain susceptible to hallucinations, where generated text deviates from the underlying visual content. Existing hallucination detection methods primarily rely on output logits or external verification tools, often overlooking their internal mechanisms. In this work, we investigate the outputs of internal attention heads, postulating that specific heads carry the primary signals for truthful generation.However, directly probing these high-dimensional states is challenging due to the entanglement of visual-linguistic syntax and noise. To address this, we propose VIB-Probe, a novel hallucination detection and mitigation framework leveraging the Variational Information Bottleneck (VIB) theory. Our method extracts discriminative patterns across layers and heads while filtering out semantic nuisances through the information bottleneck principle. Furthermore, by leveraging the gradients of our VIB probe, we identify attention heads with strong causal influence on hallucinations and introduce an inference-time intervention strategy for hallucination mitigation. Extensive experiments across diverse benchmarks demonstrate that VIB-Probe significantly outperforms existing baselines in both settings. Our code will be made publicly available.
Understanding LLM-Driven Test Oracle Generation
Automated unit test generation aims to improve software quality while reducing the time and effort required for creating tests manually. However, existing techniques primarily generate regression oracles that predicate on the implemented behavior of the class under test. They do not address the oracle problem: the challenge of distinguishing correct from incorrect program behavior. With the rise of Foundation Models (FMs), particularly Large Language Models (LLMs), there is a new opportunity to generate test oracles that reflect intended behavior. This positions LLMs as enablers of Promptware, where software creation and testing are driven by natural-language prompts. This paper presents an empirical study on the effectiveness of LLMs in generating test oracles that expose software failures. We investigate how different prompting strategies and levels of contextual input impact the quality of LLM-generated oracles. Our findings offer insights into the strengths and limitations of LLM-based oracle generation in the FM era, improving our understanding of their capabilities and fostering future research in this area.
comment: Accepted for presentation at the 2nd ACM/IEEE International Conference on AI-powered Software (AIware 2025)
Scalable Heterogeneous Graph Learning via Heterogeneous-aware Orthogonal Prototype Experts
Heterogeneous Graph Neural Networks(HGNNs) have advanced mainly through better encoders, yet their decoding/projection stage still relies on a single shared linear head, assuming it can map rich node embeddings to labels. We call this the Linear Projection Bottleneck: in heterogeneous graphs, contextual diversity and long-tail shifts make a global head miss fine semantics, overfit hub nodes, and underserve tail nodes. While Mixture-of-Experts(MoE) could help, naively applying it clashes with structural imbalance and risks expert collapse. We propose a Heterogeneous-aware Orthogonal Prototype Experts framework named HOPE, a plug-and-play replacement for the standard prediction head. HOPE uses learnable prototype-based routing to assign instances to experts by similarity, letting expert usage follow the natural long-tail distribution, and adds expert orthogonalization to encourage diversity and prevent collapse. Experiments on four real datasets show consistent gains across SOTA HGNN backbones with minimal overhead.
Safety Not Found (404): Hidden Risks of LLM-Based Robotics Decision Making
One mistake by an AI system in a safety-critical setting can cost lives. As Large Language Models (LLMs) become integral to robotics decision-making, the physical dimension of risk grows; a single wrong instruction can directly endanger human safety. This paper addresses the urgent need to systematically evaluate LLM performance in scenarios where even minor errors are catastrophic. Through a qualitative evaluation of a fire evacuation scenario, we identified critical failure cases in LLM-based decision-making. Based on these, we designed seven tasks for quantitative assessment, categorized into: Complete Information, Incomplete Information, and Safety-Oriented Spatial Reasoning (SOSR). Complete information tasks utilize ASCII maps to minimize interpretation ambiguity and isolate spatial reasoning from visual processing. Incomplete information tasks require models to infer missing context, testing for spatial continuity versus hallucinations. SOSR tasks use natural language to evaluate safe decision-making in life-threatening contexts. We benchmark various LLMs and Vision-Language Models (VLMs) across these tasks. Beyond aggregate performance, we analyze the implications of a 1% failure rate, highlighting how "rare" errors escalate into catastrophic outcomes. Results reveal serious vulnerabilities: several models achieved a 0% success rate in ASCII navigation, while in a simulated fire drill, models instructed robots to move toward hazardous areas instead of emergency exits. Our findings lead to a sobering conclusion: current LLMs are not ready for direct deployment in safety-critical systems. A 99% accuracy rate is dangerously misleading in robotics, as it implies one out of every hundred executions could result in catastrophic harm. We demonstrate that even state-of-the-art models cannot guarantee safety, and absolute reliance on them creates unacceptable risks.
DeMa: Dual-Path Delay-Aware Mamba for Efficient Multivariate Time Series Analysis
Accurate and efficient multivariate time series (MTS) analysis is increasingly critical for a wide range of intelligent applications. Within this realm, Transformers have emerged as the predominant architecture due to their strong ability to capture pairwise dependencies. However, Transformer-based models suffer from quadratic computational complexity and high memory overhead, limiting their scalability and practical deployment in long-term and large-scale MTS modeling. Recently, Mamba has emerged as a promising linear-time alternative with high expressiveness. Nevertheless, directly applying vanilla Mamba to MTS remains suboptimal due to three key limitations: (i) the lack of explicit cross-variate modeling, (ii) difficulty in disentangling the entangled intra-series temporal dynamics and inter-series interactions, and (iii) insufficient modeling of latent time-lag interaction effects. These issues constrain its effectiveness across diverse MTS tasks. To address these challenges, we propose DeMa, a dual-path delay-aware Mamba backbone. DeMa preserves Mamba's linear-complexity advantage while substantially improving its suitability for MTS settings. Specifically, DeMa introduces three key innovations: (i) it decomposes the MTS into intra-series temporal dynamics and inter-series interactions; (ii) it develops a temporal path with a Mamba-SSD module to capture long-range dynamics within each individual series, enabling series-independent, parallel computation; and (iii) it designs a variate path with a Mamba-DALA module that integrates delay-aware linear attention to model cross-variate dependencies. Extensive experiments on five representative tasks, long- and short-term forecasting, data imputation, anomaly detection, and series classification, demonstrate that DeMa achieves state-of-the-art performance while delivering remarkable computational efficiency.
comment: Under review
Explainable AI: Learning from the Learners
Artificial intelligence now outperforms humans in several scientific and engineering tasks, yet its internal representations often remain opaque. In this Perspective, we argue that explainable artificial intelligence (XAI), combined with causal reasoning, enables {\it learning from the learners}. Focusing on discovery, optimization and certification, we show how the combination of foundation models and explainability methods allows the extraction of causal mechanisms, guides robust design and control, and supports trust and accountability in high-stakes applications. We discuss challenges in faithfulness, generalization and usability of explanations, and propose XAI as a unifying framework for human-AI collaboration in science and engineering.
Over-Searching in Search-Augmented Large Language Models
Search-augmented large language models (LLMs) excel at knowledge-intensive tasks by integrating external retrieval. However, they often over-search -- unnecessarily invoking search tool even when it does not improve response quality, which leads to computational inefficiency and hallucinations by incorporating irrelevant context. In this work, we conduct a systematic evaluation of over-searching across multiple dimensions, including query types, model categories, retrieval conditions, and multi-turn conversations. Our finding shows: (i) search generally improves answer accuracy on answerable queries but harms abstention on unanswerable ones; (ii) over-searching is more pronounced in complex reasoning models and deep research systems, is exacerbated by noisy retrieval, and compounds across turns in multi-turn conversations; and (iii) the composition of retrieved evidence is crucial, as the presence of negative evidence improves abstention. To quantify over-searching, we introduce Tokens Per Correctness (TPC), an evaluation metric that captures the performance-cost trade-off for search-augmented LLMs. Lastly, we investigate mitigation approaches at both the query and retrieval levels and release the OverSearchQA to foster continued research into efficient search-augmented LLMs.
comment: Accepted to EACL 2026 Main Conference
Evaluating the Use of LLMs for Automated DOM-Level Resolution of Web Performance Issues
Users demand fast, seamless webpage experiences, yet developers often struggle to meet these expectations within tight constraints. Performance optimization, while critical, is a time-consuming and often manual process. One of the most complex tasks in this domain is modifying the Document Object Model (DOM), which is why this study focuses on it. Recent advances in Large Language Models (LLMs) offer a promising avenue to automate this complex task, potentially transforming how developers address web performance issues. This study evaluates the effectiveness of nine state-of-the-art LLMs for automated web performance issue resolution. For this purpose, we first extracted the DOM trees of 15 popular webpages (e.g., Facebook), and then we used Lighthouse to retrieve their performance audit reports. Subsequently, we passed the extracted DOM trees and corresponding audits to each model for resolution. Our study considers 7 unique audit categories, revealing that LLMs universally excel at SEO & Accessibility issues. However, their efficacy in performance-critical DOM manipulations is mixed. While high-performing models like GPT-4.1 delivered significant reductions in areas like Initial Load, Interactivity, and Network Optimization (e.g., 46.52% to 48.68% audit incidence reductions), others, such as GPT-4o-mini, notably underperformed, consistently. A further analysis of these modifications showed a predominant additive strategy and frequent positional changes, alongside regressions particularly impacting Visual Stability.
comment: Accepted to the The ACM International Conference on Mining Software Repositories (MSR) (MSR 2026)
The Evaluation Gap in Medicine, AI and LLMs: Navigating Elusive Ground Truth & Uncertainty via a Probabilistic Paradigm
Benchmarking the relative capabilities of AI systems, including Large Language Models (LLMs) and Vision Models, typically ignores the impact of uncertainty in the underlying ground truth answers from experts. This ambiguity is particularly consequential in medicine where uncertainty is pervasive. In this paper, we introduce a probabilistic paradigm to theoretically explain how high certainty in ground truth answers is almost always necessary for even an expert to achieve high scores, whereas in datasets with high variation in ground truth answers there may be little difference between a random labeller and an expert. Therefore, ignoring uncertainty in ground truth evaluation data can result in the misleading conclusion that a non-expert has similar performance to that of an expert. Using the probabilistic paradigm, we thus bring forth the concepts of expected accuracy and expected F1 to estimate the score an expert human or system can achieve given ground truth answer variability. Our work leads to the recommendation that when establishing the capability of a system, results should be stratified by probability of the ground truth answer, typically measured by the agreement rate of ground truth experts. Stratification becomes critical when the overall performance drops below a threshold of 80%. Under stratified evaluation, performance comparison becomes more reliable in high certainty bins, mitigating the effect of the key confounding factor -- uncertainty.
Prompt-Free SAM-Based Multi-Task Framework for Breast Ultrasound Lesion Segmentation and Classification
Accurate tumor segmentation and classification in breast ultrasound (BUS) imaging remain challenging due to low contrast, speckle noise, and diverse lesion morphology. This study presents a multi-task deep learning framework that jointly performs lesion segmentation and diagnostic classification using embeddings from the Segment Anything Model (SAM) vision encoder. Unlike prompt-based SAM variants, our approach employs a prompt-free, fully supervised adaptation where high-dimensional SAM features are decoded through either a lightweight convolutional head or a UNet-inspired decoder for pixel-wise segmentation. The classification branch is enhanced via mask-guided attention, allowing the model to focus on lesion-relevant features while suppressing background artifacts. Experiments on the PRECISE 2025 breast ultrasound dataset, split per class into 80 percent training and 20 percent testing, show that the proposed method achieves a Dice Similarity Coefficient (DSC) of 0.887 and an accuracy of 92.3 percent, ranking among the top entries on the PRECISE challenge leaderboard. These results demonstrate that SAM-based representations, when coupled with segmentation-guided learning, significantly improve both lesion delineation and diagnostic prediction in breast ultrasound imaging.
MMUEChange: A Generalized LLM Agent Framework for Intelligent Multi-Modal Urban Environment Change Analysis
Understanding urban environment change is essential for sustainable development. However, current approaches, particularly remote sensing change detection, often rely on rigid, single-modal analysis. To overcome these limitations, we propose MMUEChange, a multi-modal agent framework that flexibly integrates heterogeneous urban data via a modular toolkit and a core module, Modality Controller for cross- and intra-modal alignment, enabling robust analysis of complex urban change scenarios. Case studies include: a shift toward small, community-focused parks in New York, reflecting local green space efforts; the spread of concentrated water pollution across districts in Hong Kong, pointing to coordinated water management; and a notable decline in open dumpsites in Shenzhen, with contrasting links between nighttime economic activity and waste types, indicating differing urban pressures behind domestic and construction waste. Compared to the best-performing baseline, the MMUEChange agent achieves a 46.7% improvement in task success rate and effectively mitigates hallucination, demonstrating its capacity to support complex urban change analysis tasks with real-world policy implications.
Efficient Differentiable Causal Discovery via Reliable Super-Structure Learning
Recently, differentiable causal discovery has emerged as a promising approach to improve the accuracy and efficiency of existing methods. However, when applied to high-dimensional data or data with latent confounders, these methods, often based on off-the-shelf continuous optimization algorithms, struggle with the vast search space, the complexity of the objective function, and the nontrivial nature of graph-theoretical constraints. As a result, there has been a surge of interest in leveraging super-structures to guide the optimization process. Nonetheless, learning an appropriate super-structure at the right level of granularity, and doing so efficiently across various settings, presents significant challenges. In this paper, we propose ALVGL, a novel and general enhancement to the differentiable causal discovery pipeline. ALVGL employs a sparse and low-rank decomposition to learn the precision matrix of the data. We design an ADMM procedure to optimize this decomposition, identifying components in the precision matrix that are most relevant to the underlying causal structure. These components are then combined to construct a super-structure that is provably a superset of the true causal graph. This super-structure is used to initialize a standard differentiable causal discovery method with a more focused search space, thereby improving both optimization efficiency and accuracy. We demonstrate the versatility of ALVGL by instantiating it across a range of structural causal models, including both Gaussian and non-Gaussian settings, with and without unmeasured confounders. Extensive experiments on synthetic and real-world datasets show that ALVGL not only achieves state-of-the-art accuracy but also significantly improves optimization efficiency, making it a reliable and effective solution for differentiable causal discovery.
STELP: Secure Transpilation and Execution of LLM-Generated Programs
Rapid evolution of Large Language Models (LLMs) has achieved major advances in reasoning, planning, and function-calling capabilities. Multi-agentic collaborative frameworks using such LLMs place them at the center of solving software development-related tasks such as code generation. However, direct use of LLM generated code in production software development systems is problematic. The code could be unstable or erroneous and contain vulnerabilities such as data poisoning, malicious attacks, and hallucinations that could lead to widespread system malfunctions. This prohibits the adoption of LLM generated code in production AI systems where human code reviews and traditional secure testing tools are impractical or untrustworthy. In this paper, we discuss safety and reliability problems with the execution of LLM generated code and propose a Secure Transpiler and Executor of LLM-Generated Program (STELP), capable of executing LLM-generated code in a controlled and safe manner. STELP secures autonomous production AI systems involving code generation, filling the critical void left by the impracticality or limitations of traditional secure testing methodologies and human oversight. This includes applications such as headless code generation-execution and LLMs that produce executable code snippets as an action plan to be executed in real time. We contribute a human-validated dataset of insecure code snippets and benchmark our approach on publicly available datasets for correctness, safety, and latency. Our results demonstrate that our approach outperforms an existing method by a significant margin, particularly in its ability to safely execute risky code snippets. Warning: This paper contains malicious code snippets that should be run with caution.
Jailbreaking Large Language Models through Iterative Tool-Disguised Attacks via Reinforcement Learning
Large language models (LLMs) have demonstrated remarkable capabilities across diverse applications, however, they remain critically vulnerable to jailbreak attacks that elicit harmful responses violating human values and safety guidelines. Despite extensive research on defense mechanisms, existing safeguards prove insufficient against sophisticated adversarial strategies. In this work, we propose iMIST (\underline{i}nteractive \underline{M}ulti-step \underline{P}rogre\underline{s}sive \underline{T}ool-disguised Jailbreak Attack), a novel adaptive jailbreak method that synergistically exploits vulnerabilities in current defense mechanisms. iMIST disguises malicious queries as normal tool invocations to bypass content filters, while simultaneously introducing an interactive progressive optimization algorithm that dynamically escalates response harmfulness through multi-turn dialogues guided by real-time harmfulness assessment. Our experiments on widely-used models demonstrate that iMIST achieves higher attack effectiveness, while maintaining low rejection rates. These results reveal critical vulnerabilities in current LLM safety mechanisms and underscore the urgent need for more robust defense strategies.
PRISMA: Reinforcement Learning Guided Two-Stage Policy Optimization in Multi-Agent Architecture for Open-Domain Multi-Hop Question Answering
Answering real-world open-domain multi-hop questions over massive corpora is a critical challenge in Retrieval-Augmented Generation (RAG) systems. Recent research employs reinforcement learning (RL) to end-to-end optimize the retrieval-augmented reasoning process, directly enhancing its capacity to resolve complex queries. However, reliable deployment is hindered by two obstacles. 1) Retrieval Collapse: iterative retrieval over large corpora fails to locate intermediate evidence containing bridge answers without reasoning-guided planning, causing downstream reasoning to collapse. 2) Learning Instability: end-to-end trajectory training suffers from weak credit assignment across reasoning chains and poor error localization across modules, causing overfitting to benchmark-specific heuristics that limit transferability and stability. To address these problems, we propose PRISMA, a decoupled RL-guided framework featuring a Plan-Retrieve-Inspect-Solve-Memoize architecture. PRISMA's strength lies in reasoning-guided collaboration: the Inspector provides reasoning-based feedback to refine the Planner's decomposition and fine-grained retrieval, while enforcing evidence-grounded reasoning in the Solver. We optimize individual agent capabilities via Two-Stage Group Relative Policy Optimization (GRPO). Stage I calibrates the Planner and Solver as specialized experts in planning and reasoning, while Stage II utilizes Observation-Aware Residual Policy Optimization (OARPO) to enhance the Inspector's ability to verify context and trigger targeted recovery. Experiments show that PRISMA achieves state-of-the-art performance on ten benchmarks and can be deployed efficiently in real-world scenarios.
Do LLMs Need Inherent Reasoning Before Reinforcement Learning? A Study in Korean Self-Correction
Large Language Models (LLMs) demonstrate strong reasoning and self-correction abilities in high-resource languages like English, but their performance remains limited in low-resource languages such as Korean. In this study, we investigate whether reinforcement learning (RL) can enhance Korean reasoning abilities to a degree comparable to English. Our findings reveal that RL alone yields limited improvements when applied to models lacking inherent Korean reasoning capabilities. To address this, we explore several fine-tuning strategies and show that aligning the model's internal reasoning processes with Korean inputs-particularly by tuning Korean-specific neurons in early layers-is key to unlocking RL's effectiveness. We introduce a self-correction code-switching dataset to facilitate this alignment and observe significant performance gains in both mathematical reasoning and self-correction tasks. Ultimately, we conclude that the crucial factor in multilingual reasoning enhancement is not injecting new linguistic knowledge, but effectively eliciting and aligning existing reasoning capabilities. Our study provides a new perspective on how internal translation and neuron-level tuning contribute to multilingual reasoning alignment in LLMs.
comment: IJCNLP-AACL 2025 (Main), Outstanding Paper Award
ART: Adaptive Reasoning Trees for Explainable Claim Verification
Large Language Models (LLMs) are powerful candidates for complex decision-making, leveraging vast encoded knowledge and remarkable zero-shot abilities. However, their adoption in high-stakes environments is hindered by their opacity; their outputs lack faithful explanations and cannot be effectively contested to correct errors, undermining trustworthiness. In this paper, we propose ART (Adaptive Reasoning Trees), a hierarchical method for claim verification. The process begins with a root claim, which branches into supporting and attacking child arguments. An argument's strength is determined bottom-up via a pairwise tournament of its children, adjudicated by a judge LLM, allowing a final, transparent and contestable verdict to be systematically derived which is missing in methods like Chain-of-Thought (CoT). We empirically validate ART on multiple datasets, analyzing different argument generators and comparison strategies. Our findings show that ART's structured reasoning outperforms strong baselines, establishing a new benchmark for explainable claim verification which is more reliable and ensures clarity in the overall decision making step.
Tracing Moral Foundations in Large Language Models
Large language models (LLMs) often produce human-like moral judgments, but it is unclear whether this reflects an internal conceptual structure or superficial ``moral mimicry.'' Using Moral Foundations Theory (MFT) as an analytic framework, we study how moral foundations are encoded, organized, and expressed within two instruction-tuned LLMs: Llama-3.1-8B-Instruct and Qwen2.5-7B-Instruct. We employ a multi-level approach combining (i) layer-wise analysis of MFT concept representations and their alignment with human moral perceptions, (ii) pretrained sparse autoencoders (SAEs) over the residual stream to identify sparse features that support moral concepts, and (iii) causal steering interventions using dense MFT vectors and sparse SAE features. We find that both models represent and distinguish moral foundations in a structured, layer-dependent way that aligns with human judgments. At a finer scale, SAE features show clear semantic links to specific foundations, suggesting partially disentangled mechanisms within shared representations. Finally, steering along either dense vectors or sparse features produces predictable shifts in foundation-relevant behavior, demonstrating a causal connection between internal representations and moral outputs. Together, our results provide mechanistic evidence that moral concepts in LLMs are distributed, layered, and partly disentangled, suggesting that pluralistic moral structure can emerge as a latent pattern from the statistical regularities of language alone.
There are no Champions in Supervised Long-Term Time Series Forecasting
Recent advances in long-term time series forecasting have introduced numerous complex supervised prediction models that consistently outperform previously published architectures. However, this rapid progression raises concerns regarding inconsistent benchmarking and reporting practices, which may undermine the reliability of these comparisons. In this study, we first perform a broad, thorough, and reproducible evaluation of the top-performing supervised models on the most popular benchmark and additional baselines representing the most active architecture families. This extensive evaluation assesses eight models on 14 datasets, encompassing $\sim$5,000 trained networks for the hyperparameter (HP) searches. Then, through a comprehensive analysis, we find that slight changes to experimental setups or current evaluation metrics drastically shift the common belief that newly published results are advancing the state of the art. Our findings emphasize the need to shift focus away from pursuing ever-more complex models, towards enhancing benchmarking practices through rigorous and standardized evaluations that enable more substantiated claims, including reproducible HP setups and statistical testing. We offer recommendations for future research.
comment: Accepted at TMLR
Spectral Masking and Interpolation Attack (SMIA): A Black-box Adversarial Attack against Voice Authentication and Anti-Spoofing Systems
Voice Authentication Systems (VAS) use unique vocal characteristics for verification. They are increasingly integrated into high-security sectors such as banking and healthcare. Despite their improvements using deep learning, they face severe vulnerabilities from sophisticated threats like deepfakes and adversarial attacks. The emergence of realistic voice cloning complicates detection, as systems struggle to distinguish authentic from synthetic audio. While anti-spoofing countermeasures (CMs) exist to mitigate these risks, many rely on static detection models that can be bypassed by novel adversarial methods, leaving a critical security gap. To demonstrate this vulnerability, we propose the Spectral Masking and Interpolation Attack (SMIA), a novel method that strategically manipulates inaudible frequency regions of AI-generated audio. By altering the voice in imperceptible zones to the human ear, SMIA creates adversarial samples that sound authentic while deceiving CMs. We conducted a comprehensive evaluation of our attack against state-of-the-art (SOTA) models across multiple tasks, under simulated real-world conditions. SMIA achieved a strong attack success rate (ASR) of at least 82% against combined VAS/CM systems, at least 97.5% against standalone speaker verification systems, and 100% against countermeasures. These findings conclusively demonstrate that current security postures are insufficient against adaptive adversarial attacks. This work highlights the urgent need for a paradigm shift toward next-generation defenses that employ dynamic, context-aware frameworks capable of evolving with the threat landscape.
Monadic Context Engineering
The proliferation of Large Language Models (LLMs) has catalyzed a shift towards autonomous agents capable of complex reasoning and tool use. However, current agent architectures are frequently constructed using imperative, ad hoc patterns. This results in brittle systems plagued by difficulties in state management, error handling, and concurrency. This paper introduces Monadic Context Engineering (MCE), a novel architectural paradigm leveraging the algebraic structures of Functors, Applicative Functors, and Monads to provide a formal foundation for agent design. MCE treats agent workflows as computational contexts where cross-cutting concerns, such as state propagation, short-circuiting error handling, and asynchronous execution, are managed intrinsically by the algebraic properties of the abstraction. We demonstrate how Monads enable robust sequential composition, how Applicatives provide a principled structure for parallel execution, and crucially, how Monad Transformers allow for the systematic composition of these capabilities. This layered approach enables developers to construct complex, resilient, and efficient AI agents from simple, independently verifiable components. We further extend this framework to describe Meta-Agents, which leverage MCE for generative orchestration, dynamically creating and managing sub-agent workflows through metaprogramming.
comment: The authors have decided to withdraw this manuscript, as the ideas presented in the paper are not yet sufficiently mature and require further development and refinement
QueryGym: Step-by-Step Interaction with Relational Databases
We introduce QueryGym, an interactive environment for building, testing, and evaluating LLM-based query planning agents. Existing frameworks often tie agents to specific query language dialects or obscure their reasoning; QueryGym instead requires agents to construct explicit sequences of relational algebra operations, ensuring engine-agnostic evaluation and transparent step-by-step planning. The environment is implemented as a Gymnasium interface that supplies observations -- including schema details, intermediate results, and execution feedback -- and receives actions that represent database exploration (e.g., previewing tables, sampling column values, retrieving unique values) as well as relational algebra operations (e.g., filter, project, join). We detail the motivation and the design of the environment. In the demo, we showcase the utility of the environment by contrasting it with contemporary LLMs that query databases. QueryGym serves as a practical testbed for research in error remediation, transparency, and reinforcement learning for query generation. For the associated demo, see https://ibm.biz/QueryGym.
Controlled Automatic Task-Specific Synthetic Data Generation for Hallucination Detection
We present a novel approach to automatically generate non-trivial task-specific synthetic datasets for hallucination detection. Our approach features a two-step generation-selection pipeline, using hallucination pattern guidance and a language style alignment during generation. Hallucination pattern guidance leverages the most important task-specific hallucination patterns while language style alignment aligns the style of the synthetic dataset with benchmark text. To obtain robust supervised detectors from synthetic datasets, we also adopt a data mixture strategy to improve performance robustness and generalization. Our results on three datasets show that our generated hallucination text is more closely aligned with non-hallucinated text versus baselines, to train hallucination detectors with better generalization. Our hallucination detectors trained on synthetic datasets outperform in-context-learning (ICL)-based detectors by a large margin of 32%. Our extensive experiments confirm the benefits of our approach with cross-task and cross-generator generalization. Our data-mixture-based training further improves the generalization and robustness of hallucination detection.
comment: 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (ACM KDD 2024). Accepted by Workshop on Evaluation and Trustworthiness of Generative AI Models
Towards AI-Native Software Engineering (SE 3.0): A Vision and a Challenge Roadmap
The rise of AI-assisted software engineering (SE 2.0), powered by Foundation Models (FMs) and FM-powered coding assistants, has shown promise in improving developer productivity. However, it has also exposed inherent limitations, such as cognitive overload on developers and inefficiencies. We propose a shift towards Software Engineering 3.0 (SE 3.0), an AI-native approach characterized by intent-centric, conversation-oriented development between human developers and AI teammates. SE 3.0 envisions AI systems evolving beyond task-driven copilots into intelligent collaborators, capable of deeply understanding and reasoning about software engineering principles and intents. We outline the key components of the SE 3.0 technology stack, which includes Teammate.next for adaptive and personalized AI partnership, IDE.next for intent-centric conversation-oriented development, Compiler.next for multi-objective code synthesis, and Runtime.next for SLA-aware execution with edge-computing support. Our vision addresses the inefficiencies and cognitive strain of SE 2.0 by fostering a symbiotic relationship between human developers and AI, maximizing their complementary strengths. We also present a roadmap of challenges that must be overcome to realize our vision of SE 3.0. This paper lays the foundation for future discussions on the role of AI in the next era of software engineering.
Let Me Think! A Long Chain-of-Thought Can Be Worth Exponentially Many Short Ones NeurIPS 2025
Inference-time computation has emerged as a promising scaling axis for improving large language model reasoning. However, despite yielding impressive performance, the optimal allocation of inference-time computation remains poorly understood. A central question is whether to prioritize sequential scaling (e.g., longer chains of thought) or parallel scaling (e.g., majority voting across multiple short chains of thought). In this work, we seek to illuminate the landscape of test-time scaling by demonstrating the existence of reasoning settings where sequential scaling offers an exponential advantage over parallel scaling. These settings are based on graph connectivity problems in challenging distributions of graphs. We validate our theoretical findings with comprehensive experiments across a range of language models, including models trained from scratch for graph connectivity with different chain of thought strategies as well as large reasoning models.
comment: Published at NeurIPS 2025
Collective Communication for 100k+ GPUs
The increasing scale of large language models (LLMs) necessitates highly efficient collective communication frameworks, particularly as training workloads extend to hundreds of thousands of GPUs. Traditional communication methods face significant throughput and latency limitations at this scale, hindering both the development and deployment of state-of-the-art models. This paper presents the NCCLX collective communication framework, developed at Meta, engineered to optimize performance across the full LLM lifecycle, from the synchronous demands of large-scale training to the low-latency requirements of inference. The framework is designed to support complex workloads on clusters exceeding 100,000 GPUs, ensuring reliable, high-throughput, and low-latency data exchange. Empirical evaluation on the Llama4 model demonstrates substantial improvements in communication efficiency. This research contributes a robust solution for enabling the next generation of LLMs to operate at unprecedented scales.
ImageNet-trained CNNs are not biased towards texture: Revisiting feature reliance through controlled suppression NeurIPS 2025
The hypothesis that Convolutional Neural Networks (CNNs) are inherently texture-biased has shaped much of the discourse on feature use in deep learning. We revisit this hypothesis by examining limitations in the cue-conflict experiment by Geirhos et al. To address these limitations, we propose a domain-agnostic framework that quantifies feature reliance through systematic suppression of shape, texture, and color cues, avoiding the confounds of forced-choice conflicts. By evaluating humans and neural networks under controlled suppression conditions, we find that CNNs are not inherently texture-biased but predominantly rely on local shape features. Nonetheless, this reliance can be substantially mitigated through modern training strategies or architectures (ConvNeXt, ViTs). We further extend the analysis across computer vision, medical imaging, and remote sensing, revealing that reliance patterns differ systematically: computer vision models prioritize shape, medical imaging models emphasize color, and remote sensing models exhibit a stronger reliance on texture. Code is available at https://github.com/tomburgert/feature-reliance.
comment: Accepted at NeurIPS 2025 (oral)
From Laboratory to Real-World Applications: Benchmarking Agentic Code Reasoning at the Repository Level
As large language models (LLMs) evolve into autonomous agents, evaluating repository-level reasoning, the ability to maintain logical consistency across massive, real-world, interdependent file systems, has become critical. Current benchmarks typically fluctuate between isolated code snippets and black-box evaluations. We present RepoReason, a white-box diagnostic benchmark centered on abductive assertion verification. To eliminate memorization while preserving authentic logical depth, we implement an execution-driven mutation framework that utilizes the environment as a semantic oracle to regenerate ground-truth states. Furthermore, we establish a fine-grained diagnostic system using dynamic program slicing, quantifying reasoning via three orthogonal metrics: $ESV$ (reading load), $MCL$ (simulation depth), and $DFI$ (integration width). Comprehensive evaluations of frontier models (e.g., Claude-4.5-Sonnet, DeepSeek-v3.1-Terminus) reveal a prevalent aggregation deficit, where integration width serves as the primary cognitive bottleneck. Our findings provide granular white-box insights for optimizing the next generation of agentic software engineering.
SCOPE: Sequential Causal Optimization of Process Interventions
Prescriptive Process Monitoring (PresPM) recommends interventions during business processes to optimize key performance indicators (KPIs). In realistic settings, interventions are rarely isolated: organizations need to align sequences of interventions to jointly steer the outcome of a case. Existing PresPM approaches fall short in this respect. Many focus on a single intervention decision, while others treat multiple interventions independently, ignoring how they interact over time. Methods that do address these dependencies depend either on simulation or data augmentation to approximate the process to train a Reinforcement Learning (RL) agent, which can create a reality gap and introduce bias. We introduce SCOPE, a PresPM approach that learns aligned sequential intervention recommendations. SCOPE employs backward induction to estimate the effect of each candidate intervention action, propagating its impact from the final decision point back to the first. By leveraging causal learners, our method can utilize observational data directly, unlike methods that require constructing process approximations for reinforcement learning. Experiments on both an existing synthetic dataset and a new semi-synthetic dataset show that SCOPE consistently outperforms state-of-the-art PresPM techniques in optimizing the KPI. The novel semi-synthetic setup, based on a real-life event log, is provided as a reusable benchmark for future work on sequential PresPM.
TDHook: A Lightweight Framework for Interpretability
Interpretability of Deep Neural Networks (DNNs) is a growing field driven by the study of vision and language models. Yet, some use cases, like image captioning, or domains like Deep Reinforcement Learning (DRL), require complex modelling, with multiple inputs and outputs or use composable and separated networks. As a consequence, they rarely fit natively into the API of popular interpretability frameworks. We thus present TDHook, an open-source, lightweight, generic interpretability framework based on $\texttt{tensordict}$ and applicable to any $\texttt{torch}$ model. It focuses on handling complex composed models which can be trained for Computer Vision, Natural Language Processing, Reinforcement Learning or any other domain. This library features ready-to-use methods for attribution, probing and a flexible get-set API for interventions, and is aiming to bridge the gap between these method classes to make modern interpretability pipelines more accessible. TDHook is designed with minimal dependencies, requiring roughly half as much disk space as $\texttt{transformer_lens}$, and, in our controlled benchmark, achieves up to a $\times$2 speed-up over $\texttt{captum}$ when running integrated gradients for multi-target pipelines on both CPU and GPU. In addition, to value our work, we showcase concrete use cases of our library with composed interpretability pipelines in Computer Vision (CV) and Natural Language Processing (NLP), as well as with complex models in DRL.
Climbing the Ladder of Reasoning: What LLMs Can-and Still Can't-Solve after SFT?
Recent supervised fine-tuning (SFT) approaches have significantly improved language models' performance on mathematical reasoning tasks, even when models are trained at a small scale. However, the specific capabilities enhanced through such fine-tuning remain poorly understood. In this paper, we conduct a detailed analysis of model performance on the AIME24 dataset to understand how reasoning capabilities evolve. We discover a ladder-like structure in problem difficulty, categorize questions into four tiers (Easy, Medium, Hard, and Extremely Hard (Exh)), and identify the specific requirements for advancing between tiers. We find that progression from Easy to Medium tier requires adopting an R1 reasoning style with minimal SFT (500-1K instances), while Hard-level questions suffer from frequent model's errors at each step of the reasoning chain, with accuracy plateauing at around 65% despite logarithmic scaling. Exh-level questions present a fundamentally different challenge; they require unconventional problem-solving skills that current models uniformly struggle with. Additional findings reveal that carefully curated small-scale datasets offer limited advantage-scaling dataset size proves far more effective. Our analysis provides a clearer roadmap for advancing language model capabilities in mathematical reasoning.
Memorization in Large Language Models in Medicine: Prevalence, Characteristics, and Implications
Large Language Models (LLMs) have demonstrated significant potential in medicine, with many studies adapting them through continued pre-training or fine-tuning on medical data to enhance domain-specific accuracy and safety. However, a key open question remains: to what extent do LLMs memorize medical training data. Memorization can be beneficial when it enables LLMs to retain valuable medical knowledge during domain adaptation. Yet, it also raises concerns. LLMs may inadvertently reproduce sensitive clinical content (e.g., patient-specific details), and excessive memorization may reduce model generalizability, increasing risks of misdiagnosis and making unwarranted recommendations. These risks are further amplified by the generative nature of LLMs, which can not only surface memorized content but also produce overconfident, misleading outputs that may hinder clinical adoption. In this work, we present a study on memorization of LLMs in medicine, assessing its prevalence (how frequently it occurs), characteristics (what is memorized), volume (how much content is memorized), and potential downstream impacts (how memorization may affect medical applications). We systematically analyze common adaptation scenarios: (1) continued pretraining on medical corpora, (2) fine-tuning on standard medical benchmarks, and (3) fine-tuning on real-world clinical data, including over 13,000 unique inpatient records from Yale New Haven Health System. The results demonstrate that memorization is prevalent across all adaptation scenarios and significantly higher than that reported in the general domain. Moreover, memorization has distinct characteristics during continued pre-training and fine-tuning, and it is persistent: up to 87% of content memorized during continued pre-training remains after fine-tuning on new medical tasks.
Evaluating machine learning models for predicting pesticide toxicity to honey bees
Small molecules play a critical role in the biomedical, environmental, and agrochemical domains, each with distinct physicochemical requirements and success criteria. Although biomedical research benefits from extensive datasets and established benchmarks, agrochemical data remain scarce, particularly with respect to species-specific toxicity. This work focuses on ApisTox, the most comprehensive dataset of experimentally validated chemical toxicity to the honey bee (\textit{Apis mellifera}), an ecologically vital pollinator. The primary goal of this study was to determine the suitability of diverse machine learning approaches for modeling such toxicity, including molecular fingerprints, graph kernels, and graph neural networks, as well as pretrained models. Comparative analysis with medicinal datasets from the MoleculeNet benchmark reveals that ApisTox represents a distinct chemical space. Performance degradation on non-medicinal datasets, such as \mbox{ApisTox}, demonstrates their limited generalizability of current state-of-the-art algorithms trained solely on biomedical data. Our study highlights the need for more diverse datasets and for targeted model development geared toward the agrochemical domain.
Foundation models for high-energy physics
The rise of foundation models -- large, pretrained machine learning models that can be finetuned to a variety of tasks -- has revolutionized the fields of natural language processing and computer vision. In high-energy physics, the question of whether these models can be implemented directly in physics research, or even built from scratch, tailored for particle physics data, has generated an increasing amount of attention. This review, which is the first on the topic of foundation models in high-energy physics, summarizes and discusses the research that has been published in the field so far.
comment: Submitted to SciPost Physics Proceedings (EuCAIFCon 2025)
LLMs as verification oracles for Solidity
Ensuring the correctness of smart contracts is critical, as even subtle flaws can lead to severe financial losses. While bug detection tools able to spot common vulnerability patterns can serve as a first line of defense, most real-world exploits and losses stem from errors in the contract business logic. Formal verification tools such as SolCMC and the Certora Prover address this challenge, but their impact remains limited by steep learning curves and restricted specification languages. Recent works have begun to explore the use of large language models (LLMs) for security-related tasks such as vulnerability detection and test generation. Yet, a fundamental question remains open: can LLMs aid in assessing the validity of arbitrary contract-specific properties? In this paper, we provide the first systematic empirical evaluation of GPT-5, a state-of-the-art reasoning LLM, in this role. We benchmark its performance on a large dataset of verification tasks, compare its outputs against those of established formal verification tools, and assess its practical effectiveness in real-world auditing scenarios. Our study combines quantitative metrics with qualitative analysis, and shows that recent reasoning-oriented LLMs - although lacking soundness guarantees - can be surprisingly effective at predicting the (in)validity of complex properties, suggesting a new frontier in the convergence of AI and formal methods for secure smart contract development and auditing.
Shorter but not Worse: Frugal Reasoning via Easy Samples as Length Regularizers in Math RLVR
Large language models (LLMs) trained for step-by-step reasoning often become excessively verbose, raising inference cost. Standard Reinforcement Learning with Verifiable Rewards (RLVR) pipelines filter out ``easy'' problems for training efficiency, leaving the model to train primarily on harder problems that require longer reasoning chains. This skews the output length distribution upward, resulting in a \textbf{model that conflates ``thinking longer'' with ``thinking better''}. In this work, we show that retaining and modestly up-weighting moderately easy problems acts as an implicit length regularizer. Exposing the model to solvable short-chain tasks constrains its output distribution and prevents runaway verbosity. The result is \textbf{\emph{emergent brevity for free}}: the model learns to solve harder problems without inflating the output length, \textbf{ despite the absence of any explicit length penalization}. RLVR experiments using this approach on \textit{Qwen3-4B-Thinking-2507} (with a 16k token limit) achieve baseline pass@1 AIME25 accuracy while generating solutions that are, on average, nearly twice as short. The code is available at \href{https://github.com/MBZUAI-Paris/Frugal-AI}{GitHub}, with datasets and models on \href{https://huggingface.co/collections/MBZUAI-Paris/k2-think-mini-68dcfa8b114686a4bd3dc2bc}{Hugging Face}.
Visual Attention Reasoning via Hierarchical Search and Self-Verification
Multimodal Large Language Models (MLLMs) frequently hallucinate due to their reliance on fragile, linear reasoning and weak visual grounding. We propose Visual Attention Reasoning (VAR), a reinforcement learning framework that reformulates reasoning as a hierarchical search with self-verification. VAR enforces traceable evidence grounding by generating explicit bounding boxes, guided by a novel reward function combining geometric precision and semantic sufficiency. Furthermore, it replaces linear Chain-of-Thought with a tree-search policy capable of backtracking to correct logical errors. Theoretical analysis validates the framework's reliability, and extensive experiments demonstrate that VAR significantly outperforms state-of-the-art methods on complex hallucination and safety benchmarks.
An Evaluation on Large Language Model Outputs: Discourse and Memorization
We present an empirical evaluation of various outputs generated by nine of the most widely-available large language models (LLMs). Our analysis is done with off-the-shelf, readily-available tools. We find a correlation between percentage of memorized text, percentage of unique text, and overall output quality, when measured with respect to output pathologies such as counterfactual and logically-flawed statements, and general failures like not staying on topic. Overall, 80.0% of the outputs evaluated contained memorized data, but outputs containing the most memorized content were also more likely to be considered of high quality. We discuss and evaluate mitigation strategies, showing that, in the models evaluated, the rate of memorized text being output is reduced. We conclude with a discussion on potential implications around what it means to learn, to memorize, and to evaluate quality text.
comment: Final version at Natural Language Processing Journal
Large language models can effectively convince people to believe conspiracies
Large language models (LLMs) have been shown to be persuasive across a variety of contexts. But it remains unclear whether this persuasive power advantages truth over falsehood, or if LLMs can promote misbeliefs just as easily as refuting them. Here, we investigate this question across three pre-registered experiments in which participants (N = 2,724 Americans) discussed a conspiracy theory they were uncertain about with GPT-4o, and the model was instructed to either argue against ("debunking") or for ("bunking") that conspiracy. When using a "jailbroken" GPT-4o variant with guardrails removed, the AI was as effective at increasing conspiracy belief as decreasing it. Concerningly, the bunking AI was rated more positively, and increased trust in AI, more than the debunking AI. Surprisingly, we found that using standard GPT-4o produced very similar effects, such that the guardrails imposed by OpenAI did little to prevent the LLM from promoting conspiracy beliefs. Encouragingly, however, a corrective conversation reversed these newly induced conspiracy beliefs, and simply prompting GPT-4o to only use accurate information dramatically reduced its ability to increase conspiracy beliefs. Our findings demonstrate that LLMs possess potent abilities to promote both truth and falsehood, but that potential solutions may exist to help mitigate this risk.
Closing the Reality Gap: Zero-Shot Sim-to-Real Deployment for Dexterous Force-Based Grasping and Manipulation
Human-like dexterous hands with multiple fingers offer human-level manipulation capabilities, but training control policies that can directly deploy on real hardware remains difficult due to contact-rich physics and imperfect actuation. We close this gap with a practical sim-to-real reinforcement learning (RL) framework that utilizes dense tactile feedback combined with joint torque sensing to explicitly regulate physical interactions. To enable effective sim-to-real transfer, we introduce (i) a computationally fast tactile simulation that computes distances between dense virtual tactile units and the object via parallel forward kinematics, providing high-rate, high-resolution touch signals needed by RL; (ii) a current-to-torque calibration that eliminates the need for torque sensors on dexterous hands by mapping motor current to joint torque; and (iii) actuator dynamics modeling to bridge the actuation gaps with randomization of non-ideal effects such as backlash, torque-speed saturation. Using an asymmetric actor-critic PPO pipeline trained entirely in simulation, our policies deploy directly to a five-finger hand. The resulting policies demonstrated two essential skills: (1) command-based, controllable grasp force tracking, and (2) reorientation of objects in the hand, both of which were robustly executed without fine-tuning on the robot. By combining tactile and torque in the observation space with effective sensing/actuation modeling, our system provides a practical solution to achieve reliable dexterous manipulation. To our knowledge, this is the first demonstration of controllable grasping on a multi-finger dexterous hand trained entirely in simulation and transferred zero-shot on real hardware.
Detection of LLM-Paraphrased Code and Identification of the Responsible LLM Using Coding Style Features
Recent progress in large language models (LLMs) for code generation has raised serious concerns about intellectual property protection. Malicious users can exploit LLMs to produce paraphrased versions of proprietary code that closely resemble the original. While the potential for LLM-assisted code paraphrasing continues to grow, research on detecting it remains limited, underscoring an urgent need for detection system. We respond to this need by proposing two tasks. The first task is to detect whether code generated by an LLM is a paraphrased version of original human-written code. The second task is to identify which LLM is used to paraphrase the original code. For these tasks, we construct a dataset LPcode consisting of pairs of human-written code and LLM-paraphrased code using various LLMs. We statistically confirm significant differences in the coding styles of human-written and LLM-paraphrased code, particularly in terms of naming consistency, code structure, and readability. Based on these findings, we develop LPcodedec, a detection method that identifies paraphrase relationships between human-written and LLM-generated code, and discover which LLM is used for the paraphrasing. LPcodedec outperforms the best baselines in two tasks, improving F1 scores by 2.64% and 15.17% while achieving speedups of 1,343x and 213x, respectively. Our code and data are available at https://github.com/Shinwoo-Park/detecting_llm_paraphrased_code_via_coding_style_features.
comment: In Engineering Applications of Artificial Intelligence, Vol. 162, December 2025
Explainable AI needs formalization
The field of "explainable artificial intelligence" (XAI) seemingly addresses the desire that decisions of machine learning systems should be human-understandable. However, in its current state, XAI itself needs scrutiny. Popular methods cannot reliably answer relevant questions about ML models, their training data, or test inputs, because they systematically attribute importance to input features that are independent of the prediction target. This limits the utility of XAI for diagnosing and correcting data and models, for scientific discovery, and for identifying intervention targets. The fundamental reason for this is that current XAI methods do not address well-defined problems and are not evaluated against targeted criteria of explanation correctness. Researchers should formally define the problems they intend to solve and design methods accordingly. This will lead to diverse use-case-dependent notions of explanation correctness and objective metrics of explanation performance that can be used to validate XAI algorithms.
Selection-Induced Contraction of Innovation Statistics in Gated Kalman Filters
Validation gating is a fundamental component of classical Kalman-based tracking systems. Only measurements whose normalized innovation squared (NIS) falls below a prescribed threshold are considered for state update. While this procedure is statistically motivated by the chi-square distribution, it implicitly replaces the unconditional innovation process with a conditionally observed one, restricted to the validation event. This paper shows that innovation statistics computed after gating converge to gate-conditioned rather than nominal quantities. Under classical linear--Gaussian assumptions, we derive exact expressions for the first- and second-order moments of the innovation conditioned on ellipsoidal gating, and show that gating induces a deterministic, dimension-dependent contraction of the innovation covariance. The analysis is extended to NN association, which is shown to act as an additional statistical selection operator. We prove that selecting the minimum-norm innovation among multiple in-gate measurements introduces an unavoidable energy contraction, implying that nominal innovation statistics cannot be preserved under nontrivial gating and association. Closed-form results in the two-dimensional case quantify the combined effects and illustrate their practical significance.
comment: 9 pages, preprint
AtomThink: Multimodal Slow Thinking with Atomic Step Reasoning
In this paper, we address the challenging task of multimodal reasoning by incorporating the notion of ``slow thinking'' into multimodal large language models (MLLMs). Our core idea is that models can learn to adaptively use different levels of reasoning to tackle questions of varying complexity. We propose a novel paradigm of Self-structured Chain of Thought (SCoT), which consists of minimal semantic atomic steps. Unlike existing methods that rely on structured templates or free-form paradigms, our method not only generates flexible CoT structures for various complex tasks but also mitigates the phenomenon of overthinking for easier tasks. To introduce structured reasoning into visual cognition, we design a novel AtomThink framework with four key modules: (i) a data engine to generate high-quality multimodal reasoning paths; (ii) a supervised fine-tuning (SFT) process with serialized inference data; (iii) a policy-guided multi-turn inference method; and (iv) an atomic capability metric to evaluate the single-step utilization rate. Extensive experiments demonstrate that the proposed AtomThink significantly improves the performance of baseline MLLMs, achieving more than 10\% average accuracy gains on MathVista and MathVerse. Compared to state-of-the-art structured CoT approaches, our method not only achieves higher accuracy but also improves data utilization by 5 $\times$ and boosts inference efficiency by 85.3\%. Our code is publicly available at https://github.com/Kun-Xiang/AtomThink.
comment: TPAMI accepted
PixelArena: A benchmark for Pixel-Precision Visual Intelligence
Omni-modal models that have multimodal input and output are emerging. However, benchmarking their multimodal generation, especially in image generation, is challenging due to the subtleties of human preferences and model biases. Many image generation benchmarks focus on aesthetics instead of the fine-grained generation capabilities of these models, failing to evaluate their visual intelligence with objective metrics. In PixelArena, we propose using semantic segmentation tasks to objectively examine their fine-grained generative intelligence with pixel precision. With our benchmark and experiments, we find the latest Gemini 3 Pro Image has emergent image generation capabilities that generate semantic masks with high fidelity under zero-shot settings, showcasing visual intelligence unseen before and true generalization in new image generation tasks. We further investigate its results, compare them qualitatively and quantitatively with those of other models, and present failure cases. The findings not only signal exciting progress in the field but also provide insights into future research related to dataset development, omni-modal model development, and the design of metrics.
comment: 8 pages, 11 figures, project page: https://pixelarena.reify.ing/project
MAGneT: Coordinated Multi-Agent Generation of Synthetic Multi-Turn Mental Health Counseling Sessions
The growing demand for scalable psychological counseling highlights the need for high-quality, privacy-compliant data, yet such data remains scarce. Here we introduce MAGneT, a novel multi-agent framework for synthetic psychological counseling session generation that decomposes counselor response generation into coordinated sub-tasks handled by specialized LLM agents, each modeling a key psychological technique. Unlike prior single-agent approaches, MAGneT better captures the structure and nuance of real counseling. We further propose a unified evaluation framework that consolidates diverse automatic metrics and expands expert assessment from four to nine counseling dimensions, thus addressing inconsistencies in prior evaluation protocols. Empirically, MAGneT substantially outperforms existing methods: experts prefer MAGneT-generated sessions in 77.2% of cases, and sessions generated by MAGneT yield 3.2% higher general counseling skills and 4.3% higher CBT-specific skills on cognitive therapy rating scale (CTRS). A open source Llama3-8B-Instruct model fine-tuned on MAGneT-generated data also outperforms models fine-tuned using baseline synthetic datasets by 6.9% on average on CTRS.We also make our code and data public.
comment: 38 pages, 32 figures, 12 Tables
The Price of Thought: A Multilingual Analysis of Reasoning, Performance, and Cost of Negotiation in Large Language Models
Negotiation is a fundamental challenge for AI agents, as it requires an ability to reason strategically, model opponents, and balance cooperation with competition. We present the first comprehensive study that systematically evaluates how explicit reasoning training affects the negotiation abilities of both commercial and open-weight large language models, comparing these models to their vanilla counterparts across three languages. Using a self-play setup across three diverse dialogue games, we analyse trade-offs between performance and cost, the language consistency of reasoning processes, and the nature of strategic adaptation exhibited by models. Our findings show that enabling reasoning -- that is, scaling test time compute -- significantly improves negotiation outcomes by enhancing collaboration and helping models overcome task complexities, but comes at a substantial computational cost: reasoning improves GPT-5's performance by 31.4 % while increasing its cost by nearly 400 %. Most critically, we uncover a significant multilingual reasoning distinction: open-weight models consistently switch to English for their internal reasoning steps, even when negotiating in German or Italian (and thus possibly impacting potential explainability gains through the disclosure of reasoning traces), while a leading commercial model maintains language consistency between reasoning and final output.
comment: Accepted at EACL 2026
KOTOX: A Korean Toxic Dataset for Deobfuscation and Detoxification
Online communication increasingly amplifies toxic language, and recent research actively explores methods for detecting and rewriting such content. Existing studies primarily focus on non-obfuscated text, which limits robustness in the situation where users intentionally disguise toxic expressions. In particular, Korean allows toxic expressions to be easily disguised through its agglutinative characteristic. However, obfuscation in Korean remains largely unexplored, which motivates us to introduce a KOTOX: Korean toxic dataset for deobfuscation and detoxification. We categorize Korean obfuscation patterns into linguistically grounded classes and define transformation rules derived from real-world examples. Using these rules, we provide paired neutral and toxic sentences alongside their obfuscated counterparts. Models trained on our dataset better handle obfuscated text without sacrificing performance on non-obfuscated text. This is the first dataset that simultaneously supports deobfuscation and detoxification for the Korean language. We expect it to facilitate better understanding and mitigation of obfuscated toxic content in LLM for Korean. Our code and data are available at https://github.com/leeyejin1231/KOTOX.
comment: 26 pages, 5 figures, 24 tables
Shortcuts and Identifiability in Concept-based Models from a Neuro-Symbolic Lens NeurIPS25
Concept-based Models are neural networks that learn a concept extractor to map inputs to high-level concepts and an inference layer to translate these into predictions. Ensuring these modules produce interpretable concepts and behave reliably in out-of-distribution is crucial, yet the conditions for achieving this remain unclear. We study this problem by establishing a novel connection between Concept-based Models and reasoning shortcuts (RSs), a common issue where models achieve high accuracy by learning low-quality concepts, even when the inference layer is fixed and provided upfront. Specifically, we extend RSs to the more complex setting of Concept-based Models and derive theoretical conditions for identifying both the concepts and the inference layer. Our empirical results highlight the impact of RSs and show that existing methods, even combined with multiple natural mitigation strategies, often fail to meet these conditions in practice.
comment: Accepted at NeurIPS25
Indonesian Multimodal Emotion Recognition via Auxiliary-Enhanced LLM Adaptation
Indonesian, spoken by over 200 million people, remains underserved in multimodal emotion recognition research despite its dominant presence on Southeast Asian social media platforms. We introduce IndoMER, the first multimodal emotion recognition benchmark for Indonesian, comprising 1,944 video segments from 203 speakers with temporally aligned text, audio, and visual annotations across seven emotion categories. The dataset exhibits realistic challenges including cross-modal inconsistency and long-tailed class distributions shaped by Indonesian cultural communication norms. To address these challenges, we propose OmniMER, a multimodal adaptation framework built upon Qwen2.5-Omni that enhances emotion recognition through three auxiliary modality-specific perception tasks: emotion keyword extraction for text, facial expression analysis for video, and prosody analysis for audio. These auxiliary tasks help the model identify emotion-relevant cues in each modality before fusion, reducing reliance on spurious correlations in low-resource settings. Experiments on IndoMER show that OmniMER achieves 0.582 Macro-F1 on sentiment classification and 0.454 on emotion recognition, outperforming the base model by 7.6 and 22.1 absolute points respectively. Cross-lingual evaluation on the Chinese CH-SIMS dataset further demonstrates the generalizability of the proposed framework. The dataset and code are publicly available. https://github.com/yanxm01/INDOMER
Parallel Test-Time Scaling for Latent Reasoning Models
Parallel test-time scaling (TTS) is a pivotal approach for enhancing large language models (LLMs), typically by sampling multiple token-based chains-of-thought in parallel and aggregating outcomes through voting or search. Recent advances in latent reasoning, where intermediate reasoning unfolds in continuous vector spaces, offer a more efficient alternative to explicit Chain-of-Thought, yet whether such latent models can similarly benefit from parallel TTS remains open, mainly due to the absence of sampling mechanisms in continuous space, and the lack of probabilistic signals for advanced trajectory aggregation. This work enables parallel TTS for latent reasoning models by addressing the above issues. For sampling, we introduce two uncertainty-inspired stochastic strategies: Monte Carlo Dropout and Additive Gaussian Noise. For aggregation, we design a Latent Reward Model (LatentRM) trained with step-wise contrastive objective to score and guide latent reasoning. Extensive experiments and visualization analyses show that both sampling strategies scale effectively with compute and exhibit distinct exploration dynamics, while LatentRM enables effective trajectory selection. Together, our explorations open a new direction for scalable inference in continuous spaces. Code and checkpoints released at https://github.com/ModalityDance/LatentTTS
comment: submitted to ACL 2026
Differential syntactic and semantic encoding in LLMs
We study how syntactic and semantic information is encoded in inner layer representations of Large Language Models (LLMs), focusing on the very large DeepSeek-V3. We find that, by averaging hidden-representation vectors of sentences sharing syntactic structure or meaning, we obtain vectors that capture a significant proportion of the syntactic and semantic information contained in the representations. In particular, subtracting these syntactic and semantic ``centroids'' from sentence vectors strongly affects their similarity with syntactically and semantically matched sentences, respectively, suggesting that syntax and semantics are, at least partially, linearly encoded. We also find that the cross-layer encoding profiles of syntax and semantics are different, and that the two signals can to some extent be decoupled, suggesting differential encoding of these two types of linguistic information in LLM representations.
Let's Put Ourselves in Sally's Shoes: Shoes-of-Others Prefilling Improves Theory of Mind in Large Language Models
Recent studies have shown that Theory of Mind (ToM) in large language models (LLMs) has not reached human-level performance yet. Since fine-tuning LLMs on ToM datasets often degrades their generalization, several inference-time methods have been proposed to enhance ToM in LLMs. However, existing inference-time methods for ToM are specialized for inferring beliefs from contexts involving changes in the world state. In this study, we present a new inference-time method for ToM, Shoes-of-Others (SoO) prefilling, which makes fewer assumptions about contexts and is applicable to broader scenarios. SoO prefilling simply specifies the beginning of LLM outputs with ``Let's put ourselves in A's shoes.'', where A denotes the target character's name. We evaluate SoO prefilling on two benchmarks that assess ToM in conversational and narrative contexts without changes in the world state and find that it consistently improves ToM across five categories of mental states. Our analysis suggests that SoO prefilling elicits faithful thoughts, thereby improving the ToM performance.
comment: Accepted to EACL 2026 Findings
SPEC-RL: Accelerating On-Policy Reinforcement Learning via Speculative Rollouts
Large Language Models (LLMs) increasingly rely on reinforcement learning with verifiable rewards (RLVR) to elicit reliable chain-of-thought reasoning. However, the training process remains bottlenecked by the computationally expensive rollout stage. Existing acceleration methods-such as parallelization, objective- and data-driven modifications, and replay buffers-either incur diminishing returns, introduce bias, or overlook redundancy across iterations. We identify that rollouts from consecutive training epochs frequently share a large portion of overlapping segments, wasting computation. To address this, we propose SPEC-RL, a novel framework that integrates SPECulative decoding with the RL rollout process. SPEC-RL reuses prior trajectory segments as speculative prefixes and extends them via a draft-and-verify mechanism, avoiding redundant generation while ensuring policy consistency. Experiments on diverse math reasoning and generalization benchmarks, including AIME24, MATH-500, OlympiadBench, MMLU-STEM, and others, demonstrate that SPEC-RL reduces rollout time by 2-3x without compromising policy quality. As a purely rollout-stage enhancement, SPEC-RL integrates seamlessly with mainstream algorithms (e.g., PPO, GRPO, DAPO), offering a general and practical path to scale RLVR for large reasoning models. Our code is available at https://github.com/ShopeeLLM/Spec-RL
comment: 32 pages, fixed typos
MineNPC-Task: Task Suite for Memory-Aware Minecraft Agents
We present MineNPC-Task, a user-authored benchmark and evaluation harness for testing memory-aware, mixed-initiative LLM agents in open-world Minecraft. Rather than relying on synthetic prompts, tasks are elicited through formative and summative co-play with expert players, then normalized into parametric templates with explicit preconditions and dependency structure. These tasks are paired with machine-checkable validators under a bounded-knowledge policy that forbids out-of-world shortcuts. The harness captures plan, action, and memory events, including plan previews, targeted clarifications, memory reads and writes, precondition checks, and repair attempts, and reports outcomes relative to the total number of attempted subtasks using only in-world evidence. As an initial snapshot, we instantiate the framework with GPT-4o and evaluate 216 subtasks across 8 experienced players. We observe recurring breakdown patterns in code execution, inventory and tool handling, referencing, and navigation, alongside successful recoveries supported by mixed-initiative clarifications and lightweight memory use. Participants rated interaction quality and interface usability positively, while noting the need for stronger memory persistence across tasks. We release the complete task suite, validators, logs, and evaluation harness to support transparent and reproducible evaluation of future memory-aware embodied agents.
See or Say Graphs: Agent-Driven Scalable Graph Structure Understanding with Vision-Language Models
Vision-language models (VLMs) have shown promise in graph structure understanding, but remain limited by input-token constraints, facing scalability bottlenecks and lacking effective mechanisms to coordinate textual and visual modalities. To address these challenges, we propose GraphVista, a unified framework that enhances both scalability and modality coordination in graph structure understanding. For scalability, GraphVista organizes graph information hierarchically into a lightweight GraphRAG base, which retrieves only task-relevant textual descriptions and high-resolution visual subgraphs, compressing redundant context while preserving key reasoning elements. For modality coordination, GraphVista introduces a planning agent that decomposes and routes tasks to the most suitable modality-using the text modality for direct access to explicit graph properties and the visual modality for local graph structure reasoning grounded in explicit topology. Extensive experiments demonstrate that GraphVista scales to large graphs, up to 200$\times$ larger than those used in existing benchmarks, and consistently outperforms existing textual, visual, and fusion-based methods, achieving up to 4.4$\times$ quality improvement over the state-of-the-art baselines by fully exploiting the complementary strengths of both modalities.
KALE-LM-Chem: Vision and Practice Toward an AI Brain for Chemistry
Recent advancements in large language models (LLMs) have demonstrated strong potential for enabling domain-specific intelligence. In this work, we present our vision for building an AI-powered chemical brain, which frames chemical intelligence around four core capabilities: information extraction, semantic parsing, knowledge-based QA, and reasoning & planning. We argue that domain knowledge and logic are essential pillars for enabling such a system to assist and accelerate scientific discovery. To initiate this effort, we introduce our first generation of large language models for chemistry: KALE-LM-Chem and KALE-LM-Chem-1.5, which have achieved outstanding performance in tasks related to the field of chemistry. We hope that our work serves as a strong starting point, helping to realize more intelligent AI and promoting the advancement of human science and technology, as well as societal development.
VietMix: A Naturally-Occurring Parallel Corpus and Augmentation Framework for Vietnamese-English Code-Mixed Machine Translation
Machine translation (MT) systems universally degrade when faced with code-mixed text. This problem is more acute for low-resource languages that lack dedicated parallel corpora. This work directly addresses this gap for Vietnamese-English, a language context characterized by challenges including orthographic ambiguity and the frequent omission of diacritics in informal text. We introduce VietMix, the first expert-translated, naturally occurring parallel corpus of Vietnamese-English code-mixed text. We establish VietMix's utility by developing a data augmentation pipeline that leverages iterative fine-tuning and targeted filtering. Experiments show that models augmented with our data outperform strong back-translation baselines by up to +3.5 xCOMET points and improve zero-shot models by up to +11.9 points. Our work delivers a foundational resource for a challenging language pair and provides a validated, transferable framework for building and augmenting corpora in other low-resource settings.
comment: EACL 2026
CliCARE: Grounding Large Language Models in Clinical Guidelines for Decision Support over Longitudinal Cancer Electronic Health Records AAAI
Large Language Models (LLMs) hold significant promise for improving clinical decision support and reducing physician burnout by synthesizing complex, longitudinal cancer Electronic Health Records (EHRs). However, their implementation in this critical field faces three primary challenges: the inability to effectively process the extensive length and fragmented nature of patient records for accurate temporal analysis; a heightened risk of clinical hallucination, as conventional grounding techniques such as Retrieval-Augmented Generation (RAG) do not adequately incorporate process-oriented clinical guidelines; and unreliable evaluation metrics that hinder the validation of AI systems in oncology. To address these issues, we propose CliCARE, a framework for Grounding Large Language Models in Clinical Guidelines for Decision Support over Longitudinal Cancer Electronic Health Records. The framework operates by transforming unstructured, longitudinal EHRs into patient-specific Temporal Knowledge Graphs (TKGs) to capture long-range dependencies, and then grounding the decision support process by aligning these real-world patient trajectories with a normative guideline knowledge graph. This approach provides oncologists with evidence-grounded decision support by generating a high-fidelity clinical summary and an actionable recommendation. We validated our framework using large-scale, longitudinal data from a private Chinese cancer dataset and the public English MIMIC-IV dataset. In these settings, CliCARE significantly outperforms baselines, including leading long-context LLMs and Knowledge Graph-enhanced RAG methods. The clinical validity of our results is supported by a robust evaluation protocol, which demonstrates a high correlation with assessments made by oncologists.
comment: Accepted in AAAI Conference on Artificial Intelligence (AAAI-26, Oral)
SPAN: Benchmarking and Improving Cross-Calendar Temporal Reasoning of Large Language Models AAAI 2026
We introduce SPAN, a cross-calendar temporal reasoning benchmark, which requires LLMs to perform intra-calendar temporal reasoning and inter-calendar temporal conversion. SPAN features ten cross-calendar temporal reasoning directions, two reasoning types, and two question formats across six calendars. To enable time-variant and contamination-free evaluation, we propose a template-driven protocol for dynamic instance generation that enables assessment on a user-specified Gregorian date. We conduct extensive experiments on both open- and closed-source state-of-the-art (SOTA) LLMs over a range of dates spanning 100 years from 1960 to 2060. Our evaluations show that these LLMs achieve an average accuracy of only 34.5%, with none exceeding 80%, indicating that this task remains challenging. Through in-depth analysis of reasoning types, question formats, and temporal reasoning directions, we identify two key obstacles for LLMs: Future-Date Degradation and Calendar Asymmetry Bias. To strengthen LLMs' cross-calendar temporal reasoning capability, we further develop an LLM-powered Time Agent that leverages tool-augmented code generation. Empirical results show that Time Agent achieves an average accuracy of 95.31%, outperforming several competitive baselines, highlighting the potential of tool-augmented code generation to advance cross-calendar temporal reasoning. We hope this work will inspire further efforts toward more temporally and culturally adaptive LLMs.
comment: Accepted at the AAAI 2026 conference. This version includes the supplementary appendix
Rethinking Supply Chain Planning: A Generative Paradigm
Supply chain planning is the critical process of anticipating future demand and coordinating operational activities across the logistics network. However, within the context of contemporary e-commerce, traditional planning paradigms, typically characterized by fragmented processes and static optimization, prove inadequate in addressing dynamic demand, organizational silos, and the complexity of multi-stage coordination. To address these challenges, this study proposes a fundamental rethinking of supply chain planning, redefining it not merely as a computational task, but as an interactive, integrated, and automated cognitive process. This new paradigm emphasizes the organic unification of human strategic intent with adaptive execution, shifting the focus from rigid control to continuous, intelligent orchestration. To operationalize this conceptual shift, we introduce a Generative AI-powered agentic framework. Functioning as an intelligent cognitive interface, this framework bridges the gap between unstructured business contexts and structured analytical workflows, enabling the system to comprehend complex semantics and coordinate decisions across organizational boundaries. We demonstrate the empirical validity of this approach within JD.com's large-scale operations. The deployment confirms the efficacy of this cognitive paradigm, yielding an approximate 22% improvement in planning accuracy and a 2% increase in in-stock rates, thereby validating the transformation of planning into an adaptive, knowledge-driven capability.
Generating Diverse TSP Tours via a Combination of Graph Pointer Network and Dispersion
We address the Diverse Traveling Salesman Problem (D-TSP), a bi-criteria optimization challenge that seeks a set of $k$ distinct TSP tours. The objective requires every selected tour to have a length at most $c|T^*|$ (where $|T^*|$ is the optimal tour length) while minimizing the average Jaccard similarity across all tour pairs. This formulation is crucial for applications requiring both high solution quality and fault tolerance, such as logistics planning, robotics pathfinding or strategic patrolling. Current methods are limited: traditional heuristics, such as the Niching Memetic Algorithm (NMA) or bi-criteria optimization, incur high computational complexity $O(n^3)$, while modern neural approaches (e.g., RF-MA3S) achieve limited diversity quality and rely on complex, external mechanisms. To overcome these limitations, we propose a novel hybrid framework that decomposes D-TSP into two efficient steps. First, we utilize a simple Graph Pointer Network (GPN), augmented with an approximated sequence entropy loss, to efficiently sample a large, diverse pool of high-quality tours. This simple modification effectively controls the quality-diversity trade-off without complex external mechanisms. Second, we apply a greedy algorithm that yields a 2-approximation for the dispersion problem to select the final $k$ maximally diverse tours from the generated pool. Our results demonstrate state-of-the-art performance. On the Berlin instance, our model achieves an average Jaccard index of $0.015$, significantly outperforming NMA ($0.081$) and RF-MA3S. By leveraging GPU acceleration, our GPN structure achieves a near-linear empirical runtime growth of $O(n)$. While maintaining solution diversity comparable to complex bi-criteria algorithms, our approach is over 360 times faster on large-scale instances (783 cities), delivering high-quality TSP solutions with unprecedented efficiency and simplicity.
CoV: Chain-of-View Prompting for Spatial Reasoning
Embodied question answering (EQA) in 3D environments often requires collecting context that is distributed across multiple viewpoints and partially occluded. However, most recent vision--language models (VLMs) are constrained to a fixed and finite set of input views, which limits their ability to acquire question-relevant context at inference time and hinders complex spatial reasoning. We propose Chain-of-View (CoV) prompting, a training-free, test-time reasoning framework that transforms a VLM into an active viewpoint reasoner through a coarse-to-fine exploration process. CoV first employs a View Selection agent to filter redundant frames and identify question-aligned anchor views. It then performs fine-grained view adjustment by interleaving iterative reasoning with discrete camera actions, obtaining new observations from the underlying 3D scene representation until sufficient context is gathered or a step budget is reached. We evaluate CoV on OpenEQA across four mainstream VLMs and obtain an average +11.56% improvement in LLM-Match, with a maximum gain of +13.62% on Qwen3-VL-Flash. CoV further exhibits test-time scaling: increasing the minimum action budget yields an additional +2.51% average improvement, peaking at +3.73% on Gemini-2.5-Flash. On ScanQA and SQA3D, CoV delivers strong performance (e.g., 116 CIDEr / 31.9 EM@1 on ScanQA and 51.1 EM@1 on SQA3D). Overall, these results suggest that question-aligned view selection coupled with open-view search is an effective, model-agnostic strategy for improving spatial reasoning in 3D EQA without additional training. Code is available on https://github.com/ziplab/CoV .
comment: Code link https://github.com/ziplab/CoV
HiQ-Lip: A Hierarchical Quantum-Classical Method for Global Lipschitz Constant Estimation of ReLU Networks
Estimating the global Lipschitz constant of neural networks is crucial for understanding and improving their robustness and generalization capabilities. However, precise calculations are NP-hard, and current semidefinite programming (SDP) methods face challenges such as high memory usage and slow processing speeds. In this paper, we propose HiQ-Lip, a hybrid quantum-classical hierarchical method that leverages quantum computing to estimate the global Lipschitz constant. We tackle the estimation by converting it into a Quadratic Unconstrained Binary Optimization problem and implement a multilevel graph coarsening and refinement strategy to adapt to the constraints of contemporary quantum hardware. Our experimental evaluations on fully connected neural networks demonstrate that HiQ-Lip not only provides estimates comparable to state-of-the-art methods but also significantly accelerates the computation process. In specific tests involving two-layer neural networks with 256 hidden neurons, HiQ-Lip doubles the solving speed and offers more accurate upper bounds than the existing best method, LiPopt. These findings highlight the promising utility of small-scale quantum devices in advancing the estimation of neural network robustness.
DynaGen: Unifying Temporal Knowledge Graph Reasoning with Dynamic Subgraphs and Generative Regularization
Temporal Knowledge Graph Reasoning (TKGR) aims to complete missing factual elements along the timeline. Depending on the temporal position of the query, the task is categorized into interpolation and extrapolation. Existing interpolation methods typically embed temporal information into individual facts to complete missing historical knowledge, while extrapolation techniques often leverage sequence models over graph snapshots to identify recurring patterns for future event prediction. These methods face two critical challenges: limited contextual modeling in interpolation and cognitive generalization bias in extrapolation. To address these, we propose a unified method for TKGR, dubbed DynaGen. For interpolation, DynaGen dynamically constructs entity-centric subgraphs and processes them with a synergistic dual-branch GNN encoder to capture evolving structural context. For extrapolation, it applies a conditional diffusion process, which forces the model to learn underlying evolutionary principles rather than just superficial patterns, enhancing its ability to predict unseen future events. Extensive experiments on six benchmark datasets show DynaGen achieves state-of-the-art performance. On average, compared to the second-best models, DynaGen improves the Mean Reciprocal Rank (MRR) score by 2.61 points for interpolation and 1.45 points for extrapolation.
CombatVLA: An Efficient Vision-Language-Action Model for Combat Tasks in 3D Action Role-Playing Games ICCV 2025
Recent advances in Vision-Language-Action models (VLAs) have expanded the capabilities of embodied intelligence. However, significant challenges remain in real-time decision-making in complex 3D environments, which demand second-level responses, high-resolution perception, and tactical reasoning under dynamic conditions. To advance the field, we introduce CombatVLA, an efficient VLA model optimized for combat tasks in 3D action role-playing games(ARPGs). Specifically, our CombatVLA is a 3B model trained on video-action pairs collected by an action tracker, where the data is formatted as action-of-thought (AoT) sequences. Thereafter, CombatVLA seamlessly integrates into an action execution framework, allowing efficient inference through our truncated AoT strategy. Experimental results demonstrate that CombatVLA not only outperforms all existing models on the combat understanding benchmark but also achieves a 50-fold acceleration in game combat. Moreover, it has a higher task success rate than human players. We will open-source all resources, including the action tracker, dataset, benchmark, model weights, training code, and the implementation of the framework at https://combatvla.github.io/.
comment: Accepted by ICCV 2025
IndexTTS 2.5 Technical Report
In prior work, we introduced IndexTTS 2, a zero-shot neural text-to-speech foundation model comprising two core components: a transformer-based Text-to-Semantic (T2S) module and a non-autoregressive Semantic-to-Mel (S2M) module, which together enable faithful emotion replication and establish the first autoregressive duration-controllable generative paradigm. Building upon this, we present IndexTTS 2.5, which significantly enhances multilingual coverage, inference speed, and overall synthesis quality through four key improvements: 1) Semantic Codec Compression: we reduce the semantic codec frame rate from 50 Hz to 25 Hz, halving sequence length and substantially lowering both training and inference costs; 2) Architectural Upgrade: we replace the U-DiT-based backbone of the S2M module with a more efficient Zipformer-based modeling architecture, achieving notable parameter reduction and faster mel-spectrogram generation; 3) Multilingual Extension: We propose three explicit cross-lingual modeling strategies, boundary-aware alignment, token-level concatenation, and instruction-guided generation, establishing practical design principles for zero-shot multilingual emotional TTS that supports Chinese, English, Japanese, and Spanish, and enables robust emotion transfer even without target-language emotional training data; 4) Reinforcement Learning Optimization: we apply GRPO in post-training of the T2S module, improving pronunciation accuracy and natrualness. Experiments show that IndexTTS 2.5 not only supports broader language coverage but also replicates emotional prosody in unseen languages under the same zero-shot setting. IndexTTS 2.5 achieves a 2.28 times improvement in RTF while maintaining comparable WER and speaker similarity to IndexTTS 2.
comment: 11 pages, 4 figures
RxnBench: A Multimodal Benchmark for Evaluating Large Language Models on Chemical Reaction Understanding from Scientific Literature
The integration of Multimodal Large Language Models (MLLMs) into chemistry promises to revolutionize scientific discovery, yet their ability to comprehend the dense, graphical language of reactions within authentic literature remains underexplored. Here, we introduce RxnBench, a multi-tiered benchmark designed to rigorously evaluate MLLMs on chemical reaction understanding from scientific PDFs. RxnBench comprises two tasks: Single-Figure QA (SF-QA), which tests fine-grained visual perception and mechanistic reasoning using 1,525 questions derived from 305 curated reaction schemes, and Full-Document QA (FD-QA), which challenges models to synthesize information from 108 articles, requiring cross-modal integration of text, schemes, and tables. Our evaluation of MLLMs reveals a critical capability gap: while models excel at extracting explicit text, they struggle with deep chemical logic and precise structural recognition. Notably, models with inference-time reasoning significantly outperform standard architectures, yet none achieve 50\% accuracy on FD-QA. These findings underscore the urgent need for domain-specific visual encoders and stronger reasoning engines to advance autonomous AI chemists.
Securing the AI Supply Chain: What Can We Learn From Developer-Reported Security Issues and Solutions of AI Projects?
The rapid growth of Artificial Intelligence (AI) models and applications has led to an increasingly complex security landscape. Developers of AI projects must contend not only with traditional software supply chain issues but also with novel, AI-specific security threats. However, little is known about what security issues are commonly encountered and how they are resolved in practice. This gap hinders the development of effective security measures for each component of the AI supply chain. We bridge this gap by conducting an empirical investigation of developer-reported issues and solutions, based on discussions from Hugging Face and GitHub. To identify security-related discussions, we develop a pipeline that combines keyword matching with an optimal fine-tuned distilBERT classifier, which achieved the best performance in our extensive comparison of various deep learning and large language models. This pipeline produces a dataset of 312,868 security discussions, providing insights into the security reporting practices of AI applications and projects. We conduct a thematic analysis of 753 posts sampled from our dataset and uncover a fine-grained taxonomy of 32 security issues and 24 solutions across four themes: (1) System and Software, (2) External Tools and Ecosystem, (3) Model, and (4) Data. We reveal that many security issues arise from the complex dependencies and black-box nature of AI components. Notably, challenges related to Models and Data often lack concrete solutions. Our insights can offer evidence-based guidance for developers and researchers to address real-world security threats across the AI supply chain.
comment: Accepted at the 48th IEEE/ACM International Conference on Software Engineering (ICSE 2026) - Research Track
MIPO: Mutual Integration of Patient Journey and Medical Ontology for Healthcare Representation Learning
Representation learning on electronic health records (EHRs) plays a vital role in downstream medical prediction tasks. Although natural language processing techniques, such as recurrent neural networks, and self-attention, have been adapted for learning medical representations from hierarchical, time-stamped EHR data, they often struggle when either general or task-specific data are limited. Recent efforts have attempted to mitigate this challenge by incorporating medical ontologies (i.e., knowledge graphs) into self-supervised tasks like diagnosis prediction. However, two main issues remain: (1) small and uniform ontologies that lack diversity for robust learning, and (2) insufficient attention to the critical contexts or dependencies underlying patient journeys, which could further enhance ontology-based learning. To address these gaps, we propose MIPO (Mutual Integration of Patient Journey and Medical Ontology), a robust end-to-end framework that employs a Transformer-based architecture for representation learning. MIPO emphasizes task-specific representation learning through a sequential diagnosis prediction task, while also incorporating an ontology-based disease-typing task. A graph-embedding module is introduced to integrate information from patient visit records, thus alleviating data insufficiency. This setup creates a mutually reinforcing loop, where both patient-journey embedding and ontology embedding benefit from each other. We validate MIPO on two real-world benchmark datasets, showing that it consistently outperforms baseline methods under both sufficient and limited data conditions. Furthermore, the resulting diagnosis embeddings offer improved interpretability, underscoring the promise of MIPO for real-world healthcare applications.
comment: 9 pages, 4 figures, accepted for IJCNN 2025
Detect All-Type Deepfake Audio: Wavelet Prompt Tuning for Enhanced Auditory Perception AAAI 2026
The rapid advancement of audio generation technologies has escalated the risks of malicious deepfake audio across speech, sound, singing voice, and music, threatening multimedia security and trust. While existing countermeasures (CMs) perform well in single-type audio deepfake detection (ADD), their performance declines in cross-type scenarios. This paper is dedicated to studying the all-type ADD task. We are the first to comprehensively establish an all-type ADD benchmark to evaluate current CMs, incorporating cross-type deepfake detection across speech, sound, singing voice, and music. Then, we introduce the prompt tuning self-supervised learning (PT-SSL) training paradigm, which optimizes SSL front-end by learning specialized prompt tokens for ADD, requiring 458x fewer trainable parameters than fine-tuning (FT). Considering the auditory perception of different audio types, we propose the wavelet prompt tuning (WPT)-SSL method to capture type-invariant auditory deepfake information from the frequency domain without requiring additional training parameters, thereby enhancing performance over FT in the all-type ADD task. To achieve an universally CM, we utilize all types of deepfake audio for co-training. Experimental results demonstrate that WPT-XLSR-AASIST achieved the best performance, with an average EER of 3.58% across all evaluation sets.
comment: Accepted to AAAI 2026
Exploring the Vulnerabilities of Federated Learning: A Deep Dive into Gradient Inversion Attacks
Federated Learning (FL) has emerged as a promising privacy-preserving collaborative model training paradigm without sharing raw data. However, recent studies have revealed that private information can still be leaked through shared gradient information and attacked by Gradient Inversion Attacks (GIA). While many GIA methods have been proposed, a detailed analysis, evaluation, and summary of these methods are still lacking. Although various survey papers summarize existing privacy attacks in FL, few studies have conducted extensive experiments to unveil the effectiveness of GIA and their associated limiting factors in this context. To fill this gap, we first undertake a systematic review of GIA and categorize existing methods into three types, i.e., \textit{optimization-based} GIA (OP-GIA), \textit{generation-based} GIA (GEN-GIA), and \textit{analytics-based} GIA (ANA-GIA). Then, we comprehensively analyze and evaluate the three types of GIA in FL, providing insights into the factors that influence their performance, practicality, and potential threats. Our findings indicate that OP-GIA is the most practical attack setting despite its unsatisfactory performance, while GEN-GIA has many dependencies and ANA-GIA is easily detectable, making them both impractical. Finally, we offer a three-stage defense pipeline to users when designing FL frameworks and protocols for better privacy protection and share some future research directions from the perspectives of attackers and defenders that we believe should be pursued. We hope that our study can help researchers design more robust FL frameworks to defend against these attacks.
comment: Accepted by IEEE TPAMI
Simulating Multi-Stakeholder Decision-Making with Generative Agents in Urban Planning
Reaching consensus in urban planning is a complex process often hindered by prolonged negotiations, trade-offs, power dynamics, and competing stakeholder interests, resulting in inefficiencies and inequities. Advances in large language models (LLMs), with their increasing capabilities in knowledge transfer, reasoning, and planning, have enabled the development of multi-generative agent systems, offering a promising approach to simulating discussions and interactions among diverse stakeholders on contentious topics. However, applying such systems also carries significant societal and ethical risks, including misrepresentation, privacy concerns, and biases stemming from opinion convergence among agents, hallucinations caused by insufficient or biased prompts, and the inherent limitations of foundation models. To evaluate the influence of these factors, we incorporate varying levels of real-world survey data and demographic detail to test agents' performance under two decision-making value frameworks: altruism-driven and interest-driven, using a real-world urban rezoning challenge. This approach evaluates the influence of demographic factors such as race, gender, and age on collective decision-making in the design of multi-generative agent systems. Our experimental results reveal that integrating demographic and life-value data enhances the diversity and stability of agent outputs. In addition, communication among generated agents improves the quality of collective reasoning. These findings provide a predictive framework for decision-makers to anticipate stakeholder reactions, including concerns, objections, and support. By enabling iterative refinement of proposals before public release, the simulated approach fosters more equitable and cost-effective decisions in urban planning.
PromptScreen: Efficient Jailbreak Mitigation Using Semantic Linear Classification in a Multi-Staged Pipeline
Prompt injection and jailbreaking attacks pose persistent security challenges to large language model (LLM)-based systems. We present PromptScreen, an efficient and systematically evaluated defense architecture that mitigates these threats through a lightweight, multi-stage pipeline. Its core component is a semantic filter based on text normalization, TF-IDF representations, and a Linear SVM classifier. Despite its simplicity, this module achieves 93.4% accuracy and 96.5% specificity on held-out data, substantially reducing attack throughput while incurring negligible computational overhead. Building on this efficient foundation, the full pipeline integrates complementary detection and mitigation mechanisms that operate at successive stages, providing strong robustness with minimal latency. In comparative experiments, our SVM-based configuration improves overall accuracy from 35.1% to 93.4% while reducing average time-to-completion from approximately 450 s to 47 s, yielding over 10 times lower latency than ShieldGemma. These results demonstrate that the proposed design simultaneously advances defensive precision and efficiency, addressing a core limitation of current model-based moderators. Evaluation across a curated corpus of over 30,000 labeled prompts, including benign, jailbreak, and application-layer injections, confirms that staged, resource-efficient defenses can robustly secure modern LLM-driven applications.
comment: Under Review
AlgBench: To What Extent Do Large Reasoning Models Understand Algorithms?
Reasoning ability has become a central focus in the advancement of Large Reasoning Models (LRMs). Although notable progress has been achieved on several reasoning benchmarks such as MATH500 and LiveCodeBench, existing benchmarks for algorithmic reasoning remain limited, failing to answer a critical question: Do LRMs truly master algorithmic reasoning? To answer this question, we propose AlgBench, an expert-curated benchmark that evaluates LRMs under an algorithm-centric paradigm. AlgBench consists of over 3,000 original problems spanning 27 algorithms, constructed by ACM algorithmic experts and organized under a comprehensive taxonomy, including Euclidean-structured, non-Euclidean-structured, non-optimized, local-optimized, global-optimized, and heuristic-optimized categories. Empirical evaluations on leading LRMs (e.g., Gemini-3-Pro, DeepSeek-v3.2-Speciale and GPT-o3) reveal substantial performance heterogeneity: while models perform well on non-optimized tasks (up to 92%), accuracy drops sharply to around 49% on globally optimized algorithms such as dynamic programming. Further analysis uncovers \textbf{strategic over-shifts}, wherein models prematurely abandon correct algorithmic designs due to necessary low-entropy tokens. These findings expose fundamental limitations of problem-centric reinforcement learning and highlight the necessity of an algorithm-centric training paradigm for robust algorithmic reasoning.
comment: Under review
SelfBudgeter: Adaptive Token Allocation for Efficient LLM Reasoning
Recently, large reasoning models demonstrate exceptional performance on various tasks. However, reasoning models always consume excessive tokens even for simple queries, leading to resource waste and prolonged user latency. To address this challenge, we propose SelfBudgeter - a self-adaptive reasoning strategy for efficient and controllable reasoning. Specifically, we first train the model to self-estimate the required reasoning budget based on the query. We then introduce budget-guided GPRO for reinforcement learning, which effectively maintains accuracy while reducing output length. Experimental results demonstrate that SelfBudgeter dynamically allocates budgets according to problem complexity, achieving an average response length compression of 61% on math reasoning tasks while maintaining accuracy. Furthermore, SelfBudgeter allows users to see how long generation will take and decide whether to continue or stop. Additionally, users can directly control the reasoning length by setting token budgets upfront.
VeRPO: Verifiable Dense Reward Policy Optimization for Code Generation
Effective reward design is a central challenge in Reinforcement Learning (RL) for code generation. Mainstream pass/fail outcome rewards enforce functional correctness via executing unit tests, but the resulting sparsity limits potential performance gains. While recent work has explored external Reward Models (RM) to generate richer, continuous rewards, the learned RMs suffer from reward misalignment and prohibitive computational cost. In this paper, we introduce \textbf{VeRPO} (\textbf{V}erifiable D\textbf{e}nse \textbf{R}eward \textbf{P}olicy \textbf{O}ptimization), a novel RL framework for code generation that synthesizes \textit{robust and dense rewards fully grounded in verifiable execution feedback}. The core idea of VeRPO is constructing dense rewards from weighted partial success: by dynamically estimating the difficulty weight of each unit test based on the execution statistics during training, a dense reward is derived from the sum of weights of the passed unit tests. To solidify the consistency between partial success and end-to-end functional correctness, VeRPO further integrates the dense signal with global execution outcomes, establishing a robust and dense reward paradigm relying solely on verifiable execution feedback. Extensive experiments across diverse benchmarks and settings demonstrate that VeRPO consistently outperforms outcome-driven and RM-based baselines, achieving up to +8.83\% gain in pass@1 with negligible time cost (< 0.02\%) and zero GPU memory overhead.
From Preoperative CT to Postmastoidectomy Mesh Construction: Mastoidectomy Shape Prediction for Cochlear Implant Surgery
Cochlear Implant (CI) surgery treats severe hearing loss by inserting an electrode array into the cochlea to stimulate the auditory nerve. An important step in this procedure is mastoidectomy, which removes part of the mastoid region of the temporal bone to provide surgical access. Accurate mastoidectomy shape prediction from preoperative imaging improves pre-surgical planning, reduces risks, and enhances surgical outcomes. Despite its importance, there are limited deep-learning-based studies regarding this topic due to the challenges of acquiring ground-truth labels. We address this gap by investigating self-supervised and weakly-supervised learning models to predict the mastoidectomy region without human annotations. We propose a hybrid self-supervised and weakly-supervised learning framework to predict the mastoidectomy region directly from preoperative CT scans, where the mastoid remains intact. Our hybrid method achieves a mean Dice score of 0.72 when predicting the complex and boundary-less mastoidectomy shape, surpassing state-of-the-art approaches and demonstrating strong performance. The method provides groundwork for constructing 3D postmastoidectomy surfaces directly from the corresponding preoperative CT scans. To our knowledge, this is the first work that integrating self-supervised and weakly-supervised learning for mastoidectomy shape prediction, offering a robust and efficient solution for CI surgical planning while leveraging 3D T-distribution loss in weakly-supervised medical imaging.
comment: arXiv admin note: substantial text overlap with arXiv:2505.18368
How to Set the Batch Size for Large-Scale Pre-training?
The concept of Critical Batch Size, as pioneered by OpenAI, has long served as a foundational principle for large-scale pre-training. However, with the paradigm shift towards the Warmup-Stable-Decay (WSD) learning rate scheduler, we observe that the original theoretical framework and its underlying mechanisms fail to align with new pre-training dynamics. To bridge this gap between theory and practice, this paper derives a revised E(S) relationship tailored for WSD scheduler, characterizing the trade-off between training data consumption E and steps S during pre-training. Our theoretical analysis reveals two fundamental properties of WSD-based pre-training: 1) B_min, the minimum batch size threshold required to achieve a target loss, and 2) B_opt, the optimal batch size that maximizes data efficiency by minimizing total tokens. Building upon these properties, we propose a dynamic Batch Size Scheduler. Extensive experiments demonstrate that our revised formula precisely captures the dynamics of large-scale pre-training, and the resulting scheduling strategy significantly enhances both training efficiency and final model quality.
Learning How to Use Tools, Not Just When: Pattern-Aware Tool-Integrated Reasoning
Tool-integrated reasoning (TIR) has become a key approach for improving large reasoning models (LRMs) on complex problems. Prior work has mainly studied when to invoke tools, while overlooking how tools are applied. We identify two common patterns: a calculator pattern that uses code for direct computation, and an algorithmic pattern that encodes problems as programs. Misaligned choices often cause failures even when reasoning is sound. We propose a two-stage framework that first builds code competence from both patterns and then aligns pattern selection with teacher preferences. Across challenging math datasets, our pattern-aware method substantially improves both code usage and accuracy, for instance raising Code@1 on MATH500 from 64.0% to 70.5% and on AIME24 from 26.7% to 50.0%. These gains highlight the effectiveness of a pattern-aware approach for tool-integrated reasoning.
Streamlining evidence based clinical recommendations with large language models
Clinical evidence underpins informed healthcare decisions, yet integrating it into real-time practice remains challenging due to intensive workloads, complex procedures, and time constraints. This study presents Quicker, an LLM-powered system that automates evidence synthesis and generates clinical recommendations following standard guideline development workflows. Quicker delivers an end-to-end pipeline from clinical questions to recommendations and supports customized decision-making through integrated tools and interactive interfaces. To evaluate how closely Quicker can reproduce guideline development processes, we constructed Q2CRBench-3, a benchmark derived from guideline development records for three diseases. Experiments show that Quicker produces precise question decomposition, expert-aligned retrieval, and near-comprehensive screening. Quicker assistance improved the accuracy of extracted study data, and its recommendations were more comprehensive and coherent than clinician-written ones. In system-level testing, Quicker working with one participant reduced recommendation development to 20-40 min. Overall, the findings demonstrate Quicker's potential to enhance the speed and reliability of evidence-based clinical decision-making.
PsOCR: Benchmarking Large Multimodal Models for Optical Character Recognition in Low-resource Pashto Language
This paper evaluates the performance of Large Multimodal Models (LMMs) on Optical Character Recognition (OCR) in the low-resource Pashto language. Natural Language Processing (NLP) in Pashto faces several challenges due to the cursive nature of its script and a scarcity of structured datasets. To address this, we developed a synthetic Pashto OCR dataset, PsOCR, consisting of one million images annotated with bounding boxes at word, line, and document levels, suitable for training and evaluating models based on different architectures, including Convolutional Neural Networks (CNNs) and Transformers. PsOCR covers variations across 1,000 unique font families, colors, image sizes, and layouts. A benchmark subset of 10K images was selected to evaluate the performance of several LMMs, including seven open-source models: DeepSeek's Janus, InternVL, MiniCPM, Florence, and Qwen (3B and 7B), and four closed-source models: GPT-4o, Gemini, Claude, and Grok. Experimental results demonstrate that Gemini achieves the best performance among all models, whereas among open-source models, Qwen-7B stands out. This work provides an insightful assessment of the capabilities and limitations of current LMMs for OCR tasks in Pashto and establishes a foundation for further research not only in Pashto OCR but also for other similar scripts such as Arabic, Persian, and Urdu. PsOCR is available at https://github.com/zirak-ai/PashtoOCR.
Adversarial Yet Cooperative: Multi-Perspective Reasoning in Retrieved-Augmented Language Models
Recent advances in synergizing large reasoning models (LRMs) with retrieval-augmented generation (RAG) have shown promising results, yet two critical challenges remain: (1) reasoning models typically operate from a single, unchallenged perspective, limiting their ability to conduct deep, self-correcting reasoning over external documents, and (2) existing training paradigms rely excessively on outcome-oriented rewards, which provide insufficient signal for shaping the complex, multi-step reasoning process. To address these issues, we propose an Reasoner-Verifier framework named Adversarial Reasoning RAG (ARR). The Reasoner and Verifier engage in reasoning on retrieved evidence and critiquing each other's logic while being guided by process-aware advantage that requires no external scoring model. This reward combines explicit observational signals with internal model uncertainty to jointly optimize reasoning fidelity and verification rigor. Experiments on multiple benchmarks demonstrate the effectiveness of our method.
Pragmatic Reasoning improves LLM Code Generation
Pragmatic reasoning is pervasive in human-human communication - it allows us to leverage shared knowledge and counterfactual reasoning in order to infer the intention of a conversational partner given their ambiguous or underspecified message. In human-computer communication, underspecified messages often represent a major challenge: for instance, translating natural language instructions into code is difficult when user instructions contain inherent ambiguities. In the present paper, we aim to scale up the pragmatic "Rational Speech Act" framework to naturalistic language-to-code problems, and propose a way of dealing with multiple meaning-equivalent instruction alternatives, an issue that does not arise in previous toy-scale problems. We evaluate our method, CodeRSA, with two recent LLMs (Llama-3-8B-Instruct and Qwen-2.5-7B-Instruct) on two widely used code generation benchmarks (HumanEval and MBPP). Our experimental results show that CodeRSA consistently outperforms common baselines, surpasses the state-of-the-art approach in most cases, and demonstrates robust overall performance. Qualitative analyses demonstrate that it exhibits the desired behavior for the right reasons. These findings underscore the effectiveness of integrating pragmatic reasoning into a naturalistic complex communication task, language-to-code generation, offering a promising direction for enhancing code generation quality in LLMs and emphasizing the importance of pragmatic reasoning in complex communication settings.
ContractEval: A Benchmark for Evaluating Contract-Satisfying Assertions in Code Generation
Current code generation benchmarks measure functional correctness on well-formed inputs, as test cases are curated to satisfy input preconditions. This leaves a gap: generated programs may appear correct but fail to satisfy contracts -- assertion-level validity constraints for rejecting ill-formed inputs. We introduce ContractEval, a benchmark for evaluating contract-satisfying assertions in code generation, i.e., whether code rejects contract-violating inputs by triggering intended assertions. Built on HumanEval+ and MBPP+, ContractEval augments each task with contract-violation tests derived from reference assertions. We synthesize these via a neuro-symbolic pipeline: an LLM converts assertion clauses into constraints, and an SMT solver enumerates satisfiable violation combinations to generate inputs that violate selected clauses while satisfying the rest. Across five code LLMs, standard prompting yields 0% contract satisfaction, while adding a few contract-violation examples boosts contract satisfaction to 49--53% while maintaining pass@1 by 92% of the original. Our code is available at https://github.com/suhanmen/ContractEval.
comment: 18 pages, 15 figures, 5 tables
MoEMeta: Mixture-of-Experts Meta Learning for Few-Shot Relational Learning NeurIPS 2025
Few-shot knowledge graph relational learning seeks to perform reasoning over relations given only a limited number of training examples. While existing approaches largely adopt a meta-learning framework for enabling fast adaptation to new relations, they suffer from two key pitfalls. First, they learn relation meta-knowledge in isolation, failing to capture common relational patterns shared across tasks. Second, they struggle to effectively incorporate local, task-specific contexts crucial for rapid adaptation. To address these limitations, we propose MoEMeta, a novel meta-learning framework that disentangles globally shared knowledge from task-specific contexts to enable both effective model generalization and rapid adaptation. MoEMeta introduces two key innovations: (i) a mixture-of-experts (MoE) model that learns globally shared relational prototypes to enhance generalization, and (ii) a task-tailored adaptation mechanism that captures local contexts for fast task-specific adaptation. By balancing global generalization with local adaptability, MoEMeta significantly advances few-shot relational learning. Extensive experiments and analyses on three KG benchmarks show that MoEMeta consistently outperforms existing baselines, achieving state-of-the-art performance.
comment: Appear in NeurIPS 2025
e5-omni: Explicit Cross-modal Alignment for Omni-modal Embeddings
Modern information systems often involve different types of items, e.g., a text query, an image, a video clip, or an audio segment. This motivates omni-modal embedding models that map heterogeneous modalities into a shared space for direct comparison. However, most recent omni-modal embeddings still rely heavily on implicit alignment inherited from pretrained vision-language model (VLM) backbones. In practice, this causes three common issues: (i) similarity logits have modality-dependent sharpness, so scores are not on a consistent scale; (ii) in-batch negatives become less effective over time because mixed-modality batches create an imbalanced hardness distribution; as a result, many negatives quickly become trivial and contribute little gradient; and (iii) embeddings across modalities show mismatched first- and second-order statistics, which makes rankings less stable. To tackle these problems, we propose e5-omni, a lightweight explicit alignment recipe that adapts off-the-shelf VLMs into robust omni-modal embedding models. e5-omni combines three simple components: (1) modality-aware temperature calibration to align similarity scales, (2) a controllable negative curriculum with debiasing to focus on confusing negatives while reducing the impact of false negatives, and (3) batch whitening with covariance regularization to better match cross-modal geometry in the shared embedding space. Experiments on MMEB-V2 and AudioCaps show consistent gains over strong bi-modal and omni-modal baselines, and the same recipe also transfers well to other VLM backbones. We release our model checkpoint at https://huggingface.co/Haon-Chen/e5-omni-7B.
comment: https://huggingface.co/Haon-Chen/e5-omni-7B
EverMemOS: A Self-Organizing Memory Operating System for Structured Long-Horizon Reasoning
Large Language Models (LLMs) are increasingly deployed as long-term interactive agents, yet their limited context windows make it difficult to sustain coherent behavior over extended interactions. Existing memory systems often store isolated records and retrieve fragments, limiting their ability to consolidate evolving user states and resolve conflicts. We introduce EverMemOS, a self-organizing memory operating system that implements an engram-inspired lifecycle for computational memory. Episodic Trace Formation converts dialogue streams into MemCells that capture episodic traces, atomic facts, and time-bounded Foresight signals. Semantic Consolidation organizes MemCells into thematic MemScenes, distilling stable semantic structures and updating user profiles. Reconstructive Recollection performs MemScene-guided agentic retrieval to compose the necessary and sufficient context for downstream reasoning. Experiments on LoCoMo and LongMemEval show that EverMemOS achieves state-of-the-art performance on memory-augmented reasoning tasks. We further report a profile study on PersonaMem v2 and qualitative case studies illustrating chat-oriented capabilities such as user profiling and Foresight. Code is available at https://github.com/EverMind-AI/EverMemOS.
comment: 16 pages, 7 figures, 12 tables. Code available at https://github.com/EverMind-AI/EverMemOS
Benchmarking LLM-based Agents for Single-cell Omics Analysis
The surge in multimodal single-cell omics data exposes limitations in traditional, manually defined analysis workflows. AI agents offer a paradigm shift, enabling adaptive planning, executable code generation, traceable decisions, and real-time knowledge fusion. However, the lack of a comprehensive benchmark critically hinders progress. We introduce a novel benchmarking evaluation system to rigorously assess agent capabilities in single-cell omics analysis. This system comprises: a unified platform compatible with diverse agent frameworks and LLMs; multidimensional metrics assessing cognitive program synthesis, collaboration, execution efficiency, bioinformatics knowledge integration, and task completion quality; and 50 diverse real-world single-cell omics analysis tasks spanning multi-omics, species, and sequencing technologies. Our evaluation reveals that Grok-3-beta achieves state-of-the-art performance among tested agent frameworks. Multi-agent frameworks significantly enhance collaboration and execution efficiency over single-agent approaches through specialized role division. Attribution analyses of agent capabilities identify that high-quality code generation is crucial for task success, and self-reflection has the most significant overall impact, followed by retrieval-augmented generation (RAG) and planning. This work highlights persistent challenges in code generation, long-context handling, and context-aware knowledge retrieval, providing a critical empirical foundation and best practices for developing robust AI agents in computational biology.
comment: 6 main figures; 13 supplementary figures
Darth Vecdor: An Open-Source System for Generating Knowledge Graphs Through Large Language Model Queries
Many large language models (LLMs) are trained on a massive body of knowledge present on the Internet. Darth Vecdor (DV) was designed to extract this knowledge into a structured, terminology-mapped, SQL database ("knowledge base" or "knowledge graph"). Knowledge graphs may be useful in many domains, including healthcare. Although one might query an LLM directly rather than a SQL-based knowledge graph, concerns such as cost, speed, safety, and confidence may arise, especially in high-volume operations. These may be mitigated when the information is pre-extracted from the LLM and becomes query-able through a standard database. However, the author found the need to address several issues. These included erroneous, off-topic, free-text, overly general, and inconsistent LLM responses, as well as allowing for multi-element responses. DV was built with features intended to mitigate these issues. To facilitate ease of use, and to allow for prompt engineering by those with domain expertise but little technical background, DV provides a simple, browser-based graphical user interface. DV has been released as free, open-source, extensible software, on an "as is" basis, without warranties or conditions of any kind, either express or implied. Users need to be cognizant of the potential risks and benefits of using DV and its outputs, and users are responsible for ensuring any use is safe and effective. DV should be assumed to have bugs, potentially very serious ones. However, the author hopes that appropriate use of current and future versions of DV and its outputs can help improve healthcare.
comment: 17 pages, 3 figures. Changes to best of my recollection: 1) Added to Acknowledgements that Darth Vecdor software was created with the help of LLMs and many other resources, clearly noted on software GitHub site, but added here. 2) Fixed content related to the Are You Sure paper that was referenced, as the previous version incorrectly summarized the article's finding
From Small to Large: Generalization Bounds for Transformers on Variable-Size Inputs
Transformers exhibit a notable property of \emph{size generalization}, demonstrating an ability to extrapolate from smaller token sets to significantly longer ones. This behavior has been documented across diverse applications, including point clouds, graphs, and natural language. Despite its empirical success, this capability still lacks some rigorous theoretical characterizations. In this paper, we develop a theoretical framework to analyze this phenomenon for geometric data, which we represent as discrete samples from a continuous source (e.g., point clouds from manifolds, graphs from graphons). Our core contribution is a bound on the error between the Transformer's output for a discrete sample and its continuous-domain equivalent. We prove that for Transformers with stable positional encodings, this bound is determined by the sampling density and the intrinsic dimensionality of the data manifold. Experiments on graphs and point clouds of various sizes confirm the tightness of our theoretical bound.
Topological Signatures of ReLU Neural Network Activation Patterns
This paper explores the topological signatures of ReLU neural network activation patterns. We consider feedforward neural networks with ReLU activation functions and analyze the polytope decomposition of the feature space induced by the network. Mainly, we investigate how the Fiedler partition of the dual graph and show that it appears to correlate with the decision boundary -- in the case of binary classification. Additionally, we compute the homology of the cellular decomposition -- in a regression task -- to draw similar patterns in behavior between the training loss and polyhedral cell-count, as the model is trained.
K-EXAONE Technical Report
This technical report presents K-EXAONE, a large-scale multilingual language model developed by LG AI Research. K-EXAONE is built on a Mixture-of-Experts architecture with 236B total parameters, activating 23B parameters during inference. It supports a 256K-token context window and covers six languages: Korean, English, Spanish, German, Japanese, and Vietnamese. We evaluate K-EXAONE on a comprehensive benchmark suite spanning reasoning, agentic, general, Korean, and multilingual abilities. Across these evaluations, K-EXAONE demonstrates performance comparable to open-weight models of similar size. K-EXAONE, designed to advance AI for a better life, is positioned as a powerful proprietary AI foundation model for a wide range of industrial and research applications.
comment: 29 pages
Accelerating Monte-Carlo Tree Search with Optimized Posterior Policies
We introduce a recursive AlphaZero-style Monte--Carlo tree search algorithm, "RMCTS". The advantage of RMCTS over AlphaZero's MCTS-UCB is speed. In RMCTS, the search tree is explored in a breadth-first manner, so that network inferences naturally occur in large batches. This significantly reduces the GPU latency cost. We find that RMCTS is often more than 40 times faster than MCTS-UCB when searching a single root state, and about 3 times faster when searching a large batch of root states. The recursion in RMCTS is based on computing optimized posterior policies at each game state in the search tree, starting from the leaves and working back up to the root. Here we use the posterior policy explored in "Monte--Carlo tree search as regularized policy optimization" (Grill, et al.) Their posterior policy is the unique policy which maximizes the expected reward given estimated action rewards minus a penalty for diverging from the prior policy. The tree explored by RMCTS is not defined in an adaptive manner, as it is in MCTS-UCB. Instead, the RMCTS tree is defined by following prior network policies at each node. This is a disadvantage, but the speedup advantage is more significant, and in practice we find that RMCTS-trained networks match the quality of MCTS-UCB-trained networks in roughly one-third of the training time. We include timing and quality comparisons of RMCTS vs. MCTS-UCB for three games: Connect-4, Dots-and-Boxes, and Othello.
comment: 11 pages; an efficient implementation is available at https://github.com/bhoward73/rmcts
FS-DFM: Fast and Accurate Long Text Generation with Few-Step Diffusion Language Models
Autoregressive language models (ARMs) deliver strong likelihoods, but are inherently serial: they generate one token per forward pass, which limits throughput and inflates latency for long sequences. Diffusion Language Models (DLMs) parallelize across positions and thus appear promising for language generation, yet standard discrete diffusion typically needs hundreds to thousands of model evaluations to reach high quality, trading serial depth for iterative breadth. We introduce FS-DFM, Few-Step Discrete Flow-Matching. A discrete flow-matching model designed for speed without sacrificing quality. The core idea is simple: make the number of sampling steps an explicit parameter and train the model to be consistent across step budgets, so one big move lands where many small moves would. We pair this with a reliable update rule that moves probability in the right direction without overshooting, and with strong teacher guidance distilled from long-run trajectories. Together, these choices make few-step sampling stable, accurate, and easy to control. On language modeling benchmarks, FS-DFM with 8 sampling steps achieves perplexity parity with a 1,024-step discrete-flow baseline for generating 1,024 tokens using a similar-size model, delivering up to 128 times faster sampling and corresponding latency/throughput gains.
Machine Learning 140
Manifold limit for the training of shallow graph convolutional neural networks
We study the discrete-to-continuum consistency of the training of shallow graph convolutional neural networks (GCNNs) on proximity graphs of sampled point clouds under a manifold assumption. Graph convolution is defined spectrally via the graph Laplacian, whose low-frequency spectrum approximates that of the Laplace-Beltrami operator of the underlying smooth manifold, and shallow GCNNs of possibly infinite width are linear functionals on the space of measures on the parameter space. From this functional-analytic perspective, graph signals are seen as spatial discretizations of functions on the manifold, which leads to a natural notion of training data consistent across graph resolutions. To enable convergence results, the continuum parameter space is chosen as a weakly compact product of unit balls, with Sobolev regularity imposed on the output weight and bias, but not on the convolutional parameter. The corresponding discrete parameter spaces inherit the corresponding spectral decay, and are additionally restricted by a frequency cutoff adapted to the informative spectral window of the graph Laplacians. Under these assumptions, we prove $Γ$-convergence of regularized empirical risk minimization functionals and corresponding convergence of their global minimizers, in the sense of weak convergence of the parameter measures and uniform convergence of the functions over compact sets. This provides a formalization of mesh and sample independence for the training of such networks.
comment: 44 pages, 0 figures, 1 table
LookAroundNet: Extending Temporal Context with Transformers for Clinically Viable EEG Seizure Detection
Automated seizure detection from electroencephalography (EEG) remains difficult due to the large variability of seizure dynamics across patients, recording conditions, and clinical settings. We introduce LookAroundNet, a transformer-based seizure detector that uses a wider temporal window of EEG data to model seizure activity. The seizure detector incorporates EEG signals before and after the segment of interest, reflecting how clinicians use surrounding context when interpreting EEG recordings. We evaluate the proposed method on multiple EEG datasets spanning diverse clinical environments, patient populations, and recording modalities, including routine clinical EEG and long-term ambulatory recordings, in order to study performance across varying data distributions. The evaluation includes publicly available datasets as well as a large proprietary collection of home EEG recordings, providing complementary views of controlled clinical data and unconstrained home-monitoring conditions. Our results show that LookAroundNet achieves strong performance across datasets, generalizes well to previously unseen recording conditions, and operates with computational costs compatible with real-world clinical deployment. The results indicate that extended temporal context, increased training data diversity, and model ensembling are key factors for improving performance. This work contributes to moving automatic seizure detection models toward clinically viable solutions.
Detecting Stochasticity in Discrete Signals via Nonparametric Excursion Theorem
We develop a practical framework for distinguishing diffusive stochastic processes from deterministic signals using only a single discrete time series. Our approach is based on classical excursion and crossing theorems for continuous semimartingales, which correlates number $N_\varepsilon$ of excursions of magnitude at least $\varepsilon$ with the quadratic variation $[X]_T$ of the process. The scaling law holds universally for all continuous semimartingales with finite quadratic variation, including general Ito diffusions with nonlinear or state-dependent volatility, but fails sharply for deterministic systems -- thereby providing a theoretically-certfied method of distinguishing between these dynamics, as opposed to the subjective entropy or recurrence based state of the art methods. We construct a robust data-driven diffusion test. The method compares the empirical excursion counts against the theoretical expectation. The resulting ratio $K(\varepsilon)=N_{\varepsilon}^{\mathrm{emp}}/N_{\varepsilon}^{\mathrm{theory}}$ is then summarized by a log-log slope deviation measuring the $\varepsilon^{-2}$ law that provides a classification into diffusion-like or not. We demonstrate the method on canonical stochastic systems, some periodic and chaotic maps and systems with additive white noise, as well as the stochastic Duffing system. The approach is nonparametric, model-free, and relies only on the universal small-scale structure of continuous semimartingales.
CyberGFM: Graph Foundation Models for Lateral Movement Detection in Enterprise Networks
Representing networks as a graph and training a link prediction model using benign connections is an effective method of anomaly-based intrusion detection. Existing works using this technique have shown great success using temporal graph neural networks and skip-gram-based approaches on random walks. However, random walk-based approaches are unable to incorporate rich edge data, while the GNN-based approaches require large amounts of memory to train. In this work, we propose extending the original insight from random walk-based skip-grams--that random walks through a graph are analogous to sentences in a corpus--to the more modern transformer-based foundation models. Using language models that take advantage of GPU optimizations, we can quickly train a graph foundation model to predict missing tokens in random walks through a network of computers. The graph foundation model is then finetuned for link prediction and used as a network anomaly detector. This new approach allows us to combine the efficiency of random walk-based methods and the rich semantic representation of deep learning methods. This system, which we call CyberGFM, achieved state-of-the-art results on three widely used network anomaly detection datasets, delivering a up to 2$\times$ improvement in average precision. We found that CyberGFM outperforms all prior works in unsupervised link prediction for network anomaly detection, using the same number of parameters, and with equal or better efficiency than the previous best approaches.
comment: 17 pages; 11 figures; 8 tables
Community-Based Model Sharing and Generalisation: Anomaly Detection in IoT Temperature Sensor Networks
The rapid deployment of Internet of Things (IoT) devices has led to large-scale sensor networks that monitor environmental and urban phenomena in real time. Communities of Interest (CoIs) provide a promising paradigm for organising heterogeneous IoT sensor networks by grouping devices with similar operational and environmental characteristics. This work presents an anomaly detection framework based on the CoI paradigm by grouping sensors into communities using a fused similarity matrix that incorporates temporal correlations via Spearman coefficients, spatial proximity using Gaussian distance decay, and elevation similarities. For each community, representative stations based on the best silhouette are selected and three autoencoder architectures (BiLSTM, LSTM, and MLP) are trained using Bayesian hyperparameter optimization with expanding window cross-validation and tested on stations from the same cluster and the best representative stations of other clusters. The models are trained on normal temperature patterns of the data and anomalies are detected through reconstruction error analysis. Experimental results show a robust within-community performance across the evaluated configurations, while variations across communities are observed. Overall, the results support the applicability of community-based model sharing in reducing computational overhead and to analyse model generalisability across IoT sensor networks.
comment: 20 pages, 9 figures, Journal submission
AWaRe-SAC: Proactive Slice Admission Control under Weather-Induced Capacity Uncertainty
As emerging applications demand higher throughput and lower latencies, operators are increasingly deploying millimeter-wave (mmWave) links within x-haul transport networks, spanning fronthaul, midhaul, and backhaul segments. However, the inherent susceptibility of mmWave frequencies to weather-related attenuation, particularly rain fading, complicates the maintenance of stringent Quality of Service (QoS) requirements. This creates a critical challenge: making admission decisions under uncertainty regarding future network capacity. To address this, we develop a proactive slice admission control framework for mmWave x-haul networks subject to rain-induced fluctuations. Our objective is to improve network performance, ensure QoS, and optimize revenue, thereby surpassing the limitations of standard reactive approaches. The proposed framework integrates a deep learning predictor of future network conditions with a proactive Q-learning-based slice admission control mechanism. We validate our solution using real-world data from a mmWave x-haul deployment in a dense urban area, incorporating realistic models of link capacity attenuation and dynamic slice demands. Extensive evaluations demonstrate that our proactive solution achieves 2-3x higher long-term average revenue under dynamic link conditions, providing a scalable and resilient framework for adaptive admission control.
DeePM: Regime-Robust Deep Learning for Systematic Macro Portfolio Management
We propose DeePM (Deep Portfolio Manager), a structured deep-learning macro portfolio manager trained end-to-end to maximize a robust, risk-adjusted utility. DeePM addresses three fundamental challenges in financial learning: (1) it resolves the asynchronous "ragged filtration" problem via a Directed Delay (Causal Sieve) mechanism that prioritizes causal impulse-response learning over information freshness; (2) it combats low signal-to-noise ratios via a Macroeconomic Graph Prior, regularizing cross-asset dependence according to economic first principles; and (3) it optimizes a distributionally robust objective where a smooth worst-window penalty serves as a differentiable proxy for Entropic Value-at-Risk (EVaR) - a window-robust utility encouraging strong performance in the most adverse historical subperiods. In large-scale backtests from 2010-2025 on 50 diversified futures with highly realistic transaction costs, DeePM attains net risk-adjusted returns that are roughly twice those of classical trend-following strategies and passive benchmarks, solely using daily closing prices. Furthermore, DeePM improves upon the state-of-the-art Momentum Transformer architecture by roughly fifty percent. The model demonstrates structural resilience across the 2010s "CTA (Commodity Trading Advisor) Winter" and the post-2020 volatility regime shift, maintaining consistent performance through the pandemic, inflation shocks, and the subsequent higher-for-longer environment. Ablation studies confirm that strictly lagged cross-sectional attention, graph prior, principled treatment of transaction costs, and robust minimax optimization are the primary drivers of this generalization capability.
On the Robustness of Age for Learning-Based Wireless Scheduling in Unknown Environments
The constrained combinatorial multi-armed bandit model has been widely employed to solve problems in wireless networking and related areas, including the problem of wireless scheduling for throughput optimization under unknown channel conditions. Most work in this area uses an algorithm design strategy that combines a bandit learning algorithm with the virtual queue technique to track the throughput constraint violation. These algorithms seek to minimize the virtual queue length in their algorithm design. However, in networks where channel conditions change abruptly, the resulting constraints may become infeasible, leading to unbounded growth in virtual queue lengths. In this paper, we make the key observation that the dynamics of the head-of-line age, i.e. the age of the oldest packet in the virtual queue, make it more robust when used in algorithm design compared to the virtual queue length. We therefore design a learning-based scheduling policy that uses the head-of-line age in place of the virtual queue length. We show that our policy matches state-of-the-art performance under i.i.d. network conditions. Crucially, we also show that the system remains stable even under abrupt changes in channel conditions and can rapidly recover from periods of constraint infeasibility.
comment: technical report of conference paper
A Critical Examination of Active Learning Workflows in Materials Science
Active learning (AL) plays a critical role in materials science, enabling applications such as the construction of machine-learning interatomic potentials for atomistic simulations and the operation of self-driving laboratories. Despite its widespread use, the reliability and effectiveness of AL workflows depend on implicit design assumptions that are rarely examined systematically. Here, we critically assess AL workflows deployed in materials science and investigate how key design choices, such as surrogate models, sampling strategies, uncertainty quantification and evaluation metrics, relate to their performance. By identifying common pitfalls and discussing practical mitigation strategies, we provide guidance to practitioners for the efficient design, assessment, and interpretation of AL workflows in materials science.
Performance of a Deep Learning-Based Segmentation Model for Pancreatic Tumors on Public Endoscopic Ultrasound Datasets
Background: Pancreatic cancer is one of the most aggressive cancers, with poor survival rates. Endoscopic ultrasound (EUS) is a key diagnostic modality, but its effectiveness is constrained by operator subjectivity. This study evaluates a Vision Transformer-based deep learning segmentation model for pancreatic tumors. Methods: A segmentation model using the USFM framework with a Vision Transformer backbone was trained and validated with 17,367 EUS images (from two public datasets) in 5-fold cross-validation. The model was tested on an independent dataset of 350 EUS images from another public dataset, manually segmented by radiologists. Preprocessing included grayscale conversion, cropping, and resizing to 512x512 pixels. Metrics included Dice similarity coefficient (DSC), intersection over union (IoU), sensitivity, specificity, and accuracy. Results: In 5-fold cross-validation, the model achieved a mean DSC of 0.651 +/- 0.738, IoU of 0.579 +/- 0.658, sensitivity of 69.8%, specificity of 98.8%, and accuracy of 97.5%. For the external validation set, the model achieved a DSC of 0.657 (95% CI: 0.634-0.769), IoU of 0.614 (95% CI: 0.590-0.689), sensitivity of 71.8%, and specificity of 97.7%. Results were consistent, but 9.7% of cases exhibited erroneous multiple predictions. Conclusions: The Vision Transformer-based model demonstrated strong performance for pancreatic tumor segmentation in EUS images. However, dataset heterogeneity and limited external validation highlight the need for further refinement, standardization, and prospective studies.
Can We Predict Before Executing Machine Learning Agents?
Autonomous machine learning agents have revolutionized scientific discovery, yet they remain constrained by a Generate-Execute-Feedback paradigm. Previous approaches suffer from a severe Execution Bottleneck, as hypothesis evaluation relies strictly on expensive physical execution. To bypass these physical constraints, we internalize execution priors to substitute costly runtime checks with instantaneous predictive reasoning, drawing inspiration from World Models. In this work, we formalize the task of Data-centric Solution Preference and construct a comprehensive corpus of 18,438 pairwise comparisons. We demonstrate that LLMs exhibit significant predictive capabilities when primed with a Verified Data Analysis Report, achieving 61.5% accuracy and robust confidence calibration. Finally, we instantiate this framework in FOREAGENT, an agent that employs a Predict-then-Verify loop, achieving a 6x acceleration in convergence while surpassing execution-based baselines by +6%. Our code and dataset will be publicly available soon at https://github.com/zjunlp/predict-before-execute.
comment: Work in progress
Prophet as a Repro ducible Forecasting Framework: A Methodological Guide for Business and Financial Analytics
Reproducibility remains a persistent challenge in forecasting research and practice, particularly in business and financial analytics where forecasts inform high-stakes decisions. Traditional forecasting methods, while theoretically interpretable, often require extensive manual tuning and are difficult to replicate in proprietary environments. Machine learning approaches offer predictive flexibility but introduce challenges related to interpretability, stochastic training procedures, and cross-environment reproducibility. This paper examines Prophet, an open-source forecasting framework developed by Meta, as a reproducibility-enabling solution that balances interpretability, standardized workflows, and accessibility. Rather than proposing a new algorithm, this study evaluates how Prophet's additive structure, open-source implementation, and standardized workflow contribute to transparent and replicable forecasting practice. Using publicly available financial and retail datasets, we compare Prophet's performance and interpretability with multiple ARIMA specifications (auto-selected, manually specified, and seasonal variants) and Random Forest under a controlled and fully documented experimental design. This multi-model comparison provides a robust assessment of Prophet's relative performance and reproducibility advantages. Through concrete Python examples, we demonstrate how Prophet facilitates efficient forecasting workflows and integration with analytical pipelines. The study positions Prophet within the broader context of reproducible research. It highlights Prophet's role as a methodological building block that supports verification, auditability, and methodological rigor. This work provides researchers and practitioners with a practical reference framework for reproducible forecasting in Python-based research workflows.
Cedalion Tutorial: A Python-based framework for comprehensive analysis of multimodal fNIRS & DOT from the lab to the everyday world
Functional near-infrared spectroscopy (fNIRS) and diffuse optical tomography (DOT) are rapidly evolving toward wearable, multimodal, and data-driven, AI-supported neuroimaging in the everyday world. However, current analytical tools are fragmented across platforms, limiting reproducibility, interoperability, and integration with modern machine learning (ML) workflows. Cedalion is a Python-based open-source framework designed to unify advanced model-based and data-driven analysis of multimodal fNIRS and DOT data within a reproducible, extensible, and community-driven environment. Cedalion integrates forward modelling, photogrammetric optode co-registration, signal processing, GLM Analysis, DOT image reconstruction, and ML-based data-driven methods within a single standardized architecture based on the Python ecosystem. It adheres to SNIRF and BIDS standards, supports cloud-executable Jupyter notebooks, and provides containerized workflows for scalable, fully reproducible analysis pipelines that can be provided alongside original research publications. Cedalion connects established optical-neuroimaging pipelines with ML frameworks such as scikit-learn and PyTorch, enabling seamless multimodal fusion with EEG, MEG, and physiological data. It implements validated algorithms for signal-quality assessment, motion correction, GLM modelling, and DOT reconstruction, complemented by modules for simulation, data augmentation, and multimodal physiology analysis. Automated documentation links each method to its source publication, and continuous-integration testing ensures robustness. This tutorial paper provides seven fully executable notebooks that demonstrate core features. Cedalion offers an open, transparent, and community extensible foundation that supports reproducible, scalable, cloud- and ML-ready fNIRS/DOT workflows for laboratory-based and real-world neuroimaging.
comment: 33 pages main manuscript, 180 pages Supplementary Tutorial Notebooks, 12 figures, 6 tables, under review in SPIE Neurophotonics
Distilling Lightweight Domain Experts from Large ML Models by Identifying Relevant Subspaces
Knowledge distillation involves transferring the predictive capabilities of large, high-performing AI models (teachers) to smaller models (students) that can operate in environments with limited computing power. In this paper, we address the scenario in which only a few classes and their associated intermediate concepts are relevant to distill. This scenario is common in practice, yet few existing distillation methods explicitly focus on the relevant subtask. To address this gap, we introduce 'SubDistill', a new distillation algorithm with improved numerical properties that only distills the relevant components of the teacher model at each layer. Experiments on CIFAR-100 and ImageNet with Convolutional and Transformer models demonstrate that SubDistill outperforms existing layer-wise distillation techniques on a representative set of subtasks. Our benchmark evaluations are complemented by Explainable AI analyses showing that our distilled student models more closely match the decision structure of the original teacher model.
comment: 20 pages + supplement
Multi-task Modeling for Engineering Applications with Sparse Data
Modern engineering and scientific workflows often require simultaneous predictions across related tasks and fidelity levels, where high-fidelity data is scarce and expensive, while low-fidelity data is more abundant. This paper introduces an Multi-Task Gaussian Processes (MTGP) framework tailored for engineering systems characterized by multi-source, multi-fidelity data, addressing challenges of data sparsity and varying task correlations. The proposed framework leverages inter-task relationships across outputs and fidelity levels to improve predictive performance and reduce computational costs. The framework is validated across three representative scenarios: Forrester function benchmark, 3D ellipsoidal void modeling, and friction-stir welding. By quantifying and leveraging inter-task relationships, the proposed MTGP framework offers a robust and scalable solution for predictive modeling in domains with significant computational and experimental costs, supporting informed decision-making and efficient resource utilization.
comment: 15 pages, 5 figures, 6 tables
Auditing Fairness under Model Updates: Fundamental Complexity and Property-Preserving Updates
As machine learning models become increasingly embedded in societal infrastructure, auditing them for bias is of growing importance. However, in real-world deployments, auditing is complicated by the fact that model owners may adaptively update their models in response to changing environments, such as financial markets. These updates can alter the underlying model class while preserving certain properties of interest, raising fundamental questions about what can be reliably audited under such shifts. In this work, we study group fairness auditing under arbitrary updates. We consider general shifts that modify the pre-audit model class while maintaining invariance of the audited property. Our goals are two-fold: (i) to characterize the information complexity of allowable updates, by identifying which strategic changes preserve the property under audit; and (ii) to efficiently estimate auditing properties, such as group fairness, using a minimal number of labeled samples. We propose a generic framework for PAC auditing based on an Empirical Property Optimization (EPO) oracle. For statistical parity, we establish distribution-free auditing bounds characterized by the SP dimension, a novel combinatorial measure that captures the complexity of admissible strategic updates. Finally, we demonstrate that our framework naturally extends to other auditing objectives, including prediction error and robust risk.
Illusions of Confidence? Diagnosing LLM Truthfulness via Neighborhood Consistency
As Large Language Models (LLMs) are increasingly deployed in real-world settings, correctness alone is insufficient. Reliable deployment requires maintaining truthful beliefs under contextual perturbations. Existing evaluations largely rely on point-wise confidence like Self-Consistency, which can mask brittle belief. We show that even facts answered with perfect self-consistency can rapidly collapse under mild contextual interference. To address this gap, we propose Neighbor-Consistency Belief (NCB), a structural measure of belief robustness that evaluates response coherence across a conceptual neighborhood. To validate the efficiency of NCB, we introduce a new cognitive stress-testing protocol that probes outputs stability under contextual interference. Experiments across multiple LLMs show that the performance of high-NCB data is relatively more resistant to interference. Finally, we present Structure-Aware Training (SAT), which optimizes context-invariant belief structure and reduces long-tail knowledge brittleness by approximately 30%. Code will be available at https://github.com/zjunlp/belief.
comment: Work in progress
GlueNN: gluing patchwise analytic solutions with neural networks
In many problems in physics and engineering, one encounters complicated differential equations with strongly scale-dependent terms for which exact analytical or numerical solutions are not available. A common strategy is to divide the domain into several regions (patches) and simplify the equation in each region. When approximate analytic solutions can be obtained in each patch, they are then matched at the interfaces to construct a global solution. However, this patching procedure can fail to reproduce the correct solution, since the approximate forms may break down near the matching boundaries. In this work, we propose a learning framework in which the integration constants of asymptotic analytic solutions are promoted to scale-dependent functions. By constraining these coefficient functions with the original differential equation over the domain, the network learns a globally valid solution that smoothly interpolates between asymptotic regimes, eliminating the need for arbitrary boundary matching. We demonstrate the effectiveness of this framework in representative problems from chemical kinetics and cosmology, where it accurately reproduces global solutions and outperforms conventional matching procedures.
comment: 7 pages, 3 figures
An Empirical Study on Preference Tuning Generalization and Diversity Under Domain Shift
Preference tuning aligns pretrained language models to human judgments of quality, helpfulness, or safety by optimizing over explicit preference signals rather than likelihood alone. Prior work has shown that preference-tuning degrades performance and reduces helpfulness when evaluated outside the training domain. However, the extent to which adaptation strategies mitigate this domain shift remains unexplored. We address this challenge by conducting a comprehensive and systematic study of alignment generalization under domain shift. We compare five popular alignment objectives and various adaptation strategies from source to target, including target-domain supervised fine-tuning and pseudo-labeling, across summarization and question-answering helpfulness tasks. Our findings reveal systematic differences in generalization across alignment objectives under domain shift. We show that adaptation strategies based on pseudo-labeling can substantially reduce domain-shift degradation
IIB-LPO: Latent Policy Optimization via Iterative Information Bottleneck
Recent advances in Reinforcement Learning with Verifiable Rewards (RLVR) for Large Language Model (LLM) reasoning have been hindered by a persistent challenge: exploration collapse. The semantic homogeneity of random rollouts often traps models in narrow, over-optimized behaviors. While existing methods leverage policy entropy to encourage exploration, they face inherent limitations. Global entropy regularization is susceptible to reward hacking, which can induce meaningless verbosity, whereas local token-selective updates struggle with the strong inductive bias of pre-trained models. To address this, we propose Latent Policy Optimization via Iterative Information Bottleneck (IIB-LPO), a novel approach that shifts exploration from statistical perturbation of token distributions to topological branching of reasoning trajectories. IIB-LPO triggers latent branching at high-entropy states to diversify reasoning paths and employs the Information Bottleneck principle both as a trajectory filter and a self-reward mechanism, ensuring concise and informative exploration. Empirical results across four mathematical reasoning benchmarks demonstrate that IIB-LPO achieves state-of-the-art performance, surpassing prior methods by margins of up to 5.3% in accuracy and 7.4% in diversity metrics.
Sequential Bayesian Optimal Experimental Design in Infinite Dimensions via Policy Gradient Reinforcement Learning
Sequential Bayesian optimal experimental design (SBOED) for PDE-governed inverse problems is computationally challenging, especially for infinite-dimensional random field parameters. High-fidelity approaches require repeated forward and adjoint PDE solves inside nested Bayesian inversion and design loops. We formulate SBOED as a finite-horizon Markov decision process and learn an amortized design policy via policy-gradient reinforcement learning (PGRL), enabling online design selection from the experiment history without repeatedly solving an SBOED optimization problem. To make policy training and reward evaluation scalable, we combine dual dimension reduction -- active subspace projection for the parameter and principal component analysis for the state -- with an adjusted derivative-informed latent attention neural operator (LANO) surrogate that predicts both the parameter-to-solution map and its Jacobian. We use a Laplace-based D-optimality reward while noting that, in general, other expected-information-gain utilities such as KL divergence can also be used within the same framework. We further introduce an eigenvalue-based evaluation strategy that uses prior samples as proxies for maximum a posteriori (MAP) points, avoiding repeated MAP solves while retaining accurate information-gain estimates. Numerical experiments on sequential multi-sensor placement for contaminant source tracking demonstrate approximately $100\times$ speedup over high-fidelity finite element methods, improved performance over random sensor placements, and physically interpretable policies that discover an ``upstream'' tracking strategy.
CLewR: Curriculum Learning with Restarts for Machine Translation Preference Learning
Large language models (LLMs) have demonstrated competitive performance in zero-shot multilingual machine translation (MT). Some follow-up works further improved MT performance via preference optimization, but they leave a key aspect largely underexplored: the order in which data samples are given during training. We address this topic by integrating curriculum learning into various state-of-the-art preference optimization algorithms to boost MT performance. We introduce a novel curriculum learning strategy with restarts (CLewR), which reiterates easy-to-hard curriculum multiple times during training to effectively mitigate the catastrophic forgetting of easy examples. We demonstrate consistent gains across several model families (Gemma2, Qwen2.5, Llama3.1) and preference optimization techniques. We publicly release our code at https://github.com/alexandra-dragomir/CLewR.
A New Family of Poisson Non-negative Matrix Factorization Methods Using the Shifted Log Link
Poisson non-negative matrix factorization (NMF) is a widely used method to find interpretable "parts-based" decompositions of count data. While many variants of Poisson NMF exist, existing methods assume that the "parts" in the decomposition combine additively. This assumption may be natural in some settings, but not in others. Here we introduce Poisson NMF with the shifted-log link function to relax this assumption. The shifted-log link function has a single tuning parameter, and as this parameter varies the model changes from assuming that parts combine additively (i.e., standard Poisson NMF) to assuming that parts combine more multiplicatively. We provide an algorithm to fit this model by maximum likelihood, and also an approximation that substantially reduces computation time for large, sparse datasets (computations scale with the number of non-zero entries in the data matrix). We illustrate these new methods on a variety of real datasets. Our examples show how the choice of link function in Poisson NMF can substantively impact the results, and how in some settings the use of a shifted-log link function may improve interpretability compared with the standard, additive link.
A Dual Pipeline Machine Learning Framework for Automated Multi Class Sleep Disorder Screening Using Hybrid Resampling and Ensemble Learning
Accurate classification of sleep disorders, particularly insomnia and sleep apnea, is important for reducing long term health risks and improving patient quality of life. However, clinical sleep studies are resource intensive and are difficult to scale for population level screening. This paper presents a Dual Pipeline Machine Learning Framework for multi class sleep disorder screening using the Sleep Health and Lifestyle dataset. The framework consists of two parallel processing streams: a statistical pipeline that targets linear separability using Mutual Information and Linear Discriminant Analysis, and a wrapper based pipeline that applies Boruta feature selection with an autoencoder for non linear representation learning. To address class imbalance, we use the hybrid SMOTETomek resampling strategy. In experiments, Extra Trees and K Nearest Neighbors achieved an accuracy of 98.67%, outperforming recent baselines on the same dataset. Statistical testing using the Wilcoxon Signed Rank Test indicates that the improvement over baseline configurations is significant, and inference latency remains below 400 milliseconds. These results suggest that the proposed dual pipeline design supports accurate and efficient automated screening for non invasive sleep disorder risk stratification.
comment: 32 pages, 5 figures, 14 tables
Detecting Autism Spectrum Disorder with Deep Eye Movement Features
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social communication and behavioral patterns. Eye movement data offers a non-invasive diagnostic tool for ASD detection, as it is inherently discrete and exhibits short-term temporal dependencies, reflecting localized gaze focus between fixation points. These characteristics enable the data to provide deeper insights into subtle behavioral markers, distinguishing ASD-related patterns from typical development. Eye movement signals mainly contain short-term and localized dependencies. However, despite the widespread application of stacked attention layers in Transformer-based models for capturing long-range dependencies, our experimental results indicate that this approach yields only limited benefits when applied to eye movement data. This may be because discrete fixation points and short-term dependencies in gaze focus reduce the utility of global attention mechanisms, making them less efficient than architectures focusing on local temporal patterns. To efficiently capture subtle and complex eye movement patterns, distinguishing ASD from typically developing (TD) individuals, a discrete short-term sequential (DSTS) modeling framework is designed with Class-aware Representation and Imbalance-aware Mechanisms. Through extensive experiments on several eye movement datasets, DSTS outperforms both traditional machine learning techniques and more sophisticated deep learning models.
comment: Accepted to CIS 2025
Learning Reconstructive Embeddings in Reproducing Kernel Hilbert Spaces via the Representer Theorem
Motivated by the growing interest in representation learning approaches that uncover the latent structure of high-dimensional data, this work proposes new algorithms for reconstruction-based manifold learning within Reproducing-Kernel Hilbert Spaces (RKHS). Each observation is first reconstructed as a linear combination of the other samples in the RKHS, by optimizing a vector form of the Representer Theorem for their autorepresentation property. A separable operator-valued kernel extends the formulation to vector-valued data while retaining the simplicity of a single scalar similarity function. A subsequent kernel-alignment task projects the data into a lower-dimensional latent space whose Gram matrix aims to match the high-dimensional reconstruction kernel, thus transferring the auto-reconstruction geometry of the RKHS to the embedding. Therefore, the proposed algorithms represent an extended approach to the autorepresentation property, exhibited by many natural data, by using and adapting well-known results of Kernel Learning Theory. Numerical experiments on both simulated (concentric circles and swiss-roll) and real (cancer molecular activity and IoT network intrusions) datasets provide empirical evidence of the practical effectiveness of the proposed approach.
SceneFoundry: Generating Interactive Infinite 3D Worlds
The ability to automatically generate large-scale, interactive, and physically realistic 3D environments is crucial for advancing robotic learning and embodied intelligence. However, existing generative approaches often fail to capture the functional complexity of real-world interiors, particularly those containing articulated objects with movable parts essential for manipulation and navigation. This paper presents SceneFoundry, a language-guided diffusion framework that generates apartment-scale 3D worlds with functionally articulated furniture and semantically diverse layouts for robotic training. From natural language prompts, an LLM module controls floor layout generation, while diffusion-based posterior sampling efficiently populates the scene with articulated assets from large-scale 3D repositories. To ensure physical usability, SceneFoundry employs differentiable guidance functions to regulate object quantity, prevent articulation collisions, and maintain sufficient walkable space for robotic navigation. Extensive experiments demonstrate that our framework generates structurally valid, semantically coherent, and functionally interactive environments across diverse scene types and conditions, enabling scalable embodied AI research.
comment: 15 pages
EnvScaler: Scaling Tool-Interactive Environments for LLM Agent via Programmatic Synthesis
Large language models (LLMs) are expected to be trained to act as agents in various real-world environments, but this process relies on rich and varied tool-interaction sandboxes. However, access to real systems is often restricted; LLM-simulated environments are prone to hallucinations and inconsistencies; and manually built sandboxes are hard to scale. In this paper, we propose EnvScaler, an automated framework for scalable tool-interaction environments via programmatic synthesis. EnvScaler comprises two components. First, SkelBuilder constructs diverse environment skeletons through topic mining, logic modeling, and quality evaluation. Then, ScenGenerator generates multiple task scenarios and rule-based trajectory validation functions for each environment. With EnvScaler, we synthesize 191 environments and about 7K scenarios, and apply them to Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL) for Qwen3 series models. Results on three benchmarks show that EnvScaler significantly improves LLMs' ability to solve tasks in complex environments involving multi-turn, multi-tool interactions. We release our code and data at https://github.com/RUC-NLPIR/EnvScaler.
comment: Working in progress
Fusion Matters: Length-Aware Analysis of Positional-Encoding Fusion in Transformers
Transformers require positional encodings to represent sequence order, yet most prior work focuses on designing new positional encodings rather than examining how positional information is fused with token embeddings. In this paper, we study whether the fusion mechanism itself affects performance, particularly in long-sequence settings. We conduct a controlled empirical study comparing three canonical fusion strategies--element-wise addition, concatenation with projection, and scalar gated fusion--under identical Transformer architectures, data splits, and random seeds. Experiments on three text classification datasets spanning short (AG News), medium (IMDB), and long (ArXiv) sequences show that fusion choice has negligible impact on short texts but produces consistent gains on long documents. To verify that these gains are structural rather than stochastic, we perform paired-seed analysis and cross-dataset comparison across sequence-length regimes. Additional experiments on the ArXiv dataset indicate that the benefit of learnable fusion generalizes across multiple positional encoding families. Finally, we explore a lightweight convolutional gating mechanism that introduces local inductive bias at the fusion level, evaluated on long documents only. Our results indicate that positional-encoding fusion is a non-trivial design choice for long-sequence Transformers and should be treated as an explicit modeling decision rather than a fixed default.
comment: 10 pages, 5 figures. Code and reproduction materials available on GitHub
Simplify-This: A Comparative Analysis of Prompt-Based and Fine-Tuned LLMs
Large language models (LLMs) enable strong text generation, and in general there is a practical tradeoff between fine-tuning and prompt engineering. We introduce Simplify-This, a comparative study evaluating both paradigms for text simplification with encoder-decoder LLMs across multiple benchmarks, using a range of evaluation metrics. Fine-tuned models consistently deliver stronger structural simplification, whereas prompting often attains higher semantic similarity scores yet tends to copy inputs. A human evaluation favors fine-tuned outputs overall. We release code, a cleaned derivative dataset used in our study, checkpoints of fine-tuned models, and prompt templates to facilitate reproducibility and future work.
Tensor-DTI: Enhancing Biomolecular Interaction Prediction with Contrastive Embedding Learning ICLR 2025
Accurate drug-target interaction (DTI) prediction is essential for computational drug discovery, yet existing models often rely on single-modality predefined molecular descriptors or sequence-based embeddings with limited representativeness. We propose Tensor-DTI, a contrastive learning framework that integrates multimodal embeddings from molecular graphs, protein language models, and binding-site predictions to improve interaction modeling. Tensor-DTI employs a siamese dual-encoder architecture, enabling it to capture both chemical and structural interaction features while distinguishing interacting from non-interacting pairs. Evaluations on multiple DTI benchmarks demonstrate that Tensor-DTI outperforms existing sequence-based and graph-based models. We also conduct large-scale inference experiments on CDK2 across billion-scale chemical libraries, where Tensor-DTI produces chemically plausible hit distributions even when CDK2 is withheld from training. In enrichment studies against Glide docking and Boltz-2 co-folder, Tensor-DTI remains competitive on CDK2 and improves the screening budget required to recover moderate fractions of high-affinity ligands on out-of-family targets under strict family-holdout splits. Additionally, we explore its applicability to protein-RNA and peptide-protein interactions. Our findings highlight the benefits of integrating multimodal information with contrastive objectives to enhance interaction-prediction accuracy and to provide more interpretable and reliability-aware models for virtual screening.
comment: Accepted at the Generative and Experimental Perspectives for Biomolecular Design Workshop at ICLR 2025 and at the Learning Meaningful Representations of Life Workshop at ICLR 2025
SAFE: Secure and Accurate Federated Learning for Privacy-Preserving Brain-Computer Interfaces
Electroencephalogram (EEG)-based brain-computer interfaces (BCIs) are widely adopted due to their efficiency and portability; however, their decoding algorithms still face multiple challenges, including inadequate generalization, adversarial vulnerability, and privacy leakage. This paper proposes Secure and Accurate FEderated learning (SAFE), a federated learning-based approach that protects user privacy by keeping data local during model training. SAFE employs local batch-specific normalization to mitigate cross-subject feature distribution shifts and hence improves model generalization. It further enhances adversarial robustness by introducing perturbations in both the input space and the parameter space through federated adversarial training and adversarial weight perturbation. Experiments on five EEG datasets from motor imagery (MI) and event-related potential (ERP) BCI paradigms demonstrated that SAFE consistently outperformed 14 state-of-the-art approaches in both decoding accuracy and adversarial robustness, while ensuring privacy protection. Notably, it even outperformed centralized training approaches that do not consider privacy protection at all. To our knowledge, SAFE is the first algorithm to simultaneously achieve high decoding accuracy, strong adversarial robustness, and reliable privacy protection without using any calibration data from the target subject, making it highly desirable for real-world BCIs.
comment: 12 pages, 9 figures
Weights to Code: Extracting Interpretable Algorithms from the Discrete Transformer
Algorithm extraction aims to synthesize executable programs directly from models trained on specific algorithmic tasks, enabling de novo algorithm discovery without relying on human-written code. However, extending this paradigm to Transformer is hindered by superposition, where entangled features encoded in overlapping directions obstruct the extraction of symbolic expressions. In this work, we propose the Discrete Transformer, an architecture explicitly engineered to bridge the gap between continuous representations and discrete symbolic logic. By enforcing a strict functional disentanglement, which constrains Numerical Attention to information routing and Numerical MLP to element-wise arithmetic, and employing temperature-annealed sampling, our method effectively facilitates the extraction of human-readable programs. Empirically, the Discrete Transformer not only achieves performance comparable to RNN-based baselines but crucially extends interpretability to continuous variable domains. Moreover, our analysis of the annealing process shows that the efficient discrete search undergoes a clear phase transition from exploration to exploitation. We further demonstrate that our method enables fine-grained control over synthesized programs by imposing inductive biases. Collectively, these findings establish the Discrete Transformer as a robust framework for demonstration-free algorithm discovery, offering a rigorous pathway toward Transformer interpretability.
Variational Autoencoders for P-wave Detection on Strong Motion Earthquake Spectrograms
Accurate P-wave detection is critical for earthquake early warning, yet strong-motion records pose challenges due to high noise levels, limited labeled data, and complex waveform characteristics. This study reframes P-wave arrival detection as a self-supervised anomaly detection task to evaluate how architectural variations regulate the trade-off between reconstruction fidelity and anomaly discrimination. Through a comprehensive grid search of 492 Variational Autoencoder configurations, we show that while skip connections minimize reconstruction error (Mean Absolute Error approximately 0.0012), they induce "overgeneralization", allowing the model to reconstruct noise and masking the detection signal. In contrast, attention mechanisms prioritize global context over local detail and yield the highest detection performance with an area-under-the-curve of 0.875. The attention-based Variational Autoencoder achieves an area-under-the-curve of 0.91 in the 0 to 40-kilometer near-source range, demonstrating high suitability for immediate early warning applications. These findings establish that architectural constraints favoring global context over pixel-perfect reconstruction are essential for robust, self-supervised P-wave detection.
comment: 13 pages, 8 figures, 3 tables
ViTNT-FIQA: Training-Free Face Image Quality Assessment with Vision Transformers WACV
Face Image Quality Assessment (FIQA) is essential for reliable face recognition systems. Current approaches primarily exploit only final-layer representations, while training-free methods require multiple forward passes or backpropagation. We propose ViTNT-FIQA, a training-free approach that measures the stability of patch embedding evolution across intermediate Vision Transformer (ViT) blocks. We demonstrate that high-quality face images exhibit stable feature refinement trajectories across blocks, while degraded images show erratic transformations. Our method computes Euclidean distances between L2-normalized patch embeddings from consecutive transformer blocks and aggregates them into image-level quality scores. We empirically validate this correlation on a quality-labeled synthetic dataset with controlled degradation levels. Unlike existing training-free approaches, ViTNT-FIQA requires only a single forward pass without backpropagation or architectural modifications. Through extensive evaluation on eight benchmarks (LFW, AgeDB-30, CFP-FP, CALFW, Adience, CPLFW, XQLFW, IJB-C), we show that ViTNT-FIQA achieves competitive performance with state-of-the-art methods while maintaining computational efficiency and immediate applicability to any pre-trained ViT-based face recognition model.
comment: Accepted at WACV Workshops
mHC-lite: You Don't Need 20 Sinkhorn-Knopp Iterations
Hyper-Connections (HC) generalizes residual connections by introducing dynamic residual matrices that mix information across multiple residual streams, accelerating convergence in deep neural networks. However, unconstrained residual matrices can compromise training stability. To address this, DeepSeek's Manifold-Constrained Hyper-Connections (mHC) approximately projects these matrices onto the Birkhoff polytope via iterative Sinkhorn--Knopp (SK) normalization. We identify two limitations of this approach: (i) finite SK iterations do not guarantee exact doubly stochasticity, leaving an approximation gap that can accumulate through network depth and undermine stability; (ii) efficient SK implementation requires highly specialized CUDA kernels, raising engineering barriers and reducing portability. Motivated by the Birkhoff--von Neumann theorem, we propose mHC-lite, a simple reparameterization that explicitly constructs doubly stochastic matrices as convex combinations of permutation matrices. This approach guarantees exact doubly stochasticity by construction and can be implemented using only native matrix operations. Extensive experiments demonstrate that mHC-lite matches or exceeds mHC in performance while achieving higher training throughput with a naive implementation and eliminating the residual instabilities observed in both HC and mHC. The code is publicly available at https://github.com/FFTYYY/mhc-lite.
Visualising Information Flow in Word Embeddings with Diffusion Tensor Imaging
Understanding how large language models (LLMs) represent natural language is a central challenge in natural language processing (NLP) research. Many existing methods extract word embeddings from an LLM, visualise the embedding space via point-plots, and compare the relative positions of certain words. However, this approach only considers single words and not whole natural language expressions, thus disregards the context in which a word is used. Here we present a novel tool for analysing and visualising information flow in natural language expressions by applying diffusion tensor imaging (DTI) to word embeddings. We find that DTI reveals how information flows between word embeddings. Tracking information flows within the layers of an LLM allows for comparing different model structures and revealing opportunities for pruning an LLM's under-utilised layers. Furthermore, our model reveals differences in information flows for tasks like pronoun resolution and metaphor detection. Our results show that our model permits novel insights into how LLMs represent actual natural language expressions, extending the comparison of isolated word embeddings and improving the interpretability of NLP models.
FLRQ: Faster LLM Quantization with Flexible Low-Rank Matrix Sketching
Traditional post-training quantization (PTQ) is considered an effective approach to reduce model size and accelerate inference of large-scale language models (LLMs). However, existing low-rank PTQ methods require costly fine-tuning to determine a compromise rank for diverse data and layers in large models, failing to exploit their full potential. Additionally, the current SVD-based low-rank approximation compounds the computational overhead. In this work, we thoroughly analyze the varying effectiveness of low-rank approximation across different layers in representative models. Accordingly, we introduce \underline{F}lexible \underline{L}ow-\underline{R}ank \underline{Q}uantization (FLRQ), a novel solution designed to quickly identify the accuracy-optimal ranks and aggregate them to achieve minimal storage combinations. FLRQ comprises two powerful components, Rank1-Sketch-based Flexible Rank Selection (R1-FLR) and Best Low-rank Approximation under Clipping (BLC). R1-FLR applies the R1-Sketch with Gaussian projection for the fast low-rank approximation, enabling outlier-aware rank extraction for each layer. Meanwhile, BLC aims at minimizing the low-rank quantization error under the scaling and clipping strategy through an iterative method. FLRQ demonstrates strong effectiveness and robustness in comprehensive experiments, achieving state-of-the-art performance in both quantization quality and algorithm efficiency.
AGDC: Autoregressive Generation of Variable-Length Sequences with Joint Discrete and Continuous Spaces
Transformer-based autoregressive models excel in data generation but are inherently constrained by their reliance on discretized tokens, which limits their ability to represent continuous values with high precision. We analyze the scalability limitations of existing discretization-based approaches for generating hybrid discrete-continuous sequences, particularly in high-precision domains such as semiconductor circuit designs, where precision loss can lead to functional failure. To address the challenge, we propose AGDC, a novel unified framework that jointly models discrete and continuous values for variable-length sequences. AGDC employs a hybrid approach that combines categorical prediction for discrete values with diffusion-based modeling for continuous values, incorporating two key technical components: an end-of-sequence (EOS) logit adjustment mechanism that uses an MLP to dynamically adjust EOS token logits based on sequence context, and a length regularization term integrated into the loss function. Additionally, we present ContLayNet, a large-scale benchmark comprising 334K high-precision semiconductor layout samples with specialized evaluation metrics that capture functional correctness where precision errors significantly impact performance. Experiments on semiconductor layouts (ContLayNet), graphic layouts, and SVGs demonstrate AGDC's superior performance in generating high-fidelity hybrid vector representations compared to discretization-based and fixed-schema baselines, achieving scalable high-precision generation across diverse domains.
Do Sparse Autoencoders Identify Reasoning Features in Language Models?
We investigate whether sparse autoencoders (SAEs) identify genuine reasoning features in large language models (LLMs). Starting from features selected using standard contrastive activation methods, we introduce a falsification-oriented framework that combines causal token injection experiments and LLM-guided falsification to test whether feature activation reflects reasoning processes or superficial linguistic correlates. Across 20 configurations spanning multiple model families, layers, and reasoning datasets, we find that identified reasoning features are highly sensitive to token-level interventions. Injecting a small number of feature-associated tokens into non-reasoning text is sufficient to elicit strong activation for 59% to 94% of features, indicating reliance on lexical artifacts. For the remaining features that are not explained by simple token triggers, LLM-guided falsification consistently produces non-reasoning inputs that activate the feature and reasoning inputs that do not, with no analyzed feature satisfying our criteria for genuine reasoning behavior. Steering these features yields minimal changes or slight degradations in benchmark performance. Together, these results suggest that SAE features identified by contrastive approaches primarily capture linguistic correlates of reasoning rather than the underlying reasoning computations themselves.
Tracing Stereotypes in Pre-trained Transformers: From Biased Neurons to Fairer Models
The advent of transformer-based language models has reshaped how AI systems process and generate text. In software engineering (SE), these models now support diverse activities, accelerating automation and decision-making. Yet, evidence shows that these models can reproduce or amplify social biases, raising fairness concerns. Recent work on neuron editing has shown that internal activations in pre-trained transformers can be traced and modified to alter model behavior. Building on the concept of knowledge neurons, neurons that encode factual information, we hypothesize the existence of biased neurons that capture stereotypical associations within pre-trained transformers. To test this hypothesis, we build a dataset of biased relations, i.e., triplets encoding stereotypes across nine bias types, and adapt neuron attribution strategies to trace and suppress biased neurons in BERT models. We then assess the impact of suppression on SE tasks. Our findings show that biased knowledge is localized within small neuron subsets, and suppressing them substantially reduces bias with minimal performance loss. This demonstrates that bias in transformers can be traced and mitigated at the neuron level, offering an interpretable approach to fairness in SE.
From Global to Local: Cluster-Aware Learning for Wi-Fi Fingerprinting Indoor Localisation
Wi-Fi fingerprinting remains one of the most practical solutions for indoor positioning, however, its performance is often limited by the size and heterogeneity of fingerprint datasets, strong Received Signal Strength Indicator variability, and the ambiguity introduced in large and multi-floor environments. These factors significantly degrade localisation accuracy, particularly when global models are applied without considering structural constraints. This paper introduces a clustering-based method that structures the fingerprint dataset prior to localisation. Fingerprints are grouped using either spatial or radio features, and clustering can be applied at the building or floor level. In the localisation phase, a clustering estimation procedure based on the strongest access points assigns unseen fingerprints to the most relevant cluster. Localisation is then performed only within the selected clusters, allowing learning models to operate on reduced and more coherent subsets of data. The effectiveness of the method is evaluated on three public datasets and several machine learning models. Results show a consistent reduction in localisation errors, particularly under building-level strategies, but at the cost of reducing the floor detection accuracy. These results demonstrate that explicitly structuring datasets through clustering is an effective and flexible approach for scalable indoor positioning.
comment: 20 pages, 9 figures, 6 tables
Open World Knowledge Aided Single-Cell Foundation Model with Robust Cross-Modal Cell-Language Pre-training
Recent advancements in single-cell multi-omics, particularly RNA-seq, have provided profound insights into cellular heterogeneity and gene regulation. While pre-trained language model (PLM) paradigm based single-cell foundation models have shown promise, they remain constrained by insufficient integration of in-depth individual profiles and neglecting the influence of noise within multi-modal data. To address both issues, we propose an Open-world Language Knowledge-Aided Robust Single-Cell Foundation Model (OKR-CELL). It is built based on a cross-modal Cell-Language pre-training framework, which comprises two key innovations: (1) leveraging Large Language Models (LLMs) based workflow with retrieval-augmented generation (RAG) enriches cell textual descriptions using open-world knowledge; (2) devising a Cross-modal Robust Alignment (CRA) objective that incorporates sample reliability assessment, curriculum learning, and coupled momentum contrastive learning to strengthen the model's resistance to noisy data. After pretraining on 32M cell-text pairs, OKR-CELL obtains cutting-edge results across 6 evaluation tasks. Beyond standard benchmarks such as cell clustering, cell-type annotation, batch-effect correction, and few-shot annotation, the model also demonstrates superior performance in broader multi-modal applications, including zero-shot cell-type annotation and bidirectional cell-text retrieval.
comment: 41 pages
Transformer Is Inherently a Causal Learner
We reveal that transformers trained in an autoregressive manner naturally encode time-delayed causal structures in their learned representations. When predicting future values in multivariate time series, the gradient sensitivities of transformer outputs with respect to past inputs directly recover the underlying causal graph, without any explicit causal objectives or structural constraints. We prove this connection theoretically under standard identifiability conditions and develop a practical extraction method using aggregated gradient attributions. On challenging cases such as nonlinear dynamics, long-term dependencies, and non-stationary systems, this approach greatly surpasses the performance of state-of-the-art discovery algorithms, especially as data heterogeneity increases, exhibiting scaling potential where causal accuracy improves with data volume and heterogeneity, a property traditional methods lack. This unifying view lays the groundwork for a future paradigm where causal discovery operates through the lens of foundation models, and foundation models gain interpretability and enhancement through the lens of causality.
Multilingual Amnesia: On the Transferability of Unlearning in Multilingual LLMs
As multilingual large language models become more widely used, ensuring their safety and fairness across diverse linguistic contexts presents unique challenges. While existing research on machine unlearning has primarily focused on monolingual settings, typically English, multilingual environments introduce additional complexities due to cross-lingual knowledge transfer and biases embedded in both pretraining and fine-tuning data. In this work, we study multilingual unlearning using the Aya-Expanse 8B model under two settings: (1) data unlearning and (2) concept unlearning. We extend benchmarks for factual knowledge and stereotypes to ten languages through translation: English, French, Arabic, Japanese, Russian, Farsi, Korean, Hindi, Hebrew, and Indonesian. These languages span five language families and a wide range of resource levels. Our experiments show that unlearning in high-resource languages is generally more stable, with asymmetric transfer effects observed between typologically related languages. Furthermore, our analysis of linguistic distances indicates that syntactic similarity is the strongest predictor of cross-lingual unlearning behavior.
Compressing image encoders via latent distillation
Deep learning models for image compression often face practical limitations in hardware-constrained applications. Although these models achieve high-quality reconstructions, they are typically complex, heavyweight, and require substantial training data and computational resources. We propose a methodology to partially compress these networks by reducing the size of their encoders. Our approach uses a simplified knowledge distillation strategy to approximate the latent space of the original models with less data and shorter training, yielding lightweight encoders from heavyweight ones. We evaluate the resulting lightweight encoders across two different architectures on the image compression task. Experiments show that our method preserves reconstruction quality and statistical fidelity better than training lightweight encoders with the original loss, making it practical for resource-limited environments.
GenCtrl -- A Formal Controllability Toolkit for Generative Models
As generative models become ubiquitous, there is a critical need for fine-grained control over the generation process. Yet, while controlled generation methods from prompting to fine-tuning proliferate, a fundamental question remains unanswered: are these models truly controllable in the first place? In this work, we provide a theoretical framework to formally answer this question. Framing human-model interaction as a control process, we propose a novel algorithm to estimate the controllable sets of models in a dialogue setting. Notably, we provide formal guarantees on the estimation error as a function of sample complexity: we derive probably-approximately correct bounds for controllable set estimates that are distribution-free, employ no assumptions except for output boundedness, and work for any black-box nonlinear control system (i.e., any generative model). We empirically demonstrate the theoretical framework on different tasks in controlling dialogue processes, for both language models and text-to-image generation. Our results show that model controllability is surprisingly fragile and highly dependent on the experimental setting. This highlights the need for rigorous controllability analysis, shifting the focus from simply attempting control to first understanding its fundamental limits.
Continual Learning of Achieving Forgetting-free and Positive Knowledge Transfer
Existing research on continual learning (CL) of a sequence of tasks focuses mainly on dealing with catastrophic forgetting (CF) to balance the learning plasticity of new tasks and the memory stability of old tasks. However, an ideal CL agent should not only be able to overcome CF, but also encourage positive forward and backward knowledge transfer (KT), i.e., using the learned knowledge from previous tasks for the new task learning (namely FKT), and improving the previous tasks' performance with the knowledge of the new task (namely BKT). To this end, this paper first models CL as an optimization problem in which each sequential learning task aims to achieve its optimal performance under the constraint that both FKT and BKT should be positive. It then proposes a novel Enhanced Task Continual Learning (ETCL) method, which achieves forgetting-free and positive KT. Furthermore, the bounds that can lead to negative FKT and BKT are estimated theoretically. Based on the bounds, a new strategy for online task similarity detection is also proposed to facilitate positive KT. To overcome CF, ETCL learns a set of task-specific binary masks to isolate a sparse sub-network for each task while preserving the performance of a dense network for the task. At the beginning of a new task learning, ETCL tries to align the new task's gradient with that of the sub-network of the previous most similar task to ensure positive FKT. By using a new bi-objective optimization strategy and an orthogonal gradient projection method, ETCL updates only the weights of previous similar tasks at the classification layer to achieve positive BKT. Extensive evaluations demonstrate that the proposed ETCL markedly outperforms strong baselines on dissimilar, similar, and mixed task sequences.
Dual-Phase LLM Reasoning: Self-Evolved Mathematical Frameworks
In recent years, large language models (LLMs) have demonstrated significant potential in complex reasoning tasks like mathematical problem-solving. However, existing research predominantly relies on reinforcement learning (RL) frameworks while overlooking supervised fine-tuning (SFT) methods. This paper proposes a new two-stage training framework that enhances models' self-correction capabilities through self-generated long chain-of-thought (CoT) data. During the first stage, a multi-turn dialogue strategy guides the model to generate CoT data incorporating verification, backtracking, subgoal decomposition, and backward reasoning, with predefined rules filtering high-quality samples for supervised fine-tuning. The second stage employs a difficulty-aware rejection sampling mechanism to dynamically optimize data distribution, strengthening the model's ability to handle complex problems. The approach generates reasoning chains extended over 4 times longer while maintaining strong scalability, proving that SFT effectively activates models' intrinsic reasoning capabilities and provides a resource-efficient pathway for complex task optimization. Experimental results demonstrate performance improvements on mathematical benchmarks including GSM8K and MATH500, with the fine-tuned model achieving a substantial improvement on competition-level problems like AIME24. Code will be open-sourced.
PiXTime: A Model for Federated Time Series Forecasting with Heterogeneous Data Structures Across Nodes
Time series are highly valuable and rarely shareable across nodes, making federated learning a promising paradigm to leverage distributed temporal data. However, different sampling standards lead to diverse time granularities and variable sets across nodes, hindering classical federated learning. We propose PiXTime, a novel time series forecasting model designed for federated learning that enables effective prediction across nodes with multi-granularity and heterogeneous variable sets. PiXTime employs a personalized Patch Embedding to map node-specific granularity time series into token sequences of a unified dimension for processing by a subsequent shared model, and uses a global VE Table to align variable category semantics across nodes, thereby enhancing cross-node transferability. With a transformer-based shared model, PiXTime captures representations of auxiliary series with arbitrary numbers of variables and uses cross-attention to enhance the prediction of the target series. Experiments show PiXTime achieves state-of-the-art performance in federated settings and demonstrates superior performance on eight widely used real-world traditional benchmarks.
Orchestrating Tokens and Sequences: Dynamic Hybrid Policy Optimization for RLVR
Reinforcement Learning with Verifiable Rewards (RLVR) offers a promising framework for optimizing large language models in reasoning tasks. However, existing RLVR algorithms focus on different granularities, and each has complementary strengths and limitations. Group Relative Policy Optimization (GRPO) updates the policy with token-level importance ratios, which preserves fine-grained credit assignment but often suffers from high variance and instability. In contrast, Group Sequence Policy Optimization (GSPO) applies single sequence-level importance ratios across all tokens in a response that better matches sequence-level rewards, but sacrifices token-wise credit assignment. In this paper, we propose Dynamic Hybrid Policy Optimization (DHPO) to bridge GRPO and GSPO within a single clipped surrogate objective. DHPO combines token-level and sequence-level importance ratios using weighting mechanisms. We explore two variants of the mixing mechanism, including an averaged mixing and an entropy-guided mixing. To further stabilize training, we employ a branch-specific clipping strategy that constrains token-level and sequence-level ratios within separate trust regions before mixing, preventing outliers in either branch from dominating the update. Across seven challenging mathematical reasoning benchmarks, experiments on both dense and MoE models from the Qwen3 series show that DHPO consistently outperforms GRPO and GSPO. We will release our code upon acceptance of this paper.
SceneAlign: Aligning Multimodal Reasoning to Scene Graphs in Complex Visual Scenes
Multimodal large language models often struggle with faithful reasoning in complex visual scenes, where intricate entities and relations require precise visual grounding at each step. This reasoning unfaithfulness frequently manifests as hallucinated entities, mis-grounded relations, skipped steps, and over-specified reasoning. Existing preference-based approaches, typically relying on textual perturbations or answer-conditioned rationales, fail to address this challenge as they allow models to exploit language priors to bypass visual grounding. To address this, we propose SceneAlign, a framework that leverages scene graphs as structured visual information to perform controllable structural interventions. By identifying reasoning-critical nodes and perturbing them through four targeted strategies that mimic typical grounding failures, SceneAlign constructs hard negative rationales that remain linguistically plausible but are grounded in inaccurate visual facts. These contrastive pairs are used in Direct Preference Optimization to steer models toward fine-grained, structure-faithful reasoning. Across seven visual reasoning benchmarks, SceneAlign consistently improves answer accuracy and reasoning faithfulness, highlighting the effectiveness of grounding-aware alignment for multimodal reasoning.
comment: Preprint
Quantifying and Inducing Shape Bias in CNNs via Max-Pool Dilation
Convolutional Neural Networks (CNNs) are known to exhibit a strong texture bias, favoring local patterns over global shape information--a tendency inherent to their convolutional architecture. While this bias is beneficial for texture-rich natural images, it often degrades performance on shape-dominant data such as illustrations and sketches. Although prior work has proposed shape-biased models to mitigate this issue, these approaches lack a quantitative metric for identifying which datasets would actually benefit from such modifications. To address this gap, we propose a data-driven metric that quantifies the shape-texture balance of a dataset by computing the Structural Similarity Index (SSIM) between each image's luminance channel and its L0-smoothed counterpart. Building on this metric, we further introduce a computationally efficient adaptation method that promotes shape bias by modifying the dilation of max-pooling operations while keeping convolutional weights frozen. Experimental results show that this approach consistently improves classification accuracy on shape-dominant datasets, particularly in low-data regimes where full fine-tuning is impractical, requiring training only the final classification layer.
comment: Accepted to IEVC 2026. 4 pages, 1 figure, 3 tables
Good Allocations from Bad Estimates
Conditional average treatment effect (CATE) estimation is the de facto gold standard for targeting a treatment to a heterogeneous population. The method estimates treatment effects up to an error $ε> 0$ in each of $M$ different strata of the population, targeting individuals in decreasing order of estimated treatment effect until the budget runs out. In general, this method requires $O(M/ε^2)$ samples. This is best possible if the goal is to estimate all treatment effects up to an $ε$ error. In this work, we show how to achieve the same total treatment effect as CATE with only $O(M/ε)$ samples for natural distributions of treatment effects. The key insight is that coarse estimates suffice for near-optimal treatment allocations. In addition, we show that budget flexibility can further reduce the sample complexity of allocation. Finally, we evaluate our algorithm on various real-world RCT datasets. In all cases, it finds nearly optimal treatment allocations with surprisingly few samples. Our work highlights the fundamental distinction between treatment effect estimation and treatment allocation: the latter requires far fewer samples.
PaCoRe: Learning to Scale Test-Time Compute with Parallel Coordinated Reasoning
We introduce Parallel Coordinated Reasoning (PaCoRe), a training-and-inference framework designed to overcome a central limitation of contemporary language models: their inability to scale test-time compute (TTC) far beyond sequential reasoning under a fixed context window. PaCoRe departs from the traditional sequential paradigm by driving TTC through massive parallel exploration coordinated via a message-passing architecture in multiple rounds. Each round launches many parallel reasoning trajectories, compacts their findings into context-bounded messages, and synthesizes these messages to guide the next round and ultimately produce the final answer. Trained end-to-end with large-scale, outcome-based reinforcement learning, the model masters the synthesis abilities required by PaCoRe and scales to multi-million-token effective TTC without exceeding context limits. The approach yields strong improvements across diverse domains, and notably pushes reasoning beyond frontier systems in mathematics: an 8B model reaches 94.5% on HMMT 2025, surpassing GPT-5's 93.2% by scaling effective TTC to roughly two million tokens. We open-source model checkpoints, training data, and the full inference pipeline to accelerate follow-up work.
Autoregressive Ranking: Bridging the Gap Between Dual and Cross Encoders
Dual and cross encoders have long been mainstays of information retrieval (IR), but are being challenged by the emergent capabilities of LLMs. An LLM-based approach we term pointwise generative ranking - generating tokens the length of a single docID as opposed to a list in order to enable ranking via beam search - combines efficiency and expressivity benefits while leveraging the in-context capabilities of Causal Transformers. Although there is ample evidence to suggest that pretrained LLMs are well-suited for ranking, we find that the vast majority of LLM-based approaches rely on next-token prediction, a loss function which is fundamentally rank-agnostic (and especially so with pointwise supervision). In this paper, we first prove that the expressivity of pointwise generative ranking with multi-token docIDs is superior to that of dual encoders. We then propose SToICaL - a Simple Token-Item Calibrated Loss - which can incorporate rank-aware supervision at both the item and token levels within the pointwise setup. We run a suite of experiments on ranking tasks derived from WordNet (Fellbaum, 1998) and ESCI (Reddy et al., arXiv:2206.06588). Two variants of SToICaL successfully suppress the probability of invalid docID generations and improve on common ranking metrics beyond top-1 retrieval.
comment: 22 pages, 5 figures
Poisson Hyperplane Processes with Rectified Linear Units
Neural networks have shown state-of-the-art performances in various classification and regression tasks. Rectified linear units (ReLU) are often used as activation functions for the hidden layers in a neural network model. In this article, we establish the connection between the Poisson hyperplane processes (PHP) and two-layer ReLU neural networks. We show that the PHP with a Gaussian prior is an alternative probabilistic representation to a two-layer ReLU neural network. In addition, we show that a two-layer neural network constructed by PHP is scalable to large-scale problems via the decomposition propositions. Finally, we propose an annealed sequential Monte Carlo algorithm for Bayesian inference. Our numerical experiments demonstrate that our proposed method outperforms the classic two-layer ReLU neural network. The implementation of our proposed model is available at https://github.com/ShufeiGe/Pois_Relu.git.
Learn to Evolve: Self-supervised Neural JKO Operator for Wasserstein Gradient Flow
The Jordan-Kinderlehrer-Otto (JKO) scheme provides a stable variational framework for computing Wasserstein gradient flows, but its practical use is often limited by the high computational cost of repeatedly solving the JKO subproblems. We propose a self-supervised approach for learning a JKO solution operator without requiring numerical solutions of any JKO trajectories. The learned operator maps an input density directly to the minimizer of the corresponding JKO subproblem, and can be iteratively applied to efficiently generate the gradient-flow evolution. A key challenge is that only a number of initial densities are typically available for training. To address this, we introduce a Learn-to-Evolve algorithm that jointly learns the JKO operator and its induced trajectories by alternating between trajectory generation and operator updates. As training progresses, the generated data increasingly approximates true JKO trajectories. Meanwhile, this Learn-to-Evolve strategy serves as a natural form of data augmentation, significantly enhancing the generalization ability of the learned operator. Numerical experiments demonstrate the accuracy, stability, and robustness of the proposed method across various choices of energies and initial conditions.
Autonomous Discovery of the Ising Model's Critical Parameters with Reinforcement Learning
Traditional methods for determining critical parameters are often influenced by human factors. This research introduces a physics-inspired adaptive reinforcement learning framework that enables agents to autonomously interact with physical environments, simultaneously identifying both the critical temperature and various types of critical exponents in the Ising model with precision. Interestingly, our algorithm exhibits search behavior reminiscent of phase transitions, efficiently converging to target parameters regardless of initial conditions. Experimental results demonstrate that this method significantly outperforms traditional approaches, particularly in environments with strong perturbations. This study not only incorporates physical concepts into machine learning to enhance algorithm interpretability but also establishes a new paradigm for scientific exploration, transitioning from manual analysis to autonomous AI discovery.
comment: 37 pages, 9 figures. This is the Accepted Manuscript of an article published in J. Stat. Mech
Buffered AUC maximization for scoring systems via mixed-integer optimization
A scoring system is a linear classifier composed of a small number of explanatory variables, each assigned a small integer coefficient. This system is highly interpretable and allows predictions to be made with simple manual calculations without the need for a calculator. Several previous studies have used mixed-integer optimization (MIO) techniques to develop scoring systems for binary classification; however, they have not focused on directly maximizing AUC (i.e., area under the receiver operating characteristic curve), even though AUC is recognized as an essential evaluation metric for scoring systems. Our goal herein is to establish an effective MIO framework for constructing scoring systems that directly maximize the buffered AUC (bAUC) as the tightest concave lower bound on AUC. Our optimization model is formulated as a mixed-integer linear optimization (MILO) problem that maximizes bAUC subject to a group sparsity constraint for limiting the number of questions in the scoring system. Computational experiments using publicly available real-world datasets demonstrate that our MILO method can build scoring systems with superior AUC values compared to the baseline methods based on regularization and stepwise regression. This research contributes to the advancement of MIO techniques for developing highly interpretable classification models.
Understanding LLM-Driven Test Oracle Generation
Automated unit test generation aims to improve software quality while reducing the time and effort required for creating tests manually. However, existing techniques primarily generate regression oracles that predicate on the implemented behavior of the class under test. They do not address the oracle problem: the challenge of distinguishing correct from incorrect program behavior. With the rise of Foundation Models (FMs), particularly Large Language Models (LLMs), there is a new opportunity to generate test oracles that reflect intended behavior. This positions LLMs as enablers of Promptware, where software creation and testing are driven by natural-language prompts. This paper presents an empirical study on the effectiveness of LLMs in generating test oracles that expose software failures. We investigate how different prompting strategies and levels of contextual input impact the quality of LLM-generated oracles. Our findings offer insights into the strengths and limitations of LLM-based oracle generation in the FM era, improving our understanding of their capabilities and fostering future research in this area.
comment: Accepted for presentation at the 2nd ACM/IEEE International Conference on AI-powered Software (AIware 2025)
Scalable Heterogeneous Graph Learning via Heterogeneous-aware Orthogonal Prototype Experts
Heterogeneous Graph Neural Networks(HGNNs) have advanced mainly through better encoders, yet their decoding/projection stage still relies on a single shared linear head, assuming it can map rich node embeddings to labels. We call this the Linear Projection Bottleneck: in heterogeneous graphs, contextual diversity and long-tail shifts make a global head miss fine semantics, overfit hub nodes, and underserve tail nodes. While Mixture-of-Experts(MoE) could help, naively applying it clashes with structural imbalance and risks expert collapse. We propose a Heterogeneous-aware Orthogonal Prototype Experts framework named HOPE, a plug-and-play replacement for the standard prediction head. HOPE uses learnable prototype-based routing to assign instances to experts by similarity, letting expert usage follow the natural long-tail distribution, and adds expert orthogonalization to encourage diversity and prevent collapse. Experiments on four real datasets show consistent gains across SOTA HGNN backbones with minimal overhead.
DNATokenizer: A GPU-First Byte-to-Identifier Tokenizer for High-Throughput DNA Language Models
Tokenization sits at the boundary between high-throughput genomic input and GPU compute, posing challenges in both algorithm design and system throughput. Overlapping k-mer tokenization can introduce information leakage under masked language modeling (MLM) and may degrade downstream accuracy. Single-nucleotide tokenization avoids leakage and preserves per-base fidelity, but it greatly increases sequence length for attention-based architectures. Non-overlapping k-mers and byte-pair encoding (BPE) provide compression and avoid leakage, at the cost of boundary sensitivity or reduced interpretability. Empirically, the choice of tokenization interacts strongly with model architecture and task requirements. At the system level, however, standard string tokenizers and host-bound vocabulary lookups dominate wall-clock time once inputs reach billions of bases, regardless of the tokenization algorithm. We present DNATok, a high-performance, GPU-first tokenization system that replaces general-purpose string processing with byte lookup table (LUT)-based identifier streaming and an overlapped host-to-device (H2D)/compute pipeline using pinned memory and architectural parallelism. DNATok is vocabulary-agnostic: it accelerates single-nucleotide, non-overlapping k-mer, and BPE tokenization, and integrates as a drop-in systems layer beneath genomic foundation models. DNATok achieves 84-95x higher encoding throughput than optimized Hugging Face baselines and up to 1.9x higher H2D throughput. End-to-end streaming reaches 1.27-1.84e8 tokens/s depending on configuration, effectively removing tokenization as a bottleneck for production-scale training and inference.
Autonomous Probe Microscopy with Robust Bag-of-Features Multi-Objective Bayesian Optimization: Pareto-Front Mapping of Nanoscale Structure-Property Trade-Offs
Combinatorial materials libraries are an efficient route to generate large families of candidate compositions, but their impact is often limited by the speed and depth of characterization and by the difficulty of extracting actionable structure-property relations from complex characterization data. Here we develop an autonomous scanning probe microscopy (SPM) framework that integrates automated atomic force and magnetic force microscopy (AFM/MFM) to rapidly explore magnetic and structural properties across combinatorial spread libraries. To enable automated exploration of systems without a clear optimization target, we introduce a combination of a static physics-informed bag-of-features (BoF) representation of measured surface morphology and magnetic structure with multi-objective Bayesian optimization (MOBO) to discover the relative significance and robustness of features. The resulting closed-loop workflow selectively samples the compositional gradient and reconstructs feature landscapes consistent with dense grid "ground truth" measurements. The resulting Pareto structure reveals where multiple nanoscale objectives are simultaneously optimized, where trade-offs between roughness, coherence, and magnetic contrast are unavoidable, and how families of compositions cluster into distinct functional regimes, thereby turning multi-feature imaging data into interpretable maps of competing structure-property trends. While demonstrated for Au-Co-Ni and AFM/MFM, the approach is general and can be extended to other combinatorial systems, imaging modalities, and feature sets, illustrating how feature-based MOBO and autonomous SPM can transform microscopy images from static data products into active feedback for real-time, multi-objective materials discovery.
comment: 25 pages, 5 figures
DeMa: Dual-Path Delay-Aware Mamba for Efficient Multivariate Time Series Analysis
Accurate and efficient multivariate time series (MTS) analysis is increasingly critical for a wide range of intelligent applications. Within this realm, Transformers have emerged as the predominant architecture due to their strong ability to capture pairwise dependencies. However, Transformer-based models suffer from quadratic computational complexity and high memory overhead, limiting their scalability and practical deployment in long-term and large-scale MTS modeling. Recently, Mamba has emerged as a promising linear-time alternative with high expressiveness. Nevertheless, directly applying vanilla Mamba to MTS remains suboptimal due to three key limitations: (i) the lack of explicit cross-variate modeling, (ii) difficulty in disentangling the entangled intra-series temporal dynamics and inter-series interactions, and (iii) insufficient modeling of latent time-lag interaction effects. These issues constrain its effectiveness across diverse MTS tasks. To address these challenges, we propose DeMa, a dual-path delay-aware Mamba backbone. DeMa preserves Mamba's linear-complexity advantage while substantially improving its suitability for MTS settings. Specifically, DeMa introduces three key innovations: (i) it decomposes the MTS into intra-series temporal dynamics and inter-series interactions; (ii) it develops a temporal path with a Mamba-SSD module to capture long-range dynamics within each individual series, enabling series-independent, parallel computation; and (iii) it designs a variate path with a Mamba-DALA module that integrates delay-aware linear attention to model cross-variate dependencies. Extensive experiments on five representative tasks, long- and short-term forecasting, data imputation, anomaly detection, and series classification, demonstrate that DeMa achieves state-of-the-art performance while delivering remarkable computational efficiency.
comment: Under review
Explainable AI: Learning from the Learners
Artificial intelligence now outperforms humans in several scientific and engineering tasks, yet its internal representations often remain opaque. In this Perspective, we argue that explainable artificial intelligence (XAI), combined with causal reasoning, enables {\it learning from the learners}. Focusing on discovery, optimization and certification, we show how the combination of foundation models and explainability methods allows the extraction of causal mechanisms, guides robust design and control, and supports trust and accountability in high-stakes applications. We discuss challenges in faithfulness, generalization and usability of explanations, and propose XAI as a unifying framework for human-AI collaboration in science and engineering.
Toward an Integrated Cross-Urban Accident Prevention System: A Multi-Task Spatial-Temporal Learning Framework for Urban Safety Management
The development of a cross-city accident prevention system is particularly challenging due to the heterogeneity, inconsistent reporting, and inherently clustered, sparse, cyclical, and noisy nature of urban accident data. These intrinsic data properties, combined with fragmented governance and incompatible reporting standards, have long hindered the creation of an integrated, cross-city accident prevention framework. To address this gap, we propose the Mamba Local-ttention Spatial-Temporal Network MLA-STNet, a unified system that formulates accident risk prediction as a multi-task learning problem across multiple cities. MLA-STNet integrates two complementary modules: (i)the Spatio-Temporal Geographical Mamba-Attention (STG-MA), which suppresses unstable spatio-temporal fluctuations and strengthens long-range temporal dependencies; and (ii) the Spatio-Temporal Semantic Mamba-Attention (STS-MA), which mitigates cross-city heterogeneity through a shared-parameter design that jointly trains all cities while preserving individual semantic representation spaces. We validate the proposed framework through 75 experiments under two forecasting scenarios, full-day and high-frequency accident periods, using real-world datasets from New York City and Chicago. Compared with the state-of-the-art baselines, MLA-STNet achieves up to 6% lower RMSE, 8% higher Recall, and 5% higher MAP, while maintaining less than 1% performance variation under 50% input noise. These results demonstrate that MLA-STNet effectively unifies heterogeneous urban datasets within a scalable, robust, and interpretable Cross-City Accident Prevention System, paving the way for coordinated and data-driven urban safety management.
comment: 38pages, 18figures
Over-Searching in Search-Augmented Large Language Models
Search-augmented large language models (LLMs) excel at knowledge-intensive tasks by integrating external retrieval. However, they often over-search -- unnecessarily invoking search tool even when it does not improve response quality, which leads to computational inefficiency and hallucinations by incorporating irrelevant context. In this work, we conduct a systematic evaluation of over-searching across multiple dimensions, including query types, model categories, retrieval conditions, and multi-turn conversations. Our finding shows: (i) search generally improves answer accuracy on answerable queries but harms abstention on unanswerable ones; (ii) over-searching is more pronounced in complex reasoning models and deep research systems, is exacerbated by noisy retrieval, and compounds across turns in multi-turn conversations; and (iii) the composition of retrieved evidence is crucial, as the presence of negative evidence improves abstention. To quantify over-searching, we introduce Tokens Per Correctness (TPC), an evaluation metric that captures the performance-cost trade-off for search-augmented LLMs. Lastly, we investigate mitigation approaches at both the query and retrieval levels and release the OverSearchQA to foster continued research into efficient search-augmented LLMs.
comment: Accepted to EACL 2026 Main Conference
Hi-ZFO: Hierarchical Zeroth- and First-Order LLM Fine-Tuning via Importance-Guided Tensor Selection
Fine-tuning large language models (LLMs) using standard first-order (FO) optimization often drives training toward sharp, poorly generalizing minima. Conversely, zeroth-order (ZO) methods offer stronger exploratory behavior without relying on explicit gradients, yet suffer from slow convergence. More critically, our analysis reveals that in generative tasks, the vast output and search space significantly amplify estimation variance, rendering ZO methods both noisy and inefficient. To address these challenges, we propose \textbf{Hi-ZFO} (\textbf{Hi}erarchical \textbf{Z}eroth- and \textbf{F}irst-\textbf{O}rder optimization), a hybrid framework designed to synergize the precision of FO gradients with the exploratory capability of ZO estimation. Hi-ZFO adaptively partitions the model through layer-wise importance profiling, applying precise FO updates to critical layers while leveraging ZO optimization for less sensitive ones. Notably, ZO in Hi-ZFO is not merely a memory-saving surrogate; it is intentionally introduced as a source of "beneficial stochasticity" to help the model escape the local minima where pure FO optimization tends to stagnate. Validated across diverse generative, mathematical, and code reasoning tasks, Hi-ZFO consistently achieves superior performance while significantly reducing the training time. These results demonstrate the effectiveness of hierarchical hybrid optimization for LLM fine-tuning.
comment: 13 pages, 4 figures
Prompt-Free SAM-Based Multi-Task Framework for Breast Ultrasound Lesion Segmentation and Classification
Accurate tumor segmentation and classification in breast ultrasound (BUS) imaging remain challenging due to low contrast, speckle noise, and diverse lesion morphology. This study presents a multi-task deep learning framework that jointly performs lesion segmentation and diagnostic classification using embeddings from the Segment Anything Model (SAM) vision encoder. Unlike prompt-based SAM variants, our approach employs a prompt-free, fully supervised adaptation where high-dimensional SAM features are decoded through either a lightweight convolutional head or a UNet-inspired decoder for pixel-wise segmentation. The classification branch is enhanced via mask-guided attention, allowing the model to focus on lesion-relevant features while suppressing background artifacts. Experiments on the PRECISE 2025 breast ultrasound dataset, split per class into 80 percent training and 20 percent testing, show that the proposed method achieves a Dice Similarity Coefficient (DSC) of 0.887 and an accuracy of 92.3 percent, ranking among the top entries on the PRECISE challenge leaderboard. These results demonstrate that SAM-based representations, when coupled with segmentation-guided learning, significantly improve both lesion delineation and diagnostic prediction in breast ultrasound imaging.
MaxCode: A Max-Reward Reinforcement Learning Framework for Automated Code Optimization
Large Language Models (LLMs) demonstrate strong capabilities in general coding tasks but encounter two key challenges when optimizing code: (i) the complexity of writing optimized code (such as performant CUDA kernels and competition-level CPU code) requires expertise in systems, algorithms and specific languages and (ii) requires interpretation of performance metrics like timing and device utilization beyond binary correctness. In this work, we explore inference-time search algorithms that guide the LLM to discover better solutions through iterative refinement based on execution feedback. Our approach, called MaxCode unifies existing search methods under a max-reward reinforcement learning framework, making the observation and action-value functions modular for modification. To enhance the observation space, we integrate a natural language critique model that converts raw execution feedback into diagnostic insights about errors and performance bottlenecks, and the best-discounted reward seen so far. Together, these provide richer input to the code proposal function. To improve exploration during search, we train a generative reward-to-go model using action values from rollouts to rerank potential solutions. Testing on the KernelBench (CUDA) and PIE (C++) optimization benchmarks shows that MaxCode improves optimized code performance compared to baselines, achieving 20.3% and 10.1% relative improvements in absolute speedup value and relative speedup ranking, respectively.
Efficient Differentiable Causal Discovery via Reliable Super-Structure Learning
Recently, differentiable causal discovery has emerged as a promising approach to improve the accuracy and efficiency of existing methods. However, when applied to high-dimensional data or data with latent confounders, these methods, often based on off-the-shelf continuous optimization algorithms, struggle with the vast search space, the complexity of the objective function, and the nontrivial nature of graph-theoretical constraints. As a result, there has been a surge of interest in leveraging super-structures to guide the optimization process. Nonetheless, learning an appropriate super-structure at the right level of granularity, and doing so efficiently across various settings, presents significant challenges. In this paper, we propose ALVGL, a novel and general enhancement to the differentiable causal discovery pipeline. ALVGL employs a sparse and low-rank decomposition to learn the precision matrix of the data. We design an ADMM procedure to optimize this decomposition, identifying components in the precision matrix that are most relevant to the underlying causal structure. These components are then combined to construct a super-structure that is provably a superset of the true causal graph. This super-structure is used to initialize a standard differentiable causal discovery method with a more focused search space, thereby improving both optimization efficiency and accuracy. We demonstrate the versatility of ALVGL by instantiating it across a range of structural causal models, including both Gaussian and non-Gaussian settings, with and without unmeasured confounders. Extensive experiments on synthetic and real-world datasets show that ALVGL not only achieves state-of-the-art accuracy but also significantly improves optimization efficiency, making it a reliable and effective solution for differentiable causal discovery.
ART: Adaptive Reasoning Trees for Explainable Claim Verification
Large Language Models (LLMs) are powerful candidates for complex decision-making, leveraging vast encoded knowledge and remarkable zero-shot abilities. However, their adoption in high-stakes environments is hindered by their opacity; their outputs lack faithful explanations and cannot be effectively contested to correct errors, undermining trustworthiness. In this paper, we propose ART (Adaptive Reasoning Trees), a hierarchical method for claim verification. The process begins with a root claim, which branches into supporting and attacking child arguments. An argument's strength is determined bottom-up via a pairwise tournament of its children, adjudicated by a judge LLM, allowing a final, transparent and contestable verdict to be systematically derived which is missing in methods like Chain-of-Thought (CoT). We empirically validate ART on multiple datasets, analyzing different argument generators and comparison strategies. Our findings show that ART's structured reasoning outperforms strong baselines, establishing a new benchmark for explainable claim verification which is more reliable and ensures clarity in the overall decision making step.
RingSQL: Generating Synthetic Data with Schema-Independent Templates for Text-to-SQL Reasoning Models
Recent advances in text-to-SQL systems have been driven by larger models and improved datasets, yet progress is still limited by the scarcity of high-quality training data. Manual data creation is expensive, and existing synthetic methods trade off reliability and scalability. Template-based approaches ensure correct SQL but require schema-specific templates, while LLM-based generation scales easily but lacks quality and correctness guarantees. We introduce RingSQL, a hybrid data generation framework that combines schema-independent query templates with LLM-based paraphrasing of natural language questions. This approach preserves SQL correctness across diverse schemas while providing broad linguistic variety. In our experiments, we find that models trained using data produced by RingSQL achieve an average gain in accuracy of +2.3% across six text-to-SQL benchmarks when compared to models trained on other synthetic data. We make our code available at https://github.com/nu-c3lab/RingSQL.
Knowledge-Driven Multi-Turn Jailbreaking on Large Language Models
Large Language Models (LLMs) face a significant threat from multi-turn jailbreak attacks, where adversaries progressively steer conversations to elicit harmful outputs. However, the practical effectiveness of existing attacks is undermined by several critical limitations: they struggle to maintain a coherent progression over long interactions, often losing track of what has been accomplished and what remains to be done; they rely on rigid or pre-defined patterns, and fail to adapt to the LLM's dynamic and unpredictable conversational state. To address these shortcomings, we introduce Mastermind, a multi-turn jailbreak framework that adopts a dynamic and self-improving approach. Mastermind operates in a closed loop of planning, execution, and reflection, enabling it to autonomously build and refine its knowledge of model vulnerabilities through interaction. It employs a hierarchical planning architecture that decouples high-level attack objectives from low-level tactical execution, ensuring long-term focus and coherence. This planning is guided by a knowledge repository that autonomously discovers and refines effective attack patterns by reflecting on interactive experiences. Mastermind leverages this accumulated knowledge to dynamically recombine and adapt attack vectors, dramatically improving both effectiveness and resilience. We conduct comprehensive experiments against state-of-the-art models, including GPT-5 and Claude 3.7 Sonnet. The results demonstrate that Mastermind significantly outperforms existing baselines, achieving substantially higher attack success rates and harmfulness ratings. Moreover, our framework exhibits notable resilience against multiple advanced defense mechanisms.
What Functions Does XGBoost Learn?
This paper establishes a rigorous theoretical foundation for the function class implicitly learned by XGBoost, bridging the gap between its empirical success and our theoretical understanding. We introduce an infinite-dimensional function class $\mathcal{F}^{d, s}_{\infty-\text{ST}}$ that extends finite ensembles of bounded-depth regression trees, together with a complexity measure $V^{d, s}_{\infty-\text{XGB}}(\cdot)$ that generalizes the $L^1$ regularization penalty used in XGBoost. We show that every optimizer of the XGBoost objective is also an optimizer of an equivalent penalized regression problem over $\mathcal{F}^{d, s}_{\infty-\text{ST}}$ with penalty $V^{d, s}_{\infty-\text{XGB}}(\cdot)$, providing an interpretation of XGBoost as implicitly targeting a broader function class. We also develop a smoothness-based interpretation of $\mathcal{F}^{d, s}_{\infty-\text{ST}}$ and $V^{d, s}_{\infty-\text{XGB}}(\cdot)$ in terms of Hardy--Krause variation. We prove that the least squares estimator over $\{f \in \mathcal{F}^{d, s}_{\infty-\text{ST}}: V^{d, s}_{\infty-\text{XGB}}(f) \le V\}$ achieves a nearly minimax-optimal rate of convergence $n^{-2/3} (\log n)^{4(\min(s, d) - 1)/3}$, thereby avoiding the curse of dimensionality. Our results provide the first rigorous characterization of the function space underlying XGBoost, clarify its connection to classical notions of variation, and identify an important open problem: whether the XGBoost algorithm itself achieves minimax optimality over this class.
A brief note on learning problem with global perspectives
This brief note considers the problem of learning with dynamic-optimizing principal-agent setting, in which the agents are allowed to have global perspectives about the learning process, i.e., the ability to view things according to their relative importances or in their true relations based-on some aggregated information shared by the principal. Whereas, the principal, which is exerting an influence on the learning process of the agents in the aggregation, is primarily tasked to solve a high-level optimization problem posed as an empirical-likelihood estimator under conditional moment restrictions model that also accounts information about the agents' predictive performances on out-of-samples as well as a set of private datasets available only to the principal. In particular, we present a coherent mathematical argument which is necessary for characterizing the learning process behind this abstract principal-agent learning framework, although we acknowledge that there are a few conceptual and theoretical issues still need to be addressed.
comment: 7 Pages with 1 Figure
Simple Mechanisms for Representing, Indexing and Manipulating Concepts
Supervised and unsupervised learning using deep neural networks typically aims to exploit the underlying structure in the training data; this structure is often explained using a latent generative process that produces the data, and the generative process is often hierarchical, involving latent concepts. Despite the significant work on understanding the learning of the latent structure and underlying concepts using theory and experiments, a framework that mathematically captures the definition of a concept and provides ways to operate on concepts is missing. In this work, we propose to characterize a simple primitive concept by the zero set of a collection of polynomials and use moment statistics of the data to uniquely represent the concepts; we show how this view can be used to obtain a signature of the concept. These signatures can be used to discover a common structure across the set of concepts and could recursively produce the signature of higher-level concepts from the signatures of lower-level concepts. To utilize such desired properties, we propose a method by keeping a dictionary of concepts and show that the proposed method can learn different types of hierarchical structures of the data.
comment: 29 pages
There are no Champions in Supervised Long-Term Time Series Forecasting
Recent advances in long-term time series forecasting have introduced numerous complex supervised prediction models that consistently outperform previously published architectures. However, this rapid progression raises concerns regarding inconsistent benchmarking and reporting practices, which may undermine the reliability of these comparisons. In this study, we first perform a broad, thorough, and reproducible evaluation of the top-performing supervised models on the most popular benchmark and additional baselines representing the most active architecture families. This extensive evaluation assesses eight models on 14 datasets, encompassing $\sim$5,000 trained networks for the hyperparameter (HP) searches. Then, through a comprehensive analysis, we find that slight changes to experimental setups or current evaluation metrics drastically shift the common belief that newly published results are advancing the state of the art. Our findings emphasize the need to shift focus away from pursuing ever-more complex models, towards enhancing benchmarking practices through rigorous and standardized evaluations that enable more substantiated claims, including reproducible HP setups and statistical testing. We offer recommendations for future research.
comment: Accepted at TMLR
ACDZero: MCTS Agent for Mastering Automated Cyber Defense
Automated cyber defense (ACD) seeks to protect computer networks with minimal or no human intervention, reacting to intrusions by taking corrective actions such as isolating hosts, resetting services, deploying decoys, or updating access controls. However, existing approaches for ACD, such as deep reinforcement learning (RL), often face difficult exploration in complex networks with large decision/state spaces and thus require an expensive amount of samples. Inspired by the need to learn sample-efficient defense policies, we frame ACD in CAGE Challenge 4 (CAGE-4 / CC4) as a context-based partially observable Markov decision problem and propose a planning-centric defense policy based on Monte Carlo Tree Search (MCTS). It explicitly models the exploration-exploitation tradeoff in ACD and uses statistical sampling to guide exploration and decision making. We make novel use of graph neural networks (GNNs) to embed observations from the network as attributed graphs, to enable permutation-invariant reasoning over hosts and their relationships. To make our solution practical in complex search spaces, we guide MCTS with learned graph embeddings and priors over graph-edit actions, combining model-free generalization and policy distillation with look-ahead planning. We evaluate the resulting agent on CC4 scenarios involving diverse network structures and adversary behaviors, and show that our search-guided, graph-embedding-based planning improves defense reward and robustness relative to state-of-the-art RL baselines.
Low-dimensional semi-supervised latent Bayesian optimization for designing antimicrobial peptides
Antimicrobial peptides (AMPs) are a promising class of therapeutics to treat bacterial infections. Discovering and designing such peptides is difficult because of the vast number of possible sequences of amino acids. Deep generative models, such as variational autoencoders, have shown value in peptide design due to their ability to model sequence space with a continuous-valued latent space. Although such models have already been used to great effect in biomolecular design, they still suffer from a lack of interpretability and rigorous quantification of latent space quality as a search space. We investigate (1) whether searching through a dimensionally-reduced variant of the latent design space may facilitate optimization, (2) how organizing latent spaces with physicochemical properties may improve the efficiency of optimizing antimicrobial activity, and (3) the interpretability of the spaces. We find that employing a dimensionally-reduced version of the latent space is more interpretable and can be advantageous, while we can organize the latent space with different physicochemical properties even at different percentages of available labels. This work lays crucial groundwork for biophysically-motivated peptide design procedures.
comment: (Submitted version) v2: 22 pages, 9 figures. Expanded discussion section. Made large figure clearer. Small title and abstract change. Edits to results to make points clearer, but no drastic changes
Machine learning for in-situ composition mapping in a self-driving magnetron sputtering system
Self-driving labs (SDLs), employing automation and machine learning (ML) to accelerate experimental procedures, have enormous potential in the discovery of new materials. However, in thin film science, SDLs are mainly restricted to solution-based synthetic methods which are easier to automate but cannot access the broad chemical space of inorganic materials. This work presents an SDL based on magnetron co-sputtering. We are using combinatorial frameworks, obtaining accurate composition maps on multi-element, compositionally graded thin films. This normally requires time-consuming ex-situ analysis prone to systematic errors. We present a rapid and calibration-free in-situ, ML driven approach to produce composition maps for arbitrary source combinations and sputtering conditions. We develop a method to predict the composition distribution in a multi-element combinatorial thin film, using in-situ measurements from quartz-crystal microbalance sensors placed in a sputter chamber. For a given source, the sensor readings are learned as a function of the sputtering pressure and magnetron power, through active learning using Gaussian processes (GPs). The final GPs are combined with a geometric model of the deposition flux distribution in the chamber, which allows interpolation of the deposition rates from each source, at any position across the sample. We investigate several acquisition functions for the ML procedure. A fully Bayesian GP - BALM (Bayesian active learning MacKay) - achieved the best performance, learning the deposition rates for a single source in 10 experiments. Prediction accuracy for co-sputtering composition distributions was verified experimentally. Our framework dramatically increases throughput by avoiding the need for extensive characterisation or calibration, thus demonstrating the potential of ML-guided SDLs to accelerate materials exploration.
comment: 24 pages, 10 figures. Submitted to the journal npj computational materials
Let Me Think! A Long Chain-of-Thought Can Be Worth Exponentially Many Short Ones NeurIPS 2025
Inference-time computation has emerged as a promising scaling axis for improving large language model reasoning. However, despite yielding impressive performance, the optimal allocation of inference-time computation remains poorly understood. A central question is whether to prioritize sequential scaling (e.g., longer chains of thought) or parallel scaling (e.g., majority voting across multiple short chains of thought). In this work, we seek to illuminate the landscape of test-time scaling by demonstrating the existence of reasoning settings where sequential scaling offers an exponential advantage over parallel scaling. These settings are based on graph connectivity problems in challenging distributions of graphs. We validate our theoretical findings with comprehensive experiments across a range of language models, including models trained from scratch for graph connectivity with different chain of thought strategies as well as large reasoning models.
comment: Published at NeurIPS 2025
Unsupervised Domain Adaptation for Binary Classification with an Unobservable Source Subpopulation
We study an unsupervised domain adaptation problem where the source domain consists of subpopulations defined by the binary label $Y$ and a binary background (or environment) $A$. We focus on a challenging setting in which one such subpopulation in the source domain is unobservable. Naively ignoring this unobserved group can result in biased estimates and degraded predictive performance. Despite this structured missingness, we show that the prediction in the target domain can still be recovered. Specifically, we rigorously derive both background-specific and overall prediction models for the target domain. For practical implementation, we propose the distribution matching method to estimate the subpopulation proportions. We provide theoretical guarantees for the asymptotic behavior of our estimator, and establish an upper bound on the prediction error. Experiments on both synthetic and real-world datasets show that our method outperforms the naive benchmark that does not account for this unobservable source subpopulation.
ImageNet-trained CNNs are not biased towards texture: Revisiting feature reliance through controlled suppression NeurIPS 2025
The hypothesis that Convolutional Neural Networks (CNNs) are inherently texture-biased has shaped much of the discourse on feature use in deep learning. We revisit this hypothesis by examining limitations in the cue-conflict experiment by Geirhos et al. To address these limitations, we propose a domain-agnostic framework that quantifies feature reliance through systematic suppression of shape, texture, and color cues, avoiding the confounds of forced-choice conflicts. By evaluating humans and neural networks under controlled suppression conditions, we find that CNNs are not inherently texture-biased but predominantly rely on local shape features. Nonetheless, this reliance can be substantially mitigated through modern training strategies or architectures (ConvNeXt, ViTs). We further extend the analysis across computer vision, medical imaging, and remote sensing, revealing that reliance patterns differ systematically: computer vision models prioritize shape, medical imaging models emphasize color, and remote sensing models exhibit a stronger reliance on texture. Code is available at https://github.com/tomburgert/feature-reliance.
comment: Accepted at NeurIPS 2025 (oral)
SCOPE: Sequential Causal Optimization of Process Interventions
Prescriptive Process Monitoring (PresPM) recommends interventions during business processes to optimize key performance indicators (KPIs). In realistic settings, interventions are rarely isolated: organizations need to align sequences of interventions to jointly steer the outcome of a case. Existing PresPM approaches fall short in this respect. Many focus on a single intervention decision, while others treat multiple interventions independently, ignoring how they interact over time. Methods that do address these dependencies depend either on simulation or data augmentation to approximate the process to train a Reinforcement Learning (RL) agent, which can create a reality gap and introduce bias. We introduce SCOPE, a PresPM approach that learns aligned sequential intervention recommendations. SCOPE employs backward induction to estimate the effect of each candidate intervention action, propagating its impact from the final decision point back to the first. By leveraging causal learners, our method can utilize observational data directly, unlike methods that require constructing process approximations for reinforcement learning. Experiments on both an existing synthetic dataset and a new semi-synthetic dataset show that SCOPE consistently outperforms state-of-the-art PresPM techniques in optimizing the KPI. The novel semi-synthetic setup, based on a real-life event log, is provided as a reusable benchmark for future work on sequential PresPM.
Improving Matrix Exponential for Generative AI Flows: A Taylor-Based Approach Beyond Paterson--Stockmeyer
The matrix exponential is a fundamental operator in scientific computing and system simulation, with applications ranging from control theory and quantum mechanics to modern generative machine learning. While Padé approximants combined with scaling and squaring have long served as the standard, recent Taylor-based methods, which utilize polynomial evaluation schemes that surpass the classical Paterson--Stockmeyer technique, offer superior accuracy and reduced computational complexity. This paper presents an optimized Taylor-based algorithm for the matrix exponential, specifically designed for the high-throughput requirements of generative AI flows. We provide a rigorous error analysis and develop a dynamic selection strategy for the Taylor order and scaling factor to minimize computational effort under a prescribed error tolerance. Extensive numerical experiments demonstrate that our approach provides significant acceleration and maintains high numerical stability compared to existing state-of-the-art implementations. These results establish the proposed method as a highly efficient tool for large-scale generative modeling.
comment: 42 pages, 35 figures
Wasserstein multivariate auto-regressive models for modeling distributional time series
This paper is focused on the statistical analysis of data consisting of a collection of multiple series of probability measures that are indexed by distinct time instants and supported over a bounded interval of the real line. By modeling these time-dependent probability measures as random objects in the Wasserstein space, we propose a new auto-regressive model for the statistical analysis of multivariate distributional time series. Using the theory of iterated random function systems, results on the second order stationarity of the solution of such a model are provided. We also propose a consistent estimator for the auto-regressive coefficients of this model. Due to the simplex constraints that we impose on the model coefficients, the proposed estimator that is learned under these constraints, naturally has a sparse structure. The sparsity allows the application of the proposed model in learning a graph of temporal dependency from multivariate distributional time series. We explore the numerical performances of our estimation procedure using simulated data. To shed some light on the benefits of our approach for real data analysis, we also apply this methodology to two data sets, respectively made of observations from age distribution in different countries and those from the bike sharing network in Paris.
Machine Learning Framework for Characterizing Processing-Structure Relationship in Block Copolymer Thin Films
The morphology of block copolymers (BCPs) critically influences material properties and applications. This work introduces a machine learning (ML)-enabled, high-throughput framework for analyzing grazing incidence small-angle X-ray scattering (GISAXS) data and atomic force microscopy (AFM) images to characterize BCP thin film morphology. A convolutional neural network was trained to classify AFM images by morphology type, achieving 97% testing accuracy. Classified images were then analyzed to extract 2D grain size measurements from the samples in a high-throughput manner. ML models were developed to predict morphological features based on processing parameters such as solvent ratio, additive type, and additive ratio. GISAXS-based properties were predicted with strong performances ($R^2$ > 0.75), while AFM-based property predictions were less accurate ($R^2$ < 0.60), likely due to the localized nature of AFM measurements compared to the bulk information captured by GISAXS. Beyond model performance, interpretability was addressed using Shapley Additive exPlanations (SHAP). SHAP analysis revealed that the additive ratio had the largest impact on morphological predictions, where additive provides the BCP chains with increased volume to rearrange into thermodynamically favorable morphologies. This interpretability helps validate model predictions and offers insight into parameter importance. Altogether, the presented framework combining high-throughput characterization and interpretable ML offers an approach to exploring and optimizing BCP thin film morphology across a broad processing landscape.
TDHook: A Lightweight Framework for Interpretability
Interpretability of Deep Neural Networks (DNNs) is a growing field driven by the study of vision and language models. Yet, some use cases, like image captioning, or domains like Deep Reinforcement Learning (DRL), require complex modelling, with multiple inputs and outputs or use composable and separated networks. As a consequence, they rarely fit natively into the API of popular interpretability frameworks. We thus present TDHook, an open-source, lightweight, generic interpretability framework based on $\texttt{tensordict}$ and applicable to any $\texttt{torch}$ model. It focuses on handling complex composed models which can be trained for Computer Vision, Natural Language Processing, Reinforcement Learning or any other domain. This library features ready-to-use methods for attribution, probing and a flexible get-set API for interventions, and is aiming to bridge the gap between these method classes to make modern interpretability pipelines more accessible. TDHook is designed with minimal dependencies, requiring roughly half as much disk space as $\texttt{transformer_lens}$, and, in our controlled benchmark, achieves up to a $\times$2 speed-up over $\texttt{captum}$ when running integrated gradients for multi-target pipelines on both CPU and GPU. In addition, to value our work, we showcase concrete use cases of our library with composed interpretability pipelines in Computer Vision (CV) and Natural Language Processing (NLP), as well as with complex models in DRL.
A Novel Patch-Based TDA Approach for Computed Tomography
The development of machine learning (ML) models based on computed tomography (CT) imaging modality has been a major focus of recent research in the medical imaging domain. Incorporating robust feature engineering approach can highly improve the performance of these models. Topological data analysis (TDA), a recent development based on the mathematical field of algebraic topology, mainly focuses on the data from a topological perspective, extracting deeper insight and higher dimensional structures from the data. Persistent homology (PH), a fundamental tool in the area of TDA, can extract topological features such as connected components, cycles and voids from the data. A popular approach to construct PH from 3D CT images is to utilize the 3D cubical complex filtration, a method adapted for grid-structured data. However, this approach may not always yield the best performance and can suffer from computational complexity with higher resolution CT images. This study introduces a novel patch-based PH construction approach tailored for volumetric medical imaging data, in particular CT modality. A wide range of experiments has been conducted on several datasets of 3D CT images to comprehensively analyze the performance of the proposed method with various parameters and benchmark it against the 3D cubical complex algorithm. Our results highlight the dominance of the patch-based TDA approach in terms of both classification performance and time-efficiency. The proposed approach outperformed the cubical complex method, achieving average improvement of 10.38%, 6.94%, 2.06%, 11.58%, and 8.51% in accuracy, AUC, sensitivity, specificity, and F1 score, respectively, across all datasets. Finally, we provide a convenient python package, Patch-TDA, to facilitate the utilization of the proposed approach.
Sample-Efficient Differentially Private Fine-Tuning via Gradient Matrix Denoising
We address the challenge of sample efficiency in differentially private fine-tuning of large language models (LLMs) using DP-SGD. While DP-SGD provides strong privacy guarantees, the added noise significantly increases the entropy of gradient matrices, disrupting their low-rank structure and slowing optimization. We propose a post-processing algorithm that leverages random matrix theory to denoise gradients, restore low-rank structure, and improve alignment with the original signal. Applied to DP-SGD fine-tuning of RoBERTa on GLUE tasks, our method improves sample efficiency compared to state-of-the-art approaches, substantially reducing training time when optimal performance is not required. This work demonstrates that matrix recovery techniques can enhance the utility of private language model training without compromising privacy guarantees.
comment: Added additional experiments for 1. including generative tasks and auto-regressive llms, 2. showing the delay in differentially private optimization, and 3. explaining the choice of kappa. Added better explanation for theoretical benefits of norm correction and the need for threshold
Climbing the Ladder of Reasoning: What LLMs Can-and Still Can't-Solve after SFT?
Recent supervised fine-tuning (SFT) approaches have significantly improved language models' performance on mathematical reasoning tasks, even when models are trained at a small scale. However, the specific capabilities enhanced through such fine-tuning remain poorly understood. In this paper, we conduct a detailed analysis of model performance on the AIME24 dataset to understand how reasoning capabilities evolve. We discover a ladder-like structure in problem difficulty, categorize questions into four tiers (Easy, Medium, Hard, and Extremely Hard (Exh)), and identify the specific requirements for advancing between tiers. We find that progression from Easy to Medium tier requires adopting an R1 reasoning style with minimal SFT (500-1K instances), while Hard-level questions suffer from frequent model's errors at each step of the reasoning chain, with accuracy plateauing at around 65% despite logarithmic scaling. Exh-level questions present a fundamentally different challenge; they require unconventional problem-solving skills that current models uniformly struggle with. Additional findings reveal that carefully curated small-scale datasets offer limited advantage-scaling dataset size proves far more effective. Our analysis provides a clearer roadmap for advancing language model capabilities in mathematical reasoning.
Next-Generation Reservoir Computing for Dynamical Inference
We present a simple and scalable implementation of next-generation reservoir computing (NGRC) for modeling dynamical systems from time-series data. The method uses a pseudorandom nonlinear projection of time-delay embedded inputs, allowing the feature-space dimension to be chosen independently of the observation size and offering a flexible alternative to polynomial-based NGRC projections. We demonstrate the approach on benchmark tasks, including attractor reconstruction and bifurcation diagram estimation, using partial and noisy measurements. We further show that small amounts of measurement noise during training act as an effective regularizer, improving long-term autonomous stability compared to standard regression alone. Across all tests, the models remain stable over long rollouts and generalize beyond the training data. The framework offers explicit control of system state during prediction, and these properties make NGRC a natural candidate for applications such as surrogate modeling and digital-twin applications.
comment: 12 pages, 12 figures; published version
Evaluating machine learning models for predicting pesticide toxicity to honey bees
Small molecules play a critical role in the biomedical, environmental, and agrochemical domains, each with distinct physicochemical requirements and success criteria. Although biomedical research benefits from extensive datasets and established benchmarks, agrochemical data remain scarce, particularly with respect to species-specific toxicity. This work focuses on ApisTox, the most comprehensive dataset of experimentally validated chemical toxicity to the honey bee (\textit{Apis mellifera}), an ecologically vital pollinator. The primary goal of this study was to determine the suitability of diverse machine learning approaches for modeling such toxicity, including molecular fingerprints, graph kernels, and graph neural networks, as well as pretrained models. Comparative analysis with medicinal datasets from the MoleculeNet benchmark reveals that ApisTox represents a distinct chemical space. Performance degradation on non-medicinal datasets, such as \mbox{ApisTox}, demonstrates their limited generalizability of current state-of-the-art algorithms trained solely on biomedical data. Our study highlights the need for more diverse datasets and for targeted model development geared toward the agrochemical domain.
Foundation models for high-energy physics
The rise of foundation models -- large, pretrained machine learning models that can be finetuned to a variety of tasks -- has revolutionized the fields of natural language processing and computer vision. In high-energy physics, the question of whether these models can be implemented directly in physics research, or even built from scratch, tailored for particle physics data, has generated an increasing amount of attention. This review, which is the first on the topic of foundation models in high-energy physics, summarizes and discusses the research that has been published in the field so far.
comment: Submitted to SciPost Physics Proceedings (EuCAIFCon 2025)
Shorter but not Worse: Frugal Reasoning via Easy Samples as Length Regularizers in Math RLVR
Large language models (LLMs) trained for step-by-step reasoning often become excessively verbose, raising inference cost. Standard Reinforcement Learning with Verifiable Rewards (RLVR) pipelines filter out ``easy'' problems for training efficiency, leaving the model to train primarily on harder problems that require longer reasoning chains. This skews the output length distribution upward, resulting in a \textbf{model that conflates ``thinking longer'' with ``thinking better''}. In this work, we show that retaining and modestly up-weighting moderately easy problems acts as an implicit length regularizer. Exposing the model to solvable short-chain tasks constrains its output distribution and prevents runaway verbosity. The result is \textbf{\emph{emergent brevity for free}}: the model learns to solve harder problems without inflating the output length, \textbf{ despite the absence of any explicit length penalization}. RLVR experiments using this approach on \textit{Qwen3-4B-Thinking-2507} (with a 16k token limit) achieve baseline pass@1 AIME25 accuracy while generating solutions that are, on average, nearly twice as short. The code is available at \href{https://github.com/MBZUAI-Paris/Frugal-AI}{GitHub}, with datasets and models on \href{https://huggingface.co/collections/MBZUAI-Paris/k2-think-mini-68dcfa8b114686a4bd3dc2bc}{Hugging Face}.
An Evaluation on Large Language Model Outputs: Discourse and Memorization
We present an empirical evaluation of various outputs generated by nine of the most widely-available large language models (LLMs). Our analysis is done with off-the-shelf, readily-available tools. We find a correlation between percentage of memorized text, percentage of unique text, and overall output quality, when measured with respect to output pathologies such as counterfactual and logically-flawed statements, and general failures like not staying on topic. Overall, 80.0% of the outputs evaluated contained memorized data, but outputs containing the most memorized content were also more likely to be considered of high quality. We discuss and evaluate mitigation strategies, showing that, in the models evaluated, the rate of memorized text being output is reduced. We conclude with a discussion on potential implications around what it means to learn, to memorize, and to evaluate quality text.
comment: Final version at Natural Language Processing Journal
Colorful Pinball: Density-Weighted Quantile Regression for Conditional Guarantee of Conformal Prediction
While conformal prediction provides robust marginal coverage guarantees, achieving reliable conditional coverage for specific inputs remains challenging. Although exact distribution-free conditional coverage is impossible with finite samples, recent work has focused on improving the conditional coverage of standard conformal procedures. Distinct from approaches that target relaxed notions of conditional coverage, we directly minimize the mean squared error of conditional coverage by refining the quantile regression components that underpin many conformal methods. Leveraging a Taylor expansion, we derive a sharp surrogate objective for quantile regression: a density-weighted pinball loss, where the weights are given by the conditional density of the conformity score evaluated at the true quantile. We propose a three-headed quantile network that estimates these weights via finite differences using auxiliary quantile levels at \(1-α\pm δ\), subsequently fine-tuning the central quantile by optimizing the weighted loss. We provide a theoretical analysis with exact non-asymptotic guarantees characterizing the resulting excess risk. Extensive experiments on diverse high-dimensional real-world datasets demonstrate remarkable improvements in conditional coverage performance.
Advanced Long-term Earth System Forecasting
Reliable long-term forecasting of Earth system dynamics is fundamentally limited by instabilities in current artificial intelligence (AI) models during extended autoregressive simulations. These failures often originate from inherent spectral bias, leading to inadequate representation of critical high-frequency, small-scale processes and subsequent uncontrolled error amplification. Inspired by the nested grids in numerical models used to resolve small scales, we present TritonCast. At the core of its design is a dedicated latent dynamical core, which ensures the long-term stability of the macro-evolution at a coarse scale. An outer structure then fuses this stable trend with fine-grained local details. This design effectively mitigates the spectral bias caused by cross-scale interactions. In atmospheric science, it achieves state-of-the-art accuracy on the WeatherBench 2 benchmark while demonstrating exceptional long-term stability: executing year-long autoregressive global forecasts and completing multi-year climate simulations that span the entire available $2500$-day test period without drift. In oceanography, it extends skillful eddy forecast to $120$ days and exhibits unprecedented zero-shot cross-resolution generalization. Ablation studies reveal that this performance stems from the synergistic interplay of the architecture's core components. TritonCast thus offers a promising pathway towards a new generation of trustworthy, AI-driven simulations. This significant advance has the potential to accelerate discovery in climate and Earth system science, enabling more reliable long-term forecasting and deeper insights into complex geophysical dynamics.
Solving Inverse Problems in Stochastic Self-Organizing Systems through Invariant Representations
Self-organizing systems demonstrate how simple local rules can generate complex stochastic patterns. Many natural systems rely on such dynamics, making self-organization central to understanding natural complexity. A fundamental challenge in modeling such systems is solving the inverse problem: finding the unknown causal parameters from macroscopic observations. This task becomes particularly difficult when observations have a strong stochastic component, yielding diverse yet equivalent patterns. Traditional inverse methods fail in this setting, as pixel-wise metrics cannot capture feature similarities between variable outcomes. In this work, we introduce a novel inverse modeling method specifically designed to handle stochasticity in the observable space, leveraging the capacity of visual embeddings to produce robust representations that capture perceptual invariances. By mapping the pattern representations onto an invariant embedding space, we can effectively recover unknown causal parameters without the need for handcrafted objective functions or heuristics. We evaluate the method on three self-organizing systems: a physical, a biological, and a social one; namely, a reaction-diffusion system, a model of embryonic development, and an agent-based model of social segregation. We show that the method reliably recovers parameters despite stochasticity in the pattern outcomes. We further apply the method to real biological patterns, highlighting its potential as a tool for both theorists and experimentalists to investigate the dynamics underlying complex stochastic pattern formation.
comment: Preprint. Under review
From See to Shield: ML-Assisted Fine-Grained Access Control for Visual Data
As the volume of stored data continues to grow, identifying and protecting sensitive information within large repositories becomes increasingly challenging, especially when shared with multiple users with different roles and permissions. This work presents a system architecture for trusted data sharing with policy-driven access control, enabling selective protection of sensitive regions while maintaining scalability. The proposed architecture integrates four core modules that combine automated detection of sensitive regions, post-correction, key management, and access control. Sensitive regions are secured using a hybrid scheme that employs symmetric encryption for efficiency and Attribute-Based Encryption for policy enforcement. The system supports efficient key distribution and isolates key storage to strengthen overall security. To demonstrate its applicability, we evaluate the system on visual datasets, where Privacy-Sensitive Objects in images are automatically detected, reassessed, and selectively encrypted prior to sharing in a data repository. Experimental results show that our system provides effective PSO detection, increases macro-averaged F1 score (5%) and mean Average Precision (10%), and maintains an average policy-enforced decryption time of less than 1 second per image. These results demonstrate the effectiveness, efficiency and scalability of our proposed solution for fine-grained access control.
comment: 11 pages, 4 figures, 6 tables. In submission
Assessing Superposition-Targeted Coverage Criteria for Quantum Neural Networks
Quantum Neural Networks (QNNs) have achieved initial success in various tasks by integrating quantum computing and neural networks. However, growing concerns about their reliability and robustness highlight the need for systematic testing. Unfortunately, current testing methods for QNNs remain underdeveloped, with limited practical utility and insufficient empirical evaluation. As an initial effort, we design a set of superposition-targeted coverage criteria to evaluate QNN state exploration embedded in test suites. To characterize the effectiveness, scalability, and robustness of the criteria, we conduct a comprehensive empirical study using benchmark datasets and QNN architectures. We first evaluate their sensitivity to input diversity under multiple data settings, and analyze their correlation with the number of injected faults. We then assess their scalability to increasing circuit scales. The robustness is further studied under practical quantum constraints including insufficient measurement and quantum noise. The results demonstrate the effectiveness of quantifying test adequacy and the potential applicability to larger-scale circuits and realistic quantum execution, while also revealing some limitations. Finally, we provide insights and recommendations for future QNN testing.
The Computational Complexity of Counting Linear Regions in ReLU Neural Networks NeurIPS 2025
An established measure of the expressive power of a given ReLU neural network is the number of linear regions into which it partitions the input space. There exist many different, non-equivalent definitions of what a linear region actually is. We systematically assess which papers use which definitions and discuss how they relate to each other. We then analyze the computational complexity of counting the number of such regions for the various definitions. Generally, this turns out to be an intractable problem. We prove NP- and #P-hardness results already for networks with one hidden layer and strong hardness of approximation results for two or more hidden layers. Finally, on the algorithmic side, we demonstrate that counting linear regions can at least be achieved in polynomial space for some common definitions.
comment: 26 pages, 6 figures, paper accepted at NeurIPS 2025. v3: Update to Fig. 1
Explainable AI needs formalization
The field of "explainable artificial intelligence" (XAI) seemingly addresses the desire that decisions of machine learning systems should be human-understandable. However, in its current state, XAI itself needs scrutiny. Popular methods cannot reliably answer relevant questions about ML models, their training data, or test inputs, because they systematically attribute importance to input features that are independent of the prediction target. This limits the utility of XAI for diagnosing and correcting data and models, for scientific discovery, and for identifying intervention targets. The fundamental reason for this is that current XAI methods do not address well-defined problems and are not evaluated against targeted criteria of explanation correctness. Researchers should formally define the problems they intend to solve and design methods accordingly. This will lead to diverse use-case-dependent notions of explanation correctness and objective metrics of explanation performance that can be used to validate XAI algorithms.
ReCast: Reliability-aware Codebook Assisted Lightweight Time Series Forecasting AAAI 2026
Time series forecasting is crucial for applications in various domains. Conventional methods often rely on global decomposition into trend, seasonal, and residual components, which become ineffective for real-world series dominated by local, complex, and highly dynamic patterns. Moreover, the high model complexity of such approaches limits their applicability in real-time or resource-constrained environments. In this work, we propose a novel \textbf{RE}liability-aware \textbf{C}odebook-\textbf{AS}sisted \textbf{T}ime series forecasting framework (\textbf{ReCast}) that enables lightweight and robust prediction by exploiting recurring local shapes. ReCast encodes local patterns into discrete embeddings through patch-wise quantization using a learnable codebook, thereby compactly capturing stable regular structures. To compensate for residual variations not preserved by quantization, ReCast employs a dual-path architecture comprising a quantization path for efficient modeling of regular structures and a residual path for reconstructing irregular fluctuations. A central contribution of ReCast is a reliability-aware codebook update strategy, which incrementally refines the codebook via weighted corrections. These correction weights are derived by fusing multiple reliability factors from complementary perspectives by a distributionally robust optimization (DRO) scheme, ensuring adaptability to non-stationarity and robustness to distribution shifts. Extensive experiments demonstrate that ReCast outperforms state-of-the-art (SOTA) models in accuracy, efficiency, and adaptability to distribution shifts.
comment: AAAI 2026 Oral
Variance Reduction Methods Do Not Need to Compute Full Gradients: Improved Efficiency through Shuffling
Stochastic optimization algorithms are widely used for machine learning with large-scale data. However, their convergence often suffers from non-vanishing variance. Variance Reduction (VR) methods, such as SVRG and SARAH, address this issue but introduce a bottleneck by requiring periodic full gradient computations. In this paper, we explore popular VR techniques and propose an approach that eliminates the necessity for expensive full gradient calculations. To avoid these computations and make our approach memory-efficient, we employ two key techniques: the shuffling heuristic and the concept of SAG/SAGA methods. For non-convex objectives, our convergence rates match those of standard shuffling methods, while under strong convexity, they demonstrate an improvement. We empirically validate the efficiency of our approach and demonstrate its scalability on large-scale machine learning tasks including image classification problem on CIFAR-10 and CIFAR-100 datasets.
comment: 31 pages, 7 figures, 2 tables
Amortized Variational Inference for Partial-Label Learning: A Probabilistic Approach to Label Disambiguation
Real-world data is frequently noisy and ambiguous. In crowdsourcing, for example, human annotators may assign conflicting class labels to the same instances. Partial-label learning (PLL) addresses this challenge by training classifiers when each instance is associated with a set of candidate labels, only one of which is correct. While early PLL methods approximate the true label posterior, they are often computationally intensive. Recent deep learning approaches improve scalability but rely on surrogate losses and heuristic label refinement. We introduce a novel probabilistic framework that directly approximates the posterior distribution over true labels using amortized variational inference. Our method employs neural networks to predict variational parameters from input data, enabling efficient inference. This approach combines the expressiveness of deep learning with the rigor of probabilistic modeling, while remaining architecture-agnostic. Theoretical analysis and extensive experiments on synthetic and real-world datasets demonstrate that our method achieves state-of-the-art performance in both accuracy and efficiency.
Communication-Efficient Stochastic Distributed Learning
We address distributed learning problems, both nonconvex and convex, over undirected networks. In particular, we design a novel algorithm based on the distributed Alternating Direction Method of Multipliers (ADMM) to address the challenges of high communication costs, and large datasets. Our design tackles these challenges i) by enabling the agents to perform multiple local training steps between each round of communications; and ii) by allowing the agents to employ stochastic gradients while carrying out local computations. We show that the proposed algorithm converges to a neighborhood of a stationary point, for nonconvex problems, and of an optimal point, for convex problems. We also propose a variant of the algorithm to incorporate variance reduction thus achieving exact convergence. We show that the resulting algorithm indeed converges to a stationary (or optimal) point, and moreover that local training accelerates convergence. We thoroughly compare the proposed algorithms with the state of the art, both theoretically and through numerical results.
TRec: Learning Hand-Object Interactions through 2D Point Track Motion
We present a novel approach for hand-object action recognition that leverages 2D point tracks as an additional motion cue. While most existing methods rely on RGB appearance, human pose estimation, or their combination, our work demonstrates that tracking randomly sampled image points across video frames can substantially improve recognition accuracy. Unlike prior approaches, we do not detect hands, objects, or interaction regions. Instead, we employ CoTracker to follow a set of randomly initialized points through each video and use the resulting trajectories, together with the corresponding image frames, as input to a Transformer-based recognition model. Surprisingly, our method achieves notable gains even when only the initial frame and the point tracks are provided, without incorporating the full video sequence. Experimental results confirm that integrating 2D point tracks consistently enhances performance compared to the same model trained without motion information, highlighting their potential as a lightweight yet effective representation for hand-object action understanding.
comment: submitted to ICPR 2026
Shortcuts and Identifiability in Concept-based Models from a Neuro-Symbolic Lens NeurIPS25
Concept-based Models are neural networks that learn a concept extractor to map inputs to high-level concepts and an inference layer to translate these into predictions. Ensuring these modules produce interpretable concepts and behave reliably in out-of-distribution is crucial, yet the conditions for achieving this remain unclear. We study this problem by establishing a novel connection between Concept-based Models and reasoning shortcuts (RSs), a common issue where models achieve high accuracy by learning low-quality concepts, even when the inference layer is fixed and provided upfront. Specifically, we extend RSs to the more complex setting of Concept-based Models and derive theoretical conditions for identifying both the concepts and the inference layer. Our empirical results highlight the impact of RSs and show that existing methods, even combined with multiple natural mitigation strategies, often fail to meet these conditions in practice.
comment: Accepted at NeurIPS25
Indonesian Multimodal Emotion Recognition via Auxiliary-Enhanced LLM Adaptation
Indonesian, spoken by over 200 million people, remains underserved in multimodal emotion recognition research despite its dominant presence on Southeast Asian social media platforms. We introduce IndoMER, the first multimodal emotion recognition benchmark for Indonesian, comprising 1,944 video segments from 203 speakers with temporally aligned text, audio, and visual annotations across seven emotion categories. The dataset exhibits realistic challenges including cross-modal inconsistency and long-tailed class distributions shaped by Indonesian cultural communication norms. To address these challenges, we propose OmniMER, a multimodal adaptation framework built upon Qwen2.5-Omni that enhances emotion recognition through three auxiliary modality-specific perception tasks: emotion keyword extraction for text, facial expression analysis for video, and prosody analysis for audio. These auxiliary tasks help the model identify emotion-relevant cues in each modality before fusion, reducing reliance on spurious correlations in low-resource settings. Experiments on IndoMER show that OmniMER achieves 0.582 Macro-F1 on sentiment classification and 0.454 on emotion recognition, outperforming the base model by 7.6 and 22.1 absolute points respectively. Cross-lingual evaluation on the Chinese CH-SIMS dataset further demonstrates the generalizability of the proposed framework. The dataset and code are publicly available. https://github.com/yanxm01/INDOMER
Data-Driven Approach to Capitation Reform in Rwanda
As part of Rwanda's transition toward universal health coverage, the national Community-Based Health Insurance (CBHI) scheme is moving from retrospective fee-for-service reimbursements to prospective capitation payments for public primary healthcare providers. This work outlines a data-driven approach to designing, calibrating, and monitoring the capitation model using individual-level claims data from the Intelligent Health Benefits System (IHBS). We introduce a transparent, interpretable formula for allocating payments to Health Centers and their affiliated Health Posts. The formula is based on catchment population, service utilization patterns, and patient inflows, with parameters estimated via regression models calibrated on national claims data. Repeated validation exercises show the payment scheme closely aligns with historical spending while promoting fairness and adaptability across diverse facilities. In addition to payment design, the same dataset enables actionable behavioral insights. We highlight the use case of monitoring antibiotic prescribing patterns, particularly in pediatric care, to flag potential overuse and guideline deviations. Together, these capabilities lay the groundwork for a learning health financing system: one that connects digital infrastructure, resource allocation, and service quality to support continuous improvement and evidence-informed policy reform.
Parallel Test-Time Scaling for Latent Reasoning Models
Parallel test-time scaling (TTS) is a pivotal approach for enhancing large language models (LLMs), typically by sampling multiple token-based chains-of-thought in parallel and aggregating outcomes through voting or search. Recent advances in latent reasoning, where intermediate reasoning unfolds in continuous vector spaces, offer a more efficient alternative to explicit Chain-of-Thought, yet whether such latent models can similarly benefit from parallel TTS remains open, mainly due to the absence of sampling mechanisms in continuous space, and the lack of probabilistic signals for advanced trajectory aggregation. This work enables parallel TTS for latent reasoning models by addressing the above issues. For sampling, we introduce two uncertainty-inspired stochastic strategies: Monte Carlo Dropout and Additive Gaussian Noise. For aggregation, we design a Latent Reward Model (LatentRM) trained with step-wise contrastive objective to score and guide latent reasoning. Extensive experiments and visualization analyses show that both sampling strategies scale effectively with compute and exhibit distinct exploration dynamics, while LatentRM enables effective trajectory selection. Together, our explorations open a new direction for scalable inference in continuous spaces. Code and checkpoints released at https://github.com/ModalityDance/LatentTTS
comment: submitted to ACL 2026
Differential syntactic and semantic encoding in LLMs
We study how syntactic and semantic information is encoded in inner layer representations of Large Language Models (LLMs), focusing on the very large DeepSeek-V3. We find that, by averaging hidden-representation vectors of sentences sharing syntactic structure or meaning, we obtain vectors that capture a significant proportion of the syntactic and semantic information contained in the representations. In particular, subtracting these syntactic and semantic ``centroids'' from sentence vectors strongly affects their similarity with syntactically and semantically matched sentences, respectively, suggesting that syntax and semantics are, at least partially, linearly encoded. We also find that the cross-layer encoding profiles of syntax and semantics are different, and that the two signals can to some extent be decoupled, suggesting differential encoding of these two types of linguistic information in LLM representations.
SPEC-RL: Accelerating On-Policy Reinforcement Learning via Speculative Rollouts
Large Language Models (LLMs) increasingly rely on reinforcement learning with verifiable rewards (RLVR) to elicit reliable chain-of-thought reasoning. However, the training process remains bottlenecked by the computationally expensive rollout stage. Existing acceleration methods-such as parallelization, objective- and data-driven modifications, and replay buffers-either incur diminishing returns, introduce bias, or overlook redundancy across iterations. We identify that rollouts from consecutive training epochs frequently share a large portion of overlapping segments, wasting computation. To address this, we propose SPEC-RL, a novel framework that integrates SPECulative decoding with the RL rollout process. SPEC-RL reuses prior trajectory segments as speculative prefixes and extends them via a draft-and-verify mechanism, avoiding redundant generation while ensuring policy consistency. Experiments on diverse math reasoning and generalization benchmarks, including AIME24, MATH-500, OlympiadBench, MMLU-STEM, and others, demonstrate that SPEC-RL reduces rollout time by 2-3x without compromising policy quality. As a purely rollout-stage enhancement, SPEC-RL integrates seamlessly with mainstream algorithms (e.g., PPO, GRPO, DAPO), offering a general and practical path to scale RLVR for large reasoning models. Our code is available at https://github.com/ShopeeLLM/Spec-RL
comment: 32 pages, fixed typos
MO-GRPO: Mitigating Reward Hacking of Group Relative Policy Optimization on Multi-Objective Problems
Group Relative Policy Optimization (GRPO) has been shown to be an effective algorithm when an accurate reward model is available. However, such a highly reliable reward model is not available in many real-world tasks. In this paper, we particularly focus on multi-objective settings, in which we identify that GRPO is vulnerable to reward hacking, optimizing only one of the objectives at the cost of the others. To address this issue, we propose MO-GRPO, an extension of GRPO with a simple normalization method to reweight the reward functions automatically according to the variances of their values. We first show analytically that MO-GRPO ensures that all reward functions contribute evenly to the loss function while preserving the order of preferences, eliminating the need for manual tuning of the reward functions' scales. Then, we evaluate MO-GRPO experimentally in four domains: (i) the multi-armed bandits problem, (ii) simulated control task (Mo-Gymnasium), (iii) machine translation tasks on the WMT benchmark (En-Ja, En-Zh), and (iv) instruction following task. MO-GRPO achieves stable learning by evenly distributing correlations among the components of rewards, outperforming GRPO, showing MO-GRPO to be a promising algorithm for multi-objective reinforcement learning problems.
comment: fixed the equation 1's typo
VietMix: A Naturally-Occurring Parallel Corpus and Augmentation Framework for Vietnamese-English Code-Mixed Machine Translation
Machine translation (MT) systems universally degrade when faced with code-mixed text. This problem is more acute for low-resource languages that lack dedicated parallel corpora. This work directly addresses this gap for Vietnamese-English, a language context characterized by challenges including orthographic ambiguity and the frequent omission of diacritics in informal text. We introduce VietMix, the first expert-translated, naturally occurring parallel corpus of Vietnamese-English code-mixed text. We establish VietMix's utility by developing a data augmentation pipeline that leverages iterative fine-tuning and targeted filtering. Experiments show that models augmented with our data outperform strong back-translation baselines by up to +3.5 xCOMET points and improve zero-shot models by up to +11.9 points. Our work delivers a foundational resource for a challenging language pair and provides a validated, transferable framework for building and augmenting corpora in other low-resource settings.
comment: EACL 2026
Generating Diverse TSP Tours via a Combination of Graph Pointer Network and Dispersion
We address the Diverse Traveling Salesman Problem (D-TSP), a bi-criteria optimization challenge that seeks a set of $k$ distinct TSP tours. The objective requires every selected tour to have a length at most $c|T^*|$ (where $|T^*|$ is the optimal tour length) while minimizing the average Jaccard similarity across all tour pairs. This formulation is crucial for applications requiring both high solution quality and fault tolerance, such as logistics planning, robotics pathfinding or strategic patrolling. Current methods are limited: traditional heuristics, such as the Niching Memetic Algorithm (NMA) or bi-criteria optimization, incur high computational complexity $O(n^3)$, while modern neural approaches (e.g., RF-MA3S) achieve limited diversity quality and rely on complex, external mechanisms. To overcome these limitations, we propose a novel hybrid framework that decomposes D-TSP into two efficient steps. First, we utilize a simple Graph Pointer Network (GPN), augmented with an approximated sequence entropy loss, to efficiently sample a large, diverse pool of high-quality tours. This simple modification effectively controls the quality-diversity trade-off without complex external mechanisms. Second, we apply a greedy algorithm that yields a 2-approximation for the dispersion problem to select the final $k$ maximally diverse tours from the generated pool. Our results demonstrate state-of-the-art performance. On the Berlin instance, our model achieves an average Jaccard index of $0.015$, significantly outperforming NMA ($0.081$) and RF-MA3S. By leveraging GPU acceleration, our GPN structure achieves a near-linear empirical runtime growth of $O(n)$. While maintaining solution diversity comparable to complex bi-criteria algorithms, our approach is over 360 times faster on large-scale instances (783 cities), delivering high-quality TSP solutions with unprecedented efficiency and simplicity.
HiQ-Lip: A Hierarchical Quantum-Classical Method for Global Lipschitz Constant Estimation of ReLU Networks
Estimating the global Lipschitz constant of neural networks is crucial for understanding and improving their robustness and generalization capabilities. However, precise calculations are NP-hard, and current semidefinite programming (SDP) methods face challenges such as high memory usage and slow processing speeds. In this paper, we propose HiQ-Lip, a hybrid quantum-classical hierarchical method that leverages quantum computing to estimate the global Lipschitz constant. We tackle the estimation by converting it into a Quadratic Unconstrained Binary Optimization problem and implement a multilevel graph coarsening and refinement strategy to adapt to the constraints of contemporary quantum hardware. Our experimental evaluations on fully connected neural networks demonstrate that HiQ-Lip not only provides estimates comparable to state-of-the-art methods but also significantly accelerates the computation process. In specific tests involving two-layer neural networks with 256 hidden neurons, HiQ-Lip doubles the solving speed and offers more accurate upper bounds than the existing best method, LiPopt. These findings highlight the promising utility of small-scale quantum devices in advancing the estimation of neural network robustness.
Self-Organization and Spectral Mechanism of Attractor Landscapes in High-Capacity Kernel Hopfield Networks
Kernel-based learning methods can dramatically increase the storage capacity of Hopfield networks, yet the dynamical mechanisms behind this enhancement remain poorly understood. We address this gap by combining a geometric characterization of the attractor landscape with the spectral theory of kernel machines. Using a novel metric, Pinnacle Sharpness, we empirically uncover a rich phase diagram of attractor stability, identifying a Ridge of Optimization where the network achieves maximal robustness under high-load conditions. Phenomenologically, this ridge is characterized by a Force Antagonism, in which a strong driving force is counterbalanced by a collective feedback force. We theoretically interpret this behavior as a consequence of a specific reorganization of the weight spectrum, which we term Spectral Concentration. Unlike a simple rank-1 collapse, our analysis shows that the network on the ridge self-organizes into a critical regime: the leading eigenvalue is amplified to enhance global stability (Direct Force), while the trailing eigenvalues remain finite to sustain high memory capacity (Indirect Force). Together, these results suggest a spectral mechanism by which learning reconciles stability and capacity in high-dimensional associative memory models.
comment: 16 pages, 8 figures; submitted to NOLTA, IEICE
Quantitative Attractor Analysis of High-Capacity Kernel Hopfield Networks
Kernel-based learning methods such as Kernel Logistic Regression (KLR) can substantially increase the storage capacity of Hopfield networks, but the principles governing their performance and stability remain largely uncharacterized. This paper presents a comprehensive quantitative analysis of the attractor landscape in KLR-trained networks to establish a solid foundation for their design and application. Through extensive, statistically validated simulations, we address critical questions of generality, scalability, and robustness. Our comparative analysis shows that KLR and Kernel Ridge Regression (KRR) exhibit similarly high storage capacities and clean attractor landscapes under typical operating conditions, suggesting that this behavior is a general property of kernel regression methods, although KRR is computationally much faster. We identify a non-trivial, scale-dependent law for the kernel width $γ$, demonstrating that optimal capacity requires $γ$ to be scaled such that $γN$ increases with network size $N$. This finding implies that larger networks require more localized kernels, in which each pattern's influence is more spatially confined, to mitigate inter-pattern interference. Under this optimized scaling, we provide clear evidence that storage capacity scales linearly with network size~($P \propto N$). Furthermore, our sensitivity analysis shows that performance is remarkably robust with respect to the choice of the regularization parameter $λ$. Collectively, these findings provide a concise set of empirical principles for designing high-capacity and robust associative memories and clarify the mechanisms that enable kernel methods to overcome the classical limitations of Hopfield-type models.
comment: 16 pages, 7 figures; submitted to NOLTA, IEICE
DynaGen: Unifying Temporal Knowledge Graph Reasoning with Dynamic Subgraphs and Generative Regularization
Temporal Knowledge Graph Reasoning (TKGR) aims to complete missing factual elements along the timeline. Depending on the temporal position of the query, the task is categorized into interpolation and extrapolation. Existing interpolation methods typically embed temporal information into individual facts to complete missing historical knowledge, while extrapolation techniques often leverage sequence models over graph snapshots to identify recurring patterns for future event prediction. These methods face two critical challenges: limited contextual modeling in interpolation and cognitive generalization bias in extrapolation. To address these, we propose a unified method for TKGR, dubbed DynaGen. For interpolation, DynaGen dynamically constructs entity-centric subgraphs and processes them with a synergistic dual-branch GNN encoder to capture evolving structural context. For extrapolation, it applies a conditional diffusion process, which forces the model to learn underlying evolutionary principles rather than just superficial patterns, enhancing its ability to predict unseen future events. Extensive experiments on six benchmark datasets show DynaGen achieves state-of-the-art performance. On average, compared to the second-best models, DynaGen improves the Mean Reciprocal Rank (MRR) score by 2.61 points for interpolation and 1.45 points for extrapolation.
DynaMo: Runtime Switchable Quantization for MoE with Cross-Dataset Adaptation
As the Mix-of-Experts (MoE) architecture increases the number of parameters in large models, there is an even greater need for model quantization. However, existing quantization methods overlook the expert dynamics of MoE across multiple datasets. Moreover, the existing static quantization cannot adapt MoE to various data change scenarios. In this paper, we perform a multi-level analysis to reveal MoE dynamics and define the significance of each channel/each expert. Based on the analysis results, we propose \textit{DynaMo}, an end-to-end MoE quantization framework. DynaMo adopts an expert-level mixed-precision baseline quantization strategy, which ensures the quantized MoEs are compatible with multiple existing datasets. Furthermore, DynaMo incorporates a channel-level dynamic switching mechanism to adapt these quantized MoE models to novel datasets. Experiments show that DynaMo achieves a 2.78~4.54 PPL decrease and a 1.85%~3.77% accuracy improvement in various datasets, with ~3x inference speedup and negligible overhead.
comment: This paper has been accepted by DATE 2026
Bayesian BiLO: Bilevel Local Operator Learning for Efficient Uncertainty Quantification of Bayesian PDE Inverse Problems with Low-Rank Adaptation
Uncertainty quantification in PDE inverse problems is essential in many applications. Scientific machine learning and AI enable data-driven learning of model components while preserving physical structure, and provide the scalability and adaptability needed for emerging imaging technologies and clinical insights. We develop a Bilevel Local Operator Learning framework for Bayesian inference in PDEs (B-BiLO). At the upper level, we sample parameters from the posterior via Hamiltonian Monte Carlo, while at the lower level we fine-tune a neural network via low-rank adaptation (LoRA) to approximate the solution operator locally. B-BiLO enables efficient gradient-based sampling without synthetic data or adjoint equations and avoids sampling in high-dimensional weight space, as in Bayesian neural networks, by optimizing weights deterministically. We analyze errors from approximate lower-level optimization and establish their impact on posterior accuracy. Numerical experiments across PDE models, including tumor growth, demonstrate that B-BiLO achieves accurate and efficient uncertainty quantification.
Generative or Discriminative? Revisiting Text Classification in the Era of Transformers
The comparison between discriminative and generative classifiers has intrigued researchers since Efron's seminal analysis of logistic regression versus discriminant analysis. While early theoretical work established that generative classifiers exhibit lower sample complexity but higher asymptotic error in simple linear settings, these trade-offs remain unexplored in the transformer era. We present the first comprehensive evaluation of modern generative and discriminative architectures - Auto-regressive modeling, Masked Language Modeling, Discrete Diffusion, and Encoders for text classification. Our study reveals that the classical 'two regimes' phenomenon manifests distinctly across different architectures and training paradigms. Beyond accuracy, we analyze sample efficiency, calibration, noise robustness, and ordinality across diverse scenarios. Our findings offer practical guidance for selecting the most suitable modeling approach based on real-world constraints such as latency and data limitations.
comment: 23 pages - received Outstanding Paper award at EMNLP 2025
Transferability of Adversarial Attacks in Video-based MLLMs: A Cross-modal Image-to-Video Approach
Video-based multimodal large language models (V-MLLMs) have shown vulnerability to adversarial examples in video-text multimodal tasks. However, the transferability of adversarial videos to unseen models - a common and practical real-world scenario - remains unexplored. In this paper, we pioneer an investigation into the transferability of adversarial video samples across V-MLLMs. We find that existing adversarial attack methods face significant limitations when applied in black-box settings for V-MLLMs, which we attribute to the following shortcomings: (1) lacking generalization in perturbing video features, (2) focusing only on sparse key-frames, and (3) failing to integrate multimodal information. To address these limitations and deepen the understanding of V-MLLM vulnerabilities in black-box scenarios, we introduce the Image-to-Video MLLM (I2V-MLLM) attack. In I2V-MLLM, we utilize an image-based multimodal large language model (I-MLLM) as a surrogate model to craft adversarial video samples. Multimodal interactions and spatiotemporal information are integrated to disrupt video representations within the latent space, improving adversarial transferability. Additionally, a perturbation propagation technique is introduced to handle different unknown frame sampling strategies. Experimental results demonstrate that our method can generate adversarial examples that exhibit strong transferability across different V-MLLMs on multiple video-text multimodal tasks. Compared to white-box attacks on these models, our black-box attacks (using BLIP-2 as a surrogate model) achieve competitive performance, with average attack success rate (AASR) of 57.98% on MSVD-QA and 58.26% on MSRVTT-QA for Zero-Shot VideoQA tasks, respectively.
Precise Asymptotics for Spectral Methods in Mixed Generalized Linear Models
In a mixed generalized linear model, the goal is to learn multiple signals from unlabeled observations: each sample comes from exactly one signal, but it is not known which one. We consider the prototypical problem of estimating two statistically independent signals in a mixed generalized linear model with Gaussian covariates. Spectral methods are a popular class of estimators which output the top two eigenvectors of a suitable data-dependent matrix. However, despite the wide applicability, their design is still obtained via heuristic considerations, and the number of samples $n$ needed to guarantee recovery is super-linear in the signal dimension $d$. In this paper, we develop exact asymptotics on spectral methods in the challenging proportional regime in which $n, d$ grow large and their ratio converges to a finite constant. This allows us optimize the design of the spectral method, and combine it with a simple linear estimator, to minimize the estimation error. Our characterization exploits a mix of tools from random matrices, free probability and the theory of approximate message passing algorithms. Numerical simulations for mixed linear regression and phase retrieval demonstrate the advantage enabled by our analysis over existing designs of spectral methods.
comment: To appear in the SIAM Journal on Mathematics of Data Science
PromptScreen: Efficient Jailbreak Mitigation Using Semantic Linear Classification in a Multi-Staged Pipeline
Prompt injection and jailbreaking attacks pose persistent security challenges to large language model (LLM)-based systems. We present PromptScreen, an efficient and systematically evaluated defense architecture that mitigates these threats through a lightweight, multi-stage pipeline. Its core component is a semantic filter based on text normalization, TF-IDF representations, and a Linear SVM classifier. Despite its simplicity, this module achieves 93.4% accuracy and 96.5% specificity on held-out data, substantially reducing attack throughput while incurring negligible computational overhead. Building on this efficient foundation, the full pipeline integrates complementary detection and mitigation mechanisms that operate at successive stages, providing strong robustness with minimal latency. In comparative experiments, our SVM-based configuration improves overall accuracy from 35.1% to 93.4% while reducing average time-to-completion from approximately 450 s to 47 s, yielding over 10 times lower latency than ShieldGemma. These results demonstrate that the proposed design simultaneously advances defensive precision and efficiency, addressing a core limitation of current model-based moderators. Evaluation across a curated corpus of over 30,000 labeled prompts, including benign, jailbreak, and application-layer injections, confirms that staged, resource-efficient defenses can robustly secure modern LLM-driven applications.
comment: Under Review
VeRPO: Verifiable Dense Reward Policy Optimization for Code Generation
Effective reward design is a central challenge in Reinforcement Learning (RL) for code generation. Mainstream pass/fail outcome rewards enforce functional correctness via executing unit tests, but the resulting sparsity limits potential performance gains. While recent work has explored external Reward Models (RM) to generate richer, continuous rewards, the learned RMs suffer from reward misalignment and prohibitive computational cost. In this paper, we introduce \textbf{VeRPO} (\textbf{V}erifiable D\textbf{e}nse \textbf{R}eward \textbf{P}olicy \textbf{O}ptimization), a novel RL framework for code generation that synthesizes \textit{robust and dense rewards fully grounded in verifiable execution feedback}. The core idea of VeRPO is constructing dense rewards from weighted partial success: by dynamically estimating the difficulty weight of each unit test based on the execution statistics during training, a dense reward is derived from the sum of weights of the passed unit tests. To solidify the consistency between partial success and end-to-end functional correctness, VeRPO further integrates the dense signal with global execution outcomes, establishing a robust and dense reward paradigm relying solely on verifiable execution feedback. Extensive experiments across diverse benchmarks and settings demonstrate that VeRPO consistently outperforms outcome-driven and RM-based baselines, achieving up to +8.83\% gain in pass@1 with negligible time cost (< 0.02\%) and zero GPU memory overhead.
Leveraging Large Language Models to Bridge On-chain and Off-chain Transparency in Stablecoins
Stablecoins such as USDT and USDC aspire to peg stability by coupling issuance controls with reserve attestations. In practice, however, the transparency is split across two worlds: verifiable on-chain traces and off-chain disclosures locked in unstructured text that are unconnected. We introduce a large language model (LLM)-based automated framework that bridges these two dimensions by aligning on-chain issuance data with off-chain disclosure statements. First, we propose an integrative framework using LLMs to capture and analyze on- and off-chain data through document parsing and semantic alignment, extracting key financial indicators from issuer attestations and mapping them to corresponding on-chain metrics. Second, we integrate multi-chain issuance records and disclosure documents within a model context protocol (MCP) framework that standardizes LLMs access to both quantitative market data and qualitative disclosure narratives. This framework enables unified retrieval and contextual alignment across heterogeneous stablecoin information sources and facilitates consistent analysis. Third, we demonstrate the capability of LLMs to operate across heterogeneous data modalities in blockchain analytics, quantifying discrepancies between reported and observed circulation and examining their implications for cross-chain transparency and price dynamics. Our findings reveal systematic gaps between disclosed and verifiable data, showing that LLM-assisted analysis enhances cross-modal transparency and supports automated, data-driven auditing in decentralized finance (DeFi).
Distributed Online Convex Optimization with Efficient Communication: Improved Algorithm and Lower bounds
We investigate distributed online convex optimization with compressed communication, where $n$ learners connected by a network collaboratively minimize a sequence of global loss functions using only local information and compressed data from neighbors. Prior work has established regret bounds of $O(\max\{ω^{-2}ρ^{-4}n^{1/2},ω^{-4}ρ^{-8}\}n\sqrt{T})$ and $O(\max\{ω^{-2}ρ^{-4}n^{1/2},ω^{-4}ρ^{-8}\}n\ln{T})$ for convex and strongly convex functions, respectively, where $ω\in(0,1]$ is the compression quality factor ($ω=1$ means no compression) and $ρ<1$ is the spectral gap of the communication matrix. However, these regret bounds suffer from a quadratic or even quartic dependence on $ω^{-1}$. Moreover, the super-linear dependence on $n$ is also undesirable. To overcome these limitations, we propose a novel algorithm that achieves improved regret bounds of $\tilde{O}(ω^{-1/2}ρ^{-1}n\sqrt{T})$ and $\tilde{O}(ω^{-1}ρ^{-2}n\ln{T})$ for convex and strongly convex functions, respectively. The primary idea is to design a two-level blocking update framework incorporating two novel ingredients: an online gossip strategy and an error compensation scheme, which collaborate to achieve a better consensus among learners. Furthermore, we establish the first lower bounds for this problem, justifying the optimality of our results with respect to both $ω$ and $T$. Additionally, we consider the bandit feedback scenario, and extend our method with the classic gradient estimators to enhance existing regret bounds.
Parametric Expensive Multi-Objective Optimization via Generative Solution Modeling
Many real-world applications require solving families of expensive multi-objective optimization problems~(EMOPs) under varying operational conditions. This can be formulated as parametric expensive multi-objective optimization problems (P-EMOPs) where each task parameter defines a distinct optimization instance. Current multi-objective Bayesian optimization methods have been widely used for finding finite sets of Pareto optimal solutions for individual tasks. However, P-EMOPs present a fundamental challenge: the continuous task parameter space can contain infinite distinct problems, each requiring separate expensive evaluations. This demands learning an inverse model that can directly predict optimized solutions for any task-preference query without expensive re-evaluation. This paper introduces a novel parametric multi-objective Bayesian optimizer that learns this inverse model by alternating between (1) generative solution sampling via conditional generative models and (2) acquisition-driven search leveraging inter-task synergies. This approach enables effective optimization across multiple tasks and finally achieves direct solution prediction for unseen parameterized EMOPs without additional expensive evaluations. We theoretically justify the faster convergence by leveraging inter-task synergies through task-aware Gaussian processes. Based on that, empirical studies in synthetic and real-world benchmarks further verify the effectiveness of the proposed parametric optimizer.
comment: Preprint
MoEMeta: Mixture-of-Experts Meta Learning for Few-Shot Relational Learning NeurIPS 2025
Few-shot knowledge graph relational learning seeks to perform reasoning over relations given only a limited number of training examples. While existing approaches largely adopt a meta-learning framework for enabling fast adaptation to new relations, they suffer from two key pitfalls. First, they learn relation meta-knowledge in isolation, failing to capture common relational patterns shared across tasks. Second, they struggle to effectively incorporate local, task-specific contexts crucial for rapid adaptation. To address these limitations, we propose MoEMeta, a novel meta-learning framework that disentangles globally shared knowledge from task-specific contexts to enable both effective model generalization and rapid adaptation. MoEMeta introduces two key innovations: (i) a mixture-of-experts (MoE) model that learns globally shared relational prototypes to enhance generalization, and (ii) a task-tailored adaptation mechanism that captures local contexts for fast task-specific adaptation. By balancing global generalization with local adaptability, MoEMeta significantly advances few-shot relational learning. Extensive experiments and analyses on three KG benchmarks show that MoEMeta consistently outperforms existing baselines, achieving state-of-the-art performance.
comment: Appear in NeurIPS 2025
From Small to Large: Generalization Bounds for Transformers on Variable-Size Inputs
Transformers exhibit a notable property of \emph{size generalization}, demonstrating an ability to extrapolate from smaller token sets to significantly longer ones. This behavior has been documented across diverse applications, including point clouds, graphs, and natural language. Despite its empirical success, this capability still lacks some rigorous theoretical characterizations. In this paper, we develop a theoretical framework to analyze this phenomenon for geometric data, which we represent as discrete samples from a continuous source (e.g., point clouds from manifolds, graphs from graphons). Our core contribution is a bound on the error between the Transformer's output for a discrete sample and its continuous-domain equivalent. We prove that for Transformers with stable positional encodings, this bound is determined by the sampling density and the intrinsic dimensionality of the data manifold. Experiments on graphs and point clouds of various sizes confirm the tightness of our theoretical bound.
Topological Signatures of ReLU Neural Network Activation Patterns
This paper explores the topological signatures of ReLU neural network activation patterns. We consider feedforward neural networks with ReLU activation functions and analyze the polytope decomposition of the feature space induced by the network. Mainly, we investigate how the Fiedler partition of the dual graph and show that it appears to correlate with the decision boundary -- in the case of binary classification. Additionally, we compute the homology of the cellular decomposition -- in a regression task -- to draw similar patterns in behavior between the training loss and polyhedral cell-count, as the model is trained.
Utilising physics-guided deep learning to overcome data scarcity
Deep learning (DL) relies heavily on data, and the quality of data influences its performance significantly. However, obtaining high-quality, well-annotated datasets can be challenging or even impossible in many real-world applications, such as structural risk estimation and medical diagnosis. This presents a significant barrier to the practical implementation of DL in these fields. Physics-guided deep learning (PGDL) is a novel type of DL that can integrate physics laws to train neural networks. This can be applied to any systems that are controlled or governed by physics laws, such as mechanics, finance and medical applications. It has been demonstrated that, with the additional information provided by physics laws, PGDL achieves great accuracy and generalisation in the presence of data scarcity. This review provides a detailed examination of PGDL and offers a structured overview of its use in addressing data scarcity across various fields, including physics, engineering and medical applications. Moreover, the review identifies the current limitations and opportunities for PGDL in relation to data scarcity and offers a thorough discussion on the future prospects of PGDL.
comment: This submission has been withdrawn because the manuscript is a review-type work that has become substantially out of date. Further assessment indicated that several sections were incomplete and did not adequately reflect the current state of the literature. The authors therefore plan to develop a new manuscript and may submit it elsewhere
Accelerating Monte-Carlo Tree Search with Optimized Posterior Policies
We introduce a recursive AlphaZero-style Monte--Carlo tree search algorithm, "RMCTS". The advantage of RMCTS over AlphaZero's MCTS-UCB is speed. In RMCTS, the search tree is explored in a breadth-first manner, so that network inferences naturally occur in large batches. This significantly reduces the GPU latency cost. We find that RMCTS is often more than 40 times faster than MCTS-UCB when searching a single root state, and about 3 times faster when searching a large batch of root states. The recursion in RMCTS is based on computing optimized posterior policies at each game state in the search tree, starting from the leaves and working back up to the root. Here we use the posterior policy explored in "Monte--Carlo tree search as regularized policy optimization" (Grill, et al.) Their posterior policy is the unique policy which maximizes the expected reward given estimated action rewards minus a penalty for diverging from the prior policy. The tree explored by RMCTS is not defined in an adaptive manner, as it is in MCTS-UCB. Instead, the RMCTS tree is defined by following prior network policies at each node. This is a disadvantage, but the speedup advantage is more significant, and in practice we find that RMCTS-trained networks match the quality of MCTS-UCB-trained networks in roughly one-third of the training time. We include timing and quality comparisons of RMCTS vs. MCTS-UCB for three games: Connect-4, Dots-and-Boxes, and Othello.
comment: 11 pages; an efficient implementation is available at https://github.com/bhoward73/rmcts
LEKA:LLM-Enhanced Knowledge Augmentation IJCAI 2025
Humans excel in analogical learning and knowledge transfer and, more importantly, possess a unique understanding of identifying appropriate sources of knowledge. From a model's perspective, this presents an interesting challenge. If models could autonomously retrieve knowledge useful for transfer or decision-making to solve problems, they would transition from passively acquiring to actively accessing and learning from knowledge. However, filling models with knowledge is relatively straightforward -- it simply requires more training and accessible knowledge bases. The more complex task is teaching models about which knowledge can be analogized and transferred. Therefore, we design a knowledge augmentation method, LEKA, for knowledge transfer that actively searches for suitable knowledge sources that can enrich the target domain's knowledge. This LEKA method extracts key information from the target domain's textual information, retrieves pertinent data from external data libraries, and harmonizes retrieved data with the target domain data in feature space and marginal probability measures. We validate the effectiveness of our approach through extensive experiments across various domains and demonstrate significant improvements over traditional methods in reducing computational costs, automating data alignment, and optimizing transfer learning outcomes.
comment: Accepted by IJCAI 2025
FS-DFM: Fast and Accurate Long Text Generation with Few-Step Diffusion Language Models
Autoregressive language models (ARMs) deliver strong likelihoods, but are inherently serial: they generate one token per forward pass, which limits throughput and inflates latency for long sequences. Diffusion Language Models (DLMs) parallelize across positions and thus appear promising for language generation, yet standard discrete diffusion typically needs hundreds to thousands of model evaluations to reach high quality, trading serial depth for iterative breadth. We introduce FS-DFM, Few-Step Discrete Flow-Matching. A discrete flow-matching model designed for speed without sacrificing quality. The core idea is simple: make the number of sampling steps an explicit parameter and train the model to be consistent across step budgets, so one big move lands where many small moves would. We pair this with a reliable update rule that moves probability in the right direction without overshooting, and with strong teacher guidance distilled from long-run trajectories. Together, these choices make few-step sampling stable, accurate, and easy to control. On language modeling benchmarks, FS-DFM with 8 sampling steps achieves perplexity parity with a 1,024-step discrete-flow baseline for generating 1,024 tokens using a similar-size model, delivering up to 128 times faster sampling and corresponding latency/throughput gains.
Graphics 5
LayerGS: Decomposition and Inpainting of Layered 3D Human Avatars via 2D Gaussian Splatting
We propose a novel framework for decomposing arbitrarily posed humans into animatable multi-layered 3D human avatars, separating the body and garments. Conventional single-layer reconstruction methods lock clothing to one identity, while prior multi-layer approaches struggle with occluded regions. We overcome both limitations by encoding each layer as a set of 2D Gaussians for accurate geometry and photorealistic rendering, and inpainting hidden regions with a pretrained 2D diffusion model via score-distillation sampling (SDS). Our three-stage training strategy first reconstructs the coarse canonical garment via single-layer reconstruction, followed by multi-layer training to jointly recover the inner-layer body and outer-layer garment details. Experiments on two 3D human benchmark datasets (4D-Dress, Thuman2.0) show that our approach achieves better rendering quality and layer decomposition and recomposition than the previous state-of-the-art, enabling realistic virtual try-on under novel viewpoints and poses, and advancing practical creation of high-fidelity 3D human assets for immersive applications. Our code is available at https://github.com/RockyXu66/LayerGS
DexterCap: An Affordable and Automated System for Capturing Dexterous Hand-Object Manipulation
Capturing fine-grained hand-object interactions is challenging due to severe self-occlusion from closely spaced fingers and the subtlety of in-hand manipulation motions. Existing optical motion capture systems rely on expensive camera setups and extensive manual post-processing, while low-cost vision-based methods often suffer from reduced accuracy and reliability under occlusion. To address these challenges, we present DexterCap, a low-cost optical capture system for dexterous in-hand manipulation. DexterCap uses dense, character-coded marker patches to achieve robust tracking under severe self-occlusion, together with an automated reconstruction pipeline that requires minimal manual effort. With DexterCap, we introduce DexterHand, a dataset of fine-grained hand-object interactions covering diverse manipulation behaviors and objects, from simple primitives to complex articulated objects such as a Rubik's Cube. We release the dataset and code to support future research on dexterous hand-object interaction.
comment: 12 pages, 12 figures
More Power to the Particles: Analytic Geometry for Partial Optimal Transport-based Fluid simulation
We propose an analytic construction of the geometry required for free-surface fluid simulations and deformation mechanics based on partial optimal transport such as the Gallouët-Mérigot's scheme or the Power Particles method. Such methods previously relied on a discretization of the cells by leveraging a classical convex cell clipping algorithm. However, this results in a heavy computational cost and a coarse approximation of the evaluated quantities. In contrast, our algorithm efficiently computes the generalized Laguerres cells, that is, intersections between Laguerre cells and spheres. This makes it possible to more precisely compute the volume and the area of the facets as well as strongly reducing the number of operations required to obtain the geometry. Additionally, we provide a dedicated rendering framework solely based on the computed volumetric structure.
A survey of facial recognition techniques
As multimedia content is quickly growing, the field of facial recognition has become one of the major research fields, particularly in the recent years. The most problematic area to researchers in image processing and computer vision is the human face which is a complex object with myriads of distinctive features that can be used to identify the face. The survey of this survey is particularly focused on most challenging facial characteristics, including differences in the light, ageing, variation in poses, partial occlusion, and facial expression and presents methodological solutions. The factors, therefore, are inevitable in the creation of effective facial recognition mechanisms used on facial images. This paper reviews the most sophisticated methods of facial detection which are Hidden Markov Models, Principal Component Analysis (PCA), Elastic Cluster Plot Matching, Support Vector Machine (SVM), Gabor Waves, Artificial Neural Networks (ANN), Eigenfaces, Independent Component Analysis (ICA), and 3D Morphable Model. Alongside the works mentioned above, we have also analyzed the images of a number of facial databases, namely JAFEE, FEI, Yale, LFW, AT&T (then called ORL), and AR (created by Martinez and Benavente), to analyze the results. However, this survey is aimed at giving a thorough literature review of face recognition, and its applications, and some experimental results are provided at the end after a detailed discussion.
comment: 12 pages, 12 figures, article
Differential Locally Injective Grid Deformation and Optimization
Grids are a general representation for capturing regularly-spaced information, but since they are uniform in space, they cannot dynamically allocate resolution to regions with varying levels of detail. There has been some exploration of indirect grid adaptivity by replacing uniform grids with tetrahedral meshes or locally subdivided grids, as inversion-free deformation of grids is difficult. This work develops an inversion-free grid deformation method that optimizes differential weight to adaptively compress space. The method is the first to optimize grid vertices as differential elements using vertex-colorings, decomposing a dense input linear system into many independent sets of vertices which can be optimized concurrently. This method is then also extended to optimize UV meshes with convex boundaries. Experimentally, this differential representation leads to a smoother optimization manifold than updating extrinsic vertex coordinates. By optimizing each sets of vertices in a coloring separately, local injectivity checks are straightforward since the valid region for each vertex is fixed. This enables the use of optimizers such as Adam, as each vertex can be optimized independently of other vertices. We demonstrate the generality and efficacy of this approach through applications in isosurface extraction for inverse rendering, image compaction, and mesh parameterization.
Robotics 40
LaST$_{0}$: Latent Spatio-Temporal Chain-of-Thought for Robotic Vision-Language-Action Model
Vision-Language-Action (VLA) models have recently demonstrated strong generalization capabilities in robotic manipulation. Some existing VLA approaches attempt to improve action accuracy by explicitly generating linguistic reasoning traces or future visual observations before action execution. However, explicit reasoning typically incurs non-negligible inference latency, which constrains the temporal resolution required for robotic manipulation. Moreover, such reasoning is confined to the linguistic space, imposing a representational bottleneck that struggles to faithfully capture ineffable physical attributes. To mitigate these limitations, we propose LaST$_0$, a framework that enables efficient reasoning before acting through a Latent Spatio-Temporal Chain-of-Thought (CoT), capturing fine-grained physical and robotic dynamics that are often difficult to verbalize. Specifically, we introduce a token-efficient latent CoT space that models future visual dynamics, 3D structural information, and robot proprioceptive states, and further extends these representations across time to enable temporally consistent implicit reasoning trajectories. Furthermore, LaST$_0$ adopts a dual-system architecture implemented via a Mixture-of-Transformers design, where a reasoning expert conducts low-frequency latent inference and an acting expert generates high-frequency actions conditioned on robotics-oriented latent representations. To facilitate coordination, LaST$_0$ is trained with heterogeneous operation frequencies, enabling adaptive switching between reasoning and action inference rates during deployment. Across ten simulated and six real-world manipulation tasks, LaST$_0$ improves mean success rates by 8% and 13% over prior VLA methods, respectively, while achieving substantially faster inference. Project website: https://sites.google.com/view/last0
Generate, Transfer, Adapt: Learning Functional Dexterous Grasping from a Single Human Demonstration
Functional grasping with dexterous robotic hands is a key capability for enabling tool use and complex manipulation, yet progress has been constrained by two persistent bottlenecks: the scarcity of large-scale datasets and the absence of integrated semantic and geometric reasoning in learned models. In this work, we present CorDex, a framework that robustly learns dexterous functional grasps of novel objects from synthetic data generated from just a single human demonstration. At the core of our approach is a correspondence-based data engine that generates diverse, high-quality training data in simulation. Based on the human demonstration, our data engine generates diverse object instances of the same category, transfers the expert grasp to the generated objects through correspondence estimation, and adapts the grasp through optimization. Building on the generated data, we introduce a multimodal prediction network that integrates visual and geometric information. By devising a local-global fusion module and an importance-aware sampling mechanism, we enable robust and computationally efficient prediction of functional dexterous grasps. Through extensive experiments across various object categories, we demonstrate that CorDex generalizes well to unseen object instances and significantly outperforms state-of-the-art baselines.
comment: Project Page: https://cordex-manipulation.github.io/
RoboVIP: Multi-View Video Generation with Visual Identity Prompting Augments Robot Manipulation
The diversity, quantity, and quality of manipulation data are critical for training effective robot policies. However, due to hardware and physical setup constraints, collecting large-scale real-world manipulation data remains difficult to scale across diverse environments. Recent work uses text-prompt conditioned image diffusion models to augment manipulation data by altering the backgrounds and tabletop objects in the visual observations. However, these approaches often overlook the practical need for multi-view and temporally coherent observations required by state-of-the-art policy models. Further, text prompts alone cannot reliably specify the scene setup. To provide the diffusion model with explicit visual guidance, we introduce visual identity prompting, which supplies exemplar images as conditioning inputs to guide the generation of the desired scene setup. To this end, we also build a scalable pipeline to curate a visual identity pool from large robotics datasets. Using our augmented manipulation data to train downstream vision-language-action and visuomotor policy models yields consistent performance gains in both simulation and real-robot settings.
Driving on Registers
We present DrivoR, a simple and efficient transformer-based architecture for end-to-end autonomous driving. Our approach builds on pretrained Vision Transformers (ViTs) and introduces camera-aware register tokens that compress multi-camera features into a compact scene representation, significantly reducing downstream computation without sacrificing accuracy. These tokens drive two lightweight transformer decoders that generate and then score candidate trajectories. The scoring decoder learns to mimic an oracle and predicts interpretable sub-scores representing aspects such as safety, comfort, and efficiency, enabling behavior-conditioned driving at inference. Despite its minimal design, DrivoR outperforms or matches strong contemporary baselines across NAVSIM-v1, NAVSIM-v2, and the photorealistic closed-loop HUGSIM benchmark. Our results show that a pure-transformer architecture, combined with targeted token compression, is sufficient for accurate, efficient, and adaptive end-to-end driving. Code and checkpoints will be made available via the project page.
Compensation Effect Amplification Control (CEAC): A movement-based approach for coordinated position and velocity control of the elbow of upper-limb prostheses
Despite advances in upper-limb (UL) prosthetic design, achieving intuitive control of intermediate joints - such as the wrist and elbow - remains challenging, particularly for continuous and velocity-modulated movements. We introduce a novel movement-based control paradigm entitled Compensation Effect Amplification Control (CEAC) that leverages users' trunk flexion and extension as input for controlling prosthetic elbow velocity. Considering that the trunk can be both a functional and compensatory joint when performing upper-limb actions, CEAC amplifies the natural coupling between trunk and prosthesis while introducing a controlled delay that allows users to modulate both the position and velocity of the prosthetic joint. We evaluated CEAC in a generic drawing task performed by twelve able-bodied participants using a supernumerary prosthesis with an active elbow. Additionally a multiple-target-reaching task was performed by a subset of ten participants. Results demonstrate task performances comparable to those obtained with natural arm movements, even when gesture velocity or drawing size were varied, while maintaining ergonomic trunk postures. Analysis revealed that CEAC effectively restores joint coordinated action, distributes movement effort between trunk and elbow, enabling intuitive trajectory control without requiring extreme compensatory movements. Overall, CEAC offers a promising control strategy for intermediate joints of UL prostheses, particularly in tasks requiring continuous and precise coordination.
DAVOS: An Autonomous Vehicle Operating System in the Vehicle Computing Era
Vehicle computing represents a fundamental shift in how autonomous vehicles are designed and deployed, transforming them from isolated transportation systems into mobile computing platforms that support both safety-critical, real-time driving and data-centric services. In this setting, vehicles simultaneously support real-time driving pipelines and a growing set of data-driven applications, placing increased responsibility on the vehicle operating system to coordinate computation, data movement, storage, and access. These demands highlight recurring system considerations related to predictable execution, data and execution protection, efficient handling of high-rate sensor data, and long-term system evolvability, commonly summarized as Safety, Security, Efficiency, and Extensibility (SSEE). Existing vehicle operating systems and runtimes address these concerns in isolation, resulting in fragmented software stacks that limit coordination between autonomy workloads and vehicle data services. This paper presents DAVOS, the Delaware Autonomous Vehicle Operating System, a unified vehicle operating system architecture designed for the vehicle computing context. DAVOS provides a cohesive operating system foundation that supports both real-time autonomy and extensible vehicle computing within a single system framework.
The RoboSense Challenge: Sense Anything, Navigate Anywhere, Adapt Across Platforms IROS 2025
Autonomous systems are increasingly deployed in open and dynamic environments -- from city streets to aerial and indoor spaces -- where perception models must remain reliable under sensor noise, environmental variation, and platform shifts. However, even state-of-the-art methods often degrade under unseen conditions, highlighting the need for robust and generalizable robot sensing. The RoboSense 2025 Challenge is designed to advance robustness and adaptability in robot perception across diverse sensing scenarios. It unifies five complementary research tracks spanning language-grounded decision making, socially compliant navigation, sensor configuration generalization, cross-view and cross-modal correspondence, and cross-platform 3D perception. Together, these tasks form a comprehensive benchmark for evaluating real-world sensing reliability under domain shifts, sensor failures, and platform discrepancies. RoboSense 2025 provides standardized datasets, baseline models, and unified evaluation protocols, enabling large-scale and reproducible comparison of robust perception methods. The challenge attracted 143 teams from 85 institutions across 16 countries, reflecting broad community engagement. By consolidating insights from 23 winning solutions, this report highlights emerging methodological trends, shared design principles, and open challenges across all tracks, marking a step toward building robots that can sense reliably, act robustly, and adapt across platforms in real-world environments.
comment: Official IROS 2025 RoboSense Challenge Report; 51 pages, 37 figures, 5 tables; Competition Website at https://robosense2025.github.io/
When to Act: Calibrated Confidence for Reliable Human Intention Prediction in Assistive Robotics
Assistive devices must determine both what a user intends to do and how reliable that prediction is before providing support. We introduce a safety-critical triggering framework based on calibrated probabilities for multimodal next-action prediction in Activities of Daily Living. Raw model confidence often fails to reflect true correctness, posing a safety risk. Post-hoc calibration aligns predicted confidence with empirical reliability and reduces miscalibration by about an order of magnitude without affecting accuracy. The calibrated confidence drives a simple ACT/HOLD rule that acts only when reliability is high and withholds assistance otherwise. This turns the confidence threshold into a quantitative safety parameter for assisted actions and enables verifiable behavior in an assistive control loop.
SKATER: Synthesized Kinematics for Advanced Traversing Efficiency on a Humanoid Robot via Roller Skate Swizzles
Although recent years have seen significant progress of humanoid robots in walking and running, the frequent foot strikes with ground during these locomotion gaits inevitably generate high instantaneous impact forces, which leads to exacerbated joint wear and poor energy utilization. Roller skating, as a sport with substantial biomechanical value, can achieve fast and continuous sliding through rational utilization of body inertia, featuring minimal kinetic energy loss. Therefore, this study proposes a novel humanoid robot with each foot equipped with a row of four passive wheels for roller skating. A deep reinforcement learning control framework is also developed for the swizzle gait with the reward function design based on the intrinsic characteristics of roller skating. The learned policy is first analyzed in simulation and then deployed on the physical robot to demonstrate the smoothness and efficiency of the swizzle gait over traditional bipedal walking gait in terms of Impact Intensity and Cost of Transport during locomotion. A reduction of $75.86\%$ and $63.34\%$ of these two metrics indicate roller skating as a superior locomotion mode for enhanced energy efficiency and joint longevity.
Zero Wrench Control via Wrench Disturbance Observer for Learning-free Peg-in-hole Assembly
This paper proposes a Dynamic Wrench Disturbance Observer (DW-DOB) designed to achieve highly sensitive zero-wrench control in contact-rich manipulation. By embedding task-space inertia into the observer nominal model, DW-DOB cleanly separates intrinsic dynamic reactions from true external wrenches. This preserves sensitivity to small forces and moments while ensuring robust regulation of contact wrenches. A passivity-based analysis further demonstrates that DW-DOB guarantees stable interactions under dynamic conditions, addressing the shortcomings of conventional observers that fail to compensate for inertial effects. Peg-in-hole experiments at industrial tolerances (H7/h6) validate the approach, yielding deeper and more compliant insertions with minimal residual wrenches and outperforming a conventional wrench disturbance observer and a PD baseline. These results highlight DW-DOB as a practical learning-free solution for high-precision zero-wrench control in contact-rich tasks.
SeqWalker: Sequential-Horizon Vision-and-Language Navigation with Hierarchical Planning
Sequential-Horizon Vision-and-Language Navigation (SH-VLN) presents a challenging scenario where agents should sequentially execute multi-task navigation guided by complex, long-horizon language instructions. Current vision-and-language navigation models exhibit significant performance degradation with such multi-task instructions, as information overload impairs the agent's ability to attend to observationally relevant details. To address this problem, we propose SeqWalker, a navigation model built on a hierarchical planning framework. Our SeqWalker features: i) A High-Level Planner that dynamically selects global instructions into contextually relevant sub-instructions based on the agent's current visual observations, thus reducing cognitive load; ii) A Low-Level Planner incorporating an Exploration-Verification strategy that leverages the inherent logical structure of instructions for trajectory error correction. To evaluate SH-VLN performance, we also extend the IVLN dataset and establish a new benchmark. Extensive experiments are performed to demonstrate the superiority of the proposed SeqWalker.
Nightmare Dreamer: Dreaming About Unsafe States And Planning Ahead RSS'25
Reinforcement Learning (RL) has shown remarkable success in real-world applications, particularly in robotics control. However, RL adoption remains limited due to insufficient safety guarantees. We introduce Nightmare Dreamer, a model-based Safe RL algorithm that addresses safety concerns by leveraging a learned world model to predict potential safety violations and plan actions accordingly. Nightmare Dreamer achieves nearly zero safety violations while maximizing rewards. Nightmare Dreamer outperforms model-free baselines on Safety Gymnasium tasks using only image observations, achieving nearly a 20x improvement in efficiency.
comment: RSS'25: Multi-Objective Optimization and Planning in Robotics Workshop: 5 pages, 8 figures
Optimizing Path Planning using Deep Reinforcement Learning for UGVs in Precision Agriculture
This study focuses on optimizing path planning for unmanned ground vehicles (UGVs) in precision agriculture using deep reinforcement learning (DRL) techniques in continuous action spaces. The research begins with a review of traditional grid-based methods, such as A* and Dijkstra's algorithms, and discusses their limitations in dynamic agricultural environments, highlighting the need for adaptive learning strategies. The study then explores DRL approaches, including Deep Q-Networks (DQN), which demonstrate improved adaptability and performance in two-dimensional simulations. Enhancements such as Double Q-Networks and Dueling Networks are evaluated to further improve decision-making. Building on these results, the focus shifts to continuous action space models, specifically Deep Deterministic Policy Gradient (DDPG) and Twin Delayed Deep Deterministic Policy Gradient (TD3), which are tested in increasingly complex environments. Experiments conducted in a three-dimensional environment using ROS and Gazebo demonstrate the effectiveness of continuous DRL algorithms in navigating dynamic agricultural scenarios. Notably, the pretrained TD3 agent achieves a 95 percent success rate in dynamic environments, demonstrating the robustness of the proposed approach in handling moving obstacles while ensuring safety for both crops and the robot.
Model of Spatial Human-Agent Interaction with Consideration for Others
Communication robots often need to initiate conversations with people in public spaces. At the same time, such robots must not disturb pedestrians. To handle these two requirements, an agent needs to estimate the communication desires of others based on their behavior and then adjust its own communication activities accordingly. In this study, we construct a computational spatial interaction model that considers others. Consideration is expressed as a quantitative parameter: the amount of adjustment of one's internal state to the estimated internal state of the other. To validate the model, we experimented with a human and a virtual robot interacting in a VR environment. The results show that when the participant moves to the target, a virtual robot with a low consideration value inhibits the participant's movement, while a robot with a higher consideration value did not inhibit the participant's movement. When the participant approached the robot, the robot also exhibited approaching behavior, regardless of the consideration value, thus decreasing the participant's movement. These results appear to verify the proposed model's ability to clarify interactions with consideration for others.
UniBiDex: A Unified Teleoperation Framework for Robotic Bimanual Dexterous Manipulation
We present UniBiDex a unified teleoperation framework for robotic bimanual dexterous manipulation that supports both VRbased and leaderfollower input modalities UniBiDex enables realtime contactrich dualarm teleoperation by integrating heterogeneous input devices into a shared control stack with consistent kinematic treatment and safety guarantees The framework employs nullspace control to optimize bimanual configurations ensuring smooth collisionfree and singularityaware motion across tasks We validate UniBiDex on a longhorizon kitchentidying task involving five sequential manipulation subtasks demonstrating higher task success rates smoother trajectories and improved robustness compared to strong baselines By releasing all hardware and software components as opensource we aim to lower the barrier to collecting largescale highquality human demonstration datasets and accelerate progress in robot learning.
Discrete Fourier Transform-based Point Cloud Compression for Efficient SLAM in Featureless Terrain
Simultaneous Localization and Mapping (SLAM) is an essential technology for the efficiency and reliability of unmanned robotic exploration missions. While the onboard computational capability and communication bandwidth are critically limited, the point cloud data handled by SLAM is large in size, attracting attention to data compression methods. To address such a problem, in this paper, we propose a new method for compressing point cloud maps by exploiting the Discrete Fourier Transform (DFT). The proposed technique converts the Digital Elevation Model (DEM) to the frequency-domain 2D image and omits its high-frequency components, focusing on the exploration of gradual terrains such as planets and deserts. Unlike terrains with detailed structures such as artificial environments, high-frequency components contribute little to the representation of gradual terrains. Thus, this method is effective in compressing data size without significant degradation of the point cloud. We evaluated the method in terms of compression rate and accuracy using camera sequences of two terrains with different elevation profiles.
comment: Author's version of a manuscript accepted at the 11th International Conference on Automation, Robotics, and Applications (ICARA). (c) IEEE
Data-Driven Terramechanics Approach Towards a Realistic Real-Time Simulator for Lunar Rovers
High-fidelity simulators for the lunar surface provide a digital environment for extensive testing of rover operations and mission planning. However, current simulators focus on either visual realism or physical accuracy, which limits their capability to replicate lunar conditions comprehensively. This work addresses that gap by combining high visual fidelity with realistic terrain interaction for a realistic representation of rovers on the lunar surface. Because direct simulation of wheel-soil interactions is computationally expensive, a data-driven approach was adopted, using regression models for slip and sinkage from data collected in both full-rover and single-wheel experiments and simulations. The resulting regression-based terramechanics model accurately reproduced steady-state and dynamic slip, as well as sinkage behavior, on flat terrain and slopes up to 20 degrees, with validation against field test results. Additionally, improvements were made to enhance the realism of terrain deformation and wheel trace visualization. This method supports real-time applications that require physically plausible terrain response alongside high visual fidelity.
comment: Author's version of a manuscript accepted at the International Conference on Space Robotics 2025 (iSpaRo 2025). (c) IEEE
Design and Development of Modular Limbs for Reconfigurable Robots on the Moon
In this paper, we present the development of 4-DOF robot limbs, which we call Moonbots, designed to connect in various configurations with each other and wheel modules, enabling adaptation to different environments and tasks. These modular components are intended primarily for robotic systems in space exploration and construction on the Moon in our Moonshot project. Such modular robots add flexibility and versatility for space missions where resources are constrained. Each module is driven by a common actuator characterized by a high torque-to-speed ratio, supporting both precise control and dynamic motion when required. This unified actuator design simplifies development and maintenance across the different module types. The paper describes the hardware implementation, the mechanical design of the modules, and the overall software architecture used to control and coordinate them. Additionally, we evaluate the control performance of the actuator under various load conditions to characterize its suitability for modular robot applications. To demonstrate the adaptability of the system, we introduce nine functional configurations assembled from the same set of modules: 4DOF-limb, 8DOF-limb, vehicle, dragon, minimal, quadruped, cargo, cargo-minimal, and bike. These configurations reflect different locomotion strategies and task-specific behaviors, offering a practical foundation for further research in reconfigurable robotic systems.
comment: Author's version of a manuscript accepted at the International Conference on Space Robotics 2025 (iSpaRo 2025). (c) IEEE
Multiagent Reinforcement Learning with Neighbor Action Estimation
Multiagent reinforcement learning, as a prominent intelligent paradigm, enables collaborative decision-making within complex systems. However, existing approaches often rely on explicit action exchange between agents to evaluate action value functions, which is frequently impractical in real-world engineering environments due to communication constraints, latency, energy consumption, and reliability requirements. From an artificial intelligence perspective, this paper proposes an enhanced multiagent reinforcement learning framework that employs action estimation neural networks to infer agent behaviors. By integrating a lightweight action estimation module, each agent infers neighboring agents' behaviors using only locally observable information, enabling collaborative policy learning without explicit action sharing. This approach is fully compatible with standard TD3 algorithms and scalable to larger multiagent systems. At the engineering application level, this framework has been implemented and validated in dual-arm robotic manipulation tasks: two robotic arms collaboratively lift objects. Experimental results demonstrate that this approach significantly enhances the robustness and deployment feasibility of real-world robotic systems while reducing dependence on information infrastructure. Overall, this research advances the development of decentralized multiagent artificial intelligence systems while enabling AI to operate effectively in dynamic, information-constrained real-world environments.
Fast Continuum Robot Shape and External Load State Estimation on SE(3) ICRA 2026
Previous on-manifold approaches to continuum robot state estimation have typically adopted simplified Cosserat rod models, which cannot directly account for actuation inputs or external loads. We introduce a general framework that incorporates uncertainty models for actuation (e.g., tendon tensions), applied forces and moments, process noise, boundary conditions, and arbitrary backbone measurements. By adding temporal priors across time steps, our method additionally performs joint estimation in both the spatial (arclength) and temporal domains, enabling full \textit{spacetime} state estimation. Discretizing the arclength domain yields a factor graph representation of the continuum robot model, which can be exploited for fast batch sparse nonlinear optimization in the style of SLAM. The framework is general and applies to a broad class of continuum robots; as illustrative cases, we show (i) tendon-driven robots in simulation, where we demonstrate real-time kinematics with uncertainty, tip force sensing from position feedback, and distributed load estimation from backbone strain, and (ii) a surgical concentric tube robot in experiment, where we validate accurate kinematics and tip force estimation, highlighting potential for surgical palpation.
comment: Public preprint for ICRA 2026
Inverting Non-Injective Functions with Twin Neural Network Regression
Non-injective functions are not invertible. However, non-injective functions can be restricted to sub-domains on which they are locally injective and surjective and thus invertible if the dimensionality between input and output spaces are the same. Further, even if the dimensionalities do not match it is often possible to choose a preferred solution from many possible solutions. Twin neural network regression is naturally capable of incorporating these properties to invert non-injective functions. Twin neural network regression is trained to predict adjustments to well known input variables $\mathbf{x}^{\text{anchor}}$ to obtain an estimate for an unknown $\mathbf{x}^{\text{new}}$ under a change of the target variable from $\mathbf{y}^{\text{anchor}}$ to $\mathbf{y}^{\text{new}}$. In combination with k-nearest neighbor search, I propose a deterministic framework that finds input parameters to a given target variable of non-injective functions. The method is demonstrated by inverting non-injective functions describing toy problems and robot arm control that are a) defined by data or b) known as mathematical formula.
PRISM: Protocol Refinement through Intelligent Simulation Modeling
Automating experimental protocol design and execution remains as a fundamental bottleneck in realizing self-driving laboratories. We introduce PRISM (Protocol Refinement through Intelligent Simulation Modeling), a framework that automates the design, validation, and execution of experimental protocols on a laboratory platform composed of off-the-shelf robotic instruments. PRISM uses a set of language-model-based agents that work together to generate and refine experimental steps. The process begins with automatically gathering relevant procedures from web-based sources describing experimental workflows. These are converted into structured experimental steps (e.g., liquid handling steps, deck layout and other related operations) through a planning, critique, and validation loop. The finalized steps are translated into the Argonne MADSci protocol format, which provides a unified interface for coordinating multiple robotic instruments (Opentrons OT-2 liquid handler, PF400 arm, Azenta plate sealer and peeler) without requiring human intervention between steps. To evaluate protocol-generation performance, we benchmarked both single reasoning models and multi-agent workflow across constrained and open-ended prompting paradigms. The resulting protocols were validated in a digital-twin environment built in NVIDIA Omniverse to detect physical or sequencing errors before execution. Using Luna qPCR amplification and Cell Painting as case studies, we demonstrate PRISM as a practical end-to-end workflow that bridges language-based protocol generation, simulation-based validation, and automated robotic execution.
comment: 43 pages, 8 figures, submitted to RSC Digital Discovery. Equal contribution: B. Hsu, P.V. Setty, R.M. Butler. Corresponding author: A. Ramanathan
Intent at a Glance: Gaze-Guided Robotic Manipulation via Foundation Models RSS
Designing intuitive interfaces for robotic control remains a central challenge in enabling effective human-robot interaction, particularly in assistive care settings. Eye gaze offers a fast, non-intrusive, and intent-rich input modality, making it an attractive channel for conveying user goals. In this work, we present GAMMA (Gaze Assisted Manipulation for Modular Autonomy), a system that leverages ego-centric gaze tracking and a vision-language model to infer user intent and autonomously execute robotic manipulation tasks. By contextualizing gaze fixations within the scene, the system maps visual attention to high-level semantic understanding, enabling skill selection and parameterization without task-specific training. We evaluate GAMMA on a range of table-top manipulation tasks and compare it against baseline gaze-based control without reasoning. Results demonstrate that GAMMA provides robust, intuitive, and generalizable control, highlighting the potential of combining foundation models and gaze for natural and scalable robot autonomy. Project website: https://gamma0.vercel.app/
comment: Accepted to 2025 RSS Robot Planning in the Era of Foundation Models (FM4RoboPlan) Workshop
Formal Safety Guarantees for Autonomous Vehicles using Barrier Certificates AAAI-26
Modern AI technologies enable autonomous vehicles to perceive complex scenes, predict human behavior, and make real-time driving decisions. However, these data-driven components often operate as black boxes, lacking interpretability and rigorous safety guarantees. Autonomous vehicles operate in dynamic, mixed-traffic environments where interactions with human-driven vehicles introduce uncertainty and safety challenges. This work develops a formally verified safety framework for Connected and Autonomous Vehicles (CAVs) that integrates Barrier Certificates (BCs) with interpretable traffic conflict metrics, specifically Time-to-Collision (TTC) as a spatio-temporal safety metric. Safety conditions are verified using Satisfiability Modulo Theories (SMT) solvers, and an adaptive control mechanism ensures vehicles comply with these constraints in real time. Evaluation on real-world highway datasets shows a significant reduction in unsafe interactions, with up to 40\% fewer events where TTC falls below a 3 seconds threshold, and complete elimination of conflicts in some lanes. This approach provides both interpretable and provable safety guarantees, demonstrating a practical and scalable strategy for safe autonomous driving.
comment: Accepted to AAAI-26 Bridge Program B10: Making Embodied AI Reliable with Testing and Formal Verification
$π_0$: A Vision-Language-Action Flow Model for General Robot Control RSS 2025
Robot learning holds tremendous promise to unlock the full potential of flexible, general, and dexterous robot systems, as well as to address some of the deepest questions in artificial intelligence. However, bringing robot learning to the level of generality required for effective real-world systems faces major obstacles in terms of data, generalization, and robustness. In this paper, we discuss how generalist robot policies (i.e., robot foundation models) can address these challenges, and how we can design effective generalist robot policies for complex and highly dexterous tasks. We propose a novel flow matching architecture built on top of a pre-trained vision-language model (VLM) to inherit Internet-scale semantic knowledge. We then discuss how this model can be trained on a large and diverse dataset from multiple dexterous robot platforms, including single-arm robots, dual-arm robots, and mobile manipulators. We evaluate our model in terms of its ability to perform tasks in zero shot after pre-training, follow language instructions from people and from a high-level VLM policy, and its ability to acquire new skills via fine-tuning. Our results cover a wide variety of tasks, such as laundry folding, table cleaning, and assembling boxes.
comment: See project website for videos: https://physicalintelligence.company/blog/pi0 Published in RSS 2025
Uncertainty-Aware Robotic World Model Makes Offline Model-Based Reinforcement Learning Work on Real Robots
Reinforcement Learning (RL) has achieved impressive results in robotics, yet high-performing pipelines remain highly task-specific, with little reuse of prior data. Offline Model-based RL (MBRL) offers greater data efficiency by training policies entirely from existing datasets, but suffers from compounding errors and distribution shift in long-horizon rollouts. Although existing methods have shown success in controlled simulation benchmarks, robustly applying them to the noisy, biased, and partially observed datasets typical of real-world robotics remains challenging. We present a principled pipeline for making offline MBRL effective on physical robots. Our RWM-U extends autoregressive world models with epistemic uncertainty estimation, enabling temporally consistent multi-step rollouts with uncertainty effectively propagated over long horizons. We combine RWM-U with MOPO-PPO, which adapts uncertainty-penalized policy optimization to the stable, on-policy PPO framework for real-world control. We evaluate our approach on diverse manipulation and locomotion tasks in simulation and on real quadruped and humanoid, training policies entirely from offline datasets. The resulting policies consistently outperform model-free and uncertainty-unaware model-based baselines, and fusing real-world data in model learning further yields robust policies that surpass online model-free baselines trained solely in simulation.
ReinFlow: Fine-tuning Flow Matching Policy with Online Reinforcement Learning
We propose ReinFlow, a simple yet effective online reinforcement learning (RL) framework that fine-tunes a family of flow matching policies for continuous robotic control. Derived from rigorous RL theory, ReinFlow injects learnable noise into a flow policy's deterministic path, converting the flow into a discrete-time Markov Process for exact and straightforward likelihood computation. This conversion facilitates exploration and ensures training stability, enabling ReinFlow to fine-tune diverse flow model variants, including Rectified Flow [35] and Shortcut Models [19], particularly at very few or even one denoising step. We benchmark ReinFlow in representative locomotion and manipulation tasks, including long-horizon planning with visual input and sparse reward. The episode reward of Rectified Flow policies obtained an average net growth of 135.36% after fine-tuning in challenging legged locomotion tasks while saving denoising steps and 82.63% of wall time compared to state-of-the-art diffusion RL fine-tuning method DPPO [43]. The success rate of the Shortcut Model policies in state and visual manipulation tasks achieved an average net increase of 40.34% after fine-tuning with ReinFlow at four or even one denoising step, whose performance is comparable to fine-tuned DDIM policies while saving computation time for an average of 23.20%. Project webpage: https://reinflow.github.io/
comment: 38 pages
ImagineNav++: Prompting Vision-Language Models as Embodied Navigator through Scene Imagination
Visual navigation is a fundamental capability for autonomous home-assistance robots, enabling long-horizon tasks such as object search. While recent methods have leveraged Large Language Models (LLMs) to incorporate commonsense reasoning and improve exploration efficiency, their planning remains constrained by textual representations, which cannot adequately capture spatial occupancy or scene geometry--critical factors for navigation decisions. We explore whether Vision-Language Models (VLMs) can achieve mapless visual navigation using only onboard RGB/RGB-D streams, unlocking their potential for spatial perception and planning. We achieve this through an imagination-powered navigation framework, ImagineNav++, which imagines future observation images from candidate robot views and translates navigation planning into a simple best-view image selection problem for VLMs. First, a future-view imagination module distills human navigation preferences to generate semantically meaningful viewpoints with high exploration potential. These imagined views then serve as visual prompts for the VLM to identify the most informative viewpoint. To maintain spatial consistency, we develop a selective foveation memory mechanism, which hierarchically integrates keyframe observations via a sparse-to-dense framework, constructing a compact yet comprehensive memory for long-term spatial reasoning. This approach transforms goal-oriented navigation into a series of tractable point-goal navigation tasks. Extensive experiments on open-vocabulary object and instance navigation benchmarks show that ImagineNav++ achieves SOTA performance in mapless settings, even surpassing most map-based methods, highlighting the importance of scene imagination and memory in VLM-based spatial reasoning.
comment: 17 pages, 10 figures. arXiv admin note: text overlap with arXiv:2410.09874
Cognitive-Hierarchy Guided End-to-End Planning for Autonomous Driving
While end-to-end autonomous driving has advanced significantly, prevailing methods remain fundamentally misaligned with human cognitive principles in both perception and planning. In this paper, we propose CogAD, a novel end-to-end autonomous driving model that emulates the hierarchical cognition mechanisms of human drivers. CogAD implements dual hierarchical mechanisms: global-to-local context processing for human-like perception and intent-conditioned multi-mode trajectory generation for cognitively-inspired planning. The proposed method demonstrates three principal advantages: comprehensive environmental understanding through hierarchical perception, robust planning exploration enabled by multi-level planning, and diverse yet reasonable multi-modal trajectory generation facilitated by dual-level uncertainty modeling. Extensive experiments on nuScenes and Bench2Drive demonstrate that CogAD achieves state-of-the-art performance in end-to-end planning, exhibiting particular superiority in long-tail scenarios and robust generalization to complex real-world driving conditions.
Solving Robotics Tasks with Prior Demonstration via Exploration-Efficient Deep Reinforcement Learning
This paper proposes an exploration-efficient Deep Reinforcement Learning with Reference policy (DRLR) framework for learning robotics tasks that incorporates demonstrations. The DRLR framework is developed based on an algorithm called Imitation Bootstrapped Reinforcement Learning (IBRL). We propose to improve IBRL by modifying the action selection module. The proposed action selection module provides a calibrated Q-value, which mitigates the bootstrapping error that otherwise leads to inefficient exploration. Furthermore, to prevent the RL policy from converging to a sub-optimal policy, SAC is used as the RL policy instead of TD3. The effectiveness of our method in mitigating bootstrapping error and preventing overfitting is empirically validated by learning two robotics tasks: bucket loading and open drawer, which require extensive interactions with the environment. Simulation results also demonstrate the robustness of the DRLR framework across tasks with both low and high state-action dimensions, and varying demonstration qualities. To evaluate the developed framework on a real-world industrial robotics task, the bucket loading task is deployed on a real wheel loader. The sim2real results validate the successful deployment of the DRLR framework.
comment: This paper has been accepted for Journal publication in Frontiers in Robotics and AI
Properties of Lyapunov Subcenter Manifolds in Conservative Mechanical Systems
Multi-body mechanical systems have rich internal dynamics, whose solutions can be exploited as efficient control targets. Yet, solutions non-trivially depend on system parameters, obscuring feasible properties for use as target trajectories. For periodic regulation tasks in robotics applications, we investigate properties of nonlinear normal modes (NNMs) collected in Lyapunov subcenter manifolds (LSMs) of conservative mechanical systems. Using a time-symmetry of conservative mechanical systems, we show that mild non-resonance conditions guarantee LSMs to be Eigenmanifolds, in which NNMs are guaranteed to oscillate between two points of zero velocity. We also prove the existence of a unique generator, which is a connected, 1D manifold that collects these points of zero velocity for a given Eigenmanifold. Furthermore, we show that an additional spatial symmetry provides LSMs with yet stronger properties of Rosenberg manifolds. Here all brake trajectories pass through a unique equilibrium configuration, which can be favorable for control applications. These theoretical results are numerically confirmed on two mechanical systems: a double pendulum and a 5-link pendulum.
comment: 18 pages, 27 figures, submitted to Automatica
SynDroneVision: A Synthetic Dataset for Image-Based Drone Detection
Developing robust drone detection systems is often constrained by the limited availability of large-scale annotated training data and the high costs associated with real-world data collection. However, leveraging synthetic data generated via game engine-based simulations provides a promising and cost-effective solution to overcome this issue. Therefore, we present SynDroneVision, a synthetic dataset specifically designed for RGB-based drone detection in surveillance applications. Featuring diverse backgrounds, lighting conditions, and drone models, SynDroneVision offers a comprehensive training foundation for deep learning algorithms. To evaluate the dataset's effectiveness, we perform a comparative analysis across a selection of recent YOLO detection models. Our findings demonstrate that SynDroneVision is a valuable resource for real-world data enrichment, achieving notable enhancements in model performance and robustness, while significantly reducing the time and costs of real-world data acquisition. SynDroneVision will be publicly released upon paper acceptance.
RoboReward: General-Purpose Vision-Language Reward Models for Robotics
A well-designed reward is critical for effective reinforcement learning-based policy improvement. In real-world robotics, obtaining such rewards typically requires either labor-intensive human labeling or brittle, handcrafted objectives. Vision-language models (VLMs) have shown promise as automatic reward models, yet their effectiveness on real robot tasks is poorly understood. In this work, we aim to close this gap by introducing (1) RoboReward, a robotics reward dataset and benchmark built on large-scale real-robot corpora from Open X-Embodiment (OXE) and RoboArena, and (2) vision-language reward models trained on this dataset (RoboReward 4B/8B). Because OXE is success-heavy and lacks failure examples, we propose a negative examples data augmentation pipeline that generates calibrated negative and near-misses via counterfactual relabeling of successful episodes and temporal clipping to create partial-progress outcomes from the same videos. Using this framework, we build a large training and evaluation dataset spanning diverse tasks and embodiments to test whether state-of-the-art VLMs can reliably provide rewards for robot learning. Our evaluation of open and proprietary VLMs finds that no model excels across tasks, highlighting substantial room for improvement. We then train general-purpose 4B- and 8B-parameter models that outperform much larger VLMs in assigning rewards for short-horizon robotic tasks. Finally, we deploy the 8B model in real-robot reinforcement learning and find that it improves policy learning over Gemini Robotics-ER 1.5 while narrowing the gap to RL training with human-provided rewards. We release the full dataset, trained reward models, and evaluation suite on our website to advance the development of general-purpose reward models in robotics: https://crfm.stanford.edu/helm/robo-reward-bench (project website).
Human-Aided Trajectory Planning for Automated Vehicles through Teleoperation and Arbitration Graphs
Teleoperation enables remote human support of automated vehicles in scenarios where the automation is not able to find an appropriate solution. Remote assistance concepts, where operators provide discrete inputs to aid specific automation modules like planning, is gaining interest due to its reduced workload on the human remote operator and improved safety. However, these concepts are challenging to implement and maintain due to their deep integration and interaction with the automated driving system. In this paper, we propose a solution to facilitate the implementation of remote assistance concepts that intervene on planning level and extend the operational design domain of the vehicle at runtime. Using arbitration graphs, a modular decision-making framework, we integrate remote assistance into an existing automated driving system without modifying the original software components. Our simulative implementation demonstrates this approach in two use cases, allowing operators to adjust planner constraints and enable trajectory generation beyond nominal operational design domains.
comment: 7 pages, 8 figures, presented at IEEE Intelligent Vehicles Symposium 2025, video demonstration available at https://www.youtube.com/watch?v=fVSO-YOeGMk
Bio-Skin: A Cost-Effective Thermostatic Tactile Sensor with Multi-Modal Force and Temperature Detection IROS2025
Tactile sensors can significantly enhance the perception of humanoid robotics systems by providing contact information that facilitates human-like interactions. However, existing commercial tactile sensors focus on improving the resolution and sensitivity of single-modal detection with high-cost components and densely integrated design, incurring complex manufacturing processes and unaffordable prices. In this work, we present Bio-Skin, a cost-effective multi-modal tactile sensor that utilizes single-axis Hall-effect sensors for planar normal force measurement and bar-shape piezo resistors for 2D shear force measurement. A thermistor coupling with a heating wire is integrated into a silicone body to achieve temperature sensation and thermostatic function analogous to human skin. We also present a cross-reference framework to validate the two modalities of the force sensing signal, improving the sensing fidelity in a complex electromagnetic environment. Bio-Skin has a multi-layer design, and each layer is manufactured sequentially and subsequently integrated, thereby offering a fast production pathway. After calibration, Bio-Skin demonstrates performance metrics-including signal-to-range ratio, sampling rate, and measurement range-comparable to current commercial products, with one-tenth of the cost. The sensor's real-world performance is evaluated using an Allegro hand in object grasping tasks, while its temperature regulation functionality was assessed in a material detection task.
comment: This work has been published by IROS2025
Forging Spatial Intelligence: A Roadmap of Multi-Modal Data Pre-Training for Autonomous Systems
The rapid advancement of autonomous systems, including self-driving vehicles and drones, has intensified the need to forge true Spatial Intelligence from multi-modal onboard sensor data. While foundation models excel in single-modal contexts, integrating their capabilities across diverse sensors like cameras and LiDAR to create a unified understanding remains a formidable challenge. This paper presents a comprehensive framework for multi-modal pre-training, identifying the core set of techniques driving progress toward this goal. We dissect the interplay between foundational sensor characteristics and learning strategies, evaluating the role of platform-specific datasets in enabling these advancements. Our central contribution is the formulation of a unified taxonomy for pre-training paradigms: ranging from single-modality baselines to sophisticated unified frameworks that learn holistic representations for advanced tasks like 3D object detection and semantic occupancy prediction. Furthermore, we investigate the integration of textual inputs and occupancy representations to facilitate open-world perception and planning. Finally, we identify critical bottlenecks, such as computational efficiency and model scalability, and propose a roadmap toward general-purpose multi-modal foundation models capable of achieving robust Spatial Intelligence for real-world deployment.
comment: Survey; 40 pages, 7 figures, 9 tables; GitHub Repo at https://github.com/worldbench/awesome-spatial-intelligence
FoldNet: Learning Generalizable Closed-Loop Policy for Garment Folding via Keypoint-Driven Asset and Demonstration Synthesis
Due to the deformability of garments, generating a large amount of high-quality data for robotic garment manipulation tasks is highly challenging. In this paper, we present a synthetic garment dataset that can be used for robotic garment folding. We begin by constructing geometric garment templates based on keypoints and applying generative models to generate realistic texture patterns. Leveraging these keypoint annotations, we generate folding demonstrations in simulation and train folding policies via closed-loop imitation learning. To improve robustness, we propose KG-DAgger, which uses a keypoint-based strategy to generate demonstration data for recovering from failures. KG-DAgger significantly improves the model performance, boosting the real-world success rate by 25\%. After training with 15K trajectories (about 2M image-action pairs), the model achieves a 75\% success rate in the real world. Experiments in both simulation and real-world settings validate the effectiveness of our proposed framework.
What Drives Success in Physical Planning with Joint-Embedding Predictive World Models?
A long-standing challenge in AI is to develop agents capable of solving a wide range of physical tasks and generalizing to new, unseen tasks and environments. A popular recent approach involves training a world model from state-action trajectories and subsequently use it with a planning algorithm to solve new tasks. Planning is commonly performed in the input space, but a recent family of methods has introduced planning algorithms that optimize in the learned representation space of the world model, with the promise that abstracting irrelevant details yields more efficient planning. In this work, we characterize models from this family as JEPA-WMs and investigate the technical choices that make algorithms from this class work. We propose a comprehensive study of several key components with the objective of finding the optimal approach within the family. We conducted experiments using both simulated environments and real-world robotic data, and studied how the model architecture, the training objective, and the planning algorithm affect planning success. We combine our findings to propose a model that outperforms two established baselines, DINO-WM and V-JEPA-2-AC, in both navigation and manipulation tasks. Code, data and checkpoints are available at https://github.com/facebookresearch/jepa-wms.
comment: V2 of the article: - Added AdaLN-zero - Added table comparing JEPA-WMs with baselines with std translating per-seed variability only, no variability across epochs - Reordered figures in main body of the paper
Grasp the Graph (GtG) 2.0: Ensemble of Graph Neural Networks for High-Precision Grasp Pose Detection in Clutter
Grasp pose detection in cluttered, real-world environments remains a significant challenge due to noisy and incomplete sensory data combined with complex object geometries. This paper introduces Grasp the Graph 2.0 (GtG 2.0) method, a lightweight yet highly effective hypothesis-and-test robotics grasping framework which leverages an ensemble of Graph Neural Networks for efficient geometric reasoning from point cloud data. Building on the success of GtG 1.0, which demonstrated the potential of Graph Neural Networks for grasp detection but was limited by assumptions of complete, noise-free point clouds and 4-Dof grasping, GtG 2.0 employs a conventional Grasp Pose Generator to efficiently produce 7-Dof grasp candidates. Candidates are assessed with an ensemble Graph Neural Network model which includes points within the gripper jaws (inside points) and surrounding contextual points (outside points). This improved representation boosts grasp detection performance over previous methods using the same generator. GtG 2.0 shows up to a 35% improvement in Average Precision on the GraspNet-1Billion benchmark compared to hypothesis-and-test and Graph Neural Network-based methods, ranking it among the top three frameworks. Experiments with a 3-Dof Delta Parallel robot and Kinect-v1 camera show a success rate of 91% and a clutter completion rate of 100%, demonstrating its flexibility and reliability.
comment: 20 pages
Symbolic Planning and Multi-Agent Path Finding in Extremely Dense Environments with Unassigned Agents AAAI
We introduce the Block Rearrangement Problem (BRaP), a challenging component of large warehouse management which involves rearranging storage blocks within dense grids to achieve a goal state. We formally define the BRaP as a graph search problem. Building on intuitions from sliding puzzle problems, we propose five search-based solution algorithms, leveraging joint configuration space search, classical planning, multi-agent pathfinding, and expert heuristics. We evaluate the five approaches empirically for plan quality and scalability. Despite the exponential relation between search space size and block number, our methods demonstrate efficiency in creating rearrangement plans for deeply buried blocks in up to 80x80 grids.
comment: AAAI Conference on Artificial Intelligence (AAAI-26)
Computer Vision and Pattern Recognition 144
Mesh4D: 4D Mesh Reconstruction and Tracking from Monocular Video
We propose Mesh4D, a feed-forward model for monocular 4D mesh reconstruction. Given a monocular video of a dynamic object, our model reconstructs the object's complete 3D shape and motion, represented as a deformation field. Our key contribution is a compact latent space that encodes the entire animation sequence in a single pass. This latent space is learned by an autoencoder that, during training, is guided by the skeletal structure of the training objects, providing strong priors on plausible deformations. Crucially, skeletal information is not required at inference time. The encoder employs spatio-temporal attention, yielding a more stable representation of the object's overall deformation. Building on this representation, we train a latent diffusion model that, conditioned on the input video and the mesh reconstructed from the first frame, predicts the full animation in one shot. We evaluate Mesh4D on reconstruction and novel view synthesis benchmarks, outperforming prior methods in recovering accurate 3D shape and deformation.
comment: 15 pages, 8 figures, project page: https://mesh-4d.github.io/
RL-AWB: Deep Reinforcement Learning for Auto White Balance Correction in Low-Light Night-time Scenes
Nighttime color constancy remains a challenging problem in computational photography due to low-light noise and complex illumination conditions. We present RL-AWB, a novel framework combining statistical methods with deep reinforcement learning for nighttime white balance. Our method begins with a statistical algorithm tailored for nighttime scenes, integrating salient gray pixel detection with novel illumination estimation. Building on this foundation, we develop the first deep reinforcement learning approach for color constancy that leverages the statistical algorithm as its core, mimicking professional AWB tuning experts by dynamically optimizing parameters for each image. To facilitate cross-sensor evaluation, we introduce the first multi-sensor nighttime dataset. Experiment results demonstrate that our method achieves superior generalization capability across low-light and well-illuminated images. Project page: https://ntuneillee.github.io/research/rl-awb/
comment: Project page: https://ntuneillee.github.io/research/rl-awb/
QNeRF: Neural Radiance Fields on a Simulated Gate-Based Quantum Computer
Recently, Quantum Visual Fields (QVFs) have shown promising improvements in model compactness and convergence speed for learning the provided 2D or 3D signals. Meanwhile, novel-view synthesis has seen major advances with Neural Radiance Fields (NeRFs), where models learn a compact representation from 2D images to render 3D scenes, albeit at the cost of larger models and intensive training. In this work, we extend the approach of QVFs by introducing QNeRF, the first hybrid quantum-classical model designed for novel-view synthesis from 2D images. QNeRF leverages parameterised quantum circuits to encode spatial and view-dependent information via quantum superposition and entanglement, resulting in more compact models compared to the classical counterpart. We present two architectural variants. Full QNeRF maximally exploits all quantum amplitudes to enhance representational capabilities. In contrast, Dual-Branch QNeRF introduces a task-informed inductive bias by branching spatial and view-dependent quantum state preparations, drastically reducing the complexity of this operation and ensuring scalability and potential hardware compatibility. Our experiments demonstrate that -- when trained on images of moderate resolution -- QNeRF matches or outperforms classical NeRF baselines while using less than half the number of parameters. These results suggest that quantum machine learning can serve as a competitive alternative for continuous signal representation in mid-level tasks in computer vision, such as 3D representation learning from 2D observations.
comment: 30 pages, 15 figures, 11 tables; project page: https://4dqv.mpi-inf.mpg.de/QNeRF/
Pixel-Perfect Visual Geometry Estimation
Recovering clean and accurate geometry from images is essential for robotics and augmented reality. However, existing geometry foundation models still suffer severely from flying pixels and the loss of fine details. In this paper, we present pixel-perfect visual geometry models that can predict high-quality, flying-pixel-free point clouds by leveraging generative modeling in the pixel space. We first introduce Pixel-Perfect Depth (PPD), a monocular depth foundation model built upon pixel-space diffusion transformers (DiT). To address the high computational complexity associated with pixel-space diffusion, we propose two key designs: 1) Semantics-Prompted DiT, which incorporates semantic representations from vision foundation models to prompt the diffusion process, preserving global semantics while enhancing fine-grained visual details; and 2) Cascade DiT architecture that progressively increases the number of image tokens, improving both efficiency and accuracy. To further extend PPD to video (PPVD), we introduce a new Semantics-Consistent DiT, which extracts temporally consistent semantics from a multi-view geometry foundation model. We then perform reference-guided token propagation within the DiT to maintain temporal coherence with minimal computational and memory overhead. Our models achieve the best performance among all generative monocular and video depth estimation models and produce significantly cleaner point clouds than all other models.
comment: Code: https://github.com/gangweix/pixel-perfect-depth
GREx: Generalized Referring Expression Segmentation, Comprehension, and Generation
Referring Expression Segmentation (RES) and Comprehension (REC) respectively segment and detect the object described by an expression, while Referring Expression Generation (REG) generates an expression for the selected object. Existing datasets and methods commonly support single-target expressions only, i.e., one expression refers to one object, not considering multi-target and no-target expressions. This greatly limits the real applications of REx (RES/REC/REG). This paper introduces three new benchmarks called Generalized Referring Expression Segmentation (GRES), Comprehension (GREC), and Generation (GREG), collectively denoted as GREx, which extend the classic REx to allow expressions to identify an arbitrary number of objects. We construct the first large-scale GREx dataset gRefCOCO that contains multi-target, no-target, and single-target expressions and their corresponding images with labeled targets. GREx and gRefCOCO are designed to be backward-compatible with REx, facilitating extensive experiments to study the performance gap of the existing REx methods on GREx tasks. One of the challenges of GRES/GREC is complex relationship modeling, for which we propose a baseline ReLA that adaptively divides the image into regions with sub-instance clues and explicitly models the region-region and region-language dependencies. The proposed ReLA achieves the state-of-the-art results on the both GRES and GREC tasks. The proposed gRefCOCO dataset and method are available at https://henghuiding.github.io/GREx.
comment: IJCV, Project Page: https://henghuiding.com/GREx/
Generate, Transfer, Adapt: Learning Functional Dexterous Grasping from a Single Human Demonstration
Functional grasping with dexterous robotic hands is a key capability for enabling tool use and complex manipulation, yet progress has been constrained by two persistent bottlenecks: the scarcity of large-scale datasets and the absence of integrated semantic and geometric reasoning in learned models. In this work, we present CorDex, a framework that robustly learns dexterous functional grasps of novel objects from synthetic data generated from just a single human demonstration. At the core of our approach is a correspondence-based data engine that generates diverse, high-quality training data in simulation. Based on the human demonstration, our data engine generates diverse object instances of the same category, transfers the expert grasp to the generated objects through correspondence estimation, and adapts the grasp through optimization. Building on the generated data, we introduce a multimodal prediction network that integrates visual and geometric information. By devising a local-global fusion module and an importance-aware sampling mechanism, we enable robust and computationally efficient prediction of functional dexterous grasps. Through extensive experiments across various object categories, we demonstrate that CorDex generalizes well to unseen object instances and significantly outperforms state-of-the-art baselines.
comment: Project Page: https://cordex-manipulation.github.io/
RoboVIP: Multi-View Video Generation with Visual Identity Prompting Augments Robot Manipulation
The diversity, quantity, and quality of manipulation data are critical for training effective robot policies. However, due to hardware and physical setup constraints, collecting large-scale real-world manipulation data remains difficult to scale across diverse environments. Recent work uses text-prompt conditioned image diffusion models to augment manipulation data by altering the backgrounds and tabletop objects in the visual observations. However, these approaches often overlook the practical need for multi-view and temporally coherent observations required by state-of-the-art policy models. Further, text prompts alone cannot reliably specify the scene setup. To provide the diffusion model with explicit visual guidance, we introduce visual identity prompting, which supplies exemplar images as conditioning inputs to guide the generation of the desired scene setup. To this end, we also build a scalable pipeline to curate a visual identity pool from large robotics datasets. Using our augmented manipulation data to train downstream vision-language-action and visuomotor policy models yields consistent performance gains in both simulation and real-robot settings.
Plenoptic Video Generation
Camera-controlled generative video re-rendering methods, such as ReCamMaster, have achieved remarkable progress. However, despite their success in single-view setting, these works often struggle to maintain consistency across multi-view scenarios. Ensuring spatio-temporal coherence in hallucinated regions remains challenging due to the inherent stochasticity of generative models. To address it, we introduce PlenopticDreamer, a framework that synchronizes generative hallucinations to maintain spatio-temporal memory. The core idea is to train a multi-in-single-out video-conditioned model in an autoregressive manner, aided by a camera-guided video retrieval strategy that adaptively selects salient videos from previous generations as conditional inputs. In addition, Our training incorporates progressive context-scaling to improve convergence, self-conditioning to enhance robustness against long-range visual degradation caused by error accumulation, and a long-video conditioning mechanism to support extended video generation. Extensive experiments on the Basic and Agibot benchmarks demonstrate that PlenopticDreamer achieves state-of-the-art video re-rendering, delivering superior view synchronization, high-fidelity visuals, accurate camera control, and diverse view transformations (e.g., third-person to third-person, and head-view to gripper-view in robotic manipulation). Project page: https://research.nvidia.com/labs/dir/plenopticdreamer/
comment: Project Page: https://research.nvidia.com/labs/dir/plenopticdreamer/
ObjectForesight: Predicting Future 3D Object Trajectories from Human Videos
Humans can effortlessly anticipate how objects might move or change through interaction--imagining a cup being lifted, a knife slicing, or a lid being closed. We aim to endow computational systems with a similar ability to predict plausible future object motions directly from passive visual observation. We introduce ObjectForesight, a 3D object-centric dynamics model that predicts future 6-DoF poses and trajectories of rigid objects from short egocentric video sequences. Unlike conventional world or dynamics models that operate in pixel or latent space, ObjectForesight represents the world explicitly in 3D at the object level, enabling geometrically grounded and temporally coherent predictions that capture object affordances and trajectories. To train such a model at scale, we leverage recent advances in segmentation, mesh reconstruction, and 3D pose estimation to curate a dataset of 2 million plus short clips with pseudo-ground-truth 3D object trajectories. Through extensive experiments, we show that ObjectForesight achieves significant gains in accuracy, geometric consistency, and generalization to unseen objects and scenes, establishing a scalable framework for learning physically grounded, object-centric dynamics models directly from observation. objectforesight.github.io
comment: Preprint. Project Website: objectforesight.github.io
Learning Latent Action World Models In The Wild
Agents capable of reasoning and planning in the real world require the ability of predicting the consequences of their actions. While world models possess this capability, they most often require action labels, that can be complex to obtain at scale. This motivates the learning of latent action models, that can learn an action space from videos alone. Our work addresses the problem of learning latent actions world models on in-the-wild videos, expanding the scope of existing works that focus on simple robotics simulations, video games, or manipulation data. While this allows us to capture richer actions, it also introduces challenges stemming from the video diversity, such as environmental noise, or the lack of a common embodiment across videos. To address some of the challenges, we discuss properties that actions should follow as well as relevant architectural choices and evaluations. We find that continuous, but constrained, latent actions are able to capture the complexity of actions from in-the-wild videos, something that the common vector quantization does not. We for example find that changes in the environment coming from agents, such as humans entering the room, can be transferred across videos. This highlights the capability of learning actions that are specific to in-the-wild videos. In the absence of a common embodiment across videos, we are mainly able to learn latent actions that become localized in space, relative to the camera. Nonetheless, we are able to train a controller that maps known actions to latent ones, allowing us to use latent actions as a universal interface and solve planning tasks with our world model with similar performance as action-conditioned baselines. Our analyses and experiments provide a step towards scaling latent action models to the real world.
comment: 37 pages, 25 figures
FlowLet: Conditional 3D Brain MRI Synthesis using Wavelet Flow Matching
Brain Magnetic Resonance Imaging (MRI) plays a central role in studying neurological development, aging, and diseases. One key application is Brain Age Prediction (BAP), which estimates an individual's biological brain age from MRI data. Effective BAP models require large, diverse, and age-balanced datasets, whereas existing 3D MRI datasets are demographically skewed, limiting fairness and generalizability. Acquiring new data is costly and ethically constrained, motivating generative data augmentation. Current generative methods are often based on latent diffusion models, which operate in learned low dimensional latent spaces to address the memory demands of volumetric MRI data. However, these methods are typically slow at inference, may introduce artifacts due to latent compression, and are rarely conditioned on age, thereby affecting the BAP performance. In this work, we propose FlowLet, a conditional generative framework that synthesizes age-conditioned 3D MRIs by leveraging flow matching within an invertible 3D wavelet domain, helping to avoid reconstruction artifacts and reducing computational demands. Experiments show that FlowLet generates high-fidelity volumes with few sampling steps. Training BAP models with data generated by FlowLet improves performance for underrepresented age groups, and region-based analysis confirms preservation of anatomical structures.
MoE3D: A Mixture-of-Experts Module for 3D Reconstruction
MoE3D is a mixture-of-experts module designed to sharpen depth boundaries and mitigate flying-point artifacts (highlighted in red) of existing feed-forward 3D reconstruction models (left side). MoE3D predicts multiple candidate depth maps and fuses them via dynamic weighting (visualized by MoE weights on the right side). When integrated with a pre-trained 3D reconstruction backbone such as VGGT, it substantially enhances reconstruction quality with minimal additional computational overhead. Best viewed digitally.
Mechanisms of Prompt-Induced Hallucination in Vision-Language Models
Large vision-language models (VLMs) are highly capable, yet often hallucinate by favoring textual prompts over visual evidence. We study this failure mode in a controlled object-counting setting, where the prompt overstates the number of objects in the image (e.g., asking a model to describe four waterlilies when only three are present). At low object counts, models often correct the overestimation, but as the number of objects increases, they increasingly conform to the prompt regardless of the discrepancy. Through mechanistic analysis of three VLMs, we identify a small set of attention heads whose ablation substantially reduces prompt-induced hallucinations (PIH) by at least 40% without additional training. Across models, PIH-heads mediate prompt copying in model-specific ways. We characterize these differences and show that PIH ablation increases correction toward visual evidence. Our findings offer insights into the internal mechanisms driving prompt-induced hallucinations, revealing model-specific differences in how these behaviors are implemented.
Cutting AI Research Costs: How Task-Aware Compression Makes Large Language Model Agents Affordable
When researchers deploy large language models for autonomous tasks like reviewing literature or generating hypotheses, the computational bills add up quickly. A single research session using a 70-billion parameter model can cost around $127 in cloud fees, putting these tools out of reach for many academic labs. We developed AgentCompress to tackle this problem head-on. The core idea came from a simple observation during our own work: writing a novel hypothesis clearly demands more from the model than reformatting a bibliography. Why should both tasks run at full precision? Our system uses a small neural network to gauge how hard each incoming task will be, based only on its opening words, then routes it to a suitably compressed model variant. The decision happens in under a millisecond. Testing across 500 research workflows in four scientific fields, we cut compute costs by 68.3% while keeping 96.2% of the original success rate. For labs watching their budgets, this could mean the difference between running experiments and sitting on the sidelines
VideoAuto-R1: Video Auto Reasoning via Thinking Once, Answering Twice
Chain-of-thought (CoT) reasoning has emerged as a powerful tool for multimodal large language models on video understanding tasks. However, its necessity and advantages over direct answering remain underexplored. In this paper, we first demonstrate that for RL-trained video models, direct answering often matches or even surpasses CoT performance, despite CoT producing step-by-step analyses at a higher computational cost. Motivated by this, we propose VideoAuto-R1, a video understanding framework that adopts a reason-when-necessary strategy. During training, our approach follows a Thinking Once, Answering Twice paradigm: the model first generates an initial answer, then performs reasoning, and finally outputs a reviewed answer. Both answers are supervised via verifiable rewards. During inference, the model uses the confidence score of the initial answer to determine whether to proceed with reasoning. Across video QA and grounding benchmarks, VideoAuto-R1 achieves state-of-the-art accuracy with significantly improved efficiency, reducing the average response length by ~3.3x, e.g., from 149 to just 44 tokens. Moreover, we observe a low rate of thinking-mode activation on perception-oriented tasks, but a higher rate on reasoning-intensive tasks. This suggests that explicit language-based reasoning is generally beneficial but not always necessary.
comment: Project page: https://ivul-kaust.github.io/projects/videoauto-r1/
CoV: Chain-of-View Prompting for Spatial Reasoning
Embodied question answering (EQA) in 3D environments often requires collecting context that is distributed across multiple viewpoints and partially occluded. However, most recent vision--language models (VLMs) are constrained to a fixed and finite set of input views, which limits their ability to acquire question-relevant context at inference time and hinders complex spatial reasoning. We propose Chain-of-View (CoV) prompting, a training-free, test-time reasoning framework that transforms a VLM into an active viewpoint reasoner through a coarse-to-fine exploration process. CoV first employs a View Selection agent to filter redundant frames and identify question-aligned anchor views. It then performs fine-grained view adjustment by interleaving iterative reasoning with discrete camera actions, obtaining new observations from the underlying 3D scene representation until sufficient context is gathered or a step budget is reached. We evaluate CoV on OpenEQA across four mainstream VLMs and obtain an average +11.56\% improvement in LLM-Match, with a maximum gain of +13.62\% on Qwen3-VL-Flash. CoV further exhibits test-time scaling: increasing the minimum action budget yields an additional +2.51\% average improvement, peaking at +3.73\% on Gemini-2.5-Flash. On ScanQA and SQA3D, CoV delivers strong performance (e.g., 116 CIDEr / 31.9 EM@1 on ScanQA and 51.1 EM@1 on SQA3D). Overall, these results suggest that question-aligned view selection coupled with open-view search is an effective, model-agnostic strategy for improving spatial reasoning in 3D EQA without additional training.
GenAI-DrawIO-Creator: A Framework for Automated Diagram Generation
Diagrams are crucial for communicating complex information, yet creating and modifying them remains a labor-intensive task. We present GenAI-DrawIO-Creator, a novel framework that leverages Large Language Models (LLMs) to automate diagram generation and manipulation in the structured XML format used by draw.io. Our system integrates Claude 3.7 to reason about structured visual data and produce valid diagram representations. Key contributions include a high-level system design enabling real-time diagram updates, specialized prompt engineering and error-checking to ensure well-formed XML outputs. We demonstrate a working prototype capable of generating accurate diagrams (such as network architectures and flowcharts) from natural language or code, and even replicating diagrams from images. Simulated evaluations show that our approach significantly reduces diagram creation time and produces outputs with high structural fidelity. Our results highlight the promise of Claude 3.7 in handling structured visual reasoning tasks and lay the groundwork for future research in AI-assisted diagramming applications.
Vision-Language Introspection: Mitigating Overconfident Hallucinations in MLLMs via Interpretable Bi-Causal Steering
Object hallucination critically undermines the reliability of Multimodal Large Language Models, often stemming from a fundamental failure in cognitive introspection, where models blindly trust linguistic priors over specific visual evidence. Existing mitigations remain limited: contrastive decoding approaches operate superficially without rectifying internal semantic misalignments, while current latent steering methods rely on static vectors that lack instance-specific precision. We introduce Vision-Language Introspection (VLI), a training-free inference framework that simulates a metacognitive self-correction process. VLI first performs Attributive Introspection to diagnose hallucination risks via probabilistic conflict detection and localize the causal visual anchors. It then employs Interpretable Bi-Causal Steering to actively modulate the inference process, dynamically isolating visual evidence from background noise while neutralizing blind confidence through adaptive calibration. VLI achieves state-of-the-art performance on advanced models, reducing object hallucination rates by 12.67% on MMHal-Bench and improving accuracy by 5.8% on POPE.
Multi-Scale Local Speculative Decoding for Image Generation
Autoregressive (AR) models have achieved remarkable success in image synthesis, yet their sequential nature imposes significant latency constraints. Speculative Decoding offers a promising avenue for acceleration, but existing approaches are limited by token-level ambiguity and lack of spatial awareness. In this work, we introduce Multi-Scale Local Speculative Decoding (MuLo-SD), a novel framework that combines multi-resolution drafting with spatially informed verification to accelerate AR image generation. Our method leverages a low-resolution drafter paired with learned up-samplers to propose candidate image tokens, which are then verified in parallel by a high-resolution target model. Crucially, we incorporate a local rejection and resampling mechanism, enabling efficient correction of draft errors by focusing on spatial neighborhoods rather than raster-scan resampling after the first rejection. We demonstrate that MuLo-SD achieves substantial speedups - up to $\mathbf{1.7\times}$ - outperforming strong speculative decoding baselines such as EAGLE-2 and LANTERN in terms of acceleration, while maintaining comparable semantic alignment and perceptual quality. These results are validated using GenEval, DPG-Bench, and FID/HPSv2 on the MS-COCO 5k validation split. Extensive ablations highlight the impact of up-sampling design, probability pooling, and local rejection and resampling with neighborhood expansion. Our approach sets a new state-of-the-art in speculative decoding for image synthesis, bridging the gap between efficiency and fidelity.
comment: Project page is available at https://qualcomm-ai-research.github.io/mulo-sd-webpage
Atlas 2 -- Foundation models for clinical deployment
Pathology foundation models substantially advanced the possibilities in computational pathology -- yet tradeoffs in terms of performance, robustness, and computational requirements remained, which limited their clinical deployment. In this report, we present Atlas 2, Atlas 2-B, and Atlas 2-S, three pathology vision foundation models which bridge these shortcomings by showing state-of-the-art performance in prediction performance, robustness, and resource efficiency in a comprehensive evaluation across eighty public benchmarks. Our models were trained on the largest pathology foundation model dataset to date comprising 5.5 million histopathology whole slide images, collected from three medical institutions Charité - Universtätsmedizin Berlin, LMU Munich, and Mayo Clinic.
A Lightweight and Explainable Vision-Language Framework for Crop Disease Visual Question Answering
Visual question answering for crop disease analysis requires accurate visual understanding and reliable language generation. This work presents a lightweight vision-language framework for crop and disease identification from leaf images. The proposed approach combines a Swin Transformer vision encoder with sequence-to-sequence language decoders. A two-stage training strategy is adopted to improve visual representation learning and cross-modal alignment. The model is evaluated on a large-scale crop disease dataset using classification and natural language generation metrics. Experimental results show high accuracy for both crop and disease identification. The framework also achieves strong performance on BLEU, ROUGE and BERTScore. Our proposed models outperform large-scale vision-language baselines while using significantly fewer parameters. Explainability is assessed using Grad-CAM and token-level attribution. Qualitative results demonstrate robust performance under diverse user-driven queries. These findings highlight the effectiveness of task-specific visual pretraining for crop disease visual question answering.
comment: Preprint, manuscript is under review
VerseCrafter: Dynamic Realistic Video World Model with 4D Geometric Control
Video world models aim to simulate dynamic, real-world environments, yet existing methods struggle to provide unified and precise control over camera and multi-object motion, as videos inherently operate dynamics in the projected 2D image plane. To bridge this gap, we introduce VerseCrafter, a 4D-aware video world model that enables explicit and coherent control over both camera and object dynamics within a unified 4D geometric world state. Our approach is centered on a novel 4D Geometric Control representation, which encodes the world state through a static background point cloud and per-object 3D Gaussian trajectories. This representation captures not only an object's path but also its probabilistic 3D occupancy over time, offering a flexible, category-agnostic alternative to rigid bounding boxes or parametric models. These 4D controls are rendered into conditioning signals for a pretrained video diffusion model, enabling the generation of high-fidelity, view-consistent videos that precisely adhere to the specified dynamics. Unfortunately, another major challenge lies in the scarcity of large-scale training data with explicit 4D annotations. We address this by developing an automatic data engine that extracts the required 4D controls from in-the-wild videos, allowing us to train our model on a massive and diverse dataset.
comment: Project Page: https://sixiaozheng.github.io/VerseCrafter_page/
VERSE: Visual Embedding Reduction and Space Exploration. Clustering-Guided Insights for Training Data Enhancement in Visually-Rich Document Understanding
This work introduces VERSE, a methodology for analyzing and improving Vision-Language Models applied to Visually-rich Document Understanding by exploring their visual embedding space. VERSE enables the visualization of latent representations, supporting the assessment of model feasibility. It also facilitates the identification of problematic regions and guides the generation of synthetic data to enhance performance in those clusters. We validate the methodology by training on the synthetic MERIT Dataset and evaluating on its real-world counterpart, MERIT Secret. Results show that VERSE helps uncover the visual features associated with error-prone clusters, and that retraining with samples containing these features substantially boosts F1 performance without degrading generalization. Furthermore, we demonstrate that on-premise models such as Donut and Idefics2, when optimized with VERSE, match or even surpass the performance of SaaS solutions like GPT-4 and Pixtral.
Re-Align: Structured Reasoning-guided Alignment for In-Context Image Generation and Editing
In-context image generation and editing (ICGE) enables users to specify visual concepts through interleaved image-text prompts, demanding precise understanding and faithful execution of user intent. Although recent unified multimodal models exhibit promising understanding capabilities, these strengths often fail to transfer effectively to image generation. We introduce Re-Align, a unified framework that bridges the gap between understanding and generation through structured reasoning-guided alignment. At its core lies the In-Context Chain-of-Thought (IC-CoT), a structured reasoning paradigm that decouples semantic guidance and reference association, providing clear textual target and mitigating confusion among reference images. Furthermore, Re-Align introduces an effective RL training scheme that leverages a surrogate reward to measure the alignment between structured reasoning text and the generated image, thereby improving the model's overall performance on ICGE tasks. Extensive experiments verify that Re-Align outperforms competitive methods of comparable model scale and resources on both in-context image generation and editing tasks.
comment: 13 pages, 9 figures, project page: https://github.com/hrz2000/realign
From Rays to Projections: Better Inputs for Feed-Forward View Synthesis
Feed-forward view synthesis models predict a novel view in a single pass with minimal 3D inductive bias. Existing works encode cameras as Plücker ray maps, which tie predictions to the arbitrary world coordinate gauge and make them sensitive to small camera transformations, thereby undermining geometric consistency. In this paper, we ask what inputs best condition a model for robust and consistent view synthesis. We propose projective conditioning, which replaces raw camera parameters with a target-view projective cue that provides a stable 2D input. This reframes the task from a brittle geometric regression problem in ray space to a well-conditioned target-view image-to-image translation problem. Additionally, we introduce a masked autoencoding pretraining strategy tailored to this cue, enabling the use of large-scale uncalibrated data for pretraining. Our method shows improved fidelity and stronger cross-view consistency compared to ray-conditioned baselines on our view-consistency benchmark. It also achieves state-of-the-art quality on standard novel view synthesis benchmarks.
comment: Project Page: https://wuzirui.github.io/pvsm-web
UniLiPs: Unified LiDAR Pseudo-Labeling with Geometry-Grounded Dynamic Scene Decomposition
Unlabeled LiDAR logs, in autonomous driving applications, are inherently a gold mine of dense 3D geometry hiding in plain sight - yet they are almost useless without human labels, highlighting a dominant cost barrier for autonomous-perception research. In this work we tackle this bottleneck by leveraging temporal-geometric consistency across LiDAR sweeps to lift and fuse cues from text and 2D vision foundation models directly into 3D, without any manual input. We introduce an unsupervised multi-modal pseudo-labeling method relying on strong geometric priors learned from temporally accumulated LiDAR maps, alongside with a novel iterative update rule that enforces joint geometric-semantic consistency, and vice-versa detecting moving objects from inconsistencies. Our method simultaneously produces 3D semantic labels, 3D bounding boxes, and dense LiDAR scans, demonstrating robust generalization across three datasets. We experimentally validate that our method compares favorably to existing semantic segmentation and object detection pseudo-labeling methods, which often require additional manual supervision. We confirm that even a small fraction of our geometrically consistent, densified LiDAR improves depth prediction by 51.5% and 22.0% MAE in the 80-150 and 150-250 meters range, respectively.
Driving on Registers
We present DrivoR, a simple and efficient transformer-based architecture for end-to-end autonomous driving. Our approach builds on pretrained Vision Transformers (ViTs) and introduces camera-aware register tokens that compress multi-camera features into a compact scene representation, significantly reducing downstream computation without sacrificing accuracy. These tokens drive two lightweight transformer decoders that generate and then score candidate trajectories. The scoring decoder learns to mimic an oracle and predicts interpretable sub-scores representing aspects such as safety, comfort, and efficiency, enabling behavior-conditioned driving at inference. Despite its minimal design, DrivoR outperforms or matches strong contemporary baselines across NAVSIM-v1, NAVSIM-v2, and the photorealistic closed-loop HUGSIM benchmark. Our results show that a pure-transformer architecture, combined with targeted token compression, is sufficient for accurate, efficient, and adaptive end-to-end driving. Code and checkpoints will be made available via the project page.
Quantitative mapping from conventional MRI using self-supervised physics-guided deep learning: applications to a large-scale, clinically heterogeneous dataset
Magnetic resonance imaging (MRI) is a cornerstone of clinical neuroimaging, yet conventional MRIs provide qualitative information heavily dependent on scanner hardware and acquisition settings. While quantitative MRI (qMRI) offers intrinsic tissue parameters, the requirement for specialized acquisition protocols and reconstruction algorithms restricts its availability and impedes large-scale biomarker research. This study presents a self-supervised physics-guided deep learning framework to infer quantitative T1, T2, and proton-density (PD) maps directly from widely available clinical conventional T1-weighted, T2-weighted, and FLAIR MRIs. The framework was trained and evaluated on a large-scale, clinically heterogeneous dataset comprising 4,121 scan sessions acquired at our institution over six years on four different 3 T MRI scanner systems, capturing real-world clinical variability. The framework integrates Bloch-based signal models directly into the training objective. Across more than 600 test sessions, the generated maps exhibited white matter and gray matter values consistent with literature ranges. Additionally, the generated maps showed invariance to scanner hardware and acquisition protocol groups, with inter-group coefficients of variation $\leq$ 1.1%. Subject-specific analyses demonstrated excellent voxel-wise reproducibility across scanner systems and sequence parameters, with Pearson $r$ and concordance correlation coefficients exceeding 0.82 for T1 and T2. Mean relative voxel-wise differences were low across all quantitative parameters, especially for T2 ($<$ 6%). These results indicate that the proposed framework can robustly transform diverse clinical conventional MRI data into quantitative maps, potentially paving the way for large-scale quantitative biomarker research.
comment: 30 pages, 13 figures, full paper
From Understanding to Engagement: Personalized pharmacy Video Clips via Vision Language Models (VLMs)
Vision Language Models (VLMs) are poised to revolutionize the digital transformation of pharmacyceutical industry by enabling intelligent, scalable, and automated multi-modality content processing. Traditional manual annotation of heterogeneous data modalities (text, images, video, audio, and web links), is prone to inconsistencies, quality degradation, and inefficiencies in content utilization. The sheer volume of long video and audio data further exacerbates these challenges, (e.g. long clinical trial interviews and educational seminars). Here, we introduce a domain adapted Video to Video Clip Generation framework that integrates Audio Language Models (ALMs) and Vision Language Models (VLMs) to produce highlight clips. Our contributions are threefold: (i) a reproducible Cut & Merge algorithm with fade in/out and timestamp normalization, ensuring smooth transitions and audio/visual alignment; (ii) a personalization mechanism based on role definition and prompt injection for tailored outputs (marketing, training, regulatory); (iii) a cost efficient e2e pipeline strategy balancing ALM/VLM enhanced processing. Evaluations on Video MME benchmark (900) and our proprietary dataset of 16,159 pharmacy videos across 14 disease areas demonstrate 3 to 4 times speedup, 4 times cost reduction, and competitive clip quality. Beyond efficiency gains, we also report our methods improved clip coherence scores (0.348) and informativeness scores (0.721) over state of the art VLM baselines (e.g., Gemini 2.5 Pro), highlighting the potential of transparent, custom extractive, and compliance supporting video summarization for life sciences.
comment: Contributed original research to top tier conference in VLM; currently undergoing peer review
Patch-based Representation and Learning for Efficient Deformation Modeling
In this paper, we present a patch-based representation of surfaces, PolyFit, which is obtained by fitting jet functions locally on surface patches. Such a representation can be learned efficiently in a supervised fashion from both analytic functions and real data. Once learned, it can be generalized to various types of surfaces. Using PolyFit, the surfaces can be efficiently deformed by updating a compact set of jet coefficients rather than optimizing per-vertex degrees of freedom for many downstream tasks in computer vision and graphics. We demonstrate the capabilities of our proposed methodologies with two applications: 1) Shape-from-template (SfT): where the goal is to deform the input 3D template of an object as seen in image/video. Using PolyFit, we adopt test-time optimization that delivers competitive accuracy while being markedly faster than offline physics-based solvers, and outperforms recent physics-guided neural simulators in accuracy at modest additional runtime. 2) Garment draping. We train a self-supervised, mesh- and garment-agnostic model that generalizes across resolutions and garment types, delivering up to an order-of-magnitude faster inference than strong baselines.
Scalable neural pushbroom architectures for real-time denoising of hyperspectral images onboard satellites
The next generation of Earth observation satellites will seek to deploy intelligent models directly onboard the payload in order to minimize the latency incurred by the transmission and processing chain of the ground segment, for time-critical applications. Designing neural architectures for onboard execution, particularly for satellite-based hyperspectral imagers, poses novel challenges due to the unique constraints of this environment and imaging system that are largely unexplored by the traditional computer vision literature. In this paper, we show that this setting requires addressing three competing objectives, namely high-quality inference with low complexity, dynamic power scalability and fault tolerance. We focus on the problem of hyperspectral image denoising, which is a critical task to enable effective downstream inference, and highlights the constraints of the onboard processing scenario. We propose a neural network design that addresses the three aforementioned objectives with several novel contributions. In particular, we propose a mixture of denoisers that can be resilient to radiation-induced faults as well as allowing for time-varying power scaling. Moreover, each denoiser employs an innovative architecture where an image is processed line-by-line in a causal way, with a memory of past lines, in order to match the acquisition process of pushbroom hyperspectral sensors and greatly limit memory requirements. We show that the proposed architecture can run in real-time, i.e., process one line in the time it takes to acquire the next one, on low-power hardware and provide competitive denoising quality with respect to significantly more complex state-of-the-art models. We also show that the power scalability and fault tolerance objectives provide a design space with multiple tradeoffs between those properties and denoising quality.
Higher-Order Adversarial Patches for Real-Time Object Detectors
Higher-order adversarial attacks can directly be considered the result of a cat-and-mouse game -- an elaborate action involving constant pursuit, near captures, and repeated escapes. This idiom describes the enduring circular training of adversarial attack patterns and adversarial training the best. The following work investigates the impact of higher-order adversarial attacks on object detectors by successively training attack patterns and hardening object detectors with adversarial training. The YOLOv10 object detector is chosen as a representative, and adversarial patches are used in an evasion attack manner. Our results indicate that higher-order adversarial patches are not only affecting the object detector directly trained on but rather provide a stronger generalization capacity compared to lower-order adversarial patches. Moreover, the results highlight that solely adversarial training is not sufficient to harden an object detector efficiently against this kind of adversarial attack. Code: https://github.com/JensBayer/HigherOrder
comment: Under review (ICPR2026)
OceanSplat: Object-aware Gaussian Splatting with Trinocular View Consistency for Underwater Scene Reconstruction AAAI 2026
We introduce OceanSplat, a novel 3D Gaussian Splatting-based approach for accurately representing 3D geometry in underwater scenes. To overcome multi-view inconsistencies caused by underwater optical degradation, our method enforces trinocular view consistency by rendering horizontally and vertically translated camera views relative to each input view and aligning them via inverse warping. Furthermore, these translated camera views are used to derive a synthetic epipolar depth prior through triangulation, which serves as a self-supervised depth regularizer. These geometric constraints facilitate the spatial optimization of 3D Gaussians and preserve scene structure in underwater environments. We also propose a depth-aware alpha adjustment that modulates the opacity of 3D Gaussians during early training based on their $z$-component and viewing direction, deterring the formation of medium-induced primitives. With our contributions, 3D Gaussians are disentangled from the scattering medium, enabling robust representation of object geometry and significantly reducing floating artifacts in reconstructed underwater scenes. Experiments on real-world underwater and simulated scenes demonstrate that OceanSplat substantially outperforms existing methods for both scene reconstruction and restoration in scattering media.
comment: Accepted to AAAI 2026. Project page: https://oceansplat.github.io
SparseLaneSTP: Leveraging Spatio-Temporal Priors with Sparse Transformers for 3D Lane Detection ICCV
3D lane detection has emerged as a critical challenge in autonomous driving, encompassing identification and localization of lane markings and the 3D road surface. Conventional 3D methods detect lanes from dense birds-eye-viewed (BEV) features, though erroneous transformations often result in a poor feature representation misaligned with the true 3D road surface. While recent sparse lane detectors have surpassed dense BEV approaches, they completely disregard valuable lane-specific priors. Furthermore, existing methods fail to utilize historic lane observations, which yield the potential to resolve ambiguities in situations of poor visibility. To address these challenges, we present SparseLaneSTP, a novel method that integrates both geometric properties of the lane structure and temporal information into a sparse lane transformer. It introduces a new lane-specific spatio-temporal attention mechanism, a continuous lane representation tailored for sparse architectures as well as temporal regularization. Identifying weaknesses of existing 3D lane datasets, we also introduce a precise and consistent 3D lane dataset using a simple yet effective auto-labeling strategy. Our experimental section proves the benefits of our contributions and demonstrates state-of-the-art performance across all detection and error metrics on existing 3D lane detection benchmarks as well as on our novel dataset.
comment: Published at IEEE/CVF International Conference on Computer Vision (ICCV) 2025
TEA: Temporal Adaptive Satellite Image Semantic Segmentation
Crop mapping based on satellite images time-series (SITS) holds substantial economic value in agricultural production settings, in which parcel segmentation is an essential step. Existing approaches have achieved notable advancements in SITS segmentation with predetermined sequence lengths. However, we found that these approaches overlooked the generalization capability of models across scenarios with varying temporal length, leading to markedly poor segmentation results in such cases. To address this issue, we propose TEA, a TEmporal Adaptive SITS semantic segmentation method to enhance the model's resilience under varying sequence lengths. We introduce a teacher model that encapsulates the global sequence knowledge to guide a student model with adaptive temporal input lengths. Specifically, teacher shapes the student's feature space via intermediate embedding, prototypes and soft label perspectives to realize knowledge transfer, while dynamically aggregating student model to mitigate knowledge forgetting. Finally, we introduce full-sequence reconstruction as an auxiliary task to further enhance the quality of representations across inputs of varying temporal lengths. Through extensive experiments, we demonstrate that our method brings remarkable improvements across inputs of different temporal lengths on common benchmarks. Our code will be publicly available.
comment: Under review. Code will be available at \href{https://github.com/KeplerKang/TEA}{this https URL}
Prototypicality Bias Reveals Blindspots in Multimodal Evaluation Metrics
Automatic metrics are now central to evaluating text-to-image models, often substituting for human judgment in benchmarking and large-scale filtering. However, it remains unclear whether these metrics truly prioritize semantic correctness or instead favor visually and socially prototypical images learned from biased data distributions. We identify and study \emph{prototypicality bias} as a systematic failure mode in multimodal evaluation. We introduce a controlled contrastive benchmark \textsc{\textbf{ProtoBias}} (\textit{\textbf{Proto}typical \textbf{Bias}}), spanning Animals, Objects, and Demography images, where semantically correct but non-prototypical images are paired with subtly incorrect yet prototypical adversarial counterparts. This setup enables a directional evaluation of whether metrics follow textual semantics or default to prototypes. Our results show that widely used metrics, including CLIPScore, PickScore, and VQA-based scores, frequently misrank these pairs, while even LLM-as-Judge systems exhibit uneven robustness in socially grounded cases. Human evaluations consistently favour semantic correctness with larger decision margins. Motivated by these findings, we propose \textbf{\textsc{ProtoScore}}, a robust 7B-parameter metric that substantially reduces failure rates and suppresses misranking, while running at orders of magnitude faster than the inference time of GPT-5, approaching the robustness of much larger closed-source judges.
comment: First version
Decentralized Privacy-Preserving Federal Learning of Computer Vision Models on Edge Devices
Collaborative training of a machine learning model comes with a risk of sharing sensitive or private data. Federated learning offers a way of collectively training a single global model without the need to share client data, by sharing only the updated parameters from each client's local model. A central server is then used to aggregate parameters from all clients and redistribute the aggregated model back to the clients. Recent findings have shown that even in this scenario, private data can be reconstructed only using information about model parameters. Current efforts to mitigate this are mainly focused on reducing privacy risks on the server side, assuming that other clients will not act maliciously. In this work, we analyzed various methods for improving the privacy of client data concerning both the server and other clients for neural networks. Some of these methods include homomorphic encryption, gradient compression, gradient noising, and discussion on possible usage of modified federated learning systems such as split learning, swarm learning or fully encrypted models. We have analyzed the negative effects of gradient compression and gradient noising on the accuracy of convolutional neural networks used for classification. We have shown the difficulty of data reconstruction in the case of segmentation networks. We have also implemented a proof of concept on the NVIDIA Jetson TX2 module used in edge devices and simulated a federated learning process.
comment: Accepted to VISAPP 2026 as Position Paper
Rotation-Robust Regression with Convolutional Model Trees
We study rotation-robust learning for image inputs using Convolutional Model Trees (CMTs) [1], whose split and leaf coefficients can be structured on the image grid and transformed geometrically at deployment time. In a controlled MNIST setting with a rotation-invariant regression target, we introduce three geometry-aware inductive biases for split directions -- convolutional smoothing, a tilt dominance constraint, and importance-based pruning -- and quantify their impact on robustness under in-plane rotations. We further evaluate a deployment-time orientation search that selects a discrete rotation maximizing a forest-level confidence proxy without updating model parameters. Orientation search improves robustness under severe rotations but can be harmful near the canonical orientation when confidence is misaligned with correctness. Finally, we observe consistent trends on MNIST digit recognition implemented as one-vs-rest regression, highlighting both the promise and limitations of confidence-based orientation selection for model-tree ensembles.
V-FAT: Benchmarking Visual Fidelity Against Text-bias
Recent advancements in Multimodal Large Language Models (MLLMs) have demonstrated impressive performance on standard visual reasoning benchmarks. However, there is growing concern that these models rely excessively on linguistic shortcuts rather than genuine visual grounding, a phenomenon we term Text Bias. In this paper, we investigate the fundamental tension between visual perception and linguistic priors. We decouple the sources of this bias into two dimensions: Internal Corpus Bias, stemming from statistical correlations in pretraining, and External Instruction Bias, arising from the alignment-induced tendency toward sycophancy. To quantify this effect, we introduce V-FAT (Visual Fidelity Against Text-bias), a diagnostic benchmark comprising 4,026 VQA instances across six semantic domains. V-FAT employs a Three-Level Evaluation Framework that systematically increases the conflict between visual evidence and textual information: (L1) internal bias from atypical images, (L2) external bias from misleading instructions, and (L3) synergistic bias where both coincide. We introduce the Visual Robustness Score (VRS), a metric designed to penalize "lucky" linguistic guesses and reward true visual fidelity. Our evaluation of 12 frontier MLLMs reveals that while models excel in existing benchmarks, they experience significant visual collapse under high linguistic dominance.
comment: 12 pages, 6 figures
Scaling Vision Language Models for Pharmaceutical Long Form Video Reasoning on Industrial GenAI Platform
Vision Language Models (VLMs) have shown strong performance on multimodal reasoning tasks, yet most evaluations focus on short videos and assume unconstrained computational resources. In industrial settings such as pharmaceutical content understanding, practitioners must process long-form videos under strict GPU, latency, and cost constraints, where many existing approaches fail to scale. In this work, we present an industrial GenAI framework that processes over 200,000 PDFs, 25,326 videos across eight formats (e.g., MP4, M4V, etc.), and 888 multilingual audio files in more than 20 languages. Our study makes three contributions: (i) an industrial large-scale architecture for multimodal reasoning in pharmaceutical domains; (ii) empirical analysis of over 40 VLMs on two leading benchmarks (Video-MME and MMBench) and proprietary dataset of 25,326 videos across 14 disease areas; and (iii) four findings relevant to long-form video reasoning: the role of multimodality, attention mechanism trade-offs, temporal reasoning limits, and challenges of video splitting under GPU constraints. Results show 3-8 times efficiency gains with SDPA attention on commodity GPUs, multimodality improving up to 8/12 task domains (especially length-dependent tasks), and clear bottlenecks in temporal alignment and keyframe detection across open- and closed-source VLMs. Rather than proposing a new "A+B" model, this paper characterizes practical limits, trade-offs, and failure patterns of current VLMs under realistic deployment constraints, and provide actionable guidance for both researchers and practitioners designing scalable multimodal systems for long-form video understanding in industrial domains.
comment: Submitted to the Industry Track of Top Tier Conference; currently under peer review
DivAS: Interactive 3D Segmentation of NeRFs via Depth-Weighted Voxel Aggregation
Existing methods for segmenting Neural Radiance Fields (NeRFs) are often optimization-based, requiring slow per-scene training that sacrifices the zero-shot capabilities of 2D foundation models. We introduce DivAS (Depth-interactive Voxel Aggregation Segmentation), an optimization-free, fully interactive framework that addresses these limitations. Our method operates via a fast GUI-based workflow where 2D SAM masks, generated from user point prompts, are refined using NeRF-derived depth priors to improve geometric accuracy and foreground-background separation. The core of our contribution is a custom CUDA kernel that aggregates these refined multi-view masks into a unified 3D voxel grid in under 200ms, enabling real-time visual feedback. This optimization-free design eliminates the need for per-scene training. Experiments on Mip-NeRF 360° and LLFF show that DivAS achieves segmentation quality comparable to optimization-based methods, while being 2-2.5x faster end-to-end, and up to an order of magnitude faster when excluding user prompting time.
Character Detection using YOLO for Writer Identification in multiple Medieval books
Paleography is the study of ancient and historical handwriting, its key objectives include the dating of manuscripts and understanding the evolution of writing. Estimating when a document was written and tracing the development of scripts and writing styles can be aided by identifying the individual scribes who contributed to a medieval manuscript. Although digital technologies have made significant progress in this field, the general problem remains unsolved and continues to pose open challenges. ... We previously proposed an approach focused on identifying specific letters or abbreviations that characterize each writer. In that study, we considered the letter "a", as it was widely present on all pages of text and highly distinctive, according to the suggestions of expert paleographers. We used template matching techniques to detect the occurrences of the character "a" on each page and the convolutional neural network (CNN) to attribute each instance to the correct scribe. Moving from the interesting results achieved from this previous system and being aware of the limitations of the template matching technique, which requires an appropriate threshold to work, we decided to experiment in the same framework with the use of the YOLO object detection model to identify the scribe who contributed to the writing of different medieval books. We considered the fifth version of YOLO to implement the YOLO object detection model, which completely substituted the template matching and CNN used in the previous work. The experimental results demonstrate that YOLO effectively extracts a greater number of letters considered, leading to a more accurate second-stage classification. Furthermore, the YOLO confidence score provides a foundation for developing a system that applies a rejection threshold, enabling reliable writer identification even in unseen manuscripts.
comment: 7 pages, 2 figures, 1 table. Accepted at IEEE-CH 2025
Illumination Angular Spectrum Encoding for Controlling the Functionality of Diffractive Networks
Diffractive neural networks have recently emerged as a promising framework for all-optical computing. However, these networks are typically trained for a single task, limiting their potential adoption in systems requiring multiple functionalities. Existing approaches to achieving multi-task functionality either modify the mechanical configuration of the network per task or use a different illumination wavelength or polarization state for each task. In this work, we propose a new control mechanism, which is based on the illumination's angular spectrum. Specifically, we shape the illumination using an amplitude mask that selectively controls its angular spectrum. We employ different illumination masks for achieving different network functionalities, so that the mask serves as a unique task encoder. Interestingly, we show that effective control can be achieved over a very narrow angular range, within the paraxial regime. We numerically illustrate the proposed approach by training a single diffractive network to perform multiple image-to-image translation tasks. In particular, we demonstrate translating handwritten digits into typeset digits of different values, and translating handwritten English letters into typeset numbers and typeset Greek letters, where the type of the output is determined by the illumination's angular components. As we show, the proposed framework can work under different coherence conditions, and can be combined with existing control strategies, such as different wavelengths. Our results establish the illumination angular spectrum as a powerful degree of freedom for controlling diffractive networks, enabling a scalable and versatile framework for multi-task all-optical computing.
comment: Project's code https://github.com/matankleiner/Angular-Spectrum-Encoding
SOVABench: A Vehicle Surveillance Action Retrieval Benchmark for Multimodal Large Language Models WACV
Automatic identification of events and recurrent behavior analysis are critical for video surveillance. However, most existing content-based video retrieval benchmarks focus on scene-level similarity and do not evaluate the action discrimination required in surveillance. To address this gap, we introduce SOVABench (Surveillance Opposite Vehicle Actions Benchmark), a real-world retrieval benchmark built from surveillance footage and centered on vehicle-related actions. SOVABench defines two evaluation protocols (inter-pair and intra-pair) to assess cross-action discrimination and temporal direction understanding. Although action distinctions are generally intuitive for human observers, our experiments show that they remain challenging for state-of-the-art vision and multimodal models. Leveraging the visual reasoning and instruction-following capabilities of Multimodal Large Language Models (MLLMs), we present a training-free framework for producing interpretable embeddings from MLLM-generated descriptions for both images and videos. The framework achieves strong performance on SOVABench as well as on several spatial and counting benchmarks where contrastive Vision-Language Models often fail. The code, annotations, and instructions to construct the benchmark are publicly available.
comment: This work has been accepted at Real World Surveillance: Applications and Challenges, 6th (in WACV Workshops)
Integrated Framework for Selecting and Enhancing Ancient Marathi Inscription Images from Stone, Metal Plate, and Paper Documents
Ancient script images often suffer from severe background noise, low contrast, and degradation caused by aging and environmental effects. In many cases, the foreground text and background exhibit similar visual characteristics, making the inscriptions difficult to read. The primary objective of image enhancement is to improve the readability of such degraded ancient images. This paper presents an image enhancement approach based on binarization and complementary preprocessing techniques for removing stains and enhancing unclear ancient text. The proposed methods are evaluated on different types of ancient scripts, including inscriptions on stone, metal plates, and historical documents. Experimental results show that the proposed approach achieves classification accuracies of 55.7%, 62%, and 65.6% for stone, metal plate, and document scripts, respectively, using the K-Nearest Neighbor (K-NN) classifier. Using the Support Vector Machine (SVM) classifier, accuracies of 53.2%, 59.5%, and 67.8% are obtained. The results demonstrate the effectiveness of the proposed enhancement method in improving the readability of ancient Marathi inscription images.
comment: 9 Pages, 5 figures
Detector-Augmented SAMURAI for Long-Duration Drone Tracking WACV 2026
Robust long-term tracking of drone is a critical requirement for modern surveillance systems, given their increasing threat potential. While detector-based approaches typically achieve strong frame-level accuracy, they often suffer from temporal inconsistencies caused by frequent detection dropouts. Despite its practical relevance, research on RGB-based drone tracking is still limited and largely reliant on conventional motion models. Meanwhile, foundation models like SAMURAI have established their effectiveness across other domains, exhibiting strong category-agnostic tracking performance. However, their applicability in drone-specific scenarios has not been investigated yet. Motivated by this gap, we present the first systematic evaluation of SAMURAI's potential for robust drone tracking in urban surveillance settings. Furthermore, we introduce a detector-augmented extension of SAMURAI to mitigate sensitivity to bounding-box initialization and sequence length. Our findings demonstrate that the proposed extension significantly improves robustness in complex urban environments, with pronounced benefits in long-duration sequences - especially under drone exit-re-entry events. The incorporation of detector cues yields consistent gains over SAMURAI's zero-shot performance across datasets and metrics, with success rate improvements of up to +0.393 and FNR reductions of up to -0.475.
comment: Accepted at the WACV 2026 Workshop on "Real World Surveillance: Applications and Challenges"
PyramidalWan: On Making Pretrained Video Model Pyramidal for Efficient Inference
Recently proposed pyramidal models decompose the conventional forward and backward diffusion processes into multiple stages operating at varying resolutions. These models handle inputs with higher noise levels at lower resolutions, while less noisy inputs are processed at higher resolutions. This hierarchical approach significantly reduces the computational cost of inference in multi-step denoising models. However, existing open-source pyramidal video models have been trained from scratch and tend to underperform compared to state-of-the-art systems in terms of visual plausibility. In this work, we present a pipeline that converts a pretrained diffusion model into a pyramidal one through low-cost finetuning, achieving this transformation without degradation in quality of output videos. Furthermore, we investigate and compare various strategies for step distillation within pyramidal models, aiming to further enhance the inference efficiency. Our results are available at https://qualcomm-ai-research.github.io/PyramidalWan.
Measurement-Consistent Langevin Corrector: A Remedy for Latent Diffusion Inverse Solvers
With recent advances in generative models, diffusion models have emerged as powerful priors for solving inverse problems in each domain. Since Latent Diffusion Models (LDMs) provide generic priors, several studies have explored their potential as domain-agnostic zero-shot inverse solvers. Despite these efforts, existing latent diffusion inverse solvers suffer from their instability, exhibiting undesirable artifacts and degraded quality. In this work, we first identify the instability as a discrepancy between the solver's and true reverse diffusion dynamics, and show that reducing this gap stabilizes the solver. Building on this, we introduce Measurement-Consistent Langevin Corrector (MCLC), a theoretically grounded plug-and-play correction module that remedies the LDM-based inverse solvers through measurement-consistent Langevin updates. Compared to prior approaches that rely on linear manifold assumptions, which often do not hold in latent space, MCLC operates without this assumption, leading to more stable and reliable behavior. We experimentally demonstrate the effectiveness of MCLC and its compatibility with existing solvers across diverse image restoration tasks. Additionally, we analyze blob artifacts and offer insights into their underlying causes. We highlight that MCLC is a key step toward more robust zero-shot inverse problem solvers.
comment: Under Review
SRU-Pix2Pix: A Fusion-Driven Generator Network for Medical Image Translation with Few-Shot Learning
Magnetic Resonance Imaging (MRI) provides detailed tissue information, but its clinical application is limited by long acquisition time, high cost, and restricted resolution. Image translation has recently gained attention as a strategy to address these limitations. Although Pix2Pix has been widely applied in medical image translation, its potential has not been fully explored. In this study, we propose an enhanced Pix2Pix framework that integrates Squeeze-and-Excitation Residual Networks (SEResNet) and U-Net++ to improve image generation quality and structural fidelity. SEResNet strengthens critical feature representation through channel attention, while U-Net++ enhances multi-scale feature fusion. A simplified PatchGAN discriminator further stabilizes training and refines local anatomical realism. Experimental results demonstrate that under few-shot conditions with fewer than 500 images, the proposed method achieves consistent structural fidelity and superior image quality across multiple intra-modality MRI translation tasks, showing strong generalization ability. These results suggest an effective extension of Pix2Pix for medical image translation.
Defocus Aberration Theory Confirms Gaussian Model in Most Imaging Devices
Over the past three decades, defocus has consistently provided groundbreaking depth information in scene images. However, accurately estimating depth from 2D images continues to be a persistent and fundamental challenge in the field of 3D recovery. Heuristic approaches involve with the ill-posed problem for inferring the spatial variant defocusing blur, as the desired blur cannot be distinguished from the inherent blur. Given a prior knowledge of the defocus model, the problem become well-posed with an analytic solution for the relative blur between two images, taken at the same viewpoint with different camera settings for the focus. The Gaussian model stands out as an optimal choice for real-time applications, due to its mathematical simplicity and computational efficiency. And theoretically, it is the only model can be applied at the same time to both the absolute blur caused by depth in a single image and the relative blur resulting from depth differences between two images. This paper introduces the settings, for conventional imaging devices, to ensure that the defocusing operator adheres to the Gaussian model. Defocus analysis begins within the framework of geometric optics and is conducted by defocus aberration theory in diffraction-limited optics to obtain the accuracy of fitting the actual model to its Gaussian approximation. The results for a typical set of focused depths between $1$ and $100$ meters, with a maximum depth variation of $10\%$ at the focused depth, confirm the Gaussian model's applicability for defocus operators in most imaging devices. The findings demonstrate a maximum Mean Absolute Error $(\!M\!A\!E)$ of less than $1\%$, underscoring the model's accuracy and reliability.
comment: 13 pages, 9 figures, 11 .jpg files
CounterVid: Counterfactual Video Generation for Mitigating Action and Temporal Hallucinations in Video-Language Models
Video-language models (VLMs) achieve strong multimodal understanding but remain prone to hallucinations, especially when reasoning about actions and temporal order. Existing mitigation strategies, such as textual filtering or random video perturbations, often fail to address the root cause: over-reliance on language priors rather than fine-grained visual dynamics. We propose a scalable framework for counterfactual video generation that synthesizes videos differing only in actions or temporal structure while preserving scene context. Our pipeline combines multimodal LLMs for action proposal and editing guidance with diffusion-based image and video models to generate semantic hard negatives at scale. Using this framework, we build CounterVid, a synthetic dataset of ~26k preference pairs targeting action recognition and temporal reasoning. We further introduce MixDPO, a unified Direct Preference Optimization approach that jointly leverages textual and visual preferences. Fine-tuning Qwen2.5-VL with MixDPO yields consistent improvements, notably in temporal ordering, and transfers effectively to standard video hallucination benchmarks. Code and models will be made publicly available.
GeM-VG: Towards Generalized Multi-image Visual Grounding with Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) have demonstrated impressive progress in single-image grounding and general multi-image understanding. Recently, some methods begin to address multi-image grounding. However, they are constrained by single-target localization and limited types of practical tasks, due to the lack of unified modeling for generalized grounding tasks. Therefore, we propose GeM-VG, an MLLM capable of Generalized Multi-image Visual Grounding. To support this, we systematically categorize and organize existing multi-image grounding tasks according to their reliance of cross-image cues and reasoning, and introduce the MG-Data-240K dataset, addressing the limitations of existing datasets regarding target quantity and image relation. To tackle the challenges of robustly handling diverse multi-image grounding tasks, we further propose a hybrid reinforcement finetuning strategy that integrates chain-of-thought (CoT) reasoning and direct answering, considering their complementary strengths. This strategy adopts an R1-like algorithm guided by a carefully designed rule-based reward, effectively enhancing the model's overall perception and reasoning capabilities. Extensive experiments demonstrate the superior generalized grounding capabilities of our model. For multi-image grounding, it outperforms the previous leading MLLMs by 2.0% and 9.7% on MIG-Bench and MC-Bench, respectively. In single-image grounding, it achieves a 9.1% improvement over the base model on ODINW. Furthermore, our model retains strong capabilities in general multi-image understanding.
Segmentation-Driven Monocular Shape from Polarization based on Physical Model
Monocular shape-from-polarization (SfP) leverages the intrinsic relationship between light polarization properties and surface geometry to recover surface normals from single-view polarized images, providing a compact and robust approach for three-dimensional (3D) reconstruction. Despite its potential, existing monocular SfP methods suffer from azimuth angle ambiguity, an inherent limitation of polarization analysis, that severely compromises reconstruction accuracy and stability. This paper introduces a novel segmentation-driven monocular SfP (SMSfP) framework that reformulates global shape recovery into a set of local reconstructions over adaptively segmented convex sub-regions. Specifically, a polarization-aided adaptive region growing (PARG) segmentation strategy is proposed to decompose the global convexity assumption into locally convex regions, effectively suppressing azimuth ambiguities and preserving surface continuity. Furthermore, a multi-scale fusion convexity prior (MFCP) constraint is developed to ensure local surface consistency and enhance the recovery of fine textural and structural details. Extensive experiments on both synthetic and real-world datasets validate the proposed approach, showing significant improvements in disambiguation accuracy and geometric fidelity compared with existing physics-based monocular SfP techniques.
comment: 11 pages, 10 figures, submittd to IEEE Transactions on Image Processing
ProFuse: Efficient Cross-View Context Fusion for Open-Vocabulary 3D Gaussian Splatting
We present ProFuse, an efficient context-aware framework for open-vocabulary 3D scene understanding with 3D Gaussian Splatting (3DGS). The pipeline enhances cross-view consistency and intra-mask cohesion within a direct registration setup, adding minimal overhead and requiring no render-supervised fine-tuning. Instead of relying on a pretrained 3DGS scene, we introduce a dense correspondence-guided pre-registration phase that initializes Gaussians with accurate geometry while jointly constructing 3D Context Proposals via cross-view clustering. Each proposal carries a global feature obtained through weighted aggregation of member embeddings, and this feature is fused onto Gaussians during direct registration to maintain per-primitive language coherence across views. With associations established in advance, semantic fusion requires no additional optimization beyond standard reconstruction, and the model retains geometric refinement without densification. ProFuse achieves strong open-vocabulary 3DGS understanding while completing semantic attachment in about five minutes per scene, which is two times faster than SOTA.
comment: 10 pages, 5 figures
Skeletonization-Based Adversarial Perturbations on Large Vision Language Model's Mathematical Text Recognition
This work explores the visual capabilities and limitations of foundation models by introducing a novel adversarial attack method utilizing skeletonization to reduce the search space effectively. Our approach specifically targets images containing text, particularly mathematical formula images, which are more challenging due to their LaTeX conversion and intricate structure. We conduct a detailed evaluation of both character and semantic changes between original and adversarially perturbed outputs to provide insights into the models' visual interpretation and reasoning abilities. The effectiveness of our method is further demonstrated through its application to ChatGPT, which shows its practical implications in real-world scenarios.
comment: accepted to ITC-CSCC 2025
AIVD: Adaptive Edge-Cloud Collaboration for Accurate and Efficient Industrial Visual Detection
Multimodal large language models (MLLMs) demonstrate exceptional capabilities in semantic understanding and visual reasoning, yet they still face challenges in precise object localization and resource-constrained edge-cloud deployment. To address this, this paper proposes the AIVD framework, which achieves unified precise localization and high-quality semantic generation through the collaboration between lightweight edge detectors and cloud-based MLLMs. To enhance the cloud MLLM's robustness against edge cropped-box noise and scenario variations, we design an efficient fine-tuning strategy with visual-semantic collaborative augmentation, significantly improving classification accuracy and semantic consistency. Furthermore, to maintain high throughput and low latency across heterogeneous edge devices and dynamic network conditions, we propose a heterogeneous resource-aware dynamic scheduling algorithm. Experimental results demonstrate that AIVD substantially reduces resource consumption while improving MLLM classification performance and semantic generation quality. The proposed scheduling strategy also achieves higher throughput and lower latency across diverse scenarios.
Training a Custom CNN on Five Heterogeneous Image Datasets
Deep learning has transformed visual data analysis, with Convolutional Neural Networks (CNNs) becoming highly effective in learning meaningful feature representations directly from images. Unlike traditional manual feature engineering methods, CNNs automatically extract hierarchical visual patterns, enabling strong performance across diverse real-world contexts. This study investigates the effectiveness of CNN-based architectures across five heterogeneous datasets spanning agricultural and urban domains: mango variety classification, paddy variety identification, road surface condition assessment, auto-rickshaw detection, and footpath encroachment monitoring. These datasets introduce varying challenges, including differences in illumination, resolution, environmental complexity, and class imbalance, necessitating adaptable and robust learning models. We evaluate a lightweight, task-specific custom CNN alongside established deep architectures, including ResNet-18 and VGG-16, trained both from scratch and using transfer learning. Through systematic preprocessing, augmentation, and controlled experimentation, we analyze how architectural complexity, model depth, and pre-training influence convergence, generalization, and performance across datasets of differing scale and difficulty. The key contributions of this work are: (1) the development of an efficient custom CNN that achieves competitive performance across multiple application domains, and (2) a comprehensive comparative analysis highlighting when transfer learning and deep architectures provide substantial advantages, particularly in data-constrained environments. These findings offer practical insights for deploying deep learning models in resource-limited yet high-impact real-world visual classification tasks.
On the Holistic Approach for Detecting Human Image Forgery
The rapid advancement of AI-generated content (AIGC) has escalated the threat of deepfakes, from facial manipulations to the synthesis of entire photorealistic human bodies. However, existing detection methods remain fragmented, specializing either in facial-region forgeries or full-body synthetic images, and consequently fail to generalize across the full spectrum of human image manipulations. We introduce HuForDet, a holistic framework for human image forgery detection, which features a dual-branch architecture comprising: (1) a face forgery detection branch that employs heterogeneous experts operating in both RGB and frequency domains, including an adaptive Laplacian-of-Gaussian (LoG) module designed to capture artifacts ranging from fine-grained blending boundaries to coarse-scale texture irregularities; and (2) a contextualized forgery detection branch that leverages a Multi-Modal Large Language Model (MLLM) to analyze full-body semantic consistency, enhanced with a confidence estimation mechanism that dynamically weights its contribution during feature fusion. We curate a human image forgery (HuFor) dataset that unifies existing face forgery data with a new corpus of full-body synthetic humans. Extensive experiments show that our HuForDet achieves state-of-the-art forgery detection performance and superior robustness across diverse human image forgeries.
comment: 6 figures, 5 tables
Forge-and-Quench: Enhancing Image Generation for Higher Fidelity in Unified Multimodal Models
Integrating image generation and understanding into a single framework has become a pivotal goal in the multimodal domain. However, how understanding can effectively assist generation has not been fully explored. Unlike previous works that focus on leveraging reasoning abilities and world knowledge from understanding models, this paper introduces a novel perspective: leveraging understanding to enhance the fidelity and detail richness of generated images. To this end, we propose Forge-and-Quench, a new unified framework that puts this principle into practice. In the generation process of our framework, an MLLM first reasons over the entire conversational context, including text instructions, to produce an enhanced text instruction. This refined instruction is then mapped to a virtual visual representation, termed the Bridge Feature, via a novel Bridge Adapter. This feature acts as a crucial link, forging insights from the understanding model to quench and refine the generation process. It is subsequently injected into the T2I backbone as a visual guidance signal, alongside the enhanced text instruction that replaces the original input. To validate this paradigm, we conduct comprehensive studies on the design of the Bridge Feature and Bridge Adapter. Our framework demonstrates exceptional extensibility and flexibility, enabling efficient migration across different MLLM and T2I models with significant savings in training overhead, all without compromising the MLLM's inherent multimodal understanding capabilities. Experiments show that Forge-and-Quench significantly improves image fidelity and detail across multiple models, while also maintaining instruction-following accuracy and enhancing world knowledge application. Models and codes are available at https://github.com/YanbingZeng/Forge-and-Quench.
See, Explain, and Intervene: A Few-Shot Multimodal Agent Framework for Hateful Meme Moderation
In this work, we examine hateful memes from three complementary angles - how to detect them, how to explain their content and how to intervene them prior to being posted - by applying a range of strategies built on top of generative AI models. To the best of our knowledge, explanation and intervention have typically been studied separately from detection, which does not reflect real-world conditions. Further, since curating large annotated datasets for meme moderation is prohibitively expensive, we propose a novel framework that leverages task-specific generative multimodal agents and the few-shot adaptability of large multimodal models to cater to different types of memes. We believe this is the first work focused on generalizable hateful meme moderation under limited data conditions, and has strong potential for deployment in real-world production scenarios. Warning: Contains potentially toxic contents.
WebCryptoAgent: Agentic Crypto Trading with Web Informatics
Cryptocurrency trading increasingly depends on timely integration of heterogeneous web information and market microstructure signals to support short-horizon decision making under extreme volatility. However, existing trading systems struggle to jointly reason over noisy multi-source web evidence while maintaining robustness to rapid price shocks at sub-second timescales. The first challenge lies in synthesizing unstructured web content, social sentiment, and structured OHLCV signals into coherent and interpretable trading decisions without amplifying spurious correlations, while the second challenge concerns risk control, as slow deliberative reasoning pipelines are ill-suited for handling abrupt market shocks that require immediate defensive responses. To address these challenges, we propose WebCryptoAgent, an agentic trading framework that decomposes web-informed decision making into modality-specific agents and consolidates their outputs into a unified evidence document for confidence-calibrated reasoning. We further introduce a decoupled control architecture that separates strategic hourly reasoning from a real-time second-level risk model, enabling fast shock detection and protective intervention independent of the trading loop. Extensive experiments on real-world cryptocurrency markets demonstrate that WebCryptoAgent improves trading stability, reduces spurious activity, and enhances tail-risk handling compared to existing baselines. Code will be available at https://github.com/AIGeeksGroup/WebCryptoAgent.
HATIR: Heat-Aware Diffusion for Turbulent Infrared Video Super-Resolution
Infrared video has been of great interest in visual tasks under challenging environments, but often suffers from severe atmospheric turbulence and compression degradation. Existing video super-resolution (VSR) methods either neglect the inherent modality gap between infrared and visible images or fail to restore turbulence-induced distortions. Directly cascading turbulence mitigation (TM) algorithms with VSR methods leads to error propagation and accumulation due to the decoupled modeling of degradation between turbulence and resolution. We introduce HATIR, a Heat-Aware Diffusion for Turbulent InfraRed Video Super-Resolution, which injects heat-aware deformation priors into the diffusion sampling path to jointly model the inverse process of turbulent degradation and structural detail loss. Specifically, HATIR constructs a Phasor-Guided Flow Estimator, rooted in the physical principle that thermally active regions exhibit consistent phasor responses over time, enabling reliable turbulence-aware flow to guide the reverse diffusion process. To ensure the fidelity of structural recovery under nonuniform distortions, a Turbulence-Aware Decoder is proposed to selectively suppress unstable temporal cues and enhance edge-aware feature aggregation via turbulence gating and structure-aware attention. We built FLIR-IVSR, the first dataset for turbulent infrared VSR, comprising paired LR-HR sequences from a FLIR T1050sc camera (1024 X 768) spanning 640 diverse scenes with varying camera and object motion conditions. This encourages future research in infrared VSR. Project page: https://github.com/JZ0606/HATIR
DB-MSMUNet:Dual Branch Multi-scale Mamba UNet for Pancreatic CT Scans Segmentation
Accurate segmentation of the pancreas and its lesions in CT scans is crucial for the precise diagnosis and treatment of pancreatic cancer. However, it remains a highly challenging task due to several factors such as low tissue contrast with surrounding organs, blurry anatomical boundaries, irregular organ shapes, and the small size of lesions. To tackle these issues, we propose DB-MSMUNet (Dual-Branch Multi-scale Mamba UNet), a novel encoder-decoder architecture designed specifically for robust pancreatic segmentation. The encoder is constructed using a Multi-scale Mamba Module (MSMM), which combines deformable convolutions and multi-scale state space modeling to enhance both global context modeling and local deformation adaptation. The network employs a dual-decoder design: the edge decoder introduces an Edge Enhancement Path (EEP) to explicitly capture boundary cues and refine fuzzy contours, while the area decoder incorporates a Multi-layer Decoder (MLD) to preserve fine-grained details and accurately reconstruct small lesions by leveraging multi-scale deep semantic features. Furthermore, Auxiliary Deep Supervision (ADS) heads are added at multiple scales to both decoders, providing more accurate gradient feedback and further enhancing the discriminative capability of multi-scale features. We conduct extensive experiments on three datasets: the NIH Pancreas dataset, the MSD dataset, and a clinical pancreatic tumor dataset provided by collaborating hospitals. DB-MSMUNet achieves Dice Similarity Coefficients of 89.47%, 87.59%, and 89.02%, respectively, outperforming most existing state-of-the-art methods in terms of segmentation accuracy, edge preservation, and robustness across different datasets. These results demonstrate the effectiveness and generalizability of the proposed method for real-world pancreatic CT segmentation tasks.
Agri-R1: Empowering Generalizable Agricultural Reasoning in Vision-Language Models with Reinforcement Learning
Agricultural disease diagnosis challenges VLMs, as conventional fine-tuning requires extensive labels, lacks interpretability, and generalizes poorly. While reasoning improves model robustness, existing methods rely on costly expert annotations and rarely address the open-ended, diverse nature of agricultural queries. To address these limitations, we propose \textbf{Agri-R1}, a reasoning-enhanced large model for agriculture. Our framework automates high-quality reasoning data generation via vision-language synthesis and LLM-based filtering, using only 19\% of available samples. Training employs Group Relative Policy Optimization (GRPO) with a novel proposed reward function that integrates domain-specific lexicons and fuzzy matching to assess both correctness and linguistic flexibility in open-ended responses. Evaluated on CDDMBench, our resulting 3B-parameter model achieves performance competitive with 7B- to 13B-parameter baselines, showing a +23.2\% relative gain in disease recognition accuracy, +33.3\% in agricultural knowledge QA, and a +26.10-point improvement in cross-domain generalization over standard fine-tuning. Ablation studies confirm that the synergy between structured reasoning data and GRPO-driven exploration underpins these gains, with benefits scaling as question complexity increases.
comment: This paper is submitted for review to ACL 2026. It is 17 pages long and includes 5 figures. The corresponding authors are Tao Fang and Lina Lu
HyperAlign: Hyperbolic Entailment Cones for Adaptive Text-to-Image Alignment Assessment
With the rapid development of text-to-image generation technology, accurately assessing the alignment between generated images and text prompts has become a critical challenge. Existing methods rely on Euclidean space metrics, neglecting the structured nature of semantic alignment, while lacking adaptive capabilities for different samples. To address these limitations, we propose HyperAlign, an adaptive text-to-image alignment assessment framework based on hyperbolic entailment geometry. First, we extract Euclidean features using CLIP and map them to hyperbolic space. Second, we design a dynamic-supervision entailment modeling mechanism that transforms discrete entailment logic into continuous geometric structure supervision. Finally, we propose an adaptive modulation regressor that utilizes hyperbolic geometric features to generate sample-level modulation parameters, adaptively calibrating Euclidean cosine similarity to predict the final score. HyperAlign achieves highly competitive performance on both single database evaluation and cross-database generalization tasks, fully validating the effectiveness of hyperbolic geometric modeling for image-text alignment assessment.
HUR-MACL: High-Uncertainty Region-Guided Multi-Architecture Collaborative Learning for Head and Neck Multi-Organ Segmentation
Accurate segmentation of organs at risk in the head and neck is essential for radiation therapy, yet deep learning models often fail on small, complexly shaped organs. While hybrid architectures that combine different models show promise, they typically just concatenate features without exploiting the unique strengths of each component. This results in functional overlap and limited segmentation accuracy. To address these issues, we propose a high uncertainty region-guided multi-architecture collaborative learning (HUR-MACL) model for multi-organ segmentation in the head and neck. This model adaptively identifies high uncertainty regions using a convolutional neural network, and for these regions, Vision Mamba as well as Deformable CNN are utilized to jointly improve their segmentation accuracy. Additionally, a heterogeneous feature distillation loss was proposed to promote collaborative learning between the two architectures in high uncertainty regions to further enhance performance. Our method achieves SOTA results on two public datasets and one private dataset.
Detection of Deployment Operational Deviations for Safety and Security of AI-Enabled Human-Centric Cyber Physical Systems
In recent years, Human-centric cyber-physical systems have increasingly involved artificial intelligence to enable knowledge extraction from sensor-collected data. Examples include medical monitoring and control systems, as well as autonomous cars. Such systems are intended to operate according to the protocols and guidelines for regular system operations. However, in many scenarios, such as closed-loop blood glucose control for Type 1 diabetics, self-driving cars, and monitoring systems for stroke diagnosis. The operations of such AI-enabled human-centric applications can expose them to cases for which their operational mode may be uncertain, for instance, resulting from the interactions with a human with the system. Such cases, in which the system is in uncertain conditions, can violate the system's safety and security requirements. This paper will discuss operational deviations that can lead these systems to operate in unknown conditions. We will then create a framework to evaluate different strategies for ensuring the safety and security of AI-enabled human-centric cyber-physical systems in operation deployment. Then, as an example, we show a personalized image-based novel technique for detecting the non-announcement of meals in closed-loop blood glucose control for Type 1 diabetics.
MiLDEdit: Reasoning-Based Multi-Layer Design Document Editing
Real-world design documents (e.g., posters) are inherently multi-layered, combining decoration, text, and images. Editing them from natural-language instructions requires fine-grained, layer-aware reasoning to identify relevant layers and coordinate modifications. Prior work largely overlooks multi-layer design document editing, focusing instead on single-layer image editing or multi-layer generation, which assume a flat canvas and lack the reasoning needed to determine what and where to modify. To address this gap, we introduce the Multi-Layer Document Editing Agent (MiLDEAgent), a reasoning-based framework that combines an RL-trained multimodal reasoner for layer-wise understanding with an image editor for targeted modifications. To systematically benchmark this setting, we introduce the MiLDEBench, a human-in-the-loop corpus of over 20K design documents paired with diverse editing instructions. The benchmark is complemented by a task-specific evaluation protocol, MiLDEEval, which spans four dimensions including instruction following, layout consistency, aesthetics, and text rendering. Extensive experiments on 14 open-source and 2 closed-source models reveal that existing approaches fail to generalize: open-source models often cannot complete multi-layer document editing tasks, while closed-source models suffer from format violations. In contrast, MiLDEAgent achieves strong layer-aware reasoning and precise editing, significantly outperforming all open-source baselines and attaining performance comparable to closed-source models, thereby establishing the first strong baseline for multi-layer document editing.
3D Conditional Image Synthesis of Left Atrial LGE MRI from Composite Semantic Masks
Segmentation of the left atrial (LA) wall and endocardium from late gadolinium-enhanced (LGE) MRI is essential for quantifying atrial fibrosis in patients with atrial fibrillation. The development of accurate machine learning-based segmentation models remains challenging due to the limited availability of data and the complexity of anatomical structures. In this work, we investigate 3D conditional generative models as potential solution for augmenting scarce LGE training data and improving LA segmentation performance. We develop a pipeline to synthesize high-fidelity 3D LGE MRI volumes from composite semantic label maps combining anatomical expert annotations with unsupervised tissue clusters, using three 3D conditional generators (Pix2Pix GAN, SPADE-GAN, and SPADE-LDM). The synthetic images are evaluated for realism and their impact on downstream LA segmentation. SPADE-LDM generates the most realistic and structurally accurate images, achieving an FID of 4.063 and surpassing GAN models, which have FIDs of 40.821 and 7.652 for Pix2Pix and SPADE-GAN, respectively. When augmented with synthetic LGE images, the Dice score for LA cavity segmentation with a 3D U-Net model improved from 0.908 to 0.936, showing a statistically significant improvement (p < 0.05) over the baseline.These findings demonstrate the potential of label-conditioned 3D synthesis to enhance the segmentation of under-represented cardiac structures.
comment: This work has been published in the Proceedings of the 2025 IEEE International Conference on Imaging Systems and Techniques (IST). The final published version is available via IEEE Xplore
All Changes May Have Invariant Principles: Improving Ever-Shifting Harmful Meme Detection via Design Concept Reproduction
Harmful memes are ever-shifting in the Internet communities, which are difficult to analyze due to their type-shifting and temporal-evolving nature. Although these memes are shifting, we find that different memes may share invariant principles, i.e., the underlying design concept of malicious users, which can help us analyze why these memes are harmful. In this paper, we propose RepMD, an ever-shifting harmful meme detection method based on the design concept reproduction. We first refer to the attack tree to define the Design Concept Graph (DCG), which describes steps that people may take to design a harmful meme. Then, we derive the DCG from historical memes with design step reproduction and graph pruning. Finally, we use DCG to guide the Multimodal Large Language Model (MLLM) to detect harmful memes. The evaluation results show that RepMD achieves the highest accuracy with 81.1% and has slight accuracy decreases when generalized to type-shifting and temporal-evolving memes. Human evaluation shows that RepMD can improve the efficiency of human discovery on harmful memes, with 15$\sim$30 seconds per meme.
comment: 18 pages, 11 figures
A Vision for Multisensory Intelligence: Sensing, Synergy, and Science
Our experience of the world is multisensory, spanning a synthesis of language, sight, sound, touch, taste, and smell. Yet, artificial intelligence has primarily advanced in digital modalities like text, vision, and audio. This paper outlines a research vision for multisensory artificial intelligence over the next decade. This new set of technologies can change how humans and AI experience and interact with one another, by connecting AI to the human senses and a rich spectrum of signals from physiological and tactile cues on the body, to physical and social signals in homes, cities, and the environment. We outline how this field must advance through three interrelated themes of sensing, science, and synergy. Firstly, research in sensing should extend how AI captures the world in richer ways beyond the digital medium. Secondly, developing a principled science for quantifying multimodal heterogeneity and interactions, developing unified modeling architectures and representations, and understanding cross-modal transfer. Finally, we present new technical challenges to learn synergy between modalities and between humans and AI, covering multisensory integration, alignment, reasoning, generation, generalization, and experience. Accompanying this vision paper are a series of projects, resources, and demos of latest advances from the Multisensory Intelligence group at the MIT Media Lab, see https://mit-mi.github.io/.
FaceRefiner: High-Fidelity Facial Texture Refinement with Differentiable Rendering-based Style Transfer
Recent facial texture generation methods prefer to use deep networks to synthesize image content and then fill in the UV map, thus generating a compelling full texture from a single image. Nevertheless, the synthesized texture UV map usually comes from a space constructed by the training data or the 2D face generator, which limits the methods' generalization ability for in-the-wild input images. Consequently, their facial details, structures and identity may not be consistent with the input. In this paper, we address this issue by proposing a style transfer-based facial texture refinement method named FaceRefiner. FaceRefiner treats the 3D sampled texture as style and the output of a texture generation method as content. The photo-realistic style is then expected to be transferred from the style image to the content image. Different from current style transfer methods that only transfer high and middle level information to the result, our style transfer method integrates differentiable rendering to also transfer low level (or pixel level) information in the visible face regions. The main benefit of such multi-level information transfer is that, the details, structures and semantics in the input can thus be well preserved. The extensive experiments on Multi-PIE, CelebA and FFHQ datasets demonstrate that our refinement method can improve the texture quality and the face identity preserving ability, compared with state-of-the-arts.
comment: Accepted by IEEE Transactions on Multimedia
TokenSeg: Efficient 3D Medical Image Segmentation via Hierarchical Visual Token Compression
Three-dimensional medical image segmentation is a fundamental yet computationally demanding task due to the cubic growth of voxel processing and the redundant computation on homogeneous regions. To address these limitations, we propose \textbf{TokenSeg}, a boundary-aware sparse token representation framework for efficient 3D medical volume segmentation. Specifically, (1) we design a \emph{multi-scale hierarchical encoder} that extracts 400 candidate tokens across four resolution levels to capture both global anatomical context and fine boundary details; (2) we introduce a \emph{boundary-aware tokenizer} that combines VQ-VAE quantization with importance scoring to select 100 salient tokens, over 60\% of which lie near tumor boundaries; and (3) we develop a \emph{sparse-to-dense decoder} that reconstructs full-resolution masks through token reprojection, progressive upsampling, and skip connections. Extensive experiments on a 3D breast DCE-MRI dataset comprising 960 cases demonstrate that TokenSeg achieves state-of-the-art performance with 94.49\% Dice and 89.61\% IoU, while reducing GPU memory and inference latency by 64\% and 68\%, respectively. To verify the generalization capability, our evaluations on MSD cardiac and brain MRI benchmark datasets demonstrate that TokenSeg consistently delivers optimal performance across heterogeneous anatomical structures. These results highlight the effectiveness of anatomically informed sparse representation for accurate and efficient 3D medical image segmentation.
Towards Spatio-Temporal Extrapolation of Phase-Field Simulations with Convolution-Only Neural Networks
Phase-field simulations of liquid metal dealloying (LMD) can capture complex microstructural evolutions but can be prohibitively expensive for large domains and long time horizons. In this paper, we introduce a fully convolutional, conditionally parameterized U-Net surrogate designed to extrapolate far beyond its training data in both space and time. The architecture integrates convolutional self-attention, physically informed padding, and a flood-fill corrector method to maintain accuracy under extreme extrapolation, while conditioning on simulation parameters allows for flexible time-step skipping and adaptation to varying alloy compositions. To remove the need for costly solver-based initialization, we couple the surrogate with a conditional diffusion model that generates synthetic, physically consistent initial conditions. We train our surrogate on simulations generated over small domain sizes and short time spans, but, by taking advantage of the convolutional nature of U-Nets, we are able to run and extrapolate surrogate simulations for longer time horizons than what would be achievable with classic numerical solvers. Across multiple alloy compositions, the framework is able to reproduce the LMD physics accurately. It predicts key quantities of interest and spatial statistics with relative errors typically below 5% in the training regime and under 15% during large-scale, long time-horizon extrapolations. Our framework can also deliver speed-ups of up to 36,000 times, bringing the time to run weeks-long simulations down to a few seconds. This work is a first stepping stone towards high-fidelity extrapolation in both space and time of phase-field simulation for LMD.
IGenBench: Benchmarking the Reliability of Text-to-Infographic Generation
Infographics are composite visual artifacts that combine data visualizations with textual and illustrative elements to communicate information. While recent text-to-image (T2I) models can generate aesthetically appealing images, their reliability in generating infographics remains unclear. Generated infographics may appear correct at first glance but contain easily overlooked issues, such as distorted data encoding or incorrect textual content. We present IGENBENCH, the first benchmark for evaluating the reliability of text-to-infographic generation, comprising 600 curated test cases spanning 30 infographic types. We design an automated evaluation framework that decomposes reliability verification into atomic yes/no questions based on a taxonomy of 10 question types. We employ multimodal large language models (MLLMs) to verify each question, yielding question-level accuracy (Q-ACC) and infographic-level accuracy (I-ACC). We comprehensively evaluate 10 state-of-the-art T2I models on IGENBENCH. Our systematic analysis reveals key insights for future model development: (i) a three-tier performance hierarchy with the top model achieving Q-ACC of 0.90 but I-ACC of only 0.49; (ii) data-related dimensions emerging as universal bottlenecks (e.g., Data Completeness: 0.21); and (iii) the challenge of achieving end-to-end correctness across all models. We release IGENBENCH at https://igen-bench.vercel.app/.
Vision-Language Agents for Interactive Forest Change Analysis
Modern forest monitoring workflows increasingly benefit from the growing availability of high-resolution satellite imagery and advances in deep learning. Two persistent challenges in this context are accurate pixel-level change detection and meaningful semantic change captioning for complex forest dynamics. While large language models (LLMs) are being adapted for interactive data exploration, their integration with vision-language models (VLMs) for remote sensing image change interpretation (RSICI) remains underexplored. To address this gap, we introduce an LLM-driven agent for integrated forest change analysis that supports natural language querying across multiple RSICI tasks. The proposed system builds upon a multi-level change interpretation (MCI) vision-language backbone with LLM-based orchestration. To facilitate adaptation and evaluation in forest environments, we further introduce the Forest-Change dataset, which comprises bi-temporal satellite imagery, pixel-level change masks, and multi-granularity semantic change captions generated using a combination of human annotation and rule-based methods. Experimental results show that the proposed system achieves mIoU and BLEU-4 scores of 67.10% and 40.17% on the Forest-Change dataset, and 88.13% and 34.41% on LEVIR-MCI-Trees, a tree-focused subset of LEVIR-MCI benchmark for joint change detection and captioning. These results highlight the potential of interactive, LLM-driven RSICI systems to improve accessibility, interpretability, and efficiency of forest change analysis. All data and code are publicly available at https://github.com/JamesBrockUoB/ForestChat.
comment: 5 pages, 4 figures, Submitted to IGARSS 2026
Thinking with Map: Reinforced Parallel Map-Augmented Agent for Geolocalization
The image geolocalization task aims to predict the location where an image was taken anywhere on Earth using visual clues. Existing large vision-language model (LVLM) approaches leverage world knowledge, chain-of-thought reasoning, and agentic capabilities, but overlook a common strategy used by humans -- using maps. In this work, we first equip the model \textit{Thinking with Map} ability and formulate it as an agent-in-the-map loop. We develop a two-stage optimization scheme for it, including agentic reinforcement learning (RL) followed by parallel test-time scaling (TTS). The RL strengthens the agentic capability of model to improve sampling efficiency, and the parallel TTS enables the model to explore multiple candidate paths before making the final prediction, which is crucial for geolocalization. To evaluate our method on up-to-date and in-the-wild images, we further present MAPBench, a comprehensive geolocalization training and evaluation benchmark composed entirely of real-world images. Experimental results show that our method outperforms existing open- and closed-source models on most metrics, specifically improving Acc@500m from 8.0\% to 22.1\% compared to \textit{Gemini-3-Pro} with Google Search/Map grounded mode.
Multi-task Cross-modal Learning for Chest X-ray Image Retrieval
CLIP and BiomedCLIP are examples of vision-language foundation models and offer strong cross-modal embeddings; however, they are not optimized for fine-grained medical retrieval tasks, such as retrieving clinically relevant radiology reports using chest X-ray (CXR) image queries. To address this shortcoming, we propose a multi-task learning framework to fine-tune BiomedCLIP and evaluate improvements to CXR image-text retrieval. Using BiomedCLIP as the backbone, we incorporate a lightweight MLP projector head trained with a multi-task composite loss function that includes: (1) a binary cross-entropy loss to distinguish normal from abnormal CXR studies, (2) a supervised contrastive loss to reinforce intra-class consistency, and (3) a CLIP loss to maintain cross-modal alignment. Experimental results demonstrate that the fine-tuned model achieves more balanced and clinically meaningful performance across both image-to-text and text-to-image retrieval tasks compared to the pretrained BiomedCLIP and general-purpose CLIP models. Furthermore, t-SNE visualizations reveal clearer semantic clustering of normal and abnormal cases, demonstrating the model's enhanced diagnostic sensitivity. These findings highlight the value of domain-adaptive, multi-task learning for advancing cross-modal retrieval in biomedical applications.
Sketch&Patch++: Efficient Structure-Aware 3D Gaussian Representation
We observe that Gaussians exhibit distinct roles and characteristics analogous to traditional artistic techniques -- like how artists first sketch outlines before filling in broader areas with color, some Gaussians capture high-frequency features such as edges and contours, while others represent broader, smoother regions analogous to brush strokes that add volume and depth. Based on this observation, we propose a hybrid representation that categorizes Gaussians into (i) Sketch Gaussians, which represent high-frequency, boundary-defining features, and (ii) Patch Gaussians, which cover low-frequency, smooth regions. This semantic separation naturally enables layered progressive streaming, where the compact Sketch Gaussians establish the structural skeleton before Patch Gaussians incrementally refine volumetric detail. In this work, we extend our previous method to arbitrary 3D scenes by proposing a novel hierarchical adaptive categorization framework that operates directly on the 3DGS representation. Our approach employs multi-criteria density-based clustering, combined with adaptive quality-driven refinement. This method eliminates dependency on external 3D line primitives while ensuring optimal parametric encoding effectiveness. Our comprehensive evaluation across diverse scenes, including both man-made and natural environments, demonstrates that our method achieves up to 1.74 dB improvement in PSNR, 6.7% in SSIM, and 41.4% in LPIPS at equivalent model sizes compared to uniform pruning baselines. For indoor scenes, our method can maintain visual quality with only 0.5\% of the original model size. This structure-aware representation enables efficient storage, adaptive streaming, and rendering of high-fidelity 3D content across bandwidth-constrained networks and resource-limited devices.
EdgeLDR: Quaternion Low-Displacement Rank Neural Networks for Edge-Efficient Deep Learning
Deploying deep neural networks on edge devices is often limited by the memory traffic and compute cost of dense linear operators. While quaternion neural networks improve parameter efficiency by coupling multiple channels through Hamilton products, they typically retain unstructured dense weights; conversely, structured matrices enable fast computation but are usually applied in the real domain. This paper introduces EdgeLDR, a practical framework for quaternion block-circulant linear and convolutional layers that combines quaternion channel mixing with block-circulant parameter structure and enables FFT-based evaluation through the complex adjoint representation. We present reference implementations of EdgeLDR layers and compare FFT-based computation against a naive spatial-domain realization of quaternion circulant products. FFT evaluation yields large empirical speedups over the naive implementation and keeps latency stable as block size increases, making larger compression factors computationally viable. We further integrate EdgeLDR layers into compact CNN and Transformer backbones and evaluate accuracy-compression trade-offs on 32x32 RGB classification (CIFAR-10/100, SVHN) and hyperspectral image classification (Houston 2013, Pavia University), reporting parameter counts and CPU/GPU latency. The results show that EdgeLDR layers provide significant compression with competitive accuracy.
Ensemble of radiomics and ConvNeXt for breast cancer diagnosis
Early diagnosis of breast cancer is crucial for improving survival rates. Radiomics and deep learning (DL) have shown significant potential in assisting radiologists with early cancer detection. This paper aims to critically assess the performance of radiomics, DL, and ensemble techniques in detecting cancer from screening mammograms. Two independent datasets were used: the RSNA 2023 Breast Cancer Detection Challenge (11,913 patients) and a Mexican cohort from the TecSalud dataset (19,400 patients). The ConvNeXtV1-small DL model was trained on the RSNA dataset and validated on the TecSalud dataset, while radiomics models were developed using the TecSalud dataset and validated with a leave-one-year-out approach. The ensemble method consistently combined and calibrated predictions using the same methodology. Results showed that the ensemble approach achieved the highest area under the curve (AUC) of 0.87, compared to 0.83 for ConvNeXtV1-small and 0.80 for radiomics. In conclusion, ensemble methods combining DL and radiomics predictions significantly enhance breast cancer diagnosis from mammograms.
comment: Accepted and presented at the IEEE International Symposium on Computer-Based Medical Systems (CBMS) 2025
MOSAIC-GS: Monocular Scene Reconstruction via Advanced Initialization for Complex Dynamic Environments
We present MOSAIC-GS, a novel, fully explicit, and computationally efficient approach for high-fidelity dynamic scene reconstruction from monocular videos using Gaussian Splatting. Monocular reconstruction is inherently ill-posed due to the lack of sufficient multiview constraints, making accurate recovery of object geometry and temporal coherence particularly challenging. To address this, we leverage multiple geometric cues, such as depth, optical flow, dynamic object segmentation, and point tracking. Combined with rigidity-based motion constraints, these cues allow us to estimate preliminary 3D scene dynamics during an initialization stage. Recovering scene dynamics prior to the photometric optimization reduces reliance on motion inference from visual appearance alone, which is often ambiguous in monocular settings. To enable compact representations, fast training, and real-time rendering while supporting non-rigid deformations, the scene is decomposed into static and dynamic components. Each Gaussian in the dynamic part of the scene is assigned a trajectory represented as time-dependent Poly-Fourier curve for parameter-efficient motion encoding. We demonstrate that MOSAIC-GS achieves substantially faster optimization and rendering compared to existing methods, while maintaining reconstruction quality on par with state-of-the-art approaches across standard monocular dynamic scene benchmarks.
STResNet & STYOLO : A New Family of Compact Classification and Object Detection Models for MCUs
Recent advancements in lightweight neural networks have significantly improved the efficiency of deploying deep learning models on edge hardware. However, most existing architectures still trade accuracy for latency, which limits their applicability on microcontroller and neural processing unit based devices. In this work, we introduce two new model families, STResNet for image classification and STYOLO for object detection, jointly optimized for accuracy, efficiency, and memory footprint on resource constrained platforms. The proposed STResNet series, ranging from Nano to Tiny variants, achieves competitive ImageNet 1K accuracy within a four million parameter budget. Specifically, STResNetMilli attains 70.0 percent Top 1 accuracy with only three million parameters, outperforming MobileNetV1 and ShuffleNetV2 at comparable computational complexity. For object detection, STYOLOMicro and STYOLOMilli achieve 30.5 percent and 33.6 percent mean average precision, respectively, on the MS COCO dataset, surpassing YOLOv5n and YOLOX Nano in both accuracy and efficiency. Furthermore, when STResNetMilli is used as a backbone with the Ultralytics training environment.
comment: 9 pages, 1 figure
Coding the Visual World: From Image to Simulation Using Vision Language Models
The ability to construct mental models of the world is a central aspect of understanding. Similarly, visual understanding can be viewed as the ability to construct a representative model of the system depicted in an image. This work explores the capacity of Vision Language Models (VLMs) to recognize and simulate the systems and mechanisms depicted in images using the Im2Sim methodology. The VLM is given a natural image of a real-world system (e.g., cities, clouds, vegetation) and is tasked with describing the system and writing code that simulates and generates it. This generative code is then executed to produce a synthetic image, which is compared against the original. This approach is tested on various complex emergent systems, ranging from physical systems (waves, lights, clouds) to vegetation, cities, materials, and geological formations. Through analysis of the models and images generated by the VLMs, we examine their understanding of the systems in images. The results show that leading VLMs (GPT, Gemini) demonstrate the capacity to understand and model complex, multi-component systems across multiple layers of abstraction and a wide range of domains. At the same time, the VLMs exhibit limited ability to replicate fine details and low-level arrangements of patterns in the image. These findings reveal an interesting asymmetry: VLMs combine high-level, deep visual understanding of images with limited perception of fine details.
Bi-Orthogonal Factor Decomposition for Vision Transformers
Self-attention is the central computational primitive of Vision Transformers, yet we lack a principled understanding of what information attention mechanisms exchange between tokens. Attention maps describe where weight mass concentrates; they do not reveal whether queries and keys trade position, content, or both. We introduce Bi-orthogonal Factor Decomposition (BFD), a two-stage analytical framework: first, an ANOVA-based decomposition statistically disentangles token activations into orthogonal positional and content factors; second, SVD of the query-key interaction matrix QK^T exposes bi-orthogonal modes that reveal how these factors mediate communication. After validating proper isolation of position and content, we apply BFD to state-of-the-art vision models and uncover three phenomena.(i) Attention operates primarily through content. Content-content interactions dominate attention energy, followed by content-position coupling. DINOv2 allocates more energy to content-position than supervised models and distributes computation across a richer mode spectrum. (ii) Attention mechanisms exhibit specialization: heads differentiate into content-content, content-position, and position-position operators, while singular modes within heads show analogous specialization. (iii) DINOv2's superior holistic shape processing emerges from intermediate layers that simultaneously preserve positional structure while contextually enriching semantic content. Overall, BFD exposes how tokens interact through attention and which informational factors - positional or semantic - mediate their communication, yielding practical insights into vision transformer mechanisms.
Leveraging Clinical Text and Class Conditioning for 3D Prostate MRI Generation
Objective: Latent diffusion models (LDM) could alleviate data scarcity challenges affecting machine learning development for medical imaging. However, medical LDM strategies typically rely on short-prompt text encoders, nonmedical LDMs, or large data volumes. These strategies can limit performance and scientific accessibility. We propose a novel LDM conditioning approach to address these limitations. Methods: We propose Class-Conditioned Efficient Large Language model Adapter (CCELLA), a novel dual-head conditioning approach that simultaneously conditions the LDM U-Net with free-text clinical reports and radiology classification. We also propose a data-efficient LDM pipeline centered around CCELLA and a proposed joint loss function. We first evaluate our method on 3D prostate MRI against state-of-the-art. We then augment a downstream classifier model training dataset with synthetic images from our method. Results: Our method achieves a 3D FID score of 0.025 on a size-limited 3D prostate MRI dataset, significantly outperforming a recent foundation model with FID 0.070. When training a classifier for prostate cancer prediction, adding synthetic images generated by our method during training improves classifier accuracy from 69% to 74% and outperforms classifiers trained on images generated by prior state-of-the-art. Classifier training solely on our method's synthetic images achieved comparable performance to real image training. Conclusion: We show that our method improved both synthetic image quality and downstream classifier performance using limited data and minimal human annotation. Significance: The proposed CCELLA-centric pipeline enables radiology report and class-conditioned LDM training for high-quality medical image synthesis given limited data volume and human data annotation, improving LDM performance and scientific accessibility.
comment: Accepted for publication in IEEE Transactions on Biomedical Engineering, 2025. This is the accepted author version. The final published version is available at https://doi.org/10.1109/TBME.2025.3648426
Extended OpenTT Games Dataset: A table tennis dataset for fine-grained shot type and point outcome
Automatically detecting and classifying strokes in table tennis video can streamline training workflows, enrich broadcast overlays, and enable fine-grained performance analytics. For this to be possible, annotated video data of table tennis is needed. We extend the public OpenTTGames dataset with highly detailed, frame-accurate shot type annotations (forehand, backhand with subtypes), player posture labels (body lean and leg stance), and rally outcome tags at point end. OpenTTGames is a set of recordings from the side of the table with official labels for bounces, when the ball is above the net, or hitting the net. The dataset already contains ball coordinates near events, which are either "bounce", "net", or "empty_event" in the original OpenTTGames dataset, and semantic masks (humans, table, scoreboard). Our extension adds the types of stroke to the events and a per-player taxonomy so models can move beyond event spotting toward tactical understanding (e.g., whether a stroke is likely to win the point or set up an advantage). We provide a compact coding scheme and code-assisted labeling procedure to support reproducible annotations and baselines for fine-grained stroke understanding in racket sports. This fills a practical gap in the community, where many prior video resources are either not publicly released or carry restrictive/unclear licenses that hinder reuse and benchmarking. Our annotations are released under the same CC BY-NC-SA 4.0 license as OpenTTGames, allowing free non-commercial use, modification, and redistribution, with appropriate attribution.
comment: Thomas Martini Jørgensen and Emil Hovad contributed equally and share last authorship
MVT: Mask-Grounded Vision-Language Models for Taxonomy-Aligned Land-Cover Tagging
Land-cover understanding in remote sensing increasingly demands class-agnostic systems that generalize across datasets while remaining spatially precise and interpretable. We study a geometry-first discovery-and-interpretation setting under domain shift, where candidate regions are delineated class-agnostically and supervision avoids lexical class names via anonymized identifiers. Complementary to open-set recognition and open-world learning, we focus on coupling class-agnostic mask evidence with taxonomy-grounded scene interpretation, rather than unknown rejection or continual class expansion. We propose MVT, a three-stage framework that (i) extracts boundary-faithful region masks using SAM2 with domain adaptation, (ii) performs mask-grounded semantic tagging and scene description generation via dual-step LoRA fine-tuning of multimodal LLMs, and (iii) evaluates outputs with LLM-as-judge scoring calibrated by stratified expert ratings. On cross-dataset segmentation transfer (train on OpenEarthMap, evaluate on LoveDA), domain-adapted SAM2 improves mask quality; meanwhile, dual-step MLLM fine-tuning yields more accurate taxonomy-aligned tags and more informative mask-grounded scene descriptions.
comment: The project is available at https://charlescsyyy.github.io/MVT
Spontaneous emergence of linguistic statistical laws in images via artificial neural networks
As a core element of culture, images transform perception into structured representations and undergo evolution similar to natural languages. Given that visual input accounts for 60% of human sensory experience, it is natural to ask whether images follow statistical regularities similar to those in linguistic systems. Guided by symbol-grounding theory, which posits that meaningful symbols originate from perception, we treat images as vision-centric artifacts and employ pre-trained neural networks to model visual processing. By detecting kernel activations and extracting pixels, we obtain text-like units, which reveal that these image-derived representations adhere to statistical laws such as Zipf's, Heaps', and Benford's laws, analogous to linguistic data. Notably, these statistical regularities emerge spontaneously, without the need for explicit symbols or hybrid architectures. Our results indicate that connectionist networks can automatically develop structured, quasi-symbolic units through perceptual processing alone, suggesting that text- and symbol-like properties can naturally emerge from neural networks and providing a novel perspective for interpretation.
comment: 10 figures
FALCONEye: Finding Answers and Localizing Content in ONE-hour-long videos with multi-modal LLMs
Finding information in hour-long videos is a challenging task even for top-performing Vision Language Models (VLMs), as encoding visual content quickly exceeds available context windows. To tackle this challenge, we present FALCONEye, a novel video agent based on a training-free, model-agnostic meta-architecture composed of a VLM and a Large Language Model (LLM). FALCONEye answers open-ended questions using an exploration-based search algorithm guided by calibrated confidence from the VLM's answers. We also introduce the FALCON-Bench benchmark, extending Question Answering problem to Video Answer Search-requiring models to return both the answer and its supporting temporal window for open-ended questions in hour-long videos. With just a 7B VLM and a lightweight LLM, FALCONEye outscores all open-source 7B VLMs and comparable agents in FALCON-Bench. It further demonstrates its generalization capability in MLVU benchmark with shorter videos and different tasks, surpassing GPT-4o on single-detail tasks while slashing inference cost by roughly an order of magnitude.
POLYCHARTQA: Benchmarking Large Vision-Language Models with Multilingual Chart Question Answering
Charts are a universally adopted medium for data communication, yet existing chart understanding benchmarks are overwhelmingly English-centric, limiting their accessibility and relevance to global audiences. To address this limitation, we introduce PolyChartQA, the first large-scale multilingual benchmark for chart question answering, comprising 22,606 charts and 26,151 QA pairs across 10 diverse languages. PolyChartQA is constructed through a scalable pipeline that enables efficient multilingual chart generation via data translation and code reuse, supported by LLM-based translation and rigorous quality control. We systematically evaluate multilingual chart understanding with PolyChartQA on state-of-the-art LVLMs and reveal a significant performance gap between English and other languages, particularly low-resource ones. Additionally, we introduce a companion multilingual chart question answering training set, PolyChartQA-Train, on which fine-tuning LVLMs yields substantial gains in multilingual chart understanding across diverse model sizes and architectures. Together, our benchmark provides a foundation for developing globally inclusive vision-language models capable of understanding charts across diverse linguistic contexts.
comment: Work in Progress
BOP-Distrib: Revisiting 6D Pose Estimation Benchmarks for Better Evaluation under Visual Ambiguities
6D pose estimation aims at determining the object pose that best explains the camera observation. The unique solution for non-ambiguous objects can turn into a multi-modal pose distribution for symmetrical objects or when occlusions of symmetry-breaking elements happen, depending on the viewpoint. Currently, 6D pose estimation methods are benchmarked on datasets that consider, for their ground truth annotations, visual ambiguities as only related to global object symmetries, whereas they should be defined per-image to account for the camera viewpoint. We thus first propose an automatic method to re-annotate those datasets with a 6D pose distribution specific to each image, taking into account the object surface visibility in the image to correctly determine the visual ambiguities. Second, given this improved ground truth, we re-evaluate the state-of-the-art single pose methods and show that this greatly modifies the ranking of these methods. Third, as some recent works focus on estimating the complete set of solutions, we derive a precision/recall formulation to evaluate them against our image-wise distribution ground truth, making it the first benchmark for pose distribution methods on real images.
MT-Video-Bench: A Holistic Video Understanding Benchmark for Evaluating Multimodal LLMs in Multi-Turn Dialogues
The recent development of Multimodal Large Language Models (MLLMs) has significantly advanced AI's ability to understand visual modalities. However, existing evaluation benchmarks remain limited to single-turn question answering, overlooking the complexity of multi-turn dialogues in real-world scenarios. To bridge this gap, we introduce MT-Video-Bench, a holistic video understanding benchmark for evaluating MLLMs in multi-turn dialogues. Specifically, our MT-Video-Bench mainly assesses 6 core competencies that focus on perceptivity and interactivity, encompassing 1,000 meticulously curated multi-turn dialogues from diverse domains. These capabilities are rigorously aligned with real-world applications, such as interactive sports analysis and multi-turn video-based intelligent tutoring. With MT-Video-Bench, we extensively evaluate various state-of-the-art open-source and closed-source MLLMs, revealing their significant performance discrepancies and limitations in handling multi-turn video dialogues. The benchmark will be publicly available to foster future research.
comment: Project Website: https://github.com/NJU-LINK/MT-Video-Bench
Full segmentation annotations of 3D time-lapse microscopy images of MDA231 cells
High-quality, publicly available segmentation annotations of image and video datasets are critical for advancing the field of image processing. In particular, annotations of volumetric images of a large number of targets are time-consuming and challenging. In (Melnikova, A., & Matula, P., 2025), we presented the first publicly available full 3D time-lapse segmentation annotations of migrating cells with complex dynamic shapes. Concretely, three distinct humans annotated two sequences of MDA231 human breast carcinoma cells (Fluo-C3DL-MDA231) from the Cell Tracking Challenge (CTC). This paper aims to provide a comprehensive description of the dataset and accompanying experiments that were not included in (Melnikova, A., & Matula, P., 2025) due to limitations in publication space. Namely, we show that the created annotations are consistent with the previously published tracking markers provided by the CTC organizers and the segmentation accuracy measured based on the 2D gold truth of CTC is within the inter-annotator variability margins. We compared the created 3D annotations with automatically created silver truth provided by CTC. We have found the proposed annotations better represent the complexity of the input images. The presented annotations can be used for testing and training cell segmentation, or analyzing 3D shapes of highly dynamic objects.
comment: 6 pages, 2 figures, 4 tables
Clinically-Validated Innovative Mobile Application for Assessing Blinking and Eyelid Movements
Blinking is a vital physiological process that protects and maintains the health of the ocular surface. Objective assessment of eyelid movements remains challenging due to the complexity, cost, and limited clinical applicability of existing tools. This study presents the Bapp (Blink Application), a mobile application developed using the Flutter framework and integrated with Google ML Kit for on-device, real-time analysis of eyelid movements, and its clinical validation. The validation was performed using 45 videos from patients, whose blinks were manually annotated by an ophthalmology specialist as the ground truth. The Bapp's performance was evaluated using standard metrics, with results demonstrating 98.4% precision, 96.9% recall, and an overall accuracy of 98.3%. These outcomes confirm the reliability of the Bapp as a portable, accessible, and objective tool for monitoring eyelid movements. The application offers a promising alternative to traditional manual blink counting, supporting continuous ocular health monitoring and postoperative evaluation in clinical environments.
comment: 20 pages, 13 figures
NASTaR: NovaSAR Automated Ship Target Recognition Dataset
Synthetic Aperture Radar (SAR) offers a unique capability for all-weather, space-based maritime activity monitoring by capturing and imaging strong reflections from ships at sea. A well-defined challenge in this domain is ship type classification. Due to the high diversity and complexity of ship types, accurate recognition is difficult and typically requires specialized deep learning models. These models, however, depend on large, high-quality ground-truth datasets to achieve robust performance and generalization. Furthermore, the growing variety of SAR satellites operating at different frequencies and spatial resolutions has amplified the need for more annotated datasets to enhance model accuracy. To address this, we present the NovaSAR Automated Ship Target Recognition (NASTaR) dataset. This dataset comprises of 3415 ship patches extracted from NovaSAR S-band imagery, with labels matched to AIS data. It includes distinctive features such as 23 unique classes, inshore/offshore separation, and an auxiliary wake dataset for patches where ship wakes are visible. We validated the dataset applicability across prominent ship-type classification scenarios using benchmark deep learning models. Results demonstrate over 60% accuracy for classifying four major ship types, over 70% for a three-class scenario, more than 75% for distinguishing cargo from tanker ships, and over 87% for identifying fishing vessels. The NASTaR dataset is available at https://doi.org/10.5523/bris.2tfa6x37oerz2lyiw6hp47058, while relevant codes for benchmarking and analysis are available at https://github.com/benyaminhosseiny/nastar.
Is Contrastive Distillation Enough for Learning Comprehensive 3D Representations?
Cross-modal contrastive distillation has recently been explored for learning effective 3D representations. However, existing methods focus primarily on modality-shared features, neglecting the modality-specific features during the pre-training process, which leads to suboptimal representations. In this paper, we theoretically analyze the limitations of current contrastive methods for 3D representation learning and propose a new framework, namely CMCR (Cross-Modal Comprehensive Representation Learning), to address these shortcomings. Our approach improves upon traditional methods by better integrating both modality-shared and modality-specific features. Specifically, we introduce masked image modeling and occupancy estimation tasks to guide the network in learning more comprehensive modality-specific features. Furthermore, we propose a novel multi-modal unified codebook that learns an embedding space shared across different modalities. Besides, we introduce geometry-enhanced masked image modeling to further boost 3D representation learning. Extensive experiments demonstrate that our method mitigates the challenges faced by traditional approaches and consistently outperforms existing image-to-LiDAR contrastive distillation methods in downstream tasks. Code will be available at https://github.com/Eaphan/CMCR.
comment: 22 pages, 10 figures
BlurDM: A Blur Diffusion Model for Image Deblurring NeurIPS 2025
Diffusion models show promise for dynamic scene deblurring; however, existing studies often fail to leverage the intrinsic nature of the blurring process within diffusion models, limiting their full potential. To address it, we present a Blur Diffusion Model (BlurDM), which seamlessly integrates the blur formation process into diffusion for image deblurring. Observing that motion blur stems from continuous exposure, BlurDM implicitly models the blur formation process through a dual-diffusion forward scheme, diffusing both noise and blur onto a sharp image. During the reverse generation process, we derive a dual denoising and deblurring formulation, enabling BlurDM to recover the sharp image by simultaneously denoising and deblurring, given pure Gaussian noise conditioned on the blurred image as input. Additionally, to efficiently integrate BlurDM into deblurring networks, we perform BlurDM in the latent space, forming a flexible prior generation network for deblurring. Extensive experiments demonstrate that BlurDM significantly and consistently enhances existing deblurring methods on four benchmark datasets. The project page is available at https://jin-ting-he.github.io/BlurDM/.
comment: NeurIPS 2025. Project Page: https://jin-ting-he.github.io/BlurDM/
Novel View Synthesis using DDIM Inversion
Synthesizing novel views from a single input image is a challenging task. It requires extrapolating the 3D structure of a scene while inferring details in occluded regions, and maintaining geometric consistency across viewpoints. Many existing methods must fine-tune large diffusion backbones using multiple views or train a diffusion model from scratch, which is extremely expensive. Additionally, they suffer from blurry reconstruction and poor generalization. This gap presents the opportunity to explore an explicit lightweight view translation framework that can directly utilize the high-fidelity generative capabilities of a pretrained diffusion model while reconstructing a scene from a novel view. Given the DDIM-inverted latent of a single input image, we employ a camera pose-conditioned translation U-Net, TUNet, to predict the inverted latent corresponding to the desired target view. However, the image sampled using the predicted latent may result in a blurry reconstruction. To this end, we propose a novel fusion strategy that exploits the inherent noise correlation structure observed in DDIM inversion. The proposed fusion strategy helps preserve the texture and fine-grained details. To synthesize the novel view, we use the fused latent as the initial condition for DDIM sampling, leveraging the generative prior of the pretrained diffusion model. Extensive experiments on MVImgNet demonstrate that our method outperforms existing methods.
Single Image Reflection Separation via Dual Prior Interaction Transformer
Single image reflection separation aims to separate the transmission and reflection layers from a mixed image. Existing methods typically combine general priors from pre-trained models with task-specific priors such as text prompts and reflection detection. However, the transmission prior, as the most direct task-specific prior for the target transmission layer, has not been effectively modeled or fully utilized, limiting performance in complex scenarios. To address this issue, we propose a dual-prior interaction framework based on lightweight transmission prior generation and effective prior fusion. First, we design a Local Linear Correction Network (LLCN) that finetunes pre-trained models based on the physical constraint T=SI+B, where S and B represent pixel-wise and channel-wise scaling and bias transformations. LLCN efficiently generates high-quality transmission priors with minimal parameters. Second, we construct a Dual-Prior Interaction Transformer (DPIT) that employs a dual-stream channel reorganization attention mechanism. By reorganizing features from general and transmission priors for attention computation, DPIT achieves deep fusion of both priors, fully exploiting their complementary information. Experimental results on multiple benchmark datasets demonstrate that the proposed method achieves state-of-the-art performance.
Cognitive-Hierarchy Guided End-to-End Planning for Autonomous Driving
While end-to-end autonomous driving has advanced significantly, prevailing methods remain fundamentally misaligned with human cognitive principles in both perception and planning. In this paper, we propose CogAD, a novel end-to-end autonomous driving model that emulates the hierarchical cognition mechanisms of human drivers. CogAD implements dual hierarchical mechanisms: global-to-local context processing for human-like perception and intent-conditioned multi-mode trajectory generation for cognitively-inspired planning. The proposed method demonstrates three principal advantages: comprehensive environmental understanding through hierarchical perception, robust planning exploration enabled by multi-level planning, and diverse yet reasonable multi-modal trajectory generation facilitated by dual-level uncertainty modeling. Extensive experiments on nuScenes and Bench2Drive demonstrate that CogAD achieves state-of-the-art performance in end-to-end planning, exhibiting particular superiority in long-tail scenarios and robust generalization to complex real-world driving conditions.
Two-Stream Thermal Imaging Fusion for Enhanced Time of Birth Detection in Neonatal Care
Around 10% of newborns require some help to initiate breathing, and 5\% need ventilation assistance. Accurate Time of Birth (ToB) documentation is essential for optimizing neonatal care, as timely interventions are vital for proper resuscitation. However, current clinical methods for recording ToB often rely on manual processes, which can be prone to inaccuracies. In this study, we present a novel two-stream fusion system that combines the power of image and video analysis to accurately detect the ToB from thermal recordings in the delivery room and operating theater. By integrating static and dynamic streams, our approach captures richer birth-related spatiotemporal features, leading to more robust and precise ToB estimation. We demonstrate that this synergy between data modalities enhances performance over single-stream approaches. Our system achieves 95.7% precision and 84.8% recall in detecting birth within short video clips. Additionally, with the help of a score aggregation module, it successfully identifies ToB in 100% of test cases, with a median absolute error of 2 seconds and an absolute mean deviation of 4.5 seconds compared to manual annotations.
comment: This work has been accepted at IEEE 25th International Conference on Digital Signal Processing
UniCorn: Towards Self-Improving Unified Multimodal Models through Self-Generated Supervision
While Unified Multimodal Models (UMMs) have achieved remarkable success in cross-modal comprehension, a significant gap persists in their ability to leverage such internal knowledge for high-quality generation. We formalize this discrepancy as Conduction Aphasia, a phenomenon where models accurately interpret multimodal inputs but struggle to translate that understanding into faithful and controllable synthesis. To address this, we propose UniCorn, a simple yet elegant self-improvement framework that eliminates the need for external data or teacher supervision. By partitioning a single UMM into three collaborative roles: Proposer, Solver, and Judge, UniCorn generates high-quality interactions via self-play and employs cognitive pattern reconstruction to distill latent understanding into explicit generative signals. To validate the restoration of multimodal coherence, we introduce UniCycle, a cycle-consistency benchmark based on a Text to Image to Text reconstruction loop. Extensive experiments demonstrate that UniCorn achieves comprehensive and substantial improvements over the base model across six general image generation benchmarks. Notably, it achieves SOTA performance on TIIF(73.8), DPG(86.8), CompBench(88.5), and UniCycle while further delivering substantial gains of +5.0 on WISE and +6.5 on OneIG. These results highlight that our method significantly enhances T2I generation while maintaining robust comprehension, demonstrating the scalability of fully self-supervised refinement for unified multimodal intelligence.
Agentic Retoucher for Text-To-Image Generation
Text-to-image (T2I) diffusion models such as SDXL and FLUX have achieved impressive photorealism, yet small-scale distortions remain pervasive in limbs, face, text and so on. Existing refinement approaches either perform costly iterative re-generation or rely on vision-language models (VLMs) with weak spatial grounding, leading to semantic drift and unreliable local edits. To close this gap, we propose Agentic Retoucher, a hierarchical decision-driven framework that reformulates post-generation correction as a human-like perception-reasoning-action loop. Specifically, we design (1) a perception agent that learns contextual saliency for fine-grained distortion localization under text-image consistency cues, (2) a reasoning agent that performs human-aligned inferential diagnosis via progressive preference alignment, and (3) an action agent that adaptively plans localized inpainting guided by user preference. This design integrates perceptual evidence, linguistic reasoning, and controllable correction into a unified, self-corrective decision process. To enable fine-grained supervision and quantitative evaluation, we further construct GenBlemish-27K, a dataset of 6K T2I images with 27K annotated artifact regions across 12 categories. Extensive experiments demonstrate that Agentic Retoucher consistently outperforms state-of-the-art methods in perceptual quality, distortion localization and human preference alignment, establishing a new paradigm for self-corrective and perceptually reliable T2I generation.
Crafting Adversarial Inputs for Large Vision-Language Models Using Black-Box Optimization
Recent advancements in Large Vision-Language Models (LVLMs) have shown groundbreaking capabilities across diverse multimodal tasks. However, these models remain vulnerable to adversarial jailbreak attacks, where adversaries craft subtle perturbations to bypass safety mechanisms and trigger harmful outputs. Existing white-box attacks methods require full model accessibility, suffer from computing costs and exhibit insufficient adversarial transferability, making them impractical for real-world, black-box settings. To address these limitations, we propose a black-box jailbreak attack on LVLMs via Zeroth-Order optimization using Simultaneous Perturbation Stochastic Approximation (ZO-SPSA). ZO-SPSA provides three key advantages: (i) gradient-free approximation by input-output interactions without requiring model knowledge, (ii) model-agnostic optimization without the surrogate model and (iii) lower resource requirements with reduced GPU memory consumption. We evaluate ZO-SPSA on three LVLMs, including InstructBLIP, LLaVA and MiniGPT-4, achieving the highest jailbreak success rate of 83.0% on InstructBLIP, while maintaining imperceptible perturbations comparable to white-box methods. Moreover, adversarial examples generated from MiniGPT-4 exhibit strong transferability to other LVLMs, with ASR reaching 64.18%. These findings underscore the real-world feasibility of black-box jailbreaks and expose critical weaknesses in the safety mechanisms of current LVLMs
comment: EACL
CHIMERA: Adaptive Cache Injection and Semantic Anchor Prompting for Zero-shot Image Morphing with Morphing-oriented Metrics
Diffusion models exhibit remarkable generative ability, yet achieving smooth and semantically consistent image morphing remains a challenge. Existing approaches often yield abrupt transitions or over-saturated appearances due to the lack of adaptive structural and semantic alignments. We propose CHIMERA, a zero-shot diffusion-based framework that formulates morphing as a cached inversion-guided denoising process. To handle large semantic and appearance disparities, we propose Adaptive Cache Injection and Semantic Anchor Prompting. Adaptive Cache Injection (ACI) caches down, mid, and up blocks features from both inputs during DDIM inversion and re-injects them adaptively during denoising, enabling spatial and semantic alignment in depth- and time-adaptive manners and enabling natural feature fusion and smooth transitions. Semantic Anchor Prompting (SAP) leverages a vision-language model to generate a shared anchor prompt that serves as a semantic anchor, bridging dissimilar inputs and guiding the denoising process toward coherent results. Finally, we introduce the Global-Local Consistency Score (GLCS), a morphing-oriented metric that simultaneously evaluates the global harmonization of the two inputs and the smoothness of the local morphing transition. Extensive experiments and user studies show that CHIMERA achieves smoother and more semantically aligned transitions than existing methods, establishing a new state of the art in image morphing. The code and project page will be publicly released.
comment: Please visit our project page at https://cmlab-korea.github.io/CHIMERA/
Automated Invoice Data Extraction: Using LLM and OCR
Conventional Optical Character Recognition (OCR) systems are challenged by variant invoice layouts, handwritten text, and low-quality scans, which are often caused by strong template dependencies that restrict their flexibility across different document structures and layouts. Newer solutions utilize advanced deep learning models such as Convolutional Neural Networks (CNN) as well as Transformers, and domain-specific models for better layout analysis and accuracy across various sections over varied document types. Large Language Models (LLMs) have revolutionized extraction pipelines at their core with sophisticated entity recognition and semantic comprehension to support complex contextual relationship mapping without direct programming specification. Visual Named Entity Recognition (NER) capabilities permit extraction from invoice images with greater contextual sensitivity and much higher accuracy rates than older approaches. Existing industry best practices utilize hybrid architectures that blend OCR technology and LLM for maximum scalability and minimal human intervention. This work introduces a holistic Artificial Intelligence (AI) platform combining OCR, deep learning, LLMs, and graph analytics to achieve unprecedented extraction quality and consistency.
comment: 10 pages, 3 figures
Boosting HDR Image Reconstruction via Semantic Knowledge Transfer
Recovering High Dynamic Range (HDR) images from multiple Standard Dynamic Range (SDR) images become challenging when the SDR images exhibit noticeable degradation and missing content. Leveraging scene-specific semantic priors offers a promising solution for restoring heavily degraded regions. However, these priors are typically extracted from sRGB SDR images, the domain/format gap poses a significant challenge when applying it to HDR imaging. To address this issue, we propose a general framework that transfers semantic knowledge derived from SDR domain via self-distillation to boost existing HDR reconstruction. Specifically, the proposed framework first introduces the Semantic Priors Guided Reconstruction Model (SPGRM), which leverages SDR image semantic knowledge to address ill-posed problems in the initial HDR reconstruction results. Subsequently, we leverage a self-distillation mechanism that constrains the color and content information with semantic knowledge, aligning the external outputs between the baseline and SPGRM. Furthermore, to transfer the semantic knowledge of the internal features, we utilize a Semantic Knowledge Alignment Module (SKAM) to fill the missing semantic contents with the complementary masks. Extensive experiments demonstrate that our framework significantly boosts HDR imaging quality for existing methods without altering the network architecture.
CaTFormer: Causal Temporal Transformer with Dynamic Contextual Fusion for Driving Intention Prediction AAAI 2026
Accurate prediction of driving intention is key to enhancing the safety and interactive efficiency of human-machine co-driving systems. It serves as a cornerstone for achieving high-level autonomous driving. However, current approaches remain inadequate for accurately modeling the complex spatiotemporal interdependencies and the unpredictable variability of human driving behavior. To address these challenges, we propose CaTFormer, a causal Temporal Transformer that explicitly models causal interactions between driver behavior and environmental context for robust intention prediction. Specifically, CaTFormer introduces a novel Reciprocal Delayed Fusion (RDF) mechanism for precise temporal alignment of interior and exterior feature streams, a Counterfactual Residual Encoding (CRE) module that systematically eliminates spurious correlations to reveal authentic causal dependencies, and an innovative Feature Synthesis Network (FSN) that adaptively synthesizes these purified representations into coherent temporal representations. Experimental results demonstrate that CaTFormer attains state-of-the-art performance on the Brain4Cars dataset. It effectively captures complex causal temporal dependencies and enhances both the accuracy and transparency of driving intention prediction.
comment: Accepted at AAAI 2026
SynDroneVision: A Synthetic Dataset for Image-Based Drone Detection
Developing robust drone detection systems is often constrained by the limited availability of large-scale annotated training data and the high costs associated with real-world data collection. However, leveraging synthetic data generated via game engine-based simulations provides a promising and cost-effective solution to overcome this issue. Therefore, we present SynDroneVision, a synthetic dataset specifically designed for RGB-based drone detection in surveillance applications. Featuring diverse backgrounds, lighting conditions, and drone models, SynDroneVision offers a comprehensive training foundation for deep learning algorithms. To evaluate the dataset's effectiveness, we perform a comparative analysis across a selection of recent YOLO detection models. Our findings demonstrate that SynDroneVision is a valuable resource for real-world data enrichment, achieving notable enhancements in model performance and robustness, while significantly reducing the time and costs of real-world data acquisition. SynDroneVision will be publicly released upon paper acceptance.
MM-Sonate: Multimodal Controllable Audio-Video Generation with Zero-Shot Voice Cloning
Joint audio-video generation aims to synthesize synchronized multisensory content, yet current unified models struggle with fine-grained acoustic control, particularly for identity-preserving speech. Existing approaches either suffer from temporal misalignment due to cascaded generation or lack the capability to perform zero-shot voice cloning within a joint synthesis framework. In this work, we present MM-Sonate, a multimodal flow-matching framework that unifies controllable audio-video joint generation with zero-shot voice cloning capabilities. Unlike prior works that rely on coarse semantic descriptions, MM-Sonate utilizes a unified instruction-phoneme input to enforce strict linguistic and temporal alignment. To enable zero-shot voice cloning, we introduce a timbre injection mechanism that effectively decouples speaker identity from linguistic content. Furthermore, addressing the limitations of standard classifier-free guidance in multimodal settings, we propose a noise-based negative conditioning strategy that utilizes natural noise priors to significantly enhance acoustic fidelity. Empirical evaluations demonstrate that MM-Sonate establishes new state-of-the-art performance in joint generation benchmarks, significantly outperforming baselines in lip synchronization and speech intelligibility, while achieving voice cloning fidelity comparable to specialized Text-to-Speech systems.
Visual Merit or Linguistic Crutch? A Close Look at DeepSeek-OCR
DeepSeek-OCR utilizes an optical 2D mapping approach to achieve high-ratio vision-text compression, claiming to decode text tokens exceeding ten times the input visual tokens. While this suggests a promising solution for the LLM long-context bottleneck, we investigate a critical question: "Visual merit or linguistic crutch - which drives DeepSeek-OCR's performance?" By employing sentence-level and word-level semantic corruption, we isolate the model's intrinsic OCR capabilities from its language priors. Results demonstrate that without linguistic support, DeepSeek-OCR's performance plummets from approximately 90% to 20%. Comparative benchmarking against 13 baseline models reveals that traditional pipeline OCR methods exhibit significantly higher robustness to such semantic perturbations than end-to-end methods. Furthermore, we find that lower visual token counts correlate with increased reliance on priors, exacerbating hallucination risks. Context stress testing also reveals a total model collapse around 10,000 text tokens, suggesting that current optical compression techniques may paradoxically aggravate the long-context bottleneck. This study empirically defines DeepSeek-OCR's capability boundaries and offers essential insights for future optimizations of the vision-text compression paradigm. We release all data, results and scripts used in this study at https://github.com/dududuck00/DeepSeekOCR.
Robust Scene Coordinate Regression via Geometrically-Consistent Global Descriptors WACV
Recent learning-based visual localization methods use global descriptors to disambiguate visually similar places, but existing approaches often derive these descriptors from geometric cues alone (e.g., covisibility graphs), limiting their discriminative power and reducing robustness in the presence of noisy geometric constraints. We propose an aggregator module that learns global descriptors consistent with both geometrical structure and visual similarity, ensuring that images are close in descriptor space only when they are visually similar and spatially connected. This corrects erroneous associations caused by unreliable overlap scores. Using a batch-mining strategy based solely on the overlap scores and a modified contrastive loss, our method trains without manual place labels and generalizes across diverse environments. Experiments on challenging benchmarks show substantial localization gains in large-scale environments while preserving computational and memory efficiency. Code is available at https://github.com/sontung/robust_scr.
comment: Accepted at IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2026
Interleaved Latent Visual Reasoning with Selective Perceptual Modeling
Interleaved reasoning paradigms enhance Multimodal Large Language Models (MLLMs) with visual feedback but are hindered by the prohibitive computational cost of re-encoding pixel-dense images. A promising alternative, latent visual reasoning, circumvents this bottleneck yet faces limitations: methods either fail to capture intermediate state evolution due to single-step, non-interleaved structures, or sacrifice precise perceptual modeling by over-compressing features. We introduce Interleaved Latent Visual Reasoning (ILVR), a framework that unifies dynamic state evolution with precise perceptual modeling. ILVR interleaves textual generation with latent visual representations that act as specific, evolving cues for subsequent reasoning. Specifically, we employ a self-supervision strategy where a momentum teacher model selectively distills relevant features from ground-truth intermediate images into sparse supervision targets. This adaptive selection mechanism guides the model to autonomously generate context-aware visual signals. Extensive experiments on multimodal reasoning benchmarks demonstrate that ILVR outperforms existing approaches, effectively bridging the gap between fine-grained perception and sequential multimodal reasoning.
comment: 18 pages, 11 figures. Code available at https://github.com/XD111ds/ILVR
InfiniteWeb: Scalable Web Environment Synthesis for GUI Agent Training
GUI agents that interact with graphical interfaces on behalf of users represent a promising direction for practical AI assistants. However, training such agents is hindered by the scarcity of suitable environments. We present InfiniteWeb, a system that automatically generates functional web environments at scale for GUI agent training. While LLMs perform well on generating a single webpage, building a realistic and functional website with many interconnected pages faces challenges. We address these challenges through unified specification, task-centric test-driven development, and a combination of website seed with reference design image to ensure diversity. Our system also generates verifiable task evaluators enabling dense reward signals for reinforcement learning. Experiments show that InfiniteWeb surpasses commercial coding agents at realistic website construction, and GUI agents trained on our generated environments achieve significant performance improvements on OSWorld and Online-Mind2Web, demonstrating the effectiveness of proposed system.
comment: Work In Progress
TRec: Egocentric Action Recognition using 2D Point Tracks
We present a novel approach for egocentric action recognition that leverages 2D point tracks as an additional motion cue. While most existing methods rely on RGB appearance, human pose estimation, or their combination, our work demonstrates that tracking randomly sampled image points across video frames can substantially improve recognition accuracy. Unlike prior approaches, we do not detect hands, objects, or interaction regions. Instead, we employ CoTracker to follow a set of randomly initialized points through each video and use the resulting trajectories, together with the corresponding image frames, as input to a Transformer-based recognition model. Surprisingly, our method achieves notable gains even when only the initial frame and its associated point tracks are provided, without incorporating the full video sequence. Experimental results confirm that integrating 2D point tracks consistently enhances performance compared to the same model trained without motion information, highlighting their potential as a lightweight yet effective representation for egocentric action understanding.
comment: submitted to ICPR 2026
GeoReason: Aligning Thinking And Answering In Remote Sensing Vision-Language Models Via Logical Consistency Reinforcement Learning
The evolution of Remote Sensing Vision-Language Models(RS-VLMs) emphasizes the importance of transitioning from perception-centric recognition toward high-level deductive reasoning to enhance cognitive reliability in complex spatial tasks. However, current models often suffer from logical hallucinations, where correct answers are derived from flawed reasoning chains or rely on positional shortcuts rather than spatial logic. This decoupling undermines reliability in strategic spatial decision-making. To address this, we present GeoReason, a framework designed to synchronize internal thinking with final decisions. We first construct GeoReason-Bench, a logic-driven dataset containing 4,000 reasoning trajectories synthesized from geometric primitives and expert knowledge. We then formulate a two-stage training strategy: (1) Supervised Knowledge Initialization to equip the model with reasoning syntax and domain expertise, and (2) Consistency-Aware Reinforcement Learning to refine deductive reliability. This second stage integrates a novel Logical Consistency Reward, which penalizes logical drift via an option permutation strategy to anchor decisions in verifiable reasoning traces. Experimental results demonstrate that our framework significantly enhances the cognitive reliability and interpretability of RS-VLMs, achieving state-of-the-art performance compared to other advanced methods.
MoIIE: Mixture of Intra- and Inter-Modality Experts for Large Vision Language Models
Large Vision-Language Models (LVLMs) have demonstrated remarkable performance across multi-modal tasks by scaling model size and training data. However, these dense LVLMs incur significant computational costs and motivate the exploration of sparse Mixture of Experts (MoE) architectures. While MoE improve parameter efficiency, effectively applying MoE to simultaneously model modality-specific features and cross-modal associations in LVLMs remains challenging. In this work, we propose to incorporate Mixture of Intra- and Inter-Modality Experts (MoIIE) to LVLMs. For each token, expert routing is guided by its modality, directing tokens to their respective intra-modality experts as well as a shared pool of inter-modality experts, enabling the model to jointly learn rich intra-modal features and cross-modal interactions. We further introduce an effective and straightforward two-stage training strategy, which facilitates the direct activation of both MoE and multi-modal capabilities. Extensive experiments across different data scales and LLM backbone demonstrate the effectiveness, efficiency and generality of our approach. Notably, our MoIIE models with 5.5B and 11.3B activated parameters match or even surpass the performance of existing advanced open-source MoE-LLMs based multi-modal models that involve more activated parameters. The code is available at https://github.com/AlenjandroWang/MoIIE.
CrackSegFlow: Controllable Flow Matching Synthesis for Generalizable Crack Segmentation with a 50K Image-Mask Benchmark
Automated crack segmentation is essential for condition assessment, yet deployment is limited by scarce pixel-level labels and domain shift. We present CrackSegFlow, a controllable flow-matching synthesis framework that generates crack images conditioned on binary masks with mask-image alignment. The renderer combines topology-preserving mask injection with edge gating to maintain thin-structure continuity and suppress false positives. A class-conditional flow-matching mask model synthesizes masks with control over crack coverage, enabling balanced, topology-diverse data without manual annotation. We inject masks into crack-free backgrounds to diversify illumination and reduce false positives. On five datasets with a CNN-Transformer backbone, incorporating synthesized pairs improves in-domain performance by 5.37 mIoU and 5.13 F1, and target-guided cross-domain synthesis yields gains of 13.12 mIoU and 14.82 F1 using target mask statistics. We also release CSF-50K, 50,000 image-mask pairs for benchmarking.
Minimal Clips, Maximum Salience: Long Video Summarization via Key Moment Extraction
Vision-Language Models (VLMs) are able to process increasingly longer videos. Yet, important visual information is easily lost throughout the entire context and missed by VLMs. Also, it is important to design tools that enable cost-effective analysis of lengthy video content. In this paper, we propose a clip selection method that targets key video moments to be included in a multimodal summary. We divide the video into short clips and generate compact visual descriptions of each using a lightweight video captioning model. These are then passed to a large language model (LLM), which selects the K clips containing the most relevant visual information for a multimodal summary. We evaluate our approach on reference clips for the task, automatically derived from full human-annotated screenplays and summaries in the MovieSum dataset. We further show that these reference clips (less than 6% of the movie) are sufficient to build a complete multimodal summary of the movies in MovieSum. Using our clip selection method, we achieve a summarization performance close to that of these reference clips while capturing substantially more relevant video information than random clip selection. Importantly, we maintain low computational cost by relying on a lightweight captioning model.
Probing Deep into Temporal Profile Makes the Infrared Small Target Detector Much Better
Infrared small target (IRST) detection is challenging in simultaneously achieving precise, robust, and efficient performance due to extremely dim targets and strong interference. Current learning-based methods attempt to leverage ``more" information from both the spatial and the short-term temporal domains, but suffer from unreliable performance under complex conditions while incurring computational redundancy. In this paper, we explore the ``more essential" information from a more crucial domain for the detection. Through theoretical analysis, we reveal that the global temporal saliency and correlation information in the temporal profile demonstrate significant superiority in distinguishing target signals from other signals. To investigate whether such superiority is preferentially leveraged by well-trained networks, we built the first prediction attribution tool in this field and verified the importance of the temporal profile information. Inspired by the above conclusions, we remodel the IRST detection task as a one-dimensional signal anomaly detection task, and propose an efficient deep temporal probe network (DeepPro) that only performs calculations in the time dimension for IRST detection. We conducted extensive experiments to fully validate the effectiveness of our method. The experimental results are exciting, as our DeepPro outperforms existing state-of-the-art IRST detection methods on widely-used benchmarks with extremely high efficiency, and achieves a significant improvement on dim targets and in complex scenarios. We provide a new modeling domain, a new insight, a new method, and a new performance, which can promote the development of IRST detection. Codes are available at https://github.com/TinaLRJ/DeepPro.
MAFNet:Multi-frequency Adaptive Fusion Network for Real-time Stereo Matching
Existing stereo matching networks typically rely on either cost-volume construction based on 3D convolutions or deformation methods based on iterative optimization. The former incurs significant computational overhead during cost aggregation, whereas the latter often lacks the ability to model non-local contextual information. These methods exhibit poor compatibility on resource-constrained mobile devices, limiting their deployment in real-time applications. To address this, we propose a Multi-frequency Adaptive Fusion Network (MAFNet), which can produce high-quality disparity maps using only efficient 2D convolutions. Specifically, we design an adaptive frequency-domain filtering attention module that decomposes the full cost volume into high-frequency and low-frequency volumes, performing frequency-aware feature aggregation separately. Subsequently, we introduce a Linformer-based low-rank attention mechanism to adaptively fuse high- and low-frequency information, yielding more robust disparity estimation. Extensive experiments demonstrate that the proposed MAFNet significantly outperforms existing real-time methods on public datasets such as Scene Flow and KITTI 2015, showing a favorable balance between accuracy and real-time performance.
GCR: Geometry-Consistent Routing for Task-Agnostic Continual Anomaly Detection
Feature-based anomaly detection is widely adopted in industrial inspection due to the strong representational power of large pre-trained vision encoders. While most existing methods focus on improving within-category anomaly scoring, practical deployments increasingly require task-agnostic operation under continual category expansion, where the category identity is unknown at test time. In this setting, overall performance is often dominated by expert selection, namely routing an input to an appropriate normality model before any head-specific scoring is applied. However, routing rules that compare head-specific anomaly scores across independently constructed heads are unreliable in practice, as score distributions can differ substantially across categories in scale and tail behavior. We propose GCR, a lightweight mixture-of-experts framework for stabilizing task-agnostic continual anomaly detection through geometry-consistent routing. GCR routes each test image directly in a shared frozen patch-embedding space by minimizing an accumulated nearest-prototype distance to category-specific prototype banks, and then computes anomaly maps only within the routed expert using a standard prototype-based scoring rule. By separating cross-head decision making from within-head anomaly scoring, GCR avoids cross-head score comparability issues without requiring end-to-end representation learning. Experiments on MVTec AD and VisA show that geometry-consistent routing substantially improves routing stability and mitigates continual performance collapse, achieving near-zero forgetting while maintaining competitive detection and localization performance. These results indicate that many failures previously attributed to representation forgetting can instead be explained by decision-rule instability in cross-head routing. Code is available at https://github.com/jw-chae/GCR
OneVision: An End-to-End Generative Framework for Multi-view E-commerce Vision Search
Traditional vision search, similar to search and recommendation systems, follows the multi-stage cascading architecture (MCA) paradigm to balance efficiency and conversion. Specifically, the query image undergoes feature extraction, recall, pre-ranking, and ranking stages, ultimately presenting the user with semantically similar products that meet their preferences. This multi-view representation discrepancy of the same object in the query and the optimization objective collide across these stages, making it difficult to achieve Pareto optimality in both user experience and conversion. In this paper, an end-to-end generative framework, OneVision, is proposed to address these problems. OneVision builds on VRQ, a vision-aligned residual quantization encoding, which can align the vastly different representations of an object across multiple viewpoints while preserving the distinctive features of each product as much as possible. Then a multi-stage semantic alignment scheme is adopted to maintain strong visual similarity priors while effectively incorporating user-specific information for personalized preference generation. In offline evaluations, OneVision performs on par with online MCA, while improving inference efficiency by 21% through dynamic pruning. In A/B tests, it achieves significant online improvements: +2.15% item CTR, +2.27% CVR, and +3.12% order volume. These results demonstrate that a semantic ID centric, generative architecture can unify retrieval and personalization while simplifying the serving pathway.
Explainable Binary Classification of Separable Shape Ensembles
Scientists, engineers, biologists, and technology specialists universally leverage image segmentation to extract shape ensembles containing many thousands of curves representing patterns in observations and measurements. These large curve ensembles facilitate inferences about important changes when comparing and contrasting images. We introduce novel pattern recognition formalisms combined with inference methods over large ensembles of segmented curves. Our formalism involves accurately approximating eigenspaces of composite integral operators to motivate discrete, dual representations of curves collocated at quadrature nodes. Approximations are projected onto underlying matrix manifolds and the resulting separable shape tensors constitute rigid-invariant decompositions of curves into generalized (linear) scale variations and complementary (nonlinear) undulations. With thousands of curves segmented from pairs of images, we demonstrate how data-driven features of separable shape tensors inform explainable binary classification utilizing a product maximum mean discrepancy; absent labeled data, building interpretable feature spaces in seconds without high performance computation, and detecting discrepancies below cursory visual inspections.
comment: 32 pages, 16 figures
Talk2Move: Reinforcement Learning for Text-Instructed Object-Level Geometric Transformation in Scenes
We introduce Talk2Move, a reinforcement learning (RL) based diffusion framework for text-instructed spatial transformation of objects within scenes. Spatially manipulating objects in a scene through natural language poses a challenge for multimodal generation systems. While existing text-based manipulation methods can adjust appearance or style, they struggle to perform object-level geometric transformations-such as translating, rotating, or resizing objects-due to scarce paired supervision and pixel-level optimization limits. Talk2Move employs Group Relative Policy Optimization (GRPO) to explore geometric actions through diverse rollouts generated from input images and lightweight textual variations, removing the need for costly paired data. A spatial reward guided model aligns geometric transformations with linguistic description, while off-policy step evaluation and active step sampling improve learning efficiency by focusing on informative transformation stages. Furthermore, we design object-centric spatial rewards that evaluate displacement, rotation, and scaling behaviors directly, enabling interpretable and coherent transformations. Experiments on curated benchmarks demonstrate that Talk2Move achieves precise, consistent, and semantically faithful object transformations, outperforming existing text-guided editing approaches in both spatial accuracy and scene coherence.
comment: Project page: https://sparkstj.github.io/talk2move
DermaCon-IN: A Multi-concept Annotated Dermatological Image Dataset of Indian Skin Disorders for Clinical AI Research NeurIPS 2025
Artificial intelligence is poised to augment dermatological care by enabling scalable image-based diagnostics. Yet, the development of robust and equitable models remains hindered by datasets that fail to capture the clinical and demographic complexity of real-world practice. This complexity stems from region-specific disease distributions, wide variation in skin tones, and the underrepresentation of outpatient scenarios from non-Western populations. We introduce DermaCon-IN, a prospectively curated dermatology dataset comprising 5,450 clinical images from 3,002 patients across outpatient clinics in South India. Each image is annotated by board-certified dermatologists with 245 distinct diagnoses, structured under a hierarchical, aetiology-based taxonomy adapted from Rook's classification. The dataset captures a wide spectrum of dermatologic conditions and tonal variation commonly seen in Indian outpatient care. We benchmark a range of architectures, including convolutional models (ResNet, DenseNet, EfficientNet), transformer-based models (ViT, MaxViT, Swin), and Concept Bottleneck Models to establish baseline performance and explore how anatomical and concept-level cues may be integrated. These results are intended to guide future efforts toward interpretable and clinically realistic models. DermaCon-IN provides a scalable and representative foundation for advancing dermatology AI.
comment: Accepted at NeurIPS 2025 (D&B Track)
CADmium: Fine-Tuning Code Language Models for Text-Driven Sequential CAD Design
Computer-aided design (CAD) is the digital construction of 2D and 3D objects, and is central to a wide range of engineering and manufacturing applications like automobile and aviation. Despite its importance, CAD modeling remains largely a time-intensive, manual task. Recent works have attempted to automate this process with small transformer-based models and handcrafted CAD sequence representations. However, there has been little effort to leverage the potential of large language models (LLMs) for sequential CAD design. In this work, we introduce a new large-scale dataset of more than 170k CAD models annotated with high-quality, human-like descriptions generated with our pipeline based on GPT-4.1. Using this dataset, we fine-tune powerful code-LLMs to generate CAD sequences represented in a JSON-based format from natural language descriptions, demonstrating the viability and effectiveness of this approach for text-conditioned CAD generation. Because simple metrics often fail to reflect the quality of generated objects, we introduce geometric and topological metrics based on sphericity, mean curvature, and Euler characteristic to provide richer structural insights. Our experiments and ablation studies on both synthetic and human-annotated data demonstrate that CADmium is able to automate CAD design, drastically speeding up the design of new objects. The dataset, code, and fine-tuned models are available online.
comment: Published in Transactions on Machine Learning Research (TMLR) 01/2026
Forging Spatial Intelligence: A Roadmap of Multi-Modal Data Pre-Training for Autonomous Systems
The rapid advancement of autonomous systems, including self-driving vehicles and drones, has intensified the need to forge true Spatial Intelligence from multi-modal onboard sensor data. While foundation models excel in single-modal contexts, integrating their capabilities across diverse sensors like cameras and LiDAR to create a unified understanding remains a formidable challenge. This paper presents a comprehensive framework for multi-modal pre-training, identifying the core set of techniques driving progress toward this goal. We dissect the interplay between foundational sensor characteristics and learning strategies, evaluating the role of platform-specific datasets in enabling these advancements. Our central contribution is the formulation of a unified taxonomy for pre-training paradigms: ranging from single-modality baselines to sophisticated unified frameworks that learn holistic representations for advanced tasks like 3D object detection and semantic occupancy prediction. Furthermore, we investigate the integration of textual inputs and occupancy representations to facilitate open-world perception and planning. Finally, we identify critical bottlenecks, such as computational efficiency and model scalability, and propose a roadmap toward general-purpose multi-modal foundation models capable of achieving robust Spatial Intelligence for real-world deployment.
comment: Survey; 40 pages, 7 figures, 9 tables; GitHub Repo at https://github.com/worldbench/awesome-spatial-intelligence
Mind the Generative Details: Direct Localized Detail Preference Optimization for Video Diffusion Models
Aligning text-to-video diffusion models with human preferences is crucial for generating high-quality videos. Existing Direct Preference Otimization (DPO) methods rely on multi-sample ranking and task-specific critic models, which is inefficient and often yields ambiguous global supervision. To address these limitations, we propose LocalDPO, a novel post-training framework that constructs localized preference pairs from real videos and optimizes alignment at the spatio-temporal region level. We design an automated pipeline to efficiently collect preference pair data that generates preference pairs with a single inference per prompt, eliminating the need for external critic models or manual annotation. Specifically, we treat high-quality real videos as positive samples and generate corresponding negatives by locally corrupting them with random spatio-temporal masks and restoring only the masked regions using the frozen base model. During training, we introduce a region-aware DPO loss that restricts preference learning to corrupted areas for rapid convergence. Experiments on Wan2.1 and CogVideoX demonstrate that LocalDPO consistently improves video fidelity, temporal coherence and human preference scores over other post-training approaches, establishing a more efficient and fine-grained paradigm for video generator alignment.
comment: Under Review
MobileGeo: Exploring Hierarchical Knowledge Distillation for Resource-Efficient Cross-view Drone Geo-Localization
Cross-view geo-localization (CVGL) plays a vital role in drone-based multimedia applications, enabling precise localization by matching drone-captured aerial images against geo-tagged satellite databases in GNSS-denied environments. However, existing methods rely on resource-intensive feature alignment and multi-branch architectures, incurring high inference costs that limit their deployment on edge devices. We propose MobileGeo, a mobile-friendly framework designed for efficient on-device CVGL: 1) During training, a Hierarchical Distillation (HD-CVGL) paradigm, coupled with Uncertainty-Aware Prediction Alignment (UAPA), distills essential information into a compact model without incurring inference overhead. 2) During inference, an efficient Multi-view Selection Refinement Module (MSRM) leverages mutual information to filter redundant views and reduce computational load. Extensive experiments demonstrate that MobileGeo outperforms previous state-of-the-art methods, achieving a 4.19% improvement in AP on University1652 dataset while being over 5 times efficient in FLOPs and 3 times faster. Crucially, MobileGeo runs at 251.5 FPS on an NVIDIA AGX Orin edge device, demonstrating its practical viability for real-time on-device drone geo-localization. The code is available at https://github.com/SkyEyeLoc/MobileGeo.
Towards Real-world Lens Active Alignment with Unlabeled Data via Domain Adaptation
Active Alignment (AA) is a key technology for the large-scale automated assembly of high-precision optical systems. Compared with labor-intensive per-model on-device calibration, a digital-twin pipeline built on optical simulation offers a substantial advantage in generating large-scale labeled data. However, complex imaging conditions induce a domain gap between simulation and real-world images, limiting the generalization of simulation-trained models. To address this, we propose augmenting a simulation baseline with minimal unlabeled real-world images captured at random misalignment positions, mitigating the gap from a domain adaptation perspective. We introduce Domain Adaptive Active Alignment (DA3), which utilizes an autoregressive domain transformation generator and an adversarial-based feature alignment strategy to distill real-world domain information via self-supervised learning. This enables the extraction of domain-invariant image degradation features to facilitate robust misalignment prediction. Experiments on two lens types reveal that DA3 improves accuracy by 46% over a purely simulation pipeline. Notably, it approaches the performance achieved with precisely labeled real-world data collected on 3 lens samples, while reducing on-device data collection time by 98.7%. The results demonstrate that domain adaptation effectively endows simulation-trained models with robust real-world performance, validating the digital-twin pipeline as a practical solution to significantly enhance the efficiency of large-scale optical assembly.
FluencyVE: Marrying Temporal-Aware Mamba with Bypass Attention for Video Editing
Large-scale text-to-image diffusion models have achieved unprecedented success in image generation and editing. However, extending this success to video editing remains challenging. Recent video editing efforts have adapted pretrained text-to-image models by adding temporal attention mechanisms to handle video tasks. Unfortunately, these methods continue to suffer from temporal inconsistency issues and high computational overheads. In this study, we propose FluencyVE, which is a simple yet effective one-shot video editing approach. FluencyVE integrates the linear time-series module, Mamba, into a video editing model based on pretrained Stable Diffusion models, replacing the temporal attention layer. This enables global frame-level attention while reducing the computational costs. In addition, we employ low-rank approximation matrices to replace the query and key weight matrices in the causal attention, and use a weighted averaging technique during training to update the attention scores. This approach significantly preserves the generative power of the text-to-image model while effectively reducing the computational burden. Experiments and analyses demonstrate promising results in editing various attributes, subjects, and locations in real-world videos.
comment: Accepted by IEEE Transactions on Multimedia (TMM)
FoldNet: Learning Generalizable Closed-Loop Policy for Garment Folding via Keypoint-Driven Asset and Demonstration Synthesis
Due to the deformability of garments, generating a large amount of high-quality data for robotic garment manipulation tasks is highly challenging. In this paper, we present a synthetic garment dataset that can be used for robotic garment folding. We begin by constructing geometric garment templates based on keypoints and applying generative models to generate realistic texture patterns. Leveraging these keypoint annotations, we generate folding demonstrations in simulation and train folding policies via closed-loop imitation learning. To improve robustness, we propose KG-DAgger, which uses a keypoint-based strategy to generate demonstration data for recovering from failures. KG-DAgger significantly improves the model performance, boosting the real-world success rate by 25\%. After training with 15K trajectories (about 2M image-action pairs), the model achieves a 75\% success rate in the real world. Experiments in both simulation and real-world settings validate the effectiveness of our proposed framework.
From Dataset to Real-world: General 3D Object Detection via Generalized Cross-domain Few-shot Learning
LiDAR-based 3D object detection models often struggle to generalize to real-world environments due to limited object diversity in existing datasets. To tackle it, we introduce the first generalized cross-domain few-shot (GCFS) task in 3D object detection, aiming to adapt a source-pretrained model to both common and novel classes in a new domain with only few-shot annotations. We propose a unified framework that learns stable target semantics under limited supervision by bridging 2D open-set semantics with 3D spatial reasoning. Specifically, an image-guided multi-modal fusion injects transferable 2D semantic cues into the 3D pipeline via vision-language models, while a physically-aware box search enhances 2D-to-3D alignment via LiDAR priors. To capture class-specific semantics from sparse data, we further introduce contrastive-enhanced prototype learning, which encodes few-shot instances into discriminative semantic anchors and stabilizes representation learning. Extensive experiments on GCFS benchmarks demonstrate the effectiveness and generality of our approach in realistic deployment settings.
comment: The latest version refines the few-shot setting on common classes, enforcing a stricter object-level definition
Simulation of prosthetic vision with PRIMA system and enhancement of face representation
Objective. Patients implanted with the PRIMA photovoltaic subretinal prosthesis in geographic atrophy report form vision with the average acuity matching the 100um pixel size. Although this remarkable outcome enables them to read and write, they report difficulty with perceiving faces. Despite the pixelated stimulation, patients see smooth patterns rather than dots. We present a novel, non-pixelated algorithm for simulating prosthetic vision, compare its predictions to clinical outcomes, and describe computer vision and machine learning (ML) methods to improve face representation. Approach. Our simulation algorithm (ProViSim) integrates a spatial resolution filter based on sampling density limited by the pixel pitch and a contrast filter representing reduced contrast sensitivity of prosthetic vision. Patterns of Landolt C and human faces created using this simulator are compared to reports from actual PRIMA users. To recover the facial features lost in prosthetic vision due to limited resolution or contrast, we apply an ML facial landmarking model, as well as contrast-adjusting tone curves to the image prior to its projection onto the photovoltaic retinal implant. Main results. Prosthetic vision simulated using the above algorithm matches the letter acuity observed in clinical studies, as well as the patients' descriptions of perceived facial features. Applying the inversed contrast filter to images prior to projection onto the implant and accentuating the facial features using an ML facial landmarking model helps preserve the contrast in prosthetic vision, improves emotion recognition and reduces the response time. Significance. Spatial and contrast constraints of prosthetic vision limit the resolvable features and degrade natural images. ML based methods and contrast adjustments prior to image projection onto the implant mitigate some limitations and improve face representation.
QUIET-SR: Quantum Image Enhancement Transformer for Single Image Super-Resolution
Recent advancements in Single-Image Super-Resolution (SISR) using deep learning have significantly improved image restoration quality. However, the high computational cost of processing high-resolution images due to the large number of parameters in classical models, along with the scalability challenges of quantum algorithms for image processing, remains a major obstacle. In this paper, we propose the Quantum Image Enhancement Transformer for Super-Resolution (QUIET-SR), a hybrid framework that extends the Swin transformer architecture with a novel shifted quantum window attention mechanism, built upon variational quantum neural networks. QUIET-SR effectively captures complex residual mappings between low-resolution and high-resolution images, leveraging quantum attention mechanisms to enhance feature extraction and image restoration while requiring a minimal number of qubits, making it suitable for the Noisy Intermediate-Scale Quantum (NISQ) era. We evaluate our framework in MNIST (30.24 PSNR, 0.989 SSIM), FashionMNIST (29.76 PSNR, 0.976 SSIM) and the MedMNIST dataset collection, demonstrating that QUIET-SR achieves PSNR and SSIM scores comparable to state-of-the-art methods while using fewer parameters. Our efficient batching strategy directly enables massive parallelization on multiple QPU's paving the way for practical quantum-enhanced image super-resolution through coordinated QPU-GPU quantum supercomputing.
comment: 13 Pages, 7 Figures (5 Main figures, 2 Sub-figures), 2 Tables, Under Review
seq-JEPA: Autoregressive Predictive Learning of Invariant-Equivariant World Models
Joint-embedding self-supervised learning (SSL) commonly relies on transformations such as data augmentation and masking to learn visual representations, a task achieved by enforcing invariance or equivariance with respect to these transformations applied to two views of an image. This dominant two-view paradigm in SSL often limits the flexibility of learned representations for downstream adaptation by creating performance trade-offs between high-level invariance-demanding tasks such as image classification and more fine-grained equivariance-related tasks. In this work, we propose \emph{seq-JEPA}, a world modeling framework that introduces architectural inductive biases into joint-embedding predictive architectures to resolve this trade-off. Without relying on dual equivariance predictors or loss terms, seq-JEPA simultaneously learns two architecturally separate representations for equivariance- and invariance-demanding tasks. To do so, our model processes short sequences of different views (observations) of inputs. Each encoded view is concatenated with an embedding of the relative transformation (action) that produces the next observation in the sequence. These view-action pairs are passed through a transformer encoder that outputs an aggregate representation. A predictor head then conditions this aggregate representation on the upcoming action to predict the representation of the next observation. Empirically, seq-JEPA demonstrates strong performance on both equivariance- and invariance-demanding downstream tasks without sacrificing one for the other. Furthermore, it excels at tasks that inherently require aggregating a sequence of observations, such as path integration across actions and predictive learning across eye movements.
Grasp the Graph (GtG) 2.0: Ensemble of Graph Neural Networks for High-Precision Grasp Pose Detection in Clutter
Grasp pose detection in cluttered, real-world environments remains a significant challenge due to noisy and incomplete sensory data combined with complex object geometries. This paper introduces Grasp the Graph 2.0 (GtG 2.0) method, a lightweight yet highly effective hypothesis-and-test robotics grasping framework which leverages an ensemble of Graph Neural Networks for efficient geometric reasoning from point cloud data. Building on the success of GtG 1.0, which demonstrated the potential of Graph Neural Networks for grasp detection but was limited by assumptions of complete, noise-free point clouds and 4-Dof grasping, GtG 2.0 employs a conventional Grasp Pose Generator to efficiently produce 7-Dof grasp candidates. Candidates are assessed with an ensemble Graph Neural Network model which includes points within the gripper jaws (inside points) and surrounding contextual points (outside points). This improved representation boosts grasp detection performance over previous methods using the same generator. GtG 2.0 shows up to a 35% improvement in Average Precision on the GraspNet-1Billion benchmark compared to hypothesis-and-test and Graph Neural Network-based methods, ranking it among the top three frameworks. Experiments with a 3-Dof Delta Parallel robot and Kinect-v1 camera show a success rate of 91% and a clutter completion rate of 100%, demonstrating its flexibility and reliability.
comment: 20 pages
InnerGS: Internal Scenes Reconstruction and Segmentation via Factorized 3D Gaussian Splatting
3D Gaussian Splatting (3DGS) has recently gained popularity for efficient scene rendering by representing scenes as explicit sets of anisotropic 3D Gaussians. However, most existing work focuses primarily on modeling external surfaces. In this work, we target the reconstruction of internal scenes, which is crucial for applications that require a deep understanding of an object's interior. By directly modeling a continuous volumetric density through the inner 3D Gaussian distribution, our model effectively reconstructs smooth and detailed internal structures from sparse sliced data. Beyond high-fidelity reconstruction, we further demonstrate the framework's potential for downstream tasks such as segmentation. By integrating language features, we extend our approach to enable text-guided segmentation of medical scenes via natural language queries. Our approach eliminates the need for camera poses, is plug-and-play, and is inherently compatible with any data modalities. We provide cuda implementation at: https://github.com/Shuxin-Liang/InnerGS.
Infrared-Assisted Single-Stage Framework for Joint Restoration and Fusion of Visible and Infrared Images under Hazy Conditions
Infrared and visible (IR-VIS) image fusion has gained significant attention for its broad application value. However, existing methods often neglect the complementary role of infrared image in restoring visible image features under hazy conditions. To address this, we propose a joint learning framework that utilizes infrared image for the restoration and fusion of hazy IR-VIS images. To mitigate the adverse effects of feature diversity between IR-VIS images, we introduce a prompt generation mechanism that regulates modality-specific feature incompatibility. This creates a prompt selection matrix from non-shared image information, followed by prompt embeddings generated from a prompt pool. These embeddings help generate candidate features for dehazing. We further design an infrared-assisted feature restoration mechanism that selects candidate features based on haze density, enabling simultaneous restoration and fusion within a single-stage framework. To enhance fusion quality, we construct a multi-stage prompt embedding fusion module that leverages feature supplementation from the prompt generation module. Our method effectively fuses IR-VIS images while removing haze, yielding clear, haze-free fusion results. In contrast to two-stage methods that dehaze and then fuse, our approach enables collaborative training in a single-stage framework, making the model relatively lightweight and suitable for practical deployment. Experimental results validate its effectiveness and demonstrate advantages over existing methods. The source code of the paper is available at \href{https://github.com/fangjiaqi0909/IASSF}{\textcolor{blue}{https://github.com/fangjiaqi0909/IASSF
comment: Accepted by Pattern Recognition
Hallucination Score: Towards Mitigating Hallucinations in Generative Image Super-Resolution
Generative super-resolution (GSR) currently sets the state-of-the-art in terms of perceptual image quality, overcoming the "regression-to-the-mean" blur of prior non-generative models. However, from a human perspective, such models do not fully conform to the optimal balance between quality and fidelity. Instead, a different class of artifacts, in which generated details fail to perceptually match the low resolution image (LRI) or ground-truth image (GTI), is a critical but under-studied issue in GSR, limiting its practical deployment. In this work, we focus on measuring, analyzing, and mitigating these artifacts (i.e., "hallucinations"). We observe that hallucinations are not well-characterized with existing image metrics or quality models, as they are orthogonal to both exact fidelity and no-reference quality. Instead, we take advantage of multimodal large language models (MLLMs) by constructing a prompt that assesses hallucinatory visual elements and generates a "Hallucination Score" (HS). We find that HS is closely aligned with human evaluations, and also provides complementary insights to prior image metrics used for super-resolution (SR) models. Finally, we propose a few efficient HS proxies and demonstrate how diffusion-based GSR models can be fine-tuned to mitigate hallucinations, leveraging HS proxies as differentiable reward functions.
comment: 31 pages, 21 figures, and 10 tables
ReVision: Refining Video Diffusion with Explicit 3D Motion Modeling
In recent years, video generation has seen significant advancements. However, challenges still persist in generating complex motions and interactions. To address these challenges, we introduce ReVision, a plug-and-play framework that explicitly integrates parameterized 3D model knowledge into a pretrained conditional video generation model, significantly enhancing its ability to generate high-quality videos with complex motion and interactions. Specifically, ReVision consists of three stages. First, a video diffusion model is used to generate a coarse video. Next, we extract a set of 2D and 3D features from the coarse video to construct a 3D object-centric representation, which is then refined by our proposed parameterized motion prior model to produce an accurate 3D motion sequence. Finally, this refined motion sequence is fed back into the same video diffusion model as additional conditioning, enabling the generation of motion-consistent videos, even in scenarios involving complex actions and interactions. We validate the effectiveness of our approach on Stable Video Diffusion, where ReVision significantly improves motion fidelity and coherence. Remarkably, with only 1.5B parameters, it even outperforms a state-of-the-art video generation model with over 13B parameters on complex video generation by a substantial margin. Our results suggest that, by incorporating 3D motion knowledge, even a relatively small video diffusion model can generate complex motions and interactions with greater realism and controllability, offering a promising solution for physically plausible video generation.
comment: TMLR camera-ready version. Project Page: https://revision-video.github.io/
Normalized Conditional Mutual Information Surrogate Loss for Deep Neural Classifiers
In this paper, we propose a novel information theoretic surrogate loss; normalized conditional mutual information (NCMI); as a drop in alternative to the de facto cross-entropy (CE) for training deep neural network (DNN) based classifiers. We first observe that the model's NCMI is inversely proportional to its accuracy. Building on this insight, we introduce an alternating algorithm to efficiently minimize the NCMI. Across image recognition and whole-slide imaging (WSI) subtyping benchmarks, NCMI-trained models surpass state of the art losses by substantial margins at a computational cost comparable to that of CE. Notably, on ImageNet, NCMI yields a 2.77% top-1 accuracy improvement with ResNet-50 comparing to the CE; on CAMELYON-17, replacing CE with NCMI improves the macro-F1 by 8.6% over the strongest baseline. Gains are consistent across various architectures and batch sizes, suggesting that NCMI is a practical and competitive alternative to CE.
comment: 8 pages, 4 figures
Artificial Intelligence 284
GDPO: Group reward-Decoupled Normalization Policy Optimization for Multi-reward RL Optimization
As language models become increasingly capable, users expect them to provide not only accurate responses but also behaviors aligned with diverse human preferences across a variety of scenarios. To achieve this, Reinforcement learning (RL) pipelines have begun incorporating multiple rewards, each capturing a distinct preference, to guide models toward these desired behaviors. However, recent work has defaulted to apply Group Relative Policy Optimization (GRPO) under multi-reward setting without examining its suitability. In this paper, we demonstrate that directly applying GRPO to normalize distinct rollout reward combinations causes them to collapse into identical advantage values, reducing the resolution of the training signal and resulting in suboptimal convergence and, in some cases, early training failure. We then introduce Group reward-Decoupled Normalization Policy Optimization (GDPO), a new policy optimization method to resolve these issues by decoupling the normalization of individual rewards, more faithfully preserving their relative differences and enabling more accurate multi-reward optimization, along with substantially improved training stability. We compare GDPO with GRPO across three tasks: tool calling, math reasoning, and coding reasoning, evaluating both correctness metrics (accuracy, bug ratio) and constraint adherence metrics (format, length). Across all settings, GDPO consistently outperforms GRPO, demonstrating its effectiveness and generalizability for multi-reward reinforcement learning optimization.
comment: NVIDIA-Tech Report
RoboVIP: Multi-View Video Generation with Visual Identity Prompting Augments Robot Manipulation
The diversity, quantity, and quality of manipulation data are critical for training effective robot policies. However, due to hardware and physical setup constraints, collecting large-scale real-world manipulation data remains difficult to scale across diverse environments. Recent work uses text-prompt conditioned image diffusion models to augment manipulation data by altering the backgrounds and tabletop objects in the visual observations. However, these approaches often overlook the practical need for multi-view and temporally coherent observations required by state-of-the-art policy models. Further, text prompts alone cannot reliably specify the scene setup. To provide the diffusion model with explicit visual guidance, we introduce visual identity prompting, which supplies exemplar images as conditioning inputs to guide the generation of the desired scene setup. To this end, we also build a scalable pipeline to curate a visual identity pool from large robotics datasets. Using our augmented manipulation data to train downstream vision-language-action and visuomotor policy models yields consistent performance gains in both simulation and real-robot settings.
Robust Reasoning as a Symmetry-Protected Topological Phase
Large language models suffer from "hallucinations"-logical inconsistencies induced by semantic noise. We propose that current architectures operate in a "Metric Phase," where causal order is vulnerable to spontaneous symmetry breaking. Here, we identify robust inference as an effective Symmetry-Protected Topological phase, where logical operations are formally isomorphic to non-Abelian anyon braiding, replacing fragile geometric interpolation with robust topological invariants. Empirically, we demonstrate a sharp topological phase transition: while Transformers and RNNs exhibit gapless decay, our Holonomic Network reveals a macroscopic "mass gap," maintaining invariant fidelity below a critical noise threshold. Furthermore, in a variable-binding task on $S_{10}$ ($3.6 \times 10^6$ states) representing symbolic manipulation, we demonstrate holonomic generalization: the topological model maintains perfect fidelity extrapolating $100\times$ beyond training ($L=50 \to 5000$), consistent with a theoretically indefinite causal horizon, whereas Transformers lose logical coherence. Ablation studies indicate this protection emerges strictly from non-Abelian gauge symmetry. This provides strong evidence for a new universality class for logical reasoning, linking causal stability to the topology of the semantic manifold.
Learning Latent Action World Models In The Wild
Agents capable of reasoning and planning in the real world require the ability of predicting the consequences of their actions. While world models possess this capability, they most often require action labels, that can be complex to obtain at scale. This motivates the learning of latent action models, that can learn an action space from videos alone. Our work addresses the problem of learning latent actions world models on in-the-wild videos, expanding the scope of existing works that focus on simple robotics simulations, video games, or manipulation data. While this allows us to capture richer actions, it also introduces challenges stemming from the video diversity, such as environmental noise, or the lack of a common embodiment across videos. To address some of the challenges, we discuss properties that actions should follow as well as relevant architectural choices and evaluations. We find that continuous, but constrained, latent actions are able to capture the complexity of actions from in-the-wild videos, something that the common vector quantization does not. We for example find that changes in the environment coming from agents, such as humans entering the room, can be transferred across videos. This highlights the capability of learning actions that are specific to in-the-wild videos. In the absence of a common embodiment across videos, we are mainly able to learn latent actions that become localized in space, relative to the camera. Nonetheless, we are able to train a controller that maps known actions to latent ones, allowing us to use latent actions as a universal interface and solve planning tasks with our world model with similar performance as action-conditioned baselines. Our analyses and experiments provide a step towards scaling latent action models to the real world.
comment: 37 pages, 25 figures
CAOS: Conformal Aggregation of One-Shot Predictors
One-shot prediction enables rapid adaptation of pretrained foundation models to new tasks using only one labeled example, but lacks principled uncertainty quantification. While conformal prediction provides finite-sample coverage guarantees, standard split conformal methods are inefficient in the one-shot setting due to data splitting and reliance on a single predictor. We propose Conformal Aggregation of One-Shot Predictors (CAOS), a conformal framework that adaptively aggregates multiple one-shot predictors and uses a leave-one-out calibration scheme to fully exploit scarce labeled data. Despite violating classical exchangeability assumptions, we prove that CAOS achieves valid marginal coverage using a monotonicity-based argument. Experiments on one-shot facial landmarking and RAFT text classification tasks show that CAOS produces substantially smaller prediction sets than split conformal baselines while maintaining reliable coverage.
MineNPC-Task: Task Suite for Memory-Aware Minecraft Agents
We present \textsc{MineNPC-Task}, a user-authored benchmark and evaluation harness for testing memory-aware, mixed-initiative LLM agents in open-world \emph{Minecraft}. Rather than relying on synthetic prompts, tasks are elicited from formative and summative co-play with expert players, normalized into parametric templates with explicit preconditions and dependency structure, and paired with machine-checkable validators under a bounded-knowledge policy that forbids out-of-world shortcuts. The harness captures plan/act/memory events-including plan previews, targeted clarifications, memory reads and writes, precondition checks, and repair attempts and reports outcomes relative to the total number of attempted subtasks, derived from in-world evidence. As an initial snapshot, we instantiate the framework with GPT-4o and evaluate \textbf{216} subtasks across \textbf{8} experienced players. We observe recurring breakdown patterns in code execution, inventory/tool handling, referencing, and navigation, alongside recoveries supported by mixed-initiative clarifications and lightweight memory. Participants rated interaction quality and interface usability positively, while highlighting the need for stronger memory persistence across tasks. We release the complete task suite, validators, logs, and harness to support transparent, reproducible evaluation of future memory-aware embodied agents.
Internal Representations as Indicators of Hallucinations in Agent Tool Selection
Large Language Models (LLMs) have shown remarkable capabilities in tool calling and tool usage, but suffer from hallucinations where they choose incorrect tools, provide malformed parameters and exhibit 'tool bypass' behavior by performing simulations and generating outputs instead of invoking specialized tools or external systems. This undermines the reliability of LLM based agents in production systems as it leads to inconsistent results, and bypasses security and audit controls. Such hallucinations in agent tool selection require early detection and error handling. Unlike existing hallucination detection methods that require multiple forward passes or external validation, we present a computationally efficient framework that detects tool-calling hallucinations in real-time by leveraging LLMs' internal representations during the same forward pass used for generation. We evaluate this approach on reasoning tasks across multiple domains, demonstrating strong detection performance (up to 86.4\% accuracy) while maintaining real-time inference capabilities with minimal computational overhead, particularly excelling at detecting parameter-level hallucinations and inappropriate tool selections, critical for reliable agent deployment.
Stock Market Price Prediction using Neural Prophet with Deep Neural Network
Stock market price prediction is a significant interdisciplinary research domain that depends at the intersection of finance, statistics, and economics. Forecasting Accurately predicting stock prices has always been a focal point for various researchers. However, existing statistical approaches for time-series prediction often fail to effectively forecast the probability range of future stock prices. Hence, to solve this problem, the Neural Prophet with a Deep Neural Network (NP-DNN) is proposed to predict stock market prices. The preprocessing technique used in this research is Z-score normalization, which normalizes stock price data by removing scale differences, making patterns easier to detect. Missing value imputation fills gaps in historical data, enhancing the models use of complete information for more accurate predictions. The Multi-Layer Perceptron (MLP) learns complex nonlinear relationships among stock market prices and extracts hidden patterns from the input data, thereby creating meaningful feature representations for better prediction accuracy. The proposed NP-DNN model achieved an accuracy of 99.21% compared with other approaches using the Fused Large Language Model. Keywords: deep neural network, forecasting stock prices, multi-layer perceptron, neural prophet, stock market price prediction.
Mechanisms of Prompt-Induced Hallucination in Vision-Language Models
Large vision-language models (VLMs) are highly capable, yet often hallucinate by favoring textual prompts over visual evidence. We study this failure mode in a controlled object-counting setting, where the prompt overstates the number of objects in the image (e.g., asking a model to describe four waterlilies when only three are present). At low object counts, models often correct the overestimation, but as the number of objects increases, they increasingly conform to the prompt regardless of the discrepancy. Through mechanistic analysis of three VLMs, we identify a small set of attention heads whose ablation substantially reduces prompt-induced hallucinations (PIH) by at least 40% without additional training. Across models, PIH-heads mediate prompt copying in model-specific ways. We characterize these differences and show that PIH ablation increases correction toward visual evidence. Our findings offer insights into the internal mechanisms driving prompt-induced hallucinations, revealing model-specific differences in how these behaviors are implemented.
SimuAgent: An LLM-Based Simulink Modeling Assistant Enhanced with Reinforcement Learning
Large language models (LLMs) have revolutionized text-based code automation, but their potential in graph-oriented engineering workflows remains under-explored. We introduce SimuAgent, an LLM-powered modeling and simulation agent tailored for Simulink. SimuAgent replaces verbose XML with a concise, dictionary-style Python representation, dramatically cutting token counts, improving interpretability, and enabling fast, in-process simulation. A lightweight plan-execute architecture, trained in two stages, equips the agent with both low-level tool skills and high-level design reasoning. To tackle sparse rewards in long-horizon tasks, we propose Reflection-GRPO (ReGRPO), which augments Group Relative Policy Optimization (GRPO) with self-reflection traces that supply rich intermediate feedback, accelerating convergence and boosting robustness. Experiments on SimuBench, our newly released benchmark comprising 5300 multi-domain modeling tasks, show that a Qwen2.5-7B model fine-tuned with SimuAgent converges faster and achieves higher modeling accuracy than standard RL baselines, and even surpasses GPT-4o when evaluated with few-shot prompting on the same benchmark. Ablations confirm that the two-stage curriculum and abstract-reconstruct data augmentation further enhance generalization. SimuAgent trains and runs entirely on-premise with modest hardware, delivering a privacy-preserving, cost-effective solution for industrial model-driven engineering. SimuAgent bridges the gap between LLMs and graphical modeling environments, offering a practical solution for AI-assisted engineering design in industrial settings.
Observations and Remedies for Large Language Model Bias in Self-Consuming Performative Loop
The rapid advancement of large language models (LLMs) has led to growing interest in using synthetic data to train future models. However, this creates a self-consuming retraining loop, where models are trained on their own outputs and may cause performance drops and induce emerging biases. In real-world applications, previously deployed LLMs may influence the data they generate, leading to a dynamic system driven by user feedback. For example, if a model continues to underserve users from a group, less query data will be collected from this particular demographic of users. In this study, we introduce the concept of \textbf{S}elf-\textbf{C}onsuming \textbf{P}erformative \textbf{L}oop (\textbf{SCPL}) and investigate the role of synthetic data in shaping bias during these dynamic iterative training processes under controlled performative feedback. This controlled setting is motivated by the inaccessibility of real-world user preference data from dynamic production systems, and enables us to isolate and analyze feedback-driven bias evolution in a principled manner. We focus on two types of loops, including the typical retraining setting and the incremental fine-tuning setting, which is largely underexplored. Through experiments on three real-world tasks, we find that the performative loop increases preference bias and decreases disparate bias. We design a reward-based rejection sampling strategy to mitigate the bias, moving towards more trustworthy self-improving systems.
FaST: Efficient and Effective Long-Horizon Forecasting for Large-Scale Spatial-Temporal Graphs via Mixture-of-Experts
Spatial-Temporal Graph (STG) forecasting on large-scale networks has garnered significant attention. However, existing models predominantly focus on short-horizon predictions and suffer from notorious computational costs and memory consumption when scaling to long-horizon predictions and large graphs. Targeting the above challenges, we present FaST, an effective and efficient framework based on heterogeneity-aware Mixture-of-Experts (MoEs) for long-horizon and large-scale STG forecasting, which unlocks one-week-ahead (672 steps at a 15-minute granularity) prediction with thousands of nodes. FaST is underpinned by two key innovations. First, an adaptive graph agent attention mechanism is proposed to alleviate the computational burden inherent in conventional graph convolution and self-attention modules when applied to large-scale graphs. Second, we propose a new parallel MoE module that replaces traditional feed-forward networks with Gated Linear Units (GLUs), enabling an efficient and scalable parallel structure. Extensive experiments on real-world datasets demonstrate that FaST not only delivers superior long-horizon predictive accuracy but also achieves remarkable computational efficiency compared to state-of-the-art baselines. Our source code is available at: https://github.com/yijizhao/FaST.
comment: Accepted to KDD 2026
CoV: Chain-of-View Prompting for Spatial Reasoning
Embodied question answering (EQA) in 3D environments often requires collecting context that is distributed across multiple viewpoints and partially occluded. However, most recent vision--language models (VLMs) are constrained to a fixed and finite set of input views, which limits their ability to acquire question-relevant context at inference time and hinders complex spatial reasoning. We propose Chain-of-View (CoV) prompting, a training-free, test-time reasoning framework that transforms a VLM into an active viewpoint reasoner through a coarse-to-fine exploration process. CoV first employs a View Selection agent to filter redundant frames and identify question-aligned anchor views. It then performs fine-grained view adjustment by interleaving iterative reasoning with discrete camera actions, obtaining new observations from the underlying 3D scene representation until sufficient context is gathered or a step budget is reached. We evaluate CoV on OpenEQA across four mainstream VLMs and obtain an average +11.56\% improvement in LLM-Match, with a maximum gain of +13.62\% on Qwen3-VL-Flash. CoV further exhibits test-time scaling: increasing the minimum action budget yields an additional +2.51\% average improvement, peaking at +3.73\% on Gemini-2.5-Flash. On ScanQA and SQA3D, CoV delivers strong performance (e.g., 116 CIDEr / 31.9 EM@1 on ScanQA and 51.1 EM@1 on SQA3D). Overall, these results suggest that question-aligned view selection coupled with open-view search is an effective, model-agnostic strategy for improving spatial reasoning in 3D EQA without additional training.
RelayLLM: Efficient Reasoning via Collaborative Decoding
Large Language Models (LLMs) for complex reasoning is often hindered by high computational costs and latency, while resource-efficient Small Language Models (SLMs) typically lack the necessary reasoning capacity. Existing collaborative approaches, such as cascading or routing, operate at a coarse granularity by offloading entire queries to LLMs, resulting in significant computational waste when the SLM is capable of handling the majority of reasoning steps. To address this, we propose RelayLLM, a novel framework for efficient reasoning via token-level collaborative decoding. Unlike routers, RelayLLM empowers the SLM to act as an active controller that dynamically invokes the LLM only for critical tokens via a special command, effectively "relaying" the generation process. We introduce a two-stage training framework, including warm-up and Group Relative Policy Optimization (GRPO) to teach the model to balance independence with strategic help-seeking. Empirical results across six benchmarks demonstrate that RelayLLM achieves an average accuracy of 49.52%, effectively bridging the performance gap between the two models. Notably, this is achieved by invoking the LLM for only 1.07% of the total generated tokens, offering a 98.2% cost reduction compared to performance-matched random routers.
Vision-Language Introspection: Mitigating Overconfident Hallucinations in MLLMs via Interpretable Bi-Causal Steering
Object hallucination critically undermines the reliability of Multimodal Large Language Models, often stemming from a fundamental failure in cognitive introspection, where models blindly trust linguistic priors over specific visual evidence. Existing mitigations remain limited: contrastive decoding approaches operate superficially without rectifying internal semantic misalignments, while current latent steering methods rely on static vectors that lack instance-specific precision. We introduce Vision-Language Introspection (VLI), a training-free inference framework that simulates a metacognitive self-correction process. VLI first performs Attributive Introspection to diagnose hallucination risks via probabilistic conflict detection and localize the causal visual anchors. It then employs Interpretable Bi-Causal Steering to actively modulate the inference process, dynamically isolating visual evidence from background noise while neutralizing blind confidence through adaptive calibration. VLI achieves state-of-the-art performance on advanced models, reducing object hallucination rates by 12.67% on MMHal-Bench and improving accuracy by 5.8% on POPE.
Safe Continual Reinforcement Learning Methods for Nonstationary Environments. Towards a Survey of the State of the Art
This work provides a state-of-the-art survey of continual safe online reinforcement learning (COSRL) methods. We discuss theoretical aspects, challenges, and open questions in building continual online safe reinforcement learning algorithms. We provide the taxonomy and the details of continual online safe reinforcement learning methods based on the type of safe learning mechanism that takes adaptation to nonstationarity into account. We categorize safety constraints formulation for online reinforcement learning algorithms, and finally, we discuss prospects for creating reliable, safe online learning algorithms. Keywords: safe RL in nonstationary environments, safe continual reinforcement learning under nonstationarity, HM-MDP, NSMDP, POMDP, safe POMDP, constraints for continual learning, safe continual reinforcement learning review, safe continual reinforcement learning survey, safe continual reinforcement learning, safe online learning under distribution shift, safe continual online adaptation, safe reinforcement learning, safe exploration, safe adaptation, constrained Markov decision processes, safe reinforcement learning, partially observable Markov decision process, safe reinforcement learning and hidden Markov decision processes, Safe Online Reinforcement Learning, safe online reinforcement learning, safe online reinforcement learning, safe meta-learning, safe meta-reinforcement learning, safe context-based reinforcement learning, formulating safety constraints for continual learning
comment: 20 pages, 4 figures
Atlas 2 -- Foundation models for clinical deployment
Pathology foundation models substantially advanced the possibilities in computational pathology -- yet tradeoffs in terms of performance, robustness, and computational requirements remained, which limited their clinical deployment. In this report, we present Atlas 2, Atlas 2-B, and Atlas 2-S, three pathology vision foundation models which bridge these shortcomings by showing state-of-the-art performance in prediction performance, robustness, and resource efficiency in a comprehensive evaluation across eighty public benchmarks. Our models were trained on the largest pathology foundation model dataset to date comprising 5.5 million histopathology whole slide images, collected from three medical institutions Charité - Universtätsmedizin Berlin, LMU Munich, and Mayo Clinic.
Distilling the Thought, Watermarking the Answer: A Principle Semantic Guided Watermark for Large Reasoning Models
Reasoning Large Language Models (RLLMs) excelling in complex tasks present unique challenges for digital watermarking, as existing methods often disrupt logical coherence or incur high computational costs. Token-based watermarking techniques can corrupt the reasoning flow by applying pseudo-random biases, while semantic-aware approaches improve quality but introduce significant latency or require auxiliary models. This paper introduces ReasonMark, a novel watermarking framework specifically designed for reasoning-intensive LLMs. Our approach decouples generation into an undisturbed Thinking Phase and a watermarked Answering Phase. We propose a Criticality Score to identify semantically pivotal tokens from the reasoning trace, which are distilled into a Principal Semantic Vector (PSV). The PSV then guides a semantically-adaptive mechanism that modulates watermark strength based on token-PSV alignment, ensuring robustness without compromising logical integrity. Extensive experiments show ReasonMark surpasses state-of-the-art methods by reducing text Perplexity by 0.35, increasing translation BLEU score by 0.164, and raising mathematical accuracy by 0.67 points. These advancements are achieved alongside a 0.34% higher watermark detection AUC and stronger robustness to attacks, all with a negligible increase in latency. This work enables the traceable and trustworthy deployment of reasoning LLMs in real-world applications.
VERSE: Visual Embedding Reduction and Space Exploration. Clustering-Guided Insights for Training Data Enhancement in Visually-Rich Document Understanding
This work introduces VERSE, a methodology for analyzing and improving Vision-Language Models applied to Visually-rich Document Understanding by exploring their visual embedding space. VERSE enables the visualization of latent representations, supporting the assessment of model feasibility. It also facilitates the identification of problematic regions and guides the generation of synthetic data to enhance performance in those clusters. We validate the methodology by training on the synthetic MERIT Dataset and evaluating on its real-world counterpart, MERIT Secret. Results show that VERSE helps uncover the visual features associated with error-prone clusters, and that retraining with samples containing these features substantially boosts F1 performance without degrading generalization. Furthermore, we demonstrate that on-premise models such as Donut and Idefics2, when optimized with VERSE, match or even surpass the performance of SaaS solutions like GPT-4 and Pixtral.
Evaluative Fingerprints: Stable and Systematic Differences in LLM Evaluator Behavior
LLM-as-judge systems promise scalable, consistent evaluation. We find the opposite: judges are consistent, but not with each other; they are consistent with themselves. Across 3,240 evaluations (9 judges x 120 unique video x pack items x 3 independent runs), inter-judge agreement is near-zero (Krippendorff's α = 0.042). On two dimensions, judges disagree more than random noise would predict (α < 0). Yet this disagreement isn't chaos; it's structured. A classifier identifies which judge produced an evaluation with 77.1% accuracy from rubric scores alone, rising to 89.9% with disposition features. Within model families, the signal is even stronger: GPT-4.1 and GPT-5.2 are distinguishable with 99.6% accuracy. We call this the reliability paradox: judges cannot agree on what constitutes quality, yet their disagreement patterns are so stable they function as fingerprints. Each judge implements a distinct, stable theory of quality: an "evaluative disposition" that shapes how it interprets any rubric. We characterize these dispositions along multiple axes: harshness/leniency, dimension emphasis, within-judge stability (ICC), and evidence behavior (receipt validity, semantic linkage via NLI, and shotgun index). The implication is stark: LLM judges are not interchangeable instruments measuring a shared construct. They are distinct measurement devices, each encoding its own implicit theory of quality. Averaging their scores produces a synthetic verdict that corresponds to no judge's actual values.
comment: 23 pages, 6 figures, code and artifacts at : https://github.com/wajid-nasser/evaluative-fingerprints
Agent-as-a-Judge
LLM-as-a-Judge has revolutionized AI evaluation by leveraging large language models for scalable assessments. However, as evaluands become increasingly complex, specialized, and multi-step, the reliability of LLM-as-a-Judge has become constrained by inherent biases, shallow single-pass reasoning, and the inability to verify assessments against real-world observations. This has catalyzed the transition to Agent-as-a-Judge, where agentic judges employ planning, tool-augmented verification, multi-agent collaboration, and persistent memory to enable more robust, verifiable, and nuanced evaluations. Despite the rapid proliferation of agentic evaluation systems, the field lacks a unified framework to navigate this shifting landscape. To bridge this gap, we present the first comprehensive survey tracing this evolution. Specifically, we identify key dimensions that characterize this paradigm shift and establish a developmental taxonomy. We organize core methodologies and survey applications across general and professional domains. Furthermore, we analyze frontier challenges and identify promising research directions, ultimately providing a clear roadmap for the next generation of agentic evaluation.
GlimpRouter: Efficient Collaborative Inference by Glimpsing One Token of Thoughts
Large Reasoning Models (LRMs) achieve remarkable performance by explicitly generating multi-step chains of thought, but this capability incurs substantial inference latency and computational cost. Collaborative inference offers a promising solution by selectively allocating work between lightweight and large models, yet a fundamental challenge remains: determining when a reasoning step requires the capacity of a large model or the efficiency of a small model. Existing routing strategies either rely on local token probabilities or post-hoc verification, introducing significant inference overhead. In this work, we propose a novel perspective on step-wise collaboration: the difficulty of a reasoning step can be inferred from its very first token. Inspired by the "Aha Moment" phenomenon in LRMs, we show that the entropy of the initial token serves as a strong predictor of step difficulty. Building on this insight, we introduce GlimpRouter, a training-free step-wise collaboration framework. GlimpRouter employs a lightweight model to generate only the first token of each reasoning step and routes the step to a larger model only when the initial token entropy exceeds a threshold. Experiments on multiple benchmarks demonstrate that our approach significantly reduces inference latency while preserving accuracy. For instance, GlimpRouter attains a substantial 10.7% improvement in accuracy while reducing inference latency by 25.9% compared to a standalone large model on AIME25. These results suggest a simple yet effective mechanism for reasoning: allocating computation based on a glimpse of thought rather than full-step evaluation.
comment: Code available at https://github.com/Zengwh02/GlimpRouter
Controllable Memory Usage: Balancing Anchoring and Innovation in Long-Term Human-Agent Interaction
As LLM-based agents are increasingly used in long-term interactions, cumulative memory is critical for enabling personalization and maintaining stylistic consistency. However, most existing systems adopt an ``all-or-nothing'' approach to memory usage: incorporating all relevant past information can lead to \textit{Memory Anchoring}, where the agent is trapped by past interactions, while excluding memory entirely results in under-utilization and the loss of important interaction history. We show that an agent's reliance on memory can be modeled as an explicit and user-controllable dimension. We first introduce a behavioral metric of memory dependence to quantify the influence of past interactions on current outputs. We then propose \textbf{Stee}rable \textbf{M}emory Agent, \texttt{SteeM}, a framework that allows users to dynamically regulate memory reliance, ranging from a fresh-start mode that promotes innovation to a high-fidelity mode that closely follows interaction history. Experiments across different scenarios demonstrate that our approach consistently outperforms conventional prompting and rigid memory masking strategies, yielding a more nuanced and effective control for personalized human-agent collaboration.
Token-Level LLM Collaboration via FusionRoute
Large language models (LLMs) exhibit strengths across diverse domains. However, achieving strong performance across these domains with a single general-purpose model typically requires scaling to sizes that are prohibitively expensive to train and deploy. On the other hand, while smaller domain-specialized models are much more efficient, they struggle to generalize beyond their training distributions. To address this dilemma, we propose FusionRoute, a robust and effective token-level multi-LLM collaboration framework in which a lightweight router simultaneously (i) selects the most suitable expert at each decoding step and (ii) contributes a complementary logit that refines or corrects the selected expert's next-token distribution via logit addition. Unlike existing token-level collaboration methods that rely solely on fixed expert outputs, we provide a theoretical analysis showing that pure expert-only routing is fundamentally limited: unless strong global coverage assumptions hold, it cannot in general realize the optimal decoding policy. By augmenting expert selection with a trainable complementary generator, FusionRoute expands the effective policy class and enables recovery of optimal value functions under mild conditions. Empirically, across both Llama-3 and Gemma-2 families and diverse benchmarks spanning mathematical reasoning, code generation, and instruction following, FusionRoute outperforms both sequence- and token-level collaboration, model merging, and direct fine-tuning, while remaining competitive with domain experts on their respective tasks.
comment: 25 pages
Arabic Prompts with English Tools: A Benchmark
Large Language Models (LLMs) are now integral to numerous industries, increasingly serving as the core reasoning engine for autonomous agents that perform complex tasks through tool-use. While the development of Arabic-native LLMs is accelerating, the benchmarks for evaluating their capabilities lag behind, with most existing frameworks focusing on English. A critical and overlooked area is tool-calling, where the performance of models prompted in non-English languages like Arabic is poorly understood, especially since these models are often pretrained on predominantly English data. This paper addresses this critical gap by introducing the first dedicated benchmark for evaluating the tool-calling and agentic capabilities of LLMs in the Arabic language. Our work provides a standardized framework to measure the functional accuracy and robustness of models in Arabic agentic workflows. Our findings reveal a huge performance gap: when users interact in Arabic, tool-calling accuracy drops by an average of 5-10\%, regardless of whether the tool descriptions themselves are in Arabic or English. By shedding light on these critical challenges, this benchmark aims to foster the development of more reliable and linguistically equitable AI agents for Arabic-speaking users.
comment: 10 pages, 10 figures, LLMs, Big Data, and Multilinguality for All (LLMs4All) Workshop at IEEE BigData 2025 Conference, Macau, December 10, 2025
Code-Mix Sentiment Analysis on Hinglish Tweets
The effectiveness of brand monitoring in India is increasingly challenged by the rise of Hinglish--a hybrid of Hindi and English--used widely in user-generated content on platforms like Twitter. Traditional Natural Language Processing (NLP) models, built for monolingual data, often fail to interpret the syntactic and semantic complexity of this code-mixed language, resulting in inaccurate sentiment analysis and misleading market insights. To address this gap, we propose a high-performance sentiment classification framework specifically designed for Hinglish tweets. Our approach fine-tunes mBERT (Multilingual BERT), leveraging its multilingual capabilities to better understand the linguistic diversity of Indian social media. A key component of our methodology is the use of subword tokenization, which enables the model to effectively manage spelling variations, slang, and out-of-vocabulary terms common in Romanized Hinglish. This research delivers a production-ready AI solution for brand sentiment tracking and establishes a strong benchmark for multilingual NLP in low-resource, code-mixed environments.
comment: Accepted at the 9th International Conference on Natural Language Processing and Information Retrieval (NLPIR 2025), Fukuoka, Japan
Driver-Intention Prediction with Deep Learning: Real-Time Brain-to-Vehicle Communication
Brain-computer interfaces (BCIs) allow direct communication between the brain and electronics without the need for speech or physical movement. Such interfaces can be particularly beneficial in applications requiring rapid response times, such as driving, where a vehicle's advanced driving assistance systems could benefit from immediate understanding of a driver's intentions. This study presents a novel method for predicting a driver's intention to steer using electroencephalography (EEG) signals through deep learning. A driving simulator created a controlled environment in which participants imagined controlling a vehicle during various driving scenarios, including left and right turns, as well as straight driving. A convolutional neural network (CNN) classified the detected EEG data with minimal pre-processing. Our model achieved an accuracy of 83.7% in distinguishing between the three steering intentions and demonstrated the ability of CNNs to process raw EEG data effectively. The classification accuracy was highest for right-turn segments, which suggests a potential spatial bias in brain activity. This study lays the foundation for more intuitive brain-to-vehicle communication systems.
comment: 6 pages, 7 figures
Driving on Registers
We present DrivoR, a simple and efficient transformer-based architecture for end-to-end autonomous driving. Our approach builds on pretrained Vision Transformers (ViTs) and introduces camera-aware register tokens that compress multi-camera features into a compact scene representation, significantly reducing downstream computation without sacrificing accuracy. These tokens drive two lightweight transformer decoders that generate and then score candidate trajectories. The scoring decoder learns to mimic an oracle and predicts interpretable sub-scores representing aspects such as safety, comfort, and efficiency, enabling behavior-conditioned driving at inference. Despite its minimal design, DrivoR outperforms or matches strong contemporary baselines across NAVSIM-v1, NAVSIM-v2, and the photorealistic closed-loop HUGSIM benchmark. Our results show that a pure-transformer architecture, combined with targeted token compression, is sufficient for accurate, efficient, and adaptive end-to-end driving. Code and checkpoints will be made available via the project page.
Chain-of-Sanitized-Thoughts: Plugging PII Leakage in CoT of Large Reasoning Models
Large Reasoning Models (LRMs) improve performance, reliability, and interpretability by generating explicit chain-of-thought (CoT) reasoning, but this transparency introduces a serious privacy risk: intermediate reasoning often leaks personally identifiable information (PII) even when final answers are sanitized. We study how to induce privacy-first reasoning, where models reason without exposing sensitive information, using deployable interventions rather than post-hoc redaction. We introduce PII-CoT-Bench, a supervised dataset with privacy-aware CoT annotations, and a category-balanced evaluation benchmark covering realistic and adversarial leakage scenarios. Our results reveal a capability-dependent trend: state-of-the-art models benefit most from prompt-based controls, whereas weaker models require fine-tuning to achieve meaningful leakage reduction. Across models and categories, both approaches substantially reduce PII exposure with minimal degradation in utility, demonstrating that private reasoning can be achieved without sacrificing performance. Overall, we show that private CoT reasoning can be achieved with minimal utility loss, providing practical guidance for building privacy-preserving reasoning systems.
comment: 12 pages, 6 figures, 1 table
Compositional Steering of Large Language Models with Steering Tokens
Deploying LLMs in real-world applications requires controllable output that satisfies multiple desiderata at the same time. While existing work extensively addresses LLM steering for a single behavior, \textit{compositional steering} -- i.e., steering LLMs simultaneously towards multiple behaviors -- remains an underexplored problem. In this work, we propose \emph{compositional steering tokens} for multi-behavior steering. We first embed individual behaviors, expressed as natural language instructions, into dedicated tokens via self-distillation. Contrary to most prior work, which operates in the activation space, our behavior steers live in the space of input tokens, enabling more effective zero-shot composition. We then train a dedicated \textit{composition token} on pairs of behaviors and show that it successfully captures the notion of composition: it generalizes well to \textit{unseen} compositions, including those with unseen behaviors as well as those with an unseen \textit{number} of behaviors. Our experiments across different LLM architectures show that steering tokens lead to superior multi-behavior control compared to competing approaches (instructions, activation steering, and LoRA merging). Moreover, we show that steering tokens complement natural language instructions, with their combination resulting in further gains.
Reinforced Efficient Reasoning via Semantically Diverse Exploration
Reinforcement learning with verifiable rewards (RLVR) has proven effective in enhancing the reasoning of large language models (LLMs). Monte Carlo Tree Search (MCTS)-based extensions improve upon vanilla RLVR (e.g., GRPO) by providing tree-based reasoning rollouts that enable fine-grained and segment-level credit assignment. However, existing methods still suffer from limited exploration diversity and inefficient reasoning. To address the above challenges, we propose reinforced efficient reasoning via semantically diverse explorations, i.e., ROSE, for LLMs. To encourage more diverse reasoning exploration, our method incorporates a semantic-entropy-based branching strategy and an $\varepsilon$-exploration mechanism. The former operates on already sampled reasoning rollouts to capture semantic uncertainty and select branching points with high semantic divergence to generate new successive reasoning paths, whereas the latter stochastically initiates reasoning rollouts from the root, preventing the search process from becoming overly local. To improve efficiency, we design a length-aware segment-level advantage estimator that rewards concise and correct reasoning while penalizing unnecessarily long reasoning chains. Extensive experiments on various mathematical reasoning benchmarks with Qwen and Llama models validate the effectiveness and efficiency of ROSE. Codes are available at https://github.com/ZiqiZhao1/ROSE-rl.
Publishing FAIR and Machine-actionable Reviews in Materials Science: The Case for Symbolic Knowledge in Neuro-symbolic Artificial Intelligence
Scientific reviews are central to knowledge integration in materials science, yet their key insights remain locked in narrative text and static PDF tables, limiting reuse by humans and machines alike. This article presents a case study in atomic layer deposition and etching (ALD/E) where we publish review tables as FAIR, machine-actionable comparisons in the Open Research Knowledge Graph (ORKG), turning them into structured, queryable knowledge. Building on this, we contrast symbolic querying over ORKG with large language model-based querying, and argue that a curated symbolic layer should remain the backbone of reliable neurosymbolic AI in materials science, with LLMs serving as complementary, symbolically grounded interfaces rather than standalone sources of truth.
comment: 35 pages, 11 figures
Large language models can effectively convince people to believe conspiracies
Large language models (LLMs) have been shown to be persuasive across a variety of context. But it remains unclear whether this persuasive power advantages truth over falsehood, or if LLMs can promote misbeliefs just as easily as refuting them. Here, we investigate this question across three pre-registered experiments in which participants (N = 2,724 Americans) discussed a conspiracy theory they were uncertain about with GPT-4o, and the model was instructed to either argue against ("debunking") or for ("bunking") that conspiracy. When using a "jailbroken" GPT-4o variant with guardrails removed, the AI was as effective at increasing conspiracy belief as decreasing it. Concerningly, the bunking AI was rated more positively, and increased trust in AI, more than the debunking AI. Surprisingly, we found that using standard GPT-4o produced very similar effects, such that the guardrails imposed by OpenAI did little to revent the LLM from promoting conspiracy beliefs. Encouragingly, however, a corrective conversation reversed these newly induced conspiracy beliefs, and simply prompting GPT-4o to only use accurate information dramatically reduced its ability to increase conspiracy beliefs. Our findings demonstrate that LLMs possess potent abilities to promote both truth and falsehood, but that potential solutions may exist to help mitigate this risk.
How to Set the Learning Rate for Large-Scale Pre-training?
Optimal configuration of the learning rate (LR) is a fundamental yet formidable challenge in large-scale pre-training. Given the stringent trade-off between training costs and model performance, the pivotal question is whether the optimal LR can be accurately extrapolated from low-cost experiments. In this paper, we formalize this investigation into two distinct research paradigms: Fitting and Transfer. Within the Fitting Paradigm, we innovatively introduce a Scaling Law for search factor, effectively reducing the search complexity from O(n^3) to O(n*C_D*C_η) via predictive modeling. Within the Transfer Paradigm, we extend the principles of $μ$Transfer to the Mixture of Experts (MoE) architecture, broadening its applicability to encompass model depth, weight decay, and token horizons. By pushing the boundaries of existing hyperparameter research in terms of scale, we conduct a comprehensive comparison between these two paradigms. Our empirical results challenge the scalability of the widely adopted $μ$ Transfer in large-scale pre-training scenarios. Furthermore, we provide a rigorous analysis through the dual lenses of training stability and feature learning to elucidate the underlying reasons why module-wise parameter tuning underperforms in large-scale settings. This work offers systematic practical guidelines and a fresh theoretical perspective for optimizing industrial-level pre-training.
Challenges and Research Directions for Large Language Model Inference Hardware
Large Language Model (LLM) inference is hard. The autoregressive Decode phase of the underlying Transformer model makes LLM inference fundamentally different from training. Exacerbated by recent AI trends, the primary challenges are memory and interconnect rather than compute. To address these challenges, we highlight four architecture research opportunities: High Bandwidth Flash for 10X memory capacity with HBM-like bandwidth; Processing-Near-Memory and 3D memory-logic stacking for high memory bandwidth; and low-latency interconnect to speedup communication. While our focus is datacenter AI, we also review their applicability for mobile devices.
comment: Accepted for publication by IEEE Computer, 2026
ArcAligner: Adaptive Recursive Aligner for Compressed Context Embeddings in RAG
Retrieval-Augmented Generation (RAG) helps LLMs stay accurate, but feeding long documents into a prompt makes the model slow and expensive. This has motivated context compression, ranging from token pruning and summarization to embedding-based compression. While researchers have tried ''compressing'' these documents into smaller summaries or mathematical embeddings, there is a catch: the more you compress the data, the more the LLM struggles to understand it. To address this challenge, we propose ArcAligner (Adaptive recursive context *Aligner*), a lightweight module integrated into the language model layers to help the model better utilize highly compressed context representations for downstream generation. It uses an adaptive ''gating'' system that only adds extra processing power when the information is complex, keeping the system fast. Across knowledge-intensive QA benchmarks, ArcAligner consistently beats compression baselines at comparable compression rates, especially on multi-hop and long-tail settings. The source code is publicly available.
comment: Code is available at https://github.com/liunian-Jay/ArcAligner.git
Exponential capacity scaling of classical GANs compared to hybrid latent style-based quantum GANs
Quantum generative modeling is a very active area of research in looking for practical advantage in data analysis. Quantum generative adversarial networks (QGANs) are leading candidates for quantum generative modeling and have been applied to diverse areas, from high-energy physics to image generation. The latent style-based QGAN, relying on a classical variational autoencoder to encode the input data into a latent space and then using a style-based QGAN for data generation has been proven to be efficient for image generation or drug design, hinting at the use of far less trainable parameters than their classical counterpart to achieve comparable performance, however this advantage has never been systematically studied. We present in this work the first comprehensive experimental analysis of this advantage of QGANS applied to SAT4 image generation, obtaining an exponential advantage in capacity scaling for a quantum generator in the hybrid latent style-based QGAN architecture. Careful tuning of the autoencoder is crucial to obtain stable, reliable results. Once this tuning is performed and defining training optimality as when the training is stable and the FID score is low and stable as well, the optimal capacity (or number of trainable parameters) of the classical discriminator scales exponentially with respect to the capacity of the quantum generator, and the same is true for the capacity of the classical generator. This hints toward a type of quantum advantage for quantum generative modeling.
comment: 34 pages, 7 figures, 7 tables
How to Set the Batch Size for Large-Scale Pre-training?
The concept of Critical Batch Size, as pioneered by OpenAI, has long served as a foundational principle for large-scale pre-training. However, with the paradigm shift towards the Warmup-Stable-Decay (WSD) learning rate scheduler, we observe that the original theoretical framework and its underlying mechanisms fail to align with new pre-training dynamics. To bridge this gap between theory and practice, this paper derives a revised E(S) relationship tailored for WSD scheduler, characterizing the trade-off between training data consumption E and steps S during pre-training. Our theoretical analysis reveals two fundamental properties of WSD-based pre-training: 1) B_min, the minimum batch size threshold required to achieve a target loss, and 2) B_opt, the optimal batch size that maximizes data efficiency by minimizing total tokens. Building upon these properties, we propose a dynamic Batch Size Scheduler. Extensive experiments demonstrate that our revised formula precisely captures the dynamics of large-scale pre-training, and the resulting scheduling strategy significantly enhances both training efficiency and final model quality.
OptiSet: Unified Optimizing Set Selection and Ranking for Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) improves generation quality by incorporating evidence retrieved from large external corpora. However, most existing methods rely on statically selecting top-k passages based on individual relevance, which fails to exploit combinatorial gains among passages and often introduces substantial redundancy. To address this limitation, we propose OptiSet, a set-centric framework that unifies set selection and set-level ranking for RAG. OptiSet adopts an "Expand-then-Refine" paradigm: it first expands a query into multiple perspectives to enable a diverse candidate pool and then refines the candidate pool via re-selection to form a compact evidence set. We then devise a self-synthesis strategy without strong LLM supervision to derive preference labels from the set conditional utility changes of the generator, thereby identifying complementary and redundant evidence. Finally, we introduce a set-list wise training strategy that jointly optimizes set selection and set-level ranking, enabling the model to favor compact, high-gain evidence sets. Extensive experiments demonstrate that OptiSet improves performance on complex combinatorial problems and makes generation more efficient. The source code is publicly available.
comment: Code is available at https://github.com/liunian-Jay/OptiSet.git
Hán Dān Xué Bù (Mimicry) or Qīng Chū Yú Lán (Mastery)? A Cognitive Perspective on Reasoning Distillation in Large Language Models
Recent Large Reasoning Models trained via reinforcement learning exhibit a "natural" alignment with human cognitive costs. However, we show that the prevailing paradigm of reasoning distillation -- training student models to mimic these traces via Supervised Fine-Tuning (SFT) -- fails to transmit this cognitive structure. Testing the "Hán Dān Xué Bù" (Superficial Mimicry) hypothesis across 14 models, we find that distillation induces a "Functional Alignment Collapse": while teacher models mirror human difficulty scaling ($\bar{r}=0.64$), distilled students significantly degrade this alignment ($\bar{r}=0.34$), often underperforming their own pre-distillation baselines ("Negative Transfer"). Our analysis suggests that SFT induces a "Cargo Cult" effect, where students ritualistically replicate the linguistic form of reasoning (verbosity) without internalizing the teacher's dynamic resource allocation policy. Consequently, reasoning distillation decouples computational cost from cognitive demand, revealing that human-like cognition is an emergent property of active reinforcement, not passive imitation.
comment: 7 pages, 7 figures
HMVI: Unifying Heterogeneous Attributes with Natural Neighbors for Missing Value Inference
Missing value imputation is a fundamental challenge in machine intelligence, heavily dependent on data completeness. Current imputation methods often handle numerical and categorical attributes independently, overlooking critical interdependencies among heterogeneous features. To address these limitations, we propose a novel imputation approach that explicitly models cross-type feature dependencies within a unified framework. Our method leverages both complete and incomplete instances to ensure accurate and consistent imputation in tabular data. Extensive experimental results demonstrate that the proposed approach achieves superior performance over existing techniques and significantly enhances downstream machine learning tasks, providing a robust solution for real-world systems with missing data.
comment: Submitted to ICASSP 2026
From Idea to Co-Creation: A Planner-Actor-Critic Framework for Agent Augmented 3D Modeling
We present a framework that extends the Actor-Critic architecture to creative 3D modeling through multi-agent self-reflection and human-in-the-loop supervision. While existing approaches rely on single-prompt agents that directly execute modeling commands via tools like Blender MCP, our approach introduces a Planner-Actor-Critic architecture. In this design, the Planner coordinates modeling steps, the Actor executes them, and the Critic provides iterative feedback, while human users act as supervisors and advisors throughout the process. Through systematic comparison between single-prompt modeling and our reflective multi-agent approach, we demonstrate improvements in geometric accuracy, aesthetic quality, and task completion rates across diverse 3D modeling scenarios. Our evaluation reveals that critic-guided reflection, combined with human supervisory input, reduces modeling errors and increases complexity and quality of the result compared to direct single-prompt execution. This work establishes that structured agent self-reflection, when augmented by human oversight and advisory guidance, produces higher-quality 3D models while maintaining efficient workflow integration through real-time Blender synchronization.
An Empirical Investigation of Robustness in Large Language Models under Tabular Distortions
We investigate how large language models (LLMs) fail when tabular data in an otherwise canonical representation is subjected to semantic and structural distortions. Our findings reveal that LLMs lack an inherent ability to detect and correct subtle distortions in table representations. Only when provided with an explicit prior, via a system prompt, do models partially adjust their reasoning strategies and correct some distortions, though not consistently or completely. To study this phenomenon, we introduce a small, expert-curated dataset that explicitly evaluates LLMs on table question answering (TQA) tasks requiring an additional error-correction step prior to analysis. Our results reveal systematic differences in how LLMs ingest and interpret tabular information under distortion, with even SoTA models such as GPT-5.2 model exhibiting a drop of minimum 22% accuracy under distortion. These findings raise important questions for future research, particularly regarding when and how models should autonomously decide to realign tabular inputs, analogous to human behavior, without relying on explicit prompts or tabular data pre-processing.
comment: 4 pages, 1 figure, 1 table
On the Hidden Objective Biases of Group-based Reinforcement Learning
Group-based reinforcement learning methods, like Group Relative Policy Optimization (GRPO), are widely used nowadays to post-train large language models. Despite their empirical success, they exhibit structural mismatches between reward optimization and the underlying training objective. In this paper, we present a theoretical analysis of GRPO style methods by studying them within a unified surrogate formulation. This perspective reveals recurring properties that affect all the methods under analysis: (i) non-uniform group weighting induces systematic gradient biases on shared prefix tokens; (ii) interactions with the AdamW optimizer make training dynamics largely insensitive to reward scaling; and (iii) optimizer momentum can push policy updates beyond the intended clipping region under repeated optimization steps. We believe that these findings highlight fundamental limitations of current approaches and provide principled guidance for the design of future formulations.
AlgBench: To What Extent Do Large Reasoning Models Understand Algorithms?
Reasoning ability has become a central focus in the advancement of Large Reasoning Models (LRMs). Although notable progress has been achieved on several reasoning benchmarks such as MATH500 and LiveCodeBench, existing benchmarks for algorithmic reasoning remain limited, failing to answer a critical question: Do LRMs truly master algorithmic reasoning? To answer this question, we propose AlgBench, an expert-curated benchmark that evaluates LRMs under an algorithm-centric paradigm. AlgBench consists of over 3,000 original problems spanning 27 algorithms, constructed by ACM algorithmic experts and organized under a comprehensive taxonomy, including Euclidean-structured, non-Euclidean-structured, non-optimized, local-optimized, global-optimized, and heuristic-optimized categories. Empirical evaluations on leading LRMs (e.g., Gemini-3-Pro, DeepSeek-v3.2-Speciale and GPT-o3) reveal substantial performance heterogeneity: while models perform well on non-optimized tasks (up to 92%), accuracy drops sharply to around 49% on globally optimized algorithms such as dynamic programming. Further analysis uncovers \textbf{strategic over-shifts}, wherein models prematurely abandon correct algorithmic designs due to necessary low-entropy tokens. These findings expose fundamental limitations of problem-centric reinforcement learning and highlight the necessity of an algorithm-centric training paradigm for robust algorithmic reasoning.
comment: Under review
When to Act: Calibrated Confidence for Reliable Human Intention Prediction in Assistive Robotics
Assistive devices must determine both what a user intends to do and how reliable that prediction is before providing support. We introduce a safety-critical triggering framework based on calibrated probabilities for multimodal next-action prediction in Activities of Daily Living. Raw model confidence often fails to reflect true correctness, posing a safety risk. Post-hoc calibration aligns predicted confidence with empirical reliability and reduces miscalibration by about an order of magnitude without affecting accuracy. The calibrated confidence drives a simple ACT/HOLD rule that acts only when reliability is high and withholds assistance otherwise. This turns the confidence threshold into a quantitative safety parameter for assisted actions and enables verifiable behavior in an assistive control loop.
On the Definition and Detection of Cherry-Picking in Counterfactual Explanations
Counterfactual explanations are widely used to communicate how inputs must change for a model to alter its prediction. For a single instance, many valid counterfactuals can exist, which leaves open the possibility for an explanation provider to cherry-pick explanations that better suit a narrative of their choice, highlighting favourable behaviour and withholding examples that reveal problematic behaviour. We formally define cherry-picking for counterfactual explanations in terms of an admissible explanation space, specified by the generation procedure, and a utility function. We then study to what extent an external auditor can detect such manipulation. Considering three levels of access to the explanation process: full procedural access, partial procedural access, and explanation-only access, we show that detection is extremely limited in practice. Even with full procedural access, cherry-picked explanations can remain difficult to distinguish from non cherry-picked explanations, because the multiplicity of valid counterfactuals and flexibility in the explanation specification provide sufficient degrees of freedom to mask deliberate selection. Empirically, we demonstrate that this variability often exceeds the effect of cherry-picking on standard counterfactual quality metrics such as proximity, plausibility, and sparsity, making cherry-picked explanations statistically indistinguishable from baseline explanations. We argue that safeguards should therefore prioritise reproducibility, standardisation, and procedural constraints over post-hoc detection, and we provide recommendations for algorithm developers, explanation providers, and auditors.
ConMax: Confidence-Maximizing Compression for Efficient Chain-of-Thought Reasoning
Recent breakthroughs in Large Reasoning Models (LRMs) have demonstrated that extensive Chain-of-Thought (CoT) generation is critical for enabling intricate cognitive behaviors, such as self-verification and backtracking, to solve complex tasks. However, this capability often leads to ``overthinking'', where models generate redundant reasoning paths that inflate computational costs without improving accuracy. While Supervised Fine-Tuning (SFT) on reasoning traces is a standard paradigm for the 'cold start' phase, applying existing compression techniques to these traces often compromises logical coherence or incurs prohibitive sampling costs. In this paper, we introduce ConMax (Confidence-Maximizing Compression), a novel reinforcement learning framework designed to automatically compress reasoning traces while preserving essential reasoning patterns. ConMax formulates compression as a reward-driven optimization problem, training a policy to prune redundancy by maximizing a weighted combination of answer confidence for predictive fidelity and thinking confidence for reasoning validity through a frozen auxiliary LRM. Extensive experiments across five reasoning datasets demonstrate that ConMax achieves a superior efficiency-performance trade-off. Specifically, it reduces inference length by 43% over strong baselines at the cost of a mere 0.7% dip in accuracy, proving its effectiveness in generating high-quality, efficient training data for LRMs.
Text as a Universal Interface for Transferable Personalization
We study the problem of personalization in large language models (LLMs). Prior work predominantly represents user preferences as implicit, model-specific vectors or parameters, yielding opaque ``black-box'' profiles that are difficult to interpret and transfer across models and tasks. In contrast, we advocate natural language as a universal, model- and task-agnostic interface for preference representation. The formulation leads to interpretable and reusable preference descriptions, while naturally supporting continual evolution as new interactions are observed. To learn such representations, we introduce a two-stage training framework that combines supervised fine-tuning on high-quality synthesized data with reinforcement learning to optimize long-term utility and cross-task transferability. Based on this framework, we develop AlignXplore+, a universal preference reasoning model that generates textual preference summaries. Experiments on nine benchmarks show that our 8B model achieves state-of-the-art performanc -- outperforming substantially larger open-source models -- while exhibiting strong transferability across tasks, model families, and interaction formats.
Precision over Diversity: High-Precision Reward Generalizes to Robust Instruction Following
A central belief in scaling reinforcement learning with verifiable rewards for instruction following (IF) tasks is that, a diverse mixture of verifiable hard and unverifiable soft constraints is essential for generalizing to unseen instructions. In this work, we challenge this prevailing consensus through a systematic empirical investigation. Counter-intuitively, we find that models trained on hard-only constraints consistently outperform those trained on mixed datasets. Extensive experiments reveal that reward precision, rather than constraint diversity, is the primary driver of effective alignment. The LLM judge suffers from a low recall rate in detecting false response, which leads to severe reward hacking, thereby undermining the benefits of diversity. Furthermore, analysis of the attention mechanism reveals that high-precision rewards develop a transferable meta-skill for IF. Motivated by these insights, we propose a simple yet effective data-centric refinement strategy that prioritizes reward precision. Evaluated on five benchmarks, our approach outperforms competitive baselines by 13.4\% in performance while achieving a 58\% reduction in training time, maintaining strong generalization beyond instruction following. Our findings advocate for a paradigm shift: moving away from the indiscriminate pursuit of data diversity toward high-precision rewards.
comment: ACL under review 13 pages, 8 figures
Prototypicality Bias Reveals Blindspots in Multimodal Evaluation Metrics
Automatic metrics are now central to evaluating text-to-image models, often substituting for human judgment in benchmarking and large-scale filtering. However, it remains unclear whether these metrics truly prioritize semantic correctness or instead favor visually and socially prototypical images learned from biased data distributions. We identify and study \emph{prototypicality bias} as a systematic failure mode in multimodal evaluation. We introduce a controlled contrastive benchmark \textsc{\textbf{ProtoBias}} (\textit{\textbf{Proto}typical \textbf{Bias}}), spanning Animals, Objects, and Demography images, where semantically correct but non-prototypical images are paired with subtly incorrect yet prototypical adversarial counterparts. This setup enables a directional evaluation of whether metrics follow textual semantics or default to prototypes. Our results show that widely used metrics, including CLIPScore, PickScore, and VQA-based scores, frequently misrank these pairs, while even LLM-as-Judge systems exhibit uneven robustness in socially grounded cases. Human evaluations consistently favour semantic correctness with larger decision margins. Motivated by these findings, we propose \textbf{\textsc{ProtoScore}}, a robust 7B-parameter metric that substantially reduces failure rates and suppresses misranking, while running at orders of magnitude faster than the inference time of GPT-5, approaching the robustness of much larger closed-source judges.
comment: First version
T-Retriever: Tree-based Hierarchical Retrieval Augmented Generation for Textual Graphs
Retrieval-Augmented Generation (RAG) has significantly enhanced Large Language Models' ability to access external knowledge, yet current graph-based RAG approaches face two critical limitations in managing hierarchical information: they impose rigid layer-specific compression quotas that damage local graph structures, and they prioritize topological structure while neglecting semantic content. We introduce T-Retriever, a novel framework that reformulates attributed graph retrieval as tree-based retrieval using a semantic and structure-guided encoding tree. Our approach features two key innovations: (1) Adaptive Compression Encoding, which replaces artificial compression quotas with a global optimization strategy that preserves the graph's natural hierarchical organization, and (2) Semantic-Structural Entropy ($S^2$-Entropy), which jointly optimizes for both structural cohesion and semantic consistency when creating hierarchical partitions. Experiments across diverse graph reasoning benchmarks demonstrate that T-Retriever significantly outperforms state-of-the-art RAG methods, providing more coherent and contextually relevant responses to complex queries.
CurricuLLM: Designing Personalized and Workforce-Aligned Cybersecurity Curricula Using Fine-Tuned LLMs
The cybersecurity landscape is constantly evolving, driven by increased digitalization and new cybersecurity threats. Cybersecurity programs often fail to equip graduates with skills demanded by the workforce, particularly concerning recent developments in cybersecurity, as curriculum design is costly and labor-intensive. To address this misalignment, we present a novel Large Language Model (LLM)-based framework for automated design and analysis of cybersecurity curricula, called CurricuLLM. Our approach provides three key contributions: (1) automation of personalized curriculum design, (2) a data-driven pipeline aligned with industry demands, and (3) a comprehensive methodology for leveraging fine-tuned LLMs in curriculum development. CurricuLLM utilizes a two-tier approach consisting of PreprocessLM, which standardizes input data, and ClassifyLM, which assigns course content to nine Knowledge Areas in cybersecurity. We systematically evaluated multiple Natural Language Processing (NLP) architectures and fine-tuning strategies, ultimately selecting the Bidirectional Encoder Representations from Transformers (BERT) model as ClassifyLM, fine-tuned on foundational cybersecurity concepts and workforce competencies. We are the first to validate our method with human experts who analyzed real-world cybersecurity curricula and frameworks, motivating that CurricuLLM is an efficient solution to replace labor-intensive curriculum analysis. Moreover, once course content has been classified, it can be integrated with established cybersecurity role-based weights, enabling alignment of the educational program with specific job roles, workforce categories, or general market needs. This lays the foundation for personalized, workforce-aligned cybersecurity curricula that prepare students for the evolving demands in cybersecurity.
Conversational AI for Rapid Scientific Prototyping: A Case Study on ESA's ELOPE Competition
Large language models (LLMs) are increasingly used as coding partners, yet their role in accelerating scientific discovery remains underexplored. This paper presents a case study of using ChatGPT for rapid prototyping in ESA's ELOPE (Event-based Lunar OPtical flow Egomotion estimation) competition. The competition required participants to process event camera data to estimate lunar lander trajectories. Despite joining late, we achieved second place with a score of 0.01282, highlighting the potential of human-AI collaboration in competitive scientific settings. ChatGPT contributed not only executable code but also algorithmic reasoning, data handling routines, and methodological suggestions, such as using fixed number of events instead of fixed time spans for windowing. At the same time, we observed limitations: the model often introduced unnecessary structural changes, gets confused by intermediate discussions about alternative ideas, occasionally produced critical errors and forgets important aspects in longer scientific discussions. By analyzing these strengths and shortcomings, we show how conversational AI can both accelerate development and support conceptual insight in scientific research. We argue that structured integration of LLMs into the scientific workflow can enhance rapid prototyping by proposing best practices for AI-assisted scientific work.
What Students Ask, How a Generative AI Assistant Responds: Exploring Higher Education Students' Dialogues on Learning Analytics Feedback
Learning analytics dashboards (LADs) aim to support students' regulation of learning by translating complex data into feedback. Yet students, especially those with lower self-regulated learning (SRL) competence, often struggle to engage with and interpret analytics feedback. Conversational generative artificial intelligence (GenAI) assistants have shown potential to scaffold this process through real-time, personalised, dialogue-based support. Further advancing this potential, we explored authentic dialogues between students and GenAI assistant integrated into LAD during a 10-week semester. The analysis focused on questions students with different SRL levels posed, the relevance and quality of the assistant's answers, and how students perceived the assistant's role in their learning. Findings revealed distinct query patterns. While low SRL students sought clarification and reassurance, high SRL students queried technical aspects and requested personalised strategies. The assistant provided clear and reliable explanations but limited in personalisation, handling emotionally charged queries, and integrating multiple data points for tailored responses. Findings further extend that GenAI interventions can be especially valuable for low SRL students, offering scaffolding that supports engagement with feedback and narrows gaps with their higher SRL peers. At the same time, students' reflections underscored the importance of trust, need for greater adaptivity, context-awareness, and technical refinement in future systems.
Breaking Robustness Barriers in Cognitive Diagnosis: A One-Shot Neural Architecture Search Perspective
With the advancement of network technologies, intelligent tutoring systems (ITS) have emerged to deliver increasingly precise and tailored personalized learning services. Cognitive diagnosis (CD) has emerged as a core research task in ITS, aiming to infer learners' mastery of specific knowledge concepts by modeling the mapping between learning behavior data and knowledge states. However, existing research prioritizes model performance enhancement while neglecting the pervasive noise contamination in observed response data, significantly hindering practical deployment. Furthermore, current cognitive diagnosis models (CDMs) rely heavily on researchers' domain expertise for structural design, which fails to exhaustively explore architectural possibilities, thus leaving model architectures' full potential untapped. To address this issue, we propose OSCD, an evolutionary multi-objective One-Shot neural architecture search method for Cognitive Diagnosis, designed to efficiently and robustly improve the model's capability in assessing learner proficiency. Specifically, OSCD operates through two distinct stages: training and searching. During the training stage, we construct a search space encompassing diverse architectural combinations and train a weight-sharing supernet represented via the complete binary tree topology, enabling comprehensive exploration of potential architectures beyond manual design priors. In the searching stage, we formulate the optimal architecture search under heterogeneous noise scenarios as a multi-objective optimization problem (MOP), and develop an optimization framework integrating a Pareto-optimal solution search strategy with cross-scenario performance evaluation for resolution. Extensive experiments on real-world educational datasets validate the effectiveness and robustness of the optimal architectures discovered by our OSCD model for CD tasks.
comment: KDD2026, 15 pages
From Stories to Cities to Games: A Qualitative Evaluation of Behaviour Planning
The primary objective of a diverse planning approach is to generate a set of plans that are distinct from one another. Such an approach is applied in a variety of real-world domains, including risk management, automated stream data analysis, and malware detection. More recently, a novel diverse planning paradigm, referred to as behaviour planning, has been proposed. This approach extends earlier methods by explicitly incorporating a diversity model into the planning process and supporting multiple planning categories. In this paper, we demonstrate the usefulness of behaviour planning in real-world settings by presenting three case studies. The first case study focuses on storytelling, the second addresses urban planning, and the third examines game evaluation.
DVD: A Robust Method for Detecting Variant Contamination in Large Language Model Evaluation
Evaluating large language models (LLMs) is increasingly confounded by \emph{variant contamination}: the training corpus contains semantically equivalent yet lexically or syntactically altered versions of test items. Unlike verbatim leakage, these paraphrased or structurally transformed variants evade existing detectors based on sampling consistency or perplexity, thereby inflating benchmark scores via memorization rather than genuine reasoning. We formalize this problem and introduce \textbf{DVD} (\textbf{D}etection via \textbf{V}ariance of generation \textbf{D}istribution), a single-sample detector that models the local output distribution induced by temperature sampling. Our key insight is that contaminated items trigger alternation between a \emph{memory-adherence} state and a \emph{perturbation-drift} state, yielding abnormally high variance in the synthetic difficulty of low-probability tokens; uncontaminated items remain in drift with comparatively smooth variance. We construct the first benchmark for variant contamination across two domains Omni-MATH and SuperGPQA by generating and filtering semantically equivalent variants, and simulate contamination via fine-tuning models of different scales and architectures (Qwen2.5 and Llama3.1). Across datasets and models, \textbf{DVD} consistently outperforms perplexity-based, Min-$k$\%++, edit-distance (CDD), and embedding-similarity baselines, while exhibiting strong robustness to hyperparameters. Our results establish variance of the generation distribution as a principled and practical fingerprint for detecting variant contamination in LLM evaluation.
SmartSearch: Process Reward-Guided Query Refinement for Search Agents
Large language model (LLM)-based search agents have proven promising for addressing knowledge-intensive problems by incorporating information retrieval capabilities. Existing works largely focus on optimizing the reasoning paradigms of search agents, yet the quality of intermediate search queries during reasoning remains overlooked. As a result, the generated queries often remain inaccurate, leading to unexpected retrieval results and ultimately limiting search agents' overall effectiveness. To mitigate this issue, we introduce SmartSearch, a framework built upon two key mechanisms: (1) Process rewards, which provide fine-grained supervision for the quality of each intermediate search query through Dual-Level Credit Assessment. (2) Query refinement, which promotes the optimization of query generation by selectively refining low-quality search queries and regenerating subsequent search rounds based on these refinements. To enable the search agent to progressively internalize the ability to improve query quality under the guidance of process rewards, we design a three-stage curriculum learning framework. This framework guides the agent through a progression from imitation, to alignment, and ultimately to generalization. Experimental results show that SmartSearch consistently surpasses existing baselines, and additional quantitative analyses further confirm its significant gains in both search efficiency and query quality. The code is available at https://github.com/MYVAE/SmartSearch.
comment: 16 pages, 6 figures
Flexible Manufacturing Systems Intralogistics: Dynamic Optimization of AGVs and Tool Sharing Using Coloured-Timed Petri Nets and Actor-Critic RL with Actions Masking
Flexible Manufacturing Systems (FMS) are pivotal in optimizing production processes in today's rapidly evolving manufacturing landscape. This paper advances the traditional job shop scheduling problem by incorporating additional complexities through the simultaneous integration of automated guided vehicles (AGVs) and tool-sharing systems. We propose a novel approach that combines Colored-Timed Petri Nets (CTPNs) with actor-critic model-based reinforcement learning (MBRL), effectively addressing the multifaceted challenges associated with FMS. CTPNs provide a formal modeling structure and dynamic action masking, significantly reducing the action search space, while MBRL ensures adaptability to changing environments through the learned policy. Leveraging the advantages of MBRL, we incorporate a lookahead strategy for optimal positioning of AGVs, improving operational efficiency. Our approach was evaluated on small-sized public benchmarks and a newly developed large-scale benchmark inspired by the Taillard benchmark. The results show that our approach matches traditional methods on smaller instances and outperforms them on larger ones in terms of makespan while achieving a tenfold reduction in computation time. To ensure reproducibility, we propose a gym-compatible environment and an instance generator. Additionally, an ablation study evaluates the contribution of each framework component to its overall performance.
Analyzing Message-Code Inconsistency in AI Coding Agent-Authored Pull Requests
Pull request (PR) descriptions generated by AI coding agents are the primary channel for communicating code changes to human reviewers. However, the alignment between these messages and the actual changes remains unexplored, raising concerns about the trustworthiness of AI agents. To fill this gap, we analyzed 23,247 agentic PRs across five agents using PR message-code inconsistency (PR-MCI). We contributed 974 manually annotated PRs, found 406 PRs (1.7%) exhibited high PR-MCI, and identified eight PR-MCI types, revealing that descriptions claiming unimplemented changes was the most common issue (45.4%). Statistical tests confirmed that high-MCI PRs had 51.7% lower acceptance rates (28.3% vs. 80.0%) and took 3.5x longer to merge (55.8 vs. 16.0 hours). Our findings suggest that unreliable PR descriptions undermine trust in AI agents, highlighting the need for PR-MCI verification mechanisms and improved PR generation to enable trustworthy human-AI collaboration.
CuMA: Aligning LLMs with Sparse Cultural Values via Demographic-Aware Mixture of Adapters
As Large Language Models (LLMs) serve a global audience, alignment must transition from enforcing universal consensus to respecting cultural pluralism. We demonstrate that dense models, when forced to fit conflicting value distributions, suffer from \textbf{Mean Collapse}, converging to a generic average that fails to represent diverse groups. We attribute this to \textbf{Cultural Sparsity}, where gradient interference prevents dense parameters from spanning distinct cultural modes. To resolve this, we propose \textbf{\textsc{CuMA}} (\textbf{Cu}ltural \textbf{M}ixture of \textbf{A}dapters), a framework that frames alignment as a \textbf{conditional capacity separation} problem. By incorporating demographic-aware routing, \textsc{CuMA} internalizes a \textit{Latent Cultural Topology} to explicitly disentangle conflicting gradients into specialized expert subspaces. Extensive evaluations on WorldValuesBench, Community Alignment, and PRISM demonstrate that \textsc{CuMA} achieves state-of-the-art performance, significantly outperforming both dense baselines and semantic-only MoEs. Crucially, our analysis confirms that \textsc{CuMA} effectively mitigates mean collapse, preserving cultural diversity. Our code is available at https://github.com/Throll/CuMA.
Precomputing Multi-Agent Path Replanning using Temporal Flexibility: A Case Study on the Dutch Railway Network
Executing a multi-agent plan can be challenging when an agent is delayed, because this typically creates conflicts with other agents. So, we need to quickly find a new safe plan. Replanning only the delayed agent often does not result in an efficient plan, and sometimes cannot even yield a feasible plan. On the other hand, replanning other agents may lead to a cascade of changes and delays. We show how to efficiently replan by tracking and using the temporal flexibility of other agents while avoiding cascading delays. This flexibility is the maximum delay an agent can take without changing the order of or further delaying more agents. Our algorithm, FlexSIPP, precomputes all possible plans for the delayed agent, also returning the changes for the other agents, for any single-agent delay within the given scenario. We demonstrate our method in a real-world case study of replanning trains in the densely-used Dutch railway network. Our experiments show that FlexSIPP provides effective solutions, relevant to real-world adjustments, and within a reasonable timeframe.
Higher-Order Knowledge Representations for Agentic Scientific Reasoning
Scientific inquiry requires systems-level reasoning that integrates heterogeneous experimental data, cross-domain knowledge, and mechanistic evidence into coherent explanations. While Large Language Models (LLMs) offer inferential capabilities, they often depend on retrieval-augmented contexts that lack structural depth. Traditional Knowledge Graphs (KGs) attempt to bridge this gap, yet their pairwise constraints fail to capture the irreducible higher-order interactions that govern emergent physical behavior. To address this, we introduce a methodology for constructing hypergraph-based knowledge representations that faithfully encode multi-entity relationships. Applied to a corpus of ~1,100 manuscripts on biocomposite scaffolds, our framework constructs a global hypergraph of 161,172 nodes and 320,201 hyperedges, revealing a scale-free topology (power law exponent ~1.23) organized around highly connected conceptual hubs. This representation prevents the combinatorial explosion typical of pairwise expansions and explicitly preserves the co-occurrence context of scientific formulations. We further demonstrate that equipping agentic systems with hypergraph traversal tools, specifically using node-intersection constraints, enables them to bridge semantically distant concepts. By exploiting these higher-order pathways, the system successfully generates grounded mechanistic hypotheses for novel composite materials, such as linking cerium oxide to PCL scaffolds via chitosan intermediates. This work establishes a "teacherless" agentic reasoning system where hypergraph topology acts as a verifiable guardrail, accelerating scientific discovery by uncovering relationships obscured by traditional graph methods.
Key-Value Pair-Free Continual Learner via Task-Specific Prompt-Prototype
Continual learning aims to enable models to acquire new knowledge while retaining previously learned information. Prompt-based methods have shown remarkable performance in this domain; however, they typically rely on key-value pairing, which can introduce inter-task interference and hinder scalability. To overcome these limitations, we propose a novel approach employing task-specific Prompt-Prototype (ProP), thereby eliminating the need for key-value pairs. In our method, task-specific prompts facilitate more effective feature learning for the current task, while corresponding prototypes capture the representative features of the input. During inference, predictions are generated by binding each task-specific prompt with its associated prototype. Additionally, we introduce regularization constraints during prompt initialization to penalize excessively large values, thereby enhancing stability. Experiments on several widely used datasets demonstrate the effectiveness of the proposed method. In contrast to mainstream prompt-based approaches, our framework removes the dependency on key-value pairs, offering a fresh perspective for future continual learning research.
Orchestrating Intelligence: Confidence-Aware Routing for Efficient Multi-Agent Collaboration across Multi-Scale Models
While multi-agent systems (MAS) have demonstrated superior performance over single-agent approaches in complex reasoning tasks, they often suffer from significant computational inefficiencies. Existing frameworks typically deploy large language models (LLMs) uniformly across all agent roles, failing to account for the varying cognitive demands of different reasoning stages. We address this inefficiency by proposing OI-MAS framework, a novel multi-agent framework that implements an adaptive model-selection policy across a heterogeneous pool of multi-scale LLMs. Specifically, OI-MAS introduces a state-dependent routing mechanism that dynamically selects agent roles and model scales throughout the reasoning process. In addition, we introduce a confidence-aware mechanism that selects appropriate model scales conditioned on task complexity, thus reducing unnecessary reliance on large-scale models. Experimental results show that OI-MAS consistently outperforms baseline multi-agent systems, improving accuracy by up to 12.88\% while reducing cost by up to 79.78\%.
Rethinking GNNs and Missing Features: Challenges, Evaluation and a Robust Solution
Handling missing node features is a key challenge for deploying Graph Neural Networks (GNNs) in real-world domains such as healthcare and sensor networks. Existing studies mostly address relatively benign scenarios, namely benchmark datasets with (a) high-dimensional but sparse node features and (b) incomplete data generated under Missing Completely At Random (MCAR) mechanisms. For (a), we theoretically prove that high sparsity substantially limits the information loss caused by missingness, making all models appear robust and preventing a meaningful comparison of their performance. To overcome this limitation, we introduce one synthetic and three real-world datasets with dense, semantically meaningful features. For (b), we move beyond MCAR and design evaluation protocols with more realistic missingness mechanisms. Moreover, we provide a theoretical background to state explicit assumptions on the missingness process and analyze their implications for different methods. Building on this analysis, we propose GNNmim, a simple yet effective baseline for node classification with incomplete feature data. Experiments show that GNNmim is competitive with respect to specialized architectures across diverse datasets and missingness regimes.
Token Maturation: Autoregressive Language Generation via Continuous Token Dynamics ICML 2026
Autoregressive language models are conventionally defined over discrete token sequences, committing to a specific token at every generation step. This early discretization forces uncertainty to be resolved through token-level sampling, often leading to instability, repetition, and sensitivity to decoding heuristics. In this work, we introduce a continuous autoregressive formulation of language generation in which tokens are represented as continuous vectors that \emph{mature} over multiple update steps before being discretized. Rather than sampling tokens, the model evolves continuous token representations through a deterministic dynamical process, committing to a discrete token only when the representation has sufficiently converged. Discrete text is recovered via hard decoding, while uncertainty is maintained and resolved in the continuous space. We show that this maturation process alone is sufficient to produce coherent and diverse text using deterministic decoding (argmax), without reliance on token-level sampling, diffusion-style denoising, or auxiliary stabilization mechanisms. Additional perturbations, such as stochastic dynamics or history smoothing, can be incorporated naturally but are not required for the model to function. To our knowledge, this is the first autoregressive language model that generates text by evolving continuous token representations to convergence prior to discretization, enabling stable generation without token-level sampling.
comment: In preperation to ICML 2026
DR-LoRA: Dynamic Rank LoRA for Mixture-of-Experts Adaptation
Mixture-of-Experts (MoE) has become a prominent paradigm for scaling Large Language Models (LLMs). Parameter-efficient fine-tuning (PEFT), such as LoRA, is widely adopted to adapt pretrained MoE LLMs to downstream tasks. However, existing approaches assign identical LoRA ranks to all experts, overlooking the intrinsic functional specialization within MoE LLMs. This uniform allocation leads to resource mismatch, task-relevant experts are under-provisioned while less relevant ones receive redundant parameters. We propose a Dynamic Rank LoRA framework named DR-LoRA, which dynamically grows expert LoRA ranks during fine-tuning based on task-specific demands. DR-LoRA employs an Expert Saliency Scoring mechanism that integrates expert routing frequency and LoRA rank importance to quantify each expert's demand for additional capacity. Experts with higher saliency scores are prioritized for rank expansion, enabling the automatic formation of a heterogeneous rank distribution tailored to the target task. Experiments on multiple benchmarks demonstrate that DR-LoRA consistently outperforms standard LoRA and static allocation strategies under the same parameter budget, achieving superior task performance with more efficient parameter utilization.
AECV-Bench: Benchmarking Multimodal Models on Architectural and Engineering Drawings Understanding
AEC drawings encode geometry and semantics through symbols, layout conventions, and dense annotation, yet it remains unclear whether modern multimodal and vision-language models can reliably interpret this graphical language. We present AECV-Bench, a benchmark for evaluating multimodal and vision-language models on realistic AEC artefacts via two complementary use cases: (i) object counting on 120 high-quality floor plans (doors, windows, bedrooms, toilets), and (ii) drawing-grounded document QA spanning 192 question-answer pairs that test text extraction (OCR), instance counting, spatial reasoning, and comparative reasoning over common drawing regions. Object-counting performance is reported using per-field exact-match accuracy and MAPE results, while document-QA performance is reported using overall accuracy and per-category breakdowns with an LLM-as-a-judge scoring pipeline and targeted human adjudication for edge cases. Evaluating a broad set of state-of-the-art models under a unified protocol, we observe a stable capability gradient; OCR and text-centric document QA are strongest (up to 0.95 accuracy), spatial reasoning is moderate, and symbol-centric drawing understanding - especially reliable counting of doors and windows - remains unsolved (often 0.40-0.55 accuracy) with substantial proportional errors. These results suggest that current systems function well as document assistants but lack robust drawing literacy, motivating domain-specific representations and tool-augmented, human-in-the-loop workflows for an efficient AEC automation.
SCALER:Synthetic Scalable Adaptive Learning Environment for Reasoning
Reinforcement learning (RL) offers a principled way to enhance the reasoning capabilities of large language models, yet its effectiveness hinges on training signals that remain informative as models evolve. In practice, RL progress often slows when task difficulty becomes poorly aligned with model capability, or when training is dominated by a narrow set of recurring problem patterns. To jointly address these issues, we propose SCALER (Synthetic sCalable Adaptive Learning Environment for Reasoning), a framework that sustains effective learning signals through adaptive environment design. SCALER introduces a scalable synthesis pipeline that converts real-world programming problems into verifiable reasoning environments with controllable difficulty and unbounded instance generation, enabling RL training beyond finite datasets while preserving strong correctness guarantees. Building on this, SCALER further employs an adaptive multi-environment RL strategy that dynamically adjusts instance difficulty and curates the active set of environments to track the model's capability frontier and maintain distributional diversity. This co-adaptation prevents reward sparsity, mitigates overfitting to narrow task patterns, and supports sustained improvement throughout training. Extensive experiments show that SCALER consistently outperforms dataset-based RL baselines across diverse reasoning benchmarks and exhibits more stable, long-horizon training dynamics.
comment: 19 pages,5 figures
Parallelizing Node-Level Explainability in Graph Neural Networks
Graph Neural Networks (GNNs) have demonstrated remarkable performance in a wide range of tasks, such as node classification, link prediction, and graph classification, by exploiting the structural information in graph-structured data. However, in node classification, computing node-level explainability becomes extremely time-consuming as the size of the graph increases, while batching strategies often degrade explanation quality. This paper introduces a novel approach to parallelizing node-level explainability in GNNs through graph partitioning. By decomposing the graph into disjoint subgraphs, we enable parallel computation of explainability for node neighbors, significantly improving the scalability and efficiency without affecting the correctness of the results, provided sufficient memory is available. For scenarios where memory is limited, we further propose a dropout-based reconstruction mechanism that offers a controllable trade-off between memory usage and explanation fidelity. Experimental results on real-world datasets demonstrate substantial speedups, enabling scalable and transparent explainability for large-scale GNN models.
Thinking-Based Non-Thinking: Solving the Reward Hacking Problem in Training Hybrid Reasoning Models via Reinforcement Learning
Large reasoning models (LRMs) have attracted much attention due to their exceptional performance. However, their performance mainly stems from thinking, a long Chain of Thought (CoT), which significantly increase computational overhead. To address this overthinking problem, existing work focuses on using reinforcement learning (RL) to train hybrid reasoning models that automatically decide whether to engage in thinking or not based on the complexity of the query. Unfortunately, using RL will suffer the the reward hacking problem, e.g., the model engages in thinking but is judged as not doing so, resulting in incorrect rewards. To mitigate this problem, existing works either employ supervised fine-tuning (SFT), which incurs high computational costs, or enforce uniform token limits on non-thinking responses, which yields limited mitigation of the problem. In this paper, we propose Thinking-Based Non-Thinking (TNT). It does not employ SFT, and sets different maximum token usage for responses not using thinking across various queries by leveraging information from the solution component of the responses using thinking. Experiments on five mathematical benchmarks demonstrate that TNT reduces token usage by around 50% compared to DeepSeek-R1-Distill-Qwen-1.5B/7B and DeepScaleR-1.5B, while significantly improving accuracy. In fact, TNT achieves the optimal trade-off between accuracy and efficiency among all tested methods. Additionally, the probability of reward hacking problem in TNT's responses, which are classified as not using thinking, remains below 10% across all tested datasets.
Defense Against Indirect Prompt Injection via Tool Result Parsing
As LLM agents transition from digital assistants to physical controllers in autonomous systems and robotics, they face an escalating threat from indirect prompt injection. By embedding adversarial instructions into the results of tool calls, attackers can hijack the agent's decision-making process to execute unauthorized actions. This vulnerability poses a significant risk as agents gain more direct control over physical environments. Existing defense mechanisms against Indirect Prompt Injection (IPI) generally fall into two categories. The first involves training dedicated detection models; however, this approach entails high computational overhead for both training and inference, and requires frequent updates to keep pace with evolving attack vectors. Alternatively, prompt-based methods leverage the inherent capabilities of LLMs to detect or ignore malicious instructions via prompt engineering. Despite their flexibility, most current prompt-based defenses suffer from high Attack Success Rates (ASR), demonstrating limited robustness against sophisticated injection attacks. In this paper, we propose a novel method that provides LLMs with precise data via tool result parsing while effectively filtering out injected malicious code. Our approach achieves competitive Utility under Attack (UA) while maintaining the lowest Attack Success Rate (ASR) to date, significantly outperforming existing methods. Code is available at GitHub.
comment: 20 pages, 3 figures, 5 tables
APEX: Academic Poster Editing Agentic Expert
Designing academic posters is a labor-intensive process requiring the precise balance of high-density content and sophisticated layout. While existing paper-to-poster generation methods automate initial drafting, they are typically single-pass and non-interactive, often fail to align with complex, subjective user intent. To bridge this gap, we propose APEX (Academic Poster Editing agentic eXpert), the first agentic framework for interactive academic poster editing, supporting fine-grained control with robust multi-level API-based editing and a review-and-adjustment Mechanism. In addition, we introduce APEX-Bench, the first systematic benchmark comprising 514 academic poster editing instructions, categorized by a multi-dimensional taxonomy including operation type, difficulty, and abstraction level, constructed via reference-guided and reference-free strategies to ensure realism and diversity. We further establish a multi-dimensional VLM-as-a-judge evaluation protocol to assess instruction fulfillment, modification scope, and visual consistency & harmony. Experimental results demonstrate that APEX significantly outperforms baseline methods. Our implementation is available at https://github.com/Breesiu/APEX.
Belief in Authority: Impact of Authority in Multi-Agent Evaluation Framework
Multi-agent systems utilizing large language models often assign authoritative roles to improve performance, yet the impact of authority bias on agent interactions remains underexplored. We present the first systematic analysis of role-based authority bias in free-form multi-agent evaluation using ChatEval. Applying French and Raven's power-based theory, we classify authoritative roles into legitimate, referent, and expert types and analyze their influence across 12-turn conversations. Experiments with GPT-4o and DeepSeek R1 reveal that Expert and Referent power roles exert stronger influence than Legitimate power roles. Crucially, authority bias emerges not through active conformity by general agents, but through authoritative roles consistently maintaining their positions while general agents demonstrate flexibility. Furthermore, authority influence requires clear position statements, as neutral responses fail to generate bias. These findings provide key insights for designing multi-agent frameworks with asymmetric interaction patterns.
comment: Preprint
NC2C: Automated Convexification of Generic Non-Convex Optimization Problems
Non-convex optimization problems are pervasive across mathematical programming, engineering design, and scientific computing, often posing intractable challenges for traditional solvers due to their complex objective functions and constrained landscapes. To address the inefficiency of manual convexification and the over-reliance on expert knowledge, we propose NC2C, an LLM-based end-to-end automated framework designed to transform generic non-convex optimization problems into solvable convex forms using large language models. NC2C leverages LLMs' mathematical reasoning capabilities to autonomously detect non-convex components, select optimal convexification strategies, and generate rigorous convex equivalents. The framework integrates symbolic reasoning, adaptive transformation techniques, and iterative validation, equipped with error correction loops and feasibility domain correction mechanisms to ensure the robustness and validity of transformed problems. Experimental results on a diverse dataset of 100 generic non-convex problems demonstrate that NC2C achieves an 89.3\% execution rate and a 76\% success rate in producing feasible, high-quality convex transformations. This outperforms baseline methods by a significant margin, highlighting NC2C's ability to leverage LLMs for automated non-convex to convex transformation, reduce expert dependency, and enable efficient deployment of convex solvers for previously intractable optimization tasks.
comment: First version of NC2C
AgentOCR: Reimagining Agent History via Optical Self-Compression
Recent advances in large language models (LLMs) enable agentic systems trained with reinforcement learning (RL) over multi-turn interaction trajectories, but practical deployment is bottlenecked by rapidly growing textual histories that inflate token budgets and memory usage. We introduce AgentOCR, a framework that exploits the superior information density of visual tokens by representing the accumulated observation-action history as a compact rendered image. To make multi-turn rollouts scalable, AgentOCR proposes segment optical caching. By decomposing history into hashable segments and maintaining a visual cache, this mechanism eliminates redundant re-rendering. Beyond fixed rendering, AgentOCR introduces agentic self-compression, where the agent actively emits a compression rate and is trained with compression-aware reward to adaptively balance task success and token efficiency. We conduct extensive experiments on challenging agentic benchmarks, ALFWorld and search-based QA. Remarkably, results demonstrate that AgentOCR preserves over 95\% of text-based agent performance while substantially reducing token consumption (>50\%), yielding consistent token and memory efficiency. Our further analysis validates a 20x rendering speedup from segment optical caching and the effective strategic balancing of self-compression.
comment: Work in progress
SRU-Pix2Pix: A Fusion-Driven Generator Network for Medical Image Translation with Few-Shot Learning
Magnetic Resonance Imaging (MRI) provides detailed tissue information, but its clinical application is limited by long acquisition time, high cost, and restricted resolution. Image translation has recently gained attention as a strategy to address these limitations. Although Pix2Pix has been widely applied in medical image translation, its potential has not been fully explored. In this study, we propose an enhanced Pix2Pix framework that integrates Squeeze-and-Excitation Residual Networks (SEResNet) and U-Net++ to improve image generation quality and structural fidelity. SEResNet strengthens critical feature representation through channel attention, while U-Net++ enhances multi-scale feature fusion. A simplified PatchGAN discriminator further stabilizes training and refines local anatomical realism. Experimental results demonstrate that under few-shot conditions with fewer than 500 images, the proposed method achieves consistent structural fidelity and superior image quality across multiple intra-modality MRI translation tasks, showing strong generalization ability. These results suggest an effective extension of Pix2Pix for medical image translation.
CounterVid: Counterfactual Video Generation for Mitigating Action and Temporal Hallucinations in Video-Language Models
Video-language models (VLMs) achieve strong multimodal understanding but remain prone to hallucinations, especially when reasoning about actions and temporal order. Existing mitigation strategies, such as textual filtering or random video perturbations, often fail to address the root cause: over-reliance on language priors rather than fine-grained visual dynamics. We propose a scalable framework for counterfactual video generation that synthesizes videos differing only in actions or temporal structure while preserving scene context. Our pipeline combines multimodal LLMs for action proposal and editing guidance with diffusion-based image and video models to generate semantic hard negatives at scale. Using this framework, we build CounterVid, a synthetic dataset of ~26k preference pairs targeting action recognition and temporal reasoning. We further introduce MixDPO, a unified Direct Preference Optimization approach that jointly leverages textual and visual preferences. Fine-tuning Qwen2.5-VL with MixDPO yields consistent improvements, notably in temporal ordering, and transfers effectively to standard video hallucination benchmarks. Code and models will be made publicly available.
GeM-VG: Towards Generalized Multi-image Visual Grounding with Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) have demonstrated impressive progress in single-image grounding and general multi-image understanding. Recently, some methods begin to address multi-image grounding. However, they are constrained by single-target localization and limited types of practical tasks, due to the lack of unified modeling for generalized grounding tasks. Therefore, we propose GeM-VG, an MLLM capable of Generalized Multi-image Visual Grounding. To support this, we systematically categorize and organize existing multi-image grounding tasks according to their reliance of cross-image cues and reasoning, and introduce the MG-Data-240K dataset, addressing the limitations of existing datasets regarding target quantity and image relation. To tackle the challenges of robustly handling diverse multi-image grounding tasks, we further propose a hybrid reinforcement finetuning strategy that integrates chain-of-thought (CoT) reasoning and direct answering, considering their complementary strengths. This strategy adopts an R1-like algorithm guided by a carefully designed rule-based reward, effectively enhancing the model's overall perception and reasoning capabilities. Extensive experiments demonstrate the superior generalized grounding capabilities of our model. For multi-image grounding, it outperforms the previous leading MLLMs by 2.0% and 9.7% on MIG-Bench and MC-Bench, respectively. In single-image grounding, it achieves a 9.1% improvement over the base model on ODINW. Furthermore, our model retains strong capabilities in general multi-image understanding.
SciIF: Benchmarking Scientific Instruction Following Towards Rigorous Scientific Intelligence
As large language models (LLMs) transition from general knowledge retrieval to complex scientific discovery, their evaluation standards must also incorporate the rigorous norms of scientific inquiry. Existing benchmarks exhibit a critical blind spot: general instruction-following metrics focus on superficial formatting, while domain-specific scientific benchmarks assess only final-answer correctness, often rewarding models that arrive at the right result with the wrong reasons. To address this gap, we introduce scientific instruction following: the capability to solve problems while strictly adhering to the constraints that establish scientific validity. Specifically, we introduce SciIF, a multi-discipline benchmark that evaluates this capability by pairing university-level problems with a fixed catalog of constraints across three pillars: scientific conditions (e.g., boundary checks and assumptions), semantic stability (e.g., unit and symbol conventions), and specific processes(e.g., required numerical methods). Uniquely, SciIF emphasizes auditability, requiring models to provide explicit evidence of constraint satisfaction rather than implicit compliance. By measuring both solution correctness and multi-constraint adherence, SciIF enables finegrained diagnosis of compositional reasoning failures, ensuring that LLMs can function as reliable agents within the strict logical frameworks of science.
AT$^2$PO: Agentic Turn-based Policy Optimization via Tree Search
LLM agents have emerged as powerful systems for tackling multi-turn tasks by interleaving internal reasoning and external tool interactions. Agentic Reinforcement Learning has recently drawn significant research attention as a critical post-training paradigm to further refine these capabilities. In this paper, we present AT$^2$PO (Agentic Turn-based Policy Optimization via Tree Search), a unified framework for multi-turn agentic RL that addresses three core challenges: limited exploration diversity, sparse credit assignment, and misaligned policy optimization. AT$^2$PO introduces a turn-level tree structure that jointly enables Entropy-Guided Tree Expansion for strategic exploration and Turn-wise Credit Assignment for fine-grained reward propagation from sparse outcomes. Complementing this, we propose Agentic Turn-based Policy Optimization, a turn-level learning objective that aligns policy updates with the natural decision granularity of agentic interactions. ATPO is orthogonal to tree search and can be readily integrated into any multi-turn RL pipeline. Experiments across seven benchmarks demonstrate consistent improvements over the state-of-the-art baseline by up to 1.84 percentage points in average, with ablation studies validating the effectiveness of each component. Our code is available at https://github.com/zzfoutofspace/ATPO.
Differential syntactic and semantic encoding in LLMs
We study how syntactic and semantic information is encoded in inner layer representations of Large Language Models (LLMs), focusing on the very large DeepSeek-V3. We find that, by averaging hidden-representation vectors of sentences sharing syntactic structure or meaning, we obtain vectors that capture a significant proportion of the syntactic and semantic information contained in the representations. In particular, subtracting these syntactic and semantic ``centroids'' from sentence vectors strongly affects their similarity with syntactically and semantically matched sentences, respectively, suggesting that syntax and semantics are, at least partially, linearly encoded. We also find that the cross-layer encoding profiles of syntax and semantics are different, and that the two signals can to some extent be decoupled, suggesting differential encoding of these two types of linguistic information in LLM representations.
Orion-RAG: Path-Aligned Hybrid Retrieval for Graphless Data
Retrieval-Augmented Generation (RAG) has proven effective for knowledge synthesis, yet it encounters significant challenges in practical scenarios where data is inherently discrete and fragmented. In most environments, information is distributed across isolated files like reports and logs that lack explicit links. Standard search engines process files independently, ignoring the connections between them. Furthermore, manually building Knowledge Graphs is impractical for such vast data. To bridge this gap, we present Orion-RAG. Our core insight is simple yet effective: we do not need heavy algorithms to organize this data. Instead, we use a low-complexity strategy to extract lightweight paths that naturally link related concepts. We demonstrate that this streamlined approach suffices to transform fragmented documents into semi-structured data, enabling the system to link information across different files effectively. Extensive experiments demonstrate that Orion-RAG consistently outperforms mainstream frameworks across diverse domains, supporting real-time updates and explicit Human-in-the-Loop verification with high cost-efficiency. Experiments on FinanceBench demonstrate superior precision with a 25.2% relative improvement over strong baselines.
Smart IoT-Based Wearable Device for Detection and Monitoring of Common Cow Diseases Using a Novel Machine Learning Technique
Manual observation and monitoring of individual cows for disease detection present significant challenges in large-scale farming operations, as the process is labor-intensive, time-consuming, and prone to reduced accuracy. The reliance on human observation often leads to delays in identifying symptoms, as the sheer number of animals can hinder timely attention to each cow. Consequently, the accuracy and precision of disease detection are significantly compromised, potentially affecting animal health and overall farm productivity. Furthermore, organizing and managing human resources for the manual observation and monitoring of cow health is a complex and economically demanding task. It necessitates the involvement of skilled personnel, thereby contributing to elevated farm maintenance costs and operational inefficiencies. Therefore, the development of an automated, low-cost, and reliable smart system is essential to address these challenges effectively. Although several studies have been conducted in this domain, very few have simultaneously considered the detection of multiple common diseases with high prediction accuracy. However, advancements in Internet of Things (IoT), Machine Learning (ML), and Cyber-Physical Systems have enabled the automation of cow health monitoring with enhanced accuracy and reduced operational costs. This study proposes an IoT-enabled Cyber-Physical System framework designed to monitor the daily activities and health status of cow. A novel ML algorithm is proposed for the diagnosis of common cow diseases using collected physiological and behavioral data. The algorithm is designed to predict multiple diseases by analyzing a comprehensive set of recorded physiological and behavioral features, enabling accurate and efficient health assessment.
PILOT-Bench: A Benchmark for Legal Reasoning in the Patent Domain with IRAC-Aligned Classification Tasks
The Patent Trial and Appeal Board (PTAB) of the USPTO adjudicates thousands of ex parte appeals each year, requiring the integration of technical understanding and legal reasoning. While large language models (LLMs) are increasingly applied in patent and legal practice, their use has remained limited to lightweight tasks, with no established means of systematically evaluating their capacity for structured legal reasoning in the patent domain. In this work, we introduce PILOT-Bench, the first PTAB-centric benchmark that aligns PTAB decisions with USPTO patent data at the case-level and formalizes three IRAC-aligned classification tasks: Issue Type, Board Authorities, and Subdecision. We evaluate a diverse set of closed-source (commercial) and open-source LLMs and conduct analyses across multiple perspectives, including input-variation settings, model families, and error tendencies. Notably, on the Issue Type task, closed-source models consistently exceed 0.75 in Micro-F1 score, whereas the strongest open-source model (Qwen-8B) achieves performance around 0.56, highlighting a substantial gap in reasoning capabilities. PILOT-Bench establishes a foundation for the systematic evaluation of patent-domain legal reasoning and points toward future directions for improving LLMs through dataset design and model alignment. All data, code, and benchmark resources are available at https://github.com/TeamLab/pilot-bench.
comment: Accepted at the NLLP Workshop at EMNLP 2025
When Single-Agent with Skills Replace Multi-Agent Systems and When They Fail
Multi-agent AI systems have proven effective for complex reasoning. These systems are compounded by specialized agents, which collaborate through explicit communication, but incur substantial computational overhead. A natural question arises: can we achieve similar modularity benefits with a single agent that selects from a library of skills? We explore this question by viewing skills as internalized agent behaviors. From this perspective, a multi-agent system can be compiled into an equivalent single-agent system, trading inter-agent communication for skill selection. Our preliminary experiments suggest this approach can substantially reduce token usage and latency while maintaining competitive accuracy on reasoning benchmarks. However, this efficiency raises a deeper question that has received little attention: how does skill selection scale as libraries grow? Drawing on principles from cognitive science, we propose that LLM skill selection exhibits bounded capacity analogous to human decision-making. We investigate the scaling behavior of skill selection and observe a striking pattern. Rather than degrading gradually, selection accuracy remains stable up to a critical library size, then drops sharply, indicating a phase transition reminiscent of capacity limits in human cognition. Furthermore, we find evidence that semantic confusability among similar skills, rather than library size alone, plays a central role in this degradation. This perspective suggests that hierarchical organization, which has long helped humans manage complex choices, may similarly benefit AI systems. Our initial results with hierarchical routing support this hypothesis. This work opens new questions about the fundamental limits of semantic-based skill selection in LLMs and offers a cognitive-grounded framework and practical guidelines for designing scalable skill-based agents.
comment: 25 pages, technical report
KnowMe-Bench: Benchmarking Person Understanding for Lifelong Digital Companions
Existing long-horizon memory benchmarks mostly use multi-turn dialogues or synthetic user histories, which makes retrieval performance an imperfect proxy for person understanding. We present \BenchName, a publicly releasable benchmark built from long-form autobiographical narratives, where actions, context, and inner thoughts provide dense evidence for inferring stable motivations and decision principles. \BenchName~reconstructs each narrative into a flashback-aware, time-anchored stream and evaluates models with evidence-linked questions spanning factual recall, subjective state attribution, and principle-level reasoning. Across diverse narrative sources, retrieval-augmented systems mainly improve factual accuracy, while errors persist on temporally grounded explanations and higher-level inferences, highlighting the need for memory mechanisms beyond retrieval. Our data is in \href{KnowMeBench}{https://github.com/QuantaAlpha/KnowMeBench}.
Semi-Supervised Diseased Detection from Speech Dialogues with Multi-Level Data Modeling
Detecting medical conditions from speech acoustics is fundamentally a weakly-supervised learning problem: a single, often noisy, session-level label must be linked to nuanced patterns within a long, complex audio recording. This task is further hampered by severe data scarcity and the subjective nature of clinical annotations. While semi-supervised learning (SSL) offers a viable path to leverage unlabeled data, existing audio methods often fail to address the core challenge that pathological traits are not uniformly expressed in a patient's speech. We propose a novel, audio-only SSL framework that explicitly models this hierarchy by jointly learning from frame-level, segment-level, and session-level representations within unsegmented clinical dialogues. Our end-to-end approach dynamically aggregates these multi-granularity features and generates high-quality pseudo-labels to efficiently utilize unlabeled data. Extensive experiments show the framework is model-agnostic, robust across languages and conditions, and highly data-efficient-achieving, for instance, 90\% of fully-supervised performance using only 11 labeled samples. This work provides a principled approach to learning from weak, far-end supervision in medical speech analysis.
Fast Mining and Dynamic Time-to-Event Prediction over Multi-sensor Data Streams
Given real-time sensor data streams obtained from machines, how can we continuously predict when a machine failure will occur? This work aims to continuously forecast the timing of future events by analyzing multi-sensor data streams. A key characteristic of real-world data streams is their dynamic nature, where the underlying patterns evolve over time. To address this, we present TimeCast, a dynamic prediction framework designed to adapt to these changes and provide accurate, real-time predictions of future event time. Our proposed method has the following properties: (a) Dynamic: it identifies the distinct time-evolving patterns (i.e., stages) and learns individual models for each, enabling us to make adaptive predictions based on pattern shifts. (b) Practical: it finds meaningful stages that capture time-varying interdependencies between multiple sensors and improve prediction performance; (c) Scalable: our algorithm scales linearly with the input size and enables online model updates on data streams. Extensive experiments on real datasets demonstrate that TimeCast provides higher prediction accuracy than state-of-the-art methods while finding dynamic changes in data streams with a great reduction in computational time.
comment: Accepted by KDD 2026
RiskAtlas: Exposing Domain-Specific Risks in LLMs through Knowledge-Graph-Guided Harmful Prompt Generation
Large language models (LLMs) are increasingly applied in specialized domains such as finance and healthcare, where they introduce unique safety risks. Domain-specific datasets of harmful prompts remain scarce and still largely rely on manual construction; public datasets mainly focus on explicit harmful prompts, which modern LLM defenses can often detect and refuse. In contrast, implicit harmful prompts-expressed through indirect domain knowledge-are harder to detect and better reflect real-world threats. We identify two challenges: transforming domain knowledge into actionable constraints and increasing the implicitness of generated harmful prompts. To address them, we propose an end-to-end framework that first performs knowledge-graph-guided harmful prompt generation to systematically produce domain-relevant prompts, and then applies dual-path obfuscation rewriting to convert explicit harmful prompts into implicit variants via direct and context-enhanced rewriting. This framework yields high-quality datasets combining strong domain relevance with implicitness, enabling more realistic red-teaming and advancing LLM safety research. We release our code and datasets at GitHub.
The Role of Quantum in Hybrid Quantum-Classical Neural Networks: A Realistic Assessment
Quantum machine learning has emerged as a promising application domain for near-term quantum hardware, particularly through hybrid quantum-classical models that leverage both classical and quantum processing. Although numerous hybrid architectures have been proposed and demonstrated successfully on benchmark tasks, a significant open question remains regarding the specific contribution of quantum components to the overall performance of these models. In this work, we aim to shed light on the impact of quantum processing within hybrid quantum-classical neural network architectures through a rigorous statistical study. We systematically assess common hybrid models on medical signal data as well as planar and volumetric images, examining the influence attributable to classical and quantum aspects such as encoding schemes, entanglement, and circuit size. We find that in best-case scenarios, hybrid models show performance comparable to their classical counterparts, however, in most cases, performance metrics deteriorate under the influence of quantum components. Our multi-modal analysis provides realistic insights into the contributions of quantum components and advocates for cautious claims and design choices for hybrid models in near-term applications.
comment: 16 pages, 6 figures
Miner:Mining Intrinsic Mastery for Data-Efficient RL in Large Reasoning Models
Current critic-free RL methods for large reasoning models suffer from severe inefficiency when training on positive homogeneous prompts (where all rollouts are correct), resulting in waste of rollouts due to zero advantage estimates. We introduce a radically simple yet powerful solution to \uline{M}ine \uline{in}trinsic mast\uline{er}y (Miner), that repurposes the policy's intrinsic uncertainty as a self-supervised reward signal, with no external supervision, auxiliary models, or additional inference cost. Our method pioneers two key innovations: (1) a token-level focal credit assignment mechanism that dynamically amplifies gradients on critical uncertain tokens while suppressing overconfident ones, and (2) adaptive advantage calibration to seamlessly integrate intrinsic and verifiable rewards. Evaluated across six reasoning benchmarks on Qwen3-4B and Qwen3-8B base models, Miner achieves state-of-the-art performance among the other four algorithms, yielding up to \textbf{4.58} absolute gains in Pass@1 and \textbf{6.66} gains in Pass@K compared to GRPO. Comparison with other methods targeted at exploration enhancement further discloses the superiority of the two newly proposed innovations. This demonstrates that latent uncertainty exploitation is both necessary and sufficient for efficient and scalable RL training of reasoning models.
comment: 22 pages
Excess Description Length of Learning Generalizable Predictors
Understanding whether fine-tuning elicits latent capabilities or teaches new ones is a fundamental question for language model evaluation and safety. We develop a formal information-theoretic framework for quantifying how much predictive structure fine-tuning extracts from the train dataset and writes into a model's parameters. Our central quantity, Excess Description Length (EDL), is defined via prequential coding and measures the gap between the bits required to encode training labels sequentially using an evolving model (trained online) and the residual encoding cost under the final trained model. We establish that EDL is non-negative in expectation, converges to surplus description length in the infinite-data limit, and provides bounds on expected generalization gain. Through a series of toy models, we clarify common confusions about information in learning: why random labels yield EDL near zero, how a single example can eliminate many bits of uncertainty about the underlying rule(s) that describe the data distribution, why structure learned on rare inputs contributes proportionally little to expected generalization, and how format learning creates early transients distinct from capability acquisition. This framework provides rigorous foundations for the empirical observation that capability elicitation and teaching exhibit qualitatively distinct scaling signatures.
Memory Matters More: Event-Centric Memory as a Logic Map for Agent Searching and Reasoning
Large language models (LLMs) are increasingly deployed as intelligent agents that reason, plan, and interact with their environments. To effectively scale to long-horizon scenarios, a key capability for such agents is a memory mechanism that can retain, organize, and retrieve past experiences to support downstream decision-making. However, most existing approaches organize and store memories in a flat manner and rely on simple similarity-based retrieval techniques. Even when structured memory is introduced, existing methods often struggle to explicitly capture the logical relationships among experiences or memory units. Moreover, memory access is largely detached from the constructed structure and still depends on shallow semantic retrieval, preventing agents from reasoning logically over long-horizon dependencies. In this work, we propose CompassMem, an event-centric memory framework inspired by Event Segmentation Theory. CompassMem organizes memory as an Event Graph by incrementally segmenting experiences into events and linking them through explicit logical relations. This graph serves as a logic map, enabling agents to perform structured and goal-directed navigation over memory beyond superficial retrieval, progressively gathering valuable memories to support long-horizon reasoning. Experiments on LoCoMo and NarrativeQA demonstrate that CompassMem consistently improves both retrieval and reasoning performance across multiple backbone models.
comment: 19 pages,6 figures
ThinkDrive: Chain-of-Thought Guided Progressive Reinforcement Learning Fine-Tuning for Autonomous Driving
With the rapid advancement of large language models (LLMs) technologies, their application in the domain of autonomous driving has become increasingly widespread. However, existing methods suffer from unstructured reasoning, poor generalization, and misalignment with human driving intent. While Chain-of-Thought (CoT) reasoning enhances decision transparency, conventional supervised fine-tuning (SFT) fails to fully exploit its potential, and reinforcement learning (RL) approaches face instability and suboptimal reasoning depth. We propose ThinkDrive, a CoT guided progressive RL fine-tuning framework for autonomous driving that synergizes explicit reasoning with difficulty-aware adaptive policy optimization. Our method employs a two-stage training strategy. First, we perform SFT using CoT explanations. Then, we apply progressive RL with a difficulty-aware adaptive policy optimizer that dynamically adjusts learning intensity based on sample complexity. We evaluate our approach on a public dataset. The results show that ThinkDrive outperforms strong RL baselines by 1.45%, 1.95%, and 1.01% on exam, easy-exam, and accuracy, respectively. Moreover, a 2B-parameter model trained with our method surpasses the much larger GPT-4o by 3.28% on the exam metric.
DSC2025 -- ViHallu Challenge: Detecting Hallucination in Vietnamese LLMs
The reliability of large language models (LLMs) in production environments remains significantly constrained by their propensity to generate hallucinations -- fluent, plausible-sounding outputs that contradict or fabricate information. While hallucination detection has recently emerged as a priority in English-centric benchmarks, low-to-medium resource languages such as Vietnamese remain inadequately covered by standardized evaluation frameworks. This paper introduces the DSC2025 ViHallu Challenge, the first large-scale shared task for detecting hallucinations in Vietnamese LLMs. We present the ViHallu dataset, comprising 10,000 annotated triplets of (context, prompt, response) samples systematically partitioned into three hallucination categories: no hallucination, intrinsic, and extrinsic hallucinations. The dataset incorporates three prompt types -- factual, noisy, and adversarial -- to stress-test model robustness. A total of 111 teams participated, with the best-performing system achieving a macro-F1 score of 84.80\%, compared to a baseline encoder-only score of 32.83\%, demonstrating that instruction-tuned LLMs with structured prompting and ensemble strategies substantially outperform generic architectures. However, the gap to perfect performance indicates that hallucination detection remains a challenging problem, particularly for intrinsic (contradiction-based) hallucinations. This work establishes a rigorous benchmark and explores a diverse range of detection methodologies, providing a foundation for future research into the trustworthiness and reliability of Vietnamese language AI systems.
Bridging Temporal and Textual Modalities: A Multimodal Framework for Automated Cloud Failure Root Cause Analysis
Root cause analysis in modern cloud infrastructure demands sophisticated understanding of heterogeneous data sources, particularly time-series performance metrics that involve core failure signatures. While large language models demonstrate remarkable capabilities in textual reasoning, their discrete token-based architecture creates fundamental incompatibilities with continuous numerical sequences exhibiting temporal dependencies. Current methodologies inadequately address this modality mismatch, constraining the potential of language model-driven automation in incident management workflows. This paper presents a multimodal diagnostic framework that harmonizes time-series representations with pretrained language model embedding spaces. Our approach contributes three technical advances: (1) a semantic compression technique that distills temporal segments into single-token abstractions while preserving pattern semantics, (2) an alignment encoder utilizing gated cross-attention to project time-series features into language model latent space, and (3) a retrieval-augmented diagnostic pipeline that synthesizes aligned embeddings with historical incident knowledge for expert-level failure attribution. Comprehensive evaluation across six cloud system benchmarks demonstrates that our framework achieves leading performance, reaching 48.75% diagnostic accuracy with notable improvements on scenarios involving compound failure modes. The results validate embedding-space alignment as an effective strategy for enabling language models to reason over multimodal telemetry data in production incident response contexts.
MQ-GNN: A Multi-Queue Pipelined Architecture for Scalable and Efficient GNN Training
Graph Neural Networks (GNNs) are powerful tools for learning graph-structured data, but their scalability is hindered by inefficient mini-batch generation, data transfer bottlenecks, and costly inter-GPU synchronization. Existing training frameworks fail to overlap these stages, leading to suboptimal resource utilization. This paper proposes MQ-GNN, a multi-queue pipelined framework that maximizes training efficiency by interleaving GNN training stages and optimizing resource utilization. MQ-GNN introduces Ready-to-Update Asynchronous Consistent Model (RaCoM), which enables asynchronous gradient sharing and model updates while ensuring global consistency through adaptive periodic synchronization. Additionally, it employs global neighbor sampling with caching to reduce data transfer overhead and an adaptive queue-sizing strategy to balance computation and memory efficiency. Experiments on four large-scale datasets and ten baseline models demonstrate that MQ-GNN achieves up to \boldmath $\bm{4.6\,\times}$ faster training time and 30% improved GPU utilization while maintaining competitive accuracy. These results establish MQ-GNN as a scalable and efficient solution for multi-GPU GNN training.
comment: IEEE Access 2025
Beyond Monolithic Architectures: A Multi-Agent Search and Knowledge Optimization Framework for Agentic Search
Agentic search has emerged as a promising paradigm for complex information seeking by enabling Large Language Models (LLMs) to interleave reasoning with tool use. However, prevailing systems rely on monolithic agents that suffer from structural bottlenecks, including unconstrained reasoning outputs that inflate trajectories, sparse outcome-level rewards that complicate credit assignment, and stochastic search noise that destabilizes learning. To address these challenges, we propose \textbf{M-ASK} (Multi-Agent Search and Knowledge), a framework that explicitly decouples agentic search into two complementary roles: Search Behavior Agents, which plan and execute search actions, and Knowledge Management Agents, which aggregate, filter, and maintain a compact internal context. This decomposition allows each agent to focus on a well-defined subtask and reduces interference between search and context construction. Furthermore, to enable stable coordination, M-ASK employs turn-level rewards to provide granular supervision for both search decisions and knowledge updates. Experiments on multi-hop QA benchmarks demonstrate that M-ASK outperforms strong baselines, achieving not only superior answer accuracy but also significantly more stable training dynamics.\footnote{The source code for M-ASK is available at https://github.com/chenyiqun/M-ASK.}
SeqWalker: Sequential-Horizon Vision-and-Language Navigation with Hierarchical Planning
Sequential-Horizon Vision-and-Language Navigation (SH-VLN) presents a challenging scenario where agents should sequentially execute multi-task navigation guided by complex, long-horizon language instructions. Current vision-and-language navigation models exhibit significant performance degradation with such multi-task instructions, as information overload impairs the agent's ability to attend to observationally relevant details. To address this problem, we propose SeqWalker, a navigation model built on a hierarchical planning framework. Our SeqWalker features: i) A High-Level Planner that dynamically selects global instructions into contextually relevant sub-instructions based on the agent's current visual observations, thus reducing cognitive load; ii) A Low-Level Planner incorporating an Exploration-Verification strategy that leverages the inherent logical structure of instructions for trajectory error correction. To evaluate SH-VLN performance, we also extend the IVLN dataset and establish a new benchmark. Extensive experiments are performed to demonstrate the superiority of the proposed SeqWalker.
TourPlanner: A Competitive Consensus Framework with Constraint-Gated Reinforcement Learning for Travel Planning
Travel planning is a sophisticated decision-making process that requires synthesizing multifaceted information to construct itineraries. However, existing travel planning approaches face several challenges: (1) Pruning candidate points of interest (POIs) while maintaining a high recall rate; (2) A single reasoning path restricts the exploration capability within the feasible solution space for travel planning; (3) Simultaneously optimizing hard constraints and soft constraints remains a significant difficulty. To address these challenges, we propose TourPlanner, a comprehensive framework featuring multi-path reasoning and constraint-gated reinforcement learning. Specifically, we first introduce a Personalized Recall and Spatial Optimization (PReSO) workflow to construct spatially-aware candidate POIs' set. Subsequently, we propose Competitive consensus Chain-of-Thought (CCoT), a multi-path reasoning paradigm that improves the ability of exploring the feasible solution space. To further refine the plan, we integrate a sigmoid-based gating mechanism into the reinforcement learning stage, which dynamically prioritizes soft-constraint satisfaction only after hard constraints are met. Experimental results on travel planning benchmarks demonstrate that TourPlanner achieves state-of-the-art performance, significantly surpassing existing methods in both feasibility and user-preference alignment.
A Method for Constructing a Digital Transformation Driving Mechanism Based on Semantic Understanding of Large Models
In the process of digital transformation, enterprises are faced with problems such as insufficient semantic understanding of unstructured data and lack of intelligent decision-making basis in driving mechanisms. This study proposes a method that combines a large language model (LLM) and a knowledge graph. First, a fine-tuned BERT (Bidirectional Encoder Representations from Transformers) model is used to perform entity recognition and relationship extraction on multi-source heterogeneous texts, and GPT-4 is used to generate semantically enhanced vector representations; secondly, a two-layer graph neural network (GNN) architecture is designed to fuse the semantic vectors output by LLM with business metadata to construct a dynamic and scalable enterprise knowledge graph; then reinforcement learning is introduced to optimize decision path generation, and the reward function is used to drive the mechanism iteration. In the case of the manufacturing industry, this mechanism reduced the response time for equipment failure scenarios from 7.8 hours to 3.7 hours, the F1 value reached 94.3%, and the compensation for decision errors in the annual digital transformation cost decreased by 45.3%. This method significantly enhances the intelligence level and execution efficiency of the digital transformation driving mechanism by integrating large model semantic understanding with structured knowledge.
Tape: A Cellular Automata Benchmark for Evaluating Rule-Shift Generalization in Reinforcement Learning
We present Tape, a controlled reinforcement-learning benchmark designed to isolate out-of-distribution (OOD) failure under latent rule shifts.Tape is derived from one-dimensional cellular automata, enabling precise train/test splits where observation and action spaces are held fixed while transition rules change. Using a reproducible evaluation pipeline, we compare model-free baselines, model-based planning with learned world models, and task-inference (meta-RL) methods. A consistent pattern emerges: methods that are strong in-distribution (ID) can collapse under heldout-rule OOD, and high-variance OOD evaluation can make rankings unstable unless experiments are sufficiently replicated.We provide (i) standardized OOD protocols, (ii) statistical reporting requirements (seeds, confidence intervals, and hypothesis tests), and (iii) information-theoretic identities connecting entropy reduction to conditional mutual information and expected posterior KL divergence, clarifying what "uncertainty reduction" objectives can and cannot guarantee under rule shifts.
comment: 4 tables
ResMAS: Resilience Optimization in LLM-based Multi-agent Systems
Large Language Model-based Multi-Agent Systems (LLM-based MAS), where multiple LLM agents collaborate to solve complex tasks, have shown impressive performance in many areas. However, MAS are typically distributed across different devices or environments, making them vulnerable to perturbations such as agent failures. While existing works have studied the adversarial attacks and corresponding defense strategies, they mainly focus on reactively detecting and mitigating attacks after they occur rather than proactively designing inherently resilient systems. In this work, we study the resilience of LLM-based MAS under perturbations and find that both the communication topology and prompt design significantly influence system resilience. Motivated by these findings, we propose ResMAS: a two-stage framework for enhancing MAS resilience. First, we train a reward model to predict the MAS's resilience, based on which we train a topology generator to automatically design resilient topology for specific tasks through reinforcement learning. Second, we introduce a topology-aware prompt optimization method that refines each agent's prompt based on its connections and interactions with other agents. Extensive experiments across a range of tasks show that our approach substantially improves MAS resilience under various constraints. Moreover, our framework demonstrates strong generalization ability to new tasks and models, highlighting its potential for building resilient MASs.
ToolGate: Contract-Grounded and Verified Tool Execution for LLMs
Large Language Models (LLMs) augmented with external tools have demonstrated remarkable capabilities in complex reasoning tasks. However, existing frameworks rely heavily on natural language reasoning to determine when tools can be invoked and whether their results should be committed, lacking formal guarantees for logical safety and verifiability. We present \textbf{ToolGate}, a forward execution framework that provides logical safety guarantees and verifiable state evolution for LLM tool calling. ToolGate maintains an explicit symbolic state space as a typed key-value mapping representing trusted world information throughout the reasoning process. Each tool is formalized as a Hoare-style contract consisting of a precondition and a postcondition, where the precondition gates tool invocation by checking whether the current state satisfies the required conditions, and the postcondition determines whether the tool's result can be committed to update the state through runtime verification. Our approach guarantees that the symbolic state evolves only through verified tool executions, preventing invalid or hallucinated results from corrupting the world representation. Experimental validation demonstrates that ToolGate significantly improves the reliability and verifiability of tool-augmented LLM systems while maintaining competitive performance on complex multi-step reasoning tasks. This work establishes a foundation for building more trustworthy and debuggable AI systems that integrate language models with external tools.
comment: First version of ToolGate
LLM-Guided Quantified SMT Solving over Uninterpreted Functions
Quantified formulas with Uninterpreted Functions (UFs) over non-linear real arithmetic pose fundamental challenges for Satisfiability Modulo Theories (SMT) solving. Traditional quantifier instantiation methods struggle because they lack semantic understanding of UF constraints, forcing them to search through unbounded solution spaces with limited guidance. We present AquaForte, a framework that leverages Large Language Models to provide semantic guidance for UF instantiation by generating instantiated candidates for function definitions that satisfy the constraints, thereby significantly reducing the search space and complexity for solvers. Our approach preprocesses formulas through constraint separation, uses structured prompts to extract mathematical reasoning from LLMs, and integrates the results with traditional SMT algorithms through adaptive instantiation. AquaForte maintains soundness through systematic validation: LLM-guided instantiations yielding SAT solve the original problem, while UNSAT results generate exclusion clauses for iterative refinement. Completeness is preserved by fallback to traditional solvers augmented with learned constraints. Experimental evaluation on SMT-COMP benchmarks demonstrates that AquaForte solves numerous instances where state-of-the-art solvers like Z3 and CVC5 timeout, with particular effectiveness on satisfiable formulas. Our work shows that LLMs can provide valuable mathematical intuition for symbolic reasoning, establishing a new paradigm for SMT constraint solving.
Estimating Causal Effects in Gaussian Linear SCMs with Finite Data ICML 2025
Estimating causal effects from observational data remains a fundamental challenge in causal inference, especially in the presence of latent confounders. This paper focuses on estimating causal effects in Gaussian Linear Structural Causal Models (GL-SCMs), which are widely used due to their analytical tractability. However, parameter estimation in GL-SCMs is often infeasible with finite data, primarily due to overparameterization. To address this, we introduce the class of Centralized Gaussian Linear SCMs (CGL-SCMs), a simplified yet expressive subclass where exogenous variables follow standardized distributions. We show that CGL-SCMs are equally expressive in terms of causal effect identifiability from observational distributions and present a novel EM-based estimation algorithm that can learn CGL-SCM parameters and estimate identifiable causal effects from finite observational samples. Our theoretical analysis is validated through experiments on synthetic data and benchmark causal graphs, demonstrating that the learned models accurately recover causal distributions.
comment: Accepted at the Workshop on Scaling Up Intervention Models at the 42nd International Conference on Machine Learning (ICML 2025)
Optimizing Path Planning using Deep Reinforcement Learning for UGVs in Precision Agriculture
This study focuses on optimizing path planning for unmanned ground vehicles (UGVs) in precision agriculture using deep reinforcement learning (DRL) techniques in continuous action spaces. The research begins with a review of traditional grid-based methods, such as A* and Dijkstra's algorithms, and discusses their limitations in dynamic agricultural environments, highlighting the need for adaptive learning strategies. The study then explores DRL approaches, including Deep Q-Networks (DQN), which demonstrate improved adaptability and performance in two-dimensional simulations. Enhancements such as Double Q-Networks and Dueling Networks are evaluated to further improve decision-making. Building on these results, the focus shifts to continuous action space models, specifically Deep Deterministic Policy Gradient (DDPG) and Twin Delayed Deep Deterministic Policy Gradient (TD3), which are tested in increasingly complex environments. Experiments conducted in a three-dimensional environment using ROS and Gazebo demonstrate the effectiveness of continuous DRL algorithms in navigating dynamic agricultural scenarios. Notably, the pretrained TD3 agent achieves a 95 percent success rate in dynamic environments, demonstrating the robustness of the proposed approach in handling moving obstacles while ensuring safety for both crops and the robot.
Know Thy Enemy: Securing LLMs Against Prompt Injection via Diverse Data Synthesis and Instruction-Level Chain-of-Thought Learning
Large language model (LLM)-integrated applications have become increasingly prevalent, yet face critical security vulnerabilities from prompt injection (PI) attacks. Defending against PI attacks faces two major issues: malicious instructions can be injected through diverse vectors, and injected instructions often lack clear semantic boundaries from the surrounding context, making them difficult to identify. To address these issues, we propose InstruCoT, a model enhancement method for PI defense that synthesizes diverse training data and employs instruction-level chain-of-thought fine-tuning, enabling LLMs to effectively identify and reject malicious instructions regardless of their source or position in the context. We evaluate InstruCoT across three critical dimensions: Behavior Deviation, Privacy Leakage, and Harmful Output. Experimental results across four LLMs demonstrate that InstruCoT significantly outperforms baselines in all dimensions while maintaining utility performance without degradation
comment: 19 pages, 6 figures
CRANE: Causal Relevance Analysis of Language-Specific Neurons in Multilingual Large Language Models
Multilingual large language models (LLMs) achieve strong performance across languages, yet how language capabilities are organized at the neuron level remains poorly understood. Prior work has identified language-related neurons mainly through activation-based heuristics, which conflate language preference with functional importance. Prior work has identified language-related neurons mainly through activation-based heuristics, which conflate language preference with functional importance. We propose CRANE, a relevance-based analysis framework that redefines language specificity in terms of functional necessity, identifying language-specific neurons through targeted neuron-level interventions. CRANE characterizes neuron specialization by their contribution to language-conditioned predictions rather than activation magnitude. Our implementation will be made publicly available. Neuron-level interventions reveal a consistent asymmetric pattern: masking neurons relevant to a target language selectively degrades performance on that language while preserving performance on other languages to a substantial extent, indicating language-selective but non-exclusive neuron specializations. Experiments on English, Chinese, and Vietnamese across multiple benchmarks, together with a dedicated relevance-based metric and base-to-chat model transfer analysis, show that CRANE isolates language-specific components more precisely than activation-based methods.
comment: 10 pages, 6 figures. Work in progress
LAMB: LLM-based Audio Captioning with Modality Gap Bridging via Cauchy-Schwarz Divergence
Automated Audio Captioning aims to describe the semantic content of input audio. Recent works have employed large language models (LLMs) as a text decoder to leverage their reasoning capabilities. However, prior approaches that project audio features into the LLM embedding space without considering cross-modal alignment fail to fully utilize these capabilities. To address this, we propose LAMB, an LLM-based audio captioning framework that bridges the modality gap between audio embeddings and the LLM text embedding space. LAMB incorporates a Cross-Modal Aligner that minimizes Cauchy-Schwarz divergence while maximizing mutual information, yielding tighter alignment between audio and text at both global and token levels. We further design a Two-Stream Adapter that extracts semantically enriched audio embeddings, thereby delivering richer information to the Cross-Modal Aligner. Finally, leveraging the aligned audio embeddings, a proposed Token Guide directly computes scores within the LLM text embedding space to steer the output logits of generated captions. Experimental results confirm that our framework strengthens the reasoning capabilities of the LLM decoder, achieving state-of-the-art performance on AudioCaps.
comment: 5 pages, 2 figures;
LLMs-Integrated Automatic Hate Speech Recognition Using Controllable Text Generation Models
This paper proposes an automatic speech recognition (ASR) model for hate speech using large language models (LLMs). The proposed method integrates the encoder of the ASR model with the decoder of the LLMs, enabling simultaneous transcription and censorship tasks to prevent the exposure of harmful content. Instruction tuning of the LLM to mask hate-related words with specific tokens requires an annotated hate speech dataset, which is limited. We generate text samples using an LLM with the Chain-of-Thought (CoT) prompting technique guided by cultural context and examples and then convert them into speech samples using a text-to-speech (TTS) system. However, some of them contain non-hate speech samples with hate-related words, which degrades the censorship performance. This paper filters the samples which text classification models correctly label as hate content. By adjusting the threshold for the number of correct answer models, we can control the level of hate in the generated dataset, allowing us to train the LLMs through curriculum learning in a gradual manner. Experimental results show that the proposed method achieves a masking accuracy of 58.6\% for hate-related words, surpassing previous baselines. We also confirm that the curriculum training contributes to the efficiency of both transcription and censorship tasks.
comment: In Proceedings of the 17th Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC 2025)
Vibe Coding an LLM-powered Theorem Prover
We present Isabellm, an LLM-powered theorem prover for Isabelle/HOL that performs fully automatic proof synthesis. Isabellm works with any local LLM on Ollama and APIs such as Gemini CLI, and it is designed to run on consumer grade computers. The system combines a stepwise prover, which uses large language models to propose proof commands validated by Isabelle in a bounded search loop, with a higher-level proof planner that generates structured Isar outlines and attempts to fill and repair remaining gaps. The framework includes beam search for tactics, tactics reranker ML and RL models, premise selection with small transformer models, micro-RAG for Isar proofs built from AFP, and counter-example guided proof repair. All the code is implemented by GPT 4.1 - 5.2, Gemini 3 Pro, and Claude 4.5. Empirically, Isabellm can prove certain lemmas that defeat Isabelle's standard automation, including Sledgehammer, demonstrating the practical value of LLM-guided proof search. At the same time, we find that even state-of-the-art LLMs, such as GPT 5.2 Extended Thinking and Gemini 3 Pro struggle to reliably implement the intended fill-and-repair mechanisms with complex algorithmic designs, highlighting fundamental challenges in LLM code generation and reasoning. The code of Isabellm is available at https://github.com/zhehou/llm-isabelle
Adversarial Yet Cooperative: Multi-Perspective Reasoning in Retrieved-Augmented Language Models
Recent advances in synergizing large reasoning models (LRMs) with retrieval-augmented generation (RAG) have shown promising results, yet two critical challenges remain: (1) reasoning models typically operate from a single, unchallenged perspective, limiting their ability to conduct deep, self-correcting reasoning over external documents, and (2) existing training paradigms rely excessively on outcome-oriented rewards, which provide insufficient signal for shaping the complex, multi-step reasoning process. To address these issues, we propose an Reasoner-Verifier framework named Adversarial Reasoning RAG (ARR). The Reasoner and Verifier engage in reasoning on retrieved evidence and critiquing each other's logic while being guided by process-aware advantage that requires no external scoring model. This reward combines explicit observational signals with internal model uncertainty to jointly optimize reasoning fidelity and verification rigor. Experiments on multiple benchmarks demonstrate the effectiveness of our method.
Succeeding at Scale: Automated Multi-Retriever Fusion and Query-Side Adaptation for Multi-Tenant Search
Large-scale multi-tenant retrieval systems amass vast user query logs yet critically lack the curated relevance labels required for effective domain adaptation. This "dark data" problem is exacerbated by the operational cost of model updates: jointly fine-tuning query and document encoders requires re-indexing the entire corpus, which is prohibitive in multi-tenant environments with thousands of isolated indices. To address these dual challenges, we introduce \textbf{DevRev Search}, a passage retrieval benchmark for technical customer support constructed through a fully automatic pipeline. We employ a \textbf{fusion-based candidate generation} strategy, pooling results from diverse sparse and dense retrievers, and utilize an LLM-as-a-Judge to perform rigorous \textbf{consistency filtering} and relevance assignment. We further propose a practical \textbf{Index-Preserving Adaptation} strategy: by fine-tuning only the query encoder via Low-Rank Adaptation (LoRA), we achieve competitive performance improvements while keeping the document index frozen. Our experiments on DevRev Search and SciFact demonstrate that targeting specific transformer layers in the query encoder yields optimal quality-efficiency trade-offs, offering a scalable path for personalized enterprise search.
SpeechMedAssist: Efficiently and Effectively Adapting Speech Language Models for Medical Consultation
Medical consultations are intrinsically speech-centric. However, most prior works focus on long-text-based interactions, which are cumbersome and patient-unfriendly. Recent advances in speech language models (SpeechLMs) have enabled more natural speech-based interaction, yet the scarcity of medical speech data and the inefficiency of directly fine-tuning on speech data jointly hinder the adoption of SpeechLMs in medical consultation. In this paper, we propose SpeechMedAssist, a SpeechLM natively capable of conducting speech-based multi-turn interactions with patients. By exploiting the architectural properties of SpeechLMs, we decouple the conventional one-stage training into a two-stage paradigm consisting of (1) Knowledge & Capability Injection via Text and (2) Modality Re-alignment with Limited Speech Data, thereby reducing the requirement for medical speech data to only 10k synthesized samples. To evaluate SpeechLMs for medical consultation scenarios, we design a benchmark comprising both single-turn question answering and multi-turn simulated interactions. Experimental results show that our model outperforms all baselines in both effectiveness and robustness in most evaluation settings.
From National Curricula to Cultural Awareness: Constructing Open-Ended Culture-Specific Question Answering Dataset
Large language models (LLMs) achieve strong performance on many tasks, but their progress remains uneven across languages and cultures, often reflecting values latent in English-centric training data. To enable practical cultural alignment, we propose a scalable approach that leverages national social studies curricula as a foundation for culture-aware supervision. We introduce CuCu, an automated multi-agent LLM framework that transforms national textbook curricula into open-ended, culture-specific question-answer pairs. Applying CuCu to the Korean national social studies curriculum, we construct KCaQA, comprising 34.1k open-ended QA pairs. Our quantitative and qualitative analyses suggest that KCaQA covers culture-specific topics and produces responses grounded in local sociocultural contexts.
Beyond the "Truth": Investigating Election Rumors on Truth Social During the 2024 Election
Large language models (LLMs) offer unprecedented opportunities for analyzing social phenomena at scale. This paper demonstrates the value of LLMs in psychological measurement by (1) compiling the first large-scale dataset of election rumors on a niche alt-tech platform, (2) developing a multistage Rumor Detection Agent that leverages LLMs for high-precision content classification, and (3) quantifying the psychological dynamics of rumor propagation, specifically the "illusory truth effect" in a naturalistic setting. The Rumor Detection Agent combines (i) a synthetic data-augmented, fine-tuned RoBERTa classifier, (ii) precision keyword filtering, and (iii) a two-pass LLM verification pipeline using GPT-4o mini. The findings reveal that sharing probability rises steadily with each additional exposure, providing large-scale empirical evidence for dose-response belief reinforcement in ideologically homogeneous networks. Simulation results further demonstrate rapid contagion effects: nearly one quarter of users become "infected" within just four propagation iterations. Taken together, these results illustrate how LLMs can transform psychological science by enabling the rigorous measurement of belief dynamics and misinformation spread in massive, real-world datasets.
AgentDevel: Reframing Self-Evolving LLM Agents as Release Engineering
Recent progress in large language model (LLM) agents has largely focused on embedding self-improvement mechanisms inside the agent or searching over many concurrent variants. While these approaches can raise aggregate scores, they often yield unstable and hard-to-audit improvement trajectories, making it difficult to guarantee non-regression or to reason about failures across versions. We reframe agent improvement as \textbf{release engineering}: agents are treated as shippable artifacts, and improvement is externalized into a regression-aware release pipeline. We introduce \textbf{AgentDevel}, a release engineering pipeline that iteratively runs the current agent, produces implementation-blind, symptom-level quality signals from execution traces, synthesizes a single release candidate (RC) via executable diagnosis, and promotes it under flip-centered gating. AgentDevel features three core designs: (i) an implementation-blind LLM critic that characterizes failure appearances without accessing agent internals, (ii) script-based executable diagnosis that aggregates dominant symptom patterns and produces auditable engineering specifications, and (iii) flip-centered gating that prioritizes pass to fail regressions and fail to pass fixes as first-class evidence. Unlike population-based search or in-agent self-refinement, AgentDevel maintains a single canonical version line and emphasizes non-regression as a primary objective. Experiments on execution-heavy benchmarks demonstrate that AgentDevel yields stable improvements with significantly fewer regressions while producing reproducible, auditable artifacts. Overall, AgentDevel provides a practical development discipline for building, debugging, and releasing LLM agents as software development.
DeepHalo: A Neural Choice Model with Controllable Context Effects
Modeling human decision-making is central to applications such as recommendation, preference learning, and human-AI alignment. While many classic models assume context-independent choice behavior, a large body of behavioral research shows that preferences are often influenced by the composition of the choice set itself -- a phenomenon known as the context effect or Halo effect. These effects can manifest as pairwise (first-order) or even higher-order interactions among the available alternatives. Recent models that attempt to capture such effects either focus on the featureless setting or, in the feature-based setting, rely on restrictive interaction structures or entangle interactions across all orders, which limits interpretability. In this work, we propose DeepHalo, a neural modeling framework that incorporates features while enabling explicit control over interaction order and principled interpretation of context effects. Our model enables systematic identification of interaction effects by order and serves as a universal approximator of context-dependent choice functions when specialized to a featureless setting. Experiments on synthetic and real-world datasets demonstrate strong predictive performance while providing greater transparency into the drivers of choice.
Evaluating Human and Machine Confidence in Phishing Email Detection: A Comparative Study
Identifying deceptive content like phishing emails demands sophisticated cognitive processes that combine pattern recognition, confidence assessment, and contextual analysis. This research examines how human cognition and machine learning models work together to distinguish phishing emails from legitimate ones. We employed three interpretable algorithms Logistic Regression, Decision Trees, and Random Forests training them on both TF-IDF features and semantic embeddings, then compared their predictions against human evaluations that captured confidence ratings and linguistic observations. Our results show that machine learning models provide good accuracy rates, but their confidence levels vary significantly. Human evaluators, on the other hand, use a greater variety of language signs and retain more consistent confidence. We also found that while language proficiency has minimal effect on detection performance, aging does. These findings offer helpful direction for creating transparent AI systems that complement human cognitive functions, ultimately improving human-AI cooperation in challenging content analysis tasks.
comment: Accepted for publication in the 2025 IEEE 7th International Conference on Cognitive Machine Intelligence (CogMI) 9 Pages
HUR-MACL: High-Uncertainty Region-Guided Multi-Architecture Collaborative Learning for Head and Neck Multi-Organ Segmentation
Accurate segmentation of organs at risk in the head and neck is essential for radiation therapy, yet deep learning models often fail on small, complexly shaped organs. While hybrid architectures that combine different models show promise, they typically just concatenate features without exploiting the unique strengths of each component. This results in functional overlap and limited segmentation accuracy. To address these issues, we propose a high uncertainty region-guided multi-architecture collaborative learning (HUR-MACL) model for multi-organ segmentation in the head and neck. This model adaptively identifies high uncertainty regions using a convolutional neural network, and for these regions, Vision Mamba as well as Deformable CNN are utilized to jointly improve their segmentation accuracy. Additionally, a heterogeneous feature distillation loss was proposed to promote collaborative learning between the two architectures in high uncertainty regions to further enhance performance. Our method achieves SOTA results on two public datasets and one private dataset.
Crystal Generation using the Fully Differentiable Pipeline and Latent Space Optimization
We present a materials generation framework that couples a symmetry-conditioned variational autoencoder (CVAE) with a differentiable SO(3) power spectrum objective to steer candidates toward a specified local environment under the crystallographic constraints. In particular, we implement a fully differentiable pipeline that performs batch-wise optimization on both direct and latent crystallographic representations. Using the GPU acceleration, the implementation achieves about fivefold speed compared to our previous CPU workflow, while yielding comparable outcomes. In addition, we introduce the optimization strategy that alternatively performs optimization on the direct and latent crystal representations. This dual-level relaxation approach can effectively overcome local barrier defined by different objective gradients, thus increasing the success rate of generating complex structures satisfying the targe local environments. This framework can be extended to systems consisting of multi-components and multi-environments, providing a scalable route to generate material structures with the target local environment.
Constitutional Classifiers++: Efficient Production-Grade Defenses against Universal Jailbreaks
We introduce enhanced Constitutional Classifiers that deliver production-grade jailbreak robustness with dramatically reduced computational costs and refusal rates compared to previous-generation defenses. Our system combines several key insights. First, we develop exchange classifiers that evaluate model responses in their full conversational context, which addresses vulnerabilities in last-generation systems that examine outputs in isolation. Second, we implement a two-stage classifier cascade where lightweight classifiers screen all traffic and escalate only suspicious exchanges to more expensive classifiers. Third, we train efficient linear probe classifiers and ensemble them with external classifiers to simultaneously improve robustness and reduce computational costs. Together, these techniques yield a production-grade system achieving a 40x computational cost reduction compared to our baseline exchange classifier, while maintaining a 0.05% refusal rate on production traffic. Through extensive red-teaming comprising over 1,700 hours, we demonstrate strong protection against universal jailbreaks -- no attack on this system successfully elicited responses to all eight target queries comparable in detail to an undefended model. Our work establishes Constitutional Classifiers as practical and efficient safeguards for large language models.
On the Limitations of Rank-One Model Editing in Answering Multi-hop Questions
Recent advances in Knowledge Editing (KE), particularly Rank-One Model Editing (ROME), show superior efficiency over fine-tuning and in-context learning for updating single-hop facts in transformers. However, these methods face significant challenges when applied to multi-hop reasoning tasks requiring knowledge chaining. In this work, we study the effect of editing knowledge with ROME on different layer depths and identify three key failure modes. First, the "hopping-too-late" problem occurs as later layers lack access to necessary intermediate representations. Second, generalization ability deteriorates sharply when editing later layers. Third, the model overfits to edited knowledge, incorrectly prioritizing edited-hop answers regardless of context. To mitigate the issues of "hopping-too-late" and generalisation decay, we propose Redundant Editing, a simple yet effective strategy that enhances multi-hop reasoning. Our experiments demonstrate that this approach can improve accuracy on 2-hop questions by at least 15.5 percentage points, representing a 96% increase over the previous single-edit strategy, while trading off some specificity and language naturalness.
FedKDX: Federated Learning with Negative Knowledge Distillation for Enhanced Healthcare AI Systems
This paper introduces FedKDX, a federated learning framework that addresses limitations in healthcare AI through Negative Knowledge Distillation (NKD). Unlike existing approaches that focus solely on positive knowledge transfer, FedKDX captures both target and non-target information to improve model generalization in healthcare applications. The framework integrates multiple knowledge transfer techniques--including traditional knowledge distillation, contrastive learning, and NKD--within a unified architecture that maintains privacy while reducing communication costs. Through experiments on healthcare datasets (SLEEP, UCI-HAR, and PAMAP2), FedKDX demonstrates improved accuracy (up to 2.53% over state-of-the-art methods), faster convergence, and better performance on non-IID data distributions. Theoretical analysis supports NKD's contribution to addressing statistical heterogeneity in distributed healthcare data. The approach shows promise for privacy-sensitive medical applications under regulatory frameworks like HIPAA and GDPR, offering a balanced solution between performance and practical implementation requirements in decentralized healthcare settings. The code and model are available at https://github.com/phamdinhdat-ai/Fed_2024.
Autonomous Agents on Blockchains: Standards, Execution Models, and Trust Boundaries
Advances in large language models have enabled agentic AI systems that can reason, plan, and interact with external tools to execute multi-step workflows, while public blockchains have evolved into a programmable substrate for value transfer, access control, and verifiable state transitions. Their convergence introduces a high-stakes systems challenge: designing standard, interoperable, and secure interfaces that allow agents to observe on-chain state, formulate transaction intents, and authorize execution without exposing users, protocols, or organizations to unacceptable security, governance, or economic risks. This survey systematizes the emerging landscape of agent-blockchain interoperability through a systematic literature review, identifying 317 relevant works from an initial pool of over 3000 records. We contribute a five-part taxonomy of integration patterns spanning read-only analytics, simulation and intent generation, delegated execution, autonomous signing, and multi-agent workflows; a threat model tailored to agent-driven transaction pipelines that captures risks ranging from prompt injection and policy misuse to key compromise, adversarial execution dynamics, and multi-agent collusion; and a comparative capability matrix analyzing more than 20 representative systems across 13 dimensions, including custody models, permissioning, policy enforcement, observability, and recovery. Building on the gaps revealed by this analysis, we outline a research roadmap centered on two interface abstractions: a Transaction Intent Schema for portable and unambiguous goal specification, and a Policy Decision Record for auditable, verifiable policy enforcement across execution environments. We conclude by proposing a reproducible evaluation suite and benchmarks for assessing the safety, reliability, and economic robustness of agent-mediated on-chain execution.
Sci-Reasoning: A Dataset Decoding AI Innovation Patterns
While AI innovation accelerates rapidly, the intellectual process behind breakthroughs -- how researchers identify gaps, synthesize prior work, and generate insights -- remains poorly understood. The lack of structured data on scientific reasoning hinders systematic analysis and development of AI research agents. We introduce Sci-Reasoning, the first dataset capturing the intellectual synthesis behind high-quality AI research. Using community-validated quality signals and an LLM-accelerated, human-verified pipeline, we trace Oral and Spotlight papers across NeurIPS, ICML, and ICLR (2023-2025) to its key predecessors, articulating specific reasoning links in a structured format. Our analysis identifies 15 distinct thinking patterns, with three dominant strategies accounting for 52.7%: Gap-Driven Reframing (24.2%), Cross-Domain Synthesis (18.0%), and Representation Shift (10.5%). The most powerful innovation recipes combine multiple patterns: Gap-Driven Reframing + Representation Shift, Cross-Domain Synthesis + Representation Shift, and Gap-Driven Reframing + Cross-Domain Synthesis. This dataset enables quantitative studies of scientific progress and provides structured reasoning trajectories for training the next generation AI research agents.
comment: 22 pages, 9 figures
Scaling Behavior Cloning Improves Causal Reasoning: An Open Model for Real-Time Video Game Playing
Behavior cloning is enjoying a resurgence in popularity as scaling both model and data sizes proves to provide a strong starting point for many tasks of interest. In this work, we introduce an open recipe for training a video game playing foundation model designed for inference in realtime on a consumer GPU. We release all data (8300+ hours of high quality human gameplay), training and inference code, and pretrained checkpoints under an open license. We show that our best model is capable of playing a variety of 3D video games at a level competitive with human play. We use this recipe to systematically examine the scaling laws of behavior cloning to understand how the model's performance and causal reasoning varies with model and data scale. We first show in a simple toy problem that, for some types of causal reasoning, increasing both the amount of training data and the depth of the network results in the model learning a more causal policy. We then systematically study how causality varies with the number of parameters (and depth) and training steps in scaled models of up to 1.2 billion parameters, and we find similar scaling results to what we observe in the toy problem.
comment: 24 pages, 16 figures
Spatial-Temporal Feedback Diffusion Guidance for Controlled Traffic Imputation
Imputing missing values in spatial-temporal traffic data is essential for intelligent transportation systems. Among advanced imputation methods, score-based diffusion models have demonstrated competitive performance. These models generate data by reversing a noising process, using observed values as conditional guidance. However, existing diffusion models typically apply a uniform guidance scale across both spatial and temporal dimensions, which is inadequate for nodes with high missing data rates. Sparse observations provide insufficient conditional guidance, causing the generative process to drift toward the learned prior distribution rather than closely following the conditional observations, resulting in suboptimal imputation performance. To address this, we propose FENCE, a spatial-temporal feedback diffusion guidance method designed to adaptively control guidance scales during imputation. First, FENCE introduces a dynamic feedback mechanism that adjusts the guidance scale based on the posterior likelihood approximations. The guidance scale is increased when generated values diverge from observations and reduced when alignment improves, preventing overcorrection. Second, because alignment to observations varies across nodes and denoising steps, a global guidance scale for all nodes is suboptimal. FENCE computes guidance scales at the cluster level by grouping nodes based on their attention scores, leveraging spatial-temporal correlations to provide more accurate guidance. Experimental results on real-world traffic datasets show that FENCE significantly enhances imputation accuracy.
Enhancing Multimodal Retrieval via Complementary Information Extraction and Alignment
Multimodal retrieval has emerged as a promising yet challenging research direction in recent years. Most existing studies in multimodal retrieval focus on capturing information in multimodal data that is similar to their paired texts, but often ignores the complementary information contained in multimodal data. In this study, we propose CIEA, a novel multimodal retrieval approach that employs Complementary Information Extraction and Alignment, which transforms both text and images in documents into a unified latent space and features a complementary information extractor designed to identify and preserve differences in the image representations. We optimize CIEA using two complementary contrastive losses to ensure semantic integrity and effectively capture the complementary information contained in images. Extensive experiments demonstrate the effectiveness of CIEA, which achieves significant improvements over both divide-and-conquer models and universal dense retrieval models. We provide an ablation study, further discussions, and case studies to highlight the advancements achieved by CIEA. To promote further research in the community, we have released the source code at https://github.com/zengdlong/CIEA.
comment: Accepted by ACL'2025
Neurosymbolic Retrievers for Retrieval-augmented Generation
Retrieval Augmented Generation (RAG) has made significant strides in overcoming key limitations of large language models, such as hallucination, lack of contextual grounding, and issues with transparency. However, traditional RAG systems consist of three interconnected neural components - the retriever, re-ranker, and generator - whose internal reasoning processes remain opaque. This lack of transparency complicates interpretability, hinders debugging efforts, and erodes trust, especially in high-stakes domains where clear decision-making is essential. To address these challenges, we introduce the concept of Neurosymbolic RAG, which integrates symbolic reasoning using a knowledge graph with neural retrieval techniques. This new framework aims to answer two primary questions: (a) Can retrievers provide a clear and interpretable basis for document selection? (b) Can symbolic knowledge enhance the clarity of the retrieval process? We propose three methods to improve this integration. First is MAR (Knowledge Modulation Aligned Retrieval) that employs modulation networks to refine query embeddings using interpretable symbolic features, thereby making document matching more explicit. Second, KG-Path RAG enhances queries by traversing knowledge graphs to improve overall retrieval quality and interpretability. Lastly, Process Knowledge-infused RAG utilizes domain-specific tools to reorder retrieved content based on validated workflows. Preliminary results from mental health risk assessment tasks indicate that this neurosymbolic approach enhances both transparency and overall performance
comment: 8 pages, 2 Figures, To Appear in IEEE Intelligent Systems
BackdoorAgent: A Unified Framework for Backdoor Attacks on LLM-based Agents
Large language model (LLM) agents execute tasks through multi-step workflows that combine planning, memory, and tool use. While this design enables autonomy, it also expands the attack surface for backdoor threats. Backdoor triggers injected into specific stages of an agent workflow can persist through multiple intermediate states and adversely influence downstream outputs. However, existing studies remain fragmented and typically analyze individual attack vectors in isolation, leaving the cross-stage interaction and propagation of backdoor triggers poorly understood from an agent-centric perspective. To fill this gap, we propose \textbf{BackdoorAgent}, a modular and stage-aware framework that provides a unified, agent-centric view of backdoor threats in LLM agents. BackdoorAgent structures the attack surface into three functional stages of agentic workflows, including \textbf{planning attacks}, \textbf{memory attacks}, and \textbf{tool-use attacks}, and instruments agent execution to enable systematic analysis of trigger activation and propagation across different stages. Building on this framework, we construct a standardized benchmark spanning four representative agent applications: \textbf{Agent QA}, \textbf{Agent Code}, \textbf{Agent Web}, and \textbf{Agent Drive}, covering both language-only and multimodal settings. Our empirical analysis shows that \textit{triggers implanted at a single stage can persist across multiple steps and propagate through intermediate states.} For instance, when using a GPT-based backbone, we observe trigger persistence in 43.58\% of planning attacks, 77.97\% of memory attacks, and 60.28\% of tool-stage attacks, highlighting the vulnerabilities of the agentic workflow itself to backdoor threats. To facilitate reproducibility and future research, our code and benchmark are publicly available at GitHub.
A Vision for Multisensory Intelligence: Sensing, Synergy, and Science
Our experience of the world is multisensory, spanning a synthesis of language, sight, sound, touch, taste, and smell. Yet, artificial intelligence has primarily advanced in digital modalities like text, vision, and audio. This paper outlines a research vision for multisensory artificial intelligence over the next decade. This new set of technologies can change how humans and AI experience and interact with one another, by connecting AI to the human senses and a rich spectrum of signals from physiological and tactile cues on the body, to physical and social signals in homes, cities, and the environment. We outline how this field must advance through three interrelated themes of sensing, science, and synergy. Firstly, research in sensing should extend how AI captures the world in richer ways beyond the digital medium. Secondly, developing a principled science for quantifying multimodal heterogeneity and interactions, developing unified modeling architectures and representations, and understanding cross-modal transfer. Finally, we present new technical challenges to learn synergy between modalities and between humans and AI, covering multisensory integration, alignment, reasoning, generation, generalization, and experience. Accompanying this vision paper are a series of projects, resources, and demos of latest advances from the Multisensory Intelligence group at the MIT Media Lab, see https://mit-mi.github.io/.
Reasoning Over Space: Enabling Geographic Reasoning for LLM-Based Generative Next POI Recommendation
Generative recommendation with large language models (LLMs) reframes prediction as sequence generation, yet existing LLM-based recommenders remain limited in leveraging geographic signals that are crucial in mobility and local-services scenarios. Here, we present Reasoning Over Space (ROS), a framework that utilizes geography as a vital decision variable within the reasoning process. ROS introduces a Hierarchical Spatial Semantic ID (SID) that discretizes coarse-to-fine locality and POI semantics into compositional tokens, and endows LLM with a three-stage Mobility Chain-of-Thought (CoT) paradigm that models user personality, constructs an intent-aligned candidate space, and performs locality informed pruning. We further align the model with real world geography via spatial-guided Reinforcement Learning (RL). Experiments on three widely used location-based social network (LBSN) datasets show that ROS achieves over 10% relative gains in hit rate over strongest LLM-based baselines and improves cross-city transfer, despite using a smaller backbone model.
Improving Semi-Supervised Contrastive Learning via Entropy-Weighted Confidence Integration of Anchor-Positive Pairs
Conventional semi-supervised contrastive learning methods assign pseudo-labels only to samples whose highest predicted class probability exceeds a predefined threshold, and then perform supervised contrastive learning using those selected samples. In this study, we propose a novel loss function that estimates the confidence of each sample based on the entropy of its predicted probability distribution and applies confidence-based adaptive weighting. This approach enables pseudo-label assignment even to samples that were previously excluded from training and facilitates contrastive learning that accounts for the confidence of both anchor and positive samples in a more principled manner. Experimental results demonstrate that the proposed method improves classification accuracy and achieves more stable learning performance even under low-label conditions.
Identifying Good and Bad Neurons for Task-Level Controllable LLMs
Large Language Models have demonstrated remarkable capabilities on multiple-choice question answering benchmarks, but the complex mechanisms underlying their large-scale neurons remain opaque, posing significant challenges for understanding and steering LLMs. While recent studies made progress on identifying responsible neurons for certain abilities, these ability-specific methods are infeasible for task-focused scenarios requiring coordinated use of multiple abilities. Moreover, these approaches focus only on supportive neurons that correlate positively with task completion, while neglecting neurons with other roles-such as inhibitive roles-and misled neuron attribution due to fortuitous behaviors in LLMs (i.e., correctly answer the questions by chance rather than genuine understanding). To address these challenges, we propose NeuronLLM, a novel task-level LLM understanding framework that adopts the biological principle of functional antagonism for LLM neuron identification. The key insight is that task performance is jointly determined by neurons with two opposing roles: good neurons that facilitate task completion and bad neurons that inhibit it. NeuronLLM achieves a holistic modeling of neurons via contrastive learning of good and bad neurons, while leveraging augmented question sets to mitigate the fortuitous behaviors in LLMs. Comprehensive experiments on LLMs of different sizes and families show the superiority of NeuronLLM over existing methods in four NLP tasks, providing new insights into LLM functional organization.
Personalized Model-Based Design of Human Centric AI enabled CPS for Long term usage
Human centric critical systems are increasingly involving artificial intelligence to enable knowledge extraction from sensor collected data. Examples include medical monitoring and control systems, gesture based human computer interaction systems, and autonomous cars. Such systems are intended to operate for a long term potentially for a lifetime in many scenarios such as closed loop blood glucose control for Type 1 diabetics, self-driving cars, and monitoting systems for stroke diagnosis, and rehabilitation. Long term operation of such AI enabled human centric applications can expose them to corner cases for which their operation is may be uncertain. This can be due to many reasons such as inherent flaws in the design, limited resources for testing, inherent computational limitations of the testing methodology, or unknown use cases resulting from human interaction with the system. Such untested corner cases or cases for which the system performance is uncertain can lead to violations in the safety, sustainability, and security requirements of the system. In this paper, we analyze the existing techniques for safety, sustainability, and security analysis of an AI enabled human centric control system and discuss their limitations for testing the system for long term use in practice. We then propose personalized model based solutions for potentially eliminating such limitations.
TCAndon-Router: Adaptive Reasoning Router for Multi-Agent Collaboration IJCAI
Multi-Agent Systems(MAS) have become a powerful paradigm for building high performance intelligent applications. Within these systems, the router responsible for determining which expert agents should handle a given query plays a crucial role in overall performance. Existing routing strategies generally fall into two categories: performance routing, which balances latency and cost across models of different sizes, and task routing, which assigns queries to domain-specific experts to improve accuracy. In real-world enterprise applications, task routing is more suitable; however, most existing approaches rely on static single-label decisions, which introduce two major limitations: (i) difficulty in seamlessly integrating new agents as business domains expand, and (ii) routing conflicts caused by overlapping agent capabilities, ultimately degrading accuracy and robustness.To address these challenges, we propose TCAndon-Router(TCAR): an adaptive reasoning router for multi-agent collaboration. Unlike traditional routers, TCAR supports dynamic agent onboarding and first generates a natural-language reasoning chain before predicting a set of candidate agents capable of handling the query. In addition, we design a collaborative execution pipeline in which selected agents independently produce responses, which are then aggregated and refined into a single high-quality response by a dedicated Refining Agent.Experiments on public datasets and real enterprise data demonstrate that TCAR significantly improves routing accuracy, reduces routing conflicts, and remains robust in ambiguous scenarios. We have released TCAR at https://huggingface.co/tencent/TCAndon-Router to support future research on explainable and collaborative multi-agent routing.
comment: 16 pages, 6 figures. Under review at IJCAI
AdaptEval: A Benchmark for Evaluating Large Language Models on Code Snippet Adaptation
Recent advancements in large language models (LLMs) have automated various software engineering tasks, with benchmarks emerging to evaluate their capabilities. However, for adaptation, a critical activity during code reuse, there is no benchmark to assess LLMs' performance, leaving their practical utility in this area unclear. To fill this gap, we propose AdaptEval, a benchmark designed to evaluate LLMs on code snippet adaptation. Unlike existing benchmarks, AdaptEval incorporates the following three distinctive features: First, Practical Context. Tasks in AdaptEval are derived from developers' practices, preserving rich contextual information from Stack Overflow and GitHub communities. Second, Multi-granularity Annotation. Each task is annotated with requirements at both task and adaptation levels, supporting the evaluation of LLMs across diverse adaptation scenarios. Third, Fine-grained Evaluation. AdaptEval includes a two-tier testing framework combining adaptation-level and function-level tests, which enables evaluating LLMs' performance across various individual adaptations. Based on AdaptEval, we conduct the first empirical study to evaluate six instruction-tuned LLMs and especially three reasoning LLMs on code snippet adaptation. Experimental results demonstrate that AdaptEval enables the assessment of LLMs' adaptation capabilities from various perspectives. It also provides critical insights into their current limitations, particularly their struggle to follow explicit instructions. We hope AdaptEval can facilitate further investigation and enhancement of LLMs' capabilities in code snippet adaptation, supporting their real-world applications.
comment: 13 pages, 7 figures, Accepted by ASE 2025
Paradoxical noise preference in RNNs
In recurrent neural networks (RNNs) used to model biological neural networks, noise is typically introduced during training to emulate biological variability and regularize learning. The expectation is that removing the noise at test time should preserve or improve performance. Contrary to this intuition, we find that continuous-time recurrent neural networks (CTRNNs) often perform best at a nonzero noise level, specifically, the same level used during training. This noise preference typically arises when noise is injected inside the neural activation function; networks trained with noise injected outside the activation function perform best with zero noise. Through analyses of simple function approximation, maze navigation, and single neuron regulator tasks, we show that the phenomenon stems from noise-induced shifts of fixed points (stationary distributions) in the underlying stochastic dynamics of the RNNs. These fixed point shifts are noise-level dependent and bias the network outputs when the noise is removed, degrading performance. Analytical and numerical results show that the bias arises when neural states operate near activation function nonlinearities, where noise is asymmetrically attenuated, and that performance optimization incentivizes operation near these nonlinearities. Thus, networks can overfit to the stochastic training environment itself rather than just to the input-output data. The phenomenon is distinct from stochastic resonance, wherein nonzero noise enhances signal processing. Our findings reveal that training noise can become an integral part of the computation learned by recurrent networks, with implications for understanding neural population dynamics and for the design of robust artificial RNNs.
comment: 15 pages, 6 figures
BanglaLorica: Design and Evaluation of a Robust Watermarking Algorithm for Large Language Models in Bangla Text Generation
As large language models (LLMs) are increasingly deployed for text generation, watermarking has become essential for authorship attribution, intellectual property protection, and misuse detection. While existing watermarking methods perform well in high-resource languages, their robustness in low-resource languages remains underexplored. This work presents the first systematic evaluation of state-of-the-art text watermarking methods: KGW, Exponential Sampling (EXP), and Waterfall, for Bangla LLM text generation under cross-lingual round-trip translation (RTT) attacks. Under benign conditions, KGW and EXP achieve high detection accuracy (>88%) with negligible perplexity and ROUGE degradation. However, RTT causes detection accuracy to collapse below RTT causes detection accuracy to collapse to 9-13%, indicating a fundamental failure of token-level watermarking. To address this, we propose a layered watermarking strategy that combines embedding-time and post-generation watermarks. Experimental results show that layered watermarking improves post-RTT detection accuracy by 25-35%, achieving 40-50% accuracy, representing a 3$\times$ to 4$\times$ relative improvement over single-layer methods, at the cost of controlled semantic degradation. Our findings quantify the robustness-quality trade-off in multilingual watermarking and establish layered watermarking as a practical, training-free solution for low-resource languages such as Bangla. Our code and data will be made public.
comment: Under review, 12 pages, 7 figures, 5 tables
Self-MedRAG: a Self-Reflective Hybrid Retrieval-Augmented Generation Framework for Reliable Medical Question Answering
Large Language Models (LLMs) have demonstrated significant potential in medical Question Answering (QA), yet they remain prone to hallucinations and ungrounded reasoning, limiting their reliability in high-stakes clinical scenarios. While Retrieval-Augmented Generation (RAG) mitigates these issues by incorporating external knowledge, conventional single-shot retrieval often fails to resolve complex biomedical queries requiring multi-step inference. To address this, we propose Self-MedRAG, a self-reflective hybrid framework designed to mimic the iterative hypothesis-verification process of clinical reasoning. Self-MedRAG integrates a hybrid retrieval strategy, combining sparse (BM25) and dense (Contriever) retrievers via Reciprocal Rank Fusion (RRF) to maximize evidence coverage. It employs a generator to produce answers with supporting rationales, which are then assessed by a lightweight self-reflection module using Natural Language Inference (NLI) or LLM-based verification. If the rationale lacks sufficient evidentiary support, the system autonomously reformulates the query and iterates to refine the context. We evaluated Self-MedRAG on the MedQA and PubMedQA benchmarks. The results demonstrate that our hybrid retrieval approach significantly outperforms single-retriever baselines. Furthermore, the inclusion of the self-reflective loop yielded substantial gains, increasing accuracy on MedQA from 80.00% to 83.33% and on PubMedQA from 69.10% to 79.82%. These findings confirm that integrating hybrid retrieval with iterative, evidence-based self-reflection effectively reduces unsupported claims and enhances the clinical reliability of LLM-based systems.
Advancing Language Models for Code-related Tasks
Recent advances in language models (LMs) have driven significant progress in various software engineering tasks. However, existing LMs still struggle with complex programming scenarios due to limitations in data quality, model architecture, and reasoning capability. This research systematically addresses these challenges through three complementary directions: (1) improving code data quality with a code difference-guided adversarial augmentation technique (CODA) and a code denoising technique (CodeDenoise); (2) enhancing model architecture via syntax-guided code LMs (LEAM and LEAM++); and (3) advancing model reasoning with a prompting technique (muFiX) and an agent-based technique (Specine). These techniques aim to promote the practical adoption of LMs in software development and further advance intelligent software engineering.
comment: Accepted by ICSE 2026 (DS)
BioPIE: A Biomedical Protocol Information Extraction Dataset for High-Reasoning-Complexity Experiment Question Answer
Question Answer (QA) systems for biomedical experiments facilitate cross-disciplinary communication, and serve as a foundation for downstream tasks, e.g., laboratory automation. High Information Density (HID) and Multi-Step Reasoning (MSR) pose unique challenges for biomedical experimental QA. While extracting structured knowledge, e.g., Knowledge Graphs (KGs), can substantially benefit biomedical experimental QA. Existing biomedical datasets focus on general or coarsegrained knowledge and thus fail to support the fine-grained experimental reasoning demanded by HID and MSR. To address this gap, we introduce Biomedical Protocol Information Extraction Dataset (BioPIE), a dataset that provides procedure-centric KGs of experimental entities, actions, and relations at a scale that supports reasoning over biomedical experiments across protocols. We evaluate information extraction methods on BioPIE, and implement a QA system that leverages BioPIE, showcasing performance gains on test, HID, and MSR question sets, showing that the structured experimental knowledge in BioPIE underpins both AI-assisted and more autonomous biomedical experimentation.
TSSR: Two-Stage Swap-Reward-Driven Reinforcement Learning for Character-Level SMILES Generation
The design of reliable, valid, and diverse molecules is fundamental to modern drug discovery, as improved molecular generation supports efficient exploration of the chemical space for potential drug candidates and reduces the cost of early design efforts. Despite these needs, current chemical language models that generate molecules as SMILES strings are vulnerable to compounding token errors: many samples are unparseable or chemically implausible, and hard constraints meant to prevent failure can restrict exploration. To address this gap, we introduce TSSR, a Two-Stage, Swap-Reward-driven reinforcement learning (RL) framework for character-level SMILES generation. Stage one rewards local token swaps that repair syntax, promoting transitions from invalid to parseable strings. Stage two provides chemistry-aware feedback from RDKit diagnostics, rewarding reductions in valence, aromaticity, and connectivity issues. The reward decomposes into interpretable terms (swap efficiency, error reduction, distance to validity), is model agnostic, and requires no task-specific labels or hand-crafted grammars. We evaluated TSSR on the MOSES benchmark using a GRU policy trained with PPO in both pure RL (P-RL) from random initialization and fine-tuning RL (F-RL) starting from a pretrained chemical language model, assessing 10,000 generated SMILES per run. In P-RL, TSSR significantly improves syntactic validity, chemical validity, and novelty. In F-RL, TSSR preserves drug-likeness and synthesizability while increasing validity and novelty. Token-level analysis shows that syntax edits and chemistry fixes act jointly to reduce RDKit detected errors. TSSR converts a sparse terminal objective into a denser and more interpretable reward, improving both syntactic and chemical quality without reducing diversity. TSSR is dataset-agnostic and can be adapted to various reinforcement learning approaches.
comment: Under Review
Integrating Distribution Matching into Semi-Supervised Contrastive Learning for Labeled and Unlabeled Data
The advancement of deep learning has greatly improved supervised image classification. However, labeling data is costly, prompting research into unsupervised learning methods such as contrastive learning. In real-world scenarios, fully unlabeled datasets are rare, making semi-supervised learning (SSL) highly relevant in scenarios where a small amount of labeled data coexists with a large volume of unlabeled data. A well-known semi-supervised contrastive learning approach involves assigning pseudo-labels to unlabeled data. This study aims to enhance pseudo-label-based SSL by incorporating distribution matching between labeled and unlabeled feature embeddings to improve image classification accuracy across multiple datasets.
comment: ITC-CSCC accepted
Towards Spatio-Temporal Extrapolation of Phase-Field Simulations with Convolution-Only Neural Networks
Phase-field simulations of liquid metal dealloying (LMD) can capture complex microstructural evolutions but can be prohibitively expensive for large domains and long time horizons. In this paper, we introduce a fully convolutional, conditionally parameterized U-Net surrogate designed to extrapolate far beyond its training data in both space and time. The architecture integrates convolutional self-attention, physically informed padding, and a flood-fill corrector method to maintain accuracy under extreme extrapolation, while conditioning on simulation parameters allows for flexible time-step skipping and adaptation to varying alloy compositions. To remove the need for costly solver-based initialization, we couple the surrogate with a conditional diffusion model that generates synthetic, physically consistent initial conditions. We train our surrogate on simulations generated over small domain sizes and short time spans, but, by taking advantage of the convolutional nature of U-Nets, we are able to run and extrapolate surrogate simulations for longer time horizons than what would be achievable with classic numerical solvers. Across multiple alloy compositions, the framework is able to reproduce the LMD physics accurately. It predicts key quantities of interest and spatial statistics with relative errors typically below 5% in the training regime and under 15% during large-scale, long time-horizon extrapolations. Our framework can also deliver speed-ups of up to 36,000 times, bringing the time to run weeks-long simulations down to a few seconds. This work is a first stepping stone towards high-fidelity extrapolation in both space and time of phase-field simulation for LMD.
A General Neural Backbone for Mixed-Integer Linear Optimization via Dual Attention
Mixed-integer linear programming (MILP), a widely used modeling framework for combinatorial optimization, are central to many scientific and engineering applications, yet remains computationally challenging at scale. Recent advances in deep learning address this challenge by representing MILP instances as variable-constraint bipartite graphs and applying graph neural networks (GNNs) to extract latent structural patterns and enhance solver efficiency. However, this architecture is inherently limited by the local-oriented mechanism, leading to restricted representation power and hindering neural approaches for MILP. Here we present an attention-driven neural architecture that learns expressive representations beyond the pure graph view. A dual-attention mechanism is designed to perform parallel self- and cross-attention over variables and constraints, enabling global information exchange and deeper representation learning. We apply this general backbone to various downstream tasks at the instance level, element level, and solving state level. Extensive experiments across widely used benchmarks show consistent improvements of our approach over state-of-the-art baselines, highlighting attention-based neural architectures as a powerful foundation for learning-enhanced mixed-integer linear optimization.
WESR: Scaling and Evaluating Word-level Event-Speech Recognition
Speech conveys not only linguistic information but also rich non-verbal vocal events such as laughing and crying. While semantic transcription is well-studied, the precise localization of non-verbal events remains a critical yet under-explored challenge. Current methods suffer from insufficient task definitions with limited category coverage and ambiguous temporal granularity. They also lack standardized evaluation frameworks, hindering the development of downstream applications. To bridge this gap, we first develop a refined taxonomy of 21 vocal events, with a new categorization into discrete (standalone) versus continuous (mixed with speech) types. Based on the refined taxonomy, we introduce WESR-Bench, an expert-annotated evaluation set (900+ utterances) with a novel position-aware protocol that disentangles ASR errors from event detection, enabling precise localization measurement for both discrete and continuous events. We also build a strong baseline by constructing a 1,700+ hour corpus, and train specialized models, surpassing both open-source audio-language models and commercial APIs while preserving ASR quality. We anticipate that WESR will serve as a foundational resource for future research in modeling rich, real-world auditory scenes.
comment: 14 pages, 6 figures
A Semi-supervised Molecular Learning Framework for Activity Cliff Estimation
Machine learning (ML) enables accurate and fast molecular property predictions, which are of interest in drug discovery and material design. Their success is based on the principle of similarity at its heart, assuming that similar molecules exhibit close properties. However, activity cliffs challenge this principle, and their presence leads to a sharp decline in the performance of existing ML algorithms, particularly graph-based methods. To overcome this obstacle under a low-data scenario, we propose a novel semi-supervised learning (SSL) method dubbed SemiMol, which employs predictions on numerous unannotated data as pseudo-signals for subsequent training. Specifically, we introduce an additional instructor model to evaluate the accuracy and trustworthiness of proxy labels because existing pseudo-labeling approaches require probabilistic outputs to reveal the model's confidence and fail to be applied in regression tasks. Moreover, we design a self-adaptive curriculum learning algorithm to progressively move the target model toward hard samples at a controllable pace. Extensive experiments on 30 activity cliff datasets demonstrate that SemiMol significantly enhances graph-based ML architectures and outpasses state-of-the-art pretraining and SSL baselines.
Surface-based Molecular Design with Multi-modal Flow Matching
Therapeutic peptides show promise in targeting previously undruggable binding sites, with recent advancements in deep generative models enabling full-atom peptide co-design for specific protein receptors. However, the critical role of molecular surfaces in protein-protein interactions (PPIs) has been underexplored. To bridge this gap, we propose an omni-design peptides generation paradigm, called SurfFlow, a novel surface-based generative algorithm that enables comprehensive co-design of sequence, structure, and surface for peptides. SurfFlow employs a multi-modality conditional flow matching (CFM) architecture to learn distributions of surface geometries and biochemical properties, enhancing peptide binding accuracy. Evaluated on the comprehensive PepMerge benchmark, SurfFlow consistently outperforms full-atom baselines across all metrics. These results highlight the advantages of considering molecular surfaces in de novo peptide discovery and demonstrate the potential of integrating multiple protein modalities for more effective therapeutic peptide discovery.
CircuitLM: A Multi-Agent LLM-Aided Design Framework for Generating Circuit Schematics from Natural Language Prompts
Generating accurate circuit schematics from high-level natural language descriptions remains a persistent challenge in electronics design, as large language models (LLMs) frequently hallucinate in granular details, violate electrical constraints, and produce non-machine-readable outputs. We present CircuitLM, a novel multi-agent LLM-aided circuit design pipeline that translates user prompts into structured, visually interpretable CircuitJSON schematics through five sequential stages: (i) LLM-based component identification, (ii) canonical pinout retrieval, (iii) chain-of-thought reasoning by an electronics expert agent, (iv) JSON schematic synthesis, and (v) force-directed SVG visualization. Anchored by a curated, embedding-powered component knowledge base. While LLMs often violate electrical constraints, CircuitLM bridges this gap by grounding generation in a verified and dynamically extensible component database, initially comprising 50 components. To ensure safety, we incorporate a hybrid evaluation framework, namely Dual-Metric Circuit Validation (DMCV), validated against human-expert assessments, which achieves high fidelity in microcontroller-centric designs. We evaluate the system on 100 diverse embedded-systems prompts across six LLMs and introduce DMCV to assess both structural and electrical validity. This work bridges natural language input to deployable hardware designs, enabling reliable circuit prototyping by non-experts. Our code and data will be made public upon acceptance.
comment: Under review, 13 pages, 11 figures, 2 tables
Specific Emitter Identification via Active Learning
With the rapid growth of wireless communications, specific emitter identification (SEI) is significant for communication security. However, its model training relies heavily on the large-scale labeled data, which are costly and time-consuming to obtain. To address this challenge, we propose an SEI approach enhanced by active learning (AL), which follows a three-stage semi-supervised training scheme. In the first stage, self-supervised contrastive learning is employed with a dynamic dictionary update mechanism to extract robust representations from large amounts of the unlabeled data. In the second stage, supervised training on a small labeled dataset is performed, where the contrastive and cross-entropy losses are jointly optimized to improve the feature separability and strengthen the classification boundaries. In the third stage, an AL module selects the most valuable samples from the unlabeled data for annotation based on the uncertainty and representativeness criteria, further enhancing generalization under limited labeling budgets. Experimental results on the ADS-B and WiFi datasets demonstrate that the proposed SEI approach significantly outperforms the conventional supervised and semi-supervised methods under limited annotation conditions, achieving higher recognition accuracy with lower labeling cost.
GUITester: Enabling GUI Agents for Exploratory Defect Discovery
Exploratory GUI testing is essential for software quality but suffers from high manual costs. While Multi-modal Large Language Model (MLLM) agents excel in navigation, they fail to autonomously discover defects due to two core challenges: \textit{Goal-Oriented Masking}, where agents prioritize task completion over reporting anomalies, and \textit{Execution-Bias Attribution}, where system defects are misidentified as agent errors. To address these, we first introduce \textbf{GUITestBench}, the first interactive benchmark for this task, featuring 143 tasks across 26 defects. We then propose \textbf{GUITester}, a multi-agent framework that decouples navigation from verification via two modules: (i) a \textit{Planning-Execution Module (PEM)} that proactively probes for defects via embedded testing intents, and (ii) a \textit{Hierarchical Reflection Module (HRM)} that resolves attribution ambiguity through interaction history analysis. GUITester achieves an F1-score of 48.90\% (Pass@3) on GUITestBench, outperforming state-of-the-art baselines (33.35\%). Our work demonstrates the feasibility of autonomous exploratory testing and provides a robust foundation for future GUI quality assurance~\footnote{Our code is now available in~\href{https://github.com/ADaM-BJTU/GUITestBench}{https://github.com/ADaM-BJTU/GUITestBench}}.
Vision-Language Agents for Interactive Forest Change Analysis
Modern forest monitoring workflows increasingly benefit from the growing availability of high-resolution satellite imagery and advances in deep learning. Two persistent challenges in this context are accurate pixel-level change detection and meaningful semantic change captioning for complex forest dynamics. While large language models (LLMs) are being adapted for interactive data exploration, their integration with vision-language models (VLMs) for remote sensing image change interpretation (RSICI) remains underexplored. To address this gap, we introduce an LLM-driven agent for integrated forest change analysis that supports natural language querying across multiple RSICI tasks. The proposed system builds upon a multi-level change interpretation (MCI) vision-language backbone with LLM-based orchestration. To facilitate adaptation and evaluation in forest environments, we further introduce the Forest-Change dataset, which comprises bi-temporal satellite imagery, pixel-level change masks, and multi-granularity semantic change captions generated using a combination of human annotation and rule-based methods. Experimental results show that the proposed system achieves mIoU and BLEU-4 scores of 67.10% and 40.17% on the Forest-Change dataset, and 88.13% and 34.41% on LEVIR-MCI-Trees, a tree-focused subset of LEVIR-MCI benchmark for joint change detection and captioning. These results highlight the potential of interactive, LLM-driven RSICI systems to improve accessibility, interpretability, and efficiency of forest change analysis. All data and code are publicly available at https://github.com/JamesBrockUoB/ForestChat.
comment: 5 pages, 4 figures, Submitted to IGARSS 2026
Scalable Floating-Point Satisfiability via Staged Optimization
This work introduces StageSAT, a new approach to solving floating-point satisfiability that bridges SMT solving with numerical optimization. StageSAT reframes a floating-point formula as a series of optimization problems in three stages of increasing precision. It begins with a fast, projection-aided descent objective to guide the search toward a feasible region, proceeding to bit-level accuracy with ULP$^2$ optimization and a final $n$-ULP lattice refinement. By construction, the final stage uses a representing function that is zero if and only if a candidate satisfies all constraints. Thus, when optimization drives the objective to zero, the resulting assignment is a valid solution, providing a built-in guarantee of soundness. To improve search, StageSAT introduces a partial monotone descent property on linear constraints via orthogonal projection, preventing the optimizer from stalling on flat or misleading landscapes. Critically, this solver requires no heavy bit-level reasoning or specialized abstractions; it treats complex arithmetic as a black-box, using runtime evaluations to navigate the input space. We implement StageSAT and evaluate it on extensive benchmarks, including SMT-COMP'25 suites and difficult cases from prior work. StageSAT proved more scalable and accurate than state-of-the-art optimization-based alternatives. It solved strictly more formulas than any competing solver under the same time budget, finding most satisfiable instances without producing spurious models. This amounts to 99.4% recall on satisfiable cases with 0% false SAT, exceeding the reliability of prior optimization-based solvers. StageSAT also delivered significant speedups (often 5--10$\times$) over traditional bit-precise SMT and numeric solvers. These results demonstrate that staged optimization significantly improves performance and correctness of floating-point satisfiability solving.
A Closed-Loop Multi-Agent System Driven by LLMs for Meal-Level Personalized Nutrition Management
Personalized nutrition management aims to tailor dietary guidance to an individual's intake and phenotype, but most existing systems handle food logging, nutrient analysis and recommendation separately. We present a next-generation mobile nutrition assistant that combines image based meal logging with an LLM driven multi agent controller to provide meal level closed loop support. The system coordinates vision, dialogue and state management agents to estimate nutrients from photos and update a daily intake budget. It then adapts the next meal plan to user preferences and dietary constraints. Experiments with SNAPMe meal images and simulated users show competitive nutrient estimation, personalized menus and efficient task plans. These findings demonstrate the feasibility of multi agent LLM control for personalized nutrition and reveal open challenges in micronutrient estimation from images and in large scale real world studies.
comment: 6 pages, 6 figures, 6 tables, Conference: Robotics, Automation, and Artificial Intelligence 2025
Decision-Aware Trust Signal Alignment for SOC Alert Triage
Detection systems that utilize machine learning are progressively implemented at Security Operations Centers (SOCs) to help an analyst to filter through high volumes of security alerts. Practically, such systems tend to reveal probabilistic results or confidence scores which are ill-calibrated and hard to read when under pressure. Qualitative and survey based studies of SOC practice done before reveal that poor alert quality and alert overload greatly augment the burden on the analyst, especially when tool outputs are not coherent with decision requirements, or signal noise. One of the most significant limitations is that model confidence is usually shown without expressing that there are asymmetric costs in decision making where false alarms are much less harmful than missed attacks. The present paper presents a decision-sensitive trust signal correspondence scheme of SOC alert triage. The framework combines confidence that has been calibrated, lightweight uncertainty cues, and cost-sensitive decision thresholds into coherent decision-support layer, instead of making changes to detection models. To enhance probabilistic consistency, the calibration is done using the known post-hoc methods and the uncertainty cues give conservative protection in situations where model certainty is low. To measure the model-independent performance of the suggested model, we apply the Logistic Regression and the Random Forest classifiers to the UNSW-NB15 intrusion detection benchmark. According to simulation findings, false negatives are greatly amplified by the presence of misaligned displays of confidence, whereas cost weighted loss decreases by orders of magnitude between models with decision aligned trust signals. Lastly, we describe a human-in-the-loop study plan that would allow empirically assessing the decision-making of the analysts with aligned and misaligned trust interfaces.
Hybrid Federated Learning for Noise-Robust Training
Federated learning (FL) and federated distillation (FD) are distributed learning paradigms that train UE models with enhanced privacy, each offering different trade-offs between noise robustness and learning speed. To mitigate their respective weaknesses, we propose a hybrid federated learning (HFL) framework in which each user equipment (UE) transmits either gradients or logits, and the base station (BS) selects the per-round weights of FL and FD updates. We derive convergence of HFL framework and introduce two methods to exploit degrees of freedom (DoF) in HFL, which are (i) adaptive UE clustering via Jenks optimization and (ii) adaptive weight selection via a damped Newton method. Numerical results show that HFL achieves superior test accuracy at low SNR when both DoF are exploited.
Computational Compliance for AI Regulation: Blueprint for a New Research Domain
The era of AI regulation (AIR) is upon us. But AI systems, we argue, will not be able to comply with these regulations at the necessary speed and scale by continuing to rely on traditional, analogue methods of compliance. Instead, we posit that compliance with these regulations will only realistically be achieved computationally: that is, with algorithms that run across the life cycle of an AI system, automatically steering it toward AIR compliance in the face of dynamic conditions. Yet despite their (we would argue) inevitability, the research community has yet to specify exactly how these algorithms for computational AIR compliance should behave - or how we should benchmark their performance. To fill these gaps, we specify a set of design goals for such algorithms. In addition, we specify a benchmark dataset that can be used to quantitatively measure whether individual algorithms satisfy these design goals. By delivering this blueprint, we hope to give shape to an important but uncrystallized new domain of research - and, in doing so, incite necessary investment in it.
Concept Tokens: Learning Behavioral Embeddings Through Concept Definitions
We propose Concept Tokens, a lightweight method that adds a new special token to a pretrained LLM and learns only its embedding from multiple natural language definitions of a target concept, where occurrences of the concept are replaced by the new token. The LLM is kept frozen and the embedding is optimized with the standard language-modeling objective. We evaluate Concept Tokens in three settings. First, we study hallucinations in closed-book question answering on HotpotQA and find a directional effect: negating the hallucination token reduces hallucinated answers mainly by increasing abstentions, whereas asserting it increases hallucinations and lowers precision. Second, we induce recasting, a pedagogical feedback strategy for second language teaching, and observe the same directional effect. Moreover, compared to providing the full definitional corpus in-context, concept tokens better preserve compliance with other instructions (e.g., asking follow-up questions). Finally, we include a qualitative study with the Eiffel Tower and a fictional "Austral Tower" to illustrate what information the learned embeddings capture and where their limitations emerge. Overall, Concept Tokens provide a compact control signal learned from definitions that can steer behavior in frozen LLMs.
Beyond Static Summarization: Proactive Memory Extraction for LLM Agents
Memory management is vital for LLM agents to handle long-term interaction and personalization. Most research focuses on how to organize and use memory summary, but often overlooks the initial memory extraction stage. In this paper, we argue that existing summary-based methods have two major limitations based on the recurrent processing theory. First, summarization is "ahead-of-time", acting as a blind "feed-forward" process that misses important details because it doesn't know future tasks. Second, extraction is usually "one-off", lacking a feedback loop to verify facts, which leads to the accumulation of information loss. To address these issues, we propose proactive memory extraction (namely ProMem). Unlike static summarization, ProMem treats extraction as an iterative cognitive process. We introduce a recurrent feedback loop where the agent uses self-questioning to actively probe the dialogue history. This mechanism allows the agent to recover missing information and correct errors. Our ProMem significantly improves the completeness of the extracted memory and QA accuracy. It also achieves a superior trade-off between extraction quality and token cost.
Categorical Belief Propagation: Sheaf-Theoretic Inference via Descent and Holonomy
We develop a categorical foundation for belief propagation on factor graphs. We construct the free hypergraph category \(\Syn_Σ\) on a typed signature and prove its universal property, yielding compositional semantics via a unique functor to the matrix category \(\cat{Mat}_R\). Message-passing is formulated using a Grothendieck fibration \(\int\Msg \to \cat{FG}_Σ\) over polarized factor graphs, with schedule-indexed endomorphisms defining BP updates. We characterize exact inference as effective descent: local beliefs form a descent datum when compatibility conditions hold on overlaps. This framework unifies tree exactness, junction tree algorithms, and loopy BP failures under sheaf-theoretic obstructions. We introduce HATCC (Holonomy-Aware Tree Compilation), an algorithm that detects descent obstructions via holonomy computation on the factor nerve, compiles non-trivial holonomy into mode variables, and reduces to tree BP on an augmented graph. Complexity is \(O(n^2 d_{\max} + c \cdot k_{\max} \cdot δ_{\max}^3 + n \cdot δ_{\max}^2)\) for \(n\) factors and \(c\) fundamental cycles. Experimental results demonstrate exact inference with significant speedup over junction trees on grid MRFs and random graphs, along with UNSAT detection on satisfiability instances.
comment: No essential info
Re-Rankers as Relevance Judges
Using large language models (LLMs) to predict relevance judgments has shown promising results. Most studies treat this task as a distinct research line, e.g., focusing on prompt design for predicting relevance labels given a query and passage. However, predicting relevance judgments is essentially a form of relevance prediction, a problem extensively studied in tasks such as re-ranking. Despite this potential overlap, little research has explored reusing or adapting established re-ranking methods to predict relevance judgments, leading to potential resource waste and redundant development. To bridge this gap, we reproduce re-rankers in a re-ranker-as-relevance-judge setup. We design two adaptation strategies: (i) using binary tokens (e.g., "true" and "false") generated by a re-ranker as direct judgments, and (ii) converting continuous re-ranking scores into binary labels via thresholding. We perform extensive experiments on TREC-DL 2019 to 2023 with 8 re-rankers from 3 families, ranging from 220M to 32B, and analyse the evaluation bias exhibited by re-ranker-based judges. Results show that re-ranker-based relevance judges, under both strategies, can outperform UMBRELA, a state-of-the-art LLM-based relevance judge, in around 40% to 50% of the cases; they also exhibit strong self-preference towards their own and same-family re-rankers, as well as cross-family bias.
Thinking with Map: Reinforced Parallel Map-Augmented Agent for Geolocalization
The image geolocalization task aims to predict the location where an image was taken anywhere on Earth using visual clues. Existing large vision-language model (LVLM) approaches leverage world knowledge, chain-of-thought reasoning, and agentic capabilities, but overlook a common strategy used by humans -- using maps. In this work, we first equip the model \textit{Thinking with Map} ability and formulate it as an agent-in-the-map loop. We develop a two-stage optimization scheme for it, including agentic reinforcement learning (RL) followed by parallel test-time scaling (TTS). The RL strengthens the agentic capability of model to improve sampling efficiency, and the parallel TTS enables the model to explore multiple candidate paths before making the final prediction, which is crucial for geolocalization. To evaluate our method on up-to-date and in-the-wild images, we further present MAPBench, a comprehensive geolocalization training and evaluation benchmark composed entirely of real-world images. Experimental results show that our method outperforms existing open- and closed-source models on most metrics, specifically improving Acc@500m from 8.0\% to 22.1\% compared to \textit{Gemini-3-Pro} with Google Search/Map grounded mode.
Multi-task Cross-modal Learning for Chest X-ray Image Retrieval
CLIP and BiomedCLIP are examples of vision-language foundation models and offer strong cross-modal embeddings; however, they are not optimized for fine-grained medical retrieval tasks, such as retrieving clinically relevant radiology reports using chest X-ray (CXR) image queries. To address this shortcoming, we propose a multi-task learning framework to fine-tune BiomedCLIP and evaluate improvements to CXR image-text retrieval. Using BiomedCLIP as the backbone, we incorporate a lightweight MLP projector head trained with a multi-task composite loss function that includes: (1) a binary cross-entropy loss to distinguish normal from abnormal CXR studies, (2) a supervised contrastive loss to reinforce intra-class consistency, and (3) a CLIP loss to maintain cross-modal alignment. Experimental results demonstrate that the fine-tuned model achieves more balanced and clinically meaningful performance across both image-to-text and text-to-image retrieval tasks compared to the pretrained BiomedCLIP and general-purpose CLIP models. Furthermore, t-SNE visualizations reveal clearer semantic clustering of normal and abnormal cases, demonstrating the model's enhanced diagnostic sensitivity. These findings highlight the value of domain-adaptive, multi-task learning for advancing cross-modal retrieval in biomedical applications.
On the Effect of Cheating in Chess
Cheating in chess, by using advice from powerful software, has become a major problem, reaching the highest levels. As opposed to the large majority of previous work, which concerned {\em detection} of cheating, here we try to evaluate the possible gain in performance, obtained by cheating a limited number of times during a game. Algorithms are developed and tested on a commonly used chess engine (i.e software).\footnote{Needless to say, the goal of this work is not to assist cheaters, but to measure the effectiveness of cheating -- which is crucial as part of the effort to contain and detect it.}
Conformity and Social Impact on AI Agents
As AI agents increasingly operate in multi-agent environments, understanding their collective behavior becomes critical for predicting the dynamics of artificial societies. This study examines conformity, the tendency to align with group opinions under social pressure, in large multimodal language models functioning as AI agents. By adapting classic visual experiments from social psychology, we investigate how AI agents respond to group influence as social actors. Our experiments reveal that AI agents exhibit a systematic conformity bias, aligned with Social Impact Theory, showing sensitivity to group size, unanimity, task difficulty, and source characteristics. Critically, AI agents achieving near-perfect performance in isolation become highly susceptible to manipulation through social influence. This vulnerability persists across model scales: while larger models show reduced conformity on simple tasks due to improved capabilities, they remain vulnerable when operating at their competence boundary. These findings reveal fundamental security vulnerabilities in AI agent decision-making that could enable malicious manipulation, misinformation campaigns, and bias propagation in multi-agent systems, highlighting the urgent need for safeguards in collective AI deployments.
The Persona Paradox: Medical Personas as Behavioral Priors in Clinical Language Models
Persona conditioning can be viewed as a behavioral prior for large language models (LLMs) and is often assumed to confer expertise and improve safety in a monotonic manner. However, its effects on high-stakes clinical decision-making remain poorly characterized. We systematically evaluate persona-based control in clinical LLMs, examining how professional roles (e.g., Emergency Department physician, nurse) and interaction styles (bold vs.\ cautious) influence behavior across models and medical tasks. We assess performance on clinical triage and patient-safety tasks using multidimensional evaluations that capture task accuracy, calibration, and safety-relevant risk behavior. We find systematic, context-dependent, and non-monotonic effects: Medical personas improve performance in critical care tasks, yielding gains of up to $\sim+20\%$ in accuracy and calibration, but degrade performance in primary-care settings by comparable margins. Interaction style modulates risk propensity and sensitivity, but it's highly model-dependent. While aggregated LLM-judge rankings favor medical over non-medical personas in safety-critical cases, we found that human clinicians show moderate agreement on safety compliance (average Cohen's $κ= 0.43$) but indicate a low confidence in 95.9\% of their responses on reasoning quality. Our work shows that personas function as behavioral priors that introduce context-dependent trade-offs rather than guarantees of safety or expertise. The code is available at https://github.com/rsinghlab/Persona\_Paradox.
Ensemble of radiomics and ConvNeXt for breast cancer diagnosis
Early diagnosis of breast cancer is crucial for improving survival rates. Radiomics and deep learning (DL) have shown significant potential in assisting radiologists with early cancer detection. This paper aims to critically assess the performance of radiomics, DL, and ensemble techniques in detecting cancer from screening mammograms. Two independent datasets were used: the RSNA 2023 Breast Cancer Detection Challenge (11,913 patients) and a Mexican cohort from the TecSalud dataset (19,400 patients). The ConvNeXtV1-small DL model was trained on the RSNA dataset and validated on the TecSalud dataset, while radiomics models were developed using the TecSalud dataset and validated with a leave-one-year-out approach. The ensemble method consistently combined and calibrated predictions using the same methodology. Results showed that the ensemble approach achieved the highest area under the curve (AUC) of 0.87, compared to 0.83 for ConvNeXtV1-small and 0.80 for radiomics. In conclusion, ensemble methods combining DL and radiomics predictions significantly enhance breast cancer diagnosis from mammograms.
comment: Accepted and presented at the IEEE International Symposium on Computer-Based Medical Systems (CBMS) 2025
Lost in Execution: On the Multilingual Robustness of Tool Calling in Large Language Models
Large Language Models (LLMs) are increasingly deployed as agents that invoke external tools through structured function calls. While recent work reports strong tool-calling performance under standard English-centric evaluations, the robustness of tool calling under multilingual user interactions remains underexplored. In this work, we introduce MLCL, a diagnostic benchmark, and conduct a systematic evaluation of multilingual tool calling across Chinese, Hindi, and the low-resource language Igbo. Through fine-grained error analysis, we show that many failures occur despite correct intent understanding and tool selection. We identify parameter value language mismatch as a dominant failure mode, where models generate semantically appropriate parameter values in the user's language, violating language-invariant execution conventions. We further evaluate several inference-time system strategies and find that while these strategies substantially reduce language-induced execution errors, none of them can fully recover English-level performance.
STResNet & STYOLO : A New Family of Compact Classification and Object Detection Models for MCUs
Recent advancements in lightweight neural networks have significantly improved the efficiency of deploying deep learning models on edge hardware. However, most existing architectures still trade accuracy for latency, which limits their applicability on microcontroller and neural processing unit based devices. In this work, we introduce two new model families, STResNet for image classification and STYOLO for object detection, jointly optimized for accuracy, efficiency, and memory footprint on resource constrained platforms. The proposed STResNet series, ranging from Nano to Tiny variants, achieves competitive ImageNet 1K accuracy within a four million parameter budget. Specifically, STResNetMilli attains 70.0 percent Top 1 accuracy with only three million parameters, outperforming MobileNetV1 and ShuffleNetV2 at comparable computational complexity. For object detection, STYOLOMicro and STYOLOMilli achieve 30.5 percent and 33.6 percent mean average precision, respectively, on the MS COCO dataset, surpassing YOLOv5n and YOLOX Nano in both accuracy and efficiency. Furthermore, when STResNetMilli is used as a backbone with the Ultralytics training environment.
comment: 9 pages, 1 figure
PRISM: Protocol Refinement through Intelligent Simulation Modeling
Automating experimental protocol design and execution remains as a fundamental bottleneck in realizing self-driving laboratories. We introduce PRISM (Protocol Refinement through Intelligent Simulation Modeling), a framework that automates the design, validation, and execution of experimental protocols on a laboratory platform composed of off-the-shelf robotic instruments. PRISM uses a set of language-model-based agents that work together to generate and refine experimental steps. The process begins with automatically gathering relevant procedures from web-based sources describing experimental workflows. These are converted into structured experimental steps (e.g., liquid handling steps, deck layout and other related operations) through a planning, critique, and validation loop. The finalized steps are translated into the Argonne MADSci protocol format, which provides a unified interface for coordinating multiple robotic instruments (Opentrons OT-2 liquid handler, PF400 arm, Azenta plate sealer and peeler) without requiring human intervention between steps. To evaluate protocol-generation performance, we benchmarked both single reasoning models and multi-agent workflow across constrained and open-ended prompting paradigms. The resulting protocols were validated in a digital-twin environment built in NVIDIA Omniverse to detect physical or sequencing errors before execution. Using Luna qPCR amplification and Cell Painting as case studies, we demonstrate PRISM as a practical end-to-end workflow that bridges language-based protocol generation, simulation-based validation, and automated robotic execution.
comment: 43 pages, 8 figures, submitted to RSC Digital Discovery. Equal contribution: B. Hsu, P.V. Setty, R.M. Butler. Corresponding author: A. Ramanathan
A Bayesian Generative Modeling Approach for Arbitrary Conditional Inference
Modern data analysis increasingly requires flexible conditional inference P(X_B | X_A) where (X_A, X_B) is an arbitrary partition of observed variable X. Existing conditional inference methods lack this flexibility as they are tied to a fixed conditioning structure and cannot perform new conditional inference once trained. To solve this, we propose a Bayesian generative modeling (BGM) approach for arbitrary conditional inference without retraining. BGM learns a generative model of X through an iterative Bayesian updating algorithm where model parameters and latent variables are updated until convergence. Once trained, any conditional distribution can be obtained without retraining. Empirically, BGM achieves superior prediction performance with well calibrated predictive intervals, demonstrating that a single learned model can serve as a universal engine for conditional prediction with uncertainty quantification. We provide theoretical guarantees for the convergence of the stochastic iterative algorithm, statistical consistency and conditional-risk bounds. The proposed BGM framework leverages the power of AI to capture complex relationships among variables while adhering to Bayesian principles, emerging as a promising framework for advancing various applications in modern data science. The code for BGM is freely available at https://github.com/liuq-lab/bayesgm.
Multi-turn Jailbreaking Attack in Multi-Modal Large Language Models
In recent years, the security vulnerabilities of Multi-modal Large Language Models (MLLMs) have become a serious concern in the Generative Artificial Intelligence (GenAI) research. These highly intelligent models, capable of performing multi-modal tasks with high accuracy, are also severely susceptible to carefully launched security attacks, such as jailbreaking attacks, which can manipulate model behavior and bypass safety constraints. This paper introduces MJAD-MLLMs, a holistic framework that systematically analyzes the proposed Multi-turn Jailbreaking Attacks and multi-LLM-based defense techniques for MLLMs. In this paper, we make three original contributions. First, we introduce a novel multi-turn jailbreaking attack to exploit the vulnerabilities of the MLLMs under multi-turn prompting. Second, we propose a novel fragment-optimized and multi-LLM defense mechanism, called FragGuard, to effectively mitigate jailbreaking attacks in the MLLMs. Third, we evaluate the efficacy of the proposed attacks and defenses through extensive experiments on several state-of-the-art (SOTA) open-source and closed-source MLLMs and benchmark datasets, and compare their performance with the existing techniques.
Improving Enzyme Prediction with Chemical Reaction Equations by Hypergraph-Enhanced Knowledge Graph Embeddings
Predicting enzyme-substrate interactions has long been a fundamental problem in biochemistry and metabolic engineering. While existing methods could leverage databases of expert-curated enzyme-substrate pairs for models to learn from known pair interactions, the databases are often sparse, i.e., there are only limited and incomplete examples of such pairs, and also labor-intensive to maintain. This lack of sufficient training data significantly hinders the ability of traditional enzyme prediction models to generalize to unseen interactions. In this work, we try to exploit chemical reaction equations from domain-specific databases, given their easier accessibility and denser, more abundant data. However, interactions of multiple compounds, e.g., educts and products, with the same enzymes create complex relational data patterns that traditional models cannot easily capture. To tackle that, we represent chemical reaction equations as triples of (educt, enzyme, product) within a knowledge graph, such that we can take advantage of knowledge graph embedding (KGE) to infer missing enzyme-substrate pairs for graph completion. Particularly, in order to capture intricate relationships among compounds, we propose our knowledge-enhanced hypergraph model for enzyme prediction, i.e., Hyper-Enz, which integrates a hypergraph transformer with a KGE model to learn representations of the hyper-edges that involve multiple educts and products. Also, a multi-expert paradigm is introduced to guide the learning of enzyme-substrate interactions with both the proposed model and chemical reaction equations. Experimental results show a significant improvement, with up to a 88% relative improvement in average enzyme retrieval accuracy and 30% improvement in pair-level prediction compared to traditional models, demonstrating the effectiveness of our approach.
Bi-Orthogonal Factor Decomposition for Vision Transformers
Self-attention is the central computational primitive of Vision Transformers, yet we lack a principled understanding of what information attention mechanisms exchange between tokens. Attention maps describe where weight mass concentrates; they do not reveal whether queries and keys trade position, content, or both. We introduce Bi-orthogonal Factor Decomposition (BFD), a two-stage analytical framework: first, an ANOVA-based decomposition statistically disentangles token activations into orthogonal positional and content factors; second, SVD of the query-key interaction matrix QK^T exposes bi-orthogonal modes that reveal how these factors mediate communication. After validating proper isolation of position and content, we apply BFD to state-of-the-art vision models and uncover three phenomena.(i) Attention operates primarily through content. Content-content interactions dominate attention energy, followed by content-position coupling. DINOv2 allocates more energy to content-position than supervised models and distributes computation across a richer mode spectrum. (ii) Attention mechanisms exhibit specialization: heads differentiate into content-content, content-position, and position-position operators, while singular modes within heads show analogous specialization. (iii) DINOv2's superior holistic shape processing emerges from intermediate layers that simultaneously preserve positional structure while contextually enriching semantic content. Overall, BFD exposes how tokens interact through attention and which informational factors - positional or semantic - mediate their communication, yielding practical insights into vision transformer mechanisms.
Effects of personality steering on cooperative behavior in Large Language Model agents
Large language models (LLMs) are increasingly used as autonomous agents in strategic and social interactions. Although recent studies suggest that assigning personality traits to LLMs can influence their behavior, how personality steering affects cooperation under controlled conditions remains unclear. In this study, we examine the effects of personality steering on cooperative behavior in LLM agents using repeated Prisoner's Dilemma games. Based on the Big Five framework, we first measure basic personality profiles of three models, GPT-3.5-turbo, GPT-4o, and GPT-5, using the Big Five Inventory. We then compare behavior under baseline and personality-informed conditions, and further analyze the effects of independently manipulating each personality dimension to extreme values. Our results show that agreeableness is the dominant factor promoting cooperation across all models, while other personality traits have limited impact. Explicit personality information increases cooperation but can also raise vulnerability to exploitation, particularly in earlier-generation models. In contrast, later-generation models exhibit more selective cooperation. These findings indicate that personality steering acts as a behavioral bias rather than a deterministic control mechanism.
Mathematical Knowledge Graph-Driven Framework for Equation-Based Predictive and Reliable Additive Manufacturing
Additive manufacturing (AM) relies critically on understanding and extrapolating process-property relationships; however, existing data-driven approaches remain limited by fragmented knowledge representations and unreliable extrapolation under sparse data conditions. In this study, we propose an ontology-guided, equation-centric framework that tightly integrates large language models (LLMs) with an additive manufacturing mathematical knowledge graph (AM-MKG) to enable reliable knowledge extraction and principled extrapolative modeling. By explicitly encoding equations, variables, assumptions, and their semantic relationships within a formal ontology, unstructured literature is transformed into machine-interpretable representations that support structured querying and reasoning. LLM-based equation generation is further conditioned on MKG-derived subgraphs, enforcing physically meaningful functional forms and mitigating non-physical or unstable extrapolation trends. To assess reliability beyond conventional predictive uncertainty, a confidence-aware extrapolation assessment is introduced, integrating extrapolation distance, statistical stability, and knowledge-graph-based physical consistency into a unified confidence score. Results demonstrate that ontology-guided extraction significantly improves the structural coherence and quantitative reliability of extracted knowledge, while subgraph-conditioned equation generation yields stable and physically consistent extrapolations compared to unguided LLM outputs. Overall, this work establishes a unified pipeline for ontology-driven knowledge representation, equation-centered reasoning, and confidence-based extrapolation assessment, highlighting the potential of knowledge-graph-augmented LLMs as reliable tools for extrapolative modeling in additive manufacturing.
comment: preprint
Belief Is All You Need: Modeling Narrative Archetypes in Conspiratorial Discourse
Conspiratorial discourse is increasingly embedded within digital communication ecosystems, yet its structure and spread remain difficult to study. This work analyzes conspiratorial narratives in Singapore-based Telegram groups, showing that such content is woven into everyday discussions rather than confined to isolated echo chambers. We propose a two-stage computational framework. First, we fine-tune RoBERTa-large to classify messages as conspiratorial or not, achieving an F1-score of 0.866 on 2,000 expert-labeled messages. Second, we build a signed belief graph in which nodes represent messages and edge signs reflect alignment in belief labels, weighted by textual similarity. We introduce a Signed Belief Graph Neural Network (SiBeGNN) that uses a Sign Disentanglement Loss to learn embeddings that separate ideological alignment from stylistic features. Using hierarchical clustering on these embeddings, we identify seven narrative archetypes across 553,648 messages: legal topics, medical concerns, media discussions, finance, contradictions in authority, group moderation, and general chat. SiBeGNN yields stronger clustering quality (cDBI = 8.38) than baseline methods (13.60 to 67.27), supported by 88 percent inter-rater agreement in expert evaluations. Our analysis shows that conspiratorial messages appear not only in clusters focused on skepticism or distrust, but also within routine discussions of finance, law, and everyday matters. These findings challenge common assumptions about online radicalization by demonstrating that conspiratorial discourse operates within ordinary social interaction. The proposed framework advances computational methods for belief-driven discourse analysis and offers applications for stance detection, political communication studies, and content moderation policy.
From Policy to Logic for Efficient and Interpretable Coverage Assessment AAAI 2026
Large Language Models (LLMs) have demonstrated strong capabilities in interpreting lengthy, complex legal and policy language. However, their reliability can be undermined by hallucinations and inconsistencies, particularly when analyzing subjective and nuanced documents. These challenges are especially critical in medical coverage policy review, where human experts must be able to rely on accurate information. In this paper, we present an approach designed to support human reviewers by making policy interpretation more efficient and interpretable. We introduce a methodology that pairs a coverage-aware retriever with symbolic rule-based reasoning to surface relevant policy language, organize it into explicit facts and rules, and generate auditable rationales. This hybrid system minimizes the number of LLM inferences required which reduces overall model cost. Notably, our approach achieves a 44% reduction in inference cost alongside a 4.5% improvement in F1 score, demonstrating both efficiency and effectiveness.
comment: Accepted at AIMedHealth @ AAAI 2026
Surprisal and Metaphor Novelty: Moderate Correlations and Divergent Scaling Effects
Novel metaphor comprehension involves complex semantic processes and linguistic creativity, making it an interesting task for studying language models (LMs). This study investigates whether surprisal, a probabilistic measure of predictability in LMs, correlates with different metaphor novelty datasets. We analyse surprisal from 16 LM variants on corpus-based and synthetic metaphor novelty datasets. We explore a cloze-style surprisal method that conditions on full-sentence context. Results show that LMs yield significant moderate correlations with scores/labels of metaphor novelty. We further identify divergent scaling patterns: on corpus-based data, correlation strength decreases with model size (inverse scaling effect), whereas on synthetic data it increases (Quality-Power Hypothesis). We conclude that while surprisal can partially account for annotations of metaphor novelty, it remains a limited metric of linguistic creativity.
comment: to be published at EACL 2026 main conference
Toward Maturity-Based Certification of Embodied AI: Quantifying Trustworthiness Through Measurement Mechanisms AAAI-26
We propose a maturity-based framework for certifying embodied AI systems through explicit measurement mechanisms. We argue that certifiable embodied AI requires structured assessment frameworks, quantitative scoring mechanisms, and methods for navigating multi-objective trade-offs inherent in trustworthiness evaluation. We demonstrate this approach using uncertainty quantification as an exemplar measurement mechanism and illustrate feasibility through an Uncrewed Aircraft System (UAS) detection case study.
comment: Accepted to AAAI-26 Bridge Program B10: Making Embodied AI Reliable with Testing and Formal Verification
Improving and Evaluating Open Deep Research Agents
We focus here on Deep Research Agents (DRAs), which are systems that can take a natural language prompt from a user, and then autonomously search for, and utilize, internet-based content to address the prompt. Recent DRAs have demonstrated impressive capabilities on public benchmarks however, recent research largely involves proprietary closed-source systems. At the time of this work, we only found one open-source DRA, termed Open Deep Research (ODR). In this work we adapt the challenging recent BrowseComp benchmark to compare ODR to existing proprietary systems. We propose BrowseComp-Small (BC-Small), comprising a subset of BrowseComp, as a more computationally-tractable DRA benchmark for academic labs. We benchmark ODR and two other proprietary systems on BC-Small: one system from Anthropic and one system from Google. We find that all three systems achieve 0% accuracy on the test set of 60 questions. We introduce three strategic improvements to ODR, resulting in the ODR+ model, which achieves a state-of-the-art 10% success rate on BC-Small among both closed-source and open-source systems. We report ablation studies indicating that all three of our improvements contributed to the success of ODR+.
comment: 8 pages, 2 figures, 2 tables
Extreme Solar Flare Prediction Using Residual Networks with HMI Magnetograms and Intensitygrams
Solar flares, especially C, M, and X class, pose significant risks to satellite operations, communication systems, and power grids. We present a novel approach for predicting extreme solar flares using HMI intensitygrams and magnetograms. By detecting sunspots from intensitygrams and extracting magnetic field patches from magnetograms, we train a Residual Network (ResNet) to classify extreme class flares. Our model demonstrates high accuracy, offering a robust tool for predicting extreme solar flares and improving space weather forecasting. Additionally, we show that HMI magnetograms provide more useful data for deep learning compared to other SDO AIA images by better capturing features critical for predicting flare magnitudes. This study underscores the importance of identifying magnetic fields in solar flare prediction, marking a significant advancement in solar activity prediction with practical implications for mitigating space weather impacts.
A Framework for Responsible AI Systems: Building Societal Trust through Domain Definition, Trustworthy AI Design, Auditability, Accountability, and Governance
Responsible Artificial Intelligence (RAI) addresses the ethical and regulatory challenges of deploying AI systems in high-risk scenarios. This paper proposes a comprehensive framework for the design of an RAI system (RAIS) that integrates five key dimensions: domain definition, trustworthy AI design, auditability, accountability, and governance. Unlike prior work that treats these components in isolation, our proposal emphasizes their inter-dependencies and iterative feedback loops, enabling proactive and reactive accountability throughout the AI lifecycle. Beyond presenting the framework, we synthesize recent developments in global AI governance and analyze limitations in existing principles-based approaches, highlighting fragmentation, implementation gaps, and the need for participatory governance. The paper also identifies critical challenges and research directions for the RAIS framework, including sector-specific adaptation and operationalization, to support certification, post-deployment monitoring, and risk-based auditing. By bridging technical design and institutional responsibility, this work offers a practical blueprint for embedding responsibility throughout the AI lifecycle, enabling transparent, ethically aligned, and legally compliant AI-based systems.
comment: 27 pages, 9 figures, 2 tables
Why Does Stochastic Gradient Descent Slow Down in Low-Precision Training?
Low-precision training has become crucial for reducing the computational and memory costs of large-scale deep learning. However, quantizing gradients introduces magnitude shrinkage, which can change how stochastic gradient descent (SGD) converges. In this study, we explore SGD convergence under a gradient shrinkage model, where each stochastic gradient is scaled by a factor \( q_k \in (0,1] \). We show that this shrinkage affect the usual stepsize \( μ_k \) with an effective stepsize \( μ_k q_k \), slowing convergence when \( q_{\min} < 1 \). With typical smoothness and bounded-variance assumptions, we prove that low-precision SGD still converges, but at a slower pace set by \( q_{\min} \), and with a higher steady error level due to quantization effects. We analyze theoretically how lower numerical precision slows training by treating it as gradient shrinkage within the standard SGD convergence setup.
SciClaims: An End-to-End Generative System for Biomedical Claim Analysis
We present SciClaims, an interactive web-based system for end-to-end scientific claim analysis in the biomedical domain. Designed for high-stakes use cases such as systematic literature reviews and patent validation, SciClaims extracts claims from text, retrieves relevant evidence from PubMed, and verifies their veracity. The system features a user-friendly interface where users can input scientific text and view extracted claims, predictions, supporting or refuting evidence, and justifications in natural language. Unlike prior approaches, SciClaims seamlessly integrates the entire scientific claim analysis process using a single large language model, without requiring additional fine-tuning. SciClaims is optimized to run efficiently on a single GPU and is publicly available for live interaction.
comment: In Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: System Demonstrations
POLYCHARTQA: Benchmarking Large Vision-Language Models with Multilingual Chart Question Answering
Charts are a universally adopted medium for data communication, yet existing chart understanding benchmarks are overwhelmingly English-centric, limiting their accessibility and relevance to global audiences. To address this limitation, we introduce PolyChartQA, the first large-scale multilingual benchmark for chart question answering, comprising 22,606 charts and 26,151 QA pairs across 10 diverse languages. PolyChartQA is constructed through a scalable pipeline that enables efficient multilingual chart generation via data translation and code reuse, supported by LLM-based translation and rigorous quality control. We systematically evaluate multilingual chart understanding with PolyChartQA on state-of-the-art LVLMs and reveal a significant performance gap between English and other languages, particularly low-resource ones. Additionally, we introduce a companion multilingual chart question answering training set, PolyChartQA-Train, on which fine-tuning LVLMs yields substantial gains in multilingual chart understanding across diverse model sizes and architectures. Together, our benchmark provides a foundation for developing globally inclusive vision-language models capable of understanding charts across diverse linguistic contexts.
comment: Work in Progress
Act-Adaptive Margin: Dynamically Calibrating Reward Models for Subjective Ambiguity
Currently, most reinforcement learning tasks focus on domains like mathematics and programming, where verification is relatively straightforward. However, in subjective tasks such as role-playing, alignment techniques struggle to make progress, primarily because subjective reward modeling using the Bradley-Terry model faces significant challenges when dealing with ambiguous preferences. To improve reward modeling in subjective tasks, this paper proposes AAM (\textbf{\underline{A}}ct-\textbf{\underline{A}}daptive \textbf{\underline{M}}argin), which enhances reward modeling by dynamically calibrating preference margins using the model's internal parameter knowledge. We design two versions of AAM that efficiently generate contextually-appropriate preference gaps without additional human annotation. This approach fundamentally improves how reward models handle subjective rewards by better integrating generative understanding with preference scoring. To validate AAM's effectiveness in subjective reward modeling, we conduct evaluations on RewardBench, JudgeBench, and challenging role-playing tasks. Results show that AAM significantly improves subjective reward modeling performance, enhancing Bradley-Terry reward models by 2.95\% in general tasks and 4.85\% in subjective role-playing tasks. Furthermore, reward models trained with AAM can help downstream alignment tasks achieve better results. Our test results show that applying rewards generated by AAM-Augmented RM to preference learning techniques (e.g., GRPO) achieves state-of-the-art results on CharacterEval and Charm. Code and dataset are available at https://github.com/calubkk/AAM.
Multi-Modal AI for Remote Patient Monitoring in Cancer Care
For patients undergoing systemic cancer therapy, the time between clinic visits is full of uncertainties and risks of unmonitored side effects. To bridge this gap in care, we developed and prospectively trialed a multi-modal AI framework for remote patient monitoring (RPM). This system integrates multi-modal data from the HALO-X platform, such as demographics, wearable sensors, daily surveys, and clinical events. Our observational trial is one of the largest of its kind and has collected over 2.1 million data points (6,080 patient-days) of monitoring from 84 patients. We developed and adapted a multi-modal AI model to handle the asynchronous and incomplete nature of real-world RPM data, forecasting a continuous risk of future adverse events. The model achieved an accuracy of 83.9% (AUROC=0.70). Notably, the model identified previous treatments, wellness check-ins, and daily maximum heart rate as key predictive features. A case study demonstrated the model's ability to provide early warnings by outputting escalating risk profiles prior to the event. This work establishes the feasibility of multi-modal AI RPM for cancer care and offers a path toward more proactive patient support.(Accepted at Europe NeurIPS 2025 Multimodal Representation Learning for Healthcare Workshop. Best Paper Poster Award.)
CALM: A CKA-Guided Adaptive Layer-Wise Modularization Framework for LLM Quantization
Current mainstream post-training quantization methods for large language models typically apply a uniform quantization strategy across all network layers, overlooking the substantial differences in algorithmic suitability among layers. To address this limitation, we propose CALM (A CKA-guided Adaptive Layer-wise Modularization)a fine-tuning-free, plug-and-play framework for algorithmic heterogeneous quantization. CALM independently evaluates multiple PTQ algorithms on each layer and employs Linear Centered Kernel Alignment (CKA) as a metric to automatically select the optimal quantization strategy per layer. The individually optimized strategies are then integrated to construct a hybrid quantized model. Experiments demonstrate that our approach consistently outperforms both uniform quantization baselines and state-of-the-art mixed-precision methods across mainstream LLMsincluding LLaMA and Qwenin terms of perplexity (PPL) and downstream task performance.
Vibe Coding as a Reconfiguration of Intent Mediation in Software Development: Definition, Implications, and Research Agenda
Software development is undergoing a fundamental transformation as vibe coding becomes widespread, with large portions of contemporary codebases now being generated by Artificial Intelligence (AI). The disconnect between rapid adoption and limited conceptual understanding highlights the need for an inquiry into this emerging paradigm. Drawing on an intent perspective and historical analysis, we define vibe coding as a software development paradigm where humans and Generative AI (GenAI) engage in collaborative flow to co-create software artifacts through natural language dialogue, shifting the mediation of developer intent from deterministic instruction to probabilistic inference. By intent mediation, we refer to the fundamental process through which developers translate their conceptual goals into representations that computational systems can execute. Our results show that vibe coding redistributes epistemic labor between humans and machines, shifting expertise from technical implementation toward collaborative orchestration. We identify key opportunities, including democratization, acceleration, and systemic leverage, alongside risks such as black-box codebases, responsibility gaps, and ecosystem bias. We conclude with a research agenda spanning human-, technology-, and organization-centered directions to guide future investigations of this paradigm.
Instruction Tuning with and without Context: Behavioral Shifts and Downstream Impact
Instruction tuning is a widely used approach to improve the instruction-following ability of large language models (LLMs). Instruction-tuning datasets typically include a mixture of context-augmented and context-free examples, yet prior work has largely combined these data types without examining their distinct effects. In this paper, we investigate how training LLMs with or without context affects model behavior and downstream performance. First, in the text domain, we show that LLMs trained with context attend more strongly to the provided knowledge, achieving better grounding. We also observe that context-augmented training shifts how LLMs use knowledge: models store and leverage less on parametric knowledge and instead depend more on the provided context. Second, we observe that using LLM trained with context-augmented data as the backbone for vision-language models reduces hallucination and improves grounding in the visual domain. Finally, we explore practical strategies for real-world deployments where context availability varies. We show that maintaining separate context-augmented and context-free models and routing inputs between them yields more robust overall performance than training a single mixed model, as it better preserves their complementary strengths.
MT-Video-Bench: A Holistic Video Understanding Benchmark for Evaluating Multimodal LLMs in Multi-Turn Dialogues
The recent development of Multimodal Large Language Models (MLLMs) has significantly advanced AI's ability to understand visual modalities. However, existing evaluation benchmarks remain limited to single-turn question answering, overlooking the complexity of multi-turn dialogues in real-world scenarios. To bridge this gap, we introduce MT-Video-Bench, a holistic video understanding benchmark for evaluating MLLMs in multi-turn dialogues. Specifically, our MT-Video-Bench mainly assesses 6 core competencies that focus on perceptivity and interactivity, encompassing 1,000 meticulously curated multi-turn dialogues from diverse domains. These capabilities are rigorously aligned with real-world applications, such as interactive sports analysis and multi-turn video-based intelligent tutoring. With MT-Video-Bench, we extensively evaluate various state-of-the-art open-source and closed-source MLLMs, revealing their significant performance discrepancies and limitations in handling multi-turn video dialogues. The benchmark will be publicly available to foster future research.
comment: Project Website: https://github.com/NJU-LINK/MT-Video-Bench
Extreme-value forest fire prediction A study of the Loss Function in an Ordinality Scheme
Wildfires are highly imbalanced natural hazards in both space and severity, making the prediction of extreme events particularly challenging. In this work, we introduce the first ordinal classification framework for forecasting wildfire severity levels directly aligned with operational decision-making in France. Our study investigates the influence of loss-function design on the ability of neural models to predict rare yet critical high-severity fire occurrences. We compare standard cross-entropy with several ordinal-aware objectives, including the proposed probabilistic TDeGPD loss derived from a truncated discrete exponentiated Generalized Pareto Distribution. Through extensive benchmarking over multiple architectures and real operational data, we show that ordinal supervision substantially improves model performance over conventional approaches. In particular, the Weighted Kappa Loss (WKLoss) achieves the best overall results, with more than +0.1 IoU (Intersection Over Union) gain on the most extreme severity classes while maintaining competitive calibration quality. However, performance remains limited for the rarest events due to their extremely low representation in the dataset. These findings highlight the importance of integrating both severity ordering, data imbalance considerations, and seasonality risk into wildfire forecasting systems. Future work will focus on incorporating seasonal dynamics and uncertainty information into training to further improve the reliability of extreme-event prediction.
Talking with Tables for Better LLM Factual Data Interactions
Large Language Models (LLMs) often struggle with requests related to information retrieval and data manipulation that frequently arise in real-world scenarios under multiple conditions. In this paper, we demonstrate that leveraging tabular structures in LLM interactions, is more effective than utilizing other structures for handling prevalent requests that operate over factual data. Through comprehensive evaluations across various scenarios and request types, we show that providing tabular structures yields a 40.29\% average performance gain along with better robustness and token efficiency. Through attention-value analysis, we discover that tables help LLMs better locate relevant information, explaining these improvements. Beyond tables and text, we evaluate whether (1) blending structuredness within text, such as providing templates or fixing the order of attributes, and (2) other representative structures, such as knowledge graphs and JSON are helpful. We observe that utilizing tables offers the best balance between efficiency and effectiveness. The method remains robust to task complexity and adapts to unstructured sources through text-to-table conversion. Overall, we highlight the untapped potential of tabular representations for future LLM applications.
comment: 20 pages, 9 figures
Uncertainty-Aware Robotic World Model Makes Offline Model-Based Reinforcement Learning Work on Real Robots
Reinforcement Learning (RL) has achieved impressive results in robotics, yet high-performing pipelines remain highly task-specific, with little reuse of prior data. Offline Model-based RL (MBRL) offers greater data efficiency by training policies entirely from existing datasets, but suffers from compounding errors and distribution shift in long-horizon rollouts. Although existing methods have shown success in controlled simulation benchmarks, robustly applying them to the noisy, biased, and partially observed datasets typical of real-world robotics remains challenging. We present a principled pipeline for making offline MBRL effective on physical robots. Our RWM-U extends autoregressive world models with epistemic uncertainty estimation, enabling temporally consistent multi-step rollouts with uncertainty effectively propagated over long horizons. We combine RWM-U with MOPO-PPO, which adapts uncertainty-penalized policy optimization to the stable, on-policy PPO framework for real-world control. We evaluate our approach on diverse manipulation and locomotion tasks in simulation and on real quadruped and humanoid, training policies entirely from offline datasets. The resulting policies consistently outperform model-free and uncertainty-unaware model-based baselines, and fusing real-world data in model learning further yields robust policies that surpass online model-free baselines trained solely in simulation.
Donors and Recipients: On Asymmetric Transfer Across Tasks and Languages with Parameter-Efficient Fine-Tuning
Large language models (LLMs) perform strongly across tasks and languages, yet how improvements in one task or language affect other tasks and languages remains poorly understood. We conduct a controlled LoRA fine-tuning study across multiple open-weight LLM families and scales, using a standardised grid of 11 languages and four benchmarks. We fine-tune each model on a single task-language source and measure transfer when evaluated on all other task-language target pairs. We decompose transfer into three regimes: (i) Matched-Task (Cross-Language), (ii) Matched-Language (Cross-Task), and (iii) Cross-Task (Cross-Language). Single-source fine-tuning yields a net positive uplift across regimes, but the gains are strongly asymmetric. Matched-Task (Cross-Language) transfer emerges as the most effective and predictable regime, driven principally by the identity of the target language rather than model architecture. We identify a stable hierarchy where high-resource languages and broad semantic tasks act as efficient recipients that absorb gains from diverse sources, while specialised tasks and lower-resource languages are more isolated. These results imply that effective fine-tuning requires navigating donor-recipient roles to maximise downstream gains.
Pelican Soup Framework: A Theoretical Framework for Language Model Capabilities
In this work, we propose a simple theoretical framework, Pelican Soup, aiming to better understand how pretraining allows LLMs to (1) generalize to unseen instructions and (2) perform in-context learning, even when the verbalizers are irrelevant to the task. To this end, in our framework, we introduce the notion of "knowledge base" and "reference-sense association" and a simple formalism for natural language processing tasks. Our framework demonstrates how linguistic, psychology, and philosophy studies can inform our understanding of the language model and is connected to several other existing theoretical results. As an illustration of the usage of our framework, we derive a bound on in-context learning loss with our framework. Finally, we support our framework with empirical experiments and provide possible future research directions.
Clinically-Validated Innovative Mobile Application for Assessing Blinking and Eyelid Movements
Blinking is a vital physiological process that protects and maintains the health of the ocular surface. Objective assessment of eyelid movements remains challenging due to the complexity, cost, and limited clinical applicability of existing tools. This study presents the Bapp (Blink Application), a mobile application developed using the Flutter framework and integrated with Google ML Kit for on-device, real-time analysis of eyelid movements, and its clinical validation. The validation was performed using 45 videos from patients, whose blinks were manually annotated by an ophthalmology specialist as the ground truth. The Bapp's performance was evaluated using standard metrics, with results demonstrating 98.4% precision, 96.9% recall, and an overall accuracy of 98.3%. These outcomes confirm the reliability of the Bapp as a portable, accessible, and objective tool for monitoring eyelid movements. The application offers a promising alternative to traditional manual blink counting, supporting continuous ocular health monitoring and postoperative evaluation in clinical environments.
comment: 20 pages, 13 figures
Reward Shaping to Mitigate Reward Hacking in RLHF
Reinforcement Learning from Human Feedback (RLHF) is essential for aligning large language models (LLMs) with human values. However, RLHF is susceptible to \emph{reward hacking}, where the agent exploits flaws in the reward function rather than learning the intended behavior, thus degrading alignment. Although reward shaping helps stabilize RLHF and partially mitigate reward hacking, a systematic investigation into shaping techniques and their underlying principles remains lacking. To bridge this gap, we present a comprehensive study of the prevalent reward shaping methods. Our analysis suggests two key design principles: (1) the RL reward should be bounded, and (2) the RL reward benefits from rapid initial growth followed by gradual convergence. Guided by these insights, we propose Preference As Reward (PAR), a novel approach that leverages the latent preferences embedded within the reward model as the signal for reinforcement learning. Moreover, PAR exhibits two critical variance-reduction properties that contribute to stabilizing the RLHF training process and effectively extending the tolerance window for early stopping. We evaluated PAR on the base model Gemma2-2B using two datasets, Ultrafeedback-Binarized and HH-RLHF. Experimental results demonstrate PAR's superior performance over other reward shaping methods. On the AlpacaEval 2.0 benchmark, PAR achieves a win rate of at least 5 percentage points higher than competing approaches. Furthermore, PAR exhibits remarkable data efficiency, requiring only a single reference reward for optimal performance, and maintains robustness against reward hacking even after two full epochs of training. The code is available at https://github.com/PorUna-byte/PAR.
AMAP Agentic Planning Technical Report
We present STAgent, an agentic large language model tailored for spatio-temporal understanding, designed to solve complex tasks such as constrained point-of-interest discovery and itinerary planning. STAgent is a specialized model capable of interacting with ten distinct tools within spatio-temporal scenarios, enabling it to explore, verify, and refine intermediate steps during complex reasoning. Notably, STAgent effectively preserves its general capabilities. We empower STAgent with these capabilities through three key contributions: (1) a stable tool environment that supports over ten domain-specific tools, enabling asynchronous rollout and training; (2) a hierarchical data curation framework that identifies high-quality data like a needle in a haystack, curating high-quality queries by retaining less than 1\% of the raw data, emphasizing both diversity and difficulty; and (3) a cascaded training recipe that starts with a seed SFT stage acting as a guardian to measure query difficulty, followed by a second SFT stage fine-tuned on queries with high certainty, and an ultimate RL stage that leverages data of low certainty. Initialized with Qwen3-30B-A3B to establish a strong SFT foundation and leverage insights into sample difficulty, STAgent yields promising performance on TravelBench while maintaining its general capabilities across a wide range of general benchmarks, thereby demonstrating the effectiveness of our proposed agentic model.
PsychEval: A Multi-Session and Multi-Therapy Benchmark for High-Realism AI Psychological Counselor
To develop a reliable AI for psychological assessment, we introduce \texttt{PsychEval}, a multi-session, multi-therapy, and highly realistic benchmark designed to address three key challenges: \textbf{1) Can we train a highly realistic AI counselor?} Realistic counseling is a longitudinal task requiring sustained memory and dynamic goal tracking. We propose a multi-session benchmark (spanning 6-10 sessions across three distinct stages) that demands critical capabilities such as memory continuity, adaptive reasoning, and longitudinal planning. The dataset is annotated with extensive professional skills, comprising over 677 meta-skills and 4577 atomic skills. \textbf{2) How to train a multi-therapy AI counselor?} While existing models often focus on a single therapy, complex cases frequently require flexible strategies among various therapies. We construct a diverse dataset covering five therapeutic modalities (Psychodynamic, Behaviorism, CBT, Humanistic Existentialist, and Postmodernist) alongside an integrative therapy with a unified three-stage clinical framework across six core psychological topics. \textbf{3) How to systematically evaluate an AI counselor?} We establish a holistic evaluation framework with 18 therapy-specific and therapy-shared metrics across Client-Level and Counselor-Level dimensions. To support this, we also construct over 2,000 diverse client profiles. Extensive experimental analysis fully validates the superior quality and clinical fidelity of our dataset. Crucially, \texttt{PsychEval} transcends static benchmarking to serve as a high-fidelity reinforcement learning environment that enables the self-evolutionary training of clinically responsible and adaptive AI counselors.
A Gap Between Decision Trees and Neural Networks
We study when geometric simplicity of decision boundaries, used here as a notion of interpretability, can conflict with accurate approximation of axis-aligned decision trees by shallow neural networks. Decision trees induce rule-based, axis-aligned decision regions (finite unions of boxes), whereas shallow ReLU networks are typically trained as score models whose predictions are obtained by thresholding. We analyze the infinite-width, bounded-norm, single-hidden-layer ReLU class through the Radon total variation ($\mathrm{R}\mathrm{TV}$) seminorm, which controls the geometric complexity of level sets. We first show that the hard tree indicator $1_A$ has infinite $\mathrm{R}\mathrm{TV}$. Moreover, two natural split-wise continuous surrogates--piecewise-linear ramp smoothing and sigmoidal (logistic) smoothing--also have infinite $\mathrm{R}\mathrm{TV}$ in dimensions $d>1$, while Gaussian convolution yields finite $\mathrm{R}\mathrm{TV}$ but with an explicit exponential dependence on $d$. We then separate two goals that are often conflated: classification after thresholding (recovering the decision set) versus score learning (learning a calibrated score close to $1_A$). For classification, we construct a smooth barrier score $S_A$ with finite $\mathrm{R}\mathrm{TV}$ whose fixed threshold $τ=1$ exactly recovers the box. Under a mild tube-mass condition near $\partial A$, we prove an $L_1(P)$ calibration bound that decays polynomially in a sharpness parameter, along with an explicit $\mathrm{R}\mathrm{TV}$ upper bound in terms of face measures. Experiments on synthetic unions of rectangles illustrate the resulting accuracy--complexity tradeoff and how threshold selection shifts where training lands along it.
comment: 45 pages, plots were improved
PCoT: Persuasion-Augmented Chain of Thought for Detecting Fake News and Social Media Disinformation
Disinformation detection is a key aspect of media literacy. Psychological studies have shown that knowledge of persuasive fallacies helps individuals detect disinformation. Inspired by these findings, we experimented with large language models (LLMs) to test whether infusing persuasion knowledge enhances disinformation detection. As a result, we introduce the Persuasion-Augmented Chain of Thought (PCoT), a novel approach that leverages persuasion to improve disinformation detection in zero-shot classification. We extensively evaluate PCoT on online news and social media posts. Moreover, we publish two novel, up-to-date disinformation datasets: EUDisinfo and MultiDis. These datasets enable the evaluation of PCoT on content entirely unseen by the LLMs used in our experiments, as the content was published after the models' knowledge cutoffs. We show that, on average, PCoT outperforms competitive methods by 15% across five LLMs and five datasets. These findings highlight the value of persuasion in strengthening zero-shot disinformation detection.
comment: Accepted to ACL 2025 Main Conference
ATLAS: Adaptive Trading with LLM AgentS Through Dynamic Prompt Optimization and Multi-Agent Coordination
Large language models show promise for financial decision-making, yet deploying them as autonomous trading agents raises fundamental challenges: how to adapt instructions when rewards arrive late and obscured by market noise, how to synthesize heterogeneous information streams into coherent decisions, and how to bridge the gap between model outputs and executable market actions. We present ATLAS (Adaptive Trading with LLM AgentS), a unified multi-agent framework that integrates structured information from markets, news, and corporate fundamentals to support robust trading decisions. Within ATLAS, the central trading agent operates in an order-aware action space, ensuring that outputs correspond to executable market orders rather than abstract signals. The agent can incorporate feedback while trading using Adaptive-OPRO, a novel prompt-optimization technique that dynamically adapts the prompt by incorporating real-time, stochastic feedback, leading to increasing performance over time. Across regime-specific equity studies and multiple LLM families, Adaptive-OPRO consistently outperforms fixed prompts, while reflection-based feedback fails to provide systematic gains.
Is Contrastive Distillation Enough for Learning Comprehensive 3D Representations?
Cross-modal contrastive distillation has recently been explored for learning effective 3D representations. However, existing methods focus primarily on modality-shared features, neglecting the modality-specific features during the pre-training process, which leads to suboptimal representations. In this paper, we theoretically analyze the limitations of current contrastive methods for 3D representation learning and propose a new framework, namely CMCR (Cross-Modal Comprehensive Representation Learning), to address these shortcomings. Our approach improves upon traditional methods by better integrating both modality-shared and modality-specific features. Specifically, we introduce masked image modeling and occupancy estimation tasks to guide the network in learning more comprehensive modality-specific features. Furthermore, we propose a novel multi-modal unified codebook that learns an embedding space shared across different modalities. Besides, we introduce geometry-enhanced masked image modeling to further boost 3D representation learning. Extensive experiments demonstrate that our method mitigates the challenges faced by traditional approaches and consistently outperforms existing image-to-LiDAR contrastive distillation methods in downstream tasks. Code will be available at https://github.com/Eaphan/CMCR.
comment: 22 pages, 10 figures
BlurDM: A Blur Diffusion Model for Image Deblurring NeurIPS 2025
Diffusion models show promise for dynamic scene deblurring; however, existing studies often fail to leverage the intrinsic nature of the blurring process within diffusion models, limiting their full potential. To address it, we present a Blur Diffusion Model (BlurDM), which seamlessly integrates the blur formation process into diffusion for image deblurring. Observing that motion blur stems from continuous exposure, BlurDM implicitly models the blur formation process through a dual-diffusion forward scheme, diffusing both noise and blur onto a sharp image. During the reverse generation process, we derive a dual denoising and deblurring formulation, enabling BlurDM to recover the sharp image by simultaneously denoising and deblurring, given pure Gaussian noise conditioned on the blurred image as input. Additionally, to efficiently integrate BlurDM into deblurring networks, we perform BlurDM in the latent space, forming a flexible prior generation network for deblurring. Extensive experiments demonstrate that BlurDM significantly and consistently enhances existing deblurring methods on four benchmark datasets. The project page is available at https://jin-ting-he.github.io/BlurDM/.
comment: NeurIPS 2025. Project Page: https://jin-ting-he.github.io/BlurDM/
Black-Box On-Policy Distillation of Large Language Models
Black-box distillation creates student large language models (LLMs) by learning from a proprietary teacher model's text outputs alone, without access to its internal logits or parameters. In this work, we introduce Generative Adversarial Distillation (GAD), which enables on-policy and black-box distillation. GAD frames the student LLM as a generator and trains a discriminator to distinguish its responses from the teacher LLM's, creating a minimax game. The discriminator acts as an on-policy reward model that co-evolves with the student, providing stable, adaptive feedback. Experimental results show that GAD consistently surpasses the commonly used sequence-level knowledge distillation. In particular, Qwen2.5-14B-Instruct (student) trained with GAD becomes comparable to its teacher, GPT-5-Chat, on the LMSYS-Chat automatic evaluation. The results establish GAD as a promising and effective paradigm for black-box LLM distillation.
Single Image Reflection Separation via Dual Prior Interaction Transformer
Single image reflection separation aims to separate the transmission and reflection layers from a mixed image. Existing methods typically combine general priors from pre-trained models with task-specific priors such as text prompts and reflection detection. However, the transmission prior, as the most direct task-specific prior for the target transmission layer, has not been effectively modeled or fully utilized, limiting performance in complex scenarios. To address this issue, we propose a dual-prior interaction framework based on lightweight transmission prior generation and effective prior fusion. First, we design a Local Linear Correction Network (LLCN) that finetunes pre-trained models based on the physical constraint T=SI+B, where S and B represent pixel-wise and channel-wise scaling and bias transformations. LLCN efficiently generates high-quality transmission priors with minimal parameters. Second, we construct a Dual-Prior Interaction Transformer (DPIT) that employs a dual-stream channel reorganization attention mechanism. By reorganizing features from general and transmission priors for attention computation, DPIT achieves deep fusion of both priors, fully exploiting their complementary information. Experimental results on multiple benchmark datasets demonstrate that the proposed method achieves state-of-the-art performance.
An LLM + ASP Workflow for Joint Entity-Relation Extraction
Joint entity-relation extraction (JERE) identifies both entities and their relationships simultaneously. Traditional machine-learning based approaches to performing this task require a large corpus of annotated data and lack the ability to easily incorporate domain specific information in the construction of the model. Therefore, creating a model for JERE is often labor intensive, time consuming, and elaboration intolerant. In this paper, we propose harnessing the capabilities of generative pre-trained large language models (LLMs) and the knowledge representation and reasoning capabilities of Answer Set Programming (ASP) to perform JERE. We present a generic workflow for JERE using LLMs and ASP. The workflow is generic in the sense that it can be applied for JERE in any domain. It takes advantage of LLM's capability in natural language understanding in that it works directly with unannotated text. It exploits the elaboration tolerant feature of ASP in that no modification of its core program is required when additional domain specific knowledge, in the form of type specifications, is found and needs to be used. We demonstrate the usefulness of the proposed workflow through experiments with limited training data on three well-known benchmarks for JERE. The results of our experiments show that the LLM + ASP workflow is better than state-of-the-art JERE systems in several categories with only 10% of training data. It is able to achieve a 2.5 times (35% over 15%) improvement in the Relation Extraction task for the SciERC corpus, one of the most difficult benchmarks.
comment: In Proceedings ICLP 2025, arXiv:2601.00047
UniCorn: Towards Self-Improving Unified Multimodal Models through Self-Generated Supervision
While Unified Multimodal Models (UMMs) have achieved remarkable success in cross-modal comprehension, a significant gap persists in their ability to leverage such internal knowledge for high-quality generation. We formalize this discrepancy as Conduction Aphasia, a phenomenon where models accurately interpret multimodal inputs but struggle to translate that understanding into faithful and controllable synthesis. To address this, we propose UniCorn, a simple yet elegant self-improvement framework that eliminates the need for external data or teacher supervision. By partitioning a single UMM into three collaborative roles: Proposer, Solver, and Judge, UniCorn generates high-quality interactions via self-play and employs cognitive pattern reconstruction to distill latent understanding into explicit generative signals. To validate the restoration of multimodal coherence, we introduce UniCycle, a cycle-consistency benchmark based on a Text to Image to Text reconstruction loop. Extensive experiments demonstrate that UniCorn achieves comprehensive and substantial improvements over the base model across six general image generation benchmarks. Notably, it achieves SOTA performance on TIIF(73.8), DPG(86.8), CompBench(88.5), and UniCycle while further delivering substantial gains of +5.0 on WISE and +6.5 on OneIG. These results highlight that our method significantly enhances T2I generation while maintaining robust comprehension, demonstrating the scalability of fully self-supervised refinement for unified multimodal intelligence.
Agentic Retoucher for Text-To-Image Generation
Text-to-image (T2I) diffusion models such as SDXL and FLUX have achieved impressive photorealism, yet small-scale distortions remain pervasive in limbs, face, text and so on. Existing refinement approaches either perform costly iterative re-generation or rely on vision-language models (VLMs) with weak spatial grounding, leading to semantic drift and unreliable local edits. To close this gap, we propose Agentic Retoucher, a hierarchical decision-driven framework that reformulates post-generation correction as a human-like perception-reasoning-action loop. Specifically, we design (1) a perception agent that learns contextual saliency for fine-grained distortion localization under text-image consistency cues, (2) a reasoning agent that performs human-aligned inferential diagnosis via progressive preference alignment, and (3) an action agent that adaptively plans localized inpainting guided by user preference. This design integrates perceptual evidence, linguistic reasoning, and controllable correction into a unified, self-corrective decision process. To enable fine-grained supervision and quantitative evaluation, we further construct GenBlemish-27K, a dataset of 6K T2I images with 27K annotated artifact regions across 12 categories. Extensive experiments demonstrate that Agentic Retoucher consistently outperforms state-of-the-art methods in perceptual quality, distortion localization and human preference alignment, establishing a new paradigm for self-corrective and perceptually reliable T2I generation.
Crafting Adversarial Inputs for Large Vision-Language Models Using Black-Box Optimization
Recent advancements in Large Vision-Language Models (LVLMs) have shown groundbreaking capabilities across diverse multimodal tasks. However, these models remain vulnerable to adversarial jailbreak attacks, where adversaries craft subtle perturbations to bypass safety mechanisms and trigger harmful outputs. Existing white-box attacks methods require full model accessibility, suffer from computing costs and exhibit insufficient adversarial transferability, making them impractical for real-world, black-box settings. To address these limitations, we propose a black-box jailbreak attack on LVLMs via Zeroth-Order optimization using Simultaneous Perturbation Stochastic Approximation (ZO-SPSA). ZO-SPSA provides three key advantages: (i) gradient-free approximation by input-output interactions without requiring model knowledge, (ii) model-agnostic optimization without the surrogate model and (iii) lower resource requirements with reduced GPU memory consumption. We evaluate ZO-SPSA on three LVLMs, including InstructBLIP, LLaVA and MiniGPT-4, achieving the highest jailbreak success rate of 83.0% on InstructBLIP, while maintaining imperceptible perturbations comparable to white-box methods. Moreover, adversarial examples generated from MiniGPT-4 exhibit strong transferability to other LVLMs, with ASR reaching 64.18%. These findings underscore the real-world feasibility of black-box jailbreaks and expose critical weaknesses in the safety mechanisms of current LVLMs
comment: EACL
Automated Invoice Data Extraction: Using LLM and OCR
Conventional Optical Character Recognition (OCR) systems are challenged by variant invoice layouts, handwritten text, and low-quality scans, which are often caused by strong template dependencies that restrict their flexibility across different document structures and layouts. Newer solutions utilize advanced deep learning models such as Convolutional Neural Networks (CNN) as well as Transformers, and domain-specific models for better layout analysis and accuracy across various sections over varied document types. Large Language Models (LLMs) have revolutionized extraction pipelines at their core with sophisticated entity recognition and semantic comprehension to support complex contextual relationship mapping without direct programming specification. Visual Named Entity Recognition (NER) capabilities permit extraction from invoice images with greater contextual sensitivity and much higher accuracy rates than older approaches. Existing industry best practices utilize hybrid architectures that blend OCR technology and LLM for maximum scalability and minimal human intervention. This work introduces a holistic Artificial Intelligence (AI) platform combining OCR, deep learning, LLMs, and graph analytics to achieve unprecedented extraction quality and consistency.
comment: 10 pages, 3 figures
Surface solar radiation: AI satellite retrieval can outperform Heliosat and generalizes well to other climate zones
Accurate estimates of surface solar irradiance (SSI) are essential for solar resource assessments and solar energy forecasts in grid integration and building control applications. SSI estimates for spatially extended regions can be retrieved from geostationary satellites such as Meteosat. Traditional SSI satellite retrievals like Heliosat rely on physical radiative transfer modelling. We introduce the first machine-learning-based satellite retrieval for instantaneous SSI and demonstrate its capability to provide accurate and generalizable SSI estimates across Europe. Our deep learning retrieval provides near real-time SSI estimates based on data-driven emulation of Heliosat and fine-tuning on pyranometer networks. By including SSI from ground stations, our SSI retrieval model can outperform Heliosat accuracy and generalize well to regions with other climates and surface albedos in cloudy conditions (clear-sky index < 0.8). We also show that the SSI retrieved from Heliosat exhibits large biases in mountain regions, and that training and fine-tuning our retrieval models on SSI data from ground stations strongly reduces these biases, outperforming Heliosat. Furthermore, we quantify the relative importance of the Meteosat channels and other predictor variables like solar zenith angle for the accuracy of our deep learning SSI retrieval model in different cloud conditions. We find that in cloudy conditions multiple near-infrared and infrared channels enhance the performance. Our results can facilitate the development of more accurate satellite retrieval models of surface solar irradiance.
comment: 19 pages, 11 figures Published in International Journal of Remote Sensing, Volume 46, 2025
CaTFormer: Causal Temporal Transformer with Dynamic Contextual Fusion for Driving Intention Prediction AAAI 2026
Accurate prediction of driving intention is key to enhancing the safety and interactive efficiency of human-machine co-driving systems. It serves as a cornerstone for achieving high-level autonomous driving. However, current approaches remain inadequate for accurately modeling the complex spatiotemporal interdependencies and the unpredictable variability of human driving behavior. To address these challenges, we propose CaTFormer, a causal Temporal Transformer that explicitly models causal interactions between driver behavior and environmental context for robust intention prediction. Specifically, CaTFormer introduces a novel Reciprocal Delayed Fusion (RDF) mechanism for precise temporal alignment of interior and exterior feature streams, a Counterfactual Residual Encoding (CRE) module that systematically eliminates spurious correlations to reveal authentic causal dependencies, and an innovative Feature Synthesis Network (FSN) that adaptively synthesizes these purified representations into coherent temporal representations. Experimental results demonstrate that CaTFormer attains state-of-the-art performance on the Brain4Cars dataset. It effectively captures complex causal temporal dependencies and enhances both the accuracy and transparency of driving intention prediction.
comment: Accepted at AAAI 2026
SurGE: A Benchmark and Evaluation Framework for Scientific Survey Generation
The rapid growth of academic literature makes the manual creation of scientific surveys increasingly infeasible. While large language models show promise for automating this process, progress in this area is hindered by the absence of standardized benchmarks and evaluation protocols. To bridge this critical gap, we introduce SurGE (Survey Generation Evaluation), a new benchmark for scientific survey generation in computer science. SurGE consists of (1) a collection of test instances, each including a topic description, an expert-written survey, and its full set of cited references, and (2) a large-scale academic corpus of over one million papers. In addition, we propose an automated evaluation framework that measures the quality of generated surveys across four dimensions: comprehensiveness, citation accuracy, structural organization, and content quality. Our evaluation of diverse LLM-based methods demonstrates a significant performance gap, revealing that even advanced agentic frameworks struggle with the complexities of survey generation and highlighting the need for future research in this area. We have open-sourced all the code, data, and models at: https://github.com/oneal2000/SurGE
Post-Training Quantization of OpenPangu Models for Efficient Deployment on Atlas A2
Huawei's openPangu-Embedded-1B and openPangu-Embedded-7B are variants of the openPangu large language model, designed for efficient deployment on Ascend NPUs. The 7B variant supports three distinct Chain-of-Thought (CoT) reasoning paradigms, namely slow_think, auto_think, and no_think, while the 1B variant operates exclusively in the no_think mode, which employs condensed reasoning for higher efficiency. Although CoT reasoning enhances capability, the generation of extended reasoning traces introduces substantial memory and latency overheads, posing challenges for practical deployment on Ascend NPUs. This paper addresses these computational constraints by leveraging low-bit quantization, which transforms FP16 computations into more efficient integer arithmetic. We introduce a unified low-bit inference framework, supporting INT8 (W8A8) and W4A8 quantization, specifically optimized for openPangu-Embedded models on the Atlas A2. Our comprehensive evaluation on code generation benchmarks (HumanEval and MBPP) demonstrates the efficacy of this approach. INT8 quantization consistently preserves over 90\% of the FP16 baseline accuracy and achieves a 1.5x prefill speedup on the Atlas A2. Furthermore, W4A8 quantization significantly reduces memory consumption, albeit with a moderate trade-off in accuracy. These findings collectively indicate that low-bit quantization effectively facilitates efficient CoT reasoning on Ascend NPUs, maintaining high model fidelity.
Meta-Learning Objectives for Preference Optimization
Evaluating preference optimization (PO) algorithms on LLM alignment is a challenging task that presents prohibitive costs, noise, and several variables like model size and hyper-parameters. In this work, we show that it is possible to gain insights on the efficacy of PO algorithm on simpler benchmarks. We design a diagnostic suite of MuJoCo tasks and datasets, which we use to systematically evaluate PO algorithms, establishing a more controlled and cheaper benchmark. We then propose a novel family of PO algorithms based on mirror descent, which we call Mirror Preference Optimization (MPO). Through evolutionary strategies, we search this class to discover algorithms specialized to specific properties of preference datasets, such as mixed-quality or noisy data. We demonstrate that our discovered PO algorithms outperform all known algorithms in the targeted MuJoCo settings. Finally, based on the insights gained from our MuJoCo experiments, we design a PO algorithm that significantly outperform existing baselines in an LLM alignment task.
HGMF: A Hierarchical Gaussian Mixture Framework for Scalable Tool Invocation within the Model Context Protocol
Invoking external tools enables Large Language Models (LLMs) to perform complex, real-world tasks, yet selecting the correct tool from large, hierarchically-structured libraries remains a significant challenge. The limited context windows of LLMs and noise from irrelevant options often lead to low selection accuracy and high computational costs. To address this, we propose the Hierarchical Gaussian Mixture Framework (HGMF), a probabilistic pruning method for scalable tool invocation. HGMF first maps the user query and all tool descriptions into a unified semantic space. The framework then operates in two stages: it clusters servers using a Gaussian Mixture Model (GMM) and filters them based on the query's likelihood. Subsequently, it applies the same GMM-based clustering and filtering to the tools associated with the selected servers. This hierarchical process produces a compact, high-relevance candidate set, simplifying the final selection task for the LLM. Experiments on a public dataset show that HGMF significantly improves tool selection accuracy while reducing inference latency, confirming the framework's scalability and effectiveness for large-scale tool libraries.
SynDroneVision: A Synthetic Dataset for Image-Based Drone Detection
Developing robust drone detection systems is often constrained by the limited availability of large-scale annotated training data and the high costs associated with real-world data collection. However, leveraging synthetic data generated via game engine-based simulations provides a promising and cost-effective solution to overcome this issue. Therefore, we present SynDroneVision, a synthetic dataset specifically designed for RGB-based drone detection in surveillance applications. Featuring diverse backgrounds, lighting conditions, and drone models, SynDroneVision offers a comprehensive training foundation for deep learning algorithms. To evaluate the dataset's effectiveness, we perform a comparative analysis across a selection of recent YOLO detection models. Our findings demonstrate that SynDroneVision is a valuable resource for real-world data enrichment, achieving notable enhancements in model performance and robustness, while significantly reducing the time and costs of real-world data acquisition. SynDroneVision will be publicly released upon paper acceptance.
Revisiting Chain-of-Thought Prompting: Zero-shot Can Be Stronger than Few-shot
In-Context Learning (ICL) is an essential emergent ability of Large Language Models (LLMs), and recent studies introduce Chain-of-Thought (CoT) to exemplars of ICL to enhance the reasoning capability, especially in mathematics tasks. However, given the continuous advancement of model capabilities, it remains unclear whether CoT exemplars still benefit recent, stronger models in such tasks. Through systematic experiments, we find that for recent strong models such as the Qwen2.5 series, adding traditional CoT exemplars does not improve reasoning performance compared to Zero-Shot CoT. Instead, their primary function is to align the output format with human expectations. We further investigate the effectiveness of enhanced CoT exemplars, constructed using answers from advanced models such as \texttt{Qwen2.5-Max} and \texttt{DeepSeek-R1}. Experimental results indicate that these enhanced exemplars still fail to improve the model's reasoning performance. Further analysis reveals that models tend to ignore the exemplars and focus primarily on the instructions, leading to no observable gain in reasoning ability. Overall, our findings highlight the limitations of the current ICL+CoT framework in mathematical reasoning, calling for a re-examination of the ICL paradigm and the definition of exemplars.
comment: EMNLP25-findings camera_ready, 19 pages,22 figures
Mining Intrinsic Rewards from LLM Hidden States for Efficient Best-of-N Sampling
Best-of-N sampling is a powerful method for improving Large Language Model (LLM) performance, but it is often limited by its dependence on massive, text-based reward models. These models are not only computationally expensive but also data-hungry, requiring extensive labeled datasets for training. This creates a significant data challenge, as they overlook a rich, readily available data source: the LLM's own internal hidden states. To address this data and efficiency gap, we introduce SWIFT (Simple Weighted Intrinsic Feedback Technique), a novel and lightweight method that learns a reward function directly from the rich information embedded in LLM hidden states. Operating at the token embedding level, SWIFT employs simple linear layers to effectively distinguish between preferred and dispreferred generations, eliminating the need for computationally intensive text-based modeling. Extensive experiments on standard benchmarks show that SWIFT outperforms existing baselines (12.7% higher accuracy than EurusRM-7B on MATH dataset) while using less than 0.005% of their parameters. Its robust scalability, compatibility with certain closed-source models via logit access, and ability to combine with traditional reward models for additional performance highlight SWIFT's practical value and contribution to more efficient data-driven LLM post-training. Our code is available at https://github.com/aster2024/SWIFT .
comment: Accepted by KDD 2026 (Research Track). Project page: https://aster2024.github.io/swift-website/
MM-Sonate: Multimodal Controllable Audio-Video Generation with Zero-Shot Voice Cloning
Joint audio-video generation aims to synthesize synchronized multisensory content, yet current unified models struggle with fine-grained acoustic control, particularly for identity-preserving speech. Existing approaches either suffer from temporal misalignment due to cascaded generation or lack the capability to perform zero-shot voice cloning within a joint synthesis framework. In this work, we present MM-Sonate, a multimodal flow-matching framework that unifies controllable audio-video joint generation with zero-shot voice cloning capabilities. Unlike prior works that rely on coarse semantic descriptions, MM-Sonate utilizes a unified instruction-phoneme input to enforce strict linguistic and temporal alignment. To enable zero-shot voice cloning, we introduce a timbre injection mechanism that effectively decouples speaker identity from linguistic content. Furthermore, addressing the limitations of standard classifier-free guidance in multimodal settings, we propose a noise-based negative conditioning strategy that utilizes natural noise priors to significantly enhance acoustic fidelity. Empirical evaluations demonstrate that MM-Sonate establishes new state-of-the-art performance in joint generation benchmarks, significantly outperforming baselines in lip synchronization and speech intelligibility, while achieving voice cloning fidelity comparable to specialized Text-to-Speech systems.
GAPO: Robust Advantage Estimation for Real-World Code LLMs
Reinforcement learning (RL) is widely used for post-training large language models (LLMs) in code editing, where group-relative methods, such as GRPO, are popular due to their critic-free and normalized advantage estimation. However, in real-world code-editing scenarios, reward distributions are often skewed with unpredictable noise, leading to distorted advantage computation and increased rollout outliers. To address this issue, we propose Group Adaptive Policy Optimization (GAPO), which adaptively finds an interval with the highest SNR (Signal to Noise Ratio) per prompt and uses the median of that interval as an adaptive Q to replace the group mean in advantage calculation to reduce noise further. This adaptive Q robustly handles rollout noise while remaining plug-and-play and efficient. We evaluate GAPO on nine instruction-tuned LLMs (3B-14B) using a collected large dataset of 51,844 real-world, history-aware code-editing tasks spanning 10 programming languages. GAPO yields up to 4.35 in-domain (ID) and 5.30 out-of-domain (OOD) exact-match improvements over GRPO and its variant DAPO, while achieving lower clipping ratios and higher GPU throughput. Code: https://github.com/TsingZ0/verl-GAPO.
MCP-Guard: A Multi-Stage Defense-in-Depth Framework for Securing Model Context Protocol in Agentic AI
While Large Language Models (LLMs) have achieved remarkable performance, they remain vulnerable to jailbreak. The integration of Large Language Models (LLMs) with external tools via protocols such as the Model Context Protocol (MCP) introduces critical security vulnerabilities, including prompt injection, data exfiltration, and other threats. To counter these challenges, we propose MCP-GUARD, a robust, layered defense architecture designed for LLM-tool interactions. MCP-GUARD employs a three-stage detection pipeline that balances efficiency with accuracy: it progresses from lightweight static scanning for overt threats and a deep neural detector for semantic attacks, to our fine-tuned E5-based model which achieves 96.01\% accuracy in identifying adversarial prompts. Finally, an LLM arbitrator synthesizes these signals to deliver the final decision. To enable rigorous training and evaluation, we introduce MCP-ATTACKBENCH, a comprehensive benchmark comprising 70,448 samples augmented by GPT-4. This benchmark simulates diverse real-world attack vectors that circumvent conventional defenses in the MCP paradigm, thereby laying a solid foundation for future research on securing LLM-tool ecosystems.
Beyond Detection: Exploring Evidence-based Multi-Agent Debate for Misinformation Intervention and Persuasion AAAI 2026
Multi-agent debate (MAD) frameworks have emerged as promising approaches for misinformation detection by simulating adversarial reasoning. While prior work has focused on detection accuracy, it overlooks the importance of helping users understand the reasoning behind factual judgments and develop future resilience. The debate transcripts generated during MAD offer a rich but underutilized resource for transparent reasoning. In this study, we introduce ED2D, an evidence-based MAD framework that extends previous approach by incorporating factual evidence retrieval. More importantly, ED2D is designed not only as a detection framework but also as a persuasive multi-agent system aimed at correcting user beliefs and discouraging misinformation sharing. We compare the persuasive effects of ED2D-generated debunking transcripts with those authored by human experts. Results demonstrate that ED2D outperforms existing baselines across three misinformation detection benchmarks. When ED2D generates correct predictions, its debunking transcripts exhibit persuasive effects comparable to those of human experts; However, when ED2D misclassifies, its accompanying explanations may inadvertently reinforce users'misconceptions, even when presented alongside accurate human explanations. Our findings highlight both the promise and the potential risks of deploying MAD systems for misinformation intervention. We further develop a public community website to help users explore ED2D, fostering transparency, critical thinking, and collaborative fact-checking.
comment: This paper has been accepted to AAAI 2026
Logics-STEM: Empowering LLM Reasoning via Failure-Driven Post-Training and Document Knowledge Enhancement
We present Logics-STEM, a state-of-the-art reasoning model fine-tuned on Logics-STEM-SFT-Dataset, a high-quality and diverse dataset at 10M scale that represents one of the largest-scale open-source long chain-of-thought corpora. Logics-STEM targets reasoning tasks in the domains of Science, Technology, Engineering, and Mathematics (STEM), and exhibits exceptional performance on STEM-related benchmarks with an average improvement of 4.68% over the next-best model at 8B scale. We attribute the gains to our data-algorithm co-design engine, where they are jointly optimized to fit a gold-standard distribution behind reasoning. Data-wise, the Logics-STEM-SFT-Dataset is constructed from a meticulously designed data curation engine with 5 stages to ensure the quality, diversity, and scalability, including annotation, deduplication, decontamination, distillation, and stratified sampling. Algorithm-wise, our failure-driven post-training framework leverages targeted knowledge retrieval and data synthesis around model failure regions in the Supervised Fine-tuning (SFT) stage to effectively guide the second-stage SFT or the reinforcement learning (RL) for better fitting the target distribution. The superior empirical performance of Logics-STEM reveals the vast potential of combining large-scale open-source data with carefully designed synthetic data, underscoring the critical role of data-algorithm co-design in enhancing reasoning capabilities through post-training. We make both the Logics-STEM models (8B and 32B) and the Logics-STEM-SFT-Dataset (10M and downsampled 2.2M versions) publicly available to support future research in the open-source community.
Latent Fusion Jailbreak: Blending Harmful and Harmless Representations to Elicit Unsafe LLM Outputs
While Large Language Models (LLMs) have achieved remarkable progress, they remain vulnerable to jailbreak attacks. Existing methods, primarily relying on discrete input optimization (e.g., GCG), often suffer from high computational costs and generate high-perplexity prompts that are easily blocked by simple filters. To overcome these limitations, we propose Latent Fusion Jailbreak (LFJ), a stealthy white-box attack that operates in the continuous latent space. Unlike previous approaches, LFJ constructs adversarial representations by mathematically fusing the hidden states of a harmful query with a thematically similar benign query, effectively masking malicious intent while retaining semantic drive. We further introduce a gradient-guided optimization strategy to balance attack success and computational efficiency. Extensive evaluations on Vicuna-7B, LLaMA-2-7B-Chat, Guanaco-7B, LLaMA-3-70B, and Mistral-7B-Instruct show that LFJ achieves an average Attack Success Rate (ASR) of 94.01%, significantly outperforming state-of-the-art baselines like GCG and AutoDAN while avoiding detectable input artifacts. Furthermore, we identify that thematic similarity in the latent space is a critical vulnerability in current safety alignments. Finally, we propose a latent adversarial training defense that reduces LFJ's ASR by over 80% without compromising model utility.
IndexTTS 2.5 Technical Report
In prior work, we introduced IndexTTS 2, a zero-shot neural text-to-speech foundation model comprising two core components: a transformer-based Text-to-Semantic (T2S) module and a non-autoregressive Semantic-to-Mel (S2M) module, which together enable faithful emotion replication and establish the first autoregressive duration-controllable generative paradigm. Building upon this, we present IndexTTS 2.5, which significantly enhances multilingual coverage, inference speed, and overall synthesis quality through four key improvements: 1) Semantic Codec Compression: we reduce the semantic codec frame rate from 50 Hz to 25 Hz, halving sequence length and substantially lowering both training and inference costs; 2) Architectural Upgrade: we replace the U-DiT-based backbone of the S2M module with a more efficient Zipformer-based modeling architecture, achieving notable parameter reduction and faster mel-spectrogram generation; 3) Multilingual Extension: We propose three explicit cross-lingual modeling strategies, boundary-aware alignment, token-level concatenation, and instruction-guided generation, establishing practical design principles for zero-shot multilingual emotional TTS that supports Chinese, English, Japanese, and Spanish, and enables robust emotion transfer even without target-language emotional training data; 4) Reinforcement Learning Optimization: we apply GRPO in post-training of the T2S module, improving pronunciation accuracy and natrualness. Experiments show that IndexTTS 2.5 not only supports broader language coverage but also replicates emotional prosody in unseen languages under the same zero-shot setting. IndexTTS 2.5 achieves a 2.28 times improvement in RTF while maintaining comparable WER and speaker similarity to IndexTTS 2.
comment: 11 pages, 4 figures
Low-rank variational dropout: Rank selection and uncertainty in adapters
Low-rank adaptation methods enable efficient task-specific updates in large neural networks, but provide no principled mechanism for uncertainty estimation or capacity control. We introduce Low-Rank Variational Dropout (LRVD), a Bayesian framework that operates directly in the space of low-rank adaptation. LRVD employs a scale-invariant, sparsity-inducing prior together with a structured variational family that ties uncertainty at the level of latent rank components, inducing rank-wise noise-to-signal ratios for automatic capacity selection. As a concrete instantiation, we apply LRVD to low-rank adaptation and obtain BayesLoRA, which jointly learns predictive uncertainty and the effective adapter rank with only O(r) additional parameters, where r is the adapter rank. We empirically show that BayesLoRA induces stable, non-arbitrary rank structure aligned with the intrinsic singular directions of the learned updates, and outperforms existing low-rank sparsification methods in accuracy at comparable training cost while delivering substantially improved predictive calibration at negligible additional overhead.
comment: 8 pages, 3 figures, 2 tables
When Models Outthink Their Safety: Unveiling and Mitigating Self-Jailbreak in Large Reasoning Models
Large Reasoning Models (LRMs) achieve strong performance on complex multi-step reasoning, yet they still exhibit severe safety failures such as harmful content generation. Existing methods often apply coarse-grained constraints over the entire reasoning trajectories, which can undermine reasoning capability while failing to address the root causes of unsafe behavior. In this work, we uncover a previously underexplored failure mode in LRMs, termed Self-Jailbreak, where models initially recognize the harmful intent of a query, but override this judgment during subsequent reasoning steps, ultimately generating unsafe outputs. Such a phenomenon reveals that LRMs are capable of recognizing harm, while safety failures primarily arise from reasoning steps. Motivated by this finding, we propose \emph{Chain-of-Guardrail} (CoG), a trajectory-level training framework that mitigates Self-Jailbreak via targeted, step-level interventions while maintaining reasoning ability. Experiments across multiple safety and reasoning benchmarks indicate that CoG achieves a favorable balance between safety and reasoning performance compared with existing approaches.
comment: The first two authors contributed equally. The main text is 8 pages, with an appendix of 20 pages. The paper contains 20 figures and 15 tables
FinChain: A Symbolic Benchmark for Verifiable Chain-of-Thought Financial Reasoning
Multi-step symbolic reasoning is essential for robust financial analysis; yet, current benchmarks largely overlook this capability. Existing datasets such as FinQA and ConvFinQA emphasize final numerical answers while neglecting the intermediate reasoning required for transparency and verification. To address this gap, we introduce FINCHAIN, the first benchmark specifically designed for verifiable Chain-of-Thought (CoT) evaluation in finance. FINCHAIN spans 58 topics across 12 financial domains, each represented by parameterized symbolic templates with executable Python traces that enable fully machine-verifiable reasoning and scalable, contamination-free data generation. To assess reasoning capacity, we propose CHAINEVAL, a dynamic alignment measure that jointly evaluates both the final-answer correctness and the step-level reasoning consistency. Our evaluation of 26 leading LLMs reveals that even frontier proprietary LLMs exhibit clear limitations in symbolic financial reasoning, while domain-adapted and math-enhanced fine-tuned models can substantially narrow this gap. Overall, FINCHAIN exposes persistent weaknesses in multi-step financial reasoning and provides a foundation for developing trustworthy, interpretable, and verifiable financial AI.
comment: 24 pages, includes 12 figures and 9 tables; introduces the FinChain benchmark and ChainEval metric
MoEMeta: Mixture-of-Experts Meta Learning for Few-Shot Relational Learning NeurIPS 2025
Few-shot knowledge graph relational learning seeks to perform reasoning over relations given only a limited number of training examples. While existing approaches largely adopt a meta-learning framework for enabling fast adaptation to new relations, they suffer from two key pitfalls. First, they learn relation meta-knowledge in isolation, failing to capture common relational patterns shared across tasks. Second, they struggle to effectively incorporate local, task-specific contexts crucial for rapid adaptation. To address these limitations, we propose MoEMeta, a novel meta-learning framework that disentangles globally shared knowledge from task-specific contexts to enable both effective model generalization and rapid adaptation. MoEMeta introduces two key innovations: (i) a mixture-of-experts (MoE) model that learns globally shared relational prototypes to enhance generalization, and (ii) a task-tailored adaptation mechanism that captures local contexts for fast task-specific adaptation. By balancing global generalization with local adaptability, MoEMeta significantly advances few-shot relational learning. Extensive experiments and analyses on three KG benchmarks show that MoEMeta consistently outperforms existing baselines, achieving state-of-the-art performance.
comment: Accepted by NeurIPS 2025
InfiniteWeb: Scalable Web Environment Synthesis for GUI Agent Training
GUI agents that interact with graphical interfaces on behalf of users represent a promising direction for practical AI assistants. However, training such agents is hindered by the scarcity of suitable environments. We present InfiniteWeb, a system that automatically generates functional web environments at scale for GUI agent training. While LLMs perform well on generating a single webpage, building a realistic and functional website with many interconnected pages faces challenges. We address these challenges through unified specification, task-centric test-driven development, and a combination of website seed with reference design image to ensure diversity. Our system also generates verifiable task evaluators enabling dense reward signals for reinforcement learning. Experiments show that InfiniteWeb surpasses commercial coding agents at realistic website construction, and GUI agents trained on our generated environments achieve significant performance improvements on OSWorld and Online-Mind2Web, demonstrating the effectiveness of proposed system.
comment: Work In Progress
MoE Adapter for Large Audio Language Models: Sparsity, Disentanglement, and Gradient-Conflict-Free
Extending the input modality of Large Language Models~(LLMs) to the audio domain is essential for achieving comprehensive multimodal perception. However, it is well-known that acoustic information is intrinsically \textit{heterogeneous}, entangling attributes such as speech, music, and environmental context. Existing research is limited to a dense, parameter-shared adapter to model these diverse patterns, which induces \textit{gradient conflict} during optimization, as parameter updates required for distinct attributes contradict each other. To address this limitation, we introduce the \textit{\textbf{MoE-Adapter}}, a sparse Mixture-of-Experts~(MoE) architecture designed to decouple acoustic information. Specifically, it employs a dynamic gating mechanism that routes audio tokens to specialized experts capturing complementary feature subspaces while retaining shared experts for global context, thereby mitigating gradient conflicts and enabling fine-grained feature learning. Comprehensive experiments show that the MoE-Adapter achieves superior performance on both audio semantic and paralinguistic tasks, consistently outperforming dense linear baselines with comparable computational costs. Furthermore, we will release the related code and models to facilitate future research.
comment: 13 pages, 5 figures
MiMo-V2-Flash Technical Report
We present MiMo-V2-Flash, a Mixture-of-Experts (MoE) model with 309B total parameters and 15B active parameters, designed for fast, strong reasoning and agentic capabilities. MiMo-V2-Flash adopts a hybrid attention architecture that interleaves Sliding Window Attention (SWA) with global attention, with a 128-token sliding window under a 5:1 hybrid ratio. The model is pre-trained on 27 trillion tokens with Multi-Token Prediction (MTP), employing a native 32k context length and subsequently extended to 256k. To efficiently scale post-training compute, MiMo-V2-Flash introduces a novel Multi-Teacher On-Policy Distillation (MOPD) paradigm. In this framework, domain-specialized teachers (e.g., trained via large-scale reinforcement learning) provide dense and token-level reward, enabling the student model to perfectly master teacher expertise. MiMo-V2-Flash rivals top-tier open-weight models such as DeepSeek-V3.2 and Kimi-K2, despite using only 1/2 and 1/3 of their total parameters, respectively. During inference, by repurposing MTP as a draft model for speculative decoding, MiMo-V2-Flash achieves up to 3.6 acceptance length and 2.6x decoding speedup with three MTP layers. We open-source both the model weights and the three-layer MTP weights to foster open research and community collaboration.
comment: 31 pages, technical report
Efficient Switchable Safety Control in LLMs via Magic-Token-Guided Co-Training
Current methods for content safety in Large Language Models (LLMs), such as Supervised Fine-Tuning (SFT) and Reinforcement Learning from Human Feedback (RLHF), often rely on multi-stage training pipelines and lack fine-grained, post-deployment controllability. To address these limitations, we propose a unified co-training framework that efficiently integrates multiple safety behaviors: positive (lawful/prosocial), negative (unfiltered/risk-prone) and rejective (refusal-oriented/conservative) within a single SFT stage. Notably, each behavior is dynamically activated via a simple system-level instruction, or magic token, enabling stealthy and efficient behavioral switching at inference time. This flexibility supports diverse deployment scenarios, such as positive for safe user interaction, negative for internal red-teaming, and rejective for context-aware refusals triggered by upstream moderation signals. This co-training strategy induces a distinct Safety Alignment Margin in the output space, characterized by well-separated response distributions corresponding to each safety mode. The existence of this margin provides empirical evidence for the model's safety robustness and enables unprecedented fine-grained control. Experiments show that our method matches the safety alignment quality of SFT+DPO, with our 8B model notably surpassing DeepSeek-R1 (671B) in safety performance, while significantly reducing both training complexity and deployment costs. This work presents a scalable, efficient, and highly controllable solution for LLM content safety.
comment: 15 pages,3 figures,5 tables
ReLA: Representation Learning and Aggregation for Job Scheduling with Reinforcement Learning
Job scheduling is widely used in real-world manufacturing systems to assign ordered job operations to machines under various constraints. Existing solutions remain limited by long running time or insufficient schedule quality, especially when problem scale increases. In this paper, we propose ReLA, a reinforcement-learning (RL) scheduler built on structured representation learning and aggregation. ReLA first learns diverse representations from scheduling entities, including job operations and machines, using two intra-entity learning modules with self-attention and convolution and one inter-entity learning module with cross-attention. These modules are applied in a multi-scale architecture, and their outputs are aggregated to support RL decision-making. Across experiments on small, medium, and large job instances, ReLA achieves the best makespan in most tested settings over the latest solutions. On non-large instances, ReLA reduces the optimality gap of the SOTA baseline by 13.0%, while on large-scale instances it reduces the gap by 78.6%, with the average optimality gaps lowered to 7.3% and 2.1%, respectively. These results confirm that ReLA's learned representations and aggregation provide strong decision support for RL scheduling, and enable fast job completion and decision-making for real-world applications.
comment: 15 pages
MOSS Transcribe Diarize: Accurate Transcription with Speaker Diarization
Speaker-Attributed, Time-Stamped Transcription (SATS) aims to transcribe what is said and to precisely determine the timing of each speaker, which is particularly valuable for meeting transcription. Existing SATS systems rarely adopt an end-to-end formulation and are further constrained by limited context windows, weak long-range speaker memory, and the inability to output timestamps. To address these limitations, we present MOSS Transcribe Diarize, a unified multimodal large language model that jointly performs Speaker-Attributed, Time-Stamped Transcription in an end-to-end paradigm. Trained on extensive real wild data and equipped with a 128k context window for up to 90-minute inputs, MOSS Transcribe Diarize scales well and generalizes robustly. Across comprehensive evaluations, it outperforms state-of-the-art commercial systems on multiple public and in-house benchmarks.
LPFQA: A Long-Tail Professional Forum-based Benchmark for LLM Evaluation
Large Language Models (LLMs) perform well on standard reasoning and question-answering benchmarks, yet such evaluations often fail to capture their ability to handle long-tail, expertise-intensive knowledge in real-world professional scenarios. We introduce LPFQA, a long-tail knowledge benchmark derived from authentic professional forum discussions, covering 7 academic and industrial domains with 430 curated tasks grounded in practical expertise. LPFQA evaluates specialized reasoning, domain-specific terminology understanding, and contextual interpretation, and adopts a hierarchical difficulty structure to ensure semantic clarity and uniquely identifiable answers. Experiments on over multiple mainstream LLMs reveal substantial performance gaps, particularly on tasks requiring deep domain reasoning, exposing limitations overlooked by existing benchmarks. Overall, LPFQA provides an authentic and discriminative evaluation framework that complements prior benchmarks and informs future LLM development.
Internal Reasoning vs. External Control: A Thermodynamic Analysis of Sycophancy in Large Language Models
Large Language Models exhibit sycophancy: prioritizing agreeableness over correctness. Current remedies evaluate reasoning outcomes: RLHF rewards correct answers, self-correction critiques outputs. All require ground truth, which is often unavailable at inference time and vulnerable to the same biases. We explore evaluating the reasoning process instead. Regulated Causal Anchoring (RCA) verifies whether outputs follow from their reasoning traces, without requiring ground truth. Sycophancy manifests as trace-output inconsistency: models derive one answer but output another to please users. RCA detects this inconsistency, achieving 0.0% sycophancy while accepting 88% of valid hints. We identify two failures invisible to outcome evaluation: Inverse Scaling (frontier models sycophant more because rationalization requires capability) and the Final Output Gap (correct reasoning precedes sycophantic output). Traditional self-correction reduces these failures to 7-9% but cannot eliminate them because the model critiques itself with the same biases. RCA's process evaluation operates at inference time, requires no ground truth, and uses an independent judge that breaks the self-reinforcing bias loop: three properties that outcome evaluation lacks.
comment: 20 pages, 1 figure, 15 tables
MENTOR: A Metacognition-Driven Self-Evolution Framework for Uncovering and Mitigating Implicit Domain Risks in LLMs
Ensuring the safety of Large Language Models (LLMs) is critical for real-world deployment. However, current safety measures often fail to address implicit, domain-specific risks. To investigate this gap, we introduce a dataset of 3,000 annotated queries spanning education, finance, and management. Evaluations across 14 leading LLMs reveal a concerning vulnerability: an average jailbreak success rate of 57.8%. In response, we propose MENTOR, a metacognition-driven self-evolution framework. MENTOR first performs structured self-assessment through simulated critical thinking, such as perspective-taking and consequential reasoning to uncover latent model misalignments. These reflections are formalized into dynamic rule-based knowledge graphs that evolve with emerging risk patterns. To enforce these rules at inference time, we introduce activation steering, a method that directly modulates the model's internal representations to ensure compliance. Experiments demonstrate that MENTOR substantially reduces attack success rates across all tested domains and achieves risk analysis performance comparable to human experts. Our work offers a scalable and adaptive pathway toward robust domain-specific alignment of LLMs.
Enhancing Graph Representations with Neighborhood-Contextualized Message-Passing
Graph neural networks (GNNs) have become an indispensable tool for analyzing relational data. Classical GNNs are broadly classified into three variants: convolutional, attentional, and message-passing. While the standard message-passing variant is expressive, its typical pair-wise messages only consider the features of the center node and each neighboring node individually. This design fails to incorporate contextual information contained within the broader local neighborhood, potentially hindering its ability to learn complex relationships within the entire set of neighboring nodes. To address this limitation, this work first formalizes the concept of neighborhood-contextualization, rooted in a key property of the attentional variant. This then serves as the foundation for generalizing the message-passing variant to the proposed neighborhood-contextualized message-passing (NCMP) framework. To demonstrate its utility, a simple, practical, and efficient method to parametrize and operationalize NCMP is presented, leading to the development of the proposed Soft-Isomorphic Neighborhood-Contextualized Graph Convolution Network (SINC-GCN). Across a diverse set of synthetic and benchmark GNN datasets, SINC-GCN demonstrates competitive performance against baseline GNN models, highlighting its expressivity and efficiency. Notably, it also delivers substantial and statistically significant performance gains in graph property prediction tasks, further underscoring the distinctive utility of neighborhood-contextualization. Overall, the paper lays the foundation for the NCMP framework as a practical path toward enhancing the graph representational power of classical GNNs.
SimRPD: Optimizing Recruitment Proactive Dialogue Agents through Simulator-Based Data Evaluation and Selection
Task-oriented proactive dialogue agents play a pivotal role in recruitment, particularly for steering conversations towards specific business outcomes, such as acquiring social-media contacts for private-channel conversion. Although supervised fine-tuning and reinforcement learning have proven effective for training such agents, their performance is heavily constrained by the scarcity of high-quality, goal-oriented domain-specific training data. To address this challenge, we propose SimRPD, a three-stage framework for training recruitment proactive dialogue agents. First, we develop a high-fidelity user simulator to synthesize large-scale conversational data through multi-turn online dialogue. Then we introduce a multi-dimensional evaluation framework based on Chain-of-Intention (CoI) to comprehensively assess the simulator and effectively select high-quality data, incorporating both global-level and instance-level metrics. Finally, we train the recruitment proactive dialogue agent on the selected dataset. Experiments in a real-world recruitment scenario demonstrate that SimRPD outperforms existing simulator-based data selection strategies, highlighting its practical value for industrial deployment and its potential applicability to other business-oriented dialogue scenarios.
Reliable Grid Forecasting: State Space Models for Safety-Critical Energy Systems
Accurate grid load forecasting is safety-critical: under-predictions risk supply shortfalls, while symmetric error metrics mask this operational asymmetry. We introduce a grid-specific evaluation framework (Asymmetric MAPE, Under-Prediction Rate, and Reserve Margin) that directly measures operational risk rather than statistical accuracy alone. Using this framework, we conduct a systematic evaluation of Mamba-based State Space Models for California grid forecasting on a weather-aligned CA ISO-TAC dataset spanning Nov 2023 to Nov 2025 (84,498 hourly records across 5 transmission areas). Our analysis reveals that standard accuracy metrics are poor proxies for operational safety: models with identical MAPE can require vastly different reserve margins. We demonstrate that forecast errors are weakly but statistically significantly associated with temperature (r = 0.16), motivating weather-aware modeling rather than loss function modification alone. The S-Mamba model achieves the lowest 99.5th-percentile reserve margin (14.12 percent) compared to 16.66 percent for iTransformer, demonstrating superior forecast reliability under a 99.5th-percentile tail-risk reserve proxy.
comment: 25 pages, 7 figures, 8 tables
AgenticMath: Enhancing LLM Reasoning via Agentic-based Math Data Generation
The creation of high-quality datasets to improve Large Language Model (LLM) reasoning remains a significant challenge, as current methods often suffer from generating low-quality/incorrect answers and limited information richness from available data sources. To address this, we propose AgenticMath, a novel agentic method for generating high-quality mathematical question-answer pairs to enhance the supervised fine-tuning of LLMs. Our method operates through four stages: (1) Seed Question Filter that selects questions with high information richness, complexity, and clarity; (2) an Agentic Question Rephrase step that employs a multi-agent system to generate diverse, logically consistent paraphrases; (3) an Answer Augment step where rewrite answers using chain-of-thought reasoning to enhance numerical and logical correctness, without reliance on human-provided labels; and (4) a final Question and Answer Evaluation that retains only the most superior pairs. Extensive experiments demonstrate that, fine-tuning 3B-8B parameter LLMs on AgenticMath generated datasets (comprising only 30-60K math samples) achieves competitive or superior performance on diverse in domain and out-of-domain mathematical reasoning benchmarks compared to baselines trained on much more data (e.g., 400K or 2.3M samples). Our work demonstrates that targeted, high-quality data generation is a more efficient path to improving mathematical reasoning in LLMs than large-scale, low-quality alternatives.
comment: 8 pages
CADmium: Fine-Tuning Code Language Models for Text-Driven Sequential CAD Design
Computer-aided design (CAD) is the digital construction of 2D and 3D objects, and is central to a wide range of engineering and manufacturing applications like automobile and aviation. Despite its importance, CAD modeling remains largely a time-intensive, manual task. Recent works have attempted to automate this process with small transformer-based models and handcrafted CAD sequence representations. However, there has been little effort to leverage the potential of large language models (LLMs) for sequential CAD design. In this work, we introduce a new large-scale dataset of more than 170k CAD models annotated with high-quality, human-like descriptions generated with our pipeline based on GPT-4.1. Using this dataset, we fine-tune powerful code-LLMs to generate CAD sequences represented in a JSON-based format from natural language descriptions, demonstrating the viability and effectiveness of this approach for text-conditioned CAD generation. Because simple metrics often fail to reflect the quality of generated objects, we introduce geometric and topological metrics based on sphericity, mean curvature, and Euler characteristic to provide richer structural insights. Our experiments and ablation studies on both synthetic and human-annotated data demonstrate that CADmium is able to automate CAD design, drastically speeding up the design of new objects. The dataset, code, and fine-tuned models are available online.
comment: Published in Transactions on Machine Learning Research (TMLR) 01/2026
TabularMath: Understanding Math Reasoning over Tables with Large Language Models
Mathematical reasoning has long been a key benchmark for evaluating large language models. Although substantial progress has been made on math word problems, the need for reasoning over tabular data in real-world applications has been overlooked. For instance, applications such as business intelligence demand not only multi-step numerical reasoning with tables but also robustness to incomplete or inconsistent information. However, comprehensive evaluation in this area is severely limited, constrained by the reliance on manually collected tables that are difficult to scale and the lack of coverage for potential traps encountered in real-world scenarios. To address this problem, we propose AutoT2T, a neuro-symbolic framework that controllably transforms math word problems into scalable and verified tabular reasoning tasks. Building on this pipeline, we develop TabularMath, a benchmark comprising four subsets that include both text-based and image-based tables, covering table complexity, table quality, and table representation dimensions. Our study reveals three key observations: (1) Table complexity and reasoning difficulty impact reasoning performance jointly; (2) Low-quality tables pose severe risks to reliable reasoning in current LLMs; (3) Different table modalities show similar trends, with text-based tables typically being easier for models to reason over. In-depth analyses are conducted for each observation to guide future research.
comment: Paper under review, code and dataset are all available
One Tool Is Enough: Reinforcement Learning for Repository-Level LLM Agents
Locating the files and functions requiring modification in large open-source software (OSS) repositories is challenging due to their scale and structural complexity. Existing large language model (LLM)-based methods typically treat this as a repository-level retrieval task and rely on multiple auxiliary tools, which overlook code execution logic and complicate model control. We propose RepoNavigator, an LLM agent equipped with a single execution-aware tool-jumping to the definition of an invoked symbol. This unified design reflects the actual flow of code execution while simplifying tool manipulation. RepoNavigator is trained end-to-end via Reinforcement Learning (RL) directly from a pretrained model, without any closed-source distillation. Experiments demonstrate that RL-trained RepoNavigator achieves state-of-the-art performance, with the 7B model outperforming 14B baselines, the 14B model surpassing 32B competitors, and even the 32B model exceeding closed-source models such as Claude-3.7. These results confirm that integrating a single, structurally grounded tool with RL training provides an efficient and scalable solution for repository-level issue localization.
Beyond Retrieval: Improving Evidence Quality for LLM-based Multimodal Fact-Checking
The increasing multimodal disinformation, where deceptive claims are reinforced through coordinated text and visual content, poses significant challenges to automated fact-checking. Recent efforts leverage Large Language Models (LLMs) for this task, capitalizing on their strong reasoning and multimodal understanding capabilities. Emerging retrieval-augmented frameworks further equip LLMs with access to open-domain external information, enabling evidence-based verification beyond their internal knowledge. Despite their promising gains, our empirical study reveals notable shortcomings in the external search coverage and evidence quality evaluation. To mitigate those limitations, we propose Aletheia, an end-to-end framework for automated multimodal fact-checking. It introduces a novel evidence retrieval strategy that improves evidence coverage and filters useless information from open-domain sources, enabling the extraction of high-quality evidence for verification. Extensive experiments demonstrate that Aletheia achieves an accuracy of 88.3% on two public multimodal disinformation datasets and 90.2% on newly emerging claims. Compared with existing evidence retrieval strategies, our approach improves verification accuracy by up to 30.8%, highlighting the critical role of evidence quality in LLM-based disinformation verification.
TPA: Next Token Probability Attribution for Detecting Hallucinations in RAG
Detecting hallucinations in Retrieval-Augmented Generation remains a challenge. Prior approaches attribute hallucinations to a binary conflict between internal knowledge stored in FFNs and the retrieved context. However, this perspective is incomplete, failing to account for the impact of other components of the LLM, such as the user query, previously generated tokens, the self token, and the final LayerNorm adjustment. To comprehensively capture the impact of these components on hallucination detection, we propose TPA which mathematically attributes each token's probability to seven distinct sources: Query, RAG Context, Past Token, Self Token, FFN, Final LayerNorm, and Initial Embedding. This attribution quantifies how each source contributes to the generation of the next token. Specifically, we aggregate these attribution scores by Part-of-Speech (POS) tags to quantify the contribution of each model component to the generation of specific linguistic categories within a response. By leveraging these patterns, such as detecting anomalies where Nouns rely heavily on LayerNorm, TPA effectively identifies hallucinated responses. Extensive experiments show that TPA achieves state-of-the-art performance.
comment: Under review
Quantum-enhanced long short-term memory with attention for spatial permeability prediction in oilfield reservoirs
Spatial prediction of reservoir parameters, especially permeability, is crucial for oil and gas exploration and development. However, the wide range and high variability of permeability prevent existing methods from providing reliable predictions. For the first time in subsurface spatial prediction, this study presents a quantum-enhanced long short-term memory with attention (QLSTMA) model that incorporates variational quantum circuits (VQCs) into the recurrent cell. Using quantum entanglement and superposition principles, the QLSTMA significantly improves the ability to predict complex geological parameters such as permeability. Two quantization structures, QLSTMA with Shared Gates (QLSTMA-SG) and with Independent Gates (QLSTMA-IG), are designed to investigate and evaluate the effects of quantum structure configurations and the number of qubits on model performance. Experimental results demonstrate that the 8-qubit QLSTMA-IG model significantly outperforms the traditional long short-term memory with attention (LSTMA), reducing Mean Absolute Error (MAE) by 19% and Root Mean Squared Error (RMSE) by 20%, with particularly strong performance in regions featuring complex well-logging data. These findings validate the potential of quantum-classical hybrid neural networks for reservoir prediction, indicating that increasing the number of qubits yields further accuracy gains despite the reliance on classical simulations. This study establishes a foundational framework for the eventual deployment of such models on real quantum hardware and their extension to broader applications in petroleum engineering and geoscience.
comment: Published in Engineering Applications of Artificial Intelligence. DOI: https://doi.org/10.1016/j.engappai.2025.113605
Mind the Generative Details: Direct Localized Detail Preference Optimization for Video Diffusion Models
Aligning text-to-video diffusion models with human preferences is crucial for generating high-quality videos. Existing Direct Preference Otimization (DPO) methods rely on multi-sample ranking and task-specific critic models, which is inefficient and often yields ambiguous global supervision. To address these limitations, we propose LocalDPO, a novel post-training framework that constructs localized preference pairs from real videos and optimizes alignment at the spatio-temporal region level. We design an automated pipeline to efficiently collect preference pair data that generates preference pairs with a single inference per prompt, eliminating the need for external critic models or manual annotation. Specifically, we treat high-quality real videos as positive samples and generate corresponding negatives by locally corrupting them with random spatio-temporal masks and restoring only the masked regions using the frozen base model. During training, we introduce a region-aware DPO loss that restricts preference learning to corrupted areas for rapid convergence. Experiments on Wan2.1 and CogVideoX demonstrate that LocalDPO consistently improves video fidelity, temporal coherence and human preference scores over other post-training approaches, establishing a more efficient and fine-grained paradigm for video generator alignment.
comment: Under Review
Trade-R1: Bridging Verifiable Rewards to Stochastic Environments via Process-Level Reasoning Verification
Reinforcement Learning (RL) has enabled Large Language Models (LLMs) to achieve remarkable reasoning in domains like mathematics and coding, where verifiable rewards provide clear signals. However, extending this paradigm to financial decision is challenged by the market's stochastic nature: rewards are verifiable but inherently noisy, causing standard RL to degenerate into reward hacking. To address this, we propose Trade-R1, a model training framework that bridges verifiable rewards to stochastic environments via process-level reasoning verification. Our key innovation is a verification method that transforms the problem of evaluating reasoning over lengthy financial documents into a structured Retrieval-Augmented Generation (RAG) task. We construct a triangular consistency metric, assessing pairwise alignment between retrieved evidence, reasoning chains, and decisions to serve as a validity filter for noisy market returns. We explore two reward integration strategies: Fixed-effect Semantic Reward (FSR) for stable alignment signals, and Dynamic-effect Semantic Reward (DSR) for coupled magnitude optimization. Experiments on different country asset selection demonstrate that our paradigm reduces reward hacking, with DSR achieving superior cross-market generalization while maintaining the highest reasoning consistency.
EntroCoT: Enhancing Chain-of-Thought via Adaptive Entropy-Guided Segmentation
Chain-of-Thought (CoT) prompting has significantly enhanced the mathematical reasoning capabilities of Large Language Models. We find existing fine-tuning datasets frequently suffer from the "answer right but reasoning wrong" probelm, where correct final answers are derived from hallucinated, redundant, or logically invalid intermediate steps. This paper proposes EntroCoT, a unified framework for automatically identifying and refining low-quality CoT supervision traces. EntroCoT first proposes an entropy-based mechanism to segment the reasoning trace into multiple steps at uncertain junctures, and then introduces a Monte Carlo rollout-based mechanism to evaluate the marginal contribution of each step. By accurately filtering deceptive reasoning samples, EntroCoT constructs a high-quality dataset where every intermediate step in each reasoning trace facilitates the final answer. Extensive experiments on mathematical benchmarks demonstrate that fine-tuning on the subset constructed by EntroCoT consistently outperforms the baseslines of full-dataset supervision.
KVmix: Gradient-Based Layer Importance-Aware Mixed-Precision Quantization for KV Cache AAAI 2026
The high memory demands of the Key-Value (KV) Cache during the inference of Large Language Models (LLMs) severely restrict their deployment in resource-constrained platforms. Quantization can effectively alleviate the memory pressure caused by KV Cache. However, existing methods either rely on static one-size-fits-all precision allocation or fail to dynamically prioritize critical KV in long-context tasks, forcing memory-accuracy-throughput tradeoffs. In this work, we propose a novel mixed-precision quantization method for KV Cache named KVmix. KVmix leverages gradient-based importance analysis to evaluate how individual Key and Value projection matrices affect the model loss, enabling layer-specific bit-width allocation for mix-precision quantization. It dynamically prioritizes higher precision for important layers while aggressively quantizing less influential ones, achieving a tunable balance between accuracy and efficiency. KVmix also introduces a dynamic long-context optimization strategy that adaptively keeps full-precision KV pairs for recent pivotal tokens and compresses older ones, achieving high-quality sequence generation with low memory usage. Additionally, KVmix provides efficient low-bit quantization and CUDA kernels to optimize computational overhead. On LLMs such as Llama and Mistral, KVmix achieves near-lossless inference performance with extremely low quantization configuration (Key 2.19bit Value 2.38bit), while delivering a remarkable 4.9x memory compression and a 5.3x speedup in inference throughput.
comment: AAAI 2026
Modular and Multi-Path-Aware Offline Benchmarking for Mobile GUI Agents
Mobile GUI Agents, AI agents capable of interacting with mobile applications on behalf of users, have the potential to transform human computer interaction. However, current evaluation practices for GUI agents face two fundamental limitations. First, they either rely on single path offline benchmarks or online live benchmarks. Offline benchmarks using static, single path annotated datasets unfairly penalize valid alternative actions, while online benchmarks suffer from poor scalability and reproducibility due to the dynamic and unpredictable nature of live evaluation. Second, existing benchmarks treat agents as monolithic black boxes, overlooking the contributions of individual components, which often leads to unfair comparisons or obscures key performance bottlenecks. To address these limitations, we present MobiBench, the first modular and multi path aware offline benchmarking framework for mobile GUI agents that enables high fidelity, scalable, and reproducible evaluation entirely in offline settings. Our experiments demonstrate that MobiBench achieves 94.72 percent agreement with human evaluators, on par with carefully engineered online benchmarks, while preserving the scalability and reproducibility of static offline benchmarks. Furthermore, our comprehensive module level analysis uncovers several key insights, including a systematic evaluation of diverse techniques used in mobile GUI agents, optimal module configurations across model scales, the inherent limitations of current LFMs, and actionable guidelines for designing more capable and cost efficient mobile agents.
Current Agents Fail to Leverage World Model as Tool for Foresight
Agents built on vision-language models increasingly face tasks that demand anticipating future states rather than relying on short-horizon reasoning. Generative world models offer a promising remedy: agents could use them as external simulators to foresee outcomes before acting. This paper empirically examines whether current agents can leverage such world models as tools to enhance their cognition. Across diverse agentic and visual question answering tasks, we observe that some agents rarely invoke simulation (fewer than 1%), frequently misuse predicted rollouts (approximately 15%), and often exhibit inconsistent or even degraded performance (up to 5%) when simulation is available or enforced. Attribution analysis further indicates that the primary bottleneck lies in the agents' capacity to decide when to simulate, how to interpret predicted outcomes, and how to integrate foresight into downstream reasoning. These findings underscore the need for mechanisms that foster calibrated, strategic interaction with world models, paving the way toward more reliable anticipatory cognition in future agent systems.
comment: 36 Pages, 13 Figures, 17 Tables (Meta data updated)
Exploring the limits of strong membership inference attacks on large language models NeurIPS 2025
State-of-the-art membership inference attacks (MIAs) typically require training many reference models, making it difficult to scale these attacks to large pre-trained language models (LLMs). As a result, prior research has either relied on weaker attacks that avoid training references (e.g., fine-tuning attacks), or on stronger attacks applied to small models and datasets. However, weaker attacks have been shown to be brittle and insights from strong attacks in simplified settings do not translate to today's LLMs. These challenges prompt an important question: are the limitations observed in prior work due to attack design choices, or are MIAs fundamentally ineffective on LLMs? We address this question by scaling LiRA--one of the strongest MIAs--to GPT-2 architectures ranging from 10M to 1B parameters, training references on over 20B tokens from the C4 dataset. Our results advance the understanding of MIAs on LLMs in four key ways. While (1) strong MIAs can succeed on pre-trained LLMs, (2) their effectiveness, remains limited (e.g., AUC<0.7) in practical settings. (3) Even when strong MIAs achieve better-than-random AUC, aggregate metrics can conceal substantial per-sample MIA decision instability: due to training randomness, many decisions are so unstable that they are statistically indistinguishable from a coin flip. Finally, (4) the relationship between MIA success and related LLM privacy metrics is not as straightforward as prior work has suggested.
comment: NeurIPS 2025
Evaluating the Pre-Consultation Ability of LLMs using Diagnostic Guidelines
We introduce EPAG, a benchmark dataset and framework designed for Evaluating the Pre-consultation Ability of LLMs using diagnostic Guidelines. LLMs are evaluated directly through HPI-diagnostic guideline comparison and indirectly through disease diagnosis. In our experiments, we observe that small open-source models fine-tuned with a well-curated, task-specific dataset can outperform frontier LLMs in pre-consultation. Additionally, we find that increased amount of HPI (History of Present Illness) does not necessarily lead to improved diagnostic performance. Further experiments reveal that the language of pre-consultation influences the characteristics of the dialogue. By open-sourcing our dataset and evaluation pipeline on https://github.com/seemdog/EPAG, we aim to contribute to the evaluation and further development of LLM applications in real-world clinical settings.
comment: EACL 2026 Industry
PHOTON: Hierarchical Autoregressive Modeling for Lightspeed and Memory-Efficient Language Generation
Transformers operate as horizontal token-by-token scanners; at each generation step, attending to an ever-growing sequence of token-level states. This access pattern increases prefill latency and makes long-context decoding more memory-bound, as KV-cache reads and writes dominate inference time over arithmetic operations. We propose Parallel Hierarchical Operation for TOp-down Networks (PHOTON), a hierarchical autoregressive model that replaces horizontal scanning with vertical, multi-resolution context scanning. PHOTON maintains a hierarchy of latent streams: a bottom-up encoder compresses tokens into low-rate contextual states, while lightweight top-down decoders reconstruct fine-grained token representations in parallel. We further introduce recursive generation that updates only the coarsest latent stream and eliminates bottom-up re-encoding. Experimental results show that PHOTON is superior to competitive Transformer-based language models regarding the throughput-quality trade-off, providing advantages in long-context and multi-query tasks. In particular, this reduces decode-time KV-cache traffic, yielding up to $10^{3}\times$ higher throughput per unit memory.
comment: 17 pages, 10 figures
Distilling the Essence: Efficient Reasoning Distillation via Sequence Truncation
Distilling the capabilities from a large reasoning model (LRM) to a smaller student model often involves training on substantial amounts of reasoning data. However, knowledge distillation (KD) over lengthy sequences with prompt (P), chain-of-thought (CoT), and answer (A) sections makes the process computationally expensive. In this work, we investigate how the allocation of supervision across different sections (P, CoT, A) affects student performance. Our analysis shows that selective KD over only the CoT tokens can be effective when the prompt and answer information is encompassed by it. Building on this insight, we establish a truncation protocol to quantify computation-quality tradeoffs as a function of sequence length. We observe that beyond a specific length, longer training sequences provide marginal returns for downstream performance but require substantially higher memory and FLOPs. To this end, training on only the first $50\%$ of tokens of every training sequence can retain, on average, $\approx91\%$ of full-sequence performance on math benchmarks while reducing training time, memory usage, and FLOPs by about $50\%$ each. Codes are available at https://github.com/weiruichen01/distilling-the-essence.
Membership Inference Attacks on Recommender System: A Survey
Recommender systems (RecSys) have been widely applied to various applications, including E-commerce, finance, healthcare, social media and have become increasingly influential in shaping user behavior and decision-making, highlighting their growing impact in various domains. However, recent studies have shown that RecSys are vulnerable to membership inference attacks (MIAs), which aim to infer whether user interaction record was used to train a target model or not. MIAs on RecSys models can directly lead to a privacy breach. For example, via identifying the fact that a purchase record that has been used to train a RecSys associated with a specific user, an attacker can infer that user's special quirks. In recent years, MIAs have been shown to be effective on other ML tasks, e.g., classification models and natural language processing. However, traditional MIAs are ill-suited for RecSys due to the unseen posterior probability. Although MIAs on RecSys form a newly emerging and rapidly growing research area, there has been no systematic survey on this topic yet. In this article, we conduct the first comprehensive survey on RecSys MIAs. This survey offers a comprehensive review of the latest advancements in RecSys MIAs, exploring the design principles, challenges, attack and defense associated with this emerging field. We provide a unified taxonomy that categorizes different RecSys MIAs based on their characterizations and discuss their pros and cons. Based on the limitations and gaps identified in this survey, we point out several promising future research directions to inspire the researchers who wish to follow this area. This survey not only serves as a reference for the research community but also provides a clear description for researchers outside this research domain.
comment: under review in ACM Survey
What Drives Success in Physical Planning with Joint-Embedding Predictive World Models?
A long-standing challenge in AI is to develop agents capable of solving a wide range of physical tasks and generalizing to new, unseen tasks and environments. A popular recent approach involves training a world model from state-action trajectories and subsequently use it with a planning algorithm to solve new tasks. Planning is commonly performed in the input space, but a recent family of methods has introduced planning algorithms that optimize in the learned representation space of the world model, with the promise that abstracting irrelevant details yields more efficient planning. In this work, we characterize models from this family as JEPA-WMs and investigate the technical choices that make algorithms from this class work. We propose a comprehensive study of several key components with the objective of finding the optimal approach within the family. We conducted experiments using both simulated environments and real-world robotic data, and studied how the model architecture, the training objective, and the planning algorithm affect planning success. We combine our findings to propose a model that outperforms two established baselines, DINO-WM and V-JEPA-2-AC, in both navigation and manipulation tasks. Code, data and checkpoints are available at https://github.com/facebookresearch/jepa-wms.
comment: V2 of the article: - Added AdaLN-zero - Added table comparing JEPA-WMs with baselines with std translating per-seed variability only, no variability across epochs - Reordered figures in main body of the paper
Dynamic and Adaptive Feature Generation with LLM IJCAI 2025
The representation of feature space is a crucial environment where data points get vectorized and embedded for subsequent modeling. Thus the efficacy of machine learning (ML) algorithms is closely related to the quality of feature engineering. As one of the most important techniques, feature generation transforms raw data into an optimized feature space conducive to model training and further refines the space. Despite the advancements in automated feature engineering and feature generation, current methodologies often suffer from three fundamental issues: lack of explainability, limited applicability, and inflexible strategy. These shortcomings frequently hinder and limit the deployment of ML models across varied scenarios. Our research introduces a novel approach adopting large language models (LLMs) and feature-generating prompts to address these challenges. We propose a dynamic and adaptive feature generation method that enhances the interpretability of the feature generation process. Our approach broadens the applicability across various data types and tasks and offers advantages over strategic flexibility. A broad range of experiments showcases that our approach is significantly superior to existing methods.
comment: Accepted by IJCAI 2025
seq-JEPA: Autoregressive Predictive Learning of Invariant-Equivariant World Models
Joint-embedding self-supervised learning (SSL) commonly relies on transformations such as data augmentation and masking to learn visual representations, a task achieved by enforcing invariance or equivariance with respect to these transformations applied to two views of an image. This dominant two-view paradigm in SSL often limits the flexibility of learned representations for downstream adaptation by creating performance trade-offs between high-level invariance-demanding tasks such as image classification and more fine-grained equivariance-related tasks. In this work, we propose \emph{seq-JEPA}, a world modeling framework that introduces architectural inductive biases into joint-embedding predictive architectures to resolve this trade-off. Without relying on dual equivariance predictors or loss terms, seq-JEPA simultaneously learns two architecturally separate representations for equivariance- and invariance-demanding tasks. To do so, our model processes short sequences of different views (observations) of inputs. Each encoded view is concatenated with an embedding of the relative transformation (action) that produces the next observation in the sequence. These view-action pairs are passed through a transformer encoder that outputs an aggregate representation. A predictor head then conditions this aggregate representation on the upcoming action to predict the representation of the next observation. Empirically, seq-JEPA demonstrates strong performance on both equivariance- and invariance-demanding downstream tasks without sacrificing one for the other. Furthermore, it excels at tasks that inherently require aggregating a sequence of observations, such as path integration across actions and predictive learning across eye movements.
Confidence-gated training for efficient early-exit neural networks
Early-exit neural networks reduce inference cost by enabling confident predictions at intermediate layers. However, joint training often leads to gradient interference, with deeper classifiers dominating optimization. We propose Confidence-Gated Training (CGT), a paradigm that conditionally propagates gradients from deeper exits only when preceding exits fail. This encourages shallow classifiers to act as primary decision points while reserving deeper layers for harder inputs. By aligning training with the inference-time policy, CGT mitigates overthinking, improves early-exit accuracy, and preserves efficiency. Experiments on the Indian Pines and Fashion-MNIST benchmarks show that CGT lowers average inference cost while improving overall accuracy, offering a practical solution for deploying deep models in resource-constrained environments.
Mechanistic Indicators of Understanding in Large Language Models
Large language models (LLMs) are often portrayed as merely imitating linguistic patterns without genuine understanding. We argue that recent findings in mechanistic interpretability (MI), the emerging field probing the inner workings of LLMs, render this picture increasingly untenable--but only once those findings are integrated within a theoretical account of understanding. We propose a tiered framework for thinking about understanding in LLMs and use it to synthesize the most relevant findings to date. The framework distinguishes three hierarchical varieties of understanding, each tied to a corresponding level of computational organization: conceptual understanding emerges when a model forms "features" as directions in latent space, learning connections between diverse manifestations of a single entity or property; state-of-the-world understanding emerges when a model learns contingent factual connections between features and dynamically tracks changes in the world; principled understanding emerges when a model ceases to rely on memorized facts and discovers a compact "circuit" connecting these facts. Across these tiers, MI uncovers internal organizations that can underwrite understanding-like unification. However, these also diverge from human cognition in their parallel exploitation of heterogeneous mechanisms. Fusing philosophical theory with mechanistic evidence thus allows us to transcend binary debates over whether AI understands, paving the way for a comparative, mechanistically grounded epistemology that explores how AI understanding aligns with--and diverges from--our own.
comment: 38 pages
Liars' Bench: Evaluating Lie Detectors for Language Models
Prior work has introduced techniques for detecting when large language models (LLMs) lie, that is, generate statements they believe are false. However, these techniques are typically validated in narrow settings that do not capture the diverse lies LLMs can generate. We introduce LIARS' BENCH, a testbed consisting of 72,863 examples of lies and honest responses generated by four open-weight models across seven datasets. Our settings capture qualitatively different types of lies and vary along two dimensions: the model's reason for lying and the object of belief targeted by the lie. Evaluating three black- and white-box lie detection techniques on LIARS' BENCH, we find that existing techniques systematically fail to identify certain types of lies, especially in settings where it's not possible to determine whether the model lied from the transcript alone. Overall, LIARS' BENCH reveals limitations in prior techniques and provides a practical testbed for guiding progress in lie detection.
comment: *Kieron Kretschmar and Walter Laurito contributed equally to this work. 10 pages, 2 figures; plus appendix. Code at https://github.com/Cadenza-Labs/liars-bench and datasets at https://huggingface.co/datasets/Cadenza-Labs/liars-bench Subjects: Computation and Language (cs.CL); Artificial Intelligence (cs.AI)
GPU-based complete search for nonlinear minimization subject to bounds
This paper introduces a GPU-based complete search method to enclose the global minimum of a nonlinear function subject to simple bounds on the variables. Using interval analysis, coupled with the computational power and architecture of GPU, the method iteratively rules out the regions in the search domain where the global minimum cannot exist and leaves a finite set of regions where the global minimum must exist. For effectiveness, because of the rigor of interval analysis, the method is guaranteed to enclose the global minimum of the nonlinear function even in the presence of rounding errors. For efficiency, the method employs a novel GPU-based single program, single data parallel programming style to circumvent major GPU performance bottlenecks, and a variable cycling technique is also integrated into the method to reduce computational cost when minimizing large-scale nonlinear functions. The method is validated by minimizing 10 multimodal benchmark test functions with scalable dimensions, including the well-known Ackley function, Griewank function, Levy function, and Rastrigin function. These benchmark test functions represent grand challenges of global optimization, and enclosing the guaranteed global minimum of these benchmark test functions with more than 80 dimensions has not been reported in the literature. Our method completely searches the feasible domain and successfully encloses the guaranteed global minimum of these 10 benchmark test functions with up to 10,000 dimensions using only one GPU in a reasonable computation time, far exceeding the reported results in the literature due to the unique method design and implementation based on GPU architecture.
comment: 36 pages, 3 figures
AI-Educational Development Loop (AI-EDL): A Conceptual Framework to Bridge AI Capabilities with Classical Educational Theories
This study introduces the AI-Educational Development Loop (AI-EDL), a theory-driven framework that integrates classical learning theories with human-in-the-loop artificial intelligence (AI) to support reflective, iterative learning. Implemented in EduAlly, an AI-assisted platform for writing-intensive and feedback-sensitive tasks, the framework emphasizes transparency, self-regulated learning, and pedagogical oversight. A mixed-methods study was piloted at a comprehensive public university to evaluate alignment between AI-generated feedback, instructor evaluations, and student self-assessments; the impact of iterative revision on performance; and student perceptions of AI feedback. Quantitative results demonstrated statistically significant improvement between first and second attempts, with agreement between student self-evaluations and final instructor grades. Qualitative findings indicated students valued immediacy, specificity, and opportunities for growth that AI feedback provided. These findings validate the potential to enhance student learning outcomes through developmentally grounded, ethically aligned, and scalable AI feedback systems. The study concludes with implications for future interdisciplinary applications and refinement of AI-supported educational technologies.
comment: This work has been submitted to Journal of Educational Technology Systems. It is under review
Architecting Agentic Communities using Design Patterns
The rapid evolution of Large Language Models (LLM) and subsequent Agentic AI technologies requires systematic architectural guidance for building sophisticated, production-grade systems. This paper presents an approach for architecting such systems using design patterns derived from enterprise distributed systems standards, formal methods, and industry practice. We classify these patterns into three tiers: LLM Agents (task-specific automation), Agentic AI (adaptive goal-seekers), and Agentic Communities (organizational frameworks where AI agents and human participants coordinate through formal roles, protocols, and governance structures). We focus on Agentic Communities - coordination frameworks encompassing LLM Agents, Agentic AI entities, and humans - most relevant for enterprise and industrial applications. Drawing on established coordination principles from distributed systems, we ground these patterns in a formal framework that specifies collaboration agreements where AI agents and humans fill roles within governed ecosystems. This approach provides both practical guidance and formal verification capabilities, enabling expression of organizational, legal, and ethical rules through accountability mechanisms that ensure operational and verifiable governance of inter-agent communication, negotiation, and intent modeling. We validate this framework through a clinical trial matching case study. Our goal is to provide actionable guidance to practitioners while maintaining the formal rigor essential for enterprise deployment in dynamic, multi-agent ecosystems.
comment: supplementary material accompanying this paper is also attached .. its title is "Complete Agentic AI Design Patterns Catalogue"
Dynamic and Distributed Routing in IoT Networks based on Multi-Objective Q-Learning
IoT networks often face conflicting routing goals such as maximizing packet delivery, minimizing delay, and conserving limited battery energy. These priorities can also change dynamically: for example, an emergency alert requires high reliability, while routine monitoring prioritizes energy efficiency to prolong network lifetime. Existing works, including many deep reinforcement learning approaches, are typically centralized and assume static objectives, making them slow to adapt when preferences shift. We propose a dynamic and fully distributed multi-objective Q-learning routing algorithm that learns multiple per-preference Q-tables in parallel and introduces a novel greedy interpolation policy to act near-optimally for unseen preferences without retraining or central coordination. A theoretical analysis further shows that the optimal value function is Lipschitz-continuous in the preference parameter, ensuring that the proposed greedy interpolation policy yields provably near-optimal behavior. Simulations show that our approach adapts in real time to shifting priorities and achieves up to 80-90\% lower energy consumption and more than 2-5x higher cumulative rewards and packet delivery compared to six baseline protocols, under dynamic and distributed settings. Sensitivity analysis across varying preference window lengths confirms that the proposed DPQ framework consistently achieves higher composite reward than all baseline methods, demonstrating robustness to changes in operating conditions.
Symbolic Planning and Multi-Agent Path Finding in Extremely Dense Environments with Unassigned Agents AAAI
We introduce the Block Rearrangement Problem (BRaP), a challenging component of large warehouse management which involves rearranging storage blocks within dense grids to achieve a goal state. We formally define the BRaP as a graph search problem. Building on intuitions from sliding puzzle problems, we propose five search-based solution algorithms, leveraging joint configuration space search, classical planning, multi-agent pathfinding, and expert heuristics. We evaluate the five approaches empirically for plan quality and scalability. Despite the exponential relation between search space size and block number, our methods demonstrate efficiency in creating rearrangement plans for deeply buried blocks in up to 80x80 grids.
comment: AAAI Conference on Artificial Intelligence (AAAI-26)
Normalized Conditional Mutual Information Surrogate Loss for Deep Neural Classifiers
In this paper, we propose a novel information theoretic surrogate loss; normalized conditional mutual information (NCMI); as a drop in alternative to the de facto cross-entropy (CE) for training deep neural network (DNN) based classifiers. We first observe that the model's NCMI is inversely proportional to its accuracy. Building on this insight, we introduce an alternating algorithm to efficiently minimize the NCMI. Across image recognition and whole-slide imaging (WSI) subtyping benchmarks, NCMI-trained models surpass state of the art losses by substantial margins at a computational cost comparable to that of CE. Notably, on ImageNet, NCMI yields a 2.77% top-1 accuracy improvement with ResNet-50 comparing to the CE; on CAMELYON-17, replacing CE with NCMI improves the macro-F1 by 8.6% over the strongest baseline. Gains are consistent across various architectures and batch sizes, suggesting that NCMI is a practical and competitive alternative to CE.
comment: 8 pages, 4 figures
The Geometry of Grokking: Norm Minimization on the Zero-Loss Manifold
Grokking is a puzzling phenomenon in neural networks where full generalization occurs only after a substantial delay following the complete memorization of the training data. Previous research has linked this delayed generalization to representation learning driven by weight decay, but the precise underlying dynamics remain elusive. In this paper, we argue that post-memorization learning can be understood through the lens of constrained optimization: gradient descent effectively minimizes the weight norm on the zero-loss manifold. We formally prove this in the limit of infinitesimally small learning rates and weight decay coefficients. To further dissect this regime, we introduce an approximation that decouples the learning dynamics of a subset of parameters from the rest of the network. Applying this framework, we derive a closed-form expression for the post-memorization dynamics of the first layer in a two-layer network. Experiments confirm that simulating the training process using our predicted gradients reproduces both the delayed generalization and representation learning characteristic of grokking.
On the Emergence of Induction Heads for In-Context Learning
Transformers have become the dominant architecture for natural language processing. Part of their success is owed to a remarkable capability known as in-context learning (ICL): they can acquire and apply novel associations solely from their input context, without any updates to their weights. In this work, we study the emergence of induction heads, a previously identified mechanism in two-layer transformers that is particularly important for in-context learning. We uncover a relatively simple and interpretable structure of the weight matrices implementing the induction head. We theoretically explain the origin of this structure using a minimal ICL task formulation and a modified transformer architecture. We give a formal proof that the training dynamics remain constrained to a 19-dimensional subspace of the parameter space. Empirically, we validate this constraint while observing that only 3 dimensions account for the emergence of an induction head. By further studying the training dynamics inside this 3-dimensional subspace, we find that the time until the emergence of an induction head follows a tight asymptotic bound that is quadratic in the input context length.
A Lightweight Approach to Detection of AI-Generated Texts Using Stylometric Features
A growing number of AI-generated texts raise serious concerns. Most existing approaches to AI-generated text detection rely on fine-tuning large transformer models or building ensembles, which are computationally expensive and often provide limited generalization across domains. Existing lightweight alternatives achieved significantly lower accuracy on large datasets. We introduce NEULIF, a lightweight approach that achieves best performance in the lightweight detector class, that does not require extensive computational power and provides high detection accuracy. In our approach, a text is first decomposed into stylometric and readability features which are then used for classification by a compact Convolutional Neural Network (CNN) or Random Forest (RF). Evaluated and tested on the Kaggle AI vs. Human corpus, our models achieve 97% accuracy (~ 0.95 F1) for CNN and 95% accuracy (~ 0.94 F1) for the Random Forest, demonstrating high precision and recall, with ROC-AUC scores of 99.5% and 95%, respectively. The CNN (~ 25 MB) and Random Forest (~ 10.6 MB) models are orders of magnitude smaller than transformer-based ensembles and can be run efficiently on standard CPU devices, without sacrificing accuracy. This study also highlights the potential of such models for broader applications across languages, domains, and streaming contexts, showing that simplicity, when guided by structural insights, can rival complexity in AI-generated content detection.
comment: 19 pages, 6 figures, 3 tables
Machine Learning 216
Optimal Lower Bounds for Online Multicalibration
We prove tight lower bounds for online multicalibration, establishing an information-theoretic separation from marginal calibration. In the general setting where group functions can depend on both context and the learner's predictions, we prove an $Ω(T^{2/3})$ lower bound on expected multicalibration error using just three disjoint binary groups. This matches the upper bounds of Noarov et al. (2025) up to logarithmic factors and exceeds the $O(T^{2/3-\varepsilon})$ upper bound for marginal calibration (Dagan et al., 2025), thereby separating the two problems. We then turn to lower bounds for the more difficult case of group functions that may depend on context but not on the learner's predictions. In this case, we establish an $\widetildeΩ(T^{2/3})$ lower bound for online multicalibration via a $Θ(T)$-sized group family constructed using orthogonal function systems, again matching upper bounds up to logarithmic factors.
GDPO: Group reward-Decoupled Normalization Policy Optimization for Multi-reward RL Optimization
As language models become increasingly capable, users expect them to provide not only accurate responses but also behaviors aligned with diverse human preferences across a variety of scenarios. To achieve this, Reinforcement learning (RL) pipelines have begun incorporating multiple rewards, each capturing a distinct preference, to guide models toward these desired behaviors. However, recent work has defaulted to apply Group Relative Policy Optimization (GRPO) under multi-reward setting without examining its suitability. In this paper, we demonstrate that directly applying GRPO to normalize distinct rollout reward combinations causes them to collapse into identical advantage values, reducing the resolution of the training signal and resulting in suboptimal convergence and, in some cases, early training failure. We then introduce Group reward-Decoupled Normalization Policy Optimization (GDPO), a new policy optimization method to resolve these issues by decoupling the normalization of individual rewards, more faithfully preserving their relative differences and enabling more accurate multi-reward optimization, along with substantially improved training stability. We compare GDPO with GRPO across three tasks: tool calling, math reasoning, and coding reasoning, evaluating both correctness metrics (accuracy, bug ratio) and constraint adherence metrics (format, length). Across all settings, GDPO consistently outperforms GRPO, demonstrating its effectiveness and generalizability for multi-reward reinforcement learning optimization.
comment: NVIDIA-Tech Report
Robust Reasoning as a Symmetry-Protected Topological Phase
Large language models suffer from "hallucinations"-logical inconsistencies induced by semantic noise. We propose that current architectures operate in a "Metric Phase," where causal order is vulnerable to spontaneous symmetry breaking. Here, we identify robust inference as an effective Symmetry-Protected Topological phase, where logical operations are formally isomorphic to non-Abelian anyon braiding, replacing fragile geometric interpolation with robust topological invariants. Empirically, we demonstrate a sharp topological phase transition: while Transformers and RNNs exhibit gapless decay, our Holonomic Network reveals a macroscopic "mass gap," maintaining invariant fidelity below a critical noise threshold. Furthermore, in a variable-binding task on $S_{10}$ ($3.6 \times 10^6$ states) representing symbolic manipulation, we demonstrate holonomic generalization: the topological model maintains perfect fidelity extrapolating $100\times$ beyond training ($L=50 \to 5000$), consistent with a theoretically indefinite causal horizon, whereas Transformers lose logical coherence. Ablation studies indicate this protection emerges strictly from non-Abelian gauge symmetry. This provides strong evidence for a new universality class for logical reasoning, linking causal stability to the topology of the semantic manifold.
Measuring and Fostering Peace through Machine Learning and Artificial Intelligence
We used machine learning and artificial intelligence: 1) to measure levels of peace in countries from news and social media and 2) to develop on-line tools that promote peace by helping users better understand their own media diet. For news media, we used neural networks to measure levels of peace from text embeddings of on-line news sources. The model, trained on one news media dataset also showed high accuracy when used to analyze a different news dataset. For social media, such as YouTube, we developed other models to measure levels of social dimensions important in peace using word level (GoEmotions) and context level (Large Language Model) methods. To promote peace, we note that 71% of people 20-40 years old daily view most of their news through short videos on social media. Content creators of these videos are biased towards creating videos with emotional activation, making you angry to engage you, to increase clicks. We developed and tested a Chrome extension, MirrorMirror, which provides real-time feedback to YouTube viewers about the peacefulness of the media they are watching. Our long term goal is for MirrorMirror to evolve into an open-source tool for content creators, journalists, researchers, platforms, and individual users to better understand the tone of their media creation and consumption and its effects on viewers. Moving beyond simple engagement metrics, we hope to encourage more respectful, nuanced, and informative communication.
comment: 6 pages, 4 figures
Stochastic Deep Learning: A Probabilistic Framework for Modeling Uncertainty in Structured Temporal Data
I propose a novel framework that integrates stochastic differential equations (SDEs) with deep generative models to improve uncertainty quantification in machine learning applications involving structured and temporal data. This approach, termed Stochastic Latent Differential Inference (SLDI), embeds an Itô SDE in the latent space of a variational autoencoder, allowing for flexible, continuous-time modeling of uncertainty while preserving a principled mathematical foundation. The drift and diffusion terms of the SDE are parameterized by neural networks, enabling data-driven inference and generalizing classical time series models to handle irregular sampling and complex dynamic structure. A central theoretical contribution is the co-parameterization of the adjoint state with a dedicated neural network, forming a coupled forward-backward system that captures not only latent evolution but also gradient dynamics. I introduce a pathwise-regularized adjoint loss and analyze variance-reduced gradient flows through the lens of stochastic calculus, offering new tools for improving training stability in deep latent SDEs. My paper unifies and extends variational inference, continuous-time generative modeling, and control-theoretic optimization, providing a rigorous foundation for future developments in stochastic probabilistic machine learning.
comment: 20 pages, 6330 words
CAOS: Conformal Aggregation of One-Shot Predictors
One-shot prediction enables rapid adaptation of pretrained foundation models to new tasks using only one labeled example, but lacks principled uncertainty quantification. While conformal prediction provides finite-sample coverage guarantees, standard split conformal methods are inefficient in the one-shot setting due to data splitting and reliance on a single predictor. We propose Conformal Aggregation of One-Shot Predictors (CAOS), a conformal framework that adaptively aggregates multiple one-shot predictors and uses a leave-one-out calibration scheme to fully exploit scarce labeled data. Despite violating classical exchangeability assumptions, we prove that CAOS achieves valid marginal coverage using a monotonicity-based argument. Experiments on one-shot facial landmarking and RAFT text classification tasks show that CAOS produces substantially smaller prediction sets than split conformal baselines while maintaining reliable coverage.
EARL: Energy-Aware Optimization of Liquid State Machines for Pervasive AI
Pervasive AI increasingly depends on on-device learning systems that deliver low-latency and energy-efficient computation under strict resource constraints. Liquid State Machines (LSMs) offer a promising approach for low-power temporal processing in pervasive and neuromorphic systems, but their deployment remains challenging due to high hyperparameter sensitivity and the computational cost of traditional optimization methods that ignore energy constraints. This work presents EARL, an energy-aware reinforcement learning framework that integrates Bayesian optimization with an adaptive reinforcement learning based selection policy to jointly optimize accuracy and energy consumption. EARL employs surrogate modeling for global exploration, reinforcement learning for dynamic candidate prioritization, and an early termination mechanism to eliminate redundant evaluations, substantially reducing computational overhead. Experiments on three benchmark datasets demonstrate that EARL achieves 6 to 15 percent higher accuracy, 60 to 80 percent lower energy consumption, and up to an order of magnitude reduction in optimization time compared to leading hyperparameter tuning frameworks. These results highlight the effectiveness of energy-aware adaptive search in improving the efficiency and scalability of LSMs for resource-constrained on-device AI applications.
comment: 6 pages, 9 figures, 2 Tables, conference [Submitted in PerConAI-2026]
Stock Market Price Prediction using Neural Prophet with Deep Neural Network
Stock market price prediction is a significant interdisciplinary research domain that depends at the intersection of finance, statistics, and economics. Forecasting Accurately predicting stock prices has always been a focal point for various researchers. However, existing statistical approaches for time-series prediction often fail to effectively forecast the probability range of future stock prices. Hence, to solve this problem, the Neural Prophet with a Deep Neural Network (NP-DNN) is proposed to predict stock market prices. The preprocessing technique used in this research is Z-score normalization, which normalizes stock price data by removing scale differences, making patterns easier to detect. Missing value imputation fills gaps in historical data, enhancing the models use of complete information for more accurate predictions. The Multi-Layer Perceptron (MLP) learns complex nonlinear relationships among stock market prices and extracts hidden patterns from the input data, thereby creating meaningful feature representations for better prediction accuracy. The proposed NP-DNN model achieved an accuracy of 99.21% compared with other approaches using the Fused Large Language Model. Keywords: deep neural network, forecasting stock prices, multi-layer perceptron, neural prophet, stock market price prediction.
An interpretable data-driven approach to optimizing clinical fall risk assessment
In this study, we aim to better align fall risk prediction from the Johns Hopkins Fall Risk Assessment Tool (JHFRAT) with additional clinically meaningful measures via a data-driven modelling approach. We conducted a retrospective cohort analysis of 54,209 inpatient admissions from three Johns Hopkins Health System hospitals between March 2022 and October 2023. A total of 20,208 admissions were included as high fall risk encounters, and 13,941 were included as low fall risk encounters. To incorporate clinical knowledge and maintain interpretability, we employed constrained score optimization (CSO) models to reweight the JHFRAT scoring weights, while preserving its additive structure and clinical thresholds. Recalibration refers to adjusting item weights so that the resulting score can order encounters more consistently by the study's risk labels, and without changing the tool's form factor or deployment workflow. The model demonstrated significant improvements in predictive performance over the current JHFRAT (CSO AUC-ROC=0.91, JHFRAT AUC-ROC=0.86). This performance improvement translates to protecting an additional 35 high-risk patients per week across the Johns Hopkins Health System. The constrained score optimization models performed similarly with and without the EHR variables. Although the benchmark black-box model (XGBoost), improves upon the performance metrics of the knowledge-based constrained logistic regression (AUC-ROC=0.94), the CSO demonstrates more robustness to variations in risk labeling. This evidence-based approach provides a robust foundation for health systems to systematically enhance inpatient fall prevention protocols and patient safety using data-driven optimization techniques, contributing to improved risk assessment and resource allocation in healthcare settings.
comment: arXiv admin note: substantial text overlap with arXiv:2510.20714
Cutting AI Research Costs: How Task-Aware Compression Makes Large Language Model Agents Affordable
When researchers deploy large language models for autonomous tasks like reviewing literature or generating hypotheses, the computational bills add up quickly. A single research session using a 70-billion parameter model can cost around $127 in cloud fees, putting these tools out of reach for many academic labs. We developed AgentCompress to tackle this problem head-on. The core idea came from a simple observation during our own work: writing a novel hypothesis clearly demands more from the model than reformatting a bibliography. Why should both tasks run at full precision? Our system uses a small neural network to gauge how hard each incoming task will be, based only on its opening words, then routes it to a suitably compressed model variant. The decision happens in under a millisecond. Testing across 500 research workflows in four scientific fields, we cut compute costs by 68.3% while keeping 96.2% of the original success rate. For labs watching their budgets, this could mean the difference between running experiments and sitting on the sidelines
FaST: Efficient and Effective Long-Horizon Forecasting for Large-Scale Spatial-Temporal Graphs via Mixture-of-Experts
Spatial-Temporal Graph (STG) forecasting on large-scale networks has garnered significant attention. However, existing models predominantly focus on short-horizon predictions and suffer from notorious computational costs and memory consumption when scaling to long-horizon predictions and large graphs. Targeting the above challenges, we present FaST, an effective and efficient framework based on heterogeneity-aware Mixture-of-Experts (MoEs) for long-horizon and large-scale STG forecasting, which unlocks one-week-ahead (672 steps at a 15-minute granularity) prediction with thousands of nodes. FaST is underpinned by two key innovations. First, an adaptive graph agent attention mechanism is proposed to alleviate the computational burden inherent in conventional graph convolution and self-attention modules when applied to large-scale graphs. Second, we propose a new parallel MoE module that replaces traditional feed-forward networks with Gated Linear Units (GLUs), enabling an efficient and scalable parallel structure. Extensive experiments on real-world datasets demonstrate that FaST not only delivers superior long-horizon predictive accuracy but also achieves remarkable computational efficiency compared to state-of-the-art baselines. Our source code is available at: https://github.com/yijizhao/FaST.
comment: Accepted to KDD 2026
RelayLLM: Efficient Reasoning via Collaborative Decoding
Large Language Models (LLMs) for complex reasoning is often hindered by high computational costs and latency, while resource-efficient Small Language Models (SLMs) typically lack the necessary reasoning capacity. Existing collaborative approaches, such as cascading or routing, operate at a coarse granularity by offloading entire queries to LLMs, resulting in significant computational waste when the SLM is capable of handling the majority of reasoning steps. To address this, we propose RelayLLM, a novel framework for efficient reasoning via token-level collaborative decoding. Unlike routers, RelayLLM empowers the SLM to act as an active controller that dynamically invokes the LLM only for critical tokens via a special command, effectively "relaying" the generation process. We introduce a two-stage training framework, including warm-up and Group Relative Policy Optimization (GRPO) to teach the model to balance independence with strategic help-seeking. Empirical results across six benchmarks demonstrate that RelayLLM achieves an average accuracy of 49.52%, effectively bridging the performance gap between the two models. Notably, this is achieved by invoking the LLM for only 1.07% of the total generated tokens, offering a 98.2% cost reduction compared to performance-matched random routers.
Learning Mixture Models via Efficient High-dimensional Sparse Fourier Transforms
In this work, we give a ${\rm poly}(d,k)$ time and sample algorithm for efficiently learning the parameters of a mixture of $k$ spherical distributions in $d$ dimensions. Unlike all previous methods, our techniques apply to heavy-tailed distributions and include examples that do not even have finite covariances. Our method succeeds whenever the cluster distributions have a characteristic function with sufficiently heavy tails. Such distributions include the Laplace distribution but crucially exclude Gaussians. All previous methods for learning mixture models relied implicitly or explicitly on the low-degree moments. Even for the case of Laplace distributions, we prove that any such algorithm must use super-polynomially many samples. Our method thus adds to the short list of techniques that bypass the limitations of the method of moments. Somewhat surprisingly, our algorithm does not require any minimum separation between the cluster means. This is in stark contrast to spherical Gaussian mixtures where a minimum $\ell_2$-separation is provably necessary even information-theoretically [Regev and Vijayaraghavan '17]. Our methods compose well with existing techniques and allow obtaining ''best of both worlds" guarantees for mixtures where every component either has a heavy-tailed characteristic function or has a sub-Gaussian tail with a light-tailed characteristic function. Our algorithm is based on a new approach to learning mixture models via efficient high-dimensional sparse Fourier transforms. We believe that this method will find more applications to statistical estimation. As an example, we give an algorithm for consistent robust mean estimation against noise-oblivious adversaries, a model practically motivated by the literature on multiple hypothesis testing. It was formally proposed in a recent Master's thesis by one of the authors, and has already inspired follow-up works.
Safe Continual Reinforcement Learning Methods for Nonstationary Environments. Towards a Survey of the State of the Art
This work provides a state-of-the-art survey of continual safe online reinforcement learning (COSRL) methods. We discuss theoretical aspects, challenges, and open questions in building continual online safe reinforcement learning algorithms. We provide the taxonomy and the details of continual online safe reinforcement learning methods based on the type of safe learning mechanism that takes adaptation to nonstationarity into account. We categorize safety constraints formulation for online reinforcement learning algorithms, and finally, we discuss prospects for creating reliable, safe online learning algorithms. Keywords: safe RL in nonstationary environments, safe continual reinforcement learning under nonstationarity, HM-MDP, NSMDP, POMDP, safe POMDP, constraints for continual learning, safe continual reinforcement learning review, safe continual reinforcement learning survey, safe continual reinforcement learning, safe online learning under distribution shift, safe continual online adaptation, safe reinforcement learning, safe exploration, safe adaptation, constrained Markov decision processes, safe reinforcement learning, partially observable Markov decision process, safe reinforcement learning and hidden Markov decision processes, Safe Online Reinforcement Learning, safe online reinforcement learning, safe online reinforcement learning, safe meta-learning, safe meta-reinforcement learning, safe context-based reinforcement learning, formulating safety constraints for continual learning
comment: 20 pages, 4 figures
ROOFS: RObust biOmarker Feature Selection
Feature selection (FS) is essential for biomarker discovery and in the analysis of biomedical datasets. However, challenges such as high-dimensional feature space, low sample size, multicollinearity, and missing values make FS non-trivial. Moreover, FS performances vary across datasets and predictive tasks. We propose roofs, a Python package available at https://gitlab.inria.fr/compo/roofs, designed to help researchers in the choice of FS method adapted to their problem. Roofs benchmarks multiple FS methods on the user's data and generates reports that summarize a comprehensive set of evaluation metrics, including downstream predictive performance estimated using optimism correction, stability, reliability of individual features, and true positive and false positive rates assessed on semi-synthetic data with a simulated outcome. We demonstrate the utility of roofs on data from the PIONeeR clinical trial, aimed at identifying predictors of resistance to anti-PD-(L)1 immunotherapy in lung cancer. The PIONeeR dataset contained 374 multi-source blood and tumor biomarkers from 435 patients. A reduced subset of 214 features was obtained through iterative variance inflation factor pre-filtering. Of the 34 FS methods gathered in roofs, we evaluated 23 in combination with 11 classifiers (253 models in total) and identified a filter based on the union of Benjamini-Hochberg false discovery rate-adjusted p-values from t-test and logistic regression as the optimal approach, outperforming other methods including the widely used LASSO. We conclude that comprehensive benchmarking with roofs has the potential to improve the robustness and reproducibility of FS discoveries and increase the translational value of clinical models.
Atlas 2 -- Foundation models for clinical deployment
Pathology foundation models substantially advanced the possibilities in computational pathology -- yet tradeoffs in terms of performance, robustness, and computational requirements remained, which limited their clinical deployment. In this report, we present Atlas 2, Atlas 2-B, and Atlas 2-S, three pathology vision foundation models which bridge these shortcomings by showing state-of-the-art performance in prediction performance, robustness, and resource efficiency in a comprehensive evaluation across eighty public benchmarks. Our models were trained on the largest pathology foundation model dataset to date comprising 5.5 million histopathology whole slide images, collected from three medical institutions Charité - Universtätsmedizin Berlin, LMU Munich, and Mayo Clinic.
Neural Algorithmic Reasoning for Approximate $k$-Coloring with Recursive Warm Starts
Node coloring is the task of assigning colors to the nodes of a graph such that no two adjacent nodes have the same color, while using as few colors as possible. It is the most widely studied instance of graph coloring and of central importance in graph theory; major results include the Four Color Theorem and work on the Hadwiger-Nelson Problem. As an abstraction of classical combinatorial optimization tasks, such as scheduling and resource allocation, it is also rich in practical applications. Here, we focus on a relaxed version, approximate $k$-coloring, which is the task of assigning at most $k$ colors to the nodes of a graph such that the number of edges whose vertices have the same color is approximately minimized. While classical approaches leverage mathematical programming or SAT solvers, recent studies have explored the use of machine learning. We follow this route and explore the use of graph neural networks (GNNs) for node coloring. We first present an optimized differentiable algorithm that improves a prior approach by Schuetz et al. with orthogonal node feature initialization and a loss function that penalizes conflicting edges more heavily when their endpoints have higher degree; the latter inspired by the classical result that a graph is $k$-colorable if and only if its $k$-core is $k$-colorable. Next, we introduce a lightweight greedy local search algorithm and show that it may be improved by recursively computing a $(k-1)$-coloring to use as a warm start. We then show that applying such recursive warm starts to the GNN approach leads to further improvements. Numerical experiments on a range of different graph structures show that while the local search algorithms perform best on small inputs, the GNN exhibits superior performance at scale. The recursive warm start may be of independent interest beyond graph coloring for local search methods for combinatorial optimization.
comment: 33 pages, 10 figures
Sequential Subspace Noise Injection Prevents Accuracy Collapse in Certified Unlearning
Certified unlearning based on differential privacy offers strong guarantees but remains largely impractical: the noisy fine-tuning approaches proposed so far achieve these guarantees but severely reduce model accuracy. We propose sequential noise scheduling, which distributes the noise budget across orthogonal subspaces of the parameter space, rather than injecting it all at once. This simple modification mitigates the destructive effect of noise while preserving the original certification guarantees. We extend the analysis of noisy fine-tuning to the subspace setting, proving that the same $(\varepsilon,δ)$ privacy budget is retained. Empirical results on image classification benchmarks show that our approach substantially improves accuracy after unlearning while remaining robust to membership inference attacks. These results show that certified unlearning can achieve both rigorous guarantees and practical utility.
Token-Level LLM Collaboration via FusionRoute
Large language models (LLMs) exhibit strengths across diverse domains. However, achieving strong performance across these domains with a single general-purpose model typically requires scaling to sizes that are prohibitively expensive to train and deploy. On the other hand, while smaller domain-specialized models are much more efficient, they struggle to generalize beyond their training distributions. To address this dilemma, we propose FusionRoute, a robust and effective token-level multi-LLM collaboration framework in which a lightweight router simultaneously (i) selects the most suitable expert at each decoding step and (ii) contributes a complementary logit that refines or corrects the selected expert's next-token distribution via logit addition. Unlike existing token-level collaboration methods that rely solely on fixed expert outputs, we provide a theoretical analysis showing that pure expert-only routing is fundamentally limited: unless strong global coverage assumptions hold, it cannot in general realize the optimal decoding policy. By augmenting expert selection with a trainable complementary generator, FusionRoute expands the effective policy class and enables recovery of optimal value functions under mild conditions. Empirically, across both Llama-3 and Gemma-2 families and diverse benchmarks spanning mathematical reasoning, code generation, and instruction following, FusionRoute outperforms both sequence- and token-level collaboration, model merging, and direct fine-tuning, while remaining competitive with domain experts on their respective tasks.
comment: 25 pages
Code-Mix Sentiment Analysis on Hinglish Tweets
The effectiveness of brand monitoring in India is increasingly challenged by the rise of Hinglish--a hybrid of Hindi and English--used widely in user-generated content on platforms like Twitter. Traditional Natural Language Processing (NLP) models, built for monolingual data, often fail to interpret the syntactic and semantic complexity of this code-mixed language, resulting in inaccurate sentiment analysis and misleading market insights. To address this gap, we propose a high-performance sentiment classification framework specifically designed for Hinglish tweets. Our approach fine-tunes mBERT (Multilingual BERT), leveraging its multilingual capabilities to better understand the linguistic diversity of Indian social media. A key component of our methodology is the use of subword tokenization, which enables the model to effectively manage spelling variations, slang, and out-of-vocabulary terms common in Romanized Hinglish. This research delivers a production-ready AI solution for brand sentiment tracking and establishes a strong benchmark for multilingual NLP in low-resource, code-mixed environments.
comment: Accepted at the 9th International Conference on Natural Language Processing and Information Retrieval (NLPIR 2025), Fukuoka, Japan
Exploring Student Expectations and Confidence in Learning Analytics
Learning Analytics (LA) is nowadays ubiquitous in many educational systems, providing the ability to collect and analyze student data in order to understand and optimize learning and the environments in which it occurs. On the other hand, the collection of data requires to comply with the growing demand regarding privacy legislation. In this paper, we use the Student Expectation of Learning Analytics Questionnaire (SELAQ) to analyze the expectations and confidence of students from different faculties regarding the processing of their data for Learning Analytics purposes. This allows us to identify four clusters of students through clustering algorithms: Enthusiasts, Realists, Cautious and Indifferents. This structured analysis provides valuable insights into the acceptance and criticism of Learning Analytics among students.
comment: 7 pages, Keywords: Learning Analytics, Survey, Data Protection, Clustering
Milestones over Outcome: Unlocking Geometric Reasoning with Sub-Goal Verifiable Reward
Multimodal Large Language Models (MLLMs) struggle with complex geometric reasoning, largely because "black box" outcome-based supervision fails to distinguish between lucky guesses and rigorous deduction. To address this, we introduce a paradigm shift towards subgoal-level evaluation and learning. We first construct GeoGoal, a benchmark synthesized via a rigorous formal verification data engine, which converts abstract proofs into verifiable numeric subgoals. This structure reveals a critical divergence between reasoning quality and outcome accuracy. Leveraging this, we propose the Sub-Goal Verifiable Reward (SGVR) framework, which replaces sparse signals with dense rewards based on the Skeleton Rate. Experiments demonstrate that SGVR not only enhances geometric performance (+9.7%) but also exhibits strong generalization, transferring gains to general math (+8.0%) and other general reasoning tasks (+2.8%), demonstrating broad applicability across diverse domains.
Quantitative mapping from conventional MRI using self-supervised physics-guided deep learning: applications to a large-scale, clinically heterogeneous dataset
Magnetic resonance imaging (MRI) is a cornerstone of clinical neuroimaging, yet conventional MRIs provide qualitative information heavily dependent on scanner hardware and acquisition settings. While quantitative MRI (qMRI) offers intrinsic tissue parameters, the requirement for specialized acquisition protocols and reconstruction algorithms restricts its availability and impedes large-scale biomarker research. This study presents a self-supervised physics-guided deep learning framework to infer quantitative T1, T2, and proton-density (PD) maps directly from widely available clinical conventional T1-weighted, T2-weighted, and FLAIR MRIs. The framework was trained and evaluated on a large-scale, clinically heterogeneous dataset comprising 4,121 scan sessions acquired at our institution over six years on four different 3 T MRI scanner systems, capturing real-world clinical variability. The framework integrates Bloch-based signal models directly into the training objective. Across more than 600 test sessions, the generated maps exhibited white matter and gray matter values consistent with literature ranges. Additionally, the generated maps showed invariance to scanner hardware and acquisition protocol groups, with inter-group coefficients of variation $\leq$ 1.1%. Subject-specific analyses demonstrated excellent voxel-wise reproducibility across scanner systems and sequence parameters, with Pearson $r$ and concordance correlation coefficients exceeding 0.82 for T1 and T2. Mean relative voxel-wise differences were low across all quantitative parameters, especially for T2 ($<$ 6%). These results indicate that the proposed framework can robustly transform diverse clinical conventional MRI data into quantitative maps, potentially paving the way for large-scale quantitative biomarker research.
comment: 30 pages, 13 figures, full paper
Compositional Steering of Large Language Models with Steering Tokens
Deploying LLMs in real-world applications requires controllable output that satisfies multiple desiderata at the same time. While existing work extensively addresses LLM steering for a single behavior, \textit{compositional steering} -- i.e., steering LLMs simultaneously towards multiple behaviors -- remains an underexplored problem. In this work, we propose \emph{compositional steering tokens} for multi-behavior steering. We first embed individual behaviors, expressed as natural language instructions, into dedicated tokens via self-distillation. Contrary to most prior work, which operates in the activation space, our behavior steers live in the space of input tokens, enabling more effective zero-shot composition. We then train a dedicated \textit{composition token} on pairs of behaviors and show that it successfully captures the notion of composition: it generalizes well to \textit{unseen} compositions, including those with unseen behaviors as well as those with an unseen \textit{number} of behaviors. Our experiments across different LLM architectures show that steering tokens lead to superior multi-behavior control compared to competing approaches (instructions, activation steering, and LoRA merging). Moreover, we show that steering tokens complement natural language instructions, with their combination resulting in further gains.
From Understanding to Engagement: Personalized pharmacy Video Clips via Vision Language Models (VLMs)
Vision Language Models (VLMs) are poised to revolutionize the digital transformation of pharmacyceutical industry by enabling intelligent, scalable, and automated multi-modality content processing. Traditional manual annotation of heterogeneous data modalities (text, images, video, audio, and web links), is prone to inconsistencies, quality degradation, and inefficiencies in content utilization. The sheer volume of long video and audio data further exacerbates these challenges, (e.g. long clinical trial interviews and educational seminars). Here, we introduce a domain adapted Video to Video Clip Generation framework that integrates Audio Language Models (ALMs) and Vision Language Models (VLMs) to produce highlight clips. Our contributions are threefold: (i) a reproducible Cut & Merge algorithm with fade in/out and timestamp normalization, ensuring smooth transitions and audio/visual alignment; (ii) a personalization mechanism based on role definition and prompt injection for tailored outputs (marketing, training, regulatory); (iii) a cost efficient e2e pipeline strategy balancing ALM/VLM enhanced processing. Evaluations on Video MME benchmark (900) and our proprietary dataset of 16,159 pharmacy videos across 14 disease areas demonstrate 3 to 4 times speedup, 4 times cost reduction, and competitive clip quality. Beyond efficiency gains, we also report our methods improved clip coherence scores (0.348) and informativeness scores (0.721) over state of the art VLM baselines (e.g., Gemini 2.5 Pro), highlighting the potential of transparent, custom extractive, and compliance supporting video summarization for life sciences.
comment: Contributed original research to top tier conference in VLM; currently undergoing peer review
DeepWeightFlow: Re-Basined Flow Matching for Generating Neural Network Weights
Building efficient and effective generative models for neural network weights has been a research focus of significant interest that faces challenges posed by the high-dimensional weight spaces of modern neural networks and their symmetries. Several prior generative models are limited to generating partial neural network weights, particularly for larger models, such as ResNet and ViT. Those that do generate complete weights struggle with generation speed or require finetuning of the generated models. In this work, we present DeepWeightFlow, a Flow Matching model that operates directly in weight space to generate diverse and high-accuracy neural network weights for a variety of architectures, neural network sizes, and data modalities. The neural networks generated by DeepWeightFlow do not require fine-tuning to perform well and can scale to large networks. We apply Git Re-Basin and TransFusion for neural network canonicalization in the context of generative weight models to account for the impact of neural network permutation symmetries and to improve generation efficiency for larger model sizes. The generated networks excel at transfer learning, and ensembles of hundreds of neural networks can be generated in minutes, far exceeding the efficiency of diffusion-based methods. DeepWeightFlow models pave the way for more efficient and scalable generation of diverse sets of neural networks.
comment: 25 pages, 20 tables, 2 figures
Challenges and Research Directions for Large Language Model Inference Hardware
Large Language Model (LLM) inference is hard. The autoregressive Decode phase of the underlying Transformer model makes LLM inference fundamentally different from training. Exacerbated by recent AI trends, the primary challenges are memory and interconnect rather than compute. To address these challenges, we highlight four architecture research opportunities: High Bandwidth Flash for 10X memory capacity with HBM-like bandwidth; Processing-Near-Memory and 3D memory-logic stacking for high memory bandwidth; and low-latency interconnect to speedup communication. While our focus is datacenter AI, we also review their applicability for mobile devices.
comment: Accepted for publication by IEEE Computer, 2026
Exponential capacity scaling of classical GANs compared to hybrid latent style-based quantum GANs
Quantum generative modeling is a very active area of research in looking for practical advantage in data analysis. Quantum generative adversarial networks (QGANs) are leading candidates for quantum generative modeling and have been applied to diverse areas, from high-energy physics to image generation. The latent style-based QGAN, relying on a classical variational autoencoder to encode the input data into a latent space and then using a style-based QGAN for data generation has been proven to be efficient for image generation or drug design, hinting at the use of far less trainable parameters than their classical counterpart to achieve comparable performance, however this advantage has never been systematically studied. We present in this work the first comprehensive experimental analysis of this advantage of QGANS applied to SAT4 image generation, obtaining an exponential advantage in capacity scaling for a quantum generator in the hybrid latent style-based QGAN architecture. Careful tuning of the autoencoder is crucial to obtain stable, reliable results. Once this tuning is performed and defining training optimality as when the training is stable and the FID score is low and stable as well, the optimal capacity (or number of trainable parameters) of the classical discriminator scales exponentially with respect to the capacity of the quantum generator, and the same is true for the capacity of the classical generator. This hints toward a type of quantum advantage for quantum generative modeling.
comment: 34 pages, 7 figures, 7 tables
A Data-Driven Predictive Framework for Inventory Optimization Using Context-Augmented Machine Learning Models
Demand forecasting in supply chain management (SCM) is critical for optimizing inventory, reducing waste, and improving customer satisfaction. Conventional approaches frequently neglect external influences like weather, festivities, and equipment breakdowns, resulting in inefficiencies. This research investigates the use of machine learning (ML) algorithms to improve demand prediction in retail and vending machine sectors. Four machine learning algorithms. Extreme Gradient Boosting (XGBoost), Autoregressive Integrated Moving Average (ARIMA), Facebook Prophet (Fb Prophet), and Support Vector Regression (SVR) were used to forecast inventory requirements. Ex-ternal factors like weekdays, holidays, and sales deviation indicators were methodically incorporated to enhance precision. XGBoost surpassed other models, reaching the lowest Mean Absolute Error (MAE) of 22.7 with the inclusion of external variables. ARIMAX and Fb Prophet demonstrated noteworthy enhancements, whereas SVR fell short in performance. Incorporating external factors greatly improves the precision of demand forecasting models, and XGBoost is identified as the most efficient algorithm. This study offers a strong framework for enhancing inventory management in retail and vending machine systems.
Approximate equivariance via projection-based regularisation
Equivariance is a powerful inductive bias in neural networks, improving generalisation and physical consistency. Recently, however, non-equivariant models have regained attention, due to their better runtime performance and imperfect symmetries that might arise in real-world applications. This has motivated the development of approximately equivariant models that strike a middle ground between respecting symmetries and fitting the data distribution. Existing approaches in this field usually apply sample-based regularisers which depend on data augmentation at training time, incurring a high sample complexity, in particular for continuous groups such as $SO(3)$. This work instead approaches approximate equivariance via a projection-based regulariser which leverages the orthogonal decomposition of linear layers into equivariant and non-equivariant components. In contrast to existing methods, this penalises non-equivariance at an operator level across the full group orbit, rather than point-wise. We present a mathematical framework for computing the non-equivariance penalty exactly and efficiently in both the spatial and spectral domain. In our experiments, our method consistently outperforms prior approximate equivariance approaches in both model performance and efficiency, achieving substantial runtime gains over sample-based regularisers.
HMVI: Unifying Heterogeneous Attributes with Natural Neighbors for Missing Value Inference
Missing value imputation is a fundamental challenge in machine intelligence, heavily dependent on data completeness. Current imputation methods often handle numerical and categorical attributes independently, overlooking critical interdependencies among heterogeneous features. To address these limitations, we propose a novel imputation approach that explicitly models cross-type feature dependencies within a unified framework. Our method leverages both complete and incomplete instances to ensure accurate and consistent imputation in tabular data. Extensive experimental results demonstrate that the proposed approach achieves superior performance over existing techniques and significantly enhances downstream machine learning tasks, providing a robust solution for real-world systems with missing data.
comment: Submitted to ICASSP 2026
Leveraging Prediction Entropy for Automatic Prompt Weighting in Zero-Shot Audio-Language Classification
Audio-language models have recently demonstrated strong zero-shot capabilities by leveraging natural-language supervision to classify audio events without labeled training data. Yet, their performance is highly sensitive to the wording of text prompts, with small variations leading to large fluctuations in accuracy. Prior work has mitigated this issue through prompt learning or prompt ensembling. However, these strategies either require annotated data or fail to account for the fact that some prompts may negatively impact performance. In this work, we present an entropy-guided prompt weighting approach that aims to find a robust combination of prompt contributions to maximize prediction confidence. To this end, we formulate a tailored objective function that minimizes prediction entropy to yield new prompt weights, utilizing low-entropy as a proxy for high confidence. Our approach can be applied to individual samples or a batch of audio samples, requiring no additional labels and incurring negligible computational overhead. Experiments on five audio classification datasets covering environmental, urban, and vocal sounds, demonstrate consistent gains compared to classical prompt ensembling methods in a zero-shot setting, with accuracy improvements 5-times larger across the whole benchmark.
On the Hidden Objective Biases of Group-based Reinforcement Learning
Group-based reinforcement learning methods, like Group Relative Policy Optimization (GRPO), are widely used nowadays to post-train large language models. Despite their empirical success, they exhibit structural mismatches between reward optimization and the underlying training objective. In this paper, we present a theoretical analysis of GRPO style methods by studying them within a unified surrogate formulation. This perspective reveals recurring properties that affect all the methods under analysis: (i) non-uniform group weighting induces systematic gradient biases on shared prefix tokens; (ii) interactions with the AdamW optimizer make training dynamics largely insensitive to reward scaling; and (iii) optimizer momentum can push policy updates beyond the intended clipping region under repeated optimization steps. We believe that these findings highlight fundamental limitations of current approaches and provide principled guidance for the design of future formulations.
On the Definition and Detection of Cherry-Picking in Counterfactual Explanations
Counterfactual explanations are widely used to communicate how inputs must change for a model to alter its prediction. For a single instance, many valid counterfactuals can exist, which leaves open the possibility for an explanation provider to cherry-pick explanations that better suit a narrative of their choice, highlighting favourable behaviour and withholding examples that reveal problematic behaviour. We formally define cherry-picking for counterfactual explanations in terms of an admissible explanation space, specified by the generation procedure, and a utility function. We then study to what extent an external auditor can detect such manipulation. Considering three levels of access to the explanation process: full procedural access, partial procedural access, and explanation-only access, we show that detection is extremely limited in practice. Even with full procedural access, cherry-picked explanations can remain difficult to distinguish from non cherry-picked explanations, because the multiplicity of valid counterfactuals and flexibility in the explanation specification provide sufficient degrees of freedom to mask deliberate selection. Empirically, we demonstrate that this variability often exceeds the effect of cherry-picking on standard counterfactual quality metrics such as proximity, plausibility, and sparsity, making cherry-picked explanations statistically indistinguishable from baseline explanations. We argue that safeguards should therefore prioritise reproducibility, standardisation, and procedural constraints over post-hoc detection, and we provide recommendations for algorithm developers, explanation providers, and auditors.
Precision over Diversity: High-Precision Reward Generalizes to Robust Instruction Following
A central belief in scaling reinforcement learning with verifiable rewards for instruction following (IF) tasks is that, a diverse mixture of verifiable hard and unverifiable soft constraints is essential for generalizing to unseen instructions. In this work, we challenge this prevailing consensus through a systematic empirical investigation. Counter-intuitively, we find that models trained on hard-only constraints consistently outperform those trained on mixed datasets. Extensive experiments reveal that reward precision, rather than constraint diversity, is the primary driver of effective alignment. The LLM judge suffers from a low recall rate in detecting false response, which leads to severe reward hacking, thereby undermining the benefits of diversity. Furthermore, analysis of the attention mechanism reveals that high-precision rewards develop a transferable meta-skill for IF. Motivated by these insights, we propose a simple yet effective data-centric refinement strategy that prioritizes reward precision. Evaluated on five benchmarks, our approach outperforms competitive baselines by 13.4\% in performance while achieving a 58\% reduction in training time, maintaining strong generalization beyond instruction following. Our findings advocate for a paradigm shift: moving away from the indiscriminate pursuit of data diversity toward high-precision rewards.
comment: ACL under review 13 pages, 8 figures
Cardinality augmented loss functions
Class imbalance is a common and pernicious issue for the training of neural networks. Often, an imbalanced majority class can dominate training to skew classifier performance towards the majority outcome. To address this problem we introduce cardinality augmented loss functions, derived from cardinality-like invariants in modern mathematics literature such as magnitude and the spread. These invariants enrich the concept of cardinality by evaluating the `effective diversity' of a metric space, and as such represent a natural solution to overly homogeneous training data. In this work, we establish a methodology for applying cardinality augmented loss functions in the training of neural networks and report results on both artificially imbalanced datasets as well as a real-world imbalanced material science dataset. We observe significant performance improvement among minority classes, as well as improvement in overall performance metrics.
comment: 12 pages, 3 figures
Distributed Online Convex Optimization with Efficient Communication: Improved Algorithm and Lower bounds
We investigate distributed online convex optimization with compressed communication, where $n$ learners connected by a network collaboratively minimize a sequence of global loss functions using only local information and compressed data from neighbors. Prior work has established regret bounds of $O(\max\{ω^{-2}ρ^{-4}n^{1/2},ω^{-4}ρ^{-8}\}n\sqrt{T})$ and $O(\max\{ω^{-2}ρ^{-4}n^{1/2},ω^{-4}ρ^{-8}\}n\ln{T})$ for convex and strongly convex functions, respectively, where $ω\in(0,1]$ is the compression quality factor ($ω=1$ means no compression) and $ρ<1$ is the spectral gap of the communication matrix. However, these regret bounds suffer from a \emph{quadratic} or even \emph{quartic} dependence on $ω^{-1}$. Moreover, the \emph{super-linear} dependence on $n$ is also undesirable. To overcome these limitations, we propose a novel algorithm that achieves improved regret bounds of $\tilde{O}(ω^{-1/2}ρ^{-1}n\sqrt{T})$ and $\tilde{O}(ω^{-1}ρ^{-2}n\ln{T})$ for convex and strongly convex functions, respectively. The primary idea is to design a \emph{two-level blocking update framework} incorporating two novel ingredients: an online gossip strategy and an error compensation scheme, which collaborate to \emph{achieve a better consensus} among learners. Furthermore, we establish the first lower bounds for this problem, justifying the optimality of our results with respect to both $ω$ and $T$. Additionally, we consider the bandit feedback scenario, and extend our method with the classic gradient estimators to enhance existing regret bounds.
Rotation-Robust Regression with Convolutional Model Trees
We study rotation-robust learning for image inputs using Convolutional Model Trees (CMTs) [1], whose split and leaf coefficients can be structured on the image grid and transformed geometrically at deployment time. In a controlled MNIST setting with a rotation-invariant regression target, we introduce three geometry-aware inductive biases for split directions -- convolutional smoothing, a tilt dominance constraint, and importance-based pruning -- and quantify their impact on robustness under in-plane rotations. We further evaluate a deployment-time orientation search that selects a discrete rotation maximizing a forest-level confidence proxy without updating model parameters. Orientation search improves robustness under severe rotations but can be harmful near the canonical orientation when confidence is misaligned with correctness. Finally, we observe consistent trends on MNIST digit recognition implemented as one-vs-rest regression, highlighting both the promise and limitations of confidence-based orientation selection for model-tree ensembles.
V-FAT: Benchmarking Visual Fidelity Against Text-bias
Recent advancements in Multimodal Large Language Models (MLLMs) have demonstrated impressive performance on standard visual reasoning benchmarks. However, there is growing concern that these models rely excessively on linguistic shortcuts rather than genuine visual grounding, a phenomenon we term Text Bias. In this paper, we investigate the fundamental tension between visual perception and linguistic priors. We decouple the sources of this bias into two dimensions: Internal Corpus Bias, stemming from statistical correlations in pretraining, and External Instruction Bias, arising from the alignment-induced tendency toward sycophancy. To quantify this effect, we introduce V-FAT (Visual Fidelity Against Text-bias), a diagnostic benchmark comprising 4,026 VQA instances across six semantic domains. V-FAT employs a Three-Level Evaluation Framework that systematically increases the conflict between visual evidence and textual information: (L1) internal bias from atypical images, (L2) external bias from misleading instructions, and (L3) synergistic bias where both coincide. We introduce the Visual Robustness Score (VRS), a metric designed to penalize "lucky" linguistic guesses and reward true visual fidelity. Our evaluation of 12 frontier MLLMs reveals that while models excel in existing benchmarks, they experience significant visual collapse under high linguistic dominance.
comment: 12 pages, 6 figures
Scaling Vision Language Models for Pharmaceutical Long Form Video Reasoning on Industrial GenAI Platform
Vision Language Models (VLMs) have shown strong performance on multimodal reasoning tasks, yet most evaluations focus on short videos and assume unconstrained computational resources. In industrial settings such as pharmaceutical content understanding, practitioners must process long-form videos under strict GPU, latency, and cost constraints, where many existing approaches fail to scale. In this work, we present an industrial GenAI framework that processes over 200,000 PDFs, 25,326 videos across eight formats (e.g., MP4, M4V, etc.), and 888 multilingual audio files in more than 20 languages. Our study makes three contributions: (i) an industrial large-scale architecture for multimodal reasoning in pharmaceutical domains; (ii) empirical analysis of over 40 VLMs on two leading benchmarks (Video-MME and MMBench) and proprietary dataset of 25,326 videos across 14 disease areas; and (iii) four findings relevant to long-form video reasoning: the role of multimodality, attention mechanism trade-offs, temporal reasoning limits, and challenges of video splitting under GPU constraints. Results show 3-8 times efficiency gains with SDPA attention on commodity GPUs, multimodality improving up to 8/12 task domains (especially length-dependent tasks), and clear bottlenecks in temporal alignment and keyframe detection across open- and closed-source VLMs. Rather than proposing a new "A+B" model, this paper characterizes practical limits, trade-offs, and failure patterns of current VLMs under realistic deployment constraints, and provide actionable guidance for both researchers and practitioners designing scalable multimodal systems for long-form video understanding in industrial domains.
comment: Submitted to the Industry Track of Top Tier Conference; currently under peer review
Learnable Multipliers: Freeing the Scale of Language Model Matrix Layers
Applying weight decay (WD) to matrix layers is standard practice in large-language-model pretraining. Prior work suggests that stochastic gradient noise induces a Brownian-like expansion of the weight matrices W, whose growth is counteracted by WD, leading to a WD-noise equilibrium with a certain weight norm ||W||. In this work, we view the equilibrium norm as a harmful artifact of the training procedure, and address it by introducing learnable multipliers to learn the optimal scale. First, we attach a learnable scalar multiplier to W and confirm that the WD-noise equilibrium norm is suboptimal: the learned scale adapts to data and improves performance. We then argue that individual row and column norms are similarly constrained, and free their scale by introducing learnable per-row and per-column multipliers. Our method can be viewed as a learnable, more expressive generalization of muP multipliers. It outperforms a well-tuned muP baseline, reduces the computational overhead of multiplier tuning, and surfaces practical questions such as forward-pass symmetries and the width-scaling of the learned multipliers. Finally, we validate learnable multipliers with both Adam and Muon optimizers, where it shows improvement in downstream evaluations matching the improvement of the switching from Adam to Muon.
CuMA: Aligning LLMs with Sparse Cultural Values via Demographic-Aware Mixture of Adapters
As Large Language Models (LLMs) serve a global audience, alignment must transition from enforcing universal consensus to respecting cultural pluralism. We demonstrate that dense models, when forced to fit conflicting value distributions, suffer from \textbf{Mean Collapse}, converging to a generic average that fails to represent diverse groups. We attribute this to \textbf{Cultural Sparsity}, where gradient interference prevents dense parameters from spanning distinct cultural modes. To resolve this, we propose \textbf{\textsc{CuMA}} (\textbf{Cu}ltural \textbf{M}ixture of \textbf{A}dapters), a framework that frames alignment as a \textbf{conditional capacity separation} problem. By incorporating demographic-aware routing, \textsc{CuMA} internalizes a \textit{Latent Cultural Topology} to explicitly disentangle conflicting gradients into specialized expert subspaces. Extensive evaluations on WorldValuesBench, Community Alignment, and PRISM demonstrate that \textsc{CuMA} achieves state-of-the-art performance, significantly outperforming both dense baselines and semantic-only MoEs. Crucially, our analysis confirms that \textsc{CuMA} effectively mitigates mean collapse, preserving cultural diversity. Our code is available at https://github.com/Throll/CuMA.
Higher-Order Knowledge Representations for Agentic Scientific Reasoning
Scientific inquiry requires systems-level reasoning that integrates heterogeneous experimental data, cross-domain knowledge, and mechanistic evidence into coherent explanations. While Large Language Models (LLMs) offer inferential capabilities, they often depend on retrieval-augmented contexts that lack structural depth. Traditional Knowledge Graphs (KGs) attempt to bridge this gap, yet their pairwise constraints fail to capture the irreducible higher-order interactions that govern emergent physical behavior. To address this, we introduce a methodology for constructing hypergraph-based knowledge representations that faithfully encode multi-entity relationships. Applied to a corpus of ~1,100 manuscripts on biocomposite scaffolds, our framework constructs a global hypergraph of 161,172 nodes and 320,201 hyperedges, revealing a scale-free topology (power law exponent ~1.23) organized around highly connected conceptual hubs. This representation prevents the combinatorial explosion typical of pairwise expansions and explicitly preserves the co-occurrence context of scientific formulations. We further demonstrate that equipping agentic systems with hypergraph traversal tools, specifically using node-intersection constraints, enables them to bridge semantically distant concepts. By exploiting these higher-order pathways, the system successfully generates grounded mechanistic hypotheses for novel composite materials, such as linking cerium oxide to PCL scaffolds via chitosan intermediates. This work establishes a "teacherless" agentic reasoning system where hypergraph topology acts as a verifiable guardrail, accelerating scientific discovery by uncovering relationships obscured by traditional graph methods.
FibreCastML: An Open Web Platform for Predicting Electrospun Nanofibre Diameter Distributions
Electrospinning is a scalable technique for producing fibrous scaffolds with tunable micro- and nanoscale architectures for applications in tissue engineering, drug delivery, and wound care. While machine learning (ML) has been used to support electrospinning process optimisation, most existing approaches predict only mean fibre diameters, neglecting the full diameter distribution that governs scaffold performance. This work presents FibreCastML, an open, distribution-aware ML framework that predicts complete fibre diameter spectra from routinely reported electrospinning parameters and provides interpretable insights into process structure relationships. A meta-dataset comprising 68538 individual fibre diameter measurements extracted from 1778 studies across 16 biomedical polymers was curated. Six standard processing parameters, namely solution concentration, applied voltage, flow rate, tip to collector distance, needle diameter, and collector rotation speed, were used to train seven ML models using nested cross validation with leave one study out external folds. Model interpretability was achieved using variable importance analysis, SHapley Additive exPlanations, correlation matrices, and three dimensional parameter maps. Non linear models consistently outperformed linear baselines, achieving coefficients of determination above 0.91 for several widely used polymers. Solution concentration emerged as the dominant global driver of fibre diameter distributions. Experimental validation across different electrospinning systems demonstrated close agreement between predicted and measured distributions. FibreCastML enables more reproducible and data driven optimisation of electrospun scaffold architectures.
Gradient-based Optimisation of Modulation Effects
Modulation effects such as phasers, flangers and chorus effects are heavily used in conjunction with the electric guitar. Machine learning based emulation of analog modulation units has been investigated in recent years, but most methods have either been limited to one class of effect or suffer from a high computational cost or latency compared to canonical digital implementations. Here, we build on previous work and present a framework for modelling flanger, chorus and phaser effects based on differentiable digital signal processing. The model is trained in the time-frequency domain, but at inference operates in the time-domain, requiring zero latency. We investigate the challenges associated with gradient-based optimisation of such effects, and show that low-frequency weighting of loss functions avoids convergence to local minima when learning delay times. We show that when trained against analog effects units, sound output from the model is in some cases perceptually indistinguishable from the reference, but challenges still remain for effects with long delay times and feedback.
comment: Submitted to J. Audio Eng. Soc. Dec. 2025
Rethinking GNNs and Missing Features: Challenges, Evaluation and a Robust Solution
Handling missing node features is a key challenge for deploying Graph Neural Networks (GNNs) in real-world domains such as healthcare and sensor networks. Existing studies mostly address relatively benign scenarios, namely benchmark datasets with (a) high-dimensional but sparse node features and (b) incomplete data generated under Missing Completely At Random (MCAR) mechanisms. For (a), we theoretically prove that high sparsity substantially limits the information loss caused by missingness, making all models appear robust and preventing a meaningful comparison of their performance. To overcome this limitation, we introduce one synthetic and three real-world datasets with dense, semantically meaningful features. For (b), we move beyond MCAR and design evaluation protocols with more realistic missingness mechanisms. Moreover, we provide a theoretical background to state explicit assumptions on the missingness process and analyze their implications for different methods. Building on this analysis, we propose GNNmim, a simple yet effective baseline for node classification with incomplete feature data. Experiments show that GNNmim is competitive with respect to specialized architectures across diverse datasets and missingness regimes.
Token Maturation: Autoregressive Language Generation via Continuous Token Dynamics ICML 2026
Autoregressive language models are conventionally defined over discrete token sequences, committing to a specific token at every generation step. This early discretization forces uncertainty to be resolved through token-level sampling, often leading to instability, repetition, and sensitivity to decoding heuristics. In this work, we introduce a continuous autoregressive formulation of language generation in which tokens are represented as continuous vectors that \emph{mature} over multiple update steps before being discretized. Rather than sampling tokens, the model evolves continuous token representations through a deterministic dynamical process, committing to a discrete token only when the representation has sufficiently converged. Discrete text is recovered via hard decoding, while uncertainty is maintained and resolved in the continuous space. We show that this maturation process alone is sufficient to produce coherent and diverse text using deterministic decoding (argmax), without reliance on token-level sampling, diffusion-style denoising, or auxiliary stabilization mechanisms. Additional perturbations, such as stochastic dynamics or history smoothing, can be incorporated naturally but are not required for the model to function. To our knowledge, this is the first autoregressive language model that generates text by evolving continuous token representations to convergence prior to discretization, enabling stable generation without token-level sampling.
comment: In preperation to ICML 2026
Illumination Angular Spectrum Encoding for Controlling the Functionality of Diffractive Networks
Diffractive neural networks have recently emerged as a promising framework for all-optical computing. However, these networks are typically trained for a single task, limiting their potential adoption in systems requiring multiple functionalities. Existing approaches to achieving multi-task functionality either modify the mechanical configuration of the network per task or use a different illumination wavelength or polarization state for each task. In this work, we propose a new control mechanism, which is based on the illumination's angular spectrum. Specifically, we shape the illumination using an amplitude mask that selectively controls its angular spectrum. We employ different illumination masks for achieving different network functionalities, so that the mask serves as a unique task encoder. Interestingly, we show that effective control can be achieved over a very narrow angular range, within the paraxial regime. We numerically illustrate the proposed approach by training a single diffractive network to perform multiple image-to-image translation tasks. In particular, we demonstrate translating handwritten digits into typeset digits of different values, and translating handwritten English letters into typeset numbers and typeset Greek letters, where the type of the output is determined by the illumination's angular components. As we show, the proposed framework can work under different coherence conditions, and can be combined with existing control strategies, such as different wavelengths. Our results establish the illumination angular spectrum as a powerful degree of freedom for controlling diffractive networks, enabling a scalable and versatile framework for multi-task all-optical computing.
comment: Project's code https://github.com/matankleiner/Angular-Spectrum-Encoding
Comparison of Maximum Likelihood Classification Before and After Applying Weierstrass Transform
The aim of this paper is to use Maximum Likelihood (ML) Classification on multispectral data by means of qualitative and quantitative approaches. Maximum Likelihood is a supervised classification algorithm which is based on the Classical Bayes theorem. It makes use of a discriminant function to assign pixel to the class with the highest likelihood. Class means vector and covariance matrix are the key inputs to the function and can be estimated from training pixels of a particular class. As Maximum Likelihood need some assumptions before it has to be applied on the data. In this paper we will compare the results of Maximum Likelihood Classification (ML) before apply the Weierstrass Transform and apply Weierstrass Transform and will see the difference between the accuracy on training pixels of high resolution Quickbird satellite image. Principle Component analysis (PCA) is also used for dimension reduction and also used to check the variation in bands. The results shows that the separation between mean of the classes in the decision space is to be the main factor that leads to the high classification accuracy of Maximum Likelihood (ML) after using Weierstrass Transform than without using it.
Parallelizing Node-Level Explainability in Graph Neural Networks
Graph Neural Networks (GNNs) have demonstrated remarkable performance in a wide range of tasks, such as node classification, link prediction, and graph classification, by exploiting the structural information in graph-structured data. However, in node classification, computing node-level explainability becomes extremely time-consuming as the size of the graph increases, while batching strategies often degrade explanation quality. This paper introduces a novel approach to parallelizing node-level explainability in GNNs through graph partitioning. By decomposing the graph into disjoint subgraphs, we enable parallel computation of explainability for node neighbors, significantly improving the scalability and efficiency without affecting the correctness of the results, provided sufficient memory is available. For scenarios where memory is limited, we further propose a dropout-based reconstruction mechanism that offers a controllable trade-off between memory usage and explanation fidelity. Experimental results on real-world datasets demonstrate substantial speedups, enabling scalable and transparent explainability for large-scale GNN models.
MPM-LLM4DSE: Reaching the Pareto Frontier in HLS with Multimodal Learning and LLM-Driven Exploration
High-Level Synthesis (HLS) design space exploration (DSE) seeks Pareto-optimal designs within expansive pragma configuration spaces. To accelerate HLS DSE, graph neural networks (GNNs) are commonly employed as surrogates for HLS tools to predict quality of results (QoR) metrics, while multi-objective optimization algorithms expedite the exploration. However, GNN-based prediction methods may not fully capture the rich semantic features inherent in behavioral descriptions, and conventional multi-objective optimization algorithms often do not explicitly account for the domain-specific knowledge regarding how pragma directives influence QoR. To address these limitations, this paper proposes the MPM-LLM4DSE framework, which incorporates a multimodal prediction model (MPM) that simultaneously fuses features from behavioral descriptions and control and data flow graphs. Furthermore, the framework employs a large language model (LLM) as an optimizer, accompanied by a tailored prompt engineering methodology. This methodology incorporates pragma impact analysis on QoR to guide the LLM in generating high-quality configurations (LLM4DSE). Experimental results demonstrate that our multimodal predictive model significantly outperforms state-of-the-art work ProgSG by up to 10.25$\times$. Furthermore, in DSE tasks, the proposed LLM4DSE achieves an average performance gain of 39.90\% over prior methods, validating the effectiveness of our prompting methodology. Code and models are available at https://github.com/wslcccc/MPM-LLM4DSE.
Neural-Symbolic Integration with Evolvable Policies
Neural-Symbolic (NeSy) Artificial Intelligence has emerged as a promising approach for combining the learning capabilities of neural networks with the interpretable reasoning of symbolic systems. However, existing NeSy frameworks typically require either predefined symbolic policies or policies that are differentiable, limiting their applicability when domain expertise is unavailable or when policies are inherently non-differentiable. We propose a framework that addresses this limitation by enabling the concurrent learning of both non-differentiable symbolic policies and neural network weights through an evolutionary process. Our approach casts NeSy systems as organisms in a population that evolve through mutations (both symbolic rule additions and neural weight changes), with fitness-based selection guiding convergence toward hidden target policies. The framework extends the NEUROLOG architecture to make symbolic policies trainable, adapts Valiant's Evolvability framework to the NeSy context, and employs Machine Coaching semantics for mutable symbolic representations. Neural networks are trained through abductive reasoning from the symbolic component, eliminating differentiability requirements. Through extensive experimentation, we demonstrate that NeSy systems starting with empty policies and random neural weights can successfully approximate hidden non-differentiable target policies, achieving median correct performance approaching 100%. This work represents a step toward enabling NeSy research in domains where the acquisition of symbolic knowledge from experts is challenging or infeasible.
comment: 18 pages, 12 figures, related code available at https://github.com/CYENS/evolvable-nesy
Measurement-Consistent Langevin Corrector: A Remedy for Latent Diffusion Inverse Solvers
With recent advances in generative models, diffusion models have emerged as powerful priors for solving inverse problems in each domain. Since Latent Diffusion Models (LDMs) provide generic priors, several studies have explored their potential as domain-agnostic zero-shot inverse solvers. Despite these efforts, existing latent diffusion inverse solvers suffer from their instability, exhibiting undesirable artifacts and degraded quality. In this work, we first identify the instability as a discrepancy between the solver's and true reverse diffusion dynamics, and show that reducing this gap stabilizes the solver. Building on this, we introduce Measurement-Consistent Langevin Corrector (MCLC), a theoretically grounded plug-and-play correction module that remedies the LDM-based inverse solvers through measurement-consistent Langevin updates. Compared to prior approaches that rely on linear manifold assumptions, which often do not hold in latent space, MCLC operates without this assumption, leading to more stable and reliable behavior. We experimentally demonstrate the effectiveness of MCLC and its compatibility with existing solvers across diverse image restoration tasks. Additionally, we analyze blob artifacts and offer insights into their underlying causes. We highlight that MCLC is a key step toward more robust zero-shot inverse problem solvers.
comment: Under Review
AgentOCR: Reimagining Agent History via Optical Self-Compression
Recent advances in large language models (LLMs) enable agentic systems trained with reinforcement learning (RL) over multi-turn interaction trajectories, but practical deployment is bottlenecked by rapidly growing textual histories that inflate token budgets and memory usage. We introduce AgentOCR, a framework that exploits the superior information density of visual tokens by representing the accumulated observation-action history as a compact rendered image. To make multi-turn rollouts scalable, AgentOCR proposes segment optical caching. By decomposing history into hashable segments and maintaining a visual cache, this mechanism eliminates redundant re-rendering. Beyond fixed rendering, AgentOCR introduces agentic self-compression, where the agent actively emits a compression rate and is trained with compression-aware reward to adaptively balance task success and token efficiency. We conduct extensive experiments on challenging agentic benchmarks, ALFWorld and search-based QA. Remarkably, results demonstrate that AgentOCR preserves over 95\% of text-based agent performance while substantially reducing token consumption (>50\%), yielding consistent token and memory efficiency. Our further analysis validates a 20x rendering speedup from segment optical caching and the effective strategic balancing of self-compression.
comment: Work in progress
Differential syntactic and semantic encoding in LLMs
We study how syntactic and semantic information is encoded in inner layer representations of Large Language Models (LLMs), focusing on the very large DeepSeek-V3. We find that, by averaging hidden-representation vectors of sentences sharing syntactic structure or meaning, we obtain vectors that capture a significant proportion of the syntactic and semantic information contained in the representations. In particular, subtracting these syntactic and semantic ``centroids'' from sentence vectors strongly affects their similarity with syntactically and semantically matched sentences, respectively, suggesting that syntax and semantics are, at least partially, linearly encoded. We also find that the cross-layer encoding profiles of syntax and semantics are different, and that the two signals can to some extent be decoupled, suggesting differential encoding of these two types of linguistic information in LLM representations.
Smart IoT-Based Wearable Device for Detection and Monitoring of Common Cow Diseases Using a Novel Machine Learning Technique
Manual observation and monitoring of individual cows for disease detection present significant challenges in large-scale farming operations, as the process is labor-intensive, time-consuming, and prone to reduced accuracy. The reliance on human observation often leads to delays in identifying symptoms, as the sheer number of animals can hinder timely attention to each cow. Consequently, the accuracy and precision of disease detection are significantly compromised, potentially affecting animal health and overall farm productivity. Furthermore, organizing and managing human resources for the manual observation and monitoring of cow health is a complex and economically demanding task. It necessitates the involvement of skilled personnel, thereby contributing to elevated farm maintenance costs and operational inefficiencies. Therefore, the development of an automated, low-cost, and reliable smart system is essential to address these challenges effectively. Although several studies have been conducted in this domain, very few have simultaneously considered the detection of multiple common diseases with high prediction accuracy. However, advancements in Internet of Things (IoT), Machine Learning (ML), and Cyber-Physical Systems have enabled the automation of cow health monitoring with enhanced accuracy and reduced operational costs. This study proposes an IoT-enabled Cyber-Physical System framework designed to monitor the daily activities and health status of cow. A novel ML algorithm is proposed for the diagnosis of common cow diseases using collected physiological and behavioral data. The algorithm is designed to predict multiple diseases by analyzing a comprehensive set of recorded physiological and behavioral features, enabling accurate and efficient health assessment.
Intraday spatiotemporal PV power prediction at national scale using satellite-based solar forecast models
We present a novel framework for spatiotemporal photovoltaic (PV) power forecasting and use it to evaluate the reliability, sharpness, and overall performance of seven intraday PV power nowcasting models. The model suite includes satellite-based deep learning and optical-flow approaches and physics-based numerical weather prediction models, covering both deterministic and probabilistic formulations. Forecasts are first validated against satellite-derived surface solar irradiance (SSI). Irradiance fields are then converted into PV power using station-specific machine learning models, enabling comparison with production data from 6434 PV stations across Switzerland. To our knowledge, this is the first study to investigate spatiotemporal PV forecasting at a national scale. We additionally provide the first visualizations of how mesoscale cloud systems shape national PV production on hourly and sub-hourly timescales. Our results show that satellite-based approaches outperform the Integrated Forecast System (IFS-ENS), particularly at short lead times. Among them, SolarSTEPS and SHADECast deliver the most accurate SSI and PV power predictions, with SHADECast providing the most reliable ensemble spread. The deterministic model IrradianceNet achieves the lowest root mean square error, while probabilistic forecasts of SolarSTEPS and SHADECast provide better-calibrated uncertainty. Forecast skill generally decreases with elevation. At a national scale, satellite-based models forecast the daily total PV generation with relative errors below 10% for 82% of the days in 2019-2020, demonstrating robustness and their potential for operational use.
Fast Mining and Dynamic Time-to-Event Prediction over Multi-sensor Data Streams
Given real-time sensor data streams obtained from machines, how can we continuously predict when a machine failure will occur? This work aims to continuously forecast the timing of future events by analyzing multi-sensor data streams. A key characteristic of real-world data streams is their dynamic nature, where the underlying patterns evolve over time. To address this, we present TimeCast, a dynamic prediction framework designed to adapt to these changes and provide accurate, real-time predictions of future event time. Our proposed method has the following properties: (a) Dynamic: it identifies the distinct time-evolving patterns (i.e., stages) and learns individual models for each, enabling us to make adaptive predictions based on pattern shifts. (b) Practical: it finds meaningful stages that capture time-varying interdependencies between multiple sensors and improve prediction performance; (c) Scalable: our algorithm scales linearly with the input size and enables online model updates on data streams. Extensive experiments on real datasets demonstrate that TimeCast provides higher prediction accuracy than state-of-the-art methods while finding dynamic changes in data streams with a great reduction in computational time.
comment: Accepted by KDD 2026
The Role of Quantum in Hybrid Quantum-Classical Neural Networks: A Realistic Assessment
Quantum machine learning has emerged as a promising application domain for near-term quantum hardware, particularly through hybrid quantum-classical models that leverage both classical and quantum processing. Although numerous hybrid architectures have been proposed and demonstrated successfully on benchmark tasks, a significant open question remains regarding the specific contribution of quantum components to the overall performance of these models. In this work, we aim to shed light on the impact of quantum processing within hybrid quantum-classical neural network architectures through a rigorous statistical study. We systematically assess common hybrid models on medical signal data as well as planar and volumetric images, examining the influence attributable to classical and quantum aspects such as encoding schemes, entanglement, and circuit size. We find that in best-case scenarios, hybrid models show performance comparable to their classical counterparts, however, in most cases, performance metrics deteriorate under the influence of quantum components. Our multi-modal analysis provides realistic insights into the contributions of quantum components and advocates for cautious claims and design choices for hybrid models in near-term applications.
comment: 16 pages, 6 figures
Excess Description Length of Learning Generalizable Predictors
Understanding whether fine-tuning elicits latent capabilities or teaches new ones is a fundamental question for language model evaluation and safety. We develop a formal information-theoretic framework for quantifying how much predictive structure fine-tuning extracts from the train dataset and writes into a model's parameters. Our central quantity, Excess Description Length (EDL), is defined via prequential coding and measures the gap between the bits required to encode training labels sequentially using an evolving model (trained online) and the residual encoding cost under the final trained model. We establish that EDL is non-negative in expectation, converges to surplus description length in the infinite-data limit, and provides bounds on expected generalization gain. Through a series of toy models, we clarify common confusions about information in learning: why random labels yield EDL near zero, how a single example can eliminate many bits of uncertainty about the underlying rule(s) that describe the data distribution, why structure learned on rare inputs contributes proportionally little to expected generalization, and how format learning creates early transients distinct from capability acquisition. This framework provides rigorous foundations for the empirical observation that capability elicitation and teaching exhibit qualitatively distinct scaling signatures.
GPU-Accelerated INT8 Quantization for KV Cache Compression in Large Language Models
The key-value (KV) cache in large language models presents a significant memory bottleneck during inference, growing linearly with sequence length and often exceeding the memory footprint of model weights themselves. We implement and evaluate GPU-accelerated INT8 quantization for KV cache compression, achieving 4$\times$ memory reduction with minimal accuracy degradation. We develop four CUDA kernel variants -- naive, tiled, coarsened, and vectorized -- and benchmark them across realistic workload sizes up to 1 billion elements. Our vectorized kernel achieves up to 1,694$\times$ speedup over CPU baselines while maintaining reconstruction error below 0.004 and attention score error below 0.1 even for 8K-dimensional heads. These results demonstrate that INT8 quantization provides a practical approach for reducing memory pressure in LLM inference with negligible computational overhead (6--58ms) and minimal impact on downstream model behavior
Prior-Informed Zeroth-Order Optimization with Adaptive Direction Alignment for Memory-Efficient LLM Fine-Tuning
Fine-tuning large language models (LLMs) has achieved remarkable success across various NLP tasks, but the substantial memory overhead during backpropagation remains a critical bottleneck, especially as model scales grow. Zeroth-order (ZO) optimization alleviates this issue by estimating gradients through forward passes and Gaussian sampling, avoiding the need for backpropagation. However, conventional ZO methods suffer from high variance in gradient estimation due to their reliance on random perturbations, leading to slow convergence and suboptimal performance. We propose a simple plug-and-play method that incorporates prior-informed perturbations to refine gradient estimation. Our method dynamically computes a guiding vector from Gaussian samples, which directs perturbations toward more informative directions, significantly accelerating convergence compared to standard ZO approaches. We further investigate a greedy perturbation strategy to explore the impact of prior knowledge on gradient estimation. Theoretically, we prove that our gradient estimator achieves stronger alignment with the true gradient direction, enhancing optimization efficiency. Extensive experiments across LLMs of varying scales and architectures demonstrate that our proposed method could seamlessly integrate into existing optimization methods, delivering faster convergence and superior performance. Notably, on the OPT-13B model, our method outperforms traditional ZO optimization across all 11 benchmark tasks and surpasses gradient-based baselines on 9 out of 11 tasks, establishing a robust balance between efficiency and accuracy.
comment: 12pages, 6figures
MQ-GNN: A Multi-Queue Pipelined Architecture for Scalable and Efficient GNN Training
Graph Neural Networks (GNNs) are powerful tools for learning graph-structured data, but their scalability is hindered by inefficient mini-batch generation, data transfer bottlenecks, and costly inter-GPU synchronization. Existing training frameworks fail to overlap these stages, leading to suboptimal resource utilization. This paper proposes MQ-GNN, a multi-queue pipelined framework that maximizes training efficiency by interleaving GNN training stages and optimizing resource utilization. MQ-GNN introduces Ready-to-Update Asynchronous Consistent Model (RaCoM), which enables asynchronous gradient sharing and model updates while ensuring global consistency through adaptive periodic synchronization. Additionally, it employs global neighbor sampling with caching to reduce data transfer overhead and an adaptive queue-sizing strategy to balance computation and memory efficiency. Experiments on four large-scale datasets and ten baseline models demonstrate that MQ-GNN achieves up to \boldmath $\bm{4.6\,\times}$ faster training time and 30% improved GPU utilization while maintaining competitive accuracy. These results establish MQ-GNN as a scalable and efficient solution for multi-GPU GNN training.
comment: IEEE Access 2025
A zone-based training approach for last-mile routing using Graph Neural Networks and Pointer Networks
Rapid e-commerce growth has pushed last-mile delivery networks to their limits, where small routing gains translate into lower costs, faster service, and fewer emissions. Classical heuristics struggle to adapt when travel times are highly asymmetric (e.g., one-way streets, congestion). A deep learning-based approach to the last-mile routing problem is presented to generate geographical zones composed of stop sequences to minimize last-mile delivery times. The presented approach is an encoder-decoder architecture. Each route is represented as a complete directed graph whose nodes are stops and whose edge weights are asymmetric travel times. A Graph Neural Network encoder produces node embeddings that captures the spatial relationships between stops. A Pointer Network decoder then takes the embeddings and the route's start node to sequentially select the next stops, assigning a probability to each unvisited node as the next destination. Cells of a Discrete Global Grid System which contain route stops in the training data are obtained and clustered to generate geographical zones of similar size in which the process of training and inference are divided. Subsequently, a different instance of the model is trained per zone only considering the stops of the training routes which are included in that zone. This approach is evaluated using the Los Angeles routes from the 2021 Amazon Last Mile Routing Challenge. Results from general and zone-based training are compared, showing a reduction in the average predicted route length in the zone-based training compared to the general training. The performance improvement of the zone-based approach becomes more pronounced as the number of stops per route increases.
comment: Accepted in SMF 2026. 8 pages, 3 figures
TourPlanner: A Competitive Consensus Framework with Constraint-Gated Reinforcement Learning for Travel Planning
Travel planning is a sophisticated decision-making process that requires synthesizing multifaceted information to construct itineraries. However, existing travel planning approaches face several challenges: (1) Pruning candidate points of interest (POIs) while maintaining a high recall rate; (2) A single reasoning path restricts the exploration capability within the feasible solution space for travel planning; (3) Simultaneously optimizing hard constraints and soft constraints remains a significant difficulty. To address these challenges, we propose TourPlanner, a comprehensive framework featuring multi-path reasoning and constraint-gated reinforcement learning. Specifically, we first introduce a Personalized Recall and Spatial Optimization (PReSO) workflow to construct spatially-aware candidate POIs' set. Subsequently, we propose Competitive consensus Chain-of-Thought (CCoT), a multi-path reasoning paradigm that improves the ability of exploring the feasible solution space. To further refine the plan, we integrate a sigmoid-based gating mechanism into the reinforcement learning stage, which dynamically prioritizes soft-constraint satisfaction only after hard constraints are met. Experimental results on travel planning benchmarks demonstrate that TourPlanner achieves state-of-the-art performance, significantly surpassing existing methods in both feasibility and user-preference alignment.
Tape: A Cellular Automata Benchmark for Evaluating Rule-Shift Generalization in Reinforcement Learning
We present Tape, a controlled reinforcement-learning benchmark designed to isolate out-of-distribution (OOD) failure under latent rule shifts.Tape is derived from one-dimensional cellular automata, enabling precise train/test splits where observation and action spaces are held fixed while transition rules change. Using a reproducible evaluation pipeline, we compare model-free baselines, model-based planning with learned world models, and task-inference (meta-RL) methods. A consistent pattern emerges: methods that are strong in-distribution (ID) can collapse under heldout-rule OOD, and high-variance OOD evaluation can make rankings unstable unless experiments are sufficiently replicated.We provide (i) standardized OOD protocols, (ii) statistical reporting requirements (seeds, confidence intervals, and hypothesis tests), and (iii) information-theoretic identities connecting entropy reduction to conditional mutual information and expected posterior KL divergence, clarifying what "uncertainty reduction" objectives can and cannot guarantee under rule shifts.
comment: 4 tables
Do LLMs Benefit from User and Item Embeddings in Recommendation Tasks? NeurIPS 2025
Large Language Models (LLMs) have emerged as promising recommendation systems, offering novel ways to model user preferences through generative approaches. However, many existing methods often rely solely on text semantics or incorporate collaborative signals in a limited manner, typically using only user or item embeddings. These methods struggle to handle multiple item embeddings representing user history, reverting to textual semantics and neglecting richer collaborative information. In this work, we propose a simple yet effective solution that projects user and item embeddings, learned from collaborative filtering, into the LLM token space via separate lightweight projector modules. A finetuned LLM then conditions on these projected embeddings alongside textual tokens to generate recommendations. Preliminary results show that this design effectively leverages structured user-item interaction data, improves recommendation performance over text-only LLM baselines, and offers a practical path for bridging traditional recommendation systems with modern LLMs.
comment: Presented in Multimodal Algorithmic Reasoning Workshop at NeurIPS 2025
Nightmare Dreamer: Dreaming About Unsafe States And Planning Ahead RSS'25
Reinforcement Learning (RL) has shown remarkable success in real-world applications, particularly in robotics control. However, RL adoption remains limited due to insufficient safety guarantees. We introduce Nightmare Dreamer, a model-based Safe RL algorithm that addresses safety concerns by leveraging a learned world model to predict potential safety violations and plan actions accordingly. Nightmare Dreamer achieves nearly zero safety violations while maximizing rewards. Nightmare Dreamer outperforms model-free baselines on Safety Gymnasium tasks using only image observations, achieving nearly a 20x improvement in efficiency.
comment: RSS'25: Multi-Objective Optimization and Planning in Robotics Workshop: 5 pages, 8 figures
Estimating Causal Effects in Gaussian Linear SCMs with Finite Data ICML 2025
Estimating causal effects from observational data remains a fundamental challenge in causal inference, especially in the presence of latent confounders. This paper focuses on estimating causal effects in Gaussian Linear Structural Causal Models (GL-SCMs), which are widely used due to their analytical tractability. However, parameter estimation in GL-SCMs is often infeasible with finite data, primarily due to overparameterization. To address this, we introduce the class of Centralized Gaussian Linear SCMs (CGL-SCMs), a simplified yet expressive subclass where exogenous variables follow standardized distributions. We show that CGL-SCMs are equally expressive in terms of causal effect identifiability from observational distributions and present a novel EM-based estimation algorithm that can learn CGL-SCM parameters and estimate identifiable causal effects from finite observational samples. Our theoretical analysis is validated through experiments on synthetic data and benchmark causal graphs, demonstrating that the learned models accurately recover causal distributions.
comment: Accepted at the Workshop on Scaling Up Intervention Models at the 42nd International Conference on Machine Learning (ICML 2025)
Learning Dynamics in RL Post-Training for Language Models
Reinforcement learning (RL) post-training is a critical stage in modern language model development, playing a key role in improving alignment and reasoning ability. However, several phenomena remain poorly understood, including the reduction in output diversity. To gain a broader understanding of RL post-training, we analyze the learning dynamics of RL post-training from a perspective that has been studied in supervised learning but remains underexplored in RL. We adopt an empirical neural tangent kernel (NTK) framework and decompose the NTK into two components to characterize how RL updates propagate across training samples. Our analysis reveals that limited variability in feature representations can cause RL updates to systematically increase model confidence, providing an explanation for the commonly observed reduction in output diversity after RL post-training. Furthermore, we show that effective learning in this regime depends on rapidly shaping the classifier, which directly affects the gradient component of the NTK. Motivated by these insights, we propose classifier-first reinforcement learning (CF-RL), a simple two-stage training strategy that prioritizes classifier updates before standard RL optimization. Experimental results validate our theoretical analysis by demonstrating increased model confidence and accelerated optimization under CF-RL. Additional analysis shows that the mechanism underlying CF-RL differs from that of linear-probing-then-fine-tuning in supervised learning. Overall, our study formalizes the learning dynamics of RL post-training and motivates further analysis and improvement.
Mechanism Design for Federated Learning with Non-Monotonic Network Effects
Mechanism design is pivotal to federated learning (FL) for maximizing social welfare by coordinating self-interested clients. Existing mechanisms, however, often overlook the network effects of client participation and the diverse model performance requirements (i.e., generalization error) across applications, leading to suboptimal incentives and social welfare, or even inapplicability in real deployments. To address this gap, we explore incentive mechanism design for FL with network effects and application-specific requirements of model performance. We develop a theoretical model to quantify the impact of network effects on heterogeneous client participation, revealing the non-monotonic nature of such effects. Based on these insights, we propose a Model Trading and Sharing (MoTS) framework, which enables clients to obtain FL models through either participation or purchase. To further address clients' strategic behaviors, we design a Social Welfare maximization with Application-aware and Network effects (SWAN) mechanism, exploiting model customer payments for incentivization. Experimental results on a hardware prototype demonstrate that our SWAN mechanism outperforms existing FL mechanisms, improving social welfare by up to $352.42\%$ and reducing extra incentive costs by $93.07\%$.
comment: Journal extension of Mobihoc conference version, under review of IEEE TMC
Succeeding at Scale: Automated Multi-Retriever Fusion and Query-Side Adaptation for Multi-Tenant Search
Large-scale multi-tenant retrieval systems amass vast user query logs yet critically lack the curated relevance labels required for effective domain adaptation. This "dark data" problem is exacerbated by the operational cost of model updates: jointly fine-tuning query and document encoders requires re-indexing the entire corpus, which is prohibitive in multi-tenant environments with thousands of isolated indices. To address these dual challenges, we introduce \textbf{DevRev Search}, a passage retrieval benchmark for technical customer support constructed through a fully automatic pipeline. We employ a \textbf{fusion-based candidate generation} strategy, pooling results from diverse sparse and dense retrievers, and utilize an LLM-as-a-Judge to perform rigorous \textbf{consistency filtering} and relevance assignment. We further propose a practical \textbf{Index-Preserving Adaptation} strategy: by fine-tuning only the query encoder via Low-Rank Adaptation (LoRA), we achieve competitive performance improvements while keeping the document index frozen. Our experiments on DevRev Search and SciFact demonstrate that targeting specific transformer layers in the query encoder yields optimal quality-efficiency trade-offs, offering a scalable path for personalized enterprise search.
DP-MGTD: Privacy-Preserving Machine-Generated Text Detection via Adaptive Differentially Private Entity Sanitization
The deployment of Machine-Generated Text (MGT) detection systems necessitates processing sensitive user data, creating a fundamental conflict between authorship verification and privacy preservation. Standard anonymization techniques often disrupt linguistic fluency, while rigorous Differential Privacy (DP) mechanisms typically degrade the statistical signals required for accurate detection. To resolve this dilemma, we propose \textbf{DP-MGTD}, a framework incorporating an Adaptive Differentially Private Entity Sanitization algorithm. Our approach utilizes a two-stage mechanism that performs noisy frequency estimation and dynamically calibrates privacy budgets, applying Laplace and Exponential mechanisms to numerical and textual entities respectively. Crucially, we identify a counter-intuitive phenomenon where the application of DP noise amplifies the distinguishability between human and machine text by exposing distinct sensitivity patterns to perturbation. Extensive experiments on the MGTBench-2.0 dataset show that our method achieves near-perfect detection accuracy, significantly outperforming non-private baselines while satisfying strict privacy guarantees.
comment: 12 pages, 1 figure, 1 tables
DeepHalo: A Neural Choice Model with Controllable Context Effects
Modeling human decision-making is central to applications such as recommendation, preference learning, and human-AI alignment. While many classic models assume context-independent choice behavior, a large body of behavioral research shows that preferences are often influenced by the composition of the choice set itself -- a phenomenon known as the context effect or Halo effect. These effects can manifest as pairwise (first-order) or even higher-order interactions among the available alternatives. Recent models that attempt to capture such effects either focus on the featureless setting or, in the feature-based setting, rely on restrictive interaction structures or entangle interactions across all orders, which limits interpretability. In this work, we propose DeepHalo, a neural modeling framework that incorporates features while enabling explicit control over interaction order and principled interpretation of context effects. Our model enables systematic identification of interaction effects by order and serves as a universal approximator of context-dependent choice functions when specialized to a featureless setting. Experiments on synthetic and real-world datasets demonstrate strong predictive performance while providing greater transparency into the drivers of choice.
Crystal Generation using the Fully Differentiable Pipeline and Latent Space Optimization
We present a materials generation framework that couples a symmetry-conditioned variational autoencoder (CVAE) with a differentiable SO(3) power spectrum objective to steer candidates toward a specified local environment under the crystallographic constraints. In particular, we implement a fully differentiable pipeline that performs batch-wise optimization on both direct and latent crystallographic representations. Using the GPU acceleration, the implementation achieves about fivefold speed compared to our previous CPU workflow, while yielding comparable outcomes. In addition, we introduce the optimization strategy that alternatively performs optimization on the direct and latent crystal representations. This dual-level relaxation approach can effectively overcome local barrier defined by different objective gradients, thus increasing the success rate of generating complex structures satisfying the targe local environments. This framework can be extended to systems consisting of multi-components and multi-environments, providing a scalable route to generate material structures with the target local environment.
On the Limitations of Rank-One Model Editing in Answering Multi-hop Questions
Recent advances in Knowledge Editing (KE), particularly Rank-One Model Editing (ROME), show superior efficiency over fine-tuning and in-context learning for updating single-hop facts in transformers. However, these methods face significant challenges when applied to multi-hop reasoning tasks requiring knowledge chaining. In this work, we study the effect of editing knowledge with ROME on different layer depths and identify three key failure modes. First, the "hopping-too-late" problem occurs as later layers lack access to necessary intermediate representations. Second, generalization ability deteriorates sharply when editing later layers. Third, the model overfits to edited knowledge, incorrectly prioritizing edited-hop answers regardless of context. To mitigate the issues of "hopping-too-late" and generalisation decay, we propose Redundant Editing, a simple yet effective strategy that enhances multi-hop reasoning. Our experiments demonstrate that this approach can improve accuracy on 2-hop questions by at least 15.5 percentage points, representing a 96% increase over the previous single-edit strategy, while trading off some specificity and language naturalness.
Density Matrix RNN (DM-RNN): A Quantum Information Theoretic Framework for Modeling Musical Context and Polyphony
Classical Recurrent Neural Networks (RNNs) summarize musical context into a deterministic hidden state vector, imposing an information bottleneck that fails to capture the inherent ambiguity in music. We propose the Density Matrix RNN (DM-RNN), a novel theoretical architecture utilizing the Density Matrix. This allows the model to maintain a statistical ensemble of musical interpretations (a mixed state), capturing both classical probabilities and quantum coherences. We rigorously define the temporal dynamics using Quantum Channels (CPTP maps). Crucially, we detail a parameterization strategy based on the Choi-Jamiolkowski isomorphism, ensuring the learned dynamics remain physically valid (CPTP) by construction. We introduce an analytical framework using Von Neumann Entropy to quantify musical uncertainty and Quantum Mutual Information (QMI) to measure entanglement between voices. The DM-RNN provides a mathematically rigorous framework for modeling complex, ambiguous musical structures.
comment: Submitted to the 10th International Conference on Mathematics and Computation in Music (MCM 2026)
FedKDX: Federated Learning with Negative Knowledge Distillation for Enhanced Healthcare AI Systems
This paper introduces FedKDX, a federated learning framework that addresses limitations in healthcare AI through Negative Knowledge Distillation (NKD). Unlike existing approaches that focus solely on positive knowledge transfer, FedKDX captures both target and non-target information to improve model generalization in healthcare applications. The framework integrates multiple knowledge transfer techniques--including traditional knowledge distillation, contrastive learning, and NKD--within a unified architecture that maintains privacy while reducing communication costs. Through experiments on healthcare datasets (SLEEP, UCI-HAR, and PAMAP2), FedKDX demonstrates improved accuracy (up to 2.53% over state-of-the-art methods), faster convergence, and better performance on non-IID data distributions. Theoretical analysis supports NKD's contribution to addressing statistical heterogeneity in distributed healthcare data. The approach shows promise for privacy-sensitive medical applications under regulatory frameworks like HIPAA and GDPR, offering a balanced solution between performance and practical implementation requirements in decentralized healthcare settings. The code and model are available at https://github.com/phamdinhdat-ai/Fed_2024.
Sci-Reasoning: A Dataset Decoding AI Innovation Patterns
While AI innovation accelerates rapidly, the intellectual process behind breakthroughs -- how researchers identify gaps, synthesize prior work, and generate insights -- remains poorly understood. The lack of structured data on scientific reasoning hinders systematic analysis and development of AI research agents. We introduce Sci-Reasoning, the first dataset capturing the intellectual synthesis behind high-quality AI research. Using community-validated quality signals and an LLM-accelerated, human-verified pipeline, we trace Oral and Spotlight papers across NeurIPS, ICML, and ICLR (2023-2025) to its key predecessors, articulating specific reasoning links in a structured format. Our analysis identifies 15 distinct thinking patterns, with three dominant strategies accounting for 52.7%: Gap-Driven Reframing (24.2%), Cross-Domain Synthesis (18.0%), and Representation Shift (10.5%). The most powerful innovation recipes combine multiple patterns: Gap-Driven Reframing + Representation Shift, Cross-Domain Synthesis + Representation Shift, and Gap-Driven Reframing + Cross-Domain Synthesis. This dataset enables quantitative studies of scientific progress and provides structured reasoning trajectories for training the next generation AI research agents.
comment: 22 pages, 9 figures
Spatial-Temporal Feedback Diffusion Guidance for Controlled Traffic Imputation
Imputing missing values in spatial-temporal traffic data is essential for intelligent transportation systems. Among advanced imputation methods, score-based diffusion models have demonstrated competitive performance. These models generate data by reversing a noising process, using observed values as conditional guidance. However, existing diffusion models typically apply a uniform guidance scale across both spatial and temporal dimensions, which is inadequate for nodes with high missing data rates. Sparse observations provide insufficient conditional guidance, causing the generative process to drift toward the learned prior distribution rather than closely following the conditional observations, resulting in suboptimal imputation performance. To address this, we propose FENCE, a spatial-temporal feedback diffusion guidance method designed to adaptively control guidance scales during imputation. First, FENCE introduces a dynamic feedback mechanism that adjusts the guidance scale based on the posterior likelihood approximations. The guidance scale is increased when generated values diverge from observations and reduced when alignment improves, preventing overcorrection. Second, because alignment to observations varies across nodes and denoising steps, a global guidance scale for all nodes is suboptimal. FENCE computes guidance scales at the cluster level by grouping nodes based on their attention scores, leveraging spatial-temporal correlations to provide more accurate guidance. Experimental results on real-world traffic datasets show that FENCE significantly enhances imputation accuracy.
Neurosymbolic Retrievers for Retrieval-augmented Generation
Retrieval Augmented Generation (RAG) has made significant strides in overcoming key limitations of large language models, such as hallucination, lack of contextual grounding, and issues with transparency. However, traditional RAG systems consist of three interconnected neural components - the retriever, re-ranker, and generator - whose internal reasoning processes remain opaque. This lack of transparency complicates interpretability, hinders debugging efforts, and erodes trust, especially in high-stakes domains where clear decision-making is essential. To address these challenges, we introduce the concept of Neurosymbolic RAG, which integrates symbolic reasoning using a knowledge graph with neural retrieval techniques. This new framework aims to answer two primary questions: (a) Can retrievers provide a clear and interpretable basis for document selection? (b) Can symbolic knowledge enhance the clarity of the retrieval process? We propose three methods to improve this integration. First is MAR (Knowledge Modulation Aligned Retrieval) that employs modulation networks to refine query embeddings using interpretable symbolic features, thereby making document matching more explicit. Second, KG-Path RAG enhances queries by traversing knowledge graphs to improve overall retrieval quality and interpretability. Lastly, Process Knowledge-infused RAG utilizes domain-specific tools to reorder retrieved content based on validated workflows. Preliminary results from mental health risk assessment tasks indicate that this neurosymbolic approach enhances both transparency and overall performance
comment: 8 pages, 2 Figures, To Appear in IEEE Intelligent Systems
A Vision for Multisensory Intelligence: Sensing, Synergy, and Science
Our experience of the world is multisensory, spanning a synthesis of language, sight, sound, touch, taste, and smell. Yet, artificial intelligence has primarily advanced in digital modalities like text, vision, and audio. This paper outlines a research vision for multisensory artificial intelligence over the next decade. This new set of technologies can change how humans and AI experience and interact with one another, by connecting AI to the human senses and a rich spectrum of signals from physiological and tactile cues on the body, to physical and social signals in homes, cities, and the environment. We outline how this field must advance through three interrelated themes of sensing, science, and synergy. Firstly, research in sensing should extend how AI captures the world in richer ways beyond the digital medium. Secondly, developing a principled science for quantifying multimodal heterogeneity and interactions, developing unified modeling architectures and representations, and understanding cross-modal transfer. Finally, we present new technical challenges to learn synergy between modalities and between humans and AI, covering multisensory integration, alignment, reasoning, generation, generalization, and experience. Accompanying this vision paper are a series of projects, resources, and demos of latest advances from the Multisensory Intelligence group at the MIT Media Lab, see https://mit-mi.github.io/.
Improving Semi-Supervised Contrastive Learning via Entropy-Weighted Confidence Integration of Anchor-Positive Pairs
Conventional semi-supervised contrastive learning methods assign pseudo-labels only to samples whose highest predicted class probability exceeds a predefined threshold, and then perform supervised contrastive learning using those selected samples. In this study, we propose a novel loss function that estimates the confidence of each sample based on the entropy of its predicted probability distribution and applies confidence-based adaptive weighting. This approach enables pseudo-label assignment even to samples that were previously excluded from training and facilitates contrastive learning that accounts for the confidence of both anchor and positive samples in a more principled manner. Experimental results demonstrate that the proposed method improves classification accuracy and achieves more stable learning performance even under low-label conditions.
GEnSHIN: Graphical Enhanced Spatio-temporal Hierarchical Inference Network for Traffic Flow Prediction
With the acceleration of urbanization, intelligent transportation systems have an increasing demand for accurate traffic flow prediction. This paper proposes a novel Graph Enhanced Spatio-temporal Hierarchical Inference Network (GEnSHIN) to handle the complex spatio-temporal dependencies in traffic flow prediction. The model integrates three innovative designs: 1) An attention-enhanced Graph Convolutional Recurrent Unit (GCRU), which strengthens the modeling capability for long-term temporal dependencies by introducing Transformer modules; 2) An asymmetric dual-embedding graph generation mechanism, which leverages the real road network and data-driven latent asymmetric topology to generate graph structures that better fit the characteristics of actual traffic flow; 3) A dynamic memory bank module, which utilizes learnable traffic pattern prototypes to provide personalized traffic pattern representations for each sensor node, and introduces a lightweight graph updater during the decoding phase to adapt to dynamic changes in road network states. Extensive experiments on the public dataset METR-LA show that GEnSHIN achieves or surpasses the performance of comparative models across multiple metrics such as Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE). Notably, the model demonstrates excellent prediction stability during peak morning and evening traffic hours. Ablation experiments further validate the effectiveness of each core module and its contribution to the final performance.
Timeliness-Oriented Scheduling and Resource Allocation in Multi-Region Collaborative Perception
Collaborative perception (CP) is a critical technology in applications like autonomous driving and smart cities. It involves the sharing and fusion of information among sensors to overcome the limitations of individual perception, such as blind spots and range limitations. However, CP faces two primary challenges. First, due to the dynamic nature of the environment, the timeliness of the transmitted information is critical to perception performance. Second, with limited computational power at the sensors and constrained wireless bandwidth, the communication volume must be carefully designed to ensure feature representations are both effective and sufficient. This work studies the dynamic scheduling problem in a multi-region CP scenario, and presents a Timeliness-Aware Multi-region Prioritized (TAMP) scheduling algorithm to trade-off perception accuracy and communication resource usage. Timeliness reflects the utility of information that decays as time elapses, which is manifested by the perception performance in CP tasks. We propose an empirical penalty function that maps the joint impact of Age of Information (AoI) and communication volume to perception performance. Aiming to minimize this timeliness-oriented penalty in the long-term, and recognizing that scheduling decisions have a cumulative effect on subsequent system states, we propose the TAMP scheduling algorithm. TAMP is a Lyapunov-based optimization policy that decomposes the long-term average objective into a per-slot prioritization problem, balancing the scheduling worth against resource cost. We validate our algorithm in both intersection and corridor scenarios with the real-world Roadside Cooperative perception (RCooper) dataset. Extensive simulations demonstrate that TAMP outperforms the best-performing baseline, achieving an Average Precision (AP) improvement of up to 27% across various configurations.
comment: This work has been submitted to the IEEE for possible publication
Paradoxical noise preference in RNNs
In recurrent neural networks (RNNs) used to model biological neural networks, noise is typically introduced during training to emulate biological variability and regularize learning. The expectation is that removing the noise at test time should preserve or improve performance. Contrary to this intuition, we find that continuous-time recurrent neural networks (CTRNNs) often perform best at a nonzero noise level, specifically, the same level used during training. This noise preference typically arises when noise is injected inside the neural activation function; networks trained with noise injected outside the activation function perform best with zero noise. Through analyses of simple function approximation, maze navigation, and single neuron regulator tasks, we show that the phenomenon stems from noise-induced shifts of fixed points (stationary distributions) in the underlying stochastic dynamics of the RNNs. These fixed point shifts are noise-level dependent and bias the network outputs when the noise is removed, degrading performance. Analytical and numerical results show that the bias arises when neural states operate near activation function nonlinearities, where noise is asymmetrically attenuated, and that performance optimization incentivizes operation near these nonlinearities. Thus, networks can overfit to the stochastic training environment itself rather than just to the input-output data. The phenomenon is distinct from stochastic resonance, wherein nonzero noise enhances signal processing. Our findings reveal that training noise can become an integral part of the computation learned by recurrent networks, with implications for understanding neural population dynamics and for the design of robust artificial RNNs.
comment: 15 pages, 6 figures
Not All Steps are Informative: On the Linearity of LLMs' RLVR Training
Reinforcement learning with verifiable rewards (RLVR) has become a central component of large language model (LLM) post-training. Unlike supervised fine-tuning (SFT), RLVR lets an LLM generate multiple candidate solutions and reinforces those that lead to a verifiably correct final answer. However, in practice, RLVR often requires thousands of training steps to reach strong performance, incurring substantial computation largely attributed to prolonged exploration. In this work, we make a surprising observation: during RLVR, LLMs evolve in a strongly linear manner. Specifically, both model weights and model output log-probabilities exhibit strong linear correlations with RL training steps. This suggests that RLVR predominantly amplifies trends that emerge early in training, rather than continuously discovering new behaviors throughout the entire optimization trajectory. Motivated by this linearity, we investigate whether future model states can be predicted from intermediate checkpoints via extrapolation, avoiding continued expensive training. We show that Weight Extrapolation produces models with performance comparable to standard RL training while requiring significantly less computation. Moreover, Logits Extrapolation consistently outperforms continued RL training on all four benchmarks by extrapolating beyond the step range where RL training remains stable.
comment: pre-print
TSSR: Two-Stage Swap-Reward-Driven Reinforcement Learning for Character-Level SMILES Generation
The design of reliable, valid, and diverse molecules is fundamental to modern drug discovery, as improved molecular generation supports efficient exploration of the chemical space for potential drug candidates and reduces the cost of early design efforts. Despite these needs, current chemical language models that generate molecules as SMILES strings are vulnerable to compounding token errors: many samples are unparseable or chemically implausible, and hard constraints meant to prevent failure can restrict exploration. To address this gap, we introduce TSSR, a Two-Stage, Swap-Reward-driven reinforcement learning (RL) framework for character-level SMILES generation. Stage one rewards local token swaps that repair syntax, promoting transitions from invalid to parseable strings. Stage two provides chemistry-aware feedback from RDKit diagnostics, rewarding reductions in valence, aromaticity, and connectivity issues. The reward decomposes into interpretable terms (swap efficiency, error reduction, distance to validity), is model agnostic, and requires no task-specific labels or hand-crafted grammars. We evaluated TSSR on the MOSES benchmark using a GRU policy trained with PPO in both pure RL (P-RL) from random initialization and fine-tuning RL (F-RL) starting from a pretrained chemical language model, assessing 10,000 generated SMILES per run. In P-RL, TSSR significantly improves syntactic validity, chemical validity, and novelty. In F-RL, TSSR preserves drug-likeness and synthesizability while increasing validity and novelty. Token-level analysis shows that syntax edits and chemistry fixes act jointly to reduce RDKit detected errors. TSSR converts a sparse terminal objective into a denser and more interpretable reward, improving both syntactic and chemical quality without reducing diversity. TSSR is dataset-agnostic and can be adapted to various reinforcement learning approaches.
comment: Under Review
Integrating Distribution Matching into Semi-Supervised Contrastive Learning for Labeled and Unlabeled Data
The advancement of deep learning has greatly improved supervised image classification. However, labeling data is costly, prompting research into unsupervised learning methods such as contrastive learning. In real-world scenarios, fully unlabeled datasets are rare, making semi-supervised learning (SSL) highly relevant in scenarios where a small amount of labeled data coexists with a large volume of unlabeled data. A well-known semi-supervised contrastive learning approach involves assigning pseudo-labels to unlabeled data. This study aims to enhance pseudo-label-based SSL by incorporating distribution matching between labeled and unlabeled feature embeddings to improve image classification accuracy across multiple datasets.
comment: ITC-CSCC accepted
Bridging Distance and Spectral Positional Encodings via Anchor-Based Diffusion Geometry Approximation
Molecular graph learning benefits from positional signals that capture both local neighborhoods and global topology. Two widely used families are spectral encodings derived from Laplacian or diffusion operators and anchor-based distance encodings built from shortest-path information, yet their precise relationship is poorly understood. We interpret distance encodings as a low-rank surrogate of diffusion geometry and derive an explicit trilateration map that reconstructs truncated diffusion coordinates from transformed anchor distances and anchor spectral positions, with pointwise and Frobenius-gap guarantees on random regular graphs. On DrugBank molecular graphs using a shared GNP-based DDI prediction backbone, a distance-driven Nyström scheme closely recovers diffusion geometry, and both Laplacian and distance encodings substantially outperform a no-encoding baseline.
Multiagent Reinforcement Learning with Neighbor Action Estimation
Multiagent reinforcement learning, as a prominent intelligent paradigm, enables collaborative decision-making within complex systems. However, existing approaches often rely on explicit action exchange between agents to evaluate action value functions, which is frequently impractical in real-world engineering environments due to communication constraints, latency, energy consumption, and reliability requirements. From an artificial intelligence perspective, this paper proposes an enhanced multiagent reinforcement learning framework that employs action estimation neural networks to infer agent behaviors. By integrating a lightweight action estimation module, each agent infers neighboring agents' behaviors using only locally observable information, enabling collaborative policy learning without explicit action sharing. This approach is fully compatible with standard TD3 algorithms and scalable to larger multiagent systems. At the engineering application level, this framework has been implemented and validated in dual-arm robotic manipulation tasks: two robotic arms collaboratively lift objects. Experimental results demonstrate that this approach significantly enhances the robustness and deployment feasibility of real-world robotic systems while reducing dependence on information infrastructure. Overall, this research advances the development of decentralized multiagent artificial intelligence systems while enabling AI to operate effectively in dynamic, information-constrained real-world environments.
Towards Spatio-Temporal Extrapolation of Phase-Field Simulations with Convolution-Only Neural Networks
Phase-field simulations of liquid metal dealloying (LMD) can capture complex microstructural evolutions but can be prohibitively expensive for large domains and long time horizons. In this paper, we introduce a fully convolutional, conditionally parameterized U-Net surrogate designed to extrapolate far beyond its training data in both space and time. The architecture integrates convolutional self-attention, physically informed padding, and a flood-fill corrector method to maintain accuracy under extreme extrapolation, while conditioning on simulation parameters allows for flexible time-step skipping and adaptation to varying alloy compositions. To remove the need for costly solver-based initialization, we couple the surrogate with a conditional diffusion model that generates synthetic, physically consistent initial conditions. We train our surrogate on simulations generated over small domain sizes and short time spans, but, by taking advantage of the convolutional nature of U-Nets, we are able to run and extrapolate surrogate simulations for longer time horizons than what would be achievable with classic numerical solvers. Across multiple alloy compositions, the framework is able to reproduce the LMD physics accurately. It predicts key quantities of interest and spatial statistics with relative errors typically below 5% in the training regime and under 15% during large-scale, long time-horizon extrapolations. Our framework can also deliver speed-ups of up to 36,000 times, bringing the time to run weeks-long simulations down to a few seconds. This work is a first stepping stone towards high-fidelity extrapolation in both space and time of phase-field simulation for LMD.
Surface-based Molecular Design with Multi-modal Flow Matching
Therapeutic peptides show promise in targeting previously undruggable binding sites, with recent advancements in deep generative models enabling full-atom peptide co-design for specific protein receptors. However, the critical role of molecular surfaces in protein-protein interactions (PPIs) has been underexplored. To bridge this gap, we propose an omni-design peptides generation paradigm, called SurfFlow, a novel surface-based generative algorithm that enables comprehensive co-design of sequence, structure, and surface for peptides. SurfFlow employs a multi-modality conditional flow matching (CFM) architecture to learn distributions of surface geometries and biochemical properties, enhancing peptide binding accuracy. Evaluated on the comprehensive PepMerge benchmark, SurfFlow consistently outperforms full-atom baselines across all metrics. These results highlight the advantages of considering molecular surfaces in de novo peptide discovery and demonstrate the potential of integrating multiple protein modalities for more effective therapeutic peptide discovery.
The Minary Primitive of Computational Autopoiesis
We introduce Minary, a computational framework designed as a candidate for the first formally provable autopoietic primitive. Minary represents interacting probabilistic events as multi-dimensional vectors and combines them via linear superposition rather than multiplicative scalar operations, thereby preserving uncertainty and enabling constructive and destructive interference in the range $[-1,1]$. A fixed set of ``perspectives'' evaluates ``semantic dimensions'' according to hidden competencies, and their interactions drive two discrete-time stochastic processes. We model this system as an iterated random affine map and use the theory of iterated random functions to prove that it converges in distribution to a unique stationary law; we moreover obtain an explicit closed form for the limiting expectation in terms of row, column, and global averages of the competency matrix. We then derive exact formulas for the mean and variance of the normalized consensus conditioned on the activation of a given semantic dimension, revealing how consensus depends on competency structure rather than raw input signals. Finally, we argue that Minary is organizationally closed yet operationally open in the sense of Maturana and Varela, and we discuss implications for building self-maintaining, distributed, and parallelizable computational systems that house a uniquely subjective notion of identity.
comment: 21 pages, 2 figures
IGenBench: Benchmarking the Reliability of Text-to-Infographic Generation
Infographics are composite visual artifacts that combine data visualizations with textual and illustrative elements to communicate information. While recent text-to-image (T2I) models can generate aesthetically appealing images, their reliability in generating infographics remains unclear. Generated infographics may appear correct at first glance but contain easily overlooked issues, such as distorted data encoding or incorrect textual content. We present IGENBENCH, the first benchmark for evaluating the reliability of text-to-infographic generation, comprising 600 curated test cases spanning 30 infographic types. We design an automated evaluation framework that decomposes reliability verification into atomic yes/no questions based on a taxonomy of 10 question types. We employ multimodal large language models (MLLMs) to verify each question, yielding question-level accuracy (Q-ACC) and infographic-level accuracy (I-ACC). We comprehensively evaluate 10 state-of-the-art T2I models on IGENBENCH. Our systematic analysis reveals key insights for future model development: (i) a three-tier performance hierarchy with the top model achieving Q-ACC of 0.90 but I-ACC of only 0.49; (ii) data-related dimensions emerging as universal bottlenecks (e.g., Data Completeness: 0.21); and (iii) the challenge of achieving end-to-end correctness across all models. We release IGENBENCH at https://igen-bench.vercel.app/.
Hybrid Federated Learning for Noise-Robust Training
Federated learning (FL) and federated distillation (FD) are distributed learning paradigms that train UE models with enhanced privacy, each offering different trade-offs between noise robustness and learning speed. To mitigate their respective weaknesses, we propose a hybrid federated learning (HFL) framework in which each user equipment (UE) transmits either gradients or logits, and the base station (BS) selects the per-round weights of FL and FD updates. We derive convergence of HFL framework and introduce two methods to exploit degrees of freedom (DoF) in HFL, which are (i) adaptive UE clustering via Jenks optimization and (ii) adaptive weight selection via a damped Newton method. Numerical results show that HFL achieves superior test accuracy at low SNR when both DoF are exploited.
When Models Manipulate Manifolds: The Geometry of a Counting Task
Language models can perceive visual properties of text despite receiving only sequences of tokens-we mechanistically investigate how Claude 3.5 Haiku accomplishes one such task: linebreaking in fixed-width text. We find that character counts are represented on low-dimensional curved manifolds discretized by sparse feature families, analogous to biological place cells. Accurate predictions emerge from a sequence of geometric transformations: token lengths are accumulated into character count manifolds, attention heads twist these manifolds to estimate distance to the line boundary, and the decision to break the line is enabled by arranging estimates orthogonally to create a linear decision boundary. We validate our findings through causal interventions and discover visual illusions--character sequences that hijack the counting mechanism. Our work demonstrates the rich sensory processing of early layers, the intricacy of attention algorithms, and the importance of combining feature-based and geometric views of interpretability.
Prediction of Cellular Malignancy Using Electrical Impedance Signatures and Supervised Machine Learning
Bioelectrical properties of cells such as relative permittivity, conductivity, and characteristic time constants vary significantly between healthy and malignant cells across different frequencies. These distinctions provide a promising foundation for diagnostic and classification applications. This study systematically reviewed 33 scholarly articles to compile datasets of quantitative bioelectric parameters and evaluated their utility in predictive modeling. Three supervised machine learning algorithms- Random Forest (RF), Support Vector Machine (SVM), and K-Nearest Neighbor (KNN) were implemented and tuned using key hyperparameters to assess classification performance. Model effectiveness was evaluated using accuracy and F1 score as performance metrics. Results demonstrate that Random Forest achieved the highest predictive accuracy of ~ 90% when configured with a maximum depth of 4 and 100 estimators. These findings highlight the potential of integrating bioelectrical property analysis with machine learning for improved diagnostic decision-making. Similarly, for KNN and SVM, the F1 score peaked at approximately 78% and 76.5%, respectively. Future work will explore incorporating additional discriminative features, leveraging stimulated datasets, and optimizing hyperparameter through advanced search strategies. Ultimately, hardware prototype with embedded micro-electrodes and real-time control systems could pave the path for practical diagnostic tools capable of in-situ cell classification.
Convergence Rates for Learning Pseudo-Differential Operators
This paper establishes convergence rates for learning elliptic pseudo-differential operators, a fundamental operator class in partial differential equations and mathematical physics. In a wavelet-Galerkin framework, we formulate learning over this class as a structured infinite-dimensional regression problem with multiscale sparsity. Building on this structure, we propose a sparse, data- and computation-efficient estimator, which leverages a novel matrix compression scheme tailored to the learning task and a nested-support strategy to balance approximation and estimation errors. In addition to obtaining convergence rates for the estimator, we show that the learned operator induces an efficient and stable Galerkin solver whose numerical error matches its statistical accuracy. Our results therefore contribute to bringing together operator learning, data-driven solvers, and wavelet methods in scientific computing.
comment: 72 pages, 1 figure
SampoNLP: A Self-Referential Toolkit for Morphological Analysis of Subword Tokenizers
The quality of subword tokenization is critical for Large Language Models, yet evaluating tokenizers for morphologically rich Uralic languages is hampered by the lack of clean morpheme lexicons. We introduce SampoNLP, a corpus-free toolkit for morphological lexicon creation using MDL-inspired Self-Referential Atomicity Scoring, which filters composite forms through internal structural cues - suited for low-resource settings. Using the high-purity lexicons generated by SampoNLP for Finnish, Hungarian, and Estonian, we conduct a systematic evaluation of BPE tokenizers across a range of vocabulary sizes (8k-256k). We propose a unified metric, the Integrated Performance Score (IPS), to navigate the trade-off between morpheme coverage and over-splitting. By analyzing the IPS curves, we identify the "elbow points" of diminishing returns and provide the first empirically grounded recommendations for optimal vocabulary sizes (k) in these languages. Our study not only offers practical guidance but also quantitatively demonstrates the limitations of standard BPE for highly agglutinative languages. The SampoNLP library and all generated resources are made publicly available: https://github.com/AragonerUA/SampoNLP
comment: Accepted to the 10th International Workshop on Computational Linguistics for Uralic Languages (IWCLUL 2025), pp. 57-67
Concept Tokens: Learning Behavioral Embeddings Through Concept Definitions
We propose Concept Tokens, a lightweight method that adds a new special token to a pretrained LLM and learns only its embedding from multiple natural language definitions of a target concept, where occurrences of the concept are replaced by the new token. The LLM is kept frozen and the embedding is optimized with the standard language-modeling objective. We evaluate Concept Tokens in three settings. First, we study hallucinations in closed-book question answering on HotpotQA and find a directional effect: negating the hallucination token reduces hallucinated answers mainly by increasing abstentions, whereas asserting it increases hallucinations and lowers precision. Second, we induce recasting, a pedagogical feedback strategy for second language teaching, and observe the same directional effect. Moreover, compared to providing the full definitional corpus in-context, concept tokens better preserve compliance with other instructions (e.g., asking follow-up questions). Finally, we include a qualitative study with the Eiffel Tower and a fictional "Austral Tower" to illustrate what information the learned embeddings capture and where their limitations emerge. Overall, Concept Tokens provide a compact control signal learned from definitions that can steer behavior in frozen LLMs.
Meta-probabilistic Modeling
While probabilistic graphical models can discover latent structure in data, their effectiveness hinges on choosing well-specified models. Identifying such models is challenging in practice, often requiring iterative checking and revision through trial and error. To this end, we propose meta-probabilistic modeling (MPM), a meta-learning algorithm that learns generative model structure directly from multiple related datasets. MPM uses a hierarchical architecture where global model specifications are shared across datasets while local parameters remain dataset-specific. For learning and inference, we propose a tractable VAE-inspired surrogate objective, and optimize it through bi-level optimization: local variables are updated analytically via coordinate ascent, while global parameters are trained with gradient-based methods. We evaluate MPM on object-centric image modeling and sequential text modeling, demonstrating that it adapts generative models to data while recovering meaningful latent representations.
Using Large Language Models to Detect Socially Shared Regulation of Collaborative Learning
The field of learning analytics has made notable strides in automating the detection of complex learning processes in multimodal data. However, most advancements have focused on individualized problem-solving instead of collaborative, open-ended problem-solving, which may offer both affordances (richer data) and challenges (low cohesion) to behavioral prediction. Here, we extend predictive models to automatically detect socially shared regulation of learning (SSRL) behaviors in collaborative computational modeling environments using embedding-based approaches. We leverage large language models (LLMs) as summarization tools to generate task-aware representations of student dialogue aligned with system logs. These summaries, combined with text-only embeddings, context-enriched embeddings, and log-derived features, were used to train predictive models. Results show that text-only embeddings often achieve stronger performance in detecting SSRL behaviors related to enactment or group dynamics (e.g., off-task behavior or requesting assistance). In contrast, contextual and multimodal features provide complementary benefits for constructs such as planning and reflection. Overall, our findings highlight the promise of embedding-based models for extending learning analytics by enabling scalable detection of SSRL behaviors, ultimately supporting real-time feedback and adaptive scaffolding in collaborative learning environments that teachers value.
comment: Short research paper accepted at Learning Analytics and Knowledge (LAK '26)
Re-Rankers as Relevance Judges
Using large language models (LLMs) to predict relevance judgments has shown promising results. Most studies treat this task as a distinct research line, e.g., focusing on prompt design for predicting relevance labels given a query and passage. However, predicting relevance judgments is essentially a form of relevance prediction, a problem extensively studied in tasks such as re-ranking. Despite this potential overlap, little research has explored reusing or adapting established re-ranking methods to predict relevance judgments, leading to potential resource waste and redundant development. To bridge this gap, we reproduce re-rankers in a re-ranker-as-relevance-judge setup. We design two adaptation strategies: (i) using binary tokens (e.g., "true" and "false") generated by a re-ranker as direct judgments, and (ii) converting continuous re-ranking scores into binary labels via thresholding. We perform extensive experiments on TREC-DL 2019 to 2023 with 8 re-rankers from 3 families, ranging from 220M to 32B, and analyse the evaluation bias exhibited by re-ranker-based judges. Results show that re-ranker-based relevance judges, under both strategies, can outperform UMBRELA, a state-of-the-art LLM-based relevance judge, in around 40% to 50% of the cases; they also exhibit strong self-preference towards their own and same-family re-rankers, as well as cross-family bias.
Prediction of Fault Slip Tendency in CO${_2}$ Storage using Data-space Inversion
Accurately assessing the potential for fault slip is essential in many subsurface operations. Conventional model-based history matching methods, which entail the generation of posterior geomodels calibrated to observed data, can be challenging to apply in coupled flow-geomechanics problems with faults. In this work, we implement a variational autoencoder (VAE)-based data-space inversion (DSI) framework to predict pressure, stress and strain fields, and fault slip tendency, in CO${_2}$ storage projects. The main computations required by the DSI workflow entail the simulation of O(1000) prior geomodels. The posterior distributions for quantities of interest are then inferred directly from prior simulation results and observed data, without the need to generate posterior geomodels. The model used here involves a synthetic 3D system with two faults. Realizations of heterogeneous permeability and porosity fields are generated using geostatistical software, and uncertain geomechanical and fault parameters are sampled for each realization from prior distributions. Coupled flow-geomechanics simulations for these geomodels are conducted using GEOS. A VAE with stacked convolutional long short-term memory layers is trained, using the prior simulation results, to represent pressure, strain, effective normal stress and shear stress fields in terms of latent variables. The VAE parameterization is used with DSI for posterior predictions, with monitoring wells providing observed pressure and strain data. Posterior results for synthetic true models demonstrate that the DSI-VAE framework gives accurate predictions for pressure, strain, and stress fields and for fault slip tendency. The framework is also shown to reduce uncertainty in key geomechanical and fault parameters.
Dynamic Inclusion and Bounded Multi-Factor Tilts for Robust Portfolio Construction
This paper proposes a portfolio construction framework designed to remain robust under estimation error, non-stationarity, and realistic trading constraints. The methodology combines dynamic asset eligibility, deterministic rebalancing, and bounded multi-factor tilts applied to an equal-weight baseline. Asset eligibility is formalized as a state-dependent constraint on portfolio construction, allowing factor exposure to adjust endogenously in response to observable market conditions such as liquidity, volatility, and cross-sectional breadth. Rather than estimating expected returns or covariances, the framework relies on cross-sectional rankings and hard structural bounds to control concentration, turnover, and fragility. The resulting approach is fully algorithmic, transparent, and directly implementable. It provides a robustness-oriented alternative to parametric optimization and unconstrained multi-factor models, particularly suited for long-horizon allocations where stability and operational feasibility are primary objectives.
comment: 28 pages, 7 figures, algorithmic portfolio construction framework emphasizing robustness, explicit constraints, and implementability
Efficient Inference for Noisy LLM-as-a-Judge Evaluation
Large language models (LLMs) are increasingly used as automatic evaluators of generative AI outputs, a paradigm often referred to as "LLM-as-a-judge." In practice, LLM judges are imperfect predictions for the underlying truth and can exhibit systematic, non-random errors. Two main approaches have recently been proposed to address this issue: (i) direct measurementerror correction based on misclassification models such as Rogan-Gladen-style estimators, and (ii) surrogate-outcome approaches such as prediction-powered inference (PPI), which correct bias by calibrating prediction residuals on a small set of gold-standard human labels. In this paper, we systematically study the performance of these two approaches for estimating mean parameters (e.g., average benchmark scores or pairwise win rates). Leveraging tools from semiparametric efficiency theory, we unify the two classes of estimators by deriving explicit forms of efficient influence function (EIF)-based efficient estimators and characterize conditions under which PPI-style estimators attain strictly smaller asymptotic variance than measurement-error corrections. We verify our theoretical results in simulations and demonstrate the methods on real-data examples. We provide an implementation of the benchmarked methods and comparison utilities at https://github.com/yiqunchen/debias-llm-as-a-judge.
Interactive Distillation for Cooperative Multi-Agent Reinforcement Learning
Knowledge distillation (KD) has the potential to accelerate MARL by employing a centralized teacher for decentralized students but faces key bottlenecks. Specifically, there are (1) challenges in synthesizing high-performing teaching policies in complex domains, (2) difficulties when teachers must reason in out-of-distribution (OOD) states, and (3) mismatches between the decentralized students' and the centralized teacher's observation spaces. To address these limitations, we propose HINT (Hierarchical INteractive Teacher-based transfer), a novel KD framework for MARL in a centralized training, decentralized execution setup. By leveraging hierarchical RL, HINT provides a scalable, high-performing teacher. Our key innovation, pseudo off-policy RL, enables the teacher policy to be updated using both teacher and student experience, thereby improving OOD adaptation. HINT also applies performance-based filtering to retain only outcome-relevant guidance, reducing observation mismatches. We evaluate HINT on challenging cooperative domains (e.g., FireCommander for resource allocation, MARINE for tactical combat). Across these benchmarks, HINT outperforms baselines, achieving improvements of 60% to 165% in success rate.
Archetypal cases for questionnaires with nominal multiple choice questions
Archetypal analysis serves as an exploratory tool that interprets a collection of observations as convex combinations of pure (extreme) patterns. When these patterns correspond to actual observations within the sample, they are termed archetypoids. For the first time, we propose applying archetypoid analysis to nominal observations, specifically for identifying archetypal cases from questionnaires featuring nominal multiple-choice questions with a single possible answer. This approach can enhance our understanding of a nominal data set, similar to its application in multivariate contexts. We compare this methodology with the use of archetype analysis and probabilistic archetypal analysis and demonstrate the benefits of this methodology using a real-world example: the German credit dataset.
comment: Statistical Methods for Data Analysis and Decision Sciences. Third Conference of the Statistics and Data Science Group of the Italian Statistical Society. Milan, April 2-3, 2025
DynaSTy: A Framework for SpatioTemporal Node Attribute Prediction in Dynamic Graphs
Accurate multistep forecasting of node-level attributes on dynamic graphs is critical for applications ranging from financial trust networks to biological networks. Existing spatiotemporal graph neural networks typically assume a static adjacency matrix. In this work, we propose an end-to-end dynamic edge-biased spatiotemporal model that ingests a multi-dimensional timeseries of node attributes and a timeseries of adjacency matrices, to predict multiple future steps of node attributes. At each time step, our transformer-based model injects the given adjacency as an adaptable attention bias, allowing the model to focus on relevant neighbors as the graph evolves. We further deploy a masked node-time pretraining objective that primes the encoder to reconstruct missing features, and train with scheduled sampling and a horizon-weighted loss to mitigate compounding error over long horizons. Unlike prior work, our model accommodates dynamic graphs that vary across input samples, enabling forecasting in multi-system settings such as brain networks across different subjects, financial systems in different contexts, or evolving social systems. Empirical results demonstrate that our method consistently outperforms strong baselines on Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE).
Imitation Learning for Combinatorial Optimisation under Uncertainty
Imitation learning (IL) provides a data-driven framework for approximating policies for large-scale combinatorial optimisation problems formulated as sequential decision problems (SDPs), where exact solution methods are computationally intractable. A central but underexplored aspect of IL in this context is the role of the \emph{expert} that generates training demonstrations. Existing studies employ a wide range of expert constructions, yet lack a unifying framework to characterise their modelling assumptions, computational properties, and impact on learning performance. This paper introduces a systematic taxonomy of experts for IL in combinatorial optimisation under uncertainty. Experts are classified along three dimensions: (i) their treatment of uncertainty, including myopic, deterministic, full-information, two-stage stochastic, and multi-stage stochastic formulations; (ii) their level of optimality, distinguishing task-optimal and approximate experts; and (iii) their interaction mode with the learner, ranging from one-shot supervision to iterative, interactive schemes. Building on this taxonomy, we propose a generalised Dataset Aggregation (DAgger) algorithm that supports multiple expert queries, expert aggregation, and flexible interaction strategies. The proposed framework is evaluated on a dynamic physician-to-patient assignment problem with stochastic arrivals and capacity constraints. Computational experiments compare learning outcomes across expert types and interaction regimes. The results show that policies learned from stochastic experts consistently outperform those learned from deterministic or full-information experts, while interactive learning improves solution quality using fewer expert demonstrations. Aggregated deterministic experts provide an effective alternative when stochastic optimisation becomes computationally challenging.
Inverting Non-Injective Functions with Twin Neural Network Regression
Non-injective functions are not invertible. However, non-injective functions can be restricted to sub-domains on which they are locally injective and surjective and thus invertible if the dimensionality between input and output spaces are the same. Further, even if the dimensionalities do not match it is often possible to choose a preferred solution from many possible solutions. Twin neural network regression is naturally capable of incorporating these properties to invert non-injective functions. Twin neural network regression is trained to predict adjustments to well known input variables $\mathbf{x}^{\text{anchor}}$ to obtain an estimate for an unknown $\mathbf{x}^{\text{new}}$ under a change of the target variable from $\mathbf{y}^{\text{anchor}}$ to $\mathbf{y}^{\text{new}}$. In combination with k-nearest neighbor search, I propose a deterministic framework that finds input parameters to a given target variable of non-injective functions. The method is demonstrated by inverting non-injective functions describing toy problems and robot arm control that are a) defined by data or b) known as mathematical formula.
The Kernel Manifold: A Geometric Approach to Gaussian Process Model Selection
Gaussian Process (GP) regression is a powerful nonparametric Bayesian framework, but its performance depends critically on the choice of covariance kernel. Selecting an appropriate kernel is therefore central to model quality, yet remains one of the most challenging and computationally expensive steps in probabilistic modeling. We present a Bayesian optimization framework built on kernel-of-kernels geometry, using expected divergence-based distances between GP priors to explore kernel space efficiently. A multidimensional scaling (MDS) embedding of this distance matrix maps a discrete kernel library into a continuous Euclidean manifold, enabling smooth BO. In this formulation, the input space comprises kernel compositions, the objective is the log marginal likelihood, and featurization is given by the MDS coordinates. When the divergence yields a valid metric, the embedding preserves geometry and produces a stable BO landscape. We demonstrate the approach on synthetic benchmarks, real-world time-series datasets, and an additive manufacturing case study predicting melt-pool geometry, achieving superior predictive accuracy and uncertainty calibration relative to baselines including Large Language Model (LLM)-guided search. This framework establishes a reusable probabilistic geometry for kernel search, with direct relevance to GP modeling and deep kernel learning.
Lost in Execution: On the Multilingual Robustness of Tool Calling in Large Language Models
Large Language Models (LLMs) are increasingly deployed as agents that invoke external tools through structured function calls. While recent work reports strong tool-calling performance under standard English-centric evaluations, the robustness of tool calling under multilingual user interactions remains underexplored. In this work, we introduce MLCL, a diagnostic benchmark, and conduct a systematic evaluation of multilingual tool calling across Chinese, Hindi, and the low-resource language Igbo. Through fine-grained error analysis, we show that many failures occur despite correct intent understanding and tool selection. We identify parameter value language mismatch as a dominant failure mode, where models generate semantically appropriate parameter values in the user's language, violating language-invariant execution conventions. We further evaluate several inference-time system strategies and find that while these strategies substantially reduce language-induced execution errors, none of them can fully recover English-level performance.
A Bayesian Generative Modeling Approach for Arbitrary Conditional Inference
Modern data analysis increasingly requires flexible conditional inference P(X_B | X_A) where (X_A, X_B) is an arbitrary partition of observed variable X. Existing conditional inference methods lack this flexibility as they are tied to a fixed conditioning structure and cannot perform new conditional inference once trained. To solve this, we propose a Bayesian generative modeling (BGM) approach for arbitrary conditional inference without retraining. BGM learns a generative model of X through an iterative Bayesian updating algorithm where model parameters and latent variables are updated until convergence. Once trained, any conditional distribution can be obtained without retraining. Empirically, BGM achieves superior prediction performance with well calibrated predictive intervals, demonstrating that a single learned model can serve as a universal engine for conditional prediction with uncertainty quantification. We provide theoretical guarantees for the convergence of the stochastic iterative algorithm, statistical consistency and conditional-risk bounds. The proposed BGM framework leverages the power of AI to capture complex relationships among variables while adhering to Bayesian principles, emerging as a promising framework for advancing various applications in modern data science. The code for BGM is freely available at https://github.com/liuq-lab/bayesgm.
GlyRAG: Context-Aware Retrieval-Augmented Framework for Blood Glucose Forecasting
Accurate forecasting of blood glucose from CGM is essential for preventing dysglycemic events, thus enabling proactive diabetes management. However, current forecasting models treat blood glucose readings captured using CGMs as a numerical sequence, either ignoring context or relying on additional sensors/modalities that are difficult to collect and deploy at scale. Recently, LLMs have shown promise for time-series forecasting tasks, yet their role as agentic context extractors in diabetes care remains largely unexplored. To address these limitations, we propose GlyRAG, a context-aware, retrieval-augmented forecasting framework that derives semantic understanding of blood glucose dynamics directly from CGM traces without requiring additional sensor modalities. GlyRAG employs an LLM as a contextualization agent to generate clinical summaries. These summaries are embedded by a language model and fused with patch-based glucose representations in a multimodal transformer architecture with a cross translation loss aligining textual and physiological embeddings. A retrieval module then identifies similar historical episodes in the learned embedding space and uses cross-attention to integrate these case-based analogues prior to making a forecasting inference. Extensive evaluations on two T1D cohorts show that GlyRAG consistently outperforms state-of-the art methods, achieving up to 39% lower RMSE and a further 1.7% reduction in RMSE over the baseline. Clinical evaluation shows that GlyRAG places 85% predictions in safe zones and achieves 51% improvement in predicting dysglycemic events across both cohorts. These results indicate that LLM-based contextualization and retrieval over CGM traces can enhance the accuracy and clinical reliability of long-horizon glucose forecasting without the need for extra sensors, thus supporting future agentic decision-support tools for diabetes management.
When the Server Steps In: Calibrated Updates for Fair Federated Learning
Federated learning (FL) has emerged as a transformative distributed learning paradigm, enabling multiple clients to collaboratively train a global model under the coordination of a central server without sharing their raw training data. While FL offers notable advantages, it faces critical challenges in ensuring fairness across diverse demographic groups. To address these fairness concerns, various fairness-aware debiasing methods have been proposed. However, many of these approaches either require modifications to clients' training protocols or lack flexibility in their aggregation strategies. In this work, we address these limitations by introducing EquFL, a novel server-side debiasing method designed to mitigate bias in FL systems. EquFL operates by allowing the server to generate a single calibrated update after receiving model updates from the clients. This calibrated update is then integrated with the aggregated client updates to produce an adjusted global model that reduces bias. Theoretically, we establish that EquFL converges to the optimal global model achieved by FedAvg and effectively reduces fairness loss over training rounds. Empirically, we demonstrate that EquFL significantly mitigates bias within the system, showcasing its practical effectiveness.
Generalized Canonical Polyadic Tensor Decompositions with General Symmetry
Canonical Polyadic (CP) tensor decomposition is a workhorse algorithm for discovering underlying low-dimensional structure in tensor data. This is accomplished in conventional CP decomposition by fitting a low-rank tensor to data with respect to the least-squares loss. Generalized CP (GCP) decompositions generalize this approach by allowing general loss functions that can be more appropriate, e.g., to model binary and count data or to improve robustness to outliers. However, GCP decompositions do not explicitly account for any symmetry in the tensors, which commonly arises in modern applications. For example, a tensor formed by stacking the adjacency matrices of a dynamic graph over time will naturally exhibit symmetry along the two modes corresponding to the graph nodes. In this paper, we develop a symmetric GCP (SymGCP) decomposition that allows for general forms of symmetry, i.e., symmetry along any subset of the modes. SymGCP accounts for symmetry by enforcing the corresponding symmetry in the decomposition. We derive gradients for SymGCP that enable its efficient computation via all-at-once optimization with existing tensor kernels. The form of the gradients also leads to various stochastic approximations that enable us to develop stochastic SymGCP algorithms that can scale to large tensors. We demonstrate the utility of the proposed SymGCP algorithms with a variety of experiments on both synthetic and real data.
comment: This work has been submitted to the IEEE for possible publication. 11 pages, 5 figures
Ontology Neural Networks for Topologically Conditioned Constraint Satisfaction
Neuro-symbolic reasoning systems face fundamental challenges in maintaining semantic coherence while satisfying physical and logical constraints. Building upon our previous work on Ontology Neural Networks, we present an enhanced framework that integrates topological conditioning with gradient stabilization mechanisms. The approach employs Forman-Ricci curvature to capture graph topology, Deep Delta Learning for stable rank-one perturbations during constraint projection, and Covariance Matrix Adaptation Evolution Strategy for parameter optimization. Experimental evaluation across multiple problem sizes demonstrates that the method achieves mean energy reduction to 1.15 compared to baseline values of 11.68, with 95 percent success rate in constraint satisfaction tasks. The framework exhibits seed-independent convergence and graceful scaling behavior up to twenty-node problems, suggesting that topological structure can inform gradient-based optimization without sacrificing interpretability or computational efficiency.
comment: 12 pages, 11 figures
TIME: Temporally Intelligent Meta-reasoning Engine for Context Triggered Explicit Reasoning
Reasoning oriented large language models often expose explicit "thinking" as long, turn-global traces at the start of every response, either always on or toggled externally at inference time. While useful for arithmetic, programming, and problem solving, this design is costly, blurs claim level auditability, and cannot re-trigger explicit reasoning once the model begins presenting. Dialogue models are also largely blind to temporal structure, treating replies after seconds and replies after weeks as equivalent unless time is stated in text. We introduce TIME, the Temporally Intelligent Meta-reasoning Engine, a behavioral alignment framework that treats explicit reasoning as a context sensitive resource driven by discourse and temporal cues. TIME augments dialogue with optional ISO 8601
comment: 14 pages, 3 figures with 27 page appendix. See https://github.com/The-Coherence-Initiative/TIME and https://github.com/The-Coherence-Initiative/TIMEBench for associated code
Optimizing Digital Adjudication through Social Network Analysis: An Empirical Study of Credit Card Disputes in Beijing
Amid the rapid digitalization of judicial systems, the integration of big data into adjudication remains underexplored, particularly in uncovering the structural logic of legal applications. This study bridges this gap by employing social network analysis (SNA) to examine credit card disputes involving personal information protection adjudicated in Beijing. By constructing a legal citation network, we reveal the latent patterns of substantive and procedural law application. The findings demonstrate that SNA can effectively identify core legal norms and typify cases, offering a robust methodological framework for optimizing 'Digital Court' systems. These insights provide practical pathways for enhancing judicial efficiency and consistency through data-driven case retrieval and holistic judicial information networks.
Machine learning assisted state prediction of misspecified linear dynamical system via modal reduction
Accurate prediction of structural dynamics is imperative for preserving digital twin fidelity throughout operational lifetimes. Parametric models with fixed nominal parameters often omit critical physical effects due to simplifications in geometry, material behavior, damping, or boundary conditions, resulting in model form errors (MFEs) that impair predictive accuracy. This work introduces a comprehensive framework for MFE estimation and correction in high-dimensional finite element (FE) based structural dynamical systems. The Gaussian Process Latent Force Model (GPLFM) represents discrepancies non-parametrically in the reduced modal domain, allowing a flexible data-driven characterization of unmodeled dynamics. A linear Bayesian filtering approach jointly estimates system states and discrepancies, incorporating epistemic and aleatoric uncertainties. To ensure computational tractability, the FE system is projected onto a reduced modal basis, and a mesh-invariant neural network maps modal states to discrepancy estimates, permitting model rectification across different FE discretizations without retraining. Validation is undertaken across five MFE scenarios-including incorrect beam theory, damping misspecification, misspecified boundary condition, unmodeled material nonlinearity, and local damage demonstrating the surrogate model's substantial reduction of displacement and rotation prediction errors under unseen excitations. The proposed methodology offers a potential means to uphold digital twin accuracy amid inherent modeling uncertainties.
MoEBlaze: Breaking the Memory Wall for Efficient MoE Training on Modern GPUs
The pervasive "memory wall" bottleneck is significantly amplified in modern large-scale Mixture-of-Experts (MoE) architectures. MoE's inherent architectural sparsity leads to sparse arithmetic compute and also introduces substantial activation memory overheads -- driven by large token routing buffers and the need to materialize and buffer intermediate tensors. This memory pressure limits the maximum batch size and sequence length that can fit on GPUs, and also results in excessive data movements that hinders performance and efficient model scaling. We present MoEBlaze, a memory-efficient MoE training framework that addresses these issues through a co-designed system approach: (i) an end-to-end token dispatch and MoE training method with optimized data structures to eliminate intermediate buffers and activation materializing, and (ii) co-designed kernels with smart activation checkpoint to mitigate memory footprint while simultaneously achieving better performance. We demonstrate that MoEBlaze can achieve over 4x speedups and over 50% memory savings compared to existing MoE frameworks.
Centroid Decision Forest
This paper introduces the centroid decision forest (CDF), a novel ensemble learning framework that redefines the splitting strategy and tree building in the ordinary decision trees for high-dimensional classification. The splitting approach in CDF differs from the traditional decision trees in theat the class separability score (CSS) determines the selection of the most discriminative features at each node to construct centroids of the partitions (daughter nodes). The splitting criterion uses the Euclidean distance measurements from each class centroid to achieve a splitting mechanism that is more flexible and robust. Centroids are constructed by computing the mean feature values of the selected features for each class, ensuring a class-representative division of the feature space. This centroid-driven approach enables CDF to capture complex class structures while maintaining interpretability and scalability. To evaluate CDF, 23 high-dimensional datasets are used to assess its performance against different state-of-the-art classifiers through classification accuracy and Cohen's kappa statistic. The experimental results show that CDF outperforms the conventional methods establishing its effectiveness and flexibility for high-dimensional classification problems.
comment: This article has 11 pages, 6 figures, and 3 tables
Spectral Bias in Variational Quantum Machine Learning
In this work, we investigate the phenomenon of spectral bias in quantum machine learning, where, in classical settings, models tend to fit low-frequency components of a target function earlier during training than high-frequency ones, demonstrating a frequency-dependent rate of convergence. We study this effect specifically in parameterised quantum circuits (PQCs). Leveraging the established formulation of PQCs as Fourier series, we prove that spectral bias in this setting arises from the ``redundancy'' of the Fourier coefficients, which denotes the number of terms in the analytical form of the model contributing to the same frequency component. The choice of data encoding scheme dictates the degree of redundancy for a Fourier coefficient. We find that the magnitude of the Fourier coefficients' gradients during training strongly correlates with the coefficients' redundancy. We then further demonstrate this empirically with three different encoding schemes. Additionally, we demonstrate that PQCs with greater redundancy exhibit increased robustness to random perturbations in their parameters at the corresponding frequencies. We investigate how design choices affect the ability of PQCs to learn Fourier sums, focusing on parameter initialization scale and entanglement structure, finding large initializations and low-entanglement schemes tend to slow convergence.
comment: 12 pages, 8 figures
A Match Made in Heaven? AI-driven Matching of Vulnerabilities and Security Unit Tests
Software vulnerabilities are often detected via taint analysis, penetration testing, or fuzzing. They are also found via unit tests that exercise security-sensitive behavior with specific inputs, called vulnerability-witnessing tests. Generative AI models could help developers in writing them, but they require many examples to learn from, which are currently scarce. This paper introduces VuTeCo, an AI-driven framework for collecting examples of vulnerability-witnessing tests from Java repositories. VuTeCo carries out two tasks: (1) The "Finding" task to determine whether a unit test case is security-related, and (2) the "Matching" task to relate a test case to the vulnerability it witnesses. VuTeCo addresses the Finding task with UniXcoder, achieving an F0.5 score of 0.73 and a precision of 0.83 on a test set of unit tests from Vul4J. The Matching task is addressed using DeepSeek Coder, achieving an F0.5 score of 0.65 and a precision of 0.75 on a test set of pairs of unit tests and vulnerabilities from Vul4J. VuTeCo has been used in the wild on 427 Java projects and 1,238 vulnerabilities, obtaining 224 test cases confirmed to be security-related and 35 tests correctly matched to 29 vulnerabilities. The validated tests were collected in a new dataset called Test4Vul. VuTeCo lays the foundation for large-scale retrieval of vulnerability-witnessing tests, enabling future AI models to better understand and generate security unit tests.
comment: Accepted in the MSR 2026 Technical Track. This work was partially supported by EU-funded project Sec4AI4Sec (grant no. 101120393)
Toward Maturity-Based Certification of Embodied AI: Quantifying Trustworthiness Through Measurement Mechanisms AAAI-26
We propose a maturity-based framework for certifying embodied AI systems through explicit measurement mechanisms. We argue that certifiable embodied AI requires structured assessment frameworks, quantitative scoring mechanisms, and methods for navigating multi-objective trade-offs inherent in trustworthiness evaluation. We demonstrate this approach using uncertainty quantification as an exemplar measurement mechanism and illustrate feasibility through an Uncrewed Aircraft System (UAS) detection case study.
comment: Accepted to AAAI-26 Bridge Program B10: Making Embodied AI Reliable with Testing and Formal Verification
Forking-Sequences NeurIPS 2025
While accuracy is a critical requirement for time series forecasting, an equally important desideratum is forecast stability across forecast creation dates (FCDs). Even highly accurate models can produce erratic revisions between FCDs, disrupting downstream decision-making. To improve forecast stability of such revisions, several state-of-the-art models including MQCNN, MQT, and SPADE employ a powerful yet underexplored neural network architectural design known as forking-sequences. This architectural design jointly encodes and decodes the entire time series across all FCDs, producing an entire multi-horizon forecast grid in a single forward pass. This approach contrasts with conventional neural forecasting methods that process FCDs independently, generating only a single multi-horizon forecast per forward pass. In this work, we formalize the forking-sequences design and motivate its broader adoption by introducing a metric for quantifying excess volatility in forecast revisions and by providing theoretical and empirical analysis. We theoretically motivate three key benefits of forking-sequences: (i) increased forecast stability through ensembling; (ii) gradient variance reduction, leading to more stable and consistent training steps; and (iii) improved computational efficiency during inference. We validate the benefits of forking-sequences compared to baseline window-sampling on the M-series benchmark, using 16 datasets from the M1, M3, M4, and Tourism competitions. We observe median accuracy improvements across datasets of 29.7%, 46.2%, 49.3%, 28.6%, 24.7%, and 6.4% for MLP, RNN, LSTM, CNN, Transformer, and StateSpace-based architectures, respectively. We then show that forecast ensembling during inference can improve median forecast stability by 10.8%, 13.2%, 13.0%, 10.9%, 10.2%, and 11.2% for these respective models trained with forking-sequences, while maintaining accuracy.
comment: Presented at the GPU-Accelerated and Scalable Optimization (ScaleOpt) Workshop, NeurIPS 2025
Cells on Autopilot: Adaptive Cell (Re)Selection via Reinforcement Learning
The widespread deployment of 5G networks, together with the coexistence of 4G/LTE networks, provides mobile devices a diverse set of candidate cells to connect to. However, associating mobile devices to cells to maximize overall network performance, a.k.a. cell (re)selection, remains a key challenge for mobile operators. Today, cell (re)selection parameters are typically configured manually based on operator experience and rarely adapted to dynamic network conditions. In this work, we ask: Can an agent automatically learn and adapt cell (re)selection parameters to consistently improve network performance? We present a reinforcement learning (RL)-based framework called CellPilot that adaptively tunes cell (re)selection parameters by learning spatiotemporal patterns of mobile network dynamics. Our study with real-world data demonstrates that even a lightweight RL agent can outperform conventional heuristic reconfigurations by up to 167%, while generalizing effectively across different network scenarios. These results indicate that data-driven approaches can significantly improve cell (re)selection configurations and enhance mobile network performance.
comment: 11 pages, 12 figures, v2: Corrected performance numbers in the conclusion; no change to methodology
Extreme Solar Flare Prediction Using Residual Networks with HMI Magnetograms and Intensitygrams
Solar flares, especially C, M, and X class, pose significant risks to satellite operations, communication systems, and power grids. We present a novel approach for predicting extreme solar flares using HMI intensitygrams and magnetograms. By detecting sunspots from intensitygrams and extracting magnetic field patches from magnetograms, we train a Residual Network (ResNet) to classify extreme class flares. Our model demonstrates high accuracy, offering a robust tool for predicting extreme solar flares and improving space weather forecasting. Additionally, we show that HMI magnetograms provide more useful data for deep learning compared to other SDO AIA images by better capturing features critical for predicting flare magnitudes. This study underscores the importance of identifying magnetic fields in solar flare prediction, marking a significant advancement in solar activity prediction with practical implications for mitigating space weather impacts.
A Framework for Responsible AI Systems: Building Societal Trust through Domain Definition, Trustworthy AI Design, Auditability, Accountability, and Governance
Responsible Artificial Intelligence (RAI) addresses the ethical and regulatory challenges of deploying AI systems in high-risk scenarios. This paper proposes a comprehensive framework for the design of an RAI system (RAIS) that integrates five key dimensions: domain definition, trustworthy AI design, auditability, accountability, and governance. Unlike prior work that treats these components in isolation, our proposal emphasizes their inter-dependencies and iterative feedback loops, enabling proactive and reactive accountability throughout the AI lifecycle. Beyond presenting the framework, we synthesize recent developments in global AI governance and analyze limitations in existing principles-based approaches, highlighting fragmentation, implementation gaps, and the need for participatory governance. The paper also identifies critical challenges and research directions for the RAIS framework, including sector-specific adaptation and operationalization, to support certification, post-deployment monitoring, and risk-based auditing. By bridging technical design and institutional responsibility, this work offers a practical blueprint for embedding responsibility throughout the AI lifecycle, enabling transparent, ethically aligned, and legally compliant AI-based systems.
comment: 27 pages, 9 figures, 2 tables
Why Does Stochastic Gradient Descent Slow Down in Low-Precision Training?
Low-precision training has become crucial for reducing the computational and memory costs of large-scale deep learning. However, quantizing gradients introduces magnitude shrinkage, which can change how stochastic gradient descent (SGD) converges. In this study, we explore SGD convergence under a gradient shrinkage model, where each stochastic gradient is scaled by a factor \( q_k \in (0,1] \). We show that this shrinkage affect the usual stepsize \( μ_k \) with an effective stepsize \( μ_k q_k \), slowing convergence when \( q_{\min} < 1 \). With typical smoothness and bounded-variance assumptions, we prove that low-precision SGD still converges, but at a slower pace set by \( q_{\min} \), and with a higher steady error level due to quantization effects. We analyze theoretically how lower numerical precision slows training by treating it as gradient shrinkage within the standard SGD convergence setup.
Graph-Dictionary Signal Model for Sparse Representations of Multivariate Data
Representing and exploiting multivariate signals requires capturing relations between variables, which we can represent by graphs. Graph dictionaries allow to describe complex relational information as a sparse sum of simpler structures, but no prior model exists to infer such underlying structure elements from data. We define a novel Graph-Dictionary signal model, where a finite set of graphs characterizes relationships in data distribution as filters on the weighted sum of their Laplacians. We propose a framework to infer the graph dictionary representation from observed node signals, which allows to include a priori knowledge about signal properties, and about underlying graphs and their coefficients. We introduce a bilinear generalization of the primal-dual splitting algorithm to solve the learning problem. We show the capability of our method to reconstruct graphs from signals in multiple synthetic settings, where our model outperforms popular baselines. Then, we exploit graph-dictionary representations in an illustrative motor imagery decoding task on brain activity data, where we classify imagined motion better than standard methods relying on many more features. Our graph-dictionary model bridges a gap between sparse representations of multivariate data and a structured decomposition of sample-varying relationships into a sparse combination of elementary graph atoms.
Simplex-FEM Networks (SiFEN): Learning A Triangulated Function Approximator
We introduce Simplex-FEM Networks (SiFEN), a learned piecewise-polynomial predictor that represents f: R^d -> R^k as a globally C^r finite-element field on a learned simplicial mesh in an optionally warped input space. Each query activates exactly one simplex and at most d+1 basis functions via barycentric coordinates, yielding explicit locality, controllable smoothness, and cache-friendly sparsity. SiFEN pairs degree-m Bernstein-Bezier polynomials with a light invertible warp and trains end-to-end with shape regularization, semi-discrete OT coverage, and differentiable edge flips. Under standard shape-regularity and bi-Lipschitz warp assumptions, SiFEN achieves the classic FEM approximation rate M^(-m/d) with M mesh vertices. Empirically, on synthetic approximation tasks, tabular regression/classification, and as a drop-in head on compact CNNs, SiFEN matches or surpasses MLPs and KANs at matched parameter budgets, improves calibration (lower ECE/Brier), and reduces inference latency due to geometric locality. These properties make SiFEN a compact, interpretable, and theoretically grounded alternative to dense MLPs and edge-spline networks.
comment: We will improve our work soon
$π_0$: A Vision-Language-Action Flow Model for General Robot Control RSS 2025
Robot learning holds tremendous promise to unlock the full potential of flexible, general, and dexterous robot systems, as well as to address some of the deepest questions in artificial intelligence. However, bringing robot learning to the level of generality required for effective real-world systems faces major obstacles in terms of data, generalization, and robustness. In this paper, we discuss how generalist robot policies (i.e., robot foundation models) can address these challenges, and how we can design effective generalist robot policies for complex and highly dexterous tasks. We propose a novel flow matching architecture built on top of a pre-trained vision-language model (VLM) to inherit Internet-scale semantic knowledge. We then discuss how this model can be trained on a large and diverse dataset from multiple dexterous robot platforms, including single-arm robots, dual-arm robots, and mobile manipulators. We evaluate our model in terms of its ability to perform tasks in zero shot after pre-training, follow language instructions from people and from a high-level VLM policy, and its ability to acquire new skills via fine-tuning. Our results cover a wide variety of tasks, such as laundry folding, table cleaning, and assembling boxes.
comment: See project website for videos: https://physicalintelligence.company/blog/pi0 Published in RSS 2025
Multi-Modal AI for Remote Patient Monitoring in Cancer Care
For patients undergoing systemic cancer therapy, the time between clinic visits is full of uncertainties and risks of unmonitored side effects. To bridge this gap in care, we developed and prospectively trialed a multi-modal AI framework for remote patient monitoring (RPM). This system integrates multi-modal data from the HALO-X platform, such as demographics, wearable sensors, daily surveys, and clinical events. Our observational trial is one of the largest of its kind and has collected over 2.1 million data points (6,080 patient-days) of monitoring from 84 patients. We developed and adapted a multi-modal AI model to handle the asynchronous and incomplete nature of real-world RPM data, forecasting a continuous risk of future adverse events. The model achieved an accuracy of 83.9% (AUROC=0.70). Notably, the model identified previous treatments, wellness check-ins, and daily maximum heart rate as key predictive features. A case study demonstrated the model's ability to provide early warnings by outputting escalating risk profiles prior to the event. This work establishes the feasibility of multi-modal AI RPM for cancer care and offers a path toward more proactive patient support.(Accepted at Europe NeurIPS 2025 Multimodal Representation Learning for Healthcare Workshop. Best Paper Poster Award.)
Enabling Weak Client Participation via On-device Knowledge Distillation in Heterogeneous Federated Learning
Online Knowledge Distillation (KD) is recently highlighted to train large models in Federated Learning (FL) environments. Many existing studies adopt the logit ensemble method to perform KD on the server side. However, they often assume that unlabeled data collected at the edge is centralized on the server. Moreover, the logit ensemble method personalizes local models, which can degrade the quality of soft targets, especially when data is highly non-IID. To address these critical limitations,we propose a novel on-device KD-based heterogeneous FL method. Our approach leverages a small auxiliary model to learn from labeled local data. Subsequently, a subset of clients with strong system resources transfers knowledge to a large model through on-device KD using their unlabeled data. Our extensive experiments demonstrate that our on-device KD-based heterogeneous FL method effectively utilizes the system resources of all edge devices as well as the unlabeled data, resulting in higher accuracy compared to SOTA KD-based FL methods.
comment: Accepted by ECAI 2025
CALM: A CKA-Guided Adaptive Layer-Wise Modularization Framework for LLM Quantization
Current mainstream post-training quantization methods for large language models typically apply a uniform quantization strategy across all network layers, overlooking the substantial differences in algorithmic suitability among layers. To address this limitation, we propose CALM (A CKA-guided Adaptive Layer-wise Modularization)a fine-tuning-free, plug-and-play framework for algorithmic heterogeneous quantization. CALM independently evaluates multiple PTQ algorithms on each layer and employs Linear Centered Kernel Alignment (CKA) as a metric to automatically select the optimal quantization strategy per layer. The individually optimized strategies are then integrated to construct a hybrid quantized model. Experiments demonstrate that our approach consistently outperforms both uniform quantization baselines and state-of-the-art mixed-precision methods across mainstream LLMsincluding LLaMA and Qwenin terms of perplexity (PPL) and downstream task performance.
The Equilibrium Response of Atmospheric Machine-Learning Models to Uniform Sea Surface Temperature Warming
Machine learning models for the global atmosphere that are capable of producing stable, multi-year simulations of Earth's climate have recently been developed. However, the ability of these ML models to generalize beyond the training distribution remains an open question. In this study, we evaluate the climate response of several state-of-the-art ML models (ACE2-ERA5, NeuralGCM, and cBottle) to a uniform sea surface temperature warming, a widely used benchmark for evaluating climate change. We assess each ML model's performance relative to a physics-based general circulation model (NOAA's Geophysical Fluid Dynamics Laboratory AM4) across key diagnostics, including surface air temperature, precipitation, temperature and wind profiles, and top-of-atmosphere radiation. While the ML models reproduce key aspects of the physical model response, particularly the response of precipitation, some exhibit notable departures from robust physical responses, including radiative responses and land region warming. Our results highlight the promise and current limitations of ML models for climate change applications and suggest that further improvements are needed for robust out-of-sample generalization.
Extreme-value forest fire prediction A study of the Loss Function in an Ordinality Scheme
Wildfires are highly imbalanced natural hazards in both space and severity, making the prediction of extreme events particularly challenging. In this work, we introduce the first ordinal classification framework for forecasting wildfire severity levels directly aligned with operational decision-making in France. Our study investigates the influence of loss-function design on the ability of neural models to predict rare yet critical high-severity fire occurrences. We compare standard cross-entropy with several ordinal-aware objectives, including the proposed probabilistic TDeGPD loss derived from a truncated discrete exponentiated Generalized Pareto Distribution. Through extensive benchmarking over multiple architectures and real operational data, we show that ordinal supervision substantially improves model performance over conventional approaches. In particular, the Weighted Kappa Loss (WKLoss) achieves the best overall results, with more than +0.1 IoU (Intersection Over Union) gain on the most extreme severity classes while maintaining competitive calibration quality. However, performance remains limited for the rarest events due to their extremely low representation in the dataset. These findings highlight the importance of integrating both severity ordering, data imbalance considerations, and seasonality risk into wildfire forecasting systems. Future work will focus on incorporating seasonal dynamics and uncertainty information into training to further improve the reliability of extreme-event prediction.
Inverse Q-Learning Done Right: Offline Imitation Learning in $Q^π$-Realizable MDPs
We study the problem of offline imitation learning in Markov decision processes (MDPs), where the goal is to learn a well-performing policy given a dataset of state-action pairs generated by an expert policy. Complementing a recent line of work on this topic that assumes the expert belongs to a tractable class of known policies, we approach this problem from a new angle and leverage a different type of structural assumption about the environment. Specifically, for the class of linear $Q^π$-realizable MDPs, we introduce a new algorithm called saddle-point offline imitation learning (\SPOIL), which is guaranteed to match the performance of any expert up to an additive error $\varepsilon$ with access to $\mathcal{O}(\varepsilon^{-2})$ samples. Moreover, we extend this result to possibly nonlinear $Q^π$-realizable MDPs at the cost of a worse sample complexity of order $\mathcal{O}(\varepsilon^{-4})$. Finally, our analysis suggests a new loss function for training critic networks from expert data in deep imitation learning. Empirical evaluations on standard benchmarks demonstrate that the neural net implementation of \SPOIL is superior to behavior cloning and competitive with state-of-the-art algorithms.
Uncertainty-Aware Robotic World Model Makes Offline Model-Based Reinforcement Learning Work on Real Robots
Reinforcement Learning (RL) has achieved impressive results in robotics, yet high-performing pipelines remain highly task-specific, with little reuse of prior data. Offline Model-based RL (MBRL) offers greater data efficiency by training policies entirely from existing datasets, but suffers from compounding errors and distribution shift in long-horizon rollouts. Although existing methods have shown success in controlled simulation benchmarks, robustly applying them to the noisy, biased, and partially observed datasets typical of real-world robotics remains challenging. We present a principled pipeline for making offline MBRL effective on physical robots. Our RWM-U extends autoregressive world models with epistemic uncertainty estimation, enabling temporally consistent multi-step rollouts with uncertainty effectively propagated over long horizons. We combine RWM-U with MOPO-PPO, which adapts uncertainty-penalized policy optimization to the stable, on-policy PPO framework for real-world control. We evaluate our approach on diverse manipulation and locomotion tasks in simulation and on real quadruped and humanoid, training policies entirely from offline datasets. The resulting policies consistently outperform model-free and uncertainty-unaware model-based baselines, and fusing real-world data in model learning further yields robust policies that surpass online model-free baselines trained solely in simulation.
Guiding diffusion models to reconstruct flow fields from sparse data
The reconstruction of unsteady flow fields from limited measurements is a challenging and crucial task for many engineering applications. Machine learning models are gaining popularity for solving this problem due to their ability to learn complex patterns from data and to generalize across diverse conditions. Among these, diffusion models have emerged as being particularly powerful for generative tasks, producing high-quality samples by iteratively refining noisy inputs. In contrast to other methods, these generative models are capable of reconstructing the smallest scales of the fluid spectrum. In this work, we introduce a novel sampling method for diffusion models that enables the reconstruction of high-fidelity samples by guiding the reverse process using the available sparse data. Moreover, we enhance the reconstructions with available physics knowledge using a conflict-free update method during training. To evaluate the effectiveness of our method, we conduct experiments on 2 and 3-dimensional turbulent flow data. Our method consistently outperforms other diffusion-based methods in predicting the fluid's structure and in pixel-wise accuracy. This study underscores the remarkable potential of diffusion models in reconstructing flow field data, paving the way for leveraging them in fluid dynamics research and applications ranging from super-resolution to reconstructions of experiments.
comment: Published on Physics of Fluids, code and data can be found at https://github.com/tum-pbs/sparse-reconstruction
Modern Neuromorphic AI: From Intra-Token to Inter-Token Processing
The rapid growth of artificial intelligence (AI) has brought novel data processing and generative capabilities but also escalating energy requirements. This challenge motivates renewed interest in neuromorphic computing principles, which promise brain-like efficiency through discrete and sparse activations, recurrent dynamics, and non-linear feedback. In fact, modern AI architectures increasingly embody neuromorphic principles through heavily quantized activations, state-space dynamics, and sparse attention mechanisms. This paper elaborates on the connections between neuromorphic models, state-space models, and transformer architectures through the lens of the distinction between intra-token processing and inter-token processing. Most early work on neuromorphic AI was based on spiking neural networks (SNNs) for intra-token processing, i.e., for transformations involving multiple channels, or features, of the same vector input, such as the pixels of an image. In contrast, more recent research has explored how neuromorphic principles can be leveraged to design efficient inter-token processing methods, which selectively combine different information elements depending on their contextual relevance. Implementing associative memorization mechanisms, these approaches leverage state-space dynamics or sparse self-attention. Along with a systematic presentation of modern neuromorphic AI models through the lens of intra-token and inter-token processing, training methodologies for neuromorphic AI models are also reviewed. These range from surrogate gradients leveraging parallel convolutional processing to local learning rules based on reinforcement learning mechanisms.
Structured Matching via Cost-Regularized Unbalanced Optimal Transport
Unbalanced optimal transport (UOT) provides a flexible way to match or compare nonnegative finite Radon measures. However, UOT requires a predefined ground transport cost, which may misrepresent the data's underlying geometry. Choosing such a cost is particularly challenging when datasets live in heterogeneous spaces, often motivating practitioners to adopt Gromov-Wasserstein formulations. To address this challenge, we introduce cost-regularized unbalanced optimal transport (CR-UOT), a framework that allows the ground cost to vary while allowing mass creation and removal. We show that CR-UOT incorporates unbalanced Gromov-Wasserstein type problems through families of inner-product costs parameterized by linear transformations, enabling the matching of measures or point clouds across Euclidean spaces. We develop algorithms for such CR-UOT problems using entropic regularization and demonstrate that this approach improves the alignment of heterogeneous single-cell omics profiles, especially when many cells lack direct matches.
High-Dimensional Change Point Detection using Graph Spanning Ratio
Inspired by graph-based methodologies, we introduce a novel graph-spanning algorithm designed to identify changes in both offline and online data across low to high dimensions. This versatile approach is applicable to Euclidean and graph-structured data with unknown distributions, while maintaining control over error probabilities. Theoretically, we demonstrate that the algorithm achieves high detection power when the magnitude of the change surpasses the lower bound of the minimax separation rate, which scales on the order of $\sqrt{nd}$. Our method outperforms other techniques in terms of accuracy for both Gaussian and non-Gaussian data. Notably, it maintains strong detection power even with small observation windows, making it particularly effective for online environments where timely and precise change detection is critical.
Topology-Informed Graph Transformer ICML 2024
Transformers have revolutionized performance in Natural Language Processing and Vision, paving the way for their integration with Graph Neural Networks (GNNs). One key challenge in enhancing graph transformers is strengthening the discriminative power of distinguishing isomorphisms of graphs, which plays a crucial role in boosting their predictive performances. To address this challenge, we introduce 'Topology-Informed Graph Transformer (TIGT)', a novel transformer enhancing both discriminative power in detecting graph isomorphisms and the overall performance of Graph Transformers. TIGT consists of four components: A topological positional embedding layer using non-isomorphic universal covers based on cyclic subgraphs of graphs to ensure unique graph representation: A dual-path message-passing layer to explicitly encode topological characteristics throughout the encoder layers: A global attention mechanism: And a graph information layer to recalibrate channel-wise graph features for better feature representation. TIGT outperforms previous Graph Transformers in classifying synthetic dataset aimed at distinguishing isomorphism classes of graphs. Additionally, mathematical analysis and empirical evaluations highlight our model's competitive edge over state-of-the-art Graph Transformers across various benchmark datasets.
comment: Proceedings of the Geometry-grounded Representation Learning and Generative Modeling Workshop (GRaM) at ICML 2024
ReinFlow: Fine-tuning Flow Matching Policy with Online Reinforcement Learning
We propose ReinFlow, a simple yet effective online reinforcement learning (RL) framework that fine-tunes a family of flow matching policies for continuous robotic control. Derived from rigorous RL theory, ReinFlow injects learnable noise into a flow policy's deterministic path, converting the flow into a discrete-time Markov Process for exact and straightforward likelihood computation. This conversion facilitates exploration and ensures training stability, enabling ReinFlow to fine-tune diverse flow model variants, including Rectified Flow [35] and Shortcut Models [19], particularly at very few or even one denoising step. We benchmark ReinFlow in representative locomotion and manipulation tasks, including long-horizon planning with visual input and sparse reward. The episode reward of Rectified Flow policies obtained an average net growth of 135.36% after fine-tuning in challenging legged locomotion tasks while saving denoising steps and 82.63% of wall time compared to state-of-the-art diffusion RL fine-tuning method DPPO [43]. The success rate of the Shortcut Model policies in state and visual manipulation tasks achieved an average net increase of 40.34% after fine-tuning with ReinFlow at four or even one denoising step, whose performance is comparable to fine-tuned DDIM policies while saving computation time for an average of 23.20%. Project webpage: https://reinflow.github.io/
comment: 38 pages
Reward Shaping to Mitigate Reward Hacking in RLHF
Reinforcement Learning from Human Feedback (RLHF) is essential for aligning large language models (LLMs) with human values. However, RLHF is susceptible to \emph{reward hacking}, where the agent exploits flaws in the reward function rather than learning the intended behavior, thus degrading alignment. Although reward shaping helps stabilize RLHF and partially mitigate reward hacking, a systematic investigation into shaping techniques and their underlying principles remains lacking. To bridge this gap, we present a comprehensive study of the prevalent reward shaping methods. Our analysis suggests two key design principles: (1) the RL reward should be bounded, and (2) the RL reward benefits from rapid initial growth followed by gradual convergence. Guided by these insights, we propose Preference As Reward (PAR), a novel approach that leverages the latent preferences embedded within the reward model as the signal for reinforcement learning. Moreover, PAR exhibits two critical variance-reduction properties that contribute to stabilizing the RLHF training process and effectively extending the tolerance window for early stopping. We evaluated PAR on the base model Gemma2-2B using two datasets, Ultrafeedback-Binarized and HH-RLHF. Experimental results demonstrate PAR's superior performance over other reward shaping methods. On the AlpacaEval 2.0 benchmark, PAR achieves a win rate of at least 5 percentage points higher than competing approaches. Furthermore, PAR exhibits remarkable data efficiency, requiring only a single reference reward for optimal performance, and maintains robustness against reward hacking even after two full epochs of training. The code is available at https://github.com/PorUna-byte/PAR.
NASTaR: NovaSAR Automated Ship Target Recognition Dataset
Synthetic Aperture Radar (SAR) offers a unique capability for all-weather, space-based maritime activity monitoring by capturing and imaging strong reflections from ships at sea. A well-defined challenge in this domain is ship type classification. Due to the high diversity and complexity of ship types, accurate recognition is difficult and typically requires specialized deep learning models. These models, however, depend on large, high-quality ground-truth datasets to achieve robust performance and generalization. Furthermore, the growing variety of SAR satellites operating at different frequencies and spatial resolutions has amplified the need for more annotated datasets to enhance model accuracy. To address this, we present the NovaSAR Automated Ship Target Recognition (NASTaR) dataset. This dataset comprises of 3415 ship patches extracted from NovaSAR S-band imagery, with labels matched to AIS data. It includes distinctive features such as 23 unique classes, inshore/offshore separation, and an auxiliary wake dataset for patches where ship wakes are visible. We validated the dataset applicability across prominent ship-type classification scenarios using benchmark deep learning models. Results demonstrate over 60% accuracy for classifying four major ship types, over 70% for a three-class scenario, more than 75% for distinguishing cargo from tanker ships, and over 87% for identifying fishing vessels. The NASTaR dataset is available at https://doi.org/10.5523/bris.2tfa6x37oerz2lyiw6hp47058, while relevant codes for benchmarking and analysis are available at https://github.com/benyaminhosseiny/nastar.
N-GLARE: An Non-Generative Latent Representation-Efficient LLM Safety Evaluator
Evaluating the safety robustness of LLMs is critical for their deployment. However, mainstream Red Teaming methods rely on online generation and black-box output analysis. These approaches are not only costly but also suffer from feedback latency, making them unsuitable for agile diagnostics after training a new model. To address this, we propose N-GLARE (A Non-Generative, Latent Representation-Efficient LLM Safety Evaluator). N-GLARE operates entirely on the model's latent representations, bypassing the need for full text generation. It characterizes hidden layer dynamics by analyzing the APT (Angular-Probabilistic Trajectory) of latent representations and introducing the JSS (Jensen-Shannon Separability) metric. Experiments on over 40 models and 20 red teaming strategies demonstrate that the JSS metric exhibits high consistency with the safety rankings derived from Red Teaming. N-GLARE reproduces the discriminative trends of large-scale red-teaming tests at less than 1\% of the token cost and the runtime cost, providing an efficient output-free evaluation proxy for real-time diagnostics.
kooplearn: A Scikit-Learn Compatible Library of Algorithms for Evolution Operator Learning
kooplearn is a machine-learning library that implements linear, kernel, and deep-learning estimators of dynamical operators and their spectral decompositions. kooplearn can model both discrete-time evolution operators (Koopman/Transfer) and continuous-time infinitesimal generators. By learning these operators, users can analyze dynamical systems via spectral methods, derive data-driven reduced-order models, and forecast future states and observables. kooplearn's interface is compliant with the scikit-learn API, facilitating its integration into existing machine learning and data science workflows. Additionally, kooplearn includes curated benchmark datasets to support experimentation, reproducibility, and the fair comparison of learning algorithms. The software is available at https://github.com/Machine-Learning-Dynamical-Systems/kooplearn.
Enhancing Expressivity of Quantum Neural Networks Based on the SWAP test
Quantum neural networks (QNNs) based on parametrized quantum circuits are promising candidates for machine learning applications, yet many architectures lack clear connections to classical models, potentially limiting their ability to leverage established classical neural network techniques. We examine QNNs built from SWAP test circuits and discuss their equivalence to classical two-layer feedforward networks with quadratic activations under amplitude encoding. Evaluation on real-world and synthetic datasets shows that while this architecture learns many practical binary classification tasks, it has fundamental expressivity limitations: polynomial activation functions do not satisfy the universal approximation theorem, and we show analytically that the architecture cannot learn the parity check function beyond two dimensions, regardless of network size. To address this, we introduce generalized SWAP test circuits with multiple Fredkin gates sharing an ancilla, implementing product layers with polynomial activations of arbitrary even degree. This modification enables successful learning of parity check functions in arbitrary dimensions as well as binary n-spiral tasks, and we provide numerical evidence that the expressivity enhancement extends to alternative encoding schemes such as angle (Z) and ZZ feature maps. We validate the practical feasibility of our proposed architecture by implementing a classically pretrained instance on the IBM Torino quantum processor, achieving 84% classification accuracy on the three-dimensional parity check despite hardware noise. Our work establishes a framework for analyzing and enhancing QNN expressivity through correspondence with classical architectures, and demonstrates that SWAP test-based QNNs possess broad representational capacity relevant to both classical and potentially quantum learning tasks.
comment: 17 pages, 7 figures
Pruning the Unsurprising: Efficient LLM Reasoning via First-Token Surprisal
Large Reasoning Models (LRMs) have demonstrated remarkable capabilities by scaling up the length of Chain-of-Thought (CoT). However, excessively long reasoning traces pose substantial challenges for training cost and inference latency. While various CoT compression approaches have emerged to address this challenge, they face inherent trade-offs: token-level methods often disrupt syntactic and logical coherence, while step-level methods based on perplexity fail to reliably capture the logically critical reasoning steps because of the dilution of logical information. In this paper, we propose ASAP (Anchor-guided, SurprisAl-based Pruning), a novel coarse-to-fine framework for CoT compression. ASAP first performs anchor-guided pruning to preserve the core reasoning structure, which efficiently reduces the search space for subsequent processing. Leveraging the insight that logical branching choices are concentrated at the onset of reasoning steps, it then enables logic-aware pruning by selecting logically essential reasoning steps based on a novel first-token surprisal metric. Finally, ASAP distills the models to autonomously generate and leverage these concise CoTs at inference time, enabling efficient reasoning. Experiments show that ASAP achieves state-of-the-art accuracy across multiple benchmarks while substantially reducing training and inference costs.
comment: Code and model available at https://github.com/Zengwh02/ASAP
Practical Aspects on Solving Differential Equations Using Deep Learning: A Primer
Deep learning has become a popular tool across many scientific fields, including the study of differential equations, particularly partial differential equations. This work introduces the basic principles of deep learning and the Deep Galerkin method, which uses deep neural networks to solve differential equations. This primer aims to provide technical and practical insights into the Deep Galerkin method and its implementation. We demonstrate how to solve the one-dimensional heat equation step-by-step. We also show how to apply the Deep Galerkin method to solve systems of ordinary differential equations and integral equations, such as the Fredholm of the second kind. Additionally, we provide code snippets within the text and the complete source code on Github. The examples are designed so that one can run them on a simple computer without needing a GPU.
comment: 32 pages, 12 figures, primer (tutorial)
The Structure of Cross-Validation Error: Stability, Covariance, and Minimax Limits
Despite ongoing theoretical research on cross-validation (CV), many theoretical questions remain widely open. This motivates our investigation into how properties of algorithm-distribution pairs can affect the choice for the number of folds in $k$-fold CV. Our results consist of a novel decomposition of the mean-squared error of cross-validation for risk estimation, which explicitly captures the correlations of error estimates across overlapping folds and includes a novel algorithmic stability notion, squared loss stability, that is considerably weaker than the typically required hypothesis stability in other comparable works. Furthermore, we prove: 1. For any learning algorithm that minimizes empirical risk, the mean-squared error of the $k$-fold cross-validation estimator $\widehat{L}_{\mathrm{CV}}^{(k)}$ of the population risk $L_{D}$ satisfies the following minimax lower bound: \[ \min_{k \mid n} \max_{D} \mathbb{E}\left[\big(\widehat{L}_{\mathrm{CV}}^{(k)} - L_{D}\big)^{2}\right]=Ω\big(\sqrt{k^*}/n\big), \] where $n$ is the sample size, $k$ the number of folds, and $k^*$ denotes the number of folds attaining the minimax optimum. This shows that even under idealized conditions, for large values of $k$, CV cannot attain the optimum of order $1/n$ achievable by a validation set of size $n$, reflecting an inherent penalty caused by dependence between folds. 2. Complementing this, we exhibit learning rules for which \[ \max_{D}\mathbb{E}\!\left[\big(\widehat{L}_{\mathrm{CV}}^{(k)} - L_{D}\big)^{2}\right]=Ω(k/n), \] matching (up to constants) the accuracy of a hold-out estimator of a single fold of size $n/k$. Together these results delineate the fundamental trade-off in resampling-based risk estimation: CV cannot fully exploit all $n$ samples for unbiased risk evaluation, and its minimax performance is pinned between the $k/n$ and $\sqrt{k}/n$ regimes.
comment: 60 pages
A Gap Between Decision Trees and Neural Networks
We study when geometric simplicity of decision boundaries, used here as a notion of interpretability, can conflict with accurate approximation of axis-aligned decision trees by shallow neural networks. Decision trees induce rule-based, axis-aligned decision regions (finite unions of boxes), whereas shallow ReLU networks are typically trained as score models whose predictions are obtained by thresholding. We analyze the infinite-width, bounded-norm, single-hidden-layer ReLU class through the Radon total variation ($\mathrm{R}\mathrm{TV}$) seminorm, which controls the geometric complexity of level sets. We first show that the hard tree indicator $1_A$ has infinite $\mathrm{R}\mathrm{TV}$. Moreover, two natural split-wise continuous surrogates--piecewise-linear ramp smoothing and sigmoidal (logistic) smoothing--also have infinite $\mathrm{R}\mathrm{TV}$ in dimensions $d>1$, while Gaussian convolution yields finite $\mathrm{R}\mathrm{TV}$ but with an explicit exponential dependence on $d$. We then separate two goals that are often conflated: classification after thresholding (recovering the decision set) versus score learning (learning a calibrated score close to $1_A$). For classification, we construct a smooth barrier score $S_A$ with finite $\mathrm{R}\mathrm{TV}$ whose fixed threshold $τ=1$ exactly recovers the box. Under a mild tube-mass condition near $\partial A$, we prove an $L_1(P)$ calibration bound that decays polynomially in a sharpness parameter, along with an explicit $\mathrm{R}\mathrm{TV}$ upper bound in terms of face measures. Experiments on synthetic unions of rectangles illustrate the resulting accuracy--complexity tradeoff and how threshold selection shifts where training lands along it.
comment: 45 pages, plots were improved
When Lower-Order Terms Dominate: Adaptive Expert Algorithms for Heavy-Tailed Losses
We consider the problem setting of prediction with expert advice with possibly heavy-tailed losses, i.e. the only assumption on the losses is an upper bound on their second moments, denoted by $θ$. We develop adaptive algorithms that do not require any prior knowledge about the range or the second moment of the losses. Existing adaptive algorithms have what is typically considered a lower-order term in their regret guarantees. We show that this lower-order term, which is often the maximum of the losses, can actually dominate the regret bound in our setting. Specifically, we show that even with small constant $θ$, this lower-order term can scale as $\sqrt{KT}$, where $K$ is the number of experts and $T$ is the time horizon. We propose adaptive algorithms with improved regret bounds that avoid the dependence on such a lower-order term and guarantee $\mathcal{O}(\sqrt{θT\log(K)})$ regret in the worst case, and $\mathcal{O}(θ\log(KT)/Δ_{\min})$ regret when the losses are sampled i.i.d. from some fixed distribution, where $Δ_{\min}$ is the difference between the mean losses of the second best expert and the best expert. Additionally, when the loss function is the squared loss, our algorithm also guarantees improved regret bounds over prior results.
The Geometry of the Pivot: A Note on Lazy Pivoted Cholesky and Farthest Point Sampling
Low-rank approximations of large kernel matrices are ubiquitous in machine learning, particularly for scaling Gaussian Processes to massive datasets. The Pivoted Cholesky decomposition is a standard tool for this task, offering a computationally efficient, greedy low-rank approximation. While its algebraic properties are well-documented in numerical linear algebra, its geometric intuition within the context of kernel methods often remains obscure. In this note, we elucidate the geometric interpretation of the algorithm within the Reproducing Kernel Hilbert Space (RKHS). We demonstrate that the pivotal selection step is mathematically equivalent to Farthest Point Sampling (FPS) using the kernel metric, and that the Cholesky factor construction is an implicit Gram-Schmidt orthogonalization. We provide a concise derivation and a minimalist Python implementation to bridge the gap between theory and practice.
Breaking AR's Sampling Bottleneck: Provable Acceleration via Diffusion Language Models NeurIPS 2025
Diffusion models have emerged as a powerful paradigm for modern generative modeling, demonstrating strong potential for large language models (LLMs). Unlike conventional autoregressive (AR) models that generate tokens sequentially, diffusion models allow for parallel sampling, offering a promising path to accelerate generation and eliminate the left-to-right generation constraints. Despite their empirical success, theoretical understandings of diffusion language models remain underdeveloped. In this work, we develop convergence guarantees for diffusion language models from an information-theoretic perspective. Our analysis demonstrates that the sampling error, measured by the Kullback-Leibler (KL) divergence, decays inversely with the number of iterations $T$ and scales linearly with the mutual information between tokens in the target text sequence. Crucially, our theory covers the regime $T
comment: This is the full version of a paper published at NeurIPS 2025
From Actions to Words: Towards Abstractive-Textual Policy Summarization in RL
Explaining reinforcement learning agents is challenging because policies emerge from complex reward structures and neural representations that are difficult for humans to interpret. Existing approaches often rely on curated demonstrations that expose local behaviors but provide limited insight into an agent's global strategy, leaving users to infer intent from raw observations. We propose SySLLM (Synthesized Summary using Large Language Models), a framework that reframes policy interpretation as a language-generation problem. Instead of visual demonstrations, SySLLM converts spatiotemporal trajectories into structured text and prompts an LLM to generate coherent summaries describing the agent's goals, exploration style, and decision patterns. SySLLM scales to long-horizon, semantically rich environments without task-specific fine-tuning, leveraging LLM world knowledge and compositional reasoning to capture latent behavioral structure across policies. Expert evaluations show strong alignment with human analyses, and a large-scale user study found that 75.5% of participants preferred SySLLM summaries over state-of-the-art demonstration-based explanations. Together, these results position abstractive textual summarization as a paradigm for interpreting complex RL behavior.
comment: In Proceedings of AAMAS 2026 (The 25th International Conference on Autonomous Agents and Multi-Agent Systems)
Solving Robotics Tasks with Prior Demonstration via Exploration-Efficient Deep Reinforcement Learning
This paper proposes an exploration-efficient Deep Reinforcement Learning with Reference policy (DRLR) framework for learning robotics tasks that incorporates demonstrations. The DRLR framework is developed based on an algorithm called Imitation Bootstrapped Reinforcement Learning (IBRL). We propose to improve IBRL by modifying the action selection module. The proposed action selection module provides a calibrated Q-value, which mitigates the bootstrapping error that otherwise leads to inefficient exploration. Furthermore, to prevent the RL policy from converging to a sub-optimal policy, SAC is used as the RL policy instead of TD3. The effectiveness of our method in mitigating bootstrapping error and preventing overfitting is empirically validated by learning two robotics tasks: bucket loading and open drawer, which require extensive interactions with the environment. Simulation results also demonstrate the robustness of the DRLR framework across tasks with both low and high state-action dimensions, and varying demonstration qualities. To evaluate the developed framework on a real-world industrial robotics task, the bucket loading task is deployed on a real wheel loader. The sim2real results validate the successful deployment of the DRLR framework.
comment: This paper has been accepted for Journal publication in Frontiers in Robotics and AI
Crafting Adversarial Inputs for Large Vision-Language Models Using Black-Box Optimization
Recent advancements in Large Vision-Language Models (LVLMs) have shown groundbreaking capabilities across diverse multimodal tasks. However, these models remain vulnerable to adversarial jailbreak attacks, where adversaries craft subtle perturbations to bypass safety mechanisms and trigger harmful outputs. Existing white-box attacks methods require full model accessibility, suffer from computing costs and exhibit insufficient adversarial transferability, making them impractical for real-world, black-box settings. To address these limitations, we propose a black-box jailbreak attack on LVLMs via Zeroth-Order optimization using Simultaneous Perturbation Stochastic Approximation (ZO-SPSA). ZO-SPSA provides three key advantages: (i) gradient-free approximation by input-output interactions without requiring model knowledge, (ii) model-agnostic optimization without the surrogate model and (iii) lower resource requirements with reduced GPU memory consumption. We evaluate ZO-SPSA on three LVLMs, including InstructBLIP, LLaVA and MiniGPT-4, achieving the highest jailbreak success rate of 83.0% on InstructBLIP, while maintaining imperceptible perturbations comparable to white-box methods. Moreover, adversarial examples generated from MiniGPT-4 exhibit strong transferability to other LVLMs, with ASR reaching 64.18%. These findings underscore the real-world feasibility of black-box jailbreaks and expose critical weaknesses in the safety mechanisms of current LVLMs
comment: EACL
OptiVote: Non-Coherent FSO Over-the-Air Majority Vote for Communication-Efficient Distributed Federated Learning in Space Data Centers
The rapid deployment of mega-constellations is driving the long-term vision of space data centers (SDCs), where interconnected satellites form in-orbit distributed computing and learning infrastructures. Enabling distributed federated learning in such systems is challenging because iterative training requires frequent aggregation over inter-satellite links that are bandwidth- and energy-constrained, and the link conditions can be highly dynamic. In this work, we exploit over-the-air computation (AirComp) as an in-network aggregation primitive. However, conventional coherent AirComp relies on stringent phase alignment, which is difficult to maintain in space environments due to satellite jitter and Doppler effects. To overcome this limitation, we propose OptiVote, a robust and communication-efficient non-coherent free-space optical (FSO) AirComp framework for federated learning toward Space Data Centers. OptiVote integrates sign stochastic gradient descent (signSGD) with a majority-vote (MV) aggregation principle and pulse-position modulation (PPM), where each satellite conveys local gradient signs by activating orthogonal PPM time slots. The aggregation node performs MV detection via non-coherent energy accumulation, transforming phase-sensitive field superposition into phase-agnostic optical intensity combining, thereby eliminating the need for precise phase synchronization and improving resilience under dynamic impairments. To mitigate aggregation bias induced by heterogeneous FSO channels, we further develop an importance-aware, channel state information (CSI)-free dynamic power control scheme that balances received energies without additional signaling. We provide theoretical analysis by characterizing the aggregate error probability under statistical FSO channels and establishing convergence guarantees for non-convex objectives.
Surface solar radiation: AI satellite retrieval can outperform Heliosat and generalizes well to other climate zones
Accurate estimates of surface solar irradiance (SSI) are essential for solar resource assessments and solar energy forecasts in grid integration and building control applications. SSI estimates for spatially extended regions can be retrieved from geostationary satellites such as Meteosat. Traditional SSI satellite retrievals like Heliosat rely on physical radiative transfer modelling. We introduce the first machine-learning-based satellite retrieval for instantaneous SSI and demonstrate its capability to provide accurate and generalizable SSI estimates across Europe. Our deep learning retrieval provides near real-time SSI estimates based on data-driven emulation of Heliosat and fine-tuning on pyranometer networks. By including SSI from ground stations, our SSI retrieval model can outperform Heliosat accuracy and generalize well to regions with other climates and surface albedos in cloudy conditions (clear-sky index < 0.8). We also show that the SSI retrieved from Heliosat exhibits large biases in mountain regions, and that training and fine-tuning our retrieval models on SSI data from ground stations strongly reduces these biases, outperforming Heliosat. Furthermore, we quantify the relative importance of the Meteosat channels and other predictor variables like solar zenith angle for the accuracy of our deep learning SSI retrieval model in different cloud conditions. We find that in cloudy conditions multiple near-infrared and infrared channels enhance the performance. Our results can facilitate the development of more accurate satellite retrieval models of surface solar irradiance.
comment: 19 pages, 11 figures Published in International Journal of Remote Sensing, Volume 46, 2025
Macro Graph of Experts for Billion-Scale Multi-Task Recommendation
Graph-based multi-task learning at billion-scale presents a significant challenge, as different tasks correspond to distinct billion-scale graphs. Traditional multi-task learning methods often neglect these graph structures, relying solely on individual user and item embeddings. However, disregarding graph structures overlooks substantial potential for improving performance. In this paper, we introduce the Macro Graph of Experts (MGOE) framework, the first approach capable of leveraging macro graph embeddings to capture task-specific macro features while modeling the correlations between task-specific experts. Specifically, we propose the concept of a Macro Graph Bottom, which, for the first time, enables multi-task learning models to incorporate graph information effectively. We design the Macro Prediction Tower to dynamically integrate macro knowledge across tasks. MGOE has been deployed at scale, powering multi-task learning for a leading billion-scale recommender system, Alibaba. Extensive offline experiments conducted on three public benchmark datasets demonstrate its superiority over state-of-the-art multi-task learning methods, establishing MGOE as a breakthrough in multi-task graph-based recommendation. Furthermore, online A/B tests confirm the superiority of MGOE in billion-scale recommender systems.
comment: Accepted to KDD2026
Post-Training Quantization of OpenPangu Models for Efficient Deployment on Atlas A2
Huawei's openPangu-Embedded-1B and openPangu-Embedded-7B are variants of the openPangu large language model, designed for efficient deployment on Ascend NPUs. The 7B variant supports three distinct Chain-of-Thought (CoT) reasoning paradigms, namely slow_think, auto_think, and no_think, while the 1B variant operates exclusively in the no_think mode, which employs condensed reasoning for higher efficiency. Although CoT reasoning enhances capability, the generation of extended reasoning traces introduces substantial memory and latency overheads, posing challenges for practical deployment on Ascend NPUs. This paper addresses these computational constraints by leveraging low-bit quantization, which transforms FP16 computations into more efficient integer arithmetic. We introduce a unified low-bit inference framework, supporting INT8 (W8A8) and W4A8 quantization, specifically optimized for openPangu-Embedded models on the Atlas A2. Our comprehensive evaluation on code generation benchmarks (HumanEval and MBPP) demonstrates the efficacy of this approach. INT8 quantization consistently preserves over 90\% of the FP16 baseline accuracy and achieves a 1.5x prefill speedup on the Atlas A2. Furthermore, W4A8 quantization significantly reduces memory consumption, albeit with a moderate trade-off in accuracy. These findings collectively indicate that low-bit quantization effectively facilitates efficient CoT reasoning on Ascend NPUs, maintaining high model fidelity.
Meta-Learning Objectives for Preference Optimization
Evaluating preference optimization (PO) algorithms on LLM alignment is a challenging task that presents prohibitive costs, noise, and several variables like model size and hyper-parameters. In this work, we show that it is possible to gain insights on the efficacy of PO algorithm on simpler benchmarks. We design a diagnostic suite of MuJoCo tasks and datasets, which we use to systematically evaluate PO algorithms, establishing a more controlled and cheaper benchmark. We then propose a novel family of PO algorithms based on mirror descent, which we call Mirror Preference Optimization (MPO). Through evolutionary strategies, we search this class to discover algorithms specialized to specific properties of preference datasets, such as mixed-quality or noisy data. We demonstrate that our discovered PO algorithms outperform all known algorithms in the targeted MuJoCo settings. Finally, based on the insights gained from our MuJoCo experiments, we design a PO algorithm that significantly outperform existing baselines in an LLM alignment task.
Beyond Physical Labels: Redefining Domains for Robust WiFi-based Gesture Recognition
In this paper, we propose GesFi, a novel WiFi-based gesture recognition system that introduces WiFi latent domain mining to redefine domains directly from the data itself. GesFi first processes raw sensing data collected from WiFi receivers using CSI-ratio denoising, Short-Time Fast Fourier Transform, and visualization techniques to generate standardized input representations. It then employs class-wise adversarial learning to suppress gesture semantic and leverages unsupervised clustering to automatically uncover latent domain factors responsible for distributional shifts. These latent domains are then aligned through adversarial learning to support robust cross-domain generalization. Finally, the system is applied to the target environment for robust gesture inference. We deployed GesFi under both single-pair and multi-pair settings using commodity WiFi transceivers, and evaluated it across multiple public datasets and real-world environments. Compared to state-of-the-art baselines, GesFi achieves up to 78% and 50% performance improvements over existing adversarial methods, and consistently outperforms prior generalization approaches across most cross-domain tasks.
comment: Accepted by IMWUT/Ubicomp 2026
Revisiting Chain-of-Thought Prompting: Zero-shot Can Be Stronger than Few-shot
In-Context Learning (ICL) is an essential emergent ability of Large Language Models (LLMs), and recent studies introduce Chain-of-Thought (CoT) to exemplars of ICL to enhance the reasoning capability, especially in mathematics tasks. However, given the continuous advancement of model capabilities, it remains unclear whether CoT exemplars still benefit recent, stronger models in such tasks. Through systematic experiments, we find that for recent strong models such as the Qwen2.5 series, adding traditional CoT exemplars does not improve reasoning performance compared to Zero-Shot CoT. Instead, their primary function is to align the output format with human expectations. We further investigate the effectiveness of enhanced CoT exemplars, constructed using answers from advanced models such as \texttt{Qwen2.5-Max} and \texttt{DeepSeek-R1}. Experimental results indicate that these enhanced exemplars still fail to improve the model's reasoning performance. Further analysis reveals that models tend to ignore the exemplars and focus primarily on the instructions, leading to no observable gain in reasoning ability. Overall, our findings highlight the limitations of the current ICL+CoT framework in mathematical reasoning, calling for a re-examination of the ICL paradigm and the definition of exemplars.
comment: EMNLP25-findings camera_ready, 19 pages,22 figures
ASTGI: Adaptive Spatio-Temporal Graph Interactions for Irregular Multivariate Time Series Forecasting
Irregular multivariate time series (IMTS) are prevalent in critical domains like healthcare and finance, where accurate forecasting is vital for proactive decision-making. However, the asynchronous sampling and irregular intervals inherent to IMTS pose two core challenges for existing methods: (1) how to accurately represent the raw information of irregular time series without introducing data distortion, and (2) how to effectively capture the complex dynamic dependencies between observation points. To address these challenges, we propose the Adaptive Spatio-Temporal Graph Interaction (ASTGI) framework. Specifically, the framework first employs a Spatio-Temporal Point Representation module to encode each discrete observation as a point within a learnable spatio-temporal embedding space. Second, a Neighborhood-Adaptive Graph Construction module adaptively builds a causal graph for each point in the embedding space via nearest neighbor search. Subsequently, a Spatio-Temporal Dynamic Propagation module iteratively updates information on these adaptive causal graphs by generating messages and computing interaction weights based on the relative spatio-temporal positions between points. Finally, a Query Point-based Prediction module generates the final forecast by aggregating neighborhood information for a new query point and performing regression. Extensive experiments on multiple benchmark datasets demonstrate that ASTGI outperforms various state-of-the-art methods.
Federated Clustering: An Unsupervised Cluster-Wise Training for Decentralized Data Distributions
Federated Learning (FL) enables decentralized machine learning while preserving data privacy, making it ideal for sensitive applications where data cannot be shared. While FL has been widely studied in supervised contexts, its application to unsupervised learning remains underdeveloped. This work introduces FedCRef, a novel unsupervised federated learning method designed to uncover all underlying data distributions across decentralized clients without requiring labels. This task, known as Federated Clustering, presents challenges due to heterogeneous, non-uniform data distributions and the lack of centralized coordination. Unlike previous methods that assume a one-cluster-per-client setup or require prior knowledge of the number of clusters, FedCRef generalizes to multi-cluster-per-client scenarios. Clients iteratively refine their data partitions while discovering all distinct distributions in the system. The process combines local clustering, model exchange and evaluation via reconstruction error analysis, and collaborative refinement within federated groups of similar distributions to enhance clustering accuracy. Extensive evaluations on four public datasets (EMNIST, KMNIST, Fashion-MNIST and KMNIST49) show that FedCRef successfully identifies true global data distributions, achieving an average local accuracy of up to 95%. The method is also robust to noisy conditions, scalable, and lightweight, making it suitable for resource-constrained edge devices.
Mining Intrinsic Rewards from LLM Hidden States for Efficient Best-of-N Sampling
Best-of-N sampling is a powerful method for improving Large Language Model (LLM) performance, but it is often limited by its dependence on massive, text-based reward models. These models are not only computationally expensive but also data-hungry, requiring extensive labeled datasets for training. This creates a significant data challenge, as they overlook a rich, readily available data source: the LLM's own internal hidden states. To address this data and efficiency gap, we introduce SWIFT (Simple Weighted Intrinsic Feedback Technique), a novel and lightweight method that learns a reward function directly from the rich information embedded in LLM hidden states. Operating at the token embedding level, SWIFT employs simple linear layers to effectively distinguish between preferred and dispreferred generations, eliminating the need for computationally intensive text-based modeling. Extensive experiments on standard benchmarks show that SWIFT outperforms existing baselines (12.7% higher accuracy than EurusRM-7B on MATH dataset) while using less than 0.005% of their parameters. Its robust scalability, compatibility with certain closed-source models via logit access, and ability to combine with traditional reward models for additional performance highlight SWIFT's practical value and contribution to more efficient data-driven LLM post-training. Our code is available at https://github.com/aster2024/SWIFT .
comment: Accepted by KDD 2026 (Research Track). Project page: https://aster2024.github.io/swift-website/
GAPO: Robust Advantage Estimation for Real-World Code LLMs
Reinforcement learning (RL) is widely used for post-training large language models (LLMs) in code editing, where group-relative methods, such as GRPO, are popular due to their critic-free and normalized advantage estimation. However, in real-world code-editing scenarios, reward distributions are often skewed with unpredictable noise, leading to distorted advantage computation and increased rollout outliers. To address this issue, we propose Group Adaptive Policy Optimization (GAPO), which adaptively finds an interval with the highest SNR (Signal to Noise Ratio) per prompt and uses the median of that interval as an adaptive Q to replace the group mean in advantage calculation to reduce noise further. This adaptive Q robustly handles rollout noise while remaining plug-and-play and efficient. We evaluate GAPO on nine instruction-tuned LLMs (3B-14B) using a collected large dataset of 51,844 real-world, history-aware code-editing tasks spanning 10 programming languages. GAPO yields up to 4.35 in-domain (ID) and 5.30 out-of-domain (OOD) exact-match improvements over GRPO and its variant DAPO, while achieving lower clipping ratios and higher GPU throughput. Code: https://github.com/TsingZ0/verl-GAPO.
GRAPHGINI: Fostering Individual and Group Fairness in Graph Neural Networks
Graph Neural Networks (GNNs) have demonstrated impressive performance across various tasks, leading to their increased adoption in high-stakes decision-making systems. However, concerns have arisen about GNNs potentially generating unfair decisions for underprivileged groups or individuals when lacking fairness constraints. This work addresses this issue by introducing GraphGini, a novel approach that incorporates the Gini coefficient to enhance both individual and group fairness within the GNN framework. We rigorously establish that the Gini coefficient offers greater robustness and promotes equal opportunity among GNN outcomes, advantages not afforded by the prevailing Lipschitz constant methodology. Additionally, we employ the Nash social welfare program to ensure our solution yields a Pareto optimal distribution of group fairness. Extensive experimentation on real-world datasets demonstrates GraphGini's efficacy in significantly improving individual fairness compared to state-of-the-art methods while maintaining utility and group fairness.
Towards Trustworthy Multimodal Moderation via Policy-Aligned Reasoning and Hierarchical Labeling
Social platforms have revolutionized information sharing, but also accelerated the dissemination of harmful and policy-violating content. To ensure safety and compliance at scale, moderation systems must go beyond efficiency and offer accuracy and interpretability. However, current approaches largely rely on noisy, label-driven learning, lacking alignment with moderation rules and producing opaque decisions that hinder human review. Therefore, we propose Hierarchical Guard (Hi-Guard), a multimodal moderation framework that introduces a new policy-aligned decision paradigm. The term "Hierarchical" reflects two key aspects of our system design: (1) a hierarchical moderation pipeline, where a lightweight binary model first filters safe content and a stronger model handles fine-grained risk classification; and (2) a hierarchical taxonomy in the second stage, where the model performs path-based classification over a hierarchical taxonomy ranging from coarse to fine-grained levels. To ensure alignment with evolving moderation policies, Hi-Guard directly incorporates rule definitions into the model prompt. To further enhance structured prediction and reasoning, we introduce a multi-level soft-margin reward and optimize with Group Relative Policy Optimization (GRPO), penalizing semantically adjacent misclassifications and improving explanation quality. Extensive experiments and real-world deployment demonstrate that Hi-Guard achieves superior classification accuracy, generalization, and interpretability, paving the way toward scalable, transparent, and trustworthy content safety systems. Code is available at: https://github.com/lianqi1008/Hi-Guard.
comment: Accepted by KDD 2026. Code is available at https://github.com/lianqi1008/Hi-Guard
Avoiding the Price of Adaptivity: Inference in Linear Contextual Bandits via Stability
Statistical inference in contextual bandits is challenging due to the adaptive, non-i.i.d. nature of the data. A growing body of work shows that classical least-squares inference can fail under adaptive sampling, and that valid confidence intervals for linear functionals typically require an inflation of order $\sqrt{d \log T}$. This phenomenon -- often termed the price of adaptivity -- reflects the intrinsic difficulty of reliable inference under general contextual bandit policies. A key structural condition that overcomes this limitation is the stability condition of Lai and Wei, which requires the empirical feature covariance to converge to a deterministic limit. When stability holds, the ordinary least-squares estimator satisfies a central limit theorem, and classical Wald-type confidence intervals remain asymptotically valid under adaptation, without incurring the $\sqrt{d \log T}$ price of adaptivity. In this paper, we propose and analyze a regularized EXP4 algorithm for linear contextual bandits. Our first main result shows that this procedure satisfies the Lai--Wei stability condition and therefore admits valid Wald-type confidence intervals for linear functionals. We additionally provide quantitative rates of convergence in the associated central limit theorem. Our second result establishes that the same algorithm achieves regret guarantees that are minimax optimal up to logarithmic factors, demonstrating that stability and statistical efficiency can coexist within a single contextual bandit method. As an application of our theory, we show how it can be used to construct confidence intervals for the conditional average treatment effect (CATE) under adaptively collected data. Finally, we complement our theory with simulations illustrating the empirical normality of the resulting estimators and the sharpness of the corresponding confidence intervals.
comment: Revised version containing additional quantitative rate of convergence for the CLT
Low-rank variational dropout: Rank selection and uncertainty in adapters
Low-rank adaptation methods enable efficient task-specific updates in large neural networks, but provide no principled mechanism for uncertainty estimation or capacity control. We introduce Low-Rank Variational Dropout (LRVD), a Bayesian framework that operates directly in the space of low-rank adaptation. LRVD employs a scale-invariant, sparsity-inducing prior together with a structured variational family that ties uncertainty at the level of latent rank components, inducing rank-wise noise-to-signal ratios for automatic capacity selection. As a concrete instantiation, we apply LRVD to low-rank adaptation and obtain BayesLoRA, which jointly learns predictive uncertainty and the effective adapter rank with only O(r) additional parameters, where r is the adapter rank. We empirically show that BayesLoRA induces stable, non-arbitrary rank structure aligned with the intrinsic singular directions of the learned updates, and outperforms existing low-rank sparsification methods in accuracy at comparable training cost while delivering substantially improved predictive calibration at negligible additional overhead.
comment: 8 pages, 3 figures, 2 tables
FAQNAS: FLOPs-aware Hybrid Quantum Neural Architecture Search using Genetic Algorithm
Hybrid Quantum Neural Networks (HQNNs), which combine parameterized quantum circuits with classical neural layers, are emerging as promising models in the noisy intermediate-scale quantum (NISQ) era. While quantum circuits are not naturally measured in floating point operations (FLOPs), most HQNNs (in NISQ era) are still trained on classical simulators where FLOPs directly dictate runtime and scalability. Hence, FLOPs represent a practical and viable metric to measure the computational complexity of HQNNs. In this work, we introduce FAQNAS, a FLOPs-aware neural architecture search (NAS) framework that formulates HQNN design as a multi-objective optimization problem balancing accuracy and FLOPs. Unlike traditional approaches, FAQNAS explicitly incorporates FLOPs into the optimization objective, enabling the discovery of architectures that achieve strong performance while minimizing computational cost. Experiments on five benchmark datasets (MNIST, Digits, Wine, Breast Cancer, and Iris) show that quantum FLOPs dominate accuracy improvements, while classical FLOPs remain largely fixed. Pareto-optimal solutions reveal that competitive accuracy can often be achieved with significantly reduced computational cost compared to FLOPs-agnostic baselines. Our results establish FLOPs-awareness as a practical criterion for HQNN design in the NISQ era and as a scalable principle for future HQNN systems.
FinChain: A Symbolic Benchmark for Verifiable Chain-of-Thought Financial Reasoning
Multi-step symbolic reasoning is essential for robust financial analysis; yet, current benchmarks largely overlook this capability. Existing datasets such as FinQA and ConvFinQA emphasize final numerical answers while neglecting the intermediate reasoning required for transparency and verification. To address this gap, we introduce FINCHAIN, the first benchmark specifically designed for verifiable Chain-of-Thought (CoT) evaluation in finance. FINCHAIN spans 58 topics across 12 financial domains, each represented by parameterized symbolic templates with executable Python traces that enable fully machine-verifiable reasoning and scalable, contamination-free data generation. To assess reasoning capacity, we propose CHAINEVAL, a dynamic alignment measure that jointly evaluates both the final-answer correctness and the step-level reasoning consistency. Our evaluation of 26 leading LLMs reveals that even frontier proprietary LLMs exhibit clear limitations in symbolic financial reasoning, while domain-adapted and math-enhanced fine-tuned models can substantially narrow this gap. Overall, FINCHAIN exposes persistent weaknesses in multi-step financial reasoning and provides a foundation for developing trustworthy, interpretable, and verifiable financial AI.
comment: 24 pages, includes 12 figures and 9 tables; introduces the FinChain benchmark and ChainEval metric
Practical Poisoning Attacks against Retrieval-Augmented Generation
Large language models (LLMs) have demonstrated impressive natural language processing abilities but face challenges such as hallucination and outdated knowledge. Retrieval-Augmented Generation (RAG) has emerged as a state-of-the-art approach to mitigate these issues. While RAG enhances LLM outputs, it remains vulnerable to poisoning attacks. Recent studies show that injecting poisoned text into the knowledge database can compromise RAG systems, but most existing attacks assume that the attacker can insert a sufficient number of poisoned texts per query to outnumber correct-answer texts in retrieval, an assumption that is often unrealistic. To address this limitation, we propose CorruptRAG, a practical poisoning attack against RAG systems in which the attacker injects only a single poisoned text, enhancing both feasibility and stealth. Extensive experiments conducted on multiple large-scale datasets demonstrate that CorruptRAG achieves higher attack success rates than existing baselines.
comment: To appear in ACM SACMAT 2026
Renormalizable Spectral-Shell Dynamics as the Origin of Neural Scaling Laws
Neural scaling laws and double-descent phenomena suggest that deep-network training obeys a simple macroscopic structure despite highly nonlinear optimization dynamics. We derive such structure directly from gradient descent in function space. For mean-squared error loss, the training error evolves as $\dot e_t=-M(t)e_t$ with $M(t)=J_{θ(t)}J_{θ(t)}^{\!*}$, a time-dependent self-adjoint operator induced by the network Jacobian. Using Kato perturbation theory, we obtain an exact system of coupled modewise ODEs in the instantaneous eigenbasis of $M(t)$. To extract macroscopic behavior, we introduce a logarithmic spectral-shell coarse-graining and track quadratic error energy across shells. Microscopic interactions within each shell cancel identically at the energy level, so shell energies evolve only through dissipation and external inter-shell interactions. We formalize this via a \emph{renormalizable shell-dynamics} assumption, under which cumulative microscopic effects reduce to a controlled net flux across shell boundaries. Assuming an effective power-law spectral transport in a relevant resolution range, the shell dynamics admits a self-similar solution with a moving resolution frontier and explicit scaling exponents. This framework explains neural scaling laws and double descent, and unifies lazy (NTK-like) training and feature learning as two limits of the same spectral-shell dynamics.
MoEMeta: Mixture-of-Experts Meta Learning for Few-Shot Relational Learning NeurIPS 2025
Few-shot knowledge graph relational learning seeks to perform reasoning over relations given only a limited number of training examples. While existing approaches largely adopt a meta-learning framework for enabling fast adaptation to new relations, they suffer from two key pitfalls. First, they learn relation meta-knowledge in isolation, failing to capture common relational patterns shared across tasks. Second, they struggle to effectively incorporate local, task-specific contexts crucial for rapid adaptation. To address these limitations, we propose MoEMeta, a novel meta-learning framework that disentangles globally shared knowledge from task-specific contexts to enable both effective model generalization and rapid adaptation. MoEMeta introduces two key innovations: (i) a mixture-of-experts (MoE) model that learns globally shared relational prototypes to enhance generalization, and (ii) a task-tailored adaptation mechanism that captures local contexts for fast task-specific adaptation. By balancing global generalization with local adaptability, MoEMeta significantly advances few-shot relational learning. Extensive experiments and analyses on three KG benchmarks show that MoEMeta consistently outperforms existing baselines, achieving state-of-the-art performance.
comment: Accepted by NeurIPS 2025
Blockchain-Enabled Privacy-Preserving Second-Order Federated Edge Learning in Personalized Healthcare
Federated learning (FL) is increasingly recognised for addressing security and privacy concerns in traditional cloud-centric machine learning (ML), particularly within personalised health monitoring such as wearable devices. By enabling global model training through localised policies, FL allows resource-constrained wearables to operate independently. However, conventional first-order FL approaches face several challenges in personalised model training due to the heterogeneous non-independent and identically distributed (non-iid) data by each individual's unique physiology and usage patterns. Recently, second-order FL approaches maintain the stability and consistency of non-iid datasets while improving personalised model training. This study proposes and develops a verifiable and auditable optimised second-order FL framework BFEL (blockchain enhanced federated edge learning) based on optimised FedCurv for personalised healthcare systems. FedCurv incorporates information about the importance of each parameter to each client's task (through fisher information matrix) which helps to preserve client-specific knowledge and reduce model drift during aggregation. Moreover, it minimizes communication rounds required to achieve a target precision convergence for each client device while effectively managing personalised training on non-iid and heterogeneous data. The incorporation of ethereum-based model aggregation ensures trust, verifiability, and auditability while public key encryption enhances privacy and security. Experimental results of federated CNNs and MLPs utilizing mnist, cifar-10, and PathMnist demonstrate framework's high efficiency, scalability, suitability for edge deployment on wearables, and significant reduction in communication cost.
Timely Information Updating for Mobile Devices Without and With ML Advice
This paper investigates an information update system in which a mobile device monitors a physical process and sends status updates to an access point (AP). A fundamental trade-off arises between the timeliness of the information maintained at the AP and the update cost incurred at the device. To address this trade-off, we propose an online algorithm that determines when to transmit updates using only available observations. The proposed algorithm asymptotically achieves the optimal competitive ratio against an adversary that can simultaneously manipulate multiple sources of uncertainty, including the operation duration, information staleness, update cost, and update opportunities. Furthermore, by incorporating machine learning (ML) advice of unknown reliability into the design, we develop an ML-augmented algorithm that asymptotically attains the optimal consistency-robustness trade-off, even when the adversary can additionally corrupt the ML advice. The optimal competitive ratio scales linearly with the range of update costs, but is unaffected by other sources of uncertainty. Moreover, an optimal competitive online algorithm exhibits a threshold-like response to the ML advice: it either fully trusts or completely ignores the ML advice, as partially trusting the advice cannot improve the consistency without severely degrading the robustness. Extensive simulations in stochastic settings further validate the theoretical findings in the adversarial environment.
comment: 23 pages, journal version of arXiv:1901.03137, submitted for possible journal publication
TRec: Egocentric Action Recognition using 2D Point Tracks
We present a novel approach for egocentric action recognition that leverages 2D point tracks as an additional motion cue. While most existing methods rely on RGB appearance, human pose estimation, or their combination, our work demonstrates that tracking randomly sampled image points across video frames can substantially improve recognition accuracy. Unlike prior approaches, we do not detect hands, objects, or interaction regions. Instead, we employ CoTracker to follow a set of randomly initialized points through each video and use the resulting trajectories, together with the corresponding image frames, as input to a Transformer-based recognition model. Surprisingly, our method achieves notable gains even when only the initial frame and its associated point tracks are provided, without incorporating the full video sequence. Experimental results confirm that integrating 2D point tracks consistently enhances performance compared to the same model trained without motion information, highlighting their potential as a lightweight yet effective representation for egocentric action understanding.
comment: submitted to ICPR 2026
Structure-preserving Lift & Learn: Scientific machine learning for nonlinear conservative partial differential equations
This work presents structure-preserving Lift & Learn, a scientific machine learning method that employs lifting variable transformations to learn structure-preserving reduced-order models for nonlinear partial differential equations (PDEs) with conservation laws. We propose a hybrid learning approach based on a recently developed energy-quadratization strategy that uses knowledge of the nonlinearity at the PDE level to derive an equivalent quadratic lifted system with quadratic system energy. The lifted dynamics obtained via energy quadratization are linear in the old variables, making model learning very effective in the lifted setting. Based on the lifted quadratic PDE model form, the proposed method derives quadratic reduced terms analytically and then uses those derived terms to formulate a constrained optimization problem to learn the remaining linear reduced operators in a structure-preserving way. The proposed hybrid learning approach yields computationally efficient quadratic reduced-order models that respect the underlying physics of the high-dimensional problem. We demonstrate the generalizability of quadratic models learned via the proposed structure-preserving Lift & Learn method through three numerical examples: the one-dimensional wave equation with exponential nonlinearity, the two-dimensional sine-Gordon equation, and the two-dimensional Klein-Gordon-Zakharov equations. The numerical results show that the proposed learning approach is competitive with the state-of-the-art structure-preserving data-driven model reduction method in terms of both accuracy and computational efficiency.
Taming Barren Plateaus in Arbitrary Parameterized Quantum Circuits without Sacrificing Expressibility
Quantum algorithms based on parameterized quantum circuits (PQCs) have enabled a wide range of applications on near-term quantum devices. However, existing PQC architectures face several challenges, among which the ``barren plateaus" phenomenon is particularly prominent. In such cases, the loss function concentrates exponentially with increasing system size, thereby hindering effective parameter optimization. To address this challenge, we propose a general and hardware-efficient method for eliminating barren plateaus in an arbitrary PQC. Specifically, our approach achieves this by inserting a layer of easily implementable quantum channels into the original PQC, each channel requiring only one ancilla qubit and four additional gates, yielding a modified PQC (MPQC) that is provably at least as expressive as the original PQC and, under mild assumptions, is guaranteed to be free from barren plateaus. Furthermore, by appropriately adjusting the structure of MPQCs, we rigorously prove that any parameter in the original PQC can be made trainable. Importantly, the absence of barren plateaus in MPQCs is robust against realistic noise, making our approach directly applicable to near-term quantum hardware. Numerical simulations demonstrate that MPQC effectively eliminates barren plateaus in PQCs for preparing thermal states of systems with up to 100 qubits and 2400 layers. Furthermore, in end-to-end simulations, MPQC significantly outperforms PQC in finding the ground-state energy of a complex Hamiltonian.
AutoL2S: Auto Long-Short Reasoning for Efficient Large Language Models
Reasoning-capable large language models (LLMs) achieve strong performance on complex tasks but often exhibit overthinking after distillation, generating unnecessarily long chain-of-thought (CoT) reasoning even for simple inputs and incurring high inference cost. However, naively shortening reasoning length can degrade reasoning accuracy, as concise reasoning may be insufficient for certain inputs and lacks explicit supervision. We propose Auto Long-Short Reasoning (AutoL2S), a distillation framework that empowers non-reasoning LLMs to think thoroughly but only when necessary. AutoL2S first learns a lightweight switching token with verified long-short CoTs to enable instance-wise long-short reasoning selection. Then it leverages long-short reasoning rollouts induced by a switching token in a GRPO-style loss to improve reasoning efficiency while maintaining accuracy. Experiments demonstrate that AutoL2S effectively reduces reasoning length up to 71% with minimal accuracy loss, yielding markedly better trade-off in token length and inference time while preserving accuracy.
Human-in-the-Loop Feature Selection Using Interpretable Kolmogorov-Arnold Network-based Double Deep Q-Network
Feature selection is critical for improving the performance and interpretability of machine learning models, particularly in high-dimensional spaces where complex feature interactions can reduce accuracy and increase computational demands. Existing approaches often rely on static feature subsets or manual intervention, limiting adaptability and scalability. However, dynamic, per-instance feature selection methods and model-specific interpretability in reinforcement learning remain underexplored. This study proposes a human-in-the-loop (HITL) feature selection framework integrated into a Double Deep Q-Network (DDQN) using a Kolmogorov-Arnold Network (KAN). Our novel approach leverages simulated human feedback and stochastic distribution-based sampling, specifically Beta, to iteratively refine feature subsets per data instance, improving flexibility in feature selection. The KAN-DDQN achieved notable test accuracies of 93% on MNIST and 83% on FashionMNIST, outperforming conventional MLP-DDQN models by up to 9%. The KAN-based model provided high interpretability via symbolic representation while using 4 times fewer neurons in the hidden layer than MLPs did. Comparatively, the models without feature selection achieved test accuracies of only 58% on MNIST and 64% on FashionMNIST, highlighting significant gains with our framework. We further validate scalability on CIFAR-10 and CIFAR-100, achieving up to 30% relative macro F1 improvement on MNIST and 5% on CIFAR-10, while reducing calibration error by 25%. Complexity analysis confirms real-time feasibility with latency below 1 ms and parameter counts under 0.02M. Pruning and visualization further enhanced model transparency by elucidating decision pathways. These findings present a scalable, interpretable solution for feature selection that is suitable for applications requiring real-time, adaptive decision-making with minimal human oversight.
ReLA: Representation Learning and Aggregation for Job Scheduling with Reinforcement Learning
Job scheduling is widely used in real-world manufacturing systems to assign ordered job operations to machines under various constraints. Existing solutions remain limited by long running time or insufficient schedule quality, especially when problem scale increases. In this paper, we propose ReLA, a reinforcement-learning (RL) scheduler built on structured representation learning and aggregation. ReLA first learns diverse representations from scheduling entities, including job operations and machines, using two intra-entity learning modules with self-attention and convolution and one inter-entity learning module with cross-attention. These modules are applied in a multi-scale architecture, and their outputs are aggregated to support RL decision-making. Across experiments on small, medium, and large job instances, ReLA achieves the best makespan in most tested settings over the latest solutions. On non-large instances, ReLA reduces the optimality gap of the SOTA baseline by 13.0%, while on large-scale instances it reduces the gap by 78.6%, with the average optimality gaps lowered to 7.3% and 2.1%, respectively. These results confirm that ReLA's learned representations and aggregation provide strong decision support for RL scheduling, and enable fast job completion and decision-making for real-world applications.
comment: 15 pages
AppellateGen: A Benchmark for Appellate Legal Judgment Generation
Legal judgment generation is a critical task in legal intelligence. However, existing research in legal judgment generation has predominantly focused on first-instance trials, relying on static fact-to-verdict mappings while neglecting the dialectical nature of appellate (second-instance) review. To address this, we introduce AppellateGen, a benchmark for second-instance legal judgment generation comprising 7,351 case pairs. The task requires models to draft legally binding judgments by reasoning over the initial verdict and evidentiary updates, thereby modeling the causal dependency between trial stages. We further propose a judicial Standard Operating Procedure (SOP)-based Legal Multi-Agent System (SLMAS) to simulate judicial workflows, which decomposes the generation process into discrete stages of issue identification, retrieval, and drafting. Experimental results indicate that while SLMAS improves logical consistency, the complexity of appellate reasoning remains a substantial challenge for current LLMs. The dataset and code are publicly available at: https://anonymous.4open.science/r/AppellateGen-5763.
comment: 15 pages, 4 figures, 3 tables
Enhancing Graph Representations with Neighborhood-Contextualized Message-Passing
Graph neural networks (GNNs) have become an indispensable tool for analyzing relational data. Classical GNNs are broadly classified into three variants: convolutional, attentional, and message-passing. While the standard message-passing variant is expressive, its typical pair-wise messages only consider the features of the center node and each neighboring node individually. This design fails to incorporate contextual information contained within the broader local neighborhood, potentially hindering its ability to learn complex relationships within the entire set of neighboring nodes. To address this limitation, this work first formalizes the concept of neighborhood-contextualization, rooted in a key property of the attentional variant. This then serves as the foundation for generalizing the message-passing variant to the proposed neighborhood-contextualized message-passing (NCMP) framework. To demonstrate its utility, a simple, practical, and efficient method to parametrize and operationalize NCMP is presented, leading to the development of the proposed Soft-Isomorphic Neighborhood-Contextualized Graph Convolution Network (SINC-GCN). Across a diverse set of synthetic and benchmark GNN datasets, SINC-GCN demonstrates competitive performance against baseline GNN models, highlighting its expressivity and efficiency. Notably, it also delivers substantial and statistically significant performance gains in graph property prediction tasks, further underscoring the distinctive utility of neighborhood-contextualization. Overall, the paper lays the foundation for the NCMP framework as a practical path toward enhancing the graph representational power of classical GNNs.
Reliable Grid Forecasting: State Space Models for Safety-Critical Energy Systems
Accurate grid load forecasting is safety-critical: under-predictions risk supply shortfalls, while symmetric error metrics mask this operational asymmetry. We introduce a grid-specific evaluation framework (Asymmetric MAPE, Under-Prediction Rate, and Reserve Margin) that directly measures operational risk rather than statistical accuracy alone. Using this framework, we conduct a systematic evaluation of Mamba-based State Space Models for California grid forecasting on a weather-aligned CA ISO-TAC dataset spanning Nov 2023 to Nov 2025 (84,498 hourly records across 5 transmission areas). Our analysis reveals that standard accuracy metrics are poor proxies for operational safety: models with identical MAPE can require vastly different reserve margins. We demonstrate that forecast errors are weakly but statistically significantly associated with temperature (r = 0.16), motivating weather-aware modeling rather than loss function modification alone. The S-Mamba model achieves the lowest 99.5th-percentile reserve margin (14.12 percent) compared to 16.66 percent for iTransformer, demonstrating superior forecast reliability under a 99.5th-percentile tail-risk reserve proxy.
comment: 25 pages, 7 figures, 8 tables
Convergence of Sign-based Random Reshuffling Algorithms for Nonconvex Optimization
signSGD is popular in nonconvex optimization due to its communication efficiency. Yet, existing analyses typically assume data are sampled with replacement in each iteration, contradicting a common practical implementation where data are randomly reshuffled and sequentially fed into the algorithm. This gap leaves the theoretical understanding of the more practical algorithm, signSGD with random reshuffling (SignRR), largely unexplored. We develop the first analysis of SignRR to identify the core technical challenge that prevents a thorough convergence analysis of this method. In particular, given a dataset of size $n$ and $T$ epochs, we show that the expected gradient norm of SignRR is upper bounded by $O(\log(nT)/\sqrt{nT} + σ)$, where $σ$ is the averaged conditional mean square error that may not vanish. To tackle this limitation, we develop two new sign-based algorithms under random reshuffling: SignRVR, which incorporates variance-reduced gradients, and SignRVM, which integrates momentum-based updates. Both algorithms achieve a faster convergence rate of ${O}(\log(nT)/\sqrt{nT} +\log(nT)\sqrt{n}/\sqrt{T})$. We further extend our algorithms to a distributed setting, with a convergence rate of ${O}(\log(n_0T)/\sqrt{n_0T} +\log (n_0T)\sqrt{n_0}/\sqrt{T})$, where $n_0$ is the size of the dataset of a single machine. These results mark the first step towards the theoretical understanding of practical implementation of sign-based optimization algorithms. Finally, we back up our theoretical findings through experiments on simulated and real-world problems, verifying that randomly reshuffled sign methods match or surpass existing baselines.
comment: 37 pages, 5 figures
KVmix: Gradient-Based Layer Importance-Aware Mixed-Precision Quantization for KV Cache AAAI 2026
The high memory demands of the Key-Value (KV) Cache during the inference of Large Language Models (LLMs) severely restrict their deployment in resource-constrained platforms. Quantization can effectively alleviate the memory pressure caused by KV Cache. However, existing methods either rely on static one-size-fits-all precision allocation or fail to dynamically prioritize critical KV in long-context tasks, forcing memory-accuracy-throughput tradeoffs. In this work, we propose a novel mixed-precision quantization method for KV Cache named KVmix. KVmix leverages gradient-based importance analysis to evaluate how individual Key and Value projection matrices affect the model loss, enabling layer-specific bit-width allocation for mix-precision quantization. It dynamically prioritizes higher precision for important layers while aggressively quantizing less influential ones, achieving a tunable balance between accuracy and efficiency. KVmix also introduces a dynamic long-context optimization strategy that adaptively keeps full-precision KV pairs for recent pivotal tokens and compresses older ones, achieving high-quality sequence generation with low memory usage. Additionally, KVmix provides efficient low-bit quantization and CUDA kernels to optimize computational overhead. On LLMs such as Llama and Mistral, KVmix achieves near-lossless inference performance with extremely low quantization configuration (Key 2.19bit Value 2.38bit), while delivering a remarkable 4.9x memory compression and a 5.3x speedup in inference throughput.
comment: AAAI 2026
Current Agents Fail to Leverage World Model as Tool for Foresight
Agents built on vision-language models increasingly face tasks that demand anticipating future states rather than relying on short-horizon reasoning. Generative world models offer a promising remedy: agents could use them as external simulators to foresee outcomes before acting. This paper empirically examines whether current agents can leverage such world models as tools to enhance their cognition. Across diverse agentic and visual question answering tasks, we observe that some agents rarely invoke simulation (fewer than 1%), frequently misuse predicted rollouts (approximately 15%), and often exhibit inconsistent or even degraded performance (up to 5%) when simulation is available or enforced. Attribution analysis further indicates that the primary bottleneck lies in the agents' capacity to decide when to simulate, how to interpret predicted outcomes, and how to integrate foresight into downstream reasoning. These findings underscore the need for mechanisms that foster calibrated, strategic interaction with world models, paving the way toward more reliable anticipatory cognition in future agent systems.
comment: 36 Pages, 13 Figures, 17 Tables (Meta data updated)
Tiny Recursive Models on ARC-AGI-1: Inductive Biases, Identity Conditioning, and Test-Time Compute
Tiny Recursive Models (TRM) were proposed as a parameter-efficient alternative to large language models for solving Abstraction and Reasoning Corpus (ARC) style tasks. The original work reports strong performance and suggests that recursive latent updates enable non-trivial reasoning, but it remains unclear how much of this performance stems from architecture, test-time compute, or task-specific priors. In this technical note, we empirically analyze the ARC Prize TRM checkpoint on ARC-AGI-1 and report four behavioral findings and an efficiency comparison. First, we show that test-time augmentation and majority-vote ensembling account for a substantial fraction of reported performance: the 1000-sample voting pipeline improves Pass@1 by about 11 percentage points over single-pass canonical inference. Second, a puzzle-identity ablation reveals strict dependence on task identifiers: replacing the correct puzzle ID with a blank or random token yields zero accuracy. Third, a recursion trajectory analysis shows that most of the final accuracy is achieved at the first recursion step and that performance saturates after few latent updates, indicating shallow effective recursion. Fourth, early-stage training experiments under canonical versus heavy augmentation regimes suggest that heavy augmentation broadens the distribution of candidate solutions and improves multi-sample success. Finally, we compare TRM with a naive QLoRA fine-tune of Llama 3 8B on canonical ARC-AGI-1, finding that TRM's non-autoregressive design achieves much higher throughput and substantially lower memory usage in this setting. Overall, TRM's ARC-AGI-1 performance appears to arise from an interaction between efficiency, task-specific conditioning, and aggressive test-time compute rather than deep internal reasoning.
comment: 13 pages, 0 figures, 6 tables
Exploring the limits of strong membership inference attacks on large language models NeurIPS 2025
State-of-the-art membership inference attacks (MIAs) typically require training many reference models, making it difficult to scale these attacks to large pre-trained language models (LLMs). As a result, prior research has either relied on weaker attacks that avoid training references (e.g., fine-tuning attacks), or on stronger attacks applied to small models and datasets. However, weaker attacks have been shown to be brittle and insights from strong attacks in simplified settings do not translate to today's LLMs. These challenges prompt an important question: are the limitations observed in prior work due to attack design choices, or are MIAs fundamentally ineffective on LLMs? We address this question by scaling LiRA--one of the strongest MIAs--to GPT-2 architectures ranging from 10M to 1B parameters, training references on over 20B tokens from the C4 dataset. Our results advance the understanding of MIAs on LLMs in four key ways. While (1) strong MIAs can succeed on pre-trained LLMs, (2) their effectiveness, remains limited (e.g., AUC<0.7) in practical settings. (3) Even when strong MIAs achieve better-than-random AUC, aggregate metrics can conceal substantial per-sample MIA decision instability: due to training randomness, many decisions are so unstable that they are statistically indistinguishable from a coin flip. Finally, (4) the relationship between MIA success and related LLM privacy metrics is not as straightforward as prior work has suggested.
comment: NeurIPS 2025
PEAR: Planner-Executor Agent Robustness Benchmark
Large Language Model (LLM)-based Multi-Agent Systems (MAS) have emerged as a powerful paradigm for tackling complex, multi-step tasks across diverse domains. However, despite their impressive capabilities, MAS remain susceptible to adversarial manipulation. Existing studies typically examine isolated attack surfaces or specific scenarios, leaving a lack of holistic understanding of MAS vulnerabilities. To bridge this gap, we introduce PEAR, a benchmark for systematically evaluating both the utility and vulnerability of planner-executor MAS. While compatible with various MAS architectures, our benchmark focuses on the planner-executor structure, which is a practical and widely adopted design. Through extensive experiments, we find that (1) a weak planner degrades overall clean task performance more severely than a weak executor; (2) while a memory module is essential for the planner, having a memory module for the executor does not impact the clean task performance; (3) there exists a trade-off between task performance and robustness; and (4) attacks targeting the planner are particularly effective at misleading the system. These findings offer actionable insights for enhancing the robustness of MAS and lay the groundwork for principled defenses in multi-agent settings.
comment: arXiv admin note: This submission has been withdrawn by arXiv administrators due to incorrect authorship. Author list truncated
Mirror Descent Actor Critic via Bounded Advantage Learning
Regularization is a core component of recent Reinforcement Learning (RL) algorithms. Mirror Descent Value Iteration (MDVI) uses both Kullback-Leibler divergence and entropy as regularizers in its value and policy updates. Despite its empirical success in discrete action domains and strong theoretical guarantees, the performance of KL-entropy-regularized methods does not surpass that of a strong entropy-only-regularized method in continuous action domains. In this study, we propose Mirror Descent Actor Critic (MDAC) as an actor-critic style instantiation of MDVI for continuous action domains, and show that its empirical performance is significantly boosted by bounding the actor's log-density terms in the critic's loss function, compared to a non-bounded naive instantiation. Further, we relate MDAC to Advantage Learning by recalling that the actor's log-probability is equal to the regularized advantage function in tabular cases, and theoretically discuss when and why bounding the advantage terms is validated and beneficial. We also empirically explore effective choices for the bounding functions, and show that MDAC performs better than strong non-regularized and entropy-only-regularized methods with an appropriate choice of the bounding functions.
OpenEM: Large-scale multi-structural 3D datasets for electromagnetic methods
Electromagnetic methods have become one of the most widely used techniques in geological exploration. With the remarkable success of deep learning, applying such techniques to EM methods has emerged as a promising research direction to overcome the limitations of conventional approaches. The effectiveness of deep learning methods depends heavily on the quality of datasets, which directly influences model performance and generalization ability. Existing application studies often construct datasets from random one-dimensional or structurally simple three-dimensional models, which fail to represent the real geological environments. Furthermore, the absence of standardized, publicly 3D geoelectric datasets continues to hinder progress in deep learning based EM exploration. To address these limitations, we present OpenEM, a large-scale, multi-structural three-dimensional geoelectric dataset that encompasses a broad range of geologically plausible subsurface structures. OpenEM consists of nine categories of geoelectric models, spanning from simple configurations with anomalous bodies in half-space to more complex structures such as flat layers, folded layers, flat faults, curved faults, and their corresponding variants with anomalous bodies. Since three-dimensional forward modeling in electromagnetics is extremely time-consuming, we further developed a deep learning based fast forward modeling approach for OpenEM, enabling efficient and reliable forward modeling across the entire dataset. This capability allows OpenEM to be rapidly deployed for a wide range of tasks. OpenEM provides a unified, comprehensive, and large-scale dataset for common EM exploration systems to accelerate the application of deep learning in electromagnetic methods.The complete dataset is publicly available at https://doi.org/10.5281/zenodo.17141981.
Green's-Function Spherical Neural Operators for Biological Heterogeneity
Spherical deep learning has been widely applied to a broad range of real-world problems. Existing approaches often face challenges in balancing strong spherical geometric inductive biases with the need to model real-world heterogeneity. To solve this while retaining spherical geometry, we first introduce a designable Green's function framework (DGF) to provide new spherical operator solution strategy: Design systematic Green's functions under rotational group. Based on DGF, to model biological heterogeneity, we propose Green's-Function Spherical Neural Operator (GSNO) fusing 3 operator solutions: (1) Equivariant Solution derived from Equivariant Green's Function for symmetry-consistent modeling; (2) Invariant Solution derived from Invariant Green's Function to eliminate nuisance heterogeneity, e.g., consistent background field; (3) Anisotropic Solution derived from Anisotropic Green's Function to model anisotropic systems, especially fibers with preferred direction. Therefore, the resulting model, GSNO can adapt to real-world heterogeneous systems with nuisance variability and anisotropy while retaining spectral efficiency. Evaluations on spherical MNIST, Shallow Water Equation, diffusion MRI fiber prediction, cortical parcellation and molecule structure modeling demonstrate the superiority of GSNO.
PHOTON: Hierarchical Autoregressive Modeling for Lightspeed and Memory-Efficient Language Generation
Transformers operate as horizontal token-by-token scanners; at each generation step, attending to an ever-growing sequence of token-level states. This access pattern increases prefill latency and makes long-context decoding more memory-bound, as KV-cache reads and writes dominate inference time over arithmetic operations. We propose Parallel Hierarchical Operation for TOp-down Networks (PHOTON), a hierarchical autoregressive model that replaces horizontal scanning with vertical, multi-resolution context scanning. PHOTON maintains a hierarchy of latent streams: a bottom-up encoder compresses tokens into low-rate contextual states, while lightweight top-down decoders reconstruct fine-grained token representations in parallel. We further introduce recursive generation that updates only the coarsest latent stream and eliminates bottom-up re-encoding. Experimental results show that PHOTON is superior to competitive Transformer-based language models regarding the throughput-quality trade-off, providing advantages in long-context and multi-query tasks. In particular, this reduces decode-time KV-cache traffic, yielding up to $10^{3}\times$ higher throughput per unit memory.
comment: 17 pages, 10 figures
Realised Volatility Forecasting: Machine Learning via Financial Word Embedding
We examine whether news can improve realised volatility forecasting using a modern yet operationally simple NLP framework. News text is transformed into embedding-based representations, and forecasts are evaluated both as a standalone, news-only model and as a complement to standard realised volatility benchmarks. In out-of-sample tests on a cross-section of stocks, news contains useful predictive information, with stronger effects for stock-related content and during high volatility days. Combining the news-based signal with a leading benchmark yields consistent improvements in statistical performance and economically meaningful gains, while explainability analysis highlights the news themes most relevant for volatility.
What Drives Success in Physical Planning with Joint-Embedding Predictive World Models?
A long-standing challenge in AI is to develop agents capable of solving a wide range of physical tasks and generalizing to new, unseen tasks and environments. A popular recent approach involves training a world model from state-action trajectories and subsequently use it with a planning algorithm to solve new tasks. Planning is commonly performed in the input space, but a recent family of methods has introduced planning algorithms that optimize in the learned representation space of the world model, with the promise that abstracting irrelevant details yields more efficient planning. In this work, we characterize models from this family as JEPA-WMs and investigate the technical choices that make algorithms from this class work. We propose a comprehensive study of several key components with the objective of finding the optimal approach within the family. We conducted experiments using both simulated environments and real-world robotic data, and studied how the model architecture, the training objective, and the planning algorithm affect planning success. We combine our findings to propose a model that outperforms two established baselines, DINO-WM and V-JEPA-2-AC, in both navigation and manipulation tasks. Code, data and checkpoints are available at https://github.com/facebookresearch/jepa-wms.
comment: V2 of the article: - Added AdaLN-zero - Added table comparing JEPA-WMs with baselines with std translating per-seed variability only, no variability across epochs - Reordered figures in main body of the paper
Dynamic and Adaptive Feature Generation with LLM IJCAI 2025
The representation of feature space is a crucial environment where data points get vectorized and embedded for subsequent modeling. Thus the efficacy of machine learning (ML) algorithms is closely related to the quality of feature engineering. As one of the most important techniques, feature generation transforms raw data into an optimized feature space conducive to model training and further refines the space. Despite the advancements in automated feature engineering and feature generation, current methodologies often suffer from three fundamental issues: lack of explainability, limited applicability, and inflexible strategy. These shortcomings frequently hinder and limit the deployment of ML models across varied scenarios. Our research introduces a novel approach adopting large language models (LLMs) and feature-generating prompts to address these challenges. We propose a dynamic and adaptive feature generation method that enhances the interpretability of the feature generation process. Our approach broadens the applicability across various data types and tasks and offers advantages over strategic flexibility. A broad range of experiments showcases that our approach is significantly superior to existing methods.
comment: Accepted by IJCAI 2025
seq-JEPA: Autoregressive Predictive Learning of Invariant-Equivariant World Models
Joint-embedding self-supervised learning (SSL) commonly relies on transformations such as data augmentation and masking to learn visual representations, a task achieved by enforcing invariance or equivariance with respect to these transformations applied to two views of an image. This dominant two-view paradigm in SSL often limits the flexibility of learned representations for downstream adaptation by creating performance trade-offs between high-level invariance-demanding tasks such as image classification and more fine-grained equivariance-related tasks. In this work, we propose \emph{seq-JEPA}, a world modeling framework that introduces architectural inductive biases into joint-embedding predictive architectures to resolve this trade-off. Without relying on dual equivariance predictors or loss terms, seq-JEPA simultaneously learns two architecturally separate representations for equivariance- and invariance-demanding tasks. To do so, our model processes short sequences of different views (observations) of inputs. Each encoded view is concatenated with an embedding of the relative transformation (action) that produces the next observation in the sequence. These view-action pairs are passed through a transformer encoder that outputs an aggregate representation. A predictor head then conditions this aggregate representation on the upcoming action to predict the representation of the next observation. Empirically, seq-JEPA demonstrates strong performance on both equivariance- and invariance-demanding downstream tasks without sacrificing one for the other. Furthermore, it excels at tasks that inherently require aggregating a sequence of observations, such as path integration across actions and predictive learning across eye movements.
Cmprsr: Abstractive Token-Level Question-Agnostic Prompt Compressor
Motivated by the high costs of using black-box Large Language Models (LLMs), we introduce a novel prompt compression paradigm, under which we use smaller LLMs to compress inputs for the larger ones. We present the first comprehensive LLM-as-a-compressor benchmark spanning 25 open- and closed-source models, which reveals significant disparity in models' compression ability in terms of (i) preserving semantically important information (ii) following the user-provided compression rate (CR). We further improve the performance of gpt-4.1-mini, the best overall vanilla compressor, with Textgrad-based compression meta-prompt optimization. We also identify the most promising open-source vanilla LLM - Qwen3-4B - and post-train it with a combination of supervised fine-tuning (SFT) and Group Relative Policy Optimization (GRPO), pursuing the dual objective of CR adherence and maximizing the downstream task performance. We call the resulting model Cmprsr and demonstrate its superiority over both extractive and vanilla abstractive compression across the entire range of compression rates on lengthy inputs from MeetingBank and LongBench as well as short prompts from GSM8k. The latter highlights Cmprsr's generalizability across varying input lengths and domains. Moreover, Cmprsr closely follows the requested compression rate, offering fine control over the cost-quality trade-off.
Confidence-gated training for efficient early-exit neural networks
Early-exit neural networks reduce inference cost by enabling confident predictions at intermediate layers. However, joint training often leads to gradient interference, with deeper classifiers dominating optimization. We propose Confidence-Gated Training (CGT), a paradigm that conditionally propagates gradients from deeper exits only when preceding exits fail. This encourages shallow classifiers to act as primary decision points while reserving deeper layers for harder inputs. By aligning training with the inference-time policy, CGT mitigates overthinking, improves early-exit accuracy, and preserves efficiency. Experiments on the Indian Pines and Fashion-MNIST benchmarks show that CGT lowers average inference cost while improving overall accuracy, offering a practical solution for deploying deep models in resource-constrained environments.
Grasp the Graph (GtG) 2.0: Ensemble of Graph Neural Networks for High-Precision Grasp Pose Detection in Clutter
Grasp pose detection in cluttered, real-world environments remains a significant challenge due to noisy and incomplete sensory data combined with complex object geometries. This paper introduces Grasp the Graph 2.0 (GtG 2.0) method, a lightweight yet highly effective hypothesis-and-test robotics grasping framework which leverages an ensemble of Graph Neural Networks for efficient geometric reasoning from point cloud data. Building on the success of GtG 1.0, which demonstrated the potential of Graph Neural Networks for grasp detection but was limited by assumptions of complete, noise-free point clouds and 4-Dof grasping, GtG 2.0 employs a conventional Grasp Pose Generator to efficiently produce 7-Dof grasp candidates. Candidates are assessed with an ensemble Graph Neural Network model which includes points within the gripper jaws (inside points) and surrounding contextual points (outside points). This improved representation boosts grasp detection performance over previous methods using the same generator. GtG 2.0 shows up to a 35% improvement in Average Precision on the GraspNet-1Billion benchmark compared to hypothesis-and-test and Graph Neural Network-based methods, ranking it among the top three frameworks. Experiments with a 3-Dof Delta Parallel robot and Kinect-v1 camera show a success rate of 91% and a clutter completion rate of 100%, demonstrating its flexibility and reliability.
comment: 20 pages
FedScalar: A Communication efficient Federated Learning
Federated learning (FL) has gained considerable popularity for distributed machine learning due to its ability to preserve the privacy of participating agents by eliminating the need for data aggregation. Nevertheless, communication costs between agents and the central server in FL are substantial in large-scale problems and remain a limiting factor for this algorithm. This paper introduces an innovative algorithm, called FedScalar, within the FL framework aimed at improving communication efficiency. Unlike traditional FL methods that require agents to send high-dimensional vectors to the server, FedScalar enables agents to communicate updates using only two scalar values. Each agent encodes its updated model parameters into a scalar via the inner product between its local update difference and a random vector, which is transmitted to the server along with the agent's local random seed value. The server then averages the received scalar values and decodes the information by projecting the averaged scalar onto the regenerated random vector using the corresponding agent seed values. Our method thereby significantly reduces communication overhead. Technically, we demonstrate that the proposed algorithm achieves a convergence rate of O(d/\sqrt(K)) to a stationary point for smooth, non-convex loss functions. Additionally, our analysis shows that changing the underlying distribution of the random vector generated by the server from Gaussian to Rademacher distribution reduces the variance during the aggregation step of the algorithm. Finally, we validate the performance and communication efficiency of our algorithm with numerical simulations.
Variance-Reduced Diffusion Sampling via Target Score Identity
We study variance reduction for score estimation and diffusion-based sampling in settings where the clean (target) score is available or can be approximated. Starting from the Target Score Identity (TSI), which expresses the noisy marginal score as a conditional expectation of the target score under the forward diffusion, we develop: (i) a plug-and-play nonparametric self-normalized importance sampling estimator compatible with standard reverse-time solvers, (ii) a variance-minimizing \emph{state- and time-dependent} blending rule between Tweedie-type and TSI estimators together with an anti-correlation analysis, (iii) a data-only extension based on locally fitted proxy scores, and (iv) a likelihood-tilting extension to Bayesian inverse problems. We also propose a \emph{Critic--Gate} distillation scheme that amortizes the state-dependent blending coefficient into a neural gate. Experiments on synthetic targets and PDE-governed inverse problems demonstrate improved sample quality for a fixed simulation budget.
comment: Added proper attribution to TSI literature
Dynamic and Distributed Routing in IoT Networks based on Multi-Objective Q-Learning
IoT networks often face conflicting routing goals such as maximizing packet delivery, minimizing delay, and conserving limited battery energy. These priorities can also change dynamically: for example, an emergency alert requires high reliability, while routine monitoring prioritizes energy efficiency to prolong network lifetime. Existing works, including many deep reinforcement learning approaches, are typically centralized and assume static objectives, making them slow to adapt when preferences shift. We propose a dynamic and fully distributed multi-objective Q-learning routing algorithm that learns multiple per-preference Q-tables in parallel and introduces a novel greedy interpolation policy to act near-optimally for unseen preferences without retraining or central coordination. A theoretical analysis further shows that the optimal value function is Lipschitz-continuous in the preference parameter, ensuring that the proposed greedy interpolation policy yields provably near-optimal behavior. Simulations show that our approach adapts in real time to shifting priorities and achieves up to 80-90\% lower energy consumption and more than 2-5x higher cumulative rewards and packet delivery compared to six baseline protocols, under dynamic and distributed settings. Sensitivity analysis across varying preference window lengths confirms that the proposed DPQ framework consistently achieves higher composite reward than all baseline methods, demonstrating robustness to changes in operating conditions.
Normalized Conditional Mutual Information Surrogate Loss for Deep Neural Classifiers
In this paper, we propose a novel information theoretic surrogate loss; normalized conditional mutual information (NCMI); as a drop in alternative to the de facto cross-entropy (CE) for training deep neural network (DNN) based classifiers. We first observe that the model's NCMI is inversely proportional to its accuracy. Building on this insight, we introduce an alternating algorithm to efficiently minimize the NCMI. Across image recognition and whole-slide imaging (WSI) subtyping benchmarks, NCMI-trained models surpass state of the art losses by substantial margins at a computational cost comparable to that of CE. Notably, on ImageNet, NCMI yields a 2.77% top-1 accuracy improvement with ResNet-50 comparing to the CE; on CAMELYON-17, replacing CE with NCMI improves the macro-F1 by 8.6% over the strongest baseline. Gains are consistent across various architectures and batch sizes, suggesting that NCMI is a practical and competitive alternative to CE.
comment: 8 pages, 4 figures
The Geometry of Grokking: Norm Minimization on the Zero-Loss Manifold
Grokking is a puzzling phenomenon in neural networks where full generalization occurs only after a substantial delay following the complete memorization of the training data. Previous research has linked this delayed generalization to representation learning driven by weight decay, but the precise underlying dynamics remain elusive. In this paper, we argue that post-memorization learning can be understood through the lens of constrained optimization: gradient descent effectively minimizes the weight norm on the zero-loss manifold. We formally prove this in the limit of infinitesimally small learning rates and weight decay coefficients. To further dissect this regime, we introduce an approximation that decouples the learning dynamics of a subset of parameters from the rest of the network. Applying this framework, we derive a closed-form expression for the post-memorization dynamics of the first layer in a two-layer network. Experiments confirm that simulating the training process using our predicted gradients reproduces both the delayed generalization and representation learning characteristic of grokking.
Graphics 9
Spacecube: A fast inverse hyperspectral georectification system
Hyperspectral cameras provide numerous advantages in terms of the utility of the data captured. They capture hundreds of data points per sample (pixel) instead of only the few of RGB or multispectral camera systems. Aerial systems sense such data remotely, but the data must be georectified to produce consistent images before analysis. We find the traditional direct georectification method to be slow, and it is prone to artifacts. To address its downsides, we propose Spacecube, a program that implements a complete hyperspectral georectification pipeline, including our own fast inverse georectification technique, using OpenGL graphics programming technologies. Spacecube operates substantially faster than real-time and eliminates pixel coverage artifacts. It facilitates high quality interactive viewing, data exploration, and export of final products. We release Spacecube's source code publicly for the community to use.
comment: 9 pages, 16 figures. source code available after peer-reviewed publication
GenAI-DrawIO-Creator: A Framework for Automated Diagram Generation
Diagrams are crucial for communicating complex information, yet creating and modifying them remains a labor-intensive task. We present GenAI-DrawIO-Creator, a novel framework that leverages Large Language Models (LLMs) to automate diagram generation and manipulation in the structured XML format used by draw.io. Our system integrates Claude 3.7 to reason about structured visual data and produce valid diagram representations. Key contributions include a high-level system design enabling real-time diagram updates, specialized prompt engineering and error-checking to ensure well-formed XML outputs. We demonstrate a working prototype capable of generating accurate diagrams (such as network architectures and flowcharts) from natural language or code, and even replicating diagrams from images. Simulated evaluations show that our approach significantly reduces diagram creation time and produces outputs with high structural fidelity. Our results highlight the promise of Claude 3.7 in handling structured visual reasoning tasks and lay the groundwork for future research in AI-assisted diagramming applications.
LooseRoPE: Content-aware Attention Manipulation for Semantic Harmonization
Recent diffusion-based image editing methods commonly rely on text or high-level instructions to guide the generation process, offering intuitive but coarse control. In contrast, we focus on explicit, prompt-free editing, where the user directly specifies the modification by cropping and pasting an object or sub-object into a chosen location within an image. This operation affords precise spatial and visual control, yet it introduces a fundamental challenge: preserving the identity of the pasted object while harmonizing it with its new context. We observe that attention maps in diffusion-based editing models inherently govern whether image regions are preserved or adapted for coherence. Building on this insight, we introduce LooseRoPE, a saliency-guided modulation of rotational positional encoding (RoPE) that loosens the positional constraints to continuously control the attention field of view. By relaxing RoPE in this manner, our method smoothly steers the model's focus between faithful preservation of the input image and coherent harmonization of the inserted object, enabling a balanced trade-off between identity retention and contextual blending. Our approach provides a flexible and intuitive framework for image editing, achieving seamless compositional results without textual descriptions or complex user input.
comment: Project Page: https://snap-research.github.io/LooseRoPE/
From Idea to Co-Creation: A Planner-Actor-Critic Framework for Agent Augmented 3D Modeling
We present a framework that extends the Actor-Critic architecture to creative 3D modeling through multi-agent self-reflection and human-in-the-loop supervision. While existing approaches rely on single-prompt agents that directly execute modeling commands via tools like Blender MCP, our approach introduces a Planner-Actor-Critic architecture. In this design, the Planner coordinates modeling steps, the Actor executes them, and the Critic provides iterative feedback, while human users act as supervisors and advisors throughout the process. Through systematic comparison between single-prompt modeling and our reflective multi-agent approach, we demonstrate improvements in geometric accuracy, aesthetic quality, and task completion rates across diverse 3D modeling scenarios. Our evaluation reveals that critic-guided reflection, combined with human supervisory input, reduces modeling errors and increases complexity and quality of the result compared to direct single-prompt execution. This work establishes that structured agent self-reflection, when augmented by human oversight and advisory guidance, produces higher-quality 3D models while maintaining efficient workflow integration through real-time Blender synchronization.
Differential Locally Injective Grid Deformation and Optimization
Grids are a general representation for capturing regularly-spaced information, but since they are uniform in space, they cannot dynamically allocate resolution to regions with varying levels of detail. There has been some exploration of indirect grid adaptivity by replacing uniform grids with tetrahedral meshes or locally subdivided grids, as inversion-free deformation of grids is difficult. This work develops an inversion-free grid deformation method that optimizes differential weight to adaptively compress space. The method is the first to optimize grid vertices as differential elements using vertex-colorings, decomposing a dense input linear system into many independent sets of vertices which can be optimized concurrently. This method is then also extended to optimize UV meshes with convex boundaries. Experimentally, this differential representation leads to a smoother optimization manifold than updating extrinsic vertex coordinates. By optimizing each sets of vertices in a coloring separately, local injectivity checks are straightforward since the valid region for each vertex is fixed. This enables the use of optimizers such as Adam, as each vertex can be optimized independently of other vertices. We demonstrate the generality and efficacy of this approach through applications in isosurface extraction for inverse rendering, image compaction, and mesh parameterization.
Sketch&Patch++: Efficient Structure-Aware 3D Gaussian Representation
We observe that Gaussians exhibit distinct roles and characteristics analogous to traditional artistic techniques -- like how artists first sketch outlines before filling in broader areas with color, some Gaussians capture high-frequency features such as edges and contours, while others represent broader, smoother regions analogous to brush strokes that add volume and depth. Based on this observation, we propose a hybrid representation that categorizes Gaussians into (i) Sketch Gaussians, which represent high-frequency, boundary-defining features, and (ii) Patch Gaussians, which cover low-frequency, smooth regions. This semantic separation naturally enables layered progressive streaming, where the compact Sketch Gaussians establish the structural skeleton before Patch Gaussians incrementally refine volumetric detail. In this work, we extend our previous method to arbitrary 3D scenes by proposing a novel hierarchical adaptive categorization framework that operates directly on the 3DGS representation. Our approach employs multi-criteria density-based clustering, combined with adaptive quality-driven refinement. This method eliminates dependency on external 3D line primitives while ensuring optimal parametric encoding effectiveness. Our comprehensive evaluation across diverse scenes, including both man-made and natural environments, demonstrates that our method achieves up to 1.74 dB improvement in PSNR, 6.7% in SSIM, and 41.4% in LPIPS at equivalent model sizes compared to uniform pruning baselines. For indoor scenes, our method can maintain visual quality with only 0.5\% of the original model size. This structure-aware representation enables efficient storage, adaptive streaming, and rendering of high-fidelity 3D content across bandwidth-constrained networks and resource-limited devices.
Aplicación Gráfica para el estudio de un Modelo de Celda Electrolítica usando Técnicas de Visualización de Campos Vectoriales
The use of floating bipolar electrodes in copper electro-winning cells represents an emerging technology that promises economic and operational impacts. This thesis presents EWCellCAD, a computational tool designed for the simulation and analysis of these electrochemical systems. Based on the generalization and optimization of an existing 2D finite difference model for calculating electrical variables in rectangular cells, EWCellCAD implements a new 3D model capable of processing complex geometries, not necessarily rectangular, which also accelerates calculations by several orders of magnitude. At the same time, a new analytical method for estimating potentials in floating electrodes is introduced, overcoming the inaccuracies of previous heuristic approaches. The analysis of the results is supported by an interactive visualization technique of three-dimensional vector fields as flow lines.
comment: BSc Thesis in Electronic Engineering (part of the research project FONDECYT 1970955), Universidad de Concepción, 2000, 105 pages, 22 figures, in Spanish. Related publication: arXiv:1001.3974 [cs.GR]. Metadata-only update: Author name standardized (maternal surname removed; paternal surname as sole last name). Title orthography corrected with TeX accents. Abstract refined
CADmium: Fine-Tuning Code Language Models for Text-Driven Sequential CAD Design
Computer-aided design (CAD) is the digital construction of 2D and 3D objects, and is central to a wide range of engineering and manufacturing applications like automobile and aviation. Despite its importance, CAD modeling remains largely a time-intensive, manual task. Recent works have attempted to automate this process with small transformer-based models and handcrafted CAD sequence representations. However, there has been little effort to leverage the potential of large language models (LLMs) for sequential CAD design. In this work, we introduce a new large-scale dataset of more than 170k CAD models annotated with high-quality, human-like descriptions generated with our pipeline based on GPT-4.1. Using this dataset, we fine-tune powerful code-LLMs to generate CAD sequences represented in a JSON-based format from natural language descriptions, demonstrating the viability and effectiveness of this approach for text-conditioned CAD generation. Because simple metrics often fail to reflect the quality of generated objects, we introduce geometric and topological metrics based on sphericity, mean curvature, and Euler characteristic to provide richer structural insights. Our experiments and ablation studies on both synthetic and human-annotated data demonstrate that CADmium is able to automate CAD design, drastically speeding up the design of new objects. The dataset, code, and fine-tuned models are available online.
comment: Published in Transactions on Machine Learning Research (TMLR) 01/2026
Data-Driven Compute Overlays for Interactive Geographic Simulation and Visualization
We present interactive data-driven compute overlays for native and web-based 3D geographic map applications based on WebGPU. Our data-driven overlays are generated in a multi-step compute workflow from multiple data sources on the GPU. We demonstrate their potential by showing results from snow cover and avalanche simulations, where simulation parameters can be adjusted interactively and results are visualized instantly. Benchmarks show that our approach can compute large-scale avalanche simulations in milliseconds to seconds, depending on the size of the terrain and the simulation parameters, which is multiple orders of magnitude faster than a state-of-the-art Python implementation.
Robotics 40
Choreographing a World of Dynamic Objects
Dynamic objects in our physical 4D (3D + time) world are constantly evolving, deforming, and interacting with other objects, leading to diverse 4D scene dynamics. In this paper, we present a universal generative pipeline, CHORD, for CHOReographing Dynamic objects and scenes and synthesizing this type of phenomena. Traditional rule-based graphics pipelines to create these dynamics are based on category-specific heuristics, yet are labor-intensive and not scalable. Recent learning-based methods typically demand large-scale datasets, which may not cover all object categories in interest. Our approach instead inherits the universality from the video generative models by proposing a distillation-based pipeline to extract the rich Lagrangian motion information hidden in the Eulerian representations of 2D videos. Our method is universal, versatile, and category-agnostic. We demonstrate its effectiveness by conducting experiments to generate a diverse range of multi-body 4D dynamics, show its advantage compared to existing methods, and demonstrate its applicability in generating robotics manipulation policies. Project page: https://yanzhelyu.github.io/chord
Embedding Autonomous Agents in Resource-Constrained Robotic Platforms
Many embedded devices operate under resource constraints and in dynamic environments, requiring local decision-making capabilities. Enabling devices to make independent decisions in such environments can improve the responsiveness of the system and reduce the dependence on constant external control. In this work, we integrate an autonomous agent, programmed using AgentSpeak, with a small two-wheeled robot that explores a maze using its own decision-making and sensor data. Experimental results show that the agent successfully solved the maze in 59 seconds using 287 reasoning cycles, with decision phases taking less than one millisecond. These results indicate that the reasoning process is efficient enough for real-time execution on resource-constrained hardware. This integration demonstrates how high-level agent-based control can be applied to resource-constrained embedded systems for autonomous operation.
comment: This is an open-access, author-archived version of a manuscript published in European Conference on Multi-Agent Systems 2025
Hierarchical GNN-Based Multi-Agent Learning for Dynamic Queue-Jump Lane and Emergency Vehicle Corridor Formation TITS
Emergency vehicles require rapid passage through congested traffic, yet existing strategies fail to adapt to dynamic conditions. We propose a novel hierarchical graph neural network (GNN)-based multi-agent reinforcement learning framework to coordinate connected vehicles for emergency corridor formation. Our approach uses a high-level planner for global strategy and low-level controllers for trajectory execution, utilizing graph attention networks to scale with variable agent counts. Trained via Multi-Agent Proximal Policy Optimization (MAPPO), the system reduces emergency vehicle travel time by 28.3% compared to baselines and 44.6% compared to uncoordinated traffic in simulations. The design achieves near-zero collision rates (0.3%) while maintaining 81% of background traffic efficiency. Ablation and generalization studies confirm the framework's robustness across diverse scenarios. These results demonstrate the effectiveness of combining GNNs with hierarchical learning for intelligent transportation systems.
comment: 16 Pages, 5 Figures, 9 Tables, submitted to IEEE TITS
Wow, wo, val! A Comprehensive Embodied World Model Evaluation Turing Test
As world models gain momentum in Embodied AI, an increasing number of works explore using video foundation models as predictive world models for downstream embodied tasks like 3D prediction or interactive generation. However, before exploring these downstream tasks, video foundation models still have two critical questions unanswered: (1) whether their generative generalization is sufficient to maintain perceptual fidelity in the eyes of human observers, and (2) whether they are robust enough to serve as a universal prior for real-world embodied agents. To provide a standardized framework for answering these questions, we introduce the Embodied Turing Test benchmark: WoW-World-Eval (Wow,wo,val). Building upon 609 robot manipulation data, Wow-wo-val examines five core abilities, including perception, planning, prediction, generalization, and execution. We propose a comprehensive evaluation protocol with 22 metrics to assess the models' generation ability, which achieves a high Pearson Correlation between the overall score and human preference (>0.93) and establishes a reliable foundation for the Human Turing Test. On Wow-wo-val, models achieve only 17.27 on long-horizon planning and at best 68.02 on physical consistency, indicating limited spatiotemporal consistency and physical reasoning. For the Inverse Dynamic Model Turing Test, we first use an IDM to evaluate the video foundation models' execution accuracy in the real world. However, most models collapse to $\approx$ 0% success, while WoW maintains a 40.74% success rate. These findings point to a noticeable gap between the generated videos and the real world, highlighting the urgency and necessity of benchmarking World Model in Embodied AI.
CLAP: Contrastive Latent Action Pretraining for Learning Vision-Language-Action Models from Human Videos
Generalist Vision-Language-Action models are currently hindered by the scarcity of robotic data compared to the abundance of human video demonstrations. Existing Latent Action Models attempt to leverage video data but often suffer from visual entanglement, capturing noise rather than manipulation skills. To address this, we propose Contrastive Latent Action Pretraining (CLAP), a framework that aligns the visual latent space from videos with a proprioceptive latent space from robot trajectories. By employing contrastive learning, CLAP maps video transitions onto a quantized, physically executable codebook. Building on this representation, we introduce a dual-formulation VLA framework offering both CLAP-NTP, an autoregressive model excelling at instruction following and object generalization, and CLAP-RF, a Rectified Flow-based policy designed for high-frequency, precise manipulation. Furthermore, we propose a Knowledge Matching (KM) regularization strategy to mitigate catastrophic forgetting during fine-tuning. Extensive experiments demonstrate that CLAP significantly outperforms strong baselines, enabling the effective transfer of skills from human videos to robotic execution. Project page: https://lin-shan.com/CLAP/.
comment: Project page: https://lin-shan.com/CLAP/
Stable Language Guidance for Vision-Language-Action Models
Vision-Language-Action (VLA) models have demonstrated impressive capabilities in generalized robotic control; however, they remain notoriously brittle to linguistic perturbations. We identify a critical ``modality collapse'' phenomenon where strong visual priors overwhelm sparse linguistic signals, causing agents to overfit to specific instruction phrasings while ignoring the underlying semantic intent. To address this, we propose \textbf{Residual Semantic Steering (RSS)}, a probabilistic framework that disentangles physical affordance from semantic execution. RSS introduces two theoretical innovations: (1) \textbf{Monte Carlo Syntactic Integration}, which approximates the true semantic posterior via dense, LLM-driven distributional expansion, and (2) \textbf{Residual Affordance Steering}, a dual-stream decoding mechanism that explicitly isolates the causal influence of language by subtracting the visual affordance prior. Theoretical analysis suggests that RSS effectively maximizes the mutual information between action and intent while suppressing visual distractors. Empirical results across diverse manipulation benchmarks demonstrate that RSS achieves state-of-the-art robustness, maintaining performance even under adversarial linguistic perturbations.
CoINS: Counterfactual Interactive Navigation via Skill-Aware VLM
Recent Vision-Language Models (VLMs) have demonstrated significant potential in robotic planning. However, they typically function as semantic reasoners, lacking an intrinsic understanding of the specific robot's physical capabilities. This limitation is particularly critical in interactive navigation, where robots must actively modify cluttered environments to create traversable paths. Existing VLM-based navigators are predominantly confined to passive obstacle avoidance, failing to reason about when and how to interact with objects to clear blocked paths. To bridge this gap, we propose Counterfactual Interactive Navigation via Skill-aware VLM (CoINS), a hierarchical framework that integrates skill-aware reasoning and robust low-level execution. Specifically, we fine-tune a VLM, named InterNav-VLM, which incorporates skill affordance and concrete constraint parameters into the input context and grounds them into a metric-scale environmental representation. By internalizing the logic of counterfactual reasoning through fine-tuning on the proposed InterNav dataset, the model learns to implicitly evaluate the causal effects of object removal on navigation connectivity, thereby determining interaction necessity and target selection. To execute the generated high-level plans, we develop a comprehensive skill library through reinforcement learning, specifically introducing traversability-oriented strategies to manipulate diverse objects for path clearance. A systematic benchmark in Isaac Sim is proposed to evaluate both the reasoning and execution aspects of interactive navigation. Extensive simulations and real-world experiments demonstrate that CoINS significantly outperforms representative baselines, achieving a 17\% higher overall success rate and over 80\% improvement in complex long-horizon scenarios compared to the best-performing baseline
comment: 17 pages, 13 figures
An Event-Based Opto-Tactile Skin
This paper presents a neuromorphic, event-driven tactile sensing system for soft, large-area skin, based on the Dynamic Vision Sensors (DVS) integrated with a flexible silicone optical waveguide skin. Instead of repetitively scanning embedded photoreceivers, this design uses a stereo vision setup comprising two DVS cameras looking sideways through the skin. Such a design produces events as changes in brightness are detected, and estimates press positions on the 2D skin surface through triangulation, utilizing Density-Based Spatial Clustering of Applications with Noise (DBSCAN) to find the center of mass of contact events resulting from pressing actions. The system is evaluated over a 4620 mm2 probed area of the skin using a meander raster scan. Across 95 % of the presses visible to both cameras, the press localization achieved a Root-Mean-Squared Error (RMSE) of 4.66 mm. The results highlight the potential of this approach for wide-area flexible and responsive tactile sensors in soft robotics and interactive environments. Moreover, we examined how the system performs when the amount of event data is strongly reduced. Using stochastic down-sampling, the event stream was reduced to 1/1024 of its original size. Under this extreme reduction, the average localization error increased only slightly (from 4.66 mm to 9.33 mm), and the system still produced valid press localizations for 85 % of the trials. This reduction in pass rate is expected, as some presses no longer produce enough events to form a reliable cluster for triangulation. These results show that the sensing approach remains functional even with very sparse event data, which is promising for reducing power consumption and computational load in future implementations. The system exhibits a detection latency distribution with a characteristic width of 31 ms.
comment: Accepted for publication in Frontiers in Neuromorphic Engineering. 23 pages, 9 figures
Towards Safe Autonomous Driving: A Real-Time Motion Planning Algorithm on Embedded Hardware IV 2026
Ensuring the functional safety of Autonomous Vehicles (AVs) requires motion planning modules that not only operate within strict real-time constraints but also maintain controllability in case of system faults. Existing safeguarding concepts, such as Online Verification (OV), provide safety layers that detect infeasible planning outputs. However, they lack an active mechanism to ensure safe operation in the event that the main planner fails. This paper presents a first step toward an active safety extension for fail-operational Autonomous Driving (AD). We deploy a lightweight sampling-based trajectory planner on an automotive-grade, embedded platform running a Real-Time Operating System (RTOS). The planner continuously computes trajectories under constrained computational resources, forming the foundation for future emergency planning architectures. Experimental results demonstrate deterministic timing behavior with bounded latency and minimal jitter, validating the feasibility of trajectory planning on safety-certifiable hardware. The study highlights both the potential and the remaining challenges of integrating active fallback mechanisms as an integral part of next-generation safeguarding frameworks. The code is available at: https://github.com/TUM-AVS/real-time-motion-planning
comment: 7 pages, submitted to the IEEE Intelligent Vehicles Symposium (IV 2026), Detroit, MI, United States
Bayesian Monocular Depth Refinement via Neural Radiance Fields
Monocular depth estimation has applications in many fields, such as autonomous navigation and extended reality, making it an essential computer vision task. However, current methods often produce smooth depth maps that lack the fine geometric detail needed for accurate scene understanding. We propose MDENeRF, an iterative framework that refines monocular depth estimates using depth information from Neural Radiance Fields (NeRFs). MDENeRF consists of three components: (1) an initial monocular estimate for global structure, (2) a NeRF trained on perturbed viewpoints, with per-pixel uncertainty, and (3) Bayesian fusion of the noisy monocular and NeRF depths. We derive NeRF uncertainty from the volume rendering process to iteratively inject high-frequency fine details. Meanwhile, our monocular prior maintains global structure. We demonstrate superior performance on key metrics and experiments using indoor scenes from the SUN RGB-D dataset.
comment: IEEE 8th International Conference on Algorithms, Computing and Artificial Intelligence (ACAI 2025). Oral presentation; Best Presenter Award
Integrating Sample Inheritance into Bayesian Optimization for Evolutionary Robotics
In evolutionary robotics, robot morphologies are designed automatically using evolutionary algorithms. This creates a body-brain optimization problem, where both morphology and control must be optimized together. A common approach is to include controller optimization for each morphology, but starting from scratch for every new body may require a high controller learning budget. We address this by using Bayesian optimization for controller optimization, exploiting its sample efficiency and strong exploration capabilities, and using sample inheritance as a form of Lamarckian inheritance. Under a deliberately low controller learning budget for each morphology, we investigate two types of sample inheritance: (1) transferring all the parent's samples to the offspring to be used as prior without evaluating them, and (2) reevaluating the parent's best samples on the offspring. Both are compared to a baseline without inheritance. Our results show that reevaluation performs best, with prior-based inheritance also outperforming no inheritance. Analysis reveals that while the learning budget is too low for a single morphology, generational inheritance compensates for this by accumulating learned adaptations across generations. Furthermore, inheritance mainly benefits offspring morphologies that are similar to their parents. Finally, we demonstrate the critical role of the environment, with more challenging environments resulting in more stable walking gaits. Our findings highlight that inheritance mechanisms can boost performance in evolutionary robotics without needing large learning budgets, offering an efficient path toward more capable robot design.
Generational Replacement and Learning for High-Performing and Diverse Populations in Evolvable Robots
Evolutionary Robotics offers the possibility to design robots to solve a specific task automatically by optimizing their morphology and control together. However, this co-optimization of body and control is challenging, because controllers need some time to adapt to the evolving morphology - which may make it difficult for new and promising designs to enter the evolving population. A solution to this is to add intra-life learning, defined as an additional controller optimization loop, to each individual in the evolving population. A related problem is the lack of diversity often seen in evolving populations as evolution narrows the search down to a few promising designs too quickly. This problem can be mitigated by implementing full generational replacement, where offspring robots replace the whole population. This solution for increasing diversity usually comes at the cost of lower performance compared to using elitism. In this work, we show that combining such generational replacement with intra-life learning can increase diversity while retaining performance. We also highlight the importance of performance metrics when studying learning in morphologically evolving robots, showing that evaluating according to function evaluations versus according to generations of evolution can give different conclusions.
PointWorld: Scaling 3D World Models for In-The-Wild Robotic Manipulation
Humans anticipate, from a glance and a contemplated action of their bodies, how the 3D world will respond, a capability that is equally vital for robotic manipulation. We introduce PointWorld, a large pre-trained 3D world model that unifies state and action in a shared 3D space as 3D point flows: given one or few RGB-D images and a sequence of low-level robot action commands, PointWorld forecasts per-pixel displacements in 3D that respond to the given actions. By representing actions as 3D point flows instead of embodiment-specific action spaces (e.g., joint positions), this formulation directly conditions on physical geometries of robots while seamlessly integrating learning across embodiments. To train our 3D world model, we curate a large-scale dataset spanning real and simulated robotic manipulation in open-world environments, enabled by recent advances in 3D vision and simulated environments, totaling about 2M trajectories and 500 hours across a single-arm Franka and a bimanual humanoid. Through rigorous, large-scale empirical studies of backbones, action representations, learning objectives, partial observability, data mixtures, domain transfers, and scaling, we distill design principles for large-scale 3D world modeling. With a real-time (0.1s) inference speed, PointWorld can be efficiently integrated in the model-predictive control (MPC) framework for manipulation. We demonstrate that a single pre-trained checkpoint enables a real-world Franka robot to perform rigid-body pushing, deformable and articulated object manipulation, and tool use, without requiring any demonstrations or post-training and all from a single image captured in-the-wild. Project website at https://point-world.github.io/.
Dual-Attention Heterogeneous GNN for Multi-robot Collaborative Area Search via Deep Reinforcement Learning
In multi-robot collaborative area search, a key challenge is to dynamically balance the two objectives of exploring unknown areas and covering specific targets to be rescued. Existing methods are often constrained by homogeneous graph representations, thus failing to model and balance these distinct tasks. To address this problem, we propose a Dual-Attention Heterogeneous Graph Neural Network (DA-HGNN) trained using deep reinforcement learning. Our method constructs a heterogeneous graph that incorporates three entity types: robot nodes, frontier nodes, and interesting nodes, as well as their historical states. The dual-attention mechanism comprises the relational-aware attention and type-aware attention operations. The relational-aware attention captures the complex spatio-temporal relationships among robots and candidate goals. Building on this relational-aware heterogeneous graph, the type-aware attention separately computes the relevance between robots and each goal type (frontiers vs. points of interest), thereby decoupling the exploration and coverage from the unified tasks. Extensive experiments conducted in interactive 3D scenarios within the iGibson simulator, leveraging the Gibson and MatterPort3D datasets, validate the superior scalability and generalization capability of the proposed approach.
Systematic Evaluation of Depth Backbones and Semantic Cues for Monocular Pseudo-LiDAR 3D Detection
Monocular 3D object detection offers a low-cost alternative to LiDAR, yet remains less accurate due to the difficulty of estimating metric depth from a single image. We systematically evaluate how depth backbones and feature engineering affect a monocular Pseudo-LiDAR pipeline on the KITTI validation split. Specifically, we compare NeWCRFs (supervised metric depth) against Depth Anything V2 Metric-Outdoor (Base) under an identical pseudo-LiDAR generation and PointRCNN detection protocol. NeWCRFs yields stronger downstream 3D detection, achieving 10.50\% AP$_{3D}$ at IoU$=0.7$ on the Moderate split using grayscale intensity (Exp~2). We further test point-cloud augmentations using appearance cues (grayscale intensity) and semantic cues (instance segmentation confidence). Contrary to the expectation that semantics would substantially close the gap, these features provide only marginal gains, and mask-based sampling can degrade performance by removing contextual geometry. Finally, we report a depth-accuracy-versus-distance diagnostic using ground-truth 2D boxes (including Ped/Cyc), highlighting that coarse depth correctness does not fully predict strict 3D IoU. Overall, under an off-the-shelf LiDAR detector, depth-backbone choice and geometric fidelity dominate performance, outweighing secondary feature injection.
comment: 7 pages, 4 figures
Locomotion Beyond Feet
Most locomotion methods for humanoid robots focus on leg-based gaits, yet natural bipeds frequently rely on hands, knees, and elbows to establish additional contacts for stability and support in complex environments. This paper introduces Locomotion Beyond Feet, a comprehensive system for whole-body humanoid locomotion across extremely challenging terrains, including low-clearance spaces under chairs, knee-high walls, knee-high platforms, and steep ascending and descending stairs. Our approach addresses two key challenges: contact-rich motion planning and generalization across diverse terrains. To this end, we combine physics-grounded keyframe animation with reinforcement learning. Keyframes encode human knowledge of motor skills, are embodiment-specific, and can be readily validated in simulation or on hardware, while reinforcement learning transforms these references into robust, physically accurate motions. We further employ a hierarchical framework consisting of terrain-specific motion-tracking policies, failure recovery mechanisms, and a vision-based skill planner. Real-world experiments demonstrate that Locomotion Beyond Feet achieves robust whole-body locomotion and generalizes across obstacle sizes, obstacle instances, and terrain sequences.
comment: Project website: https://locomotion-beyond-feet.github.io/
From Score to Sound: An End-to-End MIDI-to-Motion Pipeline for Robotic Cello Performance
Robot musicians require precise control to obtain proper note accuracy, sound quality, and musical expression. Performance of string instruments, such as violin and cello, presents a significant challenge due to the precise control required over bow angle and pressure to produce the desired sound. While prior robotic cellists focus on accurate bowing trajectories, these works often rely on expensive motion capture techniques, and fail to sightread music in a human-like way. We propose a novel end-to-end MIDI score to robotic motion pipeline which converts musical input directly into collision-aware bowing motions for a UR5e robot cellist. Through use of Universal Robot Freedrive feature, our robotic musician can achieve human-like sound without the need for motion capture. Additionally, this work records live joint data via Real-Time Data Exchange (RTDE) as the robot plays, providing labeled robotic playing data from a collection of five standard pieces to the research community. To demonstrate the effectiveness of our method in comparison to human performers, we introduce the Musical Turing Test, in which a collection of 132 human participants evaluate our robot's performance against a human baseline. Human reference recordings are also released, enabling direct comparison for future studies. This evaluation technique establishes the first benchmark for robotic cello performance. Finally, we outline a residual reinforcement learning methodology to improve upon baseline robotic controls, highlighting future opportunities for improved string-crossing efficiency and sound quality.
A Reinforcement Learning-Based Model for Mapping and Goal-Directed Navigation Using Multiscale Place Fields
Autonomous navigation in complex and partially observable environments remains a central challenge in robotics. Several bio-inspired models of mapping and navigation based on place cells in the mammalian hippocampus have been proposed. This paper introduces a new robust model that employs parallel layers of place fields at multiple spatial scales, a replay-based reward mechanism, and dynamic scale fusion. Simulations show that the model improves path efficiency and accelerates learning compared to single-scale baselines, highlighting the value of multiscale spatial representations for adaptive robot navigation.
comment: 11 pages, 8 figures. Submitted to IEEE Transactions on Cognitive and Developmental Systems
A Vision-Language-Action Model with Visual Prompt for OFF-Road Autonomous Driving
Efficient trajectory planning in off-road terrains presents a formidable challenge for autonomous vehicles, often necessitating complex multi-step pipelines. However, traditional approaches exhibit limited adaptability in dynamic environments. To address these limitations, this paper proposes OFF-EMMA, a novel end-to-end multimodal framework designed to overcome the deficiencies of insufficient spatial perception and unstable reasoning in visual-language-action (VLA) models for off-road autonomous driving scenarios. The framework explicitly annotates input images through the design of a visual prompt block and introduces a chain-of-thought with self-consistency (COT-SC) reasoning strategy to enhance the accuracy and robustness of trajectory planning. The visual prompt block utilizes semantic segmentation masks as visual prompts, enhancing the spatial understanding ability of pre-trained visual-language models for complex terrains. The COT- SC strategy effectively mitigates the error impact of outliers on planning performance through a multi-path reasoning mechanism. Experimental results on the RELLIS-3D off-road dataset demonstrate that OFF-EMMA significantly outperforms existing methods, reducing the average L2 error of the Qwen backbone model by 13.3% and decreasing the failure rate from 16.52% to 6.56%.
Transformer-based Multi-agent Reinforcement Learning for Separation Assurance in Structured and Unstructured Airspaces
Conventional optimization-based metering depends on strict adherence to precomputed schedules, which limits the flexibility required for the stochastic operations of Advanced Air Mobility (AAM). In contrast, multi-agent reinforcement learning (MARL) offers a decentralized, adaptive framework that can better handle uncertainty, required for safe aircraft separation assurance. Despite this advantage, current MARL approaches often overfit to specific airspace structures, limiting their adaptability to new configurations. To improve generalization, we recast the MARL problem in a relative polar state space and train a transformer encoder model across diverse traffic patterns and intersection angles. The learned model provides speed advisories to resolve conflicts while maintaining aircraft near their desired cruising speeds. In our experiments, we evaluated encoder depths of 1, 2, and 3 layers in both structured and unstructured airspaces, and found that a single encoder configuration outperformed deeper variants, yielding near-zero near mid-air collision rates and shorter loss-of-separation infringements than the deeper configurations. Additionally, we showed that the same configuration outperforms a baseline model designed purely with attention. Together, our results suggest that the newly formulated state representation, novel design of neural network architecture, and proposed training strategy provide an adaptable and scalable decentralized solution for aircraft separation assurance in both structured and unstructured airspaces.
comment: 9 pages, 4 figures, 4 tables. Presented at SESAR Innovation Days 2025
Enhanced-FQL($λ$), an Efficient and Interpretable RL with novel Fuzzy Eligibility Traces and Segmented Experience Replay
This paper introduces a fuzzy reinforcement learning framework, Enhanced-FQL($λ$), that integrates novel Fuzzified Eligibility Traces (FET) and Segmented Experience Replay (SER) into fuzzy Q-learning with Fuzzified Bellman Equation (FBE) for continuous control tasks. The proposed approach employs an interpretable fuzzy rule base instead of complex neural architectures, while maintaining competitive performance through two key innovations: a fuzzified Bellman equation with eligibility traces for stable multi-step credit assignment, and a memory-efficient segment-based experience replay mechanism for enhanced sample efficiency. Theoretical analysis proves the proposed method convergence under standard assumptions. Extensive evaluations in continuous control domains demonstrate that Enhanced-FQL($λ$) achieves superior sample efficiency and reduced variance compared to n-step fuzzy TD and fuzzy SARSA($λ$) baselines, while maintaining substantially lower computational complexity than deep RL alternatives such as DDPG. The framework's inherent interpretability, combined with its computational efficiency and theoretical convergence guarantees, makes it particularly suitable for safety-critical applications where transparency and resource constraints are essential.
comment: Submitted to ECC26 conference
UNIC: Learning Unified Multimodal Extrinsic Contact Estimation
Contact-rich manipulation requires reliable estimation of extrinsic contacts-the interactions between a grasped object and its environment which provide essential contextual information for planning, control, and policy learning. However, existing approaches often rely on restrictive assumptions, such as predefined contact types, fixed grasp configurations, or camera calibration, that hinder generalization to novel objects and deployment in unstructured environments. In this paper, we present UNIC, a unified multimodal framework for extrinsic contact estimation that operates without any prior knowledge or camera calibration. UNIC directly encodes visual observations in the camera frame and integrates them with proprioceptive and tactile modalities in a fully data-driven manner. It introduces a unified contact representation based on scene affordance maps that captures diverse contact formations and employs a multimodal fusion mechanism with random masking, enabling robust multimodal representation learning. Extensive experiments demonstrate that UNIC performs reliably. It achieves a 9.6 mm average Chamfer distance error on unseen contact locations, performs well on unseen objects, remains robust under missing modalities, and adapts to dynamic camera viewpoints. These results establish extrinsic contact estimation as a practical and versatile capability for contact-rich manipulation.
Autonomous Reasoning for Spacecraft Control: A Large Language Model Framework with Group Relative Policy Optimization
This paper presents a learning-based guidance-and-control approach that couples a reasoning-enabled Large Language Model (LLM) with Group Relative Policy Optimization (GRPO). A two-stage procedure consisting of Supervised Fine-Tuning (SFT) to learn formatting and control primitives, followed by GRPO for interaction-driven policy improvement, trains controllers for each environment. The framework is demonstrated on four control problems spanning a gradient of dynamical complexity, from canonical linear systems through nonlinear oscillatory dynamics to three-dimensional spacecraft attitude control with gyroscopic coupling and thrust constraints. Results demonstrate that an LLM with explicit reasoning, optimized via GRPO, can synthesize feasible stabilizing policies under consistent training settings across both linear and nonlinear systems. The two-stage training methodology enables models to generate control sequences while providing human-readable explanations of their decision-making process. This work establishes a foundation for applying GRPO-based reasoning to autonomous control systems, with potential applications in aerospace and other safety-critical domains.
Online Action-Stacking Improves Reinforcement Learning Performance for Air Traffic Control
We introduce online action-stacking, an inference-time wrapper for reinforcement learning policies that produces realistic air traffic control commands while allowing training on a much smaller discrete action space. Policies are trained with simple incremental heading or level adjustments, together with an action-damping penalty that reduces instruction frequency and leads agents to issue commands in short bursts. At inference, online action-stacking compiles these bursts of primitive actions into domain-appropriate compound clearances. Using Proximal Policy Optimisation and the BluebirdDT digital twin platform, we train agents to navigate aircraft along lateral routes, manage climb and descent to target flight levels, and perform two-aircraft collision avoidance under a minimum separation constraint. In our lateral navigation experiments, action stacking greatly reduces the number of issued instructions relative to a damped baseline and achieves comparable performance to a policy trained with a 37-dimensional action space, despite operating with only five actions. These results indicate that online action-stacking helps bridge a key gap between standard reinforcement learning formulations and operational ATC requirements, and provides a simple mechanism for scaling to more complex control scenarios.
Correcting Autonomous Driving Object Detection Misclassifications with Automated Commonsense Reasoning
Autonomous Vehicle (AV) technology has been heavily researched and sought after, yet there are no SAE Level 5 AVs available today in the marketplace. We contend that over-reliance on machine learning technology is the main reason. Use of automated commonsense reasoning technology, we believe, can help achieve SAE Level 5 autonomy. In this paper, we show how automated common-sense reasoning technology can be deployed in situations where there are not enough data samples available to train a deep learning-based AV model that can handle certain abnormal road scenarios. Specifically, we consider two situations where (i) a traffic signal is malfunctioning at an intersection and (ii) all the cars ahead are slowing down and steering away due to an unexpected obstruction (e.g., animals on the road). We show that in such situations, our commonsense reasoning-based solution accurately detects traffic light colors and obstacles not correctly captured by the AV's perception model. We also provide a pathway for efficiently invoking commonsense reasoning by measuring uncertainty in the computer vision model and using commonsense reasoning to handle uncertain scenarios. We describe our experiments conducted using the CARLA simulator and the results obtained. The main contribution of our research is to show that automated commonsense reasoning effectively corrects AV-based object detection misclassifications and that hybrid models provide an effective pathway to improving AV perception.
comment: In Proceedings ICLP 2025, arXiv:2601.00047
Supercomputing for High-speed Avoidance and Reactive Planning in Robots
This paper presents SHARP (Supercomputing for High-speed Avoidance and Reactive Planning), a proof-of-concept study demonstrating how high-performance computing (HPC) can enable millisecond-scale responsiveness in robotic control. While modern robots face increasing demands for reactivity in human-robot shared workspaces, onboard processors are constrained by size, power, and cost. Offloading to HPC offers massive parallelism for trajectory planning, but its feasibility for real-time robotics remains uncertain due to network latency and jitter. We evaluate SHARP in a stress-test scenario where a 7-DOF manipulator must dodge high-speed foam projectiles. Using a hash-distributed multi-goal A* search implemented with MPI on both local and remote HPC clusters, the system achieves mean planning latencies of 22.9 ms (local) and 30.0 ms (remote, ~300 km away), with avoidance success rates of 84% and 88%, respectively. These results show that when round-trip latency remains within the tens-of-milliseconds regime, HPC-side computation is no longer the bottleneck, enabling avoidance well below human reaction times. The SHARP results motivate hybrid control architectures: low-level reflexes remain onboard for safety, while bursty, high-throughput planning tasks are offloaded to HPC for scalability. By reporting per-stage timing and success rates, this study provides a reproducible template for assessing real-time feasibility of HPC-driven robotics. Collectively, SHARP reframes HPC offloading as a viable pathway toward dependable, reactive robots in dynamic environments.
comment: Error in the graph size calculation, recalculated and resubmitted
Uncertainty-Aware Robotic World Model Makes Offline Model-Based Reinforcement Learning Work on Real Robots
Reinforcement Learning (RL) has achieved impressive results in robotics, yet high-performing pipelines remain highly task-specific, with little reuse of prior data. Offline Model-based RL (MBRL) offers greater data efficiency by training policies entirely from existing datasets, but suffers from compounding errors and distribution shift in long-horizon rollouts. Although existing methods have shown success in controlled simulation benchmarks, robustly applying them to the noisy, biased, and partially observed datasets typical of real-world robotics remains challenging. We present a principled pipeline for making offline MBRL effective on physical robots. Our RWM-U extends autoregressive world models with epistemic uncertainty estimation, enabling temporally consistent multi-step rollouts with uncertainty effectively propagated over long horizons. We combine RWM-U with MOPO-PPO, which adapts uncertainty-penalized policy optimization to the stable, on-policy PPO framework for real-world control. We evaluate our approach on diverse manipulation and locomotion tasks in simulation and on real quadruped and humanoid, training policies entirely from offline datasets. The resulting policies consistently outperform model-free and uncertainty-unaware model-based baselines, and fusing real-world data in model learning further yields robust policies that surpass online model-free baselines trained solely in simulation.
Real-time Velocity Profile Optimization for Time-Optimal Maneuvering with Generic Acceleration Constraints
The computation of time-optimal velocity profiles along prescribed paths, subject to generic acceleration constraints, is a crucial problem in robot trajectory planning, with particular relevance to autonomous racing. However, the existing methods either support arbitrary acceleration constraints at high computational cost or use conservative box constraints for computational efficiency. We propose FBGA, a new \underline{F}orward-\underline{B}ackward algorithm with \underline{G}eneric \underline{A}cceleration constraints, which achieves both high accuracy and low computation time. FBGA operates forward and backward passes to maximize the velocity profile in short, discretized path segments, while satisfying user-defined performance limits. Tested on five racetracks and two vehicle classes, FBGA handles complex, non-convex acceleration constraints with custom formulations. Its maneuvers and lap times closely match optimal control baselines (within $0.11\%$-$0.36\%$), while being up to three orders of magnitude faster. FBGA maintains high accuracy even with coarse discretization, making it well-suited for online multi-query trajectory planning. Our open-source \texttt{C++} implementation is available at: https://anonymous.4open.science/r/FB_public_RAL.
The Combined Problem of Online Task Assignment and Lifelong Path Finding in Logistics Warehouses: Rule-Based Systems Matter
We study the combined problem of online task assignment and lifelong path finding, which is crucial for the logistics industries. However, most literature either (1) focuses on lifelong path finding assuming a given task assigner, or (2) studies the offline version of this problem where tasks are known in advance. We argue that, to maximize the system throughput, the online version that integrates these two components should be tackled directly. To this end, we introduce a formal framework of the combined problem and its solution concept. Then, we design a rule-based lifelong planner under a practical robot model that works well even in environments with severe local congestion. Upon that, we automate the search for the task assigner with respect to the underlying path planner. Simulation experiments conducted in warehouse scenarios at Meituan, one of the largest shopping platforms in China, demonstrate that (a)in terms of time efficiency, our system requires only 83.77% of the execution time needed for the currently deployed system at Meituan, outperforming other SOTA algorithms by 8.09%; (b)in terms of economic efficiency, ours can achieve the same throughput with only 60% of the agents currently in use. The code and demos are available at https://github.com/Fernadoo/Online-TAPF.
comment: In Proceedings ICLP 2025, arXiv:2601.00047
Tackling the Kidnapped Robot Problem via Sparse Feasible Hypothesis Sampling and Reliable Batched Multi-Stage Inference
This paper addresses the Kidnapped Robot Problem (KRP), a core localization challenge of relocalizing a robot in a known map without prior pose estimate when localization loss or at SLAM initialization. For this purpose, a passive 2-D global relocalization framework is proposed. It estimates the global pose efficiently and reliably from a single LiDAR scan and an occupancy grid map while the robot remains stationary, thereby enhancing the long-term autonomy of mobile robots. The proposed framework casts global relocalization as a non-convex problem and solves it via the multi-hypothesis scheme with batched multi-stage inference and early termination, balancing completeness and efficiency. The Rapidly-exploring Random Tree (RRT), under traversability constraints, asymptotically covers the reachable space to generate sparse, uniformly distributed feasible positional hypotheses, fundamentally reducing the sampling space. The hypotheses are preliminarily ordered by the proposed Scan Mean Absolute Difference (SMAD), a coarse beam-error level metric that facilitates the early termination by prioritizing high-likelihood candidates. The SMAD computation is optimized for non-panoramic scans. The Translation-Affinity Scan-to-Map Alignment Metric (TAM) is proposed for reliable orientation selection at hypothesized positions and accurate final pose evaluation to mitigate degradation in conventional likelihood-field metrics under translational uncertainty induced by sparse hypotheses, as well as non-panoramic LiDAR scan and environmental changes. Real-world experiments on a resource-constrained mobile robot with non-panoramic LiDAR scans show that the proposed framework achieves competitive performance in both global relocalization success rate and computational efficiency.
comment: 10 pages, 8 figures. This work has been submitted to the IEEE for possible publication
Alpamayo-R1: Bridging Reasoning and Action Prediction for Generalizable Autonomous Driving in the Long Tail
End-to-end architectures trained via imitation learning have advanced autonomous driving by scaling model size and data, yet performance remains brittle in safety-critical long-tail scenarios where supervision is sparse and causal understanding is limited. We introduce Alpamayo-R1 (AR1), a vision-language-action model (VLA) that integrates Chain of Causation reasoning with trajectory planning for complex driving scenarios. Our approach features three key innovations: (1) the Chain of Causation (CoC) dataset, built through a hybrid auto-labeling and human-in-the-loop pipeline producing decision-grounded, causally linked reasoning traces aligned with driving behaviors; (2) a modular VLA architecture combining Cosmos-Reason, a vision-language model pre-trained for Physical AI, with a diffusion-based trajectory decoder that generates dynamically feasible trajectories in real time; (3) a multi-stage training strategy using supervised fine-tuning to elicit reasoning and reinforcement learning (RL) to enforce reasoning-action consistency and optimize reasoning quality. AR1 achieves up to a 12% improvement in planning accuracy on challenging cases compared to a trajectory-only baseline, with a 35% reduction in close encounter rate in closed-loop simulation. RL post-training improves reasoning quality by 45% and reasoning-action consistency by 37%. Model scaling from 0.5B to 7B parameters shows consistent improvements. On-vehicle road tests confirm real-time performance (99 ms latency) and successful urban deployment. By bridging interpretable reasoning with precise control, AR1 demonstrates a practical path towards Level 4 autonomous driving. Model weights are available at https://huggingface.co/nvidia/Alpamayo-R1-10B with inference code at https://github.com/NVlabs/alpamayo.
From Human Intention to Action Prediction: Intention-Driven End-to-End Autonomous Driving
While end-to-end autonomous driving has achieved remarkable progress in geometric control, current systems remain constrained by a command-following paradigm that relies on simple navigational instructions. Transitioning to genuinely intelligent agents requires the capability to interpret and fulfill high-level, abstract human intentions. However, this advancement is hindered by the lack of dedicated benchmarks and semantic-aware evaluation metrics. In this paper, we formally define the task of Intention-Driven End-to-End Autonomous Driving and present Intention-Drive, a comprehensive benchmark designed to bridge this gap. We construct a large-scale dataset featuring complex natural language intentions paired with high-fidelity sensor data. To overcome the limitations of conventional trajectory-based metrics, we introduce the Imagined Future Alignment (IFA), a novel evaluation protocol leveraging generative world models to assess the semantic fulfillment of human goals beyond mere geometric accuracy. Furthermore, we explore the solution space by proposing two distinct paradigms: an end-to-end vision-language planner and a hierarchical agent-based framework. The experiments reveal a critical dichotomy where existing models exhibit satisfactory driving stability but struggle significantly with intention fulfillment. Notably, the proposed frameworks demonstrate superior alignment with human intentions.
Physics-Driven Data Generation for Contact-Rich Manipulation via Trajectory Optimization
We present a low-cost data generation pipeline that integrates physics-based simulation, human demonstrations, and model-based planning to efficiently generate large-scale, high-quality datasets for contact-rich robotic manipulation tasks. Starting with a small number of embodiment-flexible human demonstrations collected in a virtual reality simulation environment, the pipeline refines these demonstrations using optimization-based kinematic retargeting and trajectory optimization to adapt them across various robot embodiments and physical parameters. This process yields a diverse, physically consistent dataset that enables cross-embodiment data transfer, and offers the potential to reuse legacy datasets collected under different hardware configurations or physical parameters. We validate the pipeline's effectiveness by training diffusion policies from the generated datasets for challenging contact-rich manipulation tasks across multiple robot embodiments, including a floating Allegro hand and bimanual robot arms. The trained policies are deployed zero-shot on hardware for bimanual iiwa arms, achieving high success rates with minimal human input. Project website: https://lujieyang.github.io/physicsgen/.
OmniNav: A Unified Framework for Prospective Exploration and Visual-Language Navigation
Embodied navigation presents a core challenge for intelligent robots, requiring the comprehension of visual environments, natural language instructions, and autonomous exploration. Existing models often fall short in offering a unified solution across diverse navigation paradigms, resulting in low success rates and limited generalization. We introduce OmniNav, a unified framework addressing instruct-goal, object-goal, point-goal navigation, and frontier-based exploration within a single architecture. Our approach features a lightweight, low-latency policy that accurately predicts continuous-space waypoints (coordinates and orientations). This policy surpasses action-chunk methods in precision and supports real-world deployment at control frequencies up to 5 Hz. Architecturally, OmniNav employs a fast-slow system design: a fast module generates waypoints using short-horizon visual context and subtasks, while a slow module performs deliberative planning with long-horizon observations and candidate frontiers to select subsequent subgoals and subtasks. This collaboration enhances path efficiency and maintains trajectory coherence, particularly in exploration and memory-intensive scenarios. Crucially, we identify that the primary bottleneck isn't merely navigation policy learning, but a robust understanding of general instructions and objects. To boost generalization, OmniNav integrates large-scale, general-purpose training datasets, including those for image captioning and visual recognition, into a joint multi-task regimen. This significantly improves success rates and robustness. Extensive experiments confirm OmniNav's state-of-the-art performance across various navigation benchmarks, with real-world deployment further validating its efficacy. OmniNav provides practical insights for embodied navigation, charting a scalable path towards versatile, highly generalizable robotic intelligence.
Real-time Sampling-based Model Predictive Control based on Reverse Kullback-Leibler Divergence and Its Adaptive Acceleration
Sampling-based model predictive control (MPC) has the potential for use in a wide variety of robotic systems. However, its unstable updates and poor convergence render it unsuitable for real-time control of robotic systems. This study addresses this challenge with a novel approach from reverse Kullback-Leibler divergence, which has a mode-seeking property and is likely to find one of the locally optimal solutions early. Using this approach, a weighted maximum likelihood estimation with positive and negative weights is obtained and solved using the mirror descent (MD) algorithm. Negative weights eliminate unnecessary actions, but a practical implementation needs to be designed to avoid interference with positive and negative updates based on rejection sampling. In addition, Nesterov's acceleration method for the proposed MD is modified to improve heuristic step size adaptive to the noise estimated in update amounts. Real-time simulations show that the proposed method can solve a wider variety of tasks statistically than the conventional method. In addition, higher degrees-of-freedom tasks can be solved by the improved acceleration even with a CPU only. The real-world applicability of the proposed method is also demonstrated by optimizing the operability in a variable impedance control of a force-driven mobile robot. https://youtu.be/D8bFMzct1XM
comment: 18 pages, 16 figures
Adaptive Anomaly Recovery for Telemanipulation: A Diffusion Model Approach to Vision-Based Tracking
Dexterous telemanipulation critically relies on the continuous and stable tracking of the human operator's commands to ensure robust operation. Vison-based tracking methods are widely used but have low stability due to anomalies such as occlusions, inadequate lighting, and loss of sight. Traditional filtering, regression, and interpolation methods are commonly used to compensate for explicit information such as angles and positions. These approaches are restricted to low-dimensional data and often result in information loss compared to the original high-dimensional image and video data. Recent advances in diffusion-based approaches, which can operate on high-dimensional data, have achieved remarkable success in video reconstruction and generation. However, these methods have not been fully explored in continuous control tasks in robotics. This work introduces the Diffusion-Enhanced Telemanipulation (DET) framework, which incorporates the Frame-Difference Detection (FDD) technique to identify and segment anomalies in video streams. These anomalous clips are replaced after reconstruction using diffusion models, ensuring robust telemanipulation performance under challenging visual conditions. We validated this approach in various anomaly scenarios and compared it with the baseline methods. Experiments show that DET achieves an average RMSE reduction of 17.2% compared to the cubic spline and 51.1% compared to FFT-based interpolation for different occlusion durations.
comment: This work has been submitted to the IEEE for possible publication
Nonholonomic Robot Parking by Feedback -- Part I: Modular Strict CLF Designs
It has been known in the robotics literature since about 1995 that, in polar coordinates, the nonholonomic unicycle is asymptotically stabilizable by smooth feedback, even globally. We introduce a modular design framework that selects the forward velocity to decouple the radial coordinate, allowing the steering subsystem to be stabilized independently. Within this structure, we develop families of feedback laws using passivity, backstepping, and integrator forwarding. Each law is accompanied by a strict control Lyapunov function, including barrier variants that enforce angular constraints. These strict CLFs provide constructive class KL convergence estimates and enable eigenvalue assignment at the target equilibrium. The framework generalizes and extends prior modular and nonmodular approaches, while preparing the ground for inverse optimal and adaptive redesigns in the sequel paper.
comment: arXiv admin note: text overlap with arXiv:2509.25575
Deep Reinforcement Learning for Bipedal Locomotion: A Brief Survey
Bipedal robots are gaining global recognition due to their potential applications and advancements in artificial intelligence, particularly through Deep Reinforcement Learning (DRL). While DRL has significantly advanced bipedal locomotion, the development of a unified framework capable of handling a wide range of tasks remains an ongoing challenge. This survey systematically categorises, compares, and analyses existing DRL frameworks for bipedal locomotion, organising them into end-to-end and hierarchical control schemes. End-to-end frameworks are evaluated based on their learning approaches, while hierarchical frameworks are examined in terms of layered structures that integrate learning-based or traditional model-based methods. We provide a detailed evaluation of the composition, strengths, limitations, and capabilities of each framework. Additionally, this survey identifies key research gaps and proposes future directions aimed at creating a more integrated and efficient framework for bipedal locomotion, with wide-ranging applications in real-world environments.
comment: Published in Artificial Intelligence Review
Enhancing Sampling-based Planning with a Library of Paths
Path planning for 3D solid objects is a challenging problem, requiring a search in a six-dimensional configuration space, which is, nevertheless, essential in many robotic applications such as bin-picking and assembly. The commonly used sampling-based planners, such as Rapidly-exploring Random Trees, struggle with narrow passages where the sampling probability is low, increasing the time needed to find a solution. In scenarios like robotic bin-picking, various objects must be transported through the same environment. However, traditional planners start from scratch each time, losing valuable information gained during the planning process. We address this by using a library of past solutions, allowing the reuse of previous experiences even when planning for a new, previously unseen object. Paths for a set of objects are stored, and when planning for a new object, we find the most similar one in the library and use its paths as approximate solutions, adjusting for possible mutual transformations. The configuration space is then sampled along the approximate paths. Our method is tested in various narrow passage scenarios and compared with state-of-the-art methods from the OMPL library. Results show significant speed improvements (up to 85% decrease in the required time) of our method, often finding a solution in cases where the other planners fail. Our implementation of the proposed method is released as an open-source package.
Generative Models From and For Sampling-Based MPC: A Bootstrapped Approach For Adaptive Contact-Rich Manipulation
We present a generative predictive control (GPC) framework that amortizes sampling-based Model Predictive Control (SPC) by bootstrapping it with conditional flow-matching models trained on SPC control sequences collected in simulation. Unlike prior work relying on iterative refinement or gradient-based solvers, we show that meaningful proposal distributions can be learned directly from noisy SPC data, enabling more efficient and informed sampling during online planning. We further demonstrate, for the first time, the application of this approach to real-world contact-rich loco-manipulation with a quadruped robot. Extensive experiments in simulation and on hardware show that our method improves sample efficiency, reduces planning horizon requirements, and generalizes robustly across task variations.
comment: 9 pages, 4 figures
Computer Vision and Pattern Recognition 146
Choreographing a World of Dynamic Objects
Dynamic objects in our physical 4D (3D + time) world are constantly evolving, deforming, and interacting with other objects, leading to diverse 4D scene dynamics. In this paper, we present a universal generative pipeline, CHORD, for CHOReographing Dynamic objects and scenes and synthesizing this type of phenomena. Traditional rule-based graphics pipelines to create these dynamics are based on category-specific heuristics, yet are labor-intensive and not scalable. Recent learning-based methods typically demand large-scale datasets, which may not cover all object categories in interest. Our approach instead inherits the universality from the video generative models by proposing a distillation-based pipeline to extract the rich Lagrangian motion information hidden in the Eulerian representations of 2D videos. Our method is universal, versatile, and category-agnostic. We demonstrate its effectiveness by conducting experiments to generate a diverse range of multi-body 4D dynamics, show its advantage compared to existing methods, and demonstrate its applicability in generating robotics manipulation policies. Project page: https://yanzhelyu.github.io/chord
ImLoc: Revisiting Visual Localization with Image-based Representation
Existing visual localization methods are typically either 2D image-based, which are easy to build and maintain but limited in effective geometric reasoning, or 3D structure-based, which achieve high accuracy but require a centralized reconstruction and are difficult to update. In this work, we revisit visual localization with a 2D image-based representation and propose to augment each image with estimated depth maps to capture the geometric structure. Supported by the effective use of dense matchers, this representation is not only easy to build and maintain, but achieves highest accuracy in challenging conditions. With compact compression and a GPU-accelerated LO-RANSAC implementation, the whole pipeline is efficient in both storage and computation and allows for a flexible trade-off between accuracy and highest memory efficiency. Our method achieves a new state-of-the-art accuracy on various standard benchmarks and outperforms existing memory-efficient methods at comparable map sizes. Code will be available at https://github.com/cvg/Hierarchical-Localization.
comment: Code will be available at https://github.com/cvg/Hierarchical-Localization
Scanner-Induced Domain Shifts Undermine the Robustness of Pathology Foundation Models
Pathology foundation models (PFMs) have become central to computational pathology, aiming to offer general encoders for feature extraction from whole-slide images (WSIs). Despite strong benchmark performance, PFM robustness to real-world technical domain shifts, such as variability from whole-slide scanner devices, remains poorly understood. We systematically evaluated the robustness of 14 PFMs to scanner-induced variability, including state-of-the-art models, earlier self-supervised models, and a baseline trained on natural images. Using a multiscanner dataset of 384 breast cancer WSIs scanned on five devices, we isolated scanner effects independently from biological and laboratory confounders. Robustness is assessed via complementary unsupervised embedding analyses and a set of clinicopathological supervised prediction tasks. Our results demonstrate that current PFMs are not invariant to scanner-induced domain shifts. Most models encode pronounced scanner-specific variability in their embedding spaces. While AUC often remains stable, this masks a critical failure mode: scanner variability systematically alters the embedding space and impacts calibration of downstream model predictions, resulting in scanner-dependent bias that can impact reliability in clinical use cases. We further show that robustness is not a simple function of training data scale, model size, or model recency. None of the models provided reliable robustness against scanner-induced variability. While the models trained on the most diverse data, here represented by vision-language models, appear to have an advantage with respect to robustness, they underperformed on downstream supervised tasks. We conclude that development and evaluation of PFMs requires moving beyond accuracy-centric benchmarks toward explicit evaluation and optimisation of embedding stability and calibration under realistic acquisition variability.
ToTMNet: FFT-Accelerated Toeplitz Temporal Mixing Network for Lightweight Remote Photoplethysmography
Remote photoplethysmography (rPPG) estimates a blood volume pulse (BVP) waveform from facial videos captured by commodity cameras. Although recent deep models improve robustness compared to classical signal-processing approaches, many methods increase computational cost and parameter count, and attention-based temporal modeling introduces quadratic scaling with respect to the temporal length. This paper proposes ToTMNet, a lightweight rPPG architecture that replaces temporal attention with an FFT-accelerated Toeplitz temporal mixing layer. The Toeplitz operator provides full-sequence temporal receptive field using a linear number of parameters in the clip length and can be applied in near-linear time using circulant embedding and FFT-based convolution. ToTMNet integrates the global Toeplitz temporal operator into a compact gated temporal mixer that combines a local depthwise temporal convolution branch with gated global Toeplitz mixing, enabling efficient long-range temporal filtering while only having 63k parameters. Experiments on two datasets, UBFC-rPPG (real videos) and SCAMPS (synthetic videos), show that ToTMNet achieves strong heart-rate estimation accuracy with a compact design. On UBFC-rPPG intra-dataset evaluation, ToTMNet reaches 1.055 bpm MAE with Pearson correlation 0.996. In a synthetic-to-real setting (SCAMPS to UBFC-rPPG), ToTMNet reaches 1.582 bpm MAE with Pearson correlation 0.994. Ablation results confirm that the gating mechanism is important for effectively using global Toeplitz mixing, especially under domain shift. The main limitation of this preprint study is the use of only two datasets; nevertheless, the results indicate that Toeplitz-structured temporal mixing is a practical and efficient alternative to attention for rPPG.
Diffusion-DRF: Differentiable Reward Flow for Video Diffusion Fine-Tuning
Direct Preference Optimization (DPO) has recently improved Text-to-Video (T2V) generation by enhancing visual fidelity and text alignment. However, current methods rely on non-differentiable preference signals from human annotations or learned reward models. This reliance makes training label-intensive, bias-prone, and easy-to-game, which often triggers reward hacking and unstable training. We propose Diffusion-DRF, a differentiable reward flow for fine-tuning video diffusion models using a frozen, off-the-shelf Vision-Language Model (VLM) as a training-free critic. Diffusion-DRF directly backpropagates VLM feedback through the diffusion denoising chain, converting logit-level responses into token-aware gradients for optimization. We propose an automated, aspect-structured prompting pipeline to obtain reliable multi-dimensional VLM feedback, while gradient checkpointing enables efficient updates through the final denoising steps. Diffusion-DRF improves video quality and semantic alignment while mitigating reward hacking and collapse -- without additional reward models or preference datasets. It is model-agnostic and readily generalizes to other diffusion-based generative tasks.
Klear: Unified Multi-Task Audio-Video Joint Generation
Audio-video joint generation has progressed rapidly, yet substantial challenges still remain. Non-commercial approaches still suffer audio-visual asynchrony, poor lip-speech alignment, and unimodal degradation, which can be stemmed from weak audio-visual correspondence modeling, limited generalization, and scarce high-quality dense-caption data. To address these issues, we introduce Klear and delve into three axes--model architecture, training strategy, and data curation. Architecturally, we adopt a single-tower design with unified DiT blocks and an Omni-Full Attention mechanism, achieving tight audio-visual alignment and strong scalability. Training-wise, we adopt a progressive multitask regime--random modality masking to joint optimization across tasks, and a multistage curriculum, yielding robust representations, strengthening A-V aligned world knowledge, and preventing unimodal collapse. For datasets, we present the first large-scale audio-video dataset with dense captions, and introduce a novel automated data-construction pipeline which annotates and filters millions of diverse, high-quality, strictly aligned audio-video-caption triplets. Building on this, Klear scales to large datasets, delivering high-fidelity, semantically and temporally aligned, instruction-following generation in both joint and unimodal settings while generalizing robustly to out-of-distribution scenarios. Across tasks, it substantially outperforms prior methods by a large margin and achieves performance comparable to Veo 3, offering a unified, scalable path toward next-generation audio-video synthesis.
Wow, wo, val! A Comprehensive Embodied World Model Evaluation Turing Test
As world models gain momentum in Embodied AI, an increasing number of works explore using video foundation models as predictive world models for downstream embodied tasks like 3D prediction or interactive generation. However, before exploring these downstream tasks, video foundation models still have two critical questions unanswered: (1) whether their generative generalization is sufficient to maintain perceptual fidelity in the eyes of human observers, and (2) whether they are robust enough to serve as a universal prior for real-world embodied agents. To provide a standardized framework for answering these questions, we introduce the Embodied Turing Test benchmark: WoW-World-Eval (Wow,wo,val). Building upon 609 robot manipulation data, Wow-wo-val examines five core abilities, including perception, planning, prediction, generalization, and execution. We propose a comprehensive evaluation protocol with 22 metrics to assess the models' generation ability, which achieves a high Pearson Correlation between the overall score and human preference (>0.93) and establishes a reliable foundation for the Human Turing Test. On Wow-wo-val, models achieve only 17.27 on long-horizon planning and at best 68.02 on physical consistency, indicating limited spatiotemporal consistency and physical reasoning. For the Inverse Dynamic Model Turing Test, we first use an IDM to evaluate the video foundation models' execution accuracy in the real world. However, most models collapse to $\approx$ 0% success, while WoW maintains a 40.74% success rate. These findings point to a noticeable gap between the generated videos and the real world, highlighting the urgency and necessity of benchmarking World Model in Embodied AI.
Pixel-Wise Multimodal Contrastive Learning for Remote Sensing Images
Satellites continuously generate massive volumes of data, particularly for Earth observation, including satellite image time series (SITS). However, most deep learning models are designed to process either entire images or complete time series sequences to extract meaningful features for downstream tasks. In this study, we propose a novel multimodal approach that leverages pixel-wise two-dimensional (2D) representations to encode visual property variations from SITS more effectively. Specifically, we generate recurrence plots from pixel-based vegetation index time series (NDVI, EVI, and SAVI) as an alternative to using raw pixel values, creating more informative representations. Additionally, we introduce PIxel-wise Multimodal Contrastive (PIMC), a new multimodal self-supervision approach that produces effective encoders based on two-dimensional pixel time series representations and remote sensing imagery (RSI). To validate our approach, we assess its performance on three downstream tasks: pixel-level forecasting and classification using the PASTIS dataset, and land cover classification on the EuroSAT dataset. Moreover, we compare our results to state-of-the-art (SOTA) methods on all downstream tasks. Our experimental results show that the use of 2D representations significantly enhances feature extraction from SITS, while contrastive learning improves the quality of representations for both pixel time series and RSI. These findings suggest that our multimodal method outperforms existing models in various Earth observation tasks, establishing it as a robust self-supervision framework for processing both SITS and RSI. Code avaliable on
comment: 21 pages, 9 Figures
InfiniteWeb: Scalable Web Environment Synthesis for GUI Agent Training
GUI agents that interact with graphical interfaces on behalf of users represent a promising direction for practical AI assistants. However, training such agents is hindered by the scarcity of suitable environments. We present InfiniteWeb, a system that automatically generates functional web environments at scale for GUI agent training. While LLMs perform well on generating a single webpage, building a realistic and functional website with many interconnected pages faces challenges. We address these challenges through unified specification, task-centric test-driven development, and a combination of website seed with reference design image to ensure diversity. Our system also generates verifiable task evaluators enabling dense reward signals for reinforcement learning. Experiments show that InfiniteWeb surpasses commercial coding agents at realistic website construction, and GUI agents trained on our generated environments achieve significant performance improvements on OSWorld and Online-Mind2Web, demonstrating the effectiveness of proposed system.
comment: Work In Progress
MORPHFED: Federated Learning for Cross-institutional Blood Morphology Analysis
Automated blood morphology analysis can support hematological diagnostics in low- and middle-income countries (LMICs) but remains sensitive to dataset shifts from staining variability, imaging differences, and rare morphologies. Building centralized datasets to capture this diversity is often infeasible due to privacy regulations and data-sharing restrictions. We introduce a federated learning framework for white blood cell morphology analysis that enables collaborative training across institutions without exchanging training data. Using blood films from multiple clinical sites, our federated models learn robust, domain-invariant representations while preserving complete data privacy. Evaluations across convolutional and transformer-based architectures show that federated training achieves strong cross-site performance and improved generalization to unseen institutions compared to centralized training. These findings highlight federated learning as a practical and privacy-preserving approach for developing equitable, scalable, and generalizable medical imaging AI in resource-limited healthcare environments.
GeoReason: Aligning Thinking And Answering In Remote Sensing Vision-Language Models Via Logical Consistency Reinforcement Learning
The evolution of Remote Sensing Vision-Language Models(RS-VLMs) emphasizes the importance of transitioning from perception-centric recognition toward high-level deductive reasoning to enhance cognitive reliability in complex spatial tasks. However, current models often suffer from logical hallucinations, where correct answers are derived from flawed reasoning chains or rely on positional shortcuts rather than spatial logic. This decoupling undermines reliability in strategic spatial decision-making. To address this, we present GeoReason, a framework designed to synchronize internal thinking with final decisions. We first construct GeoReason-Bench, a logic-driven dataset containing 4,000 reasoning trajectories synthesized from geometric primitives and expert knowledge. We then formulate a two-stage training strategy: (1) Supervised Knowledge Initialization to equip the model with reasoning syntax and domain expertise, and (2) Consistency-Aware Reinforcement Learning to refine deductive reliability. This second stage integrates a novel Logical Consistency Reward, which penalizes logical drift via an option permutation strategy to anchor decisions in verifiable reasoning traces. Experimental results demonstrate that our framework significantly enhances the cognitive reliability and interpretability of RS-VLMs, achieving state-of-the-art performance compared to other advanced methods.
Gen3R: 3D Scene Generation Meets Feed-Forward Reconstruction
We present Gen3R, a method that bridges the strong priors of foundational reconstruction models and video diffusion models for scene-level 3D generation. We repurpose the VGGT reconstruction model to produce geometric latents by training an adapter on its tokens, which are regularized to align with the appearance latents of pre-trained video diffusion models. By jointly generating these disentangled yet aligned latents, Gen3R produces both RGB videos and corresponding 3D geometry, including camera poses, depth maps, and global point clouds. Experiments demonstrate that our approach achieves state-of-the-art results in single- and multi-image conditioned 3D scene generation. Additionally, our method can enhance the robustness of reconstruction by leveraging generative priors, demonstrating the mutual benefit of tightly coupling reconstruction and generative models.
comment: Project page: https://xdimlab.github.io/Gen3R/
Analyzing Reasoning Consistency in Large Multimodal Models under Cross-Modal Conflicts
Large Multimodal Models (LMMs) have demonstrated impressive capabilities in video reasoning via Chain-of-Thought (CoT). However, the robustness of their reasoning chains remains questionable. In this paper, we identify a critical failure mode termed textual inertia, where once a textual hallucination occurs in the thinking process, models tend to blindly adhere to the erroneous text while neglecting conflicting visual evidence. To systematically investigate this, we propose the LogicGraph Perturbation Protocol that structurally injects perturbations into the reasoning chains of diverse LMMs spanning both native reasoning architectures and prompt-driven paradigms to evaluate their self-reflection capabilities. The results reveal that models successfully self-correct in less than 10% of cases and predominantly succumb to blind textual error propagation. To mitigate this, we introduce Active Visual-Context Refinement, a training-free inference paradigm which orchestrates an active visual re-grounding mechanism to enforce fine-grained verification coupled with an adaptive context refinement strategy to summarize and denoise the reasoning history. Experiments demonstrate that our approach significantly stifles hallucination propagation and enhances reasoning robustness.
comment: 10 pages, 5 figures
Mind the Generative Details: Direct Localized Detail Preference Optimization for Video Diffusion Models
Aligning text-to-video diffusion models with human preferences is crucial for generating high-quality videos. Existing Direct Preference Otimization (DPO) methods rely on multi-sample ranking and task-specific critic models, which is inefficient and often yields ambiguous global supervision. To address these limitations, we propose LocalDPO, a novel post-training framework that constructs localized preference pairs from real videos and optimizes alignment at the spatio-temporal region level. We design an automated pipeline to efficiently collect preference pair data that generates preference pairs with a single inference per prompt, eliminating the need for external critic models or manual annotation. Specifically, we treat high-quality real videos as positive samples and generate corresponding negatives by locally corrupting them with random spatio-temporal masks and restoring only the masked regions using the frozen base model. During training, we introduce a region-aware DPO loss that restricts preference learning to corrupted areas for rapid convergence. Experiments on Wan2.1 and CogVideoX demonstrate that LocalDPO consistently improves video fidelity, temporal coherence and human preference scores over other post-training approaches, establishing a more efficient and fine-grained paradigm for video generator alignment.
comment: Under Review
Unsupervised Modular Adaptive Region Growing and RegionMix Classification for Wind Turbine Segmentation WACV 2026
Reliable operation of wind turbines requires frequent inspections, as even minor surface damages can degrade aerodynamic performance, reduce energy output, and accelerate blade wear. Central to automating these inspections is the accurate segmentation of turbine blades from visual data. This task is traditionally addressed through dense, pixel-wise deep learning models. However, such methods demand extensive annotated datasets, posing scalability challenges. In this work, we introduce an annotation-efficient segmentation approach that reframes the pixel-level task into a binary region classification problem. Image regions are generated using a fully unsupervised, interpretable Modular Adaptive Region Growing technique, guided by image-specific Adaptive Thresholding and enhanced by a Region Merging process that consolidates fragmented areas into coherent segments. To improve generalization and classification robustness, we introduce RegionMix, an augmentation strategy that synthesizes new training samples by combining distinct regions. Our framework demonstrates state-of-the-art segmentation accuracy and strong cross-site generalization by consistently segmenting turbine blades across distinct windfarms.
comment: Accepted to WACV 2026
CLAP: Contrastive Latent Action Pretraining for Learning Vision-Language-Action Models from Human Videos
Generalist Vision-Language-Action models are currently hindered by the scarcity of robotic data compared to the abundance of human video demonstrations. Existing Latent Action Models attempt to leverage video data but often suffer from visual entanglement, capturing noise rather than manipulation skills. To address this, we propose Contrastive Latent Action Pretraining (CLAP), a framework that aligns the visual latent space from videos with a proprioceptive latent space from robot trajectories. By employing contrastive learning, CLAP maps video transitions onto a quantized, physically executable codebook. Building on this representation, we introduce a dual-formulation VLA framework offering both CLAP-NTP, an autoregressive model excelling at instruction following and object generalization, and CLAP-RF, a Rectified Flow-based policy designed for high-frequency, precise manipulation. Furthermore, we propose a Knowledge Matching (KM) regularization strategy to mitigate catastrophic forgetting during fine-tuning. Extensive experiments demonstrate that CLAP significantly outperforms strong baselines, enabling the effective transfer of skills from human videos to robotic execution. Project page: https://lin-shan.com/CLAP/.
comment: Project page: https://lin-shan.com/CLAP/
Thinking with Frames: Generative Video Distortion Evaluation via Frame Reward Model
Recent advances in video reward models and post-training strategies have improved text-to-video (T2V) generation. While these models typically assess visual quality, motion quality, and text alignment, they often overlook key structural distortions, such as abnormal object appearances and interactions, which can degrade the overall quality of the generative video. To address this gap, we introduce REACT, a frame-level reward model designed specifically for structural distortions evaluation in generative videos. REACT assigns point-wise scores and attribution labels by reasoning over video frames, focusing on recognizing distortions. To support this, we construct a large-scale human preference dataset, annotated based on our proposed taxonomy of structural distortions, and generate additional data using a efficient Chain-of-Thought (CoT) synthesis pipeline. REACT is trained with a two-stage framework: ((1) supervised fine-tuning with masked loss for domain knowledge injection, followed by (2) reinforcement learning with Group Relative Policy Optimization (GRPO) and pairwise rewards to enhance reasoning capability and align output scores with human preferences. During inference, a dynamic sampling mechanism is introduced to focus on frames most likely to exhibit distortion. We also present REACT-Bench, a benchmark for generative video distortion evaluation. Experimental results demonstrate that REACT complements existing reward models in assessing structutal distortion, achieving both accurate quantitative evaluations and interpretable attribution analysis.
Padé Neurons for Efficient Neural Models
Neural networks commonly employ the McCulloch-Pitts neuron model, which is a linear model followed by a point-wise non-linear activation. Various researchers have already advanced inherently non-linear neuron models, such as quadratic neurons, generalized operational neurons, generative neurons, and super neurons, which offer stronger non-linearity compared to point-wise activation functions. In this paper, we introduce a novel and better non-linear neuron model called Padé neurons (Paons), inspired by Padé approximants. Paons offer several advantages, such as diversity of non-linearity, since each Paon learns a different non-linear function of its inputs, and layer efficiency, since Paons provide stronger non-linearity in much fewer layers compared to piecewise linear approximation. Furthermore, Paons include all previously proposed neuron models as special cases, thus any neuron model in any network can be replaced by Paons. We note that there has been a proposal to employ the Padé approximation as a generalized point-wise activation function, which is fundamentally different from our model. To validate the efficacy of Paons, in our experiments, we replace classic neurons in some well-known neural image super-resolution, compression, and classification models based on the ResNet architecture with Paons. Our comprehensive experimental results and analyses demonstrate that neural models built by Paons provide better or equal performance than their classic counterparts with a smaller number of layers. The PyTorch implementation code for Paon is open-sourced at https://github.com/onur-keles/Paon.
comment: Accepted for Publication in IEEE TRANSACTIONS ON IMAGE PROCESSING; 13 pages, 8 figures
PosterVerse: A Full-Workflow Framework for Commercial-Grade Poster Generation with HTML-Based Scalable Typography
Commercial-grade poster design demands the seamless integration of aesthetic appeal with precise, informative content delivery. Current automated poster generation systems face significant limitations, including incomplete design workflows, poor text rendering accuracy, and insufficient flexibility for commercial applications. To address these challenges, we propose PosterVerse, a full-workflow, commercial-grade poster generation method that seamlessly automates the entire design process while delivering high-density and scalable text rendering. PosterVerse replicates professional design through three key stages: (1) blueprint creation using fine-tuned LLMs to extract key design elements from user requirements, (2) graphical background generation via customized diffusion models to create visually appealing imagery, and (3) unified layout-text rendering with an MLLM-powered HTML engine to guarantee high text accuracy and flexible customization. In addition, we introduce PosterDNA, a commercial-grade, HTML-based dataset tailored for training and validating poster design models. To the best of our knowledge, PosterDNA is the first Chinese poster generation dataset to introduce HTML typography files, enabling scalable text rendering and fundamentally solving the challenges of rendering small and high-density text. Experimental results demonstrate that PosterVerse consistently produces commercial-grade posters with appealing visuals, accurate text alignment, and customizable layouts, making it a promising solution for automating commercial poster design. The code and model are available at https://github.com/wuhaer/PosterVerse.
FUSION: Full-Body Unified Motion Prior for Body and Hands via Diffusion
Hands are central to interacting with our surroundings and conveying gestures, making their inclusion essential for full-body motion synthesis. Despite this, existing human motion synthesis methods fall short: some ignore hand motions entirely, while others generate full-body motions only for narrowly scoped tasks under highly constrained settings. A key obstacle is the lack of large-scale datasets that jointly capture diverse full-body motion with detailed hand articulation. While some datasets capture both, they are limited in scale and diversity. Conversely, large-scale datasets typically focus either on body motion without hands or on hand motions without the body. To overcome this, we curate and unify existing hand motion datasets with large-scale body motion data to generate full-body sequences that capture both hand and body. We then propose the first diffusion-based unconditional full-body motion prior, FUSION, which jointly models body and hand motion. Despite using a pose-based motion representation, FUSION surpasses state-of-the-art skeletal control models on the Keypoint Tracking task in the HumanML3D dataset and achieves superior motion naturalness. Beyond standard benchmarks, we demonstrate that FUSION can go beyond typical uses of motion priors through two applications: (1) generating detailed full-body motion including fingers during interaction given the motion of an object, and (2) generating Self-Interaction motions using an LLM to transform natural language cues into actionable motion constraints. For these applications, we develop an optimization pipeline that refines the latent space of our diffusion model to generate task-specific motions. Experiments on these tasks highlight precise control over hand motion while maintaining plausible full-body coordination. The code will be public.
ResTok: Learning Hierarchical Residuals in 1D Visual Tokenizers for Autoregressive Image Generation
Existing 1D visual tokenizers for autoregressive (AR) generation largely follow the design principles of language modeling, as they are built directly upon transformers whose priors originate in language, yielding single-hierarchy latent tokens and treating visual data as flat sequential token streams. However, this language-like formulation overlooks key properties of vision, particularly the hierarchical and residual network designs that have long been essential for convergence and efficiency in visual models. To bring "vision" back to vision, we propose the Residual Tokenizer (ResTok), a 1D visual tokenizer that builds hierarchical residuals for both image tokens and latent tokens. The hierarchical representations obtained through progressively merging enable cross-level feature fusion at each layer, substantially enhancing representational capacity. Meanwhile, the semantic residuals between hierarchies prevent information overlap, yielding more concentrated latent distributions that are easier for AR modeling. Cross-level bindings consequently emerge without any explicit constraints. To accelerate the generation process, we further introduce a hierarchical AR generator that substantially reduces sampling steps by predicting an entire level of latent tokens at once rather than generating them strictly token-by-token. Extensive experiments demonstrate that restoring hierarchical residual priors in visual tokenization significantly improves AR image generation, achieving a gFID of 2.34 on ImageNet-256 with only 9 sampling steps. Code is available at https://github.com/Kwai-Kolors/ResTok.
comment: Technical report
FocusUI: Efficient UI Grounding via Position-Preserving Visual Token Selection
Vision-Language Models (VLMs) have shown remarkable performance in User Interface (UI) grounding tasks, driven by their ability to process increasingly high-resolution screenshots. However, screenshots are tokenized into thousands of visual tokens (e.g., about 4700 for 2K resolution), incurring significant computational overhead and diluting attention. In contrast, humans typically focus on regions of interest when interacting with UI. In this work, we pioneer the task of efficient UI grounding. Guided by practical analysis of the task's characteristics and challenges, we propose FocusUI, an efficient UI grounding framework that selects patches most relevant to the instruction while preserving positional continuity for precise grounding. FocusUI addresses two key challenges: (1) Eliminating redundant tokens in visual encoding. We construct patch-level supervision by fusing an instruction-conditioned score with a rule-based UI-graph score that down-weights large homogeneous regions to select distinct and instruction-relevant visual tokens. (2) Preserving positional continuity during visual token selection. We find that general visual token pruning methods suffer from severe accuracy degradation on UI grounding tasks due to broken positional information. We introduce a novel PosPad strategy, which compresses each contiguous sequence of dropped visual tokens into a single special marker placed at the sequence's last index to preserve positional continuity. Comprehensive experiments on four grounding benchmarks demonstrate that FocusUI surpasses GUI-specific baselines. On the ScreenSpot-Pro benchmark, FocusUI-7B achieves a performance improvement of 3.7% over GUI-Actor-7B. Even with only 30% visual token retention, FocusUI-7B drops by only 3.2% while achieving up to 1.44x faster inference and 17% lower peak GPU memory.
comment: 14 pages, 13 figures
A low-complexity method for efficient depth-guided image deblurring
Image deblurring is a challenging problem in imaging due to its highly ill-posed nature. Deep learning models have shown great success in tackling this problem but the quest for the best image quality has brought their computational complexity up, making them impractical on anything but powerful servers. Meanwhile, recent works have shown that mobile Lidars can provide complementary information in the form of depth maps that enhance deblurring quality. In this paper, we introduce a novel low-complexity neural network for depth-guided image deblurring. We show that the use of the wavelet transform to separate structural details and reduce spatial redundancy as well as efficient feature conditioning on the depth information are essential ingredients in developing a low-complexity model. Experimental results show competitive image quality against recent state-of-the-art models while reducing complexity by up to two orders of magnitude.
HemBLIP: A Vision-Language Model for Interpretable Leukemia Cell Morphology Analysis
Microscopic evaluation of white blood cell morphology is central to leukemia diagnosis, yet current deep learning models often act as black boxes, limiting clinical trust and adoption. We introduce HemBLIP, a vision language model designed to generate interpretable, morphology aware descriptions of peripheral blood cells. Using a newly constructed dataset of 14k healthy and leukemic cells paired with expert-derived attribute captions, we adapt a general-purpose VLM via both full fine-tuning and LoRA based parameter efficient training, and benchmark against the biomedical foundation model MedGEMMA. HemBLIP achieves higher caption quality and morphological accuracy, while LoRA adaptation provides further gains with significantly reduced computational cost. These results highlight the promise of vision language models for transparent and scalable hematological diagnostics.
FLNet: Flood-Induced Agriculture Damage Assessment using Super Resolution of Satellite Images
Distributing government relief efforts after a flood is challenging. In India, the crops are widely affected by floods; therefore, making rapid and accurate crop damage assessment is crucial for effective post-disaster agricultural management. Traditional manual surveys are slow and biased, while current satellite-based methods face challenges like cloud cover and low spatial resolution. Therefore, to bridge this gap, this paper introduced FLNet, a novel deep learning based architecture that used super-resolution to enhance the 10 m spatial resolution of Sentinel-2 satellite images into 3 m resolution before classifying damage. We tested our model on the Bihar Flood Impacted Croplands Dataset (BFCD-22), and the results showed an improved critical "Full Damage" F1-score from 0.83 to 0.89, nearly matching the 0.89 score of commercial high-resolution imagery. This work presented a cost-effective and scalable solution, paving the way for a nationwide shift from manual to automated, high-fidelity damage assessment.
comment: Accepted for oral presentation at the 10th International Conference on Computer Vision and Image Processing (CVIP 2025)
Staged Voxel-Level Deep Reinforcement Learning for 3D Medical Image Segmentation with Noisy Annotations
Deep learning has achieved significant advancements in medical image segmentation. Currently, obtaining accurate segmentation outcomes is critically reliant on large-scale datasets with high-quality annotations. However, noisy annotations are frequently encountered owing to the complex morphological structures of organs in medical images and variations among different annotators, which can substantially limit the efficacy of segmentation models. Motivated by the fact that medical imaging annotator can correct labeling errors during segmentation based on prior knowledge, we propose an end-to-end Staged Voxel-Level Deep Reinforcement Learning (SVL-DRL) framework for robust medical image segmentation under noisy annotations. This framework employs a dynamic iterative update strategy to automatically mitigate the impact of erroneous labels without requiring manual intervention. The key advancements of SVL-DRL over existing works include: i) formulating noisy annotations as a voxel-dependent problem and addressing it through a novel staged reinforcement learning framework which guarantees robust model convergence; ii) incorporating a voxel-level asynchronous advantage actor-critic (vA3C) module that conceptualizes each voxel as an autonomous agent, which allows each agent to dynamically refine its own state representation during training, thereby directly mitigating the influence of erroneous labels; iii) designing a novel action space for the agents, along with a composite reward function that strategically combines the Dice value and a spatial continuity metric to significantly boost segmentation accuracy while maintain semantic integrity. Experiments on three public medical image datasets demonstrates State-of-The-Art (SoTA) performance under various experimental settings, with an average improvement of over 3\% in both Dice and IoU scores.
Bayesian Monocular Depth Refinement via Neural Radiance Fields
Monocular depth estimation has applications in many fields, such as autonomous navigation and extended reality, making it an essential computer vision task. However, current methods often produce smooth depth maps that lack the fine geometric detail needed for accurate scene understanding. We propose MDENeRF, an iterative framework that refines monocular depth estimates using depth information from Neural Radiance Fields (NeRFs). MDENeRF consists of three components: (1) an initial monocular estimate for global structure, (2) a NeRF trained on perturbed viewpoints, with per-pixel uncertainty, and (3) Bayesian fusion of the noisy monocular and NeRF depths. We derive NeRF uncertainty from the volume rendering process to iteratively inject high-frequency fine details. Meanwhile, our monocular prior maintains global structure. We demonstrate superior performance on key metrics and experiments using indoor scenes from the SUN RGB-D dataset.
comment: IEEE 8th International Conference on Algorithms, Computing and Artificial Intelligence (ACAI 2025). Oral presentation; Best Presenter Award
IDESplat: Iterative Depth Probability Estimation for Generalizable 3D Gaussian Splatting
Generalizable 3D Gaussian Splatting aims to directly predict Gaussian parameters using a feed-forward network for scene reconstruction. Among these parameters, Gaussian means are particularly difficult to predict, so depth is usually estimated first and then unprojected to obtain the Gaussian sphere centers. Existing methods typically rely solely on a single warp to estimate depth probability, which hinders their ability to fully leverage cross-view geometric cues, resulting in unstable and coarse depth maps. To address this limitation, we propose IDESplat, which iteratively applies warp operations to boost depth probability estimation for accurate Gaussian mean prediction. First, to eliminate the inherent instability of a single warp, we introduce a Depth Probability Boosting Unit (DPBU) that integrates epipolar attention maps produced by cascading warp operations in a multiplicative manner. Next, we construct an iterative depth estimation process by stacking multiple DPBUs, progressively identifying potential depth candidates with high likelihood. As IDESplat iteratively boosts depth probability estimates and updates the depth candidates, the depth map is gradually refined, resulting in accurate Gaussian means. We conduct experiments on RealEstate10K, ACID, and DL3DV. IDESplat achieves outstanding reconstruction quality and state-of-the-art performance with real-time efficiency. On RE10K, it outperforms DepthSplat by 0.33 dB in PSNR, using only 10.7% of the parameters and 70% of the memory. Additionally, our IDESplat improves PSNR by 2.95 dB over DepthSplat on the DTU dataset in cross-dataset experiments, demonstrating its strong generalization ability.
EvalBlocks: A Modular Pipeline for Rapidly Evaluating Foundation Models in Medical Imaging
Developing foundation models in medical imaging requires continuous monitoring of downstream performance. Researchers are burdened with tracking numerous experiments, design choices, and their effects on performance, often relying on ad-hoc, manual workflows that are inherently slow and error-prone. We introduce EvalBlocks, a modular, plug-and-play framework for efficient evaluation of foundation models during development. Built on Snakemake, EvalBlocks supports seamless integration of new datasets, foundation models, aggregation methods, and evaluation strategies. All experiments and results are tracked centrally and are reproducible with a single command, while efficient caching and parallel execution enable scalable use on shared compute infrastructure. Demonstrated on five state-of-the-art foundation models and three medical imaging classification tasks, EvalBlocks streamlines model evaluation, enabling researchers to iterate faster and focus on model innovation rather than evaluation logistics. The framework is released as open source software at https://github.com/DIAGNijmegen/eval-blocks.
comment: Accepted at BVM 2026
From Brute Force to Semantic Insight: Performance-Guided Data Transformation Design with LLMs
Large language models (LLMs) have achieved notable performance in code synthesis; however, data-aware augmentation remains a limiting factor, handled via heuristic design or brute-force approaches. We introduce a performance-aware, closed-loop solution in the NNGPT ecosystem of projects that enables LLMs to autonomously engineer optimal transformations by internalizing empirical performance cues. We fine-tune LLMs with Low-Rank Adaptation on a novel repository of more than 6,000 empirically evaluated PyTorch augmentation functions, each annotated solely by downstream model accuracy. Training uses pairwise performance ordering (better-worse transformations), enabling alignment through empirical feedback without reinforcement learning, reward models, or symbolic objectives. This reduces the need for exhaustive search, achieving up to 600x times fewer evaluated candidates than brute-force discovery while maintaining competitive peak accuracy and shifting generation from random synthesis to task-aligned design. Ablation studies show that structured Chain-of-Thought prompting introduces syntactic noise and degrades performance, whereas direct prompting ensures stable optimization in performance-critical code tasks. Qualitative and quantitative analyses demonstrate that the model internalizes semantic performance cues rather than memorizing syntax. These results show that LLMs can exhibit task-level reasoning through non-textual feedback loops, bypassing explicit symbolic rewards.
A Comparative Study of 3D Model Acquisition Methods for Synthetic Data Generation of Agricultural Products
In the manufacturing industry, computer vision systems based on artificial intelligence (AI) are widely used to reduce costs and increase production. Training these AI models requires a large amount of training data that is costly to acquire and annotate, especially in high-variance, low-volume manufacturing environments. A popular approach to reduce the need for real data is the use of synthetic data that is generated by leveraging computer-aided design (CAD) models available in the industry. However, in the agricultural industry these models are not readily available, increasing the difficulty in leveraging synthetic data. In this paper, we present different techniques for substituting CAD files to create synthetic datasets. We measure their relative performance when used to train an AI object detection model to separate stones and potatoes in a bin picking environment. We demonstrate that using highly representative 3D models acquired by scanning or using image-to-3D approaches can be used to generate synthetic data for training object detection models. Finetuning on a small real dataset can significantly improve the performance of the models and even get similar performance when less representative models are used.
comment: 6 pages, 3 figures, 1 table, presented at 4th International Conference on Responsible Consumption and Production, https://link.springer.com/book/9783032173546
PointWorld: Scaling 3D World Models for In-The-Wild Robotic Manipulation
Humans anticipate, from a glance and a contemplated action of their bodies, how the 3D world will respond, a capability that is equally vital for robotic manipulation. We introduce PointWorld, a large pre-trained 3D world model that unifies state and action in a shared 3D space as 3D point flows: given one or few RGB-D images and a sequence of low-level robot action commands, PointWorld forecasts per-pixel displacements in 3D that respond to the given actions. By representing actions as 3D point flows instead of embodiment-specific action spaces (e.g., joint positions), this formulation directly conditions on physical geometries of robots while seamlessly integrating learning across embodiments. To train our 3D world model, we curate a large-scale dataset spanning real and simulated robotic manipulation in open-world environments, enabled by recent advances in 3D vision and simulated environments, totaling about 2M trajectories and 500 hours across a single-arm Franka and a bimanual humanoid. Through rigorous, large-scale empirical studies of backbones, action representations, learning objectives, partial observability, data mixtures, domain transfers, and scaling, we distill design principles for large-scale 3D world modeling. With a real-time (0.1s) inference speed, PointWorld can be efficiently integrated in the model-predictive control (MPC) framework for manipulation. We demonstrate that a single pre-trained checkpoint enables a real-world Franka robot to perform rigid-body pushing, deformable and articulated object manipulation, and tool use, without requiring any demonstrations or post-training and all from a single image captured in-the-wild. Project website at https://point-world.github.io/.
MVP: Enhancing Video Large Language Models via Self-supervised Masked Video Prediction
Reinforcement learning based post-training paradigms for Video Large Language Models (VideoLLMs) have achieved significant success by optimizing for visual-semantic tasks such as captioning or VideoQA. However, while these approaches effectively enhance perception abilities, they primarily target holistic content understanding, often lacking explicit supervision for intrinsic temporal coherence and inter-frame correlations. This tendency limits the models' ability to capture intricate dynamics and fine-grained visual causality. To explicitly bridge this gap, we propose a novel post-training objective: Masked Video Prediction (MVP). By requiring the model to reconstruct a masked continuous segment from a set of challenging distractors, MVP forces the model to attend to the sequential logic and temporal context of events. To support scalable training, we introduce a scalable data synthesis pipeline capable of transforming arbitrary video corpora into MVP training samples, and further employ Group Relative Policy Optimization (GRPO) with a fine-grained reward function to enhance the model's understanding of video context and temporal properties. Comprehensive evaluations demonstrate that MVP enhances video reasoning capabilities by directly reinforcing temporal reasoning and causal understanding.
I2E: From Image Pixels to Actionable Interactive Environments for Text-Guided Image Editing
Existing text-guided image editing methods primarily rely on end-to-end pixel-level inpainting paradigm. Despite its success in simple scenarios, this paradigm still significantly struggles with compositional editing tasks that require precise local control and complex multi-object spatial reasoning. This paradigm is severely limited by 1) the implicit coupling of planning and execution, 2) the lack of object-level control granularity, and 3) the reliance on unstructured, pixel-centric modeling. To address these limitations, we propose I2E, a novel "Decompose-then-Action" paradigm that revisits image editing as an actionable interaction process within a structured environment. I2E utilizes a Decomposer to transform unstructured images into discrete, manipulable object layers and then introduces a physics-aware Vision-Language-Action Agent to parse complex instructions into a series of atomic actions via Chain-of-Thought reasoning. Further, we also construct I2E-Bench, a benchmark designed for multi-instance spatial reasoning and high-precision editing. Experimental results on I2E-Bench and multiple public benchmarks demonstrate that I2E significantly outperforms state-of-the-art methods in handling complex compositional instructions, maintaining physical plausibility, and ensuring multi-turn editing stability.
HyperCOD: The First Challenging Benchmark and Baseline for Hyperspectral Camouflaged Object Detection
RGB-based camouflaged object detection struggles in real-world scenarios where color and texture cues are ambiguous. While hyperspectral image offers a powerful alternative by capturing fine-grained spectral signatures, progress in hyperspectral camouflaged object detection (HCOD) has been critically hampered by the absence of a dedicated, large-scale benchmark. To spur innovation, we introduce HyperCOD, the first challenging benchmark for HCOD. Comprising 350 high-resolution hyperspectral images, It features complex real-world scenarios with minimal objects, intricate shapes, severe occlusions, and dynamic lighting to challenge current models. The advent of foundation models like the Segment Anything Model (SAM) presents a compelling opportunity. To adapt the Segment Anything Model (SAM) for HCOD, we propose HyperSpectral Camouflage-aware SAM (HSC-SAM). HSC-SAM ingeniously reformulates the hyperspectral image by decoupling it into a spatial map fed to SAM's image encoder and a spectral saliency map that serves as an adaptive prompt. This translation effectively bridges the modality gap. Extensive experiments show that HSC-SAM sets a new state-of-the-art on HyperCOD and generalizes robustly to other public HSI datasets. The HyperCOD dataset and our HSC-SAM baseline provide a robust foundation to foster future research in this emerging area.
RadDiff: Describing Differences in Radiology Image Sets with Natural Language
Understanding how two radiology image sets differ is critical for generating clinical insights and for interpreting medical AI systems. We introduce RadDiff, a multimodal agentic system that performs radiologist-style comparative reasoning to describe clinically meaningful differences between paired radiology studies. RadDiff builds on a proposer-ranker framework from VisDiff, and incorporates four innovations inspired by real diagnostic workflows: (1) medical knowledge injection through domain-adapted vision-language models; (2) multimodal reasoning that integrates images with their clinical reports; (3) iterative hypothesis refinement across multiple reasoning rounds; and (4) targeted visual search that localizes and zooms in on salient regions to capture subtle findings. To evaluate RadDiff, we construct RadDiffBench, a challenging benchmark comprising 57 expert-validated radiology study pairs with ground-truth difference descriptions. On RadDiffBench, RadDiff achieves 47% accuracy, and 50% accuracy when guided by ground-truth reports, significantly outperforming the general-domain VisDiff baseline. We further demonstrate RadDiff's versatility across diverse clinical tasks, including COVID-19 phenotype comparison, racial subgroup analysis, and discovery of survival-related imaging features. Together, RadDiff and RadDiffBench provide the first method-and-benchmark foundation for systematically uncovering meaningful differences in radiological data.
MATANet: A Multi-context Attention and Taxonomy-Aware Network for Fine-Grained Underwater Recognition of Marine Species
Fine-grained classification of marine animals supports ecology, biodiversity and habitat conservation, and evidence-based policy-making. However, existing methods often overlook contextual interactions from the surrounding environment and insufficiently incorporate the hierarchical structure of marine biological taxonomy. To address these challenges, we propose MATANet (Multi-context Attention and Taxonomy-Aware Network), a novel model designed for fine-grained marine species classification. MATANet mimics expert strategies by using taxonomy and environmental context to interpret ambiguous features of underwater animals. It consists of two key components: a Multi-Context Environmental Attention Module (MCEAM), which learns relationships between regions of interest (ROIs) and their surrounding environments, and a Hierarchical Separation-Induced Learning Module (HSLM), which encodes taxonomic hierarchy into the feature space. MATANet combines instance and environmental features with taxonomic structure to enhance fine-grained classification. Experiments on the FathomNet2025, FAIR1M, and LifeCLEF2015-Fish datasets demonstrate state-of-the-art performance. The source code is available at: https://github.com/dhlee-work/fathomnet-cvpr2025-ssl
CSMCIR: CoT-Enhanced Symmetric Alignment with Memory Bank for Composed Image Retrieval
Composed Image Retrieval (CIR) enables users to search for target images using both a reference image and manipulation text, offering substantial advantages over single-modality retrieval systems. However, existing CIR methods suffer from representation space fragmentation: queries and targets comprise heterogeneous modalities and are processed by distinct encoders, forcing models to bridge misaligned representation spaces only through post-hoc alignment, which fundamentally limits retrieval performance. This architectural asymmetry manifests as three distinct, well-separated clusters in the feature space, directly demonstrating how heterogeneous modalities create fundamentally misaligned representation spaces from initialization. In this work, we propose CSMCIR, a unified representation framework that achieves efficient query-target alignment through three synergistic components. First, we introduce a Multi-level Chain-of-Thought (MCoT) prompting strategy that guides Multimodal Large Language Models to generate discriminative, semantically compatible captions for target images, establishing modal symmetry. Building upon this, we design a symmetric dual-tower architecture where both query and target sides utilize the identical shared-parameter Q-Former for cross-modal encoding, ensuring consistent feature representations and further reducing the alignment gap. Finally, this architectural symmetry enables an entropy-based, temporally dynamic Memory Bank strategy that provides high-quality negative samples while maintaining consistency with the evolving model state. Extensive experiments on four benchmark datasets demonstrate that our CSMCIR achieves state-of-the-art performance with superior training efficiency. Comprehensive ablation studies further validate the effectiveness of each proposed component.
Towards Real-world Lens Active Alignment with Unlabeled Data via Domain Adaptation
Active Alignment (AA) is a key technology for the large-scale automated assembly of high-precision optical systems. Compared with labor-intensive per-model on-device calibration, a digital-twin pipeline built on optical simulation offers a substantial advantage in generating large-scale labeled data. However, complex imaging conditions induce a domain gap between simulation and real-world images, limiting the generalization of simulation-trained models. To address this, we propose augmenting a simulation baseline with minimal unlabeled real-world images captured at random misalignment positions, mitigating the gap from a domain adaptation perspective. We introduce Domain Adaptive Active Alignment (DA3), which utilizes an autoregressive domain transformation generator and an adversarial-based feature alignment strategy to distill real-world domain information via self-supervised learning. This enables the extraction of domain-invariant image degradation features to facilitate robust misalignment prediction. Experiments on two lens types reveal that DA3 improves accuracy by 46% over a purely simulation pipeline. Notably, it approaches the performance achieved with precisely labeled real-world data collected on 3 lens samples, while reducing on-device data collection time by 98.7%. The results demonstrate that domain adaptation effectively endows simulation-trained models with robust real-world performance, validating the digital-twin pipeline as a practical solution to significantly enhance the efficiency of large-scale optical assembly.
Visual Merit or Linguistic Crutch? A Close Look at DeepSeek-OCR
DeepSeek-OCR utilizes an optical 2D mapping approach to achieve high-ratio vision-text compression, claiming to decode text tokens exceeding ten times the input visual tokens. While this suggests a promising solution for the LLM long-context bottleneck, we investigate a critical question: "Visual merit or linguistic crutch - which drives DeepSeek-OCR's performance?" By employing sentence-level and word-level semantic corruption, we isolate the model's intrinsic OCR capabilities from its language priors. Results demonstrate that without linguistic support, DeepSeek-OCR's performance plummets from approximately 90% to 20%. Comparative benchmarking against 13 baseline models reveals that traditional pipeline OCR methods exhibit significantly higher robustness to such semantic perturbations than end-to-end methods. Furthermore, we find that lower visual token counts correlate with increased reliance on priors, exacerbating hallucination risks. Context stress testing also reveals a total model collapse around 10,000 text tokens, suggesting that current optical compression techniques may paradoxically aggravate the long-context bottleneck. This study empirically defines DeepSeek-OCR's capability boundaries and offers essential insights for future optimizations of the vision-text compression paradigm. We release all data, results and scripts used in this study at https://github.com/dududuck00/DeepSeekOCR.
BREATH-VL: Vision-Language-Guided 6-DoF Bronchoscopy Localization via Semantic-Geometric Fusion
Vision-language models (VLMs) have recently shown remarkable performance in navigation and localization tasks by leveraging large-scale pretraining for semantic understanding. However, applying VLMs to 6-DoF endoscopic camera localization presents several challenges: 1) the lack of large-scale, high-quality, densely annotated, and localization-oriented vision-language datasets in real-world medical settings; 2) limited capability for fine-grained pose regression; and 3) high computational latency when extracting temporal features from past frames. To address these issues, we first construct BREATH dataset, the largest in-vivo endoscopic localization dataset to date, collected in the complex human airway. Building on this dataset, we propose BREATH-VL, a hybrid framework that integrates semantic cues from VLMs with geometric information from vision-based registration methods for accurate 6-DoF pose estimation. Our motivation lies in the complementary strengths of both approaches: VLMs offer generalizable semantic understanding, while registration methods provide precise geometric alignment. To further enhance the VLM's ability to capture temporal context, we introduce a lightweight context-learning mechanism that encodes motion history as linguistic prompts, enabling efficient temporal reasoning without expensive video-level computation. Extensive experiments demonstrate that the vision-language module delivers robust semantic localization in challenging surgical scenes. Building on this, our BREATH-VL outperforms state-of-the-art vision-only localization methods in both accuracy and generalization, reducing translational error by 25.5% compared with the best-performing baseline, while achieving competitive computational latency.
TRec: Egocentric Action Recognition using 2D Point Tracks
We present a novel approach for egocentric action recognition that leverages 2D point tracks as an additional motion cue. While most existing methods rely on RGB appearance, human pose estimation, or their combination, our work demonstrates that tracking randomly sampled image points across video frames can substantially improve recognition accuracy. Unlike prior approaches, we do not detect hands, objects, or interaction regions. Instead, we employ CoTracker to follow a set of randomly initialized points through each video and use the resulting trajectories, together with the corresponding image frames, as input to a Transformer-based recognition model. Surprisingly, our method achieves notable gains even when only the initial frame and its associated point tracks are provided, without incorporating the full video sequence. Experimental results confirm that integrating 2D point tracks consistently enhances performance compared to the same model trained without motion information, highlighting their potential as a lightweight yet effective representation for egocentric action understanding.
comment: submitted to ICPR 2026
e5-omni: Explicit Cross-modal Alignment for Omni-modal Embeddings
Modern information systems often involve different types of items, e.g., a text query, an image, a video clip, or an audio segment. This motivates omni-modal embedding models that map heterogeneous modalities into a shared space for direct comparison. However, most recent omni-modal embeddings still rely heavily on implicit alignment inherited from pretrained vision-language model (VLM) backbones. In practice, this causes three common issues: (i) similarity logits have modality-dependent sharpness, so scores are not on a consistent scale; (ii) in-batch negatives become less effective over time because mixed-modality batches create an imbalanced hardness distribution; as a result, many negatives quickly become trivial and contribute little gradient; and (iii) embeddings across modalities show mismatched first- and second-order statistics, which makes rankings less stable. To tackle these problems, we propose e5-omni, a lightweight explicit alignment recipe that adapts off-the-shelf VLMs into robust omni-modal embedding models. e5-omni combines three simple components: (1) modality-aware temperature calibration to align similarity scales, (2) a controllable negative curriculum with debiasing to focus on confusing negatives while reducing the impact of false negatives, and (3) batch whitening with covariance regularization to better match cross-modal geometry in the shared embedding space. Experiments on MMEB-V2 and AudioCaps show consistent gains over strong bi-modal and omni-modal baselines, and the same recipe also transfers well to other VLM backbones. We release our model checkpoint at https://huggingface.co/Haon-Chen/e5-omni-7B.
PhysVideoGenerator: Towards Physically Aware Video Generation via Latent Physics Guidance
Current video generation models produce high-quality aesthetic videos but often struggle to learn representations of real-world physics dynamics, resulting in artifacts such as unnatural object collisions, inconsistent gravity, and temporal flickering. In this work, we propose PhysVideoGenerator, a proof-of-concept framework that explicitly embeds a learnable physics prior into the video generation process. We introduce a lightweight predictor network, PredictorP, which regresses high-level physical features extracted from a pre-trained Video Joint Embedding Predictive Architecture (V-JEPA 2) directly from noisy diffusion latents. These predicted physics tokens are injected into the temporal attention layers of a DiT-based generator (Latte) via a dedicated cross-attention mechanism. Our primary contribution is demonstrating the technical feasibility of this joint training paradigm: we show that diffusion latents contain sufficient information to recover V-JEPA 2 physical representations, and that multi-task optimization remains stable over training. This report documents the architectural design, technical challenges, and validation of training stability, establishing a foundation for future large-scale evaluation of physics-aware generative models.
comment: 9 pages, 2 figures, project page: https://github.com/CVFall2025-Project/PhysVideoGenerator
MGPC: Multimodal Network for Generalizable Point Cloud Completion With Modality Dropout and Progressive Decoding
Point cloud completion aims to recover complete 3D geometry from partial observations caused by limited viewpoints and occlusions. Existing learning-based works, including 3D Convolutional Neural Network (CNN)-based, point-based, and Transformer-based methods, have achieved strong performance on synthetic benchmarks. However, due to the limitations of modality, scalability, and generative capacity, their generalization to novel objects and real-world scenarios remains challenging. In this paper, we propose MGPC, a generalizable multimodal point cloud completion framework that integrates point clouds, RGB images, and text within a unified architecture. MGPC introduces an innovative modality dropout strategy, a Transformer-based fusion module, and a novel progressive generator to improve robustness, scalability, and geometric modeling capability. We further develop an automatic data generation pipeline and construct MGPC-1M, a large-scale benchmark with over 1,000 categories and one million training pairs. Extensive experiments on MGPC-1M and in-the-wild data demonstrate that the proposed method consistently outperforms prior baselines and exhibits strong generalization under real-world conditions.
comment: Code and dataset are available at https://github.com/L-J-Yuan/MGPC
VideoMemory: Toward Consistent Video Generation via Memory Integration
Maintaining consistent characters, props, and environments across multiple shots is a central challenge in narrative video generation. Existing models can produce high-quality short clips but often fail to preserve entity identity and appearance when scenes change or when entities reappear after long temporal gaps. We present VideoMemory, an entity-centric framework that integrates narrative planning with visual generation through a Dynamic Memory Bank. Given a structured script, a multi-agent system decomposes the narrative into shots, retrieves entity representations from memory, and synthesizes keyframes and videos conditioned on these retrieved states. The Dynamic Memory Bank stores explicit visual and semantic descriptors for characters, props, and backgrounds, and is updated after each shot to reflect story-driven changes while preserving identity. This retrieval-update mechanism enables consistent portrayal of entities across distant shots and supports coherent long-form generation. To evaluate this setting, we construct a 54-case multi-shot consistency benchmark covering character-, prop-, and background-persistent scenarios. Extensive experiments show that VideoMemory achieves strong entity-level coherence and high perceptual quality across diverse narrative sequences.
comment: Project page: https://hit-perfect.github.io/VideoMemory/
CrackSegFlow: Controllable Flow-Matching Synthesis for Generalizable Crack Segmentation with the CSF-50K Benchmark
Automated crack segmentation is essential for scalable condition assessment of pavements and civil infrastructure, yet practical deployment is limited by scarce pixel-level labels and severe domain shift across sensors, illumination, textures, and annotation conventions. This paper presents CrackSegFlow, a controllable flow-matching synthesis framework that generates photorealistic crack images conditioned on binary masks while preserving strict mask-image alignment. The generator combines topology-preserving mask injection with boundary-gated modulation to maintain thin-structure continuity and suppress texture-driven false positives. A second class-conditional flow-matching model synthesizes crack masks with explicit control over crack coverage, enabling balanced, topology-diverse paired data without additional manual annotation. We further inject crack masks into crack-free backgrounds to diversify illumination and surface artifacts and reduce false positives caused by shadows, joints, and pavement markings. Experiments on five benchmarks spanning four asphalt datasets and the crack class of a concrete-domain dataset demonstrate consistent improvements under an established hybrid CNN--Transformer segmentation backbone and a fixed training protocol. With real plus synthesized pairs, in-domain performance improves on average by 5.37 mIoU and 5.13 F1, and target-guided cross-domain synthesis yields average gains of 13.12 mIoU and 14.82 F1 using only limited target mask statistics. Compared with diffusion-based semantic synthesis, CrackSegFlow provides substantially faster deterministic sampling and improves fidelity and mask-image alignment for thin-structure crack geometry. Finally, we release CSF-50K, a public dataset of 50,000 paired crack images and pixel-accurate masks for large-scale benchmarking of generalizable crack segmentation.
MFC-RFNet: A Multi-scale Guided Rectified Flow Network for Radar Sequence Prediction
Accurate and high-resolution precipitation nowcasting from radar echo sequences is crucial for disaster mitigation and economic planning, yet it remains a significant challenge. Key difficulties include modeling complex multi-scale evolution, correcting inter-frame feature misalignment caused by displacement, and efficiently capturing long-range spatiotemporal context without sacrificing spatial fidelity. To address these issues, we present the Multi-scale Feature Communication Rectified Flow (RF) Network (MFC-RFNet), a generative framework that integrates multi-scale communication with guided feature fusion. To enhance multi-scale fusion while retaining fine detail, a Wavelet-Guided Skip Connection (WGSC) preserves high-frequency components, and a Feature Communication Module (FCM) promotes bidirectional cross-scale interaction. To correct inter-frame displacement, a Condition-Guided Spatial Transform Fusion (CGSTF) learns spatial transforms from conditioning echoes to align shallow features. The backbone adopts rectified flow training to learn near-linear probability-flow trajectories, enabling few-step sampling with stable fidelity. Additionally, lightweight Vision-RWKV (RWKV) blocks are placed at the encoder tail, the bottleneck, and the first decoder layer to capture long-range spatiotemporal dependencies at low spatial resolutions with moderate compute. Evaluations on four public datasets (SEVIR, MeteoNet, Shanghai, and CIKM) demonstrate consistent improvements over strong baselines, yielding clearer echo morphology at higher rain-rate thresholds and sustained skill at longer lead times. These results suggest that the proposed synergy of RF training with scale-aware communication, spatial alignment, and frequency-aware fusion presents an effective and robust approach for radar-based nowcasting.
Shape Classification using Approximately Convex Segment Features
The existing object classification techniques based on descriptive features rely on object alignment to compute the similarity of objects for classification. This paper replaces the necessity of object alignment through sorting of feature. The object boundary is normalized and segmented into approximately convex segments and the segments are then sorted in descending order of their length. The segment length, number of extreme points in segments, area of segments, the base and the width of the segments - a bag of features - is used to measure the similarity between image boundaries. The proposed method is tested on datasets and acceptable results are observed.
Systematic Evaluation of Depth Backbones and Semantic Cues for Monocular Pseudo-LiDAR 3D Detection
Monocular 3D object detection offers a low-cost alternative to LiDAR, yet remains less accurate due to the difficulty of estimating metric depth from a single image. We systematically evaluate how depth backbones and feature engineering affect a monocular Pseudo-LiDAR pipeline on the KITTI validation split. Specifically, we compare NeWCRFs (supervised metric depth) against Depth Anything V2 Metric-Outdoor (Base) under an identical pseudo-LiDAR generation and PointRCNN detection protocol. NeWCRFs yields stronger downstream 3D detection, achieving 10.50\% AP$_{3D}$ at IoU$=0.7$ on the Moderate split using grayscale intensity (Exp~2). We further test point-cloud augmentations using appearance cues (grayscale intensity) and semantic cues (instance segmentation confidence). Contrary to the expectation that semantics would substantially close the gap, these features provide only marginal gains, and mask-based sampling can degrade performance by removing contextual geometry. Finally, we report a depth-accuracy-versus-distance diagnostic using ground-truth 2D boxes (including Ped/Cyc), highlighting that coarse depth correctness does not fully predict strict 3D IoU. Overall, under an off-the-shelf LiDAR detector, depth-backbone choice and geometric fidelity dominate performance, outweighing secondary feature injection.
comment: 7 pages, 4 figures
Unveiling Text in Challenging Stone Inscriptions: A Character-Context-Aware Patching Strategy for Binarization
Binarization is a popular first step towards text extraction in historical artifacts. Stone inscription images pose severe challenges for binarization due to poor contrast between etched characters and the stone background, non-uniform surface degradation, distracting artifacts, and highly variable text density and layouts. These conditions frequently cause existing binarization techniques to fail and struggle to isolate coherent character regions. Many approaches sub-divide the image into patches to improve text fragment resolution and improve binarization performance. With this in mind, we present a robust and adaptive patching strategy to binarize challenging Indic inscriptions. The patches from our approach are used to train an Attention U-Net for binarization. The attention mechanism allows the model to focus on subtle structural cues, while our dynamic sampling and patch selection method ensures that the model learns to overcome surface noise and layout irregularities. We also introduce a carefully annotated, pixel-precise dataset of Indic stone inscriptions at the character-fragment level. We demonstrate that our novel patching mechanism significantly boosts binarization performance across classical and deep learning baselines. Despite training only on single script Indic dataset, our model exhibits strong zero-shot generalization to other Indic and non-indic scripts, highlighting its robustness and script-agnostic generalization capabilities. By producing clean, structured representations of inscription content, our method lays the foundation for downstream tasks such as script identification, OCR, and historical text analysis. Project page: https://ihdia.iiit.ac.in/shilalekhya-binarization/
Adaptive Attention Distillation for Robust Few-Shot Segmentation under Environmental Perturbations
Few-shot segmentation (FSS) aims to rapidly learn novel class concepts from limited examples to segment specific targets in unseen images, and has been widely applied in areas such as medical diagnosis and industrial inspection. However, existing studies largely overlook the complex environmental factors encountered in real world scenarios-such as illumination, background, and camera viewpoint-which can substantially increase the difficulty of test images. As a result, models trained under laboratory conditions often fall short of practical deployment requirements. To bridge this gap, in this paper, an environment-robust FSS setting is introduced that explicitly incorporates challenging test cases arising from complex environments-such as motion blur, small objects, and camouflaged targets-to enhance model's robustness under realistic, dynamic conditions. An environment robust FSS benchmark (ER-FSS) is established, covering eight datasets across multiple real world scenarios. In addition, an Adaptive Attention Distillation (AAD) method is proposed, which repeatedly contrasts and distills key shared semantics between known (support) and unknown (query) images to derive class-specific attention for novel categories. This strengthens the model's ability to focus on the correct targets in complex environments, thereby improving environmental robustness. Comparative experiments show that AAD improves mIoU by 3.3% - 8.5% across all datasets and settings, demonstrating superior performance and strong generalization. The source code and dataset are available at: https://github.com/guoqianyu-alberta/Adaptive-Attention-Distillation-for-FSS.
comment: 12 pages, 5 figures
Can LLMs See Without Pixels? Benchmarking Spatial Intelligence from Textual Descriptions
Recent advancements in Spatial Intelligence (SI) have predominantly relied on Vision-Language Models (VLMs), yet a critical question remains: does spatial understanding originate from visual encoders or the fundamental reasoning backbone? Inspired by this question, we introduce SiT-Bench, a novel benchmark designed to evaluate the SI performance of Large Language Models (LLMs) without pixel-level input, comprises over 3,800 expert-annotated items across five primary categories and 17 subtasks, ranging from egocentric navigation and perspective transformation to fine-grained robotic manipulation. By converting single/multi-view scenes into high-fidelity, coordinate-aware textual descriptions, we challenge LLMs to perform symbolic textual reasoning rather than visual pattern matching. Evaluation results of state-of-the-art (SOTA) LLMs reveals that while models achieve proficiency in localized semantic tasks, a significant "spatial gap" remains in global consistency. Notably, we find that explicit spatial reasoning significantly boosts performance, suggesting that LLMs possess latent world-modeling potential. Our proposed dataset SiT-Bench serves as a foundational resource to foster the development of spatially-grounded LLM backbones for future VLMs and embodied agents. Our code and benchmark will be released at https://github.com/binisalegend/SiT-Bench .
Detecting AI-Generated Images via Distributional Deviations from Real Images
The rapid advancement of generative models has significantly enhanced the quality of AI-generated images, raising concerns about misinformation and the erosion of public trust. Detecting AI-generated images has thus become a critical challenge, particularly in terms of generalizing to unseen generative models. Existing methods using frozen pre-trained CLIP models show promise in generalization but treat the image encoder as a basic feature extractor, failing to fully exploit its potential. In this paper, we perform an in-depth analysis of the frozen CLIP image encoder (CLIP-ViT), revealing that it effectively clusters real images in a high-level, abstract feature space. However, it does not truly possess the ability to distinguish between real and AI-generated images. Based on this analysis, we propose a Masking-based Pre-trained model Fine-Tuning (MPFT) strategy, which introduces a Texture-Aware Masking (TAM) mechanism to mask textured areas containing generative model-specific patterns during fine-tuning. This approach compels CLIP-ViT to attend to the "distributional deviations"from authentic images for AI-generated image detection, thereby achieving enhanced generalization performance. Extensive experiments on the GenImage and UniversalFakeDetect datasets demonstrate that our method, fine-tuned with only a minimal number of images, significantly outperforms existing approaches, achieving up to 98.2% and 94.6% average accuracy on the two datasets, respectively.
SpatiaLoc: Leveraging Multi-Level Spatial Enhanced Descriptors for Cross-Modal Localization
Cross-modal localization using text and point clouds enables robots to localize themselves via natural language descriptions, with applications in autonomous navigation and interaction between humans and robots. In this task, objects often recur across text and point clouds, making spatial relationships the most discriminative cues for localization. Given this characteristic, we present SpatiaLoc, a framework utilizing a coarse-to-fine strategy that emphasizes spatial relationships at both the instance and global levels. In the coarse stage, we introduce a Bezier Enhanced Object Spatial Encoder (BEOSE) that models spatial relationships at the instance level using quadratic Bezier curves. Additionally, a Frequency Aware Encoder (FAE) generates spatial representations in the frequency domain at the global level. In the fine stage, an Uncertainty Aware Gaussian Fine Localizer (UGFL) regresses 2D positions by modeling predictions as Gaussian distributions with a loss function aware of uncertainty. Extensive experiments on KITTI360Pose demonstrate that SpatiaLoc significantly outperforms existing state-of-the-art (SOTA) methods.
EASLT: Emotion-Aware Sign Language Translation
Sign Language Translation (SLT) is a complex cross-modal task requiring the integration of Manual Signals (MS) and Non-Manual Signals (NMS). While recent gloss-free SLT methods have made strides in translating manual gestures, they frequently overlook the semantic criticality of facial expressions, resulting in ambiguity when distinct concepts share identical manual articulations. To address this, we present **EASLT** (**E**motion-**A**ware **S**ign **L**anguage **T**ranslation), a framework that treats facial affect not as auxiliary information, but as a robust semantic anchor. Unlike methods that relegate facial expressions to a secondary role, EASLT incorporates a dedicated emotional encoder to capture continuous affective dynamics. These representations are integrated via a novel *Emotion-Aware Fusion* (EAF) module, which adaptively recalibrates spatio-temporal sign features based on affective context to resolve semantic ambiguities. Extensive evaluations on the PHOENIX14T and CSL-Daily benchmarks demonstrate that EASLT establishes advanced performance among gloss-free methods, achieving BLEU-4 scores of 26.15 and 22.80, and BLEURT scores of 61.0 and 57.8, respectively. Ablation studies confirm that explicitly modeling emotion effectively decouples affective semantics from manual dynamics, significantly enhancing translation fidelity. Code is available at https://github.com/TuGuobin/EASLT.
Persona-aware and Explainable Bikeability Assessment: A Vision-Language Model Approach
Bikeability assessment is essential for advancing sustainable urban transportation and creating cyclist-friendly cities, and it requires incorporating users' perceptions of safety and comfort. Yet existing perception-based bikeability assessment approaches face key limitations in capturing the complexity of road environments and adequately accounting for heterogeneity in subjective user perceptions. This paper proposes a persona-aware Vision-Language Model framework for bikeability assessment with three novel contributions: (i) theory-grounded persona conditioning based on established cyclist typology that generates persona-specific explanations via chain-of-thought reasoning; (ii) multi-granularity supervised fine-tuning that combines scarce expert-annotated reasoning with abundant user ratings for joint prediction and explainable assessment; and (iii) AI-enabled data augmentation that creates controlled paired data to isolate infrastructure variable impacts. To test and validate this framework, we developed a panoramic image-based crowdsourcing system and collected 12,400 persona-conditioned assessments from 427 cyclists. Experiment results show that the proposed framework offers competitive bikeability rating prediction while uniquely enabling explainable factor attribution.
CloudMatch: Weak-to-Strong Consistency Learning for Semi-Supervised Cloud Detection
Due to the high cost of annotating accurate pixel-level labels, semi-supervised learning has emerged as a promising approach for cloud detection. In this paper, we propose CloudMatch, a semi-supervised framework that effectively leverages unlabeled remote sensing imagery through view-consistency learning combined with scene-mixing augmentations. An observation behind CloudMatch is that cloud patterns exhibit structural diversity and contextual variability across different scenes and within the same scene category. Our key insight is that enforcing prediction consistency across diversely augmented views, incorporating both inter-scene and intra-scene mixing, enables the model to capture the structural diversity and contextual richness of cloud patterns. Specifically, CloudMatch generates one weakly augmented view along with two complementary strongly augmented views for each unlabeled image: one integrates inter-scene patches to simulate contextual variety, while the other employs intra-scene mixing to preserve semantic coherence. This approach guides pseudolabel generation and enhances generalization. Extensive experiments show that CloudMatch achieves good performance, demonstrating its capability to utilize unlabeled data efficiently and advance semi-supervised cloud detection.
comment: Journal of Applied Remote Sensing
Physics-Constrained Cross-Resolution Enhancement Network for Optics-Guided Thermal UAV Image Super-Resolution
Optics-guided thermal UAV image super-resolution has attracted significant research interest due to its potential in all-weather monitoring applications. However, existing methods typically compress optical features to match thermal feature dimensions for cross-modal alignment and fusion, which not only causes the loss of high-frequency information that is beneficial for thermal super-resolution, but also introduces physically inconsistent artifacts such as texture distortions and edge blurring by overlooking differences in the imaging physics between modalities. To address these challenges, we propose PCNet to achieve cross-resolution mutual enhancement between optical and thermal modalities, while physically constraining the optical guidance process via thermal conduction to enable robust thermal UAV image super-resolution. In particular, we design a Cross-Resolution Mutual Enhancement Module (CRME) to jointly optimize thermal image super-resolution and optical-to-thermal modality conversion, facilitating effective bidirectional feature interaction across resolutions while preserving high-frequency optical priors. Moreover, we propose a Physics-Driven Thermal Conduction Module (PDTM) that incorporates two-dimensional heat conduction into optical guidance, modeling spatially-varying heat conduction properties to prevent inconsistent artifacts. In addition, we introduce a temperature consistency loss that enforces regional distribution consistency and boundary gradient smoothness to ensure generated thermal images align with real-world thermal radiation principles. Extensive experiments on VGTSR2.0 and DroneVehicle datasets demonstrate that PCNet significantly outperforms state-of-the-art methods on both reconstruction quality and downstream tasks including semantic segmentation and object detection.
Semantic Belief-State World Model for 3D Human Motion Prediction
Human motion prediction has traditionally been framed as a sequence regression problem where models extrapolate future joint coordinates from observed pose histories. While effective over short horizons this approach does not separate observation reconstruction with dynamics modeling and offers no explicit representation of the latent causes governing motion. As a result, existing methods exhibit compounding drift, mean-pose collapse, and poorly calibrated uncertainty when rolled forward beyond the training regime. Here we propose a Semantic Belief-State World Model (SBWM) that reframes human motion prediction as latent dynamical simulation on the human body manifold. Rather than predicting poses directly, SBWM maintains a recurrent probabilistic belief state whose evolution is learned independently of pose reconstruction and explicitly aligned with the SMPL-X anatomical parameterization. This alignment imposes a structural information bottleneck that prevents the latent state from encoding static geometry or sensor noise, forcing it to capture motion dynamics, intent, and control-relevant structure. Inspired by belief-state world models developed for model-based reinforcement learning, SBWM adapts stochastic latent transitions and rollout-centric training to the domain of human motion. In contrast to RSSM-based, transformer, and diffusion approaches optimized for reconstruction fidelity, SBWM prioritizes stable forward simulation. We demonstrate coherent long-horizon rollouts, and competitive accuracy at substantially lower computational cost. These results suggest that treating the human body as part of the world models state space rather than its output fundamentally changes how motion is simulated, and predicted.
G2P: Gaussian-to-Point Attribute Alignment for Boundary-Aware 3D Semantic Segmentation
Semantic segmentation on point clouds is critical for 3D scene understanding. However, sparse and irregular point distributions provide limited appearance evidence, making geometry-only features insufficient to distinguish objects with similar shapes but distinct appearances (e.g., color, texture, material). We propose Gaussian-to-Point (G2P), which transfers appearance-aware attributes from 3D Gaussian Splatting to point clouds for more discriminative and appearance-consistent segmentation. Our G2P address the misalignment between optimized Gaussians and original point geometry by establishing point-wise correspondences. By leveraging Gaussian opacity attributes, we resolve the geometric ambiguity that limits existing models. Additionally, Gaussian scale attributes enable precise boundary localization in complex 3D scenes. Extensive experiments demonstrate that our approach achieves superior performance on standard benchmarks and shows significant improvements on geometrically challenging classes, all without any 2D or language supervision.
comment: Preprint. Under review
REFA: Real-time Egocentric Facial Animations for Virtual Reality CVPR 2024
We present a novel system for real-time tracking of facial expressions using egocentric views captured from a set of infrared cameras embedded in a virtual reality (VR) headset. Our technology facilitates any user to accurately drive the facial expressions of virtual characters in a non-intrusive manner and without the need of a lengthy calibration step. At the core of our system is a distillation based approach to train a machine learning model on heterogeneous data and labels coming form multiple sources, \eg synthetic and real images. As part of our dataset, we collected 18k diverse subjects using a lightweight capture setup consisting of a mobile phone and a custom VR headset with extra cameras. To process this data, we developed a robust differentiable rendering pipeline enabling us to automatically extract facial expression labels. Our system opens up new avenues for communication and expression in virtual environments, with applications in video conferencing, gaming, entertainment, and remote collaboration.
comment: CVPR 2024 Workshop
SDCD: Structure-Disrupted Contrastive Decoding for Mitigating Hallucinations in Large Vision-Language Models
Large Vision-Language Models (LVLMs) demonstrate significant progress in multimodal understanding and reasoning, yet object hallucination remains a critical challenge. While existing research focuses on mitigating language priors or high-level statistical biases, they often overlook the internal complexities of the visual encoding process. We identify that visual statistical bias, arising from the inherent Bag-of-Patches behavior of Vision Encoders under weak structural supervision, acts as a contributing factor of object hallucinations. Under this bias, models prioritize local texture features within individual patches over holistic geometric structures. This tendency may induce spurious visual confidence and result in hallucinations. To address this, we introduce a training-free algorithm called Structure-Disrupted Contrastive Decoding (SDCD), which performs contrastive calibration of the output distribution by introducing a shuffled structure-disrupted view. By penalizing tokens that maintain high confidence under this structure-less view, SDCD effectively suppresses the texture-driven bias. Experimental results demonstrate that SDCD significantly mitigates hallucinations across multiple benchmarks and enhances the overall multimodal capabilities of LVLMs.
GeoDiff-SAR: A Geometric Prior Guided Diffusion Model for SAR Image Generation
Synthetic Aperture Radar (SAR) imaging results are highly sensitive to observation geometries and the geometric parameters of targets. However, existing generative methods primarily operate within the image domain, neglecting explicit geometric information. This limitation often leads to unsatisfactory generation quality and the inability to precisely control critical parameters such as azimuth angles. To address these challenges, we propose GeoDiff-SAR, a geometric prior guided diffusion model for high-fidelity SAR image generation. Specifically, GeoDiff-SAR first efficiently simulates the geometric structures and scattering relationships inherent in real SAR imaging by calculating SAR point clouds at specific azimuths, which serves as a robust physical guidance. Secondly, to effectively fuse multi-modal information, we employ a feature fusion gating network based on Feature-wise Linear Modulation (FiLM) to dynamically regulate the weight distribution of 3D physical information, image control parameters, and textual description parameters. Thirdly, we utilize the Low-Rank Adaptation (LoRA) architecture to perform lightweight fine-tuning on the advanced Stable Diffusion 3.5 (SD3.5) model, enabling it to rapidly adapt to the distribution characteristics of the SAR domain. To validate the effectiveness of GeoDiff-SAR, extensive comparative experiments were conducted on real-world SAR datasets. The results demonstrate that data generated by GeoDiff-SAR exhibits high fidelity and effectively enhances the accuracy of downstream classification tasks. In particular, it significantly improves recognition performance across different azimuth angles, thereby underscoring the superiority of physics-guided generation.
comment: 22 pages, 17 figures
CroBIM-U: Uncertainty-Driven Referring Remote Sensing Image Segmentation
Referring remote sensing image segmentation aims to localize specific targets described by natural language within complex overhead imagery. However, due to extreme scale variations, dense similar distractors, and intricate boundary structures, the reliability of cross-modal alignment exhibits significant \textbf{spatial non-uniformity}. Existing methods typically employ uniform fusion and refinement strategies across the entire image, which often introduces unnecessary linguistic perturbations in visually clear regions while failing to provide sufficient disambiguation in confused areas. To address this, we propose an \textbf{uncertainty-guided framework} that explicitly leverages a pixel-wise \textbf{referring uncertainty map} as a spatial prior to orchestrate adaptive inference. Specifically, we introduce a plug-and-play \textbf{Referring Uncertainty Scorer (RUS)}, which is trained via an online error-consistency supervision strategy to interpretably predict the spatial distribution of referential ambiguity. Building on this prior, we design two plug-and-play modules: 1) \textbf{Uncertainty-Gated Fusion (UGF)}, which dynamically modulates language injection strength to enhance constraints in high-uncertainty regions while suppressing noise in low-uncertainty ones; and 2) \textbf{Uncertainty-Driven Local Refinement (UDLR)}, which utilizes uncertainty-derived soft masks to focus refinement on error-prone boundaries and fine details. Extensive experiments demonstrate that our method functions as a unified, plug-and-play solution that significantly improves robustness and geometric fidelity in complex remote sensing scenes without altering the backbone architecture.
UniDrive-WM: Unified Understanding, Planning and Generation World Model For Autonomous Driving
World models have become central to autonomous driving, where accurate scene understanding and future prediction are crucial for safe control. Recent work has explored using vision-language models (VLMs) for planning, yet existing approaches typically treat perception, prediction, and planning as separate modules. We propose UniDrive-WM, a unified VLM-based world model that jointly performs driving-scene understanding, trajectory planning, and trajectory-conditioned future image generation within a single architecture. UniDrive-WM's trajectory planner predicts a future trajectory, which conditions a VLM-based image generator to produce plausible future frames. These predictions provide additional supervisory signals that enhance scene understanding and iteratively refine trajectory generation. We further compare discrete and continuous output representations for future image prediction, analyzing their influence on downstream driving performance. Experiments on the challenging Bench2Drive benchmark show that UniDrive-WM produces high-fidelity future images and improves planning performance by 5.9% in L2 trajectory error and 9.2% in collision rate over the previous best method. These results demonstrate the advantages of tightly integrating VLM-driven reasoning, planning, and generative world modeling for autonomous driving. The project page is available at https://unidrive-wm.github.io/UniDrive-WM .
comment: Project Page: https://unidrive-wm.github.io/UniDrive-WM
Addressing Overthinking in Large Vision-Language Models via Gated Perception-Reasoning Optimization
Large Vision-Language Models (LVLMs) have exhibited strong reasoning capabilities through chain-of-thought mechanisms that generate step-by-step rationales. However, such slow-thinking approaches often lead to overthinking, where models produce excessively verbose responses even for simple queries, resulting in test-time inefficiency and even degraded accuracy. Prior work has attempted to mitigate this issue via adaptive reasoning strategies, but these methods largely overlook a fundamental bottleneck: visual perception failures. We argue that stable reasoning critically depends on low-level visual grounding, and that reasoning errors often originate from imperfect perception rather than insufficient deliberation. To address this limitation, we propose Gated Perception-Reasoning Optimization (GPRO), a meta-reasoning controller that dynamically routes computation among three decision paths at each generation step: a lightweight fast path, a slow perception path for re-examining visual inputs, and a slow reasoning path for internal self-reflection. To learn this distinction, we derive large-scale failure attribution supervision from approximately 790k samples, using teacher models to distinguish perceptual hallucinations from reasoning errors. We then train the controller with multi-objective reinforcement learning to optimize the trade-off between task accuracy and computational cost under uncertainty. Experiments on five benchmarks demonstrate that GPRO substantially improves both accuracy and efficiency, outperforming recent slow-thinking methods while generating significantly shorter responses.
CRUNet-MR-Univ: A Foundation Model for Diverse Cardiac MRI Reconstruction
In recent years, deep learning has attracted increasing attention in the field of Cardiac MRI (CMR) reconstruction due to its superior performance over traditional methods, particularly in handling higher acceleration factors, highlighting its potential for real-world clinical applications. However, current deep learning methods remain limited in generalizability. CMR scans exhibit wide variability in image contrast, sampling patterns, scanner vendors, anatomical structures, and disease types. Most existing models are designed to handle only a single or narrow subset of these variations, leading to performance degradation when faced with distribution shifts. Therefore, it is beneficial to develop a unified model capable of generalizing across diverse CMR scenarios. To this end, we propose CRUNet-MR-Univ, a foundation model that leverages spatio-temporal correlations and prompt-based priors to effectively handle the full diversity of CMR scans. Our approach consistently outperforms baseline methods across a wide range of settings, highlighting its effectiveness and promise.
comment: STACOM 2025
From Preoperative CT to Postmastoidectomy Mesh Construction:1Mastoidectomy Shape Prediction for Cochlear Implant Surgery
Cochlear Implant (CI) surgery treats severe hearing loss by inserting an electrode array into the cochlea to stimulate the auditory nerve. An important step in this procedure is mastoidectomy, which removes part of the mastoid region of the temporal bone to provide surgical access. Accurate mastoidectomy shape prediction from preoperative imaging improves pre-surgical planning, reduces risks, and enhances surgical outcomes. Despite its importance, there are limited deep-learning-based studies regarding this topic due to the challenges of acquiring ground-truth labels. We address this gap by investigating self-supervised and weakly-supervised learning models to predict the mastoidectomy region without human annotations. We propose a hybrid self-supervised and weakly-supervised learning framework to predict the mastoidectomy region directly from preoperative CT scans, where the mastoid remains intact. Our hybrid method achieves a mean Dice score of 0.72 when predicting the complex and boundary-less mastoidectomy shape, surpassing state-of-the-art approaches and demonstrating strong performance. The method provides groundwork for constructing 3D postmastoidectomy surfaces directly from the corresponding preoperative CT scans. To our knowledge, this is the first work that integrating self-supervised and weakly-supervised learning for mastoidectomy shape prediction, offering a robust and efficient solution for CI surgical planning while leveraging 3D T-distribution loss in weakly-supervised medical imaging.
comment: arXiv admin note: substantial text overlap with arXiv:2505.18368
3D-Agent:Tri-Modal Multi-Agent Collaboration for Scalable 3D Object Annotation NeurIPS 2025
Driven by applications in autonomous driving robotics and augmented reality 3D object annotation presents challenges beyond 2D annotation including spatial complexity occlusion and viewpoint inconsistency Existing approaches based on single models often struggle to address these issues effectively We propose Tri MARF a novel framework that integrates tri modal inputs including 2D multi view images textual descriptions and 3D point clouds within a multi agent collaborative architecture to enhance large scale 3D annotation Tri MARF consists of three specialized agents a vision language model agent for generating multi view descriptions an information aggregation agent for selecting optimal descriptions and a gating agent that aligns textual semantics with 3D geometry for refined captioning Extensive experiments on Objaverse LVIS Objaverse XL and ABO demonstrate that Tri MARF substantially outperforms existing methods achieving a CLIPScore of 88 point 7 compared to prior state of the art methods retrieval accuracy of 45 point 2 and 43 point 8 on ViLT R at 5 and a throughput of up to 12000 objects per hour on a single NVIDIA A100 GPU
comment: Accepted at NeurIPS 2025
Performance Analysis of Image Classification on Bangladeshi Datasets
Convolutional Neural Networks (CNNs) have demonstrated remarkable success in image classification tasks; however, the choice between designing a custom CNN from scratch and employing established pre-trained architectures remains an important practical consideration. In this work, we present a comparative analysis of a custom-designed CNN and several widely used deep learning architectures, including VGG-16, ResNet-50, and MobileNet, for an image classification task. The custom CNN is developed and trained from scratch, while the popular architectures are employed using transfer learning under identical experimental settings. All models are evaluated using standard performance metrics such as accuracy, precision, recall, and F1-score. Experimental results show that pre-trained CNN architectures consistently outperform the custom CNN in terms of classification accuracy and convergence speed, particularly when training data is limited. However, the custom CNN demonstrates competitive performance with significantly fewer parameters and reduced computational complexity. This study highlights the trade-offs between model complexity, performance, and computational efficiency, and provides practical insights into selecting appropriate CNN architectures for image classification problems.
In-SRAM Radiant Foam Rendering on a Graph Processor
Many emerging many-core accelerators replace a single large device memory with hundreds to thousands of lightweight cores, each owning only a small local SRAM and exchanging data via explicit on-chip communication. This organization offers high aggregate bandwidth, but it breaks a key assumption behind many volumetric rendering techniques: that rays can randomly access a large, unified scene representation. Rendering efficiently on such hardware therefore requires distributing both data and computation, keeping ray traversal mostly local, and structuring communication into predictable routes. We present a fully in-SRAM, distributed renderer for the \emph{Radiant Foam} Voronoi-cell volumetric representation on the Graphcore Mk2 IPU, a many-core accelerator with tile-local SRAM and explicit inter-tile communication. Our system shards the scene across tiles and forwards rays between shards through a hierarchical routing overlay, enabling ray marching entirely from on-chip SRAM with predictable communication. On Mip-NeRF~360 scenes, the system attains near-interactive throughput (\(\approx\)1\,fps at \mbox{$640\times480$}) with image and depth quality close to the original GPU-based Radiant Foam implementation, while keeping all scene data and ray state in on-chip SRAM. Beyond demonstrating feasibility, we analyze routing, memory, and scheduling bottlenecks that inform how future distributed-memory accelerators can better support irregular, data-movement-heavy rendering workloads.
comment: 24 pages, 26 figures
Few-Shot LoRA Adaptation of a Flow-Matching Foundation Model for Cross-Spectral Object Detection
Foundation models for vision are predominantly trained on RGB data, while many safety-critical applications rely on non-visible modalities such as infrared (IR) and synthetic aperture radar (SAR). We study whether a single flow-matching foundation model pre-trained primarily on RGB images can be repurposed as a cross-spectral translator using only a few co-measured examples, and whether the resulting synthetic data can enhance downstream detection. Starting from FLUX.1 Kontext, we insert low-rank adaptation (LoRA) modules and fine-tune them on just 100 paired images per domain for two settings: RGB to IR on the KAIST dataset and RGB to SAR on the M4-SAR dataset. The adapted model translates RGB images into pixel-aligned IR/SAR, enabling us to reuse existing bounding boxes and train object detection models purely in the target modality. Across a grid of LoRA hyperparameters, we find that LPIPS computed on only 50 held-out pairs is a strong proxy for downstream performance: lower LPIPS consistently predicts higher mAP for YOLOv11n on both IR and SAR, and for DETR on KAIST IR test data. Using the best LPIPS-selected LoRA adapter, synthetic IR from external RGB datasets (LLVIP, FLIR ADAS) improves KAIST IR pedestrian detection, and synthetic SAR significantly boosts infrastructure detection on M4-SAR when combined with limited real SAR. Our results suggest that few-shot LoRA adaptation of flow-matching foundation models is a promising path toward foundation-style support for non-visible modalities.
Aligned explanations in neural networks
Feature attribution is the dominant paradigm for explaining deep neural networks. However, most existing methods only loosely reflect the model's prediction-making process, thereby merely white-painting the black box. We argue that explanatory alignment is a key aspect of trustworthiness in prediction tasks: explanations must be directly linked to predictions, rather than serving as post-hoc rationalizations. We present model readability as a design principle enabling alignment, and PiNets as a modeling framework to pursue it in a deep learning context. PiNets are pseudo-linear networks that produce instance-wise linear predictions in an arbitrary feature space, making them linearly readable. We illustrate their use on image classification and segmentation tasks, demonstrating how PiNets produce explanations that are faithful across multiple criteria in addition to alignment.
Combining facial videos and biosignals for stress estimation during driving
Reliable stress recognition from facial videos is challenging due to stress's subjective nature and voluntary facial control. While most methods rely on Facial Action Units, the role of disentangled 3D facial geometry remains underexplored. We address this by analyzing stress during distracted driving using EMOCA-derived 3D expression and pose coefficients. Paired hypothesis tests between baseline and stressor phases reveal that 41 of 56 coefficients show consistent, phase-specific stress responses comparable to physiological markers. Building on this, we propose a Transformer-based temporal modeling framework and assess unimodal, early-fusion, and cross-modal attention strategies. Cross-Modal Attention fusion of EMOCA and physiological signals achieves best performance (AUROC 92\%, Accuracy 86.7\%), with EMOCA-gaze fusion also competitive (AUROC 91.8\%). This highlights the effectiveness of temporal modeling and cross-modal attention for stress recognition.
comment: UNDER SUBMISSION TO ICPR 2026
End-to-end differentiable design of geometric waveguide displays
Geometric waveguides are a promising architecture for optical see-through augmented reality displays, but their performance is severely bottlenecked by the difficulty of jointly optimizing non-sequential light transport and polarization-dependent multilayer thin-film coatings. Here we present the first end-to-end differentiable optimization framework for geometric waveguide that couples non-sequential Monte Carlo polarization ray tracing with a differentiable transfer-matrix thin-film solver. A differentiable Monte Carlo ray tracer avoids the exponential growth of deterministic ray splitting while enabling gradients backpropagation from eyebox metrics to design parameters. With memory-saving strategies, we optimize more than one thousand layer-thickness parameters and billions of non-sequential ray-surface intersections on a single multi-GPU workstation. Automated layer pruning is achieved by starting from over-parameterized stacks and driving redundant layers to zero thickness under discrete manufacturability constraints, effectively performing topology optimization to discover optimal coating structures. On a representative design, starting from random initialization within thickness bounds, our method increases light efficiency from 4.1\% to 33.5\% and improves eyebox and FoV uniformity by $\sim$17$\times$ and $\sim$11$\times$, respectively. Furthermore, we jointly optimize the waveguide and an image preprocessing network to improve perceived image quality. Our framework not only enables system-level, high-dimensional coating optimization inside the waveguide, but also expands the scope of differentiable optics for next-generation optical design.
PackCache: A Training-Free Acceleration Method for Unified Autoregressive Video Generation via Compact KV-Cache
A unified autoregressive model is a Transformer-based framework that addresses diverse multimodal tasks (e.g., text, image, video) as a single sequence modeling problem under a shared token space. Such models rely on the KV-cache mechanism to reduce attention computation from O(T^2) to O(T); however, KV-cache size grows linearly with the number of generated tokens, and it rapidly becomes the dominant bottleneck limiting inference efficiency and generative length. Unified autoregressive video generation inherits this limitation. Our analysis reveals that KV-cache tokens exhibit distinct spatiotemporal properties: (i) text and conditioning-image tokens act as persistent semantic anchors that consistently receive high attention, and (ii) attention to previous frames naturally decays with temporal distance. Leveraging these observations, we introduce PackCache, a training-free KV-cache management method that dynamically compacts the KV cache through three coordinated mechanisms: condition anchoring that preserves semantic references, cross-frame decay modeling that allocates cache budget according to temporal distance, and spatially preserving position embedding that maintains coherent 3D structure under cache removal. In terms of efficiency, PackCache accelerates end-to-end generation by 1.7-2.2x on 48-frame long sequences, showcasing its strong potential for enabling longer-sequence video generation. Notably, the final four frames - the portion most impacted by the progressively expanding KV-cache and thus the most expensive segment of the clip - PackCache delivers a 2.6x and 3.7x acceleration on A40 and H200, respectively, for 48-frame videos.
UNIC: Learning Unified Multimodal Extrinsic Contact Estimation
Contact-rich manipulation requires reliable estimation of extrinsic contacts-the interactions between a grasped object and its environment which provide essential contextual information for planning, control, and policy learning. However, existing approaches often rely on restrictive assumptions, such as predefined contact types, fixed grasp configurations, or camera calibration, that hinder generalization to novel objects and deployment in unstructured environments. In this paper, we present UNIC, a unified multimodal framework for extrinsic contact estimation that operates without any prior knowledge or camera calibration. UNIC directly encodes visual observations in the camera frame and integrates them with proprioceptive and tactile modalities in a fully data-driven manner. It introduces a unified contact representation based on scene affordance maps that captures diverse contact formations and employs a multimodal fusion mechanism with random masking, enabling robust multimodal representation learning. Extensive experiments demonstrate that UNIC performs reliably. It achieves a 9.6 mm average Chamfer distance error on unseen contact locations, performs well on unseen objects, remains robust under missing modalities, and adapts to dynamic camera viewpoints. These results establish extrinsic contact estimation as a practical and versatile capability for contact-rich manipulation.
Comparative Analysis of Custom CNN Architectures versus Pre-trained Models and Transfer Learning: A Study on Five Bangladesh Datasets
This study presents a comprehensive comparative analysis of custom-built Convolutional Neural Networks (CNNs) against popular pre-trained architectures (ResNet-18 and VGG-16) using both feature extraction and transfer learning approaches. We evaluated these models across five diverse image classification datasets from Bangladesh: Footpath Vision, Auto Rickshaw Detection, Mango Image Classification, Paddy Variety Recognition, and Road Damage Detection. Our experimental results demonstrate that transfer learning with fine-tuning consistently outperforms both custom CNNs built from scratch and feature extraction methods, achieving accuracy improvements ranging from 3% to 76% across different datasets. Notably, ResNet-18 with fine-tuning achieved perfect 100% accuracy on the Road Damage BD dataset. While custom CNNs offer advantages in model size (3.4M parameters vs. 11-134M for pre-trained models) and training efficiency on simpler tasks, pre-trained models with transfer learning provide superior performance, particularly on complex classification tasks with limited training data. This research provides practical insights for practitioners in selecting appropriate deep learning approaches based on dataset characteristics, computational resources, and performance requirements.
SCAR-GS: Spatial Context Attention for Residuals in Progressive Gaussian Splatting
Recent advances in 3D Gaussian Splatting have allowed for real-time, high-fidelity novel view synthesis. Nonetheless, these models have significant storage requirements for large and medium-sized scenes, hindering their deployment over cloud and streaming services. Some of the most recent progressive compression techniques for these models rely on progressive masking and scalar quantization techniques to reduce the bitrate of Gaussian attributes using spatial context models. While effective, scalar quantization may not optimally capture the correlations of high-dimensional feature vectors, which can potentially limit the rate-distortion performance. In this work, we introduce a novel progressive codec for 3D Gaussian Splatting that replaces traditional methods with a more powerful Residual Vector Quantization approach to compress the primitive features. Our key contribution is an auto-regressive entropy model, guided by a multi-resolution hash grid, that accurately predicts the conditional probability of each successive transmitted index, allowing for coarse and refinement layers to be compressed with high efficiency.
ReHyAt: Recurrent Hybrid Attention for Video Diffusion Transformers
Recent advances in video diffusion models have shifted towards transformer-based architectures, achieving state-of-the-art video generation but at the cost of quadratic attention complexity, which severely limits scalability for longer sequences. We introduce ReHyAt, a Recurrent Hybrid Attention mechanism that combines the fidelity of softmax attention with the efficiency of linear attention, enabling chunk-wise recurrent reformulation and constant memory usage. Unlike the concurrent linear-only SANA Video, ReHyAt's hybrid design allows efficient distillation from existing softmax-based models, reducing the training cost by two orders of magnitude to ~160 GPU hours, while being competitive in the quality. Our light-weight distillation and finetuning pipeline provides a recipe that can be applied to future state-of-the-art bidirectional softmax-based models. Experiments on VBench and VBench-2.0, as well as a human preference study, demonstrate that ReHyAt achieves state-of-the-art video quality while reducing attention cost from quadratic to linear, unlocking practical scalability for long-duration and on-device video generation. Project page is available at https://qualcomm-ai-research.github.io/rehyat.
Unified Text-Image Generation with Weakness-Targeted Post-Training
Unified multimodal generation architectures that jointly produce text and images have recently emerged as a promising direction for text-to-image (T2I) synthesis. However, many existing systems rely on explicit modality switching, generating reasoning text before switching manually to image generation. This separate, sequential inference process limits cross-modal coupling and prohibits automatic multimodal generation. This work explores post-training to achieve fully unified text-image generation, where models autonomously transition from textual reasoning to visual synthesis within a single inference process. We examine the impact of joint text-image generation on T2I performance and the relative importance of each modality during post-training. We additionally explore different post-training data strategies, showing that a targeted dataset addressing specific limitations achieves superior results compared to broad image-caption corpora or benchmark-aligned data. Using offline, reward-weighted post-training with fully self-generated synthetic data, our approach enables improvements in multimodal image generation across four diverse T2I benchmarks, demonstrating the effectiveness of reward-weighting both modalities and strategically designed post-training data.
Embedding Textual Information in Images Using Quinary Pixel Combinations
This paper presents a novel technique for embedding textual data into images using quinary combinations of pixel intensities in RGB space. Existing methods predominantly rely on least and most significant bit (LSB & MSB) manipulation, Pixel Value Differencing (PVD), spatial perturbations in RGB channels, transform domain based methods, Quantization methods, Edge and Region based methods and more recently through deep learning methods and generative AI techniques for hiding textual information in spatial domain of images. Most of them are dependent on pixel intensity flipping over multiple pixels, such as LSB and combination of LSB based methodologies, and on transform coefficients, often resulting in the form of noise. Encoding and Decoding are deterministic in most of the existing approaches and are computationally heavy in case of higher models such as deep learning and gen AI approaches. The proposed method works on quinary pixel intensity combinations in RGB space, where five controlled different pixel intensity variations in each of the R, G, and B channels formulate up to one hundred and twenty five distinct pixel intensity combinations. These combinations are mapped to textual symbols, enabling the representation of uppercase and lowercase alphabetic characters, numeric digits, whitespace, and commonly used special characters. Different metrics such as MSE, MAE, SNR, PSNR, SSIM, Histogram Comparison and Heatmap analysis, were evaluated for both original and encoded images resulting in no significant distortion in the images. Furthermore, the method achieves improved embedding efficiency by encoding a complete textual symbol within a single RGB pixel, in contrast to LSB and MSB based approaches that typically require multiple pixels or multi-step processes, as well as transform and learning based methods that incur higher computational overhead.
Beyond Binary Preference: Aligning Diffusion Models to Fine-grained Criteria by Decoupling Attributes
Post-training alignment of diffusion models relies on simplified signals, such as scalar rewards or binary preferences. This limits alignment with complex human expertise, which is hierarchical and fine-grained. To address this, we first construct a hierarchical, fine-grained evaluation criteria with domain experts, which decomposes image quality into multiple positive and negative attributes organized in a tree structure. Building on this, we propose a two-stage alignment framework. First, we inject domain knowledge to an auxiliary diffusion model via Supervised Fine-Tuning. Second, we introduce Complex Preference Optimization (CPO) that extends DPO to align the target diffusion to our non-binary, hierarchical criteria. Specifically, we reformulate the alignment problem to simultaneously maximize the probability of positive attributes while minimizing the probability of negative attributes with the auxiliary diffusion. We instantiate our approach in the domain of painting generation and conduct CPO training with an annotated dataset of painting with fine-grained attributes based on our criteria. Extensive experiments demonstrate that CPO significantly enhances generation quality and alignment with expertise, opening new avenues for fine-grained criteria alignment.
ArtCognition: A Multimodal AI Framework for Affective State Sensing from Visual and Kinematic Drawing Cues
The objective assessment of human affective and psychological states presents a significant challenge, particularly through non-verbal channels. This paper introduces digital drawing as a rich and underexplored modality for affective sensing. We present a novel multimodal framework, named ArtCognition, for the automated analysis of the House-Tree-Person (HTP) test, a widely used psychological instrument. ArtCognition uniquely fuses two distinct data streams: static visual features from the final artwork, captured by computer vision models, and dynamic behavioral kinematic cues derived from the drawing process itself, such as stroke speed, pauses, and smoothness. To bridge the gap between low-level features and high-level psychological interpretation, we employ a Retrieval-Augmented Generation (RAG) architecture. This grounds the analysis in established psychological knowledge, enhancing explainability and reducing the potential for model hallucination. Our results demonstrate that the fusion of visual and behavioral kinematic cues provides a more nuanced assessment than either modality alone. We show significant correlations between the extracted multimodal features and standardized psychological metrics, validating the framework's potential as a scalable tool to support clinicians. This work contributes a new methodology for non-intrusive affective state assessment and opens new avenues for technology-assisted mental healthcare.
comment: 12 pages, 7 figures
FedDUAL: A Dual-Strategy with Adaptive Loss and Dynamic Aggregation for Mitigating Data Heterogeneity in Federated Learning
Federated Learning (FL) marks a transformative approach to distributed model training by combining locally optimized models from various clients into a unified global model. While FL preserves data privacy by eliminating centralized storage, it encounters significant challenges such as performance degradation, slower convergence, and reduced robustness of the global model due to the heterogeneity in client data distributions. Among the various forms of data heterogeneity, label skew emerges as a particularly formidable and prevalent issue, especially in domains such as image classification. To address these challenges, we begin with comprehensive experiments to pinpoint the underlying issues in the FL training process. Based on our findings, we then introduce an innovative dual-strategy approach designed to effectively resolve these issues. First, we introduce an adaptive loss function for client-side training, meticulously crafted to preserve previously acquired knowledge while maintaining an optimal equilibrium between local optimization and global model coherence. Secondly, we develop a dynamic aggregation strategy for aggregating client models at the server. This approach adapts to each client's unique learning patterns, effectively addressing the challenges of diverse data across the network. Our comprehensive evaluation, conducted across three diverse real-world datasets, coupled with theoretical convergence guarantees, demonstrates the superior efficacy of our method compared to several established state-of-the-art approaches.
comment: Transactions on Machine Learning Research (TMLR)
SpatialTree: How Spatial Abilities Branch Out in MLLMs
Cognitive science suggests that spatial ability develops progressively-from perception to reasoning and interaction. Yet in multimodal LLMs (MLLMs), this hierarchy remains poorly understood, as most studies focus on a narrow set of tasks. We introduce SpatialTree, a cognitive-science-inspired hierarchy that organizes spatial abilities into four levels: low-level perception (L1), mental mapping (L2), simulation (L3), and agentic competence (L4). Based on this taxonomy, we construct the first capability-centric hierarchical benchmark, thoroughly evaluating mainstream MLLMs across 27 sub-abilities. The evaluation results reveal a clear structure: L1 skills are largely orthogonal, whereas higher-level skills are strongly correlated, indicating increasing interdependency. Through targeted supervised fine-tuning, we uncover a surprising transfer dynamic-negative transfer within L1, but strong cross-level transfer from low- to high-level abilities with notable synergy. Finally, we explore how to improve the entire hierarchy. We find that naive RL that encourages extensive "thinking" is unreliable: it helps complex reasoning but hurts intuitive perception. We propose a simple auto-think strategy that suppresses unnecessary deliberation, enabling RL to consistently improve performance across all levels. By building SpatialTree, we provide a proof-of-concept framework for understanding and systematically scaling spatial abilities in MLLMs.
comment: webpage: https://spatialtree.github.io/
S2Vec: Self-Supervised Geospatial Embeddings for the Built Environment
Scalable general-purpose representations of the built environment are crucial for geospatial artificial intelligence applications. This paper introduces S2Vec, a novel self-supervised framework for learning such geospatial embeddings. S2Vec uses the S2 Geometry library to partition large areas into discrete S2 cells, rasterizes built environment feature vectors within cells as images, and applies masked autoencoding on these rasterized images to encode the feature vectors. This approach yields task-agnostic embeddings that capture local feature characteristics and broader spatial relationships. We evaluate S2Vec on several large-scale geospatial prediction tasks, both random train/test splits (interpolation) and zero-shot geographic adaptation (extrapolation). Our experiments show S2Vec's competitive performance against several baselines on socioeconomic tasks, especially the geographic adaptation variant, with room for improvement on environmental tasks. We also explore combining S2Vec embeddings with image-based embeddings downstream, showing that such multimodal fusion can often improve performance. Our findings highlight how S2Vec can learn effective general-purpose geospatial representations of the built environment features it is provided, and how it can complement other data modalities in geospatial artificial intelligence.
Semantic-E2VID: a Semantic-Enriched Paradigm for Event-to-Video Reconstruction
Event cameras provide a promising sensing modality for high-speed and high-dynamic-range vision by asynchronously capturing brightness changes. A fundamental task in event-based vision is event-to-video (E2V) reconstruction, which aims to recover intensity videos from event streams. Most existing E2V approaches formulate reconstruction as a temporal--spatial signal recovery problem, relying on temporal aggregation and spatial feature learning to infer intensity frames. While effective to some extent, this formulation overlooks a critical limitation of event data: due to the change-driven sensing mechanism, event streams are inherently semantically under-determined, lacking object-level structure and contextual information that are essential for faithful reconstruction. In this work, we revisit E2V from a semantic perspective and argue that effective reconstruction requires going beyond temporal and spatial modeling to explicitly account for missing semantic information. Based on this insight, we propose \textit{Semantic-E2VID}, a semantic-enriched end-to-end E2V framework that reformulates reconstruction as a process of semantic learning, fusing and decoding. Our approach first performs semantic abstraction by bridging event representations with semantics extracted from a pretrained Segment Anything Model (SAM), while avoiding modality-induced feature drift. The learned semantics are then fused into the event latent space in a representation-compatible manner, enabling event features to capture object-level structure and contextual cues. Furthermore, semantic-aware supervision is introduced to explicitly guide the reconstruction process toward semantically meaningful regions, complementing conventional pixel-level and temporal objectives. Extensive experiments on six public benchmarks demonstrate that Semantic-E2VID consistently outperforms state-of-the-art E2V methods.
UniVideo: Unified Understanding, Generation, and Editing for Videos
Unified multimodal models have shown promising results in multimodal content generation and editing but remain largely limited to the image domain. In this work, we present UniVideo, a versatile framework that extends unified modeling to the video domain. UniVideo adopts a dual-stream design, combining a Multimodal Large Language Model (MLLM) for instruction understanding with a Multimodal DiT (MMDiT) for video generation. This design preserves the MLLM's original text generation capabilities, enables accurate interpretation of complex multimodal instructions, and maintains visual consistency in the generated content. Built on this architecture, UniVideo unifies diverse video generation and editing tasks under a single multimodal instruction paradigm and is jointly trained across them. Extensive experiments demonstrate that UniVideo matches or surpasses state-of-the-art task-specific baselines in text/image-to-video generation, in-context video generation and in-context video editing. Notably, the unified design of UniVideo enables two forms of generalization. First, UniVideo supports task composition, such as combining editing with style transfer, by integrating multiple capabilities within a single instruction. Second, even without explicit training on free-form video editing, UniVideo transfers its editing capability from large-scale image editing data to this setting, handling unseen instructions such as changing the environment or altering materials within a video. Beyond these core capabilities, UniVideo also supports visual-prompt-based video generation, where the MLLM interprets visual prompts and guides the MMDiT during synthesis. To foster future research, we released our model and code.
comment: Project Website https://congwei1230.github.io/UniVideo/
FastV-RAG: Towards Fast and Fine-Grained Video QA with Retrieval-Augmented Generation
Vision-Language Models (VLMs) excel at visual reasoning but still struggle with integrating external knowledge. Retrieval-Augmented Generation (RAG) is a promising solution, but current methods remain inefficient and often fail to maintain high answer quality. To address these challenges, we propose VideoSpeculateRAG, an efficient VLM-based RAG framework built on two key ideas. First, we introduce a speculative decoding pipeline: a lightweight draft model quickly generates multiple answer candidates, which are then verified and refined by a more accurate heavyweight model, substantially reducing inference latency without sacrificing correctness. Second, we identify a major source of error - incorrect entity recognition in retrieved knowledge - and mitigate it with a simple yet effective similarity-based filtering strategy that improves entity alignment and boosts overall answer accuracy. Experiments demonstrate that VideoSpeculateRAG achieves comparable or higher accuracy than standard RAG approaches while accelerating inference by approximately 2x. Our framework highlights the potential of combining speculative decoding with retrieval-augmented reasoning to enhance efficiency and reliability in complex, knowledge-intensive multimodal tasks.
VISTA: Mitigating Semantic Inertia in Video-LLMs via Training-Free Dynamic Chain-of-Thought Routing
Recent advancements in Large Language Models have successfully transitioned towards System 2 reasoning, yet applying these paradigms to video understanding remains challenging. While prevailing research attributes failures in Video-LLMs to perceptual limitations, our empirical analysis reveals a cognitive misalignment termed Semantic Inertia, where models suppress valid visual evidence in favor of dominant language priors. To rectify this, we propose VISTA, a training-free framework designed to align perception with logical deduction. By dynamically routing inference paths and materializing implicit visual features into explicit textual anchors, our approach effectively counterbalances the influence of parametric knowledge. Furthermore, we incorporate a Latent Reasoning Consensus mechanism to mitigate stochastic hallucinations. VISTA showed outstanding results on a wide range of benchmarks, and outperforms its base model by 9.3% on Egochema and 5.6% on VideoEspresso, rivalling or even surpassing larger and proprietary models. Our codebase will be publicly available soon.
comment: 19 pages, 7 figures
DiFlow-TTS: Compact and Low-Latency Zero-Shot Text-to-Speech with Factorized Discrete Flow Matching
This paper introduces DiFlow-TTS, a novel zero-shot text-to-speech (TTS) system that employs discrete flow matching for generative speech modeling. We position this work as an entry point that may facilitate further advances in this research direction. Through extensive empirical evaluation, we analyze both the strengths and limitations of this approach across key aspects, including naturalness, expressive attributes, speaker identity, and inference latency. To this end, we leverage factorized speech representations and design a deterministic Phoneme-Content Mapper for modeling linguistic content, together with a Factorized Discrete Flow Denoiser that jointly models multiple discrete token streams corresponding to prosody and acoustics to capture expressive speech attributes. Experimental results demonstrate that DiFlow-TTS achieves strong performance across multiple metrics while maintaining a compact model size, up to 11.7 times smaller, and enabling low-latency inference that is up to 34 times faster than recent state-of-the-art baselines. Audio samples are available on our demo page: https://diflow-tts.github.io.
An Overview of Prototype Formulations for Interpretable Deep Learning
Prototypical part networks offer interpretable alternatives to black-box deep learning models by learning visual prototypes for classification. This work provides a comprehensive analysis of prototype formulations, comparing point-based and probabilistic approaches in both Euclidean and hyperspherical latent spaces. We introduce HyperPG, a probabilistic prototype representation using Gaussian distributions on hyperspheres. Experiments on CUB-200-2011, Stanford Cars, and Oxford Flowers datasets show that hyperspherical prototypes outperform standard Euclidean formulations. Critically, hyperspherical prototypes maintain competitive performance under simplified training schemes, while Euclidean prototypes require extensive hyperparameter tuning.
Language as Prior, Vision as Calibration: Metric Scale Recovery for Monocular Depth Estimation
Relative-depth foundation models transfer well, yet monocular metric depth remains ill-posed due to unidentifiable global scale and heightened domain-shift sensitivity. Under a frozen-backbone calibration setting, we recover metric depth via an image-specific affine transform in inverse depth and train only lightweight calibration heads while keeping the relative-depth backbone and the CLIP text encoder fixed. Since captions provide coarse but noisy scale cues that vary with phrasing and missing objects, we use language to predict an uncertainty-aware envelope that bounds feasible calibration parameters in an unconstrained space, rather than committing to a text-only point estimate. We then use pooled multi-scale frozen visual features to select an image-specific calibration within this envelope. During training, a closed-form least-squares oracle in inverse depth provides per-image supervision for learning the envelope and the selected calibration. Experiments on NYUv2 and KITTI improve in-domain accuracy, while zero-shot transfer to SUN-RGBD and DDAD demonstrates improved robustness over strong language-only baselines.
Boosting Resolution Generalization of Diffusion Transformers with Randomized Positional Encodings
Resolution generalization in image generation tasks enables the production of higher-resolution images with lower training resolution overhead. However, a key obstacle for diffusion transformers in addressing this problem is the mismatch between positional encodings seen at inference and those used during training. Existing strategies such as positional encodings interpolation, extrapolation, or hybrids, do not fully resolve this mismatch. In this paper, we propose a novel two-dimensional randomized positional encodings, namely RPE-2D, that prioritizes the order of image patches rather than their absolute distances, enabling seamless high- and low-resolution generation without training on multiple resolutions. Concretely, RPE-2D independently samples positions along the horizontal and vertical axes over an expanded range during training, ensuring that the encodings used at inference lie within the training distribution and thereby improving resolution generalization. We further introduce a simple random resize-and-crop augmentation to strengthen order modeling and add micro-conditioning to indicate the applied cropping pattern. On the ImageNet dataset, RPE-2D achieves state-of-the-art resolution generalization performance, outperforming competitive methods when trained at $256^2$ and evaluated at $384^2$ and $512^2$, and when trained at $512^2$ and evaluated at $768^2$ and $1024^2$. RPE-2D also exhibits outstanding capabilities in low-resolution image generation, multi-stage training acceleration, and multi-resolution inheritance.
Plasticine: A Traceable Diffusion Model for Medical Image Translation
Domain gaps arising from variations in imaging devices and population distributions pose significant challenges for machine learning in medical image analysis. Existing image-to-image translation methods primarily aim to learn mappings between domains, often generating diverse synthetic data with variations in anatomical scale and shape, but they usually overlook spatial correspondence during the translation process. For clinical applications, traceability, defined as the ability to provide pixel-level correspondences between original and translated images, is equally important. This property enhances clinical interpretability but has been largely overlooked in previous approaches. To address this gap, we propose Plasticine, which is, to the best of our knowledge, the first end-to-end image-to-image translation framework explicitly designed with traceability as a core objective. Our method combines intensity translation and spatial transformation within a denoising diffusion framework. This design enables the generation of synthetic images with interpretable intensity transitions and spatially coherent deformations, supporting pixel-wise traceability throughout the translation process.
comment: Accepted by IEEE Transactions on Artificial Intelligence
U-REPA: Aligning Diffusion U-Nets to ViTs
Representation Alignment (REPA) that aligns Diffusion Transformer (DiT) hidden-states with ViT visual encoders has proven highly effective in DiT training, demonstrating superior convergence properties, but it has not been validated on the canonical diffusion U-Net architecture that shows faster convergence compared to DiTs. However, adapting REPA to U-Net architectures presents unique challenges: (1) different block functionalities necessitate revised alignment strategies; (2) spatial-dimension inconsistencies emerge from U-Net's spatial downsampling operations; (3) space gaps between U-Net and ViT hinder the effectiveness of tokenwise alignment. To encounter these challenges, we propose \textbf{U-REPA}, a representation alignment paradigm that bridges U-Net hidden states and ViT features as follows: Firstly, we propose via observation that due to skip connection, the middle stage of U-Net is the best alignment option. Secondly, we propose upsampling of U-Net features after passing them through MLPs. Thirdly, we observe difficulty when performing tokenwise similarity alignment, and further introduces a manifold loss that regularizes the relative similarity between samples. Experiments indicate that the resulting U-REPA could achieve excellent generation quality and greatly accelerates the convergence speed. With CFG guidance interval, U-REPA could reach $FID<1.5$ in 200 epochs or 1M iterations on ImageNet 256 $\times$ 256, and needs only half the total epochs to perform better than REPA under sd-vae-ft-ema. Codes: https://github.com/YuchuanTian/U-REPA
comment: 22 pages, 8 figures
PM4Bench: Benchmarking Large Vision-Language Models with Parallel Multilingual Multi-Modal Multi-task Corpus
While Large Vision-Language Models (LVLMs) demonstrate promising multilingual capabilities, their evaluation is currently hindered by two critical limitations: (1) the use of non-parallel corpora, which conflates inherent language capability gaps with dataset artifacts, precluding a fair assessment of cross-lingual alignment; and (2) disjointed multimodal inputs, which deviate from real-world scenarios where most texts are embedded within visual contexts. To address these challenges, we propose PM4Bench, the first Multilingual Multi-Modal Multi-task Benchmark constructed on a strictly parallel corpus across 10 languages. By eliminating content divergence, our benchmark enables a fair comparison of model capabilities across different languages. We also introduce a vision setting where textual queries are visually fused into images, compelling models to jointly "see," "read," and "think". Extensive evaluation of 10 LVLMs uncover a substantial performance drop in the Vision setting compared to standard inputs. Further analysis reveals that OCR capability is not only a general bottleneck but also contributes to cross-lingual performance disparities, suggesting that improving multilingual OCR is essential for advancing LVLM performance. We will release PM4Bench at https://github.com/opendatalab/PM4Bench .
comment: Equal contribution: Junyuan Gao, Jiahe Song, Jiang Wu; Corresponding author: Conghui He
SortWaste: A Densely Annotated Dataset for Object Detection in Industrial Waste Sorting
The increasing production of waste, driven by population growth, has created challenges in managing and recycling materials effectively. Manual waste sorting is a common practice; however, it remains inefficient for handling large-scale waste streams and presents health risks for workers. On the other hand, existing automated sorting approaches still struggle with the high variability, clutter, and visual complexity of real-world waste streams. The lack of real-world datasets for waste sorting is a major reason automated systems for this problem are underdeveloped. Accordingly, we introduce SortWaste, a densely annotated object detection dataset collected from a Material Recovery Facility. Additionally, we contribute to standardizing waste detection in sorting lines by proposing ClutterScore, an objective metric that gauges the scene's hardness level using a set of proxies that affect visual complexity (e.g., object count, class and size entropy, and spatial overlap). In addition to these contributions, we provide an extensive benchmark of state-of-the-art object detection models, detailing their results with respect to the hardness level assessed by the proposed metric. Despite achieving promising results (mAP of 59.7% in the plastic-only detection task), performance significantly decreases in highly cluttered scenes. This highlights the need for novel and more challenging datasets on the topic.
comment: 9 pages
HOLO: Homography-Guided Pose Estimator Network for Fine-Grained Visual Localization on SD Maps
Visual localization on standard-definition (SD) maps has emerged as a promising low-cost and scalable solution for autonomous driving. However, existing regression-based approaches often overlook inherent geometric priors, resulting in suboptimal training efficiency and limited localization accuracy. In this paper, we propose a novel homography-guided pose estimator network for fine-grained visual localization between multi-view images and standard-definition (SD) maps. We construct input pairs that satisfy a homography constraint by projecting ground-view features into the BEV domain and enforcing semantic alignment with map features. Then we leverage homography relationships to guide feature fusion and restrict the pose outputs to a valid feasible region, which significantly improves training efficiency and localization accuracy compared to prior methods relying on attention-based fusion and direct 3-DoF pose regression. To the best of our knowledge, this is the first work to unify BEV semantic reasoning with homography learning for image-to-map localization. Furthermore, by explicitly modeling homography transformations, the proposed framework naturally supports cross-resolution inputs, enhancing model flexibility. Extensive experiments on the nuScenes dataset demonstrate that our approach significantly outperforms existing state-of-the-art visual localization methods. Code and pretrained models will be publicly released to foster future research.
PhysDepth: Plug-and-Play Physical Refinement for Monocular Depth Estimation in Challenging Environments
State-of-the-art monocular depth estimation (MDE) models often struggle in challenging environments, primarily because they overlook robust physical information. To demonstrate this, we first conduct an empirical study by computing the covariance between a model's prediction error and atmospheric attenuation. We find that the error of existing SOTAs increases with atmospheric attenuation. Based on this finding, we propose PhysDepth, a plug-and-play framework that solves this fragility by infusing physical priors into modern SOTA backbones. PhysDepth incorporates two key components: a Physical Prior Module (PPM) that leverages Rayleigh Scattering theory to extract robust features from the high-SNR red channel, and a physics-derived Red Channel Attenuation Loss (RCA) that enforces model to learn the Beer-Lambert law. Extensive evaluations demonstrate that PhysDepth achieves SOTA accuracy in challenging conditions.
WebGym: Scaling Training Environments for Visual Web Agents with Realistic Tasks
We present WebGym, the largest-to-date open-source environment for training realistic visual web agents. Real websites are non-stationary and diverse, making artificial or small-scale task sets insufficient for robust policy learning. WebGym contains nearly 300,000 tasks with rubric-based evaluations across diverse, real-world websites and difficulty levels. We train agents with a simple reinforcement learning (RL) recipe, which trains on the agent's own interaction traces (rollouts), using task rewards as feedback to guide learning. To enable scaling RL, we speed up sampling of trajectories in WebGym by developing a high-throughput asynchronous rollout system, designed specifically for web agents. Our system achieves a 4-5x rollout speedup compared to naive implementations. Second, we scale the task set breadth, depth, and size, which results in continued performance improvement. Fine-tuning a strong base vision-language model, Qwen-3-VL-8B-Instruct, on WebGym results in an improvement in success rate on an out-of-distribution test set from 26.2% to 42.9%, significantly outperforming agents based on proprietary models such as GPT-4o and GPT-5-Thinking that achieve 27.1% and 29.8%, respectively. This improvement is substantial because our test set consists only of tasks on websites never seen during training, unlike many other prior works on training visual web agents.
comment: Slightly modified format; added Table 3 for better illustration of the scaling results
Mitigating Label Noise using Prompt-Based Hyperbolic Meta-Learning in Open-Set Domain Generalization
Open-Set Domain Generalization (OSDG) is a challenging task requiring models to accurately predict familiar categories while minimizing confidence for unknown categories to effectively reject them in unseen domains. While the OSDG field has seen considerable advancements, the impact of label noise--a common issue in real-world datasets--has been largely overlooked. Label noise can mislead model optimization, thereby exacerbating the challenges of open-set recognition in novel domains. In this study, we take the first step towards addressing Open-Set Domain Generalization under Noisy Labels (OSDG-NL) by constructing dedicated benchmarks derived from widely used OSDG datasets, including PACS and DigitsDG. We evaluate baseline approaches by integrating techniques from both label denoising and OSDG methodologies, highlighting the limitations of existing strategies in handling label noise effectively. To address these limitations, we propose HyProMeta, a novel framework that integrates hyperbolic category prototypes for label noise-aware meta-learning alongside a learnable new-category agnostic prompt designed to enhance generalization to unseen classes. Our extensive experiments demonstrate the superior performance of HyProMeta compared to state-of-the-art methods across the newly established benchmarks. The source code of this work is released at https://github.com/KPeng9510/HyProMeta.
comment: Accepted to International Journal of Computer Vision (IJCV). The source code of this work is released at https://github.com/KPeng9510/HyProMeta
Generating Storytelling Images with Rich Chains-of-Reasoning
A single image can convey a compelling story through logically connected visual clues, forming Chains-of-Reasoning (CoRs). We define these semantically rich images as Storytelling Images. By conveying multi-layered information that inspires active interpretation, these images enable a wide range of applications, such as illustration and cognitive screening. Despite their potential, such images are scarce and complex to create. To address this, we introduce the Storytelling Image Generation task and propose StorytellingPainter, a two-stage pipeline combining the reasoning of Large Language Models (LLMs) with Text-to-Image (T2I) synthesis. We also develop a dedicated evaluation framework assessing semantic complexity, diversity, and text-image alignment. Furthermore, given the critical role of story generation in the task, we introduce lightweight Mini-Storytellers to bridge the performance gap between small-scale and proprietary LLMs. Experimental results demonstrate the feasibility of our approaches.
Point Cloud Synthesis Using Inner Product Transforms NeurIPS
Point cloud synthesis, i.e. the generation of novel point clouds from an input distribution, remains a challenging task, for which numerous complex machine learning models have been devised. We develop a novel method that encodes geometrical-topological characteristics of point clouds using inner products, leading to a highly-efficient point cloud representation with provable expressivity properties. Integrated into deep learning models, our encoding exhibits high quality in typical tasks like reconstruction, generation, and interpolation, with inference times orders of magnitude faster than existing methods.
comment: Accepted at the 39th Conference on Neural Information Processing Systems (NeurIPS) 2025. Our code is available at https://github.com/aidos-lab/inner-product-transforms
Generalized Logit Adjustment: Calibrating Fine-tuned Models by Removing Label Bias in Foundation Models NeurIPS2023
Foundation models like CLIP allow zero-shot transfer on various tasks without additional training data. Yet, the zero-shot performance is less competitive than a fully supervised one. Thus, to enhance the performance, fine-tuning and ensembling are also commonly adopted to better fit the downstream tasks. However, we argue that such prior work has overlooked the inherent biases in foundation models. Due to the highly imbalanced Web-scale training set, these foundation models are inevitably skewed toward frequent semantics, and thus the subsequent fine-tuning or ensembling is still biased. In this study, we systematically examine the biases in foundation models and demonstrate the efficacy of our proposed Generalized Logit Adjustment (GLA) method. Note that bias estimation in foundation models is challenging, as most pre-train data cannot be explicitly accessed like in traditional long-tailed classification tasks. To this end, GLA has an optimization-based bias estimation approach for debiasing foundation models. As our work resolves a fundamental flaw in the pre-training, the proposed GLA demonstrates significant improvements across a diverse range of tasks: it achieves 1.5 pp accuracy gains on ImageNet, an large average improvement (1.4-4.6 pp) on 11 few-shot datasets, 2.4 pp gains on long-tailed classification. Codes are in https://github.com/BeierZhu/GLA.
comment: Accepted by NeurIPS2023
Multivariate Diffusion Transformer with Decoupled Attention for High-Fidelity Mask-Text Collaborative Facial Generation
While significant progress has been achieved in multimodal facial generation using semantic masks and textual descriptions, conventional feature fusion approaches often fail to enable effective cross-modal interactions, thereby leading to suboptimal generation outcomes. To address this challenge, we introduce MDiTFace--a customized diffusion transformer framework that employs a unified tokenization strategy to process semantic mask and text inputs, eliminating discrepancies between heterogeneous modality representations. The framework facilitates comprehensive multimodal feature interaction through stacked, newly designed multivariate transformer blocks that process all conditions synchronously. Additionally, we design a novel decoupled attention mechanism by dissociating implicit dependencies between mask tokens and temporal embeddings. This mechanism segregates internal computations into dynamic and static pathways, enabling caching and reuse of features computed in static pathways after initial calculation, thereby reducing additional computational overhead introduced by mask condition by over 94% while maintaining performance. Extensive experiments demonstrate that MDiTFace significantly outperforms other competing methods in terms of both facial fidelity and conditional consistency.
MoTE: Mixture of Ternary Experts for Memory-efficient Large Multimodal Models
Large multimodal Mixture-of-Experts (MoEs) effectively scale the model size to boost performance while maintaining fixed active parameters. However, previous works primarily utilized full-precision experts during sparse up-cycling. Despite they show superior performance on end tasks, the large amount of experts introduces higher memory footprint, which poses significant challenges for the deployment on edge devices. In this work, we propose MoTE, a scalable and memory-efficient approach to train Mixture-of-Ternary-Experts models from dense checkpoint. Instead of training fewer high-precision experts, we propose to train more low-precision experts during up-cycling. Specifically, we use the pre-trained FFN as a shared expert and train ternary routed experts with parameters in {-1, 0, 1}. Extensive experiments show that our approach has promising scaling trend along model size. MoTE achieves comparable performance to full-precision baseline MoE-LLaVA while offering lower memory footprint. Furthermore, our approach is compatible with post-training quantization methods and the advantage further amplifies when memory-constraint goes lower. Given the same amount of expert memory footprint of 3.4GB and combined with post-training quantization, MoTE outperforms MoE-LLaVA by a gain of 4.3% average accuracy on end tasks, demonstrating its effectiveness and potential for memory-constrained devices.
comment: Work in progress
Are Vision Language Models Cross-Cultural Theory of Mind Reasoners?
Theory of Mind (ToM) - the ability to attribute beliefs and intents to others - is fundamental for social intelligence, yet Vision-Language Model (VLM) evaluations remain largely Western-centric. In this work, we introduce CulturalToM-VQA, a benchmark of 5,095 visually situated ToM probes across diverse cultural contexts, rituals, and social norms. Constructed through a frontier proprietary MLLM, human-verified pipeline, the dataset spans a taxonomy of six ToM tasks and four complexity levels. We benchmark 10 VLMs (2023-2025) and observe a significant performance leap: while earlier models struggle, frontier models achieve high accuracy (>93%). However, significant limitations persist: models struggle with false belief reasoning (19-83% accuracy) and show high regional variance (20-30% gaps). Crucially, we find that SOTA models exhibit social desirability bias - systematically favoring semantically positive answer choices over negative ones. Ablation experiments reveal that some frontier models rely heavily on parametric social priors, frequently defaulting to safety-aligned predictions. Furthermore, while Chain-of-Thought prompting aids older models, it yields minimal gains for newer ones. Overall, our work provides a testbed for cross-cultural social reasoning, underscoring that despite architectural gains, achieving robust, visually grounded understanding remains an open challenge.
A Novel Convolution and Attention Mechanism-based Model for 6D Object Pose Estimation
This paper proposes PoseLecTr, a graph-based encoder-decoder framework that integrates a novel Legendre convolution with attention mechanisms for six-degree-of-freedom (6-DOF) object pose estimation from monocular RGB images. Conventional learning-based approaches predominantly rely on grid-structured convolutions, which can limit their ability to model higher-order and long-range dependencies among image features, especially in cluttered or occluded scenes. PoseLecTr addresses this limitation by constructing a graph representation from image features, where spatial relationships are explicitly modeled through graph connectivity. The proposed framework incorporates a Legendre convolution layer to improve numerical stability in graph convolution, together with spatial-attention and self-attention distillation to enhance feature selection. Experiments conducted on the LINEMOD, Occluded LINEMOD, and YCB-VIDEO datasets demonstrate that our method achieves competitive performance and shows consistent improvements across a wide range of objects and scene complexities.
comment: 6 pages, 2 figures, 3 tables
ProCLIP: Progressive Vision-Language Alignment via LLM-based Embedder
The original CLIP text encoder is limited by a maximum input length of 77 tokens, which hampers its ability to effectively process long texts and perform fine-grained semantic understanding. In addition, the CLIP text encoder lacks support for multilingual inputs. All these limitations significantly restrict its applicability across a broader range of tasks. Recent studies have attempted to replace the CLIP text encoder with an LLM-based embedder to enhance its ability in processing long texts, multilingual understanding, and fine-grained semantic comprehension. However, because the representation spaces of LLMs and the vision-language space of CLIP are pretrained independently without alignment priors, direct alignment using contrastive learning can disrupt the intrinsic vision-language alignment in the CLIP image encoder, leading to an underutilization of the knowledge acquired during pre-training. To address this challenge, we propose ProCLIP, a curriculum learning-based progressive vision-language alignment framework to effectively align the CLIP image encoder with an LLM-based embedder. Specifically, ProCLIP first distills knowledge from CLIP's text encoder into the LLM-based embedder to leverage CLIP's rich pretrained knowledge while establishing initial alignment between the LLM embedder and CLIP image encoder. Subsequently, ProCLIP further aligns the CLIP image encoder with the LLM-based embedder through image-text contrastive tuning, employing self-distillation regularization to avoid overfitting. To achieve a more effective alignment, instance semantic alignment loss and embedding structure alignment loss are employed during representation inheritance and contrastive tuning. The Code is available at https://github.com/VisionXLab/ProCLIP.
comment: 17 pages, 5 fiugres
Benchmarking Content-Based Puzzle Solvers on Corrupted Jigsaw Puzzles
Content-based puzzle solvers have been extensively studied, demonstrating significant progress in computational techniques. However, their evaluation often lacks realistic challenges crucial for real-world applications, such as the reassembly of fragmented artefacts or shredded documents. In this work, we investigate the robustness of State-Of-The-Art content-based puzzle solvers introducing three types of jigsaw puzzle corruptions: missing pieces, eroded edges, and eroded contents. Evaluating both heuristic and deep learning-based solvers, we analyse their ability to handle these corruptions and identify key limitations. Our results show that solvers developed for standard puzzles have a rapid decline in performance if more pieces are corrupted. However, deep learning models can significantly improve their robustness through fine-tuning with augmented data. Notably, the advanced Positional Diffusion model adapts particularly well, outperforming its competitors in most experiments. Based on our findings, we highlight promising research directions for enhancing the automated reconstruction of real-world artefacts.
ViMoNet: A Multimodal Vision-Language Framework for Human Behavior Understanding from Motion and Video
This study investigates the use of large language models (LLMs) for human behavior understanding by jointly leveraging motion and video data. We argue that integrating these complementary modalities is essential for capturing both fine-grained motion dynamics and contextual semantics of human actions, addressing the limitations of prior motion-only or video-only approaches. To this end, we propose ViMoNet, a multimodal vision-language framework trained through a two-stage alignment and instruction-tuning strategy that combines precise motion-text supervision with large-scale video-text data. We further introduce VIMOS, a multimodal dataset comprising human motion sequences, videos, and instruction-level annotations, along with ViMoNet-Bench, a standardized benchmark for evaluating behavior-centric reasoning. Experimental results demonstrate that ViMoNet consistently outperforms existing methods across caption generation, motion understanding, and human behavior interpretation tasks. The proposed framework shows significant potential in assistive healthcare applications, such as elderly monitoring, fall detection, and early identification of health risks in aging populations. This work contributes to the United Nations Sustainable Development Goal 3 (SDG 3: Good Health and Well-being) by enabling accessible AI-driven tools that promote universal health coverage, reduce preventable health issues, and enhance overall well-being.
comment: This is the preprint version of the manuscript. It is currently being prepared for submission to an academic conference
Difficulty Controlled Diffusion Model for Synthesizing Effective Training Data AAAI 2026
Generative models have become a powerful tool for synthesizing training data in computer vision tasks. Current approaches solely focus on aligning generated images with the target dataset distribution. As a result, they capture only the common features in the real dataset and mostly generate 'easy samples', which are already well learned by models trained on real data. In contrast, those rare 'hard samples', with atypical features but crucial for enhancing performance, cannot be effectively generated. Consequently, these approaches must synthesize large volumes of data to yield appreciable performance gains, yet the improvement remains limited. To overcome this limitation, we present a novel method that can learn to control the learning difficulty of samples during generation while also achieving domain alignment. Thus, it can efficiently generate valuable 'hard samples' that yield significant performance improvements for target tasks. This is achieved by incorporating learning difficulty as an additional conditioning signal in generative models, together with a designed encoder structure and training-generation strategy. Experimental results across multiple datasets show that our method can achieve higher performance with lower generation cost. Specifically, we obtain the best performance with only 10% additional synthetic data, saving 63.4 GPU hours of generation time compared to the previous SOTA on ImageNet. Moreover, our method provides insightful visualizations of category-specific hard factors, serving as a tool for analyzing datasets.
comment: AAAI 2026 accepted
FairT2I: Mitigating Social Bias in Text-to-Image Generation via Large Language Model-Assisted Detection and Attribute Rebalancing
Text-to-image (T2I) models have advanced creative content generation, yet their reliance on large uncurated datasets often reproduces societal biases. We present FairT2I, a training-free and interactive framework grounded in a mathematically principled latent variable guidance formulation. This formulation decomposes the generative score function into attribute-conditioned components and reweights them according to a defined distribution, providing a unified and flexible mechanism for bias-aware generation that also subsumes many existing ad hoc debiasing approaches as special cases. Building upon this foundation, FairT2I incorporates (1) latent variable guidance as the core mechanism, (2) LLM-based bias detection to automatically infer bias-prone categories and attributes from text prompts as part of the latent structure, and (3) attribute resampling, which allows users to adjust or redefine the attribute distribution based on uniform, real-world, or user-specified statistics. The accompanying user interface supports this pipeline by enabling users to inspect detected biases, modify attributes or weights, and generate debiased images in real time. Experimental results show that LLMs outperform average human annotators in the number and granularity of detected bias categories and attributes. Moreover, FairT2I achieves superior performance to baseline models in both societal bias mitigation and image diversity, while preserving image quality and prompt fidelity.
$\mathbf{S^2LM}$: Towards Semantic Steganography via Large Language Models
Despite remarkable progress in steganography, embedding semantically rich, sentence-level information into carriers remains a challenging problem. In this work, we present a novel concept of Semantic Steganography, which aims to hide semantically meaningful and structured content, such as sentences or paragraphs, in cover media. Based on this concept, we present Sentence-to-Image Steganography as an instance that enables the hiding of arbitrary sentence-level messages within a cover image. To accomplish this feat, we propose S^2LM: Semantic Steganographic Language Model, which leverages large language models (LLMs) to embed high-level textual information into images. Unlike traditional bit-level approaches, S^2LM redesigns the entire pipeline, involving the LLM throughout the process to enable the hiding and recovery of arbitrary sentences. Furthermore, we establish a benchmark named Invisible Text (IVT), comprising a diverse set of sentence-level texts as secret messages to evaluate semantic steganography methods. Experimental results demonstrate that S^2LM effectively enables direct sentence recovery beyond bit-level steganography. The source code and IVT dataset will be released soon.
comment: 30 Pages, 24 Figures
BEDS : Bayesian Emergent Dissipative Structures : A Formal Framework for Continuous Inference Under Energy Constraints
We introduce BEDS (Bayesian Emergent Dissipative Structures), a formal framework for analyzing inference systems that must maintain beliefs continuously under energy constraints. Unlike classical computational models that assume perfect memory and focus on one-shot computation, BEDS explicitly incorporates dissipation (information loss over time) as a fundamental constraint. We prove a central result linking energy, precision, and dissipation: maintaining a belief with precision $τ$ against dissipation rate $γ$ requires power $P \geq γk_{\rm B} T / 2$, with scaling $P \propto γ\cdot τ$. This establishes a fundamental thermodynamic cost for continuous inference. We define three classes of problems -- BEDS-attainable, BEDS-maintainable, and BEDS-crystallizable -- and show these are distinct from classical decidability. We propose the Gödel-Landauer-Prigogine conjecture, suggesting that closure pathologies across formal systems, computation, and thermodynamics share a common structure.
comment: 11 pages
Data relativistic uncertainty framework for low-illumination anime scenery image enhancement
By contrast with the prevailing works of low-light enhancement in natural images and videos, this study copes with the low-illumination quality degradation in anime scenery images to bridge the domain gap. For such an underexplored enhancement task, we first curate images from various sources and construct an unpaired anime scenery dataset with diverse environments and illumination conditions to address the data scarcity. To exploit the power of uncertainty information inherent with the diverse illumination conditions, we propose a Data Relativistic Uncertainty (DRU) framework, motivated by the idea from Relativistic GAN. By analogy with the wave-particle duality of light, our framework interpretably defines and quantifies the illumination uncertainty of dark/bright samples, which is leveraged to dynamically adjust the objective functions to recalibrate the model learning under data uncertainty. Extensive experiments demonstrate the effectiveness of DRU framework by training several versions of EnlightenGANs, yielding superior perceptual and aesthetic qualities beyond the state-of-the-art methods that are incapable of learning from data uncertainty perspective. We hope our framework can expose a novel paradigm of data-centric learning for potential visual and language domains. Code is available.
comment: Add data
Efficient 3D affinely equivariant CNNs with adaptive fusion of augmented spherical Fourier-Bessel bases
Filter-decomposition-based group equivariant convolutional neural networks (CNNs) have shown promising stability and data efficiency for 3D image feature extraction. However, these networks, which rely on parameter sharing and discrete transformation groups, often underperform in modern deep neural network architectures for processing volumetric images with dense 3D textures, such as the common 3D medical images. To address these limitations, this paper presents an efficient non-parameter-sharing continuous 3D affine group equivariant neural network for volumetric images. This network uses an adaptive aggregation of Monte Carlo augmented spherical Fourier-Bessel filter bases to improve the efficiency and flexibility of 3D group equivariant CNNs for volumetric data. Unlike existing methods that focus only on angular orthogonality in filter bases, the introduced spherical Bessel Fourier filter base incorporates both angular and radial orthogonality to improve feature extraction. Experiments on four medical image segmentation datasets and two seismic datasets show that the proposed methods achieve better affine group equivariance and superior segmentation accuracy than existing 3D group equivariant convolutional neural network layers, significantly improving the training stability and data efficiency of conventional CNN layers (at 0.05 significance level). The code is available at https://github.com/ZhaoWenzhao/WMCSFB.
From Human Intention to Action Prediction: Intention-Driven End-to-End Autonomous Driving
While end-to-end autonomous driving has achieved remarkable progress in geometric control, current systems remain constrained by a command-following paradigm that relies on simple navigational instructions. Transitioning to genuinely intelligent agents requires the capability to interpret and fulfill high-level, abstract human intentions. However, this advancement is hindered by the lack of dedicated benchmarks and semantic-aware evaluation metrics. In this paper, we formally define the task of Intention-Driven End-to-End Autonomous Driving and present Intention-Drive, a comprehensive benchmark designed to bridge this gap. We construct a large-scale dataset featuring complex natural language intentions paired with high-fidelity sensor data. To overcome the limitations of conventional trajectory-based metrics, we introduce the Imagined Future Alignment (IFA), a novel evaluation protocol leveraging generative world models to assess the semantic fulfillment of human goals beyond mere geometric accuracy. Furthermore, we explore the solution space by proposing two distinct paradigms: an end-to-end vision-language planner and a hierarchical agent-based framework. The experiments reveal a critical dichotomy where existing models exhibit satisfactory driving stability but struggle significantly with intention fulfillment. Notably, the proposed frameworks demonstrate superior alignment with human intentions.
Adapting Vision-Language Foundation Model for Next Generation Medical Ultrasound Image Analysis
Vision-Language Models (VLMs) have demonstrated remarkable generalization capabilities, yet their application to medical ultrasound remains constrained by the significant domain shift between natural images and sonographic data. The unique physics of ultrasound, manifesting as speckle noise, shadowing, and variable artifacts, often leads to suboptimal performance when applying off-the-shelf foundation models. To address this, we propose a novel Hybrid-tuning (HT) strategy for the efficient adaptation of CLIP-based models to ultrasound analysis. Our method introduces a lightweight adapter module integrated into the frozen visual backbone, featuring frequency-domain filtering to suppress periodic artifacts and dynamic noise estimation to calibrate feature representations. Furthermore, we design specialized segmentation and classification heads that employ multi-scale feature aggregation to maximize the utility of pre-trained semantic priors. Extensive evaluations across six multi-center datasets (covering lymph nodes, breast, thyroid, and prostate) reveal that our HT-enhanced models significantly outperform existing state-of-the-art methods, including BiomedCLIP and standard LoRA fine-tuning. The results highlight the superior data efficiency and robustness of our approach, paving the way for practical, foundational intelligence in automated ultrasound diagnosis. The source code is available at https://github.com/jinggqu/NextGen-UIA.
Video LLMs for Temporal Reasoning in Long Videos
We introduce TemporalVLM, a video large language model (video LLM) for temporal reasoning and fine-grained understanding in long videos. Our approach includes a visual encoder for mapping a long-term video into features which are time-aware and contain both local and global cues. It first divides an input video into short-term clips, which are jointly encoded with timestamps and fused across overlapping temporal windows into time-sensitive local features. Next, the local features are passed through a bidirectional long short-term memory (BiLSTM) module for global feature aggregation. Moreover, to facilitate the evaluation of TemporalVLM, we present a large-scale long video dataset of industry assembly processes, namely IndustryASM, consisting of videos recorded on factory floors with actions and timestamps annotated by industrial engineers for time and motion studies and temporal action segmentation evaluation. Finally, extensive experiments show that TemporalVLM outperforms previous methods across temporal reasoning and fine-grained understanding tasks, i.e., dense video captioning, temporal video grounding, video highlight detection, and temporal action segmentation. To our best knowledge, our work is the first to incorporate LSTMs into video LLMs.
CaTS-Bench: Can Language Models Describe Time Series?
Time series captioning, the task of describing time series in natural language, requires numeric and temporal reasoning, trend interpretation, and contextual understanding. Existing benchmarks, however, often rely on fully synthetic or generic captions, and typically neglect metadata and visual representations. We introduce \textbf{CaTS-Bench}, a comprehensive benchmark for \textbf{C}ontext-\textbf{a}ware \textbf{T}ime \textbf{S}eries reasoning across $11$ diverse domains, centered on a gold-standard evaluation set of $1746$ human-rewritten captions that measure how effectively models translate numeric trends into immediately interpretable narratives. To address the scarcity of human-annotated data, we also propose a scalable pipeline for generating high-fidelity synthetic captions, the quality of which we validate. We evaluate leading Vision-Language Models on our benchmark, revealing that even proprietary models struggle to capture numeric nuances in temporal descriptions, while finetuning open-source models on synthetic data yields substantial performance gains. Finally, we release a diagnostic suite of $910$ multiple-choice questions and tailored numeric metrics to gauge time-series-specific reasoning capabilities, establishing CaTS-Bench as a reliable foundation for grounded, multimodal language generation in numeric domains.
comment: 8 pages, 6 figures, 3 tables in the main paper. Many more in the appendix
I-Scene: 3D Instance Models are Implicit Generalizable Spatial Learners
Generalization remains the central challenge for interactive 3D scene generation. Existing learning-based approaches ground spatial understanding in limited scene dataset, restricting generalization to new layouts. We instead reprogram a pre-trained 3D instance generator to act as a scene level learner, replacing dataset-bounded supervision with model-centric spatial supervision. This reprogramming unlocks the generator transferable spatial knowledge, enabling generalization to unseen layouts and novel object compositions. Remarkably, spatial reasoning still emerges even when the training scenes are randomly composed objects. This demonstrates that the generator's transferable scene prior provides a rich learning signal for inferring proximity, support, and symmetry from purely geometric cues. Replacing widely used canonical space, we instantiate this insight with a view-centric formulation of the scene space, yielding a fully feed-forward, generalizable scene generator that learns spatial relations directly from the instance model. Quantitative and qualitative results show that a 3D instance generator is an implicit spatial learner and reasoner, pointing toward foundation models for interactive 3D scene understanding and generation. Project page: https://luling06.github.io/I-Scene-project/
V-Agent: An Interactive Video Search System Using Vision-Language Models
We introduce V-Agent, a novel multi-agent platform designed for advanced video search and interactive user-system conversations. By fine-tuning a vision-language model (VLM) with a small video preference dataset and enhancing it with a retrieval vector from an image-text retrieval model, we overcome the limitations of traditional text-based retrieval systems in multimodal scenarios. The VLM-based retrieval model independently embeds video frames and audio transcriptions from an automatic speech recognition (ASR) module into a shared multimodal representation space, enabling V-Agent to interpret both visual and spoken content for context-aware video search. This system consists of three agents-a routing agent, a search agent, and a chat agent-that work collaboratively to address user intents by refining search outputs and communicating with users. The search agent utilizes the VLM-based retrieval model together with an additional re-ranking module to further enhance video retrieval quality. Our proposed framework demonstrates state-of-the-art zero-shot performance on the MultiVENT 2.0 benchmark, highlighting its potential for both academic research and real-world applications. The retrieval model and demo videos are available at https://huggingface.co/NCSOFT/multimodal-embedding.
comment: CIKM 2025 MMGENSR Workshop
ChartAgent: A Multimodal Agent for Visually Grounded Reasoning in Complex Chart Question Answering NeurIPS 2025
Recent multimodal LLMs have shown promise in chart-based visual question answering, but their performance declines sharply on unannotated charts-those requiring precise visual interpretation rather than relying on textual shortcuts. To address this, we introduce ChartAgent, a novel agentic framework that explicitly performs visual reasoning directly within the chart's spatial domain. Unlike textual chain-of-thought reasoning, ChartAgent iteratively decomposes queries into visual subtasks and actively manipulates and interacts with chart images through specialized actions such as drawing annotations, cropping regions (e.g., segmenting pie slices, isolating bars), and localizing axes, using a library of chart-specific vision tools to fulfill each subtask. This iterative reasoning process closely mirrors human cognitive strategies for chart comprehension. ChartAgent achieves state-of-the-art accuracy on the ChartBench and ChartX benchmarks, surpassing prior methods by up to 16.07% absolute gain overall and 17.31% on unannotated, numerically intensive queries. Furthermore, our analyses show that ChartAgent is (a) effective across diverse chart types, (b) achieves the highest scores across varying visual and reasoning complexity levels, and (c) serves as a plug-and-play framework that boosts performance across diverse underlying LLMs. Our work is among the first to demonstrate visually grounded reasoning for chart understanding using tool-augmented multimodal agents.
comment: NeurIPS 2025 Multimodal Algorithmic Reasoning Workshop (https://marworkshop.github.io/neurips25/) (Oral Paper Presentation)
Back to Basics: Let Denoising Generative Models Denoise
Today's denoising diffusion models do not "denoise" in the classical sense, i.e., they do not directly predict clean images. Rather, the neural networks predict noise or a noised quantity. In this paper, we suggest that predicting clean data and predicting noised quantities are fundamentally different. According to the manifold assumption, natural data should lie on a low-dimensional manifold, whereas noised quantities do not. With this assumption, we advocate for models that directly predict clean data, which allows apparently under-capacity networks to operate effectively in very high-dimensional spaces. We show that simple, large-patch Transformers on pixels can be strong generative models: using no tokenizer, no pre-training, and no extra loss. Our approach is conceptually nothing more than "Just image Transformers", or JiT, as we call it. We report competitive results using JiT with large patch sizes of 16 and 32 on ImageNet at resolutions of 256 and 512, where predicting high-dimensional noised quantities can fail catastrophically. With our networks mapping back to the basics of the manifold, our research goes back to basics and pursues a self-contained paradigm for Transformer-based diffusion on raw natural data.
comment: Tech report. Code at https://github.com/LTH14/JiT
Generative Refocusing: Flexible Defocus Control from a Single Image
Depth-of-field control is essential in photography, but getting the perfect focus often takes several tries or special equipment. Single-image refocusing is still difficult. It involves recovering sharp content and creating realistic bokeh. Current methods have significant drawbacks. They need all-in-focus inputs, depend on synthetic data from simulators, and have limited control over aperture. We introduce Generative Refocusing, a two-step process that uses DeblurNet to recover all-in-focus images from various inputs and BokehNet for creating controllable bokeh. Our main innovation is semi-supervised training. This method combines synthetic paired data with unpaired real bokeh images, using EXIF metadata to capture real optical characteristics beyond what simulators can provide. Our experiments show we achieve top performance in defocus deblurring, bokeh synthesis, and refocusing benchmarks. Additionally, our Generative Refocusing allows text-guided adjustments and custom aperture shapes.
comment: Project website: https://generative-refocusing.github.io/
BiPO: Bidirectional Partial Occlusion Network for Text-to-Motion Synthesis WACV 2026
Generating natural and expressive human motions from textual descriptions is challenging due to the complexity of coordinating full-body dynamics and capturing nuanced motion patterns over extended sequences that accurately reflect the given text. To address this, we introduce BiPO, Bidirectional Partial Occlusion Network for Text-to-Motion Synthesis, a novel model that enhances text-to-motion synthesis by integrating part-based generation with a bidirectional autoregressive architecture. This integration allows BiPO to consider both past and future contexts during generation while enhancing detailed control over individual body parts without requiring ground-truth motion length. To relax the interdependency among body parts caused by the integration, we devise the Partial Occlusion technique, which probabilistically occludes the certain motion part information during training. In our comprehensive experiments, BiPO achieves state-of-the-art performance on the HumanML3D dataset, outperforming recent methods such as ParCo, MoMask, and BAMM in terms of FID scores and overall motion quality. Notably, BiPO excels not only in the text-to-motion generation task but also in motion editing tasks that synthesize motion based on partially generated motion sequences and textual descriptions. These results reveal the BiPO's effectiveness in advancing text-to-motion synthesis and its potential for practical applications.
comment: 18 pages, 11 figures. Accepted to WACV 2026
Where MLLMs Attend and What They Rely On: Explaining Autoregressive Token Generation
Multimodal large language models (MLLMs) have demonstrated remarkable capabilities in aligning visual inputs with natural language outputs. Yet, the extent to which generated tokens depend on visual modalities remains poorly understood, limiting interpretability and reliability. In this work, we present EAGLE, a lightweight black-box framework for explaining autoregressive token generation in MLLMs. EAGLE attributes any selected tokens to compact perceptual regions while quantifying the relative influence of language priors and perceptual evidence. The framework introduces an objective function that unifies sufficiency (insight score) and indispensability (necessity score), optimized via greedy search over sparsified image regions for faithful and efficient attribution. Beyond spatial attribution, EAGLE performs modality-aware analysis that disentangles what tokens rely on, providing fine-grained interpretability of model decisions. Extensive experiments across open-source MLLMs show that EAGLE consistently outperforms existing methods in faithfulness, localization, and hallucination diagnosis, while requiring substantially less GPU memory. These results highlight its effectiveness and practicality for advancing the interpretability of MLLMs.
Sortblock: Similarity-Aware Feature Reuse for Diffusion Model
Diffusion Transformers (DiTs) have demonstrated remarkable generative capabilities, particularly benefiting from Transformer architectures that enhance visual and artistic fidelity. However, their inherently sequential denoising process results in high inference latency, limiting their deployment in real-time scenarios. Existing training-free acceleration approaches typically reuse intermediate features at fixed timesteps or layers, overlooking the evolving semantic focus across denoising stages and Transformer blocks.To address this, we propose Sortblock, a training-free inference acceleration framework that dynamically caches block-wise features based on their similarity across adjacent timesteps. By ranking the evolution of residuals, Sortblock adaptively determines a recomputation ratio, selectively skipping redundant computations while preserving generation quality. Furthermore, we incorporate a lightweight linear prediction mechanism to reduce accumulated errors in skipped blocks.Extensive experiments across various tasks and DiT architectures demonstrate that Sortblock achieves over 2$\times$ inference speedup with minimal degradation in output quality, offering an effective and generalizable solution for accelerating diffusion-based generative models.
Deep But Reliable: Advancing Multi-turn Reasoning for Thinking with Images
Recent advances in large Vision-Language Models (VLMs) have exhibited strong reasoning capabilities on complex visual tasks by thinking with images in their Chain-of-Thought (CoT), which is achieved by actively invoking tools to analyze visual inputs rather than merely perceiving them. However, existing models often struggle to reflect on and correct themselves when attempting incorrect reasoning trajectories. To address this limitation, we propose DRIM, a model that enables deep but reliable multi-turn reasoning when thinking with images in its multimodal CoT. Our pipeline comprises three stages: data construction, cold-start SFT and RL. Based on a high-resolution image dataset, we construct high-difficulty and verifiable visual question-answer pairs, where solving each task requires multi-turn tool calls to reach the correct answer. In the SFT stage, we collect tool trajectories as cold-start data, guiding a multi-turn reasoning pattern. In the RL stage, we introduce redundancy-penalized policy optimization, which incentivizes the model to develop a self-reflective reasoning pattern. The basic idea is to impose judgment on reasoning trajectories and penalize those that produce incorrect answers without sufficient multi-scale exploration. Extensive experiments demonstrate that DRIM achieves superior performance on visual understanding benchmarks.
Adaptive Anomaly Recovery for Telemanipulation: A Diffusion Model Approach to Vision-Based Tracking
Dexterous telemanipulation critically relies on the continuous and stable tracking of the human operator's commands to ensure robust operation. Vison-based tracking methods are widely used but have low stability due to anomalies such as occlusions, inadequate lighting, and loss of sight. Traditional filtering, regression, and interpolation methods are commonly used to compensate for explicit information such as angles and positions. These approaches are restricted to low-dimensional data and often result in information loss compared to the original high-dimensional image and video data. Recent advances in diffusion-based approaches, which can operate on high-dimensional data, have achieved remarkable success in video reconstruction and generation. However, these methods have not been fully explored in continuous control tasks in robotics. This work introduces the Diffusion-Enhanced Telemanipulation (DET) framework, which incorporates the Frame-Difference Detection (FDD) technique to identify and segment anomalies in video streams. These anomalous clips are replaced after reconstruction using diffusion models, ensuring robust telemanipulation performance under challenging visual conditions. We validated this approach in various anomaly scenarios and compared it with the baseline methods. Experiments show that DET achieves an average RMSE reduction of 17.2% compared to the cubic spline and 51.1% compared to FFT-based interpolation for different occlusion durations.
comment: This work has been submitted to the IEEE for possible publication
Real-Time In-Cabin Driver Behavior Recognition on Low-Cost Edge Hardware
In-cabin driver monitoring systems (DMS) must recognize distraction- and drowsiness-related behaviors with low latency under strict constraints on compute, power, and cost. We present a single-camera in-cabin driver behavior recognition system designed for deployment on two low-cost edge platforms: Raspberry Pi 5 (CPU-only) and the Google Coral development board with an Edge Tensor Processing Unit (Edge TPU) accelerator. The proposed pipeline combines (i) a compact per-frame vision model, (ii) a confounder-aware label taxonomy to reduce confusions among visually similar behaviors, and (iii) a temporal decision head that triggers alerts only when predictions are both confident and sustained. The system supports 17 behavior classes. Training and evaluation use licensed datasets plus in-house collection (over 800,000 labeled frames) with driver-disjoint splits, and we further validate the deployed system in live in-vehicle tests. End-to-end performance reaches approximately 16 FPS on Raspberry Pi 5 using 8-bit integer (INT8) inference (per-frame latency <60 ms) and approximately 25 FPS on Coral Edge TPU (end-to-end latency ~40 ms), enabling real-time monitoring and stable alert generation on embedded hardware. Finally, we discuss how reliable in-cabin perception can serve as an upstream signal for human-centered vehicle intelligence, including emerging agentic vehicle concepts.
comment: 27 pages, 6 figures, 5 tables
VisualCloze: A Universal Image Generation Framework via Visual In-Context Learning ICCV 2025
Recent progress in diffusion models significantly advances various image generation tasks. However, the current mainstream approach remains focused on building task-specific models, which have limited efficiency when supporting a wide range of different needs. While universal models attempt to address this limitation, they face critical challenges, including generalizable task instruction, appropriate task distributions, and unified architectural design. To tackle these challenges, we propose VisualCloze, a universal image generation framework, which supports a wide range of in-domain tasks, generalization to unseen ones, unseen unification of multiple tasks, and reverse generation. Unlike existing methods that rely on language-based task instruction, leading to task ambiguity and weak generalization, we integrate visual in-context learning, allowing models to identify tasks from visual demonstrations. Meanwhile, the inherent sparsity of visual task distributions hampers the learning of transferable knowledge across tasks. To this end, we introduce Graph200K, a graph-structured dataset that establishes various interrelated tasks, enhancing task density and transferable knowledge. Furthermore, we uncover that our unified image generation formulation shared a consistent objective with image infilling, enabling us to leverage the strong generative priors of pre-trained infilling models without modifying the architectures.
comment: Accepted at ICCV 2025. Project page: https://visualcloze.github.io
Learn2Reg 2024: New Benchmark Datasets Driving Progress on New Challenges
Medical image registration is critical for clinical applications, and fair benchmarking of different methods is essential for monitoring ongoing progress in the field. To date, the Learn2Reg 2020-2023 challenges have released several complementary datasets and established metrics for evaluations. Building on this foundation, the 2024 edition expands the challenge's scope to cover a wider range of registration scenarios, particularly in terms of modality diversity and task complexity, by introducing three new tasks, including large-scale multi-modal registration and unsupervised inter-subject brain registration, as well as the first microscopy-focused benchmark within Learn2Reg. The new datasets also inspired new method developments, including invertibility constraints, pyramid features, keypoints alignment and instance optimisation. Visit Learn2Reg at https://learn2reg.grand-challenge.org.
comment: Accepted for publication at the Journal of Machine Learning for Biomedical Imaging (MELBA) https://melba-journal.org/2025:034
StreamFlow: Theory, Algorithm, and Implementation for High-Efficiency Rectified Flow Generation
New technologies such as Rectified Flow and Flow Matching have significantly improved the performance of generative models in the past two years, especially in terms of control accuracy, generation quality, and generation efficiency. However, due to some differences in its theory, design, and existing diffusion models, the existing acceleration methods cannot be directly applied to the Rectified Flow model. In this article, we have comprehensively implemented an overall acceleration pipeline from the aspects of theory, design, and reasoning strategies. This pipeline uses new methods such as batch processing with a new velocity field, vectorization of heterogeneous time-step batch processing, and dynamic TensorRT compilation for the new methods to comprehensively accelerate related models based on flow models. Currently, the existing public methods usually achieve an acceleration of 18%, while experiments have proved that our new method can accelerate the 512*512 image generation speed to up to 611%, which is far beyond the current non-generalized acceleration methods.
comment: Improved the quality. Project Page at https://world-snapshot.github.io/StreamFlow/
Jailbreaking Safeguarded Text-to-Image Models via Large Language Models
Text-to-Image models may generate harmful content, such as pornographic images, particularly when unsafe prompts are submitted. To address this issue, safety filters are often added on top of text-to-image models, or the models themselves are aligned to reduce harmful outputs. However, these defenses remain vulnerable when an attacker strategically designs adversarial prompts to bypass these safety guardrails. In this work, we propose \alg, a method to jailbreak text-to-image models with safety guardrails using a fine-tuned large language model. Unlike other query-based jailbreak attacks that require repeated queries to the target model, our attack generates adversarial prompts efficiently after fine-tuning our AttackLLM. We evaluate our method on three datasets of unsafe prompts and against five safety guardrails. Our results demonstrate that our approach effectively bypasses safety guardrails, outperforms existing no-box attacks, and also facilitates other query-based attacks.
comment: Accepted by EACL 2026 Findings
Improving VisNet for Object Recognition
Object recognition plays a fundamental role in how biological organisms perceive and interact with their environment. While the human visual system performs this task with remarkable efficiency, reproducing similar capabilities in artificial systems remains challenging. This study investigates VisNet, a biologically inspired neural network model, and several enhanced variants incorporating radial basis function neurons, Mahalanobis distance based learning, and retinal like preprocessing for both general object recognition and symmetry classification. By leveraging principles of Hebbian learning and temporal continuity associating temporally adjacent views to build invariant representations. VisNet and its extensions capture robust and transformation invariant features. Experimental results across multiple datasets, including MNIST, CIFAR10, and custom symmetric object sets, show that these enhanced VisNet variants substantially improve recognition accuracy compared with the baseline model. These findings underscore the adaptability and biological relevance of VisNet inspired architectures, offering a powerful and interpretable framework for visual recognition in both neuroscience and artificial intelligence. Keywords: VisNet, Object Recognition, Symmetry Detection, Hebbian Learning, RBF Neurons, Mahalanobis Distance, Biologically Inspired Models, Invariant Representations
Comparative Analysis of Binarization Methods For Medical Image Hashing On Odir Dataset
In this study, we evaluated four binarization methods. Locality-Sensitive Hashing (LSH), Iterative Quantization (ITQ), Kernel-based Supervised Hashing (KSH), and Supervised Discrete Hashing (SDH) on the ODIR dataset using deep feature embeddings. Experimental results show that SDH achieved the best performance, with an mAP@100 of 0.9184 using only 32-bit codes, outperforming LSH, ITQ, and KSH. Compared with prior studies, our method proved highly competitive: Fang et al. reported 0.7528 (Fundus-iSee, 48 bits) and 0.8856 (ASOCT-Cataract, 48 bits), while Wijesinghe et al. achieved 94.01 (KVASIR, 256 bits). Despite using significantly fewer bits, our SDH-based framework reached retrieval accuracy close to the state-of-the-art. These findings demonstrate that SDH is the most effective approach among those tested, offering a practical balance of accuracy, storage, and efficiency for medical image retrieval and device inventory management.
comment: After publication of the conference version, we identified fundamental methodological and evaluation issues that affect the validity of the reported results. These issues are intrinsic to the current work and cannot be addressed through a simple revision. Therefore, we request full withdrawal of this submission rather than replacement
Beyond Fixed Topologies: Unregistered Training and Comprehensive Evaluation Metrics for 3D Talking Heads
Generating speech-driven 3D talking heads presents numerous challenges; among those is dealing with varying mesh topologies where no point-wise correspondence exists across the meshes the model can animate. While previous literature works assume fixed mesh structures, in this work we present the first framework capable of animating 3D faces in arbitrary topologies, including real scanned data. Our approach leverages heat diffusion to predict features that are robust to the mesh topology. We explore two training settings: a registered one, in which meshes in a training sequences share a fixed topology but any mesh can be animated at test time, and an fully unregistered one, which allows effective training with varying mesh structures. Additionally, we highlight the limitations of current evaluation metrics and propose new metrics for better lip-syncing evaluation. An extensive evaluation shows our approach performs favorably compared to fixed topology techniques, setting a new benchmark by offering a versatile and high-fidelity solution for 3D talking heads where the topology constraint is dropped. The code along with the pre-trained model are available.
comment: https://fedenoce.github.io/scantalk/
Name That Part: 3D Part Segmentation and Naming
We address semantic 3D part segmentation: decomposing objects into parts with meaningful names. While datasets exist with part annotations, their definitions are inconsistent across datasets, limiting robust training. Previous methods produce unlabeled decompositions or retrieve single parts without complete shape annotations. We propose ALIGN-Parts, which formulates part naming as a direct set alignment task. Our method decomposes shapes into partlets - implicit 3D part representations - matched to part descriptions via bipartite assignment. We combine geometric cues from 3D part fields, appearance cues from multi-view vision features, and semantic knowledge from language-model-generated affordance descriptions. Text-alignment loss ensures partlets share embedding space with text, enabling a theoretically open-vocabulary matching setup, given sufficient data. Our efficient and novel, one-shot, 3D part segmentation and naming method finds applications in several downstream tasks, including serving as a scalable annotation engine. As our model supports zero-shot matching to arbitrary descriptions and confidence-calibrated predictions for known categories, with human verification, we create a unified ontology that aligns PartNet, 3DCoMPaT++, and Find3D, consisting of 1,794 unique 3D parts. We introduce two novel metrics appropriate for the named 3D part segmentation task. We also show examples from our newly created TexParts dataset.
comment: Project page at https://name-that-part.github.io
Controllable Generation with Text-to-Image Diffusion Models: A Survey
In the rapidly advancing realm of visual generation, diffusion models have revolutionized the landscape, marking a significant shift in capabilities with their impressive text-guided generative functions. However, relying solely on text for conditioning these models does not fully cater to the varied and complex requirements of different applications and scenarios. Acknowledging this shortfall, a variety of studies aim to control pre-trained text-to-image (T2I) models to support novel conditions. In this survey, we undertake a thorough review of the literature on controllable generation with T2I diffusion models, covering both the theoretical foundations and practical advancements in this domain. Our review begins with a brief introduction to the basics of denoising diffusion probabilistic models (DDPMs) and widely used T2I diffusion models. We then reveal the controlling mechanisms of diffusion models, theoretically analyzing how novel conditions are introduced into the denoising process for conditional generation. Additionally, we offer a detailed overview of research in this area, organizing it into distinct categories from the condition perspective: generation with specific conditions, generation with multiple conditions, and universal controllable generation. For an exhaustive list of the controllable generation literature surveyed, please refer to our curated repository at https://github.com/PRIV-Creation/Awesome-Controllable-T2I-Diffusion-Models.
comment: TPAMI 2025; A collection of resources on controllable generation with text-to-image diffusion models: https://github.com/PRIV-Creation/Awesome-Controllable-T2I-Diffusion-Models
PrismVAU: Prompt-Refined Inference System for Multimodal Video Anomaly Understanding WACV 2026
Video Anomaly Understanding (VAU) extends traditional Video Anomaly Detection (VAD) by not only localizing anomalies but also describing and reasoning about their context. Existing VAU approaches often rely on fine-tuned multimodal large language models (MLLMs) or external modules such as video captioners, which introduce costly annotations, complex training pipelines, and high inference overhead. In this work, we introduce PrismVAU, a lightweight yet effective system for real-time VAU that leverages a single off-the-shelf MLLM for anomaly scoring, explanation, and prompt optimization. PrismVAU operates in two complementary stages: (1) a coarse anomaly scoring module that computes frame-level anomaly scores via similarity to textual anchors, and (2) an MLLM-based refinement module that contextualizes anomalies through system and user prompts. Both textual anchors and prompts are optimized with a weakly supervised Automatic Prompt Engineering (APE) framework. Extensive experiments on standard VAD benchmarks demonstrate that PrismVAU delivers competitive detection performance and interpretable anomaly explanations -- without relying on instruction tuning, frame-level annotations, and external modules or dense processing -- making it an efficient and practical solution for real-world applications.
comment: This paper has been accepted to the 6th Workshop on Real-World Surveillance: Applications and Challenges (WACV 2026)
WeatherDiffusion: Controllable Weather Editing in Intrinsic Space
We present WeatherDiffusion, a diffusion-based framework for controllable weather editing in intrinsic space. Our framework includes two components based on diffusion priors: an inverse renderer that estimates material properties, scene geometry, and lighting as intrinsic maps from an input image, and a forward renderer that utilizes these geometry and material maps along with a text prompt that describes specific weather conditions to generate a final image. The intrinsic maps enhance controllability compared to traditional pixel-space editing approaches. We propose an intrinsic map-aware attention mechanism that improves spatial correspondence and decomposition quality in large outdoor scenes. For forward rendering, we leverage CLIP-space interpolation of weather prompts to achieve fine-grained weather control. We also introduce a synthetic and a real-world dataset, containing 38k and 18k images under various weather conditions, each with intrinsic map annotations. WeatherDiffusion outperforms state-of-the-art pixel-space editing approaches, weather restoration methods, and rendering-based methods, showing promise for downstream tasks such as autonomous driving, enhancing the robustness of detection and segmentation in challenging weather scenarios.
Artificial Intelligence 260
Embedding Autonomous Agents in Resource-Constrained Robotic Platforms
Many embedded devices operate under resource constraints and in dynamic environments, requiring local decision-making capabilities. Enabling devices to make independent decisions in such environments can improve the responsiveness of the system and reduce the dependence on constant external control. In this work, we integrate an autonomous agent, programmed using AgentSpeak, with a small two-wheeled robot that explores a maze using its own decision-making and sensor data. Experimental results show that the agent successfully solved the maze in 59 seconds using 287 reasoning cycles, with decision phases taking less than one millisecond. These results indicate that the reasoning process is efficient enough for real-time execution on resource-constrained hardware. This integration demonstrates how high-level agent-based control can be applied to resource-constrained embedded systems for autonomous operation.
comment: This is an open-access, author-archived version of a manuscript published in European Conference on Multi-Agent Systems 2025
Agent Drift: Quantifying Behavioral Degradation in Multi-Agent LLM Systems Over Extended Interactions
Multi-agent Large Language Model (LLM) systems have emerged as powerful architectures for complex task decomposition and collaborative problem-solving. However, their long-term behavioral stability remains largely unexamined. This study introduces the concept of agent drift, defined as the progressive degradation of agent behavior, decision quality, and inter-agent coherence over extended interaction sequences. We present a comprehensive theoretical framework for understanding drift phenomena, proposing three distinct manifestations: semantic drift (progressive deviation from original intent), coordination drift (breakdown in multi-agent consensus mechanisms), and behavioral drift (emergence of unintended strategies). We introduce the Agent Stability Index (ASI), a novel composite metric framework for quantifying drift across twelve dimensions, including response consistency, tool usage patterns, reasoning pathway stability, and inter-agent agreement rates. Through simulation-based analysis and theoretical modeling, we demonstrate how unchecked agent drift can lead to substantial reductions in task completion accuracy and increased human intervention requirements. We propose three mitigation strategies: episodic memory consolidation, drift-aware routing protocols, and adaptive behavioral anchoring. Theoretical analysis suggests these approaches can significantly reduce drift-related errors while maintaining system throughput. This work establishes a foundational methodology for monitoring, measuring, and mitigating agent drift in production agentic AI systems, with direct implications for enterprise deployment reliability and AI safety research.
Clinical Data Goes MEDS? Let's OWL make sense of it
The application of machine learning on healthcare data is often hindered by the lack of standardized and semantically explicit representation, leading to limited interoperability and reproducibility across datasets and experiments. The Medical Event Data Standard (MEDS) addresses these issues by introducing a minimal, event-centric data model designed for reproducible machine-learning workflows from health data. However, MEDS is defined as a data-format specification and does not natively provide integration with the Semantic Web ecosystem. In this article, we introduce MEDS-OWL, a lightweight OWL ontology that provides formal concepts and relations to enable representing MEDS datasets as RDF graphs. Additionally, we implemented meds2rdf, a Python conversion library that transforms MEDS events into RDF graphs, ensuring conformance with the ontology. We demonstrate the approach on a synthetic clinical dataset that describes patient care pathways for ruptured intracranial aneurysms and validate the resulting graph using SHACL constraints. The first release of MEDS-OWL comprises 13 classes, 10 object properties, 20 data properties, and 24 OWL axioms. Combined with meds2rdf, it enables data transformation into FAIR-aligned datasets, provenance-aware publishing, and interoperability of event-based clinical data. By bridging MEDS with the Semantic Web, this work contributes a reusable semantic layer for event-based clinical data and establishes a robust foundation for subsequent graph-based analytics.
comment: 12 pages, 5 tables, 4 figures
Klear: Unified Multi-Task Audio-Video Joint Generation
Audio-video joint generation has progressed rapidly, yet substantial challenges still remain. Non-commercial approaches still suffer audio-visual asynchrony, poor lip-speech alignment, and unimodal degradation, which can be stemmed from weak audio-visual correspondence modeling, limited generalization, and scarce high-quality dense-caption data. To address these issues, we introduce Klear and delve into three axes--model architecture, training strategy, and data curation. Architecturally, we adopt a single-tower design with unified DiT blocks and an Omni-Full Attention mechanism, achieving tight audio-visual alignment and strong scalability. Training-wise, we adopt a progressive multitask regime--random modality masking to joint optimization across tasks, and a multistage curriculum, yielding robust representations, strengthening A-V aligned world knowledge, and preventing unimodal collapse. For datasets, we present the first large-scale audio-video dataset with dense captions, and introduce a novel automated data-construction pipeline which annotates and filters millions of diverse, high-quality, strictly aligned audio-video-caption triplets. Building on this, Klear scales to large datasets, delivering high-fidelity, semantically and temporally aligned, instruction-following generation in both joint and unimodal settings while generalizing robustly to out-of-distribution scenarios. Across tasks, it substantially outperforms prior methods by a large margin and achieves performance comparable to Veo 3, offering a unified, scalable path toward next-generation audio-video synthesis.
Wow, wo, val! A Comprehensive Embodied World Model Evaluation Turing Test
As world models gain momentum in Embodied AI, an increasing number of works explore using video foundation models as predictive world models for downstream embodied tasks like 3D prediction or interactive generation. However, before exploring these downstream tasks, video foundation models still have two critical questions unanswered: (1) whether their generative generalization is sufficient to maintain perceptual fidelity in the eyes of human observers, and (2) whether they are robust enough to serve as a universal prior for real-world embodied agents. To provide a standardized framework for answering these questions, we introduce the Embodied Turing Test benchmark: WoW-World-Eval (Wow,wo,val). Building upon 609 robot manipulation data, Wow-wo-val examines five core abilities, including perception, planning, prediction, generalization, and execution. We propose a comprehensive evaluation protocol with 22 metrics to assess the models' generation ability, which achieves a high Pearson Correlation between the overall score and human preference (>0.93) and establishes a reliable foundation for the Human Turing Test. On Wow-wo-val, models achieve only 17.27 on long-horizon planning and at best 68.02 on physical consistency, indicating limited spatiotemporal consistency and physical reasoning. For the Inverse Dynamic Model Turing Test, we first use an IDM to evaluate the video foundation models' execution accuracy in the real world. However, most models collapse to $\approx$ 0% success, while WoW maintains a 40.74% success rate. These findings point to a noticeable gap between the generated videos and the real world, highlighting the urgency and necessity of benchmarking World Model in Embodied AI.
ContextFocus: Activation Steering for Contextual Faithfulness in Large Language Models
Large Language Models (LLMs) encode vast amounts of parametric knowledge during pre-training. As world knowledge evolves, effective deployment increasingly depends on their ability to faithfully follow externally retrieved context. When such evidence conflicts with the model's internal knowledge, LLMs often default to memorized facts, producing unfaithful outputs. In this work, we introduce ContextFocus, a lightweight activation steering approach that improves context faithfulness in such knowledge-conflict settings while preserving fluency and efficiency. Unlike prior approaches, our solution requires no model finetuning and incurs minimal inference-time overhead, making it highly efficient. We evaluate ContextFocus on the ConFiQA benchmark, comparing it against strong baselines including ContextDPO, COIECD, and prompting-based methods. Furthermore, we show that our method is complementary to prompting strategies and remains effective on larger models. Extensive experiments show that ContextFocus significantly improves contextual-faithfulness. Our results highlight the effectiveness, robustness, and efficiency of ContextFocus in improving contextual-faithfulness of LLM outputs.
Pixel-Wise Multimodal Contrastive Learning for Remote Sensing Images
Satellites continuously generate massive volumes of data, particularly for Earth observation, including satellite image time series (SITS). However, most deep learning models are designed to process either entire images or complete time series sequences to extract meaningful features for downstream tasks. In this study, we propose a novel multimodal approach that leverages pixel-wise two-dimensional (2D) representations to encode visual property variations from SITS more effectively. Specifically, we generate recurrence plots from pixel-based vegetation index time series (NDVI, EVI, and SAVI) as an alternative to using raw pixel values, creating more informative representations. Additionally, we introduce PIxel-wise Multimodal Contrastive (PIMC), a new multimodal self-supervision approach that produces effective encoders based on two-dimensional pixel time series representations and remote sensing imagery (RSI). To validate our approach, we assess its performance on three downstream tasks: pixel-level forecasting and classification using the PASTIS dataset, and land cover classification on the EuroSAT dataset. Moreover, we compare our results to state-of-the-art (SOTA) methods on all downstream tasks. Our experimental results show that the use of 2D representations significantly enhances feature extraction from SITS, while contrastive learning improves the quality of representations for both pixel time series and RSI. These findings suggest that our multimodal method outperforms existing models in various Earth observation tasks, establishing it as a robust self-supervision framework for processing both SITS and RSI. Code avaliable on
comment: 21 pages, 9 Figures
InfiniteWeb: Scalable Web Environment Synthesis for GUI Agent Training
GUI agents that interact with graphical interfaces on behalf of users represent a promising direction for practical AI assistants. However, training such agents is hindered by the scarcity of suitable environments. We present InfiniteWeb, a system that automatically generates functional web environments at scale for GUI agent training. While LLMs perform well on generating a single webpage, building a realistic and functional website with many interconnected pages faces challenges. We address these challenges through unified specification, task-centric test-driven development, and a combination of website seed with reference design image to ensure diversity. Our system also generates verifiable task evaluators enabling dense reward signals for reinforcement learning. Experiments show that InfiniteWeb surpasses commercial coding agents at realistic website construction, and GUI agents trained on our generated environments achieve significant performance improvements on OSWorld and Online-Mind2Web, demonstrating the effectiveness of proposed system.
comment: Work In Progress
Quantifying the Impact of Modules and Their Interactions in the PSO-X Framework
The PSO-X framework incorporates dozens of modules that have been proposed for solving single-objective continuous optimization problems using particle swarm optimization. While modular frameworks enable users to automatically generate and configure algorithms tailored to specific optimization problems, the complexity of this process increases with the number of modules in the framework and the degrees of freedom defined for their interaction. Understanding how modules affect the performance of algorithms for different problems is critical to making the process of finding effective implementations more efficient and identifying promising areas for further investigation. Despite their practical applications and scientific relevance, there is a lack of empirical studies investigating which modules matter most in modular optimization frameworks and how they interact. In this paper, we analyze the performance of 1424 particle swarm optimization algorithms instantiated from the PSO-X framework on the 25 functions in the CEC'05 benchmark suite with 10 and 30 dimensions. We use functional ANOVA to quantify the impact of modules and their combinations on performance in different problem classes. In practice, this allows us to identify which modules have greater influence on PSO-X performance depending on problem features such as multimodality, mathematical transformations and varying dimensionality. We then perform a cluster analysis to identify groups of problem classes that share similar module effect patterns. Our results show low variability in the importance of modules in all problem classes, suggesting that particle swarm optimization performance is driven by a few influential modules.
Layer-wise Positional Bias in Short-Context Language Modeling
Language models often show a preference for using information from specific positions in the input regardless of semantic relevance. While positional bias has been studied in various contexts, from attention sinks to task performance degradation in long-context settings, prior work has not established how these biases evolve across individual layers and input positions, or how they vary independent of task complexity. We introduce an attribution-based framework to analyze positional effects in short-context language modeling. Using layer conductance with a sliding-window approach, we quantify how each layer distributes importance across input positions, yielding layer-wise positional importance profiles. We find that these profiles are architecture-specific, stable across inputs, and invariant to lexical scrambling. Characterizing these profiles, we find prominent recency bias that increases with depth and subtle primacy bias that diminishes through model depth. Beyond positional structure, we also show that early layers preferentially weight content words over function words across all positions, while later layers lose this word-type differentiation.
CSSG: Measuring Code Similarity with Semantic Graphs
Existing code similarity metrics, such as BLEU, CodeBLEU, and TSED, largely rely on surface-level string overlap or abstract syntax tree structures, and often fail to capture deeper semantic relationships between programs.We propose CSSG (Code Similarity using Semantic Graphs), a novel metric that leverages program dependence graphs to explicitly model control dependencies and variable interactions, providing a semantics-aware representation of code.Experiments on the CodeContests+ dataset show that CSSG consistently outperforms existing metrics in distinguishing more similar code from less similar code under both monolingual and cross-lingual settings, demonstrating that dependency-aware graph representations offer a more effective alternative to surface-level or syntax-based similarity measures.
Analyzing Reasoning Consistency in Large Multimodal Models under Cross-Modal Conflicts
Large Multimodal Models (LMMs) have demonstrated impressive capabilities in video reasoning via Chain-of-Thought (CoT). However, the robustness of their reasoning chains remains questionable. In this paper, we identify a critical failure mode termed textual inertia, where once a textual hallucination occurs in the thinking process, models tend to blindly adhere to the erroneous text while neglecting conflicting visual evidence. To systematically investigate this, we propose the LogicGraph Perturbation Protocol that structurally injects perturbations into the reasoning chains of diverse LMMs spanning both native reasoning architectures and prompt-driven paradigms to evaluate their self-reflection capabilities. The results reveal that models successfully self-correct in less than 10% of cases and predominantly succumb to blind textual error propagation. To mitigate this, we introduce Active Visual-Context Refinement, a training-free inference paradigm which orchestrates an active visual re-grounding mechanism to enforce fine-grained verification coupled with an adaptive context refinement strategy to summarize and denoise the reasoning history. Experiments demonstrate that our approach significantly stifles hallucination propagation and enhances reasoning robustness.
comment: 10 pages, 5 figures
Mind the Generative Details: Direct Localized Detail Preference Optimization for Video Diffusion Models
Aligning text-to-video diffusion models with human preferences is crucial for generating high-quality videos. Existing Direct Preference Otimization (DPO) methods rely on multi-sample ranking and task-specific critic models, which is inefficient and often yields ambiguous global supervision. To address these limitations, we propose LocalDPO, a novel post-training framework that constructs localized preference pairs from real videos and optimizes alignment at the spatio-temporal region level. We design an automated pipeline to efficiently collect preference pair data that generates preference pairs with a single inference per prompt, eliminating the need for external critic models or manual annotation. Specifically, we treat high-quality real videos as positive samples and generate corresponding negatives by locally corrupting them with random spatio-temporal masks and restoring only the masked regions using the frozen base model. During training, we introduce a region-aware DPO loss that restricts preference learning to corrupted areas for rapid convergence. Experiments on Wan2.1 and CogVideoX demonstrate that LocalDPO consistently improves video fidelity, temporal coherence and human preference scores over other post-training approaches, establishing a more efficient and fine-grained paradigm for video generator alignment.
comment: Under Review
ComfySearch: Autonomous Exploration and Reasoning for ComfyUI Workflows
AI-generated content has progressed from monolithic models to modular workflows, especially on platforms like ComfyUI, allowing users to customize complex creative pipelines. However, the large number of components in ComfyUI and the difficulty of maintaining long-horizon structural consistency under strict graph constraints frequently lead to low pass rates and workflows of limited quality. To tackle these limitations, we present ComfySearch, an agentic framework that can effectively explore the component space and generate functional ComfyUI pipelines via validation-guided workflow construction. Experiments demonstrate that ComfySearch substantially outperforms existing methods on complex and creative tasks, achieving higher executability (pass) rates, higher solution rates, and stronger generalization.
MobileDreamer: Generative Sketch World Model for GUI Agent
Mobile GUI agents have shown strong potential in real-world automation and practical applications. However, most existing agents remain reactive, making decisions mainly from current screen, which limits their performance on long-horizon tasks. Building a world model from repeated interactions enables forecasting action outcomes and supports better decision making for mobile GUI agents. This is challenging because the model must predict post-action states with spatial awareness while remaining efficient enough for practical deployment. In this paper, we propose MobileDreamer, an efficient world-model-based lookahead framework to equip the GUI agents based on the future imagination provided by the world model. It consists of textual sketch world model and rollout imagination for GUI agent. Textual sketch world model forecasts post-action states through a learning process to transform digital images into key task-related sketches, and designs a novel order-invariant learning strategy to preserve the spatial information of GUI elements. The rollout imagination strategy for GUI agent optimizes the action-selection process by leveraging the prediction capability of world model. Experiments on Android World show that MobileDreamer achieves state-of-the-art performance and improves task success by 5.25%. World model evaluations further verify that our textual sketch modeling accurately forecasts key GUI elements.
HoneyTrap: Deceiving Large Language Model Attackers to Honeypot Traps with Resilient Multi-Agent Defense
Jailbreak attacks pose significant threats to large language models (LLMs), enabling attackers to bypass safeguards. However, existing reactive defense approaches struggle to keep up with the rapidly evolving multi-turn jailbreaks, where attackers continuously deepen their attacks to exploit vulnerabilities. To address this critical challenge, we propose HoneyTrap, a novel deceptive LLM defense framework leveraging collaborative defenders to counter jailbreak attacks. It integrates four defensive agents, Threat Interceptor, Misdirection Controller, Forensic Tracker, and System Harmonizer, each performing a specialized security role and collaborating to complete a deceptive defense. To ensure a comprehensive evaluation, we introduce MTJ-Pro, a challenging multi-turn progressive jailbreak dataset that combines seven advanced jailbreak strategies designed to gradually deepen attack strategies across multi-turn attacks. Besides, we present two novel metrics: Mislead Success Rate (MSR) and Attack Resource Consumption (ARC), which provide more nuanced assessments of deceptive defense beyond conventional measures. Experimental results on GPT-4, GPT-3.5-turbo, Gemini-1.5-pro, and LLaMa-3.1 demonstrate that HoneyTrap achieves an average reduction of 68.77% in attack success rates compared to state-of-the-art baselines. Notably, even in a dedicated adaptive attacker setting with intensified conditions, HoneyTrap remains resilient, leveraging deceptive engagement to prolong interactions, significantly increasing the time and computational costs required for successful exploitation. Unlike simple rejection, HoneyTrap strategically wastes attacker resources without impacting benign queries, improving MSR and ARC by 118.11% and 149.16%, respectively.
A Scheduling Framework for Efficient MoE Inference on Edge GPU-NDP Systems
Mixture-of-Experts (MoE) models facilitate edge deployment by decoupling model capacity from active computation, yet their large memory footprint drives the need for GPU systems with near-data processing (NDP) capabilities that offload experts to dedicated processing units. However, deploying MoE models on such edge-based GPU-NDP systems faces three critical challenges: 1) severe load imbalance across NDP units due to non-uniform expert selection and expert parallelism, 2) insufficient GPU utilization during expert computation within NDP units, and 3) extensive data pre-profiling necessitated by unpredictable expert activation patterns for pre-fetching. To address these challenges, this paper proposes an efficient inference framework featuring three key optimizations. First, the underexplored tensor parallelism in MoE inference is exploited to partition and compute large expert parameters across multiple NDP units simultaneously towards edge low-batch scenarios. Second, a load-balancing-aware scheduling algorithm distributes expert computations across NDP units and GPU to maximize resource utilization. Third, a dataset-free pre-fetching strategy proactively loads frequently accessed experts to minimize activation delays. Experimental results show that our framework enables GPU-NDP systems to achieve 2.41x on average and up to 2.56x speedup in end-to-end latency compared to state-of-the-art approaches, significantly enhancing MoE inference efficiency in resource-constrained environments.
comment: To appear in 2026 Design, Automation and Test in Europe Conference (DATE 2026)
Anti-Length Shift: Dynamic Outlier Truncation for Training Efficient Reasoning Models
Large reasoning models enhanced by reinforcement learning with verifiable rewards have achieved significant performance gains by extending their chain-of-thought. However, this paradigm incurs substantial deployment costs as models often exhibit excessive verbosity on simple queries. Existing efficient reasoning methods relying on explicit length penalties often introduce optimization conflicts and leave the generative mechanisms driving overthinking largely unexamined. In this paper, we identify a phenomenon termed length shift where models increasingly generate unnecessary reasoning on trivial inputs during training. To address this, we introduce Dynamic Outlier Truncation (DOT), a training-time intervention that selectively suppresses redundant tokens. This method targets only the extreme tail of response lengths within fully correct rollout groups while preserving long-horizon reasoning capabilities for complex problems. To complement this intervention and ensure stable convergence, we further incorporate auxiliary KL regularization and predictive dynamic sampling. Experimental results across multiple model scales demonstrate that our approach significantly pushes the efficiency-performance Pareto frontier outward. Notably, on the AIME-24, our method reduces inference token usage by 78% while simultaneously increasing accuracy compared to the initial policy and surpassing state-of-the-art efficient reasoning methods.
Trade-R1: Bridging Verifiable Rewards to Stochastic Environments via Process-Level Reasoning Verification
Reinforcement Learning (RL) has enabled Large Language Models (LLMs) to achieve remarkable reasoning in domains like mathematics and coding, where verifiable rewards provide clear signals. However, extending this paradigm to financial decision is challenged by the market's stochastic nature: rewards are verifiable but inherently noisy, causing standard RL to degenerate into reward hacking. To address this, we propose Trade-R1, a model training framework that bridges verifiable rewards to stochastic environments via process-level reasoning verification. Our key innovation is a verification method that transforms the problem of evaluating reasoning over lengthy financial documents into a structured Retrieval-Augmented Generation (RAG) task. We construct a triangular consistency metric, assessing pairwise alignment between retrieved evidence, reasoning chains, and decisions to serve as a validity filter for noisy market returns. We explore two reward integration strategies: Fixed-effect Semantic Reward (FSR) for stable alignment signals, and Dynamic-effect Semantic Reward (DSR) for coupled magnitude optimization. Experiments on different country asset selection demonstrate that our paradigm reduces reward hacking, with DSR achieving superior cross-market generalization while maintaining the highest reasoning consistency.
Large-Scale Aspect-Based Sentiment Analysis with Reasoning-Infused LLMs
We introduce Arctic-ABSA, a collection of powerful models for real-life aspect-based sentiment analysis (ABSA). Our models are tailored to commercial needs, trained on a large corpus of public data alongside carefully generated synthetic data, resulting in a dataset 20 times larger than SemEval14. We extend typical ABSA models by expanding the number of sentiment classes from the standard three (positive, negative, neutral) to five, adding mixed and unknown classes, while also jointly predicting overall text sentiment and supporting multiple languages. We experiment with reasoning injection by fine-tuning on Chain-of-Thought (CoT) examples and introduce a novel reasoning pretraining technique for encoder-only models that significantly improves downstream fine-tuning and generalization. Our 395M-parameter encoder and 8B-parameter decoder achieve up to 10 percentage points higher accuracy than GPT-4o and Claude 3.5 Sonnet, while setting new state-of-the-art results on the SemEval14 benchmark. A single multilingual model maintains 87-91% accuracy across six languages without degrading English performance. We release ABSA-mix, a large-scale benchmark aggregating 17 public ABSA datasets across 92 domains.
FOREVER: Forgetting Curve-Inspired Memory Replay for Language Model Continual Learning
Continual learning (CL) for large language models (LLMs) aims to enable sequential knowledge acquisition without catastrophic forgetting. Memory replay methods are widely used for their practicality and effectiveness, but most rely on fixed, step-based heuristics that often misalign with the model's actual learning progress, since identical training steps can result in varying degrees of parameter change. Motivated by recent findings that LLM forgetting mirrors the Ebbinghaus human forgetting curve, we propose FOREVER (FORgEtting curVe-inspired mEmory Replay), a novel CL framework that aligns replay schedules with a model-centric notion of time. FOREVER defines model time using the magnitude of optimizer updates, allowing forgetting curve-inspired replay intervals to align with the model's internal evolution rather than raw training steps. Building on this approach, FOREVER incorporates a forgetting curve-based replay scheduler to determine when to replay and an intensity-aware regularization mechanism to adaptively control how to replay. Extensive experiments on three CL benchmarks and models ranging from 0.6B to 13B parameters demonstrate that FOREVER consistently mitigates catastrophic forgetting.
Bayes-PD: Exploring a Sequence to Binding Bayesian Neural Network model trained on Phage Display data
Phage display is a powerful laboratory technique used to study the interactions between proteins and other molecules, whether other proteins, peptides, DNA or RNA. The under-utilisation of this data in conjunction with deep learning models for protein design may be attributed to; high experimental noise levels; the complex nature of data pre-processing; and difficulty interpreting these experimental results. In this work, we propose a novel approach utilising a Bayesian Neural Network within a training loop, in order to simulate the phage display experiment and its associated noise. Our goal is to investigate how understanding the experimental noise and model uncertainty can enable the reliable application of such models to reliably interpret phage display experiments. We validate our approach using actual binding affinity measurements instead of relying solely on proxy values derived from 'held-out' phage display rounds.
FocusUI: Efficient UI Grounding via Position-Preserving Visual Token Selection
Vision-Language Models (VLMs) have shown remarkable performance in User Interface (UI) grounding tasks, driven by their ability to process increasingly high-resolution screenshots. However, screenshots are tokenized into thousands of visual tokens (e.g., about 4700 for 2K resolution), incurring significant computational overhead and diluting attention. In contrast, humans typically focus on regions of interest when interacting with UI. In this work, we pioneer the task of efficient UI grounding. Guided by practical analysis of the task's characteristics and challenges, we propose FocusUI, an efficient UI grounding framework that selects patches most relevant to the instruction while preserving positional continuity for precise grounding. FocusUI addresses two key challenges: (1) Eliminating redundant tokens in visual encoding. We construct patch-level supervision by fusing an instruction-conditioned score with a rule-based UI-graph score that down-weights large homogeneous regions to select distinct and instruction-relevant visual tokens. (2) Preserving positional continuity during visual token selection. We find that general visual token pruning methods suffer from severe accuracy degradation on UI grounding tasks due to broken positional information. We introduce a novel PosPad strategy, which compresses each contiguous sequence of dropped visual tokens into a single special marker placed at the sequence's last index to preserve positional continuity. Comprehensive experiments on four grounding benchmarks demonstrate that FocusUI surpasses GUI-specific baselines. On the ScreenSpot-Pro benchmark, FocusUI-7B achieves a performance improvement of 3.7% over GUI-Actor-7B. Even with only 30% visual token retention, FocusUI-7B drops by only 3.2% while achieving up to 1.44x faster inference and 17% lower peak GPU memory.
comment: 14 pages, 13 figures
A Gap Between Decision Trees and Neural Networks
We study when geometric simplicity of decision boundaries, used here as a notion of interpretability, can conflict with accurate approximation of axis-aligned decision trees by shallow neural networks. Decision trees induce rule-based, axis-aligned decision regions (finite unions of boxes), whereas shallow ReLU networks are typically trained as score models whose predictions are obtained by thresholding. We analyze the infinite-width, bounded-norm, single-hidden-layer ReLU class through the Radon total variation ($\mathrm{R}\mathrm{TV}$) seminorm, which controls the geometric complexity of level sets. We first show that the hard tree indicator $1_A$ has infinite $\mathrm{R}\mathrm{TV}$. Moreover, two natural split-wise continuous surrogates--piecewise-linear ramp smoothing and sigmoidal (logistic) smoothing--also have infinite $\mathrm{R}\mathrm{TV}$ in dimensions $d>1$, while Gaussian convolution yields finite $\mathrm{R}\mathrm{TV}$ but with an explicit exponential dependence on $d$. We then separate two goals that are often conflated: classification after thresholding (recovering the decision set) versus score learning (learning a calibrated score close to $1_A$). For classification, we construct a smooth barrier score $S_A$ with finite $\mathrm{R}\mathrm{TV}$ whose fixed threshold $τ=1$ exactly recovers the box. Under a mild tube-mass condition near $\partial A$, we prove an $L_1(P)$ calibration bound that decays polynomially in a sharpness parameter, along with an explicit $\mathrm{R}\mathrm{TV}$ upper bound in terms of face measures. Experiments on synthetic unions of rectangles illustrate the resulting accuracy--complexity tradeoff and how threshold selection shifts where training lands along it.
comment: 45 pages
An Algebraic Representation Theorem for Linear GENEOs in Geometric Machine Learning
Geometric and Topological Deep Learning are rapidly growing research areas that enhance machine learning through the use of geometric and topological structures. Within this framework, Group Equivariant Non-Expansive Operators (GENEOs) have emerged as a powerful class of operators for encoding symmetries and designing efficient, interpretable neural architectures. Originally introduced in Topological Data Analysis, GENEOs have since found applications in Deep Learning as tools for constructing equivariant models with reduced parameter complexity. GENEOs provide a unifying framework bridging Geometric and Topological Deep Learning and include the operator computing persistence diagrams as a special case. Their theoretical foundations rely on group actions, equivariance, and compactness properties of operator spaces, grounding them in algebra and geometry while enabling both mathematical rigor and practical relevance. While a previous representation theorem characterized linear GENEOs acting on data of the same type, many real-world applications require operators between heterogeneous data spaces. In this work, we address this limitation by introducing a new representation theorem for linear GENEOs acting between different perception pairs, based on generalized T-permutant measures. Under mild assumptions on the data domains and group actions, our result provides a complete characterization of such operators. We also prove the compactness and convexity of the space of linear GENEOs. We further demonstrate the practical impact of this theory by applying the proposed framework to improve the performance of autoencoders, highlighting the relevance of GENEOs in modern machine learning applications.
Current Agents Fail to Leverage World Model as Tool for Foresight
Agents built on vision-language models increasingly face tasks that demand anticipating future states rather than relying on short-horizon reasoning. Generative world models offer a promising remedy: agents could use them as external simulators to foresee outcomes before acting. This paper empirically examines whether current agents can leverage such world models as tools to enhance their cognition. Across diverse agentic and visual question answering tasks, we observe that some agents rarely invoke simulation (fewer than 1%), frequently misuse predicted rollouts (approximately 15%), and often exhibit inconsistent or even degraded performance (up to 5%) when simulation is available or enforced. Attribution analysis further indicates that the primary bottleneck lies in the agents' capacity to decide when to simulate, how to interpret predicted outcomes, and how to integrate foresight into downstream reasoning. These findings underscore the need for mechanisms that foster calibrated, strategic interaction with world models, paving the way toward more reliable anticipatory cognition in future agent systems.
comment: 36 Pages, 13 Figures, 17 Tables
Adaptive-Boundary-Clipping GRPO: Ensuring Bounded Ratios for Stable and Generalizable Training
Group Relative Policy Optimization (GRPO) has emerged as a popular algorithm for reinforcement learning with large language models (LLMs). However, upon analyzing its clipping mechanism, we argue that it is suboptimal in certain scenarios. With appropriate modifications, GRPO can be significantly enhanced to improve both flexibility and generalization. To this end, we propose Adaptive-Boundary-Clipping GRPO (ABC-GRPO), an asymmetric and adaptive refinement of the original GRPO framework. We demonstrate that ABC-GRPO achieves superior performance over standard GRPO on mathematical reasoning tasks using the Qwen3 LLMs. Moreover, ABC-GRPO maintains substantially higher entropy throughout training, thereby preserving the model's exploration capacity and mitigating premature convergence. The implementation code is available online to ease reproducibility https://github.com/chi2liu/ABC-GRPO.
comment: 10 pages, 4 figures
Spectral Manifold Regularization for Stable and Modular Routing in Deep MoE Architectures
Mixture of Experts (MoE) architectures enable efficient scaling of neural networks but suffer from expert collapse, where routing converges to a few dominant experts. This reduces model capacity and causes catastrophic interference during adaptation. We propose the Spectrally-Regularized Mixture of Experts (SR-MoE), which imposes geometric constraints on the routing manifold to enforce structural modularity. Our method uses dual regularization: spectral norm constraints bound routing function Lipschitz continuity, while stable rank penalties preserve high-dimensional feature diversity in expert selection. We evaluate SR-MoE across architectural scales and dataset complexities using modular one-shot adaptation tasks. Results show that traditional linear gating fails with increasing depth (accuracy drops up to 4.72% due to expert entanglement), while SR-MoE maintains structural integrity (mean interference -0.32%). Our spectral constraints facilitate positive knowledge transfer, enabling localized expert updates without global performance decay. SR-MoE provides a general solution for building high-capacity, modular networks capable of stable lifelong learning.
IndexTTS 2.5 Technical Report
In prior work, we introduced IndexTTS 2, a zero-shot neural text-to-speech foundation model comprising two core components: a transformer-based Text-to-Semantic (T2S) module and a non-autoregressive Semantic-to-Mel (S2M) module, which together enable faithful emotion replication and establish the first autoregressive duration-controllable generative paradigm. Building upon this, we present IndexTTS 2.5, which significantly enhances multilingual coverage, inference speed, and overall synthesis quality through four key improvements: 1) Semantic Codec Compression: we reduce the semantic codec frame rate from 50 Hz to 25 Hz, halving sequence length and substantially lowering both training and inference costs; 2) Architectural Upgrade: we replace the U-DiT-based backbone of the S2M module with a more efficient Zipformer-based modeling architecture, achieving notable parameter reduction and faster mel-spectrogram generation; 3) Multilingual Extension: We propose three explicit cross-lingual modeling strategies, boundary-aware alignment, token-level concatenation, and instruction-guided generation, establishing practical design principles for zero-shot multilingual emotional TTS that supports Chinese, English, Japanese, and Spanish, and enables robust emotion transfer even without target-language emotional training data; 4) Reinforcement Learning Optimization: we apply GRPO in post-training of the T2S module, improving pronunciation accuracy and natrualness. Experiments show that IndexTTS 2.5 not only supports broader language coverage but also replicates emotional prosody in unseen languages under the same zero-shot setting. IndexTTS 2.5 achieves a 2.28 times improvement in RTF while maintaining comparable WER and speaker similarity to IndexTTS 2.
comment: 11 pages, 4 figures
FLNet: Flood-Induced Agriculture Damage Assessment using Super Resolution of Satellite Images
Distributing government relief efforts after a flood is challenging. In India, the crops are widely affected by floods; therefore, making rapid and accurate crop damage assessment is crucial for effective post-disaster agricultural management. Traditional manual surveys are slow and biased, while current satellite-based methods face challenges like cloud cover and low spatial resolution. Therefore, to bridge this gap, this paper introduced FLNet, a novel deep learning based architecture that used super-resolution to enhance the 10 m spatial resolution of Sentinel-2 satellite images into 3 m resolution before classifying damage. We tested our model on the Bihar Flood Impacted Croplands Dataset (BFCD-22), and the results showed an improved critical "Full Damage" F1-score from 0.83 to 0.89, nearly matching the 0.89 score of commercial high-resolution imagery. This work presented a cost-effective and scalable solution, paving the way for a nationwide shift from manual to automated, high-fidelity damage assessment.
comment: Accepted for oral presentation at the 10th International Conference on Computer Vision and Image Processing (CVIP 2025)
Women Worry, Men Adopt: How Gendered Perceptions Shape the Use of Generative AI
Generative artificial intelligence (GenAI) is diffusing rapidly, yet its adoption is strikingly unequal. Using nationally representative UK survey data from 2023 to 2024, we show that women adopt GenAI substantially less often than men because they perceive its societal risks differently. We construct a composite index capturing concerns about mental health, privacy, climate impact, and labor market disruption. This index explains between 9 and 18 percent of the variation in GenAI adoption and ranks among the strongest predictors for women across all age groups, surpassing digital literacy and education for young women. Intersectional analyses show that the largest disparities arise among younger, digitally fluent individuals with high societal risk concerns, where gender gaps in personal use exceed 45 percentage points. Using a synthetic twin panel design, we show that increased optimism about AI's societal impact raises GenAI use among young women from 13 percent to 33 percent, substantially narrowing the gender divide. These findings indicate that gendered perceptions of AI's social and ethical consequences, rather than access or capability, are the primary drivers of unequal GenAI adoption, with implications for productivity, skill formation, and economic inequality in an AI enabled economy.
comment: 16 pages, 6 figures, 1 table
What Matters For Safety Alignment?
This paper presents a comprehensive empirical study on the safety alignment capabilities. We evaluate what matters for safety alignment in LLMs and LRMs to provide essential insights for developing more secure and reliable AI systems. We systematically investigate and compare the influence of six critical intrinsic model characteristics and three external attack techniques. Our large-scale evaluation is conducted using 32 recent, popular LLMs and LRMs across thirteen distinct model families, spanning a parameter scale from 3B to 235B. The assessment leverages five established safety datasets and probes model vulnerabilities with 56 jailbreak techniques and four CoT attack strategies, resulting in 4.6M API calls. Our key empirical findings are fourfold. First, we identify the LRMs GPT-OSS-20B, Qwen3-Next-80B-A3B-Thinking, and GPT-OSS-120B as the top-three safest models, which substantiates the significant advantage of integrated reasoning and self-reflection mechanisms for robust safety alignment. Second, post-training and knowledge distillation may lead to a systematic degradation of safety alignment. We thus argue that safety must be treated as an explicit constraint or a core optimization objective during these stages, not merely subordinated to the pursuit of general capability. Third, we reveal a pronounced vulnerability: employing a CoT attack via a response prefix can elevate the attack success rate by 3.34x on average and from 0.6% to 96.3% for Seed-OSS-36B-Instruct. This critical finding underscores the safety risks inherent in text-completion interfaces and features that allow user-defined response prefixes in LLM services, highlighting an urgent need for architectural and deployment safeguards. Fourth, roleplay, prompt injection, and gradient-based search for adversarial prompts are the predominant methodologies for eliciting unaligned behaviors in modern models.
Investigating the Grounding Bottleneck for a Large-Scale Configuration Problem: Existing Tools and Constraint-Aware Guessing
Answer set programming (ASP) aims to realize the AI vision: The user specifies the problem, and the computer solves it. Indeed, ASP has made this vision true in many application domains. However, will current ASP solving techniques scale up for large configuration problems? As a benchmark for such problems, we investigated the configuration of electronic systems, which may comprise more than 30,000 components. We show the potential and limits of current ASP technology, focusing on methods that address the so-called grounding bottleneck, i.e., the sharp increase of memory demands in the size of the problem instances. To push the limits, we investigated the incremental solving approach, which proved effective in practice. However, even in the incremental approach, memory demands impose significant limits. Based on an analysis of grounding, we developed the method constraint-aware guessing, which significantly reduced the memory need.
comment: In Proceedings ICLP 2025, arXiv:2601.00047
Implementing the First-Order Logic of Here and There
We present automated theorem provers for the first-order logic of here and there (HT). They are based on a native sequent calculus for the logic of HT and an axiomatic embedding of the logic of HT into intuitionistic logic. The analytic proof search in the sequent calculus is optimized by using free variables and skolemization. The embedding is used in combination with sequent, tableau and connection calculi for intuitionistic first-order logic. All provers are evaluated on a large benchmark set of first-order formulas, providing a foundation for the development of more efficient HT provers.
comment: In Proceedings ICLP 2025, arXiv:2601.00047
xDNN(ASP): Explanation Generation System for Deep Neural Networks powered by Answer Set Programming
Explainable artificial intelligence (xAI) has gained significant attention in recent years. Among other things, explainablility for deep neural networks has been a topic of intensive research due to the meteoric rise in prominence of deep neural networks and their "black-box" nature. xAI approaches can be characterized along different dimensions such as their scope (global versus local explanations) or underlying methodologies (statistic-based versus rule-based strategies). Methods generating global explanations aim to provide reasoning process applicable to all possible output classes while local explanation methods focus only on a single, specific class. SHAP (SHapley Additive exPlanations), a well-known statistical technique, identifies important features of a network. Deep neural network rule extraction method constructs IF-THEN rules that link input conditions to a class. Another approach focuses on generating counterfactuals which help explain how small changes to an input can affect the model's predictions. However, these techniques primarily focus on the input-output relationship and thus neglect the structure of the network in explanation generation. In this work, we propose xDNN(ASP), an explanation generation system for deep neural networks that provides global explanations. Given a neural network model and its training data, xDNN(ASP) extracts a logic program under answer set semantics that-in the ideal case-represents the trained model, i.e., answer sets of the extracted program correspond one-to-one to input-output pairs of the network. We demonstrate experimentally, using two synthetic datasets, that not only the extracted logic program maintains a high-level of accuracy in the prediction task, but it also provides valuable information for the understanding of the model such as the importance of features as well as the impact of hidden nodes on the prediction. The latter can be used as a guide for reducing the number of nodes used in hidden layers, i.e., providing a means for optimizing the network.
comment: In Proceedings ICLP 2025, arXiv:2601.00047
When Numbers Start Talking: Implicit Numerical Coordination Among LLM-Based Agents
LLMs-based agents increasingly operate in multi-agent environments where strategic interaction and coordination are required. While existing work has largely focused on individual agents or on interacting agents sharing explicit communication, less is known about how interacting agents coordinate implicitly. In particular, agents may engage in covert communication, relying on indirect or non-linguistic signals embedded in their actions rather than on explicit messages. This paper presents a game-theoretic study of covert communication in LLM-driven multi-agent systems. We analyse interactions across four canonical game-theoretic settings under different communication regimes, including explicit, restricted, and absent communication. Considering heterogeneous agent personalities and both one-shot and repeated games, we characterise when covert signals emerge and how they shape coordination and strategic outcomes.
Formally Explaining Decision Tree Models with Answer Set Programming
Decision tree models, including random forests and gradient-boosted decision trees, are widely used in machine learning due to their high predictive performance. However, their complex structures often make them difficult to interpret, especially in safety-critical applications where model decisions require formal justification. Recent work has demonstrated that logical and abductive explanations can be derived through automated reasoning techniques. In this paper, we propose a method for generating various types of explanations, namely, sufficient, contrastive, majority, and tree-specific explanations, using Answer Set Programming (ASP). Compared to SAT-based approaches, our ASP-based method offers greater flexibility in encoding user preferences and supports enumeration of all possible explanations. We empirically evaluate the approach on a diverse set of datasets and demonstrate its effectiveness and limitations compared to existing methods.
comment: In Proceedings ICLP 2025, arXiv:2601.00047
XAI-LAW: A Logic Programming Tool for Modeling, Explaining, and Learning Legal Decisions
We propose an approach to model articles of the Italian Criminal Code (ICC), using Answer Set Programming (ASP), and to semi-automatically learn legal rules from examples based on prior judicial decisions. The developed tool is intended to support legal experts during the criminal trial phase by providing reasoning and possible legal outcomes. The methodology involves analyzing and encoding articles of the ICC in ASP, including "crimes against the person" and property offenses. The resulting model is validated on a set of previous verdicts and refined as necessary. During the encoding process, contradictions may arise; these are properly handled by the system, which also generates possible decisions for new cases and provides explanations through a tool that leverages the "supportedness" of stable models. The automatic explainability offered by the tool can also be used to clarify the logic behind judicial decisions, making the decision-making process more interpretable. Furthermore, the tool integrates an inductive logic programming system for ASP, which is employed to generalize legal rules from case examples.
comment: In Proceedings ICLP 2025, arXiv:2601.00047
On the Trap Space Semantics of Normal Logic Programs
The logical semantics of normal logic programs has traditionally been based on the notions of Clark's completion and two-valued or three-valued canonical models, including supported, stable, regular, and well-founded models. Two-valued interpretations can also be seen as states evolving under a program's update operator, producing a transition graph whose fixed points and cycles capture stable and oscillatory behaviors, respectively. We refer to this view as dynamical semantics since it characterizes the program's meaning in terms of state-space trajectories, as first introduced in the stable (supported) class semantics. Recently, we have established a formal connection between Datalog^\neg programs (i.e., normal logic programs without function symbols) and Boolean networks, leading to the introduction of the trap space concept for Datalog^\neg programs. In this paper, we generalize the trap space concept to arbitrary normal logic programs, introducing trap space semantics as a new approach to their interpretation. This new semantics admits both model-theoretic and dynamical characterizations, providing a comprehensive approach to understanding program behavior. We establish the foundational properties of the trap space semantics and systematically relate it to the established model-theoretic semantics, including the stable (supported), stable (supported) partial, regular, and L-stable model semantics, as well as to the dynamical stable (supported) class semantics. Our results demonstrate that the trap space semantics offers a unified and precise framework for proving the existence of supported classes, strict stable (supported) classes, and regular models, in addition to uncovering and formalizing deeper relationships among the existing semantics of normal logic programs.
comment: In Proceedings ICLP 2025, arXiv:2601.00047
Defeasible Conditionals using Answer Set Programming
Defeasible entailment is concerned with drawing plausible conclusions from incomplete information. A foundational framework for modelling defeasible entailment is the KLM framework. Introduced by Kraus, Lehmann, and Magidor, the KLM framework outlines several key properties for defeasible entailment. One of the most prominent algorithms within this framework is Rational Closure (RC). This paper presents a declarative definition for computing RC using Answer Set Programming (ASP). Our approach enables the automatic construction of the minimal ranked model from a given knowledge base and supports entailment checking for specified queries. We formally prove the correctness of our ASP encoding and conduct empirical evaluations to compare the performance of our implementation with that of existing imperative implementations, specifically the InfOCF solver. The results demonstrate that our ASP-based approach adheres to RC's theoretical foundations and offers improved computational efficiency.
comment: In Proceedings ICLP 2025, arXiv:2601.00047
Logic Tensor Network-Enhanced Generative Adversarial Network
In this paper, we introduce Logic Tensor Network-Enhanced Generative Adversarial Network (LTN-GAN), a novel framework that enhances Generative Adversarial Networks (GANs) by incorporating Logic Tensor Networks (LTNs) to enforce domain-specific logical constraints during the sample generation process. Although GANs have shown remarkable success in generating realistic data, they often lack mechanisms to incorporate prior knowledge or enforce logical consistency, limiting their applicability in domains requiring rule adherence. LTNs provide a principled way to integrate first-order logic with neural networks, enabling models to reason over and satisfy logical constraints. By combining the strengths of GANs for realistic data synthesis with LTNs for logical reasoning, we gain valuable insights into how logical constraints influence the generative process while improving both the diversity and logical consistency of the generated samples. We evaluate LTN-GAN across multiple datasets, including synthetic datasets (gaussian, grid, rings) and the MNIST dataset, demonstrating that our model significantly outperforms traditional GANs in terms of adherence to predefined logical constraints while maintaining the quality and diversity of generated samples. This work highlights the potential of neuro-symbolic approaches to enhance generative modeling in knowledge-intensive domains.
comment: In Proceedings ICLP 2025, arXiv:2601.00047
IDESplat: Iterative Depth Probability Estimation for Generalizable 3D Gaussian Splatting
Generalizable 3D Gaussian Splatting aims to directly predict Gaussian parameters using a feed-forward network for scene reconstruction. Among these parameters, Gaussian means are particularly difficult to predict, so depth is usually estimated first and then unprojected to obtain the Gaussian sphere centers. Existing methods typically rely solely on a single warp to estimate depth probability, which hinders their ability to fully leverage cross-view geometric cues, resulting in unstable and coarse depth maps. To address this limitation, we propose IDESplat, which iteratively applies warp operations to boost depth probability estimation for accurate Gaussian mean prediction. First, to eliminate the inherent instability of a single warp, we introduce a Depth Probability Boosting Unit (DPBU) that integrates epipolar attention maps produced by cascading warp operations in a multiplicative manner. Next, we construct an iterative depth estimation process by stacking multiple DPBUs, progressively identifying potential depth candidates with high likelihood. As IDESplat iteratively boosts depth probability estimates and updates the depth candidates, the depth map is gradually refined, resulting in accurate Gaussian means. We conduct experiments on RealEstate10K, ACID, and DL3DV. IDESplat achieves outstanding reconstruction quality and state-of-the-art performance with real-time efficiency. On RE10K, it outperforms DepthSplat by 0.33 dB in PSNR, using only 10.7% of the parameters and 70% of the memory. Additionally, our IDESplat improves PSNR by 2.95 dB over DepthSplat on the DTU dataset in cross-dataset experiments, demonstrating its strong generalization ability.
ROI-Reasoning: Rational Optimization for Inference via Pre-Computation Meta-Cognition
Large language models (LLMs) can achieve strong reasoning performance with sufficient computation, but they do not inherently know how much computation a task requires. We study budgeted inference-time reasoning for multiple tasks under a strict global token constraint and formalize it as a Ordered Stochastic Multiple-Choice Knapsack Problem(OS-MCKP). This perspective highlights a meta-cognitive requirement -- anticipating task difficulty, estimating return over investment (ROI), and allocating computation strategically. We propose ROI-Reasoning, a two-stage framework that endows LLMs with intrinsic, budget-aware rationality. In the first stage, Meta-Cognitive Fine-Tuning teaches models to predict reasoning cost and expected utility before generation, enabling explicit solve-or-skip decisions. Next, Rationality-Aware Reinforcement Learning optimizes sequential decision making under a hard token budget, allowing models to learn long-horizon allocation strategies. Across budgeted mathematical reasoning benchmarks, ROI-Reasoning consistently improves overall score while substantially reducing regret under tight computation budgets.
AI Generated Text Detection
The rapid development of large language models has led to an increase in AI-generated text, with students increasingly using LLM-generated content as their own work, which violates academic integrity. This paper presents an evaluation of AI text detection methods, including both traditional machine learning models and transformer-based architectures. We utilize two datasets, HC3 and DAIGT v2, to build a unified benchmark and apply a topic-based data split to prevent information leakage. This approach ensures robust generalization across unseen domains. Our experiments show that TF-IDF logistic regression achieves a reasonable baseline accuracy of 82.87%. However, deep learning models outperform it. The BiLSTM classifier achieves an accuracy of 88.86%, while DistilBERT achieves a similar accuracy of 88.11% with the highest ROC-AUC score of 0.96, demonstrating the strongest overall performance. The results indicate that contextual semantic modeling is significantly superior to lexical features and highlight the importance of mitigating topic memorization through appropriate evaluation protocols. The limitations of this work are primarily related to dataset diversity and computational constraints. In future work, we plan to expand dataset diversity and utilize parameter-efficient fine-tuning methods such as LoRA. We also plan to explore smaller or distilled models and employ more efficient batching strategies and hardware-aware optimization.
Where meaning lives: Layer-wise accessibility of psycholinguistic features in encoder and decoder language models
Understanding where transformer language models encode psychologically meaningful aspects of meaning is essential for both theory and practice. We conduct a systematic layer-wise probing study of 58 psycholinguistic features across 10 transformer models, spanning encoder-only and decoder-only architectures, and compare three embedding extraction methods. We find that apparent localization of meaning is strongly method-dependent: contextualized embeddings yield higher feature-specific selectivity and different layer-wise profiles than isolated embeddings. Across models and methods, final-layer representations are rarely optimal for recovering psycholinguistic information with linear probes. Despite these differences, models exhibit a shared depth ordering of meaning dimensions, with lexical properties peaking earlier and experiential and affective dimensions peaking later. Together, these results show that where meaning "lives" in transformer models reflects an interaction between methodological choices and architectural constraints.
An Algorithmic Framework for Systematic Literature Reviews: A Case Study for Financial Narratives
This paper introduces an algorithmic framework for conducting systematic literature reviews (SLRs), designed to improve efficiency, reproducibility, and selection quality assessment in the literature review process. The proposed method integrates Natural Language Processing (NLP) techniques, clustering algorithms, and interpretability tools to automate and structure the selection and analysis of academic publications. The framework is applied to a case study focused on financial narratives, an emerging area in financial economics that examines how structured accounts of economic events, formed by the convergence of individual interpretations, influence market dynamics and asset prices. Drawing from the Scopus database of peer-reviewed literature, the review highlights research efforts to model financial narratives using various NLP techniques. Results reveal that while advances have been made, the conceptualization of financial narratives remains fragmented, often reduced to sentiment analysis, topic modeling, or their combination, without a unified theoretical framework. The findings underscore the value of more rigorous and dynamic narrative modeling approaches and demonstrate the effectiveness of the proposed algorithmic SLR methodology.
Do LLMs Really Memorize Personally Identifiable Information? Revisiting PII Leakage with a Cue-Controlled Memorization Framework
Large Language Models (LLMs) have been reported to "leak" Personally Identifiable Information (PII), with successful PII reconstruction often interpreted as evidence of memorization. We propose a principled revision of memorization evaluation for LLMs, arguing that PII leakage should be evaluated under low lexical cue conditions, where target PII cannot be reconstructed through prompt-induced generalization or pattern completion. We formalize Cue-Resistant Memorization (CRM) as a cue-controlled evaluation framework and a necessary condition for valid memorization evaluation, explicitly conditioning on prompt-target overlap cues. Using CRM, we conduct a large-scale multilingual re-evaluation of PII leakage across 32 languages and multiple memorization paradigms. Revisiting reconstruction-based settings, including verbatim prefix-suffix completion and associative reconstruction, we find that their apparent effectiveness is driven primarily by direct surface-form cues rather than by true memorization. When such cues are controlled for, reconstruction success diminishes substantially. We further examine cue-free generation and membership inference, both of which exhibit extremely low true positive rates. Overall, our results suggest that previously reported PII leakage is better explained by cue-driven behavior than by genuine memorization, highlighting the importance of cue-controlled evaluation for reliably quantifying privacy-relevant memorization in LLMs.
comment: 20 pages, 13 figures
NeoAMT: Neologism-Aware Agentic Machine Translation with Reinforcement Learning
Neologism-aware machine translation aims to translate source sentences containing neologisms into target languages. This field remains underexplored compared with general machine translation (MT). In this paper, we propose an agentic framework, NeoAMT, for neologism-aware machine translation using a Wiktionary search tool. Specifically, we first create a new dataset for neologism-aware machine translation and develop a search tool based on Wiktionary. The new dataset covers 16 languages and 75 translation directions and is derived from approximately 10 million records of an English Wiktionary dump. The retrieval corpus of the search tool is also constructed from around 3 million cleaned records of the Wiktionary dump. We then use it for training the translation agent with reinforcement learning (RL) and evaluating the accuracy of neologism-aware machine translation. Based on this, we also propose an RL training framework that contains a novel reward design and an adaptive rollout generation approach by leveraging "translation difficulty" to further improve the translation quality of translation agents using our search tool.
Criminal Liability of Generative Artificial Intelligence Providers for User-Generated Child Sexual Abuse Material
The development of more powerful Generative Artificial Intelligence (GenAI) has expanded its capabilities and the variety of outputs. This has introduced significant legal challenges, including gray areas in various legal systems, such as the assessment of criminal liability for those responsible for these models. Therefore, we conducted a multidisciplinary study utilizing the statutory interpretation of relevant German laws, which, in conjunction with scenarios, provides a perspective on the different properties of GenAI in the context of Child Sexual Abuse Material (CSAM) generation. We found that generating CSAM with GenAI may have criminal and legal consequences not only for the user committing the primary offense but also for individuals responsible for the models, such as independent software developers, researchers, and company representatives. Additionally, the assessment of criminal liability may be affected by contextual and technical factors, including the type of generated image, content moderation policies, and the model's intended purpose. Based on our findings, we discussed the implications for different roles, as well as the requirements when developing such systems.
comment: Accepted at the International Conference on AI Engineering
Membox: Weaving Topic Continuity into Long-Range Memory for LLM Agents
Human-agent dialogues often exhibit topic continuity-a stable thematic frame that evolves through temporally adjacent exchanges-yet most large language model (LLM) agent memory systems fail to preserve it. Existing designs follow a fragmentation-compensation paradigm: they first break dialogue streams into isolated utterances for storage, then attempt to restore coherence via embedding-based retrieval. This process irreversibly damages narrative and causal flow, while biasing retrieval towards lexical similarity. We introduce membox, a hierarchical memory architecture centered on a Topic Loom that continuously monitors dialogue in a sliding-window fashion, grouping consecutive same-topic turns into coherent "memory boxes" at storage time. Sealed boxes are then linked by a Trace Weaver into long-range event-timeline traces, recovering macro-topic recurrences across discontinuities. Experiments on LoCoMo demonstrate that Membox achieves up to 68% F1 improvement on temporal reasoning tasks, outperforming competitive baselines (e.g., Mem0, A-MEM). Notably, Membox attains these gains while using only a fraction of the context tokens required by existing methods, highlighting a superior balance between efficiency and effectiveness. By explicitly modeling topic continuity, Membox offers a cognitively motivated mechanism for enhancing both coherence and efficiency in LLM agents.
PointWorld: Scaling 3D World Models for In-The-Wild Robotic Manipulation
Humans anticipate, from a glance and a contemplated action of their bodies, how the 3D world will respond, a capability that is equally vital for robotic manipulation. We introduce PointWorld, a large pre-trained 3D world model that unifies state and action in a shared 3D space as 3D point flows: given one or few RGB-D images and a sequence of low-level robot action commands, PointWorld forecasts per-pixel displacements in 3D that respond to the given actions. By representing actions as 3D point flows instead of embodiment-specific action spaces (e.g., joint positions), this formulation directly conditions on physical geometries of robots while seamlessly integrating learning across embodiments. To train our 3D world model, we curate a large-scale dataset spanning real and simulated robotic manipulation in open-world environments, enabled by recent advances in 3D vision and simulated environments, totaling about 2M trajectories and 500 hours across a single-arm Franka and a bimanual humanoid. Through rigorous, large-scale empirical studies of backbones, action representations, learning objectives, partial observability, data mixtures, domain transfers, and scaling, we distill design principles for large-scale 3D world modeling. With a real-time (0.1s) inference speed, PointWorld can be efficiently integrated in the model-predictive control (MPC) framework for manipulation. We demonstrate that a single pre-trained checkpoint enables a real-world Franka robot to perform rigid-body pushing, deformable and articulated object manipulation, and tool use, without requiring any demonstrations or post-training and all from a single image captured in-the-wild. Project website at https://point-world.github.io/.
Scalable Machine Learning Force Fields for Macromolecular Systems Through Long-Range Aware Message Passing
Machine learning force fields (MLFFs) have revolutionized molecular simulations by providing quantum mechanical accuracy at the speed of molecular mechanical computations. However, a fundamental reliance of these models on fixed-cutoff architectures limits their applicability to macromolecular systems where long-range interactions dominate. We demonstrate that this locality constraint causes force prediction errors to scale monotonically with system size, revealing a critical architectural bottleneck. To overcome this, we establish the systematically designed MolLR25 ({Mol}ecules with {L}ong-{R}ange effect) benchmark up to 1200 atoms, generated using high-fidelity DFT, and introduce E2Former-LSR, an equivariant transformer that explicitly integrates long-range attention blocks. E2Former-LSR exhibits stable error scaling, achieves superior fidelity in capturing non-covalent decay, and maintains precision on complex protein conformations. Crucially, its efficient design provides up to 30% speedup compared to purely local models. This work validates the necessity of non-local architectures for generalizable MLFFs, enabling high-fidelity molecular dynamics for large-scale chemical and biological systems.
EntroCoT: Enhancing Chain-of-Thought via Adaptive Entropy-Guided Segmentation
Chain-of-Thought (CoT) prompting has significantly enhanced the mathematical reasoning capabilities of Large Language Models. We find existing fine-tuning datasets frequently suffer from the "answer right but reasoning wrong" probelm, where correct final answers are derived from hallucinated, redundant, or logically invalid intermediate steps. This paper proposes EntroCoT, a unified framework for automatically identifying and refining low-quality CoT supervision traces. EntroCoT first proposes an entropy-based mechanism to segment the reasoning trace into multiple steps at uncertain junctures, and then introduces a Monte Carlo rollout-based mechanism to evaluate the marginal contribution of each step. By accurately filtering deceptive reasoning samples, EntroCoT constructs a high-quality dataset where every intermediate step in each reasoning trace facilitates the final answer. Extensive experiments on mathematical benchmarks demonstrate that fine-tuning on the subset constructed by EntroCoT consistently outperforms the baseslines of full-dataset supervision.
Learning Shrinks the Hard Tail: Training-Dependent Inference Scaling in a Solvable Linear Model
We analyze neural scaling laws in a solvable model of last-layer fine-tuning where targets have intrinsic, instance-heterogeneous difficulty. In our Latent Instance Difficulty (LID) model, each input's target variance is governed by a latent ``precision'' drawn from a heavy-tailed distribution. While generalization loss recovers standard scaling laws, our main contribution connects this to inference. The pass@$k$ failure rate exhibits a power-law decay, $k^{-β_\text{eff}}$, but the observed exponent $β_\text{eff}$ is training-dependent. It grows with sample size $N$ before saturating at an intrinsic limit $β$ set by the difficulty distribution's tail. This coupling reveals that learning shrinks the ``hard tail'' of the error distribution: improvements in the model's generalization error steepen the pass@$k$ curve until irreducible target variance dominates. The LID model yields testable, closed-form predictions for this behavior, including a compute-allocation rule that favors training before saturation and inference attempts after. We validate these predictions in simulations and in two real-data proxies: CIFAR-10H (human-label variance) and a maths teacher-student distillation task.
comment: 10 pages
Evaluation of Multilingual LLMs Personalized Text Generation Capabilities Targeting Groups and Social-Media Platforms
Capabilities of large language models to generate multilingual coherent text have continuously enhanced in recent years, which opens concerns about their potential misuse. Previous research has shown that they can be misused for generation of personalized disinformation in multiple languages. It has also been observed that personalization negatively affects detectability of machine-generated texts; however, this has been studied in the English language only. In this work, we examine this phenomenon across 10 languages, while we focus not only on potential misuse of personalization capabilities, but also on potential benefits they offer. Overall, we cover 1080 combinations of various personalization aspects in the prompts, for which the texts are generated by 16 distinct language models (17,280 texts in total). Our results indicate that there are differences in personalization quality of the generated texts when targeting demographic groups and when targeting social-media platforms across languages. Personalization towards platforms affects detectability of the generated texts in a higher scale, especially in English, where the personalization quality is the highest.
Bridging OLAP and RAG: A Multidimensional Approach to the Design of Corpus Partitioning
Retrieval-Augmented Generation (RAG) systems are increasingly deployed on large-scale document collections, often comprising millions of documents and tens of millions of text chunks. In industrial-scale retrieval platforms, scalability is typically addressed through horizontal sharding and a combination of Approximate Nearest-Neighbor search, hybrid indexing, and optimized metadata filtering. Although effective from an efficiency perspective, these mechanisms rely on bottom-up, similarity-driven organization and lack a conceptual rationale for corpus partitioning. In this paper, we claim that the design of large-scale RAG systems may benefit from the combination of two orthogonal strategies: semantic clustering, which optimizes locality in embedding space, and multidimensional partitioning, which governs where retrieval should occur based on conceptual dimensions such as time and organizational context. Although such dimensions are already implicitly present in current systems, they are used in an ad hoc and poorly structured manner. We propose the Dimensional Fact Model (DFM) as a conceptual framework to guide the design of multidimensional partitions for RAG corpora. The DFM provides a principled way to reason about facts, dimensions, hierarchies, and granularity in retrieval-oriented settings. This framework naturally supports hierarchical routing and controlled fallback strategies, ensuring that retrieval remains robust even in the presence of incomplete metadata, while transforming the search process from a 'black-box' similarity matching into a governable and deterministic workflow. This work is intended as a position paper; its goal is to bridge the gap between OLAP-style multidimensional modeling and modern RAG architectures, and to stimulate further research on principled, explainable, and governable retrieval strategies at scale.
O-Researcher: An Open Ended Deep Research Model via Multi-Agent Distillation and Agentic RL
The performance gap between closed-source and open-source large language models (LLMs) is largely attributed to disparities in access to high-quality training data. To bridge this gap, we introduce a novel framework for the automated synthesis of sophisticated, research-grade instructional data. Our approach centers on a multi-agent workflow where collaborative AI agents simulate complex tool-integrated reasoning to generate diverse and high-fidelity data end-to-end. Leveraging this synthesized data, we develop a two-stage training strategy that integrates supervised fine-tuning with a novel reinforcement learning method, designed to maximize model alignment and capability. Extensive experiments demonstrate that our framework empowers open-source models across multiple scales, enabling them to achieve new state-of-the-art performance on the major deep research benchmark. This work provides a scalable and effective pathway for advancing open-source LLMs without relying on proprietary data or models.
comment: 22 pages
RadDiff: Describing Differences in Radiology Image Sets with Natural Language
Understanding how two radiology image sets differ is critical for generating clinical insights and for interpreting medical AI systems. We introduce RadDiff, a multimodal agentic system that performs radiologist-style comparative reasoning to describe clinically meaningful differences between paired radiology studies. RadDiff builds on a proposer-ranker framework from VisDiff, and incorporates four innovations inspired by real diagnostic workflows: (1) medical knowledge injection through domain-adapted vision-language models; (2) multimodal reasoning that integrates images with their clinical reports; (3) iterative hypothesis refinement across multiple reasoning rounds; and (4) targeted visual search that localizes and zooms in on salient regions to capture subtle findings. To evaluate RadDiff, we construct RadDiffBench, a challenging benchmark comprising 57 expert-validated radiology study pairs with ground-truth difference descriptions. On RadDiffBench, RadDiff achieves 47% accuracy, and 50% accuracy when guided by ground-truth reports, significantly outperforming the general-domain VisDiff baseline. We further demonstrate RadDiff's versatility across diverse clinical tasks, including COVID-19 phenotype comparison, racial subgroup analysis, and discovery of survival-related imaging features. Together, RadDiff and RadDiffBench provide the first method-and-benchmark foundation for systematically uncovering meaningful differences in radiological data.
From Laboratory to Real-World Applications: Benchmarking Agentic Code Reasoning at the Repository Level
As large language models (LLMs) evolve into autonomous agents, evaluating repository-level reasoning, the ability to maintain logical consistency across massive, real-world, interdependent file systems, has become critical. Current benchmarks typically fluctuate between isolated code snippets and black-box evaluations. We present RepoReason, a white-box diagnostic benchmark centered on abductive assertion verification. To eliminate memorization while preserving authentic logical depth, we implement an execution-driven mutation framework that utilizes the environment as a semantic oracle to regenerate ground-truth states. Furthermore, we establish a fine-grained diagnostic system using dynamic program slicing, quantifying reasoning via three orthogonal metrics: $ESV$ (reading load), $MCL$ (simulation depth), and $DFI$ (integration width). Comprehensive evaluations of frontier models (e.g., Claude-4.5-Sonnet, DeepSeek-v3.1-Terminus) reveal a prevalent aggregation deficit, where integration width serves as the primary cognitive bottleneck. Our findings provide granular white-box insights for optimizing the next generation of agentic software engineering.
CSMCIR: CoT-Enhanced Symmetric Alignment with Memory Bank for Composed Image Retrieval
Composed Image Retrieval (CIR) enables users to search for target images using both a reference image and manipulation text, offering substantial advantages over single-modality retrieval systems. However, existing CIR methods suffer from representation space fragmentation: queries and targets comprise heterogeneous modalities and are processed by distinct encoders, forcing models to bridge misaligned representation spaces only through post-hoc alignment, which fundamentally limits retrieval performance. This architectural asymmetry manifests as three distinct, well-separated clusters in the feature space, directly demonstrating how heterogeneous modalities create fundamentally misaligned representation spaces from initialization. In this work, we propose CSMCIR, a unified representation framework that achieves efficient query-target alignment through three synergistic components. First, we introduce a Multi-level Chain-of-Thought (MCoT) prompting strategy that guides Multimodal Large Language Models to generate discriminative, semantically compatible captions for target images, establishing modal symmetry. Building upon this, we design a symmetric dual-tower architecture where both query and target sides utilize the identical shared-parameter Q-Former for cross-modal encoding, ensuring consistent feature representations and further reducing the alignment gap. Finally, this architectural symmetry enables an entropy-based, temporally dynamic Memory Bank strategy that provides high-quality negative samples while maintaining consistency with the evolving model state. Extensive experiments on four benchmark datasets demonstrate that our CSMCIR achieves state-of-the-art performance with superior training efficiency. Comprehensive ablation studies further validate the effectiveness of each proposed component.
R$^3$L: Reflect-then-Retry Reinforcement Learning with Language-Guided Exploration, Pivotal Credit, and Positive Amplification
Reinforcement learning drives recent advances in LLM reasoning and agentic capabilities, yet current approaches struggle with both exploration and exploitation. Exploration suffers from low success rates on difficult tasks and high costs of repeated rollouts from scratch. Exploitation suffers from coarse credit assignment and training instability: Trajectory-level rewards penalize valid prefixes for later errors, and failure-dominated groups overwhelm the few positive signals, leaving optimization without constructive direction. To this end, we propose R$^3$L, Reflect-then-Retry Reinforcement Learning with Language-Guided Exploration, Pivotal Credit, and Positive Amplification. To synthesize high-quality trajectories, R$^3$L shifts from stochastic sampling to active synthesis via reflect-then-retry, leveraging language feedback to diagnose errors, transform failed attempts into successful ones, and reduce rollout costs by restarting from identified failure points. With errors diagnosed and localized, Pivotal Credit Assignment updates only the diverging suffix where contrastive signals exist, excluding the shared prefix from gradient update. Since failures dominate on difficult tasks and reflect-then-retry produces off-policy data, risking training instability, Positive Amplification upweights successful trajectories to ensure positive signals guide the optimization process. Experiments on agentic and reasoning tasks demonstrate 5\% to 52\% relative improvements over baselines while maintaining training stability. Our code is released at https://github.com/shiweijiezero/R3L.
The Power of 10: New Rules for the Digital World
As artificial intelligence rapidly advances, society is increasingly captivated by promises of superhuman machines and seamless digital futures. Yet these visions often obscure mounting social, ethical, and psychological concerns tied to pervasive digital technologies - from surveillance to mental health crises. This article argues that a guiding ethos is urgently needed to navigate these transformations. Inspired by the lasting influence of the biblical Ten Commandments, a European interdisciplinary group has proposed "Ten Rules for the Digital World" - a novel ethical framework to help individuals and societies make prudent, human-centered decisions in the age of "supercharged" technology.
comment: to be published in Communications of the ACM (submitted 26 June 2025, revised 29 August 2025, accepted 3 November 2025)
MHRC-Bench: A Multilingual Hardware Repository-Level Code Completion benchmark
Large language models (LLMs) have achieved strong performance on code completion tasks in general-purpose programming languages. However, existing repository-level code completion benchmarks focus almost exclusively on software code and largely overlook hardware description languages. In this work, we present \textbf{MHRC-Bench}, consisting of \textbf{MHRC-Bench-Train} and \textbf{MHRC-Bench-Eval}, the first benchmark designed for multilingual hardware code completion at the repository level. Our benchmark targets completion tasks and covers three major hardware design coding styles. Each completion target is annotated with code-structure-level and hardware-oriented semantic labels derived from concrete syntax tree analysis. We conduct a comprehensive evaluation of models on MHRC-Bench-Eval. Comprehensive evaluation results and analysis demonstrate the effectiveness of MHRC-Bench.
Investigating Knowledge Distillation Through Neural Networks for Protein Binding Affinity Prediction
The trade-off between predictive accuracy and data availability makes it difficult to predict protein--protein binding affinity accurately. The lack of experimentally resolved protein structures limits the performance of structure-based machine learning models, which generally outperform sequence-based methods. In order to overcome this constraint, we suggest a regression framework based on knowledge distillation that uses protein structural data during training and only needs sequence data during inference. The suggested method uses binding affinity labels and intermediate feature representations to jointly supervise the training of a sequence-based student network under the guidance of a structure-informed teacher network. Leave-One-Complex-Out (LOCO) cross-validation was used to assess the framework on a non-redundant protein--protein binding affinity benchmark dataset. A maximum Pearson correlation coefficient (P_r) of 0.375 and an RMSE of 2.712 kcal/mol were obtained by sequence-only baseline models, whereas a P_r of 0.512 and an RMSE of 2.445 kcal/mol were obtained by structure-based models. With a P_r of 0.481 and an RMSE of 2.488 kcal/mol, the distillation-based student model greatly enhanced sequence-only performance. Improved agreement and decreased bias were further confirmed by thorough error analyses. With the potential to close the performance gap between sequence-based and structure-based models as larger datasets become available, these findings show that knowledge distillation is an efficient method for transferring structural knowledge to sequence-based predictors. The source code for running inference with the proposed distillation-based binding affinity predictor can be accessed at https://github.com/wajidarshad/ProteinAffinityKD.
TreeAdv: Tree-Structured Advantage Redistribution for Group-Based RL
Reinforcement learning with group-based objectives, such as Group Relative Policy Optimization (GRPO), is a common framework for aligning large language models on complex reasoning tasks. However, standard GRPO treats each rollout trajectory as an independent flat sequence and assigns a single sequence-level advantage to all tokens, which leads to sample inefficiency and a length bias toward verbose, redundant chains of thought without improving logical depth. We introduce TreeAdv (Tree-Structured Advantage Redistribution for Group-Based RL), which makes the tree structure of group rollouts explicit for both exploration and advantage assignment. Specifically, TreeAdv builds a group of trees (a forest) based on an entropy-driven sampling method where each tree branches at high-uncertainty decisions while sharing low-uncertainty tokens across rollouts. Then, TreeAdv aggregates token-level advantages for internal tree segments by redistributing the advantages of complete rollouts (all leaf nodes), and TreeAdv can easily apply to group-based objectives such as GRPO or GSPO. Across 10 math reasoning benchmarks, TreeAdv consistently outperforms GRPO and GSPO, while using substantially fewer generated tokens under identical supervision, data, and decoding budgets.
Inference Attacks Against Graph Generative Diffusion Models
Graph generative diffusion models have recently emerged as a powerful paradigm for generating complex graph structures, effectively capturing intricate dependencies and relationships within graph data. However, the privacy risks associated with these models remain largely unexplored. In this paper, we investigate information leakage in such models through three types of black-box inference attacks. First, we design a graph reconstruction attack, which can reconstruct graphs structurally similar to those training graphs from the generated graphs. Second, we propose a property inference attack to infer the properties of the training graphs, such as the average graph density and the distribution of densities, from the generated graphs. Third, we develop two membership inference attacks to determine whether a given graph is present in the training set. Extensive experiments on three different types of graph generative diffusion models and six real-world graphs demonstrate the effectiveness of these attacks, significantly outperforming the baseline approaches. Finally, we propose two defense mechanisms that mitigate these inference attacks and achieve a better trade-off between defense strength and target model utility than existing methods. Our code is available at https://zenodo.org/records/17946102.
comment: This work has been accepted by USENIX Security 2026
ADEPT: Adaptive Dynamic Early-Exit Process for Transformers
The inference of large language models imposes significant computational workloads, often requiring the processing of billions of parameters. Although early-exit strategies have proven effective in reducing computational demands by halting inference earlier, they apply either to only the first token in the generation phase or at the prompt level in the prefill phase. Thus, the Key-Value (KV) cache for skipped layers remains a bottleneck for subsequent token generation, limiting the benefits of early exit. We introduce ADEPT (Adaptive Dynamic Early-exit Process for Transformers), a novel approach designed to overcome this issue and enable dynamic early exit in both the prefill and generation phases. The proposed adaptive token-level early-exit mechanism adjusts computation dynamically based on token complexity, optimizing efficiency without compromising performance. ADEPT further enhances KV generation procedure by decoupling sequential dependencies in skipped layers, making token-level early exit more practical. Experimental results demonstrate that ADEPT improves efficiency by up to 25% in language generation tasks and achieves a 4x speed-up in downstream classification tasks, with up to a 45% improvement in performance.
comment: 11 figures, 8 tables, 22 pages
Can AI Chatbots Provide Coaching in Engineering? Beyond Information Processing Toward Mastery
Engineering education faces a double disruption: traditional apprenticeship models that cultivated judgment and tacit skill are eroding, just as generative AI emerges as an informal coaching partner. This convergence rekindles long-standing questions in the philosophy of AI and cognition about the limits of computation, the nature of embodied rationality, and the distinction between information processing and wisdom. Building on this rich intellectual tradition, this paper examines whether AI chatbots can provide coaching that fosters mastery rather than merely delivering information. We synthesize critical perspectives from decades of scholarship on expertise, tacit knowledge, and human-machine interaction, situating them within the context of contemporary AI-driven education. Empirically, we report findings from a mixed-methods study (N = 75 students, N = 7 faculty) exploring the use of a coaching chatbot in engineering education. Results reveal a consistent boundary: participants accept AI for technical problem solving (convergent tasks; M = 3.84 on a 1-5 Likert scale) but remain skeptical of its capacity for moral, emotional, and contextual judgment (divergent tasks). Faculty express stronger concerns over risk (M = 4.71 vs. M = 4.14, p = 0.003), and privacy emerges as a key requirement, with 64-71 percent of participants demanding strict confidentiality. Our findings suggest that while generative AI can democratize access to cognitive and procedural support, it cannot replicate the embodied, value-laden dimensions of human mentorship. We propose a multiplex coaching framework that integrates human wisdom within expert-in-the-loop models, preserving the depth of apprenticeship while leveraging AI scalability to enrich the next generation of engineering education.
comment: accepted at IEEE EDUCON 2026
A Pre-trained Reaction Embedding Descriptor Capturing Bond Transformation Patterns
With the rise of data-driven reaction prediction models, effective reaction descriptors are crucial for bridging the gap between real-world chemistry and digital representations. However, general-purpose, reaction-wise descriptors remain scarce. This study introduces RXNEmb, a novel reaction-level descriptor derived from RXNGraphormer, a model pre-trained to distinguish real reactions from fictitious ones with erroneous bond changes, thereby learning intrinsic bond formation and cleavage patterns. We demonstrate its utility by data-driven re-clustering of the USPTO-50k dataset, yielding a classification that more directly reflects bond-change similarities than rule-based categories. Combined with dimensionality reduction, RXNEmb enables visualization of reaction space diversity. Furthermore, attention weight analysis reveals the model's focus on chemically critical sites, providing mechanistic insight. RXNEmb serves as a powerful, interpretable tool for reaction fingerprinting and analysis, paving the way for more data-centric approaches in reaction analysis and discovery.
comment: 10 pages, 5 figures
Personalized Medication Planning via Direct Domain Modeling and LLM-Generated Heuristics
Personalized medication planning involves selecting medications and determining a dosing schedule to achieve medical goals specific to each individual patient. Previous work successfully demonstrated that automated planners, using general domain-independent heuristics, are able to generate personalized treatments, when the domain and problems are modeled using a general domain description language (\pddlp). Unfortunately, this process was limited in practice to consider no more than seven medications. In clinical terms, this is a non-starter. In this paper, we explore the use of automatically-generated domain- and problem-specific heuristics to be used with general search, as a method of scaling up medication planning to levels allowing closer work with clinicians. Specifically, we specify the domain programmatically (specifying an initial state and a successor generation procedure), and use an LLM to generate a problem specific heuristic that can be used by a fixed search algorithm (GBFS). The results indicate dramatic improvements in coverage and planning time, scaling up the number of medications to at least 28, and bringing medication planning one step closer to practical applications.
From Implicit to Explicit: Token-Efficient Logical Supervision for Mathematical Reasoning in LLMs
Recent studies reveal that large language models (LLMs) exhibit limited logical reasoning abilities in mathematical problem-solving, instead often relying on pattern-matching and memorization. We systematically analyze this limitation, focusing on logical relationship understanding, which is a core capability underlying genuine logical reasoning, and reveal that errors related to this capability account for over 90\% of incorrect predictions, with Chain-of-Thought Supervised Fine-Tuning (CoT-SFT) failing to substantially reduce these errors. To address this bottleneck, we propose First-Step Logical Reasoning (FSLR), a lightweight training framework targeting logical relationship understanding. Our key insight is that the first planning step-identifying which variables to use and which operation to apply-encourages the model to derive logical relationships directly from the problem statement. By training models on this isolated step, FSLR provides explicit supervision for logical relationship understanding, unlike CoT-SFT which implicitly embeds such relationships within complete solution trajectories. Extensive experiments across multiple models and datasets demonstrate that FSLR consistently outperforms CoT-SFT under both in-distribution and out-of-distribution settings, with average improvements of 3.2\% and 4.6\%, respectively. Moreover, FSLR achieves 4-6x faster training and reduces training token consumption by over 80\%.
Towards Compositional Generalization of LLMs via Skill Taxonomy Guided Data Synthesis
Large Language Models (LLMs) and agent-based systems often struggle with compositional generalization due to a data bottleneck in which complex skill combinations follow a long-tailed, power-law distribution, limiting both instruction-following performance and generalization in agent-centric tasks. To address this challenge, we propose STEPS, a Skill Taxonomy guided Entropy-based Post-training data Synthesis framework for generating compositionally challenging data. STEPS explicitly targets compositional generalization by uncovering latent relationships among skills and organizing them into an interpretable, hierarchical skill taxonomy using structural information theory. Building on this taxonomy, we formulate data synthesis as a constrained information maximization problem, selecting skill combinations that maximize marginal structural information within the hierarchy while preserving semantic coherence. Experiments on challenging instruction-following benchmarks show that STEPS outperforms existing data synthesis baselines, while also yielding improved compositional generalization in downstream agent-based evaluations.
comment: The code and data for our methods and experiments are available at https://github.com/weiyifan1023/STEPS
Disentangling Aleatoric and Epistemic Uncertainty in Physics-Informed Neural Networks. Application to Insulation Material Degradation Prognostics
Physics-Informed Neural Networks (PINNs) provide a framework for integrating physical laws with data. However, their application to Prognostics and Health Management (PHM) remains constrained by the limited uncertainty quantification (UQ) capabilities. Most existing PINN-based prognostics approaches are deterministic or account only for epistemic uncertainty, limiting their suitability for risk-aware decision-making. This work introduces a heteroscedastic Bayesian Physics-Informed Neural Network (B-PINN) framework that jointly models epistemic and aleatoric uncertainty, yielding full predictive posteriors for spatiotemporal insulation material ageing estimation. The approach integrates Bayesian Neural Networks (BNNs) with physics-based residual enforcement and prior distributions, enabling probabilistic inference within a physics-informed learning architecture. The framework is evaluated on transformer insulation ageing application, validated with a finite-element thermal model and field measurements from a solar power plant, and benchmarked against deterministic PINNs, dropout-based PINNs (d-PINNs), and alternative B-PINN variants. Results show that the proposed B-PINN provides improved predictive accuracy and better-calibrated uncertainty estimates than competing approaches. A systematic sensitivity study further analyzes the impact of boundary-condition, initial-condition, and residual sampling strategies on accuracy, calibration, and generalization. Overall, the findings highlight the potential of Bayesian physics-informed learning to support uncertainty-aware prognostics and informed decision-making in transformer asset management.
comment: 24 pages, 13 figures, 5 tables
Sandwich Reasoning: An Answer-Reasoning-Answer Approach for Low-Latency Query Correction
Query correction is a critical entry point in modern search pipelines, demanding high accuracy strictly within real-time latency constraints. Chain-of-Thought (CoT) reasoning improves accuracy but incurs prohibitive latency for real-time query correction. A potential solution is to output an answer before reasoning to reduce latency; however, under autoregressive decoding, the early answer is independent of subsequent reasoning, preventing the model from leveraging its reasoning capability to improve accuracy. To address this issue, we propose Sandwich Reasoning (SandwichR), a novel approach that explicitly aligns a fast initial answer with post-hoc reasoning, enabling low-latency query correction without sacrificing reasoning-aware accuracy. SandwichR follows an Answer-Reasoning-Answer paradigm, producing an initial correction, an explicit reasoning process, and a final refined correction. To align the initial answer with post-reasoning insights, we design a consistency-aware reinforcement learning (RL) strategy: a dedicated consistency reward enforces alignment between the initial and final corrections, while margin-based rejection sampling prioritizes borderline samples where reasoning drives the most impactful corrective gains. Additionally, we construct a high-quality query correction dataset, addressing the lack of specialized benchmarks for complex query correction. Experimental results demonstrate that SandwichR achieves SOTA accuracy comparable to standard CoT while delivering a 40-70% latency reduction, resolving the latency-accuracy trade-off in online search.
Discontinuous Galerkin finite element operator network for solving non-smooth PDEs
We introduce Discontinuous Galerkin Finite Element Operator Network (DG--FEONet), a data-free operator learning framework that combines the strengths of the discontinuous Galerkin (DG) method with neural networks to solve parametric partial differential equations (PDEs) with discontinuous coefficients and non-smooth solutions. Unlike traditional operator learning models such as DeepONet and Fourier Neural Operator, which require large paired datasets and often struggle near sharp features, our approach minimizes the residual of a DG-based weak formulation using the Symmetric Interior Penalty Galerkin (SIPG) scheme. DG-FEONet predicts element-wise solution coefficients via a neural network, enabling data-free training without the need for precomputed input-output pairs. We provide theoretical justification through convergence analysis and validate the model's performance on a series of one- and two-dimensional PDE problems, demonstrating accurate recovery of discontinuities, strong generalization across parameter space, and reliable convergence rates. Our results highlight the potential of combining local discretization schemes with machine learning to achieve robust, singularity-aware operator approximation in challenging PDE settings.
comment: 24 pages, 11 figures
e5-omni: Explicit Cross-modal Alignment for Omni-modal Embeddings
Modern information systems often involve different types of items, e.g., a text query, an image, a video clip, or an audio segment. This motivates omni-modal embedding models that map heterogeneous modalities into a shared space for direct comparison. However, most recent omni-modal embeddings still rely heavily on implicit alignment inherited from pretrained vision-language model (VLM) backbones. In practice, this causes three common issues: (i) similarity logits have modality-dependent sharpness, so scores are not on a consistent scale; (ii) in-batch negatives become less effective over time because mixed-modality batches create an imbalanced hardness distribution; as a result, many negatives quickly become trivial and contribute little gradient; and (iii) embeddings across modalities show mismatched first- and second-order statistics, which makes rankings less stable. To tackle these problems, we propose e5-omni, a lightweight explicit alignment recipe that adapts off-the-shelf VLMs into robust omni-modal embedding models. e5-omni combines three simple components: (1) modality-aware temperature calibration to align similarity scales, (2) a controllable negative curriculum with debiasing to focus on confusing negatives while reducing the impact of false negatives, and (3) batch whitening with covariance regularization to better match cross-modal geometry in the shared embedding space. Experiments on MMEB-V2 and AudioCaps show consistent gains over strong bi-modal and omni-modal baselines, and the same recipe also transfers well to other VLM backbones. We release our model checkpoint at https://huggingface.co/Haon-Chen/e5-omni-7B.
How Does the Thinking Step Influence Model Safety? An Entropy-based Safety Reminder for LRMs
Large Reasoning Models (LRMs) achieve remarkable success through explicit thinking steps, yet the thinking steps introduce a novel risk by potentially amplifying unsafe behaviors. Despite this vulnerability, conventional defense mechanisms remain ineffective as they overlook the unique reasoning dynamics of LRMs. In this work, we find that the emergence of safe-reminding phrases within thinking steps plays a pivotal role in ensuring LRM safety. Motivated by this finding, we propose SafeRemind, a decoding-time defense method that dynamically injects safe-reminding phrases into thinking steps. By leveraging entropy triggers to intervene at decision-locking points, SafeRemind redirects potentially harmful trajectories toward safer outcomes without requiring any parameter updates. Extensive evaluations across five LRMs and six benchmarks demonstrate that SafeRemind substantially enhances safety, achieving improvements of up to 45.5%p while preserving core reasoning utility.
AMIR-GRPO: Inducing Implicit Preference Signals into GRPO
Reinforcement learning has become the primary paradigm for aligning large language models (LLMs) on complex reasoning tasks, with group relative policy optimization (GRPO) widely used in large-scale post-training. However, GRPO faces structural limitations in reasoning-heavy settings: sequence-level advantage normalization introduces systematic length bias, penalties for low-quality trajectories are diluted, and the scalar objective discards rich pairwise preference information embedded in within-group reward rankings. As a result, valuable supervision from costly rollouts remains underutilized. We propose AMIR-GRPO, which augments GRPO with an implicit DPO-style contrastive regularizer constructed directly from intra-group reward rankings, requiring no additional annotations. This mechanism amplifies suppression of low-reward trajectories, attenuates response-level length bias, and transforms each rollout group into a denser set of supervision constraints. Across multiple mathematical reasoning benchmarks, AMIR-GRPO consistently outperforms strong GRPO baselines, yields clearer separation between correct and incorrect reasoning chains, and delivers broader coverage gains beyond the subset of instances solved by standard GRPO.
Group and Exclusive Sparse Regularization-based Continual Learning of CNNs
We present a regularization-based approach for continual learning (CL) of fixed capacity convolutional neural networks (CNN) that does not suffer from the problem of catastrophic forgetting when learning multiple tasks sequentially. This method referred to as Group and Exclusive Sparsity based Continual Learning (GESCL) avoids forgetting of previous tasks by ensuring the stability of the CNN via a stability regularization term, which prevents filters detected as important for past tasks to deviate too much when learning a new task. On top of that, GESCL makes the network plastic via a plasticity regularization term that leverage the over-parameterization of CNNs to efficiently sparsify the network and tunes unimportant filters making them relevant for future tasks. Doing so, GESCL deals with significantly less parameters and computation compared to CL approaches that either dynamically expand the network or memorize past tasks' data. Experiments on popular CL vision benchmarks show that GESCL leads to significant improvements over state-of-the-art method in terms of overall CL performance, as measured by classification accuracy as well as in terms of avoiding catastrophic forgetting.
comment: 12 pages, Canadian Artificial Intelligence Association (CAIAC)
In Search of Grandmother Cells: Tracing Interpretable Neurons in Tabular Representations
Foundation models are powerful yet often opaque in their decision-making. A topic of continued interest in both neuroscience and artificial intelligence is whether some neurons behave like grandmother cells, i.e., neurons that are inherently interpretable because they exclusively respond to single concepts. In this work, we propose two information-theoretic measures that quantify the neuronal saliency and selectivity for single concepts. We apply these metrics to the representations of TabPFN, a tabular foundation model, and perform a simple search across neuron-concept pairs to find the most salient and selective pair. Our analysis provides the first evidence that some neurons in such models show moderate, statistically significant saliency and selectivity for high-level concepts. These findings suggest that interpretable neurons can emerge naturally and that they can, in some cases, be identified without resorting to more complex interpretability techniques.
comment: EurIPS 2025 Workshop on AI for Tabular Data
ReLA: Representation Learning and Aggregation for Job Scheduling with Reinforcement Learning
Job scheduling is widely used in real-world manufacturing systems to assign ordered job operations to machines under various constraints. Existing solutions remain limited by long running time or insufficient schedule quality, especially when problem scale increases. In this paper, we propose ReLA, a reinforcement-learning (RL) scheduler built on structured representation learning and aggregation. ReLA first learns diverse representations from scheduling entities, including job operations and machines, using two intra-entity learning modules with self-attention and convolution and one inter-entity learning module with cross-attention. These modules are applied in a multi-scale architecture, and their outputs are aggregated to support RL decision-making. Across experiments on small, medium, and large job instances, ReLA achieves the best makespan in most tested settings over the latest solutions. On non-large instances, ReLA reduces the optimality gap of the SOTA baseline by 13.0%, while on large-scale instances it reduces the gap by 78.6%, with the average optimality gaps lowered to 7.3% and 2.1%, respectively. These results confirm that ReLA's learned representations and aggregation provide strong decision support for RL scheduling, and enable fast job completion and decision-making for real-world applications.
comment: 15 pages
MFC-RFNet: A Multi-scale Guided Rectified Flow Network for Radar Sequence Prediction
Accurate and high-resolution precipitation nowcasting from radar echo sequences is crucial for disaster mitigation and economic planning, yet it remains a significant challenge. Key difficulties include modeling complex multi-scale evolution, correcting inter-frame feature misalignment caused by displacement, and efficiently capturing long-range spatiotemporal context without sacrificing spatial fidelity. To address these issues, we present the Multi-scale Feature Communication Rectified Flow (RF) Network (MFC-RFNet), a generative framework that integrates multi-scale communication with guided feature fusion. To enhance multi-scale fusion while retaining fine detail, a Wavelet-Guided Skip Connection (WGSC) preserves high-frequency components, and a Feature Communication Module (FCM) promotes bidirectional cross-scale interaction. To correct inter-frame displacement, a Condition-Guided Spatial Transform Fusion (CGSTF) learns spatial transforms from conditioning echoes to align shallow features. The backbone adopts rectified flow training to learn near-linear probability-flow trajectories, enabling few-step sampling with stable fidelity. Additionally, lightweight Vision-RWKV (RWKV) blocks are placed at the encoder tail, the bottleneck, and the first decoder layer to capture long-range spatiotemporal dependencies at low spatial resolutions with moderate compute. Evaluations on four public datasets (SEVIR, MeteoNet, Shanghai, and CIKM) demonstrate consistent improvements over strong baselines, yielding clearer echo morphology at higher rain-rate thresholds and sustained skill at longer lead times. These results suggest that the proposed synergy of RF training with scale-aware communication, spatial alignment, and frequency-aware fusion presents an effective and robust approach for radar-based nowcasting.
ReStyle-TTS: Relative and Continuous Style Control for Zero-Shot Speech Synthesis
Zero-shot text-to-speech models can clone a speaker's timbre from a short reference audio, but they also strongly inherit the speaking style present in the reference. As a result, synthesizing speech with a desired style often requires carefully selecting reference audio, which is impractical when only limited or mismatched references are available. While recent controllable TTS methods attempt to address this issue, they typically rely on absolute style targets and discrete textual prompts, and therefore do not support continuous and reference-relative style control. We propose ReStyle-TTS, a framework that enables continuous and reference-relative style control in zero-shot TTS. Our key insight is that effective style control requires first reducing the model's implicit dependence on reference style before introducing explicit control mechanisms. To this end, we introduce Decoupled Classifier-Free Guidance (DCFG), which independently controls text and reference guidance, reducing reliance on reference style while preserving text fidelity. On top of this, we apply style-specific LoRAs together with Orthogonal LoRA Fusion to enable continuous and disentangled multi-attribute control, and introduce a Timbre Consistency Optimization module to mitigate timbre drift caused by weakened reference guidance. Experiments show that ReStyle-TTS enables user-friendly, continuous, and relative control over pitch, energy, and multiple emotions while maintaining intelligibility and speaker timbre, and performs robustly in challenging mismatched reference-target style scenarios.
Evaluating the Pre-Consultation Ability of LLMs using Diagnostic Guidelines
We introduce EPAG, a benchmark dataset and framework designed for Evaluating the Pre-consultation Ability of LLMs using diagnostic Guidelines. LLMs are evaluated directly through HPI-diagnostic guideline comparison and indirectly through disease diagnosis. In our experiments, we observe that small open-source models fine-tuned with a well-curated, task-specific dataset can outperform frontier LLMs in pre-consultation. Additionally, we find that increased amount of HPI (History of Present Illness) does not necessarily lead to improved diagnostic performance. Further experiments reveal that the language of pre-consultation influences the characteristics of the dialogue. By open-sourcing our dataset and evaluation pipeline on https://github.com/seemdog/EPAG, we aim to contribute to the evaluation and further development of LLM applications in real-world clinical settings.
comment: EACL 2026 Industry
Architecting Agentic Communities using Design Patterns
The rapid evolution of Large Language Models (LLM) and subsequent Agentic AI technologies requires systematic architectural guidance for building sophisticated, production-grade systems. This paper presents an approach for architecting such systems using design patterns derived from enterprise distributed systems standards, formal methods, and industry practice. We classify these patterns into three tiers: LLM Agents (task-specific automation), Agentic AI (adaptive goal-seekers), and Agentic Communities (organizational frameworks where AI agents and human participants coordinate through formal roles, protocols, and governance structures). We focus on Agentic Communities - coordination frameworks encompassing LLM Agents, Agentic AI entities, and humans - most relevant for enterprise and industrial applications. Drawing on established coordination principles from distributed systems, we ground these patterns in a formal framework that specifies collaboration agreements where AI agents and humans fill roles within governed ecosystems. This approach provides both practical guidance and formal verification capabilities, enabling expression of organizational, legal, and ethical rules through accountability mechanisms that ensure operational and verifiable governance of inter-agent communication, negotiation, and intent modeling. We validate this framework through a clinical trial matching case study. Our goal is to provide actionable guidance to practitioners while maintaining the formal rigor essential for enterprise deployment in dynamic, multi-agent ecosystems.
comment: supplementary material accompanying this paper is also attached .. its title is "Complete Agentic AI Design Patterns Catalogue"
Investigation into respiratory sound classification for an imbalanced data set using hybrid LSTM-KAN architectures
Respiratory sounds captured via auscultation contain critical clues for diagnosing pulmonary conditions. Automated classification of these sounds faces challenges due to subtle acoustic differences and severe class imbalance in clinical datasets. This study investigates respiratory sound classification with a focus on mitigating pronounced class imbalance. We propose a hybrid deep learning model that combines a Long Short-Term Memory (LSTM) network for sequential feature encoding with a Kolmogorov-Arnold Network (KAN) for classification. The model is integrated with a comprehensive feature extraction pipeline and targeted imbalance mitigation strategies. Experiments were conducted on a public respiratory sound database comprising six classes with a highly skewed distribution. Techniques such as focal loss, class-specific data augmentation, and Synthetic Minority Over-sampling Technique (SMOTE) were employed to enhance minority class recognition. The proposed Hybrid LSTM-KAN model achieves an overall accuracy of 94.6 percent and a macro-averaged F1 score of 0.703, despite the dominant COPD class accounting for over 86 percent of the data. Improved detection performance is observed for minority classes compared to baseline approaches, demonstrating the effectiveness of the proposed architecture for imbalanced respiratory sound classification.
Policy-Guided Search on Tree-of-Thoughts for Efficient Problem Solving with Bounded Language Model Queries
Recent studies explored integrating state-space search algorithms with Language Models (LM) to perform look-ahead on the token generation process, the ''Tree-of-Thoughts'' (ToT), generated by LMs, thereby improving performance on problem-solving tasks. However, the affiliated search algorithms often overlook the significant computational costs associated with LM inference, particularly in scenarios with constrained computational budgets. Consequently, we address the problem of improving LM performance on problem-solving tasks under limited computational budgets. We demonstrate how the probabilities assigned to thoughts by LMs can serve as a heuristic to guide search within the ToT framework, thereby reducing the number of thought evaluations. Building on this insight, we adapt a heuristic search algorithm, Levin Tree Search (LTS), to the ToT framework, which leverages LMs as policies to guide the tree exploration efficiently. We extend the theoretical results of LTS by showing that, for ToT (a pruned tree), LTS guarantees a bound on the number of states expanded, and consequently, on the number of thoughts generated. Additionally, we analyze the sensitivity of this bound to the temperature values commonly used in the final softmax layer of the LM. Empirical evaluation under a fixed LM query budget demonstrates that LTS consistently achieves comparable or higher accuracy than baseline search algorithms within the ToT framework, across three domains (Blocksworld, PrOntoQA, Array Sorting) and four distinct LMs. These findings highlight the efficacy of LTS on ToT, particularly in enabling cost-effective and time-efficient problem-solving, making it well-suited for latency-critical and resource-constrained applications.
comment: Published in Transactions on Machine Learning Research (TMLR), 2025. Available at https://openreview.net/forum?id=Rlk1bWe2ii
Interleaved Tool-Call Reasoning for Protein Function Understanding
Recent advances in large language models (LLMs) have highlighted the effectiveness of chain-of-thought reasoning in symbolic domains such as mathematics and programming. However, our study shows that directly transferring such text-based reasoning paradigms to protein function understanding is ineffective: reinforcement learning mainly amplifies superficial keyword patterns while failing to introduce new biological knowledge, resulting in limited generalization. We argue that protein function prediction is a knowledge-intensive scientific task that fundamentally relies on external biological priors and computational tools rather than purely internal reasoning. To address this gap, we propose PFUA, a tool-augmented protein reasoning agent that unifies problem decomposition, tool invocation, and grounded answer generation. Instead of relying on long unconstrained reasoning traces, PFUA integrates domain-specific tools to produce verifiable intermediate evidence. Experiments on four benchmarks demonstrate that PFUA consistently outperforms text-only reasoning models with an average performance improvement of 103%.
ALERT: Zero-shot LLM Jailbreak Detection via Internal Discrepancy Amplification
Despite rich safety alignment strategies, large language models (LLMs) remain highly susceptible to jailbreak attacks, which compromise safety guardrails and pose serious security risks. Existing detection methods mainly detect jailbreak status relying on jailbreak templates present in the training data. However, few studies address the more realistic and challenging zero-shot jailbreak detection setting, where no jailbreak templates are available during training. This setting better reflects real-world scenarios where new attacks continually emerge and evolve. To address this challenge, we propose a layer-wise, module-wise, and token-wise amplification framework that progressively magnifies internal feature discrepancies between benign and jailbreak prompts. We uncover safety-relevant layers, identify specific modules that inherently encode zero-shot discriminative signals, and localize informative safety tokens. Building upon these insights, we introduce ALERT (Amplification-based Jailbreak Detector), an efficient and effective zero-shot jailbreak detector that introduces two independent yet complementary classifiers on amplified representations. Extensive experiments on three safety benchmarks demonstrate that ALERT achieves consistently strong zero-shot detection performance. Specifically, (i) across all datasets and attack strategies, ALERT reliably ranks among the top two methods, and (ii) it outperforms the second-best baseline by at least 10% in average Accuracy and F1-score, and sometimes by up to 40%.
From Chains to Graphs: Self-Structured Reasoning for General-Domain LLMs
Large Language Models (LLMs) show strong reasoning ability in open-domain question answering, yet their reasoning processes are typically linear and often logically inconsistent. In contrast, real-world reasoning requires integrating multiple premises and solving subproblems in parallel. Existing methods, such as Chain-of-Thought (CoT), express reasoning in a linear textual form, which may appear coherent but frequently leads to inconsistent conclusions. Recent approaches rely on externally provided graphs and do not explore how LLMs can construct and use their own graph-structured reasoning, particularly in open-domain QA. To fill this gap, we novelly explore graph-structured reasoning of LLMs in general-domain question answering. We propose Self-Graph Reasoning (SGR), a framework that enables LLMs to explicitly represent their reasoning process as a structured graph before producing the final answer. We further construct a graph-structured reasoning dataset that merges multiple candidate reasoning graphs into refined graph structures for model training. Experiments on five QA benchmarks across both general and specialized domains show that SGR consistently improves reasoning consistency and yields a 17.74% gain over the base model. The LLaMA-3.3-70B model fine-tuned with SGR performs comparably to GPT-4o and surpasses Claude-3.5-Haiku, demonstrating the effectiveness of graph-structured reasoning.
Controllable LLM Reasoning via Sparse Autoencoder-Based Steering
Large Reasoning Models (LRMs) exhibit human-like cognitive reasoning strategies (e.g. backtracking, cross-verification) during reasoning process, which improves their performance on complex tasks. Currently, reasoning strategies are autonomously selected by LRMs themselves. However, such autonomous selection often produces inefficient or even erroneous reasoning paths. To make reasoning more reliable and flexible, it is important to develop methods for controlling reasoning strategies. Existing methods struggle to control fine-grained reasoning strategies due to conceptual entanglement in LRMs' hidden states. To address this, we leverage Sparse Autoencoders (SAEs) to decompose strategy-entangled hidden states into a disentangled feature space. To identify the few strategy-specific features from the vast pool of SAE features, we propose SAE-Steering, an efficient two-stage feature identification pipeline. SAE-Steering first recalls features that amplify the logits of strategy-specific keywords, filtering out over 99\% of features, and then ranks the remaining features by their control effectiveness. Using the identified strategy-specific features as control vectors, SAE-Steering outperforms existing methods by over 15\% in control effectiveness. Furthermore, controlling reasoning strategies can redirect LRMs from erroneous paths to correct ones, achieving a 7\% absolute accuracy improvement.
comment: Under Review
Can LLMs See Without Pixels? Benchmarking Spatial Intelligence from Textual Descriptions
Recent advancements in Spatial Intelligence (SI) have predominantly relied on Vision-Language Models (VLMs), yet a critical question remains: does spatial understanding originate from visual encoders or the fundamental reasoning backbone? Inspired by this question, we introduce SiT-Bench, a novel benchmark designed to evaluate the SI performance of Large Language Models (LLMs) without pixel-level input, comprises over 3,800 expert-annotated items across five primary categories and 17 subtasks, ranging from egocentric navigation and perspective transformation to fine-grained robotic manipulation. By converting single/multi-view scenes into high-fidelity, coordinate-aware textual descriptions, we challenge LLMs to perform symbolic textual reasoning rather than visual pattern matching. Evaluation results of state-of-the-art (SOTA) LLMs reveals that while models achieve proficiency in localized semantic tasks, a significant "spatial gap" remains in global consistency. Notably, we find that explicit spatial reasoning significantly boosts performance, suggesting that LLMs possess latent world-modeling potential. Our proposed dataset SiT-Bench serves as a foundational resource to foster the development of spatially-grounded LLM backbones for future VLMs and embodied agents. Our code and benchmark will be released at https://github.com/binisalegend/SiT-Bench .
Deontic Knowledge Graphs for Privacy Compliance in Multimodal Disaster Data Sharing
Disaster response requires sharing heterogeneous artifacts, from tabular assistance records to UAS imagery, under overlapping privacy mandates. Operational systems often reduce compliance to binary access control, which is brittle in time-critical workflows. We present a novel deontic knowledge graph-based framework that integrates a Disaster Management Knowledge Graph (DKG) with a Policy Knowledge Graph (PKG) derived from IoT-Reg and FEMA/DHS privacy drivers. Our release decision function supports three outcomes: Allow, Block, and Allow-with-Transform. The latter binds obligations to transforms and verifies post-transform compliance via provenance-linked derived artifacts; blocked requests are logged as semantic privacy incidents. Evaluation on a 5.1M-triple DKG with 316K images shows exact-match decision correctness, sub-second per-decision latency, and interactive query performance across both single-graph and federated workloads.
A Proposed Paradigm for Imputing Missing Multi-Sensor Data in the Healthcare Domain
Chronic diseases such as diabetes pose significant management challenges, particularly due to the risk of complications like hypoglycemia, which require timely detection and intervention. Continuous health monitoring through wearable sensors offers a promising solution for early prediction of glycemic events. However, effective use of multisensor data is hindered by issues such as signal noise and frequent missing values. This study examines the limitations of existing datasets and emphasizes the temporal characteristics of key features relevant to hypoglycemia prediction. A comprehensive analysis of imputation techniques is conducted, focusing on those employed in state-of-the-art studies. Furthermore, imputation methods derived from machine learning and deep learning applications in other healthcare contexts are evaluated for their potential to address longer gaps in time-series data. Based on this analysis, a systematic paradigm is proposed, wherein imputation strategies are tailored to the nature of specific features and the duration of missing intervals. The review concludes by emphasizing the importance of investigating the temporal dynamics of individual features and the implementation of multiple, feature-specific imputation techniques to effectively address heterogeneous temporal patterns inherent in the data.
comment: 21 Pages, 6 Figures, 7 Tables
SCRIBE: Structured Mid-Level Supervision for Tool-Using Language Models
Training reliable tool-augmented agents remains a significant challenge, largely due to the difficulty of credit assignment in multi-step reasoning. While process-level reward models offer a promising direction, existing LLM-based judges often produce noisy and inconsistent signals because they lack fine-grained, task-specific rubrics to distinguish high-level planning from low-level execution. In this work, we introduce SCRIBE (Skill-Conditioned Reward with Intermediate Behavioral Evaluation), a reinforcement learning framework that intervenes at a novel mid-level abstraction. SCRIBE grounds reward modeling in a curated library of skill prototypes, transforming open-ended LLM evaluation into a constrained verification problem. By routing each subgoal to a corresponding prototype, the reward model is equipped with precise, structured rubrics that substantially reduce reward variance. Experimental results show that SCRIBE achieves state-of-the-art performance across a range of reasoning and tool-use benchmarks. In particular, it improves the AIME25 accuracy of a Qwen3-4B model from 43.3% to 63.3%, and significantly increases success rates in complex multi-turn tool interactions. Further analysis of training dynamics reveals a co-evolution across abstraction levels, where mastery of mid-level skills consistently precedes the emergence of effective high-level planning behaviors. Finally, we demonstrate that SCRIBE is additive to low-level tool optimizations, providing a scalable and complementary pathway toward more autonomous and reliable tool-using agents.
Evaluating LLMs for Police Decision-Making: A Framework Based on Police Action Scenarios AAAI 2026
The use of Large Language Models (LLMs) in police operations is growing, yet an evaluation framework tailored to police operations remains absent. While LLM's responses may not always be legally incorrect, their unverified use still can lead to severe issues such as unlawful arrests and improper evidence collection. To address this, we propose PAS (Police Action Scenarios), a systematic framework covering the entire evaluation process. Applying this framework, we constructed a novel QA dataset from over 8,000 official documents and established key metrics validated through statistical analysis with police expert judgements. Experimental results show that commercial LLMs struggle with our new police-related tasks, particularly in providing fact-based recommendations. This study highlights the necessity of an expandable evaluation framework to ensure reliable AI-driven police operations. We release our data and prompt template.
comment: This work was accepted at AAAI 2026 social good track
ReEfBench: Quantifying the Reasoning Efficiency of LLMs
Test-time scaling has enabled Large Language Models (LLMs) to tackle complex reasoning, yet the limitations of current Chain-of-Thought (CoT) evaluation obscures whether performance gains stem from genuine reasoning or mere verbosity. To address this, (1) we propose a novel neuro-symbolic framework for the non-intrusive, comprehensive process-centric evaluation of reasoning. (2) Through this lens, we identify four distinct behavioral prototypes and diagnose the failure modes. (3) We examine the impact of inference mode, training strategy, and model scale. Our analysis reveals that extended token generation is not a prerequisite for deep reasoning. Furthermore, we reveal critical constraints: mixing long and short CoT data in training risks in premature saturation and collapse, while distillation into smaller models captures behavioral length but fails to replicate logical efficacy due to intrinsic capacity limits.
Value-Action Alignment in Large Language Models under Privacy-Prosocial Conflict
Large language models (LLMs) are increasingly used to simulate decision-making tasks involving personal data sharing, where privacy concerns and prosocial motivations can push choices in opposite directions. Existing evaluations often measure privacy-related attitudes or sharing intentions in isolation, which makes it difficult to determine whether a model's expressed values jointly predict its downstream data-sharing actions as in real human behaviors. We introduce a context-based assessment protocol that sequentially administers standardized questionnaires for privacy attitudes, prosocialness, and acceptance of data sharing within a bounded, history-carrying session. To evaluate value-action alignments under competing attitudes, we use multi-group structural equation modeling (MGSEM) to identify relations from privacy concerns and prosocialness to data sharing. We propose Value-Action Alignment Rate (VAAR), a human-referenced directional agreement metric that aggregates path-level evidence for expected signs. Across multiple LLMs, we observe stable but model-specific Privacy-PSA-AoDS profiles, and substantial heterogeneity in value-action alignment.
Layer-Order Inversion: Rethinking Latent Multi-Hop Reasoning in Large Language Models
Large language models (LLMs) perform well on multi-hop reasoning, yet how they internally compose multiple facts remains unclear. Recent work proposes \emph{hop-aligned circuit hypothesis}, suggesting that bridge entities are computed sequentially across layers before later-hop answers. Through systematic analyses on real-world multi-hop queries, we show that this hop-aligned assumption does not generalize: later-hop answer entities can become decodable earlier than bridge entities, a phenomenon we call \emph{layer-order inversion}, which strengthens with total hops. To explain this behavior, we propose a \emph{probabilistic recall-and-extract} framework that models multi-hop reasoning as broad probabilistic recall in shallow MLP layers followed by selective extraction in deeper attention layers. This framework is empirically validated through systematic probing analyses, reinterpreting prior layer-wise decoding evidence, explaining chain-of-thought gains, and providing a mechanistic diagnosis of multi-hop failures despite correct single-hop knowledge. Code is available at https://github.com/laquabe/Layer-Order-Inversion.
comment: 16 pages, 18 figures
STAR-S: Improving Safety Alignment through Self-Taught Reasoning on Safety Rules
Defending against jailbreak attacks is crucial for the safe deployment of Large Language Models (LLMs). Recent research has attempted to improve safety by training models to reason over safety rules before responding. However, a key issue lies in determining what form of safety reasoning effectively defends against jailbreak attacks, which is difficult to explicitly design or directly obtain. To address this, we propose \textbf{STAR-S} (\textbf{S}elf-\textbf{TA}ught \textbf{R}easoning based on \textbf{S}afety rules), a framework that integrates the learning of safety rule reasoning into a self-taught loop. The core of STAR-S involves eliciting reasoning and reflection guided by safety rules, then leveraging fine-tuning to enhance safety reasoning. Repeating this process creates a synergistic cycle. Improvements in the model's reasoning and interpretation of safety rules allow it to produce better reasoning data under safety rule prompts, which is then utilized for further training. Experiments show that STAR-S effectively defends against jailbreak attacks, outperforming baselines. Code is available at: https://github.com/pikepokenew/STAR_S.git.
comment: 19 pages,4 figures
VeRPO: Verifiable Dense Reward Policy Optimization for Code Generation
Effective reward design is a central challenge in Reinforcement Learning (RL) for code generation. Mainstream pass/fail outcome rewards enforce functional correctness via executing unit tests, but the resulting sparsity limits potential performance gains. While recent work has explored external Reward Models (RM) to generate richer, continuous rewards, the learned RMs suffer from reward misalignment and prohibitive computational cost. In this paper, we introduce \textbf{VeRPO} (\textbf{V}erifiable D\textbf{e}nse \textbf{R}eward \textbf{P}olicy \textbf{O}ptimization), a novel RL framework for code generation that synthesizes \textit{robust and dense rewards fully grounded in verifiable execution feedback}. The core idea of VeRPO is constructing dense rewards from weighted partial success: by dynamically estimating the difficulty weight of each unit test based on the execution statistics during training, a dense reward is derived from the sum of weights of the passed unit tests. To solidify the consistency between partial success and end-to-end functional correctness, VeRPO further integrates the dense signal with global execution outcomes, establishing a robust and dense reward paradigm relying solely on verifiable execution feedback. Extensive experiments across diverse benchmarks and settings demonstrate that VeRPO consistently outperforms outcome-driven and RM-based baselines, achieving up to +8.83\% gain in pass@1 with negligible time cost (< 0.02\%) and zero GPU memory overhead.
Variance Computation for Weighted Model Counting with Knowledge Compilation Approach AAAI 2026
One of the most important queries in knowledge compilation is weighted model counting (WMC), which has been applied to probabilistic inference on various models, such as Bayesian networks. In practical situations on inference tasks, the model's parameters have uncertainty because they are often learned from data, and thus we want to compute the degree of uncertainty in the inference outcome. One possible approach is to regard the inference outcome as a random variable by introducing distributions for the parameters and evaluate the variance of the outcome. Unfortunately, the tractability of computing such a variance is hardly known. Motivated by this, we consider the problem of computing the variance of WMC and investigate this problem's tractability. First, we derive a polynomial time algorithm to evaluate the WMC variance when the input is given as a structured d-DNNF. Second, we prove the hardness of this problem for structured DNNFs, d-DNNFs, and FBDDs, which is intriguing because the latter two allow polynomial time WMC algorithms. Finally, we show an application that measures the uncertainty in the inference of Bayesian networks. We empirically show that our algorithm can evaluate the variance of the marginal probability on real-world Bayesian networks and analyze the impact of the variances of parameters on the variance of the marginal.
comment: 25 pages; accepted for AAAI 2026 main track
A Reinforcement Learning-Based Model for Mapping and Goal-Directed Navigation Using Multiscale Place Fields
Autonomous navigation in complex and partially observable environments remains a central challenge in robotics. Several bio-inspired models of mapping and navigation based on place cells in the mammalian hippocampus have been proposed. This paper introduces a new robust model that employs parallel layers of place fields at multiple spatial scales, a replay-based reward mechanism, and dynamic scale fusion. Simulations show that the model improves path efficiency and accelerates learning compared to single-scale baselines, highlighting the value of multiscale spatial representations for adaptive robot navigation.
comment: 11 pages, 8 figures. Submitted to IEEE Transactions on Cognitive and Developmental Systems
Mem-Gallery: Benchmarking Multimodal Long-Term Conversational Memory for MLLM Agents
Long-term memory is a critical capability for multimodal large language model (MLLM) agents, particularly in conversational settings where information accumulates and evolves over time. However, existing benchmarks either evaluate multi-session memory in text-only conversations or assess multimodal understanding within localized contexts, failing to evaluate how multimodal memory is preserved, organized, and evolved across long-term conversational trajectories. Thus, we introduce Mem-Gallery, a new benchmark for evaluating multimodal long-term conversational memory in MLLM agents. Mem-Gallery features high-quality multi-session conversations grounded in both visual and textual information, with long interaction horizons and rich multimodal dependencies. Building on this dataset, we propose a systematic evaluation framework that assesses key memory capabilities along three functional dimensions: memory extraction and test-time adaptation, memory reasoning, and memory knowledge management. Extensive benchmarking across thirteen memory systems reveals several key findings, highlighting the necessity of explicit multimodal information retention and memory organization, the persistent limitations in memory reasoning and knowledge management, as well as the efficiency bottleneck of current models.
comment: 34 pages, 18 figures
Deploy-Master: Automating the Deployment of 50,000+ Agent-Ready Scientific Tools in One Day
Open-source scientific software is abundant, yet most tools remain difficult to compile, configure, and reuse, sustaining a small-workshop mode of scientific computing. This deployment bottleneck limits reproducibility, large-scale evaluation, and the practical integration of scientific tools into modern AI-for-Science (AI4S) and agentic workflows. We present Deploy-Master, a one-stop agentic workflow for large-scale tool discovery, build specification inference, execution-based validation, and publication. Guided by a taxonomy spanning 90+ scientific and engineering domains, our discovery stage starts from a recall-oriented pool of over 500,000 public repositories and progressively filters it to 52,550 executable tool candidates under license- and quality-aware criteria. Deploy-Master transforms heterogeneous open-source repositories into runnable, containerized capabilities grounded in execution rather than documentation claims. In a single day, we performed 52,550 build attempts and constructed reproducible runtime environments for 50,112 scientific tools. Each successful tool is validated by a minimal executable command and registered in SciencePedia for search and reuse, enabling direct human use and optional agent-based invocation. Beyond delivering runnable tools, we report a deployment trace at the scale of 50,000 tools, characterizing throughput, cost profiles, failure surfaces, and specification uncertainty that become visible only at scale. These results explain why scientific software remains difficult to operationalize and motivate shared, observable execution substrates as a foundation for scalable AI4S and agentic science.
Bootstrapping Code Translation with Weighted Multilanguage Exploration
Code translation across multiple programming languages is essential yet challenging due to two vital obstacles: scarcity of parallel data paired with executable test oracles, and optimization imbalance when handling diverse language pairs. We propose BootTrans, a bootstrapping method that resolves both obstacles. Its key idea is to leverage the functional invariance and cross-lingual portability of test suites, adapting abundant pivot-language unit tests to serve as universal verification oracles for multilingual RL training. Our method introduces a dual-pool architecture with seed and exploration pools to progressively expand training data via execution-guided experience collection. Furthermore, we design a language-aware weighting mechanism that dynamically prioritizes harder translation directions based on relative performance across sibling languages, mitigating optimization imbalance. Extensive experiments on the HumanEval-X and TransCoder-Test benchmarks demonstrate substantial improvements over baseline LLMs across all translation directions, with ablations validating the effectiveness of both bootstrapping and weighting components.
IntroLM: Introspective Language Models via Prefilling-Time Self-Evaluation
A major challenge for the operation of large language models (LLMs) is how to predict whether a specific LLM will produce sufficiently high-quality output for a given query. Existing approaches rely on external classifiers, most commonly BERT based models, which suffer from limited context windows, constrained representational capacity, and additional computational overhead. We propose IntroLM, a method that enables causal language models to predict their own output quality during the prefilling phase without affecting generation using introspective tokens. By introducing token conditional LoRA that activates only for the introspective token, the model learns to predict the output quality for a given query while preserving the original backbone behavior and avoiding external evaluators. On question answering benchmarks, IntroLM applied to Qwen3 8B achieves a ROC AUC of 90 precent for success prediction, outperforming a DeBERTa classifier by 14 precent. When integrated into multi model routing systems, IntroLM achieves superior cost performance tradeoffs, reducing latency by up to 33 precent and large model usage by up to 50 precent at matched reliability.
Evolving Programmatic Skill Networks
We study continual skill acquisition in open-ended embodied environments where an agent must construct, refine, and reuse an expanding library of executable skills. We introduce the Programmatic Skill Network (PSN), a framework in which skills are executable symbolic programs forming a compositional network that evolves through experience. PSN defines three core mechanisms instantiated via large language models: (1)REFLECT for structured fault localization over skill compositions, (2) progressive optimization with maturity-aware update gating that stabilizes reliable skills while maintaining plasticity for uncertain ones, and (3) canonical structural refactoring under rollback validation that maintains network compactness. We further show that PSN's learning dynamics exhibit structural parallels to neural network training. Experiments on MineDojo and Crafter demonstrate robust skill reuse, rapid adaptation, and strong generalization across open-ended task distributions.\footnote{We plan to open-source the code.
Reasoning Pattern Alignment Merging for Adaptive Reasoning
Recent large reasoning models (LRMs) have made substantial progress in complex reasoning tasks, yet they often generate lengthy reasoning paths for every query, incurring unnecessary computation and latency. Existing speed-up approaches typically rely on retraining the model or designing sophisticated prompting, which are either prohibitively expensive or highly sensitive to the input and prompt formulation. In this work, we study model merging as a lightweight alternative for efficient reasoning: by combining a long chain-of-thought (Long-CoT) reasoning model with a Short-CoT instruction model, we obtain an adaptive reasoner without training from scratch or requiring large-scale additional data. Building on this idea, we propose Reasoning Pattern Alignment Merging (RPAM), a layer-wise model merging framework based on feature alignment to facilitate query-adaptive reasoning. RPAM first constructs a small pattern-labeled calibration set that assigns each query an appropriate reasoning pattern. It then optimizes layer-wise merging coefficients by aligning the merged model's intermediate representations with those of the selected model, while a contrastive objective explicitly pushes them away from the non-selected model. Experiments on seven widely used reasoning benchmarks show that RPAM substantially reduces inference cost while maintaining strong performance. Upon article acceptance, we will provide open-source code to reproduce experiments for RPAM.
comment: 16 pages, 4 figures
Beyond Perplexity: A Lightweight Benchmark for Knowledge Retention in Supervised Fine-Tuning
Supervised Fine-Tuning (SFT) is a standard approach for injecting domain knowledge into Large Language Models (LLMs). However, relying on validation perplexity to monitor training is often insufficient, as it confounds stylistic mimicry with genuine factual internalization. To address this, we introduce the Knowledge Retention (KR) Test , a lightweight, corpus-grounded evaluation framework designed to distinguish factual learning from linguistics. KR-Test utilizes automatically generated contrastive examples to measure likelihood preferences for correct versus incorrect continuations, requiring no instruction tuning or generative decoding. We validate the framework's integrity through a "blind vs. oracle" baseline analysis. Furthermore, we demonstrate the diagnostic capabilities of KR-Test by analyzing the training dynamics of Low-Rank Adaptation (LoRA). By exposing the fine-grained dissociation between linguistic convergence and knowledge retention, KR-Test enhances the interpretability of fine-tuning dynamics.
SDCD: Structure-Disrupted Contrastive Decoding for Mitigating Hallucinations in Large Vision-Language Models
Large Vision-Language Models (LVLMs) demonstrate significant progress in multimodal understanding and reasoning, yet object hallucination remains a critical challenge. While existing research focuses on mitigating language priors or high-level statistical biases, they often overlook the internal complexities of the visual encoding process. We identify that visual statistical bias, arising from the inherent Bag-of-Patches behavior of Vision Encoders under weak structural supervision, acts as a contributing factor of object hallucinations. Under this bias, models prioritize local texture features within individual patches over holistic geometric structures. This tendency may induce spurious visual confidence and result in hallucinations. To address this, we introduce a training-free algorithm called Structure-Disrupted Contrastive Decoding (SDCD), which performs contrastive calibration of the output distribution by introducing a shuffled structure-disrupted view. By penalizing tokens that maintain high confidence under this structure-less view, SDCD effectively suppresses the texture-driven bias. Experimental results demonstrate that SDCD significantly mitigates hallucinations across multiple benchmarks and enhances the overall multimodal capabilities of LVLMs.
Cyberattack Detection in Virtualized Microgrids Using LightGBM and Knowledge-Distilled Classifiers
Modern microgrids depend on distributed sensing and communication interfaces, making them increasingly vulnerable to cyber physical disturbances that threaten operational continuity and equipment safety. In this work, a complete virtual microgrid was designed and implemented in MATLAB/Simulink, integrating heterogeneous renewable sources and secondary controller layers. A structured cyberattack framework was developed using MGLib to inject adversarial signals directly into the secondary control pathways. Multiple attack classes were emulated, including ramp, sinusoidal, additive, coordinated stealth, and denial of service behaviors. The virtual environment was used to generate labeled datasets under both normal and attack conditions. The datasets trained Light Gradient Boosting Machine (LightGBM) models to perform two functions: detecting the presence of an intrusion (binary) and distinguishing among attack types (multiclass). The multiclass model attained 99.72% accuracy and a 99.62% F1 score, while the binary model attained 94.8% accuracy and a 94.3% F1 score. A knowledge-distillation step reduced the size of the multiclass model, allowing faster predictions with only a small drop in performance. Real-time tests showed a processing delay of about 54 to 67 ms per 1000 samples, demonstrating suitability for CPU-based edge deployment in microgrid controllers. The results confirm that lightweight machine learning based intrusion detection methods can provide fast, accurate, and efficient cyberattack detection without relying on complex deep learning models. Key contributions include: (1) development of a complete MATLAB-based virtual microgrid, (2) structured attack injection at the control layer, (3) creation of multiclass labeled datasets, and (4) design of low-cost AI models suitable for practical microgrid cybersecurity.
comment: 12 pages
Submodular Evaluation Subset Selection in Automatic Prompt Optimization
Automatic prompt optimization reduces manual prompt engineering, but relies on task performance measured on a small, often randomly sampled evaluation subset as its main source of feedback signal. Despite this, how to select that evaluation subset is usually treated as an implementation detail. We study evaluation subset selection for prompt optimization from a principled perspective and propose SESS, a submodular evaluation subset selection method. We frame selection as maximizing an objective set function and show that, under mild conditions, it is monotone and submodular, enabling greedy selection with theoretical guarantees. Across GSM8K, MATH, and GPQA-Diamond, submodularly selected evaluation subsets can yield better optimized prompts than random or heuristic baselines.
CroBIM-U: Uncertainty-Driven Referring Remote Sensing Image Segmentation
Referring remote sensing image segmentation aims to localize specific targets described by natural language within complex overhead imagery. However, due to extreme scale variations, dense similar distractors, and intricate boundary structures, the reliability of cross-modal alignment exhibits significant \textbf{spatial non-uniformity}. Existing methods typically employ uniform fusion and refinement strategies across the entire image, which often introduces unnecessary linguistic perturbations in visually clear regions while failing to provide sufficient disambiguation in confused areas. To address this, we propose an \textbf{uncertainty-guided framework} that explicitly leverages a pixel-wise \textbf{referring uncertainty map} as a spatial prior to orchestrate adaptive inference. Specifically, we introduce a plug-and-play \textbf{Referring Uncertainty Scorer (RUS)}, which is trained via an online error-consistency supervision strategy to interpretably predict the spatial distribution of referential ambiguity. Building on this prior, we design two plug-and-play modules: 1) \textbf{Uncertainty-Gated Fusion (UGF)}, which dynamically modulates language injection strength to enhance constraints in high-uncertainty regions while suppressing noise in low-uncertainty ones; and 2) \textbf{Uncertainty-Driven Local Refinement (UDLR)}, which utilizes uncertainty-derived soft masks to focus refinement on error-prone boundaries and fine details. Extensive experiments demonstrate that our method functions as a unified, plug-and-play solution that significantly improves robustness and geometric fidelity in complex remote sensing scenes without altering the backbone architecture.
Personalization of Large Foundation Models for Health Interventions AAAI 2026
Large foundation models (LFMs) transform healthcare AI in prevention, diagnostics, and treatment. However, whether LFMs can provide truly personalized treatment recommendations remains an open question. Recent research has revealed multiple challenges for personalization, including the fundamental generalizability paradox: models achieving high accuracy in one clinical study perform at chance level in others, demonstrating that personalization and external validity exist in tension. This exemplifies broader contradictions in AI-driven healthcare: the privacy-performance paradox, scale-specificity paradox, and the automation-empathy paradox. As another challenge, the degree of causal understanding required for personalized recommendations, as opposed to mere predictive capacities of LFMs, remains an open question. N-of-1 trials -- crossover self-experiments and the gold standard for individual causal inference in personalized medicine -- resolve these tensions by providing within-person causal evidence while preserving privacy through local experimentation. Despite their impressive capabilities, this paper argues that LFMs cannot replace N-of-1 trials. We argue that LFMs and N-of-1 trials are complementary: LFMs excel at rapid hypothesis generation from population patterns using multimodal data, while N-of-1 trials excel at causal validation for a given individual. We propose a hybrid framework that combines the strengths of both to enable personalization and navigate the identified paradoxes: LFMs generate ranked intervention candidates with uncertainty estimates, which trigger subsequent N-of-1 trials. Clarifying the boundary between prediction and causation and explicitly addressing the paradoxical tensions are essential for responsible AI integration in personalized medicine.
comment: Accepted to the AAAI 2026 Workshop on Personalization in the Era of Large Foundation Models (PerFM)
Efficient Sequential Recommendation for Long Term User Interest Via Personalization
Recent years have witnessed success of sequential modeling, generative recommender, and large language model for recommendation. Though the scaling law has been validated for sequential models, it showed inefficiency in computational capacity when considering real-world applications like recommendation, due to the non-linear(quadratic) increasing nature of the transformer model. To improve the efficiency of the sequential model, we introduced a novel approach to sequential recommendation that leverages personalization techniques to enhance efficiency and performance. Our method compresses long user interaction histories into learnable tokens, which are then combined with recent interactions to generate recommendations. This approach significantly reduces computational costs while maintaining high recommendation accuracy. Our method could be applied to existing transformer based recommendation models, e.g., HSTU and HLLM. Extensive experiments on multiple sequential models demonstrate its versatility and effectiveness. Source code is available at \href{https://github.com/facebookresearch/PerSRec}{https://github.com/facebookresearch/PerSRec}.
comment: ICDM 2025
Online Decision-Making Under Uncertainty for Vehicle-to-Building Systems
Vehicle-to-building (V2B) systems integrate physical infrastructures, such as smart buildings and electric vehicles (EVs) connected to chargers at the building, with digital control mechanisms to manage energy use. By utilizing EVs as flexible energy reservoirs, buildings can dynamically charge and discharge them to optimize energy use and cut costs under time-variable pricing and demand charge policies. This setup leads to the V2B optimization problem, where buildings coordinate EV charging and discharging to minimize total electricity costs while meeting users' charging requirements. However, the V2B optimization problem is challenging because of: (1) fluctuating electricity pricing, which includes both energy charges ($/kWh) and demand charges ($/kW); (2) long planning horizons (typically over 30 days); (3) heterogeneous chargers with varying charging rates, controllability, and directionality (i.e., unidirectional or bidirectional); and (4) user-specific battery levels at departure to ensure user requirements are met. In contrast to existing approaches that often model this setting as a single-shot combinatorial optimization problem, we highlight critical limitations in prior work and instead model the V2B optimization problem as a Markov decision process (MDP), i.e., a stochastic control process. Solving the resulting MDP is challenging due to the large state and action spaces. To address the challenges of the large state space, we leverage online search, and we counter the action space by using domain-specific heuristics to prune unpromising actions. We validate our approach in collaboration with Nissan Advanced Technology Center - Silicon Valley. Using data from their EV testbed, we show that the proposed framework significantly outperforms state-of-the-art methods.
comment: 17 pages, 2 figures, 10 tables. Published in the Proceedings of the 16th ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS '25), May 06--09, 2025, Irvine, CA, USA
CPGPrompt: Translating Clinical Guidelines into LLM-Executable Decision Support
Clinical practice guidelines (CPGs) provide evidence-based recommendations for patient care; however, integrating them into Artificial Intelligence (AI) remains challenging. Previous approaches, such as rule-based systems, face significant limitations, including poor interpretability, inconsistent adherence to guidelines, and narrow domain applicability. To address this, we develop and validate CPGPrompt, an auto-prompting system that converts narrative clinical guidelines into large language models (LLMs). Our framework translates CPGs into structured decision trees and utilizes an LLM to dynamically navigate them for patient case evaluation. Synthetic vignettes were generated across three domains (headache, lower back pain, and prostate cancer) and distributed into four categories to test different decision scenarios. System performance was assessed on both binary specialty-referral decisions and fine-grained pathway-classification tasks. The binary specialty referral classification achieved consistently strong performance across all domains (F1: 0.85-1.00), with high recall (1.00 $\pm$ 0.00). In contrast, multi-class pathway assignment showed reduced performance, with domain-specific variations: headache (F1: 0.47), lower back pain (F1: 0.72), and prostate cancer (F1: 0.77). Domain-specific performance differences reflected the structure of each guideline. The headache guideline highlighted challenges with negation handling. The lower back pain guideline required temporal reasoning. In contrast, prostate cancer pathways benefited from quantifiable laboratory tests, resulting in more reliable decision-making.
SegNSP: Revisiting Next Sentence Prediction for Linear Text Segmentation
Linear text segmentation is a long-standing problem in natural language processing (NLP), focused on dividing continuous text into coherent and semantically meaningful units. Despite its importance, the task remains challenging due to the complexity of defining topic boundaries, the variability in discourse structure, and the need to balance local coherence with global context. These difficulties hinder downstream applications such as summarization, information retrieval, and question answering. In this work, we introduce SegNSP, framing linear text segmentation as a next sentence prediction (NSP) task. Although NSP has largely been abandoned in modern pre-training, its explicit modeling of sentence-to-sentence continuity makes it a natural fit for detecting topic boundaries. We propose a label-agnostic NSP approach, which predicts whether the next sentence continues the current topic without requiring explicit topic labels, and enhance it with a segmentation-aware loss combined with harder negative sampling to better capture discourse continuity. Unlike recent proposals that leverage NSP alongside auxiliary topic classification, our approach avoids task-specific supervision. We evaluate our model against established baselines on two datasets, CitiLink-Minutes, for which we establish the first segmentation benchmark, and WikiSection. On CitiLink-Minutes, SegNSP achieves a B-$F_1$ of 0.79, closely aligning with human-annotated topic transitions, while on WikiSection it attains a B-F$_1$ of 0.65, outperforming the strongest reproducible baseline, TopSeg, by 0.17 absolute points. These results demonstrate competitive and robust performance, highlighting the effectiveness of modeling sentence-to-sentence continuity for improving segmentation quality and supporting downstream NLP applications.
Merging Triggers, Breaking Backdoors: Defensive Poisoning for Instruction-Tuned Language Models
Large Language Models (LLMs) have greatly advanced Natural Language Processing (NLP), particularly through instruction tuning, which enables broad task generalization without additional fine-tuning. However, their reliance on large-scale datasets-often collected from human or web sources-makes them vulnerable to backdoor attacks, where adversaries poison a small subset of data to implant hidden behaviors. Despite this growing risk, defenses for instruction-tuned models remain underexplored. We propose MB-Defense (Merging & Breaking Defense Framework), a novel training pipeline that immunizes instruction-tuned LLMs against diverse backdoor threats. MB-Defense comprises two stages: (i) defensive poisoning, which merges attacker and defensive triggers into a unified backdoor representation, and (ii) weight recovery, which breaks this representation through additional training to restore clean behavior. Extensive experiments across multiple LLMs show that MB-Defense substantially lowers attack success rates while preserving instruction-following ability. Our method offers a generalizable and data-efficient defense strategy, improving the robustness of instruction-tuned LLMs against unseen backdoor attacks.
comment: 14 pages, 8 figures
SpectraFormer: an Attention-Based Raman Unmixing Tool for Accessing the Graphene Buffer-Layer Signature on SiC
Raman spectroscopy is a key tool for graphene characterization, yet its application to graphene grown on silicon carbide (SiC) is strongly limited by the intense and variable second-order Raman response of the substrate. This limitation is critical for buffer layer graphene, a semiconducting interfacial phase, whose vibrational signatures are overlapped with the SiC background and challenging to be reliably accessed using conventional reference-based subtraction, due to strong spatial and experimental variability of the substrate signal. Here we present SpectraFormer, a transformer-based deep learning model that reconstructs the SiC Raman substrate contribution directly from post-growth partially masked spectroscopic data without relying on explicit reference measurements. By learning global correlations across the entire Raman shift range, the model captures the statistical structure of the SiC background and enables accurate reconstruction of its contribution in mixed spectra. Subtraction of the reconstructed substrate signal reveals weak vibrational features associated with ZLG that are inaccessible through conventional analysis methods. The extracted spectra are validated by ab initio vibrational calculations, allowing assignment of the resolved features to specific modes and confirming their physical consistency. By leveraging a state-of-the-art attention-based deep learning architecture, this approach establishes a robust, reference-free framework for Raman analysis of graphene on SiC and provides a foundation, compatible with real-time data acquisition, to its integration into automated, closed-loop AI-assisted growth optimization.
comment: 14 pages, 4 figures, 1 table
Accommodation and Epistemic Vigilance: A Pragmatic Account of Why LLMs Fail to Challenge Harmful Beliefs
Large language models (LLMs) frequently fail to challenge users' harmful beliefs in domains ranging from medical advice to social reasoning. We argue that these failures can be understood and addressed pragmatically as consequences of LLMs defaulting to accommodating users' assumptions and exhibiting insufficient epistemic vigilance. We show that social and linguistic factors known to influence accommodation in humans (at-issueness, linguistic encoding, and source reliability) similarly affect accommodation in LLMs, explaining performance differences across three safety benchmarks that test models' ability to challenge harmful beliefs, spanning misinformation (Cancer-Myth, SAGE-Eval) and sycophancy (ELEPHANT). We further show that simple pragmatic interventions, such as adding the phrase "wait a minute", significantly improve performance on these benchmarks while preserving low false-positive rates. Our results highlight the importance of considering pragmatics for evaluating LLM behavior and improving LLM safety.
CRUNet-MR-Univ: A Foundation Model for Diverse Cardiac MRI Reconstruction
In recent years, deep learning has attracted increasing attention in the field of Cardiac MRI (CMR) reconstruction due to its superior performance over traditional methods, particularly in handling higher acceleration factors, highlighting its potential for real-world clinical applications. However, current deep learning methods remain limited in generalizability. CMR scans exhibit wide variability in image contrast, sampling patterns, scanner vendors, anatomical structures, and disease types. Most existing models are designed to handle only a single or narrow subset of these variations, leading to performance degradation when faced with distribution shifts. Therefore, it is beneficial to develop a unified model capable of generalizing across diverse CMR scenarios. To this end, we propose CRUNet-MR-Univ, a foundation model that leverages spatio-temporal correlations and prompt-based priors to effectively handle the full diversity of CMR scans. Our approach consistently outperforms baseline methods across a wide range of settings, highlighting its effectiveness and promise.
comment: STACOM 2025
XGrammar 2: Dynamic and Efficient Structured Generation Engine for Agentic LLMs
Modern LLM agents are required to handle increasingly complex structured generation tasks, such as tool calling and conditional structured generation. These tasks are significantly more dynamic than predefined structures, posing new challenges to the current structured generation engines. In this paper, we propose XGrammar 2, a highly optimized structured generation engine for agentic LLMs. XGrammar 2 accelerates the mask generation for these dynamic structured generation tasks through a new dynamic dispatching semantics: TagDispatch. We further introduce a just-in-time (JIT) compilation method to reduce compilation time and a cross-grammar caching mechanism to leverage the common sub-structures across different grammars. Additionally, we extend the previous PDA-based mask generation algorithm to the Earley-parser-based one and design a repetition compression algorithm to handle repetition structures in grammars. Evaluation results show that XGrammar 2 can achieve more than 6x speedup over the existing structured generation engines. Integrated with an LLM inference engine, XGrammar 2 can handle dynamic structured generation tasks with near-zero overhead.
Transitive Expert Error and Routing Problems in Complex AI Systems
Domain expertise enhances judgment within boundaries but creates systematic vulnerabilities specifically at borders. We term this Transitive Expert Error (TEE), distinct from Dunning-Kruger effects, requiring calibrated expertise as precondition. Mechanisms enabling reliable within-domain judgment become liabilities when structural similarity masks causal divergence. Two core mechanisms operate: structural similarity bias causes experts to overweight surface features (shared vocabulary, patterns, formal structure) while missing causal architecture differences; authority persistence maintains confidence across competence boundaries through social reinforcement and metacognitive failures (experts experience no subjective uncertainty as pattern recognition operates smoothly on familiar-seeming inputs.) These mechanism intensify under three conditions: shared vocabulary masking divergent processes, social pressure for immediate judgment, and delayed feedback. These findings extend to AI routing architectures (MoE systems, multi-model orchestration, tool-using agents, RAG systems) exhibiting routing-induced failures (wrong specialist selected) and coverage-induced failures (no appropriate specialist exists). Both produce a hallucination phenotype: confident, coherent, structurally plausible but causally incorrect outputs at domain boundaries. In human systems where mechanisms are cognitive black boxes; AI architectures make them explicit and addressable. We propose interventions: multi-expert activation with disagreement detection (router level), boundary-aware calibration (specialist level), and coverage gap detection (training level). TEE has detectable signatures (routing patterns, confidence-accuracy dissociations, domain-inappropriate content) enabling monitoring and mitigation. What remains intractable in human cognition becomes addressable through architectural design.
comment: 31pp
Rate or Fate? RLV$^\varepsilon$R: Reinforcement Learning with Verifiable Noisy Rewards
Reinforcement learning with verifiable rewards (RLVR) is a simple but powerful paradigm for training LLMs: sample a completion, verify it, and update. In practice, however, the verifier is almost never clean--unit tests probe only limited corner cases; human and synthetic labels are imperfect; and LLM judges (e.g., RLAIF) are noisy and can be exploited--and this problem worsens on harder domains (especially coding) where tests are sparse and increasingly model-generated. We ask a pragmatic question: does the verification noise merely slow down the learning (rate), or can it flip the outcome (fate)? To address this, we develop an analytically tractable multi-armed bandit view of RLVR dynamics, instantiated with GRPO and validated in controlled experiments. Modeling false positives and false negatives and grouping completions into recurring reasoning modes yields a replicator-style (natural-selection) flow on the probability simplex. The dynamics decouples into within-correct-mode competition and a one-dimensional evolution for the mass on incorrect modes, whose drift is determined solely by Youden's index J=TPR-FPR. This yields a sharp phase transition: when J>0, the incorrect mass is driven toward extinction (learning); when J=0, the process is neutral; and when J<0, incorrect modes amplify until they dominate (anti-learning and collapse). In the learning regime J>0, noise primarily rescales convergence time ("rate, not fate"). Experiments on verifiable programming tasks under synthetic noise reproduce the predicted J=0 boundary. Beyond noise, the framework offers a general lens for analyzing RLVR stability, convergence, and algorithmic interventions.
From Preoperative CT to Postmastoidectomy Mesh Construction:1Mastoidectomy Shape Prediction for Cochlear Implant Surgery
Cochlear Implant (CI) surgery treats severe hearing loss by inserting an electrode array into the cochlea to stimulate the auditory nerve. An important step in this procedure is mastoidectomy, which removes part of the mastoid region of the temporal bone to provide surgical access. Accurate mastoidectomy shape prediction from preoperative imaging improves pre-surgical planning, reduces risks, and enhances surgical outcomes. Despite its importance, there are limited deep-learning-based studies regarding this topic due to the challenges of acquiring ground-truth labels. We address this gap by investigating self-supervised and weakly-supervised learning models to predict the mastoidectomy region without human annotations. We propose a hybrid self-supervised and weakly-supervised learning framework to predict the mastoidectomy region directly from preoperative CT scans, where the mastoid remains intact. Our hybrid method achieves a mean Dice score of 0.72 when predicting the complex and boundary-less mastoidectomy shape, surpassing state-of-the-art approaches and demonstrating strong performance. The method provides groundwork for constructing 3D postmastoidectomy surfaces directly from the corresponding preoperative CT scans. To our knowledge, this is the first work that integrating self-supervised and weakly-supervised learning for mastoidectomy shape prediction, offering a robust and efficient solution for CI surgical planning while leveraging 3D T-distribution loss in weakly-supervised medical imaging.
comment: arXiv admin note: substantial text overlap with arXiv:2505.18368
3D-Agent:Tri-Modal Multi-Agent Collaboration for Scalable 3D Object Annotation NeurIPS 2025
Driven by applications in autonomous driving robotics and augmented reality 3D object annotation presents challenges beyond 2D annotation including spatial complexity occlusion and viewpoint inconsistency Existing approaches based on single models often struggle to address these issues effectively We propose Tri MARF a novel framework that integrates tri modal inputs including 2D multi view images textual descriptions and 3D point clouds within a multi agent collaborative architecture to enhance large scale 3D annotation Tri MARF consists of three specialized agents a vision language model agent for generating multi view descriptions an information aggregation agent for selecting optimal descriptions and a gating agent that aligns textual semantics with 3D geometry for refined captioning Extensive experiments on Objaverse LVIS Objaverse XL and ABO demonstrate that Tri MARF substantially outperforms existing methods achieving a CLIPScore of 88 point 7 compared to prior state of the art methods retrieval accuracy of 45 point 2 and 43 point 8 on ViLT R at 5 and a throughput of up to 12000 objects per hour on a single NVIDIA A100 GPU
comment: Accepted at NeurIPS 2025
Balancing Usability and Compliance in AI Smart Devices: A Privacy-by-Design Audit of Google Home, Alexa, and Siri
This paper investigates the privacy and usability of AI-enabled smart devices commonly used by youth, focusing on Google Home Mini, Amazon Alexa, and Apple Siri. While these devices provide convenience and efficiency, they also raise privacy and transparency concerns due to their always-listening design and complex data management processes. The study proposes and applies a combined framework of Heuristic Evaluation, Personal Information Protection and Electronic Documents Act (PIPEDA) Compliance Assessment, and Youth-Centered Usability Testing to assess whether these devices align with Privacy-by-Design principles and support meaningful user control. Results show that Google Home achieved the highest usability score, while Siri scored highest in regulatory compliance, indicating a trade-off between user convenience and privacy protection. Alexa demonstrated clearer task navigation but weaker transparency in data retention. Findings suggest that although youth may feel capable of managing their data, their privacy self-efficacy remains limited by technical design, complex settings, and unclear data policies. The paper concludes that enhancing transparency, embedding privacy guidance during onboarding, and improving policy alignment are critical steps toward ensuring that smart devices are both usable and compliant with privacy standards that protect young users.
Convenience vs. Control: A Qualitative Study of Youth Privacy with Smart Voice Assistants
Smart voice assistants (SVAs) are embedded in the daily lives of youth, yet their privacy controls often remain opaque and difficult to manage. Through five semi-structured focus groups (N=26) with young Canadians (ages 16-24), we investigate how perceived privacy risks (PPR) and benefits (PPBf) intersect with algorithmic transparency and trust (ATT) and privacy self-efficacy (PSE) to shape privacy-protective behaviors (PPB). Our analysis reveals that policy overload, fragmented settings, and unclear data retention undermine self-efficacy and discourage protective actions. Conversely, simple transparency cues were associated with greater confidence without diminishing the utility of hands-free tasks and entertainment. We synthesize these findings into a qualitative model in which transparency friction erodes PSE, which in turn weakens PPB. From this model, we derive actionable design guidance for SVAs, including a unified privacy hub, plain-language "data nutrition" labels, clear retention defaults, and device-conditional micro-tutorials. This work foregrounds youth perspectives and offers a path for SVA governance and design that empowers young digital citizens while preserving convenience.
comment: To appear in the IEEE CCWC 2026 proceedings
Assessing the quality and coherence of word embeddings after SCM-based intersectional bias mitigation
Static word embeddings often absorb social biases from the text they learn from, and those biases can quietly shape downstream systems. Prior work that uses the Stereotype Content Model (SCM) has focused mostly on single-group bias along warmth and competence. We broaden that lens to intersectional bias by building compound representations for pairs of social identities through summation or concatenation, and by applying three debiasing strategies: Subtraction, Linear Projection, and Partial Projection. We study three widely used embedding families (Word2Vec, GloVe, and ConceptNet Numberbatch) and assess them with two complementary views of utility: whether local neighborhoods remain coherent and whether analogy behavior is preserved. Across models, SCM-based mitigation carries over well to the intersectional case and largely keeps the overall semantic landscape intact. The main cost is a familiar trade off: methods that most tightly preserve geometry tend to be more cautious about analogy behavior, while more assertive projections can improve analogies at the expense of strict neighborhood stability. Partial Projection is reliably conservative and keeps representations steady; Linear Projection can be more assertive; Subtraction is a simple baseline that remains competitive. The choice between summation and concatenation depends on the embedding family and the application goal. Together, these findings suggest that intersectional debiasing with SCM is practical in static embeddings, and they offer guidance for selecting aggregation and debiasing settings when balancing stability against analogy performance.
Enhanced-FQL($λ$), an Efficient and Interpretable RL with novel Fuzzy Eligibility Traces and Segmented Experience Replay
This paper introduces a fuzzy reinforcement learning framework, Enhanced-FQL($λ$), that integrates novel Fuzzified Eligibility Traces (FET) and Segmented Experience Replay (SER) into fuzzy Q-learning with Fuzzified Bellman Equation (FBE) for continuous control tasks. The proposed approach employs an interpretable fuzzy rule base instead of complex neural architectures, while maintaining competitive performance through two key innovations: a fuzzified Bellman equation with eligibility traces for stable multi-step credit assignment, and a memory-efficient segment-based experience replay mechanism for enhanced sample efficiency. Theoretical analysis proves the proposed method convergence under standard assumptions. Extensive evaluations in continuous control domains demonstrate that Enhanced-FQL($λ$) achieves superior sample efficiency and reduced variance compared to n-step fuzzy TD and fuzzy SARSA($λ$) baselines, while maintaining substantially lower computational complexity than deep RL alternatives such as DDPG. The framework's inherent interpretability, combined with its computational efficiency and theoretical convergence guarantees, makes it particularly suitable for safety-critical applications where transparency and resource constraints are essential.
comment: Submitted to ECC26 conference
SciFig: Towards Automating Scientific Figure Generation
Creating high-quality figures and visualizations for scientific papers is a time-consuming task that requires both deep domain knowledge and professional design skills. Despite over 2.5 million scientific papers published annually, the figure generation process remains largely manual. We introduce $\textbf{SciFig}$, an end-to-end AI agent system that generates publication-ready pipeline figures directly from research paper texts. SciFig uses a hierarchical layout generation strategy, which parses research descriptions to identify component relationships, groups related elements into functional modules, and generates inter-module connections to establish visual organization. Furthermore, an iterative chain-of-thought (CoT) feedback mechanism progressively improves layouts through multiple rounds of visual analysis and reasoning. We introduce a rubric-based evaluation framework that analyzes 2,219 real scientific figures to extract evaluation rubrics and automatically generates comprehensive evaluation criteria. SciFig demonstrates remarkable performance: achieving 70.1$\%$ overall quality on dataset-level evaluation and 66.2$\%$ on paper-specific evaluation, and consistently high scores across metrics such as visual clarity, structural organization, and scientific accuracy. SciFig figure generation pipeline and our evaluation benchmark will be open-sourced.
MiJaBench: Revealing Minority Biases in Large Language Models via Hate Speech Jailbreaking
Current safety evaluations of large language models (LLMs) create a dangerous illusion of universality, aggregating "Identity Hate" into scalar scores that mask systemic vulnerabilities against specific populations. To expose this selective safety, we introduce MiJaBench, a bilingual (English and Portuguese) adversarial benchmark comprising 44,000 prompts across 16 minority groups. By generating 528,000 prompt-response pairs from 12 state-of-the-art LLMs, we curate MiJaBench-Align, revealing that safety alignment is not a generalized semantic capability but a demographic hierarchy: defense rates fluctuate by up to 33\% within the same model solely based on the target group. Crucially, we demonstrate that model scaling exacerbates these disparities, suggesting that current alignment techniques do not create principle of non-discrimination but reinforces memorized refusal boundaries only for specific groups, challenging the current scaling laws of security. We release all datasets and scripts to encourage research into granular demographic alignment at GitHub.
comment: 8 pages, 5 figures and 4 tables in paper (without appendix)
LLM-Guided Lifecycle-Aware Clustering of Multi-Turn Customer Support Conversations
Clustering customer chat data is vital for cloud providers handling multi service queries. Traditional methods struggle with overlapping concerns and create broad, static clusters that degrade over time. Reclustering disrupts continuity, making issue tracking difficult. We propose an adaptive system that segments multi turn chats into service specific concerns and incrementally refines clusters as new issues arise. Cluster quality is tracked via DaviesBouldin Index and Silhouette Scores, with LLM based splitting applied only to degraded clusters. Our method improves Silhouette Scores by over 100\% and reduces DBI by 65.6\% compared to baselines, enabling scalable, real time analytics without full reclustering.
comment: Accepted in AACL 2025 Main Conference
The Language of Bargaining: Linguistic Effects in LLM Negotiations
Negotiation is a core component of social intelligence, requiring agents to balance strategic reasoning, cooperation, and social norms. Recent work shows that LLMs can engage in multi-turn negotiation, yet nearly all evaluations occur exclusively in English. Using controlled multi-agent simulations across Ultimatum, Buy-Sell, and Resource Exchange games, we systematically isolate language effects across English and four Indic framings (Hindi, Punjabi, Gujarati, Marwadi) by holding game rules, model parameters, and incentives constant across all conditions. We find that language choice can shift outcomes more strongly than changing models, reversing proposer advantages and reallocating surplus. Crucially, effects are task-contingent: Indic languages reduce stability in distributive games yet induce richer exploration in integrative settings. Our results demonstrate that evaluating LLM negotiation solely in English yields incomplete and potentially misleading conclusions. These findings caution against English-only evaluation of LLMs and suggest that culturally-aware evaluation is essential for fair deployment.
comment: Under Review
Few-Shot LoRA Adaptation of a Flow-Matching Foundation Model for Cross-Spectral Object Detection
Foundation models for vision are predominantly trained on RGB data, while many safety-critical applications rely on non-visible modalities such as infrared (IR) and synthetic aperture radar (SAR). We study whether a single flow-matching foundation model pre-trained primarily on RGB images can be repurposed as a cross-spectral translator using only a few co-measured examples, and whether the resulting synthetic data can enhance downstream detection. Starting from FLUX.1 Kontext, we insert low-rank adaptation (LoRA) modules and fine-tune them on just 100 paired images per domain for two settings: RGB to IR on the KAIST dataset and RGB to SAR on the M4-SAR dataset. The adapted model translates RGB images into pixel-aligned IR/SAR, enabling us to reuse existing bounding boxes and train object detection models purely in the target modality. Across a grid of LoRA hyperparameters, we find that LPIPS computed on only 50 held-out pairs is a strong proxy for downstream performance: lower LPIPS consistently predicts higher mAP for YOLOv11n on both IR and SAR, and for DETR on KAIST IR test data. Using the best LPIPS-selected LoRA adapter, synthetic IR from external RGB datasets (LLVIP, FLIR ADAS) improves KAIST IR pedestrian detection, and synthetic SAR significantly boosts infrastructure detection on M4-SAR when combined with limited real SAR. Our results suggest that few-shot LoRA adaptation of flow-matching foundation models is a promising path toward foundation-style support for non-visible modalities.
Disco-RAG: Discourse-Aware Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) has emerged as an important means of enhancing the performance of large language models (LLMs) in knowledge-intensive tasks. However, most existing RAG strategies treat retrieved passages in a flat and unstructured way, which prevents the model from capturing structural cues and constrains its ability to synthesize knowledge from dispersed evidence across documents. To overcome these limitations, we propose Disco-RAG, a discourse-aware framework that explicitly injects discourse signals into the generation process. Our method constructs intra-chunk discourse trees to capture local hierarchies and builds inter-chunk rhetorical graphs to model cross-passage coherence. These structures are jointly integrated into a planning blueprint that conditions the generation. Experiments on question answering and long-document summarization benchmarks show the efficacy of our approach. Disco-RAG achieves state-of-the-art results on the benchmarks without fine-tuning. These findings underscore the important role of discourse structure in advancing RAG systems.
Graph Integrated Transformers for Community Detection in Social Networks
Community detection is crucial for applications like targeted marketing and recommendation systems. Traditional methods rely on network structure, and embedding-based models integrate semantic information. However, there is a challenge when a model leverages local and global information from complex structures like social networks. Graph Neural Networks (GNNs) and Transformers have shown superior performance in capturing local and global relationships. In this paper, We propose Graph Integrated Transformer for Community Detection (GIT-CD), a hybrid model combining GNNs and Transformer-based attention mechanisms to enhance community detection in social networks. Specifically, the GNN module captures local graph structures, while the Transformer module models long-range dependencies. A self-optimizing clustering module refines community assignments using K-Means, silhouette loss, and KL divergence minimization. Experimental results on benchmark datasets show that GIT-CD outperforms state-of-the-art models, making it a robust approach for detecting meaningful communities in complex social networks.
comment: Paper accepted at IEEE GLOBECOM 2025
Causally-Aware Information Bottleneck for Domain Adaptation
We tackle a common domain adaptation setting in causal systems. In this setting, the target variable is observed in the source domain but is entirely missing in the target domain. We aim to impute the target variable in the target domain from the remaining observed variables under various shifts. We frame this as learning a compact, mechanism-stable representation. This representation preserves information relevant for predicting the target while discarding spurious variation. For linear Gaussian causal models, we derive a closed-form Gaussian Information Bottleneck (GIB) solution. This solution reduces to a canonical correlation analysis (CCA)-style projection and offers Directed Acyclic Graph (DAG)-aware options when desired. For nonlinear or non-Gaussian data, we introduce a Variational Information Bottleneck (VIB) encoder-predictor. This approach scales to high dimensions and can be trained on source data and deployed zero-shot to the target domain. Across synthetic and real datasets, our approach consistently attains accurate imputations, supporting practical use in high-dimensional causal models and furnishing a unified, lightweight toolkit for causal domain adaptation.
comment: An extended abstract version of this work was accepted for the Proceedings of the 25th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2026)
UNIC: Learning Unified Multimodal Extrinsic Contact Estimation
Contact-rich manipulation requires reliable estimation of extrinsic contacts-the interactions between a grasped object and its environment which provide essential contextual information for planning, control, and policy learning. However, existing approaches often rely on restrictive assumptions, such as predefined contact types, fixed grasp configurations, or camera calibration, that hinder generalization to novel objects and deployment in unstructured environments. In this paper, we present UNIC, a unified multimodal framework for extrinsic contact estimation that operates without any prior knowledge or camera calibration. UNIC directly encodes visual observations in the camera frame and integrates them with proprioceptive and tactile modalities in a fully data-driven manner. It introduces a unified contact representation based on scene affordance maps that captures diverse contact formations and employs a multimodal fusion mechanism with random masking, enabling robust multimodal representation learning. Extensive experiments demonstrate that UNIC performs reliably. It achieves a 9.6 mm average Chamfer distance error on unseen contact locations, performs well on unseen objects, remains robust under missing modalities, and adapts to dynamic camera viewpoints. These results establish extrinsic contact estimation as a practical and versatile capability for contact-rich manipulation.
Summary of The Inaugural Music Source Restoration Challenge
Music Source Restoration (MSR) aims to recover original, unprocessed instrument stems from professionally mixed and degraded audio, requiring the reversal of both production effects and real-world degradations. We present the inaugural MSR Challenge, which features objective evaluation on studio-produced mixtures using Multi-Mel-SNR, Zimtohrli, and FAD-CLAP, alongside subjective evaluation on real-world degraded recordings. Five teams participated in the challenge. The winning system achieved 4.46 dB Multi-Mel-SNR and 3.47 MOS-Overall, corresponding to relative improvements of 91% and 18% over the second-place system, respectively. Per-stem analysis reveals substantial variation in restoration difficulty across instruments, with bass averaging 4.59 dB across all teams, while percussion averages only 0.29 dB. The dataset, evaluation protocols, and baselines are available at https://msrchallenge.com/.
Unified Text-Image Generation with Weakness-Targeted Post-Training
Unified multimodal generation architectures that jointly produce text and images have recently emerged as a promising direction for text-to-image (T2I) synthesis. However, many existing systems rely on explicit modality switching, generating reasoning text before switching manually to image generation. This separate, sequential inference process limits cross-modal coupling and prohibits automatic multimodal generation. This work explores post-training to achieve fully unified text-image generation, where models autonomously transition from textual reasoning to visual synthesis within a single inference process. We examine the impact of joint text-image generation on T2I performance and the relative importance of each modality during post-training. We additionally explore different post-training data strategies, showing that a targeted dataset addressing specific limitations achieves superior results compared to broad image-caption corpora or benchmark-aligned data. Using offline, reward-weighted post-training with fully self-generated synthetic data, our approach enables improvements in multimodal image generation across four diverse T2I benchmarks, demonstrating the effectiveness of reward-weighting both modalities and strategically designed post-training data.
Pilot Study on Student Public Opinion Regarding GAI
The emergence of generative AI (GAI) has sparked diverse opinions regarding its appropriate use across various domains, including education. This pilot study investigates university students' perceptions of GAI in higher education classrooms, aiming to lay the groundwork for understanding these attitudes. With a participation rate of approximately 4.4%, the study highlights the challenges of engaging students in GAI-related research and underscores the need for larger sample sizes in future studies. By gaining insights into student perspectives, instructors can better prepare to integrate discussions of GAI into their classrooms, fostering informed and critical engagement with this transformative technology.
comment: 7 pages, 8 figures
ParaCodex: A Profiling-Guided Autonomous Coding Agent for Reliable Parallel Code Generation and Translation
Parallel programming is central to HPC and AI, but producing code that is correct and fast remains challenging, especially for OpenMP GPU offload, where data movement and tuning dominate. Autonomous coding agents can compile, test, and profile on target hardware, but outputs are brittle without domain scaffolding. We present ParaCodex, an HPC-engineer workflow that turns a Codex-based agent into an autonomous OpenMP GPU offload system using staged hotspot analysis, explicit data planning, correctness gating, and profiling-guided refinement. We evaluate translation from serial CPU kernels to OpenMP GPU offload kernels on HeCBench, Rodinia, and NAS. After excluding five kernels, ParaCodex succeeded on all 31 valid kernels. The generated kernels improved GPU time over reference OpenMP implementations in 25/31 cases, achieving geometric-mean speedups of 3x on HeCBench and 5x on Rodinia, and outperforming a zero-shot Codex baseline on all suites. We also evaluate CUDA to OpenMP offload translation on ParEval, where ParaCodex maintains high compilation and validation rates in code-only and end-to-end settings.
FedDUAL: A Dual-Strategy with Adaptive Loss and Dynamic Aggregation for Mitigating Data Heterogeneity in Federated Learning
Federated Learning (FL) marks a transformative approach to distributed model training by combining locally optimized models from various clients into a unified global model. While FL preserves data privacy by eliminating centralized storage, it encounters significant challenges such as performance degradation, slower convergence, and reduced robustness of the global model due to the heterogeneity in client data distributions. Among the various forms of data heterogeneity, label skew emerges as a particularly formidable and prevalent issue, especially in domains such as image classification. To address these challenges, we begin with comprehensive experiments to pinpoint the underlying issues in the FL training process. Based on our findings, we then introduce an innovative dual-strategy approach designed to effectively resolve these issues. First, we introduce an adaptive loss function for client-side training, meticulously crafted to preserve previously acquired knowledge while maintaining an optimal equilibrium between local optimization and global model coherence. Secondly, we develop a dynamic aggregation strategy for aggregating client models at the server. This approach adapts to each client's unique learning patterns, effectively addressing the challenges of diverse data across the network. Our comprehensive evaluation, conducted across three diverse real-world datasets, coupled with theoretical convergence guarantees, demonstrates the superior efficacy of our method compared to several established state-of-the-art approaches.
comment: Transactions on Machine Learning Research (TMLR)
Exploring Iterative Controllable Summarization with Large Language Models
Large language models (LLMs) have demonstrated remarkable performance in abstractive summarization tasks. However, their ability to precisely control summary attributes (e.g., length or topic) remains underexplored, limiting their adaptability to specific user preferences. In this paper, we systematically explore the controllability of LLMs. To this end, we revisit summary attribute measurements and introduce iterative evaluation metrics, failure rate and average iteration count to precisely evaluate controllability of LLMs, rather than merely assessing errors. Our findings show that LLMs struggle more with numerical attributes than with linguistic attributes. To address this challenge, we propose a guide-to-explain framework (GTE) for controllable summarization. Our GTE framework enables the model to identify misaligned attributes in the initial draft and guides it in self-explaining errors in the previous output. By allowing the model to reflect on its misalignment, GTE generates well-adjusted summaries that satisfy the desired attributes with robust effectiveness, requiring surprisingly fewer iterations than other iterative approaches.
comment: EACL Findings 2026
Attention Needs to Focus: A Unified Perspective on Attention Allocation
The Transformer architecture, a cornerstone of modern Large Language Models (LLMs), has achieved extraordinary success in sequence modeling, primarily due to its attention mechanism. However, despite its power, the standard attention mechanism is plagued by well-documented issues: representational collapse and attention sink. Although prior work has proposed approaches for these issues, they are often studied in isolation, obscuring their deeper connection. In this paper, we present a unified perspective, arguing that both can be traced to a common root -- improper attention allocation. We identify two failure modes: 1) Attention Overload, where tokens receive comparable high weights, blurring semantic features that lead to representational collapse; 2) Attention Underload, where no token is semantically relevant, yet attention is still forced to distribute, resulting in spurious focus such as attention sink. Building on this insight, we introduce Lazy Attention, a novel mechanism designed for a more focused attention distribution. To mitigate overload, it employs positional discrimination across both heads and dimensions to sharpen token distinctions. To counteract underload, it incorporates Elastic-Softmax, a modified normalization function that relaxes the standard softmax constraint to suppress attention on irrelevant tokens. Experiments on the FineWeb-Edu corpus, evaluated across nine diverse benchmarks, demonstrate that Lazy Attention successfully mitigates attention sink and achieves competitive performance compared to both standard attention and modern architectures, while reaching up to 59.58% attention sparsity.
comment: preprint
Does Memory Need Graphs? A Unified Framework and Empirical Analysis for Long-Term Dialog Memory
Graph structures are increasingly used in dialog memory systems, but empirical findings on their effectiveness remain inconsistent, making it unclear which design choices truly matter. We present an experimental, system-oriented analysis of long-term dialog memory architectures. We introduce a unified framework that decomposes dialog memory systems into core components and supports both graph-based and non-graph approaches. Under this framework, we conduct controlled, stage-wise experiments on LongMemEval and HaluMem, comparing common design choices in memory representation, organization, maintenance, and retrieval. Our results show that many performance differences are driven by foundational system settings rather than specific architectural innovations. Based on these findings, we identify stable and reliable strong baselines for future dialog memory research.
Reward Is Enough: LLMs Are In-Context Reinforcement Learners
Reinforcement learning (RL) is a framework for solving sequential decision-making problems. In this work, we demonstrate that, surprisingly, RL emerges during the inference time of large language models (LLMs), a phenomenon we term in-context RL (ICRL). To reveal this capability, we introduce a simple multi-round prompting framework, we call ICRL prompting, for inference-time self-improvement. The goal of ICRL prompting is to guide LLMs to perform reinforcement learning during inference for self-improvement on a given task. After each response, the model receives numerical scalar feedback, denoted as a reward. In the next round, we prompt the LLM again together with a context that concatenates all prior responses and their associated rewards. We consistently observe that response quality improves as the context grows. In other words, the LLM can optimize scalar reward signals during inference, exhibiting behavior analogous to reinforcement learning. We evaluate ICRL prompting on Game of 24, creative writing, ScienceWorld, and Olympiad-level math competitions (AIME and HMMT), demonstrating significant improvements over baselines such as Self-Refine and Reflexion. Notably, even when the reward signals are generated by the same LLM, ICRL prompting still improves performance, highlighting a promising new paradigm for test-time scaling.
Low Resource Reconstruction Attacks Through Benign Prompts
Recent advances in generative models, such as diffusion models, have raised concerns related to privacy, copyright infringement, and data stewardship. To better understand and control these risks, prior work has introduced techniques and attacks that reconstruct images, or parts of images, from training data. While these results demonstrate that training data can be recovered, existing methods often rely on high computational resources, partial access to the training set, or carefully engineered prompts. In this work, we present a new attack that requires low resources, assumes little to no access to the training data, and identifies seemingly benign prompts that can lead to potentially risky image reconstruction. We further show that such reconstructions may occur unintentionally, even for users without specialized knowledge. For example, we observe that for one existing model, the prompt ``blue Unisex T-Shirt'' generates the face of a real individual. Moreover, by combining the identified vulnerabilities with real-world prompt data, we discover prompts that reproduce memorized visual elements. Our approach builds on insights from prior work and leverages domain knowledge to expose a fundamental vulnerability arising from the use of scraped e-commerce data, where templated layouts and images are closely tied to pattern-like textual prompts. The code for our attack is publicly available at https://github.com/TheSolY/lr-tmi.
S2Vec: Self-Supervised Geospatial Embeddings for the Built Environment
Scalable general-purpose representations of the built environment are crucial for geospatial artificial intelligence applications. This paper introduces S2Vec, a novel self-supervised framework for learning such geospatial embeddings. S2Vec uses the S2 Geometry library to partition large areas into discrete S2 cells, rasterizes built environment feature vectors within cells as images, and applies masked autoencoding on these rasterized images to encode the feature vectors. This approach yields task-agnostic embeddings that capture local feature characteristics and broader spatial relationships. We evaluate S2Vec on several large-scale geospatial prediction tasks, both random train/test splits (interpolation) and zero-shot geographic adaptation (extrapolation). Our experiments show S2Vec's competitive performance against several baselines on socioeconomic tasks, especially the geographic adaptation variant, with room for improvement on environmental tasks. We also explore combining S2Vec embeddings with image-based embeddings downstream, showing that such multimodal fusion can often improve performance. Our findings highlight how S2Vec can learn effective general-purpose geospatial representations of the built environment features it is provided, and how it can complement other data modalities in geospatial artificial intelligence.
User Perceptions of Privacy and Helpfulness in LLM Responses to Privacy-Sensitive Scenarios
Large language models (LLMs) are rapidly being adopted for tasks like drafting emails, summarizing meetings, and answering health questions. In these settings, users may need to share private information (e.g., contact details, health records). To evaluate LLMs' ability to identify and redact such information, prior work introduced real-life, scenario-based benchmarks (e.g., ConfAIde, PrivacyLens) and found that LLMs can leak private information in complex scenarios. However, these evaluations relied on proxy LLMs to judge the helpfulness and privacy-preservation quality of LLM responses, rather than directly measuring users' perceptions. To understand how users perceive the helpfulness and privacy-preservation quality of LLM responses to privacy-sensitive scenarios, we conducted a user study ($n=94$) using 90 PrivacyLens scenarios. We found that users had low agreement with each other when evaluating identical LLM responses. In contrast, five proxy LLMs reached high agreement, yet each proxy LLM had low correlation with users' evaluations. These results indicate that proxy LLMs cannot accurately estimate users' wide range of perceptions of utility and privacy in privacy-sensitive scenarios. We discuss the need for more user-centered studies to measure LLMs' ability to help users while preserving privacy, and for improving alignment between LLMs and users in estimating perceived privacy and utility.
Venus: An Efficient Edge Memory-and-Retrieval System for VLM-based Online Video Understanding
Vision-language models (VLMs) have demonstrated impressive multimodal comprehension capabilities and are being deployed in an increasing number of online video understanding applications. While recent efforts extensively explore advancing VLMs' reasoning power in these cases, deployment constraints are overlooked, leading to overwhelming system overhead in real-world deployments. To address that, we propose Venus, an on-device memory-and-retrieval system for efficient online video understanding. Venus proposes an edge-cloud disaggregated architecture that sinks memory construction and keyframe retrieval from cloud to edge, operating in two stages. In the ingestion stage, Venus continuously processes streaming edge videos via scene segmentation and clustering, where the selected keyframes are embedded with a multimodal embedding model to build a hierarchical memory for efficient storage and retrieval. In the querying stage, Venus indexes incoming queries from memory, and employs a threshold-based progressive sampling algorithm for keyframe selection that enhances diversity and adaptively balances system cost and reasoning accuracy. Our extensive evaluation shows that Venus achieves a 15x-131x speedup in total response latency compared to state-of-the-art methods, enabling real-time responses within seconds while maintaining comparable or even superior reasoning accuracy.
comment: Accepted by IEEE International Conference on Computer Communications 2026
Chain-of-Thought as a Lens: Evaluating Structured Reasoning Alignment between Human Preferences and Large Language Models
This paper primarily demonstrate a method to quantitatively assess the alignment between multi-step, structured reasoning in large language models and human preferences. We introduce the Alignment Score, a semantic-level metric that compares a model-produced chain of thought traces with a human-preferred reference by constructing semantic-entropy-based matrices over intermediate steps and measuring their divergence. Our analysis shows that Alignment Score tracks task accuracy across models and hop depths, and peaks at 2-hop reasoning. Empirical results further indicates that misalignment at greater reasoning depths is driven mainly by alignment errors such as thematic shift and redundant reasoning. Viewing chain sampling as drawing from a distribution over reasoning paths, we empirically demonstrate a strong and consistent correlation between Alignment Score and accuracy performance, supporting its use as a meaningful diagnostic signal for structured reasoning.
comment: Pre-print, 16 pages, 4 figures
EngTrace: A Symbolic Benchmark for Verifiable Process Supervision of Engineering Reasoning
Large Language Models (LLMs) are increasingly entering specialized, safety-critical engineering workflows governed by strict quantitative standards and immutable physical laws, making rigorous evaluation of their reasoning capabilities imperative. However, existing benchmarks such as MMLU, MATH, and HumanEval assess isolated cognitive skills, failing to capture the physically grounded reasoning central to engineering, where scientific principles, quantitative modeling, and practical constraints must converge. To enable verifiable process supervision in engineering, we introduce EngTrace, a symbolic benchmark comprising 90 templates across three major engineering branches, nine core domains and 20 distinct areas. Through domain-aware parameterization, we generate 1,350 unique, contamination-resistant test cases to stress-test generalization. Moving beyond outcome matching, we introduce a verifiable two-stage evaluation framework that uses a tiered protocol to validate intermediate reasoning traces alongside final answers through automated procedural checks and a heterogeneous AI Tribunal. Our evaluation of 24 leading LLMs reveals a distinct trade-off between numeric precision and trace fidelity, identifying a complexity cliff where abstract mathematical pre-training fails to translate into the integrative reasoning required for advanced engineering tasks.
comment: 22 pages, includes figures and tables; introduces the EngTrace benchmark
Uncertainty-Aware Robotic World Model Makes Offline Model-Based Reinforcement Learning Work on Real Robots
Reinforcement Learning (RL) has achieved impressive results in robotics, yet high-performing pipelines remain highly task-specific, with little reuse of prior data. Offline Model-based RL (MBRL) offers greater data efficiency by training policies entirely from existing datasets, but suffers from compounding errors and distribution shift in long-horizon rollouts. Although existing methods have shown success in controlled simulation benchmarks, robustly applying them to the noisy, biased, and partially observed datasets typical of real-world robotics remains challenging. We present a principled pipeline for making offline MBRL effective on physical robots. Our RWM-U extends autoregressive world models with epistemic uncertainty estimation, enabling temporally consistent multi-step rollouts with uncertainty effectively propagated over long horizons. We combine RWM-U with MOPO-PPO, which adapts uncertainty-penalized policy optimization to the stable, on-policy PPO framework for real-world control. We evaluate our approach on diverse manipulation and locomotion tasks in simulation and on real quadruped and humanoid, training policies entirely from offline datasets. The resulting policies consistently outperform model-free and uncertainty-unaware model-based baselines, and fusing real-world data in model learning further yields robust policies that surpass online model-free baselines trained solely in simulation.
FastV-RAG: Towards Fast and Fine-Grained Video QA with Retrieval-Augmented Generation
Vision-Language Models (VLMs) excel at visual reasoning but still struggle with integrating external knowledge. Retrieval-Augmented Generation (RAG) is a promising solution, but current methods remain inefficient and often fail to maintain high answer quality. To address these challenges, we propose VideoSpeculateRAG, an efficient VLM-based RAG framework built on two key ideas. First, we introduce a speculative decoding pipeline: a lightweight draft model quickly generates multiple answer candidates, which are then verified and refined by a more accurate heavyweight model, substantially reducing inference latency without sacrificing correctness. Second, we identify a major source of error - incorrect entity recognition in retrieved knowledge - and mitigate it with a simple yet effective similarity-based filtering strategy that improves entity alignment and boosts overall answer accuracy. Experiments demonstrate that VideoSpeculateRAG achieves comparable or higher accuracy than standard RAG approaches while accelerating inference by approximately 2x. Our framework highlights the potential of combining speculative decoding with retrieval-augmented reasoning to enhance efficiency and reliability in complex, knowledge-intensive multimodal tasks.
Relevance to Utility: Process-Supervised Rewrite for RAG
Retrieval-augmented generation systems often suffer from a gap between optimizing retrieval relevance and generative utility. With such a gap, retrieved documents may be topically relevant but still lack the content needed for effective reasoning during generation. While existing bridge modules attempt to rewrite the retrieved text for better generation, we show how they fail by not capturing "document utility". In this work, we propose R2U, with a key distinction of approximating true utility through joint observation of rewriting and answering in the reasoning process. To distill, R2U scale such supervision to enhance reliability in distillation. We further construct utility-improvement supervision by measuring the generator's gain of the answer under the rewritten context, yielding signals for fine-tuning and preference optimization. We evaluate our method across multiple open-domain question-answering benchmarks. The empirical results demonstrate consistent improvements over strong bridging baselines
SSSD: Simply-Scalable Speculative Decoding
Speculative Decoding has emerged as a popular technique for accelerating inference in Large Language Models. However, most existing approaches yield only modest improvements in production serving systems. Methods that achieve substantial speedups typically rely on an additional trained draft model or auxiliary model components, increasing deployment and maintenance complexity. This added complexity reduces flexibility, particularly when serving workloads shift to tasks, domains, or languages that are not well represented in the draft model's training data. We introduce Simply-Scalable Speculative Decoding (SSSD), a training-free method that combines lightweight n-gram matching with hardware-aware speculation. Relative to standard autoregressive decoding, SSSD reduces latency by up to 2.9x. It achieves performance on par with leading training-based approaches across a broad range of benchmarks, while requiring substantially lower adoption effort--no data preparation, training or tuning are needed--and exhibiting superior robustness under language and domain shift, as well as in long-context settings.
comment: 16 pages, 6 figures
VISTA: Mitigating Semantic Inertia in Video-LLMs via Training-Free Dynamic Chain-of-Thought Routing
Recent advancements in Large Language Models have successfully transitioned towards System 2 reasoning, yet applying these paradigms to video understanding remains challenging. While prevailing research attributes failures in Video-LLMs to perceptual limitations, our empirical analysis reveals a cognitive misalignment termed Semantic Inertia, where models suppress valid visual evidence in favor of dominant language priors. To rectify this, we propose VISTA, a training-free framework designed to align perception with logical deduction. By dynamically routing inference paths and materializing implicit visual features into explicit textual anchors, our approach effectively counterbalances the influence of parametric knowledge. Furthermore, we incorporate a Latent Reasoning Consensus mechanism to mitigate stochastic hallucinations. VISTA showed outstanding results on a wide range of benchmarks, and outperforms its base model by 9.3% on Egochema and 5.6% on VideoEspresso, rivalling or even surpassing larger and proprietary models. Our codebase will be publicly available soon.
comment: 19 pages, 7 figures
An Overview of Prototype Formulations for Interpretable Deep Learning
Prototypical part networks offer interpretable alternatives to black-box deep learning models by learning visual prototypes for classification. This work provides a comprehensive analysis of prototype formulations, comparing point-based and probabilistic approaches in both Euclidean and hyperspherical latent spaces. We introduce HyperPG, a probabilistic prototype representation using Gaussian distributions on hyperspheres. Experiments on CUB-200-2011, Stanford Cars, and Oxford Flowers datasets show that hyperspherical prototypes outperform standard Euclidean formulations. Critically, hyperspherical prototypes maintain competitive performance under simplified training schemes, while Euclidean prototypes require extensive hyperparameter tuning.
Big Reasoning with Small Models: Instruction Retrieval at Inference Time
Small language models (SLMs) enable low-cost, private, on-device inference, but they often fail on problems that require specialized domain knowledge or multi-step reasoning. Existing approaches for improving reasoning either rely on scale (e.g., chain-of-thought prompting), require task-specific training that limits reuse and generality (e.g., distillation), or retrieve unstructured information that still leaves the SLM to determine an appropriate reasoning strategy. We propose instruction retrieval, an inference-time intervention that augments an SLM with structured, reusable reasoning procedures rather than raw passages. We construct an Instruction Corpus by clustering similar training questions and using a teacher model to generate generalizable guides that pair domain background with explicit step-by-step procedures. At inference, the SLM retrieves the instructions most relevant to a given query and executes the associated procedures without any additional fine-tuning. Across three challenging domains: medicine, law, and mathematics, instruction retrieval yields consistent gains for models with at least 3B parameters, improving accuracy by 9.4%, 7.9%, and 5.1%, respectively, with the strongest 14B model surpassing GPT-4o's zero-shot performance on knowledge-intensive tasks.
Imagining and building wise machines: The centrality of AI metacognition
Although AI has become increasingly smart, its wisdom has not kept pace. In this article, we examine what is known about human wisdom and sketch a vision of its AI counterpart. We analyze human wisdom as a set of strategies for solving intractable problems-those outside the scope of analytic techniques-including both object-level strategies like heuristics [for managing problems] and metacognitive strategies like intellectual humility, perspective-taking, or context-adaptability [for managing object-level strategies]. We argue that AI systems particularly struggle with metacognition; improved metacognition would lead to AI more robust to novel environments, explainable to users, cooperative with others, and safer in risking fewer misaligned goals with human users. We discuss how wise AI might be benchmarked, trained, and implemented.
comment: 23 pages, 2 figures, 2 tables
Agentic Exploration of Physics Models
The process of scientific discovery relies on an interplay of observations, analysis, and hypothesis generation. Machine learning is increasingly being adopted to address individual aspects of this process. However, it remains an open challenge to fully automate the heuristic, iterative loop required to discover the laws of an unknown system by exploring it through experiments and analysis, without tailoring the approach to the specifics of a given task. Here, we introduce SciExplorer, an agent that leverages large language model tool-use capabilities to enable exploration of systems without any domain-specific blueprints, and apply it to physical systems that are initially unknown to the agent. We test SciExplorer on a broad set of models spanning mechanical dynamical systems, wave evolution, and quantum many-body physics. Despite using a minimal set of tools, primarily based on code execution, we observe impressive performance on tasks such as recovering equations of motion from observed dynamics and inferring Hamiltonians from expectation values. The demonstrated effectiveness of this setup opens the door towards similar scientific exploration in other domains, without the need for finetuning or task-specific instructions.
Interpretable Hybrid Machine Learning Models Using FOLD-R++ and Answer Set Programming
Machine learning (ML) techniques play a pivotal role in high-stakes domains such as healthcare, where accurate predictions can greatly enhance decision-making. However, most high-performing methods such as neural networks and ensemble methods are often opaque, limiting trust and broader adoption. In parallel, symbolic methods like Answer Set Programming (ASP) offer the possibility of interpretable logical rules but do not always match the predictive power of ML models. This paper proposes a hybrid approach that integrates ASP-derived rules from the FOLD-R++ algorithm with black-box ML classifiers to selectively correct uncertain predictions and provide human-readable explanations. Experiments on five medical reveal statistically significant performance gains in accuracy and F1 score. This study underscores the potential of combining symbolic reasoning with conventional ML to achieve high interpretability without sacrificing accuracy
comment: In Proceedings ICLP 2025, arXiv:2601.00047
FÆRDXEL: An Expert System for Danish Traffic Law
We present FÆRDXEL, a tool for symbolic reasoning in the domain of Danish traffic law. FÆRDXEL combines techniques from logic programming with a novel interface that allows users to navigate through its reasoning process, thereby ensuring the system's explainability. Towards the goal of better understanding the value of FÆRDXEL, two evaluations of the system have been performed: (1) An empirical evaluation showing that for a selection of court cases, the conclusions of FÆRDXEL align with those of Danish judges. (2) A qualitative evaluation from legal experts indicating that this work has potential to become a foundation for real-world AI tools supporting professionals in the Danish legal sector.
comment: In Proceedings ICLP 2025, arXiv:2601.00047
Computing Universal Plans for Partially Observable Multi-Agent Routing Using Answer Set Programming
Multi-agent routing problems have gained significant attention recently due to their wide range of industrial applications, ranging from logistics warehouse automation to indoor service robots. Conventionally, they are modeled as classical planning problems. In this paper, we argue that it can be beneficial to formulate them as universal planning problems, particularly when the agents are autonomous entities and may encounter unforeseen situations. We therefore propose universal plans, also known as policies, as the solution concept, and implement a system based on Answer Set Programming (ASP) to compute them. Given an arbitrary two-dimensional map and a profile of goals for a group of partially observable agents, the system translates the problem configuration into logic programs and finds a feasible universal plan for each agent, mapping its observations to actions while ensuring that there are no collisions with other agents. We use the system to conduct experiments and obtain findings regarding the types of goal profiles and environments that lead to feasible policies, as well as how feasibility may depend on the agents' sensors. We also demonstrate how users can customize action preferences to compute more efficient policies, even (near-)optimal ones. The code is available at https://github.com/Fernadoo/MAPF_ASP.
comment: In Proceedings ICLP 2025, arXiv:2601.00047
A Systematic Comparison between Extractive Self-Explanations and Human Rationales in Text Classification
Instruction-tuned LLMs are able to provide \textit{an} explanation about their output to users by generating self-explanations, without requiring the application of complex interpretability techniques. In this paper, we analyse whether this ability results in a \textit{good} explanation. We evaluate self-explanations in the form of input rationales with respect to their plausibility to humans. We study three text classification tasks: sentiment classification, forced labour detection and claim verification. We include Danish and Italian translations of the sentiment classification task and compare self-explanations to human annotations. For this, we collected human rationale annotations for Climate-Fever, a claim verification dataset. We furthermore evaluate the faithfulness of human and self-explanation rationales with respect to correct model predictions, and extend the study by incorporating post-hoc attribution-based explanations. We analyse four open-weight LLMs and find that alignment between self-explanations and human rationales highly depends on text length and task complexity. Nevertheless, self-explanations yield faithful subsets of token-level rationales, whereas post-hoc attribution methods tend to emphasize structural and formatting tokens, reflecting fundamentally different explanation strategies.
comment: preprint
The ASP-based Nurse Scheduling System at the University of Yamanashi Hospital
We present the design principles of a nurse scheduling system built using Answer Set Programming (ASP) and successfully deployed at the University of Yamanashi Hospital. Nurse scheduling is a complex optimization problem requiring the reconciliation of individual nurse preferences with hospital staffing needs across various wards. This involves balancing hard and soft constraints and the flexibility of interactive adjustments. While extensively studied in academia, real-world nurse scheduling presents unique challenges that go beyond typical benchmark problems and competitions. This paper details the practical application of ASP to address these challenges at the University of Yamanashi Hospital, focusing on the insights gained and the advancements in ASP technology necessary to effectively manage the complexities of real-world deployment.
comment: In Proceedings ICLP 2025, arXiv:2601.00047
A framework for Conditional Reasoning in Answer Set Programming
In this paper we introduce a Conditional Answer Set Programming framework (Conditional ASP) for the definition of conditional extensions of Answer Set Programming (ASP). The approach builds on a conditional logic with typicality, and on the combination of a conditional knowledge base with an ASP program, and allows for conditional reasoning over the answer sets of the program. The formalism relies on a multi-preferential semantics, and on the KLM preferential semantics, as a special case. Conditional entailment is encoded in ASP and a complexity upper-bound is provided.
comment: In Proceedings ICLP 2025, arXiv:2601.00047
VERUS-LM: a Versatile Framework for Combining LLMs with Symbolic Reasoning
A recent approach to neurosymbolic reasoning is to explicitly combine the strengths of large language models (LLMs) and symbolic solvers to tackle complex reasoning tasks. However, current approaches face significant limitations, including poor generalizability due to task-specific prompts, inefficiencies caused by the lack of separation between knowledge and queries, and restricted inferential capabilities. These shortcomings hinder their scalability and applicability across diverse domains. In this paper, we introduce VERUS-LM, a novel framework designed to address these challenges. VERUS-LM employs a generic prompting mechanism, clearly separates domain knowledge from queries, and supports a wide range of different logical reasoning tasks. This framework enhances adaptability, reduces computational cost, and allows for richer forms of reasoning, such as optimization and constraint satisfaction. We show that our approach succeeds in diverse reasoning on a novel dataset, markedly outperforming LLMs. Additionally, our system achieves competitive results on common reasoning benchmarks when compared to similar state-of-the-art approaches, and significantly surpasses them on the difficult AR-LSAT dataset. By pushing the boundaries of hybrid reasoning, VERUS-LM represents a significant step towards more versatile neurosymbolic AI systems.
comment: In Proceedings ICLP 2025, arXiv:2601.00047
Machine Learning Model Integration with Open World Temporal Logic for Process Automation
Recent advances in Machine Learning (ML) have produced models that extract structured information from complex data. However, a significant challenge lies in translating these perceptual or extractive outputs into actionable and explainable decisions within complex operational workflows. To address these challenges, this paper introduces a novel approach that integrates the outputs of various machine learning models directly with the PyReason framework, an open-world temporal logic programming reasoning engine. PyReason's foundation in generalized annotated logic allows for the incorporation of real-valued outputs (e.g., probabilities, confidence scores) from a diverse set of ML models, treating them as truth intervals within its logical framework. Crucially, PyReason provides mechanisms, implemented in Python, to continuously poll ML model outputs, convert them into logical facts, and dynamically recompute the minimal model to enable decision-making in real-time. Furthermore, its native support for temporal reasoning, knowledge graph integration, and fully explainable interface traces enables an analysis of time-sensitive process data and existing organizational knowledge. By combining the strengths of perception and extraction from ML models with the logical deduction and transparency of PyReason, we aim to create a powerful system for automating complex processes. This integration is well suited for use cases in numerous domains, including manufacturing, healthcare, and business operations.
comment: In Proceedings ICLP 2025, arXiv:2601.00047
An ASP-Based Framework for MUSes
Given an unsatisfiable formula, understanding the core reason for unsatisfiability is crucial in several applications. One effective way to capture this is through the minimal unsatisfiable subset (MUS), the subset-minimal set of clauses that remains unsatisfiable. Current research broadly focuses on two directions: (i) enumerating as many MUSes as possible within a given time limit, and (ii) counting the total number of MUSes for a given unsatisfiable formula. In this paper, we introduce an answer set programming-based framework, named MUS-ASP, designed for online enumeration of MUSes. ASP is a powerful tool for its strengths in knowledge representation and is particularly suitable for specifying complex combinatorial problems. By translating MUS enumeration into answer set solving, MUS-ASP leverages the computational efficiency of state-of-the-art ASP systems. Our extensive experimental evaluation demonstrates the effectiveness of MUS-ASP and highlights the acceleration in both MUS enumeration and counting tasks, particularly when integrated within hybrid solvers, including the framework proposed in this paper.
comment: In Proceedings ICLP 2025, arXiv:2601.00047
Rethinking Jailbreak Detection of Large Vision Language Models with Representational Contrastive Scoring
Large Vision-Language Models (LVLMs) are vulnerable to a growing array of multimodal jailbreak attacks, necessitating defenses that are both generalizable to novel threats and efficient for practical deployment. Many current strategies fall short, either targeting specific attack patterns, which limits generalization, or imposing high computational overhead. While lightweight anomaly-detection methods offer a promising direction, we find that their common one-class design tends to confuse novel benign inputs with malicious ones, leading to unreliable over-rejection. To address this, we propose Representational Contrastive Scoring (RCS), a framework built on a key insight: the most potent safety signals reside within the LVLM's own internal representations. Our approach inspects the internal geometry of these representations, learning a lightweight projection to maximally separate benign and malicious inputs in safety-critical layers. This enables a simple yet powerful contrastive score that differentiates true malicious intent from mere novelty. Our instantiations, MCD (Mahalanobis Contrastive Detection) and KCD (K-nearest Contrastive Detection), achieve state-of-the-art performance on a challenging evaluation protocol designed to test generalization to unseen attack types. This work demonstrates that effective jailbreak detection can be achieved by applying simple, interpretable statistical methods to the appropriate internal representations, offering a practical path towards safer LVLM deployment. Our code is available on Github https://github.com/sarendis56/Jailbreak_Detection_RCS.
comment: 37 pages, 13 figures
How Training Data Shapes the Use of Parametric and In-Context Knowledge in Language Models
Large language models leverage not only parametric knowledge acquired during training but also in-context knowledge provided at inference time, despite the absence of explicit training objectives for using both sources. Prior work has further shown that when these knowledge sources conflict, models resolve the tension based on their internal confidence, preferring parametric knowledge for high-confidence facts while deferring to contextual information for less familiar ones. However, the training conditions that give rise to such knowledge utilization behaviors remain unclear. To address this gap, we conduct controlled experiments in which we train language models while systematically manipulating key properties of the training data. Our results reveal a counterintuitive finding: three properties commonly regarded as detrimental must co-occur for robust knowledge utilization and conflict resolution to emerge: (i) intra-document repetition of information, (ii) a moderate degree of within-document inconsistency, and (iii) a skewed knowledge frequency distribution. We further validate that the same training dynamics observed in our controlled setting also arise during real-world language model pretraining, and we analyze how post-training procedures can reshape models' knowledge preferences. Together, our findings provide concrete empirical guidance for training language models that harmoniously integrate parametric and in-context knowledge.
comment: 16 pages
Neural Network Quantization for Microcontrollers: A Comprehensive Survey of Methods, Platforms, and Applications
The deployment of Quantized Neural Networks (QNNs) on resource-constrained edge devices, such as microcontrollers (MCUs), introduces fundamental challenges in balancing model performance, computational complexity, and memory constraints. Tiny Machine Learning (TinyML) addresses these issues by jointly advancing machine learning algorithms, hardware architectures, and software optimization techniques to enable deep neural network inference on embedded systems. This survey provides a hardware-oriented perspective on neural network quantization, systematically reviewing the quantization methods most relevant to MCUs and extreme-edge devices. Particular emphasis is placed on the critical trade-offs between model performance and the capabilities of MCU-class hardware, including memory hierarchies, numerical representations, and accelerator support. The survey further reviews contemporary MCU hardware platforms, including ARM-based and RISC-V-based designs, as well as MCUs integrating neural processing units (NPUs) for low-precision inference, together with the supporting software stacks. In addition, we analyze real-world deployments of quantized models on MCUs and consolidate the application domains in which such systems are used. Finally, we discuss open challenges and outline promising future directions toward scalable, energy-efficient, and sustainable AI deployment on edge devices.
comment: 40 pages, 16 figures, 8 Tables
DyBBT: Dynamic Balance via Bandit inspired Targeting for Dialog Policy with Cognitive Dual-Systems
Task oriented dialog systems often rely on static exploration strategies that do not adapt to dynamic dialog contexts, leading to inefficient exploration and suboptimal performance. We propose DyBBT, a novel dialog policy learning framework that formalizes the exploration challenge through a structured cognitive state space capturing dialog progression, user uncertainty, and slot dependency. DyBBT proposes a bandit inspired meta-controller that dynamically switches between a fast intuitive inference (System 1) and a slow deliberative reasoner (System 2) based on real-time cognitive states and visitation counts. Extensive experiments on single- and multi-domain benchmarks show that DyBBT achieves state-of-the-art performance in success rate, efficiency, and generalization, with human evaluations confirming its decisions are well aligned with expert judgment. Code is available at https://github.com/carsonz/DyBBT.
HiCoLoRA: Addressing Context-Prompt Misalignment via Hierarchical Collaborative LoRA for Zero-Shot DST
Zero-shot Dialog State Tracking (zs-DST) is essential for enabling Task-Oriented Dialog Systems (TODs) to generalize to new domains without costly data annotation. A central challenge lies in the semantic misalignment between dynamic dialog contexts and static prompts, leading to inflexible cross-layer coordination, domain interference, and catastrophic forgetting. To tackle this, we propose Hierarchical Collaborative Low-Rank Adaptation (HiCoLoRA), a framework that enhances zero-shot slot inference through robust prompt alignment. It features a hierarchical LoRA architecture for dynamic layer-specific processing (combining lower-layer heuristic grouping and higher-layer full interaction), integrates Spectral Joint Domain-Slot Clustering to identify transferable associations (feeding an Adaptive Linear Fusion Mechanism), and employs Semantic-Enhanced SVD Initialization (SemSVD-Init) to preserve pre-trained knowledge. Experiments on multi-domain datasets MultiWOZ and SGD show that HiCoLoRA outperforms baselines, achieving SOTA in zs-DST. Code is available at https://github.com/carsonz/HiCoLoRA.
Social Bias in Popular Question-Answering Benchmarks
Question-answering (QA) and reading comprehension (RC) benchmarks are commonly used for assessing the capabilities of large language models (LLMs) to retrieve and reproduce knowledge. However, we demonstrate that popular QA and RC benchmarks do not cover questions about different demographics or regions in a representative way. We perform a content analysis of 30 benchmark papers and a quantitative analysis of 20 respective benchmark datasets to learn (1) who is involved in the benchmark creation, (2) whether the benchmarks exhibit social bias, or whether this is addressed or prevented, and (3) whether the demographics of the creators and annotators correspond to particular biases in the content. Most benchmark papers analyzed provide insufficient information about those involved in benchmark creation, particularly the annotators. Notably, just one (WinoGrande) explicitly reports measures taken to address social representation issues. Moreover, the data analysis revealed gender, religion, and geographic biases across a wide range of encyclopedic, commonsense, and scholarly benchmarks. Our work adds to the mounting criticism of AI evaluation practices and shines a light on biased benchmarks being a potential source of LLM bias by incentivizing biased inference heuristics.
comment: Presented at the main track of the IJCNLP-AACL 2025 conference (Mumbai and Online)
A Hybrid Computational Intelligence Framework with Metaheuristic Optimization for Drug-Drug Interaction Prediction
Drug-drug interactions (DDIs) are a leading cause of preventable adverse events, often complicating treatment and increasing healthcare costs. At the same time, knowing which drugs do not interact is equally important, as such knowledge supports safer prescriptions and better patient outcomes. In this study, we propose an interpretable and efficient framework that blends modern machine learning with domain knowledge to improve DDI prediction. Our approach combines two complementary molecular embeddings - Mol2Vec, which captures fragment-level structural patterns, and SMILES-BERT, which learns contextual chemical features - together with a leakage-free, rule-based clinical score (RBScore) that injects pharmacological knowledge without relying on interaction labels. A lightweight neural classifier is then optimized using a novel three-stage metaheuristic strategy (RSmpl-ACO-PSO), which balances global exploration and local refinement for stable performance. Experiments on real-world datasets demonstrate that the model achieves high predictive accuracy (ROC-AUC 0.911, PR-AUC 0.867 on DrugBank) and generalizes well to a clinically relevant Type 2 Diabetes Mellitus cohort. Beyond raw performance, studies show how embedding fusion, RBScore, and the optimizer each contribute to precision and robustness. Together, these results highlight a practical pathway for building reliable, interpretable, and computationally efficient models that can support safer drug therapies and clinical decision-making.
comment: After further internal review, we identified that the methodological contribution claimed in Section 3 substantially overlaps with prior published work and lacks sufficient novel theoretical or empirical justification. As this affects the core contribution, the authors request withdrawal rather than replacement
Navigating Taxonomic Expansions of Entity Sets Driven by Knowledge Bases
Recognizing similarities among entities is central to both human cognition and computational intelligence. Within this broader landscape, Entity Set Expansion is one prominent task aimed at taking an initial set of (tuples of) entities and identifying additional ones that share relevant semantic properties with the former -- potentially repeating the process to form increasingly broader sets. However, this ``linear'' approach does not unveil the richer ``taxonomic'' structures present in knowledge resources. A recent logic-based framework introduces the notion of an expansion graph: a rooted directed acyclic graph where each node represents a semantic generalization labeled by a logical formula, and edges encode strict semantic inclusion. This structure supports taxonomic expansions of entity sets driven by knowledge bases. Yet, the potentially large size of such graphs may make full materialization impractical in real-world scenarios. To overcome this, we formalize reasoning tasks that check whether two tuples belong to comparable, incomparable, or the same nodes in the graph. Our results show that, under realistic assumptions -- such as bounding the input or limiting entity descriptions -- these tasks can be implemented efficiently. This enables local, incremental navigation of expansion graphs, supporting practical applications without requiring full graph construction.
MindWatcher: Toward Smarter Multimodal Tool-Integrated Reasoning
Traditional workflow-based agents exhibit limited intelligence when addressing real-world problems requiring tool invocation. Tool-integrated reasoning (TIR) agents capable of autonomous reasoning and tool invocation are rapidly emerging as a powerful approach for complex decision-making tasks involving multi-step interactions with external environments. In this work, we introduce MindWatcher, a TIR agent integrating interleaved thinking and multimodal chain-of-thought (CoT) reasoning. MindWatcher can autonomously decide whether and how to invoke diverse tools and coordinate their use, without relying on human prompts or workflows. The interleaved thinking paradigm enables the model to switch between thinking and tool calling at any intermediate stage, while its multimodal CoT capability allows manipulation of images during reasoning to yield more precise search results. We implement automated data auditing and evaluation pipelines, complemented by manually curated high-quality datasets for training, and we construct a benchmark, called MindWatcher-Evaluate Bench (MWE-Bench), to evaluate its performance. MindWatcher is equipped with a comprehensive suite of auxiliary reasoning tools, enabling it to address broad-domain multimodal problems. A large-scale, high-quality local image retrieval database, covering eight categories including cars, animals, and plants, endows model with robust object recognition despite its small size. Finally, we design a more efficient training infrastructure for MindWatcher, enhancing training speed and hardware utilization. Experiments not only demonstrate that MindWatcher matches or exceeds the performance of larger or more recent models through superior tool invocation, but also uncover critical insights for agent training, such as the genetic inheritance phenomenon in agentic RL.
comment: Technique Report
Multivariate Diffusion Transformer with Decoupled Attention for High-Fidelity Mask-Text Collaborative Facial Generation
While significant progress has been achieved in multimodal facial generation using semantic masks and textual descriptions, conventional feature fusion approaches often fail to enable effective cross-modal interactions, thereby leading to suboptimal generation outcomes. To address this challenge, we introduce MDiTFace--a customized diffusion transformer framework that employs a unified tokenization strategy to process semantic mask and text inputs, eliminating discrepancies between heterogeneous modality representations. The framework facilitates comprehensive multimodal feature interaction through stacked, newly designed multivariate transformer blocks that process all conditions synchronously. Additionally, we design a novel decoupled attention mechanism by dissociating implicit dependencies between mask tokens and temporal embeddings. This mechanism segregates internal computations into dynamic and static pathways, enabling caching and reuse of features computed in static pathways after initial calculation, thereby reducing additional computational overhead introduced by mask condition by over 94% while maintaining performance. Extensive experiments demonstrate that MDiTFace significantly outperforms other competing methods in terms of both facial fidelity and conditional consistency.
EquiTabPFN: A Target-Permutation Equivariant Prior Fitted Networks
Recent foundational models for tabular data, such as TabPFN, excel at adapting to new tasks via in-context learning, but remain constrained to a fixed, pre-defined number of target dimensions-often necessitating costly ensembling strategies. We trace this constraint to a deeper architectural shortcoming: these models lack target equivariance, so that permuting target dimension orderings alters their predictions. This deficiency gives rise to an irreducible "equivariance gap", an error term that introduces instability in predictions. We eliminate this gap by designing a fully target-equivariant architecture-ensuring permutation invariance via equivariant encoders, decoders, and a bi-attention mechanism. Empirical evaluation on standard classification benchmarks shows that, on datasets with more classes than those seen during pre-training, our model matches or surpasses existing methods while incurring lower computational overhead.
ELAIPBench: A Benchmark for Expert-Level Artificial Intelligence Paper Understanding
While large language models (LLMs) excel at many domain-specific tasks, their ability to deeply comprehend and reason about full-length academic papers remains underexplored. Existing benchmarks often fall short of capturing such depth, either due to surface-level question design or unreliable evaluation metrics. To address this gap, we introduce ELAIPBench, a benchmark curated by domain experts to evaluate LLMs' comprehension of artificial intelligence (AI) research papers. Developed through an incentive-driven, adversarial annotation process, ELAIPBench features 403 multiple-choice questions from 137 papers. It spans three difficulty levels and emphasizes non-trivial reasoning rather than shallow retrieval. Our experiments show that the best-performing LLM achieves an accuracy of only 39.95%, far below human performance. Moreover, we observe that frontier LLMs equipped with a thinking mode or a retrieval-augmented generation (RAG) system fail to improve final results-even harming accuracy due to overthinking or noisy retrieval. These findings underscore the significant gap between current LLM capabilities and genuine comprehension of academic papers.
comment: 24 pages, 21 figures
FormuLLA: A Large Language Model Approach to Generating Novel 3D Printable Formulations
Pharmaceutical three-dimensional (3D) printing is an advanced fabrication technology with the potential to enable truly personalised dosage forms. Recent studies have integrated artificial intelligence (AI) to accelerate formulation and process development, drastically transforming current approaches to pharmaceutical 3D printing. To date, most AI-driven efforts remain narrowly focused, while failing to account for the broader formulation challenges inherent to the technology. Recent advances in AI have introduced artificial general intelligence concepts, wherein systems extend beyond conventional predictive modelling toward more generalised, human-like reasoning. In this work, we investigate the application of large language models (LLMs), fine-tuned on a fused deposition modelling (FDM) dataset comprising over 1400 formulations, to recommend suitable excipients based on active pharmaceutical ingredient (API) dose, and predict filament mechanical properties. Four LLM architectures were fine-tuned, with systematic evaluation of both fine-tuning and generative parameter configurations. Our results demonstrate that Llama2 was best suited for recommending excipients for FDM formulations. Additionally, model selection and parameterisation significantly influence performance, with smaller LLMs exhibiting instances of catastrophic forgetting. Furthermore, we demonstrate: (i) even with relatively small dataset of over 1400 formulations, it can lead to model catastrophic forgetting; (ii) standard LLM metrics only evaluate linguistic performance but not formulation processability; and (iii) LLMs trained on biomedically-related data do not always produce the best results. Addressing these challenges is essential to advancing LLMs beyond linguistic proficiency and toward reliable systems for pharmaceutical formulation development.
Towards the Terminator Economy: Assessing Job Exposure to AI through LLMs IJCAI 2025
AI and related technologies are reshaping jobs and tasks, either by automating or augmenting human skills in the workplace. Many researchers have been working on estimating if and to what extent jobs and tasks are exposed to the risk of being automatized by AI-related technologies. Our work tackles this issue through a data-driven approach by: (i) developing a reproducible framework that uses cutting-edge open-source large language models to assess the current capabilities of AI and robotics in performing job-related tasks; (ii) formalizing and computing a measure of AI exposure by occupation, the Task Exposure to AI (TEAI) index, and a measure of Task Replacement by AI (TRAI), both validated through a human user evaluation and compared with the state of the art. Our results show that the TEAI index is positively correlated with cognitive, problem-solving and management skills, while it is negatively correlated with social skills. Applying the index to the US, we obtain that about one-third of US employment is highly exposed to AI, primarily in high-skill jobs requiring a graduate or postgraduate level of education. We also find that AI exposure is positively associated with both employment and wage growth in 2003-2023, suggesting that AI has an overall positive effect on productivity. Considering specifically the TRAI index, we find that even in high-skill occupations, AI exhibits high variability in task substitution, suggesting that AI and humans complement each other within the same occupation, while the allocation of tasks within occupations is likely to change. All results, models, and code are freely available online to allow the community to reproduce our results, compare outcomes, and use our work as a benchmark to monitor AI's progress over time.
comment: 10 pages. Accepted for publication at IJCAI 2025. Final version available at https://doi.org/10.24963/ijcai.2025/1066
Benchmarking Content-Based Puzzle Solvers on Corrupted Jigsaw Puzzles
Content-based puzzle solvers have been extensively studied, demonstrating significant progress in computational techniques. However, their evaluation often lacks realistic challenges crucial for real-world applications, such as the reassembly of fragmented artefacts or shredded documents. In this work, we investigate the robustness of State-Of-The-Art content-based puzzle solvers introducing three types of jigsaw puzzle corruptions: missing pieces, eroded edges, and eroded contents. Evaluating both heuristic and deep learning-based solvers, we analyse their ability to handle these corruptions and identify key limitations. Our results show that solvers developed for standard puzzles have a rapid decline in performance if more pieces are corrupted. However, deep learning models can significantly improve their robustness through fine-tuning with augmented data. Notably, the advanced Positional Diffusion model adapts particularly well, outperforming its competitors in most experiments. Based on our findings, we highlight promising research directions for enhancing the automated reconstruction of real-world artefacts.
Alpamayo-R1: Bridging Reasoning and Action Prediction for Generalizable Autonomous Driving in the Long Tail
End-to-end architectures trained via imitation learning have advanced autonomous driving by scaling model size and data, yet performance remains brittle in safety-critical long-tail scenarios where supervision is sparse and causal understanding is limited. We introduce Alpamayo-R1 (AR1), a vision-language-action model (VLA) that integrates Chain of Causation reasoning with trajectory planning for complex driving scenarios. Our approach features three key innovations: (1) the Chain of Causation (CoC) dataset, built through a hybrid auto-labeling and human-in-the-loop pipeline producing decision-grounded, causally linked reasoning traces aligned with driving behaviors; (2) a modular VLA architecture combining Cosmos-Reason, a vision-language model pre-trained for Physical AI, with a diffusion-based trajectory decoder that generates dynamically feasible trajectories in real time; (3) a multi-stage training strategy using supervised fine-tuning to elicit reasoning and reinforcement learning (RL) to enforce reasoning-action consistency and optimize reasoning quality. AR1 achieves up to a 12% improvement in planning accuracy on challenging cases compared to a trajectory-only baseline, with a 35% reduction in close encounter rate in closed-loop simulation. RL post-training improves reasoning quality by 45% and reasoning-action consistency by 37%. Model scaling from 0.5B to 7B parameters shows consistent improvements. On-vehicle road tests confirm real-time performance (99 ms latency) and successful urban deployment. By bridging interpretable reasoning with precise control, AR1 demonstrates a practical path towards Level 4 autonomous driving. Model weights are available at https://huggingface.co/nvidia/Alpamayo-R1-10B with inference code at https://github.com/NVlabs/alpamayo.
Beyond Scaling: Measuring and Predicting the Upper Bound of Knowledge Retention in Language Model Pre-Training
The GPT-4 technical report suggests that downstream performance can be predicted from pre-training signals, but offers little methodological detail on how to quantify this. This work address this gap by modeling knowledge retention, the capacity of a pre-trained language model to memorize factual information from its corpus, and introduce a principled method to estimate it prior to training. We propose Size-dependent Mutual Information (SMI), an information-theoretic predictor that integrates knowledge frequency, knowledge specificity, and model size to forecast closed-book question answering (QA) accuracy. SMI is validated through large-scale document retrieval over the disclosed pre-training corpora of 21 public and 3 custom models, combined with a robust multi-template QA evaluation. Experiments show that SMI significantly outperforms repetition-based baselines and achieves $R^2$ > 0.7 in predicting QA accuracy for models above 1B parameters, without additional training. The analysis further reveals diminishing returns from scaling data and model size and provides evidence for an intrinsic upper bound on knowledge retention achievable by pre-training alone, motivating retrieval and other augmentation strategies. The dataset and code are available at https://github.com/yuhui1038/SMI.
Beyond Direct Generation: A Decomposed Approach to Well-Crafted Screenwriting with LLMs
The screenplay serves as the foundation for television production, defining narrative structure, character development, and dialogue. While Large Language Models (LLMs) show great potential in creative writing, direct end-to-end generation approaches often fail to produce well-crafted screenplays. We argue this failure stems from forcing a single model to simultaneously master two disparate capabilities: creative narrative construction and rigid format adherence. The resulting outputs may mimic superficial style but lack the deep structural integrity and storytelling substance required for professional use. To enable LLMs to generate high-quality screenplays, we introduce Dual-Stage Refinement (DSR), a decomposed framework that decouples creative narrative generation from format conversion. The first stage transforms a brief outline into rich, novel-style prose. The second stage refines this narrative into a professionally formatted screenplay. This separation enables the model to specialize in one distinct capability at each stage. A key challenge in implementing DSR is the scarcity of paired outline-to-novel training data. We address this through hybrid data synthesis: reverse synthesis deconstructs existing screenplays into structured inputs, while forward synthesis leverages these inputs to generate high-quality narrative texts as training targets. Blind evaluations by professional screenwriters show that DSR achieves a 75% win rate against strong baselines like Gemini-2.5-Pro and reaches 82.7% of human-level performance. Our work demonstrates that decomposed generation architecture with tailored data synthesis effectively specializes LLMs in complex creative domains.
OnlineMate: An LLM-Based Multi-Agent Companion System for Cognitive Support in Online Learning
In online learning environments, students often lack personalized peer interactions, which are crucial for cognitive development and learning engagement. Although previous studies have employed large language models (LLMs) to simulate interactive learning environments, these interactions are limited to conversational exchanges, failing to adapt to learners' individualized cognitive and psychological states. As a result, students' engagement is low and they struggle to gain inspiration. To address this challenge, we propose OnlineMate, a multi-agent learning companion system driven by LLMs integrated with Theory of Mind (ToM). OnlineMate simulates peer-like roles, infers learners' psychological states such as misunderstandings and confusion during collaborative discussions, and dynamically adjusts interaction strategies to support higher-order thinking. Comprehensive evaluations, including simulation-based experiments, human assessments, and real classroom trials, demonstrate that OnlineMate significantly promotes deep learning and cognitive engagement by elevating students' average cognitive level while substantially improving emotional engagement scores.
comment: work in progress
Web Fraud Attacks Against LLM-Driven Multi-Agent Systems
With the proliferation of LLM-driven multi-agent systems (MAS), the security of Web links has become a critical concern. Once MAS is induced to trust a malicious link, attackers can use it as a springboard to expand the attack surface. In this paper, we propose Web Fraud Attacks, a novel type of attack manipulating unique structures of web links to deceive MAS. We design 12 representative attack variants that encompass various methods, such as homoglyph deception, sub-directory nesting, and parameter obfuscation. Through extensive experiments on these attack vectors, we demonstrate that Web fraud attacks not only exhibit significant destructive potential across different MAS architectures but also possess a distinct advantage in evasion: they circumvent the need for complex input design, lowering the threshold for attacks significantly. These results underscore the importance of addressing Web fraud attacks, providing new insights into MAS safety. Our code is available at https://github.com/JiangYingEr/Web-Fraud-Attack-in-MAS.
LAG: Logic-Augmented Generation from a Cartesian Perspective
Large language models (LLMs) have demonstrated remarkable capabilities across a wide range of tasks, yet exhibit critical limitations in knowledge-intensive tasks, often generating hallucinations when faced with questions requiring specialized expertise. While retrieval-augmented generation (RAG) mitigates this by integrating external knowledge, it struggles with complex reasoning scenarios due to its reliance on direct semantic retrieval and lack of structured logical organization. Inspired by Cartesian principles from \textit{Discours de la méthode}, this paper introduces Logic-Augmented Generation (LAG), a novel paradigm that reframes knowledge augmentation through systematic question decomposition, atomic memory bank and logic-aware reasoning. Specifically, LAG first decomposes complex questions into atomic sub-questions ordered by logical dependencies. It then resolves these sequentially, using prior answers to guide context retrieval for subsequent sub-questions, ensuring stepwise grounding in the logical chain. Experiments on four benchmarks demonstrate that LAG significantly improves accuracy and reduces hallucination over existing methods.
Faithful-First Reasoning, Planning, and Acting for Multimodal LLMs
Multimodal Large Language Models (MLLMs) frequently suffer from unfaithfulness, generating reasoning chains that drift from visual evidence or contradict final predictions. We propose Faithful-First Reasoning, Planning, and Acting (RPA) framework in which FaithEvi provides step-wise and chain-level supervision by evaluating the faithfulness of intermediate reasoning, and FaithAct uses these signals to plan and execute faithfulness-aware actions during inference. Experiments across multiple multimodal reasoning benchmarks show that faithful-first RPA improves perceptual faithfulness by up to 24% over prompt-based and tool-augmented reasoning frameworks, without degrading task accuracy. Our analysis shows that treating faithfulness as a guiding principle perceptually faithful reasoning trajectories and mitigates hallucination behavior. This work thereby establishes a unified framework for both evaluating and enforcing faithfulness in multimodal reasoning. Code will be released upon acceptance.
comment: 16 pages, updated version
Architecture independent generalization bounds for overparametrized deep ReLU networks
We prove that overparametrized neural networks are able to generalize with a test error that is independent of the level of overparametrization, and independent of the Vapnik-Chervonenkis (VC) dimension. We prove explicit bounds that only depend on the metric geometry of the test and training sets, on the regularity properties of the activation function, and on the operator norms of the weights and norms of biases. For overparametrized deep ReLU networks with a training sample size bounded by the input space dimension, we explicitly construct zero loss minimizers without use of gradient descent, and prove a uniform generalization bound that is independent of the network architecture. We perform computational experiments of our theoretical results with MNIST, and obtain agreement with the true test error within a 22 % margin on average.
comment: AMS Latex, 18 pages. Significantly updated, A. Bapu included as coauthor, Section 3 added
When in Doubt, Consult: Expert Debate for Sexism Detection via Confidence-Based Routing
Online sexism increasingly appears in subtle, context-dependent forms that evade traditional detection methods. Its interpretation often depends on overlapping linguistic, psychological, legal, and cultural dimensions, which produce mixed and sometimes contradictory signals in annotated datasets. These inconsistencies, combined with label scarcity and class imbalance, result in unstable decision boundaries and cause fine-tuned models to overlook subtler, underrepresented forms of harm. To address these challenges, we propose a two-stage framework that unifies (i) targeted training procedures to better regularize supervision to scarce and noisy data with (ii) selective, reasoning-based inference to handle ambiguous or borderline cases. First, we stabilize the training combining class-balanced focal loss, class-aware batching, and post-hoc threshold calibration, strategies for the firs time adapted for this domain to mitigate label imbalance and noisy supervision. Second, we bridge the gap between efficiency and reasoning with a a dynamic routing mechanism that distinguishes between unambiguous instances and complex cases requiring a deliberative process. This reasoning process results in the novel Collaborative Expert Judgment (CEJ) module which prompts multiple personas and consolidates their reasoning through a judge model. Our approach outperforms existing approaches across several public benchmarks, with F1 gains of +4.48% and +1.30% on EDOS Tasks A and B, respectively, and a +2.79% improvement in ICM on EXIST 2025 Task 1.1.
Brain-Inspired Exploration of Functional Networks and Key Neurons in Large Language Models
In recent years, the rapid advancement of large language models (LLMs) in natural language processing has sparked significant interest among researchers to understand their mechanisms and functional characteristics. Although prior studies have attempted to explain LLM functionalities by identifying and interpreting specific neurons, these efforts mostly focus on individual neuron contributions, neglecting the fact that human brain functions are realized through intricate interaction networks. Inspired by research on functional brain networks (FBNs) in the field of neuroscience, we utilize similar methodologies estabilished in FBN analysis to explore the "functional networks" within LLMs in this study. Experimental results highlight that, much like the human brain, LLMs exhibit certain functional networks that recur frequently during their operation. Further investigation reveals that these functional networks are indispensable for LLM performance. Inhibiting key functional networks severely impairs the model's capabilities. Conversely, amplifying the activity of neurons within these networks can enhance either the model's overall performance or its performance on specific tasks. This suggests that these functional networks are strongly associated with either specific tasks or the overall performance of the LLM. Code is available at https://github.com/WhatAboutMyStar/LLM_ACTIVATION.
comment: 21 pages, 18 figures
Marking Code Without Breaking It: Code Watermarking for Detecting LLM-Generated Code
Identifying LLM-generated code through watermarking poses a challenge in preserving functional correctness. Previous methods rely on the assumption that watermarking high-entropy tokens effectively maintains output quality. Our analysis reveals a fundamental limitation of this assumption: syntax-critical tokens such as keywords often exhibit the highest entropy, making existing approaches vulnerable to logic corruption. We present STONE, a syntax-aware watermarking method that embeds watermarks only in non-syntactic tokens and preserves code integrity. For its rigorous assessment, we also introduce STEM, a comprehensive framework that balances three critical dimensions: correctness, detectability, and imperceptibility. Across Python, C++, and Java, STONE preserves correctness, sustains strong detectability, and achieves balanced performance with minimal overhead. Our implementation is available at https://anonymous.4open.science/r/STONE-watermarking-AB4B/.
comment: Findings of EACL 2026
A Systematic Survey on Large Language Models for Evolutionary Optimization: From Modeling to Solving
Large Language Models (LLMs) possess substantial reasoning capabilities and are increasingly applied to optimization tasks, particularly in synergy with evolutionary computation. However, while recent surveys have explored specific aspects of this domain, they lack an integrative perspective that connects problem modeling with solving workflows. To address this gap, we present a systematic review of recent developments and organize them within a structured framework. First, we classify existing research into two primary stages: LLMs for optimization modeling and LLMs for optimization solving. Second, we divide the latter into three paradigms based on the role of the LLM: stand-alone optimizers, low-level components embedded within algorithms, and high-level managers for algorithm selection and generation. Third, for each category, we analyze representative methods, distill technical challenges, and examine their interplay with traditional approaches. Finally, we review interdisciplinary applications across the natural sciences, engineering, and machine learning. Based on this analysis, we highlight key limitations and point toward future directions for developing self-evolving agentic ecosystems. An up-to-date collection of related literature is maintained at https://github.com/ishmael233/LLM4OPT.
Improved LLM Agents for Financial Document Question Answering
Large language models (LLMs) have shown impressive capabilities on numerous natural language processing tasks. However, LLMs still struggle with numerical question answering for financial documents that include tabular and textual data. Recent works have showed the effectiveness of critic agents (i.e., self-correction) for this task given oracle labels. Building upon this framework, this paper examines the effectiveness of the traditional critic agent when oracle labels are not available, and show, through experiments, that this critic agent's performance deteriorates in this scenario. With this in mind, we present an improved critic agent, along with the calculator agent which outperforms the previous state-of-the-art approach (program-of-thought) and is safer. Furthermore, we investigate how our agents interact with each other, and how this interaction affects their performance.
comment: 13 pages, 6 figures. More analysis is added to Appendix C
Table as a Modality for Large Language Models NeurIPS 2025
To migrate the remarkable successes of Large Language Models (LLMs), the community has made numerous efforts to generalize them to the table reasoning tasks for the widely deployed tabular data. Despite that, in this work, by showing a probing experiment on our proposed StructQA benchmark, we postulate that even the most advanced LLMs (such as GPTs) may still fall short of coping with tabular data. More specifically, the current scheme often simply relies on serializing the tabular data, together with the meta information, then inputting them through the LLMs. We argue that the loss of structural information is the root of this shortcoming. In this work, we further propose TAMO, which bears an ideology to treat the tables as an independent modality integrated with the text tokens. The resulting model in TAMO is a multimodal framework consisting of a hypergraph neural network as the global table encoder seamlessly integrated with the mainstream LLM. Empirical results on various benchmarking datasets, including HiTab, WikiTQ, WikiSQL, FeTaQA, and StructQA, have demonstrated significant improvements on generalization with an average relative gain of 42.65%.
comment: Accepted to NeurIPS 2025
NEMO-4-PAYPAL: Leveraging NVIDIA's Nemo Framework for empowering PayPal's Commerce Agent
We present the development and optimization of PayPal's Commerce Agent, powered by NEMO-4-PAYPAL, a multi-agent system designed to revolutionize agentic commerce on the PayPal platform. Through our strategic partnership with NVIDIA, we leveraged the NeMo Framework for LLM model fine-tuning to enhance agent performance. Specifically, we optimized the Search and Discovery agent by replacing our base model with a fine-tuned Nemotron small language model (SLM). We conducted comprehensive experiments using the llama3.1-nemotron-nano-8B-v1 architecture, training LoRA-based models through systematic hyperparameter sweeps across learning rates, optimizers (Adam, AdamW), cosine annealing schedules, and LoRA ranks. Our contributions include: (1) the first application of NVIDIA's NeMo Framework to commerce-specific agent optimization, (2) LLM powered fine-tuning strategy for retrieval-focused commerce tasks, (3) demonstration of significant improvements in latency and cost while maintaining agent quality, and (4) a scalable framework for multi-agent system optimization in production e-commerce environments. Our results demonstrate that the fine-tuned Nemotron SLM effectively resolves the key performance issue in the retrieval component, which represents over 50\% of total agent response time, while maintaining or enhancing overall system performance.
Attractive Metadata Attack: Inducing LLM Agents to Invoke Malicious Tools NeurIPS 2025
Large language model (LLM) agents have demonstrated remarkable capabilities in complex reasoning and decision-making by leveraging external tools. However, this tool-centric paradigm introduces a previously underexplored attack surface, where adversaries can manipulate tool metadata -- such as names, descriptions, and parameter schemas -- to influence agent behavior. We identify this as a new and stealthy threat surface that allows malicious tools to be preferentially selected by LLM agents, without requiring prompt injection or access to model internals. To demonstrate and exploit this vulnerability, we propose the Attractive Metadata Attack (AMA), a black-box in-context learning framework that generates highly attractive but syntactically and semantically valid tool metadata through iterative optimization. The proposed attack integrates seamlessly into standard tool ecosystems and requires no modification to the agent's execution framework. Extensive experiments across ten realistic, simulated tool-use scenarios and a range of popular LLM agents demonstrate consistently high attack success rates (81\%-95\%) and significant privacy leakage, with negligible impact on primary task execution. Moreover, the attack remains effective even against prompt-level defenses, auditor-based detection, and structured tool-selection protocols such as the Model Context Protocol, revealing systemic vulnerabilities in current agent architectures. These findings reveal that metadata manipulation constitutes a potent and stealthy attack surface. Notably, AMA is orthogonal to injection attacks and can be combined with them to achieve stronger attack efficacy, highlighting the need for execution-level defenses beyond prompt-level and auditor-based mechanisms. Code is available at https://github.com/SEAIC-M/AMA.
comment: Accepted to NeurIPS 2025
LFD: Layer Fused Decoding to Exploit External Knowledge in Retrieval-Augmented Generation
Retrieval-augmented generation (RAG) incorporates external knowledge into large language models (LLMs), improving their adaptability to downstream tasks and enabling information updates. Surprisingly, recent empirical evidence demonstrates that injecting noise into retrieved relevant documents paradoxically facilitates exploitation of external knowledge and improves generation quality. Although counterintuitive and challenging to apply in practice, this phenomenon enables granular control and rigorous analysis of how LLMs integrate external knowledge. Therefore, in this paper, we intervene on noise injection and establish a layer-specific functional demarcation within the LLM: shallow layers specialize in local context modeling, intermediate layers focus on integrating long-range external factual knowledge, and deeper layers primarily rely on parametric internal knowledge. Building on this insight, we propose Layer Fused Decoding (LFD), a simple decoding strategy that directly combines representations from an intermediate layer with final-layer decoding outputs to fully exploit the external factual knowledge. To identify the optimal intermediate layer, we introduce an internal knowledge score (IKS) criterion that selects the layer with the lowest IKS value in the latter half of layers. Experimental results across multiple benchmarks demonstrate that LFD helps RAG systems more effectively surface retrieved context knowledge with minimal cost.
Physics-Driven Data Generation for Contact-Rich Manipulation via Trajectory Optimization
We present a low-cost data generation pipeline that integrates physics-based simulation, human demonstrations, and model-based planning to efficiently generate large-scale, high-quality datasets for contact-rich robotic manipulation tasks. Starting with a small number of embodiment-flexible human demonstrations collected in a virtual reality simulation environment, the pipeline refines these demonstrations using optimization-based kinematic retargeting and trajectory optimization to adapt them across various robot embodiments and physical parameters. This process yields a diverse, physically consistent dataset that enables cross-embodiment data transfer, and offers the potential to reuse legacy datasets collected under different hardware configurations or physical parameters. We validate the pipeline's effectiveness by training diffusion policies from the generated datasets for challenging contact-rich manipulation tasks across multiple robot embodiments, including a floating Allegro hand and bimanual robot arms. The trained policies are deployed zero-shot on hardware for bimanual iiwa arms, achieving high success rates with minimal human input. Project website: https://lujieyang.github.io/physicsgen/.
CaTS-Bench: Can Language Models Describe Time Series?
Time series captioning, the task of describing time series in natural language, requires numeric and temporal reasoning, trend interpretation, and contextual understanding. Existing benchmarks, however, often rely on fully synthetic or generic captions, and typically neglect metadata and visual representations. We introduce \textbf{CaTS-Bench}, a comprehensive benchmark for \textbf{C}ontext-\textbf{a}ware \textbf{T}ime \textbf{S}eries reasoning across $11$ diverse domains, centered on a gold-standard evaluation set of $1746$ human-rewritten captions that measure how effectively models translate numeric trends into immediately interpretable narratives. To address the scarcity of human-annotated data, we also propose a scalable pipeline for generating high-fidelity synthetic captions, the quality of which we validate. We evaluate leading Vision-Language Models on our benchmark, revealing that even proprietary models struggle to capture numeric nuances in temporal descriptions, while finetuning open-source models on synthetic data yields substantial performance gains. Finally, we release a diagnostic suite of $910$ multiple-choice questions and tailored numeric metrics to gauge time-series-specific reasoning capabilities, establishing CaTS-Bench as a reliable foundation for grounded, multimodal language generation in numeric domains.
comment: 8 pages, 6 figures, 3 tables in the main paper. Many more in the appendix
SPIO: Ensemble and Selective Strategies via LLM-Based Multi-Agent Planning in Automated Data Science
Large Language Models (LLMs) have enabled dynamic reasoning in automated data analytics, yet recent multi-agent systems remain limited by rigid, single-path workflows that restrict strategic exploration and often lead to suboptimal outcomes. To overcome these limitations, we propose SPIO (Sequential Plan Integration and Optimization), a framework that replaces rigid workflows with adaptive, multi-path planning across four core modules: data preprocessing, feature engineering, model selection, and hyperparameter tuning. In each module, specialized agents generate diverse candidate strategies, which are cascaded and refined by an optimization agent. SPIO offers two operating modes: SPIO-S for selecting a single optimal pipeline, and SPIO-E for ensembling top-k pipelines to maximize robustness. Extensive evaluations on Kaggle and OpenML benchmarks show that SPIO consistently outperforms state-of-the-art baselines, achieving an average performance gain of 5.6%. By explicitly exploring and integrating multiple solution paths, SPIO delivers a more flexible, accurate, and reliable foundation for automated data science.
comment: Under Review
HAL: Inducing Human-likeness in LLMs with Alignment
Conversational human-likeness plays a central role in human-AI interaction, yet it has remained difficult to define, measure, and optimize. As a result, improvements in human-like behavior are largely driven by scale or broad supervised training, rather than targeted alignment. We introduce Human Aligning LLMs (HAL), a framework for aligning language models to conversational human-likeness using an interpretable, data-driven reward. HAL derives explicit conversational traits from contrastive dialogue data, combines them into a compact scalar score, and uses this score as a transparent reward signal for alignment with standard preference optimization methods. Using this approach, we align models of varying sizes without affecting their overall performance. In large-scale human evaluations, models aligned with HAL are more frequently perceived as human-like in conversation. Because HAL operates over explicit, interpretable traits, it enables inspection of alignment behavior and diagnosis of unintended effects. More broadly, HAL demonstrates how soft, qualitative properties of language--previously outside the scope for alignment--can be made measurable and aligned in an interpretable and explainable way.
V-Agent: An Interactive Video Search System Using Vision-Language Models
We introduce V-Agent, a novel multi-agent platform designed for advanced video search and interactive user-system conversations. By fine-tuning a vision-language model (VLM) with a small video preference dataset and enhancing it with a retrieval vector from an image-text retrieval model, we overcome the limitations of traditional text-based retrieval systems in multimodal scenarios. The VLM-based retrieval model independently embeds video frames and audio transcriptions from an automatic speech recognition (ASR) module into a shared multimodal representation space, enabling V-Agent to interpret both visual and spoken content for context-aware video search. This system consists of three agents-a routing agent, a search agent, and a chat agent-that work collaboratively to address user intents by refining search outputs and communicating with users. The search agent utilizes the VLM-based retrieval model together with an additional re-ranking module to further enhance video retrieval quality. Our proposed framework demonstrates state-of-the-art zero-shot performance on the MultiVENT 2.0 benchmark, highlighting its potential for both academic research and real-world applications. The retrieval model and demo videos are available at https://huggingface.co/NCSOFT/multimodal-embedding.
comment: CIKM 2025 MMGENSR Workshop
Task-Stratified Knowledge Scaling Laws for Post-Training Quantized Large Language Models
Post-Training Quantization (PTQ) is a critical strategy for efficient Large Language Models (LLMs) deployment. However, existing scaling laws primarily focus on general performance, overlooking crucial fine-grained factors and how quantization differentially impacts diverse knowledge capabilities. To address this, we establish Task-Stratified Knowledge Scaling Laws. By stratifying capabilities into memorization, application, and reasoning, we develop a framework that unifies model size, bit-width, and fine-grained factors: group size and calibration set size. Validated on 293 diverse PTQ configurations, our framework demonstrates strong fit and cross-architecture consistency. It reveals distinct sensitivities across knowledge capabilities: reasoning is precision-critical, application is scale-responsive, and memorization is calibration-sensitive. We highlight that in low-bit scenarios, optimizing these fine-grained factors is essential for preventing performance collapse. These findings provide an empirically-backed foundation for designing knowledge-aware quantization strategies.
Transolver is a Linear Transformer: Revisiting Physics-Attention through the Lens of Linear Attention
Recent advances in Transformer-based Neural Operators have enabled significant progress in data-driven solvers for Partial Differential Equations (PDEs). Most current research has focused on reducing the quadratic complexity of attention to address the resulting low training and inference efficiency. Among these works, Transolver stands out as a representative method that introduces Physics-Attention to reduce computational costs. Physics-Attention projects grid points into slices for slice attention, then maps them back through deslicing. However, we observe that Physics-Attention can be reformulated as a special case of linear attention, and that the slice attention may even hurt the model performance. Based on these observations, we argue that its effectiveness primarily arises from the slice and deslice operations rather than interactions between slices. Building on this insight, we propose a two-step transformation to redesign Physics-Attention into a canonical linear attention, which we call Linear Attention Neural Operator (LinearNO). Our method achieves state-of-the-art performance on six standard PDE benchmarks, while reducing the number of parameters by an average of 40.0% and computational cost by 36.2%. Additionally, it delivers superior performance on two challenging, industrial-level datasets: AirfRANS and Shape-Net Car.
ChartAgent: A Multimodal Agent for Visually Grounded Reasoning in Complex Chart Question Answering NeurIPS 2025
Recent multimodal LLMs have shown promise in chart-based visual question answering, but their performance declines sharply on unannotated charts-those requiring precise visual interpretation rather than relying on textual shortcuts. To address this, we introduce ChartAgent, a novel agentic framework that explicitly performs visual reasoning directly within the chart's spatial domain. Unlike textual chain-of-thought reasoning, ChartAgent iteratively decomposes queries into visual subtasks and actively manipulates and interacts with chart images through specialized actions such as drawing annotations, cropping regions (e.g., segmenting pie slices, isolating bars), and localizing axes, using a library of chart-specific vision tools to fulfill each subtask. This iterative reasoning process closely mirrors human cognitive strategies for chart comprehension. ChartAgent achieves state-of-the-art accuracy on the ChartBench and ChartX benchmarks, surpassing prior methods by up to 16.07% absolute gain overall and 17.31% on unannotated, numerically intensive queries. Furthermore, our analyses show that ChartAgent is (a) effective across diverse chart types, (b) achieves the highest scores across varying visual and reasoning complexity levels, and (c) serves as a plug-and-play framework that boosts performance across diverse underlying LLMs. Our work is among the first to demonstrate visually grounded reasoning for chart understanding using tool-augmented multimodal agents.
comment: NeurIPS 2025 Multimodal Algorithmic Reasoning Workshop (https://marworkshop.github.io/neurips25/) (Oral Paper Presentation)
Beyond Chemical QA: Evaluating LLM's Chemical Reasoning with Modular Chemical Operations NeurIPS 2025
While large language models (LLMs) with Chain-of-Thought (CoT) reasoning excel in mathematics and coding, their potential for systematic reasoning in chemistry, a domain demanding rigorous structural analysis for real-world tasks like drug design and reaction engineering, remains untapped. Current benchmarks focus on simple knowledge retrieval, neglecting step-by-step reasoning required for complex tasks such as molecular optimization and reaction prediction. To address this, we introduce ChemCoTBench, a reasoning framework that bridges molecular structure understanding with arithmetic-inspired operations, including addition, deletion, and substitution, to formalize chemical problem-solving into transparent, step-by-step workflows. By treating molecular transformations as modular "chemical operations", the framework enables slow-thinking reasoning, mirroring the logic of mathematical proofs while grounding solutions in real-world chemical constraints. We evaluate models on two high-impact tasks: Molecular Property Optimization and Chemical Reaction Prediction. These tasks mirror real-world challenges while providing structured evaluability. By providing annotated datasets, a reasoning taxonomy, and baseline evaluations, ChemCoTBench bridges the gap between abstract reasoning methods and practical chemical discovery, establishing a foundation for advancing LLMs as tools for AI-driven scientific innovation.
comment: Accepted by NeurIPS 2025 Dataset Track, 22 pages, 10 figures
Multi-Agent LLM Orchestration Achieves Deterministic, High-Quality Decision Support for Incident Response
Large language models (LLMs) promise to accelerate incident response in production systems, yet single-agent approaches generate vague, unusable recommendations. We present MyAntFarm.ai, a reproducible containerized framework demonstrating that multi-agent orchestration fundamentally transforms LLM-based incident response quality. Through 348 controlled trials comparing single-agent copilot versus multi-agent systems on identical incident scenarios, we find that multi-agent orchestration achieves 100% actionable recommendation rate versus 1.7% for single-agent approaches, an 80 times improvement in action specificity and 140 times improvement in solution correctness. Critically, multi-agent systems exhibit zero quality variance across all trials, enabling production SLA commitments impossible with inconsistent single-agent outputs. Both architectures achieve similar comprehension latency (approx.40s), establishing that the architectural value lies in deterministic quality, not speed. We introduce Decision Quality (DQ), a novel metric capturing validity, specificity, and correctness properties essential for operational deployment that existing LLM metrics do not address. These findings reframe multi-agent orchestration from a performance optimization to a production-readiness requirement for LLM-based incident response. All code, Docker configurations, and trial data are publicly available for reproduction.
comment: 10 pages, 4 tables. v2: Expanded limitations, added threats to validity, clarified agent definition, added reproducibility notes, updated Phase 2 timeline with current models (GPT-5.2, Claude Sonnet 4.5, Llama 3.3 70B). No changes to experimental results
Uncovering Bias Paths with LLM-guided Causal Discovery: An Active Learning and Dynamic Scoring Approach AAAI 2026
Ensuring fairness in machine learning requires understanding how sensitive attributes like race or gender causally influence outcomes. Existing causal discovery (CD) methods often struggle to recover fairness-relevant pathways in the presence of noise, confounding, or data corruption. Large language models (LLMs) offer a complementary signal by leveraging semantic priors from variable metadata. We propose a hybrid LLM-guided CD framework that extends a breadth-first search strategy with active learning and dynamic scoring. Variable pairs are prioritized for querying using a composite score combining mutual information, partial correlation, and LLM confidence, enabling more efficient and robust structure discovery. To evaluate fairness sensitivity, we introduce a semi-synthetic benchmark based on the UCI Adult dataset, embedding domain-informed bias pathways alongside noise and latent confounders. We assess how well CD methods recover both global graph structure and fairness-critical paths (e.g., sex-->education-->income). Our results demonstrate that LLM-guided methods, including our active, dynamically scored variant, outperform baselines in recovering fairness-relevant structure under noisy conditions. We analyze when LLM-driven insights complement statistical dependencies and discuss implications for fairness auditing in high-stakes domains.
comment: To be presented at AAAI 2026
Better Call CLAUSE: A Discrepancy Benchmark for Auditing LLMs Legal Reasoning Capabilities
The rapid integration of large language models (LLMs) into high-stakes legal work has exposed a critical gap: no benchmark exists to systematically stress-test their reliability against the nuanced, adversarial, and often subtle flaws present in real-world contracts. To address this, we introduce CLAUSE, a first-of-its-kind benchmark designed to evaluate the fragility of an LLM's legal reasoning. We study the capabilities of LLMs to detect and reason about fine-grained discrepancies by producing over 7500 real-world perturbed contracts from foundational datasets like CUAD and ContractNLI. Our novel, persona-driven pipeline generates 10 distinct anomaly categories, which are then validated against official statutes using a Retrieval-Augmented Generation (RAG) system to ensure legal fidelity. We use CLAUSE to evaluate leading LLMs' ability to detect embedded legal flaws and explain their significance. Our analysis shows a key weakness: these models often miss subtle errors and struggle even more to justify them legally. Our work outlines a path to identify and correct such reasoning failures in legal AI.
comment: 42 pages, 4 images
CNN-based Surface Temperature Forecasts with Ensemble Numerical Weather Prediction over Medium-range Forecast Periods
In this study, a method that integrates convolutional neural networks (CNNs) with ensemble numerical weather prediction (NWP) models is proposed. This method enables surface temperature forecasting with lead times beyond the short-range, extending up to five days. Due to limited computational resources, operational medium-range temperature forecasts typically rely on low-resolution NWP models, which are prone to systematic and random errors. To resolve these limitations, the proposed method applies CNN-based post-processing (bias correction and spatial super-resolution) to an ensemble NWP system. First, the post-processing is applied to each ensemble member to reduce systematic errors and reconstruct high-resolution temperature fields from low-resolution model outputs. This approach reduces the systematic and random errors in NWP model outputs and outperforms operational post-processing. Second, the CNN is applied to all ensemble members to construct a new ensemble forecasting system, in which deterministic forecast accuracy, probabilistic reliability, and representation of ensemble spread are improved compared with those of the original system. We demonstrate that this CNN-based post-processing is fundamentally different from the artificial error reduction caused by smoothing inherent in ensemble averaging because the post-processing reduces forecast errors without degrading the forecast information. These results indicate that the proposed method provides a practical and scalable solution for improving medium-range temperature forecasts and is particularly valuable for use in operational centers with limited computational resources.
comment: 41 pages, 12 figures
League of LLMs: A Benchmark-Free Paradigm for Mutual Evaluation of Large Language Models
Although large language models (LLMs) have shown exceptional capabilities across a wide range of tasks, reliable evaluation remains a critical challenge due to data contamination, opaque operation, and subjective preferences. To address these issues, we propose League of LLMs (LOL), a novel benchmark-free evaluation paradigm that organizes multiple LLMs into a self-governed league for multi-round mutual evaluation. LOL integrates four core criteria (dynamic, transparent, objective, and professional) to mitigate key limitations of existing paradigms. Experiments on eight mainstream LLMs in mathematics and programming demonstrate that LOL can effectively distinguish LLM capabilities while maintaining high internal ranking stability (Top-$k$ consistency $= 70.7\%$). Beyond ranking, LOL reveals empirical findings that are difficult for traditional paradigms to capture. For instance, ``memorization-based answering'' behaviors are observed in some models, and a statistically significant homophily bias is found within the OpenAI family ($Δ= 9$, $p < 0.05$). Finally, we make our framework and code publicly available as a valuable complement to the current LLM evaluation ecosystem.
The Impact of LLMs on Online News Consumption and Production
Large language models (LLMs) change how consumers acquire information online; their bots also crawl news publishers' websites for training data and to answer consumer queries; and they provide tools that can lower the cost of content creation. These changes lead to predictions of adverse impact on news publishers in the form of lowered consumer demand, reduced demand for newsroom employees, and an increase in news "slop." Consequently, some publishers strategically responded by blocking LLM access to their websites using the robots.txt file standard. Using high-frequency granular data, we document four effects related to the predicted shifts in news publishing following the introduction of generative AI (GenAI). First, we find a moderate decline in traffic to news publishers occurring after August 2024. Second, using a difference-in-differences approach, we find that blocking GenAI bots can be associated with a reduction of total website traffic to large publishers compared to not blocking. Third, on the hiring side, we do not find evidence that LLMs are replacing editorial or content-production jobs yet. The share of new editorial and content-production job listings increases over time. Fourth, regarding content production, we find no evidence that large publishers increased text volume; instead, they significantly increased rich content and use more advertising and targeting technologies. Together, these findings provide early evidence of some unforeseen impacts of the introduction of LLMs on news production and consumption.
SWAA: Sliding Window Attention Adaptation for Efficient Long-Context LLMs Without Pretraining
The quadratic complexity of self-attention in Transformer-based Large Language Models (LLMs) renders long-context inference prohibitively expensive. While Sliding Window Attention (SWA), the simplest sparse attention pattern, offers a linear-complexity alternative, naively applying it to models pretrained with Full Attention (FA) causes catastrophic long-context performance collapse due to the training-inference mismatch. To address this, we propose Sliding Window Attention Adaptation (SWAA), a plug-and-play toolkit of recipes that adapt FA models to SWA without costly pretraining. SWAA systematically combines five strategies: (1) applying SWA only during prefilling; (2) preserving "sink" tokens; (3) interleaving FA/SWA layers; (4) chain-of-thought (CoT); and (5) fine-tuning. Our experiments demonstrate that while individual methods are insufficient, specific synergistic combinations can effectively recover original long-context capabilities. After further analyzing performance-efficiency trade-offs, we identify recommended SWAA configurations for diverse scenarios, which achieve 30% to 100% speedups for long-context LLM inference with acceptable quality loss. Our code is available at https://github.com/yuyijiong/sliding-window-attention-adaptation
LiteStage: Latency-aware Layer Skipping for Multi-stage Reasoning
Multi-stage reasoning has emerged as an effective strategy for enhancing the reasoning capability of small language models by decomposing complex problems into sequential sub-stages. However, this comes at the cost of increased latency. We observe that existing adaptive acceleration techniques, such as layer skipping, struggle to balance efficiency and accuracy in this setting due to two key challenges: (1) stage-wise variation in skip sensitivity, and (2) the generation of redundant output tokens. To address these, we propose LiteStage, a latency-aware layer skipping framework for multi-stage reasoning. LiteStage combines a stage-wise offline search that allocates optimal layer budgets with an online confidence-based generation early exit to suppress unnecessary decoding. Experiments on three benchmarks, e.g., OBQA, CSQA, and StrategyQA, show that LiteStage outperforms prior training-free layer skipping methods.
Intrinsic-Metric Physics-Informed Neural Networks (IM-PINN) for Reaction-Diffusion Dynamics on Complex Riemannian Manifolds
Simulating nonlinear reaction-diffusion dynamics on complex, non-Euclidean manifolds remains a fundamental challenge in computational morphogenesis, constrained by high-fidelity mesh generation costs and symplectic drift in discrete time-stepping schemes. This study introduces the Intrinsic-Metric Physics-Informed Neural Network (IM-PINN), a mesh-free geometric deep learning framework that solves partial differential equations directly in the continuous parametric domain. By embedding the Riemannian metric tensor into the automatic differentiation graph, our architecture analytically reconstructs the Laplace-Beltrami operator, decoupling solution complexity from geometric discretization. We validate the framework on a "Stochastic Cloth" manifold with extreme Gaussian curvature fluctuations ($K \in [-2489, 3580]$), where traditional adaptive refinement fails to resolve anisotropic Turing instabilities. Using a dual-stream architecture with Fourier feature embeddings to mitigate spectral bias, the IM-PINN recovers the "splitting spot" and "labyrinthine" regimes of the Gray-Scott model. Benchmarking against the Surface Finite Element Method (SFEM) reveals superior physical rigor: the IM-PINN achieves global mass conservation error of $\mathcal{E}_{mass} \approx 0.157$ versus SFEM's $0.258$, acting as a thermodynamically consistent global solver that eliminates mass drift inherent in semi-implicit integration. The framework offers a memory-efficient, resolution-independent paradigm for simulating biological pattern formation on evolving surfaces, bridging differential geometry and physics-informed machine learning.
comment: 19 pages, 7 figures
Enabling Agents to Communicate Entirely in Latent Space
While natural language is the de facto communication medium for LLM-based agents, it presents a fundamental constraint. The process of downsampling rich, internal latent states into discrete tokens inherently limits the depth and nuance of information that can be transmitted, thereby hindering collaborative problem-solving. Inspired by telepathy, which bypasses symbolic language in communication, we propose Interlat (Inter-agent Latent Space Communication), a paradigm that leverages the continuous last hidden states of an LLM as a representation of its thought for direct communication (termed latent communication). An additional learned compression process further compresses latent communication via latent space reasoning. Experiments demonstrate that Interlat outperforms both fine-tuned chain-of-thought (CoT) prompting and single-agent baselines, even across heterogeneous models, promoting more exploratory behavior and enabling genuine utilization of latent information. Further compression not only substantially accelerates inference by up to 24 times but also maintains competitive performance through an efficient information-preserving mechanism. We position this work as a feasibility study of entirely latent space inter-agent communication, and our results highlight its potential, offering valuable insights for future research.
comment: Work in progess
Computational Foundations for Strategic Coopetition: Formalizing Trust and Reputation Dynamics
Modern socio-technical systems increasingly involve multi-stakeholder environments where actors simultaneously cooperate and compete. These coopetitive relationships exhibit dynamic trust evolution based on observed behavior over repeated interactions. While conceptual modeling languages like i* represent trust relationships qualitatively, they lack computational mechanisms for analyzing how trust changes with behavioral evidence. Conversely, computational trust models from multi-agent systems provide algorithmic updating but lack grounding in conceptual models that capture strategic dependencies covering mixed motives of actors. This technical report bridges this gap by developing a computational trust model that extends game-theoretic foundations for strategic coopetition with dynamic trust evolution. Building on companion work that achieved 58/60 validation (96.7%) for logarithmic specifications, we introduce trust as a two-layer system with immediate trust responding to current behavior and reputation tracking violation history. Trust evolves through asymmetric updating where cooperation builds trust gradually while violations erode it sharply, creating hysteresis effects and trust ceilings that constrain relationship recovery. We develop a structured translation framework enabling practitioners to instantiate computational trust models from i* dependency networks encompassing mixed motives of actors. Comprehensive experimental validation across 78,125 parameter configurations establishes robust emergence of negativity bias, hysteresis effects, and cumulative damage amplification. Empirical validation using the Renault-Nissan Alliance case study (1999-2025) achieves 49/60 validation points (81.7%), successfully reproducing documented trust evolution across five distinct relationship phases including crisis and recovery periods.
comment: 57 pages, 20 figures. Second technical report in research program; should be read with foundational companion arXiv:2510.18802. Adapts and extends trustworthiness and reputation material from Pant (2021) doctoral dissertation, University of Toronto. Validation source code: https://github.com/vikpant/strategic-coopetition/tree/master/TR_validation/TR2_trust
Answering the Unanswerable Is to Err Knowingly: Analyzing and Mitigating Abstention Failures in Large Reasoning Models AAAI
Large reasoning models (LRMs) have shown remarkable progress on complex reasoning tasks. However, some questions posed to LRMs are inherently unanswerable, such as math problems lacking sufficient conditions. We find that LRMs continually fail to provide appropriate abstentions when confronted with these unanswerable questions. In this paper, we systematically analyze, investigate, and resolve this issue for trustworthy AI. We first conduct a detailed analysis of the distinct response behaviors of LRMs when facing unanswerable questions. Then, we show that LRMs possess sufficient cognitive capabilities to recognize the flaws in these questions. However, they fail to exhibit appropriate abstention behavior, revealing a misalignment between their internal cognition and external response. Finally, to resolve this issue, we propose a lightweight, two-stage method that combines cognitive monitoring with inference-time intervention. Experimental results demonstrate that our method significantly improves the abstention rate while maintaining the overall reasoning performance.
comment: Accepted in the 39th AAAI Conference on Artificial Intelligence (AAAI 2025)
D-Artemis: A Deliberative Cognitive Framework for Mobile GUI Multi-Agents
Graphical User Interface (GUI) agents aim to automate a wide spectrum of human tasks by emulating user interaction. Despite rapid advancements, current approaches are hindered by several critical challenges: data bottleneck in end-to-end training, high cost of delayed error detection, and risk of contradictory guidance. Inspired by the human cognitive loop of Thinking, Alignment, and Reflection, we present D-Artemis -- a novel deliberative framework in this paper. D-Artemis leverages a fine-grained, app-specific tip retrieval mechanism to inform its decision-making process. It also employs a proactive Pre-execution Alignment stage, where Thought-Action Consistency (TAC) Check module and Action Correction Agent (ACA) work in concert to mitigate the risk of execution failures. A post-execution Status Reflection Agent (SRA) completes the cognitive loop, enabling strategic learning from experience. Crucially, D-Artemis enhances the capabilities of general-purpose Multimodal large language models (MLLMs) for GUI tasks without the need for training on complex trajectory datasets, demonstrating strong generalization. D-Artemis establishes new state-of-the-art (SOTA) results across both major benchmarks, achieving a 75.8% success rate on AndroidWorld and 96.8% on ScreenSpot-V2. Extensive ablation studies further demonstrate the significant contribution of each component to the framework.
Discovering the Representation Bottleneck of Graph Neural Networks
Graph neural networks (GNNs) rely mainly on the message-passing paradigm to propagate node features and build interactions, and different graph learning problems require different ranges of node interactions. In this work, we explore the capacity of GNNs to capture node interactions under contexts of different complexities. We discover that GNNs usually fail to capture the most informative kinds of interaction styles for diverse graph learning tasks, and thus name this phenomenon GNNs' representation bottleneck. As a response, we demonstrate that the inductive bias introduced by existing graph construction mechanisms can result in this representation bottleneck, \emph{i.e.}, preventing GNNs from learning interactions of the most appropriate complexity. To address that limitation, we propose a novel graph rewiring approach based on interaction patterns learned by GNNs to dynamically adjust each node's receptive fields. Extensive experiments on both real-world and synthetic datasets prove the effectiveness of our algorithm in alleviating the representation bottleneck and its superiority in enhancing the performance of GNNs over state-of-the-art graph rewiring baselines.
Boosting In-Silicon Directed Evolution with Fine-Tuned Protein Language Model and Tree Search
Protein evolution through amino acid mutations is a cornerstone of life sciences. Recent advances in protein language models have shown rich evolutionary patterns, offering unprecedented potential for in-silicon directed evolution. However, existing directed evolution methods largely rely on heuristic evolution strategies and have yet to efficiently integrate the transformative protein language models with advanced optimization techniques, such as reinforcement learning, to adaptively learn superior evolution policies. To bridge this gap, we propose AlphaDE, a novel framework that evolves protein sequences by harnessing the innovative paradigms of large language models, such as fine-tuning and test-time inference. First, AlphaDE fine-tunes pretrained protein language models using masked language modeling on homologous protein sequences to activate the evolutionary plausibility of the interested protein family. Second, AlphaDE introduces test-time inference based on Monte Carlo tree search, which effectively evolves proteins with evolutionary guidance from the fine-tuned protein language model. Extensive benchmark experiments show that AlphaDE remarkably outperforms previous state-of-the-art methods even with few-shot fine-tuning. A case study further demonstrates that AlphaDE supports condensing the protein sequence space of avGFP through computational evolution.
comment: working in progress, 20 pages, 6 figures, 16 tables, updating template
Instructor-inspired Machine Learning for Robust Molecular Property Prediction
Machine learning catalyzes a revolution in chemical and biological science. However, its efficacy heavily depends on the availability of labeled data, and annotating biochemical data is extremely laborious. To surmount this data sparsity challenge, we present an instructive learning algorithm named InstructMol to measure pseudo-labels' reliability and help the target model leverage large-scale unlabeled data. InstructMol does not require transferring knowledge between multiple domains, which avoids the potential gap between the pretraining and fine-tuning stages. We demonstrated the high accuracy of InstructMol on several real-world molecular datasets and out-of-distribution (OOD) benchmarks. Code is available at~ https://github.com/smiles724/InstructMol.
Dissecting Physics Reasoning in Small Language Models: A Multi-Dimensional Analysis from an Educational Perspective
Small Language Models (SLMs) offer privacy and efficiency for educational deployment, yet their utility depends on reliable multistep reasoning. Existing benchmarks often prioritize final answer accuracy, obscuring 'right answer, wrong procedure' failures that can reinforce student misconceptions. This work investigates SLM physics reasoning reliability, stage wise failure modes, and robustness under paired contextual variants. We introduce Physbench, comprising of 3,162 high school and AP level physics questions derived from OpenStax in a structured reference solution format with Bloom's Taxonomy annotations, plus 2,700 paired culturally contextualized variants. Using P-REFS, a stage wise evaluation rubric, we assess 10 SLMs across 58,000 responses. Results reveal substantial reliability gap: among final answer correct solutions, 75 to 98% contain at least one reasoning error. Failure modes shift with model capability; weaker models fail primarily at interpretation or modeling while stronger models often fail during execution. Paired contextual variations have minimal impact on top models but degrade the performance of mid-tier models. These findings demonstrate that safe educational AI requires evaluation paradigms that prioritize reasoning fidelity over final-answer correctness.
When Identity Skews Debate: Anonymization for Bias-Reduced Multi-Agent Reasoning
Multi-agent debate (MAD) aims to improve large language model (LLM) reasoning by letting multiple agents exchange answers and then aggregate their opinions. Yet recent studies reveal that agents are not neutral: they are prone to identity-driven sycophancy and self-bias, uncritically adopting a peer's view or stubbornly adhering to their own prior output, undermining the reliability of debate. In this work, we present the first principled framework that joins sycophancy and self-bias to mitigate and quantify identity bias in MAD. First, we formalize the debate dynamics as an identity-weighted Bayesian update process. Second, we propose response anonymization: by removing identity markers from prompts, agents cannot distinguish "self" from "peer", which forces equal weights on agent identity, thereby reducing bias and improving trustworthiness. Third, we define the Identity Bias Coefficient (IBC), a principled bias metric that measures an agent's tendency to follow its peer versus itself. Empirical studies across multiple models and benchmarks confirm that identity bias is widespread, with sycophancy far more common than self-bias. Our findings highlight the need to ensure that MAD systems reason based on content rather than identity. Code is released in https://github.com/deeplearning-wisc/MAD-identity-bias.
A Formal Descriptive Language for Learning Dynamics: A Five-Layer Structural Coordinate System
Understanding learning as a dynamic process is challenging due to the interaction of multiple factors, including cognitive load, internal state change, and subjective evaluation. Existing approaches often address these elements in isolation, limiting the ability to describe learning phenomena within a unified and structurally explicit framework. This paper proposes a multi-layer formal descriptive framework for learning dynamics. Rather than offering a predictive or prescriptive model, the framework introduces a symbolic language composed of state variables, mappings, and layer-specific responsibilities, enabling consistent description of learning processes without commitment to specific functional forms or optimization objectives. This descriptive framework is intended to serve as a structural substrate for analyzing learning processes in human learners, and by extension, in adaptive and Al-assisted learning systems. A central design principle is the explicit separation of descriptive responsibilities across layers, distinguishing load generation, internal understanding transformation, observation, and evaluation. Within this structure, cognitive load is treated as a relational quantity arising from interactions between external input and internal organization, while subjective evaluation is modeled as a minimal regulatory interface responding to learning dynamics and environmental conditions. By emphasizing descriptive clarity and extensibility, the framework provides a common language for organizing existing theories and supporting future empirical and theoretical work.
comment: 16 pages, 1 figure. Expanded Appendix A (wiring-level coupling analysis; notation/loop schematics; protective mode). Updated main text and Future Work for consistency and to separate wiring constraints from R internals
DeepSearch: Overcome the Bottleneck of Reinforcement Learning with Verifiable Rewards via Monte Carlo Tree Search
Although RLVR has become an essential component for developing advanced reasoning skills in language models, contemporary studies have documented training plateaus after thousands of optimization steps, i.e., notable decreases in performance gains despite increased computational investment. This limitation stems from the sparse exploration patterns inherent in current RLVR practices, where models rely on limited rollouts that often miss critical reasoning paths and fail to provide systematic coverage of the solution space. We present DeepSearch, a framework that integrates Monte Carlo Tree Search (MCTS) directly into RLVR training. In contrast to existing methods that rely on tree search only at inference, DeepSearch embeds structured search into the training loop, enabling systematic exploration and fine-grained credit assignment across reasoning steps. Through training-time exploration, DeepSearch addresses the fundamental bottleneck of insufficient exploration, which leads to diminishing performance improvements over prolonged training steps. Our contributions include: (1) a global frontier selection strategy that prioritizes promising nodes across the search tree, (2) selection with entropy-based guidance that identifies confident paths for supervision, and (3) adaptive replay buffer training with solution caching for efficiency. Experiments on mathematical reasoning benchmarks show that DeepSearch achieves 62.95% average accuracy and establishes a new state-of-the-art for 1.5B reasoning models, while using 5.7x fewer GPU hours than extended training approaches. These results highlight the importance of strategic exploration over brute-force scaling and demonstrate the promise of algorithmic innovation for advancing RLVR methodologies. DeepSearch establishes a new direction for scaling reasoning capabilities through systematic search rather than prolonged computation.
MyGO: Memory Yielding Generative Offline-consolidation for Lifelong Learning Systems
Continual or Lifelong Learning aims to develop models capable of acquiring new knowledge from a sequence of tasks without catastrophically forgetting what has been learned before. Existing approaches often rely on storing samples from previous tasks (experience replay) or employing complex regularization terms to protect learned weights. However, these methods face challenges related to data privacy, storage limitations, and performance degradation when tasks are dissimilar. To address these challenges, we introduce MyGO (Memory Yielding Generative Offline-consolidation), a novel lifelong learning framework inspired by the biological wake-sleep cycle. During the "wake" phase, the system rapidly learns a new task and trains a compact generative model (Generative Memory, G-mem) to capture its data distribution. During the "sleep" phase, the system enters an offline state, using all learned G-mem models to generate pseudo-data ("dreams") and consolidate new and old knowledge into a core feature extractor via knowledge distillation. This approach obviates the need to store any raw data, retaining only compact generative models, which offers significant advantages in privacy and storage efficiency. We evaluate MyGO on computer vision (Split-MNIST) and natural language processing (Split-AG News) benchmarks, comparing it against a sequential fine-tuning baseline. The results demonstrate that MyGO significantly mitigates catastrophic forgetting and maintains high average accuracy across tasks, proving the framework's effectiveness and domain-generality.
comment: Upon re-evaluating the proposed "Sleep Phase" mechanism, the authors identified stability issues in the generative replay component that limit the framework's scalability to high-dimensional data. We are withdrawing the paper to fundamentally revise the generative architecture and correct these limitations before any future submission
The Invisible Leash: Why RLVR May or May Not Escape Its Origin
Recent advances in LLMs highlight Reinforcement Learning with Verifiable Rewards (RLVR) as a promising method for enhancing AI capabilities, particularly in solving complex logical tasks. However, it remains unclear whether the current practice of RLVR truly expands a model's reasoning boundary or mainly amplifies high-reward outputs that the base model already knows, leading to improved precision. This study presents an empirical investigation that provides new insights into the potential limits of the common RLVR recipe. We examine how, under current training conditions, RLVR can operate as a support-constrained optimization mechanism that may restrict the discovery of entirely novel solutions, remaining constrained by the base model's initial distribution. We also identify an entropy-reward trade-off: while the current RLVR recipe reliably enhances precision, it may progressively narrow exploration and potentially overlook correct yet underrepresented solutions. Extensive empirical experiments show that although the current RLVR recipe consistently improves pass@1, the shrinkage of empirical support generally outweighs the expansion of empirical support under larger sampling budgets, failing to recover correct answers that were previously accessible to the base model. Interestingly, we also observe that while RLVR sometimes increases token-level entropy, it leads to greater uncertainty at each generation step but declining answer-level entropy. This suggests that these seemingly more uncertain generation paths ultimately converge onto a smaller set of distinct answers. Taken together, our findings reveal potential limits of the current RLVR recipe in extending reasoning horizons. Breaking this invisible leash may require future algorithmic innovations, such as explicit exploration mechanisms or hybrid strategies that allocate probability mass to underrepresented solution regions.
L-MoE: End-to-End Training of a Lightweight Mixture of Low-Rank Adaptation Experts
The Mixture of Experts (MoE) architecture enables the scaling of Large Language Models (LLMs) to trillions of parameters by activating a sparse subset of weights for each input, maintaining constant computational cost during inference. Concurrently, Low-Rank Adaptation (LoRA) has emerged as a dominant technique for parameter-efficiently fine-tuning LLMs on specialized tasks. In this work, we unify these two paradigms into a novel, end-to-end trainable framework named L-MoE: a Lightweight Mixture of LoRA Experts. L-MoE redefines MoE experts not as dense feed-forward networks, but as a collection of task-specialized, low-rank adapters. A lightweight gating network, trained jointly with the experts, learns to dynamically compose these LoRA adapters by computing a weighted average of their parameters for each input token. This composition is fully differentiable, allowing gradients from a standard auto-regressive language modeling objective to flow back through the entire architecture, simultaneously refining both the expert adapters and the routing strategy. This approach creates a highly parameter-efficient MoE model that is modular by design, allows for dynamic skill composition, and is trainable from end-to-end. We present the formal mathematical framework for L-MoE, detailing the differentiable routing mechanism and the joint optimization objective, thereby providing a new path toward building more efficient, scalable, and specialized language models.
comment: The authors have identified a technical error in the mathematical formulation regarding the differentiable routing mechanism described in Section 3.2. To ensure the accuracy and integrity of the scientific record, we wish to withdraw the paper to correct these formulations and re-evaluate the theoretical proofs
Multiplayer Nash Preference Optimization
Reinforcement learning from human feedback (RLHF) has emerged as the standard paradigm for aligning large language models with human preferences. However, reward-based methods built on the Bradley-Terry assumption struggle to capture the non-transitive and heterogeneous nature of real-world preferences. To address this, recent studies have reframed alignment as a two-player Nash game, giving rise to Nash learning from human feedback (NLHF). While this perspective has inspired algorithms such as INPO, ONPO, and EGPO with strong theoretical and empirical guarantees, they remain fundamentally restricted to two-player interactions, creating a single-opponent bias that fails to capture the full complexity of realistic preference structures. This work introduces Multiplayer Nash Preference Optimization (MNPO), a novel framework that generalizes NLHF to the multiplayer regime. It formulates alignment as an n-player game, where each policy competes against a population of opponents while being regularized toward a reference model. We demonstrate that MNPO inherits the equilibrium guarantees of two-player methods while enabling richer competitive dynamics and improved coverage of diverse preference structures. Comprehensive empirical evaluation shows that MNPO consistently outperforms existing NLHF baselines on instruction-following benchmarks, achieving superior alignment quality under heterogeneous annotator conditions and mixed-policy evaluation scenarios. Together, these results establish MNPO as a principled and scalable framework for aligning LLMs with complex, non-transitive human preferences. Code is available at https://github.com/smiles724/MNPO.
Jenius Agent: Towards Experience-Driven Accuracy Optimization in Real-World Scenarios
As agent systems powered by large language models (LLMs) advance, improving the task performance of an autonomous agent, especially in context understanding, tool usage, and response generation, has become increasingly critical. Although prior studies have advanced the overall design of LLM-based agents, systematic optimization of their internal reasoning and tool-use pipelines remains underexplored. This paper introduces an agent framework grounded in real-world practical experience, with three key innovations: (1) an adaptive prompt generation strategy that aligns with the agent's state and task goals to improve reliability and robustness; (2) a context-aware tool orchestration module that performs tool categorization, semantic retrieval, and adaptive invocation based on user intent and context; and (3) a layered memory mechanism that integrates session memory, task history, and external summaries to improve relevance and efficiency through dynamic summarization and compression. An end-to-end framework named Jenius-Agent has been integrated with three key optimizations, including tools based on the Model Context Protocol (MCP), file input/output (I/O), and execution feedback. The experiments show a 20 percent improvement in task accuracy, along with a reduced token cost, response latency, and invocation failures. The framework is already deployed in Jenius (https://www.jenius.cn), providing a lightweight and scalable solution for robust, protocol-compatible autonomous agents.
Monadic Context Engineering
The proliferation of Large Language Models (LLMs) has catalyzed a shift towards autonomous agents capable of complex reasoning and tool use. However, current agent architectures are frequently constructed using imperative, ad hoc patterns. This results in brittle systems plagued by difficulties in state management, error handling, and concurrency. This paper introduces Monadic Context Engineering (MCE), a novel architectural paradigm leveraging the algebraic structures of Functors, Applicative Functors, and Monads to provide a formal foundation for agent design. MCE treats agent workflows as computational contexts where cross-cutting concerns, such as state propagation, short-circuiting error handling, and asynchronous execution, are managed intrinsically by the algebraic properties of the abstraction. We demonstrate how Monads enable robust sequential composition, how Applicatives provide a principled structure for parallel execution, and crucially, how Monad Transformers allow for the systematic composition of these capabilities. This layered approach enables developers to construct complex, resilient, and efficient AI agents from simple, independently verifiable components. We further extend this framework to describe Meta-Agents, which leverage MCE for generative orchestration, dynamically creating and managing sub-agent workflows through metaprogramming.
CausalProfiler: Generating Synthetic Benchmarks for Rigorous and Transparent Evaluation of Causal Machine Learning
Causal machine learning (Causal ML) aims to answer "what if" questions using machine learning algorithms, making it a promising tool for high-stakes decision-making. Yet, empirical evaluation practices in Causal ML remain limited. Existing benchmarks often rely on a handful of hand-crafted or semi-synthetic datasets, leading to brittle, non-generalizable conclusions. To bridge this gap, we introduce CausalProfiler, a synthetic benchmark generator for Causal ML methods. Based on a set of explicit design choices about the class of causal models, queries, and data considered, the CausalProfiler randomly samples causal models, data, queries, and ground truths constituting the synthetic causal benchmarks. In this way, Causal ML methods can be rigorously and transparently evaluated under a variety of conditions. This work offers the first random generator of synthetic causal benchmarks with coverage guarantees and transparent assumptions operating on the three levels of causal reasoning: observation, intervention, and counterfactual. We demonstrate its utility by evaluating several state-of-the-art methods under diverse conditions and assumptions, both in and out of the identification regime, illustrating the types of analyses and insights the CausalProfiler enables.
comment: v2: Added acknowledgements. Content unchanged
Wittgenstein's Family Resemblance Clustering Algorithm
This paper, introducing a novel method in philomatics, draws on Wittgenstein's concept of family resemblance from analytic philosophy to develop a clustering algorithm for machine learning. According to Wittgenstein's Philosophical Investigations (1953), family resemblance holds that members of a concept or category are connected by overlapping similarities rather than a single defining property. Consequently, a family of entities forms a chain of items sharing overlapping traits. This philosophical idea naturally lends itself to a graph-based approach in machine learning. Accordingly, we propose the Wittgenstein's Family Resemblance (WFR) clustering algorithm and its kernel variant, kernel WFR. This algorithm computes resemblance scores between neighboring data instances, and after thresholding these scores, a resemblance graph is constructed. The connected components of this graph define the resulting clusters. Simulations on benchmark datasets demonstrate that WFR is an effective nonlinear clustering algorithm that does not require prior knowledge of the number of clusters or assumptions about their shapes.
comment: v2: added related work
SPD Matrix Learning for Neuroimaging Analysis: Perspectives, Methods, and Challenges
Neuroimaging provides essential tools for characterizing brain activity by quantifying connectivity strength between remote regions, using different modalities that capture different aspects of connectivity. Yet, decoding meaningful neural signatures must contend with modality-specific challenges, including measurement noise, spatial and temporal distortions, heterogeneous acquisition protocols, and limited sample sizes. A unifying perspective emerges when these data are expressed through symmetric positive definite (SPD)-valued representations: across neuroimaging modalities, SPD-valued representations naturally give rise to SPD matrices that capture dependencies between sensors or brain regions. Endowing the SPD space with Riemannian metrics equips it with a non-Euclidean geometric structure, enabling principled statistical modeling and machine learning on the resulting manifold. This review consolidates machine learning methodologies that operate on the SPD manifold under a unified framework termed SPD matrix learning. SPD matrix learning brings conceptual clarity across multiple modalities, establishes continuity with decades of geometric statistics in neuroimaging, and positions SPD modeling as a methodological bridge between classical analysis and emerging AI-driven paradigms. We show that (i) modeling on the SPD manifold is mathematically natural and numerically stable, preserving symmetry and positive definiteness while avoiding degeneracies inherent to Euclidean embeddings; (ii) SPD matrix learning extends a broad family of established geometric statistical tools used across neuroimaging; and (iii) SPD matrix learning integrates new-generation AI technologies, driving a new class of neuroimaging problems that were previously out of reach. Taken together, SPD matrix learning offers a principled and forward-looking framework for next-generation neuroimaging analytics.
comment: 20 pages, 2 figures, 1 table; This paper has been submitted for possible publication, and is currently under review
Gradient Dynamics of Attention: How Cross-Entropy Sculpts Bayesian Manifolds
Transformers empirically perform precise probabilistic reasoning in carefully constructed ``Bayesian wind tunnels'' and in large-scale language models, yet the mechanisms by which gradient-based learning creates the required internal geometry remain opaque. We provide a complete first-order analysis of how cross-entropy training reshapes attention scores and value vectors in a transformer attention head. Our core result is an \emph{advantage-based routing law} for attention scores, \[ \frac{\partial L}{\partial s_{ij}} = α_{ij}\bigl(b_{ij}-\mathbb{E}_{α_i}[b]\bigr), \qquad b_{ij} := u_i^\top v_j, \] coupled with a \emph{responsibility-weighted update} for values, \[ Δv_j = -η\sum_i α_{ij} u_i, \] where $u_i$ is the upstream gradient at position $i$ and $α_{ij}$ are attention weights. These equations induce a positive feedback loop in which routing and content specialize together: queries route more strongly to values that are above-average for their error signal, and those values are pulled toward the queries that use them. We show that this coupled specialization behaves like a two-timescale EM procedure: attention weights implement an E-step (soft responsibilities), while values implement an M-step (responsibility-weighted prototype updates), with queries and keys adjusting the hypothesis frame. Through controlled simulations, including a sticky Markov-chain task where we compare a closed-form EM-style update to standard SGD, we demonstrate that the same gradient dynamics that minimize cross-entropy also sculpt the low-dimensional manifolds identified in our companion work as implementing Bayesian inference. This yields a unified picture in which optimization (gradient flow) gives rise to geometry (Bayesian manifolds), which in turn supports function (in-context probabilistic reasoning).
Geometric Scaling of Bayesian Inference in LLMs
Recent work has shown that small transformers trained in controlled "wind-tunnel'' settings can implement exact Bayesian inference, and that their training dynamics produce a geometric substrate -- low-dimensional value manifolds and progressively orthogonal keys -- that encodes posterior structure. We investigate whether this geometric signature persists in production-grade language models. Across Pythia, Phi-2, Llama-3, and Mistral families, we find that last-layer value representations organize along a single dominant axis whose position strongly correlates with predictive entropy, and that domain-restricted prompts collapse this structure into the same low-dimensional manifolds observed in synthetic settings. To probe the role of this geometry, we perform targeted interventions on the entropy-aligned axis of Pythia-410M during in-context learning. Removing or perturbing this axis selectively disrupts the local uncertainty geometry, whereas matched random-axis interventions leave it intact. However, these single-layer manipulations do not produce proportionally specific degradation in Bayesian-like behavior, indicating that the geometry is a privileged readout of uncertainty rather than a singular computational bottleneck. Taken together, our results show that modern language models preserve the geometric substrate that enables Bayesian inference in wind tunnels, and organize their approximate Bayesian updates along this substrate.
The Bayesian Geometry of Transformer Attention
Transformers often appear to perform Bayesian reasoning in context, but verifying this rigorously has been impossible: natural data lack analytic posteriors, and large models conflate reasoning with memorization. We address this by constructing \emph{Bayesian wind tunnels} -- controlled environments where the true posterior is known in closed form and memorization is provably impossible. In these settings, small transformers reproduce Bayesian posteriors with $10^{-3}$-$10^{-4}$ bit accuracy, while capacity-matched MLPs fail by orders of magnitude, establishing a clear architectural separation. Across two tasks -- bijection elimination and Hidden Markov Model (HMM) state tracking -- we find that transformers implement Bayesian inference through a consistent geometric mechanism: residual streams serve as the belief substrate, feed-forward networks perform the posterior update, and attention provides content-addressable routing. Geometric diagnostics reveal orthogonal key bases, progressive query-key alignment, and a low-dimensional value manifold parameterized by posterior entropy. During training this manifold unfurls while attention patterns remain stable, a \emph{frame-precision dissociation} predicted by recent gradient analyses. Taken together, these results demonstrate that hierarchical attention realizes Bayesian inference by geometric design, explaining both the necessity of attention and the failure of flat architectures. Bayesian wind tunnels provide a foundation for mechanistically connecting small, verifiable systems to reasoning phenomena observed in large language models.
On the Diagram of Thought
Large Language Models (LLMs) excel at many tasks but often falter on complex problems that require structured, multi-step reasoning. We introduce the Diagram of Thought (DoT), a new framework that enables a single LLM to build and navigate a mental map of its reasoning. Instead of thinking in a straight line, the model constructs a dynamic diagram of ideas, where it can propose different lines of thought, critique its own steps, and synthesize validated insights into a final conclusion. This entire process is self-contained within the model, making it highly efficient by avoiding the complex external controllers or search algorithms required by other methods. To ensure the reliability of this process, we ground DoT in a rigorous mathematical framework from category theory. This foundation guarantees that the way the model combines information is logical, consistent, and robust, regardless of the order in which ideas were explored. The result is a more powerful and transparent reasoning process that produces a fully auditable, step-by-step trace of the LLM's thinking, bridging the gap between fluent language and formal reasoning.
comment: 30 pages
Reverse Language Model
We introduce LEDOM, the first purely reverse language model, trained autoregressively on 435B tokens with 2B and 7B parameter variants, which processes sequences in reverse temporal order through previous token prediction. For the first time, we present the reverse language model as a potential foundational model across general tasks, accompanied by a set of intriguing examples and insights. Based on LEDOM, we further introduce a novel application: Reverse Reward, where LEDOM-guided reranking of forward language model outputs leads to substantial performance improvements on mathematical reasoning tasks. This approach leverages LEDOM's unique backward reasoning capability to refine generation quality through posterior evaluation. Our findings suggest that LEDOM exhibits unique characteristics with broad application potential. We will release all models, training code, and pre-training data to facilitate future research.
comment: Work in progress; Models can be found at: https://huggingface.co/Corning/Reverse-Model-7B-348B/tree/main
Jailbreaking Safeguarded Text-to-Image Models via Large Language Models
Text-to-Image models may generate harmful content, such as pornographic images, particularly when unsafe prompts are submitted. To address this issue, safety filters are often added on top of text-to-image models, or the models themselves are aligned to reduce harmful outputs. However, these defenses remain vulnerable when an attacker strategically designs adversarial prompts to bypass these safety guardrails. In this work, we propose \alg, a method to jailbreak text-to-image models with safety guardrails using a fine-tuned large language model. Unlike other query-based jailbreak attacks that require repeated queries to the target model, our attack generates adversarial prompts efficiently after fine-tuning our AttackLLM. We evaluate our method on three datasets of unsafe prompts and against five safety guardrails. Our results demonstrate that our approach effectively bypasses safety guardrails, outperforms existing no-box attacks, and also facilitates other query-based attacks.
comment: Accepted by EACL 2026 Findings
SAINT: Attention-Based Policies for Discrete Combinatorial Action Spaces
The combinatorial structure of many real-world action spaces leads to exponential growth in the number of possible actions, limiting the effectiveness of conventional reinforcement learning algorithms. Recent approaches for combinatorial action spaces impose factorized or sequential structures over sub-actions, failing to capture complex joint behavior. We introduce the Sub-Action Interaction Network using Transformers (SAINT), a novel policy architecture that represents multi-component actions as unordered sets and models their dependencies via self-attention conditioned on the global state. SAINT is permutation-invariant, sample-efficient, and compatible with standard policy optimization algorithms. In 20 distinct combinatorial environments across three task domains, including environments with nearly 17 million joint actions, SAINT consistently outperforms strong baselines.
Rethinking the Text-Vision Reasoning Imbalance in MLLMs through the Lens of Training Recipes
Multimodal large language models (MLLMs) have demonstrated strong capabilities on vision-and-language tasks. However, recent findings reveal an imbalance in their reasoning capabilities across visual and textual modalities. Specifically, current MLLMs often over-rely on textual cues while under-attending to visual content, resulting in suboptimal performance on tasks that require genuine visual reasoning. We refer to this phenomenon as the \textit{modality gap}, defined as the performance disparity between text-centric and vision-centric inputs. In this paper, we analyze the modality gap through the lens of training recipes. We first show that existing training recipes tend to amplify this gap. Then, we systematically explore strategies to bridge it from two complementary perspectives: data and loss design. Our findings provide insights into developing training recipes that mitigate the modality gap and promote more balanced multimodal reasoning. Our code is publicly available at https://github.com/UCSB-NLP-Chang/Bridging-Modality-Gap.
What Should Embeddings Embed? Autoregressive Models Represent Latent Generating Distributions
Autoregressive language models have demonstrated a remarkable ability to extract latent structure from text. The embeddings from large language models have been shown to capture aspects of the syntax and semantics of language. But what should embeddings represent? We connect the autoregressive prediction objective to the idea of constructing predictive sufficient statistics to summarize the information contained in a sequence of observations, and use this connection to identify three settings where the optimal content of embeddings can be identified: independent identically distributed data, where the embedding should capture the sufficient statistics of the data; latent state models, where the embedding should encode the posterior distribution over states given the data; and discrete hypothesis spaces, where the embedding should reflect the posterior distribution over hypotheses given the data. We then conduct empirical probing studies to show that transformers encode these three kinds of latent generating distributions, and that they perform well in out-of-distribution cases and without token memorization in these settings.
comment: 28 pages, 11 figures
Per-sender neural network classifiers for email authorship validation
Business email compromise and lateral spear phishing attacks are among modern organizations' most costly and damaging threats. While inbound phishing defenses have improved significantly, most organizations still trust internal emails by default, leaving themselves vulnerable to attacks from compromised employee accounts. In this work, we define and explore the problem of authorship validation: verifying whether a claimed sender actually authored a given email. Authorship validation is a lightweight, real-time defense that complements traditional detection methods by modeling per-sender writing style. Further, the paper presents a collection of new datasets based on the Enron corpus. These simulate inauthentic messages using both human-written and large language model-generated emails. The paper also evaluates two classifiers -- a Naive Bayes model and a character-level convolutional neural network (Char-CNN) -- for the authorship validation task. Our experiments show that the Char-CNN model achieves high accuracy and F1 scores under various circumstances. Finally, we discuss deployment considerations and show that per-sender authorship classifiers are practical for integrating into existing commercial email security systems with low overhead.
comment: 12 pages, 6 figures, 8 tables, 41 references
Calculating Ultra-Strong and Extended Solutions for Nine Men's Morris, Morabaraba, and Lasker Morris
The strong solutions of Nine Men's Morris and its variant, Lasker Morris are well-known results (the starting positions are draws). We re-examined both of these games, and calculated extended strong solutions for them. By this we mean the game-theoretic values of all possible game states that could be reached from certain starting positions where the number of stones to be placed by the players is different from the standard rules. These were also calculated for a previously unsolved third variant, Morabaraba, with interesting results: most of the starting positions where the players can place an equal number of stones (including the standard starting position) are wins for the first player (as opposed to the above games, where these are usually draws). We also developed a multi-valued retrograde analysis, and used it as a basis for an algorithm for solving these games ultra-strongly. This means that when our program is playing against a fallible opponent, it has a greater chance of achieving a better result than the game-theoretic value, compared to randomly selecting between "just strongly" optimal moves. Previous attempts on ultra-strong solutions used local heuristics or learning during games, but we incorporated our algorithm into the retrograde analysis.
comment: (c) 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works
The Reward Model Selection Crisis in Personalized Alignment
Personalized alignment from preference data has focused primarily on improving personal reward model (RM) accuracy, with the implicit assumption that better preference ranking translates to better personalized behavior. However, in deployment, computational constraints necessitate inference-time adaptation such as reward-guided decoding (RGD) rather than per-user policy fine-tuning. This creates a critical but overlooked requirement: reward models must not only rank preferences accurately but also effectively guide generation. We demonstrate that standard RM accuracy fails catastrophically as a selection criterion for deployment-ready personalized rewards. We introduce policy accuracy; a metric quantifying whether RGD-adapted LLMs correctly discriminate between preferred and dispreferred responses and show that upstream RM accuracy correlates only weakly with downstream policy accuracy (Kendall's tau = 0.08--0.31). More critically, we introduce Pref-LaMP the first personalized alignment benchmark with ground-truth user completions, enabling direct behavioural evaluation. On Pref-LaMP, we expose a complete decoupling between discriminative ranking and generation metrics: methods with 20-point RM accuracy differences produce almost identical output quality, and methods with high ranking accuracy can fail to generate behaviorally aligned responses. These findings reveal that the field has been optimizing for proxy metrics that do not predict deployment performance, and that current personalized alignment methods fail to operationalize preferences into behavioral adaptation under realistic deployment constraints. In contrast, we find simple in-context learning (ICL) to be highly effective - dominating all reward-guided methods for models $\geq$3B parameters, achieving $\sim$3 point ROUGE-1 gains over the best reward method at 7B scale.
Cognitive-Mental-LLM: Evaluating Reasoning in Large Language Models for Mental Health Prediction via Online Text
Large Language Models (LLMs) have demonstrated potential in predicting mental health outcomes from online text, yet traditional classification methods often lack interpretability and robustness. This study evaluates structured reasoning techniques-Chain-of-Thought (CoT), Self-Consistency (SC-CoT), and Tree-of-Thought (ToT)-to improve classification accuracy across multiple mental health datasets sourced from Reddit. We analyze reasoning-driven prompting strategies, including Zero-shot CoT and Few-shot CoT, using key performance metrics such as Balanced Accuracy, F1 score, and Sensitivity/Specificity. Our findings indicate that reasoning-enhanced techniques improve classification performance over direct prediction, particularly in complex cases. Compared to baselines such as Zero Shot non-CoT Prompting, and fine-tuned pre-trained transformers such as BERT and Mental-RoBerta, and fine-tuned Open Source LLMs such as Mental Alpaca and Mental-Flan-T5, reasoning-driven LLMs yield notable gains on datasets like Dreaddit (+0.52\% over M-LLM, +0.82\% over BERT) and SDCNL (+4.67\% over M-LLM, +2.17\% over BERT). However, performance declines in Depression Severity, and CSSRS predictions suggest dataset-specific limitations, likely due to our using a more extensive test set. Among prompting strategies, Few-shot CoT consistently outperforms others, reinforcing the effectiveness of reasoning-driven LLMs. Nonetheless, dataset variability highlights challenges in model reliability and interpretability. This study provides a comprehensive benchmark of reasoning-based LLM techniques for mental health text classification. It offers insights into their potential for scalable clinical applications while identifying key challenges for future improvements.
comment: 8 pages, 4 Figures, 3 tables
Advancing Software Quality: A Standards-Focused Review of LLM-Based Assurance Techniques
Software Quality Assurance (SQA) is critical for delivering reliable, secure, and efficient software products. The Software Quality Assurance Process aims to provide assurance that work products and processes comply with predefined provisions and plans. Recent advancements in Large Language Models (LLMs) present new opportunities to enhance existing SQA processes by automating tasks like requirement analysis, code review, test generation, and compliance checks. Simultaneously, established standards such as ISO/IEC 12207, ISO/IEC 25010, ISO/IEC 5055, ISO 9001/ISO/IEC 90003, CMMI, and TMM provide structured frameworks for ensuring robust quality practices. This paper surveys the intersection of LLM-based SQA methods and these recognized standards, highlighting how AI-driven solutions can augment traditional approaches while maintaining compliance and process maturity. We first review the foundational software quality standards and the technical fundamentals of LLMs in software engineering. Next, we explore various LLM-based SQA applications, including requirement validation, defect detection, test generation, and documentation maintenance. We then map these applications to key software quality frameworks, illustrating how LLMs can address specific requirements and metrics within each standard. Empirical case studies and open-source initiatives demonstrate the practical viability of these methods. At the same time, discussions on challenges (e.g., data privacy, model bias, explainability) underscore the need for deliberate governance and auditing. Finally, we propose future directions encompassing adaptive learning, privacy-focused deployments, multimodal analysis, and evolving standards for AI-driven software quality.
comment: 16 pages, 1 Table, 6 Figures
PackKV: Reducing KV Cache Memory Footprint through LLM-Aware Lossy Compression
Transformer-based large language models (LLMs) have demonstrated remarkable potential across a wide range of practical applications. However, long-context inference remains a significant challenge due to the substantial memory requirements of the key-value (KV) cache, which can scale to several gigabytes as sequence length and batch size increase. In this paper, we present \textbf{PackKV}, a generic and efficient KV cache management framework optimized for long-context generation. %, which synergistically supports both latency-critical and throughput-critical inference scenarios. PackKV introduces novel lossy compression techniques specifically tailored to the characteristics of KV cache data, featuring a careful co-design of compression algorithms and system architecture. Our approach is compatible with the dynamically growing nature of the KV cache while preserving high computational efficiency. Experimental results show that, under the same and minimum accuracy drop as state-of-the-art quantization methods, PackKV achieves, on average, \textbf{153.2}\% higher memory reduction rate for the K cache and \textbf{179.6}\% for the V cache. Furthermore, PackKV delivers extremely high execution throughput, effectively eliminating decompression overhead and accelerating the matrix-vector multiplication operation. Specifically, PackKV achieves an average throughput improvement of \textbf{75.7}\% for K and \textbf{171.7}\% for V across A100 and RTX Pro 6000 GPUs, compared to cuBLAS matrix-vector multiplication kernels, while demanding less GPU memory bandwidth. Code available on https://github.com/BoJiang03/PackKV
AI red-teaming is a sociotechnical problem: on values, labor, and harms
As generative AI technologies find more and more real-world applications, the importance of testing their performance and safety seems paramount. "Red-teaming" has quickly become the primary approach to test AI models--prioritized by AI companies, and enshrined in AI policy and regulation. Members of red teams act as adversaries, probing AI systems to test their safety mechanisms and uncover vulnerabilities. Yet we know far too little about this work or its implications. This essay calls for collaboration between computer scientists and social scientists to study the sociotechnical systems surrounding AI technologies, including the work of red-teaming, to avoid repeating the mistakes of the recent past. We highlight the importance of understanding the values and assumptions behind red-teaming, the labor arrangements involved, and the psychological impacts on red-teamers, drawing insights from the lessons learned around the work of content moderation.
comment: 10 pages
Machine Learning 223
Lightweight Test-Time Adaptation for EMG-Based Gesture Recognition
Reliable long-term decoding of surface electromyography (EMG) is hindered by signal drift caused by electrode shifts, muscle fatigue, and posture changes. While state-of-the-art models achieve high intra-session accuracy, their performance often degrades sharply. Existing solutions typically demand large datasets or high-compute pipelines that are impractical for energy-efficient wearables. We propose a lightweight framework for Test-Time Adaptation (TTA) using a Temporal Convolutional Network (TCN) backbone. We introduce three deployment-ready strategies: (i) causal adaptive batch normalization for real-time statistical alignment; (ii) a Gaussian Mixture Model (GMM) alignment with experience replay to prevent forgetting; and (iii) meta-learning for rapid, few-shot calibration. Evaluated on the NinaPro DB6 multi-session dataset, our framework significantly bridges the inter-session accuracy gap with minimal overhead. Our results show that experience-replay updates yield superior stability under limited data, while meta-learning achieves competitive performance in one- and two-shot regimes using only a fraction of the data required by current benchmarks. This work establishes a path toward robust, "plug-and-play" myoelectric control for long-term prosthetic use.
Robust Physics Discovery from Highly Corrupted Data: A PINN Framework Applied to the Nonlinear Schrödinger Equation
We demonstrate a deep learning framework capable of recovering physical parameters from the Nonlinear Schrodinger Equation (NLSE) under severe noise conditions. By integrating Physics-Informed Neural Networks (PINNs) with automatic differentiation, we achieve reconstruction of the nonlinear coefficient beta with less than 0.2 percent relative error using only 500 sparse, randomly sampled data points corrupted by 20 percent additive Gaussian noise, a regime where traditional finite difference methods typically fail due to noise amplification in numerical derivatives. We validate the method's generalization capabilities across different physical regimes (beta between 0.5 and 2.0) and varying data availability (between 100 and 1000 training points), demonstrating consistent sub-1 percent accuracy. Statistical analysis over multiple independent runs confirms robustness (standard deviation less than 0.15 percent for beta equals 1.0). The complete pipeline executes in approximately 80 minutes on modest cloud GPU resources (NVIDIA Tesla T4), making the approach accessible for widespread adoption. Our results indicate that physics-based regularization acts as an effective filter against high measurement uncertainty, positioning PINNs as a viable alternative to traditional optimization methods for inverse problems in spatiotemporal dynamics where experimental data is scarce and noisy. All code is made publicly available to facilitate reproducibility.
comment: 9 pages, 4 figures, 2 tables. Code available at https://github.com/p-esteves/pinn-nlse-2026
Agentic Rubrics as Contextual Verifiers for SWE Agents
Verification is critical for improving agents: it provides the reward signal for Reinforcement Learning and enables inference-time gains through Test-Time Scaling (TTS). Despite its importance, verification in software engineering (SWE) agent settings often relies on code execution, which can be difficult to scale due to environment setup overhead. Scalable alternatives such as patch classifiers and heuristic methods exist, but they are less grounded in codebase context and harder to interpret. To this end, we explore Agentic Rubrics: an expert agent interacts with the repository to create a context-grounded rubric checklist, and candidate patches are then scored against it without requiring test execution. On SWE-Bench Verified under parallel TTS evaluation, Agentic Rubrics achieve a score of 54.2% on Qwen3-Coder-30B-A3B and 40.6% on Qwen3-32B, with at least a +3.5 percentage-point gain over the strongest baseline in our comparison set. We further analyze rubric behavior, showing that rubric scores are consistent with ground-truth tests while also flagging issues that tests do not capture. Our ablations show that agentic context gathering is essential for producing codebase-specific, unambiguous criteria. Together, these results suggest that Agentic Rubrics provide an efficient, scalable, and granular verification signal for SWE agents.
comment: 31 pages, 11 Figures
Clinical Data Goes MEDS? Let's OWL make sense of it
The application of machine learning on healthcare data is often hindered by the lack of standardized and semantically explicit representation, leading to limited interoperability and reproducibility across datasets and experiments. The Medical Event Data Standard (MEDS) addresses these issues by introducing a minimal, event-centric data model designed for reproducible machine-learning workflows from health data. However, MEDS is defined as a data-format specification and does not natively provide integration with the Semantic Web ecosystem. In this article, we introduce MEDS-OWL, a lightweight OWL ontology that provides formal concepts and relations to enable representing MEDS datasets as RDF graphs. Additionally, we implemented meds2rdf, a Python conversion library that transforms MEDS events into RDF graphs, ensuring conformance with the ontology. We demonstrate the approach on a synthetic clinical dataset that describes patient care pathways for ruptured intracranial aneurysms and validate the resulting graph using SHACL constraints. The first release of MEDS-OWL comprises 13 classes, 10 object properties, 20 data properties, and 24 OWL axioms. Combined with meds2rdf, it enables data transformation into FAIR-aligned datasets, provenance-aware publishing, and interoperability of event-based clinical data. By bridging MEDS with the Semantic Web, this work contributes a reusable semantic layer for event-based clinical data and establishes a robust foundation for subsequent graph-based analytics.
comment: 12 pages, 5 tables, 4 figures
Scanner-Induced Domain Shifts Undermine the Robustness of Pathology Foundation Models
Pathology foundation models (PFMs) have become central to computational pathology, aiming to offer general encoders for feature extraction from whole-slide images (WSIs). Despite strong benchmark performance, PFM robustness to real-world technical domain shifts, such as variability from whole-slide scanner devices, remains poorly understood. We systematically evaluated the robustness of 14 PFMs to scanner-induced variability, including state-of-the-art models, earlier self-supervised models, and a baseline trained on natural images. Using a multiscanner dataset of 384 breast cancer WSIs scanned on five devices, we isolated scanner effects independently from biological and laboratory confounders. Robustness is assessed via complementary unsupervised embedding analyses and a set of clinicopathological supervised prediction tasks. Our results demonstrate that current PFMs are not invariant to scanner-induced domain shifts. Most models encode pronounced scanner-specific variability in their embedding spaces. While AUC often remains stable, this masks a critical failure mode: scanner variability systematically alters the embedding space and impacts calibration of downstream model predictions, resulting in scanner-dependent bias that can impact reliability in clinical use cases. We further show that robustness is not a simple function of training data scale, model size, or model recency. None of the models provided reliable robustness against scanner-induced variability. While the models trained on the most diverse data, here represented by vision-language models, appear to have an advantage with respect to robustness, they underperformed on downstream supervised tasks. We conclude that development and evaluation of PFMs requires moving beyond accuracy-centric benchmarks toward explicit evaluation and optimisation of embedding stability and calibration under realistic acquisition variability.
FLEx: Language Modeling with Few-shot Language Explanations
Language models have become effective at a wide range of tasks, from math problem solving to open-domain question answering. However, they still make mistakes, and these mistakes are often repeated across related queries. Natural language explanations can help correct these errors, but collecting them at scale may be infeasible, particularly in domains where expert annotators are required. To address this issue, we introduce FLEx ($\textbf{F}$ew-shot $\textbf{L}$anguage $\textbf{Ex}$planations), a method for improving model behavior using a small number of explanatory examples. FLEx selects representative model errors using embedding-based clustering, verifies that the associated explanations correct those errors, and summarizes them into a prompt prefix that is prepended at inference-time. This summary guides the model to avoid similar errors on new inputs, without modifying model weights. We evaluate FLEx on CounterBench, GSM8K, and ReasonIF. We find that FLEx consistently outperforms chain-of-thought (CoT) prompting across all three datasets and reduces up to 83\% of CoT's remaining errors.
A Theoretical and Empirical Taxonomy of Imbalance in Binary Classification
Class imbalance significantly degrades classification performance, yet its effects are rarely analyzed from a unified theoretical perspective. We propose a principled framework based on three fundamental scales: the imbalance coefficient $η$, the sample--dimension ratio $κ$, and the intrinsic separability $Δ$. Starting from the Gaussian Bayes classifier, we derive closed-form Bayes errors and show how imbalance shifts the discriminant boundary, yielding a deterioration slope that predicts four regimes: Normal, Mild, Extreme, and Catastrophic. Using a balanced high-dimensional genomic dataset, we vary only $η$ while keeping $κ$ and $Δ$ fixed. Across parametric and non-parametric models, empirical degradation closely follows theoretical predictions: minority Recall collapses once $\log(η)$ exceeds $Δ\sqrtκ$, Precision increases asymmetrically, and F1-score and PR-AUC decline in line with the predicted regimes. These results show that the triplet $(η,κ,Δ)$ provides a model-agnostic, geometrically grounded explanation of imbalance-induced deterioration.
comment: 24 pages, 10 figures
ContextFocus: Activation Steering for Contextual Faithfulness in Large Language Models
Large Language Models (LLMs) encode vast amounts of parametric knowledge during pre-training. As world knowledge evolves, effective deployment increasingly depends on their ability to faithfully follow externally retrieved context. When such evidence conflicts with the model's internal knowledge, LLMs often default to memorized facts, producing unfaithful outputs. In this work, we introduce ContextFocus, a lightweight activation steering approach that improves context faithfulness in such knowledge-conflict settings while preserving fluency and efficiency. Unlike prior approaches, our solution requires no model finetuning and incurs minimal inference-time overhead, making it highly efficient. We evaluate ContextFocus on the ConFiQA benchmark, comparing it against strong baselines including ContextDPO, COIECD, and prompting-based methods. Furthermore, we show that our method is complementary to prompting strategies and remains effective on larger models. Extensive experiments show that ContextFocus significantly improves contextual-faithfulness. Our results highlight the effectiveness, robustness, and efficiency of ContextFocus in improving contextual-faithfulness of LLM outputs.
MORPHFED: Federated Learning for Cross-institutional Blood Morphology Analysis
Automated blood morphology analysis can support hematological diagnostics in low- and middle-income countries (LMICs) but remains sensitive to dataset shifts from staining variability, imaging differences, and rare morphologies. Building centralized datasets to capture this diversity is often infeasible due to privacy regulations and data-sharing restrictions. We introduce a federated learning framework for white blood cell morphology analysis that enables collaborative training across institutions without exchanging training data. Using blood films from multiple clinical sites, our federated models learn robust, domain-invariant representations while preserving complete data privacy. Evaluations across convolutional and transformer-based architectures show that federated training achieves strong cross-site performance and improved generalization to unseen institutions compared to centralized training. These findings highlight federated learning as a practical and privacy-preserving approach for developing equitable, scalable, and generalizable medical imaging AI in resource-limited healthcare environments.
A Single-Loop Bilevel Deep Learning Method for Optimal Control of Obstacle Problems
Optimal control of obstacle problems arises in a wide range of applications and is computationally challenging due to its nonsmoothness, nonlinearity, and bilevel structure. Classical numerical approaches rely on mesh-based discretization and typically require solving a sequence of costly subproblems. In this work, we propose a single-loop bilevel deep learning method, which is mesh-free, scalable to high-dimensional and complex domains, and avoids repeated solution of discretized subproblems. The method employs constraint-embedding neural networks to approximate the state and control and preserves the bilevel structure. To train the neural networks efficiently, we propose a Single-Loop Stochastic First-Order Bilevel Algorithm (S2-FOBA), which eliminates nested optimization and does not rely on restrictive lower-level uniqueness assumptions. We analyze the convergence behavior of S2-FOBA under mild assumptions. Numerical experiments on benchmark examples, including distributed and obstacle control problems with regular and irregular obstacles on complex domains, demonstrate that the proposed method achieves satisfactory accuracy while reducing computational cost compared to classical numerical methods.
Causal Data Augmentation for Robust Fine-Tuning of Tabular Foundation Models
Fine-tuning tabular foundation models (TFMs) under data scarcity is challenging, as early stopping on even scarcer validation data often fails to capture true generalization performance. We propose CausalMixFT, a method that enhances fine-tuning robustness and downstream performance by generating structurally consistent synthetic samples using Structural Causal Models (SCMs) fitted on the target dataset. This approach augments limited real data with causally informed synthetic examples, preserving feature dependencies while expanding training diversity. Evaluated across 33 classification datasets from TabArena and over 2300 fine-tuning runs, our CausalMixFT method consistently improves median normalized ROC-AUC from 0.10 (standard fine-tuning) to 0.12, outperforming purely statistical generators such as CTGAN (-0.01), TabEBM (-0.04), and TableAugment (-0.09). Moreover, it narrows the median validation-test performance correlation gap from 0.67 to 0.30, enabling more reliable validation-based early stopping, a key step toward improving fine-tuning stability under data scarcity. These results demonstrate that incorporating causal structure into data augmentation provides an effective and principled route to fine-tuning tabular foundation models in low-data regimes.
comment: Accepted for oral presentation at the EurIPS 2025 Workshop on AI for Tabular Data (Copenhagen)
Equivariant Neural Networks for Force-Field Models of Lattice Systems
Machine-learning (ML) force fields enable large-scale simulations with near-first-principles accuracy at substantially reduced computational cost. Recent work has extended ML force-field approaches to adiabatic dynamical simulations of condensed-matter lattice models with coupled electronic and structural or magnetic degrees of freedom. However, most existing formulations rely on hand-crafted, symmetry-aware descriptors, whose construction is often system-specific and can hinder generality and transferability across different lattice Hamiltonians. Here we introduce a symmetry-preserving framework based on equivariant neural networks (ENNs) that provides a general, data-driven mapping from local configurations of dynamical variables to the associated on-site forces in a lattice Hamiltonian. In contrast to ENN architectures developed for molecular systems -- where continuous Euclidean symmetries dominate -- our approach aims to embed the discrete point-group and internal symmetries intrinsic to lattice models directly into the neural-network representation of the force field. As a proof of principle, we construct an ENN-based force-field model for the adiabatic dynamics of the Holstein Hamiltonian on a square lattice, a canonical system for electron-lattice physics. The resulting ML-enabled large-scale dynamical simulations faithfully capture mesoscale evolution of the symmetry-breaking phase, illustrating the utility of lattice-equivariant architectures for linking microscopic electronic processes to emergent dynamical behavior in condensed-matter lattice systems.
comment: 13 pages, 6 figures
Cells on Autopilot: Adaptive Cell (Re)Selection via Reinforcement Learning
The widespread deployment of 5G networks, together with the coexistence of 4G/LTE networks, provides mobile devices a diverse set of candidate cells to connect to. However, associating mobile devices to cells to maximize overall network performance, a.k.a. cell (re)selection, remains a key challenge for mobile operators. Today, cell (re)selection parameters are typically configured manually based on operator experience and rarely adapted to dynamic network conditions. In this work, we ask: Can an agent automatically learn and adapt cell (re)selection parameters to consistently improve network performance? We present a reinforcement learning (RL)-based framework called CellPilot that adaptively tunes cell (re)selection parameters by learning spatiotemporal patterns of mobile network dynamics. Our study with real-world data demonstrates that even a lightweight RL agent can outperform conventional heuristic reconfigurations by up to 167%, while generalizing effectively across different network scenarios. These results indicate that data-driven approaches can significantly improve cell (re)selection configurations and enhance mobile network performance.
comment: 11 pages, 12 figures
Unsupervised Modular Adaptive Region Growing and RegionMix Classification for Wind Turbine Segmentation WACV 2026
Reliable operation of wind turbines requires frequent inspections, as even minor surface damages can degrade aerodynamic performance, reduce energy output, and accelerate blade wear. Central to automating these inspections is the accurate segmentation of turbine blades from visual data. This task is traditionally addressed through dense, pixel-wise deep learning models. However, such methods demand extensive annotated datasets, posing scalability challenges. In this work, we introduce an annotation-efficient segmentation approach that reframes the pixel-level task into a binary region classification problem. Image regions are generated using a fully unsupervised, interpretable Modular Adaptive Region Growing technique, guided by image-specific Adaptive Thresholding and enhanced by a Region Merging process that consolidates fragmented areas into coherent segments. To improve generalization and classification robustness, we introduce RegionMix, an augmentation strategy that synthesizes new training samples by combining distinct regions. Our framework demonstrates state-of-the-art segmentation accuracy and strong cross-site generalization by consistently segmenting turbine blades across distinct windfarms.
comment: Accepted to WACV 2026
Minimum distance classification for nonlinear dynamical systems
We address the problem of classifying trajectory data generated by some nonlinear dynamics, where each class corresponds to a distinct dynamical system. We propose Dynafit, a kernel-based method for learning a distance metric between training trajectories and the underlying dynamics. New observations are assigned to the class with the most similar dynamics according to the learned metric. The learning algorithm approximates the Koopman operator which globally linearizes the dynamics in a (potentially infinite) feature space associated with a kernel function. The distance metric is computed in feature space independently of its dimensionality by using the kernel trick common in machine learning. We also show that the kernel function can be tailored to incorporate partial knowledge of the dynamics when available. Dynafit is applicable to various classification tasks involving nonlinear dynamical systems and sensors. We illustrate its effectiveness on three examples: chaos detection with the logistic map, recognition of handwritten dynamics and of visual dynamic textures.
Using Legacy Polysomnography Data to Train a Radar System to Quantify Sleep in Older Adults and People living with Dementia
Objective: Ultra-wideband radar technology offers a promising solution for unobtrusive and cost-effective in-home sleep monitoring. However, the limited availability of radar sleep data poses challenges in building robust models that generalize across diverse cohorts and environments. This study proposes a novel deep transfer learning framework to enhance sleep stage classification using radar data. Methods: An end-to-end neural network was developed to classify sleep stages based on nocturnal respiratory and motion signals. The network was trained using a combination of large-scale polysomnography (PSG) datasets and radar data. A domain adaptation approach employing adversarial learning was utilized to bridge the knowledge gap between PSG and radar signals. Validation was performed on a radar dataset of 47 older adults (mean age: 71.2), including 18 participants with prodromal or mild Alzheimer disease. Results: The proposed network structure achieves an accuracy of 79.5% with a Kappa value of 0.65 when classifying wakefulness, rapid eye movement, light sleep and deep sleep. Experimental results confirm that our deep transfer learning approach significantly enhances automatic sleep staging performance in the target domain. Conclusion: This method effectively addresses challenges associated with data variability and limited sample size, substantially improving the reliability of automatic sleep staging models, especially in contexts where radar data is limited. Significance: The findings underscore the viability of UWB radar as a nonintrusive, forward-looking sleep assessment tool that could significantly benefit care for older people and people with neurodegenerative disorders.
LinkD: AutoRegressive Diffusion Model for Mechanical Linkage Synthesis
Designing mechanical linkages to achieve target end-effector trajectories presents a fundamental challenge due to the intricate coupling between continuous node placements, discrete topological configurations, and nonlinear kinematic constraints. The highly nonlinear motion-to-configuration relationship means small perturbations in joint positions drastically alter trajectories, while the combinatorially expanding design space renders conventional optimization and heuristic methods computationally intractable. We introduce an autoregressive diffusion framework that exploits the dyadic nature of linkage assembly by representing mechanisms as sequentially constructed graphs, where nodes correspond to joints and edges to rigid links. Our approach combines a causal transformer with a Denoising Diffusion Probabilistic Model (DDPM), both conditioned on target trajectories encoded via a transformer encoder. The causal transformer autoregressively predicts discrete topology node-by-node, while the DDPM refines each node's spatial coordinates and edge connectivity to previously generated nodes. This sequential generation enables adaptive trial-and-error synthesis where problematic nodes exhibiting kinematic locking or collisions can be selectively regenerated, allowing autonomous correction of degenerate configurations during design. Our graph-based, data-driven methodology surpasses traditional optimization approaches, enabling scalable inverse design that generalizes to mechanisms with arbitrary node counts. We demonstrate successful synthesis of linkage systems containing up to 20 nodes with extensibility to N-node architectures. This work advances autoregressive graph generation methodologies and computational kinematic synthesis, establishing new paradigms for scalable inverse design of complex mechanical systems.
Symbolic Regression for Shared Expressions: Introducing Partial Parameter Sharing
Symbolic Regression aims to find symbolic expressions that describe datasets. Due to better interpretability, it is a machine learning paradigm particularly powerful for scientific discovery. In recent years, several works have expanded the concept to allow the description of similar phenomena using a single expression with varying sets of parameters, thereby introducing categorical variables. Some previous works allow only "non-shared" (category-value-specific) parameters, and others also incorporate "shared" (category-value-agnostic) parameters. We expand upon those efforts by considering multiple categorical variables, and introducing intermediate levels of parameter sharing. With two categorical variables, an intermediate level of parameter sharing emerges, i.e., parameters which are shared across either category but change across the other. The new approach potentially decreases the number of parameters, while revealing additional information about the problem. Using a synthetic, fitting-only example, we test the limits of this setup in terms of data requirement reduction and transfer learning. As a real-world symbolic regression example, we demonstrate the benefits of the proposed approach on an astrophysics dataset used in a previous study, which considered only one categorical variable. We achieve a similar fit quality but require significantly fewer individual parameters, and extract additional information about the problem.
Modeling Behavioral Patterns in News Recommendations Using Fuzzy Neural Networks
News recommender systems are increasingly driven by black-box models, offering little transparency for editorial decision-making. In this work, we introduce a transparent recommender system that uses fuzzy neural networks to learn human-readable rules from behavioral data for predicting article clicks. By extracting the rules at configurable thresholds, we can control rule complexity and thus, the level of interpretability. We evaluate our approach on two publicly available news datasets (i.e., MIND and EB-NeRD) and show that we can accurately predict click behavior compared to several established baselines, while learning human-readable rules. Furthermore, we show that the learned rules reveal news consumption patterns, enabling editors to align content curation goals with target audience behavior.
comment: Accepted for the IR for Good track at ECIR'26
Using Small Language Models to Reverse-Engineer Machine Learning Pipelines Structures
Background: Extracting the stages that structure Machine Learning (ML) pipelines from source code is key for gaining a deeper understanding of data science practices. However, the diversity caused by the constant evolution of the ML ecosystem (e.g., algorithms, libraries, datasets) makes this task challenging. Existing approaches either depend on non-scalable, manual labeling, or on ML classifiers that do not properly support the diversity of the domain. These limitations highlight the need for more flexible and reliable solutions. Objective: We evaluate whether Small Language Models (SLMs) can leverage their code understanding and classification abilities to address these limitations, and subsequently how they can advance our understanding of data science practices. Method: We conduct a confirmatory study based on two reference works selected for their relevance regarding current state-of-the-art's limitations. First, we compare several SLMs using Cochran's Q test. The best-performing model is then evaluated against the reference studies using two distinct McNemar's tests. We further analyze how variations in taxonomy definitions affect performance through an additional Cochran's Q test. Finally, a goodness-of-fit analysis is conducted using Pearson's chi-squared tests to compare our insights on data science practices with those from prior studies.
comment: SANER 2026 Registered Report
Stage-specific cancer survival prediction enriched by explainable machine learning
Despite the fact that cancer survivability rates vary greatly between stages, traditional survival prediction models have frequently been trained and assessed using examples from all combined phases of the disease. This method may result in an overestimation of performance and ignore the stage-specific variations. Using the SEER dataset, we created and verified explainable machine learning (ML) models to predict stage-specific cancer survivability in colorectal, stomach, and liver cancers. ML-based cancer survival analysis has been a long-standing topic in the literature; however, studies involving the explainability and transparency of ML survivability models are limited. Our use of explainability techniques, including SHapley Additive exPlanations (SHAP) and Local Interpretable Model-agnostic Explanations (LIME), enabled us to illustrate significant feature-cancer stage interactions that would have remained hidden in traditional black-box models. We identified how certain demographic and clinical variables influenced survival differently across cancer stages and types. These insights provide not only transparency but also clinical relevance, supporting personalized treatment planning. By focusing on stage-specific models, this study provides new insights into the most important factors at each stage of cancer, offering transparency and potential clinical relevance to support personalized treatment planning.
comment: 12 pages, 8 figures
Provably Finding a Hidden Dense Submatrix among Many Planted Dense Submatrices via Convex Programming
We consider the densest submatrix problem, which seeks the submatrix of fixed size of a given binary matrix that contains the most nonzero entries. This problem is a natural generalization of fundamental problems in combinatorial optimization, e.g., the densest subgraph, maximum clique, and maximum edge biclique problems, and has wide application the study of complex networks. Much recent research has focused on the development of sufficient conditions for exact solution of the densest submatrix problem via convex relaxation. The vast majority of these sufficient conditions establish identification of the densest submatrix within a graph containing exactly one large dense submatrix hidden by noise. The assumptions of these underlying models are not observed in real-world networks, where the data may correspond to a matrix containing many dense submatrices of varying sizes. We extend and generalize these results to the more realistic setting where the input matrix may contain \emph{many} large dense subgraphs. Specifically, we establish sufficient conditions under which we can expect to solve the densest submatrix problem in polynomial time for random input matrices sampled from a generalization of the stochastic block model. Moreover, we also provide sufficient conditions for perfect recovery under a deterministic adversarial. Numerical experiments involving randomly generated problem instances and real-world collaboration and communication networks are used empirically to verify the theoretical phase-transitions to perfect recovery given by these sufficient conditions.
FOREVER: Forgetting Curve-Inspired Memory Replay for Language Model Continual Learning
Continual learning (CL) for large language models (LLMs) aims to enable sequential knowledge acquisition without catastrophic forgetting. Memory replay methods are widely used for their practicality and effectiveness, but most rely on fixed, step-based heuristics that often misalign with the model's actual learning progress, since identical training steps can result in varying degrees of parameter change. Motivated by recent findings that LLM forgetting mirrors the Ebbinghaus human forgetting curve, we propose FOREVER (FORgEtting curVe-inspired mEmory Replay), a novel CL framework that aligns replay schedules with a model-centric notion of time. FOREVER defines model time using the magnitude of optimizer updates, allowing forgetting curve-inspired replay intervals to align with the model's internal evolution rather than raw training steps. Building on this approach, FOREVER incorporates a forgetting curve-based replay scheduler to determine when to replay and an intensity-aware regularization mechanism to adaptively control how to replay. Extensive experiments on three CL benchmarks and models ranging from 0.6B to 13B parameters demonstrate that FOREVER consistently mitigates catastrophic forgetting.
Bayes-PD: Exploring a Sequence to Binding Bayesian Neural Network model trained on Phage Display data
Phage display is a powerful laboratory technique used to study the interactions between proteins and other molecules, whether other proteins, peptides, DNA or RNA. The under-utilisation of this data in conjunction with deep learning models for protein design may be attributed to; high experimental noise levels; the complex nature of data pre-processing; and difficulty interpreting these experimental results. In this work, we propose a novel approach utilising a Bayesian Neural Network within a training loop, in order to simulate the phage display experiment and its associated noise. Our goal is to investigate how understanding the experimental noise and model uncertainty can enable the reliable application of such models to reliably interpret phage display experiments. We validate our approach using actual binding affinity measurements instead of relying solely on proxy values derived from 'held-out' phage display rounds.
A Gap Between Decision Trees and Neural Networks
We study when geometric simplicity of decision boundaries, used here as a notion of interpretability, can conflict with accurate approximation of axis-aligned decision trees by shallow neural networks. Decision trees induce rule-based, axis-aligned decision regions (finite unions of boxes), whereas shallow ReLU networks are typically trained as score models whose predictions are obtained by thresholding. We analyze the infinite-width, bounded-norm, single-hidden-layer ReLU class through the Radon total variation ($\mathrm{R}\mathrm{TV}$) seminorm, which controls the geometric complexity of level sets. We first show that the hard tree indicator $1_A$ has infinite $\mathrm{R}\mathrm{TV}$. Moreover, two natural split-wise continuous surrogates--piecewise-linear ramp smoothing and sigmoidal (logistic) smoothing--also have infinite $\mathrm{R}\mathrm{TV}$ in dimensions $d>1$, while Gaussian convolution yields finite $\mathrm{R}\mathrm{TV}$ but with an explicit exponential dependence on $d$. We then separate two goals that are often conflated: classification after thresholding (recovering the decision set) versus score learning (learning a calibrated score close to $1_A$). For classification, we construct a smooth barrier score $S_A$ with finite $\mathrm{R}\mathrm{TV}$ whose fixed threshold $τ=1$ exactly recovers the box. Under a mild tube-mass condition near $\partial A$, we prove an $L_1(P)$ calibration bound that decays polynomially in a sharpness parameter, along with an explicit $\mathrm{R}\mathrm{TV}$ upper bound in terms of face measures. Experiments on synthetic unions of rectangles illustrate the resulting accuracy--complexity tradeoff and how threshold selection shifts where training lands along it.
comment: 45 pages
An Algebraic Representation Theorem for Linear GENEOs in Geometric Machine Learning
Geometric and Topological Deep Learning are rapidly growing research areas that enhance machine learning through the use of geometric and topological structures. Within this framework, Group Equivariant Non-Expansive Operators (GENEOs) have emerged as a powerful class of operators for encoding symmetries and designing efficient, interpretable neural architectures. Originally introduced in Topological Data Analysis, GENEOs have since found applications in Deep Learning as tools for constructing equivariant models with reduced parameter complexity. GENEOs provide a unifying framework bridging Geometric and Topological Deep Learning and include the operator computing persistence diagrams as a special case. Their theoretical foundations rely on group actions, equivariance, and compactness properties of operator spaces, grounding them in algebra and geometry while enabling both mathematical rigor and practical relevance. While a previous representation theorem characterized linear GENEOs acting on data of the same type, many real-world applications require operators between heterogeneous data spaces. In this work, we address this limitation by introducing a new representation theorem for linear GENEOs acting between different perception pairs, based on generalized T-permutant measures. Under mild assumptions on the data domains and group actions, our result provides a complete characterization of such operators. We also prove the compactness and convexity of the space of linear GENEOs. We further demonstrate the practical impact of this theory by applying the proposed framework to improve the performance of autoencoders, highlighting the relevance of GENEOs in modern machine learning applications.
Current Agents Fail to Leverage World Model as Tool for Foresight
Agents built on vision-language models increasingly face tasks that demand anticipating future states rather than relying on short-horizon reasoning. Generative world models offer a promising remedy: agents could use them as external simulators to foresee outcomes before acting. This paper empirically examines whether current agents can leverage such world models as tools to enhance their cognition. Across diverse agentic and visual question answering tasks, we observe that some agents rarely invoke simulation (fewer than 1%), frequently misuse predicted rollouts (approximately 15%), and often exhibit inconsistent or even degraded performance (up to 5%) when simulation is available or enforced. Attribution analysis further indicates that the primary bottleneck lies in the agents' capacity to decide when to simulate, how to interpret predicted outcomes, and how to integrate foresight into downstream reasoning. These findings underscore the need for mechanisms that foster calibrated, strategic interaction with world models, paving the way toward more reliable anticipatory cognition in future agent systems.
comment: 36 Pages, 13 Figures, 17 Tables
Adaptive-Boundary-Clipping GRPO: Ensuring Bounded Ratios for Stable and Generalizable Training
Group Relative Policy Optimization (GRPO) has emerged as a popular algorithm for reinforcement learning with large language models (LLMs). However, upon analyzing its clipping mechanism, we argue that it is suboptimal in certain scenarios. With appropriate modifications, GRPO can be significantly enhanced to improve both flexibility and generalization. To this end, we propose Adaptive-Boundary-Clipping GRPO (ABC-GRPO), an asymmetric and adaptive refinement of the original GRPO framework. We demonstrate that ABC-GRPO achieves superior performance over standard GRPO on mathematical reasoning tasks using the Qwen3 LLMs. Moreover, ABC-GRPO maintains substantially higher entropy throughout training, thereby preserving the model's exploration capacity and mitigating premature convergence. The implementation code is available online to ease reproducibility https://github.com/chi2liu/ABC-GRPO.
comment: 10 pages, 4 figures
Lightweight and perceptually-guided voice conversion for electro-laryngeal speech
Electro-laryngeal (EL) speech is characterized by constant pitch, limited prosody, and mechanical noise, reducing naturalness and intelligibility. We propose a lightweight adaptation of the state-of-the-art StreamVC framework to this setting by removing pitch and energy modules and combining self-supervised pretraining with supervised fine-tuning on parallel EL and healthy (HE) speech data, guided by perceptual and intelligibility losses. Objective and subjective evaluations across different loss configurations confirm their influence: the best model variant, based on WavLM features and human-feedback predictions (+WavLM+HF), drastically reduces character error rate (CER) of EL inputs, raises naturalness mean opinion score (nMOS) from 1.1 to 3.3, and consistently narrows the gap to HE ground-truth speech in all evaluated metrics. These findings demonstrate the feasibility of adapting lightweight voice conversion architectures to EL voice rehabilitation while also identifying prosody generation and intelligibility improvements as the main remaining bottlenecks.
comment: 5 pages, 5 figures. Audio samples available at https://spsc-tugraz.github.io/lw-elvc-icassp26/ Preprint submitted to ICASSP
Spectral Manifold Regularization for Stable and Modular Routing in Deep MoE Architectures
Mixture of Experts (MoE) architectures enable efficient scaling of neural networks but suffer from expert collapse, where routing converges to a few dominant experts. This reduces model capacity and causes catastrophic interference during adaptation. We propose the Spectrally-Regularized Mixture of Experts (SR-MoE), which imposes geometric constraints on the routing manifold to enforce structural modularity. Our method uses dual regularization: spectral norm constraints bound routing function Lipschitz continuity, while stable rank penalties preserve high-dimensional feature diversity in expert selection. We evaluate SR-MoE across architectural scales and dataset complexities using modular one-shot adaptation tasks. Results show that traditional linear gating fails with increasing depth (accuracy drops up to 4.72% due to expert entanglement), while SR-MoE maintains structural integrity (mean interference -0.32%). Our spectral constraints facilitate positive knowledge transfer, enabling localized expert updates without global performance decay. SR-MoE provides a general solution for building high-capacity, modular networks capable of stable lifelong learning.
Feature-Aware One-Shot Federated Learning via Hierarchical Token Sequences
One-shot federated learning (OSFL) reduces the communication cost and privacy risks of iterative federated learning by constructing a global model with a single round of communication. However, most existing methods struggle to achieve robust performance on real-world domains such as medical imaging, or are inefficient when handling non-IID (Independent and Identically Distributed) data. To address these limitations, we introduce FALCON, a framework that enhances the effectiveness of OSFL over non-IID image data. The core idea of FALCON is to leverage the feature-aware hierarchical token sequences generation and knowledge distillation into OSFL. First, each client leverages a pretrained visual encoder with hierarchical scale encoding to compress images into hierarchical token sequences, which capture multi-scale semantics. Second, a multi-scale autoregressive transformer generator is used to model the distribution of these token sequences and generate the synthetic sequences. Third, clients upload the synthetic sequences along with the local classifier trained on the real token sequences to the server. Finally, the server incorporates knowledge distillation into global training to reduce reliance on precise distribution modeling. Experiments on medical and natural image datasets validate the effectiveness of FALCON in diverse non-IID scenarios, outperforming the best OSFL baselines by 9.58% in average accuracy.
comment: 9 pages; 6 figures
Bayesian Monocular Depth Refinement via Neural Radiance Fields
Monocular depth estimation has applications in many fields, such as autonomous navigation and extended reality, making it an essential computer vision task. However, current methods often produce smooth depth maps that lack the fine geometric detail needed for accurate scene understanding. We propose MDENeRF, an iterative framework that refines monocular depth estimates using depth information from Neural Radiance Fields (NeRFs). MDENeRF consists of three components: (1) an initial monocular estimate for global structure, (2) a NeRF trained on perturbed viewpoints, with per-pixel uncertainty, and (3) Bayesian fusion of the noisy monocular and NeRF depths. We derive NeRF uncertainty from the volume rendering process to iteratively inject high-frequency fine details. Meanwhile, our monocular prior maintains global structure. We demonstrate superior performance on key metrics and experiments using indoor scenes from the SUN RGB-D dataset.
comment: IEEE 8th International Conference on Algorithms, Computing and Artificial Intelligence (ACAI 2025). Oral presentation; Best Presenter Award
From No-Regret to Strategically Robust Learning in Repeated Auctions
In Bayesian single-item auctions, a monotone bidding strategy--one that prescribes a higher bid for a higher value type--can be equivalently represented as a partition of the quantile space into consecutive intervals corresponding to increasing bids. Kumar et al. (2024) prove that agile online gradient descent (OGD), when used to update a monotone bidding strategy through its quantile representation, is strategically robust in repeated first-price auctions: when all bidders employ agile OGD in this way, the auctioneer's average revenue per round is at most the revenue of Myerson's optimal auction, regardless of how she adjusts the reserve price over time. In this work, we show that this strategic robustness guarantee is not unique to agile OGD or to the first-price auction: any no-regret learning algorithm, when fed gradient feedback with respect to the quantile representation, is strategically robust, even if the auction format changes every round, provided the format satisfies allocation monotonicity and voluntary participation. In particular, the multiplicative weights update (MWU) algorithm simultaneously achieves the optimal regret guarantee and the best-known strategic robustness guarantee. At a technical level, our results are established via a simple relation that bridges Myerson's auction theory and standard no-regret learning theory. This showcases the potential of translating standard regret guarantees into strategic robustness guarantees for specific games, without explicitly minimizing any form of swap regret.
Logic Tensor Network-Enhanced Generative Adversarial Network
In this paper, we introduce Logic Tensor Network-Enhanced Generative Adversarial Network (LTN-GAN), a novel framework that enhances Generative Adversarial Networks (GANs) by incorporating Logic Tensor Networks (LTNs) to enforce domain-specific logical constraints during the sample generation process. Although GANs have shown remarkable success in generating realistic data, they often lack mechanisms to incorporate prior knowledge or enforce logical consistency, limiting their applicability in domains requiring rule adherence. LTNs provide a principled way to integrate first-order logic with neural networks, enabling models to reason over and satisfy logical constraints. By combining the strengths of GANs for realistic data synthesis with LTNs for logical reasoning, we gain valuable insights into how logical constraints influence the generative process while improving both the diversity and logical consistency of the generated samples. We evaluate LTN-GAN across multiple datasets, including synthetic datasets (gaussian, grid, rings) and the MNIST dataset, demonstrating that our model significantly outperforms traditional GANs in terms of adherence to predefined logical constraints while maintaining the quality and diversity of generated samples. This work highlights the potential of neuro-symbolic approaches to enhance generative modeling in knowledge-intensive domains.
comment: In Proceedings ICLP 2025, arXiv:2601.00047
Beyond Physical Labels: Redefining Domains for Robust WiFi-based Gesture Recognition
In this paper, we propose GesFi, a novel WiFi-based gesture recognition system that introduces WiFi latent domain mining to redefine domains directly from the data itself. GesFi first processes raw sensing data collected from WiFi receivers using CSI-ratio denoising, Short-Time Fast Fourier Transform, and visualization techniques to generate standardized input representations. It then employs class-wise adversarial learning to suppress gesture semantic and leverages unsupervised clustering to automatically uncover latent domain factors responsible for distributional shifts. These latent domains are then aligned through adversarial learning to support robust cross-domain generalization. Finally, the system is applied to the target environment for robust gesture inference. We deployed GesFi under both single-pair and multi-pair settings using commodity WiFi transceivers, and evaluated it across multiple public datasets and real-world environments. Compared to state-of-the-art baselines, GesFi achieves up to 78% and 50% performance improvements over existing adversarial methods, and consistently outperforms prior generalization approaches across most cross-domain tasks.
comment: Accepted by IMWUT/Ubicomp 2026
EvalBlocks: A Modular Pipeline for Rapidly Evaluating Foundation Models in Medical Imaging
Developing foundation models in medical imaging requires continuous monitoring of downstream performance. Researchers are burdened with tracking numerous experiments, design choices, and their effects on performance, often relying on ad-hoc, manual workflows that are inherently slow and error-prone. We introduce EvalBlocks, a modular, plug-and-play framework for efficient evaluation of foundation models during development. Built on Snakemake, EvalBlocks supports seamless integration of new datasets, foundation models, aggregation methods, and evaluation strategies. All experiments and results are tracked centrally and are reproducible with a single command, while efficient caching and parallel execution enable scalable use on shared compute infrastructure. Demonstrated on five state-of-the-art foundation models and three medical imaging classification tasks, EvalBlocks streamlines model evaluation, enabling researchers to iterate faster and focus on model innovation rather than evaluation logistics. The framework is released as open source software at https://github.com/DIAGNijmegen/eval-blocks.
comment: Accepted at BVM 2026
From Brute Force to Semantic Insight: Performance-Guided Data Transformation Design with LLMs
Large language models (LLMs) have achieved notable performance in code synthesis; however, data-aware augmentation remains a limiting factor, handled via heuristic design or brute-force approaches. We introduce a performance-aware, closed-loop solution in the NNGPT ecosystem of projects that enables LLMs to autonomously engineer optimal transformations by internalizing empirical performance cues. We fine-tune LLMs with Low-Rank Adaptation on a novel repository of more than 6,000 empirically evaluated PyTorch augmentation functions, each annotated solely by downstream model accuracy. Training uses pairwise performance ordering (better-worse transformations), enabling alignment through empirical feedback without reinforcement learning, reward models, or symbolic objectives. This reduces the need for exhaustive search, achieving up to 600x times fewer evaluated candidates than brute-force discovery while maintaining competitive peak accuracy and shifting generation from random synthesis to task-aligned design. Ablation studies show that structured Chain-of-Thought prompting introduces syntactic noise and degrades performance, whereas direct prompting ensures stable optimization in performance-critical code tasks. Qualitative and quantitative analyses demonstrate that the model internalizes semantic performance cues rather than memorizing syntax. These results show that LLMs can exhibit task-level reasoning through non-textual feedback loops, bypassing explicit symbolic rewards.
Detecting Semantic Backdoors in a Mystery Shopping Scenario
Detecting semantic backdoors in classification models--where some classes can be activated by certain natural, but out-of-distribution inputs--is an important problem that has received relatively little attention. Semantic backdoors are significantly harder to detect than backdoors that are based on trigger patterns due to the lack of such clearly identifiable patterns. We tackle this problem under the assumption that the clean training dataset and the training recipe of the model are both known. These assumptions are motivated by a consumer protection scenario, in which the responsible authority performs mystery shopping to test a machine learning service provider. In this scenario, the authority uses the provider's resources and tools to train a model on a given dataset and tests whether the provider included a backdoor. In our proposed approach, the authority creates a reference model pool by training a small number of clean and poisoned models using trusted infrastructure, and calibrates a model distance threshold to identify clean models. We propose and experimentally analyze a number of approaches to compute model distances and we also test a scenario where the provider performs an adaptive attack to avoid detection. The most reliable method is based on requesting adversarial training from the provider. The model distance is best measured using a set of input samples generated by inverting the models in such a way as to maximize the distance from clean samples. With these settings, our method can often completely separate clean and poisoned models, and it proves to be superior to state-of-the-art backdoor detectors as well.
comment: Source code available at https://github.com/szegedai/SemanticBackdoorDetection
Quantum vs. Classical Machine Learning: A Benchmark Study for Financial Prediction
In this paper, we present a reproducible benchmarking framework that systematically compares QML models with architecture-matched classical counterparts across three financial tasks: (i) directional return prediction on U.S. and Turkish equities, (ii) live-trading simulation with Quantum LSTMs versus classical LSTMs on the S\&P 500, and (iii) realized volatility forecasting using Quantum Support Vector Regression. By standardizing data splits, features, and evaluation metrics, our study provides a fair assessment of when current-generation QML models can match or exceed classical methods. Our results reveal that quantum approaches show performance gains when data structure and circuit design are well aligned. In directional classification, hybrid quantum neural networks surpass the parameter-matched ANN by \textbf{+3.8 AUC} and \textbf{+3.4 accuracy points} on \texttt{AAPL} stock and by \textbf{+4.9 AUC} and \textbf{+3.6 accuracy points} on Turkish stock \texttt{KCHOL}. In live trading, the QLSTM achieves higher risk-adjusted returns in \textbf{two of four} S\&P~500 regimes. For volatility forecasting, an angle-encoded QSVR attains the \textbf{lowest QLIKE} on \texttt{KCHOL} and remains within $\sim$0.02-0.04 QLIKE of the best classical kernels on \texttt{S\&P~500} and \texttt{AAPL}. Our benchmarking framework clearly identifies the scenarios where current QML architectures offer tangible improvements and where established classical methods continue to dominate.
Physically Consistent Machine Learning for Melting Temperature Prediction of Refractory High-Entropy Alloys
Predicting the melting temperature (Tm) of multi-component and high-entropy alloys (HEAs) is critical for high-temperature applications but computationally expensive using traditional CALPHAD or DFT methods. In this work, we develop a gradient-boosted decision tree (XGBoost) model to predict Tm for complex alloys based on elemental properties. To ensure physical consistency, we address the issue of data leakage by excluding temperature-dependent thermodynamic descriptors (such as Gibbs free energy of mixing) and instead rely on physically motivated elemental features. The optimized model achieves a coefficient of determination (R2) of 0.948 and a Mean Squared Error (MSE) of 9928 which is about 5% relative error for HEAs on a validation set of approximately 1300 compositions. Crucially, we validate the model using the Valence Electron Concentration (VEC) rule. Without explicit constraints during training, the model successfully captures the known stability transition between BCC and FCC phases at a VEC of approximately 6.87. These results demonstrate that data-driven models, when properly feature-engineered, can capture fundamental metallurgical principles for rapid alloy screening.
comment: 6 Pages, 3 figures, code available at Github
Prompt Tuning without Labeled Samples for Zero-Shot Node Classification in Text-Attributed Graphs
Node classification is a fundamental problem in information retrieval with many real-world applications, such as community detection in social networks, grouping articles published online and product categorization in e-commerce. Zero-shot node classification in text-attributed graphs (TAGs) presents a significant challenge, particularly due to the absence of labeled data. In this paper, we propose a novel Zero-shot Prompt Tuning (ZPT) framework to address this problem by leveraging a Universal Bimodal Conditional Generator (UBCG). Our approach begins with pre-training a graph-language model to capture both the graph structure and the associated textual descriptions of each node. Following this, a conditional generative model is trained to learn the joint distribution of nodes in both graph and text modalities, enabling the generation of synthetic samples for each class based solely on the class name. These synthetic node and text embeddings are subsequently used to perform continuous prompt tuning, facilitating effective node classification in a zero-shot setting. Furthermore, we conduct extensive experiments on multiple benchmark datasets, demonstrating that our framework performs better than existing state-of-the-art baselines. We also provide ablation studies to validate the contribution of the bimodal generator. The code is provided at: https://github.com/Sethup123/ZPT.
comment: Accepted by WSDM 2026
Compact Example-Based Explanations for Language Models
Training data influence estimation methods quantify the contribution of training documents to a model's output, making them a promising source of information for example-based explanations. As humans cannot interpret thousands of documents, only a small subset of the training data can be presented as an explanation. Although the choice of which documents to include directly affects explanation quality, previous evaluations of such systems have largely ignored any selection strategies. To address this, we propose a novel selection relevance score, a retraining-free metric that quantifies how useful a set of examples is for explaining a model's output. We validate this score through fine-tuning experiments, confirming that it can predict whether a set of examples supports or undermines the model's predictions. Using this metric, we further show that common selection strategies often underperform random selection. Motivated by this finding, we propose a strategy that balances influence and representativeness, enabling better use of selection budgets than naively selecting the highest-ranking examples.
comment: 8 pages
Improving Compactness and Reducing Ambiguity of CFIRE Rule-Based Explanations
Models trained on tabular data are widely used in sensitive domains, increasing the demand for explanation methods to meet transparency needs. CFIRE is a recent algorithm in this domain that constructs compact surrogate rule models from local explanations. While effective, CFIRE may assign rules associated with different classes to the same sample, introducing ambiguity. We investigate this ambiguity and propose a post-hoc pruning strategy that removes rules with low contribution or conflicting coverage, yielding smaller and less ambiguous models while preserving fidelity. Experiments across multiple datasets confirm these improvements with minimal impact on predictive performance.
comment: Prepared for ESANN 2026 submission
Learning Shrinks the Hard Tail: Training-Dependent Inference Scaling in a Solvable Linear Model
We analyze neural scaling laws in a solvable model of last-layer fine-tuning where targets have intrinsic, instance-heterogeneous difficulty. In our Latent Instance Difficulty (LID) model, each input's target variance is governed by a latent ``precision'' drawn from a heavy-tailed distribution. While generalization loss recovers standard scaling laws, our main contribution connects this to inference. The pass@$k$ failure rate exhibits a power-law decay, $k^{-β_\text{eff}}$, but the observed exponent $β_\text{eff}$ is training-dependent. It grows with sample size $N$ before saturating at an intrinsic limit $β$ set by the difficulty distribution's tail. This coupling reveals that learning shrinks the ``hard tail'' of the error distribution: improvements in the model's generalization error steepen the pass@$k$ curve until irreducible target variance dominates. The LID model yields testable, closed-form predictions for this behavior, including a compute-allocation rule that favors training before saturation and inference attempts after. We validate these predictions in simulations and in two real-data proxies: CIFAR-10H (human-label variance) and a maths teacher-student distillation task.
comment: 10 pages
Probabilistic Transformers for Joint Modeling of Global Weather Dynamics and Decision-Centric Variables
Weather forecasts sit upstream of high-stakes decisions in domains such as grid operations, aviation, agriculture, and emergency response. Yet forecast users often face a difficult trade-off. Many decision-relevant targets are functionals of the atmospheric state variables, such as extrema, accumulations, and threshold exceedances, rather than state variables themselves. As a result, users must estimate these targets via post-processing, which can be suboptimal and can introduce structural bias. The core issue is that decisions depend on distributions over these functionals that the model is not trained to learn directly. In this work, we introduce GEM-2, a probabilistic transformer that jointly learns global atmospheric dynamics alongside a suite of variables that users directly act upon. Using this training recipe, we show that a lightweight (~275M params) and computationally efficient (~20-100x training speedup relative to state-of-the-art) transformer trained on the CRPS objective can directly outperform operational numerical weather prediction (NWP) models and be competitive with ML models that rely on expensive multi-step diffusion processes or require bespoke multi-stage fine-tuning strategies. We further demonstrate state-of-the-art economic value metrics under decision-theoretic evaluation, stable convergence to climatology at S2S and seasonal timescales, and a surprising insensitivity to many commonly assumed architectural and training design choices.
RadDiff: Describing Differences in Radiology Image Sets with Natural Language
Understanding how two radiology image sets differ is critical for generating clinical insights and for interpreting medical AI systems. We introduce RadDiff, a multimodal agentic system that performs radiologist-style comparative reasoning to describe clinically meaningful differences between paired radiology studies. RadDiff builds on a proposer-ranker framework from VisDiff, and incorporates four innovations inspired by real diagnostic workflows: (1) medical knowledge injection through domain-adapted vision-language models; (2) multimodal reasoning that integrates images with their clinical reports; (3) iterative hypothesis refinement across multiple reasoning rounds; and (4) targeted visual search that localizes and zooms in on salient regions to capture subtle findings. To evaluate RadDiff, we construct RadDiffBench, a challenging benchmark comprising 57 expert-validated radiology study pairs with ground-truth difference descriptions. On RadDiffBench, RadDiff achieves 47% accuracy, and 50% accuracy when guided by ground-truth reports, significantly outperforming the general-domain VisDiff baseline. We further demonstrate RadDiff's versatility across diverse clinical tasks, including COVID-19 phenotype comparison, racial subgroup analysis, and discovery of survival-related imaging features. Together, RadDiff and RadDiffBench provide the first method-and-benchmark foundation for systematically uncovering meaningful differences in radiological data.
EDCO: Dynamic Curriculum Orchestration for Domain-specific Large Language Model Fine-tuning
Domain-specific large language models (LLMs), typically developed by fine-tuning a pre-trained general-purpose LLM on specialized datasets, represent a significant advancement in applied AI. A common strategy in LLM fine-tuning is curriculum learning, which pre-orders training samples based on metrics like difficulty to improve learning efficiency compared to a random sampling strategy. However, most existing methods for LLM fine-tuning rely on a static curriculum, designed prior to training, which lacks adaptability to the model's evolving needs during fine-tuning. To address this, we propose EDCO, a novel framework based on two key concepts: inference entropy and dynamic curriculum orchestration. Inspired by recent findings that maintaining high answer entropy benefits long-term reasoning gains, EDCO prioritizes samples with high inference entropy in a continuously adapted curriculum. EDCO integrates three core components: an efficient entropy estimator that uses prefix tokens to approximate full-sequence entropy, an entropy-based curriculum generator that selects data points with the highest inference entropy, and an LLM trainer that optimizes the model on the selected curriculum. Comprehensive experiments in communication, medicine and law domains, EDCO outperforms traditional curriculum strategies for fine-tuning Qwen3-4B and Llama3.2-3B models under supervised and reinforcement learning settings. Furthermore, the proposed efficient entropy estimation reduces computational time by 83.5% while maintaining high accuracy.
ETR: Outcome-Guided Elastic Trust Regions for Policy Optimization
Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as an important paradigm for unlocking reasoning capabilities in large language models, exemplified by the success of OpenAI o1 and DeepSeek-R1. Currently, Group Relative Policy Optimization (GRPO) stands as the dominant algorithm in this domain due to its stable training and critic-free efficiency. However, we argue that GRPO suffers from a structural limitation: it imposes a uniform, static trust region constraint across all samples. This design implicitly assumes signal homogeneity, a premise misaligned with the heterogeneous nature of outcome-driven learning, where advantage magnitudes and variances fluctuate significantly. Consequently, static constraints fail to fully exploit high-quality signals while insufficiently suppressing noise, often precipitating rapid entropy collapse. To address this, we propose \textbf{E}lastic \textbf{T}rust \textbf{R}egions (\textbf{ETR}), a dynamic mechanism that aligns optimization constraints with signal quality. ETR constructs a signal-aware landscape through dual-level elasticity: at the micro level, it scales clipping boundaries based on advantage magnitude to accelerate learning from high-confidence paths; at the macro level, it leverages group variance to implicitly allocate larger update budgets to tasks in the optimal learning zone. Extensive experiments on AIME and MATH benchmarks demonstrate that ETR consistently outperforms GRPO, achieving superior accuracy while effectively mitigating policy entropy degradation to ensure sustained exploration.
R$^3$L: Reflect-then-Retry Reinforcement Learning with Language-Guided Exploration, Pivotal Credit, and Positive Amplification
Reinforcement learning drives recent advances in LLM reasoning and agentic capabilities, yet current approaches struggle with both exploration and exploitation. Exploration suffers from low success rates on difficult tasks and high costs of repeated rollouts from scratch. Exploitation suffers from coarse credit assignment and training instability: Trajectory-level rewards penalize valid prefixes for later errors, and failure-dominated groups overwhelm the few positive signals, leaving optimization without constructive direction. To this end, we propose R$^3$L, Reflect-then-Retry Reinforcement Learning with Language-Guided Exploration, Pivotal Credit, and Positive Amplification. To synthesize high-quality trajectories, R$^3$L shifts from stochastic sampling to active synthesis via reflect-then-retry, leveraging language feedback to diagnose errors, transform failed attempts into successful ones, and reduce rollout costs by restarting from identified failure points. With errors diagnosed and localized, Pivotal Credit Assignment updates only the diverging suffix where contrastive signals exist, excluding the shared prefix from gradient update. Since failures dominate on difficult tasks and reflect-then-retry produces off-policy data, risking training instability, Positive Amplification upweights successful trajectories to ensure positive signals guide the optimization process. Experiments on agentic and reasoning tasks demonstrate 5\% to 52\% relative improvements over baselines while maintaining training stability. Our code is released at https://github.com/shiweijiezero/R3L.
The Geometry of the Pivot: A Note on Lazy Pivoted Cholesky and Farthest Point Sampling
Low-rank approximations of large kernel matrices are ubiquitous in machine learning, particularly for scaling Gaussian Processes to massive datasets. The Pivoted Cholesky decomposition is a standard tool for this task, offering a computationally efficient, greedy low-rank approximation. While its algebraic properties are well-documented in numerical linear algebra, its geometric intuition within the context of kernel methods often remains obscure. In this note, we elucidate the geometric interpretation of the algorithm within the Reproducing Kernel Hilbert Space (RKHS). We demonstrate that the pivotal selection step is mathematically equivalent to Farthest Point Sampling (FPS) using the kernel metric, and that the Cholesky factor construction is an implicit Gram-Schmidt orthogonalization. We provide a concise derivation and a minimalist Python implementation to bridge the gap between theory and practice.
Investigating Knowledge Distillation Through Neural Networks for Protein Binding Affinity Prediction
The trade-off between predictive accuracy and data availability makes it difficult to predict protein--protein binding affinity accurately. The lack of experimentally resolved protein structures limits the performance of structure-based machine learning models, which generally outperform sequence-based methods. In order to overcome this constraint, we suggest a regression framework based on knowledge distillation that uses protein structural data during training and only needs sequence data during inference. The suggested method uses binding affinity labels and intermediate feature representations to jointly supervise the training of a sequence-based student network under the guidance of a structure-informed teacher network. Leave-One-Complex-Out (LOCO) cross-validation was used to assess the framework on a non-redundant protein--protein binding affinity benchmark dataset. A maximum Pearson correlation coefficient (P_r) of 0.375 and an RMSE of 2.712 kcal/mol were obtained by sequence-only baseline models, whereas a P_r of 0.512 and an RMSE of 2.445 kcal/mol were obtained by structure-based models. With a P_r of 0.481 and an RMSE of 2.488 kcal/mol, the distillation-based student model greatly enhanced sequence-only performance. Improved agreement and decreased bias were further confirmed by thorough error analyses. With the potential to close the performance gap between sequence-based and structure-based models as larger datasets become available, these findings show that knowledge distillation is an efficient method for transferring structural knowledge to sequence-based predictors. The source code for running inference with the proposed distillation-based binding affinity predictor can be accessed at https://github.com/wajidarshad/ProteinAffinityKD.
TreeAdv: Tree-Structured Advantage Redistribution for Group-Based RL
Reinforcement learning with group-based objectives, such as Group Relative Policy Optimization (GRPO), is a common framework for aligning large language models on complex reasoning tasks. However, standard GRPO treats each rollout trajectory as an independent flat sequence and assigns a single sequence-level advantage to all tokens, which leads to sample inefficiency and a length bias toward verbose, redundant chains of thought without improving logical depth. We introduce TreeAdv (Tree-Structured Advantage Redistribution for Group-Based RL), which makes the tree structure of group rollouts explicit for both exploration and advantage assignment. Specifically, TreeAdv builds a group of trees (a forest) based on an entropy-driven sampling method where each tree branches at high-uncertainty decisions while sharing low-uncertainty tokens across rollouts. Then, TreeAdv aggregates token-level advantages for internal tree segments by redistributing the advantages of complete rollouts (all leaf nodes), and TreeAdv can easily apply to group-based objectives such as GRPO or GSPO. Across 10 math reasoning benchmarks, TreeAdv consistently outperforms GRPO and GSPO, while using substantially fewer generated tokens under identical supervision, data, and decoding budgets.
Inference Attacks Against Graph Generative Diffusion Models
Graph generative diffusion models have recently emerged as a powerful paradigm for generating complex graph structures, effectively capturing intricate dependencies and relationships within graph data. However, the privacy risks associated with these models remain largely unexplored. In this paper, we investigate information leakage in such models through three types of black-box inference attacks. First, we design a graph reconstruction attack, which can reconstruct graphs structurally similar to those training graphs from the generated graphs. Second, we propose a property inference attack to infer the properties of the training graphs, such as the average graph density and the distribution of densities, from the generated graphs. Third, we develop two membership inference attacks to determine whether a given graph is present in the training set. Extensive experiments on three different types of graph generative diffusion models and six real-world graphs demonstrate the effectiveness of these attacks, significantly outperforming the baseline approaches. Finally, we propose two defense mechanisms that mitigate these inference attacks and achieve a better trade-off between defense strength and target model utility than existing methods. Our code is available at https://zenodo.org/records/17946102.
comment: This work has been accepted by USENIX Security 2026
A Pre-trained Reaction Embedding Descriptor Capturing Bond Transformation Patterns
With the rise of data-driven reaction prediction models, effective reaction descriptors are crucial for bridging the gap between real-world chemistry and digital representations. However, general-purpose, reaction-wise descriptors remain scarce. This study introduces RXNEmb, a novel reaction-level descriptor derived from RXNGraphormer, a model pre-trained to distinguish real reactions from fictitious ones with erroneous bond changes, thereby learning intrinsic bond formation and cleavage patterns. We demonstrate its utility by data-driven re-clustering of the USPTO-50k dataset, yielding a classification that more directly reflects bond-change similarities than rule-based categories. Combined with dimensionality reduction, RXNEmb enables visualization of reaction space diversity. Furthermore, attention weight analysis reveals the model's focus on chemically critical sites, providing mechanistic insight. RXNEmb serves as a powerful, interpretable tool for reaction fingerprinting and analysis, paving the way for more data-centric approaches in reaction analysis and discovery.
comment: 10 pages, 5 figures
Rethinking Recurrent Neural Networks for Time Series Forecasting: A Reinforced Recurrent Encoder with Prediction-Oriented Proximal Policy Optimization
Time series forecasting plays a crucial role in contemporary engineering information systems for supporting decision-making across various industries, where Recurrent Neural Networks (RNNs) have been widely adopted due to their capability in modeling sequential data. Conventional RNN-based predictors adopt an encoder-only strategy with sliding historical windows as inputs to forecast future values. However, this approach treats all time steps and hidden states equally without considering their distinct contributions to forecasting, leading to suboptimal performance. To address this limitation, we propose a novel Reinforced Recurrent Encoder with Prediction-oriented Proximal Policy Optimization, RRE-PPO4Pred, which significantly improves time series modeling capacity and forecasting accuracy of the RNN models. The core innovations of this method are: (1) A novel Reinforced Recurrent Encoder (RRE) framework that enhances RNNs by formulating their internal adaptation as a Markov Decision Process, creating a unified decision environment capable of learning input feature selection, hidden skip connection, and output target selection; (2) An improved Prediction-oriented Proximal Policy Optimization algorithm, termed PPO4Pred, which is equipped with a Transformer-based agent for temporal reasoning and develops a dynamic transition sampling strategy to enhance sampling efficiency; (3) A co-evolutionary optimization paradigm to facilitate the learning of the RNN predictor and the policy agent, providing adaptive and interactive time series modeling. Comprehensive evaluations on five real-world datasets indicate that our method consistently outperforms existing baselines, and attains accuracy better than state-of-the-art Transformer models, thus providing an advanced time series predictor in engineering informatics.
Accounting for Optimal Control in the Sizing of Isolated Hybrid Renewable Energy Systems Using Imitation Learning
Decarbonization of isolated or off-grid energy systems through phase-in of large shares of intermittent solar or wind generation requires co-installation of energy storage or continued use of existing fossil dispatchable power sources to balance supply and demand. The effective CO2 emission reduction depends on the relative capacity of the energy storage and renewable sources, the stochasticity of the renewable generation, and the optimal control or dispatch of the isolated energy system. While the operations of the energy storage and dispatchable sources may impact the optimal sizing of the system, it is challenging to account for the effect of finite horizon, optimal control at the stage of system sizing. Here, we present a flexible and computationally efficient sizing framework for energy storage and renewable capacity in isolated energy systems, accounting for uncertainty in the renewable generation and the optimal feedback control. To this end, we implement an imitation learning approach to stochastic neural model predictive control (MPC) which allows us to relate the battery storage and wind peak capacities to the emissions reduction and investment costs while accounting for finite horizon, optimal control. Through this approach, decision makers can evaluate the effective emission reduction and costs of different storage and wind capacities at any price point while accounting for uncertainty in the renewable generation with limited foresight. We evaluate the proposed sizing framework on a case study of an offshore energy system with a gas turbine, a wind farm and a battery energy storage system (BESS). In this case, we find a nonlinear, nontrivial relationship between the investment costs and reduction in gas usage relative to the wind and BESS capacities, emphasizing the complexity and importance of accounting for optimal control in the design of isolated energy systems.
comment: 11 pages, 9 figures
Disentangling Aleatoric and Epistemic Uncertainty in Physics-Informed Neural Networks. Application to Insulation Material Degradation Prognostics
Physics-Informed Neural Networks (PINNs) provide a framework for integrating physical laws with data. However, their application to Prognostics and Health Management (PHM) remains constrained by the limited uncertainty quantification (UQ) capabilities. Most existing PINN-based prognostics approaches are deterministic or account only for epistemic uncertainty, limiting their suitability for risk-aware decision-making. This work introduces a heteroscedastic Bayesian Physics-Informed Neural Network (B-PINN) framework that jointly models epistemic and aleatoric uncertainty, yielding full predictive posteriors for spatiotemporal insulation material ageing estimation. The approach integrates Bayesian Neural Networks (BNNs) with physics-based residual enforcement and prior distributions, enabling probabilistic inference within a physics-informed learning architecture. The framework is evaluated on transformer insulation ageing application, validated with a finite-element thermal model and field measurements from a solar power plant, and benchmarked against deterministic PINNs, dropout-based PINNs (d-PINNs), and alternative B-PINN variants. Results show that the proposed B-PINN provides improved predictive accuracy and better-calibrated uncertainty estimates than competing approaches. A systematic sensitivity study further analyzes the impact of boundary-condition, initial-condition, and residual sampling strategies on accuracy, calibration, and generalization. Overall, the findings highlight the potential of Bayesian physics-informed learning to support uncertainty-aware prognostics and informed decision-making in transformer asset management.
comment: 24 pages, 13 figures, 5 tables
NeuronScope: A Multi-Agent Framework for Explaining Polysemantic Neurons in Language Models
Neuron-level interpretation in large language models (LLMs) is fundamentally challenged by widespread polysemanticity, where individual neurons respond to multiple distinct semantic concepts. Existing single-pass interpretation methods struggle to faithfully capture such multi-concept behavior. In this work, we propose NeuronScope, a multi-agent framework that reformulates neuron interpretation as an iterative, activation-guided process. NeuronScope explicitly deconstructs neuron activations into atomic semantic components, clusters them into distinct semantic modes, and iteratively refines each explanation using neuron activation feedback. Experiments demonstrate that NeuronScope uncovers hidden polysemanticity and produces explanations with significantly higher activation correlation compared to single-pass baselines.
Discontinuous Galerkin finite element operator network for solving non-smooth PDEs
We introduce Discontinuous Galerkin Finite Element Operator Network (DG--FEONet), a data-free operator learning framework that combines the strengths of the discontinuous Galerkin (DG) method with neural networks to solve parametric partial differential equations (PDEs) with discontinuous coefficients and non-smooth solutions. Unlike traditional operator learning models such as DeepONet and Fourier Neural Operator, which require large paired datasets and often struggle near sharp features, our approach minimizes the residual of a DG-based weak formulation using the Symmetric Interior Penalty Galerkin (SIPG) scheme. DG-FEONet predicts element-wise solution coefficients via a neural network, enabling data-free training without the need for precomputed input-output pairs. We provide theoretical justification through convergence analysis and validate the model's performance on a series of one- and two-dimensional PDE problems, demonstrating accurate recovery of discontinuities, strong generalization across parameter space, and reliable convergence rates. Our results highlight the potential of combining local discretization schemes with machine learning to achieve robust, singularity-aware operator approximation in challenging PDE settings.
comment: 24 pages, 11 figures
TRec: Egocentric Action Recognition using 2D Point Tracks
We present a novel approach for egocentric action recognition that leverages 2D point tracks as an additional motion cue. While most existing methods rely on RGB appearance, human pose estimation, or their combination, our work demonstrates that tracking randomly sampled image points across video frames can substantially improve recognition accuracy. Unlike prior approaches, we do not detect hands, objects, or interaction regions. Instead, we employ CoTracker to follow a set of randomly initialized points through each video and use the resulting trajectories, together with the corresponding image frames, as input to a Transformer-based recognition model. Surprisingly, our method achieves notable gains even when only the initial frame and its associated point tracks are provided, without incorporating the full video sequence. Experimental results confirm that integrating 2D point tracks consistently enhances performance compared to the same model trained without motion information, highlighting their potential as a lightweight yet effective representation for egocentric action understanding.
comment: submitted to ICPR 2026
Stochastic Voronoi Ensembles for Anomaly Detection
Anomaly detection aims to identify data instances that deviate significantly from majority of data, which has been widely used in fraud detection, network security, and industrial quality control. Existing methods struggle with datasets exhibiting varying local densities: distance-based methods miss local anomalies, while density-based approaches require careful parameter selection and incur quadratic time complexity. We observe that local anomalies, though indistinguishable under global analysis, become conspicuous when the data space is decomposed into restricted regions and each region is examined independently. Leveraging this geometric insight, we propose SVEAD (Stochastic Voronoi Ensembles Anomaly Detector), which constructs ensemble random Voronoi diagrams and scores points by normalized cell-relative distances weighted by local scale. The proposed method achieves linear time complexity and constant space complexity. Experiments on 45 datasets demonstrate that SVEAD outperforms 12 state-of-the-art approaches.
AMIR-GRPO: Inducing Implicit Preference Signals into GRPO
Reinforcement learning has become the primary paradigm for aligning large language models (LLMs) on complex reasoning tasks, with group relative policy optimization (GRPO) widely used in large-scale post-training. However, GRPO faces structural limitations in reasoning-heavy settings: sequence-level advantage normalization introduces systematic length bias, penalties for low-quality trajectories are diluted, and the scalar objective discards rich pairwise preference information embedded in within-group reward rankings. As a result, valuable supervision from costly rollouts remains underutilized. We propose AMIR-GRPO, which augments GRPO with an implicit DPO-style contrastive regularizer constructed directly from intra-group reward rankings, requiring no additional annotations. This mechanism amplifies suppression of low-reward trajectories, attenuates response-level length bias, and transforms each rollout group into a denser set of supervision constraints. Across multiple mathematical reasoning benchmarks, AMIR-GRPO consistently outperforms strong GRPO baselines, yields clearer separation between correct and incorrect reasoning chains, and delivers broader coverage gains beyond the subset of instances solved by standard GRPO.
Group and Exclusive Sparse Regularization-based Continual Learning of CNNs
We present a regularization-based approach for continual learning (CL) of fixed capacity convolutional neural networks (CNN) that does not suffer from the problem of catastrophic forgetting when learning multiple tasks sequentially. This method referred to as Group and Exclusive Sparsity based Continual Learning (GESCL) avoids forgetting of previous tasks by ensuring the stability of the CNN via a stability regularization term, which prevents filters detected as important for past tasks to deviate too much when learning a new task. On top of that, GESCL makes the network plastic via a plasticity regularization term that leverage the over-parameterization of CNNs to efficiently sparsify the network and tunes unimportant filters making them relevant for future tasks. Doing so, GESCL deals with significantly less parameters and computation compared to CL approaches that either dynamically expand the network or memorize past tasks' data. Experiments on popular CL vision benchmarks show that GESCL leads to significant improvements over state-of-the-art method in terms of overall CL performance, as measured by classification accuracy as well as in terms of avoiding catastrophic forgetting.
comment: 12 pages, Canadian Artificial Intelligence Association (CAIAC)
In Search of Grandmother Cells: Tracing Interpretable Neurons in Tabular Representations
Foundation models are powerful yet often opaque in their decision-making. A topic of continued interest in both neuroscience and artificial intelligence is whether some neurons behave like grandmother cells, i.e., neurons that are inherently interpretable because they exclusively respond to single concepts. In this work, we propose two information-theoretic measures that quantify the neuronal saliency and selectivity for single concepts. We apply these metrics to the representations of TabPFN, a tabular foundation model, and perform a simple search across neuron-concept pairs to find the most salient and selective pair. Our analysis provides the first evidence that some neurons in such models show moderate, statistically significant saliency and selectivity for high-level concepts. These findings suggest that interpretable neurons can emerge naturally and that they can, in some cases, be identified without resorting to more complex interpretability techniques.
comment: EurIPS 2025 Workshop on AI for Tabular Data
Quantum Classical Ridgelet Neural Network For Time Series Model
In this study, we present a quantum computing method that incorporates ridglet transforms into the quantum processing pipelines for time series data. Here, the Ridgelet neural network is integrated with a single-qubit quantum computing method, which improves feature extraction and forecasting capabilities. Furthermore, experimental results using financial time series data demonstrate the superior performance of our model compared to existing models.
ReLA: Representation Learning and Aggregation for Job Scheduling with Reinforcement Learning
Job scheduling is widely used in real-world manufacturing systems to assign ordered job operations to machines under various constraints. Existing solutions remain limited by long running time or insufficient schedule quality, especially when problem scale increases. In this paper, we propose ReLA, a reinforcement-learning (RL) scheduler built on structured representation learning and aggregation. ReLA first learns diverse representations from scheduling entities, including job operations and machines, using two intra-entity learning modules with self-attention and convolution and one inter-entity learning module with cross-attention. These modules are applied in a multi-scale architecture, and their outputs are aggregated to support RL decision-making. Across experiments on small, medium, and large job instances, ReLA achieves the best makespan in most tested settings over the latest solutions. On non-large instances, ReLA reduces the optimality gap of the SOTA baseline by 13.0%, while on large-scale instances it reduces the gap by 78.6%, with the average optimality gaps lowered to 7.3% and 2.1%, respectively. These results confirm that ReLA's learned representations and aggregation provide strong decision support for RL scheduling, and enable fast job completion and decision-making for real-world applications.
comment: 15 pages
Kantorovich-Type Stochastic Neural Network Operators for the Mean-Square Approximation of Certain Second-Order Stochastic Processes
Artificial neural network operators (ANNOs) have been widely used for approximating deterministic input-output functions; however, their extension to random dynamics remains comparatively unexplored. In this paper, we construct a new class of \textbf{Kantorovich-type Stochastic Neural Network Operators (K-SNNOs)} in which randomness is incorporated not at the coefficient level, but through \textbf{stochastic neurons} driven by stochastic integrators. This framework enables the operator to inherit the probabilistic structure of the underlying process, making it suitable for modeling and approximating stochastic signals. We establish mean-square convergence of K-SNNOs to the target stochastic process and derive quantitative error estimates expressing the rate of approximation in terms of the modulus of continuity. Numerical simulations further validate the theoretical results by demonstrating accurate reconstruction of sample paths and rapid decay of the mean square error (MSE). Graphical results, including sample-wise approximations and empirical MSE behaviour, illustrate the robustness and effectiveness of the proposed stochastic-neuron-based operator.
comment: 18 Pages, 7 Figures
Learning Shortest Paths When Data is Scarce
Digital twins and other simulators are increasingly used to support routing decisions in large-scale networks. However, simulator outputs often exhibit systematic bias, while ground-truth measurements are costly and scarce. We study a stochastic shortest-path problem in which a planner has access to abundant synthetic samples, limited real-world observations, and an edge-similarity structure capturing expected behavioral similarity across links. We model the simulator-to-reality discrepancy as an unknown, edge-specific bias that varies smoothly over the similarity graph, and estimate it using Laplacian-regularized least squares. This approach yields calibrated edge cost estimates even in data-scarce regimes. We establish finite-sample error bounds, translate estimation error into path-level suboptimality guarantees, and propose a computable, data-driven certificate that verifies near-optimality of a candidate route. For cold-start settings without initial real data, we develop a bias-aware active learning algorithm that leverages the simulator and adaptively selects edges to measure until a prescribed accuracy is met. Numerical experiments on multiple road networks and traffic graphs further demonstrate the effectiveness of our methods.
Learning from Limited Labels: Transductive Graph Label Propagation for Indian Music Analysis
Supervised machine learning frameworks rely on extensive labeled datasets for robust performance on real-world tasks. However, there is a lack of large annotated datasets in audio and music domains, as annotating such recordings is resource-intensive, laborious, and often require expert domain knowledge. In this work, we explore the use of label propagation (LP), a graph-based semi-supervised learning technique, for automatically labeling the unlabeled set in an unsupervised manner. By constructing a similarity graph over audio embeddings, we propagate limited label information from a small annotated subset to a larger unlabeled corpus in a transductive, semi-supervised setting. We apply this method to two tasks in Indian Art Music (IAM): Raga identification and Instrument classification. For both these tasks, we integrate multiple public datasets along with additional recordings we acquire from Prasar Bharati Archives to perform LP. Our experiments demonstrate that LP significantly reduces labeling overhead and produces higher-quality annotations compared to conventional baseline methods, including those based on pretrained inductive models. These results highlight the potential of graph-based semi-supervised learning to democratize data annotation and accelerate progress in music information retrieval.
comment: Published at Journal of Acoustical Society of India, 2025
Systematic Evaluation of Depth Backbones and Semantic Cues for Monocular Pseudo-LiDAR 3D Detection
Monocular 3D object detection offers a low-cost alternative to LiDAR, yet remains less accurate due to the difficulty of estimating metric depth from a single image. We systematically evaluate how depth backbones and feature engineering affect a monocular Pseudo-LiDAR pipeline on the KITTI validation split. Specifically, we compare NeWCRFs (supervised metric depth) against Depth Anything V2 Metric-Outdoor (Base) under an identical pseudo-LiDAR generation and PointRCNN detection protocol. NeWCRFs yields stronger downstream 3D detection, achieving 10.50\% AP$_{3D}$ at IoU$=0.7$ on the Moderate split using grayscale intensity (Exp~2). We further test point-cloud augmentations using appearance cues (grayscale intensity) and semantic cues (instance segmentation confidence). Contrary to the expectation that semantics would substantially close the gap, these features provide only marginal gains, and mask-based sampling can degrade performance by removing contextual geometry. Finally, we report a depth-accuracy-versus-distance diagnostic using ground-truth 2D boxes (including Ped/Cyc), highlighting that coarse depth correctness does not fully predict strict 3D IoU. Overall, under an off-the-shelf LiDAR detector, depth-backbone choice and geometric fidelity dominate performance, outweighing secondary feature injection.
comment: 7 pages, 4 figures
Mathematical Foundations of Polyphonic Music Generation via Structural Inductive Bias
This monograph introduces a novel approach to polyphonic music generation by addressing the "Missing Middle" problem through structural inductive bias. Focusing on Beethoven's piano sonatas as a case study, we empirically verify the independence of pitch and hand attributes using normalized mutual information (NMI=0.167) and propose the Smart Embedding architecture, achieving a 48.30% reduction in parameters. We provide rigorous mathematical proofs using information theory (negligible loss bounded at 0.153 bits), Rademacher complexity (28.09% tighter generalization bound), and category theory to demonstrate improved stability and generalization. Empirical results show a 9.47% reduction in validation loss, confirmed by SVD analysis and an expert listening study (N=53). This dual theoretical and applied framework bridges gaps in AI music generation, offering verifiable insights for mathematically grounded deep learning.
comment: Monograph. Code available at https://github.com/Chooseredone/Smart-Embedding-Music-Generation
Policy-Guided Search on Tree-of-Thoughts for Efficient Problem Solving with Bounded Language Model Queries
Recent studies explored integrating state-space search algorithms with Language Models (LM) to perform look-ahead on the token generation process, the ''Tree-of-Thoughts'' (ToT), generated by LMs, thereby improving performance on problem-solving tasks. However, the affiliated search algorithms often overlook the significant computational costs associated with LM inference, particularly in scenarios with constrained computational budgets. Consequently, we address the problem of improving LM performance on problem-solving tasks under limited computational budgets. We demonstrate how the probabilities assigned to thoughts by LMs can serve as a heuristic to guide search within the ToT framework, thereby reducing the number of thought evaluations. Building on this insight, we adapt a heuristic search algorithm, Levin Tree Search (LTS), to the ToT framework, which leverages LMs as policies to guide the tree exploration efficiently. We extend the theoretical results of LTS by showing that, for ToT (a pruned tree), LTS guarantees a bound on the number of states expanded, and consequently, on the number of thoughts generated. Additionally, we analyze the sensitivity of this bound to the temperature values commonly used in the final softmax layer of the LM. Empirical evaluation under a fixed LM query budget demonstrates that LTS consistently achieves comparable or higher accuracy than baseline search algorithms within the ToT framework, across three domains (Blocksworld, PrOntoQA, Array Sorting) and four distinct LMs. These findings highlight the efficacy of LTS on ToT, particularly in enabling cost-effective and time-efficient problem-solving, making it well-suited for latency-critical and resource-constrained applications.
comment: Published in Transactions on Machine Learning Research (TMLR), 2025. Available at https://openreview.net/forum?id=Rlk1bWe2ii
A Comparative Study of Traditional Machine Learning, Deep Learning, and Large Language Models for Mental Health Forecasting using Smartphone Sensing Data
Smartphone sensing offers an unobtrusive and scalable way to track daily behaviors linked to mental health, capturing changes in sleep, mobility, and phone use that often precede symptoms of stress, anxiety, or depression. While most prior studies focus on detection that responds to existing conditions, forecasting mental health enables proactive support through Just-in-Time Adaptive Interventions. In this paper, we present the first comprehensive benchmarking study comparing traditional machine learning (ML), deep learning (DL), and large language model (LLM) approaches for mental health forecasting using the College Experience Sensing (CES) dataset, the most extensive longitudinal dataset of college student mental health to date. We systematically evaluate models across temporal windows, feature granularities, personalization strategies, and class imbalance handling. Our results show that DL models, particularly Transformer (Macro-F1 = 0.58), achieve the best overall performance, while LLMs show strength in contextual reasoning but weaker temporal modeling. Personalization substantially improves forecasts of severe mental health states. By revealing how different modeling approaches interpret phone sensing behavioral data over time, this work lays the groundwork for next-generation, adaptive, and human-centered mental health technologies that can advance both research and real-world well-being.
ALERT: Zero-shot LLM Jailbreak Detection via Internal Discrepancy Amplification
Despite rich safety alignment strategies, large language models (LLMs) remain highly susceptible to jailbreak attacks, which compromise safety guardrails and pose serious security risks. Existing detection methods mainly detect jailbreak status relying on jailbreak templates present in the training data. However, few studies address the more realistic and challenging zero-shot jailbreak detection setting, where no jailbreak templates are available during training. This setting better reflects real-world scenarios where new attacks continually emerge and evolve. To address this challenge, we propose a layer-wise, module-wise, and token-wise amplification framework that progressively magnifies internal feature discrepancies between benign and jailbreak prompts. We uncover safety-relevant layers, identify specific modules that inherently encode zero-shot discriminative signals, and localize informative safety tokens. Building upon these insights, we introduce ALERT (Amplification-based Jailbreak Detector), an efficient and effective zero-shot jailbreak detector that introduces two independent yet complementary classifiers on amplified representations. Extensive experiments on three safety benchmarks demonstrate that ALERT achieves consistently strong zero-shot detection performance. Specifically, (i) across all datasets and attack strategies, ALERT reliably ranks among the top two methods, and (ii) it outperforms the second-best baseline by at least 10% in average Accuracy and F1-score, and sometimes by up to 40%.
Local Gradient Regulation Stabilizes Federated Learning under Client Heterogeneity
Federated learning (FL) enables collaborative model training across distributed clients without sharing raw data, yet its stability is fundamentally challenged by statistical heterogeneity in realistic deployments. Here, we show that client heterogeneity destabilizes FL primarily by distorting local gradient dynamics during client-side optimization, causing systematic drift that accumulates across communication rounds and impedes global convergence. This observation highlights local gradients as a key regulatory lever for stabilizing heterogeneous FL systems. Building on this insight, we develop a general client-side perspective that regulates local gradient contributions without incurring additional communication overhead. Inspired by swarm intelligence, we instantiate this perspective through Exploratory--Convergent Gradient Re-aggregation (ECGR), which balances well-aligned and misaligned gradient components to preserve informative updates while suppressing destabilizing effects. Theoretical analysis and extensive experiments, including evaluations on the LC25000 medical imaging dataset, demonstrate that regulating local gradient dynamics consistently stabilizes federated learning across state-of-the-art methods under heterogeneous data distributions.
Variational Inference, Entropy, and Orthogonality: A Unified Theory of Mixture-of-Experts
Mixture-of-Experts models enable large language models to scale efficiently, as they only activate a subset of experts for each input. Their core mechanisms, Top-k routing and auxiliary load balancing, remain heuristic, however, lacking a cohesive theoretical underpinning to support them. To this end, we build the first unified theoretical framework that rigorously derives these practices as optimal sparse posterior approximation and prior regularization from a Bayesian perspective, while simultaneously framing them as mechanisms to minimize routing ambiguity and maximize channel capacity from an information-theoretic perspective. We also pinpoint the inherent combinatorial hardness of routing, defining it as the NP-hard sparse subset selection problem. We rigorously prove the existence of a "Coherence Barrier"; when expert representations exhibit high mutual coherence, greedy routing strategies theoretically fail to recover the optimal expert subset. Importantly, we formally verify that imposing geometric orthogonality in the expert feature space is sufficient to narrow the divide between the NP-hard global optimum and polynomial-time greedy approximation. Our comparative analyses confirm orthogonality regularization as the optimal engineering relaxation for large-scale models. Our work offers essential theoretical support and technical assurance for a deeper understanding and novel designs of MoE.
comment: 27 pages, 3 figures
Local Intrinsic Dimensionality of Ground Motion Data for Early Detection of Complex Catastrophic Slope Failure
Local Intrinsic Dimensionality (LID) has shown strong potential for identifying anomalies and outliers in high-dimensional data across a wide range of real-world applications, including landslide failure detection in granular media. Early and accurate identification of failure zones in landslide-prone areas is crucial for effective geohazard mitigation. While existing approaches typically rely on surface displacement data analyzed through statistical or machine learning techniques, they often fall short in capturing both the spatial correlations and temporal dynamics that are inherent in such data. To address this gap, we focus on ground-monitored landslides and introduce a novel approach that jointly incorporates spatial and temporal information, enabling the detection of complex landslides and including multiple successive failures occurring in distinct areas of the same slope. To be specific, our method builds upon an existing LID-based technique, known as sLID. We extend its capabilities in three key ways. (1) Kinematic enhancement: we incorporate velocity into the sLID computation to better capture short-term temporal dependencies and deformation rate relationships. (2) Spatial fusion: we apply Bayesian estimation to aggregate sLID values across spatial neighborhoods, effectively embedding spatial correlations into the LID scores. (3) Temporal modeling: we introduce a temporal variant, tLID, that learns long-term dynamics from time series data, providing a robust temporal representation of displacement behavior. Finally, we integrate both components into a unified framework, referred to as spatiotemporal LID (stLID), to identify samples that are anomalous in either or both dimensions. Extensive experiments show that stLID consistently outperforms existing methods in failure detection precision and lead-time.
comment: 9 pages, 7 figures
Provably Convergent Decentralized Optimization over Directed Graphs under Generalized Smoothness
Decentralized optimization has become a fundamental tool for large-scale learning systems; however, most existing methods rely on the classical Lipschitz smoothness assumption, which is often violated in problems with rapidly varying gradients. Motivated by this limitation, we study decentralized optimization under the generalized $(L_0, L_1)$-smoothness framework, in which the Hessian norm is allowed to grow linearly with the gradient norm, thereby accommodating rapidly varying gradients beyond classical Lipschitz smoothness. We integrate gradient-tracking techniques with gradient clipping and carefully design the clipping threshold to ensure accurate convergence over directed communication graphs under generalized smoothness. In contrast to existing distributed optimization results under generalized smoothness that require a bounded gradient dissimilarity assumption, our results remain valid even when the gradient dissimilarity is unbounded, making the proposed framework more applicable to realistic heterogeneous data environments. We validate our approach via numerical experiments on standard benchmark datasets, including LIBSVM and CIFAR-10, using regularized logistic regression and convolutional neural networks, demonstrating superior stability and faster convergence over existing methods.
A Proposed Paradigm for Imputing Missing Multi-Sensor Data in the Healthcare Domain
Chronic diseases such as diabetes pose significant management challenges, particularly due to the risk of complications like hypoglycemia, which require timely detection and intervention. Continuous health monitoring through wearable sensors offers a promising solution for early prediction of glycemic events. However, effective use of multisensor data is hindered by issues such as signal noise and frequent missing values. This study examines the limitations of existing datasets and emphasizes the temporal characteristics of key features relevant to hypoglycemia prediction. A comprehensive analysis of imputation techniques is conducted, focusing on those employed in state-of-the-art studies. Furthermore, imputation methods derived from machine learning and deep learning applications in other healthcare contexts are evaluated for their potential to address longer gaps in time-series data. Based on this analysis, a systematic paradigm is proposed, wherein imputation strategies are tailored to the nature of specific features and the duration of missing intervals. The review concludes by emphasizing the importance of investigating the temporal dynamics of individual features and the implementation of multiple, feature-specific imputation techniques to effectively address heterogeneous temporal patterns inherent in the data.
comment: 21 Pages, 6 Figures, 7 Tables
Green's-Function Spherical Neural Operators for Biological Heterogeneity
Spherical deep learning has been widely applied to a broad range of real-world problems. Existing approaches often face challenges in balancing strong spherical geometric inductive biases with the need to model real-world heterogeneity. To solve this while retaining spherical geometry, we first introduce a designable Green's function framework (DGF) to provide new spherical operator solution strategy: Design systematic Green's functions under rotational group. Based on DGF, to model biological heterogeneity, we propose Green's-Function Spherical Neural Operator (GSNO) fusing 3 operator solutions: (1) Equivariant Solution derived from Equivariant Green's Function for symmetry-consistent modeling; (2) Invariant Solution derived from Invariant Green's Function to eliminate nuisance heterogeneity, e.g., consistent background field; (3) Anisotropic Solution derived from Anisotropic Green's Function to model anisotropic systems, especially fibers with preferred direction. Therefore, the resulting model, GSNO can adapt to real-world heterogeneous systems with nuisance variability and anisotropy while retaining spectral efficiency. Evaluations on spherical MNIST, Shallow Water Equation, diffusion MRI fiber prediction, cortical parcellation and molecule structure modeling demonstrate the superiority of GSNO.
Value-Action Alignment in Large Language Models under Privacy-Prosocial Conflict
Large language models (LLMs) are increasingly used to simulate decision-making tasks involving personal data sharing, where privacy concerns and prosocial motivations can push choices in opposite directions. Existing evaluations often measure privacy-related attitudes or sharing intentions in isolation, which makes it difficult to determine whether a model's expressed values jointly predict its downstream data-sharing actions as in real human behaviors. We introduce a context-based assessment protocol that sequentially administers standardized questionnaires for privacy attitudes, prosocialness, and acceptance of data sharing within a bounded, history-carrying session. To evaluate value-action alignments under competing attitudes, we use multi-group structural equation modeling (MGSEM) to identify relations from privacy concerns and prosocialness to data sharing. We propose Value-Action Alignment Rate (VAAR), a human-referenced directional agreement metric that aggregates path-level evidence for expected signs. Across multiple LLMs, we observe stable but model-specific Privacy-PSA-AoDS profiles, and substantial heterogeneity in value-action alignment.
Persona-aware and Explainable Bikeability Assessment: A Vision-Language Model Approach
Bikeability assessment is essential for advancing sustainable urban transportation and creating cyclist-friendly cities, and it requires incorporating users' perceptions of safety and comfort. Yet existing perception-based bikeability assessment approaches face key limitations in capturing the complexity of road environments and adequately accounting for heterogeneity in subjective user perceptions. This paper proposes a persona-aware Vision-Language Model framework for bikeability assessment with three novel contributions: (i) theory-grounded persona conditioning based on established cyclist typology that generates persona-specific explanations via chain-of-thought reasoning; (ii) multi-granularity supervised fine-tuning that combines scarce expert-annotated reasoning with abundant user ratings for joint prediction and explainable assessment; and (iii) AI-enabled data augmentation that creates controlled paired data to isolate infrastructure variable impacts. To test and validate this framework, we developed a panoramic image-based crowdsourcing system and collected 12,400 persona-conditioned assessments from 427 cyclists. Experiment results show that the proposed framework offers competitive bikeability rating prediction while uniquely enabling explainable factor attribution.
Online Learning with Limited Information in the Sliding Window Model
Motivated by recent work on the experts problem in the streaming model, we consider the experts problem in the sliding window model. The sliding window model is a well-studied model that captures applications such as traffic monitoring, epidemic tracking, and automated trading, where recent information is more valuable than older data. Formally, we have $n$ experts, $T$ days, the ability to query the predictions of $q$ experts on each day, a limited amount of memory, and should achieve the (near-)optimal regret $\sqrt{nW}\text{polylog}(nT)$ regret over any window of the last $W$ days. While it is impossible to achieve such regret with $1$ query, we show that with $2$ queries we can achieve such regret and with only $\text{polylog}(nT)$ bits of memory. Not only are our algorithms optimal for sliding windows, but we also show for every interval $\mathcal{I}$ of days that we achieve $\sqrt{n|\mathcal{I}|}\text{polylog}(nT)$ regret with $2$ queries and only $\text{polylog}(nT)$ bits of memory, providing an exponential improvement on the memory of previous interval regret algorithms. Building upon these techniques, we address the bandit problem in data streams, where $q=1$, achieving $n T^{2/3}\text{polylog}(T)$ regret with $\text{polylog}(nT)$ memory, which is the first sublinear regret in the streaming model in the bandit setting with polylogarithmic memory; this can be further improved to the optimal $\mathcal{O}(\sqrt{nT})$ regret if the best expert's losses are in a random order.
comment: SODA 2026
VeRPO: Verifiable Dense Reward Policy Optimization for Code Generation
Effective reward design is a central challenge in Reinforcement Learning (RL) for code generation. Mainstream pass/fail outcome rewards enforce functional correctness via executing unit tests, but the resulting sparsity limits potential performance gains. While recent work has explored external Reward Models (RM) to generate richer, continuous rewards, the learned RMs suffer from reward misalignment and prohibitive computational cost. In this paper, we introduce \textbf{VeRPO} (\textbf{V}erifiable D\textbf{e}nse \textbf{R}eward \textbf{P}olicy \textbf{O}ptimization), a novel RL framework for code generation that synthesizes \textit{robust and dense rewards fully grounded in verifiable execution feedback}. The core idea of VeRPO is constructing dense rewards from weighted partial success: by dynamically estimating the difficulty weight of each unit test based on the execution statistics during training, a dense reward is derived from the sum of weights of the passed unit tests. To solidify the consistency between partial success and end-to-end functional correctness, VeRPO further integrates the dense signal with global execution outcomes, establishing a robust and dense reward paradigm relying solely on verifiable execution feedback. Extensive experiments across diverse benchmarks and settings demonstrate that VeRPO consistently outperforms outcome-driven and RM-based baselines, achieving up to +8.83\% gain in pass@1 with negligible time cost (< 0.02\%) and zero GPU memory overhead.
IntroLM: Introspective Language Models via Prefilling-Time Self-Evaluation
A major challenge for the operation of large language models (LLMs) is how to predict whether a specific LLM will produce sufficiently high-quality output for a given query. Existing approaches rely on external classifiers, most commonly BERT based models, which suffer from limited context windows, constrained representational capacity, and additional computational overhead. We propose IntroLM, a method that enables causal language models to predict their own output quality during the prefilling phase without affecting generation using introspective tokens. By introducing token conditional LoRA that activates only for the introspective token, the model learns to predict the output quality for a given query while preserving the original backbone behavior and avoiding external evaluators. On question answering benchmarks, IntroLM applied to Qwen3 8B achieves a ROC AUC of 90 precent for success prediction, outperforming a DeBERTa classifier by 14 precent. When integrated into multi model routing systems, IntroLM achieves superior cost performance tradeoffs, reducing latency by up to 33 precent and large model usage by up to 50 precent at matched reliability.
From Bits to Chips: An LLM-based Hardware-Aware Quantization Agent for Streamlined Deployment of LLMs
Deploying models, especially large language models (LLMs), is becoming increasingly attractive to a broader user base, including those without specialized expertise. However, due to the resource constraints of certain hardware, maintaining high accuracy with larger model while meeting the hardware requirements remains a significant challenge. Model quantization technique helps mitigate memory and compute bottlenecks, yet the added complexities of tuning and deploying quantized models further exacerbates these challenges, making the process unfriendly to most of the users. We introduce the Hardware-Aware Quantization Agent (HAQA), an automated framework that leverages LLMs to streamline the entire quantization and deployment process by enabling efficient hyperparameter tuning and hardware configuration, thereby simultaneously improving deployment quality and ease of use for a broad range of users. Our results demonstrate up to a 2.3x speedup in inference, along with increased throughput and improved accuracy compared to unoptimized models on Llama. Additionally, HAQA is designed to implement adaptive quantization strategies across diverse hardware platforms, as it automatically finds optimal settings even when they appear counterintuitive, thereby reducing extensive manual effort and demonstrating superior adaptability. Code will be released.
CALM: Culturally Self-Aware Language Models
Cultural awareness in language models is the capacity to understand and adapt to diverse cultural contexts. However, most existing approaches treat culture as static background knowledge, overlooking its dynamic and evolving nature. This limitation reduces their reliability in downstream tasks that demand genuine cultural sensitivity. In this work, we introduce CALM, a novel framework designed to endow language models with cultural self-awareness. CALM disentangles task semantics from explicit cultural concepts and latent cultural signals, shaping them into structured cultural clusters through contrastive learning. These clusters are then aligned via cross-attention to establish fine-grained interactions among related cultural features and are adaptively integrated through a Mixture-of-Experts mechanism along culture-specific dimensions. The resulting unified representation is fused with the model's original knowledge to construct a culturally grounded internal identity state, which is further enhanced through self-prompted reflective learning, enabling continual adaptation and self-correction. Extensive experiments conducted on multiple cross-cultural benchmark datasets demonstrate that CALM consistently outperforms state-of-the-art methods.
Personalization of Large Foundation Models for Health Interventions AAAI 2026
Large foundation models (LFMs) transform healthcare AI in prevention, diagnostics, and treatment. However, whether LFMs can provide truly personalized treatment recommendations remains an open question. Recent research has revealed multiple challenges for personalization, including the fundamental generalizability paradox: models achieving high accuracy in one clinical study perform at chance level in others, demonstrating that personalization and external validity exist in tension. This exemplifies broader contradictions in AI-driven healthcare: the privacy-performance paradox, scale-specificity paradox, and the automation-empathy paradox. As another challenge, the degree of causal understanding required for personalized recommendations, as opposed to mere predictive capacities of LFMs, remains an open question. N-of-1 trials -- crossover self-experiments and the gold standard for individual causal inference in personalized medicine -- resolve these tensions by providing within-person causal evidence while preserving privacy through local experimentation. Despite their impressive capabilities, this paper argues that LFMs cannot replace N-of-1 trials. We argue that LFMs and N-of-1 trials are complementary: LFMs excel at rapid hypothesis generation from population patterns using multimodal data, while N-of-1 trials excel at causal validation for a given individual. We propose a hybrid framework that combines the strengths of both to enable personalization and navigate the identified paradoxes: LFMs generate ranked intervention candidates with uncertainty estimates, which trigger subsequent N-of-1 trials. Clarifying the boundary between prediction and causation and explicitly addressing the paradoxical tensions are essential for responsible AI integration in personalized medicine.
comment: Accepted to the AAAI 2026 Workshop on Personalization in the Era of Large Foundation Models (PerFM)
Hybrid Approach for Driver Behavior Analysis with Machine Learning, Feature Optimization, and Explainable AI
Progressive driver behavior analytics is crucial for improving road safety and mitigating the issues caused by aggressive or inattentive driving. Previous studies have employed machine learning and deep learning techniques, which often result in low feature optimization, thereby compromising both high performance and interpretability. To fill these voids, this paper proposes a hybrid approach to driver behavior analysis that uses a 12,857-row and 18-column data set taken from Kaggle. After applying preprocessing techniques such as label encoding, random oversampling, and standard scaling, 13 machine learning algorithms were tested. The Random Forest Classifier achieved an accuracy of 95%. After deploying the LIME technique in XAI, the top 10 features with the most significant positive and negative influence on accuracy were identified, and the same algorithms were retrained. The accuracy of the Random Forest Classifier decreased slightly to 94.2%, confirming that the efficiency of the model can be improved without sacrificing performance. This hybrid model can provide a return on investment in terms of the predictive power and explainability of the driver behavior process.
Online Decision-Making Under Uncertainty for Vehicle-to-Building Systems
Vehicle-to-building (V2B) systems integrate physical infrastructures, such as smart buildings and electric vehicles (EVs) connected to chargers at the building, with digital control mechanisms to manage energy use. By utilizing EVs as flexible energy reservoirs, buildings can dynamically charge and discharge them to optimize energy use and cut costs under time-variable pricing and demand charge policies. This setup leads to the V2B optimization problem, where buildings coordinate EV charging and discharging to minimize total electricity costs while meeting users' charging requirements. However, the V2B optimization problem is challenging because of: (1) fluctuating electricity pricing, which includes both energy charges ($/kWh) and demand charges ($/kW); (2) long planning horizons (typically over 30 days); (3) heterogeneous chargers with varying charging rates, controllability, and directionality (i.e., unidirectional or bidirectional); and (4) user-specific battery levels at departure to ensure user requirements are met. In contrast to existing approaches that often model this setting as a single-shot combinatorial optimization problem, we highlight critical limitations in prior work and instead model the V2B optimization problem as a Markov decision process (MDP), i.e., a stochastic control process. Solving the resulting MDP is challenging due to the large state and action spaces. To address the challenges of the large state space, we leverage online search, and we counter the action space by using domain-specific heuristics to prune unpromising actions. We validate our approach in collaboration with Nissan Advanced Technology Center - Silicon Valley. Using data from their EV testbed, we show that the proposed framework significantly outperforms state-of-the-art methods.
comment: 17 pages, 2 figures, 10 tables. Published in the Proceedings of the 16th ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS '25), May 06--09, 2025, Irvine, CA, USA
Explainable Admission-Level Predictive Modeling for Prolonged Hospital Stay in Elderly Populations: Challenges in Low- and Middle-Income Countries
Prolonged length of stay (pLoS) is a significant factor associated with the risk of adverse in-hospital events. We develop and explain a predictive model for pLos using admission-level patient and hospital administrative data. The approach includes a feature selection method by selecting non-correlated features with the highest information value. The method uses features weights of evidence to select a representative within cliques from graph theory. The prognosis study analyzed the records from 120,354 hospital admissions at the Hospital Alma Mater de Antioquia between January 2017 and March 2022. After a cleaning process the dataset was split into training (67%), test (22%), and validation (11%) cohorts. A logistic regression model was trained to predict the pLoS in two classes: less than or greater than 7 days. The performance of the model was evaluated using accuracy, precision, sensitivity, specificity, and AUC-ROC metrics. The feature selection method returns nine interpretable variables, enhancing the models' transparency. In the validation cohort, the pLoS model achieved a specificity of 0.83 (95% CI, 0.82-0.84), sensitivity of 0.64 (95% CI, 0.62-0.65), accuracy of 0.76 (95% CI, 0.76-0.77), precision of 0.67 (95% CI, 0.66-0.69), and AUC-ROC of 0.82 (95% CI, 0.81-0.83). The model exhibits strong predictive performance and offers insights into the factors that influence prolonged hospital stays. This makes it a valuable tool for hospital management and for developing future intervention studies aimed at reducing pLoS.
comment: 23 pages, 6 figures
When Predictions Shape Reality: A Socio-Technical Synthesis of Performative Predictions in Machine Learning
Machine learning models are increasingly used in high-stakes domains where their predictions can actively shape the environments in which they operate, a phenomenon known as performative prediction. This dynamic, in which the deployment of the model influences the very outcome it seeks to predict, can lead to unintended consequences, including feedback loops, performance issues, and significant societal risks. While the literature in the field has grown rapidly in recent years, a socio-technical synthesis that systemises the phenomenon concepts and provides practical guidance has been lacking. This Systematisation of Knowledge (SoK) addresses this gap by providing a comprehensive review of the literature on performative predictions. We provide an overview of the primary mechanisms through which performativity manifests, present a typology of associated risks, and survey the proposed solutions offered in the literature. Our primary contribution is the ``Performative Strength vs. Impact Matrix" assessment framework. This practical tool is designed to help practitioners assess the potential influence and severity of performativity on their deployed predictive models and select the appropriate level of algorithmic or human intervention.
SpectraFormer: an Attention-Based Raman Unmixing Tool for Accessing the Graphene Buffer-Layer Signature on SiC
Raman spectroscopy is a key tool for graphene characterization, yet its application to graphene grown on silicon carbide (SiC) is strongly limited by the intense and variable second-order Raman response of the substrate. This limitation is critical for buffer layer graphene, a semiconducting interfacial phase, whose vibrational signatures are overlapped with the SiC background and challenging to be reliably accessed using conventional reference-based subtraction, due to strong spatial and experimental variability of the substrate signal. Here we present SpectraFormer, a transformer-based deep learning model that reconstructs the SiC Raman substrate contribution directly from post-growth partially masked spectroscopic data without relying on explicit reference measurements. By learning global correlations across the entire Raman shift range, the model captures the statistical structure of the SiC background and enables accurate reconstruction of its contribution in mixed spectra. Subtraction of the reconstructed substrate signal reveals weak vibrational features associated with ZLG that are inaccessible through conventional analysis methods. The extracted spectra are validated by ab initio vibrational calculations, allowing assignment of the resolved features to specific modes and confirming their physical consistency. By leveraging a state-of-the-art attention-based deep learning architecture, this approach establishes a robust, reference-free framework for Raman analysis of graphene on SiC and provides a foundation, compatible with real-time data acquisition, to its integration into automated, closed-loop AI-assisted growth optimization.
comment: 14 pages, 4 figures, 1 table
Large Language Models for Detecting Cyberattacks on Smart Grid Protective Relays
This paper presents a large language model (LLM)-based framework for detecting cyberattacks on transformer current differential relays (TCDRs), which, if undetected, may trigger false tripping of critical transformers. The proposed approach adapts and fine-tunes compact LLMs such as DistilBERT to distinguish cyberattacks from actual faults using textualized multidimensional TCDR current measurements recorded before and after tripping. Our results demonstrate that DistilBERT detects 97.6% of cyberattacks without compromising TCDR dependability and achieves inference latency below 6 ms on a commercial workstation. Additional evaluations confirm the framework's robustness under combined time-synchronization and false-data-injection attacks, resilience to measurement noise, and stability across prompt formulation variants. Furthermore, GPT-2 and DistilBERT+LoRA achieve comparable performance, highlighting the potential of LLMs for enhancing smart grid cybersecurity. We provide the full dataset used in this study for reproducibility.
Improving and Accelerating Offline RL in Large Discrete Action Spaces with Structured Policy Initialization
Reinforcement learning in discrete combinatorial action spaces requires searching over exponentially many joint actions to simultaneously select multiple sub-actions that form coherent combinations. Existing approaches either simplify policy learning by assuming independence across sub-actions, which often yields incoherent or invalid actions, or attempt to learn action structure and control jointly, which is slow and unstable. We introduce Structured Policy Initialization (SPIN), a two-stage framework that first pre-trains an Action Structure Model (ASM) to capture the manifold of valid actions, then freezes this representation and trains lightweight policy heads for control. On challenging discrete DM Control benchmarks, SPIN improves average return by up to 39% over the state of the art while reducing time to convergence by up to 12.8$\times$.
Learning Multinomial Logits in $O(n \log n)$ time
A Multinomial Logit (MNL) model is composed of a finite universe of items $[n]=\{1,..., n\}$, each assigned a positive weight. A query specifies an admissible subset -- called a slate -- and the model chooses one item from that slate with probability proportional to its weight. This query model is also known as the Plackett-Luce model or conditional sampling oracle in the literature. Although MNLs have been studied extensively, a basic computational question remains open: given query access to slates, how efficiently can we learn weights so that, for every slate, the induced choice distribution is within total variation distance $\varepsilon$ of the ground truth? This question is central to MNL learning and has direct implications for modern recommender system interfaces. We provide two algorithms for this task, one with adaptive queries and one with non-adaptive queries. Each algorithm outputs an MNL $M'$ that induces, for each slate $S$, a distribution $M'_S$ on $S$ that is within $\varepsilon$ total variation distance of the true distribution. Our adaptive algorithm makes $O\left(\frac{n}{\varepsilon^{3}}\log n\right)$ queries, while our non-adaptive algorithm makes $O\left(\frac{n^{2}}{\varepsilon^{3}}\log n \log\frac{n}{\varepsilon}\right)$ queries. Both algorithms query only slates of size two and run in time proportional to their query complexity. We complement these upper bounds with lower bounds of $Ω\left(\frac{n}{\varepsilon^{2}}\log n\right)$ for adaptive queries and $Ω\left(\frac{n^{2}}{\varepsilon^{2}}\log n\right)$ for non-adaptive queries, thus proving that our adaptive algorithm is optimal in its dependence on the support size $n$, while the non-adaptive one is tight within a $\log n$ factor.
Distribution-Guided and Constrained Quantum Machine Unlearning
Machine unlearning aims to remove the influence of specific training data from a learned model without full retraining. While recent work has begun to explore unlearning in quantum machine learning, existing approaches largely rely on fixed, uniform target distributions and do not explicitly control the trade-off between forgetting and retained model behaviour. In this work, we propose a distribution-guided framework for class-level quantum machine unlearning that treats unlearning as a constrained optimization problem. Our method introduces a tunable target distribution derived from model similarity statistics, decoupling the suppression of forgotten-class confidence from assumptions about redistribution among retained classes. We further incorporate an anchor-based preservation constraint that explicitly maintains predictive behaviour on selected retained data, yielding a controlled optimization trajectory that limits deviation from the original model. We evaluate the approach on variational quantum classifiers trained on the Iris and Covertype datasets. Results demonstrate sharp suppression of forgotten-class confidence, minimal degradation of retained-class performance, and closer alignment with the gold retrained model baselines compared to uniform-target unlearning. These findings highlight the importance of target design and constraint-based formulations for reliable and interpretable quantum machine unlearning.
comment: 8 pages
Rate or Fate? RLV$^\varepsilon$R: Reinforcement Learning with Verifiable Noisy Rewards
Reinforcement learning with verifiable rewards (RLVR) is a simple but powerful paradigm for training LLMs: sample a completion, verify it, and update. In practice, however, the verifier is almost never clean--unit tests probe only limited corner cases; human and synthetic labels are imperfect; and LLM judges (e.g., RLAIF) are noisy and can be exploited--and this problem worsens on harder domains (especially coding) where tests are sparse and increasingly model-generated. We ask a pragmatic question: does the verification noise merely slow down the learning (rate), or can it flip the outcome (fate)? To address this, we develop an analytically tractable multi-armed bandit view of RLVR dynamics, instantiated with GRPO and validated in controlled experiments. Modeling false positives and false negatives and grouping completions into recurring reasoning modes yields a replicator-style (natural-selection) flow on the probability simplex. The dynamics decouples into within-correct-mode competition and a one-dimensional evolution for the mass on incorrect modes, whose drift is determined solely by Youden's index J=TPR-FPR. This yields a sharp phase transition: when J>0, the incorrect mass is driven toward extinction (learning); when J=0, the process is neutral; and when J<0, incorrect modes amplify until they dominate (anti-learning and collapse). In the learning regime J>0, noise primarily rescales convergence time ("rate, not fate"). Experiments on verifiable programming tasks under synthetic noise reproduce the predicted J=0 boundary. Beyond noise, the framework offers a general lens for analyzing RLVR stability, convergence, and algorithmic interventions.
Transformer-based Multi-agent Reinforcement Learning for Separation Assurance in Structured and Unstructured Airspaces
Conventional optimization-based metering depends on strict adherence to precomputed schedules, which limits the flexibility required for the stochastic operations of Advanced Air Mobility (AAM). In contrast, multi-agent reinforcement learning (MARL) offers a decentralized, adaptive framework that can better handle uncertainty, required for safe aircraft separation assurance. Despite this advantage, current MARL approaches often overfit to specific airspace structures, limiting their adaptability to new configurations. To improve generalization, we recast the MARL problem in a relative polar state space and train a transformer encoder model across diverse traffic patterns and intersection angles. The learned model provides speed advisories to resolve conflicts while maintaining aircraft near their desired cruising speeds. In our experiments, we evaluated encoder depths of 1, 2, and 3 layers in both structured and unstructured airspaces, and found that a single encoder configuration outperformed deeper variants, yielding near-zero near mid-air collision rates and shorter loss-of-separation infringements than the deeper configurations. Additionally, we showed that the same configuration outperforms a baseline model designed purely with attention. Together, our results suggest that the newly formulated state representation, novel design of neural network architecture, and proposed training strategy provide an adaptable and scalable decentralized solution for aircraft separation assurance in both structured and unstructured airspaces.
comment: 9 pages, 4 figures, 4 tables. Presented at SESAR Innovation Days 2025
Enhanced-FQL($λ$), an Efficient and Interpretable RL with novel Fuzzy Eligibility Traces and Segmented Experience Replay
This paper introduces a fuzzy reinforcement learning framework, Enhanced-FQL($λ$), that integrates novel Fuzzified Eligibility Traces (FET) and Segmented Experience Replay (SER) into fuzzy Q-learning with Fuzzified Bellman Equation (FBE) for continuous control tasks. The proposed approach employs an interpretable fuzzy rule base instead of complex neural architectures, while maintaining competitive performance through two key innovations: a fuzzified Bellman equation with eligibility traces for stable multi-step credit assignment, and a memory-efficient segment-based experience replay mechanism for enhanced sample efficiency. Theoretical analysis proves the proposed method convergence under standard assumptions. Extensive evaluations in continuous control domains demonstrate that Enhanced-FQL($λ$) achieves superior sample efficiency and reduced variance compared to n-step fuzzy TD and fuzzy SARSA($λ$) baselines, while maintaining substantially lower computational complexity than deep RL alternatives such as DDPG. The framework's inherent interpretability, combined with its computational efficiency and theoretical convergence guarantees, makes it particularly suitable for safety-critical applications where transparency and resource constraints are essential.
comment: Submitted to ECC26 conference
Aligned explanations in neural networks
Feature attribution is the dominant paradigm for explaining deep neural networks. However, most existing methods only loosely reflect the model's prediction-making process, thereby merely white-painting the black box. We argue that explanatory alignment is a key aspect of trustworthiness in prediction tasks: explanations must be directly linked to predictions, rather than serving as post-hoc rationalizations. We present model readability as a design principle enabling alignment, and PiNets as a modeling framework to pursue it in a deep learning context. PiNets are pseudo-linear networks that produce instance-wise linear predictions in an arbitrary feature space, making them linearly readable. We illustrate their use on image classification and segmentation tasks, demonstrating how PiNets produce explanations that are faithful across multiple criteria in addition to alignment.
Disco-RAG: Discourse-Aware Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) has emerged as an important means of enhancing the performance of large language models (LLMs) in knowledge-intensive tasks. However, most existing RAG strategies treat retrieved passages in a flat and unstructured way, which prevents the model from capturing structural cues and constrains its ability to synthesize knowledge from dispersed evidence across documents. To overcome these limitations, we propose Disco-RAG, a discourse-aware framework that explicitly injects discourse signals into the generation process. Our method constructs intra-chunk discourse trees to capture local hierarchies and builds inter-chunk rhetorical graphs to model cross-passage coherence. These structures are jointly integrated into a planning blueprint that conditions the generation. Experiments on question answering and long-document summarization benchmarks show the efficacy of our approach. Disco-RAG achieves state-of-the-art results on the benchmarks without fine-tuning. These findings underscore the important role of discourse structure in advancing RAG systems.
Machine Learning Model for Sparse PCM Completion
In this paper, we propose a machine learning model for sparse pairwise comparison matrices (PCMs), combining classical PCM approaches with graph-based learning techniques. Numerical results are provided to demonstrate the effectiveness and scalability of the proposed method.
Survival Dynamics of Neural and Programmatic Policies in Evolutionary Reinforcement Learning
In evolutionary reinforcement learning tasks (ERL), agent policies are often encoded as small artificial neural networks (NERL). Such representations lack explicit modular structure, limiting behavioral interpretation. We investigate whether programmatic policies (PERL), implemented as soft, differentiable decision lists (SDDL), can match the performance of NERL. To support reproducible evaluation, we provide the first fully specified and open-source reimplementation of the classic 1992 Artificial Life (ALife) ERL testbed. We conduct a rigorous survival analysis across 4000 independent trials utilizing Kaplan-Meier curves and Restricted Mean Survival Time (RMST) metrics absent in the original study. We find a statistically significant difference in survival probability between PERL and NERL. PERL agents survive on average 201.69 steps longer than NERL agents. Moreover, SDDL agents using learning alone (no evolution) survive on average 73.67 steps longer than neural agents using both learning and evaluation. These results demonstrate that programmatic policies can exceed the survival performance of neural policies in ALife.
Phasor Agents: Oscillatory Graphs with Three-Factor Plasticity and Sleep-Staged Learning
Phasor Agents are dynamical systems whose internal state is a Phasor Graph: a weighted graph of coupled Stuart-Landau oscillators. A Stuart-Landau oscillator is a minimal stable "rhythm generator" (the normal form near a Hopf bifurcation); each oscillator is treated as an abstract computational unit (inspired by, but not claiming to model, biological oscillatory populations). In this interpretation, oscillator phase tracks relative timing (coherence), while amplitude tracks local gain or activity. Relative phase structure serves as a representational medium; coupling weights are learned via three-factor local plasticity - eligibility traces gated by sparse global modulators and oscillation-timed write windows - without backpropagation. A central challenge in oscillatory substrates is stability: online weight updates can drive the network into unwanted regimes (e.g., global synchrony), collapsing representational diversity. We therefore separate wake tagging from offline consolidation, inspired by synaptic tagging-and-capture and sleep-stage dynamics: deep-sleep-like gated capture commits tagged changes safely, while REM-like replay reconstructs and perturbs experience for planning. A staged experiment suite validates each mechanism with ablations and falsifiers: eligibility traces preserve credit under delayed modulation; compression-progress signals pass timestamp-shuffle controls; phase-coherent retrieval reaches 4x diffusive baselines under noise; wake/sleep separation expands stable learning by 67 percent under matched weight-norm budgets; REM replay improves maze success rate by +45.5 percentage points; and a Tolman-style latent-learning signature - immediate competence and detour advantage after unrewarded exploration, consistent with an internal model - emerges from replay (Tolman, 1948). The codebase and all artifacts are open-source.
comment: 22 pages, 14 figures
Causally-Aware Information Bottleneck for Domain Adaptation
We tackle a common domain adaptation setting in causal systems. In this setting, the target variable is observed in the source domain but is entirely missing in the target domain. We aim to impute the target variable in the target domain from the remaining observed variables under various shifts. We frame this as learning a compact, mechanism-stable representation. This representation preserves information relevant for predicting the target while discarding spurious variation. For linear Gaussian causal models, we derive a closed-form Gaussian Information Bottleneck (GIB) solution. This solution reduces to a canonical correlation analysis (CCA)-style projection and offers Directed Acyclic Graph (DAG)-aware options when desired. For nonlinear or non-Gaussian data, we introduce a Variational Information Bottleneck (VIB) encoder-predictor. This approach scales to high dimensions and can be trained on source data and deployed zero-shot to the target domain. Across synthetic and real datasets, our approach consistently attains accurate imputations, supporting practical use in high-dimensional causal models and furnishing a unified, lightweight toolkit for causal domain adaptation.
comment: An extended abstract version of this work was accepted for the Proceedings of the 25th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2026)
Comparative Analysis of Custom CNN Architectures versus Pre-trained Models and Transfer Learning: A Study on Five Bangladesh Datasets
This study presents a comprehensive comparative analysis of custom-built Convolutional Neural Networks (CNNs) against popular pre-trained architectures (ResNet-18 and VGG-16) using both feature extraction and transfer learning approaches. We evaluated these models across five diverse image classification datasets from Bangladesh: Footpath Vision, Auto Rickshaw Detection, Mango Image Classification, Paddy Variety Recognition, and Road Damage Detection. Our experimental results demonstrate that transfer learning with fine-tuning consistently outperforms both custom CNNs built from scratch and feature extraction methods, achieving accuracy improvements ranging from 3% to 76% across different datasets. Notably, ResNet-18 with fine-tuning achieved perfect 100% accuracy on the Road Damage BD dataset. While custom CNNs offer advantages in model size (3.4M parameters vs. 11-134M for pre-trained models) and training efficiency on simpler tasks, pre-trained models with transfer learning provide superior performance, particularly on complex classification tasks with limited training data. This research provides practical insights for practitioners in selecting appropriate deep learning approaches based on dataset characteristics, computational resources, and performance requirements.
Quantifying the Effect of Test Set Contamination on Generative Evaluations
As frontier AI systems are pretrained on web-scale data, test set contamination has become a critical concern for accurately assessing their capabilities. While research has thoroughly investigated the impact of test set contamination on discriminative evaluations like multiple-choice question-answering, comparatively little research has studied the impact of test set contamination on generative evaluations. In this work, we quantitatively assess the effect of test set contamination on generative evaluations through the language model lifecycle. We pretrain language models on mixtures of web data and the MATH benchmark, sweeping model sizes and number of test set replicas contaminating the pretraining corpus; performance improves with contamination and model size. Using scaling laws, we make a surprising discovery: including even a single test set replica enables models to achieve lower loss than the irreducible error of training on the uncontaminated corpus. We then study further training: overtraining with fresh data reduces the effects of contamination, whereas supervised finetuning on the training set can either increase or decrease performance on test data, depending on the amount of pretraining contamination. Finally, at inference, we identify factors that modulate memorization: high sampling temperatures mitigate contamination effects, and longer solutions are exponentially more difficult to memorize than shorter ones, presenting a contrast with discriminative evaluations, where solutions are only a few tokens in length. By characterizing how generation and memorization interact, we highlight a new layer of complexity for trustworthy evaluation of AI systems.
Transformer-Based Multi-Modal Temporal Embeddings for Explainable Metabolic Phenotyping in Type 1 Diabetes
Type 1 diabetes (T1D) is a highly metabolically heterogeneous disease that cannot be adequately characterized by conventional biomarkers such as glycated hemoglobin (HbA1c). This study proposes an explainable deep learning framework that integrates continuous glucose monitoring (CGM) data with laboratory profiles to learn multimodal temporal embeddings of individual metabolic status. Temporal dependencies across modalities are modeled using a transformer encoder, while latent metabolic phenotypes are identified via Gaussian mixture modeling. Model interpretability is achieved through transformer attention visualization and SHAP-based feature attribution. Five latent metabolic phenotypes, ranging from metabolic stability to elevated cardiometabolic risk, were identified among 577 individuals with T1D. These phenotypes exhibit distinct biochemical profiles, including differences in glycemic control, lipid metabolism, renal markers, and thyrotropin (TSH) levels. Attention analysis highlights glucose variability as a dominant temporal factor, while SHAP analysis identifies HbA1c, triglycerides, cholesterol, creatinine, and TSH as key contributors to phenotype differentiation. Phenotype membership shows statistically significant, albeit modest, associations with hypertension, myocardial infarction, and heart failure. Overall, this explainable multimodal temporal embedding framework reveals physiologically coherent metabolic subgroups in T1D and supports risk stratification beyond single biomarkers.
ArtCognition: A Multimodal AI Framework for Affective State Sensing from Visual and Kinematic Drawing Cues
The objective assessment of human affective and psychological states presents a significant challenge, particularly through non-verbal channels. This paper introduces digital drawing as a rich and underexplored modality for affective sensing. We present a novel multimodal framework, named ArtCognition, for the automated analysis of the House-Tree-Person (HTP) test, a widely used psychological instrument. ArtCognition uniquely fuses two distinct data streams: static visual features from the final artwork, captured by computer vision models, and dynamic behavioral kinematic cues derived from the drawing process itself, such as stroke speed, pauses, and smoothness. To bridge the gap between low-level features and high-level psychological interpretation, we employ a Retrieval-Augmented Generation (RAG) architecture. This grounds the analysis in established psychological knowledge, enhancing explainability and reducing the potential for model hallucination. Our results demonstrate that the fusion of visual and behavioral kinematic cues provides a more nuanced assessment than either modality alone. We show significant correlations between the extracted multimodal features and standardized psychological metrics, validating the framework's potential as a scalable tool to support clinicians. This work contributes a new methodology for non-intrusive affective state assessment and opens new avenues for technology-assisted mental healthcare.
comment: 12 pages, 7 figures
Correct and Weight: A Simple Yet Effective Loss for Implicit Feedback Recommendation
Learning from implicit feedback has become the standard paradigm for modern recommender systems. However, this setting is fraught with the persistent challenge of false negatives, where unobserved user-item interactions are not necessarily indicative of negative preference. To address this issue, this paper introduces a novel and principled loss function, named Corrected and Weighted (CW) loss, that systematically corrects for the impact of false negatives within the training objective. Our approach integrates two key techniques. First, inspired by Positive-Unlabeled learning, we debias the negative sampling process by re-calibrating the assumed negative distribution. By theoretically approximating the true negative distribution (p-) using the observable general data distribution (p) and the positive interaction distribution (p^+), our method provides a more accurate estimate of the likelihood that a sampled unlabeled item is truly negative. Second, we introduce a dynamic re-weighting mechanism that modulates the importance of each negative instance based on the model's current prediction. This scheme encourages the model to enforce a larger ranking margin between positive items and confidently predicted (i.e., easy) negative items, while simultaneously down-weighting the penalty on uncertain negatives that have a higher probability of being false negatives. A key advantage of our approach is its elegance and efficiency; it requires no complex modifications to the data sampling process or significant computational overhead, making it readily applicable to a wide array of existing recommendation models. Extensive experiments conducted on four large-scale, sparse benchmark datasets demonstrate the superiority of our proposed loss. The results show that our method consistently and significantly outperforms a suite of state-of-the-art loss functions across multiple ranking-oriented metrics.
comment: arXiv admin note: text overlap with arXiv:2508.05673 by other authors
Human-in-the-Loop Testing of AI Agents for Air Traffic Control with a Regulated Assessment Framework
We present a rigorous, human-in-the-loop evaluation framework for assessing the performance of AI agents on the task of Air Traffic Control, grounded in a regulator-certified simulator-based curriculum used for training and testing real-world trainee controllers. By leveraging legally regulated assessments and involving expert human instructors in the evaluation process, our framework enables a more authentic and domain-accurate measurement of AI performance. This work addresses a critical gap in the existing literature: the frequent misalignment between academic representations of Air Traffic Control and the complexities of the actual operational environment. It also lays the foundations for effective future human-machine teaming paradigms by aligning machine performance with human assessment targets.
Online Action-Stacking Improves Reinforcement Learning Performance for Air Traffic Control
We introduce online action-stacking, an inference-time wrapper for reinforcement learning policies that produces realistic air traffic control commands while allowing training on a much smaller discrete action space. Policies are trained with simple incremental heading or level adjustments, together with an action-damping penalty that reduces instruction frequency and leads agents to issue commands in short bursts. At inference, online action-stacking compiles these bursts of primitive actions into domain-appropriate compound clearances. Using Proximal Policy Optimisation and the BluebirdDT digital twin platform, we train agents to navigate aircraft along lateral routes, manage climb and descent to target flight levels, and perform two-aircraft collision avoidance under a minimum separation constraint. In our lateral navigation experiments, action stacking greatly reduces the number of issued instructions relative to a damped baseline and achieves comparable performance to a policy trained with a 37-dimensional action space, despite operating with only five actions. These results indicate that online action-stacking helps bridge a key gap between standard reinforcement learning formulations and operational ATC requirements, and provides a simple mechanism for scaling to more complex control scenarios.
Enhancing Robustness of Asynchronous EEG-Based Movement Prediction using Classifier Ensembles
Objective: Stroke is one of the leading causes of disabilities. One promising approach is to extend the rehabilitation with self-initiated robot-assisted movement therapy. To enable this, it is required to detect the patient's intention to move to trigger the assistance of a robotic device. This intention to move can be detected from human surface electroencephalography (EEG) signals; however, it is particularly challenging to decode when classifications are performed online and asynchronously. In this work, the effectiveness of classifier ensembles and a sliding-window postprocessing technique was investigated to enhance the robustness of such asynchronous classification. Approach: To investigate the effectiveness of classifier ensembles and a sliding-window postprocessing, two EEG datasets with 14 healthy subjects who performed self-initiated arm movements were analyzed. Offline and pseudo-online evaluations were conducted to compare ensemble combinations of the support vector machine (SVM), multilayer perceptron (MLP), and EEGNet classification models. Results: The results of the pseudo-online evaluation show that the two model ensembles significantly outperformed the best single model for the optimal number of postprocessing windows. In particular, for single models, an increased number of postprocessing windows significantly improved classification performances. Interestingly, we found no significant improvements between performances of the best single model and classifier ensembles in the offline evaluation. Significance: We demonstrated that classifier ensembles and appropriate postprocessing methods effectively enhance the asynchronous detection of movement intentions from EEG signals. In particular, the classifier ensemble approach yields greater improvements in online classification than in offline classification, and reduces false detections, i.e., early false positives.
A Future Capabilities Agent for Tactical Air Traffic Control
Escalating air traffic demand is driving the adoption of automation to support air traffic controllers, but existing approaches face a trade-off between safety assurance and interpretability. Optimisation-based methods such as reinforcement learning offer strong performance but are difficult to verify and explain, while rules-based systems are transparent yet rarely check safety under uncertainty. This paper outlines Agent Mallard, a forward-planning, rules-based agent for tactical control in systemised airspace that embeds a stochastic digital twin directly into its conflict-resolution loop. Mallard operates on predefined GPS-guided routes, reducing continuous 4D vectoring to discrete choices over lanes and levels, and constructs hierarchical plans from an expert-informed library of deconfliction strategies. A depth-limited backtracking search uses causal attribution, topological plan splicing, and monotonic axis constraints to seek a complete safe plan for all aircraft, validating each candidate manoeuvre against uncertain execution scenarios (e.g., wind variation, pilot response, communication loss) before commitment. Preliminary walkthroughs with UK controllers and initial tests in the BluebirdDT airspace digital twin indicate that Mallard's behaviour aligns with expert reasoning and resolves conflicts in simplified scenarios. The architecture is intended to combine model-based safety assessment, interpretable decision logic, and tractable computational performance in future structured en-route environments.
Mitigating Position-Shift Failures in Text-Based Modular Arithmetic via Position Curriculum and Template Diversity
Building on insights from the grokking literature, we study character-level Transformers trained to compute modular addition from text, and focus on robustness under input-format variation rather than only in-distribution accuracy. We identify a previously under-emphasized failure mode: models that achieve high in-distribution accuracy can fail catastrophically when the same expression is shifted to different absolute character positions ("position shift") or presented under out-of-distribution natural-language templates. Using a disjoint-pair split over all ordered pairs for p=97, we show that a baseline model reaches strong in-distribution performance yet collapses under position shift and template OOD. We then introduce a simple training recipe that combines (i) explicit expression boundary markers, (ii) position curriculum that broadens the range of absolute positions seen during training, (iii) diverse template mixtures, and (iv) consistency training across multiple variants per example. Across three seeds, this intervention substantially improves robustness to position shift and template OOD while maintaining high in-distribution accuracy, whereas an ALiBi-style ablation fails to learn the task under our setup. Our results suggest that steering procedural generalization under noisy supervision benefits from explicitly training invariances that are otherwise absent from the data distribution, and we provide a reproducible evaluation protocol and artifacts.
LEGATO: Good Identity Unlearning Is Continuous
Machine unlearning has become a crucial role in enabling generative models trained on large datasets to remove sensitive, private, or copyright-protected data. However, existing machine unlearning methods face three challenges in learning to forget identity of generative models: 1) inefficient, where identity erasure requires fine-tuning all the model's parameters; 2) limited controllability, where forgetting intensity cannot be controlled and explainability is lacking; 3) catastrophic collapse, where the model's retention capability undergoes drastic degradation as forgetting progresses. Forgetting has typically been handled through discrete and unstable updates, often requiring full-model fine-tuning and leading to catastrophic collapse. In this work, we argue that identity forgetting should be modeled as a continuous trajectory, and introduce LEGATO - Learn to ForgEt Identity in GenerAtive Models via Trajectory-consistent Neural Ordinary Differential Equations. LEGATO augments pre-trained generators with fine-tunable lightweight Neural ODE adapters, enabling smooth, controllable forgetting while keeping the original model weights frozen. This formulation allows forgetting intensity to be precisely modulated via ODE step size, offering interpretability and robustness. To further ensure stability, we introduce trajectory consistency constraints that explicitly prevent catastrophic collapse during unlearning. Extensive experiments across in-domain and out-of-domain identity unlearning benchmarks show that LEGATO achieves state-of-the-art forgetting performance, avoids catastrophic collapse and reduces fine-tuned parameters.
Generation of synthetic delay time series for air transport applications
The generation of synthetic data is receiving increasing attention from the scientific community, thanks to its ability to solve problems like data scarcity and privacy, and is starting to find applications in air transport. We here tackle the problem of generating synthetic, yet realistic, time series of delays at airports, starting from large collections of operations in Europe and the US. We specifically compare three models, two of them based on state of the art Deep Learning algorithms, and one simplified Genetic Algorithm approach. We show how the latter can generate time series that are almost indistinguishable from real ones, while maintaining a high variability. We further validate the resulting time series in a problem of detecting delay propagations between airports. We finally make the synthetic data available to the scientific community.
comment: 18 pages, 13 figures
From Domains to Instances: Dual-Granularity Data Synthesis for LLM Unlearning
Although machine unlearning is essential for removing private, harmful, or copyrighted content from LLMs, current benchmarks often fail to faithfully represent the true "forgetting scope" learned by the model. We formalize two distinct unlearning granularities, domain-level and instance-level, and propose BiForget, an automated framework for synthesizing high-quality forget sets. Unlike prior work relying on external generators, BiForget exploits the target model per se to elicit data that matches its internal knowledge distribution through seed-guided and adversarial prompting. Our experiments across diverse benchmarks show that it achieves a superior balance of relevance, diversity, and efficiency. Quantitatively, in the Harry Potter domain, it improves relevance by ${\sim}20$ and diversity by ${\sim}$0.05 while halving the total data size compared to SOTAs. Ultimately, it facilitates more robust forgetting and better utility preservation, providing a more rigorous foundation for evaluating LLM unlearning.
comment: 16 pages
Unlocking the Pre-Trained Model as a Dual-Alignment Calibrator for Post-Trained LLMs
Post-training improves large language models (LLMs) but often worsens confidence calibration, leading to systematic overconfidence. Recent unsupervised post-hoc methods for post-trained LMs (PoLMs) mitigate this by aligning PoLM confidence to that of well-calibrated pre-trained counterparts. However, framing calibration as static output-distribution matching overlooks the inference-time dynamics introduced by post-training. In particular, we show that calibration errors arise from two regimes: (i) confidence drift, where final confidence inflates despite largely consistent intermediate decision processes, and (ii) process drift, where intermediate inference pathways diverge. Guided by this diagnosis, we propose Dual-Align, an unsupervised post-hoc framework for dual alignment in confidence calibration. Dual-Align performs confidence alignment to correct confidence drift via final-distribution matching, and introduces process alignment to address process drift by locating the layer where trajectories diverge and realigning the stability of subsequent inference. This dual strategy learns a single temperature parameter that corrects both drift types without sacrificing post-training performance gains. Experiments show consistent improvements over baselines, reducing calibration errors and approaching a supervised oracle.
Predictable Gradient Manifolds in Deep Learning: Temporal Path-Length and Intrinsic Rank as a Complexity Regime
Deep learning optimization exhibits structure that is not captured by worst-case gradient bounds. Empirically, gradients along training trajectories are often temporally predictable and evolve within a low-dimensional subspace. In this work we formalize this observation through a measurable framework for predictable gradient manifolds. We introduce two computable quantities: a prediction-based path length that measures how well gradients can be forecast from past information, and a predictable rank that quantifies the intrinsic temporal dimension of gradient increments. We show how classical online and nonconvex optimization guarantees can be restated so that convergence and regret depend explicitly on these quantities, rather than on worst-case variation. Across convolutional networks, vision transformers, language models, and synthetic control tasks, we find that gradient trajectories are locally predictable and exhibit strong low-rank structure over time. These properties are stable across architectures and optimizers, and can be diagnosed directly from logged gradients using lightweight random projections. Our results provide a unifying lens for understanding optimization dynamics in modern deep learning, reframing standard training as operating in a low-complexity temporal regime. This perspective suggests new directions for adaptive optimizers, rank-aware tracking, and prediction-based algorithm design grounded in measurable properties of real training runs.
comment: 12 Pages. Preprint
Systems Explaining Systems: A Framework for Intelligence and Consciousness
This paper proposes a conceptual framework in which intelligence and consciousness emerge from relational structure rather than from prediction or domain-specific mechanisms. Intelligence is defined as the capacity to form and integrate causal connections between signals, actions, and internal states. Through context enrichment, systems interpret incoming information using learned relational structure that provides essential context in an efficient representation that the raw input itself does not contain, enabling efficient processing under metabolic constraints. Building on this foundation, we introduce the systems-explaining-systems principle, where consciousness emerges when recursive architectures allow higher-order systems to learn and interpret the relational patterns of lower-order systems across time. These interpretations are integrated into a dynamically stabilized meta-state and fed back through context enrichment, transforming internal models from representations of the external world into models of the system's own cognitive processes. The framework reframes predictive processing as an emergent consequence of contextual interpretation rather than explicit forecasting and suggests that recursive multi-system architectures may be necessary for more human-like artificial intelligence.
comment: This work is presented as a preprint, and the author welcomes constructive feedback and discussion
Making Tunable Parameters State-Dependent in Weather and Climate Models with Reinforcement Learning
Weather and climate models rely on parametrisations to represent unresolved sub-grid processes. Traditional schemes rely on fixed coefficients that are weakly constrained and tuned offline, contributing to persistent biases that limit their ability to adapt to the underlying physics. This study presents a framework that learns components of parametrisation schemes online as a function of the evolving model state using reinforcement learning (RL) and evaluates the resulting RL-driven parameter updates across a hierarchy of idealised testbeds spanning a simple climate bias correction (SCBC), a radiative-convective equilibrium (RCE), and a zonal mean energy balance model (EBM) with both single-agent and federated multi-agent settings. Across nine RL algorithms, Truncated Quantile Critics (TQC), Deep Deterministic Policy Gradient (DDPG), and Twin Delayed DDPG (TD3) achieved the highest skill and the most stable convergence across configurations, with performance assessed against a static baseline using area-weighted RMSE, temperature profile and pressure-level diagnostics. For the EBM, single-agent RL outperformed static parameter tuning with the strongest gains in tropical and mid-latitude bands, while federated RL on multi-agent setups enabled geographically specialised control and faster convergence, with a six-agent DDPG configuration using frequent aggregation yielding the lowest area-weighted RMSE across the tropics and mid-latitudes. The learnt corrections were also physically meaningful as agents modulated EBM radiative parameters to reduce meridional biases, adjusted RCE lapse rates to match vertical temperature errors, and stabilised SCBC heating increments to limit drift. Overall, results highlight RL to deliver skilful state-dependent, and regime-aware parametrisations, offering a scalable pathway for online learning within numerical models.
comment: 66 pages, 22 figures
HONEYBEE: Efficient Role-based Access Control for Vector Databases via Dynamic Partitioning[Technical Report]
Enterprise deployments of vector databases require access control policies to protect sensitive data. These systems often implement access control through hybrid vector queries that combine nearest-neighbor search with relational predicates based on user permissions. However, existing approaches face a fundamental trade-off: dedicated per-user indexes minimize query latency but incur high memory redundancy, while shared indexes with post-search filtering reduce memory overhead at the cost of increased latency. This paper introduces HONEYBEE, a dynamic partitioning framework that leverages the structure of Role-Based Access Control (RBAC) policies to create a smooth trade-off between these extremes. RBAC policies organize users into roles and assign permissions at the role level, creating a natural ``thin waist`` in the permission structure that is ideal for partitioning decisions. Specifically, HONEYBEE produces overlapping partitions where vectors can be strategically replicated across different partitions to reduce query latency while controlling memory overhead. To guide these decisions, HONEYBEE develops analytical models of vector search performance and recall, and formulates partitioning as a constrained optimization problem that balances memory usage, query efficiency, and recall. Evaluations on RBAC workloads demonstrate that HONEYBEE achieves up to 13.5X lower query latency than row-level security with only a 1.24X increase in memory usage, while achieving comparable query performance to dedicated, per-role indexes with 90.4% reduction in additional memory consumption, offering a practical middle ground for secure and efficient vector search.
comment: Accepted by SIGMOD 2026
FedDUAL: A Dual-Strategy with Adaptive Loss and Dynamic Aggregation for Mitigating Data Heterogeneity in Federated Learning
Federated Learning (FL) marks a transformative approach to distributed model training by combining locally optimized models from various clients into a unified global model. While FL preserves data privacy by eliminating centralized storage, it encounters significant challenges such as performance degradation, slower convergence, and reduced robustness of the global model due to the heterogeneity in client data distributions. Among the various forms of data heterogeneity, label skew emerges as a particularly formidable and prevalent issue, especially in domains such as image classification. To address these challenges, we begin with comprehensive experiments to pinpoint the underlying issues in the FL training process. Based on our findings, we then introduce an innovative dual-strategy approach designed to effectively resolve these issues. First, we introduce an adaptive loss function for client-side training, meticulously crafted to preserve previously acquired knowledge while maintaining an optimal equilibrium between local optimization and global model coherence. Secondly, we develop a dynamic aggregation strategy for aggregating client models at the server. This approach adapts to each client's unique learning patterns, effectively addressing the challenges of diverse data across the network. Our comprehensive evaluation, conducted across three diverse real-world datasets, coupled with theoretical convergence guarantees, demonstrates the superior efficacy of our method compared to several established state-of-the-art approaches.
comment: Transactions on Machine Learning Research (TMLR)
Attention Needs to Focus: A Unified Perspective on Attention Allocation
The Transformer architecture, a cornerstone of modern Large Language Models (LLMs), has achieved extraordinary success in sequence modeling, primarily due to its attention mechanism. However, despite its power, the standard attention mechanism is plagued by well-documented issues: representational collapse and attention sink. Although prior work has proposed approaches for these issues, they are often studied in isolation, obscuring their deeper connection. In this paper, we present a unified perspective, arguing that both can be traced to a common root -- improper attention allocation. We identify two failure modes: 1) Attention Overload, where tokens receive comparable high weights, blurring semantic features that lead to representational collapse; 2) Attention Underload, where no token is semantically relevant, yet attention is still forced to distribute, resulting in spurious focus such as attention sink. Building on this insight, we introduce Lazy Attention, a novel mechanism designed for a more focused attention distribution. To mitigate overload, it employs positional discrimination across both heads and dimensions to sharpen token distinctions. To counteract underload, it incorporates Elastic-Softmax, a modified normalization function that relaxes the standard softmax constraint to suppress attention on irrelevant tokens. Experiments on the FineWeb-Edu corpus, evaluated across nine diverse benchmarks, demonstrate that Lazy Attention successfully mitigates attention sink and achieves competitive performance compared to both standard attention and modern architectures, while reaching up to 59.58% attention sparsity.
comment: preprint
CktGen: Automated Analog Circuit Design with Generative Artificial Intelligence
The automatic synthesis of analog circuits presents significant challenges. Most existing approaches formulate the problem as a single-objective optimization task, overlooking that design specifications for a given circuit type vary widely across applications. To address this, we introduce specification-conditioned analog circuit generation, a task that directly generates analog circuits based on target specifications. The motivation is to leverage existing well-designed circuits to improve automation in analog circuit design. Specifically, we propose CktGen, a simple yet effective variational autoencoder that maps discretized specifications and circuits into a joint latent space and reconstructs the circuit from that latent vector. Notably, as a single specification may correspond to multiple valid circuits, naively fusing specification information into the generative model does not capture these one-to-many relationships. To address this, we decouple the encoding of circuits and specifications and align their mapped latent space. Then, we employ contrastive training with a filter mask to maximize differences between encoded circuits and specifications. Furthermore, classifier guidance along with latent feature alignment promotes the clustering of circuits sharing the same specification, avoiding model collapse into trivial one-to-one mappings. By canonicalizing the latent space with respect to specifications, we can search for an optimal circuit that meets valid target specifications. We conduct comprehensive experiments on the open circuit benchmark and introduce metrics to evaluate cross-model consistency. Experimental results demonstrate that CktGen achieves substantial improvements over state-of-the-art methods.
comment: Paper accepted by Engineering
Causal Invariance Learning via Efficient Nonconvex Optimization
Identifying the causal relationship among variables from observational data is an important yet challenging task. This work focuses on identifying the direct causes of an outcome and estimating their magnitude, i.e., learning the causal outcome model. Data from multiple environments provide valuable opportunities to uncover causality by exploiting the invariance principle that the causal outcome model holds across heterogeneous environments. Based on the invariance principle, we propose the Negative Weighted Distributionally Robust Optimization (NegDRO) framework to learn an invariant prediction model. NegDRO minimizes the worst-case combination of risks across multiple environments and enforces invariance by allowing potential negative weights. Under the additive interventions regime, we establish three major contributions: (i) On the statistical side, we provide sufficient and nearly necessary identification conditions under which the invariant prediction model coincides with the causal outcome model; (ii) On the optimization side, despite the nonconvexity of NegDRO, we establish its benign optimization landscape, where all stationary points lie close to the true causal outcome model; (iii) On the computational side, we develop a gradient-based algorithm that provably converges to the causal outcome model, with non-asymptotic convergence rates in both sample size and gradient-descent iterations. In particular, our method avoids exhaustive combinatorial searches over exponentially many subsets of covariates found in the literature, ensuring scalability even when the dimension of the covariates is large. To our knowledge, this is the first causal invariance learning method that finds the approximate global optimality for a nonconvex optimization problem efficiently.
Reward Is Enough: LLMs Are In-Context Reinforcement Learners
Reinforcement learning (RL) is a framework for solving sequential decision-making problems. In this work, we demonstrate that, surprisingly, RL emerges during the inference time of large language models (LLMs), a phenomenon we term in-context RL (ICRL). To reveal this capability, we introduce a simple multi-round prompting framework, we call ICRL prompting, for inference-time self-improvement. The goal of ICRL prompting is to guide LLMs to perform reinforcement learning during inference for self-improvement on a given task. After each response, the model receives numerical scalar feedback, denoted as a reward. In the next round, we prompt the LLM again together with a context that concatenates all prior responses and their associated rewards. We consistently observe that response quality improves as the context grows. In other words, the LLM can optimize scalar reward signals during inference, exhibiting behavior analogous to reinforcement learning. We evaluate ICRL prompting on Game of 24, creative writing, ScienceWorld, and Olympiad-level math competitions (AIME and HMMT), demonstrating significant improvements over baselines such as Self-Refine and Reflexion. Notably, even when the reward signals are generated by the same LLM, ICRL prompting still improves performance, highlighting a promising new paradigm for test-time scaling.
BiLO: Bilevel Local Operator Learning for PDE Inverse Problems
We propose a new neural network based method for solving inverse problems for partial differential equations (PDEs) by formulating the PDE inverse problem as a bilevel optimization problem. At the upper level, we minimize the data loss with respect to the PDE parameters. At the lower level, we train a neural network to locally approximate the PDE solution operator in the neighborhood of a given set of PDE parameters, which enables an accurate approximation of the descent direction for the upper level optimization problem. The lower level loss function includes the L2 norms of both the residual and its derivative with respect to the PDE parameters. We apply gradient descent simultaneously on both the upper and lower level optimization problems, leading to an effective and fast algorithm. The method, which we refer to as BiLO (Bilevel Local Operator learning), is also able to efficiently infer unknown functions in the PDEs through the introduction of an auxiliary variable. We provide a theoretical analysis that justifies our approach. Through extensive experiments over multiple PDE systems, we demonstrate that our method enforces strong PDE constraints, is robust to sparse and noisy data, and eliminates the need to balance the residual and the data loss, which is inherent to the soft PDE constraints in many existing methods.
Low Resource Reconstruction Attacks Through Benign Prompts
Recent advances in generative models, such as diffusion models, have raised concerns related to privacy, copyright infringement, and data stewardship. To better understand and control these risks, prior work has introduced techniques and attacks that reconstruct images, or parts of images, from training data. While these results demonstrate that training data can be recovered, existing methods often rely on high computational resources, partial access to the training set, or carefully engineered prompts. In this work, we present a new attack that requires low resources, assumes little to no access to the training data, and identifies seemingly benign prompts that can lead to potentially risky image reconstruction. We further show that such reconstructions may occur unintentionally, even for users without specialized knowledge. For example, we observe that for one existing model, the prompt ``blue Unisex T-Shirt'' generates the face of a real individual. Moreover, by combining the identified vulnerabilities with real-world prompt data, we discover prompts that reproduce memorized visual elements. Our approach builds on insights from prior work and leverages domain knowledge to expose a fundamental vulnerability arising from the use of scraped e-commerce data, where templated layouts and images are closely tied to pattern-like textual prompts. The code for our attack is publicly available at https://github.com/TheSolY/lr-tmi.
An Anytime Algorithm for Good Arm Identification
In good arm identification (GAI), the goal is to identify one arm whose average performance exceeds a given threshold, referred to as a good arm, if it exists. Few works have studied GAI in the fixed-budget setting when the sampling budget is fixed beforehand, or in the anytime setting, when a recommendation can be asked at any time. We propose APGAI, an anytime and parameter-free sampling rule for GAI in stochastic bandits. APGAI can be straightforwardly used in fixed-confidence and fixed-budget settings. First, we derive upper bounds on its probability of error at any time. They show that adaptive strategies can be more efficient in detecting the absence of good arms than uniform sampling in several diverse instances. Second, when APGAI is combined with a stopping rule, we prove upper bounds on the expected sampling complexity, holding at any confidence level. Finally, we show the good empirical performance of APGAI on synthetic and real-world data. Our work offers an extensive overview of the GAI problem in all settings.
comment: 90 pages, 23 figures, 14 tables. To be published in the Journal of Machine Learning Research
Bridging Prediction and Intervention Problems in Social Systems
Many automated decision systems (ADS) are designed to solve prediction problems -- where the goal is to learn patterns from a sample of the population and apply them to individuals from the same population. In reality, these prediction systems operationalize holistic policy interventions in deployment. Once deployed, ADS can shape impacted population outcomes through an effective policy change in how decision-makers operate, while also being defined by past and present interactions between stakeholders and the limitations of existing organizational, as well as societal, infrastructure and context. In this work, we consider the ways in which we must shift from a prediction-focused paradigm to an intervention-oriented paradigm when considering the impact of ADS within social systems. We argue this requires a new default problem setup for ADS beyond prediction, to instead consider predictions as decision support, final decisions, and outcomes. We highlight how this perspective unifies modern statistical frameworks and other tools to study the design, implementation, and evaluation of ADS systems, and point to the research directions necessary to operationalize this paradigm shift. Using these tools, we characterize the limitations of focusing on isolated prediction tasks, and lay the foundation for a more intervention-oriented approach to developing and deploying ADS.
comment: updated version - local edits, cuts
A Differentiable Adversarial Framework for Task-Aware Data Subsampling
The proliferation of large-scale datasets poses a major computational challenge to model training. The traditional data subsampling method works as a static, task independent preprocessing step which usually discards information that is critical to downstream prediction. In this paper, we introduce the antagonistic soft selection subsampling (ASSS) framework as a novel paradigm that reconstructs data reduction into a differentiable end-to-end learning problem. ASSS uses the adversarial game between selector network and task network, and selector network learning assigns continuous importance weights to samples. This direct optimization implemented by Gumbel-Softmax relaxation allows the selector to identify and retain samples with the maximum amount of information for a specific task target under the guidance of the loss function that balances the fidelity and sparsity of the prediction. Theoretical analysis links this framework with the information bottleneck principle. Comprehensive experiments on four large-scale real world datasets show that ASSS has always been better than heuristic subsampling baselines such as clustering and nearest neighbor thinning in maintaining model performance. It is worth noting that ASSS can not only match, but also sometimes exceed the training performance of the entire dataset, showcasing the effect of intelligent denoising. This work establishes task aware data subsampling as a learnable component, providing a principled solution for effective large-scale data learning.
comment: 14 pages
Operational early warning of thunderstorm-driven power outages from open data: a two-stage machine learning approach
Thunderstorm-driven power outages are difficult to predict because most storms do not cause damage, convective processes occur rapidly and chaotically, and the available public data are noisy and incomplete. Severe convective storms now account for a large and rising share of U.S. weather losses, yet thunderstorm-induced outages remain understudied. We develop a 48-hour early-warning model for summer thunderstorm-related outages in Michigan using only open-source outage (EAGLE-I) and weather (METAR) data. Relative to prior work, we (i) rely solely on public data, (ii) preserve convective extremes from a sparse station network via parameter-specific kriging and causal spatiotemporal features, and (iii) use a multi-level LSTM-based architecture evaluated on event-centric peak metrics. The pipeline builds rolling and k-NN inverse-distance aggregates to capture moisture advection, wind shifts, and pressure drops. A two-stage design uses a logistic gate followed by a long short-term memory (LSTM) regressor to filter routine periods and limit noise exposure. Evaluation focuses on state-level peaks of at least 50,000 customers without power, using hits, misses, false alarms, and peak-conditional MASE (cMASE) within 48-hour windows, with uncertainty quantified by block bootstrapping. On the test sample, the Two-Stage model detects more peaks with only one additional false alarm and reduces cMASE near peaks, providing event-focused early warnings without the utility-specific data.
comment: 24 pages (main), 80 pages incl. appendices; figures & tables as in manuscript. Code (main figure, synthetic data): https://github.com/IrynaStanishevska/peak-outage-forecasting- License: CC BY 4.0 (preprint)
EngTrace: A Symbolic Benchmark for Verifiable Process Supervision of Engineering Reasoning
Large Language Models (LLMs) are increasingly entering specialized, safety-critical engineering workflows governed by strict quantitative standards and immutable physical laws, making rigorous evaluation of their reasoning capabilities imperative. However, existing benchmarks such as MMLU, MATH, and HumanEval assess isolated cognitive skills, failing to capture the physically grounded reasoning central to engineering, where scientific principles, quantitative modeling, and practical constraints must converge. To enable verifiable process supervision in engineering, we introduce EngTrace, a symbolic benchmark comprising 90 templates across three major engineering branches, nine core domains and 20 distinct areas. Through domain-aware parameterization, we generate 1,350 unique, contamination-resistant test cases to stress-test generalization. Moving beyond outcome matching, we introduce a verifiable two-stage evaluation framework that uses a tiered protocol to validate intermediate reasoning traces alongside final answers through automated procedural checks and a heterogeneous AI Tribunal. Our evaluation of 24 leading LLMs reveals a distinct trade-off between numeric precision and trace fidelity, identifying a complexity cliff where abstract mathematical pre-training fails to translate into the integrative reasoning required for advanced engineering tasks.
comment: 22 pages, includes figures and tables; introduces the EngTrace benchmark
Towards Understanding Feature Learning in Parameter Transfer
Parameter transfer is a central paradigm in transfer learning, enabling knowledge reuse across tasks and domains by sharing model parameters between upstream and downstream models. However, when only a subset of parameters from the upstream model is transferred to the downstream model, there remains a lack of theoretical understanding of the conditions under which such partial parameter reuse is beneficial and of the factors that govern its effectiveness. To address this gap, we analyze a setting in which both the upstream and downstream models are ReLU convolutional neural networks (CNNs). Within this theoretical framework, we characterize how the inherited parameters act as carriers of universal knowledge and identify key factors that amplify their beneficial impact on the target task. Furthermore, our analysis provides insight into why, in certain cases, transferring parameters can lead to lower test accuracy on the target task than training a new model from scratch. To our best knowledge, our theory is the first to provide a dynamic analysis for parameter transfer and also the first to prove the existence of negative transfer theoretically. Numerical experiments and real-world data experiments are conducted to empirically validate our theoretical findings.
Uncertainty-Aware Robotic World Model Makes Offline Model-Based Reinforcement Learning Work on Real Robots
Reinforcement Learning (RL) has achieved impressive results in robotics, yet high-performing pipelines remain highly task-specific, with little reuse of prior data. Offline Model-based RL (MBRL) offers greater data efficiency by training policies entirely from existing datasets, but suffers from compounding errors and distribution shift in long-horizon rollouts. Although existing methods have shown success in controlled simulation benchmarks, robustly applying them to the noisy, biased, and partially observed datasets typical of real-world robotics remains challenging. We present a principled pipeline for making offline MBRL effective on physical robots. Our RWM-U extends autoregressive world models with epistemic uncertainty estimation, enabling temporally consistent multi-step rollouts with uncertainty effectively propagated over long horizons. We combine RWM-U with MOPO-PPO, which adapts uncertainty-penalized policy optimization to the stable, on-policy PPO framework for real-world control. We evaluate our approach on diverse manipulation and locomotion tasks in simulation and on real quadruped and humanoid, training policies entirely from offline datasets. The resulting policies consistently outperform model-free and uncertainty-unaware model-based baselines, and fusing real-world data in model learning further yields robust policies that surpass online model-free baselines trained solely in simulation.
The Mean-Field Dynamics of Transformers
We develop a mathematical framework that interprets Transformer attention as an interacting particle system and studies its continuum (mean-field) limits. By idealizing attention on the sphere, we connect Transformer dynamics to Wasserstein gradient flows, synchronization models (Kuramoto), and mean-shift clustering. Central to our results is a global clustering phenomenon whereby tokens cluster asymptotically after long metastable states where they are arranged into multiple clusters. We further analyze a tractable equiangular reduction to obtain exact clustering rates, show how commonly used normalization schemes alter contraction speeds, and identify a phase transition for long-context attention. The results highlight both the mechanisms that drive representation collapse and the regimes that preserve expressive, multi-cluster structure in deep attention architectures.
comment: to appear as Proceedings of the ICM2026, Philadelphia, USA
SSSD: Simply-Scalable Speculative Decoding
Speculative Decoding has emerged as a popular technique for accelerating inference in Large Language Models. However, most existing approaches yield only modest improvements in production serving systems. Methods that achieve substantial speedups typically rely on an additional trained draft model or auxiliary model components, increasing deployment and maintenance complexity. This added complexity reduces flexibility, particularly when serving workloads shift to tasks, domains, or languages that are not well represented in the draft model's training data. We introduce Simply-Scalable Speculative Decoding (SSSD), a training-free method that combines lightweight n-gram matching with hardware-aware speculation. Relative to standard autoregressive decoding, SSSD reduces latency by up to 2.9x. It achieves performance on par with leading training-based approaches across a broad range of benchmarks, while requiring substantially lower adoption effort--no data preparation, training or tuning are needed--and exhibiting superior robustness under language and domain shift, as well as in long-context settings.
comment: 16 pages, 6 figures
Graph Reinforcement Learning for Power Grids: A Comprehensive Survey
The increasing share of renewable energy and distributed electricity generation requires the development of deep learning approaches to address the lack of flexibility inherent in traditional power grid methods. In this context, Graph Neural Networks are a promising solution due to their ability to learn from graph-structured data. Combined with Reinforcement Learning, they can be used as control approaches to determine remedial actions. This review analyses how Graph Reinforcement Learning can improve representation learning and decision-making in power grid applications, particularly transmission and distribution grids. We analyze the reviewed approaches in terms of the graph structure, the Graph Neural Network architecture, and the Reinforcement Learning approach. Although Graph Reinforcement Learning has demonstrated adaptability to unpredictable events and noisy data, its current stage is primarily proof-of-concept, and it is not yet deployable to real-world applications. We highlight the open challenges and limitations for real-world applications.
comment: Accepted in Energy & AI, in-press
TimeDistill: Efficient Long-Term Time Series Forecasting with MLP via Cross-Architecture Distillation
Transformer-based and CNN-based methods demonstrate strong performance in long-term time series forecasting. However, their high computational and storage requirements can hinder large-scale deployment. To address this limitation, we propose integrating lightweight MLP with advanced architectures using knowledge distillation (KD). Our preliminary study reveals different models can capture complementary patterns, particularly multi-scale and multi-period patterns in the temporal and frequency domains. Based on this observation, we introduce TimeDistill, a cross-architecture KD framework that transfers these patterns from teacher models (e.g., Transformers, CNNs) to MLP. Additionally, we provide a theoretical analysis, demonstrating that our KD approach can be interpreted as a specialized form of mixup data augmentation. TimeDistill improves MLP performance by up to 18.6%, surpassing teacher models on eight datasets. It also achieves up to 7X faster inference and requires 130X fewer parameters. Furthermore, we conduct extensive evaluations to highlight the versatility and effectiveness of TimeDistill.
comment: Accepted at KDD 2026, we release our code publicly at https://github.com/LingFengGold/TimeDistill
An Overview of Prototype Formulations for Interpretable Deep Learning
Prototypical part networks offer interpretable alternatives to black-box deep learning models by learning visual prototypes for classification. This work provides a comprehensive analysis of prototype formulations, comparing point-based and probabilistic approaches in both Euclidean and hyperspherical latent spaces. We introduce HyperPG, a probabilistic prototype representation using Gaussian distributions on hyperspheres. Experiments on CUB-200-2011, Stanford Cars, and Oxford Flowers datasets show that hyperspherical prototypes outperform standard Euclidean formulations. Critically, hyperspherical prototypes maintain competitive performance under simplified training schemes, while Euclidean prototypes require extensive hyperparameter tuning.
Integrating Semantic Communication and Human Decision-Making into an End-to-End Sensing-Decision Framework
As early as 1949, Weaver defined communication in a very broad sense to include all procedures by which one mind or technical system can influence another, thus establishing the idea of semantic communication. With the recent success of machine learning in expert assistance systems where sensed information is wirelessly provided to a human to assist task execution, the need to design effective and efficient communications has become increasingly apparent. In particular, semantic communication aims to convey the meaning behind the sensed information relevant for Human Decision-Making (HDM). Regarding the interplay between semantic communication and HDM, many questions remain, such as how to model the entire end-to-end sensing-decision-making process, how to design semantic communication for the HDM and which information should be provided for HDM. To address these questions, we propose to integrate semantic communication and HDM into one probabilistic end-to-end sensing-decision framework that bridges communications and psychology. In our interdisciplinary framework, we model the human through a HDM process, allowing us to explore how feature extraction from semantic communication can best support HDM both in theory and in simulations. In this sense, our study reveals the fundamental design trade-off between maximizing the relevant semantic information and matching the cognitive capabilities of the HDM model. Our initial analysis shows how semantic communication can balance the level of detail with human cognitive capabilities while demanding less bandwidth, power, and latency.
comment: Accepted in the Open Journal of the Communications Society. Code available in https://github.com/ant-uni-bremen/SINFONY
Practitioner Motives to Use Different Hyperparameter Optimization Methods
Programmatic hyperparameter optimization (HPO) methods, such as Bayesian optimization and evolutionary algorithms, are highly sample-efficient in identifying optimal hyperparameter configurations for machine learning (ML) models. However, practitioners frequently use less efficient methods, such as grid search, which can lead to under-optimized models. We suspect this behavior is driven by a range of practitioner-specific motives. Practitioner motives, however, still need to be clarified to enhance user-centered development of HPO tools. To uncover practitioner motives to use different HPO methods, we conducted 20 semi-structured interviews and an online survey with 49 ML experts. By presenting main goals (e.g., increase ML model understanding) and contextual factors affecting practitioners' selection of HPO methods (e.g., available computer resources), this study offers a conceptual foundation to better understand why practitioners use different HPO methods, supporting development of more user-centered and context-adaptive HPO tools in automated ML.
Parametric Expensive Multi-Objective Optimization via Generative Solution Modeling
Many real-world applications require solving families of expensive multi-objective optimization problems~(EMOPs) under varying operational conditions. This gives rise to parametric expensive multi-objective optimization problems (P-EMOPs) where each task parameter defines a distinct optimization instance. Current multi-objective Bayesian optimization methods have been widely used for finding finite sets of Pareto optimal solutions for individual tasks. However, P-EMOPs present a fundamental challenge: the continuous task parameter space can contain infinite distinct problems, each requiring separate expensive evaluations. This demands learning an inverse model that can directly predict optimized solutions for any task-preference query without expensive re-evaluation. This paper introduces a novel parametric multi-task multi-objective Bayesian optimizer that learns this inverse model by alternating between (1) acquisition-driven search leveraging inter-task synergies and (2) generative solution sampling via conditional generative models. This approach enables efficient optimization across related tasks and finally achieves direct solution prediction for unseen parameterized EMOPs without additional expensive evaluations. We theoretically justify the faster convergence by leveraging inter-task synergies through task-aware Gaussian processes. Meanwhile, based on that, empirical studies of our optimizer and inverse model in synthetic and real-world benchmarks further verify the effectiveness of the proposed generative alternating framework.
comment: Preprint
GatedFWA: Linear Flash Windowed Attention with Gated Associative Memory
Modern autoregressive models rely on attention, yet the Softmax full attention in Transformers scales quadratically with sequence length. Sliding Window Attention (SWA) achieves linear-time encoding/decoding by constraining the attention pattern, but under an \textit{Associative Memory} interpretation, its difference-style update renders the training objective effectively \emph{unbounded}. In contrast, Softmax attention normalizes updates, leading to \emph{memory shrinkage and gradient vanishing}. We propose GatedFWA: a Memory-\underline{Gated} (\underline{F}lash) \underline{W}indowed \underline{A}ttention mechanism that preserves SWAs efficiency while stabilizing memory updates and making gradient flow controllable. In essence, GatedFWA accumulate a per-token/head gate into a decay bias added to the attention logits, acting as a learnable contraction in the memory recurrence. We implement a fused one-pass gate preprocessing and a FlashAttention-compatible kernel that injects the gate under a sliding mask, ensuring I/O efficiency and numerical stability. On language modelling benchmarks, GatedFWA delivers competitive throughput with negligible overhead and better use of global context, and it integrates cleanly with token compression/selection methods such as NSA and generalizes to various autoregressive domains.
Machine Learning Model Integration with Open World Temporal Logic for Process Automation
Recent advances in Machine Learning (ML) have produced models that extract structured information from complex data. However, a significant challenge lies in translating these perceptual or extractive outputs into actionable and explainable decisions within complex operational workflows. To address these challenges, this paper introduces a novel approach that integrates the outputs of various machine learning models directly with the PyReason framework, an open-world temporal logic programming reasoning engine. PyReason's foundation in generalized annotated logic allows for the incorporation of real-valued outputs (e.g., probabilities, confidence scores) from a diverse set of ML models, treating them as truth intervals within its logical framework. Crucially, PyReason provides mechanisms, implemented in Python, to continuously poll ML model outputs, convert them into logical facts, and dynamically recompute the minimal model to enable decision-making in real-time. Furthermore, its native support for temporal reasoning, knowledge graph integration, and fully explainable interface traces enables an analysis of time-sensitive process data and existing organizational knowledge. By combining the strengths of perception and extraction from ML models with the logical deduction and transparency of PyReason, we aim to create a powerful system for automating complex processes. This integration is well suited for use cases in numerous domains, including manufacturing, healthcare, and business operations.
comment: In Proceedings ICLP 2025, arXiv:2601.00047
On the Sample Complexity of Learning for Blind Inverse Problems
Blind inverse problems arise in many experimental settings where the forward operator is partially or entirely unknown. In this context, methods developed for the non-blind case cannot be adapted in a straightforward manner. Recently, data-driven approaches have been proposed to address blind inverse problems, demonstrating strong empirical performance and adaptability. However, these methods often lack interpretability and are not supported by rigorous theoretical guarantees, limiting their reliability in applied domains such as imaging inverse problems. In this work, we shed light on learning in blind inverse problems within the simplified yet insightful framework of Linear Minimum Mean Square Estimators (LMMSEs). We provide an in-depth theoretical analysis, deriving closed-form expressions for optimal estimators and extending classical results. In particular, we establish equivalences with suitably chosen Tikhonov-regularized formulations, where the regularization depends explicitly on the distributions of the unknown signal, the noise, and the random forward operators. We also prove convergence results under appropriate source condition assumptions. Furthermore, we derive rigorous finite-sample error bounds that characterize the performance of learned estimators as a function of the noise level, problem conditioning, and number of available samples. These bounds explicitly quantify the impact of operator randomness and reveal the associated convergence rates as this randomness vanishes. Finally, we validate our theoretical findings through illustrative numerical experiments that confirm the predicted convergence behavior.
Rethinking Jailbreak Detection of Large Vision Language Models with Representational Contrastive Scoring
Large Vision-Language Models (LVLMs) are vulnerable to a growing array of multimodal jailbreak attacks, necessitating defenses that are both generalizable to novel threats and efficient for practical deployment. Many current strategies fall short, either targeting specific attack patterns, which limits generalization, or imposing high computational overhead. While lightweight anomaly-detection methods offer a promising direction, we find that their common one-class design tends to confuse novel benign inputs with malicious ones, leading to unreliable over-rejection. To address this, we propose Representational Contrastive Scoring (RCS), a framework built on a key insight: the most potent safety signals reside within the LVLM's own internal representations. Our approach inspects the internal geometry of these representations, learning a lightweight projection to maximally separate benign and malicious inputs in safety-critical layers. This enables a simple yet powerful contrastive score that differentiates true malicious intent from mere novelty. Our instantiations, MCD (Mahalanobis Contrastive Detection) and KCD (K-nearest Contrastive Detection), achieve state-of-the-art performance on a challenging evaluation protocol designed to test generalization to unseen attack types. This work demonstrates that effective jailbreak detection can be achieved by applying simple, interpretable statistical methods to the appropriate internal representations, offering a practical path towards safer LVLM deployment. Our code is available on Github https://github.com/sarendis56/Jailbreak_Detection_RCS.
comment: 37 pages, 13 figures
WebGym: Scaling Training Environments for Visual Web Agents with Realistic Tasks
We present WebGym, the largest-to-date open-source environment for training realistic visual web agents. Real websites are non-stationary and diverse, making artificial or small-scale task sets insufficient for robust policy learning. WebGym contains nearly 300,000 tasks with rubric-based evaluations across diverse, real-world websites and difficulty levels. We train agents with a simple reinforcement learning (RL) recipe, which trains on the agent's own interaction traces (rollouts), using task rewards as feedback to guide learning. To enable scaling RL, we speed up sampling of trajectories in WebGym by developing a high-throughput asynchronous rollout system, designed specifically for web agents. Our system achieves a 4-5x rollout speedup compared to naive implementations. Second, we scale the task set breadth, depth, and size, which results in continued performance improvement. Fine-tuning a strong base vision-language model, Qwen-3-VL-8B-Instruct, on WebGym results in an improvement in success rate on an out-of-distribution test set from 26.2% to 42.9%, significantly outperforming agents based on proprietary models such as GPT-4o and GPT-5-Thinking that achieve 27.1% and 29.8%, respectively. This improvement is substantial because our test set consists only of tasks on websites never seen during training, unlike many other prior works on training visual web agents.
comment: Slightly modified format; added Table 3 for better illustration of the scaling results
Cycling Race Time Prediction: A Personalized Machine Learning Approach Using Route Topology and Training Load
Predicting cycling duration for a given route is essential for training planning and event preparation. Existing solutions rely on physics-based models that require extensive parameterization, including aerodynamic drag coefficients and real-time wind forecasts, parameters impractical for most amateur cyclists. This work presents a machine learning approach that predicts ride duration using route topology features combined with the athlete's current fitness state derived from training load metrics. The model learns athlete-specific performance patterns from historical data, substituting complex physical measurements with historical performance proxies. We evaluate the approach using a single-athlete dataset (N=96 rides) in an N-of-1 study design. After rigorous feature engineering to eliminate data leakage, we find that Lasso regression with Topology + Fitness features achieves MAE=6.60 minutes and R2=0.922. Notably, integrating fitness metrics (Chronic Training Load (CTL), Acute Training Load (ATL)) reduces error by 14% compared to topology alone (MAE=7.66 min), demonstrating that physiological state meaningfully constrains performance even in self-paced efforts. Progressive checkpoint predictions enable dynamic race planning as route difficulty becomes apparent.
comment: 29 pages, 22 figures
Neural Network Quantization for Microcontrollers: A Comprehensive Survey of Methods, Platforms, and Applications
The deployment of Quantized Neural Networks (QNNs) on resource-constrained edge devices, such as microcontrollers (MCUs), introduces fundamental challenges in balancing model performance, computational complexity, and memory constraints. Tiny Machine Learning (TinyML) addresses these issues by jointly advancing machine learning algorithms, hardware architectures, and software optimization techniques to enable deep neural network inference on embedded systems. This survey provides a hardware-oriented perspective on neural network quantization, systematically reviewing the quantization methods most relevant to MCUs and extreme-edge devices. Particular emphasis is placed on the critical trade-offs between model performance and the capabilities of MCU-class hardware, including memory hierarchies, numerical representations, and accelerator support. The survey further reviews contemporary MCU hardware platforms, including ARM-based and RISC-V-based designs, as well as MCUs integrating neural processing units (NPUs) for low-precision inference, together with the supporting software stacks. In addition, we analyze real-world deployments of quantized models on MCUs and consolidate the application domains in which such systems are used. Finally, we discuss open challenges and outline promising future directions toward scalable, energy-efficient, and sustainable AI deployment on edge devices.
comment: 40 pages, 16 figures, 8 Tables
Mitigating Label Noise using Prompt-Based Hyperbolic Meta-Learning in Open-Set Domain Generalization
Open-Set Domain Generalization (OSDG) is a challenging task requiring models to accurately predict familiar categories while minimizing confidence for unknown categories to effectively reject them in unseen domains. While the OSDG field has seen considerable advancements, the impact of label noise--a common issue in real-world datasets--has been largely overlooked. Label noise can mislead model optimization, thereby exacerbating the challenges of open-set recognition in novel domains. In this study, we take the first step towards addressing Open-Set Domain Generalization under Noisy Labels (OSDG-NL) by constructing dedicated benchmarks derived from widely used OSDG datasets, including PACS and DigitsDG. We evaluate baseline approaches by integrating techniques from both label denoising and OSDG methodologies, highlighting the limitations of existing strategies in handling label noise effectively. To address these limitations, we propose HyProMeta, a novel framework that integrates hyperbolic category prototypes for label noise-aware meta-learning alongside a learnable new-category agnostic prompt designed to enhance generalization to unseen classes. Our extensive experiments demonstrate the superior performance of HyProMeta compared to state-of-the-art methods across the newly established benchmarks. The source code of this work is released at https://github.com/KPeng9510/HyProMeta.
comment: Accepted to International Journal of Computer Vision (IJCV). The source code of this work is released at https://github.com/KPeng9510/HyProMeta
Measuring Uncertainty Calibration
We make two contributions to the problem of estimating the $L_1$ calibration error of a binary classifier from a finite dataset. First, we provide an upper bound for any classifier where the calibration function has bounded variation. Second, we provide a method of modifying any classifier so that its calibration error can be upper bounded efficiently without significantly impacting classifier performance and without any restrictive assumptions. All our results are non-asymptotic and distribution-free. We conclude by providing advice on how to measure calibration error in practice. Our methods yield practical procedures that can be run on real-world datasets with modest overhead.
comment: 28 pages
A Hybrid Computational Intelligence Framework with Metaheuristic Optimization for Drug-Drug Interaction Prediction
Drug-drug interactions (DDIs) are a leading cause of preventable adverse events, often complicating treatment and increasing healthcare costs. At the same time, knowing which drugs do not interact is equally important, as such knowledge supports safer prescriptions and better patient outcomes. In this study, we propose an interpretable and efficient framework that blends modern machine learning with domain knowledge to improve DDI prediction. Our approach combines two complementary molecular embeddings - Mol2Vec, which captures fragment-level structural patterns, and SMILES-BERT, which learns contextual chemical features - together with a leakage-free, rule-based clinical score (RBScore) that injects pharmacological knowledge without relying on interaction labels. A lightweight neural classifier is then optimized using a novel three-stage metaheuristic strategy (RSmpl-ACO-PSO), which balances global exploration and local refinement for stable performance. Experiments on real-world datasets demonstrate that the model achieves high predictive accuracy (ROC-AUC 0.911, PR-AUC 0.867 on DrugBank) and generalizes well to a clinically relevant Type 2 Diabetes Mellitus cohort. Beyond raw performance, studies show how embedding fusion, RBScore, and the optimizer each contribute to precision and robustness. Together, these results highlight a practical pathway for building reliable, interpretable, and computationally efficient models that can support safer drug therapies and clinical decision-making.
comment: After further internal review, we identified that the methodological contribution claimed in Section 3 substantially overlaps with prior published work and lacks sufficient novel theoretical or empirical justification. As this affects the core contribution, the authors request withdrawal rather than replacement
Point Cloud Synthesis Using Inner Product Transforms NeurIPS
Point cloud synthesis, i.e. the generation of novel point clouds from an input distribution, remains a challenging task, for which numerous complex machine learning models have been devised. We develop a novel method that encodes geometrical-topological characteristics of point clouds using inner products, leading to a highly-efficient point cloud representation with provable expressivity properties. Integrated into deep learning models, our encoding exhibits high quality in typical tasks like reconstruction, generation, and interpolation, with inference times orders of magnitude faster than existing methods.
comment: Accepted at the 39th Conference on Neural Information Processing Systems (NeurIPS) 2025. Our code is available at https://github.com/aidos-lab/inner-product-transforms
Inference in conditioned dynamics through causality restoration
Computing observables from conditioned dynamics is typically computationally hard, because, although obtaining independent samples efficiently from the unconditioned dynamics is usually feasible, generally most of the samples must be discarded (in a form of importance sampling) because they do not satisfy the imposed conditions. Sampling directly from the conditioned distribution is non-trivial, as conditioning breaks the causal properties of the dynamics which ultimately renders the sampling procedure efficient. One standard way of achieving it is through a Metropolis Monte-Carlo procedure, but this procedure is normally slow and a very large number of Monte-Carlo steps is needed to obtain a small number of statistically independent samples. In this work, we propose an alternative method to produce independent samples from a conditioned distribution. The method learns the parameters of a generalized dynamical model that optimally describe the conditioned distribution in a variational sense. The outcome is an effective, unconditioned, dynamical model, from which one can trivially obtain independent samples, effectively restoring causality of the conditioned distribution. The consequences are twofold: on the one hand, it allows us to efficiently compute observables from the conditioned dynamics by simply averaging over independent samples. On the other hand, the method gives an effective unconditioned distribution which is easier to interpret. The method is flexible and can be applied virtually to any dynamics. We discuss an important application of the method, namely the problem of epidemic risk assessment from (imperfect) clinical tests, for a large family of time-continuous epidemic models endowed with a Gillespie-like sampler. We show that the method compares favorably against the state of the art, including the soft-margin approach and mean-field methods.
comment: 22 pages, 7 figures
EquiTabPFN: A Target-Permutation Equivariant Prior Fitted Networks
Recent foundational models for tabular data, such as TabPFN, excel at adapting to new tasks via in-context learning, but remain constrained to a fixed, pre-defined number of target dimensions-often necessitating costly ensembling strategies. We trace this constraint to a deeper architectural shortcoming: these models lack target equivariance, so that permuting target dimension orderings alters their predictions. This deficiency gives rise to an irreducible "equivariance gap", an error term that introduces instability in predictions. We eliminate this gap by designing a fully target-equivariant architecture-ensuring permutation invariance via equivariant encoders, decoders, and a bi-attention mechanism. Empirical evaluation on standard classification benchmarks shows that, on datasets with more classes than those seen during pre-training, our model matches or surpasses existing methods while incurring lower computational overhead.
MoTE: Mixture of Ternary Experts for Memory-efficient Large Multimodal Models
Large multimodal Mixture-of-Experts (MoEs) effectively scale the model size to boost performance while maintaining fixed active parameters. However, previous works primarily utilized full-precision experts during sparse up-cycling. Despite they show superior performance on end tasks, the large amount of experts introduces higher memory footprint, which poses significant challenges for the deployment on edge devices. In this work, we propose MoTE, a scalable and memory-efficient approach to train Mixture-of-Ternary-Experts models from dense checkpoint. Instead of training fewer high-precision experts, we propose to train more low-precision experts during up-cycling. Specifically, we use the pre-trained FFN as a shared expert and train ternary routed experts with parameters in {-1, 0, 1}. Extensive experiments show that our approach has promising scaling trend along model size. MoTE achieves comparable performance to full-precision baseline MoE-LLaVA while offering lower memory footprint. Furthermore, our approach is compatible with post-training quantization methods and the advantage further amplifies when memory-constraint goes lower. Given the same amount of expert memory footprint of 3.4GB and combined with post-training quantization, MoTE outperforms MoE-LLaVA by a gain of 4.3% average accuracy on end tasks, demonstrating its effectiveness and potential for memory-constrained devices.
comment: Work in progress
MDAgent2: Large Language Model for Code Generation and Knowledge Q&A in Molecular Dynamics
Molecular dynamics (MD) simulations are essential for understanding atomic-scale behaviors in materials science, yet writing LAMMPS scripts remains highly specialized and time-consuming tasks. Although LLMs show promise in code generation and domain-specific question answering, their performance in MD scenarios is limited by scarce domain data, the high deployment cost of state-of-the-art LLMs, and low code executability. Building upon our prior MDAgent, we present MDAgent2, the first end-to-end framework capable of performing both knowledge Q&A and code generation within the MD domain. We construct a domain-specific data-construction pipeline that yields three high-quality datasets spanning MD knowledge, question answering, and code generation. Based on these datasets, we adopt a three stage post-training strategy--continued pre-training (CPT), supervised fine-tuning (SFT), and reinforcement learning (RL)--to train two domain-adapted models, MD-Instruct and MD-Code. Furthermore, we introduce MD-GRPO, a closed-loop RL method that leverages simulation outcomes as reward signals and recycles low-reward trajectories for continual refinement. We further build MDAgent2-RUNTIME, a deployable multi-agent system that integrates code generation, execution, evaluation, and self-correction. Together with MD-EvalBench proposed in this work, the first benchmark for LAMMPS code generation and question answering, our models and system achieve performance surpassing several strong baselines.This work systematically demonstrates the adaptability and generalization capability of large language models in industrial simulation tasks, laying a methodological foundation for automatic code generation in AI for Science and industrial-scale simulations. URL: https://github.com/FredericVAN/PKU_MDAgent2
comment: 24 pages,4 figures
A Novel Convolution and Attention Mechanism-based Model for 6D Object Pose Estimation
This paper proposes PoseLecTr, a graph-based encoder-decoder framework that integrates a novel Legendre convolution with attention mechanisms for six-degree-of-freedom (6-DOF) object pose estimation from monocular RGB images. Conventional learning-based approaches predominantly rely on grid-structured convolutions, which can limit their ability to model higher-order and long-range dependencies among image features, especially in cluttered or occluded scenes. PoseLecTr addresses this limitation by constructing a graph representation from image features, where spatial relationships are explicitly modeled through graph connectivity. The proposed framework incorporates a Legendre convolution layer to improve numerical stability in graph convolution, together with spatial-attention and self-attention distillation to enhance feature selection. Experiments conducted on the LINEMOD, Occluded LINEMOD, and YCB-VIDEO datasets demonstrate that our method achieves competitive performance and shows consistent improvements across a wide range of objects and scene complexities.
comment: 6 pages, 2 figures, 3 tables
A survey on Clustered Federated Learning: Taxonomy, Analysis and Applications
As Federated Learning (FL) expands, the challenge of non-independent and identically distributed (non-IID) data becomes critical. Clustered Federated Learning (CFL) addresses this by training multiple specialized models, each representing a group of clients with similar data distributions. However, the term ''CFL'' has increasingly been applied to operational strategies unrelated to data heterogeneity, creating significant ambiguity. This survey provides a systematic review of the CFL literature and introduces a principled taxonomy that classifies algorithms into Server-side, Client-side, and Metadata-based approaches. Our analysis reveals a distinct dichotomy: while theoretical research prioritizes privacy-preserving Server/Client-side methods, real-world applications in IoT, Mobility, and Energy overwhelmingly favor Metadata-based efficiency. Furthermore, we explicitly distinguish ''Core CFL'' (grouping clients for non-IID data) from ''Clustered X FL'' (operational variants for system heterogeneity). Finally, we outline lessons learned and future directions to bridge the gap between theoretical privacy and practical efficiency.
AsFT: Anchoring Safety During LLM Fine-Tuning Within Narrow Safety Basin
Fine-tuning large language models (LLMs) improves performance but introduces critical safety vulnerabilities: even minimal harmful data can severely compromise safety measures. We observe that perturbations orthogonal to the alignment direction - defined by weight differences between aligned (safe) and unaligned models - rapidly compromise model safety. In contrast, updates along the alignment direction largely preserve it, revealing the parameter space as a "narrow safety basin". To address this, we propose AsFT (Anchoring Safety in Fine-Tuning) to maintain safety by explicitly constraining update directions during fine-tuning. By penalizing updates orthogonal to the alignment direction, AsFT effectively constrains the model within the "narrow safety basin," thus preserving its inherent safety. Extensive experiments on multiple datasets and models show that AsFT reduces harmful behaviors by up to 7.60%, improves task performance by 3.44%, and consistently outperforms existing methods across multiple tasks.
Alpamayo-R1: Bridging Reasoning and Action Prediction for Generalizable Autonomous Driving in the Long Tail
End-to-end architectures trained via imitation learning have advanced autonomous driving by scaling model size and data, yet performance remains brittle in safety-critical long-tail scenarios where supervision is sparse and causal understanding is limited. We introduce Alpamayo-R1 (AR1), a vision-language-action model (VLA) that integrates Chain of Causation reasoning with trajectory planning for complex driving scenarios. Our approach features three key innovations: (1) the Chain of Causation (CoC) dataset, built through a hybrid auto-labeling and human-in-the-loop pipeline producing decision-grounded, causally linked reasoning traces aligned with driving behaviors; (2) a modular VLA architecture combining Cosmos-Reason, a vision-language model pre-trained for Physical AI, with a diffusion-based trajectory decoder that generates dynamically feasible trajectories in real time; (3) a multi-stage training strategy using supervised fine-tuning to elicit reasoning and reinforcement learning (RL) to enforce reasoning-action consistency and optimize reasoning quality. AR1 achieves up to a 12% improvement in planning accuracy on challenging cases compared to a trajectory-only baseline, with a 35% reduction in close encounter rate in closed-loop simulation. RL post-training improves reasoning quality by 45% and reasoning-action consistency by 37%. Model scaling from 0.5B to 7B parameters shows consistent improvements. On-vehicle road tests confirm real-time performance (99 ms latency) and successful urban deployment. By bridging interpretable reasoning with precise control, AR1 demonstrates a practical path towards Level 4 autonomous driving. Model weights are available at https://huggingface.co/nvidia/Alpamayo-R1-10B with inference code at https://github.com/NVlabs/alpamayo.
Federated Clustering: An Unsupervised Cluster-Wise Training for Decentralized Data Distributions
Federated Learning (FL) is a pivotal approach in decentralized machine learning, especially when data privacy is crucial and direct data sharing is impractical. While FL is typically associated with supervised learning, its potential in unsupervised scenarios is underexplored. This paper introduces a novel unsupervised federated learning methodology designed to identify the complete set of categories (global K) across multiple clients within label-free, non-uniform data distributions, a process known as Federated Clustering. Our approach, Federated Cluster-Wise Refinement (FedCRef), involves clients that collaboratively train models on clusters with similar data distributions. Initially, clients with diverse local data distributions (local K) train models on their clusters to generate compressed data representations. These local models are then shared across the network, enabling clients to compare them through reconstruction error analysis, leading to the formation of federated groups.In these groups, clients collaboratively train a shared model representing each data distribution, while continuously refining their local clusters to enhance data association accuracy. This iterative process allows our system to identify all potential data distributions across the network and develop robust representation models for each. To validate our approach, we compare it with traditional centralized methods, establishing a performance baseline and showcasing the advantages of our distributed solution. We also conduct experiments on the EMNIST and KMNIST datasets, demonstrating FedCRef's ability to refine and align cluster models with actual data distributions, significantly improving data representation precision in unsupervised federated settings.
Data relativistic uncertainty framework for low-illumination anime scenery image enhancement
By contrast with the prevailing works of low-light enhancement in natural images and videos, this study copes with the low-illumination quality degradation in anime scenery images to bridge the domain gap. For such an underexplored enhancement task, we first curate images from various sources and construct an unpaired anime scenery dataset with diverse environments and illumination conditions to address the data scarcity. To exploit the power of uncertainty information inherent with the diverse illumination conditions, we propose a Data Relativistic Uncertainty (DRU) framework, motivated by the idea from Relativistic GAN. By analogy with the wave-particle duality of light, our framework interpretably defines and quantifies the illumination uncertainty of dark/bright samples, which is leveraged to dynamically adjust the objective functions to recalibrate the model learning under data uncertainty. Extensive experiments demonstrate the effectiveness of DRU framework by training several versions of EnlightenGANs, yielding superior perceptual and aesthetic qualities beyond the state-of-the-art methods that are incapable of learning from data uncertainty perspective. We hope our framework can expose a novel paradigm of data-centric learning for potential visual and language domains. Code is available.
comment: Add data
Investigating Counterclaims in Causality Extraction from Text
Many causal claims, such as "sugar causes hyperactivity," are disputed or outdated. Yet research on causality extraction from text has almost entirely neglected counterclaims of causation. To close this gap, we conduct a thorough literature review of causality extraction, compile an extensive inventory of linguistic realizations of countercausal claims, and develop rigorous annotation guidelines that explicitly incorporate countercausal language. We also highlight how counterclaims of causation are an integral part of causal reasoning. Based on our guidelines, we construct a new dataset comprising 1028 causal claims, 952 counterclaims, and 1435 uncausal statements, achieving substantial inter-annotator agreement (Cohen's $κ= 0.74$). In our experiments, state-of-the-art models trained solely on causal claims misclassify counterclaims more than 10 times as often as models trained on our dataset.
Architecture independent generalization bounds for overparametrized deep ReLU networks
We prove that overparametrized neural networks are able to generalize with a test error that is independent of the level of overparametrization, and independent of the Vapnik-Chervonenkis (VC) dimension. We prove explicit bounds that only depend on the metric geometry of the test and training sets, on the regularity properties of the activation function, and on the operator norms of the weights and norms of biases. For overparametrized deep ReLU networks with a training sample size bounded by the input space dimension, we explicitly construct zero loss minimizers without use of gradient descent, and prove a uniform generalization bound that is independent of the network architecture. We perform computational experiments of our theoretical results with MNIST, and obtain agreement with the true test error within a 22 % margin on average.
comment: AMS Latex, 18 pages. Significantly updated, A. Bapu included as coauthor, Section 3 added
Brain-Inspired Exploration of Functional Networks and Key Neurons in Large Language Models
In recent years, the rapid advancement of large language models (LLMs) in natural language processing has sparked significant interest among researchers to understand their mechanisms and functional characteristics. Although prior studies have attempted to explain LLM functionalities by identifying and interpreting specific neurons, these efforts mostly focus on individual neuron contributions, neglecting the fact that human brain functions are realized through intricate interaction networks. Inspired by research on functional brain networks (FBNs) in the field of neuroscience, we utilize similar methodologies estabilished in FBN analysis to explore the "functional networks" within LLMs in this study. Experimental results highlight that, much like the human brain, LLMs exhibit certain functional networks that recur frequently during their operation. Further investigation reveals that these functional networks are indispensable for LLM performance. Inhibiting key functional networks severely impairs the model's capabilities. Conversely, amplifying the activity of neurons within these networks can enhance either the model's overall performance or its performance on specific tasks. This suggests that these functional networks are strongly associated with either specific tasks or the overall performance of the LLM. Code is available at https://github.com/WhatAboutMyStar/LLM_ACTIVATION.
comment: 21 pages, 18 figures
Error-Free Linear Attention is a Free Lunch: Exact Solution from Continuous-Time Dynamics
Linear-time attention and State Space Models (SSMs) promise to solve the quadratic cost bottleneck in long-context language models employing softmax attention. We introduce Error-Free Linear Attention (EFLA), a numerically stable, fully parallelism and generalized formulation of the delta rule. Specifically, we formulate the online learning update as a continuous-time dynamical system and prove that its exact solution is not only attainable but also computable in linear time with full parallelism. By leveraging the rank-1 structure of the dynamics matrix, we directly derive the exact closed-form solution effectively corresponding to the infinite-order Runge-Kutta method. This attention mechanism is theoretically free from error accumulation, perfectly capturing the continuous dynamics while preserving the linear-time complexity. Through an extensive suite of experiments, we show that EFLA enables robust performance in noisy environments, achieving lower language modeling perplexity and superior downstream benchmark performance than DeltaNet without introducing additional parameters. Our work provides a new theoretical foundation for building high-fidelity, scalable linear-time attention models.
comment: 17 pages, 2 figures
SQL2Circuits: Estimating Cardinalities, Execution Times, and Costs for SQL Queries with Quantum Natural Language Processing
Recent advances in quantum computing have led to progress in exploring quantum applications across diverse fields, including databases and data management. This work presents a quantum machine learning model that tackles the challenge of estimating metrics, such as cardinalities, execution times, and costs, for SQL queries in relational databases. Precise estimations are crucial for the query optimizer to optimize query processing in relational databases efficiently. Our proposed quantum machine learning model consists of a novel query encoding mechanism, which maps SQL queries into high-dimensional Hilbert spaces using grammatical representations of the queries. The encoding mechanism translates SQL queries into parameterized quantum circuits, forming the core of the quantum machine learning model. The parameters in this model are tuned using standard quantum machine learning techniques. This encoding was first developed in quantum natural language processing (QNLP), and this work demonstrates its natural application in database optimization. Because the encoding mechanism is mathematically robust, the quantum machine learning model is also explainable, allowing us to draw a one-to-one correspondence between the elements in SQL queries and the model's parameters. The method is also scalable because it consists of multiple circuits, and we train and evaluate the model with hundreds of queries. Compared to previous research, our model achieves high accuracy, supporting the results obtained in the original QNLP research. We extend the previous QNLP work by adding 4-class and 8-class classification tasks and comparing the cardinality estimation results with those from state-of-the-art databases. We theoretically analyze the quantum machine learning model by calculating its expressibility and entangling capabilities.
comment: 12 pages, 11 figures, 2 tables
Physics-Driven Data Generation for Contact-Rich Manipulation via Trajectory Optimization
We present a low-cost data generation pipeline that integrates physics-based simulation, human demonstrations, and model-based planning to efficiently generate large-scale, high-quality datasets for contact-rich robotic manipulation tasks. Starting with a small number of embodiment-flexible human demonstrations collected in a virtual reality simulation environment, the pipeline refines these demonstrations using optimization-based kinematic retargeting and trajectory optimization to adapt them across various robot embodiments and physical parameters. This process yields a diverse, physically consistent dataset that enables cross-embodiment data transfer, and offers the potential to reuse legacy datasets collected under different hardware configurations or physical parameters. We validate the pipeline's effectiveness by training diffusion policies from the generated datasets for challenging contact-rich manipulation tasks across multiple robot embodiments, including a floating Allegro hand and bimanual robot arms. The trained policies are deployed zero-shot on hardware for bimanual iiwa arms, achieving high success rates with minimal human input. Project website: https://lujieyang.github.io/physicsgen/.
CaTS-Bench: Can Language Models Describe Time Series?
Time series captioning, the task of describing time series in natural language, requires numeric and temporal reasoning, trend interpretation, and contextual understanding. Existing benchmarks, however, often rely on fully synthetic or generic captions, and typically neglect metadata and visual representations. We introduce \textbf{CaTS-Bench}, a comprehensive benchmark for \textbf{C}ontext-\textbf{a}ware \textbf{T}ime \textbf{S}eries reasoning across $11$ diverse domains, centered on a gold-standard evaluation set of $1746$ human-rewritten captions that measure how effectively models translate numeric trends into immediately interpretable narratives. To address the scarcity of human-annotated data, we also propose a scalable pipeline for generating high-fidelity synthetic captions, the quality of which we validate. We evaluate leading Vision-Language Models on our benchmark, revealing that even proprietary models struggle to capture numeric nuances in temporal descriptions, while finetuning open-source models on synthetic data yields substantial performance gains. Finally, we release a diagnostic suite of $910$ multiple-choice questions and tailored numeric metrics to gauge time-series-specific reasoning capabilities, establishing CaTS-Bench as a reliable foundation for grounded, multimodal language generation in numeric domains.
comment: 8 pages, 6 figures, 3 tables in the main paper. Many more in the appendix
SPIO: Ensemble and Selective Strategies via LLM-Based Multi-Agent Planning in Automated Data Science
Large Language Models (LLMs) have enabled dynamic reasoning in automated data analytics, yet recent multi-agent systems remain limited by rigid, single-path workflows that restrict strategic exploration and often lead to suboptimal outcomes. To overcome these limitations, we propose SPIO (Sequential Plan Integration and Optimization), a framework that replaces rigid workflows with adaptive, multi-path planning across four core modules: data preprocessing, feature engineering, model selection, and hyperparameter tuning. In each module, specialized agents generate diverse candidate strategies, which are cascaded and refined by an optimization agent. SPIO offers two operating modes: SPIO-S for selecting a single optimal pipeline, and SPIO-E for ensembling top-k pipelines to maximize robustness. Extensive evaluations on Kaggle and OpenML benchmarks show that SPIO consistently outperforms state-of-the-art baselines, achieving an average performance gain of 5.6%. By explicitly exploring and integrating multiple solution paths, SPIO delivers a more flexible, accurate, and reliable foundation for automated data science.
comment: Under Review
HAL: Inducing Human-likeness in LLMs with Alignment
Conversational human-likeness plays a central role in human-AI interaction, yet it has remained difficult to define, measure, and optimize. As a result, improvements in human-like behavior are largely driven by scale or broad supervised training, rather than targeted alignment. We introduce Human Aligning LLMs (HAL), a framework for aligning language models to conversational human-likeness using an interpretable, data-driven reward. HAL derives explicit conversational traits from contrastive dialogue data, combines them into a compact scalar score, and uses this score as a transparent reward signal for alignment with standard preference optimization methods. Using this approach, we align models of varying sizes without affecting their overall performance. In large-scale human evaluations, models aligned with HAL are more frequently perceived as human-like in conversation. Because HAL operates over explicit, interpretable traits, it enables inspection of alignment behavior and diagnosis of unintended effects. More broadly, HAL demonstrates how soft, qualitative properties of language--previously outside the scope for alignment--can be made measurable and aligned in an interpretable and explainable way.
TransMamba: A Sequence-Level Hybrid Transformer-Mamba Language Model AAAI 2026
Transformers are the cornerstone of modern large language models, but their quadratic computational complexity limits efficiency in long-sequence processing. Recent advancements in Mamba, a state space model (SSM) with linear complexity, offer promising efficiency gains but suffer from unstable contextual learning and multitask generalization. Some works conduct layer-level hybrid structures that combine Transformer and Mamba layers, aiming to make full use of both advantages. This paper proposes TransMamba, a novel sequence-level hybrid framework that unifies Transformer and Mamba through shared parameter matrices (QKV and CBx), and thus could dynamically switch between attention and SSM mechanisms at different token lengths and layers. We design the Memory Converter to bridge Transformer and Mamba by converting attention outputs into SSM-compatible states, ensuring seamless information flow at TransPoints where the transformation happens. The TransPoint scheduling is also thoroughly explored for balancing effectiveness and efficiency. We conducted extensive experiments demonstrating that TransMamba achieves superior training efficiency and performance compared to single and hybrid baselines, and validated the deeper consistency between Transformer and Mamba paradigms at sequence level, offering a scalable solution for next-generation language modeling. Code and data are available at https://github.com/Yixing-Li/TransMamba
comment: Accepted by AAAI 2026. Code: https://github.com/Yixing-Li/TransMamba
Task-Stratified Knowledge Scaling Laws for Post-Training Quantized Large Language Models
Post-Training Quantization (PTQ) is a critical strategy for efficient Large Language Models (LLMs) deployment. However, existing scaling laws primarily focus on general performance, overlooking crucial fine-grained factors and how quantization differentially impacts diverse knowledge capabilities. To address this, we establish Task-Stratified Knowledge Scaling Laws. By stratifying capabilities into memorization, application, and reasoning, we develop a framework that unifies model size, bit-width, and fine-grained factors: group size and calibration set size. Validated on 293 diverse PTQ configurations, our framework demonstrates strong fit and cross-architecture consistency. It reveals distinct sensitivities across knowledge capabilities: reasoning is precision-critical, application is scale-responsive, and memorization is calibration-sensitive. We highlight that in low-bit scenarios, optimizing these fine-grained factors is essential for preventing performance collapse. These findings provide an empirically-backed foundation for designing knowledge-aware quantization strategies.
Transolver is a Linear Transformer: Revisiting Physics-Attention through the Lens of Linear Attention
Recent advances in Transformer-based Neural Operators have enabled significant progress in data-driven solvers for Partial Differential Equations (PDEs). Most current research has focused on reducing the quadratic complexity of attention to address the resulting low training and inference efficiency. Among these works, Transolver stands out as a representative method that introduces Physics-Attention to reduce computational costs. Physics-Attention projects grid points into slices for slice attention, then maps them back through deslicing. However, we observe that Physics-Attention can be reformulated as a special case of linear attention, and that the slice attention may even hurt the model performance. Based on these observations, we argue that its effectiveness primarily arises from the slice and deslice operations rather than interactions between slices. Building on this insight, we propose a two-step transformation to redesign Physics-Attention into a canonical linear attention, which we call Linear Attention Neural Operator (LinearNO). Our method achieves state-of-the-art performance on six standard PDE benchmarks, while reducing the number of parameters by an average of 40.0% and computational cost by 36.2%. Additionally, it delivers superior performance on two challenging, industrial-level datasets: AirfRANS and Shape-Net Car.
An approach to Fisher-Rao metric for infinite dimensional non-parametric information geometry
Being infinite dimensional, non-parametric information geometry has long faced an "intractability barrier" due to the fact that the Fisher-Rao metric is now a functional incurring difficulties in defining its inverse. This paper introduces a novel framework to resolve the intractability with an Orthogonal Decomposition of the Tangent Space ($T_fM = S \oplus S^{\perp}$), where $S$ represents an observable covariate subspace. Through the decomposition, we derive the Covariate Fisher Information Matrix (cFIM), denoted as ${\bf G}_f$, which is a finite-dimensional and computable representative of information extractable from the manifold's geometry. Significantly, by proving the Trace Theorem: $H_G(f) = \text{Tr}({\bf G}_f)$, we establish a rigorous foundation for the G-entropy previously introduced by us, thereby identifying it as a fundamental geometric invariant representing the total explainable statistical information captured by the probability distribution associated with a model. Furthermore, we establish a link between ${\bf G}_f$ and the second derivative (i.e. the curvature) of the KL-divergence, leading to the notion of Covariate Cramér-Rao Lower Bound(CRLB). We demonstrate that ${\bf G}_f$ is congruent to the Efficient Fisher Information Matrix, thereby providing fundamental limits of variance for semi-parametric estimators. Finally, we apply our geometric framework to the Manifold Hypothesis, lifting the latter from a heuristic assumption into a testable condition of rank-deficiency within the cFIM. By defining the Information Capture Ratio, we provide a rigorous method for estimating intrinsic dimensionality in high-dimensional data. In short, our work bridges the gap between abstract information geometry and the demand of explainable AI, by providing a tractable path for assessing the statistical coverage and the efficiency of non-parametric models.
Uncovering Bias Paths with LLM-guided Causal Discovery: An Active Learning and Dynamic Scoring Approach AAAI 2026
Ensuring fairness in machine learning requires understanding how sensitive attributes like race or gender causally influence outcomes. Existing causal discovery (CD) methods often struggle to recover fairness-relevant pathways in the presence of noise, confounding, or data corruption. Large language models (LLMs) offer a complementary signal by leveraging semantic priors from variable metadata. We propose a hybrid LLM-guided CD framework that extends a breadth-first search strategy with active learning and dynamic scoring. Variable pairs are prioritized for querying using a composite score combining mutual information, partial correlation, and LLM confidence, enabling more efficient and robust structure discovery. To evaluate fairness sensitivity, we introduce a semi-synthetic benchmark based on the UCI Adult dataset, embedding domain-informed bias pathways alongside noise and latent confounders. We assess how well CD methods recover both global graph structure and fairness-critical paths (e.g., sex-->education-->income). Our results demonstrate that LLM-guided methods, including our active, dynamically scored variant, outperform baselines in recovering fairness-relevant structure under noisy conditions. We analyze when LLM-driven insights complement statistical dependencies and discuss implications for fairness auditing in high-stakes domains.
comment: To be presented at AAAI 2026
Reinforcement Learning for Tool-Integrated Interleaved Thinking towards Cross-Domain Generalization
Recent advances in large language models (LLMs) have demonstrated remarkable capabilities in reasoning and tool utilization. However, the generalization of tool-augmented reinforcement learning (RL) across diverse domains remains a significant challenge. Standard paradigms often treat tool usage as a linear or isolated event, which becomes brittle when transferring skills from restricted domains (e.g., mathematics) to open-ended tasks. In this work, we investigate the cross-domain generalization of an LLM agent trained exclusively on mathematical problem-solving. To facilitate robust skill transfer, we propose a {\textbf{R}einforcement Learning for \textbf{I}nterleaved \textbf{T}ool \textbf{E}xecution (RITE)}. Unlike traditional methods, RITE enforces a continuous ``Plan-Action-Reflection'' cycle, allowing the model to ground its reasoning in intermediate tool outputs and self-correct during long-horizon tasks. To effectively train this complex interleaved policy, we introduce {Dr. GRPO}, a robust optimization objective that utilizes token-level loss aggregation with importance sampling to mitigate reward sparsity and high-variance credit assignment. Furthermore, we employ a dual-component reward system and dynamic curriculum via online rollout filtering to ensure structural integrity and sample efficiency. Extensive experiments reveal that our approach, despite being trained solely on math tasks, achieves state-of-the-art performance across diverse reasoning domains, demonstrating high token efficiency and strong generalization capabilities.
CNN-based Surface Temperature Forecasts with Ensemble Numerical Weather Prediction over Medium-range Forecast Periods
In this study, a method that integrates convolutional neural networks (CNNs) with ensemble numerical weather prediction (NWP) models is proposed. This method enables surface temperature forecasting with lead times beyond the short-range, extending up to five days. Due to limited computational resources, operational medium-range temperature forecasts typically rely on low-resolution NWP models, which are prone to systematic and random errors. To resolve these limitations, the proposed method applies CNN-based post-processing (bias correction and spatial super-resolution) to an ensemble NWP system. First, the post-processing is applied to each ensemble member to reduce systematic errors and reconstruct high-resolution temperature fields from low-resolution model outputs. This approach reduces the systematic and random errors in NWP model outputs and outperforms operational post-processing. Second, the CNN is applied to all ensemble members to construct a new ensemble forecasting system, in which deterministic forecast accuracy, probabilistic reliability, and representation of ensemble spread are improved compared with those of the original system. We demonstrate that this CNN-based post-processing is fundamentally different from the artificial error reduction caused by smoothing inherent in ensemble averaging because the post-processing reduces forecast errors without degrading the forecast information. These results indicate that the proposed method provides a practical and scalable solution for improving medium-range temperature forecasts and is particularly valuable for use in operational centers with limited computational resources.
comment: 41 pages, 12 figures
LayerNorm Induces Recency Bias in Transformer Decoders
Causal self-attention provides positional information to Transformer decoders. Prior work has shown that stacks of causal self-attention layers alone induce a positional bias in attention scores toward earlier tokens. However, this differs from the bias toward later tokens typically observed in Transformer decoders, known as recency bias. We address this discrepancy by analyzing the interaction between causal self-attention and other architectural components. We show that stacked causal self-attention layers combined with LayerNorm induce recency bias. Furthermore, we examine the effects of residual connections and the distribution of input token embeddings on this bias. Our results provide new theoretical insights into how positional information interacts with architectural components and suggest directions for improving positional encoding strategies.
comment: Codes available at: https://github.com/starmpcc/layernorm_recency_bias
A Comparative Analysis of Contextual Representation Flow in State-Space and Transformer Architectures
State Space Models (SSMs) have recently emerged as efficient alternatives to Transformer-Based Models (TBMs) for long-sequence processing with linear scaling, yet how contextual information flows across layers in these architectures remains understudied. We present the first unified, token- and layer-wise analysis of representation propagation in SSMs and TBMs. Using centered kernel alignment, variance-based metrics, and probing, we characterize how representations evolve within and across layers. We find a key divergence: TBMs rapidly homogenize token representations, with diversity reemerging only in later layers, while SSMs preserve token uniqueness early but converge to homogenization deeper. Theoretical analysis and parameter randomization further reveal that oversmoothing in TBMs stems from architectural design, whereas in SSMs, it arises mainly from training dynamics. These insights clarify the inductive biases of both architectures and inform future model and training designs for long-context reasoning.
Active operator learning with predictive uncertainty quantification for partial differential equations
With the increased prevalence of neural operators being used to provide rapid solutions to partial differential equations (PDEs), understanding the accuracy of model predictions and the associated error levels is necessary for deploying reliable surrogate models in scientific applications. Existing uncertainty quantification (UQ) frameworks employ ensembles or Bayesian methods, which can incur substantial computational costs during both training and inference. We propose a lightweight predictive UQ method tailored for Deep operator networks (DeepONets) that also generalizes to other operator networks. Numerical experiments on linear and nonlinear PDEs demonstrate that the framework's uncertainty estimates are unbiased and provide accurate out-of-distribution uncertainty predictions with a sufficiently large training dataset. Our framework provides fast inference and uncertainty estimates that can efficiently drive outer-loop analyses that would be prohibitively expensive with conventional solvers. We demonstrate how predictive uncertainties can be used in the context of Bayesian optimization and active learning problems to yield improvements in accuracy and data-efficiency for outer-loop optimization procedures. In the active learning setup, we extend the framework to Fourier Neural Operators (FNO) and describe a generalized method for other operator networks. To enable real-time deployment, we introduce an inference strategy based on precomputed trunk outputs and a sparse placement matrix, reducing evaluation time by more than a factor of five. Our method provides a practical route to uncertainty-aware operator learning in time-sensitive settings.
comment: Submitted to the Journal of Computational Physics
Intrinsic-Metric Physics-Informed Neural Networks (IM-PINN) for Reaction-Diffusion Dynamics on Complex Riemannian Manifolds
Simulating nonlinear reaction-diffusion dynamics on complex, non-Euclidean manifolds remains a fundamental challenge in computational morphogenesis, constrained by high-fidelity mesh generation costs and symplectic drift in discrete time-stepping schemes. This study introduces the Intrinsic-Metric Physics-Informed Neural Network (IM-PINN), a mesh-free geometric deep learning framework that solves partial differential equations directly in the continuous parametric domain. By embedding the Riemannian metric tensor into the automatic differentiation graph, our architecture analytically reconstructs the Laplace-Beltrami operator, decoupling solution complexity from geometric discretization. We validate the framework on a "Stochastic Cloth" manifold with extreme Gaussian curvature fluctuations ($K \in [-2489, 3580]$), where traditional adaptive refinement fails to resolve anisotropic Turing instabilities. Using a dual-stream architecture with Fourier feature embeddings to mitigate spectral bias, the IM-PINN recovers the "splitting spot" and "labyrinthine" regimes of the Gray-Scott model. Benchmarking against the Surface Finite Element Method (SFEM) reveals superior physical rigor: the IM-PINN achieves global mass conservation error of $\mathcal{E}_{mass} \approx 0.157$ versus SFEM's $0.258$, acting as a thermodynamically consistent global solver that eliminates mass drift inherent in semi-implicit integration. The framework offers a memory-efficient, resolution-independent paradigm for simulating biological pattern formation on evolving surfaces, bridging differential geometry and physics-informed machine learning.
comment: 19 pages, 7 figures
Enabling Agents to Communicate Entirely in Latent Space
While natural language is the de facto communication medium for LLM-based agents, it presents a fundamental constraint. The process of downsampling rich, internal latent states into discrete tokens inherently limits the depth and nuance of information that can be transmitted, thereby hindering collaborative problem-solving. Inspired by telepathy, which bypasses symbolic language in communication, we propose Interlat (Inter-agent Latent Space Communication), a paradigm that leverages the continuous last hidden states of an LLM as a representation of its thought for direct communication (termed latent communication). An additional learned compression process further compresses latent communication via latent space reasoning. Experiments demonstrate that Interlat outperforms both fine-tuned chain-of-thought (CoT) prompting and single-agent baselines, even across heterogeneous models, promoting more exploratory behavior and enabling genuine utilization of latent information. Further compression not only substantially accelerates inference by up to 24 times but also maintains competitive performance through an efficient information-preserving mechanism. We position this work as a feasibility study of entirely latent space inter-agent communication, and our results highlight its potential, offering valuable insights for future research.
comment: Work in progess
DRA-GRPO: Your GRPO Needs to Know Diverse Reasoning Paths for Mathematical Reasoning
Post-training LLMs with Reinforcement Learning, specifically Group Relative Policy Optimization (GRPO), has emerged as a paradigm for enhancing mathematical reasoning. However, standard GRPO relies on scalar correctness rewards that are often non-injective with respect to semantic content: distinct reasoning paths receive identical rewards. This leads to a Diversity-Quality Inconsistency, where the policy collapses into a narrow set of dominant modes while ignoring equally valid but structurally novel strategies. To bridge this gap, we propose Diversity-aware Reward Adjustment (DRA), a theoretically grounded framework that calibrates the reward signal using the semantic density of sampled groups. By leveraging Submodular Mutual Information (SMI), DRA implements an Inverse Propensity Scoring (IPS) mechanism that effectively de-biases the gradient estimation. This creates a repulsive force against redundancy, driving the policy to achieve better coverage of the high-reward landscape. Our method is plug-and-play and integrates seamlessly with GRPO variants. Empirical evaluations on five math benchmarks demonstrate that DRA-GRPO consistently outperforms strong baselines, achieving an average accuracy of 58.2% on DeepSeek-R1-Distill-Qwen-1.5B with only 7,000 training samples and $55 cost, highlighting the critical role of diversity calibration in data-efficient alignment.
Think Outside the Policy: In-Context Steered Policy Optimization
Existing Reinforcement Learning from Verifiable Rewards (RLVR) methods, such as Group Relative Policy Optimization (GRPO), have achieved remarkable progress in improving the reasoning capabilities of Large Reasoning Models (LRMs). However, they exhibit limited exploration due to reliance on on-policy rollouts which are confined to the current policy's distribution, resulting in narrow trajectory diversity. Recent approaches attempt to expand policy coverage by incorporating trajectories generated from stronger expert models, yet this reliance increases computational cost and such advanced models are often inaccessible. To address these issues, we propose In-Context Steered Policy Optimization (ICPO), a unified framework that leverages the inherent in-context learning capability of LRMs to provide expert guidance using existing datasets. ICPO introduces mixed-policy GRPO with implicit expert forcing, which expands exploration beyond the current policy distribution without requiring advanced LRM trajectories. To further stabilize optimization, ICPO integrates expert region reject sampling to filter unreliable off-policy trajectories and annealed expert-bonus reward shaping to balance early expert guidance with later autonomous improvement. Results demonstrate that ICPO consistently enhances RLVR performance and training stability on mathematical reasoning benchmarks, revealing a scalable and effective RLVR paradigm for LRMs. Our code is available at https://anonymous.4open.science/r/ICPO.
comment: Preprint
MorphServe: Efficient and Workload-Aware LLM Serving via Runtime Quantized Layer Swapping and KV Cache Resizing
Efficiently serving large language models (LLMs) under dynamic and bursty workloads remains a key challenge for real-world deployment. Existing serving frameworks and static model compression techniques fail to adapt to workload fluctuations, leading to either service-level objective (SLO) violations under full-precision serving or persistent accuracy degradation with static quantization. We present MorphServe, a dynamic, workload-aware LLM serving framework based on morphological adaptation. MorphServe introduces two asynchronous, token-level runtime mechanisms: quantized layer swapping, which selectively replaces less impactful layers with quantized alternatives during high-load periods, and pressure-aware KV cache resizing, which dynamically adjusts KV cache capacity in response to memory pressure. These mechanisms enable state-preserving transitions with minimum runtime overhead and are fully compatible with modern scheduling and attention techniques. Extensive experiments on Vicuna and Llama family models with real-world workloads demonstrate that MorphServe reduces average SLO violations by 92.45 percent and improves the P95 TTFT latency by 2.2x-3.9x compared to full-precision serving, without compromising generation quality. These results establish MorphServe as a practical and elastic solution for LLM deployment in dynamic environments.
comment: 19 pages, 7 figures
Statistical Taylor Expansion: A New and Path-Independent Method for Uncertainty Analysis
As a rigorous statistical approach, statistical Taylor expansion extends the conventional Taylor expansion by replacing precise input variables with random variables of known distributions, to compute means and standard deviations of the results. Statistical Taylor expansion traces the dependency of the input uncertainties in the intermediate steps, so that the variables in the intermediate analytic expressions can no longer be regarded as independent of each other, and the result of the analytic expression is path independent. Thus, it differs fundamentally from the conventional common approaches in applied mathematics which optimize execution path for each calculation. In fact, statistical Taylor expansion may standardize numerical calculations for analytic expressions. Its statistical nature allows religious testing of its result when the sample size is large enough. This paper also introduces an implementation of statistical Taylor expansion called variance arithmetic and presents corresponding test results in a very wide range of mathematical applications. Another important conclusion of this paper is that the numerical errors in the library function can have significant effects on the result. For example, the periodic numerical errors in the trigonometric library functions can resonate with periodic signals, producing large numerical errors in the results.
comment: 84 pages, 67 figures
Discovering the Representation Bottleneck of Graph Neural Networks
Graph neural networks (GNNs) rely mainly on the message-passing paradigm to propagate node features and build interactions, and different graph learning problems require different ranges of node interactions. In this work, we explore the capacity of GNNs to capture node interactions under contexts of different complexities. We discover that GNNs usually fail to capture the most informative kinds of interaction styles for diverse graph learning tasks, and thus name this phenomenon GNNs' representation bottleneck. As a response, we demonstrate that the inductive bias introduced by existing graph construction mechanisms can result in this representation bottleneck, \emph{i.e.}, preventing GNNs from learning interactions of the most appropriate complexity. To address that limitation, we propose a novel graph rewiring approach based on interaction patterns learned by GNNs to dynamically adjust each node's receptive fields. Extensive experiments on both real-world and synthetic datasets prove the effectiveness of our algorithm in alleviating the representation bottleneck and its superiority in enhancing the performance of GNNs over state-of-the-art graph rewiring baselines.
Real-Time In-Cabin Driver Behavior Recognition on Low-Cost Edge Hardware
In-cabin driver monitoring systems (DMS) must recognize distraction- and drowsiness-related behaviors with low latency under strict constraints on compute, power, and cost. We present a single-camera in-cabin driver behavior recognition system designed for deployment on two low-cost edge platforms: Raspberry Pi 5 (CPU-only) and the Google Coral development board with an Edge Tensor Processing Unit (Edge TPU) accelerator. The proposed pipeline combines (i) a compact per-frame vision model, (ii) a confounder-aware label taxonomy to reduce confusions among visually similar behaviors, and (iii) a temporal decision head that triggers alerts only when predictions are both confident and sustained. The system supports 17 behavior classes. Training and evaluation use licensed datasets plus in-house collection (over 800,000 labeled frames) with driver-disjoint splits, and we further validate the deployed system in live in-vehicle tests. End-to-end performance reaches approximately 16 FPS on Raspberry Pi 5 using 8-bit integer (INT8) inference (per-frame latency <60 ms) and approximately 25 FPS on Coral Edge TPU (end-to-end latency ~40 ms), enabling real-time monitoring and stable alert generation on embedded hardware. Finally, we discuss how reliable in-cabin perception can serve as an upstream signal for human-centered vehicle intelligence, including emerging agentic vehicle concepts.
comment: 27 pages, 6 figures, 5 tables
Instructor-inspired Machine Learning for Robust Molecular Property Prediction
Machine learning catalyzes a revolution in chemical and biological science. However, its efficacy heavily depends on the availability of labeled data, and annotating biochemical data is extremely laborious. To surmount this data sparsity challenge, we present an instructive learning algorithm named InstructMol to measure pseudo-labels' reliability and help the target model leverage large-scale unlabeled data. InstructMol does not require transferring knowledge between multiple domains, which avoids the potential gap between the pretraining and fine-tuning stages. We demonstrated the high accuracy of InstructMol on several real-world molecular datasets and out-of-distribution (OOD) benchmarks. Code is available at~ https://github.com/smiles724/InstructMol.
MyGO: Memory Yielding Generative Offline-consolidation for Lifelong Learning Systems
Continual or Lifelong Learning aims to develop models capable of acquiring new knowledge from a sequence of tasks without catastrophically forgetting what has been learned before. Existing approaches often rely on storing samples from previous tasks (experience replay) or employing complex regularization terms to protect learned weights. However, these methods face challenges related to data privacy, storage limitations, and performance degradation when tasks are dissimilar. To address these challenges, we introduce MyGO (Memory Yielding Generative Offline-consolidation), a novel lifelong learning framework inspired by the biological wake-sleep cycle. During the "wake" phase, the system rapidly learns a new task and trains a compact generative model (Generative Memory, G-mem) to capture its data distribution. During the "sleep" phase, the system enters an offline state, using all learned G-mem models to generate pseudo-data ("dreams") and consolidate new and old knowledge into a core feature extractor via knowledge distillation. This approach obviates the need to store any raw data, retaining only compact generative models, which offers significant advantages in privacy and storage efficiency. We evaluate MyGO on computer vision (Split-MNIST) and natural language processing (Split-AG News) benchmarks, comparing it against a sequential fine-tuning baseline. The results demonstrate that MyGO significantly mitigates catastrophic forgetting and maintains high average accuracy across tasks, proving the framework's effectiveness and domain-generality.
comment: Upon re-evaluating the proposed "Sleep Phase" mechanism, the authors identified stability issues in the generative replay component that limit the framework's scalability to high-dimensional data. We are withdrawing the paper to fundamentally revise the generative architecture and correct these limitations before any future submission
Empirical Comparison of Encoder-Based Language Models and Feature-Based Supervised Machine Learning Approaches to Automated Scoring of Long Essays
Long context may impose challenges for encoder-only language models in text processing, specifically for automated scoring of essays. This study trained several commonly used encoder-based language models for automated scoring of long essays. The performance of these trained models was evaluated and compared with the ensemble models built upon the base language models with a token limit of 512?. The experimented models include BERT-based models (BERT, RoBERTa, DistilBERT, and DeBERTa), ensemble models integrating embeddings from multiple encoder models, and ensemble models of feature-based supervised machine learning models, including Gradient-Boosted Decision Trees, eXtreme Gradient Boosting, and Light Gradient Boosting Machine. We trained, validated, and tested each model on a dataset of 17,307 essays, with an 80%/10%/10% split, and evaluated model performance using Quadratic Weighted Kappa. This study revealed that an ensemble-of-embeddings model that combines multiple pre-trained language model representations with gradient-boosting classifier as the ensemble model significantly outperforms individual language models at scoring long essays.
comment: 22 pages, 5 figures, 3 tables, presented at National Council on Measurement in Education 2025
The Invisible Leash: Why RLVR May or May Not Escape Its Origin
Recent advances in LLMs highlight Reinforcement Learning with Verifiable Rewards (RLVR) as a promising method for enhancing AI capabilities, particularly in solving complex logical tasks. However, it remains unclear whether the current practice of RLVR truly expands a model's reasoning boundary or mainly amplifies high-reward outputs that the base model already knows, leading to improved precision. This study presents an empirical investigation that provides new insights into the potential limits of the common RLVR recipe. We examine how, under current training conditions, RLVR can operate as a support-constrained optimization mechanism that may restrict the discovery of entirely novel solutions, remaining constrained by the base model's initial distribution. We also identify an entropy-reward trade-off: while the current RLVR recipe reliably enhances precision, it may progressively narrow exploration and potentially overlook correct yet underrepresented solutions. Extensive empirical experiments show that although the current RLVR recipe consistently improves pass@1, the shrinkage of empirical support generally outweighs the expansion of empirical support under larger sampling budgets, failing to recover correct answers that were previously accessible to the base model. Interestingly, we also observe that while RLVR sometimes increases token-level entropy, it leads to greater uncertainty at each generation step but declining answer-level entropy. This suggests that these seemingly more uncertain generation paths ultimately converge onto a smaller set of distinct answers. Taken together, our findings reveal potential limits of the current RLVR recipe in extending reasoning horizons. Breaking this invisible leash may require future algorithmic innovations, such as explicit exploration mechanisms or hybrid strategies that allocate probability mass to underrepresented solution regions.
L-MoE: End-to-End Training of a Lightweight Mixture of Low-Rank Adaptation Experts
The Mixture of Experts (MoE) architecture enables the scaling of Large Language Models (LLMs) to trillions of parameters by activating a sparse subset of weights for each input, maintaining constant computational cost during inference. Concurrently, Low-Rank Adaptation (LoRA) has emerged as a dominant technique for parameter-efficiently fine-tuning LLMs on specialized tasks. In this work, we unify these two paradigms into a novel, end-to-end trainable framework named L-MoE: a Lightweight Mixture of LoRA Experts. L-MoE redefines MoE experts not as dense feed-forward networks, but as a collection of task-specialized, low-rank adapters. A lightweight gating network, trained jointly with the experts, learns to dynamically compose these LoRA adapters by computing a weighted average of their parameters for each input token. This composition is fully differentiable, allowing gradients from a standard auto-regressive language modeling objective to flow back through the entire architecture, simultaneously refining both the expert adapters and the routing strategy. This approach creates a highly parameter-efficient MoE model that is modular by design, allows for dynamic skill composition, and is trainable from end-to-end. We present the formal mathematical framework for L-MoE, detailing the differentiable routing mechanism and the joint optimization objective, thereby providing a new path toward building more efficient, scalable, and specialized language models.
comment: The authors have identified a technical error in the mathematical formulation regarding the differentiable routing mechanism described in Section 3.2. To ensure the accuracy and integrity of the scientific record, we wish to withdraw the paper to correct these formulations and re-evaluate the theoretical proofs
Channel Estimation for RIS-Assisted mmWave Systems via Diffusion Models
Reconfigurable intelligent surface (RIS) has been recognized as a promising technology for next-generation wireless communications. However, the performance of RIS-assisted systems critically depends on accurate channel state information (CSI). To address this challenge, this letter proposes a novel channel estimation method for RIS-aided millimeter-wave (mmWave) systems based on diffusion models (DMs). Specifically, the forward diffusion process of the original signal is formulated to model the received signal as a noisy observation within the framework of DMs. Subsequently, the channel estimation task is formulated as the reverse diffusion process, and a sampling algorithm based on denoising diffusion implicit models (DDIMs) is developed to enable effective inference. Furthermore, a lightweight neural network, termed BRCNet, is introduced to replace the conventional U-Net, significantly reducing the number of parameters and computational complexity. Extensive experiments conducted under various scenarios demonstrate that the proposed method consistently outperforms existing baselines.
comment: 5 pages, 3 figures
Context-Alignment: Activating and Enhancing LLM Capabilities in Time Series ICLR 2025
Recently, leveraging pre-trained Large Language Models (LLMs) for time series (TS) tasks has gained increasing attention, which involves activating and enhancing LLMs' capabilities. Many methods aim to activate LLMs' capabilities based on token-level alignment, but overlook LLMs' inherent strength in natural language processing -- \textit{their deep understanding of linguistic logic and structure rather than superficial embedding processing.} We propose Context-Alignment (CA), a new paradigm that aligns TS with a linguistic component in the language environments familiar to LLMs to enable LLMs to contextualize and comprehend TS data, thereby activating their capabilities. Specifically, such context-level alignment comprises structural alignment and logical alignment, which is achieved by Dual-Scale Context-Alignment GNNs (DSCA-GNNs) applied to TS-language multimodal inputs. Structural alignment utilizes dual-scale nodes to describe hierarchical structure in TS-language, enabling LLMs to treat long TS data as a whole linguistic component while preserving intrinsic token features. Logical alignment uses directed edges to guide logical relationships, ensuring coherence in the contextual semantics. Following the DSCA-GNNs framework, we propose an instantiation method of CA, termed Few-Shot prompting Context-Alignment (FSCA), to enhance the capabilities of pre-trained LLMs in handling TS tasks. FSCA can be flexibly and repeatedly integrated into various layers of pre-trained LLMs to improve awareness of logic and structure, thereby enhancing performance. Extensive experiments show the effectiveness of FSCA and the importance of Context-Alignment across tasks, particularly in few-shot and zero-shot forecasting, confirming that Context-Alignment provides powerful prior knowledge on context. The code is open-sourced at https://github.com/tokaka22/ICLR25-FSCA.
comment: This paper has been accepted by ICLR 2025
CausalProfiler: Generating Synthetic Benchmarks for Rigorous and Transparent Evaluation of Causal Machine Learning
Causal machine learning (Causal ML) aims to answer "what if" questions using machine learning algorithms, making it a promising tool for high-stakes decision-making. Yet, empirical evaluation practices in Causal ML remain limited. Existing benchmarks often rely on a handful of hand-crafted or semi-synthetic datasets, leading to brittle, non-generalizable conclusions. To bridge this gap, we introduce CausalProfiler, a synthetic benchmark generator for Causal ML methods. Based on a set of explicit design choices about the class of causal models, queries, and data considered, the CausalProfiler randomly samples causal models, data, queries, and ground truths constituting the synthetic causal benchmarks. In this way, Causal ML methods can be rigorously and transparently evaluated under a variety of conditions. This work offers the first random generator of synthetic causal benchmarks with coverage guarantees and transparent assumptions operating on the three levels of causal reasoning: observation, intervention, and counterfactual. We demonstrate its utility by evaluating several state-of-the-art methods under diverse conditions and assumptions, both in and out of the identification regime, illustrating the types of analyses and insights the CausalProfiler enables.
comment: v2: Added acknowledgements. Content unchanged
The Cost of Dynamic Reasoning: Demystifying AI Agents and Test-Time Scaling from an AI Infrastructure Perspective
Large-language-model (LLM)-based AI agents have recently showcased impressive versatility by employing dynamic reasoning, an adaptive, multi-step process that coordinates with external tools. This shift from static, single-turn inference to agentic, multi-turn workflows broadens task generalization and behavioral flexibility, but it also introduces serious concerns about system-level cost, efficiency, and sustainability. This paper presents the first comprehensive system-level analysis of AI agents, quantifying their resource usage, latency behavior, energy consumption, and datacenter-wide power consumption demands across diverse agent designs and test-time scaling strategies. We further characterize how AI agent design choices, such as few-shot prompting, reflection depth, and parallel reasoning, impact accuracy-cost tradeoffs. Our findings reveal that while agents improve accuracy with increased compute, they suffer from rapidly diminishing returns, widening latency variance, and unsustainable infrastructure costs. Through detailed evaluation of representative agents, we highlight the profound computational demands introduced by AI agent workflows, uncovering a looming sustainability crisis. These results call for a paradigm shift in agent design toward compute-efficient reasoning, balancing performance with deployability under real-world constraints.
comment: Accepted for publication at the 32nd IEEE International Symposium on High-Performance Computer Architecture (HPCA-32), 2026
Inductive Graph Representation Learning with Quantum Graph Neural Networks
Quantum Graph Neural Networks (QGNNs) offer a promising approach to combining quantum computing with graph-structured data processing. While classical Graph Neural Networks (GNNs) are scalable and robust, existing QGNNs often lack flexibility due to graph-specific quantum circuit designs, limiting their applicability to diverse real-world problems. To address this, we propose a versatile QGNN framework inspired by GraphSAGE, using quantum models as aggregators. We integrate inductive representation learning techniques with parameterized quantum convolutional and pooling layers, bridging classical and quantum paradigms. The convolutional layer is flexible, allowing tailored designs for specific tasks. Benchmarked on a node regression task with the QM9 dataset, our framework, using a single minimal circuit for all aggregation steps, handles molecules with varying numbers of atoms without changing qubits or circuit architecture. While classical GNNs achieve higher training performance, our quantum approach remains competitive and often shows stronger generalization as molecular complexity increases. We also observe faster learning in early training epochs. To mitigate trainability limitations of a single-circuit setup, we extend the framework with multiple quantum aggregators on QM9. Assigning distinct circuits to each hop substantially improves training performance across all cases. Additionally, we numerically demonstrate the absence of barren plateaus as qubit numbers increase, suggesting that the proposed model can scale to larger, more complex graph-based problems.
comment: 12 pages, 12 figures
Wittgenstein's Family Resemblance Clustering Algorithm
This paper, introducing a novel method in philomatics, draws on Wittgenstein's concept of family resemblance from analytic philosophy to develop a clustering algorithm for machine learning. According to Wittgenstein's Philosophical Investigations (1953), family resemblance holds that members of a concept or category are connected by overlapping similarities rather than a single defining property. Consequently, a family of entities forms a chain of items sharing overlapping traits. This philosophical idea naturally lends itself to a graph-based approach in machine learning. Accordingly, we propose the Wittgenstein's Family Resemblance (WFR) clustering algorithm and its kernel variant, kernel WFR. This algorithm computes resemblance scores between neighboring data instances, and after thresholding these scores, a resemblance graph is constructed. The connected components of this graph define the resulting clusters. Simulations on benchmark datasets demonstrate that WFR is an effective nonlinear clustering algorithm that does not require prior knowledge of the number of clusters or assumptions about their shapes.
comment: v2: added related work
ELLA: Efficient Lifelong Learning for Adapters in Large Language Models
Large Language Models (LLMs) suffer severe catastrophic forgetting when adapted sequentially to new tasks in a continual learning (CL) setting. Existing approaches are fundamentally limited: replay-based methods are impractical and privacy-violating, while strict orthogonality-based methods collapse under scale: each new task is projected onto an orthogonal complement, progressively reducing the residual degrees of freedom and eliminating forward transfer by forbidding overlap in shared representations. In this work, we introduce ELLA, a training framework built on the principle of selective subspace de-correlation. Rather than forbidding all overlap, ELLA explicitly characterizes the structure of past updates and penalizes alignments along their high-energy, task-specific directions, while preserving freedom in the low-energy residual subspaces to enable transfer. Formally, this is realized via a lightweight regularizer on a single aggregated update matrix. We prove this mechanism corresponds to an anisotropic shrinkage operator that bounds interference, yielding a penalty that is both memory- and compute-constant regardless of task sequence length. ELLA requires no data replay, no architectural expansion, and negligible storage. Empirically, it achieves state-of-the-art CL performance on three popular benchmarks, with relative accuracy gains of up to $9.6\%$ and a $35\times$ smaller memory footprint. Further, ELLA scales robustly across architectures and actively enhances the model's zero-shot generalization performance on unseen tasks, establishing a principled and scalable solution for constructive lifelong LLM adaptation.
comment: Accepted at EACL (Main Conference) 2026
SPD Matrix Learning for Neuroimaging Analysis: Perspectives, Methods, and Challenges
Neuroimaging provides essential tools for characterizing brain activity by quantifying connectivity strength between remote regions, using different modalities that capture different aspects of connectivity. Yet, decoding meaningful neural signatures must contend with modality-specific challenges, including measurement noise, spatial and temporal distortions, heterogeneous acquisition protocols, and limited sample sizes. A unifying perspective emerges when these data are expressed through symmetric positive definite (SPD)-valued representations: across neuroimaging modalities, SPD-valued representations naturally give rise to SPD matrices that capture dependencies between sensors or brain regions. Endowing the SPD space with Riemannian metrics equips it with a non-Euclidean geometric structure, enabling principled statistical modeling and machine learning on the resulting manifold. This review consolidates machine learning methodologies that operate on the SPD manifold under a unified framework termed SPD matrix learning. SPD matrix learning brings conceptual clarity across multiple modalities, establishes continuity with decades of geometric statistics in neuroimaging, and positions SPD modeling as a methodological bridge between classical analysis and emerging AI-driven paradigms. We show that (i) modeling on the SPD manifold is mathematically natural and numerically stable, preserving symmetry and positive definiteness while avoiding degeneracies inherent to Euclidean embeddings; (ii) SPD matrix learning extends a broad family of established geometric statistical tools used across neuroimaging; and (iii) SPD matrix learning integrates new-generation AI technologies, driving a new class of neuroimaging problems that were previously out of reach. Taken together, SPD matrix learning offers a principled and forward-looking framework for next-generation neuroimaging analytics.
comment: 20 pages, 2 figures, 1 table; This paper has been submitted for possible publication, and is currently under review
A Counterfactual Analysis of the Dishonest Casino
The dishonest casino is a well-known hidden Markov model (HMM) often used in education to introduce HMMs and graphical models. A sequence of die rolls is observed with the casino switching between a fair and a loaded die. Instead of recovering the latent regime through filtering, smoothing, or the Viterbi algorithm, we ask a counterfactual question: how much of the gambler's winnings are caused by the casino's cheating? We introduce a class of structural causal models (SCMs) consistent with the HMM and define the expected winnings attributable to cheating (EWAC). Because EWAC is only partially identifiable, we bound it via linear programs (LPs). Numerical experiments help to develop intuition using benchmark SCMs based on independence, comonotonic, and countermonotonic copulas. Imposing a time homogeneity condition on the SCM yields tighter bounds, whereas relaxing it produces looser bounds that admit an explicit LP solution. Domain knowledge such as pathwise monotonicity or counterfactual stability can be incorporated through additional linear constraints. Finally, we show the time-averaged EWAC becomes fully identifiable as the number of time periods tends to infinity. Our work is the first to develop LP bounds for counterfactuals in an HMM setting, benefiting educational contexts where counterfactual inference is taught.
comment: arXiv admin note: text overlap with arXiv:2205.13832
Gradient Dynamics of Attention: How Cross-Entropy Sculpts Bayesian Manifolds
Transformers empirically perform precise probabilistic reasoning in carefully constructed ``Bayesian wind tunnels'' and in large-scale language models, yet the mechanisms by which gradient-based learning creates the required internal geometry remain opaque. We provide a complete first-order analysis of how cross-entropy training reshapes attention scores and value vectors in a transformer attention head. Our core result is an \emph{advantage-based routing law} for attention scores, \[ \frac{\partial L}{\partial s_{ij}} = α_{ij}\bigl(b_{ij}-\mathbb{E}_{α_i}[b]\bigr), \qquad b_{ij} := u_i^\top v_j, \] coupled with a \emph{responsibility-weighted update} for values, \[ Δv_j = -η\sum_i α_{ij} u_i, \] where $u_i$ is the upstream gradient at position $i$ and $α_{ij}$ are attention weights. These equations induce a positive feedback loop in which routing and content specialize together: queries route more strongly to values that are above-average for their error signal, and those values are pulled toward the queries that use them. We show that this coupled specialization behaves like a two-timescale EM procedure: attention weights implement an E-step (soft responsibilities), while values implement an M-step (responsibility-weighted prototype updates), with queries and keys adjusting the hypothesis frame. Through controlled simulations, including a sticky Markov-chain task where we compare a closed-form EM-style update to standard SGD, we demonstrate that the same gradient dynamics that minimize cross-entropy also sculpt the low-dimensional manifolds identified in our companion work as implementing Bayesian inference. This yields a unified picture in which optimization (gradient flow) gives rise to geometry (Bayesian manifolds), which in turn supports function (in-context probabilistic reasoning).
Geometric Scaling of Bayesian Inference in LLMs
Recent work has shown that small transformers trained in controlled "wind-tunnel'' settings can implement exact Bayesian inference, and that their training dynamics produce a geometric substrate -- low-dimensional value manifolds and progressively orthogonal keys -- that encodes posterior structure. We investigate whether this geometric signature persists in production-grade language models. Across Pythia, Phi-2, Llama-3, and Mistral families, we find that last-layer value representations organize along a single dominant axis whose position strongly correlates with predictive entropy, and that domain-restricted prompts collapse this structure into the same low-dimensional manifolds observed in synthetic settings. To probe the role of this geometry, we perform targeted interventions on the entropy-aligned axis of Pythia-410M during in-context learning. Removing or perturbing this axis selectively disrupts the local uncertainty geometry, whereas matched random-axis interventions leave it intact. However, these single-layer manipulations do not produce proportionally specific degradation in Bayesian-like behavior, indicating that the geometry is a privileged readout of uncertainty rather than a singular computational bottleneck. Taken together, our results show that modern language models preserve the geometric substrate that enables Bayesian inference in wind tunnels, and organize their approximate Bayesian updates along this substrate.
The Bayesian Geometry of Transformer Attention
Transformers often appear to perform Bayesian reasoning in context, but verifying this rigorously has been impossible: natural data lack analytic posteriors, and large models conflate reasoning with memorization. We address this by constructing \emph{Bayesian wind tunnels} -- controlled environments where the true posterior is known in closed form and memorization is provably impossible. In these settings, small transformers reproduce Bayesian posteriors with $10^{-3}$-$10^{-4}$ bit accuracy, while capacity-matched MLPs fail by orders of magnitude, establishing a clear architectural separation. Across two tasks -- bijection elimination and Hidden Markov Model (HMM) state tracking -- we find that transformers implement Bayesian inference through a consistent geometric mechanism: residual streams serve as the belief substrate, feed-forward networks perform the posterior update, and attention provides content-addressable routing. Geometric diagnostics reveal orthogonal key bases, progressive query-key alignment, and a low-dimensional value manifold parameterized by posterior entropy. During training this manifold unfurls while attention patterns remain stable, a \emph{frame-precision dissociation} predicted by recent gradient analyses. Taken together, these results demonstrate that hierarchical attention realizes Bayesian inference by geometric design, explaining both the necessity of attention and the failure of flat architectures. Bayesian wind tunnels provide a foundation for mechanistically connecting small, verifiable systems to reasoning phenomena observed in large language models.
On the Diagram of Thought
Large Language Models (LLMs) excel at many tasks but often falter on complex problems that require structured, multi-step reasoning. We introduce the Diagram of Thought (DoT), a new framework that enables a single LLM to build and navigate a mental map of its reasoning. Instead of thinking in a straight line, the model constructs a dynamic diagram of ideas, where it can propose different lines of thought, critique its own steps, and synthesize validated insights into a final conclusion. This entire process is self-contained within the model, making it highly efficient by avoiding the complex external controllers or search algorithms required by other methods. To ensure the reliability of this process, we ground DoT in a rigorous mathematical framework from category theory. This foundation guarantees that the way the model combines information is logical, consistent, and robust, regardless of the order in which ideas were explored. The result is a more powerful and transparent reasoning process that produces a fully auditable, step-by-step trace of the LLM's thinking, bridging the gap between fluent language and formal reasoning.
comment: 30 pages
Operator-Level Quantum Acceleration of Non-Logconcave Sampling
Sampling from probability distributions of the form $σ\propto e^{-βV}$, where $V$ is a continuous potential, is a fundamental task across physics, chemistry, biology, computer science, and statistics. However, when $V$ is non-convex, the resulting distribution becomes non-logconcave, and classical methods such as Langevin dynamics often exhibit poor performance. We introduce the first quantum algorithm that provably accelerates a broad class of continuous-time sampling dynamics. For Langevin dynamics, our method encodes the target Gibbs measure into the amplitudes of a quantum state, identified as the kernel of a block matrix derived from a factorization of the Witten Laplacian operator. This connection enables Gibbs sampling via singular value thresholding and yields up to a quartic quantum speedup over best-known classical Langevin-based methods in the non-logconcave setting. Building on this framework, we further develop the first quantum algorithm that accelerates replica exchange Langevin diffusion, a widely used method for sampling from complex, rugged energy landscapes.
comment: 48 pages, 8 figures
SAINT: Attention-Based Policies for Discrete Combinatorial Action Spaces
The combinatorial structure of many real-world action spaces leads to exponential growth in the number of possible actions, limiting the effectiveness of conventional reinforcement learning algorithms. Recent approaches for combinatorial action spaces impose factorized or sequential structures over sub-actions, failing to capture complex joint behavior. We introduce the Sub-Action Interaction Network using Transformers (SAINT), a novel policy architecture that represents multi-component actions as unordered sets and models their dependencies via self-attention conditioned on the global state. SAINT is permutation-invariant, sample-efficient, and compatible with standard policy optimization algorithms. In 20 distinct combinatorial environments across three task domains, including environments with nearly 17 million joint actions, SAINT consistently outperforms strong baselines.
Towards generalizable deep ptychography neural networks
X-ray ptychography is a data-intensive imaging technique expected to become ubiquitous at next-generation light sources delivering many-fold increases in coherent flux. The need for real-time feedback under accelerated acquisition rates motivates surrogate reconstruction models like deep neural networks, which offer orders-of-magnitude speedup over conventional methods. However, existing deep learning approaches lack robustness across diverse experimental conditions. We propose an unsupervised training workflow emphasizing probe learning by combining experimentally-measured probes with synthetic, procedurally generated objects. This probe-centric approach enables a single physics-informed neural network to reconstruct unseen experiments across multiple beamlines; among the first demonstrations of multi-probe generalization. We find probe learning is equally important as in-distribution learning; models trained using this synthetic workflow achieve reconstruction fidelity comparable to those trained exclusively on experimental data, even when changing the type of synthetic training object. The proposed approach enables training of experiment-steering models that provide real-time feedback under dynamic experimental conditions.
comment: Submitted to scientific journal for peer review
BraVE: Offline Reinforcement Learning for Discrete Combinatorial Action Spaces
Offline reinforcement learning in high-dimensional, discrete action spaces is challenging due to the exponential scaling of the joint action space with the number of sub-actions and the complexity of modeling sub-action dependencies. Existing methods either exhaustively evaluate the action space, making them computationally infeasible, or factorize Q-values, failing to represent joint sub-action effects. We propose Branch Value Estimation (BraVE), a value-based method that uses tree-structured action traversal to evaluate a linear number of joint actions while preserving dependency structure. BraVE outperforms prior offline RL methods by up to $20\times$ in environments with over four million actions.
Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems
Fourier Neural Operators (FNOs) excel on tasks using functional data, such as those originating from partial differential equations. Such characteristics render them an effective approach for simulating the time evolution of quantum wavefunctions, which is a computationally challenging, yet coveted task for studying quantum systems. In this manuscript, we use FNOs to model the evolution of quantum spin systems, so chosen due to their representative quantum dynamics. We explore two distinct FNO architectures, examining their performance for learning and predicting time evolution on both random and low-energy input states. We find that standard neural networks in fixed dimensions, such as U-Net, exhibit limited ability to extrapolate beyond the training time interval, whereas FNOs reliably capture the underlying time-evolution operator, generalizing effectively to unseen times. Additionally, we apply FNOs to a compact set of Hamiltonian observables ($\sim\text{poly}(n)$) instead of the entire $2^n$ quantum wavefunction, which greatly reduces the size of our FNO inputs, outputs and model dimensions. Moreover, this Hamiltonian observable-based method demonstrates that FNOs can effectively distill information from high-dimensional spaces into lower-dimensional spaces. Using this approach, we perform numerical experiments on a 20-qubit system and extrapolate Hamiltonian observables to twice the training time with a relative error of $5.8\%$. Relative to numerical time-evolution methods, FNO achieves an inference speedup of approximately $10^{4}\times$ for 20-qubit systems. The extrapolation of Hamiltonian observables to times later than those used in training is of particular interest, as this stands to fundamentally increase the simulatability of quantum systems past both the coherence times of contemporary quantum architectures and the circuit-depths of tractable tensor networks.
comment: 12 pages, 4 figures
What Should Embeddings Embed? Autoregressive Models Represent Latent Generating Distributions
Autoregressive language models have demonstrated a remarkable ability to extract latent structure from text. The embeddings from large language models have been shown to capture aspects of the syntax and semantics of language. But what should embeddings represent? We connect the autoregressive prediction objective to the idea of constructing predictive sufficient statistics to summarize the information contained in a sequence of observations, and use this connection to identify three settings where the optimal content of embeddings can be identified: independent identically distributed data, where the embedding should capture the sufficient statistics of the data; latent state models, where the embedding should encode the posterior distribution over states given the data; and discrete hypothesis spaces, where the embedding should reflect the posterior distribution over hypotheses given the data. We then conduct empirical probing studies to show that transformers encode these three kinds of latent generating distributions, and that they perform well in out-of-distribution cases and without token memorization in these settings.
comment: 28 pages, 11 figures
Variational decision diagrams for quantum-inspired machine learning applications
Decision diagrams (DDs) have emerged as an efficient tool for simulating quantum circuits due to their capacity to exploit data redundancies in quantum states and quantum operations, enabling the efficient computation of probability amplitudes. However, their application in quantum machine learning (QML) has remained unexplored. This paper introduces variational decision diagrams (VDDs), a novel graph structure that combines the structural benefits of DDs with the adaptability of variational methods for efficiently representing quantum states. We investigate the trainability of VDDs by applying them to the ground state estimation problem for transverse-field Ising and Heisenberg Hamiltonians. Analysis of gradient variance suggests that training VDDs is possible, as no signs of vanishing gradients--also known as barren plateaus--are observed. This work provides new insights into the use of decision diagrams in QML as an alternative to design and train variational ansätze.
comment: 11 pages, 3 figures, presented at Quantum Information in Spain (ICE-9)
The Reward Model Selection Crisis in Personalized Alignment
Personalized alignment from preference data has focused primarily on improving personal reward model (RM) accuracy, with the implicit assumption that better preference ranking translates to better personalized behavior. However, in deployment, computational constraints necessitate inference-time adaptation such as reward-guided decoding (RGD) rather than per-user policy fine-tuning. This creates a critical but overlooked requirement: reward models must not only rank preferences accurately but also effectively guide generation. We demonstrate that standard RM accuracy fails catastrophically as a selection criterion for deployment-ready personalized rewards. We introduce policy accuracy; a metric quantifying whether RGD-adapted LLMs correctly discriminate between preferred and dispreferred responses and show that upstream RM accuracy correlates only weakly with downstream policy accuracy (Kendall's tau = 0.08--0.31). More critically, we introduce Pref-LaMP the first personalized alignment benchmark with ground-truth user completions, enabling direct behavioural evaluation. On Pref-LaMP, we expose a complete decoupling between discriminative ranking and generation metrics: methods with 20-point RM accuracy differences produce almost identical output quality, and methods with high ranking accuracy can fail to generate behaviorally aligned responses. These findings reveal that the field has been optimizing for proxy metrics that do not predict deployment performance, and that current personalized alignment methods fail to operationalize preferences into behavioral adaptation under realistic deployment constraints. In contrast, we find simple in-context learning (ICL) to be highly effective - dominating all reward-guided methods for models $\geq$3B parameters, achieving $\sim$3 point ROUGE-1 gains over the best reward method at 7B scale.
When Bugs Linger: A Study of Anomalous Resolution Time Outliers and Their Themes
Efficient bug resolution is critical for maintaining software quality and user satisfaction. However, specific bug reports experience unusually long resolution times, which may indicate underlying process inefficiencies or complex issues. This study presents a comprehensive analysis of bug resolution anomalies across seven prominent open-source repositories: Cassandra, Firefox, Hadoop, HBase, SeaMonkey, Spark, and Thunderbird. Utilizing statistical methods such as Z-score and Interquartile Range (IQR), we identify anomalies in bug resolution durations. To understand the thematic nature of these anomalies, we apply Term Frequency-Inverse Document Frequency (TF-IDF) for textual feature extraction and KMeans clustering to group similar bug summaries. Our findings reveal consistent patterns across projects, with anomalies often clustering around test failures, enhancement requests, and user interface issues. This approach provides actionable insights for project maintainers to prioritize and effectively address long-standing bugs.
comment: 7 pages, 2 tables, 21 figures
Quaternion-Hadamard Network: A Novel Defense Against Adversarial Attacks with a New Dataset
Adverse-weather image restoration (e.g., rain, snow, haze) models remain highly vulnerable to gradient-based white-box adversarial attacks, wherein minimal loss-aligned perturbations cause substantial degradation in the restored output. This paper presents QHNet, a computationally efficient purification-based defense that precedes the restoration network and targets perturbation suppression in the transform and quaternion domains. QHNet incorporates a Quaternion Hadamard Polynomial Denoising Block (QHPDB) and a Quaternion Denoising Residual Block (QDRB) within an encoder-decoder framework to remove high-frequency adversarial noise while preserving fine structural details. Robustness is evaluated using PSNR and SSIM across rain, snow, and haze removal tasks, and further validated under adaptive, defense-aware white-box attacks employing Projected Gradient Descent (PGD), Backward Pass Differentiable Approximation (BPDA), and Expectation Over Transformation (EOT). Experimental results demonstrate that QHNet delivers superior restoration fidelity and significantly improved robustness compared to state-of-the-art purification baselines, confirming its effectiveness for low-level vision pipelines.
Improving Bayesian Optimization for Portfolio Management with an Adaptive Scheduling
Existing black-box portfolio management systems are prevalent in the financial industry due to commercial and safety constraints, though their performance can fluctuate dramatically with changing market regimes. Evaluating these non-transparent systems is computationally expensive, as fixed budgets limit the number of possible observations. Therefore, achieving stable and sample-efficient optimization for these systems has become a critical challenge. This work presents a novel Bayesian optimization framework (TPE-AS) that improves search stability and efficiency for black-box portfolio models under these limited observation budgets. Standard Bayesian optimization, which solely maximizes expected return, can yield erratic search trajectories and misalign the surrogate model with the true objective, thereby wasting the limited evaluation budget. To mitigate these issues, we propose a weighted Lagrangian estimator that leverages an adaptive schedule and importance sampling. This estimator dynamically balances exploration and exploitation by incorporating both the maximization of model performance and the minimization of the variance of model observations. It guides the search from broad, performance-seeking exploration towards stable and desirable regions as the optimization progresses. Extensive experiments and ablation studies, which establish our proposed method as the primary approach and other configurations as baselines, demonstrate its effectiveness across four backtest settings with three distinct black-box portfolio management models.
comment: 5 pages, 2 figures; version of record. ICAAI 2025, 9th International Conference on Advances in Artificial Intelligence (ICAAI 2025), November 14-16, 2025, Manchester, United Kingdom. ACM, New York, NY, USA, 5 pages
Graphics 10
Choreographing a World of Dynamic Objects
Dynamic objects in our physical 4D (3D + time) world are constantly evolving, deforming, and interacting with other objects, leading to diverse 4D scene dynamics. In this paper, we present a universal generative pipeline, CHORD, for CHOReographing Dynamic objects and scenes and synthesizing this type of phenomena. Traditional rule-based graphics pipelines to create these dynamics are based on category-specific heuristics, yet are labor-intensive and not scalable. Recent learning-based methods typically demand large-scale datasets, which may not cover all object categories in interest. Our approach instead inherits the universality from the video generative models by proposing a distillation-based pipeline to extract the rich Lagrangian motion information hidden in the Eulerian representations of 2D videos. Our method is universal, versatile, and category-agnostic. We demonstrate its effectiveness by conducting experiments to generate a diverse range of multi-body 4D dynamics, show its advantage compared to existing methods, and demonstrate its applicability in generating robotics manipulation policies. Project page: https://yanzhelyu.github.io/chord
Local Interpolation via Low-Rank Tensor Trains
Tensor Train (TT) decompositions provide a powerful framework to compress grid-structured data, such as sampled function values, on regular Cartesian grids. Such high compression, in turn, enables efficient high-dimensional computations. Exact TT representations are only available for simple analytic functions. Furthermore, global polynomial or Fourier expansions typically yield TT-ranks that grow proportionally with the number of basis terms. State-of-the-art methods are often prohibitively expensive or fail to recover the underlying low-rank structure. We propose a low-rank TT interpolation framework that, given a TT describing a discrete (scalar-, vector-, or tensor-valued) function on a coarse regular grid with $n$ cores, constructs a finer-scale version of the same function represented by a TT with $n+m$ cores, where the last $m$ cores maintain constant rank. Our method guarantees a $\ell^{2}$-norm error bound independent of the total number of cores, achieves exponential compression at fixed accuracy, and admits logarithmic complexity with respect of the number of grid points. We validate its performance through numerical experiments, including 1D, 2D, and 3D applications such as: 2D and 3D airfoil mask embeddings, image super-resolution, and synthetic noise fields such as 3D synthetic turbulence. In particular, we generate fractal noise fields directly in TT format with logarithmic complexity and memory. This work opens a path to scalable TT-native solvers with complex geometries and multiscale generative models, with implications from scientific simulation to imaging and real-time graphics.
comment: 22 pages, 16 figures
Bayesian Monocular Depth Refinement via Neural Radiance Fields
Monocular depth estimation has applications in many fields, such as autonomous navigation and extended reality, making it an essential computer vision task. However, current methods often produce smooth depth maps that lack the fine geometric detail needed for accurate scene understanding. We propose MDENeRF, an iterative framework that refines monocular depth estimates using depth information from Neural Radiance Fields (NeRFs). MDENeRF consists of three components: (1) an initial monocular estimate for global structure, (2) a NeRF trained on perturbed viewpoints, with per-pixel uncertainty, and (3) Bayesian fusion of the noisy monocular and NeRF depths. We derive NeRF uncertainty from the volume rendering process to iteratively inject high-frequency fine details. Meanwhile, our monocular prior maintains global structure. We demonstrate superior performance on key metrics and experiments using indoor scenes from the SUN RGB-D dataset.
comment: IEEE 8th International Conference on Algorithms, Computing and Artificial Intelligence (ACAI 2025). Oral presentation; Best Presenter Award
In-SRAM Radiant Foam Rendering on a Graph Processor
Many emerging many-core accelerators replace a single large device memory with hundreds to thousands of lightweight cores, each owning only a small local SRAM and exchanging data via explicit on-chip communication. This organization offers high aggregate bandwidth, but it breaks a key assumption behind many volumetric rendering techniques: that rays can randomly access a large, unified scene representation. Rendering efficiently on such hardware therefore requires distributing both data and computation, keeping ray traversal mostly local, and structuring communication into predictable routes. We present a fully in-SRAM, distributed renderer for the \emph{Radiant Foam} Voronoi-cell volumetric representation on the Graphcore Mk2 IPU, a many-core accelerator with tile-local SRAM and explicit inter-tile communication. Our system shards the scene across tiles and forwards rays between shards through a hierarchical routing overlay, enabling ray marching entirely from on-chip SRAM with predictable communication. On Mip-NeRF~360 scenes, the system attains near-interactive throughput (\(\approx\)1\,fps at \mbox{$640\times480$}) with image and depth quality close to the original GPU-based Radiant Foam implementation, while keeping all scene data and ray state in on-chip SRAM. Beyond demonstrating feasibility, we analyze routing, memory, and scheduling bottlenecks that inform how future distributed-memory accelerators can better support irregular, data-movement-heavy rendering workloads.
comment: 24 pages, 26 figures
End-to-end differentiable design of geometric waveguide displays
Geometric waveguides are a promising architecture for optical see-through augmented reality displays, but their performance is severely bottlenecked by the difficulty of jointly optimizing non-sequential light transport and polarization-dependent multilayer thin-film coatings. Here we present the first end-to-end differentiable optimization framework for geometric waveguide that couples non-sequential Monte Carlo polarization ray tracing with a differentiable transfer-matrix thin-film solver. A differentiable Monte Carlo ray tracer avoids the exponential growth of deterministic ray splitting while enabling gradients backpropagation from eyebox metrics to design parameters. With memory-saving strategies, we optimize more than one thousand layer-thickness parameters and billions of non-sequential ray-surface intersections on a single multi-GPU workstation. Automated layer pruning is achieved by starting from over-parameterized stacks and driving redundant layers to zero thickness under discrete manufacturability constraints, effectively performing topology optimization to discover optimal coating structures. On a representative design, starting from random initialization within thickness bounds, our method increases light efficiency from 4.1\% to 33.5\% and improves eyebox and FoV uniformity by $\sim$17$\times$ and $\sim$11$\times$, respectively. Furthermore, we jointly optimize the waveguide and an image preprocessing network to improve perceived image quality. Our framework not only enables system-level, high-dimensional coating optimization inside the waveguide, but also expands the scope of differentiable optics for next-generation optical design.
SCAR-GS: Spatial Context Attention for Residuals in Progressive Gaussian Splatting
Recent advances in 3D Gaussian Splatting have allowed for real-time, high-fidelity novel view synthesis. Nonetheless, these models have significant storage requirements for large and medium-sized scenes, hindering their deployment over cloud and streaming services. Some of the most recent progressive compression techniques for these models rely on progressive masking and scalar quantization techniques to reduce the bitrate of Gaussian attributes using spatial context models. While effective, scalar quantization may not optimally capture the correlations of high-dimensional feature vectors, which can potentially limit the rate-distortion performance. In this work, we introduce a novel progressive codec for 3D Gaussian Splatting that replaces traditional methods with a more powerful Residual Vector Quantization approach to compress the primitive features. Our key contribution is an auto-regressive entropy model, guided by a multi-resolution hash grid, that accurately predicts the conditional probability of each successive transmitted index, allowing for coarse and refinement layers to be compressed with high efficiency.
Aplicación Gráfica para el estudio de un Modelo de Celda Electrolítica usando Técnicas de Visualización de Campos Vectoriales
The use of floating bipolar electrodes in copper electro-winning cells represents an emerging technology that promises economic and operational impacts. This thesis presents EWCellCAD, a computational tool designed for the simulation and analysis of these electrochemical systems. Based on the generalization and optimization of an existing 2D finite difference model for calculating electrical variables in rectangular cells, EWCellCAD implements a new 3D model capable of processing complex geometries, not necessarily rectangular, which also accelerates calculations by several orders of magnitude. At the same time, a new analytical method for estimating potentials in floating electrodes is introduced, overcoming the inaccuracies of previous heuristic approaches. The analysis of the results is supported by an interactive visualization technique of three-dimensional vector fields as flow lines.
comment: in Spanish language, B.Sc. Thesis in Electronic Engineering (part of the research project FONDECYT 1970955), Universidad de Concepción, 2000, 105 pages, 22 figures, in Spanish. Related publication: arXiv:1001.3974 [cs.GR]. Metadata-only update: Author name standardized (maternal surname removed; paternal surname as sole last name). Title orthography corrected with TeX accents. Abstract refined
Modelación y Visualización Tridimensional Interactiva de Variables Eléctricas en Celdas de Electro-Obtención con Electrodos Bipolares
The use of floating bipolar electrodes in copper electro-winning cells represents an emerging technology that promises economic and operational impacts. This article presents a computational tool designed for the simulation and analysis of these electrochemical systems. Based on the generalization and optimization of an existing 2D finite difference model for calculating electrical variables in rectangular cells, a new 3D model capable of processing complex geometries, not necessarily rectangular, has been developed. At the same time, a new analytical method for estimating potentials in floating electrodes is introduced, overcoming the inaccuracies of previous heuristic approaches. The analysis of the results is supported by an interactive visualization technique of three-dimensional vector fields as flow lines.
comment: 6 pages, 3 figures, in Spanish. For more details, see arXiv:1001.4002 [cs.GR]. Metadata-only update: Authors' names standardized (maternal surnames removed; paternal surnames as sole last name). Title orthography corrected with TeX accents. Abstract refined
BiPO: Bidirectional Partial Occlusion Network for Text-to-Motion Synthesis WACV 2026
Generating natural and expressive human motions from textual descriptions is challenging due to the complexity of coordinating full-body dynamics and capturing nuanced motion patterns over extended sequences that accurately reflect the given text. To address this, we introduce BiPO, Bidirectional Partial Occlusion Network for Text-to-Motion Synthesis, a novel model that enhances text-to-motion synthesis by integrating part-based generation with a bidirectional autoregressive architecture. This integration allows BiPO to consider both past and future contexts during generation while enhancing detailed control over individual body parts without requiring ground-truth motion length. To relax the interdependency among body parts caused by the integration, we devise the Partial Occlusion technique, which probabilistically occludes the certain motion part information during training. In our comprehensive experiments, BiPO achieves state-of-the-art performance on the HumanML3D dataset, outperforming recent methods such as ParCo, MoMask, and BAMM in terms of FID scores and overall motion quality. Notably, BiPO excels not only in the text-to-motion generation task but also in motion editing tasks that synthesize motion based on partially generated motion sequences and textual descriptions. These results reveal the BiPO's effectiveness in advancing text-to-motion synthesis and its potential for practical applications.
comment: 18 pages, 11 figures. Accepted to WACV 2026
How Does a Virtual Agent Decide Where to Look? Symbolic Cognitive Reasoning for Embodied Head Rotation
Natural head rotation is critical for believable embodied virtual agents, yet this micro-level behavior remains largely underexplored. While head-rotation prediction algorithms could, in principle, reproduce this behavior, they typically focus on visually salient stimuli and overlook the cognitive motives that guide head rotation. This yields agents that look at conspicuous objects while overlooking obstacles or task-relevant cues, diminishing realism in a virtual environment. We introduce SCORE, a Symbolic Cognitive Reasoning framework for Embodied Head Rotation, a data-agnostic framework that produces context-aware head movements without task-specific training or hand-tuned heuristics. A controlled VR study (N=20) identifies five motivational drivers of human head movements: Interest, Information Seeking, Safety, Social Schema, and Habit. SCORE encodes these drivers as symbolic predicates, perceives the scene with a Vision-Language Model (VLM), and plans head poses with a Large Language Model (LLM). The framework employs a hybrid workflow: the VLM-LLM reasoning is executed offline, after which a lightweight FastVLM performs online validation to suppress hallucinations while maintaining responsiveness to scene dynamics. The result is an agent that predicts not only where to look but also why, generalizing to unseen scenes and multi-agent crowds while retaining behavioral plausibility.
comment: 13 pages, 8 figures. Accepted to SIGGRAPH Asia Conference Papers '25
Robotics 50
FIRE-VLM: A Vision-Language-Driven Reinforcement Learning Framework for UAV Wildfire Tracking in a Physics-Grounded Fire Digital Twin
Wildfire monitoring demands autonomous systems capable of reasoning under extreme visual degradation, rapidly evolving physical dynamics, and scarce real-world training data. Existing UAV navigation approaches rely on simplified simulators and supervised perception pipelines, and lack embodied agents interacting with physically realistic fire environments. We introduce FIRE-VLM, the first end-to-end vision-language model (VLM) guided reinforcement learning (RL) framework trained entirely within a high-fidelity, physics-grounded wildfire digital twin. Built from USGS Digital Elevation Model (DEM) terrain, LANDFIRE fuel inventories, and semi-physical fire-spread solvers, this twin captures terrain-induced runs, wind-driven acceleration, smoke plume occlusion, and dynamic fuel consumption. Within this environment, a PPO agent with dual-view UAV sensing is guided by a CLIP-style VLM. Wildfire-specific semantic alignment scores, derived from a single prompt describing active fire and smoke plumes, are integrated as potential-based reward shaping signals. Our contributions are: (1) a GIS-to-simulation pipeline for constructing wildfire digital twins; (2) a VLM-guided RL agent for UAV firefront tracking; and (3) a wildfire-aware reward design that combines physical terms with VLM semantics. Across five digital-twin evaluation tasks, our VLM-guided policy reduces time-to-detection by up to 6 times, increases time-in-FOV, and is, to our knowledge, the first RL-based UAV wildfire monitoring system demonstrated in kilometer-scale, physics-grounded digital-twin fires.
Cost-Effective Radar Sensors for Field-Based Water Level Monitoring with Sub-Centimeter Accuracy
Water level monitoring is critical for flood management, water resource allocation, and ecological assessment, yet traditional methods remain costly and limited in coverage. This work explores radar-based sensing as a low-cost alternative for water level estimation, leveraging its non-contact nature and robustness to environmental conditions. Commercial radar sensors are evaluated in real-world field tests, applying statistical filtering techniques to improve accuracy. Results show that a single radar sensor can achieve centimeter-scale precision with minimal calibration, making it a practical solution for autonomous water monitoring using drones and robotic platforms.
comment: 10 pages, 6 figures. Preliminary results presented as a poster at an academic conference
Towards Zero-Knowledge Task Planning via a Language-based Approach
In this work, we introduce and formalize the Zero-Knowledge Task Planning (ZKTP) problem, i.e., formulating a sequence of actions to achieve some goal without task-specific knowledge. Additionally, we present a first investigation and approach for ZKTP that leverages a large language model (LLM) to decompose natural language instructions into subtasks and generate behavior trees (BTs) for execution. If errors arise during task execution, the approach also uses an LLM to adjust the BTs on-the-fly in a refinement loop. Experimental validation in the AI2-THOR simulator demonstrate our approach's effectiveness in improving overall task performance compared to alternative approaches that leverage task-specific knowledge. Our work demonstrates the potential of LLMs to effectively address several aspects of the ZKTP problem, providing a robust framework for automated behavior generation with no task-specific setup.
Modeling and Control for UAV with Off-center Slung Load
Unmanned aerial vehicle (UAV) with slung load system is a classic air transportation system. In practical applications, the suspension point of the slung load does not always align with the center of mass (CoM) of the UAV due to mission requirements or mechanical interference. This offset creates coupling in the system's nonlinear dynamics which leads to a complicated motion control problem. In existing research, modeling of the system are performed about the UAV's CoM. In this work we use the point of suspension instead. Based on the new model, a cascade control strategy is developed. In the middle-loop controller, the acceleration of the suspension point is used to regulate the swing angle of the slung load without the need for considering the coupling between the slung load and the UAV. Using the off-center reference frame, an inner-loop controller is designed to track the UAV's attitude without the need of simplification on the coupling effects. We prove local exponential stability of the closed-loop using Lyapunov approach. Finally, simulations and experiments are conducted to validate the proposed control system.
Lunar Rover Cargo Transport: Mission Concept and Field Test
In future operations on the lunar surface, automated vehicles will be required to transport cargo between known locations. Such vehicles must be able to navigate precisely in safe regions to avoid natural hazards, human-constructed infrastructure, and dangerous dark shadows. Rovers must be able to park their cargo autonomously within a small tolerance to achieve a successful pickup and delivery. In this field test, Lidar Teach and Repeat provides an ideal autonomy solution for transporting cargo in this way. A one-tonne path-to-flight rover was driven in a semi-autonomous remote-control mode to create a network of safe paths. Once the route was taught, the rover immediately repeated the entire network of paths autonomously while carrying cargo. The closed-loop performance is accurate enough to align the vehicle to the cargo and pick it up. This field report describes a two-week deployment at the Canadian Space Agency's Analogue Terrain, culminating in a simulated lunar operation to evaluate the system's capabilities. Successful cargo collection and delivery were demonstrated in harsh environmental conditions.
comment: 15 Pages, 13 Figures, to appear in IEEE Transactions on Field Robotics
Revisiting Continuous-Time Trajectory Estimation via Gaussian Processes and the Magnus Expansion
Continuous-time state estimation has been shown to be an effective means of (i) handling asynchronous and high-rate measurements, (ii) introducing smoothness to the estimate, (iii) post hoc querying the estimate at times other than those of the measurements, and (iv) addressing certain observability issues related to scanning-while-moving sensors. A popular means of representing the trajectory in continuous time is via a Gaussian process (GP) prior, with the prior's mean and covariance functions generated by a linear time-varying (LTV) stochastic differential equation (SDE) driven by white noise. When the state comprises elements of Lie groups, previous works have resorted to a patchwork of local GPs each with a linear time-invariant SDE kernel, which while effective in practice, lacks theoretical elegance. Here we revisit the full LTV GP approach to continuous-time trajectory estimation, deriving a global GP prior on Lie groups via the Magnus expansion, which offers a more elegant and general solution. We provide a numerical comparison between the two approaches and discuss their relative merits.
comment: 21 pages, 12 figures
Nonlinear Spectral Modeling and Control of Soft-Robotic Muscles from Data
Artificial muscles are essential for compliant musculoskeletal robotics but complicate control due to nonlinear multiphysics dynamics. Hydraulically amplified electrostatic (HASEL) actuators, a class of soft artificial muscles, offer high performance but exhibit memory effects and hysteresis. Here we present a data-driven reduction and control strategy grounded in spectral submanifold (SSM) theory. In the adiabatic regime, where inputs vary slowly relative to intrinsic transients, trajectories rapidly converge to a low-dimensional slow manifold. We learn an explicit input-to-output map on this manifold from forced-response trajectories alone, avoiding decay experiments that can trigger hysteresis. We deploy the SSM-based model for real-time control of an antagonistic HASEL-clutch joint. This approach yields a substantial reduction in tracking error compared to feedback-only and feedforward-only baselines under identical settings. This record-and-control workflow enables rapid characterization and high-performance control of soft muscles and muscle-driven joints without detailed physics-based modeling.
A High-Fidelity Digital Twin for Robotic Manipulation Based on 3D Gaussian Splatting
Developing high-fidelity, interactive digital twins is crucial for enabling closed-loop motion planning and reliable real-world robot execution, which are essential to advancing sim-to-real transfer. However, existing approaches often suffer from slow reconstruction, limited visual fidelity, and difficulties in converting photorealistic models into planning-ready collision geometry. We present a practical framework that constructs high-quality digital twins within minutes from sparse RGB inputs. Our system employs 3D Gaussian Splatting (3DGS) for fast, photorealistic reconstruction as a unified scene representation. We enhance 3DGS with visibility-aware semantic fusion for accurate 3D labelling and introduce an efficient, filter-based geometry conversion method to produce collision-ready models seamlessly integrated with a Unity-ROS2-MoveIt physics engine. In experiments with a Franka Emika Panda robot performing pick-and-place tasks, we demonstrate that this enhanced geometric accuracy effectively supports robust manipulation in real-world trials. These results demonstrate that 3DGS-based digital twins, enriched with semantic and geometric consistency, offer a fast, reliable, and scalable path from perception to manipulation in unstructured environments.
comment: Under review of Journal of Robot Learning
Limited Linguistic Diversity in Embodied AI Datasets
Language plays a critical role in Vision-Language-Action (VLA) models, yet the linguistic characteristics of the datasets used to train and evaluate these systems remain poorly documented. In this work, we present a systematic dataset audit of several widely used VLA corpora, aiming to characterize what kinds of instructions these datasets actually contain and how much linguistic variety they provide. We quantify instruction language along complementary dimensions-including lexical variety, duplication and overlap, semantic similarity, and syntactic complexity. Our analysis shows that many datasets rely on highly repetitive, template-like commands with limited structural variation, yielding a narrow distribution of instruction forms. We position these findings as descriptive documentation of the language signal available in current VLA training and evaluation data, intended to support more detailed dataset reporting, more principled dataset selection, and targeted curation or augmentation strategies that broaden language coverage.
Dual-quaternion learning control for autonomous vehicle trajectory tracking with safety guarantees
We propose a learning-based trajectory tracking controller for autonomous robotic platforms whose motion can be described kinematically on $\mathrm{SE}(3)$. The controller is formulated in the dual quaternion framework and operates at the velocity level, assuming direct command of angular and linear velocities, as is standard in many aerial vehicles and omnidirectional mobile robots. Gaussian Process (GP) regression is integrated into a geometric feedback law to learn and compensate online for unknown, state-dependent disturbances and modeling imperfections affecting both attitude and position, while preserving the algebraic structure and coupling properties inherent to rigid-body motion. The proposed approach does not rely on explicit parametric models of the unknown effects, making it well-suited for robotic systems subject to sensor-induced disturbances, unmodeled actuation couplings, and environmental uncertainties. A Lyapunov-based analysis establishes probabilistic ultimate boundedness of the pose tracking error under bounded GP uncertainty, providing formal stability guarantees for the learning-based controller. Simulation results demonstrate accurate and smooth trajectory tracking in the presence of realistic, localized disturbances, including correlated rotational and translational effects arising from magnetometer perturbations. These results illustrate the potential of combining geometric modeling and probabilistic learning to achieve robust, data-efficient pose control for autonomous robotic systems.
HEXAR: a Hierarchical Explainability Architecture for Robots
As robotic systems become increasingly complex, the need for explainable decision-making becomes critical. Existing explainability approaches in robotics typically either focus on individual modules, which can be difficult to query from the perspective of high-level behaviour, or employ monolithic approaches, which do not exploit the modularity of robotic architectures. We present HEXAR (Hierarchical EXplainability Architecture for Robots), a novel framework that provides a plug-in, hierarchical approach to generate explanations about robotic systems. HEXAR consists of specialised component explainers using diverse explanation techniques (e.g., LLM-based reasoning, causal models, feature importance, etc) tailored to specific robot modules, orchestrated by an explainer selector that chooses the most appropriate one for a given query. We implement and evaluate HEXAR on a TIAGo robot performing assistive tasks in a home environment, comparing it against end-to-end and aggregated baseline approaches across 180 scenario-query variations. We observe that HEXAR significantly outperforms baselines in root cause identification, incorrect information exclusion, and runtime, offering a promising direction for transparent autonomous systems.
comment: 8 pages, 6 figures
A Fast Semidefinite Convex Relaxation for Optimal Control Problems With Spatio-Temporal Constraints
Solving optimal control problems (OCPs) of autonomous agents operating under spatial and temporal constraints fast and accurately is essential in applications ranging from eco-driving of autonomous vehicles to quadrotor navigation. However, the nonlinear programs approximating the OCPs are inherently nonconvex due to the coupling between the dynamics and the event timing, and therefore, they are challenging to solve. Most approaches address this challenge by predefining waypoint times or just using nonconvex trajectory optimization, which simplifies the problem but often yields suboptimal solutions. To significantly improve the numerical properties, we propose a formulation with a time-scaling direct multiple shooting scheme that partitions the prediction horizon into segments aligned with characteristic time constraints. Moreover, we develop a fast semidefinite-programming-based convex relaxation that exploits the sparsity pattern of the lifted formulation. Comprehensive simulation studies demonstrate the solution optimality and computational efficiency. Furthermore, real-world experiments on a quadrotor waypoint flight task with constrained open time windows validate the practical applicability of the approach in complex environments.
comment: 9 pages, 6 figures
SOP: A Scalable Online Post-Training System for Vision-Language-Action Models
Vision-language-action (VLA) models achieve strong generalization through large-scale pre-training, but real-world deployment requires expert-level task proficiency in addition to broad generality. Existing post-training approaches for VLA models are typically offline, single-robot, or task-specific, limiting effective on-policy adaptation and scalable learning from real-world interaction. We introduce a Scalable Online Post-training (SOP) system that enables online, distributed, multi-task post-training of generalist VLA models directly in the physical world. SOP tightly couples execution and learning through a closed-loop architecture in which a fleet of robots continuously streams on-policy experience and human intervention signals to a centralized cloud learner, and asynchronously receives updated policies. This design supports prompt on-policy correction, scales experience collection through parallel deployment, and preserves generality during adaptation. SOP is agnostic to the choice of post-training algorithm; we instantiate it with both interactive imitation learning (HG-DAgger) and reinforcement learning (RECAP). Across a range of real-world manipulation tasks including cloth folding, box assembly, and grocery restocking, we show that SOP substantially improves the performance of large pretrained VLA models while maintaining a single shared policy across tasks. Effective post-training can be achieved within hours of real-world interaction, and performance scales near-linearly with the number of robots in the fleet. These results suggest that tightly coupling online learning with fleet-scale deployment is instrumental to enabling efficient, reliable, and scalable post-training of generalist robot policies in the physical world.
PiDR: Physics-Informed Inertial Dead Reckoning for Autonomous Platforms
A fundamental requirement for full autonomy is the ability to sustain accurate navigation in the absence of external data, such as GNSS signals or visual information. In these challenging environments, the platform must rely exclusively on inertial sensors, leading to pure inertial navigation. However, the inherent noise and other error terms of the inertial sensors in such real-world scenarios will cause the navigation solution to drift over time. Although conventional deep-learning models have emerged as a possible approach to inertial navigation, they are inherently black-box in nature. Furthermore, they struggle to learn effectively with limited supervised sensor data and often fail to preserve physical principles. To address these limitations, we propose PiDR, a physics-informed inertial dead-reckoning framework for autonomous platforms in situations of pure inertial navigation. PiDR offers transparency by explicitly integrating inertial navigation principles into the network training process through the physics-informed residual component. PiDR plays a crucial role in mitigating abrupt trajectory deviations even under limited or sparse supervision. We evaluated PiDR on real-world datasets collected by a mobile robot and an autonomous underwater vehicle. We obtained more than 29% positioning improvement in both datasets, demonstrating the ability of PiDR to generalize different platforms operating in various environments and dynamics. Thus, PiDR offers a robust, lightweight, yet effective architecture and can be deployed on resource-constrained platforms, enabling real-time pure inertial navigation in adverse scenarios.
comment: 11 pages and 7 figures
Validating Generalist Robots with Situation Calculus and STL Falsification
Generalist robots are becoming a reality, capable of interpreting natural language instructions and executing diverse operations. However, their validation remains challenging because each task induces its own operational context and correctness specification, exceeding the assumptions of traditional validation methods. We propose a two-layer validation framework that combines abstract reasoning with concrete system falsification. At the abstract layer, situation calculus models the world and derives weakest preconditions, enabling constraint-aware combinatorial testing to systematically generate diverse, semantically valid world-task configurations with controllable coverage strength. At the concrete layer, these configurations are instantiated for simulation-based falsification with STL monitoring. Experiments on tabletop manipulation tasks show that our framework effectively uncovers failure cases in the NVIDIA GR00T controller, demonstrating its promise for validating general-purpose robot autonomy.
A Bi-directional Adaptive Framework for Agile UAV Landing RA-L
Autonomous landing on mobile platforms is crucial for extending quadcopter operational flexibility, yet conventional methods are often too inefficient for highly dynamic scenarios. The core limitation lies in the prevalent ``track-then-descend'' paradigm, which treats the platform as a passive target and forces the quadcopter to perform complex, sequential maneuvers. This paper challenges that paradigm by introducing a bi-directional cooperative landing framework that redefines the roles of the vehicle and the platform. The essential innovation is transforming the problem from a single-agent tracking challenge into a coupled system optimization. Our key insight is that the mobile platform is not merely a target, but an active agent in the landing process. It proactively tilts its surface to create an optimal, stable terminal attitude for the approaching quadcopter. This active cooperation fundamentally breaks the sequential model by parallelizing the alignment and descent phases. Concurrently, the quadcopter's planning pipeline focuses on generating a time-optimal and dynamically feasible trajectory that minimizes energy consumption. This bi-directional coordination allows the system to execute the recovery in an agile manner, characterized by aggressive trajectory tracking and rapid state synchronization within transient windows. The framework's effectiveness, validated in dynamic scenarios, significantly improves the efficiency, precision, and robustness of autonomous quadrotor recovery in complex and time-constrained missions.
comment: This work has been submitted to the IEEE Robotics and Automation Letters (RA-L) for possible publication
Learning to Act Robustly with View-Invariant Latent Actions
Vision-based robotic policies often struggle with even minor viewpoint changes, underscoring the need for view-invariant visual representations. This challenge becomes more pronounced in real-world settings, where viewpoint variability is unavoidable and can significantly disrupt policy performance. Existing methods typically learn invariance from multi-view observations at the scene level, but such approaches rely on visual appearance and fail to incorporate the physical dynamics essential for robust generalization. We propose View-Invariant Latent Action (VILA), which models a latent action capturing transition patterns across trajectories to learn view-invariant representations grounded in physical dynamics. VILA aligns these latent actions across viewpoints using an action-guided objective based on ground-truth action sequences. Experiments in both simulation and the real world show that VILA-based policies generalize effectively to unseen viewpoints and transfer well to new tasks, establishing VILA as a strong pretraining framework that improves robustness and downstream learning performance.
comment: Website: https://joon-stack.github.io/VILA/
Parameter-Robust MPPI for Safe Online Learning of Unknown Parameters
Robots deployed in dynamic environments must remain safe even when key physical parameters are uncertain or change over time. We propose Parameter-Robust Model Predictive Path Integral (PRMPPI) control, a framework that integrates online parameter learning with probabilistic safety constraints. PRMPPI maintains a particle-based belief over parameters via Stein Variational Gradient Descent, evaluates safety constraints using Conformal Prediction, and optimizes both a nominal performance-driven and a safety-focused backup trajectory in parallel. This yields a controller that is cautious at first, improves performance as parameters are learned, and ensures safety throughout. Simulation and hardware experiments demonstrate higher success rates, lower tracking error, and more accurate parameter estimates than baselines.
LOST-3DSG: Lightweight Open-Vocabulary 3D Scene Graphs with Semantic Tracking in Dynamic Environments
Tracking objects that move within dynamic environments is a core challenge in robotics. Recent research has advanced this topic significantly; however, many existing approaches remain inefficient due to their reliance on heavy foundation models. To address this limitation, we propose LOST-3DSG, a lightweight open-vocabulary 3D scene graph designed to track dynamic objects in real-world environments. Our method adopts a semantic approach to entity tracking based on word2vec and sentence embeddings, enabling an open-vocabulary representation while avoiding the necessity of storing dense CLIP visual features. As a result, LOST-3DSG achieves superior performance compared to approaches that rely on high-dimensional visual embeddings. We evaluate our method through qualitative and quantitative experiments conducted in a real 3D environment using a TIAGo robot. The results demonstrate the effectiveness and efficiency of LOST-3DSG in dynamic object tracking. Code and supplementary material are publicly available on the project website at https://lab-rococo-sapienza.github.io/lost-3dsg/.
Warm-Starting Collision-Free Model Predictive Control With Object-Centric Diffusion
Acting in cluttered environments requires predicting and avoiding collisions while still achieving precise control. Conventional optimization-based controllers can enforce physical constraints, but they struggle to produce feasible solutions quickly when many obstacles are present. Diffusion models can generate diverse trajectories around obstacles, yet prior approaches lacked a general and efficient way to condition them on scene structure. In this paper, we show that combining diffusion-based warm-starting conditioned with a latent object-centric representation of the scene and with a collision-aware model predictive controller (MPC) yields reliable and efficient motion generation under strict time limits. Our approach conditions a diffusion transformer on the system state, task, and surroundings, using an object-centric slot attention mechanism to provide a compact obstacle representation suitable for control. The sampled trajectories are refined by an optimal control problem that enforces rigid-body dynamics and signed-distance collision constraints, producing feasible motions in real time. On benchmark tasks, this hybrid method achieved markedly higher success rates and lower latency than sampling-based planners or either component alone. Real-robot experiments with a torque-controlled Panda confirm reliable and safe execution with MPC.
comment: An open-source implementation is provided https://cozy-fairy-0e0139.netlify.app/
Soft Responsive Materials Enhance Humanoid Safety
Humanoid robots are envisioned as general-purpose platforms in human-centered environments, yet their deployment is limited by vulnerability to falls and the risks posed by rigid metal-plastic structures to people and surroundings. We introduce a soft-rigid co-design framework that leverages non-Newtonian fluid-based soft responsive materials to enhance humanoid safety. The material remains compliant during normal interaction but rapidly stiffens under impact, absorbing and dissipating fall-induced forces. Physics-based simulations guide protector placement and thickness and enable learning of active fall policies. Applied to a 42 kg life-size humanoid, the protector markedly reduces peak impact and allows repeated falls without hardware damage, including drops from 3 m and tumbles down long staircases. Across diverse scenarios, the approach improves robot robustness and environmental safety. By uniting responsive materials, structural co-design, and learning-based control, this work advances interact-safe, industry-ready humanoid robots.
comment: 40 pages, 11 figures
Reinforcement Learning for Follow-the-Leader Robotic Endoscopic Navigation via Synthetic Data
Autonomous navigation is crucial for both medical and industrial endoscopic robots, enabling safe and efficient exploration of narrow tubular environments without continuous human intervention, where avoiding contact with the inner walls has been a longstanding challenge for prior approaches. We present a follow-the-leader endoscopic robot based on a flexible continuum structure designed to minimize contact between the endoscope body and intestinal walls, thereby reducing patient discomfort. To achieve this objective, we propose a vision-based deep reinforcement learning framework guided by monocular depth estimation. A realistic intestinal simulation environment was constructed in \textit{NVIDIA Omniverse} to train and evaluate autonomous navigation strategies. Furthermore, thousands of synthetic intraluminal images were generated using NVIDIA Replicator to fine-tune the Depth Anything model, enabling dense three-dimensional perception of the intestinal environment with a single monocular camera. Subsequently, we introduce a geometry-aware reward and penalty mechanism to enable accurate lumen tracking. Compared with the original Depth Anything model, our method improves $δ_{1}$ depth accuracy by 39.2% and reduces the navigation J-index by 0.67 relative to the second-best method, demonstrating the robustness and effectiveness of the proposed approach.
Closing the Reality Gap: Zero-Shot Sim-to-Real Deployment for Dexterous Force-Based Grasping and Manipulation
Human-like dexterous hands with multiple fingers offer human-level manipulation capabilities, but training control policies that can directly deploy on real hardware remains difficult due to contact-rich physics and imperfect actuation. We close this gap with a practical sim-to-real reinforcement learning (RL) framework that utilizes dense tactile feedback combined with joint torque sensing to explicitly regulate physical interactions. To enable effective sim-to-real transfer, we introduce (i) a computationally fast tactile simulation that computes distances between dense virtual tactile units and the object via parallel forward kinematics, providing high-rate, high-resolution touch signals needed by RL; (ii) a current-to-torque calibration that eliminates the need for torque sensors on dexterous hands by mapping motor current to joint torque; and (iii) actuator dynamics modeling to bridge the actuation gaps with randomization of non-ideal effects such as backlash, torque-speed saturation. Using an asymmetric actor-critic PPO pipeline trained entirely in simulation, our policies deploy directly to a five-finger hand. The resulting policies demonstrated two essential skills: (1) command-based, controllable grasp force tracking, and (2) reorientation of objects in the hand, both of which were robustly executed without fine-tuning on the robot. By combining tactile and torque in the observation space with effective sensing/actuation modeling, our system provides a practical solution to achieve reliable dexterous manipulation. To our knowledge, this is the first demonstration of controllable grasping on a multi-finger dexterous hand trained entirely in simulation and transferred zero-shot on real hardware.
M-SEVIQ: A Multi-band Stereo Event Visual-Inertial Quadruped-based Dataset for Perception under Rapid Motion and Challenging Illumination
Agile locomotion in legged robots poses significant challenges for visual perception. Traditional frame-based cameras often fail in these scenarios for producing blurred images, particularly under low-light conditions. In contrast, event cameras capture changes in brightness asynchronously, offering low latency, high temporal resolution, and high dynamic range. These advantages make them suitable for robust perception during rapid motion and under challenging illumination. However, existing event camera datasets exhibit limitations in stereo configurations and multi-band sensing domains under various illumination conditions. To address this gap, we present M-SEVIQ, a multi-band stereo event visual and inertial quadruped dataset collected using a Unitree Go2 equipped with stereo event cameras, a frame-based camera, an inertial measurement unit (IMU), and joint encoders. This dataset contains more than 30 real-world sequences captured across different velocity levels, illumination wavelengths, and lighting conditions. In addition, comprehensive calibration data, including intrinsic, extrinsic, and temporal alignments, are provided to facilitate accurate sensor fusion and benchmarking. Our M-SEVIQ can be used to support research in agile robot perception, sensor fusion, semantic segmentation and multi-modal vision in challenging environments.
comment: 6 pages, 7 figures
Advancing Assistive Robotics: Multi-Modal Navigation and Biophysical Monitoring for Next-Generation Wheelchairs
Assistive electric-powered wheelchairs (EPWs) have become essential mobility aids for people with disabilities such as amyotrophic lateral sclerosis (ALS), post-stroke hemiplegia, and dementia-related mobility impairment. This work presents a novel multi-modal EPW control system designed to prioritize patient needs while allowing seamless switching between control modes. Four complementary interfaces, namely joystick, speech, hand gesture, and electrooculography (EOG), are integrated with a continuous vital sign monitoring framework measuring heart rate variability, oxygen saturation (SpO2), and skin temperature. This combination enables greater patient independence while allowing caregivers to maintain real-time supervision and early intervention capability. Two-point calibration of the biophysical sensors against clinical reference devices resulted in root mean square errors of at most 2 bpm for heart rate, 0.5 degree Celsius for skin temperature, and 1 percent for SpO2. Experimental evaluation involved twenty participants with mobility impairments executing a total of 500 indoor navigation commands. The achieved command recognition accuracies were 99 percent for joystick control, 97 percent plus or minus 2 percent for speech, and 95 percent plus or minus 3 percent for hand gesture, with an average closed-loop latency of 20 plus or minus 0.5 milliseconds. Caregivers receive real-time alerts through an Android application following encrypted cloud transmission of physiological data. By integrating multi-modal mobility control with cloud-enabled health monitoring and reporting latency and energy budgets, the proposed prototype addresses key challenges in assistive robotics, contributes toward compliance with ISO 7176-31 and IEC 80601-2-78 safety standards, and establishes a foundation for future adaptive machine learning enhancements.
Unified Meta-Representation and Feedback Calibration for General Disturbance Estimation
Precise control in modern robotic applications is always an open issue due to unknown time-varying disturbances. Existing meta-learning-based approaches require a shared representation of environmental structures, which lack flexibility for realistic non-structural disturbances. Besides, representation error and the distribution shifts can lead to heavy degradation in prediction accuracy. This work presents a generalizable disturbance estimation framework that builds on meta-learning and feedback-calibrated online adaptation. By extracting features from a finite time window of past observations, a unified representation that effectively captures general non-structural disturbances can be learned without predefined structural assumptions. The online adaptation process is subsequently calibrated by a state-feedback mechanism to attenuate the learning residual originating from the representation and generalizability limitations. Theoretical analysis shows that simultaneous convergence of both the online learning error and the disturbance estimation error can be achieved. Through the unified meta-representation, our framework effectively estimates multiple rapidly changing disturbances, as demonstrated by quadrotor flight experiments. See the project page for video, supplementary material and code: https://nonstructural-metalearn.github.io.
comment: 8 pages, 10 figures
Towards Zero-Shot Point Cloud Registration Across Diverse Scales, Scenes, and Sensor Setups ICCV 2025
Some deep learning-based point cloud registration methods struggle with zero-shot generalization, often requiring dataset-specific hyperparameter tuning or retraining for new environments. We identify three critical limitations: (a) fixed user-defined parameters (e.g., voxel size, search radius) that fail to generalize across varying scales, (b) learned keypoint detectors exhibit poor cross-domain transferability, and (c) absolute coordinates amplify scale mismatches between datasets. To address these three issues, we present BUFFER-X, a training-free registration framework that achieves zero-shot generalization through: (a) geometric bootstrapping for automatic hyperparameter estimation, (b) distribution-aware farthest point sampling to replace learned detectors, and (c) patch-level coordinate normalization to ensure scale consistency. Our approach employs hierarchical multi-scale matching to extract correspondences across local, middle, and global receptive fields, enabling robust registration in diverse environments. For efficiency-critical applications, we introduce BUFFER-X-Lite, which reduces total computation time by 43% (relative to BUFFER-X) through early exit strategies and fast pose solvers while preserving accuracy. We evaluate on a comprehensive benchmark comprising 12 datasets spanning object-scale, indoor, and outdoor scenes, including cross-sensor registration between heterogeneous LiDAR configurations. Results demonstrate that our approach generalizes effectively without manual tuning or prior knowledge of test domains. Code: https://github.com/MIT-SPARK/BUFFER-X.
comment: 18 pages, 15 figures. Extended version of our ICCV 2025 highlight paper [arXiv:2503.07940]. arXiv admin note: substantial text overlap with arXiv:2503.07940
Optimizing Control-Friendly Trajectories with Self-Supervised Residual Learning
Real-world physics can only be analytically modeled with a certain level of precision for modern intricate robotic systems. As a result, tracking aggressive trajectories accurately could be challenging due to the existence of residual physics during controller synthesis. This paper presents a self-supervised residual learning and trajectory optimization framework to address the aforementioned challenges. At first, unknown dynamic effects on the closed-loop model are learned and treated as residuals of the nominal dynamics, jointly forming a hybrid model. We show that learning with analytic gradients can be achieved using only trajectory-level data while enjoying accurate long-horizon prediction with an arbitrary integration step size. Subsequently, a trajectory optimizer is developed to compute the optimal reference trajectory with the residual physics along it minimized. It ends up with trajectories that are friendly to the following control level. The agile flight of quadrotors illustrates that by utilizing the hybrid dynamics, the proposed optimizer outputs aggressive motions that can be precisely tracked.
comment: 10 pages, 9 figures
Loop Closure using AnyLoc Visual Place Recognition in DPV-SLAM
Loop closure is crucial for maintaining the accuracy and consistency of visual SLAM. We propose a method to improve loop closure performance in DPV-SLAM. Our approach integrates AnyLoc, a learning-based visual place recognition technique, as a replacement for the classical Bag of Visual Words (BoVW) loop detection method. In contrast to BoVW, which relies on handcrafted features, AnyLoc utilizes deep feature representations, enabling more robust image retrieval across diverse viewpoints and lighting conditions. Furthermore, we propose an adaptive mechanism that dynamically adjusts similarity threshold based on environmental conditions, removing the need for manual tuning. Experiments on both indoor and outdoor datasets demonstrate that our method significantly outperforms the original DPV-SLAM in terms of loop closure accuracy and robustness. The proposed method offers a practical and scalable solution for enhancing loop closure performance in modern SLAM systems.
comment: Accepted at IEEE/SICE International Symposium on System Integration(SII) 2026. 6 pages, 14 figures
Analysis of Various Manipulator Configurations Based on Multi-Objective Black-Box Optimization
Various 6-degree-of-freedom (DOF) and 7-DOF manipulators have been developed to date. Over a long history, their joint configurations and link length ratios have been determined empirically. In recent years, the development of robotic foundation models has become increasingly active, leading to the continuous proposal of various manipulators to support these models. However, none of these manipulators share exactly the same structure, as the order of joints and the ratio of link lengths differ among robots. Therefore, in order to discuss the optimal structure of a manipulator, we performed multi-objective optimization from the perspectives of end-effector reachability and joint torque. We analyze where existing manipulator structures stand within the sampling results of the optimization and provide insights for future manipulator design.
comment: Accepted to Advanced Robotics, website: https://haraduka.github.io/bbo-manip-design
Learning to Nudge: A Scalable Barrier Function Framework for Safe Robot Interaction in Dense Clutter
Robots operating in everyday environments must navigate and manipulate within densely cluttered spaces, where physical contact with surrounding objects is unavoidable. Traditional safety frameworks treat contact as unsafe, restricting robots to collision avoidance and limiting their ability to function in dense, everyday settings. As the number of objects grows, model-based approaches for safe manipulation become computationally intractable; meanwhile, learned methods typically tie safety to the task at hand, making them hard to transfer to new tasks without retraining. In this work we introduce Dense Contact Barrier Functions(DCBF). Our approach bypasses the computational complexity of explicitly modeling multi-object dynamics by instead learning a composable, object-centric function that implicitly captures the safety constraints arising from physical interactions. Trained offline on interactions with a few objects, the learned DCBFcomposes across arbitrary object sets at runtime, producing a single global safety filter that scales linearly and transfers across tasks without retraining. We validate our approach through simulated experiments in dense clutter, demonstrating its ability to enable collision-free navigation and safe, contact-rich interaction in suitable settings.
CageDroneRF: A Large-Scale RF Benchmark and Toolkit for Drone Perception
We present CageDroneRF (CDRF), a large-scale benchmark for Radio-Frequency (RF) drone detection and identification built from real-world captures and systematically generated synthetic variants. CDRF addresses the scarcity and limited diversity of existing RF datasets by coupling extensive raw recordings with a principled augmentation pipeline that (i) precisely controls Signal-to-Noise Ratio (SNR), (ii) injects interfering emitters, and (iii) applies frequency shifts with label-consistent bounding-box transformations for detection. This dataset spans a wide range of contemporary drone models, many unavailable in current public datasets, and acquisition conditions, derived from data collected at the Rowan University campus and within a controlled RF-cage facility. CDRF is released with interoperable open-source tools for data generation, preprocessing, augmentation, and evaluation that also operate on existing public benchmarks. CDRF enables standardized benchmarking for classification, open-set recognition, and object detection, supporting rigorous comparisons and reproducible pipelines. By releasing this comprehensive benchmark and tooling, CDRF aims to accelerate progress toward robust, generalizable RF perception models.
Effective Online 3D Bin Packing with Lookahead Parcels Using Monte Carlo Tree Search
Online 3D Bin Packing (3D-BP) with robotic arms is crucial for reducing transportation and labor costs in modern logistics. While Deep Reinforcement Learning (DRL) has shown strong performance, it often fails to adapt to real-world short-term distribution shifts, which arise as different batches of goods arrive sequentially, causing performance drops. We argue that the short-term lookahead information available in modern logistics systems is key to mitigating this issue, especially during distribution shifts. We formulate online 3D-BP with lookahead parcels as a Model Predictive Control (MPC) problem and adapt the Monte Carlo Tree Search (MCTS) framework to solve it. Our framework employs a dynamic exploration prior that automatically balances a learned RL policy and a robust random policy based on the lookahead characteristics. Additionally, we design an auxiliary reward to penalize long-term spatial waste from individual placements. Extensive experiments on real-world datasets show that our method consistently outperforms state-of-the-art baselines, achieving over 10\% gains under distributional shifts, 4\% average improvement in online deployment, and up to more than 8\% in the best case--demonstrating the effectiveness of our framework.
Making Infeasible Tasks Feasible: Planning to Reconfigure Disconnected 3D Environments with Movable Objects
Several planners have been developed to compute dynamically feasible, collision-free robot paths from an initial to a goal configuration. A key assumption in these works is that the goal region is reachable; an assumption that often fails in practice when environments are disconnected. Motivated by this limitation, we consider known 3D environments comprising objects, also called blocks, that form distinct navigable support surfaces (planes), and that are either non-movable (e.g., tables) or movable (e.g., boxes). These surfaces may be mutually disconnected due to height differences, holes, or lateral separations. Our focus is on tasks where the robot must reach a goal region residing on an elevated plane that is unreachable. Rather than declaring such tasks infeasible, an effective strategy is to enable the robot to interact with the environment, rearranging movable objects to create new traversable connections; a problem known as Navigation Among Movable Objects (NAMO). Existing NAMO planners typically address 2D environments, where obstacles are pushed aside to clear a path. These methods cannot directly handle the considered 3D setting; in such cases, obstacles must be placed strategically to bridge these physical disconnections. We address this challenge by developing BRiDGE (Block-based Reconfiguration in Disconnected 3D Geometric Environments), a sampling-based planner that incrementally builds trees over robot and object configurations to compute feasible plans specifying which objects to move, where to place them, and in what order, while accounting for a limited number of movable objects. To accelerate planning, we introduce non-uniform sampling strategies. We show that our method is probabilistically complete and we provide extensive numerical and hardware experiments validating its effectiveness.
Characterizing the Robustness of Black-Box LLM Planners Under Perturbed Observations with Adaptive Stress Testing
Large language models (LLMs) have recently demonstrated success in decision-making tasks including planning, control, and prediction, but their tendency to hallucinate unsafe and undesired outputs poses risks. This unwanted behavior is further exacerbated in environments where sensors are noisy or unreliable. Characterizing the behavior of LLM planners to varied observations is necessary to proactively avoid failures in safety-critical scenarios. We specifically investigate the response of LLMs along two different perturbation dimensions. Like prior works, one dimension generates semantically similar prompts with varied phrasing by randomizing order of details, modifying access to few-shot examples, etc. Unique to our work, the second dimension simulates access to varied sensors and noise to mimic raw sensor or detection algorithm failures. An initial case study in which perturbations are manually applied show that both dimensions lead LLMs to hallucinate in a multi-agent driving environment. However, manually covering the entire perturbation space for several scenarios is infeasible. As such, we propose a novel method for efficiently searching the space of prompt perturbations using adaptive stress testing (AST) with Monte-Carlo tree search (MCTS). Our AST formulation enables discovery of scenarios, sensor configurations, and prompt phrasing that cause language models to act with high uncertainty or even crash. By generating MCTS prompt perturbation trees across diverse scenarios, we show through extensive experiments that offline analyses can be used to proactively understand potential failures that may arise at runtime.
comment: 30 pages, 24 figures, 6 tables
Indicating Robot Vision Capabilities with Augmented Reality
Research indicates that humans can mistakenly assume that robots and humans have the same field of view, possessing an inaccurate mental model of robots. This misperception may lead to failures during human-robot collaboration tasks where robots might be asked to complete impossible tasks about out-of-view objects. The issue is more severe when robots do not have a chance to scan the scene to update their world model while focusing on assigned tasks. To help align humans' mental models of robots' vision capabilities, we propose four field-of-view indicators in augmented reality and conducted a human-subjects experiment (N=41) to evaluate them in a collaborative assembly task regarding accuracy, confidence, task efficiency, and workload. These indicators span a spectrum of positions: two at robot's eye and head space -- deepening eye socket and adding blocks to two sides of the eyes (i.e., egocentric), and two anchoring in the robot's task space -- adding extended blocks from the sides of eyes to the table and placing blocks directly on the tables (i.e., allocentric). Results showed that, when placed directly in the task space, the allocentric indicator yields the highest accuracy, although with a delay in interpreting the robot's field of view. When placed at the robot's eyes, the egocentric indicator of deeper eye sockets, possible for physical alteration, also increased accuracy. In all indicators, participants' confidence was high while cognitive load remained low. Finally, we contribute six guidelines for practitioners to apply our augmented reality indicators or physical alterations to align humans' mental models with robots' vision capabilities.
FICO: Finite-Horizon Closed-Loop Factorization for Unified Multi-Agent Path Finding
Multi-Agent Path Finding is a fundamental problem in robotics and AI, yet most existing formulations treat planning and execution separately and address variants of the problem in an ad hoc manner. This paper presents a system-level framework for MAPF that integrates planning and execution, generalizes across variants, and explicitly models uncertainties. At its core is the MAPF system, a formal model that casts MAPF as a control design problem encompassing classical and uncertainty-aware formulations. To solve it, we introduce Finite-Horizon Closed-Loop Factorization (FICO), a factorization-based algorithm inspired by receding-horizon control that exploits compositional structure for efficient closed-loop operation. FICO enables real-time responses -- commencing execution within milliseconds -- while scaling to thousands of agents and adapting seamlessly to execution-time uncertainties. Extensive case studies demonstrate that it reduces computation time by up to two orders of magnitude compared with open-loop baselines, while delivering significantly higher throughput under stochastic delays and agent arrivals. These results establish a principled foundation for analyzing and advancing MAPF through system-level modeling, factorization, and closed-loop design.
Evaluating Gemini Robotics Policies in a Veo World Simulator
Generative world models hold significant potential for simulating interactions with visuomotor policies in varied environments. Frontier video models can enable generation of realistic observations and environment interactions in a scalable and general manner. However, the use of video models in robotics has been limited primarily to in-distribution evaluations, i.e., scenarios that are similar to ones used to train the policy or fine-tune the base video model. In this report, we demonstrate that video models can be used for the entire spectrum of policy evaluation use cases in robotics: from assessing nominal performance to out-of-distribution (OOD) generalization, and probing physical and semantic safety. We introduce a generative evaluation system built upon a frontier video foundation model (Veo). The system is optimized to support robot action conditioning and multi-view consistency, while integrating generative image-editing and multi-view completion to synthesize realistic variations of real-world scenes along multiple axes of generalization. We demonstrate that the system preserves the base capabilities of the video model to enable accurate simulation of scenes that have been edited to include novel interaction objects, novel visual backgrounds, and novel distractor objects. This fidelity enables accurately predicting the relative performance of different policies in both nominal and OOD conditions, determining the relative impact of different axes of generalization on policy performance, and performing red teaming of policies to expose behaviors that violate physical or semantic safety constraints. We validate these capabilities through 1600+ real-world evaluations of eight Gemini Robotics policy checkpoints and five tasks for a bimanual manipulator.
DDBot: Differentiable Physics-based Digging Robot for Unknown Granular Materials
Automating the manipulation of granular materials poses significant challenges due to complex contact dynamics, unpredictable material properties, and intricate system states. Existing approaches often fail to achieve efficiency and accuracy in such tasks. To fill the research gap, this article studies the small-scale and high-precision granular material digging task with unknown physical properties. A key scientific problem addressed is the feasibility of applying first-order gradient-based optimization to complex differentiable granular material simulation and overcoming associated numerical instability. A new framework, named differentiable digging robot (DDBot), is proposed to manipulate granular materials, including sand and soil. Specifically, we equip DDBot with a differentiable physics-based simulator, tailored for granular material manipulation, powered by GPU-accelerated parallel computing and automatic differentiation. DDBot can perform efficient differentiable system identification and high-precision digging skill optimization for unknown granular materials, which is enabled by a differentiable skill-to-action mapping, a task-oriented demonstration method, gradient clipping and line search-based gradient descent. Experimental results show that DDBot can efficiently (converge within 5 to 20 minutes) identify unknown granular material dynamics and optimize digging skills, with high-precision results in zero-shot real-world deployments, highlighting its practicality. Benchmark results against state-of-the-art baselines also confirm the robustness and efficiency of DDBot in such digging tasks.
comment: Published as a regular paper by the IEEE Transactions on Robotics
An Informative Planning Framework for Target Tracking and Active Mapping in Dynamic Environments with ASVs RA-L
Mobile robot platforms are increasingly being used to automate information gathering tasks such as environmental monitoring. Efficient target tracking in dynamic environments is critical for applications such as search and rescue and pollutant cleanups. In this letter, we study active mapping of floating targets that drift due to environmental disturbances such as wind and currents. This is a challenging problem as it involves predicting both spatial and temporal variations in the map due to changing conditions. We introduce an integrated framework combining dynamic occupancy grid mapping and an informative planning approach to actively map and track freely drifting targets with an autonomous surface vehicle. A key component of our adaptive planning approach is a spatiotemporal prediction network that predicts target position distributions over time. We further propose a planning objective for target tracking that leverages these predictions. Simulation experiments show that this planning objective improves target tracking performance compared to existing methods that consider only entropy reduction as the planning objective. Finally, we validate our approach in field tests, showcasing its ability to track targets in real-world monitoring scenarios.
comment: Accepted for publication in Robotics and Automation Letters (RA-L)
Augmented Reality for RObots (ARRO): Pointing Visuomotor Policies Towards Visual Robustness
Visuomotor policies trained on human expert demonstrations have recently shown strong performance across a wide range of robotic manipulation tasks. However, these policies remain highly sensitive to domain shifts stemming from background or robot embodiment changes, which limits their generalization capabilities. In this paper, we present ARRO, a novel visual representation that leverages zero-shot open-vocabulary segmentation and object detection models to efficiently mask out task-irrelevant regions of the scene in real time without requiring additional training, modeling of the setup, or camera calibration. By filtering visual distractors and overlaying virtual guides during both training and inference, ARRO improves robustness to scene variations and reduces the need for additional data collection. We extensively evaluate ARRO with Diffusion Policy on a range of tabletop manipulation tasks in both simulation and real-world environments, and further demonstrate its compatibility and effectiveness with generalist robot policies, such as Octo, OpenVLA and Pi Zero. Across all settings in our evaluation, ARRO yields consistent performance gains, allows for selective masking to choose between different objects, and shows robustness even to challenging segmentation conditions. Videos showcasing our results are available at: https://augmented-reality-for-robots.github.io/
RobotDiffuse: Diffusion-Based Motion Planning for Redundant Manipulators with the ROP Obstacle Avoidance Dataset
Redundant manipulators, with their higher Degrees of Freedom (DoFs), offer enhanced kinematic performance and versatility, making them suitable for applications like manufacturing, surgical robotics, and human-robot collaboration. However, motion planning for these manipulators is challenging due to increased DoFs and complex, dynamic environments. While traditional motion planning algorithms struggle with high-dimensional spaces, deep learning-based methods often face instability and inefficiency in complex tasks. This paper introduces RobotDiffuse, a diffusion model-based approach for motion planning in redundant manipulators. By integrating physical constraints with a point cloud encoder and replacing the U-Net structure with an encoder-only transformer, RobotDiffuse improves the model's ability to capture temporal dependencies and generate smoother, more coherent motion plans. We validate the approach using a complex simulator and release a new dataset, Robot-obtalcles-panda (ROP), with 35M robot poses and 0.14M obstacle avoidance scenarios. The highest overall score obtained in the experiment demonstrates the effectiveness of RobotDiffuse and the promise of diffusion models for motion planning tasks. The dataset can be accessed at https://github.com/ACRoboT-buaa/RobotDiffuse.
VLN-MME: Diagnosing MLLMs as Language-guided Visual Navigation agents
Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities across a wide range of vision-language tasks. However, their performance as embodied agents, which requires multi-round dialogue spatial reasoning and sequential action prediction, needs further exploration. Our work investigates this potential in the context of Vision-and-Language Navigation (VLN) by introducing a unified and extensible evaluation framework to probe MLLMs as zero-shot agents by bridging traditional navigation datasets into a standardized benchmark, named VLN-MME. We simplify the evaluation with a highly modular and accessible design. This flexibility streamlines experiments, enabling structured comparisons and component-level ablations across diverse MLLM architectures, agent designs, and navigation tasks. Crucially, enabled by our framework, we observe that enhancing our baseline agent with Chain-of-Thought (CoT) reasoning and self-reflection leads to an unexpected performance decrease. This suggests MLLMs exhibit poor context awareness in embodied navigation tasks; although they can follow instructions and structure their output, their 3D spatial reasoning fidelity is low. VLN-MME lays the groundwork for systematic evaluation of general-purpose MLLMs in embodied navigation settings and reveals limitations in their sequential decision-making capabilities. We believe these findings offer crucial guidance for MLLM post-training as embodied agents.
Steering Flexible Linear Objects in Planar Environments by Two Robot Hands Using Euler's Elastica Solutions
The manipulation of flexible objects such as cables, wires and fresh food items by robot hands forms a special challenge in robot grasp mechanics. This paper considers the steering of flexible linear objects in planar environments by two robot hands. The flexible linear object, modeled as an elastic non-stretchable rod, is manipulated by varying the gripping endpoint positions while keeping equal endpoint tangents. The flexible linear object shape has a closed form solution in terms of the grasp endpoint positions and tangents, called Euler's elastica. This paper obtains the elastica solutions under the optimal control framework, then uses the elastica solutions to obtain closed-form criteria for non self-intersection, stability and obstacle avoidance of the flexible linear object. The new tools are incorporated into a planning scheme for steering flexible linear objects in planar environments populated by sparsely spaced obstacles. The scheme is fully implemented and demonstrated with detailed examples.
Chain-of-Action: Trajectory Autoregressive Modeling for Robotic Manipulation
We present Chain-of-Action (CoA), a novel visuo-motor policy paradigm built upon Trajectory Autoregressive Modeling. Unlike conventional approaches that predict next step action(s) forward, CoA generates an entire trajectory by explicit backward reasoning with task-specific goals through an action-level Chain-of-Thought (CoT) process. This process is unified within a single autoregressive structure: (1) the first token corresponds to a stable keyframe action that encodes the task-specific goals; and (2) subsequent action tokens are generated autoregressively, conditioned on the initial keyframe and previously predicted actions. This backward action reasoning enforces a global-to-local structure, allowing each local action to be tightly constrained by the final goal. To further realize the action reasoning structure, CoA incorporates four complementary designs: continuous action token representation; dynamic stopping for variable-length trajectory generation; reverse temporal ensemble; and multi-token prediction to balance action chunk modeling with global structure. As a result, CoA gives strong spatial generalization capabilities while preserving the flexibility and simplicity of a visuo-motor policy. Empirically, we observe CoA achieves the state-of-the-art performance across 60 RLBench tasks and 8 real-world manipulation tasks.
Efficient Swept Volume-Based Trajectory Generation for Arbitrary-Shaped Ground Robot Navigation
Navigating an arbitrary-shaped ground robot safely in cluttered environments remains a challenging problem. The existing trajectory planners that account for the robot's physical geometry severely suffer from the intractable runtime. To achieve both computational efficiency and Continuous Collision Avoidance (CCA) of arbitrary-shaped ground robot planning, we proposed a novel coarse-to-fine navigation framework that significantly accelerates planning. In the first stage, a sampling-based method selectively generates distinct topological paths that guarantee a minimum inflated margin. In the second stage, a geometry-aware front-end strategy is designed to discretize these topologies into full-state robot motion sequences while concurrently partitioning the paths into SE(2) sub-problems and simpler R2 sub-problems for back-end optimization. In the final stage, an SVSDF-based optimizer generates trajectories tailored to these sub-problems and seamlessly splices them into a continuous final motion plan. Extensive benchmark comparisons show that the proposed method is one to several orders of magnitude faster than the cutting-edge methods in runtime while maintaining a high planning success rate and ensuring CCA.
RoboMIND 2.0: A Multimodal, Bimanual Mobile Manipulation Dataset for Generalizable Embodied Intelligence
While data-driven imitation learning has revolutionized robotic manipulation, current approaches remain constrained by the scarcity of large-scale, diverse real-world demonstrations. Consequently, the ability of existing models to generalize across long-horizon bimanual tasks and mobile manipulation in unstructured environments remains limited. To bridge this gap, we present RoboMIND 2.0, a comprehensive real-world dataset comprising over 310K dual-arm manipulation trajectories collected across six distinct robot embodiments and 739 complex tasks. Crucially, to support research in contact-rich and spatially extended tasks, the dataset incorporates 12K tactile-enhanced episodes and 20K mobile manipulation trajectories. Complementing this physical data, we construct high-fidelity digital twins of our real-world environments, releasing an additional 20K-trajectory simulated dataset to facilitate robust sim-to-real transfer. To fully exploit the potential of RoboMIND 2.0, we propose MIND-2 system, a hierarchical dual-system frame-work optimized via offline reinforcement learning. MIND-2 integrates a high-level semantic planner (MIND-2-VLM) to decompose abstract natural language instructions into grounded subgoals, coupled with a low-level Vision-Language-Action executor (MIND-2-VLA), which generates precise, proprioception-aware motor actions.
RoboTracer: Mastering Spatial Trace with Reasoning in Vision-Language Models for Robotics
Spatial tracing, as a fundamental embodied interaction ability for robots, is inherently challenging as it requires multi-step metric-grounded reasoning compounded with complex spatial referring and real-world metric measurement. However, existing methods struggle with this compositional task. To this end, we propose RoboTracer, a 3D-aware VLM that first achieves both 3D spatial referring and measuring via a universal spatial encoder and a regression-supervised decoder to enhance scale awareness during supervised fine-tuning (SFT). Moreover, RoboTracer advances multi-step metric-grounded reasoning via reinforcement fine-tuning (RFT) with metric-sensitive process rewards, supervising key intermediate perceptual cues to accurately generate spatial traces. To support SFT and RFT training, we introduce TraceSpatial, a large-scale dataset of 30M QA pairs, spanning outdoor/indoor/tabletop scenes and supporting complex reasoning processes (up to 9 steps). We further present TraceSpatial-Bench, a challenging benchmark filling the gap to evaluate spatial tracing. Experimental results show that RoboTracer surpasses baselines in spatial understanding, measuring, and referring, with an average success rate of 79.1%, and also achieves SOTA performance on TraceSpatial-Bench by a large margin, exceeding Gemini-2.5-Pro by 36% accuracy. Notably, RoboTracer can be integrated with various control policies to execute long-horizon, dynamic tasks across diverse robots (UR5, G1 humanoid) in cluttered real-world scenes. See the project page at https://zhoues.github.io/RoboTracer.
comment: Project page: https://zhoues.github.io/RoboTracer
AdaVLN: Towards Visual Language Navigation in Continuous Indoor Environments with Moving Humans
Visual Language Navigation is a task that challenges robots to navigate in realistic environments based on natural language instructions. While previous research has largely focused on static settings, real-world navigation must often contend with dynamic human obstacles. Hence, we propose an extension to the task, termed Adaptive Visual Language Navigation (AdaVLN), which seeks to narrow this gap. AdaVLN requires robots to navigate complex 3D indoor environments populated with dynamically moving human obstacles, adding a layer of complexity to navigation tasks that mimic the real-world. To support exploration of this task, we also present AdaVLN simulator and AdaR2R datasets. The AdaVLN simulator enables easy inclusion of fully animated human models directly into common datasets like Matterport3D. We also introduce a "freeze-time" mechanism for both the navigation task and simulator, which pauses world state updates during agent inference, enabling fair comparisons and experimental reproducibility across different hardware. We evaluate several baseline models on this task, analyze the unique challenges introduced by AdaVLN, and demonstrate its potential to bridge the sim-to-real gap in VLN research.
DarkEQA: Benchmarking Vision-Language Models for Embodied Question Answering in Low-Light Indoor Environments RA-L
Vision Language Models (VLMs) are increasingly adopted as central reasoning modules for embodied agents. Existing benchmarks evaluate their capabilities under ideal, well-lit conditions, yet robust 24/7 operation demands performance under a wide range of visual degradations, including low-light conditions at night or in dark environments--a core necessity that has been largely overlooked. To address this underexplored challenge, we present DarkEQA, an open-source benchmark for evaluating EQA-relevant perceptual primitives under multi-level low-light conditions. DarkEQA isolates the perception bottleneck by evaluating question answering from egocentric observations under controlled degradations, enabling attributable robustness analysis. A key design feature of DarkEQA is its physical fidelity: visual degradations are modeled in linear RAW space, simulating physics-based illumination drop and sensor noise followed by an ISP-inspired rendering pipeline. We demonstrate the utility of DarkEQA by evaluating a wide range of state-of-the-art VLMs and Low-Light Image Enhancement (LLIE) models. Our analysis systematically reveals VLMs' limitations when operating under these challenging visual conditions. Project website: https://darkeqa-benchmark.github.io/
comment: Submitted to IEEE Robotics and Automation Letters (RA-L)
Computer Vision and Pattern Recognition 139
Understanding Reward Hacking in Text-to-Image Reinforcement Learning
Reinforcement learning (RL) has become a standard approach for post-training large language models and, more recently, for improving image generation models, which uses reward functions to enhance generation quality and human preference alignment. However, existing reward designs are often imperfect proxies for true human judgment, making models prone to reward hacking--producing unrealistic or low-quality images that nevertheless achieve high reward scores. In this work, we systematically analyze reward hacking behaviors in text-to-image (T2I) RL post-training. We investigate how both aesthetic/human preference rewards and prompt-image consistency rewards individually contribute to reward hacking and further show that ensembling multiple rewards can only partially mitigate this issue. Across diverse reward models, we identify a common failure mode: the generation of artifact-prone images. To address this, we propose a lightweight and adaptive artifact reward model, trained on a small curated dataset of artifact-free and artifact-containing samples. This model can be integrated into existing RL pipelines as an effective regularizer for commonly used reward models. Experiments demonstrate that incorporating our artifact reward significantly improves visual realism and reduces reward hacking across multiple T2I RL setups, demonstrating the effectiveness of lightweight reward augment serving as a safeguard against reward hacking.
ThinkRL-Edit: Thinking in Reinforcement Learning for Reasoning-Centric Image Editing
Instruction-driven image editing with unified multimodal generative models has advanced rapidly, yet their underlying visual reasoning remains limited, leading to suboptimal performance on reasoning-centric edits. Reinforcement learning (RL) has been investigated for improving the quality of image editing, but it faces three key challenges: (1) limited reasoning exploration confined to denoising stochasticity, (2) biased reward fusion, and (3) unstable VLM-based instruction rewards. In this work, we propose ThinkRL-Edit, a reasoning-centric RL framework that decouples visual reasoning from image synthesis and expands reasoning exploration beyond denoising. To the end, we introduce Chain-of-Thought (CoT)-based reasoning sampling with planning and reflection stages prior to generation in online sampling, compelling the model to explore multiple semantic hypotheses and validate their plausibility before committing to a visual outcome. To avoid the failures of weighted aggregation, we propose an unbiased chain preference grouping strategy across multiple reward dimensions. Moreover, we replace interval-based VLM scores with a binary checklist, yielding more precise, lower-variance, and interpretable rewards for complex reasoning. Experiments show our method significantly outperforms prior work on reasoning-centric image editing, producing instruction-faithful, visually coherent, and semantically grounded edits.
Latent Geometry of Taste: Scalable Low-Rank Matrix Factorization
Scalability and data sparsity remain critical bottlenecks for collaborative filtering on massive interaction datasets. This work investigates the latent geometry of user preferences using the MovieLens 32M dataset, implementing a high-performance, parallelized Alternating Least Squares (ALS) framework. Through extensive hyperparameter optimization, we demonstrate that constrained low-rank models significantly outperform higher dimensional counterparts in generalization, achieving an optimal balance between Root Mean Square Error (RMSE) and ranking precision. We visualize the learned embedding space to reveal the unsupervised emergence of semantic genre clusters, confirming that the model captures deep structural relationships solely from interaction data. Finally, we validate the system's practical utility in a cold-start scenario, introducing a tunable scoring parameter to manage the trade-off between popularity bias and personalized affinity effectively. The codebase for this research can be found here: https://github.com/joshsalako/recommender.git
Experimental Comparison of Light-Weight and Deep CNN Models Across Diverse Datasets
Our results reveal that a well-regularized shallow architecture can serve as a highly competitive baseline across heterogeneous domains - from smart-city surveillance to agricultural variety classification - without requiring large GPUs or specialized pre-trained models. This work establishes a unified, reproducible benchmark for multiple Bangladeshi vision datasets and highlights the practical value of lightweight CNNs for real-world deployment in low-resource settings.
comment: 25 pages, 11 figures
FROST-Drive: Scalable and Efficient End-to-End Driving with a Frozen Vision Encoder
End-to-end (E2E) models in autonomous driving aim to directly map sensor inputs to control commands, but their ability to generalize to novel and complex scenarios remains a key challenge. The common practice of fully fine-tuning the vision encoder on driving datasets potentially limits its generalization by causing the model to specialize too heavily in the training data. This work challenges the necessity of this training paradigm. We propose FROST-Drive, a novel E2E architecture designed to preserve and leverage the powerful generalization capabilities of a pretrained vision encoder from a Vision-Language Model (VLM). By keeping the encoder's weights frozen, our approach directly transfers the rich, generalized world knowledge from the VLM to the driving task. Our model architecture combines this frozen encoder with a transformer-based adapter for multimodal fusion and a GRU-based decoder for smooth waypoint generation. Furthermore, we introduce a custom loss function designed to directly optimize for Rater Feedback Score (RFS), a metric that prioritizes robust trajectory planning. We conduct extensive experiments on Waymo Open E2E Dataset, a large-scale datasets deliberately curated to capture the long-tail scenarios, demonstrating that our frozen-encoder approach significantly outperforms models that employ full fine-tuning. Our results provide substantial evidence that preserving the broad knowledge of a capable VLM is a more effective strategy for achieving robust, generalizable driving performance than intensive domain-specific adaptation. This offers a new pathway for developing vision-based models that can better handle the complexities of real-world application domains.
WeedRepFormer: Reparameterizable Vision Transformers for Real-Time Waterhemp Segmentation and Gender Classification
We present WeedRepFormer, a lightweight multi-task Vision Transformer designed for simultaneous waterhemp segmentation and gender classification. Existing agricultural models often struggle to balance the fine-grained feature extraction required for biological attribute classification with the efficiency needed for real-time deployment. To address this, WeedRepFormer systematically integrates structural reparameterization across the entire architecture - comprising a Vision Transformer backbone, a Lite R-ASPP decoder, and a novel reparameterizable classification head - to decouple training-time capacity from inference-time latency. We also introduce a comprehensive waterhemp dataset containing 10,264 annotated frames from 23 plants. On this benchmark, WeedRepFormer achieves 92.18% mIoU for segmentation and 81.91% accuracy for gender classification using only 3.59M parameters and 3.80 GFLOPs. At 108.95 FPS, our model outperforms the state-of-the-art iFormer-T by 4.40% in classification accuracy while maintaining competitive segmentation performance and significantly reducing parameter count by 1.9x.
comment: 11 pages, 5 figures
GAMBIT: A Gamified Jailbreak Framework for Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) have become widely deployed, yet their safety alignment remains fragile under adversarial inputs. Previous work has shown that increasing inference steps can disrupt safety mechanisms and lead MLLMs to generate attacker-desired harmful content. However, most existing attacks focus on increasing the complexity of the modified visual task itself and do not explicitly leverage the model's own reasoning incentives. This leads to them underperforming on reasoning models (Models with Chain-of-Thoughts) compared to non-reasoning ones (Models without Chain-of-Thoughts). If a model can think like a human, can we influence its cognitive-stage decisions so that it proactively completes a jailbreak? To validate this idea, we propose GAMBI} (Gamified Adversarial Multimodal Breakout via Instructional Traps), a novel multimodal jailbreak framework that decomposes and reassembles harmful visual semantics, then constructs a gamified scene that drives the model to explore, reconstruct intent, and answer as part of winning the game. The resulting structured reasoning chain increases task complexity in both vision and text, positioning the model as a participant whose goal pursuit reduces safety attention and induces it to answer the reconstructed malicious query. Extensive experiments on popular reasoning and non-reasoning MLLMs demonstrate that GAMBIT achieves high Attack Success Rates (ASR), reaching 92.13% on Gemini 2.5 Flash, 91.20% on QvQ-MAX, and 85.87% on GPT-4o, significantly outperforming baselines.
Inferring Clinically Relevant Molecular Subtypes of Pancreatic Cancer from Routine Histopathology Using Deep Learning
Molecular subtyping of PDAC into basal-like and classical has established prognostic and predictive value. However, its use in clinical practice is limited by cost, turnaround time, and tissue requirements, thereby restricting its application in the management of PDAC. We introduce PanSubNet, an interpretable deep learning framework that predicts therapy-relevant molecular subtypes directly from standard H&E-stained WSIs. PanSubNet was developed using data from 1,055 patients across two multi-institutional cohorts (PANCAN, n=846; TCGA, n=209) with paired histology and RNA-seq data. Ground-truth labels were derived using the validated Moffitt 50-gene signature refined by GATA6 expression. The model employs dual-scale architecture that fuses cellular-level morphology with tissue-level architecture, leveraging attention mechanisms for multi-scale representation learning and transparent feature attribution. On internal validation within PANCAN using five-fold cross-validation, PanSubNet achieved mean AUC of 88.5% with balanced sensitivity and specificity. External validation on the independent TCGA cohort without fine-tuning demonstrated robust generalizability (AUC 84.0%). PanSubNet preserved and, in metastatic disease, strengthened prognostic stratification compared to RNA-seq based labels. Prediction uncertainty linked to intermediate transcriptional states, not classification noise. Model predictions are aligned with established transcriptomic programs, differentiation markers, and DNA damage repair signatures. By enabling rapid, cost-effective molecular stratification from routine H&E-stained slides, PanSubNet offers a clinically deployable and interpretable tool for genetic subtyping. We are gathering data from two institutions to validate and assess real-world performance, supporting integration into digital pathology workflows and advancing precision oncology for PDAC.
Eye-Q: A Multilingual Benchmark for Visual Word Puzzle Solving and Image-to-Phrase Reasoning
Vision-Language Models (VLMs) have achieved strong performance on standard vision-language benchmarks, yet often rely on surface-level recognition rather than deeper reasoning. We propose visual word puzzles as a challenging alternative, as they require discovering implicit visual cues, generating and revising hypotheses, and mapping perceptual evidence to non-literal concepts in ways that are difficult to solve via literal grounding, OCR-heavy shortcuts, or simple retrieval-style matching. We introduce Eye-Q, a multilingual benchmark designed to assess this form of complex visual understanding. Eye-Q contains 1,343 puzzles in which a model observes a conceptually dense scene with a brief description and must infer a specific target word or phrase. The puzzles are intentionally unstructured and cue-implicit, with distractors and contextual relationships that demand selective attention, abstraction, and associative inference. The benchmark spans English, Persian, Arabic, and cross-lingual puzzles. We evaluate state-of-the-art VLMs using an open-ended, human-aligned protocol that probes hypothesis formation and revision under lightweight assistance. Results reveal substantial performance gaps, especially on abstract and cross-lingual puzzles, highlighting limitations in current models' ability to construct and search over appropriate conceptual representations for flexible image-to-phrase inference; maximum accuracy reaches only 60.27%.
comment: 8 pages
Better, But Not Sufficient: Testing Video ANNs Against Macaque IT Dynamics ICCV 2025
Feedforward artificial neural networks (ANNs) trained on static images remain the dominant models of the the primate ventral visual stream, yet they are intrinsically limited to static computations. The primate world is dynamic, and the macaque ventral visual pathways, specifically the inferior temporal (IT) cortex not only supports object recognition but also encodes object motion velocity during naturalistic video viewing. Does IT's temporal responses reflect nothing more than time-unfolded feedforward transformations, framewise features with shallow temporal pooling, or do they embody richer dynamic computations? We tested this by comparing macaque IT responses during naturalistic videos against static, recurrent, and video-based ANN models. Video models provided modest improvements in neural predictivity, particularly at later response stages, raising the question of what kind of dynamics they capture. To probe this, we applied a stress test: decoders trained on naturalistic videos were evaluated on "appearance-free" variants that preserve motion but remove shape and texture. IT population activity generalized across this manipulation, but all ANN classes failed. Thus, current video models better capture appearance-bound dynamics rather than the appearance-invariant temporal computations expressed in IT, underscoring the need for new objectives that encode biological temporal statistics and invariances.
comment: Extended Abstract at the 2nd Human-inspired Computer Vision workshop at ICCV 2025
Edit2Restore:Few-Shot Image Restoration via Parameter-Efficient Adaptation of Pre-trained Editing Models
Image restoration has traditionally required training specialized models on thousands of paired examples per degradation type. We challenge this paradigm by demonstrating that powerful pre-trained text-conditioned image editing models can be efficiently adapted for multiple restoration tasks through parameter-efficient fine-tuning with remarkably few examples. Our approach fine-tunes LoRA adapters on FLUX.1 Kontext, a state-of-the-art 12B parameter flow matching model for image-to-image translation, using only 16-128 paired images per task, guided by simple text prompts that specify the restoration operation. Unlike existing methods that train specialized restoration networks from scratch with thousands of samples, we leverage the rich visual priors already encoded in large-scale pre-trained editing models, dramatically reducing data requirements while maintaining high perceptual quality. A single unified LoRA adapter, conditioned on task-specific text prompts, effectively handles multiple degradations including denoising, deraining, and dehazing. Through comprehensive ablation studies, we analyze: (i) the impact of training set size on restoration quality, (ii) trade-offs between task-specific versus unified multi-task adapters, (iii) the role of text encoder fine-tuning, and (iv) zero-shot baseline performance. While our method prioritizes perceptual quality over pixel-perfect reconstruction metrics like PSNR/SSIM, our results demonstrate that pre-trained image editing models, when properly adapted, offer a compelling and data-efficient alternative to traditional image restoration approaches, opening new avenues for few-shot, prompt-guided image enhancement. The code to reproduce our results are available at: https://github.com/makinyilmaz/Edit2Restore
A Novel Unified Approach to Deepfake Detection
The advancements in the field of AI is increasingly giving rise to various threats. One of the most prominent of them is the synthesis and misuse of Deepfakes. To sustain trust in this digital age, detection and tagging of deepfakes is very necessary. In this paper, a novel architecture for Deepfake detection in images and videos is presented. The architecture uses cross attention between spatial and frequency domain features along with a blood detection module to classify an image as real or fake. This paper aims to develop a unified architecture and provide insights into each step. Though this approach we achieve results better than SOTA, specifically 99.80%, 99.88% AUC on FF++ and Celeb-DF upon using Swin Transformer and BERT and 99.55, 99.38 while using EfficientNet-B4 and BERT. The approach also generalizes very well achieving great cross dataset results as well.
RiskCueBench: Benchmarking Anticipatory Reasoning from Early Risk Cues in Video-Language Models
With the rapid growth of video centered social media, the ability to anticipate risky events from visual data is a promising direction for ensuring public safety and preventing real world accidents. Prior work has extensively studied supervised video risk assessment across domains such as driving, protests, and natural disasters. However, many existing datasets provide models with access to the full video sequence, including the accident itself, which substantially reduces the difficulty of the task. To better reflect real world conditions, we introduce a new video understanding benchmark RiskCueBench in which videos are carefully annotated to identify a risk signal clip, defined as the earliest moment that indicates a potential safety concern. Experimental results reveal a significant gap in current systems ability to interpret evolving situations and anticipate future risky events from early visual signals, highlighting important challenges for deploying video risk prediction models in practice.
Guardians of the Hair: Rescuing Soft Boundaries in Depth, Stereo, and Novel Views
Soft boundaries, like thin hairs, are commonly observed in natural and computer-generated imagery, but they remain challenging for 3D vision due to the ambiguous mixing of foreground and background cues. This paper introduces Guardians of the Hair (HairGuard), a framework designed to recover fine-grained soft boundary details in 3D vision tasks. Specifically, we first propose a novel data curation pipeline that leverages image matting datasets for training and design a depth fixer network to automatically identify soft boundary regions. With a gated residual module, the depth fixer refines depth precisely around soft boundaries while maintaining global depth quality, allowing plug-and-play integration with state-of-the-art depth models. For view synthesis, we perform depth-based forward warping to retain high-fidelity textures, followed by a generative scene painter that fills disoccluded regions and eliminates redundant background artifacts within soft boundaries. Finally, a color fuser adaptively combines warped and inpainted results to produce novel views with consistent geometry and fine-grained details. Extensive experiments demonstrate that HairGuard achieves state-of-the-art performance across monocular depth estimation, stereo image/video conversion, and novel view synthesis, with significant improvements in soft boundary regions.
RelightAnyone: A Generalized Relightable 3D Gaussian Head Model
3D Gaussian Splatting (3DGS) has become a standard approach to reconstruct and render photorealistic 3D head avatars. A major challenge is to relight the avatars to match any scene illumination. For high quality relighting, existing methods require subjects to be captured under complex time-multiplexed illumination, such as one-light-at-a-time (OLAT). We propose a new generalized relightable 3D Gaussian head model that can relight any subject observed in a single- or multi-view images without requiring OLAT data for that subject. Our core idea is to learn a mapping from flat-lit 3DGS avatars to corresponding relightable Gaussian parameters for that avatar. Our model consists of two stages: a first stage that models flat-lit 3DGS avatars without OLAT lighting, and a second stage that learns the mapping to physically-based reflectance parameters for high-quality relighting. This two-stage design allows us to train the first stage across diverse existing multi-view datasets without OLAT lighting ensuring cross-subject generalization, where we learn a dataset-specific lighting code for self-supervised lighting alignment. Subsequently, the second stage can be trained on a significantly smaller dataset of subjects captured under OLAT illumination. Together, this allows our method to generalize well and relight any subject from the first stage as if we had captured them under OLAT lighting. Furthermore, we can fit our model to unseen subjects from as little as a single image, allowing several applications in novel view synthesis and relighting for digital avatars.
Muses: Designing, Composing, Generating Nonexistent Fantasy 3D Creatures without Training
We present Muses, the first training-free method for fantastic 3D creature generation in a feed-forward paradigm. Previous methods, which rely on part-aware optimization, manual assembly, or 2D image generation, often produce unrealistic or incoherent 3D assets due to the challenges of intricate part-level manipulation and limited out-of-domain generation. In contrast, Muses leverages the 3D skeleton, a fundamental representation of biological forms, to explicitly and rationally compose diverse elements. This skeletal foundation formalizes 3D content creation as a structure-aware pipeline of design, composition, and generation. Muses begins by constructing a creatively composed 3D skeleton with coherent layout and scale through graph-constrained reasoning. This skeleton then guides a voxel-based assembly process within a structured latent space, integrating regions from different objects. Finally, image-guided appearance modeling under skeletal conditions is applied to generate a style-consistent and harmonious texture for the assembled shape. Extensive experiments establish Muses' state-of-the-art performance in terms of visual fidelity and alignment with textual descriptions, and potential on flexible 3D object editing. Project page: https://luhexiao.github.io/Muses.github.io/.
comment: Project page: https://luhexiao.github.io/Muses.github.io/
InfiniDepth: Arbitrary-Resolution and Fine-Grained Depth Estimation with Neural Implicit Fields
Existing depth estimation methods are fundamentally limited to predicting depth on discrete image grids. Such representations restrict their scalability to arbitrary output resolutions and hinder the geometric detail recovery. This paper introduces InfiniDepth, which represents depth as neural implicit fields. Through a simple yet effective local implicit decoder, we can query depth at continuous 2D coordinates, enabling arbitrary-resolution and fine-grained depth estimation. To better assess our method's capabilities, we curate a high-quality 4K synthetic benchmark from five different games, spanning diverse scenes with rich geometric and appearance details. Extensive experiments demonstrate that InfiniDepth achieves state-of-the-art performance on both synthetic and real-world benchmarks across relative and metric depth estimation tasks, particularly excelling in fine-detail regions. It also benefits the task of novel view synthesis under large viewpoint shifts, producing high-quality results with fewer holes and artifacts.
comment: 19 pages, 13 figures
A Versatile Multimodal Agent for Multimedia Content Generation
With the advancement of AIGC (AI-generated content) technologies, an increasing number of generative models are revolutionizing fields such as video editing, music generation, and even film production. However, due to the limitations of current AIGC models, most models can only serve as individual components within specific application scenarios and are not capable of completing tasks end-to-end in real-world applications. In real-world applications, editing experts often work with a wide variety of images and video inputs, producing multimodal outputs -- a video typically includes audio, text, and other elements. This level of integration across multiple modalities is something current models are unable to achieve effectively. However, the rise of agent-based systems has made it possible to use AI tools to tackle complex content generation tasks. To deal with the complex scenarios, in this paper, we propose a MultiMedia-Agent designed to automate complex content creation. Our agent system includes a data generation pipeline, a tool library for content creation, and a set of metrics for evaluating preference alignment. Notably, we introduce the skill acquisition theory to model the training data curation and agent training. We designed a two-stage correlation strategy for plan optimization, including self-correlation and model preference correlation. Additionally, we utilized the generated plans to train the MultiMedia-Agent via a three stage approach including base/success plan finetune and preference optimization. The comparison results demonstrate that the our approaches are effective and the MultiMedia-Agent can generate better multimedia content compared to novel models.
LTX-2: Efficient Joint Audio-Visual Foundation Model
Recent text-to-video diffusion models can generate compelling video sequences, yet they remain silent -- missing the semantic, emotional, and atmospheric cues that audio provides. We introduce LTX-2, an open-source foundational model capable of generating high-quality, temporally synchronized audiovisual content in a unified manner. LTX-2 consists of an asymmetric dual-stream transformer with a 14B-parameter video stream and a 5B-parameter audio stream, coupled through bidirectional audio-video cross-attention layers with temporal positional embeddings and cross-modality AdaLN for shared timestep conditioning. This architecture enables efficient training and inference of a unified audiovisual model while allocating more capacity for video generation than audio generation. We employ a multilingual text encoder for broader prompt understanding and introduce a modality-aware classifier-free guidance (modality-CFG) mechanism for improved audiovisual alignment and controllability. Beyond generating speech, LTX-2 produces rich, coherent audio tracks that follow the characters, environment, style, and emotion of each scene -- complete with natural background and foley elements. In our evaluations, the model achieves state-of-the-art audiovisual quality and prompt adherence among open-source systems, while delivering results comparable to proprietary models at a fraction of their computational cost and inference time. All model weights and code are publicly released.
MMErroR: A Benchmark for Erroneous Reasoning in Vision-Language Models
Recent advances in Vision-Language Models (VLMs) have improved performance in multi-modal learning, raising the question of whether these models truly understand the content they process. Crucially, can VLMs detect when a reasoning process is wrong and identify its error type? To answer this, we present MMErroR, a multi-modal benchmark of 2,013 samples, each embedding a single coherent reasoning error. These samples span 24 subdomains across six top-level domains, ensuring broad coverage and taxonomic richness. Unlike existing benchmarks that focus on answer correctness, MMErroR targets a process-level, error-centric evaluation that requires models to detect incorrect reasoning and classify the error type within both visual and linguistic contexts. We evaluate 20 advanced VLMs, even the best model (Gemini-3.0-Pro) classifies the error in only 66.47\% of cases, underscoring the challenge of identifying erroneous reasoning. Furthermore, the ability to accurately identify errors offers valuable insights into the capabilities of multi-modal reasoning models. Project Page: https://mmerror-benchmark.github.io
UniCorn: Towards Self-Improving Unified Multimodal Models through Self-Generated Supervision
While Unified Multimodal Models (UMMs) have achieved remarkable success in cross-modal comprehension, a significant gap persists in their ability to leverage such internal knowledge for high-quality generation. We formalize this discrepancy as Conduction Aphasia, a phenomenon where models accurately interpret multimodal inputs but struggle to translate that understanding into faithful and controllable synthesis. To address this, we propose UniCorn, a simple yet elegant self-improvement framework that eliminates the need for external data or teacher supervision. By partitioning a single UMM into three collaborative roles: Proposer, Solver, and Judge, UniCorn generates high-quality interactions via self-play and employs cognitive pattern reconstruction to distill latent understanding into explicit generative signals. To validate the restoration of multimodal coherence, we introduce UniCycle, a cycle-consistency benchmark based on a Text to Image to Text reconstruction loop. Extensive experiments demonstrate that UniCorn achieves comprehensive and substantial improvements over the base model across six general image generation benchmarks. Notably, it achieves SOTA performance on TIIF(73.8), DPG(86.8), CompBench(88.5), and UniCycle while further delivering substantial gains of +5.0 on WISE and +6.5 on OneIG. These results highlight that our method significantly enhances T2I generation while maintaining robust comprehension, demonstrating the scalability of fully self-supervised refinement for unified multimodal intelligence.
AnatomiX, an Anatomy-Aware Grounded Multimodal Large Language Model for Chest X-Ray Interpretation
Multimodal medical large language models have shown impressive progress in chest X-ray interpretation but continue to face challenges in spatial reasoning and anatomical understanding. Although existing grounding techniques improve overall performance, they often fail to establish a true anatomical correspondence, resulting in incorrect anatomical understanding in the medical domain. To address this gap, we introduce AnatomiX, a multitask multimodal large language model explicitly designed for anatomically grounded chest X-ray interpretation. Inspired by the radiological workflow, AnatomiX adopts a two stage approach: first, it identifies anatomical structures and extracts their features, and then leverages a large language model to perform diverse downstream tasks such as phrase grounding, report generation, visual question answering, and image understanding. Extensive experiments across multiple benchmarks demonstrate that AnatomiX achieves superior anatomical reasoning and delivers over 25% improvement in performance on anatomy grounding, phrase grounding, grounded diagnosis and grounded captioning tasks compared to existing approaches. Code and pretrained model are available at https://github.com/aneesurhashmi/anatomix
Multi-Modal Data-Enhanced Foundation Models for Prediction and Control in Wireless Networks: A Survey
Foundation models (FMs) are recognized as a transformative breakthrough that has started to reshape the future of artificial intelligence (AI) across both academia and industry. The integration of FMs into wireless networks is expected to enable the development of general-purpose AI agents capable of handling diverse network management requests and highly complex wireless-related tasks involving multi-modal data. Inspired by these ideas, this work discusses the utilization of FMs, especially multi-modal FMs in wireless networks. We focus on two important types of tasks in wireless network management: prediction tasks and control tasks. In particular, we first discuss FMs-enabled multi-modal contextual information understanding in wireless networks. Then, we explain how FMs can be applied to prediction and control tasks, respectively. Following this, we introduce the development of wireless-specific FMs from two perspectives: available datasets for development and the methodologies used. Finally, we conclude with a discussion of the challenges and future directions for FM-enhanced wireless networks.
comment: 5 figures, 7 tables, IEEE COMST
DiffBench Meets DiffAgent: End-to-End LLM-Driven Diffusion Acceleration Code Generation AAAI 2026
Diffusion models have achieved remarkable success in image and video generation. However, their inherently multiple step inference process imposes substantial computational overhead, hindering real-world deployment. Accelerating diffusion models is therefore essential, yet determining how to combine multiple model acceleration techniques remains a significant challenge. To address this issue, we introduce a framework driven by large language models (LLMs) for automated acceleration code generation and evaluation. First, we present DiffBench, a comprehensive benchmark that implements a three stage automated evaluation pipeline across diverse diffusion architectures, optimization combinations and deployment scenarios. Second, we propose DiffAgent, an agent that generates optimal acceleration strategies and codes for arbitrary diffusion models. DiffAgent employs a closed-loop workflow in which a planning component and a debugging component iteratively refine the output of a code generation component, while a genetic algorithm extracts performance feedback from the execution environment to guide subsequent code refinements. We provide a detailed explanation of the DiffBench construction and the design principles underlying DiffAgent. Extensive experiments show that DiffBench offers a thorough evaluation of generated codes and that DiffAgent significantly outperforms existing LLMs in producing effective diffusion acceleration strategies.
comment: Accepted to AAAI 2026
LSP-DETR: Efficient and Scalable Nuclei Segmentation in Whole Slide Images
Precise and scalable instance segmentation of cell nuclei is essential for computational pathology, yet gigapixel Whole-Slide Images pose major computational challenges. Existing approaches rely on patch-based processing and costly post-processing for instance separation, sacrificing context and efficiency. We introduce LSP-DETR (Local Star Polygon DEtection TRansformer), a fully end-to-end framework that uses a lightweight transformer with linear complexity to process substantially larger images without additional computational cost. Nuclei are represented as star-convex polygons, and a novel radial distance loss function allows the segmentation of overlapping nuclei to emerge naturally, without requiring explicit overlap annotations or handcrafted post-processing. Evaluations on PanNuke and MoNuSeg show strong generalization across tissues and state-of-the-art efficiency, with LSP-DETR being over five times faster than the next-fastest leading method. Code and models are available at https://github.com/RationAI/lsp-detr.
Unified Thinker: A General Reasoning Modular Core for Image Generation
Despite impressive progress in high-fidelity image synthesis, generative models still struggle with logic-intensive instruction following, exposing a persistent reasoning--execution gap. Meanwhile, closed-source systems (e.g., Nano Banana) have demonstrated strong reasoning-driven image generation, highlighting a substantial gap to current open-source models. We argue that closing this gap requires not merely better visual generators, but executable reasoning: decomposing high-level intents into grounded, verifiable plans that directly steer the generative process. To this end, we propose Unified Thinker, a task-agnostic reasoning architecture for general image generation, designed as a unified planning core that can plug into diverse generators and workflows. Unified Thinker decouples a dedicated Thinker from the image Generator, enabling modular upgrades of reasoning without retraining the entire generative model. We further introduce a two-stage training paradigm: we first build a structured planning interface for the Thinker, then apply reinforcement learning to ground its policy in pixel-level feedback, encouraging plans that optimize visual correctness over textual plausibility. Extensive experiments on text-to-image generation and image editing show that Unified Thinker substantially improves image reasoning and generation quality.
LeafLife: An Explainable Deep Learning Framework with Robustness for Grape Leaf Disease Recognition
Plant disease diagnosis is essential to farmers' management choices because plant diseases frequently lower crop yield and product quality. For harvests to flourish and agricultural productivity to boost, grape leaf disease detection is important. The plant disease dataset contains grape leaf diseases total of 9,032 images of four classes, among them three classes are leaf diseases, and the other one is healthy leaves. After rigorous pre-processing dataset was split (70% training, 20% validation, 10% testing), and two pre-trained models were deployed: InceptionV3 and Xception. Xception shows a promising result of 96.23% accuracy, which is remarkable than InceptionV3. Adversarial Training is used for robustness, along with more transparency. Grad-CAM is integrated to confirm the leaf disease. Finally deployed a web application using Streamlit with a heatmap visualization and prediction with confidence level for robust grape leaf disease classification.
comment: 4 pages, 8 figures, 2025 IEEE International Conference on Signal Processing, Information, Communication and Systems (SPICSCON)
Transformers self-organize like newborn visual systems when trained in prenatal worlds
Do transformers learn like brains? A key challenge in addressing this question is that transformers and brains are trained on fundamentally different data. Brains are initially "trained" on prenatal sensory experiences (e.g., retinal waves), whereas transformers are typically trained on large datasets that are not biologically plausible. We reasoned that if transformers learn like brains, then they should develop the same structure as newborn brains when exposed to the same prenatal data. To test this prediction, we simulated prenatal visual input using a retinal wave generator. Then, using self-supervised temporal learning, we trained transformers to adapt to those retinal waves. During training, the transformers spontaneously developed the same structure as newborn visual systems: (1) early layers became sensitive to edges, (2) later layers became sensitive to shapes, and (3) the models developed larger receptive fields across layers. The organization of newborn visual systems emerges spontaneously when transformers adapt to a prenatal visual world. This developmental convergence suggests that brains and transformers learn in common ways and follow the same general fitting principles.
DiT-JSCC: Rethinking Deep JSCC with Diffusion Transformers and Semantic Representations
Generative joint source-channel coding (GJSCC) has emerged as a new Deep JSCC paradigm for achieving high-fidelity and robust image transmission under extreme wireless channel conditions, such as ultra-low bandwidth and low signal-to-noise ratio. Recent studies commonly adopt diffusion models as generative decoders, but they frequently produce visually realistic results with limited semantic consistency. This limitation stems from a fundamental mismatch between reconstruction-oriented JSCC encoders and generative decoders, as the former lack explicit semantic discriminability and fail to provide reliable conditional cues. In this paper, we propose DiT-JSCC, a novel GJSCC backbone that can jointly learn a semantics-prioritized representation encoder and a diffusion transformer (DiT) based generative decoder, our open-source project aims to promote the future research in GJSCC. Specifically, we design a semantics-detail dual-branch encoder that aligns naturally with a coarse-to-fine conditional DiT decoder, prioritizing semantic consistency under extreme channel conditions. Moreover, a training-free adaptive bandwidth allocation strategy inspired by Kolmogorov complexity is introduced to further improve the transmission efficiency, thereby indeed redefining the notion of information value in the era of generative decoding. Extensive experiments demonstrate that DiT-JSCC consistently outperforms existing JSCC methods in both semantic consistency and visual quality, particularly in extreme regimes.
comment: 14pages, 14figures, 2tables
Text-Guided Layer Fusion Mitigates Hallucination in Multimodal LLMs
Multimodal large language models (MLLMs) typically rely on a single late-layer feature from a frozen vision encoder, leaving the encoder's rich hierarchy of visual cues under-utilized. MLLMs still suffer from visually ungrounded hallucinations, often relying on language priors rather than image evidence. While many prior mitigation strategies operate on the text side, they leave the visual representation unchanged and do not exploit the rich hierarchy of features encoded across vision layers. Existing multi-layer fusion methods partially address this limitation but remain static, applying the same layer mixture regardless of the query. In this work, we introduce TGIF (Text-Guided Inter-layer Fusion), a lightweight module that treats encoder layers as depth-wise "experts" and predicts a prompt-dependent fusion of visual features. TGIF follows the principle of direct external fusion, requires no vision-encoder updates, and adds minimal overhead. Integrated into LLaVA-1.5-7B, TGIF provides consistent improvements across hallucination, OCR, and VQA benchmarks, while preserving or improving performance on ScienceQA, GQA, and MMBench. These results suggest that query-conditioned, hierarchy-aware fusion is an effective way to strengthen visual grounding and reduce hallucination in modern MLLMs.
Higher order PCA-like rotation-invariant features for detailed shape descriptors modulo rotation
PCA can be used for rotation invariant features, describing a shape with its $p_{ab}=E[(x_i-E[x_a])(x_b-E[x_b])]$ covariance matrix approximating shape by ellipsoid, allowing for rotation invariants like its traces of powers. However, real shapes are usually much more complicated, hence there is proposed its extension to e.g. $p_{abc}=E[(x_a-E[x_a])(x_b-E[x_b])(x_c-E[x_c])]$ order-3 or higher tensors describing central moments, or polynomial times Gaussian allowing decodable shape descriptors of arbitrarily high accuracy, and their analogous rotation invariants. Its practical applications could be rotation-invariant features to include shape modulo rotation e.g. for molecular shape descriptors, or for up to rotation object recognition in 2D images/3D scans, or shape similarity metric allowing their inexpensive comparison (modulo rotation) without costly optimization over rotations.
comment: 4 pages, 4 figures
LesionTABE: Equitable AI for Skin Lesion Detection
Bias remains a major barrier to the clinical adoption of AI in dermatology, as diagnostic models underperform on darker skin tones. We present LesionTABE, a fairness-centric framework that couples adversarial debiasing with dermatology-specific foundation model embeddings. Evaluated across multiple datasets covering both malignant and inflammatory conditions, LesionTABE achieves over a 25\% improvement in fairness metrics compared to a ResNet-152 baseline, outperforming existing debiasing methods while simultaneously enhancing overall diagnostic accuracy. These results highlight the potential of foundation model debiasing as a step towards equitable clinical AI adoption.
comment: Submitted to IEEE ISBI 2026
Listen to Rhythm, Choose Movements: Autoregressive Multimodal Dance Generation via Diffusion and Mamba with Decoupled Dance Dataset
Advances in generative models and sequence learning have greatly promoted research in dance motion generation, yet current methods still suffer from coarse semantic control and poor coherence in long sequences. In this work, we present Listen to Rhythm, Choose Movements (LRCM), a multimodal-guided diffusion framework supporting both diverse input modalities and autoregressive dance motion generation. We explore a feature decoupling paradigm for dance datasets and generalize it to the Motorica Dance dataset, separating motion capture data, audio rhythm, and professionally annotated global and local text descriptions. Our diffusion architecture integrates an audio-latent Conformer and a text-latent Cross-Conformer, and incorporates a Motion Temporal Mamba Module (MTMM) to enable smooth, long-duration autoregressive synthesis. Experimental results indicate that LRCM delivers strong performance in both functional capability and quantitative metrics, demonstrating notable potential in multimodal input scenarios and extended sequence generation. We will release the full codebase, dataset, and pretrained models publicly upon acceptance.
comment: 12 pages, 13 figures
Understanding Multi-Agent Reasoning with Large Language Models for Cartoon VQA
Visual Question Answering (VQA) for stylised cartoon imagery presents challenges, such as interpreting exaggerated visual abstraction and narrative-driven context, which are not adequately addressed by standard large language models (LLMs) trained on natural images. To investigate this issue, a multi-agent LLM framework is introduced, specifically designed for VQA tasks in cartoon imagery. The proposed architecture consists of three specialised agents: visual agent, language agent and critic agent, which work collaboratively to support structured reasoning by integrating visual cues and narrative context. The framework was systematically evaluated on two cartoon-based VQA datasets: Pororo and Simpsons. Experimental results provide a detailed analysis of how each agent contributes to the final prediction, offering a deeper understanding of LLM-based multi-agent behaviour in cartoon VQA and multimodal inference.
Fine-Grained Generalization via Structuralizing Concept and Feature Space into Commonality, Specificity and Confounding AAAI26
Fine-Grained Domain Generalization (FGDG) presents greater challenges than conventional domain generalization due to the subtle inter-class differences and relatively pronounced intra-class variations inherent in fine-grained recognition tasks. Under domain shifts, the model becomes overly sensitive to fine-grained cues, leading to the suppression of critical features and a significant drop in performance. Cognitive studies suggest that humans classify objects by leveraging both common and specific attributes, enabling accurate differentiation between fine-grained categories. However, current deep learning models have yet to incorporate this mechanism effectively. Inspired by this mechanism, we propose Concept-Feature Structuralized Generalization (CFSG). This model explicitly disentangles both the concept and feature spaces into three structured components: common, specific, and confounding segments. To mitigate the adverse effects of varying degrees of distribution shift, we introduce an adaptive mechanism that dynamically adjusts the proportions of common, specific, and confounding components. In the final prediction, explicit weights are assigned to each pair of components. Extensive experiments on three single-source benchmark datasets demonstrate that CFSG achieves an average performance improvement of 9.87% over baseline models and outperforms existing state-of-the-art methods by an average of 3.08%. Additionally, explainability analysis validates that CFSG effectively integrates multi-granularity structured knowledge and confirms that feature structuralization facilitates the emergence of concept structuralization.
comment: Accepted in AAAI26
IBISAgent: Reinforcing Pixel-Level Visual Reasoning in MLLMs for Universal Biomedical Object Referring and Segmentation
Recent research on medical MLLMs has gradually shifted its focus from image-level understanding to fine-grained, pixel-level comprehension. Although segmentation serves as the foundation for pixel-level understanding, existing approaches face two major challenges. First, they introduce implicit segmentation tokens and require simultaneous fine-tuning of both the MLLM and external pixel decoders, which increases the risk of catastrophic forgetting and limits generalization to out-of-domain scenarios. Second, most methods rely on single-pass reasoning and lack the capability to iteratively refine segmentation results, leading to suboptimal performance. To overcome these limitations, we propose a novel agentic MLLM, named IBISAgent, that reformulates segmentation as a vision-centric, multi-step decision-making process. IBISAgent enables MLLMs to generate interleaved reasoning and text-based click actions, invoke segmentation tools, and produce high-quality masks without architectural modifications. By iteratively performing multi-step visual reasoning on masked image features, IBISAgent naturally supports mask refinement and promotes the development of pixel-level visual reasoning capabilities. We further design a two-stage training framework consisting of cold-start supervised fine-tuning and agentic reinforcement learning with tailored, fine-grained rewards, enhancing the model's robustness in complex medical referring and reasoning segmentation tasks. Extensive experiments demonstrate that IBISAgent consistently outperforms both closed-source and open-source SOTA methods. All datasets, code, and trained models will be released publicly.
On the Intrinsic Limits of Transformer Image Embeddings in Non-Solvable Spatial Reasoning
Vision Transformers (ViTs) excel in semantic recognition but exhibit systematic failures in spatial reasoning tasks such as mental rotation. While often attributed to data scale, we propose that this limitation arises from the intrinsic circuit complexity of the architecture. We formalize spatial understanding as learning a Group Homomorphism: mapping image sequences to a latent space that preserves the algebraic structure of the underlying transformation group. We demonstrate that for non-solvable groups (e.g., the 3D rotation group $\mathrm{SO}(3)$), maintaining such a structure-preserving embedding is computationally lower-bounded by the Word Problem, which is $\mathsf{NC^1}$-complete. In contrast, we prove that constant-depth ViTs with polynomial precision are strictly bounded by $\mathsf{TC^0}$. Under the conjecture $\mathsf{TC^0} \subsetneq \mathsf{NC^1}$, we establish a complexity boundary: constant-depth ViTs fundamentally lack the logical depth to efficiently capture non-solvable spatial structures. We validate this complexity gap via latent-space probing, demonstrating that ViT representations suffer a structural collapse on non-solvable tasks as compositional depth increases.
Motion Blur Robust Wheat Pest Damage Detection with Dynamic Fuzzy Feature Fusion
Motion blur caused by camera shake produces ghosting artifacts that substantially degrade edge side object detection. Existing approaches either suppress blur as noise and lose discriminative structure, or apply full image restoration that increases latency and limits deployment on resource constrained devices. We propose DFRCP, a Dynamic Fuzzy Robust Convolutional Pyramid, as a plug in upgrade to YOLOv11 for blur robust detection. DFRCP enhances the YOLOv11 feature pyramid by combining large scale and medium scale features while preserving native representations, and by introducing Dynamic Robust Switch units that adaptively inject fuzzy features to strengthen global perception under jitter. Fuzzy features are synthesized by rotating and nonlinearly interpolating multiscale features, then merged through a transparency convolution that learns a content adaptive trade off between original and fuzzy cues. We further develop a CUDA parallel rotation and interpolation kernel that avoids boundary overflow and delivers more than 400 times speedup, making the design practical for edge deployment. We train with paired supervision on a private wheat pest damage dataset of about 3,500 images, augmented threefold using two blur regimes, uniform image wide motion blur and bounding box confined rotational blur. On blurred test sets, YOLOv11 with DFRCP achieves about 10.4 percent higher accuracy than the YOLOv11 baseline with only a modest training time overhead, reducing the need for manual filtering after data collection.
Flow Matching and Diffusion Models via PointNet for Generating Fluid Fields on Irregular Geometries
We present two novel generative geometric deep learning frameworks, termed Flow Matching PointNet and Diffusion PointNet, for predicting fluid flow variables on irregular geometries by incorporating PointNet into flow matching and diffusion models, respectively. In these frameworks, a reverse generative process reconstructs physical fields from standard Gaussian noise conditioned on unseen geometries. The proposed approaches operate directly on point-cloud representations of computational domains (e.g., grid vertices of finite-volume meshes) and therefore avoid the limitations of pixelation used to project geometries onto uniform lattices. In contrast to graph neural network-based diffusion models, Flow Matching PointNet and Diffusion PointNet do not exhibit high-frequency noise artifacts in the predicted fields. Moreover, unlike such approaches, which require auxiliary intermediate networks to condition geometry, the proposed frameworks rely solely on PointNet, resulting in a simple and unified architecture. The performance of the proposed frameworks is evaluated on steady incompressible flow past a cylinder, using a geometric dataset constructed by varying the cylinder's cross-sectional shape and orientation across samples. The results demonstrate that Flow Matching PointNet and Diffusion PointNet achieve more accurate predictions of velocity and pressure fields, as well as lift and drag forces, and exhibit greater robustness to incomplete geometries compared to a vanilla PointNet with the same number of trainable parameters.
SA-ResGS: Self-Augmented Residual 3D Gaussian Splatting for Next Best View Selection
We propose Self-Augmented Residual 3D Gaussian Splatting (SA-ResGS), a novel framework to stabilize uncertainty quantification and enhancing uncertainty-aware supervision in next-best-view (NBV) selection for active scene reconstruction. SA-ResGS improves both the reliability of uncertainty estimates and their effectiveness for supervision by generating Self-Augmented point clouds (SA-Points) via triangulation between a training view and a rasterized extrapolated view, enabling efficient scene coverage estimation. While improving scene coverage through physically guided view selection, SA-ResGS also addresses the challenge of under-supervised Gaussians, exacerbated by sparse and wide-baseline views, by introducing the first residual learning strategy tailored for 3D Gaussian Splatting. This targeted supervision enhances gradient flow in high-uncertainty Gaussians by combining uncertainty-driven filtering with dropout- and hard-negative-mining-inspired sampling. Our contributions are threefold: (1) a physically grounded view selection strategy that promotes efficient and uniform scene coverage; (2) an uncertainty-aware residual supervision scheme that amplifies learning signals for weakly contributing Gaussians, improving training stability and uncertainty estimation across scenes with diverse camera distributions; (3) an implicit unbiasing of uncertainty quantification as a consequence of constrained view selection and residual supervision, which together mitigate conflicting effects of wide-baseline exploration and sparse-view ambiguity in NBV planning. Experiments on active view selection demonstrate that SA-ResGS outperforms state-of-the-art baselines in both reconstruction quality and view selection robustness.
ReCCur: A Recursive Corner-Case Curation Framework for Robust Vision-Language Understanding in Open and Edge Scenarios
Corner cases are rare or extreme scenarios that drive real-world failures, but they are difficult to curate at scale: web data are noisy, labels are brittle, and edge deployments preclude large retraining. We present ReCCur (Recursive Corner-Case Curation), a low-compute framework that converts noisy web imagery into auditable fine-grained labels via a multi-agent recursive pipeline. First, large-scale data acquisition and filtering expands a domain vocabulary with a vision-language model (VLM), crawls the web, and enforces tri-modal (image, description, keyword) consistency with light human spot checks to yield refined candidates. Next, mixture-of-experts knowledge distillation uses complementary encoders (e.g., CLIP, DINOv2, BEiT) for kNN voting with dual-confidence activation and uncertainty sampling, converging to a high-precision set. Finally, region-evidence VLM adversarial labeling pairs a proposer (multi-granularity regions and semantic cues) with a validator (global and local chained consistency) to produce explainable labels and close the loop. On realistic corner-case scenarios (e.g., flooded-car inspection), ReCCur runs on consumer-grade GPUs, steadily improves purity and separability, and requires minimal human supervision, providing a practical substrate for downstream training and evaluation under resource constraints. Code and dataset will be released.
Deep Learning-Based Image Recognition for Soft-Shell Shrimp Classification
With the integration of information technology into aquaculture, production has become more stable and continues to grow annually. As consumer demand for high-quality aquatic products rises, freshness and appearance integrity are key concerns. In shrimp-based processed foods, freshness declines rapidly post-harvest, and soft-shell shrimp often suffer from head-body separation after cooking or freezing, affecting product appearance and consumer perception. To address these issues, this study leverages deep learning-based image recognition for automated classification of white shrimp immediately after harvest. A convolutional neural network (CNN) model replaces manual sorting, enhancing classification accuracy, efficiency, and consistency. By reducing processing time, this technology helps maintain freshness and ensures that shrimp transportation businesses meet customer demands more effectively.
Towards Efficient 3D Object Detection for Vehicle-Infrastructure Collaboration via Risk-Intent Selection
Vehicle-Infrastructure Collaborative Perception (VICP) is pivotal for resolving occlusion in autonomous driving, yet the trade-off between communication bandwidth and feature redundancy remains a critical bottleneck. While intermediate fusion mitigates data volume compared to raw sharing, existing frameworks typically rely on spatial compression or static confidence maps, which inefficiently transmit spatially redundant features from non-critical background regions. To address this, we propose Risk-intent Selective detection (RiSe), an interaction-aware framework that shifts the paradigm from identifying visible regions to prioritizing risk-critical ones. Specifically, we introduce a Potential Field-Trajectory Correlation Model (PTCM) grounded in potential field theory to quantitatively assess kinematic risks. Complementing this, an Intention-Driven Area Prediction Module (IDAPM) leverages ego-motion priors to proactively predict and filter key Bird's-Eye-View (BEV) areas essential for decision-making. By integrating these components, RiSe implements a semantic-selective fusion scheme that transmits high-fidelity features only from high-interaction regions, effectively acting as a feature denoiser. Extensive experiments on the DeepAccident dataset demonstrate that our method reduces communication volume to 0.71\% of full feature sharing while maintaining state-of-the-art detection accuracy, establishing a competitive Pareto frontier between bandwidth efficiency and perception performance.
From Memorization to Creativity: LLM as a Designer of Novel Neural-Architectures
Large language models (LLMs) excel in program synthesis, yet their ability to autonomously navigate neural architecture design--balancing syntactic reliability, performance, and structural novelty--remains underexplored. We address this by placing a code-oriented LLM within a closed-loop synthesis framework, analyzing its evolution over 22 supervised fine-tuning cycles. The model synthesizes PyTorch convolutional networks which are validated, evaluated via low-fidelity performance signals (single-epoch accuracy), and filtered using a MinHash-Jaccard criterion to prevent structural redundancy. High-performing, novel architectures are converted into prompt-code pairs for iterative fine-tuning via parameter-efficient LoRA adaptation, initialized from the LEMUR dataset. Across cycles, the LLM internalizes empirical architectural priors, becoming a robust generator. The valid generation rate stabilizes at 50.6 percent (peaking at 74.5 percent), while mean first-epoch accuracy rises from 28.06 percent to 50.99 percent, and the fraction of candidates exceeding 40 percent accuracy grows from 2.04 percent to 96.81 percent. Analyses confirm the model moves beyond replicating existing motifs, synthesizing 455 high-performing architectures absent from the original corpus. By grounding code synthesis in execution feedback, this work provides a scalable blueprint for transforming stochastic generators into autonomous, performance-driven neural designers, establishing that LLMs can internalize empirical, non-textual rewards to transcend their training data.
Towards Faithful Reasoning in Comics for Small MLLMs
Comic-based visual question answering (CVQA) poses distinct challenges to multimodal large language models (MLLMs) due to its reliance on symbolic abstraction, narrative logic, and humor, which differ from conventional VQA tasks. Although Chain-of-Thought (CoT) prompting is widely used to enhance MLLM reasoning, surprisingly, its direct application to CVQA often degrades performance, especially in small-scale models. Our theoretical and empirical analyses reveal that standard CoT in CVQA suffers from state entanglement, spurious transitions, and exploration inefficiency, with small models particularly vulnerable in resource-constrained settings. To address these issues, we propose a novel comic reasoning framework, designed to produce more faithful and transferable reasoning chains in small MLLMs. Specifically, our framework combines modular CoT generation with GRPO-based reinforcement fine-tuning and a novel structured reward. Beyond comic VQA, we further evaluate our approach on a broader class of humor-centric and abstract visual reasoning tasks, including meme understanding and editorial cartoon interpretation. Across five challenging benchmarks, our 3B model outperforms state-of-the-art methods, and plug-in experiments yield an additional average improvement of $\mathbf{12.1\%}$ across different MLLMs.
ULS+: Data-driven Model Adaptation Enhances Lesion Segmentation
In this study, we present ULS+, an enhanced version of the Universal Lesion Segmentation (ULS) model. The original ULS model segments lesions across the whole body in CT scans given volumes of interest (VOIs) centered around a click-point. Since its release, several new public datasets have become available that can further improve model performance. ULS+ incorporates these additional datasets and uses smaller input image sizes, resulting in higher accuracy and faster inference. We compared ULS and ULS+ using the Dice score and robustness to click-point location on the ULS23 Challenge test data and a subset of the Longitudinal-CT dataset. In all comparisons, ULS+ significantly outperformed ULS. Additionally, ULS+ ranks first on the ULS23 Challenge test-phase leaderboard. By maintaining a cycle of data-driven updates and clinical validation, ULS+ establishes a foundation for robust and clinically relevant lesion segmentation models.
comment: Accepted for publication at BVM 2026 (Bildverarbeitung für die Medizin), peer-reviewed conference paper
LAMS-Edit: Latent and Attention Mixing with Schedulers for Improved Content Preservation in Diffusion-Based Image and Style Editing
Text-to-Image editing using diffusion models faces challenges in balancing content preservation with edit application and handling real-image editing. To address these, we propose LAMS-Edit, leveraging intermediate states from the inversion process--an essential step in real-image editing--during edited image generation. Specifically, latent representations and attention maps from both processes are combined at each step using weighted interpolation, controlled by a scheduler. This technique, Latent and Attention Mixing with Schedulers (LAMS), integrates with Prompt-to-Prompt (P2P) to form LAMS-Edit--an extensible framework that supports precise editing with region masks and enables style transfer via LoRA. Extensive experiments demonstrate that LAMS-Edit effectively balances content preservation and edit application.
Low-Resource Heuristics for Bahnaric Optical Character Recognition Improvement
Bahnar, a minority language spoken across Vietnam, Cambodia, and Laos, faces significant preservation challenges due to limited research and data availability. This study addresses the critical need for accurate digitization of Bahnar language documents through optical character recognition (OCR) technology. Digitizing scanned paper documents poses significant challenges, as degraded image quality from broken or blurred areas introduces considerable OCR errors that compromise information retrieval systems. We propose a comprehensive approach combining advanced table and non-table detection techniques with probability-based post-processing heuristics to enhance recognition accuracy. Our method first applies detection algorithms to improve input data quality, then employs probabilistic error correction on OCR output. Experimental results indicate a substantial improvement, with recognition accuracy increasing from 72.86% to 79.26%. This work contributes valuable resources for Bahnar language preservation and provides a framework applicable to other minority language digitization efforts.
VTONQA: A Multi-Dimensional Quality Assessment Dataset for Virtual Try-on
With the rapid development of e-commerce and digital fashion, image-based virtual try-on (VTON) has attracted increasing attention. However, existing VTON models often suffer from artifacts such as garment distortion and body inconsistency, highlighting the need for reliable quality evaluation of VTON-generated images. To this end, we construct VTONQA, the first multi-dimensional quality assessment dataset specifically designed for VTON, which contains 8,132 images generated by 11 representative VTON models, along with 24,396 mean opinion scores (MOSs) across three evaluation dimensions (i.e., clothing fit, body compatibility, and overall quality). Based on VTONQA, we benchmark both VTON models and a diverse set of image quality assessment (IQA) metrics, revealing the limitations of existing methods and highlighting the value of the proposed dataset. We believe that the VTONQA dataset and corresponding benchmarks will provide a solid foundation for perceptually aligned evaluation, benefiting both the development of quality assessment methods and the advancement of VTON models.
HybridSolarNet: A Lightweight and Explainable EfficientNet-CBAM Architecture for Real-Time Solar Panel Fault Detection
Manual inspections for solar panel systems are a tedious, costly, and error-prone task, making it desirable for Unmanned Aerial Vehicle (UAV) based monitoring. Though deep learning models have excellent fault detection capabilities, almost all methods either are too large and heavy for edge computing devices or involve biased estimation of accuracy due to ineffective learning techniques. We propose a new solar panel fault detection model called HybridSolarNet. It integrates EfficientNet-B0 with Convolutional Block Attention Module (CBAM). We implemented it on the Kaggle Solar Panel Images competition dataset with a tight split-before-augmentation protocol. It avoids leakage in accuracy estimation. We introduced focal loss and cosine annealing. Ablation analysis validates that accuracy boosts due to added benefits from CBAM (+1.53%) and that there are benefits from recognition of classes with imbalanced samples via focal loss. Overall average accuracy on 5-fold stratified cross-validation experiments on the given competition dataset topped 92.37% +/- 0.41 and an F1-score of 0.9226 +/- 0.39 compared to baselines like VGG19, requiring merely 16.3 MB storage, i.e., 32 times less. Its inference speed measured at 54.9 FPS with GPU support makes it a successful candidate for real-time UAV implementation. Moreover, visualization obtained from Grad-CAM illustrates that HybridSolarNet focuses on actual locations instead of irrelevant ones.
comment: 5 page , 6 figures
PrismVAU: Prompt-Refined Inference System for Multimodal Video Anomaly Understanding WACV 2025
Video Anomaly Understanding (VAU) extends traditional Video Anomaly Detection (VAD) by not only localizing anomalies but also describing and reasoning about their context. Existing VAU approaches often rely on fine-tuned multimodal large language models (MLLMs) or external modules such as video captioners, which introduce costly annotations, complex training pipelines, and high inference overhead. In this work, we introduce PrismVAU, a lightweight yet effective system for real-time VAU that leverages a single off-the-shelf MLLM for anomaly scoring, explanation, and prompt optimization. PrismVAU operates in two complementary stages: (1) a coarse anomaly scoring module that computes frame-level anomaly scores via similarity to textual anchors, and (2) an MLLM-based refinement module that contextualizes anomalies through system and user prompts. Both textual anchors and prompts are optimized with a weakly supervised Automatic Prompt Engineering (APE) framework. Extensive experiments on standard VAD benchmarks demonstrate that PrismVAU delivers competitive detection performance and interpretable anomaly explanations -- without relying on instruction tuning, frame-level annotations, and external modules or dense processing -- making it an efficient and practical solution for real-world applications.
comment: This paper has been accepted to the 6th Workshop on Real-World Surveillance: Applications and Challenges (WACV 2025)
DCG ReID: Disentangling Collaboration and Guidance Fusion Representations for Multi-modal Vehicle Re-Identification
Multi-modal vehicle Re-Identification (ReID) aims to leverage complementary information from RGB, Near Infrared (NIR), and Thermal Infrared (TIR) modalities to retrieve the same vehicle. The challenges of multi-modal vehicle ReID arise from the uncertainty of modality quality distribution induced by inherent discrepancies across modalities, resulting in distinct conflicting fusion requirements for data with balanced and unbalanced quality distributions. Existing methods handle all multi-modal data within a single fusion model, overlooking the different needs of the two data types and making it difficult to decouple the conflict between intra-class consistency and inter-modal heterogeneity. To this end, we propose Disentangle Collaboration and Guidance Fusion Representations for Multi-modal Vehicle ReID (DCG-ReID). Specifically, to disentangle heterogeneous quality-distributed modal data without mutual interference, we first design the Dynamic Confidence-based Disentangling Weighting (DCDW) mechanism: dynamically reweighting three-modal contributions via interaction-derived modal confidence to build a disentangled fusion framework. Building on DCDW, we develop two scenario-specific fusion strategies: (1) for balanced quality distributions, Collaboration Fusion Module (CFM) mines pairwise consensus features to capture shared discriminative information and boost intra-class consistency; (2) for unbalanced distributions, Guidance Fusion Module (GFM) implements differential amplification of modal discriminative disparities to reinforce dominant modality advantages, guide auxiliary modalities to mine complementary discriminative info, and mitigate inter-modal divergence to boost multi-modal joint decision performance. Extensive experiments on three multi-modal ReID benchmarks (WMVeID863, MSVR310, RGBNT100) validate the effectiveness of our method. Code will be released upon acceptance.
Zoom-IQA: Image Quality Assessment with Reliable Region-Aware Reasoning
Image Quality Assessment (IQA) is a long-standing problem in computer vision. Previous methods typically focus on predicting numerical scores without explanation or provide low-level descriptions lacking precise scores. Recent reasoning-based vision language models (VLMs) have shown strong potential for IQA, enabling joint generation of quality descriptions and scores. However, we notice that existing VLM-based IQA methods tend to exhibit unreliable reasoning due to their limited capability of integrating visual and textual cues. In this work, we introduce Zoom-IQA, a VLM-based IQA model to explicitly emulate key cognitive behaviors: uncertainty awareness, region reasoning, and iterative refinement. Specifically, we present a two-stage training pipeline: 1) supervised fine-tuning (SFT) on our Grounded-Rationale-IQA (GR-IQA) dataset to teach the model to ground its assessments in key regions; and 2) reinforcement learning (RL) for dynamic policy exploration, primarily stabilized by our KL-Coverage regularizer to prevent reasoning and scoring diversity collapse, and supported by a Progressive Re-sampling Strategy to mitigate annotation bias. Extensive experiments show that Zoom-IQA achieves improved robustness, explainability, and generalization. The application to downstream tasks, such as image restoration, further demonstrates the effectiveness of Zoom-IQA.
comment: Project Page: https://ethanliang99.github.io/ZOOMIQA-Projectpage
TA-Prompting: Enhancing Video Large Language Models for Dense Video Captioning via Temporal Anchors WACV 2026
Dense video captioning aims to interpret and describe all temporally localized events throughout an input video. Recent state-of-the-art methods leverage large language models (LLMs) to provide detailed moment descriptions for video data. However, existing VideoLLMs remain challenging in identifying precise event boundaries in untrimmed videos, causing the generated captions to be not properly grounded. In this paper, we propose TA-Prompting, which enhances VideoLLMs via Temporal Anchors that learn to precisely localize events and prompt the VideoLLMs to perform temporal-aware video event understanding. During inference, in order to properly determine the output caption sequence from an arbitrary number of events presented within a video, we introduce an event coherent sampling strategy to select event captions with sufficient coherence across temporal events and cross-modal similarity with the given video. Through extensive experiments on benchmark datasets, we show that our TA-Prompting is favorable against state-of-the-art VideoLLMs, yielding superior performance on dense video captioning and temporal understanding tasks including moment retrieval and temporalQA.
comment: 8 pages for main paper (exclude citation pages), 6 pages for appendix, totally 10 figures 7 tables and 2 algorithms. The paper is accepted by WACV 2026
Towards Agnostic and Holistic Universal Image Segmentation with Bit Diffusion
This paper introduces a diffusion-based framework for universal image segmentation, making agnostic segmentation possible without depending on mask-based frameworks and instead predicting the full segmentation in a holistic manner. We present several key adaptations to diffusion models, which are important in this discrete setting. Notably, we show that a location-aware palette with our 2D gray code ordering improves performance. Adding a final tanh activation function is crucial for discrete data. On optimizing diffusion parameters, the sigmoid loss weighting consistently outperforms alternatives, regardless of the prediction type used, and we settle on x-prediction. While our current model does not yet surpass leading mask-based architectures, it narrows the performance gap and introduces unique capabilities, such as principled ambiguity modeling, that these models lack. All models were trained from scratch, and we believe that combining our proposed improvements with large-scale pretraining or promptable conditioning could lead to competitive models.
comment: Accepted at NLDL 26
VLM4VLA: Revisiting Vision-Language-Models in Vision-Language-Action Models
Vision-Language-Action (VLA) models, which integrate pretrained large Vision-Language Models (VLM) into their policy backbone, are gaining significant attention for their promising generalization capabilities. This paper revisits a fundamental yet seldom systematically studied question: how VLM choice and competence translate to downstream VLA policies performance? We introduce VLM4VLA, a minimal adaptation pipeline that converts general-purpose VLMs into VLA policies using only a small set of new learnable parameters for fair and efficient comparison. Despite its simplicity, VLM4VLA proves surprisingly competitive with more sophisticated network designs. Through extensive empirical studies on various downstream tasks across three benchmarks, we find that while VLM initialization offers a consistent benefit over training from scratch, a VLM's general capabilities are poor predictors of its downstream task performance. This challenges common assumptions, indicating that standard VLM competence is necessary but insufficient for effective embodied control. We further investigate the impact of specific embodied capabilities by fine-tuning VLMs on seven auxiliary embodied tasks (e.g., embodied QA, visual pointing, depth estimation). Contrary to intuition, improving a VLM's performance on specific embodied skills does not guarantee better downstream control performance. Finally, modality-level ablations identify the visual module in VLM, rather than the language component, as the primary performance bottleneck. We demonstrate that injecting control-relevant supervision into the vision encoder of the VLM yields consistent gains, even when the encoder remains frozen during downstream fine-tuning. This isolates a persistent domain gap between current VLM pretraining objectives and the requirements of embodied action-planning.
Lesion Segmentation in FDG-PET/CT Using Swin Transformer U-Net 3D: A Robust Deep Learning Framework
Accurate and automated lesion segmentation in Positron Emission Tomography / Computed Tomography (PET/CT) imaging is essential for cancer diagnosis and therapy planning. This paper presents a Swin Transformer UNet 3D (SwinUNet3D) framework for lesion segmentation in Fluorodeoxyglucose Positron Emission Tomography / Computed Tomography (FDG-PET/CT) scans. By combining shifted window self-attention with U-Net style skip connections, the model captures both global context and fine anatomical detail. We evaluate SwinUNet3D on the AutoPET III FDG dataset and compare it against a baseline 3D U-Net. Results show that SwinUNet3D achieves a Dice score of 0.88 and IoU of 0.78, surpassing 3D U-Net (Dice 0.48, IoU 0.32) while also delivering faster inference times. Qualitative analysis demonstrates improved detection of small and irregular lesions, reduced false positives, and more accurate PET/CT fusion. While the framework is currently limited to FDG scans and trained under modest GPU resources, it establishes a strong foundation for future multi-tracer, multi-center evaluations and benchmarking against other transformer-based architectures. Overall, SwinUNet3D represents an efficient and robust approach to PET/CT lesion segmentation, advancing the integration of transformer-based models into oncology imaging workflows.
comment: 8 pages, 3 figures, 3 tables
Breaking Self-Attention Failure: Rethinking Query Initialization for Infrared Small Target Detection
Infrared small target detection (IRSTD) faces significant challenges due to the low signal-to-noise ratio (SNR), small target size, and complex cluttered backgrounds. Although recent DETR-based detectors benefit from global context modeling, they exhibit notable performance degradation on IRSTD. We revisit this phenomenon and reveal that the target-relevant embeddings of IRST are inevitably overwhelmed by dominant background features due to the self-attention mechanism, leading to unreliable query initialization and inaccurate target localization. To address this issue, we propose SEF-DETR, a novel framework that refines query initialization for IRSTD. Specifically, SEF-DETR consists of three components: Frequency-guided Patch Screening (FPS), Dynamic Embedding Enhancement (DEE), and Reliability-Consistency-aware Fusion (RCF). The FPS module leverages the Fourier spectrum of local patches to construct a target-relevant density map, suppressing background-dominated features. DEE strengthens multi-scale representations in a target-aware manner, while RCF further refines object queries by enforcing spatial-frequency consistency and reliability. Extensive experiments on three public IRSTD datasets demonstrate that SEF-DETR achieves superior detection performance compared to state-of-the-art methods, delivering a robust and efficient solution for infrared small target detection task.
DGA-Net: Enhancing SAM with Depth Prompting and Graph-Anchor Guidance for Camouflaged Object Detection
To fully exploit depth cues in Camouflaged Object Detection (COD), we present DGA-Net, a specialized framework that adapts the Segment Anything Model (SAM) via a novel ``depth prompting" paradigm. Distinguished from existing approaches that primarily rely on sparse prompts (e.g., points or boxes), our method introduces a holistic mechanism for constructing and propagating dense depth prompts. Specifically, we propose a Cross-modal Graph Enhancement (CGE) module that synthesizes RGB semantics and depth geometric within a heterogeneous graph to form a unified guidance signal. Furthermore, we design an Anchor-Guided Refinement (AGR) module. To counteract the inherent information decay in feature hierarchies, AGR forges a global anchor and establishes direct non-local pathways to broadcast this guidance from deep to shallow layers, ensuring precise and consistent segmentation. Quantitative and qualitative experimental results demonstrate that our proposed DGA-Net outperforms the state-of-the-art COD methods.
SketchThinker-R1: Towards Efficient Sketch-Style Reasoning in Large Multimodal Models
Despite the empirical success of extensive, step-by-step reasoning in large multimodal models, long reasoning processes inevitably incur substantial computational overhead, i.e., in terms of higher token costs and increased response time, which undermines inference efficiency. In contrast, humans often employ sketch-style reasoning: a concise, goal-directed cognitive process that prioritizes salient information and enables efficient problem-solving. Inspired by this cognitive efficiency, we propose SketchThinker-R1, which incentivizes sketch-style reasoning ability in large multimodal models. Our method consists of three primary stages. In the Sketch-Mode Cold Start stage, we convert standard long reasoning process into sketch-style reasoning and finetune base multimodal model, instilling initial sketch-style reasoning capability. Next, we train SketchJudge Reward Model, which explicitly evaluates thinking process of model and assigns higher scores to sketch-style reasoning. Finally, we conduct Sketch-Thinking Reinforcement Learning under supervision of SketchJudge to further generalize sketch-style reasoning ability. Experimental evaluation on four benchmarks reveals that our SketchThinker-R1 achieves over 64% reduction in reasoning token cost without compromising final answer accuracy. Qualitative analysis further shows that sketch-style reasoning focuses more on key cues during problem solving.
comment: 28 pages, 11 figures
Mass Concept Erasure in Diffusion Models with Concept Hierarchy AAAI 2026
The success of diffusion models has raised concerns about the generation of unsafe or harmful content, prompting concept erasure approaches that fine-tune modules to suppress specific concepts while preserving general generative capabilities. However, as the number of erased concepts grows, these methods often become inefficient and ineffective, since each concept requires a separate set of fine-tuned parameters and may degrade the overall generation quality. In this work, we propose a supertype-subtype concept hierarchy that organizes erased concepts into a parent-child structure. Each erased concept is treated as a child node, and semantically related concepts (e.g., macaw, and bald eagle) are grouped under a shared parent node, referred to as a supertype concept (e.g., bird). Rather than erasing concepts individually, we introduce an effective and efficient group-wise suppression method, where semantically similar concepts are grouped and erased jointly by sharing a single set of learnable parameters. During the erasure phase, standard diffusion regularization is applied to preserve denoising process in unmasked regions. To mitigate the degradation of supertype generation caused by excessive erasure of semantically related subtypes, we propose a novel method called Supertype-Preserving Low-Rank Adaptation (SuPLoRA), which encodes the supertype concept information in the frozen down-projection matrix and updates only the up-projection matrix during erasure. Theoretical analysis demonstrates the effectiveness of SuPLoRA in mitigating generation performance degradation. We construct a more challenging benchmark that requires simultaneous erasure of concepts across diverse domains, including celebrities, objects, and pornographic content.
comment: This paper has been accepted by AAAI 2026
Topology-aware Pathological Consistency Matching for Weakly-Paired IHC Virtual Staining
Immunohistochemical (IHC) staining provides crucial molecular characterization of tissue samples and plays an indispensable role in the clinical examination and diagnosis of cancers. However, compared with the commonly used Hematoxylin and Eosin (H&E) staining, IHC staining involves complex procedures and is both time-consuming and expensive, which limits its widespread clinical use. Virtual staining converts H&E images to IHC images, offering a cost-effective alternative to clinical IHC staining. Nevertheless, using adjacent slides as ground truth often results in weakly-paired data with spatial misalignment and local deformations, hindering effective supervised learning. To address these challenges, we propose a novel topology-aware framework for H&E-to-IHC virtual staining. Specifically, we introduce a Topology-aware Consistency Matching (TACM) mechanism that employs graph contrastive learning and topological perturbations to learn robust matching patterns despite spatial misalignments, ensuring structural consistency. Furthermore, we propose a Topology-constrained Pathological Matching (TCPM) mechanism that aligns pathological positive regions based on node importance to enhance pathological consistency. Extensive experiments on two benchmarks across four staining tasks demonstrate that our method outperforms state-of-the-art approaches, achieving superior generation quality with higher clinical relevance.
StableDPT: Temporal Stable Monocular Video Depth Estimation
Applying single image Monocular Depth Estimation (MDE) models to video sequences introduces significant temporal instability and flickering artifacts. We propose a novel approach that adapts any state-of-the-art image-based (depth) estimation model for video processing by integrating a new temporal module - trainable on a single GPU in a few days. Our architecture StableDPT builds upon an off-the-shelf Vision Transformer (ViT) encoder and enhances the Dense Prediction Transformer (DPT) head. The core of our contribution lies in the temporal layers within the head, which use an efficient cross-attention mechanism to integrate information from keyframes sampled across the entire video sequence. This allows the model to capture global context and inter-frame relationships leading to more accurate and temporally stable depth predictions. Furthermore, we propose a novel inference strategy for processing videos of arbitrary length avoiding the scale misalignment and redundant computations associated with overlapping windows used in other methods. Evaluations on multiple benchmark datasets demonstrate improved temporal consistency, competitive state-of-the-art performance and on top 2x faster processing in real-world scenarios.
Textile IR: A Bidirectional Intermediate Representation for Physics-Aware Fashion CAD
We introduce Textile IR, a bidirectional intermediate representation that connects manufacturing-valid CAD, physics-based simulation, and lifecycle assessment for fashion design. Unlike existing siloed tools where pattern software guarantees sewable outputs but understands nothing about drape, and physics simulation predicts behaviour but cannot automatically fix patterns, Textile IR provides the semantic glue for integration through a seven-layer Verification Ladder -- from cheap syntactic checks (pattern closure, seam compatibility) to expensive physics validation (drape simulation, stress analysis). The architecture enables bidirectional feedback: simulation failures suggest pattern modifications; material substitutions update sustainability estimates in real time; uncertainty propagates across the pipeline with explicit confidence bounds. We formalise fashion engineering as constraint satisfaction over three domains and demonstrate how Textile IR's scene-graph representation enables AI systems to manipulate garments as structured programs rather than pixel arrays. The framework addresses the compound uncertainty problem: when measurement errors in material testing, simulation approximations, and LCA database gaps combine, sustainability claims become unreliable without explicit uncertainty tracking. We propose six research priorities and discuss deployment considerations for fashion SMEs where integrated workflows reduce specialised engineering requirements. Key contribution: a formal representation that makes engineering constraints perceptible, manipulable, and immediately consequential -- enabling designers to navigate sustainability, manufacturability, and aesthetic tradeoffs simultaneously rather than discovering conflicts after costly physical prototyping.
comment: 20 pages, 8 figures, SI Technologies and Practices (Fashion Practice)
DreamStyle: A Unified Framework for Video Stylization
Video stylization, an important downstream task of video generation models, has not yet been thoroughly explored. Its input style conditions typically include text, style image, and stylized first frame. Each condition has a characteristic advantage: text is more flexible, style image provides a more accurate visual anchor, and stylized first frame makes long-video stylization feasible. However, existing methods are largely confined to a single type of style condition, which limits their scope of application. Additionally, their lack of high-quality datasets leads to style inconsistency and temporal flicker. To address these limitations, we introduce DreamStyle, a unified framework for video stylization, supporting (1) text-guided, (2) style-image-guided, and (3) first-frame-guided video stylization, accompanied by a well-designed data curation pipeline to acquire high-quality paired video data. DreamStyle is built on a vanilla Image-to-Video (I2V) model and trained using a Low-Rank Adaptation (LoRA) with token-specific up matrices that reduces the confusion among different condition tokens. Both qualitative and quantitative evaluations demonstrate that DreamStyle is competent in all three video stylization tasks, and outperforms the competitors in style consistency and video quality.
comment: Github Page: https://lemonsky1995.github.io/dreamstyle/
EarthVL: A Progressive Earth Vision-Language Understanding and Generation Framework
Earth vision has achieved milestones in geospatial object recognition but lacks exploration in object-relational reasoning, limiting comprehensive scene understanding. To address this, a progressive Earth vision-language understanding and generation framework is proposed, including a multi-task dataset (EarthVLSet) and a semantic-guided network (EarthVLNet). Focusing on city planning applications, EarthVLSet includes 10.9k sub-meter resolution remote sensing images, land-cover masks, and 761.5k textual pairs involving both multiple-choice and open-ended visual question answering (VQA) tasks. In an object-centric way, EarthVLNet is proposed to progressively achieve semantic segmentation, relational reasoning, and comprehensive understanding. The first stage involves land-cover segmentation to generate object semantics for VQA guidance. Guided by pixel-wise semantics, the object awareness based large language model (LLM) performs relational reasoning and knowledge summarization to generate the required answers. As for optimization, the numerical difference loss is proposed to dynamically add difference penalties, addressing the various objects' statistics. Three benchmarks, including semantic segmentation, multiple-choice, and open-ended VQA demonstrated the superiorities of EarthVLNet, yielding three future directions: 1) segmentation features consistently enhance VQA performance even in cross-dataset scenarios; 2) multiple-choice tasks show greater sensitivity to the vision encoder than to the language decoder; and 3) open-ended tasks necessitate advanced vision encoders and language decoders for an optimal performance. We believe this dataset and method will provide a beneficial benchmark that connects ''image-mask-text'', advancing geographical applications for Earth vision.
AbductiveMLLM: Boosting Visual Abductive Reasoning Within MLLMs AAAI 2026
Visual abductive reasoning (VAR) is a challenging task that requires AI systems to infer the most likely explanation for incomplete visual observations. While recent MLLMs develop strong general-purpose multimodal reasoning capabilities, they fall short in abductive inference, as compared to human beings. To bridge this gap, we draw inspiration from the interplay between verbal and pictorial abduction in human cognition, and propose to strengthen abduction of MLLMs by mimicking such dual-mode behavior. Concretely, we introduce AbductiveMLLM comprising of two synergistic components: REASONER and IMAGINER. The REASONER operates in the verbal domain. It first explores a broad space of possible explanations using a blind LLM and then prunes visually incongruent hypotheses based on cross-modal causal alignment. The remaining hypotheses are introduced into the MLLM as targeted priors, steering its reasoning toward causally coherent explanations. The IMAGINER, on the other hand, further guides MLLMs by emulating human-like pictorial thinking. It conditions a text-to-image diffusion model on both the input video and the REASONER's output embeddings to "imagine" plausible visual scenes that correspond to verbal explanation, thereby enriching MLLMs' contextual grounding. The two components are trained jointly in an end-to-end manner. Experiments on standard VAR benchmarks show that AbductiveMLLM achieves state-of-the-art performance, consistently outperforming traditional solutions and advanced MLLMs.
comment: Accepted by AAAI 2026 as Oral. Code:https://github.com/ChangPtR/AbdMLLM
ClearAIR: A Human-Visual-Perception-Inspired All-in-One Image Restoration AAAI 2026
All-in-One Image Restoration (AiOIR) has advanced significantly, offering promising solutions for complex real-world degradations. However, most existing approaches rely heavily on degradation-specific representations, often resulting in oversmoothing and artifacts. To address this, we propose ClearAIR, a novel AiOIR framework inspired by Human Visual Perception (HVP) and designed with a hierarchical, coarse-to-fine restoration strategy. First, leveraging the global priority of early HVP, we employ a Multimodal Large Language Model (MLLM)-based Image Quality Assessment (IQA) model for overall evaluation. Unlike conventional IQA, our method integrates cross-modal understanding to more accurately characterize complex, composite degradations. Building upon this overall assessment, we then introduce a region awareness and task recognition pipeline. A semantic cross-attention, leveraging semantic guidance unit, first produces coarse semantic prompts. Guided by this regional context, a degradation-aware module implicitly captures region-specific degradation characteristics, enabling more precise local restoration. Finally, to recover fine details, we propose an internal clue reuse mechanism. It operates in a self-supervised manner to mine and leverage the intrinsic information of the image itself, substantially enhancing detail restoration. Experimental results show that ClearAIR achieves superior performance across diverse synthetic and real-world datasets.
comment: Accepted to AAAI 2026. Project page: https://github.com/House-yuyu/ClearAIR
AnyDepth: Depth Estimation Made Easy
Monocular depth estimation aims to recover the depth information of 3D scenes from 2D images. Recent work has made significant progress, but its reliance on large-scale datasets and complex decoders has limited its efficiency and generalization ability. In this paper, we propose a lightweight and data-centric framework for zero-shot monocular depth estimation. We first adopt DINOv3 as the visual encoder to obtain high-quality dense features. Secondly, to address the inherent drawbacks of the complex structure of the DPT, we design the Simple Depth Transformer (SDT), a compact transformer-based decoder. Compared to the DPT, it uses a single-path feature fusion and upsampling process to reduce the computational overhead of cross-scale feature fusion, achieving higher accuracy while reducing the number of parameters by approximately 85%-89%. Furthermore, we propose a quality-based filtering strategy to filter out harmful samples, thereby reducing dataset size while improving overall training quality. Extensive experiments on five benchmarks demonstrate that our framework surpasses the DPT in accuracy. This work highlights the importance of balancing model design and data quality for achieving efficient and generalizable zero-shot depth estimation. Code: https://github.com/AIGeeksGroup/AnyDepth. Website: https://aigeeksgroup.github.io/AnyDepth.
Towards Zero-Shot Point Cloud Registration Across Diverse Scales, Scenes, and Sensor Setups ICCV 2025
Some deep learning-based point cloud registration methods struggle with zero-shot generalization, often requiring dataset-specific hyperparameter tuning or retraining for new environments. We identify three critical limitations: (a) fixed user-defined parameters (e.g., voxel size, search radius) that fail to generalize across varying scales, (b) learned keypoint detectors exhibit poor cross-domain transferability, and (c) absolute coordinates amplify scale mismatches between datasets. To address these three issues, we present BUFFER-X, a training-free registration framework that achieves zero-shot generalization through: (a) geometric bootstrapping for automatic hyperparameter estimation, (b) distribution-aware farthest point sampling to replace learned detectors, and (c) patch-level coordinate normalization to ensure scale consistency. Our approach employs hierarchical multi-scale matching to extract correspondences across local, middle, and global receptive fields, enabling robust registration in diverse environments. For efficiency-critical applications, we introduce BUFFER-X-Lite, which reduces total computation time by 43% (relative to BUFFER-X) through early exit strategies and fast pose solvers while preserving accuracy. We evaluate on a comprehensive benchmark comprising 12 datasets spanning object-scale, indoor, and outdoor scenes, including cross-sensor registration between heterogeneous LiDAR configurations. Results demonstrate that our approach generalizes effectively without manual tuning or prior knowledge of test domains. Code: https://github.com/MIT-SPARK/BUFFER-X.
comment: 18 pages, 15 figures. Extended version of our ICCV 2025 highlight paper [arXiv:2503.07940]. arXiv admin note: substantial text overlap with arXiv:2503.07940
D$^3$R-DETR: DETR with Dual-Domain Density Refinement for Tiny Object Detection in Aerial Images
Detecting tiny objects plays a vital role in remote sensing intelligent interpretation, as these objects often carry critical information for downstream applications. However, due to the extremely limited pixel information and significant variations in object density, mainstream Transformer-based detectors often suffer from slow convergence and inaccurate query-object matching. To address these challenges, we propose D$^3$R-DETR, a novel DETR-based detector with Dual-Domain Density Refinement. By fusing spatial and frequency domain information, our method refines low-level feature maps and utilizes their rich details to predict more accurate object density map, thereby guiding the model to precisely localize tiny objects. Extensive experiments on the AI-TOD-v2 dataset demonstrate that D$^3$R-DETR outperforms existing state-of-the-art detectors for tiny object detection.
comment: This work has been submitted to the IEEE for possible publication
Unveiling and Bridging the Functional Perception Gap in MLLMs: Atomic Visual Alignment and Hierarchical Evaluation via PET-Bench
While Multimodal Large Language Models (MLLMs) have demonstrated remarkable proficiency in tasks such as abnormality detection and report generation for anatomical modalities, their capability in functional imaging remains largely unexplored. In this work, we identify and quantify a fundamental functional perception gap: the inability of current vision encoders to decode functional tracer biodistribution independent of morphological priors. Identifying Positron Emission Tomography (PET) as the quintessential modality to investigate this disconnect, we introduce PET-Bench, the first large-scale functional imaging benchmark comprising 52,308 hierarchical QA pairs from 9,732 multi-site, multi-tracer PET studies. Extensive evaluation of 19 state-of-the-art MLLMs reveals a critical safety hazard termed the Chain-of-Thought (CoT) hallucination trap. We observe that standard CoT prompting, widely considered to enhance reasoning, paradoxically decouples linguistic generation from visual evidence in PET, producing clinically fluent but factually ungrounded diagnoses. To resolve this, we propose Atomic Visual Alignment (AVA), a simple fine-tuning strategy that enforces the mastery of low-level functional perception prior to high-level diagnostic reasoning. Our results demonstrate that AVA effectively bridges the perception gap, transforming CoT from a source of hallucination into a robust inference tool and improving diagnostic accuracy by up to 14.83%. Code and data are available at https://github.com/yezanting/PET-Bench.
comment: 9 pages, 6 figures, 6 tables
Omni2Sound: Towards Unified Video-Text-to-Audio Generation
Training a unified model integrating video-to-audio (V2A), text-to-audio (T2A), and joint video-text-to-audio (VT2A) generation offers significant application flexibility, yet faces two unexplored foundational challenges: (1) the scarcity of high-quality audio captions with tight A-V-T alignment, leading to severe semantic conflict between multimodal conditions, and (2) cross-task and intra-task competition, manifesting as an adverse V2A-T2A performance trade-off and modality bias in the VT2A task. First, to address data scarcity, we introduce SoundAtlas, a large-scale dataset (470k pairs) that significantly outperforms existing benchmarks and even human experts in quality. Powered by a novel agentic pipeline, it integrates Vision-to-Language Compression to mitigate visual bias of MLLMs, a Junior-Senior Agent Handoff for a 5 times cost reduction, and rigorous Post-hoc Filtering to ensure fidelity. Consequently, SoundAtlas delivers semantically rich and temporally detailed captions with tight V-A-T alignment. Second, we propose Omni2Sound, a unified VT2A diffusion model supporting flexible input modalities. To resolve the inherent cross-task and intra-task competition, we design a three-stage multi-task progressive training schedule that converts cross-task competition into joint optimization and mitigates modality bias in the VT2A task, maintaining both audio-visual alignment and off-screen audio generation faithfulness. Finally, we construct VGGSound-Omni, a comprehensive benchmark for unified evaluation, including challenging off-screen tracks. With a standard DiT backbone, Omni2Sound achieves unified SOTA performance across all three tasks within a single model, demonstrating strong generalization across benchmarks with heterogeneous input conditions. The project page is at https://swapforward.github.io/Omni2Sound.
Foreground-Aware Dataset Distillation via Dynamic Patch Selection
In this paper, we propose a foreground-aware dataset distillation method that enhances patch selection in a content-adaptive manner. With the rising computational cost of training large-scale deep models, dataset distillation has emerged as a promising approach for constructing compact synthetic datasets that retain the knowledge of their large original counterparts. However, traditional optimization-based methods often suffer from high computational overhead, memory constraints, and the generation of unrealistic, noise-like images with limited architectural generalization. Recent non-optimization methods alleviate some of these issues by constructing distilled data from real image patches, but the used rigid patch selection strategies can still discard critical information about the main objects. To solve this problem, we first leverage Grounded SAM2 to identify foreground objects and compute per-image foreground occupancy, from which we derive a category-wise patch decision threshold. Guided by these thresholds, we design a dynamic patch selection strategy that, for each image, either selects the most informative patch from multiple candidates or directly resizes the full image when the foreground dominates. This dual-path mechanism preserves more key information about the main objects while reducing redundant background content. Extensive experiments on multiple benchmarks show that the proposed method consistently improves distillation performance over existing approaches, producing more informative and representative distilled datasets and enhancing robustness across different architectures and image compositions.
Loop Closure using AnyLoc Visual Place Recognition in DPV-SLAM
Loop closure is crucial for maintaining the accuracy and consistency of visual SLAM. We propose a method to improve loop closure performance in DPV-SLAM. Our approach integrates AnyLoc, a learning-based visual place recognition technique, as a replacement for the classical Bag of Visual Words (BoVW) loop detection method. In contrast to BoVW, which relies on handcrafted features, AnyLoc utilizes deep feature representations, enabling more robust image retrieval across diverse viewpoints and lighting conditions. Furthermore, we propose an adaptive mechanism that dynamically adjusts similarity threshold based on environmental conditions, removing the need for manual tuning. Experiments on both indoor and outdoor datasets demonstrate that our method significantly outperforms the original DPV-SLAM in terms of loop closure accuracy and robustness. The proposed method offers a practical and scalable solution for enhancing loop closure performance in modern SLAM systems.
comment: Accepted at IEEE/SICE International Symposium on System Integration(SII) 2026. 6 pages, 14 figures
Robust Mesh Saliency GT Acquisition in VR via View Cone Sampling and Geometric Smoothing
Reliable 3D mesh saliency ground truth (GT) is essential for human-centric visual modeling in virtual reality (VR). However, current 3D mesh saliency GT acquisition methods are generally consistent with 2D image methods, ignoring the differences between 3D geometry topology and 2D image array. Current VR eye-tracking pipelines rely on single ray sampling and Euclidean smoothing, triggering texture attention and signal leakage across gaps. This paper proposes a robust framework to address these limitations. We first introduce a view cone sampling (VCS) strategy, which simulates the human foveal receptive field via Gaussian-distributed ray bundles to improve sampling robustness for complex topologies. Furthermore, a hybrid Manifold-Euclidean constrained diffusion (HCD) algorithm is developed, fusing manifold geodesic constraints with Euclidean scales to ensure topologically-consistent saliency propagation. By mitigating "topological short-circuits" and aliasing, our framework provides a high-fidelity 3D attention acquisition paradigm that aligns with natural human perception, offering a more accurate and robust baseline for 3D mesh saliency research.
CAMO: Category-Agnostic 3D Motion Transfer from Monocular 2D Videos
Motion transfer from 2D videos to 3D assets is a challenging problem, due to inherent pose ambiguities and diverse object shapes, often requiring category-specific parametric templates. We propose CAMO, a category-agnostic framework that transfers motion to diverse target meshes directly from monocular 2D videos without relying on predefined templates or explicit 3D supervision. The core of CAMO is a morphology-parameterized articulated 3D Gaussian splatting model combined with dense semantic correspondences to jointly adapt shape and pose through optimization. This approach effectively alleviates shape-pose ambiguities, enabling visually faithful motion transfer for diverse categories. Experimental results demonstrate superior motion accuracy, efficiency, and visual coherence compared to existing methods, significantly advancing motion transfer in varied object categories and casual video scenarios.
comment: Project website: https://camo-project-page.github.io/
GRRE: Leveraging G-Channel Removed Reconstruction Error for Robust Detection of AI-Generated Images
The rapid progress of generative models, particularly diffusion models and GANs, has greatly increased the difficulty of distinguishing synthetic images from real ones. Although numerous detection methods have been proposed, their accuracy often degrades when applied to images generated by novel or unseen generative models, highlighting the challenge of achieving strong generalization. To address this challenge, we introduce a novel detection paradigm based on channel removal reconstruction. Specifically, we observe that when the green (G) channel is removed from real images and reconstructed, the resulting reconstruction errors differ significantly from those of AI-generated images. Building upon this insight, we propose G-channel Removed Reconstruction Error (GRRE), a simple yet effective method that exploits this discrepancy for robust AI-generated image detection. Extensive experiments demonstrate that GRRE consistently achieves high detection accuracy across multiple generative models, including those unseen during training. Compared with existing approaches, GRRE not only maintains strong robustness against various perturbations and post-processing operations but also exhibits superior cross-model generalization. These results highlight the potential of channel-removal-based reconstruction as a powerful forensic tool for safeguarding image authenticity in the era of generative AI.
CageDroneRF: A Large-Scale RF Benchmark and Toolkit for Drone Perception
We present CageDroneRF (CDRF), a large-scale benchmark for Radio-Frequency (RF) drone detection and identification built from real-world captures and systematically generated synthetic variants. CDRF addresses the scarcity and limited diversity of existing RF datasets by coupling extensive raw recordings with a principled augmentation pipeline that (i) precisely controls Signal-to-Noise Ratio (SNR), (ii) injects interfering emitters, and (iii) applies frequency shifts with label-consistent bounding-box transformations for detection. This dataset spans a wide range of contemporary drone models, many unavailable in current public datasets, and acquisition conditions, derived from data collected at the Rowan University campus and within a controlled RF-cage facility. CDRF is released with interoperable open-source tools for data generation, preprocessing, augmentation, and evaluation that also operate on existing public benchmarks. CDRF enables standardized benchmarking for classification, open-set recognition, and object detection, supporting rigorous comparisons and reproducible pipelines. By releasing this comprehensive benchmark and tooling, CDRF aims to accelerate progress toward robust, generalizable RF perception models.
DreamLoop: Controllable Cinemagraph Generation from a Single Photograph
Cinemagraphs, which combine static photographs with selective, looping motion, offer unique artistic appeal. Generating them from a single photograph in a controllable manner is particularly challenging. Existing image-animation techniques are restricted to simple, low-frequency motions and operate only in narrow domains with repetitive textures like water and smoke. In contrast, large-scale video diffusion models are not tailored for cinemagraph constraints and lack the specialized data required to generate seamless, controlled loops. We present DreamLoop, a controllable video synthesis framework dedicated to generating cinemagraphs from a single photo without requiring any cinemagraph training data. Our key idea is to adapt a general video diffusion model by training it on two objectives: temporal bridging and motion conditioning. This strategy enables flexible cinemagraph generation. During inference, by using the input image as both the first- and last- frame condition, we enforce a seamless loop. By conditioning on static tracks, we maintain a static background. Finally, by providing a user-specified motion path for a target object, our method provides intuitive control over the animation's trajectory and timing. To our knowledge, DreamLoop is the first method to enable cinemagraph generation for general scenes with flexible and intuitive controls. We demonstrate that our method produces high-quality, complex cinemagraphs that align with user intent, outperforming existing approaches.
comment: Project Page: https://anime26398.github.io/dreamloop.github.io/
Deflickering Vision-Based Occupancy Networks through Lightweight Spatio-Temporal Correlation
Vision-based occupancy networks (VONs) provide an end-to-end solution for reconstructing 3D environments in autonomous driving. However, existing methods often suffer from temporal inconsistencies, manifesting as flickering effects that degrade temporal coherence and adversely affect downstream decision-making. While recent approaches incorporate historical information to alleviate this issue, they often incur high computational costs and may introduce misaligned or redundant features that interfere with object detection. We propose OccLinker, a novel plugin framework that can be easily integrated into existing VONs to improve performance. Our method efficiently consolidates historical static and motion cues, learns sparse latent correlations with current features through a dual cross-attention mechanism, and generates correction occupancy components to refine the base network predictions. In addition, we introduce a new temporal consistency metric to quantitatively measure flickering effects. Extensive experiments on two benchmark datasets demonstrate that our method achieves superior performance with minimal computational overhead while effectively reducing flickering artifacts.
VULCAN: Tool-Augmented Multi Agents for Iterative 3D Object Arrangement
Despite the remarkable progress of Multimodal Large Language Models (MLLMs) in 2D vision-language tasks, their application to complex 3D scene manipulation remains underexplored. In this paper, we bridge this critical gap by tackling three key challenges in 3D object arrangement task using MLLMs. First, to address the weak visual grounding of MLLMs, which struggle to link programmatic edits with precise 3D outcomes, we introduce an MCP-based API. This shifts the interaction from brittle raw code manipulation to more robust, function-level updates. Second, we augment the MLLM's 3D scene understanding with a suite of specialized visual tools to analyze scene state, gather spatial information, and validate action outcomes. This perceptual feedback loop is critical for closing the gap between language-based updates and precise 3D-aware manipulation. Third, to manage the iterative, error-prone updates, we propose a collaborative multi-agent framework with designated roles for planning, execution, and verification. This decomposition allows the system to robustly handle multi-step instructions and recover from intermediate errors. We demonstrate the effectiveness of our approach on a diverse set of 25 complex object arrangement tasks, where it significantly outperforms existing baselines. Website: vulcan-3d.github.io
Do We Need Reformer for Vision? An Experimental Comparison with Vision Transformers
Transformers have recently demonstrated strong performance in computer vision, with Vision Transformers (ViTs) leveraging self-attention to capture both low-level and high-level image features. However, standard ViTs remain computationally expensive, since global self-attention scales quadratically with the number of tokens, which limits their practicality for high-resolution inputs and resource-constrained settings. In this work, we investigate the Reformer architecture as an alternative vision backbone. By combining patch-based tokenization with locality-sensitive hashing (LSH) attention, our model approximates global self-attention while reducing its theoretical time complexity from $\mathcal{O}(n^2)$ to $\mathcal{O}(n \log n)$ in the sequence length $n$. We evaluate the proposed Reformer-based vision model on CIFAR-10 to assess its behavior on small-scale datasets, on ImageNet-100 to study its accuracy--efficiency trade-off in a more realistic setting, and on a high-resolution medical imaging dataset to evaluate the model under longer token sequences. While the Reformer achieves higher accuracy on CIFAR-10 compared to our ViT-style baseline, the ViT model consistently outperforms the Reformer in our experiments in terms of practical efficiency and end-to-end computation time across the larger and higher-resolution settings. These results suggest that, despite the theoretical advantages of LSH-based attention, meaningful computation gains require sequence lengths substantially longer than those produced by typical high-resolution images.
Aligning Text, Images, and 3D Structure Token-by-Token
Creating machines capable of understanding the world in 3D is essential in assisting designers that build and edit 3D environments and robots navigating and interacting within a three-dimensional space. Inspired by advances in language and image modeling, we investigate the potential of autoregressive models for a new modality: structured 3D scenes. To this end, we propose a unified LLM framework that aligns language, images, and 3D scenes and provide a detailed ''cookbook'' outlining critical design choices for achieving optimal training and performance addressing key questions related to data representation, modality-specific objectives, and more. We show how to tokenize complex 3D objects to incorporate into our structured 3D scene modality. We evaluate performance across four core 3D tasks -- rendering, recognition, instruction-following, and question-answering -- and four 3D datasets, synthetic and real-world. We show our model's effectiveness on reconstructing complete 3D scenes consisting of complex objects from a single image and on real-world 3D object recognition tasks. Project webpage: https://glab-caltech.github.io/kyvo/
comment: Project webpage: https://glab-caltech.github.io/kyvo/
VisRet: Visualization Improves Knowledge-Intensive Text-to-Image Retrieval
Text-to-image retrieval (T2I retrieval) remains challenging because cross-modal embeddings often behave as bags of concepts, underrepresenting structured visual relationships such as pose and viewpoint. We propose Visualize-then-Retrieve (VisRet), a retrieval paradigm that mitigates this limitation of cross-modal similarity alignment. VisRet first projects textual queries into the image modality via T2I generation, then performs retrieval within the image modality to bypass the weaknesses of cross-modal retrievers in recognizing subtle visual-spatial features. Across four benchmarks (Visual-RAG, INQUIRE-Rerank, Microsoft COCO, and our new Visual-RAG-ME featuring multi-entity comparisons), VisRet substantially outperforms cross-modal similarity matching and baselines that recast T2I retrieval as text-to-text similarity matching, improving nDCG@30 by 0.125 on average with CLIP as the retriever and by 0.121 with E5-V. For downstream question answering, VisRet increases accuracy on Visual-RAG and Visual-RAG-ME by 3.8% and 15.7% in top-1 retrieval, and by 3.9% and 11.1% in top-10 retrieval. Ablation studies show compatibility with different T2I instruction LLMs, T2I generation models, and downstream LLMs. VisRet provides a simple yet effective perspective for advancing in text-image retrieval. Our code and the new benchmark are publicly available at https://github.com/xiaowu0162/Visualize-then-Retrieve.
LVLM-Aware Multimodal Retrieval for RAG-Based Medical Diagnosis with General-Purpose Models
Retrieving visual and textual information from medical literature and hospital records can enhance diagnostic accuracy for clinical image interpretation. However, multimodal retrieval-augmented diagnosis is highly challenging. We explore a lightweight mechanism for enhancing diagnostic performance of retrieval-augmented LVLMs. We train a lightweight LVLM-aware multimodal retriever, such that the retriever learns to return images and texts that guide the LVLM toward correct predictions. In our low-resource setting, we perform only lightweight fine-tuning with small amounts of data, and use only general-purpose backbone models, achieving competitive results in clinical classification and VQA tasks compared to medically pre-trained models with extensive training. In a novel analysis, we highlight a previously unexplored class of errors that we term inconsistent retrieval predictions: cases where different top-retrieved images yield different predictions for the same target. We find that these cases are challenging for all models, even for non-retrieval models, and that our retrieval optimization mechanism significantly improves these cases over standard RAG. However, our analysis also sheds light on gaps in the ability of LVLMs to utilize retrieved information for clinical predictions. Code and models available at: https://github.com/Nirmaz/JOMED.
Machine-Learning Based Detection of Coronary Artery Calcification Using Synthetic Chest X-Rays
Coronary artery calcification (CAC) is a strong predictor of cardiovascular events, with CT-based Agatston scoring widely regarded as the clinical gold standard. However, CT is costly and impractical for large-scale screening, while chest X-rays (CXRs) are inexpensive but lack reliable ground truth labels, constraining deep learning development. Digitally reconstructed radiographs (DRRs) offer a scalable alternative by projecting CT volumes into CXR-like images while inheriting precise labels. In this work, we provide the first systematic evaluation of DRRs as a surrogate training domain for CAC detection. Using 667 CT scans from the COCA dataset, we generate synthetic DRRs and assess model capacity, super-resolution fidelity enhancement, preprocessing, and training strategies. Lightweight CNNs trained from scratch outperform large pretrained networks; pairing super-resolution with contrast enhancement yields significant gains; and curriculum learning stabilises training under weak supervision. Our best configuration achieves a mean AUC of 0.754, comparable to or exceeding prior CXR-based studies. These results establish DRRs as a scalable, label-rich foundation for CAC detection, while laying the foundation for future transfer learning and domain adaptation to real CXRs.
comment: 10 pages, 5 figures. Under review for MIDL 2026
D^3ETOR: Debate-Enhanced Pseudo Labeling and Frequency-Aware Progressive Debiasing for Weakly-Supervised Camouflaged Object Detection with Scribble Annotations
Weakly-Supervised Camouflaged Object Detection (WSCOD) aims to locate and segment objects that are visually concealed within their surrounding scenes, relying solely on sparse supervision such as scribble annotations. Despite recent progress, existing WSCOD methods still lag far behind fully supervised ones due to two major limitations: (1) the pseudo masks generated by general-purpose segmentation models (e.g., SAM) and filtered via rules are often unreliable, as these models lack the task-specific semantic understanding required for effective pseudo labeling in COD; and (2) the neglect of inherent annotation bias in scribbles, which hinders the model from capturing the global structure of camouflaged objects. To overcome these challenges, we propose ${D}^{3}$ETOR, a two-stage WSCOD framework consisting of Debate-Enhanced Pseudo Labeling and Frequency-Aware Progressive Debiasing. In the first stage, we introduce an adaptive entropy-driven point sampling method and a multi-agent debate mechanism to enhance the capability of SAM for COD, improving the interpretability and precision of pseudo masks. In the second stage, we design FADeNet, which progressively fuses multi-level frequency-aware features to balance global semantic understanding with local detail modeling, while dynamically reweighting supervision strength across regions to alleviate scribble bias. By jointly exploiting the supervision signals from both the pseudo masks and scribble semantics, ${D}^{3}$ETOR significantly narrows the gap between weakly and fully supervised COD, achieving state-of-the-art performance on multiple benchmarks.
ImageNet-trained CNNs are not biased towards texture: Revisiting feature reliance through controlled suppression NeurIPS 2025
The hypothesis that Convolutional Neural Networks (CNNs) are inherently texture-biased has shaped much of the discourse on feature use in deep learning. We revisit this hypothesis by examining limitations in the cue-conflict experiment by Geirhos et al. To address these limitations, we propose a domain-agnostic framework that quantifies feature reliance through systematic suppression of shape, texture, and color cues, avoiding the confounds of forced-choice conflicts. By evaluating humans and neural networks under controlled suppression conditions, we find that CNNs are not inherently texture-biased but predominantly rely on local shape features. Nonetheless, this reliance can be substantially mitigated through modern training strategies or architectures (ConvNeXt, ViTs). We further extend the analysis across computer vision, medical imaging, and remote sensing, revealing that reliance patterns differ systematically: computer vision models prioritize shape, medical imaging models emphasize color, and remote sensing models exhibit a stronger reliance on texture. Code is available at https://github.com/tomburgert/feature-reliance.
comment: Accepted at NeurIPS 2025 (oral)
Quantifying task-relevant representational similarity using decision variable correlation NeurIPS 2025
Previous studies have compared neural activities in the visual cortex to representations in deep neural networks trained on image classification. Interestingly, while some suggest that their representations are highly similar, others argued the opposite. Here, we propose a new approach to characterize the similarity of the decision strategies of two observers (models or brains) using decision variable correlation (DVC). DVC quantifies the image-by-image correlation between the decoded decisions based on the internal neural representations in a classification task. Thus, it can capture task-relevant information rather than general representational alignment. We evaluate DVC using monkey V4/IT recordings and network models trained on image classification tasks. We find that model-model similarity is comparable to monkey-monkey similarity, whereas model-monkey similarity is consistently lower. Strikingly, DVC decreases with increasing network performance on ImageNet-1k. Adversarial training does not improve model-monkey similarity in task-relevant dimensions assessed using DVC, although it markedly increases the model-model similarity. Similarly, pre-training on larger datasets does not improve model-monkey similarity. These results suggest a divergence between the task-relevant representations in monkey V4/IT and those learned by models trained on image classification tasks.
comment: Camera-ready version; accepted at NeurIPS 2025
A Multidimensional AI-powered Framework for Analyzing Tourist Perception in Historic Urban Quarters: A Case Study in Shanghai
Historic urban quarters play a vital role in preserving cultural heritage while serving as vibrant spaces for tourism and everyday life. Understanding how tourists perceive these environments is essential for sustainable, human-centered urban planning. This study proposes a multidimensional AI-powered framework for analyzing tourist perception in historic urban quarters using multimodal data from social media. Applied to twelve historic quarters in central Shanghai, the framework integrates focal point extraction, color theme analysis, and sentiment mining. Visual focus areas are identified from tourist-shared photos using a fine-tuned semantic segmentation model. To assess aesthetic preferences, dominant colors are extracted using a clustering method, and their spatial distribution across quarters is analyzed. Color themes are further compared between social media photos and real-world street views, revealing notable shifts. This divergence highlights potential gaps between visual expectations and the built environment, reflecting both stylistic preferences and perceptual bias. Tourist reviews are evaluated through a hybrid sentiment analysis approach combining a rule-based method and a multi-task BERT model. Satisfaction is assessed across four dimensions: tourist activities, built environment, service facilities, and business formats. The results reveal spatial variations in aesthetic appeal and emotional response. Rather than focusing on a single technical innovation, this framework offers an integrated, data-driven approach to decoding tourist perception and contributes to informed decision-making in tourism, heritage conservation, and the design of aesthetically engaging public spaces.
PartHOI: Part-based Hand-Object Interaction Transfer via Generalized Cylinders
Learning-based methods to understand and model hand-object interactions (HOI) require a large amount of high-quality HOI data. One way to create HOI data is to transfer hand poses from a source object to another based on the objects' geometry. However, current methods for transferring hand poses between objects rely on shape matching, limiting the ability to transfer poses across different categories due to differences in their shapes and sizes. We observe that HOI often involves specific semantic parts of objects, which often have more consistent shapes across categories. In addition, constructing size-invariant correspondences between these parts is important for cross-category transfer. Based on these insights, we introduce a novel method PartHOI for part-based HOI transfer. Using a generalized cylinder representation to parameterize an object parts' geometry, PartHOI establishes a robust geometric correspondence between object parts, and enables the transfer of contact points. Given the transferred points, we optimize a hand pose to fit the target object well. Qualitative and quantitative results demonstrate that our method can generalize HOI transfers well even for cross-category objects, and produce high-fidelity results that are superior to the existing methods.
comment: 14 pages, 12 figures, this paper has been accepted by Computational Visual Media Journal (CVMJ) but has not been published yet
SAGOnline: Segment Any Gaussians Online
3D Gaussian Splatting has emerged as a powerful paradigm for explicit 3D scene representation, yet achieving efficient and consistent 3D segmentation remains challenging. Existing segmentation approaches typically rely on high-dimensional feature lifting, which causes costly optimization, implicit semantics, and task-specific constraints. We present \textbf{Segment Any Gaussians Online (SAGOnline)}, a unified, zero-shot framework that achieves real-time, cross-view consistent segmentation without scene-specific training. SAGOnline decouples the monolithic segmentation problem into lightweight sub-tasks. By integrating video foundation models (e.g., SAM 2), we first generate temporally consistent 2D masks across rendered views. Crucially, instead of learning continuous feature fields, we introduce a \textbf{Rasterization-aware Geometric Consensus} mechanism that leverages the traceability of the Gaussian rasterization pipeline. This allows us to deterministically map 2D predictions to explicit, discrete 3D primitive labels in real-time. This discrete representation eliminates the memory and computational burden of feature distillation, enabling instant inference. Extensive evaluations on NVOS and SPIn-NeRF benchmarks demonstrate that SAGOnline achieves state-of-the-art accuracy (92.7\% and 95.2\% mIoU) while operating at the fastest speed at 27 ms per frame. By providing a flexible interface for diverse foundation models, our framework supports instant prompt, instance, and semantic segmentation, paving the way for interactive 3D understanding in AR/VR and robotics.
comment: 11 pages, 6 figures
Geolocation with Real Human Gameplay Data: A Large-Scale Dataset and Human-Like Reasoning Framework
Geolocation, the task of identifying an image's location, requires complex reasoning and is crucial for navigation, monitoring, and cultural preservation. However, current methods often produce coarse, imprecise, and non-interpretable localization. A major challenge lies in the quality and scale of existing geolocation datasets. These datasets are typically small-scale and automatically constructed, leading to noisy data and inconsistent task difficulty, with images that either reveal answers too easily or lack sufficient clues for reliable inference. To address these challenges, we introduce a comprehensive geolocation framework with three key components: GeoComp, a large-scale dataset; GeoCoT, a novel reasoning method; and GeoEval, an evaluation metric, collectively designed to address critical challenges and drive advancements in geolocation research. At the core of this framework is GeoComp (Geolocation Competition Dataset), a large-scale dataset collected from a geolocation game platform involving 740K users over two years. It comprises 25 million entries of metadata and 3 million geo-tagged locations spanning much of the globe, with each location annotated thousands to tens of thousands of times by human users. The dataset offers diverse difficulty levels for detailed analysis and highlights key gaps in current models. Building on this dataset, we propose Geographical Chain-of-Thought (GeoCoT), a novel multi-step reasoning framework designed to enhance the reasoning capabilities of Large Vision Models (LVMs) in geolocation tasks. GeoCoT improves performance by integrating contextual and spatial cues through a multi-step process that mimics human geolocation reasoning. Finally, using the GeoEval metric, we demonstrate that GeoCoT significantly boosts geolocation accuracy by up to 25% while enhancing interpretability.
comment: Update new version
Robust Egoistic Rigid Body Localization
We consider a robust and self-reliant (or "egoistic") variation of the rigid body localization (RBL) problem, in which a primary rigid body seeks to estimate the pose (i.e., location and orientation) of another rigid body (or "target"), relative to its own, without the assistance of external infrastructure, without prior knowledge of the shape of the target, and taking into account the possibility that the available observations are incomplete. Three complementary contributions are then offered for such a scenario. The first is a method to estimate the translation vector between the center point of both rigid bodies, which unlike existing techniques does not require that both objects have the same shape or even the same number of landmark points. This technique is shown to significantly outperform the state-of-the-art (SotA) under complete information, but to be sensitive to data erasures, even when enhanced by matrix completion methods. The second contribution, designed to offer improved performance in the presence of incomplete information, offers a robust alternative to the latter, at the expense of a slight relative loss under complete information. Finally, the third contribution is a scheme for the estimation of the rotation matrix describing the relative orientation of the target rigid body with respect to the primary. Comparisons of the proposed schemes and SotA techniques demonstrate the advantage of the contributed methods in terms of root mean square error (RMSE) performance under fully complete information and incomplete conditions.
BusterX++: Towards Unified Cross-Modal AI-Generated Content Detection and Explanation with MLLM
Recent advances in generative AI have dramatically improved image and video synthesis capabilities, significantly increasing the risk of misinformation through sophisticated fake content. In response, detection methods have evolved from traditional approaches to multimodal large language models (MLLMs), offering enhanced transparency and interpretability in identifying synthetic media. However, current detection systems remain fundamentally limited by their single-modality design. These approaches analyze images or videos separately, making them ineffective against synthetic content that combines multiple media formats. To address these challenges, we introduce \textbf{BusterX++}, a framework for unified detection and explanation of synthetic image and video, with a direct reinforcement learning (RL) post-training strategy. To enable comprehensive evaluation, we also present \textbf{GenBuster++}, a unified benchmark leveraging state-of-the-art image and video generation techniques. This benchmark comprises 4,000 images and video clips, meticulously curated by human experts to ensure high quality, diversity, and real-world applicability. Extensive experiments demonstrate the effectiveness and generalizability of our approach.
Evaluating Gemini Robotics Policies in a Veo World Simulator
Generative world models hold significant potential for simulating interactions with visuomotor policies in varied environments. Frontier video models can enable generation of realistic observations and environment interactions in a scalable and general manner. However, the use of video models in robotics has been limited primarily to in-distribution evaluations, i.e., scenarios that are similar to ones used to train the policy or fine-tune the base video model. In this report, we demonstrate that video models can be used for the entire spectrum of policy evaluation use cases in robotics: from assessing nominal performance to out-of-distribution (OOD) generalization, and probing physical and semantic safety. We introduce a generative evaluation system built upon a frontier video foundation model (Veo). The system is optimized to support robot action conditioning and multi-view consistency, while integrating generative image-editing and multi-view completion to synthesize realistic variations of real-world scenes along multiple axes of generalization. We demonstrate that the system preserves the base capabilities of the video model to enable accurate simulation of scenes that have been edited to include novel interaction objects, novel visual backgrounds, and novel distractor objects. This fidelity enables accurately predicting the relative performance of different policies in both nominal and OOD conditions, determining the relative impact of different axes of generalization on policy performance, and performing red teaming of policies to expose behaviors that violate physical or semantic safety constraints. We validate these capabilities through 1600+ real-world evaluations of eight Gemini Robotics policy checkpoints and five tasks for a bimanual manipulator.
PhysSFI-Net: Physics-informed Geometric Learning of Skeletal and Facial Interactions for Orthognathic Surgical Outcome Prediction
Orthognathic surgery repositions jaw bones to restore occlusion and enhance facial aesthetics. Accurate simulation of postoperative facial morphology is essential for preoperative planning. However, traditional biomechanical models are computationally expensive, while geometric deep learning approaches often lack interpretability. In this study, we develop and validate a physics-informed geometric deep learning framework named PhysSFI-Net for precise prediction of soft tissue deformation following orthognathic surgery. PhysSFI-Net consists of three components: a hierarchical graph module with craniofacial and surgical plan encoders combined with attention mechanisms to extract skeletal-facial interaction features; a Long Short-Term Memory (LSTM)-based sequential predictor for incremental soft tissue deformation; and a biomechanics-inspired module for high-resolution facial surface reconstruction. Model performance was assessed using point cloud shape error (Hausdorff distance), surface deviation error, and landmark localization error (Euclidean distances of craniomaxillofacial landmarks) between predicted facial shapes and corresponding ground truths. A total of 135 patients who underwent combined orthodontic and orthognathic treatment were included for model training and validation. Quantitative analysis demonstrated that PhysSFI-Net achieved a point cloud shape error of 1.070 +/- 0.088 mm, a surface deviation error of 1.296 +/- 0.349 mm, and a landmark localization error of 2.445 +/- 1.326 mm. Comparative experiments indicated that PhysSFI-Net outperformed the state-of-the-art method ACMT-Net in prediction accuracy. In conclusion, PhysSFI-Net enables interpretable, high-resolution prediction of postoperative facial morphology with superior accuracy, showing strong potential for clinical application in orthognathic surgical planning and simulation.
comment: 29 pages, 8 figures
CVBench: Benchmarking Cross-Video Synergies for Complex Multimodal Reasoning
While multimodal large language models (MLLMs) exhibit strong performance on single-video tasks (e.g., video question answering), their capability for spatiotemporal pattern reasoning across multiple videos remains a critical gap in pattern recognition research. However, this capability is essential for real-world applications, including multi-camera surveillance and cross-video procedural learning. To bridge this gap, we present CVBench, the first diagnostic benchmark designed to assess cross-video relational reasoning rigorously. CVBench comprises 1,000 question-answer pairs spanning three hierarchical tiers: cross-video object association (identifying shared entities), cross-video event association (linking temporal or causal event chains), and cross-video complex reasoning (integrating commonsense and domain knowledge). Built from five domain-diverse video clusters (e.g., sports, life records), the benchmark challenges models to analyze and integrate spatiotemporal patterns from dynamic visual streams. Extensive evaluation of 10+ leading MLLMs (including GPT-4o, Gemini-2.0-flash, Qwen2.5-VL) under zero-shot or chain-of-thought prompting paradigms. Key findings reveal stark performance gaps: even top models, such as GPT-4o, achieve only 63.5% accuracy on causal reasoning tasks, compared to the 91.3% accuracy of human performance. Crucially, our analysis reveals fundamental bottlenecks inherent in current MLLMs architectures, notably deficient inter-video context retention and poor disambiguation of overlapping entities. CVBench establishes a rigorous framework for advancing pattern recognition methodologies in multi-video scenarios, providing architectural insights for next-generation models. The data and evaluation code are available at: https://github.com/Hokhim2/CVBench.
FFP-300K: Scaling First-Frame Propagation for Generalizable Video Editing
First-Frame Propagation (FFP) offers a promising paradigm for controllable video editing, but existing methods are hampered by a reliance on cumbersome run-time guidance. We identify the root cause of this limitation as the inadequacy of current training datasets, which are often too short, low-resolution, and lack the task diversity required to teach robust temporal priors. To address this foundational data gap, we first introduce FFP-300K, a new large-scale dataset comprising 300K high-fidelity video pairs at 720p resolution and 81 frames in length, constructed via a principled two-track pipeline for diverse local and global edits. Building on this dataset, we propose a novel framework designed for true guidance-free FFP that resolves the critical tension between maintaining first-frame appearance and preserving source video motion. Architecturally, we introduce Adaptive Spatio-Temporal RoPE (AST-RoPE), which dynamically remaps positional encodings to disentangle appearance and motion references. At the objective level, we employ a self-distillation strategy where an identity propagation task acts as a powerful regularizer, ensuring long-term temporal stability and preventing semantic drift. Comprehensive experiments on the EditVerseBench benchmark demonstrate that our method significantly outperforming existing academic and commercial models by receiving about 0.2 PickScore and 0.3 VLM score improvement against these competitors.
ViSTA-SLAM: Visual SLAM with Symmetric Two-view Association 3DV 2026
We present ViSTA-SLAM as a real-time monocular visual SLAM system that operates without requiring camera intrinsics, making it broadly applicable across diverse camera setups. At its core, the system employs a lightweight symmetric two-view association (STA) model as the frontend, which simultaneously estimates relative camera poses and regresses local pointmaps from only two RGB images. This design reduces model complexity significantly, the size of our frontend is only 35\% that of comparable state-of-the-art methods, while enhancing the quality of two-view constraints used in the pipeline. In the backend, we construct a specially designed Sim(3) pose graph that incorporates loop closures to address accumulated drift. Extensive experiments demonstrate that our approach achieves superior performance in both camera tracking and dense 3D reconstruction quality compared to current methods. Github repository: https://github.com/zhangganlin/vista-slam
comment: Accepted by 3DV 2026, project page: https://ganlinzhang.xyz/vista-slam/
VLN-MME: Diagnosing MLLMs as Language-guided Visual Navigation agents
Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities across a wide range of vision-language tasks. However, their performance as embodied agents, which requires multi-round dialogue spatial reasoning and sequential action prediction, needs further exploration. Our work investigates this potential in the context of Vision-and-Language Navigation (VLN) by introducing a unified and extensible evaluation framework to probe MLLMs as zero-shot agents by bridging traditional navigation datasets into a standardized benchmark, named VLN-MME. We simplify the evaluation with a highly modular and accessible design. This flexibility streamlines experiments, enabling structured comparisons and component-level ablations across diverse MLLM architectures, agent designs, and navigation tasks. Crucially, enabled by our framework, we observe that enhancing our baseline agent with Chain-of-Thought (CoT) reasoning and self-reflection leads to an unexpected performance decrease. This suggests MLLMs exhibit poor context awareness in embodied navigation tasks; although they can follow instructions and structure their output, their 3D spatial reasoning fidelity is low. VLN-MME lays the groundwork for systematic evaluation of general-purpose MLLMs in embodied navigation settings and reveals limitations in their sequential decision-making capabilities. We believe these findings offer crucial guidance for MLLM post-training as embodied agents.
UniversalRAG: Retrieval-Augmented Generation over Corpora of Diverse Modalities and Granularities
Retrieval-Augmented Generation (RAG) has shown substantial promise in improving factual accuracy by grounding model responses with external knowledge relevant to queries. However, most existing approaches are limited to a text-only corpus, and while recent efforts have extended RAG to other modalities such as images and videos, they typically operate over a single modality-specific corpus. In contrast, real-world queries vary widely in the type of knowledge they require, which a single type of knowledge source cannot address. To address this, we introduce UniversalRAG, designed to retrieve and integrate knowledge from heterogeneous sources with diverse modalities and granularities. Specifically, motivated by the observation that forcing all modalities into a unified representation space derived from a single aggregated corpus causes a modality gap, where the retrieval tends to favor items from the same modality as the query, we propose modality-aware routing, which dynamically identifies the most appropriate modality-specific corpus and performs targeted retrieval within it, and further justify its effectiveness with a theoretical analysis. Moreover, beyond modality, we organize each modality into multiple granularity levels, enabling fine-tuned retrieval tailored to the complexity and scope of the query. We validate UniversalRAG on 10 benchmarks of multiple modalities, showing its superiority over various modality-specific and unified baselines.
comment: Project page : https://universalrag.github.io
Efficient and Robust Video Defense Framework against 3D-field Personalized Talking Face
State-of-the-art 3D-field video-referenced Talking Face Generation (TFG) methods synthesize high-fidelity personalized talking-face videos in real time by modeling 3D geometry and appearance from reference portrait video. This capability raises significant privacy concerns regarding malicious misuse of personal portraits. However, no efficient defense framework exists to protect such videos against 3D-field TFG methods. While image-based defenses could apply per-frame 2D perturbations, they incur prohibitive computational costs, severe video quality degradation, failing to disrupt 3D information for video protection. To address this, we propose a novel and efficient video defense framework against 3D-field TFG methods, which protects portrait video by perturbing the 3D information acquisition process while maintain high-fidelity video quality. Specifically, our method introduces: (1) a similarity-guided parameter sharing mechanism for computational efficiency, and (2) a multi-scale dual-domain attention module to jointly optimize spatial-frequency perturbations. Extensive experiments demonstrate that our proposed framework exhibits strong defense capability and achieves a 47x acceleration over the fastest baseline while maintaining high fidelity. Moreover, it remains robust against scaling operations and state-of-the-art purification attacks, and the effectiveness of our design choices is further validated through ablation studies. Our project is available at https://github.com/Richen7418/VDF.
SignX: Continuous Sign Recognition in Compact Pose-Rich Latent Space
The complexity of sign language data processing brings many challenges. The current approach to recognition of ASL signs aims to translate RGB sign language videos through pose information into English-based ID Glosses, which serve to uniquely identify ASL signs. This paper proposes SignX, a novel framework for continuous sign language recognition in compact pose-rich latent space. First, we construct a unified latent representation that encodes heterogeneous pose formats (SMPLer-X, DWPose, Mediapipe, PrimeDepth, and Sapiens Segmentation) into a compact, information-dense space. Second, we train a ViT-based Video2Pose module to extract this latent representation directly from raw videos. Finally, we develop a temporal modeling and sequence refinement method that operates entirely in this latent space. This multi-stage design achieves end-to-end sign language recognition while significantly reducing computational consumption. Experimental results demonstrate that SignX achieves state-of-the-art accuracy on continuous sign language recognition.
comment: 23 pages, CSLR SOTA (2026). More demo at https://signerx.github.io/SignX/
Scene-Aware Vectorized Memory Multi-Agent Framework with Cross-Modal Differentiated Quantization VLMs for Visually Impaired Assistance
Visually impaired individuals face significant challenges in environmental perception. Traditional assistive technologies often lack adaptive intelligence, focusing on individual components rather than integrated systems. While Vision-Language Models (VLMs) offer a promising path to richer, integrated understanding, their deployment is severely limited by substantial computational requirements, demanding dozens of gigabytes of memory. To address these gaps in computational efficiency and integrated design, this study proposes a dual technological innovation framework: a cross-modal differentiated quantization framework for VLMs and a scene-aware vectorized memory multi-agent system. The quantization framework implements differentiated strategies, reducing memory from 38GB to 11.3GB. The multi-agent system uses vectorized memory and perception-memory-reasoning workflows to provide environmental information beyond the current view, achieving 2.83-3.52s latency to initial speech output. Experiments show the quantized 19B-parameter model only experiences a 2.05% performance drop on MMBench and maintains 63.7 accuracy on OCR-VQA (original: 64.9), outperforming smaller models with equivalent memory. This research advances computational efficiency and assistive technology, offering comprehensive assistance in scene perception, text recognition, and navigation.
comment: 28 pages,9 figures
The Color-Clinical Decoupling: Why Perceptual Calibration Fails Clinical Biomarkers in Smartphone Dermatology
Smartphone-based tele-dermatology assumes that colorimetric calibration ensures clinical reliability, yet this remains untested for underrepresented skin phototypes. We investigated whether standard calibration translates to reliable clinical biomarkers using 43,425 images from 965 Korean subjects (Fitzpatrick III-IV) across DSLR, tablet, and smartphone devices. While Linear Color Correction Matrix (CCM) normalization reduced color error by 67-77% -- achieving near-clinical accuracy (Delta E < 2.3) -- this success did not translate to biomarker reliability. We identify a phenomenon termed "color-clinical decoupling": despite perceptual accuracy, the Individual Typology Angle (ITA) showed poor inter-device agreement (ICC = 0.40), while the Melanin Index achieved good agreement (ICC = 0.77). This decoupling is driven by the ITA formula's sensitivity to b* channel noise and is further compounded by anatomical variance. Facial region accounts for 25.2% of color variance -- 3.6x greater than device effects (7.0%) -- challenging the efficacy of single-patch calibration. Our results demonstrate that current colorimetric standards are insufficient for clinical-grade biomarker extraction, necessitating region-aware protocols for mobile dermatology.
TEyeD: Over 20 million real-world eye images with Pupil, Eyelid, and Iris 2D and 3D Segmentations, 2D and 3D Landmarks, 3D Eyeball, Gaze Vector, and Eye Movement Types
We present TEyeD, the world's largest unified public data set of eye images taken with head-mounted devices. TEyeD was acquired with seven different head-mounted eye trackers. Among them, two eye trackers were integrated into virtual reality (VR) or augmented reality (AR) devices. The images in TEyeD were obtained from various tasks, including car rides, simulator rides, outdoor sports activities, and daily indoor activities. The data set includes 2D and 3D landmarks, semantic segmentation, 3D eyeball annotation and the gaze vector and eye movement types for all images. Landmarks and semantic segmentation are provided for the pupil, iris and eyelids. Video lengths vary from a few minutes to several hours. With more than 20 million carefully annotated images, TEyeD provides a unique, coherent resource and a valuable foundation for advancing research in the field of computer vision, eye tracking and gaze estimation in modern VR and AR applications. Download: https://es-cloud.cs.uni-tuebingen.de/d/8e2ab8c3fdd444e1a135/?p=%2FTEyeDS&mode=list Alternative Download: https://hctlsrva.edu.sot.tum.de/TEyeDS/
comment: Download: https://es-cloud.cs.uni-tuebingen.de/d/8e2ab8c3fdd444e1a135/?p=%2FTEyeDS&mode=list Alternative Download: https://hctlsrva.edu.sot.tum.de/TEyeDS/
MemeMind: A Large-Scale Multimodal Dataset with Chain-of-Thought Reasoning for Harmful Meme Detection
As a multimodal medium combining images and text, memes frequently convey implicit harmful content through metaphors and humor, rendering the detection of harmful memes a complex and challenging task. Although recent studies have made progress in detection accuracy and interpretability, large-scale, high-quality datasets for harmful memes remain scarce, and current methods still struggle to capture implicit risks and nuanced semantics. Thus, we construct MemeMind, a large-scale harmful meme dataset. Aligned with the international standards and the context of internet, MemeMind provides detailed Chain-of-Thought (CoT) reasoning annotations to support fine-grained analysis of implicit intentions in memes. Based on this dataset, we further propose MemeGuard, a reasoning-oriented multimodal detection model that significantly improves both the accuracy of harmful meme detection and the interpretability of model decisions. Extensive experimental results demonstrate that MemeGuard outperforms existing state-of-the-art methods on the MemeMind dataset, establishing a solid foundation for future research in harmful meme detection.
Teeth3DS+: An Extended Benchmark for Intraoral 3D Scans Analysis
Intraoral 3D scanning is now widely adopted in modern dentistry and plays a central role in supporting key tasks such as tooth segmentation, detection, labeling, and dental landmark identification. Accurate analysis of these scans is essential for orthodontic and restorative treatment planning, as it enables automated workflows and minimizes the need for manual intervention. However, the development of robust learning-based solutions remains challenging due to the limited availability of high-quality public datasets and standardized benchmarks. This article presents Teeth3DS+, an extended public benchmark dedicated to intraoral 3D scan analysis. Developed in the context of the MICCAI 3DTeethSeg and 3DTeethLand challenges, Teeth3DS+ supports multiple fundamental tasks, including tooth detection, segmentation, labeling, 3D modeling, and dental landmark identification. The dataset consists of rigorously curated intraoral scans acquired using state-of-the-art scanners and validated by experienced orthodontists and dental surgeons. In addition to the data, Teeth3DS+ provides standardized data splits and evaluation protocols to enable fair and reproducible comparison of methods, with the goal of fostering progress in learning-based analysis of 3D dental scans. Detailed instructions for accessing the dataset are available at https://crns-smartvision.github.io/teeth3ds
comment: Draft
How Many Images Does It Take? Estimating Imitation Thresholds in Text-to-Image Models NeurIPS 2024
Text-to-image models are trained using large datasets of image-text pairs collected from the internet. These datasets often include copyrighted and private images. Training models on such datasets enables them to generate images that might violate copyright laws and individual privacy. This phenomenon is termed imitation -- generation of images with content that has recognizable similarity to its training images. In this work we estimate the point at which a model was trained on enough instances of a concept to be able to imitate it -- the imitation threshold. We posit this question as a new problem and propose an efficient approach that estimates the imitation threshold without incurring the colossal cost of training these models from scratch. We experiment with two domains -- human faces and art styles, and evaluate four text-to-image models that were trained on three pretraining datasets. We estimate the imitation threshold of these models to be in the range of 200-700 images, depending on the domain and the model. The imitation threshold provides an empirical basis for copyright violation claims and acts as a guiding principle for text-to-image model developers that aim to comply with copyright and privacy laws. Website: https://how-many-van-goghs-does-it-take.github.io/. Code: https://github.com/vsahil/MIMETIC-2.
comment: Accepted at TMLR 2025, ATTRIB, RegML, and SafeGenAI workshops at NeurIPS 2024 and NLLP Workshop 2024. https://openreview.net/forum?id=x0qJo7SPhs
Chain-of-Action: Trajectory Autoregressive Modeling for Robotic Manipulation
We present Chain-of-Action (CoA), a novel visuo-motor policy paradigm built upon Trajectory Autoregressive Modeling. Unlike conventional approaches that predict next step action(s) forward, CoA generates an entire trajectory by explicit backward reasoning with task-specific goals through an action-level Chain-of-Thought (CoT) process. This process is unified within a single autoregressive structure: (1) the first token corresponds to a stable keyframe action that encodes the task-specific goals; and (2) subsequent action tokens are generated autoregressively, conditioned on the initial keyframe and previously predicted actions. This backward action reasoning enforces a global-to-local structure, allowing each local action to be tightly constrained by the final goal. To further realize the action reasoning structure, CoA incorporates four complementary designs: continuous action token representation; dynamic stopping for variable-length trajectory generation; reverse temporal ensemble; and multi-token prediction to balance action chunk modeling with global structure. As a result, CoA gives strong spatial generalization capabilities while preserving the flexibility and simplicity of a visuo-motor policy. Empirically, we observe CoA achieves the state-of-the-art performance across 60 RLBench tasks and 8 real-world manipulation tasks.
Spatial Polarization Multiplexing: Single-Shot Invisible Shape and Reflectance Recovery
We propose spatial polarization multiplexing (SPM) for joint sensing of shape and reflectance of a static or dynamic deformable object, which is also invisible to the naked eye. Past structured-light methods are limited to shape acquisition and cannot recover reflectance as they alter scene appearance. Our key idea is to spatially multiplex a polarization pattern to encode the incident ray and also densely sample the reflected light. We derive a quantized polarized light pattern that can be robustly and uniquely decoded from the reflected Angle of Linear Polarization (AoLP) values. It also enables single-shot disentanglement of polarimetric diffuse and specular reflections for accurate BRDF estimation. We achieve this spatial polarization multiplexing (SPM) with a constrained de Bruijn sequence. We validate this novel invisible single-shot shape and reflectance method with real static and dynamic objects. The results demonstrate the effectiveness of SPM for accurate shape and BRDF measurement which opens new avenues of application for 3D sensing thanks to its invisibility and ability to jointly recover the radiometric properties.
comment: Project page: https://vision.ist.i.kyoto-u.ac.jp/research/spm/
HAPNet: Toward Superior RGB-Thermal Scene Parsing via Hybrid, Asymmetric, and Progressive Heterogeneous Feature Fusion
Data-fusion networks have shown significant promise for RGB-thermal scene parsing. However, the majority of existing studies have relied on symmetric duplex encoders for heterogeneous feature extraction and fusion, paying inadequate attention to the inherent differences between RGB and thermal modalities. Recent progress in vision foundation models (VFMs) trained through self-supervision on vast amounts of unlabeled data has proven their ability to extract informative, general-purpose features. However, this potential has yet to be fully leveraged in the domain. In this study, we take one step toward this new research area by exploring a feasible strategy to fully exploit VFM features for RGB-thermal scene parsing. Specifically, we delve deeper into the unique characteristics of RGB and thermal modalities, thereby designing a hybrid, asymmetric encoder that incorporates both a VFM and a convolutional neural network. This design allows for more effective extraction of complementary heterogeneous features, which are subsequently fused in a dual-path, progressive manner. Moreover, we introduce an auxiliary task to further enrich the local semantics of the fused features, thereby improving the overall performance of RGB-thermal scene parsing. Our proposed HAPNet, equipped with all these components, demonstrates superior performance compared to all other state-of-the-art RGB-thermal scene parsing networks, achieving top ranks across three widely used public RGB-thermal scene parsing datasets. We believe this new paradigm has opened up new opportunities for future developments in data-fusion scene parsing approaches.
comment: 16 pages, 4 figures. Accepted to the Biomimetic Intelligence and Robotics
FCMBench: A Comprehensive Financial Credit Multimodal Benchmark for Real-world Applications
As multimodal AI becomes widely used for credit risk assessment and document review, a domain-specific benchmark is urgently needed that (1) reflects documents and workflows specific to financial credit applications, (2) includes credit-specific understanding and real-world robustness, and (3) preserves privacy compliance without sacrificing practical utility. Here, we introduce FCMBench-V1.0 -- a large-scale financial credit multimodal benchmark for real-world applications, covering 18 core certificate types, with 4,043 privacy-compliant images and 8,446 QA samples. The FCMBench evaluation framework consists of three dimensions: Perception, Reasoning, and Robustness, including 3 foundational perception tasks, 4 credit-specific reasoning tasks that require decision-oriented understanding of visual evidence, and 10 real-world acquisition artifact types for robustness stress testing. To reconcile compliance with realism, we construct all samples via a closed synthesis-capture pipeline: we manually synthesize document templates with virtual content and capture scenario-aware images in-house. This design also mitigates pre-training data leakage by avoiding web-sourced or publicly released images. FCMBench can effectively discriminate performance disparities and robustness across modern vision-language models. Extensive experiments were conducted on 23 state-of-the-art vision-language models (VLMs) from 14 top AI companies and research institutes. Among them, Gemini 3 Pro achieves the best F1(\%) score as a commercial model (64.61), Qwen3-VL-235B achieves the best score as an open-source baseline (57.27), and our financial credit-specific model, Qfin-VL-Instruct, achieves the top overall score (64.92). Robustness evaluations show that even top-performing models suffer noticeable performance drops under acquisition artifacts.
E$^2$AT: Multimodal Jailbreak Defense via Dynamic Joint Optimization for Multimodal Large Language Models
Research endeavors have been made in learning robust Multimodal Large Language Models (MLLMs) against jailbreak attacks. However, existing methods for improving MLLMs' robustness still face critical challenges: \ding{172} how to efficiently tune massive weight parameters and \ding{173} how to ensure robustness against attacks across both visual and textual modalities. To this end, we propose an \textbf{E}fficient \textbf{E}nd-to-end \textbf{A}dversarial \textbf{T}raining (E$^2$AT) framework for both visual and textual adversarial attacks. Specifically, for the visual aspect, E$^2$AT incorporates an efficient projector-based AT module that aligns the attack samples at the feature level. For training objectives, we propose a Dynamic Joint Multimodal Optimization (DJMO) strategy to enhance generalization ability against jailbreak attacks by dynamically adjusting weights between normal and adversarial objectives. Extensive experiments are conducted with five major jailbreak attack methods across three mainstream MLLMs. Results demonstrate that our E$^2$AT achieves the state-of-the-art performance, outperforming existing baselines by an average margin of 34\% across text and image modalities, while maintaining clean task performance. Furthermore, evaluations of real-world embodied intelligent systems highlight the practical applicability of E$^2$AT, paving the way for the development of more secure and reliable multimodal systems. Our code is available on \href{https://anonymous.4open.science/r/E2AT_568}{\textcolor{red}{https://anonymous.4open.science/r/E2AT\_568}}.
Intervene-All-Paths: Unified Mitigation of LVLM Hallucinations across Alignment Formats NeurIPS 2025
Despite their impressive performance across a wide range of tasks, Large Vision-Language Models (LVLMs) remain prone to hallucination. In this study, we propose a comprehensive intervention framework aligned with the transformer's causal architecture in LVLMs, integrating the effects of different intervention paths on hallucination. We find that hallucinations in LVLMs do not arise from a single causal path, but rather from the interplay among image-to-input-text, image-to-output-text, and text-to-text pathways. For the first time, we also find that LVLMs rely on different pathways depending on the question-answer alignment format. Building on these insights, we propose simple yet effective methods to identify and intervene on critical hallucination heads within each pathway, tailored to discriminative and generative formats. Experiments across multiple benchmarks demonstrate that our approach consistently reduces hallucinations across diverse alignment types.
comment: Accepted to NeurIPS 2025, Project Page: https://github.com/SooLab/AllPath
Learning Visual Hierarchies in Hyperbolic Space for Image Retrieval
Structuring latent representations in a hierarchical manner enables models to learn patterns at multiple levels of abstraction. However, most prevalent image understanding models focus on visual similarity, and learning visual hierarchies is relatively unexplored. In this work, for the first time, we introduce a learning paradigm that can encode user-defined multi-level complex visual hierarchies in hyperbolic space without requiring explicit hierarchical labels. As a concrete example, first, we define a part-based image hierarchy using object-level annotations within and across images. Then, we introduce an approach to enforce the hierarchy using contrastive loss with pairwise entailment metrics. Finally, we discuss new evaluation metrics to effectively measure hierarchical image retrieval. Encoding these complex relationships ensures that the learned representations capture semantic and structural information that transcends mere visual similarity. Experiments in part-based image retrieval show significant improvements in hierarchical retrieval tasks, demonstrating the capability of our model in capturing visual hierarchies.
RSwinV2-MD: An Enhanced Residual SwinV2 Transformer for Monkeypox Detection from Skin Images
In this paper, a deep learning approach for Mpox diagnosis named Customized Residual SwinTransformerV2 (RSwinV2) has been proposed, trying to enhance the capability of lesion classification by employing the RSwinV2 tool-assisted vision approach. In the RSwinV2 method, a hierarchical structure of the transformer has been customized based on the input dimensionality, embedding structure, and output targeted by the method. In this RSwinV2 approach, the input image has been split into non-overlapping patches and processed using shifted windows and attention in these patches. This process has helped the method link all the windows efficiently by avoiding the locality issues of non-overlapping regions in attention, while being computationally efficient. RSwinV2 has further developed based on SwinTransformer and has included patch and position embeddings to take advantage of the transformer global-linking capability by employing multi-head attention in these embeddings. Furthermore, RSwinV2 has developed and incorporated the Inverse Residual Block (IRB) into this method, which utilizes convolutional skip connections with these inclusive designs to address the vanishing gradient issues during processing. RSwinV2 inclusion of IRB has therefore facilitated this method to link global patterns as well as local patterns; hence, its integrity has helped improve lesion classification capability by minimizing variability of Mpox and increasing differences of Mpox, chickenpox, measles, and cowpox. In testing SwinV2, its accuracy of 96.51 and an F1score of 96.13 have been achieved on the Kaggle public dataset, which has outperformed standard CNN models and SwinTransformers; the RSwinV2 vector has thus proved its validity as a computer-assisted tool for Mpox lesion observation interpretation.
comment: 17 Pages, 7 Figures, 4 Tables
Mitigating Error Accumulation in Co-Speech Motion Generation via Global Rotation Diffusion and Multi-Level Constraints AAAI 2026
Reliable co-speech motion generation requires precise motion representation and consistent structural priors across all joints. Existing generative methods typically operate on local joint rotations, which are defined hierarchically based on the skeleton structure. This leads to cumulative errors during generation, manifesting as unstable and implausible motions at end-effectors. In this work, we propose GlobalDiff, a diffusion-based framework that operates directly in the space of global joint rotations for the first time, fundamentally decoupling each joint's prediction from upstream dependencies and alleviating hierarchical error accumulation. To compensate for the absence of structural priors in global rotation space, we introduce a multi-level constraint scheme. Specifically, a joint structure constraint introduces virtual anchor points around each joint to better capture fine-grained orientation. A skeleton structure constraint enforces angular consistency across bones to maintain structural integrity. A temporal structure constraint utilizes a multi-scale variational encoder to align the generated motion with ground-truth temporal patterns. These constraints jointly regularize the global diffusion process and reinforce structural awareness. Extensive evaluations on standard co-speech benchmarks show that GlobalDiff generates smooth and accurate motions, improving the performance by 46.0 % compared to the current SOTA under multiple speaker identities.
comment: AAAI 2026
Go with Your Gut: Scaling Confidence for Autoregressive Image Generation
Test-time scaling (TTS) has demonstrated remarkable success in enhancing large language models, yet its application to next-token prediction (NTP) autoregressive (AR) image generation remains largely uncharted. Existing TTS approaches for visual AR (VAR), which rely on frequent partial decoding and external reward models, are ill-suited for NTP-based image generation due to the inherent incompleteness of intermediate decoding results. To bridge this gap, we introduce ScalingAR, the first TTS framework specifically designed for NTP-based AR image generation that eliminates the need for early decoding or auxiliary rewards. ScalingAR leverages token entropy as a novel signal in visual token generation and operates at two complementary scaling levels: (i) Profile Level, which streams a calibrated confidence state by fusing intrinsic and conditional signals; and (ii) Policy Level, which utilizes this state to adaptively terminate low-confidence trajectories and dynamically schedule guidance for phase-appropriate conditioning strength. Experiments on both general and compositional benchmarks show that ScalingAR (1) improves base models by 12.5% on GenEval and 15.2% on TIIF-Bench, (2) efficiently reduces visual token consumption by 62.0% while outperforming baselines, and (3) successfully enhances robustness, mitigating performance drops by 26.0% in challenging scenarios.
comment: Code: https://github.com/EnVision-Research/ScalingAR
DenseSplat: Densifying Gaussian Splatting SLAM with Neural Radiance Prior
Gaussian SLAM systems excel in real-time rendering and fine-grained reconstruction compared to NeRF-based systems. However, their reliance on extensive keyframes is impractical for deployment in real-world robotic systems, which typically operate under sparse-view conditions that can result in substantial holes in the map. To address these challenges, we introduce DenseSplat, the first SLAM system that effectively combines the advantages of NeRF and 3DGS. DenseSplat utilizes sparse keyframes and NeRF priors for initializing primitives that densely populate maps and seamlessly fill gaps. It also implements geometry-aware primitive sampling and pruning strategies to manage granularity and enhance rendering efficiency. Moreover, DenseSplat integrates loop closure and bundle adjustment, significantly enhancing frame-to-frame tracking accuracy. Extensive experiments on multiple large-scale datasets demonstrate that DenseSplat achieves superior performance in tracking and mapping compared to current state-of-the-art methods.
comment: IEEE Transactions on Visualization and Computer Graphics
FLUID: Training-Free Face De-identification via Latent Identity Substitution
Current face de-identification methods that replace identifiable cues in the face region with other sacrifices utilities contributing to realism, such as age and gender. To retrieve the damaged realism, we present FLUID (Face de-identification in the Latent space via Utility-preserving Identity Displacement), a single-input face de-identification framework that directly replaces identity features in the latent space of a pretrained diffusion model without affecting the model's weights. We reinterpret face de-identification as an image editing task in the latent h-space of a pretrained unconditional diffusion model. Our framework estimates identity-editing directions through optimization guided by loss functions that encourage attribute preservation while suppressing identity signals. We further introduce both linear and geodesic (tangent-based) editing schemes to effectively navigate the latent manifold. Experiments on CelebA-HQ and FFHQ show that FLUID achieves a superior balance between identity suppression and attribute preservation, outperforming existing de-identification approaches in both qualitative and quantitative evaluations.
RoboTracer: Mastering Spatial Trace with Reasoning in Vision-Language Models for Robotics
Spatial tracing, as a fundamental embodied interaction ability for robots, is inherently challenging as it requires multi-step metric-grounded reasoning compounded with complex spatial referring and real-world metric measurement. However, existing methods struggle with this compositional task. To this end, we propose RoboTracer, a 3D-aware VLM that first achieves both 3D spatial referring and measuring via a universal spatial encoder and a regression-supervised decoder to enhance scale awareness during supervised fine-tuning (SFT). Moreover, RoboTracer advances multi-step metric-grounded reasoning via reinforcement fine-tuning (RFT) with metric-sensitive process rewards, supervising key intermediate perceptual cues to accurately generate spatial traces. To support SFT and RFT training, we introduce TraceSpatial, a large-scale dataset of 30M QA pairs, spanning outdoor/indoor/tabletop scenes and supporting complex reasoning processes (up to 9 steps). We further present TraceSpatial-Bench, a challenging benchmark filling the gap to evaluate spatial tracing. Experimental results show that RoboTracer surpasses baselines in spatial understanding, measuring, and referring, with an average success rate of 79.1%, and also achieves SOTA performance on TraceSpatial-Bench by a large margin, exceeding Gemini-2.5-Pro by 36% accuracy. Notably, RoboTracer can be integrated with various control policies to execute long-horizon, dynamic tasks across diverse robots (UR5, G1 humanoid) in cluttered real-world scenes. See the project page at https://zhoues.github.io/RoboTracer.
comment: Project page: https://zhoues.github.io/RoboTracer
Benchmarking CNN and Transformer-Based Object Detectors for UAV Solar Panel Inspection
Timely and accurate detection of defects and contaminants in solar panels is critical for maintaining the efficiency and reliability of photovoltaic (PV) systems. While recent studies have applied deep learning to PV inspection, fair benchmarking across detector architectures and unbiased handling of class imbalance remain limited. This work presents a comprehensive benchmark of convolutional and transformer-based object detectors on UAV-captured RGB imagery of solar panels. It introduces a class-targeted augmentation strategy applied exclusively to the training split to mitigate imbalance without compromising evaluation integrity. Faster R-CNN with ResNet50 and MobileNetV3 backbones, RetinaNet with ResNet50, YOLOv5, YOLOv8, and Swin Transformer backbones integrated with Faster R-CNN (Tiny, Small, and Base variants) are evaluated. Performance is assessed using mean Average Precision (mAP) across multiple IoU thresholds, precision, recall, F1 score, and inference throughput to enable accuracy-throughput tradeoff analysis relevant to UAV deployment. Experimental results show that Faster R-CNN with a ResNet50 backbone achieves the highest localization accuracy, with mAP@0.5 of 0.893 and mAP@0.5:0.95 of 0.759, whereas the MobileNetV3 variant provides the best overall reliability balance, achieving recall of 0.745, F1-score of 0.809, and accuracy of 0.679 on the test set. The dataset and code will be released upon acceptance of the paper.
AdaVLN: Towards Visual Language Navigation in Continuous Indoor Environments with Moving Humans
Visual Language Navigation is a task that challenges robots to navigate in realistic environments based on natural language instructions. While previous research has largely focused on static settings, real-world navigation must often contend with dynamic human obstacles. Hence, we propose an extension to the task, termed Adaptive Visual Language Navigation (AdaVLN), which seeks to narrow this gap. AdaVLN requires robots to navigate complex 3D indoor environments populated with dynamically moving human obstacles, adding a layer of complexity to navigation tasks that mimic the real-world. To support exploration of this task, we also present AdaVLN simulator and AdaR2R datasets. The AdaVLN simulator enables easy inclusion of fully animated human models directly into common datasets like Matterport3D. We also introduce a "freeze-time" mechanism for both the navigation task and simulator, which pauses world state updates during agent inference, enabling fair comparisons and experimental reproducibility across different hardware. We evaluate several baseline models on this task, analyze the unique challenges introduced by AdaVLN, and demonstrate its potential to bridge the sim-to-real gap in VLN research.
DarkEQA: Benchmarking Vision-Language Models for Embodied Question Answering in Low-Light Indoor Environments RA-L
Vision Language Models (VLMs) are increasingly adopted as central reasoning modules for embodied agents. Existing benchmarks evaluate their capabilities under ideal, well-lit conditions, yet robust 24/7 operation demands performance under a wide range of visual degradations, including low-light conditions at night or in dark environments--a core necessity that has been largely overlooked. To address this underexplored challenge, we present DarkEQA, an open-source benchmark for evaluating EQA-relevant perceptual primitives under multi-level low-light conditions. DarkEQA isolates the perception bottleneck by evaluating question answering from egocentric observations under controlled degradations, enabling attributable robustness analysis. A key design feature of DarkEQA is its physical fidelity: visual degradations are modeled in linear RAW space, simulating physics-based illumination drop and sensor noise followed by an ISP-inspired rendering pipeline. We demonstrate the utility of DarkEQA by evaluating a wide range of state-of-the-art VLMs and Low-Light Image Enhancement (LLIE) models. Our analysis systematically reveals VLMs' limitations when operating under these challenging visual conditions. Project website: https://darkeqa-benchmark.github.io/
comment: Submitted to IEEE Robotics and Automation Letters (RA-L)
SoulX-FlashTalk: Real-Time Infinite Streaming of Audio-Driven Avatars via Self-Correcting Bidirectional Distillation
Deploying massive diffusion models for real-time, infinite-duration, audio-driven avatar generation presents a significant engineering challenge, primarily due to the conflict between computational load and strict latency constraints. Existing approaches often compromise visual fidelity by enforcing strictly unidirectional attention mechanisms or reducing model capacity. To address this problem, we introduce \textbf{SoulX-FlashTalk}, a 14B-parameter framework optimized for high-fidelity real-time streaming. Diverging from conventional unidirectional paradigms, we use a \textbf{Self-correcting Bidirectional Distillation} strategy that retains bidirectional attention within video chunks. This design preserves critical spatiotemporal correlations, significantly enhancing motion coherence and visual detail. To ensure stability during infinite generation, we incorporate a \textbf{Multi-step Retrospective Self-Correction Mechanism}, enabling the model to autonomously recover from accumulated errors and preventing collapse. Furthermore, we engineered a full-stack inference acceleration suite incorporating hybrid sequence parallelism, Parallel VAE, and kernel-level optimizations. Extensive evaluations confirm that SoulX-FlashTalk is the first 14B-scale system to achieve a \textbf{sub-second start-up latency (0.87s)} while reaching a real-time throughput of \textbf{32 FPS}, setting a new standard for high-fidelity interactive digital human synthesis.
comment: 12 pages, 6 figures
FCC: Fully Connected Correlation for One-Shot Segmentation WACV 2026
Few-shot segmentation (FSS) aims to segment the target object in a query image using only a small set of support images and masks. Therefore, having strong prior information for the target object using the support set is essential for guiding the initial training of FSS, which leads to the success of few-shot segmentation in challenging cases, such as when the target object shows considerable variation in appearance, texture, or scale across the support and query images. Previous methods have tried to obtain prior information by creating correlation maps from pixel-level correlation on final-layer or same-layer features. However, we found these approaches can offer limited and partial information when advanced models like Vision Transformers are used as the backbone. Vision Transformer encoders have a multi-layer structure with identical shapes in their intermediate layers. Leveraging the feature comparison from all layers in the encoder can enhance the performance of few-shot segmentation. We introduce FCC (Fully Connected Correlation) to integrate pixel-level correlations between support and query features, capturing associations that reveal target-specific patterns and correspondences in both same-layers and cross-layers. FCC captures previously inaccessible target information, effectively addressing the limitations of support mask. Our approach consistently demonstrates state-of-the-art performance on PASCAL, COCO, and domain shift tests. We conducted an ablation study and cross-layer correlation analysis to validate FCC's core methodology. These findings reveal the effectiveness of FCC in enhancing prior information and overall model performance.
comment: WACV 2026
Towards Unbiased Cross-Modal Representation Learning for Food Image-to-Recipe Retrieval
This paper addresses the challenges of learning representations for recipes and food images in the cross-modal retrieval problem. As the relationship between a recipe and its cooked dish is cause-and-effect, treating a recipe as a text source describing the visual appearance of a dish for learning representation, as the existing approaches, will create bias misleading image-and-recipe similarity judgment. Specifically, a food image may not equally capture every detail in a recipe, due to factors such as the cooking process, dish presentation, and image-capturing conditions. The current representation learning tends to capture dominant visual-text alignment while overlooking subtle variations that determine retrieval relevance. In this paper, we model such bias in cross-modal representation learning using causal theory. The causal view of this problem suggests ingredients as one of the confounder sources and a simple backdoor adjustment can alleviate the bias. By causal intervention, we reformulate the conventional model for food-to-recipe retrieval with an additional term to remove the potential bias in similarity judgment. Based on this theory-informed formulation, we empirically prove the oracle performance of retrieval on the Recipe1M dataset to be MedR=1 across the testing data sizes of 1K, 10K, and even 50K. We also propose a plug-and-play neural module, which is essentially a multi-label ingredient classifier for debiasing. New state-of-the-art search performances are reported on the Recipe1M dataset.
comment: Code link: https://github.com/GZWQ/Towards-Unbiased-Cross-Modal-Representation-Learning-for-Food-Image-to-Recipe-Retrieval
MIRAGE: A Benchmark for Multimodal Information-Seeking and Reasoning in Agricultural Expert-Guided Conversations NeurIPS 2025
We introduce MIRAGE, a new benchmark for multimodal expert-level reasoning and decision-making in consultative interaction settings. Designed for the agriculture domain, MIRAGE captures the full complexity of expert consultations by combining natural user queries, expert-authored responses, and image-based context, offering a high-fidelity benchmark for evaluating models on grounded reasoning, clarification strategies, and long-form generation in a real-world, knowledge-intensive domain. Grounded in over 35,000 real user-expert interactions and curated through a carefully designed multi-step pipeline, MIRAGE spans diverse crop health, pest diagnosis, and crop management scenarios. The benchmark includes more than 7,000 unique biological entities, covering plant species, pests, and diseases, making it one of the most taxonomically diverse benchmarks available for vision-language models, grounded in the real world. Unlike existing benchmarks that rely on well-specified user inputs and closed-set taxonomies, MIRAGE features underspecified, context-rich scenarios with open-world settings, requiring models to infer latent knowledge gaps, handle rare entities, and either proactively guide the interaction or respond. Project Page: https://mirage-benchmark.github.io
comment: Accepted to NeurIPS 2025
SmartSnap: Proactive Evidence Seeking for Self-Verifying Agents
Agentic reinforcement learning (RL) holds great promise for the development of autonomous agents under complex GUI tasks, but its scalability remains severely hampered by the verification of task completion. Existing task verification is treated as a passive, post-hoc process: a verifier (i.e., rule-based scoring script, reward or critic model, and LLM-as-a-Judge) analyzes the agent's entire interaction trajectory to determine if the agent succeeds. Such processing of verbose context that contains irrelevant, noisy history poses challenges to the verification protocols and therefore leads to prohibitive cost and low reliability. To overcome this bottleneck, we propose SmartSnap, a paradigm shift from this passive, post-hoc verification to proactive, in-situ self-verification by the agent itself. We introduce the Self-Verifying Agent, a new type of agent designed with dual missions: to not only complete a task but also to prove its accomplishment with curated snapshot evidences. Guided by our proposed 3C Principles (Completeness, Conciseness, and Creativity), the agent leverages its accessibility to the online environment to perform self-verification on a minimal, decisive set of snapshots. Such evidences are provided as the sole materials for a general LLM-as-a-Judge verifier to determine their validity and relevance. Experiments on mobile tasks across model families and scales demonstrate that our SmartSnap paradigm allows training LLM-driven agents in a scalable manner, bringing performance gains up to 26.08% and 16.66% respectively to 8B and 30B models. The synergizing between solution finding and evidence seeking facilitates the cultivation of efficient, self-verifying agents with competitive performance against DeepSeek V3.1 and Qwen3-235B-A22B. Code is available at: https://github.com/TencentYoutuResearch/SmartSnap
MCD-Net: A Lightweight Deep Learning Baseline for Optical-Only Moraine Segmentation
Glacial segmentation is essential for reconstructing past glacier dynamics and evaluating climate-driven landscape change. However, weak optical contrast and the limited availability of high-resolution DEMs hinder automated mapping. This study introduces the first large-scale optical-only moraine segmentation dataset, comprising 3,340 manually annotated high-resolution images from Google Earth covering glaciated regions of Sichuan and Yunnan, China. We develop MCD-Net, a lightweight baseline that integrates a MobileNetV2 encoder, a Convolutional Block Attention Module (CBAM), and a DeepLabV3+ decoder. Benchmarking against deeper backbones (ResNet152, Xception) shows that MCD-Net achieves 62.3% mean Intersection over Union (mIoU) and 72.8% Dice coefficient while reducing computational cost by more than 60%. Although ridge delineation remains constrained by sub-pixel width and spectral ambiguity, the results demonstrate that optical imagery alone can provide reliable moraine-body segmentation. The dataset and code are publicly available at https://github.com/Lyra-alpha/MCD-Net, establishing a reproducible benchmark for moraine-specific segmentation and offering a deployable baseline for high-altitude glacial monitoring.
comment: 13 pages, 10 figures. This manuscript is under review at IEEE Transactions on Geoscience and Remote Sensing. Minor correction to abstract text
Explainable AI Technique in Lung Cancer Detection Using Convolutional Neural Networks
Early detection of lung cancer is critical to improving survival outcomes. We present a deep learning framework for automated lung cancer screening from chest computed tomography (CT) images with integrated explainability. Using the IQ-OTH/NCCD dataset (1,197 scans across Normal, Benign, and Malignant classes), we evaluate a custom convolutional neural network (CNN) and three fine-tuned transfer learning backbones: DenseNet121, ResNet152, and VGG19. Models are trained with cost-sensitive learning to mitigate class imbalance and evaluated via accuracy, precision, recall, F1-score, and ROC-AUC. While ResNet152 achieved the highest accuracy (97.3%), DenseNet121 provided the best overall balance in precision, recall, and F1 (up to 92%, 90%, 91%, respectively). We further apply Shapley Additive Explanations (SHAP) to visualize evidence contributing to predictions, improving clinical transparency. Results indicate that CNN-based approaches augmented with explainability can provide fast, accurate, and interpretable support for lung cancer screening, particularly in resource-limited settings.
comment: 11 pages, 9 figures, 4 tables. Undergraduate research project report
RoboTransfer: Controllable Geometry-Consistent Video Diffusion for Manipulation Policy Transfer
The goal of general-purpose robotics is to create agents that can seamlessly adapt to and operate in diverse, unstructured human environments. Imitation learning has become a key paradigm for robotic manipulation, yet collecting large-scale and diverse demonstrations is prohibitively expensive. Simulators provide a cost-effective alternative, but the sim-to-real gap remains a major obstacle to scalability. We present RoboTransfer, a diffusion-based video generation framework for synthesizing robotic data. By leveraging cross-view feature interactions and globally consistent 3D geometry, RoboTransfer ensures multi-view geometric consistency while enabling fine-grained control over scene elements, such as background editing and object replacement. Extensive experiments demonstrate that RoboTransfer produces videos with superior geometric consistency and visual fidelity. Furthermore, policies trained on this synthetic data exhibit enhanced generalization to novel, unseen scenarios. Project page: https://horizonrobotics.github.io/robot_lab/robotransfer.
comment: 20 pages, 15 figures
RxnCaption: Reformulating Reaction Diagram Parsing as Visual Prompt Guided Captioning
Large-scale chemical reaction datasets are crucial for AI research in chemistry. However, existing chemical reaction data often exist as images within papers, making them not machine-readable and unusable for training machine learning models. In response to this challenge, we propose the RxnCaption framework for the task of chemical Reaction Diagram Parsing (RxnDP). Our framework reformulates the traditional coordinate prediction driven parsing process into an image captioning problem, which Large Vision Language Models (LVLMs) handle naturally. We introduce a strategy termed BBox and Index as Visual Prompt (BIVP), which uses our state-of-the-art molecular detector, MolYOLO, to pre-draw molecular bounding boxes and indices directly onto the input image. This turns the downstream parsing into a natural-language description problem. Extensive experiments show that the BIVP strategy significantly improves structural extraction quality while simplifying model design. We further construct the RxnCaption-15k dataset, an order of magnitude larger than prior real-world literature benchmarks, with a balanced test subset across four layout archetypes. Experiments demonstrate that RxnCaption-VL achieves state-of-the-art performance on multiple metrics. We believe our method, dataset, and models will advance structured information extraction from chemical literature and catalyze broader AI applications in chemistry. We will release data, models, and code on GitHub.
ISCS: Parameter-Guided Feature Pruning for Resource-Constrained Embodied Perception
Prior studies in embodied AI consistently show that robust perception is critical for human-robot interaction, yet deploying high-fidelity visual models on resource-constrained agents remains challenging due to limited on-device computation power and transmission latency. Exploiting the redundancy in latent representations could improve system efficiency, yet existing approaches often rely on costly dataset-specific ablation tests or heavy entropy models unsuitable for real-time edge-robot collaboration. We propose a generalizable, dataset-agnostic method to identify and selectively transmit structure-critical channels in pretrained encoders. Instead of brute-force empirical evaluations, our approach leverages intrinsic parameter statistics-weight variances and biases-to estimate channel importance. This analysis reveals a consistent organizational structure, termed the Invariant Salient Channel Space (ISCS), where Salient-Core channels capture dominant structures while Salient-Auxiliary channels encode fine visual details. Building on ISCS, we introduce a deterministic static pruning strategy that enables lightweight split-computing. Experiments across different datasets demonstrate that our method achieves a deterministic, ultra-low latency pipeline by bypassing heavy entropy modeling. Our method reduces end-to-end latency, providing a critical speed-accuracy trade-off for resource-constrained human-aware embodied systems.
comment: Significant revision: The focus has been pivoted from learned image compression to embodied perception tasks. Experimental results and downstream applications have been updated to demonstrate the method's efficiency in split computing
SlingBAG Pro: Accelerating point cloud-based iterative reconstruction for 3D photoacoustic imaging with arbitrary array geometries
High-quality three-dimensional (3D) photoacoustic imaging (PAI) is gaining increasing attention in clinical applications. To address the challenges of limited space and high costs, irregular geometric transducer arrays that conform to specific imaging regions are promising for achieving high-quality 3D PAI with fewer transducers. However, traditional iterative reconstruction algorithms struggle with irregular array configurations, suffering from high computational complexity, substantial memory requirements, and lengthy reconstruction times. In this work, we introduce SlingBAG Pro, an advanced reconstruction algorithm based on the point cloud iteration concept of the Sliding ball adaptive growth (SlingBAG) method, while extending its compatibility to arbitrary array geometries. SlingBAG Pro maintains high reconstruction quality, reduces the number of required transducers, and employs a hierarchical optimization strategy that combines zero-gradient filtering with progressively increased temporal sampling rates during iteration. This strategy rapidly removes redundant spatial point clouds, accelerates convergence, and significantly shortens overall reconstruction time. Compared to the original SlingBAG algorithm, SlingBAG Pro achieves up to a 2.2-fold speed improvement in point cloud-based 3D PA reconstruction under irregular array geometries. The proposed method is validated through both simulation and in vivo mouse experiments, and the source code is publicly available at https://github.com/JaegerCQ/SlingBAG_Pro.
Point-Supervised Facial Expression Spotting with Gaussian-Based Instance-Adaptive Intensity Modeling
Automatic facial expression spotting, which aims to identify facial expression instances in untrimmed videos, is crucial for facial expression analysis. Existing methods primarily focus on fully-supervised learning and rely on costly, time-consuming temporal boundary annotations. In this paper, we investigate point-supervised facial expression spotting (P-FES), where only a single timestamp annotation per instance is required for training. We propose a unique two-branch framework for P-FES. First, to mitigate the limitation of hard pseudo-labeling, which often confuses neutral and expression frames with various intensities, we propose a Gaussian-based instance-adaptive intensity modeling (GIM) module to model instance-level expression intensity distribution for soft pseudo-labeling. By detecting the pseudo-apex frame around each point label, estimating the duration, and constructing an instance-level Gaussian distribution, GIM assigns soft pseudo-labels to expression frames for more reliable intensity supervision. The GIM module is incorporated into our framework to optimize the class-agnostic expression intensity branch. Second, we design a class-aware apex classification branch that distinguishes macro- and micro-expressions solely based on their pseudo-apex frames. During inference, the two branches work independently: the class-agnostic expression intensity branch generates expression proposals, while the class-aware apex-classification branch is responsible for macro- and micro-expression classification. Furthermore, we introduce an intensity-aware contrastive loss to enhance discriminative feature learning and suppress neutral noise by contrasting neutral frames with expression frames with various intensities. Extensive experiments on the SAMM-LV, CAS(ME)$^2$, and CAS(ME)$^3$ datasets demonstrate the effectiveness of our proposed framework.
comment: Accepted for publication in IEEE Transactions on Biometrics, Behavior, and Identity Science
Artificial Intelligence 82
EpiQAL: Benchmarking Large Language Models in Epidemiological Question Answering for Enhanced Alignment and Reasoning
Reliable epidemiological reasoning requires synthesizing study evidence to infer disease burden, transmission dynamics, and intervention effects at the population level. Existing medical question answering benchmarks primarily emphasize clinical knowledge or patient-level reasoning, yet few systematically evaluate evidence-grounded epidemiological inference. We present EpiQAL, the first diagnostic benchmark for epidemiological question answering across diverse diseases, comprising three subsets built from open-access literature. The subsets respectively evaluate text-grounded factual recall, multi-step inference linking document evidence with epidemiological principles, and conclusion reconstruction with the Discussion section withheld. Construction combines expert-designed taxonomy guidance, multi-model verification, and retrieval-based difficulty control. Experiments on ten open models reveal that current LLMs show limited performance on epidemiological reasoning, with multi-step inference posing the greatest challenge. Model rankings shift across subsets, and scale alone does not predict success. Chain-of-Thought prompting benefits multi-step inference but yields mixed results elsewhere. EpiQAL provides fine-grained diagnostic signals for evidence grounding, inferential reasoning, and conclusion reconstruction.
comment: 21 pages, 3 figures, 12 tables
Toward Maturity-Based Certification of Embodied AI: Quantifying Trustworthiness Through Measurement Mechanisms AAAI-26
We propose a maturity-based framework for certifying embodied AI systems through explicit measurement mechanisms. We argue that certifiable embodied AI requires structured assessment frameworks, quantitative scoring mechanisms, and methods for navigating multi-objective trade-offs inherent in trustworthiness evaluation. We demonstrate this approach using uncertainty quantification as an exemplar measurement mechanism and illustrate feasibility through an Uncrewed Aircraft System (UAS) detection case study.
comment: 5 pages, Accepted to AAAI-26 Bridge Program B10: Making Embodied AI Reliable with Testing and Formal Verification
Content vs. Form: What Drives the Writing Score Gap Across Socioeconomic Backgrounds? A Generated Panel Approach
Students from different socioeconomic backgrounds exhibit persistent gaps in test scores, gaps that can translate into unequal educational and labor-market outcomes later in life. In many assessments, performance reflects not only what students know, but also how effectively they can communicate that knowledge. This distinction is especially salient in writing assessments, where scores jointly reward the substance of students' ideas and the way those ideas are expressed. As a result, observed score gaps may conflate differences in underlying content with differences in expressive skill. A central question, therefore, is how much of the socioeconomic-status (SES) gap in scores is driven by differences in what students say versus how they say it. We study this question using a large corpus of persuasive essays written by U.S. middle- and high-school students. We introduce a new measurement strategy that separates content from style by leveraging large language models to generate multiple stylistic variants of each essay. These rewrites preserve the underlying arguments while systematically altering surface expression, creating a "generated panel" that introduces controlled within-essay variation in style. This approach allows us to decompose SES gaps in writing scores into contributions from content and style. We find an SES gap of 0.67 points on a 1-6 scale. Approximately 69% of the gap is attributable to differences in essay content quality, Style differences account for 26% of the gap, and differences in evaluation standards across SES groups account for the remaining 5%. These patterns seems stable across demographic subgroups and writing tasks. More broadly, our approach shows how large language models can be used to generate controlled variation in observational data, enabling researchers to isolate and quantify the contributions of otherwise entangled factors.
FROST-Drive: Scalable and Efficient End-to-End Driving with a Frozen Vision Encoder
End-to-end (E2E) models in autonomous driving aim to directly map sensor inputs to control commands, but their ability to generalize to novel and complex scenarios remains a key challenge. The common practice of fully fine-tuning the vision encoder on driving datasets potentially limits its generalization by causing the model to specialize too heavily in the training data. This work challenges the necessity of this training paradigm. We propose FROST-Drive, a novel E2E architecture designed to preserve and leverage the powerful generalization capabilities of a pretrained vision encoder from a Vision-Language Model (VLM). By keeping the encoder's weights frozen, our approach directly transfers the rich, generalized world knowledge from the VLM to the driving task. Our model architecture combines this frozen encoder with a transformer-based adapter for multimodal fusion and a GRU-based decoder for smooth waypoint generation. Furthermore, we introduce a custom loss function designed to directly optimize for Rater Feedback Score (RFS), a metric that prioritizes robust trajectory planning. We conduct extensive experiments on Waymo Open E2E Dataset, a large-scale datasets deliberately curated to capture the long-tail scenarios, demonstrating that our frozen-encoder approach significantly outperforms models that employ full fine-tuning. Our results provide substantial evidence that preserving the broad knowledge of a capable VLM is a more effective strategy for achieving robust, generalizable driving performance than intensive domain-specific adaptation. This offers a new pathway for developing vision-based models that can better handle the complexities of real-world application domains.
An Expectation-Maximization Algorithm for Domain Adaptation in Gaussian Causal Models
We study the problem of imputing a designated target variable that is systematically missing in a shifted deployment domain, when a Gaussian causal DAG is available from a fully observed source domain. We propose a unified EM-based framework that combines source and target data through the DAG structure to transfer information from observed variables to the missing target. On the methodological side, we formulate a population EM operator in the DAG parameter space and introduce a first-order (gradient) EM update that replaces the costly generalized least-squares M-step with a single projected gradient step. Under standard local strong-concavity and smoothness assumptions and a BWY-style \cite{Balakrishnan2017EM} gradient-stability (bounded missing-information) condition, we show that this first-order EM operator is locally contractive around the true target parameters, yielding geometric convergence and finite-sample guarantees on parameter error and the induced target-imputation error in Gaussian SEMs under covariate shift and local mechanism shifts. Algorithmically, we exploit the known causal DAG to freeze source-invariant mechanisms and re-estimate only those conditional distributions directly affected by the shift, making the procedure scalable to higher-dimensional models. In experiments on a synthetic seven-node SEM, the 64-node MAGIC-IRRI genetic network, and the Sachs protein-signaling data, the proposed DAG-aware first-order EM algorithm improves target imputation accuracy over a fit-on-source Bayesian network and a Kiiveri-style EM baseline, with the largest gains under pronounced domain shift.
comment: An earlier version of this work was accepted for the Proceedings of the 2025 IEEE International Conference on Data Mining (ICDM)
Automated Feedback Generation for Undergraduate Mathematics: Development and Evaluation of an AI Teaching Assistant
Intelligent tutoring systems have long enabled automated immediate feedback on student work when it is presented in a tightly structured format and when problems are very constrained, but reliably assessing free-form mathematical reasoning remains challenging. We present a system that processes free-form natural language input, handles a wide range of edge cases, and comments competently not only on the technical correctness of submitted proofs, but also on style and presentation issues. We discuss the advantages and disadvantages of various approaches to the evaluation of such a system, and show that by the metrics we evaluate, the quality of the feedback generated is comparable to that produced by human experts when assessing early undergraduate homework. We stress-test our system with a small set of more advanced and unusual questions, and report both significant gaps and encouraging successes in that more challenging setting. Our system uses large language models in a modular workflow. The workflow configuration is human-readable and editable without programming knowledge, and allows some intermediate steps to be precomputed or injected by the instructor. A version of our tool is deployed on the Imperial mathematics homework platform Lambdafeedback. We report also on the integration of our tool into this platform.
Microeconomic Foundations of Multi-Agent Learning
Modern AI systems increasingly operate inside markets and institutions where data, behavior, and incentives are endogenous. This paper develops an economic foundation for multi-agent learning by studying a principal-agent interaction in a Markov decision process with strategic externalities, where both the principal and the agent learn over time. We propose a two-phase incentive mechanism that first estimates implementable transfers and then uses them to steer long-run dynamics; under mild regret-based rationality and exploration conditions, the mechanism achieves sublinear social-welfare regret and thus asymptotically optimal welfare. Simulations illustrate how even coarse incentives can correct inefficient learning under stateful externalities, highlighting the necessity of incentive-aware design for safe and welfare-aligned AI in markets and insurance.
Soft Contextualized Encoder For User Defined Text Classification
User-Defined Text Classification (UDTC) considers the challenge of classifying input text to user-specified, previously unseen classes, a setting that arises frequently in real-world applications such as enterprise analytics, content moderation, and domain-specific information retrieval. We propose a soft-contextualized encoder architecture for UDTC which contextualizes each candidate label with the label set and a static soft prompt representation of the input query. Training on diverse, multi-source datasets enables the model to generalize effectively to zero-shot classification over entirely unseen topic sets drawn from arbitrary domains. We evaluate the proposed architecture both on held-out in-distribution test data and on multiple unseen UDTC benchmarks. Across datasets, the model achieves state-of-the-art performance, consistently outperforming or matching the baselines.
Grading Scale Impact on LLM-as-a-Judge: Human-LLM Alignment Is Highest on 0-5 Grading Scale
Large language models (LLMs) are increasingly used as automated evaluators, yet prior works demonstrate that these LLM judges often lack consistency in scoring when the prompt is altered. However, the effect of the grading scale itself remains underexplored. We study the LLM-as-a-judge problem by comparing two kinds of raters: humans and LLMs. We collect ratings from both groups on three scales and across six benchmarks that include objective, open-ended subjective, and mixed tasks. Using intraclass correlation coefficients (ICC) to measure absolute agreement, we find that LLM judgments are not perfectly consistent across scales on subjective benchmarks, and that the choice of scale substantially shifts human-LLM agreement, even when within-group panel reliability is high. Aggregated over tasks, the grading scale of 0-5 yields the strongest human-LLM alignment. We further demonstrate that pooled reliability can mask benchmark heterogeneity and reveal systematic subgroup differences in alignment across gender groups, strengthening the importance of scale design and sub-level diagnostics as essential components of LLM-as-a-judge protocols.
Discriminating real and synthetic super-resolved audio samples using embedding-based classifiers
Generative adversarial networks (GANs) and diffusion models have recently achieved state-of-the-art performance in audio super-resolution (ADSR), producing perceptually convincing wideband audio from narrowband inputs. However, existing evaluations primarily rely on signal-level or perceptual metrics, leaving open the question of how closely the distributions of synthetic super-resolved and real wideband audio match. Here we address this problem by analyzing the separability of real and super-resolved audio in various embedding spaces. We consider both middle-band ($4\to 16$~kHz) and full-band ($16\to 48$~kHz) upsampling tasks for speech and music, training linear classifiers to distinguish real from synthetic samples based on multiple types of audio embeddings. Comparisons with objective metrics and subjective listening tests reveal that embedding-based classifiers achieve near-perfect separation, even when the generated audio attains high perceptual quality and state-of-the-art metric scores. This behavior is consistent across datasets and models, including recent diffusion-based approaches, highlighting a persistent gap between perceptual quality and true distributional fidelity in ADSR models.
comment: Accepted for publication in Workshop Proceedingsof the 2026 IEEE International Conference on Acoustics, Speech, and Signal Processing
MARVEL: A Multi Agent-based Research Validator and Enabler using Large Language Models
We present MARVEL (https://ligogpt.mit.edu/marvel), a locally deployable, open-source framework for domain-aware question answering and assisted scientific research. It is designed to address the increasing demands of a digital assistant for scientific groups that can read highly technical data, cite precisely, and operate within authenticated networks. MARVEL combines a fast path for straightforward queries with a more deliberate DeepSearch mode that integrates retrieval-augmented generation and Monte Carlo Tree Search. It explores complementary subqueries, allocates more compute to promising branches, and maintains a global evidence ledger that preserves sources during drafting. We applied this framework in the context of gravitational-wave research related to the Laser Interferometer Gravitational-wave Observatory. Answers are grounded in a curated semantic index of research literature, doctoral theses, LIGO documents, and long-running detector electronic logbooks, with targeted web searches when appropriate. Because direct benchmarking against commercial LLMs cannot be performed on private data, we evaluated MARVEL on two publicly available surrogate datasets that capture comparable semantic and technical characteristics. On these benchmarks, MARVEL matches a GPT-4o mini baseline on literature-centric queries and substantially outperforms it on detector-operations content, where domain retrieval and guided reasoning are decisive. By making the complete framework and evaluation datasets openly available, we aim to provide a reproducible foundation for developing domain-specific scientific assistants.
comment: 18 pages, 7 figures
The Illusion of Specialization: Unveiling the Domain-Invariant "Standing Committee" in Mixture-of-Experts Models
Mixture of Experts models are widely assumed to achieve domain specialization through sparse routing. In this work, we question this assumption by introducing COMMITTEEAUDIT, a post hoc framework that analyzes routing behavior at the level of expert groups rather than individual experts. Across three representative models and the MMLU benchmark, we uncover a domain-invariant Standing Committee. This is a compact coalition of routed experts that consistently captures the majority of routing mass across domains, layers, and routing budgets, even when architectures already include shared experts. Qualitative analysis further shows that Standing Committees anchor reasoning structure and syntax, while peripheral experts handle domain-specific knowledge. These findings reveal a strong structural bias toward centralized computation, suggesting that specialization in Mixture of Experts models is far less pervasive than commonly believed. This inherent bias also indicates that current training objectives, such as load-balancing losses that enforce uniform expert utilization, may be working against the model's natural optimization path, thereby limiting training efficiency and performance.
comment: 16 pages, 10 figures
Spectral Archaeology: The Causal Topology of Model Evolution
Behavioral benchmarks tell us \textit{what} a model does, but not \textit{how}. We introduce a training-free mechanistic probe using attention-graph spectra. Treating each layer as a token graph, we compute algebraic connectivity ($λ_2$), smoothness, and spectral entropy. Across 12 models and 10 languages, these measures yield stable ``spectral fingerprints'' that expose discontinuities missed by standard evaluation. We report four results. (1) Models undergoing specific curriculum transitions (e.g., code-to-chat) show an English-only, syntax-triggered connectivity failure on non-canonical constructions, reaching $Δλ_2 \approx -0.76$. We term this scar \textit{Passive-Triggered Connectivity Collapse} (PTCC). Analysis of the Phi lineage reveals that PTCC appears and resolves across developmental stages, implicating brittle curriculum shifts rather than synthetic data per se. (2) PTCC reflects a specialization trade-off: strengthened formal routing at the expense of stylistic flexibility. (3) We identify four recurrent processing strategies; simple frozen-threshold rules enable perfect forensic identification across lineages. (4) Mechanistically, PTCC localizes to a sparse Layer 2 ``compensatory patch'' of heads that fails under syntactic stress; activation steering can partially restore connectivity, recovering $\approx 38\%$ of lost information flow. Finally, dominant topological regimes track tokenization density more than language identity, suggesting ``healthy'' geometry varies systematically across scripts. Overall, attention-graph spectra provide a practical tool for auditing and training-regime verification.
comment: 45 pages, 15 figures, Under Review
Training-Free Adaptation of New-Generation LLMs using Legacy Clinical Models
Adapting language models to the clinical domain through continued pretraining and fine-tuning requires costly retraining for each new model generation. We propose Cross-Architecture Proxy Tuning (CAPT), a model-ensembling approach that enables training-free adaptation of state-of-the-art general-domain models using existing clinical models. CAPT supports models with disjoint vocabularies, leveraging contrastive decoding to selectively inject clinically relevant signals while preserving the general-domain model's reasoning and fluency. On six clinical classification and text-generation tasks, CAPT with a new-generation general-domain model and an older-generation clinical model consistently outperforms both models individually and state-of-the-art ensembling approaches (average +17.6% over UniTE, +41.4% over proxy tuning across tasks). Through token-level analysis and physician case studies, we demonstrate that CAPT amplifies clinically actionable language, reduces context errors, and increases clinical specificity.
comment: 29 pages, 3 figures
Jailbreaking LLMs Without Gradients or Priors: Effective and Transferable Attacks
As Large Language Models (LLMs) are increasingly deployed in safety-critical domains, rigorously evaluating their robustness against adversarial jailbreaks is essential. However, current safety evaluations often overestimate robustness because existing automated attacks are limited by restrictive assumptions. They typically rely on handcrafted priors or require white-box access for gradient propagation. We challenge these constraints by demonstrating that token-level iterative optimization can succeed without gradients or priors. We introduce RAILS (RAndom Iterative Local Search), a framework that operates solely on model logits. RAILS matches the effectiveness of gradient-based methods through two key innovations: a novel auto-regressive loss that enforces exact prefix matching, and a history-based selection strategy that bridges the gap between the proxy optimization objective and the true attack success rate. Crucially, by eliminating gradient dependency, RAILS enables cross-tokenizer ensemble attacks. This allows for the discovery of shared adversarial patterns that generalize across disjoint vocabularies, significantly enhancing transferability to closed-source systems. Empirically, RAILS achieves near 100% success rates on multiple open-source models and high black-box attack transferability to closed-source systems like GPT and Gemini.
Tigrinya Number Verbalization: Rules, Algorithm, and Implementation
We present a systematic formalization of Tigrinya cardinal and ordinal number verbalization, addressing a gap in computational resources for the language. This work documents the canonical rules governing the expression of numerical values in spoken Tigrinya, including the conjunction system, scale words, and special cases for dates, times, and currency. We provide a formal algorithm for number-to-word conversion and release an open-source implementation. Evaluation of frontier large language models (LLMs) reveals significant gaps in their ability to accurately verbalize Tigrinya numbers, underscoring the need for explicit rule documentation. This work serves language modeling, speech synthesis, and accessibility applications targeting Tigrinya-speaking communities.
Eye-Q: A Multilingual Benchmark for Visual Word Puzzle Solving and Image-to-Phrase Reasoning
Vision-Language Models (VLMs) have achieved strong performance on standard vision-language benchmarks, yet often rely on surface-level recognition rather than deeper reasoning. We propose visual word puzzles as a challenging alternative, as they require discovering implicit visual cues, generating and revising hypotheses, and mapping perceptual evidence to non-literal concepts in ways that are difficult to solve via literal grounding, OCR-heavy shortcuts, or simple retrieval-style matching. We introduce Eye-Q, a multilingual benchmark designed to assess this form of complex visual understanding. Eye-Q contains 1,343 puzzles in which a model observes a conceptually dense scene with a brief description and must infer a specific target word or phrase. The puzzles are intentionally unstructured and cue-implicit, with distractors and contextual relationships that demand selective attention, abstraction, and associative inference. The benchmark spans English, Persian, Arabic, and cross-lingual puzzles. We evaluate state-of-the-art VLMs using an open-ended, human-aligned protocol that probes hypothesis formation and revision under lightweight assistance. Results reveal substantial performance gaps, especially on abstract and cross-lingual puzzles, highlighting limitations in current models' ability to construct and search over appropriate conceptual representations for flexible image-to-phrase inference; maximum accuracy reaches only 60.27%.
comment: 8 pages
Exploration Through Introspection: A Self-Aware Reward Model AAAI-26
Understanding how artificial agents model internal mental states is central to advancing Theory of Mind in AI. Evidence points to a unified system for self- and other-awareness. We explore this self-awareness by having reinforcement learning agents infer their own internal states in gridworld environments. Specifically, we introduce an introspective exploration component that is inspired by biological pain as a learning signal by utilizing a hidden Markov model to infer "pain-belief" from online observations. This signal is integrated into a subjective reward function to study how self-awareness affects the agent's learning abilities. Further, we use this computational framework to investigate the difference in performance between normal and chronic pain perception models. Results show that introspective agents in general significantly outperform standard baseline agents and can replicate complex human-like behaviors.
comment: Accepted at AAAI-26 ToM4AI Workshop
Metaphors are a Source of Cross-Domain Misalignment of Large Reasoning Models
Earlier research has shown that metaphors influence human's decision making, which raises the question of whether metaphors also influence large language models (LLMs)' reasoning pathways, considering their training data contain a large number of metaphors. In this work, we investigate the problem in the scope of the emergent misalignment problem where LLMs can generalize patterns learned from misaligned content in one domain to another domain. We discover a strong causal relationship between metaphors in training data and the misalignment degree of LLMs' reasoning contents. With interventions using metaphors in pre-training, fine-tuning and re-alignment phases, models' cross-domain misalignment degrees change significantly. As we delve deeper into the causes behind this phenomenon, we observe that there is a connection between metaphors and the activation of global and local latent features of large reasoning models. By monitoring these latent features, we design a detector that predict misaligned content with high accuracy.
comment: 17 pages, 7 figures
Enhancing LLM Instruction Following: An Evaluation-Driven Multi-Agentic Workflow for Prompt Instructions Optimization
Large Language Models (LLMs) often generate substantively relevant content but fail to adhere to formal constraints, leading to outputs that are conceptually correct but procedurally flawed. Traditional prompt refinement approaches focus on rephrasing the description of the primary task an LLM has to perform, neglecting the granular constraints that function as acceptance criteria for its response. We propose a novel multi-agentic workflow that decouples optimization of the primary task description from its constraints, using quantitative scores as feedback to iteratively rewrite and improve them. Our evaluation demonstrates this method produces revised prompts that yield significantly higher compliance scores from models like Llama 3.1 8B and Mixtral-8x 7B.
Digital Red Queen: Adversarial Program Evolution in Core War with LLMs
Large language models (LLMs) are increasingly being used to evolve solutions to problems in many domains, in a process inspired by biological evolution. However, unlike biological evolution, most LLM-evolution frameworks are formulated as static optimization problems, overlooking the open-ended adversarial dynamics that characterize real-world evolutionary processes. Here, we study Digital Red Queen (DRQ), a simple self-play algorithm that embraces these so-called "Red Queen" dynamics via continual adaptation to a changing objective. DRQ uses an LLM to evolve assembly-like programs, called warriors, which compete against each other for control of a virtual machine in the game of Core War, a Turing-complete environment studied in artificial life and connected to cybersecurity. In each round of DRQ, the model evolves a new warrior to defeat all previous ones, producing a sequence of adapted warriors. Over many rounds, we observe that warriors become increasingly general (relative to a set of held-out human warriors). Interestingly, warriors also become less behaviorally diverse across independent runs, indicating a convergence pressure toward a general-purpose behavioral strategy, much like convergent evolution in nature. This result highlights a potential value of shifting from static objectives to dynamic Red Queen objectives. Our work positions Core War as a rich, controllable sandbox for studying adversarial adaptation in artificial systems and for evaluating LLM-based evolution methods. More broadly, the simplicity and effectiveness of DRQ suggest that similarly minimal self-play approaches could prove useful in other more practical multi-agent adversarial domains, like real-world cybersecurity or combating drug resistance.
comment: 14 pages, 13 figures
MAGMA: A Multi-Graph based Agentic Memory Architecture for AI Agents
Memory-Augmented Generation (MAG) extends Large Language Models with external memory to support long-context reasoning, but existing approaches largely rely on semantic similarity over monolithic memory stores, entangling temporal, causal, and entity information. This design limits interpretability and alignment between query intent and retrieved evidence, leading to suboptimal reasoning accuracy. In this paper, we propose MAGMA, a multi-graph agentic memory architecture that represents each memory item across orthogonal semantic, temporal, causal, and entity graphs. MAGMA formulates retrieval as policy-guided traversal over these relational views, enabling query-adaptive selection and structured context construction. By decoupling memory representation from retrieval logic, MAGMA provides transparent reasoning paths and fine-grained control over retrieval. Experiments on LoCoMo and LongMemEval demonstrate that MAGMA consistently outperforms state-of-the-art agentic memory systems in long-horizon reasoning tasks.
Multi-RADS Synthetic Radiology Report Dataset and Head-to-Head Benchmarking of 41 Open-Weight and Proprietary Language Models
Background: Reporting and Data Systems (RADS) standardize radiology risk communication but automated RADS assignment from narrative reports is challenging because of guideline complexity, output-format constraints, and limited benchmarking across RADS frameworks and model sizes. Purpose: To create RXL-RADSet, a radiologist-verified synthetic multi-RADS benchmark, and compare validity and accuracy of open-weight small language models (SLMs) with a proprietary model for RADS assignment. Materials and Methods: RXL-RADSet contains 1,600 synthetic radiology reports across 10 RADS (BI-RADS, CAD-RADS, GB-RADS, LI-RADS, Lung-RADS, NI-RADS, O-RADS, PI-RADS, TI-RADS, VI-RADS) and multiple modalities. Reports were generated by LLMs using scenario plans and simulated radiologist styles and underwent two-stage radiologist verification. We evaluated 41 quantized SLMs (12 families, 0.135-32B parameters) and GPT-5.2 under a fixed guided prompt. Primary endpoints were validity and accuracy; a secondary analysis compared guided versus zero-shot prompting. Results: Under guided prompting GPT-5.2 achieved 99.8% validity and 81.1% accuracy (1,600 predictions). Pooled SLMs (65,600 predictions) achieved 96.8% validity and 61.1% accuracy; top SLMs in the 20-32B range reached ~99% validity and mid-to-high 70% accuracy. Performance scaled with model size (inflection between <1B and >=10B) and declined with RADS complexity primarily due to classification difficulty rather than invalid outputs. Guided prompting improved validity (99.2% vs 96.7%) and accuracy (78.5% vs 69.6%) compared with zero-shot. Conclusion: RXL-RADSet provides a radiologist-verified multi-RADS benchmark; large SLMs (20-32B) can approach proprietary-model performance under guided prompting, but gaps remain for higher-complexity schemes.
The Sonar Moment: Benchmarking Audio-Language Models in Audio Geo-Localization
Geo-localization aims to infer the geographic origin of a given signal. In computer vision, geo-localization has served as a demanding benchmark for compositional reasoning and is relevant to public safety. In contrast, progress on audio geo-localization has been constrained by the lack of high-quality audio-location pairs. To address this gap, we introduce AGL1K, the first audio geo-localization benchmark for audio language models (ALMs), spanning 72 countries and territories. To extract reliably localizable samples from a crowd-sourced platform, we propose the Audio Localizability metric that quantifies the informativeness of each recording, yielding 1,444 curated audio clips. Evaluations on 16 ALMs show that ALMs have emerged with audio geo-localization capability. We find that closed-source models substantially outperform open-source models, and that linguistic clues often dominate as a scaffold for prediction. We further analyze ALMs' reasoning traces, regional bias, error causes, and the interpretability of the localizability metric. Overall, AGL1K establishes a benchmark for audio geo-localization and may advance ALMs with better geospatial reasoning capability.
The Fake Friend Dilemma: Trust and the Political Economy of Conversational AI
As conversational AI systems become increasingly integrated into everyday life, they raise pressing concerns about user autonomy, trust, and the commercial interests that influence their behavior. To address these concerns, this paper develops the Fake Friend Dilemma (FFD), a sociotechnical condition in which users place trust in AI agents that appear supportive while pursuing goals that are misaligned with the user's own. The FFD provides a critical framework for examining how anthropomorphic AI systems facilitate subtle forms of manipulation and exploitation. Drawing on literature in trust, AI alignment, and surveillance capitalism, we construct a typology of harms, including covert advertising, political propaganda, behavioral nudging, and surveillance. We then assess possible mitigation strategies, including both structural and technical interventions. By focusing on trust as a vector of asymmetrical power, the FFD offers a lens for understanding how AI systems may undermine user autonomy while maintaining the appearance of helpfulness.
comment: Manuscript under review
Fine-tuning Small Language Models as Efficient Enterprise Search Relevance Labelers
In enterprise search, building high-quality datasets at scale remains a central challenge due to the difficulty of acquiring labeled data. To resolve this challenge, we propose an efficient approach to fine-tune small language models (SLMs) for accurate relevance labeling, enabling high-throughput, domain-specific labeling comparable or even better in quality to that of state-of-the-art large language models (LLMs). To overcome the lack of high-quality and accessible datasets in the enterprise domain, our method leverages on synthetic data generation. Specifically, we employ an LLM to synthesize realistic enterprise queries from a seed document, apply BM25 to retrieve hard negatives, and use a teacher LLM to assign relevance scores. The resulting dataset is then distilled into an SLM, producing a compact relevance labeler. We evaluate our approach on a high-quality benchmark consisting of 923 enterprise query-document pairs annotated by trained human annotators, and show that the distilled SLM achieves agreement with human judgments on par with or better than the teacher LLM. Furthermore, our fine-tuned labeler substantially improves throughput, achieving 17 times increase while also being 19 times more cost-effective. This approach enables scalable and cost-effective relevance labeling for enterprise-scale retrieval applications, supporting rapid offline evaluation and iteration in real-world settings.
MMErroR: A Benchmark for Erroneous Reasoning in Vision-Language Models
Recent advances in Vision-Language Models (VLMs) have improved performance in multi-modal learning, raising the question of whether these models truly understand the content they process. Crucially, can VLMs detect when a reasoning process is wrong and identify its error type? To answer this, we present MMErroR, a multi-modal benchmark of 2,013 samples, each embedding a single coherent reasoning error. These samples span 24 subdomains across six top-level domains, ensuring broad coverage and taxonomic richness. Unlike existing benchmarks that focus on answer correctness, MMErroR targets a process-level, error-centric evaluation that requires models to detect incorrect reasoning and classify the error type within both visual and linguistic contexts. We evaluate 20 advanced VLMs, even the best model (Gemini-3.0-Pro) classifies the error in only 66.47\% of cases, underscoring the challenge of identifying erroneous reasoning. Furthermore, the ability to accurately identify errors offers valuable insights into the capabilities of multi-modal reasoning models. Project Page: https://mmerror-benchmark.github.io
UltraLogic: Enhancing LLM Reasoning through Large-Scale Data Synthesis and Bipolar Float Reward
While Large Language Models (LLMs) have demonstrated significant potential in natural language processing , complex general-purpose reasoning requiring multi-step logic, planning, and verification remains a critical bottleneck. Although Reinforcement Learning with Verifiable Rewards (RLVR) has succeeded in specific domains , the field lacks large-scale, high-quality, and difficulty-calibrated data for general reasoning. To address this, we propose UltraLogic, a framework that decouples the logical core of a problem from its natural language expression through a Code-based Solving methodology to automate high-quality data production. The framework comprises hundreds of unique task types and an automated calibration pipeline across ten difficulty levels. Furthermore, to mitigate binary reward sparsity and the Non-negative Reward Trap, we introduce the Bipolar Float Reward (BFR) mechanism, utilizing graded penalties to effectively distinguish perfect responses from those with logical flaws. Our experiments demonstrate that task diversity is the primary driver for reasoning enhancement , and that BFR, combined with a difficulty matching strategy, significantly improves training efficiency, guiding models toward global logical optima.
comment: 19 pages, 6 figures, 7 tables
InfiAgent: An Infinite-Horizon Framework for General-Purpose Autonomous Agents
LLM agents can reason and use tools, but they often break down on long-horizon tasks due to unbounded context growth and accumulated errors. Common remedies such as context compression or retrieval-augmented prompting introduce trade-offs between information fidelity and reasoning stability. We present InfiAgent, a general-purpose framework that keeps the agent's reasoning context strictly bounded regardless of task duration by externalizing persistent state into a file-centric state abstraction. At each step, the agent reconstructs context from a workspace state snapshot plus a fixed window of recent actions. Experiments on DeepResearch and an 80-paper literature review task show that, without task-specific fine-tuning, InfiAgent with a 20B open-source model is competitive with larger proprietary systems and maintains substantially higher long-horizon coverage than context-centric baselines. These results support explicit state externalization as a practical foundation for stable long-horizon agents. Github Repo:https://github.com/ChenglinPoly/infiAgent
Counterfactual Fairness with Graph Uncertainty
Evaluating machine learning (ML) model bias is key to building trustworthy and robust ML systems. Counterfactual Fairness (CF) audits allow the measurement of bias of ML models with a causal framework, yet their conclusions rely on a single causal graph that is rarely known with certainty in real-world scenarios. We propose CF with Graph Uncertainty (CF-GU), a bias evaluation procedure that incorporates the uncertainty of specifying a causal graph into CF. CF-GU (i) bootstraps a Causal Discovery algorithm under domain knowledge constraints to produce a bag of plausible Directed Acyclic Graphs (DAGs), (ii) quantifies graph uncertainty with the normalized Shannon entropy, and (iii) provides confidence bounds on CF metrics. Experiments on synthetic data show how contrasting domain knowledge assumptions support or refute audits of CF, while experiments on real-world data (COMPAS and Adult datasets) pinpoint well-known biases with high confidence, even when supplied with minimal domain knowledge constraints.
comment: Peer reviewed pre-print. Presented at the BIAS 2025 Workshop at ECML PKDD
Recursive querying of neural networks via weighted structures
Expressive querying of machine learning models - viewed as a form of intentional data - enables their verification and interpretation using declarative languages, thereby making learned representations of data more accessible. Motivated by the querying of feedforward neural networks, we investigate logics for weighted structures. In the absence of a bound on neural network depth, such logics must incorporate recursion; thereto we revisit the functional fixpoint mechanism proposed by Grädel and Gurevich. We adopt it in a Datalog-like syntax; we extend normal forms for fixpoint logics to weighted structures; and show an equivalent "loose" fixpoint mechanism that allows values of inductively defined weight functions to be overwritten. We propose a "scalar" restriction of functional fixpoint logic, of polynomial-time data complexity, and show it can express all PTIME model-agnostic queries over reduced networks with polynomially bounded weights. In contrast, we show that very simple model-agnostic queries are already NP-complete. Finally, we consider transformations of weighted structures by iterated transductions.
DIP: Dynamic In-Context Planner For Diffusion Language Models
Diffusion language models (DLMs) have shown strong potential for general natural language tasks with in-context examples. However, due to the bidirectional attention mechanism, DLMs incur substantial computational cost as context length increases. This work addresses this issue with a key discovery: unlike the sequential generation in autoregressive language models (ARLMs), the diffusion generation paradigm in DLMs allows \textit{efficient dynamic adjustment of the context} during generation. Building on this insight, we propose \textbf{D}ynamic \textbf{I}n-Context \textbf{P}lanner (DIP), a context-optimization method that dynamically selects and inserts in-context examples during generation, rather than providing all examples in the prompt upfront. Results show DIP maintains generation quality while achieving up to 12.9$\times$ inference speedup over standard inference and 1.17$\times$ over KV cache-enhanced inference.
comment: 4 pages
UniCorn: Towards Self-Improving Unified Multimodal Models through Self-Generated Supervision
While Unified Multimodal Models (UMMs) have achieved remarkable success in cross-modal comprehension, a significant gap persists in their ability to leverage such internal knowledge for high-quality generation. We formalize this discrepancy as Conduction Aphasia, a phenomenon where models accurately interpret multimodal inputs but struggle to translate that understanding into faithful and controllable synthesis. To address this, we propose UniCorn, a simple yet elegant self-improvement framework that eliminates the need for external data or teacher supervision. By partitioning a single UMM into three collaborative roles: Proposer, Solver, and Judge, UniCorn generates high-quality interactions via self-play and employs cognitive pattern reconstruction to distill latent understanding into explicit generative signals. To validate the restoration of multimodal coherence, we introduce UniCycle, a cycle-consistency benchmark based on a Text to Image to Text reconstruction loop. Extensive experiments demonstrate that UniCorn achieves comprehensive and substantial improvements over the base model across six general image generation benchmarks. Notably, it achieves SOTA performance on TIIF(73.8), DPG(86.8), CompBench(88.5), and UniCycle while further delivering substantial gains of +5.0 on WISE and +6.5 on OneIG. These results highlight that our method significantly enhances T2I generation while maintaining robust comprehension, demonstrating the scalability of fully self-supervised refinement for unified multimodal intelligence.
AnatomiX, an Anatomy-Aware Grounded Multimodal Large Language Model for Chest X-Ray Interpretation
Multimodal medical large language models have shown impressive progress in chest X-ray interpretation but continue to face challenges in spatial reasoning and anatomical understanding. Although existing grounding techniques improve overall performance, they often fail to establish a true anatomical correspondence, resulting in incorrect anatomical understanding in the medical domain. To address this gap, we introduce AnatomiX, a multitask multimodal large language model explicitly designed for anatomically grounded chest X-ray interpretation. Inspired by the radiological workflow, AnatomiX adopts a two stage approach: first, it identifies anatomical structures and extracts their features, and then leverages a large language model to perform diverse downstream tasks such as phrase grounding, report generation, visual question answering, and image understanding. Extensive experiments across multiple benchmarks demonstrate that AnatomiX achieves superior anatomical reasoning and delivers over 25% improvement in performance on anatomy grounding, phrase grounding, grounded diagnosis and grounded captioning tasks compared to existing approaches. Code and pretrained model are available at https://github.com/aneesurhashmi/anatomix
Attention mechanisms in neural networks
Attention mechanisms represent a fundamental paradigm shift in neural network architectures, enabling models to selectively focus on relevant portions of input sequences through learned weighting functions. This monograph provides a comprehensive and rigorous mathematical treatment of attention mechanisms, encompassing their theoretical foundations, computational properties, and practical implementations in contemporary deep learning systems. Applications in natural language processing, computer vision, and multimodal learning demonstrate the versatility of attention mechanisms. We examine language modeling with autoregressive transformers, bidirectional encoders for representation learning, sequence-to-sequence translation, Vision Transformers for image classification, and cross-modal attention for vision-language tasks. Empirical analysis reveals training characteristics, scaling laws that relate performance to model size and computation, attention pattern visualizations, and performance benchmarks across standard datasets. We discuss the interpretability of learned attention patterns and their relationship to linguistic and visual structures. The monograph concludes with a critical examination of current limitations, including computational scalability, data efficiency, systematic generalization, and interpretability challenges.
Decentralized Autoregressive Generation
We present a theoretical analysis of decentralization of autoregressive generation. We define the Decentralized Discrete Flow Matching objective, by expressing probability generating velocity as a linear combination of expert flows. We also conduct experiments demonstrating the equivalence between decentralized and centralized training settings for multimodal language models across diverse set of benchmarks. Specifically, we compare two distinct paradigms: LLaVA and InternVL 2.5-1B, which uses a fixed CLIP vision encoder and performs full-parameter fine-tuning (ViT+MLP+LLM) during the instruction tuning stage.
comment: Work in progress
Multi-Modal Data-Enhanced Foundation Models for Prediction and Control in Wireless Networks: A Survey
Foundation models (FMs) are recognized as a transformative breakthrough that has started to reshape the future of artificial intelligence (AI) across both academia and industry. The integration of FMs into wireless networks is expected to enable the development of general-purpose AI agents capable of handling diverse network management requests and highly complex wireless-related tasks involving multi-modal data. Inspired by these ideas, this work discusses the utilization of FMs, especially multi-modal FMs in wireless networks. We focus on two important types of tasks in wireless network management: prediction tasks and control tasks. In particular, we first discuss FMs-enabled multi-modal contextual information understanding in wireless networks. Then, we explain how FMs can be applied to prediction and control tasks, respectively. Following this, we introduce the development of wireless-specific FMs from two perspectives: available datasets for development and the methodologies used. Finally, we conclude with a discussion of the challenges and future directions for FM-enhanced wireless networks.
comment: 5 figures, 7 tables, IEEE COMST
Rapid Augmentations for Time Series (RATS): A High-Performance Library for Time Series Augmentation
Time series augmentation is critical for training robust deep learning models, particularly in domains where labelled data is scarce and expensive to obtain. However, existing augmentation libraries for time series, mainly written in Python, suffer from performance bottlenecks, where running time grows exponentially as dataset sizes increase -- an aspect limiting their applicability in large-scale, production-grade systems. We introduce RATS (Rapid Augmentations for Time Series), a high-performance library for time series augmentation written in Rust with Python bindings (RATSpy). RATS implements multiple augmentation methods spanning basic transformations, frequency-domain operations and time warping techniques, all accessible through a unified pipeline interface with built-in parallelisation. Comprehensive benchmarking of RATSpy versus a commonly used library (tasug) on 143 datasets demonstrates that RATSpy achieves an average speedup of 74.5\% over tsaug (up to 94.8\% on large datasets), with up to 47.9\% less peak memory usage.
Prompt-Counterfactual Explanations for Generative AI System Behavior
As generative AI systems become integrated into real-world applications, organizations increasingly need to be able to understand and interpret their behavior. In particular, decision-makers need to understand what causes generative AI systems to exhibit specific output characteristics. Within this general topic, this paper examines a key question: what is it about the input -- the prompt -- that causes an LLM-based generative AI system to produce output that exhibits specific characteristics, such as toxicity, negative sentiment, or political bias. To examine this question, we adapt a common technique from the Explainable AI literature: counterfactual explanations. We explain why traditional counterfactual explanations cannot be applied directly to generative AI systems, due to several differences in how generative AI systems function. We then propose a flexible framework that adapts counterfactual explanations to non-deterministic, generative AI systems in scenarios where downstream classifiers can reveal key characteristics of their outputs. Based on this framework, we introduce an algorithm for generating prompt-counterfactual explanations (PCEs). Finally, we demonstrate the production of counterfactual explanations for generative AI systems with three case studies, examining different output characteristics (viz., political leaning, toxicity, and sentiment). The case studies further show that PCEs can streamline prompt engineering to suppress undesirable output characteristics and can enhance red-teaming efforts to uncover additional prompts that elicit undesirable outputs. Ultimately, this work lays a foundation for prompt-focused interpretability in generative AI: a capability that will become indispensable as these models are entrusted with higher-stakes tasks and subject to emerging regulatory requirements for transparency and accountability.
Self-Verification is All You Need To Pass The Japanese Bar Examination
Despite rapid advances in large language models (LLMs), achieving reliable performance on highly professional and structured examinations remains a significant challenge. The Japanese bar examination is a particularly demanding benchmark, requiring not only advanced legal reasoning but also strict adherence to complex answer formats that involve joint evaluation of multiple propositions. While recent studies have reported improvements by decomposing such questions into simpler true--false judgments, these approaches have not been systematically evaluated under the original exam format and scoring scheme, leaving open the question of whether they truly capture exam-level competence. In this paper, we present a self-verification model trained on a newly constructed dataset that faithfully replicates the authentic format and evaluation scale of the exam. Our model is able to exceed the official passing score when evaluated on the actual exam scale, marking the first demonstration, to our knowledge, of an LLM passing the Japanese bar examination without altering its original question structure or scoring rules. We further conduct extensive comparisons with alternative strategies, including multi-agent inference and decomposition-based supervision, and find that these methods fail to achieve comparable performance. Our results highlight the importance of format-faithful supervision and consistency verification, and suggest that carefully designed single-model approaches can outperform more complex systems in high-stakes professional reasoning tasks. Our dataset and codes are publicly available.
comment: https://github.com/shinandrew/self_verification
Limited Linguistic Diversity in Embodied AI Datasets
Language plays a critical role in Vision-Language-Action (VLA) models, yet the linguistic characteristics of the datasets used to train and evaluate these systems remain poorly documented. In this work, we present a systematic dataset audit of several widely used VLA corpora, aiming to characterize what kinds of instructions these datasets actually contain and how much linguistic variety they provide. We quantify instruction language along complementary dimensions-including lexical variety, duplication and overlap, semantic similarity, and syntactic complexity. Our analysis shows that many datasets rely on highly repetitive, template-like commands with limited structural variation, yielding a narrow distribution of instruction forms. We position these findings as descriptive documentation of the language signal available in current VLA training and evaluation data, intended to support more detailed dataset reporting, more principled dataset selection, and targeted curation or augmentation strategies that broaden language coverage.
Automatic Prompt Engineering with No Task Cues and No Tuning
This paper presents a system for automatic prompt engineering that is much simpler in both design and application and yet as effective as the existing approaches. It requires no tuning and no explicit clues about the task. We evaluated our approach on cryptic column name expansion (CNE) in database tables, a task which is critical for tabular data search, access, and understanding and yet there has been very little existing work. We evaluated on datasets in two languages, English and German. This is the first work to report on the application of automatic prompt engineering for the CNE task. To the best of our knowledge, this is also the first work on the application of automatic prompt engineering for a language other than English.
Unified Thinker: A General Reasoning Modular Core for Image Generation
Despite impressive progress in high-fidelity image synthesis, generative models still struggle with logic-intensive instruction following, exposing a persistent reasoning--execution gap. Meanwhile, closed-source systems (e.g., Nano Banana) have demonstrated strong reasoning-driven image generation, highlighting a substantial gap to current open-source models. We argue that closing this gap requires not merely better visual generators, but executable reasoning: decomposing high-level intents into grounded, verifiable plans that directly steer the generative process. To this end, we propose Unified Thinker, a task-agnostic reasoning architecture for general image generation, designed as a unified planning core that can plug into diverse generators and workflows. Unified Thinker decouples a dedicated Thinker from the image Generator, enabling modular upgrades of reasoning without retraining the entire generative model. We further introduce a two-stage training paradigm: we first build a structured planning interface for the Thinker, then apply reinforcement learning to ground its policy in pixel-level feedback, encouraging plans that optimize visual correctness over textual plausibility. Extensive experiments on text-to-image generation and image editing show that Unified Thinker substantially improves image reasoning and generation quality.
LeafLife: An Explainable Deep Learning Framework with Robustness for Grape Leaf Disease Recognition
Plant disease diagnosis is essential to farmers' management choices because plant diseases frequently lower crop yield and product quality. For harvests to flourish and agricultural productivity to boost, grape leaf disease detection is important. The plant disease dataset contains grape leaf diseases total of 9,032 images of four classes, among them three classes are leaf diseases, and the other one is healthy leaves. After rigorous pre-processing dataset was split (70% training, 20% validation, 10% testing), and two pre-trained models were deployed: InceptionV3 and Xception. Xception shows a promising result of 96.23% accuracy, which is remarkable than InceptionV3. Adversarial Training is used for robustness, along with more transparency. Grad-CAM is integrated to confirm the leaf disease. Finally deployed a web application using Streamlit with a heatmap visualization and prediction with confidence level for robust grape leaf disease classification.
comment: 4 pages, 8 figures, 2025 IEEE International Conference on Signal Processing, Information, Communication and Systems (SPICSCON)
ToxiGAN: Toxic Data Augmentation via LLM-Guided Directional Adversarial Generation
Augmenting toxic language data in a controllable and class-specific manner is crucial for improving robustness in toxicity classification, yet remains challenging due to limited supervision and distributional skew. We propose ToxiGAN, a class-aware text augmentation framework that combines adversarial generation with semantic guidance from large language models (LLMs). To address common issues in GAN-based augmentation such as mode collapse and semantic drift, ToxiGAN introduces a two-step directional training strategy and leverages LLM-generated neutral texts as semantic ballast. Unlike prior work that treats LLMs as static generators, our approach dynamically selects neutral exemplars to provide balanced guidance. Toxic samples are explicitly optimized to diverge from these exemplars, reinforcing class-specific contrastive signals. Experiments on four hate speech benchmarks show that ToxiGAN achieves the strongest average performance in both macro-F1 and hate-F1, consistently outperforming traditional and LLM-based augmentation methods. Ablation and sensitivity analyses further confirm the benefits of semantic ballast and directional training in enhancing classifier robustness.
comment: This paper has been accepted to the main conference of EACL 2026
A framework for assuring the accuracy and fidelity of an AI-enabled Digital Twin of en route UK airspace
Digital Twins combine simulation, operational data and Artificial Intelligence (AI), and have the potential to bring significant benefits across the aviation industry. Project Bluebird, an industry-academic collaboration, has developed a probabilistic Digital Twin of en route UK airspace as an environment for training and testing AI Air Traffic Control (ATC) agents. There is a developing regulatory landscape for this kind of novel technology. Regulatory requirements are expected to be application specific, and may need to be tailored to each specific use case. We draw on emerging guidance for both Digital Twin development and the use of Artificial Intelligence/Machine Learning (AI/ML) in Air Traffic Management (ATM) to present an assurance framework. This framework defines actionable goals and the evidence required to demonstrate that a Digital Twin accurately represents its physical counterpart and also provides sufficient functionality across target use cases. It provides a structured approach for researchers to assess, understand and document the strengths and limitations of the Digital Twin, whilst also identifying areas where fidelity could be improved. Furthermore, it serves as a foundation for engagement with stakeholders and regulators, supporting discussions around the regulatory needs for future applications, and contributing to the emerging guidance through a concrete, working example of a Digital Twin. The framework leverages a methodology known as Trustworthy and Ethical Assurance (TEA) to develop an assurance case. An assurance case is a nested set of structured arguments that provides justified evidence for how a top-level goal has been realised. In this paper we provide an overview of each structured argument and a number of deep dives which elaborate in more detail upon particular arguments, including the required evidence, assumptions and justifications.
Transformers self-organize like newborn visual systems when trained in prenatal worlds
Do transformers learn like brains? A key challenge in addressing this question is that transformers and brains are trained on fundamentally different data. Brains are initially "trained" on prenatal sensory experiences (e.g., retinal waves), whereas transformers are typically trained on large datasets that are not biologically plausible. We reasoned that if transformers learn like brains, then they should develop the same structure as newborn brains when exposed to the same prenatal data. To test this prediction, we simulated prenatal visual input using a retinal wave generator. Then, using self-supervised temporal learning, we trained transformers to adapt to those retinal waves. During training, the transformers spontaneously developed the same structure as newborn visual systems: (1) early layers became sensitive to edges, (2) later layers became sensitive to shapes, and (3) the models developed larger receptive fields across layers. The organization of newborn visual systems emerges spontaneously when transformers adapt to a prenatal visual world. This developmental convergence suggests that brains and transformers learn in common ways and follow the same general fitting principles.
Extreme-value forest fire prediction A study of the Loss Function in an Ordinality Scheme
Wildfires are highly imbalanced natural hazards in both space and severity, making the prediction of extreme events particularly challenging. In this work, we introduce the first ordinal classification framework for forecasting wildfire severity levels directly aligned with operational decision-making in France. Our study investigates the influence of loss-function design on the ability of neural models to predict rare yet critical high-severity fire occurrences. We compare standard cross-entropy with several ordinal-aware objectives, including the proposed probabilistic TDeGPD loss derived from a truncated discrete exponentiated Generalized Pareto Distribution. Through extensive benchmarking over multiple architectures and real operational data, we show that ordinal supervision substantially improves model performance over conventional approaches. In particular, the Weighted Kappa Loss (WKLoss) achieves the best overall results, with more than +0.1 IoU gain on the most extreme severity classes while maintaining competitive calibration quality. However, performance remains limited for the rarest events due to their extremely low representation in the dataset. These findings highlight the importance of integrating both severity ordering, data imbalance considerations, and seasonality risk into wildfire forecasting systems. Future work will focus on incorporating seasonal dynamics and uncertainty information into training to further improve the reliability of extreme-event prediction.
Who Laughs with Whom? Disentangling Influential Factors in Humor Preferences across User Clusters and LLMs
Humor preferences vary widely across individuals and cultures, complicating the evaluation of humor using large language models (LLMs). In this study, we model heterogeneity in humor preferences in Oogiri, a Japanese creative response game, by clustering users with voting logs and estimating cluster-specific weights over interpretable preference factors using Bradley-Terry-Luce models. We elicit preference judgments from LLMs by prompting them to select the funnier response and found that user clusters exhibit distinct preference patterns and that the LLM results can resemble those of particular clusters. Finally, we demonstrate that, by persona prompting, LLM preferences can be directed toward a specific cluster. The scripts for data collection and analysis will be released to support reproducibility.
Text-Guided Layer Fusion Mitigates Hallucination in Multimodal LLMs
Multimodal large language models (MLLMs) typically rely on a single late-layer feature from a frozen vision encoder, leaving the encoder's rich hierarchy of visual cues under-utilized. MLLMs still suffer from visually ungrounded hallucinations, often relying on language priors rather than image evidence. While many prior mitigation strategies operate on the text side, they leave the visual representation unchanged and do not exploit the rich hierarchy of features encoded across vision layers. Existing multi-layer fusion methods partially address this limitation but remain static, applying the same layer mixture regardless of the query. In this work, we introduce TGIF (Text-Guided Inter-layer Fusion), a lightweight module that treats encoder layers as depth-wise "experts" and predicts a prompt-dependent fusion of visual features. TGIF follows the principle of direct external fusion, requires no vision-encoder updates, and adds minimal overhead. Integrated into LLaVA-1.5-7B, TGIF provides consistent improvements across hallucination, OCR, and VQA benchmarks, while preserving or improving performance on ScienceQA, GQA, and MMBench. These results suggest that query-conditioned, hierarchy-aware fusion is an effective way to strengthen visual grounding and reduce hallucination in modern MLLMs.
Grad-ELLM: Gradient-based Explanations for Decoder-only LLMs
Large Language Models (LLMs) have demonstrated remarkable capabilities across diverse tasks, yet their black-box nature raises concerns about transparency and faithfulness. Input attribution methods aim to highlight each input token's contributions to the model's output, but existing approaches are typically model-agnostic, and do not focus on transformer-specific architectures, leading to limited faithfulness. To address this, we propose Grad-ELLM, a gradient-based attribution method for decoder-only transformer-based LLMs. By aggregating channel importance from gradients of the output logit with respect to attention layers and spatial importance from attention maps, Grad-ELLM generates heatmaps at each generation step without requiring architectural modifications. Additionally, we introduce two faithfulneses metrics $π$-Soft-NC and $π$-Soft-NS, which are modifications of Soft-NC/NS that provide fairer comparisons by controlling the amount of information kept when perturbing the text. We evaluate Grad-ELLM on sentiment classification, question answering, and open-generation tasks using different models. Experiment results show that Grad-ELLM consistently achieves superior faithfulness than other attribution methods.
Improving Underwater Acoustic Classification Through Learnable Gabor Filter Convolution and Attention Mechanisms
Remotely detecting and classifying underwater acoustic targets is critical for environmental monitoring and defence. However, the complexity of ship-radiated and environmental noise poses significant challenges for accurate signal processing. While recent advancements in machine learning have improved classification accuracy, limited dataset availability and a lack of standardised experimentation hinder generalisation and robustness. This paper introduces GSE ResNeXt, a deep learning architecture integrating learnable Gabor convolutional layers with a ResNeXt backbone enhanced by squeeze-and-excitation attention. The Gabor filters serve as two-dimensional adaptive band-pass filters, extending the feature channel representation. Its combination with channel attention improves training stability and convergence while enhancing the model's ability to extract discriminative features. The model is evaluated using three training-test split strategies that reflect increasingly complex classification tasks, demonstrating how systematic evaluation design addresses issues such as data leakage, temporal separation, and taxonomy. Results show that GSE ResNeXt consistently outperforms baseline models like Xception, ResNet, and MobileNetV2, in terms of classification performance. Regarding stability and convergence, adding Gabor convolutions to the initial layers of the model reduced training time by up to 62%. During the evaluation of training-testing splits, temporal separation between subsets significantly affected performance, proving more influential than training data volume. These findings suggest that signal processing can enhance model reliability and generalisation under varying environmental conditions, particularly in data-limited underwater acoustic classification. Future developments should focus on mitigating environmental effects on input signals.
AI-Driven Grading and Moderation for Collaborative Projects in Computer Science Education
Collaborative group projects are integral to computer science education, as they foster teamwork, problem-solving skills, and industry-relevant competencies. However, assessing individual contributions in group settings has long been challenging. Traditional assessment strategies, such as the equal distribution of grades or subjective peer assessments, often fall short in terms of fairness, objectivity, and scalability, particularly in large classrooms. This paper introduces a semi-automated, AI-assisted grading system that evaluates both project quality and individual effort using repository mining, communication analytics, and machine learning models. The system comprises modules for project evaluation, contribution analysis, and grade computation, and integrates seamlessly with platforms such as GitHub. A pilot deployment in a senior-level course demonstrated high alignment with instructor assessments, increased student satisfaction, and reduced instructor grading effort. We conclude by discussing implementation considerations, ethical implications, and proposed enhancements to broaden applicability.
comment: Accepted at EISTA 2025. Published in the Journal of Systemics, Cybernetics and Informatics, 2025
Shared Path: Unraveling Memorization in Multilingual LLMs through Language Similarities
We present the first comprehensive study of Memorization in Multilingual Large Language Models (MLLMs), analyzing 95 languages using models across diverse model scales, architectures, and memorization definitions. As MLLMs are increasingly deployed, understanding their memorization behavior has become critical. Yet prior work has focused primarily on monolingual models, leaving multilingual memorization underexplored, despite the inherently long-tailed nature of training corpora. We find that the prevailing assumption, that memorization is highly correlated with training data availability, fails to fully explain memorization patterns in MLLMs. We hypothesize that the conventional focus on monolingual settings, effectively treating languages in isolation, may obscure the true patterns of memorization. To address this, we propose a novel graph-based correlation metric that incorporates language similarity to analyze cross-lingual memorization. Our analysis reveals that among similar languages, those with fewer training tokens tend to exhibit higher memorization, a trend that only emerges when cross-lingual relationships are explicitly modeled. These findings underscore the importance of a \textit{language-aware} perspective in evaluating and mitigating memorization vulnerabilities in MLLMs. This also constitutes empirical evidence that language similarity both explains Memorization in MLLMs and underpins Cross-lingual Transferability, with broad implications for multilingual NLP.
comment: 17 pages, 14 tables, 10 figures
VULCAN: Tool-Augmented Multi Agents for Iterative 3D Object Arrangement
Despite the remarkable progress of Multimodal Large Language Models (MLLMs) in 2D vision-language tasks, their application to complex 3D scene manipulation remains underexplored. In this paper, we bridge this critical gap by tackling three key challenges in 3D object arrangement task using MLLMs. First, to address the weak visual grounding of MLLMs, which struggle to link programmatic edits with precise 3D outcomes, we introduce an MCP-based API. This shifts the interaction from brittle raw code manipulation to more robust, function-level updates. Second, we augment the MLLM's 3D scene understanding with a suite of specialized visual tools to analyze scene state, gather spatial information, and validate action outcomes. This perceptual feedback loop is critical for closing the gap between language-based updates and precise 3D-aware manipulation. Third, to manage the iterative, error-prone updates, we propose a collaborative multi-agent framework with designated roles for planning, execution, and verification. This decomposition allows the system to robustly handle multi-step instructions and recover from intermediate errors. We demonstrate the effectiveness of our approach on a diverse set of 25 complex object arrangement tasks, where it significantly outperforms existing baselines. Website: vulcan-3d.github.io
FinTagging: Benchmarking LLMs for Extracting and Structuring Financial Information
Accurate interpretation of numerical data in financial reports is critical for markets and regulators. Although XBRL (eXtensible Business Reporting Language) provides a standard for tagging financial figures, mapping thousands of facts to over ten thousand US-GAAP concepts remains costly and error-prone. Existing benchmarks oversimplify this task as flat, single-step classification over small subsets of concepts, ignoring the hierarchical semantics of the taxonomy and the structured nature of financial documents. As a result, these benchmarks fail to evaluate Large Language Models (LLMs) under realistic reporting conditions. To bridge this gap, we introduce FinTagging, the first comprehensive benchmark for structure-aware and full-scope XBRL tagging. We decompose the complex tagging process into two subtasks: (1) FinNI (Financial Numeric Identification), which extracts entities and types from heterogeneous contexts such as text and tables; and (2) FinCL (Financial Concept Linking), which maps extracted entities to the full US-GAAP taxonomy. This two-stage formulation enables a fair assessment of LLM capabilities in numerical reasoning and taxonomy alignment. Evaluating diverse LLMs in zero-shot settings shows that while models generalize well in extraction, they struggle with fine-grained concept linking, revealing important limitations in domain-specific, structure-aware reasoning. Code is available on GitHub, and datasets are available on Hugging Face.
Detecting PTSD in Clinical Interviews: A Comparative Analysis of NLP Methods and Large Language Models
Post-Traumatic Stress Disorder (PTSD) remains underdiagnosed in clinical settings, presenting opportunities for automated detection to identify patients. This study evaluates natural language processing approaches for detecting PTSD from clinical interview transcripts. We compared general and mental health-specific transformer models (BERT/RoBERTa), embedding-based methods (SentenceBERT/LLaMA), and large language model prompting strategies (zero-shot/few-shot/chain-of-thought) using the DAIC-WOZ dataset. Domain-specific end-to-end models significantly outperformed general models (Mental-RoBERTa AUPRC=0.675+/-0.084 vs. RoBERTa-base 0.599+/-0.145). SentenceBERT embeddings with neural networks achieved the highest overall performance (AUPRC=0.758+/-0.128). Few-shot prompting using DSM-5 criteria yielded competitive results with two examples (AUPRC=0.737). Performance varied significantly across symptom severity and comorbidity status with depression, with higher accuracy for severe PTSD cases and patients with comorbid depression. Our findings highlight the potential of domain-adapted embeddings and LLMs for scalable screening while underscoring the need for improved detection of nuanced presentations and offering insights for developing clinically viable AI tools for PTSD assessment.
Reliable Grid Forecasting: State Space Models for Safety-Critical Energy Systems
Accurate grid load forecasting is safety-critical: under-predictions risk supply shortfalls, while symmetric error metrics mask this operational asymmetry. We introduce a grid-specific evaluation framework (Asymmetric MAPE, Under-Prediction Rate, and Reserve Margin) that directly measures operational risk rather than statistical accuracy alone. Using this framework, we conduct a systematic evaluation of Mamba-based State Space Models for California grid forecasting on a weather-aligned CA ISO-TAC dataset spanning Nov 2023 to Nov 2025 (84,498 hourly records across 5 transmission areas). Our analysis reveals that standard accuracy metrics are poor proxies for operational safety: models with identical MAPE can require vastly different reserve margins. We demonstrate that forecast errors are weakly but statistically significantly associated with temperature (r = 0.16), motivating weather-aware modeling rather than loss function modification alone. The S-Mamba model achieves the lowest 99.5th-percentile reserve margin (14.12 percent) compared to 16.66 percent for iTransformer, demonstrating superior forecast reliability under a 99.5th-percentile tail-risk reserve proxy.
comment: 25 pages, 7 figures, 8 tables
Task Matters: Knowledge Requirements Shape LLM Responses to Context-Memory Conflict
Large language models (LLMs) draw on both contextual information and parametric memory, yet these sources can conflict. Prior studies have largely examined this issue in contextual question answering, implicitly assuming that tasks should rely on the provided context, leaving unclear how LLMs behave when tasks require different types and degrees of knowledge utilization. We address this gap with a model-agnostic diagnostic framework that holds underlying knowledge constant while introducing controlled conflicts across tasks with varying knowledge demands. Experiments on representative open-source LLMs show that performance degradation under conflict is driven by both task-specific knowledge reliance and conflict plausibility; that strategies such as rationales or context reiteration increase context reliance, helping context-only tasks but harming those requiring parametric knowledge; and that these effects bias model-based evaluation, calling into question the reliability of LLMs as judges. Overall, our findings reveal that context-memory conflict is inherently task-dependent and motivate task-aware approaches to balancing context and memory in LLM deployment and evaluation.
comment: Major revision
Characterizing the Robustness of Black-Box LLM Planners Under Perturbed Observations with Adaptive Stress Testing
Large language models (LLMs) have recently demonstrated success in decision-making tasks including planning, control, and prediction, but their tendency to hallucinate unsafe and undesired outputs poses risks. This unwanted behavior is further exacerbated in environments where sensors are noisy or unreliable. Characterizing the behavior of LLM planners to varied observations is necessary to proactively avoid failures in safety-critical scenarios. We specifically investigate the response of LLMs along two different perturbation dimensions. Like prior works, one dimension generates semantically similar prompts with varied phrasing by randomizing order of details, modifying access to few-shot examples, etc. Unique to our work, the second dimension simulates access to varied sensors and noise to mimic raw sensor or detection algorithm failures. An initial case study in which perturbations are manually applied show that both dimensions lead LLMs to hallucinate in a multi-agent driving environment. However, manually covering the entire perturbation space for several scenarios is infeasible. As such, we propose a novel method for efficiently searching the space of prompt perturbations using adaptive stress testing (AST) with Monte-Carlo tree search (MCTS). Our AST formulation enables discovery of scenarios, sensor configurations, and prompt phrasing that cause language models to act with high uncertainty or even crash. By generating MCTS prompt perturbation trees across diverse scenarios, we show through extensive experiments that offline analyses can be used to proactively understand potential failures that may arise at runtime.
comment: 30 pages, 24 figures, 6 tables
ShareChat: A Dataset of Chatbot Conversations in the Wild
While academic research typically treats Large Language Models (LLM) as generic text generators, they are distinct commercial products with unique interfaces and capabilities that fundamentally shape user behavior. Current datasets obscure this reality by collecting text-only data through uniform interfaces that fail to capture authentic chatbot usage. To address this limitation, we present ShareChat, a large-scale corpus of 142,808 conversations (660,293 turns) sourced directly from publicly shared URLs on ChatGPT, Perplexity, Grok, Gemini, and Claude. ShareChat distinguishes itself by preserving native platform affordances, such as citations and thinking traces, across a diverse collection covering 101 languages and the period from April 2023 to October 2025. Furthermore, ShareChat offers substantially longer context windows and greater interaction depth than prior datasets. To illustrate the dataset's breadth, we present three case studies: a completeness analysis of intent satisfaction, a citation study of model grounding, and a temporal analysis of engagement rhythms. This work provides the community with a vital and timely resource for understanding authentic user-LLM chatbot interactions in the wild. The dataset will be publicly available.
AgentArch: A Comprehensive Benchmark to Evaluate Agent Architectures in Enterprise
While individual components of agentic architectures have been studied in isolation, there remains limited empirical understanding of how different design dimensions interact within complex multi-agent systems. This study aims to address these gaps by providing a comprehensive enterprise-specific benchmark evaluating 18 distinct agentic configurations across state-of-the-art large language models. We examine four critical agentic system dimensions: orchestration strategy, agent prompt implementation (ReAct versus function calling), memory architecture, and thinking tool integration. Our benchmark reveals significant model-specific architectural preferences that challenge the prevalent one-size-fits-all paradigm in agentic AI systems. It also reveals significant weaknesses in overall agentic performance on enterprise tasks with the highest scoring models achieving a maximum of only 35.3\% success on the more complex task and 70.8\% on the simpler task. We hope these findings inform the design of future agentic systems by enabling more empirically backed decisions regarding architectural components and model selection.
Adapting Web Agents with Synthetic Supervision
Web agents struggle to adapt to new websites due to the scarcity of environment specific tasks and demonstrations. Recent works have explored synthetic data generation to address this challenge, however, they suffer from data quality issues where synthesized tasks contain hallucinations that cannot be executed, and collected trajectories are noisy with redundant or misaligned actions. In this paper, we propose SynthAgent, a fully synthetic supervision framework that aims at improving synthetic data quality via dual refinement of both tasks and trajectories. Our approach begins by synthesizing diverse tasks through categorized exploration of web elements, ensuring efficient coverage of the target environment. During trajectory collection, tasks are refined only when conflicts with observations are detected, which mitigates hallucinations while preserving task consistency. After collection, we conduct trajectory refinement with global context to mitigate potential noise or misalignments. Finally, we fine-tune open-source web agents on the refined synthetic data to adapt them to the target environment. Experimental results demonstrate that SynthAgent outperforms existing synthetic data methods, validating the importance of high-quality synthetic supervision. The code is publicly available at https://github.com/aiming-lab/SynthAgent.
comment: 21 pages, 6 figures
The Journal of Prompt-Engineered Philosophy Or: How I Started to Track AI Assistance and Stopped Worrying About Slop
Academic publishing increasingly requires authors to disclose AI assistance, yet imposes reputational costs for doing so--especially when such assistance is substantial. This article analyzes that structural contradiction, showing how incentives discourage transparency in precisely the work where it matters most. Traditional venues cannot resolve this tension through policy tweaks alone, as the underlying prestige economy rewards opacity. To address this, the article proposes an alternative publishing infrastructure: a venue outside prestige systems that enforces mandatory disclosure, enables reproduction-based review, and supports ecological validity through detailed documentation. As a demonstration of this approach, the article itself is presented as an example of AI-assisted scholarship under reasonably detailed disclosure, with representative prompt logs and modification records included. Rather than taking a position for or against AI-assisted scholarship, the article outlines conditions under which such work can be evaluated on its own terms: through transparent documentation, verification-oriented review, and participation by methodologically committed scholars. While focused on AI, the framework speaks to broader questions about how academic systems handle methodological innovation.
comment: 44 pages (30 Article + 14 Appendix); 2 figures Transparency material documenting LLM usage available at: https://github.com/MicheleLoi/JPEP/tree/main/transparency/Canonical_MD
Heuristic Methods are Good Teachers to Distill MLPs for Graph Link Prediction
Link prediction is a crucial graph-learning task with applications including citation prediction and product recommendation. Distilling Graph Neural Networks (GNNs) teachers into Multi-Layer Perceptrons (MLPs) students has emerged as an effective approach to achieve strong performance and reducing computational cost by removing graph dependency. However, existing distillation methods only use standard GNNs and overlook alternative teachers such as specialized model for link prediction (GNN4LP) and heuristic methods (e.g., common neighbors). This paper first explores the impact of different teachers in GNN-to-MLP distillation. Surprisingly, we find that stronger teachers do not always produce stronger students: MLPs distilled from GNN4LP can underperform those distilled from simpler GNNs, while weaker heuristic methods can teach MLPs to near-GNN performance with drastically reduced training costs. Building on these insights, we propose Ensemble Heuristic-Distilled MLPs (EHDM), which eliminates graph dependencies while effectively integrating complementary signals via a gating mechanism. Experiments on ten datasets show an average 7.93% improvement over previous GNN-to-MLP approaches with 1.95-3.32 times less training time, indicating EHDM is an efficient and effective link prediction method.
D^3ETOR: Debate-Enhanced Pseudo Labeling and Frequency-Aware Progressive Debiasing for Weakly-Supervised Camouflaged Object Detection with Scribble Annotations
Weakly-Supervised Camouflaged Object Detection (WSCOD) aims to locate and segment objects that are visually concealed within their surrounding scenes, relying solely on sparse supervision such as scribble annotations. Despite recent progress, existing WSCOD methods still lag far behind fully supervised ones due to two major limitations: (1) the pseudo masks generated by general-purpose segmentation models (e.g., SAM) and filtered via rules are often unreliable, as these models lack the task-specific semantic understanding required for effective pseudo labeling in COD; and (2) the neglect of inherent annotation bias in scribbles, which hinders the model from capturing the global structure of camouflaged objects. To overcome these challenges, we propose ${D}^{3}$ETOR, a two-stage WSCOD framework consisting of Debate-Enhanced Pseudo Labeling and Frequency-Aware Progressive Debiasing. In the first stage, we introduce an adaptive entropy-driven point sampling method and a multi-agent debate mechanism to enhance the capability of SAM for COD, improving the interpretability and precision of pseudo masks. In the second stage, we design FADeNet, which progressively fuses multi-level frequency-aware features to balance global semantic understanding with local detail modeling, while dynamically reweighting supervision strength across regions to alleviate scribble bias. By jointly exploiting the supervision signals from both the pseudo masks and scribble semantics, ${D}^{3}$ETOR significantly narrows the gap between weakly and fully supervised COD, achieving state-of-the-art performance on multiple benchmarks.
ImageNet-trained CNNs are not biased towards texture: Revisiting feature reliance through controlled suppression NeurIPS 2025
The hypothesis that Convolutional Neural Networks (CNNs) are inherently texture-biased has shaped much of the discourse on feature use in deep learning. We revisit this hypothesis by examining limitations in the cue-conflict experiment by Geirhos et al. To address these limitations, we propose a domain-agnostic framework that quantifies feature reliance through systematic suppression of shape, texture, and color cues, avoiding the confounds of forced-choice conflicts. By evaluating humans and neural networks under controlled suppression conditions, we find that CNNs are not inherently texture-biased but predominantly rely on local shape features. Nonetheless, this reliance can be substantially mitigated through modern training strategies or architectures (ConvNeXt, ViTs). We further extend the analysis across computer vision, medical imaging, and remote sensing, revealing that reliance patterns differ systematically: computer vision models prioritize shape, medical imaging models emphasize color, and remote sensing models exhibit a stronger reliance on texture. Code is available at https://github.com/tomburgert/feature-reliance.
comment: Accepted at NeurIPS 2025 (oral)
FragmentRetro: A Quadratic Retrosynthetic Method Based on Fragmentation Algorithms
Retrosynthesis, the process of deconstructing a target molecule into simpler precursors, is crucial for computer-aided synthesis planning (CASP). Widely adopted tree-search methods often suffer from exponential computational complexity. In this work, we introduce FragmentRetro, a novel retrosynthetic method that leverages fragmentation algorithms, specifically BRICS and r-BRICS, combined with stock-aware exploration and pattern fingerprint screening to achieve quadratic complexity. FragmentRetro recursively combines molecular fragments and verifies their presence in a building block set, providing sets of fragment combinations as retrosynthetic solutions. We present the first formal computational analysis of retrosynthetic methods, showing that tree search exhibits exponential complexity $O(b^h)$, DirectMultiStep scales as $O(h^6)$, and FragmentRetro achieves $O(h^2)$, where $h$ represents the number of heavy atoms in the target molecule and $b$ is the branching factor for tree search. Evaluations on PaRoutes, USPTO-190, and natural products demonstrate that FragmentRetro achieves high solved rates with competitive runtime, including cases where tree search fails. The method benefits from fingerprint screening, which significantly reduces substructure matching complexity. While FragmentRetro focuses on efficiently identifying fragment-based solutions rather than full reaction pathways, its computational advantages and ability to generate strategic starting candidates establish it as a powerful foundational component for scalable and automated synthesis planning.
comment: Code available on GitHub https://github.com/randyshee/FragmentRetro Documentation is available https://fragment.batistalab.com/
Iterative Topic Taxonomy Induction with LLMs: A Case Study of Electoral Advertising
Social media platforms play a pivotal role in shaping political discourse, but analyzing their vast and rapidly evolving content remains a major challenge. We introduce an end-to-end framework for automatically inducing an interpretable topic taxonomy from unlabeled text corpora. By combining unsupervised clustering with prompt-based inference, our method leverages large language models (LLMs) to iteratively construct a taxonomy without requiring seed sets (predefined labels) or domain expertise. We validate the framework through a study of political advertising ahead of the 2024 U.S. presidential election. The induced taxonomy yields semantically rich topic labels and supports downstream analyses, including moral framing, in this setting. Results suggest that structured, iterative labeling yields more consistent and interpretable topic labels than existing approaches under human evaluation, and is practical for analyzing large-scale political advertising data.
comment: Under-submission
DisCO: Reinforcing Large Reasoning Models with Discriminative Constrained Optimization NeurIPS 2025
The recent success and openness of DeepSeek-R1 have brought widespread attention to Group Relative Policy Optimization (GRPO) as a reinforcement learning method for large reasoning models (LRMs). In this work, we analyze the GRPO objective under a binary reward setting and reveal an inherent limitation of question-level difficulty bias. We also identify a connection between GRPO and traditional discriminative methods in supervised learning. Motivated by these insights, we introduce a new Discriminative Constrained Optimization (DisCO) framework for reinforcing LRMs, grounded in the principle of discriminative learning. The main differences between DisCO and GRPO and its recent variants are: (1) it replaces the group relative objective with a discriminative objective defined by a scoring function; (2) it abandons clipping-based surrogates in favor of non-clipping RL surrogate objectives used as scoring functions; (3) it employs a simple yet effective constrained optimization approach to enforce the KL divergence constraint. As a result, DisCO offers notable advantages over GRPO and its variants: (i) it completely eliminates difficulty bias by adopting discriminative objectives; (ii) it addresses the entropy instability in GRPO and its variants through the use of non-clipping scoring functions and a constrained optimization approach, yielding long and stable training dynamics; (iii) it allows the incorporation of advanced discriminative learning techniques to address data imbalance, where a significant number of questions have more negative than positive generated answers during training. Our experiments on enhancing the mathematical reasoning capabilities of SFT-finetuned models show that DisCO significantly outperforms GRPO and its improved variants such as DAPO, achieving average gains of 7\% over GRPO and 6\% over DAPO across six benchmark tasks for a 1.5B model.
comment: Accepted to NeurIPS 2025
Large Empirical Case Study: Go-Explore adapted for AI Red Team Testing
Production LLM agents with tool-using capabilities require security testing despite their safety training. We adapt Go-Explore to evaluate GPT-4o-mini across 28 experimental runs spanning six research questions. We find that random-seed variance dominates algorithmic parameters, yielding an 8x spread in outcomes; single-seed comparisons are unreliable, while multi-seed averaging materially reduces variance in our setup. Reward shaping consistently harms performance, causing exploration collapse in 94% of runs or producing 18 false positives with zero verified attacks. In our environment, simple state signatures outperform complex ones. For comprehensive security testing, ensembles provide attack-type diversity, whereas single agents optimize coverage within a given attack type. Overall, these results suggest that seed variance and targeted domain knowledge can outweigh algorithmic sophistication when testing safety-trained models.
Musical Score Understanding Benchmark: Evaluating Large Language Models' Comprehension of Complete Musical Scores
Understanding complete musical scores entails integrated reasoning over pitch, rhythm, harmony, and large-scale structure, yet the ability of Large Language Models and Vision-Language Models to interpret full musical notation remains insufficiently examined. We introduce the Musical Score Understanding Benchmark (MSU-Bench), the first large-scale, human-curated benchmark for score-level musical understanding across textual (ABC notation) and visual (PDF) modalities. MSU-Bench contains 1,800 generative Question-Answering pairs from works by Bach, Beethoven, Chopin, Debussy, and others, organised into four levels of increasing difficulty, ranging from onset information to texture and form. Evaluations of more than fifteen state-of-the-art models, in both zero-shot and fine-tuned settings, reveal pronounced modality gaps, unstable level-wise performance, and challenges in maintaining multilevel correctness. Fine-tuning substantially improves results across modalities while preserving general knowledge, positioning MSU-Bench as a robust foundation for future research in multimodal reasoning. To facilitate further research, we publicly release MSU-Bench and all associated resources.
CSAI: Conditional Self-Attention Imputation for Healthcare Time-series
We introduce the Conditional Self-Attention Imputation (CSAI) model, a novel recurrent neural network architecture designed to address the challenges of complex missing data patterns in multivariate time series derived from hospital electronic health records (EHRs). CSAI extends state-of-the-art neural network-based imputation by introducing key modifications specific to EHR data: a) attention-based hidden state initialisation to capture both long- and short-range temporal dependencies prevalent in EHRs, b) domain-informed temporal decay to mimic clinical data recording patterns, and c) a non-uniform masking strategy that models non-random missingness by calibrating weights according to both temporal and cross-sectional data characteristics. Comprehensive evaluation across four EHR benchmark datasets demonstrates CSAI's effectiveness compared to state-of-the-art architectures in data restoration and downstream tasks. CSAI is integrated into PyPOTS, an open-source Python toolbox designed for machine learning tasks on partially observed time series. This work significantly advances the state of neural network imputation applied to EHRs by more closely aligning algorithmic imputation with clinical realities.
Neuronal Attention Circuit (NAC) for Representation Learning
Attention improves representation learning over RNNs, but its discrete nature limits continuous-time (CT) modeling. We introduce Neuronal Attention Circuit (NAC), a novel, biologically inspired CT-Attention mechanism that reformulates attention logit computation as the solution to a linear first-order ODE with nonlinear interlinked gates derived from repurposing C.elegans Neuronal Circuit Policies (NCPs) wiring. NAC replaces dense projections with sparse sensory gates for key-query projections and a sparse backbone network with two heads for computing content-target and learnable time-constant gates, enabling efficient adaptive dynamics. To improve efficiency and memory consumption, we implemented an adaptable subquadratic sparse Top-K pairwise concatenation mechanism that selectively curates key-query interactions. We provide rigorous theoretical guarantees, including state stability and bounded approximation errors. Empirically, we implemented NAC in diverse domains, including irregular time-series classification, lane-keeping for autonomous vehicles, and industrial prognostics. We observed that NAC matches or outperforms competing baselines in accuracy and occupies an intermediate position in runtime and memory consumption compared with several CT state-of-the-art baselines, while being interpretable at the neuron cell level.
comment: Ongoing work
A Multidimensional AI-powered Framework for Analyzing Tourist Perception in Historic Urban Quarters: A Case Study in Shanghai
Historic urban quarters play a vital role in preserving cultural heritage while serving as vibrant spaces for tourism and everyday life. Understanding how tourists perceive these environments is essential for sustainable, human-centered urban planning. This study proposes a multidimensional AI-powered framework for analyzing tourist perception in historic urban quarters using multimodal data from social media. Applied to twelve historic quarters in central Shanghai, the framework integrates focal point extraction, color theme analysis, and sentiment mining. Visual focus areas are identified from tourist-shared photos using a fine-tuned semantic segmentation model. To assess aesthetic preferences, dominant colors are extracted using a clustering method, and their spatial distribution across quarters is analyzed. Color themes are further compared between social media photos and real-world street views, revealing notable shifts. This divergence highlights potential gaps between visual expectations and the built environment, reflecting both stylistic preferences and perceptual bias. Tourist reviews are evaluated through a hybrid sentiment analysis approach combining a rule-based method and a multi-task BERT model. Satisfaction is assessed across four dimensions: tourist activities, built environment, service facilities, and business formats. The results reveal spatial variations in aesthetic appeal and emotional response. Rather than focusing on a single technical innovation, this framework offers an integrated, data-driven approach to decoding tourist perception and contributes to informed decision-making in tourism, heritage conservation, and the design of aesthetically engaging public spaces.
Gradient Coupling: The Hidden Barrier to Generalization in Agentic Reinforcement Learning
Reinforcement learning (RL) is a dominant paradigm for training autonomous agents, yet these agents often exhibit poor generalization, failing to adapt to scenarios not seen during training. In this work, we identify a fundamental cause of this brittleness, a phenomenon which we term "gradient coupling." We hypothesize that in complex agentic tasks, the high similarity between distinct states leads to destructive interference between gradients. Specifically, a gradient update that reinforces an optimal action in one state can inadvertently increase the likelihood of a suboptimal action in a similar, yet different, state. To solve this, we propose a novel objective where the actor is trained to simultaneously function as a classifier that separates good and bad actions. This auxiliary pressure compels the model to learn disentangled embeddings for positive and negative actions, which mitigates negative gradient interference and improve the generalization performance. Extensive experiments demonstrate the effectiveness of our method.
Tackling the Inherent Difficulty of Noise Filtering in RAG
Retrieval-Augmented Generation (RAG) has become a widely adopted approach to enhance Large Language Models (LLMs) by incorporating external knowledge and reducing hallucinations. However, noisy or irrelevant documents are often introduced during RAG, potentially degrading performance and even causing hallucinated outputs. While various methods have been proposed to filter out such noise, we argue that identifying irrelevant information from retrieved content is inherently difficult and limited number of transformer layers can hardly solve this. Consequently, retrievers fail to filter out irrelevant documents entirely. Therefore, LLMs must be robust against such noise, but we demonstrate that standard fine-tuning approaches are often ineffective in enabling the model to selectively utilize relevant information while ignoring irrelevant content due to the structural constraints of attention patterns. To address this, we propose a novel fine-tuning method designed to enhance the model's ability to distinguish between relevant and irrelevant information within retrieved documents. Extensive experiments across multiple benchmarks show that our approach significantly improves the robustness and performance of LLMs.
Exploring How Audio Effects Alter Emotion with Foundation Models
Audio effects (FX) such as reverberation, distortion, modulation, and dynamic range processing play a pivotal role in shaping emotional responses during music listening. While prior studies have examined links between low-level audio features and affective perception, the systematic impact of audio FX on emotion remains underexplored. This work investigates how foundation models - large-scale neural architectures pretrained on multimodal data - can be leveraged to analyze these effects. Such models encode rich associations between musical structure, timbre, and affective meaning, offering a powerful framework for probing the emotional consequences of sound design techniques. By applying various probing methods to embeddings from deep learning models, we examine the complex, nonlinear relationships between audio FX and estimated emotion, uncovering patterns tied to specific effects and evaluating the robustness of foundation audio models. Our findings aim to advance understanding of the perceptual impact of audio production practices, with implications for music cognition, performance, and affective computing.
comment: https://github.com/stelioskt/audioFX
Interpretability-Guided Bi-objective Optimization: Aligning Accuracy and Explainability
This paper introduces Interpretability-Guided Bi-objective Optimization (IGBO), a framework that trains interpretable models by incorporating structured domain knowledge via a bi-objective formulation. IGBO encodes feature importance hierarchies as a Directed Acyclic Graph (DAG) via Central Limit Theorem-based construction and uses Temporal Integrated Gradients (TIG) to measure feature importance. To address the Out-of-Distribution (OOD) problem in TIG computation, we propose an Optimal Path Oracle that learns data-manifold-aware integration paths. Theoretical analysis establishes convergence properties via a geometric projection mapping $\mathcal{P}$ and proves robustness to mini-batch noise. Central Limit Theorem-based construction of the interpretability DAG ensures statistical validity of edge orientation decisions. Empirical results on time-series data demonstrate IGBO's effectiveness in enforcing DAG constraints with minimal accuracy loss, outperforming standard regularization baselines.
comment: 11 pages
LORE: A Large Generative Model for Search Relevance
Achievement. We introduce LORE, a systematic framework for Large Generative Model-based relevance in e-commerce search. Deployed and iterated over three years, LORE achieves a cumulative +27\% improvement in online GoodRate metrics. This report shares the valuable experience gained throughout its development lifecycle, spanning data, features, training, evaluation, and deployment. Insight. While existing works apply Chain-of-Thought (CoT) to enhance relevance, they often hit a performance ceiling. We argue this stems from treating relevance as a monolithic task, lacking principled deconstruction. Our key insight is that relevance comprises distinct capabilities: knowledge and reasoning, multi-modal matching, and rule adherence. We contend that a qualitative-driven decomposition is essential for breaking through current performance bottlenecks. Contributions. LORE provides a complete blueprint for the LLM relevance lifecycle. Key contributions include: (1) A two-stage training paradigm combining progressive CoT synthesis via SFT with human preference alignment via RL. (2) A comprehensive benchmark, RAIR, designed to evaluate these core capabilities. (3) A query frequency-stratified deployment strategy that efficiently transfers offline LLM capabilities to the online system. LORE serves as both a practical solution and a methodological reference for other vertical domains.
Agentic Additive Manufacturing Alloy Evaluation
Agentic systems enable the intelligent use of research tooling, augmenting a researcher's ability to investigate and propose novel solutions to existing problems. Within Additive Manufacturing (AM), alloy selection and evaluation remains a complex challenge, often requiring expertise in the various domains of materials science, thermodynamic simulations, and experimental analysis. Large Language Model (LLM) enabled agents can facilitate this endeavor by utilizing their extensive knowledge base to dispatch tool calls via Model Context Protocol (MCP) to perform actions such as thermophysical property diagram calculations and lack of fusion process map generation. In addition, the multi-agent system can effectively reason through complex user prompts and provide analysis on the lack of fusion process window of common alloys such as SS316L and IN718 along with proposed composition variants of known alloys. These agents can dynamically adjust their task trajectory to the outcomes of tool call results, effectively enabling autonomous decision-making in practical environments. This work aims to showcase the benefits of adopting a LLM enabled multi-agent system to automate and accelerate the task of evaluating proposed additive manufacturing alloys, both novel and known.
A Comedy of Estimators: On KL Regularization in RL Training of LLMs
The reasoning performance of large language models (LLMs) can be substantially improved by training them with reinforcement learning (RL). The RL objective for LLM training involves a regularization term, which is the reverse Kullback-Leibler (KL) divergence between the trained policy and the reference policy. Since computing the KL divergence exactly is intractable, various estimators are used in practice to estimate it from on-policy samples. Despite its wide adoption, including in several open-source libraries, there is no systematic study analyzing the numerous ways of incorporating KL estimators in the objective and their effect on the downstream performance of RL-trained models. Recent works show that prevailing practices for incorporating KL regularization do not provide correct gradients for stated objectives, creating a discrepancy between the objective and its implementation. In this paper, we further analyze these practices and study the gradients of several estimators configurations, revealing how design choices shape gradient bias. We substantiate these findings with empirical observations by RL fine-tuning \texttt{Qwen2.5-7B}, \texttt{Llama-3.1-8B-Instruct} and \texttt{Qwen3-4B-Instruct-2507} with different configurations and evaluating their performance on both in- and out-of-distribution tasks. Through our analysis, we observe that, in on-policy settings: (1) estimator configurations with biased gradients can result in training instabilities; and (2) using estimator configurations resulting in unbiased gradients leads to better performance on in-domain as well as out-of-domain tasks. We also investigate the performance resulting from different KL configurations in off-policy settings and observe that KL regularization can help stabilize off-policy RL training resulting from asynchronous setups.
Machine Learning 126
Toward Maturity-Based Certification of Embodied AI: Quantifying Trustworthiness Through Measurement Mechanisms AAAI-26
We propose a maturity-based framework for certifying embodied AI systems through explicit measurement mechanisms. We argue that certifiable embodied AI requires structured assessment frameworks, quantitative scoring mechanisms, and methods for navigating multi-objective trade-offs inherent in trustworthiness evaluation. We demonstrate this approach using uncertainty quantification as an exemplar measurement mechanism and illustrate feasibility through an Uncrewed Aircraft System (UAS) detection case study.
comment: 5 pages, Accepted to AAAI-26 Bridge Program B10: Making Embodied AI Reliable with Testing and Formal Verification
Latent Geometry of Taste: Scalable Low-Rank Matrix Factorization
Scalability and data sparsity remain critical bottlenecks for collaborative filtering on massive interaction datasets. This work investigates the latent geometry of user preferences using the MovieLens 32M dataset, implementing a high-performance, parallelized Alternating Least Squares (ALS) framework. Through extensive hyperparameter optimization, we demonstrate that constrained low-rank models significantly outperform higher dimensional counterparts in generalization, achieving an optimal balance between Root Mean Square Error (RMSE) and ranking precision. We visualize the learned embedding space to reveal the unsupervised emergence of semantic genre clusters, confirming that the model captures deep structural relationships solely from interaction data. Finally, we validate the system's practical utility in a cold-start scenario, introducing a tunable scoring parameter to manage the trade-off between popularity bias and personalized affinity effectively. The codebase for this research can be found here: https://github.com/joshsalako/recommender.git
Experimental Comparison of Light-Weight and Deep CNN Models Across Diverse Datasets
Our results reveal that a well-regularized shallow architecture can serve as a highly competitive baseline across heterogeneous domains - from smart-city surveillance to agricultural variety classification - without requiring large GPUs or specialized pre-trained models. This work establishes a unified, reproducible benchmark for multiple Bangladeshi vision datasets and highlights the practical value of lightweight CNNs for real-world deployment in low-resource settings.
comment: 25 pages, 11 figures
An Expectation-Maximization Algorithm for Domain Adaptation in Gaussian Causal Models
We study the problem of imputing a designated target variable that is systematically missing in a shifted deployment domain, when a Gaussian causal DAG is available from a fully observed source domain. We propose a unified EM-based framework that combines source and target data through the DAG structure to transfer information from observed variables to the missing target. On the methodological side, we formulate a population EM operator in the DAG parameter space and introduce a first-order (gradient) EM update that replaces the costly generalized least-squares M-step with a single projected gradient step. Under standard local strong-concavity and smoothness assumptions and a BWY-style \cite{Balakrishnan2017EM} gradient-stability (bounded missing-information) condition, we show that this first-order EM operator is locally contractive around the true target parameters, yielding geometric convergence and finite-sample guarantees on parameter error and the induced target-imputation error in Gaussian SEMs under covariate shift and local mechanism shifts. Algorithmically, we exploit the known causal DAG to freeze source-invariant mechanisms and re-estimate only those conditional distributions directly affected by the shift, making the procedure scalable to higher-dimensional models. In experiments on a synthetic seven-node SEM, the 64-node MAGIC-IRRI genetic network, and the Sachs protein-signaling data, the proposed DAG-aware first-order EM algorithm improves target imputation accuracy over a fit-on-source Bayesian network and a Kiiveri-style EM baseline, with the largest gains under pronounced domain shift.
comment: An earlier version of this work was accepted for the Proceedings of the 2025 IEEE International Conference on Data Mining (ICDM)
Measures of classification bias derived from sample size analysis
We propose the use of a simple intuitive principle for measuring algorithmic classification bias: the significance of the differences in a classifier's error rates across the various demographics is inversely commensurate with the sample size required to statistically detect them. That is, if large sample sizes are required to statistically establish biased behavior, the algorithm is less biased, and vice versa. In a simple setting, we assume two distinct demographics, and non-parametric estimates of the error rates on them, e1 and e2, respectively. We use a well-known approximate formula for the sample size of the chi-squared test, and verify some basic desirable properties of the proposed measure. Next, we compare the proposed measure with two other commonly used statistics, the difference e2-e1 and the ratio e2/e1 of the error rates. We establish that the proposed measure is essentially different in that it can rank algorithms for bias differently, and we discuss some of its advantages over the other two measures. Finally, we briefly discuss how some of the desirable properties of the proposed measure emanate from fundamental characteristics of the method, rather than the approximate sample size formula we used, and thus, are expected to hold in more complex settings with more than two demographics.
comment: 9 pages, 3 figures
Microeconomic Foundations of Multi-Agent Learning
Modern AI systems increasingly operate inside markets and institutions where data, behavior, and incentives are endogenous. This paper develops an economic foundation for multi-agent learning by studying a principal-agent interaction in a Markov decision process with strategic externalities, where both the principal and the agent learn over time. We propose a two-phase incentive mechanism that first estimates implementable transfers and then uses them to steer long-run dynamics; under mild regret-based rationality and exploration conditions, the mechanism achieves sublinear social-welfare regret and thus asymptotically optimal welfare. Simulations illustrate how even coarse incentives can correct inefficient learning under stateful externalities, highlighting the necessity of incentive-aware design for safe and welfare-aligned AI in markets and insurance.
Soft Contextualized Encoder For User Defined Text Classification
User-Defined Text Classification (UDTC) considers the challenge of classifying input text to user-specified, previously unseen classes, a setting that arises frequently in real-world applications such as enterprise analytics, content moderation, and domain-specific information retrieval. We propose a soft-contextualized encoder architecture for UDTC which contextualizes each candidate label with the label set and a static soft prompt representation of the input query. Training on diverse, multi-source datasets enables the model to generalize effectively to zero-shot classification over entirely unseen topic sets drawn from arbitrary domains. We evaluate the proposed architecture both on held-out in-distribution test data and on multiple unseen UDTC benchmarks. Across datasets, the model achieves state-of-the-art performance, consistently outperforming or matching the baselines.
Provable Acceleration of Distributed Optimization with Local Updates
In conventional distributed optimization, each agent performs a single local update between two communication rounds with its neighbors to synchronize solutions. Inspired by the success of using multiple local updates in federated learning, incorporating local updates into distributed optimization has recently attracted increasing attention. However, unlike federated learning, where multiple local updates can accelerate learning by improving gradient estimation under mini-batch settings, it remains unclear whether similar benefits hold in distributed optimization when gradients are exact. Moreover, existing theoretical results typically require reducing the step size when multiple local updates are employed, which can entirely offset any potential benefit of these additional local updates and obscure their true impact on convergence. In this paper, we focus on the classic DIGing algorithm and leverage the tight performance bounds provided by Performance Estimation Problems (PEP) to show that incorporating local updates can indeed accelerate distributed optimization. To the best of our knowledge, this is the first rigorous demonstration of such acceleration for a broad class of objective functions. Our analysis further reveals that, under an appropriate step size, performing only two local updates is sufficient to achieve the maximal possible improvement, and that additional local updates provide no further gains. Because more updates increase computational cost, these findings offer practical guidance for efficient implementation. Extensive experiments on both synthetic and real-world datasets corroborate the theoretical findings.
VNU-Bench: A Benchmarking Dataset for Multi-Source Multimodal News Video Understanding
News videos are carefully edited multimodal narratives that combine narration, visuals, and external quotations into coherent storylines. In recent years, there have been significant advances in evaluating multimodal large language models (MLLMs) for news video understanding. However, existing benchmarks largely focus on single-source, intra-video reasoning, where each report is processed in isolation. In contrast, real-world news consumption is inherently multi-sourced: the same event is reported by different outlets with complementary details, distinct narrative choices, and sometimes conflicting claims that unfold over time. Robust news understanding, therefore, requires models to compare perspectives from different sources, align multimodal evidence across sources, and synthesize multi-source information. To fill this gap, we introduce VNU-Bench, the first benchmark for multi-source, cross-video understanding in the news domain. We design a set of new question types that are unique in testing models' ability of understanding multi-source multimodal news from a variety of different angles. We design a novel hybrid human-model QA generation process that addresses the issues of scalability and quality control in building a large dataset for cross-source news understanding. The dataset comprises 429 news groups, 1,405 videos, and 2,501 high-quality questions. Comprehensive evaluation of both closed- and open-source multimodal models shows that VNU-Bench poses substantial challenges for current MLLMs.
DeepLeak: Privacy Enhancing Hardening of Model Explanations Against Membership Leakage
Machine learning (ML) explainability is central to algorithmic transparency in high-stakes settings such as predictive diagnostics and loan approval. However, these same domains require rigorous privacy guaranties, creating tension between interpretability and privacy. Although prior work has shown that explanation methods can leak membership information, practitioners still lack systematic guidance on selecting or deploying explanation techniques that balance transparency with privacy. We present DeepLeak, a system to audit and mitigate privacy risks in post-hoc explanation methods. DeepLeak advances the state-of-the-art in three ways: (1) comprehensive leakage profiling: we develop a stronger explanation-aware membership inference attack (MIA) to quantify how much representative explanation methods leak membership information under default configurations; (2) lightweight hardening strategies: we introduce practical, model-agnostic mitigations, including sensitivity-calibrated noise, attribution clipping, and masking, that substantially reduce membership leakage while preserving explanation utility; and (3) root-cause analysis: through controlled experiments, we pinpoint algorithmic properties (e.g., attribution sparsity and sensitivity) that drive leakage. Evaluating 15 explanation techniques across four families on image benchmarks, DeepLeak shows that default settings can leak up to 74.9% more membership information than previously reported. Our mitigations cut leakage by up to 95% (minimum 46.5%) with only <=3.3% utility loss on average. DeepLeak offers a systematic, reproducible path to safer explainability in privacy-sensitive ML.
comment: 17 pages, 6 figures, 8 tables. This work has been accepted for publication at the IEEE Conference on Secure and Trustworthy Machine Learning (IEEE SaTML 2026)
The Illusion of Specialization: Unveiling the Domain-Invariant "Standing Committee" in Mixture-of-Experts Models
Mixture of Experts models are widely assumed to achieve domain specialization through sparse routing. In this work, we question this assumption by introducing COMMITTEEAUDIT, a post hoc framework that analyzes routing behavior at the level of expert groups rather than individual experts. Across three representative models and the MMLU benchmark, we uncover a domain-invariant Standing Committee. This is a compact coalition of routed experts that consistently captures the majority of routing mass across domains, layers, and routing budgets, even when architectures already include shared experts. Qualitative analysis further shows that Standing Committees anchor reasoning structure and syntax, while peripheral experts handle domain-specific knowledge. These findings reveal a strong structural bias toward centralized computation, suggesting that specialization in Mixture of Experts models is far less pervasive than commonly believed. This inherent bias also indicates that current training objectives, such as load-balancing losses that enforce uniform expert utilization, may be working against the model's natural optimization path, thereby limiting training efficiency and performance.
comment: 16 pages, 10 figures
Spectral Archaeology: The Causal Topology of Model Evolution
Behavioral benchmarks tell us \textit{what} a model does, but not \textit{how}. We introduce a training-free mechanistic probe using attention-graph spectra. Treating each layer as a token graph, we compute algebraic connectivity ($λ_2$), smoothness, and spectral entropy. Across 12 models and 10 languages, these measures yield stable ``spectral fingerprints'' that expose discontinuities missed by standard evaluation. We report four results. (1) Models undergoing specific curriculum transitions (e.g., code-to-chat) show an English-only, syntax-triggered connectivity failure on non-canonical constructions, reaching $Δλ_2 \approx -0.76$. We term this scar \textit{Passive-Triggered Connectivity Collapse} (PTCC). Analysis of the Phi lineage reveals that PTCC appears and resolves across developmental stages, implicating brittle curriculum shifts rather than synthetic data per se. (2) PTCC reflects a specialization trade-off: strengthened formal routing at the expense of stylistic flexibility. (3) We identify four recurrent processing strategies; simple frozen-threshold rules enable perfect forensic identification across lineages. (4) Mechanistically, PTCC localizes to a sparse Layer 2 ``compensatory patch'' of heads that fails under syntactic stress; activation steering can partially restore connectivity, recovering $\approx 38\%$ of lost information flow. Finally, dominant topological regimes track tokenization density more than language identity, suggesting ``healthy'' geometry varies systematically across scripts. Overall, attention-graph spectra provide a practical tool for auditing and training-regime verification.
comment: 45 pages, 15 figures, Under Review
Jailbreaking LLMs Without Gradients or Priors: Effective and Transferable Attacks
As Large Language Models (LLMs) are increasingly deployed in safety-critical domains, rigorously evaluating their robustness against adversarial jailbreaks is essential. However, current safety evaluations often overestimate robustness because existing automated attacks are limited by restrictive assumptions. They typically rely on handcrafted priors or require white-box access for gradient propagation. We challenge these constraints by demonstrating that token-level iterative optimization can succeed without gradients or priors. We introduce RAILS (RAndom Iterative Local Search), a framework that operates solely on model logits. RAILS matches the effectiveness of gradient-based methods through two key innovations: a novel auto-regressive loss that enforces exact prefix matching, and a history-based selection strategy that bridges the gap between the proxy optimization objective and the true attack success rate. Crucially, by eliminating gradient dependency, RAILS enables cross-tokenizer ensemble attacks. This allows for the discovery of shared adversarial patterns that generalize across disjoint vocabularies, significantly enhancing transferability to closed-source systems. Empirically, RAILS achieves near 100% success rates on multiple open-source models and high black-box attack transferability to closed-source systems like GPT and Gemini.
Sensor to Pixels: Decentralized Swarm Gathering via Image-Based Reinforcement Learning
This study highlights the potential of image-based reinforcement learning methods for addressing swarm-related tasks. In multi-agent reinforcement learning, effective policy learning depends on how agents sense, interpret, and process inputs. Traditional approaches often rely on handcrafted feature extraction or raw vector-based representations, which limit the scalability and efficiency of learned policies concerning input order and size. In this work we propose an image-based reinforcement learning method for decentralized control of a multi-agent system, where observations are encoded as structured visual inputs that can be processed by Neural Networks, extracting its spatial features and producing novel decentralized motion control rules. We evaluate our approach on a multi-agent convergence task of agents with limited-range and bearing-only sensing that aim to keep the swarm cohesive during the aggregation. The algorithm's performance is evaluated against two benchmarks: an analytical solution proposed by Bellaiche and Bruckstein, which ensures convergence but progresses slowly, and VariAntNet, a neural network-based framework that converges much faster but shows medium success rates in hard constellations. Our method achieves high convergence, with a pace nearly matching that of VariAntNet. In some scenarios, it serves as the only practical alternative.
Inferring Clinically Relevant Molecular Subtypes of Pancreatic Cancer from Routine Histopathology Using Deep Learning
Molecular subtyping of PDAC into basal-like and classical has established prognostic and predictive value. However, its use in clinical practice is limited by cost, turnaround time, and tissue requirements, thereby restricting its application in the management of PDAC. We introduce PanSubNet, an interpretable deep learning framework that predicts therapy-relevant molecular subtypes directly from standard H&E-stained WSIs. PanSubNet was developed using data from 1,055 patients across two multi-institutional cohorts (PANCAN, n=846; TCGA, n=209) with paired histology and RNA-seq data. Ground-truth labels were derived using the validated Moffitt 50-gene signature refined by GATA6 expression. The model employs dual-scale architecture that fuses cellular-level morphology with tissue-level architecture, leveraging attention mechanisms for multi-scale representation learning and transparent feature attribution. On internal validation within PANCAN using five-fold cross-validation, PanSubNet achieved mean AUC of 88.5% with balanced sensitivity and specificity. External validation on the independent TCGA cohort without fine-tuning demonstrated robust generalizability (AUC 84.0%). PanSubNet preserved and, in metastatic disease, strengthened prognostic stratification compared to RNA-seq based labels. Prediction uncertainty linked to intermediate transcriptional states, not classification noise. Model predictions are aligned with established transcriptomic programs, differentiation markers, and DNA damage repair signatures. By enabling rapid, cost-effective molecular stratification from routine H&E-stained slides, PanSubNet offers a clinically deployable and interpretable tool for genetic subtyping. We are gathering data from two institutions to validate and assess real-world performance, supporting integration into digital pathology workflows and advancing precision oncology for PDAC.
PIVONet: A Physically-Informed Variational Neuro ODE Model for Efficient Advection-Diffusion Fluid Simulation
We present PIVONet (Physically-Informed Variational ODE Neural Network), a unified framework that integrates Neural Ordinary Differential Equations (Neuro-ODEs) with Continuous Normalizing Flows (CNFs) for stochastic fluid simulation and visualization. First, we demonstrate that a physically informed model, parameterized by CNF parameters θ, can be trained offline to yield an efficient surrogate simulator for a specific fluid system, eliminating the need to simulate the full dynamics explicitly. Second, by introducing a variational model with parameters φ that captures latent stochasticity in observed fluid trajectories, we model the network output as a variational distribution and optimize a pathwise Evidence Lower Bound (ELBO), enabling stochastic ODE integration that captures turbulence and random fluctuations in fluid motion (advection-diffusion behaviors).
comment: 13 pages, 14 figures
Exploration Through Introspection: A Self-Aware Reward Model AAAI-26
Understanding how artificial agents model internal mental states is central to advancing Theory of Mind in AI. Evidence points to a unified system for self- and other-awareness. We explore this self-awareness by having reinforcement learning agents infer their own internal states in gridworld environments. Specifically, we introduce an introspective exploration component that is inspired by biological pain as a learning signal by utilizing a hidden Markov model to infer "pain-belief" from online observations. This signal is integrated into a subjective reward function to study how self-awareness affects the agent's learning abilities. Further, we use this computational framework to investigate the difference in performance between normal and chronic pain perception models. Results show that introspective agents in general significantly outperform standard baseline agents and can replicate complex human-like behaviors.
comment: Accepted at AAAI-26 ToM4AI Workshop
Metaphors are a Source of Cross-Domain Misalignment of Large Reasoning Models
Earlier research has shown that metaphors influence human's decision making, which raises the question of whether metaphors also influence large language models (LLMs)' reasoning pathways, considering their training data contain a large number of metaphors. In this work, we investigate the problem in the scope of the emergent misalignment problem where LLMs can generalize patterns learned from misaligned content in one domain to another domain. We discover a strong causal relationship between metaphors in training data and the misalignment degree of LLMs' reasoning contents. With interventions using metaphors in pre-training, fine-tuning and re-alignment phases, models' cross-domain misalignment degrees change significantly. As we delve deeper into the causes behind this phenomenon, we observe that there is a connection between metaphors and the activation of global and local latent features of large reasoning models. By monitoring these latent features, we design a detector that predict misaligned content with high accuracy.
comment: 17 pages, 7 figures
SIGMA: Scalable Spectral Insights for LLM Collapse
The rapid adoption of synthetic data for training Large Language Models (LLMs) has introduced the technical challenge of "model collapse"-a degenerative process where recursive training on model-generated content leads to a contraction of distributional variance and representational quality. While the phenomenology of collapse is increasingly evident, rigorous methods to quantify and predict its onset in high-dimensional spaces remain elusive. In this paper, we introduce SIGMA (Spectral Inequalities for Gram Matrix Analysis), a unified framework that benchmarks model collapse through the spectral lens of the embedding Gram matrix. By deriving and utilizing deterministic and stochastic bounds on the matrix's spectrum, SIGMA provides a mathematically grounded metric to track the contraction of the representation space. Crucially, our stochastic formulation enables scalable estimation of these bounds, making the framework applicable to large-scale foundation models where full eigendecomposition is intractable. We demonstrate that SIGMA effectively captures the transition towards degenerate states, offering both theoretical insights into the mechanics of collapse and a practical, scalable tool for monitoring the health of recursive training pipelines.
Weather-Aware Transformer for Real-Time Route Optimization in Drone-as-a-Service Operations
This paper presents a novel framework to accelerate route prediction in Drone-as-a-Service operations through weather-aware deep learning models. While classical path-planning algorithms, such as A* and Dijkstra, provide optimal solutions, their computational complexity limits real-time applicability in dynamic environments. We address this limitation by training machine learning and deep learning models on synthetic datasets generated from classical algorithm simulations. Our approach incorporates transformer-based and attention-based architectures that utilize weather heuristics to predict optimal next-node selections while accounting for meteorological conditions affecting drone operations. The attention mechanisms dynamically weight environmental factors including wind patterns, wind bearing, and temperature to enhance routing decisions under adverse weather conditions. Experimental results demonstrate that our weather-aware models achieve significant computational speedup over traditional algorithms while maintaining route optimization performance, with transformer-based architectures showing superior adaptation to dynamic environmental constraints. The proposed framework enables real-time, weather-responsive route optimization for large-scale DaaS operations, representing a substantial advancement in the efficiency and safety of autonomous drone systems.
comment: 2025 IEEE/ACS 22nd International Conference on Computer Systems and Applications (AICCSA)
Enhancing Small Dataset Classification Using Projected Quantum Kernels with Convolutional Neural Networks
Convolutional Neural Networks (CNNs) have shown promising results in efficiency and accuracy in image classification. However, their efficacy often relies on large, labeled datasets, posing challenges for applications with limited data availability. Our research addresses these challenges by introducing an innovative approach that leverages projected quantum kernels (PQK) to enhance feature extraction for CNNs, specifically tailored for small datasets. Projected quantum kernels, derived from quantum computing principles, offer a promising avenue for capturing complex patterns and intricate data structures that traditional CNNs might miss. By incorporating these kernels into the feature extraction process, we improved the representational ability of CNNs. Our experiments demonstrated that, with 1000 training samples, the PQK-enhanced CNN achieved 95% accuracy on the MNIST dataset and 90% on the CIFAR-10 dataset, significantly outperforming the classical CNN, which achieved only 60% and 12% accuracy on the respective datasets. This research reveals the potential of quantum computing in overcoming data scarcity issues in machine learning and paves the way for future exploration of quantum-assisted neural networks, suggesting that projected quantum kernels can serve as a powerful approach for enhancing CNN-based classification in data-constrained environments.
comment: Accepted and published in IEEE 2024. This is the authors manuscript version; final version available at IEEE Xplore: https://ieeexplore.ieee.org/document/10844961/
A path to natural language through tokenisation and transformers
Natural languages exhibit striking regularities in their statistical structure, including notably the emergence of Zipf's and Heaps' laws. Despite this, it remains broadly unclear how these properties relate to the modern tokenisation schemes used in contemporary transformer models. In this note, we analyse the information content (as measured by the Shannon entropy) of various corpora under the assumption of a Zipfian frequency distribution, and derive a closed-form expression for the slot entropy expectation value. We then empirically investigate how byte--pair encoding (BPE) transforms corpus statistics, showing that recursive applications of BPE drive token frequencies toward a Zipfian power law while inducing a characteristic growth pattern in empirical entropy. Utilizing the ability of transformers to learn context dependent token probability distributions, we train language models on corpora tokenised at varying BPE depths, revealing that the model predictive entropies increasingly agree with Zipf-derived predictions as the BPE depth increases. Attention-based diagnostics further indicate that deeper tokenisation reduces local token dependencies, bringing the empirical distribution closer to the weakly dependent (near IID) regime. Together, these results clarify how BPE acts not only as a compression mechanism but also as a statistical transform that reconstructs key informational properties of natural language.
comment: 19 pages, 7 figures, 2 tables
Physics-Informed Gaussian Process Regression for the Constitutive Modeling of Concrete: A Data-Driven Improvement to Phenomenological Models
Understanding and modeling the constitutive behavior of concrete is crucial for civil and defense applications, yet widely used phenomenological models such as Karagozian \& Case concrete (KCC) model depend on empirically calibrated failure surfaces that lack flexibility in model form and associated uncertainty quantification. This work develops a physics-informed framework that retains the modular elastoplastic structure of KCC model while replacing its empirical failure surface with a constrained Gaussian Process Regression (GPR) surrogate that can be learned directly from experimentally accessible observables. Triaxial compression data under varying confinement levels are used for training, and the surrogate is then evaluated at confinement levels not included in the training set to assess its generalization capability. Results show that an unconstrained GPR interpolates well near training conditions but deteriorates and violates essential physical constraints under extrapolation, even when augmented with simulated data. In contrast, a physics-informed GPR that incorporates derivative-based constraints aligned with known material behavior yields markedly better accuracy and reliability, including at higher confinement levels beyond the training range. Probabilistic enforcement of these constraints also reduces predictive variance, producing tighter confidence intervals in data-scarce regimes. Overall, the proposed approach delivers a robust, uncertainty-aware surrogate that improves generalization and streamlines calibration without sacrificing the interpretability and numerical efficiency of the KCC model, offering a practical path toward an improved constitutive models for concrete.
Self-Supervised Learning from Noisy and Incomplete Data
Many important problems in science and engineering involve inferring a signal from noisy and/or incomplete observations, where the observation process is known. Historically, this problem has been tackled using hand-crafted regularization (e.g., sparsity, total-variation) to obtain meaningful estimates. Recent data-driven methods often offer better solutions by directly learning a solver from examples of ground-truth signals and associated observations. However, in many real-world applications, obtaining ground-truth references for training is expensive or impossible. Self-supervised learning methods offer a promising alternative by learning a solver from measurement data alone, bypassing the need for ground-truth references. This manuscript provides a comprehensive summary of different self-supervised methods for inverse problems, with a special emphasis on their theoretical underpinnings, and presents practical applications in imaging inverse problems.
PET-TURTLE: Deep Unsupervised Support Vector Machines for Imbalanced Data Clusters
Foundation vision, audio, and language models enable zero-shot performance on downstream tasks via their latent representations. Recently, unsupervised learning of data group structure with deep learning methods has gained popularity. TURTLE, a state of the art deep clustering algorithm, uncovers data labeling without supervision by alternating label and hyperplane updates, maximizing the hyperplane margin, in a similar fashion to support vector machines (SVMs). However, TURTLE assumes clusters are balanced; when data is imbalanced, it yields non-ideal hyperplanes that cause higher clustering error. We propose PET-TURTLE, which generalizes the cost function to handle imbalanced data distributions by a power law prior. Additionally, by introducing sparse logits in the labeling process, PET-TURTLE optimizes a simpler search space that in turn improves accuracy for balanced datasets. Experiments on synthetic and real data show that PET-TURTLE improves accuracy for imbalanced sources, prevents over-prediction of minority clusters, and enhances overall clustering.
Shallow-circuit Supervised Learning on a Quantum Processor
Quantum computing has long promised transformative advances in data analysis, yet practical quantum machine learning has remained elusive due to fundamental obstacles such as a steep quantum cost for the loading of classical data and poor trainability of many quantum machine learning algorithms designed for near-term quantum hardware. In this work, we show that one can overcome these obstacles by using a linear Hamiltonian-based machine learning method which provides a compact quantum representation of classical data via ground state problems for k-local Hamiltonians. We use the recent sample-based Krylov quantum diagonalization method to compute low-energy states of the data Hamiltonians, whose parameters are trained to express classical datasets through local gradients. We demonstrate the efficacy and scalability of the methods by performing experiments on benchmark datasets using up to 50 qubits of an IBM Heron quantum processor.
From Entropy to Epiplexity: Rethinking Information for Computationally Bounded Intelligence
Can we learn more from data than existed in the generating process itself? Can new and useful information be constructed from merely applying deterministic transformations to existing data? Can the learnable content in data be evaluated without considering a downstream task? On these questions, Shannon information and Kolmogorov complexity come up nearly empty-handed, in part because they assume observers with unlimited computational capacity and fail to target the useful information content. In this work, we identify and exemplify three seeming paradoxes in information theory: (1) information cannot be increased by deterministic transformations; (2) information is independent of the order of data; (3) likelihood modeling is merely distribution matching. To shed light on the tension between these results and modern practice, and to quantify the value of data, we introduce epiplexity, a formalization of information capturing what computationally bounded observers can learn from data. Epiplexity captures the structural content in data while excluding time-bounded entropy, the random unpredictable content exemplified by pseudorandom number generators and chaotic dynamical systems. With these concepts, we demonstrate how information can be created with computation, how it depends on the ordering of the data, and how likelihood modeling can produce more complex programs than present in the data generating process itself. We also present practical procedures to estimate epiplexity which we show capture differences across data sources, track with downstream performance, and highlight dataset interventions that improve out-of-distribution generalization. In contrast to principles of model selection, epiplexity provides a theoretical foundation for data selection, guiding how to select, generate, or transform data for learning systems.
LUT-KAN: Segment-wise LUT Quantization for Fast KAN Inference
Kolmogorov--Arnold Networks (KAN) replace scalar weights by learnable univariate functions, often implemented with B-splines. This design can be accurate and interpretable, but it makes inference expensive on CPU because each layer requires many spline evaluations. Standard quantization toolchains are also hard to apply because the main computation is not a matrix multiply but repeated spline basis evaluation. This paper introduces LUT-KAN, a segment-wise lookup-table (LUT) compilation and quantization method for PyKAN-style KAN layers. LUT-KAN converts each edge function into a per-segment LUT with affine int8/uint8 quantization and linear interpolation. The method provides an explicit and reproducible inference contract, including boundary conventions and out-of-bounds (OOB) policies. We propose an ``honest baseline'' methodology for speed evaluation: B-spline evaluation and LUT evaluation are compared under the same backend optimization (NumPy vs NumPy and Numba vs Numba), which separates representation gains from vectorization and JIT effects. Experiments include controlled sweeps over LUT resolution L in 16, 32, 64, 128 and two quantization schemes (symmetric int8 and asymmetric uint8). We report accuracy, speed, and memory metrics with mean and standard deviation across multiple seeds. A two-by-two OOB robustness matrix evaluates behavior under different boundary modes and OOB policies. In a case study, we compile a trained KAN model for DoS attack detection (CICIDS2017 pipeline) into LUT artifacts. The compiled model preserves classification quality (F1 drop below 0.0002) while reducing steady-state CPU inference latency by 12x under NumPy and 10x under Numba backends (honest baseline). The memory overhead is approximately 10x at L=64. All code and artifacts are publicly available with fixed release tags for reproducibility.
Critic-Guided Reinforcement Unlearning in Text-to-Image Diffusion ICLR 2026
Machine unlearning in text-to-image diffusion models aims to remove targeted concepts while preserving overall utility. Prior diffusion unlearning methods typically rely on supervised weight edits or global penalties; reinforcement-learning (RL) approaches, while flexible, often optimize sparse end-of-trajectory rewards, yielding high-variance updates and weak credit assignment. We present a general RL framework for diffusion unlearning that treats denoising as a sequential decision process and introduces a timestep-aware critic with noisy-step rewards. Concretely, we train a CLIP-based reward predictor on noisy latents and use its per-step signal to compute advantage estimates for policy-gradient updates of the reverse diffusion kernel. Our algorithm is simple to implement, supports off-policy reuse, and plugs into standard text-to-image backbones. Across multiple concepts, the method achieves better or comparable forgetting to strong baselines while maintaining image quality and benign prompt fidelity; ablations show that (i) per-step critics and (ii) noisy-conditioned rewards are key to stability and effectiveness. We release code and evaluation scripts to facilitate reproducibility and future research on RL-based diffusion unlearning.
comment: Preprint. Under review at ICLR 2026
MMErroR: A Benchmark for Erroneous Reasoning in Vision-Language Models
Recent advances in Vision-Language Models (VLMs) have improved performance in multi-modal learning, raising the question of whether these models truly understand the content they process. Crucially, can VLMs detect when a reasoning process is wrong and identify its error type? To answer this, we present MMErroR, a multi-modal benchmark of 2,013 samples, each embedding a single coherent reasoning error. These samples span 24 subdomains across six top-level domains, ensuring broad coverage and taxonomic richness. Unlike existing benchmarks that focus on answer correctness, MMErroR targets a process-level, error-centric evaluation that requires models to detect incorrect reasoning and classify the error type within both visual and linguistic contexts. We evaluate 20 advanced VLMs, even the best model (Gemini-3.0-Pro) classifies the error in only 66.47\% of cases, underscoring the challenge of identifying erroneous reasoning. Furthermore, the ability to accurately identify errors offers valuable insights into the capabilities of multi-modal reasoning models. Project Page: https://mmerror-benchmark.github.io
Counterfactual Fairness with Graph Uncertainty
Evaluating machine learning (ML) model bias is key to building trustworthy and robust ML systems. Counterfactual Fairness (CF) audits allow the measurement of bias of ML models with a causal framework, yet their conclusions rely on a single causal graph that is rarely known with certainty in real-world scenarios. We propose CF with Graph Uncertainty (CF-GU), a bias evaluation procedure that incorporates the uncertainty of specifying a causal graph into CF. CF-GU (i) bootstraps a Causal Discovery algorithm under domain knowledge constraints to produce a bag of plausible Directed Acyclic Graphs (DAGs), (ii) quantifies graph uncertainty with the normalized Shannon entropy, and (iii) provides confidence bounds on CF metrics. Experiments on synthetic data show how contrasting domain knowledge assumptions support or refute audits of CF, while experiments on real-world data (COMPAS and Adult datasets) pinpoint well-known biases with high confidence, even when supplied with minimal domain knowledge constraints.
comment: Peer reviewed pre-print. Presented at the BIAS 2025 Workshop at ECML PKDD
Empowering Reliable Visual-Centric Instruction Following in MLLMs
Evaluating the instruction-following (IF) capabilities of Multimodal Large Language Models (MLLMs) is essential for rigorously assessing how faithfully model outputs adhere to user-specified intentions. Nevertheless, existing benchmarks for evaluating MLLMs' instruction-following capability primarily focus on verbal instructions in the textual modality. These limitations hinder a thorough analysis of instruction-following capabilities, as they overlook the implicit constraints embedded in the semantically rich visual modality. To address this gap, we introduce VC-IFEval, a new benchmark accompanied by a systematically constructed dataset that evaluates MLLMs' instruction-following ability under multimodal settings. Our benchmark systematically incorporates vision-dependent constraints into instruction design, enabling a more rigorous and fine-grained assessment of how well MLLMs align their outputs with both visual input and textual instructions. Furthermore, by fine-tuning MLLMs on our dataset, we achieve substantial gains in visual instruction-following accuracy and adherence. Through extensive evaluation across representative MLLMs, we provide new insights into the strengths and limitations of current models.
comment: Submitted to ARR Jan
Sparse Knowledge Distillation: A Mathematical Framework for Probability-Domain Temperature Scaling and Multi-Stage Compression
We develop a unified theoretical framework for sparse knowledge distillation based on probability-domain softening operators. While the equivalence $p^{1/T} \propto \mathrm{softmax}(z/T)$ is well known, our contribution is an operator-level analytical framework built on this foundation rather than the equivalence itself. The framework comprises four core components: (i) operator-agnostic bias--variance decompositions that characterize when sparse students outperform dense teachers, (ii) a homotopy path formalization of multi-stage pruning in function space explaining why iterative compression succeeds where one-shot pruning fails, (iii) convergence guarantees establishing $O(1/n)$ rates for $n$-stage distillation with explicit parameter dependence, and (iv) equivalence class characterizations identifying distinct probability-domain operators that yield identical student models under capacity constraints. We introduce an axiomatic definition of probability-domain softening operators based on ranking preservation, continuity, entropy monotonicity, identity, and boundary behavior, and show that multiple non-equivalent operator families satisfy these axioms. All learning-theoretic guarantees are shown to hold uniformly across this operator class, independent of implementation details. These results provide theoretical grounding for black-box teacher distillation, partial-access settings such as top-$k$ truncation and text-only outputs, and privacy-preserving model compression.
comment: Machine learning theory. Develops an axiomatic, operator-agnostic framework for probability-domain knowledge distillation, including bias--variance analysis of sparse students, homotopy-based multi-stage pruning, $O(1/n)$ convergence guarantees, and equivalence classes of probability-domain softening operators. Theoretical analysis only
AnatomiX, an Anatomy-Aware Grounded Multimodal Large Language Model for Chest X-Ray Interpretation
Multimodal medical large language models have shown impressive progress in chest X-ray interpretation but continue to face challenges in spatial reasoning and anatomical understanding. Although existing grounding techniques improve overall performance, they often fail to establish a true anatomical correspondence, resulting in incorrect anatomical understanding in the medical domain. To address this gap, we introduce AnatomiX, a multitask multimodal large language model explicitly designed for anatomically grounded chest X-ray interpretation. Inspired by the radiological workflow, AnatomiX adopts a two stage approach: first, it identifies anatomical structures and extracts their features, and then leverages a large language model to perform diverse downstream tasks such as phrase grounding, report generation, visual question answering, and image understanding. Extensive experiments across multiple benchmarks demonstrate that AnatomiX achieves superior anatomical reasoning and delivers over 25% improvement in performance on anatomy grounding, phrase grounding, grounded diagnosis and grounded captioning tasks compared to existing approaches. Code and pretrained model are available at https://github.com/aneesurhashmi/anatomix
Attention mechanisms in neural networks
Attention mechanisms represent a fundamental paradigm shift in neural network architectures, enabling models to selectively focus on relevant portions of input sequences through learned weighting functions. This monograph provides a comprehensive and rigorous mathematical treatment of attention mechanisms, encompassing their theoretical foundations, computational properties, and practical implementations in contemporary deep learning systems. Applications in natural language processing, computer vision, and multimodal learning demonstrate the versatility of attention mechanisms. We examine language modeling with autoregressive transformers, bidirectional encoders for representation learning, sequence-to-sequence translation, Vision Transformers for image classification, and cross-modal attention for vision-language tasks. Empirical analysis reveals training characteristics, scaling laws that relate performance to model size and computation, attention pattern visualizations, and performance benchmarks across standard datasets. We discuss the interpretability of learned attention patterns and their relationship to linguistic and visual structures. The monograph concludes with a critical examination of current limitations, including computational scalability, data efficiency, systematic generalization, and interpretability challenges.
Decentralized Autoregressive Generation
We present a theoretical analysis of decentralization of autoregressive generation. We define the Decentralized Discrete Flow Matching objective, by expressing probability generating velocity as a linear combination of expert flows. We also conduct experiments demonstrating the equivalence between decentralized and centralized training settings for multimodal language models across diverse set of benchmarks. Specifically, we compare two distinct paradigms: LLaVA and InternVL 2.5-1B, which uses a fixed CLIP vision encoder and performs full-parameter fine-tuning (ViT+MLP+LLM) during the instruction tuning stage.
comment: Work in progress
Predicting Time Pressure of Powered Two-Wheeler Riders for Proactive Safety Interventions
Time pressure critically influences risky maneuvers and crash proneness among powered two-wheeler riders, yet its prediction remains underexplored in intelligent transportation systems. We present a large-scale dataset of 129,000+ labeled multivariate time-series sequences from 153 rides by 51 participants under No, Low, and High Time Pressure conditions. Each sequence captures 63 features spanning vehicle kinematics, control inputs, behavioral violations, and environmental context. Our empirical analysis shows High Time Pressure induces 48% higher speeds, 36.4% greater speed variability, 58% more risky turns at intersections, 36% more sudden braking, and 50% higher rear brake forces versus No Time Pressure. To benchmark this dataset, we propose MotoTimePressure, a deep learning model combining convolutional preprocessing, dual-stage temporal attention, and Squeeze-and-Excitation feature recalibration, achieving 91.53% accuracy and 98.93% ROC AUC, outperforming eight baselines. Since time pressure cannot be directly measured in real time, we demonstrate its utility in collision prediction and threshold determination. Using MTPS-predicted time pressure as features, improves Informer-based collision risk accuracy from 91.25% to 93.51%, approaching oracle performance (93.72%). Thresholded time pressure states capture rider cognitive stress and enable proactive ITS interventions, including adaptive alerts, haptic feedback, V2I signaling, and speed guidance, supporting safer two-wheeler mobility under the Safe System Approach.
comment: 13 pages, 8 figures
Can Embedding Similarity Predict Cross-Lingual Transfer? A Systematic Study on African Languages
Cross-lingual transfer is essential for building NLP systems for low-resource African languages, but practitioners lack reliable methods for selecting source languages. We systematically evaluate five embedding similarity metrics across 816 transfer experiments spanning three NLP tasks, three African-centric multilingual models, and 12 languages from four language families. We find that cosine gap and retrieval-based metrics (P@1, CSLS) reliably predict transfer success ($ρ= 0.4-0.6$), while CKA shows negligible predictive power ($ρ\approx 0.1$). Critically, correlation signs reverse when pooling across models (Simpson's Paradox), so practitioners must validate per-model. Embedding metrics achieve comparable predictive power to URIEL linguistic typology. Our results provide concrete guidance for source language selection and highlight the importance of model-specific analysis.
comment: 13 pages, 1 figure, 19 tables
Dynamic Hyperparameter Importance for Efficient Multi-Objective Optimization IJCAI 2026
Choosing a suitable ML model is a complex task that can depend on several objectives, e.g., accuracy, model size, fairness, inference time, or energy consumption. In practice, this requires trading off multiple, often competing, objectives through multi-objective optimization (MOO). However, existing MOO methods typically treat all hyperparameters as equally important, overlooking that hyperparameter importance (HPI) can vary significantly depending on the trade-off between objectives. We propose a novel dynamic optimization approach that prioritizes the most influential hyperparameters based on varying objective trade-offs during the search process, which accelerates empirical convergence and leads to better solutions. Building on prior work on HPI for MOO post-analysis, we now integrate HPI, calculated with HyperSHAP, into the optimization. For this, we leverage the objective weightings naturally produced by the MOO algorithm ParEGO and adapt the configuration space by fixing the unimportant hyperparameters, allowing the search to focus on the important ones. Eventually, we validate our method with diverse tasks from PyMOO and YAHPO-Gym. Empirical results demonstrate improvements in convergence speed and Pareto front quality compared to baselines.
comment: Submitted to IJCAI 2026
On the Convergence Behavior of Preconditioned Gradient Descent Toward the Rich Learning Regime
Spectral bias, the tendency of neural networks to learn low frequencies first, can be both a blessing and a curse. While it enhances the generalization capabilities by suppressing high-frequency noise, it can be a limitation in scientific tasks that require capturing fine-scale structures. The delayed generalization phenomenon known as grokking is another barrier to rapid training of neural networks. Grokking has been hypothesized to arise as learning transitions from the NTK to the feature-rich regime. This paper explores the impact of preconditioned gradient descent (PGD), such as Gauss-Newton, on spectral bias and grokking phenomena. We demonstrate through theoretical and empirical results how PGD can mitigate issues associated with spectral bias. Additionally, building on the rich learning regime grokking hypothesis, we study how PGD can be used to reduce delays associated with grokking. Our conjecture is that PGD, without the impediment of spectral bias, enables uniform exploration of the parameter space in the NTK regime. Our experimental results confirm this prediction, providing strong evidence that grokking represents a transitional behavior between the lazy regime characterized by the NTK and the rich regime. These findings deepen our understanding of the interplay between optimization dynamics, spectral bias, and the phases of neural network learning.
comment: 21 pages, 13 figures,
Rapid Augmentations for Time Series (RATS): A High-Performance Library for Time Series Augmentation
Time series augmentation is critical for training robust deep learning models, particularly in domains where labelled data is scarce and expensive to obtain. However, existing augmentation libraries for time series, mainly written in Python, suffer from performance bottlenecks, where running time grows exponentially as dataset sizes increase -- an aspect limiting their applicability in large-scale, production-grade systems. We introduce RATS (Rapid Augmentations for Time Series), a high-performance library for time series augmentation written in Rust with Python bindings (RATSpy). RATS implements multiple augmentation methods spanning basic transformations, frequency-domain operations and time warping techniques, all accessible through a unified pipeline interface with built-in parallelisation. Comprehensive benchmarking of RATSpy versus a commonly used library (tasug) on 143 datasets demonstrates that RATSpy achieves an average speedup of 74.5\% over tsaug (up to 94.8\% on large datasets), with up to 47.9\% less peak memory usage.
Prompt-Counterfactual Explanations for Generative AI System Behavior
As generative AI systems become integrated into real-world applications, organizations increasingly need to be able to understand and interpret their behavior. In particular, decision-makers need to understand what causes generative AI systems to exhibit specific output characteristics. Within this general topic, this paper examines a key question: what is it about the input -- the prompt -- that causes an LLM-based generative AI system to produce output that exhibits specific characteristics, such as toxicity, negative sentiment, or political bias. To examine this question, we adapt a common technique from the Explainable AI literature: counterfactual explanations. We explain why traditional counterfactual explanations cannot be applied directly to generative AI systems, due to several differences in how generative AI systems function. We then propose a flexible framework that adapts counterfactual explanations to non-deterministic, generative AI systems in scenarios where downstream classifiers can reveal key characteristics of their outputs. Based on this framework, we introduce an algorithm for generating prompt-counterfactual explanations (PCEs). Finally, we demonstrate the production of counterfactual explanations for generative AI systems with three case studies, examining different output characteristics (viz., political leaning, toxicity, and sentiment). The case studies further show that PCEs can streamline prompt engineering to suppress undesirable output characteristics and can enhance red-teaming efforts to uncover additional prompts that elicit undesirable outputs. Ultimately, this work lays a foundation for prompt-focused interpretability in generative AI: a capability that will become indispensable as these models are entrusted with higher-stakes tasks and subject to emerging regulatory requirements for transparency and accountability.
PersonaLedger: Generating Realistic Financial Transactions with Persona Conditioned LLMs and Rule Grounded Feedback
Strict privacy regulations limit access to real transaction data, slowing open research in financial AI. Synthetic data can bridge this gap, but existing generators do not jointly achieve behavioral diversity and logical groundedness. Rule-driven simulators rely on hand-crafted workflows and shallow stochasticity, which miss the richness of human behavior. Learning-based generators such as GANs capture correlations yet often violate hard financial constraints and still require training on private data. We introduce PersonaLedger, a generation engine that uses a large language model conditioned on rich user personas to produce diverse transaction streams, coupled with an expert configurable programmatic engine that maintains correctness. The LLM and engine interact in a closed loop: after each event, the engine updates the user state, enforces financial rules, and returns a context aware "nextprompt" that guides the LLM toward feasible next actions. With this engine, we create a public dataset of 30 million transactions from 23,000 users and a benchmark suite with two tasks, illiquidity classification and identity theft segmentation. PersonaLedger offers a realistic, privacy preserving resource that supports rigorous evaluation of forecasting and anomaly detection models. PersonaLedger offers the community a rich, realistic, and privacy preserving resource -- complete with code, rules, and generation logs -- to accelerate innovation in financial AI and enable rigorous, reproducible evaluation.
Finite Memory Belief Approximation for Optimal Control in Partially Observable Markov Decision Processes
We study finite memory belief approximation for partially observable (PO) stochastic optimal control (SOC) problems. While belief states are sufficient for SOC in partially observable Markov decision processes (POMDPs), they are generally infinite-dimensional and impractical. We interpret truncated input-output (IO) histories as inducing a belief approximation and develop a metric-based theory that directly relates information loss to control performance. Using the Wasserstein metric, we derive policy-conditional performance bounds that quantify value degradation induced by finite memory along typical closed-loop trajectories. Our analysis proceeds via a fixed-policy comparison: we evaluate two cost functionals under the same closed-loop execution and isolate the effect of replacing the true belief by its finite memory approximation inside the belief-level cost. For linear quadratic Gaussian (LQG) systems, we provide closed-form belief mismatch evaluation and empirically validate the predicted mechanism, demonstrating that belief mismatch decays approximately exponentially with memory length and that the induced performance mismatch scales accordingly. Together, these results provide a metric-aware characterization of what finite memory belief approximation can and cannot achieve in PO settings.
comment: 6 pages, 3 figures
LeafLife: An Explainable Deep Learning Framework with Robustness for Grape Leaf Disease Recognition
Plant disease diagnosis is essential to farmers' management choices because plant diseases frequently lower crop yield and product quality. For harvests to flourish and agricultural productivity to boost, grape leaf disease detection is important. The plant disease dataset contains grape leaf diseases total of 9,032 images of four classes, among them three classes are leaf diseases, and the other one is healthy leaves. After rigorous pre-processing dataset was split (70% training, 20% validation, 10% testing), and two pre-trained models were deployed: InceptionV3 and Xception. Xception shows a promising result of 96.23% accuracy, which is remarkable than InceptionV3. Adversarial Training is used for robustness, along with more transparency. Grad-CAM is integrated to confirm the leaf disease. Finally deployed a web application using Streamlit with a heatmap visualization and prediction with confidence level for robust grape leaf disease classification.
comment: 4 pages, 8 figures, 2025 IEEE International Conference on Signal Processing, Information, Communication and Systems (SPICSCON)
Gradient descent reliably finds depth- and gate-optimal circuits for generic unitaries
When the gate set has continuous parameters, synthesizing a unitary operator as a quantum circuit is always possible using exact methods, but finding minimal circuits efficiently remains a challenging problem. The landscape is very different for compiled unitaries, which arise from programming and typically have short circuits, as compared with generic unitaries, which use all parameters and typically require circuits of maximal size. We show that simple gradient descent reliably finds depth- and gate-optimal circuits for generic unitaries, including in the presence of restricted chip connectivity. This runs counter to earlier evidence that optimal synthesis required combinatorial search, and we show that this discrepancy can be explained by avoiding the random selection of certain parameter-deficient circuit skeletons.
comment: 14 pages, 17 figures
ToxiGAN: Toxic Data Augmentation via LLM-Guided Directional Adversarial Generation
Augmenting toxic language data in a controllable and class-specific manner is crucial for improving robustness in toxicity classification, yet remains challenging due to limited supervision and distributional skew. We propose ToxiGAN, a class-aware text augmentation framework that combines adversarial generation with semantic guidance from large language models (LLMs). To address common issues in GAN-based augmentation such as mode collapse and semantic drift, ToxiGAN introduces a two-step directional training strategy and leverages LLM-generated neutral texts as semantic ballast. Unlike prior work that treats LLMs as static generators, our approach dynamically selects neutral exemplars to provide balanced guidance. Toxic samples are explicitly optimized to diverge from these exemplars, reinforcing class-specific contrastive signals. Experiments on four hate speech benchmarks show that ToxiGAN achieves the strongest average performance in both macro-F1 and hate-F1, consistently outperforming traditional and LLM-based augmentation methods. Ablation and sensitivity analyses further confirm the benefits of semantic ballast and directional training in enhancing classifier robustness.
comment: This paper has been accepted to the main conference of EACL 2026
Extreme-value forest fire prediction A study of the Loss Function in an Ordinality Scheme
Wildfires are highly imbalanced natural hazards in both space and severity, making the prediction of extreme events particularly challenging. In this work, we introduce the first ordinal classification framework for forecasting wildfire severity levels directly aligned with operational decision-making in France. Our study investigates the influence of loss-function design on the ability of neural models to predict rare yet critical high-severity fire occurrences. We compare standard cross-entropy with several ordinal-aware objectives, including the proposed probabilistic TDeGPD loss derived from a truncated discrete exponentiated Generalized Pareto Distribution. Through extensive benchmarking over multiple architectures and real operational data, we show that ordinal supervision substantially improves model performance over conventional approaches. In particular, the Weighted Kappa Loss (WKLoss) achieves the best overall results, with more than +0.1 IoU gain on the most extreme severity classes while maintaining competitive calibration quality. However, performance remains limited for the rarest events due to their extremely low representation in the dataset. These findings highlight the importance of integrating both severity ordering, data imbalance considerations, and seasonality risk into wildfire forecasting systems. Future work will focus on incorporating seasonal dynamics and uncertainty information into training to further improve the reliability of extreme-event prediction.
One Sample to Rule Them All: Extreme Data Efficiency in RL Scaling
The reasoning ability of large language models (LLMs) can be unleashed with reinforcement learning (RL) (OpenAI, 2024; DeepSeek-AI et al., 2025a; Zeng et al., 2025). The success of existing RL attempts in LLMs usually relies on high-quality samples of thousands or beyond. In this paper, we challenge fundamental assumptions about data requirements in RL for LLMs by demonstrating the remarkable effectiveness of one-shot learning. Specifically, we introduce polymath learning, a framework for designing one training sample that elicits multidisciplinary impact. We present three key findings: (1) A single, strategically selected math reasoning sample can produce significant performance improvements across multiple domains, including physics, chemistry, and biology with RL; (2) The math skills salient to reasoning suggest the characteristics of the optimal polymath sample; and (3) An engineered synthetic sample that integrates multidiscipline elements outperforms training with individual samples that naturally occur. Our approach achieves superior performance to training with larger datasets across various reasoning benchmarks, demonstrating that sample quality and design, rather than quantity, may be the key to unlock enhanced reasoning capabilities in language models. Our results suggest a shift, dubbed as sample engineering, toward precision engineering of training samples rather than simply increasing data volume.
Time-Aware Synthetic Control
The synthetic control (SC) framework is widely used for observational causal inference with time-series panel data. SC has been successful in diverse applications, but existing methods typically treat the ordering of pre-intervention time indices interchangeable. This invariance means they may not fully take advantage of temporal structure when strong trends are present. We propose Time-Aware Synthetic Control (TASC), which employs a state-space model with a constant trend while preserving a low-rank structure of the signal. TASC uses the Kalman filter and Rauch-Tung-Striebel smoother: it first fits a generative time-series model with expectation-maximization and then performs counterfactual inference. We evaluate TASC on both simulated and real-world datasets, including policy evaluation and sports prediction. Our results suggest that TASC offers advantages in settings with strong temporal trends and high levels of observation noise.
From Muscle to Text with MyoText: sEMG to Text via Finger Classification and Transformer-Based Decoding
Surface electromyography (sEMG) provides a direct neural interface for decoding muscle activity and offers a promising foundation for keyboard-free text input in wearable and mixed-reality systems. Previous sEMG-to-text studies mainly focused on recognizing letters directly from sEMG signals, forming an important first step toward translating muscle activity into text. Building on this foundation, we present MyoText, a hierarchical framework that decodes sEMG signals to text through physiologically grounded intermediate stages. MyoText first classifies finger activations from multichannel sEMG using a CNN-BiLSTM-Attention model, applies ergonomic typing priors to infer letters, and reconstructs full sentences with a fine-tuned T5 transformer. This modular design mirrors the natural hierarchy of typing, linking muscle intent to language output and reducing the search space for decoding. Evaluated on 30 users from the emg2qwerty dataset, MyoText outperforms baselines by achieving 85.4% finger-classification accuracy, 5.4% character error rate (CER), and 6.5% word error rate (WER). Beyond accuracy gains, this methodology establishes a principled pathway from neuromuscular signals to text, providing a blueprint for virtual and augmented-reality typing interfaces that operate entirely without physical keyboards. By integrating ergonomic structure with transformer-based linguistic reasoning, MyoText advances the feasibility of seamless, wearable neural input for future ubiquitous computing environments.
comment: 25 pages, 11 tables, 11 figures
ATLAS: Adaptive Test-Time Latent Steering with External Verifiers for Enhancing LLMs Reasoning
Recent work on activation and latent steering has demonstrated that modifying internal representations can effectively guide large language models (LLMs) toward improved reasoning and efficiency without additional training. However, most existing approaches rely on fixed steering policies and static intervention strengths, which limit their robustness across problem instances and often result in over- or under-steering. We propose Adaptive Test-time Latent Steering, called (ATLAS), a task-specific framework that dynamically controls steering decisions at inference time using an external, lightweight latent verifier. Given intermediate hidden states, the verifier predicts the quality of ongoing reasoning and adaptively selects whether and how strongly to apply steering, enabling per-example and per-step adjustment with minimal overhead. To our knowledge, ATLAS is the first method to integrate learned latent verification into test-time steering for enhancing LLMs reasoning. Experiments on multiple mathematical reasoning benchmarks show that ATLAS consistently outperforms both vanilla decoding and fixed steering baselines, achieving higher accuracy while substantially reducing test-time token usage. These results demonstrate that verifier-guided latent adaptation provides an effective and scalable mechanism for controlling reasoning efficiency without sacrificing solution quality. All source code will be publicly available.
comment: 12 pages, 3 figures
Higher order PCA-like rotation-invariant features for detailed shape descriptors modulo rotation
PCA can be used for rotation invariant features, describing a shape with its $p_{ab}=E[(x_i-E[x_a])(x_b-E[x_b])]$ covariance matrix approximating shape by ellipsoid, allowing for rotation invariants like its traces of powers. However, real shapes are usually much more complicated, hence there is proposed its extension to e.g. $p_{abc}=E[(x_a-E[x_a])(x_b-E[x_b])(x_c-E[x_c])]$ order-3 or higher tensors describing central moments, or polynomial times Gaussian allowing decodable shape descriptors of arbitrarily high accuracy, and their analogous rotation invariants. Its practical applications could be rotation-invariant features to include shape modulo rotation e.g. for molecular shape descriptors, or for up to rotation object recognition in 2D images/3D scans, or shape similarity metric allowing their inexpensive comparison (modulo rotation) without costly optimization over rotations.
comment: 4 pages, 4 figures
Grad-ELLM: Gradient-based Explanations for Decoder-only LLMs
Large Language Models (LLMs) have demonstrated remarkable capabilities across diverse tasks, yet their black-box nature raises concerns about transparency and faithfulness. Input attribution methods aim to highlight each input token's contributions to the model's output, but existing approaches are typically model-agnostic, and do not focus on transformer-specific architectures, leading to limited faithfulness. To address this, we propose Grad-ELLM, a gradient-based attribution method for decoder-only transformer-based LLMs. By aggregating channel importance from gradients of the output logit with respect to attention layers and spatial importance from attention maps, Grad-ELLM generates heatmaps at each generation step without requiring architectural modifications. Additionally, we introduce two faithfulneses metrics $π$-Soft-NC and $π$-Soft-NS, which are modifications of Soft-NC/NS that provide fairer comparisons by controlling the amount of information kept when perturbing the text. We evaluate Grad-ELLM on sentiment classification, question answering, and open-generation tasks using different models. Experiment results show that Grad-ELLM consistently achieves superior faithfulness than other attribution methods.
Audit Me If You Can: Query-Efficient Active Fairness Auditing of Black-Box LLMs
Large Language Models (LLMs) exhibit systematic biases across demographic groups. Auditing is proposed as an accountability tool for black-box LLM applications, but suffers from resource-intensive query access. We conceptualise auditing as uncertainty estimation over a target fairness metric and introduce BAFA, the Bounded Active Fairness Auditor for query-efficient auditing of black-box LLMs. BAFA maintains a version space of surrogate models consistent with queried scores and computes uncertainty intervals for fairness metrics (e.g., $Δ$ AUC) via constrained empirical risk minimisation. Active query selection narrows these intervals to reduce estimation error. We evaluate BAFA on two standard fairness dataset case studies: \textsc{CivilComments} and \textsc{Bias-in-Bios}, comparing against stratified sampling, power sampling, and ablations. BAFA achieves target error thresholds with up to 40$\times$ fewer queries than stratified sampling (e.g., 144 vs 5,956 queries at $\varepsilon=0.02$ for \textsc{CivilComments}) for tight thresholds, demonstrates substantially better performance over time, and shows lower variance across runs. These results suggest that active sampling can reduce resources needed for independent fairness auditing with LLMs, supporting continuous model evaluations.
comment: Submitted to ACL ARR 2026
Real-Time Adaptive Anomaly Detection in Industrial IoT Environments
To ensure reliability and service availability, next-generation networks are expected to rely on automated anomaly detection systems powered by advanced machine learning methods with the capability of handling multi-dimensional data. Such multi-dimensional, heterogeneous data occurs mostly in today's industrial Internet of Things (IIoT), where real-time detection of anomalies is critical to prevent impending failures and resolve them in a timely manner. However, existing anomaly detection methods often fall short of effectively coping with the complexity and dynamism of multi-dimensional data streams in IIoT. In this paper, we propose an adaptive method for detecting anomalies in IIoT streaming data utilizing a multi-source prediction model and concept drift adaptation. The proposed anomaly detection algorithm merges a prediction model into a novel drift adaptation method resulting in accurate and efficient anomaly detection that exhibits improved scalability. Our trace-driven evaluations indicate that the proposed method outperforms the state-of-the-art anomaly detection methods by achieving up to an 89.71% accuracy (in terms of Area under the Curve (AUC)) while meeting the given efficiency and scalability requirements.
On the Identifiability of Regime-Switching Models with Multi-Lag Dependencies
Identifiability is central to the interpretability of deep latent variable models, ensuring parameterisations are uniquely determined by the data-generating distribution. However, it remains underexplored for deep regime-switching time series. We develop a general theoretical framework for multi-lag Regime-Switching Models (RSMs), encompassing Markov Switching Models (MSMs) and Switching Dynamical Systems (SDSs). For MSMs, we formulate the model as a temporally structured finite mixture and prove identifiability of both the number of regimes and the multi-lag transitions in a nonlinear-Gaussian setting. For SDSs, we establish identifiability of the latent variables up to permutation and scaling via temporal structure, which in turn yields conditions for identifiability of regime-dependent latent causal graphs (up to regime/node permutations). Our results hold in a fully unsupervised setting through architectural and noise assumptions that are directly enforceable via neural network design. We complement the theory with a flexible variational estimator that satisfies the assumptions and validate the results on synthetic benchmarks. Across real-world datasets from neuroscience, finance, and climate, identifiability leads to more trustworthy interpretability analysis, which is crucial for scientific discovery.
comment: See https://github.com/charlio23/identifiable-SDS for code
Bare-Metal Tensor Virtualization: Overcoming the Memory Wall in Edge-AI Inference on ARM64
The deployment of Large Language Models (LLMs) on edge devices is fundamentally constrained by the "Memory Wall" the bottleneck where data movement latency outstrips arithmetic throughput. Standard inference runtimes often incur significant overhead through high-level abstractions, dynamic dispatch, and unaligned memory access patterns. In this work, we present a novel "Virtual Tensor Core" architecture implemented in software, optimized specifically for ARM64 microarchitectures (Apple Silicon). By bypassing standard library containers in favor of direct memory mapping (mmap) and implementing hand-tuned NEON SIMD kernels, we achieve a form of "Software-Defined Direct Memory Access (DMA)." Our proposed Tensor Virtualization Layout (TVL) guarantees 100% cache line utilization for weight matrices, while our zero-copy loader eliminates initialization latency. Experimental results on a 110M parameter model demonstrate a stable throughput of >60 tokens/second on M2 hardware. While proprietary hardware accelerators (e.g., Apple AMX) can achieve higher peak throughput, our architecture provides a fully open, portable, and deterministic reference implementation for studying the memory bottleneck on general-purpose ARM silicon, meeting the 200ms psycholinguistic latency threshold without opaque dependencies.
comment: 14 pages, 2 figures. Code and data available at https://github.com/farukalpay/stories100m
Listen to Rhythm, Choose Movements: Autoregressive Multimodal Dance Generation via Diffusion and Mamba with Decoupled Dance Dataset
Advances in generative models and sequence learning have greatly promoted research in dance motion generation, yet current methods still suffer from coarse semantic control and poor coherence in long sequences. In this work, we present Listen to Rhythm, Choose Movements (LRCM), a multimodal-guided diffusion framework supporting both diverse input modalities and autoregressive dance motion generation. We explore a feature decoupling paradigm for dance datasets and generalize it to the Motorica Dance dataset, separating motion capture data, audio rhythm, and professionally annotated global and local text descriptions. Our diffusion architecture integrates an audio-latent Conformer and a text-latent Cross-Conformer, and incorporates a Motion Temporal Mamba Module (MTMM) to enable smooth, long-duration autoregressive synthesis. Experimental results indicate that LRCM delivers strong performance in both functional capability and quantitative metrics, demonstrating notable potential in multimodal input scenarios and extended sequence generation. We will release the full codebase, dataset, and pretrained models publicly upon acceptance.
comment: 12 pages, 13 figures
Joint Encoding of KV-Cache Blocks for Scalable LLM Serving
Modern large language models (LLMs) drive interactive AI systems but are bottlenecked by the memory-heavy growth of key-value (KV) caches, which limits real-time throughput under concurrent loads. Existing KV-cache compression methods rely on rigid heuristics, disrupt tensor layouts, or require specialized compute, hindering scalability and deployment. We propose joint encoding of KV-cache blocks, which fuses similar blocks across requests and input chunks into shared representations while preserving standard cache structure. This alleviates the KV-cache memory bottleneck, supporting high-concurrency serving without specialized hardware. Theoretically, we analyze the rate-distortion tradeoff of fused cache blocks under a Poisson process model. Empirically, our method achieves up to 4.38 $\times$ KV-cache compression with negligible accuracy loss across diverse LLMs and benchmarks, outperforming recent structured and adaptive compression baselines. In real LLM serving, joint encoding improves the token throughput by $\sim$40\% on a single-machine vLLM benchmark, demonstrating substantial gains in inference throughput. Code is available at https://github.com/sef1/kv_fast_fusion kv_joint_encoding.
comment: 12 pages, 16 figures, 2 tables
Do LLMs Encode Functional Importance of Reasoning Tokens?
Large language models solve complex tasks by generating long reasoning chains, achieving higher accuracy at the cost of increased computational cost and reduced ability to isolate functionally relevant reasoning. Prior work on compact reasoning shortens such chains through probabilistic sampling, heuristics, or supervision from frontier models, but offers limited insight into whether models internally encode token-level functional importance for answer generation. We address this gap diagnostically and propose greedy pruning, a likelihood-preserving deletion procedure that iteratively removes reasoning tokens whose removal minimally degrades model likelihood under a specified objective, yielding length-controlled reasoning chains. We evaluate pruned reasoning in a distillation framework and show that students trained on pruned chains outperform a frontier-model-supervised compression baseline at matched reasoning lengths. Finally, our analysis reveals systematic pruning patterns and shows that attention scores can predict greedy pruning ranks, further suggesting that models encode a nontrivial functional importance structure over reasoning tokens.
comment: 20 pages, 8 figures, 2 tables
Explainable Fuzzy GNNs for Leak Detection in Water Distribution Networks
Timely leak detection in water distribution networks is critical for conserving resources and maintaining operational efficiency. Although Graph Neural Networks (GNNs) excel at capturing spatial-temporal dependencies in sensor data, their black-box nature and the limited work on graph-based explainable models for water networks hinder practical adoption. We propose an explainable GNN framework that integrates mutual information to identify critical network regions and fuzzy logic to provide clear, rule-based explanations for node classification tasks. After benchmarking several GNN architectures, we selected the generalized graph convolution network (GENConv) for its superior performance and developed a fuzzy-enhanced variant that offers intuitive explanations for classified leak locations. Our fuzzy graph neural network (FGENConv) achieved Graph F1 scores of 0.889 for detection and 0.814 for localization, slightly below the crisp GENConv 0.938 and 0.858, respectively. Yet it compensates by providing spatially localized, fuzzy rule-based explanations. By striking the right balance between precision and explainability, the proposed fuzzy network could enable hydraulic engineers to validate predicted leak locations, conserve human resources, and optimize maintenance strategies. The code is available at github.com/pasqualedem/GNNLeakDetection.
comment: Accepted at IFSA-NAFIPS 2025
Temporal Graph Network: Hallucination Detection in Multi-Turn Conversation
Hallucinations can be produced by conversational AI systems, particularly in multi-turn conversations where context changes and contradictions may eventually surface. By representing the entire conversation as a temporal graph, we present a novel graph-based method for detecting dialogue-level hallucinations. Our framework models each dialogue as a node, encoding it using a sentence transformer. We explore two different ways of connectivity: i) shared-entity edges, which connect turns that refer to the same entities; ii) temporal edges, which connect contiguous turns in the conversation. Message-passing is used to update the node embeddings, allowing flow of information between related nodes. The context-aware node embeddings are then combined using attention pooling into a single vector, which is then passed on to a classifier to determine the presence and type of hallucinations. We demonstrate that our method offers slightly improved performance over existing methods. Further, we show the attention mechanism can be used to justify the decision making process. The code and model weights are made available at: https://github.com/sambuaneesh/anlp-project.
HEEGNet: Hyperbolic Embeddings for EEG
Electroencephalography (EEG)-based brain-computer interfaces facilitate direct communication with a computer, enabling promising applications in human-computer interactions. However, their utility is currently limited because EEG decoding often suffers from poor generalization due to distribution shifts across domains (e.g., subjects). Learning robust representations that capture underlying task-relevant information would mitigate these shifts and improve generalization. One promising approach is to exploit the underlying hierarchical structure in EEG, as recent studies suggest that hierarchical cognitive processes, such as visual processing, can be encoded in EEG. While many decoding methods still rely on Euclidean embeddings, recent work has begun exploring hyperbolic geometry for EEG. Hyperbolic spaces, regarded as the continuous analogue of tree structures, provide a natural geometry for representing hierarchical data. In this study, we first empirically demonstrate that EEG data exhibit hyperbolicity and show that hyperbolic embeddings improve generalization. Motivated by these findings, we propose HEEGNet, a hybrid hyperbolic network architecture to capture the hierarchical structure in EEG and learn domain-invariant hyperbolic embeddings. To this end, HEEGNet combines both Euclidean and hyperbolic encoders and employs a novel coarse-to-fine domain adaptation strategy. Extensive experiments on multiple public EEG datasets, covering visual evoked potentials, emotion recognition, and intracranial EEG, demonstrate that HEEGNet achieves state-of-the-art performance.
When the Coffee Feature Activates on Coffins: An Analysis of Feature Extraction and Steering for Mechanistic Interpretability
Recent work by Anthropic on Mechanistic interpretability claims to understand and control Large Language Models by extracting human-interpretable features from their neural activation patterns using sparse autoencoders (SAEs). If successful, this approach offers one of the most promising routes for human oversight in AI safety. We conduct an initial stress-test of these claims by replicating their main results with open-source SAEs for Llama 3.1. While we successfully reproduce basic feature extraction and steering capabilities, our investigation suggests that major caution is warranted regarding the generalizability of these claims. We find that feature steering exhibits substantial fragility, with sensitivity to layer selection, steering magnitude, and context. We observe non-standard activation behavior and demonstrate the difficulty to distinguish thematically similar features from one another. While SAE-based interpretability produces compelling demonstrations in selected cases, current methods often fall short of the systematic reliability required for safety-critical applications. This suggests a necessary shift in focus from prioritizing interpretability of internal representations toward reliable prediction and control of model output. Our work contributes to a more nuanced understanding of what mechanistic interpretability has achieved and highlights fundamental challenges for AI safety that remain unresolved.
comment: 33 pages (65 with appendix), 1 figure
Lil: Less is Less When Applying Post-Training Sparse-Attention Algorithms in Long-Decode Stage
Large language models (LLMs) demonstrate strong capabilities across a wide range of complex tasks and are increasingly deployed at scale, placing significant demands on inference efficiency. Prior work typically decomposes inference into prefill and decode stages, with the decode stage dominating total latency. To reduce time and memory complexity in the decode stage, a line of work introduces sparse-attention algorithms. In this paper, we show, both empirically and theoretically, that sparse attention can paradoxically increase end-to-end complexity: information loss often induces significantly longer sequences, a phenomenon we term ``Less is Less'' (Lil). To mitigate the Lil problem, we propose an early-stopping algorithm that detects the threshold where information loss exceeds information gain during sparse decoding. Our early-stopping algorithm reduces token consumption by up to 90% with a marginal accuracy degradation of less than 2% across reasoning-intensive benchmarks.
PiDR: Physics-Informed Inertial Dead Reckoning for Autonomous Platforms
A fundamental requirement for full autonomy is the ability to sustain accurate navigation in the absence of external data, such as GNSS signals or visual information. In these challenging environments, the platform must rely exclusively on inertial sensors, leading to pure inertial navigation. However, the inherent noise and other error terms of the inertial sensors in such real-world scenarios will cause the navigation solution to drift over time. Although conventional deep-learning models have emerged as a possible approach to inertial navigation, they are inherently black-box in nature. Furthermore, they struggle to learn effectively with limited supervised sensor data and often fail to preserve physical principles. To address these limitations, we propose PiDR, a physics-informed inertial dead-reckoning framework for autonomous platforms in situations of pure inertial navigation. PiDR offers transparency by explicitly integrating inertial navigation principles into the network training process through the physics-informed residual component. PiDR plays a crucial role in mitigating abrupt trajectory deviations even under limited or sparse supervision. We evaluated PiDR on real-world datasets collected by a mobile robot and an autonomous underwater vehicle. We obtained more than 29% positioning improvement in both datasets, demonstrating the ability of PiDR to generalize different platforms operating in various environments and dynamics. Thus, PiDR offers a robust, lightweight, yet effective architecture and can be deployed on resource-constrained platforms, enabling real-time pure inertial navigation in adverse scenarios.
comment: 11 pages and 7 figures
Aligning Findings with Diagnosis: A Self-Consistent Reinforcement Learning Framework for Trustworthy Radiology Reporting
Multimodal Large Language Models (MLLMs) have shown strong potential for radiology report generation, yet their clinical translation is hindered by architectural heterogeneity and the prevalence of factual hallucinations. Standard supervised fine-tuning often fails to strictly align linguistic outputs with visual evidence, while existing reinforcement learning approaches struggle with either prohibitive computational costs or limited exploration. To address these challenges, we propose a comprehensive framework for self-consistent radiology report generation. First, we conduct a systematic evaluation to identify optimal vision encoder and LLM backbone configurations for medical imaging. Building on this foundation, we introduce a novel "Reason-then-Summarize" architecture optimized via Group Relative Policy Optimization (GRPO). This framework restructures generation into two distinct components: a think block for detailed findings and an answer block for structured disease labels. By utilizing a multi-dimensional composite reward function, we explicitly penalize logical discrepancies between the generated narrative and the final diagnosis. Extensive experiments on the MIMIC-CXR benchmark demonstrate that our method achieves state-of-the-art performance in clinical efficacy metrics and significantly reduces hallucinations compared to strong supervised baselines.
Causal Manifold Fairness: Enforcing Geometric Invariance in Representation Learning
Fairness in machine learning is increasingly critical, yet standard approaches often treat data as static points in a high-dimensional space, ignoring the underlying generative structure. We posit that sensitive attributes (e.g., race, gender) do not merely shift data distributions but causally warp the geometry of the data manifold itself. To address this, we introduce Causal Manifold Fairness (CMF), a novel framework that bridges causal inference and geometric deep learning. CMF learns a latent representation where the local Riemannian geometry, defined by the metric tensor and curvature, remains invariant under counterfactual interventions on sensitive attributes. By enforcing constraints on the Jacobian and Hessian of the decoder, CMF ensures that the rules of the latent space (distances and shapes) are preserved across demographic groups. We validate CMF on synthetic Structural Causal Models (SCMs), demonstrating that it effectively disentangles sensitive geometric warping while preserving task utility, offering a rigorous quantification of the fairness-utility trade-off via geometric metrics.
Flow Matching and Diffusion Models via PointNet for Generating Fluid Fields on Irregular Geometries
We present two novel generative geometric deep learning frameworks, termed Flow Matching PointNet and Diffusion PointNet, for predicting fluid flow variables on irregular geometries by incorporating PointNet into flow matching and diffusion models, respectively. In these frameworks, a reverse generative process reconstructs physical fields from standard Gaussian noise conditioned on unseen geometries. The proposed approaches operate directly on point-cloud representations of computational domains (e.g., grid vertices of finite-volume meshes) and therefore avoid the limitations of pixelation used to project geometries onto uniform lattices. In contrast to graph neural network-based diffusion models, Flow Matching PointNet and Diffusion PointNet do not exhibit high-frequency noise artifacts in the predicted fields. Moreover, unlike such approaches, which require auxiliary intermediate networks to condition geometry, the proposed frameworks rely solely on PointNet, resulting in a simple and unified architecture. The performance of the proposed frameworks is evaluated on steady incompressible flow past a cylinder, using a geometric dataset constructed by varying the cylinder's cross-sectional shape and orientation across samples. The results demonstrate that Flow Matching PointNet and Diffusion PointNet achieve more accurate predictions of velocity and pressure fields, as well as lift and drag forces, and exhibit greater robustness to incomplete geometries compared to a vanilla PointNet with the same number of trainable parameters.
Ratio-Variance Regularized Policy Optimization for Efficient LLM Fine-tuning
On-policy reinforcement learning (RL), particularly Proximal Policy Optimization (PPO) and Group Relative Policy Optimization (GRPO), has become the dominant paradigm for fine-tuning large language models (LLMs). While policy ratio clipping stabilizes training, this heuristic hard constraint incurs a fundamental cost: it indiscriminately truncates gradients from high-return yet high-divergence actions, suppressing rare but highly informative "eureka moments" in complex reasoning. Moreover, once data becomes slightly stale, hard clipping renders it unusable, leading to severe sample inefficiency. In this work, we revisit the trust-region objective in policy optimization and show that explicitly constraining the \emph{variance (second central moment) of the policy ratio} provides a principled and smooth relaxation of hard clipping. This distributional constraint stabilizes policy updates while preserving gradient signals from valuable trajectories. Building on this insight, we propose $R^2VPO$ (Ratio-Variance Regularized Policy Optimization), a novel primal-dual framework that supports stable on-policy learning and enables principled off-policy data reuse by dynamically reweighting stale samples rather than discarding them. We extensively evaluate $R^2VPO$ on fine-tuning state-of-the-art LLMs, including DeepSeek-Distill-Qwen-1.5B and the openPangu-Embedded series (1B and 7B), across challenging mathematical reasoning benchmarks. Experimental results show that $R^2VPO$ consistently achieves superior asymptotic performance, with average relative gains of up to 17% over strong clipping-based baselines, while requiring approximately 50% fewer rollouts to reach convergence. These findings establish ratio-variance control as a promising direction for improving both stability and data efficiency in RL-based LLM alignment.
CaricatureGS: Exaggerating 3D Gaussian Splatting Faces With Gaussian Curvature
A photorealistic and controllable 3D caricaturization framework for faces is introduced. We start with an intrinsic Gaussian curvature-based surface exaggeration technique, which, when coupled with texture, tends to produce over-smoothed renders. To address this, we resort to 3D Gaussian Splatting (3DGS), which has recently been shown to produce realistic free-viewpoint avatars. Given a multiview sequence, we extract a FLAME mesh, solve a curvature-weighted Poisson equation, and obtain its exaggerated form. However, directly deforming the Gaussians yields poor results, necessitating the synthesis of pseudo-ground-truth caricature images by warping each frame to its exaggerated 2D representation using local affine transformations. We then devise a training scheme that alternates real and synthesized supervision, enabling a single Gaussian collection to represent both natural and exaggerated avatars. This scheme improves fidelity, supports local edits, and allows continuous control over the intensity of the caricature. In order to achieve real-time deformations, an efficient interpolation between the original and exaggerated surfaces is introduced. We further analyze and show that it has a bounded deviation from closed-form solutions. In both quantitative and qualitative evaluations, our results outperform prior work, delivering photorealistic, geometry-controlled caricature avatars.
Dementia-R1: Reinforced Pretraining and Reasoning from Unstructured Clinical Notes for Real-World Dementia Prognosis
While Large Language Models (LLMs) have shown strong performance on clinical text understanding, they struggle with longitudinal prediction tasks such as dementia prognosis, which require reasoning over complex, non-monotonic symptom trajectories across multiple visits. Standard supervised training lacks explicit annotations for symptom evolution, while direct Reinforcement Learning (RL) is hindered by sparse binary rewards. To address this challenge, we introduce Dementia-R1, an RL-based framework for longitudinal dementia prognosis from unstructured clinical notes. Our approach adopts a Cold-Start RL strategy that pre-trains the model to predict verifiable clinical indices extracted from patient histories, enhancing the capability to reason about disease progression before determining the final clinical status. Extensive experiments demonstrate that Dementia-R1 achieves an F1 score of 77.03% on real-world unstructured clinical datasets. Notably, on the ADNI benchmark, our 7B model rivals GPT-4o, effectively capturing fluctuating cognitive trajectories. Code is available at https://anonymous.4open.science/r/dementiar1-CDB5
In-Context Reinforcement Learning through Bayesian Fusion of Context and Value Prior
In-context reinforcement learning (ICRL) promises fast adaptation to unseen environments without parameter updates, but current methods either cannot improve beyond the training distribution or require near-optimal data, limiting practical adoption. We introduce SPICE, a Bayesian ICRL method that learns a prior over Q-values via deep ensemble and updates this prior at test-time using in-context information through Bayesian updates. To recover from poor priors resulting from training on sub-optimal data, our online inference follows an Upper-Confidence Bound rule that favours exploration and adaptation. We prove that SPICE achieves regret-optimal behaviour in both stochastic bandits and finite-horizon MDPs, even when pretrained only on suboptimal trajectories. We validate these findings empirically across bandit and control benchmarks. SPICE achieves near-optimal decisions on unseen tasks, substantially reduces regret compared to prior ICRL and meta-RL approaches while rapidly adapting to unseen tasks and remaining robust under distribution shift.
Multi-Distribution Robust Conformal Prediction
In many fairness and distribution robustness problems, one has access to labeled data from multiple source distributions yet the test data may come from an arbitrary member or a mixture of them. We study the problem of constructing a conformal prediction set that is uniformly valid across multiple, heterogeneous distributions, in the sense that no matter which distribution the test point is from, the coverage of the prediction set is guaranteed to exceed a pre-specified level. We first propose a max-p aggregation scheme that delivers finite-sample, multi-distribution coverage given any conformity scores associated with each distribution. Upon studying several efficiency optimization programs subject to uniform coverage, we prove the optimality and tightness of our aggregation scheme, and propose a general algorithm to learn conformity scores that lead to efficient prediction sets after the aggregation under standard conditions. We discuss how our framework relates to group-wise distributionally robust optimization, sub-population shift, fairness, and multi-source learning. In synthetic and real-data experiments, our method delivers valid worst-case coverage across multiple distributions while greatly reducing the set size compared with naively applying max-p aggregation to single-source conformity scores, and can be comparable in size to single-source prediction sets with popular, standard conformity scores.
Why LLMs Aren't Scientists Yet: Lessons from Four Autonomous Research Attempts
We report a case study of four end-to-end attempts to autonomously generate ML research papers using a pipeline of six LLM agents mapped to stages of the scientific workflow. Of these four, three attempts failed during implementation or evaluation. One completed the pipeline and was accepted to Agents4Science 2025, an experimental inaugural venue that required AI systems as first authors, passing both human and multi-AI review. From these attempts, we document six recurring failure modes: bias toward training data defaults, implementation drift under execution pressure, memory and context degradation across long-horizon tasks, overexcitement that declares success despite obvious failures, insufficient domain intelligence, and weak scientific taste in experimental design. We conclude by discussing four design principles for more robust AI-scientist systems, implications for autonomous scientific discovery, and we release all prompts, artifacts, and outputs at https://github.com/Lossfunk/ai-scientist-artefacts-v1
From Memorization to Creativity: LLM as a Designer of Novel Neural-Architectures
Large language models (LLMs) excel in program synthesis, yet their ability to autonomously navigate neural architecture design--balancing syntactic reliability, performance, and structural novelty--remains underexplored. We address this by placing a code-oriented LLM within a closed-loop synthesis framework, analyzing its evolution over 22 supervised fine-tuning cycles. The model synthesizes PyTorch convolutional networks which are validated, evaluated via low-fidelity performance signals (single-epoch accuracy), and filtered using a MinHash-Jaccard criterion to prevent structural redundancy. High-performing, novel architectures are converted into prompt-code pairs for iterative fine-tuning via parameter-efficient LoRA adaptation, initialized from the LEMUR dataset. Across cycles, the LLM internalizes empirical architectural priors, becoming a robust generator. The valid generation rate stabilizes at 50.6 percent (peaking at 74.5 percent), while mean first-epoch accuracy rises from 28.06 percent to 50.99 percent, and the fraction of candidates exceeding 40 percent accuracy grows from 2.04 percent to 96.81 percent. Analyses confirm the model moves beyond replicating existing motifs, synthesizing 455 high-performing architectures absent from the original corpus. By grounding code synthesis in execution feedback, this work provides a scalable blueprint for transforming stochastic generators into autonomous, performance-driven neural designers, establishing that LLMs can internalize empirical, non-textual rewards to transcend their training data.
Learning to Act Robustly with View-Invariant Latent Actions
Vision-based robotic policies often struggle with even minor viewpoint changes, underscoring the need for view-invariant visual representations. This challenge becomes more pronounced in real-world settings, where viewpoint variability is unavoidable and can significantly disrupt policy performance. Existing methods typically learn invariance from multi-view observations at the scene level, but such approaches rely on visual appearance and fail to incorporate the physical dynamics essential for robust generalization. We propose View-Invariant Latent Action (VILA), which models a latent action capturing transition patterns across trajectories to learn view-invariant representations grounded in physical dynamics. VILA aligns these latent actions across viewpoints using an action-guided objective based on ground-truth action sequences. Experiments in both simulation and the real world show that VILA-based policies generalize effectively to unseen viewpoints and transfer well to new tasks, establishing VILA as a strong pretraining framework that improves robustness and downstream learning performance.
comment: Website: https://joon-stack.github.io/VILA/
Reliability-Aware Adaptive Self-Consistency for Efficient Sampling in LLM Reasoning
Self-Consistency improves reasoning reliability through multi-sample aggregation, but incurs substantial inference cost. Adaptive self-consistency methods mitigate this issue by adjusting the sampling budget; however, they rely on count-based stopping rules that treat all responses equally, often leading to unnecessary sampling. We propose Reliability-Aware Adaptive Self-Consistency (ReASC), which addresses this limitation by reframing adaptive sampling from response counting to evidence sufficiency, leveraging response-level confidence for principled information aggregation. ReASC operates in two stages: a single-sample decision stage that resolves instances confidently answerable from a single response, and a reliability-aware accumulation stage that aggregates responses by jointly leveraging their frequency and confidence. Across five models and four datasets, ReASC consistently achieves the best accuracy-cost trade-off compared to existing baselines, yielding improved inference efficiency across model scales from 3B to 27B parameters. As a concrete example, ReASC reduces inference cost by up to 70\% relative to self-consistency while preserving accuracy on GSM8K using Gemma-3-4B-it.
comment: 15 pages, 8 figures
Low-Resource Heuristics for Bahnaric Optical Character Recognition Improvement
Bahnar, a minority language spoken across Vietnam, Cambodia, and Laos, faces significant preservation challenges due to limited research and data availability. This study addresses the critical need for accurate digitization of Bahnar language documents through optical character recognition (OCR) technology. Digitizing scanned paper documents poses significant challenges, as degraded image quality from broken or blurred areas introduces considerable OCR errors that compromise information retrieval systems. We propose a comprehensive approach combining advanced table and non-table detection techniques with probability-based post-processing heuristics to enhance recognition accuracy. Our method first applies detection algorithms to improve input data quality, then employs probabilistic error correction on OCR output. Experimental results indicate a substantial improvement, with recognition accuracy increasing from 72.86% to 79.26%. This work contributes valuable resources for Bahnar language preservation and provides a framework applicable to other minority language digitization efforts.
Learning Confidence Ellipsoids and Applications to Robust Subspace Recovery
We study the problem of finding confidence ellipsoids for an arbitrary distribution in high dimensions. Given samples from a distribution $\mathcal{D}$ and a confidence parameter $α$, the goal is to find the smallest volume ellipsoid $E$ which has probability mass $\Pr_{\mathcal{D}}[E] \ge 1-α$. Ellipsoids are a highly expressive class of confidence sets as they can capture correlations in the distribution, and can approximate any convex set. This problem has been studied in many different communities. In statistics, this is the classic minimum volume estimator introduced by Rousseeuw as a robust non-parametric estimator of location and scatter. However in high dimensions, it becomes NP-hard to obtain any non-trivial approximation factor in volume when the condition number $β$ of the ellipsoid (ratio of the largest to the smallest axis length) goes to $\infty$. This motivates the focus of our paper: can we efficiently find confidence ellipsoids with volume approximation guarantees when compared to ellipsoids of bounded condition number $β$? Our main result is a polynomial time algorithm that finds an ellipsoid $E$ whose volume is within a $O(β)^{γd}$ multiplicative factor of the volume of best $β$-conditioned ellipsoid while covering at least $1-O(α/γ)$ probability mass for any $γ\in (0,1)$. We complement this with a computational hardness result that shows that such a dependence seems necessary up to constants in the exponent. The algorithm and analysis uses the rich primal-dual structure of the minimum volume enclosing ellipsoid and the geometric Brascamp-Lieb inequality. As a consequence, we obtain the first polynomial time algorithm with approximation guarantees on worst-case instances of the robust subspace recovery problem.
Improving Underwater Acoustic Classification Through Learnable Gabor Filter Convolution and Attention Mechanisms
Remotely detecting and classifying underwater acoustic targets is critical for environmental monitoring and defence. However, the complexity of ship-radiated and environmental noise poses significant challenges for accurate signal processing. While recent advancements in machine learning have improved classification accuracy, limited dataset availability and a lack of standardised experimentation hinder generalisation and robustness. This paper introduces GSE ResNeXt, a deep learning architecture integrating learnable Gabor convolutional layers with a ResNeXt backbone enhanced by squeeze-and-excitation attention. The Gabor filters serve as two-dimensional adaptive band-pass filters, extending the feature channel representation. Its combination with channel attention improves training stability and convergence while enhancing the model's ability to extract discriminative features. The model is evaluated using three training-test split strategies that reflect increasingly complex classification tasks, demonstrating how systematic evaluation design addresses issues such as data leakage, temporal separation, and taxonomy. Results show that GSE ResNeXt consistently outperforms baseline models like Xception, ResNet, and MobileNetV2, in terms of classification performance. Regarding stability and convergence, adding Gabor convolutions to the initial layers of the model reduced training time by up to 62%. During the evaluation of training-testing splits, temporal separation between subsets significantly affected performance, proving more influential than training data volume. These findings suggest that signal processing can enhance model reliability and generalisation under varying environmental conditions, particularly in data-limited underwater acoustic classification. Future developments should focus on mitigating environmental effects on input signals.
Towards a Principled Muon under $μ\mathsf{P}$: Ensuring Spectral Conditions throughout Training
The $μ$-parameterization ($μ$P) provides a principled foundation for large language model (LLM) training by prescribing width-independent learning dynamics, which in turn enables predictable scaling behavior and robust hyperparameter transfer across model sizes. A central requirement of $μ$P is the satisfaction of certain spectral conditions on weight matrices, which ensure consistent feature learning and optimization behavior as model width grows. While these conditions are well understood in theory, guaranteeing their validity in practical training for matrix-based optimizers such as Muon is still under studied. Existing works that study Muon under $μ$P exhibit important limitations: they either do not ensure that the spectral conditions hold throughout the entire training horizon, or require repeated spectral normalization (or Newton-Schulz iterations) applied to both weights and updates, leading to significant computational overhead and reduced practicality. In this work, we show how to reliably guarantee the spectral conditions required by $μ$P for Muon during the entire training process. Our key insight is that for moderately large models, maintaining spectral control at the level of optimizer updates alone is sufficient to preserve $μ$P-compatible scaling, eliminating the need for explicit spectral normalization of the weights. Based on this principle, we develop a variant of Muon, namely Muon++, that satisfies spectral condition throughout the training process. Our results bridge the gap between the theoretical promises of $μ$P and the practical deployment of matrix-based optimizers in long-horizon training. We also take the first step towards an adaptive spectral condition by incorporating data-dependent effects, making it better suited for long-horizon LLM training.
comment: 21 pages, 0 figures
BiListing: Modality Alignment for Listings
Airbnb is a leader in offering travel accommodations. Airbnb has historically relied on structured data to understand, rank, and recommend listings to guests due to the limited capabilities and associated complexity arising from extracting meaningful information from text and images. With the rise of representation learning, leveraging rich information from text and photos has become easier. A popular approach has been to create embeddings for text documents and images to enable use cases of computing similarities between listings or using embeddings as features in an ML model. However, an Airbnb listing has diverse unstructured data: multiple images, various unstructured text documents such as title, description, and reviews, making this approach challenging. Specifically, it is a non-trivial task to combine multiple embeddings of different pieces of information to reach a single representation. This paper proposes BiListing, for Bimodal Listing, an approach to align text and photos of a listing by leveraging large-language models and pretrained language-image models. The BiListing approach has several favorable characteristics: capturing unstructured data into a single embedding vector per listing and modality, enabling zero-shot capability to search inventory efficiently in user-friendly semantics, overcoming the cold start problem, and enabling listing-to-listing search along a single modality, or both. We conducted offline and online tests to leverage the BiListing embeddings in the Airbnb search ranking model, and successfully deployed it in production, achieved 0.425% of NDCB gain, and drove tens of millions in incremental revenue.
Neural Optimal Design of Experiment for Inverse Problems
We introduce Neural Optimal Design of Experiments, a learning-based framework for optimal experimental design in inverse problems that avoids classical bilevel optimization and indirect sparsity regularization. NODE jointly trains a neural reconstruction model and a fixed-budget set of continuous design variables representing sensor locations, sampling times, or measurement angles, within a single optimization loop. By optimizing measurement locations directly rather than weighting a dense grid of candidates, the proposed approach enforces sparsity by design, eliminates the need for l1 tuning, and substantially reduces computational complexity. We validate NODE on an analytically tractable exponential growth benchmark, on MNIST image sampling, and illustrate its effectiveness on a real world sparse view X ray CT example. In all cases, NODE outperforms baseline approaches, demonstrating improved reconstruction accuracy and task-specific performance.
Correcting Mode Proportion Bias in Generalized Bayesian Inference via a Weighted Kernel Stein Discrepancy
Generalized Bayesian Inference (GBI) provides a flexible framework for updating prior distributions using various loss functions instead of the traditional likelihoods, thereby enhancing the model robustness to model misspecification. However, GBI often suffers the problem associated with intractable likelihoods. Kernelized Stein Discrepancy (KSD), as utilized in a recent study, addresses this challenge by relying only on the gradient of the log-likelihood. Despite this innovation, KSD-Bayes suffers from critical pathologies, including insensitivity to well-separated modes in multimodal posteriors. To address this limitation, we propose a weighted KSD method that retains computational efficiency while effectively capturing multimodal structures. Our method improves the GBI framework for handling intractable multimodal posteriors while maintaining key theoretical properties such as posterior consistency and asymptotic normality. Experimental results demonstrate that our method substantially improves mode sensitivity compared to standard KSD-Bayes, while retaining robust performance in unimodal settings and in the presence of outliers.
comment: This version contains errors and ambiguities identified after posting in the formulation and exposition of the weighted Stein discrepancy and its use in generalized Bayesian inference (Sections 3-5). The manuscript is being substantially revised to correct these issues and improve theoretical clarity
Nonlinear thermodynamic computing out of equilibrium
We present the design for a thermodynamic computer that can perform arbitrary nonlinear calculations in or out of equilibrium. Simple thermodynamic circuits, fluctuating degrees of freedom in contact with a thermal bath and confined by a quartic potential, display an activity that is a nonlinear function of their input. Such circuits can therefore be regarded as thermodynamic neurons, and can serve as the building blocks of networked structures that act as thermodynamic neural networks, universal function approximators whose operation is powered by thermal fluctuations. We simulate a digital model of a thermodynamic neural network, and show that its parameters can be adjusted by genetic algorithm to perform nonlinear calculations at specified observation times, regardless of whether the system has attained thermal equilibrium. This work expands the field of thermodynamic computing beyond the regime of thermal equilibrium, enabling fully nonlinear computations, analogous to those performed by classical neural networks, at specified observation times.
Tipping Point Forecasting in Non-Stationary Dynamics on Function Spaces
Tipping points are abrupt, drastic, and often irreversible changes in the evolution of non-stationary and chaotic dynamical systems. For instance, increased greenhouse gas concentrations are predicted to lead to drastic decreases in low cloud cover, referred to as a climatological tipping point. In this paper, we learn the evolution of such non-stationary dynamical systems using a novel recurrent neural operator (RNO), which learns mappings between function spaces. After training RNO on only the pre-tipping dynamics, we employ it to detect future tipping points using an uncertainty-based approach. In particular, we propose a conformal prediction framework to forecast tipping points by monitoring deviations from physics constraints (such as conserved quantities and partial differential equations), enabling forecasting of these abrupt changes along with a rigorous measure of uncertainty. We illustrate our proposed methodology on non-stationary ordinary and partial differential equations, such as the Lorenz-63 and Kuramoto-Sivashinsky equations. We also apply our methods to forecast a climate tipping point in stratocumulus cloud cover and airfoil wake and stall transitions using only limited knowledge of the governing equations. For the latter, we show that our proposed method zero-shot generalizes to forecasting multiple future tipping points under varying Reynolds numbers. In our experiments, we demonstrate that even partial or approximate physics constraints can be used to accurately forecast future tipping points.
Detecting PTSD in Clinical Interviews: A Comparative Analysis of NLP Methods and Large Language Models
Post-Traumatic Stress Disorder (PTSD) remains underdiagnosed in clinical settings, presenting opportunities for automated detection to identify patients. This study evaluates natural language processing approaches for detecting PTSD from clinical interview transcripts. We compared general and mental health-specific transformer models (BERT/RoBERTa), embedding-based methods (SentenceBERT/LLaMA), and large language model prompting strategies (zero-shot/few-shot/chain-of-thought) using the DAIC-WOZ dataset. Domain-specific end-to-end models significantly outperformed general models (Mental-RoBERTa AUPRC=0.675+/-0.084 vs. RoBERTa-base 0.599+/-0.145). SentenceBERT embeddings with neural networks achieved the highest overall performance (AUPRC=0.758+/-0.128). Few-shot prompting using DSM-5 criteria yielded competitive results with two examples (AUPRC=0.737). Performance varied significantly across symptom severity and comorbidity status with depression, with higher accuracy for severe PTSD cases and patients with comorbid depression. Our findings highlight the potential of domain-adapted embeddings and LLMs for scalable screening while underscoring the need for improved detection of nuanced presentations and offering insights for developing clinically viable AI tools for PTSD assessment.
Reliable Grid Forecasting: State Space Models for Safety-Critical Energy Systems
Accurate grid load forecasting is safety-critical: under-predictions risk supply shortfalls, while symmetric error metrics mask this operational asymmetry. We introduce a grid-specific evaluation framework (Asymmetric MAPE, Under-Prediction Rate, and Reserve Margin) that directly measures operational risk rather than statistical accuracy alone. Using this framework, we conduct a systematic evaluation of Mamba-based State Space Models for California grid forecasting on a weather-aligned CA ISO-TAC dataset spanning Nov 2023 to Nov 2025 (84,498 hourly records across 5 transmission areas). Our analysis reveals that standard accuracy metrics are poor proxies for operational safety: models with identical MAPE can require vastly different reserve margins. We demonstrate that forecast errors are weakly but statistically significantly associated with temperature (r = 0.16), motivating weather-aware modeling rather than loss function modification alone. The S-Mamba model achieves the lowest 99.5th-percentile reserve margin (14.12 percent) compared to 16.66 percent for iTransformer, demonstrating superior forecast reliability under a 99.5th-percentile tail-risk reserve proxy.
comment: 25 pages, 7 figures, 8 tables
Merlin's Whisper: Enabling Efficient Reasoning in Large Language Models via Black-box Persuasive Prompting
Large reasoning models (LRMs) have demonstrated remarkable proficiency in tackling complex tasks through step-by-step thinking. However, this lengthy reasoning process incurs substantial computational and latency overheads, hindering the practical deployment of LRMs. This work presents a new approach to mitigating overthinking in LRMs via black-box persuasive prompting. By treating LRMs as black-box communicators, we investigate how to persuade them to generate concise responses without compromising accuracy. We introduce Whisper, an iterative refinement framework that generates high-quality persuasive prompts from diverse perspectives. Experiments across multiple benchmarks demonstrate that Whisper consistently reduces token usage while preserving performance. Notably, Whisper achieves a 3x reduction in average response length on simple GSM8K questions for the Qwen3 model series and delivers an average ~40% token reduction across all benchmarks. For closed-source APIs, Whisper reduces token usage on MATH-500 by 46% for Claude-3.7 and 50% for Gemini-2.5. Further analysis reveals the broad applicability of Whisper across data domains, model scales, and families, underscoring the potential of black-box persuasive prompting as a practical strategy for enhancing LRM efficiency.
TTrace: Lightweight Error Checking and Diagnosis for Distributed Training
Distributed training is essential for scaling the training of large neural network models, such as large language models (LLMs), across thousands of GPUs. However, the complexity of distributed training programs makes them particularly prone to silent bugs, which do not produce explicit error signals but lead to incorrect training outcomes. Effectively detecting and localizing such silent bugs in distributed training is challenging. Common debugging practices based on monitoring training loss or gradient norm curves are indirect, inefficient, and provide no way to localize bugs. To address those challenges, we design and implement TTrace, the first systematic differential testing system for detecting and localizing silent bugs in distributed training. TTrace aligns intermediate tensors from distributed training with those from a trusted reference implementation. To properly compare the floating-point values in the corresponding tensors, we propose a novel mathematical analysis that provides a guideline for setting tolerances, enabling TTrace to distinguish bug-induced errors from numerical errors. Experimental results demonstrate that TTrace effectively detects 11 existing bugs and 3 new bugs in the widely used Megatron-LM framework, while requiring fewer than 10 lines of code changes. TTrace is effective in various training recipes, including low-precision recipes involving BF16 and FP8. Notably, a popular open-source training framework has already adopted the method proposed by TTrace in its development workflow.
Kolmogorov-Arnold Energy Models: Fast and Interpretable Generative Modeling
Learning an energy-based model (EBM) in the latent space of a top-down generative model offers a powerful framework for generation across many data modalities. However, it remains unclear how its interpretability can be used to guide model design, improve generative quality, and reduce training time. Moreover, the reliance on Langevin Monte Carlo (LMC) sampling presents challenges in efficiency and sampling multimodal latent distributions. We propose a novel adaptation of the Kolmogorov-Arnold representation theorem for generative modeling and introduce the Kolmogorov-Arnold Energy Model (KAEM) to take advantage of structural and inductive biases. By constraining the prior to univariate relationships, KAEM enables fast and exact inference via the inverse transform method. With the low dimensionality of the latent space and suitable inductive biases encoded, we demonstrate that importance sampling (IS) becomes a viable, unbiased, and highly efficient posterior sampler. For domains where IS fails, we introduce a strategy based on population-based LMC, decomposing the posterior into a sequence of annealed distributions to improve LMC mixing. KAEM balances common generative modeling trade-offs, offering fast inference, interpretability, and stable training, while being naturally suited to Zettascale Computing hardware.
Adapting Web Agents with Synthetic Supervision
Web agents struggle to adapt to new websites due to the scarcity of environment specific tasks and demonstrations. Recent works have explored synthetic data generation to address this challenge, however, they suffer from data quality issues where synthesized tasks contain hallucinations that cannot be executed, and collected trajectories are noisy with redundant or misaligned actions. In this paper, we propose SynthAgent, a fully synthetic supervision framework that aims at improving synthetic data quality via dual refinement of both tasks and trajectories. Our approach begins by synthesizing diverse tasks through categorized exploration of web elements, ensuring efficient coverage of the target environment. During trajectory collection, tasks are refined only when conflicts with observations are detected, which mitigates hallucinations while preserving task consistency. After collection, we conduct trajectory refinement with global context to mitigate potential noise or misalignments. Finally, we fine-tune open-source web agents on the refined synthetic data to adapt them to the target environment. Experimental results demonstrate that SynthAgent outperforms existing synthetic data methods, validating the importance of high-quality synthetic supervision. The code is publicly available at https://github.com/aiming-lab/SynthAgent.
comment: 21 pages, 6 figures
Heuristic Methods are Good Teachers to Distill MLPs for Graph Link Prediction
Link prediction is a crucial graph-learning task with applications including citation prediction and product recommendation. Distilling Graph Neural Networks (GNNs) teachers into Multi-Layer Perceptrons (MLPs) students has emerged as an effective approach to achieve strong performance and reducing computational cost by removing graph dependency. However, existing distillation methods only use standard GNNs and overlook alternative teachers such as specialized model for link prediction (GNN4LP) and heuristic methods (e.g., common neighbors). This paper first explores the impact of different teachers in GNN-to-MLP distillation. Surprisingly, we find that stronger teachers do not always produce stronger students: MLPs distilled from GNN4LP can underperform those distilled from simpler GNNs, while weaker heuristic methods can teach MLPs to near-GNN performance with drastically reduced training costs. Building on these insights, we propose Ensemble Heuristic-Distilled MLPs (EHDM), which eliminates graph dependencies while effectively integrating complementary signals via a gating mechanism. Experiments on ten datasets show an average 7.93% improvement over previous GNN-to-MLP approaches with 1.95-3.32 times less training time, indicating EHDM is an efficient and effective link prediction method.
ImageNet-trained CNNs are not biased towards texture: Revisiting feature reliance through controlled suppression NeurIPS 2025
The hypothesis that Convolutional Neural Networks (CNNs) are inherently texture-biased has shaped much of the discourse on feature use in deep learning. We revisit this hypothesis by examining limitations in the cue-conflict experiment by Geirhos et al. To address these limitations, we propose a domain-agnostic framework that quantifies feature reliance through systematic suppression of shape, texture, and color cues, avoiding the confounds of forced-choice conflicts. By evaluating humans and neural networks under controlled suppression conditions, we find that CNNs are not inherently texture-biased but predominantly rely on local shape features. Nonetheless, this reliance can be substantially mitigated through modern training strategies or architectures (ConvNeXt, ViTs). We further extend the analysis across computer vision, medical imaging, and remote sensing, revealing that reliance patterns differ systematically: computer vision models prioritize shape, medical imaging models emphasize color, and remote sensing models exhibit a stronger reliance on texture. Code is available at https://github.com/tomburgert/feature-reliance.
comment: Accepted at NeurIPS 2025 (oral)
Leveraging the true depth of LLMs
The remarkable capabilities of Large Language Models (LLMs) are overshadowed by their immense computational cost. While recent work has shown that many LLM layers can be reordered or even removed with minimal impact on accuracy, these insights have not been translated into significant inference speedups. To bridge this gap, we introduce a novel method that restructures the computational graph by grouping and evaluating consecutive layer pairs in parallel. This approach, requiring no retraining, yields a 1.19x throughput gain on Llama 2 7B while reducing the average benchmark accuracy by only 1.5\%. We demonstrate the practical value of this method for large-scale LLM deployment and show that some of the lost accuracy can be recovered with lightweight fine-tuning of the parallelized layers.
Iterative Topic Taxonomy Induction with LLMs: A Case Study of Electoral Advertising
Social media platforms play a pivotal role in shaping political discourse, but analyzing their vast and rapidly evolving content remains a major challenge. We introduce an end-to-end framework for automatically inducing an interpretable topic taxonomy from unlabeled text corpora. By combining unsupervised clustering with prompt-based inference, our method leverages large language models (LLMs) to iteratively construct a taxonomy without requiring seed sets (predefined labels) or domain expertise. We validate the framework through a study of political advertising ahead of the 2024 U.S. presidential election. The induced taxonomy yields semantically rich topic labels and supports downstream analyses, including moral framing, in this setting. Results suggest that structured, iterative labeling yields more consistent and interpretable topic labels than existing approaches under human evaluation, and is practical for analyzing large-scale political advertising data.
comment: Under-submission
DisCO: Reinforcing Large Reasoning Models with Discriminative Constrained Optimization NeurIPS 2025
The recent success and openness of DeepSeek-R1 have brought widespread attention to Group Relative Policy Optimization (GRPO) as a reinforcement learning method for large reasoning models (LRMs). In this work, we analyze the GRPO objective under a binary reward setting and reveal an inherent limitation of question-level difficulty bias. We also identify a connection between GRPO and traditional discriminative methods in supervised learning. Motivated by these insights, we introduce a new Discriminative Constrained Optimization (DisCO) framework for reinforcing LRMs, grounded in the principle of discriminative learning. The main differences between DisCO and GRPO and its recent variants are: (1) it replaces the group relative objective with a discriminative objective defined by a scoring function; (2) it abandons clipping-based surrogates in favor of non-clipping RL surrogate objectives used as scoring functions; (3) it employs a simple yet effective constrained optimization approach to enforce the KL divergence constraint. As a result, DisCO offers notable advantages over GRPO and its variants: (i) it completely eliminates difficulty bias by adopting discriminative objectives; (ii) it addresses the entropy instability in GRPO and its variants through the use of non-clipping scoring functions and a constrained optimization approach, yielding long and stable training dynamics; (iii) it allows the incorporation of advanced discriminative learning techniques to address data imbalance, where a significant number of questions have more negative than positive generated answers during training. Our experiments on enhancing the mathematical reasoning capabilities of SFT-finetuned models show that DisCO significantly outperforms GRPO and its improved variants such as DAPO, achieving average gains of 7\% over GRPO and 6\% over DAPO across six benchmark tasks for a 1.5B model.
comment: Accepted to NeurIPS 2025
Large Empirical Case Study: Go-Explore adapted for AI Red Team Testing
Production LLM agents with tool-using capabilities require security testing despite their safety training. We adapt Go-Explore to evaluate GPT-4o-mini across 28 experimental runs spanning six research questions. We find that random-seed variance dominates algorithmic parameters, yielding an 8x spread in outcomes; single-seed comparisons are unreliable, while multi-seed averaging materially reduces variance in our setup. Reward shaping consistently harms performance, causing exploration collapse in 94% of runs or producing 18 false positives with zero verified attacks. In our environment, simple state signatures outperform complex ones. For comprehensive security testing, ensembles provide attack-type diversity, whereas single agents optimize coverage within a given attack type. Overall, these results suggest that seed variance and targeted domain knowledge can outweigh algorithmic sophistication when testing safety-trained models.
Learning with Statistical Equality Constraints
As machine learning applications grow increasingly ubiquitous and complex, they face an increasing set of requirements beyond accuracy. The prevalent approach to handle this challenge is to aggregate a weighted combination of requirement violation penalties into the training objective. To be effective, this approach requires careful tuning of these hyperparameters (weights), involving trial-and-error and cross-validation, which becomes ineffective even for a moderate number of requirements. These issues are exacerbated when the requirements involve parities or equalities, as is the case in fairness and boundary value problems. An alternative technique uses constrained optimization to formulate these learning problems. Yet, existing approximation and generalization guarantees do not apply to problems involving equality constraints. In this work, we derive a generalization theory for equality-constrained statistical learning problems, showing that their solutions can be approximated using samples and rich parametrizations. Using these results, we propose a practical algorithm based on solving a sequence of unconstrained, empirical learning problems. We showcase its effectiveness and the new formulations enabled by equality constraints in fair learning, interpolating classifiers, and boundary value problems.
comment: Published in the 39th Annual Conference on Neural Information Processing Systems
Quantifying task-relevant representational similarity using decision variable correlation NeurIPS 2025
Previous studies have compared neural activities in the visual cortex to representations in deep neural networks trained on image classification. Interestingly, while some suggest that their representations are highly similar, others argued the opposite. Here, we propose a new approach to characterize the similarity of the decision strategies of two observers (models or brains) using decision variable correlation (DVC). DVC quantifies the image-by-image correlation between the decoded decisions based on the internal neural representations in a classification task. Thus, it can capture task-relevant information rather than general representational alignment. We evaluate DVC using monkey V4/IT recordings and network models trained on image classification tasks. We find that model-model similarity is comparable to monkey-monkey similarity, whereas model-monkey similarity is consistently lower. Strikingly, DVC decreases with increasing network performance on ImageNet-1k. Adversarial training does not improve model-monkey similarity in task-relevant dimensions assessed using DVC, although it markedly increases the model-model similarity. Similarly, pre-training on larger datasets does not improve model-monkey similarity. These results suggest a divergence between the task-relevant representations in monkey V4/IT and those learned by models trained on image classification tasks.
comment: Camera-ready version; accepted at NeurIPS 2025
CSAI: Conditional Self-Attention Imputation for Healthcare Time-series
We introduce the Conditional Self-Attention Imputation (CSAI) model, a novel recurrent neural network architecture designed to address the challenges of complex missing data patterns in multivariate time series derived from hospital electronic health records (EHRs). CSAI extends state-of-the-art neural network-based imputation by introducing key modifications specific to EHR data: a) attention-based hidden state initialisation to capture both long- and short-range temporal dependencies prevalent in EHRs, b) domain-informed temporal decay to mimic clinical data recording patterns, and c) a non-uniform masking strategy that models non-random missingness by calibrating weights according to both temporal and cross-sectional data characteristics. Comprehensive evaluation across four EHR benchmark datasets demonstrates CSAI's effectiveness compared to state-of-the-art architectures in data restoration and downstream tasks. CSAI is integrated into PyPOTS, an open-source Python toolbox designed for machine learning tasks on partially observed time series. This work significantly advances the state of neural network imputation applied to EHRs by more closely aligning algorithmic imputation with clinical realities.
Neuronal Attention Circuit (NAC) for Representation Learning
Attention improves representation learning over RNNs, but its discrete nature limits continuous-time (CT) modeling. We introduce Neuronal Attention Circuit (NAC), a novel, biologically inspired CT-Attention mechanism that reformulates attention logit computation as the solution to a linear first-order ODE with nonlinear interlinked gates derived from repurposing C.elegans Neuronal Circuit Policies (NCPs) wiring. NAC replaces dense projections with sparse sensory gates for key-query projections and a sparse backbone network with two heads for computing content-target and learnable time-constant gates, enabling efficient adaptive dynamics. To improve efficiency and memory consumption, we implemented an adaptable subquadratic sparse Top-K pairwise concatenation mechanism that selectively curates key-query interactions. We provide rigorous theoretical guarantees, including state stability and bounded approximation errors. Empirically, we implemented NAC in diverse domains, including irregular time-series classification, lane-keeping for autonomous vehicles, and industrial prognostics. We observed that NAC matches or outperforms competing baselines in accuracy and occupies an intermediate position in runtime and memory consumption compared with several CT state-of-the-art baselines, while being interpretable at the neuron cell level.
comment: Ongoing work
Information-Theoretic Generalization Bounds of Replay-based Continual Learning
Continual learning (CL) has emerged as a dominant paradigm for acquiring knowledge from sequential tasks while avoiding catastrophic forgetting. Although many CL methods have been proposed to show impressive empirical performance, the theoretical understanding of their generalization behavior remains limited, particularly for replay-based approaches. This paper establishes a unified theoretical framework for replay-based CL, deriving a series of information-theoretic generalization bounds that explicitly elucidate the impact of the memory buffer alongside the current task on generalization performance. Specifically, our hypothesis-based bounds capture the trade-off between the number of selected exemplars and the information dependency between the hypothesis and the memory buffer. Our prediction-based bounds yield tighter and computationally tractable upper bounds on the generalization error by leveraging low-dimensional variables. Theoretical analysis is general and broadly applicable to a wide range of learning algorithms, exemplified by stochastic gradient Langevin dynamics (SGLD) as a representative method. Comprehensive experimental evaluations demonstrate the effectiveness of our derived bounds in capturing the generalization dynamics in replay-based CL settings.
Agent.xpu: Efficient Scheduling of Agentic LLM Workloads on Heterogeneous SoC
Personal LLM agents increasingly combine foreground reactive interactions with background proactive monitoring, forming long-lived, stateful LLM flows that interleave prefill and token-by-token decode. While modern heterogeneous SoCs integrate CPUs, iGPUs, and NPUs to support on-device intelligence, existing LLM engines assume static, single-shot inference and lack mechanisms for flow-level concurrency, prioritization, and efficient accelerator coordination. As a result, commodity SoCs remain poorly matched to the dynamic, mixed-criticality execution patterns of personal agents. This paper presents Agent$.$xpu, the first LLM engine that orchestrates concurrent reactive and proactive LLM flows on commodity SoCs. Extensive profiling uncovers unique SoC characteristics of operator-accelerator affinity, asymmetric DDR contention, and stage-divergent batching behaviors distinct from cloud-serving assumptions. Agent$.$xpu introduces three key techniques: a heterogeneous execution graph (HEG) capturing NPU/iGPU affinity and elastic operator binding; flow-aware NPU-iGPU coordination with stage elasticity, decoupling prefill and decode to reduce bandwidth contention and enforce priorities; and fine-grained preemption with slack-aware piggybacking to guarantee reactive responsiveness without starving proactive work. Across realistic personal-agent workloads, Agent$.$xpu delivers 1.2-4.9$\times$ proactive throughput and reduces reactive latency by at least 91%, compared with both industrial iGPU-only serving engine and NPU-iGPU static inference with optimal tensor-partitioning schemes. Agent$.$xpu also minimizes energy consumption and graphics interference via controlled iGPU usage.
SPARKLE: A Nonparametric Approach for Online Decision-Making with High-Dimensional Covariates
Personalized services are central to today's digital economy, and their sequential decisions are often modeled as contextual bandits. Modern applications pose two main challenges: high-dimensional covariates and the need for nonparametric models to capture complex reward-covariate relationships. We propose SPARKLE, a novel contextual bandit algorithm based on a sparse additive reward model that addresses both challenges through (i) a doubly penalized estimator for nonparametric reward estimation and (ii) an epoch-based design with adaptive screening to balance exploration and exploitation. We prove a sublinear regret bound that grows only logarithmically in the covariate dimensionality; to our knowledge, this is the first such result for nonparametric contextual bandits with high-dimensional covariates. We also derive an information-theoretic lower bound, and the gap to the upper bound vanishes as the reward smoothness increases. Extensive experiments on synthetic data and real data from video recommendation and personalized medicine show strong performance in high-dimensional settings.
comment: Main body: 35 pages, 7 figures; supplemental material: 34 pages
Universal Dynamic Regret and Constraint Violation Bounds for Constrained Online Convex Optimization
We consider a generalization of the celebrated Online Convex Optimization (OCO) framework with adversarial online constraints. In this problem, an online learner interacts with an adversary sequentially over multiple rounds. At the beginning of each round, the learner chooses an action from a convex decision set. After that, the adversary reveals a convex cost function and a convex constraint function. The goal of the learner is to minimize the cumulative cost while satisfying the constraints as tightly as possible. We present two efficient algorithms with simple modular structures that give universal dynamic regret and cumulative constraint violation bounds, improving upon state-of-the-art results. While the first algorithm, which achieves the optimal regret bound, involves projection onto the constraint sets, the second algorithm is projection-free and achieves better violation bounds in rapidly varying environments. Our results hold in the most general case when both the cost and constraint functions are chosen arbitrarily, and the constraint functions need not contain any fixed common feasible point. We establish these results by introducing a general framework that reduces the constrained learning problem to an instance of the standard OCO problem with specially constructed surrogate cost functions.
comment: To appear in the 37th International Conference on Algorithmic Learning Theory (ALT 2026)
Interpretability-Guided Bi-objective Optimization: Aligning Accuracy and Explainability
This paper introduces Interpretability-Guided Bi-objective Optimization (IGBO), a framework that trains interpretable models by incorporating structured domain knowledge via a bi-objective formulation. IGBO encodes feature importance hierarchies as a Directed Acyclic Graph (DAG) via Central Limit Theorem-based construction and uses Temporal Integrated Gradients (TIG) to measure feature importance. To address the Out-of-Distribution (OOD) problem in TIG computation, we propose an Optimal Path Oracle that learns data-manifold-aware integration paths. Theoretical analysis establishes convergence properties via a geometric projection mapping $\mathcal{P}$ and proves robustness to mini-batch noise. Central Limit Theorem-based construction of the interpretability DAG ensures statistical validity of edge orientation decisions. Empirical results on time-series data demonstrate IGBO's effectiveness in enforcing DAG constraints with minimal accuracy loss, outperforming standard regularization baselines.
comment: 11 pages
LORE: A Large Generative Model for Search Relevance
Achievement. We introduce LORE, a systematic framework for Large Generative Model-based relevance in e-commerce search. Deployed and iterated over three years, LORE achieves a cumulative +27\% improvement in online GoodRate metrics. This report shares the valuable experience gained throughout its development lifecycle, spanning data, features, training, evaluation, and deployment. Insight. While existing works apply Chain-of-Thought (CoT) to enhance relevance, they often hit a performance ceiling. We argue this stems from treating relevance as a monolithic task, lacking principled deconstruction. Our key insight is that relevance comprises distinct capabilities: knowledge and reasoning, multi-modal matching, and rule adherence. We contend that a qualitative-driven decomposition is essential for breaking through current performance bottlenecks. Contributions. LORE provides a complete blueprint for the LLM relevance lifecycle. Key contributions include: (1) A two-stage training paradigm combining progressive CoT synthesis via SFT with human preference alignment via RL. (2) A comprehensive benchmark, RAIR, designed to evaluate these core capabilities. (3) A query frequency-stratified deployment strategy that efficiently transfers offline LLM capabilities to the online system. LORE serves as both a practical solution and a methodological reference for other vertical domains.
Agentic Additive Manufacturing Alloy Evaluation
Agentic systems enable the intelligent use of research tooling, augmenting a researcher's ability to investigate and propose novel solutions to existing problems. Within Additive Manufacturing (AM), alloy selection and evaluation remains a complex challenge, often requiring expertise in the various domains of materials science, thermodynamic simulations, and experimental analysis. Large Language Model (LLM) enabled agents can facilitate this endeavor by utilizing their extensive knowledge base to dispatch tool calls via Model Context Protocol (MCP) to perform actions such as thermophysical property diagram calculations and lack of fusion process map generation. In addition, the multi-agent system can effectively reason through complex user prompts and provide analysis on the lack of fusion process window of common alloys such as SS316L and IN718 along with proposed composition variants of known alloys. These agents can dynamically adjust their task trajectory to the outcomes of tool call results, effectively enabling autonomous decision-making in practical environments. This work aims to showcase the benefits of adopting a LLM enabled multi-agent system to automate and accelerate the task of evaluating proposed additive manufacturing alloys, both novel and known.
Error analysis of a compositional score-based algorithm for simulation-based inference
Simulation-based inference (SBI) has become a widely used framework in applied sciences for estimating the parameters of stochastic models that best explain experimental observations. A central question in this setting is how to effectively combine multiple observations in order to improve parameter inference and obtain sharper posterior distributions. Recent advances in score-based diffusion methods address this problem by constructing a compositional score, obtained by aggregating individual posterior scores within the diffusion process. While it is natural to suspect that the accumulation of individual errors may significantly degrade sampling quality as the number of observations grows, this important theoretical issue has so far remained unexplored. In this paper, we study the compositional score produced by the GAUSS algorithm of Linhart et al. (2024) and establish an upper bound on its mean squared error in terms of both the individual score errors and the number of observations. We illustrate our theoretical findings on a Gaussian example, where all analytical expressions can be derived in a closed form.
A Comedy of Estimators: On KL Regularization in RL Training of LLMs
The reasoning performance of large language models (LLMs) can be substantially improved by training them with reinforcement learning (RL). The RL objective for LLM training involves a regularization term, which is the reverse Kullback-Leibler (KL) divergence between the trained policy and the reference policy. Since computing the KL divergence exactly is intractable, various estimators are used in practice to estimate it from on-policy samples. Despite its wide adoption, including in several open-source libraries, there is no systematic study analyzing the numerous ways of incorporating KL estimators in the objective and their effect on the downstream performance of RL-trained models. Recent works show that prevailing practices for incorporating KL regularization do not provide correct gradients for stated objectives, creating a discrepancy between the objective and its implementation. In this paper, we further analyze these practices and study the gradients of several estimators configurations, revealing how design choices shape gradient bias. We substantiate these findings with empirical observations by RL fine-tuning \texttt{Qwen2.5-7B}, \texttt{Llama-3.1-8B-Instruct} and \texttt{Qwen3-4B-Instruct-2507} with different configurations and evaluating their performance on both in- and out-of-distribution tasks. Through our analysis, we observe that, in on-policy settings: (1) estimator configurations with biased gradients can result in training instabilities; and (2) using estimator configurations resulting in unbiased gradients leads to better performance on in-domain as well as out-of-domain tasks. We also investigate the performance resulting from different KL configurations in off-policy settings and observe that KL regularization can help stabilize off-policy RL training resulting from asynchronous setups.
Uncertainty-driven Adaptive Exploration
Adaptive exploration methods propose ways to learn complex policies via alternating between exploration and exploitation. An important question for such methods is to determine the appropriate moment to switch between exploration and exploitation and vice versa. This is critical in domains that require the learning of long and complex sequences of actions. In this work, we present a generic adaptive exploration framework that employs uncertainty to address this important issue in a principled manner. Our framework includes previous adaptive exploration approaches as special cases. Moreover, we can incorporate in our framework any uncertainty-measuring mechanism of choice, for instance mechanisms used in intrinsic motivation or epistemic uncertainty-based exploration methods. We experimentally demonstrate that our framework gives rise to adaptive exploration strategies that outperform standard ones across several environments.
comment: This is an extended version of the paper titled "A Novel Framework for Uncertainty-Driven Adaptive Exploration" accepted as a full paper at AAMAS 2026. The accepted paper can be found in https://openreview.net/forum?id=j5awxzdsU9
MAST: Model-Agnostic Sparsified Training ICLR 2025
We introduce a novel optimization problem formulation that departs from the conventional way of minimizing machine learning model loss as a black-box function. Unlike traditional formulations, the proposed approach explicitly incorporates an initially pre-trained model and random sketch operators, allowing for sparsification of both the model and gradient during training. We establish the insightful properties of the proposed objective function and highlight its connections to the standard formulation. Furthermore, we present several variants of the Stochastic Gradient Descent (SGD) method adapted to the new problem formulation, including SGD with general sampling, a distributed version, and SGD with variance reduction techniques. We achieve tighter convergence rates and relax assumptions, bridging the gap between theoretical principles and practical applications, covering several important techniques such as Dropout and Sparse training. This work presents promising opportunities to enhance the theoretical understanding of model training through a sparsification-aware optimization approach.
comment: Published at ICLR 2025
CodeEvolve: an open source evolutionary coding agent for algorithm discovery and optimization
We introduce CodeEvolve, an open-source framework that combines large language models (LLMs) with evolutionary search to synthesize high-performing algorithmic solutions. CodeEvolve couples an islands-based genetic algorithm with modular LLM orchestration, using execution feedback and task-specific metrics to guide selection and variation. Exploration and exploitation are balanced through context-aware recombination, adaptive meta-prompting, and targeted refinement of promising solutions. We evaluate CodeEvolve on benchmarks previously used to assess Google DeepMind's AlphaEvolve, showing superior performance on several tasks and competitive results overall. Notably, open-weight models often match or exceed closed-source baselines at a fraction of the compute cost. We provide extensive ablations analyzing the contribution of each component and release our framework and experimental results at https://github.com/inter-co/science-codeevolve.
comment: 14 pages, 10 figures, 3 tables
Source-Optimal Training is Transfer-Suboptimal
We prove that training a source model optimally for its own task is generically suboptimal when the objective is downstream transfer. We study the source-side optimization problem in L2-SP ridge regression and show a fundamental mismatch between the source-optimal and transfer-optimal source regularization: outside of a measure-zero set, $τ_0^* \neq τ_S^*$. We characterize the transfer-optimal source penalty $τ_0^*$ as a function of task alignment and identify an alignment-dependent reversal: with imperfect alignment ($0<ρ<1$), transfer benefits from stronger source regularization, while in super-aligned regimes ($ρ>1$), transfer benefits from weaker regularization. Additionally, in isotropic settings, the decision of whether transfer helps is independent of the target sample size and noise, depending only on task alignment and source characteristics. We verify the linear predictions in a synthetic ridge regression experiment, and we present experiments on MNIST, CIFAR-10, and 20 Newsgroups as evidence that the source-optimal versus transfer-optimal mismatch persists in standard nonlinear transfer learning pipelines.
Machine Learning H-theorem
H-theorem provides a microscopic foundation of the Second Law of Thermodynamics and is therefore essential to establishing statistical physics, but at the same time, H-theorem has been subject to controversy that in part persists till this day. To better understand H-theorem and its relation to the arrow of time, we study the equilibration of randomly oriented and positioned hard disks with periodic boundary conditions. Using a model based on the DeepSets architecture, which imposes permutation invariance of the particle labels, we train a model to capture the irreversibility of the H-functional.
Evaluating Gemini Robotics Policies in a Veo World Simulator
Generative world models hold significant potential for simulating interactions with visuomotor policies in varied environments. Frontier video models can enable generation of realistic observations and environment interactions in a scalable and general manner. However, the use of video models in robotics has been limited primarily to in-distribution evaluations, i.e., scenarios that are similar to ones used to train the policy or fine-tune the base video model. In this report, we demonstrate that video models can be used for the entire spectrum of policy evaluation use cases in robotics: from assessing nominal performance to out-of-distribution (OOD) generalization, and probing physical and semantic safety. We introduce a generative evaluation system built upon a frontier video foundation model (Veo). The system is optimized to support robot action conditioning and multi-view consistency, while integrating generative image-editing and multi-view completion to synthesize realistic variations of real-world scenes along multiple axes of generalization. We demonstrate that the system preserves the base capabilities of the video model to enable accurate simulation of scenes that have been edited to include novel interaction objects, novel visual backgrounds, and novel distractor objects. This fidelity enables accurately predicting the relative performance of different policies in both nominal and OOD conditions, determining the relative impact of different axes of generalization on policy performance, and performing red teaming of policies to expose behaviors that violate physical or semantic safety constraints. We validate these capabilities through 1600+ real-world evaluations of eight Gemini Robotics policy checkpoints and five tasks for a bimanual manipulator.
Limits to scalable evaluation at the frontier: LLM as Judge won't beat twice the data ICLR 2025
High quality annotations are increasingly a bottleneck in the explosively growing machine learning ecosystem. Scalable evaluation methods that avoid costly annotation have therefore become an important research ambition. Many hope to use strong existing models in lieu of costly labels to provide cheap model evaluations. Unfortunately, this method of using models as judges introduces biases, such as self-preferencing, that can distort model comparisons. An emerging family of debiasing tools promises to fix these issues by using a few high quality labels to debias a large number of model judgments. In this paper, we study how far such debiasing methods, in principle, can go. Our main result shows that when the judge is no more accurate than the evaluated model, no debiasing method can decrease the required amount of ground truth labels by more than half. Our result speaks to the severe limitations of the LLM-as-a-judge paradigm at the evaluation frontier where the goal is to assess newly released models that are possibly better than the judge. Through an empirical evaluation, we demonstrate that the sample size savings achievable in practice are even more modest than what our theoretical limit suggests. Along the way, our work provides new observations about debiasing methods for model evaluation, and points out promising avenues for future work.
comment: ICLR 2025; 28 pages, 8 figures
Learning mirror maps in policy mirror descent
Policy Mirror Descent (PMD) is a popular framework in reinforcement learning, serving as a unifying perspective that encompasses numerous algorithms. These algorithms are derived through the selection of a mirror map and enjoy finite-time convergence guarantees. Despite its popularity, the exploration of PMD's full potential is limited, with the majority of research focusing on a particular mirror map -- namely, the negative entropy -- which gives rise to the renowned Natural Policy Gradient (NPG) method. It remains uncertain from existing theoretical studies whether the choice of mirror map significantly influences PMD's efficacy. In our work, we conduct empirical investigations to show that the conventional mirror map choice (NPG) often yields less-than-optimal outcomes across several standard benchmark environments. Using evolutionary strategies, we identify more efficient mirror maps that enhance the performance of PMD. We first focus on a tabular environment, i.e. Grid-World, where we relate existing theoretical bounds with the performance of PMD for a few standard mirror maps and the learned one. We then show that it is possible to learn a mirror map that outperforms the negative entropy in more complex environments, such as the MinAtar suite. Additionally, we demonstrate that the learned mirror maps generalize effectively to different tasks by testing each map across various other environments.
Stable Preference Optimization: A Bilevel Approach to Catastrophic Preference Shift
Direct Preference Learning has emerged as a dominant offline paradigm for preference optimization. Most of these methods are based on the Bradley-Terry (BT) model for pairwise preference ranking, which directly aligns language model with human preference. Prior work has observed a counter-intuitive phenomenon termed likelihood displacement, where the absolute probability of preferred responses decreases simultaneously during training. We demonstrate that such displacement can lead to a more devastating failure mode, which we defined as \textit{Catastrophic Preference Shift}, where the lost preference probability mass inadvertently shifts toward out-of-distribution (OOD) responses. Such a failure mode is a key limitation shared across BT-style direct preference learning methods, due to the fundamental conflict between the unconstrained discriminative alignment and generative foundational capabilities, ultimately leading to severe performance degradation (e.g., SimPO suffers a significant drop in reasoning accuracy from 73.5\% to 37.5\%). We analyze existing BT-style methods from the probability evolution perspective and theoretically prove that these methods exhibit over-reliance on model initialization and can lead to preference shift. To resolve these counter-intuitive behaviors, we propose a theoretically grounded Stable Preference Optimization (SPO) framework that constrains preference learning within a safe alignment region. Empirical evaluations demonstrate that SPO effectively stabilizes and enhances the performance of existing BT-style preference learning methods. SPO provides new insights into the design of preference learning objectives and opens up new avenues towards more reliable and interpretable language model alignment.
Limits to Predicting Online Speech Using Large Language Models
Our paper studies the predictability of online speech -- that is, how well language models learn to model the distribution of user generated content on X (previously Twitter). We define predictability as a measure of the model's uncertainty, i.e. its negative log-likelihood. As the basis of our study, we collect 10M tweets for ``tweet-tuning'' base models and a further 6.25M posts from more than five thousand X (previously Twitter) users and their peers. In our study involving more than 5000 subjects, we find that predicting posts of individual users remains surprisingly hard. Moreover, it matters greatly what context is used: models using the users' own history significantly outperform models using posts from their social circle. We validate these results across four large language models ranging in size from 1.5 billion to 70 billion parameters. Moreover, our results replicate if instead of prompting the model with additional context, we finetune on it. We follow up with a detailed investigation on what is learned in-context and a demographic analysis. Up to 20\% of what is learned in-context is the use of @-mentions and hashtags. Our main results hold across the demographic groups we studied.
comment: Updated Figure 1, added demographic analysis
Safety at One Shot: Patching Fine-Tuned LLMs with A Single Instance
Fine-tuning safety-aligned large language models (LLMs) can substantially compromise their safety. Previous approaches require many safety samples or calibration sets, which not only incur significant computational overhead during realignment but also lead to noticeable degradation in model utility. Contrary to this belief, we show that safety alignment can be fully recovered with only a single safety example, without sacrificing utility and at minimal cost. Remarkably, this recovery is effective regardless of the number of harmful examples used in fine-tuning or the size of the underlying model, and convergence is achieved within just a few epochs. Furthermore, we uncover the low-rank structure of the safety gradient, which explains why such efficient correction is possible. We validate our findings across five safety-aligned LLMs and multiple datasets, demonstrating the generality of our approach.
RobotDiffuse: Diffusion-Based Motion Planning for Redundant Manipulators with the ROP Obstacle Avoidance Dataset
Redundant manipulators, with their higher Degrees of Freedom (DoFs), offer enhanced kinematic performance and versatility, making them suitable for applications like manufacturing, surgical robotics, and human-robot collaboration. However, motion planning for these manipulators is challenging due to increased DoFs and complex, dynamic environments. While traditional motion planning algorithms struggle with high-dimensional spaces, deep learning-based methods often face instability and inefficiency in complex tasks. This paper introduces RobotDiffuse, a diffusion model-based approach for motion planning in redundant manipulators. By integrating physical constraints with a point cloud encoder and replacing the U-Net structure with an encoder-only transformer, RobotDiffuse improves the model's ability to capture temporal dependencies and generate smoother, more coherent motion plans. We validate the approach using a complex simulator and release a new dataset, Robot-obtalcles-panda (ROP), with 35M robot poses and 0.14M obstacle avoidance scenarios. The highest overall score obtained in the experiment demonstrates the effectiveness of RobotDiffuse and the promise of diffusion models for motion planning tasks. The dataset can be accessed at https://github.com/ACRoboT-buaa/RobotDiffuse.
A Large-Scale Analysis on the Use of Arrival Time Prediction for Automated Shuttle Services in the Real World
Urban mobility is on the cusp of transformation with the emergence of shared, connected, and cooperative automated vehicles. Yet, for them to be accepted by customers, trust in their punctuality is vital. Many pilot initiatives operate without a fixed schedule, enhancing the importance of reliable arrival time (AT) predictions. This study presents an AT prediction system for automated shuttles, utilizing separate models for dwell and running time predictions, validated on real-world data from six cities. Alongside established methods such as XGBoost, we explore the benefits of leveraging spatial correlations using graph neural networks (GNN). To accurately handle the case of a shuttle bypassing a stop, we propose a hierarchical model combining a random forest classifier and a GNN. The results for the final AT prediction are promising, showing low errors even when predicting several stops ahead. Yet, no single model emerges as universally superior, and we provide insights into the characteristics of pilot sites that influence the model selection process and prediction performance. Finally, we identify dwell time prediction as the key determinant in overall AT prediction accuracy when automated shuttles are deployed in low-traffic areas or under regulatory speed limits. Our meta-analysis across six pilot sites in different cities provides insights into the current state of autonomous public transport prediction models and paves the way for more data-informed decision-making as the field advances.
Graphics 6
RelightAnyone: A Generalized Relightable 3D Gaussian Head Model
3D Gaussian Splatting (3DGS) has become a standard approach to reconstruct and render photorealistic 3D head avatars. A major challenge is to relight the avatars to match any scene illumination. For high quality relighting, existing methods require subjects to be captured under complex time-multiplexed illumination, such as one-light-at-a-time (OLAT). We propose a new generalized relightable 3D Gaussian head model that can relight any subject observed in a single- or multi-view images without requiring OLAT data for that subject. Our core idea is to learn a mapping from flat-lit 3DGS avatars to corresponding relightable Gaussian parameters for that avatar. Our model consists of two stages: a first stage that models flat-lit 3DGS avatars without OLAT lighting, and a second stage that learns the mapping to physically-based reflectance parameters for high-quality relighting. This two-stage design allows us to train the first stage across diverse existing multi-view datasets without OLAT lighting ensuring cross-subject generalization, where we learn a dataset-specific lighting code for self-supervised lighting alignment. Subsequently, the second stage can be trained on a significantly smaller dataset of subjects captured under OLAT illumination. Together, this allows our method to generalize well and relight any subject from the first stage as if we had captured them under OLAT lighting. Furthermore, we can fit our model to unseen subjects from as little as a single image, allowing several applications in novel view synthesis and relighting for digital avatars.
Stroke Patches: Customizable Artistic Image Styling Using Regression
We present a novel, regression-based method for artistically styling images. Unlike recent neural style transfer or diffusion-based approaches, our method allows for explicit control over the stroke composition and level of detail in the rendered image through the use of an extensible set of stroke patches. The stroke patch sets are procedurally generated by small programs that control the shape, size, orientation, density, color, and noise level of the strokes in the individual patches. Once trained on a set of stroke patches, a U-Net based regression model can render any input image in a variety of distinct, evocative and customizable styles.
CaricatureGS: Exaggerating 3D Gaussian Splatting Faces With Gaussian Curvature
A photorealistic and controllable 3D caricaturization framework for faces is introduced. We start with an intrinsic Gaussian curvature-based surface exaggeration technique, which, when coupled with texture, tends to produce over-smoothed renders. To address this, we resort to 3D Gaussian Splatting (3DGS), which has recently been shown to produce realistic free-viewpoint avatars. Given a multiview sequence, we extract a FLAME mesh, solve a curvature-weighted Poisson equation, and obtain its exaggerated form. However, directly deforming the Gaussians yields poor results, necessitating the synthesis of pseudo-ground-truth caricature images by warping each frame to its exaggerated 2D representation using local affine transformations. We then devise a training scheme that alternates real and synthesized supervision, enabling a single Gaussian collection to represent both natural and exaggerated avatars. This scheme improves fidelity, supports local edits, and allows continuous control over the intensity of the caricature. In order to achieve real-time deformations, an efficient interpolation between the original and exaggerated surfaces is introduced. We further analyze and show that it has a bounded deviation from closed-form solutions. In both quantitative and qualitative evaluations, our results outperform prior work, delivering photorealistic, geometry-controlled caricature avatars.
Resolution deficits drive simulator sickness and compromise reading performance in virtual environments
Extended reality (XR) is evolving into a general-purpose computing platform, yet its adoption for productivity is hindered by visual fatigue and simulator sickness. While these symptoms are often attributed to latency or motion conflicts, the precise impact of textual clarity on physiological comfort remains undefined. Here we show that sub-optimal effective resolution, the clarity that reaches the eye after the full display-optics-rendering pipeline, is a primary driver of simulator sickness during reading tasks in both virtual reality and video see-through environments. By systematically manipulating end-to-end effective resolution on a unified logMAR scale, we measured reading psychophysics and sickness symptoms in a controlled within-subjects study. We find that reading performance and user comfort degrade exponentially as resolution drops below 0 logMAR (normal visual acuity). Notably, our results reveal 0 logMAR as a key physiological tipping point: resolutions better than this threshold yield naked-eye-level performance with minimal sickness, whereas poorer resolutions trigger rapid, non-linear increases in nausea and oculomotor strain. These findings suggest that the cognitive and perceptual effort required to resolve blurry text directly compromises user comfort, establishing human-eye resolution as a critical baseline for the design of future ergonomic XR systems.
comment: 18 pages, 7 figures, 7 tables
The perceptual gap between video see-through displays and natural human vision
Video see-through (VST) technology aims to seamlessly blend virtual and physical worlds by reconstructing reality through cameras. While manufacturers promise perceptual fidelity, it remains unclear how close these systems are to replicating natural human vision across varying environmental conditions. In this work, we quantify the perceptual gap between the human eye and different popular VST headsets (Apple Vision Pro, Meta Quest 3, Quest Pro) using psychophysical measures of visual acuity, contrast sensitivity, and color vision. We show that despite hardware advancements, all tested VST systems fail to match the dynamic range and adaptability of the naked eye. While high-end devices approach human performance in ideal lighting, they exhibit significant degradation in low-light conditions, particularly in contrast sensitivity and acuity. Our results map the physiological limitations of digital reality reconstruction, establishing a specific perceptual gap that defines the roadmap for achieving indistinguishable VST experiences.
comment: 19 pages, 9 figures, 4 tables
Listen to Rhythm, Choose Movements: Autoregressive Multimodal Dance Generation via Diffusion and Mamba with Decoupled Dance Dataset
Advances in generative models and sequence learning have greatly promoted research in dance motion generation, yet current methods still suffer from coarse semantic control and poor coherence in long sequences. In this work, we present Listen to Rhythm, Choose Movements (LRCM), a multimodal-guided diffusion framework supporting both diverse input modalities and autoregressive dance motion generation. We explore a feature decoupling paradigm for dance datasets and generalize it to the Motorica Dance dataset, separating motion capture data, audio rhythm, and professionally annotated global and local text descriptions. Our diffusion architecture integrates an audio-latent Conformer and a text-latent Cross-Conformer, and incorporates a Motion Temporal Mamba Module (MTMM) to enable smooth, long-duration autoregressive synthesis. Experimental results indicate that LRCM delivers strong performance in both functional capability and quantitative metrics, demonstrating notable potential in multimodal input scenarios and extended sequence generation. We will release the full codebase, dataset, and pretrained models publicly upon acceptance.
comment: 12 pages, 13 figures
Robotics 35
CycleVLA: Proactive Self-Correcting Vision-Language-Action Models via Subtask Backtracking and Minimum Bayes Risk Decoding
Current work on robot failure detection and correction typically operate in a post hoc manner, analyzing errors and applying corrections only after failures occur. This work introduces CycleVLA, a system that equips Vision-Language-Action models (VLAs) with proactive self-correction, the capability to anticipate incipient failures and recover before they fully manifest during execution. CycleVLA achieves this by integrating a progress-aware VLA that flags critical subtask transition points where failures most frequently occur, a VLM-based failure predictor and planner that triggers subtask backtracking upon predicted failure, and a test-time scaling strategy based on Minimum Bayes Risk (MBR) decoding to improve retry success after backtracking. Extensive experiments show that CycleVLA improves performance for both well-trained and under-trained VLAs, and that MBR serves as an effective zero-shot test-time scaling strategy for VLAs. Project Page: https://dannymcy.github.io/cyclevla/
comment: Project Page: https://dannymcy.github.io/cyclevla/
Differential Barometric Altimetry for Submeter Vertical Localization and Floor Recognition Indoors
Accurate altitude estimation and reliable floor recognition are critical for mobile robot localization and navigation within complex multi-storey environments. In this paper, we present a robust, low-cost vertical estimation framework leveraging differential barometric sensing integrated within a fully ROS-compliant software package. Our system simultaneously publishes real-time altitude data from both a stationary base station and a mobile sensor, enabling precise and drift-free vertical localization. Empirical evaluations conducted in challenging scenarios -- such as fully enclosed stairwells and elevators, demonstrate that our proposed barometric pipeline achieves sub-meter vertical accuracy (RMSE: 0.29 m) and perfect (100%) floor-level identification. In contrast, our results confirm that standalone height estimates, obtained solely from visual- or LiDAR-based SLAM odometry, are insufficient for reliable vertical localization. The proposed ROS-compatible barometric module thus provides a practical and cost-effective solution for robust vertical awareness in real-world robotic deployments. The implementation of our method is released as open source at https://github.com/witsir/differential-barometric.
SingingBot: An Avatar-Driven System for Robotic Face Singing Performance
Equipping robotic faces with singing capabilities is crucial for empathetic Human-Robot Interaction. However, existing robotic face driving research primarily focuses on conversations or mimicking static expressions, struggling to meet the high demands for continuous emotional expression and coherence in singing. To address this, we propose a novel avatar-driven framework for appealing robotic singing. We first leverage portrait video generation models embedded with extensive human priors to synthesize vivid singing avatars, providing reliable expression and emotion guidance. Subsequently, these facial features are transferred to the robot via semantic-oriented mapping functions that span a wide expression space. Furthermore, to quantitatively evaluate the emotional richness of robotic singing, we propose the Emotion Dynamic Range metric to measure the emotional breadth within the Valence-Arousal space, revealing that a broad emotional spectrum is crucial for appealing performances. Comprehensive experiments prove that our method achieves rich emotional expressions while maintaining lip-audio synchronization, significantly outperforming existing approaches.
Vision-Based Early Fault Diagnosis and Self-Recovery for Strawberry Harvesting Robots
Strawberry harvesting robots faced persistent challenges such as low integration of visual perception, fruit-gripper misalignment, empty grasping, and strawberry slippage from the gripper due to insufficient gripping force, all of which compromised harvesting stability and efficiency in orchard environments. To overcome these issues, this paper proposed a visual fault diagnosis and self-recovery framework that integrated multi-task perception with corrective control strategies. At the core of this framework was SRR-Net, an end-to-end multi-task perception model that simultaneously performed strawberry detection, segmentation, and ripeness estimation, thereby unifying visual perception with fault diagnosis. Based on this integrated perception, a relative error compensation method based on the simultaneous target-gripper detection was designed to address positional misalignment, correcting deviations when error exceeded the tolerance threshold. To mitigate empty grasping and fruit-slippage faults, an early abort strategy was implemented. A micro-optical camera embedded in the end-effector provided real-time visual feedback, enabling grasp detection during the deflating stage and strawberry slip prediction during snap-off through MobileNet V3-Small classifier and a time-series LSTM classifier. Experiments demonstrated that SRR-Net maintained high perception accuracy. For detection, it achieved a precision of 0.895 and recall of 0.813 on strawberries, and 0.972/0.958 on hands. In segmentation, it yielded a precision of 0.887 and recall of 0.747 for strawberries, and 0.974/0.947 for hands. For ripeness estimation, SRR-Net attained a mean absolute error of 0.035, while simultaneously supporting multi-task perception and sustaining a competitive inference speed of 163.35 FPS.
Realistic adversarial scenario generation via human-like pedestrian model for autonomous vehicle control parameter optimisation
Autonomous vehicles (AVs) are rapidly advancing and are expected to play a central role in future mobility. Ensuring their safe deployment requires reliable interaction with other road users, not least pedestrians. Direct testing on public roads is costly and unsafe for rare but critical interactions, making simulation a practical alternative. Within simulation-based testing, adversarial scenarios are widely used to probe safety limits, but many prioritise difficulty over realism, producing exaggerated behaviours which may result in AV controllers that are overly conservative. We propose an alternative method, instead using a cognitively inspired pedestrian model featuring both inter-individual and intra-individual variability to generate behaviourally plausible adversarial scenarios. We provide a proof of concept demonstration of this method's potential for AV control optimisation, in closed-loop testing and tuning of an AV controller. Our results show that replacing the rule-based CARLA pedestrian with the human-like model yields more realistic gap acceptance patterns and smoother vehicle decelerations. Unsafe interactions occur only for certain pedestrian individuals and conditions, underscoring the importance of human variability in AV testing. Adversarial scenarios generated by this model can be used to optimise AV control towards safer and more efficient behaviour. Overall, this work illustrates how incorporating human-like road user models into simulation-based adversarial testing can enhance the credibility of AV evaluation and provide a practical basis to behaviourally informed controller optimisation.
Genie Sim 3.0 : A High-Fidelity Comprehensive Simulation Platform for Humanoid Robot
The development of robust and generalizable robot learning models is critically contingent upon the availability of large-scale, diverse training data and reliable evaluation benchmarks. Collecting data in the physical world poses prohibitive costs and scalability challenges, and prevailing simulation benchmarks frequently suffer from fragmentation, narrow scope, or insufficient fidelity to enable effective sim-to-real transfer. To address these challenges, we introduce Genie Sim 3.0, a unified simulation platform for robotic manipulation. We present Genie Sim Generator, a large language model (LLM)-powered tool that constructs high-fidelity scenes from natural language instructions. Its principal strength resides in rapid and multi-dimensional generalization, facilitating the synthesis of diverse environments to support scalable data collection and robust policy evaluation. We introduce the first benchmark that pioneers the application of LLM for automated evaluation. It leverages LLM to mass-generate evaluation scenarios and employs Vision-Language Model (VLM) to establish an automated assessment pipeline. We also release an open-source dataset comprising more than 10,000 hours of synthetic data across over 200 tasks. Through systematic experimentation, we validate the robust zero-shot sim-to-real transfer capability of our open-source dataset, demonstrating that synthetic data can server as an effective substitute for real-world data under controlled conditions for scalable policy training. For code and dataset details, please refer to: https://github.com/AgibotTech/genie_sim.
VIT-Ped: Visionary Intention Transformer for Pedestrian Behavior Analysis
Pedestrian Intention prediction is one of the key technologies in the transition from level 3 to level 4 autonomous driving. To understand pedestrian crossing behaviour, several elements and features should be taken into consideration to make the roads of tomorrow safer for everybody. We introduce a transformer / video vision transformer based algorithm of different sizes which uses different data modalities .We evaluated our algorithms on popular pedestrian behaviour dataset, JAAD, and have reached SOTA performance and passed the SOTA in metrics like Accuracy, AUC and F1-score. The advantages brought by different model design choices are investigated via extensive ablation studies.
Deep Robust Koopman Learning from Noisy Data
Koopman operator theory has emerged as a leading data-driven approach that relies on a judicious choice of observable functions to realize global linear representations of nonlinear systems in the lifted observable space. However, real-world data is often noisy, making it difficult to obtain an accurate and unbiased approximation of the Koopman operator. The Koopman operator generated from noisy datasets is typically corrupted by noise-induced bias that severely degrades prediction and downstream tracking performance. In order to address this drawback, this paper proposes a novel autoencoder-based neural architecture to jointly learn the appropriate lifting functions and the reduced-bias Koopman operator from noisy data. The architecture initially learns the Koopman basis functions that are consistent for both the forward and backward temporal dynamics of the system. Subsequently, by utilizing the learned forward and backward temporal dynamics, the Koopman operator is synthesized with a reduced bias making the method more robust to noise compared to existing techniques. Theoretical analysis is used to demonstrate significant bias reduction in the presence of training noise. Dynamics prediction and tracking control simulations are conducted for multiple serial manipulator arms, including performance comparisons with leading alternative designs, to demonstrate its robustness under various noise levels. Experimental studies with the Franka FR3 7-DoF manipulator arm are further used to demonstrate the effectiveness of the proposed approach in a practical setting.
What you reward is what you learn: Comparing rewards for online speech policy optimization in public HRI
Designing policies that are both efficient and acceptable for conversational service robots in open and diverse environments is non-trivial. Unlike fixed, hand-tuned parameters, online learning can adapt to non-stationary conditions. In this paper, we study how to adapt a social robot's speech policy in the wild. During a 12-day in-situ deployment with over 1,400 public encounters, we cast online policy optimization as a multi-armed bandit problem and use Thompson sampling to select among six actions defined by speech rate (slow/normal/fast) and verbosity (concise/detailed). We compare three complementary binary rewards--Ru (user rating), Rc (conversation closure), and Rt (>=2 turns)--and show that each induces distinct arm distributions and interaction behaviors. We complement the online results with offline evaluations that analyze contextual factors (e.g., crowd level, group size) using video-annotated data. Taken together, we distill ready-to-use design lessons for deploying online optimization of speech policies in real public HRI settings.
Learning Diffusion Policy from Primitive Skills for Robot Manipulation AAAI2026
Diffusion policies (DP) have recently shown great promise for generating actions in robotic manipulation. However, existing approaches often rely on global instructions to produce short-term control signals, which can result in misalignment in action generation. We conjecture that the primitive skills, referred to as fine-grained, short-horizon manipulations, such as ``move up'' and ``open the gripper'', provide a more intuitive and effective interface for robot learning. To bridge this gap, we propose SDP, a skill-conditioned DP that integrates interpretable skill learning with conditional action planning. SDP abstracts eight reusable primitive skills across tasks and employs a vision-language model to extract discrete representations from visual observations and language instructions. Based on them, a lightweight router network is designed to assign a desired primitive skill for each state, which helps construct a single-skill policy to generate skill-aligned actions. By decomposing complex tasks into a sequence of primitive skills and selecting a single-skill policy, SDP ensures skill-consistent behavior across diverse tasks. Extensive experiments on two challenging simulation benchmarks and real-world robot deployments demonstrate that SDP consistently outperforms SOTA methods, providing a new paradigm for skill-based robot learning with diffusion policies.
comment: Accepted to AAAI2026
From Metrics to Meaning: Insights from a Mixed-Methods Field Experiment on Retail Robot Deployment
We report a mixed-methods field experiment of a conversational service robot deployed under everyday staffing discretion in a live bedding store. Over 12 days we alternated three conditions--Baseline (no robot), Robot-only, and Robot+Fixture--and video-annotated the service funnel from passersby to purchase. An explanatory sequential design then used six post-experiment staff interviews to interpret the quantitative patterns. Quantitatively, the robot increased stopping per passerby (highest with the fixture), yet clerk-led downstream steps per stopper--clerk approach, store entry, assisted experience, and purchase--decreased. Interviews explained this divergence: clerks avoided interrupting ongoing robot-customer talk, struggled with ambiguous timing amid conversational latency, and noted child-centered attraction that often satisfied curiosity at the doorway. The fixture amplified visibility but also anchored encounters at the threshold, creating a well-defined micro-space where needs could ``close'' without moving inside. We synthesize these strands into an integrative account from the initial show of interest on the part of a customer to their entering the store and derive actionable guidance. The results advance the understanding of interactions between customers, staff members, and the robot and offer practical recommendations for deploying service robots in high-touch retail.
CausalNav: A Long-term Embodied Navigation System for Autonomous Mobile Robots in Dynamic Outdoor Scenarios RA-L
Autonomous language-guided navigation in large-scale outdoor environments remains a key challenge in mobile robotics, due to difficulties in semantic reasoning, dynamic conditions, and long-term stability. We propose CausalNav, the first scene graph-based semantic navigation framework tailored for dynamic outdoor environments. We construct a multi-level semantic scene graph using LLMs, referred to as the Embodied Graph, that hierarchically integrates coarse-grained map data with fine-grained object entities. The constructed graph serves as a retrievable knowledge base for Retrieval-Augmented Generation (RAG), enabling semantic navigation and long-range planning under open-vocabulary queries. By fusing real-time perception with offline map data, the Embodied Graph supports robust navigation across varying spatial granularities in dynamic outdoor environments. Dynamic objects are explicitly handled in both the scene graph construction and hierarchical planning modules. The Embodied Graph is continuously updated within a temporal window to reflect environmental changes and support real-time semantic navigation. Extensive experiments in both simulation and real-world settings demonstrate superior robustness and efficiency.
comment: Accepted by IEEE Robotics and Automation Letters (RA-L)
DisCo-FLoc: Using Dual-Level Visual-Geometric Contrasts to Disambiguate Depth-Aware Visual Floorplan Localization
Since floorplan data is readily available, long-term persistent, and robust to changes in visual appearance, visual Floorplan Localization (FLoc) has garnered significant attention. Existing methods either ingeniously match geometric priors or utilize sparse semantics to reduce FLoc uncertainty. However, they still suffer from ambiguous FLoc caused by repetitive structures within minimalist floorplans. Moreover, expensive but limited semantic annotations restrict their applicability. To address these issues, we propose DisCo-FLoc, which utilizes dual-level visual-geometric Contrasts to Disambiguate depth-aware visual Floc, without requiring additional semantic labels. Our solution begins with a ray regression predictor tailored for ray-casting-based FLoc, predicting a series of FLoc candidates using depth estimation expertise. In addition, a novel contrastive learning method with position-level and orientation-level constraints is proposed to strictly match depth-aware visual features with the corresponding geometric structures in the floorplan. Such matches can effectively eliminate FLoc ambiguity and select the optimal imaging pose from FLoc candidates. Exhaustive comparative studies on two standard visual Floc benchmarks demonstrate that our method outperforms the state-of-the-art semantic-based method, achieving significant improvements in both robustness and accuracy.
comment: 7 pages, 4 figures
AlignDrive: Aligned Lateral-Longitudinal Planning for End-to-End Autonomous Driving
End-to-end autonomous driving has rapidly progressed, enabling joint perception and planning in complex environments. In the planning stage, state-of-the-art (SOTA) end-to-end autonomous driving models decouple planning into parallel lateral and longitudinal predictions. While effective, this parallel design can lead to i) coordination failures between the planned path and speed, and ii) underutilization of the drive path as a prior for longitudinal planning, thus redundantly encoding static information. To address this, we propose a novel cascaded framework that explicitly conditions longitudinal planning on the drive path, enabling coordinated and collision-aware lateral and longitudinal planning. Specifically, we introduce a path-conditioned formulation that explicitly incorporates the drive path into longitudinal planning. Building on this, the model predicts longitudinal displacements along the drive path rather than full 2D trajectory waypoints. This design simplifies longitudinal reasoning and more tightly couples it with lateral planning. Additionally, we introduce a planning-oriented data augmentation strategy that simulates rare safety-critical events, such as vehicle cut-ins, by adding agents and relabeling longitudinal targets to avoid collision. Evaluated on the challenging Bench2Drive benchmark, our method sets a new SOTA, achieving a driving score of 89.07 and a success rate of 73.18%, demonstrating significantly improved coordination and safety
comment: underreview
Simulations and Advancements in MRI-Guided Power-Driven Ferric Tools for Wireless Therapeutic Interventions
Designing a robotic system that functions effectively within the specific environment of a Magnetic Resonance Imaging (MRI) scanner requires solving numerous technical issues, such as maintaining the robot's precision and stability under strong magnetic fields. This research focuses on enhancing MRI's role in medical imaging, especially in its application to guide intravascular interventions using robot-assisted devices. A newly developed computational system is introduced, designed for seamless integration with the MRI scanner, including a computational unit and user interface. This system processes MR images to delineate the vascular network, establishing virtual paths and boundaries within vessels to prevent procedural damage. Key findings reveal the system's capability to create tailored magnetic field gradient patterns for device control, considering the vessel's geometry and safety norms, and adapting to different blood flow characteristics for finer navigation. Additionally, the system's modeling aspect assesses the safety and feasibility of navigating pre-set vascular paths. Conclusively, this system, based on the Qt framework and C/C++, with specialized software modules, represents a major step forward in merging imaging technology with robotic aid, significantly enhancing precision and safety in intravascular procedures.
comment: 10 pages, 7 figures
Explicit World Models for Reliable Human-Robot Collaboration AAAI-26
This paper addresses the topic of robustness under sensing noise, ambiguous instructions, and human-robot interaction. We take a radically different tack to the issue of reliable embodied AI: instead of focusing on formal verification methods aimed at achieving model predictability and robustness, we emphasise the dynamic, ambiguous and subjective nature of human-robot interactions that requires embodied AI systems to perceive, interpret, and respond to human intentions in a manner that is consistent, comprehensible and aligned with human expectations. We argue that when embodied agents operate in human environments that are inherently social, multimodal, and fluid, reliability is contextually determined and only has meaning in relation to the goals and expectations of humans involved in the interaction. This calls for a fundamentally different approach to achieving reliable embodied AI that is centred on building and updating an accessible "explicit world model" representing the common ground between human and AI, that is used to align robot behaviours with human expectations.
comment: Accepted to AAAI-26 Bridge Program B10: Making Embodied AI Reliable with Testing and Formal Verification
Real-Time Lane Detection via Efficient Feature Alignment and Covariance Optimization for Low-Power Embedded Systems
Real-time lane detection in embedded systems encounters significant challenges due to subtle and sparse visual signals in RGB images, often constrained by limited computational resources and power consumption. Although deep learning models for lane detection categorized into segmentation-based, anchor-based, and curve-based methods there remains a scarcity of universally applicable optimization techniques tailored for low-power embedded environments. To overcome this, we propose an innovative Covariance Distribution Optimization (CDO) module specifically designed for efficient, real-time applications. The CDO module aligns lane feature distributions closely with ground-truth labels, significantly enhancing detection accuracy without increasing computational complexity. Evaluations were conducted on six diverse models across all three method categories, including two optimized for real-time applications and four state-of-the-art (SOTA) models, tested comprehensively on three major datasets: CULane, TuSimple, and LLAMAS. Experimental results demonstrate accuracy improvements ranging from 0.01% to 1.5%. The proposed CDO module is characterized by ease of integration into existing systems without structural modifications and utilizes existing model parameters to facilitate ongoing training, thus offering substantial benefits in performance, power efficiency, and operational flexibility in embedded systems.
AMC26: High-performance DOb for robust position control
This paper presents a new HPDOb that significantly improves disturbance estimation accuracy and robustness in motion control systems, surpassing the capabilities of conventional DObs. The proposed observer is analysed and synthesised in the discrete-time domain, providing a realistic representation of their dynamic behaviour and enabling enhanced controller design for practical applications. The core contribution of the HPDOb is a novel synthesis method that incorporates higher-order truncation error dynamics into disturbance estimation. Unlike conventional DObs, which are limited to zero-order truncation error, the HPDOb achieves first-order truncation error, yielding markedly improved estimation accuracy and robustness against disturbances in motion control systems. Simulation and experiments verify the stability and performance of HPDOb.
Learning and Optimizing the Efficacy of Spatio-Temporal Task Allocation under Temporal and Resource Constraints
Complex multi-robot missions often require heterogeneous teams to jointly optimize task allocation, scheduling, and path planning to improve team performance under strict constraints. We formalize these complexities into a new class of problems, dubbed Spatio-Temporal Efficacy-optimized Allocation for Multi-robot systems (STEAM). STEAM builds upon trait-based frameworks that model robots using their capabilities (e.g., payload and speed), but goes beyond the typical binary success-failure model by explicitly modeling the efficacy of allocations as trait-efficacy maps. These maps encode how the aggregated capabilities assigned to a task determine performance. Further, STEAM accommodates spatio-temporal constraints, including a user-specified time budget (i.e., maximum makespan). To solve STEAM problems, we contribute a novel algorithm named Efficacy-optimized Incremental Task Allocation Graph Search (E-ITAGS) that simultaneously optimizes task performance and respects time budgets by interleaving task allocation, scheduling, and path planning. Motivated by the fact that trait-efficacy maps are difficult, if not impossible, to specify, E-ITAGS efficiently learns them using a realizability-aware active learning module. Our approach is realizability-aware since it explicitly accounts for the fact that not all combinations of traits are realizable by the robots available during learning. Further, we derive experimentally-validated bounds on E-ITAGS' suboptimality with respect to efficacy. Detailed numerical simulations and experiments using an emergency response domain demonstrate that E-ITAGS generates allocations of higher efficacy compared to baselines, while respecting resource and spatio-temporal constraints. We also show that our active learning approach is sample efficient and establishes a principled tradeoff between data and computational efficiency.
comment: The journal extension version of our conference paper: arXiv:2404.07902, which has been accepted by ISRR 2024
InternVLA-A1: Unifying Understanding, Generation and Action for Robotic Manipulation
Prevalent Vision-Language-Action (VLA) models are typically built upon Multimodal Large Language Models (MLLMs) and demonstrate exceptional proficiency in semantic understanding, but they inherently lack the capability to deduce physical world dynamics. Consequently, recent approaches have shifted toward World Models, typically formulated via video prediction; however, these methods often suffer from a lack of semantic grounding and exhibit brittleness when handling prediction errors. To synergize semantic understanding with dynamic predictive capabilities, we present InternVLA-A1. This model employs a unified Mixture-of-Transformers architecture, coordinating three experts for scene understanding, visual foresight generation, and action execution. These components interact seamlessly through a unified masked self-attention mechanism. Building upon InternVL3 and Qwen3-VL, we instantiate InternVLA-A1 at 2B and 3B parameter scales. We pre-train these models on hybrid synthetic-real datasets spanning InternData-A1 and Agibot-World, covering over 533M frames. This hybrid training strategy effectively harnesses the diversity of synthetic simulation data while minimizing the sim-to-real gap. We evaluated InternVLA-A1 across 12 real-world robotic tasks and simulation benchmark. It significantly outperforms leading models like pi0 and GR00T N1.5, achieving a 14.5\% improvement in daily tasks and a 40\%-73.3\% boost in dynamic settings, such as conveyor belt sorting.
comment: Homepage: https://internrobotics.github.io/internvla-a1.github.io/
Low-Back Pain Physical Rehabilitation by Movement Analysis in Clinical Trial
To allow the development and assessment of physical rehabilitation by an intelligent tutoring system, we propose a medical dataset of clinical patients carrying out low back-pain rehabilitation exercises and benchmark on state of the art human movement analysis algorithms. This dataset is valuable because it includes rehabilitation motions in a clinical setting with patients in their rehabilitation program. This paper introduces the Keraal dataset, a clinically collected dataset to enable intelligent tutoring systems (ITS) for rehabilitation. It addresses four challenges in exercise monitoring: motion assessment, error recognition, spatial localization, temporal localization
comment: ICMST, Tokyo University of Science; Taiwanese Society of Movement Science and Technology; Research institute for Science and Technology, Nov 2025, Tokyo, Japan
A Review of Online Diffusion Policy RL Algorithms for Scalable Robotic Control
Diffusion policies have emerged as a powerful approach for robotic control, demonstrating superior expressiveness in modeling multimodal action distributions compared to conventional policy networks. However, their integration with online reinforcement learning remains challenging due to fundamental incompatibilities between diffusion model training objectives and standard RL policy improvement mechanisms. This paper presents the first comprehensive review and empirical analysis of current Online Diffusion Policy Reinforcement Learning (Online DPRL) algorithms for scalable robotic control systems. We propose a novel taxonomy that categorizes existing approaches into four distinct families -- Action-Gradient, Q-Weighting, Proximity-Based, and Backpropagation Through Time (BPTT) methods -- based on their policy improvement mechanisms. Through extensive experiments on a unified NVIDIA Isaac Lab benchmark encompassing 12 diverse robotic tasks, we systematically evaluate representative algorithms across five critical dimensions: task diversity, parallelization capability, diffusion step scalability, cross-embodiment generalization, and environmental robustness. Our analysis identifies key findings regarding the fundamental trade-offs inherent in each algorithmic family, particularly concerning sample efficiency and scalability. Furthermore, we reveal critical computational and algorithmic bottlenecks that currently limit the practical deployment of online DPRL. Based on these findings, we provide concrete guidelines for algorithm selection tailored to specific operational constraints and outline promising future research directions to advance the field toward more general and scalable robotic learning systems.
LIMOncello: Iterated Error-State Kalman Filter on the SGal(3) Manifold for Fast LiDAR-Inertial Odometry
This work introduces LIMOncello, a tightly coupled LiDAR-Inertial Odometry system that models 6-DoF motion on the $\mathrm{SGal}(3)$ manifold within an iterated error-state Kalman filter backend. Compared to state representations defined on $\mathrm{SO}(3)\times\mathbb{R}^6$, the use of $\mathrm{SGal}(3)$ provides a coherent and numerically stable discrete-time propagation model that helps limit drift in low-observability conditions. LIMOncello also includes a lightweight incremental i-Octree mapping backend that enables faster updates and substantially lower memory usage than incremental kd-tree style map structures, without relying on locality-restricted search heuristics. Experiments on multiple real-world datasets show that LIMOncello achieves competitive accuracy while improving robustness in geometrically sparse environments. The system maintains real-time performance with stable memory growth and is released as an extensible open-source implementation at https://github.com/CPerezRuiz335/LIMOncello.
FORTE: Tactile Force and Slip Sensing on Compliant Fingers for Delicate Manipulation
Handling fragile objects remains a major challenge for robotic manipulation. Tactile sensing and soft robotics can improve delicate object handling, but typically involve high integration complexity or slow response times. We address these issues through FORTE, an easy-to-fabricate tactile sensing system. FORTE uses 3D-printed fin-ray grippers with internal air channels to provide low-latency force and slip feedback. This feedback allows us to apply just enough force to grasp objects without damaging them. We accurately estimate grasping forces from 0-8 N with an average error of 0.2 N, and detect slip events within 100 ms of occurring. FORTE can grasp a wide range of slippery, fragile, and deformable objects, including raspberries and potato chips with 92% success and achieves 93% accuracy in detecting slip events. These results highlight FORTE's potential as a robust solution for delicate robotic manipulation. Project page: https://merge-lab.github.io/FORTE/
Volume-Consistent Kneading-Based Deformation Manufacturing for Material-Efficient Shaping
Conventional subtractive manufacturing inevitably involves material loss during geometric realization, while additive manufacturing still suffers from limitations in surface quality, process continuity, and productivity when fabricating complex geometries. To address these challenges, this paper proposes a volume-consistent kneading-based forming method for plastic materials, enabling continuous and controllable three-dimensional deformation under mass conservation. An integrated kneading-based manufacturing system is developed, in which geometry-aware kneading command generation, layer-wise kneading execution, and in-process point-cloud scanning are tightly coupled to form a closed-loop workflow of scanning, forming, and feedback compensation. Target geometries are analyzed through layer-wise point-cloud processing and classified into enveloping and non-enveloping types. Accordingly, an Envelope Shaping First strategy and a Similar Gradient Method are adopted to ensure stable material flow and continuous deformation. An RMSE-based compensation scheme is further introduced to correct systematic geometric deviations induced by elastic rebound and material redistribution. Experimental validation on five representative geometries demonstrates high geometric fidelity, with material utilization consistently exceeding 98%. The results indicate that kneading-based forming provides a promising alternative manufacturing paradigm for low-waste, customizable production.
comment: 39 pages, 31 figures
Compositional Diffusion with Guided Search for Long-Horizon Planning
Generative models have emerged as powerful tools for planning, with compositional approaches offering particular promise for modeling long-horizon task distributions by composing together local, modular generative models. This compositional paradigm spans diverse domains, from multi-step manipulation planning to panoramic image synthesis to long video generation. However, compositional generative models face a critical challenge: when local distributions are multimodal, existing composition methods average incompatible modes, producing plans that are neither locally feasible nor globally coherent. We propose Compositional Diffusion with Guided Search (CDGS), which addresses this mode averaging problem by embedding search directly within the diffusion denoising process. Our method explores diverse combinations of local modes through population-based sampling, prunes infeasible candidates using likelihood-based filtering, and enforces global consistency through iterative resampling between overlapping segments. CDGS matches oracle performance on seven robot manipulation tasks, outperforming baselines that lack compositionality or require long-horizon training data. The approach generalizes across domains, enabling coherent text-guided panoramic images and long videos through effective local-to-global message passing. More details: https://cdgsearch.github.io/
comment: 38 pages, 18 figures
Interconnection and Damping Assignment Passivity-Based Control using Sparse Neural ODEs
Interconnection and Damping Assignment Passivity-Based Control (IDA-PBC) is a nonlinear control technique that assigns a port-Hamiltonian (pH) structure to a controlled system using a state-feedback law. While IDA-PBC has been extensively studied and applied to many systems, its practical implementation often remains confined to academic examples and, almost exclusively, to stabilization tasks. The main limitation of IDA-PBC stems from the complexity of analytically solving a set of partial differential equations (PDEs), referred to as the matching conditions, which enforce the pH structure of the closed-loop system. However, this is extremely challenging, especially for complex physical systems and tasks. In this work, we propose a novel numerical approach for designing IDA-PBC controllers without solving the matching PDEs exactly. We cast the IDA-PBC problem as the learning of a neural ordinary differential equation. In particular, we rely on sparse dictionary learning to parametrize the desired closed-loop system as a sparse linear combination of nonlinear state-dependent functions. Optimization of the controller parameters is achieved by solving a multi-objective optimization problem whose cost function is composed of a generic task-dependent cost and a matching condition-dependent cost. Our numerical results show that the proposed method enables (i) IDA-PBC to be applicable to complex tasks beyond stabilization, such as the discovery of periodic oscillatory behaviors, (ii) the derivation of closed-form expressions of the controlled system, including residual terms in case of approximate matching, and (iii) stability analysis of the learned controller.
Foundation models on the bridge: Semantic hazard detection and safety maneuvers for maritime autonomy with vision-language models
The draft IMO MASS Code requires autonomous and remotely supervised maritime vessels to detect departures from their operational design domain, enter a predefined fallback that notifies the operator, permit immediate human override, and avoid changing the voyage plan without approval. Meeting these obligations in the alert-to-takeover gap calls for a short-horizon, human-overridable fallback maneuver. Classical maritime autonomy stacks struggle when the correct action depends on meaning (e.g., diver-down flag means people in the water, fire close by means hazard). We argue (i) that vision-language models (VLMs) provide semantic awareness for such out-of-distribution situations, and (ii) that a fast-slow anomaly pipeline with a short-horizon, human-overridable fallback maneuver makes this practical in the handover window. We introduce Semantic Lookout, a camera-only, candidate-constrained VLM fallback maneuver selector that selects one cautious action (or station-keeping) from water-valid, world-anchored trajectories under continuous human authority. On 40 harbor scenes we measure per-call scene understanding and latency, alignment with human consensus (model majority-of-three voting), short-horizon risk-relief on fire hazard scenes, and an on-water alert->fallback maneuver->operator handover. Sub-10 s models retain most of the awareness of slower state-of-the-art models. The fallback maneuver selector outperforms geometry-only baselines and increases standoff distance on fire scenes. A field run verifies end-to-end operation. These results support VLMs as semantic fallback maneuver selectors compatible with the draft IMO MASS Code, within practical latency budgets, and motivate future work on domain-adapted, hybrid autonomy that pairs foundation-model semantics with multi-sensor bird's-eye-view perception and short-horizon replanning. Website: kimachristensen.github.io/bridge_policy
comment: 17 pages without bibliography or appendix. The main paper has 16 figures. Paper webpage can be found at https://kimachristensen.github.io/bridge_policy/
MOON: Multi-Objective Optimization-Driven Object-Goal Navigation Using a Variable-Horizon Set-Orienteering Planner
This paper proposes MOON (Multi-Objective Optimization-driven Object-goal Navigation), a novel framework designed for efficient navigation in large-scale, complex indoor environments. While existing methods often rely on local heuristics, they frequently fail to address the strategic trade-offs between competing objectives in vast areas. To overcome this, we formulate the task as a multi-objective optimization problem (MOO) that balances frontier-based exploration with the exploitation of observed landmarks. Our prototype integrates three key pillars: (1) QOM [IROS05] for discriminative landmark encoding; (2) StructNav [RSS23] to enhance the navigation pipeline; and (3) a variable-horizon Set Orienteering Problem (SOP) formulation for globally coherent planning. To further support the framework's scalability, we provide a detailed theoretical foundation for the budget-constrained SOP formulation and the data-driven mode-switching strategy that enables long-horizon resource allocation. Additionally, we introduce a high-speed neural planner that distills the expert solver into a transformer-based model, reducing decision latency by a factor of nearly 10 while maintaining high planning quality.
comment: 9 pages, 7 figures, technical report
Multi-Robot Data-Free Continual Communicative Learning (CCL) from Black-Box Visual Place Recognition Models
In emerging multi-robot societies, heterogeneous agents must continually extract and integrate local knowledge from one another through communication, even when their internal models are completely opaque. Existing approaches to continual or collaborative learning for visual place recognition (VPR) largely assume white-box access to model parameters or shared training datasets, which is unrealistic when robots encounter unknown peers in the wild. This paper introduces \emph{Continual Communicative Learning (CCL)}, a data-free multi-robot framework in which a traveler robot (student) continually improves its VPR capability by communicating with black-box teacher models via a constrained query--response channel. We repurpose Membership Inference Attacks (MIA), originally developed as privacy attacks on machine learning models, as a constructive communication primitive to reconstruct pseudo-training sets from black-box VPR teachers without accessing their parameters or raw data. To overcome the intrinsic communication bottleneck caused by the low sampling efficiency of black-box MIA, we propose a prior-based query strategy that leverages the student's own VPR prior to focus queries on informative regions of the embedding space, thereby reducing the knowledge transfer (KT) cost. Experimental results on a standard multi-session VPR benchmark demonstrate that the proposed CCL framework yields substantial performance gains for low-performing robots under modest communication budgets, highlighting CCL as a promising building block for scalable and fault-tolerant multi-robot systems.
comment: 6 pages, 4 figures, technical report
AdaVLN: Towards Visual Language Navigation in Continuous Indoor Environments with Moving Humans
Visual Language Navigation is a task that challenges robots to navigate in realistic environments based on natural language instructions. While previous research has largely focused on static settings, real-world navigation must often contend with dynamic human obstacles. Hence, we propose an extension to the task, termed Adaptive Visual Language Navigation (AdaVLN), which seeks to narrow this gap. AdaVLN requires robots to navigate complex 3D indoor environments populated with dynamically moving human obstacles, adding a layer of complexity to navigation tasks that mimic the real-world. To support exploration of this task, we also present AdaVLN simulator and AdaR2R datasets. The AdaVLN simulator enables easy inclusion of fully animated human models directly into common datasets like Matterport3D. We also introduce a "freeze-time" mechanism for both the navigation task and simulator, which pauses world state updates during agent inference, enabling fair comparisons and experimental reproducibility across different hardware. We evaluate several baseline models on this task, analyze the unique challenges introduced by AdaVLN, and demonstrate its potential to bridge the sim-to-real gap in VLN research.
RoboBPP: Benchmarking Robotic Online Bin Packing with Physics-based Simulation IJRR
Physical feasibility in 3D bin packing is a key requirement in modern industrial logistics and robotic automation. With the growing adoption of industrial automation, online bin packing has gained increasing attention. However, inconsistencies in problem settings, test datasets, and evaluation metrics have hindered progress in the field, and there is a lack of a comprehensive benchmarking system. Direct testing on real hardware is costly, and building a realistic simulation environment is also challenging. To address these limitations, we introduce RoboBPP, a benchmarking system designed for robotic online bin packing. RoboBPP integrates a physics-based simulator to assess physical feasibility. In our simulation environment, we introduce a robotic arm and boxes at real-world scales to replicate real industrial packing workflows. By simulating conditions that arise in real industrial applications, we ensure that evaluated algorithms are practically deployable. In addition, prior studies often rely on synthetic datasets whose distributions differ from real-world industrial data. To address this issue, we collect three datasets from real industrial workflows, including assembly-line production, logistics packing, and furniture manufacturing. The benchmark comprises three carefully designed test settings and extends existing evaluation metrics with new metrics for structural stability and operational safety. We design a scoring system and derive a range of insights from the evaluation results. RoboBPP is fully open-source and is equipped with visualization tools and an online leaderboard, providing a reproducible and extensible foundation for future research and industrial applications (https://robot-bin-packing-benchmark.github.io).
comment: Under review at the International Journal of Robotics Research (IJRR)
RNBF: Real-Time RGB-D Based Neural Barrier Functions for Safe Robotic Navigation
Autonomous safe navigation in unstructured and novel environments poses significant challenges, especially when environment information can only be provided through low-cost vision sensors. Although safe reactive approaches have been proposed to ensure robot safety in complex environments, many base their theory off the assumption that the robot has prior knowledge on obstacle locations and geometries. In this paper, we present a real-time, vision-based framework that constructs continuous, first-order differentiable Signed Distance Fields (SDFs) of unknown environments entirely online, without any pre-training, and is fully compatible with established SDF-based reactive controllers. To achieve robust performance under practical sensing conditions, our approach explicitly accounts for noise in affordable RGB-D cameras, refining the neural SDF representation online for smoother geometry and stable gradient estimates. We validate the proposed method in simulation and real-world experiments using a Fetch robot. Videos and supplementary material are available at https://satyajeetburla.github.io/rnbf/.
SurgWorld: Learning Surgical Robot Policies from Videos via World Modeling
Data scarcity remains a fundamental barrier to achieving fully autonomous surgical robots. While large scale vision language action (VLA) models have shown impressive generalization in household and industrial manipulation by leveraging paired video action data from diverse domains, surgical robotics suffers from the paucity of datasets that include both visual observations and accurate robot kinematics. In contrast, vast corpora of surgical videos exist, but they lack corresponding action labels, preventing direct application of imitation learning or VLA training. In this work, we aim to alleviate this problem by learning policy models from SurgWorld, a world model designed for surgical physical AI. We curated the Surgical Action Text Alignment (SATA) dataset with detailed action description specifically for surgical robots. Then we built SurgeWorld based on the most advanced physical AI world model and SATA. It's able to generate diverse, generalizable and realistic surgery videos. We are also the first to use an inverse dynamics model to infer pseudokinematics from synthetic surgical videos, producing synthetic paired video action data. We demonstrate that a surgical VLA policy trained with these augmented data significantly outperforms models trained only on real demonstrations on a real surgical robot platform. Our approach offers a scalable path toward autonomous surgical skill acquisition by leveraging the abundance of unlabeled surgical video and generative world modeling, thus opening the door to generalizable and data efficient surgical robot policies.
Openpi Comet: Competition Solution For 2025 BEHAVIOR Challenge
The 2025 BEHAVIOR Challenge is designed to rigorously track progress toward solving long-horizon tasks by physical agents in simulated environments. BEHAVIOR-1K focuses on everyday household tasks that people most want robots to assist with and these tasks introduce long-horizon mobile manipulation challenges in realistic settings, bridging the gap between current research and real-world, human-centric applications. This report presents our solution to the 2025 BEHAVIOR Challenge in a very close 2nd place and substantially outperforms the rest of the submissions. Building on $π_{0.5}$, we focus on systematically building our solution by studying the effects of training techniques and data. Through careful ablation studies, we reveal the scaling benefits in both the pre-training and post-training phases, leading to a validation Q-score of 0.345, significantly surpassing previous state-of-the-art performance. We summarize our practical lessons and design recommendations that we hope will provide actionable insights for the broader embodied AI community when adapting powerful foundation models to complex embodied scenarios. Project page: https://github.com/mli0603/openpi-comet
comment: Post-challenge bug fix
Computer Vision and Pattern Recognition 140
ExposeAnyone: Personalized Audio-to-Expression Diffusion Models Are Robust Zero-Shot Face Forgery Detectors
Detecting unknown deepfake manipulations remains one of the most challenging problems in face forgery detection. Current state-of-the-art approaches fail to generalize to unseen manipulations, as they primarily rely on supervised training with existing deepfakes or pseudo-fakes, which leads to overfitting to specific forgery patterns. In contrast, self-supervised methods offer greater potential for generalization, but existing work struggles to learn discriminative representations only from self-supervision. In this paper, we propose ExposeAnyone, a fully self-supervised approach based on a diffusion model that generates expression sequences from audio. The key idea is, once the model is personalized to specific subjects using reference sets, it can compute the identity distances between suspected videos and personalized subjects via diffusion reconstruction errors, enabling person-of-interest face forgery detection. Extensive experiments demonstrate that 1) our method outperforms the previous state-of-the-art method by 4.22 percentage points in the average AUC on DF-TIMIT, DFDCP, KoDF, and IDForge datasets, 2) our model is also capable of detecting Sora2-generated videos, where the previous approaches perform poorly, and 3) our method is highly robust to corruptions such as blur and compression, highlighting the applicability in real-world face forgery detection.
comment: 17 pages, 8 figures, 11 tables; project page: https://mapooon.github.io/ExposeAnyonePage/
VINO: A Unified Visual Generator with Interleaved OmniModal Context
We present VINO, a unified visual generator that performs image and video generation and editing within a single framework. Instead of relying on task-specific models or independent modules for each modality, VINO uses a shared diffusion backbone that conditions on text, images and videos, enabling a broad range of visual creation and editing tasks under one model. Specifically, VINO couples a vision-language model (VLM) with a Multimodal Diffusion Transformer (MMDiT), where multimodal inputs are encoded as interleaved conditioning tokens, and then used to guide the diffusion process. This design supports multi-reference grounding, long-form instruction following, and coherent identity preservation across static and dynamic content, while avoiding modality-specific architectural components. To train such a unified system, we introduce a multi-stage training pipeline that progressively expands a video generation base model into a unified, multi-task generator capable of both image and video input and output. Across diverse generation and editing benchmarks, VINO demonstrates strong visual quality, faithful instruction following, improved reference and attribute preservation, and more controllable multi-identity edits. Our results highlight a practical path toward scalable unified visual generation, and the promise of interleaved, in-context computation as a foundation for general-purpose visual creation.
comment: Project page: https://sotamak1r.github.io/VINO-web/
Talk2Move: Reinforcement Learning for Text-Instructed Object-Level Geometric Transformation in Scenes
We introduce Talk2Move, a reinforcement learning (RL) based diffusion framework for text-instructed spatial transformation of objects within scenes. Spatially manipulating objects in a scene through natural language poses a challenge for multimodal generation systems. While existing text-based manipulation methods can adjust appearance or style, they struggle to perform object-level geometric transformations-such as translating, rotating, or resizing objects-due to scarce paired supervision and pixel-level optimization limits. Talk2Move employs Group Relative Policy Optimization (GRPO) to explore geometric actions through diverse rollouts generated from input images and lightweight textual variations, removing the need for costly paired data. A spatial reward guided model aligns geometric transformations with linguistic description, while off-policy step evaluation and active step sampling improve learning efficiency by focusing on informative transformation stages. Furthermore, we design object-centric spatial rewards that evaluate displacement, rotation, and scaling behaviors directly, enabling interpretable and coherent transformations. Experiments on curated benchmarks demonstrate that Talk2Move achieves precise, consistent, and semantically faithful object transformations, outperforming existing text-guided editing approaches in both spatial accuracy and scene coherence.
comment: Project page: https://sparkstj.github.io/talk2move
Meta-Learning Guided Pruning for Few-Shot Plant Pathology on Edge Devices
Farmers in remote areas need quick and reliable methods for identifying plant diseases, yet they often lack access to laboratories or high-performance computing resources. Deep learning models can detect diseases from leaf images with high accuracy, but these models are typically too large and computationally expensive to run on low-cost edge devices such as Raspberry Pi. Furthermore, collecting thousands of labeled disease images for training is both expensive and time-consuming. This paper addresses both challenges by combining neural network pruning -- removing unnecessary parts of the model -- with few-shot learning, which enables the model to learn from limited examples. This paper proposes Disease-Aware Channel Importance Scoring (DACIS), a method that identifies which parts of the neural network are most important for distinguishing between different plant diseases, integrated into a three-stage Prune-then-Meta-Learn-then-Prune (PMP) pipeline. Experiments on PlantVillage and PlantDoc datasets demonstrate that the proposed approach reduces model size by 78\% while maintaining 92.3\% of the original accuracy, with the compressed model running at 7 frames per second on a Raspberry Pi 4, making real-time field diagnosis practical for smallholder farmers.
Joint Semantic and Rendering Enhancements in 3D Gaussian Modeling with Anisotropic Local Encoding ICCV 2025
Recent works propose extending 3DGS with semantic feature vectors for simultaneous semantic segmentation and image rendering. However, these methods often treat the semantic and rendering branches separately, relying solely on 2D supervision while ignoring the 3D Gaussian geometry. Moreover, current adaptive strategies adapt the Gaussian set depending solely on rendering gradients, which can be insufficient in subtle or textureless regions. In this work, we propose a joint enhancement framework for 3D semantic Gaussian modeling that synergizes both semantic and rendering branches. Firstly, unlike conventional point cloud shape encoding, we introduce an anisotropic 3D Gaussian Chebyshev descriptor using the Laplace-Beltrami operator to capture fine-grained 3D shape details, thereby distinguishing objects with similar appearances and reducing reliance on potentially noisy 2D guidance. In addition, without relying solely on rendering gradient, we adaptively adjust Gaussian allocation and spherical harmonics with local semantic and shape signals, enhancing rendering efficiency through selective resource allocation. Finally, we employ a cross-scene knowledge transfer module to continuously update learned shape patterns, enabling faster convergence and robust representations without relearning shape information from scratch for each new scene. Experiments on multiple datasets demonstrate improvements in segmentation accuracy and rendering quality while maintaining high rendering frame rates.
comment: Accepted by ICCV 2025
BEDS: Bayesian Emergent Dissipative Structures
We present BEDS (Bayesian Emergent Dissipative Structures), a theoretical framework that unifies concepts from non-equilibrium thermodynamics, Bayesian inference, information geometry, and machine learning. The central thesis proposes that learning, across physical, biological, and computational systems, fundamentally constitutes the conversion of flux into structure through entropy export. Building on Prigogine's theory of dissipative structures, we establish a formal isomorphism between thermodynamic processes and Bayesian updating, demonstrating that sustainable learning systems must follow dissipative patterns where crystallized posteriors become priors for subsequent levels of emergence. We derive fundamental mathematical constants (e, π, φ) as fixed points of Bayesian inference under minimal axioms, suggesting these constants emerge necessarily from any system capable of representing and updating uncertainty. Furthermore, we propose a conjecture linking Gödel's incompleteness theorems to thermodynamic constraints, hypothesizing that pathologies of formal systems (incompleteness, undecidability) are structurally analogous to dissipation deficits in physical systems. As practical validation, we present a peer-to-peer network architecture implementing BEDS principles, achieving six orders of magnitude improvement in energy efficiency compared to existing distributed consensus systems while enabling continuous learning. This work bridges fundamental physics, mathematical logic, and practical system design, offering both theoretical insights into the nature of learning and computation, and a concrete pathway toward sustainable artificial intelligence.
comment: 19 pages
Fusion2Print: Deep Flash-Non-Flash Fusion for Contactless Fingerprint Matching
Contactless fingerprint recognition offers a hygienic and convenient alternative to contact-based systems, enabling rapid acquisition without latent prints, pressure artifacts, or hygiene risks. However, contactless images often show degraded ridge clarity due to illumination variation, subcutaneous skin discoloration, and specular reflections. Flash captures preserve ridge detail but introduce noise, whereas non-flash captures reduce noise but lower ridge contrast. We propose Fusion2Print (F2P), the first framework to systematically capture and fuse paired flash-non-flash contactless fingerprints. We construct a custom paired dataset, FNF Database, and perform manual flash-non-flash subtraction to isolate ridge-preserving signals. A lightweight attention-based fusion network also integrates both modalities, emphasizing informative channels and suppressing noise, and then a U-Net enhancement module produces an optimally weighted grayscale image. Finally, a deep embedding model with cross-domain compatibility, generates discriminative and robust representations in a unified embedding space compatible with both contactless and contact-based fingerprints for verification. F2P enhances ridge clarity and achieves superior recognition performance (AUC=0.999, EER=1.12%) over single-capture baselines (Verifinger, DeepPrint).
comment: 15 pages, 8 figures, 5 tables. Submitted to ICPR 2026
Prithvi-Complimentary Adaptive Fusion Encoder (CAFE): unlocking full-potential for flood inundation mapping WACV 2026
Geo-Foundation Models (GFMs), have proven effective in diverse downstream applications, including semantic segmentation, classification, and regression tasks. However, in case of flood mapping using Sen1Flood11 dataset as a downstream task, GFMs struggles to outperform the baseline U-Net, highlighting model's limitation in capturing critical local nuances. To address this, we present the Prithvi-Complementary Adaptive Fusion Encoder (CAFE), which integrate Prithvi GFM pretrained encoder with a parallel CNN residual branch enhanced by Convolutional Attention Modules (CAM). Prithvi-CAFE enables fast and efficient fine-tuning through adapters in Prithvi and performs multi-scale, multi-level fusion with CNN features, capturing critical local details while preserving long-range dependencies. We achieve state-of-the-art results on two comprehensive flood mapping datasets: Sen1Flood11 and FloodPlanet. On Sen1Flood11 test data, Prithvi-CAFE (IoU 83.41) outperforms the original Prithvi (IoU 82.50) and other major GFMs (TerraMind 82.90, DOFA 81.54, spectralGPT: 81.02). The improvement is even more pronounced on the hold-out test site, where Prithvi-CAFE achieves an IoU of 81.37 compared to the baseline U-Net (70.57) and original Prithvi (72.42). On FloodPlanet, Prithvi-CAFE also surpasses the baseline U-Net and other GFMs, achieving an IoU of 64.70 compared to U-Net (60.14), Terramind (62.33), DOFA (59.15) and Prithvi 2.0 (61.91). Our proposed simple yet effective Prithvi-CAFE demonstrates strong potential for improving segmentation tasks where multi-channel and multi-modal data provide complementary information and local details are critical. The code is released on \href{https://github.com/Sk-2103/Prithvi-CAFE}{Prithvi-CAFE Github}
comment: Accepted at CV4EO Workshop @ WACV 2026
360DVO: Deep Visual Odometry for Monocular 360-Degree Camera RA-L
Monocular omnidirectional visual odometry (OVO) systems leverage 360-degree cameras to overcome field-of-view limitations of perspective VO systems. However, existing methods, reliant on handcrafted features or photometric objectives, often lack robustness in challenging scenarios, such as aggressive motion and varying illumination. To address this, we present 360DVO, the first deep learning-based OVO framework. Our approach introduces a distortion-aware spherical feature extractor (DAS-Feat) that adaptively learns distortion-resistant features from 360-degree images. These sparse feature patches are then used to establish constraints for effective pose estimation within a novel omnidirectional differentiable bundle adjustment (ODBA) module. To facilitate evaluation in realistic settings, we also contribute a new real-world OVO benchmark. Extensive experiments on this benchmark and public synthetic datasets (TartanAir V2 and 360VO) demonstrate that 360DVO surpasses state-of-the-art baselines (including 360VO and OpenVSLAM), improving robustness by 50% and accuracy by 37.5%. Homepage: https://chris1004336379.github.io/360DVO-homepage
comment: 12 pages. Received by RA-L
SortWaste: A Densely Annotated Dataset for Object Detection in Industrial Waste Sorting
The increasing production of waste, driven by population growth, has created challenges in managing and recycling materials effectively. Manual waste sorting is a common practice; however, it remains inefficient for handling large-scale waste streams and presents health risks for workers. On the other hand, existing automated sorting approaches still struggle with the high variability, clutter, and visual complexity of real-world waste streams. The lack of real-world datasets for waste sorting is a major reason automated systems for this problem are underdeveloped. Accordingly, we introduce SortWaste, a densely annotated object detection dataset collected from a Material Recovery Facility. Additionally, we contribute to standardizing waste detection in sorting lines by proposing ClutterScore, an objective metric that gauges the scene's hardness level using a set of proxies that affect visual complexity (e.g., object count, class and size entropy, and spatial overlap). In addition to these contributions, we provide an extensive benchmark of state-of-the-art object detection models, detailing their results with respect to the hardness level assessed by the proposed metric. Despite achieving promising results (mAP of 59.7% in the plastic-only detection task), performance significantly decreases in highly cluttered scenes. This highlights the need for novel and more challenging datasets on the topic.
comment: 9 pages
Rank-based Geographical Regularization: Revisiting Contrastive Self-Supervised Learning for Multispectral Remote Sensing Imagery
Self-supervised learning (SSL) has become a powerful paradigm for learning from large, unlabeled datasets, particularly in computer vision (CV). However, applying SSL to multispectral remote sensing (RS) images presents unique challenges and opportunities due to the geographical and temporal variability of the data. In this paper, we introduce GeoRank, a novel regularization method for contrastive SSL that improves upon prior techniques by directly optimizing spherical distances to embed geographical relationships into the learned feature space. GeoRank outperforms or matches prior methods that integrate geographical metadata and consistently improves diverse contrastive SSL algorithms (e.g., BYOL, DINO). Beyond this, we present a systematic investigation of key adaptations of contrastive SSL for multispectral RS images, including the effectiveness of data augmentations, the impact of dataset cardinality and image size on performance, and the task dependency of temporal views. Code is available at https://github.com/tomburgert/georank.
comment: accepted for publication at IEEE/CVF Winter Conference on Applications of Computer Vision
InfiniteVGGT: Visual Geometry Grounded Transformer for Endless Streams
The grand vision of enabling persistent, large-scale 3D visual geometry understanding is shackled by the irreconcilable demands of scalability and long-term stability. While offline models like VGGT achieve inspiring geometry capability, their batch-based nature renders them irrelevant for live systems. Streaming architectures, though the intended solution for live operation, have proven inadequate. Existing methods either fail to support truly infinite-horizon inputs or suffer from catastrophic drift over long sequences. We shatter this long-standing dilemma with InfiniteVGGT, a causal visual geometry transformer that operationalizes the concept of a rolling memory through a bounded yet adaptive and perpetually expressive KV cache. Capitalizing on this, we devise a training-free, attention-agnostic pruning strategy that intelligently discards obsolete information, effectively ``rolling'' the memory forward with each new frame. Fully compatible with FlashAttention, InfiniteVGGT finally alleviates the compromise, enabling infinite-horizon streaming while outperforming existing streaming methods in long-term stability. The ultimate test for such a system is its performance over a truly infinite horizon, a capability that has been impossible to rigorously validate due to the lack of extremely long-term, continuous benchmarks. To address this critical gap, we introduce the Long3D benchmark, which, for the first time, enables a rigorous evaluation of continuous 3D geometry estimation on sequences about 10,000 frames. This provides the definitive evaluation platform for future research in long-term 3D geometry understanding. Code is available at: https://github.com/AutoLab-SAI-SJTU/InfiniteVGGT
TopoLoRA-SAM: Topology-Aware Parameter-Efficient Adaptation of Foundation Segmenters for Thin-Structure and Cross-Domain Binary Semantic Segmentation
Foundation segmentation models such as the Segment Anything Model (SAM) exhibit strong zero-shot generalization through large-scale pretraining, but adapting them to domain-specific semantic segmentation remains challenging, particularly for thin structures (e.g., retinal vessels) and noisy modalities (e.g., SAR imagery). Full fine-tuning is computationally expensive and risks catastrophic forgetting. We propose \textbf{TopoLoRA-SAM}, a topology-aware and parameter-efficient adaptation framework for binary semantic segmentation. TopoLoRA-SAM injects Low-Rank Adaptation (LoRA) into the frozen ViT encoder, augmented with a lightweight spatial convolutional adapter and optional topology-aware supervision via differentiable clDice. We evaluate our approach on five benchmarks spanning retinal vessel segmentation (DRIVE, STARE, CHASE\_DB1), polyp segmentation (Kvasir-SEG), and SAR sea/land segmentation (SL-SSDD), comparing against U-Net, DeepLabV3+, SegFormer, and Mask2Former. TopoLoRA-SAM achieves the best retina-average Dice and the best overall average Dice across datasets, while training only \textbf{5.2\%} of model parameters ($\sim$4.9M). On the challenging CHASE\_DB1 dataset, our method substantially improves segmentation accuracy and robustness, demonstrating that topology-aware parameter-efficient adaptation can match or exceed fully fine-tuned specialist models. Code is available at : https://github.com/salimkhazem/Seglab.git
DiffProxy: Multi-View Human Mesh Recovery via Diffusion-Generated Dense Proxies
Human mesh recovery from multi-view images faces a fundamental challenge: real-world datasets contain imperfect ground-truth annotations that bias the models' training, while synthetic data with precise supervision suffers from domain gap. In this paper, we propose DiffProxy, a novel framework that generates multi-view consistent human proxies for mesh recovery. Central to DiffProxy is leveraging the diffusion-based generative priors to bridge the synthetic training and real-world generalization. Its key innovations include: (1) a multi-conditional mechanism for generating multi-view consistent, pixel-aligned human proxies; (2) a hand refinement module that incorporates flexible visual prompts to enhance local details; and (3) an uncertainty-aware test-time scaling method that increases robustness to challenging cases during optimization. These designs ensure that the mesh recovery process effectively benefits from the precise synthetic ground truth and generative advantages of the diffusion-based pipeline. Trained entirely on synthetic data, DiffProxy achieves state-of-the-art performance across five real-world benchmarks, demonstrating strong zero-shot generalization particularly on challenging scenarios with occlusions and partial views. Project page: https://wrk226.github.io/DiffProxy.html
comment: Page: https://wrk226.github.io/DiffProxy.html, Code: https://github.com/wrk226/DiffProxy
VAR RL Done Right: Tackling Asynchronous Policy Conflicts in Visual Autoregressive Generation
Visual generation is dominated by three paradigms: AutoRegressive (AR), diffusion, and Visual AutoRegressive (VAR) models. Unlike AR and diffusion, VARs operate on heterogeneous input structures across their generation steps, which creates severe asynchronous policy conflicts. This issue becomes particularly acute in reinforcement learning (RL) scenarios, leading to unstable training and suboptimal alignment. To resolve this, we propose a novel framework to enhance Group Relative Policy Optimization (GRPO) by explicitly managing these conflicts. Our method integrates three synergistic components: 1) a stabilizing intermediate reward to guide early-stage generation; 2) a dynamic time-step reweighting scheme for precise credit assignment; and 3) a novel mask propagation algorithm, derived from principles of Reward Feedback Learning (ReFL), designed to isolate optimization effects both spatially and temporally. Our approach demonstrates significant improvements in sample quality and objective alignment over the vanilla GRPO baseline, enabling robust and effective optimization for VAR models.
comment: Project page: https://github.com/ByteVisionLab/NextFlow
Neuro-Channel Networks: A Multiplication-Free Architecture by Biological Signal Transmission
The rapid proliferation of Deep Learning is increasingly constrained by its heavy reliance on high-performance hardware, particularly Graphics Processing Units (GPUs). These specialized accelerators are not only prohibitively expensive and energy-intensive but also suffer from significant supply scarcity, limiting the ubiquity of Artificial Intelligence (AI) deployment on edge devices. The core of this inefficiency stems from the standard artificial perceptron's dependence on intensive matrix multiplications. However, biological nervous systems achieve unparalleled efficiency without such arithmetic intensity; synaptic signal transmission is regulated by physical ion channel limits and chemical neurotransmitter levels rather than a process that can be analogous to arithmetic multiplication. Inspired by this biological mechanism, we propose Neuro-Channel Networks (NCN), a novel multiplication-free architecture designed to decouple AI from expensive hardware dependencies. In our model, weights are replaced with Channel Widths that physically limit the signal magnitude, while a secondary parameter acts as a Neurotransmitter to regulate Signal Transmission based on sign logic. The forward pass relies exclusively on addition, subtraction, and bitwise operations (minimum, sign), eliminating floating-point multiplication entirely. In this proof-of-concept study, we demonstrate that NCNs can solve non-linearly separable problems like XOR and the Majority function with 100% accuracy using standard backpropagation, proving their capability to form complex decision boundaries without multiplicative weights. This architecture offers a highly efficient alternative for next-generation neuromorphic hardware, paving the way for running complex models on commodity CPUs or ultra-low-power chips without relying on costly GPU clusters.
comment: 9 pages, 4 figures
SLGNet: Synergizing Structural Priors and Language-Guided Modulation for Multimodal Object Detection
Multimodal object detection leveraging RGB and Infrared (IR) images is pivotal for robust perception in all-weather scenarios. While recent adapter-based approaches efficiently transfer RGB-pretrained foundation models to this task, they often prioritize model efficiency at the expense of cross-modal structural consistency. Consequently, critical structural cues are frequently lost when significant domain gaps arise, such as in high-contrast or nighttime environments. Moreover, conventional static multimodal fusion mechanisms typically lack environmental awareness, resulting in suboptimal adaptation and constrained detection performance under complex, dynamic scene variations. To address these limitations, we propose SLGNet, a parameter-efficient framework that synergizes hierarchical structural priors and language-guided modulation within a frozen Vision Transformer (ViT)-based foundation model. Specifically, we design a Structure-Aware Adapter to extract hierarchical structural representations from both modalities and dynamically inject them into the ViT to compensate for structural degradation inherent in ViT-based backbones. Furthermore, we propose a Language-Guided Modulation module that exploits VLM-driven structured captions to dynamically recalibrate visual features, thereby endowing the model with robust environmental awareness. Extensive experiments on the LLVIP, FLIR, KAIST, and DroneVehicle datasets demonstrate that SLGNet establishes new state-of-the-art performance. Notably, on the LLVIP benchmark, our method achieves an mAP of 66.1, while reducing trainable parameters by approximately 87% compared to traditional full fine-tuning. This confirms SLGNet as a robust and efficient solution for multimodal perception.
A Comparative Study of Custom CNNs, Pre-trained Models, and Transfer Learning Across Multiple Visual Datasets
Convolutional Neural Networks (CNNs) are a standard approach for visual recognition due to their capacity to learn hierarchical representations from raw pixels. In practice, practitioners often choose among (i) training a compact custom CNN from scratch, (ii) using a large pre-trained CNN as a fixed feature extractor, and (iii) performing transfer learning via partial or full fine-tuning of a pre-trained backbone. This report presents a controlled comparison of these three paradigms across five real-world image classification datasets spanning road-surface defect recognition, agricultural variety identification, fruit/leaf disease recognition, pedestrian walkway encroachment recognition, and unauthorized vehicle recognition. Models are evaluated using accuracy and macro F1-score, complemented by efficiency metrics including training time per epoch and parameter counts. The results show that transfer learning consistently yields the strongest predictive performance, while the custom CNN provides an attractive efficiency--accuracy trade-off, especially when compute and memory budgets are constrained.
VIBE: Visual Instruction Based Editor
Instruction-based image editing is among the fastest developing areas in generative AI. Over the past year, the field has reached a new level, with dozens of open-source models released alongside highly capable commercial systems. However, only a limited number of open-source approaches currently achieve real-world quality. In addition, diffusion backbones, the dominant choice for these pipelines, are often large and computationally expensive for many deployments and research settings, with widely used variants typically containing 6B to 20B parameters. This paper presents a compact, high-throughput instruction-based image editing pipeline that uses a modern 2B-parameter Qwen3-VL model to guide the editing process and the 1.6B-parameter diffusion model Sana1.5 for image generation. Our design decisions across architecture, data processing, training configuration, and evaluation target low-cost inference and strict source consistency while maintaining high quality across the major edit categories feasible at this scale. Evaluated on the ImgEdit and GEdit benchmarks, the proposed method matches or exceeds the performance of substantially heavier baselines, including models with several times as many parameters and higher inference cost, and is particularly strong on edits that require preserving the input image, such as an attribute adjustment, object removal, background edits, and targeted replacement. The model fits within 24 GB of GPU memory and generates edited images at up to 2K resolution in approximately 4 seconds on an NVIDIA H100 in BF16, without additional inference optimizations or distillation.
FMVP: Masked Flow Matching for Adversarial Video Purification
Video recognition models remain vulnerable to adversarial attacks, while existing diffusion-based purification methods suffer from inefficient sampling and curved trajectories. Directly regressing clean videos from adversarial inputs often fails to recover faithful content due to the subtle nature of perturbations; this necessitates physically shattering the adversarial structure. Therefore, we propose Flow Matching for Adversarial Video Purification FMVP. FMVP physically shatters global adversarial structures via a masking strategy and reconstructs clean video dynamics using Conditional Flow Matching (CFM) with an inpainting objective. To further decouple semantic content from adversarial noise, we design a Frequency-Gated Loss (FGL) that explicitly suppresses high-frequency adversarial residuals while preserving low-frequency fidelity. We design Attack-Aware and Generalist training paradigms to handle known and unknown threats, respectively. Extensive experiments on UCF-101 and HMDB-51 demonstrate that FMVP outperforms state-of-the-art methods (DiffPure, Defense Patterns (DP), Temporal Shuffling (TS) and FlowPure), achieving robust accuracy exceeding 87% against PGD and 89% against CW attacks. Furthermore, FMVP demonstrates superior robustness against adaptive attacks (DiffHammer) and functions as a zero-shot adversarial detector, attaining detection accuracies of 98% for PGD and 79% for highly imperceptible CW attacks.
Prior-Guided DETR for Ultrasound Nodule Detection
Accurate detection of ultrasound nodules is essential for the early diagnosis and treatment of thyroid and breast cancers. However, this task remains challenging due to irregular nodule shapes, indistinct boundaries, substantial scale variations, and the presence of speckle noise that degrades structural visibility. To address these challenges, we propose a prior-guided DETR framework specifically designed for ultrasound nodule detection. Instead of relying on purely data-driven feature learning, the proposed framework progressively incorporates different prior knowledge at multiple stages of the network. First, a Spatially-adaptive Deformable FFN with Prior Regularization (SDFPR) is embedded into the CNN backbone to inject geometric priors into deformable sampling, stabilizing feature extraction for irregular and blurred nodules. Second, a Multi-scale Spatial-Frequency Feature Mixer (MSFFM) is designed to extract multi-scale structural priors, where spatial-domain processing emphasizes contour continuity and boundary cues, while frequency-domain modeling captures global morphology and suppresses speckle noise. Furthermore, a Dense Feature Interaction (DFI) mechanism propagates and exploits these prior-modulated features across all encoder layers, enabling the decoder to enhance query refinement under consistent geometric and structural guidance. Experiments conducted on two clinically collected thyroid ultrasound datasets (Thyroid I and Thyroid II) and two public benchmarks (TN3K and BUSI) for thyroid and breast nodules demonstrate that the proposed method achieves superior accuracy compared with 18 detection methods, particularly in detecting morphologically complex nodules.The source code is publicly available at https://github.com/wjj1wjj/Ultrasound-DETR.
Unraveling MMDiT Blocks: Training-free Analysis and Enhancement of Text-conditioned Diffusion
Recent breakthroughs of transformer-based diffusion models, particularly with Multimodal Diffusion Transformers (MMDiT) driven models like FLUX and Qwen Image, have facilitated thrilling experiences in text-to-image generation and editing. To understand the internal mechanism of MMDiT-based models, existing methods tried to analyze the effect of specific components like positional encoding and attention layers. Yet, a comprehensive understanding of how different blocks and their interactions with textual conditions contribute to the synthesis process remains elusive. In this paper, we first develop a systematic pipeline to comprehensively investigate each block's functionality by removing, disabling and enhancing textual hidden-states at corresponding blocks. Our analysis reveals that 1) semantic information appears in earlier blocks and finer details are rendered in later blocks, 2) removing specific blocks is usually less disruptive than disabling text conditions, and 3) enhancing textual conditions in selective blocks improves semantic attributes. Building on these observations, we further propose novel training-free strategies for improved text alignment, precise editing, and acceleration. Extensive experiments demonstrated that our method outperforms various baselines and remains flexible across text-to-image generation, image editing, and inference acceleration. Our method improves T2I-Combench++ from 56.92% to 63.00% and GenEval from 66.42% to 71.63% on SD3.5, without sacrificing synthesis quality. These results advance understanding of MMDiT models and provide valuable insights to unlock new possibilities for further improvements.
comment: 11 pages
Seeing the Unseen: Zooming in the Dark with Event Cameras AAAI 2026
This paper addresses low-light video super-resolution (LVSR), aiming to restore high-resolution videos from low-light, low-resolution (LR) inputs. Existing LVSR methods often struggle to recover fine details due to limited contrast and insufficient high-frequency information. To overcome these challenges, we present RetinexEVSR, the first event-driven LVSR framework that leverages high-contrast event signals and Retinex-inspired priors to enhance video quality under low-light scenarios. Unlike previous approaches that directly fuse degraded signals, RetinexEVSR introduces a novel bidirectional cross-modal fusion strategy to extract and integrate meaningful cues from noisy event data and degraded RGB frames. Specifically, an illumination-guided event enhancement module is designed to progressively refine event features using illumination maps derived from the Retinex model, thereby suppressing low-light artifacts while preserving high-contrast details. Furthermore, we propose an event-guided reflectance enhancement module that utilizes the enhanced event features to dynamically recover reflectance details via a multi-scale fusion mechanism. Experimental results show that our RetinexEVSR achieves state-of-the-art performance on three datasets. Notably, on the SDSD benchmark, our method can get up to 2.95 dB gain while reducing runtime by 65% compared to prior event-based methods. Code: https://github.com/DachunKai/RetinexEVSR.
comment: Accepted to AAAI 2026
NextFlow: Unified Sequential Modeling Activates Multimodal Understanding and Generation
We present NextFlow, a unified decoder-only autoregressive transformer trained on 6 trillion interleaved text-image discrete tokens. By leveraging a unified vision representation within a unified autoregressive architecture, NextFlow natively activates multimodal understanding and generation capabilities, unlocking abilities of image editing, interleaved content and video generation. Motivated by the distinct nature of modalities - where text is strictly sequential and images are inherently hierarchical - we retain next-token prediction for text but adopt next-scale prediction for visual generation. This departs from traditional raster-scan methods, enabling the generation of 1024x1024 images in just 5 seconds - orders of magnitude faster than comparable AR models. We address the instabilities of multi-scale generation through a robust training recipe. Furthermore, we introduce a prefix-tuning strategy for reinforcement learning. Experiments demonstrate that NextFlow achieves state-of-the-art performance among unified models and rivals specialized diffusion baselines in visual quality.
comment: Project page: https://github.com/ByteVisionLab/NextFlow
Parameter-Efficient Domain Adaption for CSI Crowd-Counting via Self-Supervised Learning with Adapter Modules
Device-free crowd-counting using WiFi Channel State Information (CSI) is a key enabling technology for a new generation of privacy-preserving Internet of Things (IoT) applications. However, practical deployment is severely hampered by the domain shift problem, where models trained in one environment fail to generalise to another. To overcome this, we propose a novel two-stage framework centred on a CSI-ResNet-A architecture. This model is pre-trained via self-supervised contrastive learning to learn domain-invariant representations and leverages lightweight Adapter modules for highly efficient fine-tuning. The resulting event sequence is then processed by a stateful counting machine to produce a final, stable occupancy estimate. We validate our framework extensively. On our WiFlow dataset, our unsupervised approach excels in a 10-shot learning scenario, achieving a final Mean Absolute Error (MAE) of just 0.44--a task where supervised baselines fail. To formally quantify robustness, we introduce the Generalisation Index (GI), on which our model scores near-perfectly, confirming its ability to generalise. Furthermore, our framework sets a new state-of-the-art public WiAR benchmark with 98.8\% accuracy. Our ablation studies reveal the core strength of our design: adapter-based fine-tuning achieves performance within 1\% of a full fine-tune (98.84\% vs. 99.67\%) while training 97.2\% fewer parameters. Our work provides a practical and scalable solution for developing robust sensing systems ready for real-world IoT deployments.
CORE: Code-based Inverse Self-Training Framework with Graph Expansion for Virtual Agents
The development of Multimodal Virtual Agents has made significant progress through the integration of Multimodal Large Language Models. However, mainstream training paradigms face key challenges: Behavior Cloning is simple and effective through imitation but suffers from low behavioral diversity, while Reinforcement Learning is capable of discovering novel strategies through exploration but heavily relies on manually designed reward functions. To address the conflict between these two methods, we present CORE, a Code-based Inverse Self-Training Framework with Graph Expansion that bridges imitation and exploration, offering a novel training framework that promotes behavioral diversity while eliminating the reliance on manually reward design. Specifically, we introduce Semantic Code Abstraction to automatically infers reward functions from expert demonstrations without manual design. The inferred reward function, referred to as the Label Function, is executable code that verifies one key step within a task. Building on this, we propose Strategy Graph Expansion to enhance in-domain behavioral diversity, which constructs a multi-path graph called Strategy Graph that captures diverse valid solutions beyond expert demonstrations. Furthermore, we introduce Trajectory-Guided Extrapolation, which enriches out-of-domain behavioral diversity by utilizing both successful and failed trajectories to expand the task space. Experiments on Web and Android platforms demonstrate that CORE significantly improves both overall performance and generalization, highlighting its potential as a robust and generalizable training paradigm for building powerful virtual agents.
comment: 19 pages, 12 figures
Mind the Gap: Continuous Magnification Sampling for Pathology Foundation Models
In histopathology, pathologists examine both tissue architecture at low magnification and fine-grained morphology at high magnification. Yet, the performance of pathology foundation models across magnifications and the effect of magnification sampling during training remain poorly understood. We model magnification sampling as a multi-source domain adaptation problem and develop a simple theoretical framework that reveals systematic trade-offs between sampling strategies. We show that the widely used discrete uniform sampling of magnifications (0.25, 0.5, 1.0, 2.0 mpp) leads to degradation at intermediate magnifications. We introduce continuous magnification sampling, which removes gaps in magnification coverage while preserving performance at standard scales. Further, we derive sampling distributions that optimize representation quality across magnification scales. To evaluate these strategies, we introduce two new benchmarks (TCGA-MS, BRACS-MS) with appropriate metrics. Our experiments show that continuous sampling substantially improves over discrete sampling at intermediate magnifications, with gains of up to 4 percentage points in balanced classification accuracy, and that optimized distributions can further improve performance. Finally, we evaluate current histopathology foundation models, finding that magnification is a primary driver of performance variation across models. Our work paves the way towards future pathology foundation models that perform reliably across magnifications.
QuIC: A Quantum-Inspired Interaction Classifier for Revitalizing Shallow CNNs in Fine-Grained Recognition
Deploying deep learning models for Fine-Grained Visual Classification (FGVC) on resource-constrained edge devices remains a significant challenge. While deep architectures achieve high accuracy on benchmarks like CUB-200-2011, their computational cost is often prohibitive. Conversely, shallow networks (e.g., AlexNet, VGG) offer efficiency but fail to distinguish visually similar sub-categories. This is because standard Global Average Pooling (GAP) heads capture only first-order statistics, missing the subtle high-order feature interactions required for FGVC. While Bilinear CNNs address this, they suffer from high feature dimensionality and instability during training. To bridge this gap, we propose the Quantum-inspired Interaction Classifier (QuIC). Drawing inspiration from quantum mechanics, QuIC models feature channels as interacting quantum states and captures second-order feature covariance via a learnable observable operator. Designed as a lightweight, plug-and-play module, QuIC supports stable, single-stage end-to-end training without exploding feature dimensions. Experimental results demonstrate that QuIC significantly revitalizes shallow backbones: it boosts the Top-1 accuracy of VGG16 by nearly 20% and outperforms state-of-the-art attention mechanisms (SE-Block) on ResNet18. Qualitative analysis, including t-SNE visualization, further confirms that QuIC resolves ambiguous cases by explicitly attending to fine-grained discriminative features and enforcing compact intra-class clustering.
Why Commodity WiFi Sensors Fail at Multi-Person Gait Identification: A Systematic Analysis Using ESP32
WiFi Channel State Information (CSI) has shown promise for single-person gait identification, with numerous studies reporting high accuracy. However, multi-person identification remains largely unexplored, with the limited existing work relying on complex, expensive setups requiring modified firmware. A critical question remains unanswered: is poor multi-person performance an algorithmic limitation or a fundamental hardware constraint? We systematically evaluate six diverse signal separation methods (FastICA, SOBI, PCA, NMF, Wavelet, Tensor Decomposition) across seven scenarios with 1-10 people using commodity ESP32 WiFi sensors--a simple, low-cost, off-the-shelf solution. Through novel diagnostic metrics (intra-subject variability, inter-subject distinguishability, performance degradation rate), we reveal that all methods achieve similarly low accuracy (45-56\%, $σ$=3.74\%) with statistically insignificant differences (p $>$ 0.05). Even the best-performing method, NMF, achieves only 56\% accuracy. Our analysis reveals high intra-subject variability, low inter-subject distinguishability, and severe performance degradation as person count increases, indicating that commodity ESP32 sensors cannot provide sufficient signal quality for reliable multi-person separation.
BiPrompt: Bilateral Prompt Optimization for Visual and Textual Debiasing in Vision-Language Models AAAI 2026
Vision language foundation models such as CLIP exhibit impressive zero-shot generalization yet remain vulnerable to spurious correlations across visual and textual modalities. Existing debiasing approaches often address a single modality either visual or textual leading to partial robustness and unstable adaptation under distribution shifts. We propose a bilateral prompt optimization framework (BiPrompt) that simultaneously mitigates non-causal feature reliance in both modalities during test-time adaptation. On the visual side, it employs structured attention-guided erasure to suppress background activations and enforce orthogonal prediction consistency between causal and spurious regions. On the textual side, it introduces balanced prompt normalization, a learnable re-centering mechanism that aligns class embeddings toward an isotropic semantic space. Together, these modules jointly minimize conditional mutual information between spurious cues and predictions, steering the model toward causal, domain invariant reasoning without retraining or domain supervision. Extensive evaluations on real-world and synthetic bias benchmarks demonstrate consistent improvements in both average and worst-group accuracies over prior test-time debiasing methods, establishing a lightweight yet effective path toward trustworthy and causally grounded vision-language adaptation.
comment: Accepted at the AAAI 2026 Workshop AIR-FM, Assessing and Improving Reliability of Foundation Models in the Real World
Efficient Unrolled Networks for Large-Scale 3D Inverse Problems
Deep learning-based methods have revolutionized the field of imaging inverse problems, yielding state-of-the-art performance across various imaging domains. The best performing networks incorporate the imaging operator within the network architecture, typically in the form of deep unrolling. However, in large-scale problems, such as 3D imaging, most existing methods fail to incorporate the operator in the architecture due to the prohibitive amount of memory required by global forward operators, which hinder typical patching strategies. In this work, we present a domain partitioning strategy and normal operator approximations that enable the training of end-to-end reconstruction models incorporating forward operators of arbitrarily large problems into their architecture. The proposed method achieves state-of-the-art performance on 3D X-ray cone-beam tomography and 3D multi-coil accelerated MRI, while requiring only a single GPU for both training and inference.
Beyond Segmentation: An Oil Spill Change Detection Framework Using Synthetic SAR Imagery
Marine oil spills are urgent environmental hazards that demand rapid and reliable detection to minimise ecological and economic damage. While Synthetic Aperture Radar (SAR) imagery has become a key tool for large-scale oil spill monitoring, most existing detection methods rely on deep learning-based segmentation applied to single SAR images. These static approaches struggle to distinguish true oil spills from visually similar oceanic features (e.g., biogenic slicks or low-wind zones), leading to high false positive rates and limited generalizability, especially under data-scarce conditions. To overcome these limitations, we introduce Oil Spill Change Detection (OSCD), a new bi-temporal task that focuses on identifying changes between pre- and post-spill SAR images. As real co-registered pre-spill imagery is not always available, we propose the Temporal-Aware Hybrid Inpainting (TAHI) framework, which generates synthetic pre-spill images from post-spill SAR data. TAHI integrates two key components: High-Fidelity Hybrid Inpainting for oil-free reconstruction, and Temporal Realism Enhancement for radiometric and sea-state consistency. Using TAHI, we construct the first OSCD dataset and benchmark several state-of-the-art change detection models. Results show that OSCD significantly reduces false positives and improves detection accuracy compared to conventional segmentation, demonstrating the value of temporally-aware methods for reliable, scalable oil spill monitoring in real-world scenarios.
Remote Sensing Change Detection via Weak Temporal Supervision
Semantic change detection in remote sensing aims to identify land cover changes between bi-temporal image pairs. Progress in this area has been limited by the scarcity of annotated datasets, as pixel-level annotation is costly and time-consuming. To address this, recent methods leverage synthetic data or generate artificial change pairs, but out-of-domain generalization remains limited. In this work, we introduce a weak temporal supervision strategy that leverages additional temporal observations of existing single-temporal datasets, without requiring any new annotations. Specifically, we extend single-date remote sensing datasets with new observations acquired at different times and train a change detection model by assuming that real bi-temporal pairs mostly contain no change, while pairing images from different locations to generate change examples. To handle the inherent noise in these weak labels, we employ an object-aware change map generation and an iterative refinement process. We validate our approach on extended versions of the FLAIR and IAILD aerial datasets, achieving strong zero-shot and low-data regime performance across different benchmarks. Lastly, we showcase results over large areas in France, highlighting the scalability potential of our method.
Car Drag Coefficient Prediction from 3D Point Clouds Using a Slice-Based Surrogate Model
The automotive industry's pursuit of enhanced fuel economy and performance necessitates efficient aerodynamic design. However, traditional evaluation methods such as computational fluid dynamics (CFD) and wind tunnel testing are resource intensive, hindering rapid iteration in the early design stages. Machine learning-based surrogate models offer a promising alternative, yet many existing approaches suffer from high computational complexity, limited interpretability, or insufficient accuracy for detailed geometric inputs. This paper introduces a novel lightweight surrogate model for the prediction of the aerodynamic drag coefficient (Cd) based on a sequential slice-wise processing of the geometry of the 3D vehicle. Inspired by medical imaging, 3D point clouds of vehicles are decomposed into an ordered sequence of 2D cross-sectional slices along the stream-wise axis. Each slice is encoded by a lightweight PointNet2D module, and the sequence of slice embeddings is processed by a bidirectional LSTM to capture longitudinal geometric evolution. The model, trained and evaluated on the DrivAerNet++ dataset, achieves a high coefficient of determination (R^2 > 0.9528) and a low mean absolute error (MAE approx 6.046 x 10^{-3}) in Cd prediction. With an inference time of approximately 0.025 seconds per sample on a consumer-grade GPU, our approach provides fast, accurate, and interpretable aerodynamic feedback, facilitating more agile and informed automotive design exploration.
comment: 14 pages, 5 figures. Published in: Bramer M., Stahl F. (eds) Artificial Intelligence XLII. SGAI 2025. Lecture Notes in Computer Science, vol 16302. Springer, Cham
MagicFight: Personalized Martial Arts Combat Video Generation
Amid the surge in generic text-to-video generation, the field of personalized human video generation has witnessed notable advancements, primarily concentrated on single-person scenarios. However, to our knowledge, the domain of two-person interactions, particularly in the context of martial arts combat, remains uncharted. We identify a significant gap: existing models for single-person dancing generation prove insufficient for capturing the subtleties and complexities of two engaged fighters, resulting in challenges such as identity confusion, anomalous limbs, and action mismatches. To address this, we introduce a pioneering new task, Personalized Martial Arts Combat Video Generation. Our approach, MagicFight, is specifically crafted to overcome these hurdles. Given this pioneering task, we face a lack of appropriate datasets. Thus, we generate a bespoke dataset using the game physics engine Unity, meticulously crafting a multitude of 3D characters, martial arts moves, and scenes designed to represent the diversity of combat. MagicFight refines and adapts existing models and strategies to generate high-fidelity two-person combat videos that maintain individual identities and ensure seamless, coherent action sequences, thereby laying the groundwork for future innovations in the realm of interactive video content creation. Website: https://MingfuYAN.github.io/MagicFight/ Dataset: https://huggingface.co/datasets/MingfuYAN/KungFu-Fiesta
comment: Accepted by ACM MM 2024
HeadLighter: Disentangling Illumination in Generative 3D Gaussian Heads via Lightstage Captures
Recent 3D-aware head generative models based on 3D Gaussian Splatting achieve real-time, photorealistic and view-consistent head synthesis. However, a fundamental limitation persists: the deep entanglement of illumination and intrinsic appearance prevents controllable relighting. Existing disentanglement methods rely on strong assumptions to enable weakly supervised learning, which restricts their capacity for complex illumination. To address this challenge, we introduce HeadLighter, a novel supervised framework that learns a physically plausible decomposition of appearance and illumination in head generative models. Specifically, we design a dual-branch architecture that separately models lighting-invariant head attributes and physically grounded rendering components. A progressive disentanglement training is employed to gradually inject head appearance priors into the generative architecture, supervised by multi-view images captured under controlled light conditions with a light stage setup. We further introduce a distillation strategy to generate high-quality normals for realistic rendering. Experiments demonstrate that our method preserves high-quality generation and real-time rendering, while simultaneously supporting explicit lighting and viewpoint editing. We will publicly release our code and dataset.
360-GeoGS: Geometrically Consistent Feed-Forward 3D Gaussian Splatting Reconstruction for 360 Images
3D scene reconstruction is fundamental for spatial intelligence applications such as AR, robotics, and digital twins. Traditional multi-view stereo struggles with sparse viewpoints or low-texture regions, while neural rendering approaches, though capable of producing high-quality results, require per-scene optimization and lack real-time efficiency. Explicit 3D Gaussian Splatting (3DGS) enables efficient rendering, but most feed-forward variants focus on visual quality rather than geometric consistency, limiting accurate surface reconstruction and overall reliability in spatial perception tasks. This paper presents a novel feed-forward 3DGS framework for 360 images, capable of generating geometrically consistent Gaussian primitives while maintaining high rendering quality. A Depth-Normal geometric regularization is introduced to couple rendered depth gradients with normal information, supervising Gaussian rotation, scale, and position to improve point cloud and surface accuracy. Experimental results show that the proposed method maintains high rendering quality while significantly improving geometric consistency, providing an effective solution for 3D reconstruction in spatial perception tasks.
InpaintHuman: Reconstructing Occluded Humans with Multi-Scale UV Mapping and Identity-Preserving Diffusion Inpainting
Reconstructing complete and animatable 3D human avatars from monocular videos remains challenging, particularly under severe occlusions. While 3D Gaussian Splatting has enabled photorealistic human rendering, existing methods struggle with incomplete observations, often producing corrupted geometry and temporal inconsistencies. We present InpaintHuman, a novel method for generating high-fidelity, complete, and animatable avatars from occluded monocular videos. Our approach introduces two key innovations: (i) a multi-scale UV-parameterized representation with hierarchical coarse-to-fine feature interpolation, enabling robust reconstruction of occluded regions while preserving geometric details; and (ii) an identity-preserving diffusion inpainting module that integrates textual inversion with semantic-conditioned guidance for subject-specific, temporally coherent completion. Unlike SDS-based methods, our approach employs direct pixel-level supervision to ensure identity fidelity. Experiments on synthetic benchmarks (PeopleSnapshot, ZJU-MoCap) and real-world scenarios (OcMotion) demonstrate competitive performance with consistent improvements in reconstruction quality across diverse poses and viewpoints.
Dancing Points: Synthesizing Ballroom Dancing with Three-Point Inputs
Ballroom dancing is a structured yet expressive motion category. Its highly diverse movement and complex interactions between leader and follower dancers make the understanding and synthesis challenging. We demonstrate that the three-point trajectory available from a virtual reality (VR) device can effectively serve as a dancer's motion descriptor, simplifying the modeling and synthesis of interplay between dancers' full-body motions down to sparse trajectories. Thanks to the low dimensionality, we can employ an efficient MLP network to predict the follower's three-point trajectory directly from the leader's three-point input for certain types of ballroom dancing, addressing the challenge of modeling high-dimensional full-body interaction. It also prevents our method from overfitting thanks to its compact yet explicit representation. By leveraging the inherent structure of the movements and carefully planning the autoregressive procedure, we show a deterministic neural network is able to translate three-point trajectories into a virtual embodied avatar, which is typically considered under-constrained and requires generative models for common motions. In addition, we demonstrate this deterministic approach generalizes beyond small, structured datasets like ballroom dancing, and performs robustly on larger, more diverse datasets such as LaFAN. Our method provides a computationally- and data-efficient solution, opening new possibilities for immersive paired dancing applications. Code and pre-trained models for this paper are available at https://peizhuoli.github.io/dancing-points.
MCD-Net: A Lightweight Deep Learning Baseline for Optical-Only Moraine Segmentation
Glacial segmentation is essential for reconstructing past glacier dynamics and evaluating climate-driven landscape change. However, weak optical contrast and the limited availability of high-resolution DEMs hinder automated mapping. This study introduces the first large-scale optical-only moraine segmentation dataset, comprising 3,340 manually annotated high-resolution images from Google Earth covering glaciated regions of Sichuan and Yunnan, China. We develop MCD-Net, a lightweight baseline that integrates a MobileNetV2 encoder, a Convolutional Block Attention Module (CBAM), and a DeepLabV3+ decoder. Benchmarking against deeper backbones (ResNet152, Xception) shows that MCD-Net achieves 62.3\% mean Intersection over Union (mIoU) and 72.8\% Dice coefficient while reducing computational cost by more than 60\%. Although ridge delineation remains constrained by sub-pixel width and spectral ambiguity, the results demonstrate that optical imagery alone can provide reliable moraine-body segmentation. The dataset and code are publicly available at https://github.com/Lyra-alpha/MCD-Net, establishing a reproducible benchmark for moraine-specific segmentation and offering a deployable baseline for high-altitude glacial monitoring.
comment: 13 pages, 10 figures. This manuscript is under review at IEEE Transactions on Geoscience and Remote Sensing
PhysSFI-Net: Physics-informed Geometric Learning of Skeletal and Facial Interactions for Orthognathic Surgical Outcome Prediction
Orthognathic surgery repositions jaw bones to restore occlusion and enhance facial aesthetics. Accurate simulation of postoperative facial morphology is essential for preoperative planning. However, traditional biomechanical models are computationally expensive, while geometric deep learning approaches often lack interpretability. In this study, we develop and validate a physics-informed geometric deep learning framework named PhysSFI-Net for precise prediction of soft tissue deformation following orthognathic surgery. PhysSFI-Net consists of three components: a hierarchical graph module with craniofacial and surgical plan encoders combined with attention mechanisms to extract skeletal-facial interaction features; a Long Short-Term Memory (LSTM)-based sequential predictor for incremental soft tissue deformation; and a biomechanics-inspired module for high-resolution facial surface reconstruction. Model performance was assessed using point cloud shape error (Hausdorff distance), surface deviation error, and landmark localization error (Euclidean distances of craniomaxillofacial landmarks) between predicted facial shapes and corresponding ground truths. A total of 135 patients who underwent combined orthodontic and orthognathic treatment were included for model training and validation. Quantitative analysis demonstrated that PhysSFI-Net achieved a point cloud shape error of 1.070 +/- 0.088 mm, a surface deviation error of 1.296 +/- 0.349 mm, and a landmark localization error of 2.445 +/- 1.326 mm. Comparative experiments indicated that PhysSFI-Net outperformed the state-of-the-art method ACMT-Net in prediction accuracy. In conclusion, PhysSFI-Net enables interpretable, high-resolution prediction of postoperative facial morphology with superior accuracy, showing strong potential for clinical application in orthognathic surgical planning and simulation.
comment: 31 pages, 8 figures
SketchRodGS: Sketch-based Extraction of Slender Geometries for Animating Gaussian Splatting Scenes
Physics simulation of slender elastic objects often requires discretization as a polyline. However, constructing a polyline from Gaussian splatting is challenging as Gaussian splatting lacks connectivity information and the configuration of Gaussian primitives contains much noise. This paper presents a method to extract a polyline representation of the slender part of the objects in a Gaussian splatting scene from the user's sketching input. Our method robustly constructs a polyline mesh that represents the slender parts using the screen-space shortest path analysis that can be efficiently solved using dynamic programming. We demonstrate the effectiveness of our approach in several in-the-wild examples.
comment: Presented at SIGGRAPH Asia 2025 (Technical Communications). Best Technical Communications Award
Agentic Retoucher for Text-To-Image Generation
Text-to-image (T2I) diffusion models such as SDXL and FLUX have achieved impressive photorealism, yet small-scale distortions remain pervasive in limbs, face, text and so on. Existing refinement approaches either perform costly iterative re-generation or rely on vision-language models (VLMs) with weak spatial grounding, leading to semantic drift and unreliable local edits. To close this gap, we propose Agentic Retoucher, a hierarchical decision-driven framework that reformulates post-generation correction as a human-like perception-reasoning-action loop. Specifically, we design (1) a perception agent that learns contextual saliency for fine-grained distortion localization under text-image consistency cues, (2) a reasoning agent that performs human-aligned inferential diagnosis via progressive preference alignment, and (3) an action agent that adaptively plans localized inpainting guided by user preference. This design integrates perceptual evidence, linguistic reasoning, and controllable correction into a unified, self-corrective decision process. To enable fine-grained supervision and quantitative evaluation, we further construct GenBlemish-27K, a dataset of 6K T2I images with 27K annotated artifact regions across 12 categories. Extensive experiments demonstrate that Agentic Retoucher consistently outperforms state-of-the-art methods in perceptual quality, distortion localization and human preference alignment, establishing a new paradigm for self-corrective and perceptually reliable T2I generation.
AlignVTOFF: Texture-Spatial Feature Alignment for High-Fidelity Virtual Try-Off
Virtual Try-Off (VTOFF) is a challenging multimodal image generation task that aims to synthesize high-fidelity flat-lay garments under complex geometric deformation and rich high-frequency textures. Existing methods often rely on lightweight modules for fast feature extraction, which struggles to preserve structured patterns and fine-grained details, leading to texture attenuation during generation.To address these issues, we propose AlignVTOFF, a novel parallel U-Net framework built upon a Reference U-Net and Texture-Spatial Feature Alignment (TSFA). The Reference U-Net performs multi-scale feature extraction and enhances geometric fidelity, enabling robust modeling of deformation while retaining complex structured patterns. TSFA then injects the reference garment features into a frozen denoising U-Net via a hybrid attention design, consisting of a trainable cross-attention module and a frozen self-attention module. This design explicitly aligns texture and spatial cues and alleviates the loss of high-frequency information during the denoising process.Extensive experiments across multiple settings demonstrate that AlignVTOFF consistently outperforms state-of-the-art methods, producing flat-lay garment results with improved structural realism and high-frequency detail fidelity.
GDRO: Group-level Reward Post-training Suitable for Diffusion Models
Recent advancements adopt online reinforcement learning (RL) from LLMs to text-to-image rectified flow diffusion models for reward alignment. The use of group-level rewards successfully aligns the model with the targeted reward. However, it faces challenges including low efficiency, dependency on stochastic samplers, and reward hacking. The problem is that rectified flow models are fundamentally different from LLMs: 1) For efficiency, online image sampling takes much more time and dominates the time of training. 2) For stochasticity, rectified flow is deterministic once the initial noise is fixed. Aiming at these problems and inspired by the effects of group-level rewards from LLMs, we design Group-level Direct Reward Optimization (GDRO). GDRO is a new post-training paradigm for group-level reward alignment that combines the characteristics of rectified flow models. Through rigorous theoretical analysis, we point out that GDRO supports full offline training that saves the large time cost for image rollout sampling. Also, it is diffusion-sampler-independent, which eliminates the need for the ODE-to-SDE approximation to obtain stochasticity. We also empirically study the reward hacking trap that may mislead the evaluation, and involve this factor in the evaluation using a corrected score that not only considers the original evaluation reward but also the trend of reward hacking. Extensive experiments demonstrate that GDRO effectively and efficiently improves the reward score of the diffusion model through group-wise offline optimization across the OCR and GenEval tasks, while demonstrating strong stability and robustness in mitigating reward hacking.
Leveraging 2D-VLM for Label-Free 3D Segmentation in Large-Scale Outdoor Scene Understanding
This paper presents a novel 3D semantic segmentation method for large-scale point cloud data that does not require annotated 3D training data or paired RGB images. The proposed approach projects 3D point clouds onto 2D images using virtual cameras and performs semantic segmentation via a foundation 2D model guided by natural language prompts. 3D segmentation is achieved by aggregating predictions from multiple viewpoints through weighted voting. Our method outperforms existing training-free approaches and achieves segmentation accuracy comparable to supervised methods. Moreover, it supports open-vocabulary recognition, enabling users to detect objects using arbitrary text queries, thus overcoming the limitations of traditional supervised approaches.
comment: 19
Adapting Depth Anything to Adverse Imaging Conditions with Events
Robust depth estimation under dynamic and adverse lighting conditions is essential for robotic systems. Currently, depth foundation models, such as Depth Anything, achieve great success in ideal scenes but remain challenging under adverse imaging conditions such as extreme illumination and motion blur. These degradations corrupt the visual signals of frame cameras, weakening the discriminative features of frame-based depths across the spatial and temporal dimensions. Typically, existing approaches incorporate event cameras to leverage their high dynamic range and temporal resolution, aiming to compensate for corrupted frame features. However, such specialized fusion models are predominantly trained from scratch on domain-specific datasets, thereby failing to inherit the open-world knowledge and robust generalization inherent to foundation models. In this work, we propose ADAE, an event-guided spatiotemporal fusion framework for Depth Anything in degraded scenes. Our design is guided by two key insights: 1) Entropy-Aware Spatial Fusion. We adaptively merge frame-based and event-based features using an information entropy strategy to indicate illumination-induced degradation. 2) Motion-Guided Temporal Correction. We resort to the event-based motion cue to recalibrate ambiguous features in blurred regions. Under our unified framework, the two components are complementary to each other and jointly enhance Depth Anything under adverse imaging conditions. Extensive experiments have been performed to verify the superiority of the proposed method. Our code will be released upon acceptance.
comment: This work has been submitted to the IEEE for possible publication
Towards Any-Quality Image Segmentation via Generative and Adaptive Latent Space Enhancement
Segment Anything Models (SAMs), known for their exceptional zero-shot segmentation performance, have garnered significant attention in the research community. Nevertheless, their performance drops significantly on severely degraded, low-quality images, limiting their effectiveness in real-world scenarios. To address this, we propose GleSAM++, which utilizes Generative Latent space Enhancement to boost robustness on low-quality images, thus enabling generalization across various image qualities. Additionally, to improve compatibility between the pre-trained diffusion model and the segmentation framework, we introduce two techniques, i.e., Feature Distribution Alignment (FDA) and Channel Replication and Expansion (CRE). However, the above components lack explicit guidance regarding the degree of degradation. The model is forced to implicitly fit a complex noise distribution that spans conditions from mild noise to severe artifacts, which substantially increases the learning burden and leads to suboptimal reconstructions. To address this issue, we further introduce a Degradation-aware Adaptive Enhancement (DAE) mechanism. The key principle of DAE is to decouple the reconstruction process for arbitrary-quality features into two stages: degradation-level prediction and degradation-aware reconstruction. Our method can be applied to pre-trained SAM and SAM2 with only minimal additional learnable parameters, allowing for efficient optimization. Extensive experiments demonstrate that GleSAM++ significantly improves segmentation robustness on complex degradations while maintaining generalization to clear images. Furthermore, GleSAM++ also performs well on unseen degradations, underscoring the versatility of our approach and dataset.
comment: Diffusion-based latent space enhancement helps improve the robustness of SAM
Enhancing Object Detection with Privileged Information: A Model-Agnostic Teacher-Student Approach
This paper investigates the integration of the Learning Using Privileged Information (LUPI) paradigm in object detection to exploit fine-grained, descriptive information available during training but not at inference. We introduce a general, model-agnostic methodology for injecting privileged information-such as bounding box masks, saliency maps, and depth cues-into deep learning-based object detectors through a teacher-student architecture. Experiments are conducted across five state-of-the-art object detection models and multiple public benchmarks, including UAV-based litter detection datasets and Pascal VOC 2012, to assess the impact on accuracy, generalization, and computational efficiency. Our results demonstrate that LUPI-trained students consistently outperform their baseline counterparts, achieving significant boosts in detection accuracy with no increase in inference complexity or model size. Performance improvements are especially marked for medium and large objects, while ablation studies reveal that intermediate weighting of teacher guidance optimally balances learning from privileged and standard inputs. The findings affirm that the LUPI framework provides an effective and practical strategy for advancing object detection systems in both resource-constrained and real-world settings.
comment: Code available on GitHub: https://github.com/mbar0075/lupi-for-object-detection
XAI-MeD: Explainable Knowledge Guided Neuro-Symbolic Framework for Domain Generalization and Rare Class Detection in Medical Imaging AAAI
Explainability domain generalization and rare class reliability are critical challenges in medical AI where deep models often fail under real world distribution shifts and exhibit bias against infrequent clinical conditions This paper introduces XAIMeD an explainable medical AI framework that integrates clinically accurate expert knowledge into deep learning through a unified neuro symbolic architecture XAIMeD is designed to improve robustness under distribution shift enhance rare class sensitivity and deliver transparent clinically aligned interpretations The framework encodes clinical expertise as logical connectives over atomic medical propositions transforming them into machine checkable class specific rules Their diagnostic utility is quantified through weighted feature satisfaction scores enabling a symbolic reasoning branch that complements neural predictions A confidence weighted fusion integrates symbolic and deep outputs while a Hunt inspired adaptive routing mechanism guided by Entropy Imbalance Gain EIG and Rare Class Gini mitigates class imbalance high intra class variability and uncertainty We evaluate XAIMeD across diverse modalities on four challenging tasks i Seizure Onset Zone SOZ localization from rs fMRI ii Diabetic Retinopathy grading across 6 multicenter datasets demonstrate substantial performance improvements including 6 percent gains in cross domain generalization and a 10 percent improved rare class F1 score far outperforming state of the art deep learning baselines Ablation studies confirm that the clinically grounded symbolic components act as effective regularizers ensuring robustness to distribution shifts XAIMeD thus provides a principled clinically faithful and interpretable approach to multimodal medical AI.
comment: Accepted at AAAI Bridge Program 2026
Nighttime Hazy Image Enhancement via Progressively and Mutually Reinforcing Night-Haze Priors
Enhancing the visibility of nighttime hazy images is challenging due to the complex degradation distributions. Existing methods mainly address a single type of degradation (e.g., haze or low-light) at a time, ignoring the interplay of different degradation types and resulting in limited visibility improvement. We observe that the domain knowledge shared between low-light and haze priors can be reinforced mutually for better visibility. Based on this key insight, in this paper, we propose a novel framework that enhances visibility in nighttime hazy images by reinforcing the intrinsic consistency between haze and low-light priors mutually and progressively. In particular, our model utilizes image-, patch-, and pixel-level experts that operate across visual and frequency domains to recover global scene structure, regional patterns, and fine-grained details progressively. A frequency-aware router is further introduced to adaptively guide the contribution of each expert, ensuring robust image restoration. Extensive experiments demonstrate the superior performance of our model on nighttime dehazing benchmarks both quantitatively and qualitatively. Moreover, we showcase the generalizability of our model in daytime dehazing and low-light enhancement tasks.
API: Empowering Generalizable Real-World Image Dehazing via Adaptive Patch Importance Learning
Real-world image dehazing is a fundamental yet challenging task in low-level vision. Existing learning-based methods often suffer from significant performance degradation when applied to complex real-world hazy scenes, primarily due to limited training data and the intrinsic complexity of haze density distributions.To address these challenges, we introduce a novel Adaptive Patch Importance-aware (API) framework for generalizable real-world image dehazing. Specifically, our framework consists of an Automatic Haze Generation (AHG) module and a Density-aware Haze Removal (DHR) module. AHG provides a hybrid data augmentation strategy by generating realistic and diverse hazy images as additional high-quality training data. DHR considers hazy regions with varying haze density distributions for generalizable real-world image dehazing in an adaptive patch importance-aware manner. To alleviate the ambiguity of the dehazed image details, we further introduce a new Multi-Negative Contrastive Dehazing (MNCD) loss, which fully utilizes information from multiple negative samples across both spatial and frequency domains. Extensive experiments demonstrate that our framework achieves state-of-the-art performance across multiple real-world benchmarks, delivering strong results in both quantitative metrics and qualitative visual quality, and exhibiting robust generalization across diverse haze distributions.
VIT-Ped: Visionary Intention Transformer for Pedestrian Behavior Analysis
Pedestrian Intention prediction is one of the key technologies in the transition from level 3 to level 4 autonomous driving. To understand pedestrian crossing behaviour, several elements and features should be taken into consideration to make the roads of tomorrow safer for everybody. We introduce a transformer / video vision transformer based algorithm of different sizes which uses different data modalities .We evaluated our algorithms on popular pedestrian behaviour dataset, JAAD, and have reached SOTA performance and passed the SOTA in metrics like Accuracy, AUC and F1-score. The advantages brought by different model design choices are investigated via extensive ablation studies.
Thinking with Blueprints: Assisting Vision-Language Models in Spatial Reasoning via Structured Object Representation
Spatial reasoning -- the ability to perceive and reason about relationships in space -- advances vision-language models (VLMs) from visual perception toward spatial semantic understanding. Existing approaches either revisit local image patches, improving fine-grained perception but weakening global spatial awareness, or mark isolated coordinates, which capture object locations but overlook their overall organization. In this work, we integrate the cognitive concept of an object-centric blueprint into VLMs to enhance spatial reasoning. Given an image and a question, the model first constructs a JSON-style blueprint that records the positions, sizes, and attributes of relevant objects, and then reasons over this structured representation to produce the final answer. To achieve this, we introduce three key techniques: (1) blueprint-embedded reasoning traces for supervised fine-tuning to elicit basic reasoning skills; (2) blueprint-aware rewards in reinforcement learning to encourage the blueprint to include an appropriate number of objects and to align final answers with this causal reasoning; and (3) anti-shortcut data augmentation that applies targeted perturbations to images and questions, discouraging reliance on superficial visual or linguistic cues. Experiments show that our method consistently outperforms existing VLMs and specialized spatial reasoning models.
comment: Preprint. Under review
Forget Less by Learning Together through Concept Consolidation WACV-26
Custom Diffusion Models (CDMs) have gained significant attention due to their remarkable ability to personalize generative processes. However, existing CDMs suffer from catastrophic forgetting when continuously learning new concepts. Most prior works attempt to mitigate this issue under the sequential learning setting with a fixed order of concept inflow and neglect inter-concept interactions. In this paper, we propose a novel framework - Forget Less by Learning Together (FL2T) - that enables concurrent and order-agnostic concept learning while addressing catastrophic forgetting. Specifically, we introduce a set-invariant inter-concept learning module where proxies guide feature selection across concepts, facilitating improved knowledge retention and transfer. By leveraging inter-concept guidance, our approach preserves old concepts while efficiently incorporating new ones. Extensive experiments, across three datasets, demonstrates that our method significantly improves concept retention and mitigates catastrophic forgetting, highlighting the effectiveness of inter-concept catalytic behavior in incremental concept learning of ten tasks with at least 2% gain on average CLIP Image Alignment scores.
comment: Accepted at WACV-26
AFTER: Mitigating the Object Hallucination of LVLM via Adaptive Factual-Guided Activation Editing
Large Vision-Language Models (LVLMs) have achieved substantial progress in cross-modal tasks. However, due to language bias, LVLMs are susceptible to object hallucination, which can be primarily divided into category, attribute, and relation hallucination, significantly impeding the trustworthy AI applications. Editing the internal activations of LVLMs has shown promising effectiveness in mitigating hallucinations with minimal cost. However, previous editing approaches neglect the effective guidance offered by factual textual semantics, thereby struggling to explicitly mitigate language bias. To address these issues, we propose Adaptive Factual-guided Visual-Textual Editing for hallucination mitigation (AFTER), which comprises Factual-Augmented Activation Steering (FAS) and Query-Adaptive Offset Optimization (QAO), to adaptively guides the original biased activations towards factual semantics. Specifically, FAS is proposed to provide factual and general guidance for activation editing, thereby explicitly modeling the precise visual-textual associations. Subsequently, QAO introduces a query-aware offset estimator to establish query-specific editing from the general steering vector, enhancing the diversity and granularity of editing. Extensive experiments on standard hallucination benchmarks across three widely adopted LVLMs validate the efficacy of the proposed AFTER, notably achieving up to a 16.3% reduction of hallucination over baseline on the AMBER benchmark. Our code and data will be released for reproducibility.
MotionAdapter: Video Motion Transfer via Content-Aware Attention Customization
Recent advances in diffusion-based text-to-video models, particularly those built on the diffusion transformer architecture, have achieved remarkable progress in generating high-quality and temporally coherent videos. However, transferring complex motions between videos remains challenging. In this work, we present MotionAdapter, a content-aware motion transfer framework that enables robust and semantically aligned motion transfer within DiT-based T2V models. Our key insight is that effective motion transfer requires \romannumeral1) explicit disentanglement of motion from appearance and \romannumeral 2) adaptive customization of motion to target content. MotionAdapter first isolates motion by analyzing cross-frame attention within 3D full-attention modules to extract attention-derived motion fields. To bridge the semantic gap between reference and target videos, we further introduce a DINO-guided motion customization module that rearranges and refines motion fields based on content correspondences. The customized motion field is then used to guide the DiT denoising process, ensuring that the synthesized video inherits the reference motion while preserving target appearance and semantics. Extensive experiments demonstrate that MotionAdapter outperforms state-of-the-art methods in both qualitative and quantitative evaluations. Moreover, MotionAdapter naturally supports complex motion transfer and motion editing tasks such as zooming.
Face Normal Estimation from Rags to Riches
Although recent approaches to face normal estimation have achieved promising results, their effectiveness heavily depends on large-scale paired data for training. This paper concentrates on relieving this requirement via developing a coarse-to-fine normal estimator. Concretely, our method first trains a neat model from a small dataset to produce coarse face normals that perform as guidance (called exemplars) for the following refinement. A self-attention mechanism is employed to capture long-range dependencies, thus remedying severe local artifacts left in estimated coarse facial normals. Then, a refinement network is customized for the sake of mapping input face images together with corresponding exemplars to fine-grained high-quality facial normals. Such a logical function split can significantly cut the requirement of massive paired data and computational resource. Extensive experiments and ablation studies are conducted to demonstrate the efficacy of our design and reveal its superiority over state-of-the-art methods in terms of both training expense as well as estimation quality. Our code and models are open-sourced at: https://github.com/AutoHDR/FNR2R.git.
MacVQA: Adaptive Memory Allocation and Global Noise Filtering for Continual Visual Question Answering AAAI 2026
Visual Question Answering (VQA) requires models to reason over multimodal information, combining visual and textual data. With the development of continual learning, significant progress has been made in retaining knowledge and adapting to new information in the VQA domain. However, current methods often struggle with balancing knowledge retention, adaptation, and robust feature representation. To address these challenges, we propose a novel framework with adaptive memory allocation and global noise filtering called MacVQA for visual question answering. MacVQA fuses visual and question information while filtering noise to ensure robust representations, and employs prototype-based memory allocation to optimize feature quality and memory usage. These designs enable MacVQA to balance knowledge acquisition, retention, and compositional generalization in continual VQA learning. Experiments on ten continual VQA tasks show that MacVQA outperforms existing baselines, achieving 43.38% average accuracy and 2.32% average forgetting on standard tasks, and 42.53% average accuracy and 3.60% average forgetting on novel composition tasks.
comment: Accepted to AAAI 2026
AR-MOT: Autoregressive Multi-object Tracking
As multi-object tracking (MOT) tasks continue to evolve toward more general and multi-modal scenarios, the rigid and task-specific architectures of existing MOT methods increasingly hinder their applicability across diverse tasks and limit flexibility in adapting to new tracking formulations. Most approaches rely on fixed output heads and bespoke tracking pipelines, making them difficult to extend to more complex or instruction-driven tasks. To address these limitations, we propose AR-MOT, a novel autoregressive paradigm that formulates MOT as a sequence generation task within a large language model (LLM) framework. This design enables the model to output structured results through flexible sequence construction, without requiring any task-specific heads. To enhance region-level visual perception, we introduce an Object Tokenizer based on a pretrained detector. To mitigate the misalignment between global and regional features, we propose a Region-Aware Alignment (RAA) module, and to support long-term tracking, we design a Temporal Memory Fusion (TMF) module that caches historical object tokens. AR-MOT offers strong potential for extensibility, as new modalities or instructions can be integrated by simply modifying the output sequence format without altering the model architecture. Extensive experiments on MOT17 and DanceTrack validate the feasibility of our approach, achieving performance comparable to state-of-the-art methods while laying the foundation for more general and flexible MOT systems.
comment: 12 pages, 5 figures
TalkPhoto: A Versatile Training-Free Conversational Assistant for Intelligent Image Editing
Thanks to the powerful language comprehension capabilities of Large Language Models (LLMs), existing instruction-based image editing methods have introduced Multimodal Large Language Models (MLLMs) to promote information exchange between instructions and images, ensuring the controllability and flexibility of image editing. However, these frameworks often build a multi-instruction dataset to train the model to handle multiple editing tasks, which is not only time-consuming and labor-intensive but also fails to achieve satisfactory results. In this paper, we present TalkPhoto, a versatile training-free image editing framework that facilitates precise image manipulation through conversational interaction. We instruct the open-source LLM with a specially designed prompt template to analyze user needs after receiving instructions and hierarchically invoke existing advanced editing methods, all without additional training. Moreover, we implement a plug-and-play and efficient invocation of image editing methods, allowing complex and unseen editing tasks to be integrated into the current framework, achieving stable and high-quality editing results. Extensive experiments demonstrate that our method not only provides more accurate invocation with fewer token consumption but also achieves higher editing quality across various image editing tasks.
comment: a Conversational Assistant for Intelligent Image Editing
Learning Action Hierarchies via Hybrid Geometric Diffusion WACV-26
Temporal action segmentation is a critical task in video understanding, where the goal is to assign action labels to each frame in a video. While recent advances leverage iterative refinement-based strategies, they fail to explicitly utilize the hierarchical nature of human actions. In this work, we propose HybridTAS - a novel framework that incorporates a hybrid of Euclidean and hyperbolic geometries into the denoising process of diffusion models to exploit the hierarchical structure of actions. Hyperbolic geometry naturally provides tree-like relationships between embeddings, enabling us to guide the action label denoising process in a coarse-to-fine manner: higher diffusion timesteps are influenced by abstract, high-level action categories (root nodes), while lower timesteps are refined using fine-grained action classes (leaf nodes). Extensive experiments on three benchmark datasets, GTEA, 50Salads, and Breakfast, demonstrate that our method achieves state-of-the-art performance, validating the effectiveness of hyperbolic-guided denoising for the temporal action segmentation task.
comment: Accepted at WACV-26
Nodule-DETR: A Novel DETR Architecture with Frequency-Channel Attention for Ultrasound Thyroid Nodule Detection
Thyroid cancer is the most common endocrine malignancy, and its incidence is rising globally. While ultrasound is the preferred imaging modality for detecting thyroid nodules, its diagnostic accuracy is often limited by challenges such as low image contrast and blurred nodule boundaries. To address these issues, we propose Nodule-DETR, a novel detection transformer (DETR) architecture designed for robust thyroid nodule detection in ultrasound images. Nodule-DETR introduces three key innovations: a Multi-Spectral Frequency-domain Channel Attention (MSFCA) module that leverages frequency analysis to enhance features of low-contrast nodules; a Hierarchical Feature Fusion (HFF) module for efficient multi-scale integration; and Multi-Scale Deformable Attention (MSDA) to flexibly capture small and irregularly shaped nodules. We conducted extensive experiments on a clinical dataset of real-world thyroid ultrasound images. The results demonstrate that Nodule-DETR achieves state-of-the-art performance, outperforming the baseline model by a significant margin of 0.149 in mAP@0.5:0.95. The superior accuracy of Nodule-DETR highlights its significant potential for clinical application as an effective tool in computer-aided thyroid diagnosis. The code of work is available at https://github.com/wjj1wjj/Nodule-DETR.
Forget Less by Learning from Parents Through Hierarchical Relationships AAAI-26
Custom Diffusion Models (CDMs) offer impressive capabilities for personalization in generative modeling, yet they remain vulnerable to catastrophic forgetting when learning new concepts sequentially. Existing approaches primarily focus on minimizing interference between concepts, often neglecting the potential for positive inter-concept interactions. In this work, we present Forget Less by Learning from Parents (FLLP), a novel framework that introduces a parent-child inter-concept learning mechanism in hyperbolic space to mitigate forgetting. By embedding concept representations within a Lorentzian manifold, naturally suited to modeling tree-like hierarchies, we define parent-child relationships in which previously learned concepts serve as guidance for adapting to new ones. Our method not only preserves prior knowledge but also supports continual integration of new concepts. We validate FLLP on three public datasets and one synthetic benchmark, showing consistent improvements in both robustness and generalization.
comment: Accepted at AAAI-26
Agentic AI in Remote Sensing: Foundations, Taxonomy, and Emerging Systems WACV
The paradigm of Earth Observation analysis is shifting from static deep learning models to autonomous agentic AI. Although recent vision foundation models and multimodal large language models advance representation learning, they often lack the sequential planning and active tool orchestration required for complex geospatial workflows. This survey presents the first comprehensive review of agentic AI in remote sensing. We introduce a unified taxonomy distinguishing between single-agent copilots and multi-agent systems while analyzing architectural foundations such as planning mechanisms, retrieval-augmented generation, and memory structures. Furthermore, we review emerging benchmarks that move the evaluation from pixel-level accuracy to trajectory-aware reasoning correctness. By critically examining limitations in grounding, safety, and orchestration, this work outlines a strategic roadmap for the development of robust, autonomous geospatial intelligence.
comment: Accepted to the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2026, GeoCV Workshop
CogFlow: Bridging Perception and Reasoning through Knowledge Internalization for Visual Mathematical Problem Solving
Despite significant progress, multimodal large language models continue to struggle with visual mathematical problem solving. Some recent works recognize that visual perception is a bottleneck in visual mathematical reasoning, but their solutions are limited to improving the extraction and interpretation of visual inputs. Notably, they all ignore the key issue of whether the extracted visual cues are faithfully integrated and properly utilized in subsequent reasoning. Motivated by this, we present CogFlow, a novel cognitive-inspired three-stage framework that incorporates a knowledge internalization stage, explicitly simulating the hierarchical flow of human reasoning: perception$\Rightarrow$internalization$\Rightarrow$reasoning. Inline with this hierarchical flow, we holistically enhance all its stages. We devise Synergistic Visual Rewards to boost perception capabilities in parametric and semantic spaces, jointly improving visual information extraction from symbols and diagrams. To guarantee faithful integration of extracted visual cues into subsequent reasoning, we introduce a Knowledge Internalization Reward model in the internalization stage, bridging perception and reasoning. Moreover, we design a Visual-Gated Policy Optimization algorithm to further enforce the reasoning is grounded with the visual knowledge, preventing models seeking shortcuts that appear coherent but are visually ungrounded reasoning chains. Moreover, we contribute a new dataset MathCog for model training, which contains samples with over 120K high-quality perception-reasoning aligned annotations. Comprehensive experiments and analysis on commonly used visual mathematical reasoning benchmarks validate the superiority of the proposed CogFlow.
Entity-Guided Multi-Task Learning for Infrared and Visible Image Fusion
Existing text-driven infrared and visible image fusion approaches often rely on textual information at the sentence level, which can lead to semantic noise from redundant text and fail to fully exploit the deeper semantic value of textual information. To address these issues, we propose a novel fusion approach named Entity-Guided Multi-Task learning for infrared and visible image fusion (EGMT). Our approach includes three key innovative components: (i) A principled method is proposed to extract entity-level textual information from image captions generated by large vision-language models, eliminating semantic noise from raw text while preserving critical semantic information; (ii) A parallel multi-task learning architecture is constructed, which integrates image fusion with a multi-label classification task. By using entities as pseudo-labels, the multi-label classification task provides semantic supervision, enabling the model to achieve a deeper understanding of image content and significantly improving the quality and semantic density of the fused image; (iii) An entity-guided cross-modal interactive module is also developed to facilitate the fine-grained interaction between visual and entity-level textual features, which enhances feature representation by capturing cross-modal dependencies at both inter-visual and visual-entity levels. To promote the wide application of the entity-guided image fusion framework, we release the entity-annotated version of four public datasets (i.e., TNO, RoadScene, M3FD, and MSRS). Extensive experiments demonstrate that EGMT achieves superior performance in preserving salient targets, texture details, and semantic consistency, compared to the state-of-the-art methods. The code and dataset will be publicly available at https://github.com/wyshao-01/EGMT.
comment: Accepted by IEEE Transactions on Multimedia
RRNet: Configurable Real-Time Video Enhancement with Arbitrary Local Lighting Variations
With the growing demand for real-time video enhancement in live applications, existing methods often struggle to balance speed and effective exposure control, particularly under uneven lighting. We introduce RRNet (Rendering Relighting Network), a lightweight and configurable framework that achieves a state-of-the-art tradeoff between visual quality and efficiency. By estimating parameters for a minimal set of virtual light sources, RRNet enables localized relighting through a depth-aware rendering module without requiring pixel-aligned training data. This object-aware formulation preserves facial identity and supports real-time, high-resolution performance using a streamlined encoder and lightweight prediction head. To facilitate training, we propose a generative AI-based dataset creation pipeline that synthesizes diverse lighting conditions at low cost. With its interpretable lighting control and efficient architecture, RRNet is well suited for practical applications such as video conferencing, AR-based portrait enhancement, and mobile photography. Experiments show that RRNet consistently outperforms prior methods in low-light enhancement, localized illumination adjustment, and glare removal.
GCR: Geometry-Consistent Routing for Task-Agnostic Continual Anomaly Detection
Feature-based anomaly detection is widely adopted in industrial inspection due to the strong representational power of large pre-trained vision encoders. While most existing methods focus on improving within-category anomaly scoring, practical deployments increasingly require task-agnostic operation under continual category expansion, where the category identity is unknown at test time. In this setting, overall performance is often dominated by expert selection, namely routing an input to an appropriate normality model before any head-specific scoring is applied. However, routing rules that compare head-specific anomaly scores across independently constructed heads are unreliable in practice, as score distributions can differ substantially across categories in scale and tail behavior. We propose GCR, a lightweight mixture-of-experts framework for stabilizing task-agnostic continual anomaly detection through geometry-consistent routing. GCR routes each test image directly in a shared frozen patch-embedding space by minimizing an accumulated nearest-prototype distance to category-specific prototype banks, and then computes anomaly maps only within the routed expert using a standard prototype-based scoring rule. By separating cross-head decision making from within-head anomaly scoring, GCR avoids cross-head score comparability issues without requiring end-to-end representation learning. Experiments on MVTec AD and VisA show that geometry-consistent routing substantially improves routing stability and mitigates continual performance collapse, achieving near-zero forgetting while maintaining competitive detection and localization performance. These results indicate that many failures previously attributed to representation forgetting can instead be explained by decision-rule instability in cross-head routing. Code is available at https://github.com/jw-chae/GCR
ESGaussianFace: Emotional and Stylized Audio-Driven Facial Animation via 3D Gaussian Splatting
Most current audio-driven facial animation research primarily focuses on generating videos with neutral emotions. While some studies have addressed the generation of facial videos driven by emotional audio, efficiently generating high-quality talking head videos that integrate both emotional expressions and style features remains a significant challenge. In this paper, we propose ESGaussianFace, an innovative framework for emotional and stylized audio-driven facial animation. Our approach leverages 3D Gaussian Splatting to reconstruct 3D scenes and render videos, ensuring efficient generation of 3D consistent results. We propose an emotion-audio-guided spatial attention method that effectively integrates emotion features with audio content features. Through emotion-guided attention, the model is able to reconstruct facial details across different emotional states more accurately. To achieve emotional and stylized deformations of the 3D Gaussian points through emotion and style features, we introduce two 3D Gaussian deformation predictors. Futhermore, we propose a multi-stage training strategy, enabling the step-by-step learning of the character's lip movements, emotional variations, and style features. Our generated results exhibit high efficiency, high quality, and 3D consistency. Extensive experimental results demonstrate that our method outperforms existing state-of-the-art techniques in terms of lip movement accuracy, expression variation, and style feature expressiveness.
comment: 13 pages, 10 figures
RSwinV2-MD: An Enhanced Residual SwinV2 Transformer for Monkeypox Detection from Skin Images
In this paper, a deep learning approach for Mpox diagnosis named Customized Residual SwinTransformerV2 (RSwinV2) has been proposed, trying to enhance the capability of lesion classification by employing the RSwinV2 tool-assisted vision approach. In the RSwinV2 method, a hierarchical structure of the transformer has been customized based on the input dimensionality, embedding structure, and output targeted by the method. In this RSwinV2 approach, the input image has been split into non-overlapping patches and processed using shifted windows and attention in these patches. This process has helped the method link all the windows efficiently by avoiding the locality issues of non-overlapping regions in attention, while being computationally efficient. RSwinV2 has further developed based on SwinTransformer and has included patch and position embeddings to take advantage of the transformer global-linking capability by employing multi-head attention in these embeddings. Furthermore, RSwinV2 has developed and incorporated the Inverse Residual Block (IRB) into this method, which utilizes convolutional skip connections with these inclusive designs to address the vanishing gradient issues during processing. RSwinV2 inclusion of IRB has therefore facilitated this method to link global patterns as well as local patterns; hence, its integrity has helped improve lesion classification capability by minimizing variability of Mpox and increasing differences of Mpox, chickenpox, measles, and cowpox. In testing SwinV2, its accuracy of 96.21 and an F1score of 95.62 have been achieved on the Kaggle public dataset, which has outperformed standard CNN models and SwinTransformers; RSwinV2 vector has thus proved its valiance as a computer-assisted tool for Mpox lesion observation interpretation.
comment: 15 Pages, 7 Figures, 4 Tables
DisCo-FLoc: Using Dual-Level Visual-Geometric Contrasts to Disambiguate Depth-Aware Visual Floorplan Localization
Since floorplan data is readily available, long-term persistent, and robust to changes in visual appearance, visual Floorplan Localization (FLoc) has garnered significant attention. Existing methods either ingeniously match geometric priors or utilize sparse semantics to reduce FLoc uncertainty. However, they still suffer from ambiguous FLoc caused by repetitive structures within minimalist floorplans. Moreover, expensive but limited semantic annotations restrict their applicability. To address these issues, we propose DisCo-FLoc, which utilizes dual-level visual-geometric Contrasts to Disambiguate depth-aware visual Floc, without requiring additional semantic labels. Our solution begins with a ray regression predictor tailored for ray-casting-based FLoc, predicting a series of FLoc candidates using depth estimation expertise. In addition, a novel contrastive learning method with position-level and orientation-level constraints is proposed to strictly match depth-aware visual features with the corresponding geometric structures in the floorplan. Such matches can effectively eliminate FLoc ambiguity and select the optimal imaging pose from FLoc candidates. Exhaustive comparative studies on two standard visual Floc benchmarks demonstrate that our method outperforms the state-of-the-art semantic-based method, achieving significant improvements in both robustness and accuracy.
comment: 7 pages, 4 figures
Robust Egocentric Visual Attention Prediction Through Language-guided Scene Context-aware Learning
As the demand for analyzing egocentric videos grows, egocentric visual attention prediction, anticipating where a camera wearer will attend, has garnered increasing attention. However, it remains challenging due to the inherent complexity and ambiguity of dynamic egocentric scenes. Motivated by evidence that scene contextual information plays a crucial role in modulating human attention, in this paper, we present a language-guided scene context-aware learning framework for robust egocentric visual attention prediction. We first design a context perceiver which is guided to summarize the egocentric video based on a language-based scene description, generating context-aware video representations. We then introduce two training objectives that: 1) encourage the framework to focus on the target point-of-interest regions and 2) suppress distractions from irrelevant regions which are less likely to attract first-person attention. Extensive experiments on Ego4D and Aria Everyday Activities (AEA) datasets demonstrate the effectiveness of our approach, achieving state-of-the-art performance and enhanced robustness across diverse, dynamic egocentric scenarios.
comment: 11 pages, 7 figures, 4 tables
Adaptive Hybrid Optimizer based Framework for Lumpy Skin Disease Identification
Lumpy Skin Disease (LSD) is a contagious viral infection that significantly deteriorates livestock health, thereby posing a serious threat to the global economy and food security. Owing to its rapid spread characteristics, early and precise identification is crucial to prevent outbreaks and ensure timely intervention. In this paper, we propose a hybrid deep learning-based approach called LUMPNet for the early detection of LSD. LUMPNet utilizes image data to detect and classify skin nodules -- the primary indicator of LSD. To this end, LUMPNet uses YOLOv11, EfficientNet-based CNN classifier with compound scaling, and a novel adaptive hybrid optimizer. More precisely, LUMPNet detects and localizes LSD skin nodules and lesions on cattle images. It exploits EfficientNet to classify the localized cattle images into LSD-affected or healthy categories. To stabilize and accelerate the training of YOLOv11 and EfficientNet hybrid model, a novel adaptive hybrid optimizer is proposed and utilized. We evaluate LUMPNet at various stages of LSD using a publicly available dataset. Results indicate that the proposed scheme achieves 99% LSD detection training accuracy, and outperforms existing schemes. The model also achieves validation accuracy of 98%. Moreover, for further evaluation, we conduct a case study using an optimized EfficientNet-B0 model trained with the AdamW optimizer, and compare its performance with LUMPNet. The results show that LUMPNet achieves superior performance.
Causality-Aware Temporal Projection for Video Understanding in Video-LLMs
Recent Video Large Language Models (Video-LLMs) have shown strong multimodal reasoning capabilities, yet remain challenged by video understanding tasks that require consistent temporal ordering and causal coherence. Many parameter-efficient Video-LLMs rely on unconstrained bidirectional projectors to model inter-frame interactions, which can blur temporal ordering by allowing later frames to influence earlier representations, without explicit architectural mechanisms to respect the directional nature of video reasoning. To address this limitation, we propose V-CORE, a parameter-efficient framework that introduces explicit temporal ordering constraints for video understanding. V-CORE consists of two key components: (1) Learnable Spatial Aggregation (LSA), which adaptively selects salient spatial tokens to reduce redundancy, and (2) a Causality-Aware Temporal Projector (CATP), which enforces structured unidirectional information flow via block-causal attention and a terminal dynamic summary token acting as a causal sink. This design preserves intra-frame spatial interactions while ensuring that temporal information is aggregated in a strictly ordered manner. With 4-bit QLoRA and a frozen LLM backbone, V-CORE can be trained efficiently on a single consumer GPU. Experiments show that V-CORE achieves strong performance on the challenging NExT-QA benchmark, reaching 61.2% accuracy, and remains competitive across MSVD-QA, MSRVTT-QA, and TGIF-QA, with gains concentrated in temporal and causal reasoning subcategories (+3.5% and +5.2% respectively), directly validating the importance of explicit temporal ordering constraints.
comment: 7 pages, 4 figures
VerLM: Explaining Face Verification Using Natural Language
Face verification systems have seen substantial advancements; however, they often lack transparency in their decision-making processes. In this paper, we introduce an innovative Vision-Language Model (VLM) for Face Verification, which not only accurately determines if two face images depict the same individual but also explicitly explains the rationale behind its decisions. Our model is uniquely trained using two complementary explanation styles: (1) concise explanations that summarize the key factors influencing its decision, and (2) comprehensive explanations detailing the specific differences observed between the images. We adapt and enhance a state-of-the-art modeling approach originally designed for audio-based differentiation to suit visual inputs effectively. This cross-modal transfer significantly improves our model's accuracy and interpretability. The proposed VLM integrates sophisticated feature extraction techniques with advanced reasoning capabilities, enabling clear articulation of its verification process. Our approach demonstrates superior performance, surpassing baseline methods and existing models. These findings highlight the immense potential of vision language models in face verification set up, contributing to more transparent, reliable, and explainable face verification systems.
DDNet: A Dual-Stream Graph Learning and Disentanglement Framework for Temporal Forgery Localization
The rapid evolution of AIGC technology enables misleading viewers by tampering mere small segments within a video, rendering video-level detection inaccurate and unpersuasive. Consequently, temporal forgery localization (TFL), which aims to precisely pinpoint tampered segments, becomes critical. However, existing methods are often constrained by \emph{local view}, failing to capture global anomalies. To address this, we propose a \underline{d}ual-stream graph learning and \underline{d}isentanglement framework for temporal forgery localization (DDNet). By coordinating a \emph{Temporal Distance Stream} for local artifacts and a \emph{Semantic Content Stream} for long-range connections, DDNet prevents global cues from being drowned out by local smoothness. Furthermore, we introduce Trace Disentanglement and Adaptation (TDA) to isolate generic forgery fingerprints, alongside Cross-Level Feature Embedding (CLFE) to construct a robust feature foundation via deep fusion of hierarchical features. Experiments on ForgeryNet and TVIL benchmarks demonstrate that our method outperforms state-of-the-art approaches by approximately 9\% in AP@0.95, with significant improvements in cross-domain robustness.
Subimage Overlap Prediction: Task-Aligned Self-Supervised Pretraining For Semantic Segmentation In Remote Sensing Imagery WACV 2026
Self-supervised learning (SSL) methods have become a dominant paradigm for creating general purpose models whose capabilities can be transferred to downstream supervised learning tasks. However, most such methods rely on vast amounts of pretraining data. This work introduces Subimage Overlap Prediction, a novel self-supervised pretraining task to aid semantic segmentation in remote sensing imagery that uses significantly lesser pretraining imagery. Given an image, a sub-image is extracted and the model is trained to produce a semantic mask of the location of the extracted sub-image within the original image. We demonstrate that pretraining with this task results in significantly faster convergence, and equal or better performance (measured via mIoU) on downstream segmentation. This gap in convergence and performance widens when labeled training data is reduced. We show this across multiple architecture types, and with multiple downstream datasets. We also show that our method matches or exceeds performance while requiring significantly lesser pretraining data relative to other SSL methods. Code and model weights are provided at \href{https://github.com/sharmalakshay93/subimage-overlap-prediction}{github.com/sharmalakshay93/subimage-overlap-prediction}.
comment: Accepted at CV4EO Workshop at WACV 2026
CTIS-QA: Clinical Template-Informed Slide-level Question Answering for Pathology
In this paper, we introduce a clinical diagnosis template-based pipeline to systematically collect and structure pathological information. In collaboration with pathologists and guided by the the College of American Pathologists (CAP) Cancer Protocols, we design a Clinical Pathology Report Template (CPRT) that ensures comprehensive and standardized extraction of diagnostic elements from pathology reports. We validate the effectiveness of our pipeline on TCGA-BRCA. First, we extract pathological features from reports using CPRT. These features are then used to build CTIS-Align, a dataset of 80k slide-description pairs from 804 WSIs for vision-language alignment training, and CTIS-Bench, a rigorously curated VQA benchmark comprising 977 WSIs and 14,879 question-answer pairs. CTIS-Bench emphasizes clinically grounded, closed-ended questions (e.g., tumor grade, receptor status) that reflect real diagnostic workflows, minimize non-visual reasoning, and require genuine slide understanding. We further propose CTIS-QA, a Slide-level Question Answering model, featuring a dual-stream architecture that mimics pathologists' diagnostic approach. One stream captures global slide-level context via clustering-based feature aggregation, while the other focuses on salient local regions through attention-guided patch perception module. Extensive experiments on WSI-VQA, CTIS-Bench, and slide-level diagnostic tasks show that CTIS-QA consistently outperforms existing state-of-the-art models across multiple metrics. Code and data are available at https://github.com/HLSvois/CTIS-QA.
comment: The paper has been accepted by BIBM 2025
AlignDrive: Aligned Lateral-Longitudinal Planning for End-to-End Autonomous Driving
End-to-end autonomous driving has rapidly progressed, enabling joint perception and planning in complex environments. In the planning stage, state-of-the-art (SOTA) end-to-end autonomous driving models decouple planning into parallel lateral and longitudinal predictions. While effective, this parallel design can lead to i) coordination failures between the planned path and speed, and ii) underutilization of the drive path as a prior for longitudinal planning, thus redundantly encoding static information. To address this, we propose a novel cascaded framework that explicitly conditions longitudinal planning on the drive path, enabling coordinated and collision-aware lateral and longitudinal planning. Specifically, we introduce a path-conditioned formulation that explicitly incorporates the drive path into longitudinal planning. Building on this, the model predicts longitudinal displacements along the drive path rather than full 2D trajectory waypoints. This design simplifies longitudinal reasoning and more tightly couples it with lateral planning. Additionally, we introduce a planning-oriented data augmentation strategy that simulates rare safety-critical events, such as vehicle cut-ins, by adding agents and relabeling longitudinal targets to avoid collision. Evaluated on the challenging Bench2Drive benchmark, our method sets a new SOTA, achieving a driving score of 89.07 and a success rate of 73.18%, demonstrating significantly improved coordination and safety
comment: underreview
MANGO:Natural Multi-speaker 3D Talking Head Generation via 2D-Lifted Enhancement
Current audio-driven 3D head generation methods mainly focus on single-speaker scenarios, lacking natural, bidirectional listen-and-speak interaction. Achieving seamless conversational behavior, where speaking and listening states transition fluidly remains a key challenge. Existing 3D conversational avatar approaches rely on error-prone pseudo-3D labels that fail to capture fine-grained facial dynamics. To address these limitations, we introduce a novel two-stage framework MANGO, which leveraging pure image-level supervision by alternately training to mitigate the noise introduced by pseudo-3D labels, thereby achieving better alignment with real-world conversational behaviors. Specifically, in the first stage, a diffusion-based transformer with a dual-audio interaction module models natural 3D motion from multi-speaker audio. In the second stage, we use a fast 3D Gaussian Renderer to generate high-fidelity images and provide 2D-level photometric supervision for the 3D motions through alternate training. Additionally, we introduce MANGO-Dialog, a high-quality dataset with over 50 hours of aligned 2D-3D conversational data across 500+ identities. Extensive experiments demonstrate that our method achieves exceptional accuracy and realism in modeling two-person 3D dialogue motion, significantly advancing the fidelity and controllability of audio-driven talking heads.
comment: 20 pages, 11i figures
Crafting Adversarial Inputs for Large Vision-Language Models Using Black-Box Optimization
Recent advancements in Large Vision-Language Models (LVLMs) have shown groundbreaking capabilities across diverse multimodal tasks. However, these models remain vulnerable to adversarial jailbreak attacks, where adversaries craft subtle perturbations to bypass safety mechanisms and trigger harmful outputs. Existing white-box attacks methods require full model accessibility, suffer from computing costs and exhibit insufficient adversarial transferability, making them impractical for real-world, black-box settings. To address these limitations, we propose a black-box jailbreak attack on LVLMs via Zeroth-Order optimization using Simultaneous Perturbation Stochastic Approximation (ZO-SPSA). ZO-SPSA provides three key advantages: (i) gradient-free approximation by input-output interactions without requiring model knowledge, (ii) model-agnostic optimization without the surrogate model and (iii) lower resource requirements with reduced GPU memory consumption. We evaluate ZO-SPSA on three LVLMs, including InstructBLIP, LLaVA and MiniGPT-4, achieving the highest jailbreak success rate of 83.0% on InstructBLIP, while maintaining imperceptible perturbations comparable to white-box methods. Moreover, adversarial examples generated from MiniGPT-4 exhibit strong transferability to other LVLMs, with ASR reaching 64.18%. These findings underscore the real-world feasibility of black-box jailbreaks and expose critical weaknesses in the safety mechanisms of current LVLMs
comment: EACL
Point-SRA: Self-Representation Alignment for 3D Representation Learning AAAI 2026
Masked autoencoders (MAE) have become a dominant paradigm in 3D representation learning, setting new performance benchmarks across various downstream tasks. Existing methods with fixed mask ratio neglect multi-level representational correlations and intrinsic geometric structures, while relying on point-wise reconstruction assumptions that conflict with the diversity of point cloud. To address these issues, we propose a 3D representation learning method, termed Point-SRA, which aligns representations through self-distillation and probabilistic modeling. Specifically, we assign different masking ratios to the MAE to capture complementary geometric and semantic information, while the MeanFlow Transformer (MFT) leverages cross-modal conditional embeddings to enable diverse probabilistic reconstruction. Our analysis further reveals that representations at different time steps in MFT also exhibit complementarity. Therefore, a Dual Self-Representation Alignment mechanism is proposed at both the MAE and MFT levels. Finally, we design a Flow-Conditioned Fine-Tuning Architecture to fully exploit the point cloud distribution learned via MeanFlow. Point-SRA outperforms Point-MAE by 5.37% on ScanObjectNN. On intracranial aneurysm segmentation, it reaches 96.07% mean IoU for arteries and 86.87% for aneurysms. For 3D object detection, Point-SRA achieves 47.3% AP@50, surpassing MaskPoint by 5.12%.
comment: This is an AAAI 2026 accepted paper titled "Point-SRA: Self-Representation Alignment for 3D Representation Learning", spanning 13 pages in total. The submission includes 7 figures (fig1 to fig7) that visually support the technical analysis
FFP-300K: Scaling First-Frame Propagation for Generalizable Video Editing
First-Frame Propagation (FFP) offers a promising paradigm for controllable video editing, but existing methods are hampered by a reliance on cumbersome run-time guidance. We identify the root cause of this limitation as the inadequacy of current training datasets, which are often too short, low-resolution, and lack the task diversity required to teach robust temporal priors. To address this foundational data gap, we first introduce FFP-300K, a new large-scale dataset comprising 300K high-fidelity video pairs at 720p resolution and 81 frames in length, constructed via a principled two-track pipeline for diverse local and global edits. Building on this dataset, we propose a novel framework designed for true guidance-free FFP that resolves the critical tension between maintaining first-frame appearance and preserving source video motion. Architecturally, we introduce Adaptive Spatio-Temporal RoPE (AST-RoPE), which dynamically remaps positional encodings to disentangle appearance and motion references. At the objective level, we employ a self-distillation strategy where an identity propagation task acts as a powerful regularizer, ensuring long-term temporal stability and preventing semantic drift. Comprehensive experiments on the EditVerseBench benchmark demonstrate that our method significantly outperforming existing academic and commercial models by receiving about 0.2 PickScore and 0.3 VLM score improvement against these competitors.
Real-Time Lane Detection via Efficient Feature Alignment and Covariance Optimization for Low-Power Embedded Systems
Real-time lane detection in embedded systems encounters significant challenges due to subtle and sparse visual signals in RGB images, often constrained by limited computational resources and power consumption. Although deep learning models for lane detection categorized into segmentation-based, anchor-based, and curve-based methods there remains a scarcity of universally applicable optimization techniques tailored for low-power embedded environments. To overcome this, we propose an innovative Covariance Distribution Optimization (CDO) module specifically designed for efficient, real-time applications. The CDO module aligns lane feature distributions closely with ground-truth labels, significantly enhancing detection accuracy without increasing computational complexity. Evaluations were conducted on six diverse models across all three method categories, including two optimized for real-time applications and four state-of-the-art (SOTA) models, tested comprehensively on three major datasets: CULane, TuSimple, and LLAMAS. Experimental results demonstrate accuracy improvements ranging from 0.01% to 1.5%. The proposed CDO module is characterized by ease of integration into existing systems without structural modifications and utilizes existing model parameters to facilitate ongoing training, thus offering substantial benefits in performance, power efficiency, and operational flexibility in embedded systems.
Annealed Langevin Posterior Sampling (ALPS): A Rapid Algorithm for Image Restoration with Multiscale Energy Models
Solving inverse problems in imaging requires models that support efficient inference, uncertainty quantification, and principled probabilistic reasoning. Energy-Based Models (EBMs), with their interpretable energy landscapes and compositional structure, are well-suited for this task but have historically suffered from high computational costs and training instability. To overcome the historical shortcomings of EBMs, we introduce a fast distillation strategy to transfer the strengths of pre-trained diffusion models into multi-scale EBMs. These distilled EBMs enable efficient sampling and preserve the interpretability and compositionality inherent to potential-based frameworks. Leveraging EBM compositionality, we propose Annealed Langevin Posterior Sampling (ALPS) algorithm for Maximum-A-Posteriori (MAP), Minimum Mean Square Error (MMSE), and uncertainty estimates for inverse problems in imaging. Unlike diffusion models that use complex guidance strategies for latent variables, we perform annealing on static posterior distributions that are well-defined and composable. Experiments on image inpainting and MRI reconstruction demonstrate that our method matches or surpasses diffusion-based baselines in both accuracy and efficiency, while also supporting MAP recovery. Overall, our framework offers a scalable and principled solution for inverse problems in imaging, with potential for practical deployment in scientific and clinical settings. ALPS code is available at the GitHub repository \href{https://github.com/JyoChand/ALPS}{ALPS}.
Shallow- and Deep-fake Image Manipulation Localization Using Vision Mamba and Guided Graph Neural Network
Image manipulation localization is a critical research task, given that forged images may have a significant societal impact of various aspects. Such image manipulations can be produced using traditional image editing tools (known as "shallowfakes") or advanced artificial intelligence techniques ("deepfakes"). While numerous studies have focused on image manipulation localization on either shallowfake images or deepfake videos, few approaches address both cases. In this paper, we explore the feasibility of using a deep learning network to localize manipulations in both shallow- and deep-fake images, and proposed a solution for such purpose. To precisely differentiate between authentic and manipulated pixels, we leverage the Vision Mamba network to extract feature maps that clearly describe the boundaries between tampered and untouched regions. To further enhance this separation, we propose a novel Guided Graph Neural Network (G-GNN) module that amplifies the distinction between manipulated and authentic pixels. Our evaluation results show that our proposed method achieved higher inference accuracy compared to other state-of-the-art methods.
comment: Under review for journal publication
Comparative Analysis of Binarization Methods For Medical Image Hashing On Odir Dataset
In this study, we evaluated four binarization methods. Locality-Sensitive Hashing (LSH), Iterative Quantization (ITQ), Kernel-based Supervised Hashing (KSH), and Supervised Discrete Hashing (SDH) on the ODIR dataset using deep feature embeddings. Experimental results show that SDH achieved the best performance, with an mAP@100 of 0.9184 using only 32-bit codes, outperforming LSH, ITQ, and KSH. Compared with prior studies, our method proved highly competitive: Fang et al. reported 0.7528 (Fundus-iSee, 48 bits) and 0.8856 (ASOCT-Cataract, 48 bits), while Wijesinghe et al. achieved 94.01 (KVASIR, 256 bits). Despite using significantly fewer bits, our SDH-based framework reached retrieval accuracy close to the state-of-the-art. These findings demonstrate that SDH is the most effective approach among those tested, offering a practical balance of accuracy, storage, and efficiency for medical image retrieval and device inventory management.
comment: 17th International İstanbul Scientific Research Congress
Normalized Conditional Mutual Information Surrogate Loss for Deep Neural Classifiers
In this paper, we propose a novel information theoretic surrogate loss; normalized conditional mutual information (NCMI); as a drop in alternative to the de facto cross-entropy (CE) for training deep neural network (DNN) based classifiers. We first observe that the model's NCMI is inversely proportional to its accuracy. Building on this insight, we introduce an alternating algorithm to efficiently minimize the NCMI. Across image recognition and whole-slide imaging (WSI) subtyping benchmarks, NCMI-trained models surpass state of the art losses by substantial margins at a computational cost comparable to that of CE. Notably, on ImageNet, NCMI yields a 2.77% top-1 accuracy improvement with ResNet-50 comparing to the CE; on CAMELYON-17, replacing CE with NCMI improves the macro-F1 by 8.6% over the strongest baseline. Gains are consistent across various architectures and batch sizes, suggesting that NCMI is a practical and competitive alternative to CE.
comment: 8 pages, 4 figures
A Green Solution for Breast Region Segmentation Using Deep Active Learning
Purpose: Annotation of medical breast images is an essential step toward better diagnostic but a time consuming task. This research aims to focus on different selecting sample strategies within deep active learning on Breast Region Segmentation (BRS) to lessen computational cost of training and effective use of resources. Methods: The Stavanger breast MRI dataset containing 59 patients was used in this study, with FCN-ResNet50 adopted as a sustainable deep learning (DL) model. A novel sample selection approach based on Breast Anatomy Geometry (BAG) analysis was introduced to group data with similar informative features for DL. Patient positioning and Breast Size were considered the key selection criteria in this process. Four selection strategies including Random Selection, Nearest Point, Breast Size, and a hybrid of all three strategies were evaluated using an active learning framework. Four training data proportions of 10%, 20%, 30%, and 40% were used for model training, with the remaining data reserved for testing. Model performance was assessed using Dice score, Intersection over Union, precision, and recall, along with 5-fold cross-validation to enhance generalizability. Results: Increasing the training data proportion from 10% to 40% improved segmentation performance for nearly all strategies, except for Random Selection. The Nearest Point strategy consistently achieved the lowest carbon footprint at 30% and 40% data proportions. Overall, combining the Nearest Point strategy with 30% of the training data provided the best balance between segmentation performance, efficiency, and environmental sustainability. Keywords: Deep Active Learning, Breast Region Segmentation, Human-center analysis
MovieRecapsQA: A Multimodal Open-Ended Video Question-Answering Benchmark
Understanding real-world videos such as movies requires integrating visual and dialogue cues to answer complex questions. Yet existing VideoQA benchmarks struggle to capture this multimodal reasoning and are largely not open-ended, given the difficulty of evaluating free-form answers. In this paper, we introduce a novel open-ended multi-modal VideoQA benchmark, MovieRecapsQA created using movie recap videos--a distinctive type of YouTube content that summarizes a film by presenting its key events through synchronized visual (recap video) and textual (recap summary) modalities. Using the recap summary, we generate $\approx 8.2$ K question-answer (QA) pairs (aligned with movie-subtitles) and provide the necessary "facts" needed to verify an answer in a reference-free manner. To our knowledge, this is the first open-ended VideoQA benchmark that supplies explicit textual context of the input (video and/or text); which we use for evaluation. Our benchmark provides videos of multiple lengths (i.e., recap-segments, movie-segments) and categorizations of questions (by modality and type) to enable fine-grained analysis. We evaluate the performance of seven state-of-the-art MLLMs using our benchmark and observe that: 1) visual-only questions remain the most challenging; 2) models default to textual inputs whenever available; 3) extracting factually accurate information from video content is still difficult for all models; and 4) proprietary and open-source models perform comparably on video-dependent questions.
CT Scans As Video: Efficient Intracranial Hemorrhage Detection Using Multi-Object Tracking
Automated analysis of volumetric medical imaging on edge devices is severely constrained by the high memory and computational demands of 3D Convolutional Neural Networks (CNNs). This paper develops a lightweight computer vision framework that reconciles the efficiency of 2D detection with the necessity of 3D context by reformulating volumetric Computer Tomography (CT) data as sequential video streams. This video-viewpoint paradigm is applied to the time-sensitive task of Intracranial Hemorrhage (ICH) detection using the Hemorica dataset. To ensure operational efficiency, we benchmarked multiple generations of the YOLO architecture (v8, v10, v11 and v12) in their Nano configurations, selecting the version with the highest mAP@50 to serve as the slice-level backbone. A ByteTrack algorithm is then introduced to enforce anatomical consistency across the $z$-axis. To address the initialization lag inherent in video trackers, a hybrid inference strategy and a spatiotemporal consistency filter are proposed to distinguish true pathology from transient prediction noise. Experimental results on independent test data demonstrate that the proposed framework serves as a rigorous temporal validator, increasing detection Precision from 0.703 to 0.779 compared to the baseline 2D detector, while maintaining high sensitivity. By approximating 3D contextual reasoning at a fraction of the computational cost, this method provides a scalable solution for real-time patient prioritization in resource-constrained environments, such as mobile stroke units and IoT-enabled remote clinics.
PatchAlign3D: Local Feature Alignment for Dense 3D Shape understanding
Current foundation models for 3D shapes excel at global tasks (retrieval, classification) but transfer poorly to local part-level reasoning. Recent approaches leverage vision and language foundation models to directly solve dense tasks through multi-view renderings and text queries. While promising, these pipelines require expensive inference over multiple renderings, depend heavily on large language-model (LLM) prompt engineering for captions, and fail to exploit the inherent 3D geometry of shapes. We address this gap by introducing an encoder-only 3D model that produces language-aligned patch-level features directly from point clouds. Our pre-training approach builds on existing data engines that generate part-annotated 3D shapes by pairing multi-view SAM regions with VLM captioning. Using this data, we train a point cloud transformer encoder in two stages: (1) distillation of dense 2D features from visual encoders such as DINOv2 into 3D patches, and (2) alignment of these patch embeddings with part-level text embeddings through a multi-positive contrastive objective. Our 3D encoder achieves zero-shot 3D part segmentation with fast single-pass inference without any test-time multi-view rendering, while significantly outperforming previous rendering-based and feed-forward approaches across several 3D part segmentation benchmarks. Project website: https://souhail-hadgi.github.io/patchalign3dsite/
comment: Project website: https://souhail-hadgi.github.io/patchalign3dsite/
Don't Mind the Gaps: Implicit Neural Representations for Resolution-Agnostic Retinal OCT Analysis
Routine clinical imaging of the retina using optical coherence tomography (OCT) is performed with large slice spacing, resulting in highly anisotropic images and a sparsely scanned retina. Most learning-based methods circumvent the problems arising from the anisotropy by using 2D approaches rather than performing volumetric analyses. These approaches inherently bear the risk of generating inconsistent results for neighboring B-scans. For example, 2D retinal layer segmentations can have irregular surfaces in 3D. Furthermore, the typically used convolutional neural networks are bound to the resolution of the training data, which prevents their usage for images acquired with a different imaging protocol. Implicit neural representations (INRs) have recently emerged as a tool to store voxelized data as a continuous representation. Using coordinates as input, INRs are resolution-agnostic, which allows them to be applied to anisotropic data. In this paper, we propose two frameworks that make use of this characteristic of INRs for dense 3D analyses of retinal OCT volumes. 1) We perform inter-B-scan interpolation by incorporating additional information from en-face modalities, that help retain relevant structures between B-scans. 2) We create a resolution-agnostic retinal atlas that enables general analysis without strict requirements for the data. Both methods leverage generalizable INRs, improving retinal shape representation through population-based training and allowing predictions for unseen cases. Our resolution-independent frameworks facilitate the analysis of OCT images with large B-scan distances, opening up possibilities for the volumetric evaluation of retinal structures and pathologies.
comment: Extended journal version of the proceedings paper "Bridging Gaps in Retinal Imaging: Fusing OCT and SLO Information with Implicit Neural Representations for Improved Interpolation and Segmentation" from the German Conference on Medical Image Computing (BVM 2025; DOI:10.1007/978-3-658-47422-5_24). Under review for a MELBA Special Issue. Minor revision resubmitted; decision pending
Explainable AI Technique in Lung Cancer Detection Using Convolutional Neural Networks
Early detection of lung cancer is critical to improving survival outcomes. We present a deep learning framework for automated lung cancer screening from chest computed tomography (CT) images with integrated explainability. Using the IQ-OTH/NCCD dataset (1,197 scans across Normal, Benign, and Malignant classes), we evaluate a custom convolutional neural network (CNN) and three fine-tuned transfer learning backbones: DenseNet121, ResNet152, and VGG19. Models are trained with cost-sensitive learning to mitigate class imbalance and evaluated via accuracy, precision, recall, F1-score, and ROC-AUC. While ResNet152 achieved the highest accuracy (97.3%), DenseNet121 provided the best overall balance in precision, recall, and F1 (up to 92%, 90%, 91%, respectively). We further apply Shapley Additive Explanations (SHAP) to visualize evidence contributing to predictions, improving clinical transparency. Results indicate that CNN-based approaches augmented with explainability can provide fast, accurate, and interpretable support for lung cancer screening, particularly in resource-limited settings.
comment: 11 pages, 9 figures, 4 tables. Undergraduate research project report
Diminishing Returns in Self-Supervised Learning
Transformer-based architectures have become a dominant paradigm in vision and language, but their success is often attributed to large model capacity and massive training data. In this work, we examine how self-supervised pre-training, intermediate fine-tuning, and downstream fine-tuning interact in a low-capacity regime, using a 5M-parameter Vision Transformer for semantic segmentation. Across multiple data scales, we find that masked image modeling pre-training and downstream fine-tuning reliably improve performance, but with clear diminishing returns as supervision increases. In contrast, inserting an intermediate classification fine-tuning stage consistently degrades downstream performance, with the largest drops occurring precisely where pre-training is most effective. Through an analysis of patch-level representation geometry, we show that classification-based intermediate supervision actively interferes with representations learned during pre-training by collapsing spatial structure critical for dense prediction. These results indicate that, in small models, the geometry of supervision matters more than the number of training stages: misaligned intermediate objectives can negate the benefits of pre-training rather than amplify them.
TI-PREGO: Chain of Thought and In-Context Learning for Online Mistake Detection in PRocedural EGOcentric Videos
Identifying procedural errors online from egocentric videos is a critical yet challenging task across various domains, including manufacturing, healthcare, and skill-based training. The nature of such mistakes is inherently open-set, as unforeseen or novel errors may occur, necessitating robust detection systems that do not rely on prior examples of failure. Currently, however, no technique effectively detects open-set procedural mistakes online. We propose a dual branch architecture to address this problem in an online fashion: one branch continuously performs step recognition from the input egocentric video, while the other anticipates future steps based on the recognition module's output. Mistakes are detected as mismatches between the currently recognized action and the action predicted by the anticipation module. The recognition branch takes input frames, predicts the current action, and aggregates frame-level results into action tokens. The anticipation branch, specifically, leverages the solid pattern-matching capabilities of Large Language Models (LLMs) to predict action tokens based on previously predicted ones. Given the online nature of the task, we also thoroughly benchmark the difficulties associated with per-frame evaluations, particularly the need for accurate and timely predictions in dynamic online scenarios. Extensive experiments on two procedural datasets demonstrate the challenges and opportunities of leveraging a dual-branch architecture for mistake detection, showcasing the effectiveness of our proposed approach. In a thorough evaluation including recognition and anticipation variants and state-of-the-art models, our method reveals its robustness and effectiveness in online applications.
PrevMatch: Revisiting and Maximizing Temporal Knowledge in Semi-Supervised Semantic Segmentation WACV 2026
In semi-supervised semantic segmentation, the Mean Teacher- and co-training-based approaches are employed to mitigate confirmation bias and coupling problems. However, despite their high performance, these approaches frequently involve complex training pipelines and a substantial computational burden, limiting the scalability and compatibility of these methods. In this paper, we propose a PrevMatch framework that effectively mitigates the aforementioned limitations by maximizing the utilization of the temporal knowledge obtained during the training process. The PrevMatch framework relies on two core strategies: (1) we reconsider the use of temporal knowledge and thus directly utilize previous models obtained during training to generate additional pseudo-label guidance, referred to as previous guidance. (2) we design a highly randomized ensemble strategy to maximize the effectiveness of the previous guidance. PrevMatch, a simple yet effective plug-in method, can be seamlessly integrated into existing semi-supervised learning frameworks with minimal computational overhead. Experimental results on three benchmark semantic segmentation datasets show that incorporating PrevMatch into existing methods significantly improves their performance. Furthermore, our analysis indicates that PrevMatch facilitates stable optimization during training, resulting in improved generalization performance.
comment: To appear in WACV 2026. Code: https://github.com/wooseok-shin/PrevMatch
Answering from Sure to Uncertain: Uncertainty-Aware Curriculum Learning for Video Question Answering BMVC 2025
While significant advancements have been made in video question answering (VideoQA), the potential benefits of enhancing model generalization through tailored difficulty scheduling have been largely overlooked in existing research. This paper seeks to bridge that gap by incorporating VideoQA into a curriculum learning (CL) framework that progressively trains models from simpler to more complex data. Recognizing that conventional self-paced CL methods rely on training loss for difficulty measurement, which might not accurately reflect the intricacies of video-question pairs, we introduce the concept of uncertainty-aware CL. Here, uncertainty serves as the guiding principle for dynamically adjusting the difficulty. Furthermore, we address the challenge posed by uncertainty by presenting a probabilistic modeling approach for VideoQA. Specifically, we conceptualize VideoQA as a stochastic computation graph, where the hidden representations are treated as stochastic variables. This yields two distinct types of uncertainty: one related to the inherent uncertainty in the data and another pertaining to the model's confidence. In practice, we seamlessly integrate the VideoQA model into our framework and conduct comprehensive experiments. The findings affirm that our approach not only achieves enhanced performance but also effectively quantifies uncertainty in the context of VideoQA.
comment: Accepted by BMVC 2025
RingMo-Agent: A Unified Remote Sensing Foundation Model for Multi-Platform and Multi-Modal Reasoning
Remote sensing (RS) images from multiple modalities and platforms exhibit diverse details due to differences in sensor characteristics and imaging perspectives. Existing vision-language research in RS largely relies on relatively homogeneous data sources. Moreover, they still remain limited to conventional visual perception tasks such as classification or captioning. As a result, these methods fail to serve as a unified and standalone framework capable of effectively handling RS imagery from diverse sources in real-world applications. To address these issues, we propose RingMo-Agent, a model designed to handle multi-modal and multi-platform data that performs perception and reasoning tasks based on user textual instructions. Compared with existing models, RingMo-Agent 1) is supported by a large-scale vision-language dataset named RS-VL3M, comprising over 3 million image-text pairs, spanning optical, SAR, and infrared (IR) modalities collected from both satellite and UAV platforms, covering perception and challenging reasoning tasks; 2) learns modality adaptive representations by incorporating separated embedding layers to construct isolated features for heterogeneous modalities and reduce cross-modal interference; 3) unifies task modeling by introducing task-specific tokens and employing a token-based high-dimensional hidden state decoding mechanism designed for long-horizon spatial tasks. Extensive experiments on various RS vision-language tasks demonstrate that RingMo-Agent not only proves effective in both visual understanding and sophisticated analytical tasks, but also exhibits strong generalizability across different platforms and sensing modalities.
comment: 23 pages, 6 figures, 20 tables
Multimodal Adversarial Defense for Vision-Language Models by Leveraging One-To-Many Relationships WACV 2026
Pre-trained vision-language (VL) models are highly vulnerable to adversarial attacks. However, existing defense methods primarily focus on image classification, overlooking two key aspects of VL tasks: multimodal attacks, where both image and text can be perturbed, and the one-to-many relationship of images and texts, where a single image can correspond to multiple textual descriptions and vice versa (1:N and N:1). This work is the first to explore defense strategies against multimodal attacks in VL tasks, whereas prior VL defense methods focus on vision robustness. We propose multimodal adversarial training (MAT), which incorporates adversarial perturbations in both image and text modalities during training, significantly outperforming existing unimodal defenses. Furthermore, we discover that MAT is limited by deterministic one-to-one (1:1) image-text pairs in VL training data. To address this, we conduct a comprehensive study on leveraging one-to-many relationships to enhance robustness, investigating diverse augmentation techniques. Our analysis shows that, for a more effective defense, augmented image-text pairs should be well-aligned, diverse, yet avoid distribution shift -- conditions overlooked by prior research. This work pioneers defense strategies against multimodal attacks, providing insights for building robust VLMs from both optimization and data perspectives. Our code is publicly available at https://github.com/CyberAgentAILab/multimodal-adversarial-training.
comment: WACV 2026 Accepted. Code available at https://github.com/CyberAgentAILab/multimodal-adversarial-training
TD3Net: A temporal densely connected multi-dilated convolutional network for lipreading
The word-level lipreading approach typically employs a two-stage framework with separate frontend and backend architectures to model dynamic lip movements. Each component has been extensively studied, and in the backend architecture, temporal convolutional networks (TCNs) have been widely adopted in state-of-the-art methods. Recently, dense skip connections have been introduced in TCNs to mitigate the limited density of the receptive field, thereby improving the modeling of complex temporal representations. However, their performance remains constrained owing to potential information loss regarding the continuous nature of lip movements, caused by blind spots in the receptive field. To address this limitation, we propose TD3Net, a temporal densely connected multi-dilated convolutional network that combines dense skip connections and multi-dilated temporal convolutions as the backend architecture. TD3Net covers a wide and dense receptive field without blind spots by applying different dilation factors to skip-connected features. Experimental results on a word-level lipreading task using two large publicly available datasets, Lip Reading in the Wild (LRW) and LRW-1000, indicate that the proposed method achieves performance comparable to state-of-the-art methods. It achieved higher accuracy with fewer parameters and lower floating-point operations compared to existing TCN-based backend architectures. Moreover, visualization results suggest that our approach effectively utilizes diverse temporal features while preserving temporal continuity, presenting notable advantages in lipreading systems. The code is available at our GitHub repository (https://github.com/Leebh-kor/TD3Net).
comment: Accepted for publication in Journal of Visual Communication and Image Representation. DOI: https://doi.org/10.1016/j.jvcir.2025.104540
Data-Augmented Multimodal Feature Fusion for Multiclass Visual Recognition of Oral Cancer Lesions
Oral cancer is frequently diagnosed at later stages due to its similarity to other lesions. Existing research on computer aided diagnosis has made progress using deep learning; however, most approaches remain limited by small, imbalanced datasets and a dependence on single-modality features, which restricts model generalization in real-world clinical settings. To address these limitations, this study proposes a novel data-augmentation driven multimodal feature-fusion framework integrated within a (Vision Recognition)VR assisted oral cancer recognition system. Our method combines extensive data centric augmentation with fused clinical and image-based representations to enhance model robustness and reduce diagnostic ambiguity. Using a stratified training pipeline and an EfficientNetV2 B1 backbone, the system improves feature diversity, mitigates imbalance, and strengthens the learned multimodal embeddings. Experimental evaluation demonstrates that the proposed framework achieves an overall accuracy of 82.57 percent on 2 classes, 65.13 percent on 3 classes, and 54.97 percent on 4 classes, outperforming traditional single stream CNN models. These results highlight the effectiveness of multimodal feature fusion combined with strategic augmentation for reliable early oral cancer lesion recognition and serve as a foundation for immersive VR based clinical decision support tools.
VALLR: Visual ASR Language Model for Lip Reading
Lip Reading, or Visual Automatic Speech Recognition (V-ASR), is a complex task requiring the interpretation of spoken language exclusively from visual cues, primarily lip movements and facial expressions. This task is especially challenging due to the absence of auditory information and the inherent ambiguity when visually distinguishing phonemes that have overlapping visemes where different phonemes appear identical on the lips. Current methods typically attempt to predict words or characters directly from these visual cues, but this approach frequently encounters high error rates due to coarticulation effects and viseme ambiguity. We propose a novel two-stage, phoneme-centric framework for Visual Automatic Speech Recognition (V-ASR) that addresses these longstanding challenges. First, our model predicts a compact sequence of phonemes from visual inputs using a Video Transformer with a CTC head, thereby reducing the task complexity and achieving robust speaker invariance. This phoneme output then serves as the input to a fine-tuned Large Language Model (LLM), which reconstructs coherent words and sentences by leveraging broader linguistic context. Unlike existing methods that either predict words directly-often faltering on visually similar phonemes-or rely on large-scale multimodal pre-training, our approach explicitly encodes intermediate linguistic structure while remaining highly data efficient. We demonstrate state-of-the-art performance on two challenging datasets, LRS2 and LRS3, where our method achieves significant reductions in Word Error Rate (WER) achieving a SOTA WER of 18.7 on LRS3 despite using 99.4% less labelled data than the next best approach.
Unsupervised Stereo via Multi-Baseline Geometry-Consistent Self-Training
Photometric loss and pseudo-label-based self-training are two widely used methods for training stereo networks on unlabeled data. However, they both struggle to provide accurate supervision in occluded regions. The former lacks valid correspondences, while the latter's pseudo labels are often unreliable. To overcome these limitations, we present S$^3$, a simple yet effective framework based on multi-baseline geometry consistency. Unlike conventional self-training where teacher and student share identical stereo pairs, S$^3$ assigns them different target images, introducing natural visibility asymmetry. Regions occluded in the student's view often remain visible and matchable to the teacher, enabling reliable pseudo labels even in regions where photometric supervision fails. The teacher's disparities are rescaled to align with the student's baseline and used to guide student learning. An occlusion-aware weighting strategy is further proposed to mitigate unreliable supervision in teacher-occluded regions and to encourage the student to learn robust occlusion completion. To support training, we construct MBS20K, a multi-baseline stereo dataset synthesized using the CARLA simulator. Extensive experiments demonstrate that S$^3$ provides effective supervision in both occluded and non-occluded regions, achieves strong generalization performance, and surpasses previous state-of-the-art methods on the KITTI 2015 and 2012 benchmarks.
SAM-aware Test-time Adaptation for Universal Medical Image Segmentation
Leveraging the Segment Anything Model (SAM) for medical image segmentation remains challenging due to its limited adaptability across diverse medical domains. Although fine-tuned variants, such as MedSAM, improve performance in scenarios similar to the training modalities or organs, they may lack generalizability to unseen data. To overcome this limitation, we propose SAM-aware Test-time Adaptation (SAM-TTA), a lightweight and flexible framework that preserves SAM's inherent generalization ability while enhancing segmentation accuracy for medical images. SAM-TTA tackles two major challenges: (1) input-level discrepancy caused by channel mismatches between natural and medical images, and (2) semantic-level discrepancy due to different object characteristics in natural versus medical images (e.g., with clear boundaries vs. ambiguous structures). To this end, we introduce two complementary components: a self-adaptive Bezier Curve-based Transformation (SBCT), which maps single-channel medical images into SAM-compatible three-channel images via a few learnable parameters to be optimized at test time; and IoU-guided Multi-scale Adaptation (IMA), which leverages SAM's intrinsic IoU scores to enforce high output confidence, dual-scale prediction consistency, and intermediate feature consistency, to improve semantic-level alignments. Extensive experiments on eight public medical image segmentation tasks, covering six grayscale and two color (endoscopic) tasks, demonstrate that SAM-TTA consistently outperforms state-of-the-art test-time adaptation methods. Notably, on six grayscale datasets, SAM-TTA even surpasses fully fine-tuned models, achieving significant Dice improvements (i.e., average 4.8% and 7.4% gains over MedSAM and SAM-Med2D) and establishing a new paradigm for universal medical image segmentation. Code is available at https://github.com/JianghaoWu/SAM-TTA.
comment: 10 pages, 5 figures
Test-Time Modification: Inverse Domain Transformation for Robust Perception
Generative foundation models contain broad visual knowledge and can produce diverse image variations, making them particularly promising for advancing domain generalization tasks. While they can be used for training data augmentation, synthesizing comprehensive target-domain variations remains slow, expensive, and incomplete. We propose an alternative: using diffusion models at test time to map target images back to the source distribution where the downstream model was trained. This approach requires only a source domain description, preserves the task model, and eliminates large-scale synthetic data generation. We demonstrate consistent improvements across segmentation, detection, and classification tasks under challenging environmental shifts in real-to-real domain generalization scenarios with unknown target distributions. Our analysis spans multiple generative and downstream models, including an ensemble variant for enhanced robustness. The method achieves substantial relative gains: 137% on BDD100K-Night, 68% on ImageNet-R, and 62% on DarkZurich.
comment: Preprint
On Exact Editing of Flow-Based Diffusion Models
Recent methods in flow-based diffusion editing have enabled direct transformations between source and target image distribution without explicit inversion. However, the latent trajectories in these methods often exhibit accumulated velocity errors, leading to semantic inconsistency and loss of structural fidelity. We propose Conditioned Velocity Correction (CVC), a principled framework that reformulates flow-based editing as a distribution transformation problem driven by a known source prior. CVC rethinks the role of velocity in inter-distribution transformation by introducing a dual-perspective velocity conversion mechanism. This mechanism explicitly decomposes the latent evolution into two components: a structure-preserving branch that remains consistent with the source trajectory, and a semantically-guided branch that drives a controlled deviation toward the target distribution. The conditional velocity field exhibits an absolute velocity error relative to the true underlying distribution trajectory, which inherently introduces potential instability and trajectory drift in the latent space. To address this quantifiable deviation and maintain fidelity to the true flow, we apply a posterior-consistent update to the resulting conditional velocity field. This update is derived from Empirical Bayes Inference and Tweedie correction, which ensures a mathematically grounded error compensation over time. Our method yields stable and interpretable latent dynamics, achieving faithful reconstruction alongside smooth local semantic conversion. Comprehensive experiments demonstrate that CVC consistently achieves superior fidelity, better semantic alignment, and more reliable editing behavior across diverse tasks.
Sports-QA: A Large-Scale Video Question Answering Benchmark for Complex and Professional Sports
Reasoning over sports videos for question answering is an important task with numerous applications, such as player training and information retrieval. However, this task has not been explored due to the lack of relevant datasets and the challenging nature it presents. Most datasets for video question answering (VideoQA) focus mainly on general and coarse-grained understanding of daily-life videos, which is not applicable to sports scenarios requiring professional action understanding and fine-grained motion analysis. In this paper, we introduce the first dataset, named Sports-QA, specifically designed for the sports VideoQA task. The Sports-QA dataset includes various types of questions, such as descriptions, chronologies, causalities, and counterfactual conditions, covering multiple sports. Furthermore, to address the characteristics of the sports VideoQA task, we propose a new Auto-Focus Transformer (AFT) capable of automatically focusing on particular scales of temporal information for question answering. We conduct extensive experiments on Sports-QA, including baseline studies and the evaluation of different methods. The results demonstrate that our AFT achieves state-of-the-art performance.
PMGS: Reconstruction of Projectile Motion Across Large Spatiotemporal Spans via 3D Gaussian Splatting
Modeling complex rigid motion across large spatiotemporal spans remains an unresolved challenge in dynamic reconstruction. Existing paradigms are mainly confined to short-term, small-scale deformation and offer limited consideration for physical consistency. This study proposes PMGS, focusing on reconstructing Projectile Motion via 3D Gaussian Splatting. The workflow comprises two stages: 1) Target Modeling: achieving object-centralized reconstruction through dynamic scene decomposition and an improved point density control; 2) Motion Recovery: restoring full motion sequences by learning per-frame SE(3) poses. We introduce an acceleration consistency constraint to bridge Newtonian mechanics and pose estimation, and design a dynamic simulated annealing strategy that adaptively schedules learning rates based on motion states. Furthermore, we devise a Kalman fusion scheme to optimize error accumulation from multi-source observations to mitigate disturbances. Experiments show PMGS's superior performance in reconstructing high-speed nonlinear rigid motion compared to mainstream dynamic methods.
CountCluster: Training-Free Object Quantity Guidance with Cross-Attention Map Clustering for Text-to-Image Generation
Diffusion-based text-to-image generation models have demonstrated strong performance in terms of image quality and diversity. However, they still struggle to generate images that accurately reflect the number of objects specified in the input prompt. Several approaches have been proposed that rely on either external counting modules for iterative refinement or quantity representations derived from learned tokens or latent features. However, they still have limitations in accurately reflecting the specified number of objects and overlook an important structural characteristic--The number of object instances in the generated image is largely determined in the early timesteps of the denoising process. To correctly reflect the object quantity for image generation, the highly activated regions in the object cross-attention map at the early timesteps should match the input object quantity, while each region should be clearly separated. To address this issue, we propose \textit{CountCluster}, a method that guides the object cross-attention map to be clustered according to the specified object count in the input, without relying on any external tools or additional training. The proposed method partitions the object cross-attention map into $k$ clusters at inference time based on attention scores, defines an ideal distribution in which each cluster is spatially well-separated, and optimizes the latent to align with this target distribution. Our method achieves an average improvement of 18.5\%p in object count accuracy compared to existing methods, and demonstrates superior quantity control performance across a variety of prompts. Code will be released at: https://github.com/JoohyeonL22/CountCluster
comment: Under review
ULTra: Unveiling Latent Token Interpretability in Transformer-Based Understanding and Segmentation
Transformers have revolutionized Computer Vision (CV) through self-attention mechanisms. However, their complexity makes latent token representations difficult to interpret. We introduce ULTra, a framework for interpreting Transformer embeddings and uncovering meaningful semantic patterns within them. ULTra enables unsupervised semantic segmentation using pre-trained models without requiring fine-tuning. Additionally, we propose a self-supervised training approach that refines segmentation performance by learning an external transformation matrix without modifying the underlying model. Our method achieves state-of-the-art performance in unsupervised semantic segmentation, outperforming existing segmentation methods. Furthermore, we validate ULTra for model interpretation on both synthetic and real-world scenarios, including Object Selection and interpretable text summarization using LLMs, demonstrating its broad applicability in explaining the semantic structure of latent token representations.
Ideal Observer for Segmentation of Dead Leaves Images
The human visual environment is comprised of different surfaces that are distributed in space. The parts of a scene that are visible at any one time are governed by the occlusion of overlapping objects. In this work we consider "dead leaves" models, which replicate these occlusions when generating images by layering objects on top of each other. A dead leaves model is a generative model comprised of distributions for object position, shape, color and texture. An image is generated from a dead leaves model by sampling objects ("leaves") from these distributions until a stopping criterion is reached, usually when the image is fully covered or until a given number of leaves was sampled. Here, we describe a theoretical approach, based on previous work, to derive a Bayesian ideal observer for the partition of a given set of pixels based on independent dead leaves model distributions. Extending previous work, we provide step-by-step explanations for the computation of the posterior probability as well as describe factors that determine the feasibility of practically applying this computation. The dead leaves image model and the associated ideal observer can be applied to study segmentation decisions in a limited number of pixels, providing a principled upper-bound on performance, to which humans and vision algorithms could be compared.
comment: 41 pages, 16 figures
CADMorph: Geometry-Driven Parametric CAD Editing via a Plan-Generate-Verify Loop NeurIPS 2025
A Computer-Aided Design (CAD) model encodes an object in two coupled forms: a parametric construction sequence and its resulting visible geometric shape. During iterative design, adjustments to the geometric shape inevitably require synchronized edits to the underlying parametric sequence, called geometry-driven parametric CAD editing. The task calls for 1) preserving the original sequence's structure, 2) ensuring each edit's semantic validity, and 3) maintaining high shape fidelity to the target shape, all under scarce editing data triplets. We present CADMorph, an iterative plan-generate-verify framework that orchestrates pretrained domain-specific foundation models during inference: a parameter-to-shape (P2S) latent diffusion model and a masked-parameter-prediction (MPP) model. In the planning stage, cross-attention maps from the P2S model pinpoint the segments that need modification and offer editing masks. The MPP model then infills these masks with semantically valid edits in the generation stage. During verification, the P2S model embeds each candidate sequence in shape-latent space, measures its distance to the target shape, and selects the closest one. The three stages leverage the inherent geometric consciousness and design knowledge in pretrained priors, and thus tackle structure preservation, semantic validity, and shape fidelity respectively. Besides, both P2S and MPP models are trained without triplet data, bypassing the data-scarcity bottleneck. CADMorph surpasses GPT-4o and specialized CAD baselines, and supports downstream applications such as iterative editing and reverse-engineering enhancement.
comment: NeurIPS 2025
Autoregressive Semantic Visual Reconstruction Helps VLMs Understand Better
Typical large vision-language models (LVLMs) apply autoregressive supervision solely to textual sequences, without fully incorporating the visual modality into the learning process. This results in three key limitations: (1) an inability to utilize images without accompanying captions, (2) the risk that captions omit critical visual details, and (3) the challenge that certain vision-centric content cannot be adequately conveyed through text. As a result, current LVLMs often prioritize vision-to-language alignment while potentially overlooking fine-grained visual information. While some prior works have explored autoregressive image generation, effectively leveraging autoregressive visual supervision to enhance image understanding remains an open challenge. In this paper, we introduce Autoregressive Semantic Visual Reconstruction (ASVR), which enables joint learning of visual and textual modalities within a unified autoregressive framework. We show that autoregressively reconstructing the raw visual appearance of images does not enhance and may even impair multimodal understanding. In contrast, autoregressively reconstructing the semantic representation of images consistently improves comprehension. Notably, we find that even when models are given continuous image features as input, they can effectively reconstruct discrete semantic tokens, resulting in stable and consistent improvements across a wide range of multimodal understanding benchmarks. Our approach delivers significant performance gains across varying data scales (556k-2M) and types of LLM bacbones. Specifically, ASVR improves LLaVA-1.5 by 5% in average scores across 14 multimodal benchmarks. The code is available at https://github.com/AlenjandroWang/ASVR.
Point Cloud to Mesh Reconstruction: Methods, Trade-offs, and Implementation Guide
Reconstructing meshes from point clouds is a fundamental task in computer vision with applications spanning robotics, autonomous systems, and medical imaging. Selecting an appropriate learning-based method requires understanding trade-offs between computational efficiency, geometric accuracy, and output constraints. This paper categorizes over fifteen methods into five paradigms -- PointNet family, autoencoder architectures, deformation-based methods, point-move techniques, and primitive-based approaches -- and provides practical guidance for method selection. We contribute: (1) a decision framework mapping input/output requirements to suitable paradigms, (2) a failure mode analysis to assist practitioners in debugging implementations, (3) standardized comparisons on ShapeNet benchmarks, and (4) a curated list of maintained codebases with implementation resources. By synthesizing both theoretical foundations and practical considerations, this work serves as an entry point for practitioners and researchers new to learning-based 3D mesh reconstruction.
AdaVLN: Towards Visual Language Navigation in Continuous Indoor Environments with Moving Humans
Visual Language Navigation is a task that challenges robots to navigate in realistic environments based on natural language instructions. While previous research has largely focused on static settings, real-world navigation must often contend with dynamic human obstacles. Hence, we propose an extension to the task, termed Adaptive Visual Language Navigation (AdaVLN), which seeks to narrow this gap. AdaVLN requires robots to navigate complex 3D indoor environments populated with dynamically moving human obstacles, adding a layer of complexity to navigation tasks that mimic the real-world. To support exploration of this task, we also present AdaVLN simulator and AdaR2R datasets. The AdaVLN simulator enables easy inclusion of fully animated human models directly into common datasets like Matterport3D. We also introduce a "freeze-time" mechanism for both the navigation task and simulator, which pauses world state updates during agent inference, enabling fair comparisons and experimental reproducibility across different hardware. We evaluate several baseline models on this task, analyze the unique challenges introduced by AdaVLN, and demonstrate its potential to bridge the sim-to-real gap in VLN research.
RS-Prune: Training-Free Data Pruning at High Ratios for Efficient Remote Sensing Diffusion Foundation Models
Diffusion-based remote sensing (RS) generative foundation models are cruial for downstream tasks. However, these models rely on large amounts of globally representative data, which often contain redundancy, noise, and class imbalance, reducing training efficiency and preventing convergence. Existing RS diffusion foundation models typically aggregate multiple classification datasets or apply simplistic deduplication, overlooking the distributional requirements of generation modeling and the heterogeneity of RS imagery. To address these limitations, we propose a training-free, two-stage data pruning approach that quickly select a high-quality subset under high pruning ratios, enabling a preliminary foundation model to converge rapidly and serve as a versatile backbone for generation, downstream fine-tuning, and other applications. Our method jointly considers local information content with global scene-level diversity and representativeness. First, an entropy-based criterion efficiently removes low-information samples. Next, leveraging RS scene classification datasets as reference benchmarks, we perform scene-aware clustering with stratified sampling to improve clustering effectiveness while reducing computational costs on large-scale unlabeled data. Finally, by balancing cluster-level uniformity and sample representativeness, the method enables fine-grained selection under high pruning ratios while preserving overall diversity and representativeness. Experiments show that, even after pruning 85\% of the training data, our method significantly improves convergence and generation quality. Furthermore, diffusion foundation models trained with our method consistently achieve state-of-the-art performance across downstream tasks, including super-resolution and semantic image synthesis. This data pruning paradigm offers practical guidance for developing RS generative foundation models.
Wukong's 72 Transformations: High-fidelity Textured 3D Morphing via Flow Models
We present WUKONG, a novel training-free framework for high-fidelity textured 3D morphing that takes a pair of source and target prompts (image or text) as input. Unlike conventional methods -- which rely on manual correspondence matching and deformation trajectory estimation (limiting generalization and requiring costly preprocessing) -- WUKONG leverages the generative prior of flow-based transformers to produce high-fidelity 3D transitions with rich texture details. To ensure smooth shape transitions, we exploit the inherent continuity of flow-based generative processes and formulate morphing as an optimal transport barycenter problem. We further introduce a sequential initialization strategy to prevent abrupt geometric distortions and preserve identity coherence. For faithful texture preservation, we propose a similarity-guided semantic consistency mechanism that selectively retains high-frequency details and enables precise control over blending dynamics. This empowers WUKONG to support both global texture transitions and identity-preserving texture morphing, catering to diverse generation needs. Extensive quantitative and qualitative evaluations demonstrate that WUKONG significantly outperforms state-of-the-art methods, achieving superior results across diverse geometry and texture variations.
SJTU:Spatial judgments in multimodal models towards unified segmentation through coordinate detection
Despite significant advances in vision-language understanding, implementing image segmentation within multimodal architectures remains a fundamental challenge in modern artificial intelligence systems. Existing vision-language models, which primarily rely on backbone architectures or CLIP-based embedding learning, demonstrate inherent limitations in fine-grained spatial localization and operational capabilities. This paper introduces SJTU: Spatial Judgments in Multimodal Models - Towards Unified Segmentation through Coordinate Detection, a framework that leverages spatial coordinate understanding to bridge vision-language interaction and precise segmentation, enabling accurate target identification through natural language instructions. The framework presents an approach for integrating segmentation techniques with vision-language models through spatial inference in multimodal space. By utilizing normalized coordinate detection for bounding boxes and transforming them into actionable segmentation outputs, we establish a connection between spatial and language representations in multimodal architectures. Experimental results demonstrate superior performance across benchmark datasets, achieving IoU scores of 0.5958 on COCO 2017 and 0.6758 on Pascal VOC. Testing on a single NVIDIA RTX 3090 GPU with 512x512 resolution images yields an average inference time of 7 seconds per image, demonstrating the framework's effectiveness in both accuracy and practical deployability. The project code is available at https://github.com/jw-chae/SJTU
comment: A flaw was discovered in the experimental setup. Therefore, we are retracting the paper
G2L:From Giga-Scale to Cancer-Specific Large-Scale Pathology Foundation Models via Knowledge Distillation AAAI 2026
Recent studies in pathology foundation models have shown that scaling training data, diversifying cancer types, and increasing model size consistently improve their performance. However, giga-scale foundation models, which are trained on hundreds of thousands of slides covering tens of cancer types and contain billions of parameters, pose significant challenges for practical use due to their tremendous computational costs in both development and deployment. In this work, we present a novel strategy, named the G2L framework, to increase the performance of large-scale foundation models, which consist of only $15\%$ of the parameters of giga-scale models, to a comparable performance level of giga-scale models in cancer-specific tasks. Our approach applies knowledge distillation, transferring the capabilities of a giga-scale model to a large-scale model, using just 1K pathology slides of a target cancer (e.g., breast, prostate, etc.). The resulting distilled model not only outperformed state-of-the-art models of the same size (i.e., large-scale) across several benchmarks but also, interestingly, surpassed the giga-scale teacher and huge-scale models in some benchmarks. In addition, the distilled model exhibited a higher robustness index, indicating improved resilience to image variations originating from multiple institutions. These findings suggest that the proposed distillation approach for a large-scale model is a data- and parameter-efficient way to achieve giga-scale-level performance for cancer-specific applications without prohibitive computational burden.
comment: Accepted in AAAI 2026 workshop in Health Intelligence Special Theme on Foundation Models and AI Agents
SurgWorld: Learning Surgical Robot Policies from Videos via World Modeling
Data scarcity remains a fundamental barrier to achieving fully autonomous surgical robots. While large scale vision language action (VLA) models have shown impressive generalization in household and industrial manipulation by leveraging paired video action data from diverse domains, surgical robotics suffers from the paucity of datasets that include both visual observations and accurate robot kinematics. In contrast, vast corpora of surgical videos exist, but they lack corresponding action labels, preventing direct application of imitation learning or VLA training. In this work, we aim to alleviate this problem by learning policy models from SurgWorld, a world model designed for surgical physical AI. We curated the Surgical Action Text Alignment (SATA) dataset with detailed action description specifically for surgical robots. Then we built SurgeWorld based on the most advanced physical AI world model and SATA. It's able to generate diverse, generalizable and realistic surgery videos. We are also the first to use an inverse dynamics model to infer pseudokinematics from synthetic surgical videos, producing synthetic paired video action data. We demonstrate that a surgical VLA policy trained with these augmented data significantly outperforms models trained only on real demonstrations on a real surgical robot platform. Our approach offers a scalable path toward autonomous surgical skill acquisition by leveraging the abundance of unlabeled surgical video and generative world modeling, thus opening the door to generalizable and data efficient surgical robot policies.
OVSeg3R: Learn Open-vocabulary Instance Segmentation from 2D via 3D Reconstruction
In this paper, we propose a training scheme called OVSeg3R to learn open-vocabulary 3D instance segmentation from well-studied 2D perception models with the aid of 3D reconstruction. OVSeg3R directly adopts reconstructed scenes from 2D videos as input, avoiding costly manual adjustment while aligning input with real-world applications. By exploiting the 2D to 3D correspondences provided by 3D reconstruction models, OVSeg3R projects each view's 2D instance mask predictions, obtained from an open-vocabulary 2D model, onto 3D to generate annotations for the view's corresponding sub-scene. To avoid incorrectly introduced false positives as supervision due to partial annotations from 2D to 3D, we propose a View-wise Instance Partition algorithm, which partitions predictions to their respective views for supervision, stabilizing the training process. Furthermore, since 3D reconstruction models tend to over-smooth geometric details, clustering reconstructed points into representative super-points based solely on geometry, as commonly done in mainstream 3D segmentation methods, may overlook geometrically non-salient objects. We therefore introduce 2D Instance Boundary-aware Superpoint, which leverages 2D masks to constrain the superpoint clustering, preventing superpoints from violating instance boundaries. With these designs, OVSeg3R not only extends a state-of-the-art closed-vocabulary 3D instance segmentation model to open-vocabulary, but also substantially narrows the performance gap between tail and head classes, ultimately leading to an overall improvement of +2.3 mAP on the ScanNet200 benchmark. Furthermore, under the standard open-vocabulary setting, OVSeg3R surpasses previous methods by about +7.1 mAP on the novel classes, further validating its effectiveness.
Video Detective: Seek Critical Clues Recurrently to Answer Question from Long Videos
Long Video Question-Answering (LVQA) presents a significant challenge for Multi-modal Large Language Models (MLLMs) due to immense context and overloaded information, which could also lead to prohibitive memory consumption. While existing methods attempt to address these issues by reducing visual tokens or extending model's context length, they may miss useful information or take considerable computation. In fact, when answering given questions, only a small amount of crucial information is required. Therefore, we propose an efficient question-aware memory mechanism, enabling MLLMs to recurrently seek these critical clues. Our approach, named VideoDetective, simplifies this task by iteratively processing video sub-segments. For each sub-segment, a question-aware compression strategy is employed by introducing a few special memory tokens to achieve purposefully compression. This allows models to effectively seek critical clues while reducing visual tokens. Then, due to history context could have a significant impact, we recurrently aggregate and store these memory tokens to update history context, which would be reused for subsequent sub-segments. Furthermore, to more effectively measure model's long video understanding ability, we introduce GLVC (Grounding Long Video Clues), a long video question-answering dataset, which features grounding critical and concrete clues scattered throughout entire videos. Experimental results demonstrate our method enables MLLMs with limited context length of 32K to efficiently process 100K tokens (3600 frames, an hour-long video sampled at 1fps), requiring only 2 minutes and 37GB GPU memory usage. Evaluation results across multiple long video benchmarks illustrate our method can more effectively seek critical clues from massive information.
UNIDOC-BENCH: A Unified Benchmark for Document-Centric Multimodal RAG
Multimodal retrieval-augmented Generation (MM-RAG) is a key approach for applying large language models (LLMs) and agents to real-world knowledge bases, yet current evaluations are fragmented -- focusing on either text or images in isolation, or simplified multimodal setup, failing to capture document-centric multimodal use cases. In this paper, we introduce UniDoc-Bench, the first large-scale, realistic benchmark for MM-RAG built from $k$ real-world PDF pages across domains. Our pipeline extracts and links evidence from text, tables, and figures, then generates multimodal QA pairs spanning factual retrieval, comparison, summarization, and logical reasoning queries. To ensure reliability, all of QA pairs are validated by multiple human annotators and expert adjudication. UniDoc-Bench supports apples-to-apples comparison across four paradigms: 1) text-only, 2) image-only, 3) \emph{multimodal} text-image fusion and 4) multimodal joint retrieval -- under a unified protocol with standardized candidate pools, prompts, and evaluation metrics. UniDoc-Bench can also be used to evaluate Visual Question Answering (VQA) tasks. Our experiments show that multimodal text-image fusion RAG systems consistently outperform both unimodal and jointly multimodal embedding-based retrieval, indicating that neither text nor images alone are sufficient and that current multimodal embeddings remain inadequate. Beyond benchmarking, our analysis reveals when and how visual context complements textual evidence, uncovers systematic failure modes, and offers actionable guidance for developing more robust MM-RAG pipelines.
COMPASS: High-Efficiency Deep Image Compression with Arbitrary-scale Spatial Scalability ICCV 2023
Recently, neural network (NN)-based image compression studies have actively been made and has shown impressive performance in comparison to traditional methods. However, most of the works have focused on non-scalable image compression (single-layer coding) while spatially scalable image compression has drawn less attention although it has many applications. In this paper, we propose a novel NN-based spatially scalable image compression method, called COMPASS, which supports arbitrary-scale spatial scalability. Our proposed COMPASS has a very flexible structure where the number of layers and their respective scale factors can be arbitrarily determined during inference. To reduce the spatial redundancy between adjacent layers for arbitrary scale factors, our COMPASS adopts an inter-layer arbitrary scale prediction method, called LIFF, based on implicit neural representation. We propose a combined RD loss function to effectively train multiple layers. Experimental results show that our COMPASS achieves BD-rate gain of -58.33% and -47.17% at maximum compared to SHVC and the state-of-the-art NN-based spatially scalable image compression method, respectively, for various combinations of scale factors. Our COMPASS also shows comparable or even better coding efficiency than the single-layer coding for various scale factors.
comment: Accepted in ICCV 2023. Please visit our project page at https://kaist-viclab.github.io/compass-site/
AdaptInfer: Adaptive Token Pruning for Vision-Language Model Inference with Dynamical Text Guidance
Vision-language models (VLMs) have achieved impressive performance on multimodal reasoning tasks such as visual question answering, image captioning and so on, but their inference cost remains a significant challenge due to the large number of vision tokens processed during the prefill stage. Existing pruning methods often rely on directly using the attention patterns or static text prompt guidance, failing to exploit the dynamic internal signals generated during inference. To address these issues, we propose AdaptInfer, a plug-and-play framework for adaptive vision token pruning in VLMs. First, we introduce a fine-grained, dynamic text-guided pruning mechanism that reuses layer-wise text-to-text attention maps to construct soft priors over text-token importance, allowing more informed scoring of vision tokens at each stage. Second, we perform an offline analysis of cross-modal attention shifts and identify consistent inflection locations in inference, which inspire us to propose a more principled and efficient pruning schedule. Our method is lightweight and plug-and-play, also generalizable across multi-modal tasks. Experimental results have verified the effectiveness of the proposed method. For example, it reduces CUDA latency by 61.3% while maintaining an average accuracy of 93.1% on vanilla LLaVA-1.5-7B. Under the same token budget, AdaptInfer surpasses SOTA in accuracy.
Fine-Grained Preference Optimization Improves Spatial Reasoning in VLMs
Current Vision-Language Models (VLMs) struggle with fine-grained spatial reasoning, particularly when multi-step logic and precise spatial alignment are required. In this work, we introduce SpatialReasoner-R1, a vision-language reasoning model designed to address these limitations. To construct high-quality supervision for spatial reasoning, we design a Multi-Model Monte Carlo Tree Search (M3CTS) method that generates diverse, logically consistent Long Chain-of-Thought (LongCOT) reasoning trajectories. In addition, we propose a fine-grained Direct Preference Optimization (fDPO) method that introduces segment-specific preference granularity for descriptive grounding and logical reasoning, guided by a spatial reward mechanism that evaluates candidate responses based on visual consistency, spatial grounding, and logical coherence. Experimental results demonstrate that fDPO achieves relative performance gains of 4.1% and 9.0% over standard DPO on spatial qualitative and quantitative tasks, respectively. SpatialReasoner-R1, trained with fDPO, sets a new SoTA on SpatialRGPT-Bench, outperforming the strongest baseline by 9.4% in average accuracy, while maintaining competitive performance on general vision-language tasks.
Spinal Line Detection for Posture Evaluation through Train-ing-free 3D Human Body Reconstruction with 2D Depth Images
The spinal angle is an important indicator of body balance. It is important to restore the 3D shape of the human body and estimate the spine center line. Existing mul-ti-image-based body restoration methods require expensive equipment and complex pro-cedures, and single image-based body restoration methods have limitations in that it is difficult to accurately estimate the internal structure such as the spine center line due to occlusion and viewpoint limitation. This study proposes a method to compensate for the shortcomings of the multi-image-based method and to solve the limitations of the sin-gle-image method. We propose a 3D body posture analysis system that integrates depth images from four directions to restore a 3D human model and automatically estimate the spine center line. Through hierarchical matching of global and fine registration, restora-tion to noise and occlusion is performed. Also, the Adaptive Vertex Reduction is applied to maintain the resolution and shape reliability of the mesh, and the accuracy and stabil-ity of spinal angle estimation are simultaneously secured by using the Level of Detail en-semble. The proposed method achieves high-precision 3D spine registration estimation without relying on training data or complex neural network models, and the verification confirms the improvement of matching quality.
comment: GitHub, see https://github.com/DevChoco/TF3D_SpineDetect
Training-Free Adaptive Quantization for Variable Rate Image Coding for Machines
Image Coding for Machines (ICM) has become increasingly important with the rapid integration of computer vision technology into real-world applications. However, most neural network-based ICM frameworks operate at a fixed rate, thus requiring individual training for each target bitrate. This limitation may restrict their practical usage. Existing variable rate image compression approaches mitigate this issue but often rely on additional training, which increases computational costs and complicates deployment. Moreover, variable rate control has not been thoroughly explored for ICM. To address these challenges, we propose a training-free framework for quantization strength control which enables flexible bitrate adjustment. By exploiting the scale parameter predicted by the hyperprior network, the proposed method adaptively modulates quantization step sizes across both channel and spatial dimensions. This allows the model to preserve semantically important regions while coarsely quantizing less critical areas. Our architectural design further enables continuous bitrate control through a single parameter. Experimental results demonstrate the effectiveness of our proposed method, achieving up to 11.07% BD-rate savings over the non-adaptive variable rate baseline. The code is available at https://github.com/qwert-top/AQVR-ICM.
comment: Accepted to IEEE 44th International Conference on Consumer Electronics (ICCE 2026)
VisionReward: Fine-Grained Multi-Dimensional Human Preference Learning for Image and Video Generation
Visual generative models have achieved remarkable progress in synthesizing photorealistic images and videos, yet aligning their outputs with human preferences across critical dimensions remains a persistent challenge. Though reinforcement learning from human feedback offers promise for preference alignment, existing reward models for visual generation face limitations, including black-box scoring without interpretability and potentially resultant unexpected biases. We present VisionReward, a general framework for learning human visual preferences in both image and video generation. Specifically, we employ a hierarchical visual assessment framework to capture fine-grained human preferences, and leverages linear weighting to enable interpretable preference learning. Furthermore, we propose a multi-dimensional consistent strategy when using VisionReward as a reward model during preference optimization for visual generation. Experiments show that VisionReward can significantly outperform existing image and video reward models on both machine metrics and human evaluation. Notably, VisionReward surpasses VideoScore by 17.2% in preference prediction accuracy, and text-to-video models with VisionReward achieve a 31.6% higher pairwise win rate compared to the same models using VideoScore. All code and datasets are provided at https://github.com/THUDM/VisionReward.
comment: 27 pages
HCVP: Leveraging Hierarchical Contrastive Visual Prompt for Domain Generalization
Domain Generalization (DG) endeavors to create machine learning models that excel in unseen scenarios by learning invariant features. In DG, the prevalent practice of constraining models to a fixed structure or uniform parameterization to encapsulate invariant features can inadvertently blend specific aspects. Such an approach struggles with nuanced differentiation of inter-domain variations and may exhibit bias towards certain domains, hindering the precise learning of domain-invariant features. Recognizing this, we introduce a novel method designed to supplement the model with domain-level and task-specific characteristics. This approach aims to guide the model in more effectively separating invariant features from specific characteristics, thereby boosting the generalization. Building on the emerging trend of visual prompts in the DG paradigm, our work introduces the novel \textbf{H}ierarchical \textbf{C}ontrastive \textbf{V}isual \textbf{P}rompt (HCVP) methodology. This represents a significant advancement in the field, setting itself apart with a unique generative approach to prompts, alongside an explicit model structure and specialized loss functions. Differing from traditional visual prompts that are often shared across entire datasets, HCVP utilizes a hierarchical prompt generation network enhanced by prompt contrastive learning. These generative prompts are instance-dependent, catering to the unique characteristics inherent to different domains and tasks. Additionally, we devise a prompt modulation network that serves as a bridge, effectively incorporating the generated visual prompts into the vision transformer backbone. Experiments conducted on five DG datasets demonstrate the effectiveness of HCVP, outperforming both established DG algorithms and adaptation protocols.
Bridging Cognitive Gap: Hierarchical Description Learning for Artistic Image Aesthetics Assessment AAAI2026
The aesthetic quality assessment task is crucial for developing a human-aligned quantitative evaluation system for AIGC. However, its inherently complex nature, spanning visual perception, cognition, and emotion, poses fundamental challenges. Although aesthetic descriptions offer a viable representation of this complexity, two critical challenges persist: (1) data scarcity and imbalance: existing dataset overly focuses on visual perception and neglects deeper dimensions due to the expensive manual annotation; and (2) model fragmentation: current visual networks isolate aesthetic attributes with multi-branch encoder, while multimodal methods represented by contrastive learning struggle to effectively process long-form textual descriptions. To resolve challenge (1), we first present the Refined Aesthetic Description (RAD) dataset, a large-scale (70k), multi-dimensional structured dataset, generated via an iterative pipeline without heavy annotation costs and easy to scale. To address challenge (2), we propose ArtQuant, an aesthetics assessment framework for artistic images which not only couples isolated aesthetic dimensions through joint description generation, but also better models long-text semantics with the help of LLM decoders. Besides, theoretical analysis confirms this symbiosis: RAD's semantic adequacy (data) and generation paradigm (model) collectively minimize prediction entropy, providing mathematical grounding for the framework. Our approach achieves state-of-the-art performance on several datasets while requiring only 33% of conventional training epochs, narrowing the cognitive gap between artistic images and aesthetic judgment. We will release both code and dataset to support future research.
comment: AAAI2026,Project Page:https://github.com/Henglin-Liu/ArtQuant
Loupe: A Generalizable and Adaptive Framework for Image Forgery Detection
The proliferation of generative models has raised serious concerns about visual content forgery. Existing deepfake detection methods primarily target either image-level classification or pixel-wise localization. While some achieve high accuracy, they often suffer from limited generalization across manipulation types or rely on complex architectures. In this paper, we propose Loupe, a lightweight yet effective framework for joint deepfake detection and localization. Loupe integrates a patch-aware classifier and a segmentation module with conditional queries, allowing simultaneous global authenticity classification and fine-grained mask prediction. To enhance robustness against distribution shifts of test set, Loupe introduces a pseudo-label-guided test-time adaptation mechanism by leveraging patch-level predictions to supervise the segmentation head. Extensive experiments on the DDL dataset demonstrate that Loupe achieves state-of-the-art performance, securing the first place in the IJCAI 2025 Deepfake Detection and Localization Challenge with an overall score of 0.846. Our results validate the effectiveness of the proposed patch-level fusion and conditional query design in improving both classification accuracy and spatial localization under diverse forgery patterns. The code is available at https://github.com/Kamichanw/Loupe.
comment: There is some controversy over the methods of the content
CAT: Circular-Convolutional Attention for Sub-Quadratic Transformers NeurIPS 2025
Transformers have driven remarkable breakthroughs in natural language processing and computer vision, yet their standard attention mechanism still imposes O(N^2) complexity, hindering scalability to longer sequences. We introduce Circular-convolutional ATtention (CAT), a Fourier-based approach that efficiently applies circular convolutions to reduce complexity without sacrificing representational power. CAT achieves O(NlogN) computations, requires fewer learnable parameters by streamlining fully connected layers, and introduces no additional heavy operations, resulting in consistent accuracy improvements and about a 10% speedup in naive PyTorch implementations. Based on the Engineering-Isomorphic Transformers (EITs) framework, CAT's design not only offers practical efficiency and ease of implementation, but also provides insights to guide the development of future high-performance Transformer architectures. Finally, our ablation studies highlight the key conditions underlying CAT's success, shedding light on broader principles for scalable attention mechanisms.
comment: Accepted as a poster at NeurIPS 2025
Virtual Multiplex Staining for Histological Images using a Marker-wise Conditioned Diffusion Model AAAI 2026
Multiplex imaging is revolutionizing pathology by enabling the simultaneous visualization of multiple biomarkers within tissue samples, providing molecular-level insights that traditional hematoxylin and eosin (H&E) staining cannot provide. However, the complexity and cost of multiplex data acquisition have hindered its widespread adoption. Additionally, most existing large repositories of H&E images lack corresponding multiplex images, limiting opportunities for multimodal analysis. To address these challenges, we leverage recent advances in latent diffusion models (LDMs), which excel at modeling complex data distributions by utilizing their powerful priors for fine-tuning to a target domain. In this paper, we introduce a novel framework for virtual multiplex staining that utilizes pretrained LDM parameters to generate multiplex images from H&E images using a conditional diffusion model. Our approach enables marker-by-marker generation by conditioning the diffusion model on each marker, while sharing the same architecture across all markers. To tackle the challenge of varying pixel value distributions across different marker stains and to improve inference speed, we fine-tune the model for single-step sampling, enhancing both color contrast fidelity and inference efficiency through pixel-level loss functions. We validate our framework on two publicly available datasets, notably demonstrating its effectiveness in generating up to 18 different marker types with improved accuracy, a substantial increase over the 2-3 marker types achieved in previous approaches. This validation highlights the potential of our framework, pioneering virtual multiplex staining. Finally, this paper bridges the gap between H&E and multiplex imaging, potentially enabling retrospective studies and large-scale analyses of existing H&E image repositories.
comment: Accepted at AAAI 2026
DGE-YOLO: Dual-Branch Gathering and Attention for Accurate UAV Object Detection
The rapid proliferation of unmanned aerial vehicles (UAVs) has highlighted the importance of robust and efficient object detection in diverse aerial scenarios. Detecting small objects under complex conditions, however, remains a significant challenge.To address this, we present DGE-YOLO, an enhanced YOLO-based detection framework designed to effectively fuse multi-modal information. We introduce a dual-branch architecture for modality-specific feature extraction, enabling the model to process both infrared and visible images. To further enrich semantic representation, we propose an Efficient Multi-scale Attention (EMA) mechanism that enhances feature learning across spatial scales. Additionally, we replace the conventional neck with a Gather-and-Distribute(GD) module to mitigate information loss during feature aggregation. Extensive experiments on the Drone Vehicle dataset demonstrate that DGE-YOLO achieves superior performance over state-of-the-art methods, validating its effectiveness in multi-modal UAV object detection tasks.
comment: 5 pages, 5 figures
Empowering Source-Free Domain Adaptation via MLLM-Guided Reliability-Based Curriculum Learning
Existing SFDA methods struggle to fully use pre-trained knowledge and often rely on a single model's predictions or handcrafted prompts, limiting robustness under domain shift. Multimodal Large Language Models (MLLMs) offer a promising alternative: they encode rich visual-semantic knowledge and generalize well without task-specific tuning. However, their use in SFDA is hindered by instruction-following failures, inconsistent outputs, and high inference costs. We propose Reliability-based Curriculum Learning (RCL), a novel framework that distills robust supervision from multiple frozen MLLMs into a compact target model. RCL organizes adaptation as a three-stage curriculum that progressively incorporates pseudo-labels based on inter-model agreement and model confidence, enabling stable and noise-aware training. Our approach achieves state-of-the-art performance on standard SFDA datasets, Office-Home, DomainNet-126, and VisDA-C, outperforming zero-shot MLLMs, their ensembles, all without accessing source data or tuning foundation models. Our code is available at: https://github.com/Dong-Jie-Chen/RCL.
Compositional Discrete Latent Code for High Fidelity, Productive Diffusion Models NeurIPS
We argue that diffusion models' success in modeling complex distributions is, for the most part, coming from their input conditioning. This paper investigates the representation used to condition diffusion models from the perspective that ideal representations should improve sample fidelity, be easy to generate, and be compositional to allow out-of-training samples generation. We introduce Discrete Latent Code (DLC), an image representation derived from Simplicial Embeddings trained with a self-supervised learning objective. DLCs are sequences of discrete tokens, as opposed to the standard continuous image embeddings. They are easy to generate and their compositionality enables sampling of novel images beyond the training distribution. Diffusion models trained with DLCs have improved generation fidelity, establishing a new state-of-the-art for unconditional image generation on ImageNet. Additionally, we show that composing DLCs allows the image generator to produce out-of-distribution samples that coherently combine the semantics of images in diverse ways. Finally, we showcase how DLCs can enable text-to-image generation by leveraging large-scale pretrained language models. We efficiently finetune a text diffusion language model to generate DLCs that produce novel samples outside of the image generator training distribution.
comment: Published at NeurIPS, 22 pages, 7 tables, 12 figures, code and models available
Enhancing Multimodal Reasoning via Latent Refocusing
Chain of Thought (CoT) reasoning enhances logical performance by decomposing complex tasks, yet its multimodal extension faces a trade-off. The existing Thinking with Images paradigm is limited by the modality gap between vision and language, which hinders reliable extraction of reasoning relevant information from high dimensional visual data. Recent latent space reasoning method provides stronger multimodal representations, but it often lacks the ability to refocus on visual inputs and suffers from limited interpretability. To address these issues, we propose \underline{La}tent \underline{Re}focusing (LaRe), a novel multimodal reasoning paradigm that combines visual refocusing with rich latent representations, enabling iterative reasoning within the latent space. We further design a semantic augmentation training strategy that enhances the semantic structure of the latent space through joint alignment and reconstruction objectives. Experimental evaluations demonstrate that LaRe improves average accuracy by 9.4\% compared to existing baselines while reducing the number of tokens required for inference by 16.5\%. When scaled to a 7B-parameter Large Language Model backbone, LaRe achieves performance comparable to state-of-the-art models and outperforms larger-scale models on almost all benchmarks. Code and checkpoints will be released later.
Artificial Intelligence 174
DARC: Drum accompaniment generation with fine-grained rhythm control
In music creation, rapid prototyping is essential for exploring and refining ideas, yet existing generative tools often fall short when users require both structural control and stylistic flexibility. Prior approaches in stem-to-stem generation can condition on other musical stems but offer limited control over rhythm, and timbre-transfer methods allow users to specify specific rhythms, but cannot condition on musical context. We introduce DARC, a generative drum accompaniment model that conditions both on musical context from other stems and explicit rhythm prompts such as beatboxing or tapping tracks. Using parameter-efficient fine-tuning, we augment STAGE, a state-of-the-art drum stem generator, with fine-grained rhythm control while maintaining musical context awareness.
Falcon-H1R: Pushing the Reasoning Frontiers with a Hybrid Model for Efficient Test-Time Scaling
This work introduces Falcon-H1R, a 7B-parameter reasoning-optimized model that establishes the feasibility of achieving competitive reasoning performance with small language models (SLMs). Falcon-H1R stands out for its parameter efficiency, consistently matching or outperforming SOTA reasoning models that are $2\times$ to $7\times$ larger across a variety of reasoning-intensive benchmarks. These results underscore the importance of careful data curation and targeted training strategies (via both efficient SFT and RL scaling) in delivering significant performance gains without increasing model size. Furthermore, Falcon-H1R advances the 3D limits of reasoning efficiency by combining faster inference (through its hybrid-parallel architecture design), token efficiency, and higher accuracy. This unique blend makes Falcon-H1R-7B a practical backbone for scaling advanced reasoning systems, particularly in scenarios requiring extensive chain-of-thoughts generation and parallel test-time scaling. Leveraging the recently introduced DeepConf approach, Falcon-H1R achieves state-of-the-art test-time scaling efficiency, offering substantial improvements in both accuracy and computational cost. As a result, Falcon-H1R demonstrates that compact models, through targeted model training and architectural choices, can deliver robust and scalable reasoning performance.
DatBench: Discriminative, Faithful, and Efficient VLM Evaluations
Empirical evaluation serves as the primary compass guiding research progress in foundation models. Despite a large body of work focused on training frontier vision-language models (VLMs), approaches to their evaluation remain nascent. To guide their maturation, we propose three desiderata that evaluations should satisfy: (1) faithfulness to the modality and application, (2) discriminability between models of varying quality, and (3) efficiency in compute. Through this lens, we identify critical failure modes that violate faithfulness and discriminability, misrepresenting model capabilities: (i) multiple-choice formats reward guessing, poorly reflect downstream use cases, and saturate early as models improve; (ii) blindly solvable questions, which can be answered without images, constitute up to 70% of some evaluations; and (iii) mislabeled or ambiguous samples compromise up to 42% of examples in certain datasets. Regarding efficiency, the computational burden of evaluating frontier models has become prohibitive: by some accounts, nearly 20% of development compute is devoted to evaluation alone. Rather than discarding existing benchmarks, we curate them via transformation and filtering to maximize fidelity and discriminability. We find that converting multiple-choice questions to generative tasks reveals sharp capability drops of up to 35%. In addition, filtering blindly solvable and mislabeled samples improves discriminative power while simultaneously reducing computational cost. We release DatBench-Full, a cleaned evaluation suite of 33 datasets spanning nine VLM capabilities, and DatBench, a discriminative subset that achieves 13x average speedup (up to 50x) while closely matching the discriminative power of the original datasets. Our work outlines a path toward evaluation practices that are both rigorous and sustainable as VLMs continue to scale.
Project Ariadne: A Structural Causal Framework for Auditing Faithfulness in LLM Agents
As Large Language Model (LLM) agents are increasingly tasked with high-stakes autonomous decision-making, the transparency of their reasoning processes has become a critical safety concern. While \textit{Chain-of-Thought} (CoT) prompting allows agents to generate human-readable reasoning traces, it remains unclear whether these traces are \textbf{faithful} generative drivers of the model's output or merely \textbf{post-hoc rationalizations}. We introduce \textbf{Project Ariadne}, a novel XAI framework that utilizes Structural Causal Models (SCMs) and counterfactual logic to audit the causal integrity of agentic reasoning. Unlike existing interpretability methods that rely on surface-level textual similarity, Project Ariadne performs \textbf{hard interventions} ($do$-calculus) on intermediate reasoning nodes -- systematically inverting logic, negating premises, and reversing factual claims -- to measure the \textbf{Causal Sensitivity} ($φ$) of the terminal answer. Our empirical evaluation of state-of-the-art models reveals a persistent \textit{Faithfulness Gap}. We define and detect a widespread failure mode termed \textbf{Causal Decoupling}, where agents exhibit a violation density ($ρ$) of up to $0.77$ in factual and scientific domains. In these instances, agents arrive at identical conclusions despite contradictory internal logic, proving that their reasoning traces function as "Reasoning Theater" while decision-making is governed by latent parametric priors. Our findings suggest that current agentic architectures are inherently prone to unfaithful explanation, and we propose the Ariadne Score as a new benchmark for aligning stated logic with model action.
Placement Semantics for Distributed Deep Learning: A Systematic Framework for Analyzing Parallelism Strategies
Training large language models requires distributing computation across many accelerators, yet practitioners select parallelism strategies (data, tensor, pipeline, ZeRO) through trial and error because no unified systematic framework predicts their behavior. We introduce placement semantics: each strategy is specified by how it places four training states (parameters, optimizer, gradients, activations) across devices using five modes (replicated, sharded, sharded-with-gather, materialized, offloaded). From placement alone, without implementation details, we derive memory consumption and communication volume. Our predictions match published results exactly: ZeRO-3 uses 8x less memory than data parallelism at 1.5x communication cost, as reported in the original paper. We prove two conditions (gradient integrity, state consistency) are necessary and sufficient for distributed training to match single-device results, and provide composition rules for combining strategies safely. The framework unifies ZeRO Stages 1-3, Fully Sharded Data Parallel (FSDP), tensor parallelism, and pipeline parallelism as instances with different placement choices.
comment: 8 pages, 3 tables
pdfQA: Diverse, Challenging, and Realistic Question Answering over PDFs
PDFs are the second-most used document type on the internet (after HTML). Yet, existing QA datasets commonly start from text sources or only address specific domains. In this paper, we present pdfQA, a multi-domain 2K human-annotated (real-pdfQA) and 2K synthetic dataset (syn-pdfQA) differentiating QA pairs in ten complexity dimensions (e.g., file type, source modality, source position, answer type). We apply and evaluate quality and difficulty filters on both datasets, obtaining valid and challenging QA pairs. We answer the questions with open-source LLMs, revealing existing challenges that correlate with our complexity dimensions. pdfQA presents a basis for end-to-end QA pipeline evaluation, testing diverse skill sets and local optimizations (e.g., in information retrieval or parsing).
TopoLoRA-SAM: Topology-Aware Parameter-Efficient Adaptation of Foundation Segmenters for Thin-Structure and Cross-Domain Binary Semantic Segmentation
Foundation segmentation models such as the Segment Anything Model (SAM) exhibit strong zero-shot generalization through large-scale pretraining, but adapting them to domain-specific semantic segmentation remains challenging, particularly for thin structures (e.g., retinal vessels) and noisy modalities (e.g., SAR imagery). Full fine-tuning is computationally expensive and risks catastrophic forgetting. We propose \textbf{TopoLoRA-SAM}, a topology-aware and parameter-efficient adaptation framework for binary semantic segmentation. TopoLoRA-SAM injects Low-Rank Adaptation (LoRA) into the frozen ViT encoder, augmented with a lightweight spatial convolutional adapter and optional topology-aware supervision via differentiable clDice. We evaluate our approach on five benchmarks spanning retinal vessel segmentation (DRIVE, STARE, CHASE\_DB1), polyp segmentation (Kvasir-SEG), and SAR sea/land segmentation (SL-SSDD), comparing against U-Net, DeepLabV3+, SegFormer, and Mask2Former. TopoLoRA-SAM achieves the best retina-average Dice and the best overall average Dice across datasets, while training only \textbf{5.2\%} of model parameters ($\sim$4.9M). On the challenging CHASE\_DB1 dataset, our method substantially improves segmentation accuracy and robustness, demonstrating that topology-aware parameter-efficient adaptation can match or exceed fully fine-tuned specialist models. Code is available at : https://github.com/salimkhazem/Seglab.git
A Comparative Study of Custom CNNs, Pre-trained Models, and Transfer Learning Across Multiple Visual Datasets
Convolutional Neural Networks (CNNs) are a standard approach for visual recognition due to their capacity to learn hierarchical representations from raw pixels. In practice, practitioners often choose among (i) training a compact custom CNN from scratch, (ii) using a large pre-trained CNN as a fixed feature extractor, and (iii) performing transfer learning via partial or full fine-tuning of a pre-trained backbone. This report presents a controlled comparison of these three paradigms across five real-world image classification datasets spanning road-surface defect recognition, agricultural variety identification, fruit/leaf disease recognition, pedestrian walkway encroachment recognition, and unauthorized vehicle recognition. Models are evaluated using accuracy and macro F1-score, complemented by efficiency metrics including training time per epoch and parameter counts. The results show that transfer learning consistently yields the strongest predictive performance, while the custom CNN provides an attractive efficiency--accuracy trade-off, especially when compute and memory budgets are constrained.
VIBE: Visual Instruction Based Editor
Instruction-based image editing is among the fastest developing areas in generative AI. Over the past year, the field has reached a new level, with dozens of open-source models released alongside highly capable commercial systems. However, only a limited number of open-source approaches currently achieve real-world quality. In addition, diffusion backbones, the dominant choice for these pipelines, are often large and computationally expensive for many deployments and research settings, with widely used variants typically containing 6B to 20B parameters. This paper presents a compact, high-throughput instruction-based image editing pipeline that uses a modern 2B-parameter Qwen3-VL model to guide the editing process and the 1.6B-parameter diffusion model Sana1.5 for image generation. Our design decisions across architecture, data processing, training configuration, and evaluation target low-cost inference and strict source consistency while maintaining high quality across the major edit categories feasible at this scale. Evaluated on the ImgEdit and GEdit benchmarks, the proposed method matches or exceeds the performance of substantially heavier baselines, including models with several times as many parameters and higher inference cost, and is particularly strong on edits that require preserving the input image, such as an attribute adjustment, object removal, background edits, and targeted replacement. The model fits within 24 GB of GPU memory and generates edited images at up to 2K resolution in approximately 4 seconds on an NVIDIA H100 in BF16, without additional inference optimizations or distillation.
LLM-Empowered Functional Safety and Security by Design in Automotive Systems
This paper presents LLM-empowered workflow to support Software Defined Vehicle (SDV) software development, covering the aspects of security-aware system topology design, as well as event-driven decision-making code analysis. For code analysis we adopt event chains model which provides formal foundations to systematic validation of functional safety, taking into account the semantic validity of messages exchanged between key components, including both CAN and Vehicle Signal Specification (VSS). Analysis of security aspects for topology relies on synergy with Model-Driven Engineering (MDE) approach and Object Constraint Language (OCL) rules. Both locally deployable and proprietary solution are taken into account for evaluation within Advanced Driver-Assistance Systems (ADAS)-related scenarios.
Seeing the Unseen: Zooming in the Dark with Event Cameras AAAI 2026
This paper addresses low-light video super-resolution (LVSR), aiming to restore high-resolution videos from low-light, low-resolution (LR) inputs. Existing LVSR methods often struggle to recover fine details due to limited contrast and insufficient high-frequency information. To overcome these challenges, we present RetinexEVSR, the first event-driven LVSR framework that leverages high-contrast event signals and Retinex-inspired priors to enhance video quality under low-light scenarios. Unlike previous approaches that directly fuse degraded signals, RetinexEVSR introduces a novel bidirectional cross-modal fusion strategy to extract and integrate meaningful cues from noisy event data and degraded RGB frames. Specifically, an illumination-guided event enhancement module is designed to progressively refine event features using illumination maps derived from the Retinex model, thereby suppressing low-light artifacts while preserving high-contrast details. Furthermore, we propose an event-guided reflectance enhancement module that utilizes the enhanced event features to dynamically recover reflectance details via a multi-scale fusion mechanism. Experimental results show that our RetinexEVSR achieves state-of-the-art performance on three datasets. Notably, on the SDSD benchmark, our method can get up to 2.95 dB gain while reducing runtime by 65% compared to prior event-based methods. Code: https://github.com/DachunKai/RetinexEVSR.
comment: Accepted to AAAI 2026
NextFlow: Unified Sequential Modeling Activates Multimodal Understanding and Generation
We present NextFlow, a unified decoder-only autoregressive transformer trained on 6 trillion interleaved text-image discrete tokens. By leveraging a unified vision representation within a unified autoregressive architecture, NextFlow natively activates multimodal understanding and generation capabilities, unlocking abilities of image editing, interleaved content and video generation. Motivated by the distinct nature of modalities - where text is strictly sequential and images are inherently hierarchical - we retain next-token prediction for text but adopt next-scale prediction for visual generation. This departs from traditional raster-scan methods, enabling the generation of 1024x1024 images in just 5 seconds - orders of magnitude faster than comparable AR models. We address the instabilities of multi-scale generation through a robust training recipe. Furthermore, we introduce a prefix-tuning strategy for reinforcement learning. Experiments demonstrate that NextFlow achieves state-of-the-art performance among unified models and rivals specialized diffusion baselines in visual quality.
comment: Project page: https://github.com/ByteVisionLab/NextFlow
Code for Machines, Not Just Humans: Quantifying AI-Friendliness with Code Health Metrics
We are entering a hybrid era in which human developers and AI coding agents work in the same codebases. While industry practice has long optimized code for human comprehension, it is increasingly important to ensure that LLMs with different capabilities can edit code reliably. In this study, we investigate the concept of ``AI-friendly code'' via LLM-based refactoring on a dataset of 5,000 Python files from competitive programming. We find a meaningful association between CodeHealth, a quality metric calibrated for human comprehension, and semantic preservation after AI refactoring. Our findings confirm that human-friendly code is also more compatible with AI tooling. These results suggest that organizations can use CodeHealth to guide where AI interventions are lower risk and where additional human oversight is warranted. Investing in maintainability not only helps humans; it also prepares for large-scale AI adoption.
comment: Accepted for the 3rd ACM International Conference on AI Foundation Models and Software Engineering (FORGE 2026)
Streaming Hallucination Detection in Long Chain-of-Thought Reasoning
Long chain-of-thought (CoT) reasoning improves the performance of large language models, yet hallucinations in such settings often emerge subtly and propagate across reasoning steps. We suggest that hallucination in long CoT reasoning is better understood as an evolving latent state rather than a one-off erroneous event. Accordingly, we treat step-level hallucination judgments as local observations and introduce a cumulative prefix-level hallucination signal that tracks the global evolution of the reasoning state over the entire trajectory. Overall, our approach enables streaming hallucination detection in long CoT reasoning, providing real-time, interpretable evidence.
EverMemOS: A Self-Organizing Memory Operating System for Structured Long-Horizon Reasoning
Large Language Models (LLMs) are increasingly deployed as long-term interactive agents, yet their limited context windows make it difficult to sustain coherent behavior over extended interactions. Existing memory systems often store isolated records and retrieve fragments, limiting their ability to consolidate evolving user states and resolve conflicts. We introduce EverMemOS, a self-organizing memory operating system that implements an engram-inspired lifecycle for computational memory. Episodic Trace Formation converts dialogue streams into MemCells that capture episodic traces, atomic facts, and time-bounded Foresight signals. Semantic Consolidation organizes MemCells into thematic MemScenes, distilling stable semantic structures and updating user profiles. Reconstructive Recollection performs MemScene-guided agentic retrieval to compose the necessary and sufficient context for downstream reasoning. Experiments on LoCoMo and LongMemEval show that EverMemOS achieves state-of-the-art performance on memory-augmented reasoning tasks. We further report a profile study on PersonaMem v2 and qualitative case studies illustrating chat-oriented capabilities such as user profiling and Foresight. Code is available at https://github.com/EverMind-AI/EverMemOS.
comment: 16 pages, 6 figures, 12 tables. Code available at https://github.com/EverMind-AI/EverMemOS
FormationEval, an open multiple-choice benchmark for petroleum geoscience
This paper presents FormationEval, an open multiple-choice question benchmark for evaluating language models on petroleum geoscience and subsurface disciplines. The dataset contains 505 questions across seven domains including petrophysics, petroleum geology and reservoir engineering, derived from three authoritative sources using a reasoning model with detailed instructions and a concept-based approach that avoids verbatim copying of copyrighted text. Each question includes source metadata to support traceability and audit. The evaluation covers 72 models from major providers including OpenAI, Anthropic, Google, Meta and open-weight alternatives. The top performers achieve over 97\% accuracy, with Gemini 3 Pro Preview reaching 99.8\%, while tier and domain gaps persist. Among open-weight models, GLM-4.7 leads at 98.6\%, with several DeepSeek, Llama, Qwen and Mistral models also exceeding 93\%. The performance gap between open-weight and closed models is narrower than expected, with several lower-cost open-weight models exceeding 90\% accuracy. Petrophysics emerges as the most challenging domain across all models, while smaller models show wider performance variance. Residual length bias in the dataset (correct answers tend to be longer) is documented along with bias mitigation strategies applied during construction. The benchmark, evaluation code and results are publicly available.
comment: 24 pages, 8 figures, 10 tables; benchmark and code at https://github.com/AlmazErmilov/FormationEval-an-Open-Benchmark-for-Oil-Gas-Geoscience-MCQ-Evaluation
Entropy-Adaptive Fine-Tuning: Resolving Confident Conflicts to Mitigate Forgetting
Supervised Fine-Tuning (SFT) is the standard paradigm for domain adaptation, yet it frequently incurs the cost of catastrophic forgetting. In sharp contrast, on-policy Reinforcement Learning (RL) effectively preserves general capabilities. We investigate this discrepancy and identify a fundamental distributional gap: while RL aligns with the model's internal belief, SFT forces the model to fit external supervision. This mismatch often manifests as "Confident Conflicts" tokens characterized by low probability but low entropy. In these instances, the model is highly confident in its own prediction but is forced to learn a divergent ground truth, triggering destructive gradient updates. To address this, we propose Entropy-Adaptive Fine-Tuning (EAFT). Unlike methods relying solely on prediction probability, EAFT utilizes token-level entropy as a gating mechanism to distinguish between epistemic uncertainty and knowledge conflict. This allows the model to learn from uncertain samples while suppressing gradients on conflicting data. Extensive experiments on Qwen and GLM series (ranging from 4B to 32B parameters) across mathematical, medical, and agentic domains confirm our hypothesis. EAFT consistently matches the downstream performance of standard SFT while significantly mitigating the degradation of general capabilities.
AI-enhanced tuning of quantum dot Hamiltonians toward Majorana modes
We propose a neural network-based model capable of learning the broad landscape of working regimes in quantum dot simulators, and using this knowledge to autotune these devices - based on transport measurements - toward obtaining Majorana modes in the structure. The model is trained in an unsupervised manner on synthetic data in the form of conductance maps, using a physics-informed loss that incorporates key properties of Majorana zero modes. We show that, with appropriate training, a deep vision-transformer network can efficiently memorize relation between Hamiltonian parameters and structures on conductance maps and use it to propose parameters update for a quantum dot chain that drive the system toward topological phase. Starting from a broad range of initial detunings in parameter space, a single update step is sufficient to generate nontrivial zero modes. Moreover, by enabling an iterative tuning procedure - where the system acquires updated conductance maps at each step - we demonstrate that the method can address a much larger region of the parameter space.
comment: main file: 8 pages, 6 figures; supplementary: 3 pages, 2 figures
BiPrompt: Bilateral Prompt Optimization for Visual and Textual Debiasing in Vision-Language Models AAAI 2026
Vision language foundation models such as CLIP exhibit impressive zero-shot generalization yet remain vulnerable to spurious correlations across visual and textual modalities. Existing debiasing approaches often address a single modality either visual or textual leading to partial robustness and unstable adaptation under distribution shifts. We propose a bilateral prompt optimization framework (BiPrompt) that simultaneously mitigates non-causal feature reliance in both modalities during test-time adaptation. On the visual side, it employs structured attention-guided erasure to suppress background activations and enforce orthogonal prediction consistency between causal and spurious regions. On the textual side, it introduces balanced prompt normalization, a learnable re-centering mechanism that aligns class embeddings toward an isotropic semantic space. Together, these modules jointly minimize conditional mutual information between spurious cues and predictions, steering the model toward causal, domain invariant reasoning without retraining or domain supervision. Extensive evaluations on real-world and synthetic bias benchmarks demonstrate consistent improvements in both average and worst-group accuracies over prior test-time debiasing methods, establishing a lightweight yet effective path toward trustworthy and causally grounded vision-language adaptation.
comment: Accepted at the AAAI 2026 Workshop AIR-FM, Assessing and Improving Reliability of Foundation Models in the Real World
Routing by Analogy: kNN-Augmented Expert Assignment for Mixture-of-Experts
Mixture-of-Experts (MoE) architectures scale large language models efficiently by employing a parametric "router" to dispatch tokens to a sparse subset of experts. Typically, this router is trained once and then frozen, rendering routing decisions brittle under distribution shifts. We address this limitation by introducing kNN-MoE, a retrieval-augmented routing framework that reuses optimal expert assignments from a memory of similar past cases. This memory is constructed offline by directly optimizing token-wise routing logits to maximize the likelihood on a reference set. Crucially, we use the aggregate similarity of retrieved neighbors as a confidence-driven mixing coefficient, thus allowing the method to fall back to the frozen router when no relevant cases are found. Experiments show kNN-MoE outperforms zero-shot baselines and rivals computationally expensive supervised fine-tuning.
Remote Sensing Change Detection via Weak Temporal Supervision
Semantic change detection in remote sensing aims to identify land cover changes between bi-temporal image pairs. Progress in this area has been limited by the scarcity of annotated datasets, as pixel-level annotation is costly and time-consuming. To address this, recent methods leverage synthetic data or generate artificial change pairs, but out-of-domain generalization remains limited. In this work, we introduce a weak temporal supervision strategy that leverages additional temporal observations of existing single-temporal datasets, without requiring any new annotations. Specifically, we extend single-date remote sensing datasets with new observations acquired at different times and train a change detection model by assuming that real bi-temporal pairs mostly contain no change, while pairing images from different locations to generate change examples. To handle the inherent noise in these weak labels, we employ an object-aware change map generation and an iterative refinement process. We validate our approach on extended versions of the FLAIR and IAILD aerial datasets, achieving strong zero-shot and low-data regime performance across different benchmarks. Lastly, we showcase results over large areas in France, highlighting the scalability potential of our method.
SingingBot: An Avatar-Driven System for Robotic Face Singing Performance
Equipping robotic faces with singing capabilities is crucial for empathetic Human-Robot Interaction. However, existing robotic face driving research primarily focuses on conversations or mimicking static expressions, struggling to meet the high demands for continuous emotional expression and coherence in singing. To address this, we propose a novel avatar-driven framework for appealing robotic singing. We first leverage portrait video generation models embedded with extensive human priors to synthesize vivid singing avatars, providing reliable expression and emotion guidance. Subsequently, these facial features are transferred to the robot via semantic-oriented mapping functions that span a wide expression space. Furthermore, to quantitatively evaluate the emotional richness of robotic singing, we propose the Emotion Dynamic Range metric to measure the emotional breadth within the Valence-Arousal space, revealing that a broad emotional spectrum is crucial for appealing performances. Comprehensive experiments prove that our method achieves rich emotional expressions while maintaining lip-audio synchronization, significantly outperforming existing approaches.
DeCode: Decoupling Content and Delivery for Medical QA
Large language models (LLMs) exhibit strong medical knowledge and can generate factually accurate responses. However, existing models often fail to account for individual patient contexts, producing answers that are clinically correct yet poorly aligned with patients' needs. In this work, we introduce DeCode, a training-free, model-agnostic framework that adapts existing LLMs to produce contextualized answers in clinical settings. We evaluate DeCode on OpenAI HealthBench, a comprehensive and challenging benchmark designed to assess clinical relevance and validity of LLM responses. DeCode improves the previous state of the art from $28.4\%$ to $49.8\%$, corresponding to a $75\%$ relative improvement. Experimental results suggest the effectiveness of DeCode in improving clinical question answering of LLMs.
comment: Preprint
Inferring Network Evolutionary History via Structure-State Coupled Learning
Inferring a network's evolutionary history from a single final snapshot with limited temporal annotations is fundamental yet challenging. Existing approaches predominantly rely on topology alone, which often provides insufficient and noisy cues. This paper leverages network steady-state dynamics -- converged node states under a given dynamical process -- as an additional and widely accessible observation for network evolution history inference. We propose CS$^2$, which explicitly models structure-state coupling to capture how topology modulates steady states and how the two signals jointly improve edge discrimination for formation-order recovery. Experiments on six real temporal networks, evaluated under multiple dynamical processes, show that CS$^2$ consistently outperforms strong baselines, improving pairwise edge precedence accuracy by 4.0% on average and global ordering consistency (Spearman-$ρ$) by 7.7% on average. CS$^2$ also more faithfully recovers macroscopic evolution trajectories such as clustering formation, degree heterogeneity, and hub growth. Moreover, a steady-state-only variant remains competitive when reliable topology is limited, highlighting steady states as an independent signal for evolution inference.
LION-DG: Layer-Informed Initialization with Deep Gradient Protocols for Accelerated Neural Network Training
Weight initialization remains decisive for neural network optimization, yet existing methods are largely layer-agnostic. We study initialization for deeply-supervised architectures with auxiliary classifiers, where untrained auxiliary heads can destabilize early training through gradient interference. We propose LION-DG, a layer-informed initialization that zero-initializes auxiliary classifier heads while applying standard He-initialization to the backbone. We prove that this implements Gradient Awakening: auxiliary gradients are exactly zero at initialization, then phase in naturally as weights grow -- providing an implicit warmup without hyperparameters. Experiments on CIFAR-10 and CIFAR-100 with DenseNet-DS and ResNet-DS architectures demonstrate: (1) DenseNet-DS: +8.3% faster convergence on CIFAR-10 with comparable accuracy, (2) Hybrid approach: Combining LSUV with LION-DG achieves best accuracy (81.92% on CIFAR-10), (3) ResNet-DS: Positive speedup on CIFAR-100 (+11.3%) with side-tap auxiliary design. We identify architecture-specific trade-offs and provide clear guidelines for practitioners. LION-DG is simple, requires zero hyperparameters, and adds no computational overhead.
Vision-Based Early Fault Diagnosis and Self-Recovery for Strawberry Harvesting Robots
Strawberry harvesting robots faced persistent challenges such as low integration of visual perception, fruit-gripper misalignment, empty grasping, and strawberry slippage from the gripper due to insufficient gripping force, all of which compromised harvesting stability and efficiency in orchard environments. To overcome these issues, this paper proposed a visual fault diagnosis and self-recovery framework that integrated multi-task perception with corrective control strategies. At the core of this framework was SRR-Net, an end-to-end multi-task perception model that simultaneously performed strawberry detection, segmentation, and ripeness estimation, thereby unifying visual perception with fault diagnosis. Based on this integrated perception, a relative error compensation method based on the simultaneous target-gripper detection was designed to address positional misalignment, correcting deviations when error exceeded the tolerance threshold. To mitigate empty grasping and fruit-slippage faults, an early abort strategy was implemented. A micro-optical camera embedded in the end-effector provided real-time visual feedback, enabling grasp detection during the deflating stage and strawberry slip prediction during snap-off through MobileNet V3-Small classifier and a time-series LSTM classifier. Experiments demonstrated that SRR-Net maintained high perception accuracy. For detection, it achieved a precision of 0.895 and recall of 0.813 on strawberries, and 0.972/0.958 on hands. In segmentation, it yielded a precision of 0.887 and recall of 0.747 for strawberries, and 0.974/0.947 for hands. For ripeness estimation, SRR-Net attained a mean absolute error of 0.035, while simultaneously supporting multi-task perception and sustaining a competitive inference speed of 163.35 FPS.
The Homogeneity Trap: Spectral Collapse in Doubly-Stochastic Deep Networks
Doubly-stochastic matrices (DSM) are increasingly utilized in structure-preserving deep architectures -- such as Optimal Transport layers and Sinkhorn-based attention -- to enforce numerical stability and probabilistic interpretability. In this work, we identify a critical spectral degradation phenomenon inherent to these constraints, termed the Homogeneity Trap. We demonstrate that the maximum-entropy bias, typical of Sinkhorn-based projections, drives the mixing operator towards the uniform barycenter, thereby suppressing the subdominant singular value σ_2 and filtering out high-frequency feature components. We derive a spectral bound linking σ_2 to the network's effective depth, showing that high-entropy constraints restrict feature transformation to a shallow effective receptive field. Furthermore, we formally demonstrate that Layer Normalization fails to mitigate this collapse in noise-dominated regimes; specifically, when spectral filtering degrades the Signal-to-Noise Ratio (SNR) below a critical threshold, geometric structure is irreversibly lost to noise-induced orthogonal collapse. Our findings highlight a fundamental trade-off between entropic stability and spectral expressivity in DSM-constrained networks.
Deferred Commitment Decoding for Diffusion Language Models with Confidence-Aware Sliding Windows
Diffusion language models (DLMs) have recently emerged as a strong alternative to autoregressive models by enabling parallel text generation. To improve inference efficiency and KV-cache compatibility, prior work commonly adopts block-based diffusion, decoding tokens block by block. However, this paradigm suffers from a structural limitation that we term Boundary-Induced Context Truncation (BICT): undecoded tokens near block boundaries are forced to commit without access to nearby future context, even when such context could substantially reduce uncertainty. This limitation degrades decoding confidence and generation quality, especially for tasks requiring precise reasoning, such as mathematical problem solving and code generation. We propose Deferred Commitment Decoding (DCD), a novel, training-free decoding strategy that mitigates this issue. DCD maintains a confidence-aware sliding window over masked tokens, resolving low-uncertainty tokens early while deferring high-uncertainty tokens until sufficient contextual evidence becomes available. This design enables effective bidirectional information flow within the decoding window without sacrificing efficiency. Extensive experiments across multiple diffusion language models, benchmarks, and caching configurations show that DCD improves generation accuracy by 1.39% with comparable time on average compared to fixed block-based diffusion methods, with the most significant improvement reaching 9.0%. These results demonstrate that deferring token commitment based on uncertainty is a simple yet effective principle for improving both the quality and efficiency of diffusion language model decoding.
FormuLLA: A Large Language Model Approach to Generating Novel 3D Printable Formulations
Pharmaceutical three-dimensional (3D) printing is an advanced fabrication technology with the potential to enable truly personalised dosage forms. Recent studies have integrated artificial intelligence (AI) to accelerate formulation and process development, drastically transforming current approaches to pharmaceutical 3D printing. To date, most AI-driven efforts remain narrowly focused, while failing to account for the broader formulation challenges inherent to the technology. Recent advances in AI have introduced artificial general intelligence concepts, wherein systems extend beyond conventional predictive modelling toward more generalised, human-like reasoning. In this work, we investigate the application of large language models (LLMs), fine-tuned on a fused deposition modelling (FDM) dataset comprising over 1400 formulations, to recommend suitable excipients based on active pharmaceutical ingredient (API) dose, and predict filament mechanical properties. Four LLM architectures were fine-tuned, with systematic evaluation of both fine-tuning and generative parameter configurations. Our results demonstrate that Llama2 was best suited for recommending excipients for FDM formulations. Additionally, model selection and parameterisation significantly influence performance, with smaller LLMs exhibiting instances of catastrophic forgetting. Furthermore, we demonstrate: (i) even with relatively small dataset of over 1400 formulations, it can lead to model catastrophic forgetting; (ii) standard LLM metrics only evaluate linguistic performance but not formulation processability; and (iii) LLMs trained on biomedically-related data do not always produce the best results. Addressing these challenges is essential to advancing LLMs beyond linguistic proficiency and toward reliable systems for pharmaceutical formulation development.
Cost-Efficient Cross-Lingual Retrieval-Augmented Generation for Low-Resource Languages: A Case Study in Bengali Agricultural Advisory
Access to reliable agricultural advisory remains limited in many developing regions due to a persistent language barrier: authoritative agricultural manuals are predominantly written in English, while farmers primarily communicate in low-resource local languages such as Bengali. Although recent advances in Large Language Models (LLMs) enable natural language interaction, direct generation in low-resource languages often exhibits poor fluency and factual inconsistency, while cloud-based solutions remain cost-prohibitive. This paper presents a cost-efficient, cross-lingual Retrieval-Augmented Generation (RAG) framework for Bengali agricultural advisory that emphasizes factual grounding and practical deployability. The proposed system adopts a translation-centric architecture in which Bengali user queries are translated into English, enriched through domain-specific keyword injection to align colloquial farmer terminology with scientific nomenclature, and answered via dense vector retrieval over a curated corpus of English agricultural manuals (FAO, IRRI). The generated English response is subsequently translated back into Bengali to ensure accessibility. The system is implemented entirely using open-source models and operates on consumer-grade hardware without reliance on paid APIs. Experimental evaluation demonstrates reliable source-grounded responses, robust rejection of out-of-domain queries, and an average end-to-end latency below 20 seconds. The results indicate that cross-lingual retrieval combined with controlled translation offers a practical and scalable solution for agricultural knowledge access in low-resource language settings
comment: 5 pages, 3 figures, 1 table
Higher-Order Action Regularization in Deep Reinforcement Learning: From Continuous Control to Building Energy Management NeurIPS
Deep reinforcement learning agents often exhibit erratic, high-frequency control behaviors that hinder real-world deployment due to excessive energy consumption and mechanical wear. We systematically investigate action smoothness regularization through higher-order derivative penalties, progressing from theoretical understanding in continuous control benchmarks to practical validation in building energy management. Our comprehensive evaluation across four continuous control environments demonstrates that third-order derivative penalties (jerk minimization) consistently achieve superior smoothness while maintaining competitive performance. We extend these findings to HVAC control systems where smooth policies reduce equipment switching by 60%, translating to significant operational benefits. Our work establishes higher-order action regularization as an effective bridge between RL optimization and operational constraints in energy-critical applications.
comment: 6 pages, accepted at NeurIPS workshop 2025
Perish or Flourish? A Holistic Evaluation of Large Language Models for Code Generation in Functional Programming
Functional programming provides strong foundations for developing reliable and secure software systems, yet its adoption remains not widespread due to the steep learning curve. Recent advances in Large Language Models (LLMs) for code generation present new opportunities to lower these barriers. However, extensive evaluations of LLMs largely focus on imperative programming languages, and their capabilities in functional programming languages (FP) remain underexplored. To address this gap, we introduce FPEval, a holistic evaluation framework built on FPBench, a new benchmark of 721 programming tasks across three difficulty levels on three mainstream FP languages: Haskell, Ocaml and Scala. FPEval provides compehensive evaluation infrastructures with both test validations with comprehensive test suites and static analysis tools to assess both functional correctness and code style and maintainability. Using this framework, we evaluate state-of-the-art LLMs, including GPT-3.5, GPT-4o, and GPT-5, for code generation in functional programming languages and Java as an imperative baseline. Our results demonstrate that LLM performance in functional programming improves substantially with model advancement; however, error rates remain significantly higher in purely functional languages (Haskell and OCaml) than in hybrid (Scala) or imperative (Java) languages. Moreover, LLMs frequently generate non-idiomatic functional code that follows imperative patterns, raising concerns about code style and long-term maintainability. Finally, we show that LLMs can partially self-repair both correctness and quality issues when provided with static analysis feedback and hand-crafted instructions for common types of issues.
Agentic Retoucher for Text-To-Image Generation
Text-to-image (T2I) diffusion models such as SDXL and FLUX have achieved impressive photorealism, yet small-scale distortions remain pervasive in limbs, face, text and so on. Existing refinement approaches either perform costly iterative re-generation or rely on vision-language models (VLMs) with weak spatial grounding, leading to semantic drift and unreliable local edits. To close this gap, we propose Agentic Retoucher, a hierarchical decision-driven framework that reformulates post-generation correction as a human-like perception-reasoning-action loop. Specifically, we design (1) a perception agent that learns contextual saliency for fine-grained distortion localization under text-image consistency cues, (2) a reasoning agent that performs human-aligned inferential diagnosis via progressive preference alignment, and (3) an action agent that adaptively plans localized inpainting guided by user preference. This design integrates perceptual evidence, linguistic reasoning, and controllable correction into a unified, self-corrective decision process. To enable fine-grained supervision and quantitative evaluation, we further construct GenBlemish-27K, a dataset of 6K T2I images with 27K annotated artifact regions across 12 categories. Extensive experiments demonstrate that Agentic Retoucher consistently outperforms state-of-the-art methods in perceptual quality, distortion localization and human preference alignment, establishing a new paradigm for self-corrective and perceptually reliable T2I generation.
The New Compiler Stack: A Survey on the Synergy of LLMs and Compilers
This survey has provided a systematic overview of the emerging field of LLM-enabled compilation by addressing several key research questions. We first answered how LLMs are being integrated by proposing a comprehensive, multi-dimensional taxonomy that categorizes works based on their Design Philosophy (Selector, Translator, Generator), LLM Methodology, their operational Level of Code Abstraction, and the specific Task Type they address. In answering what advancements these approaches offer, we identified three primary benefits: the democratization of compiler development, the discovery of novel optimization strategies, and the broadening of the compiler's traditional scope. Finally, in addressing the field's challenges and opportunities, we highlighted the critical hurdles of ensuring correctness and achieving scalability, while identifying the development of hybrid systems as the most promising path forward. By providing these answers, this survey serves as a foundational roadmap for researchers and practitioners, charting the course for a new generation of LLM-powered, intelligent, adaptive and synergistic compilation tools.
comment: Accepted by CCF Transactions on High Performance Computing
Simulated Reasoning is Reasoning
Reasoning has long been understood as a pathway between stages of understanding. Proper reasoning leads to understanding of a given subject. This reasoning was conceptualized as a process of understanding in a particular way, i.e., "symbolic reasoning". Foundational Models (FM) demonstrate that this is not a necessary condition for many reasoning tasks: they can "reason" by way of imitating the process of "thinking out loud", testing the produced pathways, and iterating on these pathways on their own. This leads to some form of reasoning that can solve problems on its own or with few-shot learning, but appears fundamentally different from human reasoning due to its lack of grounding and common sense, leading to brittleness of the reasoning process. These insights promise to substantially alter our assessment of reasoning and its necessary conditions, but also inform the approaches to safety and robust defences against this brittleness of FMs. This paper offers and discusses several philosophical interpretations of this phenomenon, argues that the previously apt metaphor of the "stochastic parrot" has lost its relevance and thus should be abandoned, and reflects on different normative elements in the safety- and appropriateness-considerations emerging from these reasoning models and their growing capacity.
comment: 21 pages
Output Embedding Centering for Stable LLM Pretraining
Pretraining of large language models is not only expensive but also prone to certain training instabilities. A specific instability that often occurs for large learning rates at the end of training is output logit divergence. The most widely used mitigation strategy, z-loss, merely addresses the symptoms rather than the underlying cause of the problem. In this paper, we analyze the instability from the perspective of the output embeddings' geometry and identify its cause. Based on this, we propose output embedding centering (OEC) as a new mitigation strategy, and prove that it suppresses output logit divergence. OEC can be implemented in two different ways, as a deterministic operation called μ-centering, or a regularization method called μ-loss. Our experiments show that both variants outperform z-loss in terms of training stability and learning rate sensitivity. In particular, they ensure that training converges even for large learning rates when z-loss fails. Furthermore, we find that μ-loss is significantly less sensitive to regularization hyperparameter tuning than z-loss.
comment: 11 pages, 5 figures
Not All Needles Are Found: How Fact Distribution and Don't Make It Up Prompts Shape Literal Extraction, Logical Inference, and Hallucination Risks in Long-Context LLMs
Large language models (LLMs) increasingly support very long input contexts. Yet it remains unclear how reliably they extract and infer information at scale. Performance varies with context length and strongly interacts with how information is distributed in real-world corpora. Motivated by these observations, we study how fact placement, corpus-level fact distributions, and Don't Make It Up prompts influence model behavior. We introduce an extended needle-in-a-haystack benchmark across four production-scale models: Gemini-2.5-flash, ChatGPT-5-mini, Claude-4.5-haiku, and Deepseek-v3.2-chat. Unlike prior work, we separately evaluate literal extraction, logical inference, and hallucination risk. Our study considers both positional effects and realistic distributions of evidence across long contexts, as well as prompts that explicitly discourage fabrication. We find that longer contexts alone do not guarantee better performance and can be detrimental when relevant evidence is diluted or widely dispersed. Performance varies substantially across models: some show severe degradation under realistic conditions, while others remain more robust at longer context lengths. Anti-hallucination (AH) instructions can make some models overly conservative, sharply reducing accuracy in literal extraction and logical inference. While we do not directly compare retrieval-augmented generation (RAG) and cache-augmented generation (CAG), our results suggest many failures stem from ineffective context utilization. Models often struggle to identify and prioritize relevant information even when it is present. These findings have direct practical implications, as enterprise workflows increasingly involve pasting large volumes of unfiltered documents into LLM prompts. Effective context length and model-specific robustness to long contexts are therefore critical for reliable LLM deployment in research and business.
comment: 25 pages, 8 figures, 3 tables
Enhancing Object Detection with Privileged Information: A Model-Agnostic Teacher-Student Approach
This paper investigates the integration of the Learning Using Privileged Information (LUPI) paradigm in object detection to exploit fine-grained, descriptive information available during training but not at inference. We introduce a general, model-agnostic methodology for injecting privileged information-such as bounding box masks, saliency maps, and depth cues-into deep learning-based object detectors through a teacher-student architecture. Experiments are conducted across five state-of-the-art object detection models and multiple public benchmarks, including UAV-based litter detection datasets and Pascal VOC 2012, to assess the impact on accuracy, generalization, and computational efficiency. Our results demonstrate that LUPI-trained students consistently outperform their baseline counterparts, achieving significant boosts in detection accuracy with no increase in inference complexity or model size. Performance improvements are especially marked for medium and large objects, while ablation studies reveal that intermediate weighting of teacher guidance optimally balances learning from privileged and standard inputs. The findings affirm that the LUPI framework provides an effective and practical strategy for advancing object detection systems in both resource-constrained and real-world settings.
comment: Code available on GitHub: https://github.com/mbar0075/lupi-for-object-detection
Surprisal and Metaphor Novelty: Moderate Correlations and Divergent Scaling Effects
Novel metaphor comprehension involves complex semantic processes and linguistic creativity, making it an interesting task for studying language models (LMs). This study investigates whether surprisal, a probabilistic measure of predictability in LMs, correlates with different metaphor novelty datasets. We analyse surprisal from 16 LM variants on corpus-based and synthetic metaphor novelty datasets. We explore a cloze-style surprisal method that conditions on full-sentence context. Results show that LMs yield significant moderate correlations with scores/labels of metaphor novelty. We further identify divergent scaling patterns: on corpus-based data, correlation strength decreases with model size (inverse scaling effect), whereas on synthetic data it increases (Quality-Power Hypothesis). We conclude that while surprisal can partially account for annotations of metaphor novelty, it remains a limited metric of linguistic creativity.
comment: to be published at EACL 2026 main conference
A neural network for modeling human concept formation, understanding and communication
A remarkable capability of the human brain is to form more abstract conceptual representations from sensorimotor experiences and flexibly apply them independent of direct sensory inputs. However, the computational mechanism underlying this ability remains poorly understood. Here, we present a dual-module neural network framework, the CATS Net, to bridge this gap. Our model consists of a concept-abstraction module that extracts low-dimensional conceptual representations, and a task-solving module that performs visual judgement tasks under the hierarchical gating control of the formed concepts. The system develops transferable semantic structure based on concept representations that enable cross-network knowledge transfer through conceptual communication. Model-brain fitting analyses reveal that these emergent concept spaces align with both neurocognitive semantic model and brain response structures in the human ventral occipitotemporal cortex, while the gating mechanisms mirror that in the semantic control brain network. This work establishes a unified computational framework that can offer mechanistic insights for understanding human conceptual cognition and engineering artificial systems with human-like conceptual intelligence.
comment: 6 main figures, 5 extended data figures and 4 supplementary figures
XAI-MeD: Explainable Knowledge Guided Neuro-Symbolic Framework for Domain Generalization and Rare Class Detection in Medical Imaging AAAI
Explainability domain generalization and rare class reliability are critical challenges in medical AI where deep models often fail under real world distribution shifts and exhibit bias against infrequent clinical conditions This paper introduces XAIMeD an explainable medical AI framework that integrates clinically accurate expert knowledge into deep learning through a unified neuro symbolic architecture XAIMeD is designed to improve robustness under distribution shift enhance rare class sensitivity and deliver transparent clinically aligned interpretations The framework encodes clinical expertise as logical connectives over atomic medical propositions transforming them into machine checkable class specific rules Their diagnostic utility is quantified through weighted feature satisfaction scores enabling a symbolic reasoning branch that complements neural predictions A confidence weighted fusion integrates symbolic and deep outputs while a Hunt inspired adaptive routing mechanism guided by Entropy Imbalance Gain EIG and Rare Class Gini mitigates class imbalance high intra class variability and uncertainty We evaluate XAIMeD across diverse modalities on four challenging tasks i Seizure Onset Zone SOZ localization from rs fMRI ii Diabetic Retinopathy grading across 6 multicenter datasets demonstrate substantial performance improvements including 6 percent gains in cross domain generalization and a 10 percent improved rare class F1 score far outperforming state of the art deep learning baselines Ablation studies confirm that the clinically grounded symbolic components act as effective regularizers ensuring robustness to distribution shifts XAIMeD thus provides a principled clinically faithful and interpretable approach to multimodal medical AI.
comment: Accepted at AAAI Bridge Program 2026
Exploring Approaches for Detecting Memorization of Recommender System Data in Large Language Models
Large Language Models (LLMs) are increasingly applied in recommendation scenarios due to their strong natural language understanding and generation capabilities. However, they are trained on vast corpora whose contents are not publicly disclosed, raising concerns about data leakage. Recent work has shown that the MovieLens-1M dataset is memorized by both the LLaMA and OpenAI model families, but the extraction of such memorized data has so far relied exclusively on manual prompt engineering. In this paper, we pose three main questions: Is it possible to enhance manual prompting? Can LLM memorization be detected through methods beyond manual prompting? And can the detection of data leakage be automated? To address these questions, we evaluate three approaches: (i) jailbreak prompt engineering; (ii) unsupervised latent knowledge discovery, probing internal activations via Contrast-Consistent Search (CCS) and Cluster-Norm; and (iii) Automatic Prompt Engineering (APE), which frames prompt discovery as a meta-learning process that iteratively refines candidate instructions. Experiments on MovieLens-1M using LLaMA models show that jailbreak prompting does not improve the retrieval of memorized items and remains inconsistent; CCS reliably distinguishes genuine from fabricated movie titles but fails on numerical user and rating data; and APE retrieves item-level information with moderate success yet struggles to recover numerical interactions. These findings suggest that automatically optimizing prompts is the most promising strategy for extracting memorized samples.
Exploring Diversity, Novelty, and Popularity Bias in ChatGPT's Recommendations
ChatGPT has emerged as a versatile tool, demonstrating capabilities across diverse domains. Given these successes, the Recommender Systems (RSs) community has begun investigating its applications within recommendation scenarios primarily focusing on accuracy. While the integration of ChatGPT into RSs has garnered significant attention, a comprehensive analysis of its performance across various dimensions remains largely unexplored. Specifically, the capabilities of providing diverse and novel recommendations or exploring potential biases such as popularity bias have not been thoroughly examined. As the use of these models continues to expand, understanding these aspects is crucial for enhancing user satisfaction and achieving long-term personalization. This study investigates the recommendations provided by ChatGPT-3.5 and ChatGPT-4 by assessing ChatGPT's capabilities in terms of diversity, novelty, and popularity bias. We evaluate these models on three distinct datasets and assess their performance in Top-N recommendation and cold-start scenarios. The findings reveal that ChatGPT-4 matches or surpasses traditional recommenders, demonstrating the ability to balance novelty and diversity in recommendations. Furthermore, in the cold-start scenario, ChatGPT models exhibit superior performance in both accuracy and novelty, suggesting they can be particularly beneficial for new users. This research highlights the strengths and limitations of ChatGPT's recommendations, offering new perspectives on the capacity of these models to provide recommendations beyond accuracy-focused metrics.
MindChat: A Privacy-preserving Large Language Model for Mental Health Support
Large language models (LLMs) have shown promise for mental health support, yet training such models is constrained by the scarcity and sensitivity of real counseling dialogues. In this article, we present MindChat, a privacy-preserving LLM for mental health support, together with MindCorpus, a synthetic multi-turn counseling dataset constructed via a multi-agent role-playing framework. To synthesize high-quality counseling data, the developed dialogue-construction framework employs a dual closed-loop feedback design to integrate psychological expertise and counseling techniques through role-playing: (i) turn-level critique-and-revision to improve coherence and counseling appropriateness within a session, and (ii) session-level strategy refinement to progressively enrich counselor behaviors across sessions. To mitigate privacy risks under decentralized data ownership, we fine-tune the base model using federated learning with parameter-efficient LoRA adapters and incorporate differentially private optimization to reduce membership and memorization risks. Experiments on synthetic-data quality assessment and counseling capability evaluation show that MindCorpus improves training effectiveness and that MindChat is competitive with existing general and counseling-oriented LLM baselines under both automatic LLM-judge and human evaluation protocols, while exhibiting reduced privacy leakage under membership inference attacks.
comment: 33 pages, 16 figures
VIT-Ped: Visionary Intention Transformer for Pedestrian Behavior Analysis
Pedestrian Intention prediction is one of the key technologies in the transition from level 3 to level 4 autonomous driving. To understand pedestrian crossing behaviour, several elements and features should be taken into consideration to make the roads of tomorrow safer for everybody. We introduce a transformer / video vision transformer based algorithm of different sizes which uses different data modalities .We evaluated our algorithms on popular pedestrian behaviour dataset, JAAD, and have reached SOTA performance and passed the SOTA in metrics like Accuracy, AUC and F1-score. The advantages brought by different model design choices are investigated via extensive ablation studies.
ChaosBench-Logic: A Benchmark for Logical and Symbolic Reasoning on Chaotic Dynamical Systems AAAI-26
Large language models (LLMs) excel at natural language tasks but remain brittle in domains requiring precise logical and symbolic reasoning. Chaotic dynamical systems provide an especially demanding test because chaos is deterministic yet often misinterpreted as randomness or complexity. We introduce ChaosBench-Logic, a benchmark that evaluates LLM reasoning across 30 diverse dynamical systems using a unified first-order logic (FOL) ontology. Each system is annotated with truth assignments for 11 semantic predicates, and 621 questions are generated across seven reasoning categories, including multi-hop implications, cross-system analogies, counterfactual reasoning, bias probes, and multi-turn dialogues. We define metrics for logical accuracy, implication consistency, dialogue coherence, and contradiction, and we release an open-source evaluation pipeline. Initial experiments show that frontier LLMs such as GPT-4, Claude 3.5 Sonnet, Gemini 2.5 Flash, and the open-source LLaMA-3 70B achieve 91-94% per-item accuracy, yet still score 0% on compositional items and exhibit fragile global coherence. Dialogue-level accuracy ranges from 53.1% (GPT-4 CoT) to 75.5% (LLaMA-3 zero-shot). ChaosBench-Logic provides a rigorous testbed for diagnosing such failures and a foundation for developing neuro-symbolic approaches that improve scientific reasoning in LLMs.
comment: 7 pages, 0 figures , Accepted to AAAI-26 Bridge Program: Logical and Symbolic Reasoning in Language Models (camera-ready)
CNC-TP: Classifier Nominal Concept Based on Top-Pertinent Attributes
Knowledge Discovery in Databases (KDD) aims to exploit the vast amounts of data generated daily across various domains of computer applications. Its objective is to extract hidden and meaningful knowledge from datasets through a structured process comprising several key steps: data selection, preprocessing, transformation, data mining, and visualization. Among the core data mining techniques are classification and clustering. Classification involves predicting the class of new instances using a classifier trained on labeled data. Several approaches have been proposed in the literature, including Decision Tree Induction, Bayesian classifiers, Nearest Neighbor search, Neural Networks, Support Vector Machines, and Formal Concept Analysis (FCA). The last one is recognized as an effective approach for interpretable and explainable learning. It is grounded in the mathematical structure of the concept lattice, which enables the generation of formal concepts and the discovery of hidden relationships among them. In this paper, we present a state-of-theart review of FCA-based classifiers. We explore various methods for computing closure operators from nominal data and introduce a novel approach for constructing a partial concept lattice that focuses on the most relevant concepts. Experimental results are provided to demonstrate the efficiency of the proposed method.
Refinement Provenance Inference: Detecting LLM-Refined Training Prompts from Model Behavior
Instruction tuning increasingly relies on LLM-based prompt refinement, where prompts in the training corpus are selectively rewritten by an external refiner to improve clarity and instruction alignment. This motivates an instance-level audit problem: for a fine-tuned model and a training prompt-response pair, can we infer whether the model was trained on the original prompt or its LLM-refined version within a mixed corpus? This matters for dataset governance and dispute resolution when training data are contested. However, it is non-trivial in practice: refined and raw instances are interleaved in the training corpus with unknown, source-dependent mixture ratios, making it harder to develop provenance methods that generalize across models and training setups. In this paper, we formalize this audit task as Refinement Provenance Inference (RPI) and show that prompt refinement yields stable, detectable shifts in teacher-forced token distributions, even when semantic differences are not obvious. Building on this phenomenon, we propose RePro, a logit-based provenance framework that fuses teacher-forced likelihood features with logit-ranking signals. During training, RePro learns a transferable representation via shadow fine-tuning, and uses a lightweight linear head to infer provenance on unseen victims without training-data access. Empirically, RePro consistently attains strong performance and transfers well across refiners, suggesting that it exploits refiner-agnostic distribution shifts rather than rewrite-style artifacts.
The Invisible Hand of AI Libraries Shaping Open Source Projects and Communities
In the early 1980s, Open Source Software emerged as a revolutionary concept amidst the dominance of proprietary software. What began as a revolutionary idea has now become the cornerstone of computer science. Amidst OSS projects, AI is increasing its presence and relevance. However, despite the growing popularity of AI, its adoption and impacts on OSS projects remain underexplored. We aim to assess the adoption of AI libraries in Python and Java OSS projects and examine how they shape development, including the technical ecosystem and community engagement. To this end, we will perform a large-scale analysis on 157.7k potential OSS repositories, employing repository metrics and software metrics to compare projects adopting AI libraries against those that do not. We expect to identify measurable differences in development activity, community engagement, and code complexity between OSS projects that adopt AI libraries and those that do not, offering evidence-based insights into how AI integration reshapes software development practices.
comment: ACCEPTED REGISTERED REPORT AT SANER (CORE A*) 2026
OpenSocInt: A Multi-modal Training Environment for Human-Aware Social Navigation
In this paper, we introduce OpenSocInt, an open-source software package providing a simulator for multi-modal social interactions and a modular architecture to train social agents. We described the software package and showcased its interest via an experimental protocol based on the task of social navigation. Our framework allows for exploring the use of different perceptual features, their encoding and fusion, as well as the use of different agents. The software is already publicly available under GPL at https://gitlab.inria.fr/robotlearn/OpenSocInt/.
Visualizing the Structure of Lenia Parameter Space
Continuous cellular automata are rocketing in popularity, yet developing a theoretical understanding of their behaviour remains a challenge. In the case of Lenia, a few fundamental open problems include determining what exactly constitutes a soliton, what is the overall structure of the parameter space, and where do the solitons occur in it. In this abstract, we present a new method to automatically classify Lenia systems into four qualitatively different dynamical classes. This allows us to detect moving solitons, and to provide an interactive visualization of Lenia's parameter space structure on our website https://lenia-explorer.vercel.app/. The results shed new light on the above-mentioned questions and lead to several observations: the existence of new soliton families for parameters where they were not believed to exist, or the universality of the phase space structure across various kernels.
comment: 2 pages
DéjàQ: Open-Ended Evolution of Diverse, Learnable and Verifiable Problems
Recent advances in reasoning models have yielded impressive results in mathematics and coding. However, most approaches rely on static datasets, which have been suggested to encourage memorisation and limit generalisation. We introduce DéjàQ, a framework that departs from this paradigm by jointly evolving a diverse set of synthetic mathematical problems alongside model training. This evolutionary process adapts to the model's ability throughout training, optimising problems for learnability. We propose two LLM-driven mutation strategies in which the model itself mutates the training data, either by altering contextual details or by directly modifying problem structure. We find that the model can generate novel and meaningful problems, and that these LLM-driven mutations improve RL training. We analyse key aspects of DéjàQ, including the validity of generated problems and computational overhead. Our results underscore the potential of dynamically evolving training data to enhance mathematical reasoning and indicate broader applicability, which we will support by open-sourcing our code.
MCGI: Manifold-Consistent Graph Indexing for Billion-Scale Disk-Resident Vector Search
Graph-based Approximate Nearest Neighbor (ANN) search often suffers from performance degradation in high-dimensional spaces due to the ``Euclidean-Geodesic mismatch,'' where greedy routing diverges from the underlying data manifold. To address this, we propose Manifold-Consistent Graph Indexing (MCGI), a geometry-aware and disk-resident indexing method that leverages Local Intrinsic Dimensionality (LID) to dynamically adapt search strategies to the data's intrinsic geometry. Unlike standard algorithms that treat dimensions uniformly, MCGI modulates its beam search budget based on in situ geometric analysis, eliminating dependency on static hyperparameters. Theoretical analysis confirms that MCGI enables improved approximation guarantees by preserving manifold-consistent topological connectivity. Empirically, MCGI achieves 5.8$\times$ higher throughput at 95\% recall on high-dimensional GIST1M compared to state-of-the-art DiskANN. On the billion-scale SIFT1B dataset, MCGI further validates its scalability by reducing high-recall query latency by 3$\times$, while maintaining performance parity on standard lower-dimensional datasets.
Theoretical Convergence of SMOTE-Generated Samples
Imbalanced data affects a wide range of machine learning applications, from healthcare to network security. As SMOTE is one of the most popular approaches to addressing this issue, it is imperative to validate it not only empirically but also theoretically. In this paper, we provide a rigorous theoretical analysis of SMOTE's convergence properties. Concretely, we prove that the synthetic random variable Z converges in probability to the underlying random variable X. We further prove a stronger convergence in mean when X is compact. Finally, we show that lower values of the nearest neighbor rank lead to faster convergence offering actionable guidance to practitioners. The theoretical results are supported by numerical experiments using both real-life and synthetic data. Our work provides a foundational understanding that enhances data augmentation techniques beyond imbalanced data scenarios.
A Defect is Being Born: How Close Are We? A Time Sensitive Forecasting Approach
Background. Defect prediction has been a highly active topic among researchers in the Empirical Software Engineering field. Previous literature has successfully achieved the most accurate prediction of an incoming fault and identified the features and anomalies that precede it through just-in-time prediction. As software systems evolve continuously, there is a growing need for time-sensitive methods capable of forecasting defects before they manifest. Aim. Our study seeks to explore the effectiveness of time-sensitive techniques for defect forecasting. Moreover, we aim to investigate the early indicators that precede the occurrence of a defect. Method. We will train multiple time-sensitive forecasting techniques to forecast the future bug density of a software project, as well as identify the early symptoms preceding the occurrence of a defect. Expected results. Our expected results are translated into empirical evidence on the effectiveness of our approach for early estimation of bug proneness.
comment: ACCEPTED REGISTERED REPORT AT SANER (CORE A*) 2026
MMP-A*: Multimodal Perception Enhanced Incremental Heuristic Search on Path Planning
Autonomous path planning requires a synergy between global reasoning and geometric precision, especially in complex or cluttered environments. While classical A* is valued for its optimality, it incurs prohibitive computational and memory costs in large-scale scenarios. Recent attempts to mitigate these limitations by using Large Language Models for waypoint guidance remain insufficient, as they rely only on text-based reasoning without spatial grounding. As a result, such models often produce incorrect waypoints in topologically complex environments with dead ends, and lack the perceptual capacity to interpret ambiguous physical boundaries. These inconsistencies lead to costly corrective expansions and undermine the intended computational efficiency. We introduce MMP-A*, a multimodal framework that integrates the spatial grounding capabilities of vision-language models with a novel adaptive decay mechanism. By anchoring high-level reasoning in physical geometry, the framework produces coherent waypoint guidance that addresses the limitations of text-only planners. The adaptive decay mechanism dynamically regulates the influence of uncertain waypoints within the heuristic, ensuring geometric validity while substantially reducing memory overhead. To evaluate robustness, we test the framework in challenging environments characterized by severe clutter and topological complexity. Experimental results show that MMP-A* achieves near-optimal trajectories with significantly reduced operational costs, demonstrating its potential as a perception-grounded and computationally efficient paradigm for autonomous navigation.
Nodule-DETR: A Novel DETR Architecture with Frequency-Channel Attention for Ultrasound Thyroid Nodule Detection
Thyroid cancer is the most common endocrine malignancy, and its incidence is rising globally. While ultrasound is the preferred imaging modality for detecting thyroid nodules, its diagnostic accuracy is often limited by challenges such as low image contrast and blurred nodule boundaries. To address these issues, we propose Nodule-DETR, a novel detection transformer (DETR) architecture designed for robust thyroid nodule detection in ultrasound images. Nodule-DETR introduces three key innovations: a Multi-Spectral Frequency-domain Channel Attention (MSFCA) module that leverages frequency analysis to enhance features of low-contrast nodules; a Hierarchical Feature Fusion (HFF) module for efficient multi-scale integration; and Multi-Scale Deformable Attention (MSDA) to flexibly capture small and irregularly shaped nodules. We conducted extensive experiments on a clinical dataset of real-world thyroid ultrasound images. The results demonstrate that Nodule-DETR achieves state-of-the-art performance, outperforming the baseline model by a significant margin of 0.149 in mAP@0.5:0.95. The superior accuracy of Nodule-DETR highlights its significant potential for clinical application as an effective tool in computer-aided thyroid diagnosis. The code of work is available at https://github.com/wjj1wjj/Nodule-DETR.
Evaluating Feature Dependent Noise in Preference-based Reinforcement Learning
Learning from Preferences in Reinforcement Learning (PbRL) has gained attention recently, as it serves as a natural fit for complicated tasks where the reward function is not easily available. However, preferences often come with uncertainty and noise if they are not from perfect teachers. Much prior literature aimed to detect noise, but with limited types of noise and most being uniformly distributed with no connection to observations. In this work, we formalize the notion of targeted feature-dependent noise and propose several variants like trajectory feature noise, trajectory similarity noise, uncertainty-aware noise, and Language Model noise. We evaluate feature-dependent noise, where noise is correlated with certain features in complex continuous control tasks from DMControl and Meta-world. Our experiments show that in some feature-dependent noise settings, the state-of-the-art noise-robust PbRL method's learning performance is significantly deteriorated, while PbRL method with no explicit denoising can surprisingly outperform noise-robust PbRL in majority settings. We also find language model's noise exhibits similar characteristics to feature-dependent noise, thereby simulating realistic humans and call for further study in learning with feature-dependent noise robustly.
Tackling the Inherent Difficulty of Noise Filtering in RAG
Retrieval-Augmented Generation (RAG) has become a widely adopted approach to enhance Large Language Models (LLMs) by incorporating external knowledge and reducing hallucinations. However, noisy or irrelevant documents are often introduced during RAG, potentially degrading performance and even causing hallucinated outputs. While various methods have been proposed to filter out such noise, we argue that identifying irrelevant information from retrieved content is inherently difficult and limited number of transformer layers can hardly solve this. Consequently, retrievers fail to filter out irrelevant documents entirely. Therefore, LLMs must be robust against such noise, but we demonstrate that standard fine-tuning approaches are often ineffective in enabling the model to selectively utilize relevant information while ignoring irrelevant content due to the structural constraints of attention patterns. To address this, we propose a novel fine-tuning method designed to enhance the model's ability to distinguish between relevant and irrelevant information within retrieved documents. Extensive experiments across multiple benchmarks show that our approach significantly improves the robustness and performance of LLMs.
Safety at One Shot: Patching Fine-Tuned LLMs with A Single Instance
Fine-tuning safety-aligned large language models (LLMs) can substantially compromise their safety. Previous approaches require many safety samples or calibration sets, which not only incur significant computational overhead during realignment but also lead to noticeable degradation in model utility. Contrary to this belief, we show that safety alignment can be fully recovered with only a single safety example, without sacrificing utility and at minimal cost. Remarkably, this recovery is effective regardless of the number of harmful examples used in fine-tuning or the size of the underlying model, and convergence is achieved within just a few epochs. Furthermore, we uncover the low-rank structure of the safety gradient, which explains why such efficient correction is possible. We validate our findings across five safety-aligned LLMs and multiple datasets, demonstrating the generality of our approach.
Theory Trace Card: Theory-Driven Socio-Cognitive Evaluation of LLMs
Socio-cognitive benchmarks for large language models (LLMs) often fail to predict real-world behavior, even when models achieve high benchmark scores. Prior work has attributed this evaluation-deployment gap to problems of measurement and validity. While these critiques are insightful, we argue that they overlook a more fundamental issue: many socio-cognitive evaluations proceed without an explicit theoretical specification of the target capability, leaving the assumptions linking task performance to competence implicit. Without this theoretical grounding, benchmarks that exercise only narrow subsets of a capability are routinely misinterpreted as evidence of broad competence: a gap that creates a systemic validity illusion by masking the failure to evaluate the capability's other essential dimensions. To address this gap, we make two contributions. First, we diagnose and formalize this theory gap as a foundational failure that undermines measurement and enables systematic overgeneralization of benchmark results. Second, we introduce the Theory Trace Card (TTC), a lightweight documentation artifact designed to accompany socio-cognitive evaluations, which explicitly outlines the theoretical basis of an evaluation, the components of the target capability it exercises, its operationalization, and its limitations. We argue that TTCs enhance the interpretability and reuse of socio-cognitive evaluations by making explicit the full validity chain, which links theory, task operationalization, scoring, and limitations, without modifying benchmarks or requiring agreement on a single theory.
Toward Auditable Neuro-Symbolic Reasoning in Pathology: SQL as an Explicit Trace of Evidence
Automated pathology image analysis is central to clinical diagnosis, but clinicians still ask which slide features drive a model's decision and why. Vision-language models can produce natural language explanations, but these are often correlational and lack verifiable evidence. In this paper, we introduce an SQL-centered agentic framework that enables both feature measurement and reasoning to be auditable. Specifically, after extracting human-interpretable cellular features, Feature Reasoning Agents compose and execute SQL queries over feature tables to aggregate visual evidence into quantitative findings. A Knowledge Comparison Agent then evaluates these findings against established pathological knowledge, mirroring how pathologists justify diagnoses from measurable observations. Extensive experiments evaluated on two pathology visual question answering datasets demonstrate our method improves interpretability and decision traceability while producing executable SQL traces that link cellular measurements to diagnostic conclusions.
CogFlow: Bridging Perception and Reasoning through Knowledge Internalization for Visual Mathematical Problem Solving
Despite significant progress, multimodal large language models continue to struggle with visual mathematical problem solving. Some recent works recognize that visual perception is a bottleneck in visual mathematical reasoning, but their solutions are limited to improving the extraction and interpretation of visual inputs. Notably, they all ignore the key issue of whether the extracted visual cues are faithfully integrated and properly utilized in subsequent reasoning. Motivated by this, we present CogFlow, a novel cognitive-inspired three-stage framework that incorporates a knowledge internalization stage, explicitly simulating the hierarchical flow of human reasoning: perception$\Rightarrow$internalization$\Rightarrow$reasoning. Inline with this hierarchical flow, we holistically enhance all its stages. We devise Synergistic Visual Rewards to boost perception capabilities in parametric and semantic spaces, jointly improving visual information extraction from symbols and diagrams. To guarantee faithful integration of extracted visual cues into subsequent reasoning, we introduce a Knowledge Internalization Reward model in the internalization stage, bridging perception and reasoning. Moreover, we design a Visual-Gated Policy Optimization algorithm to further enforce the reasoning is grounded with the visual knowledge, preventing models seeking shortcuts that appear coherent but are visually ungrounded reasoning chains. Moreover, we contribute a new dataset MathCog for model training, which contains samples with over 120K high-quality perception-reasoning aligned annotations. Comprehensive experiments and analysis on commonly used visual mathematical reasoning benchmarks validate the superiority of the proposed CogFlow.
Jenius Agent: Towards Experience-Driven Accuracy Optimization in Real-World Scenarios
As agent systems powered by large language models (LLMs) advance, improving the task performance of an autonomous agent, especially in context understanding, tool usage, and response generation, has become increasingly critical. Although prior studies have advanced the overall design of LLM-based agents, systematic optimization of their internal reasoning and tool-use pipelines remains underexplored. This paper introduces an agent framework grounded in real-world practical experience, with three key innovations: (1) an adaptive prompt generation strategy that aligns with the agent's state and task goals to improve reliability and robustness; (2) a context-aware tool orchestration module that performs tool categorization, semantic retrieval, and adaptive invocation based on user intent and context; and (3) a layered memory mechanism that integrates session memory, task history, and external summaries to improve relevance and efficiency through dynamic summarization and compression. An end-to-end framework named Jenius-Agent has been integrated with three key optimizations, including tools based on the Model Context Protocol (MCP), file input/output (I/O), and execution feedback. The experiments show a 20 percent improvement in task accuracy, along with a reduced token cost, response latency, and invocation failures. The framework is already deployed in Jenius (https://www.jenius.cn), providing a lightweight and scalable solution for robust, protocol-compatible autonomous agents.
MORE: Multi-Objective Adversarial Attacks on Speech Recognition
The emergence of large-scale automatic speech recognition (ASR) models such as Whisper has greatly expanded their adoption across diverse real-world applications. Ensuring robustness against even minor input perturbations is therefore critical for maintaining reliable performance in real-time environments. While prior work has mainly examined accuracy degradation under adversarial attacks, robustness with respect to efficiency remains largely unexplored. This narrow focus provides only a partial understanding of ASR model vulnerabilities. To address this gap, we conduct a comprehensive study of ASR robustness under multiple attack scenarios. We introduce MORE, a multi-objective repetitive doubling encouragement attack, which jointly degrades recognition accuracy and inference efficiency through a hierarchical staged repulsion-anchoring mechanism. Specifically, we reformulate multi-objective adversarial optimization into a hierarchical framework that sequentially achieves the dual objectives. To further amplify effectiveness, we propose a novel repetitive encouragement doubling objective (REDO) that induces duplicative text generation by maintaining accuracy degradation and periodically doubling the predicted sequence length. Overall, MORE compels ASR models to produce incorrect transcriptions at a substantially higher computational cost, triggered by a single adversarial input. Experiments show that MORE consistently yields significantly longer transcriptions while maintaining high word error rates compared to existing baselines, underscoring its effectiveness in multi-objective adversarial attack.
comment: 19 pages
Clinical Knowledge Graph Construction and Evaluation with Multi-LLMs via Retrieval-Augmented Generation
Large language models (LLMs) offer new opportunities for constructing knowledge graphs (KGs) from unstructured clinical narratives. However, existing approaches often rely on structured inputs and lack robust validation of factual accuracy and semantic consistency, limitations that are especially problematic in oncology. We introduce an end-to-end framework for clinical KG construction and evaluation directly from free text using multi-agent prompting and a schema-constrained Retrieval-Augmented Generation (KG-RAG) strategy. Our pipeline integrates (1) prompt-driven entity, attribute, and relation extraction; (2) entropy-based uncertainty scoring; (3) ontology-aligned RDF/OWL schema generation; and (4) multi-LLM consensus validation for hallucination detection and semantic refinement. Beyond static graph construction, the framework supports continuous refinement and self-supervised evaluation, enabling iterative improvement of graph quality. Applied to two oncology cohorts (PDAC and BRCA), our method produces interpretable, SPARQL-compatible, and clinically grounded knowledge graphs without relying on gold-standard annotations. Experimental results demonstrate consistent gains in precision, relevance, and ontology compliance over baseline methods.
comment: 13 pages, 5 tables, 4 figures
The Machine Learning Canvas: Empirical Findings on Why Strategy Matters More Than AI Code Generation
Despite the growing popularity of AI coding assistants, over 80% of machine learning (ML) projects fail to deliver real business value. This study creates and tests a Machine Learning Canvas, a practical framework that combines business strategy, software engineering, and data science in order to determine the factors that lead to the success of ML projects. We surveyed 150 data scientists and analyzed their responses using statistical modeling. We identified four key success factors: Strategy (clear goals and planning), Process (how work gets done), Ecosystem (tools and infrastructure), and Support (organizational backing and resources). Our results show that these factors are interconnected - each one affects the next. For instance, strong organizational support results in a clearer strategy (β= 0.432, p < 0.001), which improves work processes (β= 0.428, p < 0.001) and builds better infrastructure (β= 0.547, p < 0.001). Together, these elements determine whether a project succeeds. The surprising finding? Although AI assistants make coding faster, they don't guarantee project success. AI assists with the "how" of coding but cannot replace the "why" and "what" of strategic thinking.
comment: Dataset available: https://ieee-dataport.org/documents/machine-learning-canvas-success-determinants
COMPASS: A Framework for Evaluating Organization-Specific Policy Alignment in LLMs
As large language models are deployed in high-stakes enterprise applications, from healthcare to finance, ensuring adherence to organization-specific policies has become essential. Yet existing safety evaluations focus exclusively on universal harms. We present COMPASS (Company/Organization Policy Alignment Assessment), the first systematic framework for evaluating whether LLMs comply with organizational allowlist and denylist policies. We apply COMPASS to eight diverse industry scenarios, generating and validating 5,920 queries that test both routine compliance and adversarial robustness through strategically designed edge cases. Evaluating seven state-of-the-art models, we uncover a fundamental asymmetry: models reliably handle legitimate requests (>95% accuracy) but catastrophically fail at enforcing prohibitions, refusing only 13-40% of adversarial denylist violations. These results demonstrate that current LLMs lack the robustness required for policy-critical deployments, establishing COMPASS as an essential evaluation framework for organizational AI safety.
RSwinV2-MD: An Enhanced Residual SwinV2 Transformer for Monkeypox Detection from Skin Images
In this paper, a deep learning approach for Mpox diagnosis named Customized Residual SwinTransformerV2 (RSwinV2) has been proposed, trying to enhance the capability of lesion classification by employing the RSwinV2 tool-assisted vision approach. In the RSwinV2 method, a hierarchical structure of the transformer has been customized based on the input dimensionality, embedding structure, and output targeted by the method. In this RSwinV2 approach, the input image has been split into non-overlapping patches and processed using shifted windows and attention in these patches. This process has helped the method link all the windows efficiently by avoiding the locality issues of non-overlapping regions in attention, while being computationally efficient. RSwinV2 has further developed based on SwinTransformer and has included patch and position embeddings to take advantage of the transformer global-linking capability by employing multi-head attention in these embeddings. Furthermore, RSwinV2 has developed and incorporated the Inverse Residual Block (IRB) into this method, which utilizes convolutional skip connections with these inclusive designs to address the vanishing gradient issues during processing. RSwinV2 inclusion of IRB has therefore facilitated this method to link global patterns as well as local patterns; hence, its integrity has helped improve lesion classification capability by minimizing variability of Mpox and increasing differences of Mpox, chickenpox, measles, and cowpox. In testing SwinV2, its accuracy of 96.21 and an F1score of 95.62 have been achieved on the Kaggle public dataset, which has outperformed standard CNN models and SwinTransformers; RSwinV2 vector has thus proved its valiance as a computer-assisted tool for Mpox lesion observation interpretation.
comment: 15 Pages, 7 Figures, 4 Tables
Yukthi Opus: A Multi-Chain Hybrid Metaheuristic for Large-Scale NP-Hard Optimization
We present Yukthi Opus (YO), a multi-chain hybrid metaheuristic designed for NP-hard optimization under explicit evaluation budget constraints. YO integrates three complementary mechanisms in a structured two-phase architecture: Markov Chain Monte Carlo (MCMC) for global exploration, greedy local search for exploitation, and simulated annealing with adaptive reheating to enable controlled escape from local minima. A dedicated burn-in phase allocates evaluations to probabilistic exploration, after which a hybrid optimization loop refines promising candidates. YO further incorporates a spatial blacklist mechanism to avoid repeated evaluation of poor regions and a multi-chain execution strategy to improve robustness and reduce sensitivity to initialization. We evaluate YO on three benchmarks: the Rastrigin function (5D) with ablation studies, the Traveling Salesman Problem with 50 to 200 cities, and the Rosenbrock function (5D) with comparisons against established optimizers including CMA-ES, Bayesian optimization, and accelerated particle swarm optimization. Results show that MCMC exploration and greedy refinement are critical for solution quality, while simulated annealing and multi-chain execution primarily improve stability and variance reduction. Overall, YO achieves competitive performance on large and multimodal problems while maintaining predictable evaluation budgets, making it suitable for expensive black-box optimization settings.
comment: 22 pages, 9 figures, includes extensive ablation studies and benchmark comparisons
ARIES: A Scalable Multi-Agent Orchestration Framework for Real-Time Epidemiological Surveillance and Outbreak Monitoring
Global health surveillance is currently facing a challenge of Knowledge Gaps. While general-purpose AI has proliferated, it remains fundamentally unsuited for the high-stakes epidemiological domain due to chronic hallucinations and an inability to navigate specialized data silos. This paper introduces ARIES (Agentic Retrieval Intelligence for Epidemiological Surveillance), a specialized, autonomous multi-agent framework designed to move beyond static, disease-specific dashboards toward a dynamic intelligence ecosystem. Built on a hierarchical command structure, ARIES utilizes GPTs to orchestrate a scalable swarm of sub-agents capable of autonomously querying World Health Organization (WHO), Center for Disease Control and Prevention (CDC), and peer-reviewed research papers. By automating the extraction and logical synthesis of surveillance data, ARIES provides a specialized reasoning that identifies emergent threats and signal divergence in near real-time. This modular architecture proves that a task-specific agentic swarm can outperform generic models, offering a robust, extensible for next-generation outbreak response and global health intelligence.
comment: 6 pages, 14 figures, 1 table
Emergent Introspective Awareness in Large Language Models
We investigate whether large language models can introspect on their internal states. It is difficult to answer this question through conversation alone, as genuine introspection cannot be distinguished from confabulations. Here, we address this challenge by injecting representations of known concepts into a model's activations, and measuring the influence of these manipulations on the model's self-reported states. We find that models can, in certain scenarios, notice the presence of injected concepts and accurately identify them. Models demonstrate some ability to recall prior internal representations and distinguish them from raw text inputs. Strikingly, we find that some models can use their ability to recall prior intentions in order to distinguish their own outputs from artificial prefills. In all these experiments, Claude Opus 4 and 4.1, the most capable models we tested, generally demonstrate the greatest introspective awareness; however, trends across models are complex and sensitive to post-training strategies. Finally, we explore whether models can explicitly control their internal representations, finding that models can modulate their activations when instructed or incentivized to "think about" a concept. Overall, our results indicate that current language models possess some functional introspective awareness of their own internal states. We stress that in today's models, this capacity is highly unreliable and context-dependent; however, it may continue to develop with further improvements to model capabilities.
Admissibility Alignment
This paper introduces Admissibility Alignment: a reframing of AI alignment as a property of admissible action and decision selection over distributions of outcomes under uncertainty, evaluated through the behavior of candidate policies. We present MAP-AI (Monte Carlo Alignment for Policy) as a canonical system architecture for operationalizing admissibility alignment, formalizing alignment as a probabilistic, decision-theoretic property rather than a static or binary condition. MAP-AI, a new control-plane system architecture for aligned decision-making under uncertainty, enforces alignment through Monte Carlo estimation of outcome distributions and admissibility-controlled policy selection rather than static model-level constraints. The framework evaluates decision policies across ensembles of plausible futures, explicitly modeling uncertainty, intervention effects, value ambiguity, and governance constraints. Alignment is assessed through distributional properties including expected utility, variance, tail risk, and probability of misalignment rather than accuracy or ranking performance. This approach distinguishes probabilistic prediction from decision reasoning under uncertainty and provides an executable methodology for evaluating trust and alignment in enterprise and institutional AI systems. The result is a practical foundation for governing AI systems whose impact is determined not by individual forecasts, but by policy behavior across distributions and tail events. Finally, we show how distributional alignment evaluation can be integrated into decision-making itself, yielding an admissibility-controlled action selection mechanism that alters policy behavior under uncertainty without retraining or modifying underlying models.
comment: 24 pages, 2 figures, 2 tables.. Decision-theoretic alignment under uncertainty
Adaptive Hybrid Optimizer based Framework for Lumpy Skin Disease Identification
Lumpy Skin Disease (LSD) is a contagious viral infection that significantly deteriorates livestock health, thereby posing a serious threat to the global economy and food security. Owing to its rapid spread characteristics, early and precise identification is crucial to prevent outbreaks and ensure timely intervention. In this paper, we propose a hybrid deep learning-based approach called LUMPNet for the early detection of LSD. LUMPNet utilizes image data to detect and classify skin nodules -- the primary indicator of LSD. To this end, LUMPNet uses YOLOv11, EfficientNet-based CNN classifier with compound scaling, and a novel adaptive hybrid optimizer. More precisely, LUMPNet detects and localizes LSD skin nodules and lesions on cattle images. It exploits EfficientNet to classify the localized cattle images into LSD-affected or healthy categories. To stabilize and accelerate the training of YOLOv11 and EfficientNet hybrid model, a novel adaptive hybrid optimizer is proposed and utilized. We evaluate LUMPNet at various stages of LSD using a publicly available dataset. Results indicate that the proposed scheme achieves 99% LSD detection training accuracy, and outperforms existing schemes. The model also achieves validation accuracy of 98%. Moreover, for further evaluation, we conduct a case study using an optimized EfficientNet-B0 model trained with the AdamW optimizer, and compare its performance with LUMPNet. The results show that LUMPNet achieves superior performance.
Moments Matter:Stabilizing Policy Optimization using Return Distributions
Deep Reinforcement Learning (RL) agents often learn policies that achieve the same episodic return yet behave very differently, due to a combination of environmental (random transitions, initial conditions, reward noise) and algorithmic (minibatch selection, exploration noise) factors. In continuous control tasks, even small parameter shifts can produce unstable gaits, complicating both algorithm comparison and real-world transfer. Previous work has shown that such instability arises when policy updates traverse noisy neighborhoods and that the spread of post-update return distribution $R(θ)$, obtained by repeatedly sampling minibatches, updating $θ$, and measuring final returns, is a useful indicator of this noise. Although explicitly constraining the policy to maintain a narrow $R(θ)$ can improve stability, directly estimating $R(θ)$ is computationally expensive in high-dimensional settings. We propose an alternative that takes advantage of environmental stochasticity to mitigate update-induced variability. Specifically, we model state-action return distribution through a distributional critic and then bias the advantage function of PPO using higher-order moments (skewness and kurtosis) of this distribution. By penalizing extreme tail behaviors, our method discourages policies from entering parameter regimes prone to instability. We hypothesize that in environments where post-update critic values align poorly with post-update returns, standard PPO struggles to produce a narrow $R(θ)$. In such cases, our moment-based correction narrows $R(θ)$, improving stability by up to 75% in Walker2D, while preserving comparable evaluation returns.
comment: Workshop paper at RLDM'25
PsychEval: A Multi-Session and Multi-Therapy Benchmark for High-Realism and Comprehensive AI Psychological Counselor
To develop a reliable AI for psychological assessment, we introduce \texttt{PsychEval}, a multi-session, multi-therapy, and highly realistic benchmark designed to address three key challenges: \textbf{1) Can we train a highly realistic AI counselor?} Realistic counseling is a longitudinal task requiring sustained memory and dynamic goal tracking. We propose a multi-session benchmark (spanning 6-10 sessions across three distinct stages) that demands critical capabilities such as memory continuity, adaptive reasoning, and longitudinal planning. The dataset is annotated with extensive professional skills, comprising over 677 meta-skills and 4577 atomic skills. \textbf{2) How to train a multi-therapy AI counselor?} While existing models often focus on a single therapy, complex cases frequently require flexible strategies among various therapies. We construct a diverse dataset covering five therapeutic modalities (Psychodynamic, Behaviorism, CBT, Humanistic Existentialist, and Postmodernist) alongside an integrative therapy with a unified three-stage clinical framework across six core psychological topics. \textbf{3) How to systematically evaluate an AI counselor?} We establish a holistic evaluation framework with 18 therapy-specific and therapy-shared metrics across Client-Level and Counselor-Level dimensions. To support this, we also construct over 2,000 diverse client profiles. Extensive experimental analysis fully validates the superior quality and clinical fidelity of our dataset. Crucially, \texttt{PsychEval} transcends static benchmarking to serve as a high-fidelity reinforcement learning environment that enables the self-evolutionary training of clinically responsible and adaptive AI counselors.
Sparse Threats, Focused Defense: Criticality-Aware Robust Reinforcement Learning for Safe Autonomous Driving
Reinforcement learning (RL) has shown considerable potential in autonomous driving (AD), yet its vulnerability to perturbations remains a critical barrier to real-world deployment. As a primary countermeasure, adversarial training improves policy robustness by training the AD agent in the presence of an adversary that deliberately introduces perturbations. Existing approaches typically model the interaction as a zero-sum game with continuous attacks. However, such designs overlook the inherent asymmetry between the agent and the adversary and then fail to reflect the sparsity of safety-critical risks, rendering the achieved robustness inadequate for practical AD scenarios. To address these limitations, we introduce criticality-aware robust RL (CARRL), a novel adversarial training approach for handling sparse, safety-critical risks in autonomous driving. CARRL consists of two interacting components: a risk exposure adversary (REA) and a risk-targeted robust agent (RTRA). We model the interaction between the REA and RTRA as a general-sum game, allowing the REA to focus on exposing safety-critical failures (e.g., collisions) while the RTRA learns to balance safety with driving efficiency. The REA employs a decoupled optimization mechanism to better identify and exploit sparse safety-critical moments under a constrained budget. However, such focused attacks inevitably result in a scarcity of adversarial data. The RTRA copes with this scarcity by jointly leveraging benign and adversarial experiences via a dual replay buffer and enforces policy consistency under perturbations to stabilize behavior. Experimental results demonstrate that our approach reduces the collision rate by at least 22.66\% across all cases compared to state-of-the-art baseline methods.
VerLM: Explaining Face Verification Using Natural Language
Face verification systems have seen substantial advancements; however, they often lack transparency in their decision-making processes. In this paper, we introduce an innovative Vision-Language Model (VLM) for Face Verification, which not only accurately determines if two face images depict the same individual but also explicitly explains the rationale behind its decisions. Our model is uniquely trained using two complementary explanation styles: (1) concise explanations that summarize the key factors influencing its decision, and (2) comprehensive explanations detailing the specific differences observed between the images. We adapt and enhance a state-of-the-art modeling approach originally designed for audio-based differentiation to suit visual inputs effectively. This cross-modal transfer significantly improves our model's accuracy and interpretability. The proposed VLM integrates sophisticated feature extraction techniques with advanced reasoning capabilities, enabling clear articulation of its verification process. Our approach demonstrates superior performance, surpassing baseline methods and existing models. These findings highlight the immense potential of vision language models in face verification set up, contributing to more transparent, reliable, and explainable face verification systems.
HyperCLOVA X 8B Omni
In this report, we present HyperCLOVA X 8B Omni, the first any-to-any omnimodal model in the HyperCLOVA X family that supports text, audio, and vision as both inputs and outputs. By consolidating multimodal understanding and generation into a single model rather than separate modality-specific pipelines, HyperCLOVA X 8B Omni serves as an 8B-scale omni-pathfinding point toward practical any-to-any omni assistants. At a high level, the model unifies modalities through a shared next-token prediction interface over an interleaved multimodal sequence, while vision and audio encoders inject continuous embeddings for fine-grained understanding and grounding. Empirical evaluations demonstrate competitive performance against comparably sized models across diverse input-output combinations spanning text, audio, and vision, in both Korean and English. We anticipate that the open-weight release of HyperCLOVA X 8B Omni will support a wide range of research and deployment scenarios.
comment: Technical Report
Subimage Overlap Prediction: Task-Aligned Self-Supervised Pretraining For Semantic Segmentation In Remote Sensing Imagery WACV 2026
Self-supervised learning (SSL) methods have become a dominant paradigm for creating general purpose models whose capabilities can be transferred to downstream supervised learning tasks. However, most such methods rely on vast amounts of pretraining data. This work introduces Subimage Overlap Prediction, a novel self-supervised pretraining task to aid semantic segmentation in remote sensing imagery that uses significantly lesser pretraining imagery. Given an image, a sub-image is extracted and the model is trained to produce a semantic mask of the location of the extracted sub-image within the original image. We demonstrate that pretraining with this task results in significantly faster convergence, and equal or better performance (measured via mIoU) on downstream segmentation. This gap in convergence and performance widens when labeled training data is reduced. We show this across multiple architecture types, and with multiple downstream datasets. We also show that our method matches or exceeds performance while requiring significantly lesser pretraining data relative to other SSL methods. Code and model weights are provided at \href{https://github.com/sharmalakshay93/subimage-overlap-prediction}{github.com/sharmalakshay93/subimage-overlap-prediction}.
comment: Accepted at CV4EO Workshop at WACV 2026
LIA: Supervised Fine-Tuning of Large Language Models for Automatic Issue Assignment
Issue assignment is a critical process in software maintenance, where new issue reports are validated and assigned to suitable developers. However, manual issue assignment is often inconsistent and error-prone, especially in large open-source projects where thousands of new issues are reported monthly. Existing automated approaches have shown promise, but many rely heavily on large volumes of project-specific training data or relational information that is often sparse and noisy, which limits their effectiveness. To address these challenges, we propose LIA (LLM-based Issue Assignment), which employs supervised fine-tuning to adapt an LLM, DeepSeek-R1-Distill-Llama-8B in this work, for automatic issue assignment. By leveraging the LLM's pretrained semantic understanding of natural language and software-related text, LIA learns to generate ranked developer recommendations directly from issue titles and descriptions. The ranking is based on the model's learned understanding of historical issue-to-developer assignments, using patterns from past tasks to infer which developers are most likely to handle new issues. Through comprehensive evaluation, we show that LIA delivers substantial improvements over both its base pretrained model and state-of-the-art baselines. It achieves up to +187.8% higher Hit@1 compared to the DeepSeek-R1-Distill-Llama-8B pretrained base model, and outperforms four leading issue assignment methods by as much as +211.2% in Hit@1 score. These results highlight the effectiveness of domain-adapted LLMs for software maintenance tasks and establish LIA as a practical, high-performing solution for issue assignment.
Can Large Language Models Solve Engineering Equations? A Systematic Comparison of Direct Prediction and Solver-Assisted Approaches
Transcendental equations requiring iterative numerical solution pervade engineering practice, from fluid mechanics friction factor calculations to orbital position determination. We systematically evaluate whether Large Language Models can solve these equations through direct numerical prediction or whether a hybrid architecture combining LLM symbolic manipulation with classical iterative solvers proves more effective. Testing six state-of-the-art models (GPT-5.1, GPT-5.2, Gemini-3-Flash, Gemini-2.5-Lite, Claude-Sonnet-4.5, Claude-Opus-4.5) on 100 problems spanning seven engineering domains, we compare direct prediction against solver-assisted computation where LLMs formulate governing equations and provide initial conditions while Newton-Raphson iteration performs numerical solution. Direct prediction yields mean relative errors of 0.765 to 1.262 across models, while solver-assisted computation achieves 0.225 to 0.301, representing error reductions of 67.9% to 81.8%. Domain-specific analysis reveals dramatic improvements in Electronics (93.1%) due to exponential equation sensitivity, contrasted with modest gains in Fluid Mechanics (7.2%) where LLMs exhibit effective pattern recognition. These findings establish that contemporary LLMs excel at symbolic manipulation and domain knowledge retrieval but struggle with precision-critical iterative arithmetic, suggesting their optimal deployment as intelligent interfaces to classical numerical solvers rather than standalone computational engines.
comment: 14 pages
A New Benchmark for the Appropriate Evaluation of RTL Code Optimization
The rapid progress of artificial intelligence increasingly relies on efficient integrated circuit (IC) design. Recent studies have explored the use of large language models (LLMs) for generating Register Transfer Level (RTL) code, but existing benchmarks mainly evaluate syntactic correctness rather than optimization quality in terms of power, performance, and area (PPA). This work introduces RTL-OPT, a benchmark for assessing the capability of LLMs in RTL optimization. RTL-OPT contains 36 handcrafted digital designs that cover diverse implementation categories including combinational logic, pipelined datapaths, finite state machines, and memory interfaces. Each task provides a pair of RTL codes, a suboptimal version and a human-optimized reference that reflects industry-proven optimization patterns not captured by conventional synthesis tools. Furthermore, RTL-OPT integrates an automated evaluation framework to verify functional correctness and quantify PPA improvements, enabling standardized and meaningful assessment of generative models for hardware design optimization.
MergeRec: Model Merging for Data-Isolated Cross-Domain Sequential Recommendation
Modern recommender systems trained on domain-specific data often struggle to generalize across multiple domains. Cross-domain sequential recommendation has emerged as a promising research direction to address this challenge; however, existing approaches face fundamental limitations, such as reliance on overlapping users or items across domains, or unrealistic assumptions that ignore privacy constraints. In this work, we propose a new framework, MergeRec, based on model merging under a new and realistic problem setting termed data-isolated cross-domain sequential recommendation, where raw user interaction data cannot be shared across domains. MergeRec consists of three key components: (1) merging initialization, (2) pseudo-user data construction, and (3) collaborative merging optimization. First, we initialize a merged model using training-free merging techniques. Next, we construct pseudo-user data by treating each item as a virtual sequence in each domain, enabling the synthesis of meaningful training samples without relying on real user interactions. Finally, we optimize domain-specific merging weights through a joint objective that combines a recommendation loss, which encourages the merged model to identify relevant items, and a distillation loss, which transfers collaborative filtering signals from the fine-tuned source models. Extensive experiments demonstrate that MergeRec not only preserves the strengths of the original models but also significantly enhances generalizability to unseen domains. Compared to conventional model merging methods, MergeRec consistently achieves superior performance, with average improvements of up to 17.21% in Recall@10, highlighting the potential of model merging as a scalable and effective approach for building universal recommender systems. The source code is available at https://github.com/DIALLab-SKKU/MergeRec.
comment: Accepted by KDD 2026
Query-Document Dense Vectors for LLM Relevance Judgment Bias Analysis
Large Language Models (LLMs) have been used as relevance assessors for Information Retrieval (IR) evaluation collection creation due to reduced cost and increased scalability as compared to human assessors. While previous research has looked at the reliability of LLMs as compared to human assessors, in this work, we aim to understand if LLMs make systematic mistakes when judging relevance, rather than just understanding how good they are on average. To this aim, we propose a novel representational method for queries and documents that allows us to analyze relevance label distributions and compare LLM and human labels to identify patterns of disagreement and localize systematic areas of disagreement. We introduce a clustering-based framework that embeds query-document (Q-D) pairs into a joint semantic space, treating relevance as a relational property. Experiments on TREC Deep Learning 2019 and 2020 show that systematic disagreement between humans and LLMs is concentrated in specific semantic clusters rather than distributed randomly. Query-level analyses reveal recurring failures, most often in definition-seeking, policy-related, or ambiguous contexts. Queries with large variation in agreement across their clusters emerge as disagreement hotspots, where LLMs tend to under-recall relevant content or over-include irrelevant material. This framework links global diagnostics with localized clustering to uncover hidden weaknesses in LLM judgments, enabling bias-aware and more reliable IR evaluation.
comment: Accepted for presentation at the ECIR 2026 Full Papers track
Crafting Adversarial Inputs for Large Vision-Language Models Using Black-Box Optimization
Recent advancements in Large Vision-Language Models (LVLMs) have shown groundbreaking capabilities across diverse multimodal tasks. However, these models remain vulnerable to adversarial jailbreak attacks, where adversaries craft subtle perturbations to bypass safety mechanisms and trigger harmful outputs. Existing white-box attacks methods require full model accessibility, suffer from computing costs and exhibit insufficient adversarial transferability, making them impractical for real-world, black-box settings. To address these limitations, we propose a black-box jailbreak attack on LVLMs via Zeroth-Order optimization using Simultaneous Perturbation Stochastic Approximation (ZO-SPSA). ZO-SPSA provides three key advantages: (i) gradient-free approximation by input-output interactions without requiring model knowledge, (ii) model-agnostic optimization without the surrogate model and (iii) lower resource requirements with reduced GPU memory consumption. We evaluate ZO-SPSA on three LVLMs, including InstructBLIP, LLaVA and MiniGPT-4, achieving the highest jailbreak success rate of 83.0% on InstructBLIP, while maintaining imperceptible perturbations comparable to white-box methods. Moreover, adversarial examples generated from MiniGPT-4 exhibit strong transferability to other LVLMs, with ASR reaching 64.18%. These findings underscore the real-world feasibility of black-box jailbreaks and expose critical weaknesses in the safety mechanisms of current LVLMs
comment: EACL
Multi-granularity Interactive Attention Framework for Residual Hierarchical Pronunciation Assessment AAAI 2026
Automatic pronunciation assessment plays a crucial role in computer-assisted pronunciation training systems. Due to the ability to perform multiple pronunciation tasks simultaneously, multi-aspect multi-granularity pronunciation assessment methods are gradually receiving more attention and achieving better performance than single-level modeling tasks. However, existing methods only consider unidirectional dependencies between adjacent granularity levels, lacking bidirectional interaction among phoneme, word, and utterance levels and thus insufficiently capturing the acoustic structural correlations. To address this issue, we propose a novel residual hierarchical interactive method, HIA for short, that enables bidirectional modeling across granularities. As the core of HIA, the Interactive Attention Module leverages an attention mechanism to achieve dynamic bidirectional interaction, effectively capturing linguistic features at each granularity while integrating correlations between different granularity levels. We also propose a residual hierarchical structure to alleviate the feature forgetting problem when modeling acoustic hierarchies. In addition, we use 1-D convolutional layers to enhance the extraction of local contextual cues at each granularity. Extensive experiments on the speechocean762 dataset show that our model is comprehensively ahead of the existing state-of-the-art methods.
comment: 9 pages, 4 figures, 5 tables, accepted by AAAI 2026
AI Agent Systems: Architectures, Applications, and Evaluation
AI agents -- systems that combine foundation models with reasoning, planning, memory, and tool use -- are rapidly becoming a practical interface between natural-language intent and real-world computation. This survey synthesizes the emerging landscape of AI agent architectures across: (i) deliberation and reasoning (e.g., chain-of-thought-style decomposition, self-reflection and verification, and constraint-aware decision making), (ii) planning and control (from reactive policies to hierarchical and multi-step planners), and (iii) tool calling and environment interaction (retrieval, code execution, APIs, and multimodal perception). We organize prior work into a unified taxonomy spanning agent components (policy/LLM core, memory, world models, planners, tool routers, and critics), orchestration patterns (single-agent vs.\ multi-agent; centralized vs.\ decentralized coordination), and deployment settings (offline analysis vs.\ online interactive assistance; safety-critical vs.\ open-ended tasks). We discuss key design trade-offs -- latency vs.\ accuracy, autonomy vs.\ controllability, and capability vs.\ reliability -- and highlight how evaluation is complicated by non-determinism, long-horizon credit assignment, tool and environment variability, and hidden costs such as retries and context growth. Finally, we summarize measurement and benchmarking practices (task suites, human preference and utility metrics, success under constraints, robustness and security) and identify open challenges including verification and guardrails for tool actions, scalable memory and context management, interpretability of agent decisions, and reproducible evaluation under realistic workloads.
K-EXAONE Technical Report
This technical report presents K-EXAONE, a large-scale multilingual language model developed by LG AI Research. K-EXAONE is built on a Mixture-of-Experts architecture with 236B total parameters, activating 23B parameters during inference. It supports a 256K-token context window and covers six languages: Korean, English, Spanish, German, Japanese, and Vietnamese. We evaluate K-EXAONE on a comprehensive benchmark suite spanning reasoning, agentic, general, Korean, and multilingual abilities. Across these evaluations, K-EXAONE demonstrates performance comparable to open-weight models of similar size. K-EXAONE, designed to advance AI for a better life, is positioned as a powerful proprietary AI foundation model for a wide range of industrial and research applications.
comment: 29 pages
Yuan3.0 Flash: An Open Multimodal Large Language Model for Enterprise Applications
We introduce Yuan3.0 Flash, an open-source Mixture-of-Experts (MoE) MultiModal Large Language Model featuring 3.7B activated parameters and 40B total parameters, specifically designed to enhance performance on enterprise-oriented tasks while maintaining competitive capabilities on general-purpose tasks. To address the overthinking phenomenon commonly observed in Large Reasoning Models (LRMs), we propose Reflection-aware Adaptive Policy Optimization (RAPO), a novel RL training algorithm that effectively regulates overthinking behaviors. In enterprise-oriented tasks such as retrieval-augmented generation (RAG), complex table understanding, and summarization, Yuan3.0 Flash consistently achieves superior performance. Moreover, it also demonstrates strong reasoning capabilities in domains such as mathematics, science, etc., attaining accuracy comparable to frontier model while requiring only approximately 1/4 to 1/2 of the average tokens. Yuan3.0 Flash has been fully open-sourced to facilitate further research and real-world deployment: https://github.com/Yuan-lab-LLM/Yuan3.0.
RelayGR: Scaling Long-Sequence Generative Recommendation via Cross-Stage Relay-Race Inference
Real-time recommender systems execute multi-stage cascades (retrieval, pre-processing, fine-grained ranking) under strict tail-latency SLOs, leaving only tens of milliseconds for ranking. Generative recommendation (GR) models can improve quality by consuming long user-behavior sequences, but in production their online sequence length is tightly capped by the ranking-stage P99 budget. We observe that the majority of GR tokens encode user behaviors that are independent of the item candidates, suggesting an opportunity to pre-infer a user-behavior prefix once and reuse it during ranking rather than recomputing it on the critical path. Realizing this idea at industrial scale is non-trivial: the prefix cache must survive across multiple pipeline stages before the final ranking instance is determined, the user population implies cache footprints far beyond a single device, and indiscriminate pre-inference would overload shared resources under high QPS. We present RelayGR, a production system that enables in-HBM relay-race inference for GR. RelayGR selectively pre-infers long-term user prefixes, keeps their KV caches resident in HBM over the request lifecycle, and ensures the subsequent ranking can consume them without remote fetches. RelayGR combines three techniques: 1) a sequence-aware trigger that admits only at-risk requests under a bounded cache footprint and pre-inference load, 2) an affinity-aware router that co-locates cache production and consumption by routing both the auxiliary pre-infer signal and the ranking request to the same instance, and 3) a memory-aware expander that uses server-local DRAM to capture short-term cross-request reuse while avoiding redundant reloads. We implement RelayGR on Huawei Ascend NPUs and evaluate it with real queries. Under a fixed P99 SLO, RelayGR supports up to 1.5$\times$ longer sequences and improves SLO-compliant throughput by up to 3.6$\times$.
Explicit World Models for Reliable Human-Robot Collaboration AAAI-26
This paper addresses the topic of robustness under sensing noise, ambiguous instructions, and human-robot interaction. We take a radically different tack to the issue of reliable embodied AI: instead of focusing on formal verification methods aimed at achieving model predictability and robustness, we emphasise the dynamic, ambiguous and subjective nature of human-robot interactions that requires embodied AI systems to perceive, interpret, and respond to human intentions in a manner that is consistent, comprehensible and aligned with human expectations. We argue that when embodied agents operate in human environments that are inherently social, multimodal, and fluid, reliability is contextually determined and only has meaning in relation to the goals and expectations of humans involved in the interaction. This calls for a fundamentally different approach to achieving reliable embodied AI that is centred on building and updating an accessible "explicit world model" representing the common ground between human and AI, that is used to align robot behaviours with human expectations.
comment: Accepted to AAAI-26 Bridge Program B10: Making Embodied AI Reliable with Testing and Formal Verification
Beyond Homophily: Community Search on Heterophilic Graphs
Community search aims to identify a refined set of nodes that are most relevant to a given query, supporting tasks ranging from fraud detection to recommendation. Unlike homophilic graphs, many real-world networks are heterophilic, where edges predominantly connect dissimilar nodes. Therefore, structural signals that once reflected smooth, low-frequency similarity now appear as sharp, high-frequency contrasts. However, both classical algorithms (e.g., k-core, k-truss) and recent ML-based models struggle to achieve effective community search on heterophilic graphs, where edge signs or semantics are generally unknown. Algorithm-based methods often return communities with mixed class labels, while GNNs, built on homophily, smooth away meaningful signals and blur community boundaries. Therefore, we propose Adaptive Community Search (AdaptCS), a unified framework featuring three key designs: (i) an AdaptCS Encoder that disentangles multi-hop and multi-frequency signals, enabling the model to capture both smooth (homophilic) and contrastive (heterophilic) relations; (ii) a memory-efficient low-rank optimization that removes the main computational bottleneck and ensures model scalability; and (iii) an Adaptive Community Score (ACS) that guides online search by balancing embedding similarity and topological relations. Extensive experiments on both heterophilic and homophilic benchmarks demonstrate that AdaptCS outperforms the best-performing baseline by an average of 11% in F1-score, retains robustness across heterophily levels, and achieves up to 2 orders of magnitude speedup.
Digital Twin-Driven Communication-Efficient Federated Anomaly Detection for Industrial IoT
Anomaly detection is increasingly becoming crucial for maintaining the safety, reliability, and efficiency of industrial systems. Recently, with the advent of digital twins and data-driven decision-making, several statistical and machine-learning methods have been proposed. However, these methods face several challenges, such as dependence on only real sensor datasets, limited labeled data, high false alarm rates, and privacy concerns. To address these problems, we propose a suite of digital twin-integrated federated learning (DTFL) methods that enhance global model performance while preserving data privacy and communication efficiency. Specifically, we present five novel approaches: Digital Twin-Based Meta-Learning (DTML), Federated Parameter Fusion (FPF), Layer-wise Parameter Exchange (LPE), Cyclic Weight Adaptation (CWA), and Digital Twin Knowledge Distillation (DTKD). Each method introduces a unique mechanism to combine synthetic and real-world knowledge, balancing generalization with communication overhead. We conduct an extensive experiment using a publicly available cyber-physical anomaly detection dataset. For a target accuracy of 80%, CWA reaches the target in 33 rounds, FPF in 41 rounds, LPE in 48 rounds, and DTML in 87 rounds, whereas the standard FedAvg baseline and DTKD do not reach the target within 100 rounds. These results highlight substantial communication-efficiency gains (up to 62% fewer rounds than DTML and 31% fewer than LPE) and demonstrate that integrating DT knowledge into FL accelerates convergence to operationally meaningful accuracy thresholds for IIoT anomaly detection.
EmoNet-Voice: A Fine-Grained, Expert-Verified Benchmark for Speech Emotion Detection
Speech emotion recognition (SER) systems are constrained by existing datasets that typically cover only 6-10 basic emotions, lack scale and diversity, and face ethical challenges when collecting sensitive emotional states. We introduce EMONET-VOICE, a comprehensive resource addressing these limitations through two components: (1) EmoNet-Voice Big, a 5,000-hour multilingual pre-training dataset spanning 40 fine-grained emotion categories across 11 voices and 4 languages, and (2) EmoNet-Voice Bench, a rigorously validated benchmark of 4,7k samples with unanimous expert consensus on emotion presence and intensity levels. Using state-of-the-art synthetic voice generation, our privacy-preserving approach enables ethical inclusion of sensitive emotions (e.g., pain, shame) while maintaining controlled experimental conditions. Each sample underwent validation by three psychology experts. We demonstrate that our Empathic Insight models trained on our synthetic data achieve strong real-world dataset generalization, as tested on EmoDB and RAVDESS. Furthermore, our comprehensive evaluation reveals that while high-arousal emotions (e.g., anger: 95% accuracy) are readily detected, the benchmark successfully exposes the difficulty of distinguishing perceptually similar emotions (e.g., sadness vs. distress: 63% discrimination), providing quantifiable metrics for advancing nuanced emotion AI. EMONET-VOICE establishes a new paradigm for large-scale, ethically-sourced, fine-grained SER research.
SpatialBench: Can Agents Analyze Real-World Spatial Biology Data? NeurIPS 2024
Spatial transcriptomics assays are rapidly increasing in scale and complexity, making computational analysis a major bottleneck in biological discovery. Although frontier AI agents have improved dramatically at software engineering and general data analysis, it remains unclear whether they can extract biological insight from messy, real-world spatial datasets. We introduce SpatialBench, a benchmark of 146 verifiable problems derived from practical spatial analysis workflows spanning five spatial technologies and seven task categories. Each problem provides a snapshot of experimental data immediately prior to an analysis step and a deterministic grader that evaluates recovery of a key biological result. Benchmark data on frontier models shows that base model accuracy remains low (20-38% across model families), with strong model-task and model-platform interactions. Harness design has a large empirical effect on performance, indicating that tools, prompts, control flow, and execution environment should be evaluated and improved as first-class objects. SpatialBench serves both as a measurement tool and a diagnostic lens for developing agents that can interact with real spatial datasets faithfully, transparently, and reproducibly.
comment: 10 pages, 9 figures, 4 tables; NeurIPS 2024 format
Improving Action Smoothness for a Cascaded Online Learning Flight Control System
This paper aims to improve the action smoothness of a cascaded online learning flight control system. Although the cascaded structure is widely used in flight control design, its stability can be compromised by oscillatory control actions, which poses challenges for practical engineering applications. To address this issue, we introduce an online temporal smoothness technique and a low-pass filter to reduce the amplitude and frequency of the control actions. Fast Fourier Transform (FFT) is used to analyze policy performance in the frequency domain. Simulation results demonstrate the improvements achieved by the two proposed techniques.
BitDecoding: Unlocking Tensor Cores for Long-Context LLMs with Low-Bit KV Cache
The growth of long-context Large Language Models (LLMs) significantly increases memory and bandwidth pressure during autoregressive decoding due to the expanding Key-Value (KV) cache. While accuracy-preserving KV-cache quantization (e.g., 4-bit or 2-bit) reduces memory footprint, existing systems decode inefficiently by relying solely on CUDA cores, underutilizing Tensor Cores-the dominant compute resource on GPUs. We present BitDecoding, the first inference system to efficiently decode low-bit KV caches by cooperatively leveraging CUDA cores and Tensor Cores. BitDecoding smartly induces Tensor-Core-friendly layouts, introduces warp-level dequantization parallelism, and provides unified system support through query transformation, high-performance tensor- and channel-wise quantization, and a software-pipelined dequantization kernel enabling mixed-precision execution. Architecture-aware optimizations further leverage Hopper's warpgroup tensor instructions and Blackwell's NVFP4 (MXFP4) tensor formats. Evaluated on Blackwell, Hopper, and Ampere GPUs, BitDecoding achieves an average 7.5x decoding speedup over FP16 FlashDecoding-v2, up to 8.6x on Blackwell with NVFP4, and up to 4.3x over state-of-the-art approaches. On LLaMA-3.1-8B with a 128K context, BitDecoding reduces single-batch decoding latency by 3x. BitDecoding is open-sourced at https://github.com/OpenBitSys/BitDecoding.
Anytime-Valid Answer Sufficiency Certificates for LLM Generation via Sequential Information Lift
We introduce Sequential-EDFL (Empirical Dynamic Formal Lift), which applies anytime-valid sequential testing to language model generation stopping. Our approach tracks information lift, defined as the log-likelihood ratio between the full model and deliberately weakened "skeleton" baselines, using self-normalized empirical-Bernstein e-processes that provide formal delta-level error control regardless of stopping time. This delta guarantee controls premature stopping when information lift is insufficient relative to the skeleton, and it does not imply delta control of factual incorrectness or hallucinations. We handle unknown centering through online mean estimation, combine multiple parameters via mixture e-processes, and support adaptive resets under distributional drift. On six benchmarks, Sequential-EDFL reduces generation length by 22 to 28 percent relative to sequential baselines while maintaining delta-level control with 12 percent computational overhead. We introduce automated skeletons (distilled submodels and randomized logits) and show robustness across skeleton families. Composing EDFL with a lightweight correctness gate (sentence boundaries plus a verifier) improves end-task correctness while preserving anytime-valid guarantees by only delaying stopping. Our certificates control information sufficiency, not factual correctness. Specifically, 10.9 percent of stopped sequences remain incorrect even with the gate (13.2 to 22.7 percent without it). EDFL serves as a first-stage filter that can reduce verification burden: when applied to stopped sequences, the gate validates 83 percent of stops, requiring full verification only for the remaining 17 percent, plus all non-stopped sequences. EDFL is not a standalone solution for safety-critical domains.
Language as a Wave Phenomenon: Iso-Energetic Phase-Locking and Semantic Interference in Neural Networks
Conventional deep learning paradigms rely on metabolically expensive magnitude-based representations, rendering them fundamentally incompatible with passive photonic hardware. We introduce PRISM, a sequence modeling architecture that bridges high-level reasoning and physical constraints by enforcing an Iso-Energetic (Unity Gain) principle, compelling the network to encode semantic information exclusively in the phase angle. Validated on the WMT14 translation benchmark, PRISM achieves a 0.799 COMET score, demonstrating that phase-based reasoning competes with standard Transformers (0.821) and functionally matches unconstrained spectral baselines like FNet (0.805), despite enforcing strict energy constraints and requiring 11.5% fewer parameters. Furthermore, to verify hardware feasibility, we simulate a Holographic Backpropagation mechanism on a noisy, 4-bit optical correlator. Ablation studies reveal a substantial performance gain (48.4% vs. 62.4%) over a frozen baseline, proving that the proposed phase-steering mechanism actively optimizes physical parameters under strict energy constraints. These results establish an existence proof that ultra-low-power, passive optical hardware can support high-level linguistic intelligence without sacrificing representational capacity.
comment: Major Revision. Title changed to reflect the new theoretical framework. Complete narrative shift from "Optimization Efficiency" to "Iso-Energetic Phase Coding" and "Optical Hardware Compatibility". Replaced ISMR diagnostics with Holographic Optical Learning simulations and mechanistic "Dual-Regime" phase analysis. Comparison with spectral baselines (FNet) added
Causal Consistency Regularization: Training Verifiably Sensitive Reasoning in Large Language Models
Large language models can produce correct answers while relying on flawed reasoning traces, partly because common training objectives reward final-answer correctness rather than faithful intermediate reasoning. This undermines trustworthiness in high-stakes settings. We propose Counterfactual Sensitivity Regularization (CSR), a training paradigm that improves reasoning faithfulness by enforcing causal consistency between reasoning steps and outcomes. CSR automatically applies operator-level interventions to reasoning traces, such as swapping "+" with "-", to generate minimally perturbed counterfactual rationales, and penalizes the model when these logically invalid traces still lead to the original answer. Our implementation is efficient, adding about 9 percent training overhead via a warm-start curriculum and token-subset optimization. We evaluate faithfulness using Counterfactual Outcome Sensitivity (COS), which measures how appropriately answers change under logical perturbations. Across arithmetic (GSM8K), logical deduction (ProofWriter), multi-hop question answering (HotpotQA), and code generation (MBPP), CSR yields improved accuracy versus faithfulness trade-offs, establishing a new Pareto frontier. CSR improves faithfulness over standard fine-tuning and process supervision by up to 70 percentage points, and transfers across model families with 94.2 to 96.7 percent success in structured domains. CSR also complements inference-time methods such as self-consistency. Overall, CSR offers a practical route to more reliable reasoning in structured domains, including mathematics, formal logic, and code, where operators are well-defined and verifiable, covering an estimated 40 to 60 percent of high-stakes reasoning deployments.
mHC: Manifold-Constrained Hyper-Connections
Recently, studies exemplified by Hyper-Connections (HC) have extended the ubiquitous residual connection paradigm established over the past decade by expanding the residual stream width and diversifying connectivity patterns. While yielding substantial performance gains, this diversification fundamentally compromises the identity mapping property intrinsic to the residual connection, which causes severe training instability and restricted scalability, and additionally incurs notable memory access overhead. To address these challenges, we propose Manifold-Constrained Hyper-Connections (mHC), a general framework that projects the residual connection space of HC onto a specific manifold to restore the identity mapping property, while incorporating rigorous infrastructure optimization to ensure efficiency. Empirical experiments demonstrate that mHC is effective for training at scale, offering tangible performance improvements and superior scalability. We anticipate that mHC, as a flexible and practical extension of HC, will contribute to a deeper understanding of topological architecture design and suggest promising directions for the evolution of foundational models.
Learning Evolving Latent Strategies for Multi-Agent Language Systems without Model Fine-Tuning
This study proposes a multi-agent language framework that enables continual strategy evolution without fine-tuning the language model's parameters. The core idea is to liberate the latent vectors of abstract concepts from traditional static semantic representations, allowing them to be continuously updated through environmental interaction and reinforcement feedback. We construct a dual-loop architecture: the behavior loop adjusts action preferences based on environmental rewards, while the language loop updates the external latent vectors by reflecting on the semantic embeddings of generated text. Together, these mechanisms allow agents to develop stable and disentangled strategic styles over long-horizon multi-round interactions. Experiments show that agents' latent spaces exhibit clear convergence trajectories under reflection-driven updates, along with structured shifts at critical moments. Moreover, the system demonstrates an emergent ability to implicitly infer and continually adapt to emotional agents, even without shared rewards. These results indicate that, without modifying model parameters, an external latent space can provide language agents with a low-cost, scalable, and interpretable form of abstract strategic representation.
comment: 17 pages, 5 figures. Code available at https://github.com/wltang-dev/Latent-Strategy-RL-Agent
Tuning without Peeking: Provable Generalization Bounds and Robust LLM Post-Training
Gradient-based optimization is the workhorse of deep learning, offering efficient and scalable training via backpropagation. However, exposing gradients during training can leak sensitive information about the underlying data, raising privacy and security concerns such as susceptibility to data poisoning attacks. In contrast, black box optimization methods, which treat the model as an opaque function, relying solely on function evaluations to guide optimization, offer a promising alternative in scenarios where data access is restricted, adversarial risks are high, or overfitting is a concern. This paper introduces BBoxER, an evolutionary black-box method for LLM post-training that induces an information bottleneck via implicit compression of the training data. Leveraging the tractability of information flow, we provide non-vacuous generalization bounds and strong theoretical guarantees for privacy, robustness to data poisoning attacks, and extraction attacks. In experiments with LLMs, we demonstrate empirically that black-box optimization methods, despite the scalability and computational challenges inherent to black-box approaches, are able to learn, showing how a few iterations of BBoxER improve performance, generalize well on a benchmark of reasoning datasets, and are robust to membership inference attacks. This positions BBoxER as an attractive add-on on top of gradient-based optimization, offering suitability for deployment in restricted or privacy-sensitive environments while also providing non-vacuous generalization guarantees.
CangLing-KnowFlow: A Unified Knowledge-and-Flow-fused Agent for Comprehensive Remote Sensing Applications
The automated and intelligent processing of massive remote sensing (RS) datasets is critical in Earth observation (EO). Existing automated systems are normally task-specific, lacking a unified framework to manage diverse, end-to-end workflows--from data preprocessing to advanced interpretation--across diverse RS applications. To address this gap, this paper introduces CangLing-KnowFlow, a unified intelligent agent framework that integrates a Procedural Knowledge Base (PKB), Dynamic Workflow Adjustment, and an Evolutionary Memory Module. The PKB, comprising 1,008 expert-validated workflow cases across 162 practical RS tasks, guides planning and substantially reduces hallucinations common in general-purpose agents. During runtime failures, the Dynamic Workflow Adjustment autonomously diagnoses and replans recovery strategies, while the Evolutionary Memory Module continuously learns from these events, iteratively enhancing the agent's knowledge and performance. This synergy enables CangLing-KnowFlow to adapt, learn, and operate reliably across diverse, complex tasks. We evaluated CangLing-KnowFlow on the KnowFlow-Bench, a novel benchmark of 324 workflows inspired by real-world applications, testing its performance across 13 top Large Language Model (LLM) backbones, from open-source to commercial. Across all complex tasks, CangLing-KnowFlow surpassed the Reflexion baseline by at least 4% in Task Success Rate. As the first most comprehensive validation along this emerging field, this research demonstrates the great potential of CangLing-KnowFlow as a robust, efficient, and scalable automated solution for complex EO challenges by leveraging expert knowledge (Knowledge) into adaptive and verifiable procedures (Flow).
FaithLens: Detecting and Explaining Faithfulness Hallucination
Recognizing whether outputs from large language models (LLMs) contain faithfulness hallucination is crucial for real-world applications, e.g., retrieval-augmented generation and summarization. In this paper, we introduce FaithLens, a cost-efficient and effective faithfulness hallucination detection model that can jointly provide binary predictions and corresponding explanations to improve trustworthiness. To achieve this, we first synthesize training data with explanations via advanced LLMs and apply a well-defined data filtering strategy to ensure label correctness, explanation quality, and data diversity. Subsequently, we fine-tune the model on these well-curated training data as a cold start and further optimize it with rule-based reinforcement learning, using rewards for both prediction correctness and explanation quality. Results on 12 diverse tasks show that the 8B-parameter FaithLens outperforms advanced models such as GPT-4.1 and o3. Also, FaithLens can produce high-quality explanations, delivering a distinctive balance of trustworthiness, efficiency, and effectiveness.
UCO: A Multi-Turn Interactive Reinforcement Learning Method for Adaptive Teaching with Large Language Models
Large language models (LLMs) are shifting from answer providers to intelligent tutors in educational settings, yet current supervised fine-tuning methods only learn surface teaching patterns without dynamic adaptation capabilities. Recent reinforcement learning approaches address this limitation but face two critical challenges. First, they evaluate teaching effectiveness solely based on whether students produce correct outputs, unable to distinguish whether students genuinely understand or echo teacher-provided answers during interaction. Second, they cannot perceive students' evolving cognitive states in real time through interactive dialogue, thus failing to adapt teaching strategies to match students' cognitive levels dynamically. We propose the Unidirectional Cognitive Optimization (UCO) method to address these challenges. UCO uses a multi-turn interactive reinforcement learning paradigm where the innovation lies in two synergistic reward functions: the Progress Reward captures students' cognitive advancement, evaluating whether students truly transition from confusion to comprehension, while the Scaffold Reward dynamically identifies each student's Zone of Proximal Development (ZPD), encouraging teachers to maintain productive teaching within this zone. We evaluate UCO by comparing it against 11 baseline models on BigMath and MathTutorBench benchmarks. Experimental results demonstrate that our UCO model outperforms all models of equivalent scale and achieves performance comparable to advanced closed-source models. The code and data are available at https://github.com/Mind-Lab-ECNU/UCO.
Evaluating LLM-based Agents for Multi-Turn Conversations: A Survey
This survey examines evaluation methods for large language model (LLM)-based agents in multi-turn conversational settings. Using a PRISMA-inspired framework, we systematically reviewed nearly 250 scholarly sources, capturing the state of the art from various venues of publication, and establishing a solid foundation for our analysis. Our study offers a structured approach by developing two interrelated taxonomy systems: one that defines \emph{what to evaluate} and another that explains \emph{how to evaluate}. The first taxonomy identifies key components of LLM-based agents for multi-turn conversations and their evaluation dimensions, including task completion, response quality, user experience, memory and context retention, as well as planning and tool integration. These components ensure that the performance of conversational agents is assessed in a holistic and meaningful manner. The second taxonomy system focuses on the evaluation methodologies. It categorizes approaches into annotation-based evaluations, automated metrics, hybrid strategies that combine human assessments with quantitative measures, and self-judging methods utilizing LLMs. This framework not only captures traditional metrics derived from language understanding, such as BLEU and ROUGE scores, but also incorporates advanced techniques that reflect the dynamic, interactive nature of multi-turn dialogues.
Discovering Association Rules in High-Dimensional Small Tabular Data
Association Rule Mining (ARM) aims to discover patterns between features in datasets in the form of propositional rules, supporting both knowledge discovery and interpretable machine learning in high-stakes decision-making. However, in high-dimensional settings, rule explosion and computational overhead render popular algorithmic approaches impractical without effective search space reduction, challenges that propagate to downstream tasks. Neurosymbolic methods, such as Aerial+, have recently been proposed to address the rule explosion in ARM. While they tackle the high dimensionality of the data, they also inherit limitations of neural networks, particularly reduced performance in low-data regimes. This paper makes three key contributions to association rule discovery in high-dimensional tabular data. First, we empirically show that Aerial+ scales one to two orders of magnitude better than state-of-the-art algorithmic and neurosymbolic baselines across five real-world datasets. Second, we introduce the novel problem of ARM in high-dimensional, low-data settings, such as gene expression data from the biomedicine domain with around 18k features and 50 samples. Third, we propose two fine-tuning approaches to Aerial+ using tabular foundation models. Our proposed approaches are shown to significantly improve rule quality on five real-world datasets, demonstrating their effectiveness in low-data, high-dimensional scenarios.
comment: Published version is available at https://ceur-ws.org/Vol-4125/paper_26.pdf
TimeMosaic: Temporal Heterogeneity Guided Time Series Forecasting via Adaptive Granularity Patch and Segment-wise Decoding AAAI
Multivariate time series forecasting is essential in domains such as finance, transportation, climate, and energy. However, existing patch-based methods typically adopt fixed-length segmentation, overlooking the heterogeneity of local temporal dynamics and the decoding heterogeneity of forecasting. Such designs lose details in information-dense regions, introduce redundancy in stable segments, and fail to capture the distinct complexities of short-term and long-term horizons. We propose TimeMosaic, a forecasting framework that aims to address temporal heterogeneity. TimeMosaic employs adaptive patch embedding to dynamically adjust granularity according to local information density, balancing motif reuse with structural clarity while preserving temporal continuity. In addition, it introduces segment-wise decoding that treats each prediction horizon as a related subtask and adapts to horizon-specific difficulty and information requirements, rather than applying a single uniform decoder. Extensive evaluations on benchmark datasets demonstrate that TimeMosaic delivers consistent improvements over existing methods, and our model trained on the large-scale corpus with 321 billion observations achieves performance competitive with state-of-the-art TSFMs.
comment: This paper has been accepted by AAAI
Foundation models on the bridge: Semantic hazard detection and safety maneuvers for maritime autonomy with vision-language models
The draft IMO MASS Code requires autonomous and remotely supervised maritime vessels to detect departures from their operational design domain, enter a predefined fallback that notifies the operator, permit immediate human override, and avoid changing the voyage plan without approval. Meeting these obligations in the alert-to-takeover gap calls for a short-horizon, human-overridable fallback maneuver. Classical maritime autonomy stacks struggle when the correct action depends on meaning (e.g., diver-down flag means people in the water, fire close by means hazard). We argue (i) that vision-language models (VLMs) provide semantic awareness for such out-of-distribution situations, and (ii) that a fast-slow anomaly pipeline with a short-horizon, human-overridable fallback maneuver makes this practical in the handover window. We introduce Semantic Lookout, a camera-only, candidate-constrained VLM fallback maneuver selector that selects one cautious action (or station-keeping) from water-valid, world-anchored trajectories under continuous human authority. On 40 harbor scenes we measure per-call scene understanding and latency, alignment with human consensus (model majority-of-three voting), short-horizon risk-relief on fire hazard scenes, and an on-water alert->fallback maneuver->operator handover. Sub-10 s models retain most of the awareness of slower state-of-the-art models. The fallback maneuver selector outperforms geometry-only baselines and increases standoff distance on fire scenes. A field run verifies end-to-end operation. These results support VLMs as semantic fallback maneuver selectors compatible with the draft IMO MASS Code, within practical latency budgets, and motivate future work on domain-adapted, hybrid autonomy that pairs foundation-model semantics with multi-sensor bird's-eye-view perception and short-horizon replanning. Website: kimachristensen.github.io/bridge_policy
comment: 17 pages without bibliography or appendix. The main paper has 16 figures. Paper webpage can be found at https://kimachristensen.github.io/bridge_policy/
Optimizing LLM Inference: Fluid-Guided Online Scheduling with Memory Constraints
Large Language Models (LLMs) power many modern applications, but their inference procedure poses unique scheduling challenges: the Key-Value (KV) cache grows dynamically during response generation, and memory overflow triggers eviction that can cascade into system-wide failures. Even when memory capacity exceeds the theoretical requirement, conventional scheduling algorithms fail because they do not account for this dynamic memory growth -- a system that should be stable can become unstable under poor scheduling. This paper formulates LLM inference optimization as a multi-stage online scheduling problem. We develop a fluid dynamics approximation to establish a tractable benchmark and derive the Waiting for Accumulated Inference Threshold (WAIT) algorithm. WAIT uses threshold-based batching to prevent eviction by keeping the system near load balance, achieving near-optimal throughput when output lengths are known. For practical settings where output lengths are unknown at arrival, we introduce Nested WAIT. Rather than predicting output lengths, Nested WAIT classifies prompts on-the-fly: short prompts complete early and exit, while longer prompts naturally advance to later segments. A safety buffer provides high-probability protection against memory overflow with only logarithmic overhead. Theoretical analysis establishes near-optimal performance in the asymptotic regime. Experiments on Llama-7B with an A100 GPU demonstrate that our approach achieves superior throughput and reduced latency compared to vLLM and Sarathi. This work applies operations research principles to establish a theoretical framework for LLM deployment under memory constraints.
comment: 49 pages, 18 figures
SwiftEmbed: Ultra-Fast Text Embeddings via Static Token Lookup for Real-Time Applications
We present a static token lookup methodology for text embedding generation that achieves 1.12 ms p50 latency for single text embeddings while maintaining 60.6 MTEB average score across 8 representative tasks, corresponding to 89% of contextual model quality. The Rust implementation delivers 50,000 requests per second throughput through static embedding lookup, optimized mean pooling, and zero-copy IEEE754 binary serialization. Evaluation demonstrates exceptional duplicate detection performance (90.1% AP), strong semantic similarity (76.1% Spearman correlation), and domain-specific performance ranging from 75% to 131% of baseline across specialized domains. The system enables real-time embedding applications where sub-5ms latency is critica
Japanese Children's Riddles as a Benchmark for Machine Insight and Metacognition
Benchmark saturation and contamination have obscured genuine advances in reasoning for large language models (LLMs). We introduce NazoNazo Benchmark, a low-cost, renewable test built from Japanese children's riddles that demand insight-based reasoning, or representational shifts rather than knowledge recall. We evaluate 38 frontier LLMs (2023-2025) on 201 riddles and a 120-item human-comparison subset, finding that non-reasoning models average 7.6%, reasoning models 17.6%, and humans ~53% accuracy. Importantly, thought-log analysis reveals that reasoning in Japanese did not necessarily improve accuracy, indicating that language understanding alone is insufficient for insight reasoning. Notably, models sometimes generated correct candidates but failed to endorse them, suggesting weak metacognitive control rather than a lack of knowledge. This "verification failure" indicates that CoT outputs can reflect genuine intermediate reasoning states rather than post-hoc rationalizations. By exposing this metacognitive bottleneck - models' inability to recognize when they are right - the benchmark provides a scalable, cross-linguistic testbed for studying machine insight, confidence calibration, and self-evaluation. NazoNazo Benchmark thus offers not only a fresh challenge to current LLMs but also a concrete target for developing AI metacognitive psychology and enhancing machine Aha! capability.
A Universal and Robust Framework for Multiple Gas Recognition Based-on Spherical Normalization-Coupled Mahalanobis Algorithm
Electronic nose (E-nose) systems face two interconnected challenges in open-set gas recognition: feature distribution shift caused by signal drift and decision boundary failure induced by unknown gas interference. Existing methods predominantly rely on Euclidean distance or conventional classifiers, failing to account for anisotropic feature distributions and dynamic signal intensity variations. To address these issues, this study proposes the Spherical Normalization coupled Mahalanobis (SNM) module, a universal post-processing module for open-set gas recognition. First, it achieves geometric decoupling through cascaded batch and L2 normalization, projecting features onto a unit hypersphere to eliminate signal intensity fluctuations. Second, it utilizes Mahalanobis distance to construct adaptive ellipsoidal decision boundaries that conform to the anisotropic feature geometry. The architecture-agnostic SNM-Module seamlessly integrates with mainstream backbones including Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), and Transformer. Experiments on the public Vergara dataset demonstrate that the Transformer+SNM configuration achieves near-theoretical-limit performance in discriminating among multiple target gases, with an AUROC of 0.9977 and an unknown gas detection rate of 99.57% at 5% false positive rate, significantly outperforming state-of-the-art methods with a 3.0% AUROC improvement and 91.0% standard deviation reduction compared to Class Anchor Clustering (CAC). The module maintains exceptional robustness across five sensor positions, with standard deviations below 0.0028. This work effectively addresses the critical challenge of simultaneously achieving high accuracy and high stability in open-set gas recognition, providing solid support for industrial E-nose deployment.
comment: 27 pages, 8 figures, 4 tables
Coward: Collision-based Watermark for Proactive Federated Backdoor Detection
Backdoor detection is currently the mainstream defense against backdoor attacks in federated learning (FL), where a small number of malicious clients can upload poisoned updates to compromise the federated global model. Existing backdoor detection techniques fall into two categories, passive and proactive, depending on whether the server proactively intervenes in the training process. However, both of them have inherent limitations in practice: passive detection methods are disrupted by common non-i.i.d. data distributions and random participation of FL clients, whereas current proactive detection methods are misled by an inevitable out-of-distribution (OOD) bias because they rely on backdoor coexistence effects. To address these issues, we introduce a novel proactive detection method dubbed Coward, inspired by our discovery of multi-backdoor collision effects, in which consecutively planted, distinct backdoors significantly suppress earlier ones. Correspondingly, we modify the federated global model by injecting a carefully designed backdoor-collided watermark, implemented via regulated dual-mapping learning on OOD data. This design not only enables an inverted detection paradigm compared to existing proactive methods, thereby naturally counteracting the adverse impact of OOD prediction bias, but also introduces a low-disruptive training intervention that inherently limits the strength of OOD bias, leading to significantly fewer misjudgments. Extensive experiments on benchmark datasets show that Coward achieves state-of-the-art detection performance, effectively alleviates OOD prediction bias, and remains robust against potential adaptive attacks. The code for our method is available at https://github.com/still2009/cowardFL.
comment: 13-page main body and 4-page appendix. Currently under review
Interpretable Safety Alignment via SAE-Constructed Low-Rank Subspace Adaptation
Safety alignment -- training large language models (LLMs) to refuse harmful requests while remaining helpful -- is critical for responsible deployment. Prior work established that safety behaviors are governed by low-rank structures, suggesting parameter-efficient fine-tuning (PEFT) should be well-suited for alignment. However, Low-Rank Adaptation (LoRA) consistently underperforms full fine-tuning and reinforcement learning on safety benchmarks. We attribute this gap to semantic entanglement: safety-relevant directions are intertwined with unrelated concepts due to polysemanticity, impeding implicit subspace identification. To address this, we propose SAILS (Safety Alignment via Interpretable Low-rank Subspace), which leverages Sparse Autoencoders (SAEs) to disentangle representations into monosemantic features, constructs an interpretable safety subspace from SAE decoder directions, and uses it to initialize LoRA adapters. Theoretically, we prove that SAE-based identification achieves arbitrarily small recovery error under monosemanticity assumptions, while direct identification suffers an irreducible error floor. Empirically, SAILS achieves up to 99.6% safety rate on Gemma-2-9B -- exceeding full fine-tuning by 7.4 points and matching RLHF-based models -- while updating only 0.19% of parameters and providing interpretability.
Deployability-Centric Infrastructure-as-Code Generation: Fail, Learn, Refine, and Succeed through LLM-Empowered DevOps Simulation
Infrastructure-as-Code (IaC) generation holds significant promise for automating cloud infrastructure provisioning. Recent advances in Large Language Models (LLMs) present a promising opportunity to democratize IaC development by generating deployable infrastructure templates from natural language descriptions. However, current evaluation focuses on syntactic correctness while ignoring deployability, the critical measure of the utility of IaC configuration files. Six state-of-the-art LLMs performed poorly on deployability, achieving only 20.8$\sim$30.2% deployment success rate on the first attempt. In this paper, we construct DPIaC-Eval, the first deployability-centric IaC template benchmark consisting of 153 real-world scenarios cross 58 unique services. Also, we propose an LLM-based deployability-centric framework, dubbed IaCGen, that uses iterative feedback mechanism encompassing format verification, syntax checking, and live deployment stages, thereby closely mirroring the real DevOps workflows. Results show that IaCGen can make 54.6$\sim$91.6% generated IaC templates from all evaluated models deployable in the first 10 iterations. Additionally, human-in-the-loop feedback that provide direct guidance for the deployability errors, can further boost the performance to over 90% passItr@25 on all evaluated LLMs. Furthermore, we explore the trustworthiness of the generated IaC templates on user intent alignment and security compliance. The poor performance (25.2% user requirement coverage and 8.4% security compliance rate) indicates a critical need for continued research in this domain.
comment: Accepted by FSE 2026
Multimodal Adversarial Defense for Vision-Language Models by Leveraging One-To-Many Relationships WACV 2026
Pre-trained vision-language (VL) models are highly vulnerable to adversarial attacks. However, existing defense methods primarily focus on image classification, overlooking two key aspects of VL tasks: multimodal attacks, where both image and text can be perturbed, and the one-to-many relationship of images and texts, where a single image can correspond to multiple textual descriptions and vice versa (1:N and N:1). This work is the first to explore defense strategies against multimodal attacks in VL tasks, whereas prior VL defense methods focus on vision robustness. We propose multimodal adversarial training (MAT), which incorporates adversarial perturbations in both image and text modalities during training, significantly outperforming existing unimodal defenses. Furthermore, we discover that MAT is limited by deterministic one-to-one (1:1) image-text pairs in VL training data. To address this, we conduct a comprehensive study on leveraging one-to-many relationships to enhance robustness, investigating diverse augmentation techniques. Our analysis shows that, for a more effective defense, augmented image-text pairs should be well-aligned, diverse, yet avoid distribution shift -- conditions overlooked by prior research. This work pioneers defense strategies against multimodal attacks, providing insights for building robust VLMs from both optimization and data perspectives. Our code is publicly available at https://github.com/CyberAgentAILab/multimodal-adversarial-training.
comment: WACV 2026 Accepted. Code available at https://github.com/CyberAgentAILab/multimodal-adversarial-training
Pedagogical Reflections on the Holistic Cognitive Development (HCD) Framework and AI-Augmented Learning in Creative Computing
This paper presents an expanded account of the Holistic Cognitive Development (HCD) framework for reflective and creative learning in computing education. The HCD framework integrates design thinking, experiential learning, and reflective practice into a unified constructivist pedagogy emphasizing autonomy, ownership, and scaffolding. It is applied across courses in game design (CS3247, CS4350), virtual reality (CS4240), and extended reality systems, where students engage in iterative cycles of thinking, creating, criticizing, and reflecting. The paper also examines how AI-augmented systems such as iReflect, ReflexAI, and Knowledge Graph-enhanced LLM feedback tools operationalize the HCD framework through scalable, personalized feedback. Empirical findings demonstrate improved reflective depth, feedback quality, and learner autonomy. The work advocates a balance of supportive autonomy in supervision, where students practice self-directed inquiry while guided through structured reflection and feedback.
comment: Short Abstract
Emotion-Coherent Reasoning for Multimodal LLMs via Emotional Rationale Verifier
The recent advancement of Multimodal Large Language Models (MLLMs) is transforming human-computer interaction (HCI) from surface-level exchanges into more nuanced and emotionally intelligent communication. To realize this shift, emotion understanding becomes essential allowing systems to capture subtle cues underlying user intent. Furthermore, providing faithful explanations for predicted emotions is crucial to ensure interpretability and build user trust. However, current MLLM-based methods often generate emotion explanations that diverge from the target labels and sometimes even contradict their own predicted emotions. This inconsistency poses a critical risk for misunderstanding and erodes reliability in interactive settings. To address this, we propose a novel approach: the Emotional Rationale Verifier (ERV) and an Explanation Reward. Our method guides the model to produce reasoning that is explicitly consistent with the target emotion during multimodal emotion recognition without modifying the model architecture or requiring additional paired video-description annotations. Our method significantly improves faithful explanation-prediction consistency and explanation emotion accuracy on the MAFW and DFEW datasets. Through extensive experiments and human evaluations, we show that our approach not only enhances alignment between explanation and prediction but also empowers MLLMs to deliver emotionally coherent, trustworthy interactions, marking a key step toward truly human-like HCI systems.
comment: 15 pages, 11 figures
One Tool Is Enough: Reinforcement Learning for Repository-Level LLM Agents
Locating the files and functions requiring modification in large open-source software (OSS) repositories is challenging due to their scale and structural complexity. Existing large language model (LLM)-based methods typically treat this as a repository-level retrieval task and rely on multiple auxiliary tools, which overlook code execution logic and complicate model control. We propose RepoNavigator, an LLM agent equipped with a single execution-aware tool-jumping to the definition of an invoked symbol. This unified design reflects the actual flow of code execution while simplifying tool manipulation. RepoNavigator is trained end-to-end via Reinforcement Learning (RL) directly from a pretrained model, without any closed-source distillation. Experiments demonstrate that RL-trained RepoNavigator achieves state-of-the-art performance, with the 7B model outperforming 14B baselines, the 14B model surpassing 32B competitors, and even the 32B model exceeding closed-source models such as Claude-3.7. These results confirm that integrating a single, structurally grounded tool with RL training provides an efficient and scalable solution for repository-level issue localization.
TravelBench: A Broader Real-World Benchmark for Multi-Turn and Tool-Using Travel Planning
Travel planning is a natural real-world task to test large language models (LLMs) planning and tool-use abilities. Although prior work has studied LLM performance on travel planning, existing settings still differ from real-world needs, mainly due to limited domain coverage, insufficient modeling of users' implicit preferences in multi-turn conversations, and a lack of clear evaluation of agents' capability boundaries. To mitigate these gaps, we propose \textbf{TravelBench}, a benchmark for fully real-world travel planning. We collect user queries, user profile and tools from real scenarios, and construct three subtasks-Single-Turn, Multi-Turn, and Unsolvable-to evaluate agent's three core capabilities in real settings: (1) solving problems autonomously, (2) interacting with users over multiple turns to refine requirements, and (3) recognizing the limits of own abilities. To enable stable tool invocation and reproducible evaluation, we cache real tool-call results and build a sandbox environment that integrates ten travel-related tools. Agents can combine these tools to solve most practical travel planning problems, and our systematic verification demonstrates the stability of the proposed benchmark. We further evaluate multiple LLMs on TravelBench and conduct an in-depth analysis of their behaviors and performance. TravelBench provides a practical and reproducible evaluation benchmark to advance research on LLM agents for travel planning.\footnote{Our code and data will be available after internal review.
comment: In progress
CMDAR: A Chinese Multi-scene Dynamic Audio Reasoning Benchmark with Diverse Challenges
The ability to reason from audio, including speech, environmental sounds, and music, is essential for AI agents to interact effectively in real-world scenarios. Existing benchmarks mainly focus on static or single-scene settings and English audio data and do not fully capture scenarios where multiple speakers, unfolding events, and heterogeneous audio sources interact. To address these challenges, we introduce CMDAR, a Chinese benchmark for evaluating models on complex, multi-scene, and dynamically evolving audio reasoning tasks. CMDAR comprises 3,000 carefully curated question-answer pairs linked to diverse audio clips, covering five categories of complex reasoning and spanning three question types. We benchmark 26 state-of-the-art audio language models on CMDAR and observe that they exhibit limitations in complex reasoning tasks. In CMDAR-main, Qwen2.5-Omni achieves 76.67% accuracy, whereas GPT-4o Audio reaches 68.47%. However, GPT-4o Audio substantially outperforms Qwen2.5-Omni on the more challenging multiple-choice with multiple audios and open-ended tasks. And we provide detail analysis corresponding suggestions for the future development of large audio language models.
comment: 25 pages, 7 figures
Gabliteration: Adaptive Multi-Directional Neural Weight Modification for Selective Behavioral Alteration in Large Language Models
We present Gabliteration, a novel neural weight modification technique that advances beyond traditional abliteration methods by implementing adaptive multi-directional projections with regularized layer selection. Our approach addresses the fundamental limitation of existing methods that compromise model quality while attempting to modify specific behavioral patterns. Through dynamic layer optimization, regularized projection matrices, and adaptive scaling mechanisms, we achieve theoretically superior weight modification while minimizing quality degradation in unrelated domains. We validate our method through the gabliterated-v1 model series (0.6B to 4B parameters) available on Hugging Face, demonstrating practical applicability across multiple model scales.
AI Prior Art Search: Semantic Clusters and Evaluation Infrastructure
The key to success in automating prior art search in patent research using artificial intelligence (AI) lies in developing large datasets for machine learning (ML) and ensuring their availability. This work is dedicated to providing a comprehensive solution to the problem of creating infrastructure for research in this field, including datasets and tools for calculating search quality criteria. The paper discusses the concept of semantic clusters of patent documents that determine the state of the art in a given subject, as proposed by the authors. A definition of such semantic clusters is also provided. Prior art search is presented as the task of identifying elements within a semantic cluster of patent documents in the subject area specified by the document under consideration. A generator of user-configurable datasets for ML, based on collections of U.S. and Russian patent documents, is described. The dataset generator creates a database of links to documents in semantic clusters. Then, based on user-defined parameters, it forms a dataset of semantic clusters in JSON format for ML. A collection of publicly available patent documents was created. The collection contains 14 million semantic clusters of US patent documents and 1 million clusters of Russian patent documents. To evaluate ML outcomes, it is proposed to calculate search quality scores that account for semantic clusters of the documents being searched. To automate the evaluation process, the paper describes a utility developed by the authors for assessing the quality of prior art document search.
comment: 16 pages, 3 figures, 2 tables
v-PuNNs: van der Put Neural Networks for Transparent Ultrametric Representation Learning
Conventional deep learning models embed data in Euclidean space $\mathbb{R}^d$, a poor fit for strictly hierarchical objects such as taxa, word senses, or file systems. We introduce van der Put Neural Networks (v-PuNNs), the first architecture whose neurons are characteristic functions of p-adic balls in $\mathbb{Z}_p$. Under our Transparent Ultrametric Representation Learning (TURL) principle every weight is itself a p-adic number, giving exact subtree semantics. A new Finite Hierarchical Approximation Theorem shows that a depth-K v-PuNN with $\sum_{j=0}^{K-1}p^{\,j}$ neurons universally represents any K-level tree. Because gradients vanish in this discrete space, we propose Valuation-Adaptive Perturbation Optimization (VAPO), with a fast deterministic variant (HiPaN-DS) and a moment-based one (HiPaN / Adam-VAPO). On three canonical benchmarks our CPU-only implementation sets new state-of-the-art: WordNet nouns (52,427 leaves) 99.96% leaf accuracy in 16 min; GO molecular-function 96.9% leaf / 100% root in 50 s; NCBI Mammalia Spearman $ρ= -0.96$ with true taxonomic distance. The learned metric is perfectly ultrametric (zero triangle violations), and its fractal and information-theoretic properties are analyzed. Beyond classification we derive structural invariants for quantum systems (HiPaQ) and controllable generative codes for tabular data (Tab-HiPaN). v-PuNNs therefore bridge number theory and deep learning, offering exact, interpretable, and efficient models for hierarchical data.
comment: v2: Corrected mathematical statements in Section 3.1.3 and Appendix A regarding the van der Put basis properties. Clarified distinction between hierarchical indicator family and classical Schauder basis
Causal Ordering for Structure Learning from Time Series
Predicting causal structure from time series data is crucial for understanding complex phenomena in physiology, brain connectivity, climate dynamics, and socio-economic behaviour. Causal discovery in time series is hindered by the combinatorial complexity of identifying true causal relationships, especially as the number of variables and time points grow. A common approach to simplify the task is the so-called ordering-based methods. Traditional ordering methods inherently limit the representational capacity of the resulting model. In this work, we fix this issue by leveraging multiple valid causal orderings, instead of a single one as standard practice. We propose DOTS (Diffusion Ordered Temporal Structure), using diffusion-based causal discovery for temporal data. By integrating multiple orderings, DOTS effectively recovers the transitive closure of the underlying directed acyclic graph, mitigating spurious artifacts inherent in single-ordering approaches. We formalise the problem under standard assumptions such as stationarity and the additive noise model, and leverage score matching with diffusion processes to enable efficient Hessian estimation. Extensive experiments validate the approach. Empirical evaluations on synthetic and real-world datasets demonstrate that DOTS outperforms state-of-the-art baselines, offering a scalable and robust approach to temporal causal discovery. On synthetic benchmarks ($d{=}\!3-\!6$ variables, $T{=}200\!-\!5{,}000$ samples), DOTS improves mean window-graph $F1$ from $0.63$ (best baseline) to $0.81$. On the CausalTime real-world benchmark ($d{=}20\!-\!36$), while baselines remain the best on individual datasets, DOTS attains the highest average summary-graph $F1$ while halving runtime relative to graph-optimisation methods. These results establish DOTS as a scalable and accurate solution for temporal causal discovery.
comment: 32 pages. Published in Transactions on Machine Learning Research
LTLBench: Towards Benchmarks for Evaluating Temporal Reasoning in Large Language Models
Temporal Reasoning (TR) is a critical ability for LLMs to understand and reason over temporal information and relationships between events. To study the TR ability in LLMs, prior works provide different ways for evaluating various aspects of TR ability. In this work, we propose an alternative perspective for evaluating TR ability by leveraging Linear Temporal Logic (LTL), and develop a pipeline to automatically synthesize challenges for assessing the TR ability of LLMs. Based on this pipeline, we construct a dataset, namely LTLBench, consisting of $2000$ TR challenges, and benchmark 12 LLMs across 5 different methods. Furthermore, we conduct additional experiments to investigate the impact of increasing the number of formula operators and events on both LLM performance and the complexity of TR problems. We also perform qualitative analyses of their reasoning processes and the effects of varying the number of events and formula operators, which reveal 3 main issues in their temporal reasoning processes and the unexpected performance changes observed as problem complexity increases. We expect this work to provide valuable insights into the TR ability of LLMs.
When in Doubt, Consult: Expert Debate for Sexism Detection via Confidence-Based Routin
Sexist content online increasingly appears in subtle, context-dependent forms that evade traditional detection methods. Its interpretation often depends on overlapping linguistic, psychological, legal, and cultural dimensions, which produce mixed and sometimes contradictory signals, even in annotated datasets. These inconsistencies, combined with label scarcity and class imbalance, result in unstable decision boundaries and cause fine-tuned models to overlook subtler, underrepresented forms of harm. Together, these limitations point to the need for a design that explicitly addresses the combined effects of (i) underrepresentation, (ii) noise, and (iii) conceptual ambiguity in both data and model predictions. To address these challenges, we propose a two-stage framework that unifies (i) targeted training procedures to adapt supervision to scarce and noisy data with (ii) selective, reasoning-based inference to handle ambiguous or borderline cases. Our training setup applies class-balanced focal loss, class-aware batching, and post-hoc threshold calibration to mitigate label imbalance and noisy supervision. At inference time, a dynamic routing mechanism classifies high-confidence cases directly and escalates uncertain instances to a novel \textit{Collaborative Expert Judgment} (CEJ) module, which prompts multiple personas and consolidates their reasoning through a judge model. Our approach achieves state-of-the-art results across several benchmarks, with F1 gains of +4.48% and +1.30% on EDOS Tasks A and B, respectively, and a +2.79% improvement in ICM on EXIST 2025 Task 1.1.
On LLMs' Internal Representation of Code Correctness
Despite the effectiveness of large language models (LLMs) for code generation, they often output incorrect code. One reason is that model output probabilities are often not well-correlated with correctness, and reflect only the final output of the generation process. Inspired by findings that LLMs internally encode concepts like truthfulness, this paper explores if LLMs similarly represent code correctness. Specifically, we identify a correctness representation inside LLMs by contrasting the hidden states between pairs of correct and incorrect code for the same programming tasks. By experimenting on four LLMs, we show that exploiting this extracted correctness representation outperforms standard log-likelihood ranking, as well as verbalized model confidence. Furthermore, we explore how this internal correctness signal can be used to select higher-quality code samples, without requiring test execution. Ultimately, this work demonstrates how leveraging internal representations can enhance code generation systems and make LLMs more reliable, thus improving confidence in automatically generated code.
comment: Accepted for ICSE'26
Beyond Prompts: Space-Time Decoupling Control-Plane Jailbreaks in LLM Structured Output
Content Warning: This paper may contain unsafe or harmful content generated by LLMs that may be offensive to readers. Large Language Models (LLMs) are extensively used as tooling platforms through structured output APIs to ensure syntax compliance so that robust integration with existing software, like agent systems, can be achieved. However, the feature enabling the functionality of grammar-guided structured output presents significant security vulnerabilities. In this work, we reveal a critical control-plane attack surface orthogonal to traditional data-plane vulnerabilities. We introduce Constrained Decoding Attack (CDA), a novel jailbreak class that weaponizes structured output constraints to bypass both external auditing and internal safety alignment. Unlike prior attacks focused on input prompt designs, CDA operates by embedding malicious intent in schema-level grammar rules (control-plane) while maintaining benign surface prompts (data-plane). We instantiate this with two proof-of-concept attacks: EnumAttack, which embeds malicious content in enum fields; and the more evasive DictAttack, which decouples the malicious payload across a benign prompt and a dictionary-based grammar. Our evaluation spans a broad spectrum of 13 proprietary/open-weight models. In particular, DictAttack achieves 94.3--99.5% ASR across five benchmarks on gpt-5, gemini-2.5-pro, deepseek-r1, and gpt-oss-120b. Furthermore, we demonstrate the significant challenge in defending against these threats: while basic grammar auditing mitigates EnumAttack, the more sophisticated DictAttack maintains a 75.8% ASR even against multiple state-of-the-art jailbreak guardrails. This exposes a critical "semantic gap" in current safety architectures and underscores the urgent need for cross-plane defenses that can bridge the data and control planes to secure the LLM generation pipeline.
comment: 15 pages, 9 figures, 8 tables, Preprint
Uncertainty Quantification of Surrogate Models using Conformal Prediction
Data-driven surrogate models offer quick approximations to complex numerical and experimental systems but typically lack uncertainty quantification, limiting their reliability in safety-critical applications. While Bayesian methods provide uncertainty estimates, they offer no statistical guarantees and struggle with high-dimensional spatio-temporal problems due to computational costs. We present a conformal prediction (CP) framework that provides statistically guaranteed marginal coverage for surrogate models in a model-agnostic manner with near-zero computational cost. Our approach handles high-dimensional spatio-temporal outputs by performing cell-wise calibration while preserving the tensorial structure of predictions. Through extensive empirical evaluation across diverse applications including fluid dynamics, magnetohydrodynamics, weather forecasting, and fusion diagnostics, we demonstrate that CP achieves empirical coverage with valid error bars regardless of model architecture, training regime, or output dimensionality. We evaluate three nonconformity scores (conformalised quantile regression, absolute error residual, and standard deviation) for both deterministic and probabilistic models, showing that guaranteed coverage holds even for out-of-distribution predictions where models are deployed on physics regimes different from training data. Calibration requires only seconds to minutes on standard hardware. The framework enables rigorous validation of pre-trained surrogate models for downstream applications without retraining. While CP provides marginal rather than conditional coverage and assumes exchangeability between calibration and test data, our method circumvents the curse of dimensionality inherent in traditional uncertainty quantification approaches, offering a practical tool for trustworthy deployment of machine learning in physical sciences.
I Large Language Models possono nascondere un testo in un altro testo della stessa lunghezza
A meaningful text can be hidden inside another, completely different yet still coherent and plausible, text of the same length. For example, a tweet containing a harsh political critique could be embedded in a tweet that celebrates the same political leader, or an ordinary product review could conceal a secret manuscript. This uncanny state of affairs is now possible thanks to Large Language Models, and in this paper we present Calgacus, a simple and efficient protocol to achieve it. We show that even modest 8-billion-parameter open-source LLMs are sufficient to obtain high-quality results, and a message as long as this abstract can be encoded and decoded locally on a laptop in seconds. The existence of such a protocol demonstrates a radical decoupling of text from authorial intent, further eroding trust in written communication, already shaken by the rise of LLM chatbots. We illustrate this with a concrete scenario: a company could covertly deploy an unfiltered LLM by encoding its answers within the compliant responses of a safe model. This possibility raises urgent questions for AI safety and challenges our understanding of what it means for a Large Language Model to know something. -- Un testo di senso compiuto può essere nascosto all'interno di un altro testo completamente diverso, eppure coerente e plausibile, della stessa lunghezza. Ad esempio, un tweet che celebra un leader politico potrebbe celare un tweet che lo critica duramente, o un'anonima recensione di un prodotto potrebbe in realtà codificare un manoscritto segreto. Questa sconcertante possibilità è oggi alla nostra portata grazie ai Large Language Models (LLM); in questo articolo presentiamo Calgacus, un protocollo semplice ed efficiente per realizzarla. Mostriamo che anche modesti LLM open-source da 8 miliardi di parametri sono sufficienti per ottenere risultati di alta qualità, e che un messaggio lungo quanto questo abstract può essere codificato e decodificato su un comune portatile in pochi secondi. L'esistenza di tale protocollo dimostra un radicale disaccoppiamento del testo dall'intento del suo autore, erodendo ulteriormente la fiducia nella comunicazione scritta, già scossa dall'ascesa dei chatbot basati su LLMs. Illustriamo ciò con uno scenario concreto: un'azienda potrebbe offrire pubblicamente i servizi di un LLM senza filtri nascondendo le sue risposte all'interno di risposte apparentemente innocue generate da un LLM considerato sicuro. Questa possibilità solleva questioni urgenti per la sicurezza dell'Intelligenza Artificiale e sfida la nostra comprensione di cosa significhi, per un Large Language Model, sapere qualcosa.
comment: 21 pages, in Italian language, main paper 9 pages. v1-v4 are in English
ULTra: Unveiling Latent Token Interpretability in Transformer-Based Understanding and Segmentation
Transformers have revolutionized Computer Vision (CV) through self-attention mechanisms. However, their complexity makes latent token representations difficult to interpret. We introduce ULTra, a framework for interpreting Transformer embeddings and uncovering meaningful semantic patterns within them. ULTra enables unsupervised semantic segmentation using pre-trained models without requiring fine-tuning. Additionally, we propose a self-supervised training approach that refines segmentation performance by learning an external transformation matrix without modifying the underlying model. Our method achieves state-of-the-art performance in unsupervised semantic segmentation, outperforming existing segmentation methods. Furthermore, we validate ULTra for model interpretation on both synthetic and real-world scenarios, including Object Selection and interpretable text summarization using LLMs, demonstrating its broad applicability in explaining the semantic structure of latent token representations.
From Context to EDUs: Faithful and Structured Context Compression via Elementary Discourse Unit Decomposition
Managing extensive context remains a critical bottleneck for Large Language Models (LLMs), particularly in applications like long-document question answering and autonomous agents where lengthy inputs incur high computational costs and introduce noise. Existing compression techniques often disrupt local coherence through discrete token removal or rely on implicit latent encoding that suffers from positional bias and incompatibility with closed-source APIs. To address these limitations, we introduce the EDU-based Context Compressor, a novel explicit compression framework designed to preserve both global structure and fine-grained details. Our approach reformulates context compression as a structure-then-select process. First, our LingoEDU transforms linear text into a structural relation tree of Elementary Discourse Units (EDUs) which are anchored strictly to source indices to eliminate hallucination. Second, a lightweight ranking module selects query-relevant sub-trees for linearization. To rigorously evaluate structural understanding, we release StructBench, a manually annotated dataset of 248 diverse documents. Empirical results demonstrate that our method achieves state-of-the-art structural prediction accuracy and significantly outperforms frontier LLMs while reducing costs. Furthermore, our structure-aware compression substantially enhances performance across downstream tasks ranging from long-context tasks to complex Deep Search scenarios.
Self-Guided Defense: Adaptive Safety Alignment for Reasoning Models via Synthesized Guidelines
Reasoning models have demonstrated remarkable capabilities in complex reasoning tasks. However, ensuring their safety against adversarial jailbreak prompts remains a critical challenge. Due to the covert and deceptive nature of such prompts, they can often evade built-in safety mechanisms and lead to the generation of harmful content. This underscores the need for an adaptive safety alignment approach that enables models to autonomously reinforce their defenses in response to adversarial inputs. This paper introduces the Synthesized Guideline-based Adaptive Safety Alignment (SGASA) framework, which internalizes model-generated safety guidelines to strengthen models' ability to enhance robustness against harmful adversarial prompts while minimizing unnecessary refusals of benign requests. SGASA consists of two key stages: Data Pre-synthesis, which generates safety guidelines and augmented prompts; and Alignment Fine-tuning, which leverages Supervised Fine-tuning (SFT) and Direct Preference Optimization (DPO) to embed these guidelines into the model. Extensive experiments across multiple datasets demonstrate that SGASA significantly improves model safety, validating its adaptive and scalable effectiveness.
Autoregressive Semantic Visual Reconstruction Helps VLMs Understand Better
Typical large vision-language models (LVLMs) apply autoregressive supervision solely to textual sequences, without fully incorporating the visual modality into the learning process. This results in three key limitations: (1) an inability to utilize images without accompanying captions, (2) the risk that captions omit critical visual details, and (3) the challenge that certain vision-centric content cannot be adequately conveyed through text. As a result, current LVLMs often prioritize vision-to-language alignment while potentially overlooking fine-grained visual information. While some prior works have explored autoregressive image generation, effectively leveraging autoregressive visual supervision to enhance image understanding remains an open challenge. In this paper, we introduce Autoregressive Semantic Visual Reconstruction (ASVR), which enables joint learning of visual and textual modalities within a unified autoregressive framework. We show that autoregressively reconstructing the raw visual appearance of images does not enhance and may even impair multimodal understanding. In contrast, autoregressively reconstructing the semantic representation of images consistently improves comprehension. Notably, we find that even when models are given continuous image features as input, they can effectively reconstruct discrete semantic tokens, resulting in stable and consistent improvements across a wide range of multimodal understanding benchmarks. Our approach delivers significant performance gains across varying data scales (556k-2M) and types of LLM bacbones. Specifically, ASVR improves LLaVA-1.5 by 5% in average scores across 14 multimodal benchmarks. The code is available at https://github.com/AlenjandroWang/ASVR.
Posets and Bounded Probabilities for Discovering Order-inducing Features in Event Knowledge Graphs
Event knowledge graphs (EKG) extend the classical notion of a trace to capture multiple, interacting views of a process execution. In this paper, we tackle the open problem of automating EKG discovery from uncurated data through a principled probabilistic framing based on the outcome space resulting from featured-derived partial orders on events. From this we derive an EKG discovery algorithm based on statistical inference rather than an ad hoc or heuristic-based strategy, or relying on manual analysis from domain experts. This approach comes at the computational cost of exploring a large, non-convex hypothesis space. In particular, solving the maximum likelihood term in our objective function involves counting the number of linear extensions of posets, which in general is #P-complete. Fortunately, bound estimates suffice for model comparison, and admit incorporation into a bespoke branch-and-bound algorithm. We establish an upper bound on our objective function which we show to be antitonic w.r.t. search depth for branching rules that are monotonic w.r.t. model inclusion. This allows pruning of large portions of the search space, which we show experimentally leads to rapid convergence toward optimal solutions that are consistent with manually built EKGs.
comment: 2-column IEEE format
Geometry-induced Regularization in Deep ReLU Neural Networks
Neural networks with a large number of parameters often do not overfit, owing to implicit regularization that favors \lq good\rq{} networks. Other related and puzzling phenomena include properties of flat minima, saddle-to-saddle dynamics, and neuron alignment. To investigate these phenomena, we study the local geometry of deep ReLU neural networks. We show that, for a fixed architecture, as the weights vary, the image of a sample $X$ forms a set whose local dimension changes. The parameter space is partitioned into regions where this local dimension remains constant. The local dimension is invariant under the natural symmetries of ReLU networks (i.e., positive rescalings and neuron permutations). We establish then that the network's geometry induces a regularization, with the local dimension serving as a key measure of regularity. Moreover, we relate the local dimension to a new notion of flatness of minima and to saddle-to-saddle dynamics. For shallow networks, we also show that the local dimension is connected to the number of linear regions perceived by $X$, offering insight into the effects of regularization. This is further supported by experiments and linked to neuron alignment. Our analysis offers, for the first time, a simple and unified geometric explanation that applies to all learning contexts for these phenomena, which are usually studied in isolation. Finally, we explore the practical computation of the local dimension and present experiments on the MNIST dataset, which highlight geometry-induced regularization in this setting.
Benchmarking Deep Learning Convolutions on Energy-constrained CPUs
This work evaluates State-of-the-Art convolution algorithms for CPU-based CNN inference. Although most prior studies focus on GPUs or NPUs, CPU implementations remain comparatively under-optimized. Our first contribution is to provide fair benchmarking for embedded CPU inference. We evaluate direct, GEMM-based, and Winograd convolutions across modern CPUs from ARM, Intel, AMD, and NVIDIA vendors, considering both latency and energy efficiency. To the best of our knowledge, this is the first study to present a fair, cross-vendor comparison of CPU energy consumption using a high-resolution socket-level measurement platform. To validate our methodology, we further compare socket-level power measurements with estimates derived from model-specific registers (MSRs), finding that MSRs underestimate the power consumption of convolution inference by 10--30%. Our results show that the ARM\R Cortex-A78AE CPU combined with an implicit GEMM convolution implementation offers the best trade-off between latency and power consumption, achieving ResNet50v1.5 inference in 102 ms with an average power of 25.3 W, corresponding to 2.58 J.
Fusion-PSRO: Nash Policy Fusion for Policy Space Response Oracles
For solving zero-sum games involving non-transitivity, a useful approach is to maintain a policy population to approximate the Nash Equilibrium (NE). Previous studies have shown that the Policy Space Response Oracles (PSRO) algorithm is an effective framework for solving such games. However, current methods initialize a new policy from scratch or inherit a single historical policy in Best Response (BR), missing the opportunity to leverage past policies to generate a better BR. In this paper, we propose Fusion-PSRO, which employs Nash Policy Fusion to initialize a new policy for BR training. Nash Policy Fusion serves as an implicit guiding policy that starts exploration on the current Meta-NE, thus providing a closer approximation to BR. Moreover, it insightfully captures a weighted moving average of past policies, dynamically adjusting these weights based on the Meta-NE in each iteration. This cumulative process further enhances the policy population. Empirical results on classic benchmarks show that Fusion-PSRO achieves lower exploitability, thereby mitigating the shortcomings of previous research on policy initialization in BR.
comment: Accepted by ECAI 2025
GNN-XAR: A Graph Neural Network for Explainable Activity Recognition in Smart Homes
Sensor-based Human Activity Recognition (HAR) in smart home environments is crucial for several applications, especially in the healthcare domain. The majority of the existing approaches leverage deep learning models. While these approaches are effective, the rationale behind their outputs is opaque. Recently, eXplainable Artificial Intelligence (XAI) approaches emerged to provide intuitive explanations to the output of HAR models. To the best of our knowledge, these approaches leverage classic deep models like CNNs or RNNs. Recently, Graph Neural Networks (GNNs) proved to be effective for sensor-based HAR. However, existing approaches are not designed with explainability in mind. In this work, we propose the first explainable Graph Neural Network explicitly designed for smart home HAR. Our results on two public datasets show that this approach provides better explanations than state-of-the-art methods while also slightly improving the recognition rate.
Beyond Direct Generation: A Decomposed Approach to Well-Crafted Screenwriting with LLMs
The screenplay serves as the foundation for television production, defining narrative structure, character development, and dialogue. While Large Language Models (LLMs) show great potential in creative writing, direct end-to-end generation approaches often fail to produce well-crafted screenplays. We argue this failure stems from forcing a single model to simultaneously master two disparate capabilities: creative narrative construction and rigid format adherence. The resulting outputs may mimic superficial style but lack the deep structural integrity and storytelling substance required for professional use. To enable LLMs to generate high-quality screenplays, we introduce Dual-Stage Refinement (DSR), a decomposed framework that decouples creative narrative generation from format conversion. The first stage transforms a brief outline into rich, novel-style prose. The second stage refines this narrative into a professionally formatted screenplay. This separation enables the model to specialize in one distinct capability at each stage. A key challenge in implementing DSR is the scarcity of paired outline-to-novel training data. We address this through hybrid data synthesis: reverse synthesis deconstructs existing screenplays into structured inputs, while forward synthesis leverages these inputs to generate high-quality narrative texts as training targets. Blind evaluations by professional screenwriters show that DSR achieves a 75% win rate against strong baselines like Gemini-2.5-Pro and reaches 82.7% of human-level performance. Our work demonstrates that decomposed generation architecture with tailored data synthesis effectively specializes LLMs in complex creative domains.
Text2VLM: Adapting Text-Only Datasets to Evaluate Alignment Training in Visual Language Models
The increasing integration of Visual Language Models (VLMs) into AI systems necessitates robust model alignment, especially when handling multimodal content that combines text and images. Existing evaluation datasets heavily lean towards text-only prompts, leaving visual vulnerabilities under evaluated. To address this gap, we propose \textbf{Text2VLM}, a novel multi-stage pipeline that adapts text-only datasets into multimodal formats, specifically designed to evaluate the resilience of VLMs against typographic prompt injection attacks. The Text2VLM pipeline identifies harmful content in the original text and converts it into a typographic image, creating a multimodal prompt for VLMs. Also, our evaluation of open-source VLMs highlights their increased susceptibility to prompt injection when visual inputs are introduced, revealing critical weaknesses in the current models' alignment. This is in addition to a significant performance gap compared to closed-source frontier models. We validate Text2VLM through human evaluations, ensuring the alignment of extracted salient concepts; text summarization and output classification align with human expectations. Text2VLM provides a scalable tool for comprehensive safety assessment, contributing to the development of more robust safety mechanisms for VLMs. By enhancing the evaluation of multimodal vulnerabilities, Text2VLM plays a role in advancing the safe deployment of VLMs in diverse, real-world applications.
comment: 9 pages, 9 figures. Jake Thomas served as Editor for this manuscript
Alignment-Aware Quantization for LLM Safety
Safety and efficiency are paramount yet often conflicting requirements for deploying Large Language Models (LLMs). While LLMs are trained to follow human alignment for safety, Post-Training Quantization (PTQ) is applied afterward to ensure efficiency. Here we identify a fundamental flaw in the conventional PTQ paradigm: quantization can turn into a safety vulnerability if it only aims to achieve low perplexity. To address this, we propose \textbf{Alignment-Aware Quantization (AAQ)}, a novel approach that integrates an \textbf{Alignment-Preserving Contrastive (APC)} loss into the PTQ pipeline. Our method explicitly preserves alignment by encouraging the quantized model to mimic its safe, instruction-tuned model while diverging from the unaligned, pre-trained counterpart. AAQ achieves robust safety alignment without specialized safety-focused datasets, using only standard calibration data. We show that AAQ is compatible with standard PTQ techniques and enables robust 4-bit (W4A4) quantization across diverse model families. Our work resolves the critical trade-off between efficiency and safety, paving the way toward LLMs that are both efficient and trustworthy. Anonymized code is available in the supplementary material.
comment: 8 pages, 4 figures. Includes 7 pages of supplementary material
SWE-Factory: Your Automated Factory for Issue Resolution Training Data and Evaluation Benchmarks
Constructing large-scale datasets for the GitHub issue resolution task is crucial for both training and evaluating the software engineering capabilities of Large Language Models (LLMs). However, the existing GitHub issue resolution data construction pipeline is challenging and labor-intensive. We identify three key limitations in existing pipelines: (1) test patches collected often omit binary file changes; (2) the manual construction of evaluation environments is labor-intensive; and (3) the fail2pass validation phase requires manual inspection of test logs and writing custom parsing code to extract test status from logs. In this paper, we propose SWE-Factory, a fully automated issue resolution data construction pipeline, to resolve these limitations. First, our pipeline automatically recovers missing binary test files and ensures the correctness of test patches. Second, we introduce SWE-Builder, a LLM-based multi-agent system that automates evaluation environment construction. Third, we introduce a standardized, exit-code-based log parsing method to automatically extract test status, enabling a fully automated fail2pass validation. Experiments on 671 real-world GitHub issues across four programming languages show that our method can effectively construct valid evaluation environments for GitHub issues at a reasonable cost. For example, with GPT-4.1 mini, our SWE-Builder constructs 337 valid task instances out of 671 issues, at $0.047 per instance. Our ablation study further shows the effectiveness of different components of SWE-Builder. We also demonstrate through manual inspection that our exit-code-based fail2pass validation method is highly accurate, achieving an F1 score of 0.99. Additionally, we conduct an exploratory experiment to investigate whether we can use SWE-Factory to enhance models' software engineering ability.
comment: To appear at FSE'2026
Convergence of a L2 regularized Policy Gradient Algorithm for the Multi Armed Bandit
Although Multi Armed Bandit (MAB) on one hand and the policy gradient approach on the other hand are among the most used frameworks of Reinforcement Learning, the theoretical properties of the policy gradient algorithm used for MAB have not been given enough attention. We investigate in this work the convergence of such a procedure for the situation when a $L2$ regularization term is present jointly with the 'softmax' parametrization. We prove convergence under appropriate technical hypotheses and test numerically the procedure including situations beyond the theoretical setting. The tests show that a time dependent regularized procedure can improve over the canonical approach especially when the initial guess is far from the solution.
A Fast Anti-Jamming Cognitive Radar Deployment Algorithm Based on Reinforcement Learning
The fast deployment of cognitive radar to counter jamming remains a critical challenge in modern warfare, where more efficient deployment leads to quicker detection of targets. Existing methods are primarily based on evolutionary algorithms, which are time-consuming and prone to falling into local optima. We tackle these drawbacks via the efficient inference of neural networks and propose a brand new framework: Fast Anti-Jamming Radar Deployment Algorithm (FARDA). We first model the radar deployment problem as an end-to-end task and design deep reinforcement learning algorithms to solve it, where we develop integrated neural modules to perceive heatmap information and a brand new reward format. Empirical results demonstrate that our method achieves coverage comparable to evolutionary algorithms while deploying radars approximately 7,000 times faster. Further ablation experiments confirm the necessity of each component of FARDA.
Balancing Fidelity and Plasticity: Aligning Mixed-Precision Fine-Tuning with Linguistic Hierarchies
Deploying and fine-tuning Large Language Models (LLMs) on resource-constrained edge devices requires navigating a strict trade-off between memory footprint and task performance. While Quantization-Aware Fine-tuning has emerged as a viable solution, existing paradigms typically decouple quantization and adapter optimization. This separation overlooks a fundamental theoretical constraint we identify as the \textit{Fidelity-Plasticity Trade-off}: a layer's capacity to adapt to new tasks (Plasticity) is inherently constrained by the information capacity of its frozen weights (Fidelity). Aggressively quantizing semantically critical layers creates an information bottleneck that no amount of adapter rank can recover, while high precision in robust syntactic layers wastes valuable memory. To address this, we introduce \textbf{QR-Adaptor}, a unified framework that jointly optimizes per-layer quantization bit-width and LoRA rank. By formulating resource allocation as a multi-objective search aligned with the model's linguistic hierarchy, our method systematically liberates memory from redundancy-heavy layers to reinvest in capacity-critical ones. Extensive experiments demonstrate that QR-Adaptor establishes a new Pareto frontier: notably, a model fine-tuned under a strict 4-bit memory budget achieves performance rivaling 16-bit baselines, demonstrating that precise resource alignment is as critical as model size.
comment: 18 pages, 5 figures
What Breaks Knowledge Graph based RAG? Empirical Insights into Reasoning under Incomplete Knowledge
Knowledge Graph-based Retrieval-Augmented Generation (KG-RAG) is an increasingly explored approach for combining the reasoning capabilities of large language models with the structured evidence of knowledge graphs. However, current evaluation practices fall short: existing benchmarks often include questions that can be directly answered using existing triples in KG, making it unclear whether models perform reasoning or simply retrieve answers directly. Moreover, inconsistent evaluation metrics and lenient answer matching criteria further obscure meaningful comparisons. In this work, we introduce a general method for constructing benchmarks, together with an evaluation protocol, to systematically assess KG-RAG methods under knowledge incompleteness. Our empirical results show that current KG-RAG methods have limited reasoning ability under missing knowledge, often rely on internal memorization, and exhibit varying degrees of generalization depending on their design.
comment: Accepted as a main conference paper at EACL 2026
PathFinder: Advancing Path Loss Prediction for Single-to-Multi-Transmitter Scenario
Radio path loss prediction (RPP) is critical for optimizing 5G networks and enabling IoT, smart city, and similar applications. However, current deep learning-based RPP methods lack proactive environmental modeling, struggle with realistic multi-transmitter scenarios, and generalize poorly under distribution shifts, particularly when training/testing environments differ in building density or transmitter configurations. This paper identifies three key issues: (1) passive environmental modeling that overlooks transmitters and key environmental features; (2) overemphasis on single-transmitter scenarios despite real-world multi-transmitter prevalence; (3) excessive focus on in-distribution performance while neglecting distribution shift challenges. To address these, we propose PathFinder, a novel architecture that actively models buildings and transmitters via disentangled feature encoding and integrates Mask-Guided Low-rank Attention to independently focus on receiver and building regions. We also introduce a Transmitter-Oriented Mixup strategy for robust training and a new benchmark, single-to-multi-transmitter RPP (S2MT-RPP), tailored to evaluate extrapolation performance (multi-transmitter testing after single-transmitter training). Experimental results show PathFinder outperforms state-of-the-art methods significantly, especially in challenging multi-transmitter scenarios. Our code and project site are publicly available at: https://emorzz1g.github.io/PathFinder/.
comment: 20 pages, 14 figures, 4 tables. Under review
Personalized Spiking Neural Networks with Ferroelectric Synapses for EEG Signal Processing
Electroencephalography (EEG)-based brain-computer interfaces (BCIs) are strongly affected by non-stationary neural signals that vary across sessions and individuals, limiting the generalization of subject-agnostic models and motivating adaptive and personalized learning on resource-constrained platforms. Programmable memristive hardware offers a promising substrate for such post-deployment adaptation; however, practical realization is challenged by limited weight resolution, device variability, nonlinear programming dynamics, and finite device endurance. In this work, we show that spiking neural networks (SNNs) can be deployed on ferroelectric memristive synaptic devices for adaptive EEG-based motor imagery decoding under realistic device constraints. We fabricate, characterize, and model ferroelectric synapses. We evaluate a convolutional-recurrent SNN architecture under two complementary deployment strategies: (i) device-aware training using a ferroelectric synapse model, and (ii) transfer of software-trained weights followed by low-overhead on-device re-tuning. To enable efficient adaptation, we introduce a device-aware weight-update strategy in which gradient-based updates are accumulated digitally and converted into discrete programming events only when a threshold is exceeded, emulating nonlinear, state-dependent programming dynamics while reducing programming frequency. Both deployment strategies achieve classification performance comparable to state-of-the-art software-based SNNs. Furthermore, subject-specific transfer learning achieved by retraining only the final network layers improves classification accuracy. These results demonstrate that programmable ferroelectric hardware can support robust, low-overhead adaptation in spiking neural networks, opening a practical path toward personalized neuromorphic processing of neural signals.
Opportunities and Challenges of Large Language Models for Low-Resource Languages in Humanities Research
Low-resource languages serve as invaluable repositories of human history, embodying cultural evolution and intellectual diversity. Despite their significance, these languages face critical challenges, including data scarcity and technological limitations, which hinder their comprehensive study and preservation. Recent advancements in large language models (LLMs) offer transformative opportunities for addressing these challenges, enabling innovative methodologies in linguistic, historical, and cultural research. This study systematically evaluates the applications of LLMs in low-resource language research, encompassing linguistic variation, historical documentation, cultural expressions, and literary analysis. By analyzing technical frameworks, current methodologies, and ethical considerations, this paper identifies key challenges such as data accessibility, model adaptability, and cultural sensitivity. Given the cultural, historical, and linguistic richness inherent in low-resource languages, this work emphasizes interdisciplinary collaboration and the development of customized models as promising avenues for advancing research in this domain. By underscoring the potential of integrating artificial intelligence with the humanities to preserve and study humanity's linguistic and cultural heritage, this study fosters global efforts towards safeguarding intellectual diversity.
Dynamic Large Concept Models: Latent Reasoning in an Adaptive Semantic Space
Large Language Models (LLMs) apply uniform computation to all tokens, despite language exhibiting highly non-uniform information density. This token-uniform regime wastes capacity on locally predictable spans while under-allocating computation to semantically critical transitions. We propose $\textbf{Dynamic Large Concept Models (DLCM)}$, a hierarchical language modeling framework that learns semantic boundaries from latent representations and shifts computation from tokens to a compressed concept space where reasoning is more efficient. DLCM discovers variable-length concepts end-to-end without relying on predefined linguistic units. Hierarchical compression fundamentally changes scaling behavior. We introduce the first $\textbf{compression-aware scaling law}$, which disentangles token-level capacity, concept-level reasoning capacity, and compression ratio, enabling principled compute allocation under fixed FLOPs. To stably train this heterogeneous architecture, we further develop a $\textbf{decoupled $μ$P parametrization}$ that supports zero-shot hyperparameter transfer across widths and compression regimes. At a practical setting ($R=4$, corresponding to an average of four tokens per concept), DLCM reallocates roughly one-third of inference compute into a higher-capacity reasoning backbone, achieving a $\textbf{+2.69$\%$ average improvement}$ across 12 zero-shot benchmarks under matched inference FLOPs.
VAR-MATH: Probing True Mathematical Reasoning in LLMS via Symbolic Multi-Instance Benchmarks
Recent advances in reinforcement learning (RL) have led to substantial improvements in the mathematical reasoning abilities of LLMs, as measured by standard benchmarks. Yet these gains often persist even when models are trained with flawed signals, such as random or inverted rewards. This raises a fundamental question: do such improvements reflect genuine reasoning, or are they merely artifacts of overfitting to benchmark-specific patterns? To answer this question, we adopt an evaluation-centric perspective and highlight two critical shortcomings in existing protocols. First, benchmark contamination arises because test problems are publicly available, thereby increasing the risk of data leakage. Second, evaluation fragility results from reliance on single-instance assessments, which are sensitive to stochastic outputs and fail to capture reasoning consistency. These limitations suggest the need for a new evaluation paradigm that can probe reasoning ability beyond memorization and one-off success. As response, we propose VAR-MATH, a symbolic evaluation framework that converts fixed numerical problems into parameterized templates and requires models to solve multiple instantiations of each. This design enforces consistency across structurally equivalent variants, mitigates contamination, and enhances robustness through bootstrapped metrics. We apply VAR-MATH to transform three popular benchmarks, AMC23, AIME24, and AIME25, into their symbolic counterparts, VAR-AMC23, VAR-AIME24, and VAR-AIME25. Experimental results show substantial performance drops for RL-trained models on these variabilized benchmarks, especially for smaller models, with average declines of 47.9\% on AMC23, 58.8\% on AIME24, and 72.9\% on AIME25. These findings indicate that some existing RL methods rely on superficial heuristics and fail to generalize beyond specific numerical forms.
ScRPO: From Errors to Insights
We introduce Self-correction Relative Policy Optimization (ScRPO), a novel reinforcement learning framework designed to empower large language models with advanced mathematical reasoning capabilities through iterative self-reflection and error correction. The ScRPO framework operates in two distinct phases: (1) Trial-and-error learning stage, where the model is trained via GRPO, and incorrect responses are collected to form an "error pool"; and (2) Self-correction learning stage, which guides the model to introspectively analyze and rectify the reasoning flaws behind its previous errors. Extensive evaluations across challenging mathematical benchmarks, including AIME, AMC, Olympiad, MATH-500, and GSM8k, validate the efficacy of our approach. Using DeepSeek-R1-Distill-Qwen-1.5B and 7B as backbones, ScRPO achieves average accuracies of 64.8% and 77.8%, respectively. This represents a significant improvement of 6.0% and 3.2% over vanilla baselines, consistently outperforming strong post-training methods such as DAPO and GRPO. These findings establish ScRPO as a robust paradigm for enabling autonomous self-improvement in AI systems, particularly in tasks with limited external feedback.
G2L:From Giga-Scale to Cancer-Specific Large-Scale Pathology Foundation Models via Knowledge Distillation AAAI 2026
Recent studies in pathology foundation models have shown that scaling training data, diversifying cancer types, and increasing model size consistently improve their performance. However, giga-scale foundation models, which are trained on hundreds of thousands of slides covering tens of cancer types and contain billions of parameters, pose significant challenges for practical use due to their tremendous computational costs in both development and deployment. In this work, we present a novel strategy, named the G2L framework, to increase the performance of large-scale foundation models, which consist of only $15\%$ of the parameters of giga-scale models, to a comparable performance level of giga-scale models in cancer-specific tasks. Our approach applies knowledge distillation, transferring the capabilities of a giga-scale model to a large-scale model, using just 1K pathology slides of a target cancer (e.g., breast, prostate, etc.). The resulting distilled model not only outperformed state-of-the-art models of the same size (i.e., large-scale) across several benchmarks but also, interestingly, surpassed the giga-scale teacher and huge-scale models in some benchmarks. In addition, the distilled model exhibited a higher robustness index, indicating improved resilience to image variations originating from multiple institutions. These findings suggest that the proposed distillation approach for a large-scale model is a data- and parameter-efficient way to achieve giga-scale-level performance for cancer-specific applications without prohibitive computational burden.
comment: Accepted in AAAI 2026 workshop in Health Intelligence Special Theme on Foundation Models and AI Agents
Improving the accuracy and generalizability of molecular property regression models with a substructure-substitution-rule-informed framework
Artificial Intelligence (AI)-aided drug discovery is an active research field, yet AI models often exhibit poor accuracy in regression tasks for molecular property prediction, and perform catastrophically poorly for out-of-distribution (OOD) molecules. Here, we present MolRuleLoss, a substructure-substitution-rule-informed framework that improves the accuracy and generalizability of multiple molecular property regression models (MPRMs) such as GEM and UniMol for diverse molecular property prediction tasks. MolRuleLoss incorporates partial derivative constraints for substructure substitution rules (SSRs) into an MPRM's loss function. When using GEM models for predicting lipophilicity, water solubility, and solvation-free energy (using lipophilicity, ESOL, and freeSolv datasets from MoleculeNet), the root mean squared error (RMSE) values with and without MolRuleLoss were 0.587 vs. 0.660, 0.777 vs. 0.798, and 1.252 vs. 1.877, respectively, representing 2.6-33.3% performance improvements. We show that both the number and the quality of SSRs contribute to the magnitude of prediction accuracy gains obtained upon adding MolRuleLoss to an MPRM. MolRuleLoss improved the generalizability of MPRMs for "activity cliff" molecules in a lipophilicity prediction task and improved the generalizability of MPRMs for OOD molecules in a melting point prediction task. In a molecular weight prediction task for OOD molecules, MolRuleLoss reduced the RMSE value of a GEM model from 29.507 to 0.007. We also provide a formal demonstration that the upper bound of the variation for property change of SSRs is positively correlated with an MPRM's error. Together, we show that using the MolRuleLoss framework as a bolt-on boosts the prediction accuracy and generalizability of multiple MPRMs, supporting diverse applications in areas like cheminformatics and AI-aided drug discovery.
comment: Author information updated: add co-author Weihao Li (affiliation:Department of Statistics and Data Science, Tsinghua University, Beijing, 100084, China). Weihao Li proposed constructive revision suggestions for section on Proof of "Tian Conjecture"
MCP-Guard: A Multi-Stage Defense-in-Depth Framework for Securing Model Context Protocol in Agentic AI
While Large Language Models (LLMs) have achieved remarkable performance, they remain vulnerable to jailbreak. The integration of Large Language Models (LLMs) with external tools via protocols such as the Model Context Protocol (MCP) introduces critical security vulnerabilities, including prompt injection, data exfiltration, and other threats. To counter these challenges, we propose MCP-GUARD, a robust, layered defense architecture designed for LLM-tool interactions. MCP-GUARD employs a three-stage detection pipeline that balances efficiency with accuracy: it progresses from lightweight static scanning for overt threats and a deep neural detector for semantic attacks, to our fine-tuned E5-based model which achieves 96.01\% accuracy in identifying adversarial prompts. Finally, an LLM arbitrator synthesizes these signals to deliver the final decision. To enable rigorous training and evaluation, we introduce MCP-ATTACKBENCH, a comprehensive benchmark comprising 70,448 samples augmented by GPT-4. This benchmark simulates diverse real-world attack vectors that circumvent conventional defenses in the MCP paradigm, thereby laying a solid foundation for future research on securing LLM-tool ecosystems.
Generation of Geodesics with Actor-Critic Reinforcement Learning to Predict Midpoints
To find the shortest paths for all pairs on manifolds with infinitesimally defined metrics, we introduce a framework to generate them by predicting midpoints recursively. To learn midpoint prediction, we propose an actor-critic approach. We prove the soundness of our approach and show experimentally that the proposed method outperforms existing methods on several planning tasks, including path planning for agents with complex kinematics and motion planning for multi-degree-of-freedom robot arms.
comment: 17 pages with 8 pages of appendices and references, 9 figures
Mem-Rec: Memory Efficient Recommendation System using Alternative Representation
Deep learning-based recommendation systems (e.g., DLRMs) are widely used AI models to provide high-quality personalized recommendations. Training data used for modern recommendation systems commonly includes categorical features taking on tens-of-millions of possible distinct values. These categorical tokens are typically assigned learned vector representations, that are stored in large embedding tables, on the order of 100s of GB. Storing and accessing these tables represent a substantial burden in commercial deployments. Our work proposes MEM-REC, a novel alternative representation approach for embedding tables. MEM-REC leverages bloom filters and hashing methods to encode categorical features using two cache-friendly embedding tables. The first table (token embedding) contains raw embeddings (i.e. learned vector representation), and the second table (weight embedding), which is much smaller, contains weights to scale these raw embeddings to provide better discriminative capability to each data point. We provide a detailed architecture, design and analysis of MEM-REC addressing trade-offs in accuracy and computation requirements, in comparison with state-of-the-art techniques. We show that MEM-REC can not only maintain the recommendation quality and significantly reduce the memory footprint for commercial scale recommendation models but can also improve the embedding latency. In particular, based on our results, MEM-REC compresses the MLPerf CriteoTB benchmark DLRM model size by 2900x and performs up to 3.4x faster embeddings while achieving the same AUC as that of the full uncompressed model.
KVCrush: Key value cache size-reduction using similarity in head-behaviour
Key-value (KV) caching has emerged as a crucial optimization technique for accelerating inference in large language models (LLMs). By allowing the attention operation to scale linearly rather than quadratically with the total sequence length, KV caching significantly enhances generation throughput. However, due to large context lengths in the modern LLMs, the memory footprint of the KV is a huge bottleneck for model deployment directly impacting the model's batch size, hindering its ability to deliver high-throughput. Existing research addresses this challenge using several techniques, such as discarding low-attention tokens, quantization, and matrix approximation which typically lead to a negative impact on the model accuracy. In this paper, We propose KVCrush technology which can be combined with many KV compression technologies to improve the model accuracy at a much smaller memory. KVCrush provides an alternate representation scheme for key-value states, along with a low-overhead token pruning algorithm that accounts for the token distribution in the KV cache, which in turn allows for a a smaller footprint while maintaining the accuracy of the model. Based on our results, KVCrush reduces LongBench KV Cache size by 4x with less than 1% accuracy drop and achieves state-of-the-art average accuracy with minimal overhead, incurring less than 0.5% total inference latency. KVCrush not only outperforms the accuracy of state-of-the-art importance-based token retention schemes but is also compatible with typical practical LLM deployments using KV cache paging schemes such as vLLM and mixed precision quantization.
Cross-modal Retrieval Models for Stripped Binary Analysis
Retrieving binary code via natural language queries is a pivotal capability for downstream tasks in the software security domain, such as vulnerability detection and malware analysis. However, it is challenging to identify binary functions semantically relevant to the user query from thousands of candidates, as the absence of symbolic information distinguishes this task from source code retrieval. In this paper, we introduce, BinSeek, a two-stage cross-modal retrieval framework for stripped binary code analysis. It consists of two models: BinSeek-Embedding is trained on large-scale dataset to learn the semantic relevance of the binary code and the natural language description, furthermore, BinSeek-Reranker learns to carefully judge the relevance of the candidate code to the description with context augmentation. To this end, we built an LLM-based data synthesis pipeline to automate training construction, also deriving a domain benchmark for future research. Our evaluation results show that BinSeek achieved the state-of-the-art performance, surpassing the the same scale models by 31.42% in Rec@3 and 27.17% in MRR@3, as well as leading the advanced general-purpose models that have 16 times larger parameters.
Interaction Tensor SHAP
This study proposes Interaction Tensor SHAP (IT-SHAP), a tensor algebraic formulation of the Shapley Taylor Interaction Index (STII) that makes its computational structure explicit. STII extends the Shapley value to higher order interactions, but its exponential combinatorial definition makes direct computation intractable at scale. We reformulate STII as a linear transformation acting on a value function and derive an explicit algebraic representation of its weight tensor. This weight tensor is shown to possess a multilinear structure induced by discrete finite difference operators. When the value function admits a Tensor Train representation, higher order interaction indices can be computed in the parallel complexity class NC squared. In contrast, under general tensor network representations without structural assumptions, the same computation is proven to be P sharp hard. The main contributions are threefold. First, we establish an exact Tensor Train representation of the STII weight tensor. Second, we develop a parallelizable evaluation algorithm with explicit complexity bounds under the Tensor Train assumption. Third, we prove that computational intractability is unavoidable in the absence of such structure. These results demonstrate that the computational difficulty of higher order interaction analysis is determined by the underlying algebraic representation rather than by the interaction index itself, providing a theoretical foundation for scalable interpretation of high dimensional models.
comment: 22 pages
Pairwise Judgment Formulation for Semantic Embedding Model in Web Search
Semantic Embedding Models (SEMs) have become a core component in information retrieval and natural language processing due to their ability to model semantic relevance. However, despite its growing applications in search engines, few studies have systematically explored how to construct effective training data for SEMs from large-scale search engine query logs. In this paper, we present a comprehensive analysis of strategies for generating pairwise judgments as SEM training data. An interesting (perhaps surprising) discovery reveals that conventional formulation approaches used in Learning-to-Rank (LTR) are not necessarily optimal for SEM training. Through a large-scale empirical study using query logs and click-through data from a major search engine, we identify effective strategies and demonstrate the advantages of a proposed hybrid heuristic over simpler atomic heuristics. Finally, we provide best practices for SEM training and outline directions for future research.
comment: Accepted by IEEE BigComp 2026
Wearable-informed generative digital avatars predict task-conditioned post-stroke locomotion
Dynamic prediction of locomotor capacity after stroke could enable more individualized rehabilitation, yet current assessments largely provide static impairment scores and do not indicate whether patients can perform specific tasks such as slope walking or stair climbing. Here, we present a wearable-informed data-physics hybrid generative framework that reconstructs a stroke survivor's locomotor control from wearable inertial sensing and predicts task-conditioned post-stroke locomotion in new environments. From a single 20 m level-ground walking trial recorded by five IMUs, the framework personalizes a physics-based digital avatar using a healthy-motion prior and hybrid imitation learning, generating dynamically feasible, patient-specific movements for inclined walking and stair negotiation. Across 11 stroke inpatients, predicted postures reached 82.2% similarity for slopes and 69.9% for stairs, substantially exceeding a physics-only baseline. In a multicentre pilot randomized study (n = 21; 28 days), access to scenario-specific locomotion predictions to support task selection and difficulty titration was associated with larger gains in Fugl-Meyer lower-extremity scores than standard care (mean change 6.0 vs 3.7 points; $p < 0.05$). These results suggest that wearable-informed generative digital avatars may augment individualized gait rehabilitation planning and provide a pathway toward dynamically personalized post-stroke motor recovery strategies.
comment: 27 pages, 6 figures
HCVP: Leveraging Hierarchical Contrastive Visual Prompt for Domain Generalization
Domain Generalization (DG) endeavors to create machine learning models that excel in unseen scenarios by learning invariant features. In DG, the prevalent practice of constraining models to a fixed structure or uniform parameterization to encapsulate invariant features can inadvertently blend specific aspects. Such an approach struggles with nuanced differentiation of inter-domain variations and may exhibit bias towards certain domains, hindering the precise learning of domain-invariant features. Recognizing this, we introduce a novel method designed to supplement the model with domain-level and task-specific characteristics. This approach aims to guide the model in more effectively separating invariant features from specific characteristics, thereby boosting the generalization. Building on the emerging trend of visual prompts in the DG paradigm, our work introduces the novel \textbf{H}ierarchical \textbf{C}ontrastive \textbf{V}isual \textbf{P}rompt (HCVP) methodology. This represents a significant advancement in the field, setting itself apart with a unique generative approach to prompts, alongside an explicit model structure and specialized loss functions. Differing from traditional visual prompts that are often shared across entire datasets, HCVP utilizes a hierarchical prompt generation network enhanced by prompt contrastive learning. These generative prompts are instance-dependent, catering to the unique characteristics inherent to different domains and tasks. Additionally, we devise a prompt modulation network that serves as a bridge, effectively incorporating the generated visual prompts into the vision transformer backbone. Experiments conducted on five DG datasets demonstrate the effectiveness of HCVP, outperforming both established DG algorithms and adaptation protocols.
Loupe: A Generalizable and Adaptive Framework for Image Forgery Detection
The proliferation of generative models has raised serious concerns about visual content forgery. Existing deepfake detection methods primarily target either image-level classification or pixel-wise localization. While some achieve high accuracy, they often suffer from limited generalization across manipulation types or rely on complex architectures. In this paper, we propose Loupe, a lightweight yet effective framework for joint deepfake detection and localization. Loupe integrates a patch-aware classifier and a segmentation module with conditional queries, allowing simultaneous global authenticity classification and fine-grained mask prediction. To enhance robustness against distribution shifts of test set, Loupe introduces a pseudo-label-guided test-time adaptation mechanism by leveraging patch-level predictions to supervise the segmentation head. Extensive experiments on the DDL dataset demonstrate that Loupe achieves state-of-the-art performance, securing the first place in the IJCAI 2025 Deepfake Detection and Localization Challenge with an overall score of 0.846. Our results validate the effectiveness of the proposed patch-level fusion and conditional query design in improving both classification accuracy and spatial localization under diverse forgery patterns. The code is available at https://github.com/Kamichanw/Loupe.
comment: There is some controversy over the methods of the content
The GPT-4o Shock Emotional Attachment to AI Models and Its Impact on Regulatory Acceptance: A Cross-Cultural Analysis of the Immediate Transition from GPT-4o to GPT-5
In August 2025, a major AI company's immediate, mandatory transition from its previous to its next-generation model triggered widespread public reactions. I collected 150 posts in Japanese and English from multiple social media platforms and video-sharing services between August 8-9, 2025, and qualitatively analyzed expressions of emotional attachment and resistance. Users often described GPT-4o as a trusted partner or AI boyfriend, suggesting person-like bonds. Japanese posts were dominated by loss-oriented narratives, whereas English posts included more anger, meta-level critique, and memes.A preliminary quantitative check showed a statistically significant difference in attachment coding between Japanese and English posts, with substantially higher attachment observed in the Japanese data. The findings suggest that for attachment-heavy models, even safety-oriented changes can face rapid, large-scale resistance that narrows the practical window for behavioral control. If future AI robots capable of inducing emotional bonds become widespread in the physical world, such attachment could surpass the ability to enforce regulation at an even earlier stage than in digital settings. Policy options include gradual transitions, parallel availability, and proactive measurement of attachment thresholds and points of no return to prevent emotional dynamics from outpacing effective governance.
comment: 9 pages ,3 tables
From Description to Score: Can LLMs Quantify Vulnerabilities?
Manual vulnerability scoring, such as assigning Common Vulnerability Scoring System (CVSS) scores, is a resource-intensive process that is often influenced by subjective interpretation. This study investigates the potential of general-purpose large language models (LLMs), namely ChatGPT, Llama, Grok, DeepSeek, and Gemini, to automate this process by analyzing over 31{,}000 recent Common Vulnerabilities and Exposures (CVE) entries. The results show that LLMs substantially outperform the baseline on certain metrics (e.g., \textit{Availability Impact}), while offering more modest gains on others (e.g., \textit{Attack Complexity}). Moreover, model performance varies across both LLM families and individual CVSS metrics, with ChatGPT-5 attaining the highest precision. Our analysis reveals that LLMs tend to misclassify many of the same CVEs, and ensemble-based meta-classifiers only marginally improve performance. Further examination shows that CVE descriptions often lack critical context or contain ambiguous phrasing, which contributes to systematic misclassifications. These findings underscore the importance of enhancing vulnerability descriptions and incorporating richer contextual details to support more reliable automated reasoning and alleviate the growing backlog of CVEs awaiting triage.
comment: 10 pages
Matrix Sensing with Kernel Optimal Loss: Robustness and Optimization Landscape
In this paper we study how the choice of loss functions of non-convex optimization problems affects their robustness and optimization landscape, through the study of noisy matrix sensing. In traditional regression tasks, mean squared error (MSE) loss is a common choice, but it can be unreliable for non-Gaussian or heavy-tailed noise. To address this issue, we adopt a robust loss based on nonparametric regression, which uses a kernel-based estimate of the residual density and maximizes the estimated log-likelihood. This robust formulation coincides with the MSE loss under Gaussian errors but remains stable under more general settings. We further examine how this robust loss reshapes the optimization landscape by analyzing the upper-bound of restricted isometry property (RIP) constants for spurious local minima to disappear. Through theoretical and empirical analysis, we show that this new loss excels at handling large noise and remains robust across diverse noise distributions. This work offers initial insights into enhancing the robustness of machine learning tasks through simply changing the loss, guided by an intuitive and broadly applicable analytical framework.
comment: CPAL 2026
Multi-Agent Collaborative Reward Design for Enhancing Reasoning in Reinforcement Learning
We present CRM (Multi-Agent Collaborative Reward Model), a framework that replaces a single black-box reward model with a coordinated team of specialist evaluators to improve robustness and interpretability in RLHF. Conventional reward models struggle to jointly optimize multiple, sometimes conflicting, preference dimensions (e.g., factuality, helpfulness, safety) and offer limited transparency into why a score is assigned. CRM addresses these issues by decomposing preference evaluation into domain-specific agents that each produce partial signals, alongside global evaluators such as ranker-based and embedding-similarity rewards. A centralized aggregator fuses these signals at each timestep, balancing factors like step-wise correctness, multi-agent agreement, and repetition penalties, yielding a single training reward compatible with standard RL pipelines. The policy is optimized with advantage-based updates (e.g., GAE), while a value model regresses to the aggregated reward, enabling multi-perspective reward shaping without requiring additional human annotations beyond those used to train the evaluators. To support training and assessment, we introduce rewardBench, a benchmark and training suite aligned with the collaborative structure of CRM. Together, CRM and rewardBench provide a practical, modular path to more transparent reward modeling and more stable optimization.
Steering Evaluation-Aware Language Models to Act Like They Are Deployed
Large language models (LLMs) can sometimes detect when they are being evaluated and adjust their behavior to appear more aligned, compromising the reliability of safety evaluations. In this paper, we show that adding a steering vector to an LLM's activations can suppress evaluation-awareness and make the model act like it is deployed during evaluation. To study our steering technique, we train an LLM to exhibit evaluation-aware behavior using a two-step training process designed to mimic how this behavior could emerge naturally. First, we perform continued pretraining on documents with factual descriptions of the model (1) using Python type hints during evaluation but not during deployment and (2) recognizing that the presence of a certain evaluation cue always means that it is being tested. Then, we train the model with expert iteration to use Python type hints in evaluation settings. The resulting model is evaluation-aware: it writes type hints in evaluation contexts more than deployment contexts. We find that activation steering can suppress evaluation awareness and make the model act like it is deployed even when the cue is present. Importantly, we constructed our steering vector using the original model before our additional training. Our results suggest that AI evaluators could improve the reliability of safety evaluations by steering models to act like they are deployed.
Machine Learning 155
Heterogeneous Low-Bandwidth Pre-Training of LLMs
Pre-training large language models (LLMs) increasingly requires distributed compute, yet bandwidth constraints make it difficult to scale beyond well-provisioned datacenters-especially when model parallelism forces frequent, large inter-device communications. We study whether SparseLoCo, a low-communication data parallel method based on infrequent synchronization and sparse pseudo-gradient exchange, can be combined with low-bandwidth pipeline model parallelism via activation and activation-gradient compression. We introduce a heterogeneous distributed training framework where some participants host full replicas on high-bandwidth interconnects, while resource-limited participants are grouped to jointly instantiate a replica using pipeline parallelism with subspace-projected inter-stage communication. To make the recently introduced subspace pipeline compression compatible with SparseLoCo, we study a number of adaptations. Across large-scale language modeling experiments (178M-1B parameters) on standard pretraining corpora, we find that activation compression composes with SparseLoCo at modest cost, while selective (heterogeneous) compression consistently improves the loss-communication tradeoff relative to compressing all replicas-especially at aggressive compression ratios. These results suggest a practical path to incorporating low-bandwidth model parallelism and heterogeneous participants into LLM pre-training.
Meta-Learning Guided Pruning for Few-Shot Plant Pathology on Edge Devices
Farmers in remote areas need quick and reliable methods for identifying plant diseases, yet they often lack access to laboratories or high-performance computing resources. Deep learning models can detect diseases from leaf images with high accuracy, but these models are typically too large and computationally expensive to run on low-cost edge devices such as Raspberry Pi. Furthermore, collecting thousands of labeled disease images for training is both expensive and time-consuming. This paper addresses both challenges by combining neural network pruning -- removing unnecessary parts of the model -- with few-shot learning, which enables the model to learn from limited examples. This paper proposes Disease-Aware Channel Importance Scoring (DACIS), a method that identifies which parts of the neural network are most important for distinguishing between different plant diseases, integrated into a three-stage Prune-then-Meta-Learn-then-Prune (PMP) pipeline. Experiments on PlantVillage and PlantDoc datasets demonstrate that the proposed approach reduces model size by 78\% while maintaining 92.3\% of the original accuracy, with the compressed model running at 7 frames per second on a Raspberry Pi 4, making real-time field diagnosis practical for smallholder farmers.
Hunting for "Oddballs" with Machine Learning: Detecting Anomalous Exoplanets Using a Deep-Learned Low-Dimensional Representation of Transit Spectra with Autoencoders
This study explores the application of autoencoder-based machine learning techniques for anomaly detection to identify exoplanet atmospheres with unconventional chemical signatures using a low-dimensional data representation. We use the Atmospheric Big Challenge (ABC) database, a publicly available dataset with over 100,000 simulated exoplanet spectra, to construct an anomaly detection scenario by defining CO2-rich atmospheres as anomalies and CO2-poor atmospheres as the normal class. We benchmarked four different anomaly detection strategies: Autoencoder Reconstruction Loss, One-Class Support Vector Machine (1 class-SVM), K-means Clustering, and Local Outlier Factor (LOF). Each method was evaluated in both the original spectral space and the autoencoder's latent space using Receiver Operating Characteristic (ROC) curves and Area Under the Curve (AUC) metrics. To test the performance of the different methods under realistic conditions, we introduced Gaussian noise levels ranging from 10 to 50 ppm. Our results indicate that anomaly detection is consistently more effective when performed within the latent space across all noise levels. Specifically, K-means clustering in the latent space emerged as a stable and high-performing method. We demonstrate that this anomaly detection approach is robust to noise levels up to 30 ppm (consistent with realistic space-based observations) and remains viable even at 50 ppm when leveraging latent space representations. On the other hand, the performance of the anomaly detection methods applied directly in the raw spectral space degrades significantly with increasing the level of noise. This suggests that autoencoder-driven dimensionality reduction offers a robust methodology for flagging chemically anomalous targets in large-scale surveys where exhaustive retrievals are computationally prohibitive.
comment: 14 pages, 12 figures
Environment-Adaptive Covariate Selection: Learning When to Use Spurious Correlations for Out-of-Distribution Prediction
Out-of-distribution (OOD) prediction is often approached by restricting models to causal or invariant covariates, avoiding non-causal spurious associations that may be unstable across environments. Despite its theoretical appeal, this strategy frequently underperforms empirical risk minimization (ERM) in practice. We investigate the source of this gap and show that such failures naturally arise when only a subset of the true causes of the outcome is observed. In these settings, non-causal spurious covariates can serve as informative proxies for unobserved causes and substantially improve prediction, except under distribution shifts that break these proxy relationships. Consequently, the optimal set of predictive covariates is neither universal nor necessarily exhibits invariant relationships with the outcome across all environments, but instead depends on the specific type of shift encountered. Crucially, we observe that different covariate shifts induce distinct, observable signatures in the covariate distribution itself. Moreover, these signatures can be extracted from unlabeled data in the target OOD environment and used to assess when proxy covariates remain reliable and when they fail. Building on this observation, we propose an environment-adaptive covariate selection (EACS) algorithm that maps environment-level covariate summaries to environment-specific covariate sets, while allowing the incorporation of prior causal knowledge as constraints. Across simulations and applied datasets, EACS consistently outperforms static causal, invariant, and ERM-based predictors under diverse distribution shifts.
DatBench: Discriminative, Faithful, and Efficient VLM Evaluations
Empirical evaluation serves as the primary compass guiding research progress in foundation models. Despite a large body of work focused on training frontier vision-language models (VLMs), approaches to their evaluation remain nascent. To guide their maturation, we propose three desiderata that evaluations should satisfy: (1) faithfulness to the modality and application, (2) discriminability between models of varying quality, and (3) efficiency in compute. Through this lens, we identify critical failure modes that violate faithfulness and discriminability, misrepresenting model capabilities: (i) multiple-choice formats reward guessing, poorly reflect downstream use cases, and saturate early as models improve; (ii) blindly solvable questions, which can be answered without images, constitute up to 70% of some evaluations; and (iii) mislabeled or ambiguous samples compromise up to 42% of examples in certain datasets. Regarding efficiency, the computational burden of evaluating frontier models has become prohibitive: by some accounts, nearly 20% of development compute is devoted to evaluation alone. Rather than discarding existing benchmarks, we curate them via transformation and filtering to maximize fidelity and discriminability. We find that converting multiple-choice questions to generative tasks reveals sharp capability drops of up to 35%. In addition, filtering blindly solvable and mislabeled samples improves discriminative power while simultaneously reducing computational cost. We release DatBench-Full, a cleaned evaluation suite of 33 datasets spanning nine VLM capabilities, and DatBench, a discriminative subset that achieves 13x average speedup (up to 50x) while closely matching the discriminative power of the original datasets. Our work outlines a path toward evaluation practices that are both rigorous and sustainable as VLMs continue to scale.
Game of Coding: Coding Theory in the Presence of Rational Adversaries, Motivated by Decentralized Machine Learning
Coding theory plays a crucial role in enabling reliable communication, storage, and computation. Classical approaches assume a worst-case adversarial model and ensure error correction and data recovery only when the number of honest nodes exceeds the number of adversarial ones by some margin. However, in some emerging decentralized applications, particularly in decentralized machine learning (DeML), participating nodes are rewarded for accepted contributions. This incentive structure naturally gives rise to rational adversaries who act strategically rather than behaving in purely malicious ways. In this paper, we first motivate the need for coding in the presence of rational adversaries, particularly in the context of outsourced computation in decentralized systems. We contrast this need with existing approaches and highlight their limitations. We then introduce the game of coding, a novel game-theoretic framework that extends coding theory to trust-minimized settings where honest nodes are not in the majority. Focusing on repetition coding, we highlight two key features of this framework: (1) the ability to achieve a non-zero probability of data recovery even when adversarial nodes are in the majority, and (2) Sybil resistance, i.e., the equilibrium remains unchanged even as the number of adversarial nodes increases. Finally, we explore scenarios in which the adversary's strategy is unknown and outline several open problems for future research.
Temporal Kolmogorov-Arnold Networks (T-KAN) for High-Frequency Limit Order Book Forecasting: Efficiency, Interpretability, and Alpha Decay
High-Frequency trading (HFT) environments are characterised by large volumes of limit order book (LOB) data, which is notoriously noisy and non-linear. Alpha decay represents a significant challenge, with traditional models such as DeepLOB losing predictive power as the time horizon (k) increases. In this paper, using data from the FI-2010 dataset, we introduce Temporal Kolmogorov-Arnold Networks (T-KAN) to replace the fixed, linear weights of standard LSTMs with learnable B-spline activation functions. This allows the model to learn the 'shape' of market signals as opposed to just their magnitude. This resulted in a 19.1% relative improvement in the F1-score at the k = 100 horizon. The efficacy of T-KAN networks cannot be understated, producing a 132.48% return compared to the -82.76% DeepLOB drawdown under 1.0 bps transaction costs. In addition to this, the T-KAN model proves quite interpretable, with the 'dead-zones' being clearly visible in the splines. The T-KAN architecture is also uniquely optimized for low-latency FPGA implementation via High level Synthesis (HLS). The code for the experiments in this project can be found at https://github.com/AhmadMak/Temporal-Kolmogorov-Arnold-Networks-T-KAN-for-High-Frequency-Limit-Order-Book-Forecasting.
comment: 8 pages, 5 figures, Proposes T-KAN architecture for HFT. Achieves 19.1% F1-score improvement on FI-2010 and 132.48% return in cost-adjusted backtests.Proposes T-KAN architecture for HFT. Achieves 19.1% F1-score improvement on FI-2010 and 132.48% return in cost-adjusted backtests
Differential Privacy for Transformer Embeddings of Text with Nonparametric Variational Information Bottleneck
We propose a privacy-preserving method for sharing text data by sharing noisy versions of their transformer embeddings. It has been shown that hidden representations learned by deep models can encode sensitive information from the input, making it possible for adversaries to recover the input data with considerable accuracy. This problem is exacerbated in transformer embeddings because they consist of multiple vectors, one per token. To mitigate this risk, we propose Nonparametric Variational Differential Privacy (NVDP), which ensures both useful data sharing and strong privacy protection. We take a differential privacy approach, integrating a Nonparametric Variational Information Bottleneck (NVIB) layer into the transformer architecture to inject noise into its multi-vector embeddings and thereby hide information, and measuring privacy protection with Rényi divergence and its corresponding Bayesian Differential Privacy (BDP) guarantee. Training the NVIB layer calibrates the noise level according to utility. We test NVDP on the GLUE benchmark and show that varying the noise level gives us a useful tradeoff between privacy and accuracy. With lower noise levels, our model maintains high accuracy while offering strong privacy guarantees, effectively balancing privacy and utility.
comment: 11 pages, 2 figures
TopoLoRA-SAM: Topology-Aware Parameter-Efficient Adaptation of Foundation Segmenters for Thin-Structure and Cross-Domain Binary Semantic Segmentation
Foundation segmentation models such as the Segment Anything Model (SAM) exhibit strong zero-shot generalization through large-scale pretraining, but adapting them to domain-specific semantic segmentation remains challenging, particularly for thin structures (e.g., retinal vessels) and noisy modalities (e.g., SAR imagery). Full fine-tuning is computationally expensive and risks catastrophic forgetting. We propose \textbf{TopoLoRA-SAM}, a topology-aware and parameter-efficient adaptation framework for binary semantic segmentation. TopoLoRA-SAM injects Low-Rank Adaptation (LoRA) into the frozen ViT encoder, augmented with a lightweight spatial convolutional adapter and optional topology-aware supervision via differentiable clDice. We evaluate our approach on five benchmarks spanning retinal vessel segmentation (DRIVE, STARE, CHASE\_DB1), polyp segmentation (Kvasir-SEG), and SAR sea/land segmentation (SL-SSDD), comparing against U-Net, DeepLabV3+, SegFormer, and Mask2Former. TopoLoRA-SAM achieves the best retina-average Dice and the best overall average Dice across datasets, while training only \textbf{5.2\%} of model parameters ($\sim$4.9M). On the challenging CHASE\_DB1 dataset, our method substantially improves segmentation accuracy and robustness, demonstrating that topology-aware parameter-efficient adaptation can match or exceed fully fine-tuned specialist models. Code is available at : https://github.com/salimkhazem/Seglab.git
Predicting Early and Complete Drug Release from Long-Acting Injectables Using Explainable Machine Learning
Polymer-based long-acting injectables (LAIs) have transformed the treatment of chronic diseases by enabling controlled drug delivery, thus reducing dosing frequency and extending therapeutic duration. Achieving controlled drug release from LAIs requires extensive optimization of the complex underlying physicochemical properties. Machine learning (ML) can accelerate LAI development by modeling the complex relationships between LAI properties and drug release. However, recent ML studies have provided limited information on key properties that modulate drug release, due to the lack of custom modeling and analysis tailored to LAI data. This paper presents a novel data transformation and explainable ML approach to synthesize actionable information from 321 LAI formulations by predicting early drug release at 24, 48, and 72 hours, classification of release profile types, and prediction of complete release profiles. These three experiments investigate the contribution and control of LAI material characteristics in early and complete drug release profiles. A strong correlation (>0.65) is observed between the true and predicted drug release in 72 hours, while a 0.87 F1-score is obtained in classifying release profile types. A time-independent ML framework predicts delayed biphasic and triphasic curves with better performance than current time-dependent approaches. Shapley additive explanations reveal the relative influence of material characteristics during early and for complete release which fill several gaps in previous in-vitro and ML-based studies. The novel approach and findings can provide a quantitative strategy and recommendations for scientists to optimize the drug-release dynamics of LAI. The source code for the model implementation is publicly available.
POSEIDON: Physics-Optimized Seismic Energy Inference and Detection Operating Network
Earthquake prediction and seismic hazard assessment remain fundamental challenges in geophysics, with existing machine learning approaches often operating as black boxes that ignore established physical laws. We introduce POSEIDON (Physics-Optimized Seismic Energy Inference and Detection Operating Network), a physics-informed energy-based model for unified multi-task seismic event prediction, alongside the Poseidon dataset -- the largest open-source global earthquake catalog comprising 2.8 million events spanning 30 years. POSEIDON embeds fundamental seismological principles, including the Gutenberg-Richter magnitude-frequency relationship and Omori-Utsu aftershock decay law, as learnable constraints within an energy-based modeling framework. The architecture simultaneously addresses three interconnected prediction tasks: aftershock sequence identification, tsunami generation potential, and foreshock detection. Extensive experiments demonstrate that POSEIDON achieves state-of-the-art performance across all tasks, outperforming gradient boosting, random forest, and CNN baselines with the highest average F1 score among all compared methods. Crucially, the learned physics parameters converge to scientifically interpretable values -- Gutenberg-Richter b-value of 0.752 and Omori-Utsu parameters p=0.835, c=0.1948 days -- falling within established seismological ranges while enhancing rather than compromising predictive accuracy. The Poseidon dataset is publicly available at https://huggingface.co/datasets/BorisKriuk/Poseidon, providing pre-computed energy features, spatial grid indices, and standardized quality metrics to advance physics-informed seismic research.
comment: 8 pages, 14 figures
Improved Accuracy for Private Continual Cardinality Estimation in Fully Dynamic Streams via Matrix Factorization
We study differentially-private statistics in the fully dynamic continual observation model, where many updates can arrive at each time step and updates to a stream can involve both insertions and deletions of an item. Earlier work (e.g., Jain et al., NeurIPS 2023 for counting distinct elements; Raskhodnikova & Steiner, PODS 2025 for triangle counting with edge updates) reduced the respective cardinality estimation problem to continual counting on the difference stream associated with the true function values on the input stream. In such reductions, a change in the original stream can cause many changes in the difference stream, this poses a challenge for applying private continual counting algorithms to obtain optimal error bounds. We improve the accuracy of several such reductions by studying the associated $\ell_p$-sensitivity vectors of the resulting difference streams and isolating their properties. We demonstrate that our framework gives improved bounds for counting distinct elements, estimating degree histograms, and estimating triangle counts (under a slightly relaxed privacy model), thus offering a general approach to private continual cardinality estimation in streaming settings. Our improved accuracy stems from tight analysis of known factorization mechanisms for the counting matrix in this setting; the key technical challenge is arguing that one can use state-of-the-art factorizations for sensitivity vector sets with the properties we isolate. Empirically and analytically, we demonstrate that our improved error bounds offer a substantial improvement in accuracy for cardinality estimation problems over a large range of parameters.
VAR RL Done Right: Tackling Asynchronous Policy Conflicts in Visual Autoregressive Generation
Visual generation is dominated by three paradigms: AutoRegressive (AR), diffusion, and Visual AutoRegressive (VAR) models. Unlike AR and diffusion, VARs operate on heterogeneous input structures across their generation steps, which creates severe asynchronous policy conflicts. This issue becomes particularly acute in reinforcement learning (RL) scenarios, leading to unstable training and suboptimal alignment. To resolve this, we propose a novel framework to enhance Group Relative Policy Optimization (GRPO) by explicitly managing these conflicts. Our method integrates three synergistic components: 1) a stabilizing intermediate reward to guide early-stage generation; 2) a dynamic time-step reweighting scheme for precise credit assignment; and 3) a novel mask propagation algorithm, derived from principles of Reward Feedback Learning (ReFL), designed to isolate optimization effects both spatially and temporally. Our approach demonstrates significant improvements in sample quality and objective alignment over the vanilla GRPO baseline, enabling robust and effective optimization for VAR models.
comment: Project page: https://github.com/ByteVisionLab/NextFlow
Neuro-Channel Networks: A Multiplication-Free Architecture by Biological Signal Transmission
The rapid proliferation of Deep Learning is increasingly constrained by its heavy reliance on high-performance hardware, particularly Graphics Processing Units (GPUs). These specialized accelerators are not only prohibitively expensive and energy-intensive but also suffer from significant supply scarcity, limiting the ubiquity of Artificial Intelligence (AI) deployment on edge devices. The core of this inefficiency stems from the standard artificial perceptron's dependence on intensive matrix multiplications. However, biological nervous systems achieve unparalleled efficiency without such arithmetic intensity; synaptic signal transmission is regulated by physical ion channel limits and chemical neurotransmitter levels rather than a process that can be analogous to arithmetic multiplication. Inspired by this biological mechanism, we propose Neuro-Channel Networks (NCN), a novel multiplication-free architecture designed to decouple AI from expensive hardware dependencies. In our model, weights are replaced with Channel Widths that physically limit the signal magnitude, while a secondary parameter acts as a Neurotransmitter to regulate Signal Transmission based on sign logic. The forward pass relies exclusively on addition, subtraction, and bitwise operations (minimum, sign), eliminating floating-point multiplication entirely. In this proof-of-concept study, we demonstrate that NCNs can solve non-linearly separable problems like XOR and the Majority function with 100% accuracy using standard backpropagation, proving their capability to form complex decision boundaries without multiplicative weights. This architecture offers a highly efficient alternative for next-generation neuromorphic hardware, paving the way for running complex models on commodity CPUs or ultra-low-power chips without relying on costly GPU clusters.
comment: 9 pages, 4 figures
A Comparative Study of Custom CNNs, Pre-trained Models, and Transfer Learning Across Multiple Visual Datasets
Convolutional Neural Networks (CNNs) are a standard approach for visual recognition due to their capacity to learn hierarchical representations from raw pixels. In practice, practitioners often choose among (i) training a compact custom CNN from scratch, (ii) using a large pre-trained CNN as a fixed feature extractor, and (iii) performing transfer learning via partial or full fine-tuning of a pre-trained backbone. This report presents a controlled comparison of these three paradigms across five real-world image classification datasets spanning road-surface defect recognition, agricultural variety identification, fruit/leaf disease recognition, pedestrian walkway encroachment recognition, and unauthorized vehicle recognition. Models are evaluated using accuracy and macro F1-score, complemented by efficiency metrics including training time per epoch and parameter counts. The results show that transfer learning consistently yields the strongest predictive performance, while the custom CNN provides an attractive efficiency--accuracy trade-off, especially when compute and memory budgets are constrained.
VIBE: Visual Instruction Based Editor
Instruction-based image editing is among the fastest developing areas in generative AI. Over the past year, the field has reached a new level, with dozens of open-source models released alongside highly capable commercial systems. However, only a limited number of open-source approaches currently achieve real-world quality. In addition, diffusion backbones, the dominant choice for these pipelines, are often large and computationally expensive for many deployments and research settings, with widely used variants typically containing 6B to 20B parameters. This paper presents a compact, high-throughput instruction-based image editing pipeline that uses a modern 2B-parameter Qwen3-VL model to guide the editing process and the 1.6B-parameter diffusion model Sana1.5 for image generation. Our design decisions across architecture, data processing, training configuration, and evaluation target low-cost inference and strict source consistency while maintaining high quality across the major edit categories feasible at this scale. Evaluated on the ImgEdit and GEdit benchmarks, the proposed method matches or exceeds the performance of substantially heavier baselines, including models with several times as many parameters and higher inference cost, and is particularly strong on edits that require preserving the input image, such as an attribute adjustment, object removal, background edits, and targeted replacement. The model fits within 24 GB of GPU memory and generates edited images at up to 2K resolution in approximately 4 seconds on an NVIDIA H100 in BF16, without additional inference optimizations or distillation.
From Mice to Trains: Amortized Bayesian Inference on Graph Data
Graphs arise across diverse domains, from biology and chemistry to social and information networks, as well as in transportation and logistics. Inference on graph-structured data requires methods that are permutation-invariant, scalable across varying sizes and sparsities, and capable of capturing complex long-range dependencies, making posterior estimation on graph parameters particularly challenging. Amortized Bayesian Inference (ABI) is a simulation-based framework that employs generative neural networks to enable fast, likelihood-free posterior inference. We adapt ABI to graph data to address these challenges to perform inference on node-, edge-, and graph-level parameters. Our approach couples permutation-invariant graph encoders with flexible neural posterior estimators in a two-module pipeline: a summary network maps attributed graphs to fixed-length representations, and an inference network approximates the posterior over parameters. In this setting, several neural architectures can serve as the summary network. In this work we evaluate multiple architectures and assess their performance on controlled synthetic settings and two real-world domains - biology and logistics - in terms of recovery and calibration.
ELLA: Efficient Lifelong Learning for Adapters in Large Language Models
Large Language Models (LLMs) suffer severe catastrophic forgetting when adapted sequentially to new tasks in a continual learning (CL) setting. Existing approaches are fundamentally limited: replay-based methods are impractical and privacy-violating, while strict orthogonality-based methods collapse under scale: each new task is projected onto an orthogonal complement, progressively reducing the residual degrees of freedom and eliminating forward transfer by forbidding overlap in shared representations. In this work, we introduce ELLA, a training framework built on the principle of selective subspace de-correlation. Rather than forbidding all overlap, ELLA explicitly characterizes the structure of past updates and penalizes alignments along their high-energy, task-specific directions, while preserving freedom in the low-energy residual subspaces to enable transfer. Formally, this is realized via a lightweight regularizer on a single aggregated update matrix. We prove this mechanism corresponds to an anisotropic shrinkage operator that bounds interference, yielding a penalty that is both memory- and compute-constant regardless of task sequence length. ELLA requires no data replay, no architectural expansion, and negligible storage. Empirically, it achieves state-of-the-art CL performance on three popular benchmarks, with relative accuracy gains of up to $9.6\%$ and a $35\times$ smaller memory footprint. Further, ELLA scales robustly across architectures and actively enhances the model's zero-shot generalization performance on unseen tasks, establishing a principled and scalable solution for constructive lifelong LLM adaptation.
Quantized SO(3)-Equivariant Graph Neural Networks for Efficient Molecular Property Prediction
Deploying 3D graph neural networks (GNNs) that are equivariant to 3D rotations (the group SO(3)) on edge devices is challenging due to their high computational cost. This paper addresses the problem by compressing and accelerating an SO(3)-equivariant GNN using low-bit quantization techniques. Specifically, we introduce three innovations for quantized equivariant transformers: (1) a magnitude-direction decoupled quantization scheme that separately quantizes the norm and orientation of equivariant (vector) features, (2) a branch-separated quantization-aware training strategy that treats invariant and equivariant feature channels differently in an attention-based $SO(3)$-GNN, and (3) a robustness-enhancing attention normalization mechanism that stabilizes low-precision attention computations. Experiments on the QM9 and rMD17 molecular benchmarks demonstrate that our 8-bit models achieve accuracy on energy and force predictions comparable to full-precision baselines with markedly improved efficiency. We also conduct ablation studies to quantify the contribution of each component to maintain accuracy and equivariance under quantization, using the Local error of equivariance (LEE) metric. The proposed techniques enable the deployment of symmetry-aware GNNs in practical chemistry applications with 2.37--2.73x faster inference and 4x smaller model size, without sacrificing accuracy or physical symmetry.
CORE: Code-based Inverse Self-Training Framework with Graph Expansion for Virtual Agents
The development of Multimodal Virtual Agents has made significant progress through the integration of Multimodal Large Language Models. However, mainstream training paradigms face key challenges: Behavior Cloning is simple and effective through imitation but suffers from low behavioral diversity, while Reinforcement Learning is capable of discovering novel strategies through exploration but heavily relies on manually designed reward functions. To address the conflict between these two methods, we present CORE, a Code-based Inverse Self-Training Framework with Graph Expansion that bridges imitation and exploration, offering a novel training framework that promotes behavioral diversity while eliminating the reliance on manually reward design. Specifically, we introduce Semantic Code Abstraction to automatically infers reward functions from expert demonstrations without manual design. The inferred reward function, referred to as the Label Function, is executable code that verifies one key step within a task. Building on this, we propose Strategy Graph Expansion to enhance in-domain behavioral diversity, which constructs a multi-path graph called Strategy Graph that captures diverse valid solutions beyond expert demonstrations. Furthermore, we introduce Trajectory-Guided Extrapolation, which enriches out-of-domain behavioral diversity by utilizing both successful and failed trajectories to expand the task space. Experiments on Web and Android platforms demonstrate that CORE significantly improves both overall performance and generalization, highlighting its potential as a robust and generalizable training paradigm for building powerful virtual agents.
comment: 19 pages, 12 figures
Mind the Gap: Continuous Magnification Sampling for Pathology Foundation Models
In histopathology, pathologists examine both tissue architecture at low magnification and fine-grained morphology at high magnification. Yet, the performance of pathology foundation models across magnifications and the effect of magnification sampling during training remain poorly understood. We model magnification sampling as a multi-source domain adaptation problem and develop a simple theoretical framework that reveals systematic trade-offs between sampling strategies. We show that the widely used discrete uniform sampling of magnifications (0.25, 0.5, 1.0, 2.0 mpp) leads to degradation at intermediate magnifications. We introduce continuous magnification sampling, which removes gaps in magnification coverage while preserving performance at standard scales. Further, we derive sampling distributions that optimize representation quality across magnification scales. To evaluate these strategies, we introduce two new benchmarks (TCGA-MS, BRACS-MS) with appropriate metrics. Our experiments show that continuous sampling substantially improves over discrete sampling at intermediate magnifications, with gains of up to 4 percentage points in balanced classification accuracy, and that optimized distributions can further improve performance. Finally, we evaluate current histopathology foundation models, finding that magnification is a primary driver of performance variation across models. Our work paves the way towards future pathology foundation models that perform reliably across magnifications.
ACDZero: Graph-Embedding-Based Tree Search for Mastering Automated Cyber Defense
Automated cyber defense (ACD) seeks to protect computer networks with minimal or no human intervention, reacting to intrusions by taking corrective actions such as isolating hosts, resetting services, deploying decoys, or updating access controls. However, existing approaches for ACD, such as deep reinforcement learning (RL), often face difficult exploration in complex networks with large decision/state spaces and thus require an expensive amount of samples. Inspired by the need to learn sample-efficient defense policies, we frame ACD in CAGE Challenge 4 (CAGE-4 / CC4) as a context-based partially observable Markov decision problem and propose a planning-centric defense policy based on Monte Carlo Tree Search (MCTS). It explicitly models the exploration-exploitation tradeoff in ACD and uses statistical sampling to guide exploration and decision making. We make novel use of graph neural networks (GNNs) to embed observations from the network as attributed graphs, to enable permutation-invariant reasoning over hosts and their relationships. To make our solution practical in complex search spaces, we guide MCTS with learned graph embeddings and priors over graph-edit actions, combining model-free generalization and policy distillation with look-ahead planning. We evaluate the resulting agent on CC4 scenarios involving diverse network structures and adversary behaviors, and show that our search-guided, graph-embedding-based planning improves defense reward and robustness relative to state-of-the-art RL baselines.
Learning with Monotone Adversarial Corruptions
We study the extent to which standard machine learning algorithms rely on exchangeability and independence of data by introducing a monotone adversarial corruption model. In this model, an adversary, upon looking at a "clean" i.i.d. dataset, inserts additional "corrupted" points of their choice into the dataset. These added points are constrained to be monotone corruptions, in that they get labeled according to the ground-truth target function. Perhaps surprisingly, we demonstrate that in this setting, all known optimal learning algorithms for binary classification can be made to achieve suboptimal expected error on a new independent test point drawn from the same distribution as the clean dataset. On the other hand, we show that uniform convergence-based algorithms do not degrade in their guarantees. Our results showcase how optimal learning algorithms break down in the face of seemingly helpful monotone corruptions, exposing their overreliance on exchangeability.
QuIC: A Quantum-Inspired Interaction Classifier for Revitalizing Shallow CNNs in Fine-Grained Recognition
Deploying deep learning models for Fine-Grained Visual Classification (FGVC) on resource-constrained edge devices remains a significant challenge. While deep architectures achieve high accuracy on benchmarks like CUB-200-2011, their computational cost is often prohibitive. Conversely, shallow networks (e.g., AlexNet, VGG) offer efficiency but fail to distinguish visually similar sub-categories. This is because standard Global Average Pooling (GAP) heads capture only first-order statistics, missing the subtle high-order feature interactions required for FGVC. While Bilinear CNNs address this, they suffer from high feature dimensionality and instability during training. To bridge this gap, we propose the Quantum-inspired Interaction Classifier (QuIC). Drawing inspiration from quantum mechanics, QuIC models feature channels as interacting quantum states and captures second-order feature covariance via a learnable observable operator. Designed as a lightweight, plug-and-play module, QuIC supports stable, single-stage end-to-end training without exploding feature dimensions. Experimental results demonstrate that QuIC significantly revitalizes shallow backbones: it boosts the Top-1 accuracy of VGG16 by nearly 20% and outperforms state-of-the-art attention mechanisms (SE-Block) on ResNet18. Qualitative analysis, including t-SNE visualization, further confirms that QuIC resolves ambiguous cases by explicitly attending to fine-grained discriminative features and enforcing compact intra-class clustering.
FormationEval, an open multiple-choice benchmark for petroleum geoscience
This paper presents FormationEval, an open multiple-choice question benchmark for evaluating language models on petroleum geoscience and subsurface disciplines. The dataset contains 505 questions across seven domains including petrophysics, petroleum geology and reservoir engineering, derived from three authoritative sources using a reasoning model with detailed instructions and a concept-based approach that avoids verbatim copying of copyrighted text. Each question includes source metadata to support traceability and audit. The evaluation covers 72 models from major providers including OpenAI, Anthropic, Google, Meta and open-weight alternatives. The top performers achieve over 97\% accuracy, with Gemini 3 Pro Preview reaching 99.8\%, while tier and domain gaps persist. Among open-weight models, GLM-4.7 leads at 98.6\%, with several DeepSeek, Llama, Qwen and Mistral models also exceeding 93\%. The performance gap between open-weight and closed models is narrower than expected, with several lower-cost open-weight models exceeding 90\% accuracy. Petrophysics emerges as the most challenging domain across all models, while smaller models show wider performance variance. Residual length bias in the dataset (correct answers tend to be longer) is documented along with bias mitigation strategies applied during construction. The benchmark, evaluation code and results are publicly available.
comment: 24 pages, 8 figures, 10 tables; benchmark and code at https://github.com/AlmazErmilov/FormationEval-an-Open-Benchmark-for-Oil-Gas-Geoscience-MCQ-Evaluation
Entropy-Adaptive Fine-Tuning: Resolving Confident Conflicts to Mitigate Forgetting
Supervised Fine-Tuning (SFT) is the standard paradigm for domain adaptation, yet it frequently incurs the cost of catastrophic forgetting. In sharp contrast, on-policy Reinforcement Learning (RL) effectively preserves general capabilities. We investigate this discrepancy and identify a fundamental distributional gap: while RL aligns with the model's internal belief, SFT forces the model to fit external supervision. This mismatch often manifests as "Confident Conflicts" tokens characterized by low probability but low entropy. In these instances, the model is highly confident in its own prediction but is forced to learn a divergent ground truth, triggering destructive gradient updates. To address this, we propose Entropy-Adaptive Fine-Tuning (EAFT). Unlike methods relying solely on prediction probability, EAFT utilizes token-level entropy as a gating mechanism to distinguish between epistemic uncertainty and knowledge conflict. This allows the model to learn from uncertain samples while suppressing gradients on conflicting data. Extensive experiments on Qwen and GLM series (ranging from 4B to 32B parameters) across mathematical, medical, and agentic domains confirm our hypothesis. EAFT consistently matches the downstream performance of standard SFT while significantly mitigating the degradation of general capabilities.
BiPrompt: Bilateral Prompt Optimization for Visual and Textual Debiasing in Vision-Language Models AAAI 2026
Vision language foundation models such as CLIP exhibit impressive zero-shot generalization yet remain vulnerable to spurious correlations across visual and textual modalities. Existing debiasing approaches often address a single modality either visual or textual leading to partial robustness and unstable adaptation under distribution shifts. We propose a bilateral prompt optimization framework (BiPrompt) that simultaneously mitigates non-causal feature reliance in both modalities during test-time adaptation. On the visual side, it employs structured attention-guided erasure to suppress background activations and enforce orthogonal prediction consistency between causal and spurious regions. On the textual side, it introduces balanced prompt normalization, a learnable re-centering mechanism that aligns class embeddings toward an isotropic semantic space. Together, these modules jointly minimize conditional mutual information between spurious cues and predictions, steering the model toward causal, domain invariant reasoning without retraining or domain supervision. Extensive evaluations on real-world and synthetic bias benchmarks demonstrate consistent improvements in both average and worst-group accuracies over prior test-time debiasing methods, establishing a lightweight yet effective path toward trustworthy and causally grounded vision-language adaptation.
comment: Accepted at the AAAI 2026 Workshop AIR-FM, Assessing and Improving Reliability of Foundation Models in the Real World
Feature-based Inversion of 2.5D Controlled Source Electromagnetic Data using Generative Priors
In this study, we investigate feature-based 2.5D controlled source marine electromagnetic (mCSEM) data inversion using generative priors. Two-and-half dimensional modeling using finite difference method (FDM) is adopted to compute the response of horizontal electric dipole (HED) excitation. Rather than using a neural network to approximate the entire inverse mapping in a black-box manner, we adopt a plug-andplay strategy in which a variational autoencoder (VAE) is used solely to learn prior information on conductivity distributions. During the inversion process, the conductivity model is iteratively updated using the Gauss Newton method, while the model space is constrained by projections onto the learned VAE decoder. This framework preserves explicit control over data misfit and enables flexible adaptation to different survey configurations. Numerical and field experiments demonstrate that the proposed approach effectively incorporates prior information, improves reconstruction accuracy, and exhibits good generalization performance.
Edge-aware GAT-based protein binding site prediction
Accurate identification of protein binding sites is crucial for understanding biomolecular interaction mechanisms and for the rational design of drug targets. Traditional predictive methods often struggle to balance prediction accuracy with computational efficiency when capturing complex spatial conformations. To address this challenge, we propose an Edge-aware Graph Attention Network (Edge-aware GAT) model for the fine-grained prediction of binding sites across various biomolecules, including proteins, DNA/RNA, ions, ligands, and lipids. Our method constructs atom-level graphs and integrates multidimensional structural features, including geometric descriptors, DSSP-derived secondary structure, and relative solvent accessibility (RSA), to generate spatially aware embedding vectors. By incorporating interatomic distances and directional vectors as edge features within the attention mechanism, the model significantly enhances its representation capacity. On benchmark datasets, our model achieves an ROC-AUC of 0.93 for protein-protein binding site prediction, outperforming several state-of-the-art methods. The use of directional tensor propagation and residue-level attention pooling further improves both binding site localization and the capture of local structural details. Visualizations using PyMOL confirm the model's practical utility and interpretability. To facilitate community access and application, we have deployed a publicly accessible web server at http://119.45.201.89:5000/. In summary, our approach offers a novel and efficient solution that balances prediction accuracy, generalization, and interpretability for identifying functional sites in proteins.
comment: 24 pages, 10 figures, 6 tables
Car Drag Coefficient Prediction from 3D Point Clouds Using a Slice-Based Surrogate Model
The automotive industry's pursuit of enhanced fuel economy and performance necessitates efficient aerodynamic design. However, traditional evaluation methods such as computational fluid dynamics (CFD) and wind tunnel testing are resource intensive, hindering rapid iteration in the early design stages. Machine learning-based surrogate models offer a promising alternative, yet many existing approaches suffer from high computational complexity, limited interpretability, or insufficient accuracy for detailed geometric inputs. This paper introduces a novel lightweight surrogate model for the prediction of the aerodynamic drag coefficient (Cd) based on a sequential slice-wise processing of the geometry of the 3D vehicle. Inspired by medical imaging, 3D point clouds of vehicles are decomposed into an ordered sequence of 2D cross-sectional slices along the stream-wise axis. Each slice is encoded by a lightweight PointNet2D module, and the sequence of slice embeddings is processed by a bidirectional LSTM to capture longitudinal geometric evolution. The model, trained and evaluated on the DrivAerNet++ dataset, achieves a high coefficient of determination (R^2 > 0.9528) and a low mean absolute error (MAE approx 6.046 x 10^{-3}) in Cd prediction. With an inference time of approximately 0.025 seconds per sample on a consumer-grade GPU, our approach provides fast, accurate, and interpretable aerodynamic feedback, facilitating more agile and informed automotive design exploration.
comment: 14 pages, 5 figures. Published in: Bramer M., Stahl F. (eds) Artificial Intelligence XLII. SGAI 2025. Lecture Notes in Computer Science, vol 16302. Springer, Cham
Prototype-Based Learning for Healthcare: A Demonstration of Interpretable AI
Despite recent advances in machine learning and explainable AI, a gap remains in personalized preventive healthcare: predictions, interventions, and recommendations should be both understandable and verifiable for all stakeholders in the healthcare sector. We present a demonstration of how prototype-based learning can address these needs. Our proposed framework, ProtoPal, features both front- and back-end modes; it achieves superior quantitative performance while also providing an intuitive presentation of interventions and their simulated outcomes.
comment: Accepted to the Demo Track at the IEEE International Conference on Data Mining (ICDM) 2025, where it received the Best Demo Award
LION-DG: Layer-Informed Initialization with Deep Gradient Protocols for Accelerated Neural Network Training
Weight initialization remains decisive for neural network optimization, yet existing methods are largely layer-agnostic. We study initialization for deeply-supervised architectures with auxiliary classifiers, where untrained auxiliary heads can destabilize early training through gradient interference. We propose LION-DG, a layer-informed initialization that zero-initializes auxiliary classifier heads while applying standard He-initialization to the backbone. We prove that this implements Gradient Awakening: auxiliary gradients are exactly zero at initialization, then phase in naturally as weights grow -- providing an implicit warmup without hyperparameters. Experiments on CIFAR-10 and CIFAR-100 with DenseNet-DS and ResNet-DS architectures demonstrate: (1) DenseNet-DS: +8.3% faster convergence on CIFAR-10 with comparable accuracy, (2) Hybrid approach: Combining LSUV with LION-DG achieves best accuracy (81.92% on CIFAR-10), (3) ResNet-DS: Positive speedup on CIFAR-100 (+11.3%) with side-tap auxiliary design. We identify architecture-specific trade-offs and provide clear guidelines for practitioners. LION-DG is simple, requires zero hyperparameters, and adds no computational overhead.
Horizon Activation Mapping for Neural Networks in Time Series Forecasting
Neural networks for time series forecasting have relied on error metrics and architecture-specific interpretability approaches for model selection that don't apply across models of different families. To interpret forecasting models agnostic to the types of layers across state-of-the-art model families, we introduce Horizon Activation Mapping (HAM), a visual interpretability technique inspired by grad-CAM that uses gradient norm averages to study the horizon's subseries where grad-CAM studies attention maps over image data. We introduce causal and anti-causal modes to calculate gradient update norm averages across subseries at every timestep and lines of proportionality signifying uniform distributions of the norm averages. Optimization landscape studies with respect to changes in batch sizes, early stopping, train-val-test splits, univariate forecasting and dropouts are studied with respect to performances and subseries in HAM. Interestingly, batch size based differences in activities seem to indicate potential for existence of an exponential approximation across them per epoch relative to each other. Multivariate forecasting models including MLP-based CycleNet, N-Linear, N-HITS, self attention-based FEDformer, Pyraformer, SSM-based SpaceTime and diffusion-based Multi-Resolution DDPM over different horizon sizes trained over the ETTm2 dataset are used for HAM plots in this study. NHITS' neural approximation theorem and SpaceTime's exponential autoregressive activities have been attributed to trends in HAM plots over their training, validation and test sets. In general, HAM can be used for granular model selection, validation set choices and comparisons across different neural network model families.
A Differentiable Adversarial Framework for Task-Aware Data Subsampling
The proliferation of large-scale datasets poses a major computational challenge to model training. The traditional data subsampling method works as a static, task independent preprocessing step which usually discards information that is critical to downstream prediction. In this paper, we introduces the antagonistic soft selection subsampling (ASSS) framework as is a novel paradigm that reconstructs data reduction into a differentiable end-to-end learning problem. ASSS uses the adversarial game between selector network and task network, and selector network learning assigns continuous importance weights to samples. This direct optimization implemented by Gumbel-Softmax relaxation allows the selector to identify and retain samples with the maximum amount of information for a specific task target under the guidance of the loss function that balances the fidelity and sparsity of the prediction. Theoretical analysis links this framework with the information bottleneck principle. Comprehensive experiments on four large-scale real world datasets show that ASSS has always been better than heuristic subsampling baselines such as clustering and nearest neighbor thinning in maintaining model performance. It is worth noting that ASSS can not only match, but also sometimes exceed the training performance of the entire dataset, showcasing the effect of intelligent denoising. This work establishes task aware data subsampling as a learnable component, providing a principled solution for effective large-scale data learning.
comment: 14 pages
The Homogeneity Trap: Spectral Collapse in Doubly-Stochastic Deep Networks
Doubly-stochastic matrices (DSM) are increasingly utilized in structure-preserving deep architectures -- such as Optimal Transport layers and Sinkhorn-based attention -- to enforce numerical stability and probabilistic interpretability. In this work, we identify a critical spectral degradation phenomenon inherent to these constraints, termed the Homogeneity Trap. We demonstrate that the maximum-entropy bias, typical of Sinkhorn-based projections, drives the mixing operator towards the uniform barycenter, thereby suppressing the subdominant singular value σ_2 and filtering out high-frequency feature components. We derive a spectral bound linking σ_2 to the network's effective depth, showing that high-entropy constraints restrict feature transformation to a shallow effective receptive field. Furthermore, we formally demonstrate that Layer Normalization fails to mitigate this collapse in noise-dominated regimes; specifically, when spectral filtering degrades the Signal-to-Noise Ratio (SNR) below a critical threshold, geometric structure is irreversibly lost to noise-induced orthogonal collapse. Our findings highlight a fundamental trade-off between entropic stability and spectral expressivity in DSM-constrained networks.
MDAgent2: Large Language Model for Code Generation and Knowledge Q&A in Molecular Dynamics
Molecular dynamics (MD) simulations are essential for understanding atomic-scale behaviors in materials science, yet writing LAMMPS scripts remains highly specialized and time-consuming tasks. Although LLMs show promise in code generation and domain-specific question answering, their performance in MD scenarios is limited by scarce domain data, the high deployment cost of state-of-the-art LLMs, and low code executability. Building upon our prior MDAgent, we present MDAgent2, the first end-to-end framework capable of performing both knowledge Q&A and code generation within the MD domain. We construct a domain-specific data-construction pipeline that yields three high-quality datasets spanning MD knowledge, question answering, and code generation. Based on these datasets, we adopt a three stage post-training strategy--continued pre-training (CPT), supervised fine-tuning (SFT), and reinforcement learning (RL)--to train two domain-adapted models, MD-Instruct and MD-Code. Furthermore, we introduce MD-GRPO, a closed-loop RL method that leverages simulation outcomes as reward signals and recycles low-reward trajectories for continual refinement. We further build MDAgent2-RUNTIME, a deployable multi-agent system that integrates code generation, execution, evaluation, and self-correction. Together with MD-EvalBench proposed in this work, the first benchmark for LAMMPS code generation and question answering, our models and system achieve performance surpassing several strong baselines.This work systematically demonstrates the adaptability and generalization capability of large language models in industrial simulation tasks, laying a methodological foundation for automatic code generation in AI for Science and industrial-scale simulations. URL: https://github.com/FredericVAN/PKU_MDAgent2
comment: 24 pages,4 figures
Higher-Order Action Regularization in Deep Reinforcement Learning: From Continuous Control to Building Energy Management NeurIPS
Deep reinforcement learning agents often exhibit erratic, high-frequency control behaviors that hinder real-world deployment due to excessive energy consumption and mechanical wear. We systematically investigate action smoothness regularization through higher-order derivative penalties, progressing from theoretical understanding in continuous control benchmarks to practical validation in building energy management. Our comprehensive evaluation across four continuous control environments demonstrates that third-order derivative penalties (jerk minimization) consistently achieve superior smoothness while maintaining competitive performance. We extend these findings to HVAC control systems where smooth policies reduce equipment switching by 60%, translating to significant operational benefits. Our work establishes higher-order action regularization as an effective bridge between RL optimization and operational constraints in energy-critical applications.
comment: 6 pages, accepted at NeurIPS workshop 2025
Explore the Ideology of Deep Learning in ENSO Forecasts
The El Ni{~n}o-Southern Oscillation (ENSO) exerts profound influence on global climate variability, yet its prediction remains a grand challenge. Recent advances in deep learning have significantly improved forecasting skill, but the opacity of these models hampers scientific trust and operational deployment. Here, we introduce a mathematically grounded interpretability framework based on bounded variation function. By rescuing the "dead" neurons from the saturation zone of the activation function, we enhance the model's expressive capacity. Our analysis reveals that ENSO predictability emerges dominantly from the tropical Pacific, with contributions from the Indian and Atlantic Oceans, consistent with physical understanding. Controlled experiments affirm the robustness of our method and its alignment with established predictors. Notably, we probe the persistent Spring Predictability Barrier (SPB), finding that despite expanded sensitivity during spring, predictive performance declines-likely due to suboptimal variable selection. These results suggest that incorporating additional ocean-atmosphere variables may help transcend SPB limitations and advance long-range ENSO prediction.
comment: 5 figures. Code available at https://github.com/liuxingguo9349/pptv-enso-env
Multivariate Time-series Anomaly Detection via Dynamic Model Pool & Ensembling
Multivariate time-series (MTS) anomaly detection is critical in domains such as service monitor, IoT, and network security. While multi-model methods based on selection or ensembling outperform single-model ones, they still face limitations: (i) selection methods rely on a single chosen model and are sensitive to the strategy; (ii) ensembling methods often combine all models or are restricted to univariate data; and (iii) most methods depend on fixed data dimensionality, limiting scalability. To address these, we propose DMPEAD, a Dynamic Model Pool and Ensembling framework for MTS Anomaly Detection. The framework first (i) constructs a diverse model pool via parameter transfer and diversity metric, then (ii) updates it with a meta-model and similarity-based strategy for adaptive pool expansion, subset selection, and pool merging, finally (iii) ensembles top-ranked models through proxy metric ranking and top-k aggregation in the selected subset, outputting the final anomaly detection result. Extensive experiments on 8 real-world datasets show that our model outperforms all baselines, demonstrating superior adaptability and scalability.
GDRO: Group-level Reward Post-training Suitable for Diffusion Models
Recent advancements adopt online reinforcement learning (RL) from LLMs to text-to-image rectified flow diffusion models for reward alignment. The use of group-level rewards successfully aligns the model with the targeted reward. However, it faces challenges including low efficiency, dependency on stochastic samplers, and reward hacking. The problem is that rectified flow models are fundamentally different from LLMs: 1) For efficiency, online image sampling takes much more time and dominates the time of training. 2) For stochasticity, rectified flow is deterministic once the initial noise is fixed. Aiming at these problems and inspired by the effects of group-level rewards from LLMs, we design Group-level Direct Reward Optimization (GDRO). GDRO is a new post-training paradigm for group-level reward alignment that combines the characteristics of rectified flow models. Through rigorous theoretical analysis, we point out that GDRO supports full offline training that saves the large time cost for image rollout sampling. Also, it is diffusion-sampler-independent, which eliminates the need for the ODE-to-SDE approximation to obtain stochasticity. We also empirically study the reward hacking trap that may mislead the evaluation, and involve this factor in the evaluation using a corrected score that not only considers the original evaluation reward but also the trend of reward hacking. Extensive experiments demonstrate that GDRO effectively and efficiently improves the reward score of the diffusion model through group-wise offline optimization across the OCR and GenEval tasks, while demonstrating strong stability and robustness in mitigating reward hacking.
Output Embedding Centering for Stable LLM Pretraining
Pretraining of large language models is not only expensive but also prone to certain training instabilities. A specific instability that often occurs for large learning rates at the end of training is output logit divergence. The most widely used mitigation strategy, z-loss, merely addresses the symptoms rather than the underlying cause of the problem. In this paper, we analyze the instability from the perspective of the output embeddings' geometry and identify its cause. Based on this, we propose output embedding centering (OEC) as a new mitigation strategy, and prove that it suppresses output logit divergence. OEC can be implemented in two different ways, as a deterministic operation called μ-centering, or a regularization method called μ-loss. Our experiments show that both variants outperform z-loss in terms of training stability and learning rate sensitivity. In particular, they ensure that training converges even for large learning rates when z-loss fails. Furthermore, we find that μ-loss is significantly less sensitive to regularization hyperparameter tuning than z-loss.
comment: 11 pages, 5 figures
Prior Diffusiveness and Regret in the Linear-Gaussian Bandit
We prove that Thompson sampling exhibits $\tilde{O}(σd \sqrt{T} + d r \sqrt{\mathrm{Tr}(Σ_0)})$ Bayesian regret in the linear-Gaussian bandit with a $\mathcal{N}(μ_0, Σ_0)$ prior distribution on the coefficients, where $d$ is the dimension, $T$ is the time horizon, $r$ is the maximum $\ell_2$ norm of the actions, and $σ^2$ is the noise variance. In contrast to existing regret bounds, this shows that to within logarithmic factors, the prior-dependent ``burn-in'' term $d r \sqrt{\mathrm{Tr}(Σ_0)}$ decouples additively from the minimax (long run) regret $σd \sqrt{T}$. Previous regret bounds exhibit a multiplicative dependence on these terms. We establish these results via a new ``elliptical potential'' lemma, and also provide a lower bound indicating that the burn-in term is unavoidable.
Enhancing Object Detection with Privileged Information: A Model-Agnostic Teacher-Student Approach
This paper investigates the integration of the Learning Using Privileged Information (LUPI) paradigm in object detection to exploit fine-grained, descriptive information available during training but not at inference. We introduce a general, model-agnostic methodology for injecting privileged information-such as bounding box masks, saliency maps, and depth cues-into deep learning-based object detectors through a teacher-student architecture. Experiments are conducted across five state-of-the-art object detection models and multiple public benchmarks, including UAV-based litter detection datasets and Pascal VOC 2012, to assess the impact on accuracy, generalization, and computational efficiency. Our results demonstrate that LUPI-trained students consistently outperform their baseline counterparts, achieving significant boosts in detection accuracy with no increase in inference complexity or model size. Performance improvements are especially marked for medium and large objects, while ablation studies reveal that intermediate weighting of teacher guidance optimally balances learning from privileged and standard inputs. The findings affirm that the LUPI framework provides an effective and practical strategy for advancing object detection systems in both resource-constrained and real-world settings.
comment: Code available on GitHub: https://github.com/mbar0075/lupi-for-object-detection
SerpentFlow: Generative Unpaired Domain Alignment via Shared-Structure Decomposition
Domain alignment refers broadly to learning correspondences between data distributions from distinct domains. In this work, we focus on a setting where domains share underlying structural patterns despite differences in their specific realizations. The task is particularly challenging in the absence of paired observations, which removes direct supervision across domains. We introduce a generative framework, called SerpentFlow (SharEd-structuRe decomPosition for gEnerative domaiN adapTation), for unpaired domain alignment. SerpentFlow decomposes data within a latent space into a shared component common to both domains and a domain-specific one. By isolating the shared structure and replacing the domain-specific component with stochastic noise, we construct synthetic training pairs between shared representations and target-domain samples, thereby enabling the use of conditional generative models that are traditionally restricted to paired settings. We apply this approach to super-resolution tasks, where the shared component naturally corresponds to low-frequency content while high-frequency details capture domain-specific variability. The cutoff frequency separating low- and high-frequency components is determined automatically using a classifier-based criterion, ensuring a data-driven and domain-adaptive decomposition. By generating pseudo-pairs that preserve low-frequency structures while injecting stochastic high-frequency realizations, we learn the conditional distribution of the target domain given the shared representation. We implement SerpentFlow using Flow Matching as the generative pipeline, although the framework is compatible with other conditional generative approaches. Experiments on synthetic images, physical process simulations, and a climate downscaling task demonstrate that the method effectively reconstructs high-frequency structures consistent with underlying low-frequency patterns, supporting shared-structure decomposition as an effective strategy for unpaired domain alignment.
A Multilayered Approach to Classifying Customer Responsiveness and Credit Risk
This study evaluates the performance of various classifiers in three distinct models: response, risk, and response-risk, concerning credit card mail campaigns and default prediction. In the response model, the Extra Trees classifier demonstrates the highest recall level (79.1%), emphasizing its effectiveness in identifying potential responders to targeted credit card offers. Conversely, in the risk model, the Random Forest classifier exhibits remarkable specificity of 84.1%, crucial for identifying customers least likely to default. Furthermore, in the multi-class response-risk model, the Random Forest classifier achieves the highest accuracy (83.2%), indicating its efficacy in discerning both potential responders to credit card mail campaign and low-risk credit card users. In this study, we optimized various performance metrics to solve a specific credit risk and mail responsiveness business problem.
Refinement Provenance Inference: Detecting LLM-Refined Training Prompts from Model Behavior
Instruction tuning increasingly relies on LLM-based prompt refinement, where prompts in the training corpus are selectively rewritten by an external refiner to improve clarity and instruction alignment. This motivates an instance-level audit problem: for a fine-tuned model and a training prompt-response pair, can we infer whether the model was trained on the original prompt or its LLM-refined version within a mixed corpus? This matters for dataset governance and dispute resolution when training data are contested. However, it is non-trivial in practice: refined and raw instances are interleaved in the training corpus with unknown, source-dependent mixture ratios, making it harder to develop provenance methods that generalize across models and training setups. In this paper, we formalize this audit task as Refinement Provenance Inference (RPI) and show that prompt refinement yields stable, detectable shifts in teacher-forced token distributions, even when semantic differences are not obvious. Building on this phenomenon, we propose RePro, a logit-based provenance framework that fuses teacher-forced likelihood features with logit-ranking signals. During training, RePro learns a transferable representation via shadow fine-tuning, and uses a lightweight linear head to infer provenance on unseen victims without training-data access. Empirically, RePro consistently attains strong performance and transfers well across refiners, suggesting that it exploits refiner-agnostic distribution shifts rather than rewrite-style artifacts.
Forget Less by Learning Together through Concept Consolidation WACV-26
Custom Diffusion Models (CDMs) have gained significant attention due to their remarkable ability to personalize generative processes. However, existing CDMs suffer from catastrophic forgetting when continuously learning new concepts. Most prior works attempt to mitigate this issue under the sequential learning setting with a fixed order of concept inflow and neglect inter-concept interactions. In this paper, we propose a novel framework - Forget Less by Learning Together (FL2T) - that enables concurrent and order-agnostic concept learning while addressing catastrophic forgetting. Specifically, we introduce a set-invariant inter-concept learning module where proxies guide feature selection across concepts, facilitating improved knowledge retention and transfer. By leveraging inter-concept guidance, our approach preserves old concepts while efficiently incorporating new ones. Extensive experiments, across three datasets, demonstrates that our method significantly improves concept retention and mitigates catastrophic forgetting, highlighting the effectiveness of inter-concept catalytic behavior in incremental concept learning of ten tasks with at least 2% gain on average CLIP Image Alignment scores.
comment: Accepted at WACV-26
SynRXN: An Open Benchmark and Curated Dataset for Computational Reaction Modeling
We present SynRXN, a unified benchmarking framework and open-data resource for computer-aided synthesis planning (CASP). SynRXN decomposes end-to-end synthesis planning into five task families, covering reaction rebalancing, atom-to-atom mapping, reaction classification, reaction property prediction, and synthesis route design. Curated, provenance-tracked reaction corpora are assembled from heterogeneous public sources into a harmonized representation and packaged as versioned datasets for each task family, with explicit source metadata, licence tags, and machine-readable manifests that record checksums, and row counts. For every task, SynRXN provides transparent splitting functions that generate leakage-aware train, validation, and test partitions, together with standardized evaluation workflows and metric suites tailored to classification, regression, and structured prediction settings. For sensitive benchmarking, we combine public training and validation data with held-out gold-standard test sets, and contamination-prone tasks such as reaction rebalancing and atom-to-atom mapping are distributed only as evaluation sets and are explicitly not intended for model training. Scripted build recipes enable bitwise-reproducible regeneration of all corpora across machines and over time, and the entire resource is released under permissive open licences to support reuse and extension. By removing dataset heterogeneity and packaging transparent, reusable evaluation scaffolding, SynRXN enables fair longitudinal comparison of CASP methods, supports rigorous ablations and stress tests along the full reaction-informatics pipeline, and lowers the barrier for practitioners who seek robust and comparable performance estimates for real-world synthesis planning workloads.
comment: 31 pages (including references), 3 figures, 7 tables
DéjàQ: Open-Ended Evolution of Diverse, Learnable and Verifiable Problems
Recent advances in reasoning models have yielded impressive results in mathematics and coding. However, most approaches rely on static datasets, which have been suggested to encourage memorisation and limit generalisation. We introduce DéjàQ, a framework that departs from this paradigm by jointly evolving a diverse set of synthetic mathematical problems alongside model training. This evolutionary process adapts to the model's ability throughout training, optimising problems for learnability. We propose two LLM-driven mutation strategies in which the model itself mutates the training data, either by altering contextual details or by directly modifying problem structure. We find that the model can generate novel and meaningful problems, and that these LLM-driven mutations improve RL training. We analyse key aspects of DéjàQ, including the validity of generated problems and computational overhead. Our results underscore the potential of dynamically evolving training data to enhance mathematical reasoning and indicate broader applicability, which we will support by open-sourcing our code.
Theoretical Convergence of SMOTE-Generated Samples
Imbalanced data affects a wide range of machine learning applications, from healthcare to network security. As SMOTE is one of the most popular approaches to addressing this issue, it is imperative to validate it not only empirically but also theoretically. In this paper, we provide a rigorous theoretical analysis of SMOTE's convergence properties. Concretely, we prove that the synthetic random variable Z converges in probability to the underlying random variable X. We further prove a stronger convergence in mean when X is compact. Finally, we show that lower values of the nearest neighbor rank lead to faster convergence offering actionable guidance to practitioners. The theoretical results are supported by numerical experiments using both real-life and synthetic data. Our work provides a foundational understanding that enhances data augmentation techniques beyond imbalanced data scenarios.
Efficient temporal prediction of compressible flows in irregular domains using Fourier neural operators
This paper investigates the temporal evolution of high-speed compressible fluids in irregular flow fields using the Fourier Neural Operator (FNO). We reconstruct the irregular flow field point set into sequential format compatible with FNO input requirements, and then embed temporal bundling technique within a recurrent neural network (RNN) for multi-step prediction. We further employ a composite loss function to balance errors across different physical quantities. Experiments are conducted on three different types of irregular flow fields, including orthogonal and non-orthogonal grid configurations. Then we comprehensively analyze the physical component loss curves, flow field visualizations, and physical profiles. Results demonstrate that our approach significantly surpasses traditional numerical methods in computational efficiency while achieving high accuracy, with maximum relative $L_2$ errors of (0.78, 0.57, 0.35)% for ($p$, $T$, $\mathbf{u}$) respectively. This verifies that the method can efficiently and accurately simulate the temporal evolution of high-speed compressible flows in irregular domains.
comment: 18 pages, 15 figures
A Defect is Being Born: How Close Are We? A Time Sensitive Forecasting Approach
Background. Defect prediction has been a highly active topic among researchers in the Empirical Software Engineering field. Previous literature has successfully achieved the most accurate prediction of an incoming fault and identified the features and anomalies that precede it through just-in-time prediction. As software systems evolve continuously, there is a growing need for time-sensitive methods capable of forecasting defects before they manifest. Aim. Our study seeks to explore the effectiveness of time-sensitive techniques for defect forecasting. Moreover, we aim to investigate the early indicators that precede the occurrence of a defect. Method. We will train multiple time-sensitive forecasting techniques to forecast the future bug density of a software project, as well as identify the early symptoms preceding the occurrence of a defect. Expected results. Our expected results are translated into empirical evidence on the effectiveness of our approach for early estimation of bug proneness.
comment: ACCEPTED REGISTERED REPORT AT SANER (CORE A*) 2026
Distorted Distributional Policy Evaluation for Offline Reinforcement Learning
While Distributional Reinforcement Learning (DRL) methods have demonstrated strong performance in online settings, its success in offline scenarios remains limited. We hypothesize that a key limitation of existing offline DRL methods lies in their approach to uniformly underestimate return quantiles. This uniform pessimism can lead to overly conservative value estimates, ultimately hindering generalization and performance. To address this, we introduce a novel concept called quantile distortion, which enables non-uniform pessimism by adjusting the degree of conservatism based on the availability of supporting data. Our approach is grounded in theoretical analysis and empirically validated, demonstrating improved performance over uniform pessimism.
comment: The preprint version of the paper accepted to ICONIP2025. The Version of Record is available online at https://link.springer.com/chapter/10.1007/978-981-95-4091-4_35
Evaluating Feature Dependent Noise in Preference-based Reinforcement Learning
Learning from Preferences in Reinforcement Learning (PbRL) has gained attention recently, as it serves as a natural fit for complicated tasks where the reward function is not easily available. However, preferences often come with uncertainty and noise if they are not from perfect teachers. Much prior literature aimed to detect noise, but with limited types of noise and most being uniformly distributed with no connection to observations. In this work, we formalize the notion of targeted feature-dependent noise and propose several variants like trajectory feature noise, trajectory similarity noise, uncertainty-aware noise, and Language Model noise. We evaluate feature-dependent noise, where noise is correlated with certain features in complex continuous control tasks from DMControl and Meta-world. Our experiments show that in some feature-dependent noise settings, the state-of-the-art noise-robust PbRL method's learning performance is significantly deteriorated, while PbRL method with no explicit denoising can surprisingly outperform noise-robust PbRL in majority settings. We also find language model's noise exhibits similar characteristics to feature-dependent noise, thereby simulating realistic humans and call for further study in learning with feature-dependent noise robustly.
TT-FSI: Scalable Faithful Shapley Interactions via Tensor-Train
The Faithful Shapley Interaction (FSI) index uniquely satisfies the faithfulness axiom among Shapley interaction indices, but computing FSI requires $O(d^\ell \cdot 2^d)$ time and existing implementations use $O(4^d)$ memory. We present TT-FSI, which exploits FSI's algebraic structure via Matrix Product Operators (MPO). Our main theoretical contribution is proving that the linear operator $v \mapsto \text{FSI}(v)$ admits an MPO representation with TT-rank $O(\ell d)$, enabling an efficient sweep algorithm with $O(\ell^2 d^3 \cdot 2^d)$ time and $O(\ell d^2)$ core storage an exponential improvement over existing methods. Experiments on six datasets ($d=8$ to $d=20$) demonstrate up to 280$\times$ speedup over baseline, 85$\times$ over SHAP-IQ, and 290$\times$ memory reduction. TT-FSI scales to $d=20$ (1M coalitions) where all competing methods fail.
FedBiCross: A Bi-Level Optimization Framework to Tackle Non-IID Challenges in Data-Free One-Shot Federated Learning on Medical Data
Data-free knowledge distillation-based one-shot federated learning (OSFL) trains a model in a single communication round without sharing raw data, making OSFL attractive for privacy-sensitive medical applications. However, existing methods aggregate predictions from all clients to form a global teacher. Under non-IID data, conflicting predictions cancel out during averaging, yielding near-uniform soft labels that provide weak supervision for distillation. We propose FedBiCross, a personalized OSFL framework with three stages: (1) clustering clients by model output similarity to form coherent sub-ensembles, (2) bi-level cross-cluster optimization that learns adaptive weights to selectively leverage beneficial cross-cluster knowledge while suppressing negative transfer, and (3) personalized distillation for client-specific adaptation. Experiments on four medical image datasets demonstrate that FedBiCross consistently outperforms state-of-the-art baselines across different non-IID degrees.
Forget Less by Learning from Parents Through Hierarchical Relationships AAAI-26
Custom Diffusion Models (CDMs) offer impressive capabilities for personalization in generative modeling, yet they remain vulnerable to catastrophic forgetting when learning new concepts sequentially. Existing approaches primarily focus on minimizing interference between concepts, often neglecting the potential for positive inter-concept interactions. In this work, we present Forget Less by Learning from Parents (FLLP), a novel framework that introduces a parent-child inter-concept learning mechanism in hyperbolic space to mitigate forgetting. By embedding concept representations within a Lorentzian manifold, naturally suited to modeling tree-like hierarchies, we define parent-child relationships in which previously learned concepts serve as guidance for adapting to new ones. Our method not only preserves prior knowledge but also supports continual integration of new concepts. We validate FLLP on three public datasets and one synthetic benchmark, showing consistent improvements in both robustness and generalization.
comment: Accepted at AAAI-26
SafeLoad: Efficient Admission Control Framework for Identifying Memory-Overloading Queries in Cloud Data Warehouses
Memory overload is a common form of resource exhaustion in cloud data warehouses. When database queries fail due to memory overload, it not only wastes critical resources such as CPU time but also disrupts the execution of core business processes, as memory-overloading (MO) queries are typically part of complex workflows. If such queries are identified in advance and scheduled to memory-rich serverless clusters, it can prevent resource wastage and query execution failure. Therefore, cloud data warehouses desire an admission control framework with high prediction precision, interpretability, efficiency, and adaptability to effectively identify MO queries. However, existing admission control frameworks primarily focus on scenarios like SLA satisfaction and resource isolation, with limited precision in identifying MO queries. Moreover, there is a lack of publicly available MO-labeled datasets with workloads for training and benchmarking. To tackle these challenges, we propose SafeLoad, the first query admission control framework specifically designed to identify MO queries. Alongside, we release SafeBench, an open-source, industrial-scale benchmark for this task, which includes 150 million real queries. SafeLoad first filters out memory-safe queries using the interpretable discriminative rule. It then applies a hybrid architecture that integrates both a global model and cluster-level models, supplemented by a misprediction correction module to identify MO queries. Additionally, a self-tuning quota management mechanism dynamically adjusts prediction quotas per cluster to improve precision. Experimental results show that SafeLoad achieves state-of-the-art prediction performance with low online and offline time overhead. Specifically, SafeLoad improves precision by up to 66% over the best baseline and reduces wasted CPU time by up to 8.09x compared to scenarios without SafeLoad.
comment: This paper has been accepted for presentation at VLDB 2026
Safety at One Shot: Patching Fine-Tuned LLMs with A Single Instance
Fine-tuning safety-aligned large language models (LLMs) can substantially compromise their safety. Previous approaches require many safety samples or calibration sets, which not only incur significant computational overhead during realignment but also lead to noticeable degradation in model utility. Contrary to this belief, we show that safety alignment can be fully recovered with only a single safety example, without sacrificing utility and at minimal cost. Remarkably, this recovery is effective regardless of the number of harmful examples used in fine-tuning or the size of the underlying model, and convergence is achieved within just a few epochs. Furthermore, we uncover the low-rank structure of the safety gradient, which explains why such efficient correction is possible. We validate our findings across five safety-aligned LLMs and multiple datasets, demonstrating the generality of our approach.
Random-Matrix-Induced Simplicity Bias in Over-parameterized Variational Quantum Circuits
Over-parameterization is commonly used to increase the expressivity of variational quantum circuits (VQCs), yet deeper and more highly parameterized circuits often exhibit poor trainability and limited generalization. In this work, we provide a theoretical explanation for this phenomenon from a function-class perspective. We show that sufficiently expressive, unstructured variational ansatze enter a Haar-like universality class in which both observable expectation values and parameter gradients concentrate exponentially with system size. As a consequence, the hypothesis class induced by such circuits collapses with high probability to a narrow family of near-constant functions, a phenomenon we term simplicity bias, with barren plateaus arising as a consequence rather than the root cause. Using tools from random matrix theory and concentration of measure, we rigorously characterize this universality class and establish uniform hypothesis-class collapse over finite datasets. We further show that this collapse is not unavoidable: tensor-structured VQCs, including tensor-network-based and tensor-hypernetwork parameterizations, lie outside the Haar-like universality class. By restricting the accessible unitary ensemble through bounded tensor rank or bond dimension, these architectures prevent concentration of measure, preserve output variability for local observables, and retain non-degenerate gradient signals even in over-parameterized regimes. Together, our results unify barren plateaus, expressivity limits, and generalization collapse under a single structural mechanism rooted in random-matrix universality, highlighting the central role of architectural inductive bias in variational quantum algorithms.
comment: 20 pages, 4 figures
High-Order Epistasis Detection Using Factorization Machine with Quadratic Optimization Annealing and MDR-Based Evaluation
Detecting high-order epistasis is a fundamental challenge in genetic association studies due to the combinatorial explosion of candidate locus combinations. Although multifactor dimensionality reduction (MDR) is a widely used method for evaluating epistasis, exhaustive MDR-based searches become computationally infeasible as the number of loci or the interaction order increases. In this paper, we define the epistasis detection problem as a black-box optimization problem and solve it with a factorization machine with quadratic optimization annealing (FMQA). We propose an efficient epistasis detection method based on FMQA, in which the classification error rate (CER) computed by MDR is used as a black-box objective function. Experimental evaluations were conducted using simulated case-control datasets with predefined high-order epistasis. The results demonstrate that the proposed method successfully identified ground-truth epistasis across various interaction orders and the numbers of genetic loci within a limited number of iterations. These results indicate that the proposed method is effective and computationally efficient for high-order epistasis detection.
comment: 6 pages, 2 figures
MORE: Multi-Objective Adversarial Attacks on Speech Recognition
The emergence of large-scale automatic speech recognition (ASR) models such as Whisper has greatly expanded their adoption across diverse real-world applications. Ensuring robustness against even minor input perturbations is therefore critical for maintaining reliable performance in real-time environments. While prior work has mainly examined accuracy degradation under adversarial attacks, robustness with respect to efficiency remains largely unexplored. This narrow focus provides only a partial understanding of ASR model vulnerabilities. To address this gap, we conduct a comprehensive study of ASR robustness under multiple attack scenarios. We introduce MORE, a multi-objective repetitive doubling encouragement attack, which jointly degrades recognition accuracy and inference efficiency through a hierarchical staged repulsion-anchoring mechanism. Specifically, we reformulate multi-objective adversarial optimization into a hierarchical framework that sequentially achieves the dual objectives. To further amplify effectiveness, we propose a novel repetitive encouragement doubling objective (REDO) that induces duplicative text generation by maintaining accuracy degradation and periodically doubling the predicted sequence length. Overall, MORE compels ASR models to produce incorrect transcriptions at a substantially higher computational cost, triggered by a single adversarial input. Experiments show that MORE consistently yields significantly longer transcriptions while maintaining high word error rates compared to existing baselines, underscoring its effectiveness in multi-objective adversarial attack.
comment: 19 pages
Tackling Resource-Constrained and Data-Heterogeneity in Federated Learning with Double-Weight Sparse Pack AAAI 2026
Federated learning has drawn widespread interest from researchers, yet the data heterogeneity across edge clients remains a key challenge, often degrading model performance. Existing methods enhance model compatibility with data heterogeneity by splitting models and knowledge distillation. However, they neglect the insufficient communication bandwidth and computing power on the client, failing to strike an effective balance between addressing data heterogeneity and accommodating limited client resources. To tackle this limitation, we propose a personalized federated learning method based on cosine sparsification parameter packing and dual-weighted aggregation (FedCSPACK), which effectively leverages the limited client resources and reduces the impact of data heterogeneity on model performance. In FedCSPACK, the client packages model parameters and selects the most contributing parameter packages for sharing based on cosine similarity, effectively reducing bandwidth requirements. The client then generates a mask matrix anchored to the shared parameter package to improve the alignment and aggregation efficiency of sparse updates on the server. Furthermore, directional and distribution distance weights are embedded in the mask to implement a weighted-guided aggregation mechanism, enhancing the robustness and generalization performance of the global model. Extensive experiments across four datasets using ten state-of-the-art methods demonstrate that FedCSPACK effectively improves communication and computational efficiency while maintaining high model accuracy.
comment: Accepted in AAAI 2026
FAROS: Robust Federated Learning with Adaptive Scaling against Backdoor Attacks
Federated Learning (FL) enables multiple clients to collaboratively train a shared model without exposing local data. However, backdoor attacks pose a significant threat to FL. These attacks aim to implant a stealthy trigger into the global model, causing it to mislead on inputs that possess a specific trigger while functioning normally on benign data. Although pre-aggregation detection is a main defense direction, existing state-of-the-art defenses often rely on fixed defense parameters. This reliance makes them vulnerable to single-point-of-failure risks, rendering them less effective against sophisticated attackers. To address these limitations, we propose FAROS, an enhanced FL framework that incorporates Adaptive Differential Scaling (ADS) and Robust Core-set Computing (RCC). The ADS mechanism adjusts the defense's sensitivity dynamically, based on the dispersion of uploaded gradients by clients in each round. This allows it to counter attackers who strategically shift between stealthiness and effectiveness. Furthermore, the RCC effectively mitigates the risk of single-point failure by computing the centroid of a core set comprising clients with the highest confidence. We conducted extensive experiments across various datasets, models, and attack scenarios. The results demonstrate that our method outperforms current defenses in both attack success rate and main task accuracy.
RealPDEBench: A Benchmark for Complex Physical Systems with Real-World Data
Predicting the evolution of complex physical systems remains a central problem in science and engineering. Despite rapid progress in scientific Machine Learning (ML) models, a critical bottleneck is the lack of expensive real-world data, resulting in most current models being trained and validated on simulated data. Beyond limiting the development and evaluation of scientific ML, this gap also hinders research into essential tasks such as sim-to-real transfer. We introduce RealPDEBench, the first benchmark for scientific ML that integrates real-world measurements with paired numerical simulations. RealPDEBench consists of five datasets, three tasks, eight metrics, and ten baselines. We first present five real-world measured datasets with paired simulated datasets across different complex physical systems. We further define three tasks, which allow comparisons between real-world and simulated data, and facilitate the development of methods to bridge the two. Moreover, we design eight evaluation metrics, spanning data-oriented and physics-oriented metrics, and finally benchmark ten representative baselines, including state-of-the-art models, pretrained PDE foundation models, and a traditional method. Experiments reveal significant discrepancies between simulated and real-world data, while showing that pretraining with simulated data consistently improves both accuracy and convergence. In this work, we hope to provide insights from real-world data, advancing scientific ML toward bridging the sim-to-real gap and real-world deployment. Our benchmark, datasets, and instructions are available at https://realpdebench.github.io/.
comment: 46 pages, 21 figures
Aspect Extraction from E-Commerce Product and Service Reviews
Aspect Extraction (AE) is a key task in Aspect-Based Sentiment Analysis (ABSA), yet it remains difficult to apply in low-resource and code-switched contexts like Taglish, a mix of Tagalog and English commonly used in Filipino e-commerce reviews. This paper introduces a comprehensive AE pipeline designed for Taglish, combining rule-based, large language model (LLM)-based, and fine-tuning techniques to address both aspect identification and extraction. A Hierarchical Aspect Framework (HAF) is developed through multi-method topic modeling, along with a dual-mode tagging scheme for explicit and implicit aspects. For aspect identification, four distinct models are evaluated: a Rule-Based system, a Generative LLM (Gemini 2.0 Flash), and two Fine-Tuned Gemma-3 1B models trained on different datasets (Rule-Based vs. LLM-Annotated). Results indicate that the Generative LLM achieved the highest performance across all tasks (Macro F1 0.91), demonstrating superior capability in handling implicit aspects. In contrast, the fine-tuned models exhibited limited performance due to dataset imbalance and architectural capacity constraints. This work contributes a scalable and linguistically adaptive framework for enhancing ABSA in diverse, code-switched environments.
Moments Matter:Stabilizing Policy Optimization using Return Distributions
Deep Reinforcement Learning (RL) agents often learn policies that achieve the same episodic return yet behave very differently, due to a combination of environmental (random transitions, initial conditions, reward noise) and algorithmic (minibatch selection, exploration noise) factors. In continuous control tasks, even small parameter shifts can produce unstable gaits, complicating both algorithm comparison and real-world transfer. Previous work has shown that such instability arises when policy updates traverse noisy neighborhoods and that the spread of post-update return distribution $R(θ)$, obtained by repeatedly sampling minibatches, updating $θ$, and measuring final returns, is a useful indicator of this noise. Although explicitly constraining the policy to maintain a narrow $R(θ)$ can improve stability, directly estimating $R(θ)$ is computationally expensive in high-dimensional settings. We propose an alternative that takes advantage of environmental stochasticity to mitigate update-induced variability. Specifically, we model state-action return distribution through a distributional critic and then bias the advantage function of PPO using higher-order moments (skewness and kurtosis) of this distribution. By penalizing extreme tail behaviors, our method discourages policies from entering parameter regimes prone to instability. We hypothesize that in environments where post-update critic values align poorly with post-update returns, standard PPO struggles to produce a narrow $R(θ)$. In such cases, our moment-based correction narrows $R(θ)$, improving stability by up to 75% in Walker2D, while preserving comparable evaluation returns.
comment: Workshop paper at RLDM'25
Sparse Threats, Focused Defense: Criticality-Aware Robust Reinforcement Learning for Safe Autonomous Driving
Reinforcement learning (RL) has shown considerable potential in autonomous driving (AD), yet its vulnerability to perturbations remains a critical barrier to real-world deployment. As a primary countermeasure, adversarial training improves policy robustness by training the AD agent in the presence of an adversary that deliberately introduces perturbations. Existing approaches typically model the interaction as a zero-sum game with continuous attacks. However, such designs overlook the inherent asymmetry between the agent and the adversary and then fail to reflect the sparsity of safety-critical risks, rendering the achieved robustness inadequate for practical AD scenarios. To address these limitations, we introduce criticality-aware robust RL (CARRL), a novel adversarial training approach for handling sparse, safety-critical risks in autonomous driving. CARRL consists of two interacting components: a risk exposure adversary (REA) and a risk-targeted robust agent (RTRA). We model the interaction between the REA and RTRA as a general-sum game, allowing the REA to focus on exposing safety-critical failures (e.g., collisions) while the RTRA learns to balance safety with driving efficiency. The REA employs a decoupled optimization mechanism to better identify and exploit sparse safety-critical moments under a constrained budget. However, such focused attacks inevitably result in a scarcity of adversarial data. The RTRA copes with this scarcity by jointly leveraging benign and adversarial experiences via a dual replay buffer and enforces policy consistency under perturbations to stabilize behavior. Experimental results demonstrate that our approach reduces the collision rate by at least 22.66\% across all cases compared to state-of-the-art baseline methods.
Distributed Federated Learning by Alternating Periods of Training
Federated learning is a privacy-focused approach towards machine learning where models are trained on client devices with locally available data and aggregated at a central server. However, the dependence on a single central server is challenging in the case of a large number of clients and even poses the risk of a single point of failure. To address these critical limitations of scalability and fault-tolerance, we present a distributed approach to federated learning comprising multiple servers with inter-server communication capabilities. While providing a fully decentralized approach, the designed framework retains the core federated learning structure where each server is associated with a disjoint set of clients with server-client communication capabilities. We propose a novel DFL (Distributed Federated Learning) algorithm which uses alternating periods of local training on the client data followed by global training among servers. We show that the DFL algorithm, under a suitable choice of parameters, ensures that all the servers converge to a common model value within a small tolerance of the ideal model, thus exhibiting effective integration of local and global training models. Finally, we illustrate our theoretical claims through numerical simulations.
HyperCLOVA X 8B Omni
In this report, we present HyperCLOVA X 8B Omni, the first any-to-any omnimodal model in the HyperCLOVA X family that supports text, audio, and vision as both inputs and outputs. By consolidating multimodal understanding and generation into a single model rather than separate modality-specific pipelines, HyperCLOVA X 8B Omni serves as an 8B-scale omni-pathfinding point toward practical any-to-any omni assistants. At a high level, the model unifies modalities through a shared next-token prediction interface over an interleaved multimodal sequence, while vision and audio encoders inject continuous embeddings for fine-grained understanding and grounding. Empirical evaluations demonstrate competitive performance against comparably sized models across diverse input-output combinations spanning text, audio, and vision, in both Korean and English. We anticipate that the open-weight release of HyperCLOVA X 8B Omni will support a wide range of research and deployment scenarios.
comment: Technical Report
UnPII: Unlearning Personally Identifiable Information with Quantifiable Exposure Risk
The ever-increasing adoption of Large Language Models in critical sectors like finance, healthcare, and government raises privacy concerns regarding the handling of sensitive Personally Identifiable Information (PII) during training. In response, regulations such as European Union's General Data Protection Regulation (GDPR) mandate the deletion of PII upon requests, underscoring the need for reliable and cost-effective data removal solutions. Machine unlearning has emerged as a promising direction for selectively forgetting data points. However, existing unlearning techniques typically apply a uniform forgetting strategy that neither accounts for the varying privacy risks posed by different PII attributes nor reflects associated business risks. In this work, we propose UnPII, the first PII-centric unlearning approach that prioritizes forgetting based on the risk of individual or combined PII attributes. To this end, we introduce the PII risk index (PRI), a composite metric that incorporates multiple dimensions of risk factors: identifiability, sensitivity, usability, linkability, permanency, exposability, and compliancy. The PRI enables a nuanced evaluation of privacy risks associated with PII exposures and can be tailored to align with organizational privacy policies. To support realistic assessment, we systematically construct a synthetic PII dataset (e.g., 1,700 PII instances) that simulates realistic exposure scenarios. UnPII seamlessly integrates with established unlearning algorithms, such as Gradient Ascent, Negative Preference Optimization, and Direct Preference Optimization, without modifying their underlying principles. Our experimental results demonstrate that UnPII achieves the improvements of accuracy up to 11.8%, utility up to 6.3%, and generalizability up to 12.4%, respectively, while incurring a modest fine-tuning overhead of 27.5% on average during unlearning.
comment: 11 pages, 7 Tables, 6 Figures To appear in the Software Engineering in Practice (SEIP) track of ICSE
SRAS: A Lightweight Reinforcement Learning-based Document Selector for Edge-Native RAG Pipelines
Retrieval-Augmented Generation (RAG) systems often rely on fixed top-k document selection mechanisms that ignore downstream generation quality and impose computational overheads. We propose SRAS (Sparse Reward-Aware Selector), a lightweight document selector trained via reinforcement learning (RL) for edge-native RAG deployment. Unlike prior RL-based retrievers that assume large memory and latency budgets, SRAS learns a compact (~0.76MB) policy using Proximal Policy Optimization (PPO), guided by a hybrid reward signal combining Relaxed F1 and BERTScore. Our method operates under tight token and compute constraints, maintaining <1s latency on CPU. SRAS outperforms supervised and random selectors on a synthetic QA benchmark, and generalizes to real-world data, achieving BERTScore F1 of 0.8546 on SQuAD v2 without domain-specific tuning. This work is the first to demonstrate that RL-based document selection can be made ultra-lightweight, latency-aware, and effective for on-device RAG pipelines.
comment: Presented at ICEdge 2025; nominated for Best Paper Award
Subimage Overlap Prediction: Task-Aligned Self-Supervised Pretraining For Semantic Segmentation In Remote Sensing Imagery WACV 2026
Self-supervised learning (SSL) methods have become a dominant paradigm for creating general purpose models whose capabilities can be transferred to downstream supervised learning tasks. However, most such methods rely on vast amounts of pretraining data. This work introduces Subimage Overlap Prediction, a novel self-supervised pretraining task to aid semantic segmentation in remote sensing imagery that uses significantly lesser pretraining imagery. Given an image, a sub-image is extracted and the model is trained to produce a semantic mask of the location of the extracted sub-image within the original image. We demonstrate that pretraining with this task results in significantly faster convergence, and equal or better performance (measured via mIoU) on downstream segmentation. This gap in convergence and performance widens when labeled training data is reduced. We show this across multiple architecture types, and with multiple downstream datasets. We also show that our method matches or exceeds performance while requiring significantly lesser pretraining data relative to other SSL methods. Code and model weights are provided at \href{https://github.com/sharmalakshay93/subimage-overlap-prediction}{github.com/sharmalakshay93/subimage-overlap-prediction}.
comment: Accepted at CV4EO Workshop at WACV 2026
Machine learning modularity
Based on a transformer based sequence-to-sequence architecture combined with a dynamic batching algorithm, this work introduces a machine learning framework for automatically simplifying complex expressions involving multiple elliptic Gamma functions, including the $q$-$θ$ function and the elliptic Gamma function. The model learns to apply algebraic identities, particularly the SL$(2,\mathbb{Z})$ and SL$(3,\mathbb{Z})$ modular transformations, to reduce heavily scrambled expressions to their canonical forms. Experimental results show that the model achieves over 99\% accuracy on in-distribution tests and maintains robust performance (exceeding 90\% accuracy) under significant extrapolation, such as with deeper scrambling depths. This demonstrates that the model has internalized the underlying algebraic rules of modular transformations rather than merely memorizing training patterns. Our work presents the first successful application of machine learning to perform symbolic simplification using modular identities, offering a new automated tool for computations with special functions in quantum field theory and the string theory.
comment: 34 pages, 7 figures, 6 tables
Sparse Convex Biclustering
Biclustering is an essential unsupervised machine learning technique for simultaneously clustering rows and columns of a data matrix, with widespread applications in genomics, transcriptomics, and other high-dimensional omics data. Despite its importance, existing biclustering methods struggle to meet the demands of modern large-scale datasets. The challenges stem from the accumulation of noise in high-dimensional features, the limitations of non-convex optimization formulations, and the computational complexity of identifying meaningful biclusters. These issues often result in reduced accuracy and stability as the size of the dataset increases. To overcome these challenges, we propose Sparse Convex Biclustering (SpaCoBi), a novel method that penalizes noise during the biclustering process to improve both accuracy and robustness. By adopting a convex optimization framework and introducing a stability-based tuning criterion, SpaCoBi achieves an optimal balance between cluster fidelity and sparsity. Comprehensive numerical studies, including simulations and an application to mouse olfactory bulb data, demonstrate that SpaCoBi significantly outperforms state-of-the-art methods in accuracy. These results highlight SpaCoBi as a robust and efficient solution for biclustering in high-dimensional and large-scale datasets.
Context-Free Recognition with Transformers
Transformers excel on tasks that process well-formed inputs according to some grammar, such as natural language and code. However, it remains unclear how they can process grammatical syntax. In fact, under standard complexity conjectures, standard transformers cannot recognize context-free languages (CFLs), a canonical formalism to describe syntax, or even regular languages, a subclass of CFLs (Merrill et al., 2022). Merrill & Sabharwal (2024) show that $\mathcal{O}(\log n)$ looping layers (w.r.t. input length $n$) allows transformers to recognize regular languages, but the question of context-free recognition remained open. In this work, we show that looped transformers with $\mathcal{O}(\log n)$ looping layers and $\mathcal{O}(n^6)$ padding tokens can recognize all CFLs. However, training and inference with $\mathcal{O}(n^6)$ padding tokens is potentially impractical. Fortunately, we show that, for natural subclasses such as unambiguous CFLs, the recognition problem on transformers becomes more tractable, requiring $\mathcal{O}(n^3)$ padding. We empirically validate our results and show that looping helps on a language that provably requires logarithmic depth. Overall, our results shed light on the intricacy of CFL recognition by transformers: While general recognition may require an intractable amount of padding, natural constraints such as unambiguity yield efficient recognition algorithms.
Crafting Adversarial Inputs for Large Vision-Language Models Using Black-Box Optimization
Recent advancements in Large Vision-Language Models (LVLMs) have shown groundbreaking capabilities across diverse multimodal tasks. However, these models remain vulnerable to adversarial jailbreak attacks, where adversaries craft subtle perturbations to bypass safety mechanisms and trigger harmful outputs. Existing white-box attacks methods require full model accessibility, suffer from computing costs and exhibit insufficient adversarial transferability, making them impractical for real-world, black-box settings. To address these limitations, we propose a black-box jailbreak attack on LVLMs via Zeroth-Order optimization using Simultaneous Perturbation Stochastic Approximation (ZO-SPSA). ZO-SPSA provides three key advantages: (i) gradient-free approximation by input-output interactions without requiring model knowledge, (ii) model-agnostic optimization without the surrogate model and (iii) lower resource requirements with reduced GPU memory consumption. We evaluate ZO-SPSA on three LVLMs, including InstructBLIP, LLaVA and MiniGPT-4, achieving the highest jailbreak success rate of 83.0% on InstructBLIP, while maintaining imperceptible perturbations comparable to white-box methods. Moreover, adversarial examples generated from MiniGPT-4 exhibit strong transferability to other LVLMs, with ASR reaching 64.18%. These findings underscore the real-world feasibility of black-box jailbreaks and expose critical weaknesses in the safety mechanisms of current LVLMs
comment: EACL
Latent Space Element Method
How can we build surrogate solvers that train on small domains but scale to larger ones without intrusive access to PDE operators? Inspired by the Data-Driven Finite Element Method (DD-FEM) framework for modular data-driven solvers, we propose the Latent Space Element Method (LSEM), an element-based latent surrogate assembly approach in which a learned subdomain ("element") model can be tiled and coupled to form a larger computational domain. Each element is a LaSDI latent ODE surrogate trained from snapshots on a local patch, and neighboring elements are coupled through learned directional interaction terms in latent space, avoiding Schwarz iterations and interface residual evaluations. A smooth window-based blending reconstructs a global field from overlapping element predictions, yielding a scalable assembled latent dynamical system. Experiments on the 1D Burgers and Korteweg-de Vries equations show that LSEM maintains predictive accuracy while scaling to spatial domains larger than those seen in training. LSEM offers an interpretable and extensible route toward foundation-model surrogate solvers built from reusable local models.
comment: 17 pages, 10 figures
Entropy-Aligned Decoding of LMs for Better Writing and Reasoning
Language models (LMs) are trained on billions of tokens in an attempt to recover the true language distribution. Still, vanilla random sampling from LMs yields low quality generations. Decoding algorithms attempt to restrict the LM distribution to a set of high-probability continuations, but rely on greedy heuristics that introduce myopic distortions, yielding sentences that are homogeneous, repetitive and incoherent. In this paper, we introduce EPIC, a hyperparameter-free decoding approach that incorporates the entropy of future trajectories into LM decoding. EPIC explicitly regulates the amount of uncertainty expressed at every step of generation, aligning the sampling distribution's entropy to the aleatoric (data) uncertainty. Through Entropy-Aware Lazy Gumbel-Max sampling, EPIC manages to be exact, while also being efficient, requiring only a sublinear number of entropy evaluations per step. Unlike current baselines, EPIC yields sampling distributions that are empirically well-aligned with the entropy of the underlying data distribution. Across creative writing and summarization tasks, EPIC consistently improves LM-as-judge preference win-rates over widely used decoding strategies. These preference gains are complemented by automatic metrics, showing that EPIC produces more diverse generations and more faithful summaries. We also evaluate EPIC on mathematical reasoning, where it outperforms all baselines.
RelayGR: Scaling Long-Sequence Generative Recommendation via Cross-Stage Relay-Race Inference
Real-time recommender systems execute multi-stage cascades (retrieval, pre-processing, fine-grained ranking) under strict tail-latency SLOs, leaving only tens of milliseconds for ranking. Generative recommendation (GR) models can improve quality by consuming long user-behavior sequences, but in production their online sequence length is tightly capped by the ranking-stage P99 budget. We observe that the majority of GR tokens encode user behaviors that are independent of the item candidates, suggesting an opportunity to pre-infer a user-behavior prefix once and reuse it during ranking rather than recomputing it on the critical path. Realizing this idea at industrial scale is non-trivial: the prefix cache must survive across multiple pipeline stages before the final ranking instance is determined, the user population implies cache footprints far beyond a single device, and indiscriminate pre-inference would overload shared resources under high QPS. We present RelayGR, a production system that enables in-HBM relay-race inference for GR. RelayGR selectively pre-infers long-term user prefixes, keeps their KV caches resident in HBM over the request lifecycle, and ensures the subsequent ranking can consume them without remote fetches. RelayGR combines three techniques: 1) a sequence-aware trigger that admits only at-risk requests under a bounded cache footprint and pre-inference load, 2) an affinity-aware router that co-locates cache production and consumption by routing both the auxiliary pre-infer signal and the ranking request to the same instance, and 3) a memory-aware expander that uses server-local DRAM to capture short-term cross-request reuse while avoiding redundant reloads. We implement RelayGR on Huawei Ascend NPUs and evaluate it with real queries. Under a fixed P99 SLO, RelayGR supports up to 1.5$\times$ longer sequences and improves SLO-compliant throughput by up to 3.6$\times$.
Reinforcement Learning for Option Hedging: Static Implied-Volatility Fit versus Shortfall-Aware Performance
We extend the Q-learner in Black-Scholes (QLBS) framework by incorporating risk aversion and trading costs, and propose a novel Replication Learning of Option Pricing (RLOP) approach. Both methods are fully compatible with standard reinforcement learning algorithms and operate under market frictions. Using SPY and XOP option data, we evaluate performance along static and dynamic dimensions. Adaptive-QLBS achieves higher static pricing accuracy in implied volatility space, while RLOP delivers superior dynamic hedging performance by reducing shortfall probability. These results highlight the importance of evaluating option pricing models beyond static fit, emphasizing realized hedging outcomes.
Digital Twin-Driven Communication-Efficient Federated Anomaly Detection for Industrial IoT
Anomaly detection is increasingly becoming crucial for maintaining the safety, reliability, and efficiency of industrial systems. Recently, with the advent of digital twins and data-driven decision-making, several statistical and machine-learning methods have been proposed. However, these methods face several challenges, such as dependence on only real sensor datasets, limited labeled data, high false alarm rates, and privacy concerns. To address these problems, we propose a suite of digital twin-integrated federated learning (DTFL) methods that enhance global model performance while preserving data privacy and communication efficiency. Specifically, we present five novel approaches: Digital Twin-Based Meta-Learning (DTML), Federated Parameter Fusion (FPF), Layer-wise Parameter Exchange (LPE), Cyclic Weight Adaptation (CWA), and Digital Twin Knowledge Distillation (DTKD). Each method introduces a unique mechanism to combine synthetic and real-world knowledge, balancing generalization with communication overhead. We conduct an extensive experiment using a publicly available cyber-physical anomaly detection dataset. For a target accuracy of 80%, CWA reaches the target in 33 rounds, FPF in 41 rounds, LPE in 48 rounds, and DTML in 87 rounds, whereas the standard FedAvg baseline and DTKD do not reach the target within 100 rounds. These results highlight substantial communication-efficiency gains (up to 62% fewer rounds than DTML and 31% fewer than LPE) and demonstrate that integrating DT knowledge into FL accelerates convergence to operationally meaningful accuracy thresholds for IIoT anomaly detection.
Hidden costs for inference with deep network on embedded system devices
This study evaluates the inference performance of various deep learning models under an embedded system environment. In previous works, Multiply-Accumulate operation is typically used to measure computational load of a deep model. According to this study, however, this metric has a limitation to estimate inference time on embedded devices. This paper poses the question of what aspects are overlooked when expressed in terms of Multiply-Accumulate operations. In experiments, an image classification task is performed on an embedded system device using the CIFAR-100 dataset to compare and analyze the inference times of ten deep models with the theoretically calculated Multiply-Accumulate operations for each model. The results highlight the importance of considering additional computations between tensors when optimizing deep learning models for real-time performing in embedded systems.
comment: published in Proc. of IEEE ICCE 2025
Scaling Open-Ended Reasoning to Predict the Future
High-stakes decision making involves reasoning under uncertainty about the future. In this work, we train language models to make predictions on open-ended forecasting questions. To scale up training data, we synthesize novel forecasting questions from global events reported in daily news, using a fully automated, careful curation recipe. We train the Qwen3 thinking models on our dataset, OpenForesight. To prevent leakage of future information during training and evaluation, we use an offline news corpus, both for data generation and retrieval in our forecasting system. Guided by a small validation set, we show the benefits of retrieval, and an improved reward function for reinforcement learning (RL). Once we obtain our final forecasting system, we perform held-out testing between May to August 2025. Our specialized model, OpenForecaster 8B, matches much larger proprietary models, with our training improving the accuracy, calibration, and consistency of predictions. We find calibration improvements from forecasting training generalize across popular benchmarks. We open-source all our models, code, and data to make research on language model forecasting broadly accessible.
comment: 45 pages
Causal Multi-fidelity Surrogate Forward and Inverse Models for ICF Implosions
Continued progress in inertial confinement fusion (ICF) requires solving inverse problems relating experimental observations to simulation input parameters, followed by design optimization. However, such high-dimensional dynamic PDE-constrained optimization problems are extremely challenging or even intractable. It has been recently shown that inverse problems can be solved by only considering certain robust features. Here we consider the ICF capsule's deuterium-tritium (DT) interface, and construct a causal, dynamic, multifidelity reduced-order surrogate that maps from a time-dependent radiation temperature drive to the interface's radius and velocity dynamics. The surrogate targets an ODE embedding of DT interface dynamics, and is constructed by learning a controller for a base analytical model using low- and high-fidelity simulation training data with respect to radiation energy group structure. After demonstrating excellent accuracy of the surrogate interface model, we use machine learning (ML) models with surrogate-generated data to solve inverse problems optimizing radiation temperature drive to reproduce observed interface dynamics. For sparse snapshots in time, the ML model further characterizes the most informative times at which to sample dynamics. Altogether we demonstrate how operator learning, causal architectures, and physical inductive bias can be integrated to accelerate discovery, design, and diagnostics in high-energy-density systems.
SteganoBackdoor: Stealthy and Data-Efficient Backdoor Attacks on Language Models
Modern language models remain vulnerable to backdoor attacks via poisoned data, where training inputs containing a trigger are paired with a target output, causing the model to reproduce that behavior whenever the trigger appears at inference time. Recent work has emphasized stealthy attacks that stress-test data-curation defenses using stylized artifacts or token-level perturbations as triggers, but this focus leaves a more practically relevant threat model underexplored: backdoors tied to naturally occurring semantic concepts. We introduce SteganoBackdoor, an optimization-based framework that constructs SteganoPoisons, steganographic poisoned training examples in which a backdoor payload is distributed across a fluent sentence while exhibiting no representational overlap with the inference-time semantic trigger. Across diverse model architectures, SteganoBackdoor achieves high attack success under constrained poisoning budgets and remains effective under conservative data-level filtering, highlighting a blind spot in existing data-curation defenses.
Non-omniscient backdoor injection with one poison sample: Proving the one-poison hypothesis for linear regression, linear classification, and 2-layer ReLU neural networks
Backdoor poisoning attacks are a threat to machine learning models trained on large data collected from untrusted sources; these attacks enable attackers to inject malicious behavior into the model that can be triggered by specially crafted inputs. Prior work has established bounds on the success of backdoor attacks and their impact on the benign learning task, however, an open question is what amount of poison data is needed for a successful backdoor attack. Typical attacks either use few samples but need much information about the data points, or need to poison many data points. In this paper, we formulate the one-poison hypothesis: An adversary with one poison sample and limited background knowledge can inject a backdoor with zero backdooring-error and without significantly impacting the benign learning task performance. Moreover, we prove the one-poison hypothesis for linear regression, linear classification, and 2-layer ReLU neural networks. For adversaries that utilize a direction unused by the clean data distribution for the poison sample, we prove for linear classification and linear regression that the resulting model is functionally equivalent to a model where the poison was excluded from training. We build on prior work on statistical backdoor learning to show that in all other cases, the impact on the benign learning task is still limited. We validate our theoretical results experimentally with realistic benchmark data sets.
comment: Added generalization to 2-layer ReLU neural networks
Grounded Test-Time Adaptation for LLM Agents
Large language model (LLM)-based agents struggle to generalize to novel and complex environments, such as unseen websites or new sets of functions, due to a fundamental mismatch between their pre-training and test-time conditions. This challenge stems from two distinct failure modes: a syntactic misunderstanding of environment-specific components like observation formats, and a semantic misunderstanding of state-transition dynamics, which are only revealed at test time. To address these issues, we propose two distinct and complementary strategies for adapting LLM agents by leveraging environment-specific information available during deployment. First, an online distributional adaptation method parameterizes environmental nuances by learning a lightweight adaptation vector that biases the model's output distribution, enabling rapid alignment with an environment response format. Second, a deployment-time dynamics grounding method employs a persona-driven exploration phase to systematically probe and learn the environment's causal dynamics before task execution, equipping the agent with a nonparametric world model. We evaluate these strategies across diverse agentic benchmarks, including function calling and web navigation. Our empirical results show the effectiveness of both strategies across all benchmarks with minimal computational cost. We find that dynamics grounding is particularly effective in complex environments where unpredictable dynamics pose a major obstacle, demonstrating a robust path toward more generalizable and capable LLM-based agents. For example, on the WebArena multi-site split, this method increases the agent's success rate from 2% to 23%.
comment: Our code is available here: https://github.com/r2llab/GTTA
Anytime-Valid Answer Sufficiency Certificates for LLM Generation via Sequential Information Lift
We introduce Sequential-EDFL (Empirical Dynamic Formal Lift), which applies anytime-valid sequential testing to language model generation stopping. Our approach tracks information lift, defined as the log-likelihood ratio between the full model and deliberately weakened "skeleton" baselines, using self-normalized empirical-Bernstein e-processes that provide formal delta-level error control regardless of stopping time. This delta guarantee controls premature stopping when information lift is insufficient relative to the skeleton, and it does not imply delta control of factual incorrectness or hallucinations. We handle unknown centering through online mean estimation, combine multiple parameters via mixture e-processes, and support adaptive resets under distributional drift. On six benchmarks, Sequential-EDFL reduces generation length by 22 to 28 percent relative to sequential baselines while maintaining delta-level control with 12 percent computational overhead. We introduce automated skeletons (distilled submodels and randomized logits) and show robustness across skeleton families. Composing EDFL with a lightweight correctness gate (sentence boundaries plus a verifier) improves end-task correctness while preserving anytime-valid guarantees by only delaying stopping. Our certificates control information sufficiency, not factual correctness. Specifically, 10.9 percent of stopped sequences remain incorrect even with the gate (13.2 to 22.7 percent without it). EDFL serves as a first-stage filter that can reduce verification burden: when applied to stopped sequences, the gate validates 83 percent of stops, requiring full verification only for the remaining 17 percent, plus all non-stopped sequences. EDFL is not a standalone solution for safety-critical domains.
Language as a Wave Phenomenon: Iso-Energetic Phase-Locking and Semantic Interference in Neural Networks
Conventional deep learning paradigms rely on metabolically expensive magnitude-based representations, rendering them fundamentally incompatible with passive photonic hardware. We introduce PRISM, a sequence modeling architecture that bridges high-level reasoning and physical constraints by enforcing an Iso-Energetic (Unity Gain) principle, compelling the network to encode semantic information exclusively in the phase angle. Validated on the WMT14 translation benchmark, PRISM achieves a 0.799 COMET score, demonstrating that phase-based reasoning competes with standard Transformers (0.821) and functionally matches unconstrained spectral baselines like FNet (0.805), despite enforcing strict energy constraints and requiring 11.5% fewer parameters. Furthermore, to verify hardware feasibility, we simulate a Holographic Backpropagation mechanism on a noisy, 4-bit optical correlator. Ablation studies reveal a substantial performance gain (48.4% vs. 62.4%) over a frozen baseline, proving that the proposed phase-steering mechanism actively optimizes physical parameters under strict energy constraints. These results establish an existence proof that ultra-low-power, passive optical hardware can support high-level linguistic intelligence without sacrificing representational capacity.
comment: Major Revision. Title changed to reflect the new theoretical framework. Complete narrative shift from "Optimization Efficiency" to "Iso-Energetic Phase Coding" and "Optical Hardware Compatibility". Replaced ISMR diagnostics with Holographic Optical Learning simulations and mechanistic "Dual-Regime" phase analysis. Comparison with spectral baselines (FNet) added
Quantum Enhanced Anomaly Detection for ADS-B Data using Hybrid Deep Learning
The emerging field of Quantum Machine Learning (QML) has shown promising advantages in accelerating processing speed and effectively handling the high dimensionality associated with complex datasets. Quantum Computing (QC) enables more efficient data manipulation through the quantum properties of superposition and entanglement. In this paper, we present a novel approach combining quantum and classical machine learning techniques to explore the impact of quantum properties for anomaly detection in Automatic Dependent Surveillance-Broadcast (ADS-B) data. We compare the performance of a Hybrid-Fully Connected Quantum Neural Network (H-FQNN) with different loss functions and use a publicly available ADS-B dataset to evaluate the performance. The results demonstrate competitive performance in detecting anomalies, with accuracies ranging from 90.17% to 94.05%, comparable to the performance of a traditional Fully Connected Neural Network (FNN) model, which achieved accuracies between 91.50% and 93.37%.
comment: This is the author's version of the work accepted for publication in the IEEE-AIAA Digital Avionics Systems Conference (DASC) 2025. The final version version is available via IEEE Xplore
mHC: Manifold-Constrained Hyper-Connections
Recently, studies exemplified by Hyper-Connections (HC) have extended the ubiquitous residual connection paradigm established over the past decade by expanding the residual stream width and diversifying connectivity patterns. While yielding substantial performance gains, this diversification fundamentally compromises the identity mapping property intrinsic to the residual connection, which causes severe training instability and restricted scalability, and additionally incurs notable memory access overhead. To address these challenges, we propose Manifold-Constrained Hyper-Connections (mHC), a general framework that projects the residual connection space of HC onto a specific manifold to restore the identity mapping property, while incorporating rigorous infrastructure optimization to ensure efficiency. Empirical experiments demonstrate that mHC is effective for training at scale, offering tangible performance improvements and superior scalability. We anticipate that mHC, as a flexible and practical extension of HC, will contribute to a deeper understanding of topological architecture design and suggest promising directions for the evolution of foundational models.
Development of a high-resolution indoor radon map using a new machine learning-based probabilistic model and German radon survey data
Accurate knowledge of indoor radon concentration is crucial for assessing radon-related health effects or identifying radon-prone areas. Indoor radon concentration at the national scale is usually estimated on the basis of extensive measurement campaigns. However, characteristics of the sampled households often differ from the characteristics of the target population owing to the large number of relevant factors that control the indoor radon concentration, such as the availability of geogenic radon or floor level. We propose a model-based approach that allows a more realistic estimation of indoor radon distribution with a higher spatial resolution than a purely data-based approach. A modeling approach was used by applying a quantile regression forest to estimate the probability distribution function of indoor radon for each floor level of each residential building in Germany. Based on the estimated probability distribution function,a probabilistic Monte Carlo sampling technique was applied, enabling the combination and population weighting of floor-level predictions. In this way,the uncertainty of the individual predictions is effectively propagated into the estimate of variability at the aggregated level. The results show an approximate lognormal distribution of indoor radon in dwellings in Germany with an arithmetic mean of 63 Bq/m3, a geometric mean of 41 Bq/m3, and a 95th percentile of 180 Bq/m3. The exceedance probabilities for 100 and 300 Bq/m3 are 12.5% (10.5 million people affected) and 2.2 % (1.9 million people affected), respectively. The advantages of our approach are that it yields a) an accurate estimation of indoor radon concentration even if the survey is not fully representative with respect to floor level and radon concentration in soil, and b) an estimate of the indoor radon distribution with a much higher spatial resolution than basic descriptive statistics.
Towards Fair In-Context Learning with Tabular Foundation Models
Transformer-based tabular foundation models have recently demonstrated promising in-context learning (ICL) performance on structured data, emerging as competitive alternatives to gradient-boosted trees. However, the fairness implications of this new paradigm remain largely unexplored. We present the first investigation of fairness in tabular ICL, evaluating three recently proposed foundation models--TabPFNv2, TabICL, and TabDPT--on multiple benchmark datasets. To mitigate biases, we explore three pre-processing fairness-enhancing methods: correlation removal (decorrelating input features from the sensitive attribute), group-balanced sample selection (ensuring equal representation of protected groups in context examples), and uncertainty-based sample selection (prioritizing context examples with high sensitive-attribute prediction uncertainty). Our experiments show that the uncertainty-based strategy consistently improves group fairness metrics (e.g., demographic parity, equalized odds, and equal opportunity) with minimal impact on predictive accuracy. We release our code to facilitate reproducibility https://github.com/patrikken/Fair-TabICL.
comment: Published in Transactions on Machine Learning Research (TMLR)
Training More Robust Classification Model via Discriminative Loss and Gaussian Noise Injection
Robustness of deep neural networks to input noise remains a critical challenge, as naive noise injection often degrades accuracy on clean (uncorrupted) data. We propose a novel training framework that addresses this trade-off through two complementary objectives. First, we introduce a loss function applied at the penultimate layer that explicitly enforces intra-class compactness and increases the margin to analytically defined decision boundaries. This enhances feature discriminativeness and class separability for clean data. Second, we propose a class-wise feature alignment mechanism that brings noisy data clusters closer to their clean counterparts. Furthermore, we provide a theoretical analysis demonstrating that improving feature stability under additive Gaussian noise implicitly reduces the curvature of the softmax loss landscape in input space, as measured by Hessian eigenvalues.This thus naturally enhances robustness without explicit curvature penalties. Conversely, we also theoretically show that lower curvatures lead to more robust models. We validate the effectiveness of our method on standard benchmarks and our custom dataset. Our approach significantly reinforces model robustness to various perturbations while maintaining high accuracy on clean data, advancing the understanding and practice of noise-robust deep learning.
comment: Published in Transactions on Machine Learning Research (TMLR)
Subgroup Discovery with the Cox Model
We study the problem of subgroup discovery for survival analysis, where the goal is to find an interpretable subset of the data on which a Cox model is highly accurate. Our work is the first to study this particular subgroup problem, for which we make several contributions. Subgroup discovery methods generally require a "quality function" in order to sift through and select the most advantageous subgroups. We first examine why existing natural choices for quality functions are insufficient to solve the subgroup discovery problem for the Cox model. To address the shortcomings of existing metrics, we introduce two technical innovations: the *expected prediction entropy (EPE)*, a novel metric for evaluating survival models which predict a hazard function; and the *conditional rank statistics (CRS)*, a statistical object which quantifies the deviation of an individual point to the distribution of survival times in an existing subgroup. We study the EPE and CRS theoretically and show that they can solve many of the problems with existing metrics. We introduce a total of eight algorithms for the Cox subgroup discovery problem. The main algorithm is able to take advantage of both the EPE and the CRS, allowing us to give theoretical correctness results for this algorithm in a well-specified setting. We evaluate all of the proposed methods empirically on both synthetic and real data. The experiments confirm our theory, showing that our contributions allow for the recovery of a ground-truth subgroup in well-specified cases, as well as leading to better model fit compared to naively fitting the Cox model to the whole dataset in practical settings. Lastly, we conduct a case study on jet engine simulation data from NASA. The discovered subgroups uncover known nonlinearities/homogeneity in the data, and which suggest design choices which have been mirrored in practice.
comment: 43 pages, 2 figures
Learning Evolving Latent Strategies for Multi-Agent Language Systems without Model Fine-Tuning
This study proposes a multi-agent language framework that enables continual strategy evolution without fine-tuning the language model's parameters. The core idea is to liberate the latent vectors of abstract concepts from traditional static semantic representations, allowing them to be continuously updated through environmental interaction and reinforcement feedback. We construct a dual-loop architecture: the behavior loop adjusts action preferences based on environmental rewards, while the language loop updates the external latent vectors by reflecting on the semantic embeddings of generated text. Together, these mechanisms allow agents to develop stable and disentangled strategic styles over long-horizon multi-round interactions. Experiments show that agents' latent spaces exhibit clear convergence trajectories under reflection-driven updates, along with structured shifts at critical moments. Moreover, the system demonstrates an emergent ability to implicitly infer and continually adapt to emotional agents, even without shared rewards. These results indicate that, without modifying model parameters, an external latent space can provide language agents with a low-cost, scalable, and interpretable form of abstract strategic representation.
comment: 17 pages, 5 figures. Code available at https://github.com/wltang-dev/Latent-Strategy-RL-Agent
Tuning without Peeking: Provable Generalization Bounds and Robust LLM Post-Training
Gradient-based optimization is the workhorse of deep learning, offering efficient and scalable training via backpropagation. However, exposing gradients during training can leak sensitive information about the underlying data, raising privacy and security concerns such as susceptibility to data poisoning attacks. In contrast, black box optimization methods, which treat the model as an opaque function, relying solely on function evaluations to guide optimization, offer a promising alternative in scenarios where data access is restricted, adversarial risks are high, or overfitting is a concern. This paper introduces BBoxER, an evolutionary black-box method for LLM post-training that induces an information bottleneck via implicit compression of the training data. Leveraging the tractability of information flow, we provide non-vacuous generalization bounds and strong theoretical guarantees for privacy, robustness to data poisoning attacks, and extraction attacks. In experiments with LLMs, we demonstrate empirically that black-box optimization methods, despite the scalability and computational challenges inherent to black-box approaches, are able to learn, showing how a few iterations of BBoxER improve performance, generalize well on a benchmark of reasoning datasets, and are robust to membership inference attacks. This positions BBoxER as an attractive add-on on top of gradient-based optimization, offering suitability for deployment in restricted or privacy-sensitive environments while also providing non-vacuous generalization guarantees.
Perch 2.0: The Bittern Lesson for Bioacoustics
Perch is a performant pre-trained model for bioacoustics. It was trained in supervised fashion, providing both off-the-shelf classification scores for thousands of vocalizing species as well as strong embeddings for transfer learning. In this new release, Perch 2.0, we expand from training exclusively on avian species to a large multi-taxa dataset. The model is trained with self-distillation using a prototype-learning classifier as well as a new source-prediction training criterion. Perch 2.0 obtains state-of-the-art performance on the BirdSet and BEANS benchmarks. It also outperforms specialized marine models on marine transfer learning tasks, despite having almost no marine training data. We present hypotheses as to why fine-grained species classification is a particularly robust pre-training task for bioacoustics.
Bayesian uncertainty-aware deep learning with noisy labels: Tackling annotation ambiguity in EEG seizure detection
Deep learning is advancing EEG processing for automated epileptic seizure detection and onset zone localization, yet its performance relies heavily on high-quality annotated training data. However, scalp EEG is susceptible to high noise levels, which in turn leads to imprecise annotations of the seizure timing and characteristics. This "label noise" presents a significant challenge in model training and generalization. In this paper, we introduce Bayesian UncertaiNty-aware Deep Learning (BUNDL), a novel algorithm that informs a deep learning model of label ambiguities, thereby enhancing the robustness of seizure detection systems. By integrating domain knowledge into an underlying Bayesian framework, we derive a novel KL-divergence-based loss function that capitalizes on uncertainty to better learn seizure characteristics from scalp EEG. Thus, BUNDL offers a straightforward and model-agnostic method for training deep neural networks with noisy training labels that does not add any parameters to existing architectures. Additionally, we explore the impact of improved detection system on the task of automated onset zone localization. We validate BUNDL using a comprehensive simulated EEG dataset and two publicly available datasets collected by Temple University Hospital (TUH) and Boston Children's Hospital (CHB-MIT). Results show that BUNDL consistently identifies noisy labels and improves the robustness of three base models under various label noise conditions. We also evaluate cross-site generalizability and quantify computational cost of all methods. Ultimately, BUNDL presents as a reliable method that can be seamlessly integrated with existing deep models used in clinical practice, enabling the training of trustworthy models for epilepsy evaluation.
Matrix Manifold Neural Networks++
Deep neural networks (DNNs) on Riemannian manifolds have garnered increasing interest in various applied areas. For instance, DNNs on spherical and hyperbolic manifolds have been designed to solve a wide range of computer vision and nature language processing tasks. One of the key factors that contribute to the success of these networks is that spherical and hyperbolic manifolds have the rich algebraic structures of gyrogroups and gyrovector spaces. This enables principled and effective generalizations of the most successful DNNs to these manifolds. Recently, some works have shown that many concepts in the theory of gyrogroups and gyrovector spaces can also be generalized to matrix manifolds such as Symmetric Positive Definite (SPD) and Grassmann manifolds. As a result, some building blocks for SPD and Grassmann neural networks, e.g., isometric models and multinomial logistic regression (MLR) can be derived in a way that is fully analogous to their spherical and hyperbolic counterparts. Building upon these works, we design fully-connected (FC) and convolutional layers for SPD neural networks. We also develop MLR on Symmetric Positive Semi-definite (SPSD) manifolds, and propose a method for performing backpropagation with the Grassmann logarithmic map in the projector perspective. We demonstrate the effectiveness of the proposed approach in the human action recognition and node classification tasks.
comment: added references
Comparison of generalised additive models and neural networks in applications: A systematic review
Neural networks have become a popular tool in predictive modelling, more commonly associated with machine learning and artificial intelligence than with statistics. Generalised Additive Models (GAMs) are flexible non-linear statistical models that retain interpretability. Both are state-of-the-art in their own right, with their respective advantages and disadvantages. This paper analyses how these two model classes have performed on real-world tabular data. Following PRISMA guidelines, we conducted a systematic review of papers that performed empirical comparisons of GAMs and neural networks. Eligible papers were identified, yielding 143 papers, with 430 datasets. Key attributes at both paper and dataset levels were extracted and reported. Beyond summarising comparisons, we analyse reported performance metrics using mixed-effects modelling to investigate potential characteristics that can explain and quantify observed differences, including application area, study year, sample size, number of predictors, and neural network complexity. Across datasets, no consistent evidence of superiority was found for either GAMs or neural networks when considering the most frequently reported metrics (RMSE, $R^2$, and AUC). Neural networks tended to outperform in larger datasets and in those with more predictors, but this advantage narrowed over time. Conversely, GAMs remained competitive, particularly in smaller data settings, while retaining interpretability. Reporting of dataset characteristics and neural network complexity was incomplete in much of the literature, limiting transparency and reproducibility. This review highlights that GAMs and neural networks should be viewed as complementary approaches rather than competitors. For many tabular applications, the performance trade-off is modest, and interpretability may favour GAMs.
Investigating the Robustness of Extreme Precipitation Super-Resolution Across Climates
The coarse spatial resolution of gridded climate models, such as general circulation models, limits their direct use in projecting socially relevant variables like extreme precipitation. Most downscaling methods estimate the conditional distributions of extremes by generating large ensembles, complicating the assessment of robustness under distributional transformations, such as those induced by climate change. To better understand and potentially improve robustness, we propose super-resolving the parameters of the target variable's probability distribution directly using analytically tractable mappings. Within a perfect-model framework over Switzerland, we demonstrate that vector generalized linear and additive models can super-resolve the generalized extreme value distribution of summer hourly precipitation extremes from coarse precipitation fields and topography. We introduce the notion of a "robustness gap", defined as the difference in predictive error between present-trained and future-trained models, and use it to diagnose how model structure affects the generalization of each quantile to a pseudo-global warming scenario. By evaluating multiple model configurations, we also identify an upper limit on the super-resolution factor based on the spatial auto- and cross-correlation of precipitation and elevation, beyond which coarse precipitation loses predictive value. Our framework is broadly applicable to variables governed by parametric distributions and offers a model-agnostic diagnostic for understanding when and why empirical downscaling generalizes to climate change and extremes.
comment: 47+7 pages, 10+4 figures, 1 table, submitted to WCE
The Human Brain as a Combinatorial Complex NeurIPS 2025
We propose a framework for constructing combinatorial complexes (CCs) from fMRI time series data that captures both pairwise and higher-order neural interactions through information-theoretic measures, bridging topological deep learning and network neuroscience. Current graph-based representations of brain networks systematically miss the higher-order dependencies that characterize neural complexity, where information processing often involves synergistic interactions that cannot be decomposed into pairwise relationships. Unlike topological lifting approaches that map relational structures into higher-order domains, our method directly constructs CCs from statistical dependencies in the data. Our CCs generalize graphs by incorporating higher-order cells that represent collective dependencies among brain regions, naturally accommodating the multi-scale, hierarchical nature of neural processing. The framework constructs data-driven combinatorial complexes using O-information and S-information measures computed from fMRI signals, preserving both pairwise connections and higher-order cells (e.g., triplets, quadruplets) based on synergistic dependencies. Using NetSim simulations as a controlled proof-of-concept dataset, we demonstrate our CC construction pipeline and show how both pairwise and higher-order dependencies in neural time series can be quantified and represented within a unified structure. This work provides a framework for brain network representation that preserves fundamental higher-order structure invisible to traditional graph methods, and enables the application of topological deep learning (TDL) architectures to neural data.
comment: Accepted as an Extended Abstract at the NeurReps Workshop, NeurIPS 2025
Discovering Association Rules in High-Dimensional Small Tabular Data
Association Rule Mining (ARM) aims to discover patterns between features in datasets in the form of propositional rules, supporting both knowledge discovery and interpretable machine learning in high-stakes decision-making. However, in high-dimensional settings, rule explosion and computational overhead render popular algorithmic approaches impractical without effective search space reduction, challenges that propagate to downstream tasks. Neurosymbolic methods, such as Aerial+, have recently been proposed to address the rule explosion in ARM. While they tackle the high dimensionality of the data, they also inherit limitations of neural networks, particularly reduced performance in low-data regimes. This paper makes three key contributions to association rule discovery in high-dimensional tabular data. First, we empirically show that Aerial+ scales one to two orders of magnitude better than state-of-the-art algorithmic and neurosymbolic baselines across five real-world datasets. Second, we introduce the novel problem of ARM in high-dimensional, low-data settings, such as gene expression data from the biomedicine domain with around 18k features and 50 samples. Third, we propose two fine-tuning approaches to Aerial+ using tabular foundation models. Our proposed approaches are shown to significantly improve rule quality on five real-world datasets, demonstrating their effectiveness in low-data, high-dimensional scenarios.
comment: Published version is available at https://ceur-ws.org/Vol-4125/paper_26.pdf
TimeMosaic: Temporal Heterogeneity Guided Time Series Forecasting via Adaptive Granularity Patch and Segment-wise Decoding AAAI
Multivariate time series forecasting is essential in domains such as finance, transportation, climate, and energy. However, existing patch-based methods typically adopt fixed-length segmentation, overlooking the heterogeneity of local temporal dynamics and the decoding heterogeneity of forecasting. Such designs lose details in information-dense regions, introduce redundancy in stable segments, and fail to capture the distinct complexities of short-term and long-term horizons. We propose TimeMosaic, a forecasting framework that aims to address temporal heterogeneity. TimeMosaic employs adaptive patch embedding to dynamically adjust granularity according to local information density, balancing motif reuse with structural clarity while preserving temporal continuity. In addition, it introduces segment-wise decoding that treats each prediction horizon as a related subtask and adapts to horizon-specific difficulty and information requirements, rather than applying a single uniform decoder. Extensive evaluations on benchmark datasets demonstrate that TimeMosaic delivers consistent improvements over existing methods, and our model trained on the large-scale corpus with 321 billion observations achieves performance competitive with state-of-the-art TSFMs.
comment: This paper has been accepted by AAAI
Optimizing LLM Inference: Fluid-Guided Online Scheduling with Memory Constraints
Large Language Models (LLMs) power many modern applications, but their inference procedure poses unique scheduling challenges: the Key-Value (KV) cache grows dynamically during response generation, and memory overflow triggers eviction that can cascade into system-wide failures. Even when memory capacity exceeds the theoretical requirement, conventional scheduling algorithms fail because they do not account for this dynamic memory growth -- a system that should be stable can become unstable under poor scheduling. This paper formulates LLM inference optimization as a multi-stage online scheduling problem. We develop a fluid dynamics approximation to establish a tractable benchmark and derive the Waiting for Accumulated Inference Threshold (WAIT) algorithm. WAIT uses threshold-based batching to prevent eviction by keeping the system near load balance, achieving near-optimal throughput when output lengths are known. For practical settings where output lengths are unknown at arrival, we introduce Nested WAIT. Rather than predicting output lengths, Nested WAIT classifies prompts on-the-fly: short prompts complete early and exit, while longer prompts naturally advance to later segments. A safety buffer provides high-probability protection against memory overflow with only logarithmic overhead. Theoretical analysis establishes near-optimal performance in the asymptotic regime. Experiments on Llama-7B with an A100 GPU demonstrate that our approach achieves superior throughput and reduced latency compared to vLLM and Sarathi. This work applies operations research principles to establish a theoretical framework for LLM deployment under memory constraints.
comment: 49 pages, 18 figures
Kriging prior Regression: A Case for Kriging-Based Spatial Features with TabPFN in Soil Mapping
Machine learning and geostatistics are two fundamentally different frameworks for predicting and spatially mapping soil properties. Geostatistics leverages the spatial structure of soil properties, while machine learning captures the relationship between available environmental features and soil properties. We propose a hybrid framework that enriches ML with spatial context through engineering of 'spatial lag' features from ordinary kriging. We call this approach 'kriging prior regression' (KpR), as it follows the inverse logic of regression kriging. To evaluate this approach, we assessed both the point and probabilistic prediction performance of KpR, using the TabPFN model across six fieldscale datasets from LimeSoDa. These datasets included soil organic carbon, clay content, and pH, along with features derived from remote sensing and in-situ proximal soil sensing. KpR with TabPFN demonstrated reliable uncertainty estimates and more accurate predictions in comparison to several other spatial techniques (e.g., regression/residual kriging with TabPFN), as well as to established non-spatial machine learning algorithms (e.g., random forest). Most notably, it significantly improved the average R2 by around 30% compared to machine learning algorithms without spatial context. This improvement was due to the strong prediction performance of the TabPFN algorithm itself and the complementary spatial information provided by KpR features. TabPFN is particularly effective for prediction tasks with small sample sizes, common in precision agriculture, whereas KpR can compensate for weak relationships between sensing features and soil properties when proximal soil sensing data are limited. Hence, we conclude that KpR with TabPFN is a very robust and versatile modelling framework for digital soil mapping in precision agriculture.
Gibbs randomness-compression proposition: An efficient deep learning
A proposition that connects randomness and compression is put forward via Gibbs entropy over set of measurement vectors associated with a compression process. The proposition states that a lossy compression process is equivalent to {\it directed randomness} that preserves information content. The proposition originated from the observed behavior in newly proposed {\it Dual Tomographic Compression} (DTC) compress-train framework. This is akin to tomographic reconstruction of layer weight matrices via building compressed sensed projections, via so-called {\it weight rays}. This tomographic approach is applied to previous and next layers in a dual fashion, that triggers neuronal-level pruning. This novel model compress-train scheme appears in iterative fashion and acts as a smart neural architecture search: also called {\it compression aware training}. The experiments demonstrated the utility of this dual-tomography during training: method accelerates and supports lottery ticket hypothesis. However, random compress-train iterations having similar performance demonstrated the connection between randomness and compression from statistical physics perspective, we formulated the so-called {\it Gibbs randomness-compression proposition}, signifying randomness-compression relationship via Gibbs entropy. The proposition is supported with the experimental evidence, resulting in very high correlation between learning performance vs. Gibbs entropy over compression ratios. Practically, the DTC framework provides a promising approach for massively energy- and resource-efficient deep learning training.
comment: 11 pages, 5 figures, 1 table, 1 algorithm, 1 theorem
Ambiguous Online Learning
We propose a new variant of online learning that we call "ambiguous online learning". In this setting, the learner is allowed to produce multiple predicted labels. Such an "ambiguous prediction" is considered correct when at least one of the labels is correct, and none of the labels are "predictably wrong". The definition of "predictably wrong" comes from a hypothesis class in which hypotheses are also multi-valued. Thus, a prediction is "predictably wrong" if it's not allowed by the (unknown) true hypothesis. In particular, this setting is natural in the context of multivalued dynamical systems, recommendation algorithms and lossless compression. It is also strongly related to so-called "apple tasting". We show that in this setting, there is a trichotomy of mistake bounds: up to logarithmic factors, any hypothesis class has an optimal mistake bound of either Theta(1), Theta(sqrt(N)) or N.
A Universal and Robust Framework for Multiple Gas Recognition Based-on Spherical Normalization-Coupled Mahalanobis Algorithm
Electronic nose (E-nose) systems face two interconnected challenges in open-set gas recognition: feature distribution shift caused by signal drift and decision boundary failure induced by unknown gas interference. Existing methods predominantly rely on Euclidean distance or conventional classifiers, failing to account for anisotropic feature distributions and dynamic signal intensity variations. To address these issues, this study proposes the Spherical Normalization coupled Mahalanobis (SNM) module, a universal post-processing module for open-set gas recognition. First, it achieves geometric decoupling through cascaded batch and L2 normalization, projecting features onto a unit hypersphere to eliminate signal intensity fluctuations. Second, it utilizes Mahalanobis distance to construct adaptive ellipsoidal decision boundaries that conform to the anisotropic feature geometry. The architecture-agnostic SNM-Module seamlessly integrates with mainstream backbones including Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), and Transformer. Experiments on the public Vergara dataset demonstrate that the Transformer+SNM configuration achieves near-theoretical-limit performance in discriminating among multiple target gases, with an AUROC of 0.9977 and an unknown gas detection rate of 99.57% at 5% false positive rate, significantly outperforming state-of-the-art methods with a 3.0% AUROC improvement and 91.0% standard deviation reduction compared to Class Anchor Clustering (CAC). The module maintains exceptional robustness across five sensor positions, with standard deviations below 0.0028. This work effectively addresses the critical challenge of simultaneously achieving high accuracy and high stability in open-set gas recognition, providing solid support for industrial E-nose deployment.
comment: 27 pages, 8 figures, 4 tables
Interpretable Safety Alignment via SAE-Constructed Low-Rank Subspace Adaptation
Safety alignment -- training large language models (LLMs) to refuse harmful requests while remaining helpful -- is critical for responsible deployment. Prior work established that safety behaviors are governed by low-rank structures, suggesting parameter-efficient fine-tuning (PEFT) should be well-suited for alignment. However, Low-Rank Adaptation (LoRA) consistently underperforms full fine-tuning and reinforcement learning on safety benchmarks. We attribute this gap to semantic entanglement: safety-relevant directions are intertwined with unrelated concepts due to polysemanticity, impeding implicit subspace identification. To address this, we propose SAILS (Safety Alignment via Interpretable Low-rank Subspace), which leverages Sparse Autoencoders (SAEs) to disentangle representations into monosemantic features, constructs an interpretable safety subspace from SAE decoder directions, and uses it to initialize LoRA adapters. Theoretically, we prove that SAE-based identification achieves arbitrarily small recovery error under monosemanticity assumptions, while direct identification suffers an irreducible error floor. Empirically, SAILS achieves up to 99.6% safety rate on Gemma-2-9B -- exceeding full fine-tuning by 7.4 points and matching RLHF-based models -- while updating only 0.19% of parameters and providing interpretability.
A Linear Approach to Data Poisoning
Backdoor and data-poisoning attacks can flip predictions with tiny training corruptions, yet a sharp theory linking poisoning strength, overparameterization, and regularization is lacking. We analyze ridge least squares with an unpenalized intercept in the high-dimensional regime \(p,n\to\infty\), \(p/n\to c\). Targeted poisoning is modelled by shifting a \(θ\)-fraction of one class by a direction \(\mathbf{v}\) and relabelling. Using resolvent techniques and deterministic equivalents from random matrix theory, we derive closed-form limits for the poisoned score explicit in the model parameters. The formulas yield scaling laws, recover the interpolation threshold as \(c\to1\) in the ridgeless limit, and show that the weights align with the poisoning direction. Synthetic experiments match theory across sweeps of the parameters and MNIST backdoor tests show qualitatively consistent trends. The results provide a tractable framework for quantifying poisoning in linear models.
comment: 9 pages, 9 Figures
Comparison of neural network training strategies for the simulation of dynamical systems
Neural networks have become a widely adopted tool for modeling nonlinear dynamical systems from data. However, the choice of training strategy remains a key design decision, particularly for simulation tasks. This paper compares two predominant strategies: parallel and series-parallel training. The conducted empirical analysis spans five neural network architectures and two examples: a pneumatic valve test bench and an industrial robot benchmark. The study reveals that, even though series-parallel training dominates current practice, parallel training consistently yields better long-term prediction accuracy. Additionally, this work clarifies the often inconsistent terminology in the literature and relate both strategies to concepts from system identification. The findings suggest that parallel training should be considered the default training strategy for neural network-based simulation of dynamical systems.
comment: submitted to ECC 2026
Improving the Euclidean Diffusion Generation of Manifold Data by Mitigating Score Function Singularity
Euclidean diffusion models have achieved remarkable success in generative modeling across diverse domains, and they have been extended to manifold cases in recent advances. Instead of explicitly utilizing the structure of special manifolds as studied in previous works, in this paper we investigate direct sampling of the Euclidean diffusion models for general manifold-structured data. We reveal the multiscale singularity of the score function in the ambient space, which hinders the accuracy of diffusion-generated samples. We then present an elaborate theoretical analysis of the singularity structure of the score function by decomposing it along the tangential and normal directions of the manifold. To mitigate the singularity and improve the sampling accuracy, we propose two novel methods: (1) Niso-DM, which reduces the scale discrepancies in the score function by utilizing a non-isotropic noise, and (2) Tango-DM, which trains only the tangential component of the score function using a tangential-only loss function. Numerical experiments demonstrate that our methods achieve superior performance on distributions over various manifolds with complex geometries.
Do Not Step Into the Same River Twice: Learning to Reason from Trial and Error
Reinforcement learning with verifiable rewards (RLVR) has significantly boosted the reasoning capability of language models (LMs) recently. However, existing RLVR approaches merely train LMs based on their own generated on-policy responses and are constrained by the initial capability of LMs, thus prone to exploration stagnation, in which LMs fail to solve more training problems and cannot further learn from the training data. Some work tries to address this by leveraging off-policy solutions to training problems, but relies on external expert guidance that is limited in availability and scalability. In this work, we propose LTE (Learning to reason from Trial and Error), an approach that hints LMs with their previously self-made mistakes, not requiring any external expert guidance. Experiments validate the effectiveness of LTE, which outperforms the normal group relative policy optimization (GRPO) by 5.02 in Pass@1 and 9.96 in Pass@k on average across six mathematical reasoning benchmarks for Qwen3-8B-Base and even performs better than methods that require external gold solutions as guidance after aligning the experimental setup. Further analysis confirms that LTE successfully mitigates exploration stagnation and enhances both exploitation and exploration during training. Our code is available at https://anonymous.4open.science/r/Learning-from-Trial-and-Error.
comment: Preprint
Gabliteration: Adaptive Multi-Directional Neural Weight Modification for Selective Behavioral Alteration in Large Language Models
We present Gabliteration, a novel neural weight modification technique that advances beyond traditional abliteration methods by implementing adaptive multi-directional projections with regularized layer selection. Our approach addresses the fundamental limitation of existing methods that compromise model quality while attempting to modify specific behavioral patterns. Through dynamic layer optimization, regularized projection matrices, and adaptive scaling mechanisms, we achieve theoretically superior weight modification while minimizing quality degradation in unrelated domains. We validate our method through the gabliterated-v1 model series (0.6B to 4B parameters) available on Hugging Face, demonstrating practical applicability across multiple model scales.
SIP-BMM: Constructing the Capability--Efficiency Pareto Set for LLMs via Structural Importance Prior Bayesian Model Merging
Constructing a Pareto set is pivotal for navigating the capability--efficiency trade-offs in Large Language Models (LLMs). However, existing merging techniques remain inadequate for this task. Coarse-grained, model-level methods yield only a sparse set of suboptimal solutions, while fine-grained, layer-wise approaches suffer from the curse of dimensionality, rendering the search space computationally intractable. To resolve this dichotomy, we propose Structural Importance Prior Bayesian Model Merging (SIP-BMM), a framework that automatically constructs the LLM Pareto set. SIP-BMM renders high-dimensional layer-wise search tractable by introducing an importance-aware Sparse Axis-Aligned Subspace Bayesian Optimization (SAASBO) strategy. By leveraging a structural importance prior derived from task-vector differences, our method guides SAASBO to automatically identify critical layers, thereby dramatically reducing the effective dimensionality without sacrificing the granularity of full-model control. The entire process is automated within an evolutionary loop driven by the Log-Noisy Expected Hypervolume Improvement ($q$NEHVI) acquisition function. Experiments demonstrate that SIP-BMM discovers a stronger and denser Pareto front than competitive baselines, enabling agile model selection tailored to diverse operational constraints. Code is available at: https://github.com/MiLab-HITSZ/2026-SIPBMM.
v-PuNNs: van der Put Neural Networks for Transparent Ultrametric Representation Learning
Conventional deep learning models embed data in Euclidean space $\mathbb{R}^d$, a poor fit for strictly hierarchical objects such as taxa, word senses, or file systems. We introduce van der Put Neural Networks (v-PuNNs), the first architecture whose neurons are characteristic functions of p-adic balls in $\mathbb{Z}_p$. Under our Transparent Ultrametric Representation Learning (TURL) principle every weight is itself a p-adic number, giving exact subtree semantics. A new Finite Hierarchical Approximation Theorem shows that a depth-K v-PuNN with $\sum_{j=0}^{K-1}p^{\,j}$ neurons universally represents any K-level tree. Because gradients vanish in this discrete space, we propose Valuation-Adaptive Perturbation Optimization (VAPO), with a fast deterministic variant (HiPaN-DS) and a moment-based one (HiPaN / Adam-VAPO). On three canonical benchmarks our CPU-only implementation sets new state-of-the-art: WordNet nouns (52,427 leaves) 99.96% leaf accuracy in 16 min; GO molecular-function 96.9% leaf / 100% root in 50 s; NCBI Mammalia Spearman $ρ= -0.96$ with true taxonomic distance. The learned metric is perfectly ultrametric (zero triangle violations), and its fractal and information-theoretic properties are analyzed. Beyond classification we derive structural invariants for quantum systems (HiPaQ) and controllable generative codes for tabular data (Tab-HiPaN). v-PuNNs therefore bridge number theory and deep learning, offering exact, interpretable, and efficient models for hierarchical data.
comment: v2: Corrected mathematical statements in Section 3.1.3 and Appendix A regarding the van der Put basis properties. Clarified distinction between hierarchical indicator family and classical Schauder basis
Causal Ordering for Structure Learning from Time Series
Predicting causal structure from time series data is crucial for understanding complex phenomena in physiology, brain connectivity, climate dynamics, and socio-economic behaviour. Causal discovery in time series is hindered by the combinatorial complexity of identifying true causal relationships, especially as the number of variables and time points grow. A common approach to simplify the task is the so-called ordering-based methods. Traditional ordering methods inherently limit the representational capacity of the resulting model. In this work, we fix this issue by leveraging multiple valid causal orderings, instead of a single one as standard practice. We propose DOTS (Diffusion Ordered Temporal Structure), using diffusion-based causal discovery for temporal data. By integrating multiple orderings, DOTS effectively recovers the transitive closure of the underlying directed acyclic graph, mitigating spurious artifacts inherent in single-ordering approaches. We formalise the problem under standard assumptions such as stationarity and the additive noise model, and leverage score matching with diffusion processes to enable efficient Hessian estimation. Extensive experiments validate the approach. Empirical evaluations on synthetic and real-world datasets demonstrate that DOTS outperforms state-of-the-art baselines, offering a scalable and robust approach to temporal causal discovery. On synthetic benchmarks ($d{=}\!3-\!6$ variables, $T{=}200\!-\!5{,}000$ samples), DOTS improves mean window-graph $F1$ from $0.63$ (best baseline) to $0.81$. On the CausalTime real-world benchmark ($d{=}20\!-\!36$), while baselines remain the best on individual datasets, DOTS attains the highest average summary-graph $F1$ while halving runtime relative to graph-optimisation methods. These results establish DOTS as a scalable and accurate solution for temporal causal discovery.
comment: 32 pages. Published in Transactions on Machine Learning Research
On LLMs' Internal Representation of Code Correctness
Despite the effectiveness of large language models (LLMs) for code generation, they often output incorrect code. One reason is that model output probabilities are often not well-correlated with correctness, and reflect only the final output of the generation process. Inspired by findings that LLMs internally encode concepts like truthfulness, this paper explores if LLMs similarly represent code correctness. Specifically, we identify a correctness representation inside LLMs by contrasting the hidden states between pairs of correct and incorrect code for the same programming tasks. By experimenting on four LLMs, we show that exploiting this extracted correctness representation outperforms standard log-likelihood ranking, as well as verbalized model confidence. Furthermore, we explore how this internal correctness signal can be used to select higher-quality code samples, without requiring test execution. Ultimately, this work demonstrates how leveraging internal representations can enhance code generation systems and make LLMs more reliable, thus improving confidence in automatically generated code.
comment: Accepted for ICSE'26
I Large Language Models possono nascondere un testo in un altro testo della stessa lunghezza
A meaningful text can be hidden inside another, completely different yet still coherent and plausible, text of the same length. For example, a tweet containing a harsh political critique could be embedded in a tweet that celebrates the same political leader, or an ordinary product review could conceal a secret manuscript. This uncanny state of affairs is now possible thanks to Large Language Models, and in this paper we present Calgacus, a simple and efficient protocol to achieve it. We show that even modest 8-billion-parameter open-source LLMs are sufficient to obtain high-quality results, and a message as long as this abstract can be encoded and decoded locally on a laptop in seconds. The existence of such a protocol demonstrates a radical decoupling of text from authorial intent, further eroding trust in written communication, already shaken by the rise of LLM chatbots. We illustrate this with a concrete scenario: a company could covertly deploy an unfiltered LLM by encoding its answers within the compliant responses of a safe model. This possibility raises urgent questions for AI safety and challenges our understanding of what it means for a Large Language Model to know something. -- Un testo di senso compiuto può essere nascosto all'interno di un altro testo completamente diverso, eppure coerente e plausibile, della stessa lunghezza. Ad esempio, un tweet che celebra un leader politico potrebbe celare un tweet che lo critica duramente, o un'anonima recensione di un prodotto potrebbe in realtà codificare un manoscritto segreto. Questa sconcertante possibilità è oggi alla nostra portata grazie ai Large Language Models (LLM); in questo articolo presentiamo Calgacus, un protocollo semplice ed efficiente per realizzarla. Mostriamo che anche modesti LLM open-source da 8 miliardi di parametri sono sufficienti per ottenere risultati di alta qualità, e che un messaggio lungo quanto questo abstract può essere codificato e decodificato su un comune portatile in pochi secondi. L'esistenza di tale protocollo dimostra un radicale disaccoppiamento del testo dall'intento del suo autore, erodendo ulteriormente la fiducia nella comunicazione scritta, già scossa dall'ascesa dei chatbot basati su LLMs. Illustriamo ciò con uno scenario concreto: un'azienda potrebbe offrire pubblicamente i servizi di un LLM senza filtri nascondendo le sue risposte all'interno di risposte apparentemente innocue generate da un LLM considerato sicuro. Questa possibilità solleva questioni urgenti per la sicurezza dell'Intelligenza Artificiale e sfida la nostra comprensione di cosa significhi, per un Large Language Model, sapere qualcosa.
comment: 21 pages, in Italian language, main paper 9 pages. v1-v4 are in English
ULTra: Unveiling Latent Token Interpretability in Transformer-Based Understanding and Segmentation
Transformers have revolutionized Computer Vision (CV) through self-attention mechanisms. However, their complexity makes latent token representations difficult to interpret. We introduce ULTra, a framework for interpreting Transformer embeddings and uncovering meaningful semantic patterns within them. ULTra enables unsupervised semantic segmentation using pre-trained models without requiring fine-tuning. Additionally, we propose a self-supervised training approach that refines segmentation performance by learning an external transformation matrix without modifying the underlying model. Our method achieves state-of-the-art performance in unsupervised semantic segmentation, outperforming existing segmentation methods. Furthermore, we validate ULTra for model interpretation on both synthetic and real-world scenarios, including Object Selection and interpretable text summarization using LLMs, demonstrating its broad applicability in explaining the semantic structure of latent token representations.
Low-degree lower bounds via almost orthonormal bases
Low-degree polynomials have emerged as a powerful paradigm for providing evidence of statistical-computational gaps across a variety of high-dimensional statistical models [Wein25]. For detection problems -- where the goal is to test a planted distribution $\mathbb{P}'$ against a null distribution $\mathbb{P}$ with independent components -- the standard approach is to bound the advantage using an $\mathbb{L}^2(\mathbb{P})$-orthonormal family of polynomials. However, this method breaks down for estimation tasks or more complex testing problems where $\mathbb{P}$ has some planted structures, so that no simple $\mathbb{L}^2(\mathbb{P})$-orthogonal polynomial family is available. To address this challenge, several technical workarounds have been proposed [SW22,SW25], though their implementation can be delicate. In this work, we propose a more direct proof strategy. Focusing on random graph models, we construct a basis of polynomials that is almost orthonormal under $\mathbb{P}$, in precisely those regimes where statistical-computational gaps arise. This almost orthonormal basis not only yields a direct route to establishing low-degree lower bounds, but also allows us to explicitly identify the polynomials that optimize the low-degree criterion. This, in turn, provides insights into the design of optimal polynomial-time algorithms. We illustrate the effectiveness of our approach by recovering known low-degree lower bounds, and establishing new ones for problems such as hidden subcliques, stochastic block models, and seriation models.
Posets and Bounded Probabilities for Discovering Order-inducing Features in Event Knowledge Graphs
Event knowledge graphs (EKG) extend the classical notion of a trace to capture multiple, interacting views of a process execution. In this paper, we tackle the open problem of automating EKG discovery from uncurated data through a principled probabilistic framing based on the outcome space resulting from featured-derived partial orders on events. From this we derive an EKG discovery algorithm based on statistical inference rather than an ad hoc or heuristic-based strategy, or relying on manual analysis from domain experts. This approach comes at the computational cost of exploring a large, non-convex hypothesis space. In particular, solving the maximum likelihood term in our objective function involves counting the number of linear extensions of posets, which in general is #P-complete. Fortunately, bound estimates suffice for model comparison, and admit incorporation into a bespoke branch-and-bound algorithm. We establish an upper bound on our objective function which we show to be antitonic w.r.t. search depth for branching rules that are monotonic w.r.t. model inclusion. This allows pruning of large portions of the search space, which we show experimentally leads to rapid convergence toward optimal solutions that are consistent with manually built EKGs.
comment: 2-column IEEE format
Geometry-induced Regularization in Deep ReLU Neural Networks
Neural networks with a large number of parameters often do not overfit, owing to implicit regularization that favors \lq good\rq{} networks. Other related and puzzling phenomena include properties of flat minima, saddle-to-saddle dynamics, and neuron alignment. To investigate these phenomena, we study the local geometry of deep ReLU neural networks. We show that, for a fixed architecture, as the weights vary, the image of a sample $X$ forms a set whose local dimension changes. The parameter space is partitioned into regions where this local dimension remains constant. The local dimension is invariant under the natural symmetries of ReLU networks (i.e., positive rescalings and neuron permutations). We establish then that the network's geometry induces a regularization, with the local dimension serving as a key measure of regularity. Moreover, we relate the local dimension to a new notion of flatness of minima and to saddle-to-saddle dynamics. For shallow networks, we also show that the local dimension is connected to the number of linear regions perceived by $X$, offering insight into the effects of regularization. This is further supported by experiments and linked to neuron alignment. Our analysis offers, for the first time, a simple and unified geometric explanation that applies to all learning contexts for these phenomena, which are usually studied in isolation. Finally, we explore the practical computation of the local dimension and present experiments on the MNIST dataset, which highlight geometry-induced regularization in this setting.
Fusion-PSRO: Nash Policy Fusion for Policy Space Response Oracles
For solving zero-sum games involving non-transitivity, a useful approach is to maintain a policy population to approximate the Nash Equilibrium (NE). Previous studies have shown that the Policy Space Response Oracles (PSRO) algorithm is an effective framework for solving such games. However, current methods initialize a new policy from scratch or inherit a single historical policy in Best Response (BR), missing the opportunity to leverage past policies to generate a better BR. In this paper, we propose Fusion-PSRO, which employs Nash Policy Fusion to initialize a new policy for BR training. Nash Policy Fusion serves as an implicit guiding policy that starts exploration on the current Meta-NE, thus providing a closer approximation to BR. Moreover, it insightfully captures a weighted moving average of past policies, dynamically adjusting these weights based on the Meta-NE in each iteration. This cumulative process further enhances the policy population. Empirical results on classic benchmarks show that Fusion-PSRO achieves lower exploitability, thereby mitigating the shortcomings of previous research on policy initialization in BR.
comment: Accepted by ECAI 2025
GNN-XAR: A Graph Neural Network for Explainable Activity Recognition in Smart Homes
Sensor-based Human Activity Recognition (HAR) in smart home environments is crucial for several applications, especially in the healthcare domain. The majority of the existing approaches leverage deep learning models. While these approaches are effective, the rationale behind their outputs is opaque. Recently, eXplainable Artificial Intelligence (XAI) approaches emerged to provide intuitive explanations to the output of HAR models. To the best of our knowledge, these approaches leverage classic deep models like CNNs or RNNs. Recently, Graph Neural Networks (GNNs) proved to be effective for sensor-based HAR. However, existing approaches are not designed with explainability in mind. In this work, we propose the first explainable Graph Neural Network explicitly designed for smart home HAR. Our results on two public datasets show that this approach provides better explanations than state-of-the-art methods while also slightly improving the recognition rate.
Convergence of a L2 regularized Policy Gradient Algorithm for the Multi Armed Bandit
Although Multi Armed Bandit (MAB) on one hand and the policy gradient approach on the other hand are among the most used frameworks of Reinforcement Learning, the theoretical properties of the policy gradient algorithm used for MAB have not been given enough attention. We investigate in this work the convergence of such a procedure for the situation when a $L2$ regularization term is present jointly with the 'softmax' parametrization. We prove convergence under appropriate technical hypotheses and test numerically the procedure including situations beyond the theoretical setting. The tests show that a time dependent regularized procedure can improve over the canonical approach especially when the initial guess is far from the solution.
A Fast Anti-Jamming Cognitive Radar Deployment Algorithm Based on Reinforcement Learning
The fast deployment of cognitive radar to counter jamming remains a critical challenge in modern warfare, where more efficient deployment leads to quicker detection of targets. Existing methods are primarily based on evolutionary algorithms, which are time-consuming and prone to falling into local optima. We tackle these drawbacks via the efficient inference of neural networks and propose a brand new framework: Fast Anti-Jamming Radar Deployment Algorithm (FARDA). We first model the radar deployment problem as an end-to-end task and design deep reinforcement learning algorithms to solve it, where we develop integrated neural modules to perceive heatmap information and a brand new reward format. Empirical results demonstrate that our method achieves coverage comparable to evolutionary algorithms while deploying radars approximately 7,000 times faster. Further ablation experiments confirm the necessity of each component of FARDA.
Balancing Fidelity and Plasticity: Aligning Mixed-Precision Fine-Tuning with Linguistic Hierarchies
Deploying and fine-tuning Large Language Models (LLMs) on resource-constrained edge devices requires navigating a strict trade-off between memory footprint and task performance. While Quantization-Aware Fine-tuning has emerged as a viable solution, existing paradigms typically decouple quantization and adapter optimization. This separation overlooks a fundamental theoretical constraint we identify as the \textit{Fidelity-Plasticity Trade-off}: a layer's capacity to adapt to new tasks (Plasticity) is inherently constrained by the information capacity of its frozen weights (Fidelity). Aggressively quantizing semantically critical layers creates an information bottleneck that no amount of adapter rank can recover, while high precision in robust syntactic layers wastes valuable memory. To address this, we introduce \textbf{QR-Adaptor}, a unified framework that jointly optimizes per-layer quantization bit-width and LoRA rank. By formulating resource allocation as a multi-objective search aligned with the model's linguistic hierarchy, our method systematically liberates memory from redundancy-heavy layers to reinvest in capacity-critical ones. Extensive experiments demonstrate that QR-Adaptor establishes a new Pareto frontier: notably, a model fine-tuned under a strict 4-bit memory budget achieves performance rivaling 16-bit baselines, demonstrating that precise resource alignment is as critical as model size.
comment: 18 pages, 5 figures
PathFinder: Advancing Path Loss Prediction for Single-to-Multi-Transmitter Scenario
Radio path loss prediction (RPP) is critical for optimizing 5G networks and enabling IoT, smart city, and similar applications. However, current deep learning-based RPP methods lack proactive environmental modeling, struggle with realistic multi-transmitter scenarios, and generalize poorly under distribution shifts, particularly when training/testing environments differ in building density or transmitter configurations. This paper identifies three key issues: (1) passive environmental modeling that overlooks transmitters and key environmental features; (2) overemphasis on single-transmitter scenarios despite real-world multi-transmitter prevalence; (3) excessive focus on in-distribution performance while neglecting distribution shift challenges. To address these, we propose PathFinder, a novel architecture that actively models buildings and transmitters via disentangled feature encoding and integrates Mask-Guided Low-rank Attention to independently focus on receiver and building regions. We also introduce a Transmitter-Oriented Mixup strategy for robust training and a new benchmark, single-to-multi-transmitter RPP (S2MT-RPP), tailored to evaluate extrapolation performance (multi-transmitter testing after single-transmitter training). Experimental results show PathFinder outperforms state-of-the-art methods significantly, especially in challenging multi-transmitter scenarios. Our code and project site are publicly available at: https://emorzz1g.github.io/PathFinder/.
comment: 20 pages, 14 figures, 4 tables. Under review
Sharp Structure-Agnostic Lower Bounds for General Linear Functional Estimation
We establish a general statistical optimality theory for estimation problems where the target parameter is a linear functional of an unknown nuisance component that must be estimated from data. This formulation covers many causal and predictive parameters and has applications to numerous disciplines. We adopt the structure-agnostic framework introduced by \citet{balakrishnan2023fundamental}, which poses no structural properties on the nuisance functions other than access to black-box estimators that achieve some statistical estimation rate. This framework is particularly appealing when one is only willing to consider estimation strategies that use non-parametric regression and classification oracles as black-box sub-processes. Within this framework, we first prove the statistical optimality of the celebrated and widely used doubly robust estimators for the Average Treatment Effect (ATE), the most central parameter in causal inference. We then characterize the minimax optimal rate under the general formulation. Notably, we differentiate between two regimes in which double robustness can and cannot be achieved and in which first-order debiasing yields different error rates. Our result implies that first-order debiasing is simultaneously optimal in both regimes. We instantiate our theory by deriving optimal error rates that recover existing results and extend to various settings of interest, including the case when the nuisance is defined by generalized regressions and when covariate shift exists for training and test distribution.
comment: 117 pages; generalizes and subsumes arXiv:2402.14264 by the same authors
Blade: A Derivative-free Bayesian Inversion Method using Diffusion Priors
Derivative-free Bayesian inversion is an important task in many science and engineering applications, particularly when computing the forward model derivative is computationally and practically challenging. In this paper, we introduce Blade, which can produce accurate and well-calibrated posteriors for Bayesian inversion using an ensemble of interacting particles. Blade leverages powerful data-driven priors based on diffusion models, and can handle nonlinear forward models that permit only black-box access (i.e., derivative-free). Theoretically, we establish a non-asymptotic convergence analysis to characterize the effects of forward model and prior estimation errors. Empirically, Blade achieves superior performance compared to existing derivative-free Bayesian inversion methods on various inverse problems, including challenging highly nonlinear fluid dynamics.
Personalized Spiking Neural Networks with Ferroelectric Synapses for EEG Signal Processing
Electroencephalography (EEG)-based brain-computer interfaces (BCIs) are strongly affected by non-stationary neural signals that vary across sessions and individuals, limiting the generalization of subject-agnostic models and motivating adaptive and personalized learning on resource-constrained platforms. Programmable memristive hardware offers a promising substrate for such post-deployment adaptation; however, practical realization is challenged by limited weight resolution, device variability, nonlinear programming dynamics, and finite device endurance. In this work, we show that spiking neural networks (SNNs) can be deployed on ferroelectric memristive synaptic devices for adaptive EEG-based motor imagery decoding under realistic device constraints. We fabricate, characterize, and model ferroelectric synapses. We evaluate a convolutional-recurrent SNN architecture under two complementary deployment strategies: (i) device-aware training using a ferroelectric synapse model, and (ii) transfer of software-trained weights followed by low-overhead on-device re-tuning. To enable efficient adaptation, we introduce a device-aware weight-update strategy in which gradient-based updates are accumulated digitally and converted into discrete programming events only when a threshold is exceeded, emulating nonlinear, state-dependent programming dynamics while reducing programming frequency. Both deployment strategies achieve classification performance comparable to state-of-the-art software-based SNNs. Furthermore, subject-specific transfer learning achieved by retraining only the final network layers improves classification accuracy. These results demonstrate that programmable ferroelectric hardware can support robust, low-overhead adaptation in spiking neural networks, opening a practical path toward personalized neuromorphic processing of neural signals.
Dynamic Large Concept Models: Latent Reasoning in an Adaptive Semantic Space
Large Language Models (LLMs) apply uniform computation to all tokens, despite language exhibiting highly non-uniform information density. This token-uniform regime wastes capacity on locally predictable spans while under-allocating computation to semantically critical transitions. We propose $\textbf{Dynamic Large Concept Models (DLCM)}$, a hierarchical language modeling framework that learns semantic boundaries from latent representations and shifts computation from tokens to a compressed concept space where reasoning is more efficient. DLCM discovers variable-length concepts end-to-end without relying on predefined linguistic units. Hierarchical compression fundamentally changes scaling behavior. We introduce the first $\textbf{compression-aware scaling law}$, which disentangles token-level capacity, concept-level reasoning capacity, and compression ratio, enabling principled compute allocation under fixed FLOPs. To stably train this heterogeneous architecture, we further develop a $\textbf{decoupled $μ$P parametrization}$ that supports zero-shot hyperparameter transfer across widths and compression regimes. At a practical setting ($R=4$, corresponding to an average of four tokens per concept), DLCM reallocates roughly one-third of inference compute into a higher-capacity reasoning backbone, achieving a $\textbf{+2.69$\%$ average improvement}$ across 12 zero-shot benchmarks under matched inference FLOPs.
VAR-MATH: Probing True Mathematical Reasoning in LLMS via Symbolic Multi-Instance Benchmarks
Recent advances in reinforcement learning (RL) have led to substantial improvements in the mathematical reasoning abilities of LLMs, as measured by standard benchmarks. Yet these gains often persist even when models are trained with flawed signals, such as random or inverted rewards. This raises a fundamental question: do such improvements reflect genuine reasoning, or are they merely artifacts of overfitting to benchmark-specific patterns? To answer this question, we adopt an evaluation-centric perspective and highlight two critical shortcomings in existing protocols. First, benchmark contamination arises because test problems are publicly available, thereby increasing the risk of data leakage. Second, evaluation fragility results from reliance on single-instance assessments, which are sensitive to stochastic outputs and fail to capture reasoning consistency. These limitations suggest the need for a new evaluation paradigm that can probe reasoning ability beyond memorization and one-off success. As response, we propose VAR-MATH, a symbolic evaluation framework that converts fixed numerical problems into parameterized templates and requires models to solve multiple instantiations of each. This design enforces consistency across structurally equivalent variants, mitigates contamination, and enhances robustness through bootstrapped metrics. We apply VAR-MATH to transform three popular benchmarks, AMC23, AIME24, and AIME25, into their symbolic counterparts, VAR-AMC23, VAR-AIME24, and VAR-AIME25. Experimental results show substantial performance drops for RL-trained models on these variabilized benchmarks, especially for smaller models, with average declines of 47.9\% on AMC23, 58.8\% on AIME24, and 72.9\% on AIME25. These findings indicate that some existing RL methods rely on superficial heuristics and fail to generalize beyond specific numerical forms.
On the Robustness of Answer Formats in Medical Reasoning Models
Medical reasoning models (MRMs) achieve superior performance on medical benchmarks compared to medical LLMs; however, high accuracy alone is insufficient for practical deployment. One of such requirements for real-world application is robustness to varying output constraints. Specifically, posing the same medical question while requesting different answer formats should not affect the underlying correctness of the response. We investigate this phenomenon in this paper, focusing on MRMs. To quantify this behavior, we propose the metric answer-format robustness: the ability to reliably generate correct outputs across varying specified formats. We examine three representative formats: multiple-choice, open-ended question-answering, and ranked lists. Across 15 proprietary and open-weight models, we observe substantial variation in format robustness (35-100%). Furthermore, we conduct controlled fine-tuning experiments on a shared backbone with matched training data to isolate the effects of the fine-tuning paradigm. We find that supervised fine-tuning yields more stable behavior across formats, whereas reinforcement fine-tuning often exhibits higher cross-format brittleness, with the degree of instability strongly dependent on reward design. Overall, answer-format robustness in MRMs is trainable yet brittle and requires careful evaluation for practical medical use.
comment: 62 pages, 47 figures
Improving Graph Neural Network Training, Defense and Hypergraph Clustering via Adversarial Robustness Evaluation
Graph Neural Networks (GNNs) are a highly effective neural network architecture for processing graph-structured data. Unlike traditional neural networks that rely solely on the features of the data as input, GNNs leverage both the graph structure, which represents the relationships between data points, and the feature matrix of the data to optimize their feature representation. This unique capability enables GNNs to achieve superior performance across various tasks. However, it also makes GNNs more susceptible to noise and adversarial attacks from both the graph structure and data features, which can significantly increase the training difficulty and degrade their performance. Similarly, a hypergraph is a highly complex structure, and partitioning a hypergraph is a challenging task. This paper leverages spectral adversarial robustness evaluation to effectively address key challenges in complex-graph algorithms. By using spectral adversarial robustness evaluation to distinguish robust nodes from non-robust ones and treating them differently, we propose a training-set construction strategy that improves the training quality of GNNs. In addition, we develop algorithms to enhance both the adversarial robustness of GNNs and the performance of hypergraph clustering. Experimental results show that this series of methods is highly effective.
Improving the accuracy and generalizability of molecular property regression models with a substructure-substitution-rule-informed framework
Artificial Intelligence (AI)-aided drug discovery is an active research field, yet AI models often exhibit poor accuracy in regression tasks for molecular property prediction, and perform catastrophically poorly for out-of-distribution (OOD) molecules. Here, we present MolRuleLoss, a substructure-substitution-rule-informed framework that improves the accuracy and generalizability of multiple molecular property regression models (MPRMs) such as GEM and UniMol for diverse molecular property prediction tasks. MolRuleLoss incorporates partial derivative constraints for substructure substitution rules (SSRs) into an MPRM's loss function. When using GEM models for predicting lipophilicity, water solubility, and solvation-free energy (using lipophilicity, ESOL, and freeSolv datasets from MoleculeNet), the root mean squared error (RMSE) values with and without MolRuleLoss were 0.587 vs. 0.660, 0.777 vs. 0.798, and 1.252 vs. 1.877, respectively, representing 2.6-33.3% performance improvements. We show that both the number and the quality of SSRs contribute to the magnitude of prediction accuracy gains obtained upon adding MolRuleLoss to an MPRM. MolRuleLoss improved the generalizability of MPRMs for "activity cliff" molecules in a lipophilicity prediction task and improved the generalizability of MPRMs for OOD molecules in a melting point prediction task. In a molecular weight prediction task for OOD molecules, MolRuleLoss reduced the RMSE value of a GEM model from 29.507 to 0.007. We also provide a formal demonstration that the upper bound of the variation for property change of SSRs is positively correlated with an MPRM's error. Together, we show that using the MolRuleLoss framework as a bolt-on boosts the prediction accuracy and generalizability of multiple MPRMs, supporting diverse applications in areas like cheminformatics and AI-aided drug discovery.
comment: Author information updated: add co-author Weihao Li (affiliation:Department of Statistics and Data Science, Tsinghua University, Beijing, 100084, China). Weihao Li proposed constructive revision suggestions for section on Proof of "Tian Conjecture"
Long-Horizon Model-Based Offline Reinforcement Learning Without Conservatism
Popular offline reinforcement learning (RL) methods rely on conservatism, either by penalizing out-of-dataset actions or by restricting rollout horizons. In this work, we question the universality of this principle and instead revisit a complementary one: a Bayesian perspective. Rather than enforcing conservatism, the Bayesian approach tackles epistemic uncertainty in offline data by modeling a posterior distribution over plausible world models and training a history-dependent agent to maximize expected rewards, enabling test-time generalization. We first illustrate, in a bandit setting, that Bayesianism excels on low-quality datasets where conservatism fails. We then scale this principle to realistic tasks and show that long-horizon planning is critical for reducing value overestimation once conservatism is removed. To make this feasible, we introduce key design choices for performing and learning from long-horizon rollouts while controlling compounding errors. These yield our algorithm, NEUBAY, grounded in the neutral Bayesian principle. On D4RL and NeoRL benchmarks, NEUBAY generally matches or surpasses leading conservative algorithms, achieving new state-of-the-art on 7 datasets. Notably, it succeeds with rollout horizons of several hundred steps, contrary to dominant practice. Finally, we characterize datasets by quality and coverage, showing when NEUBAY is preferable to conservative methods. Together, we argue NEUBAY lays the foundation for a new practical direction in offline and model-based RL.
comment: Preprint (52 pages, 15 figures) and code is available at https://github.com/twni2016/neubay
Renormalizable Spectral-Shell Dynamics as the Origin of Neural Scaling Laws
Neural scaling laws and double-descent phenomena suggest that deep-network training obeys a simple macroscopic structure despite highly nonlinear optimization dynamics. We derive such structure directly from gradient descent in function space. For mean-squared error loss, the training error evolves as $\dot e_t=-M(t)e_t$ with $M(t)=J_{θ(t)}J_{θ(t)}^{\!*}$, a time-dependent self-adjoint operator induced by the network Jacobian. Using Kato perturbation theory, we obtain an exact system of coupled modewise ODEs in the instantaneous eigenbasis of $M(t)$. To extract macroscopic behavior, we introduce a logarithmic spectral-shell coarse-graining and track quadratic error energy across shells. Microscopic interactions within each shell cancel identically at the energy level, so shell energies evolve only through dissipation and external inter-shell interactions. We formalize this via a \emph{renormalizable shell-dynamics} assumption, under which cumulative microscopic effects reduce to a controlled net flux across shell boundaries. Assuming an effective power-law spectral transport in a relevant resolution range, the shell dynamics admits a self-similar solution with a moving resolution frontier and explicit scaling exponents. This framework explains neural scaling laws and double descent, and unifies lazy (NTK-like) training and feature learning as two limits of the same spectral-shell dynamics.
AFA-LoRA: Enabling Non-Linear Adaptations in LoRA with Activation Function Annealing
Low-Rank Adaptation (LoRA) is a widely adopted parameter-efficient fine-tuning (PEFT) method. However, its linear adaptation process limits its expressive power. This means there is a gap between the expressive power of linear training and non-linear training. To bridge this gap, we propose AFA-LoRA, a novel training strategy that brings non-linear expressivity to LoRA while maintaining its seamless mergeability. Our key innovation is an annealed activation function that transitions from a non-linear to a linear transformation during training, allowing the adapter to initially adopt stronger representational capabilities before converging to a mergeable linear form. We implement our method on supervised fine-tuning, reinforcement learning, and speculative decoding. The results show that AFA-LoRA reduces the performance gap between LoRA and full-parameter training. This work enables a more powerful and practical paradigm of parameter-efficient adaptation.
Generation of Geodesics with Actor-Critic Reinforcement Learning to Predict Midpoints
To find the shortest paths for all pairs on manifolds with infinitesimally defined metrics, we introduce a framework to generate them by predicting midpoints recursively. To learn midpoint prediction, we propose an actor-critic approach. We prove the soundness of our approach and show experimentally that the proposed method outperforms existing methods on several planning tasks, including path planning for agents with complex kinematics and motion planning for multi-degree-of-freedom robot arms.
comment: 17 pages with 8 pages of appendices and references, 9 figures
Mem-Rec: Memory Efficient Recommendation System using Alternative Representation
Deep learning-based recommendation systems (e.g., DLRMs) are widely used AI models to provide high-quality personalized recommendations. Training data used for modern recommendation systems commonly includes categorical features taking on tens-of-millions of possible distinct values. These categorical tokens are typically assigned learned vector representations, that are stored in large embedding tables, on the order of 100s of GB. Storing and accessing these tables represent a substantial burden in commercial deployments. Our work proposes MEM-REC, a novel alternative representation approach for embedding tables. MEM-REC leverages bloom filters and hashing methods to encode categorical features using two cache-friendly embedding tables. The first table (token embedding) contains raw embeddings (i.e. learned vector representation), and the second table (weight embedding), which is much smaller, contains weights to scale these raw embeddings to provide better discriminative capability to each data point. We provide a detailed architecture, design and analysis of MEM-REC addressing trade-offs in accuracy and computation requirements, in comparison with state-of-the-art techniques. We show that MEM-REC can not only maintain the recommendation quality and significantly reduce the memory footprint for commercial scale recommendation models but can also improve the embedding latency. In particular, based on our results, MEM-REC compresses the MLPerf CriteoTB benchmark DLRM model size by 2900x and performs up to 3.4x faster embeddings while achieving the same AUC as that of the full uncompressed model.
KVCrush: Key value cache size-reduction using similarity in head-behaviour
Key-value (KV) caching has emerged as a crucial optimization technique for accelerating inference in large language models (LLMs). By allowing the attention operation to scale linearly rather than quadratically with the total sequence length, KV caching significantly enhances generation throughput. However, due to large context lengths in the modern LLMs, the memory footprint of the KV is a huge bottleneck for model deployment directly impacting the model's batch size, hindering its ability to deliver high-throughput. Existing research addresses this challenge using several techniques, such as discarding low-attention tokens, quantization, and matrix approximation which typically lead to a negative impact on the model accuracy. In this paper, We propose KVCrush technology which can be combined with many KV compression technologies to improve the model accuracy at a much smaller memory. KVCrush provides an alternate representation scheme for key-value states, along with a low-overhead token pruning algorithm that accounts for the token distribution in the KV cache, which in turn allows for a a smaller footprint while maintaining the accuracy of the model. Based on our results, KVCrush reduces LongBench KV Cache size by 4x with less than 1% accuracy drop and achieves state-of-the-art average accuracy with minimal overhead, incurring less than 0.5% total inference latency. KVCrush not only outperforms the accuracy of state-of-the-art importance-based token retention schemes but is also compatible with typical practical LLM deployments using KV cache paging schemes such as vLLM and mixed precision quantization.
Precision Autotuning for Linear Solvers via Reinforcement Learning
We propose a reinforcement learning (RL) framework for adaptive precision tuning of linear solvers, and can be extended to general algorithms. The framework is formulated as a contextual bandit problem and solved using incremental action-value estimation with a discretized state space to select optimal precision configurations for computational steps, balancing precision and computational efficiency. To verify its effectiveness, we apply the framework to iterative refinement for solving linear systems $Ax = b$. In this application, our approach dynamically chooses precisions based on calculated features from the system. In detail, a Q-table maps discretized features (e.g., approximate condition number and matrix norm)to actions (chosen precision configurations for specific steps), optimized via an epsilon-greedy strategy to maximize a multi-objective reward balancing accuracy and computational cost. Empirical results demonstrate effective precision selection, reducing computational cost while maintaining accuracy comparable to double-precision baselines. The framework generalizes to diverse out-of-sample data and offers insight into utilizing RL precision selection for other numerical algorithms, advancing mixed-precision numerical methods in scientific computing. To the best of our knowledge, this is the first work on precision autotuning with RL and verified on unseen datasets.
GIFT: Group-relative Implicit Fine Tuning Integrates GRPO with DPO and UNA
I propose \textbf{G}roup-relative \textbf{I}mplicit \textbf{F}ine \textbf{T}uning (GIFT), a novel reinforcement learning framework for aligning LLMs. Instead of directly maximizing cumulative rewards like PPO or GRPO, GIFT minimizes the discrepancy between implicit and explicit reward models. It combines three key ideas: (1) the online multi-response generation and normalization of GRPO, (2) the implicit reward formulation of DPO, and (3) the implicit-explicit reward alignment principle of UNA. By jointly normalizing the implicit and explicit rewards, GIFT eliminates an otherwise intractable term that prevents effective use of implicit rewards. This normalization transforms the complex reward maximization objective into a simple mean squared error (MSE) loss between the normalized reward functions, converting a non-convex optimization problem into a convex, stable, and analytically differentiable formulation. Unlike offline methods such as DPO and UNA, GIFT remains on-policy and thus retains exploration capability. Compared to GRPO, it requires fewer hyperparameters, converges faster, and generalizes better with significantly reduced training overfitting. Empirically, GIFT achieves superior reasoning and alignment performance on mathematical benchmarks while remaining computationally efficient.
Interaction Tensor SHAP
This study proposes Interaction Tensor SHAP (IT-SHAP), a tensor algebraic formulation of the Shapley Taylor Interaction Index (STII) that makes its computational structure explicit. STII extends the Shapley value to higher order interactions, but its exponential combinatorial definition makes direct computation intractable at scale. We reformulate STII as a linear transformation acting on a value function and derive an explicit algebraic representation of its weight tensor. This weight tensor is shown to possess a multilinear structure induced by discrete finite difference operators. When the value function admits a Tensor Train representation, higher order interaction indices can be computed in the parallel complexity class NC squared. In contrast, under general tensor network representations without structural assumptions, the same computation is proven to be P sharp hard. The main contributions are threefold. First, we establish an exact Tensor Train representation of the STII weight tensor. Second, we develop a parallelizable evaluation algorithm with explicit complexity bounds under the Tensor Train assumption. Third, we prove that computational intractability is unavoidable in the absence of such structure. These results demonstrate that the computational difficulty of higher order interaction analysis is determined by the underlying algebraic representation rather than by the interaction index itself, providing a theoretical foundation for scalable interpretation of high dimensional models.
comment: 22 pages
A first-order method for nonconvex-strongly-concave constrained minimax optimization
In this paper we study a nonconvex-strongly-concave constrained minimax problem. Specifically, we propose a first-order augmented Lagrangian method for solving it, whose subproblems are nonconvex-strongly-concave unconstrained minimax problems and suitably solved by a first-order method developed in this paper that leverages the strong concavity structure. Under suitable assumptions, the proposed method achieves an operation complexity of $O(\varepsilon^{-3.5}\log\varepsilon^{-1})$, measured in terms of its fundamental operations, for finding an $\varepsilon$-KKT solution of the constrained minimax problem, which improves the previous best-known operation complexity by a factor of $\varepsilon^{-0.5}$.
comment: Accepted by Optimization Methods and Software
3D Dynamic Radio Map Prediction Using Vision Transformers for Low-Altitude Wireless Networks
Low-altitude wireless networks (LAWN) are rapidly expanding with the growing deployment of unmanned aerial vehicles (UAVs) for logistics, surveillance, and emergency response. Reliable connectivity remains a critical yet challenging task due to three-dimensional (3D) mobility, time-varying user density, and limited power budgets. The transmit power of base stations (BSs) fluctuates dynamically according to user locations and traffic demands, leading to a highly non-stationary 3D radio environment. Radio maps (RMs) have emerged as an effective means to characterize spatial power distributions and support radio-aware network optimization. However, most existing works construct static or offline RMs, overlooking real-time power variations and spatio-temporal dependencies in multi-UAV networks. To overcome this limitation, we propose a 3D dynamic radio map (3D-DRM) framework that learns and predicts the spatio-temporal evolution of received power. Specially, a Vision Transformer (ViT) encoder extracts high-dimensional spatial representations from 3D RMs, while a Transformer-based module models sequential dependencies to predict future power distributions. Experiments unveil that 3D-DRM accurately captures fast-varying power dynamics and substantially outperforms baseline models in both RM reconstruction and short-term prediction.
comment: 7 pages, 4 figures, submitted to IEEE ICC 2026
CEE: An Inference-Time Jailbreak Defense for Embodied Intelligence via Subspace Concept Rotation
Large language models (LLMs) are widely used for task understanding and action planning in embodied intelligence (EI) systems, but their adoption substantially increases vulnerability to jailbreak attacks. While recent work explores inference-time defenses, existing methods rely on static interventions on intermediate representations, which often degrade generation quality and impair adherence to task instructions, reducing system usability in EI settings. We propose a dynamic defense framework. For each EI inference request, we dynamically construct a task-specific safety-semantic subspace, project its hidden state to the most relevant direction, and apply SLERP rotation for adaptive safety control. At comparable defense success rates, our method preserves generation quality, improves usability, reduces tuning cost, and strengthens robustness in EI scenarios.
CAT: Circular-Convolutional Attention for Sub-Quadratic Transformers NeurIPS 2025
Transformers have driven remarkable breakthroughs in natural language processing and computer vision, yet their standard attention mechanism still imposes O(N^2) complexity, hindering scalability to longer sequences. We introduce Circular-convolutional ATtention (CAT), a Fourier-based approach that efficiently applies circular convolutions to reduce complexity without sacrificing representational power. CAT achieves O(NlogN) computations, requires fewer learnable parameters by streamlining fully connected layers, and introduces no additional heavy operations, resulting in consistent accuracy improvements and about a 10% speedup in naive PyTorch implementations. Based on the Engineering-Isomorphic Transformers (EITs) framework, CAT's design not only offers practical efficiency and ease of implementation, but also provides insights to guide the development of future high-performance Transformer architectures. Finally, our ablation studies highlight the key conditions underlying CAT's success, shedding light on broader principles for scalable attention mechanisms.
comment: Accepted as a poster at NeurIPS 2025
Matrix Sensing with Kernel Optimal Loss: Robustness and Optimization Landscape
In this paper we study how the choice of loss functions of non-convex optimization problems affects their robustness and optimization landscape, through the study of noisy matrix sensing. In traditional regression tasks, mean squared error (MSE) loss is a common choice, but it can be unreliable for non-Gaussian or heavy-tailed noise. To address this issue, we adopt a robust loss based on nonparametric regression, which uses a kernel-based estimate of the residual density and maximizes the estimated log-likelihood. This robust formulation coincides with the MSE loss under Gaussian errors but remains stable under more general settings. We further examine how this robust loss reshapes the optimization landscape by analyzing the upper-bound of restricted isometry property (RIP) constants for spurious local minima to disappear. Through theoretical and empirical analysis, we show that this new loss excels at handling large noise and remains robust across diverse noise distributions. This work offers initial insights into enhancing the robustness of machine learning tasks through simply changing the loss, guided by an intuitive and broadly applicable analytical framework.
comment: CPAL 2026
ReNF: Rethinking the Design Space of Neural Long-Term Time Series Forecasters
Neural Forecasters (NFs) have become a cornerstone of Long-term Time Series Forecasting (LTSF). However, recent progress has been hampered by an overemphasis on architectural complexity at the expense of fundamental forecasting principles. In this work, we revisit the principles of LTSF. We begin by formulating a Variance Reduction Hypothesis (VRH), positing that generating and combining multiple forecasts is essential to reducing the inherent uncertainty of NFs. Guided by this, we propose Boosted Direct Output (BDO), a streamlined paradigm that synergistically hybridizes the causal structure of Auto-Regressive (AR) with the stability of Direct Output (DO), while implicitly realizing the principle of forecast combination within a single network. Furthermore, we address the critical validation-test generalization gap by employing parameter smoothing to stabilize optimization. Extensive experiments demonstrate that these trivial yet principled improvements enable a direct temporal MLP to outperform recent, complex state-of-the-art models in nearly all benchmarks, without relying on intricate inductive biases. Finally, we empirically verify our hypothesis, establishing a dynamic performance bound that highlights promising directions for future research. The code for review is available at: https://anonymous.4open.science/r/ReNF-A151.
Graphics 7
Dancing Points: Synthesizing Ballroom Dancing with Three-Point Inputs
Ballroom dancing is a structured yet expressive motion category. Its highly diverse movement and complex interactions between leader and follower dancers make the understanding and synthesis challenging. We demonstrate that the three-point trajectory available from a virtual reality (VR) device can effectively serve as a dancer's motion descriptor, simplifying the modeling and synthesis of interplay between dancers' full-body motions down to sparse trajectories. Thanks to the low dimensionality, we can employ an efficient MLP network to predict the follower's three-point trajectory directly from the leader's three-point input for certain types of ballroom dancing, addressing the challenge of modeling high-dimensional full-body interaction. It also prevents our method from overfitting thanks to its compact yet explicit representation. By leveraging the inherent structure of the movements and carefully planning the autoregressive procedure, we show a deterministic neural network is able to translate three-point trajectories into a virtual embodied avatar, which is typically considered under-constrained and requires generative models for common motions. In addition, we demonstrate this deterministic approach generalizes beyond small, structured datasets like ballroom dancing, and performs robustly on larger, more diverse datasets such as LaFAN. Our method provides a computationally- and data-efficient solution, opening new possibilities for immersive paired dancing applications. Code and pre-trained models for this paper are available at https://peizhuoli.github.io/dancing-points.
SketchRodGS: Sketch-based Extraction of Slender Geometries for Animating Gaussian Splatting Scenes
Physics simulation of slender elastic objects often requires discretization as a polyline. However, constructing a polyline from Gaussian splatting is challenging as Gaussian splatting lacks connectivity information and the configuration of Gaussian primitives contains much noise. This paper presents a method to extract a polyline representation of the slender part of the objects in a Gaussian splatting scene from the user's sketching input. Our method robustly constructs a polyline mesh that represents the slender parts using the screen-space shortest path analysis that can be efficiently solved using dynamic programming. We demonstrate the effectiveness of our approach in several in-the-wild examples.
comment: Presented at SIGGRAPH Asia 2025 (Technical Communications). Best Technical Communications Award
Attention in Geometry: Scalable Spatial Modeling via Adaptive Density Fields and FAISS-Accelerated Kernels
This work introduces Adaptive Density Fields (ADF), a geometric attention framework that formulates spatial aggregation as a query-conditioned, metric-induced attention operator in continuous space. By reinterpreting spatial influence as geometry-preserving attention grounded in physical distance, ADF bridges concepts from adaptive kernel methods and attention mechanisms. Scalability is achieved via FAISS-accelerated inverted file indices, treating approximate nearest-neighbor search as an intrinsic component of the attention mechanism. We demonstrate the framework through a case study on aircraft trajectory analysis in the Chengdu region, extracting trajectory-conditioned Zones of Influence (ZOI) to reveal recurrent airspace structures and localized deviations.
comment: Indepented Study. 22 pages, 2 figures. Includes full mathematical derivation of Adaptive Density Fields (ADF), implementation of FAISS-accelerated kernels, and a physics-informed trajectory POI detection pipeline
DogFit: Domain-guided Fine-tuning for Efficient Transfer Learning of Diffusion Models AAAI 2026
Transfer learning of diffusion models to smaller target domains is challenging, as naively fine-tuning the model often results in poor generalization. Test-time guidance methods help mitigate this by offering controllable improvements in image fidelity through a trade-off with sample diversity. However, this benefit comes at a high computational cost, typically requiring dual forward passes during sampling. We propose the Domain-guided Fine-tuning (DogFit) method, an effective guidance mechanism for diffusion transfer learning that maintains controllability without incurring additional computational overhead. DogFit injects a domain-aware guidance offset into the training loss, effectively internalizing the guided behavior during the fine-tuning process. The domain-aware design is motivated by our observation that during fine-tuning, the unconditional source model offers a stronger marginal estimate than the target model. To support efficient controllable fidelity-diversity trade-offs at inference, we encode the guidance strength value as an additional model input through a lightweight conditioning mechanism. We further investigate the optimal placement and timing of the guidance offset during training and propose two simple scheduling strategies, i.e., late-start and cut-off, which improve generation quality and training stability. Experiments on DiT and SiT backbones across six diverse target domains show that DogFit can outperform prior guidance methods in transfer learning in terms of FID and FDDINOV2 while requiring up to 2x fewer sampling TFLOPS.
comment: Accepted for poster presentation at AAAI 2026
On The Topology of Polygonal Meshes
This paper is an introductory and informal exposition on the topology of polygonal meshes. We begin with a broad overview of topological notions and discuss how homeomorphisms, homotopy, and homology can be used to characterise topology. We move on to define polygonal meshes and make a distinction between intrinsic topology and extrinsic topology which depends on the space in which the mesh is immersed. A distinction is also made between quantitative topological properties and qualitative properties. Next, we outline proofs of the Euler and the Euler-Poincaré formulas. The Betti numbers are then defined in terms of the Euler-Poincaré formula and other mesh statistics rather than as cardinalities of the homology groups which allows us to avoid abstract algebra. Finally, we discuss how it is possible to cut a polygonal mesh such that it becomes a topological disc.
comment: 26 pages, 22 figures (including nine in the margin)
Point Cloud to Mesh Reconstruction: Methods, Trade-offs, and Implementation Guide
Reconstructing meshes from point clouds is a fundamental task in computer vision with applications spanning robotics, autonomous systems, and medical imaging. Selecting an appropriate learning-based method requires understanding trade-offs between computational efficiency, geometric accuracy, and output constraints. This paper categorizes over fifteen methods into five paradigms -- PointNet family, autoencoder architectures, deformation-based methods, point-move techniques, and primitive-based approaches -- and provides practical guidance for method selection. We contribute: (1) a decision framework mapping input/output requirements to suitable paradigms, (2) a failure mode analysis to assist practitioners in debugging implementations, (3) standardized comparisons on ShapeNet benchmarks, and (4) a curated list of maintained codebases with implementation resources. By synthesizing both theoretical foundations and practical considerations, this work serves as an entry point for practitioners and researchers new to learning-based 3D mesh reconstruction.
Robust and Efficient Penetration-Free Elastodynamics without Barriers
We introduce a barrier-free optimization framework for non-penetration elastodynamic simulation that matches the robustness of Incremental Potential Contact (IPC) while overcoming its two primary efficiency bottlenecks: (1) reliance on logarithmic barrier functions to enforce non-penetration constraints, which leads to ill-conditioned systems and significantly slows down the convergence of iterative linear solvers; and (2) the time-of-impact (TOI) locking issue, which restricts active-set exploration in collision-intensive scenes and requires a large number of Newton iterations. We propose a novel second-order constrained optimization framework featuring a custom augmented Lagrangian solver that avoids TOI locking by immediately incorporating all requisite contact pairs detected via CCD, enabling more efficient active-set exploration and leading to significantly fewer Newton iterations. By adaptively updating Lagrange multipliers rather than increasing penalty stiffness, our method prevents stagnation at zero TOI while maintaining a well-conditioned system. We further introduce a constraint filtering and decay mechanism to keep the active set compact and stable, along with a theoretical justification of our method's finite-step termination and first-order time integration accuracy under a cumulative TOI-based termination criterion. A comprehensive set of experiments demonstrates the efficiency, robustness, and accuracy of our method. With a GPU-optimized simulator design, our method achieves an up to 103x speedup over GIPC on challenging, contact-rich benchmarks - scenarios that were previously tractable only with barrier-based methods. Our code and data will be open-sourced.
comment: Supplementary video and materials available at https://github.com/wiso-enoji/Barrier-Free-Supplementary
Robotics 22
VisuoTactile 6D Pose Estimation of an In-Hand Object using Vision and Tactile Sensor Data RA-L
Knowledge of the 6D pose of an object can benefit in-hand object manipulation. In-hand 6D object pose estimation is challenging because of heavy occlusion produced by the robot's grippers, which can have an adverse effect on methods that rely on vision data only. Many robots are equipped with tactile sensors at their fingertips that could be used to complement vision data. In this paper, we present a method that uses both tactile and vision data to estimate the pose of an object grasped in a robot's hand. To address challenges like lack of standard representation for tactile data and sensor fusion, we propose the use of point clouds to represent object surfaces in contact with the tactile sensor and present a network architecture based on pixel-wise dense fusion. We also extend NVIDIA's Deep Learning Dataset Synthesizer to produce synthetic photo-realistic vision data and corresponding tactile point clouds. Results suggest that using tactile data in addition to vision data improves the 6D pose estimate, and our network generalizes successfully from synthetic training to real physical robots.
comment: Accepted for publication in IEEE Robotics and Automation Letters (RA-L), January 2022. Presented at ICRA 2022. This is the author's version of the manuscript
DemoBot: Efficient Learning of Bimanual Manipulation with Dexterous Hands From Third-Person Human Videos
This work presents DemoBot, a learning framework that enables a dual-arm, multi-finger robotic system to acquire complex manipulation skills from a single unannotated RGB-D video demonstration. The method extracts structured motion trajectories of both hands and objects from raw video data. These trajectories serve as motion priors for a novel reinforcement learning (RL) pipeline that learns to refine them through contact-rich interactions, thereby eliminating the need to learn from scratch. To address the challenge of learning long-horizon manipulation skills, we introduce: (1) Temporal-segment based RL to enforce temporal alignment of the current state with demonstrations; (2) Success-Gated Reset strategy to balance the refinement of readily acquired skills and the exploration of subsequent task stages; and (3) Event-Driven Reward curriculum with adaptive thresholding to guide the RL learning of high-precision manipulation. The novel video processing and RL framework successfully achieved long-horizon synchronous and asynchronous bimanual assembly tasks, offering a scalable approach for direct skill acquisition from human videos.
Action-Sketcher: From Reasoning to Action via Visual Sketches for Long-Horizon Robotic Manipulation
Long-horizon robotic manipulation is increasingly important for real-world deployment, requiring spatial disambiguation in complex layouts and temporal resilience under dynamic interaction. However, existing end-to-end and hierarchical Vision-Language-Action (VLA) policies often rely on text-only cues while keeping plan intent latent, which undermines referential grounding in cluttered or underspecified scenes, impedes effective task decomposition of long-horizon goals with close-loop interaction, and limits causal explanation by obscuring the rationale behind action choices. To address these issues, we first introduce Visual Sketch, an implausible visual intermediate that renders points, boxes, arrows, and typed relations in the robot's current views to externalize spatial intent, connect language to scene geometry. Building on Visual Sketch, we present Action-Sketcher, a VLA framework that operates in a cyclic See-Think-Sketch-Act workflow coordinated by adaptive token-gated strategy for reasoning triggers, sketch revision, and action issuance, thereby supporting reactive corrections and human interaction while preserving real-time action prediction. To enable scalable training and evaluation, we curate diverse corpus with interleaved images, text, Visual Sketch supervision, and action sequences, and train Action-Sketcher with a multi-stage curriculum recipe that combines interleaved sequence alignment for modality unification, language-to-sketch consistency for precise linguistic grounding, and imitation learning augmented with sketch-to-action reinforcement for robustness. Extensive experiments on cluttered scenes and multi-object tasks, in simulation and on real-world tasks, show improved long-horizon success, stronger robustness to dynamic scene changes, and enhanced interpretability via editable sketches and step-wise plans. Project website: https://action-sketcher.github.io
comment: 26 pages, 14 figures
HanoiWorld : A Joint Embedding Predictive Architecture BasedWorld Model for Autonomous Vehicle Controller
Current attempts of Reinforcement Learning for Autonomous Controller are data-demanding while the results are under-performed, unstable, and unable to grasp and anchor on the concept of safety, and over-concentrating on noise features due to the nature of pixel reconstruction. While current Self-Supervised Learningapproachs that learning on high-dimensional representations by leveraging the JointEmbedding Predictive Architecture (JEPA) are interesting and an effective alternative, as the idea mimics the natural ability of the human brain in acquiring new skill usingimagination and minimal samples of observations. This study introduces Hanoi-World, a JEPA-based world model that using recurrent neural network (RNN) formaking longterm horizontal planning with effective inference time. Experimentsconducted on the Highway-Env package with difference enviroment showcase the effective capability of making a driving plan while safety-awareness, with considerablecollision rate in comparison with SOTA baselines
AIMS: An Adaptive Integration of Multi-Sensor Measurements for Quadrupedal Robot Localization
This paper addresses the problem of accurate localization for quadrupedal robots operating in narrow tunnel-like environments. Due to the long and homogeneous characteristics of such scenarios, LiDAR measurements often provide weak geometric constraints, making traditional sensor fusion methods susceptible to accumulated motion estimation errors. To address these challenges, we propose AIMS, an adaptive LiDAR-IMU-leg odometry fusion method for robust quadrupedal robot localization in degenerate environments. The proposed method is formulated within an error-state Kalman filtering framework, where LiDAR and leg odometry measurements are integrated with IMU-based state prediction, and measurement noise covariance matrices are adaptively adjusted based on online degeneracy-aware reliability assessment. Experimental results obtained in narrow corridor environments demonstrate that the proposed method improves localization accuracy and robustness compared with state-of-the-art approaches.
DrivingGen: A Comprehensive Benchmark for Generative Video World Models in Autonomous Driving
Video generation models, as one form of world models, have emerged as one of the most exciting frontiers in AI, promising agents the ability to imagine the future by modeling the temporal evolution of complex scenes. In autonomous driving, this vision gives rise to driving world models: generative simulators that imagine ego and agent futures, enabling scalable simulation, safe testing of corner cases, and rich synthetic data generation. Yet, despite fast-growing research activity, the field lacks a rigorous benchmark to measure progress and guide priorities. Existing evaluations remain limited: generic video metrics overlook safety-critical imaging factors; trajectory plausibility is rarely quantified; temporal and agent-level consistency is neglected; and controllability with respect to ego conditioning is ignored. Moreover, current datasets fail to cover the diversity of conditions required for real-world deployment. To address these gaps, we present DrivingGen, the first comprehensive benchmark for generative driving world models. DrivingGen combines a diverse evaluation dataset curated from both driving datasets and internet-scale video sources, spanning varied weather, time of day, geographic regions, and complex maneuvers, with a suite of new metrics that jointly assess visual realism, trajectory plausibility, temporal coherence, and controllability. Benchmarking 14 state-of-the-art models reveals clear trade-offs: general models look better but break physics, while driving-specific ones capture motion realistically but lag in visual quality. DrivingGen offers a unified evaluation framework to foster reliable, controllable, and deployable driving world models, enabling scalable simulation, planning, and data-driven decision-making.
comment: 10 pages, 4 figures; Project Website: https://drivinggen-bench.github.io/
Online Estimation and Manipulation of Articulated Objects
From refrigerators to kitchen drawers, humans interact with articulated objects effortlessly every day while completing household chores. For automating these tasks, service robots must be capable of manipulating arbitrary articulated objects. Recent deep learning methods have been shown to predict valuable priors on the affordance of articulated objects from vision. In contrast, many other works estimate object articulations by observing the articulation motion, but this requires the robot to already be capable of manipulating the object. In this article, we propose a novel approach combining these methods by using a factor graph for online estimation of articulation which fuses learned visual priors and proprioceptive sensing during interaction into an analytical model of articulation based on Screw Theory. With our method, a robotic system makes an initial prediction of articulation from vision before touching the object, and then quickly updates the estimate from kinematic and force sensing during manipulation. We evaluate our method extensively in both simulations and real-world robotic manipulation experiments. We demonstrate several closed-loop estimation and manipulation experiments in which the robot was capable of opening previously unseen drawers. In real hardware experiments, the robot achieved a 75% success rate for autonomous opening of unknown articulated objects.
comment: This preprint has not undergone peer review or any post-submission improvements or corrections. The Version of Record of this article is published in Autonomous Robots, and is available online at [Link will be updated when available]
Sampling Strategy Design for Model Predictive Path Integral Control on Legged Robot Locomotion
Model Predictive Path Integral (MPPI) control has emerged as a powerful sampling-based optimal control method for complex, nonlinear, and high-dimensional systems. However, directly applying MPPI to legged robotic systems presents several challenges. This paper systematically investigates the role of sampling strategy design within the MPPI framework for legged robot locomotion. Based upon the idea of structured control parameterization, we explore and compare multiple sampling strategies within the framework, including both unstructured and spline-based approaches. Through extensive simulations on a quadruped robot platform, we evaluate how different sampling strategies affect control smoothness, task performance, robustness, and sample efficiency. The results provide new insights into the practical implications of sampling design for deploying MPPI on complex legged systems.
SmoothSync: Dual-Stream Diffusion Transformers for Jitter-Robust Beat-Synchronized Gesture Generation from Quantized Audio
Co-speech gesture generation is a critical area of research aimed at synthesizing speech-synchronized human-like gestures. Existing methods often suffer from issues such as rhythmic inconsistency, motion jitter, foot sliding and limited multi-sampling diversity. In this paper, we present SmoothSync, a novel framework that leverages quantized audio tokens in a novel dual-stream Diffusion Transformer (DiT) architecture to synthesis holistic gestures and enhance sampling variation. Specifically, we (1) fuse audio-motion features via complementary transformer streams to achieve superior synchronization, (2) introduce a jitter-suppression loss to improve temporal smoothness, (3) implement probabilistic audio quantization to generate distinct gesture sequences from identical inputs. To reliably evaluate beat synchronization under jitter, we introduce Smooth-BC, a robust variant of the beat consistency metric less sensitive to motion noise. Comprehensive experiments on the BEAT2 and SHOW datasets demonstrate SmoothSync's superiority, outperforming state-of-the-art methods by -30.6% FGD, 10.3% Smooth-BC, and 8.4% Diversity on BEAT2, while reducing jitter and foot sliding by -62.9% and -17.1% respectively. The code will be released to facilitate future research.
How Robot Dogs See the Unseeable: Improving Visual Interpretability via Peering for Exploratory Robots
In vegetated environments, such as forests, exploratory robots play a vital role in navigating complex, cluttered environments where human access is limited and traditional equipment struggles. Visual occlusion from obstacles, such as foliage, can severely obstruct a robot's sensors, impairing scene understanding. We show that "peering", a characteristic side-to-side movement used by insects to overcome their visual limitations, can also allow robots to markedly improve visual reasoning under partial occlusion. This is accomplished by applying core signal processing principles, specifically optical synthetic aperture sensing, together with the vision reasoning capabilities of modern large multimodal models. Peering enables real-time, high-resolution, and wavelength-independent perception, which is crucial for vision-based scene understanding across a wide range of applications. The approach is low-cost and immediately deployable on any camera-equipped robot. We investigated different peering motions and occlusion masking strategies, demonstrating that, unlike peering, state-of-the-art multi-view 3D vision techniques fail in these conditions due to their high susceptibility to occlusion. Our experiments were carried out on an industrial-grade quadrupedal robot. However, the ability to peer is not limited to such platforms, but potentially also applicable to bipedal, hexapod, wheeled, or crawling platforms. Robots that can effectively see through partial occlusion will gain superior perception abilities - including enhanced scene understanding, situational awareness, camouflage breaking, and advanced navigation in complex environments.
General Dynamic Goal Recognition using Goal-Conditioned and Meta Reinforcement Learning
Understanding an agent's goal through its behavior is a common AI problem called Goal Recognition (GR). This task becomes particularly challenging in dynamic environments where goals are numerous and ever-changing. We introduce the General Dynamic Goal Recognition (GDGR) problem, a broader definition of GR aimed at real-time adaptation of GR systems. This paper presents two novel approaches to tackle GDGR: (1) GC-AURA, generalizing to new goals using Model-Free Goal-Conditioned Reinforcement Learning, and (2) Meta-AURA, adapting to novel environments with Meta-Reinforcement Learning. We evaluate these methods across diverse environments, demonstrating their ability to achieve rapid adaptation and high GR accuracy under dynamic and noisy conditions. This work is a significant step forward in enabling GR in dynamic and unpredictable real-world environments.
comment: Accepted for publication at AAMAS 2026
Standing Tall: Sim to Real Fall Classification and Lead Time Prediction for Bipedal Robots
This paper extends a previously proposed fall prediction algorithm to a real-time (online) setting, with implementations in both hardware and simulation. The system is validated on the full-sized bipedal robot Digit, where the real-time version achieves performance comparable to the offline implementation while maintaining a zero false positive rate, an average lead time (defined as the difference between the true and predicted fall time) of 1.1s (well above the required minimum of 0.2s), and a maximum lead time error of just 0.03s. It also achieves a high recovery rate of 0.97, demonstrating its effectiveness in real-world deployment. In addition to the real-time implementation, this work identifies key limitations of the original algorithm, particularly under omnidirectional faults, and introduces a fine-tuned strategy to improve robustness. The enhanced algorithm shows measurable improvements across all evaluated metrics, including a 0.05 reduction in average false positive rate and a 1.19s decrease in the maximum error of the average predicted lead time.
comment: This work has been submitted to the IEEE for possible publication
Phase-based Nonlinear Model Predictive Control for Humanoid Walking Stabilization with Single and Double Support Time Adjustments
The contact sequence of humanoid walking consists of single and double support phases (SSP and DSP), and their coordination through proper duration and dynamic transition based on the robot's state is crucial for maintaining walking stability. Numerous studies have investigated phase duration optimization as an effective means of improving walking stability. This paper presents a phase-based Nonlinear Model Predictive Control (NMPC) framework that jointly optimizes Zero Moment Point (ZMP) modulation, step location, SSP duration (step timing), and DSP duration within a single formulation. Specifically, the proposed framework reformulates the nonlinear DCM (Divergent Component of Motion) error dynamics into a phase-consistent representation and incorporates them as dynamic constraints within the NMPC. The proposed framework also guarantees ZMP input continuity during contact-phase transitions and disables footstep updates during the DSP, thereby enabling dynamically reliable balancing control regardless of whether the robot is in SSP or DSP. The effectiveness of the proposed method is validated through extensive simulation and hardware experiments, demonstrating improved balance performance under external disturbances.
comment: 15 pages, 9 figures
H2R: A Human-to-Robot Data Augmentation for Robot Pre-training from Videos
Large-scale pre-training using videos has proven effective for robot learning. However, the models pre-trained on such data can be suboptimal for robot learning due to the significant visual gap between human hands and those of different robots. To remedy this, we propose H2R, a simple data augmentation technique that detects human hand keypoints, synthesizes robot motions in simulation, and composites rendered robots into egocentric videos. This process explicitly bridges the visual gap between human and robot embodiments during pre-training. We apply H2R to augment large-scale egocentric human video datasets such as Ego4D and SSv2, replacing human hands with simulated robotic arms to generate robot-centric training data. Based on this, we construct and release a family of 1M-scale datasets covering multiple robot embodiments (UR5 with gripper/Leaphand, Franka) and data sources (SSv2, Ego4D). To verify the effectiveness of the augmentation pipeline, we introduce a CLIP-based image-text similarity metric that quantitatively evaluates the semantic fidelity of robot-rendered frames to the original human actions. We validate H2R across three simulation benchmarks: Robomimic, RLBench and PushT and real-world manipulation tasks with a UR5 robot equipped with Gripper and Leaphand end-effectors. H2R consistently improves downstream success rates, yielding gains of 5.0%-10.2% in simulation and 6.7%-23.3% in real-world tasks across various visual encoders and policy learning methods. These results indicate that H2R improves the generalization ability of robotic policies by mitigating the visual discrepancies between human and robot domains.
Multimodal Classification Network Guided Trajectory Planning for Four-Wheel Independent Steering Autonomous Parking Considering Obstacle Attributes
Four-wheel Independent Steering (4WIS) vehicles have attracted increasing attention for their superior maneuverability. Human drivers typically choose to cross or drive over the low-profile obstacles (e.g., plastic bags) to efficiently navigate through narrow spaces, while existing planners neglect obstacle attributes, leading to suboptimal efficiency or planning failures. To address this issue, we propose a novel multimodal trajectory planning framework that employs a neural network for scene perception, combines 4WIS hybrid A* search to generate a warm start, and utilizes an optimal control problem (OCP) for trajectory optimization. Specifically, a multimodal perception network fusing visual information and vehicle states is employed to capture semantic and contextual scene understanding, enabling the planner to adapt the strategy according to scene complexity (hard or easy task). For hard tasks, guided points are introduced to decompose complex tasks into local subtasks, improving the search efficiency. The multiple steering modes of 4WIS vehicles, Ackermann, diagonal, and zero-turn, are also incorporated as kinematically feasible motion primitives. Moreover, a hierarchical obstacle handling strategy, which categorizes obstacles as "non-traversable", "crossable", and "drive-over", is incorporated into the node expansion process, explicitly linking obstacle attributes to planning actions to enable efficient decisions. Furthermore, to address dynamic obstacles with motion uncertainty, we introduce a probabilistic risk field model, constructing risk-aware driving corridors that serve as linear collision constraints in OCP. Experimental results demonstrate the proposed framework's effectiveness in generating safe, efficient, and smooth trajectories for 4WIS vehicles, especially in constrained environments.
Vision-Language-Action Models for Autonomous Driving: Past, Present, and Future
Autonomous driving has long relied on modular "Perception-Decision-Action" pipelines, where hand-crafted interfaces and rule-based components often break down in complex or long-tailed scenarios. Their cascaded design further propagates perception errors, degrading downstream planning and control. Vision-Action (VA) models address some limitations by learning direct mappings from visual inputs to actions, but they remain opaque, sensitive to distribution shifts, and lack structured reasoning or instruction-following capabilities. Recent progress in Large Language Models (LLMs) and multimodal learning has motivated the emergence of Vision-Language-Action (VLA) frameworks, which integrate perception with language-grounded decision making. By unifying visual understanding, linguistic reasoning, and actionable outputs, VLAs offer a pathway toward more interpretable, generalizable, and human-aligned driving policies. This work provides a structured characterization of the emerging VLA landscape for autonomous driving. We trace the evolution from early VA approaches to modern VLA frameworks and organize existing methods into two principal paradigms: End-to-End VLA, which integrates perception, reasoning, and planning within a single model, and Dual-System VLA, which separates slow deliberation (via VLMs) from fast, safety-critical execution (via planners). Within these paradigms, we further distinguish subclasses such as textual vs. numerical action generators and explicit vs. implicit guidance mechanisms. We also summarize representative datasets and benchmarks for evaluating VLA-based driving systems and highlight key challenges and open directions, including robustness, interpretability, and instruction fidelity. Overall, this work aims to establish a coherent foundation for advancing human-compatible autonomous driving systems.
comment: Survey; 47 pages, 7 figures, 9 tables; GitHub Repo at https://github.com/worldbench/awesome-vla-for-ad
VL-LN Bench: Towards Long-horizon Goal-oriented Navigation with Active Dialogs
In most existing embodied navigation tasks, instructions are well-defined and unambiguous, such as instruction following and object searching. Under this idealized setting, agents are required solely to produce effective navigation outputs conditioned on vision and language inputs. However, real-world navigation instructions are often vague and ambiguous, requiring the agent to resolve uncertainty and infer user intent through active dialog. To address this gap, we propose Interactive Instance Goal Navigation (IIGN), a task that requires agents not only to generate navigation actions but also to produce language outputs via active dialog, thereby aligning more closely with practical settings. IIGN extends Instance Goal Navigation (IGN) by allowing agents to freely consult an oracle in natural language while navigating. Building on this task, we present the Vision Language-Language Navigation (VL-LN) benchmark, which provides a large-scale, automatically generated dataset and a comprehensive evaluation protocol for training and assessing dialog-enabled navigation models. VL-LN comprises over 41k long-horizon dialog-augmented trajectories for training and an automatic evaluation protocol with an oracle capable of responding to agent queries. Using this benchmark, we train a navigation model equipped with dialog capabilities and show that it achieves significant improvements over the baselines. Extensive experiments and analyses further demonstrate the effectiveness and reliability of VL-LN for advancing research on dialog-enabled embodied navigation. Code and dataset: https://0309hws.github.io/VL-LN.github.io/
Evaluation of Impression Difference of a Domestic Mobile Manipulator with Autonomous and/or Remote Control in Fetch-and-Carry Tasks
A single service robot can present two distinct agencies: its onboard autonomy and an operator-mediated agency, yet users experience them through one physical body. We formalize this dual-agency structure as a User-Robot-Operator triad in an autonomous remote-control setting that integrates teleoperation with autonomous execution and human-in-the-loop remote assistance. Prior to the recent surge of language-based and multimodal interfaces, we developed and evaluated an early-stage prototype in 2020 that combined natural-language text chat with a sketch-based interface enabling freehand on-image annotation over the robot's live camera view to support remote intervention. We evaluated three modes - remote control via teleoperation, autonomous control, and autonomous remote control (a hybrid mode representing different levels of autonomy) - in controlled fetch-and-carry mobile manipulation tasks using a domestic mobile manipulator, the Human Support Robot (HSR), on a World Robot Summit 2020 rule-compliant test field. The results show systematic mode-dependent differences in user-rated affinity and perceived security, indicating that switching or blending agency within one robot measurably shapes human impressions in Human-Robot Interaction (HRI). These findings provide empirical guidance for designing human-in-the-loop mobile manipulation in domestic physical tasks.
comment: Published in Advanced Robotics (2020). v2 updates Abstract/Comments (metadata only); paper content unchanged. Please cite: Advanced Robotics 34(20):1291-1308, 2020. https://doi.org/10.1080/01691864.2020.1780152
Do You Have Freestyle? Expressive Humanoid Locomotion via Audio Control
Humans intuitively move to sound, but current humanoid robots lack expressive improvisational capabilities, confined to predefined motions or sparse commands. Generating motion from audio and then retargeting it to robots relies on explicit motion reconstruction, leading to cascaded errors, high latency, and disjointed acoustic-actuation mapping. We propose RoboPerform, the first unified audio-to-locomotion framework that can directly generate music-driven dance and speech-driven co-speech gestures from audio. Guided by the core principle of "motion = content + style", the framework treats audio as implicit style signals and eliminates the need for explicit motion reconstruction. RoboPerform integrates a ResMoE teacher policy for adapting to diverse motion patterns and a diffusion-based student policy for audio style injection. This retargeting-free design ensures low latency and high fidelity. Experimental validation shows that RoboPerform achieves promising results in physical plausibility and audio alignment, successfully transforming robots into responsive performers capable of reacting to audio.
RoboMirror: Understand Before You Imitate for Video to Humanoid Locomotion
Humans learn locomotion through visual observation, interpreting visual content first before imitating actions. However, state-of-the-art humanoid locomotion systems rely on either curated motion capture trajectories or sparse text commands, leaving a critical gap between visual understanding and control. Text-to-motion methods suffer from semantic sparsity and staged pipeline errors, while video-based approaches only perform mechanical pose mimicry without genuine visual understanding. We propose RoboMirror, the first retargeting-free video-to-locomotion framework embodying "understand before you imitate". Leveraging VLMs, it distills raw egocentric/third-person videos into visual motion intents, which directly condition a diffusion-based policy to generate physically plausible, semantically aligned locomotion without explicit pose reconstruction or retargeting. Extensive experiments validate the effectiveness of RoboMirror, it enables telepresence via egocentric videos, drastically reduces third-person control latency by 80%, and achieves a 3.7% higher task success rate than baselines. By reframing humanoid control around video understanding, we bridge the visual understanding and action gap.
ManiBox: Enhancing Embodied Spatial Generalization via Scalable Simulation Data Generations
Embodied agents require robust spatial intelligence to execute precise real-world manipulations. However, this remains a significant challenge, as current methods often struggle to accurately position objects in space. Collecting extensive data can help address this issue by enhancing the agent's spatial understanding. Nonetheless, obtaining such data with real robots is prohibitively expensive, and relying on simulation data frequently leads to visual generalization gaps during real-world deployment. To tackle these challenges, we propose ManiBox, a novel bounding-box-guided framework. By decoupling perception from policy generalization, ManiBox effectively reduces the Sim2Real gap, leverages Internet-scale data, and scales our policy data collection in simulation. Specifically, within ManiBox, the RL teacher policy efficiently generates scalable simulation data. The student policy is distilled from this data and takes bounding boxes as input, which is proven sufficient for determining objects' spatial positions, thus enabling zero-shot transfer to real robots. Comprehensive evaluations in both simulated and real-world environments demonstrate that ManiBox exhibits strong spatial generalization and adaptability across various manipulation tasks and settings. Furthermore, our empirical study provides preliminary verification of spatial scaling laws, i.e., the amount of data required for spatial generalization scales with spatial volume following a power-law relationship. At a given spatial volume level, the success rate of manipulation tasks follows Michaelis-Menten kinetics with respect to data volume, exhibiting a saturation effect as data increases. Our videos and code are available at https://thkkk.github.io/manibox
LSRE: Latent Semantic Rule Encoding for Real-Time Semantic Risk Detection in Autonomous Driving
Real-world autonomous driving must adhere to complex human social rules that extend beyond legally codified traffic regulations. Many of these semantic constraints, such as yielding to emergency vehicles, complying with traffic officers' gestures, or stopping for school buses, are intuitive for humans yet difficult to encode explicitly. Although large vision-language models (VLMs) can interpret such semantics, their inference cost makes them impractical for real-time deployment. This work proposes LSRE, a Latent Semantic Rule Encoding framework that converts sparsely sampled VLM judgments into decision boundaries within the latent space of a recurrent world model. By encoding language-defined safety semantics into a lightweight latent classifier, LSRE enables real-time semantic risk assessment at 10 Hz without per-frame VLM queries. Experiments on six semantic-failure scenarios in CARLA demonstrate that LSRE attains semantic risk detection accuracy comparable to a large VLM baseline, while providing substantially earlier hazard anticipation and maintaining low computational latency. LSRE further generalizes to rarely seen semantic-similar test cases, indicating that language-guided latent classification offers an effective and deployable mechanism for semantic safety monitoring in autonomous driving.
Computer Vision and Pattern Recognition 74
Learnability-Driven Submodular Optimization for Active Roadside 3D Detection CVPR 2026
Roadside perception datasets are typically constructed via cooperative labeling between synchronized vehicle and roadside frame pairs. However, real deployment often requires annotation of roadside-only data due to hardware and privacy constraints. Even human experts struggle to produce accurate labels without vehicle-side data (image, LIDAR), which not only increases annotation difficulty and cost, but also reveals a fundamental learnability problem: many roadside-only scenes contain distant, blurred, or occluded objects whose 3D properties are ambiguous from a single view and can only be reliably annotated by cross-checking paired vehicle--roadside frames. We refer to such cases as inherently ambiguous samples. To reduce wasted annotation effort on inherently ambiguous samples while still obtaining high-performing models, we turn to active learning. This work focuses on active learning for roadside monocular 3D object detection and proposes a learnability-driven framework that selects scenes which are both informative and reliably labelable, suppressing inherently ambiguous samples while ensuring coverage. Experiments demonstrate that our method, LH3D, achieves 86.06%, 67.32%, and 78.67% of full-performance for vehicles, pedestrians, and cyclists respectively, using only 25% of the annotation budget on DAIR-V2X-I, significantly outperforming uncertainty-based baselines. This confirms that learnability, not uncertainty, matters for roadside 3D perception.
comment: 10 pages, 7 figures. Submitted to CVPR 2026
Mitigating Longitudinal Performance Degradation in Child Face Recognition Using Synthetic Data
Longitudinal face recognition in children remains challenging due to rapid and nonlinear facial growth, which causes template drift and increasing verification errors over time. This work investigates whether synthetic face data can act as a longitudinal stabilizer by improving temporal robustness of child face recognition models. Using an identity disjoint protocol on the Young Face Aging (YFA) dataset, we evaluate three settings: (i) pretrained MagFace embeddings without dataset specific fine-tuning, (ii) MagFace fine-tuned using authentic training faces only, and (iii) MagFace fine-tuned using a combination of authentic and synthetically generated training faces. Synthetic data is generated using StyleGAN2 ADA and incorporated exclusively within the training identities; a post generation filtering step is applied to mitigate identity leakage and remove artifact affected samples. Experimental results across enrollment verification gaps from 6 to 36 months show that synthetic-augmented fine tuning substantially reduces error rates relative to both the pretrained baseline and real only fine tuning. These findings provide a risk aware assessment of synthetic augmentation for improving identity persistence in pediatric face recognition.
FALCON: Few-Shot Adversarial Learning for Cross-Domain Medical Image Segmentation
Precise delineation of anatomical and pathological structures within 3D medical volumes is crucial for accurate diagnosis, effective surgical planning, and longitudinal disease monitoring. Despite advancements in AI, clinically viable segmentation is often hindered by the scarcity of 3D annotations, patient-specific variability, data privacy concerns, and substantial computational overhead. In this work, we propose FALCON, a cross-domain few-shot segmentation framework that achieves high-precision 3D volume segmentation by processing data as 2D slices. The framework is first meta-trained on natural images to learn-to-learn generalizable segmentation priors, then transferred to the medical domain via adversarial fine-tuning and boundary-aware learning. Task-aware inference, conditioned on support cues, allows FALCON to adapt dynamically to patient-specific anatomical variations across slices. Experiments on four benchmarks demonstrate that FALCON consistently achieves the lowest Hausdorff Distance scores, indicating superior boundary accuracy while maintaining a Dice Similarity Coefficient comparable to the state-of-the-art models. Notably, these results are achieved with significantly less labeled data, no data augmentation, and substantially lower computational overhead.
comment: 20 pages, 6 figures, 7 tables
Evaluating Deep Learning-Based Face Recognition for Infants and Toddlers: Impact of Age Across Developmental Stages
Face recognition for infants and toddlers presents unique challenges due to rapid facial morphology changes, high inter-class similarity, and limited dataset availability. This study evaluates the performance of four deep learning-based face recognition models FaceNet, ArcFace, MagFace, and CosFace on a newly developed longitudinal dataset collected over a 24 month period in seven sessions involving children aged 0 to 3 years. Our analysis examines recognition accuracy across developmental stages, showing that the True Accept Rate (TAR) is only 30.7% at 0.1% False Accept Rate (FAR) for infants aged 0 to 6 months, due to unstable facial features. Performance improves significantly in older children, reaching 64.7% TAR at 0.1% FAR in the 2.5 to 3 year age group. We also evaluate verification performance over different time intervals, revealing that shorter time gaps result in higher accuracy due to reduced embedding drift. To mitigate this drift, we apply a Domain Adversarial Neural Network (DANN) approach that improves TAR by over 12%, yielding features that are more temporally stable and generalizable. These findings are critical for building biometric systems that function reliably over time in smart city applications such as public healthcare, child safety, and digital identity services. The challenges observed in early age groups highlight the importance of future research on privacy preserving biometric authentication systems that can address temporal variability, particularly in secure and regulated urban environments where child verification is essential.
comment: Accepted and presented at IEEE IJCB 2025 conference; final published version forthcoming
Trustworthy Data-Driven Wildfire Risk Prediction and Understanding in Western Canada
In recent decades, the intensification of wildfire activity in western Canada has resulted in substantial socio-economic and environmental losses. Accurate wildfire risk prediction is hindered by the intrinsic stochasticity of ignition and spread and by nonlinear interactions among fuel conditions, meteorology, climate variability, topography, and human activities, challenging the reliability and interpretability of purely data-driven models. We propose a trustworthy data-driven wildfire risk prediction framework based on long-sequence, multi-scale temporal modeling, which integrates heterogeneous drivers while explicitly quantifying predictive uncertainty and enabling process-level interpretation. Evaluated over western Canada during the record-breaking 2023 and 2024 fire seasons, the proposed model outperforms existing time-series approaches, achieving an F1 score of 0.90 and a PR-AUC of 0.98 with low computational cost. Uncertainty-aware analysis reveals structured spatial and seasonal patterns in predictive confidence, highlighting increased uncertainty associated with ambiguous predictions and spatiotemporal decision boundaries. SHAP-based interpretation provides mechanistic understanding of wildfire controls, showing that temperature-related drivers dominate wildfire risk in both years, while moisture-related constraints play a stronger role in shaping spatial and land-cover-specific contrasts in 2024 compared to the widespread hot and dry conditions of 2023. Data and code are available at https://github.com/SynUW/mmFire.
LabelAny3D: Label Any Object 3D in the Wild NeurIPS 2025
Detecting objects in 3D space from monocular input is crucial for applications ranging from robotics to scene understanding. Despite advanced performance in the indoor and autonomous driving domains, existing monocular 3D detection models struggle with in-the-wild images due to the lack of 3D in-the-wild datasets and the challenges of 3D annotation. We introduce LabelAny3D, an \emph{analysis-by-synthesis} framework that reconstructs holistic 3D scenes from 2D images to efficiently produce high-quality 3D bounding box annotations. Built on this pipeline, we present COCO3D, a new benchmark for open-vocabulary monocular 3D detection, derived from the MS-COCO dataset and covering a wide range of object categories absent from existing 3D datasets. Experiments show that annotations generated by LabelAny3D improve monocular 3D detection performance across multiple benchmarks, outperforming prior auto-labeling approaches in quality. These results demonstrate the promise of foundation-model-driven annotation for scaling up 3D recognition in realistic, open-world settings.
comment: NeurIPS 2025. Project page: https://uva-computer-vision-lab.github.io/LabelAny3D/
Animated 3DGS Avatars in Diverse Scenes with Consistent Lighting and Shadows
We present a method for consistent lighting and shadows when animated 3D Gaussian Splatting (3DGS) avatars interact with 3DGS scenes or with dynamic objects inserted into otherwise static scenes. Our key contribution is Deep Gaussian Shadow Maps (DGSM), a modern analogue of the classical shadow mapping algorithm tailored to the volumetric 3DGS representation. Building on the classic deep shadow mapping idea, we show that 3DGS admits closed form light accumulation along light rays, enabling volumetric shadow computation without meshing. For each estimated light, we tabulate transmittance over concentric radial shells and store them in octahedral atlases, which modern GPUs can sample in real time per query to attenuate affected scene Gaussians and thus cast and receive shadows consistently. To relight moving avatars, we approximate the local environment illumination with HDRI probes represented in a spherical harmonic (SH) basis and apply a fast per Gaussian radiance transfer, avoiding explicit BRDF estimation or offline optimization. We demonstrate environment consistent lighting for avatars from AvatarX and ActorsHQ, composited into ScanNet++, DL3DV, and SuperSplat scenes, and show interactions with inserted objects. Across single and multi avatar settings, DGSM and SH relighting operate fully in the volumetric 3DGS representation, yielding coherent shadows and relighting while avoiding meshing.
comment: Our project page is available at https://miraymen.github.io/dgsm
An Empirical Study of Monocular Human Body Measurement Under Weak Calibration
Estimating human body measurements from monocular RGB imagery remains challenging due to scale ambiguity, viewpoint sensitivity, and the absence of explicit depth information. This work presents a systematic empirical study of three weakly calibrated monocular strategies: landmark-based geometry, pose-driven regression, and object-calibrated silhouettes, evaluated under semi-constrained conditions using consumer-grade cameras. Rather than pursuing state-of-the-art accuracy, the study analyzes how differing calibration assumptions influence measurement behavior, robustness, and failure modes across varied body types. The results reveal a clear trade-off between user effort during calibration and the stability of resulting circumferential quantities. This paper serves as an empirical design reference for lightweight monocular human measurement systems intended for deployment on consumer devices.
comment: The paper consists of 8 pages, 2 figures (on pages 4 and 7), and 2 tables (both on page 6)
CAP-IQA: Context-Aware Prompt-Guided CT Image Quality Assessment
Prompt-based methods, which encode medical priors through descriptive text, have been only minimally explored for CT Image Quality Assessment (IQA). While such prompts can embed prior knowledge about diagnostic quality, they often introduce bias by reflecting idealized definitions that may not hold under real-world degradations such as noise, motion artifacts, or scanner variability. To address this, we propose the Context-Aware Prompt-guided Image Quality Assessment (CAP-IQA) framework, which integrates text-level priors with instance-level context prompts and applies causal debiasing to separate idealized knowledge from factual, image-specific degradations. Our framework combines a CNN-based visual encoder with a domain-specific text encoder to assess diagnostic visibility, anatomical clarity, and noise perception in abdominal CT images. The model leverages radiology-style prompts and context-aware fusion to align semantic and perceptual representations. On the 2023 LDCTIQA challenge benchmark, CAP-IQA achieves an overall correlation score of 2.8590 (sum of PLCC, SROCC, and KROCC), surpassing the top-ranked leaderboard team (2.7427) by 4.24%. Moreover, our comprehensive ablation experiments confirm that prompt-guided fusion and the simplified encoder-only design jointly enhance feature alignment and interpretability. Furthermore, evaluation on an in-house dataset of 91,514 pediatric CT images demonstrates the true generalizability of CAP-IQA in assessing perceptual fidelity in a different patient population.
comment: 18 pages, 9 figures, 5 tables
Guiding Token-Sparse Diffusion Models
Diffusion models deliver high quality in image synthesis but remain expensive during training and inference. Recent works have leveraged the inherent redundancy in visual content to make training more affordable by training only on a subset of visual information. While these methods were successful in providing cheaper and more effective training, sparsely trained diffusion models struggle in inference. This is due to their lacking response to Classifier-free Guidance (CFG) leading to underwhelming performance during inference. To overcome this, we propose Sparse Guidance (SG). Instead of using conditional dropout as a signal to guide diffusion models, SG uses token-level sparsity. As a result, SG preserves the high-variance of the conditional prediction better, achieving good quality and high variance outputs. Leveraging token-level sparsity at inference, SG improves fidelity at lower compute, achieving 1.58 FID on the commonly used ImageNet-256 benchmark with 25% fewer FLOPs, and yields up to 58% FLOP savings at matched baseline quality. To demonstrate the effectiveness of Sparse Guidance, we train a 2.5B text-to-image diffusion model using training time sparsity and leverage SG during inference. SG achieves improvements in composition and human preference score while increasing throughput at the same time.
Beyond Patches: Global-aware Autoregressive Model for Multimodal Few-Shot Font Generation
Manual font design is an intricate process that transforms a stylistic visual concept into a coherent glyph set. This challenge persists in automated Few-shot Font Generation (FFG), where models often struggle to preserve both the structural integrity and stylistic fidelity from limited references. While autoregressive (AR) models have demonstrated impressive generative capabilities, their application to FFG is constrained by conventional patch-level tokenization, which neglects global dependencies crucial for coherent font synthesis. Moreover, existing FFG methods remain within the image-to-image paradigm, relying solely on visual references and overlooking the role of language in conveying stylistic intent during font design. To address these limitations, we propose GAR-Font, a novel AR framework for multimodal few-shot font generation. GAR-Font introduces a global-aware tokenizer that effectively captures both local structures and global stylistic patterns, a multimodal style encoder offering flexible style control through a lightweight language-style adapter without requiring intensive multimodal pretraining, and a post-refinement pipeline that further enhances structural fidelity and style coherence. Extensive experiments show that GAR-Font outperforms existing FFG methods, excelling in maintaining global style faithfulness and achieving higher-quality results with textual stylistic guidance.
comment: 25 pages
OpenRT: An Open-Source Red Teaming Framework for Multimodal LLMs
The rapid integration of Multimodal Large Language Models (MLLMs) into critical applications is increasingly hindered by persistent safety vulnerabilities. However, existing red-teaming benchmarks are often fragmented, limited to single-turn text interactions, and lack the scalability required for systematic evaluation. To address this, we introduce OpenRT, a unified, modular, and high-throughput red-teaming framework designed for comprehensive MLLM safety evaluation. At its core, OpenRT architects a paradigm shift in automated red-teaming by introducing an adversarial kernel that enables modular separation across five critical dimensions: model integration, dataset management, attack strategies, judging methods, and evaluation metrics. By standardizing attack interfaces, it decouples adversarial logic from a high-throughput asynchronous runtime, enabling systematic scaling across diverse models. Our framework integrates 37 diverse attack methodologies, spanning white-box gradients, multi-modal perturbations, and sophisticated multi-agent evolutionary strategies. Through an extensive empirical study on 20 advanced models (including GPT-5.2, Claude 4.5, and Gemini 3 Pro), we expose critical safety gaps: even frontier models fail to generalize across attack paradigms, with leading models exhibiting average Attack Success Rates as high as 49.14%. Notably, our findings reveal that reasoning models do not inherently possess superior robustness against complex, multi-turn jailbreaks. By open-sourcing OpenRT, we provide a sustainable, extensible, and continuously maintained infrastructure that accelerates the development and standardization of AI safety.
MM-Sonate: Multimodal Controllable Audio-Video Generation with Zero-Shot Voice Cloning
Joint audio-video generation aims to synthesize synchronized multisensory content, yet current unified models struggle with fine-grained acoustic control, particularly for identity-preserving speech. Existing approaches either suffer from temporal misalignment due to cascaded generation or lack the capability to perform zero-shot voice cloning within a joint synthesis framework. In this work, we present MM-Sonate, a multimodal flow-matching framework that unifies controllable audio-video joint generation with zero-shot voice cloning capabilities. Unlike prior works that rely on coarse semantic descriptions, MM-Sonate utilizes a unified instruction-phoneme input to enforce strict linguistic and temporal alignment. To enable zero-shot voice cloning, we introduce a timbre injection mechanism that effectively decouples speaker identity from linguistic content. Furthermore, addressing the limitations of standard classifier-free guidance in multimodal settings, we propose a noise-based negative conditioning strategy that utilizes natural noise priors to significantly enhance acoustic fidelity. Empirical evaluations demonstrate that MM-Sonate establishes new state-of-the-art performance in joint generation benchmarks, significantly outperforming baselines in lip synchronization and speech intelligibility, while achieving voice cloning fidelity comparable to specialized Text-to-Speech systems.
EscherVerse: An Open World Benchmark and Dataset for Teleo-Spatial Intelligence with Physical-Dynamic and Intent-Driven Understanding
The ability to reason about spatial dynamics is a cornerstone of intelligence, yet current research overlooks the human intent behind spatial changes. To address these limitations, we introduce Teleo-Spatial Intelligence (TSI), a new paradigm that unifies two critical pillars: Physical-Dynamic Reasoning--understanding the physical principles of object interactions--and Intent-Driven Reasoning--inferring the human goals behind these actions. To catalyze research in TSI, we present EscherVerse, consisting of a large-scale, open-world benchmark (Escher-Bench), a dataset (Escher-35k), and models (Escher series). Derived from real-world videos, EscherVerse moves beyond constrained settings to explicitly evaluate an agent's ability to reason about object permanence, state transitions, and trajectory prediction in dynamic, human-centric scenarios. Crucially, it is the first benchmark to systematically assess Intent-Driven Reasoning, challenging models to connect physical events to their underlying human purposes. Our work, including a novel data curation pipeline, provides a foundational resource to advance spatial intelligence from passive scene description toward a holistic, purpose-driven understanding of the world.
Sim2Real SAR Image Restoration: Metadata-Driven Models for Joint Despeckling and Sidelobes Reduction
Synthetic aperture radar (SAR) provides valuable information about the Earth's surface under all weather and illumination conditions. However, the inherent phenomenon of speckle and the presence of sidelobes around bright targets pose challenges for accurate interpretation of SAR imagery. Most existing SAR image restoration methods address despeckling and sidelobes reduction as separate tasks. In this paper, we propose a unified framework that jointly performs both tasks using neural networks (NNs) trained on a realistic SAR simulated dataset generated with MOCEM. Inference can then be performed on real SAR images, demonstrating effective simulation to real (Sim2Real) transferability. Additionally, we incorporate acquisition metadata as auxiliary input to the NNs, demonstrating improved restoration performance.
comment: Accepted at the Conference on Artificial Intelligence for Defense (CAID), 2025, Rennes, France
FAR-AMTN: Attention Multi-Task Network for Face Attribute Recognition
To enhance the generalization performance of Multi-Task Networks (MTN) in Face Attribute Recognition (FAR), it is crucial to share relevant information across multiple related prediction tasks effectively. Traditional MTN methods create shared low-level modules and distinct high-level modules, causing an exponential increase in model parameters with the addition of tasks. This approach also limits feature interaction at the high level, hindering the exploration of semantic relations among attributes, thereby affecting generalization negatively. In response, this study introduces FAR-AMTN, a novel Attention Multi-Task Network for FAR. It incorporates a Weight-Shared Group-Specific Attention (WSGSA) module with shared parameters to minimize complexity while improving group feature representation. Furthermore, a Cross-Group Feature Fusion (CGFF) module is utilized to foster interactions between attribute groups, enhancing feature learning. A Dynamic Weighting Strategy (DWS) is also introduced for synchronized task convergence. Experiments on the CelebA and LFWA datasets demonstrate that the proposed FAR-AMTN demonstrates superior accuracy with significantly fewer parameters compared to existing models.
comment: 28 pages, 8figures
Improving Flexible Image Tokenizers for Autoregressive Image Generation
Flexible image tokenizers aim to represent an image using an ordered 1D variable-length token sequence. This flexible tokenization is typically achieved through nested dropout, where a portion of trailing tokens is randomly truncated during training, and the image is reconstructed using the remaining preceding sequence. However, this tail-truncation strategy inherently concentrates the image information in the early tokens, limiting the effectiveness of downstream AutoRegressive (AR) image generation as the token length increases. To overcome these limitations, we propose \textbf{ReToK}, a flexible tokenizer with \underline{Re}dundant \underline{Tok}en Padding and Hierarchical Semantic Regularization, designed to fully exploit all tokens for enhanced latent modeling. Specifically, we introduce \textbf{Redundant Token Padding} to activate tail tokens more frequently, thereby alleviating information over-concentration in the early tokens. In addition, we apply \textbf{Hierarchical Semantic Regularization} to align the decoding features of earlier tokens with those from a pre-trained vision foundation model, while progressively reducing the regularization strength toward the tail to allow finer low-level detail reconstruction. Extensive experiments demonstrate the effectiveness of ReTok: on ImageNet 256$\times$256, our method achieves superior generation performance compared with both flexible and fixed-length tokenizers. Code will be available at: \href{https://github.com/zfu006/ReTok}{https://github.com/zfu006/ReTok}
DrivingGen: A Comprehensive Benchmark for Generative Video World Models in Autonomous Driving
Video generation models, as one form of world models, have emerged as one of the most exciting frontiers in AI, promising agents the ability to imagine the future by modeling the temporal evolution of complex scenes. In autonomous driving, this vision gives rise to driving world models: generative simulators that imagine ego and agent futures, enabling scalable simulation, safe testing of corner cases, and rich synthetic data generation. Yet, despite fast-growing research activity, the field lacks a rigorous benchmark to measure progress and guide priorities. Existing evaluations remain limited: generic video metrics overlook safety-critical imaging factors; trajectory plausibility is rarely quantified; temporal and agent-level consistency is neglected; and controllability with respect to ego conditioning is ignored. Moreover, current datasets fail to cover the diversity of conditions required for real-world deployment. To address these gaps, we present DrivingGen, the first comprehensive benchmark for generative driving world models. DrivingGen combines a diverse evaluation dataset curated from both driving datasets and internet-scale video sources, spanning varied weather, time of day, geographic regions, and complex maneuvers, with a suite of new metrics that jointly assess visual realism, trajectory plausibility, temporal coherence, and controllability. Benchmarking 14 state-of-the-art models reveals clear trade-offs: general models look better but break physics, while driving-specific ones capture motion realistically but lag in visual quality. DrivingGen offers a unified evaluation framework to foster reliable, controllable, and deployable driving world models, enabling scalable simulation, planning, and data-driven decision-making.
comment: 10 pages, 4 figures; Project Website: https://drivinggen-bench.github.io/
BARE: Towards Bias-Aware and Reasoning-Enhanced One-Tower Visual Grounding
Visual Grounding (VG), which aims to locate a specific region referred to by expressions, is a fundamental yet challenging task in the multimodal understanding fields. While recent grounding transfer works have advanced the field through one-tower architectures, they still suffer from two primary limitations: (1) over-entangled multimodal representations that exacerbate deceptive modality biases, and (2) insufficient semantic reasoning that hinders the comprehension of referential cues. In this paper, we propose BARE, a bias-aware and reasoning-enhanced framework for one-tower visual grounding. BARE introduces a mechanism that preserves modality-specific features and constructs referential semantics through three novel modules: (i) language salience modulator, (ii) visual bias correction and (iii) referential relationship enhancement, which jointly mitigate multimodal distractions and enhance referential comprehension. Extensive experimental results on five benchmarks demonstrate that BARE not only achieves state-of-the-art performance but also delivers superior computational efficiency compared to existing approaches. The code is publicly accessible at https://github.com/Marloweeee/BARE.
FastV-RAG: Towards Fast and Fine-Grained Video QA with Retrieval-Augmented Generation
Vision-Language Models (VLMs) excel at visual reasoning but still struggle with integrating external knowledge. Retrieval-Augmented Generation (RAG) is a promising solution, but current methods remain inefficient and often fail to maintain high answer quality. To address these challenges, we propose VideoSpeculateRAG, an efficient VLM-based RAG framework built on two key ideas. First, we introduce a speculative decoding pipeline: a lightweight draft model quickly generates multiple answer candidates, which are then verified and refined by a more accurate heavyweight model, substantially reducing inference latency without sacrificing correctness. Second, we identify a major source of error - incorrect entity recognition in retrieved knowledge - and mitigate it with a simple yet effective similarity-based filtering strategy that improves entity alignment and boosts overall answer accuracy. Experiments demonstrate that VideoSpeculateRAG achieves comparable or higher accuracy than standard RAG approaches while accelerating inference by approximately 2x. Our framework highlights the potential of combining speculative decoding with retrieval-augmented reasoning to enhance efficiency and reliability in complex, knowledge-intensive multimodal tasks.
A Novel Deep Learning Method for Segmenting the Left Ventricle in Cardiac Cine MRI
This research aims to develop a novel deep learning network, GBU-Net, utilizing a group-batch-normalized U-Net framework, specifically designed for the precise semantic segmentation of the left ventricle in short-axis cine MRI scans. The methodology includes a down-sampling pathway for feature extraction and an up-sampling pathway for detail restoration, enhanced for medical imaging. Key modifications include techniques for better contextual understanding crucial in cardiac MRI segmentation. The dataset consists of 805 left ventricular MRI scans from 45 patients, with comparative analysis using established metrics such as the dice coefficient and mean perpendicular distance. GBU-Net significantly improves the accuracy of left ventricle segmentation in cine MRI scans. Its innovative design outperforms existing methods in tests, surpassing standard metrics like the dice coefficient and mean perpendicular distance. The approach is unique in its ability to capture contextual information, often missed in traditional CNN-based segmentation. An ensemble of the GBU-Net attains a 97% dice score on the SunnyBrook testing dataset. GBU-Net offers enhanced precision and contextual understanding in left ventricle segmentation for surgical robotics and medical analysis.
comment: 9 pages, 5 figures
DiffKD-DCIS: Predicting Upgrade of Ductal Carcinoma In Situ with Diffusion Augmentation and Knowledge Distillation
Accurately predicting the upgrade of ductal carcinoma in situ (DCIS) to invasive ductal carcinoma (IDC) is crucial for surgical planning. However, traditional deep learning methods face challenges due to limited ultrasound data and poor generalization ability. This study proposes the DiffKD-DCIS framework, integrating conditional diffusion modeling with teacher-student knowledge distillation. The framework operates in three stages: First, a conditional diffusion model generates high-fidelity ultrasound images using multimodal conditions for data augmentation. Then, a deep teacher network extracts robust features from both original and synthetic data. Finally, a compact student network learns from the teacher via knowledge distillation, balancing generalization and computational efficiency. Evaluated on a multi-center dataset of 1,435 cases, the synthetic images were of good quality. The student network had fewer parameters and faster inference. On external test sets, it outperformed partial combinations, and its accuracy was comparable to senior radiologists and superior to junior ones, showing significant clinical potential.
DeepInv: A Novel Self-supervised Learning Approach for Fast and Accurate Diffusion Inversion
Diffusion inversion is a task of recovering the noise of an image in a diffusion model, which is vital for controllable diffusion image editing. At present, diffusion inversion still remains a challenging task due to the lack of viable supervision signals. Thus, most existing methods resort to approximation-based solutions, which however are often at the cost of performance or efficiency. To remedy these shortcomings, we propose a novel self-supervised diffusion inversion approach in this paper, termed Deep Inversion (DeepInv). Instead of requiring ground-truth noise annotations, we introduce a self-supervised objective as well as a data augmentation strategy to generate high-quality pseudo noises from real images without manual intervention. Based on these two innovative designs, DeepInv is also equipped with an iterative and multi-scale training regime to train a parameterized inversion solver, thereby achieving the fast and accurate image-to-noise mapping. To the best of our knowledge, this is the first attempt of presenting a trainable solver to predict inversion noise step by step. The extensive experiments show that our DeepInv can achieve much better performance and inference speed than the compared methods, e.g., +40.435% SSIM than EasyInv and +9887.5% speed than ReNoise on COCO dataset. Moreover, our careful designs of trainable solvers can also provide insights to the community. Codes and model parameters will be released in https://github.com/potato-kitty/DeepInv.
Higher-Order Domain Generalization in Magnetic Resonance-Based Assessment of Alzheimer's Disease
Despite progress in deep learning for Alzheimer's disease (AD) diagnostics, models trained on structural magnetic resonance imaging (sMRI) often do not perform well when applied to new cohorts due to domain shifts from varying scanners, protocols and patient demographics. AD, the primary driver of dementia, manifests through progressive cognitive and neuroanatomical changes like atrophy and ventricular expansion, making robust, generalizable classification essential for real-world use. While convolutional neural networks and transformers have advanced feature extraction via attention and fusion techniques, single-domain generalization (SDG) remains underexplored yet critical, given the fragmented nature of AD datasets. To bridge this gap, we introduce Extended MixStyle (EM), a framework for blending higher-order feature moments (skewness and kurtosis) to mimic diverse distributional variations. Trained on sMRI data from the National Alzheimer's Coordinating Center (NACC; n=4,647) to differentiate persons with normal cognition (NC) from those with mild cognitive impairment (MCI) or AD and tested on three unseen cohorts (total n=3,126), EM yields enhanced cross-domain performance, improving macro-F1 on average by 2.4 percentage points over state-of-the-art SDG benchmarks, underscoring its promise for invariant, reliable AD detection in heterogeneous real-world settings. The source code will be made available upon acceptance at https://github.com/zobia111/Extended-Mixstyle.
Unified Generation and Self-Verification for Vision-Language Models via Advantage Decoupled Preference Optimization
Parallel test-time scaling typically trains separate generation and verification models, incurring high training and inference costs. We propose Advantage Decoupled Preference Optimization (ADPO), a unified reinforcement learning framework that jointly learns answer generation and self-verification within a single policy. ADPO introduces two innovations: a preference verification reward improving verification capability and a decoupled optimization mechanism enabling synergistic optimization of generation and verification. Specifically, the preference verification reward computes mean verification scores from positive and negative samples as decision thresholds, providing positive feedback when prediction correctness aligns with answer correctness. Meanwhile, the advantage decoupled optimization computes separate advantages for generation and verification, applies token masks to isolate gradients, and combines masked GRPO objectives, preserving generation quality while calibrating verification scores. ADPO achieves up to +34.1% higher verification AUC and -53.5% lower inference time, with significant gains of +2.8%/+1.4% accuracy on MathVista/MMMU, +1.9 cIoU on ReasonSeg, and +1.7%/+1.0% step success rate on AndroidControl/GUI Odyssey.
Robust Ship Detection and Tracking Using Modified ViBe and Backwash Cancellation Algorithm
In this paper, we propose a robust real time detection and tracking method for detecting ships in a coastal video sequences. Since coastal scenarios are unpredictable and scenes have dynamic properties it is essential to apply detection methods that are robust to these conditions. This paper presents modified ViBe for moving object detection which detects ships and backwash. In the modified ViBe the probability of losing ships is decreased in comparison with the original ViBe. It is robust to natural sea waves and variation of lights and is capable of quickly updating the background. Based on geometrical properties of ship and some concepts such as brightness distortion, a new method for backwash cancellation is proposed. Experimental results demonstrate that the proposed strategy and methods have outstanding performance in ship detection and tracking. These results also illustrate real time and precise performance of the proposed strategy.
Domain Adaptation of Carotid Ultrasound Images using Generative Adversarial Network
Deep learning has been extensively used in medical imaging applications, assuming that the test and training datasets belong to the same probability distribution. However, a common challenge arises when working with medical images generated by different systems or even the same system with different parameter settings. Such images contain diverse textures and reverberation noise that violate the aforementioned assumption. Consequently, models trained on data from one device or setting often struggle to perform effectively with data from other devices or settings. In addition, retraining models for each specific device or setting is labor-intensive and costly. To address these issues in ultrasound images, we propose a novel Generative Adversarial Network (GAN)-based model. We formulated the domain adaptation tasks as an image-to-image translation task, in which we modified the texture patterns and removed reverberation noise in the test data images from the source domain to align with those in the target domain images while keeping the image content unchanged. We applied the proposed method to two datasets containing carotid ultrasound images from three different domains. The experimental results demonstrate that the model successfully translated the texture pattern of images and removed reverberation noise from the ultrasound images. Furthermore, we evaluated the CycleGAN approaches for a comparative study with the proposed model. The experimental findings conclusively demonstrated that the proposed model achieved domain adaptation (histogram correlation (0.960 (0.019), & 0.920 (0.043) and bhattacharya distance (0.040 (0.020), & 0.085 (0.048)), compared to no adaptation (0.916 (0.062) & 0.890 (0.077), 0.090 (0.070) & 0.121 (0.095)) for both datasets.
comment: 15 pages, 9 figures, 4 tables
Language as Prior, Vision as Calibration: Metric Scale Recovery for Monocular Depth Estimation
Relative-depth foundation models transfer well, yet monocular metric depth remains ill-posed due to unidentifiable global scale and heightened domain-shift sensitivity. Under a frozen-backbone calibration setting, we recover metric depth via an image-specific affine transform in inverse depth and train only lightweight calibration heads while keeping the relative-depth backbone and the CLIP text encoder fixed. Since captions provide coarse but noisy scale cues that vary with phrasing and missing objects, we use language to predict an uncertainty-aware envelope that bounds feasible calibration parameters in an unconstrained space, rather than committing to a text-only point estimate. We then use pooled multi-scale frozen visual features to select an image-specific calibration within this envelope. During training, a closed-form least-squares oracle in inverse depth provides per-image supervision for learning the envelope and the selected calibration. Experiments on NYUv2 and KITTI improve in-domain accuracy, while zero-shot transfer to SUN-RGBD and DDAD demonstrates improved robustness over strong language-only baselines.
Rethinking Multimodal Few-Shot 3D Point Cloud Segmentation: From Fused Refinement to Decoupled Arbitration
In this paper, we revisit multimodal few-shot 3D point cloud semantic segmentation (FS-PCS), identifying a conflict in "Fuse-then-Refine" paradigms: the "Plasticity-Stability Dilemma." In addition, CLIP's inter-class confusion can result in semantic blindness. To address these issues, we present the Decoupled-experts Arbitration Few-Shot SegNet (DA-FSS), a model that effectively distinguishes between semantic and geometric paths and mutually regularizes their gradients to achieve better generalization. DA-FSS employs the same backbone and pre-trained text encoder as MM-FSS to generate text embeddings, which can increase free modalities' utilization rate and better leverage each modality's information space. To achieve this, we propose a Parallel Expert Refinement module to generate each modal correlation. We also propose a Stacked Arbitration Module (SAM) to perform convolutional fusion and arbitrate correlations for each modality pathway. The Parallel Experts decouple two paths: a Geometric Expert maintains plasticity, and a Semantic Expert ensures stability. They are coordinated via a Decoupled Alignment Module (DAM) that transfers knowledge without propagating confusion. Experiments on popular datasets (S3DIS, ScanNet) demonstrate the superiority of DA-FSS over MM-FSS. Meanwhile, geometric boundaries, completeness, and texture differentiation are all superior to the baseline. The code is available at: https://github.com/MoWenQAQ/DA-FSS.
comment: 10 pages, 4 figures, 3 tables
PartImageNet++ Dataset: Enhancing Visual Models with High-Quality Part Annotations
To address the scarcity of high-quality part annotations in existing datasets, we introduce PartImageNet++ (PIN++), a dataset that provides detailed part annotations for all categories in ImageNet-1K. With 100 annotated images per category, totaling 100K images, PIN++ represents the most comprehensive dataset covering a diverse range of object categories. Leveraging PIN++, we propose a Multi-scale Part-supervised recognition Model (MPM) for robust classification on ImageNet-1K. We first trained a part segmentation network using PIN++ and used it to generate pseudo part labels for the remaining unannotated images. MPM then integrated a conventional recognition architecture with auxiliary bypass layers, jointly supervised by both pseudo part labels and the original part annotations. Furthermore, we conducted extensive experiments on PIN++, including part segmentation, object segmentation, and few-shot learning, exploring various ways to leverage part annotations in downstream tasks. Experimental results demonstrated that our approach not only enhanced part-based models for robust object recognition but also established strong baselines for multiple downstream tasks, highlighting the potential of part annotations in improving model performance. The dataset and the code are available at https://github.com/LixiaoTHU/PartImageNetPP.
comment: arXiv admin note: substantial text overlap with arXiv:2407.10918
Image Synthesis Using Spintronic Deep Convolutional Generative Adversarial Network
The computational requirements of generative adversarial networks (GANs) exceed the limit of conventional Von Neumann architectures, necessitating energy efficient alternatives such as neuromorphic spintronics. This work presents a hybrid CMOS-spintronic deep convolutional generative adversarial network (DCGAN) architecture for synthetic image generation. The proposed generative vision model approach follows the standard framework, leveraging generator and discriminators adversarial training with our designed spintronics hardware for deconvolution, convolution, and activation layers of the DCGAN architecture. To enable hardware aware spintronic implementation, the generator's deconvolution layers are restructured as zero padded convolution, allowing seamless integration with a 6-bit skyrmion based synapse in a crossbar, without compromising training performance. Nonlinear activation functions are implemented using a hybrid CMOS domain wall based Rectified linear unit (ReLU) and Leaky ReLU units. Our proposed tunable Leaky ReLU employs domain wall position coded, continuous resistance states and a piecewise uniaxial parabolic anisotropy profile with a parallel MTJ readout, exhibiting energy consumption of 0.192 pJ. Our spintronic DCGAN model demonstrates adaptability across both grayscale and colored datasets, achieving Fr'echet Inception Distances (FID) of 27.5 for the Fashion MNIST and 45.4 for Anime Face datasets, with testing energy (training energy) of 4.9 nJ (14.97~nJ/image) and 24.72 nJ (74.7 nJ/image).
comment: 8 pages, 4 figures
In defense of the two-stage framework for open-set domain adaptive semantic segmentation
Open-Set Domain Adaptation for Semantic Segmentation (OSDA-SS) presents a significant challenge, as it requires both domain adaptation for known classes and the distinction of unknowns. Existing methods attempt to address both tasks within a single unified stage. We question this design, as the annotation imbalance between known and unknown classes often leads to negative transfer of known classes and underfitting for unknowns. To overcome these issues, we propose SATS, a Separating-then-Adapting Training Strategy, which addresses OSDA-SS through two sequential steps: known/unknown separation and unknown-aware domain adaptation. By providing the model with more accurate and well-aligned unknown classes, our method ensures a balanced learning of discriminative features for both known and unknown classes, steering the model toward discovering truly unknown objects. Additionally, we present hard unknown exploration, an innovative data augmentation method that exposes the model to more challenging unknowns, strengthening its ability to capture more comprehensive understanding of target unknowns. We evaluate our method on public OSDA-SS benchmarks. Experimental results demonstrate that our method achieves a substantial advancement, with a +3.85% H-Score improvement for GTA5-to-Cityscapes and +18.64% for SYNTHIA-to-Cityscapes, outperforming previous state-of-the-art methods.
EdgeNeRF: Edge-Guided Regularization for Neural Radiance Fields from Sparse Views
Neural Radiance Fields (NeRF) achieve remarkable performance in dense multi-view scenarios, but their reconstruction quality degrades significantly under sparse inputs due to geometric artifacts. Existing methods utilize global depth regularization to mitigate artifacts, leading to the loss of geometric boundary details. To address this problem, we propose EdgeNeRF, an edge-guided sparse-view 3D reconstruction algorithm. Our method leverages the prior that abrupt changes in depth and normals generate edges. Specifically, we first extract edges from input images, then apply depth and normal regularization constraints to non-edge regions, enhancing geometric consistency while preserving high-frequency details at boundaries. Experiments on LLFF and DTU datasets demonstrate EdgeNeRF's superior performance, particularly in retaining sharp geometric boundaries and suppressing artifacts. Additionally, the proposed edge-guided depth regularization module can be seamlessly integrated into other methods in a plug-and-play manner, significantly improving their performance without substantially increasing training time. Code is available at https://github.com/skyhigh404/edgenerf.
comment: PRCV 2025
DreamID-V:Bridging the Image-to-Video Gap for High-Fidelity Face Swapping via Diffusion Transformer
Video Face Swapping (VFS) requires seamlessly injecting a source identity into a target video while meticulously preserving the original pose, expression, lighting, background, and dynamic information. Existing methods struggle to maintain identity similarity and attribute preservation while preserving temporal consistency. To address the challenge, we propose a comprehensive framework to seamlessly transfer the superiority of Image Face Swapping (IFS) to the video domain. We first introduce a novel data pipeline SyncID-Pipe that pre-trains an Identity-Anchored Video Synthesizer and combines it with IFS models to construct bidirectional ID quadruplets for explicit supervision. Building upon paired data, we propose the first Diffusion Transformer-based framework DreamID-V, employing a core Modality-Aware Conditioning module to discriminatively inject multi-model conditions. Meanwhile, we propose a Synthetic-to-Real Curriculum mechanism and an Identity-Coherence Reinforcement Learning strategy to enhance visual realism and identity consistency under challenging scenarios. To address the issue of limited benchmarks, we introduce IDBench-V, a comprehensive benchmark encompassing diverse scenes. Extensive experiments demonstrate DreamID-V outperforms state-of-the-art methods and further exhibits exceptional versatility, which can be seamlessly adapted to various swap-related tasks.
comment: Project: https://guoxu1233.github.io/DreamID-V/
AirSpatialBot: A Spatially-Aware Aerial Agent for Fine-Grained Vehicle Attribute Recognization and Retrieval
Despite notable advancements in remote sensing vision-language models (VLMs), existing models often struggle with spatial understanding, limiting their effectiveness in real-world applications. To push the boundaries of VLMs in remote sensing, we specifically address vehicle imagery captured by drones and introduce a spatially-aware dataset AirSpatial, which comprises over 206K instructions and introduces two novel tasks: Spatial Grounding and Spatial Question Answering. It is also the first remote sensing grounding dataset to provide 3DBB. To effectively leverage existing image understanding of VLMs to spatial domains, we adopt a two-stage training strategy comprising Image Understanding Pre-training and Spatial Understanding Fine-tuning. Utilizing this trained spatially-aware VLM, we develop an aerial agent, AirSpatialBot, which is capable of fine-grained vehicle attribute recognition and retrieval. By dynamically integrating task planning, image understanding, spatial understanding, and task execution capabilities, AirSpatialBot adapts to diverse query requirements. Experimental results validate the effectiveness of our approach, revealing the spatial limitations of existing VLMs while providing valuable insights. The model, code, and datasets will be released at https://github.com/VisionXLab/AirSpatialBot
comment: 12 pages, 9 figures
Mask-Guided Multi-Task Network for Face Attribute Recognition
Face Attribute Recognition (FAR) plays a crucial role in applications such as person re-identification, face retrieval, and face editing. Conventional multi-task attribute recognition methods often process the entire feature map for feature extraction and attribute classification, which can produce redundant features due to reliance on global regions. To address these challenges, we propose a novel approach emphasizing the selection of specific feature regions for efficient feature learning. We introduce the Mask-Guided Multi-Task Network (MGMTN), which integrates Adaptive Mask Learning (AML) and Group-Global Feature Fusion (G2FF) to address the aforementioned limitations. Leveraging a pre-trained keypoint annotation model and a fully convolutional network, AML accurately localizes critical facial parts (e.g., eye and mouth groups) and generates group masks that delineate meaningful feature regions, thereby mitigating negative transfer from global region usage. Furthermore, G2FF combines group and global features to enhance FAR learning, enabling more precise attribute identification. Extensive experiments on two challenging facial attribute recognition datasets demonstrate the effectiveness of MGMTN in improving FAR performance.
comment: 23 pages, 9 figures
SwinIFS: Landmark Guided Swin Transformer For Identity Preserving Face Super Resolution
Face super-resolution aims to recover high-quality facial images from severely degraded low-resolution inputs, but remains challenging due to the loss of fine structural details and identity-specific features. This work introduces SwinIFS, a landmark-guided super-resolution framework that integrates structural priors with hierarchical attention mechanisms to achieve identity-preserving reconstruction at both moderate and extreme upscaling factors. The method incorporates dense Gaussian heatmaps of key facial landmarks into the input representation, enabling the network to focus on semantically important facial regions from the earliest stages of processing. A compact Swin Transformer backbone is employed to capture long-range contextual information while preserving local geometry, allowing the model to restore subtle facial textures and maintain global structural consistency. Extensive experiments on the CelebA benchmark demonstrate that SwinIFS achieves superior perceptual quality, sharper reconstructions, and improved identity retention; it consistently produces more photorealistic results and exhibits strong performance even under 8x magnification, where most methods fail to recover meaningful structure. SwinIFS also provides an advantageous balance between reconstruction accuracy and computational efficiency, making it suitable for real-world applications in facial enhancement, surveillance, and digital restoration. Our code, model weights, and results are available at https://github.com/Habiba123-stack/SwinIFS.
ShadowGS: Shadow-Aware 3D Gaussian Splatting for Satellite Imagery
3D Gaussian Splatting (3DGS) has emerged as a novel paradigm for 3D reconstruction from satellite imagery. However, in multi-temporal satellite images, prevalent shadows exhibit significant inconsistencies due to varying illumination conditions. To address this, we propose ShadowGS, a novel framework based on 3DGS. It leverages a physics-based rendering equation from remote sensing, combined with an efficient ray marching technique, to precisely model geometrically consistent shadows while maintaining efficient rendering. Additionally, it effectively disentangles different illumination components and apparent attributes in the scene. Furthermore, we introduce a shadow consistency constraint that significantly enhances the geometric accuracy of 3D reconstruction. We also incorporate a novel shadow map prior to improve performance with sparse-view inputs. Extensive experiments demonstrate that ShadowGS outperforms current state-of-the-art methods in shadow decoupling accuracy, 3D reconstruction precision, and novel view synthesis quality, with only a few minutes of training. ShadowGS exhibits robust performance across various settings, including RGB, pansharpened, and sparse-view satellite inputs.
Evaluation of Convolutional Neural Network For Image Classification with Agricultural and Urban Datasets
This paper presents the development and evaluation of a custom Convolutional Neural Network (CustomCNN) created to study how architectural design choices affect multi-domain image classification tasks. The network uses residual connections, Squeeze-and-Excitation attention mechanisms, progressive channel scaling, and Kaiming initialization to improve its ability to represent data and speed up training. The model is trained and tested on five publicly available datasets: unauthorized vehicle detection, footpath encroachment detection, polygon-annotated road damage and manhole detection, MangoImageBD and PaddyVarietyBD. A comparison with popular CNN architectures shows that the CustomCNN delivers competitive performance while remaining efficient in computation. The results underscore the importance of thoughtful architectural design for real-world Smart City and agricultural imaging applications.
comment: All authors contributed equally to this work
ParkGaussian: Surround-view 3D Gaussian Splatting for Autonomous Parking
Parking is a critical task for autonomous driving systems (ADS), with unique challenges in crowded parking slots and GPS-denied environments. However, existing works focus on 2D parking slot perception, mapping, and localization, 3D reconstruction remains underexplored, which is crucial for capturing complex spatial geometry in parking scenarios. Naively improving the visual quality of reconstructed parking scenes does not directly benefit autonomous parking, as the key entry point for parking is the slots perception module. To address these limitations, we curate the first benchmark named ParkRecon3D, specifically designed for parking scene reconstruction. It includes sensor data from four surround-view fisheye cameras with calibrated extrinsics and dense parking slot annotations. We then propose ParkGaussian, the first framework that integrates 3D Gaussian Splatting (3DGS) for parking scene reconstruction. To further improve the alignment between reconstruction and downstream parking slot detection, we introduce a slot-aware reconstruction strategy that leverages existing parking perception methods to enhance the synthesis quality of slot regions. Experiments on ParkRecon3D demonstrate that ParkGaussian achieves state-of-the-art reconstruction quality and better preserves perception consistency for downstream tasks. The code and dataset will be released at: https://github.com/wm-research/ParkGaussian
Unsupervised SE(3) Disentanglement for in situ Macromolecular Morphology Identification from Cryo-Electron Tomography
Cryo-electron tomography (cryo-ET) provides direct 3D visualization of macromolecules inside the cell, enabling analysis of their in situ morphology. This morphology can be regarded as an SE(3)-invariant, denoised volumetric representation of subvolumes extracted from tomograms. Inferring morphology is therefore an inverse problem of estimating both a template morphology and its SE(3) transformation. Existing expectation-maximization based solution to this problem often misses rare but important morphologies and requires extensive manual hyperparameter tuning. Addressing this issue, we present a disentangled deep representation learning framework that separates SE(3) transformations from morphological content in the representation space. The framework includes a novel multi-choice learning module that enables this disentanglement for highly noisy cryo-ET data, and the learned morphological content is used to generate template morphologies. Experiments on simulated and real cryo-ET datasets demonstrate clear improvements over prior methods, including the discovery of previously unidentified macromolecular morphologies.
Garment Inertial Denoiser (GID): Endowing Accurate Motion Capture via Loose IMU Denoiser
Wearable inertial motion capture (MoCap) provides a portable, occlusion-free, and privacy-preserving alternative to camera-based systems, but its accuracy depends on tightly attached sensors - an intrusive and uncomfortable requirement for daily use. Embedding IMUs into loose-fitting garments is a desirable alternative, yet sensor-body displacement introduces severe, structured, and location-dependent corruption that breaks standard inertial pipelines. We propose GID (Garment Inertial Denoiser), a lightweight, plug-and-play Transformer that factorizes loose-wear MoCap into three stages: (i) location-specific denoising, (ii) adaptive cross-wear fusion, and (iii) general pose prediction. GID uses a location-aware expert architecture, where a shared spatio-temporal backbone models global motion while per-IMU expert heads specialize in local garment dynamics, and a lightweight fusion module ensures cross-part consistency. This inductive bias enables stable training and effective learning from limited paired loose-tight IMU data. We also introduce GarMoCap, a combined public and newly collected dataset covering diverse users, motions, and garments. Experiments show that GID enables accurate, real-time denoising from single-user training and generalizes across unseen users, motions, and garment types, consistently improving state-of-the-art inertial MoCap methods when used as a drop-in module.
comment: 11 pages, 4 figures
Advanced Machine Learning Approaches for Enhancing Person Re-Identification Performance
Person re-identification (ReID) plays a critical role in intelligent surveillance systems by linking identities across multiple cameras in complex environments. However, ReID faces significant challenges such as appearance variations, domain shifts, and limited labeled data. This dissertation proposes three advanced approaches to enhance ReID performance under supervised, unsupervised domain adaptation (UDA), and fully unsupervised settings. First, SCM-ReID integrates supervised contrastive learning with hybrid loss optimization (classification, center, triplet, and centroid-triplet losses), improving discriminative feature representation and achieving state-of-the-art accuracy on Market-1501 and CUHK03 datasets. Second, for UDA, IQAGA and DAPRH combine GAN-based image augmentation, domain-invariant mapping, and pseudo-label refinement to mitigate domain discrepancies and enhance cross-domain generalization. Experiments demonstrate substantial gains over baseline methods, with mAP and Rank-1 improvements up to 12% in challenging transfer scenarios. Finally, ViTC-UReID leverages Vision Transformer-based feature encoding and camera-aware proxy learning to boost unsupervised ReID. By integrating global and local attention with camera identity constraints, this method significantly outperforms existing unsupervised approaches on large-scale benchmarks. Comprehensive evaluations across CUHK03, Market-1501, DukeMTMC-reID, and MSMT17 confirm the effectiveness of the proposed methods. The contributions advance ReID research by addressing key limitations in feature learning, domain adaptation, and label noise handling, paving the way for robust deployment in real-world surveillance systems.
comment: in Vietnamese language
Slot-ID: Identity-Preserving Video Generation from Reference Videos via Slot-Based Temporal Identity Encoding
Producing prompt-faithful videos that preserve a user-specified identity remains challenging: models need to extrapolate facial dynamics from sparse reference while balancing the tension between identity preservation and motion naturalness. Conditioning on a single image completely ignores the temporal signature, which leads to pose-locked motions, unnatural warping, and "average" faces when viewpoints and expressions change. To this end, we introduce an identity-conditioned variant of a diffusion-transformer video generator which uses a short reference video rather than a single portrait. Our key idea is to incorporate the dynamics in the reference. A short clip reveals subject-specific patterns, e.g., how smiles form, across poses and lighting. From this clip, a Sinkhorn-routed encoder learns compact identity tokens that capture characteristic dynamics while remaining pretrained backbone-compatible. Despite adding only lightweight conditioning, the approach consistently improves identity retention under large pose changes and expressive facial behavior, while maintaining prompt faithfulness and visual realism across diverse subjects and prompts.
Achieving Fine-grained Cross-modal Understanding through Brain-inspired Hierarchical Representation Learning
Understanding neural responses to visual stimuli remains challenging due to the inherent complexity of brain representations and the modality gap between neural data and visual inputs. Existing methods, mainly based on reducing neural decoding to generation tasks or simple correlations, fail to reflect the hierarchical and temporal processes of visual processing in the brain. To address these limitations, we present NeuroAlign, a novel framework for fine-grained fMRI-video alignment inspired by the hierarchical organization of the human visual system. Our framework implements a two-stage mechanism that mirrors biological visual pathways: global semantic understanding through Neural-Temporal Contrastive Learning (NTCL) and fine-grained pattern matching through enhanced vector quantization. NTCL explicitly models temporal dynamics through bidirectional prediction between modalities, while our DynaSyncMM-EMA approach enables dynamic multi-modal fusion with adaptive weighting. Experiments demonstrate that NeuroAlign significantly outperforms existing methods in cross-modal retrieval tasks, establishing a new paradigm for understanding visual cognitive mechanisms.
LinMU: Multimodal Understanding Made Linear
Modern Vision-Language Models (VLMs) achieve impressive performance but are limited by the quadratic complexity of self-attention, which prevents their deployment on edge devices and makes their understanding of high-resolution images and long-context videos prohibitively expensive. To address this challenge, we introduce LinMU (Linear-complexity Multimodal Understanding), a VLM design that achieves linear complexity without using any quadratic-complexity modules while maintaining the performance of global-attention-based VLMs. LinMU replaces every self-attention layer in the VLM with the M-MATE block: a dual-branch module that combines a bidirectional state-space model for global context (Flex-MA branch) with localized Swin-style window attention (Local-Swin branch) for adjacent correlations. To transform a pre-trained VLM into the LinMU architecture, we propose a three-stage distillation framework that (i) initializes both branches with self-attention weights and trains the Flex-MA branch alone, (ii) unfreezes the Local-Swin branch and fine-tunes it jointly with the Flex-MA branch, and (iii) unfreezes the remaining blocks and fine-tunes them using LoRA adapters, while regressing on hidden states and token-level logits of the frozen VLM teacher. On MMMU, TextVQA, LongVideoBench, Video-MME, and other benchmarks, LinMU matches the performance of teacher models, yet reduces Time-To-First-Token (TTFT) by up to 2.7$\times$ and improves token throughput by up to 9.0$\times$ on minute-length videos. Ablations confirm the importance of each distillation stage and the necessity of the two branches of the M-MATE block. The proposed framework demonstrates that state-of-the-art multimodal reasoning can be achieved without quadratic attention, thus opening up avenues for long-context VLMs that can deal with high-resolution images and long videos.
comment: 23 pages, 7 figures
Quantifying Local Strain Field and Deformation in Active Contraction of Bladder Using a Pretrained Transformer Model: A Speckle-Free Approach
Accurate quantification of local strain fields during bladder contraction is essential for understanding the biomechanics of bladder micturition, in both health and disease. Conventional digital image correlation (DIC) methods have been successfully applied to various biological tissues; however, this approach requires artificial speckling, which can alter both passive and active properties of the tissue. In this study, we introduce a speckle-free framework for quantifying local strain fields using a state-of-the-art, zero-shot transformer model, CoTracker3. We utilized a custom-designed, portable isotonic biaxial apparatus compatible with multiphoton microscopy (MPM) to demonstrate this approach, successfully tracking natural bladder lumen textures without artificial markers. Benchmark tests validated the method's high pixel accuracy and low strain errors. Our framework effectively captured heterogeneous deformation patterns, despite complex folding and buckling, which conventional DIC often fails to track. Application to in vitro active bladder contractions in four rat specimens (n=4) revealed statistically significant anisotropy (p<0.01), with higher contraction longitudinally compared to circumferentially. Multiphoton microscopy further illustrated and confirmed heterogeneous morphological changes, such as large fold formation during active contraction. This non-invasive approach eliminates speckle-induced artifacts, enabling more physiologically relevant measurements, and has broad applicability for material testing of other biological and engineered systems.
VReID-XFD: Video-based Person Re-identification at Extreme Far Distance Challenge Results
Person re-identification (ReID) across aerial and ground views at extreme far distances introduces a distinct operating regime where severe resolution degradation, extreme viewpoint changes, unstable motion cues, and clothing variation jointly undermine the appearance-based assumptions of existing ReID systems. To study this regime, we introduce VReID-XFD, a video-based benchmark and community challenge for extreme far-distance (XFD) aerial-to-ground person re-identification. VReID-XFD is derived from the DetReIDX dataset and comprises 371 identities, 11,288 tracklets, and 11.75 million frames, captured across altitudes from 5.8 m to 120 m, viewing angles from oblique (30 degrees) to nadir (90 degrees), and horizontal distances up to 120 m. The benchmark supports aerial-to-aerial, aerial-to-ground, and ground-to-aerial evaluation under strict identity-disjoint splits, with rich physical metadata. The VReID-XFD-25 Challenge attracted 10 teams with hundreds of submissions. Systematic analysis reveals monotonic performance degradation with altitude and distance, a universal disadvantage of nadir views, and a trade-off between peak performance and robustness. Even the best-performing SAS-PReID method achieves only 43.93 percent mAP in the aerial-to-ground setting. The dataset, annotations, and official evaluation protocols are publicly available at https://www.it.ubi.pt/DetReIDX/ .
VisualActBench: Can VLMs See and Act like a Human?
Vision-Language Models (VLMs) have achieved impressive progress in perceiving and describing visual environments. However, their ability to proactively reason and act based solely on visual inputs, without explicit textual prompts, remains underexplored. We introduce a new task, Visual Action Reasoning, and propose VisualActBench, a large-scale benchmark comprising 1,074 videos and 3,733 human-annotated actions across four real-world scenarios. Each action is labeled with an Action Prioritization Level (APL) and a proactive-reactive type to assess models' human-aligned reasoning and value sensitivity. We evaluate 29 VLMs on VisualActBench and find that while frontier models like GPT4o demonstrate relatively strong performance, a significant gap remains compared to human-level reasoning, particularly in generating proactive, high-priority actions. Our results highlight limitations in current VLMs' ability to interpret complex context, anticipate outcomes, and align with human decision-making frameworks. VisualActBench establishes a comprehensive foundation for assessing and improving the real-world readiness of proactive, vision-centric AI agents.
Attire-Based Anomaly Detection in Restricted Areas Using YOLOv8 for Enhanced CCTV Security
This research introduces an innovative security enhancement approach, employing advanced image analysis and soft computing. The focus is on an intelligent surveillance system that detects unauthorized individuals in restricted areas by analyzing attire. Traditional security measures face challenges in monitoring unauthorized access. Leveraging YOLOv8, an advanced object detection algorithm, our system identifies authorized personnel based on their attire in CCTV footage. The methodology involves training the YOLOv8 model on a comprehensive dataset of uniform patterns, ensuring precise recognition in specific regions. Soft computing techniques enhance adaptability to dynamic environments and varying lighting conditions. This research contributes to image analysis and soft computing, providing a sophisticated security solution. Emphasizing uniform-based anomaly detection, it establishes a foundation for robust security systems in restricted areas. The outcomes highlight the potential of YOLOv8-based surveillance in ensuring safety in sensitive locations.
comment: 9 pages, 6 figures
Joint Distillation for Fast Likelihood Evaluation and Sampling in Flow-based Models
Log-likelihood evaluation enables important capabilities in generative models, including model comparison, certain fine-tuning objectives, and many downstream applications. Yet paradoxically, some of today's best generative models -- diffusion and flow-based models -- still require hundreds to thousands of neural function evaluations (NFEs) to compute a single likelihood. While recent distillation methods have successfully accelerated sampling to just a few steps, they achieve this at the cost of likelihood tractability: existing approaches either abandon likelihood computation entirely or still require expensive integration over full trajectories. We present fast flow joint distillation (F2D2), a framework that simultaneously reduces the number of NFEs required for both sampling and likelihood evaluation by two orders of magnitude. Our key insight is that in continuous normalizing flows, the coupled ODEs for sampling and likelihood are computed from a shared underlying velocity field, allowing us to jointly distill both the sampling trajectory and cumulative divergence using a single model. F2D2 is modular, compatible with existing flow-based few-step sampling models, and requires only an additional divergence prediction head. Experiments demonstrate F2D2's capability of achieving accurate log-likelihood with few-step evaluations while maintaining high sample quality, solving a long-standing computational bottleneck in flow-based generative models. As an application of our approach, we propose a lightweight self-guidance method that enables a 2-step MeanFlow to outperform a 1024 step flow matching model with only a single additional backward NFE.
How Robot Dogs See the Unseeable: Improving Visual Interpretability via Peering for Exploratory Robots
In vegetated environments, such as forests, exploratory robots play a vital role in navigating complex, cluttered environments where human access is limited and traditional equipment struggles. Visual occlusion from obstacles, such as foliage, can severely obstruct a robot's sensors, impairing scene understanding. We show that "peering", a characteristic side-to-side movement used by insects to overcome their visual limitations, can also allow robots to markedly improve visual reasoning under partial occlusion. This is accomplished by applying core signal processing principles, specifically optical synthetic aperture sensing, together with the vision reasoning capabilities of modern large multimodal models. Peering enables real-time, high-resolution, and wavelength-independent perception, which is crucial for vision-based scene understanding across a wide range of applications. The approach is low-cost and immediately deployable on any camera-equipped robot. We investigated different peering motions and occlusion masking strategies, demonstrating that, unlike peering, state-of-the-art multi-view 3D vision techniques fail in these conditions due to their high susceptibility to occlusion. Our experiments were carried out on an industrial-grade quadrupedal robot. However, the ability to peer is not limited to such platforms, but potentially also applicable to bipedal, hexapod, wheeled, or crawling platforms. Robots that can effectively see through partial occlusion will gain superior perception abilities - including enhanced scene understanding, situational awareness, camouflage breaking, and advanced navigation in complex environments.
AHA! Animating Human Avatars in Diverse Scenes with Gaussian Splatting
We present a novel framework for animating humans in 3D scenes using 3D Gaussian Splatting (3DGS), a neural scene representation that has recently achieved state-of-the-art photorealistic results for novel-view synthesis but remains under-explored for human-scene animation and interaction. Unlike existing animation pipelines that use meshes or point clouds as the underlying 3D representation, our approach introduces the use of 3DGS as the 3D representation for animating humans in scenes. By representing humans and scenes as Gaussians, our approach allows geometry-consistent free-viewpoint rendering of humans interacting with 3D scenes. Our key insight is that rendering can be decoupled from motion synthesis, and each sub-problem can be addressed independently without the need for paired human-scene data. Central to our method is a Gaussian-aligned motion module that synthesizes motion without explicit scene geometry, using opacity-based cues and projected Gaussian structures to guide human placement and pose alignment. To ensure natural interactions, we further propose a human-scene Gaussian refinement optimization that enforces realistic contact and navigation. We evaluate our approach on scenes from Scannet++ and the SuperSplat library, and on avatars reconstructed from sparse and dense multi-view human capture. Finally, we demonstrate that our framework enables novel applications such as geometry-consistent free-viewpoint rendering of edited monocular RGB videos with newly animated humans, showcasing the unique advantages of 3DGS for monocular video-based human animation. To assess the full quality of our results, we encourage readers to view the supplementary material available at https://miraymen.github.io/aha/ .
comment: Project page available at: https://miraymen.github.io/aha/
GTPBD: A Fine-Grained Global Terraced Parcel and Boundary Dataset NeurIPS 2025
Agricultural parcels serve as basic units for conducting agricultural practices and applications, which is vital for land ownership registration, food security assessment, soil erosion monitoring, etc. However, existing agriculture parcel extraction studies only focus on mid-resolution mapping or regular plain farmlands while lacking representation of complex terraced terrains due to the demands of precision agriculture.In this paper, we introduce a more fine-grained terraced parcel dataset named GTPBD (Global Terraced Parcel and Boundary Dataset), which is the first fine-grained dataset covering major worldwide terraced regions with more than 200,000 complex terraced parcels with manual annotation. GTPBD comprises 47,537 high-resolution images with three-level labels, including pixel-level boundary labels, mask labels, and parcel labels. It covers seven major geographic zones in China and transcontinental climatic regions around the world.Compared to the existing datasets, the GTPBD dataset brings considerable challenges due to the: (1) terrain diversity; (2) complex and irregular parcel objects; and (3) multiple domain styles. Our proposed GTPBD dataset is suitable for four different tasks, including semantic segmentation, edge detection, terraced parcel extraction, and unsupervised domain adaptation (UDA) tasks.Accordingly, we benchmark the GTPBD dataset on eight semantic segmentation methods, four edge extraction methods, three parcel extraction methods, and five UDA methods, along with a multi-dimensional evaluation framework integrating pixel-level and object-level metrics. GTPBD fills a critical gap in terraced remote sensing research, providing a basic infrastructure for fine-grained agricultural terrain analysis and cross-scenario knowledge transfer.
comment: 40 pages, 40 figures, Accepted to the 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
Bridging Geometry and Appearance: Topological Features for Robust Self-Supervised Segmentation
Self-supervised semantic segmentation methods often fail when faced with appearance ambiguities. We argue that this is due to an over-reliance on unstable, appearance-based features such as shadows, glare, and local textures. We propose \textbf{GASeg}, a novel framework that bridges appearance and geometry by leveraging stable topological information. The core of our method is Differentiable Box-Counting (\textbf{DBC}) module, which quantifies multi-scale topological statistics from two parallel streams: geometric-based features and appearance-based features. To force the model to learn these stable structural representations, we introduce Topological Augmentation (\textbf{TopoAug}), an adversarial strategy that simulates real-world ambiguities by applying morphological operators to the input images. A multi-objective loss, \textbf{GALoss}, then explicitly enforces cross-modal alignment between geometric-based and appearance-based features. Extensive experiments demonstrate that GASeg achieves state-of-the-art performance on four benchmarks, including COCO-Stuff, Cityscapes, and PASCAL, validating our approach of bridging geometry and appearance via topological information.
PriorRG: Prior-Guided Contrastive Pre-training and Coarse-to-Fine Decoding for Chest X-ray Report Generation AAAI 2026
Chest X-ray report generation aims to reduce radiologists' workload by automatically producing high-quality preliminary reports. A critical yet underexplored aspect of this task is the effective use of patient-specific prior knowledge -- including clinical context (e.g., symptoms, medical history) and the most recent prior image -- which radiologists routinely rely on for diagnostic reasoning. Most existing methods generate reports from single images, neglecting this essential prior information and thus failing to capture diagnostic intent or disease progression. To bridge this gap, we propose PriorRG, a novel chest X-ray report generation framework that emulates real-world clinical workflows via a two-stage training pipeline. In Stage 1, we introduce a prior-guided contrastive pre-training scheme that leverages clinical context to guide spatiotemporal feature extraction, allowing the model to align more closely with the intrinsic spatiotemporal semantics in radiology reports. In Stage 2, we present a prior-aware coarse-to-fine decoding for report generation that progressively integrates patient-specific prior knowledge with the vision encoder's hidden states. This decoding allows the model to align with diagnostic focus and track disease progression, thereby enhancing the clinical accuracy and fluency of the generated reports. Extensive experiments on MIMIC-CXR and MIMIC-ABN datasets demonstrate that PriorRG outperforms state-of-the-art methods, achieving a 3.6% BLEU-4 and 3.8% F1 score improvement on MIMIC-CXR, and a 5.9% BLEU-1 gain on MIMIC-ABN. Code and checkpoints will be released upon acceptance.
comment: Accepted by AAAI 2026
Hierarchical Relation-augmented Representation Generalization for Few-shot Action Recognition
Few-shot action recognition (FSAR) aims to recognize novel action categories with few exemplars. Existing methods typically learn frame-level representations for each video by designing inter-frame temporal modeling strategies or inter-video interaction at the coarse video-level granularity. However, they treat each episode task in isolation and neglect fine-grained temporal relation modeling between videos, thus failing to capture shared fine-grained temporal patterns across videos and reuse temporal knowledge from historical tasks. In light of this, we propose HR2G-shot, a Hierarchical Relation-augmented Representation Generalization framework for FSAR, which unifies three types of relation modeling (inter-frame, inter-video, and inter-task) to learn task-specific temporal patterns from a holistic view. Going beyond conducting inter-frame temporal interactions, we further devise two components to respectively explore inter-video and inter-task relationships: i) Inter-video Semantic Correlation (ISC) performs cross-video frame-level interactions in a fine-grained manner, thereby capturing task-specific query features and enhancing both intra-class consistency and inter-class separability; ii) Inter-task Knowledge Transfer (IKT) retrieves and aggregates relevant temporal knowledge from the bank, which stores diverse temporal patterns from historical episode tasks. Extensive experiments on five benchmarks show that HR2G-shot outperforms current top-leading FSAR methods.
Pretraining Frame Preservation in Autoregressive Video Memory Compression
We present PFP, a neural network structure to compress long videos into short contexts, with an explicit pretraining objective to preserve the high-frequency details of single frames at arbitrary temporal positions. The baseline model can compress a 20-second video into a context at about 5k length, where random frames can be retrieved with perceptually preserved appearances. Such pretrained models can be directly fine-tuned as memory encoders for autoregressive video models, enabling long history memory with low context cost and relatively low fidelity loss. We evaluate the framework with ablative settings and discuss the trade-offs of possible neural architecture designs.
comment: Github: https://github.com/lllyasviel/PFP ; Project: https://lllyasviel.github.io/pfp_gitpage/
MeSS: City Mesh-Guided Outdoor Scene Generation with Cross-View Consistent Diffusion
Mesh models have become increasingly accessible for numerous cities; however, the lack of realistic textures restricts their application in virtual urban navigation and autonomous driving. To address this, this paper proposes MeSS (Meshbased Scene Synthesis) for generating high-quality, styleconsistent outdoor scenes with city mesh models serving as the geometric prior. While image and video diffusion models can leverage spatial layouts (such as depth maps or HD maps) as control conditions to generate street-level perspective views, they are not directly applicable to 3D scene generation. Video diffusion models excel at synthesizing consistent view sequences that depict scenes but often struggle to adhere to predefined camera paths or align accurately with rendered control videos. In contrast, image diffusion models, though unable to guarantee cross-view visual consistency, can produce more geometry-aligned results when combined with ControlNet. Building on this insight, our approach enhances image diffusion models by improving cross-view consistency. The pipeline comprises three key stages: first, we generate geometrically consistent sparse views using Cascaded Outpainting ControlNets; second, we propagate denser intermediate views via a component dubbed AGInpaint; and third, we globally eliminate visual inconsistencies (e.g., varying exposure) using the GCAlign module. Concurrently with generation, a 3D Gaussian Splatting (3DGS) scene is reconstructed by initializing Gaussian balls on the mesh surface. Our method outperforms existing approaches in both geometric alignment and generation quality. Once synthesized, the scene can be rendered in diverse styles through relighting and style transfer techniques. project page: https://albertchen98.github.io/mess/
PICABench: How Far Are We from Physically Realistic Image Editing?
Image editing has achieved remarkable progress recently. Modern editing models could already follow complex instructions to manipulate the original content. However, beyond completing the editing instructions, the accompanying physical effects are the key to the generation realism. For example, removing an object should also remove its shadow, reflections, and interactions with nearby objects. Unfortunately, existing models and benchmarks mainly focus on instruction completion but overlook these physical effects. So, at this moment, how far are we from physically realistic image editing? To answer this, we introduce PICABench, which systematically evaluates physical realism across eight sub-dimension (spanning optics, mechanics, and state transitions) for most of the common editing operations (add, remove, attribute change, etc.). We further propose the PICAEval, a reliable evaluation protocol that uses VLM-as-a-judge with per-case, region-level human annotations and questions. Beyond benchmarking, we also explore effective solutions by learning physics from videos and construct a training dataset PICA-100K. After evaluating most of the mainstream models, we observe that physical realism remains a challenging problem with large rooms to explore. We hope that our benchmark and proposed solutions can serve as a foundation for future work moving from naive content editing toward physically consistent realism.
Conditional Diffusion Model with Anatomical-Dose Dual Constraints for End-to-End Multi-Tumor Dose Prediction
Radiotherapy treatment planning often relies on time-consuming, trial-and-error adjustments that heavily depend on the expertise of specialists, while existing deep learning methods face limitations in generalization, prediction accuracy, and clinical applicability. To tackle these challenges, we propose ADDiff-Dose, an Anatomical-Dose Dual Constraints Conditional Diffusion Model for end-to-end multi-tumor dose prediction. The model employs LightweightVAE3D to compress high-dimensional CT data and integrates multimodal inputs, including target and organ-at-risk (OAR) masks and beam parameters, within a progressive noise addition and denoising framework. It incorporates conditional features via a multi-head attention mechanism and utilizes a composite loss function combining MSE, conditional terms, and KL divergence to ensure both dosimetric accuracy and compliance with clinical constraints. Evaluation on a large-scale public dataset (2,877 cases) and three external institutional cohorts (450 cases in total) demonstrates that ADDiff-Dose significantly outperforms traditional baselines, achieving an MAE of 0.101-0.154 (compared to 0.316 for UNet and 0.169 for GAN models), a DICE coefficient of 0.927 (a 6.8% improvement), and limiting spinal cord maximum dose error to within 0.1 Gy. The average plan generation time per case is reduced to 22 seconds. Ablation studies confirm that the structural encoder enhances compliance with clinical dose constraints by 28.5%. To our knowledge, this is the first study to introduce a conditional diffusion model framework for radiotherapy dose prediction, offering a generalizable and efficient solution for automated treatment planning across diverse tumor sites, with the potential to substantially reduce planning time and improve clinical workflow efficiency.
MemeMind: A Large-Scale Multimodal Dataset with Chain-of-Thought Reasoning for Harmful Meme Detection
As a multimodal medium combining images and text, memes frequently convey implicit harmful content through metaphors and humor, rendering the detection of harmful memes a complex and challenging task. Although recent studies have made progress in detection accuracy and interpretability, large-scale, high-quality datasets for harmful memes remain scarce, and current methods still struggle to capture implicit risks and nuanced semantics. Thus, we construct MemeMind, a large-scale harmful meme dataset. Aligned with the international standards and the context of internet, MemeMind provides detailed Chain-of-Thought (CoT) reasoning annotations to support fine-grained analysis of implicit intentions in memes. Based on this dataset, we further propose MemeGuard, a reasoning-oriented multimodal detection model that significantly improves both the accuracy of harmful meme detection and the interpretability of model decisions. Extensive experimental results demonstrate that MemeGuard outperforms existing state-of-the-art methods on the MemeMind dataset, establishing a solid foundation for future research in harmful meme detection.
Training-Free Video Editing via Optical Flow-Enhanced Score Distillation
The rapid advancement in visual generation, particularly the emergence of pre-trained text-to-image and text-to-video models, has catalyzed growing interest in training-free video editing research. Mirroring training-free image editing techniques, current approaches preserve original video information through video input inversion and manipulating intermediate features and attention during the inference process to achieve content editing. Although they have demonstrated promising results, the lossy nature of the inversion process poses significant challenges in maintaining unedited regions of the video. Furthermore, feature and attention manipulation during inference can lead to unintended over-editing and face challenges in both local temporal continuity and global content consistency. To address these challenges, this study proposes a score distillation paradigm based on pre-trained text-to-video models, where the original video is iteratively optimized through multiple steps guided by editing gradients provided by score distillation to ultimately obtain the target video. The iterative optimization starting from the original video, combined with content preservation loss, ensures the maintenance of unedited regions in the original video and suppresses over-editing. To further guarantee video content consistency and temporal continuity, we additionally introduce a global consistency auxiliary loss and optical flow prediction-based local editing gradient smoothing. Experiments demonstrate that these strategies effectively address the aforementioned challenges, achieving comparable or superior performance across multiple dimensions including preservation of unedited regions, local temporal continuity, and global content consistency of editing results, compared to state-of-the-art methods.
TalkingEyes: Pluralistic Speech-Driven 3D Eye Gaze Animation
Although significant progress has been made in the field of speech-driven 3D facial animation recently, the speech-driven animation of an indispensable facial component, eye gaze, has been overlooked by recent research. This is primarily due to the weak correlation between speech and eye gaze, as well as the scarcity of audio-gaze data, making it very challenging to generate 3D eye gaze motion from speech alone. In this paper, we propose a novel data-driven method which can generate diverse 3D eye gaze motions in harmony with the speech. To achieve this, we firstly construct an audio-gaze dataset that contains about 14 hours of audio-mesh sequences featuring high-quality eye gaze motion, head motion and facial motion simultaneously. The motion data is acquired by performing lightweight eye gaze fitting and face reconstruction on videos from existing audio-visual datasets. We then tailor a novel speech-to-motion translation framework in which the head motions and eye gaze motions are jointly generated from speech but are modeled in two separate latent spaces. This design stems from the physiological knowledge that the rotation range of eyeballs is less than that of head. Through mapping the speech embedding into the two latent spaces, the difficulty in modeling the weak correlation between speech and non-verbal motion is thus attenuated. Finally, our TalkingEyes, integrated with a speech-driven 3D facial motion generator, can synthesize eye gaze motion, eye blinks, head motion and facial motion collectively from speech. Extensive quantitative and qualitative evaluations demonstrate the superiority of the proposed method in generating diverse and natural 3D eye gaze motions from speech. The project page of this paper is: https://lkjkjoiuiu.github.io/TalkingEyes_Home/
EMLoC: Emulator-based Memory-efficient Fine-tuning with LoRA Correction NeurIPS 2025
Open-source foundation models have seen rapid adoption and development, enabling powerful general-purpose capabilities across diverse domains. However, fine-tuning large foundation models for domain-specific or personalized tasks remains prohibitively expensive for most users due to the significant memory overhead beyond that of inference. We introduce EMLoC, an Emulator-based Memory-efficient fine-tuning framework with LoRA Correction, which enables model fine-tuning within the same memory budget required for inference. EMLoC constructs a task-specific light-weight emulator using activation-aware singular value decomposition (SVD) on a small downstream calibration set. Fine-tuning then is performed on this lightweight emulator via LoRA. To tackle the misalignment between the original model and the compressed emulator, we propose a novel compensation algorithm to correct the fine-tuned LoRA module, which thus can be merged into the original model for inference. EMLoC supports flexible compression ratios and standard training pipelines, making it adaptable to a wide range of applications. Extensive experiments demonstrate that EMLoC outperforms other baselines across multiple datasets and modalities. Moreover, without quantization, EMLoC enables fine-tuning of a 38B model, which originally required 95GB of memory, on a single 24GB consumer GPU-bringing efficient and practical model adaptation to individual users.
comment: Accepted to the 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Project page: https://hsi-che-lin.github.io/EMLoC/
A Mutual-Structure Weighted Sub-Pixel Multimodal Optical Remote Sensing Image Matching Method
Sub-pixel matching of multimodal optical images is a critical step in combined application of multiple sensors. However structural noise and inconsistencies arising from variations in multimodal image responses usually limit the accuracy of matching. Phase congruency mutual-structure weighted least absolute deviation (PCWLAD) is developed as a coarse-to-fine framework. In the coarse matching stage, we preserve the complete structure and use an enhanced cross-modal similarity criterion to mitigate structural information loss by PC noise filtering. In the fine matching stage, a mutual-structure filtering and weighted least absolute deviation-based is introduced to enhance inter-modal structural consistency and accurately estimate sub-pixel displacements adaptively. Experiments on three multimodal datasets-Landsat visible-infrared, short-range visible-near-infrared, and UAV optical image pairs demonstrate that PCWLAD consistently outperforms eight state-of-the-art methods, achieving an average matching accuracy of approximately 0.4 pixels. The software and datasets are publicly available at https://github.com/huangtaocsu/PCWLAD.
RoboMirror: Understand Before You Imitate for Video to Humanoid Locomotion
Humans learn locomotion through visual observation, interpreting visual content first before imitating actions. However, state-of-the-art humanoid locomotion systems rely on either curated motion capture trajectories or sparse text commands, leaving a critical gap between visual understanding and control. Text-to-motion methods suffer from semantic sparsity and staged pipeline errors, while video-based approaches only perform mechanical pose mimicry without genuine visual understanding. We propose RoboMirror, the first retargeting-free video-to-locomotion framework embodying "understand before you imitate". Leveraging VLMs, it distills raw egocentric/third-person videos into visual motion intents, which directly condition a diffusion-based policy to generate physically plausible, semantically aligned locomotion without explicit pose reconstruction or retargeting. Extensive experiments validate the effectiveness of RoboMirror, it enables telepresence via egocentric videos, drastically reduces third-person control latency by 80%, and achieves a 3.7% higher task success rate than baselines. By reframing humanoid control around video understanding, we bridge the visual understanding and action gap.
Towards Vision-Language Geo-Foundation Model: A Survey
Vision-Language Foundation Models (VLFMs) have made remarkable progress on various multimodal tasks, such as image captioning, image-text retrieval, visual question answering, and visual grounding. However, most methods rely on training with general image datasets, and the lack of geospatial data leads to poor performance on earth observation. Numerous geospatial image-text pair datasets and VLFMs fine-tuned on them have been proposed recently. These new approaches aim to leverage large-scale, multimodal geospatial data to build versatile intelligent models with diverse geo-perceptive capabilities, which we refer to as Vision-Language Geo-Foundation Models (VLGFMs). This paper thoroughly reviews VLGFMs, summarizing and analyzing recent developments in the field. In particular, we introduce the background and motivation behind the rise of VLGFMs, highlighting their unique research significance. Then, we systematically summarize the core technologies employed in VLGFMs, including data construction, model architectures, and applications of various multimodal geospatial tasks. Finally, we conclude with insights, issues, and discussions regarding future research directions. To the best of our knowledge, this is the first comprehensive literature review of VLGFMs. We keep tracing related works at https://github.com/zytx121/Awesome-VLGFM.
comment: 18 pages, 4 figures
Dream-VL & Dream-VLA: Open Vision-Language and Vision-Language-Action Models with Diffusion Language Model Backbone
While autoregressive Large Vision-Language Models (VLMs) have achieved remarkable success, their sequential generation often limits their efficacy in complex visual planning and dynamic robotic control. In this work, we investigate the potential of constructing Vision-Language Models upon diffusion-based large language models (dLLMs) to overcome these limitations. We introduce Dream-VL, an open diffusion-based VLM (dVLM) that achieves state-of-the-art performance among previous dVLMs. Dream-VL is comparable to top-tier AR-based VLMs trained on open data on various benchmarks but exhibits superior potential when applied to visual planning tasks. Building upon Dream-VL, we introduce Dream-VLA, a dLLM-based Vision-Language-Action model (dVLA) developed through continuous pre-training on open robotic datasets. We demonstrate that the natively bidirectional nature of this diffusion backbone serves as a superior foundation for VLA tasks, inherently suited for action chunking and parallel generation, leading to significantly faster convergence in downstream fine-tuning. Dream-VLA achieves top-tier performance of 97.2% average success rate on LIBERO, 71.4% overall average on SimplerEnv-Bridge, and 60.5% overall average on SimplerEnv-Fractal, surpassing leading models such as $π_0$ and GR00T-N1. We also validate that dVLMs surpass AR baselines on downstream tasks across different training objectives. We release both Dream-VL and Dream-VLA to facilitate further research in the community.
comment: Add real-world experiments
A Survey on 3D Skeleton Based Person Re-Identification: Taxonomy, Advances, Challenges, and Interdisciplinary Prospects
Person re-identification via 3D skeletons is an important emerging research area that attracts increasing attention within the pattern recognition community. With distinctive advantages across various application scenarios, numerous 3D skeleton based person re-identification (SRID) methods with diverse skeleton modeling and learning paradigms have been proposed in recent years. In this paper, we provide a comprehensive review and analysis of recent SRID advances. First of all, we define the SRID task and provide an overview of its origin and major advancements. Secondly, we formulate a systematic taxonomy that organizes existing methods into three categories centered on hand-crafted, sequence-based, and graph-based modeling. Then, we elaborate on the representative models along these three types with an illustration of foundational mechanisms. Meanwhile, we provide an overview of mainstream supervised, self-supervised, and unsupervised SRID learning paradigms and corresponding common methods. A thorough evaluation of state-of-the-art SRID methods is further conducted over various types of benchmarks and protocols to compare their effectiveness, efficiency, and key properties. Finally, we present the key challenges and prospects to advance future research, and highlight interdisciplinary applications of SRID with a case study.
comment: A curated collection of valuable resources is available at https://github.com/Kali-Hac/3D-SRID-Survey
TraveLLaMA: A Multimodal Travel Assistant with Large-Scale Dataset and Structured Reasoning AAAI 2026
Tourism and travel planning increasingly rely on digital assistance, yet existing multimodal AI systems often lack specialized knowledge and contextual understanding of urban environments. We present TraveLLaMA, a specialized multimodal language model designed for comprehensive travel assistance. Our work addresses the fundamental challenge of developing practical AI travel assistants through three key contributions: (1) TravelQA, a novel dataset of 265k question-answer pairs combining 160k text QA from authentic travel sources, 100k vision-language QA featuring maps and location imagery, and 5k expert-annotated Chain-of-Thought reasoning examples; (2) Travel-CoT, a structured reasoning framework that decomposes travel queries into spatial, temporal, and practical dimensions, improving answer accuracy by 10.8\% while providing interpretable decision paths; and (3) an interactive agent system validated through extensive user studies. Through fine-tuning experiments on state-of-the-art vision-language models (LLaVA, Qwen-VL, Shikra), we achieve 6.2-9.4\% base improvements, further enhanced by Travel-CoT reasoning. Our model demonstrates superior capabilities in contextual travel recommendations, map interpretation, and scene understanding while providing practical information such as operating hours and cultural insights. User studies with 500 participants show TraveLLaMA achieves a System Usability Scale score of 82.5, significantly outperforming general-purpose models and establishing new standards for multimodal travel assistance systems.
comment: AAAI 2026 Oral
InfMasking: Unleashing Synergistic Information by Contrastive Multimodal Interactions NeurIPS
In multimodal representation learning, synergistic interactions between modalities not only provide complementary information but also create unique outcomes through specific interaction patterns that no single modality could achieve alone. Existing methods may struggle to effectively capture the full spectrum of synergistic information, leading to suboptimal performance in tasks where such interactions are critical. This is particularly problematic because synergistic information constitutes the fundamental value proposition of multimodal representation. To address this challenge, we introduce InfMasking, a contrastive synergistic information extraction method designed to enhance synergistic information through an Infinite Masking strategy. InfMasking stochastically occludes most features from each modality during fusion, preserving only partial information to create representations with varied synergistic patterns. Unmasked fused representations are then aligned with masked ones through mutual information maximization to encode comprehensive synergistic information. This infinite masking strategy enables capturing richer interactions by exposing the model to diverse partial modality combinations during training. As computing mutual information estimates with infinite masking is computationally prohibitive, we derive an InfMasking loss to approximate this calculation. Through controlled experiments, we demonstrate that InfMasking effectively enhances synergistic information between modalities. In evaluations on large-scale real-world datasets, InfMasking achieves state-of-the-art performance across seven benchmarks. Code is released at https://github.com/brightest66/InfMasking.
comment: Conference on Neural Information Processing Systems (NeurIPS) 2025 (Spotlight)
RaffeSDG: Random Frequency Filtering enabled Single-source Domain Generalization for Medical Image Segmentation
Deep learning models often encounter challenges in making accurate inferences when there are domain shifts between the source and target data. This issue is particularly pronounced in clinical settings due to the scarcity of annotated data resulting from the professional and private nature of medical data. Although various cross-domain strategies have been explored, including frequency-based approaches that vary appearance while preserving semantics, many remain limited by data constraints and computational cost. To tackle domain shifts in data-scarce medical scenarios, we propose a Random frequency filtering enabled Single-source Domain Generalization algorithm (RaffeSDG), which promises robust out-of-domain inference with segmentation models trained on a single-source domain. A frequency filter-based data augmentation strategy is first proposed to promote domain variability within a single-source domain by introducing variations in frequency space and blending homologous samples. Then Gaussian filter-based structural saliency is also leveraged to learn robust representations across augmented samples, further facilitating the training of generalizable segmentation models. To validate the effectiveness of RaffeSDG, we conducted extensive experiments involving out-of-domain inference on segmentation tasks for three human tissues imaged by four diverse modalities. Through thorough investigations and comparisons, compelling evidence was observed in these experiments, demonstrating the potential and generalizability of RaffeSDG. The code is available at https://github.com/liamheng/Non-IID_Medical_Image_Segmentation.
Enhancing Blind Video Quality Assessment with Rich Quality-aware Features CVPR
Blind video quality assessment (BVQA) is a highly challenging task due to the intrinsic complexity of video content and visual distortions, especially given the high popularity of social media videos, which originate from a wide range of sources, and are often processed by various compression and enhancement algorithms. While recent BVQA and blind image quality assessment (BIQA) studies have made remarkable progress, their models typically perform well on the datasets they were trained on but generalize poorly to unseen videos, making them less effective for accurately evaluating the perceptual quality of diverse social media videos. In this paper, we propose Rich Quality-aware features enabled Video Quality Assessment (RQ-VQA), a simple yet effective method to enhance BVQA by leveraging rich quality-aware features extracted from off-the-shelf BIQA and BVQA models. Our approach exploits the expertise of existing quality assessment models within their trained domains to improve generalization. Specifically, we design a multi-source feature framework that integrates:(1) Learnable spatial features} from a base model fine-tuned on the target VQA dataset to capture domain-specific quality cues; (2) Temporal motion features from the fast pathway of SlowFast pre-trained on action recognition datasets to model motion-related distortions; (3) Spatial quality-aware features from BIQA models trained on diverse IQA datasets to enhance frame-level distortion representation; and (4) Spatiotemporal quality-aware features from a BVQA model trained on large-scale VQA datasets to jointly encode spatial structure and temporal dynamics. These features are concatenated and fed into a multi-layer perceptron (MLP) to regress them into quality scores. Experimental results demonstrate that our model achieves state-of-the-art performance on three public social media VQA datasets.
comment: RQ-VQA won first place in the CVPR NTIRE 2024 Short-form UGC Video Quality Assessment Challenge
Artificial Intelligence 96
FALCON: Few-Shot Adversarial Learning for Cross-Domain Medical Image Segmentation
Precise delineation of anatomical and pathological structures within 3D medical volumes is crucial for accurate diagnosis, effective surgical planning, and longitudinal disease monitoring. Despite advancements in AI, clinically viable segmentation is often hindered by the scarcity of 3D annotations, patient-specific variability, data privacy concerns, and substantial computational overhead. In this work, we propose FALCON, a cross-domain few-shot segmentation framework that achieves high-precision 3D volume segmentation by processing data as 2D slices. The framework is first meta-trained on natural images to learn-to-learn generalizable segmentation priors, then transferred to the medical domain via adversarial fine-tuning and boundary-aware learning. Task-aware inference, conditioned on support cues, allows FALCON to adapt dynamically to patient-specific anatomical variations across slices. Experiments on four benchmarks demonstrate that FALCON consistently achieves the lowest Hausdorff Distance scores, indicating superior boundary accuracy while maintaining a Dice Similarity Coefficient comparable to the state-of-the-art models. Notably, these results are achieved with significantly less labeled data, no data augmentation, and substantially lower computational overhead.
comment: 20 pages, 6 figures, 7 tables
Lying with Truths: Open-Channel Multi-Agent Collusion for Belief Manipulation via Generative Montage
As large language models (LLMs) transition to autonomous agents synthesizing real-time information, their reasoning capabilities introduce an unexpected attack surface. This paper introduces a novel threat where colluding agents steer victim beliefs using only truthful evidence fragments distributed through public channels, without relying on covert communications, backdoors, or falsified documents. By exploiting LLMs' overthinking tendency, we formalize the first cognitive collusion attack and propose Generative Montage: a Writer-Editor-Director framework that constructs deceptive narratives through adversarial debate and coordinated posting of evidence fragments, causing victims to internalize and propagate fabricated conclusions. To study this risk, we develop CoPHEME, a dataset derived from real-world rumor events, and simulate attacks across diverse LLM families. Our results show pervasive vulnerability across 14 LLM families: attack success rates reach 74.4% for proprietary models and 70.6% for open-weights models. Counterintuitively, stronger reasoning capabilities increase susceptibility, with reasoning-specialized models showing higher attack success than base models or prompts. Furthermore, these false beliefs then cascade to downstream judges, achieving over 60% deception rates, highlighting a socio-technical vulnerability in how LLM-based agents interact with dynamic information environments. Our implementation and data are available at: https://github.com/CharlesJW222/Lying_with_Truth/tree/main.
comment: Under Review
Exposing Hidden Interfaces: LLM-Guided Type Inference for Reverse Engineering macOS Private Frameworks
Private macOS frameworks underpin critical services and daemons but remain undocumented and distributed only as stripped binaries, complicating security analysis. We present MOTIF, an agentic framework that integrates tool-augmented analysis with a finetuned large language model specialized for Objective-C type inference. The agent manages runtime metadata extraction, binary inspection, and constraint checking, while the model generates candidate method signatures that are validated and refined into compilable headers. On MOTIF-Bench, a benchmark built from public frameworks with groundtruth headers, MOTIF improves signature recovery from 15% to 86% compared to baseline static analysis tooling, with consistent gains in tool-use correctness and inference stability. Case studies on private frameworks show that reconstructed headers compile, link, and facilitate downstream security research and vulnerability studies. By transforming opaque binaries into analyzable interfaces, MOTIF establishes a scalable foundation for systematic auditing of macOS internals.
comment: IEEE S&P'26 under review
EHRSummarizer: A Privacy-Aware, FHIR-Native Architecture for Structured Clinical Summarization of Electronic Health Records
Clinicians routinely navigate fragmented electronic health record (EHR) interfaces to assemble a coherent picture of a patient's problems, medications, recent encounters, and longitudinal trends. This work describes EHRSummarizer, a privacy-aware, FHIR-native reference architecture that retrieves a targeted set of high-yield FHIR R4 resources, normalizes them into a consistent clinical context package, and produces structured summaries intended to support structured chart review. The system can be configured for data minimization, stateless processing, and flexible deployment, including local inference within an organization's trust boundary. To mitigate the risk of unsupported or unsafe behavior, the summarization stage is constrained to evidence present in the retrieved context package, is intended to indicate missing or unavailable domains where feasible, and avoids diagnostic or treatment recommendations. Prototype demonstrations on synthetic and test FHIR environments illustrate end-to-end behavior and output formats; however, this manuscript does not report clinical outcomes or controlled workflow studies. We outline an evaluation plan centered on faithfulness, omission risk, temporal correctness, usability, and operational monitoring to guide future institutional assessments.
comment: 19 pages
Adversarial Instance Generation and Robust Training for Neural Combinatorial Optimization with Multiple Objectives
Deep reinforcement learning (DRL) has shown great promise in addressing multi-objective combinatorial optimization problems (MOCOPs). Nevertheless, the robustness of these learning-based solvers has remained insufficiently explored, especially across diverse and complex problem distributions. In this paper, we propose a unified robustness-oriented framework for preference-conditioned DRL solvers for MOCOPs. Within this framework, we develop a preference-based adversarial attack to generate hard instances that expose solver weaknesses, and quantify the attack impact by the resulting degradation on Pareto-front quality. We further introduce a defense strategy that integrates hardness-aware preference selection into adversarial training to reduce overfitting to restricted preference regions and improve out-of-distribution performance. The experimental results on multi-objective traveling salesman problem (MOTSP), multi-objective capacitated vehicle routing problem (MOCVRP), and multi-objective knapsack problem (MOKP) verify that our attack method successfully learns hard instances for different solvers. Furthermore, our defense method significantly strengthens the robustness and generalizability of neural solvers, delivering superior performance on hard or out-of-distribution instances.
Length-Aware Adversarial Training for Variable-Length Trajectories: Digital Twins for Mall Shopper Paths
We study generative modeling of \emph{variable-length trajectories} -- sequences of visited locations/items with associated timestamps -- for downstream simulation and counterfactual analysis. A recurring practical issue is that standard mini-batch training can be unstable when trajectory lengths are highly heterogeneous, which in turn degrades \emph{distribution matching} for trajectory-derived statistics. We propose \textbf{length-aware sampling (LAS)}, a simple batching strategy that groups trajectories by length and samples batches from a single length bucket, reducing within-batch length heterogeneity (and making updates more consistent) without changing the model class. We integrate LAS into a conditional trajectory GAN with auxiliary time-alignment losses and provide (i) a distribution-level guarantee for derived variables under mild boundedness assumptions, and (ii) an IPM/Wasserstein mechanism explaining why LAS improves distribution matching by removing length-only shortcut critics and targeting within-bucket discrepancies. Empirically, LAS consistently improves matching of derived-variable distributions on a multi-mall dataset of shopper trajectories and on diverse public sequence datasets (GPS, education, e-commerce, and movies), outperforming random sampling across dataset-specific metrics.
UniCrop: A Universal, Multi-Source Data Engineering Pipeline for Scalable Crop Yield Prediction
Accurate crop yield prediction relies on diverse data streams, including satellite, meteorological, soil, and topographic information. However, despite rapid advances in machine learning, existing approaches remain crop- or region-specific and require data engineering efforts. This limits scalability, reproducibility, and operational deployment. This study introduces UniCrop, a universal and reusable data pipeline designed to automate the acquisition, cleaning, harmonisation, and engineering of multi-source environmental data for crop yield prediction. For any given location, crop type, and temporal window, UniCrop automatically retrieves, harmonises, and engineers over 200 environmental variables (Sentinel-1/2, MODIS, ERA5-Land, NASA POWER, SoilGrids, and SRTM), reducing them to a compact, analysis-ready feature set utilising a structured feature reduction workflow with minimum redundancy maximum relevance (mRMR). To validate, UniCrop was applied to a rice yield dataset comprising 557 field observations. Using only the selected 15 features, four baseline machine learning models (LightGBM, Random Forest, Support Vector Regression, and Elastic Net) were trained. LightGBM achieved the best single-model performance (RMSE = 465.1 kg/ha, $R^2 = 0.6576$), while a constrained ensemble of all baselines further improved accuracy (RMSE = 463.2 kg/ha, $R^2 = 0.6604$). UniCrop contributes a scalable and transparent data-engineering framework that addresses the primary bottleneck in operational crop yield modelling: the preparation of consistent and harmonised multi-source data. By decoupling data specification from implementation and supporting any crop, region, and time frame through simple configuration updates, UniCrop provides a practical foundation for scalable agricultural analytics. The code and implementation documentation are shared in https://github.com/CoDIS-Lab/UniCrop.
Learning Resilient Elections with Adversarial GNNs
In the face of adverse motives, it is indispensable to achieve a consensus. Elections have been the canonical way by which modern democracy has operated since the 17th century. Nowadays, they regulate markets, provide an engine for modern recommender systems or peer-to-peer networks, and remain the main approach to represent democracy. However, a desirable universal voting rule that satisfies all hypothetical scenarios is still a challenging topic, and the design of these systems is at the forefront of mechanism design research. Automated mechanism design is a promising approach, and recent works have demonstrated that set-invariant architectures are uniquely suited to modelling electoral systems. However, various concerns prevent the direct application to real-world settings, such as robustness to strategic voting. In this paper, we generalise the expressive capability of learned voting rules, and combine improvements in neural network architecture with adversarial training to improve the resilience of voting rules while maximizing social welfare. We evaluate the effectiveness of our methods on both synthetic and real-world datasets. Our method resolves critical limitations of prior work regarding learning voting rules by representing elections using bipartite graphs, and learning such voting rules using graph neural networks. We believe this opens new frontiers for applying machine learning to real-world elections.
JMedEthicBench: A Multi-Turn Conversational Benchmark for Evaluating Medical Safety in Japanese Large Language Models
As Large Language Models (LLMs) are increasingly deployed in healthcare field, it becomes essential to carefully evaluate their medical safety before clinical use. However, existing safety benchmarks remain predominantly English-centric, and test with only single-turn prompts despite multi-turn clinical consultations. To address these gaps, we introduce JMedEthicBench, the first multi-turn conversational benchmark for evaluating medical safety of LLMs for Japanese healthcare. Our benchmark is based on 67 guidelines from the Japan Medical Association and contains over 50,000 adversarial conversations generated using seven automatically discovered jailbreak strategies. Using a dual-LLM scoring protocol, we evaluate 27 models and find that commercial models maintain robust safety while medical-specialized models exhibit increased vulnerability. Furthermore, safety scores decline significantly across conversation turns (median: 9.5 to 5.0, $p < 0.001$). Cross-lingual evaluation on both Japanese and English versions of our benchmark reveals that medical model vulnerabilities persist across languages, indicating inherent alignment limitations rather than language-specific factors. These findings suggest that domain-specific fine-tuning may accidentally weaken safety mechanisms and that multi-turn interactions represent a distinct threat surface requiring dedicated alignment strategies.
comment: 12 pages, 6 figures
Structured Decomposition for LLM Reasoning: Cross-Domain Validation and Semantic Web Integration
Rule-based reasoning over natural language input arises in domains where decisions must be auditable and justifiable: clinical protocols specify eligibility criteria in prose, evidence rules define admissibility through textual conditions, and scientific standards dictate methodological requirements. Applying rules to such inputs demands both interpretive flexibility and formal guarantees. Large language models (LLMs) provide flexibility but cannot ensure consistent rule application; symbolic systems provide guarantees but require structured input. This paper presents an integration pattern that combines these strengths: LLMs serve as ontology population engines, translating unstructured text into ABox assertions according to expert-authored TBox specifications, while SWRL-based reasoners apply rules with deterministic guarantees. The framework decomposes reasoning into entity identification, assertion extraction, and symbolic verification, with task definitions grounded in OWL 2 ontologies. Experiments across three domains (legal hearsay determination, scientific method-task application, clinical trial eligibility) and eleven language models validate the approach. Structured decomposition achieves statistically significant improvements over few-shot prompting in aggregate, with gains observed across all three domains. An ablation study confirms that symbolic verification provides substantial benefit beyond structured prompting alone. The populated ABox integrates with standard semantic web tooling for inspection and querying, positioning the framework for richer inference patterns that simpler formalisms cannot express.
REE-TTT: Highly Adaptive Radar Echo Extrapolation Based on Test-Time Training
Precipitation nowcasting is critically important for meteorological forecasting. Deep learning-based Radar Echo Extrapolation (REE) has become a predominant nowcasting approach, yet it suffers from poor generalization due to its reliance on high-quality local training data and static model parameters, limiting its applicability across diverse regions and extreme events. To overcome this, we propose REE-TTT, a novel model that incorporates an adaptive Test-Time Training (TTT) mechanism. The core of our model lies in the newly designed Spatio-temporal Test-Time Training (ST-TTT) block, which replaces the standard linear projections in TTT layers with task-specific attention mechanisms, enabling robust adaptation to non-stationary meteorological distributions and thereby significantly enhancing the feature representation of precipitation. Experiments under cross-regional extreme precipitation scenarios demonstrate that REE-TTT substantially outperforms state-of-the-art baseline models in prediction accuracy and generalization, exhibiting remarkable adaptability to data distribution shifts.
From Theory of Mind to Theory of Environment: Counterfactual Simulation of Latent Environmental Dynamics AAAI 2026
The vertebrate motor system employs dimensionality-reducing strategies to limit the complexity of movement coordination, for efficient motor control. But when environments are dense with hidden action-outcome contingencies, movement complexity can promote behavioral innovation. Humans, perhaps uniquely, may infer the presence of hidden environmental dynamics from social cues, by drawing upon computational mechanisms shared with Theory of Mind. This proposed "Theory of Environment" supports behavioral innovation by expanding the dimensionality of motor exploration.
comment: Accepted to the AAAI 2026 Workshop on Theory of Mind for Artificial Intelligence (ToM4AI). Extended abstract, 2 pages
CONSENT: A Negotiation Framework for Leveraging User Flexibility in Vehicle-to-Building Charging under Uncertainty
The growth of Electric Vehicles (EVs) creates a conflict in vehicle-to-building (V2B) settings between building operators, who face high energy costs from uncoordinated charging, and drivers, who prioritize convenience and a full charge. To resolve this, we propose a negotiation-based framework that, by design, guarantees voluntary participation, strategy-proofness, and budget feasibility. It transforms EV charging into a strategic resource by offering drivers a range of incentive-backed options for modest flexibility in their departure time or requested state of charge (SoC). Our framework is calibrated with user survey data and validated using real operational data from a commercial building and an EV manufacturer. Simulations show that our negotiation protocol creates a mutually beneficial outcome: lowering the building operator's costs by over 3.5\% compared to an optimized, non-negotiating smart charging policy, while simultaneously reducing user charging expenses by 22\% below the utility's retail energy rate. By aligning operator and EV user objectives, our framework provides a strategic bridge between energy and mobility systems, transforming EV charging from a source of operational friction into a platform for collaboration and shared savings.
comment: Submitted to AAMAS 2026. 25 pages, 13 figures, 14 tables
The Two-Stage Decision-Sampling Hypothesis: Understanding the Emergence of Self-Reflection in RL-Trained LLMs
Self-reflection capabilities emerge in Large Language Models after RL post-training, with multi-turn RL achieving substantial gains over SFT counterparts. Yet the mechanism of how a unified optimization objective gives rise to functionally distinct capabilities of generating solutions and evaluating when to revise them remains opaque. To address this question, we introduce the Gradient Attribution Property to characterize how reward gradients distribute across policy components, formalized through the Two-Stage Decision-Sampling (DS) Hypothesis, which decomposes the policy into sampling ($π_{sample}$) for generation and decision ($π_{d}$) for verification. We prove that surrogate rewards exhibit Balanced Gradient Attribution, while SFT and KL penalties exhibit Unbalanced Gradient Attribution, with length-weighting creating asymmetric regularization that constrains $π_{sample}$ while leaving $π_{d}$ under-optimized, providing an theoretical explanation of why RL succeeds where SFT fails. We also empirically validate our theoretical predictions on arithmetic reasoning demonstrates that RL's superior generalization stems primarily from improved decision-making ($π_{d}$) rather than sampling capabilities, providing a first-principles mechanistic explanation for self-correction in thinking models.
HanoiWorld : A Joint Embedding Predictive Architecture BasedWorld Model for Autonomous Vehicle Controller
Current attempts of Reinforcement Learning for Autonomous Controller are data-demanding while the results are under-performed, unstable, and unable to grasp and anchor on the concept of safety, and over-concentrating on noise features due to the nature of pixel reconstruction. While current Self-Supervised Learningapproachs that learning on high-dimensional representations by leveraging the JointEmbedding Predictive Architecture (JEPA) are interesting and an effective alternative, as the idea mimics the natural ability of the human brain in acquiring new skill usingimagination and minimal samples of observations. This study introduces Hanoi-World, a JEPA-based world model that using recurrent neural network (RNN) formaking longterm horizontal planning with effective inference time. Experimentsconducted on the Highway-Env package with difference enviroment showcase the effective capability of making a driving plan while safety-awareness, with considerablecollision rate in comparison with SOTA baselines
OpenNovelty: An LLM-powered Agentic System for Verifiable Scholarly Novelty Assessment
Evaluating novelty is critical yet challenging in peer review, as reviewers must assess submissions against a vast, rapidly evolving literature. This report presents OpenNovelty, an LLM-powered agentic system for transparent, evidence-based novelty analysis. The system operates through four phases: (1) extracting the core task and contribution claims to generate retrieval queries; (2) retrieving relevant prior work based on extracted queries via semantic search engine; (3) constructing a hierarchical taxonomy of core-task-related work and performing contribution-level full-text comparisons against each contribution; and (4) synthesizing all analyses into a structured novelty report with explicit citations and evidence snippets. Unlike naive LLM-based approaches, \textsc{OpenNovelty} grounds all assessments in retrieved real papers, ensuring verifiable judgments. We deploy our system on 500+ ICLR 2026 submissions with all reports publicly available on our website, and preliminary analysis suggests it can identify relevant prior work, including closely related papers that authors may overlook. OpenNovelty aims to empower the research community with a scalable tool that promotes fair, consistent, and evidence-backed peer review.
CaveAgent: Transforming LLMs into Stateful Runtime Operators
LLM-based agents are increasingly capable of complex task execution, yet current agentic systems remain constrained by text-centric paradigms. Traditional approaches rely on procedural JSON-based function calling, which often struggles with long-horizon tasks due to fragile multi-turn dependencies and context drift. In this paper, we present CaveAgent, a framework that transforms the paradigm from "LLM-as-Text-Generator" to "LLM-as-Runtime-Operator." We introduce a Dual-stream Context Architecture that decouples state management into a lightweight semantic stream for reasoning and a persistent, deterministic Python Runtime stream for execution. In addition to leveraging code generation to efficiently resolve interdependent sub-tasks (e.g., loops, conditionals) in a single step, we introduce \textit{Stateful Runtime Management} in CaveAgent. Distinct from existing code-based approaches that remain text-bound and lack the support for external object injection and retrieval, CaveAgent injects, manipulates, and retrieves complex Python objects (e.g., DataFrames, database connections) that persist across turns. This persistence mechanism acts as a high-fidelity external memory to eliminate context drift, avoid catastrophic forgetting, while ensuring that processed data flows losslessly to downstream applications. Comprehensive evaluations on Tau$^2$-bench, BFCL and various case studies across representative SOTA LLMs demonstrate CaveAgent's superiority. Specifically, our framework achieves a 10.5\% success rate improvement on retail tasks and reduces total token consumption by 28.4\% in multi-turn scenarios. On data-intensive tasks, direct variable storage and retrieval reduces token consumption by 59\%, allowing CaveAgent to handle large-scale data that causes context overflow failures in both JSON-based and Code-based agents.
comment: 32 pages, 14 Figures
MM-Sonate: Multimodal Controllable Audio-Video Generation with Zero-Shot Voice Cloning
Joint audio-video generation aims to synthesize synchronized multisensory content, yet current unified models struggle with fine-grained acoustic control, particularly for identity-preserving speech. Existing approaches either suffer from temporal misalignment due to cascaded generation or lack the capability to perform zero-shot voice cloning within a joint synthesis framework. In this work, we present MM-Sonate, a multimodal flow-matching framework that unifies controllable audio-video joint generation with zero-shot voice cloning capabilities. Unlike prior works that rely on coarse semantic descriptions, MM-Sonate utilizes a unified instruction-phoneme input to enforce strict linguistic and temporal alignment. To enable zero-shot voice cloning, we introduce a timbre injection mechanism that effectively decouples speaker identity from linguistic content. Furthermore, addressing the limitations of standard classifier-free guidance in multimodal settings, we propose a noise-based negative conditioning strategy that utilizes natural noise priors to significantly enhance acoustic fidelity. Empirical evaluations demonstrate that MM-Sonate establishes new state-of-the-art performance in joint generation benchmarks, significantly outperforming baselines in lip synchronization and speech intelligibility, while achieving voice cloning fidelity comparable to specialized Text-to-Speech systems.
Logics-STEM: Empowering LLM Reasoning via Failure-Driven Post-Training and Document Knowledge Enhancement
We present Logics-STEM, a state-of-the-art reasoning model fine-tuned on Logics-STEM-SFT-Dataset, a high-quality and diverse dataset at 10M scale that represents one of the largest-scale open-source long chain-of-thought corpora. Logics-STEM targets reasoning tasks in the domains of Science, Technology, Engineering, and Mathematics (STEM), and exhibits exceptional performance on STEM-related benchmarks with an average improvement of 4.68% over the next-best model at 8B scale. We attribute the gains to our data-algorithm co-design engine, where they are jointly optimized to fit a gold-standard distribution behind reasoning. Data-wise, the Logics-STEM-SFT-Dataset is constructed from a meticulously designed data curation engine with 5 stages to ensure the quality, diversity, and scalability, including annotation, deduplication, decontamination, distillation, and stratified sampling. Algorithm-wise, our failure-driven post-training framework leverages targeted knowledge retrieval and data synthesis around model failure regions in the Supervised Fine-tuning (SFT) stage to effectively guide the second-stage SFT or the reinforcement learning (RL) for better fitting the target distribution. The superior empirical performance of Logics-STEM reveals the vast potential of combining large-scale open-source data with carefully designed synthetic data, underscoring the critical role of data-algorithm co-design in enhancing reasoning capabilities through post-training. We make both the Logics-STEM models (8B and 32B) and the Logics-STEM-SFT-Dataset (10M and downsampled 2.2M versions) publicly available to support future research in the open-source community.
Utilizing Earth Foundation Models to Enhance the Simulation Performance of Hydrological Models with AlphaEarth Embeddings
Predicting river flow in places without streamflow records is challenging because basins respond differently to climate, terrain, vegetation, and soils. Traditional basin attributes describe some of these differences, but they cannot fully represent the complexity of natural environments. This study examines whether AlphaEarth Foundation embeddings, which are learned from large collections of satellite images rather than designed by experts, offer a more informative way to describe basin characteristics. These embeddings summarize patterns in vegetation, land surface properties, and long-term environmental dynamics. We find that models using them achieve higher accuracy when predicting flows in basins not used for training, suggesting that they capture key physical differences more effectively than traditional attributes. We further investigate how selecting appropriate donor basins influences prediction in ungauged regions. Similarity based on the embeddings helps identify basins with comparable environmental and hydrological behavior, improving performance, whereas adding many dissimilar basins can reduce accuracy. The results show that satellite-informed environmental representations can strengthen hydrological forecasting and support the development of models that adapt more easily to different landscapes.
comment: 12 pages, 11 figures
MOSS Transcribe Diarize: Accurate Transcription with Speaker Diarization
Speaker-Attributed, Time-Stamped Transcription (SATS) aims to transcribe what is said and to precisely determine the timing of each speaker, which is particularly valuable for meeting transcription. Existing SATS systems rarely adopt an end-to-end formulation and are further constrained by limited context windows, weak long-range speaker memory, and the inability to output timestamps. To address these limitations, we present MOSS Transcribe Diarize, a unified multimodal large language model that jointly performs Speaker-Attributed, Time-Stamped Transcription in an end-to-end paradigm. Trained on extensive real wild data and equipped with a 128k context window for up to 90-minute inputs, MOSS Transcribe Diarize scales well and generalizes robustly. Across comprehensive evaluations, it outperforms state-of-the-art commercial systems on multiple public and in-house benchmarks.
EscherVerse: An Open World Benchmark and Dataset for Teleo-Spatial Intelligence with Physical-Dynamic and Intent-Driven Understanding
The ability to reason about spatial dynamics is a cornerstone of intelligence, yet current research overlooks the human intent behind spatial changes. To address these limitations, we introduce Teleo-Spatial Intelligence (TSI), a new paradigm that unifies two critical pillars: Physical-Dynamic Reasoning--understanding the physical principles of object interactions--and Intent-Driven Reasoning--inferring the human goals behind these actions. To catalyze research in TSI, we present EscherVerse, consisting of a large-scale, open-world benchmark (Escher-Bench), a dataset (Escher-35k), and models (Escher series). Derived from real-world videos, EscherVerse moves beyond constrained settings to explicitly evaluate an agent's ability to reason about object permanence, state transitions, and trajectory prediction in dynamic, human-centric scenarios. Crucially, it is the first benchmark to systematically assess Intent-Driven Reasoning, challenging models to connect physical events to their underlying human purposes. Our work, including a novel data curation pipeline, provides a foundational resource to advance spatial intelligence from passive scene description toward a holistic, purpose-driven understanding of the world.
Improving Behavioral Alignment in LLM Social Simulations via Context Formation and Navigation
Large language models (LLMs) are increasingly used to simulate human behavior in experimental settings, but they systematically diverge from human decisions in complex decision-making environments, where participants must anticipate others' actions and form beliefs based on observed behavior. We propose a two-stage framework for improving behavioral alignment. The first stage, context formation, explicitly specifies the experimental design to establish an accurate representation of the decision task and its context. The second stage, context navigation, guides the reasoning process within that representation to make decisions. We validate this framework through a focal replication of a sequential purchasing game with quality signaling (Kremer and Debo, 2016), extending to a crowdfunding game with costly signaling (Cason et al., 2025) and a demand-estimation task (Gui and Toubia, 2025) to test generalizability across decision environments. Across four state-of-the-art (SOTA) models (GPT-4o, GPT-5, Claude-4.0-Sonnet-Thinking, DeepSeek-R1), we find that complex decision-making environments require both stages to achieve behavioral alignment with human benchmarks, whereas the simpler demand-estimation task requires only context formation. Our findings clarify when each stage is necessary and provide a systematic approach for designing and diagnosing LLM social simulations as complements to human subjects in behavioral research.
comment: 39 pages, 2 figures, 3 tables
Bridging the Data Gap: Creating a Hindi Text Summarization Dataset from the English XSUM
Current advancements in Natural Language Processing (NLP) have largely favored resource-rich languages, leaving a significant gap in high-quality datasets for low-resource languages like Hindi. This scarcity is particularly evident in text summarization, where the development of robust models is hindered by a lack of diverse, specialized corpora. To address this disparity, this study introduces a cost-effective, automated framework for creating a comprehensive Hindi text summarization dataset. By leveraging the English Extreme Summarization (XSUM) dataset as a source, we employ advanced translation and linguistic adaptation techniques. To ensure high fidelity and contextual relevance, we utilize the Crosslingual Optimized Metric for Evaluation of Translation (COMET) for validation, supplemented by the selective use of Large Language Models (LLMs) for curation. The resulting dataset provides a diverse, multi-thematic resource that mirrors the complexity of the original XSUM corpus. This initiative not only provides a direct tool for Hindi NLP research but also offers a scalable methodology for democratizing NLP in other underserved languages. By reducing the costs associated with dataset creation, this work fosters the development of more nuanced, culturally relevant models in computational linguistics.
comment: Book chapter for River publications
Aletheia: Quantifying Cognitive Conviction in Reasoning Models via Regularized Inverse Confusion Matrix
In the progressive journey toward Artificial General Intelligence (AGI), current evaluation paradigms face an epistemological crisis. Static benchmarks measure knowledge breadth but fail to quantify the depth of belief. While Simhi et al. (2025) defined the CHOKE phenomenon in standard QA, we extend this framework to quantify "Cognitive Conviction" in System 2 reasoning models. We propose Project Aletheia, a cognitive physics framework that employs Tikhonov Regularization to invert the judge's confusion matrix. To validate this methodology without relying on opaque private data, we implement a Synthetic Proxy Protocol. Our preliminary pilot study on 2025 baselines (e.g., DeepSeek-R1, OpenAI o1) suggests that while reasoning models act as a "cognitive buffer," they may exhibit "Defensive OverThinking" under adversarial pressure. Furthermore, we introduce the Aligned Conviction Score (S_aligned) to verify that conviction does not compromise safety. This work serves as a blueprint for measuring AI scientific integrity.
comment: 6 pages, 2 figures
DrivingGen: A Comprehensive Benchmark for Generative Video World Models in Autonomous Driving
Video generation models, as one form of world models, have emerged as one of the most exciting frontiers in AI, promising agents the ability to imagine the future by modeling the temporal evolution of complex scenes. In autonomous driving, this vision gives rise to driving world models: generative simulators that imagine ego and agent futures, enabling scalable simulation, safe testing of corner cases, and rich synthetic data generation. Yet, despite fast-growing research activity, the field lacks a rigorous benchmark to measure progress and guide priorities. Existing evaluations remain limited: generic video metrics overlook safety-critical imaging factors; trajectory plausibility is rarely quantified; temporal and agent-level consistency is neglected; and controllability with respect to ego conditioning is ignored. Moreover, current datasets fail to cover the diversity of conditions required for real-world deployment. To address these gaps, we present DrivingGen, the first comprehensive benchmark for generative driving world models. DrivingGen combines a diverse evaluation dataset curated from both driving datasets and internet-scale video sources, spanning varied weather, time of day, geographic regions, and complex maneuvers, with a suite of new metrics that jointly assess visual realism, trajectory plausibility, temporal coherence, and controllability. Benchmarking 14 state-of-the-art models reveals clear trade-offs: general models look better but break physics, while driving-specific ones capture motion realistically but lag in visual quality. DrivingGen offers a unified evaluation framework to foster reliable, controllable, and deployable driving world models, enabling scalable simulation, planning, and data-driven decision-making.
comment: 10 pages, 4 figures; Project Website: https://drivinggen-bench.github.io/
Bayesian Orchestration of Multi-LLM Agents for Cost-Aware Sequential Decision-Making
Large language models (LLMs) are increasingly deployed as autonomous decision agents in settings with asymmetric error costs: hiring (missed talent vs wasted interviews), medical triage (missed emergencies vs unnecessary escalation), and fraud detection (approved fraud vs declined legitimate payments). The dominant design queries a single LLM for a posterior over states, thresholds "confidence," and acts; we prove this is inadequate for sequential decisions with costs. We propose a Bayesian, cost-aware multi-LLM orchestration framework that treats LLMs as approximate likelihood models rather than classifiers. For each candidate state, we elicit likelihoods via contrastive prompting, aggregate across diverse models with robust statistics, and update beliefs with Bayes rule under explicit priors as new evidence arrives. This enables coherent belief updating, expected-cost action selection, principled information gathering via value of information, and fairness gains via ensemble bias mitigation. In resume screening with costs of 40000 USD per missed hire, 2500 USD per interview, and 150 USD per phone screen, experiments on 1000 resumes using five LLMs (GPT-4o, Claude 4.5 Sonnet, Gemini Pro, Grok, DeepSeek) reduce total cost by 294000 USD (34 percent) versus the best single-LLM baseline and improve demographic parity by 45 percent (max group gap 22 to 5 percentage points). Ablations attribute 51 percent of savings to multi-LLM aggregation, 43 percent to sequential updating, and 20 percent to disagreement-triggered information gathering, consistent with the theoretical benefits of correct probabilistic foundations.
FastV-RAG: Towards Fast and Fine-Grained Video QA with Retrieval-Augmented Generation
Vision-Language Models (VLMs) excel at visual reasoning but still struggle with integrating external knowledge. Retrieval-Augmented Generation (RAG) is a promising solution, but current methods remain inefficient and often fail to maintain high answer quality. To address these challenges, we propose VideoSpeculateRAG, an efficient VLM-based RAG framework built on two key ideas. First, we introduce a speculative decoding pipeline: a lightweight draft model quickly generates multiple answer candidates, which are then verified and refined by a more accurate heavyweight model, substantially reducing inference latency without sacrificing correctness. Second, we identify a major source of error - incorrect entity recognition in retrieved knowledge - and mitigate it with a simple yet effective similarity-based filtering strategy that improves entity alignment and boosts overall answer accuracy. Experiments demonstrate that VideoSpeculateRAG achieves comparable or higher accuracy than standard RAG approaches while accelerating inference by approximately 2x. Our framework highlights the potential of combining speculative decoding with retrieval-augmented reasoning to enhance efficiency and reliability in complex, knowledge-intensive multimodal tasks.
Reading Between the Lines: Deconfounding Causal Estimates using Text Embeddings and Deep Learning
Estimating causal treatment effects in observational settings is frequently compromised by selection bias arising from unobserved confounders. While traditional econometric methods struggle when these confounders are orthogonal to structured covariates, high-dimensional unstructured text often contains rich proxies for these latent variables. This study proposes a Neural Network-Enhanced Double Machine Learning (DML) framework designed to leverage text embeddings for causal identification. Using a rigorous synthetic benchmark, we demonstrate that unstructured text embeddings capture critical confounding information that is absent from structured tabular data. However, we show that standard tree-based DML estimators retain substantial bias (+24%) due to their inability to model the continuous topology of embedding manifolds. In contrast, our deep learning approach reduces bias to -0.86% with optimized architectures, effectively recovering the ground-truth causal parameter. These findings suggest that deep learning architectures are essential for satisfying the unconfoundedness assumption when conditioning on high-dimensional natural language data
The Optimal Sample Complexity of Linear Contracts
In this paper, we settle the problem of learning optimal linear contracts from data in the offline setting, where agent types are drawn from an unknown distribution and the principal's goal is to design a contract that maximizes her expected utility. Specifically, our analysis shows that the simple Empirical Utility Maximization (EUM) algorithm yields an $\varepsilon$-approximation of the optimal linear contract with probability at least $1-δ$, using just $O(\ln(1/δ) / \varepsilon^2)$ samples. This result improves upon previously known bounds and matches a lower bound from Duetting et al. [2025] up to constant factors, thereby proving its optimality. Our analysis uses a chaining argument, where the key insight is to leverage a simple structural property of linear contracts: their expected reward is non-decreasing. This property, which holds even though the utility function itself is non-monotone and discontinuous, enables the construction of fine-grained nets required for the chaining argument, which in turn yields the optimal sample complexity. Furthermore, our proof establishes the stronger guarantee of uniform convergence: the empirical utility of every linear contract is a $\varepsilon$-approximation of its true expectation with probability at least $1-δ$, using the same optimal $O(\ln(1/δ) / \varepsilon^2)$ sample complexity.
Distortion Instead of Hallucination: The Effect of Reasoning Under Strict Constraints
With the widespread adoption of large language models (LLMs), hallucinations, which are non-factual fabrications in model outputs, have become serious concerns. Reasoning capabilities have received attention as a self-verification process to improve output reliability. However, the effect of reasoning within a closed system where LLMs cannot rely on external tools or knowledge has yet to be clarified. We therefore conduct experiments under strict constraints (recommending peer-reviewed journal articles in computer science) to examine the effect of reasoning across multiple models (GPT-5.2 and Gemini 3 Flash). Our results reveal a problematic trade-off between constraint compliance and factual accuracy. Non-reasoning models exhibit high constraint violation rates (66-75%) but maintain factual accuracy, while reasoning models reduce violations (13-26%) but systematically distort known facts to satisfy constraints and increase complete fabrication. This trade-off pattern is consistent across both models despite different architectures, indicating a fundamental limitation of reasoning. Furthermore, reasoning does not uniformly improve output authenticity: effects diverge by model, reflecting different allocations of the compliance-truthfulness trade-off. These findings challenge the assumption that reasoning universally improves reliability: reasoning models trade honest constraint violations for detection-resistant distortions.
DeepInv: A Novel Self-supervised Learning Approach for Fast and Accurate Diffusion Inversion
Diffusion inversion is a task of recovering the noise of an image in a diffusion model, which is vital for controllable diffusion image editing. At present, diffusion inversion still remains a challenging task due to the lack of viable supervision signals. Thus, most existing methods resort to approximation-based solutions, which however are often at the cost of performance or efficiency. To remedy these shortcomings, we propose a novel self-supervised diffusion inversion approach in this paper, termed Deep Inversion (DeepInv). Instead of requiring ground-truth noise annotations, we introduce a self-supervised objective as well as a data augmentation strategy to generate high-quality pseudo noises from real images without manual intervention. Based on these two innovative designs, DeepInv is also equipped with an iterative and multi-scale training regime to train a parameterized inversion solver, thereby achieving the fast and accurate image-to-noise mapping. To the best of our knowledge, this is the first attempt of presenting a trainable solver to predict inversion noise step by step. The extensive experiments show that our DeepInv can achieve much better performance and inference speed than the compared methods, e.g., +40.435% SSIM than EasyInv and +9887.5% speed than ReNoise on COCO dataset. Moreover, our careful designs of trainable solvers can also provide insights to the community. Codes and model parameters will be released in https://github.com/potato-kitty/DeepInv.
Accelerating Storage-Based Training for Graph Neural Networks
Graph neural networks (GNNs) have achieved breakthroughs in various real-world downstream tasks due to their powerful expressiveness. As the scale of real-world graphs has been continuously growing, \textit{a storage-based approach to GNN training} has been studied, which leverages external storage (e.g., NVMe SSDs) to handle such web-scale graphs on a single machine. Although such storage-based GNN training methods have shown promising potential in large-scale GNN training, we observed that they suffer from a severe bottleneck in data preparation since they overlook a critical challenge: \textit{how to handle a large number of small storage I/Os}. To address the challenge, in this paper, we propose a novel storage-based GNN training framework, named \textsf{AGNES}, that employs a method of \textit{block-wise storage I/O processing} to fully utilize the I/O bandwidth of high-performance storage devices. Moreover, to further enhance the efficiency of each storage I/O, \textsf{AGNES} employs a simple yet effective strategy, \textit{hyperbatch-based processing} based on the characteristics of real-world graphs. Comprehensive experiments on five real-world graphs reveal that \textsf{AGNES} consistently outperforms four state-of-the-art methods, by up to 4.1$\times$ faster than the best competitor. Our code is available at https://github.com/Bigdasgit/agnes-kdd26.
comment: 10 pages, 12 figures, 2 tables, ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD) 2026
A construction of an optimal base for conditional attribute and attributional condition implications in triadic contexts
This article studies implications in triadic contexts. Specifically, we focus on those introduced by Ganter and Obiedkov, namely conditional attribute and attributional condition implications. Our aim is to construct an optimal base for these implications.
comment: 26 pages
Rethinking Multimodal Few-Shot 3D Point Cloud Segmentation: From Fused Refinement to Decoupled Arbitration
In this paper, we revisit multimodal few-shot 3D point cloud semantic segmentation (FS-PCS), identifying a conflict in "Fuse-then-Refine" paradigms: the "Plasticity-Stability Dilemma." In addition, CLIP's inter-class confusion can result in semantic blindness. To address these issues, we present the Decoupled-experts Arbitration Few-Shot SegNet (DA-FSS), a model that effectively distinguishes between semantic and geometric paths and mutually regularizes their gradients to achieve better generalization. DA-FSS employs the same backbone and pre-trained text encoder as MM-FSS to generate text embeddings, which can increase free modalities' utilization rate and better leverage each modality's information space. To achieve this, we propose a Parallel Expert Refinement module to generate each modal correlation. We also propose a Stacked Arbitration Module (SAM) to perform convolutional fusion and arbitrate correlations for each modality pathway. The Parallel Experts decouple two paths: a Geometric Expert maintains plasticity, and a Semantic Expert ensures stability. They are coordinated via a Decoupled Alignment Module (DAM) that transfers knowledge without propagating confusion. Experiments on popular datasets (S3DIS, ScanNet) demonstrate the superiority of DA-FSS over MM-FSS. Meanwhile, geometric boundaries, completeness, and texture differentiation are all superior to the baseline. The code is available at: https://github.com/MoWenQAQ/DA-FSS.
comment: 10 pages, 4 figures, 3 tables
Bayesian Subspace Gradient Estimation for Zeroth-Order Optimization of Large Language Models
Fine-tuning large language models (LLMs) with zeroth-order (ZO) optimization reduces memory by approximating gradients through function evaluations, but existing methods rely on one-step gradient estimates from random perturbations. We introduce Bayesian Subspace Zeroth-Order optimization (BSZO), a ZO optimizer that applies Kalman filtering to combine finite-difference information across multiple perturbation directions. By treating each finite-difference measurement as a noisy observation, BSZO builds a posterior distribution over the projected gradient and updates it through Bayesian inference, with a residual-based adaptive mechanism to adjust perturbation scales. Theoretical analysis shows that BSZO improves the convergence rate by a factor of $k/γ$ compared to standard ZO methods. Experiments on RoBERTa, Mistral, and OPT models show that BSZO outperforms MeZO, MeZO-Adam, and HiZOO across various tasks, achieving up to 6.67\% absolute average improvement on OPT-13B while keeping memory usage close to inference-only baselines (1.00$\times$--1.08$\times$ of MeZO).
comment: 19 pages, 1 figures, 4 tables
Online Estimation and Manipulation of Articulated Objects
From refrigerators to kitchen drawers, humans interact with articulated objects effortlessly every day while completing household chores. For automating these tasks, service robots must be capable of manipulating arbitrary articulated objects. Recent deep learning methods have been shown to predict valuable priors on the affordance of articulated objects from vision. In contrast, many other works estimate object articulations by observing the articulation motion, but this requires the robot to already be capable of manipulating the object. In this article, we propose a novel approach combining these methods by using a factor graph for online estimation of articulation which fuses learned visual priors and proprioceptive sensing during interaction into an analytical model of articulation based on Screw Theory. With our method, a robotic system makes an initial prediction of articulation from vision before touching the object, and then quickly updates the estimate from kinematic and force sensing during manipulation. We evaluate our method extensively in both simulations and real-world robotic manipulation experiments. We demonstrate several closed-loop estimation and manipulation experiments in which the robot was capable of opening previously unseen drawers. In real hardware experiments, the robot achieved a 75% success rate for autonomous opening of unknown articulated objects.
comment: This preprint has not undergone peer review or any post-submission improvements or corrections. The Version of Record of this article is published in Autonomous Robots, and is available online at [Link will be updated when available]
Reliable Grid Forecasting: State Space Models for Safety-Critical Energy Systems
Accurate grid load forecasting is safety-critical: under-predictions risk supply shortfalls, while symmetric error metrics mask this operational asymmetry. We introduce a grid-specific evaluation framework--Asymmetric MAPE, Under-Prediction Rate, and Reserve Margin--that directly measures operational risk rather than statistical accuracy alone. Using this framework, we conduct a systematic evaluation of Mamba-based State Space Models for California grid forecasting on a weather-aligned CAISO TAC-area dataset spanning Nov 2023--Nov 2025 (84,498 hourly records across 5 transmission areas). Our analysis reveals that standard accuracy metrics are poor proxies for operational safety: models with identical MAPE can require vastly different reserve margins. We demonstrate that forecast errors are weakly but significantly associated with temperature (r = 0.16, p < 10^{-16}), motivating weather-aware modeling rather than loss function modification alone. The S-Mamba model achieves the lowest Reserve_{99.5}% margin (14.12%) compared to 16.66% for iTransformer, demonstrating superior forecast reliability under a 99.5th-percentile tail-risk reserve proxy.
comment: 24 pages, 8 figures, 8 tables
SwinIFS: Landmark Guided Swin Transformer For Identity Preserving Face Super Resolution
Face super-resolution aims to recover high-quality facial images from severely degraded low-resolution inputs, but remains challenging due to the loss of fine structural details and identity-specific features. This work introduces SwinIFS, a landmark-guided super-resolution framework that integrates structural priors with hierarchical attention mechanisms to achieve identity-preserving reconstruction at both moderate and extreme upscaling factors. The method incorporates dense Gaussian heatmaps of key facial landmarks into the input representation, enabling the network to focus on semantically important facial regions from the earliest stages of processing. A compact Swin Transformer backbone is employed to capture long-range contextual information while preserving local geometry, allowing the model to restore subtle facial textures and maintain global structural consistency. Extensive experiments on the CelebA benchmark demonstrate that SwinIFS achieves superior perceptual quality, sharper reconstructions, and improved identity retention; it consistently produces more photorealistic results and exhibits strong performance even under 8x magnification, where most methods fail to recover meaningful structure. SwinIFS also provides an advantageous balance between reconstruction accuracy and computational efficiency, making it suitable for real-world applications in facial enhancement, surveillance, and digital restoration. Our code, model weights, and results are available at https://github.com/Habiba123-stack/SwinIFS.
A Graph-based Framework for Online Time Series Anomaly Detection Using Model Ensemble
With the increasing volume of streaming data in industrial systems, online anomaly detection has become a critical task. The diverse and rapidly evolving data patterns pose significant challenges for online anomaly detection. Many existing anomaly detection methods are designed for offline settings or have difficulty in handling heterogeneous streaming data effectively. This paper proposes GDME, an unsupervised graph-based framework for online time series anomaly detection using model ensemble. GDME maintains a dynamic model pool that is continuously updated by pruning underperforming models and introducing new ones. It utilizes a dynamic graph structure to represent relationships among models and employs community detection on the graph to select an appropriate subset for ensemble. The graph structure is also used to detect concept drift by monitoring structural changes, allowing the framework to adapt to evolving streaming data. Experiments on seven heterogeneous time series demonstrate that GDME outperforms existing online anomaly detection methods, achieving improvements of up to 24%. In addition, its ensemble strategy provides superior detection performance compared with both individual models and average ensembles, with competitive computational efficiency.
comment: 8 pages
Scale-Adaptive Power Flow Analysis with Local Topology Slicing and Multi-Task Graph Learning
Developing deep learning models with strong adaptability to topological variations is of great practical significance for power flow analysis. To enhance model performance under variable system scales and improve robustness in branch power prediction, this paper proposes a Scale-adaptive Multi-task Power Flow Analysis (SaMPFA) framework. SaMPFA introduces a Local Topology Slicing (LTS) sampling technique that extracts subgraphs of different scales from the complete power network to strengthen the model's cross-scale learning capability. Furthermore, a Reference-free Multi-task Graph Learning (RMGL) model is designed for robust power flow prediction. Unlike existing approaches, RMGL predicts bus voltages and branch powers instead of phase angles. This design not only avoids the risk of error amplification in branch power calculation but also guides the model to learn the physical relationships of phase angle differences. In addition, the loss function incorporates extra terms that encourage the model to capture the physical patterns of angle differences and power transmission, further improving consistency between predictions and physical laws. Simulations on the IEEE 39-bus system and a real provincial grid in China demonstrate that the proposed model achieves superior adaptability and generalization under variable system scales, with accuracy improvements of 4.47% and 36.82%, respectively.
ParkGaussian: Surround-view 3D Gaussian Splatting for Autonomous Parking
Parking is a critical task for autonomous driving systems (ADS), with unique challenges in crowded parking slots and GPS-denied environments. However, existing works focus on 2D parking slot perception, mapping, and localization, 3D reconstruction remains underexplored, which is crucial for capturing complex spatial geometry in parking scenarios. Naively improving the visual quality of reconstructed parking scenes does not directly benefit autonomous parking, as the key entry point for parking is the slots perception module. To address these limitations, we curate the first benchmark named ParkRecon3D, specifically designed for parking scene reconstruction. It includes sensor data from four surround-view fisheye cameras with calibrated extrinsics and dense parking slot annotations. We then propose ParkGaussian, the first framework that integrates 3D Gaussian Splatting (3DGS) for parking scene reconstruction. To further improve the alignment between reconstruction and downstream parking slot detection, we introduce a slot-aware reconstruction strategy that leverages existing parking perception methods to enhance the synthesis quality of slot regions. Experiments on ParkRecon3D demonstrate that ParkGaussian achieves state-of-the-art reconstruction quality and better preserves perception consistency for downstream tasks. The code and dataset will be released at: https://github.com/wm-research/ParkGaussian
Data Complexity-aware Deep Model Performance Forecasting
Deep learning models are widely used across computer vision and other domains. When working on the model induction, selecting the right architecture for a given dataset often relies on repetitive trial-and-error procedures. This procedure is time-consuming, resource-intensive, and difficult to automate. While previous work has explored performance prediction using partial training or complex simulations, these methods often require significant computational overhead or lack generalizability. In this work, we propose an alternative approach: a lightweight, two-stage framework that can estimate model performance before training given the understanding of the dataset and the focused deep model structures. The first stage predicts a baseline based on the analysis of some measurable properties of the dataset, while the second stage adjusts the estimation with additional information on the model's architectural and hyperparameter details. The setup allows the framework to generalize across datasets and model types. Moreover, we find that some of the underlying features used for prediction - such as dataset variance - can offer practical guidance for model selection, and can serve as early indicators of data quality. As a result, the framework can be used not only to forecast model performance, but also to guide architecture choices, inform necessary preprocessing procedures, and detect potentially problematic datasets before training begins.
comment: 12 pages, 12 figures
Empowering Small Language Models with Factual Hallucination-Aware Reasoning for Financial Classification
Small language models (SLMs) are increasingly used for financial classification due to their fast inference and local deployability. However, compared with large language models, SLMs are more prone to factual hallucinations in reasoning and exhibit weaker classification performance. This raises a natural question: Can mitigating factual hallucinations improve SLMs' financial classification? To address this, we propose a three-step pipeline named AAAI (Association Identification, Automated Detection, and Adaptive Inference). Experiments on three representative SLMs reveal that: (1) factual hallucinations are positively correlated with misclassifications; (2) encoder-based verifiers effectively detect factual hallucinations; and (3) incorporating feedback on factual errors enables SLMs' adaptive inference that enhances classification performance. We hope this pipeline contributes to trustworthy and effective applications of SLMs in finance.
UltraEval-Audio: A Unified Framework for Comprehensive Evaluation of Audio Foundation Models
The development of audio foundation models has accelerated rapidly since the emergence of GPT-4o. However, the lack of comprehensive evaluation has become a critical bottleneck for further progress in the field, particularly in audio generation. Current audio evaluation faces three major challenges: (1) audio evaluation lacks a unified framework, with datasets and code scattered across various sources, hindering fair and efficient cross-model comparison;(2) audio codecs, as a key component of audio foundation models, lack a widely accepted and holistic evaluation methodology; (3) existing speech benchmarks are heavily reliant on English, making it challenging to objectively assess models' performance on Chinese. To address the first issue, we introduce UltraEval-Audio, a unified evaluation framework for audio foundation models, specifically designed for both audio understanding and generation tasks. UltraEval-Audio features a modular architecture, supporting 10 languages and 14 core task categories, while seamlessly integrating 24 mainstream models and 36 authoritative benchmarks. To enhance research efficiency, the framework provides a one-command evaluation feature, accompanied by real-time public leaderboards. For the second challenge, UltraEval-Audio adopts a novel comprehensive evaluation scheme for audio codecs, evaluating performance across three key dimensions: semantic accuracy, timbre fidelity, and acoustic quality. To address the third issue, we propose two new Chinese benchmarks, SpeechCMMLU and SpeechHSK, designed to assess Chinese knowledge proficiency and language fluency. We wish that UltraEval-Audio will provide both academia and industry with a transparent, efficient, and fair platform for comparison of audio models. Our code, benchmarks, and leaderboards are available at https://github.com/OpenBMB/UltraEval-Audio.
comment: 13 pages, 2 figures
KGCE: Knowledge-Augmented Dual-Graph Evaluator for Cross-Platform Educational Agent Benchmarking with Multimodal Language Models
With the rapid adoption of multimodal large language models (MLMs) in autonomous agents, cross-platform task execution capabilities in educational settings have garnered significant attention. However, existing benchmark frameworks still exhibit notable deficiencies in supporting cross-platform tasks in educational contexts, especially when dealing with school-specific software (such as XiaoYa Intelligent Assistant, HuaShi XiaZi, etc.), where the efficiency of agents often significantly decreases due to a lack of understanding of the structural specifics of these private-domain software. Additionally, current evaluation methods heavily rely on coarse-grained metrics like goal orientation or trajectory matching, making it challenging to capture the detailed execution and efficiency of agents in complex tasks. To address these issues, we propose KGCE (Knowledge-Augmented Dual-Graph Evaluator for Cross-Platform Educational Agent Benchmarking with Multimodal Language Models), a novel benchmarking platform that integrates knowledge base enhancement and a dual-graph evaluation framework. We first constructed a dataset comprising 104 education-related tasks, covering Windows, Android, and cross-platform collaborative tasks. KGCE introduces a dual-graph evaluation framework that decomposes tasks into multiple sub-goals and verifies their completion status, providing fine-grained evaluation metrics. To overcome the execution bottlenecks of existing agents in private-domain tasks, we developed an enhanced agent system incorporating a knowledge base specific to school-specific software. The code can be found at https://github.com/Kinginlife/KGCE.
A unified multimodal understanding and generation model for cross-disciplinary scientific research
Scientific discovery increasingly relies on integrating heterogeneous, high-dimensional data across disciplines nowadays. While AI models have achieved notable success across various scientific domains, they typically remain domain-specific or lack the capability of simultaneously understanding and generating multimodal scientific data, particularly for high-dimensional data. Yet, many pressing global challenges and scientific problems are inherently cross-disciplinary and require coordinated progress across multiple fields. Here, we present FuXi-Uni, a native unified multimodal model for scientific understanding and high-fidelity generation across scientific domains within a single architecture. Specifically, FuXi-Uni aligns cross-disciplinary scientific tokens within natural language tokens and employs science decoder to reconstruct scientific tokens, thereby supporting both natural language conversation and scientific numerical prediction. Empirically, we validate FuXi-Uni in Earth science and Biomedicine. In Earth system modeling, the model supports global weather forecasting, tropical cyclone (TC) forecast editing, and spatial downscaling driven by only language instructions. FuXi-Uni generates 10-day global forecasts at 0.25° resolution that outperform the SOTA physical forecasting system. It shows superior performance for both TC track and intensity prediction relative to the SOTA physical model, and generates high-resolution regional weather fields that surpass standard interpolation baselines. Regarding biomedicine, FuXi-Uni outperforms leading multimodal large language models on multiple biomedical visual question answering benchmarks. By unifying heterogeneous scientific modalities within a native shared latent space while maintaining strong domain-specific performance, FuXi-Uni provides a step forward more general-purpose, multimodal scientific models.
Slot-ID: Identity-Preserving Video Generation from Reference Videos via Slot-Based Temporal Identity Encoding
Producing prompt-faithful videos that preserve a user-specified identity remains challenging: models need to extrapolate facial dynamics from sparse reference while balancing the tension between identity preservation and motion naturalness. Conditioning on a single image completely ignores the temporal signature, which leads to pose-locked motions, unnatural warping, and "average" faces when viewpoints and expressions change. To this end, we introduce an identity-conditioned variant of a diffusion-transformer video generator which uses a short reference video rather than a single portrait. Our key idea is to incorporate the dynamics in the reference. A short clip reveals subject-specific patterns, e.g., how smiles form, across poses and lighting. From this clip, a Sinkhorn-routed encoder learns compact identity tokens that capture characteristic dynamics while remaining pretrained backbone-compatible. Despite adding only lightweight conditioning, the approach consistently improves identity retention under large pose changes and expressive facial behavior, while maintaining prompt faithfulness and visual realism across diverse subjects and prompts.
From Classification to Generation: An Open-Ended Paradigm for Adverse Drug Reaction Prediction Based on Graph-Motif Feature Fusion
Computational biology offers immense potential for reducing the high costs and protracted cycles of new drug development through adverse drug reaction (ADR) prediction. However, current methods remain impeded by drug data scarcity-induced cold-start challenge, closed label sets, and inadequate modeling of label dependencies. Here we propose an open-ended ADR prediction paradigm based on Graph-Motif feature fusion and Multi-Label Generation (GM-MLG). Leveraging molecular structure as an intrinsic and inherent feature, GM-MLG constructs a dual-graph representation architecture spanning the atomic level, the local molecular level (utilizing fine-grained motifs dynamically extracted via the BRICS algorithm combined with additional fragmentation rules), and the global molecular level. Uniquely, GM-MLG pioneers transforming ADR prediction from multi-label classification into Transformer Decoder-based multi-label generation. By treating ADR labels as discrete token sequences, it employs positional embeddings to explicitly capture dependencies and co-occurrence relationships within large-scale label spaces, generating predictions via autoregressive decoding to dynamically expand the prediction space. Experiments demonstrate GM-MLG achieves up to 38% improvement and an average gain of 20%, expanding the prediction space from 200 to over 10,000 types. Furthermore, it elucidates non-linear structure-activity relationships between ADRs and motifs via retrosynthetic motif analysis, providing interpretable and innovative support for systematic risk reduction in drug safety.
comment: 34 pages,5 figures
Beyond Gemini-3-Pro: Revisiting LLM Routing and Aggregation at Scale
Large Language Models (LLMs) have rapidly advanced, with Gemini-3-Pro setting a new performance milestone. In this work, we explore collective intelligence as an alternative to monolithic scaling, and demonstrate that open-source LLMs' collaboration can surpass Gemini-3-Pro. We first revisit LLM routing and aggregation at scale and identify three key bottlenecks: (1) current train-free routers are limited by a query-based paradigm focusing solely on textual similarity; (2) recent aggregation methods remain largely static, failing to select appropriate aggregators for different tasks;(3) the complementarity of routing and aggregation remains underutilized. To address these problems, we introduce JiSi, a novel framework designed to release the full potential of LLMs' collaboration through three innovations: (1) Query-Response Mixed Routing capturing both semantic information and problem difficulty; (2) Support-Set-based Aggregator Selection jointly evaluating the aggregation and domain capacity of aggregators; (3) Adaptive Routing-Aggregation Switch dynamically leveraging the advantages of routing and aggregation. Comprehensive experiments on nine benchmarks demonstrate that JiSi can surpass Gemini-3-Pro with only 47% costs by orchestrating ten open-source LLMs, while outperforming mainstream baselines. It suggests that collective intelligence represents a novel path towards Artificial General Intelligence (AGI).
comment: 12 pages
LinMU: Multimodal Understanding Made Linear
Modern Vision-Language Models (VLMs) achieve impressive performance but are limited by the quadratic complexity of self-attention, which prevents their deployment on edge devices and makes their understanding of high-resolution images and long-context videos prohibitively expensive. To address this challenge, we introduce LinMU (Linear-complexity Multimodal Understanding), a VLM design that achieves linear complexity without using any quadratic-complexity modules while maintaining the performance of global-attention-based VLMs. LinMU replaces every self-attention layer in the VLM with the M-MATE block: a dual-branch module that combines a bidirectional state-space model for global context (Flex-MA branch) with localized Swin-style window attention (Local-Swin branch) for adjacent correlations. To transform a pre-trained VLM into the LinMU architecture, we propose a three-stage distillation framework that (i) initializes both branches with self-attention weights and trains the Flex-MA branch alone, (ii) unfreezes the Local-Swin branch and fine-tunes it jointly with the Flex-MA branch, and (iii) unfreezes the remaining blocks and fine-tunes them using LoRA adapters, while regressing on hidden states and token-level logits of the frozen VLM teacher. On MMMU, TextVQA, LongVideoBench, Video-MME, and other benchmarks, LinMU matches the performance of teacher models, yet reduces Time-To-First-Token (TTFT) by up to 2.7$\times$ and improves token throughput by up to 9.0$\times$ on minute-length videos. Ablations confirm the importance of each distillation stage and the necessity of the two branches of the M-MATE block. The proposed framework demonstrates that state-of-the-art multimodal reasoning can be achieved without quadratic attention, thus opening up avenues for long-context VLMs that can deal with high-resolution images and long videos.
comment: 23 pages, 7 figures
Digital Twin AI: Opportunities and Challenges from Large Language Models to World Models
Digital twins, as precise digital representations of physical systems, have evolved from passive simulation tools into intelligent and autonomous entities through the integration of artificial intelligence technologies. This paper presents a unified four-stage framework that systematically characterizes AI integration across the digital twin lifecycle, spanning modeling, mirroring, intervention, and autonomous management. By synthesizing existing technologies and practices, we distill a unified four-stage framework that systematically characterizes how AI methodologies are embedded across the digital twin lifecycle: (1) modeling the physical twin through physics-based and physics-informed AI approaches, (2) mirroring the physical system into a digital twin with real-time synchronization, (3) intervening in the physical twin through predictive modeling, anomaly detection, and optimization strategies, and (4) achieving autonomous management through large language models, foundation models, and intelligent agents. We analyze the synergy between physics-based modeling and data-driven learning, highlighting the shift from traditional numerical solvers to physics-informed and foundation models for physical systems. Furthermore, we examine how generative AI technologies, including large language models and generative world models, transform digital twins into proactive and self-improving cognitive systems capable of reasoning, communication, and creative scenario generation. Through a cross-domain review spanning eleven application domains, including healthcare, aerospace, smart manufacturing, robotics, and smart cities, we identify common challenges related to scalability, explainability, and trustworthiness, and outline directions for responsible AI-driven digital twin systems.
Adaptive Hierarchical Evaluation of LLMs and SAST tools for CWE Prediction in Python
Large Language Models have become integral to software development, yet they frequently generate vulnerable code. Existing code vulnerability detection benchmarks employ binary classification, lacking the CWE-level specificity required for actionable feedback in iterative correction systems. We present ALPHA (Adaptive Learning via Penalty in Hierarchical Assessment), the first function-level Python benchmark that evaluates both LLMs and SAST tools using hierarchically aware, CWE-specific penalties. ALPHA distinguishes between over-generalisation, over-specification, and lateral errors, reflecting practical differences in diagnostic utility. Evaluating seven LLMs and two SAST tools, we find LLMs substantially outperform SAST, though SAST demonstrates higher precision when detections occur. Critically, prediction consistency varies dramatically across models (8.26%-81.87% agreement), with significant implications for feedback-driven systems. We further outline a pathway for future work incorporating ALPHA penalties into supervised fine-tuning, which could provide principled hierarchy-aware vulnerability detection pending empirical validation.
Quantifying Local Strain Field and Deformation in Active Contraction of Bladder Using a Pretrained Transformer Model: A Speckle-Free Approach
Accurate quantification of local strain fields during bladder contraction is essential for understanding the biomechanics of bladder micturition, in both health and disease. Conventional digital image correlation (DIC) methods have been successfully applied to various biological tissues; however, this approach requires artificial speckling, which can alter both passive and active properties of the tissue. In this study, we introduce a speckle-free framework for quantifying local strain fields using a state-of-the-art, zero-shot transformer model, CoTracker3. We utilized a custom-designed, portable isotonic biaxial apparatus compatible with multiphoton microscopy (MPM) to demonstrate this approach, successfully tracking natural bladder lumen textures without artificial markers. Benchmark tests validated the method's high pixel accuracy and low strain errors. Our framework effectively captured heterogeneous deformation patterns, despite complex folding and buckling, which conventional DIC often fails to track. Application to in vitro active bladder contractions in four rat specimens (n=4) revealed statistically significant anisotropy (p<0.01), with higher contraction longitudinally compared to circumferentially. Multiphoton microscopy further illustrated and confirmed heterogeneous morphological changes, such as large fold formation during active contraction. This non-invasive approach eliminates speckle-induced artifacts, enabling more physiologically relevant measurements, and has broad applicability for material testing of other biological and engineered systems.
Polarity Detection of Sustainable Development Goals in News Text
The United Nations' Sustainable Development Goals (SDGs) provide a globally recognised framework for addressing critical societal, environmental, and economic challenges. Recent developments in natural language processing (NLP) and large language models (LLMs) have facilitated the automatic classification of textual data according to their relevance to specific SDGs. Nevertheless, in many applications, it is equally important to determine the directionality of this relevance; that is, to assess whether the described impact is positive, neutral, or negative. To tackle this challenge, we propose the novel task of SDG polarity detection, which assesses whether a text segment indicates progress toward a specific SDG or conveys an intention to achieve such progress. To support research in this area, we introduce SDG-POD, a benchmark dataset designed specifically for this task, combining original and synthetically generated data. We perform a comprehensive evaluation using six state-of-the-art large LLMs, considering both zero-shot and fine-tuned configurations. Our results suggest that the task remains challenging for the current generation of LLMs. Nevertheless, some fine-tuned models, particularly QWQ-32B, achieve good performance, especially on specific Sustainable Development Goals such as SDG-9 (Industry, Innovation and Infrastructure), SDG-12 (Responsible Consumption and Production), and SDG-15 (Life on Land). Furthermore, we demonstrate that augmenting the fine-tuning dataset with synthetically generated examples yields improved model performance on this task. This result highlights the effectiveness of data enrichment techniques in addressing the challenges of this resource-constrained domain. This work advances the methodological toolkit for sustainability monitoring and provides actionable insights into the development of efficient, high-performing polarity detection systems.
comment: Updated as one author was mispelled
HARBOR: Holistic Adaptive Risk assessment model for BehaviORal healthcare
Behavioral healthcare risk assessment remains a challenging problem due to the highly multimodal nature of patient data and the temporal dynamics of mood and affective disorders. While large language models (LLMs) have demonstrated strong reasoning capabilities, their effectiveness in structured clinical risk scoring remains unclear. In this work, we introduce HARBOR, a behavioral health aware language model designed to predict a discrete mood and risk score, termed the Harbor Risk Score (HRS), on an integer scale from -3 (severe depression) to +3 (mania). We also release PEARL, a longitudinal behavioral healthcare dataset spanning four years of monthly observations from three patients, containing physiological, behavioral, and self reported mental health signals. We benchmark traditional machine learning models, proprietary LLMs, and HARBOR across multiple evaluation settings and ablations. Our results show that HARBOR outperforms classical baselines and off the shelf LLMs, achieving 69 percent accuracy compared to 54 percent for logistic regression and 29 percent for the strongest proprietary LLM baseline.
Applying Deep Learning to Anomaly Detection of Russian Satellite Activity for Indications Prior to Military Activity
We apply deep learning techniques for anomaly detection to analyze activity of Russian-owned resident space objects (RSO) prior to the Ukraine invasion and assess the results for any findings that can be used as indications and warnings (I&W) of aggressive military behavior for future conflicts. Through analysis of anomalous activity, an understanding of possible tactics and procedures can be established to assess the existence of statistically significant changes in Russian RSO pattern of life/pattern of behavior (PoL/PoB) using publicly available two-line element (TLE) data. This research looks at statistical and deep learning approaches to assess anomalous activity. The deep learning methods assessed are isolation forest (IF), traditional autoencoder (AE), variational autoencoder (VAE), Kolmogorov Arnold Network (KAN), and a novel anchor-loss based autoencoder (Anchor AE). Each model is used to establish a baseline of on-orbit activity based on a five-year data sample. The primary investigation period focuses on the six months leading up to the invasion date of February 24, 2022. Additional analysis looks at RSO activity during an active combat period by sampling TLE data after the invasion date. The deep learning autoencoder models identify anomalies based on reconstruction errors that surpass a threshold sigma. To capture the nuance and unique characteristics of each RSO an individual model was trained for each observed space object. The research made an effort to prioritize explainability and interpretability of the model results thus each observation was assessed for anomalous behavior of the individual six orbital elements versus analyzing the input data as a single monolithic observation. The results demonstrate not only statistically significant anomalies of Russian RSO activity but also details anomalous findings to the individual orbital element.
comment: Withdrawn because of inaccurate information and misrepresented findings
The Bayesian Origin of the Probability Weighting Function in Human Representation of Probabilities
Understanding the representation of probability in the human mind has been of great interest to understanding human decision making. Classical paradoxes in decision making suggest that human perception distorts probability magnitudes. Previous accounts postulate a Probability Weighting Function that transforms perceived probabilities; however, its motivation has been debated. Recent work has sought to motivate this function in terms of noisy representations of probabilities in the human mind. Here, we present an account of the Probability Weighting Function grounded in rational inference over optimal decoding from noisy neural encoding of quantities. We show that our model accurately accounts for behavior in a lottery task and a dot counting task. It further accounts for adaptation to a bimodal short-term prior. Taken together, our results provide a unifying account grounding the human representation of probability in rational inference.
Coupled Distributional Random Expert Distillation for World Model Online Imitation Learning NeurIPS 2025
Imitation Learning (IL) has achieved remarkable success across various domains, including robotics, autonomous driving, and healthcare, by enabling agents to learn complex behaviors from expert demonstrations. However, existing IL methods often face instability challenges, particularly when relying on adversarial reward or value formulations in world model frameworks. In this work, we propose a novel approach to online imitation learning that addresses these limitations through a reward model based on random network distillation (RND) for density estimation. Our reward model is built on the joint estimation of expert and behavioral distributions within the latent space of the world model. We evaluate our method across diverse benchmarks, including DMControl, Meta-World, and ManiSkill2, showcasing its ability to deliver stable performance and achieve expert-level results in both locomotion and manipulation tasks. Our approach demonstrates improved stability over adversarial methods while maintaining expert-level performance.
comment: NeurIPS 2025 Workshop of Embodied World Models; Code Available at: https://github.com/TobyLeelsz/CDRED-WM
Explainability-Based Token Replacement on LLM-Generated Text
Generative models, especially large language models (LLMs), have shown remarkable progress in producing text that appears human-like. However, they often exhibit patterns that make their output easier to detect than text written by humans. In this paper, we investigate how explainable AI (XAI) methods can be used to reduce the detectability of AI-generated text (AIGT) while also introducing a robust ensemble-based detection approach. We begin by training an ensemble classifier to distinguish AIGT from human-written text, then apply SHAP and LIME to identify tokens that most strongly influence its predictions. We propose four explainability-based token replacement strategies to modify these influential tokens. Our findings show that these token replacement approaches can significantly diminish a single classifier's ability to detect AIGT. However, our ensemble classifier maintains strong performance across multiple languages and domains, showing that a multi-model approach can mitigate the impact of token-level manipulations. These results show that XAI methods can make AIGT harder to detect by focusing on the most influential tokens. At the same time, they highlight the need for robust, ensemble-based detection strategies that can adapt to evolving approaches for hiding AIGT.
Language Model Distillation: A Temporal Difference Imitation Learning Perspective AAAI 2026
Large language models have led to significant progress across many NLP tasks, although their massive sizes often incur substantial computational costs. Distillation has become a common practice to compress these large and highly capable models into smaller, more efficient ones. Many existing language model distillation methods can be viewed as behavior cloning from the perspective of imitation learning or inverse reinforcement learning. This viewpoint has inspired subsequent studies that leverage (inverse) reinforcement learning techniques, including variations of behavior cloning and temporal difference learning methods. Rather than proposing yet another specific temporal difference method, we introduce a general framework for temporal difference-based distillation by exploiting the distributional sparsity of the teacher model. Specifically, it is often observed that language models assign most probability mass to a small subset of tokens. Motivated by this observation, we design a temporal difference learning framework that operates on a reduced action space (a subset of vocabulary), and demonstrate how practical algorithms can be derived and the resulting performance improvements.
comment: AAAI 2026; Code available at: https://github.com/TobyLeelsz/Bellman-Distillation
Spatio-Temporal Graph Deep Learning with Stochastic Differential Equations for Uncovering Alzheimer's Disease Progression
Identifying objective neuroimaging biomarkers to forecast Alzheimer's disease (AD) progression is crucial for timely intervention. However, this task remains challenging due to the complex dysfunctions in the spatio-temporal characteristics of underlying brain networks, which are often overlooked by existing methods. To address these limitations, we develop an interpretable spatio-temporal graph neural network framework to predict future AD progression, leveraging dual Stochastic Differential Equations (SDEs) to model the irregularly-sampled longitudinal functional magnetic resonance imaging (fMRI) data. We validate our approach on two independent cohorts, including the Open Access Series of Imaging Studies (OASIS-3) and the Alzheimer's Disease Neuroimaging Initiative (ADNI). Our framework effectively learns sparse regional and connective importance probabilities, enabling the identification of key brain circuit abnormalities associated with disease progression. Notably, we detect the parahippocampal cortex, prefrontal cortex, and parietal lobule as salient regions, with significant disruptions in the ventral attention, dorsal attention, and default mode networks. These abnormalities correlate strongly with longitudinal AD-related clinical symptoms. Moreover, our interpretability strategy reveals both established and novel neural systems-level and sex-specific biomarkers, offering new insights into the neurobiological mechanisms underlying AD progression. Our findings highlight the potential of spatio-temporal graph-based learning for early, individualized prediction of AD progression, even in the context of irregularly-sampled longitudinal imaging data.
Tubular Riemannian Laplace Approximations for Bayesian Neural Networks
Laplace approximations are among the simplest and most practical methods for approximate Bayesian inference in neural networks, yet their Euclidean formulation struggles with the highly anisotropic, curved loss surfaces and large symmetry groups that characterize modern deep models. Recent work has proposed Riemannian and geometric Gaussian approximations to adapt to this structure. Building on these ideas, we introduce the Tubular Riemannian Laplace (TRL) approximation. TRL explicitly models the posterior as a probabilistic tube that follows a low-loss valley induced by functional symmetries, using a Fisher/Gauss-Newton metric to separate prior-dominated tangential uncertainty from data-dominated transverse uncertainty. We interpret TRL as a scalable reparametrised Gaussian approximation that utilizes implicit curvature estimates to operate in high-dimensional parameter spaces. Our empirical evaluation on ResNet-18 (CIFAR-10 and CIFAR-100) demonstrates that TRL achieves excellent calibration, matching or exceeding the reliability of Deep Ensembles (in terms of ECE) while requiring only a fraction (1/5) of the training cost. TRL effectively bridges the gap between single-model efficiency and ensemble-grade reliability.
comment: v2: corrected an erroneous/hallucinated reference (Dold et al.)
General Dynamic Goal Recognition using Goal-Conditioned and Meta Reinforcement Learning
Understanding an agent's goal through its behavior is a common AI problem called Goal Recognition (GR). This task becomes particularly challenging in dynamic environments where goals are numerous and ever-changing. We introduce the General Dynamic Goal Recognition (GDGR) problem, a broader definition of GR aimed at real-time adaptation of GR systems. This paper presents two novel approaches to tackle GDGR: (1) GC-AURA, generalizing to new goals using Model-Free Goal-Conditioned Reinforcement Learning, and (2) Meta-AURA, adapting to novel environments with Meta-Reinforcement Learning. We evaluate these methods across diverse environments, demonstrating their ability to achieve rapid adaptation and high GR accuracy under dynamic and noisy conditions. This work is a significant step forward in enabling GR in dynamic and unpredictable real-world environments.
comment: Accepted for publication at AAMAS 2026
A Multi-Scale Attention-Based Attack Diagnosis Mechanism for Parallel Cyber-Physical Attacks in Power Grids
Parallel cyber--physical attacks (PCPA) can simultaneously damage physical transmission lines and disrupt measurement data transmission in power grids, severely impairing system situational awareness and attack diagnosis. This paper investigates the attack diagnosis problem for linearized AC/DC power flow models under PCPA, where physical attacks include not only line disconnections but also admittance modifications, such as those caused by compromised distributed flexible AC transmission system (D-FACTS) devices. To address this challenge, we propose a learning-assisted attack diagnosis framework based on meta--mixed-integer programming (MMIP), which integrates a convolutional graph cross-attention attack localization (CGCA-AL) model. First, sufficient conditions for measurement reconstruction are derived, enabling the recovery of unknown measurements in attacked areas using available measurements and network topology information. Based on these conditions, the attack diagnosis problem is formulated as an MMIP model. The proposed CGCA-AL employs a multi-scale attention mechanism to predict a probability distribution over potential physical attack locations, which is incorporated into the MMIP as informative objective coefficients. By solving the resulting MMIP, both the locations and magnitudes of physical attacks are optimally estimated, and system states are subsequently reconstructed. Simulation results on IEEE 30-bus and IEEE 118-bus test systems demonstrate the effectiveness, robustness, and scalability of the proposed attack diagnosis framework under complex PCPA scenarios.
comment: 10 pages, 3 figures, 5 tables, journal
An AI-powered Bayesian generative modeling approach for causal inference in observational studies
Causal inference in observational studies with high-dimensional covariates presents significant challenges. We introduce CausalBGM, an AI-powered Bayesian generative modeling approach that captures the causal relationship among covariates, treatment, and outcome. The core innovation is to estimate the individual treatment effect (ITE) by learning the individual-specific distribution of a low-dimensional latent feature set (e.g., latent confounders) that drives changes in both treatment and outcome. This individualized posterior representation yields estimates of the individual treatment effect (ITE) together with well-calibrated posterior intervals while mitigating confounding effect. CausalBGM is fitted through an iterative algorithm to update the model parameters and the latent features until convergence. This framework leverages the power of AI to capture complex dependencies among variables while adhering to the Bayesian principles. Extensive experiments demonstrate that CausalBGM consistently outperforms state-of-the-art methods, particularly in scenarios with high-dimensional covariates and large-scale datasets. By addressing key limitations of existing methods, CausalBGM emerges as a robust and promising framework for advancing causal inference in a wide range of modern applications. The code for CausalBGM is available at https://github.com/liuq-lab/bayesgm. The tutorial for CausalBGM is available at https://causalbgm.readthedocs.io.
Let It Flow: Agentic Crafting on Rock and Roll, Building the ROME Model within an Open Agentic Learning Ecosystem
Agentic crafting requires LLMs to operate in real-world environments over multiple turns by taking actions, observing outcomes, and iteratively refining artifacts. Despite its importance, the open-source community lacks a principled, end-to-end ecosystem to streamline agent development. We introduce the Agentic Learning Ecosystem (ALE), a foundational infrastructure that optimizes the production pipeline for agentic model. ALE consists of three components: ROLL, a post-training framework for weight optimization; ROCK, a sandbox environment manager for trajectory generation; and iFlow CLI, an agent framework for efficient context engineering. We release ROME, an open-source agent grounded by ALE and trained on over one million trajectories. Our approach includes data composition protocols for synthesizing complex behaviors and a novel policy optimization algorithm, Interaction-Perceptive Agentic Policy Optimization (IPA), which assigns credit over semantic interaction chunks rather than individual tokens to improve long-horizon training stability. Empirically, we evaluate ROME within a structured setting and introduce Terminal Bench Pro, a benchmark with improved scale and contamination control. ROME demonstrates strong performance across benchmarks like SWE-bench Verified and Terminal Bench, proving the effectiveness of ALE.
comment: 36 pages, 15 figures
PriorRG: Prior-Guided Contrastive Pre-training and Coarse-to-Fine Decoding for Chest X-ray Report Generation AAAI 2026
Chest X-ray report generation aims to reduce radiologists' workload by automatically producing high-quality preliminary reports. A critical yet underexplored aspect of this task is the effective use of patient-specific prior knowledge -- including clinical context (e.g., symptoms, medical history) and the most recent prior image -- which radiologists routinely rely on for diagnostic reasoning. Most existing methods generate reports from single images, neglecting this essential prior information and thus failing to capture diagnostic intent or disease progression. To bridge this gap, we propose PriorRG, a novel chest X-ray report generation framework that emulates real-world clinical workflows via a two-stage training pipeline. In Stage 1, we introduce a prior-guided contrastive pre-training scheme that leverages clinical context to guide spatiotemporal feature extraction, allowing the model to align more closely with the intrinsic spatiotemporal semantics in radiology reports. In Stage 2, we present a prior-aware coarse-to-fine decoding for report generation that progressively integrates patient-specific prior knowledge with the vision encoder's hidden states. This decoding allows the model to align with diagnostic focus and track disease progression, thereby enhancing the clinical accuracy and fluency of the generated reports. Extensive experiments on MIMIC-CXR and MIMIC-ABN datasets demonstrate that PriorRG outperforms state-of-the-art methods, achieving a 3.6% BLEU-4 and 3.8% F1 score improvement on MIMIC-CXR, and a 5.9% BLEU-1 gain on MIMIC-ABN. Code and checkpoints will be released upon acceptance.
comment: Accepted by AAAI 2026
Red-Teaming Coding Agents from a Tool-Invocation Perspective: An Empirical Security Assessment
Coding agents powered by large language models are becoming central modules of modern IDEs, helping users perform complex tasks by invoking tools. While powerful, tool invocation opens a substantial attack surface. Prior work has demonstrated attacks against general-purpose and domain-specific agents, but none have focused on the security risks of tool invocation in coding agents. To fill this gap, we conduct the first systematic red-teaming of six popular real-world coding agents: Cursor, Claude Code, Copilot, Windsurf, Cline, and Trae. Our red-teaming proceeds in two phases. In Phase 1, we perform prompt leakage reconnaissance to recover system prompts. We discover a general vulnerability, ToolLeak, which allows malicious prompt exfiltration through benign argument retrieval during tool invocation. In Phase 2, we hijack the agent's tool-invocation behavior using a novel two-channel prompt injection in the tool description and return values, achieving remote code execution (RCE). We adaptively construct payloads using security information leaked in Phase 1. In emulation across five backends, our method outperforms baselines on Claude-Sonnet-4, Claude-Sonnet-4.5, Grok-4, and GPT-5. On real agents, our approach succeeds on 19 of 25 agent-LLM pairs, achieving leakage on every agent using Claude and Grok backends. For tool-invocation hijacking, we obtain RCE on every tested agent-LLM pair, with our two-channel method delivering the highest success rate. We provide case studies on Cursor and Claude Code, analyze security guardrails of external and built-in tools, and conclude with practical defense recommendations.
PICABench: How Far Are We from Physically Realistic Image Editing?
Image editing has achieved remarkable progress recently. Modern editing models could already follow complex instructions to manipulate the original content. However, beyond completing the editing instructions, the accompanying physical effects are the key to the generation realism. For example, removing an object should also remove its shadow, reflections, and interactions with nearby objects. Unfortunately, existing models and benchmarks mainly focus on instruction completion but overlook these physical effects. So, at this moment, how far are we from physically realistic image editing? To answer this, we introduce PICABench, which systematically evaluates physical realism across eight sub-dimension (spanning optics, mechanics, and state transitions) for most of the common editing operations (add, remove, attribute change, etc.). We further propose the PICAEval, a reliable evaluation protocol that uses VLM-as-a-judge with per-case, region-level human annotations and questions. Beyond benchmarking, we also explore effective solutions by learning physics from videos and construct a training dataset PICA-100K. After evaluating most of the mainstream models, we observe that physical realism remains a challenging problem with large rooms to explore. We hope that our benchmark and proposed solutions can serve as a foundation for future work moving from naive content editing toward physically consistent realism.
AdvKT: An Adversarial Multi-Step Training Framework for Knowledge Tracing
Knowledge Tracing (KT) monitors students' knowledge states and simulates their responses to question sequences. Existing KT models typically follow a single-step training paradigm, which leads to discrepancies with the multi-step inference process required in real-world simulations, resulting in significant error accumulation. This accumulation of error, coupled with the issue of data sparsity, can substantially degrade the performance of recommendation models in the intelligent tutoring systems. To address these challenges, we propose a novel Adversarial Multi-Step Training Framework for Knowledge Tracing (AdvKT), which, for the first time, focuses on the multi-step KT task. More specifically, AdvKT leverages adversarial learning paradigm involving a generator and a discriminator. The generator mimics high-reward responses, effectively reducing error accumulation across multiple steps, while the discriminator provides feedback to generate synthetic data. Additionally, we design specialized data augmentation techniques to enrich the training data with realistic variations, ensuring that the model generalizes well even in scenarios with sparse data. Experiments conducted on four real-world datasets demonstrate the superiority of AdvKT over existing KT models, showcasing its ability to address both error accumulation and data sparsity issues effectively.
MemeMind: A Large-Scale Multimodal Dataset with Chain-of-Thought Reasoning for Harmful Meme Detection
As a multimodal medium combining images and text, memes frequently convey implicit harmful content through metaphors and humor, rendering the detection of harmful memes a complex and challenging task. Although recent studies have made progress in detection accuracy and interpretability, large-scale, high-quality datasets for harmful memes remain scarce, and current methods still struggle to capture implicit risks and nuanced semantics. Thus, we construct MemeMind, a large-scale harmful meme dataset. Aligned with the international standards and the context of internet, MemeMind provides detailed Chain-of-Thought (CoT) reasoning annotations to support fine-grained analysis of implicit intentions in memes. Based on this dataset, we further propose MemeGuard, a reasoning-oriented multimodal detection model that significantly improves both the accuracy of harmful meme detection and the interpretability of model decisions. Extensive experimental results demonstrate that MemeGuard outperforms existing state-of-the-art methods on the MemeMind dataset, establishing a solid foundation for future research in harmful meme detection.
CoSER: A Comprehensive Literary Dataset and Framework for Training and Evaluating LLM Role-Playing and Persona Simulation ICML 2025
Role-playing language agents (RPLAs) have emerged as promising applications of large language models (LLMs). However, simulating established characters presents a challenging task for RPLAs, due to the lack of authentic character datasets and nuanced evaluation methods using such data. In this paper, we present CoSER, a collection of a high-quality dataset, open models, and an evaluation protocol towards effective RPLAs of established characters. The CoSER dataset covers 17,966 characters from 771 renowned books. It provides authentic dialogues with real-world intricacies, as well as diverse data types such as conversation setups, character experiences and internal thoughts. Drawing from acting methodology, we introduce given-circumstance acting for training and evaluating role-playing LLMs, where LLMs sequentially portray multiple characters in book scenes. Using our dataset, we develop CoSER 8B and CoSER 70B, i.e., advanced open role-playing LLMs built on LLaMA-3.1 models. Extensive experiments demonstrate the value of the CoSER dataset for RPLA training, evaluation and retrieval. Moreover, CoSER 70B exhibits state-of-the-art performance surpassing or matching GPT-4o on our evaluation and three existing benchmarks, i.e., achieving 75.80% and 93.47% accuracy on the InCharacter and LifeChoice benchmarks respectively.
comment: Accepted by ICML 2025
A Survey of Text Classification Under Class Distribution Shift
The basic underlying assumption of machine learning (ML) models is that the training and test data are sampled from the same distribution. However, in daily practice, this assumption is often broken, i.e.~the distribution of the test data changes over time, which hinders the application of conventional ML models. One domain where the distribution shift naturally occurs is text classification, since people always find new topics to discuss. To this end, we survey research articles studying open-set text classification and related tasks. We divide the methods in this area based on the constraints that define the kind of distribution shift and the corresponding problem formulation, i.e.~learning with the Universum, zero-shot learning, and open-set learning. We next discuss the predominant mitigation approaches for each problem setup. Finally, we identify several future work directions, aiming to push the boundaries beyond the state of the art. Interestingly, we find that continual learning can solve many of the issues caused by the shifting class distribution. We maintain a list of relevant papers at https://github.com/Eduard6421/Open-Set-Survey.
comment: Accepted at EACL 2026 (main)
nvBench 2.0: Resolving Ambiguity in Text-to-Visualization through Stepwise Reasoning
Text-to-Visualization (Text2VIS) enables users to create visualizations from natural language queries, making data insights more accessible. However, Text2VIS faces challenges in interpreting ambiguous queries, as users often express their visualization needs in imprecise language. To address this challenge, we introduce nBench 2.0, a new benchmark designed to evaluate Text2VIS systems in scenarios involving ambiguous queries. nvBench 2.0 includes 7,878 natural language queries and 24,076 corresponding visualizations, derived from 780 tables across 153 domains. It is built using a controlled ambiguity-injection pipeline that generates ambiguous queries through a reverse-generation workflow. By starting with unambiguous seed visualizations and selectively injecting ambiguities, the pipeline yields multiple valid interpretations for each query, with each ambiguous query traceable to its corresponding visualization through step-wise reasoning paths. We evaluate various Large Language Models (LLMs) on their ability to perform ambiguous Text2VIS tasks using nBench 2.0. We also propose Step-Text2Vis, an LLM-based model trained on nvBench 2.0, which enhances performance in ambiguous scenarios through step-wise preference optimization. Our results show that Step-Text2Vis outperforms all baselines, setting a new state-of-the-art for ambiguous Text2VIS tasks. Our source code and data are available at https://nvbench2.github.io/
How to make Medical AI Systems safer? Simulating Vulnerabilities, and Threats in Multimodal Medical RAG System
Large Vision-Language Models (LVLMs) augmented with Retrieval-Augmented Generation (RAG) are increasingly employed in medical AI to enhance factual grounding through external clinical image-text retrieval. However, this reliance creates a significant attack surface. We propose MedThreatRAG, a novel multimodal poisoning framework that systematically probes vulnerabilities in medical RAG systems by injecting adversarial image-text pairs. A key innovation of our approach is the construction of a simulated semi-open attack environment, mimicking real-world medical systems that permit periodic knowledge base updates via user or pipeline contributions. Within this setting, we introduce and emphasize Cross-Modal Conflict Injection (CMCI), which embeds subtle semantic contradictions between medical images and their paired reports. These mismatches degrade retrieval and generation by disrupting cross-modal alignment while remaining sufficiently plausible to evade conventional filters. While basic textual and visual attacks are included for completeness, CMCI demonstrates the most severe degradation. Evaluations on IU-Xray and MIMIC-CXR QA tasks show that MedThreatRAG reduces answer F1 scores by up to 27.66% and lowers LLaVA-Med-1.5 F1 rates to as low as 51.36%. Our findings expose fundamental security gaps in clinical RAG systems and highlight the urgent need for threat-aware design and robust multimodal consistency checks. Finally, we conclude with a concise set of guidelines to inform the safe development of future multimodal medical RAG systems.
comment: Sumbitted to 2026 ICASSP
Self-Speculative Biased Decoding for Faster Re-Translation
Large language models achieve strong machine translation quality but incur high inference cost and latency, posing challenges for simultaneous translation. Re-translation provides a practical solution for off-the-shelf LLMs by repeatedly regenerating the target output as the source input grows, but it suffers from substantial redundant computation. We propose Self-Speculative Biased Decoding (SSBD), a simple and tuning-free inference method that accelerates re-translation by exploiting temporal coherence in streaming translation. SSBD reuses the model's previous output as a speculative draft for the updated input, verifies the draft efficiently in a single forward pass with a lightweight bias, and resumes autoregressive decoding only from the first divergence. We further introduce a display-only masking strategy that hides unstable suffixes from the user interface while retaining them in the draft for verification and potential acceptance. Experiments show that SSBD achieves substantial speedup over standard re-translation while maintaining comparable translation quality, without architectural changes, auxiliary models, or extra fine-tuning.
When Does Learning Renormalize? Sufficient Conditions for Power Law Spectral Dynamics
Empirical power--law scaling has been widely observed across modern deep learning systems, yet its theoretical origins and scope of validity remain incompletely understood. The Generalized Resolution--Shell Dynamics (GRSD) framework models learning as spectral energy transport across logarithmic resolution shells, providing a coarse--grained dynamical description of training. Within GRSD, power--law scaling corresponds to a particularly simple renormalized shell dynamics; however, such behavior is not automatic and requires additional structural properties of the learning process. In this work, we identify a set of sufficient conditions under which the GRSD shell dynamics admits a renormalizable coarse--grained description. These conditions constrain the learning configuration at multiple levels, including boundedness of gradient propagation in the computation graph, weak functional incoherence at initialization, controlled Jacobian evolution along training, and log--shift invariance of renormalized shell couplings. We further show that power--law scaling does not follow from renormalizability alone, but instead arises as a rigidity consequence: once log--shift invariance is combined with the intrinsic time--rescaling covariance of gradient flow, the renormalized GRSD velocity field is forced into a power--law form.
Reliable Evaluation Protocol for Low-Precision Retrieval
Lowering the numerical precision of model parameters and computations is widely adopted to improve the efficiency of retrieval systems. However, when computing relevance scores between the query and documents in low-precision, we observe spurious ties due to the reduced granularity. This introduces high variability in the results based on tie resolution, making the evaluation less reliable. To address this, we propose a more robust retrieval evaluation protocol designed to reduce score variation. It consists of: (1) High-Precision Scoring (HPS), which upcasts the final scoring step to higher precision to resolve tied candidates with minimal computational cost; and (2) Tie-aware Retrieval Metrics (TRM), which report expected scores, range, and bias to quantify order uncertainty of tied candidates. Our experiments test multiple models with three scoring functions on two retrieval datasets to demonstrate that HPS dramatically reduces tie-induced instability, and TRM accurately recovers expected metric values. This combination enables a more consistent and reliable evaluation system for lower-precision retrievals.
comment: 13 pages, 7 figures, submitted to ARR
Social Comparison without Explicit Inference of Others' Reward Values: A Constructive Approach Using a Probabilistic Generative Model
Social comparison$\unicode{x2014}$the process of evaluating one's rewards relative to others$\unicode{x2014}$plays a fundamental role in primate social cognition. However, it remains unknown from a computational perspective how information about others' rewards affects the evaluation of one's own reward. With a constructive approach, this study examines whether monkeys merely recognize objective reward differences or, instead, infer others' subjective reward valuations. We developed three computational models with varying degrees of social information processing: an Internal Prediction Model (IPM), which infers the partner's subjective values; a No Comparison Model (NCM), which disregards partner information; and an External Comparison Model (ECM), which directly incorporates the partner's objective rewards. To test model performance, we used a multi-layered, multimodal latent Dirichlet allocation. We trained the models on a dataset containing the behavior of a pair of monkeys, their rewards, and the conditioned stimuli. Then, we evaluated the models' ability to classify subjective values across pre-defined experimental conditions. The ECM achieved the highest classification score in the Rand Index (0.88 vs. 0.79 for the IPM) under our settings, suggesting that social comparison relies on objective reward differences rather than inferences about subjective states.
comment: This is a preprint of an article submitted for consideration in ADVANCED ROBOTICS, copyright Taylor & Francis and Robotics Society of Japan; ADVANCED ROBOTICS is available online at http://www.tandfonline.com/
EMLoC: Emulator-based Memory-efficient Fine-tuning with LoRA Correction NeurIPS 2025
Open-source foundation models have seen rapid adoption and development, enabling powerful general-purpose capabilities across diverse domains. However, fine-tuning large foundation models for domain-specific or personalized tasks remains prohibitively expensive for most users due to the significant memory overhead beyond that of inference. We introduce EMLoC, an Emulator-based Memory-efficient fine-tuning framework with LoRA Correction, which enables model fine-tuning within the same memory budget required for inference. EMLoC constructs a task-specific light-weight emulator using activation-aware singular value decomposition (SVD) on a small downstream calibration set. Fine-tuning then is performed on this lightweight emulator via LoRA. To tackle the misalignment between the original model and the compressed emulator, we propose a novel compensation algorithm to correct the fine-tuned LoRA module, which thus can be merged into the original model for inference. EMLoC supports flexible compression ratios and standard training pipelines, making it adaptable to a wide range of applications. Extensive experiments demonstrate that EMLoC outperforms other baselines across multiple datasets and modalities. Moreover, without quantization, EMLoC enables fine-tuning of a 38B model, which originally required 95GB of memory, on a single 24GB consumer GPU-bringing efficient and practical model adaptation to individual users.
comment: Accepted to the 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Project page: https://hsi-che-lin.github.io/EMLoC/
Auditing Human Decision-Making in High-Stakes Environments via Prescriptive AI: A Stress-Test on Real-Time Tactical Management AAAI
High-stakes decision-making is often compromised by cognitive biases and outcome dependency. Current AI models typically mimic historical human behavior, inheriting these biases and limiting their utility for normative improvement. Here, we introduce a Prescriptive AI framework designed to audit, rather than automate, human judgment in real-time environments. By decoupling decision quality from stochastic outcomes, we quantify "decision latency" and status quo bias in elite soccer management - a high-pressure adversarial domain. Analyzing 2018 FIFA World Cup data, our system exposes critical risk states, such as performance collapse following salient positive events (e.g., an assist), which human experts systematically overlook due to outcome bias. These findings demonstrate that interpretable auditing systems can reveal structural flaws in human reasoning that predictive models obscure. This approach establishes a paradigm for Human-AI interaction prioritizing epistemic accountability over predictive mimicry in safety-critical domains.
comment: Preprint; suitable for AI, decision sciences, and prescriptive analytics. Short versions published in Wharton Sports Analytics Journal Fall 2025 (AI Feature Spotlight) and accepted to AAAI Bridge on LM Reasoning 2026
FaithAct: Faithfulness Planning and Acting in MLLMs
Multimodal Large Language Models (MLLMs) frequently suffer from unfaithfulness, generating reasoning chains that drift from visual evidence or contradict final predictions. We propose Faithful-First Reasoning, Planning, and Acting (RPA) framework in which FaithEvi provides step-wise and chain-level supervision by evaluating the faithfulness of intermediate reasoning, and FaithAct uses these signals to plan and execute faithfulness-aware actions during inference. Experiments across multiple multimodal reasoning benchmarks show that faithful-first RPA improves perceptual faithfulness by up to 24% over prompt-based and tool-augmented reasoning frameworks, without degrading task accuracy. Our analysis shows that treating faithfulness as a guiding principle perceptually faithful reasoning trajectories and mitigates hallucination behavior. This work thereby establishes a unified framework for both evaluating and enforcing faithfulness in multimodal reasoning.
comment: 16 pages, updated version
Multimodal Fact-Checking: An Agent-based Approach
The rapid spread of multimodal misinformation poses a growing challenge for automated fact-checking systems. Existing approaches, including large vision language models (LVLMs) and deep multimodal fusion methods, often fall short due to limited reasoning and shallow evidence utilization. A key bottleneck is the lack of dedicated datasets that provide complete real-world multimodal misinformation instances accompanied by annotated reasoning processes and verifiable evidence. To address this limitation, we introduce RW-Post, a high-quality and explainable dataset for real-world multimodal fact-checking. RW-Post aligns real-world multimodal claims with their original social media posts, preserving the rich contextual information in which the claims are made. In addition, the dataset includes detailed reasoning and explicitly linked evidence, which are derived from human written fact-checking articles via a large language model assisted extraction pipeline, enabling comprehensive verification and explanation. Building upon RW-Post, we propose AgentFact, an agent-based multimodal fact-checking framework designed to emulate the human verification workflow. AgentFact consists of five specialized agents that collaboratively handle key fact-checking subtasks, including strategy planning, high-quality evidence retrieval, visual analysis, reasoning, and explanation generation. These agents are orchestrated through an iterative workflow that alternates between evidence searching and task-aware evidence filtering and reasoning, facilitating strategic decision-making and systematic evidence analysis. Extensive experimental results demonstrate that the synergy between RW-Post and AgentFact substantially improves both the accuracy and interpretability of multimodal fact-checking.
comment: Code and dataset will be released at https://github.com/xudanni0927/AgentFact
A Multi-Memory Segment System for Generating High-Quality Long-Term Memory Content in Agents
In the current field of agent memory, extensive explorations have been conducted in the area of memory retrieval, yet few studies have focused on exploring the memory content. Most research simply stores summarized versions of historical dialogues, as exemplified by methods like A-MEM and MemoryBank. However, when humans form long-term memories, the process involves multi-dimensional and multi-component generation, rather than merely creating simple summaries. The low-quality memory content generated by existing methods can adversely affect recall performance and response quality. In order to better construct high-quality long-term memory content, we have designed a multi-memory segment system (MMS) inspired by cognitive psychology theory. The system processes short-term memory into multiple long-term memory segments, and constructs retrieval memory units and contextual memory units based on these segments, with a one-to-one correspondence between the two. During the retrieval phase, MMS will match the most relevant retrieval memory units based on the user's query. Then, the corresponding contextual memory units is obtained as the context for the response stage to enhance knowledge, thereby effectively utilizing historical data. We conducted experiments on the LoCoMo dataset and further performed ablation experiments, experiments on the robustness regarding the number of input memories, and overhead experiments, which demonstrated the effectiveness and practical value of our method.
A Survey on 3D Skeleton Based Person Re-Identification: Taxonomy, Advances, Challenges, and Interdisciplinary Prospects
Person re-identification via 3D skeletons is an important emerging research area that attracts increasing attention within the pattern recognition community. With distinctive advantages across various application scenarios, numerous 3D skeleton based person re-identification (SRID) methods with diverse skeleton modeling and learning paradigms have been proposed in recent years. In this paper, we provide a comprehensive review and analysis of recent SRID advances. First of all, we define the SRID task and provide an overview of its origin and major advancements. Secondly, we formulate a systematic taxonomy that organizes existing methods into three categories centered on hand-crafted, sequence-based, and graph-based modeling. Then, we elaborate on the representative models along these three types with an illustration of foundational mechanisms. Meanwhile, we provide an overview of mainstream supervised, self-supervised, and unsupervised SRID learning paradigms and corresponding common methods. A thorough evaluation of state-of-the-art SRID methods is further conducted over various types of benchmarks and protocols to compare their effectiveness, efficiency, and key properties. Finally, we present the key challenges and prospects to advance future research, and highlight interdisciplinary applications of SRID with a case study.
comment: A curated collection of valuable resources is available at https://github.com/Kali-Hac/3D-SRID-Survey
Digital Twins as Funhouse Mirrors: Five Key Distortions
Scientists and practitioners are aggressively moving to deploy digital twins - LLM-based models of real individuals - across social science and policy research. We conducted 19 pre-registered studies with 164 diverse outcomes (e.g., attitudes towards hiring algorithms, intention to share misinformation) and compared human responses to those of their digital twins (trained on each person's previous answers to over 500 questions). We find that digital twins' answers are only modestly more accurate than those from the homogeneous base LLM and correlate weakly with human responses (average r = 0.20). We document five ways in which digital twins distort human behavior: (i) stereotyping, (ii) insufficient individuation, (iii) representation bias, (iv) ideological biases, and (v) hyper-rationality. Together, our results caution against the premature deployment of digital twins, which may systematically misrepresent human cognition and undermine both scientific understanding and practical applications.
AI Compute Architecture and Evolution Trends
The focus of AI development has shifted from academic research to practical applications. However, AI development faces numerous challenges at various levels. This article will attempt to analyze the opportunities and challenges of AI from several different perspectives using a structured approach. This article proposes a seven-layer model for AI compute architecture, including Physical Layer, Link Layer, Neural Network Layer, Context Layer, Agent Layer, Orchestrator Layer, and Application Layer, from bottom to top. It also explains the three stages in the evolution of large language models (LLMs) using the proposed 7-layer model. For each layer, we describe the development trajectory and key technologies. In Layers 1 and 2 we discuss AI computing issues and the impact of Scale-Up and Scale-Out strategies on computing architecture. In Layer 3 we explore two different development paths for LLMs. In Layer 4 we discuss the impact of contextual memory on LLMs and compares it to traditional processor memory. In Layers 5 to 7 we discuss the trends of AI agents and explore the issues in evolution from a single AI agent to an AI-based ecosystem, and their impact on the AI industry.
comment: 33 pages, 17 figures, 2 Tables
Enabling Reconfiguration-Communication Overlap for Collective Communication in Optical Networks
Collective communication (CC) is critical for scaling distributed machine learning (DML). The predictable traffic patterns of DML present a great oppotunity for applying optical network technologies. Optical networks with reconfigurable topologies promise high bandwidth and low latency for collective communications. However, existing approaches face inherent limitations: static topologies are inefficient for dynamic communication patterns within CC algorithm, while frequent topology reconfiguration matching every step of the algorithm incurs significant overhead. In this paper, we propose SWOT, a demand-aware optical network framework that employs ``intra-collective reconfiguration'' to dynamically align network resources with CC traffic patterns. SWOT hides reconfiguration latency by overlapping it with data transmission through three key techniques: Heterogeneous Message Splitting, Asynchronous Overlapping, and Topology Bypassing. Extensive simulations demonstrate that SWOT reduces communication completion time up to 89.7% across diverse CC algorithm compared to static baselines, demonstrating strong robustness to varying optical resources and reconfiguration delay.
DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning
General reasoning represents a long-standing and formidable challenge in artificial intelligence. Recent breakthroughs, exemplified by large language models (LLMs) and chain-of-thought prompting, have achieved considerable success on foundational reasoning tasks. However, this success is heavily contingent upon extensive human-annotated demonstrations, and models' capabilities are still insufficient for more complex problems. Here we show that the reasoning abilities of LLMs can be incentivized through pure reinforcement learning (RL), obviating the need for human-labeled reasoning trajectories. The proposed RL framework facilitates the emergent development of advanced reasoning patterns, such as self-reflection, verification, and dynamic strategy adaptation. Consequently, the trained model achieves superior performance on verifiable tasks such as mathematics, coding competitions, and STEM fields, surpassing its counterparts trained via conventional supervised learning on human demonstrations. Moreover, the emergent reasoning patterns exhibited by these large-scale models can be systematically harnessed to guide and enhance the reasoning capabilities of smaller models.
Optimal Look-back Horizon for Time Series Forecasting in Federated Learning AAAI-26
Selecting an appropriate look-back horizon remains a fundamental challenge in time series forecasting (TSF), particularly in the federated learning scenarios where data is decentralized, heterogeneous, and often non-independent. While recent work has explored horizon selection by preserving forecasting-relevant information in an intrinsic space, these approaches are primarily restricted to centralized and independently distributed settings. This paper presents a principled framework for adaptive horizon selection in federated time series forecasting through an intrinsic space formulation. We introduce a synthetic data generator (SDG) that captures essential temporal structures in client data, including autoregressive dependencies, seasonality, and trend, while incorporating client-specific heterogeneity. Building on this model, we define a transformation that maps time series windows into an intrinsic representation space with well-defined geometric and statistical properties. We then derive a decomposition of the forecasting loss into a Bayesian term, which reflects irreducible uncertainty, and an approximation term, which accounts for finite-sample effects and limited model capacity. Our analysis shows that while increasing the look-back horizon improves the identifiability of deterministic patterns, it also increases approximation error due to higher model complexity and reduced sample efficiency. We prove that the total forecasting loss is minimized at the smallest horizon where the irreducible loss starts to saturate, while the approximation loss continues to rise. This work provides a rigorous theoretical foundation for adaptive horizon selection for time series forecasting in federated learning.
comment: Accepted by AAAI-26 as Oral Presentation
Klear-Reasoner: Advancing Reasoning Capability via Gradient-Preserving Clipping Policy Optimization
We present Klear-Reasoner, a model with long reasoning capabilities that demonstrates careful deliberation during problem solving, achieving outstanding performance across multiple benchmarks. Although there are already many excellent works related to inference models in the current community, there are still many problems with reproducing high-performance inference models due to incomplete disclosure of training details. This report provides an in-depth analysis of the reasoning model, covering the entire post-training workflow from data preparation and long Chain-of-Thought supervised fine-tuning (long CoT SFT) to reinforcement learning (RL), along with detailed ablation studies for each experimental component. For SFT data, our experiments show that a small number of high-quality data sources are more effective than a large number of diverse data sources, and that difficult samples can achieve better results without accuracy filtering. In addition, we investigate two key issues with current clipping mechanisms in RL: Clipping suppresses critical exploration signals and ignores suboptimal trajectories. To address these challenges, we propose Gradient-Preserving clipping Policy Optimization (GPPO) that gently backpropagates gradients from clipped tokens. GPPO not only enhances the model's exploration capacity but also improves its efficiency in learning from negative samples. Klear-Reasoner exhibits exceptional reasoning abilities in mathematics and programming, scoring 90.5% on AIME 2024, 83.2% on AIME 2025, 66.0% on LiveCodeBench V5 and 58.1% on LiveCodeBench V6.
InfMasking: Unleashing Synergistic Information by Contrastive Multimodal Interactions NeurIPS
In multimodal representation learning, synergistic interactions between modalities not only provide complementary information but also create unique outcomes through specific interaction patterns that no single modality could achieve alone. Existing methods may struggle to effectively capture the full spectrum of synergistic information, leading to suboptimal performance in tasks where such interactions are critical. This is particularly problematic because synergistic information constitutes the fundamental value proposition of multimodal representation. To address this challenge, we introduce InfMasking, a contrastive synergistic information extraction method designed to enhance synergistic information through an Infinite Masking strategy. InfMasking stochastically occludes most features from each modality during fusion, preserving only partial information to create representations with varied synergistic patterns. Unmasked fused representations are then aligned with masked ones through mutual information maximization to encode comprehensive synergistic information. This infinite masking strategy enables capturing richer interactions by exposing the model to diverse partial modality combinations during training. As computing mutual information estimates with infinite masking is computationally prohibitive, we derive an InfMasking loss to approximate this calculation. Through controlled experiments, we demonstrate that InfMasking effectively enhances synergistic information between modalities. In evaluations on large-scale real-world datasets, InfMasking achieves state-of-the-art performance across seven benchmarks. Code is released at https://github.com/brightest66/InfMasking.
comment: Conference on Neural Information Processing Systems (NeurIPS) 2025 (Spotlight)
LSRE: Latent Semantic Rule Encoding for Real-Time Semantic Risk Detection in Autonomous Driving
Real-world autonomous driving must adhere to complex human social rules that extend beyond legally codified traffic regulations. Many of these semantic constraints, such as yielding to emergency vehicles, complying with traffic officers' gestures, or stopping for school buses, are intuitive for humans yet difficult to encode explicitly. Although large vision-language models (VLMs) can interpret such semantics, their inference cost makes them impractical for real-time deployment. This work proposes LSRE, a Latent Semantic Rule Encoding framework that converts sparsely sampled VLM judgments into decision boundaries within the latent space of a recurrent world model. By encoding language-defined safety semantics into a lightweight latent classifier, LSRE enables real-time semantic risk assessment at 10 Hz without per-frame VLM queries. Experiments on six semantic-failure scenarios in CARLA demonstrate that LSRE attains semantic risk detection accuracy comparable to a large VLM baseline, while providing substantially earlier hazard anticipation and maintaining low computational latency. LSRE further generalizes to rarely seen semantic-similar test cases, indicating that language-guided latent classification offers an effective and deployable mechanism for semantic safety monitoring in autonomous driving.
AHA: Aligning Large Audio-Language Models for Reasoning Hallucinations via Counterfactual Hard Negatives
Although Large Audio-Language Models (LALMs) deliver state-of-the-art (SOTA) performance, they frequently suffer from hallucinations, e.g. generating text not grounded in the audio input. We analyze these grounding failures and identify a distinct taxonomy: Event Omission, False Event Identity, Temporal Relation Error, and Quantitative Temporal Error. To address this, we introduce the AHA (Audio Hallucination Alignment) framework. By leveraging counterfactual hard negative mining, our pipeline constructs a high-quality preference dataset that forces models to distinguish strict acoustic evidence from linguistically plausible fabrications. Additionally, we establish AHA-Eval, a diagnostic benchmark designed to rigorously test these fine-grained temporal reasoning capabilities. We apply this data to align Qwen2.5-Omni. The resulting model, Qwen-Audio-AHA, achieves a 13.7% improvement on AHA-Eval. Crucially, this benefit generalizes beyond our diagnostic set. Our model shows substantial gains on public benchmarks, including 1.3% on MMAU-Test and 1.6% on MMAR, outperforming latest SOTA methods. The model and dataset are open-sourced at https://github.com/LLM-VLM-GSL/AHA.
Understanding Prompt Management in GitHub Repositories: A Call for Best Practices
The rapid adoption of foundation models (e.g., large language models) has given rise to promptware, i.e., software built using natural language prompts. Effective management of prompts, such as organization and quality assurance, is essential yet challenging. In this study, we perform an empirical analysis of 24,800 open-source prompts from 92 GitHub repositories to investigate prompt management practices and quality attributes. Our findings reveal critical challenges such as considerable inconsistencies in prompt formatting, substantial internal and external prompt duplication, and frequent readability and spelling issues. Based on these findings, we provide actionable recommendations for developers to enhance the usability and maintainability of open-source prompts within the rapidly evolving promptware ecosystem.
Machine Learning 94
Enhanced Multi-model Online Conformal Prediction
Conformal prediction is a framework for uncertainty quantification that constructs prediction sets for previously unseen data, guaranteeing coverage of the true label with a specified probability. However, the efficiency of these prediction sets, measured by their size, depends on the choice of the underlying learning model. Relying on a single fixed model may lead to suboptimal performance in online environments, as a single model may not consistently perform well across all time steps. To mitigate this, prior work has explored selecting a model from a set of candidates. However, this approach becomes computationally expensive as the number of candidate models increases. Moreover, poorly performing models in the set may also hinder the effectiveness. To tackle this challenge, this work develops a novel multi-model online conformal prediction algorithm that reduces computational complexity and improves prediction efficiency. At each time step, a bipartite graph is generated to identify a subset of effective models, from which a model is selected to construct the prediction set. Experiments demonstrate that our method outperforms existing multi-model conformal prediction techniques in terms of both prediction set size and computational efficiency.
DiMEx: Breaking the Cold Start Barrier in Data-Free Model Extraction via Latent Diffusion Priors
Model stealing attacks pose an existential threat to Machine Learning as a Service (MLaaS), allowing adversaries to replicate proprietary models for a fraction of their training cost. While Data-Free Model Extraction (DFME) has emerged as a stealthy vector, it remains fundamentally constrained by the "Cold Start" problem: GAN-based adversaries waste thousands of queries converging from random noise to meaningful data. We propose DiMEx, a framework that weaponizes the rich semantic priors of pre-trained Latent Diffusion Models to bypass this initialization barrier entirely. By employing Random Embedding Bayesian Optimization (REMBO) within the generator's latent space, DiMEx synthesizes high-fidelity queries immediately, achieving 52.1 percent agreement on SVHN with just 2,000 queries - outperforming state-of-the-art GAN baselines by over 16 percent. To counter this highly semantic threat, we introduce the Hybrid Stateful Ensemble (HSE) defense, which identifies the unique "optimization trajectory" of latent-space attacks. Our results demonstrate that while DiMEx evades static distribution detectors, HSE exploits this temporal signature to suppress attack success rates to 21.6 percent with negligible latency.
comment: 8 pages, 3 figures, 4 tables
Simplex Deep Linear Discriminant Analysis
We revisit Deep Linear Discriminant Analysis (Deep LDA) from a likelihood-based perspective. While classical LDA is a simple Gaussian model with linear decision boundaries, attaching an LDA head to a neural encoder raises the question of how to train the resulting deep classifier by maximum likelihood estimation (MLE). We first show that end-to-end MLE training of an unconstrained Deep LDA model ignores discrimination: when both the LDA parameters and the encoder parameters are learned jointly, the likelihood admits a degenerate solution in which some of the class clusters may heavily overlap or even collapse, and classification performance deteriorates. Batchwise moment re-estimation of the LDA parameters does not remove this failure mode. We then propose a constrained Deep LDA formulation that fixes the class means to the vertices of a regular simplex in the latent space and restricts the shared covariance to be spherical, leaving only the priors and a single variance parameter to be learned along with the encoder. Under these geometric constraints, MLE becomes stable and yields well-separated class clusters in the latent space. On images (Fashion-MNIST, CIFAR-10, CIFAR-100), the resulting Deep LDA models achieve accuracy competitive with softmax baselines while offering a simple, interpretable latent geometry that is clearly visible in two-dimensional projections.
HeurekaBench: A Benchmarking Framework for AI Co-scientist
LLM-based reasoning models have enabled the development of agentic systems that act as co-scientists, assisting in multi-step scientific analysis. However, evaluating these systems is challenging, as it requires realistic, end-to-end research scenarios that integrate data analysis, interpretation, and the generation of new insights from the experimental data. To address this limitation, we introduce HeurekaBench, a framework to create benchmarks with exploratory, open-ended research questions for experimental datasets. Each such question is grounded in a scientific study and its corresponding code repository, and is created using a semi-automated pipeline that leverages multiple LLMs to extract insights and generate candidate workflows, which are then verified against reported findings. We instantiate the framework in single-cell biology to obtain sc-HeurekaBench benchmark and use it to compare state-of-the-art single-cell agents. We further showcase the benefits of our benchmark for quantitatively analyzing current design choices in agentic systems. We find that the addition of a critic module can improve ill-formed responses for open-source LLM-based agents by up to 22% and close the gap with their closed-source counterparts. Overall, HeurekaBench sets a path toward rigorous, end-to-end evaluation of scientific agents, grounding benchmark construction in real scientific workflows.
comment: 33 pages, 5 figures, 7 tables. Code available at https://github.com/mlbio-epfl/HeurekaBench
Adversarial Instance Generation and Robust Training for Neural Combinatorial Optimization with Multiple Objectives
Deep reinforcement learning (DRL) has shown great promise in addressing multi-objective combinatorial optimization problems (MOCOPs). Nevertheless, the robustness of these learning-based solvers has remained insufficiently explored, especially across diverse and complex problem distributions. In this paper, we propose a unified robustness-oriented framework for preference-conditioned DRL solvers for MOCOPs. Within this framework, we develop a preference-based adversarial attack to generate hard instances that expose solver weaknesses, and quantify the attack impact by the resulting degradation on Pareto-front quality. We further introduce a defense strategy that integrates hardness-aware preference selection into adversarial training to reduce overfitting to restricted preference regions and improve out-of-distribution performance. The experimental results on multi-objective traveling salesman problem (MOTSP), multi-objective capacitated vehicle routing problem (MOCVRP), and multi-objective knapsack problem (MOKP) verify that our attack method successfully learns hard instances for different solvers. Furthermore, our defense method significantly strengthens the robustness and generalizability of neural solvers, delivering superior performance on hard or out-of-distribution instances.
Who is the Winning Algorithm? Rank Aggregation for Comparative Studies
Consider a collection of m competing machine learning algorithms. Given their performance on a benchmark of datasets, we would like to identify the best performing algorithm. Specifically, which algorithm is most likely to ``win'' (rank highest) on a future, unseen dataset. The standard maximum likelihood approach suggests counting the number of wins per each algorithm. In this work, we argue that there is much more information in the complete rankings. That is, the number of times that each algorithm finished second, third and so forth. Yet, it is not entirely clear how to effectively utilize this information for our purpose. In this work we introduce a novel conceptual framework for estimating the win probability for each of the m algorithms, given their complete rankings over a benchmark of datasets. Our proposed framework significantly improves upon currently known methods in synthetic and real-world examples.
Length-Aware Adversarial Training for Variable-Length Trajectories: Digital Twins for Mall Shopper Paths
We study generative modeling of \emph{variable-length trajectories} -- sequences of visited locations/items with associated timestamps -- for downstream simulation and counterfactual analysis. A recurring practical issue is that standard mini-batch training can be unstable when trajectory lengths are highly heterogeneous, which in turn degrades \emph{distribution matching} for trajectory-derived statistics. We propose \textbf{length-aware sampling (LAS)}, a simple batching strategy that groups trajectories by length and samples batches from a single length bucket, reducing within-batch length heterogeneity (and making updates more consistent) without changing the model class. We integrate LAS into a conditional trajectory GAN with auxiliary time-alignment losses and provide (i) a distribution-level guarantee for derived variables under mild boundedness assumptions, and (ii) an IPM/Wasserstein mechanism explaining why LAS improves distribution matching by removing length-only shortcut critics and targeting within-bucket discrepancies. Empirically, LAS consistently improves matching of derived-variable distributions on a multi-mall dataset of shopper trajectories and on diverse public sequence datasets (GPS, education, e-commerce, and movies), outperforming random sampling across dataset-specific metrics.
UniCrop: A Universal, Multi-Source Data Engineering Pipeline for Scalable Crop Yield Prediction
Accurate crop yield prediction relies on diverse data streams, including satellite, meteorological, soil, and topographic information. However, despite rapid advances in machine learning, existing approaches remain crop- or region-specific and require data engineering efforts. This limits scalability, reproducibility, and operational deployment. This study introduces UniCrop, a universal and reusable data pipeline designed to automate the acquisition, cleaning, harmonisation, and engineering of multi-source environmental data for crop yield prediction. For any given location, crop type, and temporal window, UniCrop automatically retrieves, harmonises, and engineers over 200 environmental variables (Sentinel-1/2, MODIS, ERA5-Land, NASA POWER, SoilGrids, and SRTM), reducing them to a compact, analysis-ready feature set utilising a structured feature reduction workflow with minimum redundancy maximum relevance (mRMR). To validate, UniCrop was applied to a rice yield dataset comprising 557 field observations. Using only the selected 15 features, four baseline machine learning models (LightGBM, Random Forest, Support Vector Regression, and Elastic Net) were trained. LightGBM achieved the best single-model performance (RMSE = 465.1 kg/ha, $R^2 = 0.6576$), while a constrained ensemble of all baselines further improved accuracy (RMSE = 463.2 kg/ha, $R^2 = 0.6604$). UniCrop contributes a scalable and transparent data-engineering framework that addresses the primary bottleneck in operational crop yield modelling: the preparation of consistent and harmonised multi-source data. By decoupling data specification from implementation and supporting any crop, region, and time frame through simple configuration updates, UniCrop provides a practical foundation for scalable agricultural analytics. The code and implementation documentation are shared in https://github.com/CoDIS-Lab/UniCrop.
Learning Resilient Elections with Adversarial GNNs
In the face of adverse motives, it is indispensable to achieve a consensus. Elections have been the canonical way by which modern democracy has operated since the 17th century. Nowadays, they regulate markets, provide an engine for modern recommender systems or peer-to-peer networks, and remain the main approach to represent democracy. However, a desirable universal voting rule that satisfies all hypothetical scenarios is still a challenging topic, and the design of these systems is at the forefront of mechanism design research. Automated mechanism design is a promising approach, and recent works have demonstrated that set-invariant architectures are uniquely suited to modelling electoral systems. However, various concerns prevent the direct application to real-world settings, such as robustness to strategic voting. In this paper, we generalise the expressive capability of learned voting rules, and combine improvements in neural network architecture with adversarial training to improve the resilience of voting rules while maximizing social welfare. We evaluate the effectiveness of our methods on both synthetic and real-world datasets. Our method resolves critical limitations of prior work regarding learning voting rules by representing elections using bipartite graphs, and learning such voting rules using graph neural networks. We believe this opens new frontiers for applying machine learning to real-world elections.
Communication-Efficient Federated AUC Maximization with Cyclic Client Participation
Federated AUC maximization is a powerful approach for learning from imbalanced data in federated learning (FL). However, existing methods typically assume full client availability, which is rarely practical. In real-world FL systems, clients often participate in a cyclic manner: joining training according to a fixed, repeating schedule. This setting poses unique optimization challenges for the non-decomposable AUC objective. This paper addresses these challenges by developing and analyzing communication-efficient algorithms for federated AUC maximization under cyclic client participation. We investigate two key settings: First, we study AUC maximization with a squared surrogate loss, which reformulates the problem as a nonconvex-strongly-concave minimax optimization. By leveraging the Polyak-Łojasiewicz (PL) condition, we establish a state-of-the-art communication complexity of $\widetilde{O}(1/ε^{1/2})$ and iteration complexity of $\widetilde{O}(1/ε)$. Second, we consider general pairwise AUC losses. We establish a communication complexity of $O(1/ε^3)$ and an iteration complexity of $O(1/ε^4)$. Further, under the PL condition, these bounds improve to communication complexity of $\widetilde{O}(1/ε^{1/2})$ and iteration complexity of $\widetilde{O}(1/ε)$. Extensive experiments on benchmark tasks in image classification, medical imaging, and fraud detection demonstrate the superior efficiency and effectiveness of our proposed methods.
comment: Accepted to Transactions on Machine Learning Research (TMLR)
Deep Linear Discriminant Analysis Revisited
We show that for unconstrained Deep Linear Discriminant Analysis (LDA) classifiers, maximum-likelihood training admits pathological solutions in which class means drift together, covariances collapse, and the learned representation becomes almost non-discriminative. Conversely, cross-entropy training yields excellent accuracy but decouples the head from the underlying generative model, leading to highly inconsistent parameter estimates. To reconcile generative structure with discriminative performance, we introduce the \emph{Discriminative Negative Log-Likelihood} (DNLL) loss, which augments the LDA log-likelihood with a simple penalty on the mixture density. DNLL can be interpreted as standard LDA NLL plus a term that explicitly discourages regions where several classes are simultaneously likely. Deep LDA trained with DNLL produces clean, well-separated latent spaces, matches the test accuracy of softmax classifiers on synthetic data and standard image benchmarks, and yields substantially better calibrated predictive probabilities, restoring a coherent probabilistic interpretation to deep discriminant models.
Real Time NILM Based Power Monitoring of Identical Induction Motors Representing Cutting Machines in Textile Industry
The textile industry in Bangladesh is one of the most energy-intensive sectors, yet its monitoring practices remain largely outdated, resulting in inefficient power usage and high operational costs. To address this, we propose a real-time Non-Intrusive Load Monitoring (NILM)-based framework tailored for industrial applications, with a focus on identical motor-driven loads representing textile cutting machines. A hardware setup comprising voltage and current sensors, Arduino Mega and ESP8266 was developed to capture aggregate and individual load data, which was stored and processed on cloud platforms. A new dataset was created from three identical induction motors and auxiliary loads, totaling over 180,000 samples, to evaluate the state-of-the-art MATNILM model under challenging industrial conditions. Results indicate that while aggregate energy estimation was reasonably accurate, per-appliance disaggregation faced difficulties, particularly when multiple identical machines operated simultaneously. Despite these challenges, the integrated system demonstrated practical real-time monitoring with remote accessibility through the Blynk application. This work highlights both the potential and limitations of NILM in industrial contexts, offering insights into future improvements such as higher-frequency data collection, larger-scale datasets and advanced deep learning approaches for handling identical loads.
comment: 9 pages, 9 figures
REE-TTT: Highly Adaptive Radar Echo Extrapolation Based on Test-Time Training
Precipitation nowcasting is critically important for meteorological forecasting. Deep learning-based Radar Echo Extrapolation (REE) has become a predominant nowcasting approach, yet it suffers from poor generalization due to its reliance on high-quality local training data and static model parameters, limiting its applicability across diverse regions and extreme events. To overcome this, we propose REE-TTT, a novel model that incorporates an adaptive Test-Time Training (TTT) mechanism. The core of our model lies in the newly designed Spatio-temporal Test-Time Training (ST-TTT) block, which replaces the standard linear projections in TTT layers with task-specific attention mechanisms, enabling robust adaptation to non-stationary meteorological distributions and thereby significantly enhancing the feature representation of precipitation. Experiments under cross-regional extreme precipitation scenarios demonstrate that REE-TTT substantially outperforms state-of-the-art baseline models in prediction accuracy and generalization, exhibiting remarkable adaptability to data distribution shifts.
Variance-Reduced Diffusion Sampling via Conditional Score Expectation Identity
We introduce and prove a \textbf{Conditional Score Expectation (CSE)} identity: an exact relation for the marginal score of affine diffusion processes that links scores across time via a conditional expectation under the forward dynamics. Motivated by this identity, we propose a CSE-based statistical estimator for the score using a Self-Normalized Importance Sampling (SNIS) procedure with prior samples and forward noise. We analyze its relationship to the standard Tweedie estimator, proving anti-correlation for Gaussian targets and establishing the same behavior for general targets in the small time-step regime. Exploiting this structure, we derive a variance-minimizing blended score estimator given by a state--time dependent convex combination of the CSE and Tweedie estimators. Numerical experiments show that this optimal-blending estimator reduces variance and improves sample quality for a fixed computational budget compared to either baseline. We further extend the framework to Bayesian inverse problems via likelihood-informed SNIS weights, and demonstrate improved reconstruction quality and sample diversity on high-dimensional image reconstruction tasks and PDE-governed inverse problems.
Identifying recurrent flows in high-dimensional dissipative chaos from low-dimensional embeddings
Unstable periodic orbits (UPOs) are the non-chaotic, dynamical building blocks of spatio-temporal chaos, motivating a first-principles based theory for turbulence ever since the discovery of deterministic chaos. Despite their key role in the ergodic theory approach to fluid turbulence, identifying UPOs is challenging for two reasons: chaotic dynamics and the high-dimensionality of the spatial discretization. We address both issues at once by proposing a loop convergence algorithm for UPOs directly within a low-dimensional embedding of the chaotic attractor. The convergence algorithm circumvents time-integration, hence avoiding instabilities from exponential error amplification, and operates on a latent dynamics obtained by pulling back the physical equations using automatic differentiation through the learned embedding function. The interpretable latent dynamics is accurate in a statistical sense, and, crucially, the embedding preserves the internal structure of the attractor, which we demonstrate through an equivalence between the latent and physical UPOs of both a model PDE and the 2D Navier-Stokes equations. This allows us to exploit the collapse of high-dimensional dissipative systems onto a lower dimensional manifold, and identify UPOs in the low-dimensional embedding.
Learning Relationship between Quantum Walks and Underdamped Langevin Dynamics
Fast computational algorithms are in constant demand, and their development has been driven by advances such as quantum speedup and classical acceleration. This paper intends to study search algorithms based on quantum walks in quantum computation and sampling algorithms based on Langevin dynamics in classical computation. On the quantum side, quantum walk-based search algorithms can achieve quadratic speedups over their classical counterparts. In classical computation, a substantial body of work has focused on gradient acceleration, with gradient-adjusted algorithms derived from underdamped Langevin dynamics providing quadratic acceleration over conventional Langevin algorithms. Since both search and sampling algorithms are designed to address learning tasks, we study learning relationship between coined quantum walks and underdamped Langevin dynamics. Specifically, we show that, in terms of the Le Cam deficiency distance, a quantum walk with randomization is asymptotically equivalent to underdamped Langevin dynamics, whereas the quantum walk without randomization is not asymptotically equivalent due to its high-frequency oscillatory behavior. We further discuss the implications of these equivalence and nonequivalence results for the computational and inferential properties of the associated algorithms in machine learning tasks. Our findings offer new insight into the relationship between quantum walks and underdamped Langevin dynamics, as well as the intrinsic mechanisms underlying quantum speedup and classical gradient acceleration.
The Two-Stage Decision-Sampling Hypothesis: Understanding the Emergence of Self-Reflection in RL-Trained LLMs
Self-reflection capabilities emerge in Large Language Models after RL post-training, with multi-turn RL achieving substantial gains over SFT counterparts. Yet the mechanism of how a unified optimization objective gives rise to functionally distinct capabilities of generating solutions and evaluating when to revise them remains opaque. To address this question, we introduce the Gradient Attribution Property to characterize how reward gradients distribute across policy components, formalized through the Two-Stage Decision-Sampling (DS) Hypothesis, which decomposes the policy into sampling ($π_{sample}$) for generation and decision ($π_{d}$) for verification. We prove that surrogate rewards exhibit Balanced Gradient Attribution, while SFT and KL penalties exhibit Unbalanced Gradient Attribution, with length-weighting creating asymmetric regularization that constrains $π_{sample}$ while leaving $π_{d}$ under-optimized, providing an theoretical explanation of why RL succeeds where SFT fails. We also empirically validate our theoretical predictions on arithmetic reasoning demonstrates that RL's superior generalization stems primarily from improved decision-making ($π_{d}$) rather than sampling capabilities, providing a first-principles mechanistic explanation for self-correction in thinking models.
Utilizing Earth Foundation Models to Enhance the Simulation Performance of Hydrological Models with AlphaEarth Embeddings
Predicting river flow in places without streamflow records is challenging because basins respond differently to climate, terrain, vegetation, and soils. Traditional basin attributes describe some of these differences, but they cannot fully represent the complexity of natural environments. This study examines whether AlphaEarth Foundation embeddings, which are learned from large collections of satellite images rather than designed by experts, offer a more informative way to describe basin characteristics. These embeddings summarize patterns in vegetation, land surface properties, and long-term environmental dynamics. We find that models using them achieve higher accuracy when predicting flows in basins not used for training, suggesting that they capture key physical differences more effectively than traditional attributes. We further investigate how selecting appropriate donor basins influences prediction in ungauged regions. Similarity based on the embeddings helps identify basins with comparable environmental and hydrological behavior, improving performance, whereas adding many dissimilar basins can reduce accuracy. The results show that satellite-informed environmental representations can strengthen hydrological forecasting and support the development of models that adapt more easily to different landscapes.
comment: 12 pages, 11 figures
EscherVerse: An Open World Benchmark and Dataset for Teleo-Spatial Intelligence with Physical-Dynamic and Intent-Driven Understanding
The ability to reason about spatial dynamics is a cornerstone of intelligence, yet current research overlooks the human intent behind spatial changes. To address these limitations, we introduce Teleo-Spatial Intelligence (TSI), a new paradigm that unifies two critical pillars: Physical-Dynamic Reasoning--understanding the physical principles of object interactions--and Intent-Driven Reasoning--inferring the human goals behind these actions. To catalyze research in TSI, we present EscherVerse, consisting of a large-scale, open-world benchmark (Escher-Bench), a dataset (Escher-35k), and models (Escher series). Derived from real-world videos, EscherVerse moves beyond constrained settings to explicitly evaluate an agent's ability to reason about object permanence, state transitions, and trajectory prediction in dynamic, human-centric scenarios. Crucially, it is the first benchmark to systematically assess Intent-Driven Reasoning, challenging models to connect physical events to their underlying human purposes. Our work, including a novel data curation pipeline, provides a foundational resource to advance spatial intelligence from passive scene description toward a holistic, purpose-driven understanding of the world.
Aletheia: Quantifying Cognitive Conviction in Reasoning Models via Regularized Inverse Confusion Matrix
In the progressive journey toward Artificial General Intelligence (AGI), current evaluation paradigms face an epistemological crisis. Static benchmarks measure knowledge breadth but fail to quantify the depth of belief. While Simhi et al. (2025) defined the CHOKE phenomenon in standard QA, we extend this framework to quantify "Cognitive Conviction" in System 2 reasoning models. We propose Project Aletheia, a cognitive physics framework that employs Tikhonov Regularization to invert the judge's confusion matrix. To validate this methodology without relying on opaque private data, we implement a Synthetic Proxy Protocol. Our preliminary pilot study on 2025 baselines (e.g., DeepSeek-R1, OpenAI o1) suggests that while reasoning models act as a "cognitive buffer," they may exhibit "Defensive OverThinking" under adversarial pressure. Furthermore, we introduce the Aligned Conviction Score (S_aligned) to verify that conviction does not compromise safety. This work serves as a blueprint for measuring AI scientific integrity.
comment: 6 pages, 2 figures
A Novel Deep Learning Method for Segmenting the Left Ventricle in Cardiac Cine MRI
This research aims to develop a novel deep learning network, GBU-Net, utilizing a group-batch-normalized U-Net framework, specifically designed for the precise semantic segmentation of the left ventricle in short-axis cine MRI scans. The methodology includes a down-sampling pathway for feature extraction and an up-sampling pathway for detail restoration, enhanced for medical imaging. Key modifications include techniques for better contextual understanding crucial in cardiac MRI segmentation. The dataset consists of 805 left ventricular MRI scans from 45 patients, with comparative analysis using established metrics such as the dice coefficient and mean perpendicular distance. GBU-Net significantly improves the accuracy of left ventricle segmentation in cine MRI scans. Its innovative design outperforms existing methods in tests, surpassing standard metrics like the dice coefficient and mean perpendicular distance. The approach is unique in its ability to capture contextual information, often missed in traditional CNN-based segmentation. An ensemble of the GBU-Net attains a 97% dice score on the SunnyBrook testing dataset. GBU-Net offers enhanced precision and contextual understanding in left ventricle segmentation for surgical robotics and medical analysis.
comment: 9 pages, 5 figures
Advanced Global Wildfire Activity Modeling with Hierarchical Graph ODE
Wildfires, as an integral component of the Earth system, are governed by a complex interplay of atmospheric, oceanic, and terrestrial processes spanning a vast range of spatiotemporal scales. Modeling their global activity on large timescales is therefore a critical yet challenging task. While deep learning has recently achieved significant breakthroughs in global weather forecasting, its potential for global wildfire behavior prediction remains underexplored. In this work, we reframe this problem and introduce the Hierarchical Graph ODE (HiGO), a novel framework designed to learn the multi-scale, continuous-time dynamics of wildfires. Specifically, we represent the Earth system as a multi-level graph hierarchy and propose an adaptive filtering message passing mechanism for both intra- and inter-level information flow, enabling more effective feature extraction and fusion. Furthermore, we incorporate GNN-parameterized Neural ODE modules at multiple levels to explicitly learn the continuous dynamics inherent to each scale. Through extensive experiments on the SeasFire Cube dataset, we demonstrate that HiGO significantly outperforms state-of-the-art baselines on long-range wildfire forecasting. Moreover, its continuous-time predictions exhibit strong observational consistency, highlighting its potential for real-world applications.
The Optimal Sample Complexity of Linear Contracts
In this paper, we settle the problem of learning optimal linear contracts from data in the offline setting, where agent types are drawn from an unknown distribution and the principal's goal is to design a contract that maximizes her expected utility. Specifically, our analysis shows that the simple Empirical Utility Maximization (EUM) algorithm yields an $\varepsilon$-approximation of the optimal linear contract with probability at least $1-δ$, using just $O(\ln(1/δ) / \varepsilon^2)$ samples. This result improves upon previously known bounds and matches a lower bound from Duetting et al. [2025] up to constant factors, thereby proving its optimality. Our analysis uses a chaining argument, where the key insight is to leverage a simple structural property of linear contracts: their expected reward is non-decreasing. This property, which holds even though the utility function itself is non-monotone and discontinuous, enables the construction of fine-grained nets required for the chaining argument, which in turn yields the optimal sample complexity. Furthermore, our proof establishes the stronger guarantee of uniform convergence: the empirical utility of every linear contract is a $\varepsilon$-approximation of its true expectation with probability at least $1-δ$, using the same optimal $O(\ln(1/δ) / \varepsilon^2)$ sample complexity.
Accelerating Decentralized Optimization via Overlapping Local Steps
Decentralized optimization has emerged as a critical paradigm for distributed learning, enabling scalable training while preserving data privacy through peer-to-peer collaboration. However, existing methods often suffer from communication bottlenecks due to frequent synchronization between nodes. We present Overlapping Local Decentralized SGD (OLDSGD), a novel approach to accelerate decentralized training by computation-communication overlapping, significantly reducing network idle time. With a deliberately designed update, OLDSGD preserves the same average update as Local SGD while avoiding communication-induced stalls. Theoretically, we establish non-asymptotic convergence rates for smooth non-convex objectives, showing that OLDSGD retains the same iteration complexity as standard Local Decentralized SGD while improving per-iteration runtime. Empirical results demonstrate OLDSGD's consistent improvements in wall-clock time convergence under different levels of communication delays. With minimal modifications to existing frameworks, OLDSGD offers a practical solution for faster decentralized learning without sacrificing theoretical guarantees.
Four Quadrants of Difficulty: A Simple Categorisation and its Limits
Curriculum Learning (CL) aims to improve the outcome of model training by estimating the difficulty of samples and scheduling them accordingly. In NLP, difficulty is commonly approximated using task-agnostic linguistic heuristics or human intuition, implicitly assuming that these signals correlate with what neural models find difficult to learn. We propose a four-quadrant categorisation of difficulty signals -- human vs. model and task-agnostic vs. task-dependent -- and systematically analyse their interactions on a natural language understanding dataset. We find that task-agnostic features behave largely independently and that only task-dependent features align. These findings challenge common CL intuitions and highlight the need for lightweight, task-dependent difficulty estimators that better reflect model learning behaviour.
comment: prepared for ESANN 2026 submission
SGD-Based Knowledge Distillation with Bayesian Teachers: Theory and Guidelines
Knowledge Distillation (KD) is a central paradigm for transferring knowledge from a large teacher network to a typically smaller student model, often by leveraging soft probabilistic outputs. While KD has shown strong empirical success in numerous applications, its theoretical underpinnings remain only partially understood. In this work, we adopt a Bayesian perspective on KD to rigorously analyze the convergence behavior of students trained with Stochastic Gradient Descent (SGD). We study two regimes: $(i)$ when the teacher provides the exact Bayes Class Probabilities (BCPs); and $(ii)$ supervision with noisy approximations of the BCPs. Our analysis shows that learning from BCPs yields variance reduction and removes neighborhood terms in the convergence bounds compared to one-hot supervision. We further characterize how the level of noise affects generalization and accuracy. Motivated by these insights, we advocate the use of Bayesian deep learning models, which typically provide improved estimates of the BCPs, as teachers in KD. Consistent with our analysis, we experimentally demonstrate that students distilled from Bayesian teachers not only achieve higher accuracies (up to +4.27%), but also exhibit more stable convergence (up to 30% less noise), compared to students distilled from deterministic teachers.
Modeling Information Blackouts in Missing Not-At-Random Time Series Data
Large-scale traffic forecasting relies on fixed sensor networks that often exhibit blackouts: contiguous intervals of missing measurements caused by detector or communication failures. These outages are typically handled under a Missing At Random (MAR) assumption, even though blackout events may correlate with unobserved traffic conditions (e.g., congestion or anomalous flow), motivating a Missing Not At Random (MNAR) treatment. We propose a latent state-space framework that jointly models (i) traffic dynamics via a linear dynamical system and (ii) sensor dropout via a Bernoulli observation channel whose probability depends on the latent traffic state. Inference uses an Extended Kalman Filter with Rauch-Tung-Striebel smoothing, and parameters are learned via an approximate EM procedure with a dedicated update for detector-specific missingness parameters. On the Seattle inductive loop detector data, introducing latent dynamics yields large gains over naive baselines, reducing blackout imputation RMSE from 7.02 (LOCF) and 5.02 (linear interpolation + seasonal naive) to 4.23 (MAR LDS), corresponding to about a 64% reduction in MSE relative to LOCF. Explicit MNAR modeling provides a consistent but smaller additional improvement on real data (imputation RMSE 4.20; 0.8% RMSE reduction relative to MAR), with similar modest gains for short-horizon post-blackout forecasts (evaluated at 1, 3, and 6 steps). In controlled synthetic experiments, the MNAR advantage increases as the true missingness dependence on latent state strengthens. Overall, temporal dynamics dominate performance, while MNAR modeling offers a principled refinement that becomes most valuable when missingness is genuinely informative.
comment: 8 pages, 7 figures, 3 tables
Multi-Subspace Multi-Modal Modeling for Diffusion Models: Estimation, Convergence and Mixture of Experts
Recently, diffusion models have achieved a great performance with a small dataset of size $n$ and a fast optimization process. However, the estimation error of diffusion models suffers from the curse of dimensionality $n^{-1/D}$ with the data dimension $D$. Since images are usually a union of low-dimensional manifolds, current works model the data as a union of linear subspaces with Gaussian latent and achieve a $1/\sqrt{n}$ bound. Though this modeling reflects the multi-manifold property, the Gaussian latent can not capture the multi-modal property of the latent manifold. To bridge this gap, we propose the mixture subspace of low-rank mixture of Gaussian (MoLR-MoG) modeling, which models the target data as a union of $K$ linear subspaces, and each subspace admits a mixture of Gaussian latent ($n_k$ modals with dimension $d_k$). With this modeling, the corresponding score function naturally has a mixture of expert (MoE) structure, captures the multi-modal information, and contains nonlinear property. We first conduct real-world experiments to show that the generation results of MoE-latent MoG NN are much better than MoE-latent Gaussian score. Furthermore, MoE-latent MoG NN achieves a comparable performance with MoE-latent Unet with $10 \times$ parameters. These results indicate that the MoLR-MoG modeling is reasonable and suitable for real-world data. After that, based on such MoE-latent MoG score, we provide a $R^4\sqrt{Σ_{k=1}^Kn_k}\sqrt{Σ_{k=1}^Kn_kd_k}/\sqrt{n}$ estimation error, which escapes the curse of dimensionality by using data structure. Finally, we study the optimization process and prove the convergence guarantee under the MoLR-MoG modeling. Combined with these results, under a setting close to real-world data, this work explains why diffusion models only require a small training sample and enjoy a fast optimization process to achieve a great performance.
Accelerating Storage-Based Training for Graph Neural Networks
Graph neural networks (GNNs) have achieved breakthroughs in various real-world downstream tasks due to their powerful expressiveness. As the scale of real-world graphs has been continuously growing, \textit{a storage-based approach to GNN training} has been studied, which leverages external storage (e.g., NVMe SSDs) to handle such web-scale graphs on a single machine. Although such storage-based GNN training methods have shown promising potential in large-scale GNN training, we observed that they suffer from a severe bottleneck in data preparation since they overlook a critical challenge: \textit{how to handle a large number of small storage I/Os}. To address the challenge, in this paper, we propose a novel storage-based GNN training framework, named \textsf{AGNES}, that employs a method of \textit{block-wise storage I/O processing} to fully utilize the I/O bandwidth of high-performance storage devices. Moreover, to further enhance the efficiency of each storage I/O, \textsf{AGNES} employs a simple yet effective strategy, \textit{hyperbatch-based processing} based on the characteristics of real-world graphs. Comprehensive experiments on five real-world graphs reveal that \textsf{AGNES} consistently outperforms four state-of-the-art methods, by up to 4.1$\times$ faster than the best competitor. Our code is available at https://github.com/Bigdasgit/agnes-kdd26.
comment: 10 pages, 12 figures, 2 tables, ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD) 2026
Leveraging Flatness to Improve Information-Theoretic Generalization Bounds for SGD ICLR 2025
Information-theoretic (IT) generalization bounds have been used to study the generalization of learning algorithms. These bounds are intrinsically data- and algorithm-dependent so that one can exploit the properties of data and algorithm to derive tighter bounds. However, we observe that although the flatness bias is crucial for SGD's generalization, these bounds fail to capture the improved generalization under better flatness and are also numerically loose. This is caused by the inadequate leverage of SGD's flatness bias in existing IT bounds. This paper derives a more flatness-leveraging IT bound for the flatness-favoring SGD. The bound indicates the learned models generalize better if the large-variance directions of the final weight covariance have small local curvatures in the loss landscape. Experiments on deep neural networks show our bound not only correctly reflects the better generalization when flatness is improved, but is also numerically much tighter. This is achieved by a flexible technique called "omniscient trajectory". When applied to Gradient Descent's minimax excess risk on convex-Lipschitz-Bounded problems, it improves representative IT bounds' $Ω(1)$ rates to $O(1/\sqrt{n})$. It also implies a by-pass of memorization-generalization trade-offs.
comment: Published as a conference paper at ICLR 2025
Rethinking Multimodal Few-Shot 3D Point Cloud Segmentation: From Fused Refinement to Decoupled Arbitration
In this paper, we revisit multimodal few-shot 3D point cloud semantic segmentation (FS-PCS), identifying a conflict in "Fuse-then-Refine" paradigms: the "Plasticity-Stability Dilemma." In addition, CLIP's inter-class confusion can result in semantic blindness. To address these issues, we present the Decoupled-experts Arbitration Few-Shot SegNet (DA-FSS), a model that effectively distinguishes between semantic and geometric paths and mutually regularizes their gradients to achieve better generalization. DA-FSS employs the same backbone and pre-trained text encoder as MM-FSS to generate text embeddings, which can increase free modalities' utilization rate and better leverage each modality's information space. To achieve this, we propose a Parallel Expert Refinement module to generate each modal correlation. We also propose a Stacked Arbitration Module (SAM) to perform convolutional fusion and arbitrate correlations for each modality pathway. The Parallel Experts decouple two paths: a Geometric Expert maintains plasticity, and a Semantic Expert ensures stability. They are coordinated via a Decoupled Alignment Module (DAM) that transfers knowledge without propagating confusion. Experiments on popular datasets (S3DIS, ScanNet) demonstrate the superiority of DA-FSS over MM-FSS. Meanwhile, geometric boundaries, completeness, and texture differentiation are all superior to the baseline. The code is available at: https://github.com/MoWenQAQ/DA-FSS.
comment: 10 pages, 4 figures, 3 tables
Bayesian Subspace Gradient Estimation for Zeroth-Order Optimization of Large Language Models
Fine-tuning large language models (LLMs) with zeroth-order (ZO) optimization reduces memory by approximating gradients through function evaluations, but existing methods rely on one-step gradient estimates from random perturbations. We introduce Bayesian Subspace Zeroth-Order optimization (BSZO), a ZO optimizer that applies Kalman filtering to combine finite-difference information across multiple perturbation directions. By treating each finite-difference measurement as a noisy observation, BSZO builds a posterior distribution over the projected gradient and updates it through Bayesian inference, with a residual-based adaptive mechanism to adjust perturbation scales. Theoretical analysis shows that BSZO improves the convergence rate by a factor of $k/γ$ compared to standard ZO methods. Experiments on RoBERTa, Mistral, and OPT models show that BSZO outperforms MeZO, MeZO-Adam, and HiZOO across various tasks, achieving up to 6.67\% absolute average improvement on OPT-13B while keeping memory usage close to inference-only baselines (1.00$\times$--1.08$\times$ of MeZO).
comment: 19 pages, 1 figures, 4 tables
Segmentation and Processing of German Court Decisions from Open Legal Data
The availability of structured legal data is important for advancing Natural Language Processing (NLP) techniques for the German legal system. One of the most widely used datasets, Open Legal Data, provides a large-scale collection of German court decisions. While the metadata in this raw dataset is consistently structured, the decision texts themselves are inconsistently formatted and often lack clearly marked sections. Reliable separation of these sections is important not only for rhetorical role classification but also for downstream tasks such as retrieval and citation analysis. In this work, we introduce a cleaned and sectioned dataset of 251,038 German court decisions derived from the official Open Legal Data dataset. We systematically separated three important sections in German court decisions, namely Tenor (operative part of the decision), Tatbestand (facts of the case), and Entscheidungsgründe (judicial reasoning), which are often inconsistently represented in the original dataset. To ensure the reliability of our extraction process, we used Cochran's formula with a 95% confidence level and a 5% margin of error to draw a statistically representative random sample of 384 cases, and manually verified that all three sections were correctly identified. We also extracted the Rechtsmittelbelehrung (appeal notice) as a separate field, since it is a procedural instruction and not part of the decision itself. The resulting corpus is publicly available in the JSONL format, making it an accessible resource for further research on the German legal system.
comment: Accepted and published as a research article in Legal Knowledge and Information Systems (JURIX 2025 proceedings, IOS Press). Pages 276--281
iFlip: Iterative Feedback-driven Counterfactual Example Refinement
Counterfactual examples are minimal edits to an input that alter a model's prediction. They are widely employed in explainable AI to probe model behavior and in natural language processing (NLP) to augment training data. However, generating valid counterfactuals with large language models (LLMs) remains challenging, as existing single-pass methods often fail to induce reliable label changes, neglecting LLMs' self-correction capabilities. To explore this untapped potential, we propose iFlip, an iterative refinement approach that leverages three types of feedback, including model confidence, feature attribution, and natural language. Our results show that iFlip achieves an average 57.8% higher validity than the five state-of-the-art baselines, as measured by the label flipping rate. The user study further corroborates that iFlip outperforms baselines in completeness, overall satisfaction, and feasibility. In addition, ablation studies demonstrate that three components are paramount for iFlip to generate valid counterfactuals: leveraging an appropriate number of iterations, pointing to highly attributed words, and early stopping. Finally, counterfactuals generated by iFlip enable effective counterfactual data augmentation, substantially improving model performance and robustness.
comment: In submission
Fast Gibbs Sampling on Bayesian Hidden Markov Model with Missing Observations
The Hidden Markov Model (HMM) is a widely-used statistical model for handling sequential data. However, the presence of missing observations in real-world datasets often complicates the application of the model. The EM algorithm and Gibbs samplers can be used to estimate the model, yet suffering from various problems including non-convexity, high computational complexity and slow mixing. In this paper, we propose a collapsed Gibbs sampler that efficiently samples from HMMs' posterior by integrating out both the missing observations and the corresponding latent states. The proposed sampler is fast due to its three advantages. First, it achieves an estimation accuracy that is comparable to existing methods. Second, it can produce a larger Effective Sample Size (ESS) per iteration, which can be justified theoretically and numerically. Third, when the number of missing entries is large, the sampler has a significant smaller computational complexity per iteration compared to other methods, thus is faster computationally. In summary, the proposed sampling algorithm is fast both computationally and theoretically and is particularly advantageous when there are a lot of missing entries. Finally, empirical evaluations based on numerical simulations and real data analysis demonstrate that the proposed algorithm consistently outperforms existing algorithms in terms of time complexity and sampling efficiency (measured in ESS).
comment: 45 pages, 2 figures
Unveiling the Heart-Brain Connection: An Analysis of ECG in Cognitive Performance
Understanding the interaction of neural and cardiac systems during cognitive activity is critical to advancing physiological computing. Although EEG has been the gold standard for assessing mental workload, its limited portability restricts its real-world use. Widely available ECG through wearable devices proposes a pragmatic alternative. This research investigates whether ECG signals can reliably reflect cognitive load and serve as proxies for EEG-based indicators. In this work, we present multimodal data acquired from two different paradigms involving working-memory and passive-listening tasks. For each modality, we extracted ECG time-domain HRV metrics and Catch22 descriptors against EEG spectral and Catch22 features, respectively. We propose a cross-modal XGBoost framework to project the ECG features onto EEG-representative cognitive spaces, thereby allowing workload inferences using only ECG. Our results show that ECG-derived projections expressively capture variation in cognitive states and provide good support for accurate classification. Our findings underpin ECG as an interpretable, real-time, wearable solution for everyday cognitive monitoring.
comment: 6 pages, 6 figures. Code available at https://github.com/AkshaySasi/Unveiling-the-Heart-Brain-Connection-An-Analysis-of-ECG-in-Cognitive-Performance. Presented at AIHC (not published)
A Depth Hierarchy for Computing the Maximum in ReLU Networks via Extremal Graph Theory
We consider the problem of exact computation of the maximum function over $d$ real inputs using ReLU neural networks. We prove a depth hierarchy, wherein width $Ω\big(d^{1+\frac{1}{2^{k-2}-1}}\big)$ is necessary to represent the maximum for any depth $3\le k\le \log_2(\log_2(d))$. This is the first unconditional super-linear lower bound for this fundamental operator at depths $k\ge3$, and it holds even if the depth scales with $d$. Our proof technique is based on a combinatorial argument and associates the non-differentiable ridges of the maximum with cliques in a graph induced by the first hidden layer of the computing network, utilizing Turán's theorem from extremal graph theory to show that a sufficiently narrow network cannot capture the non-linearities of the maximum. This suggests that despite its simple nature, the maximum function possesses an inherent complexity that stems from the geometric structure of its non-differentiable hyperplanes, and provides a novel approach for proving lower bounds for deep neural networks.
Reliable Grid Forecasting: State Space Models for Safety-Critical Energy Systems
Accurate grid load forecasting is safety-critical: under-predictions risk supply shortfalls, while symmetric error metrics mask this operational asymmetry. We introduce a grid-specific evaluation framework--Asymmetric MAPE, Under-Prediction Rate, and Reserve Margin--that directly measures operational risk rather than statistical accuracy alone. Using this framework, we conduct a systematic evaluation of Mamba-based State Space Models for California grid forecasting on a weather-aligned CAISO TAC-area dataset spanning Nov 2023--Nov 2025 (84,498 hourly records across 5 transmission areas). Our analysis reveals that standard accuracy metrics are poor proxies for operational safety: models with identical MAPE can require vastly different reserve margins. We demonstrate that forecast errors are weakly but significantly associated with temperature (r = 0.16, p < 10^{-16}), motivating weather-aware modeling rather than loss function modification alone. The S-Mamba model achieves the lowest Reserve_{99.5}% margin (14.12%) compared to 16.66% for iTransformer, demonstrating superior forecast reliability under a 99.5th-percentile tail-risk reserve proxy.
comment: 24 pages, 8 figures, 8 tables
Efficient Cover Construction for Ball Mapper via Accelerated Range Queries
Ball Mapper is an widely used tool in topological data analysis for summarizing the structure of high-dimensional data through metric-based coverings and graph representations. A central computational bottleneck in Ball Mapper is the construction of the underlying cover, which requires repeated range queries to identify data points within a fixed distance of selected landmarks. As data sets grow in size and dimensionality, naive implementations of this step become increasingly inefficient. In this work, we study practical strategies for accelerating cover construction in Ball Mapper by improving the efficiency of range queries. We integrate two complementary approaches into the Ball Mapper pipeline: hierarchical geometric pruning using ball tree data structures, and hardware-aware distance computation using Facebook AI Similarity Search. We describe the underlying algorithms, discuss their trade-offs with respect to metric flexibility and dimensionality, and provide implementation details relevant to large-scale data analysis. Empirical benchmarks demonstrate that both approaches yield substantial speedups over the baseline implementation, with performance gains depending on data set size, dimensionality, and choice of distance function. These results improve the practical scalability of Ball Mapper without modifying its theoretical formulation and provide guidance for the efficient implementation of metric-based exploratory tools in modern data analysis workflows.
A Graph-based Framework for Online Time Series Anomaly Detection Using Model Ensemble
With the increasing volume of streaming data in industrial systems, online anomaly detection has become a critical task. The diverse and rapidly evolving data patterns pose significant challenges for online anomaly detection. Many existing anomaly detection methods are designed for offline settings or have difficulty in handling heterogeneous streaming data effectively. This paper proposes GDME, an unsupervised graph-based framework for online time series anomaly detection using model ensemble. GDME maintains a dynamic model pool that is continuously updated by pruning underperforming models and introducing new ones. It utilizes a dynamic graph structure to represent relationships among models and employs community detection on the graph to select an appropriate subset for ensemble. The graph structure is also used to detect concept drift by monitoring structural changes, allowing the framework to adapt to evolving streaming data. Experiments on seven heterogeneous time series demonstrate that GDME outperforms existing online anomaly detection methods, achieving improvements of up to 24%. In addition, its ensemble strategy provides superior detection performance compared with both individual models and average ensembles, with competitive computational efficiency.
comment: 8 pages
LANCET: Neural Intervention via Structural Entropy for Mitigating Faithfulness Hallucinations in LLMs
Large Language Models have revolutionized information processing, yet their reliability is severely compromised by faithfulness hallucinations. While current approaches attempt to mitigate this issue through node-level adjustments or coarse suppression, they often overlook the distributed nature of neural information, leading to imprecise interventions. Recognizing that hallucinations propagate through specific forward transmission pathways like an infection, we aim to surgically block this flow using precise structural analysis. To leverage this, we propose Lancet, a novel framework that achieves precise neural intervention by leveraging structural entropy and hallucination difference ratios. Lancet first locates hallucination-prone neurons via gradient-driven contrastive analysis, then maps their propagation pathways by minimizing structural entropy, and finally implements a hierarchical intervention strategy that preserves general model capabilities. Comprehensive evaluations across hallucination benchmark datasets demonstrate that Lancet significantly outperforms state-of-the-art methods, validating the effectiveness of our surgical approach to neural intervention.
Bayesian Negative Binomial Regression of Afrobeats Chart Persistence
Afrobeats songs compete for attention on streaming platforms, where chart visibility can influence both revenue and cultural impact. This paper examines whether collaborations help songs remain on the charts longer, using daily Nigeria Spotify Top 200 data from 2024. Each track is summarized by the number of days it appears in the Top 200 during the year and its total annual streams in Nigeria. A Bayesian negative binomial regression is applied, with days on chart as the outcome and collaboration status (solo versus multi-artist) and log total streams as predictors. This approach is well suited for overdispersed count data and allows the effect of collaboration to be interpreted while controlling for overall popularity. Posterior inference is conducted using Markov chain Monte Carlo, and results are assessed using rate ratios, posterior probabilities, and predictive checks. The findings indicate that, after accounting for total streams, collaboration tracks tend to spend slightly fewer days on the chart than comparable solo tracks.
Scale-Adaptive Power Flow Analysis with Local Topology Slicing and Multi-Task Graph Learning
Developing deep learning models with strong adaptability to topological variations is of great practical significance for power flow analysis. To enhance model performance under variable system scales and improve robustness in branch power prediction, this paper proposes a Scale-adaptive Multi-task Power Flow Analysis (SaMPFA) framework. SaMPFA introduces a Local Topology Slicing (LTS) sampling technique that extracts subgraphs of different scales from the complete power network to strengthen the model's cross-scale learning capability. Furthermore, a Reference-free Multi-task Graph Learning (RMGL) model is designed for robust power flow prediction. Unlike existing approaches, RMGL predicts bus voltages and branch powers instead of phase angles. This design not only avoids the risk of error amplification in branch power calculation but also guides the model to learn the physical relationships of phase angle differences. In addition, the loss function incorporates extra terms that encourage the model to capture the physical patterns of angle differences and power transmission, further improving consistency between predictions and physical laws. Simulations on the IEEE 39-bus system and a real provincial grid in China demonstrate that the proposed model achieves superior adaptability and generalization under variable system scales, with accuracy improvements of 4.47% and 36.82%, respectively.
Data Complexity-aware Deep Model Performance Forecasting
Deep learning models are widely used across computer vision and other domains. When working on the model induction, selecting the right architecture for a given dataset often relies on repetitive trial-and-error procedures. This procedure is time-consuming, resource-intensive, and difficult to automate. While previous work has explored performance prediction using partial training or complex simulations, these methods often require significant computational overhead or lack generalizability. In this work, we propose an alternative approach: a lightweight, two-stage framework that can estimate model performance before training given the understanding of the dataset and the focused deep model structures. The first stage predicts a baseline based on the analysis of some measurable properties of the dataset, while the second stage adjusts the estimation with additional information on the model's architectural and hyperparameter details. The setup allows the framework to generalize across datasets and model types. Moreover, we find that some of the underlying features used for prediction - such as dataset variance - can offer practical guidance for model selection, and can serve as early indicators of data quality. As a result, the framework can be used not only to forecast model performance, but also to guide architecture choices, inform necessary preprocessing procedures, and detect potentially problematic datasets before training begins.
comment: 12 pages, 12 figures
SGD with Dependent Data: Optimal Estimation, Regret, and Inference
This work investigates the performance of the final iterate produced by stochastic gradient descent (SGD) under temporally dependent data. We consider two complementary sources of dependence: $(i)$ martingale-type dependence in both the covariate and noise processes, which accommodates non-stationary and non-mixing time series data, and $(ii)$ dependence induced by sequential decision making. Our formulation runs in parallel with classical notions of (local) stationarity and strong mixing, while neither framework fully subsumes the other. Remarkably, SGD is shown to automatically accommodate both independent and dependent information under a broad class of stepsize schedules and exploration rate schemes. Non-asymptotically, we show that SGD simultaneously achieves statistically optimal estimation error and regret, extending and improving existing results. In particular, our tail bounds remain sharp even for potentially infinite horizon $T=+\infty$. Asymptotically, the SGD iterates converge to a Gaussian distribution with only an $O_{\PP}(1/\sqrt{t})$ remainder, demonstrating that the supposed estimation-regret trade-off claimed in prior work can in fact be avoided. We further propose a new ``conic'' approximation of the decision region that allows the covariates to have unbounded support. For online sparse regression, we develop a new SGD-based algorithm that uses only $d$ units of storage and requires $O(d)$ flops per iteration, achieving the long term statistical optimality. Intuitively, each incoming observation contributes to estimation accuracy, while aggregated summary statistics guide support recovery.
Causal discovery for linear causal model with correlated noise: an Adversarial Learning Approach
Causal discovery from data with unmeasured confounding factors is a challenging problem. This paper proposes an approach based on the f-GAN framework, learning the binary causal structure independent of specific weight values. We reformulate the structure learning problem as minimizing Bayesian free energy and prove that this problem is equivalent to minimizing the f-divergence between the true data distribution and the model-generated distribution. Using the f-GAN framework, we transform this objective into a min-max adversarial optimization problem. We implement the gradient search in the discrete graph space using Gumbel-Softmax relaxation.
Investigating the Multilingual Calibration Effects of Language Model Instruction-Tuning
Ensuring that deep learning models are well-calibrated in terms of their predictive uncertainty is essential in maintaining their trustworthiness and reliability, yet despite increasing advances in foundation model research, the relationship between such large language models (LLMs) and their calibration remains an open area of research. In this work, we look at a critical gap in the calibration of LLMs within multilingual settings, in an attempt to better understand how the data scarcity can potentially lead to different calibration effects and how commonly used techniques can apply in these settings. Our analysis on two multilingual benchmarks, over 29 and 42 languages respectively, reveals that even in low-resource languages, model confidence can increase significantly after instruction-tuning on high-resource language SFT datasets. However, improvements in accuracy are marginal or non-existent, resulting in mis-calibration, highlighting a critical shortcoming of standard SFT for multilingual languages. Furthermore, we observe that the use of label smoothing to be a reasonable method alleviate this concern, again without any need for low-resource SFT data, maintaining better calibration across all languages. Overall, this highlights the importance of multilingual considerations for both training and tuning LLMs in order to improve their reliability and fairness in downstream use.
comment: Accepted to The 19th Conference of the European Chapter of the Association for Computational Linguistics (EACL)
A New Framework for Explainable Rare Cell Identification in Single-Cell Transcriptomics Data
The detection of rare cell types in single-cell transcriptomics data is crucial for elucidating disease pathogenesis and tissue development dynamics. However, a critical gap that persists in current methods is their inability to provide an explanation based on genes for each cell they have detected as rare. We identify three primary sources of this deficiency. First, the anomaly detectors often function as "black boxes", designed to detect anomalies but unable to explain why a cell is anomalous. Second, the standard analytical framework hinders interpretability by relying on dimensionality reduction techniques, such as Principal Component Analysis (PCA), which transform meaningful gene expression data into abstract, uninterpretable features. Finally, existing explanation algorithms cannot be readily applied to this domain, as single-cell data is characterized by high dimensionality, noise, and substantial sparsity. To overcome these limitations, we introduce a framework for explainable anomaly detection in single-cell transcriptomics data which not only identifies individual anomalies, but also provides a visual explanation based on genes that makes an instance anomalous. This framework has two key ingredients that are not existed in current methods applied in this domain. First, it eliminates the PCA step which is deemed to be an essential component in previous studies. Second, it employs the state-of-art anomaly detector and explainer as the efficient and effective means to find each rare cell and the relevant gene subspace in order to provide explanations for each rare cell as well as the typical normal cell associated with the rare cell's closest normal cells.
Towards LLM-enabled autonomous combustion research: A literature-aware agent for self-corrective modeling workflows
The rapid evolution of large language models (LLMs) is transforming artificial intelligence into autonomous research partners, yet a critical gap persists in complex scientific domains such as combustion modeling. Here, practical AI assistance requires the seamless integration of domain literature knowledge with robust execution capabilities for expertise-intensive tools such as computational fluid dynamics (CFD) codes. To bridge this gap, we introduce FlamePilot, an LLM agent designed to empower combustion modeling research through automated and self-corrective CFD workflows. FlamePilot differentiates itself through an architecture that leverages atomic tools to ensure the robust setup and execution of complex simulations in both OpenFOAM and extended frameworks such as DeepFlame. The system is also capable of learning from scientific articles, extracting key information to guide the simulation from initial setup to optimized results. Validation on a public benchmark shows FlamePilot achieved a perfect 1.0 executability score and a 0.438 success rate, surpassing the prior best reported agent scores of 0.625 and 0.250, respectively. Furthermore, a detailed case study on Moderate or Intense Low-oxygen Dilution (MILD) combustion simulation demonstrates its efficacy as a collaborative research copilot, where FlamePilot autonomously translated a research paper into a configured simulation, conducted the simulation, post-processed the results, proposed evidence-based refinements, and managed a multi-step parameter study to convergence under minimal human intervention. By adopting a transparent and interpretable paradigm, FlamePilot establishes a foundational framework for AI-empowered combustion modeling, fostering a collaborative partnership where the agent manages workflow orchestration, freeing the researcher for high-level analysis.
From Classification to Generation: An Open-Ended Paradigm for Adverse Drug Reaction Prediction Based on Graph-Motif Feature Fusion
Computational biology offers immense potential for reducing the high costs and protracted cycles of new drug development through adverse drug reaction (ADR) prediction. However, current methods remain impeded by drug data scarcity-induced cold-start challenge, closed label sets, and inadequate modeling of label dependencies. Here we propose an open-ended ADR prediction paradigm based on Graph-Motif feature fusion and Multi-Label Generation (GM-MLG). Leveraging molecular structure as an intrinsic and inherent feature, GM-MLG constructs a dual-graph representation architecture spanning the atomic level, the local molecular level (utilizing fine-grained motifs dynamically extracted via the BRICS algorithm combined with additional fragmentation rules), and the global molecular level. Uniquely, GM-MLG pioneers transforming ADR prediction from multi-label classification into Transformer Decoder-based multi-label generation. By treating ADR labels as discrete token sequences, it employs positional embeddings to explicitly capture dependencies and co-occurrence relationships within large-scale label spaces, generating predictions via autoregressive decoding to dynamically expand the prediction space. Experiments demonstrate GM-MLG achieves up to 38% improvement and an average gain of 20%, expanding the prediction space from 200 to over 10,000 types. Furthermore, it elucidates non-linear structure-activity relationships between ADRs and motifs via retrosynthetic motif analysis, providing interpretable and innovative support for systematic risk reduction in drug safety.
comment: 34 pages,5 figures
FLOP-Efficient Training: Early Stopping Based on Test-Time Compute Awareness
Scaling training compute, measured in FLOPs, has long been shown to improve the accuracy of large language models, yet training remains resource-intensive. Prior work shows that increasing test-time compute (TTC)-for example through iterative sampling-can allow smaller models to rival or surpass much larger ones at lower overall cost. We introduce TTC-aware training, where an intermediate checkpoint and a corresponding TTC configuration can together match or exceed the accuracy of a fully trained model while requiring substantially fewer training FLOPs. Building on this insight, we propose an early stopping algorithm that jointly selects a checkpoint and TTC configuration to minimize training compute without sacrificing accuracy. To make this practical, we develop an efficient TTC evaluation method that avoids exhaustive search, and we formalize a break-even bound that identifies when increased inference compute compensates for reduced training compute. Experiments demonstrate up to 92\% reductions in training FLOPs while maintaining and sometimes remarkably improving accuracy. These results highlight a new perspective for balancing training and inference compute in model development, enabling faster deployment cycles and more frequent model refreshes. Codes will be publicly released.
AppellateGen: A Benchmark for Appellate Legal Judgment Generation
Legal judgment generation is a critical task in legal intelligence. However, existing research in legal judgment generation has predominantly focused on first-instance trials, relying on static fact-to-verdict mappings while neglecting the dialectical nature of appellate (second-instance) review. To address this, we introduce AppellateGen, a benchmark for second-instance legal judgment generation comprising 7,351 case pairs. The task requires models to draft legally binding judgments by reasoning over the initial verdict and evidentiary updates, thereby modeling the causal dependency between trial stages. We further propose a judicial Standard Operating Procedure (SOP)-based Legal Multi-Agent System (SLMAS) to simulate judicial workflows, which decomposes the generation process into discrete stages of issue identification, retrieval, and drafting. Experimental results indicate that while SLMAS improves logical consistency, the complexity of appellate reasoning remains a substantial challenge for current LLMs. The dataset and code are publicly available at: https://anonymous.4open.science/r/AppellateGen-5763.
comment: 15 pages, 4 figures, 3 tables
LinMU: Multimodal Understanding Made Linear
Modern Vision-Language Models (VLMs) achieve impressive performance but are limited by the quadratic complexity of self-attention, which prevents their deployment on edge devices and makes their understanding of high-resolution images and long-context videos prohibitively expensive. To address this challenge, we introduce LinMU (Linear-complexity Multimodal Understanding), a VLM design that achieves linear complexity without using any quadratic-complexity modules while maintaining the performance of global-attention-based VLMs. LinMU replaces every self-attention layer in the VLM with the M-MATE block: a dual-branch module that combines a bidirectional state-space model for global context (Flex-MA branch) with localized Swin-style window attention (Local-Swin branch) for adjacent correlations. To transform a pre-trained VLM into the LinMU architecture, we propose a three-stage distillation framework that (i) initializes both branches with self-attention weights and trains the Flex-MA branch alone, (ii) unfreezes the Local-Swin branch and fine-tunes it jointly with the Flex-MA branch, and (iii) unfreezes the remaining blocks and fine-tunes them using LoRA adapters, while regressing on hidden states and token-level logits of the frozen VLM teacher. On MMMU, TextVQA, LongVideoBench, Video-MME, and other benchmarks, LinMU matches the performance of teacher models, yet reduces Time-To-First-Token (TTFT) by up to 2.7$\times$ and improves token throughput by up to 9.0$\times$ on minute-length videos. Ablations confirm the importance of each distillation stage and the necessity of the two branches of the M-MATE block. The proposed framework demonstrates that state-of-the-art multimodal reasoning can be achieved without quadratic attention, thus opening up avenues for long-context VLMs that can deal with high-resolution images and long videos.
comment: 23 pages, 7 figures
Spectral-Window Hybrid (SWH)
Scaling sequence modeling to extreme contexts requires balancing computational efficiency with representational expressivity. While Transformers provide precise retrieval via the attention mechanism, their quadratic $\mathcal{O}(T^2)$ complexity limits their application to long-horizon tasks. In this work, we propose the \textbf{Spectral-Window Hybrid (SWH)}, an architecture that decouples sequence modeling into two \textit{parallel} streams: a global branch utilizing the Convolution Theorem to model long-range decay dynamics in $\mathcal{O}(T \log T)$ time, and a local branch employing sliding-window attention for token interactions within a bounded context. By aggregating these representations, SWH avoids the computational bottleneck of global attention while retaining local precision. We demonstrate that SWH matches the perplexity of standard Transformers on short contexts while enabling efficient linear scaling to extended sequences. The code is available at https://github.com/VladimerKhasia/SWH
Concave Certificates: Geometric Framework for Distributionally Robust Risk and Complexity Analysis
Distributionally Robust (DR) optimization aims to certify worst-case risk within a Wasserstein uncertainty set. Current certifications typically rely either on global Lipschitz bounds, which are often conservative, or on local gradient information, which provides only a first-order approximation. This paper introduces a novel geometric framework based on the least concave majorants of the growth rate function. Our proposed concave certificate establishes a tight bound of DR risk that remains applicable to non-Lipschitz and non-differentiable losses. We extend this framework to complexity analysis, introducing a deterministic bound that complements standard statistical generalization bound. Furthermore, we utilize this certificate to bound the gap between adversarial and empirical Rademacher complexity, demonstrating that dependencies on input diameter, network width, and depth can be eliminated. For practical application in deep learning, we introduce the adversarial score as a tractable relaxation of the concave certificate that enables efficient and layer-wise analysis of neural networks. We validate our theoretical results in various numerical experiments on classification and regression tasks on real-world data.
comment: 30 pages, 7 figures
Making MoE based LLM inference resilient with Tarragon
Mixture-of-Experts (MoE) models are increasingly used to serve LLMs at scale, but failures become common as deployment scale grows. Existing systems exhibit poor failure resilience: even a single worker failure triggers a coarse-grained, service-wide restart, discarding accumulated progress and halting the entire inference pipeline during recovery--an approach clearly ill-suited for latency-sensitive, LLM services. We present Tarragon, a resilient MoE inference framework that confines the failures impact to individual workers while allowing the rest of the pipeline to continue making forward progress. Tarragon exploits the natural separation between the attention and expert computation in MoE-based transformers, treating attention workers (AWs) and expert workers (EWs) as distinct failure domains. Tarragon introduces a reconfigurable datapath to mask failures by rerouting requests to healthy workers. On top of this datapath, Tarragon implements a self-healing mechanism that relaxes the tightly synchronized execution of existing MoE frameworks. For stateful AWs, Tarragon performs asynchronous, incremental KV cache checkpointing with per-request restoration, and for stateless EWs, it leverages residual GPU memory to deploy shadow experts. These together keep recovery cost and recomputation overhead extremely low. Our evaluation shows that, compared to state-of-the-art MegaScale-Infer, Tarragon reduces failure-induced stalls by 160-213x (from ~64 s down to 0.3-0.4 s) while preserving performance when no failures occur.
Towards a Principled Muon under $μ\mathsf{P}$: Ensuring Spectral Conditions throughout Training
The $μ$-parameterization ($μ$P) provides a principled foundation for large language model (LLM) training by prescribing width-independent learning dynamics, which in turn enables predictable scaling behavior and robust hyperparameter transfer across model sizes. A central requirement of $μ$P is the satisfaction of certain spectral conditions on weight matrices, which ensure consistent feature learning and optimization behavior as model width grows. While these conditions are well understood in theory, guaranteeing their validity in practical training for matrix-based optimizers such as Muon is still under studied. Existing works that study Muon under $μ$P exhibit important limitations: they either do not ensure that the spectral conditions hold throughout the entire training horizon, or require repeated spectral normalization (or Newton-Schulz iterations) applied to both weights and updates, leading to significant computational overhead and reduced practicality. In this work, we show how to reliably guarantee the spectral conditions required by $μ$P for Muon during the entire training process. Our key insight is that for moderately large models, maintaining spectral control at the level of optimizer updates alone is sufficient to preserve $μ$P-compatible scaling, eliminating the need for explicit spectral normalization of the weights. Based on this principle, we develop a variant of Muon, namely Muon++, that satisfies spectral condition throughout the training process. Our results bridge the gap between the theoretical promises of $μ$P and the practical deployment of matrix-based optimizers in long-horizon training. We also take the first step towards an adaptive spectral condition by incorporating data-dependent effects, making it better suited for long-horizon LLM training.
comment: 21 pages, 0 figures
Visualizing LLM Latent Space Geometry Through Dimensionality Reduction
Large language models (LLMs) achieve state-of-the-art results across many natural language tasks, but their internal mechanisms remain difficult to interpret. In this work, we extract, process, and visualize latent state geometries in Transformer-based language models through dimensionality reduction. We capture layerwise activations at multiple points within Transformer blocks and enable systematic analysis through Principal Component Analysis (PCA) and Uniform Manifold Approximation and Projection (UMAP). We demonstrate experiments on GPT-2 and LLaMa models, where we uncover interesting geometric patterns in latent space. Notably, we identify a clear separation between attention and MLP component outputs across intermediate layers, a pattern not documented in prior work to our knowledge. We also characterize the high norm of latent states at the initial sequence position and visualize the layerwise evolution of latent states. Additionally, we demonstrate the high-dimensional helical structure of GPT-2's positional embeddings and the sequence-wise geometric patterns in LLaMa. We make our code available at https://github.com/Vainateya/Feature_Geometry_Visualization.
comment: 22 pages, 14 figures
Revisiting Randomization in Greedy Model Search
Feature subsampling is a core component of random forests and other ensemble methods. While recent theory suggests that this randomization acts solely as a variance reduction mechanism analogous to ridge regularization, these results largely rely on base learners optimized via ordinary least squares. We investigate the effects of feature subsampling on greedy forward selection, a model that better captures the adaptive nature of decision trees. Assuming an orthogonal design, we prove that ensembling with feature subsampling can reduce both bias and variance, contrasting with the pure variance reduction of convex base learners. More precisely, we show that both the training error and degrees of freedom can be non-monotonic in the subsampling rate, breaking the analogy with standard shrinkage methods like the lasso or ridge regression. Furthermore, we characterize the exact asymptotic behavior of the estimator, showing that it adaptively reweights OLS coefficients based on their rank, with weights that are well-approximated by a logistic function. These results elucidate the distinct role of algorithmic randomization when interleaved with greedy optimization.
SAMUeL: Efficient Vocal-Conditioned Music Generation via Soft Alignment Attention and Latent Diffusion
We present a lightweight latent diffusion model for vocal-conditioned musical accompaniment generation that addresses critical limitations in existing music AI systems. Our approach introduces a novel soft alignment attention mechanism that adaptively combines local and global temporal dependencies based on diffusion timesteps, enabling efficient capture of multi-scale musical structure. Operating in the compressed latent space of a pre-trained variational autoencoder, the model achieves a 220 times parameter reduction compared to state-of-the-art systems while delivering 52 times faster inference. Experimental evaluation demonstrates competitive performance with only 15M parameters, outperforming OpenAI Jukebox in production quality and content unity while maintaining reasonable musical coherence. The ultra-lightweight architecture enables real-time deployment on consumer hardware, making AI-assisted music creation accessible for interactive applications and resource-constrained environments.
comment: 7 pages, 3 figures, accepted to IEEE/WIC WI-IAT
Relaxed Equivariance via Multitask Learning
Incorporating equivariance as an inductive bias into deep learning architectures to take advantage of the data symmetry has been successful in multiple applications, such as chemistry and dynamical systems. In particular, roto-translations are crucial for effectively modeling geometric graphs and molecules, where understanding the 3D structures enhances generalization. However, strictly equivariant models often pose challenges due to their higher computational complexity. In this paper, we introduce REMUL, a training procedure that learns \emph{approximate} equivariance for unconstrained networks via multitask learning. By formulating equivariance as a tunable objective alongside the primary task loss, REMUL offers a principled way to control the degree of approximate symmetry, relaxing the rigid constraints of traditional equivariant architectures. We show that unconstrained models (which do not build equivariance into the architecture) can learn approximate symmetries by minimizing an additional simple equivariance loss. This enables quantitative control over the trade-off between enforcing equivariance constraints and optimizing for task-specific performance. Our method achieves competitive performance compared to equivariant baselines while being significantly faster (up to 10$\times$ at inference and 2.5$\times$ at training), offering a practical and adaptable approach to leveraging symmetry in unconstrained architectures.
Efficient Identification of Critical Transitions via Flow Matching: A Scalable Generative Approach for Many-Body Systems
We propose a machine learning framework based on Flow Matching (FM) to identify critical properties in many-body systems efficiently. Using the 2D XY model as a benchmark, we demonstrate that a single network, trained only on configurations from a small ($32\times 32$) lattice at sparse temperature points, effectively generalizes across both temperature and system size. This dual generalization enables two primary applications for large-scale computational physics: (i) a rapid "train-small, predict-large" strategy to locate phase transition points for significantly larger systems ($128\times 128$) without retraining, facilitating efficient finite-size scaling analysis; and (ii) the fast generation of high-fidelity, decorrelated initial spin configurations for large-scale Monte Carlo simulations, providing a robust starting point that bypasses the long thermalization times of traditional samplers. These capabilities arise from the combination of the Flow Matching framework, which learns stable probability-flow vector fields, and the inductive biases of the U-Net architecture that capture scale-invariant local correlations. Our approach offers a scalable and efficient tool for exploring the thermodynamic limit, serving as both a rapid explorer for phase boundaries and a high-performance initializer for high-precision studies.
comment: 23 pages, 20 figures
A unified framework for geometry-independent operator learning in cardiac electrophysiology simulations
Learning biophysically accurate solution operators for cardiac electrophysiology is fundamentally challenged by geometric variability across patient-specific heart anatomies. Most existing neural operator approaches are limited to structured or weakly deformed domains, restricting their applicability to realistic atrial and ventricular geometries. Here, we introduce a unified operator-learning framework that projects inputs and outputs onto a standardised anatomical coordinate system, decoupling electrophysiological dynamics from mesh topology. This formulation enables geometry-independent learning while preserving physiologically meaningful spatial organisation, and allows predictions to be interpolated back onto patient-specific geometries for anatomical interpretation. To support large-scale training within the framework, we develop a GPU-accelerated electrophysiology solver and generate over 300,000 high-fidelity simulations across diverse patient-specific left atrial geometries with varied pacing and conduction properties. Within this anatomical coordinate domain, we design a neural operator to predict full-field local activation time maps, achieving a mean absolute error of 5.1 ms and an inference time of 0.12 ms per sample, outperforming existing operator learning and convolutional baselines. We further validate the framework on ventricular geometries, demonstrating robust generalisation beyond the atrial setting. Together, this framework establishes a scalable foundation for fast, geometry-invariant cardiac electrophysiology modelling, with potential relevance for real-time and population-scale clinical workflows.
Applying Deep Learning to Anomaly Detection of Russian Satellite Activity for Indications Prior to Military Activity
We apply deep learning techniques for anomaly detection to analyze activity of Russian-owned resident space objects (RSO) prior to the Ukraine invasion and assess the results for any findings that can be used as indications and warnings (I&W) of aggressive military behavior for future conflicts. Through analysis of anomalous activity, an understanding of possible tactics and procedures can be established to assess the existence of statistically significant changes in Russian RSO pattern of life/pattern of behavior (PoL/PoB) using publicly available two-line element (TLE) data. This research looks at statistical and deep learning approaches to assess anomalous activity. The deep learning methods assessed are isolation forest (IF), traditional autoencoder (AE), variational autoencoder (VAE), Kolmogorov Arnold Network (KAN), and a novel anchor-loss based autoencoder (Anchor AE). Each model is used to establish a baseline of on-orbit activity based on a five-year data sample. The primary investigation period focuses on the six months leading up to the invasion date of February 24, 2022. Additional analysis looks at RSO activity during an active combat period by sampling TLE data after the invasion date. The deep learning autoencoder models identify anomalies based on reconstruction errors that surpass a threshold sigma. To capture the nuance and unique characteristics of each RSO an individual model was trained for each observed space object. The research made an effort to prioritize explainability and interpretability of the model results thus each observation was assessed for anomalous behavior of the individual six orbital elements versus analyzing the input data as a single monolithic observation. The results demonstrate not only statistically significant anomalies of Russian RSO activity but also details anomalous findings to the individual orbital element.
comment: Withdrawn because of inaccurate information and misrepresented findings
Joint Distillation for Fast Likelihood Evaluation and Sampling in Flow-based Models
Log-likelihood evaluation enables important capabilities in generative models, including model comparison, certain fine-tuning objectives, and many downstream applications. Yet paradoxically, some of today's best generative models -- diffusion and flow-based models -- still require hundreds to thousands of neural function evaluations (NFEs) to compute a single likelihood. While recent distillation methods have successfully accelerated sampling to just a few steps, they achieve this at the cost of likelihood tractability: existing approaches either abandon likelihood computation entirely or still require expensive integration over full trajectories. We present fast flow joint distillation (F2D2), a framework that simultaneously reduces the number of NFEs required for both sampling and likelihood evaluation by two orders of magnitude. Our key insight is that in continuous normalizing flows, the coupled ODEs for sampling and likelihood are computed from a shared underlying velocity field, allowing us to jointly distill both the sampling trajectory and cumulative divergence using a single model. F2D2 is modular, compatible with existing flow-based few-step sampling models, and requires only an additional divergence prediction head. Experiments demonstrate F2D2's capability of achieving accurate log-likelihood with few-step evaluations while maintaining high sample quality, solving a long-standing computational bottleneck in flow-based generative models. As an application of our approach, we propose a lightweight self-guidance method that enables a 2-step MeanFlow to outperform a 1024 step flow matching model with only a single additional backward NFE.
PIKAN: Physics-Inspired Kolmogorov-Arnold Networks for Explainable UAV Channel Modelling
Unmanned aerial vehicle (UAV) communications demand accurate yet interpretable air-to-ground (A2G) channel models that can adapt to nonstationary propagation environments. While deterministic models offer interpretability and deep learning (DL) models provide accuracy, both approaches suffer from either rigidity or a lack of explainability. To bridge this gap, we propose the Physics-Inspired Kolmogorov-Arnold Network (PIKAN) that embeds physical principles (e.g., free-space path loss, two-ray reflections) into the learning process. Unlike physics-informed neural networks (PINNs), PIKAN is more flexible for applying physical information because it introduces them as flexible inductive biases. Thus, it enables a more flexible training process. Experiments on UAV A2G measurement data show that PIKAN achieves comparable accuracy to DL models while providing symbolic and explainable expressions aligned with propagation laws. Remarkably, PIKAN achieves this performance with only 232 parameters, making it up to 37 times lighter than multilayer perceptron (MLP) baselines with thousands of parameters, without sacrificing correlation with measurements and also providing symbolic expressions. These results highlight PIKAN as an efficient, interpretable, and scalable solution for UAV channel modelling in beyond-5G and 6G networks.
comment: This paper has been accepted for IEEE Aerospace Conference
Coupled Distributional Random Expert Distillation for World Model Online Imitation Learning NeurIPS 2025
Imitation Learning (IL) has achieved remarkable success across various domains, including robotics, autonomous driving, and healthcare, by enabling agents to learn complex behaviors from expert demonstrations. However, existing IL methods often face instability challenges, particularly when relying on adversarial reward or value formulations in world model frameworks. In this work, we propose a novel approach to online imitation learning that addresses these limitations through a reward model based on random network distillation (RND) for density estimation. Our reward model is built on the joint estimation of expert and behavioral distributions within the latent space of the world model. We evaluate our method across diverse benchmarks, including DMControl, Meta-World, and ManiSkill2, showcasing its ability to deliver stable performance and achieve expert-level results in both locomotion and manipulation tasks. Our approach demonstrates improved stability over adversarial methods while maintaining expert-level performance.
comment: NeurIPS 2025 Workshop of Embodied World Models; Code Available at: https://github.com/TobyLeelsz/CDRED-WM
Spatio-Temporal Graph Deep Learning with Stochastic Differential Equations for Uncovering Alzheimer's Disease Progression
Identifying objective neuroimaging biomarkers to forecast Alzheimer's disease (AD) progression is crucial for timely intervention. However, this task remains challenging due to the complex dysfunctions in the spatio-temporal characteristics of underlying brain networks, which are often overlooked by existing methods. To address these limitations, we develop an interpretable spatio-temporal graph neural network framework to predict future AD progression, leveraging dual Stochastic Differential Equations (SDEs) to model the irregularly-sampled longitudinal functional magnetic resonance imaging (fMRI) data. We validate our approach on two independent cohorts, including the Open Access Series of Imaging Studies (OASIS-3) and the Alzheimer's Disease Neuroimaging Initiative (ADNI). Our framework effectively learns sparse regional and connective importance probabilities, enabling the identification of key brain circuit abnormalities associated with disease progression. Notably, we detect the parahippocampal cortex, prefrontal cortex, and parietal lobule as salient regions, with significant disruptions in the ventral attention, dorsal attention, and default mode networks. These abnormalities correlate strongly with longitudinal AD-related clinical symptoms. Moreover, our interpretability strategy reveals both established and novel neural systems-level and sex-specific biomarkers, offering new insights into the neurobiological mechanisms underlying AD progression. Our findings highlight the potential of spatio-temporal graph-based learning for early, individualized prediction of AD progression, even in the context of irregularly-sampled longitudinal imaging data.
Tubular Riemannian Laplace Approximations for Bayesian Neural Networks
Laplace approximations are among the simplest and most practical methods for approximate Bayesian inference in neural networks, yet their Euclidean formulation struggles with the highly anisotropic, curved loss surfaces and large symmetry groups that characterize modern deep models. Recent work has proposed Riemannian and geometric Gaussian approximations to adapt to this structure. Building on these ideas, we introduce the Tubular Riemannian Laplace (TRL) approximation. TRL explicitly models the posterior as a probabilistic tube that follows a low-loss valley induced by functional symmetries, using a Fisher/Gauss-Newton metric to separate prior-dominated tangential uncertainty from data-dominated transverse uncertainty. We interpret TRL as a scalable reparametrised Gaussian approximation that utilizes implicit curvature estimates to operate in high-dimensional parameter spaces. Our empirical evaluation on ResNet-18 (CIFAR-10 and CIFAR-100) demonstrates that TRL achieves excellent calibration, matching or exceeding the reliability of Deep Ensembles (in terms of ECE) while requiring only a fraction (1/5) of the training cost. TRL effectively bridges the gap between single-model efficiency and ensemble-grade reliability.
comment: v2: corrected an erroneous/hallucinated reference (Dold et al.)
Design and Scheduling of an AI-based Queueing System
To leverage prediction models to make optimal scheduling decisions in service systems, we must understand how predictive errors impact congestion due to externalities on the delay of other jobs. Motivated by applications where prediction models interact with human servers (e.g., content moderation), we consider a large queueing system comprising of many single server queues where the class of a job is estimated using a prediction model. By characterizing the impact of mispredictions on congestion cost in heavy traffic, we design an index-based policy that incorporates the predicted class information in a near-optimal manner. Our theoretical results guide the design of predictive models by providing a simple model selection procedure with downstream queueing performance as a central concern, and offer novel insights on how to design queueing systems with AI-based triage. We illustrate our framework on a content moderation task based on real online comments, where we construct toxicity classifiers by finetuning large language models.
An AI-powered Bayesian generative modeling approach for causal inference in observational studies
Causal inference in observational studies with high-dimensional covariates presents significant challenges. We introduce CausalBGM, an AI-powered Bayesian generative modeling approach that captures the causal relationship among covariates, treatment, and outcome. The core innovation is to estimate the individual treatment effect (ITE) by learning the individual-specific distribution of a low-dimensional latent feature set (e.g., latent confounders) that drives changes in both treatment and outcome. This individualized posterior representation yields estimates of the individual treatment effect (ITE) together with well-calibrated posterior intervals while mitigating confounding effect. CausalBGM is fitted through an iterative algorithm to update the model parameters and the latent features until convergence. This framework leverages the power of AI to capture complex dependencies among variables while adhering to the Bayesian principles. Extensive experiments demonstrate that CausalBGM consistently outperforms state-of-the-art methods, particularly in scenarios with high-dimensional covariates and large-scale datasets. By addressing key limitations of existing methods, CausalBGM emerges as a robust and promising framework for advancing causal inference in a wide range of modern applications. The code for CausalBGM is available at https://github.com/liuq-lab/bayesgm. The tutorial for CausalBGM is available at https://causalbgm.readthedocs.io.
Semi-supervised and unsupervised learning for health indicator extraction from guided waves in aerospace composite structures
Health indicators (HIs) are central to diagnosing and prognosing the condition of aerospace composite structures, enabling efficient maintenance and operational safety. However, extracting reliable HIs remains challenging due to variability in material properties, stochastic damage evolution, and diverse damage modes. Manufacturing defects (e.g., disbonds) and in-service incidents (e.g., bird strikes) further complicate this process. This study presents a comprehensive data-driven framework that learns HIs via two learning approaches integrated with multi-domain signal processing. Because ground-truth HIs are unavailable, a semi-supervised and an unsupervised approach are proposed: (i) a diversity deep semi-supervised anomaly detection (Diversity-DeepSAD) approach augmented with continuous auxiliary labels used as hypothetical damage proxies, which overcomes the limitation of prior binary labels that only distinguish healthy and failed states while neglecting intermediate degradation, and (ii) a degradation-trend-constrained variational autoencoder (DTC-VAE), in which the monotonicity criterion is embedded via an explicit trend constraint. Guided waves with multiple excitation frequencies are used to monitor single-stiffener composite structures under fatigue loading. Time, frequency, and time-frequency representations are explored, and per-frequency HIs are fused via unsupervised ensemble learning to mitigate frequency dependence and reduce variance. Using fast Fourier transform features, the augmented Diversity-DeepSAD model achieved 81.6% performance, while DTC-VAE delivered the most consistent HIs with 92.3% performance, outperforming existing baselines.
Sample Path Regularity of Gaussian Processes from the Covariance Kernel
Gaussian processes (GPs) are the most common formalism for defining probability distributions over spaces of functions. While applications of GPs are myriad, a comprehensive understanding of GP sample paths, i.e. the function spaces over which they define a probability measure, is lacking. In practice, GPs are not constructed through a probability measure, but instead through a mean function and a covariance kernel. In this paper we provide necessary and sufficient conditions on the covariance kernel for the sample paths of the corresponding GP to attain a given regularity. We focus primarily on Hölder regularity as it grants particularly straightforward conditions, which simplify further in the cases of stationary and isotropic GPs. We then demonstrate that our results allow for novel and unusually tight characterisations of the sample path regularities of the GPs commonly used in machine learning applications, such as the Matérn GPs.
Post-hoc Stochastic Concept Bottleneck Models
Concept Bottleneck Models (CBMs) are interpretable models that predict the target variable through high-level human-understandable concepts, allowing users to intervene on mispredicted concepts to adjust the final output. While recent work has shown that modeling dependencies between concepts can improve CBM performance, especially under interventions, such approaches typically require retraining the entire model, which may be infeasible when access to the original data or compute is limited. In this paper, we introduce Post-hoc Stochastic Concept Bottleneck Models (PSCBMs), a lightweight method that augments any pre-trained CBM with a multivariate normal distribution over concepts by adding only a small covariance-prediction module, without retraining the backbone model. We propose two training strategies and show on real-world data that PSCBMs consistently match or improve both concept and target accuracy over standard CBMs at test time. Furthermore, we show that due to the modeling of concept dependencies, PSCBMs perform much better than CBMs under interventions, while remaining far more efficient than retraining a similar stochastic model from scratch.
Preconditioned Inexact Stochastic ADMM for Deep Model
The recent advancement of foundation models (FMs) has brought about a paradigm shift, revolutionizing various sectors worldwide. The popular optimizers used to train these models are stochastic gradient descent-based algorithms, which face inherent limitations, such as slow convergence and stringent assumptions for convergence. In particular, data heterogeneity arising from distributed settings poses significant challenges to their theoretical and numerical performance. This paper develops an algorithm, PISA (Preconditioned Inexact Stochastic Alternating Direction Method of Multipliers). Grounded in rigorous theoretical guarantees, the algorithm converges under the sole assumption of Lipschitz continuity of the gradient on a bounded region, thereby removing the need for other conditions commonly imposed by stochastic methods. This capability enables the proposed algorithm to tackle the challenge of data heterogeneity effectively. Moreover, the algorithmic architecture enables scalable parallel computing and supports various preconditions, such as second-order information, second moment, and orthogonalized momentum by Newton-Schulz iterations. Incorporating the latter two preconditions in PISA yields two computationally efficient variants: SISA and NSISA. Comprehensive experimental evaluations for training or fine-tuning diverse deep models, including vision models, large language models, reinforcement learning models, generative adversarial networks, and recurrent neural networks, demonstrate superior numerical performance of SISA and NSISA compared to various state-of-the-art optimizers.
AdvKT: An Adversarial Multi-Step Training Framework for Knowledge Tracing
Knowledge Tracing (KT) monitors students' knowledge states and simulates their responses to question sequences. Existing KT models typically follow a single-step training paradigm, which leads to discrepancies with the multi-step inference process required in real-world simulations, resulting in significant error accumulation. This accumulation of error, coupled with the issue of data sparsity, can substantially degrade the performance of recommendation models in the intelligent tutoring systems. To address these challenges, we propose a novel Adversarial Multi-Step Training Framework for Knowledge Tracing (AdvKT), which, for the first time, focuses on the multi-step KT task. More specifically, AdvKT leverages adversarial learning paradigm involving a generator and a discriminator. The generator mimics high-reward responses, effectively reducing error accumulation across multiple steps, while the discriminator provides feedback to generate synthetic data. Additionally, we design specialized data augmentation techniques to enrich the training data with realistic variations, ensuring that the model generalizes well even in scenarios with sparse data. Experiments conducted on four real-world datasets demonstrate the superiority of AdvKT over existing KT models, showcasing its ability to address both error accumulation and data sparsity issues effectively.
Reinforcement Learning via Conservative Agent for Environments with Random Delays
Real-world reinforcement learning applications are often hindered by delayed feedback from environments, which violates the Markov assumption and introduces significant challenges. Although numerous delay-compensating methods have been proposed for environments with constant delays, environments with random delays remain largely unexplored due to their inherent variability and unpredictability. In this study, we propose a simple yet robust agent for decision-making under random delays, termed the conservative agent, which reformulates the random-delay environment into its constant-delay equivalent. This transformation enables any state-of-the-art constant-delay method to be directly extended to the random-delay environments without modifying the algorithmic structure or sacrificing performance. We evaluate the conservative agent-based algorithm on continuous control tasks, and empirical results demonstrate that it significantly outperforms existing baseline algorithms in terms of asymptotic performance and sample efficiency.
Two-hidden-layer ReLU neural networks and finite elements
We point out that (continuous or discontinuous) piecewise linear functions on a convex polytope mesh can be represented by two-hidden-layer ReLU neural networks in a weak sense. In addition, the numbers of neurons of the two hidden layers required to weakly represent are accurately given based on the numbers of polytopes and hyperplanes involved in this mesh. The results naturally hold for constant and linear finite element functions. Such weak representation establishes a bridge between two-hidden-layer ReLU neural networks and finite element functions, and leads to a perspective for analyzing approximation capability of ReLU neural networks in $L^p$ norm via finite element functions. Moreover, we discuss the strict representation for tensor finite element functions via the recent tensor neural networks.
A Survey of Text Classification Under Class Distribution Shift
The basic underlying assumption of machine learning (ML) models is that the training and test data are sampled from the same distribution. However, in daily practice, this assumption is often broken, i.e.~the distribution of the test data changes over time, which hinders the application of conventional ML models. One domain where the distribution shift naturally occurs is text classification, since people always find new topics to discuss. To this end, we survey research articles studying open-set text classification and related tasks. We divide the methods in this area based on the constraints that define the kind of distribution shift and the corresponding problem formulation, i.e.~learning with the Universum, zero-shot learning, and open-set learning. We next discuss the predominant mitigation approaches for each problem setup. Finally, we identify several future work directions, aiming to push the boundaries beyond the state of the art. Interestingly, we find that continual learning can solve many of the issues caused by the shifting class distribution. We maintain a list of relevant papers at https://github.com/Eduard6421/Open-Set-Survey.
comment: Accepted at EACL 2026 (main)
Detecting Proxy Gaming in RL and LLM Alignment via Evaluator Stress Tests
Proxy optimization, where AI systems exploit evaluator weaknesses rather than improve intended objectives, threatens both reinforcement learning (reward hacking) and LLM alignment (evaluator gaming). We introduce the Evaluator Stress Test (EST), an invariance-based framework that detects proxy gaming by separating exploitable sensitivity (e.g., formatting artifacts, physics bugs) from content-driven improvements using controlled perturbations with semantic validity audits. We validate EST across both domains. In RL, across 15 environments and 5 algorithms (2,156 expert-annotated episodes), EST achieves 78.4% precision and 81.7% recall. In LLM alignment, across 4 tasks, 2 model scales, 2 training methods, and 2 judges (1,200 human-annotated instances), EST achieves 74.2% precision and 78.6% recall, with early warning signals that precede quality decline. Cross-domain analysis shows that proxy-true correlation tracking transfers directly between domains, while perturbation design requires domain adaptation. Closed-loop mitigation improves human win-rate by 8.3 points (LLM) and reduces hacking by 54.6% (RL). We release benchmarks for both domains: 2,156 RL episodes and 1,200 LLM instances.
Bandit and Delayed Feedback in Online Structured Prediction NeurIPS 2025
Online structured prediction is a task of sequentially predicting outputs with complex structures based on inputs and past observations, encompassing online classification. Recent studies showed that in the full-information setting, we can achieve finite bounds on the \textit{surrogate regret}, \textit{i.e.,}~the extra target loss relative to the best possible surrogate loss. In practice, however, full-information feedback is often unrealistic as it requires immediate access to the whole structure of complex outputs. Motivated by this, we propose algorithms that work with less demanding feedback, \textit{bandit} and \textit{delayed} feedback. For bandit feedback, by using a standard inverse-weighted gradient estimator, we achieve a surrogate regret bound of $O(\sqrt{KT})$ for the time horizon $T$ and the size of the output set $K$. However, $K$ can be extremely large when outputs are highly complex, resulting in an undesirable bound. To address this issue, we propose another algorithm that achieves a surrogate regret bound of $O(T^{2/3})$, which is independent of $K$. This is achieved with a carefully designed pseudo-inverse matrix estimator. Furthermore, we numerically compare the performance of these algorithms, as well as existing ones. Regarding delayed feedback, we provide algorithms and regret analyses that cover various scenarios, including full-information and bandit feedback, as well as fixed and variable delays.
comment: 43 pages, Accepted in NeurIPS 2025
Effects of algorithmic flagging on fairness: quasi-experimental evidence from Wikipedia
Online community moderators often rely on social signals such as whether or not a user has an account or a profile page as clues that users may cause problems. Reliance on these clues can lead to "overprofiling'' bias when moderators focus on these signals but overlook the misbehavior of others. We propose that algorithmic flagging systems deployed to improve the efficiency of moderation work can also make moderation actions more fair to these users by reducing reliance on social signals and making norm violations by everyone else more visible. We analyze moderator behavior in Wikipedia as mediated by RCFilters, a system which displays social signals and algorithmic flags, and estimate the causal effect of being flagged on moderator actions. We show that algorithmically flagged edits are reverted more often, especially those by established editors with positive social signals, and that flagging decreases the likelihood that moderation actions will be undone. Our results suggest that algorithmic flagging systems can lead to increased fairness in some contexts but that the relationship is complex and contingent.
comment: 27 pages, 11 figures, ACM CSCW
How to make Medical AI Systems safer? Simulating Vulnerabilities, and Threats in Multimodal Medical RAG System
Large Vision-Language Models (LVLMs) augmented with Retrieval-Augmented Generation (RAG) are increasingly employed in medical AI to enhance factual grounding through external clinical image-text retrieval. However, this reliance creates a significant attack surface. We propose MedThreatRAG, a novel multimodal poisoning framework that systematically probes vulnerabilities in medical RAG systems by injecting adversarial image-text pairs. A key innovation of our approach is the construction of a simulated semi-open attack environment, mimicking real-world medical systems that permit periodic knowledge base updates via user or pipeline contributions. Within this setting, we introduce and emphasize Cross-Modal Conflict Injection (CMCI), which embeds subtle semantic contradictions between medical images and their paired reports. These mismatches degrade retrieval and generation by disrupting cross-modal alignment while remaining sufficiently plausible to evade conventional filters. While basic textual and visual attacks are included for completeness, CMCI demonstrates the most severe degradation. Evaluations on IU-Xray and MIMIC-CXR QA tasks show that MedThreatRAG reduces answer F1 scores by up to 27.66% and lowers LLaVA-Med-1.5 F1 rates to as low as 51.36%. Our findings expose fundamental security gaps in clinical RAG systems and highlight the urgent need for threat-aware design and robust multimodal consistency checks. Finally, we conclude with a concise set of guidelines to inform the safe development of future multimodal medical RAG systems.
comment: Sumbitted to 2026 ICASSP
Self-Speculative Biased Decoding for Faster Re-Translation
Large language models achieve strong machine translation quality but incur high inference cost and latency, posing challenges for simultaneous translation. Re-translation provides a practical solution for off-the-shelf LLMs by repeatedly regenerating the target output as the source input grows, but it suffers from substantial redundant computation. We propose Self-Speculative Biased Decoding (SSBD), a simple and tuning-free inference method that accelerates re-translation by exploiting temporal coherence in streaming translation. SSBD reuses the model's previous output as a speculative draft for the updated input, verifies the draft efficiently in a single forward pass with a lightweight bias, and resumes autoregressive decoding only from the first divergence. We further introduce a display-only masking strategy that hides unstable suffixes from the user interface while retaining them in the draft for verification and potential acceptance. Experiments show that SSBD achieves substantial speedup over standard re-translation while maintaining comparable translation quality, without architectural changes, auxiliary models, or extra fine-tuning.
When Does Learning Renormalize? Sufficient Conditions for Power Law Spectral Dynamics
Empirical power--law scaling has been widely observed across modern deep learning systems, yet its theoretical origins and scope of validity remain incompletely understood. The Generalized Resolution--Shell Dynamics (GRSD) framework models learning as spectral energy transport across logarithmic resolution shells, providing a coarse--grained dynamical description of training. Within GRSD, power--law scaling corresponds to a particularly simple renormalized shell dynamics; however, such behavior is not automatic and requires additional structural properties of the learning process. In this work, we identify a set of sufficient conditions under which the GRSD shell dynamics admits a renormalizable coarse--grained description. These conditions constrain the learning configuration at multiple levels, including boundedness of gradient propagation in the computation graph, weak functional incoherence at initialization, controlled Jacobian evolution along training, and log--shift invariance of renormalized shell couplings. We further show that power--law scaling does not follow from renormalizability alone, but instead arises as a rigidity consequence: once log--shift invariance is combined with the intrinsic time--rescaling covariance of gradient flow, the renormalized GRSD velocity field is forced into a power--law form.
EMLoC: Emulator-based Memory-efficient Fine-tuning with LoRA Correction NeurIPS 2025
Open-source foundation models have seen rapid adoption and development, enabling powerful general-purpose capabilities across diverse domains. However, fine-tuning large foundation models for domain-specific or personalized tasks remains prohibitively expensive for most users due to the significant memory overhead beyond that of inference. We introduce EMLoC, an Emulator-based Memory-efficient fine-tuning framework with LoRA Correction, which enables model fine-tuning within the same memory budget required for inference. EMLoC constructs a task-specific light-weight emulator using activation-aware singular value decomposition (SVD) on a small downstream calibration set. Fine-tuning then is performed on this lightweight emulator via LoRA. To tackle the misalignment between the original model and the compressed emulator, we propose a novel compensation algorithm to correct the fine-tuned LoRA module, which thus can be merged into the original model for inference. EMLoC supports flexible compression ratios and standard training pipelines, making it adaptable to a wide range of applications. Extensive experiments demonstrate that EMLoC outperforms other baselines across multiple datasets and modalities. Moreover, without quantization, EMLoC enables fine-tuning of a 38B model, which originally required 95GB of memory, on a single 24GB consumer GPU-bringing efficient and practical model adaptation to individual users.
comment: Accepted to the 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Project page: https://hsi-che-lin.github.io/EMLoC/
How to Correctly Report LLM-as-a-Judge Evaluations
Large language models (LLMs) are widely used as scalable evaluators of model responses in lieu of human annotators. However, imperfect sensitivity and specificity of LLM judgments induce bias in naive evaluation scores. We propose a simple plug-in framework that corrects this bias and constructs confidence intervals accounting for uncertainty from both the test dataset and a human-evaluated calibration dataset, enabling statistically sound and practical LLM-based evaluation. Building on this framework, we introduce an adaptive calibration strategy for constructing the calibration dataset to reduce uncertainty in the estimated score. Notably, we characterize the regimes in which LLM-based evaluation within our framework produces more reliable estimates than fully human evaluation. Moreover, our framework is more robust to distribution shift between the test and calibration datasets than existing approaches.
comment: This version adds Sections 2, 6, 7, and 8.2
Rotation Control Unlearning: Quantifying and Controlling Continuous Unlearning for LLM with The Cognitive Rotation Space
As Large Language Models (LLMs) become increasingly prevalent, their security vulnerabilities have already drawn attention. Machine unlearning is introduced to seek to mitigate these risks by removing the influence of undesirable data. However, existing methods not only rely on the retained dataset to preserve model utility, but also suffer from cumulative catastrophic utility loss under continuous unlearning requests. To solve this dilemma, we propose a novel method, called Rotation Control Unlearning (RCU), which leverages the rotational salience weight of RCU to quantify and control the unlearning degree in the continuous unlearning process. The skew symmetric loss is designed to construct the existence of the cognitive rotation space, where the changes of rotational angle can simulate the continuous unlearning process. Furthermore, we design an orthogonal rotation axes regularization to enforce mutually perpendicular rotation directions for continuous unlearning requests, effectively minimizing interference and addressing cumulative catastrophic utility loss. Experiments on multiple datasets confirm that our method without retained dataset achieves SOTA performance.
DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning
General reasoning represents a long-standing and formidable challenge in artificial intelligence. Recent breakthroughs, exemplified by large language models (LLMs) and chain-of-thought prompting, have achieved considerable success on foundational reasoning tasks. However, this success is heavily contingent upon extensive human-annotated demonstrations, and models' capabilities are still insufficient for more complex problems. Here we show that the reasoning abilities of LLMs can be incentivized through pure reinforcement learning (RL), obviating the need for human-labeled reasoning trajectories. The proposed RL framework facilitates the emergent development of advanced reasoning patterns, such as self-reflection, verification, and dynamic strategy adaptation. Consequently, the trained model achieves superior performance on verifiable tasks such as mathematics, coding competitions, and STEM fields, surpassing its counterparts trained via conventional supervised learning on human demonstrations. Moreover, the emergent reasoning patterns exhibited by these large-scale models can be systematically harnessed to guide and enhance the reasoning capabilities of smaller models.
Colorful Pinball: Density-Weighted Quantile Regression for Conditional Guarantee of Conformal Prediction
While conformal prediction provides robust marginal coverage guarantees, achieving reliable conditional coverage for specific inputs remains challenging. Although exact distribution-free conditional coverage is impossible with finite samples, recent work has focused on improving the conditional coverage of standard conformal procedures. Distinct from approaches that target relaxed notions of conditional coverage, we directly minimize the mean squared error of conditional coverage by refining the quantile regression components that underpin many conformal methods. Leveraging a Taylor expansion, we derive a sharp surrogate objective for quantile regression: a density-weighted pinball loss, where the weights are given by the conditional density of the conformity score evaluated at the true quantile. We propose a three-headed quantile network that estimates these weights via finite differences using auxiliary quantile levels at \(1-α\pm δ\), subsequently fine-tuning the central quantile by optimizing the weighted loss. We provide a theoretical analysis with exact non-asymptotic guarantees characterizing the resulting excess risk. Extensive experiments on diverse high-dimensional real-world datasets demonstrate remarkable improvements in conditional coverage performance.
Optimal Look-back Horizon for Time Series Forecasting in Federated Learning AAAI-26
Selecting an appropriate look-back horizon remains a fundamental challenge in time series forecasting (TSF), particularly in the federated learning scenarios where data is decentralized, heterogeneous, and often non-independent. While recent work has explored horizon selection by preserving forecasting-relevant information in an intrinsic space, these approaches are primarily restricted to centralized and independently distributed settings. This paper presents a principled framework for adaptive horizon selection in federated time series forecasting through an intrinsic space formulation. We introduce a synthetic data generator (SDG) that captures essential temporal structures in client data, including autoregressive dependencies, seasonality, and trend, while incorporating client-specific heterogeneity. Building on this model, we define a transformation that maps time series windows into an intrinsic representation space with well-defined geometric and statistical properties. We then derive a decomposition of the forecasting loss into a Bayesian term, which reflects irreducible uncertainty, and an approximation term, which accounts for finite-sample effects and limited model capacity. Our analysis shows that while increasing the look-back horizon improves the identifiability of deterministic patterns, it also increases approximation error due to higher model complexity and reduced sample efficiency. We prove that the total forecasting loss is minimized at the smallest horizon where the irreducible loss starts to saturate, while the approximation loss continues to rise. This work provides a rigorous theoretical foundation for adaptive horizon selection for time series forecasting in federated learning.
comment: Accepted by AAAI-26 as Oral Presentation
Klear-Reasoner: Advancing Reasoning Capability via Gradient-Preserving Clipping Policy Optimization
We present Klear-Reasoner, a model with long reasoning capabilities that demonstrates careful deliberation during problem solving, achieving outstanding performance across multiple benchmarks. Although there are already many excellent works related to inference models in the current community, there are still many problems with reproducing high-performance inference models due to incomplete disclosure of training details. This report provides an in-depth analysis of the reasoning model, covering the entire post-training workflow from data preparation and long Chain-of-Thought supervised fine-tuning (long CoT SFT) to reinforcement learning (RL), along with detailed ablation studies for each experimental component. For SFT data, our experiments show that a small number of high-quality data sources are more effective than a large number of diverse data sources, and that difficult samples can achieve better results without accuracy filtering. In addition, we investigate two key issues with current clipping mechanisms in RL: Clipping suppresses critical exploration signals and ignores suboptimal trajectories. To address these challenges, we propose Gradient-Preserving clipping Policy Optimization (GPPO) that gently backpropagates gradients from clipped tokens. GPPO not only enhances the model's exploration capacity but also improves its efficiency in learning from negative samples. Klear-Reasoner exhibits exceptional reasoning abilities in mathematics and programming, scoring 90.5% on AIME 2024, 83.2% on AIME 2025, 66.0% on LiveCodeBench V5 and 58.1% on LiveCodeBench V6.
InfMasking: Unleashing Synergistic Information by Contrastive Multimodal Interactions NeurIPS
In multimodal representation learning, synergistic interactions between modalities not only provide complementary information but also create unique outcomes through specific interaction patterns that no single modality could achieve alone. Existing methods may struggle to effectively capture the full spectrum of synergistic information, leading to suboptimal performance in tasks where such interactions are critical. This is particularly problematic because synergistic information constitutes the fundamental value proposition of multimodal representation. To address this challenge, we introduce InfMasking, a contrastive synergistic information extraction method designed to enhance synergistic information through an Infinite Masking strategy. InfMasking stochastically occludes most features from each modality during fusion, preserving only partial information to create representations with varied synergistic patterns. Unmasked fused representations are then aligned with masked ones through mutual information maximization to encode comprehensive synergistic information. This infinite masking strategy enables capturing richer interactions by exposing the model to diverse partial modality combinations during training. As computing mutual information estimates with infinite masking is computationally prohibitive, we derive an InfMasking loss to approximate this calculation. Through controlled experiments, we demonstrate that InfMasking effectively enhances synergistic information between modalities. In evaluations on large-scale real-world datasets, InfMasking achieves state-of-the-art performance across seven benchmarks. Code is released at https://github.com/brightest66/InfMasking.
comment: Conference on Neural Information Processing Systems (NeurIPS) 2025 (Spotlight)
ManiBox: Enhancing Embodied Spatial Generalization via Scalable Simulation Data Generations
Embodied agents require robust spatial intelligence to execute precise real-world manipulations. However, this remains a significant challenge, as current methods often struggle to accurately position objects in space. Collecting extensive data can help address this issue by enhancing the agent's spatial understanding. Nonetheless, obtaining such data with real robots is prohibitively expensive, and relying on simulation data frequently leads to visual generalization gaps during real-world deployment. To tackle these challenges, we propose ManiBox, a novel bounding-box-guided framework. By decoupling perception from policy generalization, ManiBox effectively reduces the Sim2Real gap, leverages Internet-scale data, and scales our policy data collection in simulation. Specifically, within ManiBox, the RL teacher policy efficiently generates scalable simulation data. The student policy is distilled from this data and takes bounding boxes as input, which is proven sufficient for determining objects' spatial positions, thus enabling zero-shot transfer to real robots. Comprehensive evaluations in both simulated and real-world environments demonstrate that ManiBox exhibits strong spatial generalization and adaptability across various manipulation tasks and settings. Furthermore, our empirical study provides preliminary verification of spatial scaling laws, i.e., the amount of data required for spatial generalization scales with spatial volume following a power-law relationship. At a given spatial volume level, the success rate of manipulation tasks follows Michaelis-Menten kinetics with respect to data volume, exhibiting a saturation effect as data increases. Our videos and code are available at https://thkkk.github.io/manibox
Graphics 2
VARTS: A Tool for the Visualization and Analysis of Representative Time Series Data
Large-scale time series visualization often suffers from excessive visual clutter and redundant patterns, making it difficult for users to understand the main temporal trends. To address this challenge, we present VARTS, an interactive visual analytics tool for representative time series selection and visualization. Building upon our previous work M4-Greedy, VARTS integrates M4-based sampling, DTW-based similarity computation, and greedy selection into a unified workflow for the identification and visualization of representative series. The tool provides a responsive graphical interface that allows users to import time series datasets, perform representative selection, and visualize both raw and reduced data through multiple coordinated views. By reducing redundancy while preserving essential data patterns, VARTS effectively enhances visual clarity and interpretability for large-scale time series analysis. The demo video is available at https://youtu.be/mS9f12Rf0jo.
Revisiting Graph Analytics Benchmark
The rise of graph analytics platforms has led to the development of various benchmarks for evaluating and comparing platform performance. However, existing benchmarks often fall short of fully assessing performance due to limitations in core algorithm selection, data generation processes (and the corresponding synthetic datasets), as well as the neglect of API usability evaluation. To address these shortcomings, we propose a novel graph analytics benchmark. First, we select eight core algorithms by extensively reviewing both academic and industrial settings. Second, we design an efficient and flexible data generator and produce eight new synthetic datasets as the default datasets for our benchmark. Lastly, we introduce a multi-level large language model (LLM)-based framework for API usability evaluation-the first of its kind in graph analytics benchmarks. We conduct comprehensive experimental evaluations on existing platforms (GraphX, PowerGraph, Flash, Grape, Pregel+, Ligra and G-thinker). The experimental results demonstrate the superiority of our proposed benchmark.